X SuUn

microsystems

man pages section 3. Networking
Library Functions

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
USA.

Part No: 806-0628-10
February 2000

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun
and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or
service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer
industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I’utilisation, la copie, la distribution, et
la décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans
I'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caracteres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées du systéme Berkeley BSD licenciés par I’'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques
déposées, ou margues de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les
produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L'interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour I'industrie de I'informatique. Sun détient une licence non exclusive de Xerox sur I'interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place I'interface d’utilisation graphique OPEN LOOK et qui en outre se
conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

. 4.4
ca &S
Adobe PostScript Please

Recycle

Contents

Preface 39

accept(3SOCKET) 45
accept(3XNET) 47
ber_decode(3LDAP) 49
ber_alloc_t(3LDAP) 49
ber_free(3LDAP) 49
ber_bvdup(3LDAP) 49
ber_init(3LDAP) 49
ber_flatten(3LDAP) 49
ber_get_next(SLDAP) 49
ber_skiptag(3LDAP) 49
ber_peek_tag(3LDAP) 49
ber_scanf(3LDAP) 49
ber_get_int(3LDAP) 49
ber_get_stringa(3LDAP) 49
ber_get_stringal(3LDAP) 49
ber_get_stringb(3LDAP) 49
ber_get null(3LDAP) 49
ber_get_boolean(3LDAP) 49

Contents 3

ber_get_bitstring(3LDAP) 49
ber_first_element(3LDAP) 49
ber_next_element(3LDAP) 49
ber_bvfree(3LDAP) 49
ber_bvecfree(3LDAP) 49
ber_encode(3LDAP) 55
ber_alloc(3LDAP) 55
ber_printf(SLDAP) 55
ber_put_int(3LDAP) 55
ber_put_ostring(3LDAP) 55
ber_put_string(3LDAP) 55
ber_put_null(3LDAP) 55
ber_put_boolean(3LDAP) 55
ber_put_bitstring(3LDAP) 55
ber_start_seq(3LDAP) 55
ber_start_set(3LDAP) 55
ber_put_seq(3LDAP) 55
ber_put_set(3LDAP) 55
bind(3SOCKET) 59
bind(3XNET) 61
byteorder(3SOCKET) 64
htonl(3SOCKET) 64
htons(3SOCKET) 64
ntohl(3SOCKET) 64
ntohs(3SOCKET) 64
cldap_close(3LDAP) 65
cldap_open(3LDAP) 66
cldap_search_s(3LDAP) 67

man pages section 3: Networking Library Functions ¢ February 2000

cldap_setretryinfo(3LDAP) 69
connect(3SOCKET) 70
connect(3XNET) 73
dial(3NSL) 77
doconfig(3NSL) 80
endhostent(3XNET) 83
gethostbyaddr(3XNET) 83
gethostbyname(3XNET) 83
gethostent(3XNET) 83
sethostent(3XNET) 83
endnetent(3XNET) 85
getnetbyaddr(3XNET) 85
getnetbyname(3XNET) 85
getnetent(3XNET) 85
setnetent(3XNET) 85
endprotoent(3XNET) 87
getprotobynumber(3XNET) 87
getprotobyname(3XNET) 87
getprotoent(3XNET) 87
setprotoent(3XNET) 87
endservent(3XNET) 89
getservbyport(3XNET) 89
getservbyname(3XNET) 89
getservent(3XNET) 89
setservent(3XNET) 89
ethers(3SOCKET) 91
ether_ntoa(3SOCKET) 91
ether_aton(3SOCKET) 91

Contents 5

ether_ntohost(3SOCKET) 91
ether_hostton(3SOCKET) 91
ether_line(3SOCKET) 91
fn_attr_bind(3XFN) 93
fn_attr_create_subcontext(3XFN) 95
fn_attr_ext_search(3XFN) 96
FN_ext_searchlist_t(3XFN) 96
fn_ext_searchlist_next(3XFN) 96
fn_ext_searchlist_destroy(3XFN) 96
fn_attr_get(3XFN) 103
fn_attr_get_ids(3XFN) 104
fn_attr_get_values(3XFN) 105
FN_valuelist_t(3XFN) 105
fn_valuelist_next(3XFN) 105
fn_valuelist_destroy(3XFN) 105
FN_attribute_t(3XFN) 108
fn_attribute_create(3XFN) 108
fn_attribute_destroy(3XFN) 108
fn_attribute_copy(3XFN) 108
fn_attribute_assign(3XFN) 108
fn_attribute_identifier(3XFN) 108
fn_attribute_syntax(3XFN) 108
fn_attribute_valuecount(3XFN) 108
fn_attribute_first(3XFN) 108
fn_attribute_next(3XFN) 108
fn_attribute_add(3XFN) 108
fn_attribute_remove(3XFN) 108
fn_attr_modify(3XFN) 110

man pages section 3: Networking Library Functions ¢ February 2000

FN_attrmodlist_t(3XFN) 112
fn_attrmodlist_create(3XFN) 112
fn_attrmodlist_destroy(3XFN) 112
fn_attrmodlist_copy(3XFN) 112
fn_attrmodlist_assign(3XFN) 112
fn_attrmodlist_count(3XFN) 112
fn_attrmodlist_first(3XFN) 112
fn_attrmodlist_next(3XFN) 112
fn_attrmodlist_add(3XFN) 112
fn_attr_multi_get(3XFN) 115
FN_multigetlist_t(3XFN) 115
fn_multigetlist_next(3XFN) 115
fn_multigetlist_destroy(3XFN) 115
fn_attr_multi_modify(3XFN) 119
fn_attr_search(3XFN) 121
FN_searchlist_t(3XFN) 121
fn_searchlist_next(3XFN) 121
fn_searchlist_destroy(3XFN) 121
FN_attrset_t(3XFN) 126
fn_attrset_create(3XFN) 126
fn_attrset_destroy(3XFN) 126
fn_attrset_copy(3XFN) 126
fn_attrset_assign(3XFN) 126
fn_attrset_get(3XFN) 126
fn_attrset_count(3XFN) 126
fn_attrset_first(3XFN) 126
fn_attrset_next(3XFN) 126
fn_attrset_add(3XFN) 126

Contents 7

fn_attrset_remove(3XFN) 126
FN_attrvalue_t(3XFN) 128
FN_composite_name_t(3XFN) 129
fn_composite_name_create(3XFN) 129
fn_composite_name_destroy(3XFN) 129
fn_composite_name_from_str(3XFN) 129
fn_composite_name_from_string(3XFN) 129
fn_string_from_composite_name(3XFN) 129
fn_composite_name_copy(3XFN) 129
fn_composite_name_assign(3XFN) 129
fn_composite_name_is_empty(3XFN) 129
fn_composite_name_count(3XFN) 129
fn_composite_name_first(3XFN) 129
fn_composite_name_next(3XFN) 129
fn_composite_name_prev(3XFN) 129
fn_composite_name_last(3XFN) 129
fn_composite_name_prefix(3XFN) 129
fn_composite_name_suffix(3XFN) 129
fn_composite_name_is_equal(3XFN) 129
fn_composite_name_is_prefix(3XFN) 129
fn_composite_name_is_suffix(3XFN) 129
fn_composite_name_prepend_comp(3XFN) 129
fn_composite_name_append_comp(3XFN) 129
fn_composite_name_insert_comp(3XFN) 129
fn_composite_name_delete_comp(3XFN) 129
fn_composite_name_prepend_name(3XFN) 129
fn_composite_name_append_name(3XFN) 129

fn_composite_name_insert_name(3XFN) 129

man pages section 3: Networking Library Functions ¢ February 2000

FN_compound_name_t(3XFN) 134
fn_compound_name_from_syntax_attrs(3XFN) 134
fn_compound_name_get_syntax_attrs(3XFN) 134
fn_compound_name_destroy(3XFN) 134
fn_string_from_compound_name(3XFN) 134
fn_compound_name_copy(3XFN) 134
fn_compound_name_assign(3XFN) 134
fn_compound_name_count(3XFN) 134
fn_compound_name_first(3XFN) 134
fn_compound_name_next(3XFN) 134
fn_compound_name_prev(3XFN) 134
fn_compound_name_last(3XFN) 134
fn_compound_name_prefix(3XFN) 134
fn_compound_name_suffix(3XFN) 134
fn_compound_name_is_empty(3XFN) 134
fn_compound_name_is_equal(3XFN) 134
fn_compound_name_is_prefix(3XFN) 134
fn_compound_name_is_suffix(3XFN) 134
fn_compound_name_prepend_comp(3XFN) 134
fn_compound_name_append_comp(3XFN) 134
fn_compound_name_insert_comp(3XFN) 134
fn_compound_name_delete_comp(3XFN) 134
fn_compound_name_delete_all(3XFN) 134
fn_ctx_bind(3XFN) 139
fn_ctx_create_subcontext(3XFN) 141
fn_ctx_destroy_subcontext(3XFN) 142
fn_ctx_equivalent_name(3XFN) 144
fn_ctx_get_ref(3XFN) 146

Contents 9

fn_ctx_get_syntax_attrs(3XFN) 147
fn_ctx_handle_destroy(3XFN) 149
fn_ctx_handle_from_initial(3XFN) 150
fn_ctx_handle_from_ref(3XFN) 152
fn_ctx_list_bindings(3XFN) 154
FN_bindinglist_t(3XFN) 154
fn_bindinglist_next(3XFN) 154
fn_bindinglist_destroy(3XFN) 154
fn_ctx_list_names(3XFN) 155
FN_namelist_t(3XFN) 155
fn_namelist_next(3XFN) 155
fn_namelist_destroy(3XFN) 155
fn_ctx_lookup(3XFN) 158
fn_ctx_lookup_link(3XFN) 159
fn_ctx_rename(3XFN) 160
FN_ctx_t(3XFN) 162
fn_ctx_unbind(3XFN) 165
FN_identifier_t(3XFN) 166
FN_ref_addr_t(3XFN) 167
fn_ref_addr_create(3XFN) 167
fn_ref_addr_destroy(3XFN) 167
fn_ref_addr_copy(3XFN) 167
fn_ref_addr_assign(3XFN) 167
fn_ref_addr_type(3XFN) 167
fn_ref_addr_length(3XFN) 167
fn_ref_addr_data(3XFN) 167
fn_ref_addr_description(3XFN) 167
FN_ref t(3XFN) 169

man pages section 3: Networking Library Functions ¢ February 2000

fn_ref_create(3XFN) 169
fn_ref_destroy(3XFN) 169
fn_ref_copy(3XFN) 169
fn_ref_assign(3XFN) 169
fn_ref_type(3XFN) 169
fn_ref_addrcount(3XFN) 169
fn_ref_first(3XFN) 169
fn_ref_next(3XFN) 169
fn_ref_prepend_addr(3XFN) 169
fn_ref_append_addr(3XFN) 169
fn_ref_insert_addr(3XFN) 169
fn_ref_delete_addr(3XFN) 169
fn_ref_delete_all(3XFN) 169
fn_ref_create_link(3XFN) 169
fn_ref_is_link(3XFN) 169
fn_ref_link_name(3XFN) 169
fn_ref_description(3XFN) 169
FN_search_control_t(3XFN) 172
fn_search_control_create(3XFN) 172
fn_search_control_destroy(3XFN) 172
fn_search_control_copy(3XFN) 172
fn_search_control_assign(3XFN) 172

fn_search_control_scope(3XFN) 172

fn_search_control_follow_links(3XFN) 172
fn_search_control_max_names(3XFN) 172
fn_search_control_return_ref(3XFN) 172

fn_search_control_return_attr_ids(3XFN) 172

FN_search_filter_t(3XFN) 175

Contents 11

fn_search_filter_create(3XFN) 175
fn_search_filter_destroy(3XFN) 175
fn_search_filter_copy(3XFN) 175
fn_search_filter_assign(3XFN) 175
fn_search_filter_expression(3XFN) 175
fn_search_filter_arguments(3XFN) 175
FN_status_t(3XFN) 182
fn_status_create(3XFN) 182
fn_status_destroy(3XFN) 182
fn_status_copy(3XFN) 182
fn_status_assign(3XFN) 182
fn_status_code(3XFN) 182
fn_status_remaining_name(3XFN) 182
fn_status_resolved_name(3XFN) 182
fn_status_resolved_ref(3XFN) 182
fn_status_diagnostic_message(3XFN) 182
fn_status_link_code(3XFN) 182
fn_status_link_remaining_name(3XFN) 182
fn_status_link_resolved_name(3XFN) 182
fn_status_link_resolved_ref(3XFN) 182
fn_status_link_diagnostic_message(3XFN) 182
fn_status_is_success(3XFN) 182
fn_status_set_success(3XFN) 182
fn_status_set(3XFN) 182
fn_status_set_code(3XFN) 182
fn_status_set_remaining_name(3XFN) 182
fn_status_set_resolved_name(3XFN) 182

fn_status_set_resolved_ref(3XFN) 182

man pages section 3: Networking Library Functions ¢ February 2000

fn_status_set_diagnostic_message(3XFN) 182

fn_status_set_link_code(3XFN) 182

fn_status_set_link_remaining_name(3XFN) 182
fn_status_set_link_resolved_name(3XFN) 182
fn_status_set_link_resolved_ref(3XFN) 182
fn_status_set_link_diagnostic_message(3XFN) 182
fn_status_append_resolved_name(3XFN) 182

fn_status_append_remaining_name(3XFN) 182

fn_status_advance_by name(3XFN) 182
fn_status_description(3XFN) 182
FN_string_t(3XFN) 187
fn_string_create(3XFN) 187
fn_string_destroy(3XFN) 187
fn_string_from_str(3XFN) 187
fn_string_from_str_n(3XFN) 187
fn_string_str(3XFN) 187
fn_string_from_contents(3XFN) 187
fn_string_code_set(3XFN) 187
fn_string_charcount(3XFN) 187
fn_string_bytecount(3XFN) 187
fn_string_contents(3XFN) 187
fn_string_copy(3XFN) 187
fn_string_assign(3XFN) 187
fn_string_from_strings(3XFN) 187
fn_string_from_substring(3XFN) 187
fn_string_is_empty(3XFN) 187
fn_string_compare(3XFN) 187

fn_string_compare_substring(3XFN) 187

Contents 13

fn_string_next_substring(3XFN) 187
fn_string_prev_substring(3XFN) 187
getaddrinfo(3SOCKET) 191
getnameinfo(3SOCKET) 191
freeaddrinfo(3SOCKET) 191
gai_strerror(3SOCKET) 191
gethostbyname(3NSL) 195
gethostbyname_r(3NSL) 195
gethostbyaddr(3NSL) 195
gethostbyaddr_r(3NSL) 195
gethostent(3NSL) 195
gethostent_r(3NSL) 195
sethostent(3NSL) 195
endhostent(3NSL) 195
gethostname(3XNET) 201
getipnodebyname(3SOCKET) 202
getipnodebyaddr(3SOCKET) 202
freehostent(3SOCKET) 202
getnetbyname(3SOCKET) 208
getnetbyname_r(3SOCKET) 208
getnetbyaddr(3SOCKET) 208
getnetbyaddr_r(3SOCKET) 208
getnetent(3SOCKET) 208
getnetent_r(3SOCKET) 208
setnetent(3SOCKET) 208
endnetent(3SOCKET) 208
getnetconfig(3NSL) 211

setnetconfig(3NSL) 211

man pages section 3: Networking Library Functions ¢ February 2000

endnetconfig(3NSL) 211
getnetconfigent(3NSL) 211
freenetconfigent(3NSL) 211
nc_perror(3NSL) 211
nc_sperror(3NSL) 211
getnetpath(3NSL) 213
setnetpath(3NSL) 213
endnetpath(3NSL) 213
getpeername(3SOCKET) 215

getpeername(3XNET) 216

getprotobyname(3SOCKET) 218
getprotobyname_r(3SOCKET) 218
getprotobynumber(3SOCKET) 218
getprotobynumber_r(3SOCKET) 218

getprotoent(3SOCKET) 218
getprotoent_r(3SOCKET) 218
setprotoent(3SOCKET) 218
endprotoent(3SOCKET) 218
getpublickey(3NSL) 222
getsecretkey(3NSL) 222
publickey(3NSL) 222
getrpcbyname(3NSL) 223
getrpcbyname_r(3NSL) 223
getrpcbynumber(3NSL) 223
getrpcbynumber_r(3NSL) 223
getrpcent(3NSL) 223
getrpcent_r(3NSL) 223
setrpcent(3NSL) 223

Contents 15

endrpcent(3NSL) 223
getservbyname(3SOCKET) 226
getservbyname_r(3SOCKET) 226
getservbyport(3SOCKET) 226
getservbyport_r(3SOCKET) 226
getservent(3SOCKET) 226
getservent_r(3SOCKET) 226
setservent(3SOCKET) 226
endservent(3SOCKET) 226
getsockname(3SOCKET) 230
getsockname(3XNET) 231
getsockopt(3SOCKET) 232
setsockopt(3SOCKET) 232
getsockopt(3XNET) 235
htonl(3XNET) 238
htons(3XNET) 238
ntohl(3XNET) 238
ntohs(3XNET) 238
if_nametoindex(3NSL) 239
if_indextoname(3NSL) 239
if_nameindex(3NSL) 239
if_freenameindex(3NSL) 239
if_nametoindex(3XNET) 241
if_indextoname(3XNET) 241
if_nameindex(3XNET) 241
if_freenameindex(3XNET) 241
inet(3SOCKET) 243
inet6(3SOCKET) 243

man pages section 3: Networking Library Functions ¢ February 2000

inet_ntop(3SOCKET) 243
inet_pton(3SOCKET) 243
inet_addr(3SOCKET) 243
inet_network(3SOCKET) 243

inet_makeaddr(3SOCKET) 243

inet_Inaof(3SOCKET) 243
inet_netof(3SOCKET) 243
inet_ntoa(3SOCKET) 243
inet_addr(3XNET) 247
inet_network(3XNET) 247
inet_makeaddr(3XNET) 247
inet_Inaof(3XNET) 247
inet_netof(3XNET) 247
inet_ntoa(3XNET) 247
kerberos(3KRB) 249
krb_mk_req(3KRB) 249
krb_rd_req(3KRB) 249
krb_kntoln(3KRB) 249
krb_set_key(3KRB) 249
krb_get_cred(3KRB) 249
krb_mk_safe(3KRB) 249
krb_rd_safe(3KRB) 249
krb_mk_err(3KRB) 249
krb_rd_err(3KRB) 249
kerberos_rpc(3KRB) 253

authkerb_getucred(3KRB) 253

authkerb_seccreate(3KRB) 253

svc_kerb_reg(3KRB) 253

Contents 17

krb_realmofhost(3KRB) 256
krb_get_phost(3KRB) 256
krb_get_krbhst(3KRB) 256
krb_get_admhst(3KRB) 256
krb_get_Irealm(3KRB) 256
krb_sendauth(3KRB) 258
krb_recvauth(3KRB) 258
krb_net_write(3KRB) 258
krb_net_read(3KRB) 258
krb_set_tkt_string(3KRB) 262
Idap(3LDAP) 263
Idap_abandon(3LDAP) 273
Idap_add(3LDAP) 274
Idap_add_s(3LDAP) 274
Idap_add_ext(3LDAP) 274
Idap_add_ext_s(3LDAP) 274
Idap_bind(3LDAP) 276
Idap_bind_s(3LDAP) 276
Idap_sasl_bind(3LDAP) 276
Idap_sasl_bind_s(3LDAP) 276
Idap_simple_bind(3LDAP) 276
Idap_simple_bind_s(3LDAP) 276
Idap_unbind(3LDAP) 276
Idap_unbind_s(3LDAP) 276
Idap_set_rebind_proc(3LDAP) 276
Idap_cache(3LDAP) 279
Idap_enable_cache(3LDAP) 279
Idap_disable_cache(3LDAP) 279

man pages section 3: Networking Library Functions ¢ February 2000

Idap_destroy_cache(3LDAP) 279
Idap_flush_cache(3LDAP) 279
Idap_uncache_entry(3LDAP) 279
Idap_uncache_request(3LDAP) 279
Idap_set_cache_options(3LDAP) 279
Idap_charset(3LDAP) 281

