
man pages section 3: Networking
Library Functions

Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303-4900
U.S.A.

Part No: 806-0628-10
February 2000

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun
and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or
service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer
industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.
RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et
la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les
produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se
conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface 39

accept(3SOCKET) 45

accept(3XNET) 47

ber_decode(3LDAP) 49

ber_alloc_t(3LDAP) 49

ber_free(3LDAP) 49

ber_bvdup(3LDAP) 49

ber_init(3LDAP) 49

ber_flatten(3LDAP) 49

ber_get_next(3LDAP) 49

ber_skiptag(3LDAP) 49

ber_peek_tag(3LDAP) 49

ber_scanf(3LDAP) 49

ber_get_int(3LDAP) 49

ber_get_stringa(3LDAP) 49

ber_get_stringal(3LDAP) 49

ber_get_stringb(3LDAP) 49

ber_get_null(3LDAP) 49

ber_get_boolean(3LDAP) 49

Contents 3

ber_get_bitstring(3LDAP) 49

ber_first_element(3LDAP) 49

ber_next_element(3LDAP) 49

ber_bvfree(3LDAP) 49

ber_bvecfree(3LDAP) 49

ber_encode(3LDAP) 55

ber_alloc(3LDAP) 55

ber_printf(3LDAP) 55

ber_put_int(3LDAP) 55

ber_put_ostring(3LDAP) 55

ber_put_string(3LDAP) 55

ber_put_null(3LDAP) 55

ber_put_boolean(3LDAP) 55

ber_put_bitstring(3LDAP) 55

ber_start_seq(3LDAP) 55

ber_start_set(3LDAP) 55

ber_put_seq(3LDAP) 55

ber_put_set(3LDAP) 55

bind(3SOCKET) 59

bind(3XNET) 61

byteorder(3SOCKET) 64

htonl(3SOCKET) 64

htons(3SOCKET) 64

ntohl(3SOCKET) 64

ntohs(3SOCKET) 64

cldap_close(3LDAP) 65

cldap_open(3LDAP) 66

cldap_search_s(3LDAP) 67

4 man pages section 3: Networking Library Functions ♦ February 2000

cldap_setretryinfo(3LDAP) 69

connect(3SOCKET) 70

connect(3XNET) 73

dial(3NSL) 77

doconfig(3NSL) 80

endhostent(3XNET) 83

gethostbyaddr(3XNET) 83

gethostbyname(3XNET) 83

gethostent(3XNET) 83

sethostent(3XNET) 83

endnetent(3XNET) 85

getnetbyaddr(3XNET) 85

getnetbyname(3XNET) 85

getnetent(3XNET) 85

setnetent(3XNET) 85

endprotoent(3XNET) 87

getprotobynumber(3XNET) 87

getprotobyname(3XNET) 87

getprotoent(3XNET) 87

setprotoent(3XNET) 87

endservent(3XNET) 89

getservbyport(3XNET) 89

getservbyname(3XNET) 89

getservent(3XNET) 89

setservent(3XNET) 89

ethers(3SOCKET) 91

ether_ntoa(3SOCKET) 91

ether_aton(3SOCKET) 91

Contents 5

ether_ntohost(3SOCKET) 91

ether_hostton(3SOCKET) 91

ether_line(3SOCKET) 91

fn_attr_bind(3XFN) 93

fn_attr_create_subcontext(3XFN) 95

fn_attr_ext_search(3XFN) 96

FN_ext_searchlist_t(3XFN) 96

fn_ext_searchlist_next(3XFN) 96

fn_ext_searchlist_destroy(3XFN) 96

fn_attr_get(3XFN) 103

fn_attr_get_ids(3XFN) 104

fn_attr_get_values(3XFN) 105

FN_valuelist_t(3XFN) 105

fn_valuelist_next(3XFN) 105

fn_valuelist_destroy(3XFN) 105

FN_attribute_t(3XFN) 108

fn_attribute_create(3XFN) 108

fn_attribute_destroy(3XFN) 108

fn_attribute_copy(3XFN) 108

fn_attribute_assign(3XFN) 108

fn_attribute_identifier(3XFN) 108

fn_attribute_syntax(3XFN) 108

fn_attribute_valuecount(3XFN) 108

fn_attribute_first(3XFN) 108

fn_attribute_next(3XFN) 108

fn_attribute_add(3XFN) 108

fn_attribute_remove(3XFN) 108

fn_attr_modify(3XFN) 110

6 man pages section 3: Networking Library Functions ♦ February 2000

FN_attrmodlist_t(3XFN) 112

fn_attrmodlist_create(3XFN) 112

fn_attrmodlist_destroy(3XFN) 112

fn_attrmodlist_copy(3XFN) 112

fn_attrmodlist_assign(3XFN) 112

fn_attrmodlist_count(3XFN) 112

fn_attrmodlist_first(3XFN) 112

fn_attrmodlist_next(3XFN) 112

fn_attrmodlist_add(3XFN) 112

fn_attr_multi_get(3XFN) 115

FN_multigetlist_t(3XFN) 115

fn_multigetlist_next(3XFN) 115

fn_multigetlist_destroy(3XFN) 115

fn_attr_multi_modify(3XFN) 119

fn_attr_search(3XFN) 121

FN_searchlist_t(3XFN) 121

fn_searchlist_next(3XFN) 121

fn_searchlist_destroy(3XFN) 121

FN_attrset_t(3XFN) 126

fn_attrset_create(3XFN) 126

fn_attrset_destroy(3XFN) 126

fn_attrset_copy(3XFN) 126

fn_attrset_assign(3XFN) 126

fn_attrset_get(3XFN) 126

fn_attrset_count(3XFN) 126

fn_attrset_first(3XFN) 126

fn_attrset_next(3XFN) 126

fn_attrset_add(3XFN) 126

Contents 7

fn_attrset_remove(3XFN) 126

FN_attrvalue_t(3XFN) 128

FN_composite_name_t(3XFN) 129

fn_composite_name_create(3XFN) 129

fn_composite_name_destroy(3XFN) 129

fn_composite_name_from_str(3XFN) 129

fn_composite_name_from_string(3XFN) 129

fn_string_from_composite_name(3XFN) 129

fn_composite_name_copy(3XFN) 129

fn_composite_name_assign(3XFN) 129

fn_composite_name_is_empty(3XFN) 129

fn_composite_name_count(3XFN) 129

fn_composite_name_first(3XFN) 129

fn_composite_name_next(3XFN) 129

fn_composite_name_prev(3XFN) 129

fn_composite_name_last(3XFN) 129

fn_composite_name_prefix(3XFN) 129

fn_composite_name_suffix(3XFN) 129

fn_composite_name_is_equal(3XFN) 129

fn_composite_name_is_prefix(3XFN) 129

fn_composite_name_is_suffix(3XFN) 129

fn_composite_name_prepend_comp(3XFN) 129

fn_composite_name_append_comp(3XFN) 129

fn_composite_name_insert_comp(3XFN) 129

fn_composite_name_delete_comp(3XFN) 129

fn_composite_name_prepend_name(3XFN) 129

fn_composite_name_append_name(3XFN) 129

fn_composite_name_insert_name(3XFN) 129

8 man pages section 3: Networking Library Functions ♦ February 2000

FN_compound_name_t(3XFN) 134

fn_compound_name_from_syntax_attrs(3XFN) 134

fn_compound_name_get_syntax_attrs(3XFN) 134

fn_compound_name_destroy(3XFN) 134

fn_string_from_compound_name(3XFN) 134

fn_compound_name_copy(3XFN) 134

fn_compound_name_assign(3XFN) 134

fn_compound_name_count(3XFN) 134

fn_compound_name_first(3XFN) 134

fn_compound_name_next(3XFN) 134

fn_compound_name_prev(3XFN) 134

fn_compound_name_last(3XFN) 134

fn_compound_name_prefix(3XFN) 134

fn_compound_name_suffix(3XFN) 134

fn_compound_name_is_empty(3XFN) 134

fn_compound_name_is_equal(3XFN) 134

fn_compound_name_is_prefix(3XFN) 134

fn_compound_name_is_suffix(3XFN) 134

fn_compound_name_prepend_comp(3XFN) 134

fn_compound_name_append_comp(3XFN) 134

fn_compound_name_insert_comp(3XFN) 134

fn_compound_name_delete_comp(3XFN) 134

fn_compound_name_delete_all(3XFN) 134

fn_ctx_bind(3XFN) 139

fn_ctx_create_subcontext(3XFN) 141

fn_ctx_destroy_subcontext(3XFN) 142

fn_ctx_equivalent_name(3XFN) 144

fn_ctx_get_ref(3XFN) 146

Contents 9

fn_ctx_get_syntax_attrs(3XFN) 147

fn_ctx_handle_destroy(3XFN) 149

fn_ctx_handle_from_initial(3XFN) 150

fn_ctx_handle_from_ref(3XFN) 152

fn_ctx_list_bindings(3XFN) 154

FN_bindinglist_t(3XFN) 154

fn_bindinglist_next(3XFN) 154

fn_bindinglist_destroy(3XFN) 154

fn_ctx_list_names(3XFN) 155

FN_namelist_t(3XFN) 155

fn_namelist_next(3XFN) 155

fn_namelist_destroy(3XFN) 155

fn_ctx_lookup(3XFN) 158

fn_ctx_lookup_link(3XFN) 159

fn_ctx_rename(3XFN) 160

FN_ctx_t(3XFN) 162

fn_ctx_unbind(3XFN) 165

FN_identifier_t(3XFN) 166

FN_ref_addr_t(3XFN) 167

fn_ref_addr_create(3XFN) 167

fn_ref_addr_destroy(3XFN) 167

fn_ref_addr_copy(3XFN) 167

fn_ref_addr_assign(3XFN) 167

fn_ref_addr_type(3XFN) 167

fn_ref_addr_length(3XFN) 167

fn_ref_addr_data(3XFN) 167

fn_ref_addr_description(3XFN) 167

FN_ref_t(3XFN) 169

10 man pages section 3: Networking Library Functions ♦ February 2000

fn_ref_create(3XFN) 169

fn_ref_destroy(3XFN) 169

fn_ref_copy(3XFN) 169

fn_ref_assign(3XFN) 169

fn_ref_type(3XFN) 169

fn_ref_addrcount(3XFN) 169

fn_ref_first(3XFN) 169

fn_ref_next(3XFN) 169

fn_ref_prepend_addr(3XFN) 169

fn_ref_append_addr(3XFN) 169

fn_ref_insert_addr(3XFN) 169

fn_ref_delete_addr(3XFN) 169

fn_ref_delete_all(3XFN) 169

fn_ref_create_link(3XFN) 169

fn_ref_is_link(3XFN) 169

fn_ref_link_name(3XFN) 169

fn_ref_description(3XFN) 169

FN_search_control_t(3XFN) 172

fn_search_control_create(3XFN) 172

fn_search_control_destroy(3XFN) 172

fn_search_control_copy(3XFN) 172

fn_search_control_assign(3XFN) 172

fn_search_control_scope(3XFN) 172

fn_search_control_follow_links(3XFN) 172

fn_search_control_max_names(3XFN) 172

fn_search_control_return_ref(3XFN) 172

fn_search_control_return_attr_ids(3XFN) 172

FN_search_filter_t(3XFN) 175

Contents 11

fn_search_filter_create(3XFN) 175

fn_search_filter_destroy(3XFN) 175

fn_search_filter_copy(3XFN) 175

fn_search_filter_assign(3XFN) 175

fn_search_filter_expression(3XFN) 175

fn_search_filter_arguments(3XFN) 175

FN_status_t(3XFN) 182

fn_status_create(3XFN) 182

fn_status_destroy(3XFN) 182

fn_status_copy(3XFN) 182

fn_status_assign(3XFN) 182

fn_status_code(3XFN) 182

fn_status_remaining_name(3XFN) 182

fn_status_resolved_name(3XFN) 182

fn_status_resolved_ref(3XFN) 182

fn_status_diagnostic_message(3XFN) 182

fn_status_link_code(3XFN) 182

fn_status_link_remaining_name(3XFN) 182

fn_status_link_resolved_name(3XFN) 182

fn_status_link_resolved_ref(3XFN) 182

fn_status_link_diagnostic_message(3XFN) 182

fn_status_is_success(3XFN) 182

fn_status_set_success(3XFN) 182

fn_status_set(3XFN) 182

fn_status_set_code(3XFN) 182

fn_status_set_remaining_name(3XFN) 182

fn_status_set_resolved_name(3XFN) 182

fn_status_set_resolved_ref(3XFN) 182

12 man pages section 3: Networking Library Functions ♦ February 2000

fn_status_set_diagnostic_message(3XFN) 182

fn_status_set_link_code(3XFN) 182

fn_status_set_link_remaining_name(3XFN) 182

fn_status_set_link_resolved_name(3XFN) 182

fn_status_set_link_resolved_ref(3XFN) 182

fn_status_set_link_diagnostic_message(3XFN) 182

fn_status_append_resolved_name(3XFN) 182

fn_status_append_remaining_name(3XFN) 182

fn_status_advance_by_name(3XFN) 182

fn_status_description(3XFN) 182

FN_string_t(3XFN) 187

fn_string_create(3XFN) 187

fn_string_destroy(3XFN) 187

fn_string_from_str(3XFN) 187

fn_string_from_str_n(3XFN) 187

fn_string_str(3XFN) 187

fn_string_from_contents(3XFN) 187

fn_string_code_set(3XFN) 187

fn_string_charcount(3XFN) 187

fn_string_bytecount(3XFN) 187

fn_string_contents(3XFN) 187

fn_string_copy(3XFN) 187

fn_string_assign(3XFN) 187

fn_string_from_strings(3XFN) 187

fn_string_from_substring(3XFN) 187

fn_string_is_empty(3XFN) 187

fn_string_compare(3XFN) 187

fn_string_compare_substring(3XFN) 187

Contents 13

fn_string_next_substring(3XFN) 187

fn_string_prev_substring(3XFN) 187

getaddrinfo(3SOCKET) 191

getnameinfo(3SOCKET) 191

freeaddrinfo(3SOCKET) 191

gai_strerror(3SOCKET) 191

gethostbyname(3NSL) 195

gethostbyname_r(3NSL) 195

gethostbyaddr(3NSL) 195

gethostbyaddr_r(3NSL) 195

gethostent(3NSL) 195

gethostent_r(3NSL) 195

sethostent(3NSL) 195

endhostent(3NSL) 195

gethostname(3XNET) 201

getipnodebyname(3SOCKET) 202

getipnodebyaddr(3SOCKET) 202

freehostent(3SOCKET) 202

getnetbyname(3SOCKET) 208

getnetbyname_r(3SOCKET) 208

getnetbyaddr(3SOCKET) 208

getnetbyaddr_r(3SOCKET) 208

getnetent(3SOCKET) 208

getnetent_r(3SOCKET) 208

setnetent(3SOCKET) 208

endnetent(3SOCKET) 208

getnetconfig(3NSL) 211

setnetconfig(3NSL) 211

14 man pages section 3: Networking Library Functions ♦ February 2000

endnetconfig(3NSL) 211

getnetconfigent(3NSL) 211

freenetconfigent(3NSL) 211

nc_perror(3NSL) 211

nc_sperror(3NSL) 211

getnetpath(3NSL) 213

setnetpath(3NSL) 213

endnetpath(3NSL) 213

getpeername(3SOCKET) 215

getpeername(3XNET) 216

getprotobyname(3SOCKET) 218

getprotobyname_r(3SOCKET) 218

getprotobynumber(3SOCKET) 218

getprotobynumber_r(3SOCKET) 218

getprotoent(3SOCKET) 218

getprotoent_r(3SOCKET) 218

setprotoent(3SOCKET) 218

endprotoent(3SOCKET) 218

getpublickey(3NSL) 222

getsecretkey(3NSL) 222

publickey(3NSL) 222

getrpcbyname(3NSL) 223

getrpcbyname_r(3NSL) 223

getrpcbynumber(3NSL) 223

getrpcbynumber_r(3NSL) 223

getrpcent(3NSL) 223

getrpcent_r(3NSL) 223

setrpcent(3NSL) 223

Contents 15

endrpcent(3NSL) 223

getservbyname(3SOCKET) 226

getservbyname_r(3SOCKET) 226

getservbyport(3SOCKET) 226

getservbyport_r(3SOCKET) 226

getservent(3SOCKET) 226

getservent_r(3SOCKET) 226

setservent(3SOCKET) 226

endservent(3SOCKET) 226

getsockname(3SOCKET) 230

getsockname(3XNET) 231

getsockopt(3SOCKET) 232

setsockopt(3SOCKET) 232

getsockopt(3XNET) 235

htonl(3XNET) 238

htons(3XNET) 238

ntohl(3XNET) 238

ntohs(3XNET) 238

if_nametoindex(3NSL) 239

if_indextoname(3NSL) 239

if_nameindex(3NSL) 239

if_freenameindex(3NSL) 239

if_nametoindex(3XNET) 241

if_indextoname(3XNET) 241

if_nameindex(3XNET) 241

if_freenameindex(3XNET) 241

inet(3SOCKET) 243

inet6(3SOCKET) 243

16 man pages section 3: Networking Library Functions ♦ February 2000

inet_ntop(3SOCKET) 243

inet_pton(3SOCKET) 243

inet_addr(3SOCKET) 243

inet_network(3SOCKET) 243

inet_makeaddr(3SOCKET) 243

inet_lnaof(3SOCKET) 243

inet_netof(3SOCKET) 243

inet_ntoa(3SOCKET) 243

inet_addr(3XNET) 247

inet_network(3XNET) 247

inet_makeaddr(3XNET) 247

inet_lnaof(3XNET) 247

inet_netof(3XNET) 247

inet_ntoa(3XNET) 247

kerberos(3KRB) 249

krb_mk_req(3KRB) 249

krb_rd_req(3KRB) 249

krb_kntoln(3KRB) 249

krb_set_key(3KRB) 249

krb_get_cred(3KRB) 249

krb_mk_safe(3KRB) 249

krb_rd_safe(3KRB) 249

krb_mk_err(3KRB) 249

krb_rd_err(3KRB) 249

kerberos_rpc(3KRB) 253

authkerb_getucred(3KRB) 253

authkerb_seccreate(3KRB) 253

svc_kerb_reg(3KRB) 253

Contents 17

krb_realmofhost(3KRB) 256

krb_get_phost(3KRB) 256

krb_get_krbhst(3KRB) 256

krb_get_admhst(3KRB) 256

krb_get_lrealm(3KRB) 256

krb_sendauth(3KRB) 258

krb_recvauth(3KRB) 258

krb_net_write(3KRB) 258

krb_net_read(3KRB) 258

krb_set_tkt_string(3KRB) 262

ldap(3LDAP) 263

ldap_abandon(3LDAP) 273

ldap_add(3LDAP) 274

ldap_add_s(3LDAP) 274

ldap_add_ext(3LDAP) 274

ldap_add_ext_s(3LDAP) 274

ldap_bind(3LDAP) 276

ldap_bind_s(3LDAP) 276

ldap_sasl_bind(3LDAP) 276

ldap_sasl_bind_s(3LDAP) 276

ldap_simple_bind(3LDAP) 276

ldap_simple_bind_s(3LDAP) 276

ldap_unbind(3LDAP) 276

ldap_unbind_s(3LDAP) 276

ldap_set_rebind_proc(3LDAP) 276

ldap_cache(3LDAP) 279

ldap_enable_cache(3LDAP) 279

ldap_disable_cache(3LDAP) 279

18 man pages section 3: Networking Library Functions ♦ February 2000

ldap_destroy_cache(3LDAP) 279

ldap_flush_cache(3LDAP) 279

ldap_uncache_entry(3LDAP) 279

ldap_uncache_request(3LDAP) 279

ldap_set_cache_options(3LDAP) 279

ldap_charset(3LDAP) 281

ldap_set_string_translators(3LDAP) 281

ldap_t61_to_8859(3LDAP) 281

ldap_8859_to_t61(3LDAP) 281

ldap_translate_from_t61(3LDAP) 281

ldap_translate_to_t61(3LDAP) 281

ldap_enable_translation(3LDAP) 281

ldap_compare(3LDAP) 283

ldap_compare_s(3LDAP) 283

ldap_compare_ext(3LDAP) 283

ldap_compare_ext_s(3LDAP) 283

ldap_control_free(3LDAP) 285

ldap_controls_free(3LDAP) 285

ldap_delete(3LDAP) 286

ldap_delete_s(3LDAP) 286

ldap_delete_ext(3LDAP) 286

ldap_delete_ext_s(3LDAP) 286

ldap_disptmpl(3LDAP) 288

ldap_init_templates(3LDAP) 288

ldap_init_templates_buf(3LDAP) 288

ldap_free_templates(3LDAP) 288

ldap_first_disptmpl(3LDAP) 288

ldap_next_disptmpl(3LDAP) 288

Contents 19

ldap_oc2template(3LDAP) 288

ldap_tmplattrs(3LDAP) 288

ldap_first_tmplrow(3LDAP) 288

ldap_next_tmplrow(3LDAP) 288

ldap_first_tmplcol(3LDAP) 288

ldap_next_tmplcol(3LDAP) 288

ldap_entry2text(3LDAP) 295

ldap_entry2text_search(3LDAP) 295

ldap_entry2html(3LDAP) 295

ldap_entry2html_search(3LDAP) 295

ldap_vals2html(3LDAP) 295

ldap_vals2text(3LDAP) 295

ldap_error(3LDAP) 299

ldap_perror(3LDAP) 299

ldap_result2error(3LDAP) 299

ldap_errlist(3LDAP) 299

ldap_err2string (3LDAP) 299

ldap_first_attribute(3LDAP) 303

ldap_next_attribute(3LDAP) 303

ldap_first_entry(3LDAP) 304

ldap_next_entry(3LDAP) 304

ldap_count_entries(3LDAP) 304

ldap_count_references(3LDAP) 304

ldap_first_reference(3LDAP) 304

ldap_first_reference(3LDAP) 304

ldap_first_message(3LDAP) 306

ldap_count_messages(3LDAP) 306

ldap_next_message(3LDAP) 306

20 man pages section 3: Networking Library Functions ♦ February 2000

ldap_msgtype(3LDAP) 306

ldap_friendly(3LDAP) 307

ldap_friendly_name(3LDAP) 307

ldap_free_friendlymap(3LDAP) 307

ldap_get_dn(3LDAP) 308

ldap_explode_dn(3LDAP) 308

ldap_dn2ufn(3LDAP) 308

ldap_is_dns_dn(3LDAP) 308

ldap_explode_dns(3LDAP) 308

ldap_dns_to_dn(3LDAP) 308

ldap_getfilter(3LDAP) 310

ldap_init_getfilter(3LDAP) 310

ldap_init_getfilter_buf(3LDAP) 310

ldap_getfilter_free(3LDAP) 310

ldap_getfirstfilter(3LDAP) 310

ldap_getnextfilter(3LDAP) 310

ldap_build_filter(3LDAP) 310

ldap_get_option(3LDAP) 312

ldap_set_option(3LDAP) 312

ldap_get_values(3LDAP) 316

ldap_get_values_len(3LDAP) 316

ldap_count_values(3LDAP) 316

ldap_count_values_len(3LDAP) 316

ldap_value_free(3LDAP) 316

ldap_value_free_len(3LDAP) 316

ldap_modify(3LDAP) 318

ldap_modify_s(3LDAP) 318

ldap_mods_free(3LDAP) 318

Contents 21

ldap_modify_ext(3LDAP) 318

ldap_modify_ext_s(3LDAP) 318

ldap_modrdn(3LDAP) 320

ldap_modrdn_s(3LDAP) 320

ldap_modrdn2(3LDAP) 320

ldap_modrdn2_s(3LDAP) 320

ldap_rename(3LDAP) 320

ldap_rename_s(3LDAP) 320

ldap_open(3LDAP) 322

ldap_init(3LDAP) 322

ldap_parse_result(3LDAP) 324

ldap_parse_extended_result(3LDAP) 324

ldap_parse_sasl_bind_result(3LDAP) 324

ldap_result(3LDAP) 325

ldap_msgfree(3LDAP) 325

ldap_search(3LDAP) 327

ldap_search_s(3LDAP) 327

ldap_search_ext(3LDAP) 327

ldap_search_ext_s(3LDAP) 327

ldap_search_st(3LDAP) 327

ldap_searchprefs(3LDAP) 329

ldap_init_searchprefs(3LDAP) 329

ldap_init_searchprefs_buf(3LDAP) 329

ldap_free_searchprefs(3LDAP) 329

ldap_first_searchobj(3LDAP) 329

ldap_next_searchobj(3LDAP) 329

ldap_sort(3LDAP) 331

ldap_sort_entries(3LDAP) 331

22 man pages section 3: Networking Library Functions ♦ February 2000

ldap_sort_values(3LDAP) 331

ldap_sort_strcasecmp(3LDAP) 331

ldap_ufn(3LDAP) 333

ldap_ufn_search_s(3LDAP) 333

ldap_ufn_search_c(3LDAP) 333

ldap_ufn_search_ct(3LDAP) 333

ldap_ufn_setfilter(3LDAP) 333

ldap_ufn_setprefix(3LDAP) 333

ldap_ufn_timeout(3LDAP) 333

ldap_url(3LDAP) 335

ldap_is_ldap_url(3LDAP) 335

ldap_url_parse(3LDAP) 335

ldap_free_urldesc(3LDAP) 335

ldap_url_search(3LDAP) 335

ldap_url_search_s(3LDAP) 335

ldap_url_search_st(3LDAP) 335

ldap_dns_to_url(3LDAP) 335

ldap_dn_to_url(3LDAP) 335

listen(3SOCKET) 338

listen(3XNET) 339

netdir(3NSL) 341

netdir_getbyname(3NSL) 341

netdir_getbyaddr(3NSL) 341

netdir_free(3NSL) 341

netdir_options(3NSL) 341

taddr2uaddr(3NSL) 341

uaddr2taddr(3NSL) 341

netdir_perror(3NSL) 341

Contents 23

netdir_sperror(3NSL) 341

netdir_mergeaddr(3NSL) 341

nis_error(3NSL) 345

nis_sperrno(3NSL) 345

nis_perror(3NSL) 345

nis_lerror(3NSL) 345

nis_sperror(3NSL) 345

nis_sperror_r(3NSL) 345

nis_groups(3NSL) 346

nis_ismember(3NSL) 346

nis_addmember(3NSL) 346

nis_removemember(3NSL) 346

nis_creategroup(3NSL) 346

nis_destroygroup(3NSL) 346

nis_verifygroup(3NSL) 346

nis_print_group_entry(3NSL) 346

nis_local_names(3NSL) 349

nis_local_directory(3NSL) 349

nis_local_host(3NSL) 349

nis_local_group(3NSL) 349

nis_local_principal(3NSL) 349

nis_names(3NSL) 351

nis_lookup(3NSL) 351

nis_add(3NSL) 351

nis_remove(3NSL) 351

nis_modify(3NSL) 351

nis_freeresult(3NSL) 351

nis_objects(3NSL) 358

24 man pages section 3: Networking Library Functions ♦ February 2000

nis_ping(3NSL) 367

nis_checkpoint(3NSL) 367

nis_server(3NSL) 368

nis_mkdir(3NSL) 368

nis_rmdir(3NSL) 368

nis_servstate(3NSL) 368

nis_stats(3NSL) 368

nis_getservlist(3NSL) 368

nis_freeservlist(3NSL) 368

nis_freetags(3NSL) 368

nis_subr(3NSL) 370

nis_leaf_of(3NSL) 370

nis_name_of(3NSL) 370

nis_domain_of(3NSL) 370

nis_getnames(3NSL) 370

nis_freenames(3NSL) 370

nis_dir_cmp(3NSL) 370

nis_clone_object(3NSL) 370

nis_destroy_object(3NSL) 370

nis_print_object(3NSL) 370

nis_tables(3NSL) 373

nis_list(3NSL) 373

nis_add_entry(3NSL) 373

nis_remove_entry(3NSL) 373

nis_modify_entry(3NSL) 373

nis_first_entry(3NSL) 373

nis_next_entry(3NSL) 373

nlsgetcall(3NSL) 382

Contents 25

nlsprovider(3NSL) 383

nlsrequest(3NSL) 384

rcmd(3SOCKET) 386

rcmd_af(3SOCKET) 386

rresvport(3SOCKET) 386

rresvport_af(3SOCKET) 386

ruserok(3SOCKET) 386

recv(3SOCKET) 388

recvfrom(3SOCKET) 388

recvmsg(3SOCKET) 388

recv(3XNET) 390

recvfrom(3XNET) 393

recvmsg(3XNET) 397

resolver(3RESOLV) 401

res_init(3RESOLV) 401

res_mkquery(3RESOLV) 401

res_mkupdate(3RESOLV) 401

res_mkupdrec(3RESOLV) 401

res_query(3RESOLV) 401

res_search(3RESOLV) 401

res_send(3RESOLV) 401

res_update(3RESOLV) 401

dn_comp(3RESOLV) 401

dn_expand(3RESOLV) 401

rexec(3SOCKET) 407

rexec_af(3SOCKET) 407

rpc(3NSL) 409

rpcbind(3NSL) 419

26 man pages section 3: Networking Library Functions ♦ February 2000

rpcb_getmaps(3NSL) 419

rpcb_getaddr(3NSL) 419

rpcb_gettime(3NSL) 419

rpcb_rmtcall(3NSL) 419

rpcb_set(3NSL) 419

rpcb_unset(3NSL) 419

rpc_clnt_auth(3NSL) 421

auth_destroy(3NSL) 421

authnone_create(3NSL) 421

authsys_create(3NSL) 421

authsys_create_default(3NSL) 421

rpc_clnt_calls(3NSL) 423

clnt_call(3NSL) 423

clnt_freeres(3NSL) 423

clnt_geterr(3NSL) 423

clnt_perrno(3NSL) 423

clnt_perror(3NSL) 423

clnt_sperrno(3NSL) 423

clnt_sperror(3NSL) 423

rpc_broadcast(3NSL) 423

rpc_broadcast_exp(3NSL) 423

rpc_call(3NSL) 423

rpc_clnt_create(3NSL) 427

clnt_control(3NSL) 427

clnt_create(3NSL) 427

clnt_create_timed(3NSL) 427

clnt_create_vers(3NSL) 427

clnt_create_vers_timed(3NSL) 427

Contents 27

clnt_destroy(3NSL) 427

clnt_dg_create(3NSL) 427

clnt_pcreateerror(3NSL) 427

clnt_raw_create(3NSL) 427

clnt_spcreateerror(3NSL) 427

clnt_tli_create(3NSL) 427

clnt_tp_create(3NSL) 427

clnt_tp_create_timed(3NSL) 427

clnt_vc_create(3NSL) 427

rpc_createerr(3NSL) 427

rpc_control(3NSL) 433

rpc_gss_getcred(3NSL) 435

rpc_gss_get_error(3NSL) 437

rpc_gss_get_mechanisms(3NSL) 438

rpc_gss_get_mech_info(3NSL) 438

rpc_gss_get_versions(3NSL) 438

rpc_gss_is_installed(3NSL) 438

rpc_gss_get_principal_name(3NSL) 440

rpc_gss_max_data_length(3NSL) 442

rpc_gss_svc_max_data_length(3NSL) 442

rpc_gss_mech_to_oid(3NSL) 443

rpc_gss_qop_to_num(3NSL) 443

rpc_gss_seccreate(3NSL) 445

rpc_gss_set_callback(3NSL) 447

rpc_gss_set_defaults(3NSL) 449

rpc_gss_set_svc_name(3NSL) 450

rpc_rac(3RAC) 451

rac_drop(3RAC) 451

28 man pages section 3: Networking Library Functions ♦ February 2000

rac_poll(3RAC) 451

rac_recv(3RAC) 451

rac_send(3RAC) 451

rpcsec_gss(3NSL) 455

rpc_soc(3NSL) 460

authdes_create(3NSL) 460

authunix_create(3NSL) 460

authunix_create_default(3NSL) 460

callrpc(3NSL) 460

clnt_broadcast(3NSL) 460

clntraw_create(3NSL) 460

clnttcp_create(3NSL) 460

clntudp_bufcreate(3NSL) 460

clntudp_create(3NSL) 460

get_myaddress(3NSL) 460

getrpcport(3NSL) 460

pmap_getmaps(3NSL) 460

pmap_getport(3NSL) 460

pmap_rmtcall(3NSL) 460

pmap_set(3NSL) 460

pmap_unset(3NSL) 460

registerrpc(3NSL) 460

svc_fds(3NSL) 460

svc_getcaller(3NSL) 460

svc_getreq(3NSL) 460

svc_register(3NSL) 460

svc_unregister(3NSL) 460

svcfd_create(3NSL) 460

Contents 29

svcraw_create(3NSL) 460

svctcp_create(3NSL) 460

svcudp_bufcreate(3NSL) 460

svcudp_create(3NSL) 460

xdr_authunix_parms(3NSL) 460

rpc_svc_calls(3NSL) 470

svc_dg_enablecache(3NSL) 470

svc_done(3NSL) 470

svc_exit(3NSL) 470

svc_fdset(3NSL) 470

svc_freeargs(3NSL) 470

svc_getargs(3NSL) 470

svc_getreq_common(3NSL) 470

svc_getreq_poll(3NSL) 470

svc_getreqset(3NSL) 470

svc_getrpccaller(3NSL) 470

svc_max_pollfd(3NSL) 470

svc_pollfd(3NSL) 470

svc_run(3NSL) 470

svc_sendreply(3NSL) 470

rpc_svc_create(3NSL) 474

svc_control(3NSL) 474

svc_create(3NSL) 474

svc_destroy(3NSL) 474

svc_dg_create(3NSL) 474

svc_fd_create(3NSL) 474

svc_raw_create(3NSL) 474

svc_tli_create(3NSL) 474

30 man pages section 3: Networking Library Functions ♦ February 2000

svc_tp_create(3NSL) 474

svc_vc_create(3NSL) 474

rpc_svc_err(3NSL) 479

svcerr_auth(3NSL) 479

svcerr_decode(3NSL) 479

svcerr_noproc(3NSL) 479

svcerr_noprog(3NSL) 479

svcerr_progvers(3NSL) 479

svcerr_systemerr(3NSL) 479

svcerr_weakauth(3NSL) 479

rpc_svc_reg(3NSL) 481

rpc_reg(3NSL) 481

svc_reg(3NSL) 481

svc_unreg(3NSL) 481

svc_auth_reg(3NSL) 481

xprt_register(3NSL) 481

xprt_unregister(3NSL) 481

rpc_xdr(3NSL) 483

xdr_accepted_reply(3NSL) 483

xdr_authsys_parms(3NSL) 483

xdr_callhdr(3NSL) 483

xdr_callmsg(3NSL) 483

xdr_opaque_auth(3NSL) 483

xdr_rejected_reply(3NSL) 483

xdr_replymsg(3NSL) 483

rstat(3RPC) 485

havedisk(3RPC) 485

rusers(3RPC) 486

Contents 31

rnusers(3RPC) 486

rwall(3RPC) 487

secure_rpc(3NSL) 488

authdes_getucred(3NSL) 488

authdes_seccreate(3NSL) 488

getnetname(3NSL) 488

host2netname(3NSL) 488

key_decryptsession(3NSL) 488

key_encryptsession(3NSL) 488

key_gendes(3NSL) 488

key_setsecret(3NSL) 488

key_secretkey_is_set(3NSL) 488

netname2host(3NSL) 488

netname2user(3NSL) 488

user2netname(3NSL) 488

send(3SOCKET) 492

sendto(3SOCKET) 492

sendmsg(3SOCKET) 492

send(3XNET) 494

sendmsg(3XNET) 497

sendto(3XNET) 501

setsockopt(3XNET) 505

shutdown(3SOCKET) 509

shutdown(3XNET) 510

slp_api(3SLP) 512

SLPClose(3SLP) 523

SLPDelAttrs(3SLP) 524

SLPDereg(3SLP) 526

32 man pages section 3: Networking Library Functions ♦ February 2000

SLPEscape(3SLP) 528

SLPFindAttrs(3SLP) 530

SLPFindScopes(3SLP) 532

SLPFindSrvs(3SLP) 534

SLPFindSrvTypes(3SLP) 536

SLPFree(3SLP) 538

SLPGetProperty(3SLP) 539

SLPGetRefreshInterval(3SLP) 540

SLPOpen(3SLP) 541

SLPParseSrvURL(3SLP) 543

SLPReg(3SLP) 545

SLPSetProperty(3SLP) 547

slp_strerror(3SLP) 548

SLPUnescape(3SLP) 549

socket(3SOCKET) 551

socket(3XNET) 554

socketpair(3SOCKET) 557

socketpair(3XNET) 558

spray(3SOCKET) 561

t_accept(3NSL) 563

t_alloc(3NSL) 567

t_bind(3NSL) 570

t_close(3NSL) 574

t_connect(3NSL) 576

t_errno(3NSL) 580

t_error(3NSL) 582

t_free(3NSL) 584

t_getinfo(3NSL) 586

Contents 33

t_getprotaddr(3NSL) 590

t_getstate(3NSL) 592

t_listen(3NSL) 594

t_look(3NSL) 597

t_open(3NSL) 599

t_optmgmt(3NSL) 603

t_rcv(3NSL) 612

t_rcvconnect(3NSL) 615

t_rcvdis(3NSL) 618

t_rcvrel(3NSL) 621

t_rcvreldata(3NSL) 623

t_rcvudata(3NSL) 625

t_rcvuderr(3NSL) 628

t_rcvv(3NSL) 631

t_rcvvudata(3NSL) 634

t_snd(3NSL) 637

t_snddis(3NSL) 641

t_sndrel(3NSL) 644

t_sndreldata(3NSL) 646

t_sndudata(3NSL) 648

t_sndv(3NSL) 651

t_sndvudata(3NSL) 655

t_strerror(3NSL) 658

t_sync(3NSL) 660

t_sysconf(3NSL) 662

t_unbind(3NSL) 663

xdr(3NSL) 665

xdr_admin(3NSL) 667

34 man pages section 3: Networking Library Functions ♦ February 2000

xdr_control(3NSL) 667

xdr_getpos(3NSL) 667

xdr_inline(3NSL) 667

xdrrec_endofrecord(3NSL) 667

xdrrec_eof(3NSL) 667

xdrrec_readbytes(3NSL) 667

xdrrec_skiprecord(3NSL) 667

xdr_setpos(3NSL) 667

xdr_sizeof(3NSL) 667

xdr_complex(3NSL) 669

xdr_array(3NSL) 669

xdr_bytes(3NSL) 669

xdr_opaque(3NSL) 669

xdr_pointer(3NSL) 669

xdr_reference(3NSL) 669

xdr_string(3NSL) 669

xdr_union(3NSL) 669

xdr_vector(3NSL) 669

xdr_wrapstring(3NSL) 669

xdr_create(3NSL) 672

xdr_destroy(3NSL) 672

xdrmem_create(3NSL) 672

xdrrec_create(3NSL) 672

xdrstdio_create(3NSL) 672

xdr_simple(3NSL) 674

xdr_bool(3NSL) 674

xdr_char(3NSL) 674

xdr_double(3NSL) 674

Contents 35

xdr_enum(3NSL) 674

xdr_float(3NSL) 674

xdr_free(3NSL) 674

xdr_hyper(3NSL) 674

xdr_int(3NSL) 674

xdr_long(3NSL) 674

xdr_longlong_t(3NSL) 674

xdr_quadruple(3NSL) 674

xdr_short(3NSL) 674

xdr_u_char(3NSL) 674

xdr_u_hyper(3NSL) 674

xdr_u_int(3NSL) 674

xdr_u_long(3NSL) 674

xdr_u_longlong_t(3NSL) 674

xdr_u_short(3NSL) 674

xdr_void(3NSL) 674

xfn(3XFN) 678

xfn_attributes(3XFN) 679

xfn_composite_names(3XFN) 683

xfn_compound_names(3XFN) 684

xfn_links(3XFN) 688

xfn_status_codes(3XFN) 691

ypclnt(3NSL) 695

yp_get_default_domain(3NSL) 695

yp_bind(3NSL) 695

yp_unbind(3NSL) 695

yp_match(3NSL) 695

yp_first(3NSL) 695

36 man pages section 3: Networking Library Functions ♦ February 2000

yp_next(3NSL) 695

yp_all(3NSL) 695

yp_order(3NSL) 695

yp_master(3NSL) 695

yperr_string(3NSL) 695

ypprot_err(3NSL) 695

yp_update(3NSL) 700

Index 700

Contents 37

38 man pages section 3: Networking Library Functions ♦ February 2000

Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page
is intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the information
it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character-set tables.

� Section 6 contains available games and demos.

� Section 7 describes various special files that refer to specific hardware
peripherals and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

Preface 39

� Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver/Kernel Interface (DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.

� Section 9S describes the data structures used by drivers to share information
between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there are
no bugs to report, there is no BUGS section. See the intro pages for more information
and detail about each section, and man(1) for more information about man pages in
general.

NAME This section gives the names of the commands
or functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not
exist in the standard path, its full path name is
shown. Options and arguments are alphabetized,
with single letter arguments first, and options
with arguments next, unless a different argument
order is required.

The following special characters are used in
this section:

[] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

. . . Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename
. . ." .

| Separator. Only one of the arguments
separated by this character can be
specified at a time.

{ } Braces. The options and/or
arguments enclosed within braces are

40 man pages section 3: Networking Library Functions ♦ February 2000

interdependent, such that everything
enclosed must be treated as a unit.

PROTOCOL This section occurs only in subsection 3R to
indicate the protocol description file.

DESCRIPTION This section defines the functionality and
behavior of the service. Thus it describes
concisely what the command does. It does not
discuss OPTIONS or cite EXAMPLES. Interactive
commands, subcommands, requests, macros, and
functions are described under USAGE.

IOCTL This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioctl (2) system call is called
ioctl and generates its own heading. ioctl
calls for a specific device are listed alphabetically
(on the man page for that specific device). ioctl
calls are used for a particular class of devices all
of which have an io ending, such as mtio (7I).

OPTIONS This secton lists the command options with
a concise summary of what each option does.
The options are listed literally and in the order
they appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output – standard
output, standard error, or output files – generated
by the command.

RETURN VALUES If the man page documents functions that
return values, this section lists these values and
describes the conditions under which they are
returned. If a function can return only constant
values, such as 0 or –1, these values are listed
in tagged paragraphs. Otherwise, a single
paragraph describes the return values of each
function. Functions declared void do not return
values, so they are not discussed in RETURN
VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno indicating why they

41

failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than
one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE This section lists special rules, features, and
commands that require in-depth explanations.
The subsections listed here are used to explain
built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage
or of how to use a command or function.
Wherever possible a complete example
including command-line entry and machine
response is shown. Whenever an example is
given, the prompt is shown as example% ,
or if the user must be superuser, example# .
Examples are followed by explanations, variable
substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS This section lists the values the command returns
to the calling program or shell and the conditions
that cause these values to be returned. Usually,
zero is returned for successful completion,
and values other than zero for various error
conditions.

FILES This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes (5) for more information.

42 man pages section 3: Networking Library Functions ♦ February 2000

SEE ALSO This section lists references to other man
pages, in-house documentation, and outside
publications.

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special
conditions which could seriously affect your
working conditions. This is not a list of
diagnostics.

NOTES This section lists additional information that
does not belong anywhere else on the page. It
takes the form of an aside to the user, covering
points of special interest. Critical information is
never covered here.

BUGS This section describes known bugs and, wherever
possible, suggests workarounds.

43

CHAPTER

Introduction to Library Functions

44

Sockets Library Functions accept(3SOCKET)

NAME accept – accept a connection on a socket

SYNOPSIS cc [flag ...] file ... −lsocket −lnsl [library ...]
#include <sys/types.h>
#include <sys/socket.h>

int accept (int s, struct sockaddr *addr, socklen_t *addrlen);

DESCRIPTION The argument s is a socket that has been created with socket (3SOCKET) and
bound to an address with bind (3SOCKET), and that is listening for connections
after a call to listen (3SOCKET). The accept() function extracts the first
connection on the queue of pending connections, creates a new socket with
the properties of s, and allocates a new file descriptor, ns, for the socket. If no
pending connections are present on the queue and the socket is not marked as
non-blocking, accept() blocks the caller until a connection is present. If the
socket is marked as non-blocking and no pending connections are present on
the queue, accept() returns an error as described below. The accept()
function uses the netconfig (4) file to determine the STREAMS device file
name associated with s. This is the device on which the connect indication will
be accepted. The accepted socket, ns, is used to read and write data to and from
the socket that connected to ns; it is not used to accept more connections. The
original socket (s) remains open for accepting further connections.

The argument addr is a result parameter that is filled in with the address of the
connecting entity as it is known to the communications layer. The exact format
of the addr parameter is determined by the domain in which the communication
occurs.

The argument addrlen is a value-result parameter. Initially, it contains the
amount of space pointed to by addr; on return it contains the length in bytes of
the address returned.

The accept() function is used with connection-based socket types, currently
with SOCK_STREAM.

It is possible to select (3C) or poll (2) a socket for the purpose of an accept()
by selecting or polling it for a read. However, this will only indicate when a
connect indication is pending; it is still necessary to call accept() .

RETURN VALUES The accept() function returns −1 on error. If it succeeds, it returns a
non-negative integer that is a descriptor for the accepted socket.

ERRORS accept() will fail if:
EBADF The descriptor is invalid.

EINTR The accept attempt was interrupted by the
delivery of a signal.

Last modified 16 May 1997 SunOS 5.8 45

accept(3SOCKET) Sockets Library Functions

EMFILE The per-process descriptor table is full.

ENODEV The protocol family and type corresponding to s
could not be found in the netconfig file.

ENOMEM There was insufficient user memory available to
complete the operation.

ENOSR There were insufficient STREAMS resources
available to complete the operation.

ENOTSOCK The descriptor does not reference a socket.

EOPNOTSUPP The referenced socket is not of type
SOCK_STREAM.

EPROTO A protocol error has occurred; for example, the
STREAMS protocol stack has not been initialized
or the connection has already been released.

EWOULDBLOCK The socket is marked as non-blocking and no
connections are present to be accepted.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO poll (2), bind (3SOCKET), connect (3SOCKET), listen (3SOCKET),
select (3C), socket (3SOCKET), netconfig (4), attributes (5),
socket (3HEAD)

46 SunOS 5.8 Last modified 16 May 1997

X/Open Networking Services Library Functions accept(3XNET)

NAME accept – accept a new connection on a socket

SYNOPSIS cc [flag ...] file ... −lxnet [library ...]
#include <sys/socket.h>

int accept (int socket, struct sockaddr *address, socklen_t *address_len);

DESCRIPTION The accept() function extracts the first connection on the queue of pending
connections, creates a new socket with the same socket type protocol and address
family as the specified socket, and allocates a new file descriptor for that socket.

The function takes the following arguments:
socket Specifies a socket that was created with socket (3XNET),

has been bound to an address with bind (3XNET), and has
issued a successful call to listen (3XNET).

address Either a null pointer, or a pointer to a sockaddr structure
where the address of the connecting socket will be returned.

address_len Points to a socklen_t which on input specifies the length
of the supplied sockaddr structure, and on output specifies
the length of the stored address.

If address is not a null pointer, the address of the peer for the accepted connection
is stored in the sockaddr structure pointed to by address, and the length of this
address is stored in the object pointed to by address_len.

If the actual length of the address is greater than the length of the supplied
sockaddr structure, the stored address will be truncated.

If the protocol permits connections by unbound clients, and the peer is not
bound, then the value stored in the object pointed to by address is unspecified.

If the listen queue is empty of connection requests and O_NONBLOCK is not set
on the file descriptor for the socket, accept() will block until a connection
is present. If the listen (3XNET) queue is empty of connection requests and
O_NONBLOCK is set on the file descriptor for the socket, accept() will fail
and set errno to EAGAINor EWOULDBLOCK.

The accepted socket cannot itself accept more connections. The original socket
remains open and can accept more connections.

USAGE When a connection is available, select (3C) will indicate that the file descriptor
for the socket is ready for reading.

RETURN VALUES Upon successful completion, accept() returns the nonnegative file descriptor
of the accepted socket. Otherwise, −1 is returned and errno is set to indicate the
error.

ERRORS The accept() function will fail if:

Last modified 8 May 1998 SunOS 5.8 47

accept(3XNET) X/Open Networking Services Library Functions

EAGAIN
EWOULDBLOCK O_NONBLOCK is set for the socket file

descriptor and no connections are present to be
accepted.

EBADF The socket argument is not a valid file descriptor.

ECONNABORTED A connection has been aborted.

EFAULT The address or address_len parameter can not be
accessed or written.

EINTR The accept() function was interrupted by a
signal that was caught before a valid connection
arrived.

EINVAL The socket is not accepting connections.

EMFILE OPEN_MAXfile descriptors are currently open in
the calling process.

ENFILE The maximum number of file descriptors in the
system are already open.

ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The socket type of the specified socket does not
support accepting connections.

The accept() function may fail if:
ENOBUFS No buffer space is available.

ENOMEM There was insufficient memory available to
complete the operation.

ENOSR There was insufficient STREAMS resources
available to complete the operation.

EPROTO A protocol error has occurred; for example, the
STREAMS protocol stack has not been initialized.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO bind (3XNET), connect (3XNET), listen (3XNET), socket (3XNET),
attributes (5)

48 SunOS 5.8 Last modified 8 May 1998

LDAP Library Functions ber_decode(3LDAP)

NAME ber_decode, ber_alloc_t, ber_free, ber_bvdup, ber_init, ber_flatten,
ber_get_next, ber_skiptag, ber_peek_tag, ber_scanf, ber_get_int, ber_get_stringa,
ber_get_stringal, ber_get_stringb, ber_get_null, ber_get_boolean,
ber_get_bitstring, ber_first_element, ber_next_element, ber_bvfree, ber_bvecfree
– Basic Encoding Rules library decoding functions

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
BerElement *ber_alloc_t (int options);

struct berval *ber_bvdup (struct berval *bv);

void ber_free (BerElement *ber, int freebuf);

BerElement *ber_init (struct berval *bv);

int ber_flatten (BerElement *ber, struct berval **bvPtr);

ber_get_next (Sockbuf *sb, unsigned long *len, char *bv_val);

ber_skip_tag (BerElement **ber, unsigned long **len);

ber_peek_tag (BerElement **ber, unsigned long **len);

ber_get_int (BerElement **ber, long **num);

ber_get_stringb (BerElement **ber, char **buf, unsigned long **len);

ber_get_stringa (BerElement **ber, char ***buf);

ber_get_stringal (BerElement **ber, struct berval ***bv);

ber_get_null (BerElement **ber);

ber_get_boolean (BerElement **ber, int **bool);

ber_get_bitstringa (BerElement **ber, char ***buf, unsigned long **blen);

ber_first_element (BerElement **ber, unsigned long **len, char ***cookie);

ber_next_element (BerElement **ber, unsigned long **len, char **cookie);

ber_scanf (BerElement **ber, char **fmt [, arg...]);

ber_bvfree (struct berval **bv);

ber_bvecfree (struct berval ***bvec);

DESCRIPTION These functions provide a subfunction interface to a simplified implementation
of the Basic Encoding Rules of ASN.1. The version of BER these functions
support is the one defined for the LDAP protocol. The encoding rules are the
same as BER, except that only definite form lengths are used, and bitstrings and

Last modified 25 May 1998 SunOS 5.8 49

ber_decode(3LDAP) LDAP Library Functions

octet strings are always encoded in primitive form. In addition, these lightweight
BER functions restrict tags and class to fit in a single octet (this means the actual
tag must be less than 31). When a "tag" is specified in the descriptions below, it
refers to the tag, class, and primitive or constructed bit in the first octet of the
encoding. This man page describes the decoding functions in the lber library.
See ber_encode (3LDAP) for details on the corresponding encoding functions.

Normally, the only functions that need be called by an application are
ber_get_next() to get the next BER element and ber_scanf() to do the
actual decoding. In some cases, ber_peek_tag() may also need to be called in
normal usage. The other functions are provided for those applications that need
more control than ber_scanf() provides. In general, these functions return
the tag of the element decoded, or -1 if an error occurred.

The ber_get_next() function is used to read the next BER element from the
given Sockbuf, sb . A Sockbuf consists of the descriptor (usually socket, but a file
descriptor works just as well) from which to read, and a BerElement structure
used to maintain a buffer. On the first call, the sb_ber struct should be zeroed. It
strips off and returns the leading tag byte, strips off and returns the length of the
entire element in len , and sets up ber for subsequent calls to ber_scanf() , and
all to decode the element.

The ber_scanf() function is used to decode a BER element in much the same
way that scanf (3C) works. It reads from ber , a pointer to a BerElement such as
returned by ber_get_next(), interprets the bytes according to the format string
fmt , and stores the results in its additional arguments. The format string
contains conversion specifications which are used to direct the interpretation of
the BER element. The format string can contain the following characters.
−a Octet string. A char ** should be supplied. Memory

is allocated, filled with the contents of the octet string,
null-terminated, and returned in the parameter.

−s Octet string. A char * buffer should be supplied, followed by
a pointer to an integer initialized to the size of the buffer.
Upon return, the null-terminated octet string is put into the
buffer, and the integer is set to the actual size of the octet
string.

−O Octet string. A struct ber_val ** should be supplied, which
upon return points to a memory allocated struct berval
containing the octet string and its length. ber_bvfree()
can be called to free the allocated memory.

−b Boolean. A pointer to an integer should be supplied.

50 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ber_decode(3LDAP)

−i Integer. A pointer to an integer should be supplied.

−B Bitstring. A char ** should be supplied which will point to
the memory allocated bits, followed by an unsigned long
*, which will point to the length (in bits) of the bitstring
returned.

−n Null. No parameter is required. The element is simply
skipped if it is recognized.

−v Sequence of octet strings. A char *** should be supplied,
which upon return points to a memory allocated
null-terminated array of char *’s containing the octet strings.
NULL is returned if the sequence is empty.

−V Sequence of octet strings with lengths. A struct berval
*** should be supplied, which upon return points to a
memory allocated, null-terminated array of struct berval
*’s containing the octet strings and their lengths. NULL is
returned if the sequence is empty. ber_bvecfree() can
be called to free the allocated memory.

−x Skip element. The next element is skipped.

-{ Begin sequence. No parameter is required. The initial
sequence tag and length are skipped.

-} End sequence. No parameter is required and no action is
taken.

-[Begin set. No parameter is required. The initial set tag and
length are skipped.

-] End set. No parameter is required and no action is taken.

The ber_get_int() function tries to interpret the next element as an integer,
returning the result in num . The tag of whatever it finds is returned on success,
-1 on failure.

The ber_get_stringb() function is used to read an octet string into a
preallocated buffer. The len parameter should be initialized to the size of the
buffer, and will contain the length of the octet string read upon return. The buffer
should be big enough to take the octet string value plus a terminating NULLbyte.

The ber_get_stringa() function is used to allocate memory space into
which an octet string is read.

Last modified 25 May 1998 SunOS 5.8 51

ber_decode(3LDAP) LDAP Library Functions

The ber_get_stringal() function is used to allocate memory space into
which an octet string and its length are read. It takes a struct berval **, and
returns the result in this parameter.

The ber_get_null() function is used to read a NULLelement. It returns
the tag of the element it skips over.

The ber_get_boolean() function is used to read a boolean value. It is called
the same way that ber_get_int() is called.

The ber_get_bitstringa() function is used to read a bitstring value. It takes
a char ** which will hold the allocated memory bits, followed by an unsigned
long *, which will point to the length (in bits) of the bitstring returned.

The ber_first_element() function is used to return the tag and length of
the first element in a set or sequence. It also returns in cookie a magic cookie
parameter that should be passed to subsequent calls to ber_next_element() ,
which returns similar information.

ber_alloc_t() constructs and returns BerElement . A null pointer is
returned on error. The options field contains a bitwise-or of options which are
to be used when generating the encoding of this BerElement . One option is
defined and must always be supplied:

#define LBER_USE_DER 0x01

When this option is present, lengths will always be encoded in the minimum
number of octets. Note that this option does not cause values of sets and
sequences to be rearranged in tag and byte order, so these functions are not
suitable for generating DER output as defined in X.509 and X.680

The ber_init function constructs a BerElement and returns a new
BerElement containing a copy of the data in the bv argument. ber_init
returns the null pointer on error.

ber_free() frees a BerElement which is returned from the API calls
ber_alloc_t() or ber_init() . Each BerElement must be freed by the
caller. The second argument freebuf should always be set to 1 to ensure that the
internal buffer used by the BER functions is freed as well as the BerElement
container itself.

ber_bvdup() returns a copy of a berval . The bv_val field in the returned berval
points to a different area of memory as the bv_val field in the argument berval .
The null pointer is returned on error (that is, is out of memory).

The ber_flatten routine allocates a struct berval whose contents are BER
encoding taken from the ber argument. The bvPtr pointer points to the returned
berval , which must be freed using ber_bvfree() . This routine returns 0
on success and -1 on error.

52 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ber_decode(3LDAP)

EXAMPLES EXAMPLE 1 Assume the variable ber contains a lightweight BER encoding of the
following ASN.1 object:

AlmostASearchRequest := SEQUENCE {
baseObject DistinguishedName,
scope ENUMERATED {

baseObject (0),
singleLevel (1),
wholeSubtree (2)

},
derefAliases ENUMERATED {

neverDerefaliases (0),
derefInSearching (1),
derefFindingBaseObj (2),
alwaysDerefAliases (3N)

},
sizelimit INTEGER (0 .. 65535),
timelimit INTEGER (0 .. 65535),
attrsOnly BOOLEAN,
attributes SEQUENCE OF AttributeType

}

EXAMPLE 2 The element can be decoded using ber_scanf() as follows.
int scope, ali, size, time, attrsonly;

char *dn, **attrs;
if (ber_scanf(ber, "{aiiiib{v}}", &dn, &scope, &ali,

&size, &time, &attrsonly, &attrs) == -1)
/* error */

else
/* success */

ERRORS If an error occurs during decoding, generally these functions return -1 .

NOTES The return values for all of these functions are declared in the <lber.h>
header file. Some functions may allocate memory which must be freed by the
calling application.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ber_encode (3LDAP)

Yeong, W., Howes, T., and Hardcastle-Kille, S., "Lightweight Directory Access
Protocol", OSI-DS-26, April 1992.

Information Processing - Open Systems Interconnection - Model and Notation -
Service Definition - Specification of Basic Encoding Rules for Abstract Syntax

Last modified 25 May 1998 SunOS 5.8 53

ber_decode(3LDAP) LDAP Library Functions

Notation One, International Organization for Standardization, International
Standard 8825.

54 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ber_encode(3LDAP)

NAME ber_encode, ber_alloc, ber_printf, ber_put_int, ber_put_ostring, ber_put_string,
ber_put_null, ber_put_boolean, ber_put_bitstring, ber_start_seq, ber_start_set,
ber_put_seq, ber_put_set – simplified Basic Encoding Rules library encoding
functions

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
BerElement *ber_alloc();

ber_printf (BerElement *ber, char **fmt [, arg...]);

ber_put_int (BerElement *ber, long num, char tag);

ber_put_ostring (BerElement *ber, char **str, unsigned long len, char tag);

ber_put_string (BerElement *ber, char **str, char tag);

ber_put_null (BerElement *ber, char tag);

ber_put_boolean (BerElement *ber, int bool, char tag);

ber_put_bitstring (BerElement *ber, char *str, int blen, char tag);

ber_start_seq (BerElement *ber, char tag);

ber_start_set (BerElement *ber, char tag);

ber_put_seq (BerElement *ber);

ber_put_set (BerElement *ber);

DESCRIPTION These functions provide a subfunction interface to a simplified implementation
of the Basic Encoding Rules of ASN.1. The version of BER these functions
support is the one defined for the LDAP protocol. The encoding rules are the
same as BER, except that only definite form lengths are used, and bitstrings and
octet strings are always encoded in primitive form. In addition, these lightweight
BER functions restrict tags and class to fit in a single octet (this means the actual
tag must be less than 31). When a "tag" is specified in the descriptions below, it
refers to the tag, class, and primitive or constructed bit in the first octet of the
encoding. This man page describes the encoding functions in the lber library. See
ber_decode (3LDAP) for details on the corresponding decoding functions.

Normally, the only functions that need be called by an application are
ber_alloc() , to allocate a BER element, and ber_printf() to do the actual
encoding. The other functions are provided for those applications that need
more control than ber_printf() provides. In general, these functions return
the length of the element encoded, or -1 if an error occurred.

The ber_alloc() function is used to allocate a new BER element.

Last modified 25 May 1998 SunOS 5.8 55

ber_encode(3LDAP) LDAP Library Functions

The ber_printf() function is used to encode a BER element in much the same
way that sprintf(3S) works. One important difference, though, is that some
state information is kept with the ber parameter so that multiple calls can be
made to ber_printf() to append things to the end of the BER element.
Ber_printf() writes to ber , a pointer to a BerElement such as returned by
ber_alloc() . It interprets and formats its arguments according to the format
string fmt . The format string can contain the following characters:
−b Boolean. An integer parameter should be supplied. A

boolean element is output.

−i Integer. An integer parameter should be supplied. An
integer element is output.

−B Bitstring. A char * pointer to the start of the bitstring is
supplied, followed by the number of bits in the bitstring. A
bitstring element is output.

−n Null. No parameter is required. A null element is output.

−o Octet string. A char * is supplied, followed by the length of
the string pointed to. An octet string element is output.

−s Octet string. A null-terminated string is supplied. An octet
string element is output, not including the trailing NULL
octet.

−t Tag. An int specifying the tag to give the next element is
provided. This works across calls.

−v Several octet strings. A null-terminated array of char *’s is
supplied. Note that a construct like ’{v}’ is required to get
an actual SEQUENCE OF octet strings.

-{ Begin sequence. No parameter is required.

-} End sequence. No parameter is required.

-[Begin set. No parameter is required.

-] End set. No parameter is required.

The ber_put_int() function writes the integer element num to the BER
element ber .

56 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ber_encode(3LDAP)

The ber_put_boolean() function writes the boolean value given by bool
to the BER element.

The ber_put_bitstring() function writes blen bits starting at str as a
bitstring value to the given BER element. Note that blen is the length in bits
of the bitstring.

The ber_put_ostring() function writes len bytes starting at str to the BER
element as an octet string.

The ber_put_string() function writes the null-terminated string (minus the
terminating ”) to the BER element as an octet string.

The ber_put_null() function writes a NULLelement to the BER element.

The ber_start_seq() function is used to start a sequence in the BER
element. The ber_start_set() function works similarly. The end of the
sequence or set is marked by the nearest matching call to ber_put_seq()
or ber_put_set() , respectively.

The ber_first_element() function is used to return the tag and length of
the first element in a set or sequence. It also returns in cookie a magic cookie
parameter that should be passed to subsequent calls to ber_next_element() ,
which returns similar information.

EXAMPLES EXAMPLE 1 Assuming the following variable declarations, and that the variables
have been assigned appropriately, an BER encoding of the following ASN.1 object:

AlmostASearchRequest := SEQUENCE {
baseObject DistinguishedName,
scope ENUMERATED {

baseObject (0),
singleLevel (1),
wholeSubtree (2)

},
derefAliases ENUMERATED {

neverDerefaliases (0),
derefInSearching (1),
derefFindingBaseObj (2),
alwaysDerefAliases (3N)

},
sizelimit INTEGER (0 .. 65535),
timelimit INTEGER (0 .. 65535),
attrsOnly BOOLEAN,
attributes SEQUENCE OF AttributeType

}

can be achieved like so:

int scope, ali, size, time, attrsonly;
char *dn, **attrs;

/* ... fill in values ... */
if ((ber = ber_alloc()) == NULLBER)

Last modified 25 May 1998 SunOS 5.8 57

ber_encode(3LDAP) LDAP Library Functions

/* error */

if (ber_printf(ber, "{siiiib{v}}", dn, scope, ali,
size, time, attrsonly, attrs) == -1)

/* error */
else

/* success */

RETURN VALUES If an error occurs during encoding, ber_alloc() returns NULL ; other functions
generally return -1 .

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO attributes (5) , ber_decode (3LDAP)

Yeong, W., Howes, T., and Hardcastle-Kille, S., "Lightweight Directory Access
Protocol", OSI-DS-26, April 1992.

Information Processing - Open Systems Interconnection - Model and Notation -
Service Definition - Specification of Basic Encoding Rules for Abstract Syntax
Notation One, International Organization for Standardization, International
Standard 8825.

NOTES The return values for all of these functions are declared in the <lber.h>
header file.

58 SunOS 5.8 Last modified 25 May 1998

Sockets Library Functions bind(3SOCKET)

NAME bind – bind a name to a socket

SYNOPSIS cc [flag ...] file ... −lsocket −lnsl [library ...]
#include <sys/types.h>
#include <sys/socket.h>

int bind (int s, const struct sockaddr *name, int namelen);

DESCRIPTION bind() assigns a name to an unnamed socket. When a socket is created with
socket (3SOCKET), it exists in a name space (address family) but has no name
assigned. bind() requests that the name pointed to by name be assigned to
the socket.

RETURN VALUES If the bind is successful, 0 is returned. A return value of −1 indicates an error,
which is further specified in the global errno .

ERRORS The bind() call will fail if:
EACCES The requested address is protected and the

current user has inadequate permission to
access it.

EADDRINUSE The specified address is already in use.

EADDRNOTAVAIL The specified address is not available on the
local machine.

EBADF s is not a valid descriptor.

EINVAL namelen is not the size of a valid address for the
specified address family.

EINVAL The socket is already bound to an address.

ENOSR There were insufficient STREAMS resources for
the operation to complete.

ENOTSOCK s is a descriptor for a file, not a socket.

The following errors are specific to binding names in the UNIX domain:
EACCES Search permission is denied for a component of

the path prefix of the pathname in name.

EIO An I/O error occurred while making the
directory entry or allocating the inode.

EISDIR A null pathname was specified.

ELOOP Too many symbolic links were encountered in
translating the pathname in name.

Last modified 22 Oct 1999 SunOS 5.8 59

bind(3SOCKET) Sockets Library Functions

ENOENT A component of the path prefix of the pathname
in name does not exist.

ENOTDIR A component of the path prefix of the pathname
in name is not a directory.

EROFS The inode would reside on a read-only file
system.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO unlink (2), socket (3SOCKET), attributes (5), socket (3HEAD)

NOTES Binding a name in the UNIX domain creates a socket in the file system that must
be deleted by the caller when it is no longer needed (using unlink (2)).

The rules used in name binding vary between communication domains.

60 SunOS 5.8 Last modified 22 Oct 1999

X/Open Networking Services Library Functions bind(3XNET)

NAME bind – bind a name to a socket

SYNOPSIS cc [flag ...] file ... −lxnet [library ...]
#include <sys/socket.h>

int bind (int socket, const struct sockaddr *address, socklen_t address_len);

DESCRIPTION The bind() function assigns an address to an unnamed socket. Sockets created
with socket (3XNET) function are initially unnamed; they are identified only by
their address family.

The function takes the following arguments:
socket Specifies the file descriptor of the socket to be bound.

address Points to a sockaddr structure containing the address to be
bound to the socket. The length and format of the address
depend on the address family of the socket.

address_len Specifies the length of the sockaddr structure pointed to
by the address argument.

The socket in use may require the process to have appropriate privileges to
use the bind() function.

USAGE An application program can retrieve the assigned socket name with the
getsockname (3XNET) function.

RETURN VALUES Upon successful completion, bind() returns 0. Otherwise, −1 is returned
and errno is set to indicate the error.

ERRORS The bind() function will fail if:
EADDRINUSE The specified address is already in use.

EADDRNOTAVAIL The specified address is not available from the
local machine.

EAFNOSUPPORT The specified address is not a valid address for
the address family of the specified socket.

EBADF The socket argument is not a valid file descriptor.

EFAULT The address argument can not be accessed.

EINVAL The socket is already bound to an address, and
the protocol does not support binding to a new
address; or the socket has been shut down.

ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The socket type of the specified socket does not
support binding to an address.

Last modified 8 May 1998 SunOS 5.8 61

bind(3XNET) X/Open Networking Services Library Functions

If the address family of the socket is AF_UNIX, then bind() will fail if:
EACCES A component of the path prefix denies search

permission, or the requested name requires
writing in a directory with a mode that denies
write permission.

EDESTADDRREQ
EISDIR The address argument is a null pointer.

EIO An I/O error occurred.

ELOOP Too many symbolic links were encountered in
translating the pathname in address.

ENAMETOOLONG A component of a pathname exceeded NAME_MAX
characters, or an entire pathname exceeded
PATH_MAXcharacters.

ENOENT A component of the pathname does not name an
existing file or the pathname is an empty string.

ENOTDIR A component of the path prefix of the pathname
in address is not a directory.

EROFS The name would reside on a read-only filesystem.

The bind() function may fail if:
EACCES The specified address is protected and the current

user does not have permission to bind to it.

EINVAL The address_len argument is not a valid length for
the address family.

EISCONN The socket is already connected.

ENAMETOOLONG Pathname resolution of a symbolic link produced
an intermediate result whose length exceeds
PATH_MAX.

ENOBUFS Insufficient resources were available to complete
the call.

ENOSR There were insufficient STREAMS resources for
the operation to complete.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

62 SunOS 5.8 Last modified 8 May 1998

X/Open Networking Services Library Functions bind(3XNET)

SEE ALSO connect (3XNET), getsockname (3XNET), listen (3XNET), socket (3XNET),
attributes (5)

Last modified 8 May 1998 SunOS 5.8 63

byteorder(3SOCKET) Sockets Library Functions

NAME byteorder, htonl, htons, ntohl, ntohs – convert values between host and network
byte order

SYNOPSIS #include <sys/types.h>
#include <netinet/in.h>
#include <inttypes.h>
uint32_t htonl (unint32_t hostlong);

uint16_t htons (uint16_t hostshort);

uint32_t ntohl (uint32_t netlong);

uint16_t ntohs (uint16_t netshort);

DESCRIPTION These routines convert 16 and 32 bit quantities between network byte order and
host byte order. On some architectures these routines are defined as NULL
macros in the include file <netinet/in.h> . On other architectures, if their host
byte order is different from network byte order, these routines are functional.

These routines are most often used in conjunction with Internet addresses
and ports as returned by gethostent() and getservent() . See
gethostbyname (3NSL) and getservbyname (3SOCKET) .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO gethostbyname (3NSL) , getservbyname (3SOCKET) , attributes (5) ,
inet (3HEAD)

64 SunOS 5.8 Last modified 21 Oct 1997

LDAP Library Functions cldap_close(3LDAP)

NAME cldap_close – dispose of connectionless LDAP pointer

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
void cldap_close (LDAP *ld);

PARAMETERS ld The LDAP pointer returned by a previous call to
cldap_open (3LDAP).

DESCRIPTION The cldap_close() function disposes of memory allocated by
cldap_open (3LDAP). It should be called when all CLDAP communication is
complete.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap (3LDAP), cldap_open (3LDAP), cldap_search_s (3LDAP),
cldap_setretryinfo (3LDAP)

Last modified 25 May 1998 SunOS 5.8 65

cldap_open(3LDAP) LDAP Library Functions

NAME cldap_open – LDAP connectionless communication preparation

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
LDAP *cldap_open (char *host, int port);

PARAMETERS host The name of the host on which the LDAP server is running.

port The port number to connect.

DESCRIPTION The cldap_open() function is called to prepare for connectionless LDAP
communication (over udp (7P)). It allocates an LDAP structure which is passed to
future search requests.

If the default IANA-assigned port of 389 is desired, LDAP_PORTshould
be specified for port. host can contain a space-separated list of hosts or
addresses to try. cldap_open() returns a pointer to an LDAP structure,
which should be passed to subsequent calls to cldap_search_s (3LDAP),
cldap_setretryinfo (3LDAP), and cldap_close (3LDAP). Certain fields
in the LDAP structure can be set to indicate size limit, time limit, and how
aliases are handled during operations. See ldap_open (3LDAP) and <ldap.h>
for more details.

ERRORS If an error occurs, cldap_open() will return NULLand errno will be set
appropriately.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap (3LDAP) cldap_search_s (3LDAP), cldap_setretryinfo (3LDAP),
cldap_close (3LDAP), udp (7P)

66 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions cldap_search_s(3LDAP)

NAME cldap_search_s – connectionless LDAP search

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
int cldap_search_s (LDAP *ld, char *base, int scope, char *filter, char *attrs, int attrsonly,
LDAPMessage **res, char *logdn);

DESCRIPTION The cldap_search_s() function performs an LDAP search using the
Connectionless LDAP (CLDAP) protocol.

cldap_search_s() has parameters and behavior identical to that of
ldap_search_s (3LDAP), except for the addition of the logdn parameter. logdn
should contain a distinguished name to be used only for logging purposed
by the LDAP server. It should be in the text format described by RFC 1779
A String Representation of Distinguished Names.

Retransmission
Algorithm

cldap_search_s() operates using the CLDAP protocol over udp (7P). Since
UDP is a non-reliable protocol, a retry mechanism is used to increase reliability.
The cldap_setretryinfo (3LDAP) function can be used to set two retry
parameters: tries, a count of the number of times to send a search request and
timeout, an initial timeout that determines how long to wait for a response
before re-trying. timeout is specified seconds. These values are stored in the
ld_cldaptries and ld_cldaptimeout members of the ld LDAP structure,
and the default values set in ldap_open (3LDAP) are 4 and 3 respectively.
The retransmission algorithm used is:
Step 1. Set the current timeout to ld_cldaptimeout seconds, and

the current LDAP server address to the first LDAP server
found during the ldap_open (3LDAP) call.

Step 2: Send the search request to the current LDAP server address.

Step 3: Set the wait timeout to the current timeout divided
by the number of server addresses found during
ldap_open (3LDAP) or to one second, whichever is
larger. Wait at most that long for a response; if a response
is received, STOP. Note that the wait timeout is always
rounded down to the next lowest second.

Step 5: Repeat steps 2 and 3 for each LDAP server address.

Step 6: Set the current timeout to twice its previous value and repeat
Steps 2 through 6 a maximum of tries times.

EXAMPLES Assume that the default values for tries and timeout of 4 tries and 3 seconds are
used. Further, assume that a space-separated list of two hosts, each with one

Last modified 25 May 1998 SunOS 5.8 67

cldap_search_s(3LDAP) LDAP Library Functions

address, was passed to cldap_open (3LDAP). The pattern of requests sent will
be (stopping as soon as a response is received):

Time Search Request Sent To:
+0 Host A try 1
+1 (0+3/2) Host B try 1
+2 (1+3/2) Host A try 2
+5 (2+6/2) Host B try 2
+8 (5+6/2) Host A try 3
+14 (8+12/2) Host B try 3
+20 (14+12/2) Host A try 4
+32 (20+24/2) Host B try 4
+44 (20+24/2) (give up - no response)

ERRORS cldap_search_s() returns LDAP_SUCCESSif a search was successful and
the appropriate LDAP error code otherwise. See ldap_error (3LDAP) for
more information.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap (3LDAP), ldap_error (3LDAP), ldap_search_s (3LDAP),
cldap_open (3LDAP), cldap_setretryinfo (3LDAP),
cldap_close (3LDAP), udp (7P)

68 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions cldap_setretryinfo(3LDAP)

NAME cldap_setretryinfo – set connectionless LDAP request retransmission parameters

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
void cldap_setretryinfo (LDAP *ld, int tries, int timeout);

PARAMETERS ld LDAP pointer returned from a previous call to
cldap_open (3LDAP).

tries Maximum number of times to send a request.

timeout Initial time, in seconds, to wait before re-sending a request.

DESCRIPTION The cldap_setretryinfo() function is used to set the CLDAP request
retransmission behavior for future cldap_search_s (3LDAP) calls. The default
values (set by cldap_open (3LDAP)) are 4 tries and 3 seconds between tries. See
cldap_search_s (3LDAP) for a complete description of the retransmission
algorithm used.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap (3LDAP), cldap_open (3LDAP), cldap_search_s (3LDAP),
cldap_close (3LDAP)

Last modified 25 May 1998 SunOS 5.8 69

connect(3SOCKET) Sockets Library Functions

NAME connect – initiate a connection on a socket

SYNOPSIS cc [flag ...] file ... −lsocket −lnsl [library ...]
#include <sys/types.h>
#include <sys/socket.h>

int connect (int s, const struct sockaddr *name, int namelen);

DESCRIPTION The parameter s is a socket. If it is of type SOCK_DGRAM, connect() specifies
the peer with which the socket is to be associated; this address is the address to
which datagrams are to be sent if a receiver is not explicitly designated; it is the
only address from which datagrams are to be received. If the socket s is of type
SOCK_STREAM, connect() attempts to make a connection to another socket.
The other socket is specified by name. name is an address in the communication
space of the socket. Each communication space interprets the name parameter in
its own way. If s is not bound, then it will be bound to an address selected by
the underlying transport provider. Generally, stream sockets may successfully
connect() only once; datagram sockets may use connect() multiple times
to change their association. Datagram sockets may dissolve the association by
connecting to a null address.

RETURN VALUES If the connection or binding succeeds, 0 is returned. Otherwise, −1 is returned
and sets errno to indicate the error.

ERRORS The call fails if:
EACCES Search permission is denied for a component of

the path prefix of the pathname in name.

EADDRINUSE The address is already in use.

EADDRNOTAVAIL The specified address is not available on the
remote machine.

EAFNOSUPPORT Addresses in the specified address family cannot
be used with this socket.

EALREADY The socket is non-blocking and a previous
connection attempt has not yet been completed.

EBADF s is not a valid descriptor.

ECONNREFUSED The attempt to connect was forcefully rejected.
The calling program should close (2) the socket
descriptor, and issue another socket (3SOCKET)
call to obtain a new descriptor before attempting
another connect() call.

EINPROGRESS The socket is non-blocking and the connection
cannot be completed immediately. It is possible

70 SunOS 5.8 Last modified 22 Oct 1999

Sockets Library Functions connect(3SOCKET)

to select (3C) for completion by selecting the
socket for writing. However, this is only possible
if the socket STREAMS module is the topmost
module on the protocol stack with a write service
procedure. This will be the normal case.

EINTR The connection attempt was interrupted before
any data arrived by the delivery of a signal.

EINVAL namelen is not the size of a valid address for the
specified address family.

EIO An I/O error occurred while reading from or
writing to the file system.

EISCONN The socket is already connected.

ELOOP Too many symbolic links were encountered in
translating the pathname in name.

ENETUNREACH The network is not reachable from this host.

ENOENT A component of the path prefix of the pathname
in name does not exist.

ENOENT The socket referred to by the pathname in name
does not exist.

ENOSR There were insufficient STREAMSresources
available to complete the operation.

ENXIO The server exited before the connection was
complete.

ETIMEDOUT Connection establishment timed out without
establishing a connection.

EWOULDBLOCK The socket is marked as non-blocking, and the
requested operation would block.

The following errors are specific to connecting names in the UNIX domain.
These errors may not apply in future versions of the UNIX IPC domain.
ENOTDIR A component of the path prefix of the pathname

in name is not a directory.

ENOTSOCK s is not a socket.

ENOTSOCK name is not a socket.

EPROTOTYPE The file referred to by name is a socket of a
type other than type s (for example, s is a

Last modified 22 Oct 1999 SunOS 5.8 71

connect(3SOCKET) Sockets Library Functions

SOCK_DGRAMsocket, while name refers to a
SOCK_STREAMsocket).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO close (2), accept (3SOCKET), getsockname (3SOCKET), select (3C),
socket (3SOCKET), attributes (5), socket (3HEAD)

72 SunOS 5.8 Last modified 22 Oct 1999

X/Open Networking Services Library Functions connect(3XNET)

NAME connect – connect a socket

SYNOPSIS cc [flag ...] file ... −lxnet [library ...]
#include <sys/socket.h>

int connect (int socket, const struct sockaddr *address, socklen_t address_len);

DESCRIPTION The connect() function requests a connection to be made on a socket. The
function takes the following arguments:
socket Specifies the file descriptor associated with the socket.

address Points to a sockaddr structure containing the peer address.
The length and format of the address depend on the address
family of the socket.

address_len Specifies the length of the sockaddr structure pointed to
by the address argument.

If the socket has not already been bound to a local address, connect() will
bind it to an address which, unless the socket’s address family is AF_UNIX,
is an unused local address.

If the initiating socket is not connection-mode, then connect() sets the socket’s
peer address, but no connection is made. For SOCK_DGRAM sockets, the peer
address identifies where all datagrams are sent on subsequent send (3XNET)
calls, and limits the remote sender for subsequent recv (3XNET) calls. If address
is a null address for the protocol, the socket’s peer address will be reset.

If the initiating socket is connection-mode, then connect() attempts to
establish a connection to the address specified by the address argument.

If the connection cannot be established immediately and O_NONBLOCK is not
set for the file descriptor for the socket, connect() will block for up to an
unspecified timeout interval until the connection is established. If the timeout
interval expires before the connection is established, connect() will fail and
the connection attempt will be aborted. If connect() is interrupted by a signal
that is caught while blocked waiting to establish a connection, connect() will
fail and set errno to EINTR, but the connection request will not be aborted, and
the connection will be established asynchronously.

If the connection cannot be established immediately and O_NONBLOCK is
set for the file descriptor for the socket, connect() will fail and set errno
to EINPROGRESS, but the connection request will not be aborted, and the
connection will be established asynchronously. Subsequent calls to connect()
for the same socket, before the connection is established, will fail and set errno
to EALREADY.

Last modified 8 May 1998 SunOS 5.8 73

connect(3XNET) X/Open Networking Services Library Functions

When the connection has been established asynchronously, select (3C) and
poll (2) will indicate that the file descriptor for the socket is ready for writing.

The socket in use may require the process to have appropriate privileges to use
the connect() function.

USAGE If connect() fails, the state of the socket is unspecified. Portable applications
should close the file descriptor and create a new socket before attempting to
reconnect.

RETURN VALUES Upon successful completion, connect() returns 0. Otherwise, −1 is returned
and errno is set to indicate the error.

ERRORS The connect() function will fail if:
EADDRNOTAVAIL The specified address is not available from the

local machine.

EAFNOSUPPORT The specified address is not a valid address for
the address family of the specified socket.

EALREADY A connection request is already in progress for
the specified socket.

EBADF The socket argument is not a valid file descriptor.

ECONNREFUSED The target address was not listening for
connections or refused the connection request.

EFAULT The address parameter can not be accessed.

EINPROGRESS O_NONBLOCK is set for the file descriptor
for the socket and the connection cannot be
immediately established; the connection will be
established asynchronously.

EINTR The attempt to establish a connection was
interrupted by delivery of a signal that was
caught; the connection will be established
asynchronously.

EISCONN The specified socket is connection-mode and
is already connected.

ENETUNREACH No route to the network is present.

ENOTSOCK The socket argument does not refer to a socket.

EPROTOTYPE The specified address has a different type than
the socket bound to the specified peer address.

74 SunOS 5.8 Last modified 8 May 1998

X/Open Networking Services Library Functions connect(3XNET)

ETIMEDOUT The attempt to connect timed out before a
connection was made.

If the address family of the socket is AF_UNIX, then connect() will fail if:
EIO An I/O error occurred while reading from or

writing to the file system.

ELOOP Too many symbolic links were encountered in
translating the pathname in address.

ENAMETOOLONG A component of a pathname exceeded NAME_MAX
characters, or an entire pathname exceeded
PATH_MAXcharacters.

ENOENT A component of the pathname does not name an
existing file or the pathname is an empty string.

ENOTDIR A component of the path prefix of the pathname
in address is not a directory.

The connect() function may fail if:
EACCES Search permission is denied for a component of

the path prefix; or write access to the named
socket is denied.

EADDRINUSE Attempt to establish a connection that uses
addresses that are already in use.

ECONNRESET Remote host reset the connection request.

EHOSTUNREACH The destination host cannot be reached (probably
because the host is down or a remote router
cannot reach it).

EINVAL The address_len argument is not a valid length for
the address family; or invalid address family in
sockaddr structure.

ENAMETOOLONG Pathname resolution of a symbolic link produced
an intermediate result whose length exceeds
PATH_MAX.

ENETDOWN The local interface used to reach the destination
is down.

ENOBUFS No buffer space is available.

ENOSR There were insufficient STREAMS resources
available to complete the operation.

EOPNOTSUPP The socket is listening and can not be connected.

Last modified 8 May 1998 SunOS 5.8 75

connect(3XNET) X/Open Networking Services Library Functions

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO close (2), poll (2), accept (3XNET), bind (3XNET), getsockname (3XNET),
select (3C), send (3XNET), shutdown (3XNET), socket (3XNET),
attributes (5)

76 SunOS 5.8 Last modified 8 May 1998

Networking Services Library Functions dial(3NSL)

NAME dial – establish an outgoing terminal line connection

SYNOPSIS cc [flag ...] file ... −lnsl [library ...]
#include <dial.h>

int dial (CALL call);

void undial (int fd);

DESCRIPTION dial() returns a file-descriptor for a terminal line open for read/write. The
argument to dial() is a CALL structure (defined in the header <dial.h>).

When finished with the terminal line, the calling program must invoke
undial() to release the semaphore that has been set during the allocation of
the terminal device.

CALL is defined in the header <dial.h> and has the following members:

struct termio *attr; /* pointer to termio attribute struct */
int baud; /* transmission data rate */
int speed; /* 212A modem: low=300, high=1200 */
char *line; /* device name for out-going line */
char *telno; /* pointer to tel-no digits string */
int modem; /* specify modem control for direct lines */
char *device; /* unused */
int dev_len; /* unused */

The CALL element speed is intended only for use with an outgoing dialed
call, in which case its value should be the desired transmission baud rate. The
CALL element baud is no longer used.

If the desired terminal line is a direct line, a string pointer to its device-name
should be placed in the line element in the CALL structure. Legal values for
such terminal device names are kept in the Devices file. In this case, the value
of the baud element should be set to -1. This value will cause dial to determine
the correct value from the <Devices> file.

The telno element is for a pointer to a character string representing the
telephone number to be dialed. Such numbers may consist only of these
characters:

0-9 dial 0-9

* dail *

dail

= wait for secondary dial tone

- delay for approximately 4 seconds

Last modified 30 Dec 1996 SunOS 5.8 77

dial(3NSL) Networking Services Library Functions

The CALL element modemis used to specify modem control for direct lines. This
element should be non-zero if modem control is required. The CALL element
attr is a pointer to a termio structure, as defined in the header <termio.h> .
A NULLvalue for this pointer element may be passed to the dial function, but
if such a structure is included, the elements specified in it will be set for the
outgoing terminal line before the connection is established. This setting is often
important for certain attributes such as parity and baud-rate.

The CALL elements device and dev_len are no longer used. They are retained
in the CALL structure for compatibility reasons.

RETURN VALUES On failure, a negative value indicating the reason for the failure will be returned.
Mnemonics for these negative indices as listed here are defined in the header
<dial.h> .

INTRPT −1 /* interrupt occurred */
D_HUNG −2 /* dialer hung (no return from write) */
NO_ANS −3 /* no answer within 10 seconds */
ILL_BD −4 /* illegal baud-rate */
A_PROB −5 /* acu problem (open() failure) */
L_PROB −6 /* line problem (open() failure) */
NO_Ldv −7 /* can’t open Devices file */
DV_NT_A −8 /* requested device not available */
DV_NT_K −9 /* requested device not known */
NO_BD_A−10 /* no device available at requested baud */
NO_BD_K−11 /* no device known at requested baud */
DV_NT_E −12 /* requested speed does not match */
BAD_SYS −13 /* system not in Systems file*/

FILES /etc/uucp/Devices
/etc/uucp/Systems
/var/spool/uucp/LCK.. tty-device

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO uucp (1C), alarm (2), read (2), write (2), attributes (5), termio (7I)

NOTES Including the header <dial.h> automatically includes the header <termio.h> .
An alarm (2) system call for 3600 seconds is made (and caught) within the dial
module for the purpose of “touching” the LCK.. file and constitutes the device
allocation semaphore for the terminal device. Otherwise, uucp (1C) may simply

78 SunOS 5.8 Last modified 30 Dec 1996

Networking Services Library Functions dial(3NSL)

delete the LCK.. entry on its 90-minute clean-up rounds. The alarm may go
off while the user program is in a read (2) or write (2) function, causing an
apparent error return. If the user program expects to be around for an hour or
more, error returns from read() s should be checked for (errno==EINTR) ,
and the read() possibly reissued.

This interface is unsafe in multithreaded applications. Unsafe interfaces should
be called only from the main thread.

Last modified 30 Dec 1996 SunOS 5.8 79

doconfig(3NSL) Networking Services Library Functions

NAME doconfig – execute a configuration script

SYNOPSIS cc [flag ...] file ... −lnsl [library ...]
include <sac.h>

int doconfig (int fildes, char *script, long rflag);

DESCRIPTION doconfig() is a Service Access Facility library function that interprets the
configuration scripts contained in the files </etc/saf/ pmtag/_config> ,
</etc/saf/_sysconfig> , and </etc/saf/ pmtag/svctag>, where pmtag
specifies the tag associated with the port monitor, and svctag specifies the service
tag associated with a given service. See pmadm(1M) and sacadm(1M).

script is the name of the configuration script; fildes is a file descriptor that
designates the stream to which stream manipulation operations are to be
applied; rflag is a bitmask that indicates the mode in which script is to be
interpreted. If rflag is zero, all commands in the configuration script are eligible
to be interpreted. If rflag has the NOASSIGNbit set, the assign command is
considered illegal and will generate an error return. If rflag has the NORUNbit
set, the run and runwait commands are considered illegal and will generate
error returns.

The configuration language in which script is written consists of a sequence
of commands, each of which is interpreted separately. The following reserved
keywords are defined: assign , push , pop , runwait , and run . The comment
character is #; when a # occurs on a line, everything from that point to the end
of the line is ignored. Blank lines are not significant. No line in a command
script may exceed 1024 characters.
assign variable=value

Used to define environment variables. variable is the name of the
environment variable and value is the value to be assigned to it. The value
assigned must be a string constant; no form of parameter substitution is
available. value may be quoted. The quoting rules are those used by the
shell for defining environment variables. assign will fail if space cannot be
allocated for the new variable or if any part of the specification is invalid.

push module1[, module2, module3, . . .]
Used to push STREAMS modules onto the stream designated by fildes.
module1 is the name of the first module to be pushed, module2 is the name
of the second module to be pushed, etc. The command will fail if any of
the named modules cannot be pushed. If a module cannot be pushed,
the subsequent modules on the same command line will be ignored and
modules that have already been pushed will be popped.

pop [module]

80 SunOS 5.8 Last modified 30 Dec 1996

Networking Services Library Functions doconfig(3NSL)

Used to pop STREAMS modules off the designated stream. If pop is
invoked with no arguments, the top module on the stream is popped. If an
argument is given, modules will be popped one at a time until the named
module is at the top of the stream. If the named module is not on the
designated stream, the stream is left as it was and the command fails. If
module is the special keyword ALL, then all modules on the stream will be
popped. Note that only modules above the topmost driver are affected.

runwait command
The runwait command runs a command and waits for it to complete.
command is the pathname of the command to be run. The command is
run with /usr/bin/sh −c prepended to it; shell scripts may thus be
executed from configuration scripts. The runwait command will fail if
commandcannot be found or cannot be executed, or if commandexits with
a non-zero status.

run command
The run command is identical to runwait except that it does not wait for
command to complete. command is the pathname of the command to be
run. run will not fail unless it is unable to create a child process to execute
the command.

Although they are syntactically indistinguishable, some of the commands
available to run and runwait are interpreter built-in commands. Interpreter
built-ins are used when it is necessary to alter the state of a process within the
context of that process. The doconfig() interpreter built-in commands are
similar to the shell special commands and, like these, they do not spawn another
process for execution. See sh (1). The built-in commands are:

cd
ulimit
umask

RETURN VALUES doconfig() returns 0 if the script was interpreted successfully. If a command
in the script fails, the interpretation of the script ceases at that point and a
positive number is returned; this number indicates which line in the script failed.
If a system error occurs, a value of −1 is returned. When a script fails, the process
whose environment was being established should not be started.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO sh (1), pmadm(1M), sacadm(1M), attributes (5)

Last modified 30 Dec 1996 SunOS 5.8 81

doconfig(3NSL) Networking Services Library Functions

NOTES This interface is unsafe in multithreaded applications. Unsafe interfaces should
be called only from the main thread.

82 SunOS 5.8 Last modified 30 Dec 1996

X/Open Networking Services Library Functions endhostent(3XNET)

NAME endhostent, gethostbyaddr, gethostbyname, gethostent, sethostent – network
host database functions

SYNOPSIS cc [flag ...] file ... −lxnet [library ...]
#include <netdb.h>
extern int h_errno;

void endhostent (void);

struct hostent *gethostbyaddr (const void *addr, size_t len, int type);

struct hostent *gethostbyname (const char *name);

struct hostent *gethostent (void);

void sethostent (int stayopen);

DESCRIPTION The gethostent() , gethostbyaddr() , and gethostbyname() functions
each return a pointer to a hostent structure, the members of which contain
the fields of an entry in the network host database.

The gethostent() function reads the next entry of the database, opening a
connection to the database if necessary.

The gethostbyaddr() function searches the database and finds an entry
which matches the address family specified by the type argument and which
matches the address pointed to by the addr argument, opening a connection to
the database if necessary. The addr argument is a pointer to the binary-format
(that is, not null-terminated) address in network byte order, whose length
is specified by the len argument. The datatype of the address depends on the
address family. For an address of type AF_INET , this is an in_addr structure,
defined in <netinet/in.h> . For an address of type AF_INET6 , there is an
in6_addr structure defined in <netinet/in.h> .

The gethostbyname() function searches the database and finds an entry
which matches the host name specified by the name argument, opening a
connection to the database if necessary. If name is an alias for a valid host name,
the function returns information about the host name to which the alias refers,
and name is included in the list of aliases returned.

The sethostent() function opens a connection to the network host database,
and sets the position of the next entry to the first entry. If the stayopen argument
is non-zero, the connection to the host database will not be closed after each
call to gethostent() (either directly, or indirectly through one of the other
gethost*() functions).

The endhostent() function closes the connection to the database.

Last modified 8 Nov 1999 SunOS 5.8 83

endhostent(3XNET) X/Open Networking Services Library Functions

USAGE The gethostent() , gethostbyaddr() , and gethostbyname() functions
may return pointers to static data, which may be overwritten by subsequent
calls to any of these functions.

These functions are generally used with the Internet address family.

RETURN VALUES On successful completion, gethostbyaddr() , gethostbyname() and
gethostent() return a pointer to a hostent structure if the requested entry
was found, and a null pointer if the end of the database was reached or the
requested entry was not found. Otherwise, a null pointer is returned.

On unsuccessful completion, gethostbyaddr() and gethostbyname()
functions set h_errno to indicate the error.

ERRORS No errors are defined for endhostent() , gethostent() and
sethostent() .

The gethostbyaddr() and gethostbyname() functions will fail in the
following cases, setting h_errno to the value shown in the list below. Any changes
to errno are unspecified.
HOST_NOT_FOUND No such host is known.

NO_DATA The server recognised the request and the name
but no address is available. Another type of
request to the name server for the domain might
return an answer.

NO_RECOVERY An unexpected server failure occurred which
can not be recovered.

TRY_AGAIN A temporary and possibly transient error
occurred, such as a failure of a server to respond.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO endservent (3XNET) , htonl (3XNET) , inet_addr (3XNET) , attributes (5)

84 SunOS 5.8 Last modified 8 Nov 1999

X/Open Networking Services Library Functions endnetent(3XNET)

NAME endnetent, getnetbyaddr, getnetbyname, getnetent, setnetent – network database
functions

SYNOPSIS cc [flag ...] file ... −lxnet [library ...]
#include <netdb.h>

void endnetent (void);struct netent *getnetbyaddr(in_addr_t net, int type);

struct netent *getnetbyname (const char *name);

struct netent *getnetent (void);

void setnetent (int stayopen);

DESCRIPTION The getnetbyaddr() , getnetbyname() and getnetent() , functions each
return a pointer to a netent structure, the members of which contain the fields
of an entry in the network database.

The getnetent() function reads the next entry of the database, opening a
connection to the database if necessary.

The getnetbyaddr() function searches the database from the beginning, and
finds the first entry for which the address family specified by type matches the
n_addrtype member and the network number net matches the n_net member,
opening a connection to the database if necessary. The net argument is the
network number in host byte order.

The getnetbyname() function searches the database from the beginning and
finds the first entry for which the network name specified by name matches the
n_name member, opening a connection to the database if necessary.

The setnetent() function opens and rewinds the database. If the stayopen
argument is non-zero, the connection to the net database will not be closed after
each call to getnetent() (either directly, or indirectly through one of the
other getnet*() functions).

The endnetent() function closes the database.

USAGE The getnetbyaddr() , getnetbyname() and getnetent() , functions
may return pointers to static data, which may be overwritten by subsequent
calls to any of these functions.

These functions are generally used with the Internet address family.

RETURN VALUES On successful completion, getnetbyaddr() , getnetbyname() and
getnetent() , return a pointer to a netent structure if the requested entry
was found, and a null pointer if the end of the database was reached or the
requested entry was not found. Otherwise, a null pointer is returned.

ERRORS No errors are defined.

Last modified 8 May 1998 SunOS 5.8 85

endnetent(3XNET) X/Open Networking Services Library Functions

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO attributes (5)

86 SunOS 5.8 Last modified 8 May 1998

X/Open Networking Services Library Functions endprotoent(3XNET)

NAME endprotoent, getprotobynumber, getprotobyname, getprotoent, setprotoent –
network protocol database functions

SYNOPSIS cc [flag ...] file ... −lxnet [library ...]
#include <netdb.h>

void endprotoent (void);

struct protoent *getprotobyname (const char *name);

struct protoent *getprotobynumber (int proto);

struct protoent *getprotoent (void);

void setprotoent (int stayopen);

DESCRIPTION The getprotobyname() , getprotobynumber() and getprotoent() ,
functions each return a pointer to a protoent structure, the members of which
contain the fields of an entry in the network protocol database.

The getprotoent() function reads the next entry of the database, opening a
connection to the database if necessary.

The getprotobyname() function searches the database from the beginning
and finds the first entry for which the protocol name specified by name matches
the p_name member, opening a connection to the database if necessary.

The getprotobynumber() function searches the database from the beginning
and finds the first entry for which the protocol number specified by number
matches the p_proto member, opening a connection to the database if necessary.

The setprotoent() function opens a connection to the database, and sets
the next entry to the first entry. If the stayopen argument is non-zero, the
connection to the network protocol database will not be closed after each call
to getprotoent() (either directly, or indirectly through one of the other
getproto*() functions).

The endprotoent() function closes the connection to the database.

USAGE The getprotobyname() , getprotobynumber() and getprotoent()
functions may return pointers to static data, which may be overwritten by
subsequent calls to any of these functions.

These functions are generally used with the Internet address family.

RETURN VALUES On successful completion, getprotobyname() , getprotobynumber()
and getprotoent() functions return a pointer to a protoent structure
if the requested entry was found, and a null pointer if the end of the database
was reached or the requested entry was not found. Otherwise, a null pointer
is returned.

ERRORS No errors are defined.

Last modified 8 May 1998 SunOS 5.8 87

endprotoent(3XNET) X/Open Networking Services Library Functions

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO attributes (5)

88 SunOS 5.8 Last modified 8 May 1998

X/Open Networking Services Library Functions endservent(3XNET)

NAME endservent, getservbyport, getservbyname, getservent, setservent – network
services database functions

SYNOPSIS cc [flag ...] file ... −lxnet [library ...]
#include <netdb.h>

void endservent (void);

struct servent *getservbyname (const char *name, const char *proto);

struct servent *getservbyport (int port, const char *proto);

struct servent *getservent (void);

void setservent (int stayopen);

DESCRIPTION The getservbyname() , getservbyport() and getservent() functions
each return a pointer to a servent structure, the members of which contain the
fields of an entry in the network services database.

The getservent() function reads the next entry of the database, opening a
connection to the database if necessary.

The getservbyname() function searches the database from the beginning and
finds the first entry for which the service name specified by name matches the
s_name member and the protocol name specified by proto matches the s_proto
member, opening a connection to the database if necessary. If proto is a null
pointer, any value of the s_proto member will be matched.

The getservbyport() function searches the database from the beginning and
finds the first entry for which the port specified by port matches the s_port
member and the protocol name specified by proto matches the s_proto member,
opening a connection to the database if necessary. If proto is a null pointer, any
value of the s_proto member will be matched. The port argument must be in
network byte order.

The setservent() function opens a connection to the database, and sets the
next entry to the first entry. If the stayopen argument is non-zero, the net database
will not be closed after each call to the getservent() function (either directly,
or indirectly through one of the other getserv*() functions).

The endservent() function closes the database.

USAGE The port argument of getservbyport() need not be compatible with the
port values of all address families.

The getservent() , getservbyname() and getservbyport() functions
may return pointers to static data, which may be overwritten by subsequent
calls to any of these functions.

These functions are generally used with the Internet address family.

Last modified 8 May 1998 SunOS 5.8 89

endservent(3XNET) X/Open Networking Services Library Functions

RETURN VALUES On successful completion, getservbyname() , getservbyport() and
getservent() return a pointer to a servent structure if the requested entry
was found, and a null pointer if the end of the database was reached or the
requested entry was not found. Otherwise, a null pointer is returned.

ERRORS No errors are defined.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO endhostent (3XNET) , endprotoent (3XNET) , htonl (3XNET) ,
inet_addr (3XNET) , attributes (5)

90 SunOS 5.8 Last modified 8 May 1998

Sockets Library Functions ethers(3SOCKET)

NAME ethers, ether_ntoa, ether_aton, ether_ntohost, ether_hostton, ether_line –
Ethernet address mapping operations

SYNOPSIS cc [flag ...] file ... −lsocket −lnsl [library ...]
#include <sys/types.h>
#include <sys/socket.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
char *ether_ntoa (struct ether_addr *e);

struct ether_addr *ether_aton (char *s);

int ether_ntohost (char *hostname, struct ether_addr *e);

int ether_hostton (char *hostname, struct ether_addr *e);

int ether_line (char *l, struct ether_addr *e, char *hostname);

DESCRIPTION These routines are useful for mapping 48 bit Ethernet numbers to their ASCII
representations or their corresponding host names, and vice versa.

The function ether_ntoa() converts a 48 bit Ethernet number pointed to by e
to its standard ASCII representation; it returns a pointer to the ASCII string. The
representation is of the form x :x :x : x :x :x where x is a hexadecimal number
between 0 and ff . The function ether_aton() converts an ASCII string in the
standard representation back to a 48 bit Ethernet number; the function returns
NULL if the string cannot be scanned successfully.

The function ether_ntohost() maps an Ethernet number (pointed to by e) to
its associated hostname. The string pointed to by hostname must be long enough
to hold the hostname and a NULLcharacter. The function returns zero upon
success and non-zero upon failure. Inversely, the function ether_hostton()
maps a hostname string to its corresponding Ethernet number; the function
modifies the Ethernet number pointed to by e . The function also returns zero
upon success and non-zero upon failure. In order to do the mapping, both these
functions may lookup one or more of the following sources: the ethers file, the
NIS maps “ethers.byname” and “ethers.byaddr” and the NIS+ table “ethers”.
The sources and their lookup order are specified in the /etc/nsswitch.conf
file (see nsswitch.conf (4) for details).

The function ether_line() scans a line (pointed to by l) and sets the
hostname and the Ethernet number (pointed to by e). The string pointed to by
hostname must be long enough to hold the hostname and a NULLcharacter. The
function returns zero upon success and non-zero upon failure. The format of the
scanned line is described by ethers (4) .

FILES /etc/ethers

Last modified 30 Dec 1996 SunOS 5.8 91

ethers(3SOCKET) Sockets Library Functions

/etc/nsswitch.conf

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO ethers (4) , nsswitch.conf (4) , attributes (5)

BUGS Programs that call ether_hostton() or ether_ntohost() routines cannot
be linked statically since the implementation of these routines requires dynamic
linker functionality to access shared objects at run time.

92 SunOS 5.8 Last modified 30 Dec 1996

XFN Interface Library Functions fn_attr_bind(3XFN)

NAME fn_attr_bind – bind a reference to a name and associate attributes with named
object

SYNOPSIS #include <xfn/xfn.h>

int fn_attr_bind (FN_ctx_t *ctx, const FN_composite_name_t *name, const FN_ref_t *ref,
const FN_attrset_t *attrs, unsigned int exclusive, FN_status_t *status);

DESCRIPTION This operation binds the supplied reference ref to the supplied composite name
name relative to ctx, and associates the attributes specified in attrs with the
named object. The binding is made in the target context, that is, that context
named by all but the terminal atomic part of name. The operation binds the
terminal atomic name to the supplied reference in the target context. The target
context must already exist.

The value of exclusive determines what happens if the terminal atomic part of the
name is already bound in the target context. If exclusive is nonzero and name is
already bound, the operation fails. If exclusive is 0, the new binding replaces any
existing binding, and, if attrs is not NULL, attrs replaces any existing attributes
associated with the named object. If attrs is NULLand exclusive is 0, any existing
attributes associated with the named object are left unchanged.

RETURN VALUES fn_attr_bind() returns 1 upon success, 0 upon failure.

ERRORS fn_attr_bind() sets status as described in FN_status_t (3XFN) and
xfn_status_codes (3XFN). Of special relevance for this operation is the
following status code:
FN_E_NAME_IN_USE The supplied name is already in use.

USAGE The value of ref cannot be NULL. If the intent is to reserve a name using
fn_attr_bind() , a reference containing no address should be supplied.
This reference may be name service-specific or it may be the conventional
NULL reference.

If multiple sources are updating a reference or attributes associated with a named
object, they must synchronize amongst each other when adding, modifying, or
removing from the address list of a bound reference, or manipulating attributes
associated with the named object.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_composite_name_t (3XFN), FN_ctx_t (3XFN),
FN_ref_t (3XFN), FN_status_t (3XFN), fn_ctx_bind (3XFN),

Last modified 22 Nov 1996 SunOS 5.8 93

fn_attr_bind(3XFN) XFN Interface Library Functions

fn_ctx_lookup (3XFN), fn_ctx_unbind (3XFN), xfn_attributes (3XFN),
xfn_status_codes (3XFN), attributes (5)

94 SunOS 5.8 Last modified 22 Nov 1996

XFN Interface Library Functions fn_attr_create_subcontext(3XFN)

NAME fn_attr_create_subcontext – create a subcontext in a context and associate
attributes with newly created context

SYNOPSIS #include <xfn/xfn.h>

FN_ref_t *fn_attr_create_subcontext (FN_ctx_t *ctx, const FN_composite_name_t
*name, const FN_attrset_t *attrs, FN_status_t *status);

DESCRIPTION This operation creates a new XFN context of the same type as the target context,
that is, that context named by all but the terminal atomic component of name,
and binds it to the supplied composite name. In addition, attributes given in
attrs are associated with the newly created context.

The target context must already exist. The new context is created and bound in
the target context using the terminal atomic name in name. The operation returns
a reference to the newly created context.

RETURN VALUES fn_attr_create_subcontext() returns a reference to the newly created
context; if the operation fails, it returns a NULLpointer.

ERRORS fn_attr_create_subcontext() sets status as described in
FN_status_t (3XFN) and xfn_status_codes (3XFN). Of special relevance for
this operation is the following status code:
FN_E_NAME_IN_USE The terminal atomic name already exists in the

target context.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_composite_name_t (3XFN), FN_ctx_t (3XFN),
FN_ref_t (3XFN), FN_status_t (3XFN), fn_attr_bind (3XFN),
fn_ctx_bind (3XFN), fn_ctx_create_subcontext (3XFN),
fn_ctx_destroy_subcontext (3XFN), fn_ctx_lookup (3XFN),
xfn_attributes (3XFN), xfn_status_codes (3XFN), attributes (5)

Last modified 22 Nov 1996 SunOS 5.8 95

fn_attr_ext_search(3XFN) XFN Interface Library Functions

NAME fn_attr_ext_search, FN_ext_searchlist_t, fn_ext_searchlist_next,
fn_ext_searchlist_destroy – search for names in the specified context(s) whose
attributes satisfy the filter

SYNOPSIS #include <xfn/xfn.h>
FN_ext_searchlist_t *fn_attr_ext_search (FN_ctx_t *ctx, const FN_composite_name_t
*name, const FN_search_control_t *control, const FN_search_filter_t *filter, FN_status_t
*status);

FN_composite_name_t *fn_ext_searchlist_next (FN_ext_searchlist_t *esl, FN_ref_t
**returned_ref, FN_attrset_t **returned_attrs, FN_status_t *status);

void fn_ext_searchlist_destroy (FN_ext_searchlist_t *esl);

DESCRIPTION This set of operations is used to list names of objects whose attributes satisfy the
filter expression. The references to which these names are bound and specified
attributes and their values may also be returned.

control encapsulates the option settings for the search. These options are:

� the scope of the search

� whether XFN links are followed

� a limit on the number of names returned

� whether references and specific attributes associated with the named objects
that satisfy the filter are returned

The scope of the search is one of:

� the object named name relative to the context ctx

� the context named name relative to the context ctx

� the context named name relative to the context ctx ,

and its subcontexts

or

� the context named name relative to the context ctx , and a context
implementation-defined set of subcontexts

If the value of control is 0 , default control option settings are used. The default
settings are:

� scope is search named context

� links are not followed

� all names of objects that satisfy the filter are returned

� references and attributes are not returned

The FN_search_control_t type is described in
FN_search_control_t (3XFN) .

96 SunOS 5.8 Last modified 22 Nov 1996

XFN Interface Library Functions fn_attr_ext_search(3XFN)

The filter expression filter in fn_attr_ext_search() is evaluated against
the attributes of the objects bound in the scope of the search. The filter
evaluates to either TRUEor FALSE . The names and, optionally, the references
and attributes of objects whose attributes satisfy the filter are enumerated. If
the value of filter is 0 , all names within the search scope are enumerated. The
FN_search_filter_t type is described in FN_search_filter_t (3XFN) .

The call to fn_attr_ext_search() initiates the search process. It returns
a handle to an FN_ext_searchlist_t object that is used to enumerate the
names of the objects that satisfy the filter.

The operation fn_ext_searchlist_next() returns the next name in the
enumeration identified by esl ; it also updates esl to indicate the state of the
enumeration. If the reference to which the name is bound was requested, it is
returned in returned_ref . Requested attributes associated with the name are
returned in returned_attrs ; each attribute consists of an attribute identifier,
syntax, and value(s). Successive calls to fn_ext_searchlist_next() using
esl return successive names and, optionally, their references and attributes, in the
enumeration; these calls further update the state of the enumeration.

The names that are returned are composite names, to be resolved relative to
the starting context for the search. This starting context is the context named
name relative to ctx unless the scope of the search is only the named object. If
the scope of the search is only the named object, the terminal atomic name
in name is returned.

fn_ext_searchlist_destroy() releases resources used during the
enumeration. This may be invoked at any time to terminate the enumeration.

RETURN VALUES fn_attr_ext_search() returns a pointer to an FN_ext_searchlist_t
object if the search is successfully initiated; it returns a NULLpointer if the
search cannot be initiated or if no named object with attributes whose values
satisfy the filter expression is found.

fn_ext_searchlist_next() returns a pointer to an
FN_composite_name_t object (see FN_composite_name_t (3XFN)) that is
the next name in the enumeration; it returns a NULLpointer if no more names
can be returned. If returned_attrs is a NULLpointer, no attributes are returned;
otherwise, returned_attrs contains the attributes associated with the named
object, as specified in the control parameter to fn_attr_ext_search() . If
returned_ref is a NULLpointer, no reference is returned; otherwise, if control
specified the return of the reference of the named object, that reference is
returned in returned_ref .

In the case of a failure, these operations return in the status argument a code
indicating the nature of the failure.

Last modified 22 Nov 1996 SunOS 5.8 97

fn_attr_ext_search(3XFN) XFN Interface Library Functions

ERRORS If successful, fn_attr_ext_search() returns a pointer to an
FN_ext_searchlist_t object and sets status to FN_SUCCESS.

fn_attr_ext_search() returns a NULLpointer when no more names can be
returned. status is set in the following way:
FN_SUCCESS A named object could not be found

whose attributes satisfied the filter
expression.

FN_E_NOT_A_CONTEXT The object named for the start of the
search was not a context and the
search scope was the given context or
the given context and its subcontexts.

FN_E_SEARCH_INVALID_FILTER The filter could not be evaluated
TRUEor FALSE, or there was some
other problem with the filter.

FN_E_SEARCH_INVALID_OPTION A supplied search control option
could not be supported.

FN_E_SEARCH_INVALID_OP An operator in the filter expression is
not supported or, if the operator is
an extended operator, the number of
types of arguments supplied does not
match the signature of the operation.

FN_E_ATTR_NO_PERMISSION The caller did not have permission to
read one or more of the attributes
specified in the filter.

FN_E_INVALID_ATTR_VALUE A value type in the filter did not
match the syntax of the attribute
against which it was being evaluated.

Other status codes are possible as described in FN_status_t (3XFN) and
xfn_status_codes (3XFN) .

Each successful call to fn_ext_searchlist_next() returns a name and,
optionally, its reference in returned_ref and requested attributes in returned_attrs
. status is set in the following way:
FN_SUCCESS All requested attributes were

returned successfully with the name.

FN_E_ATTR_NO_PERMISSION The caller did not have permission to
read one or more of the requested
attributes.

98 SunOS 5.8 Last modified 22 Nov 1996

XFN Interface Library Functions fn_attr_ext_search(3XFN)

FN_E_INVALID_ATTR_IDENTIFIER A requested attribute identifier was
not in a format acceptable to the
naming system, or its contents were
not valid for the format specified.

FN_E_NO_SUCH_ATTRIBUTE The named object did not have one of
the requested attributes.

FN_E_INSUFFICIENT_RESOURCES Insufficient resources are available
to return all the requested attributes
and their values.

FN_E_ATTR_NO_PERMISSION
FN_E_INVALID_ATTR_IDENTIFIER
FN_E_NO_SUCH_ATTRIBUTE
FN_E_INSUFFICIENT_RESOURCES These indicate that some of the

requested attributes may have
been returned in returned_attrs but
one or more of them could not be
returned. Use fn_attr_get (3XFN)
or fn_attr_multi_get (3XFN) to
discover why these attributes could
not be returned.

If fn_ext_searchlist_next() returns a name, it can be called again to get
the next name in the enumeration.

fn_ext_searchlist_next() returns a NULLpointer if no more names can be
returned. status is set in the following way:
FN_SUCCESS The search has completed

successfully.

FN_E_PARTIAL_RESULT The enumeration is not yet complete
but cannot be continued.

FN_E_ATTR_NO_PERMISSION The caller did not have permission to
read one or more of the attributes
specified in the filter.

FN_E_INVALID_ENUM_HANDLE The supplied enumeration handle
was not valid. Possible reasons could
be that the handle was from another
enumeration, or the context being
enumerated no longer accepts the
handle (due to such events as handle
expiration or updates to the context).

Last modified 22 Nov 1996 SunOS 5.8 99

fn_attr_ext_search(3XFN) XFN Interface Library Functions

Other status codes are possible as described in FN_status_t (3XFN) and
xfn_status_codes (3XFN) .

USAGE The search performed by fn_attr_ext_search() is not ordered in any
way, including the traversal of subcontexts. The names enumerated using
fn_ext_searchlist_next() are not ordered in any way. Furthermore, there
is no guarantee that any two series of enumerations with the same arguments to
fn_attr_ext_search() will return the names in the same order.

XFN links encountered during the resolution of name are followed, regardless of
the follow links control setting, and the search starts at the final named object
or context.

If control specifies that the search should follow links, XFN link names
encountered during the search are followed and the terminal named object is
searched. If the terminal named object is bound to a context and the scope of the
search includes subcontexts, that context and its subcontexts are also searched.
For example, if aname is bound to an XFN link, lname , in a context within the
scope of the search, and aname is returned by fn_ext_searchlist_next()
, this means that the object identified by lname satisfied the filter expression.
aname is returned instead of lname because aname can always be named relative
to the starting context for the search.

If control specifies that the search should not follow links, the attributes
associated with the names of XFN links are searched. For example, if aname is
bound to an XFN link, lname , in a context within the scope of the search, and
aname is returned by fn_ext_searchlist_next() , this means that the object
identified by aname satisfied the filter expression.

When following XFN links, fn_attr_ext_search() may search contexts
outside of scope . In addition, if the link name’s terminal atomic name is bound in
a context within scope , the operation may return the same object more than once.

XFN does not specify how control affects the following of native naming system
links during the search.

EXAMPLES EXAMPLE 1 A sample program of displaying how the fn_attr_ext_search()
operation may be used.

The following code fragment illustrates how the fn_attr_ext_search()
operation may be used. The code consists of three parts: preparing the
arguments for the search, performing the search, and cleaning up.

The first part involves getting the name of the context to start the search
and constructing the search filter that named objects in the context must
satisfy. This is done in the declarations part of the code and by the routine
get_search_query . See FN_search_filter_t (3XFN) for the description of
sfilter and the filter creation operation.

100 SunOS 5.8 Last modified 22 Nov 1996

XFN Interface Library Functions fn_attr_ext_search(3XFN)

The next part involves doing the search and enumerating the results of the search.
This is done by first getting a context handle to the Initial Context, and then
passing that handle along with the name of the target context and search filter to
fn_attr_ext_search() . This particular call to fn_attr_ext_search()
uses the default search control options (by passing in 0 as the control argument).
This means that the search will be performed in the context named by target_name
and that no reference or attributes will be returned. In addition, any XFN links
encountered will not be followed and all named objects that satisfy the search
filter will be returned (that is, no limit). If successful, fn_attr_ext_search()
returns esl , a handle for enumerating the results of the search. The results of the
search are enumerated using calls to fn_ext_searchlist_next() , which
returns the name of the object. (The arguments returned_ref and returned_attrs to
fn_ext_searchlist_next() are 0 because the default search control used i
fn_attr_ext_search() did not request them to be returned.)

The last part of the code involves cleaning up the resources used during the
search and enumeration. The call to fn_ext_searchlist_destroy()
releases resources reserved for this enumeration. The other calls release the
context handle, name, filter, and status objects created earlier.

/* Declarations */
FN_ctx_t *ctx;
FN_ext_searchlist_t *esl;
FN_composite_name_t *name;
FN_status_t *status = fn_status_create();
FN_composite_name_t *target_name = get_name_from_user_input();
FN_search_filter_t *sfilter = get_search_query();
/* Get context handle to Initial Context */
ctx = fn_ctx_handle_from_initial(status);
/* error checking on ’status’ */
/* Initiate search */
if ((esl=fn_attr_ext_search(ctx, target_name,

/* default controls */ 0, sfilter, status)) == 0) {
/* report ’status’, cleanup, and exit */

}
/* Enumerate names requested */
while (name=fn_ext_searchlist_next(esl, 0, 0, status)) {

/* do something with ’name’ */
fn_composite_destroy(name);

}
/* check ’status’ for reason for end of enumeration */
/* Clean up */
fn_ext_searchlist_destroy(esl);
fn_search_filter_destroy(sfilter);
fn_ctx_handle_destroy(ctx);
fn_composite_name_destroy(target_name);
fn_status_destroy(status);
/*
* Procedure for constructing the filter object for search:
* "age" attribute is greater than or equal to 17 AND
* less than or equal to 25
* AND the "student" attribute is present.

Last modified 22 Nov 1996 SunOS 5.8 101

fn_attr_ext_search(3XFN) XFN Interface Library Functions

*/
FN_search_filter_t *
get_search_query()
{

extern FN_attribute_t *attr_age;
extern FN_attribute_t *attr_student;
FN_search_filter_t *sfilter;
unsigned int filter_status;
sfilter = fn_search_filter_create(

&filter_status,
"(%a >= 17) and (%a <= 25) and %a",
attr_age, attr_age, attr_student);

/* error checking on ’filter_status’ */
return (sfilter);

}

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_attrset_t (3XFN) , FN_composite_name_t (3XFN) ,
FN_ctx_t (3XFN) , FN_ref_t (3XFN) , FN_search_control_t (3XFN) ,
FN_search_filter_t (3XFN) , FN_status_t (3XFN) , fn_attr_get (3XFN) ,
fn_attr_multi_get (3XFN) , xfn_status_codes (3XFN) , attributes (5)

102 SunOS 5.8 Last modified 22 Nov 1996

XFN Interface Library Functions fn_attr_get(3XFN)

NAME fn_attr_get – return specified attribute associated with name

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>

FN_attribute_t *fn_attr_get (FN_ctx_t *ctx, const FN_composite_name_t *name, const
FN_identifier_t *attribute_id, unsigned int follow_link, FN_status_t *status);

DESCRIPTION This operation returns the identifier, syntax and values of a specified attribute for
the object named name relative to ctx. If name is empty, the attribute associated
with ctx is returned.

The value of follow_link determines what happens when the terminal atomic
part of name is bound to an XFN link. If follow_link is non-zero, such a link is
followed, and the values of the attribute associated with the final named object
are returned; if follow_link is zero, such a link is not followed. Any XFN links
encountered before the terminal atomic name are always followed.

RETURN VALUES fn_attr_get returns a pointer to an FN_attribute_t object if the operation
succeeds; it returns a NULLpointer (0) if the operation fails.

ERRORS fn_attr_get() sets status as described in FN_status_t (3XFN) and
xfn_status_codes (3XFN).

USAGE fn_attr_get_values() and its related operations are used for getting
individual values of an attribute. They should be used if the combined size of
all the values are expected to be too large to be returned in a single invocation
of fn_attr_get() .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_attribute_t (3XFN), FN_composite_name_t (3XFN),
FN_ctx_t (3XFN), FN_identifier_t (3XFN), FN_status_t (3XFN),
fn_attr_get_values (3XFN), xfn (3XFN), xfn_attributes (3XFN),
xfn_status_codes (3XFN), attributes (5)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Last modified 13 Dec 1996 SunOS 5.8 103

fn_attr_get_ids(3XFN) XFN Interface Library Functions

NAME fn_attr_get_ids – get a list of the identifiers of all attributes associated with
named object

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>

FN_attrset_t *fn_attr_get_ids (FN_ctx_t *ctx, const FN_composite_name_t *name,
unsigned int follow_link, FN_status_t *status);

DESCRIPTION This operation returns a list of the attribute identifiers of all attributes associated
with the object named by name relative to the context ctx. If name is empty, the
attribute identifiers associated with ctx are returned.

The value of follow_link determines what happens when the terminal atomic
part of name is bound to an XFN link. If follow_link is non-zero, such a link is
followed, and the values of the attribute associated with the final named object
are returned; if follow_link is zero, such a link is not followed. Any XFN links
encountered before the terminal atomic name are always followed.

RETURN VALUES This operation returns a pointer to an object of type FN_attrset_t ; if the
operation fails, a NULLpointer (0) is returned.

ERRORS This operation sets status as described in FN_status_t (3XFN) and
xfn_status_codes (3XFN).

USAGE The attributes in the returned set do not contain the syntax or values of the
attributes, only their identifiers.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_attribute_t (3XFN), FN_attrset_t (3XFN),
FN_composite_name_t (3XFN), FN_ctx_t (3XFN), FN_status_t (3XFN),
fn_attr_get (3XFN), fn_attr_multi_get (3XFN) xfn (3XFN),
xfn_attributes (3XFN), xfn_status_codes (3XFN), attributes (5)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

104 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_attr_get_values(3XFN)

NAME fn_attr_get_values, FN_valuelist_t, fn_valuelist_next, fn_valuelist_destroy –
return values of an attribute

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>
FN_valuelist_t *fn_attr_get_values (FN_ctx_t *ctx, const FN_composite_name_t
*name, const FN_identifier_t *attribute_id, unsigned int follow_link, FN_status_t *status);

FN_attrvalue_t *fn_valuelist_next (FN_valuelist_t *vl, FN_identifier_t **attr_syntax,
FN_status_t *status);

void fn_valuelist_destroy (FN_valuelist_t *vl, FN_status_t *status);

DESCRIPTION This set of operations is used to obtain the values of a single attribute, identified
by attribute_id , associated with the object named name , resolved in the context
ctx . If name is empty, the attribute values associated with ctx are obtained.

The value of follow_link determines what happens when the terminal atomic
part of name is bound to an XFN link. If follow_link is non-zero, such a link is
followed, and the values of the attribute associated with the final named object
are returned; if follow_link is zero, such a link is not followed. Any XFN links
encountered before the terminal atomic name are always followed.

The operation fn_attr_get_values() initiates the enumeration process. It
returns a handle to an FN_valuelist_t object that can be used to enumerate
the values of the specified attribute.

The operation fn_valuelist_next() returns a new FN_attrvalue_t object
containing the next value in the attribute and may be called multiple times until
all values are retrieved. The syntax of the attribute is returned in attr_syntax .

The operation fn_valuelist_destroy() is used to release the resources
used during the enumeration. This may be invoked before the enumeration has
completed to terminate the enumeration.

These operations work in a fashion similar to the fn_ctx_list_names()
operations.

RETURN VALUES fn_attr_get_values() returns a pointer to an FN_valuelist_t object
if the enumeration process is successfully initiated; it returns a NULLpointer
if the process failed.

fn_valuelist_next() returns a NULLpointer if no more attribute values
can be returned.

In the case of a failure, these operations set status to indicate the nature of the
failure.

ERRORS Each successful call to fn_valuelist_next() returns an attribute value.
status is set to FN_SUCCESS.

Last modified 13 Dec 1996 SunOS 5.8 105

fn_attr_get_values(3XFN) XFN Interface Library Functions

When fn_valuelist_next() returns a NULLpointer, it indicates that no more
values can be returned. status is set in the following way:
FN_SUCCESS The enumeration has completed

successfully.

FN_E_INVALID_ENUM_HANDLE The given enumeration handle is not
valid. Possible reasons could be
that the handle was from another
enumeration, or the context being
enumerated no longer accepts the
handle (due to such events as handle
expiration or updates to the context).

FN_E_PARTIAL_RESULT The enumeration is not yet complete
but cannot be continued.

In addition to these status codes, other status codes are also possible in calls to
these operations. In such cases, status is set as described in FN_status_t (3XFN)
and xfn_status_codes (3XFN) .

USAGE This interface should be used instead of fn_attr_get() if the combined size
of all the values is expected to be too large to be returned by fn_attr_get() .

There may be a relationship between the ctx argument supplied to
fn_attr_get_values() and the FN_valuelist_t object it returns. For
example, some implementations may store the context handle ctx within the
FN_valuelist_t object for subsequent fn_valuelist_next() calls. In
general, an fn_ctx_handle_destroy (3XFN) should not be invoked on ctx
until the enumeration has terminated.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_attribute_t (3XFN) , FN_attrvalue_t (3XFN)
, FN_composite_name_t (3XFN) , FN_ctx_t (3XFN) ,
FN_identifier_t (3XFN) , FN_status_t (3XFN) , fn_attr_get (3XFN) ,
fn_ctx_handle_destroy (3XFN) , fn_ctx_list_names (3XFN) , xfn (3XFN)
, xfn_attributes (3XFN) , xfn_status_codes (3XFN) , attributes (5)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed

106 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_attr_get_values(3XFN)

using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Last modified 13 Dec 1996 SunOS 5.8 107

FN_attribute_t(3XFN) XFN Interface Library Functions

NAME FN_attribute_t, fn_attribute_create, fn_attribute_destroy, fn_attribute_copy,
fn_attribute_assign, fn_attribute_identifier, fn_attribute_syntax,
fn_attribute_valuecount, fn_attribute_first, fn_attribute_next, fn_attribute_add,
fn_attribute_remove – an XFN attribute

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>
FN_attribute_t *fn_attribute_create (constFN_identifier_t *attribute_id, const
FN_identifier_t *attribute_syntax);

void fn_attribute_destroy (FN_attribute_t *attr);

FN_attribute_t *fn_attribute_copy (constFN_attribute_t *attr);

FN_attribute_t *fn_attribute_assign (FN_attribute_t *dst, const FN_attribute_t *src);

const FN_identifier_t *fn_attribute_identifier (constFN_attribute_t *attr);

const FN_identifier_t *fn_attribute_syntax (constFN_attribute_t *attr);

unsigned int fn_attribute_valuecount (constFN_attribute_t *attr);

const FN_attrvalue_t *fn_attribute_first (constFN_attribute_t *attr, void **iter_pos);

const FN_attrvalue_t *fn_attribute_next (constFN_attribute_t *attr, void **iter_pos);

int fn_attribute_add (FN_attribute_t *attr, const FN_attrvalue_t *attribute_value,
unsigned int exclusive);

int fn_attribute_remove (FN_attribute_t *attr, const FN_attrvalue_t *attribute_value);

DESCRIPTION An attribute has an attribute identifier, a syntax, and a set of distinct values.
Each value is a sequence of octets. The operations associated with objects of type
FN_attribute_t allow the construction, destruction, and manipulation of an
attribute and its value set.

The attribute identifier and its syntax are specified using an FN_identifier_t
. fn_attribute_create() creates a new attribute object with the given
identifier and syntax, and an empty set of values. fn_attribute_destroy()
releases the storage associated with attr . fn_attribute_copy() returns a
copy of the object pointed to by attr . fn_attribute_assign() makes a copy
of the attribute object pointed to by src and assigns it to dst , releasing any old
contents of dst . A pointer to the same object as dst is returned.

fn_attribute_identifier() returns the attribute identifier of
attr . fn_attribute_syntax() returns the attribute syntax of attr .
fn_attribute_valuecount() returns the number of attribute values in attr .

fn_attribute_first() and fn_attribute_next() are used to
enumerate the values of an attribute. Enumeration of the values of an attribute
may return the values in any order. fn_attribute_first() returns an

108 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_attribute_t(3XFN)

attribute value from attr and sets the iteration marker iter_pos . Subsequent
calls to fn_attribute_next() returns the next attribute value identified by
iter_pos and advances iter_pos . Adding or removing values from an attribute
invalidates any iteration markers that the caller holds.

fn_attribute_add() adds a new value attribute_value to attr . The operation
succeeds (but no change is made) if attribute_value is already in attr and exclusive
is 0 ; the operation fails if attribute_value is already in attr and exclusive is non-zero.

fn_attribute_remove() removes attribute_value from attr . The operation
succeeds even if attribute_value is not amongst attr ’s values.

RETURN VALUES fn_attribute_first() returns 0 if the attribute contains no values.
fn_attribute_next() returns 0 if there are no more values to be returned
in the attribute (as identified by the iteration marker) or if the iteration marker
is invalid.

fn_attribute_add() and fn_attribute_remove() return 1 if the
operation succeeds, 0 if it fails.

USAGE Manipulation of attributes using the operations described in this manual page
does not affect their representation in the underlying naming system. Changes
to attributes in the underlying naming system can only be effected through the
use of the interfaces described in xfn_attributes (3XFN) .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_attrset_t (3XFN) , FN_attrvalue_t (3XFN) , FN_identifier_t (3XFN)
, fn_attr_get (3XFN) , fn_attr_modify (3XFN) , xfn (3XFN) ,
xfn_attributes (3XFN) , attributes (5)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Last modified 13 Dec 1996 SunOS 5.8 109

fn_attr_modify(3XFN) XFN Interface Library Functions

NAME fn_attr_modify – modify specified attribute associated with name

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>

int fn_attr_modify (FN_ctx_t *ctx, const FN_composite_name_t *name, unsigned int
mod_op, const FN_attribute_t *attr, unsigned int follow_link, FN_status_t *status);

DESCRIPTION This operation modifies according to mod_op the attribute attr associated with
the object named name relative to ctx. If name is empty, the attribute associated
with ctx is modified.

The value of follow_link determines what happens when the terminal atomic
part of name is bound to an XFN link. If follow_link is non-zero, such a link is
followed, and the values of the attribute associated with the final named object
are returned; if follow_link is zero, such a link is not followed. Any XFN links
encountered before the terminal atomic name are always followed.

The modification is made on the attribute identified by the attribute identifier
of attr. The syntax and values of attr are used according to the modification
operation.

The modification operations are as follows:
FN_ATTR_OP_ADD Add an attribute with given attribute

identifier and set of values. If an
attribute with this identifier already
exists, replace the set of values with
those in the given set. The set of
values may be empty if the target
naming system permits.

FN_ATTR_OP_ADD_EXCLUSIVE Add an attribute with the given
attribute identifier and set of values.
The operation fails if an attribute
with this identifier already exists. The
set of values may be empty if the
target naming system permits.

FN_ATTR_OP_REMOVE Remove the attribute with the given
attribute identifier and all of its
values. The operation succeeds even
if the attribute does not exist. The
values of the attribute supplied with
this operation are ignored.

FN_ATTR_OP_ADD_VALUES Add the given values to those of
the given attribute (resulting in the

110 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_attr_modify(3XFN)

attribute having the union of its
prior value set with the set given).
Create the attribute if it does not
exist already. The set of values
may be empty if the target naming
system permits.

FN_ATTR_OP_REMOVE_VALUES Remove the given values from those
of the given attribute (resulting in the
attribute having the set difference
of its prior value set and the set
given). This succeeds even if some
of the given values are not in the
set of values that the attribute has.
In naming systems that require an
attribute to have at least one value,
removing the last value will remove
the attribute as well.

RETURN VALUES 1 Successful operation.

0 Operation failed.

ERRORS fn_attr_modify() sets status as described in FN_status_t (3XFN) and
xfn_status_codes (3XFN).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_attribute_t (3XFN), FN_composite_name_t (3XFN), FN_ctx_t (3XFN),
FN_status_t (3XFN), fn_attr_multi_modify (3XFN), xfn (3XFN),
xfn_attributes (3XFN), xfn_status_codes (3XFN), attributes (5)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Last modified 13 Dec 1996 SunOS 5.8 111

FN_attrmodlist_t(3XFN) XFN Interface Library Functions

NAME FN_attrmodlist_t, fn_attrmodlist_create, fn_attrmodlist_destroy,
fn_attrmodlist_copy, fn_attrmodlist_assign, fn_attrmodlist_count,
fn_attrmodlist_first, fn_attrmodlist_next, fn_attrmodlist_add – a list of attribute
modifications

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>
FN_attrmodlist_t *fn_attrmodlist_create (void);

void fn_attrmodlist_destroy (FN_attrmodlist_t *modlist);

FN_attrmodlist_t *fn_attrmodlist_copy (const FN_attrmodlist_t *modlist);

FN_attrmodlist_t *fn_attrmodlist_assign (FN_attrmodlist_t *dst, const
FN_attrmodlist_t *src);

unsigned int fn_attrmodlist_count (const FN_attrmodlist_t *modlist);

const FN_attribute_t *fn_attrmodlist_first (const FN_attrmodlist_t *modlist, void
**iter_pos, unsigned int *first_mod_op);

const FN_attribute_t *fn_attrmodlist_next (const FN_attrmodlist_t *modlist, void
**iter_pos, unsigned int *mod_op);

int fn_attrmodlist_add (FN_attrmodlist_t *modlist, unsigned int mod_op, const
FN_attribute_t *attr);

DESCRIPTION An attribute modification list allows for multiple modification operations to
be made on the attributes associated with a single named object. It is used in
the fn_attr_multi_modify (3XFN) operation.

An attribute modification list is a list of attribute modification specifiers. An
attribute modification specifier consists of an attribute object and an operation
specifier. The attribute’s identifier indicates the attribute that is to be operated
upon. The attribute’s values are used in a manner depending on the operation.
The operation specifier is an unsigned int that must have one of the values:

FN_ATTR_OP_ADD

FN_ATTR_OP_ADD_EXCLUSIVE

FN_ATTR_OP_REMOVE

FN_ATTR_OP_ADD_VALUES

or

FN_ATTR_OP_REMOVE_VALUES

(See fn_attr_modify (3XFN) for detailed descriptions of these specifiers.)
The operations are to be performed in the order in which they appear in the
modification list.

112 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_attrmodlist_t(3XFN)

fn_attrmodlist_create() creates an empty attribute modification list.
fn_attrmodlist_destroy() releases the storage associated with modlist .
fn_attrmodlist_copy() returns a copy of the attribute modification list
modlist . fn_attrmodlist_assign() makes a copy of src and assigns it to dst
, releasing any old contents of dst . It returns a pointer to the same object as dst .

fn_attrmodlist_count() returns the number attribute modification items
in the attribute modification list.

The iterators fn_attrmodlist_first() and fn_attrmodlist_next()
return a handle to the attribute part of the modification and return
the operation specifier part through an unsigned int * parameter.
fn_attrmodlist_first() returns the attribute of the first modification item
from modlist and sets mod_op to be the code of the modification operation of that
item; iter_pos is set after the first modification item.

fn_attrmodlist_next() returns the attribute of the next modification item
from modlist after iter_pos and advances iter_pos ; mod_op is set to the code of
the modification operation of that item. The order of the items returned during
an enumeration is the same as the order by which the items were added to
the modification list.

fn_attrmodlist_add() adds a new item consisting of the given modification
operation code mod_op and attribute attr to the end of the modification list modlist
. attr ’s identifier indicates the attribute that is to be operated upon. attr ’s values
are used in a manner depending on the operation.

RETURN VALUES fn_attrmodlist_first() returns 0 if the modification list is empty.
fn_attrmodlist_next() returns 0 if there are no more items on the
modification list to be enumerated or if the iteration marker is invalid.

fn_attrmodlist_add() returns 1 if the operation succeeds, 0 if the operation
fails.

USAGE Manipulation of attributes using the operations described in this manual page
does not affect their representation in the underlying naming system. Changes
to attributes in the underlying naming system can only be effected through the
use of the interfaces described in xfn_attributes (3XFN) .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_attribute_t (3XFN) , FN_attrset_t (3XFN) , FN_identifier_t (3XFN)
, fn_attr_modify (3XFN) , fn_attr_multi_modify (3XFN) , xfn (3XFN) ,
xfn_attributes (3XFN) , attributes (5)

Last modified 13 Dec 1996 SunOS 5.8 113

FN_attrmodlist_t(3XFN) XFN Interface Library Functions

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

114 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_attr_multi_get(3XFN)

NAME fn_attr_multi_get, FN_multigetlist_t, fn_multigetlist_next,
fn_multigetlist_destroy – return multiple attributes associated with named object

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>

FN_multigetlist_t *fn_attr_multi_get (FN_ctx_t *ctx, const FN_composite_name_t
*name, const FN_attrset_t *attr_ids, unsigned int follow_link, FN_status_t *status);

FN_attribute_t *fn_multigetlist_next (FN_multigetlist_t *ml, FN_status_t *status);

void fn_multigetlist_destroy (FN_multigetlist_t *ml, FN_status_t *status);

DESCRIPTION This set of operations returns one or more attributes associated with the object
named by name relative to the context ctx . If name is empty, the attributes
associated with ctx are returned.

The value of follow_link determines what happens when the terminal atomic
part of name is bound to an XFN link. If follow_link is non-zero, such a link is
followed, and the values of the attribute associated with the final named object
are returned; if follow_link is zero, such a link is not followed. Any XFN links
encountered before the terminal atomic name are always followed.

The attributes returned are those specified in attr_ids . If the value of attr_ids is 0 ,
all attributes associated with the named object are returned. Any attribute values
in attr_ids provided by the caller are ignored; only the attribute identifiers are
relevant for this operation. Each attribute (identifier, syntax, values) is returned
one at a time using an enumeration scheme similar to that for listing a context.

fn_attr_multi_get() initiates the enumeration process. It returns a handle
to an FN_multigetlist_t object that can be used for the enumeration.

The operation fn_multigetlist_next() returns a new FN_attribute_t
object containing the next attribute (identifiers, syntaxes, and values) requested
and updates ml to indicate the state of the enumeration.

The operation fn_multigetlist_destroy() releases the resources used
during the enumeration. It may be invoked before the enumeration has
completed to terminate the enumeration.

RETURN VALUES fn_attr_multi_get() returns a pointer to an FN_multigetlist_t object if
the enumeration has been initiated successfully; a NULLpointer (0) is returned
if it failed.

fn_multigetlist_next() returns a pointer to an FN_attribute_t object if
an attribute was returned, a NULLpointer (0) if no attribute was returned.

In the case of a failure, these operations set status to indicate the nature of the
failure.

Last modified 13 Dec 1996 SunOS 5.8 115

fn_attr_multi_get(3XFN) XFN Interface Library Functions

ERRORS Each call to fn_multigetlist_next() sets status as follows:
FN_SUCCESS If an attribute was returned, there are

more attributes to be enumerated.
If no attribute was returned,
the enumeration has completed
successfully.

FN_E_ATTR_NO_PERMISSION The caller did not have permission
to read this attribute.

FN_E_INSUFFICIENT_RESOURCES Insufficient resources are available to
return the attribute’s values.

FN_E_INVALID_ATTR_IDENTIFIER This attribute identifier was not in
a format acceptable to the naming
system, or its contents was not
valid for the format specified for
the identifier.

FN_E_INVALID_ENUM_HANDLE (No attribute should be returned
with this status code). The given
enumeration handle is not valid.
Possible reasons could be that
the handle was from another
enumeration, or the object being
processed no longer accepts the
handle (due to such events as handle
expiration or updates to the object’s
attribute set).

FN_E_NO_SUCH_ATTRIBUTE The object did not have an attribute
with the given identifier.

FN_E_PARTIAL_RESULT (No attribute should be returned with
this status code). The enumeration
is not yet complete but cannot be
continued.

For FN_E_ATTR_NO_PERMISSION, FN_E_INVALID_ATTR_IDENTIFIER,
FN_E_INSUFFICIENT_RESOURCES,or FN_E_NO_SUCH_ATTRIBUTE,the
returned attribute contains only the attribute identifier (no value or syntax). For
these four status codes and FN_SUCCESS(when an attribute was returned),
fn_multigetlist_next() can be called again to return another attribute.
All other status codes indicate that no more attributes can be returned by
fn_multigetlist_next() .

116 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_attr_multi_get(3XFN)

Other status codes, such as FN_E_COMMUNICATION_FAILURE,are also
possible, in which case, no attribute is returned. In such cases, status is set as
described in FN_status_t (3XFN) and xfn_status_codes (3XFN) .

USAGE Implementations are not required to return all attributes requested by attr_ids .
Some may choose to return only the attributes found successfully, followed by a
status of FN_E_PARTIAL_RESULT; such implementations may not necessarily
return attributes identifying those that could not be read. Implementations are
not required to return the attributes in any order.

There may be a relationship between the ctx argument supplied to
fn_attr_multi_get() and the FN_multigetlist_t object it returns. For
example, some implementations may store the context handle ctx within the
FN_multigetlist_t object for subsequent fn_multigetlist_next()
calls. In general, a fn_ctx_handle_destroy() should not be invoked on ctx
until the enumeration has terminated.

EXAMPLES EXAMPLE 1 A sample program displaying how to use fn_attr_multi_get()
function.

The following code fragment illustrates to obtain all attributes associated with a
given name using the fn_attr_multi_get() operations.

/* list all attributes associated with given name */
extern FN_string_t *input_string;
FN_ctx_t *ctx;
FN_composite_name_t *target_name = fn_composite_name_from_string(input_string);
FN_multigetlist_t *ml;
FN_status_t *status = fn_status_create();
FN_attribute_t *attr;
int done = 0;
ctx = fn_ctx_handle_from_initial(status);
/* error checking on ’status’ */
/* attr_ids == 0 indicates all attributes are to be returned */
if ((ml=fn_attr_multi_get(ctx, target_name, 0, status)) == 0) {

/* report ’status’ and exit */
}
while ((attr=fn_multigetlist_next(ml, status)) && !done) {

switch (fn_status_code(status)) {
case FN_SUCCESS:

/* do something with ’attr’ */
break;

case FN_E_ATTR_NO_PERMISSION:
case FN_E_ATTR_INVALID_ATTR_IDENTIFIER:
case FN_E_NO_SUCH_ATTRIBUTE:

/* report error using identifier in ’attr’ */
break;

default:
/* other error handling */
done = 1;

}
if (attr)

fn_attribute_destroy(attr);

Last modified 13 Dec 1996 SunOS 5.8 117

fn_attr_multi_get(3XFN) XFN Interface Library Functions

}
/* check ’status’ for reason for end of enumeration and report if necessary */
/* clean up */
fn_multigetlist_destroy(ml, status);
/* report ’status’ */

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_attribute_t (3XFN) , FN_attrset_t (3XFN) ,
FN_composite_name_t (3XFN) , FN_ctx_t (3XFN) ,
FN_identifier_t (3XFN) , FN_status_t (3XFN) , fn_attr_get (3XFN) ,
fn_ctx_handle_destroy (3XFN) , fn_ctx_list_names (3XFN) , xfn (3XFN)
, xfn_attributes (3XFN) , xfn_status_codes (3XFN) , attributes (5)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

118 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_attr_multi_modify(3XFN)

NAME fn_attr_multi_modify – modify multiple attributes associated with named object

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>

int fn_attr_multi_modify (FN_ctx_t *ctx, const FN_composite_name_t *name, const
FN_attrmodlist_t *mods, unsigned int follow_link, FN_attrmodlist_t **unexecuted_mods,
FN_status_t *status);

DESCRIPTION This operation modifies the attributes associated with the object named name
relative to ctx. If name is empty, the attributes associated with ctx are modified.

The value of follow_link determines what happens when the terminal atomic
part of name is bound to an XFN link. If follow_link is non-zero, such a link is
followed, and the values of the attribute associated with the final named object
are returned; if follow_link is zero, such a link is not followed. Any XFN links
encountered before the terminal

In the mods parameter, the caller specifies a sequence of modifications that are to
be done in order on the attributes. Each modification in the sequence specifies a
modification operation code (see fn_attr_modify (3XFN)) and an attribute
on which to operate.

The FN_attrmodlist_t type is described in FN_attrmodlist_t (3XFN).

RETURN VALUES fn_attr_multi_modify() returns 1 if all the modification operations were
performed successfully. The function returns 0 if it any error occurs. If the
operation fails, status and unexecuted_mods are set as described below.

ERRORS If an error is encountered while performing the list of modifications, status
indicates the type of error and unexecuted_mods is set to a list of unexecuted
modifications. The contents of unexecuted_mods do not share any state with mods;
items in unexecuted_mods are copies of items in mods and appear in the same
order in which they were originally supplied in mods. The first operation in
unexecuted_mods is the first one that failed and the code in status applies to this
modification operation in particular. If status indicates failure and a NULLpointer
(0) is returned in unexecuted_mods, that indicates no modifications were executed.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_attrmodlist_t (3XFN), FN_composite_name_t (3XFN),
FN_ctx_t (3XFN), FN_status_t (3XFN), fn_attr_modify (3XFN),
xfn (3XFN), xfn_attributes (3XFN), xfn_status_codes (3XFN),
attributes (5)

Last modified 13 Dec 1996 SunOS 5.8 119

fn_attr_multi_modify(3XFN) XFN Interface Library Functions

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

120 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_attr_search(3XFN)

NAME fn_attr_search, FN_searchlist_t, fn_searchlist_next, fn_searchlist_destroy – search
for the atomic name of objects with the specified attributes in a single context

SYNOPSIS #include <xfn/xfn.h>
FN_searchlist_t *fn_attr_search (FN_ctx_t *ctx, const FN_composite_name_t *name,
const FN_attrset_t *match_attrs, unsigned int return_ref, const FN_attrset_t *return_attr_ids,
FN_status_t *status);

FN_string_t *fn_searchlist_next (FN_searchlist_t *sl, FN_ref_t **returned_ref,
FN_attrset_t **returned_attrs, FN_status_t *status);

void fn_searchlist_destroy (FN_searchlist_t *sl);

DESCRIPTION This set of operations is used to enumerate names of objects bound in the target
context named name relative to the context ctx with attributes whose values
match all those specified by match_attrs .

The attributes specified by match_attrs form a conjunctive ANDexpression against
which the attributes of each named object in the target context are evaluated. For
multi-valued attributes, the list order of values is ignored and attribute values
not specified in match_attrs are ignored. If no value is specified for an attribute in
match_attrs , the presence of the attribute is tested. If the value of match_attrs is
0 , all names in the target context are enumerated.

If a non-zero value of return_ref is passed to fn_attr_search() , the
reference bound to the name is returned in the returned_ref argument to
fn_searchlist_next() .

Attribute identifiers and values associated with named objects that satisfy
match_attrs may be returned by fn_searchlist_next() . The attributes
returned are those listed in the return_attr_ids argument to fn_attr_search()
. If the value of return_attr_ids is 0 , all attributes are returned. If return_attr_ids
is an empty FN_attrset_t (3XFN) object, no attributes are returned. Any
attribute values in return_attr_ids are ignored; only the attribute identifiers are
relevant for return_attr_ids .

The call to fn_attr_search() initiates the enumeration process. It returns a
handle to an FN_searchlist_t object that is used to enumerate the names of
the objects whose attributes match the attributes specified by match_attrs .

The operation fn_searchlist_next() returns the next name in the
enumeration identified by the sl . The reference of the name is returned
in returned_ref if return_ref was set in the call to fn_attr_search() .
The attributes specified by return_attr_ids are returned in returned_attrs
. fn_searchlist_next() also updates sl to indicate the state of the
enumeration. Successive calls to fn_searchlist_next() using sl return
successive names, and optionally, references and attributes, in the enumeration;
these calls further update the state of the enumeration.

Last modified 22 Nov 1996 SunOS 5.8 121

fn_attr_search(3XFN) XFN Interface Library Functions

fn_searchlist_destroy() releases resources used during the enumeration.
This can be invoked at any time to terminate the enumeration.

fn_attr_search() does not follow XFN links that are bound in the target
context.

RETURN VALUES fn_attr_search() returns a pointer to an FN_searchlist_t object if
the enumeration is successfully initiated; it returns a NULLpointer if the
enumeration cannot be initiated or if no named object with attributes whose
values match those specified in match_attrs is found.

fn_searchlist_next() returns a pointer to an FN_string_t (3XFN) object;
it returns a NULLpointer if no more names can be returned in the enumeration.
If returned_ref is a NULLpointer, or if the return_ref parameter to fn_attr_search
was 0 , no reference is returned; otherwise, returned_ref contains the reference
bound to the name. If returned_attrs is a NULLpointer, no attributes are returned;
otherwise, returned_attrs contains the attributes associated with the named
object, as specified by the return_attr_ids parameter to fn_attr_search() .

In the case of a failure, these operations return in the status argument a code
indicating the nature of the failure.

ERRORS fn_attr_search() returns a NULLpointer if the enumeration could not be
initiated. The status argument is set in the following way:
FN_SUCCESS A named object could not be found

whose attributes satisfied the implied
filter of equality and conjunction.

FN_E_ATTR_NO_PERMISSION The caller did not have permission
to read one or more of the specified
attributes.

FN_E_INVALID_ATTR_VALUE A value type in the specified
attributes did not match the syntax
of the attribute against which it was
being evaluated.

Other status codes are possible as described in FN_status_t (3XFN) and
xfn_status_codes (3XFN) .

Each successful call to fn_searchlist_next() returns a name and,
optionally, the reference and requested attributes. status is set in the following
way:
FN_SUCCESS All requested attributes were

returned successfully with the name.

122 SunOS 5.8 Last modified 22 Nov 1996

XFN Interface Library Functions fn_attr_search(3XFN)

FN_E_ATTR_NO_PERMISSION The caller did not have permission to
read one or more of the requested
attributes.

FN_E_INVALID_ATTR_IDENTIFIER A requested attribute identifier was
not in a format acceptable to the
naming system, or its contents was
not valid for the format specified.

FN_E_NO_SUCH_ATTRIBUTE The named object did not have one of
the requested attributes.

FN_E_INSUFFICIENT_RESOURCES Insufficient resources are available
to return all the requested attributes
and their values.

FN_E_ATTR_NO_PERMISSION
FN_E_INVALID_ATTR_IDENTIFIER
FN_E_NO_SUCH_ATTRIBUTE
FN_E_INSUFFICIENT_RESOURCES These indicate that some of the

requested attributes may have
been returned in returned_attrs but
one or more of them could not be
returned. Use fn_attr_get (3XFN)
or fn_attr_multi_get (3XFN) to
discover why these attributes could
not be returned.

fn_searchlist_next() returns a NULLpointer if no more names can be
returned. The status argument is set in the following way:
FN_SUCCESS The search has completed

successfully.

FN_E_PARTIAL_RESULT The enumeration is not yet complete
but cannot be continued.

FN_E_ATTR_NO_PERMISSION The caller did not have permission
to read one or more of the specified
attributes.

FN_E_INVALID_ENUM_HANDLE The supplied enumeration handle
was not valid. Possible reasons could
be that the handle was from another
enumeration, or the context being
enumerated no longer accepts the
handle (due to such events as handle
expiration or updates to the context).

Last modified 22 Nov 1996 SunOS 5.8 123

fn_attr_search(3XFN) XFN Interface Library Functions

Other status codes are possible as described in FN_status_t (3XFN) and
xfn_status_codes (3XFN) .

USAGE The names enumerated using fn_searchlist_next() are not ordered in any
way. Furthermore, there is no guarantee that any two series of enumerations
on the same context with identical match_attrs will return the names in the
same order.

EXAMPLES EXAMPLE 1 A sample program of displaying how to use fn_attr_search()
function.

The following code fragment illustrates how the fn_attr_search() operation
may be used. The code consists of three parts: preparing the arguments for the
search, performing the search, and cleaning up.

The first part involves getting the name of the context to start the search and
constructing the set of attributes that named objects in the context must
satisfy. This is done in the declarations part of the code and by the routine
get_search_query .

The next part involves doing the search and enumerating the results of the
search. This is done by first getting a context handle to the Initial Context, and
then passing that handle along with the name of the target context and matching
attributes to fn_attr_search() . This particular call to fn_attr_search()
is requesting that no reference be returned (by passing in 0 for return_ref), and
that all attributes associated with the named object be returned (by passing in 0
as the return_attr_ids argument). If successful, fn_attr_search() returns sl , a
handle for enumerating the results of the search. The results of the search are
enumerated using calls to fn_searchlist_next() , which returns the name
of the object and the attributes associated with the named object in returned_attrs .

The last part of the code involves cleaning up the resources used during the
search and enumeration. The call to fn_searchlist_destroy() releases
resources reserved for this enumeration. The other calls release the context
handle, name, attribute set, and status objects created earlier.

/* Declarations */
FN_ctx_t *ctx;
FN_searchlist_t *sl;
FN_string_t *name;
FN_attrset_t *returned_attrs;
FN_status_t *status = fn_status_create();
FN_composite_name_t *target_name = get_name_from_user_input();
FN_attrset_t *match_attrs = get_search_query();
/* Get context handle to Initial Context */
ctx = fn_ctx_handle_from_initial(status);
/* error checking on ’status’ */
/* Initiate search */
if ((sl=fn_attr_search(ctx, target_name, match_attrs,

/* no reference */ 0, /* return all attrs */ 0, status)) == 0) {
/* report ’status’, cleanup, and exit */

124 SunOS 5.8 Last modified 22 Nov 1996

XFN Interface Library Functions fn_attr_search(3XFN)

}
/* Enumerate names and attributes requested */
while (name=fn_searchlist_next(sl, 0, &returned_attrs, status)) {

/* do something with ’name’ and ’returned_attrs’*/
fn_string_destroy(name);
fn_attrset_destroy(returned_attrs);

}
/* check ’status’ for reason for end of enumeration */
/* Clean up */
fn_searchlist_destroy(sl); /* Free resources of ’sl’ */
fn_status_destroy(status);
fn_attrset_destroy(match_attrs);
fn_ctx_handle_destroy(ctx);
fn_composite_name_destroy(target_name);
/*

* Procedure for constructing attribute set containing
* attributes to be matched:
* "zip_code" attribute value is "02158"
* AND "employed" attribute is present.

*/
FN_attrset_t *
get_search_query()
{

/* Zip code and employed attribute identifier, syntax */
extern FN_attribute_t *attr_zip_code;
extern FN_attribute_t *attr_employed;
FN_attribute_t *zip_code = fn_attribute_copy(attr_zip_code);
FN_attr_value_t zc_value = {5, "02158"};
FN_attrset_t *match_attrs = fn_attrset_create();
fn_attribute_add(zip_code, &zc_value, 0);
fn_attrset_add(match_attrs, zip_code, 0);
fn_attrset_add(match_attrs, attr_employed, 0);
return (match_attrs);

}

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_attribute_t (3XFN) , FN_attrset_t (3XFN) , FN_attrvalue_t (3XFN) ,
FN_composite_name_t (3XFN) , FN_ctx_t (3XFN) , FN_status_t (3XFN) ,
FN_string_t (3XFN) , fn_attr_ext_search (3XFN) , fn_attr_get (3XFN)
, fn_attr_multi_get (3XFN) , fn_ctx_list_names (3XFN) ,
xfn_status_codes (3XFN) , attributes (5)

Last modified 22 Nov 1996 SunOS 5.8 125

FN_attrset_t(3XFN) XFN Interface Library Functions

NAME FN_attrset_t, fn_attrset_create, fn_attrset_destroy, fn_attrset_copy,
fn_attrset_assign, fn_attrset_get, fn_attrset_count, fn_attrset_first,
fn_attrset_next, fn_attrset_add, fn_attrset_remove – a set of XFN attributes

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>
FN_attrset_t *fn_attrset_create (void);

void fn_attrset_destroy (FN_attrset_t *aset);

FN_attrset_t *fn_attrset_copy (constFN_attrset_t *aset);

FN_attrset_t *fn_attrset_assign (FN_attrset_t *dst, const FN_attrset_t *src);

const FN_attribute_t *fn_attrset_get (constconst FN_attrset_t *aset, const
FN_identifier_t *attr_id);

unsigned int fn_attrset_count (constFN_attrset_t *aset);

const FN_attribute_t *fn_attrset_first (constFN_attrset_t *aset, void **iter_pos);

const FN_attribute_t *fn_attrset_next (constFN_attrset_t *aset, void **iter_pos);

int fn_attrset_add (FN_attrset_t *aset, const FN_attribute_t *attr, unsigned int exclusive);

int fn_attrset_remove (FN_attrset_t *aset, const FN_identifier_t *attr_id);

DESCRIPTION An attribute set is a set of attribute objects with distinct identifiers. The
fn_attr_multi_get (3XFN) operation takes an attribute set as parameter and
returns an attribute set. The fn_attr_get_ids (3XFN) operation returns an
attribute set containing the identifiers of the attributes.

Attribute sets are represented by the type FN_attrset_t . The following
operations are defined for manipulating attribute sets.

fn_attrset_create() creates an empty attribute set.
fn_attrset_destroy() releases the storage associated with the attribute
set aset . fn_attrset_copy() returns a copy of the attribute set aset
. fn_attrset_assign() makes a copy of the attribute set src and assigns
it to dst , releasing any old contents of dst . A pointer to the same object as
dst is returned.

fn_attrset_get() returns the attribute with the given identifier attr_id from
aset . fn_attrset_count() returns the number attributes found in the
attribute set aset .

fn_attrset_first() and fn_attrset_next() are functions that can
be used to return an enumeration of all the attributes in an attribute set. The
attributes are not ordered in any way. There is no guaranteed relation between
the order in which items are added to an attribute set and the order of the
enumeration. The specification does guarantee that any two enumerations will

126 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_attrset_t(3XFN)

return the members in the same order, provided that no fn_attrset_add() or
fn_attrset_remove() operation was performed on the object in between or
during the two enumerations. fn_attrset_first() returns the first attribute
from the set and sets iter_pos after the first attribute. fn_attrset_next ()
returns the attribute following iter_pos and advances iter_pos .

fn_attrset_add() adds the attribute attr to the attribute set aset , replacing
the attribute’s values if the identifier of attr is not distinct in aset and exclusive
is 0 . If exclusive is non-zero and the identifier of attr is not distinct in aset
, the operation fails.

fn_attrset_remove() removes the attribute with the identifier attr_id from
aset . The operation succeeds even if no such attribute occurs in aset .

RETURN VALUES fn_attrset_first() returns 0 if the attribute set is empty.
fn_attrset_next() returns 0 if there are no more attributes in the set.

fn_attrset_add() and fn_attrset_remove() return 1 if the operation
succeeds, and 0 if the operation fails.

USAGE Manipulation of attributes using the operations described in this manual page
does not affect their representation in the underlying naming system. Changes
to attributes in the underlying naming system can only be effected through the
use of the interfaces described in xfn_attributes (3XFN) .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_attribute_t (3XFN) , FN_attrvalue_t (3XFN) ,
FN_identifier_t (3XFN) , fn_attr_get_ids (3XFN) ,
fn_attr_multi_get (3XFN) , xfn (3XFN) , xfn_attributes (3XFN) ,
attributes (5)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Last modified 13 Dec 1996 SunOS 5.8 127

FN_attrvalue_t(3XFN) XFN Interface Library Functions

NAME FN_attrvalue_t – an XFN attribute value

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]

#include <xfn/xfn.h>

DESCRIPTION The type FN_attrvalue_t is used to represent the contents of a single attribute
value, within an attribute of type FN_attribute_t .

The representation of this structure is defined by XFN as follows:

typedef struct { size_t length;
void *contents; } FN_attrvalue_t;

SEE ALSO FN_attribute_t (3XFN), fn_attr_get_values (3XFN), xfn (3XFN)

128 SunOS 5.8 Last modified 4 Nov 1994

XFN Interface Library Functions FN_composite_name_t(3XFN)

NAME FN_composite_name_t, fn_composite_name_create,
fn_composite_name_destroy, fn_composite_name_from_str,
fn_composite_name_from_string, fn_string_from_composite_name,
fn_composite_name_copy, fn_composite_name_assign,
fn_composite_name_is_empty, fn_composite_name_count,
fn_composite_name_first, fn_composite_name_next, fn_composite_name_prev,
fn_composite_name_last, fn_composite_name_prefix,
fn_composite_name_suffix, fn_composite_name_is_equal,
fn_composite_name_is_prefix, fn_composite_name_is_suffix,
fn_composite_name_prepend_comp, fn_composite_name_append_comp,
fn_composite_name_insert_comp, fn_composite_name_delete_comp,
fn_composite_name_prepend_name, fn_composite_name_append_name,
fn_composite_name_insert_name – a sequence of component names spanning
multiple naming systems

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>
FN_composite_name_t *fn_composite_name_create (void);

void fn_composite_name_destroy (FN_composite_name_t *name);

FN_composite_name_t *fn_composite_name_from_str (const unsigned char *cstr);

FN_composite_name_t *fn_composite_name_from_string (const FN_string_t *str);

FN_string_t *fn_string_from_composite_name (const FN_composite_name_t *name,
unsigned int *status);

FN_composite_name_t *fn_composite_name_copy (const FN_composite_name_t
*name);

FN_composite_name_t *fn_composite_name_assign (FN_composite_name_t *dst,
const FN_composite_name_t *src);

int fn_composite_name_is_empty (const FN_composite_name_t *name);

unsigned int fn_composite_name_count (const FN_composite_name_t *name);

const FN_string_t *fn_composite_name_first (const FN_composite_name_t *name,
void **iter_pos);

const FN_string_t *fn_composite_name_next (const FN_composite_name_t *name,
void **iter_pos);

const FN_string_t *fn_composite_name_prev (const FN_composite_name_t *name,
void **iter_pos);

const FN_string_t *fn_composite_name_last (const FN_composite_name_t *name,
void **iter_pos);

Last modified 13 Dec 1996 SunOS 5.8 129

FN_composite_name_t(3XFN) XFN Interface Library Functions

FN_composite_name_t *fn_composite_name_prefix (const FN_composite_name_t
*name, const void *iter_pos);

FN_composite_name_t *fn_composite_name_suffix (const FN_composite_name_t
*name, const void *iter_pos);

int fn_composite_name_is_equal (const FN_composite_name_t *name, const
FN_composite_name_t *name2, unsigned int *status);

int fn_composite_name_is_prefix (const FN_composite_name_t *name, const
FN_composite_name_t *prefix, void **iter_pos, unsigned int *status);

int fn_composite_name_is_suffix (const FN_composite_name_t *name, const
FN_composite_name_t *suffix, void **iter_pos, unsigned int *status);

int fn_composite_name_prepend_comp (FN_composite_name_t *name, const
FN_string_t *newcomp);

int fn_composite_name_append_comp (FN_composite_name_t *name, const
FN_string_t *newcomp);

int fn_composite_name_insert_comp (FN_composite_name_t *name, void **iter_pos,
const FN_string_t *newcomp);

int fn_composite_name_delete_comp (FN_composite_name_t *name, void **iter_pos);

int fn_composite_name_prepend_name (FN_composite_name_t *name, const
FN_composite_name_t *newcomps);

int fn_composite_name_append_name (FN_composite_name_t *name, const
FN_composite_name_t *newcomps);

int fn_composite_name_insert_name (FN_composite_name_t *name, void **iter_pos,
const FN_composite_name_t *newcomps);

DESCRIPTION A composite name is represented by an object of type FN_composite_name_t .
Each component is a string name, of type FN_string_t , from the namespace
of a single naming system. It may be an atomic name or a compound name
in that namespace.

fn_composite_name_create creates an FN_composite_name_t
object with zero components. Components may be subsequently added
to the composite name using the modify operations described below.
fn_composite_name_destroy releases any storage associated with the
given FN_composite_name_t handle.

fn_composite_name_from_str() creates an FN_composite_name_t
from the given null-terminated string based on the code set of
the current locale setting, using the XFN composite name syntax.
fn_composite_name_from_string() creates an FN_composite_name_t

130 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_composite_name_t(3XFN)

from the string str using the XFN composite name syntax.
fn_string_from_composite_name() returns the standard string form of
the given composite name, by concatenating the components of the composite
name in a left to right order, each separated by the XFN component separator.

fn_composite_name_copy() returns a copy of the given composite name
object. fn_composite_name_assign() makes a copy of the composite name
object pointed to by src and assigns it to dst , releasing any old contents of dst . A
pointer to the same object as dst is returned.

fn_composite_name_is_empty() returns 1 if the given composite name
is an empty composite name (that is, it consists of a single, empty component
name); otherwise, it returns 0 . fn_composite_name_count() returns the
number of components in the given composite name.

The iteration scheme is based on the exchange of an opaque void * argument,
iter_pos , that serves to record the position of the iteration in the sequence.
Conceptually, iter_pos records a position between two successive components (or
at one of the extreme ends of the sequence).

The function fn_composite_name_first() returns a handle to the
FN_string_t that is the first component in the name, and sets iter_pos
to indicate the position immediately following the first component. It
returns 0 if the name has no components. Thereafter, successive calls of the
fn_composite_name_next() function return pointers to the component
following the iteration marker, and advance the iteration marker. If the iteration
marker is at the end of the sequence, fn_composite_name_next() returns 0 .
Similarly, fn_composite_name_prev() returns the component preceding
the iteration pointer and moves the marker back one component. If the marker
is already at the beginning of the sequence, fn_composite_name_prev()
returns 0 . The function fn_composite_name_last() returns a pointer to the
last component of the name and sets the iteration marker immediately preceding
this component (so that subsequent calls to fn_composite_name_prev() can
be used to step through leading components of the name).

The fn_composite_name_suffix() function returns a composite
name consisting of a copy of those components following the supplied
iteration marker. The method fn_composite_name_prefix()
returns a composite name consisting of those components that precede
the iteration marker. Using these functions with an iteration marker
that was not initialized using fn_composite_name_first() ,
fn_composite_name_last() , fn_composite_name_is_prefix() ,
or fn_composite_name_is_suffix() yields undefined and generally
undesirable behavior.

The functions fn_composite_name_is_equal()
, fn_composite_name_is_prefix() , and

Last modified 13 Dec 1996 SunOS 5.8 131

FN_composite_name_t(3XFN) XFN Interface Library Functions

fn_composite_name_is_suffix() test for equality between composite
names or between parts of composite names. For these functions, equality is
defined as exact string equality, not name equivalence. A name’s syntactic
property, such as case-insensitivity, is not taken into account by these functions.

The function fn_composite_name_is_prefix() tests if one composite
name is a prefix of another. If so, it returns 1 and sets the iteration marker
immediately following the prefix. (For example, a subsequent call to
fn_composite_name_suffix() will return the remainder of the name.)
Otherwise, it returns 0 and the value of the iteration marker is undefined.
The function fn_composite_name_is_suffix() is similar. It tests if one
composite name is a suffix of another. If so, it returns 1 and sets the iteration
marker immediately preceding the suffix.

The functions fn_composite_name_prepend_comp() and
fn_composite_name_append_comp() prepend and append a
single component to the given composite name, respectively. These
operations invalidate any iteration marker the client holds for that object.
fn_composite_name_insert_comp() inserts a single component before
iter_pos to the given composite name and sets iter_pos to be immediately after
the component just inserted. fn_composite_name_delete_comp() deletes
the component located before iter_pos from the given composite name and sets
iter_pos back one component.

The functions fn_composite_name_prepend_name()
, fn_composite_name_append_name() , and
fn_composite_name_insert_name() perform the same
update functions as their _comp counterparts, respectively, except that multiple
components are being added, rather than single components. For example,
fn_composite_name_insert_name() sets iter_pos to be immediately after
the name just added.

RETURN VALUES The functions fn_composite_name_is_empty() ,
fn_composite_name_is_equal() , fn_composite_name_is_suffix()
, and fn_composite_name_is_prefix() return 1 if the test indicated
is true; 0 otherwise.

The update functions fn_composite_name_prepend_comp()
, fn_composite_name_append_comp() ,
fn_composite_name_insert_comp() ,
fn_composite_name_delete_comp() , and their _name
counterparts return 1 if the update was successful; 0 otherwise.

If a function is expected to return a pointer to an object, a NULLpointer (0) is
returned if the function fails.

132 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_composite_name_t(3XFN)

ERRORS Code set mismatches that occur during the composition of the string
form or during comparisons of composite names are resolved in an
implementation-dependent way. fn_string_from_composite_name() ,
fn_composite_name_is_equal() , fn_composite_name_is_suffix()
, and fn_composite_name_is_prefix() set status to
FN_E_INCOMPATIBLE_CODE_SETSfor composite names whose components
have code sets that are determined by the implementation to be incompatible.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_string_t (3XFN) , xfn (3XFN) , attributes (5)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Last modified 13 Dec 1996 SunOS 5.8 133

FN_compound_name_t(3XFN) XFN Interface Library Functions

NAME FN_compound_name_t, fn_compound_name_from_syntax_attrs,
fn_compound_name_get_syntax_attrs, fn_compound_name_destroy,
fn_string_from_compound_name, fn_compound_name_copy,
fn_compound_name_assign, fn_compound_name_count,
fn_compound_name_first, fn_compound_name_next,
fn_compound_name_prev, fn_compound_name_last,
fn_compound_name_prefix, fn_compound_name_suffix,
fn_compound_name_is_empty, fn_compound_name_is_equal,
fn_compound_name_is_prefix, fn_compound_name_is_suffix,
fn_compound_name_prepend_comp, fn_compound_name_append_comp,
fn_compound_name_insert_comp, fn_compound_name_delete_comp,
fn_compound_name_delete_all – an XFN compound name

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>
FN_compound_name_t *fn_compound_name_from_syntax_attrs (const FN_attrset_t
*aset, const FN_string_t *name, FN_status_t *status);

FN_attrset_t *fn_compound_name_get_syntax_attrs (const FN_compound_name_t
*name);

void fn_compound_name_destroy (FN_compound_name_t *name);

FN_string_t *fn_string_from_compound_name (const FN_compound_name_t *name);

FN_compound_name_t *fn_compound_name_copy (const FN_compound_name_t
*name);

FN_compound_name_t *fn_compound_name_assign (FN_compound_name_t *dst,
const FN_compound_name_t *src);

unsigned int fn_compound_name_count (const FN_compound_name_t *name);

const FN_string_t *fn_compound_name_first (const FN_compound_name_t *name,
void **iter_pos);

const FN_string_t *fn_compound_name_next (const FN_compound_name_t *name,
void **iter_pos);

const FN_string_t *fn_compound_name_prev (const FN_compound_name_t *name,
void **iter_pos);

const FN_string_t *fn_compound_name_last (const FN_compound_name_t *name,
void **iter_pos);

FN_compound_name_t *fn_compound_name_prefix (const FN_compound_name_t
*name, const void *iter_pos);

FN_compound_name_t *fn_compound_name_suffix (const FN_compound_name_t
*name, const void *iter_pos);

134 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_compound_name_t(3XFN)

int fn_compound_name_is_empty (const FN_compound_name_t *name);

int fn_compound_name_is_equal (const FN_compound_name_t *name1, const
FN_compound_name_t *name2, unsigned int *status);

int fn_compound_name_is_prefix (const FN_compound_name_t *name, const
FN_compound_name_t *pre, void **iter_pos, unsigned int *status);

int fn_compound_name_is_suffix (const FN_compound_name_t *name, const
FN_compound_name_t *suffix, void **iter_pos, unsigned int *status);

int fn_compound_name_prepend_comp (FN_compound_name_t *name, const
FN_string_t *atomic_comp, unsigned int *status);

int fn_compound_name_append_comp (FN_compound_name_t *name, const
FN_string_t *atomic_comp, unsigned int *status);

int fn_compound_name_insert_comp (FN_compound_name_t *name, void **iter_pos,
const FN_string_t *atomic_comp, unsigned int *status);

int fn_compound_name_delete_comp (FN_compound_name_t *name, void **iter_pos);

int fn_compound_name_delete_all (FN_compound_name_t *name);

DESCRIPTION Most applications treat names as opaque data. Hence, the majority of clients of
the XFN interface will not need to parse names. Some applications, however,
such as browsers, need to parse names. For these applications, XFN provides
support in the form of the FN_compound_name_t object.

Each naming system in an XFN federation potentially has its own naming
conventions. The FN_compound_name_t object has associated operations
for applications to process compound names that conform to the XFN
model of expressing compound name syntax. The XFN syntax model for
compound names covers a large number of specific name syntaxes and
is expressed in terms of syntax properties of the naming convention. See
xfn_compound_names (3XFN) .

An FN_compound_name_t object is constructed by the operation
fn_compound_name_from_syntax_attrs , using a string name and
an attribute set containing the "fn_syntax_type" (with identifier format
FN_ID_STRING) attribute identifying the namespace syntax of the string
name. The value "standard" (with identifier format FN_ID_STRING) in the
"fn_syntax_type" specifies a syntax model that is by default supported by the
FN_compound_name_t object. An implementation may support other syntax
types instead of the XFN standard syntax model, in which case the value
of the "fn_syntax_type" attribute would be set to an implementation-specific
string. fn_compound_name_get_syntax_attrs() returns an attribute set
containing the syntax attributes that describes the given compound name.
fn_compound_name_destroy() releases the storage associated with the

Last modified 13 Dec 1996 SunOS 5.8 135

FN_compound_name_t(3XFN) XFN Interface Library Functions

given compound name. fn_string_from_compound_name() returns the
string form of the given compound name. fn_compound_name_copy()
returns a copy of the given compound name. fn_compound_name_assign()
makes a copy of the compound name src and assigns it to dst , releasing any
old contents of dst . A pointer to the object pointed to by dst is returned.
fn_compound_name_count() returns the number of atomic components in
the given compound name.

The function fn_compound_name_first() returns a handle to the
FN_string_t that is the first atomic component in the compound name, and
sets iter_pos to indicate the position immediately following the first component.
It returns 0 if the name has no components. Thereafter, successive calls of the
fn_compound_name_next() function return pointers to the component
following the iteration marker, and advance the iteration marker. If the iteration
marker is at the end of the sequence, fn_compound_name_next() returns 0 .
Similarly, fn_compound_name_prev() returns the component preceding the
iteration pointer and moves the marker back one component. If the marker is
already at the beginning of the sequence, fn_compound_name_prev() returns
0 . The function fn_compound_name_last() returns a pointer to the last
component of the name and sets the iteration marker immediately preceding this
component (so that subsequent calls to fn_compound_name_prev() can be
used to step through trailing components of the name).

The fn_compound_name_suffix() function returns a compound name
consisting of a copy of those components following the supplied iteration
marker. The function fn_compound_name_prefix() returns a compound
name consisting of those components that precede the iteration marker. Using
these functions with an iteration marker that was not initialized with the
use of fn_compound_name_first() , fn_compound_name_last() ,
fn_compound_name_is_prefix() , or fn_compound_name_is_suffix()
yields undefined and generally undesirable behavior.

The functions fn_compound_name_is_equal()
, fn_compound_name_is_prefix() , and
fn_compound_name_is_suffix() test for equality between compound
names or between parts of compound names. For these functions, equality
is defined as name equivalence. A name’s syntactic property, such as
case-insensitivity, is taken into account by these functions.

The function fn_compound_name_is_prefix() tests if one compound
name is a prefix of another. If so, it returns 1 and sets the iteration marker
immediately following the prefix. (For example, a subsequent call to
fn_compound_name_suffix() will return the remainder of the name.)
Otherwise, it returns 0 and value of the iteration marker is undefined. The
function fn_compound_name_is_suffix() is similar. It tests if one

136 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_compound_name_t(3XFN)

compound name is a suffix of another. If so, it returns 1 and sets the iteration
marker immediately preceding the suffix.

The functions fn_compound_name_prepend_comp() and
fn_compound_name_append_comp() prepend and append a single
atomic component to the given compound name, respectively. These
operations invalidate any iteration marker the client holds for that object.
fn_compound_name_insert_comp() inserts an atomic component before
iter_pos to the given compound name and sets iter_pos to be immediately after
the component just inserted. fn_compound_name_delete_comp() deletes
the atomic component located before iter_pos from the given compound name
and sets iter_pos back one component. fn_compound_name_delete_all ()
deletes all the atomic components from name .

RETURN VALUES The following test functions return 1 if the test indicated is true; otherwise,
they return 0 :

fn_compound_name_is_empty()

fn_compound_name_is_equal()

fn_compound_name_is_suffix()

fn_compound_name_is_prefix()

The following update functions return 1 if the update was successful; otherwise,
they return 0 :

fn_compound_name_prepend_comp()

fn_compound_name_append_comp()

fn_compound_name_insert_comp()

fn_compound_name_delete_comp()

fn_compound_name_delete_all()

If a function is expected to return a pointer to an object, a NULLpointer (0) is
returned if the function fails.

ERRORS When the function fn_compound_name_from_syntax_attrs() fails, it
returns a status code in status . The possible status codes are:
FN_E_ILLEGAL_NAME The name supplied to the operation

was not a well- formed XFN
compound name, or one of
the component names was not
well-formed according to the syntax
of the naming system(s) involved in
its resolution.

Last modified 13 Dec 1996 SunOS 5.8 137

FN_compound_name_t(3XFN) XFN Interface Library Functions

FN_E_INCOMPATIBLE_CODE_SETS The code set of the given string is
incompatible with that supported by
the compound name.

FN_E_INVALID_SYNTAX_ATTRS The syntax attributes supplied are
invalid or insufficient to fully specify
the syntax.

FN_E_SYNTAX_NOT_SUPPORTED The syntax type specified is not
supported.

The following functions may return in status the status code
FN_E_INCOMPATIBLE_CODE_SETSwhen the code set of the given string is
incompatible with that of the compound name:

fn_compound_name_is_equal()

fn_compound_name_is_suffix()

fn_compound_name_is_prefix()

fn_compound_name_prepend_comp()

fn_compound_name_append_comp()

fn_compound_name_insert_comp()

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_attribute_t (3XFN) , FN_attrset_t (3XFN) ,
FN_composite_name_t (3XFN) , FN_status_t (3XFN) ,
FN_string_t (3XFN) , fn_ctx_get_syntax_attrs (3XFN) , xfn (3XFN) ,
xfn_compound_names (3XFN) , attributes (5)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

138 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_ctx_bind(3XFN)

NAME fn_ctx_bind – bind a reference to a name

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>

int fn_ctx_bind (FN_ctx_t *ctx, const FN_composite_name_t *name, const FN_ref_t *ref,
unsigned int exclusive, FN_status_t *status);

DESCRIPTION This operation binds the supplied reference ref to the supplied composite name
name relative to ctx. The binding is made in the target context, that is, the context
named by all but the terminal atomic part of name. The operation binds the
terminal atomic name to the supplied reference in the target context. The target
context must already exist.

The value of exclusive determines what happens if the terminal atomic part of the
name is already bound in the target context. If exclusive is nonzero and name is
already bound, the operation fails. If exclusive is 0, the new binding replaces
any existing binding.

RETURN VALUES When the bind operation is successful it returns 1; on error it returns 0.

ERRORS fn_ctx_bind sets status as described in FN_status_t (3XFN) and
xfn_status_codes . Of special relevance for this operation is the status code
FN_E_NAME_IN_USE,which indicates that the supplied name is already in use.

USAGE The value of ref cannot be NULL. If the intent is to reserve a name using
fn_ctx_bind() , a reference containing no address should be supplied. This
reference may be name service-specific or it may be the conventional NULL
reference defined in the X/Open registry (see fns_references (5)).

If multiple sources are updating a reference, they must synchronize amongst
each other when adding, modifying, or removing from the address list of a
bound reference.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_composite_name_t (3XFN), FN_ctx_t (3XFN), FN_ref_t (3XFN),
FN_status_t (3XFN), fn_ctx_lookup (3XFN), fn_ctx_unbind (3XFN),
xfn (3XFN), xfn_status_codes (3XFN), attributes (5),
fns_references (5)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next

Last modified 13 Dec 1996 SunOS 5.8 139

fn_ctx_bind(3XFN) XFN Interface Library Functions

minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

140 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_ctx_create_subcontext(3XFN)

NAME fn_ctx_create_subcontext – create a subcontext in a context

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>

FN_ref_t *fn_ctx_create_subcontext (FN_ctx_t *ctx, const FN_composite_name_t
*name, FN_status_t *status);

DESCRIPTION This operation creates a new XFN context of the same type as the target context
— that named by all but the terminal atomic component of name — and binds
it to the supplied composite name.

As with fn_ctx_bind(), the target context must already exist. The new
context is created and bound in the target context using the terminal atomic
name in name. The operation returns a reference to the newly created context.

RETURN VALUE fn_ctx_create_subcontext() returns a reference to the newly created
context; if the operation fails, it returns a NULLpointer (0).

ERRORS fn_ctx_create_subcontext() sets status as described in
FN_status_t (3XFN) and xfn_status_codes (3XFN). Of special relevance for
this operation is the following status code:
FN_E_NAME_IN_USE The terminal atomic name already exists in the

target context.

APPLICATION
USAGE

The new subcontext is an XFN context and is created in the same naming system
as the target context. The new subcontext also inherits the same syntax attributes
as the target context. XFN does not specify any further properties of the new
subcontext. The target context and its naming system determine these.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

SEE ALSO FN_composite_name_t (3XFN), FN_ctx_t (3XFN), FN_ref_t (3XFN),
FN_status_t (3XFN), fn_ctx_bind (3XFN), fn_ctx_lookup (3XFN),
fn_ctx_destroy_subcontext (3XFN), xfn_status_codes (3XFN),
xfn (3XFN), attributes (5)

Last modified 30 Dec 1996 SunOS 5.8 141

fn_ctx_destroy_subcontext(3XFN) XFN Interface Library Functions

NAME fn_ctx_destroy_subcontext – destroy the named context and remove its binding
from the parent context

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>

int fn_ctx_destroy_subcontext (FN_ctx_t *ctx, const FN_composite_name_t *name,
FN_status_t *status);

DESCRIPTION This operation destroys the subcontext named by name relative to ctx, and
unbinds the name.

As with fn_ctx_unbind(), this operation succeeds even if the terminal
atomic name is not bound in the target context — the context named by all but
the terminal atomic name in name.

RETURN VALUE fn_ctx_destroy_subcontext() returns 1 on success and 0 on failure.

ERRORS fn_ctx_destroy_subcontext() sets status as described in
FN_status_t (3XFN) and xfn_status_codes (3XFN). Of special relevance for
fn_ctx_destroy_subcontext() are the following status codes:
FN_E_CTX_NOT_A_CONTEXTname does not name a context.

FN_E_CTX_NOT_EMPTY The naming system being asked to do the destroy
does not support removal of a context that still
contains bindings.

APPLICATION
USAGE

Some aspects of this operation are not specified by XFN, but are determined by
the target context and its naming system. For example, XFN does not specify
what happens if the named subcontext is non-empty when the operation
is invoked.

In naming systems that support attributes, and store the attributes along
with names or contexts, this operation removes the name, the context, and its
associated attributes.

Normal resolution always follows links. In a
fn_ctx_destroy_subcontext() operation, resolution of name continues to
the target context; the terminal atomic name is not resolved. If the terminal
atomic name is bound to a link, the link is not followed and the operation fails
with FN_E_CTX_NOT_A_CONTEXTbecause the name is not bound to a context.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

142 SunOS 5.8 Last modified 30 Dec 1996

XFN Interface Library Functions fn_ctx_destroy_subcontext(3XFN)

SEE ALSO FN_ctx_t (3XFN), FN_composite_name_t (3XFN), FN_status_t (3XFN),
fn_ctx_create_subcontext (3XFN), fn_ctx_unbind (3XFN), xfn (3XFN),
xfn_status_codes (3XFN), attributes (5)

Last modified 30 Dec 1996 SunOS 5.8 143

fn_ctx_equivalent_name(3XFN) XFN Interface Library Functions

NAME fn_ctx_equivalent_name – construct an equivalent name in same context

SYNOPSIS #include <xfn/xfn.h>

FN_composite_name_t *fn_ctx_equivalent_name (FN_ctx_t *ctx, const
FN_composite_name_t *name, const FN_string_t *leading_name, FN_status_t * status);

DESCRIPTION Given the name of an object name relative to the context ctx, this operation
returns an equivalent name for that object, relative to the same context ctx, that
has leading_name as its initial atomic name. Two names are said to be equivalent
if they have prefixes that resolve to the same context, and the parts of the names
immediately following the prefixes are identical.

The existence of a binding for leading_name in ctx does not guarantee
that a name equivalent to name can be constructed. The failure may
be because such equivalence is not meaningful, or due to the inability
of the system to construct a name with the equivalence. For example,
supplying _thishost as leading_name when name starts with _myself to
fn_ctx_equivalent_name() in the Initial Context would not be meaningful;
this results in the return of the error code FN_E_NO_EQUIVALENT_NAME.

RETURN VALUES If an equivalent name cannot be constructed, the value 0 is returned and status
is set appropriately.

ERRORS fn_ctx_equivalent_name() sets status as described in FN_status_t (3XFN)
and xfn_status_codes (3XFN). The following status code is especially
relevant for this operation:
FN_E_NO_EQUIVALENT_NAME No equivalent name can be

constructed, either because there is
no meaningful equivalence between
name and leading_name, or the system
does not support constructing the
requested equivalent name, for
implementation-specific reasons.

EXAMPLES EXAMPLE 1 Naming Files

In the Initial Context supporting XFN enterprise policies, a user jsmith is able
to name one of her files relative to this context in several ways.

_myself/_fs/map.ps
_user/jsmith/_fs/map.ps
_orgunit/finance/_user/jsmith/_fs/map.ps

The first of these may be appealing to the user jsmith in her day-to-day
operations. This name is not, however, appropriate for her to use when referring

144 SunOS 5.8 Last modified 22 Nov 1996

XFN Interface Library Functions fn_ctx_equivalent_name(3XFN)

the file in an electronic mail message sent to a colleague. The second of these
names would be appropriate if the colleague were in the same organizational
unit, and the third appropriate for anyone in the same enterprise.

When the following sequence of instructions is executed by the user jsmith in
the organizational unit finance , enterprise_wide_name would contain the
composite name _orgunit/finance/_user/jsmith/_fs/map.ps :

FN_string_t* namestr =
fn_string_from_str((const unsigned char*)"_myself/_fs/map.ps");

FN_composite_name_t* name = fn_composite_name_from_string(namestr);
FN_string_t* org_lead =

fn_string_from_str((const unsigned char*)"_orgunit");
FN_status_t* status = fn_status_create();
FN_composite_name_t* enterprise_wide_name;
FN_ctx_t* init_ctx = fn_ctx_handle_from_initial(status);
/* check status of from_initial() */
enterprise_wide_name = fn_ctx_equivalent_name(init_ctx, name, org_lead,
status);

When the following sequence of instructions is executed by the user jsmith
in the organizational unit finance , shortest_name would contain the
composite name _myself/_fs/map.ps :

FN_string_t* namestr =
fn_string_from_str((const unsigned char*)

"_orgunit/finance/_user_jsmith/_fs/map.ps");
FN_composite_name_t* name = fn_composite_name_from_string(namestr);
FN_string_t* mylead = fn_string_from_str((const unsigned char*)"_myself");
FN_status_t* status = fn_status_create();
FN_composite_name_t* shortest_name;
FN_ctx_t* init_ctx = fn_ctx_handle_from_initial(status);
/* check status of from_initial() */
shortest_name = fn_ctx_equivalent_name(init_ctx, name, mylead, status);

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_composite_name_t (3XFN), FN_ctx_t (3XFN), FN_status_t (3XFN),
FN_string_t (3XFN), xfn_status_codes (3XFN), attributes (5)

Last modified 22 Nov 1996 SunOS 5.8 145

fn_ctx_get_ref(3XFN) XFN Interface Library Functions

NAME fn_ctx_get_ref – return a context’s reference

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>

FN_ref_t *fn_ctx_get_ref (const FN_ctx_t *ctx, FN_status_t *status);

DESCRIPTION This operation returns a reference to the supplied context object.

RETURN VALUE fn_ctx_get_ref() returns a pointer to an FN_ref_t object if the operation
succeeds, it returns 0 if the operation fails.

ERRORS fn_ctx_get_ref() sets status as described in FN_status_t (3XFN) and
xfn_status_codes (3XFN). The following status code is of particular relevance
to this operation:
FN_E_OPERATION_NOT_SUPPORTED Using the fn_ctx_get_ref()

operation on the Initial Context
returns this status code.

APPLICATION
USAGE

fn_ctx_get_ref() cannot be used on the Initial Context.
fn_ctx_get_ref() can be used on contexts bound in the Initial Context (in
other words, the bindings in the Initial Context have references).

If the context handle was created earlier using the
fn_ctx_handle_from_ref() operation, the reference returned
by the fn_ctx_get_ref() operation may not necessarily be
exactly the same in content as that originally supplied. For example,
fn_ctx_handle_from_ref() may construct the context handle from one
address from the list of addresses. The context implementation may return with
a call to fn_ctx_get_ref() only that address, or a more complete list of
addresses than what was supplied in fn_ctx_handle_from_ref().

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

SEE ALSO FN_ctx_t (3XFN), FN_ref_t (3XFN), FN_status_t (3XFN),
fn_ctx_handle_from_initial (3XFN),
fn_ctx_handle_from_ref (3XFN), xfn_status_codes
(3XFN), xfn (3XFN), attributes (5)

146 SunOS 5.8 Last modified 30 Dec 1996

XFN Interface Library Functions fn_ctx_get_syntax_attrs(3XFN)

NAME fn_ctx_get_syntax_attrs – return syntax attributes associated with named context

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>

FN_attrset_t *fn_ctx_get_syntax_attrs (FN_ctx_t *ctx, const FN_composite_name_t
*name, FN_status_t *status);

DESCRIPTION Each context has an associated set of syntax-related attributes. This operation
returns the syntax attributes associated with the context named by name relative
to the context ctx.

The attributes must contain the attribute fn_syntax_type (FN_ID_STRING
format). If the context supports a syntax that conforms to the XFN standard
syntax model, fn_syntax_type is set to "standard" (ASCII attribute syntax)
and the attribute set contains the rest of the relevant syntax attributes described
in xfn_compound_names (3XFN).

This operation is different from other XFN attribute operations in that these
syntax attributes could be obtained directly from the context. Attributes obtained
through other XFN attribute operations may not necessarily be associated with
the context; they may be associated with the reference of context, rather than
the context itself (see xfn_attributes (3XFN)).

RETURN VALUE fn_ctx_get_syntax_attrs() returns an attribute set if successful; it returns
a NULLpointer (0) if the operation fails.

ERRORS fn_ctx_get_syntax_attrs() sets status as described in
FN_status_t (3XFN) and xfn_status_codes (3XFN).

APPLICATION
USAGE

Implementations may choose to support other syntax types in addition to, or
in place of, the XFN standard syntax model, in which case, the value of the
fn_syntax_type attribute would be set to an implementation-specific string,
and different or additional syntax attributes will be in the set.

Syntax attributes of a context may be generated automatically by a context, in
response to fn_ctx_get_syntax_attrs(), or they may be created and
updated using the base attribute operations. This is implementation-dependent.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

SEE ALSO FN_attrset_t (3XFN), FN_composite_name_t (3XFN),
FN_compound_name_t (3XFN), FN_ctx_t (3XFN), FN_status_t (3XFN),
fn_attr_get (3XFN), fn_attr_multi_get (3XFN),

Last modified 30 Dec 1996 SunOS 5.8 147

fn_ctx_get_syntax_attrs(3XFN) XFN Interface Library Functions

xfn_compound_names (3XFN), xfn_attributes (3XFN),
xfn_status_codes (3XFN), xfn (3XFN), attributes (5)

148 SunOS 5.8 Last modified 30 Dec 1996

XFN Interface Library Functions fn_ctx_handle_destroy(3XFN)

NAME fn_ctx_handle_destroy – release storage associated with context handle

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>

void fn_ctx_handle_destroy (FN_ctx_t *ctx);

DESCRIPTION This operation destroys the context handle ctx and allows the implementation
to free resources associated with the context handle. This operation does not
affect the state of the context itself.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

SEE ALSO FN_ctx_t (3XFN), fn_ctx_handle_from_initial (3XFN),
fn_ctx_handle_from_ref (3XFN), xfn (3XFN), attributes (5)

Last modified 30 Dec 1996 SunOS 5.8 149

fn_ctx_handle_from_initial(3XFN) XFN Interface Library Functions

NAME fn_ctx_handle_from_initial – return a handle to the Initial Context

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>

FN_ctx_t *fn_ctx_handle_from_initial (unsigned int authoritative, FN_status_t
*status);

DESCRIPTION This operation returns a handle to the caller’s Initial Context. On successful
return, the handle points to a context which meets the specification of the XFN
Initial Context (see fns_initial_context (5)).

authoritative specifies whether the handle to the context returned should be
authoritative with respect to information the context obtains from the naming
service. When the flag is non-zero, subsequent operations on the context will
access the most authoritative information. When authoritative is 0, the handle
to the context returned need not be authoritative.

RETURN VALUES fn_ctx_handle_from_initial() returns a pointer to an FN_ctx_t object if
the operation succeeds; it returns a NULLpointer (0) otherwise.

ERRORS fn_ctx_handle_from_initial() sets only the status code portion of the
status object status.

USAGE Authoritativeness is determined by specific naming services. For example, in
a naming service that supports replication using a master/slave model, the
source of authoritative information would come from the master server. In some
naming systems, bypassing the naming service cache may reach servers which
provide the most authoritative information. The availability of an authoritative
context might be lower due to the lower number of servers offering this service.
For the same reason, it might also provide poorer performance than contexts that
need not be authoritative.

Applications set authoritative to 0 for typical day-to-day operations. Applications
only set authoritative to a non-zero value when they require access to the most
authoritative information, possibly at the expense of lower availability and/or
poorer performance.

It is implementation-dependent whether authoritativeness is transferred from
one context to the next as composite name resolution proceeds. Getting an
authoritative context handle to the Initial Context means that operations on
bindings in the Initial Context are processed using the most authoritative
information. Contexts referenced implicitly through an authoritative Initial
Context (for example, through the use of composite names) may not necessarily
themselves be authoritative.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

150 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_ctx_handle_from_initial(3XFN)

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_ctx_t (3XFN), FN_status_t (3XFN), fn_ctx_get_ref (3XFN),
fn_ctx_handle_from_ref (3XFN), xfn (3XFN), xfn_status_codes (3XFN),
attributes (5), fns_initial_context (5)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Last modified 13 Dec 1996 SunOS 5.8 151

fn_ctx_handle_from_ref(3XFN) XFN Interface Library Functions

NAME fn_ctx_handle_from_ref – construct a handle to a context object using the
given reference

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>

FN_ctx_t *fn_ctx_handle_from_ref (const FN_ref_t *ref, unsigned int authoritative,
FN_status_t *status);

DESCRIPTION This operation creates a handle to an FN_ctx_t object using an FN_ref_t
object for that context.

authoritative specifies whether the handle to the context returned should be
authoritative with respect to information the context obtains from the naming
service. When the flag is non-zero, subsequent operations on the context will
access the most authoritative information. When authoritative is 0, the handle
to the context returned need not be authoritative.

RETURN VALUES This operation returns a pointer to an FN_ctx_t object if the operation succeeds;
otherwise, it returns a NULLpointer (0).

ERRORS fn_ctx_handle_from_ref() sets status as described in FN_status_t (3XFN)
and xfn_status_codes (3XFN). The following status code is of particular
relevance to this operation:
FN_E_NO_SUPPORTED_ADDRESS A context object could not be

constructed from a particular
reference. The reference contained no
address type over which the context
interface was supported.

USAGE Authoritativeness is determined by specific naming services. For example, in
a naming service that supports replication using a master/slave model, the
source of authoritative information would come from the master server. In some
naming systems, bypassing the naming service cache may reach servers which
provide the most authoritative information. The availability of an authoritative
context might be lower due to the lower number of servers offering this service.
For the same reason, it might also provide poorer performance than contexts that
need not be authoritative.

Applications set authoritative to 0 for typical day-to-day operations. Applications
only set authoritative to a non-zero value when they require access to the most
authoritative information, possibly at the expense of lower availability and/or
poorer performance.

To control the authoritativeness of the target context, the application first resolves
explicitly to the target context using fn_ctx_lookup (3XFN). It then uses
fn_ctx_handle_from_ref() with the appropriate authoritative argument

152 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_ctx_handle_from_ref(3XFN)

to obtain a handle to the context. This returns a handle to a context with the
specified authoritativeness. The application then uses the XFN operations, such
as lookup and list, with this context handle.

It is implementation-dependent whether authoritativeness is transferred from
one context to the next as composite name resolution proceeds. The application
should use the approach recommended above to achieve the desired level of
authoritativeness on a per context basis.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_ctx_t (3XFN), FN_ref_t (3XFN), FN_status_t (3XFN),
fn_ctx_get_ref (3XFN), fn_ctx_handle_destroy (3XFN),
fn_ctx_lookup (3XFN), xfn (3XFN), xfn_status_codes (3XFN),
attributes (5), fns_references (5)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Last modified 13 Dec 1996 SunOS 5.8 153

fn_ctx_list_bindings(3XFN) XFN Interface Library Functions

NAME fn_ctx_list_bindings, FN_bindinglist_t, fn_bindinglist_next,
fn_bindinglist_destroy – list the atomic names and references bound in a context

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>
FN_bindinglist_t *fn_ctx_list_bindings (FN_ctx_t *ctx, const FN_composite_name_t
*name, FN_status_t *status);

FN_string_t *fn_bindinglist_next (FN_bindinglist_t *bl, FN_ref_t **ref, FN_status_t
*status);

void fn_bindinglist_destroy (FN_bindinglist_t *bl, FN_status_t *status);

DESCRIPTION This set of operations is used to list the names and bindings in the context named
by name relative to the context ctx . Note that name must name a context. If the
intent is to list the contents of ctx , name should be an empty composite name.

The semantics of these operations are similar to those for listing names (see
fn_ctx_list_names (3XFN)). In addition to a name string being returned,
fn_bindinglist_next() also returns the reference of the binding for each
member of the enumeration.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_composite_name_t (3XFN) , FN_ctx_t (3XFN) , FN_ref_t (3XFN) ,
FN_status_t (3XFN) , FN_string_t (3XFN) , fn_ctx_list_names (3XFN) ,
xfn (3XFN) , xfn_status_codes (3XFN) , attributes (5)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

154 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_ctx_list_names(3XFN)

NAME fn_ctx_list_names, FN_namelist_t, fn_namelist_next, fn_namelist_destroy – list
the atomic names bound in a context

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>
FN_namelist_t *fn_ctx_list_names (FN_ctx_t *ctx, const FN_composite_name_t
*name, FN_status_t *status);

FN_string_t *fn_namelist_next (FN_namelist_t *nl, FN_status_t *status);

void fn_namelist_destroy (FN_namelist_t *nl, FN_status_t *status);

DESCRIPTION This set of operations is used to list the names bound in the target context named
name relative to the context ctx . Note that name must name a context. If the
intent is to list the contents of ctx , name should be an empty composite name.

The call to fn_ctx_list_names() initiates the enumeration process. It
returns a handle to an FN_namelist_t object that can be used to enumerate the
names in the target context.

The operation fn_namelist_next() returns the next name in the enumeration
identified by nl and updates nl to indicate the state of the enumeration.
Successive calls to fn_namelist_next() using nl return successive
names in the enumeration and further update the state of the enumeration.
fn_namelist_next() returns a NULLpointer (0) when the enumeration
has been completed.

fn_namelist_destroy() is used to release resources used during the
enumeration. This may be invoked at any time to terminate the enumeration.

RETURN VALUES fn_ctx_list_names() returns a pointer to an FN_namelist_t object if the
enumeration is successfully initiated; otherwise it returns a NULLpointer (0).

fn_namelist_next() returns a NULLpointer (0) if no more names can be
returned in the enumeration.

In the case of a failure, these operations return in status a code indicating the
nature of the failure.

ERRORS Each successful call to fn_namelist_next() returns a name and sets status to
FN_SUCCESS.

When fn_namelist_next() returns a NULLpointer (0), it indicates that no
more names can be returned. status is set in the following way:
FN_SUCCESS The enumeration has completed

successfully.

FN_E_INVALID_ENUM_HANDLE The supplied enumeration handle
is not valid. Possible reasons could
be that the handle was from another

Last modified 13 Dec 1996 SunOS 5.8 155

fn_ctx_list_names(3XFN) XFN Interface Library Functions

enumeration, or the context being
enumerated no longer accepts the
handle (due to such events as handle
expiration or updates to the context).

FN_E_PARTIAL_RESULT The enumeration is not yet complete
but cannot be continued.

Other status codes, such as FN_E_COMMUNICATION_FAILURE,are also
possible in calls to fn_ctx_list_names() , fn_namelist_next() , and
fn_namelist_destroy() . These functions set status for these other status
codes as described in FN_status_t (3XFN) and xfn_status_codes (3XFN) .

USAGE The names enumerated using fn_namelist_next() are not ordered in
any way. There is no guaranteed relation between the order in which names
are added to a context and the order of names obtained by enumeration. The
specification does not guarantee that any two series of enumerations will return
the names in the same order.

When a name is added to or removed from a context, this may or may
not invalidate the enumeration handle that the client holds for that
context. If the enumeration handle becomes invalid, the status code
FN_E_INVALID_ENUM_HANDLEis returned in status . If the enumeration handle
remains valid, the update may or may not be visible to the client.

In addition, there may be a relationship between the ctx argument supplied
to fn_ctx_list_names() and the FN_namelist_t object it returns. For
example, some implementations may store the context handle ctx within the
FN_namelist_t object for subsequent fn_namelist_next() calls. In
general, a fn_ctx_handle_destroy (3XFN) should not be invoked on ctx
until the enumeration has terminated.

EXAMPLES EXAMPLE 1 A sample program.

The following code fragment illustrates how the list names operations may be
used:

extern FN_string_t *user_input;
FN_ctx_t *ctx;
FN_composite_name_t *target_name = fn_composite_name_from_string(user_input);
FN_status_t *status = fn_status_create();
FN_string_t *name;
FN_namelist_t *nl;
ctx = fn_ctx_handle_from_initial(status);
/* error checking on ’status’ */
if ((nl=fn_ctx_list_names(ctx, target_name, status)) == 0) {

/* report ’status’ and exit */
}
while (name=fn_namelist_next(nl, status)) {

/* do something with ’name’ */
fn_string_destroy(name);

156 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_ctx_list_names(3XFN)

}
/* check ’status’ for reason for end of enumeration and report if necessary */
/* clean up */
fn_namelist_destroy(nl, status);
/* report ’status’ */

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_composite_name_t (3XFN) , FN_ctx_t (3XFN) , FN_status_t (3XFN) ,
FN_string_t (3XFN) , fn_ctx_handle_destroy (3XFN) , xfn (3XFN) ,
xfn_status_codes (3XFN) , attributes (5)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Last modified 13 Dec 1996 SunOS 5.8 157

fn_ctx_lookup(3XFN) XFN Interface Library Functions

NAME fn_ctx_lookup – look up name in context

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>

FN_ref_t *fn_ctx_lookup (FN_ctx_t *ctx, const FN_composite_name_t *name,
FN_status_t *status);

DESCRIPTION This operation returns the reference bound to name relative to the context ctx.

RETURN VALUE If the operation succeeds, the fn_ctx_lookup() function returns a handle
to the reference bound to name. Otherwise, 0 is returned and status is set
appropriately.

ERRORS fn_ctx_lookup() sets status as described FN_status_t (3XFN) and
xfn_status_codes (3XFN).

APPLICATION
USAGE

Some naming services may not always have reference information for all names
in their contexts; for such names, such naming services may return a special
reference whose type indicates that the name is not bound to any address. This
reference may be name service specific or it may be the conventional NULL
reference defined in the X/Open registry. See fns_references (5).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

SEE ALSO FN_composite_name_t (3XFN), FN_ctx_t (3XFN), FN_ref_t (3XFN),
FN_status_t (3XFN), fns_references (5), xfn_status_codes (3XFN),
xfn (3XFN), attributes (5)

158 SunOS 5.8 Last modified 30 Dec 1996

XFN Interface Library Functions fn_ctx_lookup_link(3XFN)

NAME fn_ctx_lookup_link – look up the link reference bound to a name

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>

FN_ref_t *fn_ctx_lookup_link (FN_ctx_t *ctx, const FN_composite_name_t *name,
FN_status_t *status);

DESCRIPTION This operation returns the XFN link bound to name. The terminal atomic part of
name must be bound to an XFN link.

The normal fn_ctx_lookup (3XFN) operation follows all links encountered,
including any bound to the terminal atomic part of name. This operation differs
from the normal lookup in that when the terminal atomic part of name is an XFN
link, this link is not followed, and the operation returns the link.

RETURN VALUES If fn_ctx_lookup_link() fails, a NULLpointer (0) is returned.

ERRORS fn_ctx_lookup_link() sets status as described in FN_status_t (3XFN)
and xfn_status_codes (3XFN). Of special relevance for
fn_ctx_lookup_link() is the following status code:
FN_E_MALFORMED_LINK name resolved to a reference that was not a link.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_composite_name_t (3XFN), FN_ctx_t (3XFN), FN_ref_t (3XFN),
FN_status_t (3XFN), fn_ctx_lookup (3XFN), xfn (3XFN),
xfn_links (3XFN), xfn_status_codes (3XFN), attributes (5)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Last modified 13 Dec 1996 SunOS 5.8 159

fn_ctx_rename(3XFN) XFN Interface Library Functions

NAME fn_ctx_rename – rename the name of a binding

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>

int fn_ctx_rename (FN_ctx_t *ctx, const FN_composite_name_t *oldname, const
FN_composite_name_t *newname, unsigned int exclusive, FN_status_t *status);

DESCRIPTION The fn_ctx_rename() operation binds the reference currently bound to
oldname relative to ctx, to the name newname, and unbinds oldname. newname
is resolved relative to the target context (that named by all but the terminal
atomic part of oldname).

If exclusive is 0, the operation overwrites any old binding of newname. If exclusive
is nonzero, the operation fails if newname is already bound.

RETURN VALUES fn_ctx_rename() returns 1 if the operation is successful, 0 otherwise.

ERRORS fn_ctx_rename() sets status as described FN_status_t (3XFN) and
xfn_status_codes (3XFN).

USAGE The only restriction that XFN places on newname is that it be resolved relative to
the target context. XFN does not specify further restrictions on newname. For
example, in some implementations, newname might be restricted to be a name
in the same naming system as the terminal component of oldname. In another
implementation, newname might be restricted to be an atomic name.

Normal resolution always follows links. In an fn_ctx_rename() operation,
resolution of oldname continues to the target context; the terminal atomic name
is not resolved. If the terminal atomic name is bound to a link, the link is not
followed and the operation binds newname to the link and unbinds the terminal
atomic name of oldname.

In naming systems that support attributes and store the attributes along with
the names, the unbind of the terminal atomic name of oldname also removes its
associated attributes. It is implementation-dependent whether these attributes
become associated with newname.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_composite_name_t (3XFN), FN_ctx_t (3XFN), FN_ref_t (3XFN),
FN_status_t (3XFN), fn_ctx_bind (3XFN) fn_ctx_unbind (3XFN),
xfn (3XFN), xfn_status_codes (3XFN), attributes (5)

160 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_ctx_rename(3XFN)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Last modified 13 Dec 1996 SunOS 5.8 161

FN_ctx_t(3XFN) XFN Interface Library Functions

NAME FN_ctx_t – an XFN context

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>

FN_ctx_t *fn_ctx_handle_from_initial (unsigned int authoritative, FN_status_t
*status);

FN_ctx_t *fn_ctx_handle_from_ref (const FN_ref_t *ref, unsigned int authoritative,
FN_status_t *status);

FN_ref_t *fn_ctx_get_ref (const FN_ctx_t *ctx, FN_status_t *status);

void fn_ctx_handle_destroy (FN_ctx_t *ctx);

FN_ref_t *fn_ctx_lookup (FN_ctx_t *ctx, const FN_composite_name_t *name,
FN_status_t *status);

FN_namelist_t *fn_ctx_list_names (FN_ctx_t *ctx, const FN_composite_name_t
*name, FN_status_t *status);

FN_string_t *fn_namelist_next (FN_namelist_t *nl, FN_status_t *status);

void fn_namelist_destroy (FN_namelist_t *nl, FN_status_t *status);

FN_bindinglist_t *fn_ctx_list_bindings (FN_ctx_t *ctx, const FN_composite_name_t
*name, FN_status_t *status);

FN_string_t *fn_bindinglist_next (FN_bindinglist_t *iter, FN_ref_t **ref, FN_status_t
*status);

void fn_bindinglist_destroy (FN_bindinglist_t *iter_pos, FN_status_t *status);

int fn_ctx_bind (FN_ctx_t *ctx, const FN_composite_name_t *name, const FN_ref_t *ref,
unsigned int exclusive, FN_status_t *status);

int fn_ctx_unbind (FN_ctx_t *ctx, const FN_composite_name_t *name, FN_status_t
*status);

int fn_ctx_rename (FN_ctx_t *ctx, const FN_composite_name_t *oldname, const
FN_composite_name_t *newname, unsigned int exclusive, FN_status_t *status);

FN_ref_t *fn_ctx_create_subcontext (FN_ctx_t *ctx, const FN_composite_name_t
*name, FN_status_t *status);

int fn_ctx_destroy_subcontext (FN_ctx_t *ctx, const FN_composite_name_t *name,
FN_status_t *status);

FN_ref_t *fn_ctx_lookup_link (FN_ctx_t *ctx, const FN_composite_name_t *name,
FN_status_t *status);

162 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_ctx_t(3XFN)

FN_attrset_t *fn_ctx_get_syntax_attrs (FN_ctx_t *ctx, const FN_composite_name_t
*name, FN_status_t *status);

DESCRIPTION An XFN context consists of a set of name to reference bindings. An XFN context
is represented by the type FN_ctx_t in the client interface. The operations for
manipulating an FN_ctx_t object are described in detail in separate reference
manual pages.

The following contains a brief summary of these operations:

fn_ctx_handle_from_initial() returns a pointer to an Initial
Context that provides a starting point for resolution of composite names.
fn_ctx_handle_from_ref() returns a handle to an FN_ctx_t object using
the given reference ref. fn_ctx_get_ref() returns the reference of the context
ctx. fn_ctx_handle_destroy() releases the resources associated with the
FN_ctx_t object ctx; it does not affect the state of the context itself.

fn_ctx_lookup() returns the reference bound to name resolved relative to ctx.
fn_ctx_list_names() is used to enumerate the atomic names bound in the
context named by name resolved relative to ctx. fn_ctx_list_bindings() is
used to enumerate the atomic names and their references in the context named
by name resolved relative to ctx.

fn_ctx_bind() binds the composite name name to a reference ref resolved
relative to ctx. fn_ctx_unbind() unbinds name resolved relative to ctx.
fn_ctx_rename() binds newname to the reference bound to oldname and
unbinds oldname. oldname is resolved relative to ctx; newname is resolved relative
to the target context.

fn_ctx_create_subcontext() creates a new context
with the given composite name name resolved relative to ctx.
fn_ctx_destroy_subcontext() destroys the context named by name
resolved relative to ctx.

Normal resolution always follows links. fn_ctx_lookup_link() looks up
name relative to ctx, following links except for the last atomic part of name,
which must be bound to an XFN link.

fn_ctx_get_syntax_attrs() returns an attribute set containing attributes
that describe a context’s syntax. name must name a context.

ERRORS In each context operation, the caller supplies an FN_status_t object as
a parameter. The called function sets this status object as described in
FN_status_t (3XFN) and xfn_status_codes (3XFN).

USAGE In most of the operations of the base context interface, the caller supplies a
context and a composite name. The supplied name is always interpreted relative
to the supplied context.

Last modified 13 Dec 1996 SunOS 5.8 163

FN_ctx_t(3XFN) XFN Interface Library Functions

The operation may eventually be effected on a different context called the
operation’s target context. Each operation has an initial resolution phase that
conveys the operation to its target context, and the operation is then applied.
The effect (but not necessarily the implementation) is that of doing a lookup on
that portion of the name that represents the target context, and then invoking the
operation on the target context. The contexts involved only in the resolution
phase are called intermediate contexts.

Normal resolution of names in context operations always follows XFN links.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_attrset_t (3XFN), FN_composite_name_t (3XFN), FN_ref_t (3XFN),
FN_status_t (3XFN), fn_ctx_bind (3XFN),
fn_ctx_create_subcontext (3XFN),
fn_ctx_destroy_subcontext (3XFN),
fn_ctx_get_ref (3XFN), fn_ctx_get_syntax_attrs (3XFN),
fn_ctx_handle_destroy (3XFN), fn_ctx_handle_from_initial (3XFN),
fn_ctx_handle_from_ref (3XFN), fn_ctx_list_bindings (3XFN),
fn_ctx_list_names (3XFN), fn_ctx_lookup (3XFN),
fn_ctx_lookup_link (3XFN), fn_ctx_rename (3XFN),
fn_ctx_unbind (3XFN), xfn (3XFN), xfn_links (3XFN),
xfn_status_codes (3XFN), attributes (5)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

164 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_ctx_unbind(3XFN)

NAME fn_ctx_unbind – unbind a name from a context

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>

int fn_ctx_unbind (FN_ctx_t *ctx, const FN_composite_name_t *name, FN_status_t
*status);

DESCRIPTION This operation removes the terminal atomic name in name from the the target
context — that named by all but the terminal atomic part of name.

This operation is successful even if the terminal atomic name was not bound
in target context, but fails if any of the intermediate names are not bound.
fn_ctx_unbind() is idempotent.

RETURN VALUE The operation returns 1 if successful, and 0 otherwise.

ERRORS fn_ctx_unbind() sets status as described in FN_status_t and
xfn_status_codes (3XFN).

Certain naming systems may disallow unbinding a name if the name
is bound to an existing context in order to avoid orphan contexts that
cannot be reached via any name. In such situations, the status code
FN_E_OPERATION_NOT_SUPPORTEDis returned.

APPLICATION
USAGE

In naming systems that support attributes, and store the attributes along with
the names, the unbind operation removes the name and its associated attributes.

Normal resolution always follows links. In an fn_ctx_unbind() operation,
resolution of name continues to the target context; the terminal atomic name is
not resolved. If the terminal atomic name is bound to a link, the link is not
followed and the link itself is unbound from the terminal atomic name.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

SEE ALSO FN_composite_name_t (3XFN), FN_ctx_t (3XFN), FN_ref_t (3XFN),
FN_status_t (3XFN), fn_ctx_bind (3XFN), fn_ctx_lookup (3XFN),
xfn_status_codes (3XFN), xfn (3XFN), attributes (5)

Last modified 30 Dec 1996 SunOS 5.8 165

FN_identifier_t(3XFN) XFN Interface Library Functions

NAME FN_identifier_t – an XFN identifier

DESCRIPTION Identifiers are used to identify reference types and address types in an XFN
reference, and to identify attributes and their syntax in the attribute operations.

An XFN identifier consists of an unsigned int , which determines the format
of identifier, and the actual identifier, which is expressed as a sequence of octets.

The representation of this structure is defined by XFN as follows:

typedef struct {
unsigned int format;
size_t length;
void *contents;
} FN_identifier_t;

XFN defines a small number of standard forms for identifiers:
FN_ID_STRING The identifier is an ASCII string

(ISO 646).

FN_ID_DCE_UUID The identifier is an OSF DCE UUID
in string representation. (See the
X/Open DCE RPC.)

FN_ID_ISO_OID_STRING The identifier is an ISO OID in ASN.1
dot-separated integer list string
format. (See the ISO ASN.1 .)

FN_ID_ISO_OID_BER The identifier is an ISO OID in ASN.1
Basic Encoding Rules (BER) format.
(See the ISO BER.)

FILES #include <xfn/xfn.h>

SEE ALSO FN_attribute_t (3XFN), FN_ref_addr_t (3XFN), FN_ref_t (3XFN),
xfn (3XFN)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

166 SunOS 5.8 Last modified 4 Nov 1994

XFN Interface Library Functions FN_ref_addr_t(3XFN)

NAME FN_ref_addr_t, fn_ref_addr_create, fn_ref_addr_destroy, fn_ref_addr_copy,
fn_ref_addr_assign, fn_ref_addr_type, fn_ref_addr_length, fn_ref_addr_data,
fn_ref_addr_description – an address in an XFN reference

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>
FN_ref_addr_t *fn_ref_addr_create (constFN_identifier_t *type, size_t length, const
void *data);

void fn_ref_addr_destroy (FN_ref_addr_t *addr);

FN_ref_addr_t *fn_ref_addr_copy (constFN_ref_addr_t *addr);

FN_ref_addr_t *fn_ref_addr_assign (FN_ref_addr_t *dst, const FN_ref_addr_t *src);

const FN_identifier_t *fn_ref_addr_type (constFN_ref_addr_t *addr);

size_t fn_ref_addr_length (const FN_ref_addr_t *addr);

const void* fn_ref_addr_data (const FN_ref_addr_t *addr);

FN_string_t *fn_ref_addr_description (constFN_ref_addr_t *addr, unsigned int
detail, unsigned int *more_detail);

DESCRIPTION An XFN reference is represented by the type FN_ref_t . An object of this type
contains a reference type and a list of addresses. Each address in the list is
represented by an object of type FN_ref_addr_t . An address consists of an
opaque data buffer and a type field, of type FN_identifier_t .

fn_ref_addr_create() creates and returns an address with the given type
and data. length indicates the size of the data. fn_ref_addr_destroy()
releases the storage associated with the given address. fn_ref_addr_copy()
returns a copy of the given address object. fn_ref_addr_assign() makes
a copy of the address pointed to by src and assigns it to dst , releasing any old
contents of dst . A pointer to the same object as dst is returned.

fn_ref_addr_type() returns the type of the given address.
fn_ref_addr_length() returns the size of the address in bytes.
fn_ref_addr_data() returns the contents of the address.

fn_ref_addr_description() returns the implementation-defined textual
description of the address. It takes as arguments a number, detail , and a pointer
to a number, more_detail . detail specifies the level of detail for which the
description should be generated; the higher the number, the more detail is to be
provided. If more_detail is 0 , it is ignored. If more_detail is non-zero, it is set by
the description operation to indicate the next level of detail available, beyond
that specified by detail . If no higher level of detail is available, more_detail
is set to detail .

Last modified 13 Dec 1996 SunOS 5.8 167

FN_ref_addr_t(3XFN) XFN Interface Library Functions

USAGE The address type of an FN_ref_addr_t object is intended to identify the
mechanism that should be used to reach the object using that address. The client
must interpret the contents of the opaque data buffer of the address based on
the type of the address, and on the type of the reference that the address is in.
However, this interpretation is intended to occur below the application layer.
Most applications developers should not have to manipulate the contents of
either address or reference objects themselves. These interfaces would generally
be used within service libraries.

Multiple addresses in a single reference are intended to identify multiple
communication endpoints for the same conceptual object. Multiple addresses
may arise for various reasons, such as the object offering interfaces over more
than one communication mechanism.

Manipulation of addresses using the operations described in this manual page
does not affect their representation in the underlying naming system. Changes
to addresses in the underlying naming system can only be effected through the
use of the interfaces described in FN_ctx_t (3XFN) .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_ctx_t (3XFN) , FN_identifier_t (3XFN) , FN_ref_t (3XFN) ,
FN_string_t (3XFN) , xfn (3XFN) , attributes (5)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

168 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_ref_t(3XFN)

NAME FN_ref_t, fn_ref_create, fn_ref_destroy, fn_ref_copy, fn_ref_assign,
fn_ref_type, fn_ref_addrcount, fn_ref_first, fn_ref_next, fn_ref_prepend_addr,
fn_ref_append_addr, fn_ref_insert_addr, fn_ref_delete_addr, fn_ref_delete_all,
fn_ref_create_link, fn_ref_is_link, fn_ref_link_name, fn_ref_description – an
XFN reference

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>
FN_ref_t *fn_ref_create (const FN_identifier_t *ref_type);

void fn_ref_destroy (FN_ref_t *ref);

FN_ref_t *fn_ref_copy (const FN_ref_t *ref);

FN_ref_t *fn_ref_assign (FN_ref_t *dst, const FN_ref_t *src);

const FN_identifier_t *fn_ref_type (const FN_ref_t *ref);

unsigned int fn_ref_addrcount (const FN_ref_t *ref);

const FN_ref_addr_t *fn_ref_first (const FN_ref_t *ref, void **iter_pos);

const FN_ref_addr_t *fn_ref_next (const FN_ref_t *ref, void **iter_pos);

int fn_ref_prepend_addr (FN_ref_t *ref, const FN_ref_addr_t *addr);

int fn_ref_append_addr (FN_ref_t *ref, const FN_ref_addr_t *addr);

int fn_ref_insert_addr (FN_ref_t *ref, void **iter_pos, const FN_ref_addr_t *addr);

int fn_ref_delete_addr (FN_ref_t *ref, void **iter_pos);

int fn_ref_delete_all (FN_ref_t *ref);

FN_ref_t *fn_ref_create_link (const FN_composite_name_t *link_name);

int fn_ref_is_link (const FN_ref_t *ref);

FN_composite_name_t *fn_ref_link_name (const FN_ref_t *link_ref);

FN_string_t *fn_ref_description (const FN_ref_t *ref, unsigned int detail, unsigned
int *more_detail);

DESCRIPTION An XFN reference is represented by the type FN_ref_t . An object of this
type contains a reference type and a list of addresses. The ordering in this list
at the time of binding might not be preserved when the reference is returned
upon lookup.

The reference type is represented by an object of type FN_identifier_t .
The reference type is intended to identify the class of object referenced. XFN
does not dictate the precise use of this.

Each address is represented by an object of type FN_ref_addr_t .

Last modified 13 Dec 1996 SunOS 5.8 169

FN_ref_t(3XFN) XFN Interface Library Functions

fn_ref_create() creates a reference with no address, using ref_type as its
reference type. Addresses can be added later to the reference using the functions
described below. fn_ref_destroy() releases the storage associated with ref .
fn_ref_copy() creates a copy of ref and returns it. fn_ref_assign()
creates a copy of src and assigns it to dst , releasing any old contents of dst . A
pointer to the same object as dst is returned.

fn_ref_addrcount() returns the number of addresses in the reference ref .

fn_ref_first() returns the first address in ref and sets iter_pos to be after the
address. It returns 0 if there is no address in the list. fn_ref_next() returns
the address following iter_pos in ref and sets iter_pos to be after the address. If
the iteration marker iter_pos is at the end of the sequence, fn_ref_next()
returns 0 .

fn_ref_prepend_addr() adds addr to the front of the list of addresses in ref .
fn_ref_append_addr() adds addr to the end of the list of addresses in ref .
fn_ref_insert_addr() adds addr to ref before iter_pos and sets iter_pos to be
immediately after the new reference added. fn_ref_delete_addr() deletes
the address located before iter_pos in the list of addresses in ref and sets iter_pos
back one address. fn_ref_delete_all () deletes all addresses in ref .

fn_ref_create_link() creates a reference using the given composite name
link_name as an address. fn_ref_is_link() tests if ref is a link. It returns 1 if
it is; 0 if it is not. fn_ref_link_name() returns the composite name stored in
a link reference. It returns 0 if link_ref is not a link.

fn_ref_description() returns a string description of the given reference. It
takes as argument an integer, detail , and a pointer to an integer, more_detail .
detail specifies the level of detail for which the description should be generated;
the higher the number, the more detail is to be provided. If more_detail is 0 , it
is ignored. If more_detail is non-zero, it is set by the description operation to
indicate the next level of detail available, beyond that specified by detail . If no
higher level of detail is available, more_detail is set to detail .

RETURN VALUES The following operations return 1 if the operation succeeds, 0 if the operation
fails:

fn_ref_prepend_addr()
fn_ref_append_addr()
fn_ref_insert_addr()
fn_ref_delete_addr()
fn_ref_delete_all()

USAGE The reference type is intended to identify the class of object referenced. XFN
does not dictate the precise use of this.

170 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_ref_t(3XFN)

Multiple addresses in a single reference are intended to identify multiple
communication endpoints for the same conceptual object. Multiple addresses
may arise for various reasons, such as the object offering interfaces over more
than one communication mechanism.

The client must interpret the contents of a reference based on the type of the
addresses and the type of the reference. However, this interpretation is intended
to occur below the application layer. Most applications developers should not
have to manipulate the contents of either address or reference objects themselves.
These interfaces would generally be used within service libraries.

Manipulation of references using the operations described in this manual page
does not affect their representation in the underlying naming system. Changes
to references in the underlying naming system can only be effected through the
use of the interfaces described in FN_ctx_t (3XFN) .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_composite_name_t (3XFN) , FN_ctx_t (3XFN) ,
FN_identifier_t (3XFN) , FN_ref_addr_t (3XFN) , FN_string_t (3XFN)
, fn_ctx_lookup (3XFN) , fn_ctx_lookup_link (3XFN) , xfn (3XFN) ,
xfn_links (3XFN) , attributes (5)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Last modified 13 Dec 1996 SunOS 5.8 171

FN_search_control_t(3XFN) XFN Interface Library Functions

NAME FN_search_control_t, fn_search_control_create, fn_search_control_destroy,
fn_search_control_copy, fn_search_control_assign, fn_search_control_scope,
fn_search_control_follow_links, fn_search_control_max_names,
fn_search_control_return_ref, fn_search_control_return_attr_ids – options for
attribute search

SYNOPSIS #include <xfn/xfn.h>
FN_search_control_t *fn_search_control_create (unsigned int scope, unsigned
int follow_links, unsigned int max_names, unsigned int return_ref, const FN_attrset_t
*return_attr_ids, unsigned int *status);

void fn_search_control_destroy (FN_search_control_t *scontrol);

FN_search_control_t *fn_search_control_copy (const FN_search_control_t *scontrol);

FN_search_control_t *fn_search_control_assign (FN_search_control_t *dst, const
FN_search_control_t *src);

unsigned int fn_search_control_scope (const FN_search_control_t *scontrol);

unsigned int fn_search_control_follow_links (const FN_search_control_t
*scontrol);

unsigned int fn_search_control_max_names (const FN_search_control_t *scontrol);

unsigned int fn_search_control_return_ref (const FN_search_control_t *scontrol);

const FN_attrset_t *fn_search_control_return_attr_ids (const
FN_search_control_t *scontrol);

DESCRIPTION The FN_search_control_t object is used to specify options for the attribute
search operation fn_attr_ext_search (3XFN) .

fn_search_control_create() creates an FN_search_control_t
object using information in scope , follow_links , max_names , return_ref
, and return_attr_ids to set the search options. If the operation
succeeds, fn_search_control_create() returns a pointer to an
FN_search_control_t object; otherwise, it returns a NULLpointer.

The scope of the search, scope , is either the named object, the named context,
the named context and its subcontexts, or the named context and a context
implementation defined set of subcontexts. The values for scope are:
FN_SEARCH_NAMED_OBJECT Search just the given named object.

FN_SEARCH_ONE_CONTEXT Search just the given context.

FN_SEARCH_SUBTREE Search given context and all its
subcontexts.

172 SunOS 5.8 Last modified 22 Nov 1996

XFN Interface Library Functions FN_search_control_t(3XFN)

FN_SEARCH_CONSTRAINED_SUBTREESearch given context and its
subcontexts as constrained by the
context-specific policy in place at the
named context.

follow_links further defines the scope and nature of the search. If follow_links is
nonzero, the search follows XFN links. If follow_links is 0 , XFN links are not
followed. See fn_attr_ext_search (3XFN) for more detail about how XFN
links are treated.

max_names specifies the maximum number of names to return
in an FN_ext_searchlist_t (3XFN) enumeration (see
fn_attr_ext_search (3XFN)). The names of all objects whose attributes
satisfy the filter are returned when max_names is 0 .

If return_ref is non-zero, the reference bound to the named object is returned
with the object’s name by fn_ext_searchlist_next (3XFN) (see
fn_attr_ext_search (3XFN)). If return_ref is 0 , the reference is not returned.

Attribute identifiers and values associated with named objects that satisfy the
filter may be returned by fn_ext_searchlist_next (3XFN) . The attributes
returned are those listed in return_attr_ids . If the value of return_attr_ids is 0 ,
all attributes are returned. If return_attr_ids is an empty FN_attrset_t object
(see FN_attrset_t (3XFN)), no attributes are returned. Any attribute values
in return_attr_ids are ignored; only the attribute identifiers are relevant for
this operation.

fn_attr_ext_search (3XFN) interprets a value of 0 for the search control
argument as a default search control which has the following option settings:
scope FN_SEARCH_ONE_CONTEXT

follow_links 0 (do not follow links)

max_names 0 (return all named objects that match filter)

return_ref 0 (do not return the reference of the named
object)

return_attr_ids an empty FN_attrset_t object (do not return
any attributes of the named object)

fn_search_control_destroy() releases the storage associated with
scontrol .

fn_search_control_copy() returns a copy of the search control scontrol .

fn_search_control_assign() makes a copy of the search control src and
assigns it to dst , releasing the old contents of dst . A pointer to the same object as
dst is returned.

Last modified 22 Nov 1996 SunOS 5.8 173

FN_search_control_t(3XFN) XFN Interface Library Functions

fn_search_control_scope() returns the scope for the search.

fn_search_control_follow_links() returns non-zero if links are
followed; 0 if not.

fn_search_control_max_names() returns the maximum number of names.

fn_search_control_return_ref() returns nonzero if the reference
is returned; 0 if not.

fn_search_control_return_attr_ids() returns a pointer to the list of
attributes; a NULLpointer indicates that all attributes and values are returned.

ERRORS fn_search_control_create() returns a NULLpointer if the operation fails
and sets status as follows:
FN_E_SEARCH_INVALID_OPTION A supplied search option was invalid

or inconsistent.

Other status codes are possible (see xfn_status_codes (3XFN)).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_attrset_t (3XFN) , fn_attr_ext_search (3XFN) ,
xfn_status_codes (3XFN) , attributes (5)

174 SunOS 5.8 Last modified 22 Nov 1996

XFN Interface Library Functions FN_search_filter_t(3XFN)

NAME FN_search_filter_t, fn_search_filter_create, fn_search_filter_destroy,
fn_search_filter_copy, fn_search_filter_assign, fn_search_filter_expression,
fn_search_filter_arguments – filter expression for attribute search

SYNOPSIS #include <xfn/xfn.h>
FN_search_filter_t *fn_search_filter_create (unsigned int *status, const unsigned
char *estr, .);

void fn_search_filter_destroy (FN_search_filter_t *sfilter);

FN_search_filter_t *fn_search_filter_copy (const FN_search_filter_t *sfilter);

FN_search_filter_t *fn_search_filter_assign (FN_search_filter_t *dst, const
FN_search_filter_t *src);

const char *fn_search_filter_expression (const FN_search_filter_t *sfilter);

const void **fn_search_filter_arguments (const FN_search_filter_t *sfilter, size_t
*number_of_arguments);

DESCRIPTION The FN_search_filter_t type is an expression that is evaluated against
the attributes of named objects bound in the scope of the search operation
fn_attr_ext_search (3XFN) . The filter evaluates to TRUEor FALSE. If the
filter is empty, it evaluates to TRUE. Names of objects whose attribute values
satisfy the filter expression are returned by the search operation.

If the identifier in any subexpression of the filter does not exist as an attribute
of an object, then the innermost logical expression containing that identifier is
FALSE. A subexpression that is only an attribute tests for the presence of the
attribute; the subexpression evaluates to TRUEif the attribute has been defined
for the object and FALSEotherwise.

fn_search_filter_create() creates a search filter from the expression
string estr and the remaining arguments.

fn_search_filter_destroy() releases the storage associated with the
search filter sfilter .

fn_search_filter_copy() returns a copy of the search filter sfilter .

fn_search_filter_assign() makes a copy of the search filter src and
assigns it to dst , releasing the old contents of dst . A pointer to the same object as
dst is returned.

fn_search_filter_expression() returns the filter expression of sfilter.

fn_search_filter_arguments() returns an array of pointers to arguments
supplied to the filter constructor. number_of_arguments is set to the size of this
array. The types of the arguments are determined by the substitution tokens
in the expression in sfilter .

Last modified 22 Nov 1996 SunOS 5.8 175

FN_search_filter_t(3XFN) XFN Interface Library Functions

BNF of Filter
Expression

<FilterExpr> ::= [<Expr>]
<Expr> ::= <Expr> "or" <Expr>

<Expr> "and" <Expr>
| "not" <Expr>
| "(" <Expr> ")"

| <Attribute> [<Rel_Op> <Value>]
| <Ext>

<Rel_Op> ::= "==" | "!=" | "<" | "<=" | ">" | ">=" | "[ap]="
<Attribute> ::= "%a"
<Value> ::= <Integer>

| "%v"
|<Wildcarded_string>

<Wildcarded_string> ::= "*"
| <String>

| {<String> "*"}+ [<String>]
| {"*" <String>}+ ["*"]

<String> ::= "‘" { <Char> } * "‘"
| "%s"

<Char> ::= <PCS> // See BNF in Section 4.1.2 for PCSdefinition
| Characters in the repertoire of a string representation

<Identifier> ::=" "%i"
<Ext> ::= <Ext_Op> "(" [Arg_List] ")"
<Ext_Op> ::= <String> | <Identifier>
<Arg_List> ::= <Arg> | <Arg> "," <Arg_List>
<Arg> ::= <Value> | <Attribute> | <Identifier>

Specification of Filter
Expression

The arguments to fn_search_filter_create() are a return status,
an expression string, and a list of arguments. The string contains the filter
expression with substitution tokens for the attributes, attribute values,
strings, and identifiers that are part of the expression. The remaining list
of arguments contains the attributes and values in the order of appearance
of their corresponding substitution tokens in the expression. The arguments
are of types FN_attribute_t* , FN_attrvalue_t* , FN_string_t* , or
FN_identifier_t* . Any attribute values in an FN_attribute_t* type of
argument are ignored; only the attribute identifier and attribute syntax are
relevant. The argument type expected by each substitution token are listed in
the following table.

Token Argument Type

%a FN_attribute_t*

%v FN_attrvalue_t*

%s FN_string_t*

%i FN_identifier_t*

Precedence The following precedence relations hold in the absence of parentheses, in the
order of lowest to highest:

176 SunOS 5.8 Last modified 22 Nov 1996

XFN Interface Library Functions FN_search_filter_t(3XFN)

or
and
not
relational operators

These boolean and relational operators are left associative.

Relational Operators Comparisons and ordering are specific to the syntax and/or rules of the supplied
attribute.

Locale (code set, language, or territory) mismatches that occur
during string comparisons and ordering operations are resolved in an
implementation-dependent way. Relational operations that have ordering
semantics may be used for strings of code sets in which ordering is meaningful,
but is not of general use in internationalized environments.

An attribute that occurs in the absence of any relational operator tests for the
presence of the attribute.

Operator Meaning

== The sub-expression is TRUEif at least one value of the
specified attribute is equal to the supplied value.

!= The sub-expression is TRUEif no values of the specified
attribute equal the supplied value.

>= The sub-expression is TRUEif at least one value of the
attribute is greater than or equal to the supplied value.

> The sub-expression is TRUEif at least one value of the
attribute is greater then the supplied value.

<= The sub-expression is TRUEif at least one value of the
attribute is less than or equal to the supplied value.

< The sub-expression is TRUEif at least one value of the
attribute is less than the supplied value.

[ap]= The sub-expression is TRUEif at least one value of the
specified attribute matches the supplied value according
to some context-specific approximate matching criterion.
This criterion must subsume strict equality.

Wildcarded Strings A wildcarded string consists of a sequence of alternating wildcard specifiers
and strings. The sequence can start with either a wildcard specifier or a string,
and end with either a wildcard specifier or a string.

Last modified 22 Nov 1996 SunOS 5.8 177

FN_search_filter_t(3XFN) XFN Interface Library Functions

The wildcard specifier is denoted by the asterisk character (’* ’) and means zero
or more occurrences of any character.

Wildcarded strings can be used to specify substring matches. The following are
examples of wildcarded strings and what they mean:

Wildcarded String Meaning

* Any string

*’ing’ Any string ending with ing

Any string
starting

with jo , and
containing the substring
ph ,

and which contains
the substring ne
in the portion

of the string
following ph , and
which ends with er

T}

%s* Any string starting with the supplied string

Any string
starting with bix
and ending with the
supplied string

T}

String matches involving strings of different locales (code set, language, or
territory) are resolved in an implementation-dependent way.

Extended Operations In addition to the relational operators, extended operators can be specified. All
extended operators return either TRUEor FALSE . A filter expression can contain
both relational and extended operations.

Extended operators are specified using an identifier (see
FN_identifier_t (3XFN)) or a string. If the operator is specified using a
string, the string is used to construct an identifier of format FN_ID_STRING .
Identifiers of extended operators and signatures of the corresponding extended
operations, as well as their suggested semantics, are registered with X/Open
Company Ltd.

The following three extended operations are currently defined:

178 SunOS 5.8 Last modified 22 Nov 1996

XFN Interface Library Functions FN_search_filter_t(3XFN)

’name’(< Wildcarded
String>)

The identifier for this operation is
’name’ (FN_ID_STRING) . The
argument to this operation is a
wildcard string. The operation
returns TRUEif the name of the object
matches the supplied wildcard string.

’reftype’(%i) The identifier for this operation is
’reftype’ (FN_ID_STRING) . The
argument to this operation is an
identifier. The operation returns TRUE
if the reference type of the object is
equal to the supplied identifier.

’addrtype’(%i) The identifier for this operation is
’addrtype’ (LM FN_ID_STRING)
. The argument to the operation is
an identifier. The operation returns
TRUEif any of the address types in
the reference of the object is equal to
the supplied identifier.

Support and exact semantics of extended operations are context-specific.
If a context does not support an extended operation, or if the filter
expression supplies the extended operation with either an incorrect
number or type of arguments, the error FN_E_SEARCH_INVALID_OPis
returned. (Note: FN_E_OPERATION_NOT_SUPPORTEDis returned when
fn_attr_ext_search (3XFN) is not supported.)

The following are examples of filter expressions that contain extended
operations:

Expression Meaning

Evaluates to

TRUE

if the name of the object
starts with

bill .

T}

Last modified 22 Nov 1996 SunOS 5.8 179

FN_search_filter_t(3XFN) XFN Interface Library Functions

Expression Meaning

%i(%a, %v) Evaluates to result of applying the specified
operation to the supplied arguments.

(%a == %v) and ’name’(’joe’*) Evaluates to TRUEif the specified attribute
has the given value and if the name of
the object starts with joe .

RETURN VALUES fn_search_filter_create() returns a pointer to an
FN_search_filter_t object if the operation succeeds; otherwise it returns
a NULLpointer.

ERRORS fn_search_filter_create() returns a NULLpointer if the operation fails
and sets status in the following way:
FN_E_SEARCH_INVALID_FILTER The filter expression had a syntax

error or some other problem.

FN_E_SEARCH_INVALID_OP An operator in the filter expression is
not supported or, if the operator is
an extended operator, the number of
types of arguments supplied does not
match the signature of the operation.

FN_E_INVALID_ATTR_IDENTIFIER The left hand side of an operator
expression was not an attribute.

FN_E_INVALID_ATTR_VALUE The right hand side of an operator
expression was not an integer,
attribute value, or (wildcarded)
string.

Other status codes are possible as described in the reference manual pages for
FN_status_t (3XFN) and xfn_status_codes (3XFN) .

EXAMPLES EXAMPLE 1 Creating Different Filters

The following examples illustrate how to create three different filters.

The first example shows how to construct a filter involving substitution tokens
and literals in the same filter expression. This example creates a filter for named
objects whose color attribute contains a string value of red , blue , or white .
The first two values are specified using substitution tokens; the last value,
white , is specified as a literal in the expression.

unsigned int status;
extern FN_attribute_t *attr_color;
FN_string_t *red = fn_string_from_str((unsigned char *)"red");

180 SunOS 5.8 Last modified 22 Nov 1996

XFN Interface Library Functions FN_search_filter_t(3XFN)

FN_string_t *blue = fn_string_from_str((unsigned char *)"blue");
FN_search_filter_t *sfilter;
sfilter = fn_search_filter_create(

&status,
"(%a == %s) or (%a == %s) or (%a == ’white’)",
attr_color, red, attr_color, blue,
attr_color);

The second example illustrates how to construct a filter involving a wildcarded
string. This example creates a filter for searching for named objects whose
last_name attribute has a value that begins with the character m.

unsigned int status;
extern FN_attribute_t *attr_last_name;
FN_search_filter_t *sfilter;
sfilter = fn_search_filter_create(

&status, "%a == ’m’*", attr_last_name);

The third example illustrates how to construct a filter involving extended
operations. This example creates a filter for finding all named objects whose
name ends with ton .

unsigned int status;
FN_search_filter_t *sfilter;
sfilter= fn_search_filter_create(&status, "’name’(*’ton’)");

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_attribute_t (3XFN) , FN_attrvalue_t (3XFN) ,
FN_identifier_t (3XFN) , FN_status_t (3XFN) , FN_string_t (3XFN) ,
fn_attr_ext_search (3XFN) , xfn_status_codes (3XFN) , attributes (5)

Last modified 22 Nov 1996 SunOS 5.8 181

FN_status_t(3XFN) XFN Interface Library Functions

NAME FN_status_t, fn_status_create, fn_status_destroy, fn_status_copy,
fn_status_assign, fn_status_code, fn_status_remaining_name,
fn_status_resolved_name, fn_status_resolved_ref, fn_status_diagnostic_message,
fn_status_link_code, fn_status_link_remaining_name,
fn_status_link_resolved_name, fn_status_link_resolved_ref,
fn_status_link_diagnostic_message, fn_status_is_success, fn_status_set_success,
fn_status_set, fn_status_set_code, fn_status_set_remaining_name,
fn_status_set_resolved_name, fn_status_set_resolved_ref,
fn_status_set_diagnostic_message, fn_status_set_link_code,
fn_status_set_link_remaining_name, fn_status_set_link_resolved_name,
fn_status_set_link_resolved_ref, fn_status_set_link_diagnostic_message,
fn_status_append_resolved_name, fn_status_append_remaining_name,
fn_status_advance_by_name, fn_status_description – an XFN status object

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>
FN_status_t *fn_status_create (void);

void fn_status_destroy (FN_status_t *stat);

FN_status_t *fn_status_copy (const FN_status_t *stat);

FN_status_t *fn_status_assign (FN_status_t *dst, const FN_status_t *src);

unsigned int fn_status_code (const FN_status_t *stat);

const FN_composite_name_t *fn_status_remaining_name (constFN_status_t *stat);

const FN_composite_name_t *fn_status_resolved_name (constFN_status_t *stat);

const FN_ref_t *fn_status_resolved_ref (constFN_status_t *stat);

const FN_string_t *fn_status_diagnostic_message (constFN_status_t *stat);

unsigned int fn_status_link_code (const FN_status_t *stat);

const FN_composite_name_t *fn_status_link_remaining_name (constFN_status_t
*stat);

const FN_composite_name_t *fn_status_link_resolved_name (constFN_status_t
*stat);

const FN_ref_t *fn_status_link_resolved_ref (constFN_status_t *stat);

const FN_string_t *fn_status_link_diagnostic_message (constFN_status_t *stat);

int fn_status_is_success (const FN_status_t *stat);

int fn_status_set_success (FN_status_t *stat);

182 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_status_t(3XFN)

int fn_status_set (FN_status_t *stat, unsigned int code, const FN_ref_t *resolved_ref,
const FN_composite_name_t *resolved_name, const FN_composite_name_t
*remaining_name);

int fn_status_set_code (FN_status_t *stat, unsigned int code);

int fn_status_set_remaining_name (FN_status_t *stat, const FN_composite_name_t
*name);

int fn_status_set_resolved_name (FN_status_t *stat, const FN_composite_name_t
*name);

int fn_status_set_resolved_ref (FN_status_t *stat, const FN_ref_t *ref);

int fn_status_set_diagnostic_message (FN_status_t *stat, const FN_string_t *msg);

int fn_status_set_link_code (FN_status_t *stat, unsigned int code);

int fn_status_set_link_remaining_name (FN_status_t *stat, const
FN_composite_name_t *name);

int fn_status_set_link_resolved_name (FN_status_t *stat, const
FN_composite_name_t *name);

int fn_status_set_link_resolved_ref (FN_status_t *stat, const FN_ref_t *ref);

int fn_status_set_link_diagnostic_message (FN_status_t *stat, const FN_string_t
*msg);

int fn_status_append_resolved_name (FN_status_t *stat, const
FN_composite_name_t *name);

int fn_status_append_remaining_name (FN_status_t *stat, const
FN_composite_name_t *name);

int fn_status_advance_by_name (FN_status_t *stat, const FN_composite_name_t
*prefix, const FN_ref_t *resolved_ref);

FN_string_t *fn_status_description (const FN_status_t *stat, unsigned int detail,
unsigned int *more_detail);

DESCRIPTION The result status of operations in the context interface and the attribute interface
is encapsulated in an FN_status_t object. This object contains information
about how the operation completed: whether an error occurred in performing
the operation, the nature of the error, and information that helps locate where the
error occurred. In the case that the error occurred while resolving an XFN link,
the status object contains additional information about that error.

The context status object consists of several items of information:
primary status code An unsigned int code describing the

disposition of the operation.

Last modified 13 Dec 1996 SunOS 5.8 183

FN_status_t(3XFN) XFN Interface Library Functions

resolved name In the case of a failure during the resolution
phase of the operation, this is the leading portion
of the name that was resolved successfully.
Resolution may have been successful beyond this
point, but the error might not be pinpointed
further.

resolved reference The reference to which resolution was successful
(in other words, the reference to which the
resolved name is bound).

remaining name The remaining unresolved portion of the name.

diagnostic message This contains any diagnostic message returned
by the context implementation. This message
provides the context implementation a way of
notifying the end-user or administrator of any
implementation-specific information related
to the returned error status. The diagnostic
message could then be used by the end-user or
administrator to take appropriate out-of-band
action to rectify the problem.

link status code In the case that an error occurred while resolving
an XFN link, the primary status code has the
value FN_E_LINK_ERRORand the link status
code describes the error that occurred while
resolving the XFN link.

resolved link name In the case of a link error, this contains the
resolved portion of the name in the XFN link.

resolved link reference In the case of a link error, this contains the
reference to which the resolved link name is
bound.

remaining link name In the case of a link error, this contains the
remaining unresolved portion of the name in
the XFN link.

link diagnostic message In the case of a link error, this contains any
diagnostic message related to the resolution
of the link.

Both the primary status code and the link status code are values of type
unsigned int that are drawn from the same set of meaningful values.
XFN reserves the values 0 through 127 for standard meanings. The

184 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_status_t(3XFN)

values and interpretations for the codes are determined by XFN. See
xfn_status_codes (3XFN) .

fn_status_create() creates a status object with status FN_SUCCESS
. fn_status_destroy() releases the storage associated with stat
. fn_status_copy() returns a copy of the status object stat .
fn_status_assign() makes a copy of the status object src and assigns it to dst
, releasing any old contents of dst . A pointer to the same object as dst is returned.

fn_status_code() returns the status code.
fn_status_remaining_name() returns the remaining part of name
to be resolved. fn_status_resolved_name() returns the part of the
composite name that has been resolved. fn_status_resolved_ref()
returns the reference to which resolution was successful.
fn_status_diagnostic_message returns any diagnostic message set by the
context implementation.

fn_status_link_code() returns the link status code.
fn_status_link_remaining_name() returns the remaining part of the link
name that has not been resolved. fn_status_link_resolved_name()
returns the part of the link name that has been resolved.
fn_status_link_resolved_ref() returns the reference to which resolution
of the link was successful. fn_status_link_diagnostic_message()
returns any diagnostic message set by the context implementation during
resolution of the link.

fn_status_is_success() returns 1 if the status indicates success, 0
otherwise.

fn_status_set_success() sets the status code to FN_SUCCESSand
clears all other parts of stat . fn_status_set() sets the non-link contents
of the status object stat . fn_status_set_code() sets the primary status
code field of the status object stat . fn_status_set_remaining_name()
sets the remaining name part of the status object stat to name .
fn_status_set_resolved_name() sets the resolved name part
of the status object stat to name . fn_status_set_resolved_ref
() sets the resolved reference part of the status objectstat to ref .
fn_status_set_diagnostic_message() sets the diagnostic message part
of the status object to msg .

fn_status_set_link_code() sets the link status code field
of the status object stat to indicate why resolution of the link
failed. fn_status_set_link_remaining_name() sets the
remaining link name part of the status object stat to name .
fn_status_set_link_resolved_name() sets the resolved link name part
of the status object stat to name . fn_status_set_link_resolved_ref()
sets the resolved link reference part of the status object stat to ref .

Last modified 13 Dec 1996 SunOS 5.8 185

FN_status_t(3XFN) XFN Interface Library Functions

fn_status_set_link_diagnostic_message() sets the link diagnostic
message part of the status object to msg .

fn_status_append_resolved_name() appends as additional
components name to the resolved name part of the status object stat
. fn_status_append_remaining_name() appends as additional
components name to the remaining name part of the status object stat .
fn_status_advance_by_name() removes prefix from the remaining name,
and appends it to the resolved name. The resolved reference part is set to
resolved_ref . This operation returns 1 on success, 0 if the prefix is not a prefix of
the remaining name.

RETURN VALUES The fn_status_set_*() operations return 1 if the operation succeeds, 0
if the operation fails.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_composite_name_t (3XFN) , FN_ref_t (3XFN) , FN_string_t (3XFN) ,
xfn (3XFN) , xfn_status_codes (3XFN) , attributes (5)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

186 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_string_t(3XFN)

NAME FN_string_t, fn_string_create, fn_string_destroy, fn_string_from_str,
fn_string_from_str_n, fn_string_str, fn_string_from_contents, fn_string_code_set,
fn_string_charcount, fn_string_bytecount, fn_string_contents, fn_string_copy,
fn_string_assign, fn_string_from_strings, fn_string_from_substring,
fn_string_is_empty, fn_string_compare, fn_string_compare_substring,
fn_string_next_substring, fn_string_prev_substring – a character string

SYNOPSIS cc [flag ...] file ... −lxfn [library ...]
#include <xfn/xfn.h>
FN_string_t *fn_string_create (void);

void fn_string_destroy (FN_string_t *str);

FN_string_t *fn_string_from_str (const unsigned char *cstr);

FN_string_t *fn_string_from_str_n (const unsigned char *cstr, size_t n);

const unsigned char *fn_string_str (const FN_string_t *str, unsigned int *status);

FN_string_t *fn_string_from_contents (unsigned long code_set, const void
*locale_info, size_t locale_info_len, size_t charcount, size_t bytecount, const void *contents,
unsigned int *status);

unsigned long fn_string_code_set (const FN_string_t *str, const void **locale_info,
size_t *locale_info_len);

size_t fn_string_charcount (const FN_string_t *str);

size_t fn_string_bytecount (const FN_string_t *str);

const void *fn_string_contents (const FN_string_t *str);

FN_string_t *fn_string_copy (const FN_string_t *str);

FN_string_t *fn_string_assign (FN_string_t *dst, const FN_string_t *src);

FN_string_t *fn_string_from_strings (unsigned int *status, const FN_string_t *s1,
const FN_string_t *s2, ...);

FN_string_t *fn_string_from_substring (constFN_string_t *str, int first, int last);

int fn_string_is_empty (const FN_string_t *str);

int fn_string_compare (const FN_string_t *str1, const FN_string_t *str2, unsigned int
string_case, unsigned int *status);

int fn_string_compare_substring (const FN_string_t *str1, int first, int last, const
FN_string_t *str2, unsigned int string_case, unsigned int *status);

int fn_string_next_substring (const FN_string_t *str, const FN_string_t *sub, int
index, unsigned int string_case, unsigned int *status);

Last modified 13 Dec 1996 SunOS 5.8 187

FN_string_t(3XFN) XFN Interface Library Functions

int fn_string_prev_substring (const FN_string_t *str, const FN_string_t *sub, int
index, unsigned int string_case, unsigned int *status);

DESCRIPTION The FN_string_t type is used to represent character strings in the XFN
interface. It provides insulation from specific string representations.

The FN_string_t supports multiple code sets. It provides creation
functions for character strings of the code set of the current locale setting and
a generic creation function for arbitrary code sets. The degree of support
for the functions that manipulate FN_string_t for arbitrary code sets is
implementation-dependent. An XFN implementation is required to support the
ISO 646 code set; all other code sets are optional.

fn_string_destroy() releases the storage associated with the given string.

fn_string_create() creates an empty string.

fn_string_from_str() creates an FN_string_t object from the given null
terminated string based on the code set of the current locale setting. The number
of characters in the string is determined by the code set of the current locale
setting. fn_string_from_str_n() is like fn_string_from_str() except
only n characters from the given string are used. fn_string_str() returns
the contents of the given string str in the form of a null terminated string in the
code set and current locale setting.

fn_string_from_contents() creates an FN_string_t object using the
specified code set code_set , locale information locale_info , and data in the given
buffer contents . bytecount specifies the number of bytes in contents and charcount
specifies the number of characters represented by contents .

fn_string_code_set() returns the code set associated with the
given string object and, if present, the locale information in locale_info .
fn_string_charcount() returns the number of characters in the given
string object. fn_string_bytecount() returns the number of bytes used to
represent the given string object. fn_string_contents() returns a pointer to
the contents of the given string object.

fn_string_copy() returns a copy of the given string object.
fn_string_assign() makes a copy of the string object src and assigns it to dst
, releasing any old contents of dst . A pointer to the same object as dst is returned.
fn_string_from_strings() is a function that takes a variable number of
arguments (minimum of 2), the last of which must be NULL(0); it returns a new
string object composed of the left to right concatenation of the given strings,
in the given order. The support for strings with different code sets and/or
locales as arguments to a single invocation of fn_string_from_strings() is
implementation-dependent. fn_string_from_substring() returns a new
string object consisting of the characters located between first and last inclusive
from str . Indexing begins with 0 . If last is FN_STRING_INDEX_LASTor

188 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_string_t(3XFN)

exceeds the length of the string, the index of the last character of the string is
used.

fn_string_is_empty() returns whether str is an empty string.

Comparison of two strings must take into account code set and locale
information. If strings are in the same code set and same locale, case sensitivity
is applied according to the case sensitivity rules applicable for the code set and
locale; case sensitivity may not necessarily be relevant for all string encodings. If
string_case is non-zero, case is significant and equality for strings of the same
code set is defined as equality between byte-wise encoded values of the strings.
If string_case is zero, case is ignored and equality for strings of the same code
set is defined using the definition of case-insensitive equality for the specific
code set. Support for comparison between strings of different code sets, or lack
thereof, is implementation-dependent.

fn_string_compare() compares strings str1 and str2 and returns 0 if
they are equal, non-zero if they are not equal. If two strings are not equal,
fn_string_compare() returns a positive value if the difference of str2
precedes that of str1 in terms of byte-wise encoded value (with case-sensitivity
taken into account when string_case is non-zero), and a negative value if
the difference of str1 precedes that of str2 , in terms of byte-wise encoded
value (with case-sensitivity taken into account when string_case is non-zero).
Such information (positive versus negative return value) may be used by
applications that use strings of code sets in which ordering is meaningful;
this information is not of general use in internationalized environments.
fn_string_compare_substring() is similar to fn_string_compare()
except that fn_string_compare_substring() compares characters
between first and last inclusive of str2 with str1 . Comparison of strings with
incompatible code sets returns a negative or positive value (never 0) depending
on the implementation.

fn_string_next_substring() returns the index of the next occurrence
of sub at or after index in the string str . FN_STRING_INDEX_NONEis
returned if sub does not occur. fn_string_prev_substring() returns the
index of the previous occurrence of sub at or before index in the string str .
FN_STRING_INDEX_NONEis returned if sub does not occur. In both of these
functions, string_case specifies whether the search should take case-sensitivity
into account.

ERRORS fn_string_str() returns 0 and sets status to
FN_E_INCOMPATIBLE_CODE_SETSif the given string’s
representation cannot be converted into the code set of the current locale setting.
It is implementation-dependent which code sets can be converted into the
code set of the current locale.

Last modified 13 Dec 1996 SunOS 5.8 189

FN_string_t(3XFN) XFN Interface Library Functions

Code set mismatches that occur during concatenation, searches, or comparisons
are resolved in an implementation-dependent way. When an implementation
discovers that arguments to substring searches and comparison operations have
incompatible code sets, it sets status to FN_E_INCOMPATIBLE_CODE_SETS. In
such cases, fn_string_from_strings() returns 0 . The returned value for
comparison operations when there is code set or locale incompatibility is either
negative or positive (greater than 0); it is never 0 .

fn_string_from_contents() returns 0 and status is set to
FN_E_INCOMPATIBLE_CODE_SETSif the supplied code set and/or locale
information are not supported by the XFN implementation.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO xfn (3XFN) , attributes (5)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

190 SunOS 5.8 Last modified 13 Dec 1996

Network Functions getaddrinfo(3SOCKET)

NAME getaddrinfo, getnameinfo, freeaddrinfo, gai_strerror – translate between node
name and address

SYNOPSIS cc [flag ...] file ... −lsocket −lnsl [library ...]
#include <sys/socket.h>
#include <netdb.h>
int getaddrinfo (const char *nodename, const char *servname, const struct addrinfo *hints,
struct addrinfo **res);

int getnameinfo (const struct sockaddr *sa, socklen_t salen, char *host, size_t hostlen, char
*serv, size_t servlen, int flags);

void freeaddrinfo (struct addrinfo *ai);

char *gai_strerror (int errcode);

DESCRIPTION These functions perform translations from node name to address and from
address to node name in a protocol-independent manner.

The getaddrinfo() function performs the node name to address translation.
The nodename and servname arguments are pointers to null-terminated strings or
NULL . One or both of these arguments must be a non-null pointer. In the normal
client scenario, both the nodename and servname are specified. In the normal
server scenario, only the servname is specified. A non-null nodename string can
be either a node name or a numeric host address string (a dotted-decimal IPv4
address or an IPv6 hex address). A non-null servname string can be either a
service name or a decimal port number.

The caller can optionally pass an addrinfo structure, pointed to by the third
argument, to provide hints concerning the type of socket that the caller supports.

The addrinfo structure is defined as:

struct addrinfo {
int ai_flags; /* AI_PASSIVE, AI_CANONNAME, AI_NUMERICHOST */
int ai_family; /* PF_xxx */
int ai_socktype; /* SOCK_xxx */
int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
size_t ai_addrlen; /* length of ai_addr */
char *ai_canonname; /* canonical name for nodename */
struct sockaddr *ai_addr; /* binary address */
struct addrinfo *ai_next; /* next structure in linked list */

};

In this hints structure, all members other than ai_flags , ai_family ,
ai_socktype , and ai_protocol must be 0 or a null pointer. A value of
PF_UNSPECfor ai_family indicates that the caller will accept any protocol
family. A value of 0 for ai_socktype indicates that the caller will accept any
socket type. A value of 0 for ai_protocol indicates that the caller will accept
any protocol. For example, if the caller handles only TCP and not UDP, then the
ai_socktype member of the hints structure should be set to SOCK_STREAM

Last modified 30 Jun 1999 SunOS 5.8 191

getaddrinfo(3SOCKET) Network Functions

when getaddrinfo() is called. If the caller handles only IPv4 and not IPv6,
then the ai_family member of the hints structure should be set to PF_INET
when getaddrinfo() is called. If the third argument to getaddrinfo() is a
null pointer, it is as if the caller had filled in an addrinfo structure initialized to
0 with ai_family set to PF_UNSPEC.

Upon success, a pointer to a linked list of one or more addrinfo structures is
returned through the final argument. The caller can process each addrinfo
structure in this list by following the ai_next pointer, until a null pointer
is encountered. In each returned addrinfo structure the three members
ai_family , ai_socktype , and ai_protocol are the corresponding
arguments for a call to the socket (3SOCKET) function. In each addrinfo
structure the ai_addr member points to a filled-in socket address structure
whose length is specified by the ai_addrlen member.

If the AI_PASSIVE bit is set in the ai_flags member of the hints structure,
the caller plans to use the returned socket address structure in a call to
bind (3SOCKET) . In this case, if the nodename argument is a null pointer, the IP
address portion of the socket address structure will be set to INADDR_ANYfor an
IPv4 address or IN6ADDR_ANY_INIT for an IPv6 address.

If the AI_PASSIVE bit is not set in the ai_flags member of the hints
structure, then the returned socket address structure will be ready for a
call to connect (3SOCKET) (for a connection-oriented protocol) or either
connect (3SOCKET) , sendto (3SOCKET) , or sendmsg (3SOCKET) (for a
connectionless protocol). If the nodename argument is a null pointer, the IP
address portion of the socket address structure will be set to the loopback
address.

If the AI_CANONNAMEbit is set in the ai_flags member of the hints structure,
then upon successful return the ai_canonname member of the first addrinfo
structure in the linked list will point to a null-terminated string containing the
canonical name of the specified nodename .

If the AI_NUMERICHOSTbit is set in the ai_flags member of the hints
structure, then a non-null nodename string must be a numeric host address string.
Otherwise an error of EAI_NONAMEis returned. This flag prevents any type of
name resolution service (such as DNS) from being called.

All of the information returned by getaddrinfo() is dynamically allocated:
the addrinfo structures as well as the socket address structures and
canonical node name strings pointed to by the addrinfo structures. The
freeaddrinfo() function is called to return this information to the system the
function . For freeaddrinfo() , the addrinfo structure pointed to by the ai
argument is freed, along with any dynamic storage pointed to by the structure.
This operation is repeated until a null ai_next pointer is encountered.

192 SunOS 5.8 Last modified 30 Jun 1999

Network Functions getaddrinfo(3SOCKET)

To aid applications in printing error messages based on the EAI_ * codes
returned by getaddrinfo() , the gai_strerror() is defined. The argument
is one of the EAI_ * values defined below and the return value points to a string
describing the error. If the argument is not one of the EAI_ * values, the function
still returns a pointer to a string whose contents indicate an unknown error.

The getnameinfo() function looks up an IP address and port number
provided by the caller in the name service database and system-specific
database, and returns text strings for both in buffers provided by the caller.
The function indicates successful completion by a 0 return value; a non-zero
return value indicates failure.

The first argument, sa , points to either a sockaddr_in structure (for IPv4) or a
sockaddr_in6 structure (for IPv6) that holds the IP address and port number.
The salen argument gives the length of the sockaddr_in or sockaddr_in6
structure.

The function returns the node name associated with the IP address in the buffer
pointed to by the host argument. The caller provides the size of this buffer with
the hostlen argument. The service name associated with the port number is
returned in the buffer pointed to by serv , and the servlen argument gives the
length of this buffer. The caller specifies not to return either string by providing a
0 value for the hostlen or servlen arguments. Otherwise, the caller must provide
buffers large enough to hold the node name and the service name, including the
terminating null characters.

To aid the application in allocating buffers for these two returned strings, the
following constants are defined in <netdb.h> :

#define NI_MAXHOST 1025
#define NI_MAXSERV 32

The final argument is a flag that changes the default actions of this function. By
default, the fully-qualified domain name (FQDN) for the host is looked up in the
name service database and returned. If the flag bit NI_NOFQDNis set, only the
node name portion of the FQDNis returned for local hosts.

If the flag bit NI_NUMERICHOSTis set, or if the host’s name cannot be located in
the name service, the numeric form of the host’s address is returned instead of its
name, for example, by calling inet_ntop() (see inet (3SOCKET)) instead of
getipnodebyname (3SOCKET) . If the flag bit NI_NAMEREQDis set, an error is
returned if the host’s name cannot be located in the name service database.

If the flag bit NI_NUMERICSERVis set, the numeric form of the service
address is returned (for example, its port number) instead of its name. The
two NI_NUMERIC* flags are required to support the "−n " flag that many
commands provide.

Last modified 30 Jun 1999 SunOS 5.8 193

getaddrinfo(3SOCKET) Network Functions

A fifth flag bit, NI_DGRAM, specifies that the service is a datagram service, and
causes getservbyport (3SOCKET) to be called with a second argument of
"udp" instead of the default "tcp". This is required for the few ports (for example,
512-514) that have different services for UDP and TCP.

These NI_ * flags are defined in <netdb.h> along with the AI_ * flags already
defined for getaddrinfo() .

RETURN VALUES For getaddrinfo() , if the query is successful, a pointer to a linked list of
one or more addrinfo structuresgetaddrinfo() is returned by the fourth
argument and the function returns 0 . If the query fails, a non-zero error code
will be returned. For getnameinfo() , if successful, the strings hostname and
service are copied into host and serv , respectively. If unsuccessful, zero values
for either hostlen or servlen will suppress the associated lookup; in this case no
data is copied into the applicable buffer. If gai_strerror() is successful, a
pointer to a string containing an error message appropriate for the EAI_ *
errors is returned. If errcode is not one of the EAI_ * values, a pointer to a string
indicating an unknown error is returned.

ERRORS The following names are the error values returned by getaddrinfo() and
are defined in <netdb.h> :

EAI_ADDRFAMILY address family for nodename not supported
EAI_AGAIN temporary failure in name resolution
EAI_BADFLAGS invalid value for ai_flags
EAI_FAIL non-recoverable failure in name resolution
EAI_FAMILY ai_family not supported
EAI_MEMORY memory allocation failure
EAI_NODATA no address associated with nodename
EAI_NONAME nodename nor servname provided, or not known
EAI_SERVICE servname not supported for ai_socktype
EAI_SOCKTYPE ai_socktype not supported
EAI_SYSTEM system error returned in errno

FILES /etc/inet/hosts
/etc/inet/ipnodes
/etc/netconfig
/etc/nsswitch.conf

SEE ALSO gethostbyname (3NSL) , getipnodebyname (3SOCKET) , htonl (3SOCKET)
, inet (3SOCKET) , netdb (3HEAD) , socket (3SOCKET) , hosts (4) ,
ipnodes (4) , nsswitch.conf (4)

194 SunOS 5.8 Last modified 30 Jun 1999

Networking Services Library Functions gethostbyname(3NSL)

NAME gethostbyname, gethostbyname_r, gethostbyaddr, gethostbyaddr_r, gethostent,
gethostent_r, sethostent, endhostent – get network host entry

SYNOPSIS cc [flag ...] file ... −lnsl [library ...]
#include <netdb.h>
struct hostent *gethostbyname (const char *name);

struct hostent *gethostbyname_r (const char *name, struct hostent *result, char *buffer,
intbuflen, int *h_errnop);

struct hostent *gethostbyaddr (const char *addr, int len, int type);

struct hostent *gethostbyaddr_r (const char *addr, int length, int type, struct hostent
*result, char *buffer, int buflen, int *h_errnop);

struct hostent *gethostent (void);

struct hostent *gethostent_r (struct hostent *result, char *buffer, int buflen, int *h_errnop);

int sethostent (int stayopen);

int endhostent (void);

DESCRIPTION These functions are used to obtain entries describing hosts. An entry may come
from any of the sources for hosts specified in the /etc/nsswitch.conf
file. See nsswitch.conf (4) . Please take note that these functions have
been superseded by the newer functions, getipnodebyname (3SOCKET) ,
getipnodebyaddr (3SOCKET) , and getaddrinfo (3SOCKET) . The newer
functions provide greater portability to applications when multithreading is
done or technologies such as IPv6 are used. For example, the functions described
below cannot be used with applications targeted to work with IPv6.

gethostbyname() searches for information for a host with the hostname
specified by the character-string parameter name .

gethostbyaddr() searches for information for a host with a given host
address. The parameter type specifies the family of the address. This should
be one of the address families defined in <sys/socket.h> . The parameter
addr must be a pointer to a buffer containing the address. The address is given
in a form specific to the address family. See the NOTESsection below for more
information. Also see the EXAMPLESsection below on how to convert a “.”
separated Internet IP address notation into the addr parameter. The parameter
len specifies the length of the buffer indicated by addr .

All addresses are returned in network order. In order to interpret the addresses,
byteorder (3SOCKET) must be used for byte order conversion.

The functions sethostent() , gethostent() , and endhostent() are used
to enumerate host entries from the database.

Last modified 17 Nov 1999 SunOS 5.8 195

gethostbyname(3NSL) Networking Services Library Functions

sethostent() sets (or resets) the enumeration to the beginning of the
set of host entries. This function should be called before the first call to
gethostent() . Calls to gethostbyname() and gethostbyaddr() leave
the enumeration position in an indeterminate state. If the stayopen flag is
non-zero, the system may keep allocated resources such as open file descriptors
until a subsequent call to endhostent() .

Successive calls to gethostent() return either successive entries or NULL,
indicating the end of the enumeration.

endhostent() may be called to indicate that the caller expects to do no further
host entry retrieval operations; the system may then deallocate resources it was
using. It is still allowed, but possibly less efficient, for the process to call more
host retrieval functions after calling endhostent() .

Reentrant Interfaces The functions gethostbyname() , gethostbyaddr() , and gethostent()
use static storage that is reused in each call, making these functions unsafe for
use in multi-threaded applications.

The functions gethostbyname_r() , gethostbyaddr_r() , and
gethostent_r() provide reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant
counterpart, named by removing the “_r ” suffix. The reentrant interfaces,
however, use buffers supplied by the caller to store returned results, and are safe
for use in both single-threaded and multi-threaded applications.

Each reentrant interface takes the same parameters as its non-reentrant
counterpart, as well as the following additional parameters. The parameter result
must be a pointer to a struct hostent structure allocated by the caller. On
successful completion, the function returns the host entry in this structure. The
parameter buffer must be a pointer to a buffer supplied by the caller. This buffer
is used as storage space for the host data. All of the pointers within the returned
struct hostent result point to data stored within this buffer. See RETURN
VALUES. The buffer must be large enough to hold all of the data associated with
the host entry. The parameter buflen should give the size in bytes of the buffer
indicated by buffer . The parameter h_errnop should be a pointer to an integer. An
integer error status value is stored there on certain error conditions. See ERRORS.

For enumeration in multi-threaded applications, the position within the
enumeration is a process-wide property shared by all threads. sethostent()
may be used in a multi-threaded application but resets the enumeration position
for all threads. If multiple threads interleave calls to gethostent_r() , the
threads will enumerate disjoint subsets of the host database.

Like their non-reentrant counterparts, gethostbyname_r() and
gethostbyaddr_r() leave the enumeration position in an indeterminate state.

196 SunOS 5.8 Last modified 17 Nov 1999

Networking Services Library Functions gethostbyname(3NSL)

RETURN VALUES Host entries are represented by the struct hostent structure defined in
<netdb.h> :

struct hostent {
char *h_name; /* canonical name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type */
int h_length; /* length of address */
char **h_addr_list; /* list of addresses */

};

See the EXAMPLESsection below for information about how to retrieve a
“.” separated Internet IP address string from the h_addr_list field of struct
hostent .

The functions gethostbyname() , gethostbyname_r() ,
gethostbyaddr() , and gethostbyaddr_r() each return a pointer to a
struct hostent if they successfully locate the requested entry; otherwise
they return NULL .

The functions gethostent() and gethostent_r() each return a pointer to
a struct hostent if they successfully enumerate an entry; otherwise they
return NULL , indicating the end of the enumeration.

The functions gethostbyname() , gethostbyaddr() , and gethostent()
use static storage, so returned data must be copied before a subsequent call to
any of these functions if the data is to be saved.

When the pointer returned by the reentrant functions gethostbyname_r() ,
gethostbyaddr_r() , and gethostent_r() is not NULL , it is always equal
to the result pointer that was supplied by the caller.

The functions sethostent() and endhostent() return 0 on success.

ERRORS The reentrant functions gethostbyname_r() , gethostbyaddr_r() , and
gethostent_r() will return NULLand set errno to ERANGEif the length of the
buffer supplied by caller is not large enough to store the result. See Intro (2) for
the proper usage and interpretation of errno in multithreaded applications.

The reentrant functions gethostbyname_r() and gethostbyaddr_r() set
the integer pointed to by h_errnop to one of these values in case of error.

On failures, the non-reentrant functions gethostbyname() and
gethostbyaddr() set a global integer h_errno to indicate one of these
error codes (defined in <netdb.h>): HOST_NOT_FOUND, TRY_AGAIN,
NO_RECOVERY, NO_DATA,and NO_ADDRESS.

Note however that if a resolver is provided with a malformed address,
or if any other error occurs before gethostbyname() is resolved, then
gethostbyname() returns an internal error with a value of -1.

Last modified 17 Nov 1999 SunOS 5.8 197

gethostbyname(3NSL) Networking Services Library Functions

gethostbyname() will set h_errno to NETDB_INTERNALwhen it returns
a NULL value.

EXAMPLES EXAMPLE 1 Using gethostbyname()

Here is a sample program that gets the canonical name, aliases, and “.” separated
Internet IP addresses for a given “.” separated IP address:

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
main(int argc, const char **argv)
{

ulong_t addr;
struct hostent *hp;
char **p;
if (argc != 2) {

(void) printf("usage: %s IP-address\
", argv[0]);

exit (1);
}
if ((int)(addr = inet_addr(argv[1])) == -1) {

(void) printf("IP-address must be of the form a.b.c.d\
");

exit (2);
}
hp = gethostbyaddr((char *)&addr, sizeof (addr), AF_INET);
if (hp == NULL) {

(void) printf("host information for %s not found\
", argv[1]);

exit (3);
}
for (p = hp->h_addr_list; *p != 0; p++) {

struct in_addr in;
char **q;
(void) memcpy(&in.s_addr, *p, sizeof (in.s_addr));

(void) printf("%s\\t%s", inet_ntoa(in), hp->h_name);
for (q = hp->h_aliases; *q != 0; q++)

(void) printf(" %s", *q);
(void) putchar(’\

’);
}
exit (0);

}

Note that the above sample program is unsafe for use in multithreadeded
applications.