Idap_set_string_translators(3LDAP) 281

Idap_t61 to_8859(3LDAP) 281
Idap_8859 to_t61(3LDAP) 281
Idap_translate_from_t61(3LDAP) 281
Idap_translate_to_t61(3LDAP) 281
Idap_enable_translation(3LDAP) 281
Idap_compare(3LDAP) 283
Idap_compare_s(3LDAP) 283
Idap_compare_ext(3LDAP) 283
Idap_compare_ext_s(3LDAP) 283
Idap_control_free(3LDAP) 285
Idap_controls_free(3LDAP) 285
Idap_delete(3LDAP) 286
Idap_delete_s(3LDAP) 286
Idap_delete_ext(3LDAP) 286
Idap_delete_ext_s(3LDAP) 286
Idap_disptmpl(3LDAP) 288
Idap_init_templates(3LDAP) 288
Idap_init_templates_buf(3LDAP) 288
Idap_free_templates(3LDAP) 288
Idap_first_disptmpl(3LDAP) 288
Idap_next_disptmpl(SLDAP) 288

Contents 19

20

Idap_oc2template(3LDAP) 288
Idap_tmplattrs(3LDAP) 288
Idap_first_tmplrow(3LDAP) 288
Idap_next_tmplrow(3LDAP) 288
Idap_first_tmplcol(3LDAP) 288
Idap_next_tmplcol(3LDAP) 288
Idap_entry2text(3LDAP) 295
Idap_entry2text_search(3LDAP) 295
Idap_entry2htmI(3LDAP) 295
Idap_entry2html_search(SLDAP) 295
Idap_vals2htmI(3LDAP) 295
Idap_vals2text(3LDAP) 295
Idap_error(3LDAP) 299
Idap_perror(3LDAP) 299
Idap_result2error(SLDAP) 299
Idap_errlist(3LDAP) 299
Idap_err2string (3LDAP) 299
Idap_first_attribute(3LDAP) 303
Idap_next_attribute(3LDAP) 303
Idap_first_entry(3LDAP) 304
Idap_next_entry(3LDAP) 304
Idap_count_entries(3LDAP) 304
Idap_count_references(3LDAP) 304
Idap_first_reference(3LDAP) 304
Idap_first_reference(3LDAP) 304
Idap_first_message(3LDAP) 306
Idap_count_messages(3LDAP) 306

Idap_next_message(3LDAP) 306

man pages section 3: Networking Library Functions ¢ February 2000

Idap_msgtype(3LDAP) 306
Idap_friendly(3LDAP) 307
Idap_friendly_name(3LDAP) 307
Idap_free_friendlymap(3LDAP) 307
Idap_get_dn(3LDAP) 308
Idap_explode_dn(3LDAP) 308
Idap_dn2ufn(3LDAP) 308
Idap_is_dns_dn(3LDAP) 308
Idap_explode_dns(3LDAP) 308
Idap_dns_to_dn(3LDAP) 308
Idap_getfilter(SLDAP) 310
Idap_init_getfilter(SLDAP) 310
Idap_init_getfilter_buf(3LDAP) 310
Idap_getfilter_free(3LDAP) 310
Idap_getfirstfilter(3LDAP) 310
Idap_getnextfilter(SLDAP) 310
Idap_build_filter(3LDAP) 310
Idap_get_option(3LDAP) 312
Idap_set_option(3LDAP) 312
Idap_get_values(3LDAP) 316
Idap_get_values_len(3LDAP) 316
Idap_count_values(3LDAP) 316
Idap_count_values_len(3LDAP) 316
Idap_value_free(3LDAP) 316
Idap_value_free_len(3LDAP) 316
Idap_modify(3LDAP) 318
Idap_modify_s(3LDAP) 318
Idap_mods_free(SLDAP) 318

Contents 21

Idap_modify_ext(3LDAP) 318
Idap_modify_ext_s(3LDAP) 318
Idap_modrdn(3LDAP) 320
Idap_modrdn_s(3LDAP) 320
Idap_modrdn2(3LDAP) 320
Idap_modrdn2_s(3LDAP) 320
Idap_rename(3LDAP) 320
Idap_rename_s(3LDAP) 320
Idap_open(3LDAP) 322
Idap_init(SLDAP) 322
Idap_parse_result(3LDAP) 324
Idap_parse_extended_result(3LDAP) 324
Idap_parse_sasl_bind_result(3LDAP) 324
Idap_result(3LDAP) 325
Idap_msgfree(3LDAP) 325
Idap_search(3LDAP) 327
Idap_search_s(3LDAP) 327
Idap_search_ext(SLDAP) 327
Idap_search_ext_s(3LDAP) 327
Idap_search_st(SLDAP) 327
Idap_searchprefs(3LDAP) 329
Idap_init_searchprefs(3LDAP) 329
Idap_init_searchprefs_buf(SLDAP) 329
Idap_free_searchprefs(3LDAP) 329
Idap_first_searchobj(3LDAP) 329
Idap_next_searchobj(3LDAP) 329
Idap_sort(3LDAP) 331

Idap_sort_entries(3LDAP) 331

man pages section 3: Networking Library Functions ¢ February 2000

Idap_sort_values(3LDAP) 331

Idap_sort_strcasecmp(3LDAP) 331

Idap_ufn(3LDAP) 333
Idap_ufn_search_s(3LDAP) 333
Idap_ufn_search_c(3LDAP) 333
Idap_ufn_search_ct(3LDAP) 333
Idap_ufn_setfilter(3LDAP) 333
Idap_ufn_setprefix(SLDAP) 333
Idap_ufn_timeout(SLDAP) 333
Idap_url(SLDAP) 335
Idap_is_ldap_url(SLDAP) 335
Idap_url_parse(3LDAP) 335
Idap_free_urldesc(3LDAP) 335
Idap_url_search(3LDAP) 335
Idap_url_search_s(3LDAP) 335
Idap_url_search_st(3LDAP) 335
Idap_dns_to_url(3LDAP) 335
Idap_dn_to_url(3LDAP) 335
listen(3SOCKET) 338
listen(3XNET) 339
netdir(3NSL) 341
netdir_getbyname(3NSL) 341
netdir_getbyaddr(3NSL) 341
netdir_free(3NSL) 341
netdir_options(3NSL) 341
taddr2uaddr(3NSL) 341
uaddr2taddr(3NSL) 341
netdir_perror(3NSL) 341

Contents 23

netdir_sperror(3NSL) 341
netdir_mergeaddr(3NSL) 341
nis_error(3NSL) 345
nis_sperrno(3NSL) 345
nis_perror(3NSL) 345
nis_lerror(3NSL) 345
nis_sperror(3NSL) 345
nis_sperror_r(3NSL) 345
nis_groups(3NSL) 346
nis_ismember(3NSL) 346
nis_addmember(3NSL) 346
nis_removemember(3NSL) 346
nis_creategroup(3NSL) 346
nis_destroygroup(3NSL) 346
nis_verifygroup(3NSL) 346
nis_print_group_entry(3NSL) 346
nis_local_names(3NSL) 349
nis_local_directory(3NSL) 349
nis_local_host(3NSL) 349
nis_local_group(3NSL) 349
nis_local_principal(3NSL) 349
nis_names(3NSL) 351
nis_lookup(3NSL) 351
nis_add(3NSL) 351
nis_remove(3NSL) 351
nis_modify(3NSL) 351
nis_freeresult(3NSL) 351
nis_objects(3NSL) 358

24 man pages section 3: Networking Library Functions ¢ February 2000

nis_ping(3NSL) 367
nis_checkpoint(3NSL) 367
nis_server(3NSL) 368
nis_mkdir(3NSL) 368
nis_rmdir(3NSL) 368
nis_servstate(3NSL) 368
nis_stats(3NSL) 368
nis_getservlist(3NSL) 368
nis_freeservlist(3NSL) 368
nis_freetags(3NSL) 368
nis_subr(3NSL) 370
nis_leaf_of(3NSL) 370
nis_name_of(3NSL) 370
nis_domain_of(3NSL) 370
nis_getnames(3NSL) 370
nis_freenames(3NSL) 370
nis_dir_cmp(3NSL) 370
nis_clone_object(3NSL) 370
nis_destroy_object(3NSL) 370
nis_print_object(3NSL) 370
nis_tables(3NSL) 373
nis_list(3NSL) 373
nis_add_entry(3NSL) 373
nis_remove_entry(3NSL) 373
nis_modify_entry(3NSL) 373
nis_first_entry(3NSL) 373
nis_next_entry(3NSL) 373
nisgetcall(3NSL) 382

Contents 25

26

nisprovider(3NSL) 383
nisrequest(3NSL) 384
rcmd(3SOCKET) 386
rcmd_af(3SOCKET) 386
rresvport(3SOCKET) 386
rresvport_af(3SOCKET) 386
ruserok(3SOCKET) 386
recv(3SOCKET) 388
recvfrom(3SOCKET) 388
recvmsg(3SOCKET) 388
recv(3XNET) 390
recvfrom(3XNET) 393
recvmsg(3XNET) 397
resolver(3RESOLV) 401
res_init(3RESOLV) 401
res_mkquery(3RESOLV) 401
res_mkupdate(3RESOLV) 401
res_mkupdrec(3RESOLV) 401
res_query(3RESOLV) 401
res_search(3RESOLV) 401
res_send(3RESOLV) 401
res_update(3RESOLV) 401
dn_comp(3RESOLV) 401
dn_expand(3RESOLV) 401
rexec(3SOCKET) 407
rexec_af(3SOCKET) 407
rpc(3NSL) 409
rpcbind(3NSL) 419

man pages section 3: Networking Library Functions ¢ February 2000

rpcb_getmaps(3NSL) 419
rpcb_getaddr(3NSL) 419
rpcb_gettime(3NSL) 419
rpcb_rmtcall(3NSL) 419
rpcb_set(3NSL) 419
rpcb_unset(3NSL) 419
rpc_cint_auth(3NSL) 421
auth_destroy(3NSL) 421
authnone_create(3NSL) 421
authsys_create(3NSL) 421
authsys_create_default(3NSL) 421
rpc_cint_calls(3NSL) 423
cint_call(3NSL) 423
cint_freeres(3NSL) 423
cInt_geterr(3NSL) 423
cint_perrno(3NSL) 423
cint_perror(3NSL) 423
cInt_sperrno(3NSL) 423
cint_sperror(3NSL) 423
rpc_broadcast(3NSL) 423
rpc_broadcast_exp(3NSL) 423
rpc_call(3NSL) 423
rpc_cint_create(3NSL) 427
cint_control(3NSL) 427
cint_create(3NSL) 427
cInt_create_timed(3NSL) 427
cint_create_vers(3NSL) 427

cInt_create_vers_timed(3NSL) 427

Contents 27

cInt_destroy(3NSL) 427
cint_dg_create(3NSL) 427
cInt_pcreateerror(3NSL) 427
cint_raw_create(3NSL) 427
cInt_spcreateerror(3NSL) 427
cint_tli_create(3NSL) 427
cint_tp_create(3NSL) 427
cint_tp_create_timed(3NSL) 427
cint_vc_create(3NSL) 427
rpc_createerr(3NSL) 427
rpc_control(3NSL) 433
rpc_gss_getcred(3NSL) 435
rpc_gss_get_error(3NSL) 437
rpc_gss_get_mechanisms(3NSL) 438
rpc_gss_get_mech_info(3NSL) 438
rpc_gss_get_versions(3NSL) 438
rpc_gss_is_installed(3NSL) 438
rpc_gss_get_principal_name(3NSL) 440
rpc_gss_max_data_length(3NSL) 442
rpc_gss_svc_max_data_length(3NSL) 442
rpc_gss_mech_to_oid(3NSL) 443
rpc_gss_qop_to_num(3NSL) 443
rpc_gss_seccreate(3NSL) 445
rpc_gss_set_callback(3NSL) 447
rpc_gss_set_defaults(3NSL) 449
rpc_gss_set_svc_name(3NSL) 450
rpc_rac(3RAC) 451
rac_drop(3RAC) 451

man pages section 3: Networking Library Functions ¢ February 2000

rac_poll(3RAC) 451
rac_recv(3RAC) 451
rac_send(3RAC) 451
rpcsec_gss(3NSL) 455
rpc_soc(3NSL) 460
authdes_create(3NSL) 460
authunix_create(3NSL) 460
authunix_create_default(3NSL) 460
callrpc(3NSL) 460
cInt_broadcast(3NSL) 460
cIntraw_create(3NSL) 460
cinttcp_create(3NSL) 460
cintudp_bufcreate(3NSL) 460
cIntudp_create(3NSL) 460
get_myaddress(3NSL) 460
getrpcport(3NSL) 460
pmap_getmaps(3NSL) 460
pmap_getport(3NSL) 460
pmap_rmtcall(3NSL) 460
pmap_set(3NSL) 460
pmap_unset(3NSL) 460
registerrpc(3NSL) 460
svc_fds(3NSL) 460
svc_getcaller(3NSL) 460
svc_getreq(3NSL) 460
svc_register(3NSL) 460
svc_unregister(3NSL) 460
svcfd_create(3NSL) 460

Contents 29

30

svcraw_create(3NSL) 460
svctcp_create(3NSL) 460
svcudp_bufcreate(3NSL) 460
svcudp_create(3NSL) 460
xdr_authunix_parms(3NSL) 460
rpc_svc_calls(3NSL) 470
svc_dg_enablecache(3NSL) 470
svc_done(3NSL) 470
svc_exit(3NSL) 470
svc_fdset(3NSL) 470
svc_freeargs(3NSL) 470
svc_getargs(3NSL) 470
svc_getreq_common(3NSL) 470
svc_getreq_poll(3NSL) 470
svc_getreqset(3NSL) 470
svc_getrpccaller(3NSL) 470
svc_max_pollfd(3NSL) 470
svc_pollfd(3NSL) 470
svc_run(3NSL) 470
svc_sendreply(3NSL) 470
rpc_svc_create(3NSL) 474
svc_control(3NSL) 474
svc_create(3NSL) 474
svc_destroy(3NSL) 474
svc_dg_create(3NSL) 474
svc_fd_create(3NSL) 474
svc_raw_create(3NSL) 474

svc_tli_create(3NSL) 474

man pages section 3: Networking Library Functions ¢ February 2000

svc_tp_create(3NSL) 474
svc_vc_create(3NSL) 474
rpc_svc_err(3NSL) 479
svcerr_auth(3NSL) 479
svcerr_decode(3NSL) 479
svcerr_noproc(3NSL) 479
svcerr_noprog(3NSL) 479
svcerr_progvers(3NSL) 479
svcerr_systemerr(3NSL) 479
svcerr_weakauth(3NSL) 479
rpc_svc_reg(3NSL) 481
rpc_reg(3NSL) 481
svc_reg(3NSL) 481
svc_unreg(3NSL) 481
svc_auth_reg(3NSL) 481
xprt_register(3NSL) 481
xprt_unregister(3NSL) 481
rpc_xdr(3NSL) 483
xdr_accepted_reply(3NSL) 483
xdr_authsys_parms(3NSL) 483
xdr_callhdr(3NSL) 483
xdr_callmsg(3NSL) 483
xdr_opaque_auth(3NSL) 483
xdr_rejected_reply(3NSL) 483
xdr_replymsg(3NSL) 483
rstat(3RPC) 485
havedisk(3RPC) 485
rusers(3RPC) 486

Contents 31

32

rnusers(3RPC) 486
rwall(3RPC) 487
secure_rpc(3NSL) 488
authdes_getucred(3NSL) 488
authdes_seccreate(3NSL) 488
getnetname(3NSL) 488
host2netname(3NSL) 488
key_decryptsession(3NSL) 488
key_encryptsession(3NSL) 488
key_gendes(3NSL) 488
key_setsecret(3NSL) 488
key_secretkey is_set(3NSL) 488
netname2host(3NSL) 488
netname2user(3NSL) 488
user2netname(3NSL) 488
send(3SOCKET) 492
sendto(3SOCKET) 492
sendmsg(3SOCKET) 492
send(3XNET) 494
sendmsg(3XNET) 497
sendto(3XNET) 501
setsockopt(3XNET) 505
shutdown(3SOCKET) 509
shutdown(3XNET) 510
slp_api(3SLP) 512
SLPClose(3SLP) 523
SLPDelAttrs(3SLP) 524
SLPDereg(3SLP) 526

man pages section 3: Networking Library Functions ¢ February 2000

SLPEscape(3SLP) 528
SLPFindAttrs(3SLP) 530
SLPFindScopes(3SLP) 532
SLPFindSrvs(3SLP) 534
SLPFindSrvTypes(3SLP) 536
SLPFree(3SLP) 538
SLPGetProperty(3SLP) 539
SLPGetRefreshinterval(3SLP) 540
SLPOpen(3SLP) 541
SLPParseSrvURL(3SLP) 543
SLPReg(3SLP) 545
SLPSetProperty(3SLP) 547
slp_strerror(3SLP) 548
SLPUnescape(3SLP) 549
socket(3SOCKET) 551
socket(3XNET) 554
socketpair(3SOCKET) 557
socketpair(3XNET) 558
spray(3SOCKET) 561
t_accept(3NSL) 563
t_alloc(3NSL) 567
t_bind(3NSL) 570
t_close(3NSL) 574
t_connect(3NSL) 576
t_errno(3NSL) 580
t_error(3NSL) 582
t_free(3NSL) 584
t_getinfo(3NSL) 586