FILES /etc/hosts
/etc/netconfig
/etc/nsswitch.conf

198 SunOS 5.8 Last modified 17 Nov 1999

Networking Services Library Functions gethostbyname(3NSL)

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See "Reentrant Interfaces" in
DESCRIPTION .

SEE ALSO Intro (2) , Intro (3) , byteorder (3SOCKET) , inet (3SOCKET) ,
netdir (3NSL) , hosts (4) , netconfig (4) , nsswitch.conf (4) ,
attributes (5) , netdb (3HEAD)

WARNINGS The reentrant interfaces gethostbyname_r() , gethostbyaddr_r() , and
gethostent_r() are included in this release on an uncommitted basis only,
and are subject to change or removal in future minor releases.

NOTES Programs that use the interfaces described in this manual page cannot be linked
statically since the implementations of these functions employ dynamic loading
and linking of shared objects at run time.

In order to ensure that they all return consistent results, gethostbyname() ,
gethostbyname_r() , and netdir_getbyname() are implemented in terms
of the same internal library function. This function obtains the system-wide
source lookup policy based on the inet family entries in netconfig (4) and
the hosts: entry in nsswitch.conf (4) . Similarly, gethostbyaddr() ,
gethostbyaddr_r() , and netdir_getbyaddr() are implemented in terms
of the same internal library function. If the inet family entries in netconfig (4)
have a “-” in the last column for nametoaddr libraries, then the entry for hosts
in nsswitch.conf will be used; otherwise the nametoaddr libraries in that
column will be used, and nsswitch.conf will not be consulted.

There is no analogue of gethostent() and gethostent_r() in the netdir
functions, so these enumeration functions go straight to the hosts entry
in nsswitch.conf . Thus enumeration may return results from a different
source than that used by gethostbyname() , gethostbyname_r() ,
gethostbyaddr() , and gethostbyaddr_r() .

All the functions that return a struct hostent must always return the
canonical name in the h_name field. This name, by definition, is the well-known
and official hostname shared between all aliases and all addresses. The
underlying source that satisfies the request determines the mapping of the input
name or address into the set of names and addresses in hostent . Different
sources might do that in different ways. If there is more than one alias and more
than one address in hostent , no pairing is implied between them.

The system will strive to put the addresses on the same subnet as that of the
caller first.

Last modified 17 Nov 1999 SunOS 5.8 199

gethostbyname(3NSL) Networking Services Library Functions

When compiling multi-threaded applications, see Intro (3) ,
Notes On Multithread Applications , for information about the use of the
_REENTRANTflag.

Use of the enumeration interfaces gethostent() and gethostent_r() is
discouraged; enumeration may not be supported for all database sources. The
semantics of enumeration are discussed further in nsswitch.conf (4) .

The current implementations of these functions only return or accept addresses
for the Internet address family (type AF_INET) .

The form for an address of type AF_INET is a struct in_addr defined
in <netinet/in.h> . The functions described in inet (3SOCKET) , and
illustrated in the EXAMPLESsection above, are helpful in constructing and
manipulating addresses in this form.

200 SunOS 5.8 Last modified 17 Nov 1999

X/Open Networking Services Library Functions gethostname(3XNET)

NAME gethostname – get name of current host

SYNOPSIS cc [flag ...] file ... −lxnet [library ...]
#include <unistd.h>

int gethostname (char *name, size_t namelen);

DESCRIPTION The gethostname() function returns the standard host name for the current
machine. The namelen argument specifies the size of the array pointed to by the
name argument. The returned name is null-terminated, except that if namelen is
an insufficient length to hold the host name, then the returned name is truncated
and it is unspecified whether the returned name is null-terminated.

Host names are limited to 255 bytes.

RETURN VALUES On successful completion, 0 is returned. Otherwise, –1 is returned.

ERRORS No errors are defined.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO uname(1), gethostid (3C), attributes (5)

Last modified 8 May 1998 SunOS 5.8 201

getipnodebyname(3SOCKET) Network Functions

NAME getipnodebyname, getipnodebyaddr, freehostent – get IP node entry

SYNOPSIS cc [flag ...] file ... −lsocket −lnsl [library ...]

#include <sys/socket.h>
#include <netdb.h>
struct hostent *getipnodebyname (const char *name, int af, int flags, int *error_num);

struct hostent *getipnodebyaddr (const void *src, size_t len, int af, int *error_num);

void freehostent (struct hostent *ptr);

DESCRIPTION The getipnodebyname() function searches the ipnodes database from the
beginning and finds the first entry for which the hostname specified by name
matches the h_name member. It takes an af argument which specifies the address
family, which can be either AF_INET for IPv4 addresses or AF_INET6 for IPv6
addresses. The flags argument determines what results will be returned based
on the value of flags . If the flags argument is set to 0 (zero), then the default
operation of this function is specified as follows:

� If the af argument is AF_INET , then a query is made for an IPv4 address. If
successful, IPv4 addresses are returned and the h_length member of the
hostent structure will be 4. Otherwise, the function returns a null pointer.

� If the af argument is AF_INET6 , then a query is made for an IPv6 address.
If successful, IPv6 addresses are returned and the h_length member of the
hostent structure will be 16. Otherwise, the function returns a null pointer.

The flags argument will change the default actions of the function. The flags
argument can be set by logically ORing any of the following values together:

AI_V4MAPPED

AI_ALL

AI_ADDRCONFIG

Note that a special flags value of AI_DEFAULT as defined below should handle
most applications. That is, porting simple applications to use IPv6 replaces
the call

hptr = gethostbyname(name);

with

hptr = getipnodebyname(name, AF_INET6, AI_DEFAULT);

A flags of 0 implies a strict interpretation of the af argument:

� If flags is 0 and af is AF_INET , then the caller wants only IPv4 addresses. A
query is made for A records. If successful, the IPv4 addresses are returned
and the h_length member of the hostent structure will be 4; otherwise,
the function returns a null pointer.

202 SunOS 5.8 Last modified 17 Nov 1999

Network Functions getipnodebyname(3SOCKET)

� If flags is 0, and if af is AF_INET6 , then the caller wants only IPv6
addresses. A query is made for AAAArecords. If successful, the IPv6
addresses are returned and the h_length member of the hostent
structure will be 16; otherwise, the function returns a null pointer.

Other constants can be logically-ORed into the flags argument, to modify the
behavior of the function.

� If the AI_V4MAPPEDflag is specified along with an af of AF_INET6 , then
the caller will accept IPv4-mapped IPv6 addresses. That is, if no AAAA
records are found, then a query is made for A records, and any found are
returned as IPv4-mapped IPv6 addresses (h_length will be 16). The
AI_V4MAPPEDflag is ignored unless af equals AF_INET6 .

� The AI_ALL flag is used in conjunction with the AI_V4MAPPEDflag, and
is only used with the IPv6 address family. When AI_ALL is logically OR
’d with AI_V4MAPPEDflag then the caller wants all addresses: IPv6 and
IPv4-mapped IPv6. A query is first made for AAAArecords and if successful,
the IPv6 addresses are returned. Another query is then made for A records,
and any found are returned as IPv4-mapped IPv6 addresses. h_length
will be 16. Only if both queries fail does the function return a null pointer.
This flag is ignored unless af equals AF_INET6 .

� The AI_ADDRCONFIGflag specifies that a query for AAAArecords should
occur only if the node has at least one IPv6 source address configured and
a query for A records should occur only if the node has at least one IPv4
source address configured. For example, if the node has no IPv6 source
addresses configured, and af equals AF_INET6 , and the node name being
looked up has both AAAAand A records, then

1. If only AI_ADDRCONFIGis specified, the function returns a null pointer;

2. If AI_ADDRCONFIGor AI_V4MAPPEDis specified, the A records are
returned as IPv4-mapped IPv6 addresses;

The special flags value of AI_DEFAULT is defined as

#define AI_DEFAULT (AI_V4MAPPED | AI_ADDRCONFIG)

The getipnodebyname() function must allow the name argument to be
either a node name or a literal address string, that is, a dotted-decimal IPv4
address or an IPv6 hex address. This saves applications from having to call
inet_pton (3SOCKET) to handle literal address strings.

There are four scenarios based on the type of literal address string and the value
of the af argument. The two simple cases are when name is a dotted-decimal IPv4
address and af equals AF_INET , or when name is an IPv6 hex address and af
equals AF_INET6 . The members of the returned hostent structure are:

Last modified 17 Nov 1999 SunOS 5.8 203

getipnodebyname(3SOCKET) Network Functions

h_name points to a copy of the name argument

h_aliases is a null pointer.

h_addrtype is a copy of the af argument.

h_length is either 4 (for AF_INET) or 16 (for AF_INET6).

h_addr_list[0] is a pointer to the 4-byte or 16-byte binary
address.

h_addr_list[1] is a null pointer

PARAMETERS af address family

flags various flags

name name of host

error_num error storage

src address for lookup

len length of address

ptr pointer to hostent structure

RETURN VALUES Upon successful completion, getipnodebyname() and getipnodebyaddr()
return a hostent structure. Otherwise they return NULL .

The hostent structure does not change from its existing definition when used
with gethostbyname (3NSL) . For example, host entries are represented by the
struct hostent structure defined in <netdb.h> :

struct hostent {
char *h_name; /* canonical name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type */
int h_length; /* length of address */
char **h_addr_list; /* list of addresses */

};

It is an error when name is an IPv6 hex address and af equals AF_INET
. The function’s return value is a null pointer and error_num equals
HOST_NOT_FOUND.

The getipnodebyaddr() function has the same arguments as the existing
gethostbyaddr (3NSL) function, but adds an error number. As with
getipnodebyname() , getipnodebyaddr() is thread safe. The error_num
value is returned to the caller with the appropriate error code to support

204 SunOS 5.8 Last modified 17 Nov 1999

Network Functions getipnodebyname(3SOCKET)

thread safe error code returns. The following error conditions may be returned
for error_num :
HOST_NOT_FOUND Host is unknown.

NO_DATA No address is available for the name specified
in the server request. This is not a soft error.
Another type of name server request may be
successful.

NO_RECOVERY An unexpected server failure occurred. This is a
nonrecoverable error.

TRY_AGAIN This is a soft error that indicates that the local
server did not receive a response from an
authoritative server. A retry at some later time
may be successful.

One possible source of confusion is the handling of IPv4-mapped IPv6 addresses
and IPv4-compatible IPv6 addresses, but the following logic should apply.

1. If af is AF_INET6 , and if len equals 16, and if the IPv6 address is an
IPv4-mapped IPv6 address or an IPv4-compatible IPv6 address, then skip
over the first 12 bytes of the IPv6 address, set af to AF_INET , and set len to
4.

2. If af is AF_INET , lookup the name for the given IPv4 address.

3. If af is AF_INET6 , lookup the name for the given IPv6 address.

4. If the function is returning success, then the single address that is returned
in the hostent structure is a copy of the first argument to the function with
the same address family that was passed as an argument to this function.

All four steps listed are performed, in order.

This structure, and the information pointed to by this structure, are dynamically
allocated by getipnodebyname() and getipnodebyaddr() . The
freehostent() function frees this memory.

EXAMPLES EXAMPLE 1 Getting the canonical name, aliases, and all Internet IP addresses for a
given hostname

The following is a sample program that retrieves the canonical name, aliases,
and all Internet IP addresses, both version 6 and version 4, for a given hostname.

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

Last modified 17 Nov 1999 SunOS 5.8 205

getipnodebyname(3SOCKET) Network Functions

#include <arpa/inet.h>
#include <netdb.h>

main(int argc, const char **argv)
{
char abuf[INET6_ADDRSTRLEN];
int error_num;
struct hostent *hp;
char **p;

if (argc != 2) {
(void) printf("usage: %s hostname\

", argv[0]);
exit (1);

}

/* argv[1] can be a pointer to a hostname or literal IP address */
hp = getipnodebyname(argv[1], AF_INET6, AI_ALL | AI_ADDRCONFIG |

AI_V4MAPPED, &error_num);
if (hp == NULL) {

if (error_num == TRY_AGAIN) {
printf("%s: unknown host or invalid literal address "

"(try again later)\
", argv[1]);

} else {
printf("%s: unknown host or invalid literal address\

",
argv[1]);

}
exit (1);

}
for (p = hp->h_addr_list; *p != 0; p++) {

struct in6_addr in6;
char **q;

bcopy(*p, (caddr_t)&in6, hp->h_length);
(void) printf("%s\\t%s", inet_ntop(AF_INET6, (void *)&in6,

abuf, sizeof(abuf)), hp->h_name);
for (q = hp->h_aliases; *q != 0; q++)
(void) printf(" %s", *q);
(void) putchar(’\

’);
}
freehostent(hp);
exit (0);
}

FILES /etc/inet/hosts
/etc/inet/ipnodes
/etc/netconfig
/etc/nsswitch.conf

206 SunOS 5.8 Last modified 17 Nov 1999

Network Functions getipnodebyname(3SOCKET)

SEE ALSO getaddrinfo (3SOCKET) , gethostbyname (3NSL) , htonl (3SOCKET)
, inet (3SOCKET) , netdb (3HEAD) , hosts (4) , ipnodes (4) ,
nsswitch.conf (4)

NOTES Programs that use the interfaces described in this manual page cannot be linked
statically since the implementations of these functions employ dynamic loading
and linking of shared objects at run time.

There is no enumeration functions provided for IPv6. Existing enumeration
functions, for example, sethostent (3NSL) , will not work in combination with
getipnodebyname() and getipnodebyaddr() .

All the functions that return a struct hostent must always return the
canonical in the h_name field. This name, by definition, is the well-known and
official hostname shared between all aliases and all addresses. The underlying
source that satisfies the request determines the mapping of the input name or
address into the set of names and addresses in hostent . Different sources
might do that in different ways. If there is more than one alias and more than
one address in hostent , no pairing is implied between them.

The current implementations of these functions only return or accept addresses
for the Internet address family (type AF_INET) or the Internet address family
Version 6 (type AF_INET6).

The form for an address of type AF_INET is a struct in_addr defined
in <netinet/in.h> . The form for an address of type AF_INET6 is a
struct in6_addr defined also in <netinet/in.h> . The functions described
in inet_ntop (3SOCKET) and inet_pton (3SOCKET) that are illustrated in the
EXAMPLES section are helpful in constructing and manipulating addresses in
either of these forms.

Last modified 17 Nov 1999 SunOS 5.8 207

getnetbyname(3SOCKET) Sockets Library Functions

NAME getnetbyname, getnetbyname_r, getnetbyaddr, getnetbyaddr_r, getnetent,
getnetent_r, setnetent, endnetent – get network entry

SYNOPSIS cc [flag ...] file ... −lsocket −lnsl [library ...]
#include <netdb.h>
struct netent *getnetbyname (const char *name);

struct netent *getnetbyname_r (const char *name, struct netent *result, char *buffer, int
buflen);

struct netent *getnetbyaddr (long net, inttype);

struct netent *getnetbyaddr_r (long net, inttype, struct netent *result, char *buffer, int
buflen);

struct netent *getnetent (void);

struct netent *getnetent_r (struct netent *result, char *buffer, int buflen);

int setnetent (int stayopen);

int endnetent (void);

DESCRIPTION These functions are used to obtain entries for networks. An entry may come
from any of the sources for networks specified in the /etc/nsswitch.conf
file. See nsswitch.conf (4) .

getnetbyname() searches for a network entry with the network name
specified by the character string parameter name .

getnetbyaddr() searches for a network entry with the network address
specified by net . The parameter type specifies the family of the address. This
should be one of the address families defined in <sys/socket.h> . See the
NOTESsection below for more information.

All addresses are returned in network order. In order to interpret the addresses,
byteorder (3SOCKET) must be used for byte order conversion.

The functions setnetent() , getnetent() , and endnetent() are used
to enumerate network entries from the database.

setnetent() sets (or resets) the enumeration to the beginning of the set
of network entries. This function should be called before the first call to
getnetent() . Calls to getnetbyname() and getnetbyaddr() leave the
enumeration position in an indeterminate state. If the stayopen flag is non-zero,
the system may keep allocated resources such as open file descriptors until a
subsequent call to endnetent() .

Successive calls to getnetent() return either successive entries or NULL,
indicating the end of the enumeration.

208 SunOS 5.8 Last modified 23 May 1998

Sockets Library Functions getnetbyname(3SOCKET)

endnetent() may be called to indicate that the caller expects to do no further
network entry retrieval operations; the system may then deallocate resources it
was using. It is still allowed, but possibly less efficient, for the process to call
more network entry retrieval functions after calling endnetent() .

Reentrant Interfaces The functions getnetbyname() , getnetbyaddr() , and getnetent()
use static storage that is reused in each call, making these routines unsafe for
use in multi-threaded applications.

The functions getnetbyname_r() , getnetbyaddr_r() , and
getnetent_r() provide reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant
counterpart, named by removing the “_r ” suffix. The reentrant interfaces,
however, use buffers supplied by the caller to store returned results, and are safe
for use in both single-threaded and multi-threaded applications.

Each reentrant interface takes the same parameters as its non-reentrant
counterpart, as well as the following additional parameters. The parameter result
must be a pointer to a struct netent structure allocated by the caller. On
successful completion, the function returns the network entry in this structure.
The parameter buffer must be a pointer to a buffer supplied by the caller. This
buffer is used as storage space for the network entry data. All of the pointers
within the returned struct netent result point to data stored within this
buffer. See RETURN VALUES. The buffer must be large enough to hold all of
the data associated with the network entry. The parameter buflen should give
the size in bytes of the buffer indicated by buffer .

For enumeration in multi-threaded applications, the position within the
enumeration is a process-wide property shared by all threads. setnetent()
may be used in a multi-threaded application but resets the enumeration position
for all threads. If multiple threads interleave calls to getnetent_r() , the
threads will enumerate disjointed subsets of the network database.

Like their non-reentrant counterparts, getnetbyname_r() and
getnetbyaddr_r() leave the enumeration position in an indeterminate state.

RETURN VALUES Network entries are represented by the struct netent structure defined
in <netdb.h> .

The functions getnetbyname() , getnetbyname_r() , getnetbyaddr() ,
and getnetbyaddr_r() each return a pointer to a struct netent if they
successfully locate the requested entry; otherwise they return NULL.

The functions getnetent() and getnetent_r() each return a pointer to a
struct netent if they successfully enumerate an entry; otherwise they return
NULL, indicating the end of the enumeration.

Last modified 23 May 1998 SunOS 5.8 209

getnetbyname(3SOCKET) Sockets Library Functions

The functions getnetbyname() , getnetbyaddr() , and getnetent() use
static storage, so returned data must be copied before a subsequent call to any of
these functions if the data is to be saved.

When the pointer returned by the reentrant functions getnetbyname_r() ,
getnetbyaddr_r() , and getnetent_r() is non-NULL, it is always equal to
the result pointer that was supplied by the caller.

The functions setnetent() and endnetent() return 0 on success.

ERRORS The reentrant functions getnetbyname_r() , getnetbyaddr_r() and
getnetent_r() will return NULL and set errno to ERANGEif the length of the
buffer supplied by caller is not large enough to store the result. See intro (2) for
the proper usage and interpretation of errno in multi-threaded applications.

FILES /etc/networks
/etc/nsswitch.conf

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO Intro (2) , Intro (3) , byteorder (3SOCKET) , inet (3SOCKET) , networks (4)
, nsswitch.conf (4) , attributes (5) , netdb (3HEAD)

WARNINGS The reentrant interfaces getnetbyname_r() , getnetbyaddr_r() , and
getnetent_r() are included in this release on an uncommitted basis only, and
are subject to change or removal in future minor releases.

NOTES The current implementation of these functions only return or accept network
numbers for the Internet address family (type AF_INET). The functions
described in inet (3SOCKET) may be helpful in constructing and manipulating
addresses and network numbers in this form.

Programs that use the interfaces described in this manual page cannot be linked
statically since the implementations of these functions employ dynamic loading
and linking of shared objects at run time.

When compiling multi-threaded applications, see Intro (3) ,
Notes On Multithread Applications , for information about the use of the
_REENTRANTflag.

Use of the enumeration interfaces getnetent() and getnetent_r() is
discouraged; enumeration may not be supported for all database sources. The
semantics of enumeration are discussed further in nsswitch.conf (4) .

210 SunOS 5.8 Last modified 23 May 1998

Networking Services Library Functions getnetconfig(3NSL)

NAME getnetconfig, setnetconfig, endnetconfig, getnetconfigent, freenetconfigent,
nc_perror, nc_sperror – get network configuration database entry

SYNOPSIS #include <netconfig.h>

struct netconfig *getnetconfig (void *handlep);

void *setnetconfig (void);

int endnetconfig (void *handlep);

struct netconfig *getnetconfigent (const char *netid);

void freenetconfigent (struct netconfig *netconfigp);

void nc_perror (const char *msg);

char *nc_sperror (void);

DESCRIPTION The library routines described on this page are part of the Network Selection
component. They provide the application access to the system network
configuration database, /etc/netconfig . In addition to the routines for
accessing the netconfig database, Network Selection includes the environment
variable NETPATH(see environ (5)) and the NETPATHaccess routines described
in getnetpath (3NSL) .

getnetconfig() returns a pointer to the current entry in the netconfig
database, formatted as a struct netconfig . Successive calls will return
successive netconfig entries in the netconfig database. getnetconfig()
can be used to search the entire netconfig file. getnetconfig()
returns NULL at the end of the file. handlep is the handle obtained through
setnetconfig() .

A call to setnetconfig() has the effect of “binding” to or “rewinding” the
netconfig database. setnetconfig() must be called before the first call to
getnetconfig() and may be called at any other time. setnetconfig()
need not be called before a call to getnetconfigent() . setnetconfig()
returns a unique handle to be used by getnetconfig() .

endnetconfig() should be called when processing is complete to release
resources for reuse. handlep is the handle obtained through setnetconfig() .
Programmers should be aware, however, that the last call to endnetconfig()
frees all memory allocated by getnetconfig() for the struct netconfig
data structure. endnetconfig() may not be called before setnetconfig() .

getnetconfigent() returns a pointer to the struct netconfig structure
corresponding to netid . It returns NULL if netid is invalid (that is, does not name
an entry in the netconfig database).

Last modified 30 Dec 1996 SunOS 5.8 211

getnetconfig(3NSL) Networking Services Library Functions

freenetconfigent() frees the netconfig structure pointed to by netconfigp
(previously returned by getnetconfigent()).

nc_perror() prints a message to the standard error indicating why any of the
above routines failed. The message is prepended with the string msg and a colon.
A NEWLINE is appended at the end of the message.

nc_sperror() is similar to nc_perror() but instead of sending the message
to the standard error, will return a pointer to a string that contains the error
message.

nc_perror() and nc_sperror() can also be used with the NETPATHaccess
routines defined in getnetpath (3NSL) .

RETURN VALUES setnetconfig() returns a unique handle to be used by getnetconfig() .
In the case of an error, setnetconfig() returns NULL and nc_perror() or
nc_sperror() can be used to print the reason for failure.

getnetconfig() returns a pointer to the current entry in the netconfig()
database, formatted as a struct netconfig . getnetconfig() returns
NULL at the end of the file, or upon failure.

endnetconfig() returns 0 on success and -1 on failure (for example, if
setnetconfig() was not called previously).

On success, getnetconfigent() returns a pointer to the struct netconfig
structure corresponding to netid ; otherwise it returns NULL.

nc_sperror() returns a pointer to a buffer which contains the error message
string. This buffer is overwritten on each call. In multithreaded applications,
this buffer is implemented as thread-specific data.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO getnetpath (3NSL) , netconfig (4) , attributes (5) , environ (5)

ONC+ Developer’s Guide Transport Interfaces Programming Guide

212 SunOS 5.8 Last modified 30 Dec 1996

Networking Services Library Functions getnetpath(3NSL)

NAME getnetpath, setnetpath, endnetpath – get /etc/netconfig entry corresponding to
NETPATH component

SYNOPSIS #include <netconfig.h>
struct netconfig *getnetpath (void *handlep);

void *setnetpath (void);

int endnetpath (void *handlep);

DESCRIPTION The routines described on this page are part of the Network Selection component.
They provide the application access to the system network configuration
database, /etc/netconfig , as it is "filtered" by the NETPATHenvironment
variable. See environ (5) . See getnetconfig (3NSL) for other routines that
also access the network configuration database directly. The NETPATHvariable is
a list of colon-separated network identifiers.

getnetpath() returns a pointer to the netconfig database entry
corresponding to the first valid NETPATHcomponent. The netconfig entry is
formatted as a struct netconfig . On each subsequent call, getnetpath()
returns a pointer to the netconfig entry that corresponds to the next
valid NETPATHcomponent. getnetpath() can thus be used to search the
netconfig database for all networks included in the NETPATHvariable. When
NETPATHhas been exhausted, getnetpath() returns NULL.

A call to setnetpath() "binds" to or "rewinds" NETPATH. setnetpath()
must be called before the first call to getnetpath() and may be called at any
other time. It returns a handle that is used by getnetpath() .

getnetpath() silently ignores invalid NETPATHcomponents. A NETPATH
component is invalid if there is no corresponding entry in the netconfig
database.

If the NETPATHvariable is unset , getnetpath() behaves as if NETPATHwere
set to the sequence of "default" or "visible" networks in the netconfig database,
in the order in which they are listed.

endnetpath() may be called to "unbind" from NETPATHwhen processing is
complete, releasing resources for reuse. Programmers should be aware, however,
that endnetpath() frees all memory allocated by getnetpath() for the
struct netconfig data structure. endnetpath() returns 0 on success and
-1 on failure (for example, if setnetpath() was not called previously).

RETURN VALUES setnetpath() returns a handle that is used by getnetpath() . In case of an
error, setnetpath() returns NULL. nc_perror() or nc_sperror() can be
used to print out the reason for failure. See getnetconfig (3NSL) .

Last modified 30 Dec 1996 SunOS 5.8 213

getnetpath(3NSL) Networking Services Library Functions

When first called, getnetpath() returns a pointer to the netconfig database
entry corresponding to the first valid NETPATHcomponent. When NETPATHhas
been exhausted, getnetpath() returns NULL.

endnetpath() returns 0 on success and -1 on failure (for example, if
setnetpath() was not called previously).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO getnetconfig (3NSL) , netconfig (4) , attributes (5) , environ (5)

ONC+ Developer’s Guide Transport Interfaces Programming Guide

214 SunOS 5.8 Last modified 30 Dec 1996

Sockets Library Functions getpeername(3SOCKET)

NAME getpeername – get name of connected peer

SYNOPSIS cc [flag ...] file ... −lsocket −lnsl [library ...]
#include <sys/types.h>
#include <sys/socket.h>

int getpeername (int s, struct sockaddr *name, socklen_t *namelen);

DESCRIPTION getpeername() returns the name of the peer connected to socket s. The
int pointed to by the namelen parameter should be initialized to indicate the
amount of space pointed to by name. On return it contains the actual size of
the name returned (in bytes), prior to any truncation. The name is truncated
if the buffer provided is too small.

RETURN VALUES If successful, getpeername() returns 0; otherwise it returns −1 and sets
errno to indicate the error.

ERRORS The call succeeds unless:
EBADF The argument s is not a valid descriptor.

ENOMEM There was insufficient user memory for the
operation to complete.

ENOSR There were insufficient STREAMS resources
available for the operation to complete.

ENOTCONN The socket is not connected.

ENOTSOCK The argument s is not a socket.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO accept (3SOCKET), bind (3SOCKET), getsockname (3SOCKET),
socket (3SOCKET), attributes (5), socket (3HEAD)

Last modified 26 Mar 1998 SunOS 5.8 215

getpeername(3XNET) X/Open Networking Services Library Functions

NAME getpeername – get the name of the peer socket

SYNOPSIS cc [flag ...] file ... −lxnet [library ...]
#include <sys/socket.h>

int getpeername (int socket, struct sockaddr *address, socklen_t *address_len);

DESCRIPTION The getpeername() function retrieves the peer address of the specified
socket, stores this address in the sockaddr structure pointed to by the address
argument, and stores the length of this address in the object pointed to by the
address_len argument.

If the actual length of the address is greater than the length of the supplied
sockaddr structure, the stored address will be truncated.

If the protocol permits connections by unbound clients, and the peer is not
bound, then the value stored in the object pointed to by address is unspecified.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno
is set to indicate the error.

ERRORS The getpeername() function will fail if:
EBADF The socket argument is not a valid file descriptor.

EFAULT The address or address_len parameter can not be accessed
or written.

EINVAL The socket has been shut down.

ENOTCONN The socket is not connected or otherwise has not had the
peer prespecified.

ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The operation is not supported for the socket protocol.

The getpeername() function may fail if:
ENOBUFS Insufficient resources were available in the system to

complete the call.

ENOSR There were insufficient STREAMS resources available for
the operation to complete.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

216 SunOS 5.8 Last modified 8 May 1998

X/Open Networking Services Library Functions getpeername(3XNET)

SEE ALSO accept (3XNET), bind (3XNET), getsockname (3XNET), socket (3XNET),
attributes (5)

Last modified 8 May 1998 SunOS 5.8 217

getprotobyname(3SOCKET) Sockets Library Functions

NAME getprotobyname, getprotobyname_r, getprotobynumber, getprotobynumber_r,
getprotoent, getprotoent_r, setprotoent, endprotoent – get protocol entry

SYNOPSIS cc [flag ...] file ... −lsocket −lnsl [library ...]
#include <netdb.h>
struct protoent *getprotobyname (const char *name);

struct protoent *getprotobyname_r (const char *name, struct protoent *result, char
*buffer, int buflen);

struct protoent *getprotobynumber (int proto);

struct protoent *getprotobynumber_r (int proto, struct protoent *result, char *buffer, int
buflen);

struct protoent *getprotoent (void);

struct protoent *getprotoent_r (struct protoent *result, char *buffer, int buflen);

int setprotoent (int stayopen);

int endprotoent (void);

DESCRIPTION These routines return a protocol entry. Two types of interfaces are
supported: reentrant (getprotobyname_r() , getprotobynumber_r()
, and getprotoent_r()) and non-reentrant (getprotobyname() ,
getprotobynumber() , and getprotoent()). The reentrant routines
may be used in single-threaded applications and are safe for multi-threaded
applications, making them the preferred interfaces.

The reentrant routines require additional parameters which are used to return
results data. result is a pointer to a struct protoent structure and will be
where the returned results will be stored. buffer is used as storage space for
elements of the returned results. buflen is the size of buffer and should be large
enough to contain all returned data. buflen must be at least 1024 bytes.

getprotobyname_r() , getprotobynumber_r() , and getprotoent_r()
each return a protocol entry.

The entry may come from one of the following sources: the protocols file (see
protocols (4)), the NIS maps “protocols.byname” and “protocols.bynumber”,
and the NIS+ table “protocols”. The sources and their lookup order are specified
in the /etc/nsswitch.conf file (see nsswitch.conf (4) for details). Some
name services such as NIS will return only one name for a host, whereas others
such as NIS+ or DNS will return all aliases.

getprotobyname_r() and getprotobynumber_r() sequentially search
from the beginning of the file until a matching protocol name or protocol number
is found, or until an EOF is encountered.

218 SunOS 5.8 Last modified 16 May 1997

Sockets Library Functions getprotobyname(3SOCKET)

getprotobyname() and getprotobynumber() have the same functionality
as getprotobyname_r() and getprotobynumber_r() except that a
static buffer is used to store returned results. These routines are unsafe in a
multi-threaded application.

getprotoent_r() enumerates protocol entries: successive calls to
getprotoent_r() will return either successive protocol entries or NULL.
Enumeration may not be supported by some sources. Note that if multiple
threads call getprotoent_r() , each will retrieve a subset of the protocol
database.

getprotent() has the same functionality as getprotent_r() except that
a static buffer is used to store returned results. This routine is unsafe in a
multi-threaded application.

setprotoent() "rewinds" to the beginning of the enumeration
of protocol entries. If the stayopen flag is non-zero, resources
such as open file descriptors are not deallocated after each call to
getprotobynumber_r() and getprotobyname_r() . Calls to
getprotobyname_r() , getprotobyname() , getprotobynumber_r()
and getprotobynumber() may leave the enumeration in an indeterminate
state, so setprotoent() should be called before the first getprotoent_r()
or getprotoent() . Note that setprotoent() has process-wide scope, and
“rewinds” the protocol entries for all threads calling getprotoent_r() as well
as main-thread calls to getprotoent() .

endprotoent() may be called to indicate that protocol processing is complete;
the system may then close any open protocols file, deallocate storage, and so
forth. It is legitimate, but possibly less efficient, to call more protocol routines
after endprotoent() .

The internal representation of a protocol entry is a protoent structure defined
in <netdb.h> with the following members:

char *p_name;
char **p_aliases;
int p_proto;

RETURN VALUES getprotobyname_r(), getprotobyname(), getprotobynumber_r(),
and getprotobynumber() return a pointer to a struct protoent if they
successfully locate the requested entry; otherwise they return NULL.

getprotoent_r() and getprotoent() return a pointer to a struct
protoent if they successfully enumerate an entry; otherwise they return NULL,
indicating the end of the enumeration.

Last modified 16 May 1997 SunOS 5.8 219

getprotobyname(3SOCKET) Sockets Library Functions

ERRORS getprotobyname_r(), getprotobynumber_r(), and getprotoent_r()
will fail if the following is true:
ERANGE length of the buffer supplied by caller is not large enough

to store the result.

FILES /etc/protocols
/etc/nsswitch.conf

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTESbelow.

SEE ALSO intro (3) , nsswitch.conf (4) , protocols (4) , attributes (5) ,
netdb (3HEAD)

NOTES Although getprotobyname_r() , getprotobynumber_r() , and
getprotoent_r() are not mentioned by POSIX.4a Draft 6, they were added
to complete the functionality provided by similar thread-safe functions. These
interfaces are subject to change to be compatible with the "spirit" of POSIX.4a
when it is approved as a standard.

When compiling multithreaded applications, see intro (3) ,
Notes On Multithread Applications , for information about the use of the
_REENTRANTflag.

The routines getprotobyname_r() , getprotobynumber_r() , and
getprotoent_r() are reentrant and multi-thread safe. The reentrant interfaces
can be used in single-threaded as well as multi-threaded applications and are
therefore the preferred interfaces.

The routines getprotobyname() , getprotobyaddr() , and
getprotoent() use static storage, so returned data must be copied if it is to be
saved. Because of their use of static storage for returned data, these routines are
not safe for multi-threaded applications.

setprotoent() and endprotoent() have process-wide scope, and are
therefore not safe in multi-threaded applications.

Use of getprotoent_r() and getprotoent() is discouraged; enumeration
is well-defined for the protocols file and is supported (albeit inefficiently) for NIS
and NIS+, but in general may not be well-defined. The semantics of enumeration
are discussed in nsswitch.conf (4) .

BUGS Only the Internet protocols are currently understood.

220 SunOS 5.8 Last modified 16 May 1997

Sockets Library Functions getprotobyname(3SOCKET)

Programs that call getprotobyname_r() or getprotobynumber_r()
routines cannot be linked statically since the implementation of these routines
requires dynamic linker functionality to access shared objects at run time.

Last modified 16 May 1997 SunOS 5.8 221

getpublickey(3NSL) Networking Services Library Functions

NAME getpublickey, getsecretkey, publickey – retrieve public or secret key

SYNOPSIS #include <rpc/rpc.h>
#include <rpc/key_prot.h>
int getpublickey (const char netname[MAXNETNAMELEN], char
publickey[HEXKEYBYTES+1]);

int getsecretkey (const char netname[MAXNETNAMELEN], char
secretkey[HEXKEYBYTES+1], const char *passwd);

DESCRIPTION getpublickey() and getsecretkey() get public and secret keys
for netname . The key may come from one of the following sources: the
/etc/publickey file (see publickey (4)) or the NIS map “publickey.byname”
or the NIS+ table “cred.org_dir”. The sources and their lookup order are
specified in the /etc/nsswitch.conf file (see nsswitch.conf (4)).

getsecretkey() has an extra argument, passwd , used to decrypt the
encrypted secret key stored in the database.

RETURN VALUES Both routines return 1 if they are successful in finding the key, 0 otherwise. The
keys are returned as NULL-terminated, hexadecimal strings. If the password
supplied to getsecretkey() fails to decrypt the secret key, the routine will
return 1 but the secretkey [0] will be set to NULL.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO secure_rpc (3NSL) , nsswitch.conf (4) , publickey (4) , attributes (5)

WARNINGS If getpublickey() gets the public key from any source other than NIS+, all
authenticated NIS+ operations may fail. To ensure that this does not happen,
edit the nsswitch.conf (4) file to make sure that the public key is obtained
from NIS+.

222 SunOS 5.8 Last modified 30 Dec 1996

Networking Services Library Functions getrpcbyname(3NSL)

NAME getrpcbyname, getrpcbyname_r, getrpcbynumber, getrpcbynumber_r, getrpcent,
getrpcent_r, setrpcent, endrpcent – get RPC entry

SYNOPSIS cc [flag ...] file ... −lnsl [library ...]
#include <rpc/rpcent.h>
struct rpcent *getrpcbyname (const char *name);

struct rpcent *getrpcbyname_r (const char *name, struct rpcent *result, char *buffer, int
buflen);

struct rpcent *getrpcbynumber (const int number);

struct rpcent *getrpcbynumber_r (const int number, struct rpcent *result, char *buffer, int
buflen);

struct rpcent *getrpcent (void);

struct rpcent *getrpcent_r (struct rpcent *result, char *buffer, int buflen);

void setrpcent (const int stayopen);

void endrpcent (void);

DESCRIPTION These functions are used to obtain entries for RPC (Remote Procedure Call)
services. An entry may come from any of the sources for rpc specified in the
/etc/nsswitch.conf file (see nsswitch.conf (4)).

getrpcbyname() searches for an entry with the RPC service name specified by
the parameter name .

getrpcbynumber() searches for an entry with the RPC program number
number .

The functions setrpcent() , getrpcent() , and endrpcent() are used to
enumerate RPC entries from the database.

setrpcent() sets (or resets) the enumeration to the beginning of the set of RPC
entries. This function should be called before the first call to getrpcent() .
Calls to getrpcbyname() and getrpcbynumber() leave the enumeration
position in an indeterminate state. If the stayopen flag is non-zero, the system
may keep allocated resources such as open file descriptors until a subsequent
call to endrpcent() .

Successive calls to getrpcent() return either successive entries or NULL,
indicating the end of the enumeration.

endrpcent() may be called to indicate that the caller expects to do no further
RPC entry retrieval operations; the system may then deallocate resources it was
using. It is still allowed, but possibly less efficient, for the process to call more
RPC entry retrieval functions after calling endrpcent() .

Last modified 20 Feb 1998 SunOS 5.8 223

getrpcbyname(3NSL) Networking Services Library Functions

Reentrant Interfaces The functions getrpcbyname() , getrpcbynumber() , and getrpcent()
use static storage that is re-used in each call, making these routines unsafe for
use in multithreaded applications.

The functions getrpcbyname_r() , getrpcbynumber_r() , and
getrpcent_r() provide reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant
counterpart, named by removing the “_r ” suffix. The reentrant interfaces,
however, use buffers supplied by the caller to store returned results, and are safe
for use in both single-threaded and multithreaded applications.

Each reentrant interface takes the same parameters as its non-reentrant
counterpart, as well as the following additional parameters. The parameter result
must be a pointer to a struct rpcent structure allocated by the caller. On
successful completion, the function returns the RPC entry in this structure. The
parameter buffer must be a pointer to a buffer supplied by the caller. This buffer
is used as storage space for the RPC entry data. All of the pointers within the
returned struct rpcent result point to data stored within this buffer (see
RETURN VALUES). The buffer must be large enough to hold all of the data
associated with the RPC entry. The parameter buflen should give the size in
bytes of the buffer indicated by buffer .

For enumeration in multithreaded applications, the position within the
enumeration is a process-wide property shared by all threads. setrpcent()
may be used in a multithreaded application but resets the enumeration position
for all threads. If multiple threads interleave calls to getrpcent_r() , the
threads will enumerate disjoint subsets of the RPC entry database.

Like their non-reentrant counterparts, getrpcbyname_r() and
getrpcbynumber_r() leave the enumeration position in an indeterminate
state.

RETURN VALUES RPC entries are represented by the struct rpcent structure defined in
<rpc/rpcent.h> :

struct rpcent {
char *r_name; /* name of this rpc service
char **r_aliases; /* zero-terminated list of alternate names */
int r_number; /* rpc program number */

};

The functions getrpcbyname() , getrpcbyname_r() ,
getrpcbynumber() , and getrpcbynumber_r() each return a pointer to
a struct rpcent if they successfully locate the requested entry; otherwise
they return NULL.

224 SunOS 5.8 Last modified 20 Feb 1998

Networking Services Library Functions getrpcbyname(3NSL)

The functions getrpcent() and getrpcent_r() each return a pointer to a
struct rpcent if they successfully enumerate an entry; otherwise they return
NULL, indicating the end of the enumeration.

The functions getrpcbyname() , getrpcbynumber() , and getrpcent()
use static storage, so returned data must be copied before a subsequent call to
any of these functions if the data is to be saved.

When the pointer returned by the reentrant functions getrpcbyname_r() ,
getrpcbynumber_r() , and getrpcent_r() is non-NULL, it is always equal
to the result pointer that was supplied by the caller.

ERRORS The reentrant functions getrpcyname_r() , getrpcbynumber_r() and
getrpcent_r() will return NULL and set errno to ERANGEif the length of
the buffer supplied by caller is not large enough to store the result. See intro (2)
for the proper usage and interpretation of errno in multithreaded applications.

FILES /etc/rpc
/etc/nsswitch.conf

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See "Reentrant Interfaces" in
DESCRIPTION .

SEE ALSO rpcinfo (1M) , rpc (3NSL) , nsswitch.conf (4) , rpc (4) , attributes (5)

WARNINGS The reentrant interfaces getrpcbyname_r() , getrpcbynumber_r() , and
getrpcent_r() are included in this release on an uncommitted basis only, and
are subject to change or removal in future minor releases.

NOTES Programs that use the interfaces described in this manual page cannot be linked
statically since the implementations of these functions employ dynamic loading
and linking of shared objects at run time.

When compiling multithreaded applications, see intro (3) ,
Notes On Multithreaded Applications , for information about the use of the
_REENTRANTflag.

Use of the enumeration interfaces getrpcent() and getrpcent_r() is
discouraged; enumeration may not be supported for all database sources. The
semantics of enumeration are discussed further in nsswitch.conf (4) .

Last modified 20 Feb 1998 SunOS 5.8 225

getservbyname(3SOCKET) Sockets Library Functions

NAME getservbyname, getservbyname_r, getservbyport, getservbyport_r, getservent,
getservent_r, setservent, endservent – get service entry

SYNOPSIS cc [flag ...] file ... −lsocket −lnsl [library ...]
#include <netdb.h>
struct servent *getservbyname (const char *name, const char *proto);

struct servent *getservbyname_r (const char *name, const char *proto, struct servent
*result, char *buffer, int buflen);

struct servent *getservbyport (int port, const char *proto);

struct servent *getservbyport_r (int port, const char *proto, struct servent *result,
char *buffer, int buflen);

struct servent *getservent (void);

struct servent *getservent_r (struct servent *result, char *buffer, int buflen);

int setservent (int stayopen);

int endservent (void);

DESCRIPTION These functions are used to obtain entries for Internet services. An
entry may come from any of the sources for services specified in the
/etc/nsswitch.conf file. See nsswitch.conf (4) .

getservbyname() and getservbyport() sequentially search from the
beginning of the file until a matching protocol name or port number is found, or
until end-of-file is encountered. If a protocol name is also supplied (non- NULL),
searches must also match the protocol.

getservbyname() searches for an entry with the Internet service name
specified by the parameter name .

getservbyport() searches for an entry with the Internet port number port .

All addresses are returned in network order. In order to interpret the addresses,
byteorder (3SOCKET)

must be used for byte order conversion. The string proto is used by both
getservbyname() and getservbyport() to restrict the search to entries
with the specified protocol. If proto is NULL, entries with any protocol may
be returned.

The functions setservent() , getservent() , and endservent() are used
to enumerate entries from the services database.

setservent() sets (or resets) the enumeration to the beginning of the
set of service entries. This function should be called before the first call
to getservent() . Calls to the functions getservbyname() and

226 SunOS 5.8 Last modified 23 Mar 1998

Sockets Library Functions getservbyname(3SOCKET)

getservbyport() leave the enumeration position in an indeterminate state. If
the stayopen flag is non-zero, the system may keep allocated resources such as
open file descriptors until a subsequent call to endservent() .

getservent() reads the next line of the file, opening the file if necessary.
getservent() opens and rewinds the file. If the stayopen flag is non-zero, the
net data base will not be closed after each call to getservent() (either directly,
or indirectly through one of the other "getserv" calls).

Successive calls to getservent() return either successive entries or NULL,
indicating the end of the enumeration.

endservent() closes the file. endservent() may be called to indicate that
the caller expects to do no further service entry retrieval operations; the system
may then deallocate resources it was using. It is still allowed, but possibly less
efficient, for the process to call more service entry retrieval functions after
calling endservent() .

Reentrant Interfaces The functions getservbyname() , getservbyport() , and getservent()
use static storage that is re-used in each call, making these functions unsafe for
use in multithreaded applications.

The functions getservbyname_r() , getservbyport_r() , and
getservent_r() provide reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant
counterpart, named by removing the "_r " suffix. The reentrant interfaces,
however, use buffers supplied by the caller to store returned results, and are safe
for use in both single-threaded and multithreaded applications.

Each reentrant interface takes the same parameters as its non-reentrant
counterpart, as well as the following additional parameters. The parameter result
must be a pointer to a struct servent structure allocated by the caller. On
successful completion, the function returns the service entry in this structure.
The parameter buffer must be a pointer to a buffer supplied by the caller. This
buffer is used as storage space for the service entry data. All of the pointers
within the returned struct servent result point to data stored within this
buffer. See the RETURN VALUESsection of this man page. The buffer must
be large enough to hold all of the data associated with the service entry. The
parameter buflen should give the size in bytes of the buffer indicated by buffer .

For enumeration in multithreaded applications, the position within the
enumeration is a process-wide property shared by all threads. setservent()
may be used in a multithreaded application but resets the enumeration position
for all threads. If multiple threads interleave calls to getservent_r() , the
threads will enumerate disjoint subsets of the service database.

Like their non-reentrant counterparts, getservbyname_r() and
getservbyport_r() leave the enumeration position in an indeterminate state.

Last modified 23 Mar 1998 SunOS 5.8 227

getservbyname(3SOCKET) Sockets Library Functions

RETURN VALUES Service entries are represented by the struct servent structure defined
in <netdb.h> :

struct servent {
char *s_name; /* official name of service */
char **s_aliases; /* alias list */
int s_port; /* port service resides at */
char *s_proto; /* protocol to use */

};

The members of this structure are:
s_name The official name of the service.

s_aliases A zero terminated list of alternate names for the service.

s_port The port number at which the service resides. Port numbers
are returned in network byte order.

s_proto The name of the protocol to use when contacting the service

The functions getservbyname() , getservbyname_r() ,
getservbyport() , and getservbyport_r() each return a pointer to a
struct servent if they successfully locate the requested entry; otherwise
they return NULL.

The functions getservent() and getservent_r() each return a pointer to
a struct servent if they successfully enumerate an entry; otherwise they
return NULL, indicating the end of the enumeration.

The functions getservbyname() , getservbyport() , and getservent()
use static storage, so returned data must be copied before a subsequent call to
any of these functions if the data is to be saved.

When the pointer returned by the reentrant functions getservbyname_r() ,
getservbyport_r() , and getservent_r() is non-null, it is always equal to
the result pointer that was supplied by the caller.

ERRORS The reentrant functions getservbyname_r() , getservbyport_r() and
getservent_r() will return NULLand set errno to ERANGEif the length of
the buffer supplied by caller is not large enough to store the result. See intro (2)
for the proper usage and interpretation of errno in multithreaded applications.

FILES /etc/services Internet network services

/etc/netconfig network configuration file

/etc/nsswitch.conf configuration file for the name-service switch

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

228 SunOS 5.8 Last modified 23 Mar 1998

Sockets Library Functions getservbyname(3SOCKET)

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See "Reentrant Interfaces" in
DESCRIPTION .

SEE ALSO intro (2) , intro (3) , byteorder (3SOCKET) , netdir (3NSL) , netconfig (4) ,
nsswitch.conf (4) , services (4) , attributes (5) , netdb (3HEAD)

WARNINGS The reentrant interfaces getservbyname_r() , getservbyport_r() , and
getservent_r() are included in this release on an uncommitted basis only,
and are subject to change or removal in future minor releases.

NOTES The functions that return struct servent return the least significant
16-bits of the s_port field in network byte order . getservbyport()
and getservbyport_r() also expect the input parameter port in the
network byte order . See htons (3SOCKET) for more details on converting between
host and network byte orders.

Programs that use the interfaces described in this manual page cannot be linked
statically since the implementations of these functions employ dynamic loading
and linking of shared objects at run time.

In order to ensure that they all return consistent results, getservbyname() ,
getservbyname_r() , and netdir_getbyname() are implemented in terms
of the same internal library function. This function obtains the system-wide
source lookup policy based on the inet family entries in netconfig (4) and
the services: entry in nsswitch.conf (4) . Similarly, getservbyport() ,
getservbyport_r() , and netdir_getbyaddr() are implemented in terms
of the same internal library function. If the inet family entries in netconfig (4)
have a “-” in the last column for nametoaddr libraries, then the entry for
services in nsswitch.conf will be used; otherwise the nametoaddr libraries
in that column will be used, and nsswitch.conf will not be consulted.

There is no analogue of getservent() and getservent_r() in the netdir
functions, so these enumeration functions go straight to the services entry
in nsswitch.conf . Thus enumeration may return results from a different
source than that used by getservbyname() , getservbyname_r() ,
getservbyport() , and getservbyport_r() .

When compiling multithreaded applications, see intro (3) ,
Notes On Multithread Applications , for information about the use of the
_REENTRANTflag.

Use of the enumeration interfaces getservent() and getservent_r() is
discouraged; enumeration may not be supported for all database sources. The
semantics of enumeration are discussed further in nsswitch.conf (4) .

Last modified 23 Mar 1998 SunOS 5.8 229

getsockname(3SOCKET) Sockets Library Functions

NAME getsockname – get socket name

SYNOPSIS cc [flag ...] file ... −lsocket −lnsl [library ...]
#include <sys/types.h>
#include <sys/socket.h>

int getsockname (int s, struct sockaddr *name, socklen_t *namelen);

DESCRIPTION getsockname() returns the current name for socket s. The namelen parameter
should be initialized to indicate the amount of space pointed to by name. On
return it contains the actual size in bytes of the name returned.

RETURN VALUES If successful, getsockname() returns 0; otherwise it returns −1 and sets
errno to indicate the error.

ERRORS The call succeeds unless:
EBADF The argument s is not a valid file descriptor.

ENOMEM There was insufficient memory available for the operation to
complete.

ENOSR There were insufficient STREAMS resources available for
the operation to complete.

ENOTSOCK The argument s is not a socket.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO bind (3SOCKET), getpeername (3SOCKET), socket (3SOCKET),
attributes (5)

230 SunOS 5.8 Last modified 12 Dec 1997

X/Open Networking Services Library Functions getsockname(3XNET)

NAME getsockname – get the socket name

SYNOPSIS cc [flag ...] file ... −lxnet [library ...]
#include <sys/socket.h>

int getsockname (int socket, struct sockaddr *address, socklen_t *address_len);

DESCRIPTION The getsockname() function retrieves the locally-bound name of the specified
socket, stores this address in the sockaddr structure pointed to by the address
argument, and stores the length of this address in the object pointed to by the
address_len argument.

If the actual length of the address is greater than the length of the supplied
sockaddr structure, the stored address will be truncated.

If the socket has not been bound to a local name, the value stored in the object
pointed to by address is unspecified.

RETURN VALUES Upon successful completion, 0 is returned, the address argument points to the
address of the socket, and the address_len argument points to the length of the
address. Otherwise, −1 is returned and errno is set to indicate the error.

ERRORS The getsockname() function will fail:
EBADF The socket argument is not a valid file descriptor.

EFAULT The address or address_len parameter can not be accessed
or written.

ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The operation is not supported for this socket’s protocol.

The getsockname() function may fail if:
EINVAL The socket has been shut down.

ENOBUFS Insufficient resources were available in the system to
complete the call.

ENOSR There were insufficient STREAMS resources available for
the operation to complete.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO accept (3XNET), bind (3XNET), getpeername (3XNET), socket (3XNET)
attributes (5)

Last modified 8 May 1998 SunOS 5.8 231

getsockopt(3SOCKET) Sockets Library Functions

NAME getsockopt, setsockopt – get and set options on sockets

SYNOPSIS cc [flag ...] file ... −lsocket −lnsl [library ...]
#include <sys/types.h>
#include <sys/socket.h>
int getsockopt (int s, int level, int optname, void *optval, int *optlen);

int setsockopt (int s, int level, int optname, const void *optval, int optlen);

DESCRIPTION getsockopt() and setsockopt() manipulate options associated with a
socket. Options may exist at multiple protocol levels; they are always present at
the uppermost "socket" level.

When manipulating socket options, the level at which the option resides and the
name of the option must be specified. To manipulate options at the "socket" level,
level is specified as SOL_SOCKET. To manipulate options at any other level, level
is the protocol number of the protocol that controls the option. For example, to
indicate that an option is to be interpreted by the TCP protocol, level is set to the
TCP protocol number (see getprotobyname (3SOCKET)).

The parameters optval and optlen are used to access option values for
setsockopt() . For getsockopt() , they identify a buffer in which the
value(s) for the requested option(s) are to be returned. For getsockopt() ,
optlen is a value-result parameter, initially containing the size of the buffer
pointed to by optval , and modified on return to indicate the actual size of the
value returned. Use a 0 optval if no option value is to be supplied or returned.

optname and any specified options are passed uninterpreted to the appropriate
protocol module for interpretation. The include file <sys/socket.h> contains
definitions for the socket-level options described below. Options at other
protocol levels vary in format and name.

Most socket-level options take an int for optval . For setsockopt() , the
optval parameter should be non-zero to enable a boolean option, or zero if the
option is to be disabled. SO_LINGERuses a struct linger parameter that
specifies the desired state of the option and the linger interval (see below).
struct linger is defined in <sys/socket.h> . struct linger contains
the following members:
l_onoff on = 1/off = 0

l_linger linger time, in seconds

The following options are recognized at the socket level. Except as noted, each
may be examined with getsockopt() and set with setsockopt() .
SO_DEBUG enable/disable recording of debugging

information

SO_REUSEADDR enable/disable local address reuse

232 SunOS 5.8 Last modified 8 Nov 1999

Sockets Library Functions getsockopt(3SOCKET)

SO_KEEPALIVE enable/disable keep connections alive

SO_DONTROUTE enable/disable routing bypass for outgoing
messages

SO_LINGER linger on close if data is present

SO_BROADCAST enable/disable permission to transmit broadcast
messages

SO_OOBINLINE enable/disable reception of out-of-band data
in band

SO_SNDBUF set buffer size for output

SO_RCVBUF set buffer size for input

SO_DGRAM_ERRIND application wants delayed error

SO_TYPE get the type of the socket (get only)

SO_ERROR get and clear error on the socket (get only)

SO_DEBUGenables debugging in the underlying protocol modules.
SO_REUSEADDRindicates that the rules used in validating addresses supplied in
a bind (3SOCKET) call should allow reuse of local addresses. SO_KEEPALIVE
enables the periodic transmission of messages on a connected socket. If the
connected party fails to respond to these messages, the connection is considered
broken and processes using the socket are notified using a SIGPIPE signal.
SO_DONTROUTEindicates that outgoing messages should bypass the standard
routing facilities. Instead, messages are directed to the appropriate network
interface according to the network portion of the destination address.

SO_LINGERcontrols the action taken when unsent messages are queued on a
socket and a close (2) is performed. If the socket promises reliable delivery of
data and SO_LINGERis set, the system will block the process on the close()
attempt until it is able to transmit the data or until it decides it is unable to
deliver the information (a timeout period, termed the linger interval, is specified
in the setsockopt() call when SO_LINGERis requested). If SO_LINGERis
disabled and a close() is issued, the system will process the close() in a
manner that allows the process to continue as quickly as possible.

The option SO_BROADCASTrequests permission to send broadcast datagrams on
the socket. With protocols that support out-of-band data, the SO_OOBINLINE
option requests that out-of-band data be placed in the normal data input queue
as received; it will then be accessible with recv() or read() calls without the
MSG_OOBflag.

SO_SNDBUFand SO_RCVBUFare options that adjust the normal buffer sizes
allocated for output and input buffers, respectively. The buffer size may be

Last modified 8 Nov 1999 SunOS 5.8 233

getsockopt(3SOCKET) Sockets Library Functions

increased for high-volume connections or may be decreased to limit the possible
backlog of incoming data. SunOS sets the maximum buffer size for both UDP
and TCP to 256 Kbytes.

By default, delayed errors (such as ICMP port unreachable packets) are returned
only for connected datagram sockets. SO_DGRAM_ERRINDmakes it possible to
receive errors for datagram sockets that are not connected. When this option
is set, certain delayed errors received after completion of a sendto() or
sendmsg() operation will cause a subsequent sendto() or sendmsg()
operation using the same destination address (to parameter) to fail with the
appropriate error. See send (3SOCKET) .

Finally, SO_TYPEand SO_ERRORare options used only with getsockopt()
. SO_TYPEreturns the type of the socket (for example, SOCK_STREAM). It is
useful for servers that inherit sockets on startup. SO_ERRORreturns any pending
error on the socket and clears the error status. It may be used to check for
asynchronous errors on connected datagram sockets or for other asynchronous
errors.

RETURN VALUES If successful, getsockopt() returns 0 ; otherwise, it returns -1 and sets
errno to indicate the error.

ERRORS The call succeeds unless:
EBADF The argument s is not a valid file descriptor.

ENOMEM There was insufficient memory available for the
operation to complete.

ENOPROTOOPT The option is unknown at the level indicated.

ENOSR There were insufficient STREAMS resources
available for the operation to complete.

ENOTSOCK The argument s is not a socket.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO close (2) , ioctl (2) , read (2) , bind (3SOCKET) , getprotobyname (3SOCKET)
, recv (3SOCKET) , send (3SOCKET) , socket (3SOCKET) , attributes (5)

234 SunOS 5.8 Last modified 8 Nov 1999

X/Open Networking Services Library Functions getsockopt(3XNET)

NAME getsockopt – get the socket options

SYNOPSIS cc [flag ...] file ... −lxnet [library ...]
#include <sys/socket.h>

int getsockopt (int socket, int level, int option_name, void *option_value, socklen_t
*option_len);

DESCRIPTION The getsockopt() function retrieves the value for the option specified by the
option_name argument for the socket specified by the socket argument. If the size
of the option value is greater than option_len, the value stored in the object
pointed to by the option_value argument will be silently truncated. Otherwise,
the object pointed to by the option_len argument will be modified to indicate the
actual length of the value.

The level argument specifies the protocol level at which the option resides. To
retrieve options at the socket level, specify the level argument as SOL_SOCKET.
To retrieve options at other levels, supply the appropriate protocol number for
the protocol controlling the option. For example, to indicate that an option will
be interpreted by the TCP (Transport Control Protocol), set level to the protocol
number of TCP, as defined in the <netinet/in.h > header, or as determined by
using getprotobyname (3XNET) function.

The socket in use may require the process to have appropriate privileges to use
the getsockopt() function.

The option_name argument specifies a single option to be retrieved. It can be one
of the following values defined in <sys/socket.h> :
SO_DEBUG Reports whether debugging information is being

recorded. This option stores an int value. This
is a boolean option.

SO_ACCEPTCONN Reports whether socket listening is enabled. This
option stores an int value.

SO_BROADCAST Reports whether transmission of broadcast
messages is supported, if this is supported by the
protocol. This option stores an int value. This
is a boolean option.

SO_REUSEADDR Reports whether the rules used in validating
addresses supplied to bind (3XNET) should allow
reuse of local addresses, if this is supported by
the protocol. This option stores an int value.
This is a boolean option.

Last modified 8 May 1998 SunOS 5.8 235

getsockopt(3XNET) X/Open Networking Services Library Functions

SO_KEEPALIVE Reports whether connections are kept active
with periodic transmission of messages, if this
is supported by the protocol.

If the connected socket fails to respond to these
messages, the connection is broken and processes
writing to that socket are notified with a
SIGPIPE signal. This option stores an int value.

This is a boolean option.

SO_LINGER Reports whether the socket lingers on close (2) if
data is present. If SO_LINGER is set, the system
blocks the process during close (2) until it can
transmit the data or until the end of the interval
indicated by the l_linger member, whichever
comes first. If SO_LINGER is not specified, and
close (2) is issued, the system handles the call
in a way that allows the process to continue as
quickly as possible. This option stores a linger
structure.

SO_OOBINLINE Reports whether the socket leaves received
out-of-band data (data marked urgent) in line.
This option stores an int value. This is a boolean
option.

SO_SNDBUF Reports send buffer size information. This option
stores an int value.

SO_RCVBUF Reports receive buffer size information. This
option stores an int value.

SO_ERROR Reports information about error status and clears
it. This option stores an int value.

SO_TYPE Reports the socket type. This option stores an
int value.

SO_DONTROUTE Reports whether outgoing messages bypass the
standard routing facilities. The destination must
be on a directly-connected network, and messages
are directed to the appropriate network interface
according to the destination address. The effect,
if any, of this option depends on what protocol
is in use. This option stores an int value. This
is a boolean option.

236 SunOS 5.8 Last modified 8 May 1998

X/Open Networking Services Library Functions getsockopt(3XNET)

For boolean options, a zero value indicates that the option is disabled and a
non-zero value indicates that the option is enabled.

Options at other protocol levels vary in format and name.

The socket in use may require the process to have appropriate privileges to use
the getsockopt() function.

RETURN VALUES Upon successful completion, getsockopt() returns 0. Otherwise, −1 is
returned and errno is set to indicate the error.

ERRORS The getsockopt() function will fail if:
EBADF The socket argument is not a valid file descriptor.

EFAULT The option_value or option_len parameter can not be accessed
or written.

EINVAL The specified option is invalid at the specified socket level.

ENOPROTOOPT The option is not supported by the protocol.

ENOTSOCK The socket argument does not refer to a socket.

The getsockopt() function may fail if:
EACCES The calling process does not have the appropriate privileges.

EINVAL The socket has been shut down.

ENOBUFS Insufficient resources are available in the system to complete
the call.

ENOSR There were insufficient STREAMS resources available for
the operation to complete.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO close (2), bind (3XNET), endprotoent (3XNET), setsockopt (3XNET),
socket (3XNET), attributes

Last modified 8 May 1998 SunOS 5.8 237

htonl(3XNET) X/Open Networking Services Library Functions

NAME htonl, htons, ntohl, ntohs – convert values between host and network byte order

SYNOPSIS cc [flag ...] file ... −lxnet [library ...]
#include <arpa/inet.h>

uint32_t htonl (uint32_t hostlong);

uint16_t htons (uint16_t hostshort);

uint32_t ntohl (uint32_t netlong);

uint16_t ntohs (uint16_t netshort);

DESCRIPTION These functions convert 16-bit and 32-bit quantities between network byte
order and host byte order.

The uint32_t and uint16_t types are made available by inclusion of
<inttypes.h> .

USAGE These functions are most often used in conjunction with Internet addresses and
ports as returned by gethostent (3XNET) and getservent (3XNET) .

On some architectures these functions are defined as macros that expand to
the value of their argument.

RETURN VALUES The htonl() and htons() functions return the argument value converted
from host to network byte order.

The ntohl() and ntohs() functions return the argument value converted
from network to host byte order.

ERRORS No errors are defined.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO endhostent (3XNET) , endservent (3XNET) , attributes (5)

238 SunOS 5.8 Last modified 8 May 1998

Networking Services Library Functions if_nametoindex(3NSL)

NAME if_nametoindex, if_indextoname, if_nameindex, if_freenameindex – routines to
map Internet Protocol network interface names and interface indexes

SYNOPSIS cc [flag ...] file ... −lxnet [library ...]
#include <net/if.h>
unsigned int if_nametoindex (const char *ifname);

char *if_indextoname (unsigned int ifindex, char *ifname);

struct if_nameindex *if_nameindex (void);

void if_freenameindex (struct if_nameindex *ptr);

DESCRIPTION This API defines two functions that map between an Internet Protocol network
interface name and index, a third function that returns all the interface names
and indexes, and a fourth function to return the dynamic memory allocated
by the previous function.

Network interfaces are normally known by names such as "le0", "sl1",
"ppp2", and the like. The ifname argument must point to a buffer of at least
IF_NAMESIZE bytes into which the interface name corresponding to the
specified index is returned. IF_NAMESIZE is defined in <net/if.h> and its
value includes a terminating null byte at the end of the interface name.

if_nametoindex() The if_nametoindex() function returns the interface index corresponding to
the interface name pointed to by the ifname pointer. If the specified interface
name does not exist, the return value is 0 , and errno is set to ENXIO . If there
was a system error, such as running out of memory, the return value is 0 and
errno is set to the proper value, for example, ENOMEM.

if_indextoname() The if_indextoname() function maps an interface index into its
corresponding name. This pointer is also the return value of the function. If
there is no interface corresponding to the specified index, NULL is returned, and
errno is set to ENXIO , if there was a system error, such as running out of
memory, if_indextoname() returns NULLand errno would be set to the
proper value, for example, ENOMEM.

*if_nameindex() The if_nameindex() function returns an array of if_nameindex structures,
one structure per interface. The if_nameindex structure holds the information
about a single interface and is defined when the <net/if.h> header is included:

struct if_nameindex {
unsigned int if_index; /* 1, 2, ... */
char *if_name; /* null terminated name: "le0", ... */

};

The end of the array of structures is indicated by a structure with an if_index
of 0 and an if_name of NULL . The function returns a null pointer upon an error
and sets errno to the appropriate value. The memory used for this array of

Last modified 10 Nov 1999 SunOS 5.8 239

if_nametoindex(3NSL) Networking Services Library Functions

structures along with the interface names pointed to by the if_name members is
obtained dynamically. This memory is freed by the if_freenameindex()
function.

if_freenameindex() The if_freenameindex() function frees the dynamic memory that was
allocated by if_nameindex() . The argument to this function must be a
pointer that was returned by if_nameindex() .

PARAMETERS
ifname interface name.

ifindex interface index.

ptr pointer returned by if_nameindex() .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32-bit)

SUNWcslx (64-bit)

MT Level MT Safe

Interface Stability Standard

SEE ALSO ifconfig (1M) , attributes (5) , if (7P)

240 SunOS 5.8 Last modified 10 Nov 1999

X/Open Networking Services Library Functions if_nametoindex(3XNET)

NAME if_nametoindex, if_indextoname, if_nameindex, if_freenameindex – functions to
map Internet Protocol network interface names and interface indexes

SYNOPSIS cc [flag ...] file ... −lxnet [library ...]
#include <net/if.h>
unsigned int if_nametoindex (const char *ifname);

char *if_indextoname (unsigned int ifindex, char *ifname);

struct if_nameindex *if_nameindex (void);

void if_freenameindex (struct if_nameindex *ptr);

DESCRIPTION This API defines two functions that map between an Internet Protocol network
interface name and index, a third function that returns all the interface names
and indexes, and a fourth function to return the dynamic memory allocated
by the previous function.

Network interfaces are normally known by names such as "le0", "sl1",
"ppp2", and the like. The ifname argument must point to a buffer of at least
IF_NAMESIZE bytes into which the interface name corresponding to the
specified index is returned. IF_NAMESIZE is defined in <net/if.h> and its
value includes a terminating null byte at the end of the interface name.

if_nametoindex() The if_nametoindex() function returns the interface index corresponding to
the interface name pointed to by the ifname pointer. If the specified interface
name does not exist, the return value is 0 , and errno is set to ENXIO . If there
was a system error, such as running out of memory, the return value is 0 and
errno is set to the proper value, for example, ENOMEM.

if_indextoname() The if_indextoname() function maps an interface index into its
corresponding name. This pointer is also the return value of the function. If
there is no interface corresponding to the specified index, NULL is returned, and
errno is set to ENXIO , if there was a system error, such as running out of
memory, if_indextoname() returns NULLand errno would be set to the
proper value, for example, ENOMEM.

*if_nameindex() The if_nameindex() function returns an array of if_nameindex structures,
one structure per interface. The if_nameindex structure holds the information
about a single interface and is defined when the <net/if.h> header is included:

struct if_nameindex {
unsigned int if_index; /* 1, 2, ... */
char *if_name; /* null terminated name: "le0", ... */

};

The end of the array of structures is indicated by a structure with an if_index
of 0 and an if_name of NULL . The function returns a null pointer upon an error
and sets errno to the appropriate value. The memory used for this array of

Last modified 18 Jun 1999 SunOS 5.8 241

if_nametoindex(3XNET) X/Open Networking Services Library Functions

structures along with the interface names pointed to by the if_name members is
obtained dynamically. This memory is freed by the if_freenameindex()
function.

if_freenameindex() The if_freenameindex() function frees the dynamic memory that was
allocated by if_nameindex() . The argument to this function must be a
pointer that was returned by if_nameindex() .

PARAMETERS
ifname interface name.

ifindex interface index.

ptr pointer returned by if_nameindex() .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsl (32-bit)

SUNWcslx (64-bit)

MT Level MT Safe

Interface Stability Standard

SEE ALSO ifconfig (1M) , attributes (5) , if (7P)

242 SunOS 5.8 Last modified 18 Jun 1999

Sockets Library Functions inet(3SOCKET)

NAME inet, inet6, inet_ntop, inet_pton, inet_addr, inet_network, inet_makeaddr,
inet_lnaof, inet_netof, inet_ntoa – Internet address manipulation

SYNOPSIS cc [flag ...] file ... −lsocket −lnsl [library ...]
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
const char *inet_ntop (int af, const void *addr, char *cp, size_t size);

int inet_pton (int af, const char *cp, void *addr);

in_addr_t inet_addr (const char *cp);

in_addr_t inet_network (const char *cp);

struct in_addr inet_makeaddr (const int net, const int lna);

int inet_lnaof (const struct in_addr in);

int inet_netof (const struct in_addr in);

char *inet_ntoa (const struct in_addr in);

DESCRIPTION The inet_ntop() and inet_pton() routines can manipulate both
IPv4 and IPv6 addresses, whereas inet_addr() , inet_network() ,
inet_makeaddr() , inet_lnaof() , inet_netof() , and inet_ntoa()
can only manipulate IPv4 addresses.

The inet_ntop() routine converts a numeric address into a string suitable for
presentation. The af argument specifies the family of the address. This can be
AF_INET or AF_INET6 . The addr argument points to a buffer holding an IPv4
address if the af argument is AF_INET , or an IPv6 address if the af argument is
AF_INET6 ; the address must be in network byte order. The cp argument points
to a buffer where the routine will store the resulting string. The size argument
specifies the size of this buffer. The application must specify a non-NULLcp
argument. For IPv6 addresses, the buffer must be at least 46-octets. For IPv4
addresses, the buffer must be at least 16-octets. In order to allow applications to
easily declare buffers of the proper size to store IPv4 and IPv6 addresses in string
form, the following two constants are defined in <netinet/in.h> :

#define INET_ADDRSTRLEN 16
#define INET6_ADDRSTRLEN 46

The inet_pton() routine converts an address in its standard text presentation
form into its numeric binary form. The af argument specifies the family of the
address. Currently the AF_INET and AF_INET6 address families are supported.
The cp argument points to the string being passed in. The addr argument points
to a buffer into which the routine stores the numeric address. The calling

Last modified 3 Nov 1999 SunOS 5.8 243

inet(3SOCKET) Sockets Library Functions

application must ensure that the buffer referred to by addr is large enough to hold
the numeric address, at least 4 bytes for AF_INET or 16 bytes for AF_INET6 .

The inet_addr() and inet_network() routines interpret character strings
representing numbers expressed in the IPv4 standard ‘. ’ notation, returning
numbers suitable for use as IPv4 addresses and IPv4 network numbers,
respectively. The routine inet_makeaddr() takes an IPv4 network number
and a local network address and constructs an IPv4 address from it. The routines
inet_netof() and inet_lnaof() break apart IPv4 host addresses, returning
the network number and local network address part, respectively.

The inet_ntoa() routine returns a pointer to a string in the base 256 notation
d.d.d.d . See INTERNET ADDRESSES.

Internet addresses are returned in network order, bytes ordered from left to
right. Network numbers and local address parts are returned as machine format
integer values.

INTERNET
ADDRESSES
IPv6 Addresses There are three conventional forms for representing IPv6 addresses as strings:

1. The preferred form is x:x:x:x:x:x:x:x , where the ’x’s are the
hexadecimal values of the eight 16-bit pieces of the address, for example,

1080:0:0:0:8:800:200C:417A

Note that it is not necessary to write the leading zeros in an individual
field. However, there must be at least one numeral in every field, except
as described below.

2. Due to some methods of allocating certain styles of IPv6 addresses, it will be
common for addresses to contain long strings of zero bits. In order to make
writing addresses containing zero bits easier, a special syntax is available to
compress the zeros. The use of ":: " indicates multiple groups of 16-bits
of zeros. The ":: " can only appear once in an address. The ":: " can
also be used to compress the leading and/or trailing zeros in an address.
For example,

1080::8:800:200C:417A

3. An alternative form that is sometimes more convenient when dealing with a
mixed environment of IPv4 and IPv6 nodes is x:x:x:x:x:x:d.d.d.d ,
where the ’x ’s are the hexadecimal values of the six high-order 16-bit pieces
of the address, and the ’d ’s are the decimal values of the four low-order
8-bit pieces of the standard IPv4 representation address, for example,

::FFFF:129.144.52.38
::129.144.52.38

244 SunOS 5.8 Last modified 3 Nov 1999

Sockets Library Functions inet(3SOCKET)

where "::FFFF:d.d.d.d " and "::d.d.d.d " are, respectively, the
general forms of an IPv4-mapped IPv6 address and an IPv4-compatible
IPv6 address. Note that the IPv4 portion must be in the "d.d.d.d " form.
The following forms are invalid:

::FFFF:d.d.d
::FFFF:d.d
::d.d.d
::d.d

The following form:

::FFFF:d

is valid, however it is an unconventional representation of the
IPv4-compatible IPv6 address,

::255.255.0.d

while "::d " corresponds to the general IPv6 address "0:0:0:0:0:0:0:d ".

IPv4 Addresses Values specified using ‘.’ notation take one of the following forms:

d.d.d.d
d.d.d
d.d
d

When four parts are specified, each is interpreted as a byte of data and assigned,
from left to right, to the four bytes of an IPv4 address.

When a three part address is specified, the last part is interpreted as a 16-bit
quantity and placed in the right most two bytes of the network address. This
makes the three part address format convenient for specifying Class B network
addresses as 128.net.host .

When a two part address is supplied, the last part is interpreted as a 24-bit
quantity and placed in the right most three bytes of the network address. This
makes the two part address format convenient for specifying Class A network
addresses as net.host .

When only one part is given, the value is stored directly in the network address
without any byte rearrangement.

With the exception of inet_pton() , numbers supplied as parts in ‘. ’ notation
may be decimal, octal, or hexadecimal, as specified in the C language. For
example, a leading 0x or 0X implies hexadecimal; otherwise, a leading 0 implies
octal; otherwise, the number is interpreted as decimal.

For IPv4 addresses, inet_pton() only accepts a string in the standard IPv4
dotted-decimal form:

Last modified 3 Nov 1999 SunOS 5.8 245

inet(3SOCKET) Sockets Library Functions

d.d.d.d

where each number has one to three digits with a decimal value between 0
and 255.

RETURN VALUES The inet_ntop() routine returns a pointer to the buffer containing a string
if the conversion succeeds, and NULLotherwise. Upon failure, errno is set to
EAFNOSUPPORTif the af argument is invalid or ENOSPCif the size of the result
buffer is inadequate.

inet_pton() returns 1 if the conversion succeeds, 0 if the input is not a valid
IPv4 dotted-decimal string or a valid IPv6 address string, or -1 with errno set
to EAFNOSUPPORTif the af argument is unknown.

The value -1 is returned by inet_addr() and inet_network() for
malformed requests.

The routines inet_netof() and inet_lnaof() break apart IPv4 host
addresses, returning the network number and local network address part,
respectively.

The routine inet_ntoa() returns a pointer to a string in the base 256 notation
d.d.d.d described in INTERNET ADDRESSES.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO gethostbyname (3NSL) , getipnodebyname (3SOCKET) ,
getnetbyname (3SOCKET) , inet (3HEAD) , hosts (4) , ipnodes (4) ,
networks (4) , attributes (5)

NOTES The return value from inet_ntoa() points to a buffer which is overwritten on
each call. This buffer is implemented as thread-specific data in multithreaded
applications.

BUGS The problem of host byte ordering versus network byte ordering is confusing. A
simple way to specify Class C network addresses in a manner similar to that
for Class B and Class A is needed.

246 SunOS 5.8 Last modified 3 Nov 1999

X/Open Networking Services Library Functions inet_addr(3XNET)

NAME inet_addr, inet_network, inet_makeaddr, inet_lnaof, inet_netof, inet_ntoa –
Internet address manipulation

SYNOPSIS cc [flag ...] file ... −lxnet [library ...]
#include <arpa/inet.h>
in_addr_t inet_addr (const char *cp);

in_addr_t inet_lnaof (struct in_addr in);

struct in_addr inet_makeaddr (in_addr_t net, in_addr_t lna);

in_addr_t inet_netof (struct in_addr in);

in_addr_t inet_network (const char *cp);

char *inet_ntoa (struct in_addr in);

DESCRIPTION The inet_addr() function converts the string pointed to by cp , in the Internet
standard dot notation, to an integer value suitable for use as an Internet address.

The inet_lnaof() function takes an Internet host address specified by in and
extracts the local network address part, in host byte order.

The inet_makeaddr() function takes the Internet network number specified
by net and the local network address specified by lna , both in host byte order,
and constructs an Internet address from them.

The inet_netof() function takes an Internet host address specified by in and
extracts the network number part, in host byte order.

The inet_network() function converts the string pointed to by cp , in the
Internet standard dot notation, to an integer value suitable for use as an Internet
network number.

The inet_ntoa() function converts the Internet host address specified by in to
a string in the Internet standard dot notation.

All Internet addresses are returned in network order (bytes ordered from left to
right).

Values specified using dot notation take one of the following forms:
a.b.c.d When four parts are specified, each is interpreted as a byte

of data and assigned, from left to right, to the four bytes of
an Internet address.

a.b.c When a three-part address is specified, the last part is
interpreted as a 16-bit quantity and placed in the rightmost
two bytes of the network address. This makes the three-part
address format convenient for specifying Class B network
addresses as 128. net .host .

Last modified 8 May 1998 SunOS 5.8 247

inet_addr(3XNET) X/Open Networking Services Library Functions

a.b When a two-part address is supplied, the last part is
interpreted as a 24-bit quantity and placed in the rightmost
three bytes of the network address. This makes the two-part
address format convenient for specifying Class A network
addresses as net . host .

a When only one part is given, the value is stored directly in
the network address without any byte rearrangement.

All numbers supplied as parts in dot notation may be decimal, octal, or
hexadecimal, that is, a leading 0x or 0X implies hexadecimal, as specified in the
ISO C standard; otherwise, a leading 0 implies octal; otherwise, the number
is interpreted as decimal).

USAGE The return value of inet_ntoa() may point to static data that may be
overwritten by subsequent calls to inet_ntoa() .

RETURN VALUES Upon successful completion, inet_addr() returns the Internet address.
Otherwise, it returns (in_addr_t)(-1).

Upon successful completion, inet_network() returns the converted Internet
network number. Otherwise, it returns (in_addr_t)(-1).

The inet_makeaddr() function returns the constructed Internet address.

The inet_lnaof() function returns the local network address part.

The inet_netof() function returns the network number.

The inet_ntoa() function returns a pointer to the network address in
Internet-standard dot notation.

ERRORS No errors are defined.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO endhostent (3XNET) , endnetent (3XNET) , attributes (5)

248 SunOS 5.8 Last modified 8 May 1998

Kerberos Library Functions kerberos(3KRB)

NAME kerberos, krb_mk_req, krb_rd_req, krb_kntoln, krb_set_key, krb_get_cred,
krb_mk_safe, krb_rd_safe, krb_mk_err, krb_rd_err – Kerberos authentication
library

SYNOPSIS cc [flag ...] file ... −lkrb [library ...]
#include <kerberos/krb.h>
extern char *krb_err_txt[];
int krb_mk_req (KTEXT authent, const char *service, const char *instance, const char *realm,
const long checksum);

int krb_rd_req (const KTEXT authent, const char * service, char * instance, const long
from_addr, AUTH_DAT *ad, const char *fn);

int krb_kntoln (const AUTH_DAT *ad, char *lname);

int krb_set_key (const char *key, const int cvt);

int krb_get_cred (const char *service, const char *instance, const char *realm,
CREDENTIALS *c);

long krb_mk_safe (const uchar_t *in, uchar_t *out, const ulong_t in_length, const
des_cblock *key, const struct sockaddr_in *sender, const struct sockaddr_in *receiver);

long krb_rd_safe (const uchar_t *in, const ulong_t length, const des_cblock *key, const
struct sockaddr_in *sender, const struct sockaddr_in *receiver, MSG_DAT *msg_data);

long krb_mk_err (uchar_t *out, const long code, const char *string);

long krb_rd_err (const uchar_t *in, const ulong_t length, long *code, MSG_DAT
*msg_data);

DESCRIPTION This library supports network authentication and various related operations.
The library contains many routines beyond those described in this man page, but
they are not intended to be used directly. Instead, they are called by the routines
that are described, the authentication server and the login program.

krb_err_txt[] contains text string descriptions of various Kerberos error
codes returned by some of the routines below.

krb_mk_req() takes a pointer to a text structure in which an authenticator
is to be built. It also takes the name, instance, and realm of the service to be
used and an optional checksum. It is up to the application to decide how to
generate the checksum. krb_mk_req() then retrieves a ticket for the desired
service and creates an authenticator. The authenticator is built in authent and is
accessible to the calling procedure.

It is up to the application to get the authenticator to the service where it will
be read by krb_rd_req() . Unless an attacker possesses the session key
contained in the ticket, it will be unable to modify the authenticator. Thus, the

Last modified 30 Dec 1996 SunOS 5.8 249

kerberos(3KRB) Kerberos Library Functions

checksum can be used to verify the authenticity of the other data that will
pass through a connection.

krb_mk_req() returns KSUCCESS if successful, otherwise a Kerberos error
code as defined in <kerberos/krb.h> .

krb_rd_req() takes an authenticator of type KTEXT, a service name, an
instance, the address of the host originating the request, and a pointer to a
structure of type AUTH_DAT which is filled in with information obtained from
the authenticator. It also optionally takes the name of the file in which it will
find the secret key(s) for the service. If the supplied instance is "*", then the first
service key with the same service name found in the service key file will be used,
and the instance argument will be filled in with the chosen instance. This means
that the caller must provide space for such an instance name.

If the last argument is the null string (""), krb_rd_req() will use the file
/etc/srvtab to find its keys. If the last argument is NULL, it will assume that
the key has been set by krb_set_key() and will not bother looking further.

krb_rd_req() is used to find out information about the principal when a
request has been made to a service. It is up to the application protocol to get the
authenticator from the client to the service. The authenticator is then passed to
krb_rd_req() to extract the desired information.

krb_rd_req() returns zero (RD_AP_OK) upon successful authentication.
If a packet was forged, modified, or replayed, authentication will fail. If the
authentication fails, a non-zero value is returned indicating the particular
problem encountered. See <kerberos/krb.h> for the list of error codes.

krb_kntoln() converts a Kerberos name to a local name. It takes a structure
of type AUTH_DAT and uses the name, instance, and realm to determine the
corresponding local name. A valid local name is returned if the instance is NULL
and the realm is the same as the local realm. The local name returned is the
Kerberos name and can be used by an application to change uids, directories,
or other parameters. This routine is not an integral part of Kerberos, but is
provided to support the use of Kerberos in existing utilities. This routine returns
KSUCCESS or KFAILURE.

krb_set_key() takes as an argument a DES key. It then creates a key schedule
from it and saves the original key to be used as an initialization vector. It is used
to set the server’s key which must be used to decrypt tickets.

If called with a non-zero second argument, krb_set_key() will first convert
the input from a string of arbitrary length to a DES key by encrypting it with
a one-way function.

In most cases it should not be necessary to call krb_set_key() . The necessary
keys will usually be obtained and set inside krb_rd_req() . krb_set_key()

250 SunOS 5.8 Last modified 30 Dec 1996

Kerberos Library Functions kerberos(3KRB)

is provided for those applications that do not wish to place the application keys
on disk. It returns 0 for success, otherwise a non-zero value.

krb_get_cred() searches the caller’s ticket file for a ticket for the given service
, instance , and realm . If a ticket is found, the given CREDENTIALS structure is
filled in with the ticket information.

If the ticket was found, krb_get_cred() returns GC_OK. If the ticket file
cannot be found, cannot be read, does not belong to the user (other than root), is
not a regular file, or is in the wrong mode, the error GC_TKFIL is returned.

krb_mk_safe() creates an authenticated, but unencrypted message from any
arbitrary application data, pointed to by in and in_length bytes long. The private
session key, pointed to by key, is used to seed the quad_cksum() checksum
algorithm used as part of the authentication. sender and receiver point to the
Internet address of the two parties. This message does not provide privacy, but
does protect (via detection) against modifications, insertions or replays. The
encapsulated message and header are placed in the area pointed to by out and
the routine returns the length of the output, or -1 indicating an error.

krb_rd_safe() authenticates a received krb_mk_safe() message. in points
to the beginning of the received message, whose length is specified in in_length .
The private session key, pointed to by key , is used to seed the quad_cksum()
routine as part of the authentication. msg_data is a pointer to a MSG_DAT struct,
defined in <kerberos/krb.h> . The routine fills in these MSG_DAT fields: the
app_data field with a pointer to the application data, app_length with the length of
the app_data field, time_sec and time_5ms with the timestamps in the message,
and swap with a 1 if the byte order of the receiver is different than that of the
sender. (The application must still determine if it is appropriate to byte-swap
application data; the Kerberos protocol fields are already taken care of.)

The routine returns zero if successful, or a Kerberos error code. Modified
messages and old messages cause errors, but it is up to the caller to check the
time sequence of messages, and to check against recently replayed messages.

krb_mk_err() constructs an application level error message that may be used
along with krb_mk_safe() . out is a pointer to the output buffer, code is an
application specific error code, and string is an application specific error string.
This routine returns the length of the error reply.

krb_rd_err() unpacks a received krb_mk_err() message. in points to
the beginning of the received message, whose length is specified in in_length
. code is a pointer to a value to be filled in with the error value provided
by the application. msg_data is a pointer to a MSG_DAT struct, defined in
<kerberos/krb.h> . The routine fills in these MSG_DAT fields: the app_data
field with a pointer to the application error text, app_length with the length of the
app_data field, and swap with a 1 if the byte order of the receiver is different

Last modified 30 Dec 1996 SunOS 5.8 251

kerberos(3KRB) Kerberos Library Functions

than that of the sender. (The application must still determine if it is appropriate
to byte-swap application data; the Kerberos protocol fields are already taken
care of).

The routine returns zero if the error message has been successfully received, or a
Kerberos error code.

The KTEXT structure is used to pass around text of varying lengths. It consists of
a buffer for the data, and a length. krb_rd_req() takes an argument of this
type containing the authenticator, and krb_mk_req() returns the authenticator
in a structure of this type. KTEXT itself is really a pointer to the structure. The
actual structure is of type KTEXT_ST.

The AUTH_DAT structure is filled in by krb_rd_req() . It must be allocated
before calling krb_rd_req() , and a pointer to it is passed. The structure is
filled in with data obtained from Kerberos. The MSG_DAT structure is filled in
by either krb_rd_safe() or krb_rd_err() . It must be allocated before the
call and a pointer to it is passed. The structure is filled in with data obtained
from Kerberos.

FILES /usr/lib/libkrb.*
/etc/aname
/etc/srvtab
/tmp/tkt
uid

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO kerberos (1) , kerberos_rpc (3KRB) , krb_realmofhost (3KRB) ,
krb_sendauth (3KRB) , krb_set_tkt_string (3KRB) , krb.conf (4) ,
krb.realms (4) , attributes (5)

NOTES These interfaces are unsafe in multithreaded applications. Unsafe interfaces
should be called only from the main thread.

BUGS The caller of krb_rd_req() and krb_rd_safe() must check time order and
for replay attempts.

AUTHORS Clifford Neuman, MIT Project Athena Steve Miller, MIT Project Athena/Digital
Equipment Corporation

RESTRICTIONS COPYRIGHT 1985,1986,1989 Massachusetts Institute of Technology

252 SunOS 5.8 Last modified 30 Dec 1996

Kerberos Library Functions kerberos_rpc(3KRB)

NAME kerberos_rpc, authkerb_getucred, authkerb_seccreate, svc_kerb_reg – library
routines for remote procedure calls using Kerberos authentication

SYNOPSIS cc [flag ...] file ... −lkrb [library ...]
#include <rpc/rpc.h>
#include <sys/types.h>

int authkerb_getucred (const struct svc_req *rqst, uid_t *uidp, gid_t *gidp, short
*gidlenp, int gidlist [NGROUPS]);

AUTH *authkerb_seccreate (const char *service, const char *srv_inst, const char *realm,
const uint_t window, const char *timehost, int *status);

int svc_kerb_reg (const SVCXPRT *xprt, const char *name, const char *inst, const char
*realm);

DESCRIPTION RPC library routines allow C programs to make procedure calls on other
machines across the network.

RPC supports various authentication flavors. Among them are:
AUTH_NONE (none) no authentication.

AUTH_SYS Traditional UNIX-style authentication.

AUTH_DES DES encryption-based authentication.

AUTH_KERB Kerberos encryption-based authentication.

The authkerb_getucred() , authkerb_seccreate() , and
svc_kerb_reg() routines implement the AUTH_KERBauthentication flavor.
The kerbd daemon (see kerbd (1M)) must be running for the AUTH_KERB
authentication system to work for kernel based services such as NFS, and
kinit (1) must have been run by the user in all cases. Only the AUTH_KERB
style of authentication is discussed here. For information about the AUTH_NONE
and AUTH_SYSstyles of authentication, refer to rpc_clnt_auth (3NSL)
. For information about the AUTH_DESstyle of authentication, refer to
secure_rpc (3NSL) .

Routines See rpc (3NSL) for the definition of the AUTHdata structure.
int authkerb_getucred(const struct svc_req *rqst , uid_t *uidp , gid_t *gidp ,
short *gidlenp , int gidlist [NGROUPS]);

authkerb_getucred() is used on the server side for converting an
AUTH_KERBcredential received in an RPC request, which is operating
system independent, into an AUTH_SYScredential. This routine returns 1
if it succeeds, 0 if it fails.

* uidp is set to the numerical ID of the user associated with the RPC request
referenced by rqst . * gidp is set to the numerical ID of the user’s group. The
numerical IDs of the other groups to which the user belongs are stored in

Last modified 20 Feb 1998 SunOS 5.8 253

kerberos_rpc(3KRB) Kerberos Library Functions

gidlist []. * gidlenp is set to the number of valid group ID entries returned in
gidlist []. All information returned by this routine is based on the Kerberos
principal name contained in rqst . This principal name is taken to be the
login name of the user, and the IDs returned are the same as if that user had
physically logged in to the system.

AUTH *authkerb_seccreate(const char *service , const char *srv_inst , const char
*realm , const uint_t window , const char *timehost , int *status);

authkerb_seccreate() is used on the client side to return an
authentication handle that will enable the use of the Kerberos authentication
system. The first parameter service is the Kerberos principal name of the
service to be used. This name is generally a constant with respect to the
service being used. srv_instance is the instance of the service to be called, and
may be NULL to indicate any instance. realm is the Kerberos realm name of
the desired service. If it is NULL, then the local default realm will be used.

The fourth parameter is the window on the validity of the client credential,
given in seconds. If the difference in time between the client’s clock and the
server’s clock exceeds window , the server will reject the client’s credentials,
and the clock will have to be resynchronized. A small window is more
secure than a large one, but choosing too small of a window will increase
the frequency of resynchronizations because of clock drift.

The fifth parameter, timehost , is optional. If it is NULL, then the
authentication system will assume that the local clock is always in sync with
the timehost clock, and will not attempt resynchronizations. If a timehost is
supplied, however, then the system will consult with the remote time service
whenever resynchronization is required. This parameter is usually the name
of the host on which the server is running.

The final parameter status is also optional. If status is supplied, then it will
be used to return a Kerberos error status codes if an error occurs. If status is
NULL, then no detailed error codes will be returned.

If authkerb_seccreate() fails, it returns NULL.

int svc_kerb_reg(const SVCXPRT *xprt , const char *name , const char *inst ,
const char *realm);

svc_kerb_reg() performs registration tasks in the server which are
required before AUTH_KERBrequests can be processed. xprt is the RPC
transport to which this information is to be associated. If xprt is NULL then
this registration will be effective for any requests arriving on transports that
have not been specifically registered. The service handles associated with
connection endpoints are not exposed to the programmer. Consequently,
xprt should be NULL for connection-oriented transports.

254 SunOS 5.8 Last modified 20 Feb 1998

Kerberos Library Functions kerberos_rpc(3KRB)

The other parameters describe the Kerberos principal identity that this
server will take on. This must be the same identity that the clients will use
when requesting Kerberos tickets for authentication. name is the principal
name of the service and must be provided. inst is the instance. This
parameter may be NULL to specify the NULL instance of the service. Most
common would be for inst to be "*" which allows the Kerberos library to
determine the correct instance to use, such as the hostname that the service
is running on. realm is the Kerberos realm name to use in validating tickets.
If it is NULL, then the local default realm will be used.

svc_kerb_reg() should generally be called immediately before
svc_run() . It returns 0 if it succeeds, and -1 if it fails.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO kerberos (1) , kinit (1) , kerbd (1M) , rpc (3NSL) , rpc_clnt_auth (3NSL) ,
secure_rpc (3NSL) , svc_run (3NSL) attributes (5)

NOTES These interfaces are unsafe in multithreaded applications. Unsafe interfaces
should be called only from the main thread.

Last modified 20 Feb 1998 SunOS 5.8 255

krb_realmofhost(3KRB) Kerberos Library Functions

NAME krb_realmofhost, krb_get_phost, krb_get_krbhst, krb_get_admhst,
krb_get_lrealm – additional Kerberos utility routines

SYNOPSIS cc [flag ...] file ... −lkrb [library ...]
#include <kerberos/krb.h>
#include <netinet/in.h>
char *krb_realmofhost (const char *host);

char *krb_get_phost (const char *alias);

int krb_get_krbhst (char *host, const char *realm, const int n);

int krb_get_admhst (char *host, const char *realm, const int n);

int krb_get_lrealm (char *realm, const int n);

DESCRIPTION krb_realmofhost() returns the Kerberos realm of the host host , as
determined by the translation table /etc/krb.realms . host should be the
fully-qualified domain-style primary host name of the host in question. In
order to prevent certain security attacks, this routine must either have a prior
knowledge of a host’s realm, or obtain such information securely.

The format of the translation file is described by krb.realms (4) . If host exactly
matches a host_name line, the corresponding realm is returned. Otherwise, if the
domain portion of host matches a domain_name line, the corresponding realm is
returned. If host contains a domain, but no translation is found, host ’s domain is
converted to upper-case and returned. If host contains no discernible domain, or
an error occurs, the local realm name, as supplied by krb_get_lrealm() ,
is returned.

krb_get_phost() converts the hostname alias (which can be either an
official name or an alias) into the instance name to be used in obtaining Kerberos
tickets for most services, including the Berkeley rcmd suite (rlogin, rcp, rsh).
The current convention is to return the first segment of the official domain-style
name after conversion to lower case.

krb_get_krbhst() fills in host with the hostname of the n th host running
a Kerberos key distribution center (KDC) for realm realm , as specified in the
configuration file (/etc/krb.conf or krb.conf NIS map). The configuration
format is described by krb.conf (4) . If the host is successfully filled in, the
routine returns KSUCCESS. If the file (or NIS map) cannot be accessed, and n
equals 1, then the hostname kerberos is filled in, and KSUCCESS is returned. If
there are fewer than n hosts running a Kerberos KDC for the requested realm, or
the configuration file is malformed, the routine returns KFAILURE.

When there is both a local /etc/krb.conf and a krb.conf NIS map, then
the entries are counted starting first with the local file, then continuing with the
NIS map. For example, if the local /etc/krb.conf file contains two entries

256 SunOS 5.8 Last modified 30 Dec 1996

Kerberos Library Functions krb_realmofhost(3KRB)

which match realm , and the NIS map contains one matching entry, then there
are three possible matches that krb_get_krbhst() can return. The first
two (for n values 1 and 2) come from the file, and the third (for n equal to 3)
comes from the map.

krb_get_admhst() fills in host with the hostname of the n th host running a
Kerberos KDC database administration server for realm realm , as specified in
/etc/krb.conf . If the file cannot be opened or is malformed, or there are
fewer than n hosts running a Kerberos KDC database administration server, the
routine returns KFAILURE.

The character arrays used as return values for krb_get_krbhst() and
krb_get_admhst() should be large enough to hold any hostname.

krb_get_lrealm() fills in realm with the n th realm of the local host, as
specified in the configuration file. realm should be at least REALM_SZ (from
<kerberos/krb.h>) characters long. The return value is either KSUCCESS
or KFAILURE.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO kerberos (3KRB) , krb.conf (4) , krb.realms (4) , attributes (5)

FILES /etc/krb.realms translation file for host-to-realm mapping.

/etc/krb.conf local realm-name and realm/server configuration
file.

NOTES These interfaces are unsafe in multithreaded applications. Unsafe interfaces
should be called only from the main thread.

BUGS The current convention for instance names is too limited; the full domain name
should be used.

krb_get_lrealm() currently only supports n equal to 1. It should really
consult the user’s ticket cache to determine the user’s current realm, rather than
consulting a file on the host.

Last modified 30 Dec 1996 SunOS 5.8 257

krb_sendauth(3KRB) Kerberos Library Functions

NAME krb_sendauth, krb_recvauth, krb_net_write, krb_net_read – Kerberos routines
for sending authentication via network stream sockets

SYNOPSIS cc [flag ...] file ... −lkrb [library ...]
#include <kerberos/krb.h>
#include <netinet/in.h>
int krb_sendauth (const long options, const int fd, KTEXT ktext, const char *service, const
char *inst, const char *realm, const ulong_t checksum, MSG_DAT *msg_data, CREDENTIALS
*cred, Key_schedule schedule, const struct sockaddr_in *laddr, const struct sockaddr_in
*faddr, const char *version);

int krb_recvauth (const long options, const int fd, KTEXT ktext, const char *service,
char *inst, const struct sockaddr_in *faddr, const struct sockaddr_in *laddr, AUTH_DAT
*auth_data, const char *filename, Key_schedule schedule, char *version);

int krb_net_write (const int fd, const char *buf, const int len);

int krb_net_read (const int fd, char *buf, const int len);

DESCRIPTION These functions, which are built on top of the core Kerberos library, provide
a convenient means for client and server programs to send authentication
messages to one another through network connections.

The krb_sendauth() function sends an authenticated ticket from the client
program to the server program by writing the ticket to a network socket.

The krb_recvauth() function receives the ticket from the client by reading
from a network socket.

krb_sendauth() This function writes the ticket to the network socket specified by the file
descriptor fd , returning KSUCCESS if the write proceeds successfully, and
an error code if it does not.

The ktext argument should point to an allocated KTEXT_ST structure. The service
, inst , and realm arguments specify the server program’s Kerberos principal
name, instance, and realm. If you are writing a client that uses the local realm
exclusively, you can set the realm argument to NULL.

The version argument allows the client program to pass an application-specific
version string that the server program can then match against its own
version string. The version string can be up to KSEND_VNO_LEN (see
<kerberos/krb.h>) characters in length.

The checksum argument can be used to pass checksum information to the server
program. The client program is responsible for specifying this information. This
checksum information is difficult to corrupt because krb_sendauth() passes it
over the network in encrypted form. The checksum argument is passed as the
checksum argument to krb_mk_req() (see kerberos (3KRB)).

258 SunOS 5.8 Last modified 30 Dec 1996

Kerberos Library Functions krb_sendauth(3KRB)

You can set krb_sendauth() ’s other arguments to NULL unless you want the
client and server programs to mutually authenticate themselves. In the case of
mutual authentication, the client authenticates itself to the server program, and
demands that the server in turn authenticate itself to the client.

krb_sendauth()
and Mutual

Authentication

If you want mutual authentication, make sure that you read all pending data
from the local socket before calling krb_sendauth() . Set krb_sendauth()
’s options argument to KOPT_DO_MUTUAL (this macro is defined in
<kerberos/krb.h>); make sure that the laddr argument points to the address
of the local socket, and that faddr points to the foreign socket’s network address.

krb_sendauth() fills in the other arguments – msg_data , cred , and schedule –
before sending the ticket to the server program. You must, however, allocate
space for these arguments before calling the function.

krb_sendauth() supports two other options: KOPT_DONT_MK_REQ and
KOPT_DONT_CANON. If called with options set as KOPT_DONT_MK_REQ,
krb_sendauth() will not use the krb_mk_req() (see kerberos (3KRB))
function to retrieve the ticket from the Kerberos server. The ktext argument
must point to an existing ticket and authenticator (such as would be created by
krb_mk_req()), and the service , inst , and realm arguments can be set to NULL.

If called with options set as KOPT_DONT_CANON, krb_sendauth() will
not convert the service’s instance to canonical form using krb_get_phost()
(see krb_realmofhost (3KRB)).

If you want to call krb_sendauth() with a multiple options specification,
construct options as a bitwise-OR of the options you want to specify.

krb_recvauth() The krb_recvauth() function reads a ticket/authenticator pair from the socket
pointed to by the fd argument. Set the options argument as a bitwise-OR of the
options desired. Currently only KOPT_DO_MUTUAL is useful to the receiver.

The ktext argument should point to an allocated KTEXT_ST structure.
krb_recvauth() fills ktext with the ticket/authenticator pair read from fd ,
then passes it to krb_rd_req() (see kerberos (3KRB)).

The service and inst arguments specify the expected service and instance for
which the ticket was generated. They are also passed to krb_rd_req() (see
kerberos (3KRB)). The inst argument may be set to "*" if the caller wishes
krb_mk_req() (see kerberos (3KRB)) to fill in the instance used (note that
there must be space in the inst argument to hold a full instance name, see
krb_mk_req() on kerberos (3KRB)).

The faddr argument should point to the address of the peer which is presenting
the ticket. It is also passed to krb_rd_req() (see kerberos (3KRB)).

Last modified 30 Dec 1996 SunOS 5.8 259

krb_sendauth(3KRB) Kerberos Library Functions

If the client and server plan to mutually authenticate one another, the laddr
argument should point to the local address of the file descriptor. Otherwise
you can set this argument to NULL.

The auth_data argument should point to an allocated AUTH_DAT area. It
is passed to and filled in by krb_rd_req() (see kerberos (3KRB)). The
checksum passed to the corresponding krb_sendauth() is available as part of
the filled-in AUTH_DAT area.

The filename argument specifies the filename which the service program
should use to obtain its service key. krb_recvauth() passes filename to the
krb_rd_req() function, see kerberos (3KRB) , If you set this argument to "",
krb_rd_req() looks for the service key in the file /etc/srvtab .

If the client and server are performing mutual authentication, the schedule
argument should point to an allocated Key_schedule. Otherwise it is ignored
and may be NULL.

The version argument should point to a character array of at least
KSEND_VNO_LEN characters. It is filled in with the version string passed
by the client to krb_sendauth() .

krb_net_write() and
krb_net_read()

The krb_net_write() function emulates the write (2) system call, but
guarantees that all data specified is written to fd before returning, unless
an error condition occurs.

The krb_net_read() function emulates the read (2) system call, but
guarantees that the requested amount of data is read from fd before returning,
unless an error condition occurs.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO read (2) , write (2) , kerberos (3KRB) , kerberos_rpc (3KRB) ,
krb_realmofhost (3KRB) , attributes (5)

NOTES These interfaces are unsafe in multithreaded applications. Unsafe interfaces
should be called only from the main thread.

BUGS krb_sendauth() , krb_recvauth() , krb_net_write() , and
krb_net_read() will not work properly on sockets set to non-blocking I/O
mode.

AUTHOR John T. Kohl, MIT Project Athena

260 SunOS 5.8 Last modified 30 Dec 1996

Kerberos Library Functions krb_sendauth(3KRB)

RESTRICTIONS Copyright 1988, Massachusetts Institute of Technology. For
copying and distribution information, please see the header
<kerberos/mit-copyright.h>.

Last modified 30 Dec 1996 SunOS 5.8 261

krb_set_tkt_string(3KRB) Kerberos Library Functions

NAME krb_set_tkt_string – set Kerberos ticket cache file name

SYNOPSIS cc [flag ...] file ... −lkrb [library ...]
#include <kerberos/krb.h>

void krb_set_tkt_string (const char *filename);

DESCRIPTION krb_set_tkt_string() sets the name of the file that holds the user’s cache of
Kerberos server tickets and associated session keys.

The string filename passed in is copied into local storage. Only MAXPATHLEN-1
(see <sys/param.h>) characters of the filename are copied in for use as the
cache file name.

This routine should be called during initialization, before other Kerberos routines
are called; otherwise the routines which fetch the ticket cache file name may be
called and return an undesired ticket file name until this routine is called.

FILES /tmp/tkt uid default ticket file name, unless the environment
variable KRBTKFILE is set. uid denotes the user’s
uid, in decimal.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO kerberos (3KRB), attributes (5)

NOTES This interface is unsafe in multithreaded applications. Unsafe interfaces should
be called only from the main thread.

262 SunOS 5.8 Last modified 30 Dec 1996

LDAP Library Functions ldap(3LDAP)

NAME ldap – Lightweight Directory Access Protocol package

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>

#include <ldap.h>

DESCRIPTION The Lightweight Directory Access Protocol provides TCP/IP access to the X.500
Directory or to a stand-alone LDAP server. The SUNWlldap package includes
various LDAP clients and an LDAP client library used to provide programmatic
access to the LDAP protocol. This man page gives an overview of the LDAP
library functions.

Both synchronous and asynchronous APIs are provided. Also included are
various functions to parse the results returned from these functions. These
functions are found in the libldap.so.3 shared object.

The basic interaction is as follows. A connection is made to an LDAP server
by calling ldap_open (3LDAP). An LDAP bind operation is performed by
calling one of ldap_bind (3LDAP) and friends. Next, other operations are
performed by calling one of the synchronous or asynchronous functions (for
example, ldap_search_s (3LDAP) or ldap_search (3LDAP) followed by
ldap_result (3LDAP)). Results returned from these functions are interpreted
by calling the LDAP parsing functions. The LDAP association is terminated
by calling ldap_unbind (3LDAP). Errors can be interpreted by calling
ldap_perror (3LDAP). The ldap_set_rebind_proc (3LDAP) function can
be used to set a function to be called back when an LDAP bind operation needs
to occur when handling a client referral.

Search Filters Search filters to be passed to the ldap search functions can be constructed by
hand, or by calling the ldap_getfilter (3LDAP) functions.

Displaying Results Results obtained from the ldap search functions can be output by hand, by
calling ldap_first_entry (3LDAP) and ldap_next_entry (3LDAP) to
step through the entries returned, ldap_first_attribute (3LDAP) and
ldap_next_attribute (3LDAP) to step through an entry’s attributes, and
ldap_get_values (3LDAP) to retrieve a given attribute’s value, and then
calling printf (3C) or whatever to display the values.

Alternatively, the entry can be output automatically by calling the
ldap_entry2text (3LDAP), ldap_entry2text_search (3LDAP),
ldap_entry2html (3LDAP), or ldap_entry2html_search (3LDAP)
functions. These functions look up the object class of the entry they are passed in
the ldaptemplates.conf (4) file to decide which attributes to display and how
to display them. Output is handled via a function passed in as a parameter.

Uniform Resource
Locators (URLS)

The ldap_url (3LDAP) functions can be used test a URL to see if it is an LDAP
URL, to parse LDAP URLs into their component pieces, to initiate searches

Last modified 25 May 1998 SunOS 5.8 263

ldap(3LDAP) LDAP Library Functions

directly using an LDAP URL, and to retrieve the URL associated with a DNS
domain name or a distinguished name.

User Friendly
Naming

The ldap_ufn (3LDAP) functions implement a user friendly naming scheme
via LDAP. This scheme allows you to look up entries using fuzzy, untyped
names like "mark smith, umich, us".

Caching The ldap_cache (3LDAP) functions implement a local client caching scheme,
providing a substantial performance increase for repeated queries.

Utility Functions Also provided are various utility functions. The ldap_sort (3LDAP) functions
are used to sort the entries and values returned via the ldap search functions.
The ldap_friendly (3LDAP) functions are used to map from short two
letter country codes (or other strings) to longer "friendlier" names. The
ldap_charset (3LDAP) functions can be used to translate to and from the T.61
character set used for many character strings in the LDAP protocol.

Connectionless
Access

The cldap_search_s (3LDAP) function allows you to access the directory
via Connectionless LDAP (CLDAP), which is similar to LDAP but operates
over UDP, obviating the need to set up and tear down a connection by calling
ldap_open (3LDAP), ldap_bind (3LDAP), and ldap_unbind (3LDAP).
cldap_open (3LDAP) should be called before using cldap_search_s (3LDAP).
All the same getfilter, parsing, and display that can be used with regular LDAP
functions can be used with the CLDAP functions.

BER Library Also included in the distribution is a set of lightweight Basic Encoding Rules
functions. These functions are used by the LDAP library functions to encode
and decode LDAP protocol elements using the (slightly simplified) Basic
Encoding Rules defined by LDAP. They are not normally used directly by
an LDAP application program. The functions provide a printf and scanf-like
interface, as well as lower-level access.

Index ldap_open (3LDAP) open a connection to an LDAP
server

ldap_init (3LDAP) initialize the LDAP library
without opening a connection
to a server

ldap_result (3LDAP) wait for the result from an
asynchronous operation

ldap_abandon (3LDAP) abandon (abort) an
asynchronous operation

ldap_add (3LDAP) asynchronously add an entry

ldap_add_s (3LDAP) synchronously add an entry

264 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap(3LDAP)

ldap_add_ext (3LDAP) asynchronously add an entry,
return value and place message

ldap_add_ext_s (3LDAP) synchronously add an entry,
return value and place message

ldap_bind (3LDAP) asynchronously bind to the
directory

ldap_bind_s (3LDAP) synchronously bind to the
directory

ldap_simple_bind (3LDAP) asynchronously bind to
the directory using simple
authentication

ldap_simple_bind_s (3LDAP) synchronously bind to the
directory using simple
authentication

ldap_unbind (3LDAP) synchronously unbind from the
LDAP server and close the
connection

ldap_unbind_s (3LDAP) equivalent to
ldap_unbind (3LDAP)

ldap_enable_cache (3LDAP) enable LDAP client caching

ldap_disable_cache (3LDAP) disable LDAP client caching

ldap_destroy_cache (3LDAP) disable LDAP client caching
and destroy cache contents

ldap_flush_cache (3LDAP) flush LDAP client cache

ldap_uncache_entry (3LDAP) uncache requests pertaining
to an entry

ldap_uncache_request (3LDAP) uncache a request

ldap_set_cache_options (3LDAP) set cache options

ldap_compare (3LDAP) asynchronous compare to a
directory entry

ldap_compare_s (3LDAP) synchronous compare to a
directory entry

ldap_compare_ext (3LDAP) asynchronous compare to a
directory entry, return value
and place message

Last modified 25 May 1998 SunOS 5.8 265

ldap(3LDAP) LDAP Library Functions

ldap_compare_ext_s (3LDAP) synchronous compare to a
directory entry, return value
and place message

ldap_control_free (3LDAP) LDAP control disposal

ldap_controls_free (3LDAP) LDAP control disposal

ldap_delete (3LDAP) asynchronously delete an entry

ldap_delete_s (3LDAP) synchronously delete an entry

ldap_delete_ext (3LDAP) asynchronously delete an entry,
return value and place message

ldap_delete_ext_s (3LDAP) synchronously delete an entry,
return value and place

ldap_init_templates (3LDAP) initialize display template
functions from a file

ldap_init_templates_buf (3LDAP) initialize display template
functions from a buffer

ldap_free_templates (3LDAP) free display template function
memory

ldap_first_reference (3LDAP) steps through
ldap_result (3LDAP)
message chain

ldap_count_references (3LDAP) counts the messages in an
ldap_result (3LDAP)
message chain

ldap_first_message (3LDAP) steps through
ldap_result (3LDAP)
message chain

ldap_count_messages (3LDAP) counts the messages in an
ldap_result (3LDAP)
message chain

ldap_next_message (3LDAP) steps through
ldap_result (3LDAP)
message chain

ldap_msgtype (3LDAP) returns the type of LDAP
message

ldap_first_disptmpl (3LDAP) get first display template

266 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap(3LDAP)

ldap_next_disptmpl (3LDAP) get next display template

ldap_oc2template (3LDAP) return template appropriate for
objectclass

ldap_tmplattrs (3LDAP) return attributes needed by
template

ldap_first_tmplrow (3LDAP) return first row of displayable
items in a template

ldap_next_tmplrow (3LDAP) return next row of displayable
items in a template

ldap_first_tmplcol (3LDAP) return first column of
displayable items in a template

ldap_next_tmplcol (3LDAP) return next column of
displayable items in a template

ldap_entry2text (3LDAP) display an entry as text using
a display template

ldap_entry2text_search (3LDAP) search for and display an entry
as text using a display template

ldap_vals2text (3LDAP) display values as text

ldap_entry2html (3LDAP) display an entry as HTML
(HyperText Markup Language)
using a display template

ldap_entry2html_search (3LDAP) search for and display an entry
as HTML using a display
template

ldap_vals2html (3LDAP) display values as HTML

ldap_perror (3LDAP) print an LDAP error indication
to standard error

ld_errno (3LDAP) LDAP error indication

ldap_result2error (3LDAP) extract LDAP error indication
from LDAP result

ldap_errlist (3LDAP) list of ldap errors and their
meanings

ldap_err2string (3LDAP) convert LDAP error indication
to a string

Last modified 25 May 1998 SunOS 5.8 267

ldap(3LDAP) LDAP Library Functions

ldap_first_attribute (3LDAP) return first attribute name
in an entry

ldap_next_attribute (3LDAP) return next attribute name
in an entry

ldap_first_entry (3LDAP) return first entry in a chain of
search results

ldap_next_entry (3LDAP) return next entry in a chain of
search results

ldap_count_entries (3LDAP) return number of entries in a
search result

ldap_friendly_name (3LDAP) map from unfriendly to friendly
names

ldap_free_friendlymap (3LDAP) free resources used by
ldap_friendly (3N)

ldap_get_dn (3LDAP) extract the DN from an entry

ldap_explode_dn (3LDAP) convert a DN into its
component parts

ldap_explode_dns (3LDAP) convert a DNS-style DN into its
component parts (experimental)

ldap_is_dns_dn (3LDAP) check to see if a DN is a
DNS-style DN (experimental)

ldap_dns_to_dn (3LDAP) convert a DNS domain name
into an X.500 distinguished
name

ldap_dn2ufn (3LDAP) convert a DN into user friendly
form

ldap_get_values (3LDAP) return an attribute’s values

ldap_get_values_len (3LDAP) return an attribute values with
lengths

ldap_value_free (3LDAP) free memory allocated by l
ldap_get_values (3LDAP)

ldap_value_free_len (3LDAP) free memory allocated by
ldap_get_values_len (3LDAP)

ldap_count_values (3LDAP) return number of values

268 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap(3LDAP)

ldap_count_values_len (3LDAP) return number of values

ldap_init_getfilter (3LDAP) initialize getfilter functions
from a file

ldap_init_getfilter_buf (3LDAP) initialize getfilter functions
from a buffer

ldap_getfilter_free (3LDAP) free resources allocated by
ldap_init_getfilter (3N)

ldap_getfirstfilter (3LDAP) return first search filter

ldap_getnextfilter (3LDAP) return next search filter

ldap_build_filter (3LDAP) construct an LDAP search filter
from a pattern

ldap_setfilteraffixes (3LDAP) set prefix and suffix for search
filters

ldap_modify (3LDAP) asynchronously modify an
entry

ldap_modify_s (3LDAP) synchronously modify an entry

ldap_modify_ext (3LDAP) asynchronously modify an
entry, return value, place
message

ldap_modify_ext_s (3LDAP) synchronously modify an entry,
return value, place message

ldap_mods_free (3LDAP) free array of pointers to mod
structures used by ldap_modify
(3N)

ldap_modrdn2 (3LDAP) asynchronously modify the
RDN of an entry

ldap_modrdn2_s (3LDAP) synchronously modify the RDN
of an entry

ldap_modrdn (3LDAP) depreciated - use ldap_modrdn2
(3N)

ldap_modrdn_s (3LDAP) depreciated - use
ldap_modrdn2_s (3N)

ldap_rename (3LDAP) asynchronously modify the
name of an LDAP entry

Last modified 25 May 1998 SunOS 5.8 269

ldap(3LDAP) LDAP Library Functions

ldap_rename_s (3LDAP) synchronously modify the name
of an LDAP entry

ldap_msgfree (3LDAP) free results allocated by
ldap_result (3N)

ldap_parse_result (3LDAP) search for a message to parse

ldap_parse_extended_result (3LDAP) search for a message to parse

ldap_parse_sasl_bind_result (3LDAP) search for a message to parse

ldap_search (3LDAP) asynchronously search the
directory

ldap_search_s (3LDAP) synchronously search the
directory

ldap_search_ext (3LDAP) asynchronously search the
directory, return value and
place message

ldap_search_ext_s (3LDAP) synchronously search the
directory, return value and
place message

ldap_search_st (3LDAP) synchronously search the
directory with timeout

ldap_ufn_search_s (3LDAP) user friendly search the
directory

ldap_ufn_search_c (3LDAP) user friendly search the
directory with cancel

ldap_ufn_search_ct (3LDAP) user friendly search the
directory with cancel and
timeout

ldap_ufn_setfilter (3LDAP) set filter file used by ldap_ufn
(3N) functions

ldap_ufn_setprefix (3LDAP) set prefix used by ldap_ufn
(3N) functions

ldap_ufn_timeout (3LDAP) set timeout used by ldap_ufn
(3N) functions

ldap_is_ldap_url (3LDAP) check a URL string to see if it
is an LDAP URL

270 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap(3LDAP)

ldap_url_parse (3LDAP) break up an LDAP URL string
into its components

ldap_url_search (3LDAP) asynchronously search using an
LDAP URL

ldap_url_search_s (3LDAP) synchronously search using an
LDAP URL

ldap_url_search_st (3LDAP) synchronously search using an
LDAP URL and a timeout

ldap_dns_to_url (3LDAP) locate the LDAP URL associated
with a DNS domain name.

ldap_dn_to_url (3LDAP) locate the LDAP URL associated
with a distinguished name.

ldap_init_searchprefs (3LDAP) initialize searchprefs functions
from a file

ldap_init_searchprefs_buf (3LDAP) initialize searchprefs functions
from a buffer

ldap_free_searchprefs (3LDAP) free memory allocated by
searchprefs functions

ldap_first_searchobj (3LDAP) return first searchpref object

ldap_next_searchobj (3LDAP) return next searchpref object

ldap_sort_entries (3LDAP) sort a list of search results

ldap_sort_values (3LDAP) sort a list of attribute values

ldap_sort_strcasecmp (3LDAP) case insensitive string
comparison

ldap_set_string_translators (3LDAP) set character set translation
functions used by LDAP library

ldap_translate_from_t61 (3LDAP) translate from the T.61 character
set to another character set

ldap_translate_to_t61 (3LDAP) translate to the T.61 character
set from another character set

ldap_enable_translation (3LDAP) enable or disable character
translation for an LDAP entry
result

Last modified 25 May 1998 SunOS 5.8 271

ldap(3LDAP) LDAP Library Functions

cldap_open (3LDAP) open a connectionless LDAP
(CLDAP) session

cldap_search_s (3LDAP) perform a search using
connectionless LDAP

cldap_setretryinfo (3LDAP) set retry and timeout
information using
connectionless LDAP

cldap_close (3LDAP) terminate a connectionless
LDAP session

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

272 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_abandon(3LDAP)

NAME ldap_abandon – abandon an LDAP operation in progress

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
int ldap_abandon (LDAP *ld, int msgid);

DESCRIPTION The ldap_abandon() function is used to abandon or cancel an LDAP operation
in progress. The msgid passed should be the message id of an outstanding LDAP
operation, as returned by ldap_search (3LDAP), ldap_modify (3LDAP), etc.

ldap_abandon () checks to see if the result of the operation has already come
in. If it has, it deletes it from the queue of pending messages. If not, it sends an
LDAP abandon operation to the the LDAP server.

The caller can expect that the result of an abandoned operation will not be
returned from a future call to ldap_result (3LDAP).

ERRORS ldap_abandon() returns 0 if successful or −1otherwise and setting ld_errno
appropriately. See ldap_error (3LDAP) for details.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap(3N), ldap_result(3N), ldap_error(3N)

Last modified 25 May 1998 SunOS 5.8 273

ldap_add(3LDAP) LDAP Library Functions

NAME ldap_add, ldap_add_s, ldap_add_ext, ldap_add_ext_s – perform an LDAP
add operation

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
intldap_add (LDAP *ld, char *dn, LDAPMod *attrs []);

intldap_add_s (LDAP *ld, char *dn, LDAPMod *attrs []);

int ldap_add_ext (LDAP *ld, char *dn, LDAPMod **attrs, LDAPControl **serverctrls,
int * msgidp);

int ldap_add_ext_s (LDAP *ld, char *dn, LDAPMod **attrs, LDAPControl **serverctrls,
LDAPControl **clientctrls);

DESCRIPTION The ldap_add_s() function is used to perform an LDAP add operation. It
takes dn , the DN of the entry to add, and attrs , a null-terminated array of the
entry’s attributes. The LDAPMod structure is used to represent attributes,
with the mod_type and mod_values fields being used as described under
ldap_modify (3LDAP) , and the ldap_op field being used only if you need to
specify the LDAP_MOD_BVALUESoption. Otherwise, it should be set to zero.

Note that all entries except that specified by the last component in the given
DN must already exist. ldap_add_s() returns an LDAP error code indicating
success or failure of the operation. See ldap_error (3LDAP) for more details.

The ldap_add() function works just like ldap_add_s() , but it is
asynchronous. It returns the message id of the request it initiated. The result of
this operation can be obtained by calling ldap_result (3LDAP) .

The ldap_add_ext() function initiates an asynchronous add operation and
returns LDAP_SUCCESSif the request was successfully sent to the server, or else
it returns a LDAP error code if not (see ldap_error (3LDAP)). If successful,
ldap_add_ext() places the message id of *msgidp . A subsequent call to
ldap_result() , can be used to obtain the result of the add request.

The ldap_add_ext_s() function initiates a synchronous add operation and
returns the result of the operation itself.

ERRORS ldap_add() returns -1 in case of error initiating the request, and will set the
ld_errno field in the ld parameter to indicate the error. ldap_add_s() will
return an LDAP error code directly (LDAP_SUCCESSif everything went ok,
an error otherwise).

ATTRIBUTES See attributes (5) for a description of the following attributes:

274 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_add(3LDAP)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap (3LDAP) , ldap_error (3LDAP) , ldap_modify (3LDAP)

Last modified 25 May 1998 SunOS 5.8 275

ldap_bind(3LDAP) LDAP Library Functions

NAME ldap_bind, ldap_bind_s, ldap_sasl_bind, ldap_sasl_bind_s, ldap_simple_bind,
ldap_simple_bind_s, ldap_unbind, ldap_unbind_s, ldap_set_rebind_proc –
LDAP bind functions

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
int ldap_bind (LDAP *ld, char *who, char *cred, int method);

int ldap_bind_s (LDAP *ld, char *who, char *cred, int method);

int ldap_simple_bind (LDAP *ld, char *who, char *passwd);

int ldap_simple_bind_s (LDAP *ld, char *who, char *passwd);

int ldap_unbind (LDAP *ld);

int ldap_unbind_s (LDAP *ld);

void ldap_set_rebind_proc (LDAP *ld, int (*rebindproc);

int ldap_sasl_bind (LDAP *ld, char *dn, char *mechanism, struct berval *cred,
LDAPControl **serverctrls, LDAPControl **clientctrls, int *msgidp);

int ldap_sasl_bind_s (LDAP *ld, char *dn, char *mechanism, struct berval *cred,
LDAPControl **serverctrls, LDAPControl **clientctrls);

DESCRIPTION These functions provide various interfaces to the LDAP bind operation. After a
connection is made to an LDAP server using ldap_open (3LDAP) , an LDAP
bind operation must be performed before other operations can be attempted
over the conection. Both synchronous and asynchronous versions of each
variant of the bind call are provided. There are three types of calls, providing
simple authentication, kerberos authentication, and general functions to do
either one. All functions take ld as their first parameter, as returned from
ldap_open (3LDAP) .

Simple
Authentication

The simplest form of the bind call is ldap_simple_bind_s (). It takes the
DN to bind as in who , and the userPassword associated with the entry in
passwd . It returns an LDAP error indication (see ldap_error (3LDAP)). The
ldap_simple_bind() call is asynchronous, taking the same parameters but
only initiating the bind operation and returning the message id of the request
it sent. The result of the operation can be obtained by a subsequent call to
ldap_result (3LDAP) .

General
Authentication

The ldap_bind() and ldap_bind_s() functions can be used when the
authentication method to use needs to be selected at runtime. They both take an
extra method parameter selecting the authentication method to use. It should
be set to LDAP_AUTH_SIMPLEto select simple authentication. ldap_bind()

276 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_bind(3LDAP)

returns the message id of the request it initiates. ldap_bind_s() returns
an LDAP error indication.

The ldap_sasl_bind() and ldap_sasl_bind_s() functions are used for
general and extensible authentication over LDAP through the use of the Simple
Authentication Security Layer. The routines both take the dn to bind as, the
method to use, as a dotted-string representation of an OID identifying the
method, and a struct berval holding the credentials. The special constant value
LDAP_SASL_SIMPLE("") can be passed to request simple authentication, or
the simplified routines ldap_simple_bind() or ldap_simple_bind_s()
can be use.

Unbinding The ldap_unbind() call is used to unbind from the directory, terminate the
current association, and free the resources contained in the ld structure. Once it
is called, the connection to the LDAP server is closed, and the ld structure is
invalid. The ldap_unbind_s() call is just another name for ldap_unbind()
; both of these calls are synchronous in nature.

Re-Binding While
Following Referral

The ldap_set_rebind_proc() call is used to set a function that will be called
back to obtain bind credentials used when a new server is contacted during the
following of an LDAP referral. Note that this function is only available when the
LDAP libraries are compiled with LDAP_REFERRALSdefined and is only used
when the ld_options field in the LDAP structure has LDAP_OPT_REFERRALS
set (this is the default). If ldap_set_rebind_proc() is never called, or if it
is called with a NULL rebindproc parameter, an unauthenticated simple LDAP
bind will always be done when chasing referrals.

rebindproc should be a function that is declared like this:

int rebindproc(LDAP *ld, char **whop, char **credp,
int *methodp, int freeit);

The LDAP library will first call the rebindproc to obtain the referral bind
credentials, and the freeit parameter will be zero. The whop , credp , and methodp
should be set as appropriate. If the rebindproc returns LDAP_SUCCESS, referral
processing continues, and the rebindproc will be called a second time with
freeit non-zero to give your application a chance to free any memory allocated
in the previous call.

If anything but LDAP_SUCCESSis returned by the first call to the rebindproc,
then referral processing is stopped and that error code is returned for the
original LDAP operation.

RETURN VALUES A call to ldap_result (3LDAP) , can be used to obtain the result of the bind
operations.

ERRORS Asynchronous functions will return -1 in case of error, setting the ld_errno
parameter of the ld structure. Synchronous functions return whatever ld_errno is

Last modified 25 May 1998 SunOS 5.8 277

ldap_bind(3LDAP) LDAP Library Functions

set to. See ldap_error (3LDAP) for more information. If no credentials are
returned the result parameter is set to NULL.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap (3LDAP) , ldap_error (3LDAP) , ldap_open (3LDAP)

278 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_cache(3LDAP)

NAME ldap_cache, ldap_enable_cache, ldap_disable_cache, ldap_destroy_cache,
ldap_flush_cache, ldap_uncache_entry, ldap_uncache_request,
ldap_set_cache_options – LDAP client caching functions

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
ldap_enable_cache (LDAP *ld, long timeout, long maxmem);

void ldap_disable_cache (LDAP *ld);

void ldap_destroy_cache (LDAP *ld);

void ldap_flush_cache (LDAP *ld);

void ldap_uncache_entry (LDAP *ld, char *dn);

void ldap_uncache_request (LDAP *ld, int msgid);

void ldap_set_cache_options (LDAP *ld, unsigned long opts);

DESCRIPTION These functions are used to control the behavior of client caching
of ldap_search (3LDAP) , cldap_search_s (3LDAP) , and
ldap_compare (3LDAP) operations. By default, the cache is disabled and no
caching is done. Enabling the cache can greatly improve performance and reduce
network bandwidth when a client DUA makes repeated requests.

ldap_enable_cache() should be called to turn on local caching or to change
cache parameters (lifetime of cached requests and memory used). The ld
parameter should be the result of a successful call to ldap_open (3LDAP) . The
timeout is specified in seconds, and is used to decide how long to keep cached
requests. The maxmem value is in bytes, and is used to set an upper bound on
how memory the cache will use. You can specify 0 for maxmem to restrict the
cache size by the timeout only. The first call to ldap_enable_cache creates the
cache; subsequent calls re-enable the cache and set the timeout and memory
values.

ldap_disable_cache() temporarily disables use of the cache (new requests
are not cached and the cache is not checked when returning results). It does
not delete the cache contents.

ldap_destroy_cache() turns off caching and completely removes the cache
from memory.

ldap_flush_cache() deletes the cache contents, but does not effect it in
any other way.

Last modified 25 May 1998 SunOS 5.8 279

ldap_cache(3LDAP) LDAP Library Functions

ldap_uncache_entry() removes all requests that make reference to the
distinguished name dn from the cache. It should be used, for example, after
doing an ldap_modify (3LDAP) call involving dn .

ldap_uncache_request() removes the request indicated by the LDAP
request id msgid from the cache.

ldap_set_cache_options() is used to change caching behavior. The current
supported options are LDAP_CACHE_OPT_CACHENOERRSto suppress caching of
any requests that result in an error, and LDAP_CACHE_OPT_CACHEALLERRS
to enable caching of all requests. The default behavior is to not cache
requests that result in errors, except that request that result in the error
LDAP_SIZELIMIT_EXCEEDEDare cached.

ERRORS ldap_enable_cache() returns 0 upon success, and -1 if it is unable to
allocate space for the cache. All the other calls are declared as void and return
nothing.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap (3LDAP) , ldap_search (3LDAP) , ldap_compare (3LDAP) ,
cldap_search_s (3LDAP)

280 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_charset(3LDAP)

NAME ldap_charset, ldap_set_string_translators, ldap_t61_to_8859, ldap_8859_to_t61,
ldap_translate_from_t61, ldap_translate_to_t61, ldap_enable_translation – LDAP
character set translation functions

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
void ldap_set_string_translators (LDAP *ld, BERTranslateProc encode_proc,
BERTranslateProc decodeproc);

typedef int (*BERTranslateProc)(char **bufp, unsigned long *buflenp, int free_input);

int ldap_t61_to_8859 (char **bufp, unsigned long *buflenp, int free_input);

int ldap_8859_to_t61 (char **bufp, unsigned long *buflenp, int free_input);

int ldap_translate_from_t61 (LDAP *ld, char **bufp, unsigned long *lenp, int
free_input);

int ldap_translate_to_t61 (LDAP *ld, char **bufp, unsigned long *lenp, int free_input);

void ldap_enable_translation (LDAP *ld, LDAPMessage *entry, int enable);

DESCRIPTION These functions are used to used to enable translation of character strings used in
the LDAP library to and from the T.61 character set used in the LDAP protocol.
These functions are only available if the LDAP and LBER libraries are compiled
with STR_TRANSLATIONdefined. It is also possible to turn on character
translation by default so that all LDAP library callers will experience translation;
see the LDAP Make-common source file for details.

ldap_set_string_translators() sets the translation functions that will be
used by the LDAP library. They are not actually used until the ld_lberoptions field
of the LDAP structure is set to include the LBER_TRANSLATE_STRINGSoption.

ldap_t61_to_8859() and ldap_8859_to_t61() are translation functions
for converting between T.61 characters and ISO-8859 characters. The specific
8859 character set used is determined at compile time.

ldap_translate_from_t61() is used to translate a string of characters
from the T.61 character set to a different character set. The actual translation
is done using the decode_proc that was passed to a previous call to
ldap_set_string_translators(). On entry, *bufp should point to the
start of the T.61 characters to be translated and *lenp should contain the number
of bytes to translate. If free_input is non-zero, the input buffer will be freed if
translation is a success. If the translation is a success, LDAP_SUCCESSwill be
returned, *bufp will point to a newly malloc’d buffer that contains the translated
characters, and *lenp will contain the length of the result. If translation fails, an
LDAP error code will be returned.

Last modified 25 May 1998 SunOS 5.8 281

ldap_charset(3LDAP) LDAP Library Functions

ldap_translate_to_t61() is used to translate a string of characters to
the T.61 character set from a different character set. The actual translation
is done using the encode_proc that was passed to a previous call to
ldap_set_string_translators(). This function is called just like
ldap_translate_from_t61().

ldap_enable_translation() is used to turn on or off string translation for
the LDAP entry entry (typically obtained by calling ldap_first_entry() or
ldap_next_entry() after a successful LDAP search operation). If enable is
zero, translation is disabled; if non-zero, translation is enabled. This function is
useful if you need to ensure that a particular attribute is not translated when
it is extracted using ldap_get_values() or ldap_get_values_len()
. For example, you would not want to translate a binary attributes such as
jpegPhoto .

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap (3LDAP)

282 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_compare(3LDAP)

NAME ldap_compare, ldap_compare_s, ldap_compare_ext, ldap_compare_ext_s –
LDAP compare operation

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
int ldap_compare (LDAP *ld, char *dn, char *attr, char *value);

int ldap_compare_s (LDAP *ld, char *dn, char *attr, char *value);

int ldap_compare_ext (LDAP *ld, char *dn, char *attr, struct berval *bvalue, LDAPControl
**serverctrls, LDAPControl **clientctrls, int *msgidp);

int ldap_compare_ext_s (LDAP *ld, char *dn, char *attr, struct berval *bvalue,
LDAPControl **serverctrls, LDAPControl **clientctrls);

DESCRIPTION The ldap_compare_s() function is used to perform an LDAP compare
operation synchronously. It takes dn , the DN of the entry upon which to
perform the compare, and attr and value , the attribute type and value to
compare to those found in the entry. It returns an LDAP error code, which
will be LDAP_COMPARE_TRUEif the entry contains the attribute value and
LDAP_COMPARE_FALSEif it does not. Otherwise, some error code is returned.

The ldap_compare() function is used to perform an LDAP compare operation
asynchronously. It takes the same parameters as ldap_compare_s() , but
returns the message id of the request it initiated. The result of the compare can
be obtained by a subsequent call to ldap_result (3LDAP) .

The ldap_compare_ext() function initiates an asynchronous compare
operation and returns LDAP_SUCCESSif the request was successfully sent to the
server, or else it returns a LDAP error code if not (see ldap_error (3LDAP) .
If successful, ldap_compare_ext() places the message id of the request in
*msgidp . A subsequent call to ldap_result() , can be used to obtain the result
of the add request.

The ldap_compare_ext_s() function initiates a synchronous compare
operation and as such returns the result of the operation itself.

ERRORS ldap_compare_s() returns an LDAP error code which can be interpreted by
calling one of ldap_perror (3LDAP) and friends. ldap_compare() returns
-1 if something went wrong initiating the request. It returns the non-negative
message id of the request if it was successful.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

Last modified 25 May 1998 SunOS 5.8 283

ldap_compare(3LDAP) LDAP Library Functions

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap (3LDAP) , ldap_error (3LDAP)

BUGS There is no way to compare binary values but there should be.

284 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_control_free(3LDAP)

NAME ldap_control_free, ldap_controls_free – LDAP control disposal

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
void ldap_control_free (LDAPControl *ctrl);

void ldap_controls_free (LDAPControl *ctrls);

DESCRIPTION ldap_controls_free() and ldap_control_free() are routines which
can be used to dispose of a single control or an array of controls allocated by
other LDAP APIs.