Contents 33

t_getprotaddr(3NSL) 590
t_getstate(3NSL) 592
t_listen(3NSL) 594
t_look(3NSL) 597
t_open(3NSL) 599
t_optmgmt(3NSL) 603
t_rcv(3NSL) 612
t_rcvconnect(3NSL) 615
t_rcvdis(3NSL) 618
t_rcvrel(3NSL) 621
t_rcvreldata(3NSL) 623
t_rcvudata(3NSL) 625
t_rcvuderr(3NSL) 628
t_rcvv(3NSL) 631
t_rcvvudata(3NSL) 634
t_snd(3NSL) 637
t_snddis(3NSL) 641
t_sndrel(3NSL) 644
t_sndreldata(3NSL) 646
t_sndudata(3NSL) 648
t_sndv(3NSL) 651
t_sndvudata(3NSL) 655
t_strerror(3NSL) 658
t_sync(3NSL) 660
t_sysconf(3NSL) 662
t_unbind(3NSL) 663
xdr(3NSL) 665
xdr_admin(3NSL) 667

34 man pages section 3: Networking Library Functions ¢ February 2000

xdr_control(3NSL) 667
xdr_getpos(3NSL) 667
xdr_inline(3NSL) 667

xdrrec_endofrecord(3NSL) 667

xdrrec_eof(3NSL) 667

xdrrec_readbytes(3NSL) 667
xdrrec_skiprecord(3NSL) 667

xdr_setpos(3NSL) 667
xdr_sizeof(3NSL) 667
xdr_complex(3NSL) 669
xdr_array(3NSL) 669
xdr_bytes(3NSL) 669
xdr_opaque(3NSL) 669
xdr_pointer(3NSL) 669
xdr_reference(3NSL) 669
xdr_string(3NSL) 669
xdr_union(3NSL) 669
xdr_vector(3NSL) 669
xdr_wrapstring(3NSL) 669
xdr_create(3NSL) 672
xdr_destroy(3NSL) 672
xdrmem_create(3NSL) 672
xdrrec_create(3NSL) 672
xdrstdio_create(3NSL) 672
xdr_simple(3NSL) 674
xdr_bool(3NSL) 674
xdr_char(3NSL) 674
xdr_double(3NSL) 674

Contents 35

36

xdr_enum(3NSL) 674
xdr_float(3NSL) 674
xdr_free(3NSL) 674
xdr_hyper(3NSL) 674
xdr_int(3NSL) 674
xdr_long(3NSL) 674
xdr_longlong_t(3NSL) 674
xdr_quadruple(3NSL) 674
xdr_short(3NSL) 674
xdr_u_char(3NSL) 674
xdr_u_hyper(3NSL) 674
xdr_u_int(3NSL) 674
xdr_u_long(3NSL) 674
xdr_u_longlong_t(3NSL) 674
xdr_u_short(3NSL) 674
xdr_void(3NSL) 674

xfn(3XFN) 678
xfn_attributes(3XFN) 679
xfn_composite_names(3XFN) 683
xfn_compound_names(3XFN) 684
xfn_links(3XFN) 688
xfn_status_codes(3XFN) 691
ypcInt(3NSL) 695
yp_get_default_domain(3NSL) 695
yp_bind(3NSL) 695
yp_unbind(3NSL) 695
yp_match(3NSL) 695
yp_first(3NSL) 695

man pages section 3: Networking Library Functions ¢ February 2000

yp_next(3NSL) 695
yp_all(3NSL) 695
yp_order(3NSL) 695
yp_master(3NISL) 695
yperr_string(3NSL) 695
ypprot_err(3NSL) 695
yp_update(3NSL) 700
Index 700

Contents 37

38

man pages section 3: Networking Library Functions ¢ February 2000

Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page

is intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview

The following contains a brief description of each man page section and the information
it references:

Section 1 describes, in alphabetical order, commands available with the operating
system.

Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

Section 5 contains miscellaneous documentation such as character-set tables.
Section 6 contains available games and demos.

Section 7 describes various special files that refer to specific hardware
peripherals and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

Preface 39

m Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver/Kernel Interface (DKI).

m Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

m Section 9F describes the kernel functions available for use by device drivers.

m Section 9S describes the data structures used by drivers to share information
between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there are
no bugs to report, there is no BUGS section. See the intro pages for more information
and detail about each section, and man(1) for more information about man pages in

general.

NAME This section gives the names of the commands
or functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or

functions. When a command or file does not
exist in the standard path, its full path name is
shown. Options and arguments are alphabetized,
with single letter arguments first, and options
with arguments next, unless a different argument
order is required.

The following special characters are used in
this section:

[1 Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename

| Separator. Only one of the arguments
separated by this character can be
specified at a time.

{1} Braces. The options and/or
arguments enclosed within braces are

40 man pages section 3: Networking Library Functions ¢ February 2000

PROTOCOL

DESCRIPTION

I0CTL

OPTIONS

OPERANDS

OUTPUT

RETURN VALUES

ERRORS

interdependent, such that everything
enclosed must be treated as a unit.

This section occurs only in subsection 3R to
indicate the protocol description file.

This section defines the functionality and
behavior of the service. Thus it describes
concisely what the command does. It does not
discuss OPTIONS or cite EXAMPLES. Interactive
commands, subcommands, requests, macros, and
functions are described under USAGE.

This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioctl (2) system call is called
ioctl and generates its own heading. ioctl

calls for a specific device are listed alphabetically
(on the man page for that specific device). ioctl
calls are used for a particular class of devices all
of which have an io ending, such as mtio (71).

This secton lists the command options with

a concise summary of what each option does.
The options are listed literally and in the order
they appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

This section lists the command operands and
describes how they affect the actions of the
command.

This section describes the output — standard
output, standard error, or output files — generated
by the command.

If the man page documents functions that
return values, this section lists these values and
describes the conditions under which they are
returned. If a function can return only constant
values, such as 0 or -1, these values are listed
in tagged paragraphs. Otherwise, a single
paragraph describes the return values of each
function. Functions declared void do not return
values, so they are not discussed in RETURN
VALUES.

On failure, most functions place an error code in
the global variable errno indicating why they

41

USAGE

EXAMPLES

ENVIRONMENT VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than
one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

This section lists special rules, features, and
commands that require in-depth explanations.
The subsections listed here are used to explain
built-in functionality:

Commands

Modifiers

Variables

Expressions

Input Grammar

This section provides examples of usage

or of how to use a command or function.
Wherever possible a complete example
including command-line entry and machine
response is shown. Whenever an example is
given, the prompt is shown as example%,

or if the user must be superuser, example# .
Examples are followed by explanations, variable
substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

This section lists the values the command returns
to the calling program or shell and the conditions
that cause these values to be returned. Usually,
zero is returned for successful completion,

and values other than zero for various error
conditions.

This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes (5) for more information.

42 man pages section 3: Networking Library Functions ¢ February 2000

SEE ALSO

DIAGNOSTICS

WARNINGS

NOTES

BUGS

This section lists references to other man
pages, in-house documentation, and outside
publications.

This section lists diagnostic messages with a brief
explanation of the condition causing the error.

This section lists warnings about special
conditions which could seriously affect your
working conditions. This is not a list of
diagnostics.

This section lists additional information that
does not belong anywhere else on the page. It
takes the form of an aside to the user, covering
points of special interest. Critical information is
never covered here.

This section describes known bugs and, wherever
possible, suggests workarounds.

43

CHAPTER

Introduction to Library Functions

44

Sockets Library Functions accept(3SOCKET)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

accept — accept a connection on a socket

cc [flag ... I file ... —Isocket —Insl [library ...]
#include <sys/types.h>
#include <sys/socket.h>

int accept (ints, struct sockaddr *addr, socklen_t *addrlen);

The argument s is a socket that has been created with socket (3SOCKET) and
bound to an address with bind (3SOCKET), and that is listening for connections
after a call to listen (3SOCKET). The accept() function extracts the first
connection on the queue of pending connections, creates a new socket with

the properties of s, and allocates a new file descriptor, ns, for the socket. If no
pending connections are present on the queue and the socket is not marked as
non-blocking, accept() blocks the caller until a connection is present. If the
socket is marked as non-blocking and no pending connections are present on
the queue, accept() returns an error as described below. The accept()
function uses the netconfig (4) file to determine the STREAMS device file
name associated with s. This is the device on which the connect indication will
be accepted. The accepted socket, ns, is used to read and write data to and from
the socket that connected to ns; it is not used to accept more connections. The
original socket (s) remains open for accepting further connections.

The argument addr is a result parameter that is filled in with the address of the
connecting entity as it is known to the communications layer. The exact format
of the addr parameter is determined by the domain in which the communication
occurs.

The argument addrlen is a value-result parameter. Initially, it contains the
amount of space pointed to by addr; on return it contains the length in bytes of
the address returned.

The accept() function is used with connection-based socket types, currently
with SOCK_STREAM

It is possible to select (3C) or poll (2) a socket for the purpose of an accept()
by selecting or polling it for a read. However, this will only indicate when a
connect indication is pending; it is still necessary to call accept()

The accept() function returns -1 on error. If it succeeds, it returns a
non-negative integer that is a descriptor for the accepted socket.

accept() will fail if:
EBADF The descriptor is invalid.

EINTR The accept attempt was interrupted by the
delivery of a signal.

Last modified 16 May 1997 Sun0S 5.8 45

accept(3SOCKET)

46

ATTRIBUTES

SEE ALSO

EMFILE
ENODEV

ENOMEM

ENOSR

ENOTSOCK
EOPNOTSUPP

EPROTO

EWOULDBLOCK

Sockets Library Functions

The per-process descriptor table is full.

The protocol family and type corresponding to s
could not be found in the netconfig file.

There was insufficient user memory available to
complete the operation.

There were insufficient STREAMS resources
available to complete the operation.

The descriptor does not reference a socket.

The referenced socket is not of type
SOCK_STREAM

A protocol error has occurred; for example, the
STREAMS protocol stack has not been initialized
or the connection has already been released.

The socket is marked as non-blocking and no
connections are present to be accepted.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

Safe

poll (2), bind (3SOCKET), connect (3SOCKET), listen (3SOCKET),
select (3C), socket (3SOCKET), netconfig (4), attributes (5),

socket (3HEAD)

Sun0S 5.8

Last modified 16 May 1997

X/0pen Networking Services Library Functions accept(3XNET)

NAME
SYNOPSIS

DESCRIPTION

USAGE

RETURN VALUES

ERRORS

accept — accept a new connection on a socket

cc [flag ...] file ... —=Ixnet [library ...]
#include <sys/socket.h>

int accept (int socket, struct sockaddr *address, socklen_t *address_len);

The accept() function extracts the first connection on the queue of pending
connections, creates a new socket with the same socket type protocol and address
family as the specified socket, and allocates a new file descriptor for that socket.

The function takes the following arguments:

socket Specifies a socket that was created with socket (3XNET),
has been bound to an address with bind (3XNET), and has
issued a successful call to listen (3XNET).

address Either a null pointer, or a pointer to a sockaddr structure
where the address of the connecting socket will be returned.

address_len Points to a socklen_t which on input specifies the length
of the supplied sockaddr structure, and on output specifies
the length of the stored address.

If address is not a null pointer, the address of the peer for the accepted connection
is stored in the sockaddr structure pointed to by address, and the length of this
address is stored in the object pointed to by address_len.

If the actual length of the address is greater than the length of the supplied
sockaddr structure, the stored address will be truncated.

If the protocol permits connections by unbound clients, and the peer is not
bound, then the value stored in the object pointed to by address is unspecified.

If the listen queue is empty of connection requests and O_NONBLOCK is not set
on the file descriptor for the socket, accept() will block until a connection

is present. If the listen (3XNET) queue is empty of connection requests and
O_NONBLOCK is set on the file descriptor for the socket, accept() will fail
and set errno to EAGAINor EWOULDBLOCK

The accepted socket cannot itself accept more connections. The original socket
remains open and can accept more connections.

When a connection is available, select (3C) will indicate that the file descriptor
for the socket is ready for reading.

Upon successful completion, accept() returns the nonnegative file descriptor
of the accepted socket. Otherwise, -1 is returned and errno s set to indicate the
error.

The accept() function will fail if;

Last modified 8 May 1998 Sun0S 5.8 47

accept(3XNET)

EAGAIN
EWOULDBLOCK

EBADF
ECONNABORTED
EFAULT

EINTR

EINVAL

EMFILE

ENFILE

ENOTSOCK

EOPNOTSUPP

ENOBUFS

ENOMEM

ENOSR

EPROTO

X/0pen Networking Services Library Functions

O_NONBLOCK is set for the socket file
descriptor and no connections are present to be
accepted.

The socket argument is not a valid file descriptor.
A connection has been aborted.

The address or address_len parameter can not be
accessed or written.

The accept() function was interrupted by a
signal that was caught before a valid connection
arrived.

The socket is not accepting connections.

OPEN_MAXile descriptors are currently open in
the calling process.

The maximum number of file descriptors in the
system are already open.

The socket argument does not refer to a socket.

The socket type of the specified socket does not
support accepting connections.

The accept() function may fail if:

No buffer space is available.

There was insufficient memory available to
complete the operation.

There was insufficient STREAMS resources
available to complete the operation.

A protocol error has occurred; for example, the
STREAMS protocol stack has not been initialized.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

MT-Safe

SEE ALSO bind (3XNET), connect (3XNET), listen (3XNET), socket (3XNET),

attributes (5)

48 Sun0S 5.8

Last modified 8 May 1998

LDAP Library Functions ber_decode(3LDAP)

NAME

SYNOPSIS

DESCRIPTION

ber_decode, ber_alloc_t, ber_free, ber_bvdup, ber_init, ber_flatten,
ber_get_next, ber_skiptag, ber_peek_tag, ber_scanf, ber_get_int, ber_get_stringa,
ber_get_stringal, ber_get_stringb, ber_get_null, ber_get_boolean,
ber_get_bitstring, ber_first_element, ber_next_element, ber_bvfree, ber_bvecfree
— Basic Encoding Rules library decoding functions

cc[flag...] file... -lldap[library...]

#include <lber.h>
BerElement *ber_alloc_t (int options);

struct berval *ber_bvdup (struct berval *bv);

void ber_free (BerElement *ber, int freebuf);

BerElement *ber_init (struct berval *bv);

int ber_flatten (BerElement *ber, struct berval **bvPtr);

ber_get next (Sockbuf *sh, unsigned long *len, char *bv_val);

ber_skip_tag (BerElement **ber, unsigned long **len);

ber_peek tag (BerElement **ber, unsigned long **len);

ber_get_int (BerElement **ber, long **num);

ber_get_stringb (BerElement **ber, char **buf, unsigned long **len);
ber_get_stringa (BerElement **ber, char ***buf);

ber_get_stringal (BerElement **ber, struct berval ***bv);

ber_get null (BerElement **ber);

ber_get boolean (BerElement **ber, int **bool);

ber_get_bitstringa (BerElement **ber, char ***buf, unsigned long **blen);
ber_first_element (BerElement **ber, unsigned long **len, char ***cookie);
ber_next_element (BerElement **ber, unsigned long **len, char **cookie);
ber_scanf (BerElement **ber, char **fmt [, arg...]);

ber_bvfree (struct berval **bv);

ber_bvecfree (struct berval ***bvec);

These functions provide a subfunction interface to a simplified implementation
of the Basic Encoding Rules of ASN.1. The version of BER these functions
support is the one defined for the LDAP protocol. The encoding rules are the
same as BER, except that only definite form lengths are used, and bitstrings and

Last modified 25 May 1998 Sun0S 5.8 49

ber_decode(3LDAP)

50

LDAP Library Functions

octet strings are always encoded in primitive form. In addition, these lightweight
BER functions restrict tags and class to fit in a single octet (this means the actual
tag must be less than 31). When a "tag" is specified in the descriptions below, it
refers to the tag, class, and primitive or constructed bit in the first octet of the
encoding. This man page describes the decoding functions in the lber library.
See ber_encode (3LDAP) for details on the corresponding encoding functions.

Normally, the only functions that need be called by an application are
ber_get_next() to get the next BER element and ber_scanf() to do the
actual decoding. In some cases, ber_peek_tag() may also need to be called in
normal usage. The other functions are provided for those applications that need
more control than ber_scanf() provides. In general, these functions return
the tag of the element decoded, or -1 if an error occurred.

The ber_get_next() function is used to read the next BER element from the
given Sockbuf, sb . A Sockbuf consists of the descriptor (usually socket, but a file
descriptor works just as well) from which to read, and a BerElement structure
used to maintain a buffer. On the first call, the sb_ber struct should be zeroed. It
strips off and returns the leading tag byte, strips off and returns the length of the
entire element in len , and sets up ber for subsequent calls to ber_scanf() ,and
all to decode the element.

The ber_scanf() function is used to decode a BER element in much the same
way that scanf (3C) works. It reads from ber , a pointer to a BerElement such as
returned by ber_get_next(), interprets the bytes according to the format string
fmt , and stores the results in its additional arguments. The format string
contains conversion specifications which are used to direct the interpretation of
the BER element. The format string can contain the following characters.
-a Octet string. A char ** should be supplied. Memory
is allocated, filled with the contents of the octet string,
null-terminated, and returned in the parameter.

-s Octet string. A char * buffer should be supplied, followed by
a pointer to an integer initialized to the size of the buffer.
Upon return, the null-terminated octet string is put into the
buffer, and the integer is set to the actual size of the octet
string.

-0 Octet string. A struct ber_val ** should be supplied, which
upon return points to a memory allocated struct berval
containing the octet string and its length. ber_bvfree()
can be called to free the allocated memory.

-b Boolean. A pointer to an integer should be supplied.

Sun0S 5.8 Last modified 25 May 1998

LDAP Library Functions

-n

-V

X

Last modified 25 May 1998

The ber_get_int()
returning the result in num . The tag of whatever it finds is returned on success,
-1 on failure.

ber_decode(3LDAP)

Integer. A pointer to an integer should be supplied.

Bitstring. A char ** should be supplied which will point to
the memory allocated bits, followed by an unsigned long
* which will point to the length (in bits) of the bitstring
returned.