RETURN VALUES None.

ERRORS No errors are defined for these functions.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap_error (3LDAP) , ldap_result (3LDAP) , attributes (5)

Last modified 25 May 1998 SunOS 5.8 285

ldap_delete(3LDAP) LDAP Library Functions

NAME ldap_delete, ldap_delete_s, ldap_delete_ext, ldap_delete_ext_s – LDAP delete
operation

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
int ldap_delete (LDAP *ld, char *dn);

int ldap_delete_s (LDAP *ld, char *dn);

int ldap_delete_ext (LDAP *ld, char *dn, LDAPControl **serverctrls, LDAPControl
**clientctrls, int *msgidp);

int ldap_delete_ext_s (LDAP *ld, char *dn, LDAPControl **serverctrls, LDAPControl
**clientctrls);

DESCRIPTION The ldap_delete_s() function is used to perform an LDAP delete operation
synchronously. It takes dn , the DN of the entry to be deleted. It returns an LDAP
error code, indicating the success or failure of the operation.

The ldap_delete() function is used to perform an LDAP delete operation
asynchronously. It takes the same parameters as ldap_delete_s() , but
returns the message id of the request it initiated. The result of the delete can be
obtained by a subsequent call to ldap_result (3LDAP) .

The ldap_delete_ext() function initiates an asynchronous delete operation
and returns LDAP_SUCCESSif the request was successfully sent to the server,
or else it returns a LDAP error code if not (see ldap_error (3LDAP)). If
successful, ldap_delete_ext() places the message id of the request in
*msgidp . A subsequent call to ldap_result() , can be used to obtain the result
of the add request.

The ldap_delete_ext_s() function initiates a synchronous delete operation
and as such returns the result of the operation itself.

ERRORS ldap_delete_s() returns an LDAP error code which can be interpreted by
calling one of ldap_perror (3LDAP) functions. ldap_delete() returns -1
if something went wrong initiating the request. It returns the non-negative
message id of the request if things were successful.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

286 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_delete(3LDAP)

SEE ALSO ldap (3LDAP) , ldap_error (3LDAP)

Last modified 25 May 1998 SunOS 5.8 287

ldap_disptmpl(3LDAP) LDAP Library Functions

NAME ldap_disptmpl, ldap_init_templates, ldap_init_templates_buf,
ldap_free_templates, ldap_first_disptmpl, ldap_next_disptmpl,
ldap_oc2template, ldap_tmplattrs, ldap_first_tmplrow, ldap_next_tmplrow,
ldap_first_tmplcol, ldap_next_tmplcol – LDAP display template functions

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
int ldap_init_templates (char *file, struct ldap_disptmpl **tmpllistp);

int ldap_init_templates_buf (char *buf, unsigned long len, struct ldap_disptmpl
**tmpllistp);

void ldap_free_templates (struct ldap_disptmpl *tmpllist);

struct ldap_disptmpl *ldap_first_disptmpl (struct ldap_disptmpl *tmpllist);

struct ldap_disptmpl *ldap_next_disptmpl (struct ldap_disptmpl *tmpllist, struct
ldap_disptmpl *tmpl);

struct ldap_disptmpl *ldap_oc2template (char **oclist, struct ldap_disptmpl *tmpllist);

struct ldap_disptmpl *ldap_name2template (char *name, struct ldap_disptmpl
*tmpllist);

char **ldap_tmplattrs (struct ldap_disptmpl *tmpl, char **includeattrs, int exclude;,
unsigned long syntaxmask);

struct ldap_tmplitem *ldap_first_tmplrow (struct ldap_disptmpl *tmpl);

struct ldap_tmplitem *ldap_next_tmplrow (struct ldap_disptmpl *tmpl, struct
ldap_tmplitem *row);

struct ldap_tmplitem *ldap_first_tmplcol (struct ldap_disptmpl *tmpl, struct
ldap_tmplitem *row, struct ldap_tmplitem *col);

struct ldap_tmplitem *ldap_next_tmplcol (struct ldap_disptmpl *tmpl, struct
ldap_tmplitem *row, struct ldap_tmplitem *col);

DESCRIPTION These functions provide a standard way to access LDAP entry display templates.
Entry display templates provide a standard way for LDAP applications to
display directory entries. The general idea is that it is possible to map the list of
object class values present in an entry to an appropriate display template. Display
templates are defined in a configuration file (see ldaptemplates.conf (4)).
Each display template contains a pre-determined list of items, where each
item generally corresponds to an attribute to be displayed. The items contain
information and flags that the caller can use to display the attribute and values
in a reasonable fashion. Each item has a syntaxid, which are described in the

288 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_disptmpl(3LDAP)

SYNTAX IDS section below. The ldap_entry2text (3LDAP) functions use the
display template functions and produce text output.

ldap_init_templates() reads a sequence of templates from a valid LDAP
template configuration file (see ldaptemplates.conf (4)). Upon success, 0
is returned, and tmpllistp is set to point to a list of templates. Each member
of the list is an ldap_disptmpl structure (defined below in the DISPTMPL
Structure Elements section).

ldap_init_templates_buf() reads a sequence of templates from buf (whose
size is buflen). buf should point to the data in the format defined for an LDAP
template configuration file (see ldaptemplates.conf (4)). Upon success, 0 is
returned, and tmpllistp is set to point to a list of templates.

The LDAP_SET_DISPTMPL_APPDATA()macro is used to set the value of the
dt_appdata field in an ldap_disptmpl structure. This field is reserved for
the calling application to use; it is not used internally.

The LDAP_GET_DISPTMPL_APPDATA()macro is used to retrieve the value in
the dt_appdata field.

The LDAP_IS_DISPTMPL_OPTION_SET() macro is used to test a
ldap_disptmpl structure for the existence of a template option. The options
currently defined are: LDAP_DTMPL_OPT_ADDABLE(it is appropriate to allow
entries of this type to be added), LDAP_DTMPL_OPT_ALLOWMODRDN(it is
appropriate to offer the "modify rdn" operation), LDAP_DTMPL_OPT_ALTVIEW
(this template is merely an alternate view of another template, typically used for
templates pointed to be an LDAP_SYN_LINKACTIONitem).

ldap_free_templates() disposes of the templates allocated by
ldap_init_templates() .

ldap_first_disptmpl() returns the first template in the list tmpllist. The
tmpllist is typically obtained by calling ldap_init_templates() .

ldap_next_disptmpl() returns the template after tmpl in the template list
tmpllist. A NULLpointer is returned if tmpl is the last template in the list.

ldap_oc2template() searches tmpllist for the best template to use to display
an entry that has a specific set of objectClass values. oclist should be a
null-terminated array of strings that contains the values of the objectClass
attribute of the entry. A pointer to the first template where all of the object classes
listed in one of the template’s dt_oclist elements are contained in oclist is
returned. A NULLpointer is returned if no appropriate template is found.

ldap_tmplattrs() returns a null-terminated array that contains the names of
attributes that need to be retrieved if the template tmpl is to be used to display
an entry. The attribute list should be freed using ldap_value_free (). The
includeattrs parameter contains a null-terminated array of attributes that should

Last modified 25 May 1998 SunOS 5.8 289

ldap_disptmpl(3LDAP) LDAP Library Functions

always be included (it may be NULL if no extra attributes are required). If
syntaxmask is non-zero, it is used to restrict the attribute set returned. If exclude
is zero, only attributes where the logical AND of the template item syntax id
and the syntaxmask is non-zero are included. If exclude is non-zero, attributes
where the logical AND of the template item syntax id and the syntaxmask is
non-zero are excluded.

ldap_first_tmplrow() returns a pointer to the first row of items in template
tmpl.

ldap_next_tmplrow() returns a pointer to the row that follows row in
template tmpl.

ldap_first_tmplcol() returns a pointer to the first item (in the first column)
of row row within template tmpl . A pointer to an ldap_tmplitem structure
(defined below in the TMPLITEM Structure Elements section) is returned.

The LDAP_SET_TMPLITEM_APPDATA()macro is used to set the value of the
ti_appdata field in a ldap_tmplitem structure. This field is reserved for the
calling application to use; it is not used internally.

The LDAP_GET_TMPLITEM_APPDATA()macro is used to retrieve the value of
the ti_appdata field.

The LDAP_IS_TMPLITEM_OPTION_SET() macro is used to test a
ldap_tmplitem structure for the existence of an item option. The options
currently defined are: LDAP_DITEM_OPT_READONLY(this attribute should not
be modified), LDAP_DITEM_OPT_SORTVALUES(it makes sense to sort the
values), LDAP_DITEM_OPT_SINGLEVALUED(this attribute can only hold a
single value), LDAP_DITEM_OPT_VALUEREQUIRED(this attribute must contain
at least one value), LDAP_DITEM_OPT_HIDEIFEMPTY(do not show this item
if there are no values), and LDAP_DITEM_OPT_HIDEIFFALSE(for boolean
attributes only: hide this item if the value is FALSE).

ldap_next_tmplcol() returns a pointer to the item (column) that follows
column col within row row of template tmpl.

DISPTMPL Structure
Elements

The ldap_disptmpl structure is defined as:

struct ldap_disptmpl {
char *dt_name;
char *dt_pluralname;
char *dt_iconname;
unsigned long dt_options;
char *dt_authattrname;
char *dt_defrdnattrname;
char *dt_defaddlocation;
struct ldap_oclist *dt_oclist;
struct ldap_adddeflist *dt_adddeflist;
struct ldap_tmplitem *dt_items;
void *dt_appdata;

290 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_disptmpl(3LDAP)

struct ldap_disptmpl *dt_next;
};

The dt_name member is the singular name of the template. The
dt_pluralname is the plural name. The dt_iconname member will contain
the name of an icon or other graphical element that can be used to depict entries
that correspond to this display template. The dt_options contains options
which may be tested using the LDAP_IS_TMPLITEM_OPTION_SET() macro.

The dt_authattrname contains the name of the DN-syntax attribute
whose value(s) should be used to authenticate to make changes to an entry.
If dt_authattrname is NULL , then authenticating as the entry itself is
appropriate. The dt_defrdnattrname is the name of the attribute that is
normally used to name entries of this type, for example, "cn" for person entries.
The dt_defaddlocation is the distinguished name of an entry below which
new entries of this type are typically created (its value is site-dependent).

dt_oclist is a pointer to a linked list of object class arrays, defined as:

struct ldap_oclist {
char **oc_objclasses;
struct ldap_oclist *oc_next;

};

These are used by the ldap_oc2template() function.

dt_adddeflist is a pointer to a linked list of rules for defaulting the values of
attributes when new entries are created. The ldap_adddeflist structure is
defined as:

struct ldap_adddeflist {
int ad_source;
char *ad_attrname;
char *ad_value;
struct ldap_adddeflist *ad_next;

};

The ad_attrname member contains the name of the attribute whose value
this rule sets. If ad_source is LDAP_ADSRC_CONSTANTVALUEthen the
ad_value member contains the (constant) value to use. If ad_source is
LDAP_ADSRC_ADDERSDNthen ad_value is ignored and the distinguished
name of the person who is adding the new entry is used as the default value
for ad_attrname .

TMPLITEM Structure
Elements

The ldap_tmplitem structure is defined as:

struct ldap_tmplitem {
unsigned long ti_syntaxid;
unsigned long ti_options;
char *ti_attrname;
char *ti_label;
char **ti_args;
struct ldap_tmplitem *ti_next_in_row;
struct ldap_tmplitem *ti_next_in_col;

Last modified 25 May 1998 SunOS 5.8 291

ldap_disptmpl(3LDAP) LDAP Library Functions

void *ti_appdata;
};

Syntax IDs Syntax ids are found in the ldap_tmplitem structure element ti_syntaxid ,
and they can be used to determine how to display the values for the attribute
associated with an item. The LDAP_GET_SYN_TYPE()macro can be used
to return a general type from a syntax id. The five general types currently
defined are: LDAP_SYN_TYPE_TEXT(for attributes that are most appropriately
shown as text), LDAP_SYN_TYPE_IMAGE(for JPEG or FAX format images),
LDAP_SYN_TYPE_BOOLEAN(for boolean attributes), LDAP_SYN_TYPE_BUTTON
(for attributes whose values are to be retrieved and display only upon request, for
example, in response to the press of a button, a JPEG image is retrieved, decoded,
and displayed), and LDAP_SYN_TYPE_ACTION(for special purpose actions such
as "search for the entries where this entry is listed in the seeAlso attribute").

The LDAP_GET_SYN_OPTIONSmacro can be used to retrieve an unsigned
long bitmap that defines options. The only currently defined option is
LDAP_SYN_OPT_DEFER,which (if set) implies that the values for the attribute
should not be retrieved until requested.

There are sixteen distinct syntax ids currently defined. These generally
correspond to one or more X.500 syntaxes.

LDAP_SYN_CASEIGNORESTRis used for text attributes which are simple strings
whose case is ignored for comparison purposes.

LDAP_SYN_MULTILINESTRis used for text attributes which consist of
multiple lines, for example, postalAddress , homePostalAddress ,
multilineDescription , or any attributes of syntax caseIgnoreList .

LDAP_SYN_RFC822ADDRis used for case ignore string attributes that are
RFC-822 conformant mail addresses, for example, mail.

LDAP_SYN_DNis used for attributes with a Distinguished Name syntax, for
example, seeAlso .

LDAP_SYN_BOOLEANis used for attributes with a boolean syntax.

LDAP_SYN_JPEGIMAGEis used for attributes with a jpeg syntax, for example,
jpegPhoto.

LDAP_SYN_JPEGBUTTONis used to provide a button (or equivalent interface
element) that can be used to retrieve, decode, and display an attribute of jpeg
syntax.

LDAP_SYN_FAXIMAGEis used for attributes with a photo syntax, for example,
Photo. These are actually Group 3 Fax (T.4) format images.

292 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_disptmpl(3LDAP)

LDAP_SYN_FAXBUTTONis used to provide a button (or equivalent interface
element) that can be used to retrieve, decode, and display an attribute of photo
syntax.

LDAP_SYN_AUDIOBUTTONis used to provide a button (or equivalent interface
element) that can be used to retrieve and play an attribute of audio syntax.
Audio values are in the "mu law" format, also known as "au" format.

LDAP_SYN_TIMEis used for attributes with the UTCTime syntax, for example,
lastModifiedTime . The value(s) should be displayed in complete date
and time fashion.

LDAP_SYN_DATEis used for attributes with the UTCTime syntax, for example,
lastModifiedTime . Only the date portion of the value(s) should be displayed.

LDAP_SYN_LABELEDURLis used for labeledURL attributes.

LDAP_SYN_SEARCHACTIONis used to define a search that is used to retrieve
related information. If ti_attrname is not NULL , it is assumed to be a boolean
attribute which will cause no search to be performed if its value is FALSE . The
ti_args structure member will have four strings in it: ti_args[0] should
be the name of an attribute whose values are used to help construct a search
filter or "-dn" is the distinguished name of the entry being displayed should be
used, ti_args[1] should be a filter pattern where any occurrences of "%v" are
replaced with the value derived from ti_args[0] , ti_args[2] should
be the name of an additional attribute to retrieve when performing the search,
and ti_args[3] should be a human-consumable name for that attribute. The
ti_args[2] attribute is typically displayed along with a list of distinguished
names when multiple entries are returned by the search.

LDAP_SYN_LINKACTIONis used to define a link to another template by name.
ti_args[0] will contain the name of the display template to use. The
ldap_name2template() function can be used to obtain a pointer to the
correct ldap_disptmpl structure.

LDAP_SYN_ADDDNACTIONand LDAP_SYN_VERIFYDNACTIONare reserved
as actions but currently undefined.

ERRORS The init template functions return LDAP_TMPL_ERR_VERSIONif buf points to
data that is newer than can be handled, LDAP_TMPL_ERR_MEMif there is a
memory allocation problem, LDAP_TMPL_ERR_SYNTAXif there is a problem
with the format of the templates buffer or file. LDAP_TMPL_ERR_FILEis
returned by ldap_init_templates if the file cannot be read. Other functions
generally return NULLupon error.

ATTRIBUTES See attributes (5) for a description of the following attributes:

Last modified 25 May 1998 SunOS 5.8 293

ldap_disptmpl(3LDAP) LDAP Library Functions

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap (3LDAP) , ldap_entry2text (3LDAP) , ldaptemplates.conf (4)

294 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_entry2text(3LDAP)

NAME ldap_entry2text, ldap_entry2text_search, ldap_entry2html,
ldap_entry2html_search, ldap_vals2html, ldap_vals2text – LDAP entry display
functions

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
int ldap_entry2text (LDAP *ld, char *buf, LDAPMessage *entry, struct ldap_disptmpl
*tmpl, char **defattrs, char ***defvals, int (*writeproc)(), void *writeparm, char *eol, int
rdncount, unsigned long opts);

int ldap_entry2text_search (LDAP *ld, char *dn, char *base, LDAPMessage *entry,
struct ldap_disptmpl *tmpllist, char **defattrs, char ***defvals, int (*writeproc)(), void
*writeparm, char *eol, int rdncount, unsigned long opts);

int ldap_vals2text (LDAP *ld, char *buf, char **vals, char *label, int labelwidth, unsigned
longsyntaxid, int (*writeproc)(), void *writeparm, char *eol, int rdncount);

int ldap_entry2html (LDAP *ld, char *buf, LDAPMessage *entry, struct ldap_disptmpl
*tmpl, char **defattrs, char ***defvals, int (*writeproc)(), void *writeparm, char *eol, int
rdncount, unsigned long opts, char *urlprefix, char *base);

int ldap_entry2html_search (LDAP *ld, char *dn, LDAPMessage *entry, struct
ldap_disptmpl *tmpllist, char **defattrs, char ***defvals, int (*writeproc)(), void *writeparm,
char *eol, int rdncount, unsigned long opts, char *urlprefix);

int ldap_vals2html (LDAP *ld, char *buf, char **vals, char *label, int labelwidth, unsigned
long syntaxid, int (*writeproc)(), void *writeparm, char *eol, int rdncount, char *urlprefix);

#define LDAP_DISP_OPT_AUTOLABELWIDTH 0x00000001

#define LDAP_DISP_OPT_HTMLBODYONLY 0x00000002

#define LDAP_DTMPL_BUFSIZ 2048

DESCRIPTION These functions use the LDAP display template functions (see
ldap_disptmpl (3LDAP) and ldap_templates.conf(4)) to produce a
plain text or an HyperText Markup Language (HTML) display of an entry or a
set of values. Typical plain text output produced for an entry might look like:

"Barbara J Jensen, Information Technology Division"
Also Known As:
Babs Jensen
Barbara Jensen
Barbara J Jensen
E-Mail Address:
bjensen@terminator.rs.itd.umich.edu
Work Address:
535 W. William
Ann Arbor, MI 48103
Title:

Last modified 25 May 1998 SunOS 5.8 295

ldap_entry2text(3LDAP) LDAP Library Functions

Mythical Manager, Research Systems
...

The exact output produced will depend on the display template configuration.
HTML output is similar to the plain text output, but more richly formatted.

ldap_entry2text() produces a text representation of entry and writes the
text by calling the writeproc function. All of the attributes values to be displayed
must be present in entry; no interaction with the LDAP server will be performed
within ldap_entry2text . ld is the LDAP pointer obtained by a previous call
to ldap_open. writeproc should be declared as:

int writeproc(writeparm, p, len)
void *writeparm;
char *p;
int len;

where p is a pointer to text to be written and len is the length of the text. p is
guaranteed to be zero-terminated. Lines of text are terminated with the string
eol. buf is a pointer to a buffer of size LDAP_DTMPL_BUFSIZor larger. If buf is
NULL then a buffer is allocated and freed internally. tmpl is a pointer to the
display template to be used (usually obtained by calling ldap_oc2template
). If tmpl is NULL , no template is used and a generic display is produced.
defattrs is a NULL-terminated array of LDAP attribute names which you wish
to provide default values for (only used if entry contains no values for the
attribute). An array of NULL-terminated arrays of default values corresponding
to the attributes should be passed in defvals. The rdncount parameter is used to
limit the number of Distinguished Name (DN) components that are actually
displayed for DN attributes. If rdncount is zero, all components are shown.
opts is used to specify output options. The only values currently allowed are
zero (default output), LDAP_DISP_OPT_AUTOLABELWIDTHwhich causes
the width for labels to be determined based on the longest label in tmpl, and
LDAP_DISP_OPT_HTMLBODYONLY. The LDAP_DISP_OPT_HTMLBODYONLY
option instructs the library not to include <HTML>, <HEAD>, <TITLE>, and
<BODY> tags. In other words, an HTML fragment is generated, and the caller
is responsible for prepending and appending the appropriate HTML tags to
construct a correct HTML document.

ldap_entry2text_search() is similar to ldap_entry2text , and all of
the like-named parameters have the same meaning except as noted below. If
base is not NULL , it is the search base to use when executing search actions. If
it is NULL , search action template items are ignored. If entry is not NULL ,
it should contain the objectClass attribute values for the entry to be displayed.
If entry is NULL , dn must not be NULL , and ldap_entry2text_search
will retrieve the objectClass values itself by calling ldap_search_s.
ldap_entry2text_search will determine the appropriate display template
to use by calling ldap_oc2template , and will call ldap_search_s to
retrieve any attribute values to be displayed. The tmpllist parameter is a

296 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_entry2text(3LDAP)

pointer to the entire list of templates available (usually obtained by calling
ldap_init_templates or ldap_init_templates_buf). If tmpllist is NULL
, ldap_entry2text_search will attempt to read a load templates from the
default template configuration file ETCDIR/ldaptemplates.conf .

ldap_vals2text produces a text representation of a single set of LDAP
attribute values. The ld, buf, writeproc, writeparm, eol, and rdncount parameters
are the same as the like-named parameters for ldap_entry2text . vals is a
NULL-terminated list of values, usually obtained by a call to ldap_get_values
. label is a string shown next to the values (usually a friendly form of an LDAP
attribute name). labelwidth specifies the label margin, which is the number of
blank spaces displayed to the left of the values. If zero is passed, a default label
width is used. syntaxid is a display template attribute syntax identifier (see
ldap_disptmpl (3LDAP) for a list of the pre-defined LDAP_SYN_... values).

ldap_entry2html produces an HTML representation of entry. It behaves
exactly like ldap_entry2text (3LDAP) , except for the formatted output
and the addition of two parameters. urlprefix is the starting text to use when
constructing an LDAP URL. The default is the string ldap:/// The second
additional parameter, base, the search base to use when executing search actions.
If it is NULL , search action template items are ignored.

ldap_entry2html_search behaves exactly like
ldap_entry2text_search (3LDAP) , except HTML output is
produced and one additional parameter is required. urlprefix is the starting text
to use when constructing an LDAP URL. The default is the string ldap:///

ldap_vals2html behaves exactly like ldap_vals2text ,except
HTMLoutput is and one additional parameter is required. urlprefix is the
starting text to use when constructing an LDAP URL. The default is the string
ldap:///

ERRORS These functions all return an LDAP error code (LDAP_SUCCESSis returned if no
error occurs). See ldap_error (3LDAP) for details. The ld_errno field of the ld
parameter is also set to indicate the error.

FILES ETCDIR/ldaptemplates.conf

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

Last modified 25 May 1998 SunOS 5.8 297

ldap_entry2text(3LDAP) LDAP Library Functions

SEE ALSO ldap (3LDAP) , ldap_disptmpl (3LDAP) , ldaptemplates.conf (4)

298 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_error(3LDAP)

NAME ldap_error, ldap_perror, ldap_result2error, ldap_errlist, ldap_err2string – LDAP
protocol error handling functions

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
struct ldap_error (int e_code, char *e_reason);

struct ldaperror ldap_errlist[];

char *ldap_err2string (int err);

void ldap_perror (LDAP *ld, char *s);

int ldap_result2error (LDAP *ld, LDAPMessage *res, int freeit);

DESCRIPTION These functions provide interpretation of the various error codes returned by the
LDAP protocol and LDAP library functions and assigned to an error field in
the ld structure. ldap_perror() and ldap_result2error() functions
are deprecated for all new development; ldap_err2string() should be
used instead.

The ldap_result2error() function takes res , a result as produced by
ldap_result (3LDAP) or other synchronous LDAP calls, and returns the
corresponding error code. Possible error codes are listed below. If the freeit
parameter is non zero it indicates that the res parameter should be freed by a
call to ldap_msgfree (3LDAP) after the error code has been extracted. The
error field in ld is set and returned.

The returned value can be passed to ldap_err2string() or looked up in
ldap_errlist[] to get a text description of the message. The string returned
from ldap_err2string() is a pointer to a static area that should not be
modified. The last element in the ldap_errlist[] array is signaled by an
error code of -1 .

The ldap_perror() function can be called to print an indication of the error
on standard error, similar to the way perror (3C) works.

ERRORS The possible values for an ldap error code are:
LDAP_SUCCESS The request was successful.

LDAP_OPERATIONS_ERROR An operations error occurred.

LDAP_PROTOCOL_ERROR A protocol violation was detected.

Last modified 25 May 1998 SunOS 5.8 299

ldap_error(3LDAP) LDAP Library Functions

LDAP_TIMELIMIT_EXCEEDED An LDAP time limit was exceeded.

LDAP_SIZELIMIT_EXCEEDED An LDAP size limit was exceeded.

LDAP_COMPARE_FALSE A compare operation returned false.

LDAP_COMPARE_TRUE A compare operation returned true.

LDAP_STRONG_AUTH_NOT_SUPPORTEDThe LDAP server does not support
strong authentication.

LDAP_STRONG_AUTH_REQUIRED Strong authentication is required for
the operation.

LDAP_PARTIAL_RESULTS Partial results only returned.

LDAP_NO_SUCH_ATTRIBUTE The attribute type specified does not
exist in the entry.

LDAP_UNDEFINED_TYPE The attribute type specified is invalid.

LDAP_INAPPROPRIATE_MATCHING Filter type not supported for the
specified attribute.

LDAP_CONSTRAINT_VIOLATION An attribute value specified violates
some constraint (for example, a
postalAddress has too many lines, or
a line that is too long).

LDAP_TYPE_OR_VALUE_EXISTS An attribute type or attribute value
specified already exists in the entry.

LDAP_INVALID_SYNTAX An invalid attribute value was
specified.

LDAP_NO_SUCH_OBJECT The specified object does not exist in
The Directory.

LDAP_ALIAS_PROBLEM An alias in The Directory points to a
nonexistent entry.

LDAP_INVALID_DN_SYNTAX A syntactically invalid DN was
specified.

300 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_error(3LDAP)

LDAP_IS_LEAF The object specified is a leaf.

LDAP_ALIAS_DEREF_PROBLEM A problem was encountered when
dereferencing an alias.

LDAP_INAPPROPRIATE_AUTH Inappropriate authentication
was specified (for example,
LDAP_AUTH_SIMPLEwas specified
and the entry does not have a
userPassword attribute).

LDAP_INVALID_CREDENTIALS Invalid credentials were presented
(for example, the wrong password).

LDAP_INSUFFICIENT_ACCESS The user has insufficient access to
perform the operation.

LDAP_BUSY The DSA is busy.

LDAP_UNAVAILABLE The DSA is unavailable.

LDAP_UNWILLING_TO_PERFORM The DSA is unwilling to perform
the operation.

LDAP_LOOP_DETECT A loop was detected.

LDAP_NAMING_VIOLATION A naming violation occurred.

LDAP_OBJECT_CLASS_VIOLATION An object class violation occurred
(for example, a "must" attribute was
missing from the entry).

LDAP_NOT_ALLOWED_ON_NONLEAF The operation is not allowed on a
nonleaf object.

LDAP_NOT_ALLOWED_ON_RDN The operation is not allowed on
an RDN.

LDAP_ALREADY_EXISTS The entry already exists.

LDAP_NO_OBJECT_CLASS_MODS Object class modifications are not
allowed.

LDAP_OTHER An unknown error occurred.

Last modified 25 May 1998 SunOS 5.8 301

ldap_error(3LDAP) LDAP Library Functions

LDAP_SERVER_DOWN The LDAP library can’t contact the
LDAP server.

LDAP_LOCAL_ERROR Some local error occurred. This is
usually a failed malloc.

LDAP_ENCODING_ERROR An error was encountered encoding
parameters to send to the LDAP
server.

LDAP_DECODING_ERROR An error was encountered decoding a
result from the LDAP server.

LDAP_TIMEOUT A timelimit was exceeded while
waiting for a result.

LDAP_AUTH_UNKNOWN The authentication method specified
to ldap_bind() is not known.

LDAP_FILTER_ERROR An invalid filter was supplied
to ldap_search() (for example,
unbalanced parentheses).

LDAP_PARAM_ERROR An ldap function was called with a
bad parameter (for example, a NULL
ld pointer, etc.).

LDAP_NO_MEMORY An memory allocation (for example,
malloc(3N)) call failed in an ldap
library function.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO attributes (5) , ldap (3LDAP) , perror (3C)

302 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_first_attribute(3LDAP)

NAME ldap_first_attribute, ldap_next_attribute – step through LDAP entry attributes

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
char *ldap_first_attribute (LDAP *ld, LDAPMessage *entry, BerElement **berptr);

char *ldap_next_attribute (LDAP *ld, LDAPMessage *entry, BerElement *ber);

DESCRIPTION The ldap_first_attribute() and ldap_next_attribute()
functions are used to step through the attributes in an LDAP
entry. ldap_first_attribute() takes an entry as returned by
ldap_first_entry (3LDAP) or ldap_next_entry (3LDAP) and returns a
pointer to a per-connection buffer containing the first attribute type in the entry.
The return value should be treated as if it is a pointer to a static area (that is,
strdup (3C) it if you want to save it).

It also returns, in berptr , a pointer to a BerElement it has allocated to keep
track of its current position. This pointer should be passed to subsequent calls to
ldap_next_attribute() and is used used to effectively step through the
entry’s attributes. This pointer is freed by ldap_next_attribute() when
there are no more attributes (that is, when ldap_next_attribute() returns
NULL). Otherwise, the caller is responsible for freeing the BerElement pointed
to by berptr when it is no longer needed by calling ber_free (3LDAP) . When
calling ber_free (3LDAP) in this instance, be sure the second argument is ’0’.

The attribute names returned are suitable for inclusion in a call to
ldap_get_values (3LDAP) to retrieve the attribute’s values.

ERRORS If an error occurs, NULLis returned and the ld_errno field in the ld parameter
is set to indicate the error. See ldap_error (3LDAP) for a description of
possible error codes.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap (3LDAP) , ldap_first_entry (3LDAP) , ldap_get_values (3LDAP) ,
ldap_error (3LDAP)

NOTES The ldap_first_attribute() function mallocs memory that may need to be
freed by the caller via ber_free (3LDAP) .

Last modified 25 May 1998 SunOS 5.8 303

ldap_first_entry(3LDAP) LDAP Library Functions

NAME ldap_first_entry, ldap_next_entry, ldap_count_entries, ldap_count_references,
ldap_first_reference, ldap_first_reference – LDAP entry parsing and counting
functions

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
LDAPMessage *ldap_first_entry (LDAP*ld, LDAPMessage *result);

LDAPMessage *ldap_next_entry (LDAP *ld, LDAPMessage *entry);

ldap_count_entries (LDAP *ld, LDAPMessage *result);

LDAPMessage *ldap_first_reference (LDAP *ld, LDAPMessage *res);

LDAPMessage *ldap_next_reference (LDAP *ld, LDAPMessage *res);

int ldap_count_references (LDAP *ld, LDAPMessage *res);

DESCRIPTION These functions are used to parse results received from ldap_result (3LDAP)
or the synchronous LDAP search operation functions ldap_search_s (3LDAP)
and ldap_search_st (3LDAP) .

The ldap_first_entry() function is used to retrieve the first entry in a chain
of search results. It takes the result as returned by a call to ldap_result (3LDAP)
or ldap_search_s (3LDAP) or ldap_search_st (3LDAP) and returns a
pointer to the first entry in the result.

This pointer should be supplied on a subsequent call to ldap_next_entry()
to get the next entry, the result of which should be supplied to the next
call to ldap_next_entry() , etc. ldap_next_entry() will return
NULLwhen there are no more entries. The entries returned from these calls
are used in calls to the functions described in ldap_get_dn (3LDAP) ,
ldap_first_attribute (3LDAP) , ldap_get_values (3LDAP) , etc.

A count of the number of entries in the search result can be obtained by calling
ldap_count_entries() .

ldap_first_reference() and ldap_next_reference() are used to step
through and retrieve the list of continuation references from a search result chain.

The ldap_count_references() function is used to count the number of
references that are contained in and remain in a search result chain.

ERRORS If an error occurs in ldap_first_entry() or ldap_next_entry() , NULL
is returned and the ld_errno field in the ld parameter is set to indicate the
error. If an error occurs in ldap_count_entries() , -1 is returned, and
ld_errno is set appropriately. See ldap_error (3LDAP) for a description of
possible error codes.

304 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_first_entry(3LDAP)

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap (3LDAP) , ldap_result (3LDAP) , ldap_search (3LDAP) ,
ldap_first_attribute (3LDAP) , ldap_get_values (3LDAP) ,
ldap_get_dn (3LDAP)

Last modified 25 May 1998 SunOS 5.8 305

ldap_first_message(3LDAP) LDAP Library Functions

NAME ldap_first_message, ldap_count_messages, ldap_next_message, ldap_msgtype –
LDAP message processing functions

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
int ldap_count_messages (LDAP *ld, LDAPMessage *res);

LDAPMessage *ldap_first_message (LDAP *ld, LDAPMessage *res);

LDAPMessage *ldap_next_message (LDAP *ld, LDAPMessage *msg);

int ldap_msgtype (LDAPMessage *res);

DESCRIPTION ldap_count_messages() is used to count the number of
messages that remain in a chain of results if called with a message,
entry, or reference returned by ldap_first_message() ,
ldap_next_message() , ldap_first_entry() , ldap_next_entry() ,
ldap_first_reference() , and ldap_next_reference()

ldap_first_message() and ldap_next_message() functions are used to
step through the list of messages in a result chain returned by ldap_result() .

ldap_msgtype() function returns the type of an LDAP message.

RETURN VALUES ldap_first_message() and ldap_next_message() return LDAPMessage
which can include referral messages, entry messages and result messages.

ldap_count_messages() returns the number of messages contained in a
chain of results.

ERRORS ldap_first_message() and ldap_next_message() return NULLwhen no
more messages exist. NULL is also returned if an error occurs while stepping
through the entries, in which case the error parameters in the session handle
ld will be set to indicate the error.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap_error (3LDAP) , ldap_result (3LDAP) , attributes (5)

306 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_friendly(3LDAP)

NAME ldap_friendly, ldap_friendly_name, ldap_free_friendlymap – LDAP attribute
remapping functions

SYNOPSIS cc[flag...] file... -lldap[library...]
#include <lber.h>
#include <ldap.h>
char *ldap_friendly_name (char *filename, char *name, FriendlyMap **map);

void ldap_free_friendlymap (FriendlyMap **map);

DESCRIPTION This function is used to map one set of strings to another. Typically, this is
done for country names, to map from the two-letter country codes to longer
more readable names. The mechanism is general enough to be used with other
things, though.

filename is the name of a file containing the unfriendly to friendly mapping, name
is the unfriendly name to map to a friendly name, and map is a result-parameter
that should be set to NULL on the first call. It is then used to hold the mapping
in core so that the file need not be read on subsequent calls.

For example:

FriendlyMap *map = NULL;
printf("unfriendly %s => friendly %s\

", name,
ldap_friendly_name("ETCDIR/ldapfriendly", name, &map));

The mapping file should contain lines like this: unfriendlyname\\tfriendlyname.
Lines that begin with a ’#’ character are comments and are ignored.

The ldap_free_friendlymap() call is used to free structures allocated by
ldap_friendly_name() when no more calls to ldap_friendly_name()
are to be made.

ERRORS NULL is returned by ldap_friendly_name() if there is an error opening
filename , or if the file has a bad format, or if the map parameter is NULL.

FILES ETCDIR/ldapfriendly.conf

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap (3LDAP)

Last modified 25 May 1998 SunOS 5.8 307

ldap_get_dn(3LDAP) LDAP Library Functions

NAME ldap_get_dn, ldap_explode_dn, ldap_dn2ufn, ldap_is_dns_dn,
ldap_explode_dns, ldap_dns_to_dn – LDAP DN handling functions

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
char *ldap_get_dn (LDAP *ld, LDAPMessage *entry);

char **ldap_explode_dn (char *dn, int notypes);

char *ldap_dn2ufn (char *dn);

int ldap_is_dns_dn (char *dn);

char **ldap_explode_dns (char *dn);

char *ldap_dns_to_dn (char *dns_name, int *nameparts);

DESCRIPTION These functions allow LDAP entry names (Distinguished Names, or DNs) to
be obtained, parsed, converted to a user-friendly form, and tested. A DN has
the form described in RFC 1779 A String Representation of Distinguished Names ,
unless it is an experimental DNS-style DN which takes the form of an RFC
822 mail address.

The ldap_get_dn() function takes an entry as returned by
ldap_first_entry (3LDAP) or ldap_next_entry (3LDAP) and returns
a copy of the entry’s DN. Space for the DN will have been obtained via
malloc (3C) , and should be freed by the caller by a call to free (3C) .

The ldap_explode_dn() function takes a DN as returned by
ldap_get_dn() and breaks it up into its component parts. Each part is known
as a Relative Distinguished Name, or RDN. ldap_explode_dn() returns a
NULL-terminated array, each component of which contains an RDN from the
DN. The notypes parameter is used to request that only the RDN values be
returned, not their types. For example, the DN "cn=Bob, c=US" would return
as either { "cn=Bob", "c=US", NULL } or { "Bob", "US", NULL }, depending on
whether notypes was 0 or 1, respectively. The result can be freed by calling
ldap_value_free (3LDAP) .

ldap_dn2ufn() is used to turn a DN as returned by ldap_get_dn() into a
more user-friendly form, stripping off type names. See RFC 1781 "Using the
Directory to Achieve User Friendly Naming" for more details on the UFN format.
The space for the UFN returned is obtained by a call to malloc (3C) , and the
user is responsible for freeing it via a call to free (3C) .

ldap_is_dns_dn() returns non-zero if the dn string is an experimental
DNS-style DN (generally in the form of an RFC 822 e-mail address). It returns
zero if the dn appears to be an RFC 1779 format DN.

308 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_get_dn(3LDAP)

ldap_explode_dns() takes a DNS-style DN and breaks it up into its
component parts. ldap_explode_dns() returns a NULL-terminated array.
For example, the DN "mcs.umich.edu" will return { "mcs", "umich", "edu", NULL
}. The result can be freed by calling ldap_value_free (3LDAP) .

ldap_dns_to_dn() converts a DNS domain name into an X.500 distinguished
name. A string distinguished name and the number of nameparts is returned.

ERRORS If an error occurs in ldap_get_dn() , NULL is returned and the ld_errno
field in the ld parameter is set to indicate the error. See ldap_error (3LDAP)
for a description of possible error codes. ldap_explode_dn() ,
ldap_explode_dns() and ldap_dn2ufn() will return NULLwith
errno (3C) set appropriately in case of trouble.

If an error in ldap_dns_to_dn() is encountered zero is returned. The caller
should free the returned string if it is non-zero.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap (3LDAP) , ldap_first_entry (3LDAP) , ldap_error (3LDAP) ,
ldap_value_free (3LDAP)

NOTES These functions allocate memory that the caller must free.

Last modified 25 May 1998 SunOS 5.8 309

ldap_getfilter(3LDAP) LDAP Library Functions

NAME ldap_getfilter, ldap_init_getfilter, ldap_init_getfilter_buf, ldap_getfilter_free,
ldap_getfirstfilter, ldap_getnextfilter, ldap_build_filter – LDAP filter generating
functions

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
#define LDAP_FILT_MAXSIZ 1024
LDAPFiltDesc *ldap_init_getfilter (char *file);

LDAPFiltDesc *ldap_init_getfilter_buf (char *buf, long buflen);

ldap_getfilter_free (LDAPFiltDesc *lfdp);

LDAPFiltInfo *ldap_getfirstfilter (LDAPFiltDesc *lfdp, char *tagpat, char *value);

LDAPFiltInfo *ldap_getnextfilter (LDAPFiltDesc *lfdp);

void ldap_setfilteraffixes (LDAPFiltDesc *lfdp, char *prefix, char *suffix);

void ldap_build_filter (char *buf, unsigned long buflen, char *pattern, char *prefix,
char *suffix, char *attr, char *value, char **valwords);

DESCRIPTION These functions are used to generate filters to be used in ldap_search (3LDAP)
or ldap_search_s (3LDAP) . Either ldap_init_getfilter or
ldap_init_getfilter_buf must be called prior to calling any of the other
functions except ldap_build_filter .

ldap_init_getfilter() takes a file name as its only argument. The
contents of the file must be a valid LDAP filter configuration file (see
ldapfilter.conf (4)). If the file is successfully read, a pointer to an
LDAPFiltDesc is returned. This is an opaque object that is passed in
subsequent get filter calls.

ldap_init_getfilter_buf() reads from buf (whose length is buflen) the
LDAP filter configuration information. buf must point to the contents of a
valid LDAP filter configuration file (see ldapfilter.conf (4)). If the filter
configuration information is successfully read, a pointer to an LDAPFiltDesc is
returned. This is an opaque object that is passed in subsequent get filter calls.

ldap_getfilter_free() deallocates the memory consumed by
ldap_init_getfilter . Once it is called, the LDAPFiltDesc is no longer
valid and cannot be used again.

ldap_getfirstfilter() retrieves the first filter that is appropriate for
value. Only filter sets that have tags that match the regular expession tagpat are
considered. ldap_getfirstfilter returns a pointer to an LDAPFiltInfo
structure, which contains a filter with value inserted as appropriate in

310 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_getfilter(3LDAP)

lfi_filter, a text match description in lfi_desc, lfi_scope set to
indicate the search scope, and lfi_isexact set to indicate the type of filter.
NULL is returned if no matching filters are found. lfi_scope will be one of
LDAP_SCOPE_BASE, LDAP_SCOPE_ONELEVEL, or LDAP_SCOPE_SUBTREE
. lfi_isexact will be zero if the filter has any ’~’ or ’*’ characters in it and
non-zero otherwise.

ldap_getnextfilter() retrieves the next appropriate filter in the filter set
that was determined when ldap_getfirstfilter was called. It returns
NULLwhen the list has been exhausted.

ldap_setfilteraffixes() sets a prefix to be prepended and a suffix to be
appended to all filters returned in the future.

ldap_build_filter() constructs an LDAP search filter in buf. buflen is the
size, in bytes, of the largest filter buf can hold. A pattern for the desired filter
is passed in pattern. Where the string %a appears in the pattern it is replaced
with attr. prefix is pre-pended to the resulting filter, and suffix is appended.
Either can be NULL (in which case they are not used). value and valwords are
used when the string %v appears in pattern. See ldapfilter.conf (4) for a
description of how %v is handled.

ERRORS NULL is returned by ldap_init_getfilter if there is an error reading file.
NULL is returned by ldap_getfirstfilter and ldap_getnextfilter
when there are no more appropriate filters to return.

FILES ETCDIR/ldapfilter.conf LDAP filtering routine configuration file.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap (3LDAP) , ldapfilter.conf (4)

NOTES The return values for all of these functions are declared in the <ldap.h>
header file. Some functions may allocate memory which must be freed by the
calling application.

Last modified 25 May 1998 SunOS 5.8 311

ldap_get_option(3LDAP) LDAP Library Functions

NAME ldap_get_option, ldap_set_option – get/set session preferences in the ldap
structure.

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
LDAP ldap_set_option (LDAP *ld, int option, void *optdata []);

LDAP ldap_get_option (LDAP *ld, int option, void optdata []);

DESCRIPTION These functions provide access to session preferences to an LDAPstructure.
ldap_get_option() gets session preferences from the LDAPstructure.
ldap_set_option() sets session preferences in the LDAPstructure.

ld is the connection handle, which is a pointer to an LDAPstructure containing
information about the connection to the LDAP server. option is the name of the
option to be read or modified. optdata is a pointer to the value of the option
that you want to set/get.

The option parameter can have one of the values listed in the following section.

PARAMETERS The following are the values for the option parameter:
LDAP_OPT_API_INFO

Used to retrieve some basic information about the LDAP API
implementation at execution time. The data type for the optdata parameter is
(LDAPAPIInfo *) . This option is READ-ONLY and cannot be set.

LDAP_OPT_DEREF
Determines how aliases are handled during a search . The data type for the
optdata parameter is (int *) . optdata can be one of the following values:

LDAP_DEREF_NEVER Specifies that aliases are never dereferenced.

LDAP_DEREF_SEARCHING Specifies that aliases are dereferenced when
searching under the base object (but not when
finding the base object).

LDAP_DEREF_FINDING Specifies that aliases are dereferenced when
finding the base object (but not when searching
under the base object).

LDAP_DEREF_ALWAYS Specifies that aliases are always dereferenced
when finding the base object and searching
under the base object.

LDAP_OPT_SIZELIMIT

312 SunOS 5.8 Last modified 14 October 1999

LDAP Library Functions ldap_get_option(3LDAP)

Maximum number of entries that should be returned by the server in search
results. The data type for the optdata parameter is (int *) . Setting the
optdata parameter to LDAP_NO_LIMIT removes any size limit enforced
by the client.

LDAP_OPT_TIMELIMIT
Maximum number of seconds that should be spent by the server when
answering a search request. The data type for the optdata parameter is (int
*) . Setting the optdata parameter to LDAP_NO_LIMIT removes any time
limit enforced by the client.

LDAP_OPT_REFERRALS
Determines whether or not the client should follow referrals. The data type
for the optdata parameter is (int *) . optdata can be one of the following
values:

LDAP_OPT_ON Specifies that the client should follow referrals.

LDAP_OPT_OFF Specifies that the client should not follow
referrals.

By default, the client follows referrals.

LDAP_OPT_RESTART
Determines whether LDAP I/O operations are automatically restarted if
they abort prematurely. It may be set to one of the constants LDAP_OPT_ON
or LDAP_OPT_OFF.

LDAP_OPT_PROTOCOL_VERSION
Version of the protocol supported by your client. The data type for the
optdata parameter is (int *) . You can specify either LDAP_VERSION2or
LDAP_VERSION3. If no version is set, the default is LDAP_VERSION2. In
order to use LDAP v3 features, you need to set the protocol version to
LDAP_VERSION3.

LDAP_OPT_SERVER_CONTROLS
Pointer to an array of LDAPControl structures representing the LDAP v3
server controls you want sent with every request by default. The data type
for the optdata parameter for ldap_set_option() is (LDAPControl **)
and for ldap_get_option() is (LDAPControl ***) .

LDAP_OPT_CLIENT_CONTROLS
Pointer to an array of LDAPControl structures representing the LDAP v3
client controls you want sent with every request by default. The data type
for the optdata parameter for ldap_set_option() is (LDAPControl **)
and for ldap_get_option() is (LDAPControl ***) .

Last modified 14 October 1999 SunOS 5.8 313

ldap_get_option(3LDAP) LDAP Library Functions

LDAP_OPT_API_FEATURE_INFO
Used to retrieve version information about LDAP API extended
features at execution time. The data type for the optdata parameter is
(LDAPAPIFeatureInfo *) . This option is READ-ONLY and cannot be
set.

LDAP_OPT_HOST_NAME
This option sets the host name (or list of hosts) for the primary LDAP server.
The data type for the optdata parameter for ldap_set_option() is (char
*) , and for ldap_get_option() is (char **) .

LDAP_OPT_ERROR_NUMBER
The code of the most recent LDAPerror that occurred for this session. The
data type for the optdata parameter is (int *) .

LDAP_OPT_ERROR_STRING
The message returned with the most recent LDAP error that occurred for this
session. The data type for the optdata parameter for ldap_set_option()
is (char *) and for ldap_get_option() is (char **) .

LDAP_OPT_MATCHED_DN
The matched DN value returned with the most recent LDAP error that
occurred for this session. The data type for the optdata parameter for
ldap_set_option() is (char *) and for ldap_get_option() is
(char **) .

LDAP_OPT_REBIND_ARG
Lets you set the last argument passed to the routine specified by
LDAP_OPT_REBIND_FN. You can also set this option by calling the
ldap_set_rebind_proc() function. The data type for the optdata
parameter is (void *) .

LDAP_OPT_REBIND_FN
Lets you set the routine to be called when you need to authenticate
a connection with another LDAP server (for example, during
the course of a referral). You can also set this option by calling
the ldap_set_rebind_proc() function. The data type for the
optdata parameter is (LDAP_REBINDPROC_CALLBACK *).

RETURN VALUES The ldap_set_option() and ldap_get_option() functions return:
LDAP_SUCCESS If successful

--1 If unsuccessful

ERRORS Upon successful completion, both functions return LDAP_SUCCESS, otherwise
-1 is returned.

ATTRIBUTES See attributes (5) for a description of the following attributes:

314 SunOS 5.8 Last modified 14 October 1999

LDAP Library Functions ldap_get_option(3LDAP)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap_init (3LDAP) , attributes (5)

NOTES There are other elements in the LDAPstructure that you should not change. You
should not make any assumptions about the order of elements in the LDAP
structure.

Last modified 14 October 1999 SunOS 5.8 315

ldap_get_values(3LDAP) LDAP Library Functions

NAME ldap_get_values, ldap_get_values_len, ldap_count_values,
ldap_count_values_len, ldap_value_free, ldap_value_free_len – LDAP attribute
value handling functions

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
char **ldap_get_values (LDAP *ld, LDAPMessage *entry, char *attr);

struct berval **ldap_get_values_len (LDAP *ld, LDAPMessage *entry, char *attr);

ldap_count_values (char **vals);

ldap_count_values_len (struct berval **vals);

ldap_value_free (char **vals);

ldap_value_free_len (struct berval **vals);

DESCRIPTION These functions are used to retrieve and manipulate attribute values
from an LDAP entry as returned by ldap_first_entry (3LDAP) or
ldap_next_entry (3LDAP) . ldap_get_values() takes the entry and
the attribute attr whose values are desired and returns a NULL-terminated
array of the attribute’s values. attr may be an attribute type as returned from
ldap_first_attribute (3LDAP) or ldap_next_attribute (3LDAP) , or if
the attribute type is known it can simply be given.

The number of values in the array can be counted by calling
ldap_count_values() . The array of values returned can be freed by calling
ldap_value_free() .

If the attribute values are binary in nature, and thus not suitable to be returned
as an array of char *’s, the ldap_get_values_len() function can be used
instead. It takes the same parameters as ldap_get_values() , but returns a
NULL-terminated array of pointers to berval structures, each containing the
length of and a pointer to a value.

The number of values in the array can be counted by calling
ldap_count_values_len() . The array of values returned can be freed by
calling ldap_value_free_len() .

ERRORS If an error occurs in ldap_get_values() or ldap_get_values_len() ,
NULLreturned and the ld_errno field in the ld parameter is set to indicate the
error. See ldap_error (3LDAP) for a description of possible error codes.

ATTRIBUTES See attributes (5) for a description of the following attributes:

316 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_get_values(3LDAP)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap (3LDAP) , ldap_first_entry (3LDAP) ,
ldap_first_attribute (3LDAP) , ldap_error (3LDAP)

NOTES These functions allocates memory that the caller must free.

Last modified 25 May 1998 SunOS 5.8 317

ldap_modify(3LDAP) LDAP Library Functions

NAME ldap_modify, ldap_modify_s, ldap_mods_free, ldap_modify_ext,
ldap_modify_ext_s – LDAP entry modification functions

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
int ldap_modify (LDAP *ld, char *dn, LDAPMod *mods []);

int ldap_modify_s (LDAP *ld, char *dn, LDAPMod *mods []);

void ldap_ mods_ free (LDAPMod **mods, int freemods);

int ldap_modify_ext (LDAP *ld, char *dn, LDAPMod **mods, LDAPControl **serverctrls,
LDAPControl **clientctrls, int *msgidp);

int ldap_modify_ext_s (LDAP *ld, char *dn, LDAPMod **mods, LDAPControl
**serverctrls, LDAPControl **clientctrls);

DESCRIPTION The function ldap_modify_s() is used to perform an LDAP modify operation.
dn is the DN of the entry to modify, and mods is a null-terminated array of
modifications to make to the entry. Each element of the mods array is a pointer
to an LDAPModstructure, which is defined below.

typedef struct ldapmod {
int mod_op;
char *mod_type;
union {

char **modv_strvals;
struct berval **modv_bvals;

} mod_vals;
} LDAPMod;

#define mod_values mod_vals.modv_strvals
#define mod_bvalues mod_vals.modv_bvals

The mod_op field is used to specify the type of modification to perform and
should be one of LDAP_MOD_ADD, LDAP_MOD_DELETE, or LDAP_MOD_REPLACE
. The mod_type and mod_values fields specify the attribute type to modify and a
null-terminated array of values to add, delete, or replace respectively.

If you need to specify a non-string value (for example, to add a photo or audio
attribute value), you should set mod_op to the logical OR of the operation as above
(for example, LDAP_MOD_REPLACE) and the constant LDAP_MOD_BVALUES. In
this case, mod_bvalues should be used instead of mod_values , and it should point
to a null-terminated array of struct bervals, as defined in <lber.h> .

For LDAP_MOD_ADDmodifications, the given values are added to the entry,
creating the attribute if necessary. For LDAP_MOD_DELETEmodifications, the
given values are deleted from the entry, removing the attribute if no values
remain. If the entire attribute is to be deleted, the mod_values field should be
set to NULL. For LDAP_MOD_REPLACEmodifications, the attribute will have

318 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_modify(3LDAP)

the listed values after the modification, having been created if necessary. All
modifications are performed in the order in which they are listed.

ldap_modify_s() returns the LDAP error code resulting from the modify
operation.

The ldap_modify() operation works the same way as ldap_modify_s()
, except that it is asynchronous, returning the message id of the request it
initiates, or -1 on error. The result of the operation can be obtained by calling
ldap_result (3LDAP) .

ldap_mods_free() can be used to free each element of a NULL-terminated
array of mod structures. If freemods is non-zero, the mods pointer itself is freed
as well.

The ldap_modify_ext() function initiates an asynchronous modify operation
and returns LDAP_SUCCESSif the request was successfully sent to the server,
or else it returns a LDAP error code if not (see ldap_error (3LDAP)). If
successful, ldap_modify_ext() places the message id of the request in
*msgidp . A subsequent call to ldap_result (3LDAP) , can be used to obtain
the result of the add request.

The ldap_modify_ext_s() function initiates a synchronous modify operation
and returns the result of the operation itself.

ERRORS ldap_modify_s() returns an ldap error code, either LDAP_SUCCESSor an
error (see ldap_error (3LDAP)).

ldap_modify() returns -1 in case of trouble, setting the error field of ld .

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO attributes (5) , ldap (3LDAP) , ldap_add (3LDAP) , ldap_error (3LDAP) ,
ldap_get_option (3LDAP)

Last modified 25 May 1998 SunOS 5.8 319

ldap_modrdn(3LDAP) LDAP Library Functions

NAME ldap_modrdn, ldap_modrdn_s, ldap_modrdn2, ldap_modrdn2_s, ldap_rename,
ldap_rename_s – modify LDAP entry RDN

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
int ldap_modrdn (LDAP **ld, char **dn, char **newrdn);

int ldap_modrdn_s (LDAP **ld, char **dn, char **newrdn, int deleteoldrdn);

int ldap_modrdn2 (LDAP **ld, char **dn, char **newrdn, int deleteoldrdn);

int ldap_modrdn2_s (LDAP **ld, char **dn, char **newrdn, int deleteoldrdn);

int ldap_rename (LDAP *ld, char *dn, char *newrdn, char *newparent, int deleteoldrdn,
LDAPControl **serverctrls, LDAPControl **clientctrls, int *msgidp);

int ldap_rename_s (LDAP *ld, char *dn, char *newrdn, char *newparent, int deleteoldrdn,
LDAPControl **serverctrls, LDAPControl **clientctrls);

DESCRIPTION The ldap_modrdn() and ldap_modrdn_s() functions perform an LDAP
modify RDN (Relative Distinguished Name) operation. They both take dn , the
DN of the entry whose RDN is to be changed, and newrdn , the new RDN to give
the entry. The old RDN of the entry is never kept as an attribute of the entry.
ldap_modrdn() is asynchronous, returning the message id of the operation it
initiates. ldap_modrdn_s() is synchronous, returning the LDAP error code
indicating the success or failure of the operation. Use of these functions is
deprecated. Use the versions described below instead.

The ldap_modrdn2() and ldap_modrdn2_s() functions also perform an
LDAP modify RDN operation, taking the same parameters as above. In addition,
they both take the deleteoldrdn parameter which is used as a boolean value to
indicate whether the old RDN values should be deleted from the entry or not.

The ldap_modrdn_s() routine is deprecated and the ldap_rename() and
ldap_rename_s() routines are used instead.

The ldap_rename() , ldap_rename_s() routines are used to change the
name, that is, the rdn of an entry. These routines deprecate ldap_modrdn()
and ldap_modrdn_s() .

The ldap_rename() and ldap_rename_s() functions both support LDAPv3
server controls and client controls.

ERRORS The synchronous (_s) versions of these functions return an LDAP error code,
either LDAP_SUCCESSor an error (see ldap_error (3LDAP)).

320 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_modrdn(3LDAP)

The asynchronous versions return -1 in case of trouble, setting the
ld_errno field of ld . See ldap_error (3LDAP) for more details. Use
ldap_result (3LDAP) to determine a particular unsuccessful result.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap (3LDAP) , ldap_error (3LDAP)

Last modified 25 May 1998 SunOS 5.8 321

ldap_open(3LDAP) LDAP Library Functions

NAME ldap_open, ldap_init – initialize the LDAP library and open a connection
to an LDAP server

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
LDAP *ldap_open (char *host, int port);

LDAP *ldap_init (char *host, int port);

DESCRIPTION ldap_open() opens a connection to an LDAP server and allocates an
LDAP structure which is used to identify the connection and to maintain
per-connection information. ldap_init() allocates an LDAP structure but
does not open an initial connection. The ldap_open() function is deprecated
and should no longer be used. ldap_init() must be called before any
operations are attempted.

ldap_open() takes host , the hostname on which the LDAP server is running,
and port , the port number to which to connect. If the default IANA -assigned
port of 389 is desired, LDAP_PORTshould be specified for port . The host
parameter may contain a blank-separated list of hosts to try to connect to, and
each host may optionally by of the form host:port . If present, the :port overrides
the port parameter to ldap_open() . Upon successfully making a connection to
an LDAP server, ldap_open() returns a pointer to an LDAP structure (opaque
structure), which should be passed to subsequent calls to ldap_bind() ,
ldap_search() , and so forth. Certain fields in the LDAP structure can be
set using ldap_set_option() . See ldap_set_option (3LDAP) for more
details.

ldap_init() acts just like ldap_open() , but does not open a connection
to the LDAP server. The actual connection open will occur when the first
operation is attempted.

OPTIONS Options that affect a particular LDAP instance may be set by calling
ldap_set_option() . The settings of these options can be retrieved by calling
ldap_get_option() .

The other supported option is LDAP_OPT_RESTART, which if set will cause
the LDAP library to restart the select (1) system call when it is interrupted
by the system (that is errno is set to EINTR). This option is not supported on
the Macintosh and under MS-DOS.

An option can be turned off by clearing the appropriate bit in the ld_options
field.

ERRORS If an error occurs, these functions will return NULLand errno should be set
appropriately.

322 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_open(3LDAP)

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO select (1) , errno (3C) , ldap (3LDAP) , ldap_bind (3LDAP) ,
ldap_option (3LDAP) , attributes (5)

NOTES There are other elements in the LDAP structure that you should not change.
You should not make any assumptions about the order of elements in the LDAP
structure.

Last modified 25 May 1998 SunOS 5.8 323

ldap_parse_result(3LDAP) LDAP Library Functions

NAME ldap_parse_result, ldap_parse_extended_result, ldap_parse_sasl_bind_result –
LDAP message result parser

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
int ldap_parse_result (LDAP *ld, LDAPMessage *res, int *errcodep, char **matcheddnp,
char **errmsgp, char ***referralsp, LDAPControl ***serverctrlsp, int freeit);

int ldap_parse_sasl_bind_result (LDAP *ld, LDAPMessage *res, struct
berval**servercredp, int freeit);

int ldap_parse_extended_result (LDAP *ld, LDAPMessage *res, char **resultoidp,
struct berval **resultdata, int freeit);

DESCRIPTION The ldap_parse_extended_result() , ldap_parse_result() and
ldap_parse_sasl_bind_result() routines search for a message to parse.
These functions skip messages of type LDAP_RES_SEARCH_ENTRYand
LDAP_RES_SEARCH_REFERENCE.

RETURN VALUES They return LDAP_SUCCESSif the result was successfully parsed or an LDAP
error code if not (see ldap_error (3LDAP)).

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap_error (3LDAP) , ldap_result (3LDAP) , attributes (5)

324 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_result(3LDAP)

NAME ldap_result, ldap_msgfree – wait for and return LDAP operation result

SYNOPSIS cc[flag...] file... -lldap[library...]
#include <lber.h>
#include <ldap.h>
int ldap_result (LDAP *ld, int msgid, int all, struct timeval *timeout, LDAPMessage
**result);

int ldap_msgfree (LDAPMessage *msg);

DESCRIPTION The ldap_result() function is used to wait for and return the result of an
operation previously initiated by one of the LDAP asynchronous operation
functions (for example, ldap_search (3LDAP) , ldap_modify (3LDAP) ,
etc.). Those functions all return -1 in case of error, and an invocation identifier
upon successful initiation of the operation. The invocation identifier is picked
by the library and is guaranteed to be unique across the LDAP session. It can
be used to request the result of a specific operation from ldap_result()
through the msgid parameter.

The ldap_result() function will block or not, depending upon the setting of
the timeout parameter. If timeout is not a null pointer, it specifies a maximum
interval to wait for the selection to complete. If timeout is a null pointer, the
select blocks indefinitely. NU To effect a poll, the timeout argument should be a
non-null pointer, pointing to a zero-valued timeval structure. See select (1) for
further details.

If the result of a specific operation is required, msgid should be set to the
invocation identifier returned when the operation was initiated, otherwise
LDAP_RES_ANYshould be supplied. The all parameter only has meaning for
search responses and is used to select whether a single entry of the search
response should be returned, or all results of the search should be returned.

A search response is made up of zero or more search entries followed by a search
result. If all is set to - , search entries will be returned one at a time as they come
in, via separate calls to ldap_result() . If it is set to -1 , the search response
will only be returned in its entirety, that is, after all entries and the final search
result have been received.

Upon success, the type of the result received is returned and the result parameter
will contain the result of the operation. This result should be passed to the LDAP
parsing functions, (see ldap_first_entry (3LDAP)) for interpretation.

The possible result types returned are:

#define LDAP_RES_BIND 0x61L
#define LDAP_RES_SEARCH_ENTRY 0x64L
#define LDAP_RES_SEARCH_RESULT 0x65L
#define LDAP_RES_MODIFY 0x67L

Last modified 17 May 1999 SunOS 5.8 325

ldap_result(3LDAP) LDAP Library Functions

#define LDAP_RES_ADD 0x69L
#define LDAP_RES_DELETE 0x6bL
#define LDAP_RES_MODRDN 0x6dL
#define LDAP_RES_COMPARE 0x6fL

The ldap_msgfree() function is used to free the memory allocated for a result
by ldap_result() or ldap_search_s (3LDAP) functions. It takes a pointer
to the result to be freed and returns the type of the message it freed.

ERRORS ldap_result() returns -1 if something bad happens, and zero if the timeout
specified was exceeded.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO select (1) , ldap (3LDAP) , ldap_search (3LDAP)

NOTES This function allocates memory for results that it receives. The memory can be
freed by calling ldap_msgfree .

326 SunOS 5.8 Last modified 17 May 1999

LDAP Library Functions ldap_search(3LDAP)

NAME ldap_search, ldap_search_s, ldap_search_ext, ldap_search_ext_s, ldap_search_st
– LDAP search operations

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <sys/time.h> /* for struct timeval definition */
#include <lber.h>
#include <ldap.h>
int ldap_search (LDAP *ld, char *base, int scope, char *filter, char *attrs [], int attrsonly);

int ldap_search_s (LDAP *ld, char *base, int scope, char *filter, char *attrs [], int attrsonly,
LDAPMessage **res);

int ldap_search_st (LDAP *ld, char *base, int scope, char *filter, char *attrs [], int attrsonly,
struct timeval *timeout, LDAPMessage **res);

int ldap_search_ext (LDAP *ld, char *base, int scope, char *filter, char **attrs, int
attrsonly, LDAPControl **serverctrls, LDAPControl **clientctrls, struct timeval *timeoutp, int
sizelimit, int *msgidp);

int ldap_search_ext_s (LDAP *ld,char *base, int scope, char *filter, char **attrs, int
attrsonly, LDAPControl **serverctrls, LDAPControl **clientctrls, struct timeval *timeoutp,
int sizelimit);

DESCRIPTION These functions are used to perform LDAP search operations.
ldap_search_s() does the search synchronously (that is, not returning until
the operation completes). ldap_search_st() does the same, but allows a
timeout to be specified. ldap_search() is the asynchronous version, initiating
the search and returning the message id of the operation it initiated.

Base is the DN of the entry at which to start the search. Scope is the scope
of the search and should be one of LDAP_SCOPE_BASE, to search the object
itself, LDAP_SCOPE_ONELEVEL, to search the object’s immediate children, or
LDAP_SCOPE_SUBTREE, to search the object and all its descendents.

Filter is a string representation of the filter to apply in the search. Simple filters
can be specified as attributetype=attributevalue . More complex filters are specified
using a prefix notation according to the following BNF:

<filter> ::= ’(’ <filtercomp> ’)’
<filtercomp> ::= <and> | <or> | <not> | <simple>
<and> ::= ’&’ <filterlist>
<or> ::= ’|’ <filterlist>
<not> ::= ’!’ <filter>
<filterlist> ::= <filter> | <filter> <filterlist>
<simple> ::= <attributetype> <filtertype> <attributevalue>
<filtertype> ::= ’=’ | ’~=’ | ’<=’ | ’>=’

The ’~=’ construct is used to specify approximate matching. The representation
for <attributetype> and <attributevalue> are as described in RFC 1778. In

Last modified 25 May 1998 SunOS 5.8 327

ldap_search(3LDAP) LDAP Library Functions

addition, <attributevalue> can be a single * to achieve an attribute existence test,
or can contain text and *’s interspersed to achieve substring matching.

For example, the filter "mail=*" will find any entries that have a mail attribute.
The filter "mail=*@terminator.rs.itd.umich.edu" will find any entries that have a
mail attribute ending in the specified string. To put parentheses in a filter,
escape them with a backslash ’\\’ character. See RFC 1588 for a more complete
description of allowable filters. See ldap_getfilter (3LDAP) for functions
to help in constructing search filters automatically.

Attrs is a null-terminated array of attribute types to return from entries that
match filter . If NULL is specified, all attributes will be returned. Attrsonly
should be set to 1 if only attribute types are wanted. It should be set to 0 if both
attributes types and attribute values are wanted.

The ldap_search_ext() function initiates an asynchronous search operation
and returns LDAP_SUCCESSif the request was successfully sent to the server,
or else it returns a LDAP error code (see ldap_error (3LDAP)). If successful,
ldap_search_ext() places the message id of the request in *msgidp . A
subsequent call to ldap_result (3LDAP) , can be used to obtain the result
of the add request.

The ldap_search_ext_s() function initiates a synchronous search operation
and as such returns the result of the operation itself.

ERRORS ldap_search_s() and ldap_search_st() will return the LDAP error code
resulting from the search operation. See ldap_error (3LDAP) for details.

ldap_search() returns -1 when terminating unsuccessfully.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap (3LDAP) , ldap_result (3LDAP) , ldap_getfilter (3LDAP) ,
ldap_error (3LDAP)

NOTES Note that both read and list functionality are subsumed by these functions, by
using a filter like "objectclass=*" and a scope of LDAP_SCOPE_BASE(to emulate
read) or LDAP_SCOPE_ONELEVEL(to emulate list).

These functions may allocate memory which must be freed by the calling
application. Return values are contained in <ldap.h> .

328 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_searchprefs(3LDAP)

NAME ldap_searchprefs, ldap_init_searchprefs, ldap_init_searchprefs_buf,
ldap_free_searchprefs, ldap_first_searchobj, ldap_next_searchobj – LDAP search
preference configuration routeines

SYNOPSIS cc[flag...] file... -lldap[library...]

include <lber.h>
include <ldap.h>
int ldap_init_searchprefs (char **file, struct ldap_searchobj ***solistp);

int ldap_init_searchprefs_buf (char **buf, unsigned longlen, struct ldap_searchobj
**solistp);

struct ldap_searchobj **ldap_free_searchprefs (struct ldap_searchobj **solist);

struct ldap_searchobj **ldap_first_searchobj (struct ldap_seachobj **solist);

struct ldap_searchobj **ldap_next_searchobj (struct ldap_seachobj **solist, struct
ldap_seachobj **so);

DESCRIPTION These functions provide a standard way to access LDAP search preference
configuration data. LDAP search preference configurations are typically used by
LDAP client programs to specify which attributes a user may search by, labels
for the attributes, and LDAP filters and scopes associated with those searches.
Client software presents these choices to a user, who can then specify the type
of search to be performed.

ldap_init_searchprefs() reads a sequence of search preference
configurations from a valid LDAP searchpref configuration file (see
ldapsearchprefs.conf (4)). Upon success, 0 is returned and solistp is set to
point to a list of search preference data structures.

ldap_init_searchprefs_buf() reads a sequence of search preference
configurations from buf (whose size is buflen). buf should point to the data
in the format defined for an LDAP search preference configuration file (see
ldapsearchprefs.conf (4)). Upon success, 0 is returned and solistp is set to
point to a list of search preference data structures.

ldap_free_searchprefs() disposes of the data structures allocated by
ldap_init_searchprefs().

ldap_first_searchpref() returns the first search preference data
structure in the list solist. The solist is typically obtained by calling
ldap_init_searchprefs().

ldap_next_searchpref() returns the search preference after so in the
template list solist. A NULL pointer is returned if so is the last entry in the list.

Last modified 25 May 1998 SunOS 5.8 329

ldap_searchprefs(3LDAP) LDAP Library Functions

ERRORS ldap_init_search_prefs() and ldap_init_search_prefs_bufs()
return:
LDAP_SEARCHPREF_ERR_VERSION **buf points to data that is newer than

can be handled.

LDAP_SEARCHPREF_ERR_MEM Memory allocation problem.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap (3LDAP) , ldapsearchprefs.conf (4)

Yeong, W., Howes, T., and Hardcastle-Kille, S., "Lightweight Directory Access
Protocol", OSI-DS-26, April 1992.

Howes, T., Hardcastle-Kille, S., Yeong, W., and Robbins, C., "Lightweight
Directory Access Protocol", OSI-DS-26, April 1992.

Hardcastle-Kille, S., "A String Representation of Distinguished Names",
OSI-DS-23, April 1992.

Information Processing - Open Systems Interconnection - The Directory,
International Organization for Standardization. International Standard 9594,
(1988).

330 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_sort(3LDAP)

NAME ldap_sort, ldap_sort_entries, ldap_sort_values, ldap_sort_strcasecmp – LDAP
entry sorting functions

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
ldap_sort_entries (LDAP *ld, LDAPMessage **chain, char *attr, int (*cmp)());

ldap_sort_values (LDAP *ld, char **vals, int (*cmp)());

ldap_sort_strcasecmp (char *a, char *b);

DESCRIPTION These functions are used to sort lists of entries and values retrieved from an
LDAP server. ldap_sort_entries() is used to sort a chain of entries
retrieved from an LDAP search call either by DN or by some arbitrary attribute
in the entries. It takes ld , the LDAP structure, which is only used for error
reporting, chain , the list of entries as returned by ldap_search_s (3LDAP) or
ldap_result (3LDAP) . attr is the attribute to use as a key in the sort or NULL
to sort by DN, and cmp is the comparison function to use when comparing
values (or individual DN components if sorting by DN). In this case, cmp should
be a function taking two single values of the attr to sort by, and returning a
value less than zero, equal to zero, or greater than zero, depending on whether
the first argument is less than, equal to, or greater than the second argument.
The convention is the same as used by qsort (3C) , which is called to do the
actual sorting.

ldap_sort_values() is used to sort an array of values from an entry, as
returned by ldap_get_values (3LDAP) . It takes the LDAP connection
structure ld , the array of values to sort vals , and cmp , the comparison function
to use during the sort. Note that cmp will be passed a pointer to each element in
the vals array, so if you pass the normal char ** for this parameter, cmp should
take two char **’s as arguments (that is, you cannot pass strcasecmp or its friends
for cmp). You can, however, pass the function ldap_sort_strcasecmp()
for this purpose.

For example:

LDAP *ld;
LDAPMessage *res;
/* ... call to ldap_search_s(), fill in res, retrieve sn attr ... */

/* now sort the entries on surname attribute */
if (ldap_sort_entries(ld, &res, "sn", ldap_sort_strcasecmp) != 0)

ldap_perror(ld, "ldap_sort_entries");

ATTRIBUTES See attributes (5) for a description of the following attributes:

Last modified 25 May 1998 SunOS 5.8 331

ldap_sort(3LDAP) LDAP Library Functions

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap (3LDAP) , ldap_search (3LDAP) , ldap_result (3LDAP) , qsort (3C)

NOTES The ldap_sort_entries() function applies the comparison function
to each value of the attribute in the array as returned by a call to
ldap_get_values (3LDAP) , until a mismatch is found. This works fine for
single-valued attributes, but may produce unexpected results for multi-valued
attributes. When sorting by DN, the comparison function is applied to an
exploded version of the DN, without types. The return values for all of these
functions are declared in the <ldap.h> header file. Some functions may allocate
memory which must be freed by the calling application.

332 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_ufn(3LDAP)

NAME ldap_ufn, ldap_ufn_search_s, ldap_ufn_search_c, ldap_ufn_search_ct,
ldap_ufn_setfilter, ldap_ufn_setprefix, ldap_ufn_timeout – LDAP user friendly
search functions

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
int ldap_ufn_search_c (LDAP *ld, char *ufn, char **attrs, int attrsonly, LDAPMessage
**res, int (*cancelproc)(), void *cancelparm);

int ldap_ufn_search_ct (LDAP *ld, char *ufn, char **attrs, int attrsonly, LDAPMessage
**res, int (*cancelproc)(), void *cancelparm, char *tag1, char *tag2, char *tag3);

int ldap_ufn_search_s (LDAP *ld, char *ufn, char **attrs, int attrsonly, LDAPMessage
**res);

LDAPFiltDesc *ldap_ufn_setfilter (LDAP *ld, char *fname);

void ldap_ufn_setprefix (LDAP *ld, char *prefix);

int ldap_ufn_timeout (void *tvparam);

DESCRIPTION These functions are used to perform LDAP user friendly search operations.
ldap_ufn_search_s() is the simplest form. It does the search synchronously.
It takes ld to identify the the LDAP connection. The ufn parameter is the user
friendly name for which to search. The attrs , attrsonly and res parameters are the
same as for ldap_search (3LDAP) .

The ldap_ufn_search_c() function functions the same as
ldap_ufn_search_s() , except that it takes cancelproc , a function to call
periodicly during the search. It should be a function taking a single void *
argument, given by calcelparm . If cancelproc returns a non-zero result, the search
will be abandoned and no results returned. The purpose of this function is to
provide a way for the search to be cancelled, for example, by a user or because
some other condition occurs.

The ldap_ufn_search_ct() function is like ldap_ufn_search_c()
, except that it takes three extra parameters. tag1 is passed to the
ldap_init_getfilter (3LDAP) function when resolving the first component
of the UFN. tag2 is used when resolving intermediate components. tag3 is used
when resolving the last component. By default, the tags used by the other
UFN search functions during these three phases of the search are "ufn first",
"ufn intermediate", and "ufn last".

The ldap_ufn_setfilter() function is used to set the ldapfilter.conf (4)
file for use with the ldap_init_getfilter (3LDAP) function to fname .

Last modified 10 Nov 1999 SunOS 5.8 333

ldap_ufn(3LDAP) LDAP Library Functions

The ldap_ufn_setprefix() function is used to set the default prefix
(actually, it’s a suffix) appended to UFNs before searhing. UFNs with fewer than
three components have the prefix appended first, before searching. If that fails,
the UFN is tried with progressively shorter versions of the prefix, stripping off
components. If the UFN has three or more components, it is tried by itself first. If
that fails, a similar process is applied with the prefix appended.

The ldap_ufn_timeout() function is used to set the timeout associated with
ldap_ufn_search_s() searches. The timeout parameter should actually be a
pointer to a struct timeval (this is so ldap_ufn_timeout() can be used as a
cancelproc in the above functions).

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO gettimeofday (3C) , ldap (3LDAP) , ldap_search (3LDAP) ,
ldap_getfilter (3LDAP) , ldapfilter.conf (4) , ldap_error (3LDAP)

NOTES These functions may allocates memory. Return values are contained in
<ldap.h> .

334 SunOS 5.8 Last modified 10 Nov 1999

LDAP Library Functions ldap_url(3LDAP)

NAME ldap_url, ldap_is_ldap_url, ldap_url_parse, ldap_free_urldesc, ldap_url_search,
ldap_url_search_s, ldap_url_search_st, ldap_dns_to_url, ldap_dn_to_url –
LDAP Uniform Resource Locator functions

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
int ldap_is_ldap_url (char *url);

int ldap_url_parse (char *url, LDAPURLDesc **ludpp);

ldap_free_urldesc (LDAPURLDesc *ludp);

int ldap_url_search (LDAP *ld, char *url, int attrsonly);

int ldap_url_search_s (LDAP *ld, char *url, int attrsonly, LDAPMessage **res);

int ldap_url_search_st (LDAP *ld, char *url, int attrsonly, struct timeval *timeout,
LDAPMessage **res);

char *ldap_dns_to_url (LDAP *ld, char *dns_name, char *attrs, char *scope, char *filter);

char *ldap_dn_to_url (LDAP *ld, char *dn, int nameparts);

DESCRIPTION These functions support the use of LDAP URLs (Uniform Resource Locators).
LDAP URLs look like this:

ldap:// hostport/ dn[? attributes[? scope[? filter]]]
where:
hostport Host name with an optional ":portnumber".

dn Base DN to be used for an LDAP search operation.

attributes Comma separated list of attributes to be retrieved.

scope One of these three strings: base one sub (default=base).

filter LDAP search filter as used in a call to ldap_search (3LDAP)
.

Here is an example:

ldap://ldap.itd.umich.edu/c=US?o,description?one?o=umich

URLs that are wrapped in angle-brackets and/or preceded by "URL:" are also
tolerated.

Last modified 25 May 1998 SunOS 5.8 335

ldap_url(3LDAP) LDAP Library Functions

ldap_is_ldap_url() returns a non-zero value if url looks like an LDAP
URL (as opposed to some other kind of URL). It can be used as a quick check
for an LDAP URL; the ldap_url_parse() function should be used if a more
thorough check is needed.

ldap_url_parse() breaks down an LDAP URL passed in url into its
component pieces. If successful, zero is returned, an LDAP URL description is
allocated, filled in, and ludpp is set to point to it. See RETURN VALUES(below) for
values returned upon error.

ldap_free_urldesc() should be called to free an LDAP URL description
that was obtained from a call to ldap_url_parse().

ldap_url_search() initiates an asynchronous LDAP search based on the
contents of the url string. This function acts just like ldap_search (3LDAP)
except that many search parameters are pulled out of the URL.

ldap_url_search_s() performs a synchronous LDAP search based on the
contents of the url string. This function acts just like ldap_search_s (3LDAP)
except that many search parameters are pulled out of the URL.

ldap_url_search_st() performs a synchronous LDAP URL search with a
specified timeout . This function acts just like ldap_search_st (3LDAP) except
that many search parameters are pulled out of the URL.

ldap_dns_to_url() locates the LDAP URL associated with a DNS domain
name. The supplied DNS domain name is converted into a distinguished
name. The directory entry specified by that distinguished name is searched for
a labeledURI attribute. If successful then the corresponding LDAP URL is
returned. If unsuccessful then that entry’s parent is searched and so on until
the target distinguished name is reduced to only two nameparts. If dns_name is
NULL then the environment variable LOCALDOMAIN is used. If attrs is not
NULL then it is appended to the URL’s attribute list. If scope is not NULL then it
overrides the URL’s scope. If filter is not NULL then it is merged with the URL’s
filter. If an error is encountered then zero is returned, otherwise a string URL is
returned. The caller should free the returned string if it is non-zero.

ldap_dn_to_url() locates the LDAP URL associated with a distinguished
name. The number of nameparts in the supplied distinguished name must be
provided. The specified directory entry is searched for a labeledURI attribute.
If successful then the LDAP URL is returned. If unsuccessful then that entry’s
parent is searched and so on until the target distinguished name is reduced to
only two nameparts. If an error is encountered then zero is returned, otherwise a
string URL is returned. The caller should free the returned string if it is non-zero.

RETURN VALUES Upon error, one of these values is returned for ldap_url_parse() :

336 SunOS 5.8 Last modified 25 May 1998

LDAP Library Functions ldap_url(3LDAP)

LDAP_URL_ERR_NOTLDAPURL doesn’t begin with "ldap://".

LDAP_URL_ERR_NODN URL has no DN (required).

LDAP_URL_ERR_BADSCOPEURL scope string is invalid.

LDAP_URL_ERR_MEM Can’t allocate memory space.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap (32-bit)

SUNWldapx (64-bit)

Stability Level Evolving

SEE ALSO ldap (3LDAP) , ldap_search (3LDAP)

An LDAP URL Format, Tim Howes and Mark Smith, December 1995. Internet
Draft (work in progress). Currently available at this URL:

ftp://ds.internic.net/internet-drafts/draft-ietf-asid-ldap-format-03.txt

Last modified 25 May 1998 SunOS 5.8 337

listen(3SOCKET) Sockets Library Functions

NAME listen – listen for connections on a socket

SYNOPSIS cc [flag ...] file ... −lsocket −lnsl [library ...]
#include <sys/types.h>
#include <sys/socket.h>

int listen (int s, int backlog);

DESCRIPTION To accept connections, a socket is first created with socket (3SOCKET), a
backlog for incoming connections is specified with listen() and then the
connections are accepted with accept (3SOCKET). The listen() call applies
only to sockets of type SOCK_STREAMor SOCK_SEQPACKET.

The backlog parameter defines the maximum length the queue of pending
connections may grow to.

If a connection request arrives with the queue full, the client will receive an error
with an indication of ECONNREFUSEDfor AF_UNIX sockets. If the underlying
protocol supports retransmission, the connection request may be ignored so that
retries may succeed. For AF_INET and AF_INET6 sockets, the TCP will retry
the connection. If the backlog is not cleared by the time the tcp times out, the
connect will fail with ETIMEDOUT.

RETURN VALUES A 0 return value indicates success; −1 indicates an error.

ERRORS The call fails if:
EBADF The argument s is not a valid file descriptor.

ENOTSOCK The argument s is not a socket.

EOPNOTSUPP The socket is not of a type that supports the
operation listen() .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO accept (3SOCKET), connect (3SOCKET), socket (3SOCKET), attributes (5),
socket (3HEAD)

NOTES There is currently no backlog limit.

338 SunOS 5.8 Last modified 8 Nov 1999

X/Open Networking Services Library Functions listen(3XNET)

NAME listen – listen for socket connections and limit the queue of incoming connections

SYNOPSIS cc [flag ...] file ... −lxnet [library ...]
#include <sys/socket.h>

int listen (int socket, int backlog);

DESCRIPTION The listen() function marks a connection-mode socket, specified by the socket
argument, as accepting connections, and limits the number of outstanding
connections in the socket’s listen queue to the value specified by the backlog
argument.

If listen() is called with a backlog argument value that is less than 0, the
function sets the length of the socket’s listen queue to 0.

The implementation may include incomplete connections in the queue subject
to the queue limit. The implementation may also increase the specified queue
limit internally if it includes such incomplete connections in the queue subject to
this limit.

Implementations may limit the length of the socket’s listen queue. If backlog
exceeds the implementation-dependent maximum queue length, the length of
the socket’s listen queue will be set to the maximum supported value.

The socket in use may require the process to have appropriate privileges to
use the listen() function.

RETURN VALUES Upon successful completions, listen() returns 0. Otherwise, −1 is returned
and errno is set to indicate the error.

ERRORS The listen() function will fail if:
EBADF The socket argument is not a valid file descriptor.

EDESTADDRREQ The socket is not bound to a local address, and
the protocol does not support listening on an
unbound socket.

EINVAL The socket is already connected.

ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The socket protocol does not support listen() .

The listen() function may fail if:
EACCES The calling process does not have the appropriate

privileges.

EINVAL The socket has been shut down.

ENOBUFS Insufficient resources are available in the system
to complete the call.

Last modified 8 May 1998 SunOS 5.8 339

listen(3XNET) X/Open Networking Services Library Functions

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO accept (3XNET), connect (3XNET), socket (3XNET), attributes (5)

340 SunOS 5.8 Last modified 8 May 1998

Networking Services Library Functions netdir(3NSL)

NAME netdir, netdir_getbyname, netdir_getbyaddr, netdir_free, netdir_options,
taddr2uaddr, uaddr2taddr, netdir_perror, netdir_sperror, netdir_mergeaddr –
generic transport name-to-address translation

SYNOPSIS #include <netdir.h>
int netdir_getbyname (const struct netconfig *config, const struct nd_hostserv *service,
struct nd_addrlist **addrs);

int netdir_getbyaddr (const struct netconfig *config, struct nd_hostservlist **service,
const struct netbuf *netaddr);

void netdir_free (void *ptr, const int struct_type);

int netdir_options (const struct netconfig *config, const int option, const int fildes,
char *point_to_args);

char *taddr2uaddr (const struct netconfig *config, const struct netbuf *addr);

struct netbuf *uaddr2taddr (const struct netconfig *config, const char *uaddr);

void netdir_perror (char *s);

char *netdir_sperror (void);

DESCRIPTION These routines provide a generic interface for name-to-address mapping that
will work with all transport protocols. This interface provides a generic way
for programs to convert transport specific addresses into common structures
and back again. The netconfig structure, described on the netconfig (4)
manual page, identifies the transport.

The netdir_getbyname() routine maps the machine name and service name
in the nd_hostserv structure to a collection of addresses of the type understood
by the transport identified in the netconfig structure. This routine returns all
addresses that are valid for that transport in the nd_addrlist structure. The
nd_hostserv structure contains the following members:

char /* host name */
h_serv; / service name */

The nd_addrlist structure contains the following members:

int n_cnt; /* number of addresses */
struct netbuf *n_addrs;

netdir_getbyname() accepts some special-case host names. The host names
are defined in <netdir.h> . The currently defined host names are:

Last modified 30 Dec 1996 SunOS 5.8 341

netdir(3NSL) Networking Services Library Functions

HOST_SELF Represents the address to which local programs
will bind their endpoints. HOST_SELF
differs from the host name provided by
gethostname (3C) , which represents the
address to which remote programs will bind
their endpoints.

HOST_ANY Represents any host accessible by this transport
provider. HOST_ANYallows applications to
specify a required service without specifying a
particular host name.

HOST_SELF_CONNECT Represents the host address that can be used to
connect to the local host.

HOST_BROADCAST Represents the address for all hosts accessible by
this transport provider. Network requests to this
address will be received by all machines.

All fields of the nd_hostserv structure must be initialized.

To find the address of a given host and service on all available transports, call
the netdir_getbyname() routine with each struct netconfig structure
returned by getnetconfig (3NSL) .

The netdir_getbyaddr() routine maps addresses to service names. This
routine returns service , a list of host and service pairs that would yield this
address. If more than one tuple of host and service name is returned, then the
first tuple contains the preferred host and service names:

struct nd_hostservlist {
int *h_cnt; /* number of hostservs found */
struct hostserv *h_hostservs;

}

The netdir_free() structure is used to free the structures allocated by the
name to address translation routines. ptr points to the structure that has to be
freed. The struct_type identifies the structure:

struct netbuf ND_ADDR
struct nd_addrlist ND_ADDRLIST
struct hostserv ND_HOSTSERV
struct nd_hostservlist ND_HOSTSERVLIST

The universal address returned by taddr2uaddr() should be freed by free ().

342 SunOS 5.8 Last modified 30 Dec 1996

Networking Services Library Functions netdir(3NSL)

The netdir_options() routine is used to do all transport-specific setups and
option management. fildes is the associated file descriptor. option , fildes , and
pointer_to_args are passed to the netdir_options() routine for the transport
specified in config . Currently four values are defined for option :

ND_SET_BROADCAST
ND_SET_RESERVEDPORT
ND_CHECK_RESERVEDPORT
ND_MERGEADDR

The taddr2uaddr() and uaddr2taddr() routines support translation
between universal addresses and TLI type netbufs . The taddr2uaddr()
routine takes a struct netbuf data structure and returns a pointer to a string
that contains the universal address. It returns NULL if the conversion is not
possible. This is not a fatal condition as some transports may not suppose a
universal address form.

uaddr2taddr() is the reverse of taddr2uaddr() . It returns the struct
netbuf data structure for the given universal address.

If a transport provider does not support an option, netdir_options returns
-1 and the error message can be printed through netdir_perror() or
netdir_sperror() .

The specific actions of each option follow.
ND_SET_BROADCAST

Sets the transport provider up to allow broadcast, if the transport supports
broadcast. fildes is a file descriptor into the transport (i.e., the result of a
t_open of /dev/udp). pointer_to_args is not used. If this completes,
broadcast operations may be performed on file descriptor fildes .

ND_SET_RESERVEDPORT
Allows the application to bind to a reserved port, if that concept exists
for the transport provider. fildes is an unbound file descriptor into the
transport. If pointer_to_args is NULL, fildes will be bound to a reserved port.
If pointer_to_args is a pointer to a netbuf structure, an attempt will be made
to bind to any reserved port on the specified address.

ND_CHECK_RESERVEDPORT
Used to verify that the address corresponds to a reserved port, if that
concept exists for the transport provider. fildes is not used. pointer_to_args
is a pointer to a netbuf structure that contains the address. This option
returns 0 only if the address specified in pointer_to_args is reserved.

ND_MERGEADDR
USED TO TAKE A “LOCAL ADDRESS” (LIKE THE 0.0.0.0 ADDRESS
THAT TCP USES) AND RETURN A “REAL ADDRESS” THAT
CLIENT MACHINES CAN CONNECT TO. FILDES IS NOT USED.

Last modified 30 Dec 1996 SunOS 5.8 343

netdir(3NSL) Networking Services Library Functions

POINTER_TO_ARGS IS A POINTER TO A STRUCT ND_MERGEARG, WHICH
HAS THE FOLLOWING MEMBERS:

char s_uaddr; /* server’s universal address */
char c_uaddr; /* client’s universal address */
char m_uaddr; /* the result */

If s_uaddr is something like 0.0.0.0.1.12 , and, if the call is successful,
m_uaddr will be set to something like 192.11.109.89.1.12 . For most
transports, m_uaddr is exactly what s_uaddr is.

RETURN VALUES The netdir_perror() routine prints an error message on the standard output
stating why one of the name-to-address mapping routines failed. The error
message is preceded by the string given as an argument.

The netdir_sperror() routine returns a string containing an error message
stating why one of the name-to-address mapping routines failed.

netdir_sperror() returns a pointer to a buffer which contains the error
message string. This buffer is overwritten on each call. In multithreaded
applications, this buffer is implemented as thread-specific data.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO gethostname (3C) , getnetconfig (3NSL) , getnetpath (3NSL) ,
netconfig (4) , attributes (5)

344 SunOS 5.8 Last modified 30 Dec 1996

Networking Services Library Functions nis_error(3NSL)

NAME nis_error, nis_sperrno, nis_perror, nis_lerror, nis_sperror, nis_sperror_r – display
NIS+ error messages

SYNOPSIS cc [flag ...] file ... −lnsl [library ...]
#include <rpcsvc/nis.h>
char *nis_sperrno (nis_error status);

void nis_perror (nis_error status, char *label);

void nis_lerror (nis_error status, char *label);

char *nis_sperror_r (nis_error status, char *label, char *buf, int length);

char *nis_sperror (nis_error status, char *label);

DESCRIPTION These functions convert NIS+ status values into text strings.

nis_sperrno() simply returns a pointer to a string constant which is the
error string.

nis_perror() prints the error message corresponding to status as “label :
error message ” on standard error.

nis_lerror() sends the error text to syslog (3C) at level LOG_ERR.

The function nis_sperror_r() , returns a pointer to a string that can be used
or copied using the strdup() function (See string (3C)). The caller must
supply a string buffer, buf , large enough to hold the error string (a buffer size of
128 bytes is guaranteed to be sufficiently large). status and label are the same as
for nis_perror() . The pointer returned by nis_sperror_r() is the same
as buf , that is, the pointer returned by the function is a pointer to buf . length
specifies the number of characters to copy from the error string to buf .

The last function, nis_sperror() , is similar to nis_sperror_r() except
that the string is returned as a pointer to a buffer that is reused on each
call. nis_sperror_r() is the preferred interface, since it is suitable for
single-threaded and multi-threaded programs.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO niserror (1) , string (3C) , syslog (3C) , attributes (5)

NOTES When compiling multithreaded applications, see Intro (3) ,
Notes On Multithread Applications , for information about the use of the
_REENTRANTflag.

Last modified 30 Dec 1996 SunOS 5.8 345

nis_groups(3NSL) Networking Services Library Functions

NAME nis_groups, nis_ismember, nis_addmember, nis_removemember,
nis_creategroup, nis_destroygroup, nis_verifygroup, nis_print_group_entry –
NIS+ group manipulation functions

SYNOPSIS cc [flag ...] file ... −lnsl [library ...]
#include <rpcsvc/nis.h>
bool_t nis_ismember (nis_name principal, nis_name group);

nis_error nis_addmember (nis_name member, nis_name group);

nis_error nis_removemember (nis_name member, nis_name group);

nis_error nis_creategroup (nis_name group, uint_t flags);

nis_error nis_destroygroup (nis_name group);

void nis_print_group_entry (nis_name group);

nis_error nis_verifygroup (nis_name group);

DESCRIPTION These functions manipulate NIS+ groups. They are used by NIS+ clients and
servers, and are the interfaces to the group authorization object.

The names of NIS+ groups are syntactically similar to names of NIS+ objects but
they occupy a separate namespace. A group named "a.b.c.d." is represented by a
NIS+ group object named "a.groups_dir.b.c.d."; the functions described here all
expect the name of the group, not the name of the corresponding group object.

There are three types of group members:

� An explicit member is just a NIS+ principal-name, for example
"wickedwitch.west.oz."

� An implicit ("domain") member, written "*.west.oz.", means that all principals
in the given domain belong to this member. No other forms of wildcarding
are allowed: "wickedwitch.*.oz." is invalid, as is "wickedwitch.west.*.". Note
that principals in subdomains of the given domain are not included.

� A recursive ("group") member, written "@cowards.oz.", refers to another
group; all principals that belong to that group are considered to belong here.

Any member may be made negative by prefixing it with a minus sign (’-’). A
group may thus contain explicit, implicit, recursive, negative explicit, negative
implicit, and negative recursive members.

A principal is considered to belong to a group if it belongs to at least one
non-negative group member of the group and belongs to no negative group
members.

The nis_ismember() function returns TRUE if it can establish that principal
belongs to group ; otherwise it returns FALSE.

346 SunOS 5.8 Last modified 17 Feb 1998

Networking Services Library Functions nis_groups(3NSL)

The nis_addmember() and nis_removemember() functions add or remove
a member. They do not check whether the member is valid. The user must have
read and modify rights for the group in question.

The nis_creategroup() and nis_destroygroup() functions create and
destroy group objects. The user must have create or destroy rights, respectively,
for the groups_dir directory in the appropriate domain. The parameter flags to
nis_creategroup() is currently unused and should be set to zero.

The nis_print_group_entry() function lists a group’s members on the
standard output.

The nis_verifygroup() function returns NIS_SUCCESSif the given group
exists, otherwise it returns an error code.

EXAMPLES EXAMPLE 1 Simple Memberships

Given a group sadsouls.oz. with members tinman.oz. , lion.oz. , and
scarecrow.oz. , the function call

bool_var = nis_ismember("lion.oz.", "sadsouls.oz.");

will return 1 (TRUE) and the function call
bool_var = nis_ismember("toto.oz.", "sadsouls.oz.");

will return 0 (FALSE).
EXAMPLE 2 Implicit Memberships

Given a group baddies.oz. , with members wickedwitch.west.oz.
and *.monkeys.west.oz. , the function callbool_var =
nis_ismember("hogan.monkeys.west.oz.", "baddies.oz.");will return 1 (TRUE)
because any principal from the monkeys.west.oz. domain belongs to the
implicit group *.monkeys.west.oz. , but the function call

bool_var = nis_ismember("hogan.big.monkeys.west.oz.", "baddies.oz.");

will return 0 (FALSE).
EXAMPLE 3 Recursive Memberships

Given a group goodandbad.oz. , with members toto.kansas ,
@sadsouls.oz. , and @baddies.oz. , and the groups sadsouls.oz. and
baddies.oz. defined above, the function call

bool_var = nis_ismember("wickedwitch.west.oz.", "goodandbad.oz.");

will return 1 (TRUE), because wickedwitch.west.oz. is a member of the
baddies.oz. group which is recursively included in the goodandbad.oz.
group.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO nisgrpadm (1) , nis_objects (3NSL) , attributes (5)

Last modified 17 Feb 1998 SunOS 5.8 347

nis_groups(3NSL) Networking Services Library Functions

NOTES These functions only accept fully-qualified NIS+ names.

A group is represented by a NIS+ object (see nis_objects (3NSL)) with a
variant part that is defined in the group_obj structure. It contains the following
fields:

uint_t gr_flags; /* Interpretation Flags
(currently unused) */

struct {
uint_t gr_members_len;
nis_name *gr_members_val;

} gr_members; /* Array of members */

NIS+ servers and clients maintain a local cache of expanded groups to
enhance their performance when checking for group membership. Should the
membership of a group change, servers and clients with that group cached will
not see the change until either the group cache has expired or it is explicitly
flushed. A server’s cache may be flushed programmatically by calling the
nis_servstate() function with tag TAG_GCACHEand a value of 1.

There are currently no known methods for nis_ismember() ,
nis_print_group_entry() , and nis_verifygroup() to get their
answers from only the master server.

348 SunOS 5.8 Last modified 17 Feb 1998

Networking Services Library Functions nis_local_names(3NSL)

NAME nis_local_names, nis_local_directory, nis_local_host, nis_local_group,
nis_local_principal – NIS+ local names

SYNOPSIS cc [flag ...] file ... −lnsl [library ...]
#include <rpcsvc/nis.h>
nis_name nis_local_directory (void);

nis_name nis_local_host (void);

nis_name nis_local_group (void);

nis_name nis_local_principal (void);

DESCRIPTION These functions return several default NIS+ names associated with the current
process.

nis_local_directory() returns the name of the NIS+ domain for this
machine. This is currently the same as the Secure RPC domain returned by
the sysinfo (2) system call.

nis_local_host() returns the NIS+ name of the current machine. This is
the fully qualified name for the host and is either the value returned by the
gethostname (3C) function or, if the host name is only partially qualified, the
concatenation of that value and the name of the NIS+ directory. Note that
if a machine’s name and address cannot be found in the local NIS+ directory,
its hostname must be fully qualified.

nis_local_group() returns the name of the current NIS+ group name. This is
currently set by setting the environment variable NIS_GROUPto the groupname.

nis_local_principal() returns the NIS+ principal name for the user
associated with the effective UID of the calling process. This function maps the
effective uid into a principal name by looking for a LOCAL type credential (see
nisaddcred (1M)) in the table named cred.org_dir in the default domain.

Note: The result returned by these routines is a pointer to a data structure with
the NIS+ library, and should be considered a "read-only" result and should
not be modified.

ENVIRONMENT
VARIABLES

NIS_GROUP This variable contains the name of the local NIS+ group.
If the name is not fully qualified, the value returned by
nis_local_directory() will be concatenated to it.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Last modified 30 Dec 1996 SunOS 5.8 349

nis_local_names(3NSL) Networking Services Library Functions

SEE ALSO nisdefaults (1) , nisaddcred (1M) , sysinfo (2) , gethostname (3C) ,
nis_names (3NSL) , nis_objects (3NSL) , attributes (5)

350 SunOS 5.8 Last modified 30 Dec 1996

Networking Services Library Functions nis_names(3NSL)

NAME nis_names, nis_lookup, nis_add, nis_remove, nis_modify, nis_freeresult – NIS+
namespace functions

SYNOPSIS cc [flag ...] file ... −lnsl [library ...]
#include <rpcsvc/nis.h>
nis_result *nis_lookup (nis_name name, uint_t flags);

nis_result *nis_add (nis_name name, nis_object *obj);

nis_result *nis_remove (nis_name name, nis_object *obj);

nis_result *nis_modify (nis_name name, nis_object *obj);

void nis_freeresult (nis_result *result);

DESCRIPTION These functions are used to locate and manipulate all NIS+ objects (see
nis_objects (3NSL)) except the NIS+ entry objects. To look up the NIS+ entry
objects within a NIS+ table, refer to nis_subr (3NSL) .

nis_lookup() resolves a NIS+ name and returns a copy of that object from a
NIS+ server. nis_add() and nis_remove() add and remove objects to the
NIS+ namespace, respectively. nis_modify() can change specific attributes
of an object that already exists in the namespace.

These functions should be used only with names that refer to an NIS+ Directory,
NIS+ Table, NIS+ Group, or NIS+ Private object. If a name refers to an NIS+
entry object, the functions listed in nis_subr (3NSL) should be used.

nis_freeresult() frees all memory associated with a nis_result structure.
This function must be called to free the memory associated with a NIS+ result.
nis_lookup() , nis_add(), nis_remove(), and nis_modify() all
return a pointer to a nis_result structure which must be freed by calling
nis_freeresult() when you have finished using it. If one or more of the
objects returned in the structure need to be retained, they can be copied with
nis_clone_object (3NSL) (see nis_subr (3NSL)).

nis_lookup() takes two parameters, the name of the object to be resolved in
name , and a flags parameter, flags , which is defined below. The object name
is expected to correspond to the syntax of a non-indexed NIS+ name (see
nis_tables (3NSL)). The nis_lookup() function is the only function from
this group that can use a non-fully qualified name. If the parameter name is not a
fully qualified name, then the flag EXPAND_NAMEmust be specified in the call. If
this flag is not specified, the function will fail with the error NIS_BADNAME.

The flags parameter is constructed by logically ORing zero or more flags from the
following list.
FOLLOW_LINKS When specified, the client library will “follow”

links by issuing another NIS+ lookup call for the
object named by the link. If the linked object is

Last modified 17 Feb 1998 SunOS 5.8 351

nis_names(3NSL) Networking Services Library Functions

itself a link, then this process will iterate until the
either a object is found that is not a LINK type
object, or the library has followed 16 links.

HARD_LOOKUP When specified, the client library will retry the
lookup until it is answered by a server. Using
this flag will cause the library to block until at
least one NIS+ server is available. If the network
connectivity is impaired, this can be a relatively
long time.

NO_CACHE When specified, the client library will bypass any
object caches and will get the object from either
the master NIS+ server or one of its replicas.

MASTER_ONLY When specified, the client library will bypass any
object caches and any domain replicas and fetch
the object from the NIS+ master server for the
object’s domain. This insures that the object
returned is up to date at the cost of a possible
performance degradation and failure if the master
server is unavailable or physically distant.

EXPAND_NAME When specified, the client library will attempt
to expand a partially qualified name by
calling the function nis_getnames() (see
nis_subr (3NSL)) which uses the environment
variable NIS_PATH .

The status value may be translated to ascii text using the function
nis_sperrno() (see nis_error (3NSL)).

On return, the objects array in the result will contain one and possibly several
objects that were resolved by the request. If the FOLLOW_LINKS flag was
present, on success the function could return several entry objects if the link in
question pointed within a table. If an error occurred when following a link, the
objects array will contain a copy of the link object itself.

The function nis_add() will take the object obj and add it to the NIS+
namespace with the name name . This operation will fail if the client making
the request does not have the create access right for the domain in which this
object will be added. The parameter name must contain a fully qualified NIS+
name. The object members zo_name and zo_domain will be constructed from this
name. This operation will fail if the object already exists. This feature prevents
the accidental addition of objects over another object that has been added by
another process.

352 SunOS 5.8 Last modified 17 Feb 1998

Networking Services Library Functions nis_names(3NSL)

The function nis_remove() will remove the object with name name from the
NIS+ namespace. The client making this request must have the destroy access
right for the domain in which this object resides. If the named object is a link,
the link is removed and not the object that it points to. If the parameter obj is
not NULL, it is assumed to point to a copy of the object being removed. In this
case, if the object on the server does not have the same object identifier as the
object being passed, the operation will fail with the NIS_NOTSAMEOBJ error.
This feature allows the client to insure that it is removing the desired object. The
parameter name must contain a fully qualified NIS+ name.

The function nis_modify() will modify the object named by name to the field
values in the object pointed to by obj . This object should contain a copy of the
object from the name space that is being modified. This operation will fail with
the error NIS_NOTSAMEOBJ if the object identifier of the passed object does not
match that of the object being modified in the namespace.

Normally the contents of the member zo_name in the nis_object structure would
be constructed from the name passed in the name parameter. However, if it is
non-null the client library will use the name in the zo_name member to perform
a rename operation on the object. This name must not contain any unquoted
‘.’(dot) characters. If these conditions are not met the operation will fail and
return the NIS_BADNAME error code.

Results These functions return a pointer to a structure of type nis_result :

struct nis_result {
nis_error status;
struct {

uint_t objects_len;
nis_object *objects_val;

} objects;
netobj cookie;
uint32_t zticks;
uint32_t dticks;
uint32_t aticks;
uint32_t cticks;

};

The status member contains the error status of the the operation. A text message
that describes the error can be obtained by calling the function nis_sperrno()
(see nis_error (3NSL)).

The objects structure contains two members. objects_val is an array of nis_object
structures; objects_len is the number of cells in the array. These objects will be
freed by the call to nis_freeresult() . If you need to keep a copy of one or
more objects, they can be copied with the function nis_clone_object() and
freed with the function nis_destroy_object() (see nis_server (3NSL)).
Refer to nis_objects (3NSL) for a description of the nis_object structure.

Last modified 17 Feb 1998 SunOS 5.8 353

nis_names(3NSL) Networking Services Library Functions

The various ticks contain details of where the time was taken during a request.
They can be used to tune one’s data organization for faster access and to compare
different database implementations.
zticks The time spent in the NIS+ service itself. This count starts

when the server receives the request and stops when it
sends the reply.

dticks The time spent in the database backend. This time is
measured from the time a database call starts, until the result
is returned. If the request results in multiple calls to the
database, this is the sum of all the time spent in those calls.

aticks The time spent in any “accelerators” or caches. This includes
the time required to locate the server needed to resolve
the request.

cticks The total time spent in the request. This clock starts when
you enter the client library and stops when a result is
returned. By subtracting the sum of the other ticks values
from this value, you can obtain the local overhead of
generating a NIS+ request.

Subtracting the value in dticks from the value in zticks will yield the time spent
in the service code itself. Subtracting the sum of the values in zticks and aticks
from the value in cticks will yield the time spent in the client library itself. Note:
all of the tick times are measured in microseconds.

RETURN VALUES The client library can return a variety of error returns and diagnostics. The more
salient ones are documented below.
NIS_SUCCESS The request was successful.

NIS_S_SUCCESS The request was successful, however
the object returned came from an
object cache and not directly from
the server. If you do not wish to see
objects from object caches you must
specify the flag NO_CACHEwhen you
call the lookup function.

NIS_NOTFOUND The named object does not exist in
the namespace.

NIS_CACHEEXPIRED The object returned came from an
object cache taht has expired . The
time to live value has gone to zero
and the object may have changed. If
the flag NO_CACHEwas passed to

354 SunOS 5.8 Last modified 17 Feb 1998

Networking Services Library Functions nis_names(3NSL)

the lookup function then the lookup
function will retry the operation to
get an unexpired copy of the object.

NIS_NAMEUNREACHABLE A server for the directory of the
named object could not be reached.
This can occur when there is a
network partition or all servers have
crashed. See the HARD_LOOKUPflag.

NIS_UNKNOWNOBJ The object returned is of an unknown
type.

NIS_TRYAGAIN The server connected to was too
busy to handle your request. For the
add , remove , and modify operations
this is returned when either the
master server for a directory is
unavailable or it is in the process of
checkpointing its database. It can
also be returned when the server is
updating it’s internal state. And in
the case of nis_list() if the client
specifies a callback and the server
does not have enough resources to
handle the callback.

NIS_SYSTEMERROR A generic system error occurred
while attempting the request. Most
commonly the server has crashed or
the database has become corrupted.
Check the syslog record for error
messages from the server.

NIS_NOT_ME A request was made to a server
that does not serve the name in
question. Normally this will not
occur, however if you are not using
the built in location mechanism for
servers you may see this if your
mechanism is broken.

NIS_NOMEMORY Generally a fatal result. It means that
the service ran out of heap space.

NIS_NAMEEXISTS An attempt was made to add a name
that already exists. To add the name,

Last modified 17 Feb 1998 SunOS 5.8 355

nis_names(3NSL) Networking Services Library Functions

first remove the existing name and
then add the new object or modify
the existing named object.

NIS_NOTMASTER An attempt was made to update the
database on a replica server.

NIS_INVALIDOBJ The object pointed to by obj is not a
valid NIS+ object.

NIS_BADNAME The name passed to the function is
not a legal NIS+ name.

NIS_LINKNAMEERROR The name passed resolved to a LINK
type object and the contents of the
link pointed to an invalid name.

NIS_NOTSAMEOBJ An attempt to remove an object from
the namespace was aborted because
the object that would have been
removed was not the same object that
was passed in the request.

NIS_NOSUCHNAME This hard error indicates that the
named directory of the table object
does not exist. This occurs when the
server that should be the parent of
the server that serves the table, does
not know about the directory in
which the table resides.

NIS_NOSUCHTABLE The named table does not exist.

NIS_MODFAIL The attempted modification failed.

NIS_FOREIGNNS The name could not be completely
resolved. When the name passed
to the function would resolve in a
namespace that is outside the NIS+
name tree, this error is returned with
a NIS+ object of type DIRECTORY,
which contains the type of namespace
and contact information for a server
within that namespace.

NIS_RPCERROR This fatal error indicates the RPC
subsystem failed in some way.
Generally there will be a syslog (3C)

356 SunOS 5.8 Last modified 17 Feb 1998

Networking Services Library Functions nis_names(3NSL)

message indicating why the RPC
request failed.

ENVIRONMENT
VARIABLES

NIS_PATH If the flag EXPAND_NAMEis set, this variable is the search
path used by nis_lookup() .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO nis_error (3NSL) , nis_objects (3NSL) , nis_server (3NSL) ,
nis_subr (3NSL) , nis_tables (3NSL) , attributes (5)

NOTES You cannot modify the name of an object if that modification would cause the
object to reside in a different domain.

You cannot modify the schema of a table object.

Last modified 17 Feb 1998 SunOS 5.8 357

nis_objects(3NSL) Networking Services Library Functions

NAME nis_objects – NIS+ object formats

SYNOPSIS cc [flag ...] file ... −lnsl [library ...]

/usr/include/rpcsvc/nis_objects.x

DESCRIPTION
Common Attributes The NIS+ service uses a variant record structure to hold the contents of the

objects that are used by the NIS+ service. These objects all share a common
structure which defines a set of attributes that all objects possess. The
nis_object structure contains the following members:

typedef char *nis_name;
struct nis_object {

nis_oid zo_oid;
nis_name zo_name;
nis_name zo_owner;
nis_name zo_group;
nis_name zo_domain;
uint_t zo_access;
uint32_t zo_ttl;
objdata zo_data;

};

In this structure, the first member zo_oid , is a 64 bit number that uniquely
identifies this instance of the object on this server. This member is filled in by the
server when the object is created and changed by the server when the object
is modified. When used in conjunction with the object’s name and domain it
uniquely identifies the object in the entire NIS+ namespace.

The second member, zo_name , contains the leaf name of the object. This name
is never terminated with a ‘.’ (dot). When an object is created or added to the
namespace, the client library will automatically fill in this field and the domain
name from the name that was passed to the function.

zo_domain contains the name of the NIS+ domain to which this object belongs.
This information is useful when tracking the parentage of an object from a cache.
When used in conjunction with the members zo_name and zo_oid , it uniquely
identifies an object. This makes it possible to always reconstruct the name of an
object by using the code fragment

sprintf(buf,"%s.%s", obj ⇒zo_name, obj ⇒zo_domain);

The zo_owner and zo_group members contain the NIS+ names of the object’s
principal owner and group owner, respectively. Both names must be NIS+ fully
qualified names. However, neither name can be used directly to identify the

358 SunOS 5.8 Last modified 10 Nov 1999

Networking Services Library Functions nis_objects(3NSL)

object they represent. This stems from the condition that NIS+ uses itself to store
information that it exports.

The zo_owner member contains a fully qualified NIS+ name of the form
principal.domain. This name is called a NIS+ principal name and is used to
identify authentication information in a credential table. When the server
constructs a search query of the form

[cname= principal],cred.org_dir. domain.

The query will return to the server credential information about principal for
all flavors of RPC authentication that are in use by that principal. When an
RPC request is made to the server, the authentication flavor is extracted from
the request and is used to find out the NIS+ principal name of the client. For
example, if the client is using the AUTH_DES authentication flavor, it will
include in the authentication credentials the network name or netname of the user
making the request. This netname will be of the form

unix. UID@domain

The NIS+ server will then construct a query on the credential database of the form

[auth_name= netname,auth_type=AUTH_DES],cred.org_dir. domain.

This query will return an entry which contains a principal name in the first
column. This NIS+ principal name is used to control access to NIS+ objects.

The group owner for the object is treated differently. The group owner member
is optional (it should be the null string if not present) but must be fully qualified
if present. A group name takes the form

group.domain.

which the server then maps into a name of the form

group.groups_dir. domain.

Last modified 10 Nov 1999 SunOS 5.8 359

nis_objects(3NSL) Networking Services Library Functions

The purpose of this mapping is to prevent NIS+ group names from conflicting
with user specified domain or table names. For example, if a domain was called
engineering.foo.com., then without the mapping a NIS+ group of the same name to
represent members of engineering would not be possible. The contents of groups
are lists of NIS+ principal names which are used exactly like the zo_owner
name in the object. See nis_groups (3NSL) for more details.

The zo_access member contains the bitmask of access rights assigned to this
object. There are four access rights defined, and four are reserved for future use
and must be zero. This group of 8 access rights can be granted to four categories
of client. These categories are the object’s owner, the object’s group owner,
all authenticated clients (world), and all unauthenticated clients (nobody).
Note that access granted to “nobody” is really access granted to everyone,
authenticated and unauthenticated clients.

The zo_ttl member contains the number of seconds that the object can “live”
in a cache before it is expired. This value is called the time to live for this object.
This number is particularly important on group and directory (domain) objects.
When an object is cached, the current time is added to the value in zo_ttl . Then
each time the cached object is used, the time in zo_ttl is compared with the
current time. If the current time is later than the time in zo_ttl the object is said
to have expired and the cached copy should not be used.

Setting the TTL is somewhat of an art. You can think of it as the “half life” of the
object, or half the amount of time you believe will pass before the object changes.
The benefit of setting the ttl to a large number is that the object will stay in a
cache for long periods of time. The problem with setting it to a large value is that
when the object changes it will take a long time for the caches to flush out old
copies of that object. The problems and benefits are reversed for setting the time
to a small value. Generally setting the value to 43200 (12 hrs) is reasonable for
things that change day to day, and 3024000 is good for things that change week
to week. Setting the value to 0 will prevent the object from ever being cached
since it would expire immediately.

The zo_data member is a discriminated union with the following members:

zotypes zo_type;
union {

struct directory_obj di_data;
struct group_obj gr_data;
struct table_obj ta_data;
struct entry_obj en_data;
struct link_obj li_data;
struct {

uint_t po_data_len;
char *po_data_val;

} po_data;
} objdata_u;

360 SunOS 5.8 Last modified 10 Nov 1999

Networking Services Library Functions nis_objects(3NSL)

The union is discriminated based on the type value contained in zo_type . There
six types of objects currently defined in the NIS+ service. These types are the
directory, link, group, table, entry, and private types.

enum zotypes {
BOGUS_OBJ = 0,
NO_OBJ = 1,
DIRECTORY_OBJ = 2,
GROUP_OBJ = 3,
TABLE_OBJ = 4,
ENTRY_OBJ = 5,
LINK_OBJ = 6,
PRIVATE_OBJ = 7

};
typedef enum zotypes zotypes;

All object types define a structure that contains data specific to that type of
object. The simplest are private objects which are defined to contain a variable
length array of octets. Only the owner of the object is expected to understand
the contents of a private object. The following section describe the other five
object types in more significant detail.

Directory Objects The first type of object is the directory object. This object’s variant part is defined
as follows:

enum nstype {
UNKNOWN = 0,
NIS = 1,
SUNYP = 2,
DNS = 4,
X500 = 5,
DNANS = 6,
XCHS = 7,

}
typedef enum nstype nstype;
struct oar_mask {

uint_t oa_rights;
zotypes oa_otype;

}
typedef struct oar_mask oar_mask;
struct endpoint {

char *uaddr;
char *family;
char *proto;

}
typedef struct endpoint endpoint;
struct nis_server {

nis_name name;
struct {

uint_t ep_len;
endpoint *ep_val;

} ep;
uint_t key_type;

Last modified 10 Nov 1999 SunOS 5.8 361

nis_objects(3NSL) Networking Services Library Functions

netobj pkey;
}
typedef struct nis_server nis_server;
struct directory_obj {

nis_name do_name;
nstype do_type;
struct {

uint_t do_servers_len;
nis_server *do_servers_val;

} do_servers;
uint32_t do_ttl;
struct {

uint_t do_armask_len;
oar_mask *do_armask_val;

} do_armask;
}

typedef struct directory_obj directory_obj;

The main structure contains five primary members: do_name, do_type ,
do_servers , do_ttl , and do_armask . The information in the do_servers
structure is sufficient for the client library to create a network connection with
the named server for the directory.

The do_name member contains the name of the directory or domain represented
in a format that is understandable by the type of nameservice serving that
domain. In the case of NIS+ domains, this is the same as the name that can be
composed using the zo_name and zo_domain members. For other name
services, this name will be a name that they understand. For example, if this
were a directory object describing an X.500 namespace that is “under” the NIS+
directory eng.sun.com., this name might contain “/C=US, /O=Sun Microsystems,
/OU=Engineering/”. The type of nameservice that is being described is
determined by the value of the member do_type .

The do_servers structure contains two members. do_servers_val is an
array of nis_server structures; do_servers_len is the number of cells in the
array. The nis_server structure is designed to contain enough information such
that machines on the network providing name services can be contacted without
having to use a name service. In the case of NIS+ servers, this information is
the name of the machine in name, its public key for authentication in pkey,
and a variable length array of endpoints, each of which describes the network
endpoint for the rpcbind daemon on the named machine. The client library
uses the addresses to contact the server using a transport that both the client
and server can communicate on and then queries the rpcbind daemon to get
the actual transport address that the server is using.

Note that the first server in the do_servers list is always the master server for the
directory.

362 SunOS 5.8 Last modified 10 Nov 1999

Networking Services Library Functions nis_objects(3NSL)

The key_type field describes the type of key stored in the pkey netobj (see
/usr/include/rpc/xdr.h for a definition of the network object structure).
Currently supported types are NIS_PK_NONEfor no public key, NIS_PK_DH
for a Diffie-Hellman type public key, and NIS_PK_DHEXTfor an extended
Diffie-Hellman public key.

The do_ttl member contains a copy of the zo_ttl member from the common
attributes. This is the duplicated because the cache manager only caches the
variant part of the directory object.

The do_armask structure contains two members. do_armask_val is an array
of oar_mask structures; do_armask_len is the number of cells in the array.
The oar_mask structure contains two members: oa_rights specifies the access
rights allowed for objects of type oa_otype . These access rights are used for
objects of the given type in the directory when they are present in this array.

The granting of access rights for objects contained within a directory is actually
two-tiered. If the directory object itself grants a given access right (using the
zo_access member in the nis_object structure representing the directory),
then all objects within the directory are allowed that access. Otherwise, the
do_armask structure is examined to see if the access is allowed specifically
for that type of structure. This allows the administrator of a namespace to
set separate policies for different object types, for example, one policy for the
creation of tables and another policy for the creation of other directories. See
nis+ (1) for more details.

Link Objects Link objects provide a means of providing aliases or symbolic links within the
namespace. Their variant part is defined as follows.

struct link_obj {
zotypes li_rtype;
struct {

uint_t li_attrs_len;
nis_attr *li_attrs_val;

} li_attrs;
nis_name li_name;

}

The li_rtype member contains the object type of the object pointed to by the
link. This is only a hint, since the object which the link points to may have
changed or been removed. The fully qualified name of the object (table or
otherwise) is specified in the member li_name .

NIS+ links can point to either other objects within the NIS+ namespace, or to
entries within a NIS+ table. If the object pointed to by the link is a table and
the member li_attrs has a nonzero number of attributes (index name/value
pairs) specified, the table is searched when this link is followed. All entries
which match the specified search pattern are returned. Note, that unless the

Last modified 10 Nov 1999 SunOS 5.8 363

nis_objects(3NSL) Networking Services Library Functions

flag FOLLOW_LINKSis specified, the nis_lookup (3NSL) function will always
return non-entry objects.

Group Objects Group objects contain a membership list of NIS+ principals. The group objects’
variant part is defined as follows.

struct group_obj {
uint_t gr_flags;
struct {

uint_t gr_members_len;
nis_name *gr_members_val;

} gr_members;
}

The gr_flags member contains flags that are currently unused. The
gr_members structure contains the list of principals. For a complete description
of how group objects are manipulated see nis_groups (3NSL).

Table Objects The NIS+ table object is analogous to a YP map. The differences stem from the
access controls, and the variable schemas that NIS+ allows. The table objects
data structure is defined as follows:

#define TA_BINARY 1
#define TA_CRYPT 2
#define TA_XDR 4
#define TA_SEARCHABLE 8
#define TA_CASE 16
#define TA_MODIFIED 32
struct table_col {

char *tc_name;
uint_t tc_flags;
uint_t tc_rights;

}
typedef struct table_col table_col;
struct table_obj {

char *ta_type;
uint_t ta_maxcol;
uchar_t ta_sep;
struct {

uint_t ta_cols_len;
table_col *ta_cols_val;

} ta_cols;
char *ta_path;

}

The ta_type member contains a string that identifies the type of entries in
this table. NIS+ does not enforce any policies as to the contents of this string.
However, when entries are added to the table, the NIS+ service will check to see
that they have the same “type” as the table as specified by this member.

364 SunOS 5.8 Last modified 10 Nov 1999

Networking Services Library Functions nis_objects(3NSL)

The structure ta_cols contains two members. ta_cols_val is an array of
table_col structures. The length of the array depends on the number of
columns in the table; it is defined when the table is created and is stored in
ta_cols_len . ta_maxcol also contains the number of columns in the table
and always has the same value as ta_cols_len . Once the table is created,
this length field cannot be changed.

The ta_sep character is used by client applications that wish to print out an
entry from the table. Typically this is either space (“ ”) or colon (“:”).

The ta_path string defines a concatenation path for tables. This string contains
an ordered list of fully qualified table names, separated by colons, that are to be
searched if a search on this table fails to match any entries. This path is only used
with the flag FOLLOW_PATHwith a nis_list() call. See nis_tables (3NSL)
for information on these flags.

In addition to checking the type, the service will check that the number of
columns in an entry is the same as those in the table before allowing that entry to
be added.

Each column has associated with it a name in tc_name , a set of flags in
tc_flags , and a set of access rights in tc_rights . The name should be
indicative of the contents of that column.

The TA_BINARYflag indicates that data in the column is binary (rather than
text). Columns that are searchable cannot contain binary data. The TA_CRYPT
flag specifies that the information in this column should be encrypted prior to
sending it over the network. This flag has no effect in the export version of NIS+.
The TA_XDRflag is used to tell the client application that the data in this column
is encoded using the XDR protocol. The TA_BINARYflag must be specified with
the XDR flag. Further, by convention, the name of a column that has the TA_XDR
flag set is the name of the XDR function that will decode the data in that column.

The TA_SEARCHABLEflag specifies that values in this column can be searched.
Searchable columns must contain textual data and must have a name associated
with them. The flag TA_CASEspecifies that searches involving this column
ignore the case of the value in the column. At least one of the columns in the
table should be searchable. Also, the combination of all searchable column
values should uniquely select an entry within the table. The TA_MODIFIED flag
is set only when the table column is modified. When TA_MODIFIED is set, and
the object is modified again, the modified access rights for the table column must
be copied, not the default access rights.

Entry Objects Entry objects are stored in tables. The structure used to define the entry data is
as follows.

#define EN_BINARY 1
#define EN_CRYPT 2

Last modified 10 Nov 1999 SunOS 5.8 365

nis_objects(3NSL) Networking Services Library Functions

#define EN_XDR 4
#define EN_MODIFIED 8
struct entry_col {

uint_t ec_flags;
struct {

uint_t ec_value_len;
char *ec_value_val;

} ec_value;
}
typedef struct entry_col entry_col;
struct entry_obj {

char *en_type;
struct {

uint_t en_cols_len;
entry_col *en_cols_val;

} en_cols;
}

The en_type member contains a string that specifies the type of data this entry
represents. The NIS+ server will compare this string to the type string specified
in the table object and disallow any updates or modifications if they differ.

The en_cols structure contains two members: en_cols_len and
en_cols_val . en_cols_val is an array of entry_col structures.
en_cols_len contains a count of the number of cells in the en_cols_val
array and reflects the number of columns in the table – it always contains the
same value as the table_obj.ta_cols.ta_cols_len member from the
table which contains the entry.

The entry_col structure contains information about the entry’s per-column
values. ec_value contains information about a particular value. It has two
members: ec_value_val , which is the value itself, and ec_value_len , which
is the length (in bytes) of the value. entry_col also contains the member
ec_flags , which contains a set of flags for the entry.

The flags in ec_flags are primarily used when adding or modifying entries in
a table. All columns that have the flag EN_CRYPTset will be encrypted prior to
sending them over the network. Columns with EN_BINARYset are presumed
to contain binary data. The server will ensure that the column in the table
object specifies binary data prior to allowing the entry to be added. When
modifying entries in a table, only those columns that have changed need be sent
to the server. Those columns should each have the EN_MODIFIEDflag set to
indicate this to the server.

SEE ALSO nis+ (1), nis_groups (3NSL), nis_names (3NSL), nis_server (3NSL),
nis_subr (3NSL), nis_tables (3NSL)

366 SunOS 5.8 Last modified 10 Nov 1999

Networking Services Library Functions nis_ping(3NSL)

NAME nis_ping, nis_checkpoint – misc NIS+ log administration functions

SYNOPSIS cc [flag ...] file ... −lnsl [library ...]
#include <rpcsvc/nis.h>
void nis_ping (nis_name dirname, uint32_t utime, nis_object *dirobj);

nis_result *nis_checkpoint (nis_name dirname);

DESCRIPTION nis_ping() is called by the master server for a directory when a change
has occurred within that directory. The parameter dirname identifies the
directory with the change. If the parameter dirobj is NULL, this function looks up
the directory object for dirname and uses the list of replicas it contains. The
parameter utime contains the timestamp of the last change made to the directory.
This timestamp is used by the replicas when retrieving updates made to the
directory.

The effect of calling nis_ping() is to schedule an update on the replica. A
short time after a ping is received, typically about two minutes, the replica
compares the last update time for its databases to the timestamp sent by the
ping. If the ping timestamp is later, the replica establishes a connection with the
master server and request all changes from the log that occurred after the last
update that it had recorded in its local log.

nis_checkpoint() is used to force the service to checkpoint information
that has been entered in the log but has not been checkpointed to disk. When
called, this function checkpoints the database for each table in the directory, the
database containing the directory and the transaction log. Care should be used
in calling this function since directories that have seen a lot of changes may
take several minutes to checkpoint. During the checkpointing process, the
service will be unavailable for updates for all directories that are served by this
machine as master.

nis_checkpoint() returns a pointer to a nis_result structure (described in
nis_tables (3NSL)). This structure should be freed with nis_freeresult()
(see nis_names (3NSL)). The only items of interest in the returned result are the
status value and the statistics.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO nislog (1M) , nis_names (3NSL) , nis_tables (3NSL) , nisfiles (4) ,
attributes (5)

Last modified 17 Feb 1998 SunOS 5.8 367

nis_server(3NSL) Networking Services Library Functions

NAME nis_server, nis_mkdir, nis_rmdir, nis_servstate, nis_stats, nis_getservlist,
nis_freeservlist, nis_freetags – miscellaneous NIS+ functions

SYNOPSIS cc [flag ...] file ... −lnsl [library ...]
#include <rpcsvc/nis.h>
nis_error nis_mkdir (nis_name dirname, nis_server *machine);

nis_error nis_rmdir (nis_name dirname, nis_server *machine);

nis_error nis_servstate (nis_server *machine, nis_tag *tags, int numtags, nis_tag **result);

nis_error nis_stats (nis_server *machine, nis_tag *tags, int numtags, nis_tag **result);

void nis_freetags (nis_tag *tags, int numtags);

nis_server **nis_getservlist (nis_name dirname);

void nis_freeservlist (nis_server **machines);

DESCRIPTION These functions provide a variety of services for NIS+ applications.

nis_mkdir() is used to create the necessary databases to support NIS+ service
for a directory, dirname , on a server, machine . If this operation is successful, it
means that the directory object describing dirname has been updated to reflect
that server machine is serving the named directory. For a description of the
nis_server structure, refer to nis_objects (3NSL) .

Per-server and per-directory access restrictions may apply to nis_mkdir() .
See nisopaccess (1)

nis_rmdir() is used to delete the directory, dirname , from the specified server
machine. The machine parameter cannot be NULL . Note that nis_rmdir()
does not remove the directory dirname from the namespace or remove a server
from the server list in the directory object. To remove a directory from the
namespace you must call nis_remove() to remove the directory dirname
from the namespace and call nis_rmdir() for each server in the server list to
remove the directory from the server. To remove a replica from the server list,
you need to first call nis_modify() to remove the server from the directory
object and then call nis_rmdir() to remove the replica.

Per-server and per-directory access restrictions may apply to nis_rmdir() .
See nisopaccess (1)

For a description of the nis_server structure, refer to nis_objects (3NSL) .

nis_servstate() is used to set and read the various state variables of the
NIS+ servers. In particular the internal debugging state of the servers may
be set and queried.

The nis_stats() function is used to retrieve statistics about how the server is
operating. Tracking these statistics can help administrators determine when

368 SunOS 5.8 Last modified 11 Jun 1999

Networking Services Library Functions nis_server(3NSL)

they need to add additional replicas or to break up a domain into two or more
subdomains. For more information on reading statistics, see nisstat (1M)

nis_servstate() and nis_stats() use the tag list. This tag list is a
variable length array of nis_tag structures whose length is passed to the
function in the numtags parameter. The set of legal tags are defined in the file
<rpcsvc/nis_tags.h> which is included in <rpcsvc/nis.h> . Because
these tags can and do vary between implementations of the NIS+ service, it is
best to consult this file for the supported list. Passing unrecognized tags to a
server will result in their tag_value member being set to the string “unknown.”
Both of these functions return their results in malloced tag structure, *result
. If there is an error, *result is set to NULL . The tag_value pointers points to
allocated string memory which contains the results. Use nis_freetags() to
free the tag structure.

Per-server and per-directory access restrictions may apply to the
NIS_SERVSTATEor NIS_STATUS (nis_stats()) operations and their
sub-operations (tags). See nisopaccess (1)

nis_getservlist() returns a null terminated list of nis_server structures that
represent the list of servers that serve the domain named dirname . Servers from
this list can be used when calling functions that require the name of a NIS+
server. For a description of the nis_server refer to nis_objects (3NSL) .
nis_freeservlist() frees the list of servers list of servers returned by
nis_getservlist() . Note that this is the only legal way to free that list.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO nisopaccess (1) , nisstat (1M) , nis_names (3NSL) , nis_objects (3NSL) ,
nis_subr (3NSL) , attributes (5)

Last modified 11 Jun 1999 SunOS 5.8 369

nis_subr(3NSL) Networking Services Library Functions

NAME nis_subr, nis_leaf_of, nis_name_of, nis_domain_of, nis_getnames, nis_freenames,
nis_dir_cmp, nis_clone_object, nis_destroy_object, nis_print_object – NIS+
subroutines

SYNOPSIS cc [flag ...] file ... −lnsl [library ...]
#include <rpcsvc/nis.h>
nis_name nis_leaf_of (const nis_name name);

nis_name nis_name_of (const nis_name name);

nis_name nis_domain_of (const nis_name name);

nis_name *nis_getnames (const nis_name name);

void nis_freenames (nis_name *namelist);

name_pos nis_dir_cmp (const nis_name n1, const nis_name n2);

nis_object *nis_clone_object (const nis_object *src, nis_object *dest);

void nis_destroy_object (nis_object *obj);

void nis_print_object (const nis_object *obj);

DESCRIPTION These subroutines are provided to assist in the development of NIS+ applications.
They provide several useful operations on both NIS+ names and objects.

The first group, nis_leaf_of() , nis_domain_of() , and nis_name_of()
provide the functions for parsing NIS+ names. nis_leaf_of() will return the
first label in an NIS+ name. It takes into account the double quote character ‘"’
which can be used to protect embedded ‘.’ (dot) characters in object names. Note
that the name returned will never have a trailing dot character. If passed the
global root directory name ".", it will return the null string.

nis_domain_of() returns the name of the NIS+ domain in which an object
resides. This name will always be a fully qualified NIS+ name and ends with
a dot. By iteratively calling nis_leaf_of() and nis_domain_of() it is
possible to break a NIS+ name into its individual components.

nis_name_of() is used to extract the unique part of a NIS+ name. This
function removes from the tail portion of the name all labels that are in common
with the local domain. Thus if a machine were in domain foo.bar.baz. and
nis_name_of() were passed a name bob.friends.foo.bar.baz , then
nis_name_of() would return the unique part, bob.friends . If the name
passed to this function is not in either the local domain or one of its children,
this function will return null.

nis_getnames() will return a list of candidate names for the name passed in
as name . If this name is not fully qualified, nis_getnames() will generate a
list of names using the default NIS+ directory search path, or the environment

370 SunOS 5.8 Last modified 30 Dec 1996

Networking Services Library Functions nis_subr(3NSL)

variable NIS_PATH if it is set. The returned array of pointers is terminated by a
NULL pointer, and the memory associated with this array should be freed by
calling nis_freenames().

Though nis_dir_cmp() can be used to compare any two NIS+ names, it is
used primarily to compare domain names. This comparison is done in a case
independent fashion, and the results are an enum of type name_pos . When
the names passed to this function are identical, the function returns a value
of SAME_NAME. If the name n1 is a direct ancestor of name n2 , then this
function returns the result HIGHER_NAME. Similarly, if the name n1 is a direct
descendant of name n2 , then this function returns the result LOWER_NAME.
When the name n1 is neither a direct ancestor nor a direct descendant of n2 , as it
would be if the two names were siblings in separate portions of the namespace,
then this function returns the result NOT_SEQUENTIAL. Finally, if either
name cannot be parsed as a legitimate name then this function returns the
value BAD_NAME.

The second set of functions, consisting of nis_clone_object()
and nis_destroy_object() , are used for manipulating objects.
nis_clone_object() creates an exact duplicate of the NIS+ object src . If
the value of dest is non-null, it creates the clone of the object into this object
structure and allocate the necessary memory for the variable length arrays.
If this parameter is null, a pointer to the cloned object is returned. Refer to
nis_objects (3NSL) for a description of the nis_object structure.

nis_destroy_object() can be used to destroy an object created by
nis_clone_object() . This will free up all memory associated with the
object and free the pointer passed. If the object was cloned into an array (using
the dest parameter to nis_clone_object()) then the object cannot be freed
with this function. Instead, the function xdr_free(xdr_nis_object, dest)
must be used.

nis_print_object() prints out the contents of a NIS+ object structure on the
standard output. Its primary use is for debugging NIS+ programs.

ENVIRONMENT
VARIABLES

NIS_PATH This variable overrides the default NIS+ directory search
path used by nis_getnames(). It contains an ordered
list of directories separated by ’:’ (colon) characters. The
’$’ (dollar sign) character is treated specially. Directory
names that end in ’$’ have the default domain appended to
them, and a ’$’ by itself is replaced by the list of directories
between the default domain and the global root that are at
least two levels deep. The default NIS+ directory search
path is ’$’.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified 30 Dec 1996 SunOS 5.8 371

nis_subr(3NSL) Networking Services Library Functions

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO nis_names (3NSL) , nis_objects (3NSL) , nis_tables (3NSL) ,
attributes (5)

NOTES nis_leaf_of() , nis_name_of() and nis_clone_object() return their
results as thread-specific data in multithreaded applications.