Null. No parameter is required. The element is simply
skipped if it is recognized.

Sequence of octet strings. A char *** should be supplied,
which upon return points to a memory allocated
null-terminated array of char *’s containing the octet strings.
NULL is returned if the sequence is empty.

Sequence of octet strings with lengths. A struct berval

*** should be supplied, which upon return points to a
memory allocated, null-terminated array of struct berval
*'s containing the octet strings and their lengths. NULL is
returned if the sequence is empty. ber_bvecfree() can
be called to free the allocated memory.

Skip element. The next element is skipped.

Begin sequence. No parameter is required. The initial
sequence tag and length are skipped.

End sequence. No parameter is required and no action is
taken.

Begin set. No parameter is required. The initial set tag and
length are skipped.

End set. No parameter is required and no action is taken.

function tries to interpret the next element as an integer,

The ber_get_stringb() function is used to read an octet string into a
preallocated buffer. The len parameter should be initialized to the size of the
buffer, and will contain the length of the octet string read upon return. The buffer
should be big enough to take the octet string value plus a terminating NULL byte.

The ber_get_stringa() function is used to allocate memory space into
which an octet string is read.

Sun0S 5.8 51

ber_decode(3LDAP)

52

LDAP Library Functions

The ber_get_stringal() function is used to allocate memory space into
which an octet string and its length are read. It takes a struct berval **, and
returns the result in this parameter.

The ber_get_null() function is used to read a NULL element. It returns
the tag of the element it skips over.

The ber_get_boolean() function is used to read a boolean value. It is called
the same way that ber_get_int() is called.

The ber_get_bitstringa() function is used to read a bitstring value. It takes
a char ** which will hold the allocated memory bits, followed by an unsigned
long *, which will point to the length (in bits) of the bitstring returned.

The ber_first_element() function is used to return the tag and length of
the first element in a set or sequence. It also returns in cookie a magic cookie
parameter that should be passed to subsequent calls to ber_next_element() ,
which returns similar information.

ber_alloc_t() constructs and returns BerElement . A null pointer is
returned on error. The options field contains a bitwise-or of options which are
to be used when generating the encoding of this BerElement . One option is
defined and must always be supplied:

#define LBER_USE_DER 0x01
When this option is present, lengths will always be encoded in the minimum
number of octets. Note that this option does not cause values of sets and
sequences to be rearranged in tag and byte order, so these functions are not
suitable for generating DER output as defined in X.509 and X.680

The ber_init ~ function constructs a BerElement and returns a new
BerElement containing a copy of the data in the bv argument. ber_init
returns the null pointer on error.

ber_free() frees a BerElement which is returned from the API calls
ber_alloc_t() or ber_init() . Each BerElement must be freed by the
caller. The second argument freebuf should always be set to 1 to ensure that the
internal buffer used by the BER functions is freed as well as the BerElement
container itself.

ber_bvdup() returns a copy of a berval . The bv_val field in the returned berval
points to a different area of memory as the bv_val field in the argument berval .
The null pointer is returned on error (that is, is out of memory).

The ber_flatten routine allocates a struct berval whose contents are BER
encoding taken from the ber argument. The bvPtr pointer points to the returned
berval , which must be freed using ber_bvfree() . This routine returns 0

on success and -1 on error.

Sun0S 5.8 Last modified 25 May 1998

LDAP Library Functions ber_decode(3LDAP)

EXAMPLES EXAMPLE 1 Assume the variable ber contains a lightweight BER encoding of the

following ASN.1 object:
AlmostASearchRequest := SEQUENCE {
baseObject DistinguishedName,
scope ENUMERATED {
baseObject (0),
singleLevel (1),
wholeSubtree (2)

h

derefAliases ENUMERATED {
neverDerefaliases (0),
derefInSearching (1),
derefFindingBaseObj (2),
alwaysDerefAliases (3N)

h
sizelimit INTEGER (0 .. 65535),
timelimit INTEGER (0 .. 65535),
attrsOnly BOOLEAN,
attributes SEQUENCE OF AttributeType
}
EXAMPLE 2 The element can be decoded using ber_scanf() as follows.
int scope, ali, size, time, attrsonly;

char *dn, **attrs;
if (ber_scanf(ber, "{aiiiib{v}}', &dn, &scope, &ali,

&size, &time, &attrsonly, &attrs) == -1)
/* error */
else
/* success */
ERRORS If an error occurs during decoding, generally these functions return -1 .
NOTES The return values for all of these functions are declared in the <lber.h>

header file. Some functions may allocate memory which must be freed by the
calling application.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWIIdap (32-bit)
SUNWIdapx (64-bit)

Stability Level Evolving

SEE ALSO ber_encode (3LDAP)

Yeong, W., Howes, T., and Hardcastle-Kille, S., "Lightweight Directory Access
Protocol”, OSI-DS-26, April 1992.

Information Processing - Open Systems Interconnection - Model and Notation -
Service Definition - Specification of Basic Encoding Rules for Abstract Syntax

Last modified 25 May 1998 Sun0S 5.8 53

ber_decode(3LDAP) LDAP Library Functions

Notation One, International Organization for Standardization, International
Standard 8825.

54 Sun0S 5.8 Last modified 25 May 1998

LDAP Library Functions ber_encode(3LDAP)

NAME

SYNOPSIS

DESCRIPTION

ber_encode, ber_alloc, ber_printf, ber_put_int, ber_put_ostring, ber_put_string,
ber_put_null, ber_put_boolean, ber_put_bitstring, ber_start_seq, ber_start_set,
ber_put_seq, ber_put_set — simplified Basic Encoding Rules library encoding
functions

cc[flag...] file... -lldap[library...]

#include <lber.h>

BerElement *ber_alloc();

ber_printf (BerElement *ber, char **fmt [, arg...]);

ber_put_int (BerElement *ber, long num, char tag);
ber_put_ostring (BerElement *ber, char **str, unsigned long len, char tag);
ber_put_string (BerElement *ber, char **str, char tag);
ber_put_null (BerElement *ber, char tag);

ber_put_boolean (BerElement *ber, int bool, char tag);
ber_put_bitstring (BerElement *ber, char *str, int blen, char tag);
ber_start seq (BerElement *ber, char tag);

ber_start_set (BerElement *ber, char tag);

ber_put_seq (BerElement *ber);

ber_put_set (BerElement *ber);

These functions provide a subfunction interface to a simplified implementation
of the Basic Encoding Rules of ASN.1. The version of BER these functions
support is the one defined for the LDAP protocol. The encoding rules are the
same as BER, except that only definite form lengths are used, and bitstrings and
octet strings are always encoded in primitive form. In addition, these lightweight
BER functions restrict tags and class to fit in a single octet (this means the actual
tag must be less than 31). When a "tag" is specified in the descriptions below, it
refers to the tag, class, and primitive or constructed bit in the first octet of the
encoding. This man page describes the encoding functions in the Iber library. See
ber_decode (3LDAP) for details on the corresponding decoding functions.

Normally, the only functions that need be called by an application are
ber_alloc() , to allocate a BER element, and ber_printf() to do the actual
encoding. The other functions are provided for those applications that need
more control than ber_printf() provides. In general, these functions return
the length of the element encoded, or -1 if an error occurred.

The ber_alloc() function is used to allocate a new BER element.

Last modified 25 May 1998 Sun0S 5.8 55

ber_encode(3LDAP)

56

LDAP Library Functions

The ber_printf() function is used to encode a BER element in much the same
way that sprintf(3S) works. One important difference, though, is that some
state information is kept with the ber parameter so that multiple calls can be
made to ber_printf() to append things to the end of the BER element.
Ber_printf() writes to ber , a pointer to a BerElement such as returned by
ber_alloc() . Itinterprets and formats its arguments according to the format
string fmt . The format string can contain the following characters:
-b Boolean. An integer parameter should be supplied. A
boolean element is output.

=i Integer. An integer parameter should be supplied. An
integer element is output.

-B Bitstring. A char * pointer to the start of the bitstring is
supplied, followed by the number of bits in the bitstring. A
bitstring element is output.

-n Null. No parameter is required. A null element is output.

-0 Octet string. A char * is supplied, followed by the length of
the string pointed to. An octet string element is output.

-s Octet string. A null-terminated string is supplied. An octet
string element is output, not including the trailing NULL
octet.

-t Tag. An int specifying the tag to give the next element is

provided. This works across calls.

-V Several octet strings. A null-terminated array of char *’s is
supplied. Note that a construct like '{v}’ is required to get
an actual SEQUENCE OF octet strings.

-{ Begin sequence. No parameter is required.

-} End sequence. No parameter is required.

- Begin set. No parameter is required.

-] End set. No parameter is required.

The ber_put_int() function writes the integer element num to the BER
element ber .

Sun0S 5.8 Last modified 25 May 1998

LDAP Library Functions

EXAMPLES

Last modified 25 May 1998

The ber_put_boolean()
to the BER element.

The ber_put_bitstring()

The ber_put_ostring()
element as an octet string.

The ber_put_string()
The ber_put_null()

The ber_start_seq()
element. The ber_start_set()

The ber_first_element()

EXAMPLE 1

, respectively.

AlmostASearchRequest := SEQUENCE {
baseObject DistinguishedName,
scope ENUMERATED {
baseObject (0),
singleLevel (1),
wholeSubtree (2)

h

derefAliases ENUMERATED {
neverDerefaliases (0),
derefInSearching (1),
derefFindingBaseObj (2),
alwaysDerefAliases (3N)

h

sizelimit INTEGER (0 .. 65535),
timelimit INTEGER (0 .. 65535),
attrsOnly BOOLEAN,

attributes SEQUENCE OF AttributeType

}

can be achieved like so:

int scope, ali, size, time, attrsonly;
char *dn, **attrs;

[... fill in values ... */
if ((ber = ber_alloc()) == NULLBER)

Sun0S 5.8

ber_encode(3LDAP)

function writes the boolean value given by bool

function writes blen bits starting at str as a
bitstring value to the given BER element. Note that blen is the length in bits
of the bitstring.

function writes len bytes starting at str to the BER

function writes the null-terminated string (minus the
terminating) to the BER element as an octet string.

function writes a NULLelement to the BER element.

function is used to start a sequence in the BER
function works similarly. The end of the
sequence or set is marked by the nearest matching call to ber_put_seq()
or ber_put_set()

function is used to return the tag and length of
the first element in a set or sequence. It also returns in cookie a magic cookie
parameter that should be passed to subsequent calls to ber_next_element() ,
which returns similar information.

Assuming the following variable declarations, and that the variables
have been assigned appropriately, an BER encoding of the following ASN.1 object:

57

ber_encode(3LDAP)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

58

LDAP Library Functions

I* error */

size, time, attrsonly, attrs) == -1)
[* error */
else
[* success */
If an error occurs during encoding, ber_alloc() returns NULL ; other functions
generally return -1 .

See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWIIdap (32-bit)
SUNWIdapx (64-bit)

Stability Level Evolving

attributes (5) , ber_decode (3LDAP)

Yeong, W., Howes, T., and Hardcastle-Kille, S., "Lightweight Directory Access
Protocol”, OSI-DS-26, April 1992.

Information Processing - Open Systems Interconnection - Model and Notation -
Service Definition - Specification of Basic Encoding Rules for Abstract Syntax
Notation One, International Organization for Standardization, International
Standard 8825.

The return values for all of these functions are declared in the <lber.h>
header file.

Sun0S 5.8 Last modified 25 May 1998

Sockets Library Functions

bind(3SOCKET)

NAME bind - bind a name to a socket

SYNOPSIS cc [flag ...] file ... -Isocket —Insl [library ...]

#include <sys/types.h>
#include <sys/socket.h>

int bind (int s, const struct sockaddr *name, int namelen);

DESCRIPTION bind() assigns a name to an unnamed socket. When a socket is created with

the socket.

RETURN VALUES If the bind is successful, 0 is returned. A return value of -1 indicates an error,

ERRORS The bind() call will fail if;
EACCES

EADDRINUSE

EADDRNOTAVAIL

EBADF
EINVAL

EINVAL
ENOSR

ENOTSOCK

EACCES

EIO

EISDIR
ELOOP

Last modified 22 Oct 1999

which is further specified in the global errno .

The requested address is protected and the
current user has inadequate permission to
access it.

The specified address is already in use.

The specified address is not available on the
local machine.

s is not a valid descriptor.

namelen is not the size of a valid address for the
specified address family.

The socket is already bound to an address.

There were insufficient STREAMS resources for
the operation to complete.

s is a descriptor for a file, not a socket.

The following errors are specific to binding names in the UNIX domain:

Search permission is denied for a component of
the path prefix of the pathname in name.

An 170 error occurred while making the
directory entry or allocating the inode.

A null pathname was specified.

Too many symbolic links were encountered in
translating the pathname in name.

Sun0S 5.8

socket (3SOCKET), it exists in a name space (address family) but has no name
assigned. bind() requests that the name pointed to by name be assigned to

59

bind(3SOCKET)

60

ATTRIBUTES

SEE ALSO
NOTES

ENOENT

ENOTDIR

EROFS

Sockets Library Functions

A component of the path prefix of the pathname
in name does not exist.

A component of the path prefix of the pathname
in name is not a directory.

The inode would reside on a read-only file
system.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

Safe

unlink (2), socket (3SOCKET), attributes (5), socket (3HEAD)

Binding a name in the UNIX domain creates a socket in the file system that must
be deleted by the caller when it is no longer needed (using unlink (2)).

The rules used in name binding vary between communication domains.

Sun0S 5.8

Last modified 22 Oct 1999

X/0pen Networking Services Library Functions bind(3XNET)

NAME bind - bind a name to a socket

SYNOPSIS cc [flag ...] file ... —-Ixnet [library ...]
#include <sys/socket.h>

int bind (int socket, const struct sockaddr *address, socklen_t address_len);

DESCRIPTION The bind() function assigns an address to an unnamed socket. Sockets created
with socket (3XNET) function are initially unnamed; they are identified only by
their address family.

The function takes the following arguments:
socket Specifies the file descriptor of the socket to be bound.

address Points to a sockaddr structure containing the address to be
bound to the socket. The length and format of the address
depend on the address family of the socket.

address_len Specifies the length of the sockaddr structure pointed to
by the address argument.

The socket in use may require the process to have appropriate privileges to
use the bind() function.

USAGE An application program can retrieve the assigned socket name with the
getsockname (3XNET) function.

RETURN VALUES Upon successful completion, bind() returns 0. Otherwise, -1 is returned
and errno s set to indicate the error.

ERRORS The bind() function will fail if:

EADDRINUSE The specified address is already in use.

EADDRNOTAVAIL The specified address is not available from the
local machine.

EAFNOSUPPORT The specified address is not a valid address for
the address family of the specified socket.

EBADF The socket argument is not a valid file descriptor.

EFAULT The address argument can not be accessed.

EINVAL The socket is already bound to an address, and

the protocol does not support binding to a new
address; or the socket has been shut down.

ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The socket type of the specified socket does not
support binding to an address.

Last modified 8 May 1998 Sun0S 5.8 61

bind(3XNET)

62

ATTRIBUTES

X/0pen Networking Services Library Functions

If the address family of the socket is AF_UNIX, then bind() will fail if:

EACCES

EDESTADDRREQ
EISDIR

EIO
ELOOP

ENAMETOOLONG

ENOENT

ENOTDIR

EROFS

A component of the path prefix denies search
permission, or the requested name requires
writing in a directory with a mode that denies
write permission.

The address argument is a null pointer.
An 1/0 error occurred.

Too many symbolic links were encountered in
translating the pathname in address.

A component of a pathname exceeded NAME_MAX
characters, or an entire pathname exceeded
PATH_MAXharacters.

A component of the pathname does not name an
existing file or the pathname is an empty string.

A component of the path prefix of the pathname
in address is not a directory.

The name would reside on a read-only filesystem.

The bind() function may fail if;

EACCES

EINVAL

EISCONN

ENAMETOOLONG

ENOBUFS

ENOSR

The specified address is protected and the current
user does not have permission to bind to it.

The address_len argument is not a valid length for
the address family.

The socket is already connected.

Pathname resolution of a symbolic link produced
an intermediate result whose length exceeds
PATH_MAX

Insufficient resources were available to complete
the call.

There were insufficient STREAMS resources for
the operation to complete.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

MT-Safe

Sun0S 5.8

Last modified 8 May 1998

X/0pen Networking Services Library Functions

SEE ALSO connect (3XNET), getsockname (3XNET), listen
attributes (5)

Last modified 8 May 1998 Sun0S 5.8

bind(3XNET)

(3XNET), socket (3XNET),

63

byteorder(3SOCKET)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

64

Sockets Library Functions

byteorder, htonl, htons, ntohl, ntohs — convert values between host and network
byte order

#include <sys/types.h>

#include <netinet/in.h>

#include <inttypes.h>

uint32_t htonl (unint32_t hostlong);

uintl6_t htons (uintl6_t hostshort);
uint32_t ntohl (uint32_t netlong);

uintl6_t ntohs (uintl6_t netshort);

These routines convert 16 and 32 bit quantities between network byte order and
host byte order. On some architectures these routines are defined as NULL
macros in the include file <netinet/in.h> . On other architectures, if their host
byte order is different from network byte order, these routines are functional.

These routines are most often used in conjunction with Internet addresses
and ports as returned by gethostent() and getservent() . See
gethostbyname (3NSL) and getservbyname (3SOCKET) .

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gethostbyname (3NSL), getservbyname (3SOCKET), attributes 5),
inet (3HEAD)

Sun0OS 5.8 Last modified 21 Oct 1997

LDAP Library Functions cldap_close(3LDAP)

NAME cldap_close — dispose of connectionless LDAP pointer
SYNOPSIS cc[flag...] file... -lldap[library...]

#include <Iber.h>
#include <ldap.h>
void cldap_close (LDAP *Id);

PARAMETERS Id The LDAP pointer returned by a previous call to
cldap_open (3LDAP).

DESCRIPTION The cldap_close() function disposes of memory allocated by
cldap_open (3LDAP). It should be called when all CLDAP communication is
complete.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWIIdap (32-bit)
SUNWIdapx (64-bit)

Stability Level Evolving

SEE ALSO Idap (3LDAP), cldap_open (3LDAP), cldap_search_s (3LDAP),
cldap_setretryinfo (3LDAP)

Last modified 25 May 1998 Sun0S 5.8 65

cldap_open(3LDAP)

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

ERRORS

ATTRIBUTES

SEE ALSO

66

LDAP Library Functions

cldap_open — LDAP connectionless communication preparation

cc[flag...] file... -lldap[library...]