372 SunOS 5.8 Last modified 30 Dec 1996

Networking Services Library Functions nis_tables(3NSL)

NAME nis_tables, nis_list, nis_add_entry, nis_remove_entry, nis_modify_entry,
nis_first_entry, nis_next_entry – NIS+ table functions

SYNOPSIS cc [flag ...] file ... −lnsl [library ...]
#include <rpcsvc/nis.h>
nis_result *nis_list (nis_name name, uint_tflags, int (*callback)(nis_name table_name,
nis_object *object, void *userdata), void *userdata);

nis_result *nis_add_entry (nis_name table_name, nis_object *object, uint_t flags);

nis_result *nis_remove_entry (nis_name name, nis_object *object, uint_tflags);

nis_result *nis_modify_entry (nis_name name, nis_object *object, uint_tflags);

nis_result *nis_first_entry (nis_name table_name);

nis_result *nis_next_entry (nis_name table_name, netobj *cookie);

void nis_freeresult (nis_result *result);

DESCRIPTION These functions are used to search and modify NIS+ tables. nis_list() is
used to search a table in the NIS+ namespace. nis_first_entry() and
nis_next_entry() are used to enumerate a table one entry at a time.
nis_add_entry() , nis_remove_entry() , and nis_modify_entry()
are used to change the information stored in a table. nis_freeresult() is
used to free the memory associated with the nis_result structure.

Entries within a table are named by NIS+ indexed names. An indexed name is a
compound name that is composed of a search criteria and a simple NIS+ name
that identifies a table object. A search criteria is a series of column names and
their associated values enclosed in bracket ’[]’ characters. Indexed names have
the following form:

[colname=value, ...], tablename

The list function, nis_list() , takes an indexed name as the value for the name
parameter. Here, the tablename should be a fully qualified NIS+ name unless the
EXPAND_NAMEflag (described below) is set. The second parameter, flags , defines
how the function will respond to various conditions. The value for this parameter
is created by logically ORing together one or more flags from the following list.
FOLLOW_LINKS If the table specified in name resolves to be a LINK type

object (see nis_objects (3NSL)), this flag specifies that
the client library follow that link and do the search at that
object. If this flag is not set and the name resolves to a link,
the error NIS_NOTSEARCHABLEwill be returned.

Last modified 17 Feb 1998 SunOS 5.8 373

nis_tables(3NSL) Networking Services Library Functions

FOLLOW_PATH This flag specifies that if the entry is not found within this
table, the list operation should follow the path specified
in the table object. When used in conjunction with the
ALL_RESULTSflag below, it specifies that the path should be
followed regardless of the result of the search. When used
in conjunction with the FOLLOW_LINKSflag above, named
tables in the path that resolve to links will be followed until
the table they point to is located. If a table in the path is not
reachable because no server that serves it is available, the
result of the operation will be either a "soft" success or a
"soft" failure to indicate that not all tables in the path could
be searched. If a name in the path names is either an invalid
or non-existent object then it is silently ignored.

HARD_LOOKUP This flag specifies that the operation should continue trying
to contact a server of the named table until a definitive result
is returned (such as NIS_NOTFOUND).

ALL_RESULTS This flag can only be used in conjunction with FOLLOW_PATH
and a callback function. When specified, it forces all of the
tables in the path to be searched. If name does not specify
a search criteria (imply that all entries are to be returned),
then this flag will cause all of the entries in all of the tables
in the path to be returned.

NO_CACHE This flag specifies that the client library should bypass any
client object caches and get its information directly from
either the master server or a replica server for the named
table.

MASTER_ONLY This flag is even stronger than NO_CACHEin that it specifies
that the client library should only get its information from
the master server for a particular table. This guarantees that
the information will be up to date. However, there may be
severe performance penalties associated with contacting the
master server directly on large networks. When used in
conjunction with the HARD_LOOKUPflag, this will block the
list operation until the master server is up and available.

EXPAND_NAME When specified, the client library will attempt to expand a
partially qualified name by calling nis_getnames() (see
nis_local_names (3NSL)) which uses the environment
variable NIS_PATH .

374 SunOS 5.8 Last modified 17 Feb 1998

Networking Services Library Functions nis_tables(3NSL)

RETURN_RESULTThis flag is used to specify that a copy of the returning object
be returned in the nis_result structure if the operation
was successful.

The third parameter to nis_list() , callback , is an optional pointer to a
function that will process the ENTRYtype objects that are returned from the
search. If this pointer is NULL, then all entries that match the search criteria are
returned in the nis_result structure, otherwise this function will be called once for
each entry returned. When called, this function should return 0 when additional
objects are desired and 1 when it no longer wishes to see any more objects. The
fourth parameter, userdata , is simply passed to callback function along with the
returned entry object. The client can use this pointer to pass state information or
other relevant data that the callback function might need to process the entries.

The nis_list() function is not MT-Safe with callbacks. See NOTES.

nis_add_entry() will add the NIS+ object to the NIS+ table_name . The flags
parameter is used to specify the failure semantics for the add operation. The
default (flags equal 0) is to fail if the entry being added already exists in the table.
The ADD_OVERWRITEflag may be used to specify that existing object is to be
overwritten if it exists, (a modify operation) or added if it does not exist. With the
ADD_OVERWRITEflag, this function will fail with the error NIS_PERMISSION if
the existing object does not allow modify privileges to the client.

If the flag RETURN_RESULThas been specified, the server will return a copy of
the resulting object if the operation was successful.

nis_remove_entry() removes the identified entry from the table or a set
of entries identified by table_name . If the parameter object is non-null, it is
presumed to point to a cached copy of the entry. When the removal is attempted,
and the object that would be removed is not the same as the cached object
pointed to by object then the operation will fail with an NIS_NOTSAMEOBJ
error. If an object is passed with this function, the search criteria in name is
optional as it can be constructed from the values within the entry. However, if no
object is present, the search criteria must be included in the name parameter.
If the flags variable is null, and the search criteria does not uniquely identify
an entry, the NIS_NOTUNIQUEerror is returned and the operation is aborted.
If the flag parameter REM_MULTIPLEis passed, and if remove permission is
allowed for each of these objects, then all objects that match the search criteria
will be removed. Note that a null search criteria and the REM_MULTIPLEflag
will remove all entries in a table.

nis_modify_entry() modifies an object identified by name . The parameter
object should point to an entry with the EN_MODIFIEDflag set in each column
that contains new information.

Last modified 17 Feb 1998 SunOS 5.8 375

nis_tables(3NSL) Networking Services Library Functions

The owner, group, and access rights of an entry are modified by placing
the modified information into the respective fields of the parameter, object :
zo_owner , zo_group , and zo_access .

These columns will replace their counterparts in the entry that is stored in the
table. The entry passed must have the same number of columns, same type, and
valid data in the modified columns for this operation to succeed.

If the flags parameter contains the flag MOD_SAMEOBJthen the object pointed
to by object is assumed to be a cached copy of the original object. If the OID
of the object passed is different than the OID of the object the server fetches,
then the operation fails with the NIS_NOTSAMEOBJerror. This can be used to
implement a simple read-modify-write protocol which will fail if the object is
modified before the client can write the object back.

If the flag RETURN_RESULThas been specified, the server will return a copy of
the resulting object if the operation was successful.

nis_first_entry() fetches entries from a table one at a time. This mode of
operation is extremely inefficient and callbacks should be used instead wherever
possible. The table containing the entries of interest is identified by name . If
a search criteria is present in name it is ignored. The value of cookie within the
nis_result structure must be copied by the caller into local storage and
passed as an argument to nis_next_entry() .

nis_next_entry() retrieves the "next" entry from a table specified by
table_name . The order in which entries are returned is not guaranteed. Further,
should an update occur in the table between client calls to nis_next_entry()
there is no guarantee that an entry that is added or modified will be seen by the
client. Should an entry be removed from the table that would have been the
"next" entry returned, the error NIS_CHAINBROKENis returned instead.

RETURN VALUES These functions return a pointer to a structure of type nis_result :

struct nis_result {
nis_error status;
struct {

uint_t objects_len;
nis_object *objects_val;

} objects;
netobj cookie;
uint32_t zticks;
uint32_t dticks;
uint32_t aticks;
uint32_t cticks;

};

376 SunOS 5.8 Last modified 17 Feb 1998

Networking Services Library Functions nis_tables(3NSL)

The status member contains the error status of the the operation. A text message
that describes the error can be obtained by calling the function nis_sperrno()
(see nis_error (3NSL)).

The objects structure contains two members. objects_val is an array of nis_object
structures; objects_len is the number of cells in the array. These objects will be
freed by a call to nis_freeresult() (see nis_names (3NSL)). If you need
to keep a copy of one or more objects, they can be copied with the function
nis_clone_object() and freed with the function nis_destroy_object()
(see nis_server (3NSL)).

The various ticks contain details of where the time (in microseconds) was taken
during a request. They can be used to tune one’s data organization for faster
access and to compare different database implementations.
zticks The time spent in the NIS+ service itself, this count starts when the

server receives the request and stops when it sends the reply.

dticks The time spent in the database backend, this time is measured from
the time a database call starts, until a result is returned. If the request
results in multiple calls to the database, this is the sum of all the time
spent in those calls.

aticks The time spent in any "accelerators" or caches. This includes the time
required to locate the server needed to resolve the request.

cticks The total time spent in the request, this clock starts when you enter
the client library and stops when a result is returned. By subtracting
the sum of the other ticks values from this value you can obtain the
local overhead of generating a NIS+ request.

Subtracting the value in dticks from the value in zticks will yield the time spent
in the service code itself. Subtracting the sum of the values in zticks and aticks
from the value in cticks will yield the time spent in the client library itself. Note:
all of the tick times are measured in microseconds.

ERRORS The client library can return a variety of error returns and diagnostics. The more
salient ones are documented below.
NIS_BADATTRIBUTE The name of an attribute did not match up with a

named column in the table, or the attribute did
not have an associated value.

NIS_BADNAME The name passed to the function is not a legal
NIS+ name.

NIS_BADREQUEST A problem was detected in the request structure
passed to the client library.

Last modified 17 Feb 1998 SunOS 5.8 377

nis_tables(3NSL) Networking Services Library Functions

NIS_CACHEEXPIRED The entry returned came from an object cache
that has expired . This means that the time to live
value has gone to zero and the entry may have
changed. If the flag NO_CACHE was passed to
the lookup function then the lookup function will
retry the operation to get an unexpired copy of
the object.

NIS_CBERROR An RPC error occurred on the server while it
was calling back to the client. The transaction
was aborted at that time and any unsent data
was discarded.

NIS_CBRESULTS Even though the request was successful, all of the
entries have been sent to your callback function
and are thus not included in this result.

NIS_FOREIGNNS The name could not be completely resolved.
When the name passed to the function would
resolve in a namespace that is outside the NIS+
name tree, this error is returned with a NIS+
object of type DIRECTORY. The returned object
contains the type of namespace and contact
information for a server within that namespace.

NIS_INVALIDOBJ The object pointed to by object is not a valid NIS+
entry object for the given table. This could occur
if it had a mismatched number of columns, or a
different data type (for example, binary or text)
than the associated column in the table.

NIS_LINKNAMEERROR The name passed resolved to a LINK type object
and the contents of the object pointed to an
invalid name.

NIS_MODFAIL The attempted modification failed for some
reason.

NIS_NAMEEXISTS An attempt was made to add a name that already
exists. To add the name, first remove the existing
name and then add the new name or modify the
existing named object.

NIS_NAMEUNREACHABLE This soft error indicates that a server for the
desired directory of the named table object could
not be reached. This can occur when there is a
network partition or the server has crashed.

378 SunOS 5.8 Last modified 17 Feb 1998

Networking Services Library Functions nis_tables(3NSL)

Attempting the operation again may succeed. See
the HARD_LOOKUPflag.

NIS_NOCALLBACK The server was unable to contact the callback
service on your machine. This results in no data
being returned.

NIS_NOMEMORY Generally a fatal result. It means that the service
ran out of heap space.

NIS_NOSUCHNAME This hard error indicates that the named directory
of the table object does not exist. This occurs
when the server that should be the parent of the
server that serves the table, does not know about
the directory in which the table resides.

NIS_NOSUCHTABLE The named table does not exist.

NIS_NOT_ME A request was made to a server that does not
serve the given name. Normally this will not
occur, however if you are not using the built in
location mechanism for servers, you may see this
if your mechanism is broken.

NIS_NOTFOUND No entries in the table matched the search
criteria. If the search criteria was null (return all
entries) then this result means that the table is
empty and may safely be removed by calling
the nis_remove() .

If the FOLLOW_PATH flag was set, this error
indicates that none of the tables in the path
contain entries that match the search criteria.

NIS_NOTMASTER A change request was made to a server that
serves the name, but it is not the master server.
This can occur when a directory object changes
and it specifies a new master server. Clients that
have cached copies of the directory object in the
/var/nis/NIS_SHARED_DIRCACHE file will
need to have their cache managers restarted (use
nis_cachemgr -i) to flush this cache.

NIS_NOTSAMEOBJ An attempt to remove an object from the
namespace was aborted because the object that
would have been removed was not the same
object that was passed in the request.

Last modified 17 Feb 1998 SunOS 5.8 379

nis_tables(3NSL) Networking Services Library Functions

NIS_NOTSEARCHABLE The table name resolved to a NIS+ object that
was not searchable.

NIS_PARTIAL This result is similar to NIS_NOTFOUNDexcept
that it means the request succeeded but resolved
to zero entries. When this occurs, the server
returns a copy of the table object instead of an
entry so that the client may then process the path
or implement some other local policy.

NIS_RPCERROR This fatal error indicates the RPC subsystem
failed in some way. Generally there will be a
syslog (3C) message indicating why the RPC
request failed.

NIS_S_NOTFOUND The named entry does not exist in the table,
however not all tables in the path could be
searched, so the entry may exist in one of those
tables.

NIS_S_SUCCESS Even though the request was successful, a table
in the search path was not able to be searched,
so the result may not be the same as the one
you would have received if that table had been
accessible.

NIS_SUCCESS The request was successful.

NIS_SYSTEMERROR Some form of generic system error occurred while
attempting the request. Check the syslog (3C)
record for error messages from the server.

NIS_TOOMANYATTRS The search criteria passed to the server had more
attributes than the table had searchable columns.

NIS_TRYAGAIN The server connected to was too busy to handle
your request. add_entry() , remove_entry()
, and modify_entry() return this error when
the master server is currently updating its internal
state. It can be returned to nis_list() when
the function specifies a callback and the server
does not have the resources to handle callbacks.

NIS_TYPEMISMATCH An attempt was made to add or modify an entry
in a table, and the entry passed was of a different
type than the table.

380 SunOS 5.8 Last modified 17 Feb 1998

Networking Services Library Functions nis_tables(3NSL)

ENVIRONMENT
VARIABLES

NIS_PATH When set, this variable is the search path used by
nis_list() if the flag EXPAND_NAMEis set.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

SEE ALSO niscat (1) , niserror (1) , nismatch (1) , nis_cachemgr (1M) ,
nis_clone_object (3NSL) , n, nis_destroy_object (3NSL) ,
nis_error (3NSL) , nis_getnames (3NSL) , nis_local_names (3NSL)
, nis_names (3NSL) , nis_objects (3NSL) , nis_server (3NSL) ,
rpc_svc_calls (3NSL) , syslog (3C) , attributes (5)

WARNINGS Use the flag HARD_LOOKUPcarefully since it can cause the application to block
indefinitely during a network partition.

NOTES The path used when the flag FOLLOW_PATHis specified, is the one present in the
first table searched. The path values in tables that are subsequently searched
are ignored.

It is legal to call functions that would access the nameservice from within a
list callback. However, calling a function that would itself use a callback, or
calling nis_list() with a callback from within a list callback function is not
currently supported.

There are currently no known methods for nis_first_entry() and
nis_next_entry() to get their answers from only the master server.

The nis_list() function is not MT-Safe with callbacks. nis_list()
callbacks are serialized. A call to nis_list() with a callback from within
nis_list() will deadlock. nis_list() with a callback cannot be called from
an rpc server. See rpc_svc_calls (3NSL) . Otherwise, this function is MT-Safe.

Last modified 17 Feb 1998 SunOS 5.8 381

nlsgetcall(3NSL) Networking Services Library Functions

NAME nlsgetcall – get client’s data passed via the listener

SYNOPSIS #include <sys/tiuser.h>

struct t_call *nlsgetcall (int fildes);

DESCRIPTION nlsgetcall() allows server processes started by the listener process to access
the client’s t_call structure, that is, the sndcall argument of t_connect (3NSL).

The t_call structure returned by nlsgetcall() can be released using
t_free (3NSL).

nlsgetcall() returns the address of an allocated t_call structure or NULL if
a t_call structure cannot be allocated. If the t_alloc() succeeds, undefined
environment variables are indicated by a negative len field in the appropriate
netbuf structure. A len field of zero in the netbuf structure is valid and means
that the original buffer in the listener’s t_call structure was NULL.

RETURN VALUES A NULL pointer is returned if a t_call structure cannot be allocated by
t_alloc() . t_errno can be inspected for further error information.
Undefined environment variables are indicated by a negative length field (len) in
the appropriate netbuf structure.

FILES /usr/lib/libnsl_s.a
/usr/lib/libslan.a
/usr/lib/libnls.a

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO nlsadmin (1M), getenv (3C), t_alloc (3NSL), t_connect (3NSL),
t_error (3NSL), t_free (3NSL), t_sync (3NSL), attributes (5)

WARNINGS The len field in the netbuf structure is defined as being unsigned. In order to
check for error returns, it should first be cast to an int.

The listener process limits the amount of user data (udata) and options data (opt)
to 128 bytes each. Address data addr is limited to 64 bytes. If the original data
was longer, no indication of overflow is given.

NOTES Server processes must call t_sync (3NSL) before calling this routine.

This interface is unsafe in multithreaded applications. Unsafe interfaces should
be called only from the main thread.

382 SunOS 5.8 Last modified 30 Dec 1996

Networking Services Library Functions nlsprovider(3NSL)

NAME nlsprovider – get name of transport provider

SYNOPSIS char *nlsprovider (void);

DESCRIPTION nlsprovider() returns a pointer to a null-terminated character string which
contains the name of the transport provider as placed in the environment by
the listener process. If the variable is not defined in the environment, a NULL
pointer is returned.

The environment variable is only available to server processes started by the
listener process.

RETURN VALUES If the variable is not defined in the environment, a NULL pointer is returned.

FILES /usr/lib/libslan.a (7300)
/usr/lib/libnls.a (3B2
Computer)
/usr/lib/libnsl_s.a

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO nlsadmin (1M), attributes (5)

NOTES This interface is unsafe in multithreaded applications. Unsafe interfaces should
be called only from the main thread.

Last modified 30 Dec 1996 SunOS 5.8 383

nlsrequest(3NSL) Networking Services Library Functions

NAME nlsrequest – format and send listener service request message

SYNOPSIS #include <listen.h>

int nlsrequest (int fildes, char *service_code);
extern int _nlslogt_errno;
extern char *_nlsrmsg;

DESCRIPTION Given a virtual circuit to a listener process (fildes) and a service code of a server
process, nlsrequest() formats and sends a service request message to the
remote listener process requesting that it start the given service. nlsrequest()
waits for the remote listener process to return a service request response message,
which is made available to the caller in the static, null-terminated data buffer
pointed to by _nlsrmsg . The service request response message includes a success
or failure code and a text message. The entire message is printable.

RETURN VALUES The success or failure code is the integer return code from nlsrequest() .
Zero indicates success, other negative values indicate nlsrequest() failures
as follows:
−1 Error encountered by nlsrequest() , see t_errno .

Positive values are error return codes from the listener process. Mnemonics for
these codes are defined in <listen.h> .
2 Request message not interpretable.

3 Request service code unknown.

4 Service code known, but currently disabled.

If non-null, _nlsrmsg contains a pointer to a static, null-terminated character
buffer containing the service request response message. Note that both _nlsrmsg
and the data buffer are overwritten by each call to nlsrequest() .

If _nlslog is non-zero, nlsrequest() prints error messages on stderr.
Initially, _nlslog is zero.

FILES /usr/lib/libnls.a
/usr/lib/libslan.a
/usr/lib/libnsl_s.a

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO nlsadmin (1M), t_error (3NSL), t_snd (3NSL), t_rcv (3NSL), attributes (5)

384 SunOS 5.8 Last modified 30 Dec 1996

Networking Services Library Functions nlsrequest(3NSL)

WARNINGS nlsrequest() cannot always be certain that the remote server process
has been successfully started. In this case, nlsrequest() returns with no
indication of an error and the caller will receive notification of a disconnect event
by way of a T_LOOKerror before or during the first t_snd() or t_rcv() call.

NOTES These interfaces are unsafe in multithreaded applications. Unsafe interfaces
should be called only from the main thread.

Last modified 30 Dec 1996 SunOS 5.8 385

rcmd(3SOCKET) Sockets Library Functions

NAME rcmd, rcmd_af, rresvport, rresvport_af, ruserok – routines for returning a stream
to a remote command

SYNOPSIS cc [flag ...] file ... −lsocket −lnsl [library ...]
int rcmd (char **ahost, unsigned short inport, const char *luser, const char *ruser, const char
*cmd, int *fd2p);

int rcmd_af (char **ahost, unsigned short inport, const char *luser, const char *ruser,
const char *cmd, int *fd2p, int af);

int rresvport (int *port);

int rresvport_af (int *port, int af);

int ruserok (const char *rhost, int suser, const char *ruser, const char *luser);

DESCRIPTION rcmd() is a routine used by the superuser to execute a command on a remote
machine using an authentication scheme based on reserved port numbers. It
is assumed that an AF_INET socket is returned with rcmd() . rcmd_af()
allows the application to choose which type of socket is returned by passing in
the address family, either AF_INET or AF_INET6 .

rresvport() is a routine that returns a descriptor to a socket with an address
in the privileged port space. rresvport_af() is equivalent to rresvport() ,
except that you can choose the type of socket address family that will be returned
by rresvport_af() , either AF_INET or AF_INET6 .

ruserok() is a routine used by servers to authenticate clients requesting
service with rcmd .

All of these functions are present in the same file and are used by the
in.rshd (1M) server (among others).

rcmd() and rcmd_af() look up the host *ahost using
getipnodebyname (3SOCKET) , returning -1 if the host does not exist.
Otherwise *ahost is set to the standard name of the host and a connection is
established to a server residing at the well-known Internet port inport .

If the connection succeeds, a socket in the Internet domain of type SOCK_STREAM
is returned to the caller, and given to the remote command as its standard input
(file descriptor 0) and standard output (file descriptor 1). If fd2p is non-zero,
then an auxiliary channel to a control process will be set up, and a descriptor
for it will be placed in *fd2p . The control process will return diagnostic output
from the command (file descriptor 2) on this channel, and will also accept bytes
on this channel as signal numbers, to be forwarded to the process group of the
command. If fd2p is 0, then the standard error (file descriptor 2) of the remote
command will be made the same as its standard output and no provision is
made for sending arbitrary signals to the remote process, although you may be
able to get its attention by using out-of-band data.

386 SunOS 5.8 Last modified 10 Nov 1999

Sockets Library Functions rcmd(3SOCKET)

The protocol is described in detail in in.rshd (1M) .

The rresvport() and rresvport_af() routines are used to obtain a socket
bound to a privileged port number. This socket is suitable for use by rcmd()
and rresvport_af() and several other routines. Privileged Internet ports are
those in the range 1 to 1023. Only the superuser is allowed to bind a socket to a
privileged port number. The application must pass in port , which must be in the
range 512 to 1023. The system first tries to bind to that port number. If it fails, the
system then tries to bind to another unused privileged port, if one is available.

ruserok() takes a remote host’s name, as returned by a gethostbyaddr()
routine, two user names and a flag indicating whether the local user’s name
is that of the superuser. See gethostbyname (3NSL) . It then checks the files
/etc/hosts.equiv and possibly .rhosts in the local user’s home directory
to see if the request for service is allowed. 0 is returned if the machine name is
listed in the /etc/hosts.equiv file, or the host and remote user name are
found in the .rhosts file; otherwise ruserok() returns -1 . If the superuser
flag is 1 , the checking of the /etc/hosts.equiv file is bypassed.

RETURN VALUES rcmd() and rcmd_af() return a valid socket descriptor upon success. They
returns -1 upon error and print a diagnostic message to standard error.

rresvport() and rresvport_af() return a valid, bound socket descriptor
upon success. They return -1 upon error with the global value errno set
according to the reason for failure.

FILES /etc/hosts.equiv system trusted hosts and users

~/.rhosts user’s trusted hosts and users

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO rlogin (1) , rsh (1) , in.rexecd (1M) , in.rshd (1M) , intro (2) ,
gethostbyname (3NSL) , getipnodebyname (3SOCKET) , rexec (3SOCKET) ,
attributes (5)

NOTES The error code EAGAINis overloaded to mean "All network ports in use."

These interfaces are unsafe in multithreaded applications. Unsafe interfaces
should be called only from the main thread.

Last modified 10 Nov 1999 SunOS 5.8 387

recv(3SOCKET) Sockets Library Functions

NAME recv, recvfrom, recvmsg – receive a message from a socket

SYNOPSIS cc [flag ...] file ... −lsocket −lnsl [library ...]
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/uio.h>
ssize_t recv (int s, void *buf, size_t len, int flags);

ssize_t recvfrom (int s, void *buf, size_t len, int flags, struct sockaddr *from, int *fromlen);

ssize_t recvmsg (int s, struct msghdr *msg, int flags);

DESCRIPTION recv() , recvfrom() , and recvmsg() are used to receive messages
from another socket. recv() may be used only on a connected socket (see
connect (3SOCKET)), while recvfrom() and recvmsg() may be used to
receive data on a socket whether it is in a connected state or not. s is a socket
created with socket (3SOCKET) .

If from is not a NULL pointer, the source address of the message is filled in.
fromlen is a value-result parameter, initialized to the size of the buffer associated
with from , and modified on return to indicate the actual size of the address
stored there. The length of the message is returned. If a message is too long to fit
in the supplied buffer, excess bytes may be discarded depending on the type of
socket the message is received from (see socket (3SOCKET)).

If no messages are available at the socket, the receive call waits for a message
to arrive, unless the socket is nonblocking (see fcntl (2)) in which case -1 is
returned with the external variable errno set to EWOULDBLOCK.

The select() call may be used to determine when more data arrives.

The flags parameter is formed by ORing one or more of the following:
MSG_OOB Read any "out-of-band" data present on the socket rather

than the regular "in-band" data.

MSG_PEEK "Peek" at the data present on the socket; the data is returned,
but not consumed, so that a subsequent receive operation
will see the same data.

The recvmsg() call uses a msghdr structure to minimize the number of
directly supplied parameters. This structure is defined in <sys/socket.h>
and includes the following members:

caddr_t msg_name; /* optional address */
int msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter/gather array */
int msg_iovlen; /* # elements in msg_iov */
caddr_t msg_accrights; /* access rights sent/received */
int msg_accrightslen;

388 SunOS 5.8 Last modified 8 Nov 1999

Sockets Library Functions recv(3SOCKET)

Here msg_nameand msg_namelen specify the destination address if the socket
is unconnected; msg_namemay be given as a NULL pointer if no names are
desired or required. The msg_iov and msg_iovlen describe the scatter-gather
locations, as described in read (2) . A buffer to receive any access rights sent
along with the message is specified in msg_accrights , which has length
msg_accrightslen .

RETURN VALUES These calls return the number of bytes received, or -1 if an error occurred.

ERRORS The calls fail if:
EBADF s is an invalid file descriptor.

EINTR The operation was interrupted by delivery of
a signal before any data was available to be
received.

EIO An I/O error occurred while reading from or
writing to the file system.

ENOMEM There was insufficient user memory available for
the operation to complete.

ENOSR There were insufficient STREAMS resources
available for the operation to complete.

ENOTSOCK s is not a socket.

ESTALE A stale NFS file handle exists.

EWOULDBLOCK The socket is marked non-blocking and the
requested operation would block.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO fcntl (2) , ioctl (2) , read (2) , connect (3SOCKET) , getsockopt (3SOCKET)
, send (3SOCKET) , socket (3SOCKET) , attributes (5) , socket (3HEAD)

Last modified 8 Nov 1999 SunOS 5.8 389

recv(3XNET) X/Open Networking Services Library Functions

NAME recv – receive a message from a connected socket

SYNOPSIS cc [flag ...] file ... −lxnet [library ...]
#include <sys/socket.h>

ssize_t recv (int socket, void *buffer, size_t length, int flags);

DESCRIPTION The recv() function receives a message from a connection-mode or
connectionless-mode socket. It is normally used with connected sockets because
it does not permit the application to retrieve the source address of received data.
The function takes the following arguments:
socket Specifies the socket file descriptor.

buffer Points to a buffer where the message should be stored.

length Specifies the length in bytes of the buffer pointed to by
the buffer argument.

flags Specifies the type of message reception. Values of this
argument are formed by logically OR’ing zero or more of
the following values:

MSG_PEEK Peeks at an incoming message.
The data is treated as unread
and the next recv() or similar
function will still return this
data.

MSG_OOB Requests out-of-band data. The
significance and semantics
of out-of-band data are
protocol-specific.

MSG_WAITALL Requests that the function
block until the full amount
of data requested can be
returned. The function may
return a smaller amount of
data if a signal is caught, if
the connection is terminated,
if MSG_PEEK was specified,
or if an error is pending for
the socket.

The recv() function returns the length of the message written to the buffer
pointed to by the buffer argument. For message-based sockets such as
SOCK_DGRAM and SOCK_SEQPACKET, the entire message must be read in

390 SunOS 5.8 Last modified 8 May 1998

X/Open Networking Services Library Functions recv(3XNET)

a single operation. If a message is too long to fit in the supplied buffer, and
MSG_PEEK is not set in the flags argument, the excess bytes are discarded. For
stream-based sockets such as SOCK_STREAM, message boundaries are ignored.
In this case, data is returned to the user as soon as it becomes available, and
no data is discarded.

If the MSG_WAITALL flag is not set, data will be returned only up to the end
of the first message.

If no messages are available at the socket and O_NONBLOCK is not set on the
socket’s file descriptor, recv() blocks until a message arrives. If no messages
are available at the socket and O_NONBLOCK is set on the socket’s file
descriptor, recv() fails and sets errno to EAGAINor EWOULDBLOCK.

USAGE The recv() function is identical to recvfrom (3XNET) with a zero address_len
argument, and to read () if no flags are used.

The select (3C) and poll (2) functions can be used to determine when data
is available to be received.

RETURN VALUES Upon successful completion, recv() returns the length of the message in
bytes. If no messages are available to be received and the peer has performed
an orderly shutdown, recv() returns 0. Otherwise, –1 is returned and errno
is set to indicate the error.

ERRORS The recv() function will fail if:
EAGAIN
EWOULDBLOCK The socket’s file descriptor is marked

O_NONBLOCK and no data is waiting to be
received; or MSG_OOB is set and no out-of-band
data is available and either the socket’s file
descriptor is marked O_NONBLOCK or the
socket does not support blocking to await
out-of-band data.

EBADF The socket argument is not a valid file descriptor.

ECONNRESET A connection was forcibly closed by a peer.

EFAULT The buffer parameter can not be accessed or
written.

EINTR The recv() function was interrupted by a signal
that was caught, before any data was available.

EINVAL The MSG_OOB flag is set and no out-of-band
data is available.

Last modified 8 May 1998 SunOS 5.8 391

recv(3XNET) X/Open Networking Services Library Functions

ENOTCONN A receive is attempted on a connection-mode
socket that is not connected.

ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The specified flags are not supported for this
socket type or protocol.

ETIMEDOUT The connection timed out during connection
establishment, or due to a transmission timeout
on active connection.

The recv() function may fail if:
EIO An I/O error occurred while reading from or

writing to the file system.

ENOBUFS Insufficient resources were available in the system
to perform the operation.

ENOMEM Insufficient memory was available to fulfill the
request.

ENOSR There were insufficient STREAMS resources
available for the operation to complete.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO poll (2), recvmsg (3XNET), recvfrom (3XNET), select (3C), send (3XNET),
sendmsg (3XNET), sendto (3XNET), shutdown (3XNET), socket (3XNET),
attributes (5)

392 SunOS 5.8 Last modified 8 May 1998

X/Open Networking Services Library Functions recvfrom(3XNET)

NAME recvfrom – receive a message from a socket

SYNOPSIS cc [flag ...] file ... −lxnet [library ...]
#include <sys/socket.h>

ssize_t recvfrom (int socket, void *buffer, size_t length, int flags, struct sockaddr *address,
socklen_t *address_len);

DESCRIPTION The recvfrom() function receives a message from a connection-mode or
connectionless-mode socket. It is normally used with connectionless-mode
sockets because it permits the application to retrieve the source address of
received data.

The function takes the following arguments:
socket Specifies the socket file descriptor.

buffer Points to the buffer where the message should be stored.

length Specifies the length in bytes of the buffer pointed to by
the buffer argument.

flags Specifies the type of message reception. Values of this
argument are formed by logically OR’ing zero or more of
the following values:

MSG_PEEK Peeks at an incoming message.
The data is treated as unread
and the next recvfrom()
or similar function will still
return this data.

MSG_OOB Requests out-of-band data. The
significance and semantics
of out-of-band data are
protocol-specific.

MSG_WAITALL Requests that the function
block until the full amount
of data requested can be
returned. The function may
return a smaller amount of
data if a signal is caught, if
the connection is terminated,
if MSG_PEEK was specified,
or if an error is pending for
the socket.

Last modified 8 May 1998 SunOS 5.8 393

recvfrom(3XNET) X/Open Networking Services Library Functions

address A null pointer, or points to a sockaddr structure in which
the sending address is to be stored. The length and format of
the address depend on the address family of the socket.

address_len Specifies the length of the sockaddr structure pointed to
by the address argument.

The recvfrom() function returns the length of the message written to the
buffer pointed to by the buffer argument. For message-based sockets such as
SOCK_DGRAM and SOCK_SEQPACKET, the entire message must be read in
a single operation. If a message is too long to fit in the supplied buffer, and
MSG_PEEK is not set in the flags argument, the excess bytes are discarded. For
stream-based sockets such as SOCK_STREAM, message boundaries are ignored.
In this case, data is returned to the user as soon as it becomes available, and
no data is discarded.

If the MSG_WAITALL flag is not set, data will be returned only up to the end
of the first message.

Not all protocols provide the source address for messages. If the address
argument is not a null pointer and the protocol provides the source address of
messages, the source address of the received message is stored in the sockaddr
structure pointed to by the address argument, and the length of this address is
stored in the object pointed to by the address_len argument.

If the actual length of the address is greater than the length of the supplied
sockaddr structure, the stored address will be truncated.

If the address argument is not a null pointer and the protocol does not provide
the source address of messages, the the value stored in the object pointed to by
address is unspecified.

If no messages are available at the socket and O_NONBLOCK is not set on the
socket’s file descriptor, recvfrom() blocks until a message arrives. If no
messages are available at the socket and O_NONBLOCK is set on the socket’s
file descriptor, recvfrom() fails and sets errno to EAGAINor EWOULDBLOCK.

USAGE The select (3C) and poll (2) functions can be used to determine when data
is available to be received.

RETURN VALUES Upon successful completion, recvfrom() returns the length of the message in
bytes. If no messages are available to be received and the peer has performed an
orderly shutdown, recvfrom() returns 0. Otherwise the function returns −1
and sets errno to indicate the error.

ERRORS The recvfrom() function will fail if:
EAGAIN

394 SunOS 5.8 Last modified 8 May 1998

X/Open Networking Services Library Functions recvfrom(3XNET)

EWOULDBLOCK The socket’s file descriptor is marked
O_NONBLOCK and no data is waiting to be
received; or MSG_OOB is set and no out-of-band
data is available and either the socket’s file
descriptor is marked O_NONBLOCK or the
socket does not support blocking to await
out-of-band data.

EBADF The socket argument is not a valid file descriptor.

ECONNRESET A connection was forcibly closed by a peer.

EFAULT The buffer, address or address_len parameter can
not be accessed or written.

EINTR A signal interrupted recvfrom() before any
data was available.

EINVAL The MSG_OOB flag is set and no out-of-band
data is available.

ENOTCONN A receive is attempted on a connection-mode
socket that is not connected.

ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The specified flags are not supported for this
socket type.

ETIMEDOUT The connection timed out during connection
establishment, or due to a transmission timeout
on active connection.

The recvfrom() function may fail if:
EIO An I/O error occurred while reading from or

writing to the file system.

ENOBUFS Insufficient resources were available in the system
to perform the operation.

ENOMEM Insufficient memory was available to fulfill the
request.

ENOSR There were insufficient STREAMS resources
available for the operation to complete.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified 8 May 1998 SunOS 5.8 395

recvfrom(3XNET) X/Open Networking Services Library Functions

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO poll (2), recv (3XNET), recvmsg (3XNET), select (3C) send (3XNET),
sendmsg (3XNET), sendto (3XNET), shutdown (3XNET), socket (3XNET),
attributes (5)

396 SunOS 5.8 Last modified 8 May 1998

X/Open Networking Services Library Functions recvmsg(3XNET)

NAME recvmsg – receive a message from a socket

SYNOPSIS cc [flag ...] file ... −lxnet [library ...]
#include <sys/socket.h>

ssize_t recvmsg (int socket, struct msghdr *message, int flags);

DESCRIPTION The recvmsg() function receives a message from a connection-mode or
connectionless-mode socket. It is normally used with connectionless-mode
sockets because it permits the application to retrieve the source address of
received data.

The function takes the following arguments:
socket Specifies the socket file descriptor.

message Points to a msghdr structure, containing both the buffer to
store the source address and the buffers for the incoming
message. The length and format of the address depend on
the address family of the socket. The msg_flags member
is ignored on input, but may contain meaningful values
on output.

flags Specifies the type of message reception. Values of this
argument are formed by logically OR’ing zero or more of
the following values:

MSG_OOB Requests out-of-band data. The
significance and semantics
of out-of-band data are
protocol-specific.

MSG_PEEK Peeks at the incoming message.

MSG_WAITALL Requests that the function
block until the full amount
of data requested can be
returned. The function may
return a smaller amount of
data if a signal is caught, if
the connection is terminated,
if MSG_PEEKwas specified,
or if an error is pending for
the socket.

The recvmsg() function receives messages from unconnected or connected
sockets and returns the length of the message.

Last modified 8 May 1998 SunOS 5.8 397

recvmsg(3XNET) X/Open Networking Services Library Functions

The recvmsg() function returns the total length of the message. For
message-based sockets such as SOCK_DGRAMand SOCK_SEQPACKET, the entire
message must be read in a single operation. If a message is too long to fit in the
supplied buffers, and MSG_PEEKis not set in the flags argument, the excess bytes
are discarded, and MSG_TRUNCis set in the msg_flags member of the msghdr
structure. For stream-based sockets such as SOCK_STREAM, message boundaries
are ignored. In this case, data is returned to the user as soon as it becomes
available, and no data is discarded.

If the MSG_WAITALLflag is not set, data will be returned only up to the end
of the first message.

If no messages are available at the socket, and O_NONBLOCKis not set on the
socket’s file descriptor, recvmsg() blocks until a message arrives. If no
messages are available at the socket and O_NONBLOCKis set on the socket’s
file descriptor, the recvmsg() function fails and sets errno to EAGAINor
EWOULDBLOCK.

In the msghdr structure, the msg_nameand msg_namelen members specify
the source address if the socket is unconnected. If the socket is connected, the
msg_nameand msg_namelen members are ignored. The msg_namemember
may be a null pointer if no names are desired or required. The msg_iov and
msg_iovlen fields are used to specify where the received data will be stored.
msg_iov points to an array of iovec structures; msg_iovlen must be set to the
dimension of this array. In each iovec structure, the iov_base field specifies
a storage area and the iov_len field gives its size in bytes. Each storage area
indicated by msg_iov is filled with received data in turn until all of the received
data is stored or all of the areas have been filled.

On successful completion, the msg_flags member of the message header is
the bitwise-inclusive OR of all of the following flags that indicate conditions
detected for the received message:
MSG_EOR End of record was received (if supported by

the protocol).

MSG_OOB Out-of-band data was received.

MSG_TRUNC Normal data was truncated.

MSG_CTRUNC Control data was truncated.

USAGE The select (3C) and poll (2) functions can be used to determine when data
is available to be received.

RETURN VALUES Upon successful completion, recvmsg() returns the length of the message in
bytes. If no messages are available to be received and the peer has performed an

398 SunOS 5.8 Last modified 8 May 1998

X/Open Networking Services Library Functions recvmsg(3XNET)

orderly shutdown, recvmsg() returns 0. Otherwise, −1 is returned and errno
is set to indicate the error.

ERRORS The recvmsg() function will fail if:
EAGAIN
EWOULDBLOCK The socket’s file descriptor is marked

O_NONBLOCKand no data is waiting to be
received; or MSG_OOBis set and no out-of-band
data is available and either the socket’s file
descriptor is marked O_NONBLOCKor the socket
does not support blocking to await out-of-band
data.

EBADF The socket argument is not a valid open file
descriptor.

ECONNRESET A connection was forcibly closed by a peer.

EFAULT The message parameter, or storage pointed to by
the msg_name, msg_control or msg_iov fields of the
message parameter, or storage pointed to by the
iovec structures pointed to by the msg_iov field
can not be accessed or written.

EINTR This function was interrupted by a signal before
any data was available.

EINVAL The sum of the iov_len values overflows an
ssize_t . or the MSG_OOB flag is set and no
out-of-band data is available.

EMSGSIZE The msg_iovlen member of the msghdr
structure pointed to by message is less than or
equal to 0, or is greater than IOV_MAX.

ENOTCONN A receive is attempted on a connection-mode
socket that is not connected.

ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The specified flags are not supported for this
socket type.

ETIMEDOUT The connection timed out during connection
establishment, or due to a transmission timeout
on active connection.

The recvmsg() function may fail if:

Last modified 8 May 1998 SunOS 5.8 399

recvmsg(3XNET) X/Open Networking Services Library Functions

EIO An IO error occurred while reading from or
writing to the file system.

ENOBUFS Insufficient resources were available in the system
to perform the operation.

ENOMEM Insufficient memory was available to fulfill the
request.

ENOSR There were insufficient STREAMS resources
available for the operation to complete.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO poll (2), recv (3XNET), recvfrom (3XNET), select (3C), send (3XNET),
sendmsg (3XNET), sendto (3XNET), shutdown (3XNET), socket (3XNET),
attributes (5)

400 SunOS 5.8 Last modified 8 May 1998

Resolver Library Functions resolver(3RESOLV)

NAME resolver, res_init, res_mkquery, res_mkupdate, res_mkupdrec, res_query,
res_search, res_send, res_update, dn_comp, dn_expand – resolver routines

SYNOPSIS cc [flag ...] file ... −lresolv −lsocket −lnsl [library ...]
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>
int res_init (void);

int res_mkquery (int op, const char *dname, int class, int type, const char *data, int datalen,
struct rrec *newrr, uchar_t *buf, int buflen);

int res_mkupdate (ns_updrec **rrecp_in, uchar *buf, int length);

ns_updrec *res_mkupdrec (int section, const char *dname, uint_t class, uint_t type, uint_t
ttl);

int res_query (const char *dname, int class, int type, uchar_t *answer, int anslen);

int res_search (const char *dname, int class, int type, uchar_t *answer, int anslen);

int res_send (uchar_t *msg, int msglen, uchar_t *answer, int anslen);

int res_update (ns_updrec *rrecp_in);

int dn_comp(const char *exp_dn, uchar_t *comp_dn, int length, uchar_t **dnptrs, uchar_t
**lastdnptr);

int dn_expand (const uchar_t *msg, const uchar_t *eomorig, uchar_t *comp_dn, char exp_dn,
int length);

DESCRIPTION These routines are used for making, sending, and interpreting query and
reply messages passed to and from Internet domain name servers. The
res_update() and res_mkupdrec() routines are used to dynamically
update the name server with resource records.

The global structure _res holds options and state information. Option values
can be set to affect the collective behavior of groups of resolver library routines.
However, most resolver library routines use reasonable defaults so that the
explicit enabling of an option is rarely required.

The library manual page entry for the resolver library includes public domain
routines beyond those described here. See libresolv (3LIB) . Those function
names that are exported but are not explained here are lower-level routines
called by these routines. Their direct use is discouraged. If you do make direct
use of unsupported routines, you do so at considerable added risk and with no
expectation of documentation or other support beyond that available publicly.

Last modified 23 Feb 1998 SunOS 5.8 401

resolver(3RESOLV) Resolver Library Functions

Options for the resolver library are stored as a single bit mask containing the
bitwise- OR sum of the options enabled. The options stored in _res.options
are those defined in <resolv.h> and as follows. The field _res.options
is a member of the _res structure.
RES_INIT True if the initial name server address and

default domain name are initialized, that is,
res_init() has been called.

RES_DEBUG Print debugging messages.

RES_AAONLY Accept authoritative answers only. With this
option, res_send() will continue until it
finds an authoritative answer or finds an error.
Currently this option is not implemented.

RES_USEVC Use TCP connections for queries instead of UDP
datagrams.

RES_PRIMARY Query primary server only. This option is not
implemented.

RES_IGNTC Unused currently. Ignore truncation errors; that
is, do not retry with TCP.

RES_RECURSE Set the recursion-desired bit in queries. This is
the default. res_send() does not do iterative
queries and expects the name server to handle
recursion.

RES_DEFNAMES If set, res_search() appends the default
domain name to single-component names (names
that do not contain a dot). This is useful only in
programs that regularly do many queries. UDP
should be the normal mode used.

RES_DNSRCH Enables searching up through the current domain
tree. If this option is set, res_search() searches
for host names in the current domain and in
parent domains. This is used by the standard
host lookup routine gethostbyname (3NSL) .
This option is enabled by default.

RES_NOALIASES This option turns off the user level aliasing
feature controlled by the HOSTALIASES
environment variable. Network daemons should
set this option.

402 SunOS 5.8 Last modified 23 Feb 1998

Resolver Library Functions resolver(3RESOLV)

res_init If the system initialization file resolv.conf exists, res_init() reads it to get
the default domain name, the search list, and the Internet address of the local
name server or servers. See resolv.conf (4) . If no server is configured by
the local resolv.conf file, res_init tries to obtain name resolution services
from the host on which it is running.

The res_init() function also sets the RES_INIT field of the _res global
structure so that other service routines (res_search()) can determine for
certain whether it needs to be called first before other processing begins.

In the absence of a resolv.conf configuration file, the current domain is
either set to the value of the environmental variable LOCALDOMAIN,derived
from the domain name or derived from the host name. See domainname (1M)
. The current domain name as defined in the system initialization file
resolv.conf can be overridden by the environment variable LOCALDOMAIN
. This environment variable may contain several blank-separated tokens if
you wish to override the search list on a per-process basis. This is similar to
the search command in the configuration file. Another environment variable
(RES_OPTIONS) can be set to override certain internal resolver options.
Otherwise, these options are set by changing fields in the global _res structure
or they are inherited from the configuration file’s options command. The syntax
of the RES_OPTIONSenvironment variable is explained in resolv.conf (4) .

The initializations performed by res_init() can be invoked explicitly with
this function. However, they are normally performed automatically as a result of
a call to one of the other resolver routines.

res_search res_search() formulates and sends a normal query (QUERY) message, and
stores the response in a buffer supplied by the caller.

The parameters class and type define the class and type of query. See
<arpa/nameser.h> . The response is returned in the user-supplied buffer
answer . res_search returns the length of answer in anslen . Like the other
resolver routines, res_search() calls res_init() if the RES_INIT flag
is not enabled.

The res_search() function acts in a similar manner as res_query() ,
except that it can implement the default and search rules controlled by the
RES_DEFNAMESand RES_DNSRCHoptions.

The parameter dname is the domain name. However, if dname consists of a
single-component name and the RES_DEFNAMESflag is enabled (the default),
dname is appended with the current domain name.

If the RES_DNSRCHflag is enabled, res_search() searches up the current
domain tree until an answer has been retrieved or an unrecoverable error has
been encountered. res_search() returns the first successful reply.

Last modified 23 Feb 1998 SunOS 5.8 403

resolver(3RESOLV) Resolver Library Functions

res_mkquery The res_mkquery() function constructs a standard query message and
places it in buf .

res_mkquery() returns the size of the query or -1 if the query is larger than
buflen . The op parameter is usually QUERY, but can be any of the query types
defined in <arpa/nameser.h> .

The parameter dname is the domain name for the query.

The parameters class and type define the class and type of query (see
<arpa/nameser.h>). The parameter data is the resource record; datalen is the
length of the record.

newrr is unused and should be specified as a null pointer (0).

res_query The res_query function provides an interface to most of the server query
mechanism. It constructs a query, sends it to the local server, awaits a response,
and makes preliminary checks on the reply. The query requests information
of the specified type and class for the specified fully-qualified domain name
dname . The reply message is left in the answer buffer with length anslen supplied
by the caller. The res_mkquery and res_send routines described elsewhere in this
section are lower-level routines that res_query calls.

res_send res_send() sends a pre-formatted query to name servers and returns an
answer. It calls res_init() if RES_INIT is not set, send the query to the local
name server, and handle timeouts and retries. msg is the query sent; msglen is its
length. answer is the response returned. The length of the response is stored in
anslen . res_send() returns the length of the response or -1 if there were errors.

dn_expand dn_expand() expands the compressed domain name given by the pointer
comp_dn into a full domain name. Expanded names are converted to upper
case. The compressed name is contained in a query or reply message; msg is a
pointer to the beginning of that message. Expanded names are stored in the
buffer referenced by the exp_dn buffer of size length , which should be large
enough to hold the expanded result.

dn_expand() returns the size of the compressed name, or -1 if there was an
error.

dn_comp dn_comp() compresses the domain name exp_dn and stores it in comp_dn .
dn_comp() returns the size of the compressed name, or -1 if there were errors.
length is the size of the array pointed to by comp_dn . dnptrs is a pointer to the
head of the list of pointers to previously compressed names in the current
message. The first pointer must point to the beginning of the message. The list
ends with NULL . The limit to the array is specified by lastdnptr .

A side effect of calling dn_comp() is to update the list of pointers for labels
inserted into the message by dn_comp() as the name is compressed. However,

404 SunOS 5.8 Last modified 23 Feb 1998

Resolver Library Functions resolver(3RESOLV)

if lastdnptr is NULL , dn_comp() does not update the list of labels. If dnptrs is
NULL , names are not compressed.

res_mkupdrec res_mkupdrec() takes the elements of a resource record as its arguments, for
instance, section , domainname , class , type , and ttl , and returns a pointer to a
linked list ns_updrec . It returns NULLupon failure.

res_update res_update() takes a linked list of resource records ns_updrec as its only
argument and separates the records into groups such that all records in a group
will belong to a single name server. It creates a dynamic update packet for each
zone and sends it to the name server and awaits an answer. Upon success,
res_update() returns the number of zones updated. It returns <0 upon error.

res_mkupdate res_mkupdate() creates update packets by running through the elements
of the ns_updrec link list. It is called by res_update() to create packets
for res_send() to send to the name server. res_mkupdate() returns the
actual size of the packet, or
-1 Error in reading a word or number in the rdata portion for update

packets.

-2 The length of the packet passed is insufficient.

-3 The zone section is not the first section in the linked list, or the section
order has a problem.

-4 A number overflow.

-5 Unknown operations or no records.

If an error occurs it could leave the zones being updated in an inconsistent state.
For example, a record might be successfully added to the forward lookup zone
but the corresponding PTR record might have failed to update in the reverse
lookup tables.

FILES /etc/resolv.conf

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO domainname (1M) , in.named (1M) , nstest (1M) , gethostbyname (3NSL) ,
libresolv (3LIB) , resolv.conf (4) , attributes (5)

Lottor, M., Domain Administrators Operators Guide , RFC 1033, SRI International,
Menlo Park, Calif., November 1987.

Mockapetris, Paul, Domain Names - Concepts and Facilities , RFC 1034, Network
Information Center, SRI International, Menlo Park, Calif., November 1987.

Last modified 23 Feb 1998 SunOS 5.8 405

resolver(3RESOLV) Resolver Library Functions

Mockapetris, Paul, Domain Names - Implementation and Specification , RFC
1035, Network Information Center, SRI International, Menlo Park, Calif.,
November 1987.

Partridge, Craig, Mail Routing and the Domain System , RFC 974, Network
Information Center, SRI International, Menlo Park, Calif., January 1986. Stahl,
M., Domain Administrators Guide , RFC 1032, SRI International, Menlo Park,
Calif., November 1987.

Vixie, Paul;Dunlap, Keven J., Karels, Michael J., Name Server Operations Guide
for BIND (public domain), Internet Software Consortium, 1996.

NOTES These interfaces are unsafe in multithreaded applications. Unsafe interfaces
should be called only from the main thread.

406 SunOS 5.8 Last modified 23 Feb 1998

Sockets Library Functions rexec(3SOCKET)

NAME rexec, rexec_af – return stream to a remote command

SYNOPSIS cc [flag ...] file ... −lsocket −lnsl [library ...]
int rexec (char **ahost, unsigned short inport, const char *user, const char *passwd, const
char *cmd, int *fd2p);

int rexec_af (char **ahost, unsigned short inport, const char *user, const char *passwd,
const char *cmd, int *fd2p, int af);

DESCRIPTION rexec() and rexec_af() look up the hostahost using
getipnodebyname (3SOCKET) , returning -1 if the host does not exist.
Otherwise ahost is set to the standard name of the host. If a username and
password are both specified, then these are used to authenticate to the foreign
host; otherwise the user’s .netrc file in his home directory is searched for
appropriate information. If all this fails, the user is prompted for the information.

The difference between rexec() and rexec_af() is that while rexec()
always returns a socket of the AF_INET address family, with rexec_af() the
application can choose which type of address family the socket returned should
be. rexec_af() supports both AF_INET and AF_INET6 address families.

The port inport specifies which well-known DARPA Internet port to use for the
connection. The protocol for connection is described in detail in in.rexecd (1M)
.

If the call succeeds, a socket of type SOCK_STREAMis returned to the caller, and
given to the remote command as its standard input and standard output. If fd2p
is non-zero, then an auxiliary channel to a control process will be setup, and a file
descriptor for it will be placed in *fd2p . The control process will return diagnostic
output (file descriptor 2, the standard error) from the command on this channel,
and will also accept bytes on this channel as signal numbers, to be forwarded
to the process group of the command. If fd2p is 0, then the standard error (file
descriptor 2 of the remote command) will be made the same as its standard
output and no provision is made for sending arbitrary signals to the remote
process, although you may be able to get its attention by using out-of-band data.

RETURN VALUES If rexec() succeeds, a file descriptor number, which is a socket of type
SOCK_STREAMand address family AF_INET is returned by the routine. *ahost is
set to the standard name of the host, and if fd2p is not NULL , a file descriptor
number is placed in *fd2p which represents the command’s standard error stream.

If rexec_af() succeeds, the routine returns a filed descriptor number, which is
a socket of type SOCK_STREAMand of address family type AF_INET or AF_INET
, as determined by the value of the af parameter that the caller passes in.

If either rexec() or rexec_af() fails, -1 is returned.

Last modified 21 Jun 1999 SunOS 5.8 407

rexec(3SOCKET) Sockets Library Functions

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO in.rexecd (1M) , gethostbyname (3NSL) , getipnodebyname (3SOCKET) ,
getservbyname (3SOCKET) , socket (3SOCKET) , attributes (5)

NOTES There is no way to specify options to the socket() call that rexec() or
rexec_af() makes.

This interface is unsafe in multithreaded applications. Unsafe interfaces should
be called only from the main thread.

408 SunOS 5.8 Last modified 21 Jun 1999

Networking Services Library Functions rpc(3NSL)

NAME rpc – library routines for remote procedure calls

SYNOPSIS cc [flag ...] file ... −lnsl [library ...]

#include <rpc/rpc.h>

#include <netconfig.h>

DESCRIPTION These routines allow C language programs to make procedure calls on other
machines across a network. First, the client sends a request to the server. On
receipt of the request, the server calls a dispatch routine to perform the requested
service, and then sends back a reply.

All RPC routines require the header <rpc/rpc.h> . Routines that take
a netconfig structure also require that <netconfig.h> be included.
Applications using RPC and XDR routines should be linked with the libnsl
library.

Multithread
Considerations

In the case of multithreaded applications, the _REENTRANTflag must be
defined on the command line at compilation time (−D_REENTRANT).
Defining this flag enables a thread-specific version of rpc_createerr . See
rpc_clnt_create (3NSL).

When used in multithreaded applications, client-side routines are
MT-Safe. CLIENT handles can be shared between threads; however, in this
implementation, requests by different threads are serialized (that is, the
first request will receive its results before the second request is sent). See
rpc_clnt_create (3NSL).

When used in multithreaded applications, server-side routines are usually
Unsafe. In this implementation the service transport handle, SVCXPRT
contains a single data area for decoding arguments and encoding results.
See rpc_svc_create (3NSL). Therefore, this structure cannot be freely
shared between threads that call functions that do this. Routines that are
affected by this restriction are marked as unsafe for MT applications. See
rpc_svc_calls (3NSL).

Nettyp Some of the high-level RPC interface routines take a nettype string as one of the
parameters (for example, clnt_create() , svc_create() , rpc_reg() ,
rpc_call()). This string defines a class of transports which can be used
for a particular application.

nettype can be one of the following:
netpath Choose from the transports which have been indicated by

their token names in the NETPATHenvironment variable. If
NETPATHis unset or NULL, it defaults to visible . netpath
is the default nettype.

Last modified 20 Feb 1998 SunOS 5.8 409

rpc(3NSL) Networking Services Library Functions

visible Choose the transports which have the visible flag (v) set in
the /etc/netconfig file.

circuit_v This is same as visible except that it chooses only the
connection oriented transports (semantics tpi_cots or
tpi_cots_ord) from the entries in the /etc/netconfig
file.

datagram_v This is same as visible except that it chooses only the
connectionless datagram transports (semantics tpi_clts)
from the entries in the /etc/netconfig file.

circuit_n This is same as netpath except that it chooses only
the connection oriented datagram transports (semantics
tpi_cots or tpi_cots_ord).

datagram_n This is same as netpath except that it chooses only the
connectionless datagram transports (semantics tpi_clts).

udp This refers to Internet UDP.

tcp This refers to Internet TCP.

If nettype is NULL, it defaults to netpath . The transports are tried in left to right
order in the NETPATHvariable or in top to down order in the /etc/netconfig
file.

Derived Types In a 64-bit environment, the derived types are defined as follows:

typedef uint32_t rpcprog_t;

typedef uint32_t rpcvers_t;

typedef uint32_t rpcproc_t;

typedef uint32_t rpcprot_t;

typedef uint32_t rpcport_t;

typedef int32_t rpc_inline_t;

In a 32-bit environment, the derived types are defined as follows:

typedef unsigned long rpcprog_t;

typedef unsigned long rpcvers_t;

typedef unsigned long rpcproc_t;

typedef unsigned long rpcprot_t;

typedef unsigned long rpcport_t;

typedef long rpc_inline_t;

410 SunOS 5.8 Last modified 20 Feb 1998

Networking Services Library Functions rpc(3NSL)

Data Structures Some of the data structures used by the RPC package are shown below.

The AUTHStructure
union des_block {

struct {
u_int32 high;
u_int32 low;
} key;

char c[8];
};
typedef union des_block des_block;
extern bool_t xdr_des_block();
/*

* Authentication info. Opaque to client.
*/
struct opaque_auth {

enum_t oa_flavor; /* flavor of auth */
caddr_t oa_base; /* address of more auth stuff */
uint_t oa_length; /* not to exceed MAX_AUTH_BYTES */

};
/*

* Auth handle, interface to client side authenticators.
*/

typedef struct {
struct opaque_auth ah_cred;
struct opaque_auth ah_verf;
union des_block ah_key;
struct auth_ops {

void(*ah_nextverf)();
int(*ah_marshal)(); /* nextverf & serialize */
int(*ah_validate)(); /* validate verifier */
int(*ah_refresh)(); /* refresh credentials */
void(*ah_destroy)(); /* destroy this structure */

} *ah_ops;
caddr_t ah_private;

} AUTH;

The CLIENT Structure /*
* Client rpc handle.
* Created by individual implementations.
* Client is responsible for initializing auth.
*/

typedef struct {
AUTH *cl_auth; /* authenticator */
struct clnt_ops {

enum clnt_stat (*cl_call)(); /* call remote procedure */
void (*cl_abort)(); /* abort a call */
void (*cl_geterr)(); /* get specific error code */
bool_t (*cl_freeres)(); /* frees results */
void (*cl_destroy)(); /* destroy this structure */
bool_t (*cl_control)(); /* the ioctl() of rpc */
int (*cl_settimers)(); /* set rpc level timers */

} *cl_ops;

Last modified 20 Feb 1998 SunOS 5.8 411

rpc(3NSL) Networking Services Library Functions

caddr_t cl_private; /* private stuff */
char *cl_netid; /* network identifier */
char *cl_tp; /* device name */

} CLIENT;

The SVCXPRT

Structure
enum xprt_stat {
XPRT_DIED,
XPRT_MOREREQS,
XPRT_IDLE
};
/*

* Server side transport handle
*/

typedef struct {
int xp_fd; /* file descriptor for the
ushort_t xp_port; /* obsolete */
struct xp_ops {

bool_t (*xp_recv)(); /* receive incoming requests */
enum xprt_stat (*xp_stat)(); /* get transport status */
bool_t (*xp_getargs)(); /* get arguments */
bool_t (*xp_reply)(); /* send reply */
bool_t (*xp_freeargs)(); /* free mem allocated

for args */
void (*xp_destroy)(); /* destroy this struct */

} *xp_ops;
int xp_addrlen; /* length of remote addr.

Obsolete */
char *xp_tp; /* transport provider device

name */
char *xp_netid; /* network identifier */
struct netbuf xp_ltaddr; /* local transport address */
struct netbuf xp_rtaddr; /* remote transport address */
char xp_raddr[16]; /* remote address. Obsolete */
struct opaque_auth xp_verf; /* raw response verifier */
caddr_t xp_p1; /* private: for use

by svc ops */
caddr_t xp_p2; /* private: for use

by svc ops */
caddr_t xp_p3; /* private: for use

by svc lib */
int xp_type /* transport type */

} SVCXPRT;

The svc_reg

Structure struct svc_req {
rpcprog_t rq_prog; /* service program number */
rpcvers_t rq_vers; /* service protocol version */
rpcproc_t rq_proc; /* the desired procedure */
struct opaque_auth rq_cred; /* raw creds from the wire */
caddr_t rq_clntcred; /* read only cooked cred */
SVCXPRT *rq_xprt; /* associated transport */

412 SunOS 5.8 Last modified 20 Feb 1998

Networking Services Library Functions rpc(3NSL)

};

The XDRStructure /*
* XDR operations.
* XDR_ENCODE causes the type to be encoded into the stream.
* XDR_DECODE causes the type to be extracted from the stream.
* XDR_FREE can be used to release the space allocated by an XDR_DECODE
* request.
*/

enum xdr_op {
XDR_ENCODE=0,
XDR_DECODE=1,
XDR_FREE=2

};
/*

* This is the number of bytes per unit of external data.
*/

#define BYTES_PER_XDR_UNIT (4)
#define RNDUP(x) ((((x) + BYTES_PER_XDR_UNIT - 1) /

BYTES_PER_XDR_UNIT) \ * BYTES_PER_XDR_UNIT)
/*

* A xdrproc_t exists for each data type which is to be encoded or
* decoded. The second argument to the xdrproc_t is a pointer to
* an opaque pointer. The opaque pointer generally points to a
* structure of the data type to be decoded. If this points to 0,
* then the type routines should allocate dynamic storage of the
* appropriate size and return it.
* bool_t (*xdrproc_t)(XDR *, caddr_t *);
*/

typedef bool_t (*xdrproc_t)();
/*

* The XDR handle.
* Contains operation which is being applied to the stream,
* an operations vector for the particular implementation
*/

typedef struct {

enum xdr_op x_op; /* operation; fast additional param */
struct xdr_ops {

bool_t (*x_getlong)(); /* get long from underlying stream */
bool_t (*x_putlong)(); /* put long to underlying stream */
bool_t (*x_getbytes)(); /* get bytes from underlying stream */
bool_t (*x_putbytes)(); /* put bytes to underlying stream */
uint_t (*x_getpostn)(); /* returns bytes off from beginning */
bool_t (*x_setpostn)(); /* reposition the stream */
rpc_inline_t *(*x_inline)(); /* buf quick ptr to buffered data */
void (*x_destroy)(); /* free privates of this xdr_stream */
bool_t (*x_control)(); /* changed/retrieve client object info*/
bool_t (*x_getint32)(); /* get int from underlying stream */
bool_t (*x_putint32)(); /* put int to underlying stream */

} *x_ops;

Last modified 20 Feb 1998 SunOS 5.8 413

rpc(3NSL) Networking Services Library Functions

caddr_t x_public; /* users’ data */
caddr_t x_priv /* pointer to private data */
caddr_t x_base; /* private used for position info */
int x_handy; /* extra private word */
XDR;

Index to Routines The following table lists RPC routines and the manual reference pages on which
they are described:
RPC Routine Manual Reference Page

auth_destroy rpc_clnt_auth (3NSL)

authdes_create rpc_soc (3NSL)

authdes_getucred secure_rpc (3NSL)

authdes_seccreate secure_rpc (3NSL)

authkerb_getucred kerberos_rpc (3KRB)

authkerb_seccreate kerberos_rpc (3KRB)

authnone_create rpc_clnt_auth (3NSL)

authsys_create rpc_clnt_auth (3NSL)

authsys_create_default rpc_clnt_auth (3NSL)

authunix_create rpc_soc (3NSL)

authunix_create_default rpc_soc (3NSL)

callrpc rpc_soc (3NSL)

clnt_broadcast rpc_soc (3NSL)

clnt_call rpc_clnt_calls (3NSL)

clnt_control rpc_clnt_create (3NSL)

clnt_create rpc_clnt_create (3NSL)

clnt_destroy rpc_clnt_create (3NSL)

clnt_dg_create rpc_clnt_create (3NSL)

clnt_freeres rpc_clnt_calls (3NSL)

clnt_geterr rpc_clnt_calls (3NSL)

clnt_pcreateerror rpc_clnt_create (3NSL)

clnt_perrno rpc_clnt_calls (3NSL)

414 SunOS 5.8 Last modified 20 Feb 1998

Networking Services Library Functions rpc(3NSL)

clnt_perror rpc_clnt_calls (3NSL)

clnt_raw_create rpc_clnt_create (3NSL)

clnt_spcreateerror rpc_clnt_create (3NSL)

clnt_sperrno rpc_clnt_calls (3NSL)

clnt_sperror rpc_clnt_calls (3NSL)

clnt_tli_create rpc_clnt_create (3NSL)

clnt_tp_create rpc_clnt_create (3NSL)

clnt_udpcreate rpc_soc (3NSL)

clnt_vc_create rpc_clnt_create (3NSL)

clntraw_create rpc_soc (3NSL)

clnttcp_create rpc_soc (3NSL)

clntudp_bufcreate rpc_soc (3NSL)

get_myaddress rpc_soc (3NSL)

getnetname secure_rpc (3NSL)

host2netname secure_rpc (3NSL)

key_decryptsession secure_rpc (3NSL)

key_encryptsession secure_rpc (3NSL)

key_gendes secure_rpc (3NSL)

key_setsecret secure_rpc (3NSL)

netname2host secure_rpc (3NSL)

netname2user secure_rpc (3NSL)

pmap_getmaps rpc_soc (3NSL)

pmap_getport rpc_soc (3NSL)

pmap_rmtcall rpc_soc (3NSL)

pmap_set rpc_soc (3NSL)

pmap_unset rpc_soc (3NSL)

rac_drop rpc_rac (3RAC)

rac_poll rpc_rac (3RAC)

rac_recv rpc_rac (3RAC)

Last modified 20 Feb 1998 SunOS 5.8 415

rpc(3NSL) Networking Services Library Functions

rac_send rpc_rac (3RAC)

registerrpc rpc_soc (3NSL)

rpc_broadcast rpc_clnt_calls (3NSL)

rpc_broadcast_exp rpc_clnt_calls (3NSL)

rpc_call rpc_clnt_calls (3NSL)

rpc_reg rpc_svc_calls (3NSL)

svc_create rpc_svc_create (3NSL)

svc_destroy rpc_svc_create (3NSL)

svc_dg_create rpc_svc_create (3NSL)

svc_dg_enablecache rpc_svc_calls (3NSL)

svc_fd_create rpc_svc_create (3NSL)

svc_fds rpc_soc (3NSL)

svc_freeargs rpc_svc_reg (3NSL)

svc_getargs rpc_svc_reg (3NSL)

svc_getcaller rpc_soc (3NSL)

svc_getreq rpc_soc (3NSL)

svc_getreqset rpc_svc_calls (3NSL)

svc_getrpccaller rpc_svc_calls (3NSL)

svc_kerb_reg kerberos_rpc (3KRB)

svc_raw_create rpc_svc_create (3NSL)

svc_reg rpc_svc_calls (3NSL)

svc_register rpc_soc (3NSL)

svc_run rpc_svc_reg (3NSL)

svc_sendreply rpc_svc_reg (3NSL)

svc_tli_create rpc_svc_create (3NSL)

svc_tp_create rpc_svc_create (3NSL)

svc_unreg rpc_svc_calls (3NSL)

svc_unregister rpc_soc (3NSL)

svc_vc_create rpc_svc_create (3NSL)

416 SunOS 5.8 Last modified 20 Feb 1998

Networking Services Library Functions rpc(3NSL)

svcerr_auth rpc_svc_err (3NSL)

svcerr_decode rpc_svc_err (3NSL)

svcerr_noproc rpc_svc_err (3NSL)

svcerr_noprog rpc_svc_err (3NSL)

svcerr_progvers rpc_svc_err (3NSL)

svcerr_systemerr rpc_svc_err (3NSL)

svcerr_weakauth rpc_svc_err (3NSL)

svcfd_create rpc_soc (3NSL)

svcraw_create rpc_soc (3NSL)

svctcp_create rpc_soc (3NSL)

svcudp_bufcreate rpc_soc (3NSL)

svcudp_create rpc_soc (3NSL)

user2netname secure_rpc (3NSL)

xdr_accepted_reply rpc_xdr (3NSL)

xdr_authsys_parms rpc_xdr (3NSL)

xdr_authunix_parms rpc_soc (3NSL)

xdr_callhdr rpc_xdr (3NSL)

xdr_callmsg rpc_xdr (3NSL)

xdr_opaque_auth rpc_xdr (3NSL)

xdr_rejected_reply rpc_xdr (3NSL)

xdr_replymsg rpc_xdr (3NSL)

xprt_register rpc_svc_calls (3NSL)

xprt_unregister rpc_svc_calls (3NSL)

FILES /etc/netconfig

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

Last modified 20 Feb 1998 SunOS 5.8 417

rpc(3NSL) Networking Services Library Functions

SEE ALSO getnetconfig (3NSL), getnetpath (3NSL), kerberos_rpc (3KRB),
rpc_clnt_auth (3NSL), rpc_clnt_calls (3NSL),
rpc_clnt_create (3NSL), rpc_svc_calls (3NSL),
rpc_svc_create (3NSL), rpc_svc_err (3NSL), rpc_svc_reg (3NSL),
rpc_xdr (3NSL), rpcbind (3NSL), secure_rpc (3NSL), xdr (3NSL),
netconfig (4), rpc (4), attributes (5), environ (5)

418 SunOS 5.8 Last modified 20 Feb 1998

Networking Services Library Functions rpcbind(3NSL)

NAME rpcbind, rpcb_getmaps, rpcb_getaddr, rpcb_gettime, rpcb_rmtcall, rpcb_set,
rpcb_unset – library routines for RPC bind service

SYNOPSIS #include <rpc/rpc.h>
struct rpcblist *rpcb_getmaps (const struct netconfig *nnetconf, const char *host);

bool_t rpcb_getaddr (const rpcprog_t prognum, const rpcvers_t versnum, const struct
netconfig *netconf, struct netbuf *ssvcaddr, const char *host);

bool_t rpcb_gettime (const char *host, time_t *timep);

enum clnt_stat rpcb_rmtcall (const struct netconfig *netconf, const char *host, const
rpcprog_t prognum, const rpcvers_t versnum, const rpcproc_t procnum, const xdrproc_t
inproc, const caddr_t in, const xdrproc_t outproc, caddr_t out, const struct timeval tout,
struct netbuf *svcaddr);

bool_t rpcb_set (const rpcprog_t prognum, const rpcvers_t versnum, const struct netconfig
*netconf, const struct netbuf *svcaddr);

bool_t rpcb_unset (const rpcprog_t prognum, const rpcvers_t versnum, const struct
netconfig *netconf);

DESCRIPTION These routines allow client C programs to make procedure calls to the RPC
binder service. rpcbind maintains a list of mappings between programs and
their universal addresses. See rpcbind (1M) .

Routines rpcb_getmaps()
An interface to the rpcbind service, which returns a list of the current
RPC program-to-address mappings on host . It uses the transport specified
through netconf to contact the remote rpcbind service on host . This routine
will return NULL, if the remote rpcbind could not be contacted.

rpcb_getaddr()
An interface to the rpcbind service, which finds the address of the service
on host that is registered with program number prognum , version versnum ,
and speaks the transport protocol associated with netconf . The address
found is returned in svcaddr . svcaddr should be preallocated. This routine
returns TRUEif it succeeds. A return value of FALSE means that the
mapping does not exist or that the RPC system failed to contact the remote
rpcbind service. In the latter case, the global variable rpc_createerr
contains the RPC status. See rpc_clnt_create (3NSL) .

rpcb_gettime()
This routine returns the time on host in timep . If host is NULL ,
rpcb_gettime() returns the time on its own machine. This routine
returns TRUEif it succeeds, FALSE if it fails. rpcb_gettime() can be used
to synchronize the time between the client and the remote server. This
routine is particularly useful for secure RPC.

Last modified 20 Feb 1998 SunOS 5.8 419

rpcbind(3NSL) Networking Services Library Functions

rpcb_rmtcall()
An interface to the rpcbind service, which instructs rpcbind on host
to make an RPC call on your behalf to a procedure on that host. The
netconfig structure should correspond to a connectionless transport. The
parameter * svcaddr will be modified to the server’s address if the procedure
succeeds. See rpc_call() and clnt_call() in rpc_clnt_calls (3NSL)
for the definitions of other parameters.

This procedure should normally be used for a "ping" and nothing else. This
routine allows programs to do lookup and call, all in one step.

Note: Even if the server is not running rpcbind does not return any error
messages to the caller. In such a case, the caller times out.

Note: rpcb_rmtcall() is only available for connectionless transports.

rpcb_set()
An interface to the rpcbind service, which establishes a mapping between
the triple [prognum , versnum , netconf => nc_netid] and svcaddr on the
machine’s rpcbind service. The value of nc_netid must correspond to a
network identifier that is defined by the netconfig database. This routine
returns TRUEif it succeeds, FALSE otherwise. See also svc_reg() in
rpc_svc_calls (3NSL) . If there already exists such an entry with
rpcbind , rpcb_set() will fail.

rpcb_unset()
An interface to the rpcbind service, which destroys the mapping between
the triple [prognum , versnum , netconf => nc_netid] and the address on the
machine’s rpcbind service. If netconf is NULL , rpcb_unset() destroys
all mapping between the triple [prognum , versnum , all-transports] and
the addresses on the machine’s rpcbind service. This routine returns
TRUEif it succeeds, FALSE otherwise. Only the owner of the service
or the super-user can destroy the mapping. See also svc_unreg() in
rpc_svc_calls (3NSL) .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO rpcbind (1M) , rpcinfo (1M) , rpc_clnt_calls (3NSL) ,
rpc_clnt_create (3NSL) , rpc_svc_calls (3NSL) , attributes (5)

420 SunOS 5.8 Last modified 20 Feb 1998

Networking Services Library Functions rpc_clnt_auth(3NSL)

NAME rpc_clnt_auth, auth_destroy, authnone_create, authsys_create,
authsys_create_default – library routines for client side remote procedure call
authentication

DESCRIPTION These routines are part of the RPC library that allows C language programs
to make procedure calls on other machines across the network, with desired
authentication.

These routines are normally called after creating the CLIENT handle. The
cl_auth field of the CLIENT structure should be initialized by the AUTH
structure returned by some of the following routines. The client’s authentication
information is passed to the server when the RPC call is made.

Only the NULLand the SYSstyle of authentication is discussed here. For the DES
style authentication, please refer to secure_rpc (3NSL) . For the Kerberos
style authentication, please refer to kerberos_rpc (3KRB) .

The NULLand SYSstyle of authentication are safe in multithreaded applications.
For the MT-level of the DESand Kerberos styles, see their respective pages.

Routines The following routines require that the header <rpc/rpc.h> be included (see
rpc (3NSL) for the definition of the AUTHdata structure).

#include <rpc/rpc.h>

void auth_destroy(AUTH *auth);
A function macro that destroys the authentication information associated
with auth . Destruction usually involves deallocation of private data
structures. The use of auth is undefined after calling auth_destroy() .

AUTH *authnone_create(void);
Create and return an RPC authentication handle that passes nonusable
authentication information with each remote procedure call. This is the
default authentication used by RPC.

AUTH *authsys_create(const char *host , const uid_t uid , const gid_t gid , const
int len , const gid_t *aup_gids);

Create and return an RPC authentication handle that contains AUTH_SYS
authentication information. The parameter host is the name of the machine
on which the information was created; uid is the user’s user ID; gid is the
user’s current group ID; len and aup_gids refer to a counted array of groups
to which the user belongs.

AUTH *authsys_create_default(void);
Call authsys_create() with the appropriate parameters.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified 30 Dec 1996 SunOS 5.8 421

rpc_clnt_auth(3NSL) Networking Services Library Functions

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO kerberos_rpc (3KRB) , rpc (3NSL) , rpc_clnt_calls (3NSL) ,
rpc_clnt_create (3NSL) , secure_rpc (3NSL) , attributes (5)

422 SunOS 5.8 Last modified 30 Dec 1996

Networking Services Library Functions rpc_clnt_calls(3NSL)

NAME rpc_clnt_calls, clnt_call, clnt_freeres, clnt_geterr, clnt_perrno, clnt_perror,
clnt_sperrno, clnt_sperror, rpc_broadcast, rpc_broadcast_exp, rpc_call – library
routines for client side calls

DESCRIPTION RPC library routines allow C language programs to make procedure calls on
other machines across the network. First, the client calls a procedure to send a
request to the server. Upon receipt of the request, the server calls a dispatch
routine to perform the requested service, and then sends back a reply.

The clnt_call() , rpc_call() , and rpc_broadcast() routines handle
the client side of the procedure call. The remaining routines deal with error
handling in the case of errors.

Some of the routines take a CLIENT handle as one of the parameters. A CLIENT
handle can be created by an RPC creation routine such as clnt_create() (see
rpc_clnt_create (3NSL)).

These routines are safe for use in multithreaded applications. CLIENT handles
can be shared between threads, however in this implementation requests by
different threads are serialized (that is, the first request will receive its results
before the second request is sent).

Routines See rpc (3NSL) for the definition of the CLIENT data structure.

#include <rpc/rpc.h>

enum clnt_stat clnt_call(CLIENT *clnt , const rpcproc_t procnum , const xdrproc_t
inproc , const caddr_t in , const xdrproc_t outproc , caddr_t out , const struct
timeval tout);

A function macro that calls the remote procedure procnum associated with
the client handle, clnt , which is obtained with an RPC client creation routine
such as clnt_create() (see rpc_clnt_create (3NSL)). The parameter
inproc is the XDR function used to encode the procedure’s parameters, and
outproc is the XDR function used to decode the procedure’s results; in is the
address of the procedure’s argument(s), and out is the address of where to
place the result(s). tout is the time allowed for results to be returned, which
is overridden by a time-out set explicitly through clnt_control() , see
rpc_clnt_create (3NSL) .

If the remote call succeeds, the status returned is RPC_SUCCESS, otherwise
an appropriate status is returned.

bool_t clnt_freeres(CLIENT *clnt , const xdrproc_t outproc , caddr_t out);
A function macro that frees any data allocated by the RPC/XDR system
when it decoded the results of an RPC call. The parameter out is the address
of the results, and outproc is the XDR routine describing the results. This
routine returns 1 if the results were successfully freed, and 0 otherwise.

void clnt_geterr(const CLIENT *clnt , struct rpc_err *errp);

Last modified 20 Feb 1998 SunOS 5.8 423

rpc_clnt_calls(3NSL) Networking Services Library Functions

A function macro that copies the error structure out of the client handle to
the structure at address errp .

void clnt_perrno(const enum clnt_stat stat);
Print a message to standard error corresponding to the condition indicated
by stat . A newline is appended. Normally used after a procedure call
fails for a routine for which a client handle is not needed, for instance
rpc_call().

void clnt_perror(const CLIENT *clnt , const char *s);
Print a message to the standard error indicating why an RPC call failed;
clnt is the handle used to do the call. The message is prepended with
string s and a colon. A newline is appended. Normally used after a remote
procedure call fails for a routine which requires a client handle, for instance
clnt_call() .

char *clnt_sperrno(const enum clnt_stat stat);
Take the same arguments as clnt_perrno() , but instead of sending a
message to the standard error indicating why an RPC call failed, return a
pointer to a string which contains the message.

clnt_sperrno() is normally used instead of clnt_perrno() when
the program does not have a standard error (as a program running as
a server quite likely does not), or if the programmer does not want the
message to be output with printf() (see printf (3C)), or if a message
format different than that supported by clnt_perrno() is to be used.
Note: unlike clnt_sperror() and clnt_spcreaterror() (see
rpc_clnt_create (3NSL)), clnt_sperrno() does not return pointer to
static data so the result will not get overwritten on each call.

char *clnt_sperror(const CLIENT *clnt , const char *s);
Like clnt_perror() , except that (like clnt_sperrno()) it returns a
string instead of printing to standard error. However, clnt_sperror()
does not append a newline at the end of the message.

Warning: returns pointer to a buffer that is overwritten on each call. In
multithread applications, this buffer is implemented as thread-specific data.

enum clnt_stat rpc_broadcast(const rpcprog_t prognum , const rpcvers_t versnum
, const rpcproc_t procnum , const xdrproc_t inproc , const caddr_t in , const
xdrproc_t outproc , caddr_t out , const resultproc_t eachresult , const char *nettype);

Like rpc_call() , except the call message is broadcast to all the
connectionless transports specified by nettype . If nettype is NULL , it
defaults to "netpath . Each time it receives a response, this routine calls
eachresult() , whose form is:

424 SunOS 5.8 Last modified 20 Feb 1998

Networking Services Library Functions rpc_clnt_calls(3NSL)

bool_t eachresult(caddr_t out, const struct netbuf *addr,
const struct netconfig *netconf);

where out is the same as out passed to rpc_broadcast() , except that the
remote procedure’s output is decoded there; addr points to the address of the
machine that sent the results, and netconf is the netconfig structure of the
transport on which the remote server responded. If eachresult() returns
0 , rpc_broadcast() waits for more replies; otherwise it returns with
appropriate status.

Warning: broadcast file descriptors are limited in size to the maximum
transfer size of that transport. For Ethernet, this value is 1500 bytes.
rpc_broadcast() uses AUTH_SYScredentials by default (see
rpc_clnt_auth (3NSL)).

enum clnt_stat rpc_broadcast_exp(const rpcprog_t prognum , const rpcvers_t
versnum , const rpcproc_t procnum , const xdrproc_t xargs , caddr_t argsp , const
xdrproc_t xresults , caddr_t resultsp , const resultproc_t eachresult , const int
inittime , const int waittime , const char *nettype);

Like rpc_broadcast() , except that the initial timeout, inittime and the
maximum timeout, waittime are specified in milliseconds.

inittime is the initial time that rpc_broadcast_exp() waits before
resending the request. After the first resend, the re-transmission interval
increases exponentially until it exceeds waittime .

enum clnt_stat rpc_call(const char *host , const rpcprog_t prognum , const
rpcvers_t versnum , const rpcproc_t procnum , const xdrproc_t inproc , const char
*in , const xdrproc_t outproc , char *out , const char *nettype);

Call the remote procedure associated with prognum , versnum , and
procnum on the machine, host . The parameter inproc is used to encode the
procedure’s parameters, and outproc is used to decode the procedure’s
results; in is the address of the procedure’s argument(s), and out is the
address of where to place the result(s). nettype can be any of the values
listed on rpc (3NSL) . This routine returns RPC_SUCCESS if it succeeds, or
an appropriate status is returned. Use the clnt_perrno() routine to
translate failure status into error messages.

Warning: rpc_call() uses the first available transport belonging to the
class nettype , on which it can create a connection. You do not have control
of timeouts or authentication using this routine.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified 20 Feb 1998 SunOS 5.8 425

rpc_clnt_calls(3NSL) Networking Services Library Functions

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO printf (3C) , rpc (3NSL) , rpc_clnt_auth (3NSL) , rpc_clnt_create (3NSL)
, attributes (5)

426 SunOS 5.8 Last modified 20 Feb 1998

Networking Services Library Functions rpc_clnt_create(3NSL)

NAME rpc_clnt_create, clnt_control, clnt_create, clnt_create_timed, clnt_create_vers,
clnt_create_vers_timed, clnt_destroy, clnt_dg_create, clnt_pcreateerror,
clnt_raw_create, clnt_spcreateerror, clnt_tli_create, clnt_tp_create,
clnt_tp_create_timed, clnt_vc_create, rpc_createerr – library routines for dealing
with creation and manipulation of CLIENT handles

DESCRIPTION RPC library routines allow C language programs to make procedure calls on
other machines across the network. First a CLIENT handle is created and then
the client calls a procedure to send a request to the server. On receipt of the
request, the server calls a dispatch routine to perform the requested service,
and then sends a reply.

These routines are MT-Safe. In the case of multithreaded applications, the
_REENTRANTflag must be defined on the command line at compilation time (
-D_REENTRANT). When the _REENTRANTflag is defined, rpc_createerr
becomes a macro which enables each thread to have its own rpc_createerr .

Routines See rpc (3NSL) for the definition of the CLIENT data structure.

#include <rpc/rpc.h>

bool_t clnt_control(CLIENT *clnt , const uint_t req , char *info);
A function macro to change or retrieve various information about a client
object. req indicates the type of operation, and info is a pointer to the
information. For both connectionless and connection-oriented transports, the
supported values of req and their argument types and what they do are:

CLSET_TIMEOUT struct timeval * set total timeout
CLGET_TIMEOUT struct timeval * get total timeout

If the timeout is set using clnt_control() , the timeout argument passed
by clnt_call() is ignored in all subsequent calls. If the timeout value is
set to 0 , clnt_control() immediately returns RPC_TIMEDOUT. Set the
timeout parameter to 0 for batching calls.

CLGET_SERVER_ADDR struct netbuf * get server’s address
CLGET_SVC_ADDR struct netbuf * get server’s address
CLGET_FD int * get associated file descriptor
CLSET_FD_CLOSE void close the file descriptor when

destroying the client handle
(see clnt_destroy())

CLSET_FD_NCLOSE void do not close the file
descriptor when destroying

the client handle

CLGET_VERS rpcvers_t get the RPC program’s version
number associated with the

Last modified 20 Feb 1998 SunOS 5.8 427

rpc_clnt_create(3NSL) Networking Services Library Functions

client handle
CLSET_VERS rpcvers_t set the RPC program’s version

number associated with the
client handle. This assumes
that the RPC server for this
new version is still listening
at the address of the previous
version.

CLGET_XID uint32_t get the XID of the previous
remote procedure call

CLSET_XID uint32_t set the XID of the next
remote procedure call

CLGET_PROG rpcprog_t get program number
CLSET_PROG rpcprog_t set program number

The following operations are valid for connectionless transports only:

CLSET_RETRY_TIMEOUT struct timeval * set the retry timeout
CLGET_RETRY_TIMEOUT struct timeval * get the retry timeout

The retry timeout is the time that RPC waits for the server to reply before
retransmitting the request.

clnt_control() returns TRUEon success and FALSE on failure.

CLIENT *clnt_create(const char *host , const rpcprog_t prognum , const rpcvers_t
versnum , const char *nettype);

Generic client creation routine for program prognum and version versnum .
host identifies the name of the remote host where the server is located.
nettype indicates the class of transport protocol to use. The transports are
tried in left to right order in NETPATHvariable or in top to bottom order
in the netconfig database.

clnt_create() tries all the transports of the nettype class available
from the NETPATHenvironment variable and the netconfig database,
and chooses the first successful one. A default timeout is set and can be
modified using clnt_control() . This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular
version number supplied to clnt_create() is not registered with the
rpcbind service. This mismatch will be discovered by a clnt_call later
(see rpc_clnt_calls (3NSL)).

CLIENT *clnt_create_timed(const char *host , const rpcprog_t prognum , const
rpcvers_t versnum , const char *nettype , const struct timeval *timeout);

Generic client creation routine which is similar to clnt_create() but
which also has the additional parameter timeout that specifies the maximum
amount of time allowed for each transport class tried. In all other respects,

428 SunOS 5.8 Last modified 20 Feb 1998

Networking Services Library Functions rpc_clnt_create(3NSL)

the clnt_create_timed() call behaves exactly like the clnt_create()
call.

CLIENT *clnt_create_vers(const char *host , const rpcprog_t prognum , rpcvers_t
*vers_outp , const rpcvers_t vers_low , const rpcvers_t vers_high , char *nettype);

Generic client creation routine which is similar to clnt_create() but
which also checks for the version availability. host identifies the name
of the remote host where the server is located. nettype indicates the class
transport protocols to be used. If the routine is successful it returns a client
handle created for the highest version between vers_low and vers_high that
is supported by the server. vers_outp is set to this value. That is, after
a successful return vers_low <= *vers_outp <= vers_high . If no version
between vers_low and vers_high is supported by the server then the routine
fails and returns NULL. A default timeout is set and can be modified
using clnt_control() . This routine returns NULL if it fails. The
clnt_pcreateerror() routine can be used to print the reason for failure.

Note: clnt_create() returns a valid client handle even if the particular
version number supplied to clnt_create() is not registered with the
rpcbind service. This mismatch will be discovered by a clnt_call later
(see rpc_clnt_calls (3NSL)). However, clnt_create_vers() does
this for you and returns a valid handle only if a version within the range
supplied is supported by the server.

CLIENT *clnt_create_vers_timed(const char *host , const rpcprog_t prognum ,
rpcvers_t *vers_outp , const rpcvers_t vers_low , const rpcvers_t vers_high , char
*nettype const struct timeval *timeout);

Generic client creation routine similar to clnt_create_vers() but
with the additional parameter timeout , which specifies the maximum
amount of time allowed for each transport class tried. In all other
respects, the clnt_create_vers_timed() call behaves exactly like the
clnt_create_vers() call.

void clnt_destroy(CLIENT *clnt);
A function macro that destroys the client’s RPC handle. Destruction usually
involves deallocation of private data structures, including clnt itself. Use
of clnt is undefined after calling clnt_destroy() . If the RPC library
opened the associated file descriptor, or CLSET_FD_CLOSEwas set using
clnt_control() , the file descriptor will be closed.

The caller should call auth_destroy(clnt =>cl_auth) (before calling
clnt_destroy()) to destroy the associated AUTH structure (see
rpc_clnt_auth (3NSL)).

Last modified 20 Feb 1998 SunOS 5.8 429

rpc_clnt_create(3NSL) Networking Services Library Functions

CLIENT *clnt_dg_create(const int fildes , const struct netbuf *svcaddr , const
rpcprog_t prognum , const rpcvers_t versnum , const uint_t sendsz , const uint_t
recvsz);

This routine creates an RPC client for the remote program prognum and
version versnum ; the client uses a connectionless transport. The remote
program is located at address svcaddr . The parameter fildes is an open
and bound file descriptor. This routine will resend the call message in
intervals of 15 seconds until a response is received or until the call times
out. The total time for the call to time out is specified by clnt_call()
(see clnt_call() in rpc_clnt_calls (3NSL)). The retry time out and
the total time out periods can be changed using clnt_control() . The
user may set the size of the send and receive buffers with the parameters
sendsz and recvsz ; values of 0 choose suitable defaults. This routine returns
NULL if it fails.

void clnt_pcreateerror(const char *s);
Print a message to standard error indicating why a client RPC handle could
not be created. The message is prepended with the string s and a colon, and
appended with a newline.

CLIENT *clnt_raw_create(const rpcprog_t prognum , const rpcvers_t versnum);
This routine creates an RPC client handle for the remote program prognum
and version versnum . The transport used to pass messages to the service
is a buffer within the process’s address space, so the corresponding RPC
server should live in the same address space; (see svc_raw_create()
in rpc_svc_create (3NSL)). This allows simulation of RPC and
measurement of RPC overheads, such as round trip times, without any
kernel or networking interference. This routine returns NULL if it fails.
clnt_raw_create() should be called after svc_raw_create() .

char *clnt_spcreateerror(const char *s);
Like clnt_pcreateerror() , except that it returns a string instead of
printing to the standard error. A newline is not appended to the message in
this case.

Warning: returns a pointer to a buffer that is overwritten on each call. In
multithread applications, this buffer is implemented as thread-specific data.

CLIENT *clnt_tli_create(const int fildes , const struct netconfig *netconf , const
struct netbuf *svcaddr , const rpcprog_t prognum , const rpcvers_t versnum , const
uint_t sendsz , const uint_t recvsz);

This routine creates an RPC client handle for the remote program prognum
and version versnum . The remote program is located at address svcaddr .
If svcaddr is NULL and it is connection-oriented, it is assumed that the file
descriptor is connected. For connectionless transports, if svcaddr is NULL ,
RPC_UNKNOWNADDRerror is set. fildes is a file descriptor which may be

430 SunOS 5.8 Last modified 20 Feb 1998

Networking Services Library Functions rpc_clnt_create(3NSL)

open, bound and connected. If it is RPC_ANYFD, it opens a file descriptor
on the transport specified by netconf . If fildes is RPC_ANYFDand netconf
is NULL , a RPC_UNKNOWNPROTOerror is set. If fildes is unbound, then it
will attempt to bind the descriptor. The user may specify the size of the
buffers with the parameters sendsz and recvsz ; values of 0 choose suitable
defaults. Depending upon the type of the transport (connection-oriented
or connectionless), clnt_tli_create() calls appropriate client creation
routines. This routine returns NULL if it fails. The clnt_pcreateerror()
routine can be used to print the reason for failure. The remote rpcbind
service (see rpcbind (1M)) is not consulted for the address of the remote
service.

CLIENT *clnt_tp_create(const char *host , const rpcprog_t prognum , const
rpcvers_t versnum , const struct netconfig *netconf);

Like clnt_create() except clnt_tp_create() tries only one transport
specified through netconf .

clnt_tp_create() creates a client handle for the program prognum , the
version versnum , and for the transport specified by netconf . Default options
are set, which can be changed using clnt_control() calls. The remote
rpcbind service on the host host is consulted for the address of the remote
service. This routine returns NULL if it fails. The clnt_pcreateerror()
routine can be used to print the reason for failure.

CLIENT *clnt_tp_create_timed(const char *host , const rpcprog_t prognum , const
rpcvers_t versnum , const struct netconfig *netconf , const struct timeval *timeout);

Like clnt_tp_create() except clnt_tp_create_timed()
has the extra parameter timeout which specifies the maximum time
allowed for the creation attempt to succeed. In all other respects,
the clnt_tp_create_timed() call behaves exactly like the
clnt_tp_create() call.

CLIENT *clnt_vc_create(const int fildes , const struct netbuf *svcaddr , const
rpcprog_t prognum , const rpcvers_t versnum , const uint_t sendsz , const uint_t
recvsz);

This routine creates an RPC client for the remote program prognum and
version versnum ; the client uses a connection-oriented transport. The remote
program is located at address svcaddr . The parameter fildes is an open and
bound file descriptor. The user may specify the size of the send and receive
buffers with the parameters sendsz and recvsz ; values of 0 choose suitable
defaults. This routine returns NULL if it fails.

The address svcaddr should not be NULL and should point to the actual
address of the remote program. clnt_vc_create() does not consult the
remote rpcbind service for this information.

Last modified 20 Feb 1998 SunOS 5.8 431

rpc_clnt_create(3NSL) Networking Services Library Functions

struct rpc_createerr rpc_createerr;
A global variable whose value is set by any RPC client handle creation
routine that fails. It is used by the routine clnt_pcreateerror() to print
the reason for the failure.

In multithreaded applications, rpc_createerr becomes a macro which
enables each thread to have its own rpc_createerr .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO rpcbind (1M) , rpc (3NSL) , rpc_clnt_auth (3NSL) , rpc_clnt_calls (3NSL)
, rpc_svc_create (3NSL) , svc_raw_create (3NSL) , attributes (5)

432 SunOS 5.8 Last modified 20 Feb 1998

Networking Services Library Functions rpc_control(3NSL)

NAME rpc_control – library routine for manipulating global RPC attributes for client
and server applications

SYNOPSIS bool_t rpc_control (int op, void *info);

DESCRIPTION This RPC library routine allows applications to set and modify global RPC
attributes that apply to clients as well as servers. At present, it supports only
server side operations. This function allows applications to set and modify
global attributes that apply to client as well as server functions. op indicates the
type of operation, and info is a pointer to the operation specific information. The
supported values of op and their argument types, and what they do are:

RPC_SVC_MTMODE_SET int * set multithread mode
RPC_SVC_MTMODE_GET int * get multithread mode
RPC_SVC_THRMAX_SET int * set maximum number of threads
RPC_SVC_THRMAX_GET int * get maximum number of threads
RPC_SVC_THRTOTAL_GET int * get number of active threads
RPC_SVC_THRCREATES_GET int * get number of threads created
RPC_SVC_THRERRORS_GET int * get number of thread create errors
RPC_SVC_USE_POLLFD int * set number of file descriptors to unlimited
RPC_SVC_CONNMAXREC_SET int * set non-blocking max rec size
RPC_SVC_CONNMAXREC_GET int * get non-blocking max rec size

There are three multithread (MT) modes. These are:

RPC_SVC_MT_NONE Single threaded mode (default)
RPC_SVC_MT_AUTO Automatic MT mode
RPC_SVC_MT_USER User MT mode

Unless the application sets the Automatic or User MT modes, it will stay in
the default (single threaded) mode. See the Network Interfaces Programmer’s
Guide for the meanings of these modes and programming examples. Once a
mode is set, it cannot be changed.

By default, the maximum number of threads that the server will create at any
time is 16. This allows the service developer to put a bound on thread resources
consumed by a server. If a server needs to process more than 16 client requests
concurrently, the maximum number of threads must be set to the desired
number. This parameter may be set at any time by the server.

Set and get operations will succeed even in modes where the operations don’t
apply. For example, you can set the maximum number of threads in any mode,
even though it makes sense only for the Automatic MT mode. All of the get
operations except RPC_SVC_MTMODE_GETapply only to the Automatic MT
mode, so values returned in other modes may be undefined.

By default, RPC servers are limited to a maximum of 1024 file descriptors or
connections due to limitations in the historical interfaces svc_fdset (3NSL) and
svc_getreqset (3NSL). Applications written to use the preferred interfaces

Last modified 24 Feb 1999 SunOS 5.8 433

rpc_control(3NSL) Networking Services Library Functions

of svc_pollfd (3NSL) and svc_getreq_poll (3NSL) can use an unlimited
number of file descriptors. Setting info to point to a non-zero integer and op
to RPC_SVC_USE_POLLFDremoves the limitation.

Connection oriented RPC transports read RPC requests in blocking mode
by default. Thus, they may be adversely affected by network delays and
broken clients. RPC_SVC_CONNMAXREC_SETenables non-blocking mode and
establishes the maximum record size (in bytes) for RPC requests; RPC responses
are not affected. Buffer space is allocated as needed up to the specified maximum,
starting at the maximum or RPC_MAXDATASIZE, whichever is smaller.

The value established by RPC_SVC_CONNMAXREC_SETis used when a
connection is created, and it remains in effect for that connection until it is
closed. To change the value for existing connections on a per-connection basis,
see svc_control (3NSL).

RPC_SVC_CONNMAXREC_GETretrieves the current maximum record size. A
zero value means that no maximum is in effect, and that the connections are in
blocking mode.

info is a pointer to an argument of type int . Non-connection RPC transports
ignore RPC_SVC_CONNMAXREC_SETand RPC_SVC_CONNMAXREC_GET.

RETURN VALUES This routine returns TRUEif the operation was successful and returnsFALSE
otherwise.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO rpcbind (1M), rpc (3NSL), rpc_svc_calls (3NSL), attributes (5)

Network Interfaces Programmer’s Guide

434 SunOS 5.8 Last modified 24 Feb 1999

Networking Services Library Functions rpc_gss_getcred(3NSL)

NAME rpc_gss_getcred – get credentials of client

SYNOPSIS #include <rpc/rpcsec_gss.h>
bool_t rpc_gss_getcred (struct svc_req *req, rpc_gss_rawcred_ t **rcred, rpc_gss_ucred
**ucred, void **cookie);

DESCRIPTION rpc_gss_getcred() is used by a server to fetch the credentials of a
client. These credentials may either be network credentials (in the form of a
rpc_gss_rawcred_t structure) or UNIX credentials.

For more information on RPCSEC_GSSdata types, see the rpcsec_gss (3NSL)
man page.

PARAMETERS Essentially, rpc_gss_getcred() passes a pointer to a request (svc_req)
as well as pointers to two credential structures and a user-defined cookie; if
rpc_gss_getcred() is successful, at least one credential structure is "filled
out" with values, as is, optionally, the cookie.
req Pointer to the received service request. svc_req is an

RPC structure containing information on the context of an
RPC invocation, such as program, version, and transport
information.

rcred A pointer to an rpc_gss_rawcred_t structure pointer.
This structure contains the version number of the
RPCSEC_GSSprotocol being used; the security mechanism
and QOPs for this session (as strings); principal names
for the client (as a rpc_gss_principal_t structure)
and server (as a string); and the security service (integrity,
privacy, etc., as an enum). If an application is not interested
in these values, it may pass NULL for this parameter.

ucred The caller’s UNIX credentials, in the form of a pointer to a
pointer to a rpc_gss_ucred_t structure, which includes
the client’s uid and gids. If an application is not interested in
these values, it may pass NULL for this parameter.

cookie A four-byte quantity that an application may use in
any manner it wants to; RPC does not interpret it.
(For example, a cookie may be a pointer or index to a
structure that represents a context initiator.) See also
rpc_gss_set_callback (3NSL).

RETURN VALUES rpc_gss_getcred() returns TRUE if it is successful; otherwise, use
rpc_gss_get_error() to get the error associated with the failure.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified 4 Nov 1998 SunOS 5.8 435

rpc_gss_getcred(3NSL) Networking Services Library Functions

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Packages SUNWrsg, SUNWrsgx

SEE ALSO rpc (3NSL), rpc_gss_set_callback (3NSL),
rpc_gss_set_svc_name (3NSL), rpcsec_gss (3NSL), attributes (5)

ONC+ Developer’s Guide

Network Working Group RFC 2078

436 SunOS 5.8 Last modified 4 Nov 1998

Networking Services Library Functions rpc_gss_get_error(3NSL)

NAME rpc_gss_get_error – get error codes on failure

SYNOPSIS #include <rpc/rpcsec_gss.h>
bool_t rpc_gss_get_error (rpc_gss_error_t*error);

DESCRIPTION rpc_gss_get_error() fetches an error code when an RPCSEC_GSSroutine
fails.

rpc_gss_get_error() uses a rpc_gss_error_t structure of the following
form:

typedef struct {
int rpc_gss_error; RPCSEC_GSS error
int system_error; system error
} rpc_gss_error_t;

Currently the only error codes defined for this function are

#define RPC_GSS_ER_SUCCESS 0 /* no error */
#define RPC_GSS_ER_SYSTEMERROR 1 /* system error */

PARAMETERS Information on RPCSEC_GSSdata types for parameters may be found on the
rpcsec_gss (3NSL) man page.
error A rpc_gss_error_t structure. If the rpc_gss_error

field is equal to RPC_GSS_ER_SYSTEMERROR,the
system_error field will be set to the value of errno .

RETURN VALUES Unless there is a failure indication from an invoked RPCSEC_GSSfunction,
rpc_gss_get_error() does not set error to a meaningful value.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Packages SUNWrsg, SUNWrsgx

SEE ALSO perror (3C), rpc (3NSL), rpcsec_gss (3NSL), attributes (5)

ONC+ Developer’s Guide

Network Working Group RFC 2078

NOTES Only system errors are currently returned.

Last modified 19 May 1998 SunOS 5.8 437

rpc_gss_get_mechanisms(3NSL) Networking Services Library Functions

NAME rpc_gss_get_mechanisms, rpc_gss_get_mech_info, rpc_gss_get_versions,
rpc_gss_is_installed – get information on mechanisms and RPC version

SYNOPSIS #include <rpc/rpcsec_gss.h>
char **rpc_gss_get_mechanisms ();

char **rpc_gss_get_mech_info (char *mech, rpc_gss_service_t *service);

bool_t rpc_gss_get_versions (u_int *vers_hi, u_int *vers_lo);

bool_t rpc_gss_is installed (char *mech);

DESCRIPTION These "convenience functions" return information on available security
mechanisms and versions of RPCSEC_GSS.
rpc_gss_get_mechanisms() Returns a list of supported security

mechanisms as a null-terminated list
of character strings.

rpc_gss_get_mech_info() Takes two arguments: an ASCII
string representing a mechanism type
(e.g., "kerberosv5") and a pointer
to a rpc_gss_service_t enum.
Returns a null-terminated list of
character strings of supported
Quality of Protections (QOPs) for
this mechanism.

rpc_gss_get_versions() Returns the highest and lowest
versions of RPCSEC_GSSsupported.

rpc_gss_is_installed() Takes an ASCII string representing a
mechanism, and returns TRUEif the
mechanism is installed.

PARAMETERS Information on RPCSEC_GSSdata types for parameters may be found on the
rpcsec_gss (3NSL) man page.
mech An ASCII string representing the security mechanism in use.

Valid strings may also be found in the /etc/gss/mech file.

service A pointer to a rpc_gss_service_t enum, representing the
current security service (privacy, integrity, or none).

vers_hi
vers_lo The highest and lowest versions of RPCSEC_GSSsupported.

FILES /etc/gss/mech File containing valid security mechanisms

438 SunOS 5.8 Last modified 11 May 1998

Networking Services Library Functions rpc_gss_get_mechanisms(3NSL)

/etc/gss/qop File containing valid QOP values

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Packages SUNWrsg, SUNWrsgx

SEE ALSO rpc (3NSL) , rpcsec_gss (3NSL) , mech(4) , qop (4) , attributes (5)

ONC+ Developer’s Guide

Network Working Group RFC 2078

NOTES This function will change in a future release.

BUGS The service argument for rpc_gss_get_mech_info() is currently irrelevant.

Last modified 11 May 1998 SunOS 5.8 439

rpc_gss_get_principal_name(3NSL) Networking Services Library Functions

NAME rpc_gss_get_principal_name – Get principal names at server

SYNOPSIS #include <rpc/rpcsec_gss.h>
bool_t rpc_gss_get_principal_name (rpc_gss_principal_ *principal, char *mech, char
*name, char *node, char *domain);

DESCRIPTION Servers need to be able to operate on a client’s principal name. Such a name
is stored by the server as a rpc_gss_principal_t structure, an opaque
byte string which can be used either directly in access control lists or as
database indices which can be used to look up a UNIX credential. A server
may, for example, need to compare a principal name it has received with the
principal name of a known entity, and to do that, it must be able to generate
rpc_gss_principal_t structures from known entities.

rpc_gss_get_principal_name() takes as input a security mechanism, a
pointer to a rpc_gss_principal_t structure, and several parameters which
uniquely identify an entity on a network: a user or service name, a node
name, and a domain name. From these parameters it constructs a unique,
mechanism-dependent principal name of the rpc_gss_principal_t structure
type.

PARAMETERS How many of the identifying parameters (name , node, and domain) are necessary
to specify depends on the mechanism being used. For example, Kerberos
V5 requires only a user name but can accept a node and domain name. An
application can choose to set unneeded parameters to NULL.

Information on RPCSEC_GSS data types for parameters may be found on the
rpcsec_gss (3NSL) man page.
principal An opaque, mechanism-dependent structure

representing the client’s principal name.

mech An ASCII string representing the security
mechanism in use. Valid strings may be found
in the /etc/gss/mech file, or by using
rpc_gss_get_mechanisms() .

name A UNIX login name (for example, ’gwashington’)
or service name, such as ’nfs’.

node A node in a domain; typically, this would be a
machine name (for example, ’valleyforge’).

domain A security domain; for example, a DNS, NIS, or
NIS+ domain name (’eng.company.com’).

RETURN VALUES rpc_gss_get_principal_name() returns TRUE if it is successful; otherwise,
use rpc_gss_get_error() to get the error associated with the failure.

440 SunOS 5.8 Last modified 11 May 1998

Networking Services Library Functions rpc_gss_get_principal_name(3NSL)

FILES /etc/gss/mech File containing valid security mechanisms

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Packages SUNWrsg, SUNWrsgx

SEE ALSO free (3C), rpc (3NSL), rpc_gss_get_mechanisms (3NSL),
rpc_gss_set_svc_name (3NSL), rpcsec_gss (3NSL), mech(4),
attributes (5)

ONC+ Developer’s Guide

Network Working Group RFC 2078

NOTES Principal names may be freed up by a call to free (3C). A principal name need
only be freed in those instances where it was constructed by the application.
(Values returned by other routines point to structures already existing in a
context, and need not be freed.)

Last modified 11 May 1998 SunOS 5.8 441

rpc_gss_max_data_length(3NSL) Networking Services Library Functions

NAME rpc_gss_max_data_length, rpc_gss_svc_max_data_length – get maximum data
length for transmission

SYNOPSIS #include <rpc/rpcsec_gss.h>
int rpc_gss_max_data_length (AUTH *handle, int max_tp_unit_len);

int rpc_gss_svc_max_data_length (struct svc_req *req, int max_tp_unit_len);

DESCRIPTION Performing a security transformation on a piece of data generally produces data
with a different (usually greater) length. For some transports, such as UDP,
there is a maximum length of data which can be sent out in one data unit.
Applications need to know the maximum size a piece of data can be before it’s
transformed, so that the resulting data will still "fit" on the transport. These two
functions return that maximum size.

rpc_gss_max_data_length() is the client-side version;
rpc_gss_svc_max_data_length() is the server-side version.

PARAMETERS handle An RPC context handle of type AUTH, returned
when a context is created (for example, by
rpc_gss_seccreate() . Security service and
QOP are bound to this handle, eliminating any
need to specify them.

max_tp_unit_len The maximum size of a piece of data allowed by
the transport.

req A pointer to an RPC svc_req structure,
containing information on the context (for
example, program number and credentials).

RETURN VALUES Both functions return the maximum size of untransformed data allowed, as
an int .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Packages SUNWrsg, SUNWrsgx

SEE ALSO rpc (3NSL) , rpcsec_gss (3NSL) , attributes (5)

ONC+ Developer’s Guide

Network Working Group RFC 2078

442 SunOS 5.8 Last modified 14 May 1998

Networking Services Library Functions rpc_gss_mech_to_oid(3NSL)

NAME rpc_gss_mech_to_oid, rpc_gss_qop_to_num – map mechanism, QOP strings
to non-string values

SYNOPSIS #include <rpc/rpcsec_gss.h>
bool_t rpc_gss_mech_to_oid (charc*mech, rpc_gss_OIDc*oid);

bool_t rpc_gss_qop_to_num (char *qop, char *mech, u_int *num);

DESCRIPTION Because in-kernel RPC routines use non-string values for mechanism and
Quality of Protection (QOP), these routines exist to map strings for these
attributes to their non-string counterparts. (The non-string values for QOP
and mechanism are also found in the /etc/gss/qop and /etc/gss/mech
files, respectively.) rpc_gss_mech_to_oid() takes a string representing a
mechanism, as well as a pointer to a rpc_gss_OID object identifier structure.
It then gives this structure values corresponding to the indicated mechanism,
so that the application can now use the OID directly with RPC routines.
rpc_gss_qop_to_num() does much the same thing, taking strings for QOP
and mechanism and returning a number.

PARAMETERS Information on RPCSEC_GSSdata types for parameters may be found on the
rpcsec_gss (3NSL) man page.
mech An ASCII string representing the security mechanism in use.

Valid strings may be found in the /etc/gss/mech file.

oid An object identifier of type rpc_gss_OID , whose elements
are usable by kernel-level RPC routines.

qop This is an ASCII string which sets the quality of protection
(QOP) for the session. Appropriate values for this string may
be found in the file /etc/gss/qop .

num The non-string value for the QOP.

RETURN VALUES Both functions return TRUE if they are successful, FALSE otherwise.

FILES /etc/gss/mech File containing valid security mechanisms

/etc/gss/qop File containing valid QOP values

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified 11 May 1998 SunOS 5.8 443

rpc_gss_mech_to_oid(3NSL) Networking Services Library Functions

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Packages SUNWrsg, SUNWrsgx

SEE ALSO rpc (3NSL) , rpc_gss_get_error (3NSL) ,
rpc_gss_get_mechanisms (3NSL) , rpcsec_gss (3NSL) , mech(4) , qop (4) ,
attributes (5)

ONC+ Developer’s Guide

Network Working Group RFC 2078

444 SunOS 5.8 Last modified 11 May 1998

Networking Services Library Functions rpc_gss_seccreate(3NSL)

NAME rpc_gss_seccreate – create a security context using the RPCSEC_GSS protocol

SYNOPSIS #include <rpc/rpcsec_gss.h> AUTH
*rpc_gss_seccreate (CLIENT *clnt, char *principal, char *mechanism, rpc_gss_service_t
service_type, char *qop, rpc_gss_options_req_t *options_req, rpc_gss_options_ret_t
*options_ret);

DESCRIPTION rpc_gss_seccreate() is used by an appliction to create a security context
using the RPCSEC_GSSprotocol, making use of the underlying GSS_API
network layer. rpc_gss_seccreate() allows an application to specify the
type of security mechanism (for example, Kerberos v5), the type of service (for
example, integrity checking), and the Quality of Protection (QOP) desired
for transferring data.

PARAMETERS Information on RPCSEC_GSSdata types for parameters may be found on the
rpcsec_gss (3NSL) man page.
clnt This is the RPC client handle. clnt may be

obtained, for example, from clnt_create() .

principal This is the identity of the server principal,
specified in the form service@host, where service
is the name of the service the client wishes to
access and host is the fully qualified name of the
host where the service resides — for example,
nfs@mymachine.eng.company.com.

mechanism This is an ASCII string which indicates which
security mechanism to use with this data.
Appropriate mechanisms may be found
in the file /etc/gss/mech ; additionally,
rpc_gss_get_mechanisms() returns a
list of supported security mechanisms (as
null-terminated strings).

service_type This sets the initial type of service for the session
— privacy, integrity, authentication, or none.

qop This is an ASCII string which sets the quality of
protection (QOP) for the session. Appropriate
values for this string may be found in the file
/etc/gss/qop . Additionally, supported QOPs
are returned (as null-terminated strings) by
rpc_gss_get_mech_info() .

options_req This structure contains options which are passed
directly to the underlying GSS_API layer. If the

Last modified 10 Nov 1999 SunOS 5.8 445

rpc_gss_seccreate(3NSL) Networking Services Library Functions

caller specifies NULL for this parameter, defaults
are used. (See NOTES, below.)

options_ret These GSS-API options are returned to the caller.
If the caller does not need to see these options,
then it may specify NULL for this parameter.
(See NOTES, below.)

RETURN VALUES rpc_gss_seccreate() returns a security context handle (an RPC
authentication handle) of type AUTH. If rpc_gss_seccreate() cannot
return successfully, the application can get an error number by calling
rpc_gss_get_error() .

FILES /etc/gss/mech File containing valid security mechanisms

/etc/gss/qop File containing valid QOP values .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Packages SUNWrsg, SUNWrsgx

SEE ALSO auth_destroy (3NSL), rpc (3NSL), rpc_gss_get_error (3NSL),
rpc_gss_get_mechanisms (3NSL), rpcsec_gss (3NSL), mech(4), qop (4),
attributes (5)

ONC+ Developer’s Guide

Network Working Group RFC 2078

NOTES Contexts may be destroyed normally, with auth_destroy() . See
auth_destroy (3NSL)

Currently, the GSS-API interface is not exposed. Therefore, use NULL for both
the options_req and options_ret parameters.

446 SunOS 5.8 Last modified 10 Nov 1999

Networking Services Library Functions rpc_gss_set_callback(3NSL)

NAME rpc_gss_set_callback – specify callback for context

SYNOPSIS #include <rpc/rpcsec_gss.h>
bool_t rpc_gss_set_callback (struct rpc_gss_callback_t *cb);

DESCRIPTION A server may want to specify a callback routine so that it knows when a context
gets first used. This user-defined callback may be specified through the
rpc_gss_set_callback() routine. The callback routine is invoked the first
time a context is used for data exchanges, after the context is established for
the specified program and version.

The user-defined callback routine should take the following form:

bool_t callback(struct svc_req *req, gss_cred_id_t deleg,
gss_ctx_id_t gss_context, rpc_gss_lock_t *lock, void **cookie);

PARAMETERS rpc_gss_set_callback() takes one argument: a pointer to a
rpc_gss_callback_t structure. This structure contains the RPC program and
version number as well as a pointer to a user-defined callback() routine. (For
a description of rpc_gss_callback_t and other RPCSEC_GSSdata types, see
the rpcsec_gss (3NSL) man page.)

The user-defined callback() routine itself takes the following arguments:
req Pointer to the received service request. svc_req is an

RPC structure containing information on the context of an
RPC invocation, such as program, version, and transport
information.

deleg Delegated credentials, if any. (See NOTES, below.)

gss_context GSS context (allows server to do GSS operations on the
context to test for acceptance criteria). (See NOTES, below.)

lock This parameter is used to enforce a particular QOP
and service for a session. This parameter points to a
RPCSEC_GSS rpc_gss_lock_t structure. When the
callback is invoked, the rpc_gss_lock_t.locked field
is set to TRUE, thus locking the context. A locked context
will reject all requests having different values for QOP or
service than those specified by the raw_cred field of the
rpc_gss_lock_t structure.

cookie A four-byte quantity that an application may use in any
manner it wants to — RPC does not interpret it. (For
example, the cookie could be a pointer or index to a structure
that represents a context initiator.) The cookie is returned,

Last modified 26 May 1998 SunOS 5.8 447

rpc_gss_set_callback(3NSL) Networking Services Library Functions

along with the caller’s credentials, with each invocation
of rpc_gss_getcred() .

RETURN VALUES rpc_gss_set_callback() returns TRUE if the use of the context is accepted;
false otherwise.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Packages SUNWrsg, SUNWrsgx

SEE ALSO rpc (3NSL), rpc_gss_getcred (3NSL), rpcsec_gss (3NSL), attributes (5)

ONC+ Developer’s Guide

Network Working Group RFC 2078

NOTES If a server does not specify a callback, all incoming contexts will be accepted.

Because the GSS-API is not currently exposed, the deleg and gss_context
arguments are mentioned for informational purposes only, and the user-defined
callback function may choose to do nothing with them.

448 SunOS 5.8 Last modified 26 May 1998

Networking Services Library Functions rpc_gss_set_defaults(3NSL)

NAME rpc_gss_set_defaults – change service, QOP for a session

SYNOPSIS #include <rpc/rpcsec_gss.h>
bool_t rpc_gss_set_defaults (AUTH *auth, rpc_gss_service_t service, char *qop);

DESCRIPTION rpc_gss_set_defaults() allows an application to change the service
(privacy, integrity, authentication, or none) and Quality of Protection (QOP) for a
transfer session. New values apply to the rest of the session (unless changed
again).

PARAMETERS Information on RPCSEC_GSSdata types for parameters may be found on the
rpcsec_gss (3NSL) man page.
auth An RPC authentication handle returned by

rpc_gss_seccreate()).

service An enum of type rpc_gss_service_t , representing one
of the following types of security service: authentication,
privacy, integrity, or none.

qop A string representing Quality of Protection. Valid strings
may be found in the file /etc/gss/qop or by using
rpc_gss_get_mech_info() .

RETURN VALUES rpc_gss_set_svc_name() returns TRUE if it is successful; otherwise, use
rpc_gss_get_error() to get the error associated with the failure.

FILES /etc/gss/qop File containing valid QOPs

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Packages SUNWrsg, SUNWrsgx

SEE ALSO rpc (3NSL), rpc_gss_get_mech_info (3NSL), rpcsec_gss (3NSL), qop (4),
attributes (5)

ONC+ Developer’s Guide

Network Working Group RFC 2078

Last modified 19 May 1998 SunOS 5.8 449

rpc_gss_set_svc_name(3NSL) Networking Services Library Functions

NAME rpc_gss_set_svc_name – send a principal name to a server

SYNOPSIS #include <rpc/rpcsec_gss.h>
bool_t rpc_gss_set_svc_name (char *principal, char *mechanism, u_int req_time, u_int
program, u_int version);

DESCRIPTION rpc_gss_set_svc_name() sets the name of a principal the server is to
represent. If a server is going to act as more than one principal, this procedure
can be invoked for every such principal.

PARAMETERS Information on RPCSEC_GSSdata types for parameters may be found on the
rpcsec_gss (3NSL) man page.
principal An ASCII string representing the server’s principal name,

given in the form of service@host.

mech An ASCII string representing the security mechanism in use.
Valid strings may be found in the /etc/gss/mech file, or
by using rpc_gss_get_mechanisms() .

req_time The time, in seconds, for which a credential should be
valid. Note that the req_time is a hint to the underlying
mechanism. The actual time that the credential will remain
valid is mechanism dependent. In the case of kerberos the
actual time will be GSS_C_INDEFINITE .

program The RPC program number for this service.

version The RPC version number for this service.

RETURN VALUES rpc_gss_set_svc_name() returns TRUEif it is successful; otherwise, use
rpc_gss_get_error() to get the error associated with the failure.

FILES /etc/gss/mech File containing valid security mechanisms

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Packages SUNWrsg, SUNWrsgx

SEE ALSO rpc (3NSL), rpc_gss_get_mechanisms (3NSL),
rpc_gss_get_principal_name (3NSL), rpcsec_gss (3NSL),
mech(4), attributes (5)

ONC+ Developer’s Guide

Linn, J., RFC 2078, Generic Security Service Application Program Interface,
Version 2, Network Working Group, January 1997.

450 SunOS 5.8 Last modified 9 Nov 1999

Networking Services Library Functions rpc_rac(3RAC)

NAME rpc_rac, rac_drop, rac_poll, rac_recv, rac_send – remote asynchronous calls

SYNOPSIS cc [flag ...] file ... −lrac −lnsl [library ...]
#include <rpc/rpc.h>
#include <rpc/rac.h>
void rac_drop (CLIENT *cl, void *h);

enum clnt_stat rac_poll (CLIENT *cl, void *h);

enum clnt_stat rac_recv (CLIENT *cl, void *h);

void *rac_send (CLIENT *cl, rpcproc_t proc, xdrproc_t xargs, void *argsp, xdrproc_t
xresults, void *resultsp, struct timeval timeout);

DESCRIPTION The remote asynchronous calls (RAC) package is a special interface to the RPC
library that allows messages to be sent using the RPC protocol without blocking
during the time between when the message is sent and the reply is received. To
RPC servers, RAC messages are indistinguishable from RPC messages.

A client establishes an RPC session in the usual way (see
rpc_clnt_create (3NSL)). A RAC message is sent using rac_send() . This
routine returns immediately, allowing the client to conduct other processing.
When the client wants to determine whether the returned value from the call
has been received, rac_poll() is used. rac_recv() is used to collect the
returned value; it can also be used to block while waiting for the returned value
to arrive. rac_drop() is used to inform the RPC library that the client is no
longer interested in the results of a particular RAC message.
rac_drop() rac_drop() should be called when the user is no longer

interested in the result of a rac_send() currently in
progress. No message to the server is generated by this call,
but any subsequent reply received for this handle will be
silently dropped. It also frees any space occupied by the
asynchronous call handle h .

After a call to rac_drop() the handle referred to by h is
invalid. It may no longer be used in any asynchronous
operation.

rac_poll() rac_poll() returns the status of the call currently in
progress on the <CLIENT, asynchronous handle> tuple
referred to by cl and h .

rac_poll() return values are:

RPC_SUCCESS A reply has been received
and is available for reading
by rac_recv() .

Last modified 21 Jul 1998 SunOS 5.8 451

rpc_rac(3RAC) Networking Services Library Functions

RPC_INPROGRESS No reply has been received.
The call referred to by the
given handle has not yet
timed out.

RPC_TIMEDOUT No reply has been received.
The call referred to by the
given handle has exceeded
the maximum timeout value
specified in rac_send() .

RPC_STALERACHANDLE Either the handle referred to
by h is invalid or no call is
currently in progress for the
given <CLIENT, asynchronous
handle> tuple.

RPC_CANTRECV Either the file descriptor
associated with the given
CLIENT handle is bad, or
an error occurred while
attempting to receive a packet.

RPC_SYSTEMERROR Space could not be allocated to
receive a packet.

On unreliable transports, a call to rac_poll() will trigger a
retransmission when necessary (that is, if a rac_send() is
in progress, no reply has been received, the per-call timeout
has expired, and the total timeout has not yet expired).

The return value for rac_poll() is independent of the RPC
return value in the reply packet. Although a combination
of clnt_control() ’s CLGET_FD request and poll (2)
may be used to extract the proper file descriptor and poll for
packets, rac_poll() is still useful since it will determine
whether a reply is available for a specific <CLIENT,
asynchronous handle> tuple.

rac_recv() rac_recv() retrieves the results of a previous
asynchronous RPC call, placing them in the buffer indicated
in the rac_send() call and using the XDR decode function
supplied there. It depends on the application to have
ensured that a reply is present (using rac_poll()). If
rac_recv() is called before a reply has been received, it
will block awaiting a reply.

452 SunOS 5.8 Last modified 21 Jul 1998

Networking Services Library Functions rpc_rac(3RAC)

All errors normally returned by the RPC client call functions
may be returned here. In addition:

RPC_STALERACHANDLE Either the handle referred to
by h is invalid or no call is
currently in progress for the
given <CLIENT, asynchronous
handle> tuple.

Additionally, if a packet is
present and its status is not
RPC_SUCCESS, it is possible
that the client credentials
need refreshing. In this case,
RPC_AUTHERROR is returned
and the client should attempt
to resend the call.

When a reply has been received, rac_recv() will invoke
the XDR decode procedure specified in the rac_send()
call. After a call to rac_recv() , the handle referred to by h
is invalid. It may no longer be used in any asynchronous
operation.

rac_send() rac_send() initiates (sends to the server) an RPC call to
the specified procedure. It does not await a reply from the
server. argsp is the address of the procedure’s arguments,
resultsp is the address in which to place the results, xargs
and xresults are XDR functions used to encode and decode
respectively. Note: resultsp must be a valid pointer when
rac_recv() is called. timeout should contain the total
amount of time the application is willing to wait for a reply.

Upon success, an opaque handle, known as the
asynchronous handle, is returned. This handle is to be used
in subsequent asynchronous calls to poll for the status of the
call (rac_poll()), receive the returned results of the call
(rac_recv()), or cancel the call (rac_drop()).

On failure, (void *) 0 is returned.

In case of failure, the application may retrieve the RPC
failure code by calling clnt_geterr() immediately after
a rac_send() failure (see rpc (3NSL)). Possible errors
include both transient problems (such as transport failures)
and permanent ones (such as XDR encoding failures).

Last modified 21 Jul 1998 SunOS 5.8 453

rpc_rac(3RAC) Networking Services Library Functions

Multiple rac_send s on the same client handle are
permitted, but may introduce unpredictable perturbations to
the current timeout and retry model used by the RPC library.

The interface imposes a limit on the amount of time a call
may be in progress before it is considered to have failed.
This method was chosen over limitations on the number of
retries because of a desire for transport independence.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO poll (2) , rpc (3NSL) , rpc_clnt_create (3NSL) , rpc_clnt_calls (3NSL) ,
xdr (3NSL) , attributes (5)

WARNINGS The RAC interface is not the recommended interface for having multiple RPC
requests outstanding. The preferred method of accomplishing this in the Solaris
environment is to use synchronous RPC calls with threads. The RAC interface
is provided as a service to developers interested in porting RPC applications
to Solaris 2.0. Use of this interface will degrade the performance of normal
synchronous RPC calls (see rpc_clnt_calls (3NSL)). For these reasons,
use of this interface is disparaged.

The library librac must be linked before libnsl to use RAC. If the libraries
are not linked in the correct order, then the results are indeterminate.

NOTES These interfaces are unsafe in multithreaded applications. Unsafe interfaces
should be called only from the main thread.

454 SunOS 5.8 Last modified 21 Jul 1998

Networking Services Library Functions rpcsec_gss(3NSL)

NAME rpcsec_gss – security flavor incorporating

SYNOPSIS cc [flag...] file...– lnsl [library...]#include <rpc/rpcsec_gss.h>
(void);

DESCRIPTION RPCSEC_GSSis a security flavor which sits "on top" of the GSS-API (Generic
Security Service API) for network transmissions. Applications using
RPCSEC_GSScan take advantage of GSS-API security features; moreover, they
can use any security mechanism (such as RSA public key or Kerberos) that
works with the GSS-API.

The GSS-API offers two security services beyond the traditional authentication
services (AUTH_DES, AUTH_SYS, and AUTH_KERB): integrity and privacy.
With integrity, the system uses cryptographic checksumming to ensure the
authenticity of a message (authenticity of originator, recipient, and data);
privacy provides additional security by encrypting data. Applications using
RPCSEC_GSSspecify which service they wish to use. Type of security service
is mechanism-independent.

Before exchanging data with a peer, an application must establish a context
for the exchange. RPCSEC_GSSprovides a single function for this purpose,
rpc_gss_seccreate() , which allows the application to specify the security
mechanism, Quality of Protection (QOP), and type of service at context
creation. (The QOP parameter sets the cryptographic algorithms to be used
with integrity or privacy, and is mechanism-dependent.) Once a context is
established, applications can reset the QOP and type of service for each data
unit exchanged, if desired.

Valid mechanisms and QOPs may be obtained from configuration files or from
the name service. Each mechanism has a default QOP.

Contexts are destroyed with the usual RPC auth_destroy() call.
Data Structures Some of the data structures used by the RPCSEC_GSSpackage are shown below.

rpc_gss_service_t

This enum defines the types of security services the context may have.
rpc_gss_seccreate() takes this as one argument when setting the service
type for a session.

typedef enum {
rpc_gss_svc_default = 0,
rpc_gss_svc_none = 1,
rpc_gss_svc_integrity = 2,
rpc_gss_svc_privacy = 3

} rpc_gss_service_t ;

rpc_gss_options_req_t

Last modified 06 May 1998 SunOS 5.8 455

rpcsec_gss(3NSL) Networking Services Library Functions

Structure containing options passed directly through to the GSS-API.
rpc_gss_seccreate() takes this as an argument when creating a context.
(Because the GSS-API is not currently exposed, this data type is mentioned for
informational purposes only. The programmer should set this to NULL.

typedef struct {
int req_flags; GSS request bits
int time_req; requested credential lifetime
gss_cred_id_t my_cred; GSS credential struct
gss_channel_bindings_t;
input_channel_bindings;

} rpc_gss_options_req_t ;

rpc_gss_OID

This data type is used by in-kernel RPC routines, and thus is mentioned here for
informational purposes only.

typedef struct {
u_int length;
void *elements

} *rpc_gss_OID;

rpc_gss_options_ret_t

Structure containing GSS-API options returned to the calling function,
rpc_gss_seccreate() . MAX_GSS_MECHis defined as 128. (Because the
GSS-API is not currently exposed, this data type is mentioned for informational
purposes only. Set this to NULL in order to use default values.)

typedef struct {
int major_status;
int minor_status;
u_int rpcsec_version vers. of RPCSEC_GSS
int ret_flags
int time_req
gss_ctx_id_t gss_context;
char actual_mechanism[MAX_GSS_MECH]; mechanism used

} rpc_gss_options_ret_t;

rpc_gss_principal_t

The (mechanism-dependent, opaque) client principal type. Used as an argument
to the rpc_gss_get_principal_name() function, and in the gsscred table.
Also referenced by the rpc_gss_rawcred_t structure for raw credentials
(see below).

typedef struct {
int len;
char name[1];

456 SunOS 5.8 Last modified 06 May 1998

Networking Services Library Functions rpcsec_gss(3NSL)

} *rpc_gss_principal_t;

rpc_gss_rawcred_t

Structure for raw credentials. Used by rpc_gss_getcred() and
rpc_gss_set_callback() .

typedef struct {
u_int version; RPC version #
char *mechanism; security mechanism
char *qop; Quality of Protection
rpc_gss_principal_t client_principal; client name
char *svc_principal; server name
rpc_gss_service_t service; service (integrity, etc.)

rpc_gss_rawcred_t;

rpc_gss_ucred_t

Structure for UNIX credentials. Used by rpc_gss_getcred() as an alternative
to rpc_gss_rawcred_t .

typedef struct {
uid_t uid; user ID
gid_t gid; group ID
short gidlen;
git_t *gidlist; list of groups

} rpc_gss_ucred_t;

rpc_gss_callback_t

Callback structure used by rpc_gss_set_callback() .
typedef struct {

u_int program; RPC program #
u_int version; RPC version #
bool_t (*callback)(); user-defined callback routine

} rpc_gss_callback_t;

rpc_gss_lock_t

Structure used by a callback routine to enforce a particular QOP and service for a
session. The locked field is normally set to FALSE; the server sets it to TRUE
in order to lock the session. (A locked context will reject all requests having

Last modified 06 May 1998 SunOS 5.8 457

rpcsec_gss(3NSL) Networking Services Library Functions

different QOP and service values than those found in the raw_cred structure.)
For more information, see the rpc_gss_set_callback (3NSL) man page.

typedef struct {
bool_t locked;
rpc_gss_rawcred_t *raw_cred;

} rpc_gss_lock_t;

rpc_gss_error_t

Structure used by rpc_gss_get_error() to fetch an error code when a
RPCSEC_GSSroutine fails.

typedef struct {
int rpc_gss_error;
int system_error; same as errno

} rpc_gss_error_t;

Index to Routines The following lists RPCSEC_GSSroutines and the manual reference pages on
which they are described. An (S) indicates it is a server-side function:
Routine (Manual Page) Description

rpc_gss_seccreate (3NSL) Create a secure RPCSEC_GSS
context

rpc_gss_set_defaults (3NSL) Switch service, QOP for a
session

rpc_gss_max_data_length (3NSL) Get maximum data length
allowed by transport

rpc_gss_set_svc_name (3NSL) Set server’s principal name (S)

rpc_gss_getcred (3NSL) Get credentials of caller (S)

rpc_gss_set_callback (3NSL) Specify callback to see context
use (S)

rpc_gss_get_principal_name (3NSL) Get client principal name (S)

rpc_gss_svc_max_data_length (3NSL) Get maximum data length
allowed by transport (S)

rpc_gss_get_error (3NSL) Get error number

rpc_gss_get_mechanisms (3NSL) Get valid mechanism strings

rpc_gss_get_mech_info (3NSL) Get valid QOP strings, current
service

rpc_gss_get_versions (3NSL) Get supported RPCSEC_GSS
versions

458 SunOS 5.8 Last modified 06 May 1998

Networking Services Library Functions rpcsec_gss(3NSL)

rpc_gss_is_installed (3NSL) Checks if a mechanism is
installed

rpc_gss_mech_to_oid (3NSL) Maps ASCII mechanism to OID
representation

rpc_gss_qop_to_num (3NSL) Maps ASCII QOP, mechansim
to u_int number

Utilities The gsscred utility manages the gsscred table, which contains mappings of
principal names between network and local credentials. See gsscred (1M).

FILES /etc/gss/mech List of installed mechanisms

/etc/gss/qop List of valid QOPs

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Packages SUNWrsg, SUNWrsgx

SEE ALSO gsscred (1M), rpc (3NSL), rpc_clnt_auth (3NSL), xdr (3NSL),
attributes (5), environ (5)

ONC+ Developer’s Guide

Network Working Group RFC 2078

Last modified 06 May 1998 SunOS 5.8 459

rpc_soc(3NSL) Networking Services Library Functions

NAME rpc_soc, authdes_create, authunix_create, authunix_create_default,
callrpc, clnt_broadcast, clntraw_create, clnttcp_create, clntudp_bufcreate,
clntudp_create, get_myaddress, getrpcport, pmap_getmaps, pmap_getport,
pmap_rmtcall, pmap_set, pmap_unset, registerrpc, svc_fds, svc_getcaller,
svc_getreq, svc_register, svc_unregister, svcfd_create, svcraw_create,
svctcp_create, svcudp_bufcreate, svcudp_create, xdr_authunix_parms – obsolete
library routines for RPC

DESCRIPTION RPC routines allow C programs to make procedure calls on other machines
across the network. First, the client calls a procedure to send a request to the
server. Upon receipt of the request, the server calls a dispatch routine to perform
the requested service, and then sends back a reply. Finally, the procedure call
returns to the client.

The routines described in this manual page have been superseded by other
routines. The preferred routine is given after the description of the routine. New
programs should use the preferred routines, as support for the older interfaces
may be dropped in future releases.

File Descriptors Transport independent RPC uses TLI as its transport interface instead of sockets.

Some of the routines described in this section (such as clnttcp_create())
take a pointer to a file descriptor as one of the parameters. If the user wants
the file descriptor to be a socket, then the application will have to be linked
with both librpcsoc and libnsl . If the user passed RPC_ANYSOCKas the
file descriptor, and the application is linked with libnsl only, then the routine
will return a TLI file descriptor and not a socket.

Routines The following routines require that the header <rpc/rpc.h> be included. The
symbol PORTMAPshould be defined so that the appropriate function declarations
for the old interfaces are included through the header files.

#define PORTMAP
#include <rpc/rpc.h>

AUTH *authdes_create(char *name , uint_t window , struct sockaddr_in *syncaddr
, des_block *ckey);

authdes_create() is the first of two routines which interface to the RPC
secure authentication system, known as DES authentication. The second is
authdes_getucred() , below. Note: the keyserver daemon keyserv (1M)
must be running for the DES authentication system to work.

authdes_create() , used on the client side, returns an authentication
handle that will enable the use of the secure authentication system. The first
parameter name is the network name, or netname , of the owner of the server
process. This field usually represents a hostname derived from the utility
routine host2netname() , but could also represent a user name using
user2netname() (see secure_rpc (3NSL)). The second field is window

460 SunOS 5.8 Last modified 20 Feb 1998

Networking Services Library Functions rpc_soc(3NSL)

on the validity of the client credential, given in seconds. A small window
is more secure than a large one, but choosing too small of a window will
increase the frequency of resynchronizations because of clock drift. The third
parameter syncaddr is optional. If it is NULL, then the authentication system
will assume that the local clock is always in sync with the server’s clock,
and will not attempt resynchronizations. If an address is supplied, however,
then the system will use the address for consulting the remote time service
whenever resynchronization is required. This parameter is usually the
address of the RPC server itself. The final parameter ckey is also optional.
If it is NULL, then the authentication system will generate a random DES
key to be used for the encryption of credentials. If it is supplied, however,
then it will be used instead.

Warning: this routine exists for backward compatibility only, and is
obsoleted by authdes_seccreate() (see secure_rpc (3NSL)).

AUTH *authunix_create(char *host , uid_t uid , gid_t gid , int grouplen , gid_t
*gidlistp);

Create and return an RPC authentication handle that contains .UX
authentication information. The parameter host is the name of the machine
on which the information was created; uid is the user’s user ID; gid is the
user’s current group ID; grouplen and gidlistp refer to a counted array of
groups to which the user belongs.

Warning: it is not very difficult to impersonate a user.

Warning: this routine exists for backward compatibility only, and is
obsoleted by authsys_create() (see rpc_clnt_auth (3NSL)).

AUTH *authunix_create_default(void)
Call authunix_create() with the appropriate parameters.

Warning: this routine exists for backward compatibility only, and is
obsoleted by authsys_create_default() (see rpc_clnt_auth (3NSL)
).

callrpc(char *host , rpcprog_t prognum , rpcvers_t versnum , rpcproc_t procnum ,
xdrproc_t inproc , char *in , xdrproc_t outproc , char *out);

Call the remote procedure associated with prognum , versnum , and
procnum on the machine, host . The parameter inproc is used to encode the
procedure’s parameters, and outproc is used to decode the procedure’s
results; in is the address of the procedure’s argument, and out is the address
of where to place the result(s). This routine returns 0 if it succeeds, or
the value of enum clnt_stat cast to an integer if it fails. The routine
clnt_perrno() (see rpc_clnt_calls (3NSL)) is handy for translating
failure statuses into messages.

Last modified 20 Feb 1998 SunOS 5.8 461

rpc_soc(3NSL) Networking Services Library Functions

Warning: you do not have control of timeouts or authentication using this
routine. This routine exists for backward compatibility only, and is obsoleted
by rpc_call() (see rpc_clnt_calls (3NSL)).

enum clnt_stat clnt_broadcast(rpcprog_t prognum , rpcvers_t versnum ,
rpcproc_t procnum , xdrproc_t inproc , char *in , xdrproc_t outproc , char *out ,
resultproc_t eachresult);

Like callrpc() , except the call message is broadcast to all locally
connected broadcast nets. Each time the caller receives a response, this
routine calls eachresult() , whose form is:

eachresult(char * out , struct sockaddr_in * addr);

where out is the same as out passed to clnt_broadcast() , except
that the remote procedure’s output is decoded there; addr points to the
address of the machine that sent the results. If eachresult() returns
0 clnt_broadcast() waits for more replies; otherwise it returns with
appropriate status. If eachresult() is NULL, clnt_broadcast()
returns without waiting for any replies.

Warning: broadcast packets are limited in size to the maximum transfer
unit of the transports involved. For Ethernet, the callers argument size is
approximately 1500 bytes. Since the call message is sent to all connected
networks, it may potentially lead to broadcast storms. clnt_broadcast()
uses SB AUTH_SYS credentials by default (see rpc_clnt_auth (3NSL)).

Warning: this routine exists for backward compatibility only, and is
obsoleted by rpc_broadcast() (see rpc_clnt_calls (3NSL)).

CLIENT *clntraw_create(rpcprog_t prognum , rpcvers_t versnum);
This routine creates an internal, memory-based RPC client for the remote
program prognum , version versnum . The transport used to pass messages
to the service is actually a buffer within the process’s address space, so
the corresponding RPC server should live in the same address space; see
svcraw_create() . This allows simulation of RPC and acquisition of
RPC overheads, such as round trip times, without any kernel interference.
This routine returns NULL if it fails.

Warning: this routine exists for backward compatibility only, and has the
same functionality as clnt_raw_create() (see rpc_clnt_create (3NSL)
), which obsoletes it.

CLIENT *clnttcp_create(struct sockaddr_in *addr , rpcprog_t prognum , rpcvers_t
versnum , int *fdp , uint_t sendsz , uint_t recvsz);

This routine creates an RPC client for the remote program prognum , version
versnum ; the client uses TCP/IP as a transport. The remote program is

462 SunOS 5.8 Last modified 20 Feb 1998

Networking Services Library Functions rpc_soc(3NSL)

located at Internet address addr . If addr => sin_port is 0 ,, then it is set
to the actual port that the remote program is listening on (the remote
rpcbind service is consulted for this information). The parameter *fdp is a
file descriptor, which may be open and bound; if it is RPC_ANYSOCK, then
this routine opens a new one and sets *fdp . Refer to the File Descriptor
section for more information. Since TCP-based RPC uses buffered I/O,
the user may specify the size of the send and receive buffers with the
parameters sendsz and recvsz ; values of 0 choose suitable defaults. This
routine returns NULL if it fails.

Warning: this routine exists for backward compatibility only.
clnt_create() , clnt_tli_create() , or clnt_vc_create() (see
rpc_clnt_create (3NSL)) should be used instead.

CLIENT *clntudp_bufcreate(struct sockaddr_in * addr , rpcprog_t
prognum , rpcvers_t versnum , struct timeval wait , int *fdp, uint_t sendsz , uint_t
recvsz);

Create a client handle for the remote program prognum , on versnum ; the
client uses UDP/IP as the transport. The remote program is located at the
Internet address addr . If addr => sin_port is 0 , it is set to port on which the
remote program is listening on (the remote rpcbind service is consulted for
this information). The parameter *fdp is a file descriptor, which may be open
and bound; if it is RPC_ANYSOCK, then this routine opens a new one and
sets *fdp . Refer to the File Descriptor section for more information. The
UDP transport resends the call message in intervals of wait time until a
response is received or until the call times out. The total time for the call
to time out is specified by clnt_call() (see rpc_clnt_calls (3NSL)
). If successful it returns a client handle, otherwise it returns NULL.
The error can be printed using the clnt_pcreateerror() (see
rpc_clnt_create (3NSL)) routine.

The user can specify the maximum packet size for sending and receiving by
using sendsz and recvsz arguments for UDP-based RPC messages.

Warning: if addr => sin_port is 0 and the requested version number
versnum is not registered with the remote portmap service, it returns a
handle if at least a version number for the given program number is
registered. The version mismatch is discovered by a clnt_call() later
(see rpc_clnt_calls (3NSL)).

Warning: this routine exists for backward compatibility
only. clnt_tli_create() or clnt_dg_create() (see
rpc_clnt_create (3NSL)) should be used instead.

CLIENT *clntudp_create(struct sockaddr_in *addr , rpcprog_t prognum , rpcvers_t
versnum , struct timeval wait , int *fdp);

Last modified 20 Feb 1998 SunOS 5.8 463

rpc_soc(3NSL) Networking Services Library Functions

This routine creates an RPC client handle for the remote program prognum
, version versnum ; the client uses UDP/IP as a transport. The remote
program is located at Internet address addr . If addr => sin_port is 0 , then
it is set to actual port that the remote program is listening on (the remote
rpcbind service is consulted for this information). The parameter *fdp is a
file descriptor, which may be open and bound; if it is RPC_ANYSOCK, then
this routine opens a new one and sets *fdp . Refer to the File Descriptor
section for more information. The UDP transport resends the call message
in intervals of wait time until a response is received or until the call times
out. The total time for the call to time out is specified by clnt_call() (see
rpc_clnt_calls (3NSL)). clntudp_create() returns a client handle
on success, otherwise it returns NULL. The error can be printed using the
clnt_pcreateerror() (see rpc_clnt_create (3NSL)) routine.

Warning: since UDP-based RPC messages can only hold up to 8 Kbytes of
encoded data, this transport cannot be used for procedures that take large
arguments or return huge results.

Warning: this routine exists for backward compatibility only.
clnt_create() , clnt_tli_create() , or clnt_dg_create() (see
rpc_clnt_create (3NSL)) should be used instead.

void get_myaddress(struct sockaddr_in *addr);
Places the local system’s IP address into *addr , without consulting the
library routines that deal with /etc/hosts . The port number is always
set to htons(PMAPPORT) .

Warning: this routine is only intended for use with the RPC library. It
returns the local system’s address in a form compatible with the RPC library,
and should not be taken as the system’s actual IP address. In fact, the *addr
buffer’s host address part is actually zeroed. This address may have only
local significance and should NOTbe assumed to be an address that can be
used to connect to the local system by remote systems or processes.

Warning: this routine remains for backward compatibility only. The routine
netdir_getbyname() (see netdir (3NSL)) should be used with the
name HOST_SELFto retrieve the local system’s network address as a netbuf
structure.

u_short getrpcport(char *host , rpcprog_t prognum , rpcvers_t versnum , rpcprot_t
proto);

getrpcport() returns the port number for the version versnum of the RPC
program prognum running on host and using protocol proto . getrpcport()
returns 0 if the RPC system failed to contact the remote portmap service, the
program associated with prognum is not registered, or there is no mapping
between the program and a port.

464 SunOS 5.8 Last modified 20 Feb 1998

Networking Services Library Functions rpc_soc(3NSL)

Warning: This routine exists for backward compatibility only. Enhanced
functionality is provided by rpcb_getaddr() (see rpcbind (3NSL)).

struct pmaplist *pmap_getmaps(struct sockaddr_in *addr);
A user interface to the portmap service, which returns a list of the current
RPC program-to-port mappings on the host located at IP address addr . This
routine can return NULL . The command ‘rpcinfo −p ’ uses this routine.

Warning: this routine exists for backward compatibility only, enhanced
functionality is provided by rpcb_getmaps() (see rpcbind (3NSL)).

u_short pmap_getport(struct sockaddr_in *addr , rpcprog_t prognum , rpcvers_t
versnum , rpcprot_t protocol);

A user interface to the portmap service, which returns the port number on
which waits a service that supports program prognum , version versnum ,
and speaks the transport protocol associated with protocol . The value of
protocol is most likely IPPROTO_UDPor IPPROTO_TCP. A return value of 0
means that the mapping does not exist or that the RPC system failured to
contact the remote portmap service. In the latter case, the global variable
rpc_createerr contains the RPC status.

Warning: this routine exists for backward compatibility only, enhanced
functionality is provided by rpcb_getaddr() (see rpcbind (3NSL)).

enum clnt_stat pmap_rmtcall(struct sockaddr_in *addr , rpcprog_t prognum ,
rpcvers_t versnum , rpcproc_t procnum , caddr_t in , xdrproct_t inproc , caddr_t
out , xdrproct_t outproc , struct timeval tout , rpcport_t *portp);

Request that the portmap on the host at IP address *addr make an RPC
on the behalf of the caller to a procedure on that host. *portp is modified
to the program’s port number if the procedure succeeds. The definitions
of other parameters are discussed in callrpc() and clnt_call() (see
rpc_clnt_calls (3NSL)).

Note: this procedure is only available for the UDP transport.

Warning: if the requested remote procedure is not registered with the remote
portmap then no error response is returned and the call times out. Also,
no authentication is done.

Warning: this routine exists for backward compatibility only, enhanced
functionality is provided by rpcb_rmtcall() (see rpcbind (3NSL)).

bool_t pmap_set(rpcprog_t prognum , rpcvers_t versnum , rpcprot_t protocol ,
u_short port);

A user interface to the portmap service, that establishes a mapping between
the triple [prognum , versnum , protocol] and port on the machine’s portmap
service. The value of protocol may be IPPROTO_UDPor IPPROTO_TCP.
Formerly, the routine failed if the requested port was found to be in use.

Last modified 20 Feb 1998 SunOS 5.8 465

rpc_soc(3NSL) Networking Services Library Functions

Now, the routine only fails if it finds that port is still bound. If port is not
bound, the routine completes the requested registration. This routine returns 1
if it succeeds, 0 otherwise. Automatically done by svc_register() .

Warning: this routine exists for backward compatibility only, enhanced
functionality is provided by rpcb_set() (see rpcbind (3NSL)).

bool_t pmap_unset(rpcprog_t prognum , rpcvers_t versnum);
A user interface to the portmap service, which destroys all mapping
between the triple [prognum , versnum , all-protocols] and port on the
machine’s portmap service. This routine returns one if it succeeds, 0
otherwise.

Warning: this routine exists for backward compatibility only, enhanced
functionality is provided by rpcb_unset() (see rpcbind (3NSL)).

int svc_fds;
A global variable reflecting the RPC service side’s read file descriptor bit
mask; it is suitable as a parameter to the select() call. This is only of
interest if a service implementor does not call svc_run() , but rather
does his own asynchronous event processing. This variable is read-only
(do not pass its address to select() !), yet it may change after calls
to svc_getreq() or any creation routines. Similar to svc_fdset , but
limited to 32 descriptors.

Warning: this interface is obsoleted by svc_fdset (see
rpc_svc_calls (3NSL)).

struct sockaddr_in * svc_getcaller(SVCXPRT *xprt);
This routine returns the network address, represented as a struct
sockaddr_in , of the caller of a procedure associated with the RPC service
transport handle, xprt .

Warning: this routine exists for backward compatibility only, and is obsolete.
The preferred interface is svc_getrpccaller() (see rpc_svc_reg (3NSL)
), which returns the address as a struct netbuf .

void svc_getreq(int rdfds);
This routine is only of interest if a service implementor does not call
svc_run() , but instead implements custom asynchronous event
processing. It is called when the select() call has determined that an
RPC request has arrived on some RPC file descriptors; rdfds is the resultant
read file descriptor bit mask. The routine returns when all file descriptors
associated with the value of rdfds have been serviced. This routine is similar
to svc_getreqset() but is limited to 32 descriptors.

Warning: this interface is obsoleted by svc_getreqset().

466 SunOS 5.8 Last modified 20 Feb 1998

Networking Services Library Functions rpc_soc(3NSL)

SVCXPRT *svcfd_create(int fd , uint_t sendsz , uint_t recvsz);
Create a service on top of any open and bound descriptor. Typically, this
descriptor is a connected file descriptor for a stream protocol. Refer to the
File Descriptor section for more information. sendsz and recvsz indicate
sizes for the send and receive buffers. If they are 0 , a reasonable default
is chosen.

Warning: this interface is obsoleted by svc_fd_create() (see
rpc_svc_create (3NSL)).

SVCXPRT *svcraw_create(void);
This routine creates an internal, memory-based RPC service transport,
to which it returns a pointer. The transport is really a buffer within the
process’s address space, so the corresponding RPC client should live in
the same address space; see clntraw_create() . This routine allows
simulation of RPC and acquisition of RPC overheads (such as round trip
times), without any kernel interference. This routine returns NULL if it fails.

Warning: this routine exists for backward compatibility only, and has the
same functionality of svc_raw_create() (see rpc_svc_create (3NSL)),
which obsoletes it.

SVCXPRT *svctcp_create(int fd , uint_t sendsz , uint_t recvsz);
This routine creates a TCP/IP-based RPC service transport, to which it
returns a pointer. The transport is associated with the file descriptor fd ,
which may be RPC_ANYSOCK, in which case a new file descriptor is created.
If the file descriptor is not bound to a local TCP port, then this routine
binds it to an arbitrary port. Refer to the File Descriptor section for
more information. Upon completion, xprt => xp_fd is the transport’s file
descriptor, and xprt => xp_port is the transport’s port number. This routine
returns NULL if it fails. Since TCP-based RPC uses buffered I/O, users may
specify the size of buffers; values of 0 choose suitable defaults.

Warning: this routine exists for backward compatibility only.
svc_create() , svc_tli_create() , or svc_vc_create() (see
rpc_svc_create (3NSL)) should be used instead.

SVCXPRT *svcudp_bufcreate(int fd , uint_t sendsz , uint_t recvsz);
This routine creates a UDP/IP-based RPC service transport, to which it
returns a pointer. The transport is associated with the file descriptor fd .
If fd is RPC_ANYSOCK ,then a new file descriptor is created. If the file
descriptor is not bound to a local UDP port, then this routine binds it to
an arbitrary port. Upon completion, xprt => xp_fd is the transport’s file
descriptor, and xprt => xp_port is the transport’s port number. Refer to
the File Descriptor section for more information. This routine returns
NULL if it fails.

Last modified 20 Feb 1998 SunOS 5.8 467

rpc_soc(3NSL) Networking Services Library Functions

The user specifies the maximum packet size for sending and receiving
UDP-based RPC messages by using the sendsz and recvsz parameters.

Warning: this routine exists for backward compatibility
only. svc_tli_create() , or svc_dg_create() (see
rpc_svc_create (3NSL)) should be used instead.

SVCXPRT *svcudp_create(int fd);
This routine creates a UDP/IP-based RPC service transport, to which it
returns a pointer. The transport is associated with the file descriptor fd
, which may be RPC_ANYSOCK ,in which case a new file descriptor is
created. If the file descriptor is not bound to a local UDP port, then this
routine binds it to an arbitrary port. Upon completion, xprt => xp_fd is the
transport’s file descriptor, and xprt => xp_port is the transport’s port number.
This routine returns NULL if it fails.

Warning: since UDP-based RPC messages can only hold up to 8 Kbytes of
encoded data, this transport cannot be used for procedures that take large
arguments or return huge results.

Warning: this routine exists for backward compatibility only.
svc_create() , svc_tli_create() , or svc_dg_create() (see
rpc_svc_create (3NSL)) should be used instead.

registerrpc(rpcprog_t prognum , rpcvers_t versnum , rpcproc_t procnum , char
*(*procname)(), xdrproc_t inproc , xdrproc_t outproc);

Register program prognum , procedure procname , and version versnum with
the RPC service package. If a request arrives for program prognum , version
versnum , and procedure procnum , procname is called with a pointer to its
parameter(s); procname should return a pointer to its static result(s); inproc is
used to decode the parameters while outproc is used to encode the results.
This routine returns 0 if the registration succeeded, -1 otherwise.

svc_run() must be called after all the services are registered.

Warning: this routine exists for backward compatibility only, and is
obsoleted by rpc_reg() .

bool_t svc_register(SVCXPRT *xprt , rpcprog_t prognum , rpcvers_t versnum ,
void (*dispatch)(), int protocol);

Associates prognum and versnum with the service dispatch procedure,
dispatch . If protocol is 0 , the service is not registered with the portmap
service. If protocol is non-zero, then a mapping of the triple [prognum ,
versnum , protocol] to xprt => xp_port is established with the local portmap
service (generally protocol is 0 , IPPROTO_UDPor IPPROTO_TCP). The
procedure dispatch has the following form:

468 SunOS 5.8 Last modified 20 Feb 1998

Networking Services Library Functions rpc_soc(3NSL)

dispatch(struct svc_req * request , SVCXPRT * xprt);

The svc_register() routine returns one if it succeeds, and 0 otherwise.

Warning: this routine exists for backward compatibility only; enhanced
functionality is provided by svc_reg() .

void svc_unregister(rpcprog_t prognum , rpcvers_t versnum);
Remove all mapping of the double [prognum , versnum] to dispatch routines,
and of the triple [prognum , versnum , all-protocols] to port number from
portmap .

Warning: this routine exists for backward compatibility, enhanced
functionality is provided by svc_unreg() .

bool_t xdr_authunix_parms(XDR *xdrs , struct authunix_parms *aupp);
Used for describing UNIX credentials. This routine is useful for users who
wish to generate these credentials without using the RPC authentication
package.

Warning: this routine exists for backward compatibility only, and is
obsoleted by xdr_authsys_parms() (see rpc_xdr (3NSL)).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO keyserv (1M) , rpcbind (1M) , rpcinfo (1M) , netdir (3NSL) ,
netdir_getbyname (3NSL) , rpc (3NSL) , rpc_clnt_auth (3NSL)
, rpc_clnt_calls (3NSL) , rpc_clnt_create (3NSL) ,
rpc_svc_calls (3NSL) , rpc_svc_create (3NSL) , rpc_svc_err (3NSL) ,
rpc_svc_reg (3NSL) , rpc_xdr (3NSL) , rpcbind (3NSL) , secure_rpc (3NSL)
, select (3C) , xdr_authsys_parms (3NSL) , libnsl (3LIB) , librpcsoc (3LIB)
, attributes (5)

NOTES These interfaces are unsafe in multithreaded applications. Unsafe interfaces
should be called only from the main thread.

Last modified 20 Feb 1998 SunOS 5.8 469

rpc_svc_calls(3NSL) Networking Services Library Functions

NAME rpc_svc_calls, svc_dg_enablecache, svc_done, svc_exit, svc_fdset,
svc_freeargs, svc_getargs, svc_getreq_common, svc_getreq_poll, svc_getreqset,
svc_getrpccaller, svc_max_pollfd, svc_pollfd, svc_run, svc_sendreply – library
routines for RPC servers

DESCRIPTION These routines are part of the RPC library which allows C language programs to
make procedure calls on other machines across the network.

These routines are associated with the server side of the RPC mechanism. Some
of them are called by the server side dispatch function, while others (such as
svc_run()) are called when the server is initiated.

In the current implementation, the service transport handle SVCXPRTcontains a
single data area for decoding arguments and encoding results. Therefore, this
structure cannot be freely shared between threads that call functions that do
this. However, when a server is operating in the Automatic or User MT modes,
a copy of this structure is passed to the service dispatch procedure in order to
enable concurrent request processing. Under these circumstances, some routines
which would otherwise be unsafe, become safe. These are marked as such. Also
marked are routines that are unsafe for MT applications, and are not to be
used by such applications.

Routines #include <rpc/rpc.h>

int svc_dg_enablecache(SVCXPRT *xprt , const uint_t cache_size);
This function allocates a duplicate request cache for the service endpoint
xprt , large enough to hold cache_size entries. Once enabled, there is no way
to disable caching. This routine returns 1 if space necessary for a cache of
the given size was successfully allocated, and 0 otherwise.

This function is safe in MT applications.

int svc_done(SVCXPRT *xprt);
This function frees resources allocated to service a client request directed to
the service endpoint xprt . This call pertains only to servers executing in the
User MT mode. In the User MT mode, service procedures must invoke this
call before returning, either after a client request has been serviced, or after
an error or abnormal condition that prevents a reply from being sent. After
svc_done () is invoked, the service endpoint xprt should not be referenced
by the service procedure. Server multithreading modes and parameters can
be set using the rpc_control () call.

This function is safe in MT applications. It will have no effect if invoked in
modes other than the User MT mode.

void svc_exit(void);

470 SunOS 5.8 Last modified 20 Feb 1998

Networking Services Library Functions rpc_svc_calls(3NSL)

This function when called by any of the RPC server procedure or otherwise,
destroys all services registered by the server and causes svc_run() to
return.

If RPC server activity is to be resumed, services must be reregistered
with the RPC library either through one of the rpc_svc_create (3NSL)
functions, or using xprt_register (3NSL) .

svc_exit () has global scope and ends all RPC server activity.

fd_set svc_fdset;
A global variable reflecting the RPC server’s read file descriptor bit mask.
This is only of interest if service implementors do not call svc_run()
, but rather do their own asynchronous event processing. This variable
is read-only, and it may change after calls to svc_getreqset() or any
creation routines. Do not pass its address to select (3C) ! Instead, pass the
address of a copy.

MT applications executing in either the Automatic MT mode or the user MT
mode should never read this variable. They should use auxiliary threads to
do asynchronous event processing.

svc_fdset is limited to 1024 file descriptors and is considered obsolete.
Use of svc_pollfd is recommended instead.

pollfd_t *svc_pollfd;
A global variable pointing to an array of pollfd_t structures reflecting
the RPC server’s read file descriptor array. This is only of interest if service
service implementors do not call svc_run() but rather do their own
asynchronous event processing. This variable is read-only, and it may
change after calls to svc_getreg_poll() or any creation routines. Do no
pass its address to poll (2) ! Instead, pass the address of a copy.

By default, svc_pollfd is limited to 1024 entries. Use
rpc_control (3NSL) to remove this limitation.

MT applications executing in either the Automatic MT mode or the user MT
mode should never be read this variable. They should use auxiliary threads
to do asynchronous event processing.

int svc_max_pollfd;
A global variable containing the maximum length of the svc_pollfd
array. This variable is read-only, and it may change after calls to
svc_getreg_poll() or any creation routines.

bool_t svc_freeargs(const SVCXPRT *xprt , const xdrproc_t inproc , caddr_t in);
A function macro that frees any data allocated by the RPC/XDRsystem when
it decoded the arguments to a service procedure using svc_getargs() .

Last modified 20 Feb 1998 SunOS 5.8 471

rpc_svc_calls(3NSL) Networking Services Library Functions

This routine returns TRUEif the results were successfully freed, and FALSE
otherwise.

This function macro is safe in MT applications utilizing the Automatic or
User MT modes.

bool_t svc_getargs(const SVCXPRT *xprt , const xdrproc_t inproc , caddr_t in);
A function macro that decodes the arguments of an RPC request associated
with the RPC service transport handle xprt . The parameter in is the address
where the arguments will be placed; inproc is the XDR routine used to
decode the arguments. This routine returns TRUEif decoding succeeds,
and FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or
User MT modes.

void svc_getreq_common(const int fd);
This routine is called to handle a request on the given file descriptor.

void svc_getreq_poll(struct pollfd *pfdp , const int pollretval);
This routine is only of interest if a service implementor does not call
svc_run() , but instead implements custom asynchronous event
processing. It is called when poll (2) has determined that an RPC request
has arrived on some RPC file descriptors; pollretval is the return value from
poll (2) and pfdp is the array of pollfd structures on which the poll (2) was
done. It is assumed to be an array large enough to contain the maximal
number of descriptors allowed.

This function macro is unsafe in MT applications.

void svc_getreqset(fd_set *rdfds);
This routine is only of interest if a service implementor does not call
svc_run() , but instead implements custom asynchronous event
processing. It is called when select (3C) has determined that an RPC
request has arrived on some RPC file descriptors; rdfds is the resultant
read file descriptor bit mask. The routine returns when all file descriptors
associated with the value of rdfds have been serviced.

This function macro is unsafe in MT applications.

struct netbuf *svc_getrpccaller(const SVCXPRT *xprt);
The approved way of getting the network address of the caller of a
procedure associated with the RPC service transport handle xprt .

This function macro is safe in MT applications.

void svc_run(void);
This routine never returns. In single threaded mode, it waits for RPC
requests to arrive, and calls the appropriate service procedure using

472 SunOS 5.8 Last modified 20 Feb 1998

Networking Services Library Functions rpc_svc_calls(3NSL)

svc_getreq_poll() when one arrives. This procedure is usually waiting
for the poll (2) library call to return.

Applications executing in the Automatic or User MT modes should invoke
this function exactly once. It the Automatic MT mode, it will create threads
to service client requests. In the User MT mode, it will provide a framework
for service developers to create and manage their own threads for servicing
client requests.

bool_t svc_sendreply(const SVCXPRT *xprt , const xdrproc_t outproc , const
caddr_t out);

Called by an RPC service’s dispatch routine to send the results of a remote
procedure call. The parameter xprt is the request’s associated transport
handle; outproc is the XDR routine which is used to encode the results; and
out is the address of the results. This routine returns TRUEif it succeeds,
FALSE otherwise.

This function macro is safe in MT applications utilizing the Automatic or
User MT modes.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTESbelow.

SEE ALSO rpcgen (1) , poll (2) , rpc (3NSL) , rpc_control (3NSL) ,
rpc_svc_create (3NSL) , rpc_svc_err (3NSL) , rpc_svc_reg (3NSL) ,
select (3C) , xprt_register (3NSL) , attributes (5)

NOTES svc_dg_enablecache() and svc_getrpccaller() are safe in
multithreaded applications. svc_freeargs() , svc_getargs() , and
svc_sendreply() are safe in MT applications utilizing the Automatic
or User MT modes. svc_getreq_common() , svc_getreqset() , and
svc_getreq_poll() are unsafe in multithreaded applications and should
be called only from the main thread.

Last modified 20 Feb 1998 SunOS 5.8 473

rpc_svc_create(3NSL) Networking Services Library Functions

NAME rpc_svc_create, svc_control, svc_create, svc_destroy, svc_dg_create,
svc_fd_create, svc_raw_create, svc_tli_create, svc_tp_create, svc_vc_create –
library routines for the creation of server handles

SYNOPSIS #include <rpc/rpc.h>
bool_t svc_control (SVCXPRT *svc, const uint_t req, void *info);

int svc_create (const void (*dispatch)(const struct svc_req *, const SVCXPRT *), const
rpcprog_t prognum, const rpcvers_t versnum, const char *nettype);

void svc_destroy (SVCXPRT *xprt);

SVCXPRT *svc_dg_create (const int fildes, const uint_t sendsz, const uint_t recvsz);

SVCXPRT *svc_fd_create (const int fildes, const uint_t sendsz, const uint_t recvsz);

SVCXPRT *svc_raw_create (void);

SVCXPRT *svc_tli_create (const int fildes, const struct netconfig *netconf, const struct
t_bind *bind_addr, const uint_t sendsz, const uint_t recvsz);

SVCXPRT *svc_tp_create (const void (*dispatch)(const struct svc_req *, const SVCXPRT
*)), const rpcprog_t prognum, const rpcvers_t versnum, const struct netconfig *netconf);

SVCXPRT *svc_vc_create (const int fildes, const uint_t sendsz, const uint_t recvsz);

DESCRIPTION These routines are part of the RPC library which allows C language programs
to make procedure calls on servers across the network. These routines deal
with the creation of service handles. Once the handle is created, the server can
be invoked by calling svc_run() .

Routines See rpc (3NSL) for the definition of the SVCXPRTdata structure.
svc_control() A function to change or retrieve various

information about a service object. req indicates
the type of operation and info is a pointer to the
information. The supported values of req , their
argument types, and what they do are:

SVCGET_VERSQUIET

If a request is received for a program number
served by this server but the version number is
outside the range registered with the server, an
RPC_PROGVERSMISMATCHerror will normally
be returned. info should be a pointer to an
integer. Upon successful completion of the
SVCGET_VERSQUIETrequest, *info contains an
integer which describes the server’s current
behavior: 0 indicates normal server behavior,
that is, an RPC_PROGVERSMISMATCHerror will

474 SunOS 5.8 Last modified 24 Feb 1999

Networking Services Library Functions rpc_svc_create(3NSL)

be returned; 1 indicates that the out of range
request will be silently ignored.

SVCSET_VERSQUIET

If a request is received for a program number
served by this server but the version number
is outside the range registered with the
server, an RPC_PROGVERSMISMATCHerror
will normally be returned. It is sometimes
desirable to change this behavior. info should
be a pointer to an integer which is either
0 , indicating normal server behavior and
an RPC_PROGVERSMISMATCHerror will be
returned, or 1 , indicating that the out of range
request should be silently ignored.

SVCGET_XID

Returns the transaction ID of
connection-oriented (vc) and connectionless
(dg) transport service calls. The transaction
ID assists in uniquely identifying client
requests for a given RPC version, program
number, procedure, and client. The transaction
ID is extracted from the service transport
handle svc ; info must be a pointer to an
unsigned long. Upon successful completion
of the SVCGET_XIDrequest, *info contains
the transation ID. Note that rendezvous
and raw service handles do not define a
transaction ID . Thus, if the service handle is
of rendezvous or raw type, and the request is
of type SVCGET_XID, svc_control() will
return FALSE. Note also that the transaction
ID read by the server can be set by the
client through the suboption CLSET_XID in
clnt_control() . See clnt_create (3NSL)

SVCSET_CONNMAXREC

Set the maximum record size, in bytes, for RPC
requests and enable non-blocking mode for
this service handle. The value can be set and
read for both connection and non-connection
oriented transports, but it is silently ignored

Last modified 24 Feb 1999 SunOS 5.8 475

rpc_svc_create(3NSL) Networking Services Library Functions

for the non-connection oriented case. info is a
pointer to an argument of type int .

SVCGET_CONNMAXREC

Get the maximum RPC request record size
for this service handle. Zero means no
maximum is in effect, and the connection is in
blocking mode. The result is not significant for
non-connection oriented transports. info is a
pointer to an argument of type int .

svc_create() svc_create() creates server handles for all the
transports belonging to the class nettype .

nettype defines a class of transports which
can be used for a particular application. The
transports are tried in left to right order in
NETPATHvariable or in top to bottom order in
the netconfig database. If nettype is NULL, it
defaults to netpath .

svc_create() registers itself with the
rpcbind service (see rpcbind (1M)). dispatch
is called when there is a remote procedure
call for the given prognum and versnum ; this
requires calling svc_run() (see svc_run()
in rpc_svc_reg (3NSL)). If svc_create()
succeeds, it returns the number of server handles
it created, otherwise it returns 0 and an error
message is logged.

svc_destroy() A function macro that destroys the RPC service
handle xprt . Destruction usually involves
deallocation of private data structures, including
xprt itself. Use of xprt is undefined after calling
this routine.

svc_dg_create() This routine creates a connectionless RPC service
handle, and returns a pointer to it. This routine
returns NULL if it fails, and an error message is
logged. sendsz and recvsz are parameters used
to specify the size of the buffers. If they are 0 ,
suitable defaults are chosen. The file descriptor
fildes should be open and bound. The server is
not registered with rpcbind (1M) .

476 SunOS 5.8 Last modified 24 Feb 1999

Networking Services Library Functions rpc_svc_create(3NSL)

Warning: since connectionless-based RPC
messages can only hold limited amount of
encoded data, this transport cannot be used for
procedures that take large arguments or return
huge results.

svc_fd_create() This routine creates a service on top of an open
and bound file descriptor, and returns the handle
to it. Typically, this descriptor is a connected file
descriptor for a connection-oriented transport.
sendsz and recvsz indicate sizes for the send and
receive buffers. If they are 0 , reasonable defaults
are chosen. This routine returns NULL if it fails,
and an error message is logged.

svc_raw_create() This routine creates an RPC service handle and
returns a pointer to it. The transport is really a
buffer within the process’s address space, so the
corresponding RPC client should live in the
same address space; (see clnt_raw_create()
in rpc_clnt_create (3NSL)). This routine
allows simulation of RPC and acquisition of RPC
overheads (such as round trip times), without any
kernel and networking interference. This routine
returns NULL if it fails, and an error message
is logged.

Note: svc_run() should not be called when
the raw interface is being used.

svc_tli_create() This routine creates an RPC server handle,
and returns a pointer to it. fildes is the file
descriptor on which the service is listening. If
fildes is RPC_ANYFD, it opens a file descriptor
on the transport specified by netconf . If the file
descriptor is unbound and bindaddr is non-null
fildes is bound to the address specified by
bindaddr , otherwise fildes is bound to a default
address chosen by the transport. In the case
where the default address is chosen, the number
of outstanding connect requests is set to 8 for
connection-oriented transports. The user may
specify the size of the send and receive buffers
with the parameters sendsz and recvsz ; values
of 0 choose suitable defaults. This routine

Last modified 24 Feb 1999 SunOS 5.8 477

rpc_svc_create(3NSL) Networking Services Library Functions

returns NULL if it fails, and an error message is
logged. The server is not registered with the
rpcbind (1M) service.

svc_tp_create() svc_tp_create() creates a server handle for
the network specified by netconf , and registers
itself with the rpcbind service. dispatch is called
when there is a remote procedure call for the
given prognum and versnum ; this requires calling
svc_run() . svc_tp_create() returns the
service handle if it succeeds, otherwise a NULL is
returned and an error message is logged.

svc_vc_create() This routine creates a connection-oriented RPC
service and returns a pointer to it. This routine
returns NULL if it fails, and an error message is
logged. The users may specify the size of the
send and receive buffers with the parameters
sendsz and recvsz ; values of 0 choose suitable
defaults. The file descriptor fildes should be open
and bound. The server is not registered with the
rpcbind (1M) service.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO rpcbind (1M) , rpc (3NSL) , rpc_clnt_create (3NSL) ,
rpc_svc_calls (3NSL) , rpc_svc_err (3NSL) , rpc_svc_reg (3NSL) ,
attributes (5)

478 SunOS 5.8 Last modified 24 Feb 1999

Networking Services Library Functions rpc_svc_err(3NSL)

NAME rpc_svc_err, svcerr_auth, svcerr_decode, svcerr_noproc, svcerr_noprog,
svcerr_progvers, svcerr_systemerr, svcerr_weakauth – library routines for server
side remote procedure call errors

DESCRIPTION These routines are part of the RPC library which allows C language programs to
make procedure calls on other machines across the network.

These routines can be called by the server side dispatch function if there is any
error in the transaction with the client.

Routines See rpc (3NSL) for the definition of the SVCXPRTdata structure.

#include <rpc/rpc.h>

void svcerr_auth(const SVCXPRT *xprt , const enum auth_stat why);
Called by a service dispatch routine that refuses to perform a remote
procedure call due to an authentication error.

void svcerr_decode(const SVCXPRT *xprt);
Called by a service dispatch routine that cannot successfully decode the
remote parameters (see svc_getargs() in rpc_svc_reg (3NSL)).

void svcerr_noproc(const SVCXPRT *xprt);
Called by a service dispatch routine that does not implement the procedure
number that the caller requests.

void svcerr_noprog(const SVCXPRT *xprt);
Called when the desired program is not registered with the RPC package.
Service implementors usually do not need this routine.

void svcerr_progvers(const SVCXPRT *xprt , const rpcvers_t low_vers , const
rpcvers_t high_vers);

Called when the desired version of a program is not registered with the RPC
package. low_vers is the lowest version number, and high_vers is the highest
version number. Service implementors usually do not need this routine.

void svcerr_systemerr(const SVCXPRT *xprt);
Called by a service dispatch routine when it detects a system error not
covered by any particular protocol. For example, if a service can no longer
allocate storage, it may call this routine.

void svcerr_weakauth(const SVCXPRT *xprt);
Called by a service dispatch routine that refuses to perform a remote
procedure call due to insufficient (but correct) authentication parameters.
The routine calls svcerr_auth(xprt, AUTH_TOOWEAK) .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified 20 Feb 1998 SunOS 5.8 479

rpc_svc_err(3NSL) Networking Services Library Functions

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO rpc (3NSL) , rpc_svc_calls (3NSL) , rpc_svc_create (3NSL) ,
rpc_svc_reg (3NSL) , attributes (5)

480 SunOS 5.8 Last modified 20 Feb 1998

Networking Services Library Functions rpc_svc_reg(3NSL)

NAME rpc_svc_reg, rpc_reg, svc_reg, svc_unreg, svc_auth_reg, xprt_register,
xprt_unregister – library routines for registering servers

DESCRIPTION These routines are a part of the RPC library which allows the RPC servers to
register themselves with rpcbind() (see rpcbind (1M)), and associate the
given program and version number with the dispatch function. When the RPC
server receives a RPC request, the library invokes the dispatch routine with
the appropriate arguments.

Routines See rpc (3NSL) for the definition of the SVCXPRTdata structure.

#include <rpc/rpc.h>

bool_t rpc_reg(const rpcprog_t prognum , const rpcvers_t versnum , const
rpcproc_t procnum , char * (*procname)(), const xdrproc_t inproc , const xdrproc_t
outproc , const char *nettype);

Register program prognum , procedure procname , and version versnum with
the RPC service package. If a request arrives for program prognum , version
versnum , and procedure procnum , procname is called with a pointer to its
parameter(s); procname should return a pointer to its static result(s). The
arg parameter to procname is a pointer to the (decoded) procedure argument.
inproc is the XDR function used to decode the parameters while outproc is
the XDR function used to encode the results. Procedures are registered on
all available transports of the class nettype . See rpc (3NSL) . This routine
returns 0 if the registration succeeded, -1 otherwise.

int svc_reg(const SVCXPRT *xprt , const rpcprog_t prognum , const rpcvers_t
versnum , const void (*dispatch)(), const struct netconfig *netconf);

Associates prognum and versnum with the service dispatch procedure,
dispatch . If netconf is NULL , the service is not registered with the rpcbind
service. For example, if a service has already been registered using some
other means, such as inetd (see inetd (1M)), it will not need to be
registered again. If netconf is non-zero, then a mapping of the triple [prognum
, versnum , netconf => nc_netid] to xprt => xp_ltaddr is established with the
local rpcbind service.

The svc_reg() routine returns 1 if it succeeds, and 0 otherwise.

void svc_unreg(const rpcprog_t prognum , const rpcvers_t versnum);
Remove from the rpcbind service, all mappings of the triple [prognum ,
versnum , all-transports] to network address and all mappings within the
RPC service package of the double [prognum , versnum] to dispatch routines.

int svc_auth_reg(const int cred_flavor , const enum auth_stat (*handler)());
Registers the service authentication routine handler with the dispatch
mechanism so that it can be invoked to authenticate RPC requests received
with authentication type cred_flavor . This interface allows developers to add

Last modified 20 Feb 1998 SunOS 5.8 481

rpc_svc_reg(3NSL) Networking Services Library Functions

new authentication types to their RPC applications without needing to
modify the libraries. Service implementors usually do not need this routine.

Typical service application would call svc_auth_reg() after registering
the service and prior to calling svc_run() . When needed to process an
RPC credential of type cred_flavor , the handler procedure will be called with
two parameters (struct svc_req * rqst , struct rpc_msg * msg) and
is expected to return a valid enum auth_stat value. There is no provision
to change or delete an authentication handler once registered.

The svc_auth_reg() routine returns 0 if the registration is successful,
1 if cred_flavor already has an authentication handler registered for it, and
-1 otherwise.

void xprt_register(const SVCXPRT *xprt);
After RPC service transport handle xprt is created, it is registered with the
RPC service package. This routine modifies the global variable svc_fdset
(see rpc_svc_calls (3NSL)). Service implementors usually do not need
this routine.

void xprt_unregister(const SVCXPRT *xprt);
Before an RPC service transport handle xprt is destroyed, it unregisters itself
with the RPC service package. This routine modifies the global variable
svc_fdset (see rpc_svc_calls (3NSL)). Service implementors usually
do not need this routine.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO inetd (1M) , rpcbind (1M) , rpc (3NSL) , rpc_svc_calls (3NSL) ,
rpc_svc_create (3NSL) , rpc_svc_err (3NSL) , rpcbind (3NSL) ,
select (3C) , attributes (5)

482 SunOS 5.8 Last modified 20 Feb 1998

Networking Services Library Functions rpc_xdr(3NSL)

NAME rpc_xdr, xdr_accepted_reply, xdr_authsys_parms, xdr_callhdr, xdr_callmsg,
xdr_opaque_auth, xdr_rejected_reply, xdr_replymsg – XDR library routines
for remote procedure calls

DESCRIPTION These routines are used for describing the RPC messages in XDR language. They
should normally be used by those who do not want to use the RPC package
directly. These routines return TRUE if they succeed, FALSE otherwise.

Routines See rpc (3NSL) for the definition of the XDRdata structure.

#include <rpc/rpc.h>

bool_t xdr_accepted_reply(XDR *xdrs , const struct accepted_reply *ar);
Used to translate between RPC reply messages and their external
representation. It includes the status of the RPC call in the XDR language
format. In the case of success, it also includes the call results.

bool_t xdr_authsys_parms(XDR *xdrs , struct authsys_parms *aupp);
Used for describing UNIX operating system credentials. It includes
machine-name, uid, gid list, etc.

void xdr_callhdr(XDR *xdrs , struct rpc_msg *chdr);
Used for describing RPC call header messages. It encodes the static part of
the call message header in the XDR language format. It includes information
such as transaction ID, RPC version number, program and version number.

bool_t xdr_callmsg(XDR *xdrs , struct rpc_msg *cmsg);
Used for describing RPC call messages. This includes all the RPC call
information such as transaction ID, RPC version number, program number,
version number, authentication information, etc. This is normally used by
servers to determine information about the client RPC call.

bool_t xdr_opaque_auth(XDR *xdrs , struct opaque_auth *ap);
Used for describing RPC opaque authentication information messages.

bool_t xdr_rejected_reply(XDR *xdrs , const struct rejected_reply *rr);
Used for describing RPC reply messages. It encodes the rejected RPC
message in the XDR language format. The message could be rejected either
because of version number mis-match or because of authentication errors.

bool_t xdr_replymsg(XDR *xdrs , const struct rpc_msg *rmsg);
Used for describing RPC reply messages. It translates between the RPC
reply message and its external representation. This reply could be either
an acceptance, rejection or NULL .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified 30 Dec 1996 SunOS 5.8 483

rpc_xdr(3NSL) Networking Services Library Functions

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO rpc (3NSL) , xdr (3NSL) , attributes (5)

484 SunOS 5.8 Last modified 30 Dec 1996

RPC Library Functions rstat(3RPC)

NAME rstat, havedisk – get performance data from remote kernel

SYNOPSIS cc [flag ...] file ... −lrpcsvc [library ...]
#include <rpc/rpc.h>
#include <rpcsvc/rstat.h>
enum clnt_stat rstat (char *host, struct statstime *statp);

int havedisk (char *host);

PROTOCOL /usr/include/rpcsvc/rstat.x

DESCRIPTION These routines require that the rpc.rstatd (1M) daemon be configured and
available on the remote system indicated by host . The rstat() protocol is used
to gather statistics from remote kernel. Statistics will be available on items such
as paging, swapping, and cpu utilization.

rstat() fills in the statstime structure statp for host . statp must point to
an allocated statstime structure. rstat() returns RPC_SUCCESSif it was
successful; otherwise a enum clnt_stat is returned which can be displayed
using clnt_perrno (3NSL) .

havedisk() returns 1 if host has disk, 0 if it does not, and -1 if this cannot
be determined.

The following XDR routines are available in librpcsvc :

xdr_statstime
xdr_statsvar

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO rup (1) , rpc.rstatd (1M) , rpc_clnt_calls (3NSL) , attributes (5)

Last modified 30 Dec 1996 SunOS 5.8 485

rusers(3RPC) RPC Library Functions

NAME rusers, rnusers – return information about users on remote machines

SYNOPSIS cc [flag ...] file ... −lrpcsvc [library ...]
#include <rpc/rpc.h>
#include <rpcsvc/rusers.h>
enum clnt_stat rusers (char *host, struct utmpidlearr *up);

int rnusers (char *host);

PROTOCOL /usr/include/rpcsvc/rusers.x

DESCRIPTION These routines require that the rpc.rusersd (1M) daemon be configured and
available on the remote system indicated by host . The rusers() protocol is
used to retrieve information about users logged in on the remote system.

rusers() fills the utmpidlearr structure with data about host , and returns
0 if successful. up must point to an allocated utmpidlearr structure. If
rusers() returns successful it will have allocated data structures within the up
structure, which should be freed with xdr_free (3NSL) when you no longer
need them:

xdr_free(xdr_utimpidlearr, up);

On error, the returned value can be interpreted as an enum clnt_stat and can
be displayed with clnt_perror (3NSL) or clnt_sperrno (3NSL) .

See the header <rpcsvc/rusers.h> for a definition of struct utmpidlearr .

rnusers() returns the number of users logged on to host (-1 if it cannot
determine that number).

The following XDR routines are available in librpcsvc :

xdr_utmpidlearr

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO rusers (1) , rpc.rusersd (1M) , rpc_clnt_calls (3NSL) , xdr_free (3NSL) ,
attributes (5)

486 SunOS 5.8 Last modified 30 Dec 1996

RPC Library Functions rwall(3RPC)

NAME rwall – write to specified remote machines

SYNOPSIS cc [flag ...] file ... −lrpcsvc [library ...]
#include <rpc/rpc.h>
#include <rpcsvc/rwall.h>

enum clnt_stat rwall (char *host, char *msg);

PROTOCOL /usr/include/rpcsvc/rwall.x

DESCRIPTION These routines require that the rpc.rwalld (1M) daemon be configured and
available on the remote system indicated by host.

rwall() executes wall (1M) on host. The rpc.rwalld process on host prints
msg to all users logged on to that system. rwall() returns RPC_SUCCESSif
it was successful; otherwise a enum clnt_stat is returned which can be
displayed using clnt_perrno (3NSL).

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO rpc.rwalld (1M), wall (1M), rpc_clnt_calls (3NSL), attributes (5)

Last modified 30 Dec 1996 SunOS 5.8 487

secure_rpc(3NSL) Networking Services Library Functions

NAME secure_rpc, authdes_getucred, authdes_seccreate, getnetname, host2netname,
key_decryptsession, key_encryptsession, key_gendes, key_setsecret,
key_secretkey_is_set, netname2host, netname2user, user2netname – library
routines for secure remote procedure calls

DESCRIPTION RPC library routines allow C programs to make procedure calls on other
machines across the network.

RPC supports various authentication flavors. Among them are:
AUTH_NONE (none) no authentication.

AUTH_SYS Traditional UNIX-style authentication.

AUTH_DES DES encryption-based authentication.

AUTH_KERB Kerberos encryption-based authentication.

The authdes_getucred() and authdes_seccreate() routines implement
the AUTH_DESauthentication flavor. The keyserver daemon keyserv (see
keyserv (1M)) must be running for the AUTH_DESauthentication system
to work, and keylogin (1) must have been run. Only the AUTH_DESstyle
of authentication is discussed here. For information about the AUTH_NONE
and AUTH_SYSstyles of authentication, refer to rpc_clnt_auth (3NSL)
. For information about the AUTH_KERBstyle of authentication, refer to
kerberos_rpc (3KRB) .

The routines documented on this page are MT-Safe. See the pages of the other
authentication styles for their MT-level.

Routines See rpc (3NSL) for the definition of the AUTHdata structure.

#include <rpc/rpc.h>
#include <sys/types.h>

int authdes_getucred(const struct authdes_cred *adc , uid_t *uidp , gid_t *gidp ,
short *gidlenp , gid_t *gidlist);

authdes_getucred() is the first of the two routines which interface to
the RPC secure authentication system known as AUTH_DES. The second is
authdes_seccreate() , below. authdes_getucred() is used on the
server side for converting an AUTH_DEScredential, which is operating
system independent, into an AUTH_SYScredential. This routine returns 1
if it succeeds, 0 if it fails.

* uidp is set to the user’s numerical ID associated with adc . * gidp is set to
the numerical ID of the user’s group. * gidlist contains the numerical IDs of
the other groups to which the user belongs. * gidlenp is set to the number of
valid group ID entries in * gidlist (see netname2user() , below).

Warning: authdes_getucred() will fail if the authdes_cred structure
was created with the netname of a host. In such a case, netname2host()

488 SunOS 5.8 Last modified 20 Feb 1998

Networking Services Library Functions secure_rpc(3NSL)

should be used on the host netname in the authdes_cred structure to get
the host name.

AUTH *authdes_seccreate(const char *name ,const uint_t window , const char
*timehost ,const des_block *ckey);

authdes_seccreate() , the second of two AUTH_DESauthentication
routines, is used on the client side to return an authentication handle
that will enable the use of the secure authentication system. The first
parameter name is the network name, or netname , of the owner of the server
process. This field usually represents a hostname derived from the utility
routine host2netname() , but could also represent a user name using
user2netname() , described below.

The second field is window on the validity of the client credential, given in
seconds. If the difference in time between the client’s clock and the server’s
clock exceeds window , the server will reject the client’s credentials, and the
clock will have to be resynchronized. A small window is more secure than a
large one, but choosing too small of a window will increase the frequency of
resynchronizations because of clock drift.

The third parameter, timehost , the host’s name, is optional. If it is NULL ,
then the authentication system will assume that the local clock is always in
sync with the timehost clock, and will not attempt resynchronizations. If a
timehost is supplied, however, then the system will consult with the remote
time service whenever resynchronization is required. This parameter is
usually the name of the host on which the server is running.

The final parameter ckey is also optional. If it is NULL, then the
authentication system will generate a random DES key to be used for the
encryption of credentials. If ckey is supplied, then it will be used instead.

If authdes_seccreate() fails, it returns NULL.

int getnetname(char name [MAXNETNAMELEN+1]);
getnetname() returns the unique, operating system independent netname
of the caller in the fixed-length array name . Returns 1 if it succeeds, and 0
if it fails.

int host2netname(char name [MAXNETNAMELEN+1], const char *
host , const char * domain);

Convert from a domain-specific hostname host to an operating system
independent netname. Returns 1 if it succeeds, and 0 if it fails. Inverse of
netname2host() . If domain is NULL , host2netname() uses the default
domain name of the machine. If host is NULL , it defaults to that machine
itself. If domain is NULL and host is a NIS name like "host1.ssi.sun.com,"
host2netname() uses the domain "ssi.sun.com" rather than the default
domain name of the machine.

Last modified 20 Feb 1998 SunOS 5.8 489

secure_rpc(3NSL) Networking Services Library Functions

int key_decryptsession(const char * remotename , des_block *
deskey);

key_decryptsession() is an interface to the keyserver daemon,
which is associated with RPC’s secure authentication system
(AUTH_DESauthentication). User programs rarely need to call it, or its
associated routines key_encryptsession() , key_gendes() , and
key_setsecret() .

key_decryptsession() takes a server netname remotename and a DES
key deskey , and decrypts the key by using the the public key of the the
server and the secret key associated with the effective UID of the calling
process. It is the inverse of key_encryptsession() .

int key_encryptsession(const char * remotename , des_block *
deskey);

key_encryptsession() is a keyserver interface routine. It takes a server
netname remotename and a DES key deskey , and encrypts it using the public
key of the the server and the secret key associated with the effective UID
of the calling process. It is the inverse of key_decryptsession() . This
routine returns 0 if it succeeds, -1 if it fails.

int key_gendes(des_block * deskey);
key_gendes() is a keyserver interface routine. It is used to ask the
keyserver for a secure conversation key. Choosing one at random is usually
not good enough, because the common ways of choosing random numbers,
such as using the current time, are very easy to guess. This routine returns 0
if it succeeds, -1 if it fails.

int key_setsecret(const char * key);
key_setsecret() is a keyserver interface routine. It is used to set the
key for the effective UID of the calling process. This routine returns 0 if it
succeeds, -1 if it fails.

int key_secretkey_is_set(void);
key_secretkey_is_set() is a keyserver interface routine that may be
used to determine whether a key has been set for the effective UID of the
calling process. If the keyserver has a key stored for the effective UID of the
calling process, this routine returns 1 . Otherwise it returns 0 .

int netname2host(const char * name , char * host , const int
hostlen);

Convert from an operating system independent netname name to a
domain-specific hostname host . hostlen is the maximum size of host .
Returns 1 if it succeeds, and 0 if it fails. Inverse of host2netname() .

int netname2user(const char * name , uid_t * uidp , gid_t * gidp ,
int * gidlenp , gid_t gidlist [NGRPS]);

490 SunOS 5.8 Last modified 20 Feb 1998

Networking Services Library Functions secure_rpc(3NSL)

Convert from an operating system independent netname to a
domain-specific user ID. Returns 1 if it succeeds, and 0 if it fails. Inverse of
user2netname() .

* uidp is set to the user’s numerical ID associated with name . * gidp is set to
the numerical ID of the user’s group. gidlist contains the numerical IDs of
the other groups to which the user belongs. * gidlenp is set to the number of
valid group ID entries in gidlist .

int user2netname(char name [MAXNETNAMELEN+1], const uid_t uid
, const char * domain);

Convert from a domain-specific username to an operating system
independent netname. Returns 1 if it succeeds, and 0 if it fails. Inverse of
netname2user() .

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO chkey (1) , keylogin (1) , keyserv (1M) , newkey (1M) , kerberos_rpc (3KRB)
, rpc (3NSL) , rpc_clnt_auth (3NSL) , attributes (5)

Last modified 20 Feb 1998 SunOS 5.8 491

send(3SOCKET) Sockets Library Functions

NAME send, sendto, sendmsg – send a message from a socket

SYNOPSIS cc [flag ...] file ... −lsocket −lnsl [library ...]
#include <sys/types.h>
#include <sys/socket.h>
ssize_t send (int s, const void *msg, size_t len, int flags);

ssize_t sendto (int s, const void *msg, size_t len, int flags, const struct sockaddr *to, int
tolen);

ssize_t sendmsg (int s, const struct msghdr *msg, int flags);

DESCRIPTION send() , sendto() , and sendmsg() are used to transmit a message to
another transport end-point. send() may be used only when the socket is in a
connected state, while sendto() and sendmsg() may be used at any time. s is a
socket created with socket (3SOCKET) .

The address of the target is given by to with tolen specifying its size. The length
of the message is given by len . If the message is too long to pass atomically
through the underlying protocol, then the error EMSGSIZEis returned, and the
message is not transmitted.

A return value of -1 indicates locally detected errors only. It does not implicitly
mean the message was not delivered.

If the socket does not have enough buffer space available to hold the message
being sent, send() blocks, unless the socket has been placed in non-blocking
I/O mode (see fcntl (2)). The select (3C) or poll (2) call may be used to
determine when it is possible to send more data.

The flags parameter is formed from the bitwise OR of zero or more of the
following:
MSG_OOB Send "out-of-band" data on sockets that support

this notion. The underlying protocol must also
support "out-of-band" data. Only SOCK_STREAM
sockets created in the AF_INET and AF_INET
address families support out-of-band data.

MSG_DONTROUTE The SO_DONTROUTEoption is turned on for the
duration of the operation. It is used only by
diagnostic or routing programs.

See recv (3SOCKET) for a description of the msghdr structure.

RETURN VALUES These calls return the number of bytes sent, or -1 if an error occurred.

ERRORS The calls fail if:
EBADF s is an invalid file descriptor.

492 SunOS 5.8 Last modified 8 Nov 1999

Sockets Library Functions send(3SOCKET)

EINTR The operation was interrupted by delivery of a
signal before any data could be buffered to be
sent.

EINVAL tolen is not the size of a valid address for the
specified address family.

EMSGSIZE The socket requires that message be sent
atomically, and the message was too long.

ENOMEM There was insufficient memory available to
complete the operation.

ENOSR There were insufficient STREAMS resources
available for the operation to complete.

ENOTSOCK s is not a socket.

EWOULDBLOCK The socket is marked non-blocking and the
requested operation would block.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO fcntl (2) , poll (2) , write (2) , connect (3SOCKET) , getsockopt (3SOCKET)
, recv (3SOCKET) , select (3C) , socket (3SOCKET) , attributes (5) ,
socket (3HEAD)

Last modified 8 Nov 1999 SunOS 5.8 493

send(3XNET) X/Open Networking Services Library Functions

NAME send – send a message on a socket

SYNOPSIS cc [flag ...] file ... −lxnet [library ...]
#include <sys/socket.h>

ssize_t send (int socket, const void *buffer, size_t length, int flags);

DESCRIPTION socket Specifies the socket file descriptor.

buffer Points to the buffer containing the message to send.

length Specifies the length of the message in bytes.

flags Specifies the type of message transmission. Values of this
argument are formed by logically OR’ing zero or more of
the following flags:

MSG_EOR Terminates a record (if
supported by the protocol)

MSG_OOB Sends out-of-band data
on sockets that support
out-of-band communications.
The significance and semantics
of out-of-band data are
protocol-specific.

The send() function initiates transmission of a message from the specified
socket to its peer. The send() function sends a message only when the socket
is connected (including when the peer of a connectionless socket has been
set via connect (3XNET)).

The length of the message to be sent is specified by the length argument. If the
message is too long to pass through the underlying protocol, send() fails
and no data is transmitted.

Successful completion of a call to send() does not guarantee delivery of the
message. A return value of −1 indicates only locally-detected errors.

If space is not available at the sending socket to hold the message to be
transmitted and the socket file descriptor does not have O_NONBLOCK set,
send() blocks until space is available. If space is not available at the sending
socket to hold the message to be transmitted and the socket file descriptor does
have O_NONBLOCK set, send() will fail. The select (3C) and poll (2)
functions can be used to determine when it is possible to send more data.

494 SunOS 5.8 Last modified 8 May 1998

X/Open Networking Services Library Functions send(3XNET)

The socket in use may require the process to have appropriate privileges to
use the send() function.

USAGE The send() function is identical to sendto (3XNET) with a null pointer dest_len
argument, and to write () if no flags are used.

RETURN VALUES Upon successful completion, send() returns the number of bytes sent.
Otherwise, −1 is returned and errno is set to indicate the error.

ERRORS The send() function will fail if:
EAGAIN
EWOULDBLOCK The socket’s file descriptor is marked

O_NONBLOCK and the requested operation
would block.

EBADF The socket argument is not a valid file descriptor.

ECONNRESET A connection was forcibly closed by a peer.

EDESTADDRREQ The socket is not connection-mode and no peer
address is set.

EFAULT The buffer parameter can not be accessed.

EINTR A signal interrupted send() before any data
was transmitted.

EMSGSIZE The message is too large be sent all at once, as
the socket requires.

ENOTCONN The socket is not connected or otherwise has not
had the peer prespecified.

ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The socket argument is associated with a socket
that does not support one or more of the values
set in flags.

EPIPE The socket is shut down for writing, or the socket
is connection-mode and is no longer connected.
In the latter case, and if the socket is of type
SOCK_STREAM, the SIGPIPE signal is generated
to the calling process.

The send() function may fail if:
EACCES The calling process does not have the appropriate

privileges.

Last modified 8 May 1998 SunOS 5.8 495

send(3XNET) X/Open Networking Services Library Functions

EIO An I/O error occurred while reading from or
writing to the file system.

ENETDOWN The local interface used to reach the destination
is down.

ENETUNREACH No route to the network is present.

ENOBUFS Insufficient resources were available in the system
to perform the operation.

ENOSR There were insufficient STREAMS resources
available for the operation to complete.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO connect (3XNET), getsockopt (3XNET), poll (2), recv (3XNET),
recvfrom (3XNET), recvmsg (3XNET), select (3C), sendmsg (3XNET),
sendto (3XNET), setsockopt (3XNET), shutdown (3XNET), socket (3XNET),
attributes (5)

496 SunOS 5.8 Last modified 8 May 1998

X/Open Networking Services Library Functions sendmsg(3XNET)

NAME sendmsg – send a message on a socket using a message structure

SYNOPSIS cc [flag ...] file ... −lxnet [library ...]
#include <sys/socket.h>

ssize_t sendmsg (int socket, const struct msghdr *message, int flags);

DESCRIPTION The sendmsg() function sends a message through a connection-mode or
connectionless-mode socket. If the socket is connectionless-mode, the message
will be sent to the address specified by msghdr. If the socket is connection-mode,
the destination address in msghdr is ignored.

The function takes the following arguments:
socket Specifies the socket file descriptor.

message Points to a msghdr structure, containing both the destination
address and the buffers for the outgoing message. The length
and format of the address depend on the address family of
the socket. The msg_flags member is ignored.

flags Specifies the type of message transmission. The application
may specify 0 or the following flag:

MSG_EOR Terminates a record (if
supported by the protocol)

MSG_OOB Sends out-of-band data
on sockets that support
out-of-bound data. The
significance and semantics
of out-of-band data are
protocol-specific.

The msg_iov and msg_iovlen fields of message specify zero or more buffers
containing the data to be sent. msg_iov points to an array of iovec structures;
msg_iovlen must be set to the dimension of this array. In each iovec structure,
the iov_base field specifies a storage area and the iov_len field gives its size in
bytes. Some of these sizes can be zero. The data from each storage area indicated
by msg_iov is sent in turn.

Successful completion of a call to sendmsg() does not guarantee delivery of the
message. A return value of −1 indicates only locally-detected errors.

If space is not available at the sending socket to hold the message to be
transmitted and the socket file descriptor does not have O_NONBLOCK set,
sendmsg() function blocks until space is available. If space is not available

Last modified 8 May 1998 SunOS 5.8 497

sendmsg(3XNET) X/Open Networking Services Library Functions

at the sending socket to hold the message to be transmitted and the socket file
descriptor does have O_NONBLOCK set, sendmsg() function will fail.

If the socket protocol supports broadcast and the specified address is a broadcast
address for the socket protocol, sendmsg() will fail if the SO_BROADCAST
option is not set for the socket.

The socket in use may require the process to have appropriate privileges to use
the sendmsg() function.

USAGE The select (3C) and poll (2) functions can be used to determine when it is
possible to send more data.

RETURN VALUES Upon successful completion, sendmsg() function returns the number of bytes
sent. Otherwise, −1 is returned and errno is set to indicate the error.

ERRORS The sendmsg() function will fail if:
EAGAIN
EWOULDBLOCK The socket’s file descriptor is marked

O_NONBLOCK and the requested operation
would block.

EAFNOSUPPORT Addresses in the specified address family cannot
be used with this socket.

EBADF The socket argument is not a valid file descriptor.

ECONNRESET A connection was forcibly closed by a peer.

EFAULT The message parameter, or storage pointed to by
the msg_name, msg_control or msg_iov fields of the
message parameter, or storage pointed to by the
iovec structures pointed to by the msg_iov field
can not be accessed.

EINTR A signal interrupted sendmsg() before any
data was transmitted.

EINVAL The sum of the iov_len values overflows an
ssize_t .

EMSGSIZE The message is to large to be sent all at once (as
the socket requires), or the msg_iovlen member
of the msghdr structure pointed to by message is
less than or equal to 0 or is greater than IOV_MAX.

ENOTCONN The socket is connection-mode but is not
connected.

ENOTSOCK The socket argument does not refer a socket.

498 SunOS 5.8 Last modified 8 May 1998

X/Open Networking Services Library Functions sendmsg(3XNET)

EOPNOTSUPP The socket argument is associated with a socket
that does not support one or more of the values
set in flags.

EPIPE The socket is shut down for writing, or the socket
is connection-mode and is no longer connected.
In the latter case, and if the socket is of type
SOCK_STREAM, the SIGPIPE signal is generated
to the calling process.

If the address family of the socket is AF_UNIX, then sendmsg() will fail if:
EIO An I/O error occurred while reading from or

writing to the file system.

ELOOP Too many symbolic links were encountered in
translating the pathname in the socket address.

ENAMETOOLONG A component of a pathname exceeded NAME_MAX
characters, or an entire pathname exceeded
PATH_MAXcharacters.

ENOENT A component of the pathname does not name an
existing file or the pathname is an empty string.

ENOTDIR A component of the path prefix of the pathname
in the socket address is not a directory.

The sendmsg() function may fail if:
EACCES Search permission is denied for a component of

the path prefix; or write access to the named
socket is denied.

EDESTADDRREQ The socket is not connection-mode and does not
have its peer address set, and no destination
address was specified.

EHOSTUNREACH The destination host cannot be reached (probably
because the host is down or a remote router
cannot reach it).

EIO An I/O error occurred while reading from or
writing to the file system.

EISCONN A destination address was specified and the
socket is already connected.

ENETDOWN The local interface used to reach the destination
is down.

Last modified 8 May 1998 SunOS 5.8 499

sendmsg(3XNET) X/Open Networking Services Library Functions

ENETUNREACH No route to the network is present.

ENOBUFS Insufficient resources were available in the system
to perform the operation.

ENOMEM Insufficient memory was available to fulfill the
request.

ENOSR There were insufficient STREAMS resources
available for the operation to complete.

If the address family of the socket is AF_UNIX, then sendmsg() may fail if:
ENAMETOOLONG Pathname resolution of a symbolic link produced

an intermediate result whose length exceeds
PATH_MAX.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO poll (2) getsockopt (3XNET), recv (3XNET), recvfrom (3XNET),
recvmsg (3XNET), select (3C), send (3XNET), sendto (3XNET),
setsockopt (3XNET), shutdown (3XNET), socket (3XNET), attributes (5)

500 SunOS 5.8 Last modified 8 May 1998

X/Open Networking Services Library Functions sendto(3XNET)

NAME sendto – send a message on a socket

SYNOPSIS cc [flag ...] file ... −lxnet [library ...]
#include <sys/socket.h>

ssize_t sendto (int socket, const void *message, size_t length, int flags, const struct sockaddr
*dest_addr, socklen_t dest_len);

DESCRIPTION The sendto() function sends a message through a connection-mode or
connectionless-mode socket. If the socket is connectionless-mode, the
message will be sent to the address specified by dest_addr. If the socket is
connection-mode, dest_addr is ignored.

The function takes the following arguments:
socket Specifies the socket file descriptor.

message Points to a buffer containing the message to be sent.

length Specifies the size of the message in bytes.

flags Specifies the type of message transmission. Values of this
argument are formed by logically OR’ing zero or more of
the following flags:

MSG_EOR Terminates a record (if supported by the
protocol)

MSG_OOB Sends out-of-band data on sockets that
support out-of-band data. The significance
and semantics of out-of-band data are
protocol-specific.

dest_addr Points to a sockaddr structure containing the destination
address. The length and format of the address depend on the
address family of the socket.

dest_len Specifies the length of the sockaddr structure pointed to
by the dest_addr argument.

If the socket protocol supports broadcast and the specified address is a broadcast
address for the socket protocol, sendto() will fail if the SO_BROADCAST
option is not set for the socket.

The dest_addr argument specifies the address of the target. The length argument
specifies the length of the message.

Successful completion of a call to sendto() does not guarantee delivery of the
message. A return value of −1 indicates only locally-detected errors.

Last modified 8 May 1998 SunOS 5.8 501

sendto(3XNET) X/Open Networking Services Library Functions

If space is not available at the sending socket to hold the message to be
transmitted and the socket file descriptor does not have O_NONBLOCK set,
sendto() blocks until space is available. If space is not available at the sending
socket to hold the message to be transmitted and the socket file descriptor does
have O_NONBLOCK set, sendto() will fail.

The socket in use may require the process to have appropriate privileges to
use the sendto() function.

USAGE The select (3C) and poll (2) functions can be used to determine when it is
possible to send more data.

RETURN VALUES Upon successful completion, sendto() returns the number of bytes sent.
Otherwise, –1 is returned and errno is set to indicate the error.

ERRORS The sendto() function will fail if:
EAFNOSUPPORT Addresses in the specified address family cannot

be used with this socket.

EAGAIN
EWOULDBLOCK The socket’s file descriptor is marked

O_NONBLOCK and the requested operation
would block.

EBADF The socket argument is not a valid file descriptor.

ECONNRESET A connection was forcibly closed by a peer.

EFAULT The message or destaddr parameter can not be
accessed.

EINTR A signal interrupted sendto() before any data
was transmitted.

EMSGSIZE The message is too large to be sent all at once, as
the socket requires.

ENOTCONN The socket is connection-mode but is not
connected.

ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The socket argument is associated with a socket
that does not support one or more of the values
set in flags.

EPIPE The socket is shut down for writing, or the socket
is connection-mode and is no longer connected.
In the latter case, and if the socket is of type

502 SunOS 5.8 Last modified 8 May 1998

X/Open Networking Services Library Functions sendto(3XNET)

SOCK_STREAM, the SIGPIPE signal is generated
to the calling process.

If the address family of the socket is AF_UNIX, then sendto() will fail if:
EIO An I/O error occurred while reading from or

writing to the file system.

ELOOP Too many symbolic links were encountered in
translating the pathname in the socket address.

ENAMETOOLONG A component of a pathname exceeded NAME_MAX
characters, or an entire pathname exceeded
PATH_MAXcharacters.

ENOENT A component of the pathname does not name an
existing file or the pathname is an empty string.

ENOTDIR A component of the path prefix of the pathname
in the socket address is not a directory.

The sendto() function may fail if:
EACCES Search permission is denied for a component of

the path prefix; or write access to the named
socket is denied.

EDESTADDRREQ The socket is not connection-mode and does not
have its peer address set, and no destination
address was specified.

EHOSTUNREACH The destination host cannot be reached (probably
because the host is down or a remote router
cannot reach it).

EINVAL The dest_len argument is not a valid length for
the address family.

EIO An I/O error occurred while reading from or
writing to the file system.

EISCONN A destination address was specified and the
socket is already connected.

ENETDOWN The local interface used to reach the destination
is down.

ENETUNREACH No route to the network is present.

ENOBUFS Insufficient resources were available in the system
to perform the operation.

Last modified 8 May 1998 SunOS 5.8 503

sendto(3XNET) X/Open Networking Services Library Functions

ENOMEM Insufficient memory was available to fulfill the
request.

ENOSR There were insufficient STREAMS resources
available for the operation to complete.

If the address family of the socket is AF_UNIX, then sendto() may fail if:
ENAMETOOLONG Pathname resolution of a symbolic link produced

an intermediate result whose length exceeds
PATH_MAX.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO poll (2), getsockopt (3XNET), recv (3XNET), recvfrom (3XNET),
recvmsg (3XNET), select (3C), send (3XNET), sendmsg (3XNET),
setsockopt (3XNET), shutdown (3XNET), socket (3XNET), attributes (5)

504 SunOS 5.8 Last modified 8 May 1998

X/Open Networking Services Library Functions setsockopt(3XNET)

NAME setsockopt – set the socket options

SYNOPSIS cc [flag ...] file ... −lxnet [library ...]
#include <sys/socket.h>

int setsockopt (int socket, int level, int option_name, const void*option_value, socklen_t
option_len);

DESCRIPTION The setsockopt() function sets the option specified by the option_name
argument, at the protocol level specified by the level argument, to the value
pointed to by the option_value argument for the socket associated with the file
descriptor specified by the socket argument.

The level argument specifies the protocol level at which the option resides. To
set options at the socket level, specify the level argument as SOL_SOCKET. To
set options at other levels, supply the appropriate protocol number for the
protocol controlling the option. For example, to indicate that an option will be
interpreted by the TCP (Transport Control Protocol), set level to the protocol
number of TCP, as defined in the<netinet/in.h> header, or as determined by
using getprotobyname (3XNET).

The option_name argument specifies a single option to set. The option_name
argument and any specified options are passed uninterpreted to the appropriate
protocol module for interpretations. The <sys/socket.h> header defines the
socket level options. The options are as follows:
SO_DEBUG Turns on recording of debugging information.

This option enables or disables debugging in the
underlying protocol modules. This option takes
an int value. This is a boolean option.

SO_BROADCAST Permits sending of broadcast messages, if this is
supported by the protocol. This option takes an
int value. This is a boolean option.

SO_REUSEADDR Specifies that the rules used in validating
addresses supplied to bind (3XNET) should allow
reuse of local addresses, if this is supported by
the protocol. This option takes an int value. This
is a boolean option.

SO_KEEPALIVE Keeps connections active by enabling the periodic
transmission of messages, if this is supported by
the protocol. This option takes an int value.

If the connected socket fails to respond to
these messages, the connection is broken and

Last modified 8 May 1998 SunOS 5.8 505

setsockopt(3XNET) X/Open Networking Services Library Functions

processes writing to that socket are notified with
a SIGPIPE signal.

This is a boolean option.

SO_LINGER Lingers on a close (2) if data is present. This
option controls the action taken when unsent
messages queue on a socket and close (2) is
performed. If SO_LINGER is set, the system
blocks the process during close (2) until it can
transmit the data or until the time expires. If
SO_LINGER is not specified, and close (2) is
issued, the system handles the call in a way that
allows the process to continue as quickly as
possible. This option takes a linger structure,
as defined in the <sys/socket.h > header, to
specify the state of the option and linger interval.

SO_OOBINLINE Leaves received out-of-band data (data marked
urgent) in line. This option takes an int value.
This is a boolean option.

SO_SNDBUF Sets send buffer size. This option takes an int
value.

SO_RCVBUF Sets receive buffer size. This option takes an
int value.

SO_DONTROUTE Requests that outgoing messages bypass the
standard routing facilities. The destination must
be on a directly-connected network, and messages
are directed to the appropriate network interface
according to the destination address. The effect,
if any, of this option depends on what protocol
is in use. This option takes an int value. This
is a boolean option.

For boolean options, 0 indicates that the option is disabled and 1 indicates
that the option is enabled.

Options at other protocol levels vary in format and name.

USAGE The setsockopt() function provides an application program with the means
to control socket behavior. An application program can use setsockopt()
to allocate buffer space, control timeouts, or permit socket data broadcasts.

506 SunOS 5.8 Last modified 8 May 1998

X/Open Networking Services Library Functions setsockopt(3XNET)

The <sys/socket.h> header defines the socket-level options available to
setsockopt() .

Options may exist at multiple protocol levels. The SO_ options are always
present at the uppermost socket level.

RETURN VALUES Upon successful completion, setsockopt() returns 0. Otherwise, –1 is
returned and errno is set to indicate the error.

ERRORS The setsockopt() function will fail if:
EBADF The socket argument is not a valid file descriptor.

EDOM The send and receive timeout values are too
big to fit into the timeout fields in the socket
structure.

EFAULT The option_value parameter can not be accessed
or written.

EINVAL The specified option is invalid at the specified
socket level or the socket has been shut down.

EISCONN The socket is already connected, and a specified
option can not be set while the socket is
connected.

ENOPROTOOPT The option is not supported by the protocol.

ENOTSOCK The socket argument does not refer to a socket.

The setsockopt() function may fail if:
ENOMEM There was insufficient memory available for the

operation to complete.

ENOBUFS Insufficient resources are available in the system
to complete the call.

ENOSR There were insufficient STREAMS resources
available for the operation to complete.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Last modified 8 May 1998 SunOS 5.8 507

setsockopt(3XNET) X/Open Networking Services Library Functions

SEE ALSO bind (3XNET), endprotoent (3XNET), getsockopt (3XNET),
socket (3XNET), attributes (5)

508 SunOS 5.8 Last modified 8 May 1998

Sockets Library Functions shutdown(3SOCKET)

NAME shutdown – shut down part of a full-duplex connection

SYNOPSIS cc [flag ...] file ... −lsocket −lnsl [library ...]

int shutdown (int s, int how);

DESCRIPTION The shutdown() call shuts down all or part of a full-duplex connection on the
socket associated with s. If how is 0, then further receives will be disallowed. If
how is 1, then further sends will be disallowed. If how is 2, then further sends
and receives will be disallowed.

RETURN VALUES A 0 is returned if the call succeeds, −1 if it fails.

ERRORS The call succeeds unless:
EBADF s is not a valid file descriptor.

ENOMEM There was insufficient user memory available for
the operation to complete.

ENOSR There were insufficient STREAMS resources
available for the operation to complete.

ENOTCONN The specified socket is not connected.

ENOTSOCK s is not a socket.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO connect (3SOCKET), socket (3SOCKET), attributes (5), socket (3HEAD)

NOTES The how values should be defined constants.

Last modified 16 May 1997 SunOS 5.8 509

shutdown(3XNET) X/Open Networking Services Library Functions

NAME shutdown – shut down socket send and receive operations

SYNOPSIS cc [flag ...] file ... −lxnet [library ...]
#include <sys/socket.h>

int shutdown (int socket, int how);

DESCRIPTION socket Specifies the file descriptor of the socket.

how Specifies the type of shutdown. The values are as follows:

SHUT_RD Disables further receive operations.

SHUT_WR Disables further send operations.

SHUT_RDWR Disables further send and receive
operations.

The shutdown() function disables subsequent send and/or receive operations
on a socket, depending on the value of the how argument.

RETURN VALUES Upon successful completion, shutdown() returns 0. Otherwise, −1 is returned
and errno is set to indicate the error.

ERRORS The shutdown() function will fail if:
EBADF The socket argument is not a valid file descriptor.

EINVAL The how argument is invalid.

ENOTCONN The socket is not connected.

ENOTSOCK The socket argument does not refer to a socket.

The shutdown() function may fail if:
ENOBUFS Insufficient resources were available in the system

to perform the operation.

ENOSR There were insufficient STREAMS resources
available for the operation to complete.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

510 SunOS 5.8 Last modified 8 May 1998

X/Open Networking Services Library Functions shutdown(3XNET)

SEE ALSO getsockopt (3XNET), recv (3XNET), recvfrom (3XNET), recvmsg (3XNET),
select (3C), send (3XNET), sendto (3XNET), setsockopt (3XNET),
socket (3XNET), attributes (5)

Last modified 8 May 1998 SunOS 5.8 511

slp_api(3SLP) Service Location Protocol Library Functions

NAME slp_api – Service Location Protocol Application Programming Interface

SYNOPSIS cc [flag ...] file ... −l slp [library ...]

#include <slp.h>

DESCRIPTION The slp_api is a C language binding that maps directly into the Service
Location Protocol (“SLP”) defined by RFC 2614. This implementation
requires minimal overhead. With the exception of the SLPDereg() and
SLPDelAttrs() functions, which map into different uses of the SLP deregister
request, there is one C language function per protocol request. Parameters
are for the most part character buffers. Memory management is kept simple
because the client allocates most memory and client callback functions are
required to copy incoming parameters into memory allocated by the client code.
Any memory returned directly from the API functions is deallocated using
the SLPFree() function.

To conform with standard C practice, all character strings passed to and returned
through the API are null-terminated, even though the SLP protocol does not
use null-terminated strings. Strings passed as parameters are UTF-8 but they
may still be passed as a C string (a null-terminated sequence of bytes.) Escaped
characters must be encoded by the API client as UTF-8. In the common case of
US-ASCII, the usual one byte per character C strings work. API functions assist
in escaping and unescaping strings.

Unless otherwise noted, parameters to API functions and callbacks are non-NULL.
Some parameters may have other restrictions. If any parameter fails to satisfy
the restrictions on its value, the operation returns a PARAMETER_BADerror.

Syntax for String
Parameters

Query strings, attribute registration lists, attribute deregistration lists, scope
lists, and attribute selection lists follow the syntax described in RFC 2608.
The API reflects the strings passed from clients directly into protocol requests,
and reflects out strings returned from protocol replies directly to clients. As a
consequence, clients are responsible for formatting request strings, including
escaping and converting opaque values to escaped byte-encoded strings.
Similarly, on output, clients are required to unescape strings and convert escaped
string-encoded opaques to binary. The SLPEscape() and SLPUnescape()
functions can be used for escaping SLP reserved characters, but they perform no
opaque processing.

Opaque values consist of a character buffer that contains a UTF-8-encoded string,
the first characters of which are the non UTF-8 encoding “\ff ”. Subsequent
characters are the escaped values for the original bytes in the opaque. The escape
convention is relatively simple. An escape consists of a backslash followed by
the two hexadecimal digits encoding the byte. An example is “\2c ” for the byte
0x2c . Clients handle opaque processing themselves, since the algorithm is
relatively simple and uniform.

512 SunOS 5.8 Last modified 17 Nov 1999

Service Location Protocol Library Functions slp_api(3SLP)

System Properties The system properties established in slp.conf (4), the configuration file,
are accessible through the SLPGetProperty() and SLPSetProperty()
functions. The SLPSetProperty() function modifies properties only in the
running process, not in the configuration file. Errors are checked when the
property is used and, as with parsing the configuration file, are logged at the
LOG_INFOpriority. Program execution continues without interruption by
substituting the default for the erroneous parameter. In general, individual
agents should rarely be required to override these properties, since they reflect
properties of the SLP network that are not of concern to individual agents. If
changes are required, system administrators should modify the configuration
file.

Properties are global to the process, affecting all threads and all handles created
with SLPOpen() .

Memory Management The only API functions that return memory specifically requiring deallocation
on the part of the client are SLPParseSrvURL() , SLPFindScope() ,
SLPEscape() , and SLPUnescape() . Free this memory with SLPFree()
when it is no longer needed. Do not free character strings returned by means of
the SLPGetProperty() function.

Any memory passed to callbacks belongs to the library, and it must not be
retained by the client code. Otherwise, crashes are possible. Clients must copy
data out of the callback parameters. No other use of the memory in callback
parameters is allowed.

Asynchronous and
Incremental Return

Semantics

If a handle parameter to an API function is opened asynchronously, the API
function calls on the handle to check the other parameters, opens the appropriate
operation, and returns immediately. If an error occurs in the process of starting
the operation, the error code is returned. If the handle parameter is opened
synchronously, the function call is blocked until all results are available, and it
returns only after the results are reported through the callback function. The
return code indicates whether any errors occurred during the operation.

The callback function is called whenever the API library has results to report.
The callback code is required to check the error code parameter before looking at
the other parameters. If the error code is not SLP_OK, the other parameters may
be NULLor otherwise invalid. The API library can terminate any outstanding
operation on which an error occurs. The callback code can similarly indicate
that the operation should be terminated by passing back SLP_FALSEto indicate
that it is not interested in receiving more results. Callback functions are not
permitted to recursively call into the API on the same SLPHandle . If an attempt
is made to call into the API , the API function returns SLP_HANDLE_IN_USE.
Prohibiting recursive callbacks on the same handle simplifies implementation of
thread safe code, since locks held on the handle will not be in place during a
second outcall on the handle.

Last modified 17 Nov 1999 SunOS 5.8 513

slp_api(3SLP) Service Location Protocol Library Functions

The total number of results received can be controlled by setting the
net.slp.maxResults parameter.

On the last call to a callback, whether asynchronous or synchronous, the status
code passed to the callback has value SLP_LAST_CALL. There are four reasons
why the call can terminate:
DA reply received A reply from a DA has been received

and therefore nothing more is
expected.

Multicast terminated The multicast convergence time has
elapsed and the API library multicast
code is giving up.

Multicast null results Nothing new has been received
during multicast for awhile and the
API library multicast code is giving
up on that (as an optimization).

Maximum results The user has set the
net.slp.maxResults property and
that number of replies has been
collected and returned.

Configuration Files The API library reads slp.conf (4), the default configuration file, to obtain
the operating parameters. You can specify the location of this file with the
SLP_CONF_FILE environment variable. If you do not set this variable, or
the file it refers to is invalid, the API will use the default configuration file
at /etc/inet/slp.conf instead.

Data Structures The data structures used by the SLP API are as follows:

The URL Lifetime Type

typedef enum {
SLP_LIFETIME_DEFAULT = 10800,
SLP_LIFETIME_MAXIMUM = 65535

} SLPURLLifetime;

The enumeration SLPURLLifetime contains URL lifetime values, in seconds,
that are frequently used. SLP_LIFETIME_DEFAULT is 3 hours, while
SLP_LIFETIME_MAXIMUMis 18 hours, which corresponds to the maximum
size of the lifetime field in SLP messages. Note that on registration
SLP_LIFETIME_MAXIMUMcauses the advertisement to be continually
reregistered until the process exits.

514 SunOS 5.8 Last modified 17 Nov 1999

Service Location Protocol Library Functions slp_api(3SLP)

The SLPBoolean Type

typedef enum {
SLP_FALSE = 0,
SLP_TRUE = 1

} SLPBoolean;

The enumeration SLPBoolean is used as a Boolean flag.

The Service URL Structure

typedef struct srvurl {
char *s_pcSrvType;
char *s_pcHost;
int s_iPort;
char *s_pcNetFamily;
char *s_pcSrvPart;

} SLPSrvURL;

The SLPSrvURL structure is filled in by the SLPParseSrvURL() function with
information parsed from a character buffer containing a service URL. The fields
correspond to different parts of the URL, as follows:
s_pcSrvType A pointer to a character string containing the

service type name, including naming authority.

s_pcHost A pointer to a character string containing the host
identification information.

s_iPort The port number, or zero, if none. The port is
only available if the transport is IP.

s_pcNetFamily A pointer to a character string containing the
network address family identifier. Possible
values are "ipx " for the IPX family, "at " for the
Appletalk family, and "" , the empty string, for
the IP address family.

s_pcSrvPart The remainder of the URL, after the host
identification.

The host and port should be sufficient to open
a socket to the machine hosting the service; the
remainder of the URL should allow further
differentiation of the service.

The SLPHandle

Last modified 17 Nov 1999 SunOS 5.8 515

slp_api(3SLP) Service Location Protocol Library Functions

typedef void* SLPHandle;

The SLPHandle type is returned by SLPOpen() and is a parameter to all SLP
functions. It serves as a handle for all resources allocated on behalf of the process
by the SLP library. The type is opaque.

Callbacks Include a function pointer to a callback function specific to a particular API
operation in the parameter list when the API function is invoked. The callback
function is called with the results of the operation in both the synchronous
and asynchronous cases. When the callback function is invoked, the memory
included in the callback parameters is owned by the API library, and the client
code in the callback must copy out the contents if it wants to maintain the
information longer than the duration of the current callback call.

Each callback parameter list contains parameters for reporting the results of the
operation, as well as an error code parameter and a cookie parameter. The error
code parameter reports the error status of the ongoing (for asynchronous) or
completed (for synchronous) operation. The cookie parameter allows the client
code that starts the operation by invoking the API function to pass information
down to the callback without using global variables. The callback returns an
SLPBoolean to indicate whether the API library should continue processing the
operation. If the value returned from the callback is SLP_TRUE, asynchronous
operations are terminated. Synchronous operations ignore the return since
the operation is already complete.

SLPRegReport()

typedef void SLPRegReport(SLPHandle hSLP,
SLPError errCode,
void *pvCookie);

SLPRegReport() is the callback function to the SLPReg() , SLPDereg() ,
and SLPDelAttrs() functions. The SLPRegReport() callback has the
following parameters:
hSLP TheSLPHandle() used to initiate the operation.

errCode An error code indicating if an error occurred during the
operation.

pvCookie Memory passed down from the client code that called the
original API function, starting the operation. It may be NULL.

SLPSrvTypeCallback()

typedef SLPBoolean SLPSrvTypeCallback(SLPHandle hSLP,
const char* pcSrvTypes,

516 SunOS 5.8 Last modified 17 Nov 1999

Service Location Protocol Library Functions slp_api(3SLP)

SLPError errCode,
void *pvCookie);

The SLPSrvTypeCallback() type is the type of the callback function
parameter to the SLPFindSrvTypes() function. The results are collated
when the hSLP handle is opened either synchronously or asynchronously. The
SLPSrvTypeCallback() callback has the following parameters:
hSLP The SLPHandle used to initiate the operation.

pcSrvTypes A character buffer containing a comma-separated,
null-terminated list of service types.

errCode An error code indicating if an error occurred during the
operation. The callback should check this error code before
processing the parameters. If the error code is other than
SLP_OK, then the API library may choose to terminate the
outstanding operation.

pvCookie Memory passed down from the client code that called the
original API function, starting the operation. It can be NULL.

SLPSrvURLCallback

typedef SLPBoolean SLPSrvURLCallback(SLPHandle hSLP,
const char* pcSrvURL,
unsigned short usLifetime,
SLPError errCode,
void *pvCookie);

The SLPSrvURLCallback() type is the type of the callback function parameter
to the SLPFindSrvs() function. The results are collated, regardless of whether
the hSLP was opened collated or uncollated. The SLPSrvURLCallback()
callback has the following parameters:
hSLP The SLPHandle used to initiate the operation.

pcSrvURL A character buffer containing the returned service
URL.

usLifetime An unsigned short giving the life time of the
service advertisement. The value must be
an unsigned integer less than or equal to
SLP_LIFETIME_MAXIMUM.

errCode An error code indicating if an error occurred
during the operation. The callback should check
this error code before processing the parameters.

Last modified 17 Nov 1999 SunOS 5.8 517

slp_api(3SLP) Service Location Protocol Library Functions

If the error code is other than SLP_OK, then
the API library may choose to terminate the
outstanding operation.

pvCookie Memory passed down from the client code that
called the original API function, starting the
operation. It can be NULL.

SLPAttrCallback

typedef SLPBoolean SLPAttrCallback(SLPHandle hSLP,
const char* pcAttrList,
SLPError errCode,
void *pvCookie);

The SLPAttrCallback() type is the type of the callback function parameter
to the SLPFindAttrs() function.

The behavior of the callback differs depending upon whether the attribute
request was by URL or by service type. If the SLPFindAttrs() operation
was originally called with a URL, the callback is called once, in addition to
the last call, regardless of whether the handle was opened asynchronously or
synchronously. The pcAttrList parameter contains the requested attributes as a
comma-separated list. It is empty if no attributes match the original tag list.

If the SLPFindAttrs() operation was originally called with a service type, the
value of pcAttrList and the calling behavior depend upon whether the handle
was opened asynchronously or synchronously. If the handle was opened
asynchronously, the callback is called every time the API library has results
from a remote agent. The pcAttrList parameter is collated between calls, and
contains a comma-separated list of the results from the agent that immediately
returned. If the handle was opened synchronously, the results are collated from
all returning agents, the callback is called once, and the pcAttrList parameter
is set to the collated result.

SLPAttrCallback() callback has the following parameters:
hSLP The SLPHandle used to initiate the operation.

pcAttrList A character buffer containing a comma-separated
and null-terminated list of attribute id/value
assignments, in SLP wire format.

errCode An error code indicating if an error occurred
during the operation. The callback should check
this error code before processing the parameters.
If the error code is other than SLP_OK, then

518 SunOS 5.8 Last modified 17 Nov 1999

Service Location Protocol Library Functions slp_api(3SLP)

the API library may choose to terminate the
outstanding operation.

pvCookie Memory passed down from the client code that
called the original API function, starting the
operation. It can be NULL.

ERRORS An interface that is part of the SLP API may return one of the following values.
SLP_LAST_CALL The SLP_LAST_CALLcode is passed

to callback functions when the API
library has no more data for them
and therefore no further calls will
be made to the callback on the
currently outstanding operation.
The callback uses this to signal the
main body of the client code that
no more data will be forthcoming
on the operation, so that the main
body of the client code can break
out of data collection loops. On the
last call of a callback during both
a synchronous and asynchronous
call, the error code parameter has
value SLP_LAST_CALL, and the
other parameters are all NULL. If
no results are returned by an API
operation, then only one call is
made, with the error parameter set
to SLP_LAST_CALL.

SLP_OK The SLP_OKcode indicates that
the no error occurred during the
operation.

SLP_LANGUAGE_NOT_SUPPORTED No DA or SA has service
advertisement information in the
language requested, but at least one
DA or SA might have information for
that service in another language.

SLP_PARSE_ERROR The SLP message was rejected by a
remote SLP agent. The API returns
this error only when no information
was retrieved, and at least one SA or

Last modified 17 Nov 1999 SunOS 5.8 519

slp_api(3SLP) Service Location Protocol Library Functions

DA indicated a protocol error. The
data supplied through the API may
be malformed or damaged in transit.

SLP_INVALID_REGISTRATION The API may return this error if an
attempt to register a service was
rejected by all DAs because of a
malformed URL or attributes. SLP
does not return the error if at least
one DA accepts the registration.

SLP_SCOPE_NOT_SUPPORTED The API returns this error if the
UA or SA has been configured
with the net.slp.useScopes list
of scopes and the SA request did
not specify one or more of these
allowable scopes, and no others. It
may also be returned by a DA if the
scope included in a request is not
supported by a DA.

SLP_AUTHENTICATION_ABSENT This error arises when the UA or
SA failed to send an authenticator
for requests or registrations when
security is enabled and thus required.

SLP_AUTHENTICATION_FAILED This error arises when a
authentication on an SLP message
received from a remote SLP agent
failed.

SLP_INVALID_UPDATE An update for a nonexisting
registration was issued, or the update
includes a service type or scope
different than that in the initial
registration.

SLP_REFRESH_REJECTED The SA attempted to refresh a
registration more frequently than
the minimum refresh interval. The
SA should call the appropriate API
function to obtain the minimum
refresh interval to use.

SLP_NOT_IMPLEMENTED An outgoing request overflowed the
maximum network MTU size. The

520 SunOS 5.8 Last modified 17 Nov 1999

Service Location Protocol Library Functions slp_api(3SLP)

request should be reduced in size or
broken into pieces and tried again.

SLP_BUFFER_OVERFLOW An outgoing request overflowed the
maximum network MTU size. The
request should be reduced in size or
broken into pieces and tried again.

SLP_NETWORK_TIMED_OUT When no reply can be obtained in
the time specified by the configured
timeout interval, this error is
returned.

SLP_NETWORK_INIT_FAILED If the network cannot initialize
properly, this error is returned.

SLP_MEMORY_ALLOC_FAILED If the API fails to allocate memory,
the operation is aborted and returns
this.

SLP_PARAMETER_BAD If a parameter passed into an
interface is bad, this error is returned.

SLP_NETWORK_ERROR The failure of networking during
normal operations causes this error
to be returned.

SLP_INTERNAL_SYSTEM_ERROR A basic failure of the API causes this
error to be returned. This occurs
when a system call or library fails.
The operation could not recover.

SLP_HANDLE_IN_USE In the C API, callback functions are
not permitted to recursively call into
the API on the same SLPHandle ,
either directly or indirectly. If an
attempt is made to do so, this error is
returned from the called API function

LIST OF
ROUTINES

SLPOpen() open an SLP handle

SLPClose() close an open SLP handle

SLPReg() register a service advertisement

SLPDereg() deregister a service advertisement

SLPDelAttrs() delete attributes

Last modified 17 Nov 1999 SunOS 5.8 521

slp_api(3SLP) Service Location Protocol Library Functions

SLPFindSrvTypes() return service types

SLPFindSrvs() return service URLs

SLPFindAttrs() return service attributes

SLPGetRefreshInterval() return the maximum allowed refresh
interval for SAs

SLPFindScopes() return list of configured and
discovered scopes

SLPParseSrvURL() parse service URL

SLPEscape() escape special characters

SLPUnescape() translate escaped characters into
UTF-8

SLPGetProperty() return SLP configuration property

SLPSetProperty() set an SLP configuration property

slp_strerror() map SLP error code to message

SLPFree() free memory

ENVIRONMENT
VARIABLES

When SLP_CONF_FILE is set, use this file for configuration.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWslpu

CSI CSI-enabled

Interface Stability Standard

MT-Level Safe

SEE ALSO slpd (1M), slp.conf (4), slpd.reg (4), attributes (5)

Service Location Protocol Administration Guide

Guttman, E., Perkins, C., Veizades, J., and Day, M., RFC 2608, Service Location
Protocol, Version 2, The Internet Society, June 1999.

Kempf, J. and Guttman, E., RFC 2614, An API for Service Location, The
Internet Society, June 1999.

522 SunOS 5.8 Last modified 17 Nov 1999

Service Location Protocol Library Functions SLPClose(3SLP)

NAME SLPClose – close an open SLP handle

SYNOPSIS #include <slp.h>
void SLPClose (SLPHandle phSLP);

DESCRIPTION The SLPClose() function frees all resources associated with the handle. If the
handle is invalid, the function returns silently. Any outstanding synchronous or
asynchronous operations are cancelled, so that their callback functions will not
be called any further

PARAMETERS phSLP An SLPHandle handle returned from a call to SPLOpen() .

ERRORS This function or its callback may return any SLP error code. See the ERRORS
section in slp_api (3SLP).

EXAMPLES EXAMPLE 1 Using SLPClose()

The following example will free all resources associated the handle:

SLPHandle hslp
SLPCLose(hslp);

ENVIRONMENT
VARIABLES

SLP_CONF_FILE When set, use this file for configuration.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWslpu

SEE ALSO slpd (1M), slp_api (3SLP), slp.conf (4), slpd.reg (4), attributes (5)

Service Location Protocol Administration Guide

Kempf, J. and Guttman, E., RFC 2614, An API for Service Location, The
Internet Society, June 1999.

Last modified 17 Nov 1999 SunOS 5.8 523

SLPDelAttrs(3SLP) Service Location Protocol Library Functions

NAME SLPDelAttrs – delete attributes

SYNOPSIS #include <slp.h>
SLPError SLPDelAttrs (SLPHandle hSLP, const char *pcURL, const char *pcAttrs,
SLPRegReport *callback, void *pvCookie);

DESCRIPTION The SLPDelAttrs() function deletes the selected attributes in the locale of
the SLPHandle . If no error occurs, the return value is 0. Otherwise, one of
the SLPError codes is returned.

PARAMETERS hSLP The language specific SLPHandle to use to delete attributes.
It cannot be NULL.

pcURL The URL of the advertisement from which the attributes
should be deleted. It cannot be NULL.

pcAttrs A comma-separated list of attribute ids for the attributes
to deregister.

callback A callback to report the operation’s completion status.
It cannot be NULL.

pvCookie Memory passed to the callback code from the client. It
cannot be NULL.

ERRORS This function or its callback may return any SLP error code. See the ERRORS
section in slp_api (3SLP).

EXAMPLES EXAMPLE 1 Deleting Attributes

Use the following example to delete the location and dpi attributes for the
URL service:printer:lpr://serv/queve1

SLPHandle hSLP;
SLPError err;
SLPRegReport report;

err = SLPDelAttrs(hSLP, "service:printer:lpr://serv/queue1",
"location,dpi", report, NULL);

ENVIRONMENT
VARIABLES

SLP_CONF_FILE When set, use this file for configuration.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

524 SunOS 5.8 Last modified 17 Nov 1999

Service Location Protocol Library Functions SLPDelAttrs(3SLP)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWslpu

SEE ALSO slpd (1M), slp_api (3SLP), slp.conf (4), slpd.reg (4), attributes (5)

Service Location Protocol Administration Guide

Kempf, J. and Guttman, E., RFC 2614, An API for Service Location, The
Internet Society, June 1999.

Last modified 17 Nov 1999 SunOS 5.8 525

SLPDereg(3SLP) Service Location Protocol Library Functions

NAME SLPDereg – deregister the SLP advertisement

SYNOPSIS #include <slp.h>
SLPError SLPDereg (SLPHandle hSLP, const char *pcURL, SLPRegReport callback, void
*pvCookie);

DESCRIPTION The SLPDereg() function deregisters the advertisement for URL pcURL in all
scopes where the service is registered and in all language locales, not just the
locale of the SLPHandle . If no error occurs, the return value is 0. Otherwise, one
of the SLPError codes is returned.

PARAMETERS hSLP The language specific SLPHandle to use for deregistering.
hSLP cannot be NULL.

pcURL The URL to deregister. The value of pcURL cannot be NULL.

callback A callback to report the operation completion status. callback
cannot be NULL.

pvCookie Memory passed to the callback code from the client. pvCookie
can be NULL.

ERRORS This function or its callback may return any SLP error code. See the ERRORS
section in slp_api (3SLP).

EXAMPLES EXAMPLE 1 Using SLPDereg()

Use the following example to deregister the advertisement for the URL
“service:ftp://csserver ”:

SLPerror err;
SLPHandle hSLP;
SLPRegReport regreport;

err = SLPDereg(hSLP, "service:ftp://csserver", regreport, NULL);

ENVIRONMENT
VARIABLES

SLP_CONF_FILE When set, use this file for configuration.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWslpu

SEE ALSO slpd (1M), slp_api (3SLP), slp.conf (4), slpd.reg (4), attributes (5)

Service Location Protocol Administration Guide

526 SunOS 5.8 Last modified 17 Nov 1999

Service Location Protocol Library Functions SLPDereg(3SLP)

Guttman, E., Perkins, C., Veizades, J., and Day, M., RFC 2608, Service Location
Protocol, Version 2, The Internet Society, June 1999.

Kempf, J. and Guttman, E., RFC 2614, An API for Service Location, The
Internet Society, June 1999.

Last modified 17 Nov 1999 SunOS 5.8 527

SLPEscape(3SLP) Service Location Protocol Library Functions

NAME SLPEscape – escapes SLP reserved characters

SYNOPSIS #include <slp.h>
SLPError SLPEscape (const char *pcInBuf, char** ppcOutBuf, SLPBoolean isTag);

DESCRIPTION The SLPEscape() function processes the input string in pcInbuf and escapes
any SLP reserved characters. If the isTag parameter is SLPTrue , it then looks
for bad tag characters and signals an error if any are found by returning the
SLP_PARSE_ERRORcode. The results are put into a buffer allocated by the
API library and returned in the ppcOutBuf parameter. This buffer should be
deallocated using SLPFree (3SLP) when the memory is no longer needed.

PARAMETERS pcInBuf Pointer to the input buffer to process for escape characters.

ppcOutBuf Pointer to a pointer for the output buffer with the SLP
reserved characters escaped. It must be freed using
SLPFree() when the memory is no longer needed.

isTag When true, checks the input buffer for bad tag characters.

ERRORS This function or its callback may return any SLP error code. See the ERRORS
section in slp_api (3SLP).

EXAMPLES EXAMPLE 1 Converting Attribute Tags

The following example shows how to convert the attribute tag ,tag-example,
to on the wire format:

SLPError err;
char* escaped Chars;

err = SLPEscape(",tag-example,", &escapedChars, SLP_TRUE);

ENVIRONMENT
VARIABLES

SLP_CONF_FILE When set, use this file for configuration.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWslpu

SEE ALSO slpd (1M), slp_api (3SLP), SLPFree (3SLP), slp.conf (4), slpd.reg (4),
attributes (5)

Service Location Protocol Administration Guide

528 SunOS 5.8 Last modified 17 Nov 1999

Service Location Protocol Library Functions SLPEscape(3SLP)

Guttman, E., Perkins, C., Veizades, J., and Day, M., RFC 2608, Service Location
Protocol, Version 2, The Internet Society, June 1999.

Kempf, J. and Guttman, E., RFC 2614, An API for Service Location, The
Internet Society, June 1999.

Last modified 17 Nov 1999 SunOS 5.8 529

SLPFindAttrs(3SLP) Service Location Protocol Library Functions

NAME SLPFindAttrs – return service attributes

SYNOPSIS #include <slp.h>
SLPError SLPFindAttrs (SLPHandle hSLP, const char *pcURL, const char *pcScopeList,
const char *pcAttrIds, SLPAttrCallback *callback, void *pvCookie);

DESCRIPTION The SLPFindAttrs() function returns service attributes matching the attribute
tags for the indicated full or partial URL. If pcURL is a complete URL, the
attribute information returned is for that particular service in the language
locale of the SLPHandle . If pcURL is a service type, then all attributes for the
service type are returned, regardless of the language of registration. Results are
returned through the callback parameter.

The result is filtered with an SLP attribute request filter string parameter, the
syntax of which is described in RFC 2608. If the filter string is the empty string,
"" , all attributes are returned.

If an error occurs in starting the operation, one of the SLPError codes is
returned.

PARAMETERS hSLP The language-specific SLPHandle on which to search for
attributes. It cannot be NULL.

pcURL The full or partial URL. See RFC 2608 for partial URL
syntax. It cannot be NULL.

pcScopeList A pointer to a char containing a comma-separated list of
scope names. It cannot be NULL or an empty string, "" .

pcAttrIds The filter string indicating which attribute values to return.
Use empty string "" to indicate all values. Wildcards
matching all attribute ids having a particular prefix or suffix
are also possible. It cannot be NULL.

callback A callback function through which the results of the
operation are reported. It cannot be NULL.

pvCookie Memory passed to the callback code from the client. It may
be NULL.

ERRORS This function or its callback may return any SLP error code. See the ERRORS
section in slp_api (3SLP).

EXAMPLES EXAMPLE 1 Returning Service Attributes for a Specific URL

Use the following example to return the attributes “location ” and “dpi ” for
the URL “service:printer:lpr://serv/queue1 ” through the callback
attrReturn :

SLPHandle hSLP;

530 SunOS 5.8 Last modified 17 Nov 1999

Service Location Protocol Library Functions SLPFindAttrs(3SLP)

SLPAttrCallback attrReturn;
SLPError err;

err = SLPFindAttrs(hSLP "service:printer:lpr://serv/queue1",
"default", "location,dpi", attrReturn, err);

EXAMPLE 2 Returning Service Attributes for All URLs of a Specific Type

Use the following example to return the attributes “location ” and “dpi ” for
all service URLs having type “service:printer:lpr ”:

err = SLPFindAttrs(hSLP, "service:printer:lpr",
"default", "location, pi",
attrReturn, NULL);

ENVIRONMENT
VARIABLES

SLP_CONF_FILE When set, use this file for configuration.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWslpu

SEE ALSO slpd (1M), slp_api (3SLP), slp.conf (4), slpd.reg (4), attributes (5)

Service Location Protocol Administration Guide

Kempf, J. and Guttman, E., RFC 2614, An API for Service Location, The
Internet Society, June 1999.

Last modified 17 Nov 1999 SunOS 5.8 531

SLPFindScopes(3SLP) Service Location Protocol Library Functions

NAME SLPFindScopes – return list of configured and discovered scopes

SYNOPSIS #include <slp.h>
SLPError SLPFindScopes (SLPHandle hSLP, char** ppcScopes);

DESCRIPTION The SLPFindScopes() function sets the ppcScopes parameter to a pointer
to a comma-separated list including all available scope names. The list
of scopes comes from a variety of sources: the configuration file, the
net.slp.useScopes property and the net.slp.DAAddresses property,
DHCP, or through the DA discovery process. If there is any order to the scopes,
preferred scopes are listed before less desirable scopes. There is always at least
one string in the array, the default scope, DEFAULT.

If no error occurs, SLPFindScopes() returns SLP_OK, otherwise, it returns
the appropriate error code.

PARAMETERS hSLP The SLPHandle on which to search for scopes. hSLP cannot
be NULL.

ppcScopes A pointer to a char pointer into which the buffer pointer
is placed upon return. The buffer is null-terminated. The
memory should be freed by calling SLPFree() . See
SLPFree (3SLP)

ERRORS This function or its callback may return any SLP error code. See the ERRORS
section in slp_api (3SLP).

EXAMPLES EXAMPLE 1 Finding Configured or Discovered Scopes

Use the following example to find configured or discovered scopes:

SLPHandle hSLP;
char *ppcScopes;
SLPError err;

error = SLPFindScopes(hSLP, & ppcScopes);

ENVIRONMENT
VARIABLES

SLP_CONF_FILE When set, use this file for configuration.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWslpu

532 SunOS 5.8 Last modified 17 Nov 1999

Service Location Protocol Library Functions SLPFindScopes(3SLP)

SEE ALSO slpd (1M), slp_api (3SLP), SLPFree (3SLP), slp.conf (4), slpd.reg (4),
attributes (5)

Service Location Protocol Administration Guide

Guttman, E., Perkins, C., Veizades, J., and Day, M., RFC 2608, Service Location
Protocol, Version 2, The Internet Society, June 1999.

Kempf, J. and Guttman, E., RFC 2614, An API for Service Location, The
Internet Society, June 1999.

Last modified 17 Nov 1999 SunOS 5.8 533

SLPFindSrvs(3SLP) Service Location Protocol Library Functions

NAME SLPFindSrvs – return service URLs

SYNOPSIS #include <slp.h>
SLPError SLPFindSrvs (SLPHandle hSLP, const char *pcServiceType, const char
*pcScopeList, const char *pcSearchFilter, SLPSrvURLCallback *callback, void *pvCookie);

DESCRIPTION The SLPFindSrvs() function issues a request for SLP services. The query is for
services on a language-specific SLPHandle . It returns the results through the
callback. The parameters will determine the results.

If an error occurs in starting the operation, one of the SLPError codes is
returned.

PARAMETERS hSLP The language-specific SLPHandle on which to
search for services. It cannot be NULL.

pcServiceType The service type string for the request. The
pcServiceType can be discovered by a call to
SLPSrvTypes() . Examples of service type
strings include

"service:printer:lpr"

or

"service:nfs"

pcServiceType cannot be NULL.

pcScopeList A pointer to a char containing a
comma-separated list of scope names. It cannot
be NULLor an empty string, "" .

pcSearchFilter A query formulated of attribute pattern matching
expressions in the form of a LDAPv3 search
filter. See RFC 2254. If this filter is empty, "" ,
all services of the requested type in the specified
scopes are returned. It cannot be NULL.

callback A callback through which the results of the
operation are reported. It cannot be NULL.

pvCookie Memory passed to the callback code from the
client. It can be NULL.

ERRORS This function or its callback may return any SLP error code. See the ERRORS
section in slp_api (3SLP).

EXAMPLES EXAMPLE 1 Using SLPFindSrvs()

The following example finds all advertisements for printers supporting the LPR
protocol with the dpi attribute 300 in the default scope:

534 SunOS 5.8 Last modified 17 Nov 1999

Service Location Protocol Library Functions SLPFindSrvs(3SLP)

SLPError err;
SLPHandle hSLP;
SLPSrvURLCallback srvngst;

err = SLPFindSrvs(hSLP, "service:printer:lpr", "default", "(dpi=300)", srvngst, NULL);

ENVIRONMENT
VARIABLES

SLP_CONF_FILE When set, use this file for configuration.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWslpu

SEE ALSO slpd (1M), slp_api (3SLP), slp.conf (4), slpd.reg (4), attributes (5)

Service Location Protocol Administration Guide

Howes, T., RFC 2254, The String Representation of LDAP Search Filters,
The Internet Society, 1997.

Guttman, E., Perkins, C., Veizades, J., and Day, M., RFC 2608, Service Location
Protocol, Version 2, The Internet Society, June 1999.

Kempf, J. and Guttman, E., RFC 2614, An API for Service Location, The
Internet Society, June 1999.

Last modified 17 Nov 1999 SunOS 5.8 535

SLPFindSrvTypes(3SLP) Service Location Protocol Library Functions

NAME SLPFindSrvTypes – find service types

SYNOPSIS #include <slp.h>
SLPError SLPFindSrvTypes (SLPHandle hSLP, const char *pcNamingAuthority, const
char *pcScopeList, SLPSrvTypeCallback *callback, void *pvCookie);

DESCRIPTION The SLPFindSrvTypes() function issues an SLP service type request for
service types in the scopes indicated by the pcScopeList . The results are
returned through the callback parameter. The service types are independent of
language locale, but only for services registered in one of the scopes and for the
indicated naming authority.

If the naming authority is "* ", then results are returned for all naming authorities.
If the naming authority is the empty string, "" , then the default naming
authority, IANA, is used. IANA is not a valid naming authority name; the
SLP_PARAMETER_BADerror code will be returned if you include it explicitly.

The service type names are returned with the naming authority included in
the following format:

service-type "." naming-authority

unless the naming authority is the default, in which case, just the service type
name is returned.

If an error occurs in starting the operation, one of the SLPError codes is
returned.

PARAMETERS hSLP The SLPHandle on which to search for types. It
cannot be NULL.

pcNamingAuthority The naming authority to search. Use "* " to search
all naming authorties; use the empty string "" to
search the default naming authority. It cannot
be NULL.

pcScopeList A pointer to a char containing a
comma-separated list of scope names to search
for service types. It cannot be NULL or an empty
string, "" .

callback A callback through which the results of the
operation are reported. It cannot be NULL.

pvCookie Memory passed to the callback code from the
client. It can be NULL.

ERRORS This function or its callback may return any SLP error code. See the ERRORS
section in slp_api (3SLP).

536 SunOS 5.8 Last modified 17 Nov 1999

Service Location Protocol Library Functions SLPFindSrvTypes(3SLP)

EXAMPLES EXAMPLE 1 Using SLPFindSrvTypes()

The following example finds all service type names in the default scope and
default naming authority:

SLPError err;
SLPHandle hSLP;
SLPSrvTypeCallback findsrvtypes;

err = SLPFindSrvTypes(hSLP, "", "default", findsrvtypes, NULL);

ENVIRONMENT
VARIABLES

SLP_CONF_FILE When set, use this file for configuration.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWslpu

SEE ALSO slpd (1M), slp_api (3SLP), slp.conf (4), slpd.reg (4), attributes (5)

Service Location Protocol Administration Guide

Guttman, E., Perkins, C., Veizades, J., and Day, M., RFC 2608, Service Location
Protocol, Version 2, The Internet Society, June 1999.

Howes, T., RFC 2254, The String Representation of LDAP Search Filters,
The Internet Society, 1997.

Kempf, J. and Guttman, E., RFC 2614, An API for Service Location, The
Internet Society, June 1999.

Last modified 17 Nov 1999 SunOS 5.8 537

SLPFree(3SLP) Service Location Protocol Library Functions

NAME SLPFree – frees memory

SYNOPSIS #include <slp.h>
SLPError SLPFree (void *pvMem);

DESCRIPTION The SLPFree() function frees memory returned from SLPParseSrvURL() ,
SLPFindScopes() , SLPEscape() , and SLPUnescape() .

PARAMETERS pvMem A pointer to the storage allocated by the
SLPParseSrvURL() , SLPFindScopes() , SLPEscape() ,
and SLPUnescape() functions. pvMem is ignored if its
value is NULL.

ERRORS This function or its callback may return any SLP error code. See the ERRORS
section in slp_api (3SLP).

EXAMPLES EXAMPLE 1 Using SLPFree()

The following example illustrates how to call SLPFree() . It assumes that
SrvURL contains previously allocated memory.

SLPerror err;

err = SLPFree((void*) SrvURL);

ENVIRONMENT
VARIABLES

SLP_CONF_FILE When set, use this file for configuration.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWslpu

SEE ALSO slpd (1M), SLPEscape (3SLP), SLPFindScopes (3SLP),
SLPParseSrvURL (3SLP), SLPUnescape (3SLP), slp_api (3SLP),
slp.conf (4), slpd.reg (4), attributes (5)

Service Location Protocol Administration Guide

Guttman, E., Perkins, C., Veizades, J., and Day, M., RFC 2608, Service Location
Protocol, Version 2, The Internet Society, June 1999.

Kempf, J. and Guttman, E., RFC 2614, An API for Service Location, The
Internet Society, June 1999.

538 SunOS 5.8 Last modified 17 Nov1999

Service Location Protocol Library Functions SLPGetProperty(3SLP)

NAME SLPGetProperty – return SLP configuration property

SYNOPSIS #include <slp.h>
const char* SLPGetProperty (const char* pcName);

DESCRIPTION The SLPGetProperty() function returns the value of the corresponding SLP
property name, or NULL, if none. If there is no error, SLPGetProperty()
returns a pointer to the property value. If the property was not set, it returns the
empty string, "" . If an error occurs, SLPGetProperty() returns NULL. The
returned string should not be freed.

PARAMETERS pcName A null-terminated string with the property name.
pcName cannot be NULL.

ERRORS This function or its callback may return any SLP error code. See the ERRORS
section in slp_api (3SLP).

EXAMPLES EXAMPLE 1 Using SLPGetProperty()

Use the following example to return a list of configured scopes:

const char* useScopes

useScopes = SLPGetProperty("net.slp.useScopes");

ENVIRONMENT
VARIABLES

SLP_CONF_FILE When set, use this file for configuration.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWslpu

SEE ALSO slpd (1M), slp_api (3SLP), slp.conf (4), slpd.reg (4), attributes (5)

Service Location Protocol Administration Guide

Kempf, J. and Guttman, E., RFC 2614, An API for Service Location, The
Internet Society, June 1999.

Last modified 17 Nov 1999 SunOS 5.8 539

SLPGetRefreshInterval(3SLP) Service Location Protocol Library Functions

NAME SLPGetRefreshInterval – return the maximum allowed refresh interval

SYNOPSIS #include <slp.h>
int SLPGetRefreshInterval (void);

DESCRIPTION The SLPGetRefreshInterval() function returns the maximum across
all DAs of the min-refresh-interval attribute. This value satisfies the
advertised refresh interval bounds for all DAs. If this value is used by the
SA, it assures that no refresh registration will be rejected. If no DA advertises
a min-refresh-interval attribute, a value of 0 is returned. If an error
occurs, an SLP error code is returned.

ERRORS This function or its callback may return any SLP error code. See the ERRORS
section in slp_api (3SLP).

EXAMPLES EXAMPLE 1 Using SLPGetRefreshInterval()

Use the following example to return the maximum valid refresh interval for SA:

int minrefresh

minrefresh = SLPGetRefreshInterval();

ENVIRONMENT
VARIABLES

SLP_CONF_FILE When set, use this file for configuration.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWslpu

SEE ALSO slpd (1M), slp_api (3SLP), slp.conf (4), slpd.reg (4), attributes (5)

Service Location Protocol Administration Guide

Kempf, J. and Guttman, E., RFC 2614, An API for Service Location, The
Internet Society, June 1999.

540 SunOS 5.8 Last modified 17 Nov 1999

Service Location Protocol Library Functions SLPOpen(3SLP)

NAME SLPOpen – open an SLP handle

SYNOPSIS #include <slp.h>
SLPError SLPOpen(const char *pcLang, SLPBoolean isAsync, SLPHandle *phSLP);

DESCRIPTION The SLPOpen() function returns a SLPHandle handle in the phSLP parameter
for the language locale passed in as the pcLang parameter. The client indicates
if operations on the handle are to be synchronous or asynchronous through
the isAsync parameter. The handle encapsulates the language locale for SLP
requests issued through the handle, and any other resources required by the
implementation. SLP properties are not encapsulated by the handle, they are
global. The return value of the function is an SLPError code indicating the
status of the operation. Upon failure, the phSLP parameter is NULL.

An SLPHandle can only be used for one SLP API operation at a time. If
the original operation was started asynchronously, any attempt to start an
additional operation on the handle while the original operation is pending
results in the return of an SLP_HANDLE_IN_USEerror from the API function.
The SLPClose() function terminates any outstanding calls on the handle.

PARAMETERS pcLang A pointer to an array of characters containing the language
tag set forth in RFC 1766 for the natural language locale
of requests issued on the handle. This parameter cannot
be NULL.

isAsync An SLPBoolean indicating whether or not the SLPHandle
should be opened for an asynchronous operation.

phSLP A pointer to an SLPHandle in which the open SLPHandle
is returned. If an error occurs, the value upon return is NULL.

ERRORS This function or its callback may return any SLP error code. See the ERRORS
section in slp_api (3SLP).

EXAMPLES EXAMPLE 1 Using SLPOpen()

Use the following example to open a synchronous handle for the German (“de”)
locale:

SLPHandle HSLP;
SLPError err;

err = SLPOpen("de", SLP_FALSE, &hSLP)

ENVIRONMENT
VARIABLES

SLP_CONF_FILE When set, use this file for configuration.

Last modified 17 Nov 1999 SunOS 5.8 541

SLPOpen(3SLP) Service Location Protocol Library Functions

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWslpu

SEE ALSO slpd (1M), slp_api (3SLP), slp.conf (4), slpd.reg (4), attributes (5)

Service Location Protocol Administration Guide

Alvestrand, H., RFC 1766, Tags for the Identification of Languages, Network
Working Group, March 1995.

Kempf, J. and Guttman, E., RFC 2614, An API for Service Location, The
Internet Society, June 1999.

542 SunOS 5.8 Last modified 17 Nov 1999

Service Location Protocol Library Functions SLPParseSrvURL(3SLP)

NAME SLPParseSrvURL – parse service URL

SYNOPSIS #include <slp.h>
SLPError SLPParseSrvURL (const char *pcSrvURL, SLPSrvURL** ppSrvURL);

DESCRIPTION The SLPParseSrvURL() routine parses the URL passed in as the argument into
a service URL structure and returns it in the ppSrvURL pointer. If a parser error
occurs, returns SLP_PARSE_ERROR. The structure returned in ppSrvURL should
be freed with SLPFree() . If the URL has no service part, the s_pcSrvPart
string is the empty string, "" , that is, it is not NULL. If pcSrvURL is not a service:
URL, then the s_pcSrvType field in the returned data structure is the URL’s
scheme, which might not be the same as the service type under which the
URL was registered. If the transport is IP, the s_pcNetFamily field is the
empty string.

If no error occurs, the return value is the SLP_OK. Otherwise, if an error occurs,
one of the SLPError codes is returned.

PARAMETERS pcSrvURL A pointer to a character buffer containing the null terminated
URL string to parse. It is destructively modified to produce
the output structure. It may not be NULL.

ppSrvURL A pointer to a ponter for the SLPSrvURL structure to receive
the parsed URL. It may not be NULL.

ERRORS This function or its callback may return any SLP error code. See the ERRORS
section in slp_api (3SLP).

EXAMPLES EXAMPLE 1 Using SLPParseSrvURL()

The following example uses the SLPParseSrvURL() function to parse the
service URL service:printer:lpr://serv/queue1 :

SLPSrvURL* surl;
SLPError err;

err = SLPParseSrvURL("service:printer:lpr://serv/queue1", &surl);

ENVIRONMENT
VARIABLES

SLP_CONF_FILE When set, use this file for configuration.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWslpu

Last modified 17 Nov 1999 SunOS 5.8 543

SLPParseSrvURL(3SLP) Service Location Protocol Library Functions

SEE ALSO slpd (1M), slp_api (3SLP), slp.conf (4), slpd.reg (4), attributes (5)

Service Location Protocol Administration Guide

Guttman, E., Perkins, C., Veizades, J., and Day, M., RFC 2608, Service Location
Protocol, Version 2, The Internet Society, June 1999.

Kempf, J. and Guttman, E., RFC 2614, An API for Service Location, The
Internet Society, June 1999.

544 SunOS 5.8 Last modified 17 Nov 1999

Service Location Protocol Library Functions SLPReg(3SLP)

NAME SLPReg – register an SLP advertisement

SYNOPSIS #include <slp.h>
SLPError SLPReg(SLPHandle hSLP, const char *pcSrvURL, const unsigned short usLifetime
, const char *pcSrvType, const char *pcAttrs, SLPBoolean fresh, SLPRegReport callback,
void *pvCookie);

DESCRIPTION The SLPReg() function registers the URL in pcSrvURL having the lifetime
usLifetime with the attribute list in pcAttrs. The pcAttrs list is a comma-separated
list of attribute assignments in on-the-wire format (including escaping of
reserved characters). The sLifetime parameter must be nonzero and less than
or equal to SLP_LIFETIME_MAXIMUM. If the fresh flag is SLP_TRUE, then the
registration is new, the SLP protocol fresh flag is set, and the registration replaces
any existing registrations.

The pcSrvType parameter is a service type name and can be included for service
URLs that are not in the service: scheme. If the URL is in the service: scheme, the
pcSrvType parameter is ignored. If the fresh flag is SLP_FALSE, then an existing
registration is updated. Rules for new and updated registrations, and the format
for pcAttrs and pcScopeList, can be found in RFC 2608. Registrations and updates
take place in the language locale of the hSLP handle.

The API library is required to perform the operation in all scopes obtained
through configuration.

PARAMETERS hSLP The language specific SLPHandle on which to register the
advertisement. hSLP cannot be NULL.

pcSrvURL The URL to register. The value of pcSrvURL cannot be NULL
or the empty string.

usLifetime An unsigned short giving the life time of the service
advertisement, in seconds. The value must be an unsigned
integer less than or equal to SLP_LIFETIME_MAXIMUM.

pcSrvType The service type. If pURL is a service: URL, then this
parameter is ignored. pcSrvType cannot be NULL.

pcAttrs A comma-separated list of attribute assignment expressions
for the attributes of the advertisement. pcAttrs cannot be
NULL. Use the empty string, "" , to indicate no attributes.

fresh An SLPBoolean that is SLP_TRUEif the registration is new
or SLP_FALSE if it is a reregistration.

callback A callback to report the operation completion status. callback
cannot be NULL.

Last modified 17 Nov 1999 SunOS 5.8 545

SLPReg(3SLP) Service Location Protocol Library Functions

pvCookie Memory passed to the callback code from the client. pvCookie
can be NULL.

ERRORS This function or its callback may return any SLP error code. See the ERRORS
section in slp_api (3SLP).

EXAMPLES EXAMPLE 1 An Initial Registration

The following example shows an initial registration for the
“service:video://bldg15 ” camera service for three hours:

SLPError err;
SLPHandle hSLP;
SLPRegReport regreport;
err = SLPReg(hSLP, "service:video://bldg15",

10800, "", "(location=B15-corridor),
(scan-rate=100)", SLP_TRUE,
regRpt, NULL);

ENVIRONMENT
VARIABLES

SLP_CONF_FILE When set, use this file for configuration.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWslpu

SEE ALSO slpd (1M), slp_api (3SLP), slp.conf (4), slpd.reg (4), attributes (5)

Service Location Protocol Administration Guide

Guttman, E., Perkins, C., Veizades, J., and Day, M., RFC 2608, Service Location
Protocol, Version 2, The Internet Society, June 1999.

Kempf, J. and Guttman, E., RFC 2614, An API for Service Location, The
Internet Society, June 1999.

546 SunOS 5.8 Last modified 17 Nov 1999

Service Location Protocol Library Functions SLPSetProperty(3SLP)

NAME SLPSetProperty – set an SLP configuration property

SYNOPSIS #include <slp.h>
void SLPSetProperty (const char *pcName, const char *pcValue);

DESCRIPTION The SLPSetProperty() function sets the value of the SLP property to the new
value. The pcValue parameter contains the property value as a string.

PARAMETERS pcName A null-terminated string with the property name. pcName
cannot be NULL.

pcValue A null-terminated string with the property value. pcValue
cannot be NULL

ERRORS This function or its callback may return any SLP error code. See the ERRORS
section in slp_api (3SLP).

EXAMPLES EXAMPLE 1 Setting a Configuration Property

The following example shows to set the property net.slp.typeHint to
service:ftp :

SLPSetProperty ("net.slp.typeHint" "service:ftp");

ENVIRONMENT
VARIABLES

SLP_CONF_FILE When set, use this file for configuration.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWslpu

SEE ALSO slpd (1M), slp_api (3SLP), slp.conf (4), slpd.reg (4), attributes (5)

Service Location Protocol Administration Guide

Kempf, J. and Guttman, E., RFC 2614, An API for Service Location, The
Internet Society, June 1999.

Last modified 17 Nov 1999 SunOS 5.8 547

slp_strerror(3SLP) Service Location Protocol Library Functions

NAME slp_strerror – map SLP error codes to messages

SYNOPSIS #include <slp.h>
const char* slp_strerror (SLPError err_code);

DESCRIPTION The slp_strerror() function maps err_code to a string explanation of the
error. The returned string is owned by the library and must not be freed.

PARAMETERS err_code An SLP error code.

ERRORS This function or its callback may return any SLP error code. See the ERRORS
section in slp_api (3SLP).

EXAMPLES EXAMPLE 1 Using slp_sterror()

The following example returns the message that corresponds to the error code:

SLPError error;
const char* msg;
msg = slp_streerror(err);

ENVIRONMENT
VARIABLES

SLP_CONF_FILE When set, use this file for configuration.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWslpu

SEE ALSO slpd (1M), slp_api (3SLP), slp.conf (4), slpd.reg (4), attributes (5)

Service Location Protocol Administration Guide

Kempf, J. and Guttman, E., RFC 2614, An API for Service Location, The
Internet Society, June 1999.

548 SunOS 5.8 Last modified 17 Nov 1999

Service Location Protocol Library Functions SLPUnescape(3SLP)

NAME SLPUnescape – translate escaped characters into UTF-8

SYNOPSIS #include <slp.h>
SLPError SLPUnescape (const char *pcInBuf, char** ppcOutBuf, SLPBoolean isTag);

DESCRIPTION The SLPUnescape() function processes the input string in pcInbuf and
unescapes any SLP reserved characters. If the isTag parameter is SLPTrue ,
then look for bad tag characters and signal an error if any are found with the
SLP_PARSE_ERRORcode. No transformation is performed if the input string is
an opaque. The results are put into a buffer allocated by the API library and
returned in the ppcOutBuf parameter. This buffer should be deallocated using
SLPFree (3SLP) when the memory is no longer needed.

PARAMETERS pcInBuf Pointer to the input buffer to process for escape characters.

ppcOutBuf Pointer to a pointer for the output buffer with the
SLP reserved characters escaped. Must be freed using
SLPFree (3SLP) when the memory is no longer needed.

isTag When true, the input buffer is checked for bad tag characters.

ERRORS This function or its callback may return any SLP error code. See the ERRORS
section in slp_api (3SLP).

EXAMPLES EXAMPLE 1 Using SLPUnescape()

The following example decodes the representation for “,tag,” :

char* pcOutBuf;
SLPError err;

err = SLPUnescape("\\2c tag\\2c", &pcOutbuf, SLP_TRUE);

ENVIRONMENT
VARIABLES

SLP_CONF_FILE When set, use this file for configuration.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWslpu

SEE ALSO slpd (1M), SLPFree (3SLP), slp_api (3SLP), slp.conf (4), slpd.reg (4),
attributes (5)

Service Location Protocol Administration Guide

Last modified 17 Nov 1999 SunOS 5.8 549

SLPUnescape(3SLP) Service Location Protocol Library Functions

Guttman, E., Perkins, C., Veizades, J., and Day, M., RFC 2608, Service Location
Protocol, Version 2, The Internet Society, June 1999.

Kempf, J. and Guttman, E., RFC 2614, An API for Service Location, The
Internet Society, June 1999.

550 SunOS 5.8 Last modified 17 Nov 1999

Sockets Library Functions socket(3SOCKET)

NAME socket – create an endpoint for communication

SYNOPSIS cc [flag ...] file ... −lsocket −lnsl [library ...]
#include <sys/types.h>
#include <sys/socket.h>

int socket (int domain, int type, int protocol);

DESCRIPTION socket() creates an endpoint for communication and returns a descriptor.

The domain parameter specifies a communications domain within which
communication will take place; this selects the protocol family which should
be used. The protocol family generally is the same as the address family for
the addresses supplied in later operations on the socket. These families are
defined in the include file <sys/socket.h> . There must be an entry in the
netconfig (4) file for at least each protocol family and type required. If protocol
has been specified, but no exact match for the tuplet family, type, protocol is
found, then the first entry containing the specified family and type with zero for
protocol will be used. The currently understood formats are:
PF_UNIX UNIX system internal protocols

PF_INET Internet Protocol Version 4 (IPv4)

PF_INET6 Internet Protocol Version 6 (IPv6)

The socket has the indicated type , which specifies the communication
semantics. Currently defined types are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQPACKET
SOCK_RDM

A SOCK_STREAMtype provides sequenced, reliable, two-way connection-based
byte streams. An out-of-band data transmission mechanism may be supported.
A SOCK_DGRAMsocket supports datagrams (connectionless, unreliable messages
of a fixed (typically small) maximum length). A SOCK_SEQPACKETsocket may
provide a sequenced, reliable, two-way connection-based data transmission path
for datagrams of fixed maximum length; a consumer may be required to read an
entire packet with each read system call. This facility is protocol specific, and
presently not implemented for any protocol family. SOCK_RAWsockets provide
access to internal network interfaces. The types SOCK_RAW, which is available
only to the superuser, and SOCK_RDM, for which no implementation currently
exists, are not described here.

Last modified 8 Nov 1999 SunOS 5.8 551

socket(3SOCKET) Sockets Library Functions

protocol specifies a particular protocol to be used with the socket. Normally
only a single protocol exists to support a particular socket type within a given
protocol family. However, multiple protocols may exist, in which case a
particular protocol must be specified in this manner. The protocol number to use
is particular to the “communication domain” in which communication is to take
place. If a protocol is specified by the caller, then it will be packaged into a socket
level option request and sent to the underlying protocol layers.

Sockets of type SOCK_STREAMare full-duplex byte streams, similar to pipes. A
stream socket must be in a connected state before any data may be sent or received
on it. A connection to another socket is created with a connect (3SOCKET) call.
Once connected, data may be transferred using read (2) and write (2) calls or
some variant of the send (3SOCKET) and recv (3SOCKET) calls. When a session
has been completed, a close (2) may be performed. Out-of-band data may also
be transmitted as described on the send (3SOCKET) manual page and received
as described on the recv (3SOCKET) manual page.

The communications protocols used to implement a SOCK_STREAMinsure that
data is not lost or duplicated. If a piece of data for which the peer protocol has
buffer space cannot be successfully transmitted within a reasonable length
of time, then the connection is considered broken and calls will indicate an
error with −1 returns and with ETIMEDOUTas the specific code in the global
variable errno . The protocols optionally keep sockets “warm” by forcing
transmissions roughly every minute in the absence of other activity. An error is
then indicated if no response can be elicited on an otherwise idle connection
for a extended period (for instance 5 minutes). A SIGPIPE signal is raised if
a process sends on a broken stream; this causes naive processes, which do
not handle the signal, to exit.

SOCK_SEQPACKETsockets employ the same system calls as SOCK_STREAM
sockets. The only difference is that read (2) calls will return only the amount of
data requested, and any remaining in the arriving packet will be discarded.

SOCK_DGRAMand SOCK_RAWsockets allow datagrams to be sent to
correspondents named in sendto (3SOCKET) calls. Datagrams are generally
received with recvfrom (3SOCKET), which returns the next datagram with its
return address.

An fcntl (2) call can be used to specify a process group to receive a SIGURG
signal when the out-of-band data arrives. It may also enable non-blocking I/O
and asynchronous notification of I/O events with SIGIO signals.

The operation of sockets is controlled by socket level options. These options
are defined in the file <sys/socket.h> . setsockopt (3SOCKET) and
getsockopt (3SOCKET) are used to set and get options, respectively.