#include <Iber.h>
#include <ldap.h>
LDAP *cldap_open (char *host, int port);

host The name of the host on which the LDAP server is running.

port The port number to connect.

The cldap_open() function is called to prepare for connectionless LDAP
communication (over udp (7P)). It allocates an LDAP structure which is passed to
future search requests.

If the default IANA-assigned port of 389 is desired, LDAP_PORThould

be specified for port. host can contain a space-separated list of hosts or
addresses to try. cldap_open() returns a pointer to an LDAP structure,
which should be passed to subsequent calls to cldap_search_s (3LDAP),
cldap_setretryinfo (BLDAP), and cldap_close (3LDAP). Certain fields
in the LDAP structure can be set to indicate size limit, time limit, and how
aliases are handled during operations. See Idap_open (3LDAP) and <ldap.h>
for more details.

If an error occurs, cldap_open() will return NULLand errno will be set
appropriately.

See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWIIdap (32-bit)
SUNWIdapx (64-bit)

Stability Level Evolving

Idap (BLDAP) cldap_search_s (3LDAP), cldap_setretryinfo (3LDAP),
cldap_close (3LDAP), udp(7P)

Sun0S 5.8 Last modified 25 May 1998

LDAP Library Functions cldap_search_s(3LDAP)

NAME
SYNOPSIS

DESCRIPTION

Retransmission
Algorithm

EXAMPLES

cldap_search_s — connectionless LDAP search

cc[flag...] file... -lldap[library...]

#include <lber.h>

#include <ldap.h>

intcldap_search_s (LDAP *Id, char *base, int scope, char *filter, char *attrs, int attrsonly,
LDAPMessage **res, char *logdn);

The cldap_search_s() function performs an LDAP search using the
Connectionless LDAP (CLDAP) protocol.

cldap_search_s() has parameters and behavior identical to that of

Idap_search_s (3LDAP), except for the addition of the logdn parameter. logdn

should contain a distinguished name to be used only for logging purposed

by the LDAP server. It should be in the text format described by RFC 1779

A String Representation of Distinguished Names.

cldap_search_s() operates using the CLDAP protocol over udp (7P). Since

UDP is a non-reliable protocol, a retry mechanism is used to increase reliability.

The cldap_setretryinfo (BLDAP) function can be used to set two retry

parameters: tries, a count of the number of times to send a search request and

timeout, an initial timeout that determines how long to wait for a response

before re-trying. timeout is specified seconds. These values are stored in the

Id_cldaptries and Id_cldaptimeout members of the [d LDAP structure,

and the default values set in I[dap_open (3LDAP) are 4 and 3 respectively.

The retransmission algorithm used is:

Step 1. Set the current timeout to Id_cldaptimeout seconds, and
the current LDAP server address to the first LDAP server
found during the Idap_open (3LDAP) call.

Step 2: Send the search request to the current LDAP server address.

Step 3: Set the wait timeout to the current timeout divided
by the number of server addresses found during
Idap_open (3LDAP) or to one second, whichever is
larger. Wait at most that long for a response; if a response
is received, STOP. Note that the wait timeout is always
rounded down to the next lowest second.

Step 5: Repeat steps 2 and 3 for each LDAP server address.

Step 6: Set the current timeout to twice its previous value and repeat
Steps 2 through 6 a maximum of tries times.

Assume that the default values for tries and timeout of 4 tries and 3 seconds are
used. Further, assume that a space-separated list of two hosts, each with one

Last modified 25 May 1998 Sun0S 5.8 67

cldap_search_s(3LDAP) LDAP Library Functions

68

ERRORS

ATTRIBUTES

SEE ALSO

address, was passed to cldap_open (3LDAP). The pattern of requests sent will
be (stopping as soon as a response is received):

Time Search Request Sent To:

+0 Host A try 1

+1 (0+3/2) Host B try 1

+2 (1+3/2) Host A try 2

+5 (2+6/2) Host B try 2

+8 (5+6/2) Host A try 3

+14 (8+12/2) Host B try 3

+20 (14+12/2) Host A try 4

+32 (20+24/2) Host B try 4

+44 (20+24/2) (give up - no response)

cldap_search_s() returns LDAP_SUCCESH a search was successful and
the appropriate LDAP error code otherwise. See |dap_error (3LDAP) for
more information.

See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWIIdap (32-bit)
SUNWIdapx (64-bit)

Stability Level Evolving

Idap (BLDAP), Idap_error (3LDAP), I[dap_search_s (3LDAP),
cldap_open (3LDAP), cldap_setretryinfo (3LDAP),
cldap_close (3LDAP), udp(7P)

Sun0S 5.8 Last modified 25 May 1998

LDAP Library Functions cldap_setretryinfo(3LDAP)

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

ATTRIBUTES

SEE ALSO

cldap_setretryinfo — set connectionless LDAP request retransmission parameters

cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>

void cldap_setretryinfo (LDAP *Id, int tries, int timeout);

Id LDAP pointer returned from a previous call to
cldap_open (3LDAP).

tries Maximum number of times to send a request.

timeout Initial time, in seconds, to wait before re-sending a request.

The cldap_setretryinfo() function is used to set the CLDAP request

retransmission behavior for future cldap_search_s (3LDAP) calls. The default
values (set by cldap_open (3LDAP)) are 4 tries and 3 seconds between tries. See
cldap_search_s (3LDAP) for a complete description of the retransmission
algorithm used.

See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWIIdap (32-bit)
SUNWIdapx (64-bit)

Stability Level Evolving

Idap (BLDAP), cldap_open (3LDAP), cldap_search_s (3LDAP),
cldap_close (3LDAP)

Last modified 25 May 1998 Sun0S 5.8 69

connect(3SOCKET)

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

70

Sockets Library Functions

connect - initiate a connection on a socket

cc [flag ...] file ... —Isocket —Insl [library ...]
#include <sys/types.h>
#include <sys/socket.h>

int connect (ints, const struct sockaddr *name, int namelen);

The parameter s is a socket. If it is of type SOCK_DGRAMonnect() specifies
the peer with which the socket is to be associated; this address is the address to
which datagrams are to be sent if a receiver is not explicitly designated; it is the
only address from which datagrams are to be received. If the socket s is of type
SOCK_STREAMonnect() attempts to make a connection to another socket.
The other socket is specified by name. name is an address in the communication
space of the socket. Each communication space interprets the name parameter in
its own way. If s is not bound, then it will be bound to an address selected by
the underlying transport provider. Generally, stream sockets may successfully
connect() only once; datagram sockets may use connect() multiple times
to change their association. Datagram sockets may dissolve the association by
connecting to a null address.

If the connection or binding succeeds, 0 is returned. Otherwise, -1 is returned
and sets errno to indicate the error.

The call fails if:

EACCES Search permission is denied for a component of
the path prefix of the pathname in name.

EADDRINUSE The address is already in use.

EADDRNOTAVAIL The specified address is not available on the
remote machine.

EAFNOSUPPORT Addresses in the specified address family cannot
be used with this socket.

EALREADY The socket is non-blocking and a previous
connection attempt has not yet been completed.

EBADF s is not a valid descriptor.

ECONNREFUSED The attempt to connect was forcefully rejected.

The calling program should close (2) the socket
descriptor, and issue another socket (3SOCKET)
call to obtain a new descriptor before attempting
another connect() call.

EINPROGRESS The socket is non-blocking and the connection
cannot be completed immediately. It is possible

Sun0S 5.8 Last modified 22 Oct 1999

Sockets Library Functions

EINTR

EINVAL

EIO

EISCONN
ELOOP

ENETUNREACH
ENOENT

ENOENT

ENOSR

ENXIO

ETIMEDOUT

EWOULDBLOCK

connect(3SOCKET)

to select (3C) for completion by selecting the
socket for writing. However, this is only possible
if the socket STREAMS modaule is the topmost
module on the protocol stack with a write service
procedure. This will be the normal case.

The connection attempt was interrupted before
any data arrived by the delivery of a signal.

namelen is not the size of a valid address for the
specified address family.

An 1/0 error occurred while reading from or
writing to the file system.

The socket is already connected.

Too many symbolic links were encountered in
translating the pathname in name.

The network is not reachable from this host.

A component of the path prefix of the pathname
in name does not exist.

The socket referred to by the pathname in name
does not exist.

There were insufficient STREAMSesources
available to complete the operation.

The server exited before the connection was
complete.

Connection establishment timed out without
establishing a connection.

The socket is marked as non-blocking, and the
requested operation would block.

The following errors are specific to connecting names in the UNIX domain.
These errors may not apply in future versions of the UNIX IPC domain.

ENOTDIR

ENOTSOCK
ENOTSOCK
EPROTOTYPE

Last modified 22 Oct 1999

A component of the path prefix of the pathname
in name is not a directory.

s is not a socket.
name is not a socket.

The file referred to by name is a socket of a
type other than type s (for example, s is a

Sun0S 5.8 71

connect(3SOCKET)

72

ATTRIBUTES

SEE ALSO

Sockets Library Functions

SOCK_DGRABbcket, while name refers to a
SOCK_STREAINbcket).

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

Safe

close (2), accept (3SOCKET), getsockname (3SOCKET), select (3C),

socket (3SOCKET), attributes

Sun0S 5.8

(5), socket (3HEAD)

Last modified 22 Oct 1999

X/0pen Networking Services Library Functions connect(3XNET)

NAME
SYNOPSIS

DESCRIPTION

connect — connect a socket

cc [flag ...] file ... —=Ixnet [library ...]
#include <sys/socket.h>

int connect (int socket, const struct sockaddr *address, socklen_t address_len);

The connect() function requests a connection to be made on a socket. The
function takes the following arguments:
socket Specifies the file descriptor associated with the socket.

address Points to a sockaddr structure containing the peer address.
The length and format of the address depend on the address
family of the socket.

address_len Specifies the length of the sockaddr structure pointed to
by the address argument.

If the socket has not already been bound to a local address, connect() will
bind it to an address which, unless the socket’s address family is AF_UNIX,
is an unused local address.

If the initiating socket is not connection-mode, then connect() sets the socket’s
peer address, but no connection is made. For SOCK_DGRAM sockets, the peer
address identifies where all datagrams are sent on subsequent send (3XNET)
calls, and limits the remote sender for subsequent recv (3XNET) calls. If address
is a null address for the protocol, the socket’s peer address will be reset.

If the initiating socket is connection-mode, then connect() attempts to
establish a connection to the address specified by the address argument.

If the connection cannot be established immediately and O_NONBLOCK is not
set for the file descriptor for the socket, connect() will block for up to an
unspecified timeout interval until the connection is established. If the timeout
interval expires before the connection is established, connect() will fail and
the connection attempt will be aborted. If connect() s interrupted by a signal
that is caught while blocked waiting to establish a connection, connect() will
fail and set errno to EINTR, but the connection request will not be aborted, and
the connection will be established asynchronously.

If the connection cannot be established immediately and O_NONBLOCK is
set for the file descriptor for the socket, connect() will fail and set errno

to EINPROGRESShut the connection request will not be aborted, and the
connection will be established asynchronously. Subsequent calls to connect()
for the same socket, before the connection is established, will fail and set errno
to EALREADY

Last modified 8 May 1998 Sun0S 5.8 73

connect(3XNET)

USAGE

RETURN VALUES

74

ERRORS

X/0pen Networking Services Library Functions

When the connection has been established asynchronously, select (3C) and
poll (2) will indicate that the file descriptor for the socket is ready for writing.

The socket in use may require the process to have appropriate privileges to use

the connect()

If connect()

function.

fails, the state of the socket is unspecified. Portable applications

should close the file descriptor and create a new socket before attempting to

reconnect.

Upon successful completion, connect()

returns 0. Otherwise, -1 is returned

and errno is set to indicate the error.

The connect()
EADDRNOTAVAIL

EAFNOSUPPORT

EALREADY

EBADF
ECONNREFUSED

EFAULT
EINPROGRESS

EINTR

EISCONN

ENETUNREACH
ENOTSOCK
EPROTOTYPE

Sun0S 5.8

function will fail if:

The specified address is not available from the
local machine.

The specified address is not a valid address for
the address family of the specified socket.

A connection request is already in progress for
the specified socket.

The socket argument is not a valid file descriptor.

The target address was not listening for
connections or refused the connection request.

The address parameter can not be accessed.

O_NONBLOCK is set for the file descriptor

for the socket and the connection cannot be
immediately established; the connection will be
established asynchronously.

The attempt to establish a connection was
interrupted by delivery of a signal that was
caught; the connection will be established
asynchronously.

The specified socket is connection-mode and
is already connected.

No route to the network is present.
The socket argument does not refer to a socket.

The specified address has a different type than
the socket bound to the specified peer address.

Last modified 8 May 1998

X/0pen Networking Services Library Functions connect(3XNET)

ETIMEDOUT The attempt to connect timed out before a
connection was made.

If the address family of the socket is AF_UNIX, then connect() will fail if;
EIO An /0 error occurred while reading from or
writing to the file system.

ELOOP Too many symbolic links were encountered in
translating the pathname in address.
ENAMETOOLONG A component of a pathname exceeded NAME_MAX

characters, or an entire pathname exceeded
PATH_MAXharacters.

ENOENT A component of the pathname does not name an
existing file or the pathname is an empty string.

ENOTDIR A component of the path prefix of the pathname
in address is not a directory.

The connect() function may fail if;

EACCES Search permission is denied for a component of
the path prefix; or write access to the named
socket is denied.

EADDRINUSE Attempt to establish a connection that uses
addresses that are already in use.

ECONNRESET Remote host reset the connection request.

EHOSTUNREACH The destination host cannot be reached (probably

because the host is down or a remote router
cannot reach it).

EINVAL The address_len argument is not a valid length for
the address family; or invalid address family in
sockaddr structure.

ENAMETOOLONG Pathname resolution of a symbolic link produced
an intermediate result whose length exceeds
PATH_MAX

ENETDOWN The local interface used to reach the destination
is down.

ENOBUFS No buffer space is available.

ENOSR There were insufficient STREAMS resources

available to complete the operation.

EOPNOTSUPP The socket is listening and can not be connected.

Last modified 8 May 1998 Sun0S 5.8 75

connect(3XNET)

76

ATTRIBUTES

SEE ALSO

X/0pen Networking Services Library Functions

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

MT-Safe

close (2), poll (2), accept (3XNET), bind (3XNET), getsockname (3XNET),
select (3C), send (3XNET), shutdown (3XNET), socket (3XNET),

attributes (5)

Sun0S 5.8

Last modified 8 May 1998

Networking Services Library Functions

NAME
SYNOPSIS

DESCRIPTION

dial(3NSL)

dial — establish an outgoing terminal line connection

cc [flag ...] file ... =Insl [library ...]
#include <dial.h>

int dial (CALL call);

void undial (int fd);

dial() returns a file-descriptor for a terminal line open for read/write. The
argument to dial() is a CALL structure (defined in the header <dial.h>).

When finished with the terminal line, the calling program must invoke
undial() to release the semaphore that has been set during the allocation of
the terminal device.

CALL is defined in the header <dial.h> and has the following members:

struct termio *attr; /* pointer to termio attribute struct */

int baud; /* transmission data rate */

int speed; /* 212A modem: low=300, high=1200 */
char *line; /* device name for out-going line */

char *telno; /* pointer to tel-no digits string */

int modem; /* specify modem control for direct lines */
char *device; /* unused */

int dev_len; /* unused */

The CALL element speed is intended only for use with an outgoing dialed
call, in which case its value should be the desired transmission baud rate. The
CALL element baud is no longer used.

If the desired terminal line is a direct line, a string pointer to its device-name
should be placed in the line element in the CALL structure. Legal values for
such terminal device names are kept in the Devices file. In this case, the value
of the baud element should be set to -1. This value will cause dial to determine
the correct value from the <Devices> file.

The telno element is for a pointer to a character string representing the
telephone number to be dialed. Such numbers may consist only of these
characters:

0-9 dial 0-9
* dail *
dail

= wait for secondary dial tone

- delay for approximately 4 seconds

Last modified 30 Dec 1996 Sun0OS 5.8 77

dial(3NSL)

RETURN VALUES

FILES

ATTRIBUTES

SEE ALSO
NOTES

78

Networking Services Library Functions

The CALL element modemis used to specify modem control for direct lines. This
element should be non-zero if modem control is required. The CALL element
attr is a pointer to atermio structure, as defined in the header <termio.h>

A NULL value for this pointer element may be passed to the dial function, but
if such a structure is included, the elements specified in it will be set for the
outgoing terminal line before the connection is established. This setting is often
important for certain attributes such as parity and baud-rate.

The CALL elements device and dev_len are no longer used. They are retained
in the CALL structure for compatibility reasons.

On failure, a negative value indicating the reason for the failure will be returned.
Mnemonics for these negative indices as listed here are defined in the header
<dial.h>

INTRPT -1 /* interrupt occurred */

D_HUNG -2 /* dialer hung (no return from write) */
NO_ANS -3 /* no answer within 10 seconds */
ILL_BD -4 /* illegal baud-rate */

A_PROB -5 /* acu problem (open() failure) */
L_PROB -6 /* line problem (open() failure) */
NO_Ldv -7 /* can’'t open Devices file */
DV_NT_A-8 /* requested device not available */
DV_NT_K -9 /* requested device not known */
NO_BD_A-10 /* no device available at requested baud */
NO_BD_K-11 /* no device known at requested baud */
DV_NT_E -12 /* requested speed does not match */
BAD_SYS-13 /* system not in Systems file*/

/etc/uucp/Devices

/etc/uucp/Systems
/var/spool/uucp/LCK.. tty-device
See attributes (5) for descriptions of the following attributes:
ATTRIBUTE TYPE ATTRIBUTE VALUE
MT-Level Unsafe

uucp (1C), alarm (2), read (2), write (2), attributes (5), termio (71)

Including the header <dial.h> automatically includes the header <termio.h>
An alarm (2) system call for 3600 seconds is made (and caught) within the dial
module for the purpose of “touching” the LCK.. file and constitutes the device
allocation semaphore for the terminal device. Otherwise, uucp (1C) may simply

Sun0S 5.8 Last modified 30 Dec 1996

Networking Services Library Functions dial(3NSL)

delete the LCK.. entry on its 90-minute clean-up rounds. The alarm may go
off while the user program is in aread (2) or write (2) function, causing an
apparent error return. If the user program expects to be around for an hour or
more, error returns from read() s should be checked for (errno==EINTR) ,
and the read() possibly reissued.

This interface is unsafe in multithreaded applications. Unsafe interfaces should
be called only from the main thread.

Last modified 30 Dec 1996 Sun0OS 5.8 79

doconfig(3NSL)

NAME
SYNOPSIS

DESCRIPTION

80

Networking Services Library Functions

doconfig — execute a configuration script

cc [flag ...] file ... =Insl [library ...]
#include <sac.h>

int doconfig (int fildes, char *script, long rflag);

doconfig() is a Service Access Facility library function that interprets the
configuration scripts contained in the files </etc/saf/ pmtag/_config>
</etc/saf/_sysconfig> , and </etc/saf/ pmtag/svctag>, where pmtag
specifies the tag associated with the port monitor, and svctag specifies the service
tag associated with a given service. See pmadn{1M) and sacadm (1M).

script s the name of the configuration script; fildes is a file descriptor that
designates the stream to which stream manipulation operations are to be
applied; rflag is a bitmask that indicates the mode in which script is to be
interpreted. If rflag is zero, all commands in the configuration script are eligible
to be interpreted. If rflag has the NOASSIGNbit set, the assign command is
considered illegal and will generate an error return. If rflag has the NORUNMit
set, the run and runwait commands are considered illegal and will generate
error returns.

The configuration language in which script is written consists of a sequence
of commands, each of which is interpreted separately. The following reserved
keywords are defined: assign , push, pop, runwait , and run . The comment
character is #; when a # occurs on a line, everything from that point to the end
of the line is ignored. Blank lines are not significant. No line in a command
script may exceed 1024 characters.
assign variable=value
Used to define environment variables. variable is the name of the
environment variable and value is the value to be assigned to it. The value
assigned must be a string constant; no form of parameter substitution is
available. value may be quoted. The quoting rules are those used by the
shell for defining environment variables. assign will fail if space cannot be
allocated for the new variable or if any part of the specification is invalid.

push modulel[, module2, module3, . . .]
Used to push STREAMS modules onto the stream designated by fildes.
modulel is the name of the first module to be pushed, module2 is the name
of the second module to be pushed, etc. The command will fail if any of
the named modules cannot be pushed. If a module cannot be pushed,
the subsequent modules on the same command line will be ignored and
modules that have already been pushed will be popped.

pop [module]

Sun0OS 5.8 Last modified 30 Dec 1996

Networking Services Library Functions doconfig(3NSL)

RETURN VALUES

ATTRIBUTES

SEE ALSO

Used to pop STREAMS modules off the designated stream. If pop is
invoked with no arguments, the top module on the stream is popped. If an
argument is given, modules will be popped one at a time until the named
module is at the top of the stream. If the named module is not on the
designated stream, the stream is left as it was and the command fails. If
module is the special keyword ALL, then all modules on the stream will be
popped. Note that only modules above the topmost driver are affected.

runwait command
The runwait command runs a command and waits for it to complete.
command is the pathname of the command to be run. The command is
run with /usr/bin/sh —c prepended to it; shell scripts may thus be
executed from configuration scripts. The runwait command will fail if
command cannot be found or cannot be executed, or if commandexits with
a non-zero status.

run command
The run command is identical to runwait except that it does not wait for
commandto complete. commandis the pathname of the command to be
run. run will not fail unless it is unable to create a child process to execute
the command.

Although they are syntactically indistinguishable, some of the commands
available to run and runwait are interpreter built-in commands. Interpreter
built-ins are used when it is necessary to alter the state of a process within the
context of that process. The doconfig() interpreter built-in commands are
similar to the shell special commands and, like these, they do not spawn another
process for execution. See sh (1). The built-in commands are:

cd
ulimit
umask

doconfig() returns O if the script was interpreted successfully. If acommand
in the script fails, the interpretation of the script ceases at that point and a
positive number is returned; this number indicates which line in the script failed.
If a system error occurs, a value of -1 is returned. When a script fails, the process
whose environment was being established should not be started.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

sh (1), pmadn{1M), sacadm (1M), attributes (5)

Last modified 30 Dec 1996 SunOS 5.8 81

doconfig(3NSL) Networking Services Library Functions

NOTES This interface is unsafe in multithreaded applications. Unsafe interfaces should
be called only from the main thread.

82 Sun0OS 5.8 Last modified 30 Dec 1996

X/0pen Networking Services Library Functions endhostent(3XNET)

NAME

SYNOPSIS

DESCRIPTION

endhostent, gethostbyaddr, gethostbyname, gethostent, sethostent — network
host database functions

cc [flag ...] file ... =Ixnet [library ...]
#include <netdb.h>

extern int h_errno;

void endhostent (void);

struct hostent *gethostbyaddr (const void *addr, size_t len, int type);
struct hostent *gethostbyname (const char *name);

struct hostent *gethostent (void);

void sethostent (int stayopen);

The gethostent() , gethostbyaddr() , and gethostbyname() functions
each return a pointer to a hostent structure, the members of which contain
the fields of an entry in the network host database.

The gethostent() function reads the next entry of the database, opening a
connection to the database if necessary.

The gethostbyaddr() function searches the database and finds an entry
which matches the address family specified by the type argument and which
matches the address pointed to by the addr argument, opening a connection to
the database if necessary. The addr argument is a pointer to the binary-format
(that is, not null-terminated) address in network byte order, whose length

is specified by the len argument. The datatype of the address depends on the
address family. For an address of type AF_INET , thisisan in_addr structure,
defined in <netinet/in.h> . For an address of type AF_INET6 , there is an
in6_addr structure defined in <netinet/in.h>

The gethostbyname() function searches the database and finds an entry
which matches the host name specified by the name argument, opening a
connection to the database if necessary. If name is an alias for a valid host name,
the function returns information about the host name to which the alias refers,
and name is included in the list of aliases returned.

The sethostent() function opens a connection to the network host database,
and sets the position of the next entry to the first entry. If the stayopen argument
is non-zero, the connection to the host database will not be closed after each
call to gethostent() (either directly, or indirectly through one of the other
gethost*() functions).

The endhostent() function closes the connection to the database.

Last modified 8 Nov 1999 SunOS 5.8 83

endhostent(3XNET)

USAGE

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

84

X/0pen Networking Services Library Functions

The gethostent() , gethostbyaddr() , and gethostbyname() functions
may return pointers to static data, which may be overwritten by subsequent
calls to any of these functions.

These functions are generally used with the Internet address family.

On successful completion, gethostbyaddr() , gethostbyname() and
gethostent() return a pointer to a hostent structure if the requested entry
was found, and a null pointer if the end of the database was reached or the
requested entry was not found. Otherwise, a null pointer is returned.

On unsuccessful completion, gethostbyaddr() and gethostbyname()
functions set h_errno to indicate the error.

No errors are defined for endhostent() , gethostent() and
sethostent()

The gethostbyaddr() and gethostbyname() functions will fail in the
following cases, setting h_errno to the value shown in the list below. Any changes
to errno are unspecified.

HOST_NOT_FOUND No such host is known.

NO_DATA The server recognised the request and the name
but no address is available. Another type of
request to the name server for the domain might
return an answer.

NO_RECOVERY An unexpected server failure occurred which
can not be recovered.

TRY_AGAIN A temporary and possibly transient error
occurred, such as a failure of a server to respond.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

endservent (3XNET), htonl (3XNET), inet_addr (3XNET), attributes (5)

Sun0S 5.8 Last modified 8 Nov 1999

X/0pen Networking Services Library Functions endnetent(3XNET)

NAME

SYNOPSIS

DESCRIPTION

USAGE

RETURN VALUES

ERRORS

endnetent, getnetbyaddr, getnetbyname, getnetent, setnetent — network database
functions

cc [flag ...] file ... =Ixnet [library ...]
#include <netdb.h>

void endnetent (void);struct netent *getnetbyaddr(in_addr_t net, int type);
struct netent *getnetbyname (const char *name);

struct netent *getnetent (void);

void setnetent (int stayopen);

The getnetbyaddr() , getnetbyname() and getnetent() , functions each
return a pointer to a netent structure, the members of which contain the fields
of an entry in the network database.

The getnetent() function reads the next entry of the database, opening a
connection to the database if necessary.

The getnetbyaddr() function searches the database from the beginning, and
finds the first entry for which the address family specified by type matches the
n_addrtype member and the network number net matches the n_net member,
opening a connection to the database if necessary. The net argument is the
network number in host byte order.

The getnetbyname() function searches the database from the beginning and
finds the first entry for which the network name specified by name matches the
n_name member, opening a connection to the database if necessary.

The setnetent() function opens and rewinds the database. If the stayopen
argument is non-zero, the connection to the net database will not be closed after
each call to getnetent() (either directly, or indirectly through one of the
other getnet*() functions).

The endnetent() function closes the database.

The getnetbyaddr() , getnetbyname() and getnetent() , functions
may return pointers to static data, which may be overwritten by subsequent
calls to any of these functions.

These functions are generally used with the Internet address family.

On successful completion, getnetbyaddr() , getnetbyname() and
getnetent() , return a pointer to a netent structure if the requested entry
was found, and a null pointer if the end of the database was reached or the
requested entry was not found. Otherwise, a null pointer is returned.

No errors are defined.

Last modified 8 May 1998 Sun0S 5.8 85

endnetent(3XNET)

86

ATTRIBUTES

SEE ALSO

X/0pen Networking Services Library Functions

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

Unsafe

attributes (5)

Sun0S 5.8

Last modified 8 May 1998

X/0pen Networking Services Library Functions endprotoent(3XNET)

NAME

SYNOPSIS

DESCRIPTION

USAGE

RETURN VALUES

ERRORS

endprotoent, getprotobynumber, getprotobyname, getprotoent, setprotoent —
network protocol database functions

cc [flag ...] file ... —=Ixnet [library ...]
#include <netdb.h>
void endprotoent (void);

struct protoent *getprotobyname (const char *name);
struct protoent *getprotobynumber (int proto);
struct protoent *getprotoent (void);

void setprotoent (int stayopen);

The getprotobyname() , getprotobynumber() and getprotoent() ,
functions each return a pointer to a protoent structure, the members of which
contain the fields of an entry in the network protocol database.

The getprotoent() function reads the next entry of the database, opening a
connection to the database if necessary.

The getprotobyname() function searches the database from the beginning
and finds the first entry for which the protocol name specified by name matches
the p_name member, opening a connection to the database if necessary.

The getprotobynumber() function searches the database from the beginning
and finds the first entry for which the protocol number specified by number
matches the p_proto member, opening a connection to the database if necessary.

The setprotoent() function opens a connection to the database, and sets
the next entry to the first entry. If the stayopen argument is non-zero, the
connection to the network protocol database will not be closed after each call
to getprotoent() (either directly, or indirectly through one of the other
getproto*() functions).

The endprotoent() function closes the connection to the database.

The getprotobyname() , getprotobynumber() and getprotoent()
functions may return pointers to static data, which may be overwritten by
subsequent calls to any of these functions.

These functions are generally used with the Internet address family.

On successful completion, getprotobyname() , getprotobynumber()

and getprotoent() functions return a pointer to a protoent structure

if the requested entry was found, and a null pointer if the end of the database
was reached or the requested entry was not found. Otherwise, a null pointer
is returned.

No errors are defined.

Last modified 8 May 1998 Sun0S 5.8 87

endprotoent(3XNET)

88

ATTRIBUTES

SEE ALSO

See attributes

X/0pen Networking Services Library Functions

(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

Unsafe

attributes

()

Sun0S 5.8

Last modified 8 May 1998

X/0pen Networking Services Library Functions endservent(3XNET)

NAME

SYNOPSIS

DESCRIPTION

USAGE

endservent, getservbyport, getservbyname, getservent, setservent — network
services database functions

cc [flag ...] file ... =Ixnet [library ...]
#include <netdb.h>
void endservent (void);

struct servent *getservbyname (const char *name, const char *proto);
struct servent *getservbyport (int port, const char *proto);

struct servent *getservent (void);

void setservent (int stayopen);

The getservbyname() , getservbyport() and getservent() functions
each return a pointer to a servent structure, the members of which contain the
fields of an entry in the network services database.

The getservent() function reads the next entry of the database, opening a
connection to the database if necessary.

The getservbyname() function searches the database from the beginning and
finds the first entry for which the service name specified by name matches the
s_name member and the protocol name specified by proto matches the s_proto
member, opening a connection to the database if necessary. If proto is a null
pointer, any value of the s_proto member will be matched.

The getservbyport() function searches the database from the beginning and
finds the first entry for which the port specified by port matches the s_port
member and the protocol name specified by proto matches the s_proto member,
opening a connection to the database if necessary. If proto is a null pointer, any
value of the s_proto member will be matched. The port argument must be in
network byte order.

The setservent() function opens a connection to the database, and sets the
next entry to the first entry. If the stayopen argument is non-zero, the net database
will not be closed after each call to the getservent() function (either directly,
or indirectly through one of the other getserv*() functions).

The endservent() function closes the database.

The port argument of getservbyport() need not be compatible with the
port values of all address families.

The getservent() , getservbyname() and getservbyport() functions
may return pointers to static data, which may be overwritten by subsequent
calls to any of these functions.

These functions are generally used with the Internet address family.

Last modified 8 May 1998 Sun0S 5.8 89

endservent(3XNET)

RETURN VALUES

ERRORS
ATTRIBUTES

SEE ALSO

90

X/0pen Networking Services Library Functions

On successful completion, getservbyname() , getservbyport() and
getservent() return a pointer to a servent structure if the requested entry
was found, and a null pointer if the end of the database was reached or the
requested entry was not found. Otherwise, a null pointer is returned.

No errors are defined.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

endhostent (3XNET) , endprotoent (3XNET) , htonl (3XNET),
inet_addr (3XNET), attributes (5)

Sun0S 5.8 Last modified 8 May 1998

Sockets Library Functions ethers(3SOCKET)

NAME

SYNOPSIS

DESCRIPTION

FILES

ethers, ether_ntoa, ether_aton, ether_ntohost, ether_hostton, ether_line -
Ethernet address mapping operations

cc [flag ...] file ... —Isocket -Insl [library ...]
#include <sys/types.h>

#include <sys/socket.h>

#include <net/if.h>

#include <netinet/in.h>

#include <netinet/if_ether.h>

char *ether_ntoa (struct ether_addr *e);

struct ether_addr *ether_aton (char *s);
int ether_ntohost (char *hostname, struct ether_addr *e);
int ether_hostton (char *hostname, struct ether_addr *e);

int ether_line (char *1, struct ether_addr *e, char *hostname);

These routines are useful for mapping 48 bit Ethernet numbers to their ASCII
representations or their corresponding host names, and vice versa.

The function ether_ntoa() converts a 48 bit Ethernet number pointed to by e
to its standard ASCII representation; it returns a pointer to the ASCII string. The
representation is of the form x :x :x : x :x :x where x is a hexadecimal number
between 0 and ff . The function ether_aton() converts an ASCII string in the
standard representation back to a 48 bit Ethernet number; the function returns
NULL if the string cannot be scanned successfully.

The function ether_ntohost() maps an Ethernet number (pointed to by e) to
its associated hostname. The string pointed to by hostname must be long enough
to hold the hostname and a NULL character. The function returns zero upon
success and non-zero upon failure. Inversely, the function ether_hostton()

maps a hostname string to its corresponding Ethernet number; the function
modifies the Ethernet number pointed to by e . The function also returns zero
upon success and non-zero upon failure. In order to do the mapping, both these
functions may lookup one or more of the following sources: the ethers file, the
NIS maps “ethers.byname” and “ethers.byaddr” and the NIS+ table “ethers”.
The sources and their lookup order are specified in the /etc/nsswitch.conf

file (see nsswitch.conf (4) for details).

The function ether_line() scans a line (pointed to by |) and sets the
hostname and the Ethernet number (pointed to by e). The string pointed to by
hostname must be long enough to hold the hostname and a NULL character. The
function returns zero upon success and non-zero upon failure. The format of the
scanned line is described by ethers (4) .

/etc/ethers

Last modified 30 Dec 1996 Sun0S 5.8 91

ethers(3SOCKET)

92

ATTRIBUTES

SEE ALSO
BUGS

letc/nsswitch.conf

Sockets Library Functions

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

MT-Safe

ethers (4), nsswitch.conf

(4) , attributes

Programs that call ether_hostton()

©)

or ether_ntohost() routines cannot

be linked statically since the implementation of these routines requires dynamic
linker functionality to access shared objects at run time.

Sun0S 5.8

Last modified 30 Dec 1996

XFN Interface Library Functions fn_attr_bind(3XFN)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES
ERRORS

USAGE

ATTRIBUTES

SEE ALSO

fn_attr_bind - bind a reference to a name and associate attributes with named
object

#include <xfn/xfn.h>

int fn_attr_bind (FN_ctx_t *ctx, const FN_composite_name_t *name, const FN_ref_t *ref,
const FN_attrset_t *attrs, unsigned int exclusive, FN_status_t *status);

This operation binds the supplied reference ref to the supplied composite name
name relative to ctx, and associates the attributes specified in attrs with the
named object. The binding is made in the target context, that is, that context
named by all but the terminal atomic part of name. The operation binds the
terminal atomic name to the supplied reference in the target context. The target
context must already exist.

The value of exclusive determines what happens if the terminal atomic part of the
name is already bound in the target context. If exclusive is nonzero and name is
already bound, the operation fails. If exclusive is 0, the new binding replaces any
existing binding, and, if attrs is not NULL, attrs replaces any existing attributes
associated with the named object. If attrs is NULLand exclusive is 0, any existing
attributes associated with the named object are left unchanged.

fn_attr_bind() returns 1 upon success, 0 upon failure.

fn_attr_bind() sets status as described in FN_status_t (3XFN) and
xfn_status_codes (3XFN). Of special relevance for this operation is the
following status code:

FN_E_NAME_IN_USE The supplied name is already in use.

The value of ref cannot be NULL If the intent is to reserve a name using
fn_attr_bind() , a reference containing no address should be supplied.
This reference may be name service-specific or it may be the conventional
NULL reference.

If multiple sources are updating a reference or attributes associated with a named
object, they must synchronize amongst each other when adding, modifying, or
removing from the address list of a bound reference, or manipulating attributes
associated with the named object.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_composite_name_t (3XFN), FN_ctx_t (3XFN),
FN_ref t (3XFN), FN_status_t (3XFN), fn_ctx_bind (3XFN),

Last modified 22 Nov 1996 Sun0OS 5.8 93

fn_attr_bind(3XFN) XFN Interface Library Functions

fn_ctx_lookup (3XFN), fn_ctx_unbind (3XFN), xfn_attributes (3XFN),
xfn_status_codes (3XFN), attributes (5)

94 Sun0S 5.8 Last modified 22 Nov 1996

XFN Interface Library Functions fn_attr_create_subcontext(3XFN)

NAME fn_attr_create_subcontext — create a subcontext in a context and associate
attributes with newly created context

SYNOPSIS #include <xfn/xfn.h>

FN_ref_t *fn_attr_create_subcontext (FN_ctx_t *ctx, const FN_composite_name_t
*name, const FN_attrset_t *attrs, FN_status_t *status);

DESCRIPTION This operation creates a new XFN context of the same type as the target context,
that is, that context named by all but the terminal atomic component of name,
and binds it to the supplied composite name. In addition, attributes given in
attrs are associated with the newly created context.