552 SunOS 5.8 Last modified 8 Nov 1999

Sockets Library Functions socket(3SOCKET)

RETURN VALUES A −1 is returned if an error occurs. Otherwise the return value is a descriptor
referencing the socket.

ERRORS The socket() call fails if:
EACCES Permission to create a socket of the

specified type and/or protocol
is denied.

EMFILE The per-process descriptor table
is full.

ENOMEM Insufficient user memory is available.

ENOSR There were insufficient STREAMS
resources available to complete the
operation.

EPROTONOSUPPORT The protocol type or the specified
protocol is not supported within
this domain.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO close (2), fcntl (2), ioctl (2), read (2), write (2), accept (3SOCKET),
bind (3SOCKET), connect (3SOCKET), getsockname (3SOCKET),
getsockopt (3SOCKET), listen (3SOCKET), recv (3SOCKET),
setsockopt (3SOCKET), send (3SOCKET), shutdown (3SOCKET),
socketpair (3SOCKET), attributes (5), in (3HEAD), socket (3HEAD)

Last modified 8 Nov 1999 SunOS 5.8 553

socket(3XNET) X/Open Networking Services Library Functions

NAME socket – create an endpoint for communication

SYNOPSIS cc [flag ...] file ... −lxnet [library ...]
#include <sys/socket.h>

int socket (int domain, int type, int protocol);

DESCRIPTION The socket() function creates an unbound socket in a communications
domain, and returns a file descriptor that can be used in later function calls that
operate on sockets.

The function takes the following arguments:
domain Specifies the communications domain in which a socket is

to be created.

type Specifies the type of socket to be created.

protocol Specifies a particular protocol to be used with the socket.
Specifying a protocol of 0 causes socket() to use an
unspecified default protocol appropriate for the requested
socket type.

The domain argument specifies the address family used in the
communications domain. The address families supported by the system are
implementation-dependent.

The <sys/socket.h> header defines at least the following values for the
domain argument:
AF_UNIX File system pathnames.

AF_INET Internet Protocol version 4 (IPv4) address.

AF_INET6 Internet Protocol version 6 (IPv6) address.

The type argument specifies the socket type, which determines the semantics of
communication over the socket. The socket types supported by the system are
implementation-dependent. Possible socket types include:
SOCK_STREAM Provides sequenced, reliable, bidirectional,

connection-mode byte streams, and may provide
a transmission mechanism for out-of-band data.

SOCK_DGRAM Provides datagrams, which are
connectionless-mode, unreliable messages of
fixed maximum length.

554 SunOS 5.8 Last modified 8 Nov 1999

X/Open Networking Services Library Functions socket(3XNET)

SOCK_SEQPACKET Provides sequenced, reliable, bidirectional,
connection-mode transmission path for records.
A record can be sent using one or more output
operations and received using one or more input
operations, but a single operation never transfers
part of more than one record. Record boundaries
are visible to the receiver via the MSG_EOR flag.

If the protocol argument is non-zero, it must specify a protocol that is
supported by the address family. The protocols supported by the system are
implementation-dependent.

The process may need to have appropriate privileges to use the socket()
function or to create some sockets.

USAGE The documentation for specific address families specify which protocols each
address family supports. The documentation for specific protocols specify which
socket types each protocol supports.

The application can determine if an address family is supported by trying to
create a socket with domain set to the protocol in question.

RETURN VALUES Upon successful completion, socket() returns a nonnegative integer, the
socket file descriptor. Otherwise a value of −1 is returned and errno is set
to indicate the error.

ERRORS The socket() function will fail if:
EAFNOSUPPORT The implementation does not support the

specified address family.

EMFILE No more file descriptors are available for this
process.

ENFILE No more file descriptors are available for the
system.

EPROTONOSUPPORT The protocol is not supported by the address
family, or the protocol is not supported by the
implementation.

EPROTOTYPE The socket type is not supported by the protocol.

The socket() function may fail if:
EACCES The process does not have appropriate privileges.

Last modified 8 Nov 1999 SunOS 5.8 555

socket(3XNET) X/Open Networking Services Library Functions

ENOBUFS Insufficient resources were available in the system
to perform the operation.

ENOMEM Insufficient memory was available to fulfill the
request.

ENOSR There were insufficient STREAMS resources
available for the operation to complete.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO accept (3XNET), bind (3XNET), connect (3XNET), getsockname (3XNET),
getsockopt (3XNET), listen (3XNET), recv (3XNET), recvfrom (3XNET),
recvmsg (3XNET), send (3XNET), sendmsg (3XNET), setsockopt (3XNET),
shutdown (3XNET), socketpair (3XNET), attributes (5)

556 SunOS 5.8 Last modified 8 Nov 1999

Sockets Library Functions socketpair(3SOCKET)

NAME socketpair – create a pair of connected sockets

SYNOPSIS cc [flag ...] file ... −lsocket −lnsl [library ...]
#include <sys/types.h>
#include <sys/socket.h>

int socketpair (int domain, int type, int protocol, int sv[2]);

DESCRIPTION The socketpair() library call creates an unnamed pair of connected sockets in
the specified address family d, of the specified type , and using the optionally
specified protocol. The descriptors used in referencing the new sockets are
returned in sv[0] and sv[1]. The two sockets are indistinguishable.

RETURN VALUES socketpair() returns −1 on failure, and 0 on success.

ERRORS The call succeeds unless:
EAFNOSUPPORT The specified address family is not

supported on this machine.

EMFILE Too many descriptors are in use
by this process.

ENOMEM There was insufficient user memory
for the operation to complete.

ENOSR There were insufficient STREAMS
resources for the operation to
complete.

EOPNOSUPPORT The specified protocol does not
support creation of socket pairs.

EPROTONOSUPPORT The specified protocol is not
supported on this machine.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO pipe (2), read (2), write (2), attributes (5), socket (3HEAD)

NOTES This call is currently implemented only for the AF_UNIX address family.

Last modified 16 May 1997 SunOS 5.8 557

socketpair(3XNET) X/Open Networking Services Library Functions

NAME socketpair – create a pair of connected sockets

SYNOPSIS cc [flag ...] file ... −lxnet [library ...]
#include <sys/socket.h>

int socketpair (int domain, int type, int protocol, int socket_vector[2]);

DESCRIPTION The socketpair() function creates an unbound pair of connected sockets in a
specified domain, of a specified type , under the protocol optionally specified by
the protocol argument. The two sockets are identical. The file descriptors used in
referencing the created sockets are returned in socket_vector0 and socket_vector1.
domain Specifies the communications domain in which the sockets

are to be created.

type Specifies the type of sockets to be created.

protocol Specifies a particular protocol to be used with the sockets.
Specifying a protocol of 0 causes socketpair() to use an
unspecified default protocol appropriate for the requested
socket type.

socket_vector Specifies a 2-integer array to hold the file descriptors of the
created socket pair.

The type argument specifies the socket type, which determines the semantics of
communications over the socket. The socket types supported by the system are
implementation-dependent. Possible socket types include:
SOCK_STREAM Provides sequenced, reliable, bidirectional,

connection-mode byte streams, and may provide
a transmission mechanism for out-of-band data.

SOCK_DGRAM Provides datagrams, which are
connectionless-mode, unreliable messages of
fixed maximum length.

SOCK_SEQPACKET Provides sequenced, reliable, bidirectional,
connection-mode transmission path for records.
A record can be sent using one or more output
operations and received using one or more input
operations, but a single operation never transfers
part of more than one record. Record boundaries
are visible to the receiver via the MSG_EOR flag.

If the protocol argument is non-zero, it must specify a protocol that is
supported by the address family. The protocols supported by the system are
implementation-dependent.

558 SunOS 5.8 Last modified 8 May 1998

X/Open Networking Services Library Functions socketpair(3XNET)

The process may need to have appropriate privileges to use the socketpair()
function or to create some sockets.

USAGE The documentation for specific address families specifies which protocols each
address family supports. The documentation for specific protocols specifies
which socket types each protocol supports.

The socketpair() function is used primarily with UNIX domain sockets and
need not be supported for other domains.

RETURN VALUES Upon successful completion, this function returns 0. Otherwise, −1 is returned
and errno is set to indicate the error.

ERRORS The socketpair() function will fail if:
EAFNOSUPPORT The implementation does not support the

specified address family.

EMFILE No more file descriptors are available for this
process.

ENFILE No more file descriptors are available for the
system.

EOPNOTSUPP The specified protocol does not permit creation
of socket pairs.

EPROTONOSUPPORT The protocol is not supported by the address
family, or the protocol is not supported by the
implementation.

EPROTOTYPE The socket type is not supported by the protocol.

The socketpair() function may fail if:
EACCES The process does not have appropriate privileges.

ENOBUFS Insufficient resources were available in the system
to perform the operation.

ENOMEM Insufficient memory was available to fulfill the
request.

ENOSR There were insufficient STREAMS resources
available for the operation to complete.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified 8 May 1998 SunOS 5.8 559

socketpair(3XNET) X/Open Networking Services Library Functions

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO socket (3XNET), attributes (5)

560 SunOS 5.8 Last modified 8 May 1998

Sockets Library Functions spray(3SOCKET)

NAME spray – scatter data in order to test the network

SYNOPSIS cc [flag ...] file ... −lsocket −lnsl [library ...]
#include <rpcsvc/spray.h>

bool_t xdr_sprayarr (XDR *xdrs, sprayarr *objp);

bool_t xdr_spraycumul (XDR *xdrs, spraycumul *objp);

DESCRIPTION The spray program sends packets to a given machine to test communications
with that machine.

The spray program is not a C function interface, per se, but it can be accessed
using the generic remote procedure calling interface clnt_call() . See
rpc_clnt_calls (3NSL). The program sends a packet to the called host. The
host acknowledges receipt of the packet. The program counts the number of
acknowledgments and can return that count.

The spray program currently supports the following procedures, which should
be called in the order given:
SPRAYPROC_CLEAR This procedure clears the counter.

SPRAYPROC_SPRAY This procedure sends the packet.

SPRAYPROC_GET This procedure returns the count and the amount
of time since the last SPRAYPROC_CLEAR.

EXAMPLES EXAMPLE 1 Using spray()

The following code fragment demonstrates how the spray program is used:
#include <rpc/rpc.h>
#include <rpcsvc/spray.h>

. . .
spraycumul spray_result;
sprayarr spray_data;
char buf[100]; /* arbitrary data */
int loop = 1000;
CLIENT *clnt;
struct timeval timeout0 = {0, 0};
struct timeval timeout25 = {25, 0};
spray_data.sprayarr_len = (uint_t)100;
spray_data.sprayarr_val = buf;
clnt = clnt_create("somehost", SPRAYPROG, SPRAYVERS, "netpath");
if (clnt == (CLIENT *)NULL) {

/* handle this error */
}
if (clnt_call(clnt, SPRAYPROC_CLEAR,

xdr_void, NULL, xdr_void, NULL, timeout25)) {
/* handle this error */

}
while (loop − > 0) {

if (clnt_call(clnt, SPRAYPROC_SPRAY,

Last modified 30 Dec 1996 SunOS 5.8 561

spray(3SOCKET) Sockets Library Functions

xdr_sprayarr, &spray_data, xdr_void, NULL, timeout0)) {
/* handle this error */

}
}
if (clnt_call(clnt, SPRAYPROC_GET,

xdr_void, NULL, xdr_spraycumul, &spray_result, timeout25)) {
/* handle this error */

}
printf("Acknowledged %ld of 1000 packets in %d secs %d usecs\n",

spray_result.counter,
spray_result.clock.sec,
spray_result.clock.usec);

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO spray (1M), rpc_clnt_calls (3NSL), attributes (5)

NOTES This interface is unsafe in multithreaded applications. Unsafe interfaces should
be called only from the main thread.

A spray program is not useful as a networking benchmark as it uses unreliable
connectionless transports, for example, udp. It can report a large number
of packets dropped, when the drops were caused by the program sending
packets faster than they can be buffered locally, that is, before the packets get to
the network medium.

562 SunOS 5.8 Last modified 30 Dec 1996

Networking Services Library Functions t_accept(3NSL)

NAME t_accept – accept a connection request

SYNOPSIS #include <xti.h>

int t_accept (int fd, int resfd, const struct t_call *call);

DESCRIPTION This routine is part of the XTI interfaces that evolved from the TLI interfaces.
XTI represents the future evolution of these interfaces. However, TLI interfaces
are supported for compatibility. When using a TLI routine that has the same
name as an XTI routine, a different header file, tiuser.h , must be used. Refer
to the TLI COMPATIBILITY section for a description of differences between the
two interfaces.

This function is issued by a transport user to accept a connection request. The
parameter fd identifies the local transport endpoint where the connection
indication arrived; resfd specifies the local transport endpoint where the
connection is to be established, and call contains information required by the
transport provider to complete the connection. The parameter call points to a
t_call structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

In call, addr is the protocol address of the calling transport user, opt indicates
any options associated with the connection, udata points to any user data to be
returned to the caller, and sequence is the value returned by t_listen (3NSL)
that uniquely associates the response with a previously received connection
indication. The address of the caller, addr may be null (length zero). Where addr
is not null then it may optionally be checked by XTI.

A transport user may accept a connection on either the same, or on a different,
local transport endpoint than the one on which the connection indication arrived.
Before the connection can be accepted on the same endpoint (resfd==fd), the user
must have responded to any previous connection indications received on that
transport endpoint by means of t_accept() or t_snddis (3NSL). Otherwise,
t_accept() will fail and set t_errno to TINDOUT.

If a different transport endpoint is specified (resfd!=fd), then the user may or
may not choose to bind the endpoint before the t_accept() is issued. If the
endpoint is not bound prior to the t_accept() , the endpoint must be in the
T_UNBNDstate before the t_accept() is issued, and the transport provider
will automatically bind it to an address that is appropriate for the protocol
concerned. If the transport user chooses to bind the endpoint it must be bound to

Last modified 1 May 1998 SunOS 5.8 563

t_accept(3NSL) Networking Services Library Functions

a protocol address with a qlen of zero and must be in the T_IDLE state before
the t_accept() is issued.

Responding endpoints should be supplied to t_accept() in the state
T_UNBND.

The call to t_accept() may fail with t_errno set to TLOOKif there are
indications (for example connect or disconnect) waiting to be received on
endpoint fd. Applications should be prepared for such a failure.

The udata argument enables the called transport user to send user data to the
caller and the amount of user data must not exceed the limits supported by
the transport provider as returned in the connect field of the info argument of
t_open (3NSL) or t_getinfo (3NSL). If the len field of udata is zero, no data will
be sent to the caller. All the maxlen fields are meaningless.

When the user does not indicate any option (call→opt.len = 0) the connection
shall be accepted with the option values currently set for the responding
endpoint resfd.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is
returned and t_errno is set to indicate an error.

VALID STATES fd: T_INCON

resfd (fd!=resfd): T_IDLE, T_UNBND

ERRORS On failure, t_errno is set to one of the following:
TACCES The user does not have permission to accept a

connection on the responding transport endpoint
or to use the specified options.

TBADADDR The specified protocol address was in an incorrect
format or contained illegal information.

TBADDATA The amount of user data specified was not within
the bounds allowed by the transport provider.

TBADF The file descriptor fd or resfd does not refer to a
transport endpoint.

TBADOPT The specified options were in an incorrect format
or contained illegal information.

TBADSEQ Either an invalid sequence number was specified,
or a valid sequence number was specified but the
connection request was aborted by the peer. In
the latter case, its T_DISCONNECTevent will be
received on the listening endpoint.

564 SunOS 5.8 Last modified 1 May 1998

Networking Services Library Functions t_accept(3NSL)

TINDOUT The function was called with fd==resfd but there
are outstanding connection indications on the
endpoint. Those other connection indications
must be handled either by rejecting them by
means of t_snddis (3NSL) or accepting them on
a different endpoint by means of t_accept .

TLOOK An asynchronous event has occurred on the
transport endpoint referenced by fd and requires
immediate attention.

TNOTSUPPORT This function is not supported by the underlying
transport provider.

TOUTSTATE The communications endpoint referenced by fd or
resfd is not in one of the states in which a call to
this function is valid.

TPROTO This error indicates that a communication
problem has been detected between XTI and the
transport provider for which there is no other
suitable XTI error (t_errno).

TPROVMISMATCH The file descriptors fd and resfd do not refer to the
same transport provider.

TRESADDR This transport provider requires both fd and resfd
to be bound to the same address. This error
results if they are not.

TRESQLEN The endpoint referenced by resfd (where resfd !=
fd) was bound to a protocol address with a qlen
that is greater than zero.

TSYSERR A system error has occurred during execution
of this function.

TLI
COMPATIBILITY

The XTI and TLI interface definitions have common names but use different
header files. This, and other semantic differences between the two interfaces are
described in the subsections below.

Interface Header The XTI interfaces use the header file, xti.h . TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>

Last modified 1 May 1998 SunOS 5.8 565

t_accept(3NSL) Networking Services Library Functions

Error Description
Values

The t_errno values that can be set by the XTI interface and cannot be set by
the TLI interface are:
TPROTO
TINDOUT
TPROVMISMATCH

TRESADDR
TRESQLEN

Option Buffer The format of the options in an opt buffer is dictated by the transport provider.
Unlike the XTI interface, the TLI interface does not specify the buffer format.

For more information refer to the Transport Interfaces Programming Guide

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO t_connect (3NSL), t_getinfo (3NSL), t_getstate (3NSL),
t_listen (3NSL), t_open (3NSL), t_optmgmt (3NSL), t_rcvconnect (3NSL),
t_snddis (3NSL), attributes (5)

Transport Interfaces Programming Guide

WARNINGS There may be transport provider-specific restrictions on address binding.

Some transport providers do not differentiate between a connection indication
and the connection itself. If the connection has already been established after a
successful return of t_listen (3NSL), t_accept() will assign the existing
connection to the transport endpoint specified by resfd.

566 SunOS 5.8 Last modified 1 May 1998

Networking Services Library Functions t_alloc(3NSL)

NAME t_alloc – allocate a library structure

SYNOPSIS #include <xti.h>

void *t_alloc (int fd, int struct_type, int fields);

DESCRIPTION This routine is part of the XTI interfaces which evolved from the TLI interfaces.
XTI represents the future evolution of these interfaces. However, TLI interfaces
are supported for compatibility. When using a TLI routine that has the same
name as an XTI routine, a different header file, tiuser.h , must be used. Refer
to the section, TLI COMPATIBILITY , for a description of differences between the
two interfaces.

The t_alloc() function dynamically allocates memory for the various
transport function argument structures as specified below. This function will
allocate memory for the specified structure, and will also allocate memory for
buffers referenced by the structure.

The structure to allocate is specified by struct_type and must be one of the
following:

T_BIND struct t_bind
T_CALL struct t_call
T_OPTMGMT struct t_optmgmt
T_DIS struct t_discon
T_UNITDATA struct t_unitdata
T_UDERROR struct t_uderr
T_INFO struct t_info

where each of these structures may subsequently be used as an argument to one
or more transport functions.

Each of the above structures, except T_INFO, contains at least one field of type
struct netbuf . For each field of this type, the user may specify that the buffer
for that field should be allocated as well. The length of the buffer allocated will
be equal to or greater than the appropriate size as returned in the info argument
of t_open (3NSL) or t_getinfo (3NSL). The relevant fields of the info argument
are described in the following list. The fields argument specifies which buffers to
allocate, where the argument is the bitwise-or of any of the following:
T_ADDR The addr field of the t_bind , t_call , t_unitdata or

t_uderr structures.

T_OPT The opt field of the t_optmgmt , t_call , t_unitdata or
t_uderr structures.

Last modified 7 May 1998 SunOS 5.8 567

t_alloc(3NSL) Networking Services Library Functions

T_UDATA The udata field of the t_call , t_discon or t_unitdata
structures.

T_ALL All relevant fields of the given structure. Fields which are
not supported by the transport provider specified by fd
will not be allocated.

For each relevant field specified in fields, t_alloc() will allocate memory for
the buffer associated with the field, and initialize the len field to zero and the buf
pointer and maxlen field accordingly. Irrelevant or unknown values passed in
fields are ignored. Since the length of the buffer allocated will be based on the
same size information that is returned to the user on a call to t_open (3NSL) and
t_getinfo (3NSL), fd must refer to the transport endpoint through which the
newly allocated structure will be passed. In the case where a T_INFO structure
is to be allocated, fd may be set to any value. In this way the appropriate size
information can be accessed. If the size value associated with any specified
field is T_INVALID, t_alloc() will be unable to determine the size of the
buffer to allocate and will fail, setting t_errno to TSYSERRand errno to
EINVAL. See t_open (3NSL) or t_getinfo (3NSL). If the size value associated
with any specified field is T_INFINITE, then the behavior of t_alloc() is
implementation-defined. For any field not specified in fields, buf will be set to
the null pointer and len and maxlen will be set to zero. See t_open (3NSL) or
t_getinfo (3NSL).

The pointer returned if the allocation succeeds is suitably aligned so that it can
be assigned to a pointer to any type of object and then used to access such an
object or array of such objects in the space allocated.

Use of t_alloc() to allocate structures will help ensure the compatibility of
user programs with future releases of the transport interface functions.

RETURN VALUES On successful completion, t_alloc() returns a pointer to the newly allocated
structure. On failure, a null pointer is returned.

VALID STATES ALL - apart from T_UNINIT

ERRORS On failure, t_errno is set to one of the following:
TBADF struct_type is other than T_INFO and the specified file

descriptor does not refer to a transport endpoint.

TNOSTRUCTYPEUnsupported struct_type requested. This can include a
request for a structure type which is inconsistent with the
transport provider type specified, that is, connection-mode
or connectionless-mode.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

568 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_alloc(3NSL)

TSYSERR A system error has occurred during execution of this
function.

TLI
COMPATIBILITY

The XTI and TLI interface definitions have common names but use different
header files. This, and other semantic differences between the two interfaces are
described in the subsections below.

Interface Header The XTI interfaces use the header file, xti.h . TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>

Error Description
Values

The t_errno values that can be set by the XTI interface and cannot be set by
the TLI interface are:
TPROTO
TNOSTRUCTYPE

Special Buffer Sizes Assume that the value associated with any field of struct t_info (argument
returned by t_open() or t_getinfo()) that describes buffer limits is –1.
Then the underlying service provider can support a buffer of unlimited size.
If this is the case, t_alloc() will allocate a buffer with the default size 1024
bytes, which may be handled as described in the next paragraph.

If the underlying service provider supports a buffer of unlimited size in the
netbuf structure (see t_connect (3NSL)), t_alloc() will return a buffer of
size 1024 bytes. If a larger size buffer is required, it will need to be allocated
separately using a memory allocation routine such as malloc (3C). The buf
and maxlen fields of the netbuf data structure can then be updated with
the address of the new buffer and the 1024 byte buffer originally allocated by
t_alloc() can be freed using free (3C).

Assume that the value associated with any field of struct t_info (argument
returned by t_open() or t_getinfo()) that describes nbuffer limits
is –2 . Then t_alloc() will set the buffer pointer to NULLand the buffer
maximum size to 0, and then will return success (see t_open (3NSL) or
t_getinfo (3NSL)).

For more information refer to the Transport Interfaces Programming Guide

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO free (3C), malloc (3C), t_connect (3NSL), t_free (3NSL), t_getinfo (3NSL),
t_open (3NSL), attributes (5)

Last modified 7 May 1998 SunOS 5.8 569

t_bind(3NSL) Networking Services Library Functions

NAME t_bind – bind an address to a transport endpoint

SYNOPSIS #include <xti.h>

int t_bind (int fd, const struct t_bind *req, struct t_bind *ret);

DESCRIPTION This routine is part of the XTI interfaces that evolved from the TLI interfaces.
XTI represents the future evolution of these interfaces. However, TLI interfaces
are supported for compatibility. When using a TLI routine that has the same
name as an XTI routine, the tiuser.h header file must be used. Refer to the
TLI COMPATIBILITY section for a description of differences between the two
interfaces.

This function associates a protocol address with the transport endpoint specified
by fd and activates that transport endpoint. In connection mode, the transport
provider may begin enqueuing incoming connect indications, or servicing
a connection request on the transport endpoint. In connectionless-mode, the
transport user may send or receive data units through the transport endpoint.

The req and ret arguments point to a t_bind structure containing the following
members:

struct netbuf addr;
unsigned qlen;

The addr field of the t_bind structure specifies a protocol address, and the
qlen field is used to indicate the maximum number of outstanding connection
indications.

The parameter req is used to request that an address, represented by the netbuf
structure, be bound to the given transport endpoint. The parameter len specifies
the number of bytes in the address, and buf points to the address buffer. The
parameter maxlen has no meaning for the req argument. On return, ret contains
an encoding for the address that the transport provider actually bound to the
transport endpoint; if an address was specified in req, this will be an encoding of
the same address. In ret, the user specifies maxlen, which is the maximum size of
the address buffer, and buf which points to the buffer where the address is to be
placed. On return, len specifies the number of bytes in the bound address, and
buf points to the bound address. If maxlen equals zero, no address is returned. If
maxlen is greater than zero and less than the length of the address, t_bind()
fails with t_errno set to TBUFOVFLW.

If the requested address is not available, t_bind() will return –1 with t_errno
set as appropriate. If no address is specified in req (the len field of addr in req

570 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_bind(3NSL)

is zero or req is NULL), the transport provider will assign an appropriate
address to be bound, and will return that address in the addr field of ret. If the
transport provider could not allocate an address, t_bind() will fail with
t_errno set to TNOADDR.

The parameter req may be a null pointer if the user does not wish to specify an
address to be bound. Here, the value of qlen is assumed to be zero, and the
transport provider will assign an address to the transport endpoint. Similarly,
ret may be a null pointer if the user does not care what address was bound by
the provider and is not interested in the negotiated value of qlen. It is valid to
set req and ret to the null pointer for the same call, in which case the provider
chooses the address to bind to the transport endpoint and does not return
that information to the user.

The qlen field has meaning only when initializing a connection-mode service. It
specifies the number of outstanding connection indications that the transport
provider should support for the given transport endpoint. An outstanding
connection indication is one that has been passed to the transport user by the
transport provider but which has not been accepted or rejected. A value of qlen
greater than zero is only meaningful when issued by a passive transport user
that expects other users to call it. The value of qlen will be negotiated by the
transport provider and may be changed if the transport provider cannot support
the specified number of outstanding connection indications. However, this value
of qlen will never be negotiated from a requested value greater than zero to zero.
This is a requirement on transport providers; see WARNINGSbelow. On return,
the qlen field in ret will contain the negotiated value.

If fd refers to a connection-mode service, this function allows more than
one transport endpoint to be bound to the same protocol address. but it is
not possible to bind more than one protocol address to the same transport
endpoint. However, the transport provider must also support this capability. If
a user binds more than one transport endpoint to the same protocol address,
only one endpoint can be used to listen for connection indications associated
with that protocol address. In other words, only one t_bind() for a given
protocol address may specify a value of qlen greater than zero. In this way, the
transport provider can identify which transport endpoint should be notified of
an incoming connection indication. If a user attempts to bind a protocol address
to a second transport endpoint with a value of qlen greater than zero, t_bind()
will return –1 and set t_errno to TADDRBUSY. When a user accepts a connection
on the transport endpoint that is being used as the listening endpoint, the bound
protocol address will be found to be busy for the duration of the connection,
until a t_unbind (3NSL) or t_close (3NSL) call has been issued. No other
transport endpoints may be bound for listening on that same protocol address
while that initial listening endpoint is active (in the data transfer phase or in the

Last modified 7 May 1998 SunOS 5.8 571

t_bind(3NSL) Networking Services Library Functions

T_IDLE state). This will prevent more than one transport endpoint bound to the
same protocol address from accepting connection indications.

If fd refers to connectionless mode service, this function allows for more than
one transport endpoint to be associated with a protocol address, where the
underlying transport provider supports this capability (often in conjunction
with value of a protocol-specific option). If a user attempts to bind a second
transport endpoint to an already bound protocol address when such capability
is not supported for a transport provider, t_bind() will return –1 and set
t_errno to TADDRBUSY.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is
returned and t_errno is set to indicate an error.

VALID STATES T_UNBND

ERRORS On failure, t_errno is set to one of the following:
TACCES The user does not have permission to use the specified

address.

TADDRBUSY The requested address is in use.

TBADADDR The specified protocol address was in an incorrect format or
contained illegal information.

TBADF The specified file descriptor does not refer to a transport
endpoint.

TBUFOVFLW The number of bytes allowed for an incoming argument
(maxlen) is greater than 0 but not sufficient to store the
value of that argument. The provider’s state will change
to T_IDLE and the information to be returned in ret will
be discarded.

TOUTSTATE The communications endpoint referenced by fd is not in one
of the states in which a call to this function is valid.

TNOADDR The transport provider could not allocate an address.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

TSYSERR A system error has occurred during execution of this
function.

TLI
COMPATIBILITY

The XTI and TLI interface definitions have common names but use different
header files. This, and other semantic differences between the two interfaces are
described in the subsections below.

572 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_bind(3NSL)

Interface Header The XTI interfaces use the header file, xti.h . TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>

Address Bound The user can compare the addresses in req and ret to determine whether the
transport provider bound the transport endpoint to a different address than
that requested.

Error Description
Values

The t_errno values TPROTOand TADDRBUSYcan be set by the XTI interface
but cannot be set by the TLI interface.

A t_errno value that this routine can return under different circumstances than
its XTI counterpart is TBUFOVFLW. It can be returned even when the maxlen
field of the corresponding buffer has been set to zero.

For more information refer to the Transport Interfaces Programming Guide

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO t_accept (3NSL), t_alloc (3NSL), t_close (3NSL), t_connect (3NSL),
t_unbind (3NSL), attributes (5)

WARNINGS The requirement that the value of qlen never be negotiated from a requested
value greater than zero to zero implies that transport providers, rather than the
XTI implementation itself, accept this restriction.

An implementation need not allow an application explicitly to bind more than
one communications endpoint to a single protocol address, while permitting
more than one connection to be accepted to the same protocol address. That
means that although an attempt to bind a communications endpoint to
some address with qlen=0 might be rejected with TADDRBUSY, the user may
nevertheless use this (unbound) endpoint as a responding endpoint in a call to
t_accept (3NSL). To become independent of such implementation differences,
the user should supply unbound responding endpoints to t_accept (3NSL).

The local address bound to an endpoint may change as result of a
t_accept (3NSL) or t_connect (3NSL) call. Such changes are not necessarily
reversed when the connection is released.

Last modified 7 May 1998 SunOS 5.8 573

t_close(3NSL) Networking Services Library Functions

NAME t_close – close a transport endpoint

SYNOPSIS #include <xti.h>

int t_close (int fd);

DESCRIPTION This routine is part of the XTI interfaces which evolved from the TLI interfaces.
XTI represents the future evolution of these interfaces. However, TLI interfaces
are supported for compatibility. When using a TLI routine that has the same
name as an XTI routine, the tiuser.h header file must be used. Refer to
the TLI COMPATIBILITY section for a description of differences between the
two interfaces.

The t_close() function informs the transport provider that the user is finished
with the transport endpoint specified by fd, and frees any local library resources
associated with the endpoint. In addition, t_close() closes the file associated
with the transport endpoint.

The function t_close() should be called from the T_UNBNDstate. See
t_getstate (3NSL). However, this function does not check state information,
so it may be called from any state to close a transport endpoint. If this occurs, the
local library resources associated with the endpoint will be freed automatically.
In addition, close (2) will be issued for that file descriptor; if there are no
other descriptors in this process or in another process which references the
communication endpoint, any connection that may be associated with that
endpoint is broken. The connection may be terminated in an orderly or abortive
manner.

A t_close() issued on a connection endpoint may cause data previously sent,
or data not yet received, to be lost. It is the responsibility of the transport user
to ensure that data is received by the remote peer.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of –1
is returned and t_errno is set to indicate an error.

VALID STATES T_UNBND

ERRORS On failure, t_errno is set to the following:
TBADF The specified file descriptor does not refer to a transport

endpoint.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

TSYSERR A system error has occurred during execution of this
function.

574 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_close(3NSL)

TLI
COMPATIBILITY

The XTI and TLI interface definitions have common names but use different
header files. This, and other semantic differences between the two interfaces are
described in the subsections below.

Interface Header The XTI interfaces use the header file, xti.h . TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>

Error Description
Values

The t_errno value that can be set by the XTI interface and cannot be set by
the TLI interface is:
TPROTO

For more information refer to the Transport Interfaces Programming Guide

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO close (2), t_getstate (3NSL), t_open (3NSL), t_unbind (3NSL),
attributes (5)

Transport Interfaces Programming Guide

Last modified 7 May 1998 SunOS 5.8 575

t_connect(3NSL) Networking Services Library Functions

NAME t_connect – establish a connection with another transport user

SYNOPSIS #include <xti.h>

int t_connect (int fd, const struct t_call *sndcall, struct t_call *rcvcall);

DESCRIPTION This routine is part of the XTI interfaces which evolved from the TLI interfaces.
XTI represents the future evolution of these interfaces. However, TLI interfaces
are supported for compatibility. When using a TLI routine that has the same
name as an XTI routine, the tiuser.h header file must be used. Refer to the
TLI COMPATIBILITY section for a description of differences between the two
interfaces. This function enables a transport user to request a connection to the
specified destination transport user.

This function can only be issued in the T_IDLE state. The parameter fd identifies
the local transport endpoint where communication will be established, while
sndcall and rcvcall point to a t_call structure which contains the following
members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

The parameter sndcall specifies information needed by the transport provider
to establish a connection and rcvcall specifies information that is associated
with the newly established connection.

In sndcall, addr specifies the protocol address of the destination transport user,
opt presents any protocol-specific information that might be needed by the
transport provider, udata points to optional user data that may be passed to the
destination transport user during connection establishment, and sequence has no
meaning for this function.

On return, in rcvcall, addr contains the protocol address associated with the
responding transport endpoint, opt represents any protocol-specific information
associated with the connection, udata points to optional user data that may be
returned by the destination transport user during connection establishment, and
sequence has no meaning for this function.

The opt argument permits users to define the options that may be passed to the
transport provider. The user may choose not to negotiate protocol options by
setting the len field of opt to zero. In this case, the provider uses the option values
currently set for the communications endpoint.

576 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_connect(3NSL)

If used, sndcall→opt.buf must point to a buffer with the corresponding options,
and sndcall→opt.len must specify its length. The maxlen and buf fields of the
netbuf structure pointed by rcvcall→addr and rcvcall→opt must be set before
the call.

The udata argument enables the caller to pass user data to the destination
transport user and receive user data from the destination user during connection
establishment. However, the amount of user data must not exceed the limits
supported by the transport provider as returned in the connect field of the info
argument of t_open (3NSL) or t_getinfo (3NSL). If the len of udata is zero in
sndcall, no data will be sent to the destination transport user.

On return, the addr, opt and udata fields of rcvcall will be updated to reflect values
associated with the connection. Thus, the maxlen field of each argument must
be set before issuing this function to indicate the maximum size of the buffer
for each. However, maxlen can be set to zero, in which case no information to
this specific argument is given to the user on the return from t_connect() . If
maxlen is greater than zero and less than the length of the value, t_connect()
fails with t_errno set to TBUFOVFLW. If rcvcall is set to NULL, no information at
all is returned.

By default, t_connect() executes in synchronous mode, and will wait for
the destination user’s response before returning control to the local user. A
successful return (that is, return value of zero) indicates that the requested
connection has been established. However, if O_NONBLOCKis set by means of
t_open (3NSL) or fcntl (2), t_connect() executes in asynchronous mode.
In this case, the call will not wait for the remote user’s response, but will
return control immediately to the local user and return –1 with t_errno set
to TNODATAto indicate that the connection has not yet been established. In
this way, the function simply initiates the connection establishment procedure
by sending a connection request to the destination transport user. The
t_rcvconnect (3NSL) function is used in conjunction with t_connect() to
determine the status of the requested connection.

When a synchronous t_connect() call is interrupted by the arrival of a
signal, the state of the corresponding transport endpoint is T_OUTCON,
allowing a further call to either t_rcvconnect (3NSL), t_rcvdis (3NSL) or
t_snddis (3NSL). When an asynchronous t_connect() call is interrupted
by the arrival of a signal, the state of the corresponding transport endpoint is
T_IDLE.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is
returned and t_errno is set to indicate an error.

VALID STATES T_IDLE

ERRORS On failure, t_errno is set to one of the following:

Last modified 7 May 1998 SunOS 5.8 577

t_connect(3NSL) Networking Services Library Functions

TACCES The user does not have permission to use the specified
address or options.

TADDRBUSY This transport provider does not support multiple
connections with the same local and remote addresses. This
error indicates that a connection already exists.

TBADADDR The specified protocol address was in an incorrect format or
contained illegal information.

TBADDATA The amount of user data specified was not within the
bounds allowed by the transport provider.

TBADF The specified file descriptor does not refer to a transport
endpoint.

TBADOPT The specified protocol options were in an incorrect format or
contained illegal information.

TBUFOVFLW The number of bytes allocated for an incoming argument
(maxlen) is greater than 0 but not sufficient to store the
value of that argument. If executed in synchronous mode,
the provider’s state, as seen by the user, changes to
T_DATAXFER, and the information to be returned in rcvcall
is discarded.

TLOOK An asynchronous event has occurred on this transport
endpoint and requires immediate attention.

TNODATA O_NONBLOCKwas set, so the function successfully initiated
the connection establishment procedure, but did not wait
for a response from the remote user.

TNOTSUPPORT This function is not supported by the underlying transport
provider.

TOUTSTATE The communications endpoint referenced by fd is not in one
of the states in which a call to this function is valid.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

TSYSERR A system error has occurred during execution of this
function.

TLI
COMPATIBILITY

The XTI and TLI interface definitions have common names but use different
header files. This, and other semantic differences between the two interfaces are
described in the subsections below.

578 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_connect(3NSL)

Interface Header The XTI interfaces use the header file, xti.h . TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>

Error Description
Values

The TPROTOand TADDRBUSY t_errno values can be set by the XTI interface
but not by the TLI interface.

A t_errno value that this routine can return under different circumstances than
its XTI counterpart is TBUFOVFLW. It can be returned even when the maxlen
field of the corresponding buffer has been set to zero.

Option Buffers The format of the options in an opt buffer is dictated by the transport provider.
Unlike the XTI interface, the TLI interface does not fix the buffer format.

For more information refer to the Transport Interfaces Programming Guide

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO fcntl (2), t_accept (3NSL), t_alloc (3NSL), t_getinfo (3NSL),
t_listen (3NSL), t_open (3NSL), t_optmgmt (3NSL), t_rcvconnect (3NSL),
t_rcvdis (3NSL), t_snddis (3NSL), attributes

Transport Interfaces Programming Guide

Last modified 7 May 1998 SunOS 5.8 579

t_errno(3NSL) Networking Services Library Functions

NAME t_errno – XTI error return value

SYNOPSIS #include <xti.h>

DESCRIPTION This error return value is part of the XTI interfaces that evolved from the TLI
interfaces. XTI represents the future evolution of these interfaces. However, TLI
interfaces are supported for compatibility. When using a TLI interface that
has the same name as an XTI interfaces, a different headerfile, <tiuser.h> ,
must be used. Refer the the TLI COMPATIBILITY section for a description of
differences between the two interfaces.

t_errno is used by XTI functions to return error values.

XTI functions provide an error number in t_errno which has type int and is
defined in <xti.h> . The value of t_errno will be defined only after a call to
a XTI function for which it is explicitly stated to be set and until it is changed
by the next XTI function call. The value of t_errno should only be examined
when it is indicated to be valid by a function’s return value. Programs should
obtain the definition of t_errno by the inclusion of <xti.h> . The practice
of defining t_errno in program as extern int t_errno is obsolescent. No
XTI function sets t_errno to 0 to indicate an error.

It is unspecified whether t_errno is a macro or an identifier with external
linkage. It represents a modifiable lvalue of type int. If a macro definition is
suppressed in order to access an actual object or a program defines an identifier
with name t_errno, the behavior is undefined.

The symbolic values stored in t_errno by an XTI function are defined in the
ERRORSsections in all relevant XTI function definition pages.

TLI
COMPATIBILITY

t_errno is also used by TLI functions to return error values.

The XTI and TLI interface definitions have common names but use different
header files. This, and other semantic differences between the two interfaces are
described in the subsections below.

Interface Header The XTI interfaces use the header file, <xti.h> . TLI interfaces should not use
this header. They should use the header:

#include <tiuser.h>

Error Description
Values

The t_errno values that can be set by the XTI interface but cannot be set by
the TLI interface are:

TNOSTRUCTYPE
TBADNAME
TBADQLEN
TADDRBUSY

580 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_errno(3NSL)

TINDOUT
TPROVMISMATCH
TRESADDR
TQFULL
TPROTO

For more information refer to the Transport Interfaces Programming Guide

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO attributes (5)

Transport Interfaces Programming Guide

Last modified 7 May 1998 SunOS 5.8 581

t_error(3NSL) Networking Services Library Functions

NAME t_error – produce error message

SYNOPSIS #include <xti.h>

int t_error (const char *errmsg);

DESCRIPTION This routine is part of the XTI interfaces which evolved from the TLI interfaces.
XTI represents the future evolution of these interfaces. However, TLI interfaces
are supported for compatibility. When using a TLI routine that has the same
name as an XTI routine, the tiuser.h header file must be used. Refer to
the TLI COMPATIBILITY section for a description of differences between the
two interfaces.

The t_error() function produces a message on the standard error output
which describes the last error encountered during a call to a transport function.
The argument string errmsg is a user-supplied error message that gives context
to the error.

The error message is written as follows: first (if errmsg is not a null pointer and
the character pointed to be errmsg is not the null character) the string pointed
to by errmsg followed by a colon and a space; then a standard error message
string for the current error defined in t_errno . If t_errno has a value different
from TSYSERR, the standard error message string is followed by a newline
character. If, however, t_errno is equal to TSYSERR, the t_errno string is
followed by the standard error message string for the current error defined in
errno followed by a newline.

The language for error message strings written by t_error() is that of the
current locale. If it is English, the error message string describing the value in
t_errno may be derived from the comments following the t_errno codes
defined in xti.h . The contents of the error message strings describing the
value in errno are the same as those returned by the strerror (3C) function
with an argument of errno .

The error number, t_errno , is only set when an error occurs and it is not
cleared on successful calls.

EXAMPLES If a t_connect (3NSL) function fails on transport endpoint fd2 because a bad
address was given, the following call might follow the failure:

t_error("t_connect failed on fd2");

The diagnostic message to be printed would look like:

t_connect failed on fd2: incorrect addr format

582 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_error(3NSL)

where incorrect addr format identifies the specific error that occurred, and
t_connect failed on fd2 tells the user which function failed on which transport
endpoint.

RETURN VALUES Upon completion, a value of 0 is returned.

VALID STATES All - apart from T_UNINIT

ERRORS No errors are defined for the t_error() function.

TLI
COMPATIBILITY

The XTI and TLI interface definitions have common names but use different
header files. This, and other semantic differences between the two interfaces are
described in the subsections below.

Interface Header The XTI interfaces use the header file, xti.h . TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>

Error Description
Values

The t_errno value that can be set by the XTI interface and cannot be set by
the TLI interface is:

TPROTO

For more information refer to the Transport Interfaces Programming Guide

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO t_errno (3NSL) strerror (3C), attributes (5)

Transport Interfaces Programming Guide

Last modified 7 May 1998 SunOS 5.8 583

t_free(3NSL) Networking Services Library Functions

NAME t_free – free a library structure

SYNOPSIS #include <xti.h>

int t_free (void *ptr, int struct_type);

DESCRIPTION This routine is part of the XTI interfaces which evolved from the TLI interfaces.
XTI represents the future evolution of these interfaces. However, TLI interfaces
are supported for compatibility. When using a TLI routine that has the same
name as an XTI routine, the tiuser.h header file must be used. Refer to
the TLI COMPATIBILITY section for a description of differences between the
two interfaces.

The t_free() function frees memory previously allocated by t_alloc (3NSL).
This function will free memory for the specified structure, and will also free
memory for buffers referenced by the structure.

The argument ptr points to one of the seven structure types described for
t_alloc (3NSL), and struct_type identifies the type of that structure which
must be one of the following:

T_BIND struct t_bind
T_CALL struct t_call
T_OPTMGMT struct t_optmgmt
T_DIS struct t_discon
T_UNITDATA struct t_unitdata
T_UDERROR struct t_uderr
T_INFO struct t_info

where each of these structures is used as an argument to one or more transport
functions.

The function t_free() will check the addr, opt and udata fields of the given
structure, as appropriate, and free the buffers pointed to by the buf field of the
netbuf structure. If buf is a null pointer, t_free() will not attempt to free
memory. After all buffers are freed, t_free() will free the memory associated
with the structure pointed to by ptr.

Undefined results will occur if ptr or any of the buf pointers points to a block of
memory that was not previously allocated by t_alloc (3NSL).

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is
returned and t_errno is set to indicate an error.

VALID STATES ALL - apart from T_UNINIT .

584 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_free(3NSL)

ERRORS On failure, t_errno is set to the following:
TNOSTRUCTYPE Unsupported struct_type requested.

TPROTO This error indicates that a communication
problem has been detected between XTI and the
transport provider for which there is no other
suitable XTI error (t_errno).

TSYSERR A system error has occurred during execution
of this function.

TLI
COMPATIBILITY

The XTI and TLI interface definitions have common names but use different
header files. This, and other semantic differences between the two interfaces are
described in the subsections below.

Interface Header The XTI interfaces use the header file, xti.h . TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>

Error Description
Values

The t_errno value that can be set by the XTI interface and cannot be set by
the TLI interface is:
TPROTO

For more information refer to the Transport Interfaces Programming Guide

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO t_alloc (3NSL), attributes (5)

Transport Interfaces Programming Guide

Last modified 7 May 1998 SunOS 5.8 585

t_getinfo(3NSL) Networking Services Library Functions

NAME t_getinfo – get protocol-specific service information

SYNOPSIS #include <xti.h>

int t_getinfo (int fd, struct t_info *info);

DESCRIPTION This routine is part of the XTI interfaces which evolved from the TLI interfaces.
XTI represents the future evolution of these interfaces. However, TLI interfaces
are supported for compatibility. When using a TLI routine that has the same
name as an XTI routine, the tiuser.h header file must be used. Refer to
the TLI COMPATIBILITY section for a description of differences between the
two interfaces.

This function returns the current characteristics of the underlying transport
protocol and/or transport connection associated with file descriptor fd. The info
pointer is used to return the same information returned by t_open (3NSL),
although not necessarily precisely the same values. This function enables a
transport user to access this information during any phase of communication.

This argument points to a t_info structure which contains the following
members:

t_scalar_t addr; /*max size in octets of the transport protocol address*/
t_scalar_t options; /*max number of bytes of protocol-specific options */
t_scalar_t tsdu; /*max size in octets of a transport service data unit */
t_scalar_t etsdu; /*max size in octets of an expedited transport service*/

/*data unit (ETSDU) */
t_scalar_t connect; /*max number of octets allowed on connection */

/*establishment functions */
t_scalar_t discon; /*max number of octets of data allowed on t_snddis() */

/*and t_rcvdis() functions */
t_scalar_t servtype; /*service type supported by the transport provider */
t_scalar_t flags; /*other info about the transport provider */

The values of the fields have the following meanings:
addr A value greater than zero indicates the maximum size of a

transport protocol address and a value of T_INVALID (-2)
specifies that the transport provider does not provide user
access to transport protocol addresses.

options A value greater than zero indicates the maximum number of
bytes of protocol-specific options supported by the provider,
and a value of T_INVALID (–2) specifies that the transport
provider does not support user-settable options.

tsdu A value greater than zero specifies the maximum size in
octets of a transport service data unit (TSDU); a value of
T_NULL (zero) specifies that the transport provider does not
support the concept of TSDU, although it does support

586 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_getinfo(3NSL)

the sending of a datastream with no logical boundaries
preserved across a connection; a value of T_INFINITE (–1)
specifies that there is no limit on the size in octets of a TSDU;
and a value of T_INVALID (–2) specifies that the transfer of
normal data is not supported by the transport provider.

etsdu A value greater than zero specifies the maximum size in
octets of an expedited transport service data unit (ETSDU); a
value of T_NULL (zero) specifies that the transport provider
does not support the concept of ETSDU, although it does
support the sending of an expedited data stream with no
logical boundaries preserved across a connection; a value
of T_INFINITE (–1) specifies that there is no limit on the
size (in octets) of an ETSDU; and a value of T_INVALID (–2)
specifies that the transfer of expedited data is not supported
by the transport provider. Note that the semantics of
expedited data may be quite different for different transport
providers.

connect A value greater than zero specifies the maximum number of
octets that may be associated with connection establishment
functions and a value of T_INVALID (–2) specifies that
the transport provider does not allow data to be sent with
connection establishment functions.

discon If the T_ORDRELDATAbit in flags is clear, a value greater
than zero specifies the maximum number of octets
that may be associated with the t_snddis (3NSL) and
t_rcvdis (3NSL) functions, and a value of T_INVALID
(–2) specifies that the transport provider does not allow
data to be sent with the abortive release functions. If the
T_ORDRELDATAbit is set in flags, a value greater than
zero specifies the maximum number of octets that may be
associated with the t_sndreldata() , t_rcvreldata() ,
t_snddis (3NSL) and t_rcvdis (3NSL) functions.

servtype This field specifies the service type supported by the
transport provider, as described below.

flags This is a bit field used to specify other information about the
communications provider. If the T_ORDRELDATAbit is set,
the communications provider supports sending user data
with an orderly release. If the T_SENDZERObit is set in
flags, this indicates that the underlying transport provider
supports the sending of zero-length TSDUs.

Last modified 7 May 1998 SunOS 5.8 587

t_getinfo(3NSL) Networking Services Library Functions

If a transport user is concerned with protocol independence, the above sizes may
be accessed to determine how large the buffers must be to hold each piece of
information. Alternatively, the t_alloc (3NSL) function may be used to allocate
these buffers. An error will result if a transport user exceeds the allowed data
size on any function. The value of each field may change as a result of protocol
option negotiation during connection establishment (the t_optmgmt (3NSL)
call has no effect on the values returned by t_getinfo()). These values will
only change from the values presented to t_open (3NSL) after the endpoint
enters the T_DATAXFERstate.

The servtype field of info specifies one of the following values on return:
T_COTS The transport provider supports a connection-mode service

but does not support the optional orderly release facility.

T_COTS_ORD The transport provider supports a connection-mode service
with the optional orderly release facility.

T_CLTS The transport provider supports a connectionless-mode
service. For this service type, t_open (3NSL) will return
T_INVALID (–1) for etsdu, connect and discon.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is
returned and t_errno is set to indicate an error.

VALID STATES ALL - apart from T_UNINIT .

ERRORS On failure, t_errno is set to one of the following:
TBADF The specified file descriptor does not refer to a transport

endpoint.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

TSYSERR A system error has occurred during execution of this
function.

TLI
COMPATIBILITY

The XTI and TLI interface definitions have common names but use different
header files. This, and other semantic differences between the two interfaces are
described in the subsections below.

Interface Header The XTI interfaces use the header file, xti.h . TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>

588 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_getinfo(3NSL)

Error Description
Values

The t_errno value TPROTOcan be set by the XTI interface but not by the
TLI interface.

The t_info Structure For TLI , the t_info structure referenced by info lacks the following structure
member:

t_scalar_t flags; /* other info about the transport provider */

This member was added to struct t_info in the XTI interfaces.

When a value of –1 is observed as the return value in various t_info structure
members, it signifies that the transport provider can handle an infinite length
buffer for a corresponding attribute, such as address data, option data, TSDU
(octet size), ETSDU (octet size), connection data, and disconnection data. The
corresponding structure members are addr , options , tsdu , estdu , connect ,
and discon , respectively.

For more information refer to the Transport Interfaces Programming Guide

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO t_alloc (3NSL), t_open (3NSL), t_optmgmt (3NSL), t_rcvdis (3NSL),
t_snddis (3NSL), attributes (5)

Transport Interfaces Programming Guide

Last modified 7 May 1998 SunOS 5.8 589

t_getprotaddr(3NSL) Networking Services Library Functions

NAME t_getprotaddr – get the protocol addresses

SYNOPSIS #include <xti.h>
int t_getprotaddr (int fd, struct t_bind *boundaddr, struct t_bind *peeraddr);

DESCRIPTION This routine is part of the XTI interfaces which evolved from the TLI interfaces.
XTI represents the future evolution of these interfaces. However, TLI interfaces
are supported for compatibility. When using a TLI routine that has the same
name as an XTI routine, the tiuser.h header file must be used. Refer to
the TLI COMPATIBILITY section for a description of differences between the
two interfaces.

The t_getprotaddr() function returns local and remote protocol addresses
currently associated with the transport endpoint specified by fd. In boundaddr
and peeraddr the user specifies maxlen, which is the maximum size (in bytes)
of the address buffer, and buf which points to the buffer where the address
is to be placed. On return, the buf field of boundaddr points to the address,
if any, currently bound to fd, and the len field specifies the length of the
address. If the transport endpoint is in the T_UNBNDstate, zero is returned in
the len field of boundaddr. The buf field of peeraddr points to the address, if any,
currently connected to fd, and the len field specifies the length of the address. If
the transport endpoint is not in the T_DATAXFER, T_INREL, T_OUTCONor
T_OUTRELstates, zero is returned in the len field of peeraddr. If the maxlen field of
boundaddr or peeraddr is set to zero, no address is returned.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is
returned and t_errno is set to indicate the error.

VALID STATES ALL - apart from T_UNINIT .

ERRORS On failure, t_errno is set to one of the following:
TBADF The specified file descriptor does not refer to a transport

endpoint.

TBUFOVFLW The number of bytes allocated for an incoming argument
(maxlen) is greater than 0 but not sufficient to store the value
of that argument.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

TSYSERR A system error has occurred during execution of this
function.

TLI
COMPATIBILITY

In the TLI interface definition, no counterpart of this routine was defined.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

590 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_getprotaddr(3NSL)

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO t_bind (3NSL), attributes (5)

Transport Interfaces Programming Guide

Last modified 7 May 1998 SunOS 5.8 591

t_getstate(3NSL) Networking Services Library Functions

NAME t_getstate – get the current state

SYNOPSIS #include <xti.h>

int t_getstate (int fd);

DESCRIPTION This routine is part of the XTI interfaces which evolved from the TLI interfaces.
XTI represents the future evolution of these interfaces. However, TLI interfaces
are supported for compatibility. When using a TLI routine that has the same
name as an XTI routine, the tiuser.h header file must be used. Refer to
the TLI COMPATIBILITY section for a description of differences between the
two interfaces.

The t_getstate() function returns the current state of the provider associated
with the transport endpoint specified by fd.

RETURN VALUES State is returned upon successful completion. Otherwise, a value of –1 is returned
and t_errno is set to indicate an error. The current state is one of the following:
T_UNBND Unbound.

T_IDLE Idle.

T_OUTCON Outgoing connection pending.

T_INCON Incoming connection pending.

T_DATAXFER Data transfer.

T_OUTREL Outgoing direction orderly release sent.

T_INREL Incoming direction orderly release received.

If the provider is undergoing a state transition when t_getstate() is called,
the function will fail.

ERRORS On failure, t_errno is set to one of the following:
TBADF The specified file descriptor does not refer to a transport

endpoint.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

TSTATECHNG The transport provider is undergoing a transient state
change.

TSYSERR A system error has occurred during execution of this
function.

592 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_getstate(3NSL)

TLI
COMPATIBILITY

The XTI and TLI interface definitions have common names but use different
header files. This, and other semantic differences between the two interfaces are
described in the subsections below.

Interface Header The XTI interfaces use the header file, xti.h . TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>

Error Description
Values

The t_errno value that can be set by the XTI interface and cannot be set by
the TLI interface is:

TPROTO

For more information refer to the Transport Interfaces Programming Guide

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO t_open (3NSL), attributes (5)

Transport Interfaces Programming Guide

Last modified 7 May 1998 SunOS 5.8 593

t_listen(3NSL) Networking Services Library Functions

NAME t_listen – listen for a connection indication

SYNOPSIS #include <xti.h>

int t_listen (int fd, struct t_call *call);

DESCRIPTION This routine is part of the XTI interfaces which evolved from the TLI interfaces.
XTI represents the future evolution of these interfaces. However, TLI interfaces
are supported for compatibility. When using a TLI routine that has the same
name as an XTI routine, the tiuser.h header file must be used. Refer to
the TLI COMPATIBILITY section for a description of differences between the
two interfaces.

This function listens for a connection indication from a calling transport user.
The argument fd identifies the local transport endpoint where connection
indications arrive, and on return, call contains information describing the
connection indication. The parameter call points to a t_call structure which
contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

In call, addr returns the protocol address of the calling transport user. This
address is in a format usable in future calls to t_connect (3NSL). Note, however
that t_connect (3NSL) may fail for other reasons, for example TADDRBUSY.
opt returns options associated with the connection indication, udata returns
any user data sent by the caller on the connection request, and sequence is a
number that uniquely identifies the returned connection indication. The value
of sequence enables the user to listen for multiple connection indications before
responding to any of them.

Since this function returns values for the addr, opt and udata fields of call, the
maxlen field of each must be set before issuing the t_listen() to indicate the
maximum size of the buffer for each. If the maxlen field of call→addr, call→opt or
call→udata is set to zero, no information is returned for this parameter.

By default, t_listen() executes in synchronous mode and waits for a
connection indication to arrive before returning to the user. However, if
O_NONBLOCKis set via t_open (3NSL) or fcntl (2), t_listen() executes
asynchronously, reducing to a poll for existing connection indications. If none
are available, it returns –1 and sets t_errno to TNODATA.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is
returned and t_errno is set to indicate an error.

VALID STATES T_IDLE , T_INCON

594 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_listen(3NSL)

ERRORS On failure, t_errno is set to one of the following:
TBADF The specified file descriptor does not refer to a transport

endpoint.

TBADQLEN The argument qlen of the endpoint referenced by fd is zero.

TBUFOVFLW The number of bytes allocated for an incoming argument
(maxlen) is greater than 0 but not sufficient to store the
value of that argument. The provider’s state, as seen by the
user, changes to T_INCON, and the connection indication
information to be returned in call is discarded. The value of
sequence returned can be used to do a t_snddis (3NSL).

TLOOK An asynchronous event has occurred on this transport
endpoint and requires immediate attention.

TNODATA O_NONBLOCKwas set, but no connection indications had
been queued.

TNOTSUPPORT This function is not supported by the underlying transport
provider.

TOUTSTATE The communications endpoint referenced by fd is not in one
of the states in which a call to this function is valid.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

TQFULL The maximum number of outstanding connection indications
has been reached for the endpoint referenced by fd. Note
that a subsequent call to t_listen() may block until
another incoming connection indication is available. This
can only occur if at least one of the outstanding connection
indications becomes no longer outstanding, for example
through a call to t_accept (3NSL).

TSYSERR A system error has occurred during execution of this
function.

TLI
COMPATIBILITY

The XTI and TLI interface definitions have common names but use different
header files. This, and other semantic differences between the two interfaces are
described in the subsections below.

Interface Header The XTI interfaces use the header file, xti.h . TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>

Last modified 7 May 1998 SunOS 5.8 595

t_listen(3NSL) Networking Services Library Functions

Error Description
Values

The t_errno values TPROT0, TBADQLEN,and TQFULLcan be set by the XTI
interface but not by the TLI interface.

A t_errno value that this routine can return under different circumstances than
its XTI counterpart is TBUFOVFLW. It can be returned even when the maxlen
field of the corresponding buffer has been set to zero.

Option Buffers The format of the options in an opt buffer is dictated by the transport provider.
Unlike the XTI interface, the TLI interface does not fix the buffer format.

For more information refer to the Transport Interfaces Programming Guide

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO fcntl (2), t_accept (3NSL), t_alloc (3NSL), t_bind (3NSL),
t_connect (3NSL), t_open (3NSL), t_optmgmt (3NSL),
t_rcvconnect (3NSL), t_snddis (3NSL), attributes (5)

Transport Interfaces Programming Guide

WARNINGS Some transport providers do not differentiate between a connection indication
and the connection itself. If this is the case, a successful return of t_listen()
indicates an existing connection.

596 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_look(3NSL)

NAME t_look – look at the current event on a transport endpoint

SYNOPSIS #include <xti.h>

int t_look (int fd);

DESCRIPTION This routine is part of the XTI interfaces which evolved from the TLI interfaces.
XTI represents the future evolution of these interfaces. However, TLI interfaces
are supported for compatibility. When using a TLI routine that has the same
name as an XTI routine, the tiuser.h header file must be used. Refer to
the TLI COMPATIBILITY section for a description of differences between the
two interfaces.

This function returns the current event on the transport endpoint specified by
fd. This function enables a transport provider to notify a transport user of an
asynchronous event when the user is calling functions in synchronous mode.
Certain events require immediate notification of the user and are indicated by a
specific error, TLOOK, on the current or next function to be executed.

This function also enables a transport user to poll a transport endpoint
periodically for asynchronous events.

RETURN VALUES Upon success, t_look() returns a value that indicates which of the allowable
events has occurred, or returns zero if no event exists. One of the following
events is returned:
T_LISTEN Connection indication received.

T_CONNECT Connect confirmation received.

T_DATA Normal data received.

T_EXDATA Expedited data received.

T_DISCONNECT Disconnection received.

T_UDERR Datagram error indication.

T_ORDREL Orderly release indication.

T_GODATA Flow control restrictions on normal data flow that
led to a TFLOWerror have been lifted. Normal
data may be sent again.

T_GOEXDATA Flow control restrictions on expedited data
flow that led to a TFLOWerror have been lifted.
Expedited data may be sent again.

On failure, –1 is returned and t_errno is set to indicate the error.

VALID STATES ALL - apart from T_UNINIT .

Last modified 7 May 1998 SunOS 5.8 597

t_look(3NSL) Networking Services Library Functions

ERRORS On failure, t_errno is set to one of the following:
TBADF The specified file descriptor does not refer to a

transport endpoint.

TPROTO This error indicates that a communication
problem has been detected between XTI and the
transport provider for which there is no other
suitable XTI error (t_errno) .

TSYSERR A system error has occurred during execution
of this function.

TLI
COMPATIBILITY

The XTI and TLI interface definitions have common names but use different
header files. This, and other semantic differences between the two interfaces are
described in the subsections below.

Interface Header The XTI interfaces use the header file, xti.h . TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>

Return Values The return values that are defined by the XTI interface and cannot be returned
by the TLI interface are:

T_GODATA
T_GOEXDATA

Error Description
Values

The t_errno value that can be set by the XTI interface and cannot be set by
the TLI interface is:

TPROTO

For more information refer to the Transport Interfaces Programming Guide

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO t_open (3NSL), t_snd (3NSL), t_sndudata (3NSL), attributes (5)

Transport Interfaces Programming Guide

598 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_open(3NSL)

NAME t_open – establish a transport endpoint

SYNOPSIS #include <xti.h>
#include <fcntl.h>

int t_open (const char *name, int oflag, struct t_info *info);

DESCRIPTION This routine is part of the XTI interfaces which evolved from the TLI interfaces.
XTI represents the future evolution of these interfaces. However, TLI interfaces
are supported for compatibility. When using a TLI routine that has the same
name as an XTI routine, the tiuser.h header file must be used. Refer to
the TLI COMPATIBILITY section for a description of differences between the
two interfaces.

The t_open() function must be called as the first step in the initialization of a
transport endpoint. This function establishes a transport endpoint by supplying
a transport provider identifier that indicates a particular transport provider, that
is, transport protocol, and returning a file descriptor that identifies that endpoint.

The argument name points to a transport provider identifier and oflag identifies
any open flags, as in open (2). The argument oflag is constructed from O_RDWR
optionally bitwise inclusive-OR’ed with O_NONBLOCK.These flags are defined
by the header <fcntl.h> . The file descriptor returned by t_open() will
be used by all subsequent functions to identify the particular local transport
endpoint.

This function also returns various default characteristics of the underlying
transport protocol by setting fields in the t_info structure. This argument
points to a t_info which contains the following members:

t_scalar_t addr; /* max size of the transport protocol address */
t_scalar_t options; /* max number of bytes of */

/* protocol-specific options */
t_scalar_t tsdu; /* max size of a transport service data */

/* unit (TSDU) */
t_scalar_t etsdu; /* max size of an expedited transport */

/* service data unit (ETSDU) */
t_scalar_t connect; /* max amount of data allowed on */

/* connection establishment functions */
t_scalar_t discon; /* max amount of data allowed on */

/* t_snddis() and t_rcvdis() functions */
t_scalar_t servtype; /* service type supported by the */

/* transport provider */
t_scalar_t flags; /* other info about the transport provider */

Last modified 7 May 1998 SunOS 5.8 599

t_open(3NSL) Networking Services Library Functions

The values of the fields have the following meanings:
addr A value greater than zero (T_NULL) indicates the maximum

size of a transport protocol address and a value of –2
(T_INVALID) specifies that the transport provider does not
provide user access to transport protocol addresses.

options A value greater than zero (T_NULL) indicates the maximum
number of bytes of protocol-specific options supported
by the provider, and a value of –2 (T_INVALID) specifies
that the transport provider does not support user-settable
options.

tsdu A value greater than zero (T_NULL specifies the maximum
size of a transport service data unit (TSDU); a value of zero
(T_NULL) specifies that the transport provider does not
support the concept of TSDU, although it does support
the sending of a data stream with no logical boundaries
preserved across a connection; a value of –1 (T_INFINITE)
specifies that there is no limit to the size of a TSDU; and a
value of –2 (T_INVALID) specifies that the transfer of normal
data is not supported by the transport provider.

etsdu A value greater than zero (T_NULL) specifies the maximum
size of an expedited transport service data unit (ETSDU); a
value of zero (T_NULL) specifies that the transport provider
does not support the concept of ETSDU, although it does
support the sending of an expedited data stream with no
logical boundaries preserved across a connection; a value
of –1 (T_INFINITE) specifies that there is no limit on the
size of an ETSDU; and a value of –2 (T_INVALID) specifies
that the transfer of expedited data is not supported by the
transport provider. Note that the semantics of expedited data
may be quite different for different transport providers.

connect A value greater than zero (T_NULL) specifies the maximum
amount of data that may be associated with connection
establishment functions, and a value of –2 (T_INVALID)
specifies that the transport provider does not allow data to
be sent with connection establishment functions.

discon If the T_ORDRELDATAbit in flags is clear, a value greater
than zero (T_NULL) specifies the maximum amount of
data that may be associated with the t_snddis (3NSL)
and t_rcvdis (3NSL) functions, and a value of –2
(T_INVALID) specifies that the transport provider does not
allow data to be sent with the abortive release functions.

600 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_open(3NSL)

If the T_ORDRELDATAbit is set in flags, a value greater
than zero (T_NULL) specifies the maximum number of
octets that may be associated with the t_sndreldata() ,
t_rcvreldata() , t_snddis (3NSL) and t_rcvdis (3NSL)
functions.

servtype This field specifies the service type supported by the
transport provider, as described below.

flags This is a bit field used to specify other information about the
communications provider. If the T_ORDRELDATAbit is set,
the communications provider supports user data to be sent
with an orderly release. If the T_SENDZERObit is set in flags,
this indicates the underlying transport provider supports the
sending of zero-length TSDUs.

If a transport user is concerned with protocol independence, the above sizes
may be accessed to determine how large the buffers must be to hold each piece
of information. Alternatively, the t_alloc (3NSL) function may be used to
allocate these buffers. An error will result if a transport user exceeds the allowed
data size on any function.

The servtype field of info specifies one of the following values on return:
T_COTS The transport provider supports a connection-mode service

but does not support the optional orderly release facility.

T_COTS_ORD The transport provider supports a connection-mode service
with the optional orderly release facility.

T_CLTS The transport provider supports a connectionless-mode
service. For this service type, t_open() will return –2
(T_INVALID) for etsdu, connect and discon.

A single transport endpoint may support only one of the above services at one
time.

If info is set to a null pointer by the transport user, no protocol information
is returned by t_open() .

RETURN VALUES A valid file descriptor is returned upon successful completion. Otherwise, a
value of –1 is returned and t_errno is set to indicate an error.

VALID STATES T_UNINIT .

ERRORS On failure, t_errno is set to the following:
TBADFLAG An invalid flag is specified.

TBADNAME Invalid transport provider name.

Last modified 7 May 1998 SunOS 5.8 601

t_open(3NSL) Networking Services Library Functions

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

TSYSERR A system error has occurred during execution of this
function.

TLI
COMPATIBILITY

The XTI and TLI interface definitions have common names but use different
header files. This and other semantic differences between the two interfaces are
described in the subsections below.

Interface Header The XTI interfaces use the xti.h TLI interfaces should not use this header.
They should use the header:

#include <tiuser.h>

Error Description
Values

The t_errno values TPROTOand TBADNAMEcan be set by the XTI interface but
cannot be set by the TLI interface.

Notes For TLI , the t_info structure referenced by info lacks the following structure
member:

t_scalar_t flags; /* other info about the transport provider */

This member was added to struct t_info in the XTI interfaces.

When a value of –1 is observed as the return value in various t_info structure
members, it signifies that the transport provider can handle an infinite length
buffer for a corresponding attribute, such as address data, option data, TSDU
(octet size), ETSDU (octet size), connection data, and disconnection data. The
corresponding structure members are addr , options , tsdu , estdu , connect ,
and discon , respectively.

For more information refer to the Transport Interfaces Programming Guide

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO open (2), attributes (5)

Transport Interfaces Programming Guide

602 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_optmgmt(3NSL)

NAME t_optmgmt – manage options for a transport endpoint

SYNOPSIS #include <xti.h>

int t_optmgmt (int fd, const struct t_optmgmt *req, struct t_optmgmt *ret);

DESCRIPTION This routine is part of the XTI interfaces which evolved from the TLI interfaces.
XTI represents the future evolution of these interfaces. However, TLI interfaces
are supported for compatibility. When using a TLI routine that has the same
name as an XTI routine, the tiuser.h header file must be used. Refer to
the TLI COMPATIBILITY section for a description of differences between the
two interfaces.

The t_optmgmt() function enables a transport user to retrieve, verify or
negotiate protocol options with the transport provider. The argument fd
identifies a transport endpoint.

The req and ret arguments point to a t_optmgmt structure containing the
following members:

struct netbuf opt;
t_scalar_t flags;

The opt field identifies protocol options and the flags field is used to specify
the action to take with those options.

The options are represented by a netbuf structure in a manner similar to the
address in t_bind (3NSL). The argument req is used to request a specific action
of the provider and to send options to the provider. The argument len specifies
the number of bytes in the options, buf points to the options buffer, and maxlen
has no meaning for the req argument. The transport provider may return options
and flag values to the user through ret. For ret, maxlen specifies the maximum
size of the options buffer and buf points to the buffer where the options are to be
placed. If maxlen in ret is set to zero, no options values are returned. On return,
len specifies the number of bytes of options returned. The value in maxlen has no
meaning for the req argument, but must be set in the ret argument to specify the
maximum number of bytes the options buffer can hold.

Each option in the options buffer is of the form struct t_opthdr possibly
followed by an option value.

The level field of struct t_opthdr identifies the XTI level or a protocol of the
transport provider. The name field identifies the option within the level, and
len contains its total length; that is, the length of the option header t_opthdr
plus the length of the option value. If t_optmgmt() is called with the action
T_NEGOTIATEset, the status field of the returned options contains information
about the success or failure of a negotiation.

Last modified 7 May 1998 SunOS 5.8 603

t_optmgmt(3NSL) Networking Services Library Functions

Several options can be concatenated. The option user has, however to ensure
that each options header and value part starts at a boundary appropriate for
the architecture-specific alignment rules. The macros T_OPT_FIRSTHDR(nbp),
T_OPT_NEXTHDR(nbp,tohp), T_OPT_DATA(tohp) are provided for that purpose.
T_OPT_DATA(nhp) If argument is a pointer to a

t_opthdr structure, this macro
returns an unsigned character pointer
to the data associated with the
t_opthdr .

T_OPT_NEXTHDR(nbp, tohp) If the first argument is a pointer
to a netbuf structure associated
with an option buffer and second
argument is a pointer to a t_opthdr
structure within that option buffer,
this macro returns a pointer to the
next t_opthdr structure or a null
pointer if this t_opthdr is the last
t_opthdr in the option buffer.

T_OPT_FIRSTHDR(tohp) If the argument is a pointer to a
netbuf structure associated with
an option buffer, this macro returns
the pointer to the first t_opthdr
structure in the associated option
buffer, or a null pointer if there is no
option buffer associated with this
netbuf or if it is not possible or
the associated option buffer is too
small to accommodate even the first
aligned option header.

T_OPT_FIRSTHDRis useful
for finding an appropriately
aligned start of the option buffer.
T_OPT_NEXTHDRis useful for
moving to the start of the next
appropriately aligned option
in the option buffer. Note that
OPT_NEXTHDRis also available for
backward compatibility requirements.
T_OPT_DATAis useful for finding
the start of the data part in the
option buffer where the contents of

604 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_optmgmt(3NSL)

its values start on an appropriately
aligned boundary.

If the transport user specifies several
options on input, all options must
address the same level.

If any option in the options buffer
does not indicate the same level
as the first option, or the level
specified is unsupported, then the
t_optmgmt() request will fail with
TBADOPT. If the error is detected,
some options have possibly been
successfully negotiated. The transport
user can check the current status
by calling t_optmgmt() with the
T_CURRENTflag set.

The flags field of req must specify one
of the following actions:

T_NEGOTIATE This action enables the transport user
to negotiate option values.

The user specifies the options of
interest and their values in the
buffer specified by req→opt.buf
and req→opt.len. The negotiated
option values are returned in the
buffer pointed to by ret->opt.buf.
The status field of each returned
option is set to indicate the result
of the negotiation. The value is
T_SUCCESSif the proposed value
was negotiated, T_PARTSUCCESSif
a degraded value was negotiated,
T_FAILURE if the negotiation failed
(according to the negotiation rules),
T_NOTSUPPORTif the transport
provider does not support this option
or illegally requests negotiation of a
privileged option, and T_READONLY
if modification of a read-only
option was requested. If the status
is T_SUCCESS, T_FAILURE,

Last modified 7 May 1998 SunOS 5.8 605

t_optmgmt(3NSL) Networking Services Library Functions

T_NOTSUPPORTor T_READONLY,the
returned option value is the same as
the one requested on input.

The overall result of the negotiation
is returned in ret→flags.

This field contains the worst
single result, whereby the rating
is done according to the order
T_NOTSUPPORT, T_READONLY,
T_FAILURE, T_PARTSUCCESS,
T_SUCCESS.The value
T_NOTSUPPORTis the worst result
and T_SUCCESSis the best.

For each level, the option T_ALLOPT
can be requested on input. No
value is given with this option; only
the t_opthdr part is specified.
This input requests to negotiate
all supported options of this level
to their default values. The result
is returned option by option in
ret→opt.buf. Note that depending on
the state of the transport endpoint,
not all requests to negotiate the
default value may be successful.

T_CHECK This action enables the user to verify
whether the options specified in
req are supported by the transport
provider.If an option is specified with
no option value (it consists only of
a t_opthdr structure), the option
is returned with its status field set
to T_SUCCESSif it is supported,
T_NOTSUPPORTif it is not or needs
additional user privileges, and
T_READONLYif it is read-only (in the
current XTI state). No option value is
returned.

If an option is specified with an
option value, the status field of the
returned option has the same value,

606 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_optmgmt(3NSL)

as if the user had tried to negotiate
this value with T_NEGOTIATE. If the
status is T_SUCCESS, T_FAILURE,
T_NOTSUPPORTor T_READONLY, the
returned option value is the same as
the one requested on input.

The overall result of the option
checks is returned in ret→flags.
This field contains the worst
single result of the option checks,
whereby the rating is the same as for
T_NEGOTIATE.

Note that no negotiation takes place.
All currently effective option values
remain unchanged.

T_DEFAULT This action enables the transport user
to retrieve the default option values.
The user specifies the options of
interest in req→opt.buf. The option
values are irrelevant and will be
ignored; it is sufficient to specify the
t_opthdr part of an option only.
The default values are then returned
in ret→opt.buf.

The status field returned is
T_NOTSUPPORTif the protocol level
does not support this option or the
transport user illegally requested a
privileged option, T_READONLY
if the option is read-only, and set
to T_SUCCESSin all other cases.
The overall result of the request is
returned in ret→flags. This field
contains the worst single result,
whereby the rating is the same as for
T_NEGOTIATE.

For each level, the option T_ALLOPT
can be requested on input. All
supported options of this level
with their default values are
then returned. In this case,

Last modified 7 May 1998 SunOS 5.8 607

t_optmgmt(3NSL) Networking Services Library Functions

ret→opt.maxlen must be given at
least the value info→options before
the call. See t_getinfo (3NSL) and
t_open (3NSL).

T_CURRENT This action enables the transport user
to retrieve the currently effective
option values. The user specifies the
options of interest in req→opt.buf. The
option values are irrelevant and will
be ignored; it is sufficient to specifiy
the t_opthdr part of an option only.
The currently effective values are
then returned in req→opt.buf.

The status field returned is
T_NOTSUPPORTif the protocol level
does not support this option or the
transport user illegally requested a
privileged option, T_READONLY
if the option is read-only, and set
to T_SUCCESSin all other cases.
The overall result of the request is
returned in ret→flags. This field
contains the worst single result,
whereby the rating is the same as for
T_NEGOTIATE.

For each level, the option T_ALLOPT
can be requested on input. All
supported options of this level with
their currently effective values are
then returned.

The option T_ALLOPTcan only be
used with t_optmgmt() and the
actions T_NEGOTIATE, T_DEFAULT
and T_CURRENT.It can be used with
any supported level and addresses
all supported options of this level.
The option has no value; it consists
of a t_opthdr only. Since in a
t_optmgmt() call only options of
one level may be addressed, this
option should not be requested

608 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_optmgmt(3NSL)

together with other options. The
function returns as soon as this
option has been processed.

Options are independently processed
in the order they appear in the
input option buffer. If an option
is multiply input, it depends on
the implementation whether it is
multiply output or whether it is
returned only once.

Transport providers may not be able
to provide an interface capable of
supporting T_NEGOTIATEand/or
T_CHECKfunctionalities. When this is
the case, the error TNOTSUPPORTis
returned.

The function t_optmgmt()
may block under various
circumstances and depending on the
implementation. The function will
block, for instance, if the protocol
addressed by the call resides on a
separate controller. It may also block
due to flow control constraints; that
is, if data sent previously across this
transport endpoint has not yet been
fully processed. If the function is
interrupted by a signal, the option
negotiations that have been done so
far may remain valid. The behavior
of the function is not changed if
O_NONBLOCKis set.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is
returned and t_errno is set to indicate an error.

VALID STATES ALL - apart from T_UNINIT .

ERRORS On failure, t_errno is set to one of the following:
TBADF The specified file descriptor does not refer to a transport

endpoint.

TBADFLAG An invalid flag was specified.

Last modified 7 May 1998 SunOS 5.8 609

t_optmgmt(3NSL) Networking Services Library Functions

TBADOPT The specified options were in an incorrect format or
contained illegal information.

TBUFOVFLW The number of bytes allowed for an incoming argument
(maxlen) is greater than 0 but not sufficient to store the value
of that argument. The information to be returned in ret will
be discarded.

TNOTSUPPORT This action is not supported by the transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one
of the states in which a call to this function is valid.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

TSYSERR A system error has occurred during execution of this
function.

TLI
COMPATIBILITY

The XTI and TLI interface definitions have common names but use different
header files. This, and other semantic differences between the two interfaces are
described in the subsections below.

Interface Header The XTI interfaces use the header file, xti.h . TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>

Error Description
Values

The t_errno value TPROTOcan be set by the XTI interface but not by the
TLI interface.

The t_errno values that this routine can return under different circumstances
than its XTI counterpart are TACCESand TBUFOVFLW.
TACCES can be returned to indicate that the user does not have

permission to negotiate the specified options.

TBUFOVFLW can be returned even when the maxlen field of the
corresponding buffer has been set to zero.

Option Buffers The format of the options in an opt buffer is dictated by the transport provider.
Unlike the XTI interface, the TLI interface does not fix the buffer format. The
macros T_OPT_DATA, T_OPT_NEXTHDR,and T_OPT_FIRSTHDRdescribed
for XTI are not available for use by TLI interfaces.

Actions The semantic meaning of various action values for the flags field of req
differs between the TLI and XTI interfaces. TLI interface users should heed the
following descriptions of the actions:
T_NEGOTIATE This action enables the user to negotiate the values of the

options specified in req with the transport provider. The

610 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_optmgmt(3NSL)

provider will evaluate the requested options and negotiate
the values, returning the negotiated values through ret.

T_CHECK This action enables the user to verify whether the options
specified in req are supported by the transport provider. On
return, the flags field of ret will have either T_SUCCESS
or T_FAILURE set to indicate to the user whether the
options are supported. These flags are only meaningful
for the T_CHECKrequest.

T_DEFAULT This action enables a user to retrieve the default options
supported by the transport provider into the opt field of
ret. In req, the len field of opt must be zero and the buf
field may be NULL.

Connectionless-Mode If issued as part of the connectionless-mode service, t_optmgmt() may
block due to flow control constraints. The function will not complete until the
transport provider has processed all previously sent data units.

For more information refer to the Transport Interfaces Programming Guide

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO close (2), poll (2), select (3C), t_accept (3NSL), t_alloc (3NSL),
t_bind (3NSL), t_close (3NSL), t_connect (3NSL), t_getinfo (3NSL),
t_listen (3NSL), t_open (3NSL), t_rcv (3NSL), t_rcvconnect (3NSL),
t_rcvudata (3NSL), t_snddis (3NSL), attributes (5)

Transport Interfaces Programming Guide

Last modified 7 May 1998 SunOS 5.8 611

t_rcv(3NSL) Networking Services Library Functions

NAME t_rcv – receive data or expedited data sent over a connection

SYNOPSIS #include <xti.h>

int t_rcv (int fd, void *buf, unsigned int nbytes, int *flags);

DESCRIPTION This routine is part of the XTI interfaces which evolved from the TLI interfaces.
XTI represents the future evolution of these interfaces. However, TLI interfaces
are supported for compatibility. When using a TLI routine that has the same
name as an XTI routine, the tiuser.h header file must be used. Refer to
the TLI COMPATIBILITY section for a description of differences between the
two interfaces.

This function receives either normal or expedited data. The argument fd
identifies the local transport endpoint through which data will arrive, buf points
to a receive buffer where user data will be placed, and nbytes specifies the size of
the receive buffer. The argument flags may be set on return from t_rcv() and
specifies optional flags as described below.

By default, t_rcv() operates in synchronous mode and will wait for data to
arrive if none is currently available. However, if O_NONBLOCKis set by means of
t_open (3NSL) or fcntl (2), t_rcv() will execute in asynchronous mode and
will fail if no data is available. See TNODATAbelow.

On return from the call, if T_MOREis set in flags, this indicates that there is more
data, and the current transport service data unit (TSDU) or expedited transport
service data unit (ETSDU) must be received in multiple t_rcv() calls. In the
asynchronous mode, or under unusual conditions (for example, the arrival of
a signal or T_EXDATAevent), the T_MOREflag may be set on return from the
t_rcv() call even when the number of bytes received is less than the size of
the receive buffer specified. Each t_rcv() with the T_MOREflag set indicates
that another t_rcv() must follow to get more data for the current TSDU.
The end of the TSDU is identified by the return of a t_rcv() call with the
T_MOREflag not set. If the transport provider does not support the concept of
a TSDU as indicated in the info argument on return from t_open (3NSL) or
t_getinfo (3NSL), the T_MOREflag is not meaningful and should be ignored. If
nbytes is greater than zero on the call to t_rcv() , t_rcv() will return 0 only
if the end of a TSDU is being returned to the user.

On return, the data is expedited if T_EXPEDITEDis set in flags. If T_MOREis
also set, it indicates that the number of expedited bytes exceeded nbytes, a
signal has interrupted the call, or that an entire ETSDU was not available (only
for transport protocols that support fragmentation of ETSDUs). The rest of the
ETSDU will be returned by subsequent calls to t_rcv() which will return with
T_EXPEDITEDset in flags. The end of the ETSDU is identified by the return
of a t_rcv() call with T_EXPEDITEDset and T_MOREcleared. If the entire

612 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_rcv(3NSL)

ETSDU is not available it is possible for normal data fragments to be returned
between the initial and final fragments of an ETSDU.

If a signal arrives, t_rcv() returns, giving the user any data currently available.
If no data is available, t_rcv() returns –1, sets t_errno to TSYSERRand
errno to EINTR. If some data is available, t_rcv() returns the number of bytes
received and T_MOREis set in flags.

In synchronous mode, the only way for the user to be notified of the arrival of
normal or expedited data is to issue this function or check for the T_DATAor
T_EXDATAevents using the t_look (3NSL) function. Additionally, the process
can arrange to be notified by means of the EM interface.

RETURN VALUES On successful completion, t_rcv() returns the number of bytes received.
Otherwise, it returns 1 on failure and t_errno is set to indicate the error.

VALID STATES T_DATAXFER, T_OUTREL.

ERRORS On failure, t_errno is set to one of the following:
TBADF The specified file descriptor does not refer to a transport

endpoint.

TLOOK An asynchronous event has occurred on this transport
endpoint and requires immediate attention.

TNODATA O_NONBLOCKwas set, but no data is currently available
from the transport provider.

TNOTSUPPORT This function is not supported by the underlying transport
provider.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

TSYSERR A system error has occurred during execution of this
function.

TLI
COMPATIBILITY

The XTI and TLI interface definitions have common names but use different
header files. This, and other semantic differences between the two interfaces are
described in the subsections below.

Interface Header The XTI interfaces use the header file, xti.h . TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>

Error Description
Values

The t_errno value that can be set by the XTI interface and cannot be set by
the TLI interface is:

TPROTO

Last modified 7 May 1998 SunOS 5.8 613

t_rcv(3NSL) Networking Services Library Functions

For more information refer to the Transport Interfaces Programming Guide

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO fcntl (2), t_getinfo (3NSL), t_look (3NSL), t_open (3NSL), t_snd (3NSL),
attributes (5)

Transport Interfaces Programming Guide

614 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_rcvconnect(3NSL)

NAME t_rcvconnect – receive the confirmation from a connection request

SYNOPSIS #include <xti.h>

int t_rcvconnect (int fd, struct t_call *call);

DESCRIPTION This routine is part of the XTI interfaces which evolved from the TLI interfaces.
XTI represents the future evolution of these interfaces. However, TLI interfaces
are supported for compatibility. When using a TLI routine that has the same
name as an XTI routine, the tiuser.h header file must be used. Refer to
the TLI COMPATIBILITY section for a description of differences between the
two interfaces.

This function enables a calling transport user to determine the status
of a previously sent connection request and is used in conjunction with
t_connect (3NSL) to establish a connection in asynchronous mode, and to
complete a synchronous t_connect (3NSL) call that was interrupted by a signal.
The connection will be established on successful completion of this function.

The argument fd identifies the local transport endpoint where communication
will be established, and call contains information associated with the newly
established connection. The argument call points to a t_call structure which
contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

In call, addr returns the protocol address associated with the responding transport
endpoint, opt presents any options associated with the connection, udata points to
optional user data that may be returned by the destination transport user during
connection establishment, and sequence has no meaning for this function.

The maxlen field of each argument must be set before issuing this function to
indicate the maximum size of the buffer for each. However, maxlen can be set to
zero, in which case no information to this specific argument is given to the user
on the return from t_rcvconnect() . If call is set to NULL, no information at
all is returned. By default, t_rcvconnect() executes in synchronous mode
and waits for the connection to be established before returning. On return, the
addr, opt and udata fields reflect values associated with the connection.

If O_NONBLOCKis set by means of t_open (3NSL) or fcntl (2),
t_rcvconnect() executes in asynchronous mode, and reduces to a poll for
existing connection confirmations. If none are available, t_rcvconnect() fails
and returns immediately without waiting for the connection to be established.
See TNODATAbelow. In this case, t_rcvconnect() must be called again to

Last modified 7 May 1998 SunOS 5.8 615

t_rcvconnect(3NSL) Networking Services Library Functions

complete the connection establishment phase and retrieve the information
returned in call.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is
returned and t_errno is set to indicate an error.

VALID STATES T_OUTCON.

ERRORS On failure, t_errno is set to one of the following:
TBADF The specified file descriptor does not refer to a transport

endpoint.

TBUFOVFLW The number of bytes allocated for an incoming argument
(maxlen) is greater than 0 but not sufficient to store the value
of that argument, and the connection information to be
returned in call will be discarded. The provider’s state, as
seen by the user, will be changed to T_DATAXFER.

TLOOK An asynchronous event has occurred on this transport
connection and requires immediate attention.

TNODATA O_NONBLOCKwas set, but a connection confirmation has
not yet arrived.

TNOTSUPPORT This function is not supported by the underlying transport
provider.

TOUTSTATE The communications endpoint referenced by fd is not in one
of the states in which a call to this function is valid.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

TSYSERR A system error has occurred during execution of this
function.

TLI
COMPATIBILITY

The XTI and TLI interface definitions have common names but use different
header files. This, and other semantic differences between the two interfaces are
described in the subsections below.

Interface Header The XTI interfaces use the header file, xti.h . TLI interfaces should not use this
header. They should use the header:

#include<tiuser.h>

Error Description
Values

The t_errno value TPROTOcan be set by the XTI interface but not by the
TLI interface.

616 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_rcvconnect(3NSL)

A t_errno value that this routine can return under different circumstances than
its XTI counterpart is TBUFOVFLW. It can be returned even when the maxlen
field of the corresponding buffer has been set to zero.

For more information refer to the Transport Interfaces Programming Guide

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO fcntl (2), t_accept (3NSL), t_alloc (3NSL), t_bind (3NSL),
t_connect (3NSL), t_listen (3NSL), t_open (3NSL), t_optmgmt (3NSL),
attributes (5)

Transport Interfaces Programming Guide

Last modified 7 May 1998 SunOS 5.8 617

t_rcvdis(3NSL) Networking Services Library Functions

NAME t_rcvdis – retrieve information from disconnection

SYNOPSIS #include <xti.h>

int t_rcvdis (int fd, struct t_discon *discon);

DESCRIPTION This routine is part of the XTI interfaces which evolved from the TLI interfaces.
XTI represents the future evolution of these interfaces. However, TLI interfaces
are supported for compatibility. When using a TLI routine that has the same
name as an XTI routine, the tiuser.h header file must be used. Refer to
the TLI COMPATIBILITY section for a description of differences between the
two interfaces.

This function is used to identify the cause of a disconnection and to retrieve
any user data sent with the disconnection. The argument fd identifies the
local transport endpoint where the connection existed, and discon points to a
t_discon structure containing the following members:

struct netbuf udata;
int reason;
int sequence;

The field reason specifies the reason for the disconnection through a
protocol-dependent reason code, udata identifies any user data that was sent
with the disconnection, and sequence may identify an outstanding connection
indication with which the disconnection is associated. The field sequence is only
meaningful when t_rcvdis() is issued by a passive transport user who
has executed one or more t_listen (3NSL) functions and is processing the
resulting connection indications. If a disconnection indication occurs, sequence
can be used to identify which of the outstanding connection indications is
associated with the disconnection.

The maxlen field of udata may be set to zero, if the user does not care about
incoming data. If, in addition, the user does not need to know the value of reason
or sequence, discon may be set to NULLand any user data associated with the
disconnection indication shall be discarded. However, if a user has retrieved
more than one outstanding connection indication by means of t_listen (3NSL),
and discon is a null pointer, the user will be unable to identify with which
connection indication the disconnection is associated.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is
returned and t_errno is set to indicate an error.

VALID STATES T_DATAXFER, T_OUTCON, T_OUTREL, T_INREL , T_INCON(ocnt > 0) .

ERRORS On failure, t_errno is set to one of the following:

618 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_rcvdis(3NSL)

TBADF The specified file descriptor does not refer to a transport
endpoint.

TBUFOVFLW The number of bytes allocated for incoming data (maxlen) is
greater than 0 but not sufficient to store the data. If fd is a
passive endpoint with ocnt > 1, it remains in state T_INCON;
otherwise, the endpoint state is set to T_IDLE.

TNODIS No disconnection indication currently exists on the specified
transport endpoint.

TNOTSUPPORT This function is not supported by the underlying transport
provider.

TOUTSTATE The communications endpoint referenced by fd is not in one
of the states in which a call to this function is valid.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

TSYSERR A system error has occurred during execution of this
function.

TLI
COMPATIBILITY

The XTI and TLI interface definitions have common names but use different
header files. This, and other semantic differences between the two interfaces are
described in the subsections below.

Interface Header The XTI interfaces use the header file, xti.h . TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>

Error Description
Values

The t_errno values TPROTOand TOUTSTATEcan be set by the XTI interface
but not by the TLI interface.

A failure return, and a t_errno value that this routine can set under different
circumstances than its XTI counterpart is TBUFOVFLW.It can be returned even
when the maxlen field of the corresponding buffer has been set to zero.

For more information refer to the Transport Interfaces Programming Guide

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO t_alloc (3NSL), t_connect (3NSL), t_listen (3NSL), t_open (3NSL),
t_snddis (3NSL), attributes (5)

Last modified 7 May 1998 SunOS 5.8 619

t_rcvdis(3NSL) Networking Services Library Functions

Transport Interfaces Programming Guide

620 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_rcvrel(3NSL)

NAME t_rcvrel – acknowledge receipt of an orderly release indication

SYNOPSIS #include <xti.h>

int t_rcvrel (int fd);

DESCRIPTION This routine is part of the XTI interfaces which evolved from the TLI interfaces.
XTI represents the future evolution of these interfaces. However, TLI interfaces
are supported for compatibility. When using a TLI routine that has the same
name as an XTI routine, the tiuser.h header file must be used. Refer to
the TLI COMPATIBILITY section for a description of differences between the
two interfaces.

This function is used to receive an orderly release indication for the incoming
direction of data transfer. The argument fd identifies the local transport endpoint
where the connection exists. After receipt of this indication, the user may not
attempt to receive more data by means of t_rcv (3NSL) or t_rcvv() . Such an
attempt will fail with t_error set to TOUTSTATE. However, the user may continue
to send data over the connection if t_sndrel (3NSL) has not been called by the
user. This function is an optional service of the transport provider, and is only
supported if the transport provider returned service type T_COTS_ORDon
t_open (3NSL) or t_getinfo (3NSL). Any user data that may be associated
with the orderly release indication is discarded when t_rcvrel() is called.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is
returned and t_errno is set to indicate an error.

VALID STATES T_DATAXFER, T_OUTREL.

ERRORS On failure, t_errno is set to one of the following:
TBADF The specified file descriptor does not refer to a transport

endpoint.

TLOOK An asynchronous event has occurred on this transport
endpoint and requires immediate attention.

TNOREL No orderly release indication currently exists on the specified
transport endpoint.

TNOTSUPPORT This function is not supported by the underlying transport
provider.

TOUTSTATE The communications endpoint referenced by fd is not in one
of the states in which a call to this function is valid.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

Last modified 7 May 1998 SunOS 5.8 621

t_rcvrel(3NSL) Networking Services Library Functions

TSYSERR A system error has occurred during execution of this
function.

TLI
COMPATIBILITY

The XTI and TLI interface definitions have common names but use different
header files. This, and other semantic differences between the two interfaces are
described in the subsections below.

Interface Header The XTI interfaces use the header file, xti.h . TLI interfaces should not use this
header. They should use the header:

#include<tiuser.h>

Error Description
Values

The t_errno values that can be set by the XTI interface and cannot be set by
the TLI interface are:

TPROTO
TOUTSTATE

For more information refer to the Transport Interfaces Programming Guide

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO t_getinfo (3NSL), t_open (3NSL), t_sndrel (3NSL), attributes (5)

Transport Interfaces Programming Guide

622 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_rcvreldata(3NSL)

NAME t_rcvreldata – receive an orderly release indication or confirmation containing
user data

SYNOPSIS #include <xti.h>

int t_rcvreldata (int fd, struct t_discon *discon);

DESCRIPTION This function is used to receive an orderly release indication for the incoming
direction of data transfer and to retrieve any user data sent with the release. The
argument fd identifies the local transport endpoint where the connection exists,
and discon points to a t_discon structure containing the following members:

struct netbuf udata;
int reason;
int sequence;

After receipt of this indication, the user may not attempt to receive more data
by means of t_rcv (3NSL) or t_rcvv (3NSL) Such an attempt will fail with
t_error set to TOUTSTATE. However, the user may continue to send data over
the connection if t_sndrel (3NSL) or t_sndreldata (3N) has not been
called by the user.

The field reason specifies the reason for the disconnection through a
protocol-dependent reason code, and udata identifies any user data that was sent
with the disconnection; the field sequence is not used.

If a user does not care if there is incoming data and does not need to know the
value of reason, discon may be a null pointer, and any user data associated with
the disconnection will be discarded.

If discon→udata.maxlen is greater than zero and less than the length of the value,
t_rcvreldata() fails with t_errno set to TBUFOVFLW.

This function is an optional service of the transport provider, only supported
by providers of service type T_COTS_ORD.The flag T_ORDRELDATAin the
info→flag field returned by t_open (3NSL) or t_getinfo (3NSL) indicates that
the provider supports orderly release user data; when the flag is not set, this
function behaves like t_rcvrel (3NSL) and no user data is returned.

This function may not be available on all systems.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is
returned and t_errno is set to indicate an error.

VALID STATES T_DATAXFER, T_OUTREL.

ERRORS On failure, t_errno is set to one of the following:
TBADF The specified file descriptor does not refer to a transport

endpoint.

Last modified 7 May 1998 SunOS 5.8 623

t_rcvreldata(3NSL) Networking Services Library Functions

TBUFOVFLW The number of bytes allocated for incoming data (maxlen) is
greater than 0 but not sufficient to store the data, and the
disconnection information to be returned in discon will be
discarded. The provider state, as seen by the user, will be
changed as if the data was successfully retrieved.

TLOOK An asynchronous event has occurred on this transport
endpoint and requires immediate attention.

TNOREL No orderly release indication currently exists on the specified
transport endpoint.

TNOTSUPPORT Orderly release is not supported by the underlying transport
provider.

TOUTSTATE The communications endpoint referenced by fd is not in one
of the states in which a call to this function is valid.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

TSYSERR A system error has occurred during execution of this
function.

TLI
COMPATIBILITY

In the TLI interface definition, no counterpart of this routine was defined.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO t_getinfo (3NSL), t_open (3NSL), t_sndreldata (3NSL), t_rcvrel (3NSL),
t_sndrel (3NSL), attributes (5)

Transport Interfaces Programming Guide

NOTES The interfaces t_sndreldata (3NSL) and t_rcvreldata() are only for use
with a specific transport called “minimal OSI,” which is not available on the
Solaris platform. These interfaces are not available for use in conjunction with
Internet Transports (TCP or UDP).

624 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_rcvudata(3NSL)

NAME t_rcvudata – receive a data unit

SYNOPSIS #include <xti.h>

int t_rcvudata (int fd, struct t_unitdata *unitdata, int *flags);

DESCRIPTION This routine is part of the XTI interfaces which evolved from the TLI interfaces.
XTI represents the future evolution of these interfaces. However, TLI interfaces
are supported for compatibility. When using a TLI routine that has the same
name as an XTI routine, the tiuser.h header file must be used. Refer to
the TLI COMPATIBILITY section for a description of differences between the
two interfaces.

This function is used in connectionless-mode to receive a data unit from another
transport user. The argument fd identifies the local transport endpoint through
which data will be received, unitdata holds information associated with the
received data unit, and flags is set on return to indicate that the complete data
unit was not received. The argument unitdata points to a t_unitdata structure
containing the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

The maxlen field of addr, opt and udata must be set before calling this function to
indicate the maximum size of the buffer for each. If the maxlen field of addr or opt
is set to zero, no information is returned in the buf field of this parameter.

On return from this call, addr specifies the protocol address of the sending
user, opt identifies options that were associated with this data unit, and udata
specifies the user data that was received.

By default, t_rcvudata() operates in synchronous mode and will wait for a
data unit to arrive if none is currently available. However, if O_NONBLOCKis
set by means of t_open (3NSL) or fcntl (2), t_rcvudata() will execute in
asynchronous mode and will fail if no data units are available.

If the buffer defined in the udata field of unitdata is not large enough to hold the
current data unit, the buffer will be filled and T_MOREwill be set in flags on
return to indicate that another t_rcvudata() should be called to retrieve the
rest of the data unit. Subsequent calls to t_rcvudata() will return zero for the
length of the address and options until the full data unit has been received.

If the call is interrupted, t_rcvudata() will return EINTR and no datagrams
will have been removed from the endpoint.

Last modified 7 May 1998 SunOS 5.8 625

t_rcvudata(3NSL) Networking Services Library Functions

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is
returned and t_errno is set to indicate an error.

VALID STATES T_IDLE .

ERRORS On failure, t_errno is set to one of the following:
TBADF The specified file descriptor does not refer to a transport

endpoint.

TBUFOVFLW The number of bytes allocated for the incoming protocol
address or options (maxlen) is greater than 0 but not
sufficient to store the information. The unit data information
to be returned in unitdata will be discarded.

TLOOK An asynchronous event has occurred on this transport
endpoint and requires immediate attention.

TNODATA O_NONBLOCKwas set, but no data units are currently
available from the transport provider.

TNOTSUPPORT This function is not supported by the underlying transport
provider.

TOUTSTATE The communications endpoint referenced by fd is not in one
of the states in which a call to this function is valid.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

TSYSERR A system error has occurred during execution of this
function.

TLI
COMPATIBILITY

The XTI and TLI interface definitions have common names but use different
header files. This, and other semantic differences between the two interfaces are
described in the subsections below.

Interface Header The XTI interfaces use the header file, xti.h . TLI interfaces should not use this
header. They should use the header:

#include<tiuser.h>

Error Description
Values

The t_errno values that can be set by the XTI interface and cannot be set by
the TLI interface are:

TPROTO
TOUTSTATE

626 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_rcvudata(3NSL)

A t_errno value that this routine can return under different circumstances than
its XTI counterpart is TBUFOVFLW.It can be returned even when the maxlen
field of the corresponding buffer has been set to zero.

Option Buffers The format of the options in an opt buffer is dictated by the transport provider.
Unlike the XTI interface, the TLI interface does not fix the buffer format.

For more information refer to the Transport Interfaces Programming Guide

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO fcntl (2), t_alloc (3NSL), t_open (3NSL), t_rcvuderr (3NSL),
t_sndudata (3NSL), attributes (5)

Transport Interfaces Programming Guide

Last modified 7 May 1998 SunOS 5.8 627

t_rcvuderr(3NSL) Networking Services Library Functions

NAME t_rcvuderr – receive a unit data error indication

SYNOPSIS #include <xti.h>

int t_rcvuderr (int fd, struct t_uderr *uderr);

DESCRIPTION This routine is part of the XTI interfaces which evolved from the TLI interfaces.
XTI represents the future evolution of these interfaces. However, TLI interfaces
are supported for compatibility. When using a TLI routine that has the same
name as an XTI routine, the tiuser.h header file must be used. Refer to
the TLI COMPATIBILITY section for a description of differences between the
two interfaces.

This function is used in connectionless-mode to receive information concerning
an error on a previously sent data unit, and should only be issued following a
unit data error indication. It informs the transport user that a data unit with
a specific destination address and protocol options produced an error. The
argument fd identifies the local transport endpoint through which the error
report will be received, and uderr points to a t_uderr structure containing the
following members:

struct netbuf addr;
struct netbuf opt;
t_scalar_t error;

The maxlen field of addr and opt must be set before calling this function to indicate
the maximum size of the buffer for each. If this field is set to zero for addr or opt,
no information is returned in the buf field of this parameter.

On return from this call, the addr structure specifies the destination protocol
address of the erroneous data unit, the opt structure identifies options that
were associated with the data unit, and error specifies a protocol-dependent
error code.

If the user does not care to identify the data unit that produced an error, uderr
may be set to a null pointer, and t_rcvuderr() will simply clear the error
indication without reporting any information to the user.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is
returned and t_errno is set to indicate an error.

VALID STATES T_IDLE .

ERRORS On failure, t_errno is set to one of the following:
TBADF The specified file descriptor does not refer to a transport

endpoint.

628 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_rcvuderr(3NSL)

TBUFOVFLW The number of bytes allocated for the incoming protocol
address or options (maxlen) is greater than 0 but not
sufficient to store the information. The unit data error
information to be returned in uderr will be discarded.

TNOTSUPPORT This function is not supported by the underlying transport
provider.

TNOUDERR No unit data error indication currently exists on the specified
transport endpoint.

TOUTSTATE The communications endpoint referenced by fd is not in one
of the states in which a call to this function is valid.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

TSYSERR A system error has occurred during execution of this
function.

TLI
COMPATIBILITY

The XTI and TLI interface definitions have common names but use different
header files. This, and other semantic differences between the two interfaces are
described in the subsections below.

Interface Header The XTI interfaces use the header file, xti.h . TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>

Error Description
Values

The t_errno values TPROTOand TOUTSTATEcan be set by the XTI interface
but not by the TLI interface.

A t_errno value that this routine can return under different circumstances than
its XTI counterpart is TBUFOVFLW.It can be returned even when the maxlen
field of the corresponding buffer has been set to zero.

Option Buffers The format of the options in an opt buffer is dictated by the transport provider.
Unlike the XTI interface, the TLI interface does not fix the buffer format.

For more information refer to the Transport Interfaces Programming Guide

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO t_rcvudata (3NSL), t_sndudata (3NSL), attributes (5)

Last modified 7 May 1998 SunOS 5.8 629

t_rcvuderr(3NSL) Networking Services Library Functions

Transport Interfaces Programming Guide

630 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_rcvv(3NSL)

NAME t_rcvv – receive data or expedited data sent over a connection and put the data
into one or more non-contiguous buffers

SYNOPSIS #include <xti.h>

int t_rcvv (int fd, struct t_iovec *iov, unsigned int iovcount, int *flags);

DESCRIPTION This function receives either normal or expedited data. The argument fd
identifies the local transport endpoint through which data will arrive, iov points
to an array of buffer address/buffer size pairs (iov_base, iov_len). The t_rcvv()
function receives data into the buffers specified by iov0.iov_base, iov1.iov_base,
through iov [iovcount-1].iov_base, always filling one buffer before proceeding
to the next.

Note that the limit on the total number of bytes available in all buffers passed:

iov(0).iov_len + . . + iov(iovcount-1).iov_len)

may be constrained by implementation limits. If no other constraint applies,
it will be limited by INT_MAX. In practice, the availability of memory to an
application is likely to impose a lower limit on the amount of data that can be
sent or received using scatter/gather functions.

The argument iovcount contains the number of buffers which is limited to
T_IOV_MAX, which is an implementation-defined value of at least 16. If the
limit is exceeded, the function will fail with TBADDATA.

The argument flags may be set on return from t_rcvv() and specifies optional
flags as described below.

By default, t_rcvv() operates in synchronous mode and will wait for data to
arrive if none is currently available. However, if O_NONBLOCKis set by means of
t_open (3NSL) or fcntl (2), t_rcvv() will execute in asynchronous mode and
will fail if no data is available. See TNODATAbelow.

On return from the call, if T_MOREis set in flags, this indicates that there is
more data, and the current transport service data unit (TSDU) or expedited
transport service data unit (ETSDU) must be received in multiple t_rcvv() or
t_rcv (3NSL) calls. In the asynchronous mode, or under unusual conditions (for
example, the arrival of a signal or T_EXDATAevent), the T_MOREflag may be
set on return from the t_rcvv() call even when the number of bytes received
is less than the total size of all the receive buffers. Each t_rcvv() with the
T_MOREflag set indicates that another t_rcvv() must follow to get more data
for the current TSDU. The end of the TSDU is identified by the return of a
t_rcvv() call with the T_MOREflag not set. If the transport provider does not
support the concept of a TSDU as indicated in the info argument on return from

Last modified 7 May 1998 SunOS 5.8 631

t_rcvv(3NSL) Networking Services Library Functions

t_open (3NSL) or t_getinfo (3NSL), the T_MOREflag is not meaningful and
should be ignored. If the amount of buffer space passed in iov is greater than
zero on the call to t_rcvv() , then t_rcvv() will return 0 only if the end of a
TSDU is being returned to the user.

On return, the data is expedited if T_EXPEDITEDis set in flags. If T_MOREis
also set, it indicates that the number of expedited bytes exceeded nbytes, a
signal has interrupted the call, or that an entire ETSDU was not available (only
for transport protocols that support fragmentation of ETSDUs). The rest of the
ETSDU will be returned by subsequent calls to t_rcvv() which will return
with T_EXPEDITEDset in flags. The end of the ETSDU is identified by the return
of a t_rcvv() call with T_EXPEDITEDset and T_MOREcleared. If the entire
ETSDU is not available it is possible for normal data fragments to be returned
between the initial and final fragments of an ETSDU.

If a signal arrives, t_rcvv() returns, giving the user any data currently
available. If no data is available, t_rcvv() returns –1, sets t_errno to
TSYSERRand errno to EINTR. If some data is available, t_rcvv() returns the
number of bytes received and T_MOREis set in flags.

In synchronous mode, the only way for the user to be notified of the arrival of
normal or expedited data is to issue this function or check for the T_DATA or
T_EXDATAevents using the t_look (3NSL) function. Additionally, the process
can arrange to be notified via the EM interface.

RETURN VALUES On successful completion, t_rcvv() returns the number of bytes received.
Otherwise, it returns –1 on failure and t_errno is set to indicate the error.

VALID STATES T_DATAXFER, T_OUTREL.

ERRORS On failure, t_errno is set to one of the following:
TBADDATA iovcount is greater than T_IOV_MAX.

TBADF The specified file descriptor does not refer to a transport
endpoint.

TLOOK An asynchronous event has occurred on this transport
endpoint and requires immediate attention.

TNODATA O_NONBLOCKwas set, but no data is currently available
from the transport provider.

TNOTSUPPORT This function is not supported by the underlying transport
provider.

TOUTSTATE The communications endpoint referenced by fd is not in one
of the states in which a call to this function is valid.

632 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_rcvv(3NSL)

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

TSYSERR A system error has occurred during execution of this
function.

TLI
COMPATIBILITY

In the TLI interface definition, no counterpart of this routine was defined.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO fcntl (2), t_getinfo (3NSL), t_look (3NSL), t_open (3NSL), t_rcv (3NSL),
t_snd (3NSL), t_sndv (3NSL), attributes (5)

Transport Interfaces Programming Guide

Last modified 7 May 1998 SunOS 5.8 633

t_rcvvudata(3NSL) Networking Services Library Functions

NAME t_rcvvudata – receive a data unit into one or more noncontiguous buffers

SYNOPSIS #include <xti.h>

int t_rcvvudata (int fd, struct t_unitdata *unitdata, struct t_iovec *iov, unsigned int
iovcount, int *flags);

DESCRIPTION This function is used in connectionless mode to receive a data unit from another
transport user. The argument fd identifies the local transport endpoint through
which data will be received, unitdata holds information associated with the
received data unit, iovcount contains the number of non-contiguous udata
buffers which is limited to T_IOV_MAX, which is an implementation-defined
value of at least 16, and flags is set on return to indicate that the complete data
unit was not received. If the limit on iovcount is exceeded, the function fails
with TBADDATA. The argument unitdata points to a t_unitdata structure
containing the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

The maxlen field of addr and opt must be set before calling this function to indicate
the maximum size of the buffer for each. The udata field of t_unitdata is not
used. The iov_len and iov_base fields of "iov0" through iov [iovcount-1] must be set
before calling t_rcvvudata() to define the buffer where the userdata will
be placed. If the maxlen field of addr or opt is set to zero then no information is
returned in the buf field for this parameter.

On return from this call, addr specifies the protocol address of the sending
user, opt identifies options that were associated with this data unit, and
iov[0] .iov_base through iov [iovcount-1].iov_base contains the user data that
was received. The return value of t_rcvvudata() is the number of bytes of
user data given to the user.

Note that the limit on the total number of bytes available in all buffers passed:

iov(0).iov_len + . . + iov(iovcount-1).iov_len)

may be constrained by implementation limits. If no other constraint applies,
it will be limited by INT_MAX. In practice, the availability of memory to an
application is likely to impose a lower limit on the amount of data that can be
sent or received using scatter/gather functions.

By default, t_rcvvudata() operates in synchronous mode and waits for a
data unit to arrive if none is currently available. However, if O_NONBLOCKis

634 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_rcvvudata(3NSL)

set by means of t_open (3NSL) or fcntl (2), t_rcvvudata() executes in
asynchronous mode and fails if no data units are available.

If the buffers defined in the iov[] array are not large enough to hold the current
data unit, the buffers will be filled and T_MOREwill be set in flags on return to
indicate that another t_rcvvudata() should be called to retrieve the rest of the
data unit. Subsequent calls to t_rcvvudata() will return zero for the length of
the address and options, until the full data unit has been received.

RETURN VALUES On successful completion, t_rcvvudata() returns the number of bytes
received. Otherwise, it returns –1 on failure and t_errno is set to indicate the
error.

VALID STATES T_IDLE .

ERRORS On failure, t_errno is set to one of the following:
TBADDATA iovcount is greater than T_IOV_MAX.

TBADF The specified file descriptor does not refer to a transport
endpoint.

TBUFOVFLW The number of bytes allocated for the incoming protocol
address or options (maxlen) is greater than 0 but not
sufficient to store the information. The unit data information
to be returned in unitdata will be discarded.

TLOOK An asynchronous event has occurred on this transport
endpoint and requires immediate attention.

TNODATA O_NONBLOCKwas set, but no data units are currently
available from the transport provider.

TNOTSUPPORT This function is not supported by the underlying transport
provider.

TOUTSTATE The communications endpoint referenced by fd is not in one
of the states in which a call to this function is valid.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

TSYSERR A system error has occurred during execution of this
function.

TLI
COMPATIBILITY

In the TLI interface definition, no counterpart of this routine was defined.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

Last modified 7 May 1998 SunOS 5.8 635

t_rcvvudata(3NSL) Networking Services Library Functions

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO fcntl (2), t_alloc (3NSL), t_open (3NSL), t_rcvudata (3NSL),
t_rcvuderr (3NSL), t_sndudata (3NSL), t_sndvudata (3NSL),
attributes (5)

Transport Interfaces Programming Guide

636 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_snd(3NSL)

NAME t_snd – send data or expedited data over a connection

SYNOPSIS #include <xti.h>

int t_snd (int fd, void *buf, unsigned int nbytes, int flags);

DESCRIPTION This routine is part of the XTI interfaces which evolved from the TLI interfaces.
XTI represents the future evolution of these interfaces. However, TLI interfaces
are supported for compatibility. When using a TLI routine that has the same
name as an XTI routine, the tiuser.h header file must be used. Refer to
the TLI COMPATIBILITY section for a description of differences between the
two interfaces.

This function is used to send either normal or expedited data. The argument fd
identifies the local transport endpoint over which data should be sent, buf points
to the user data, nbytes specifies the number of bytes of user data to be sent, and
flags specifies any optional flags described below:
T_EXPEDITED If set in flags, the data will be sent as expedited data and will

be subject to the interpretations of the transport provider.

T_MORE If set in flags, this indicates to the transport provider that the
transport service data unit (TSDU) (or expedited transport
service data unit - ETSDU) is being sent through multiple
t_snd() calls. Each t_snd() with the T_MOREflag set
indicates that another t_snd() will follow with more data
for the current TSDU (or ETSDU).

The end of the TSDU (or ETSDU) is identified by a t_snd()
call with the T_MOREflag not set. Use of T_MOREenables a
user to break up large logical data units without losing the
boundaries of those units at the other end of the connection.
The flag implies nothing about how the data is packaged
for transfer below the transport interface. If the transport
provider does not support the concept of a TSDU as
indicated in the info argument on return from t_open (3NSL)
or t_getinfo (3NSL), the T_MOREflag is not meaningful
and will be ignored if set.

The sending of a zero-length fragment of a TSDU or ETSDU
is only permitted where this is used to indicate the end of a
TSDU or ETSDU; that is, when the T_MOREflag is not set.
Some transport providers also forbid zero-length TSDUs
and ETSDUs.

T_PUSH If set in flags, requests that the provider transmit all data
that it has accumulated but not sent. The request is a local
action on the provider and does not affect any similarly

Last modified 7 May 1998 SunOS 5.8 637

t_snd(3NSL) Networking Services Library Functions

named protocol flag (for example, the TCP PUSH flag). This
effect of setting this flag is protocol-dependent, and it may
be ignored entirely by transport providers which do not
support the use of this feature.

Note that the communications provider is free to collect data in a send buffer
until it accumulates a sufficient amount for transmission.

By default, t_snd() operates in synchronous mode and may wait if flow
control restrictions prevent the data from being accepted by the local transport
provider at the time the call is made. However, if O_NONBLOCKis set by means
of t_open (3NSL) or fcntl (2), t_snd() will execute in asynchronous mode,
and will fail immediately if there are flow control restrictions. The process can
arrange to be informed when the flow control restrictions are cleared by means
of either t_look (3NSL) or the EM interface.

On successful completion, t_snd() returns the number of bytes (octets)
accepted by the communications provider. Normally this will equal the number
of octets specified in nbytes. However, if O_NONBLOCKis set or the function
is interrupted by a signal, it is possible that only part of the data has actually
been accepted by the communications provider. In this case, t_snd() returns a
value that is less than the value of nbytes. If t_snd() is interrupted by a signal
before it could transfer data to the communications provider, it returns –1 with
t_errno set to TSYSERRand errno set to EINTR.

If nbytes is zero and sending of zero bytes is not supported by the underlying
communications service, t_snd() returns −1 with t_errno set to TBADDATA.

The size of each TSDU or ETSDU must not exceed the limits of the transport
provider as specified by the current values in the TSDU or ETSDU fields in the
info argument returned by t_getinfo (3NSL).

The error TLOOKis returned for asynchronous events. It is required only for an
incoming disconnect event but may be returned for other events.

RETURN VALUES On successful completion, t_snd() returns the number of bytes accepted
by the transport provider. Otherwise, –1 is returned on failure and t_errno
is set to indicate the error.

Note that if the number of bytes accepted by the communications provider is less
than the number of bytes requested, this may either indicate that O_NONBLOCK
is set and the communications provider is blocked due to flow control, or that
O_NONBLOCKis clear and the function was interrupted by a signal.

ERRORS On failure, t_errno is set to one of the following:
TBADDATA Illegal amount of data:

638 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_snd(3NSL)

� A single send was attempted specifying a TSDU (ETSDU)
or fragment TSDU (ETSDU) greater than that specified
by the current values of the TSDU or ETSDU fields in
the info argument.

� A send of a zero byte TSDU (ETSDU) or zero byte
fragment of a TSDU (ETSDU) is not supported by the
provider.

� Multiple sends were attempted resulting in a TSDU
(ETSDU) larger than that specified by the current value
of the TSDU or ETSDU fields in the info argument – the
ability of an XTI implementation to detect such an error
case is implementation-dependent. See WARNINGS, below.

TBADF The specified file descriptor does not refer to a transport
endpoint.

TBADFLAG An invalid flag was specified.

TFLOW O_NONBLOCKwas set, but the flow control mechanism
prevented the transport provider from accepting any data at
this time.

TLOOK An asynchronous event has occurred on this transport
endpoint.

TNOTSUPPORT This function is not supported by the underlying transport
provider.

TOUTSTATE The communications endpoint referenced by fd is not in one
of the states in which a call to this function is valid.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

TSYSERR A system error has occurred during execution of this
function.

TLI
COMPATIBILITY

The XTI and TLI interface definitions have common names but use different
header files. This, and other semantic differences between the two interfaces are
described in the subsections below.

Interface Header The XTI interfaces use the header file, xti.h . TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>

Last modified 7 May 1998 SunOS 5.8 639

t_snd(3NSL) Networking Services Library Functions

Error Description
Values

The t_errno values that can be set by the XTI interface and cannot be set by
the TLI interface are:

TPROTO
TLOOK
TBADFLAG
TOUTSTATE

The t_errno values that this routine can return under different circumstances
than its XTI counterpart are:

TBADDATA

In the TBADDATAerror cases described above, TBADDATAis returned, only for
illegal zero byte TSDU(ETSDU) send attempts.

For more information refer to the Transport Interfaces Programming Guide

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO fcntl (2), t_getinfo (3NSL), t_look (3NSL), t_open (3NSL), t_rcv (3NSL),
attributes (5)

Transport Interfaces Programming Guide

WARNINGS It is important to remember that the transport provider treats all users of
a transport endpoint as a single user. Therefore if several processes issue
concurrent t_snd() calls then the different data may be intermixed.

Multiple sends which exceed the maximum TSDU or ETSDU size may not be
discovered by XTI. In this case an implementation-dependent error will result,
generated by the transport provider, perhaps on a subsequent XTI call. This
error may take the form of a connection abort, a TSYSERR, a TBADDATAor a
TPROTOerror.

If multiple sends which exceed the maximum TSDU or ETSDU size are detected
by XTI, t_snd() fails with TBADDATA.

640 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_snddis(3NSL)

NAME t_snddis – send user-initiated disconnection request

SYNOPSIS #include <xti.h>

int t_snddis (int fd, const struct t_call *call);

DESCRIPTION This routine is part of the XTI interfaces which evolved from the TLI interfaces.
XTI represents the future evolution of these interfaces. However, TLI interfaces
are supported for compatibility. When using a TLI routine that has the same
name as an XTI routine, the tiuser.h header file must be used. Refer to
the TLI COMPATIBILITY section for a description of differences between the
two interfaces.

This function is used to initiate an abortive release on an already established
connection, or to reject a connection request. The argument fd identifies the local
transport endpoint of the connection, and call specifies information associated
with the abortive release. The argument call points to a t_call structure which
contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

The values in call have different semantics, depending on the context of the call
to t_snddis() . When rejecting a connection request, call must be non-null and
contain a valid value of sequence to uniquely identify the rejected connection
indication to the transport provider. The sequence field is only meaningful if the
transport connection is in the T_INCONstate. The addr and opt fields of call are
ignored. In all other cases, call need only be used when data is being sent with
the disconnection request. The addr, opt and sequence fields of the t_call
structure are ignored. If the user does not wish to send data to the remote user,
the value of call may be a null pointer.

The udata structure specifies the user data to be sent to the remote user. The
amount of user data must not exceed the limits supported by the transport
provider, as returned in the discon field, of the info argument of t_open (3NSL)
or t_getinfo (3NSL). If the len field of udata is zero, no data will be sent to
the remote user.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is
returned and t_errno is set to indicate an error.

VALID STATES T_DATAXFER, T_OUTCON, T_OUTREL, T_INREL , T_INCON(ocnt > 0) .

ERRORS On failure, t_errno is set to one of the following:

Last modified 7 May 1998 SunOS 5.8 641

t_snddis(3NSL) Networking Services Library Functions

TBADF The specified file descriptor does not refer to a transport
endpoint.

TBADDATA The amount of user data specified was not within the
bounds allowed by the transport provider.

TBADSEQ An invalid sequence number was specified, or a null call
pointer was specified, when rejecting a connection request.

TLOOK An asynchronous event, which requires attention, has
occurred.

TNOTSUPPORT This function is not supported by the underlying transport
provider.

TOUTSTATE The communications endpoint referenced by fd is not in one
of the states in which a call to this function is valid.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

TSYSERR A system error has occurred during execution of this
function.

TLI
COMPATIBILITY

The XTI and TLI interface definitions have common names but use different
header files. This, and other semantic differences between the two interfaces are
described in the subsections below.

Interface Header The XTI interfaces use the header file, xti.h . TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>

Error Description
Values

The t_errno value TPROTOcan be set by the XTI interface but not by the
TLI interface.

Option Buffers The format of the options in an opt buffer is dictated by the transport provider.
Unlike the XTI interface, the TLI interface does not fix the buffer format.

For more information refer to the Transport Interfaces Programming Guide

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

642 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_snddis(3NSL)

SEE ALSO t_connect (3NSL), t_getinfo (3NSL), t_listen (3NSL), t_open (3NSL),
t_snd (3NSL), attributes (5)

Transport Interfaces Programming Guide

WARNINGS t_snddis() is an abortive disconnection. Therefore a t_snddis() issued on a
connection endpoint may cause data previously sent by means of t_snd (3NSL),
or data not yet received, to be lost, even if an error is returned.

Last modified 7 May 1998 SunOS 5.8 643

t_sndrel(3NSL) Networking Services Library Functions

NAME t_sndrel – initiate an orderly release

SYNOPSIS #include <xti.h>

int t_sndrel (int fd);

DESCRIPTION This routine is part of the XTI interfaces which evolved from the TLI interfaces.
XTI represents the future evolution of these interfaces. However, TLI interfaces
are supported for compatibility. When using a TLI routine that has the same
name as an XTI routine, the tiuser.h header file must be used. Refer to
the TLI COMPATIBILITY section for a description of differences between the
two interfaces.

For transport providers of type T_COTS_ORD,this function is used to initiate
an orderly release of the outgoing direction of data transfer and indicates to
the transport provider that the transport user has no more data to send. The
argument fd identifies the local transport endpoint where the connection exists.
After calling t_sndrel() , the user may not send any more data over the
connection. However, a user may continue to receive data if an orderly release
indication has not been received. For transport providers of types other than
T_COTS_ORD,this function fails with error TNOTSUPPORT.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is
returned and t_errno is set to indicate an error.

VALID STATES T_DATAXFER, T_INREL .

ERRORS On failure, t_errno is set to one of the following:
TBADF The specified file descriptor does not refer to a transport

endpoint.

TFLOW O_NONBLOCKwas set, but the flow control mechanism
prevented the transport provider from accepting the function
at this time.

TLOOK An asynchronous event has occurred on this transport
endpoint and requires immediate attention.

TNOTSUPPORT This function is not supported by the underlying transport
provider.

TOUTSTATE The communications endpoint referenced by fd is not in one
of the states in which a call to this function is valid.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

644 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_sndrel(3NSL)

TSYSERR A system error has occurred during execution of this
function.

TLI
COMPATIBILITY

The XTI and TLI interface definitions have common names but use different
header files. This, and other semantic differences between the two interfaces are
described in the subsections below.

Interface Header The XTI interfaces use the header file, xti.h . TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>

Error Description
Values

The t_errno values that can be set by the XTI interface and cannot be set by
the TLI interface are:

TPROTO
TLOOK
TOUTSTATE

Notes Whenever this function fails with t_error set to TFLOW, O_NONBLOCKmust
have been set.

For more information refer to the Transport Interfaces Programming Guide

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO t_error (3NSL), t_getinfo (3NSL), t_open (3NSL), t_rcvrel (3NSL),
attributes (5)

Transport Interfaces Programming Guide

Last modified 7 May 1998 SunOS 5.8 645

t_sndreldata(3NSL) Networking Services Library Functions

NAME t_sndreldata – initiate or respond to an orderly release with user data

SYNOPSIS #include <xti.h>

int t_sndreldata (int fd, struct t_discon *discon);

DESCRIPTION This function is used to initiate an orderly release of the outgoing direction of
data transfer and to send user data with the release. The argument fd identifies
the local transport endpoint where the connection exists, and discon points to a
t_discon structure containing the following members:

struct netbuf udata;
int reason;
int sequence;

After calling t_sndreldata() , the user may not send any more data over the
connection. However, a user may continue to receive data if an orderly release
indication has not been received.

The field reason specifies the reason for the disconnection through a
protocol-dependent reason code, and udata identifies any user data that is sent
with the disconnection; the field sequence is not used.

The udata structure specifies the user data to be sent to the remote user. The
amount of user data must not exceed the limits supported by the transport
provider, as returned in the discon field of the info argument of t_open (3NSL)
or t_getinfo (3NSL). If the len field of udata is zero or if the provider did not
return T_ORDRELDATAin the t_open (3NSL) flags, no data will be sent to
the remote user.

If a user does not wish to send data and reason code to the remote user, the
value of discon may be a null pointer.

This function is an optional service of the transport provider, only supported
by providers of service type T_COTS_ORD.The flag T_ORDRELDATAin the
info→flag field returned by t_open (3NSL) or t_getinfo (3NSL) indicates that
the provider supports orderly release user data.

This function may not be available on all systems.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is
returned and t_errno is set to indicate an error.

VALID STATES T_DATAXFER, T_INREL .

ERRORS On failure, t_errno is set to one of the following:
TBADDATA The amount of user data specified was not within the

bounds allowed by the transport provider, or user data was

646 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_sndreldata(3NSL)

supplied and the provider did not return T_ORDRELDATAin
the t_open (3NSL) flags.

TBADF The specified file descriptor does not refer to a transport
endpoint.

TFLOW O_NONBLOCKwas set, but the flow control mechanism
prevented the transport provider from accepting the function
at this time.

TLOOK An asynchronous event has occurred on this transport
endpoint and requires immediate attention.

TNOTSUPPORT Orderly release is not supported by the underlying transport
provider.

TOUTSTATE The communications endpoint referenced by fd is not in one
of the states in which a call to this function is valid.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

TSYSERR A system error has occurred during execution of this
function.

TLI
COMPATIBILITY

In the TLI interface definition, no counterpart of this routine was defined.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO t_getinfo (3NSL), t_open (3NSL), t_rcvrel (3NSL), t_rcvreldata (3NSL),
t_sndrel (3NSL), attributes (5)

Transport Interfaces Programming Guide

NOTES The interfaces t_sndreldata() and t_rcvreldata (3NSL) are only for use
with a specific transport called “minimal OSI,” which is not available on the
Solaris platform. These interfaces are not available for use in conjunction with
Internet Transports (TCP or UDP).

Last modified 7 May 1998 SunOS 5.8 647

t_sndudata(3NSL) Networking Services Library Functions

NAME t_sndudata – send a data unit

SYNOPSIS #include <xti.h>

int t_sndudata (int fd, const struct t_unitdata *unitdata);

DESCRIPTION This routine is part of the XTI interfaces which evolved from the TLI interfaces.
XTI represents the future evolution of these interfaces. However, TLI interfaces
are supported for compatibility. When using a TLI routine that has the same
name as an XTI routine, the tiuser.h header file must be used. Refer to
the TLI COMPATIBILITY section for a description of differences between the
two interfaces.

This function is used in connectionless-mode to send a data unit to another
transport user. The argument fd identifies the local transport endpoint through
which data will be sent, and unitdata points to a t_unitdata structure
containing the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

In unitdata, addr specifies the protocol address of the destination user, opt
identifies options that the user wants associated with this request, and udata
specifies the user data to be sent. The user may choose not to specify what
protocol options are associated with the transfer by setting the len field of opt
to zero. In this case, the provider uses the option values currently set for the
communications endpoint.

If the len field of udata is zero, and sending of zero octets is not supported
by the underlying transport service, the t_sndudata() will return –1 with
t_errno set to TBADDATA.

By default, t_sndudata() operates in synchronous mode and may wait if
flow control restrictions prevent the data from being accepted by the local
transport provider at the time the call is made. However, if O_NONBLOCK is
set by means of t_open (3NSL) or fcntl (2), t_sndudata() will execute in
asynchronous mode and will fail under such conditions. The process can arrange
to be notified of the clearance of a flow control restriction by means of either
t_look (3NSL) or the EM interface.

If the amount of data specified in udata exceeds the TSDU size as returned in
the tsdu field of the info argument of t_open (3NSL) or t_getinfo (3NSL),
a TBADDATAerror will be generated. If t_sndudata() is called before the
destination user has activated its transport endpoint (see t_bind (3NSL)), the
data unit may be discarded.

648 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_sndudata(3NSL)

If it is not possible for the transport provider to immediately detect the
conditions that cause the errors TBADDADDRand TBADOPT, these errors will
alternatively be returned by t_rcvuderr. Therefore, an application must be
prepared to receive these errors in both of these ways.

If the call is interrupted, t_sndudata() will return EINTR and the datagram
will not be sent.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is
returned and t_errno is set to indicate an error.

VALID STATES T_IDLE .

ERRORS On failure, t_errno is set to one of the following:
TBADADDR The specified protocol address was in an incorrect format or

contained illegal information.

TBADDATA Illegal amount of data. A single send was attempted
specifying a TSDU greater than that specified in the info
argument, or a send of a zero byte TSDU is not supported by
the provider.

TBADF The specified file descriptor does not refer to a transport
endpoint.

TBADOPT The specified options were in an incorrect format or
contained illegal information.

TFLOW O_NONBLOCKwas set, but the flow control mechanism
prevented the transport provider from accepting any data at
this time.

TLOOK An asynchronous event has occurred on this transport
endpoint.

TNOTSUPPORT This function is not supported by the underlying transport
provider.

TOUTSTATE The communications endpoint referenced by fd is not in one
of the states in which a call to this function is valid.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

TSYSERR A system error has occurred during execution of this
function.

Last modified 7 May 1998 SunOS 5.8 649

t_sndudata(3NSL) Networking Services Library Functions

TLI
COMPATIBILITY

The XTI and TLI interface definitions have common names but use different
header files. This, and other semantic differences between the two interfaces are
described in the subsections below.

Interface Header The XTI interfaces use the header file, xti.h. TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>

Error Description
Values

The t_errno values that can be set by the XTI interface and cannot be set by
the TLI interface are:

TPROTO
TBADADDR
TBADOPT
TLOOK
TOUTSTATE

Notes Whenever this function fails with t_error set to TFLOW, O_NONBLOCKmust
have been set.

Option Buffers The format of the options in an opt buffer is dictated by the transport provider.
Unlike the XTI interface, the TLI interface does not fix the buffer format.

For more information refer to the Transport Interfaces Programming Guide

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO fcntl (2), t_alloc (3NSL), t_bind (3NSL), t_error (3NSL),
t_getinfo (3NSL), t_look (3NSL), t_open (3NSL), t_rcvudata (3NSL),
t_rcvuderr (3NSL), attributes (5)

Transport Interfaces Programming Guide

650 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_sndv(3NSL)

NAME t_sndv – send data or expedited data, from one or more non-contiguous buffers,
on a connection

SYNOPSIS #include <xti.h>

int t_sndv (intfd, const struct t_iovec * iov, unsigned intiovcount, intflags);

DESCRIPTION This function is used to send either normal or expedited data. The argument
fd identifies the local transport endpoint over which data should be sent, iov
points to an array of buffer address/buffer length pairs. t_sndv() sends data
contained in buffers iov0 , iov1 , through iov [iovcount-1]. iovcount contains
the number of non-contiguous data buffers which is limited to T_IOV_MAX,
an implementation-defined value of at least 16. If the limit is exceeded, the
function fails with TBADDATA.

iov(0).iov_len + . . + iov(iovcount-1).iov_len)

Note that the limit on the total number of bytes available in all buffers passed:

may be constrained by implementation limits. If no other constraint applies,
it will be limited by INT_MAX. In practice, the availability of memory to an
application is likely to impose a lower limit on the amount of data that can be
sent or received using scatter/gather functions.

The argument flags specifies any optional flags described below:
T_EXPEDITED If set in flags, the data will be sent as expedited data and will

be subject to the interpretations of the transport provider.

T_MORE If set in flags, this indicates to the transport provider that the
transport service data unit (TSDU) (or expedited transport
service data unit – ETSDU) is being sent through multiple
t_sndv() calls. Each t_sndv() with the T_MOREflag set
indicates that another t_sndv() or t_snd (3NSL) will
follow with more data for the current TSDU (or ETSDU).

The end of the TSDU (or ETSDU) is identified by a t_sndv() call with the
T_MOREflag not set. Use of T_MOREenables a user to break up large logical
data units without losing the boundaries of those units at the other end of
the connection. The flag implies nothing about how the data is packaged
for transfer below the transport interface. If the transport provider does not
support the concept of a TSDU as indicated in the info argument on return
from t_open (3NSL) or t_getinfo (3NSL), the T_MOREflag is not meaningful
and will be ignored if set.

The sending of a zero-length fragment of a TSDU or ETSDU is only permitted
where this is used to indicate the end of a TSDU or ETSDU, that is, when the

Last modified 7 May 1998 SunOS 5.8 651

t_sndv(3NSL) Networking Services Library Functions

T_MOREflag is not set. Some transport providers also forbid zero-length TSDUs
and ETSDUs.

If set in flags, requests that the provider transmit all data that it has accumulated
but not sent. The request is a local action on the provider and does not affect
any similarly named protocol flag (for example, the TCP PUSH flag). This effect
of setting this flag is protocol-dependent, and it may be ignored entirely by
transport providers which do not support the use of this feature.

The communications provider is free to collect data in a send buffer until it
accumulates a sufficient amount for transmission.

By default, t_sndv() operates in synchronous mode and may wait if flow
control restrictions prevent the data from being accepted by the local transport
provider at the time the call is made. However, if O_NONBLOCKis set by means
of t_open (3NSL) or fcntl (2), t_sndv() executes in asynchronous mode, and
will fail immediately if there are flow control restrictions. The process can
arrange to be informed when the flow control restrictions are cleared via either
t_look (3NSL) or the EM interface.