The target context must already exist. The new context is created and bound in
the target context using the terminal atomic name in name. The operation returns
a reference to the newly created context.

RETURN VALUES fn_attr_create_subcontext() returns a reference to the newly created
context; if the operation fails, it returns a NULL pointer.

ERRORS fn_attr_create_subcontext() sets status as described in

FN_status_t (3XFN) and xfn_status_codes (3XFN). Of special relevance for

this operation is the following status code:

FN_E_NAME_IN_USE The terminal atomic name already exists in the
target context.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_composite_name_t (3XFN), FN_ctx_t (3XFN),

FN_ref t (3XFN), FN_status_t (3XFN), fn_attr_bind (3XFN),
fn_ctx_bind (3XFN), fn_ctx_create_subcontext (3XFN),
fn_ctx_destroy_subcontext (3XFN), fn_ctx_lookup (3XFN),
xfn_attributes (3XFN), xfn_status_codes (3XFN), attributes (5)

Last modified 22 Nov 1996 Sun0S 5.8 95

fn_attr_ext_search(3XFN) XFN Interface Library Functions

NAME

SYNOPSIS

DESCRIPTION

96

fn_attr_ext_search, FN_ext_searchlist_t, fn_ext_searchlist_next,
fn_ext_searchlist_destroy — search for names in the specified context(s) whose
attributes satisfy the filter

#include <xfn/xfn.h>

FN_ext_searchlist_t *fn_attr_ext_search (FN_ctx_t *ctx, const FN_composite_name_t
*name, const FN_search_control_t *control, const FN_search_filter_t *filter, FN_status_t
*status);

FN_composite_name_t *fn_ext_searchlist_next (FN_ext_searchlist_t *esl, FN_ref t
**returned_ref, FN_attrset_t **returned_attrs, FN_status_t *status);

void fn_ext_searchlist_destroy (FN_ext_searchlist_t *esl);

This set of operations is used to list names of objects whose attributes satisfy the
filter expression. The references to which these names are bound and specified
attributes and their values may also be returned.

control encapsulates the option settings for the search. These options are:

m the scope of the search

m whether XFN links are followed

m a limit on the number of names returned

m whether references and specific attributes associated with the named objects
that satisfy the filter are returned

The scope of the search is one of:

m the object named name relative to the context ctx

m the context named name relative to the context ctx

m the context named name relative to the context ctx ,
and its subcontexts
or

m the context named name relative to the context ctx , and a context
implementation-defined set of subcontexts

If the value of control is O , default control option settings are used. The default
settings are:

m scope is search named context

m links are not followed

m all names of objects that satisfy the filter are returned
m references and attributes are not returned

The FN_search_control_t type is described in
FN_search_control_t (3XFN) .

Sun0S 5.8 Last modified 22 Nov 1996

XFN Interface Library Functions

RETURN VALUES

The filter expression filter in fn_attr_ext_search() is evaluated against
the attributes of the objects bound in the scope of the search. The filter
evaluates to either TRUEor FALSE. The names and, optionally, the references
and attributes of objects whose attributes satisfy the filter are enumerated. If
the value of filter is 0, all names within the search scope are enumerated. The

FN_search_filter_t type is described in FN_search_filter_t (3XFN) .
The call to fn_attr_ext_search() initiates the search process. It returns
a handle to an FN_ext_searchlist_t object that is used to enumerate the

names of the objects that satisfy the filter.

The operation fn_ext_searchlist_next() returns the next name in the
enumeration identified by esl ; it also updates esl to indicate the state of the
enumeration. If the reference to which the name is bound was requested, it is
returned in returned_ref . Requested attributes associated with the name are
returned in returned_attrs ; each attribute consists of an attribute identifier,

fn_attr_ext_search(3XFN)

syntax, and value(s). Successive calls to fn_ext_searchlist_next() using
esl return successive names and, optionally, their references and attributes, in the

enumeration; these calls further update the state of the enumeration.

The names that are returned are composite names, to be resolved relative to
the starting context for the search. This starting context is the context named
name relative to ctx unless the scope of the search is only the named object. If
the scope of the search is only the named object, the terminal atomic name
in name is returned.

fn_ext_searchlist_destroy() releases resources used during the
enumeration. This may be invoked at any time to terminate the enumeration.

fn_attr_ext_search() returns a pointer to an FN_ext_searchlist_t
object if the search is successfully initiated; it returns a NULL pointer if the
search cannot be initiated or if no named object with attributes whose values
satisfy the filter expression is found.

fn_ext_searchlist_next() returns a pointer to an
FN_composite_name_t object (see FN_composite_name_t (3XFN)) that is
the next name in the enumeration; it returns a NULL pointer if no more names
can be returned. If returned_attrs is a NULL pointer, no attributes are returned;
otherwise, returned_attrs contains the attributes associated with the named
object, as specified in the control parameter to fn_attr_ext_search() Cf
returned_ref is a NULL pointer, no reference is returned; otherwise, if control
specified the return of the reference of the named object, that reference is
returned in returned_ref .

In the case of a failure, these operations return in the status argument a code
indicating the nature of the failure.

Last modified 22 Nov 1996 Sun0OS 5.8

97

fn_attr_ext_search(3XFN) XFN Interface Library Functions

98

ERRORS

If successful, fn_attr_ext_search() returns a pointer to an
FN_ext_searchlist_t object and sets status to FN_SUCCESS.
fn_attr_ext_search() returns a NULL pointer when no more names can be
returned. status is set in the following way:

FN_SUCCESS A named object could not be found
whose attributes satisfied the filter
expression.

FN_E_NOT_A_CONTEXT The object named for the start of the

search was not a context and the
search scope was the given context or
the given context and its subcontexts.

FN_E_SEARCH_INVALID_FILTER The filter could not be evaluated
TRUEor FALSE, or there was some
other problem with the filter.

FN_E_SEARCH_INVALID_OPTION A supplied search control option
could not be supported.

FN_E_SEARCH_INVALID_OP An operator in the filter expression is
not supported or, if the operator is
an extended operator, the number of
types of arguments supplied does not
match the signature of the operation.

FN_E_ATTR_NO_PERMISSION The caller did not have permission to
read one or more of the attributes
specified in the filter.

FN_E_INVALID_ATTR_VALUE A value type in the filter did not
match the syntax of the attribute
against which it was being evaluated.

Other status codes are possible as described in FN_status_t (3XFN) and
xfn_status_codes (3XFN) .

Each successful call to fn_ext_searchlist_next() returns a name and,
optionally, its reference in returned_ref and requested attributes in returned_attrs
. status is set in the following way:

FN_SUCCESS All requested attributes were
returned successfully with the name.
FN_E_ATTR_NO_PERMISSION The caller did not have permission to
read one or more of the requested
attributes.
SunOS 5.8 Last modified 22 Nov 1996

Last modified 22 Nov 1996

XFN Interface Library Functions

FN_E_INVALID_ATTR_IDENTIFIER

FN_E_NO_SUCH_ATTRIBUTE

FN_E_INSUFFICIENT _RESOURCES

FN_E_ATTR_NO_PERMISSION
FN_E_INVALID_ATTR_IDENTIFIER
FN_E_NO_SUCH_ATTRIBUTE
FN_E_INSUFFICIENT _RESOURCES

If fn_ext_searchlist_next()
the next name in the enumeration.

fn_ext_searchlist_next()

fn_attr_ext_search(3XFN)

A requested attribute identifier was
not in a format acceptable to the
naming system, or its contents were
not valid for the format specified.

The named object did not have one of
the requested attributes.

Insufficient resources are available
to return all the requested attributes
and their values.

These indicate that some of the
requested attributes may have

been returned in returned_attrs but
one or more of them could not be
returned. Use fn_attr_get (3XFN)
or fn_attr_multi_get (3XFN) to
discover why these attributes could
not be returned.

returns a name, it can be called again to get

returns a NULL pointer if no more names can be

returned. status is set in the following way:

FN_SUCCESS

FN_E_PARTIAL_RESULT

FN_E_ATTR_NO_PERMISSION

FN_E_INVALID_ENUM_HANDLE

The search has completed
successfully.

The enumeration is not yet complete
but cannot be continued.

The caller did not have permission to
read one or more of the attributes
specified in the filter.

The supplied enumeration handle
was not valid. Possible reasons could
be that the handle was from another
enumeration, or the context being
enumerated no longer accepts the
handle (due to such events as handle
expiration or updates to the context).

SunOS 5.8 99

fn_attr_ext_search(3XFN) XFN Interface Library Functions

100

USAGE

EXAMPLES

Other status codes are possible as described in FN_status_t (3XFN) and
xfn_status_codes (3XFN) .

The search performed by fn_attr_ext_search() is not ordered in any

way, including the traversal of subcontexts. The names enumerated using
fn_ext_searchlist_next() are not ordered in any way. Furthermore, there
is no guarantee that any two series of enumerations with the same arguments to
fn_attr_ext_search() will return the names in the same order.

XFN links encountered during the resolution of name are followed, regardless of
the follow links control setting, and the search starts at the final named object
or context.

If control specifies that the search should follow links, XFN link names
encountered during the search are followed and the terminal named object is
searched. If the terminal named object is bound to a context and the scope of the
search includes subcontexts, that context and its subcontexts are also searched.
For example, if aname is bound to an XFN link, Iname , in a context within the
scope of the search, and aname is returned by fn_ext_searchlist_next()

, this means that the object identified by Iname satisfied the filter expression.
aname is returned instead of Iname because aname can always be named relative
to the starting context for the search.

If control specifies that the search should not follow links, the attributes
associated with the names of XFN links are searched. For example, if aname is
bound to an XFN link, Iname , in a context within the scope of the search, and
aname is returned by fn_ext_searchlist_next() , this means that the object
identified by aname satisfied the filter expression.

When following XFN links, fn_attr_ext_search() may search contexts
outside of scope . In addition, if the link name’s terminal atomic name is bound in
a context within scope , the operation may return the same object more than once.

XFN does not specify how control affects the following of native naming system
links during the search.

EXAMPLE 1 A sample program of displaying how the fn_attr_ext_search()
operation may be used.

The following code fragment illustrates how the fn_attr_ext_search()
operation may be used. The code consists of three parts: preparing the
arguments for the search, performing the search, and cleaning up.

The first part involves getting the name of the context to start the search

and constructing the search filter that named objects in the context must

satisfy. This is done in the declarations part of the code and by the routine
get_search_query . See FN_search_filter_t (3XFN) for the description of
sfilter and the filter creation operation.

Sun0OS 5.8 Last modified 22 Nov 1996

XFN Interface Library Functions fn_attr_ext_search(3XFN)

The next part involves doing the search and enumerating the results of the search.
This is done by first getting a context handle to the Initial Context, and then
passing that handle along with the name of the target context and search filter to
fn_attr_ext_search() . This particular call to fn_attr_ext_search()

uses the default search control options (by passing in 0 as the control argument).
This means that the search will be performed in the context named by target_name
and that no reference or attributes will be returned. In addition, any XFN links
encountered will not be followed and all named objects that satisfy the search
filter will be returned (that is, no limit). If successful, fn_attr_ext_search()
returns esl, a handle for enumerating the results of the search. The results of the
search are enumerated using calls to fn_ext_searchlist_next() , Which
returns the name of the object. (The arguments returned_ref and returned_attrs to
fn_ext_searchlist_next() are 0 because the default search control used i
fn_attr_ext_search() did not request them to be returned.)

The last part of the code involves cleaning up the resources used during the
search and enumeration. The call to fn_ext_searchlist_destroy()
releases resources reserved for this enumeration. The other calls release the

context handle, name, filter, and status objects created earlier.
/* Declarations */
FN_ctx_t *ctx;
FN_ext_searchlist_t *esl;
FN_composite_name_t *name;
FN_status_t *status = fn_status_create();
FN_composite_name_t *target_name = get_name_from_user_input();
FN_search_filter_t *sfilter = get_search_query();
/* Get context handle to Initial Context */
ctx = fn_ctx_handle_from_initial(status);
/* error checking on ’status’ */
[* Initiate search */
if ((esl=fn_attr_ext_search(ctx, target_name,
[* default controls */ 0, sfilter, status)) == 0) {
/* report ’status’, cleanup, and exit */
}
/* Enumerate names requested */
while (name=fn_ext_searchlist_next(esl, 0, O, status)) {
/* do something with 'name’ */
fn_composite_destroy(name);

/* check ’'status’ for reason for end of enumeration */
/* Clean up */

fn_ext_searchlist_destroy(esl);
fn_search_filter_destroy(sfilter);
fn_ctx_handle_destroy(ctx);
fn_composite_name_destroy(target_name);
fn_status_destroy(status);

/*

* Procedure for constructing the filter object for search:
* "age" attribute is greater than or equal to 17 AND
* less than or equal to 25

* AND the "student" attribute is present.

Last modified 22 Nov 1996 SunOS 5.8 101

fn_attr_ext_search(3XFN) XFN Interface Library Functions

102

ATTRIBUTES

SEE ALSO

*/
FN_search_filter_t *
get_search_query()
{
extern FN_attribute_t *attr_age;
extern FN_attribute_t *attr_student;
FN_search_filter_t *sfilter;
unsigned int filter_status;
sfilter = fn_search_filter_create(
&filter_status,
"(%a >= 17) and (%a <= 25) and %a",
attr_age, attr_age, attr_student);
[* error checking on ‘filter_status’ */
return (sfilter);

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_attrset t (3XFN) , FN_composite_name_t (3XFN) ,

FN_ctx_t (3XFN), FN_ref t (3XFN), FN_search_control_t (3XFN) ,
FN_search_filter_t (3XFN), FN_status_t (3XFN), fn_attr_get (3XFN),
fn_attr_multi_get (3XFN) , xfn_status_codes (3XFN) , attributes (5)

Sun0OS 5.8 Last modified 22 Nov 1996

XFN Interface Library Functions fn_attr_get(3XFN)

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

NOTES

fn_attr_get — return specified attribute associated with name

cc [flag ...] file ... =Ixfn [library ...]
#include <xfn/xfn.h>

FN_attribute_t *fn_attr_get (FN_ctx_t *ctx, const FN_composite_name_t *name, const
FN_identifier_t *attribute_id, unsigned int follow_link, FN_status_t *status);

This operation returns the identifier, syntax and values of a specified attribute for
the object named name relative to ctx. If name is empty, the attribute associated
with ctx is returned.

The value of follow_link determines what happens when the terminal atomic
part of name is bound to an XFN link. If follow_link is non-zero, such a link is
followed, and the values of the attribute associated with the final named object
are returned; if follow_link is zero, such a link is not followed. Any XFN links
encountered before the terminal atomic name are always followed.

fn_attr_get returns a pointer to an FN_attribute_t object if the operation
succeeds; it returns a NULL pointer (0) if the operation fails.

fn_attr_get() sets status as described in FN_status_t (3XFN) and
xfn_status_codes (3XFN).

fn_attr_get_values() and its related operations are used for getting
individual values of an attribute. They should be used if the combined size of
all the values are expected to be too large to be returned in a single invocation
of fn_attr_get()

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_attribute_t (3XFN), FN_composite_name_t (3XFN),

FN_ctx_t (3XFN), FN_identifier_t (3XFN), FN_status_t (3XFN),
fn_attr_get_values (3XFN), xfn (3XFN), xfn_attributes (3XFN),
xfn_status_codes (3XFN), attributes (5)

The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Last modified 13 Dec 1996 SunOS 5.8 103

fn_attr_get_ids(3XFN) XFN Interface Library Functions

NAME fn_attr_get_ids — get a list of the identifiers of all attributes associated with
named object

SYNOPSIS cc [flag ...] file ... —Ixfn [library ...]
#include <xfn/xfn.h>

FN_attrset_t *fn_attr_get_ids (FN_ctx_t *ctx, const FN_composite_name_t *name,
unsigned int follow_link, FN_status_t *status);

DESCRIPTION This operation returns a list of the attribute identifiers of all attributes associated
with the object named by name relative to the context ctx. If name is empty, the
attribute identifiers associated with ctx are returned.

The value of follow_link determines what happens when the terminal atomic
part of name is bound to an XFN link. If follow_link is non-zero, such a link is
followed, and the values of the attribute associated with the final named object
are returned; if follow_link is zero, such a link is not followed. Any XFN links
encountered before the terminal atomic name are always followed.

RETURN VALUES This operation returns a pointer to an object of type FN_attrset t ; if the
operation fails, a NULL pointer (0) is returned.

ERRORS This operation sets status as described in FN_status_t (3XFN) and
xfn_status_codes (3XFN).

USAGE The attributes in the returned set do not contain the syntax or values of the
attributes, only their identifiers.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_attribute_t (3XFN), FN_attrset t (3XFN),
FN_composite_name_t (3XFN), FN_ctx_t (3XFN), FN_status_t (3XFN),
fn_attr_get (3XFN), fn_attr_multi_get (3XFN) xfn (3XFN),
xfn_attributes (3XFN), xfn_status_codes (3XFN), attributes (5)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

104 Sun0OS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_attr_get_values(3XFN)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

fn_attr_get_values, FN_valuelist_t, fn_valuelist_next, fn_valuelist_destroy —
return values of an attribute

cc [flag ...] file ... =Ixfn [library ...]

#include <xfn/xfn.h>

FN_valuelist_t *fn_attr_get_values (FN_ctx_t *ctx, const FN_composite_name_t
*name, const FN_identifier_t *attribute_id, unsigned int follow_link, FN_status_t *status);

FN_attrvalue_t *fn_valuelist_next (FN_valuelist_t *vl, FN_identifier_t **attr_syntax,
FN_status_t *status);

void fn_valuelist_destroy (FN_valuelist_t *vl, FN_status_t *status);

This set of operations is used to obtain the values of a single attribute, identified
by attribute_id , associated with the object named name , resolved in the context
ctx . If name is empty, the attribute values associated with ctx are obtained.