On successful completion, t_sndv() returns the number of bytes accepted by
the transport provider. Normally this will equal the total number of bytes to
be sent, that is,

(iov0.iov_len + .. + iov[iovcount-1].iov_len)

However, the interface is constrained to send at most INT_MAXbytes in a single
send. When t_sndv() has submitted INT_MAX (or lower constrained value,
see the note above) bytes to the provider for a single call, this value is returned
to the user. However, if O_NONBLOCKis set or the function is interrupted by a
signal, it is possible that only part of the data has actually been accepted by the
communications provider. In this case, t_sndv() returns a value that is less
than the value of nbytes. If t_sndv() is interrupted by a signal before it could
transfer data to the communications provider, it returns –1 with t_errno set to
TSYSERRand errno set to EINTR.

If the number of bytes of data in the iov array is zero and sending of zero octets is
not supported by the underlying transport service, t_sndv() returns –1 with
t_errno set to TBADDATA.

The size of each TSDU or ETSDU must not exceed the limits of the transport
provider as specified by the current values in the TSDU or ETSDU fields in the
info argument returned by t_getinfo (3NSL).

The error TLOOKis returned for asynchronous events. It is required only for an
incoming disconnect event but may be returned for other events.

652 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_sndv(3NSL)

RETURN VALUES On successful completion, t_sndv() returns the number of bytes accepted
by the transport provider. Otherwise, –1 is returned on failure and t_errno
is set to indicate the error.

Note that in synchronous mode, if more than INT_MAXbytes of data are passed
in the iov array, only the first INT_MAXbytes will be passed to the provider.

If the number of bytes accepted by the communications provider is less than
the number of bytes requested, this may either indicate that O_NONBLOCKis
set and the communications provider is blocked due to flow control, or that
O_NONBLOCKis clear and the function was interrupted by a signal.

VALID STATES T_DATAXFER, T_INREL .

ERRORS On failure, t_errno is set to one of the following:
TBADDATA Illegal amount of data:

TBADF The specified file descriptor does not refer to a transport
endpoint.

� A single send was attempted specifying a TSDU (ETSDU)
or fragment TSDU (ETSDU) greater than that specified
by the current values of the TSDU or ETSDU fields in
the info argument.

� A send of a zero byte TSDU (ETSDU) or zero byte
fragment of a TSDU (ETSDU) is not supported by the
provider.

� Multiple sends were attempted resulting in a TSDU
(ETSDU) larger than that specified by the current value
of the TSDU or ETSDU fields in the info argument – the
ability of an XTI implementation to detect such an error
case is implementation-dependent. See WARNINGS, below.

� iovcount is greater than T_IOV_MAX.

TBADFLAG An invalid flag was specified.

TFLOW O_NONBLOCKwas set, but the flow control mechanism
prevented the transport provider from accepting any data at
this time.

TLOOK An asynchronous event has occurred on this transport
endpoint.

TNOTSUPPORT This function is not supported by the underlying transport
provider.

TOUTSTATE The communications endpoint referenced by fd is not in one
of the states in which a call to this function is valid.

Last modified 7 May 1998 SunOS 5.8 653

t_sndv(3NSL) Networking Services Library Functions

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

TSYSERR A system error has occurred during execution of this
function.

TLI
COMPATIBILITY

In the TLI interface definition, no counterpart of this routine was defined.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO t_getinfo (3NSL), t_open (3NSL), t_rcvv (3NSL) t_rcv (3NSL),
t_snd (3NSL), attributes (5)

Transport Interfaces Programming Guide

WARNINGS It is important to remember that the transport provider treats all users of
a transport endpoint as a single user. Therefore if several processes issue
concurrent t_sndv() or t_snd (3NSL) calls, then the different data may be
intermixed.

Multiple sends which exceed the maximum TSDU or ETSDU size may not be
discovered by XTI. In this case an implementation-dependent error will result
(generated by the transport provider), perhaps on a subsequent XTI call. This
error may take the form of a connection abort, a TSYSERR, a TBADDATAor a
TPROTOerror.

If multiple sends which exceed the maximum TSDU or ETSDU size are detected
by XTI, t_sndv() fails with TBADDATA.

654 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_sndvudata(3NSL)

NAME t_sndvudata – send a data unit from one or more noncontiguous buffers

SYNOPSIS #include <xti.h>

int t_sndvudata (intfd, struct t_unitdata *unitdata, struct t_iovec *iov, unsigned int
iovcount);

DESCRIPTION This function is used in connectionless mode to send a data unit to another
transport user. The argument fd identifies the local transport endpoint through
which data will be sent, iovcount contains the number of non-contiguous udata
buffers and is limited to an implementation-defined value given by T_IOV_MAX
which is at least 16, and unitdata points to a t_unitdata structure containing
the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

If the limit on iovcount is exceeded, the function fails with TBADDATA.

In unitdata , addr specifies the protocol address of the destination user, and opt
identifies options that the user wants associated with this request. The udata
field is not used. The user may choose not to specify what protocol options are
associated with the transfer by setting the len field of opt to zero. In this case, the
provider may use default options.

The data to be sent is identified by iov[0] through iov [iovcount-1].

Note that the limit on the total number of bytes available in all buffers passed:

iov(0).iov_len + . . + iov(iovcount-1).iov_len

may be constrained by implementation limits. If no other constraint applies,
it will be limited by INT_MAX. In practice, the availability of memory to an
application is likely to impose a lower limit on the amount of data that can be
sent or received using scatter/gather functions.

By default, t_sndvudata() operates in synchronous mode and may wait if
flow control restrictions prevent the data from being accepted by the local
transport provider at the time the call is made. However, if O_NONBLOCKis
set by means of t_open (3NSL) or fcntl (2), t_sndvudata() executes in
asynchronous mode and will fail under such conditions. The process can arrange
to be notified of the clearance of a flow control restriction by means of either
t_look (3NSL) or the EM interface.

Last modified 7 May 1998 SunOS 5.8 655

t_sndvudata(3NSL) Networking Services Library Functions

If the amount of data specified in iov0 through iov [iovcount-1] exceeds the
TSDU size as returned in the tsdu field of the info argument of t_open (3NSL)
or t_getinfo (3NSL), or is zero and sending of zero octets is not supported
by the underlying transport service, a TBADDATAerror is generated. If
t_sndvudata() is called before the destination user has activated its transport
endpoint (see t_bind (3NSL)), the data unit may be discarded.

If it is not possible for the transport provider to immediately detect the
conditions that cause the errors TBADDADDRand TBADOPT, these errors will
alternatively be returned by t_rcvuderr (3NSL). An application must therefore
be prepared to receive these errors in both of these ways.

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is
returned and t_errno is set to indicate an error.

VALID STATES T_IDLE .

ERRORS On failure, t_errno is set to one of the following:
TBADADDR The specified protocol address was in an incorrect format or

contained illegal information.

TBADDATA Illegal amount of data.

� A single send was attempted specifying a TSDU greater
than that specified in the info argument, or a send of a
zero byte TSDU is not supported by the provider.

� iovcount is greater than T_IOV_MAX.

TBADF The specified file descriptor does not refer to a transport
endpoint.

TBADOPT The specified options were in an incorrect format or
contained illegal information.

TFLOW O_NONBLOCK iwas set, but the flow control mechanism
prevented the transport provider from accepting any data at
this time.

TLOOK An asynchronous event has occurred on this transport
endpoint.

TNOTSUPPORT This function is not supported by the underlying transport
provider.

TOUTSTATE The communications endpoint referenced by fd is not in one
of the states in which a call to this function is valid.

656 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_sndvudata(3NSL)

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

TSYSERR A system error has occurred during execution of this
function.

TLI
COMPATIBILITY

In the TLI interface definition, no counterpart of this routine was defined.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO fcntl (2), t_alloc (3NSL), t_open (3NSL), t_rcvudata (3NSL),
t_rcvvudata (3NSL) t_rcvuderr (3NSL), t_sndudata (3NSL),
attributes (5)

Transport Interfaces Programming Guide

Last modified 7 May 1998 SunOS 5.8 657

t_strerror(3NSL) Networking Services Library Functions

NAME t_strerror – produce an error message string

SYNOPSIS #include <xti.h>

const char *t_strerror (int errnum);

DESCRIPTION This routine is part of the XTI interfaces which evolved from the TLI interfaces.
XTI represents the future evolution of these interfaces. However, TLI interfaces
are supported for compatibility. When using a TLI routine that has the same
name as an XTI routine, the tiuser.h header file must be used. Refer to
the TLI COMPATIBILITY section for a description of differences between the
two interfaces.

The t_strerror() function maps the error number in errnum that corresponds
to an XTI error to a language-dependent error message string and returns a
pointer to the string. The string pointed to will not be modified by the program,
but may be overwritten by a subsequent call to the t_strerror function. The string
is not terminated by a newline character. The language for error message strings
written by t_strerror() is that of the current locale. If it is English, the error
message string describing the value in t_errno may be derived from the
comments following the t_errno codes defined in <xti.h> . If an error code is
unknown, and the language is English, t_strerror() returns the string:

"<error>: error unknown"

where <error> is the error number supplied as input. In other languages, an
equivalent text is provided.

VALID STATES ALL - apart from T_UNINIT .

RETURN VALUES The function t_strerror() returns a pointer to the generated message string.

TLI
COMPATIBILITY

The XTI and TLI interface definitions have common names but use different
header files. This, and other semantic differences between the two interfaces are
described in the subsections below.

Interface Header The XTI interfaces use the header file, xti.h . TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>
For more information refer to the Transport Interfaces Programming Guide

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

658 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_strerror(3NSL)

SEE ALSO t_errno (3NSL), t_error (3NSL), attributes (5)

Transport Interfaces Programming Guide

Last modified 7 May 1998 SunOS 5.8 659

t_sync(3NSL) Networking Services Library Functions

NAME t_sync – synchronize transport library

SYNOPSIS #include <xti.h>

int t_sync (int fd);

DESCRIPTION This routine is part of the XTI interfaces which evolved from the TLI interfaces.
XTI represents the future evolution of these interfaces. However, TLI interfaces
are supported for compatibility. When using a TLI routine that has the same
name as an XTI routine, the tiuser.h header file must be used. Refer to
the TLI COMPATIBILITY section for a description of differences between the
two interfaces.

For the transport endpoint specified by fd, t_sync() synchronizes the
data structures managed by the transport library with information from the
underlying transport provider. In doing so, it can convert an uninitialized
file descriptor (obtained by means of a open (2), dup (2) or as a result of a
fork (2) and exec (2)) to an initialized transport endpoint, assuming that the
file descriptor referenced a transport endpoint, by updating and allocating the
necessary library data structures. This function also allows two cooperating
processes to synchronize their interaction with a transport provider.

For example, if a process forks a new process and issues an exec (2), the new
process must issue a t_sync() to build the private library data structure
associated with a transport endpoint and to synchronize the data structure with
the relevant provider information.

It is important to remember that the transport provider treats all users of a
transport endpoint as a single user. If multiple processes are using the same
endpoint, they should coordinate their activities so as not to violate the state
of the transport endpoint. The function t_sync() returns the current state of
the transport endpoint to the user, thereby enabling the user to verify the state
before taking further action. This coordination is only valid among cooperating
processes; it is possible that a process or an incoming event could change the
endpoint’s state after a t_sync() is issued.

If the transport endpoint is undergoing a state transition when t_sync() is
called, the function will fail.

RETURN VALUES On successful completion, the state of the transport endpoint is returned.
Otherwise, a value of –1 is returned and t_errno is set to indicate an error. The
state returned is one of the following:
T_UNBND Unbound.

T_IDLE Idle.

T_OUTCON Outgoing connection pending.

660 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_sync(3NSL)

T_INCON Incoming connection pending.

T_DATAXFER Data transfer.

T_OUTREL Outgoing orderly release (waiting for an orderly release
indication).

T_INREL Incoming orderly release (waiting for an orderly release
request).

ERRORS On failure, t_errno is set to one of the following:
TBADF The specified file descriptor does not refer to a transport

endpoint. This error may be returned when the fd has been
previously closed or an erroneous number may have been
passed to the call.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

TSTATECHNG The transport endpoint is undergoing a state change.

TSYSERR A system error has occurred during execution of this
function.

TLI
COMPATIBILITY

The XTI and TLI interface definitions have common names but use different
header files. This, and other semantic differences between the two interfaces are
described in the subsections below.

Interface Header The XTI interfaces use the header file, xti.h . TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>

Error Description
Values

The t_errno value that can be set by the XTI interface and cannot be set by
the TLI interface is:

TPROTO
For more information refer to the Transport Interfaces Programming Guide

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

SEE ALSO dup (2), exec (2), fork (2), open (2), attributes (5)

Transport Interfaces Programming Guide

Last modified 7 May 1998 SunOS 5.8 661

t_sysconf(3NSL) Networking Services Library Functions

NAME t_sysconf – get configurable XTI variables

SYNOPSIS #include <xti.h>

int t_sysconf (intname);

DESCRIPTION The t_sysconf() function provides a method for the application to determine
the current value of configurable and implementation-dependent XTI limits
or options.

The name argument represents the XTI system variable to be queried. The
following table lists the minimal set of XTI system variables from <xti.h> that
can be returned by t_sysconf() , and the symbolic constants, defined in
<xti.h> that are the corresponding values used for name.

Variable Value of Name

T_IOV_MAX _SC_T_IOV_MAX

RETURN VALUES If name is valid, t_sysconf() returns the value of the requested limit/option,
which might be –1, and leaves t_errno unchanged. Otherwise, a value of –1 is
returned and t_errno is set to indicate an error.

VALID STATES All.

ERRORS On failure, t_errno is set to the following:
TBADFLAG name has an invalid value.

TLI
COMPATIBILITY

In the TLI interface definition, no counterpart of this routine was defined.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO sysconf (3C), t_rcvv (3NSL), t_rcvvudata (3NSL), t_sndv (3NSL),
t_sndvudata (3NSL), attributes (5)

Transport Interfaces Programming Guide

662 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions t_unbind(3NSL)

NAME t_unbind – disable a transport endpoint

SYNOPSIS #include <xti.h>

int t_unbind (int fd);

DESCRIPTION The This routine is part of the XTI interfaces which evolved from the TLI
interfaces. XTI represents the future evolution of these interfaces. However, TLI
interfaces are supported for compatibility. When using a TLI routine that has the
same name as an XTI routine, the tiuser.h header file must be used. Refer to
the TLI COMPATIBILITY section for a description of differences between the
two interfaces.

t_unbind() function disables the transport endpoint specified by fd which was
previously bound by t_bind (3NSL). On completion of this call, no further data
or events destined for this transport endpoint will be accepted by the transport
provider. An endpoint which is disabled by using t_unbind() can be enabled
by a subsequent call to t_bind (3NSL).

RETURN VALUES Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is
returned and t_errno is set to indicate an error.

VALID STATES T_IDLE .

ERRORS On failure, t_errno is set to one of the following:
TBADF The specified file descriptor does not refer to a transport

endpoint.

TLOOK An asynchronous event has occurred on this transport
endpoint.

TOUTSTATE The communications endpoint referenced by fd is not in one
of the states in which a call to this function is valid.

TPROTO This error indicates that a communication problem has been
detected between XTI and the transport provider for which
there is no other suitable XTI error (t_errno) .

TSYSERR A system error has occurred during execution of this
function.

TLI
COMPATIBILITY

The XTI and TLI interface definitions have common names but use different
header files. This, and other semantic differences between the two interfaces are
described in the subsections below.

Interface Header The XTI interfaces use the header file, xti.h . TLI interfaces should not use this
header. They should use the header:

#include <tiuser.h>

Last modified 7 May 1998 SunOS 5.8 663

t_unbind(3NSL) Networking Services Library Functions

Error Description
Values

The t_errno value that can be set by the XTI interface and cannot be set by
the TLI interface is:

TPROTO
For more information refer to the Transport Interfaces Programming Guide

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO t_bind (3NSL), attributes (5)

Transport Interfaces Programming Guide

664 SunOS 5.8 Last modified 7 May 1998

Networking Services Library Functions xdr(3NSL)

NAME xdr – library routines for external data representation

DESCRIPTION XDR routines allow C programmers to describe arbitrary data structures in
a machine-independent fashion. Data for remote procedure calls (RPC) are
transmitted using these routines.

Index to Routines The following table lists XDR routines and the manual reference pages on
which they are described:
XDR Routine Manual Reference Page

xdr_array xdr_complex (3NSL)

xdr_bool xdr_simple (3NSL)

xdr_bytes xdr_complex (3NSL)

xdr_char xdr_simple (3NSL)

xdr_control xdr_admin (3NSL)

xdr_destroy xdr_create (3NSL)

xdr_double xdr_simple (3NSL)

xdr_enum xdr_simple (3NSL)

xdr_float xdr_simple (3NSL)

xdr_free xdr_simple (3NSL)

xdr_getpos xdr_admin (3NSL)

xdr_hyper xdr_simple (3NSL)

xdr_inline xdr_admin (3NSL)

xdr_int xdr_simple (3NSL)

xdr_long xdr_simple (3NSL)

xdr_longlong_t xdr_simple (3NSL)

xdr_opaque xdr_complex (3NSL)

xdr_pointer xdr_complex (3NSL)

xdr_quadruple xdr_simple (3NSL)

xdr_reference xdr_complex (3NSL)

xdr_setpos xdr_admin (3NSL)

xdr_short xdr_simple (3NSL)

xdr_sizeof xdr_admin (3NSL)

Last modified 30 Dec 1996 SunOS 5.8 665

xdr(3NSL) Networking Services Library Functions

xdr_string xdr_complex (3NSL)

xdr_u_char xdr_simple (3NSL)

xdr_u_hyper xdr_simple (3NSL)

xdr_u_int xdr_simple (3NSL)

xdr_u_long xdr_simple (3NSL)

xdr_u_longlong_t xdr_simple (3NSL)

xdr_u_short xdr_simple (3NSL)

xdr_union xdr_complex (3NSL)

xdr_vector xdr_complex (3NSL)

xdr_void xdr_simple (3NSL)

xdr_wrapstring xdr_complex (3NSL)

xdrmem_create xdr_create (3NSL)

xdrrec_create xdr_create (3NSL)

xdrrec_endofrecord xdr_admin (3NSL)

xdrrec_eof xdr_admin (3NSL)

xdrrec_readbytes xdr_admin (3NSL)

xdrrec_skiprecord xdr_admin (3NSL)

xdrstdio_create xdr_create (3NSL)

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO rpc (3NSL), xdr_admin (3NSL), xdr_complex (3NSL), xdr_create (3NSL),
xdr_simple (3NSL), attributes (5)

666 SunOS 5.8 Last modified 30 Dec 1996

Networking Services Library Functions xdr_admin(3NSL)

NAME xdr_admin, xdr_control, xdr_getpos, xdr_inline, xdrrec_endofrecord, xdrrec_eof,
xdrrec_readbytes, xdrrec_skiprecord, xdr_setpos, xdr_sizeof – library routines
for external data representation

DESCRIPTION XDR library routines allow C programmers to describe arbitrary data structures
in a machine-independent fashion. Protocols such as remote procedure calls
(RPC) use these routines to describe the format of the data.

These routines deal specifically with the management of the XDR stream.
Routines See rpc (3NSL) for the definition of the XDR data structure. Note that any buffers

passed to the XDR routines must be properly aligned. It is suggested either that
malloc (3C) be used to allocate these buffers, or that the programmer insure
that the buffer address is divisible evenly by four.

#include <rpc/xdr.h>
bool_t xdr_control(XDR * xdrs , int req , void * info);

A function macro to change or retrieve various information about an XDR
stream. req indicates the type of operation and info is a pointer to the
information. The supported values of req is XDR_GET_BYTES_AVAILand
its argument type is xdr_bytesrec * . They return the number of bytes
left unconsumed in the stream and a flag indicating whether or not this
is the last fragment.

uint_t xdr_getpos(const XDR * xdrs);
A macro that invokes the get-position routine associated with the XDR
stream, xdrs . The routine returns an unsigned integer, which indicates the
position of the XDR byte stream. A desirable feature of XDR streams is
that simple arithmetic works with this number, although the XDR stream
instances need not guarantee this. Therefore, applications written for
portability should not depend on this feature.

long *xdr_inline(XDR * xdrs , const int len);
A macro that invokes the in-line routine associated with the XDR stream,
xdrs . The routine returns a pointer to a contiguous piece of the stream’s
buffer; len is the byte length of the desired buffer. Note: pointer is cast to
long * .

Warning: xdr_inline() may return NULL (0) if it cannot allocate a
contiguous piece of a buffer. Therefore the behavior may vary among stream
instances; it exists for the sake of efficiency, and applications written for
portability should not depend on this feature.

bool_t xdrrec_endofrecord(XDR *xdrs, int sendnow);
This routine can be invoked only on streams created by xdrrec_create()
. See xdr_create (3NSL) . The data in the output buffer is marked as a
completed record, and the output buffer is optionally written out if sendnow
is non-zero. This routine returns TRUEif it succeeds, FALSEotherwise.

Last modified 30 Dec 1996 SunOS 5.8 667

xdr_admin(3NSL) Networking Services Library Functions

bool_t xdrrec_eof(XDR * xdrs);
This routine can be invoked only on streams created by xdrrec_create()
. After consuming the rest of the current record in the stream, this routine
returns TRUEif there is no more data in the stream’s input buffer. It returns
FALSE if there is additional data in the stream’s input buffer.

int xdrrec_readbytes(XDR * xdrs , caddr_t addr , uint_t nbytes);
This routine can be invoked only on streams created by xdrrec_create()
. It attempts to read nbytes bytes from the XDR stream into the buffer
pointed to by addr . Upon success this routine returns the number of bytes
read. Upon failure, it returns -1 . A return value of 0 indicates an end
of record.

bool_t xdrrec_skiprecord(XDR * xdrs);
This routine can be invoked only on streams created by xdrrec_create()
. See xdr_create (3NSL) . It tells the XDR implementation that the rest of
the current record in the stream’s input buffer should be discarded. This
routine returns TRUEif it succeeds, FALSE otherwise.

bool_t xdr_setpos(XDR * xdrs , const uint_t pos);
A macro that invokes the set position routine associated with the XDR
stream xdrs . The parameter pos is a position value obtained from
xdr_getpos() . This routine returns TRUEif the XDR stream was
repositioned, and FALSE otherwise.

Warning: it is difficult to reposition some types of XDR streams, so this
routine may fail with one type of stream and succeed with another.
Therefore, applications written for portability should not depend on this
feature.

unsigned long xdr_sizeof(xdrproc_t func , void * data);
This routine returns the number of bytes required to encode data using the
XDR filter function func , excluding potential overhead such as RPC headers
or record markers. 0 is returned on error. This information might be used
to select between transport protocols, or to determine the buffer size for
various lower levels of RPC client and server creation routines, or to allocate
storage when XDR is used outside of the RPC subsystem.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO malloc (3C) , rpc (3NSL) , xdr_complex (3NSL) , xdr_create (3NSL) ,
xdr_simple (3NSL) , attributes (5)

668 SunOS 5.8 Last modified 30 Dec 1996

Networking Services Library Functions xdr_complex(3NSL)

NAME xdr_complex, xdr_array, xdr_bytes, xdr_opaque, xdr_pointer, xdr_reference,
xdr_string, xdr_union, xdr_vector, xdr_wrapstring – library routines for external
data representation

DESCRIPTION XDR library routines allow C programmers to describe complex data structures
in a machine-independent fashion. Protocols such as remote procedure calls
(RPC) use these routines to describe the format of the data. These routines are
the XDR library routines for complex data structures. They require the creation
of XDR streams. See xdr_create (3NSL) .

Routines See rpc (3NSL) for the definition of the XDR data structure. Note that any
buffers passed to the XDR routines must be properly aligned. It is suggested
either that malloc() be used to allocate these buffers, or that the programmer
insure that the buffer address is divisible evenly by four.

#include <rpc/xdr.h>
bool_t xdr_array(XDR *xdrs , caddr_t *arrp , uint_t *sizep , const uint_t maxsize ,
const uint_t elsize , const xdrproc_t elproc);

xdr_array() translates between variable-length arrays and their
corresponding external representations. The parameter arrp is the address of
the pointer to the array, while sizep is the address of the element count of
the array; this element count cannot exceed maxsize . The parameter elsize
is the size of each of the array’s elements, and elproc is an XDR routine
that translates between the array elements’ C form and their external
representation. If * aarp is NULL when decoding, xdr_array() allocates
memory and * aarp points to it. This routine returns TRUEif it succeeds,
FALSE otherwise.

bool_t xdr_bytes(XDR *xdrs , char **sp , uint_t *sizep , const uint_t maxsize);
xdr_bytes() translates between counted byte strings and their external
representations. The parameter sp is the address of the string pointer. The
length of the string is located at address sizep ; strings cannot be longer
than maxsize . If * sp is NULL when decoding, xdr_bytes() allocates
memory and * sp points to it. This routine returns TRUEif it succeeds,
FALSE otherwise.

bool_t xdr_opaque(XDR *xdrs , caddr_t cp , const uint_t cnt);
xdr_opaque() translates between fixed size opaque data and its external
representation. The parameter cp is the address of the opaque object, and
cnt is its size in bytes. This routine returns TRUEif it succeeds, FALSE
otherwise.

bool_t xdr_pointer(XDR *xdrs , char **objpp, uint_t objsize , const xdrproc_t
xdrobj);

Like xdr_reference() except that it serializes null pointers, whereas
xdr_reference() does not. Thus, xdr_pointer() can represent
recursive data structures, such as binary trees or linked lists. If * objpp is

Last modified 30 Dec 1996 SunOS 5.8 669

xdr_complex(3NSL) Networking Services Library Functions

NULL when decoding, xdr_pointer() allocates memory and * objpp
points to it.

bool_t xdr_reference(XDR *xdrs , caddr_t *pp , uint_t size , const xdrproc_t proc);
xdr_reference() provides pointer chasing within structures. The
parameter pp is the address of the pointer; size is the sizeof the structure
that *pp points to; and proc is an XDR procedure that translates the
structure between its C form and its external representation. If * pp is NULL
when decoding, xdr_reference() allocates memory and * pp points to it.
This routine returns 1 if it succeeds, 0 otherwise.

Warning: this routine does not understand null pointers. Use
xdr_pointer() instead.

bool_t xdr_string(XDR *xdrs , char **sp , const uint_t maxsize);
xdr_string() translates between C strings and their corresponding
external representations. Strings cannot be longer than maxsize . Note:
sp is the address of the string’s pointer. If * sp is NULL when decoding,
xdr_string() allocates memory and * sp points to it. This routine returns
TRUEif it succeeds, FALSE otherwise. Note: xdr_string() can be used to
send an empty string (""), but not a null string.

bool_t xdr_union(XDR *xdrs , enum_t *dscmp , char *unp , const struct
xdr_discrim *choices , const xdrproc_t (*defaultarm));

xdr_union() translates between a discriminated C union and its
corresponding external representation. It first translates the discriminant of
the union located at dscmp . This discriminant is always an enum_t . Next
the union located at unp is translated. The parameter choices is a pointer to
an array of xdr_discrim structures. Each structure contains an ordered
pair of [value, proc]. If the union’s discriminant is equal to the associated
value , then the proc is called to translate the union. The end of the
xdr_discrim structure array is denoted by a routine of value NULL . If the
discriminant is not found in the choices array, then the defaultarm procedure
is called (if it is not NULL). It returns TRUEif it succeeds, FALSEotherwise.

bool_t xdr_vector(XDR *xdrs , char *arrp , const uint_t size , const uint_t elsize ,
const xdrproc_t elproc);

xdr_vector() translates between fixed-length arrays and their
corresponding external representations. The parameter arrp is the address of
the pointer to the array, while size is the element count of the array. The
parameter elsize is the sizeof each of the array’s elements, and elproc is an
XDR routine that translates between the array elements’ C form and their
external representation. This routine returns TRUEif it succeeds, FALSE
otherwise.

bool_t xdr_wrapstring(XDR *xdrs , char **sp);

670 SunOS 5.8 Last modified 30 Dec 1996

Networking Services Library Functions xdr_complex(3NSL)

A routine that calls xdr_string(xdrs , sp , maxuint); where maxuint is
the maximum value of an unsigned integer.

Many routines, such as xdr_array() , xdr_pointer() , and
xdr_vector() take a function pointer of type xdrproc_t() , which takes
two arguments. xdr_string() , one of the most frequently used routines,
requires three arguments, while xdr_wrapstring() only requires two.
For these routines, xdr_wrapstring() is desirable. This routine returns
TRUEif it succeeds, FALSE otherwise.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO malloc (3C) , rpc (3NSL) , xdr_admin (3NSL) , xdr_create (3NSL) ,
xdr_simple (3NSL) , attributes (5)

Last modified 30 Dec 1996 SunOS 5.8 671

xdr_create(3NSL) Networking Services Library Functions

NAME xdr_create, xdr_destroy, xdrmem_create, xdrrec_create, xdrstdio_create – library
routines for external data representation stream creation

DESCRIPTION XDR library routines allow C programmers to describe arbitrary data structures
in a machine-independent fashion. Protocols such as remote procedure calls
(RPC) use these routines to describe the format of the data.

These routines deal with the creation of XDR streams. XDR streams have to be
created before any data can be translated into XDR format.

Routines See rpc (3NSL) for the definition of the XDR, CLIENT , and SVCXPRTdata
structures. Note that any buffers passed to the XDR routines must be properly
aligned. It is suggested that malloc (3C) be used to allocate these buffers or that
the programmer insure that the buffer address is divisible evenly by four.

#include <rpc/xdr.h>
void xdr_destroy(XDR *xdrs);

A macro that invokes the destroy routine associated with the XDR stream,
xdrs . Destruction usually involves freeing private data structures associated
with the stream. Using xdrs after invoking xdr_destroy() is undefined.

void xdrmem_create(XDR *xdrs , const caddr_t addr , const uint_tsize , const
enum xdr_op op);

This routine initializes the XDR stream object pointed to by xdrs . The
stream’s data is written to, or read from, a chunk of memory at location
addr whose length is no less than size bytes long. The op determines
the direction of the XDR stream (either XDR_ENCODE, XDR_DECODE,
or XDR_FREE).

void xdrrec_create(XDR *xdrs , const uint_t sendsz , const uint_t recvsz , const
caddr_t handle , const int (*readit)(const void *read_handle , char *buf , const int len
), const int (*writeit)(const void *write_handle , const char *buf , const int len));

This routine initializes the read-oriented XDR stream object pointed to by
xdrs . The stream’s data is written to a buffer of size sendsz ; a value of 0
indicates the system should use a suitable default. The stream’s data is read
from a buffer of size recvsz ; it too can be set to a suitable default by passing
a 0 value. When a stream’s output buffer is full, writeit is called. Similarly,
when a stream’s input buffer is empty, readit is called. The behavior of
these two routines is similar to the system calls read() and write() (see
read (2) and write (2) , respectively), except that an appropriate handle
(read_handle or write_handle) is passed to the former routines as the first
parameter instead of a file descriptor. Note: the XDR stream’s op field must
be set by the caller.

Warning: this XDR stream implements an intermediate record stream.
Therefore there are additional bytes in the stream to provide record
boundary information.

672 SunOS 5.8 Last modified 30 Dec 1996

Networking Services Library Functions xdr_create(3NSL)

void xdrstdio_create(XDR *xdrs , FILE *file , const enum xdr_op op);
This routine initializes the XDR stream object pointed to by xdrs . The XDR
stream data is written to, or read from, the standard I/O stream file
. The parameter op determines the direction of the XDR stream (either
XDR_ENCODE, XDR_DECODE, or XDR_FREE).

Warning: the destroy routine associated with such XDR streams calls
fflush() on the file stream, but never fclose() (see fclose (3C)).

Failure of any of these functions can be detected by first initializing the
x_ops field in the XDR structure (xdrs => x_ops) to NULLbefore calling the
xdr*_create() function. After the return from the xdr*_create() function,
if the x_ops field is still NULL, the call has failed. If the x_ops field contains some
other value, the call can be assumed to have succeeded.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO read (2) , write (2) , fclose (3C) , malloc (3C) , rpc (3NSL) , xdr_admin (3NSL)
, xdr_complex (3NSL) , xdr_simple (3NSL) , attributes (5)

Last modified 30 Dec 1996 SunOS 5.8 673

xdr_simple(3NSL) Networking Services Library Functions

NAME xdr_simple, xdr_bool, xdr_char, xdr_double, xdr_enum, xdr_float, xdr_free,
xdr_hyper, xdr_int, xdr_long, xdr_longlong_t, xdr_quadruple, xdr_short,
xdr_u_char, xdr_u_hyper, xdr_u_int, xdr_u_long, xdr_u_longlong_t,
xdr_u_short, xdr_void – library routines for external data representation

SYNOPSIS include<rpc/xdr.h>
bool_t xdr_bool (XDR *xdrs, bool_t *bp);

bool_t xdr_char (XDR *xdrs, char *cp);

bool_t xdr_double (XDR *xdrs, double *dp);

bool_t xdr_enum (XDR *xdrs, enum_t *ep);

bool_t xdr_float (XDR *xdrs, float *fp);

bool_t xdr_free (xdrproc_t proc, char *objp);

bool_t xdr_hyper (XDR *xdrs, longlong_t *llp);

bool_t xdr_int (XDR *xdrs, int *ip);

bool_t xdr_long (XDR *xdrs, longt *lp);

bool_t xdr_longlong_t (XDR *xdrs, longlong_t *llp);

bool_t xdr_quadruple (XDR *xdrs, long double *pq);

bool_t xdr_short (XDR *xdrs, short *sp);

bool_t xdr_u_char (XDR *xdrs, unsigned char*ucp);

bool_t xdr_u_hyper (XDR *xdrs, u_longlong_t *ullp);

bool_t xdr_u_int (XDR *xdrs, unsigned *up);

bool_t xdr_u_long (, unsigned long *ulp);

bool_t xdr_u_longlong_t (XDR *xdrs, u_longlong_t *ullp);

bool_t xdr_u_short (XDR xdrs, unsigned short *usp);

bool_t xdr_void (void);

DESCRIPTION The XDR library routines allow C programmers to describe simple data
structures in a machine-independent fashion. Protocols such as remote
procedure calls (RPC) use these routines to describe the format of the data.

These routines require the creation of XDR streams (see xdr_create (3NSL)).
Routines See rpc (3NSL) for the definition of the XDRdata structure. Note that any

buffers passed to the XDR routines must be properly aligned. It is suggested
that malloc (3C) be used to allocate these buffers or that the programmer insure
that the buffer address is divisible evenly by four.

674 SunOS 5.8 Last modified 21 Jul 1998

Networking Services Library Functions xdr_simple(3NSL)

xdr_bool() xdr_bool() translates between booleans (C
integers) and their external representations.
When encoding data, this filter produces values
of either 1 or 0 . This routine returns TRUEif it
succeeds, FALSE otherwise.

xdr_char() xdr_char() translates between C characters
and their external representations. This routine
returns TRUEif it succeeds, FALSE otherwise.
Note: encoded characters are not packed, and
occupy 4 bytes each. For arrays of characters,
it is worthwhile to consider xdr_bytes()
, xdr_opaque() , or xdr_string() (see
xdr_complex (3NSL)).

xdr_double() xdr_double() translates between C
double precision numbers and their external
representations. This routine returns TRUEif it
succeeds, FALSE otherwise.

xdr_enum() xdr_enum() translates between C enum
s (actually integers) and their external
representations. This routine returns TRUEif it
succeeds, FALSE otherwise.

xdr_float() xdr_float() translates between C float s
and their external representations. This routine
returns TRUEif it succeeds, FALSEotherwise.

xdr_free() Generic freeing routine. The first argument is
the XDR routine for the object being freed. The
second argument is a pointer to the object itself.
Note: the pointer passed to this routine is not
freed, but what it points to is freed (recursively,
depending on the XDR routine).

xdr_hyper() xdr_hyper() translates between ANSI C long
long integers and their external representations.
This routine returns TRUEif it succeeds, FALSE
otherwise.

xdr_int() xdr_int() translates between C integers and
their external representations. This routine
returns TRUEif it succeeds, FALSEotherwise.

Last modified 21 Jul 1998 SunOS 5.8 675

xdr_simple(3NSL) Networking Services Library Functions

xdr_long() xdr_long() translates between C long integers
and their external representations. This routine
returns TRUEif it succeeds, FALSEotherwise.

In a 64-bit environment, this routine returns
an error if the value of lp is outside the range
[INT32_MIN, INT32_MAX] . The xdr_int()
routine is recommended in place of this routine.

xdr_longlong_t() xdr_longlong_t() translates between ANSI
C long long integers and their external
representations. This routine returns TRUEif
it succeeds, FALSEotherwise. This routine is
identical to xdr_hyper() .

xdr_quadruple() xdr_quadruple() translates between IEEE
quadruple precision floating point numbers
and their external representations. This routine
returns TRUEif it succeeds, FALSEotherwise.

xdr_short() xdr_short() translates between C short
integers and their external representations.
This routine returns TRUEif it succeeds, FALSE
otherwise.

xdr_u_char() xdr_u_char() translates between unsigned
C characters and their external representations.
This routine returns TRUEif it succeeds, FALSE
otherwise.

xdr_u_hyper() xdr_u_hyper() translates between unsigned
ANSI C long long integers and their external
representations. This routine returns TRUEif it
succeeds, FALSE otherwise.

xdr_u_int() A filter primitive that translates between a C
unsigned integer and its external representation.
This routine returns TRUE if it succeeds, FALSE
otherwise.

xdr_u_long() xdr_u_long() translates between C unsigned
long integers and their external representations.
This routine returns TRUEif it succeeds, FALSE
otherwise.

In a 64-bit environment, this routine returns an
error if the value of ulp is outside the range [0,

676 SunOS 5.8 Last modified 21 Jul 1998

Networking Services Library Functions xdr_simple(3NSL)

UINT32_MAX] . The xdr_u_int() routine is
recommended in place of this routine.

xdr_u_longlong_t() xdr_u_longlong_t() translates between
unsigned ANSI C long long integers and their
external representations. This routine returns
TRUEif it succeeds, FALSE otherwise. This
routine is identical to xdr_u_hyper() .

xdr_u_short() xdr_u_short() translates between C
unsigned short integers and their external
representations. This routine returns TRUEif it
succeeds, FALSE otherwise.

xdr_void() This routine always returns TRUE. It may be
passed to RPC routines that require a function
parameter, where nothing is to be done.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO malloc (3C) , rpc (3NSL) , xdr_admin (3NSL) , xdr_complex (3NSL) ,
xdr_create (3NSL) , attributes (5)

Last modified 21 Jul 1998 SunOS 5.8 677

xfn(3XFN) XFN Interface Library Functions

NAME xfn – overview of the XFN interface

DESCRIPTION The primary service provided by a federated naming system is to map
a composite name to a reference. A composite name is composed of name
components from one or more naming systems. A reference consists of one or
more communication end points. An additional service provided by a federated
naming system is to provide access to attributes associated with named objects.
This extension is to satisfy most applications’ additional naming service needs
without cluttering the basic naming service model. XFN is a programming
interface for a federated naming service.

To use the XFN interface, include the xfn/xfn.h header file and link the
application with -lxfn .

The xfn/xfn.h header file contains the interface declarations for:

� the XFN base context interface,

� the XFN base attribute interface,

� status object and status codes used by operations in these two interfaces,

� abstract data types passed as parameters to and returned as values from
operations in these two interfaces, and

� the interface for the XFN standard syntax model for parsing compound
names.

FILES /usr/include/xfn/xfn.h

SEE ALSO FN_ctx_t (3XFN), FN_status_t (3XFN), xfn_attributes (3XFN),
xfn_composite_names (3XFN), xfn_compound_names (3XFN),
xfn_status_codes (3XFN), fns (5), fns_policies (5)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

678 SunOS 5.8 Last modified 4 Nov 1994

XFN Interface Library Functions xfn_attributes(3XFN)

NAME xfn_attributes – an overview of XFN attribute operations

DESCRIPTION XFN assumes the following model for attributes. A set of zero or more attributes
is associated with a named object. Each attribute in the set has a unique attribute
identifier, an attribute syntax, and a (possibly empty) set of distinct data values.
Each attribute value has an opaque data type. The attribute identifier serves
as a name for the attribute. The attribute syntax indicates how the value is
encoded in the buffer.

The operations of the base attribute interface may be used to examine and
modify the settings of attributes associated with existing named objects. These
objects may be contexts or other types of objects. The attribute operations do
not create names or remove names from contexts.

The range of support for attribute operations may vary widely. Some naming
systems may not support any attribute operations. Other naming systems may
only support read operations, or operations on attributes whose identifiers are in
some fixed set. A naming system may limit attributes to have a single value,
or may require at least one value. Some naming systems may only associate
attributes with context objects, while others may allow associating attributes
with non-context objects.

These are the interfaces:

#include <xfn/xfn.h>

FN_attribute_t *fn_attr_get(FN_ctx_t *ctx, const FN_composite_name_t *name,
const FN_identifier_t *attribute_id, FN_status_t *status);

int fn_attr_modify(FN_ctx_t *ctx, const FN_composite_name_t *name,
unsigned int mod_op, const FN_attribute_t *attr, FN_status_t *status);

FN_attrset_t *fn_attr_get_ids(FN_ctx_t *ctx, const FN_composite_name_t *name,
FN_status_t *status);

FN_valuelist_t *fn_attr_get_values(FN_ctx_t *ctx,
const FN_composite_name_t *name,
const FN_identifier_t *attribute_id, FN_status_t *status);

FN_attrvalue_t *fn_valuelist_next(FN_valuelist_t *vl,
FN_identifier_t **attr_syntax,
FN_status_t *status);

void fn_valuelist_destroy(FN_valuelist_t *vl, FN_status_t *status);

FN_multigetlist_t *fn_attr_multi_get(FN_ctx_t *ctx,
const FN_composite_name_t *name, const FN_attrset_t *attr_ids,
FN_status_t *status);

FN_attribute_t *fn_multigetlist_next(FN_multigetlist_t *ml,
(continued)

Last modified 4 Nov 1994 SunOS 5.8 679

xfn_attributes(3XFN) XFN Interface Library Functions

(Continuation)

FN_status_t *status);

void fn_multigetlist_destroy(FN_multigetlist_t *ml, FN_status_t *status);

int fn_attr_multi_modify(FN_ctx_t *ctx, const FN_composite_name_t *name,
const FN_attrmodlist_t *mods, FN_status_t *status,
FN_attrmodlist_t **unexecuted_mods);

FN_attrset_t *fn_ctx_get_syntax_attrs(FN_ctx_t *ctx,
const FN_composite_name_t *name, FN_status_t *status);

The following describes briefly the operations in the base attribute interface.
Detailed descriptions are given in the respective reference manual pages for
these operations.

fn_attr_get() returns the attribute identified. fn_attr_modify()
modifies the attribute identified as described by mod_op.

fn_attr_get_ids() returns the identifiers of the attributes of the named
object.

fn_attr_get_values() and its set of related operations are used for
returning the individual values of an attribute.

fn_attr_multi_get() and its set of related operations are used for
returning the requested attributes associated with the named object.
fn_attr_multi_modify() modifies multiple attributes associated with the
named object in a single invocation.

fn_ctx_get_syntax_attrs() returns the syntax attributes associated with
the named context.

ERRORS status is set as described in FN_status_t (3XFN) and
xfn_status_codes (3XFN). The following status codes are of special relevance
to attribute operations:
FN_E_ATTR_VALUE_REQUIRED The operation attempted to create

an attribute without a value, and
the specific naming system does
not allow this.

FN_E_ATTR_NO_PERMISSION The caller did not have permission
to perform the attempted attribute
operation.

FN_E_INSUFFICIENT_RESOURCES There are insufficient resources to
retrieve the requested attribute(s).

680 SunOS 5.8 Last modified 4 Nov 1994

XFN Interface Library Functions xfn_attributes(3XFN)

FN_E_INVALID_ATTR_IDENTIFIER The attribute identifier was not in
a format acceptable to the naming
system, or its contents was not
valid for the format specified for
the identifier.

FN_E_INVALID_ATTR_VALUE One of the values supplied was
not in the appropriate form for the
given attribute.

FN_E_NO_SUCH_ATTRIBUTE The object did not have an attribute
with the given identifier.

FN_E_TOO_MANY_ATTR_VALUES The operation attempted to associate
more values with an attribute than
the naming system supported.

USAGE Except for fn_ctx_get_syntax_attrs() , an attribute operation
using a composite name is not necessarily equivalent to an independent
fn_ctx_lookup() operation followed by an attribute operation in which the
caller supplies the resulting reference and an empty name. This is because
there is a range of attribute models in which an attribute is associated with a
name in a context, or an attribute is associated with the object named, or both.
XFN accommodates all of these alternatives. Invoking an attribute operation
using the target context and the terminal atomic name accesses either the
attributes that are associated with the target name or target named object; this
is dependent on the underlying attribute model. This document uses the term
attributes associated with a named object to refer to all of these cases.

XFN specifies no guarantees about the relationship between the attributes and
the reference associated with a given name. Some naming systems may store the
reference bound to a name in one or more attributes associated with a name.
Attribute operations might affect the information used to construct a reference.

To avoid undefined results, programmers must use the operations in the context
interface and not attribute operations when the intention is to manipulate a
reference. Programmers should avoid the use of specific knowledge about how
an XFN context implementation over a particular naming system constructs
references.

SEE ALSO FN_attribute_t (3XFN), FN_attrset_t (3XFN), FN_attrvalue_t (3XFN),
FN_composite_name_t (3XFN), FN_ctx_t (3XFN),
FN_identifier_t (3XFN), FN_status_t (3XFN), fn_attr_get (3XFN),
fn_attr_get_ids (3XFN), fn_attr_get_values (3XFN),
fn_attr_modify (3XFN), fn_attr_multi_get (3XFN),
fn_attr_multi_modify (3XFN), fn_ctx_get_syntax_attrs (3XFN),
fn_ctx_lookup (3XFN), xfn (3XFN), xfn_status_codes (3XFN)

Last modified 4 Nov 1994 SunOS 5.8 681

xfn_attributes(3XFN) XFN Interface Library Functions

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

682 SunOS 5.8 Last modified 4 Nov 1994

XFN Interface Library Functions xfn_composite_names(3XFN)

NAME xfn_composite_names – XFN composite syntax: an overview of the syntax for
XFN composite name

DESCRIPTION An XFN composite name consists of an ordered list of zero or more components.
Each component is a string name from the namespace of a single naming system.
It may be an atomic or a compound name in that namespace.

XFN defines an abstract data type, FN_composite_name_t , for representing
the structural form of a composite name. XFN also defines a standard string
form for composite names. This form is the concatenation of the components
of a composite name from left to right with the XFN component separator (’/’)
character to separate each component.

These are the interfaces:

#include <xfn/xfn.h>
FN_composite_name_t *fn_composite_name_from_string(const FN_string_t *str);
FN_string_t *fn_string_from_composite_name(const
FN_composite_name_t *name);

The function fn_composite_name_from_string parses the string
representation of a composite name into its corresponding composite name object
FN_composite_name_t . The function fn_string_from_composite_name
composes the string representation of a composite name given its composite
name object form FN_composite_name_t .

APPLICATION
USAGE

Special characters used in the XFN composite name syntax, such as the separator
or escape characters, have the same encoding as they would in ISO 646 .

All XFN implementations are required to support the portable representation,
ISO 646 . All other representations are optional.

All characters of the string form of a XFN composite name use a single encoding.
This does not preclude component names of a composite name in its structural
form from having different encodings. Code set mismatches that occur during
the process of coverting a composite name structure to its string form are
resolved in an implementation-dependent way. When an implementation
discovers that a composite name has components with incompatible code sets, it
returns the error code FN_E_INCOMPATIBLE_CODE_SETS.

SEE ALSO FN_string_t (3XFN), FN_compound_name_t (3XFN), xfn (3XFN)

Last modified 4 Nov 1994 SunOS 5.8 683

xfn_compound_names(3XFN) XFN Interface Library Functions

NAME xfn_compound_names – XFN compound syntax: an overview of XFN model
for compound name parsing

DESCRIPTION Each naming system in an XFN federation has a naming convention. XFN
defines a standard model of expressing compound name syntax that covers a
large number of specific name syntaxes and is expressed in terms of syntax
properties of the naming convention.

The model uses the attributes in the following table to describe properties of
the syntax. Unless otherwise qualified, these syntax attributes have attribute
identifiers that use the FN_ID_STRING format. A context that supports the XFN
standard syntax model has an attribute set containing the fn_syntax_type
(with identifier format FN_ID_STRING) attribute with the value "standard"
(ASCII attribute syntax).

These are the interfaces:

#include <xfn/xfn.h>
FN_attrset_t *fn_ctx_get_syntax_attrs(FN_ctx_t *ctx,
const FN_composite_name_t *name,
FN_status_t *status);
FN_compound_name_t *fn_compound_name_from_syntax_attrs(const FN_attrset_t *aset,
const FN_string_t *name, FN_status_t *status);

fn_syntax_type Its value is the ASCII string
"standard" if the context
supports the XFN standard
syntax model. Its value is an
implementation-specific value
if another syntax model is
supported.

fn_std_syntax_direction Its value is an ASCII string,
one of "left_to_right",
"right_to_left", or "flat". This
determines whether the order
of components in a compound
name string goes from left to
right, right to left, or whether
the namespace is flat (in other
words, not hierarchical; em all
names are atomic).

fn_std_syntax_separator Its value is the separator string
for this name syntax. This
attribute is required unless the
fn_std_syntax_direction
is "flat".

684 SunOS 5.8 Last modified 4 Nov 1994

XFN Interface Library Functions xfn_compound_names(3XFN)

fn_std_syntax_escape If present, its value is the escape
string for this name syntax.

fn_std_syntax_case_insensitive If this attribute is present, it
indicates that names that differ
only in case are considered
identical. If this attribute is
absent, it indicates that case is
significant. If a value is present,
it is ignored.

fn_std_syntax_begin_quote If present, its value is the
begin-quote string for this
syntax. There can be multiple
values for this attribute.

fn_std_syntax_end_quote If present, its value is the
end-quote string for this syntax.
There can be multiple values
for this attribute.

fn_std_syntax_ava_separator If present, its value is the
attribute value assertion
separator string for this syntax.

fn_std_syntax_typeval_separator If present, its value is the
attribute type-value separator
string for this syntax.

fn_std_syntax_code_sets If present, its value identifies
the code sets of the string
representation for this syntax.
Its value consists of a structure
containing an array of code sets
supported by the context; the
first member of the array is
the preferred code set of the
context. The values for the
code sets are defined in the
X/Open code set registry. If this
attribute is not present, or if the
value is empty, the default code
set is ISO 646 (same encoding
as ASCII).

fn_std_syntax_locale_info If present, identifies locale
information, such as character

Last modified 4 Nov 1994 SunOS 5.8 685

xfn_compound_names(3XFN) XFN Interface Library Functions

set information, of the string
representation for this syntax.
The interpretation of its value is
implementation-dependent.

The XFN standard syntax attributes are interpreted according to the following
rules:

1. In a string without quotes or escapes, any instance of the separator string
delimits two atomic names.

2. A separator, quotation or escape string is escaped if preceded immediately
(on the left) by the escape string.

3. A non-escaped begin-quote which precedes a component must be matched
by a non-escaped end-quote at the end of the component. Quotes embedded
in non-quoted names are treated as simple characters and do not need
to be matched. An unmatched quotation fails with the status code
FN_E_ILLEGAL_NAME.

4. If there are multiple values for begin-quote and end-quote, a specific
begin-quote value must be matched with its corresponding end-quote value.

5. When the separator appears between a (non-escaped) begin quote and
the end quote, it is ignored.

6. When the separator is escaped, it is ignored. An escaped begin-quote or
end-quote string is not treated as a quotation mark. An escaped escape
string is not treated as an escape string.

7. A non-escaped escape string appearing within quotes is interpreted as an
escape string. This can be used to embed an end-quote within a quoted
string.

After constructing a compound name from a string, the resulting component
atoms have one level of escape strings and quotations interpreted and consumed.

fn_ctx_get_syntax_attrs() is used to obtain the syntax attributes
associated with a context.

fn_compound_name_from_syntax() is used to construct a compound name
object using the string form of the name and the syntax attributes of the name.

ERRORS FN_E_ILLEGAL_NAME The name supplied to the operation
was not a well-formed component
according to the name syntax of
the context.

FN_E_INCOMPATIBLE_CODE_SETS Code set mismatches that
occur during the construction

686 SunOS 5.8 Last modified 4 Nov 1994

XFN Interface Library Functions xfn_compound_names(3XFN)

of the compound name’s
string form are resolved in an
implementation-dependent way.
When an implementation discovers
that a compound name has
components with incompatible code
sets, it returns this error code.

FN_E_INVALID_SYNTAX_ATTRS The syntax attributes supplied are
invalid or insufficient to fully specify
the syntax.

FN_E_SYNTAX_NOT_SUPPORTED The syntax specified is not supported.

USAGE Most applications treat names as opaque data. Hence, the majority of clients
of the XFN interface will not need to parse compound names from specific
naming systems. Some applications, however, such as browsers, need such
capabilities. These applications would use fn_ctx_get_syntax_attrs()
to obtain the syntax-related attributes of a context and, if the context uses the
XFN standard syntax model, it would examine these attributes to determine the
name syntax of the context.

SEE ALSO FN_attribute_t (3XFN), FN_attrset_t (3XFN),
FN_compound_name_t (3XFN), FN_identifier_t (3XFN),
FN_string_t (3XFN) fn_ctx_get_syntax_attrs (3XFN), xfn (3XFN)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Last modified 4 Nov 1994 SunOS 5.8 687

xfn_links(3XFN) XFN Interface Library Functions

NAME xfn_links – XFN links: an overview of XFN links

DESCRIPTION An XFN link is a special form of reference that contains a composite name, the
link name, and that may be bound to an atomic name in an XFN context. Because
the link name is a composite name, it may span multiple namespaces.

Normal resolution of names in context operations always follows XFN links.
If the first composite name component of the link name is the atomic name
".", the link name is resolved relative to the same context in which the link is
bound, otherwise, the link name is resolved relative to the XFN Initial Context
of the client. The link name may itself cause resolution to pass through other
XFN links. This gives rise to the possibility of a cycle of links whose resolution
could not terminate normally. As a simple means to avoid such non-terminating
resolutions, implementations may define limits on the number of XFN links that
may be resolved in any single operation invoked by the caller.

These are the interfaces:

#include <xfn/xfn.h>

FN_ref_t *fn_ref_create_link(const FN_composite_name_t *link_name);

int fn_ref_is_link(const FN_ref_t *ref);

FN_composite_name_t *fn_ref_link_name(const FN_ref_t *link_ref);

FN_ref_t *fn_ctx_lookup_link(FN_ctx_t *ctx, const FN_composite_name_t *name,
FN_status_t *status);

unsigned int fn_status_link_code(const FN_status_t *stat);

const FN_composite_name_t *fn_status_link_remaining_name(
const FN_status_t *stat);

const FN_composite_name_t *fn_status_link_resolved_name(
const FN_status_t *stat);

const FN_ref_t *fn_status_link_resolved_ref(const FN_status_t *stat);

int fn_status_set_link_code(FN_status_t *stat,
unsigned int code);

int fn_status_set_link_remaining_name(FN_status_t *stat,
const FN_composite_name_t *name);

int fn_status_set_link_resolved_name(FN_status_t *stat,
const FN_composite_name_t *name);

int fn_status_set_link_resolved_ref(FN_status_t *stat,
const FN_ref_t *ref);

688 SunOS 5.8 Last modified 4 Nov 1994

XFN Interface Library Functions xfn_links(3XFN)

Links are bound to names using the normal fn_ctx_bind() and
unbound using the normal fn_ctx_unbind() operation. The operation
fn_ref_create_link() is provided for constructing a link reference from a
composite name. Since normal resolution always follows links, a separate
operation, fn_ctx_lookup_link() is provided to lookup the link itself.

In the case that an error occurred while resolving an XFN link, the status object
set by the operation contains additional information about that error and sets
the corresponding link status fields using fn_status_set_link_code() ,
fn_status_set_link_remaining_name() ,
fn_status_set_link_resolved_name() and
fn_status_set_link_resolved_ref() . The link status
fields can be retrieved using fn_status_link_code() ,
fn_status_link_remaining_name() ,
fn_status_link_resolved_name() and
fn_status_link_resolved_ref() .

ERRORS The following status codes are of special relevance when performing operations
involving XFN links:
FN_E_LINK_ERROR There was an error encountered resolving an

XFN link encountered during resolution of the
supplied name. Check the link part of the status
object to determine cause of the link error.

FN_E_LINK_LOOP_LIMIT A non-terminating loop (cycle) in the resolution
can arise due to XFN links encountered during
the resolution of a composite name. This
code indicates either the definite detection of
such a cycle, or that resolution exceeded an
implementation-defined limit on the number of
XFN links allowed for a single operation invoked
by the caller.

FN_E_MALFORMED_LINK A malformed link reference was encountered.
For the fn_ctx_lookup_link() operation,
the name supplied resolved to a reference that
was not a link.

APPLICATION
USAGE

For the fn_ctx_bind() , fn_ctx_unbind() , fn_ctx_rename() ,
fn_ctx_lookup_link() , fn_ctx_create_subcontext() and
fn_ctx_destroy_subcontext() operations, resolution of the given name
continues to the target context — that named by all but the terminal atomic part
of the given name; the terminal atomic name is not resolved. Consequently,
for operations that involve unbinding the terminal atomic part such as
fn_ctx_unbind() , if the terminal atomic name is bound to a link, the link is
not followed and the link itself is unbound from the terminal atomic name.

Last modified 4 Nov 1994 SunOS 5.8 689

xfn_links(3XFN) XFN Interface Library Functions

Many naming systems support a native notion of link that may be used within
the naming system itself. XFN does not determine whether there is any
relationship between such native links and XFN links.

SEE ALSO FN_composite_name_t (3XFN), FN_ref_t (3XFN), FN_status_t (3XFN),
fn_ctx_bind (3XFN), fn_ctx_destroy_subcontext (3XFN),
fn_ctx_lookup (3XFN), fn_ctx_lookup_link (3XFN),
fn_ctx_rename (3XFN), fn_ctx_unbind (3XFN),
xfn_status_codes (3XFN), xfn (3XFN)

690 SunOS 5.8 Last modified 4 Nov 1994

XFN Interface Library Functions xfn_status_codes(3XFN)

NAME xfn_status_codes – descriptions of XFN status codes

SYNOPSIS #include <xfn/xfn.h>

DESCRIPTION The result status of operations in the context interface and the attribute interface
is encapsulated in an FN_status_t object. This object contains information
about how the operation completed: whether an error occurred in performing
the operation; if so, what kind of error; and information localizing where the
error occurred. In the case that the error occurred while resolving an XFN link,
the status object contains additional information about that error.

The context status object consists of several items of information. One of them is
the primary status code, describing the disposition of the operation. In the case
that an error occurred while resolving an XFN link, the primary status code has
the value FN_E_LINK_ERROR, and the link status code describes the error that
occurred while resolving the XFN link.

XFN Status Codes Both the primary status code and the link status code are values of type
unsigned int that are drawn from the same set of meaningful values. XFN
reserves the values 0 through 127 for standard meanings. Currently, values and
interpretations for the following codes are determined by XFN.
FN_SUCCESS The operation succeeded.

FN_E_ATTR_NO_PERMISSION The caller did not have permission
to perform the attempted attribute
operation.

FN_E_ATTR_VALUE_REQUIRED The operation attempted to create
an attribute without a value, and
the specific naming system does
not allow this.

FN_E_AUTHENTICATION_FAILURE The identity of the client principal
could not be verified.

FN_E_COMMUNICATION_FAILURE An error occurred in communicating
with one of the contexts involved in
the operation.

FN_E_CONFIGURATION_ERROR A problem was detected that
indicated an error in the installation
of the XFN implementation.

FN_E_CONTINUE The operation should be continued
using the remaining name and the
resolved reference returned in the
status.

Last modified 7 Dec 1995 SunOS 5.8 691

xfn_status_codes(3XFN) XFN Interface Library Functions

FN_E_CTX_NO_PERMISSION The client did not have permission to
perform the operation.

FN_E_CTX_NOT_EMPTY (Applies only to
fn_ctx_destroy_subcontext() .)
The naming system required that
the context be empty before its
destruction, and it was not empty.

FN_E_CTX_UNAVAILABLE Service could not be obtained from
one of the contexts involved in the
operation. This may be because
the naming system is busy, or is
not providing service. In some
implementations this may not be
distinguished from a communication
failure.

FN_E_ILLEGAL_NAME The name supplied to the
operation was not a well- formed
XFN composite name, or one of
the component names was not
well-formed according to the syntax
of the naming system(s) involved in
its resolution.

FN_E_E_INCOMPATIBLE_CODE_SETS The operation involved character
strings of incompatible code sets,
or the supplied code set is not
supported by the implementation.

FN_E_INSUFFICIENT_RESOURCES Either the client or one of the
involved contexts could not
obtain sufficient resources (for
example, memory, file descriptors,
communication ports, stable media
space, and so on) to complete the
operation successfully.

FN_E_INVALID_ATTR_IDENTIFIER The attribute identifier was not in
a format acceptable to the naming
system, or its content was not valid
for the format specified for the
identifier.

692 SunOS 5.8 Last modified 7 Dec 1995

XFN Interface Library Functions xfn_status_codes(3XFN)

FN_E_INVALID_ATTR_VALUE One of the values supplied was
not in the appropriate form for the
given attribute.

FN_E_INVALID_ENUM_HANDLE The enumeration handle supplied
was invalid, either because it was
from another enumeration, or
because an update operation occurred
during the enumeration, or because
of some other reason.

FN_E_INVALID_SYNTAX_ATTRS The syntax attributes supplied are
invalid or insufficient to fully specify
the syntax.

FN_E_LINK_ERROR There was an error in resolving
an XFN link encountered during
resolution of the supplied name.

FN_E_LINK_LOOP_LIMIT A non-terminating loop (cycle) in the
resolution can arise due to XFN links
encountered during the resolution
of a composite name. This code
indicates either the definite detection
of such a cycle, or that resolution
exceeded an implementation-defined
limit on the number of XFN links
allowed for a single operation
invoked by the caller.

FN_E_MALFORMED_LINK A malformed link reference
was encountered. For
fn_ctx_lookup_link() , the name
supplied resolved to a reference that
was not a link.

FN_E_MALFORMED_REFERENCE A context object could not be
constructed from the supplied
reference, because the reference was
not properly formed.

FN_E_NAME_IN_USE (Only for operations that bind
names.) The supplied name was
already in use.

FN_E_NAME_NOT_FOUND Resolution of the supplied composite
name proceeded to a context in

Last modified 7 Dec 1995 SunOS 5.8 693

xfn_status_codes(3XFN) XFN Interface Library Functions

which the next atomic component of
the name was not bound.

FN_E_NO_SUCH_ATTRIBUTE The object did not have an attribute
with the given identifier.

FN_E_NO_SUPPORTED_ADDRESS A context object could not be
constructed from a particular
reference. The reference contained no
address type over which the context
interface was supported.

FN_E_NOT_A_CONTEXT Either one of the intermediate atomic
names did not name a context, and
resolution could not proceed beyond
this point, or the operation required
that the caller supply the name of a
context, and the name did not resolve
to a reference for a context.

FN_E_OPERATION_NOT_SUPPORTED The operation attempted is not
supported.

FN_E_PARTIAL_RESULT The operation attempted is returning
a partial result.

FN_E_SYNTAX_NOT_SUPPORTED The syntax type specified is not
supported.

FN_E_TOO_MANY_ATTR_VALUES The operation attempted to associate
more values with an attribute than
the naming system supported.

FN_E_UNSPECIFIED_ERROR An error occurred that could not be
classified by any of the other error
codes.

FILES #include <xfn/xfn.h> XFN status codes header file

SEE ALSO FN_status_t (3XFN), xfn (3XFN)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

694 SunOS 5.8 Last modified 7 Dec 1995

Networking Services Library Functions ypclnt(3NSL)

NAME ypclnt, yp_get_default_domain, yp_bind, yp_unbind, yp_match, yp_first,
yp_next, yp_all, yp_order, yp_master, yperr_string, ypprot_err – NIS Version 2
client interface

SYNOPSIS cc [flag ...] file ... −lnsl [library ...]

#include <rpcsvc/ypclnt.h>

#include <rpcsvc/yp_prot.h>

DESCRIPTION This package of functions provides an interface to NIS, Network Information
Service Version 2, formerly referred to as YP. In this version of SunOS, NIS
version 2 is supported only for compatibility with previous versions. The
recommended enterprise level information service is NIS+ or NIS version 3, see
nis+ (1) . Moreover, this version of SunOS supports only the client interface to
NIS version 2. It is expected that this client interface will be served either by
an existing ypserv process running on another machine on the network that
has an earlier version of SunOS or by an NIS+ server, see rpc.nisd (1M) ,
running in "YP-compatibility mode". Refer to the NOTESsection in ypfiles (4)
for implications of being an NIS client of an NIS+ server in "YP-compatibility
mode", and to ypbind (1M) , ypwhich (1) , ypmatch (1) , and ypcat (1) for
commands to access NIS from a client machine. The package can be loaded from
the standard library, /usr/lib/libnsl.so.1 .

All input parameter names begin with in . Output parameters begin with out
. Output parameters of type char ** should be addresses of uninitialized
character pointers. Memory is allocated by the NIS client package using
malloc (3C) , and may be freed by the user code if it has no continuing need
for it. For each outkey and outval , two extra bytes of memory are allocated at
the end that contain NEWLINE and null, respectively, but these two bytes are
not reflected in outkeylen or outvallen . indomain and inmap strings must be
non-null and null-terminated. String parameters which are accompanied by a
count parameter may not be null, but may point to null strings, with the count
parameter indicating this. Counted strings need not be null-terminated.

All functions in this package of type int return 0 if they succeed, and a failure
code (YPERR_xxxx) otherwise. Failure codes are described in the ERRORS
section.

Routines yp_bind (char *indomain);
To use the NIS name services, the client process must be "bound" to an NIS
server that serves the appropriate domain using yp_bind() . Binding need
not be done explicitly by user code; this is done automatically whenever
an NIS lookup function is called. yp_bind() can be called directly for
processes that make use of a backup strategy (for example, a local file) in
cases when NIS services are not available. If a process calls yp_bind() ,

Last modified 10 Nov 1999 SunOS 5.8 695

ypclnt(3NSL) Networking Services Library Functions

it should call yp_unbind() when it is done using NIS in order to free
up resources.

void yp_unbind(char *indomain);
Each binding allocates (uses up) one client process socket descriptor; each
bound domain costs one socket descriptor. However, multiple requests to
the same domain use that same descriptor. yp_unbind() is available at the
client interface for processes that explicitly manage their socket descriptors
while accessing multiple domains. The call to yp_unbind() makes the
domain unbound , and frees all per-process and per-node resources used
to bind it.

If an RPC failure results upon use of a binding, that domain will be
unbound automatically. At that point, the ypclnt() layer will retry a few
more times or until the operation succeeds, provided that rpcbind (1M) and
ypbind (1M) are running, and either

� the client process cannot bind a server for the proper domain, or

� RPC requests to the server fail.

If an error is not RPC-related, or if rpcbind is not running, or if ypbind is
not running, or if a bound ypserv process returns any answer (success or
failure), the ypclnt layer will return control to the user code, either with
an error code, or a success code and any results.

yp_get_default_domain (char **outdomain);
The NIS lookup calls require a map name and a domain name, at minimum.
It is assumed that the client process knows the name of the map of
interest. Client processes should fetch the node’s default domain by calling
yp_get_default_domain() , and use the returned outdomain as the
indomain parameter to successive NIS name service calls. The domain thus
returned is the same as that returned using the SI_SRPC_DOMAINcommand
to the sysinfo (2) system call. The value returned in outdomain should not
be freed.

yp_match(char *indomain , char *inmap , char *inkey , int inkeylen , char **outval ,
int *outvallen);

yp_match() returns the value associated with a passed key. This key must
be exact; no pattern matching is available. yp_match() requires a full YP
map name; for example, hosts.byname instead of the nickname hosts .

yp_first(char *indomain , char *inmap , char **outkey , int *outkeylen , char **outval ,
int *outvallen);

yp_first() returns the first key-value pair from the named map in the
named domain.

696 SunOS 5.8 Last modified 10 Nov 1999

Networking Services Library Functions ypclnt(3NSL)

yp_next(char *indomain , char *inmap , char *inkey , int inkeylen , char **outkey ,
int *outkeylen , char **outval , int *outvallen);

yp_next() returns the next key-value pair in a named map. The inkey
parameter must be the outkey returned from an initial call to yp_first()
(to get the second key-value pair) or the one returned from the n th call to
yp_next() (to get the n th + second key-value pair). Similarly, the inkeylen
parameter must be the outkeylen returned from the earlier yp_first()
or yp_next() call.

The concept of first (and, for that matter, of next) is particular to the
structure of the NIS map being processing; there is no relation in retrieval
order to either the lexical order within any original (non-NIS name
service) data base, or to any obvious numerical sorting order on the keys,
values, or key-value pairs. The only ordering guarantee made is that if
the yp_first() function is called on a particular map, and then the
yp_next() function is repeatedly called on the same map at the same
server until the call fails with a reason of YPERR_NOMORE, every entry in
the data base will be seen exactly once. Further, if the same sequence of
operations is performed on the same map at the same server, the entries will
be seen in the same order.

Under conditions of heavy server load or server failure, it is possible for
the domain to become unbound, then bound once again (perhaps to a
different server) while a client is running. This can cause a break in one of
the enumeration rules; specific entries may be seen twice by the client, or
not at all. This approach protects the client from error messages that would
otherwise be returned in the midst of the enumeration. The next paragraph
describes a better solution to enumerating all entries in a map.

yp_all(char *indomain , char *inmap , struct ypall_callback *incallback);
The function yp_all() provides a way to transfer an entire map from
server to client in a single request using TCP (rather than UDP as with other
functions in this package). The entire transaction take place as a single RPC
request and response. yp_all() can be used just like any other NIS name
service procedure, identify the map in the normal manner, and supply the
name of a function which will be called to process each key-value pair
within the map. The call to yp_all() returns only when the transaction
is completed (successfully or unsuccessfully), or the foreach() function
decides that it does not want to see any more key-value pairs.

The third parameter to yp_all() is

struct ypall_callback *incallback {
int (*foreach)();
char *data;

};

Last modified 10 Nov 1999 SunOS 5.8 697

ypclnt(3NSL) Networking Services Library Functions

The function foreach() is called

foreach(int instatus, char * inkey,
int inkeylen, char * inval,
int invallen, char * indata);

The instatus parameter will hold one of the return status values defined
in <rpcsvc/yp_prot.h – either YP_TRUEor an error code. (See
ypprot_err() , below, for a function which converts an NIS name service
protocol error code to a ypclnt layer error code.)

The key and value parameters are somewhat different than defined in the
synopsis section above. First, the memory pointed to by the inkey and inval
parameters is private to the yp_all() function, and is overwritten with the
arrival of each new key-value pair. It is the responsibility of the foreach()
function to do something useful with the contents of that memory, but it
does not own the memory itself. Key and value objects presented to the
foreach() function look exactly as they do in the server’s map – if they
were not NEWLINE-terminated or null-terminated in the map, they will
not be here either.

The indata parameter is the contents of the incallback => data element passed
to yp_all() . The data element of the callback structure may be used to
share state information between the foreach() function and the mainline
code. Its use is optional, and no part of the NIS client package inspects its
contents – cast it to something useful, or ignore it.

The foreach() function is a Boolean. It should return 0 to indicate that it
wants to be called again for further received key-value pairs, or non-zero to
stop the flow of key-value pairs. If foreach() returns a non-zero value, it
is not called again; the functional value of yp_all() is then 0 .

yp_order(char *indomain , char *inmap , unsigned long *outorder);
yp_order() returns the order number for a map. This function is not
supported if the ypbind process on the client’s system is bound to an NIS+
server running in "YP-compatibility mode".

yp_master(char *indomain , char *inmap , char **outname);
yp_master() returns the machine name of the master NIS server for a
map.

char *yperr_string(int incode);
yperr_string() returns a pointer to an error message string that is
null-terminated but contains no period or NEWLINE .

ypprot_err (unsigned int incode);

698 SunOS 5.8 Last modified 10 Nov 1999

Networking Services Library Functions ypclnt(3NSL)

ypprot_err() takes an NIS name service protocol error code as input,
and returns a ypclnt layer error code, which may be used in turn as an
input to yperr_string() .

RETURN VALUES All integer functions return 0 if the requested operation is successful, or one of
the following errors if the operation fails.
YPERR_ACCESS Access violation.

YPERR_BADARGS The arguments to the function are bad.

YPERR_BADDB The YP database is bad.

YPERR_BUSY The database is busy.

YPERR_DOMAIN Cannot bind to server on this domain.

YPERR_KEY No such key in map.

YPERR_MAP No such map in server’s domain.

YPERR_NODOM Local domain name not set.

YPERR_NOMORE No more records in map database.

YPERR_PMAP Cannot communicate with rpcbind .

YPERR_RESRC Resource allocation failure.

YPERR_RPC RPC failure; domain has been unbound.

YPERR_YPBIND Cannot communicate with ypbind .

YPERR_YPERR Internal YP server or client error.

YPERR_YPSERV Cannot communicate with ypserv .

YPERR_VERS YP version mismatch.

FILES /usr/lib/libnsl.so.1

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO nis+ (1) , ypcat (1) , ypmatch (1) , ypwhich (1) , rpc.nisd (1M) , rpcbind (1M)
, ypbind (1M) , ypserv (1M) , sysinfo (2) , malloc (3C) , ypfiles (4) ,
attributes (5)

Last modified 10 Nov 1999 SunOS 5.8 699

yp_update(3NSL) Networking Services Library Functions

NAME yp_update – change NIS information

SYNOPSIS #include <rpcsvc/ypclnt.h>

int yp_update (char *domain, char *map, unsigned ypop, char *key, int keylen, char *data,
int datalen);

DESCRIPTION yp_update() is used to make changes to the NIS database. The syntax is the
same as that of yp_match() except for the extra parameter ypop which may take
on one of four values. If it is POP_CHANGEthen the data associated with the key
will be changed to the new value. If the key is not found in the database, then
yp_update() will return YPERR_KEY. If ypop has the value YPOP_INSERT
then the key-value pair will be inserted into the database. The error YPERR_KEY
is returned if the key already exists in the database. To store an item into the
database without concern for whether it exists already or not, pass ypop as
YPOP_STOREand no error will be returned if the key already or does not exist.
To delete an entry, the value of ypop should be YPOP_DELETE.

This routine depends upon secure RPC, and will not work unless the network is
running secure RPC.

RETURN VALUES If the value of ypop is POP_CHANGE, yp_update() returns the error
YPERR_KEYif the key is not found in the database.

If the value of ypop is POP_INSERT, yp_update() returns the error
YPERR_KEYif the key already exists in the database.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO secure_rpc (3NSL), ypclnt (3NSL), attributes (5)

NOTES This interface is unsafe in multithreaded applications. Unsafe interfaces should
be called only from the main thread.

700 SunOS 5.8 Last modified 30 Dec 1996

Index

A
abandon an LDAP operation in progress —

ldap_abandon 273
accept — accept a connection on a socket 45
address in an XFN reference

– fn_ref_addr_assign 167
– fn_ref_addr_copy 167
– fn_ref_addr_create 167
– fn_ref_addr_data 167
– fn_ref_addr_description 167
– fn_ref_addr_destroy 167
– fn_ref_addr_length 167
– FN_ref_addr_t 167
– fn_ref_addr_type 167

attribute modifications, list of
– fn_attrmodlist_add 112
– fn_attrmodlist_assign 112
– fn_attrmodlist_copy 112
– fn_attrmodlist_count 112
– fn_attrmodlist_create 112
– fn_attrmodlist_destroy 112
– fn_attrmodlist_first 112
– fn_attrmodlist_next 112
– FN_attrmodlist_t 112

attribute search options
– fn_search_control_assign 172
– fn_search_control_copy 172
– fn_search_control_create 172
– fn_search_control_destroy 172
– fn_search_control_follow_links 172
– fn_search_control_max_names 172
– fn_search_control_return_attr_ids 172

– fn_search_control_return_ref 172
– fn_search_control_scope 172
– FN_search_control_t 172

auth_destroy – library routines for client
side remote procedure call
authentication 421

authnone_create – library routines for client
side remote procedure call
authentication 421

authsys_create – library routines for client
side remote procedure call
authentication 421

authsys_create_default – library routines for
client side remote procedure
call authentication 421

B
Basic Encoding Rules library decoding functions

– ber_alloc_t 49
– ber_bvdup 49
– ber_bvecfree 49
– ber_bvfree 49
– ber_decode 49
– ber_first_element 49
– ber_flatten 49
– ber_free 49
– ber_get_bitstring 49
– ber_get_boolean 49
– ber_get_int 49
– ber_get_next 49
– ber_get_null 49
– ber_get_stringa 49

Index-701

– ber_get_stringal 49
– ber_get_stringb 49
– ber_init 49
– ber_next_element 49
– ber_peek_tag 49
– ber_scanf 49
– ber_skiptag 49

ber_alloc – simplified Basic Encoding Rules
library encoding functions 55

ber_alloc_t – Basic Encoding Rules library
decoding functions 49

ber_bvdup – Basic Encoding Rules library
decoding functions 49

ber_bvecfree– Basic Encoding Rules library
decoding functions 49

ber_bvfree – Basic Encoding Rules library
decoding functions 49

ber_decode – Basic Encoding Rules library
decoding functions 49

ber_encode – simplified Basic Encoding
Rules library encoding
functions 55

ber_first_element – Basic Encoding Rules library
decoding functions 49

ber_flatten – Basic Encoding Rules library
decoding functions 49

ber_flush – simplified Basic Encoding Rules
library encoding functions 55

ber_free – Basic Encoding Rules library
decoding functions 49

ber_get_bitstring – Basic Encoding Rules library
decoding functions 49

ber_get_boolean – Basic Encoding Rules library
decoding functions 49

ber_get_int – Basic Encoding Rules library
decoding functions 49

ber_get_next – Basic Encoding Rules library
decoding functions 49

ber_get_null – Basic Encoding Rules library
decoding functions 49

ber_get_stringa – Basic Encoding Rules library
decoding functions 49

ber_get_stringal – Basic Encoding Rules library
decoding functions 49

ber_get_stringb – Basic Encoding Rules library
decoding functions 49

ber_init – Basic Encoding Rules library decoding
functions 49

ber_next_element – Basic Encoding Rules
library decoding functions
49

ber_peek_tag – Basic Encoding Rules library
decoding functions 49

ber_printf – simplified Basic Encoding Rules
library encoding functions 55

ber_put_bitstring – simplified Basic Encoding
Rules library encoding
functions 55

ber_put_boolean – simplified Basic Encoding
Rules library encoding
functions 55

ber_put_int – simplified Basic Encoding
Rules library encoding
functions 55

ber_put_null – simplified Basic Encoding
Rules library encoding
functions 55

ber_put_ostring – simplified Basic Encoding
Rules library encoding
functions 55

ber_put_seq – simplified Basic Encoding
Rules library encoding
functions 55

ber_put_set – simplified Basic Encoding
Rules library encoding
functions 55

ber_put_string – simplified Basic Encoding
Rules library encoding
functions 55

ber_scanf – Basic Encoding Rules library
decoding functions 49

ber_skiptag – Basic Encoding Rules library
decoding functions 49

ber_start_seq – simplified Basic Encoding
Rules library encoding
functions 55

ber_start_set – simplified Basic Encoding
Rules library encoding
functions 55

bind — bind a name to a socket 59
bind a reference to a name — fn_ctx_bind 139

man pages section 3: Networking Library Functions ♦ February 2000

bind a reference to a name and associate
attributes with named object
— fn_attr_bind 93

byte order, convert values between host and
network

– byteorder 64
– htonl 64
– htons 64
– ntohl 64
– ntohs 64

C
change QOP, service for session

— rpc_gss_set_defaults 449
character string

– fn_string_assign 188
– fn_string_bytecount 188
– fn_string_charcount 188
– fn_string_code_set 188
– fn_string_compare 188
– fn_string_compare_substring 188
– fn_string_contents 188
– fn_string_copy 188
– fn_string_create 188
– fn_string_destroy 188
– fn_string_from_contents 188
– fn_string_from_str 188
– fn_string_from_str_n 188
– fn_string_from_strings 188
– fn_string_from_substring 188
– fn_string_is_empty 188
– fn_string_next_substring 188
– fn_string_prev_substring 188
– fn_string_str 188
– FN_string_t 188

cldap_close — dispose of connectionless LDAP
pointer 65

cldap_open — LDAP connectionless
communication
preparation 66

cldap_search_s — connectionless LDAP
search 67

Retransmission Algorithm 67
cldap_setretryinfo — set connectionless

LDAP request retransmission
parameters 69

client side remote procedure call authentication,
library routines for

– auth_destroy 421
– authnone_create 421
– authsys_create 421
– authsys_create_default 421
– rpc_clnt_auth 421

clnt_call – library routines for client side
calls 423

clnt_control – library routines for dealing with
creation and manipulation of
CLIENT handles 427

clnt_create – library routines for dealing with
creation and manipulation of
CLIENT handles 427

clnt_create_timed – library routines for
dealing with creation and
manipulation of CLIENT
handles 427

clnt_create_vers – library routines for
dealing with creation and
manipulation of CLIENT
handles 427

clnt_create_vers_timed – library routines for
dealing with creation and
manipulation of CLIENT
handles 427

clnt_destroy – library routines for dealing with
creation and manipulation of
CLIENT handles 427

clnt_dg_create – library routines for
dealing with creation and
manipulation of CLIENT
handles 427

clnt_freeres – library routines for client side
calls 423

clnt_geterr – library routines for client side
calls 423

clnt_pcreateerror – library routines for
dealing with creation and
manipulation of CLIENT
handles 427

clnt_perrno – library routines for client side
calls 423

clnt_perror – library routines for client side
calls 423

Index-703

clnt_raw_create – library routines for
dealing with creation and
manipulation of CLIENT
handles 427

clnt_spcreateerror – library routines for
dealing with creation and
manipulation of CLIENT
handles 427

clnt_sperrno – library routines for client side
calls 423

clnt_sperror – library routines for client side
calls 423

clnt_tli_create – library routines for dealing with
creation and manipulation of
CLIENT handles 427

clnt_tp_create – library routines for dealing with
creation and manipulation of
CLIENT handles 427

clnt_tp_create_timed – library routines for
dealing with creation and
manipulation of CLIENT
handles 427

clnt_vc_create – library routines for dealing with
creation and manipulation of
CLIENT handles 427

close an open SLP handle — SLPClose 523
communications

accept a connection on a socket —
accept 45

allocate memory for 567
bind a name to a socket — bind 59
create a pair of connected sockets —

socketpair 557
create an endpoint for communication —

socket 551
get name of peer connected to socket —

getpeername 215
get socket name — getsockname 230
initiate a connection on a socket —

connect 70
listen for connections on a socket —

listen 338
scatter data in order to test the network —

spray 561
send a message from a socket – send,

sendto, sendmsg 492

shut down part of a full-duplex connection
— shutdown 509

component names spanning multiple naming
systems

– fn_composite_name_append_comp 130
– fn_composite_name_append_name 130
– fn_composite_name_assign 130
– fn_composite_name_copy 130
– fn_composite_name_count 130
– fn_composite_name_create 130
– fn_composite_name_delete_comp 130
– fn_composite_name_destroy 130
– fn_composite_name_first 130
– fn_composite_name_from_str 130
– fn_composite_name_from_string 130
– fn_composite_name_insert_comp 130
– fn_composite_name_insert_name 130
– fn_composite_name_is_empty 130
– fn_composite_name_is_equal 130
– fn_composite_name_is_prefix 130
– fn_composite_name_is_suffix 130
– fn_composite_name_last 130
– fn_composite_name_next 130
– fn_composite_name_prefix 130
–

fn_composite_name_prepend_comp 130
– fn_composite_name_prepend_name 130
– fn_composite_name_prev 130
– fn_composite_name_suffix 130
– FN_composite_name_t 130
– fn_string_from_composite_name 130

configuration script
execute — doconfig 80

connect — initiate a connection on socket 70
connectionless LDAP search —

cldap_search_s 67
construct a handle to a context object using

the given reference —
fn_ctx_handle_from_ref 152

construct equivalent name in same context —
fn_ctx_equivalent_name 144

create a security context using the
RPCSEC_GSS protocol
— rpc_gss_seccreate 445

create subcontext and associate attributes —
fn_attr_create_subcontext 95

man pages section 3: Networking Library Functions ♦ February 2000

D
delete attributes — SLPDelAttrs 524
deregister the SLP advertisement —

SLPDereg 526
descriptions of XFN status codes —

xfn_status_codes 691
dial — establish an outgoing terminal line

connection 77
dispose of connectionless LDAP pointer —

cldap_close 65
dn_comp – resolver routines 401
dn_expand – resolver routines 401
doconfig — execute a configuration script 80

E
endservent – get service entry 226
escapes SLP reserved characters —

SLPEscape 528
Ethernet address mapping operations

– ethers 91
ethers – Ethernet address mapping

operations 91
external data representation

See XDR 665

F
filter expression for attribute search

– fn_search_filter_arguments 175
– fn_search_filter_assign 175
– fn_search_filter_copy 175
– fn_search_filter_create 175
– fn_search_filter_destroy 175
– fn_search_filter_expression 175
– FN_search_filter_t 175

find service types — SLPFindSrvTypes 536
fn_attr_bind — bind a reference to a name

and associate attributes with
named object 93

fn_attr_create_subcontext — create subcontext
and associate attributes 95

fn_attr_ext_search – search for names whose
attributes satisfy filter 96

fn_attr_get — return specified attribute
associated with name 103

fn_attr_get_ids — get list of attribute
identifiers 104

fn_attr_get_values – return values of an
attribute 105

fn_attr_modify — modify specified attribute
associated with name 110

fn_attr_multi_get – return multiple attributes
associated with named
object 115

fn_attr_multi_modify — modify multiple
attributes associated with
named object 119

fn_attr_search – search for atomic name with
specified attributes in single
context 121

fn_attribute_add – an XFN attribute 108
fn_attribute_assign – an XFN attribute 108
fn_attribute_copy – an XFN attribute 108
fn_attribute_create – an XFN attribute 108
fn_attribute_destroy – an XFN attribute 108
fn_attribute_first – an XFN attribute 108
fn_attribute_identifier – an XFN attribute 108
fn_attribute_next – an XFN attribute 108
fn_attribute_remove – an XFN attribute 108
fn_attribute_syntax – an XFN attribute 108
FN_attribute_t – an XFN attribute 108
fn_attribute_valuecount – an XFN

attribute 108
fn_attrmodlist_add – a list of attribute

modifications 112
fn_attrmodlist_assign – a list of attribute

modifications 112
fn_attrmodlist_copy – a list of attribute

modifications 112
fn_attrmodlist_count – a list of attribute

modifications 112
fn_attrmodlist_create – a list of attribute

modifications 112
fn_attrmodlist_destroy – a list of attribute

modifications 112
fn_attrmodlist_first – a list of attribute

modifications 112
fn_attrmodlist_next – a list of attribute

modifications 112
FN_attrmodlist_t – a list of attribute

modifications 112
fn_attrset_add – a set of XFN attributes 126

Index-705

fn_attrset_assign – a set of XFN attributes 126
fn_attrset_copy – a set of XFN attributes 126
fn_attrset_count – a set of XFN attributes 126
fn_attrset_create – a set of XFN attributes 126
fn_attrset_destroy – a set of XFN attributes 126
fn_attrset_first – a set of XFN attributes 126
fn_attrset_get – a set of XFN attributes 126
fn_attrset_next – a set of XFN attributes 126
fn_attrset_remove – a set of XFN attributes 126
FN_attrset_t – a set of XFN attributes 126
fn_bindinglist_destroy – list the atomic names

and references bound in a
context 154

fn_bindinglist_next – list the atomic names
and references bound in a
context 154

FN_bindinglist_t – list the atomic names
and references bound in a
context 154

fn_composite_name_append_comp –
component names spanning
multiple naming systems 130

fn_composite_name_append_name –
component names spanning
multiple naming systems 130

fn_composite_name_assign – component names
spanning multiple naming
systems 130

fn_composite_name_copy – component names
spanning multiple naming
systems 130

fn_composite_name_count – component names
spanning multiple naming
systems 130

fn_composite_name_create – component names
spanning multiple naming
systems 130

fn_composite_name_delete_comp – component
names spanning multiple
naming systems 130

fn_composite_name_destroy – component
names spanning multiple
naming systems 130

fn_composite_name_first – component names
spanning multiple naming
systems 130

fn_composite_name_from_str – component
names spanning multiple
naming systems 130

fn_composite_name_from_string – component
names spanning multiple
naming systems 130

fn_composite_name_insert_comp – component
names spanning multiple
naming systems 130

fn_composite_name_insert_name – component
names spanning multiple
naming systems 130

fn_composite_name_is_empty – component
names spanning multiple
naming systems 130

fn_composite_name_is_equal – component
names spanning multiple
naming systems 130

fn_composite_name_is_prefix – component
names spanning multiple
naming systems 130

fn_composite_name_is_suffix – component
names spanning multiple
naming systems 130

fn_composite_name_last – component names
spanning multiple naming
systems 130

fn_composite_name_next – component names
spanning multiple naming
systems 130

fn_composite_name_prefix – component names
spanning multiple naming
systems 130

fn_composite_name_prepend_comp –
component names spanning
multiple naming systems 130

fn_composite_name_prepend_name –
component names spanning
multiple naming systems 130

fn_composite_name_prev – component names
spanning multiple naming
systems 130

fn_composite_name_suffix – component names
spanning multiple naming
systems 130

man pages section 3: Networking Library Functions ♦ February 2000

FN_composite_name_t – component names
spanning multiple naming
systems 130

fn_compound_name_append_comp – an XFN
compound name 135

fn_compound_name_assign – an XFN
compound name 135

fn_compound_name_copy – an XFN compound
name 135

fn_compound_name_count – an XFN
compound name 135

fn_compound_name_delete_all – an XFN
compound name 135

fn_compound_name_delete_comp – an XFN
compound name 135

fn_compound_name_destroy – an XFN
compound name 135

fn_compound_name_first – an XFN compound
name 135

fn_compound_name_from_syntax_attrs – an
XFN compound name 135

fn_compound_name_get_syntax_attrs – an
XFN compound name 135

fn_compound_name_insert_comp – an XFN
compound name 135

fn_compound_name_is_empty – an XFN
compound name 135

fn_compound_name_is_equal – an XFN
compound name 135

fn_compound_name_is_prefix – an XFN
compound name 135

fn_compound_name_is_suffix – an XFN
compound name 135

fn_compound_name_last – an XFN compound
name 135

fn_compound_name_next – an XFN compound
name 135

fn_compound_name_prefix – an XFN
compound name 135

fn_compound_name_prepend_comp – an XFN
compound name 135

fn_compound_name_prev – an XFN compound
name 135

fn_compound_name_suffix – an XFN
compound name 135

FN_compound_name_t – an XFN compound
name 135

fn_ctx_bind — bind a reference to a name 139
fn_ctx_equivalent_name — construct equivalent

name in same context 144
fn_ctx_handle_from_initial — return a handle

to the Initial Context 150
fn_ctx_handle_from_ref — construct a handle

to a context object using the
given reference 152

fn_ctx_list_bindings – list the atomic names
and references bound in a
context 154

fn_ctx_list_names – list the atomic names bound
in a context 155

fn_ctx_lookup_link — look up the link reference
bound to a name 159

fn_ctx_rename — rename the name of a
binding 160

FN_ctx_t — an XFN context 163
fn_ext_searchlist_destroy – search for names

whose attributes satisfy
filter 96

fn_ext_searchlist_next – search for names whose
attributes satisfy filter 96

FN_ext_searchlist_t – search for names whose
attributes satisfy filter 96

FN_identifier_t — an XFN identifier 166
fn_multigetlist_destroy – return multiple

attributes associated with
named object 115

fn_multigetlist_next – return multiple attributes
associated with named
object 115

FN_multigetlist_t – return multiple attributes
associated with named
object 115

fn_namelist_destroy – list the atomic names
bound in a context 155

fn_namelist_next – list the atomic names bound
in a context 155

FN_namelist_t – list the atomic names bound in
a context 155

fn_ref_addr_assign – an address in an XFN
reference 167

fn_ref_addr_copy – an address in an XFN
reference 167

fn_ref_addr_create – an address in an XFN
reference 167

Index-707

fn_ref_addr_data – an address in an XFN
reference 167

fn_ref_addr_description – an address in an XFN
reference 167

fn_ref_addr_destroy – an address in an XFN
reference 167

fn_ref_addr_length – an address in an XFN
reference 167

FN_ref_addr_t – an address in an XFN
reference 167

fn_ref_addr_type – an address in an XFN
reference 167

fn_ref_addrcount – an XFN reference 169
fn_ref_append_addr – an XFN reference 169
fn_ref_assign – an XFN reference 169
fn_ref_copy – an XFN reference 169
fn_ref_create – an XFN reference 169
fn_ref_create_link – an XFN reference 169
fn_ref_delete_addr – an XFN reference 169
fn_ref_delete_all – an XFN reference 169
fn_ref_description – an XFN reference 169
fn_ref_destroy – an XFN reference 169
fn_ref_first – an XFN reference 169
fn_ref_insert_addr – an XFN reference 169
fn_ref_is_link – an XFN reference 169
fn_ref_link_name – an XFN reference 169
fn_ref_next – an XFN reference 169
fn_ref_prepend_addr – an XFN reference 169
FN_ref_t – an XFN reference 169
fn_ref_type – an XFN reference 169
fn_search_control_assign – options for attribute

search 172
fn_search_control_copy – options for attribute

search 172
fn_search_control_create – options for attribute

search 172
fn_search_control_destroy – options for

attribute search 172
fn_search_control_follow_links – options for

attribute search 172
fn_search_control_max_names – options for

attribute search 172
fn_search_control_return_attr_ids – options for

attribute search 172
fn_search_control_return_ref – options for

attribute search 172

fn_search_control_scope – options for attribute
search 172

FN_search_control_t – options for attribute
search 172

fn_search_filter_arguments – filter expression
for attribute search 175

fn_search_filter_assign – filter expression for
attribute search 175

fn_search_filter_copy – filter expression for
attribute search 175

fn_search_filter_create – filter expression for
attribute search 175

fn_search_filter_destroy – filter expression for
attribute search 175

fn_search_filter_expression – filter expression
for attribute search 175

FN_search_filter_t – filter expression for
attribute search 175

BNF of Filter Expression 176
Extended Operations 178
Precedence 176
Relational Operators 177
Specification of Filter Expression 176
Wildcarded Strings 177

fn_searchlist_destroy – terminate search
for atomic name with
specified attributes in single
context 121

fn_searchlist_next – search for next atomic
name with specified attributes
in single context 121

FN_searchlist_t – search for atomic name with
specified attributes in single
context 121

fn_status_advance_by_name – an XFN status
object 183

fn_status_append_remaining_name – an XFN
status object 183

fn_status_append_resolved_name – an XFN
status object 183

fn_status_assign – an XFN status object 183
fn_status_code – an XFN status object 183
fn_status_copy – an XFN status object 183
fn_status_create – an XFN status object 183
fn_status_description – an XFN status

object 183
fn_status_destroy – an XFN status object 183

man pages section 3: Networking Library Functions ♦ February 2000

fn_status_diagnostic_message – an XFN status
object 183

fn_status_is_success – an XFN status
object 183

fn_status_link_code – an XFN status object 183
fn_status_link_diagnostic_message – an XFN

status object 183
fn_status_link_remaining_name – an XFN

status object 183
fn_status_link_resolved_name – an XFN status

object 183
fn_status_link_resolved_ref – an XFN status

object 183
fn_status_remaining_name – an XFN status

object 183
fn_status_resolved_name – an XFN status

object 183
fn_status_resolved_ref – an XFN status

object 183
fn_status_set – an XFN status object 183
fn_status_set_code – an XFN status object 183
fn_status_set_diagnostic_message – an XFN

status object 183
fn_status_set_link_code – an XFN status

object 183
fn_status_set_link_diagnostic_message – an

XFN status object 183
fn_status_set_link_remaining_name – an XFN

status object 183
fn_status_set_link_resolved_name – an XFN

status object 183
fn_status_set_link_resolved_ref – an XFN status

object 183
fn_status_set_remaining_name – an XFN status

object 183
fn_status_set_resolved_name – an XFN status

object 183
fn_status_set_resolved_ref – an XFN status

object 183
fn_status_set_success – an XFN status

object 183
FN_status_t – an XFN status object 183
fn_string_assign – a character string 188
fn_string_bytecount – a character string 188
fn_string_charcount – a character string 188
fn_string_code_set – a character string 188
fn_string_compare – a character string 188

fn_string_compare_substring – a character
string 188

fn_string_contents – a character string 188
fn_string_copy – a character string 188
fn_string_create – a character string 188
fn_string_destroy – a character string 188
fn_string_from_composite_name – component

names spanning multiple
naming systems 130

fn_string_from_compound_name – an XFN
compound name 135

fn_string_from_contents – a character
string 188

fn_string_from_str – a character string 188
fn_string_from_str_n – a character string 188
fn_string_from_strings – a character string 188
fn_string_from_substring – a character

string 188
fn_string_is_empty – a character string 188
fn_string_next_substring – a character

string 188
fn_string_prev_substring – a character

string 188
fn_string_str – a character string 188
FN_string_t – a character string 188
fn_valuelist_destroy – return values of an

attribute 105
fn_valuelist_next – return values of an

attribute 105
FN_valuelist_t – return values of an

attribute 105
FNS

component names spanning
multiple naming
systemsFN_composite_name_t

fn_attr_bind — bind a reference to a name
and associate attributes with
named object 93

fn_attr_create_subcontext — create
subcontext and associate
attributes 95

fn_attr_ext_search – search for names
whose attributes satisfy
filter 96

fn_attr_search – search for atomic name
with specified attributes in
single context 121

Index-709

fn_ctx_equivalent_name — construct
equivalent name in same
context 144

fn_ext_searchlist_destroy – search for
names whose attributes satisfy
filter 96

fn_ext_searchlist_next – search for names
whose attributes satisfy
filter 96

FN_ext_searchlist_t – search for names
whose attributes satisfy
filter 96

FN_search_control_t – options for attribute
search 172

fn_searchlist_destroy – terminate search
for atomic name with
specified attributes in single
context 121

fn_searchlist_next – search for next atomic
name with specified attributes
in single context 121

FN_searchlist_t – search for atomic name
with specified attributes in
single context 121

FNS
FN_search_filter_t – filter expression for

attribute search 175
freeaddrinfo – translate between node name

and address 191
freehostent – get IP node entry 202
frees memory — SLPFree 538
functions to map Internet Protocol network

interface names and
interface indexes –
if_freenameindex 241

G
gai_strerror – translate between node name and

address 191
generic transport name-to-address translation

– netdir 341
– netdir_free 341
– netdir_getbyaddr 341
– netdir_getbyname 341
– netdir_mergeaddr 341

– netdir_options 341
– netdir_perror 341
– netdir_sperror 341
– taddr2uaddr 341
– uaddr2taddr 341

get IP node entry – getipnodebyaddr 202, 226
endservent 226
getservbyname_r 226
getservbyport 226
getservbyport_r 226
getservent 226
getservent_r 226
setservent 226

get credentials of client — rpc_gss_getcred 435
get error codes on failure

— rpc_gss_get_error 437
get list of attribute identifiers —

fn_attr_get_ids 104
get maximum data length for transmission

– rpc_gss_max_data_length 442
– rpc_gss_svc_max_data_length 442

get principal names at server
— rpc_get_principal_name 440

getaddrinfo – translate between node name and
address 191

getipnodebyaddr – get IP node entry 202
getipnodebyname – get IP node entry 202
getnameinfo – translate between node name

and address 191
getpeername — get name of peer connected to

socket 215
getpublickey – retrieve public or secret key 222
getsecretkey – retrieve public or secret key 222
getservbyname – get service entry 226
getservbyname_r – get service entry 226
getservbyport – get service entry 226
getservbyport_r – get service entry 226
getservent – get service entry 226
getservent_r – get service entry 226

H
host machines, remote

return information about users – rusers,
rnusers 486

man pages section 3: Networking Library Functions ♦ February 2000

I
if_freenameindex – functions to map Internet

Protocol network interface
names and interface
indexes 241

if_indextoname – functions to map Internet
Protocol network interface
names and interface
indexes 241

if_nameindex – functions to map Internet
Protocol network interface
names and interface
indexes 241

if_nametoindex – functions to map Internet
Protocol network interface
names and interface
indexes 241

inet – Internet address manipulation 243
inet_addr – Internet address manipulation 243
inet_lnaof – Internet address manipulation 243
inet_makeaddr – Internet address

manipulation 243
inet_netof – Internet address manipulation 243
inet_network – Internet address

manipulation 243
inet_ntoa – Internet address manipulation 243
inet_ntop – Internet address manipulation 243
inet_pton – Internet address manipulation 243
inet6 – Internet address manipulation 243
initialize the LDAP library and open a

connection to an LDAP server
– ldap_init 322
– ldap_open 322

Internet address manipulation –
inet_network 243

K
Kerberos authentication library

– kerberos 249
– krb_get_cred 249
– krb_kntoln 249
– krb_mk_err 249
– krb_mk_req 249
– krb_mk_safe 249
– krb_rd_err 249
– krb_rd_req 249

– krb_rd_safe 249
– krb_set_key 249

Kerberos authentication routines for RPC
– authkerb_getucred 253
– authkerb_seccreate 253
– kerberos_rpc 253
– svc_kerb_reg 253

Kerberos authentication routines via network
stream sockets

– krb_net_read 258
– krb_net_write 258
– krb_recauth 258
– krb_sendauth 258

Kerberos ticket cache file name
— krb_set_tkt_string 262

Kerberos utility routines
– krb_get_admhst 256
– krb_get_krbhst 256
– krb_get_lrealm 256
– krb_get_phost 256
– krb_realmofhost 256

L
ldap — Lightweight Directory Access Protocol

package 263
BER Library 264
Caching 264
Connectionless Access 264
Displaying Results 263
Index 264
Search Filters 263
User Friendly Naming 264

LDAP attribute remapping functions
– ldap_free_friendlymap 307
– ldap_friendly_name 307

LDAP attribute value handling functions
– ldap_count_values 316
– ldap_get_values 316
– ldap_get_values_len 316

LDAP bind functions
– ldap_bind 276
– ldap_bind_s 276
– ldap_sasl_bind 276
– ldap_sasl_bind_s 276
– ldap_set_rebind_proc 276
– ldap_simple_bind 276

Index-711

– ldap_simple_bind_s 276
– ldap_unbind 276
– ldap_unbind_s 276

LDAP character set translation functions
– ldap_8859_to_t61 281
– ldap_enable_translation 281
– ldap_set_string_translators 281
– ldap_t61_to_8859 281
– ldap_translate_from_t61 281
– ldap_translate_to_t61 281

LDAP client caching functions
– ldap_cache 279
– ldap_destroy_cache 279
– ldap_disable_cache 279
– ldap_enable_cache 279
– ldap_flush_cache 279
– ldap_set_cache_options 279
– ldap_uncache_entry 279
– ldap_uncache_request 279

LDAP compare operation
– ldap_compare 283
– ldap_compare_ext 283
– ldap_compare_ext_s 283
– ldap_compare_s 283

LDAP connectionless communication
preparation —
cldap_open 66

LDAP control disposal
– ldap_control_free 285
– ldap_controls_free 285

LDAP delete operation
– ldap_delete 286
– ldap_delete_ext 286
– ldap_delete_ext_s 286
– ldap_delete_s 286

LDAP display template functions
– ldap_disptmpl 288
– ldap_first_disptmpl 288
– ldap_first_tmplcol 288
– ldap_first_tmplrow 288
– ldap_free_templates 288
– ldap_init_templates 288
– ldap_init_templates_buf 288
– ldap_next_disptmpl 288
– ldap_next_tmplcol 288
– ldap_next_tmplrow 288
– ldap_oc2template 288

– ldap_tmplattrs 288
LDAP DN handling functions

– ldap_dn2ufn 308
– ldap_dns_to_dn 308
– ldap_explode_dn 308
– ldap_explode_dns 308
– ldap_get_dn 308
– ldap_is_dns_dn 308

LDAP entry display functions
– ldap_entry2text 295
– ldap_entry2text_search 295
– ldap_vals2text 295

LDAP entry modification functions
– ldap_modify 318
– ldap_modify_ext 318
– ldap_modify_ext_s 318
– ldap_modify_s 318

LDAP entry parsing and counting functions
– ldap_count_entries 304
– ldap_count_references 304
– ldap_first_entry 304
– ldap_first_reference 304
– ldap_next_entry 304

LDAP entry sorting functions
– ldap_sort 331
– ldap_sort_entries 331
– ldap_sort_strcasecmp 331
– ldap_sort_values 331

LDAP filter generating functions
– ldap_build_filter 310
– ldap_getfilter 310
– ldap_getfilter_free 310
– ldap_getfirstfilter 310
– ldap_getnextfilter 310
– ldap_init_getfilter 310
– ldap_init_getfilter_buf 310

LDAP message processing functions
– ldap_count_message 306
– ldap_first_message 306
– ldap_msgtype 306
– ldap_next_message 306

LDAP message result parser
– ldap_parse_extended_result 324
– ldap_parse_result 324
– ldap_parse_sasl_bind_result 324

LDAP protocol error handling functions 299
– ldap_err2string 299

man pages section 3: Networking Library Functions ♦ February 2000

– ldap_errlist 299
– ldap_error 299
– ldap_perror 299
– ldap_result2error 299

LDAP search operations
– ldap_search 327
– ldap_search_ext 327
– ldap_search_ext_s 327
– ldap_search_s 327
– ldap_search_st 327

LDAP search preference configuration routeines
– ldap_first_searchobj 329
– ldap_free_searchprefs 329
– ldap_init_searchprefs 329
– ldap_init_searchprefs_buf 329
– ldap_next_searchobj 329
– ldap_searchprefs 329

LDAP Uniform Resource Locator functions
– ldap_dn_to_url 335
– ldap_dns_to_url 335
– ldap_free_urldesc 335
– ldap_is_ldap_url 335
– ldap_url 335
– ldap_url_parse 335
– ldap_url_search 335
– ldap_url_search_s 335
– ldap_url_search_st 335

LDAP user friendly search functions
– ldap_ufn 333
– ldap_ufn_search_c 333
– ldap_ufn_search_ct 333
– ldap_ufn_search_s 333
– ldap_ufn_setfilter 333
– ldap_ufn_setprefix 333
– ldap_ufn_timeout 333

ldap_8859_to_t61 – LDAP character set
translation functions 281

ldap_abandon — abandon an LDAP operation
in progress 273

ldap_add – perform an LDAP add
operation 274

ldap_add_ext – perform an LDAP add
operation 274

ldap_add_ext_s – perform an LDAP add
operation 274

ldap_add_s – perform an LDAP add
operation 274

ldap_bind – LDAP bind functions 276
General Authentication 276
Re-Binding While Following Referral 277
Simple Authentication 276
Unbinding 277

ldap_bind_s – LDAP bind functions 276
ldap_build_filter – LDAP filter generating

functions 310
ldap_cache – LDAP client caching

functions 279
ldap_compare – LDAP compare operation 283
ldap_compare_ext – LDAP compare

operation 283
ldap_compare_ext_s – LDAP compare

operation 283
ldap_compare_s – LDAP compare

operation 283
ldap_control_free – LDAP control disposal 285
ldap_controls_free – LDAP control

disposal 285
ldap_count_entries – LDAP entry parsing and

counting functions 304
ldap_count_message – LDAP message

processing functions 306
ldap_count_references – LDAP entry parsing

and counting functions 304
ldap_count_values – LDAP attribute value

handling functions 316
ldap_delete – LDAP delete operation 286
ldap_delete_ext – LDAP delete operation 286
ldap_delete_ext_s – LDAP delete

operation 286
ldap_delete_s – LDAP delete operation 286
ldap_destroy_cache – LDAP client caching

functions 279
ldap_disable_cache – LDAP client caching

functions 279
ldap_disptmpl – LDAP display template

functions 288
DISPTMPL Structure Elements 290
Syntax IDs 292
TMPLITEM Structure Elements 291

ldap_dn_to_url – LDAP Uniform Resource
Locator functions 335

ldap_dn2ufn – LDAP DN handling
functions 308

Index-713

ldap_dns_to_dn – LDAP DN handling
functions 308

ldap_dns_to_url – LDAP Uniform Resource
Locator functions 335

ldap_enable_cache – LDAP client caching
functions 279

ldap_enable_translation – LDAP character set
translation functions 281

ldap_entry2text – LDAP entry display
functions 295

ldap_entry2text_search – LDAP entry display
functions 295

ldap_err2string – LDAP protocol error handling
functions 299

ldap_errlist – LDAP protocol error handling
functions 299

ldap_error – LDAP protocol error handling
functions 299

ldap_explode_dn – LDAP DN handling
functions 308

ldap_explode_dns – LDAP DN handling
functions 308

ldap_first_attribute – step through LDAP entry
attributes 303

ldap_first_disptmpl – LDAP display template
functions 288

ldap_first_entry – LDAP entry parsing and
counting functions 304

ldap_first_message – LDAP message processing
functions 306

ldap_first_reference – LDAP entry parsing and
counting functions 304

ldap_first_searchobj – LDAP search preference
configuration routeines 329

ldap_first_tmplcol – LDAP display template
functions 288

ldap_first_tmplrow – LDAP display template
functions 288

ldap_flush_cache – LDAP client caching
functions 279

ldap_free_friendlymap – LDAP attribute
remapping functions 307

ldap_free_searchprefs – LDAP search preference
configuration routeines 329

ldap_free_templates – LDAP display template
functions 288

ldap_free_urldesc – LDAP Uniform Resource
Locator functions 335

ldap_friendly_name – LDAP attribute
remapping functions 307

ldap_get_dn – LDAP DN handling
functions 308

ldap_get_values – LDAP attribute value
handling functions 316

ldap_get_values_len – LDAP attribute value
handling functions 316

ldap_getfilter – LDAP filter generating
functions 310

ldap_getfilter_free – LDAP filter generating
functions 310

ldap_getfirstfilter – LDAP filter generating
functions 310

ldap_getnextfilter – LDAP filter generating
functions 310

ldap_init – initialize the LDAP library and
open a connection to an LDAP
server 322

ldap_init_getfilter – LDAP filter generating
functions 310

ldap_init_getfilter_buf – LDAP filter generating
functions 310

ldap_init_searchprefs – LDAP search preference
configuration routeines 329

ldap_init_searchprefs_buf – LDAP search
preference configuration
routeines 329

ldap_init_templates – LDAP display template
functions 288

ldap_init_templates_buf – LDAP display
template functions 288

ldap_is_dns_dn – LDAP DN handling
functions 308

ldap_is_ldap_url – LDAP Uniform Resource
Locator functions 335

ldap_modify – LDAP entry modification
functions 312, 318

ldap_modify_ext – LDAP entry modification
functions 318

ldap_modify_ext_s – LDAP entry modification
functions 318

ldap_modify_s – LDAP entry modification
functions 318

ldap_modrdn – modify LDAP entry RDN 320

man pages section 3: Networking Library Functions ♦ February 2000

ldap_modrdn_s – modify LDAP entry RDN
320

ldap_modrdn2 – modify LDAP entry RDN
320

ldap_modrdn2_s – modify LDAP entry RDN
320

ldap_msgfree – wait for and return LDAP
operation result 325

ldap_msgtype – LDAP message processing
functions 306

ldap_next_attribute – step through LDAP entry
attributes 303

ldap_next_disptmpl – LDAP display template
functions 288

ldap_next_entry – LDAP entry parsing and
counting functions 304

ldap_next_message – LDAP message processing
functions 306

ldap_next_searchobj – LDAP search preference
configuration routeines 329

ldap_next_tmplcol – LDAP display template
functions 288

ldap_next_tmplrow – LDAP display template
functions 288

ldap_oc2template – LDAP display template
functions 288

ldap_open – initialize the LDAP library and
open a connection to an LDAP
server 322

ldap_parse_extended_result – LDAP message
result parser 324

ldap_parse_result – LDAP message result
parser 324

ldap_parse_sasl_bind_result – LDAP message
result parser 324

ldap_perror – LDAP protocol error handling
functions 299

ldap_rename– modify LDAP entry RDN 320
ldap_rename_s – modify LDAP entry RDN

320
ldap_result – wait for and return LDAP

operation result 325
ldap_result2error – LDAP protocol error

handling functions 299
ldap_sasl_bind – LDAP bind functions 276
ldap_sasl_bind_s – LDAP bind functions 276
ldap_search – LDAP search operations 327

ldap_search_ext – LDAP search operations 327
ldap_search_ext_s – LDAP search

operations 327
ldap_search_s – LDAP search operations 327
ldap_search_st – LDAP search operations 327
ldap_searchprefs – LDAP search preference

configuration routeines 329
ldap_set_cache_options – LDAP client caching

functions 279
ldap_set_rebind_proc – LDAP bind

functions 276
ldap_set_string_translators – LDAP character

set translation functions 281
ldap_simple_bind – LDAP bind functions 276
ldap_simple_bind_s – LDAP bind

functions 276
ldap_sort – LDAP entry sorting functions 331
ldap_sort_entries – LDAP entry sorting

functions 331
ldap_sort_strcasecmp – LDAP entry sorting

functions 331
ldap_sort_values – LDAP entry sorting

functions 331
ldap_t61_to_8859 – LDAP character set

translation functions 281
ldap_tmplattrs – LDAP display template

functions 288
ldap_translate_from_t61 – LDAP character set

translation functions 281
ldap_translate_to_t61 – LDAP character set

translation functions 281
ldap_ufn – LDAP user friendly search

functions 333
ldap_ufn_search_c – LDAP user friendly search

functions 333
ldap_ufn_search_ct – LDAP user friendly

search functions 333
ldap_ufn_search_s – LDAP user friendly search

functions 333
ldap_ufn_setfilter – LDAP user friendly search

functions 333
ldap_ufn_setprefix – LDAP user friendly search

functions 333
ldap_ufn_timeout – LDAP user friendly search

functions 333
ldap_unbind – LDAP bind functions 276
ldap_unbind_s – LDAP bind functions 276

Index-715

ldap_uncache_entry – LDAP client caching
functions 279

ldap_uncache_request – LDAP client caching
functions 279

ldap_url – LDAP Uniform Resource Locator
functions 335

ldap_url_parse – LDAP Uniform Resource
Locator functions 335

ldap_url_search – LDAP Uniform Resource
Locator functions 335

ldap_url_search_s – LDAP Uniform Resource
Locator functions 335

ldap_url_search_st – LDAP Uniform Resource
Locator functions 335

ldap_vals2text – LDAP entry display
functions 295

library routines for client side calls
– clnt_call 423
– clnt_freeres 423
– clnt_geterr 423
– clnt_perrno 423
– clnt_perror 423
– clnt_sperrno 423
– clnt_sperror 423
– rpc_broadcast 423
– rpc_broadcast_exp 423
– rpc_call 423
– rpc_clnt_calls 423

library routines for dealing with creation and
manipulation of CLIENT
handles

– clnt_control 427
– clnt_create 427
– clnt_create_timed 427
– clnt_create_vers 427
– clnt_create_vers_timed 427
– clnt_destroy 427
– clnt_dg_create 427
– clnt_pcreateerror 427
– clnt_raw_create 427
– clnt_spcreateerror 427
– clnt_tli_create 427
– clnt_tp_create 427
– clnt_tp_create_timed 427
– clnt_vc_create 427
– rpc_clnt_create 427
– rpc_createerr 427

library routines for RPC servers
– rpc_svc_calls 470
– svc_dg_enablecache 470
– svc_done 470
– svc_exit 470
– svc_fdset 470
– svc_freeargs 470
– svc_getargs 470
– svc_getreq_common 470
– svc_getreq_poll 470
– svc_getreqset 470
– svc_getrpccaller 470
– svc_max_pollfd 470
– svc_pollfd 470
– svc_run 470
– svc_sendreply 470

Lightweight Directory Access Protocol package
— ldap 263

list the atomic names and references bound in a
context

– fn_bindinglist_destroy 154
– fn_bindinglist_next 154
– FN_bindinglist_t 154
– fn_ctx_list_bindings 154

list the atomic names bound in a context
– fn_ctx_list_names 155
– fn_namelist_destroy 155
– fn_namelist_next 155
– FN_namelist_t 155

listen — listen for connections on a socket 338
look up the link reference bound to a name —

fn_ctx_lookup_link 159

M
map ASCII mechanism to OID

– rpc_gss_mech_to_oid 438, 443
map ASCII qop to number

– rpc_gss_qop_to_num 438, 443
map SLP error codes to messages —

slp_strerror 548
modify LDAP entry RDN

– ldap_modrdn 320
– ldap_modrdn_s 320
– ldap_modrdn2 320
– ldap_modrdn2_s 320
– ldap_rename 320

man pages section 3: Networking Library Functions ♦ February 2000

– ldap_rename_s 320
modify multiple attributes associated

with named object —
fn_attr_multi_modify 119

modify specified attribute associated with name
— fn_attr_modify 110

N
netdir – generic transport name-to-address

translation 341
netdir_free – generic transport name-to-address

translation 341
netdir_getbyaddr – generic transport

name-to-address
translation 341

netdir_getbyname – generic transport
name-to-address
translation 341

netdir_mergeaddr – generic transport
name-to-address
translation 341

netdir_options – generic transport
name-to-address
translation 341

netdir_perror – generic transport
name-to-address translation
341

netdir_sperror – generic transport
name-to-address
translation 341

network configuration database entry
– endnetconfig 211
– freenetconfigent 211
– getnetconfig 211
– getnetconfigent 211
– nc_perror 211
– nc_sperror 211
– setnetconfig 211

network configuration entry corresponding to
NETPATH

– endnetpath 213
– getnetpath 213
– setnetpath 213

network entry
– endnetent 208
– getnetbyaddr 208

– getnetbyaddr_r 208
– getnetbyname 208
– getnetbyname_r 208
– getnetent 208
– getnetent_r 208
– setnetent 208

network host entry
– endhostent 195
– gethostbyaddr 195
– gethostbyaddr_r 195
– gethostbyname 195
– gethostbyname_r 195
– gethostent 195
– gethostent_r 195
– sethostent 195

network listener service
format and send listener service request

message — nlsrequest 384
get client’s data passed via the listener —

nlsgetcall 382
get name of transport provider —

nlsprovider 383
network protocol entry

– endprotoent 218
– getprotobyname 218
– getprotobyname_r 218
– getprotobynumber 218
– getprotobynumber_r 218
– getprotoent 218
– getprotoent_r 218
– setprotoent 218

NIS client interface
– yp_all 695
– yp_bind 695
– yp_first 695
– yp_get_default_domain 695
– yp_master 695
– yp_match 695
– yp_next 695
– yp_order 695
– yp_unbind 695
– ypclnt 695
– yperr_string 695
– ypprot_err 695

NIS+ table functions – nis_tables
nis_first_entry 373
nis_modify_entry 373

Index-717

nis_next_entry 373
nis_remove_entry 373

NIS, change information
— yp_update 700

NIS+ error messages
nis_error 345
nis_lerror 345
nis_perror 345
nis_sperrno 345
nis_sperror 345
nis_sperror_r 345

NIS+ group manipulation functions
– nis_addmember 346
– nis_creategroup 346
– nis_destroygroup 346
– nis_groups 346
– nis_ismember 346
– nis_print_group_entry 346
– nis_removemember 346
– nis_verifygroup 346

NIS+ local names
– nis_freenames 370
– nis_getnames 370
– nis_local_directory 349
– nis_local_group 349
– nis_local_host 349
– nis_local_names 349
– nis_local_principal 349

NIS+ log administration functions
– nis_checkpoint 367
– nis_ping 367

NIS+ miscellaneous functions
– nis_freeservelist 368
– nis_freetags 368
– nis_getservlist 368
– nis_mkdir 368
– nis_rmdir 368
– nis_server 368
– nis_servstate 368
– nis_stats 368

NIS+ namespace functions
– nis_add 351
– nis_freeresult 351
– nis_lookup 351
– nis_modify 351
– nis_names 351
– nis_remove 351

NIS+ object formats
— nis_objects 358

NIS+ subroutines
– nis_clone_object 370
– nis_destroy_object 370
– nis_dir_cmp 370
– nis_domain_of 370
– nis_leaf_of 370
– nis_name_of 370
– nis_print_object 370
– nis_subr 370

NIS+ table functions
– nis_add_entry 373
– nis_first_entry 373
– nis_list 373
– nis_modify_entry 373
– nis_next_entry 373
– nis_remove_entry 373
– nis_tables 373

nis_tables – NIS+ table functions 373
nis_tables – NIS+ table functions 373
nis_tables – NIS+ table functions 373

O
open an SLP handle — SLPOpen 541
overview of the XFN interface — xfn 678
an overview of XFN attribute operations —

xfn_attributes 679
XFN compound syntax: an overview

of XFN model for
compound name parsing —
xfn_compound_names 684

P
parse service URL — SLPParseSrvURL 543
perform an LDAP add operation

– ldap_add 274
– ldap_add_ext 274
– ldap_add_ext_s 274
– ldap_add_s 274

publickey – retrieve public or secret key 222

R
rac_drop() – remote asynchronous calls 451
rac_poll() – remote asynchronous calls 451

man pages section 3: Networking Library Functions ♦ February 2000

rac_recv() – remote asynchronous calls 451
rac_send() – remote asynchronous calls 451
rcmd – routines for returning a stream to a

remote command 386
rcmd_af – routines for returning a stream to a

remote command 386
receive a message from a socket – recv 388

recvfrom 388
recvmsg 388

recv – receive a message from a socket 388
recvfrom – receive a message from a socket 388
recvmsg – receive a message from a socket 388
register an SLP advertisement — SLPReg 545
remote procedure calls, library routines for —

rpc 409
remote system

return information about users – rusers,
rnusers 486

write to – rstat 485
write to — rwall 487

rename the name of a binding —
fn_ctx_rename 160

res_init – resolver routines 401
res_mkquery – resolver routines 401
res_query – resolver routines 401
res_search – resolver routines 401
res_send – resolver routines 401
resolver – resolver routines 401

dn_comp 401
dn_expand 401
res_init 401
res_mkquery 401
res_search 401
res_send 401

retrieve public or secret key – getpublickey 222
getsecretkey 222
publickey 222

return stream to a remote command –
rexec 407

return a handle to the Initial Context —
fn_ctx_handle_from_initial 150

return list of configured and discovered scopes
— SLPFindScopes 532

return multiple attributes associated with
named object

– fn_attr_multi_get 115
– fn_multigetlist_destroy 115

– fn_multigetlist_next 115
– FN_multigetlist_t 115

return service attributes — SLPFindAttrs 530
return service URLs — SLPFindSrvs 534
return SLP configuration property —

SLPGetProperty 539
return specified attribute associated with name

— fn_attr_get 103
return the maximum allowed refresh interval —

SLPGetRefreshInterval 540
return values of an attribute

– fn_attr_get_values 105
– fn_valuelist_destroy 105
– fn_valuelist_next 105
– FN_valuelist_t 105

rexec – return stream to a remote command 407
rexec_af – return stream to a remote

command 407
rnusers – return information about users on

remote machines 486
routines for returning a stream to a remote

command – ruserok 386
rpc — library routines for remote procedure

calls 409
RPC

data transmission using XDR routines —
xdr 665

RPC bind service library routines
– rpc_getmaps 419
– rpcb_getaddr 419
– rpcb_gettime 419
– rpcb_rmtcall 419
– rpcb_set 419
– rpcb_unset 419
– rpcbind 419

RPC entry
– endrpcent 223
– getrpcbyname 223
– getrpcbyname_r 223
– getrpcbynumber 223
– getrpcbynumber_r 223
– getrpcent 223
– getrpcent_r 223
– setrpcent 223

RPC library routine for manipulating global
RPC attributes for client and
server applications

Index-719

— rpc_control 433
RPC library routines for creation and

manipulation of server
handles

– rpc_svc_create 474
– svc_create 474
– svc_destroy 474
– svc_dg_create 474
– svc_fd_create 474
– svc_raw_create 474
– svc_tli_create 474
– svc_tp_create 474
– svc_vc_create 474

RPC library routines for registering servers
– rpc_reg 481
– rpc_svc_reg 481
– svc_auth_reg 481
– svc_reg 481
– svc_unreg 481
– xprt_register 481
– xprt_unregister 481

RPC library routines for server side errors
– rpc_svc_err 479
– svcerr_auth 479
– svcerr_decode 479
– svcerr_noproc 479
– svcerr_noprog 479
– svcerr_progvers 479
– svcerr_systemerr 479
– svcerr_weakauth 479

RPC obsolete library routines
– authdes_create 460
– authunix_create_default 460
– callrpc 460
– clnt_broadcast 460
– clntraw_create 460
– clnttcp_create 460
– clntudp_bufcreate 460
– clntudp_create 460
– get_myaddress 460
– getrpcport 460
– pmap_getmaps 460
– pmap_getport 460
– pmap_rmtcall 460
– pmap_set 460
– pmap_unset 460
– registerrpc 460

– rpc_soc 460
– svc_fds 460
– svc_getcaller 460
– svc_getreq 460
– svc_register 460
– svc_unregister 460
– svcfd_create 460
– svcraw_create 460
– svctcp_create 460
– svcudp_bufcreate 460
– svcudp_create 460
– xdr_authunix_parms 460

rpc routines
rac_drop() – remote asynchronous

calls 451
rac_poll() – remote asynchronous calls 451
rac_recv() – remote asynchronous

calls 451
rac_send() – remote asynchronous

calls 451
RPC using Kerberos authentication routines

– authkerb_getucred 253
– authkerb_seccreate 253
– kerberos_rpc 253
– svc_kerb_reg 253

RPC, secure library routines
– authdes_getucred 488
– authdes_seccreate 488
– getnetname 488
– host2netname 488
– key_decryptsession 488
– key_encryptsession 488
– key_gendes 488
– key_secretkey_is_set 488
– key_setsecret 488
– netname2host 488
– netname2user 488
– secure_rpc 488
– user2netname 488

RPC, XDR library routines
– rpc_xdr 483
– xdr_accepted_reply 483
– xdr_authsys_parms 483
– xdr_callhdr 483
– xdr_callmsg 483
– xdr_opaque_auth 483
– xdr_rejected_reply 483

man pages section 3: Networking Library Functions ♦ February 2000

– xdr_replymsg 483
rpc_broadcast – library routines for client side

calls 423
rpc_broadcast_exp – library routines for client

side calls 423
rpc_call – library routines for client side

calls 423
rpc_clnt_auth – library routines for client

side remote procedure call
authentication 421

rpc_clnt_calls – library routines for client side
calls 423

Routines 423
rpc_clnt_create – library routines for

dealing with creation and
manipulation of CLIENT
handles 427

Routines 427
rpc_createerr – library routines for dealing with

creation and manipulation of
CLIENT handles 427

rpc_gss_getcred — get credentials of client 435
rpc_gss_seccreate — create a security context

using the RPCSEC_GSS
protocol 445

rpc_svc_calls – library routines for RPC
servers 470

Routines 470
rpc — security flavor incorporating GSS-API

onto ONC RPC 455
rresvport – routines for returning a stream to a

remote command 386
rresvport_af – routines for returning a stream to

a remote command 386
rstat – get performance data from remote

kernel 485
ruserok – routines for returning a stream to a

remote command 386
rusers – return information about users on

remote machines 486
xdr_utmpidlearr 486

rwall — write to specified remote
machines 487

S
search for atomic name with specified attributes

in single context
– fn_attr_search 121
– fn_searchlist_destroy 121
– fn_searchlist_next 121
– FN_searchlist_t 121

search for names whose attributes satisfy filter
– fn_attr_ext_search 96
– fn_ext_searchlist_destroy 96
– fn_ext_searchlist_next 96
– FN_ext_searchlist_t 96

secure, RPC
See RPC,secure 488

send – send message from a socket 492
sendmsg – send message from a socket 492
sendto – send message from a socket 492
Service Access Facility library function

— doconfig 80
Service Location Protocol Application

Programming Interface —
slp_api 512

set an SLP configuration property —
SLPSetProperty 547

set connectionless LDAP request
retransmission parameters —
cldap_setretryinfo 69

set server principal name
— rpc_gss_set_svc_name 450

setservent – get service entry 226
shutdown — shut down part of a full-duplex

connection 509
simplified Basic Encoding Rules library

encoding functions
– ber_alloc 55
– ber_encode 55
– ber_flush 55
– ber_printf 55
– ber_put_bitstring 55
– ber_put_boolean 55
– ber_put_int 55
– ber_put_null 55
– ber_put_ostring 55
– ber_put_seq 55
– ber_put_set 55
– ber_put_string 55
– ber_start_seq 55

Index-721

– ber_start_set 55
slp_api — Service Location Protocol Application

Programming Interface 512
slp_strerror — map SLP error codes to

messages 548
SLPClose — close an open SLP handle 523
SLPDelAttrs — delete attributes 524
SLPDereg — deregister the SLP

advertisement 526
SLPEscape — escapes SLP reserved

characters 528
SLPFindAttrs — return service attributes 530
SLPFindScopes — return list of configured and

discovered scopes 532
SLPFindSrvs — return service URLs 534
SLPFindSrvTypes — find service types 536
SLPFree — frees memory 538
SLPGetProperty — return SLP configuration

property 539
SLPGetRefreshInterval — return the maximum

allowed refresh interval 540
SLPOpen — open an SLP handle 541
SLPParseSrvURL — parse service URL 543
SLPReg — register an SLP advertisement 545
SLPSetProperty — set an SLP configuration

property 547
SLPUnescape — translate escaped characters

into UTF-8 549
socket — create an endpoint for

communication 551
accept a connection — accept 45
bind a name — bind 59
get options – getsocketopt 232
get name — getsockname 230
get name of connected peer —

getpeername 215
initiate a connection — connect 70
listen for connections — listen 338
send message from – send, sendto,

sendmsg 492
set options – setsocketopt 232
shut down part of a full-duplex connection

— shutdown 509
socketpair — create a pair of connected

sockets 557
spray — scatter data in order to test the

network 561

step through LDAP entry attributes
– ldap_first_attribute 303
– ldap_next_attribute 303

STREAMS
accept a connection on a socket —

accept 45
bind a name to a socket — bind 59
create a pair of connected sockets —

socketpair 557
create an endpoint for communication —

socket 551
get and set socket options – getsockopt,

setsockopt 232
get name of peer connected to socket —

getpeername 215
get socket name — getsockname 230
initiate a connection on a socket —

connect 70
listen for connections on a socket —

listen 338
send a message from a socket – send,

sendto, sendmsg 492
shut down part of a full-duplex connection

— shutdown 509
svc_dg_enablecache – library routines for RPC

servers 470
svc_done – library routines for RPC

servers 470
svc_exit – library routines for RPC servers 470
svc_fdset – library routines for RPC

servers 470
svc_freeargs – library routines for RPC

servers 470
svc_getargs – library routines for RPC

servers 470
svc_getreq_common – library routines for RPC

servers 470
svc_getreq_poll – library routines for RPC

servers 470
svc_getreqset – library routines for RPC

servers 470
svc_getrpccaller – library routines for RPC

servers 470
svc_max_pollfd – library routines for RPC

servers 470
svc_pollfd – library routines for RPC

servers 470

man pages section 3: Networking Library Functions ♦ February 2000

svc_run – library routines for RPC servers 470
svc_sendreply – library routines for RPC

servers 470

T
t_alloc — allocate memory for argument

structures 567
taddr2uaddr – generic transport

name-to-address
translation 341

terminal line
establish an outgoing connection —

dial 77
translate between node name and address –

gai_strerror 191
translate escaped characters into UTF-8 —

SLPUnescape 549
transport functions

allocate memory 567

U
uaddr2taddr – generic transport

name-to-address
translation 341

users
return information from remote machines –

rusers, rnusers 486

W
wait for and return LDAP operation result –

ldap_msgfree 325

X
XDR library routines

— xdr 665
– xdr_admin 667
– xdr_control 667
– xdr_getpos 667
– xdr_inline 667
– xdr_setpos 667
– xdr_sizeof 667
– xdrrec_endofrecord 667
– xdrrec_eof 667
– xdrrec_readbytes 667

– xdrrec_skiprecord 667
XDR library routines for complex data

structures
– xdr_array 669
– xdr_bytes 669
– xdr_complex 669
– xdr_opaque 669
– xdr_pointer 669
– xdr_reference 669
– xdr_string 669
– xdr_union 669
– xdr_vector 669
– xdr_wrapstring 669

XDR library routines for RPC
– rpc_xdr 483
– xdr_accepted_reply 483
– xdr_authsys_parms 483
– xdr_callhdr 483
– xdr_callmsg 483
– xdr_opaque_auth 483
– xdr_rejected_reply 483
– xdr_replymsg 483

XDR library routines for simple data structures
– xdr_bool 674
– xdr_char 674
– xdr_double 674
– xdr_enum 674
– xdr_float 674
– xdr_free 674
– xdr_hyper 674
– xdr_int 674
– xdr_long 674
– xdr_longlong_t 674
– xdr_quadruple 674
– xdr_short 674
– xdr_simple 674
– xdr_u_char 674
– xdr_u_hyper 674
– xdr_u_int 674
– xdr_u_long 674
– xdr_u_longlong_t 674
– xdr_u_short 674
– xdr_void 674

XDR stream creation library routines
– xdr_create 672
– xdr_destroy 672
– xdrmem_create 672

Index-723

– xdrrec_create 672
– xdrstdio_create 672

xdr_statstime – get performance data from
remote kernel 485

xdr_statsvar – get performance data from
remote kernel 485

xfn — overview of the XFN interface 678
XFN attribute

– fn_attribute_add 108
– fn_attribute_assign 108
– fn_attribute_copy 108
– fn_attribute_create 108
– fn_attribute_destroy 108
– fn_attribute_first 108
– fn_attribute_identifier 108
– fn_attribute_next 108
– fn_attribute_remove 108
– fn_attribute_syntax 108
– FN_attribute_t 108
– fn_attribute_valuecount 108

XFN attributes, a set of
– fn_attrset_add 126
– fn_attrset_assign 126
– fn_attrset_copy 126
– fn_attrset_count 126
– fn_attrset_create 126
– fn_attrset_destroy 126
– fn_attrset_first 126
– fn_attrset_get 126
– fn_attrset_next 126
– fn_attrset_remove 126
– FN_attrset_t 126

XFN compound name
– fn_compound_name_append_comp 135
– fn_compound_name_assign 135
– fn_compound_name_copy 135
– fn_compound_name_count 135
– fn_compound_name_delete_all 135
– fn_compound_name_delete_comp 135
– fn_compound_name_destroy 135
– fn_compound_name_first 135
–

fn_compound_name_from_syntax_attrs 135
–

fn_compound_name_get_syntax_attrs 135
– fn_compound_name_insert_comp 135
– fn_compound_name_is_empty 135

– fn_compound_name_is_equal 135
– fn_compound_name_is_prefix 135
– fn_compound_name_is_suffix 135
– fn_compound_name_last 135
– fn_compound_name_next 135
– fn_compound_name_prefix 135
–

fn_compound_name_prepend_comp 135
– fn_compound_name_prev 135
– fn_compound_name_suffix 135
– FN_compound_name_t 135
– fn_string_from_compound_name 135

an XFN context — FN_ctx_t 163
an XFN identifier — FN_identifier_t 166
XFN reference

– fn_ref_addrcount 169
– fn_ref_append_addr 169
– fn_ref_assign 169
– fn_ref_copy 169
– fn_ref_create 169
– fn_ref_create_link 169
– fn_ref_delete_addr 169
– fn_ref_delete_all 169
– fn_ref_description 169
– fn_ref_destroy 169
– fn_ref_first 169
– fn_ref_insert_addr 169
– fn_ref_is_link 169
– fn_ref_link_name 169
– fn_ref_next 169
– fn_ref_prepend_addr 169
– FN_ref_t 169
– fn_ref_type 169

XFN status object
– fn_status_advance_by_name 183
– fn_status_append_remaining_name

183
– fn_status_append_resolved_name 183
– fn_status_assign 183
– fn_status_code 183
– fn_status_copy 183
– fn_status_create 183
– fn_status_description 183
– fn_status_destroy 183
– fn_status_diagnostic_message 183
– fn_status_is_success 183
– fn_status_link_code 183

man pages section 3: Networking Library Functions ♦ February 2000

– fn_status_link_diagnostic_message 183
– fn_status_link_remaining_name 183
– fn_status_link_resolved_name 183
– fn_status_link_resolved_ref 183
– fn_status_remaining_name 183
– fn_status_resolved_name 183
– fn_status_resolved_ref 183
– fn_status_set 183
– fn_status_set_code 183
– fn_status_set_diagnostic_message 183
– fn_status_set_link_code 183
–

fn_status_set_link_diagnostic_message 183
– fn_status_set_link_remaining_name 183
– fn_status_set_link_resolved_name 183

– fn_status_set_link_resolved_ref 183
– fn_status_set_remaining_name 183
– fn_status_set_resolved_name 183
– fn_status_set_resolved_ref 183
– fn_status_set_success 183
– FN_status_t 183

xfn_attributes — an overview of XFN attribute
operations 679

xfn_compound_names — XFN compound
syntax: an overview of XFN
model for compound name
parsing 684

xfn_status_codes — descriptions of XFN status
codes 691

XFN Status Codes 691

Index-725