The value of follow_link determines what happens when the terminal atomic
part of name is bound to an XFN link. If follow_link is non-zero, such a link is
followed, and the values of the attribute associated with the final named object
are returned; if follow_link is zero, such a link is not followed. Any XFN links
encountered before the terminal atomic name are always followed.

The operation fn_attr_get_values() initiates the enumeration process. It
returns a handle to an FN_valuelist_t object that can be used to enumerate
the values of the specified attribute.

The operation fn_valuelist_next() returns a new FN_attrvalue_t object
containing the next value in the attribute and may be called multiple times until
all values are retrieved. The syntax of the attribute is returned in attr_syntax .

The operation fn_valuelist_destroy() is used to release the resources
used during the enumeration. This may be invoked before the enumeration has
completed to terminate the enumeration.

These operations work in a fashion similar to the fn_ctx_list_names()
operations.

fn_attr_get_values() returns a pointer to an FN_valuelist_t object
if the enumeration process is successfully initiated; it returns a NULL pointer
if the process failed.

fn_valuelist_next() returns a NULL pointer if no more attribute values
can be returned.

In the case of a failure, these operations set status to indicate the nature of the
failure.

Each successful call to fn_valuelist_next() returns an attribute value.
status is set to FN_SUCCESS

Last modified 13 Dec 1996 Sun0OS 5.8 105

fn_attr_get_values(3XFN) XFN Interface Library Functions

USAGE

ATTRIBUTES

SEE ALSO

NOTES

106

When fn_valuelist_next() returns a NULL pointer, it indicates that no more

values can be returned. status is set in the following way:

FN_SUCCESS The enumeration has completed
successfully.

FN_E_INVALID_ENUM_HANDLE The given enumeration handle is not
valid. Possible reasons could be
that the handle was from another
enumeration, or the context being
enumerated no longer accepts the
handle (due to such events as handle
expiration or updates to the context).

FN_E_PARTIAL_RESULT The enumeration is not yet complete
but cannot be continued.

In addition to these status codes, other status codes are also possible in calls to
these operations. In such cases, status is set as described in FN_status_t (3XFN)
and xfn_status_codes (3XFN) .

This interface should be used instead of fn_attr_get() if the combined size
of all the values is expected to be too large to be returned by fn_attr_get()

There may be a relationship between the ctx argument supplied to

fn_attr_get_values() and the FN_valuelist_t object it returns. For

example, some implementations may store the context handle ctx within the

FN_valuelist_t object for subsequent fn_valuelist_next() calls. In

general, an fn_ctx_handle_destroy (3XFN) should not be invoked on ctx

until the enumeration has terminated.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_attribute_t (3XFN) , FN_attrvalue_t (3XFN)

, FN_composite_name_t (3XFN) , FN_ctx_t (3XFN),

FN_identifier_t (3XFN), FN_status_t (3XFN), fn_attr_get (3XFN) ,
fn_ctx_handle_destroy (3XFN), fn_ctx_list_names (3XFN), xfn (3XFN)
, Xfn_attributes (3XFN) , xfn_status_codes (3XFN) , attributes (5)

The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed

Sun0S 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_attr_get_values(3XFN)

using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Last modified 13 Dec 1996 Sun0S 5.8 107

FN_attribute_t(3XFN)

NAME

SYNOPSIS

DESCRIPTION

108

XFN Interface Library Functions

FN_attribute_t, fn_attribute_create, fn_attribute_destroy, fn_attribute_copy,
fn_attribute_assign, fn_attribute_identifier, fn_attribute_syntax,
fn_attribute_valuecount, fn_attribute_first, fn_attribute_next, fn_attribute_add,
fn_attribute_remove — an XFN attribute

cc [flag ...] file ... =Ixfn [library ...]

#include <xfn/xfn.h>

FN_attribute_t *fn_attribute_create (constFN_identifier_t *attribute_id, const
FN_identifier_t *attribute_syntax);

void fn_attribute_destroy (FN_attribute_t *attr);

FN_attribute_t *fn_attribute_copy (constFN_attribute_t *attr);

FN_attribute_t *fn_attribute_assign (FN_attribute_t *dst, const FN_attribute_t *src);
const FN_identifier_t *fn_attribute_identifier (constFN_attribute_t *attr);

const FN_identifier_t *fn_attribute_syntax (constFN_attribute_t *attr);

unsigned int fn_attribute_valuecount (constFN_attribute_t *attr);

const FN_attrvalue_t *fn_attribute_first (constFN_attribute_t *attr, void **iter_pos);
const FN_attrvalue_t *fn_attribute_next (constFN_attribute_t *attr, void **iter_pos);
int fn_attribute_add (FN_attribute_t *attr, const FN_attrvalue_t *attribute_value,

unsigned int exclusive);
int fn_attribute_remove (FN_attribute_t *attr, const FN_attrvalue_t *attribute_value);

An attribute has an attribute identifier, a syntax, and a set of distinct values.
Each value is a sequence of octets. The operations associated with objects of type
FN_attribute_t allow the construction, destruction, and manipulation of an
attribute and its value set.

The attribute identifier and its syntax are specified using an FN_identifier_t

. fn_attribute_create() creates a new attribute object with the given
identifier and syntax, and an empty set of values. fn_attribute_destroy()

releases the storage associated with attr . fn_attribute_copy() returns a
copy of the object pointed to by attr . fn_attribute_assign() makes a copy
of the attribute object pointed to by src and assigns it to dst , releasing any old
contents of dst . A pointer to the same object as dst is returned.

fn_attribute_identifier() returns the attribute identifier of

attr . fn_attribute_syntax() returns the attribute syntax of attr .

fn_attribute_valuecount() returns the number of attribute values in attr .

fn_attribute_first() and fn_attribute_next() are used to

enumerate the values of an attribute. Enumeration of the values of an attribute

may return the values in any order. fn_attribute_first() returns an
SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_attribute_t(3XFN)

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

NOTES

attribute value from attr and sets the iteration marker iter_pos . Subsequent
calls to fn_attribute_next() returns the next attribute value identified by
iter_pos and advances iter_pos . Adding or removing values from an attribute
invalidates any iteration markers that the caller holds.

fn_attribute_add() adds a new value attribute_value to attr . The operation
succeeds (but no change is made) if attribute_value is already in attr and exclusive
is 0 ; the operation fails if attribute_value is already in attr and exclusive is non-zero.

fn_attribute_remove() removes attribute_value from attr . The operation
succeeds even if attribute_value is not amongst attr ’s values.
fn_attribute_first() returns O if the attribute contains no values.
fn_attribute_next() returns O if there are no more values to be returned

in the attribute (as identified by the iteration marker) or if the iteration marker
is invalid.

fn_attribute_add() and fn_attribute_remove() return 1 if the
operation succeeds, 0 if it fails.

Manipulation of attributes using the operations described in this manual page
does not affect their representation in the underlying naming system. Changes
to attributes in the underlying naming system can only be effected through the
use of the interfaces described in xfn_attributes (3XFN) .

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_attrset t (3XFN), FN_attrvalue_t (3XFN) , FN_identifier_t (3XFN)
, fn_attr_get (3XFN) , fn_attr_modify (3XFN) , xfn (3XFN) ,
xfn_attributes (3XFN) , attributes (5)

The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Last modified 13 Dec 1996 Sun0S 5.8 109

fn_attr_modify(3XFN) XFN Interface Library Functions

NAME fn_attr_modify — modify specified attribute associated with name

SYNOPSIS cc [flag ...] file ... —Ixfn [library ...]
#include <xfn/xfn.h>

int fn_attr_modify (FN_ctx_t *ctx, const FN_composite_name_t *name, unsigned int
mod_op, const FN_attribute_t *attr, unsigned int follow_link, FN_status_t *status);

DESCRIPTION This operation modifies according to mod_op the attribute attr associated with
the object named name relative to ctx. If name is empty, the attribute associated
with ctx is modified.

The value of follow_link determines what happens when the terminal atomic
part of name is bound to an XFN link. If follow_link is non-zero, such a link is
followed, and the values of the attribute associated with the final named object
are returned; if follow_link is zero, such a link is not followed. Any XFN links
encountered before the terminal atomic name are always followed.

The modification is made on the attribute identified by the attribute identifier
of attr. The syntax and values of attr are used according to the modification
operation.

The modification operations are as follows:

FN_ATTR_OP_ADD Add an attribute with given attribute
identifier and set of values. If an
attribute with this identifier already
exists, replace the set of values with
those in the given set. The set of
values may be empty if the target
naming system permits.

FN_ATTR_OP_ADD_EXCLUSIVE Add an attribute with the given
attribute identifier and set of values.
The operation fails if an attribute
with this identifier already exists. The
set of values may be empty if the
target naming system permits.

FN_ATTR_OP_REMOVE Remove the attribute with the given
attribute identifier and all of its
values. The operation succeeds even
if the attribute does not exist. The
values of the attribute supplied with
this operation are ignored.

FN_ATTR_OP_ADD_VALUES Add the given values to those of
the given attribute (resulting in the

110 Sun0S 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_attr_modify(3XFN)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

attribute having the union of its
prior value set with the set given).
Create the attribute if it does not
exist already. The set of values
may be empty if the target naming
system permits.

FN_ATTR_OP_REMOVE_VALUES Remove the given values from those
of the given attribute (resulting in the
attribute having the set difference
of its prior value set and the set
given). This succeeds even if some
of the given values are not in the
set of values that the attribute has.
In naming systems that require an
attribute to have at least one value,
removing the last value will remove
the attribute as well.

1 Successful operation.
0 Operation failed.
fn_attr_modify() sets status as described in FN_status_t (3XFN) and

xfn_status_codes (3XFN).

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_attribute_t (3XFN), FN_composite_name_t (3XFN), FN_ctx_t (3XFN),
FN_status_t (3XFN), fn_attr_multi_modify (3XFN), xfn (3XFN),
xfn_attributes (3XFN), xfn_status_codes (3XFN), attributes (5)

The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Last modified 13 Dec 1996 Sun0OS 5.8 111

FN_attrmodlist_t(3XFN) XFN Interface Library Functions

NAME

SYNOPSIS

DESCRIPTION

112

FN_attrmodlist_t, fn_attrmodlist_create, fn_attrmodlist_destroy,
fn_attrmodlist_copy, fn_attrmodlist_assign, fn_attrmodlist_count,
fn_attrmodlist_first, fn_attrmodlist_next, fn_attrmodlist_add - a list of attribute
modifications

cc [flag ...] file ... =Ixfn [library ...]
#include <xfn/xfn.h>

FN_attrmodlist_t *fn_attrmodlist_create (void);

void fn_attrmodlist_destroy (FN_attrmodlist_t *modlist);
FN_attrmodlist_t *fn_attrmodlist_copy (const FN_attrmodlist_t *modlist);
FN_attrmodlist_t *fn_attrmodlist_assign (FN_attrmodlist_t *dst, const

FN_attrmodlist_t *src);
unsigned int fn_attrmodlist_count (const FN_attrmodlist_t *modlist);

const FN_attribute_t *fn_attrmodlist_first (const FN_attrmodlist_t *modlist, void
**jter_pos, unsigned int *first_mod_op);

const FN_attribute_t *fn_attrmodlist_next (const FN_attrmodlist_t *modlist, void
**jter_pos, unsigned int *mod_op);

int fn_attrmodlist_add (FN_attrmodlist_t *modlist, unsigned int mod_op, const
FN_attribute_t *attr);

An attribute modification list allows for multiple modification operations to
be made on the attributes associated with a single named object. It is used in
the fn_attr_multi_modify (3XFN) operation.

An attribute modification list is a list of attribute modification specifiers. An
attribute modification specifier consists of an attribute object and an operation
specifier. The attribute’s identifier indicates the attribute that is to be operated
upon. The attribute’s values are used in a manner depending on the operation.
The operation specifier is an unsigned int that must have one of the values:

FN_ATTR_OP_ADD

FN_ATTR_OP_ADD_EXCLUSIVE

FN_ATTR_OP_REMOVE

FN_ATTR_OP_ADD_VALUES
or

FN_ATTR_OP_REMOVE_VALUES

(See fn_attr_modify (3XFN) for detailed descriptions of these specifiers.)
The operations are to be performed in the order in which they appear in the
modification list.

Sun0S 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_attrmodlist_t(3XFN)

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

fn_attrmodlist_create() creates an empty attribute modification list.
fn_attrmodlist_destroy() releases the storage associated with modlist .
fn_attrmodlist_copy() returns a copy of the attribute modification list
modlist . fn_attrmodlist_assign() makes a copy of src and assigns it to dst

, releasing any old contents of dst . It returns a pointer to the same object as dst .

fn_attrmodlist_count() returns the number attribute modification items
in the attribute modification list.

The iterators fn_attrmodlist_first() and fn_attrmodlist_next()

return a handle to the attribute part of the modification and return

the operation specifier part through an unsigned int * parameter.
fn_attrmodlist_first() returns the attribute of the first modification item
from modlist and sets mod_op to be the code of the modification operation of that
item; iter_pos is set after the first modification item.

fn_attrmodlist_next() returns the attribute of the next modification item
from modlist after iter_pos and advances iter_pos ; mod_op is set to the code of
the modification operation of that item. The order of the items returned during
an enumeration is the same as the order by which the items were added to
the modification list.

fn_attrmodlist_add() adds a new item consisting of the given modification
operation code mod_op and attribute attr to the end of the modification list modlist
. attr ’s identifier indicates the attribute that is to be operated upon. attr ’s values
are used in a manner depending on the operation.

fn_attrmodlist_first() returns O if the modification list is empty.
fn_attrmodlist_next() returns O if there are no more items on the
modification list to be enumerated or if the iteration marker is invalid.
fn_attrmodlist_add() returns 1 if the operation succeeds, O if the operation
fails.

Manipulation of attributes using the operations described in this manual page
does not affect their representation in the underlying naming system. Changes
to attributes in the underlying naming system can only be effected through the
use of the interfaces described in xfn_attributes (3XFN) .

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_attribute_t (3XFN), FN_attrset_ t (3XFN), FN_identifier_t (3XFN)
, fn_attr_modify (3XFN) , fn_attr_multi_modify (3XFN) , xfn (3XFN),
xfn_attributes (3XFN) , attributes (5)

Last modified 13 Dec 1996 SunOS 5.8 113

FN_attrmodlist_t(3XFN) XFN Interface Library Functions

114

NOTES

The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Sun0OS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_attr_multi_get(3XFN)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

fn_attr_multi_get, FN_multigetlist_t, fn_multigetlist_next,
fn_multigetlist_destroy — return multiple attributes associated with named object

cc [flag ...] file ... =Ixfn [library ...]
#include <xfn/xfn.h>

FN_multigetlist_t *fn_attr_multi_get (FN_ctx_t *ctx, const FN_composite_name_t
*name, const FN_attrset_t *attr_ids, unsigned int follow_link, FN_status_t *status);

FN_attribute_t *fn_multigetlist_next (FN_multigetlist_t *ml, FN_status_t *status);
void fn_multigetlist_destroy (FN_multigetlist_t *ml, FN_status_t *status);

This set of operations returns one or more attributes associated with the object
named by name relative to the context ctx . If name is empty, the attributes
associated with ctx are returned.

The value of follow_link determines what happens when the terminal atomic
part of name is bound to an XFN link. If follow_link is non-zero, such a link is
followed, and the values of the attribute associated with the final named object
are returned; if follow_link is zero, such a link is not followed. Any XFN links
encountered before the terminal atomic name are always followed.

The attributes returned are those specified in attr_ids . If the value of attr_idsis O,
all attributes associated with the named object are returned. Any attribute values
in attr_ids provided by the caller are ignored; only the attribute identifiers are
relevant for this operation. Each attribute (identifier, syntax, values) is returned
one at a time using an enumeration scheme similar to that for listing a context.

fn_attr_multi_get() initiates the enumeration process. It returns a handle
to an FN_multigetlist_t object that can be used for the enumeration.
The operation fn_multigetlist_next() returns a new FN_attribute_t

object containing the next attribute (identifiers, syntaxes, and values) requested
and updates ml to indicate the state of the enumeration.

The operation fn_multigetlist_destroy() releases the resources used
during the enumeration. It may be invoked before the enumeration has
completed to terminate the enumeration.

fn_attr_multi_get() returns a pointer to an FN_multigetlist_t object if
the enumeration has been initiated successfully; a NULL pointer (0) is returned
if it failed.

fn_multigetlist_next() returns a pointer to an FN_attribute_t object if
an attribute was returned, a NULL pointer (0) if no attribute was returned.

In the case of a failure, these operations set status to indicate the nature of the
failure.

Last modified 13 Dec 1996 Sun0S 5.8 115

fn_attr_multi_get(3XFN)

ERRORS

116

Each call to fn_multigetlist_next()
FN_SUCCESS

FN_E_ATTR_NO_PERMISSION

FN_E_INSUFFICIENT _RESOURCES

FN_E_INVALID_ATTR_IDENTIFIER

FN_E_INVALID_ENUM_HANDLE

FN_E_NO_SUCH_ATTRIBUTE

FN_E_PARTIAL_RESULT

XFN Interface Library Functions

sets status as follows:

If an attribute was returned, there are
more attributes to be enumerated.

If no attribute was returned,

the enumeration has completed
successfully.

The caller did not have permission
to read this attribute.

Insufficient resources are available to
return the attribute’s values.

This attribute identifier was not in
a format acceptable to the naming
system, or its contents was not
valid for the format specified for
the identifier.

(No attribute should be returned
with this status code). The given
enumeration handle is not valid.
Possible reasons could be that

the handle was from another
enumeration, or the object being
processed no longer accepts the
handle (due to such events as handle
expiration or updates to the object’s
attribute set).

The object did not have an attribute
with the given identifier.

(No attribute should be returned with
this status code). The enumeration

is not yet complete but cannot be
continued.

For FN_E_ATTR_NO_PERMISSION, FN_E_INVALID_ATTR_IDENTIFIER,
FN_E_INSUFFICIENT_RESOURCES, or FN_E_NO_SUCH_ATTRIBUTEthe
returned attribute contains only the attribute identifier (no value or syntax). For
these four status codes and FN_SUCCESS$when an attribute was returned),

fn_multigetlist_next()

can be called again to return another attribute.

All other status codes indicate that no more attributes can be returned by

fn_multigetlist_next()

Sun0S 5.8

Last modified 13 Dec 1996

XFN Interface Library Functions fn_attr_multi_get(3XFN)

USAGE

EXAMPLES

Other status codes, such as FN_E_COMMUNICATION_FAILUREare also
possible, in which case, no attribute is returned. In such cases, status is set as
described in FN_status_t (3XFN) and xfn_status_codes (3XFN) .

Implementations are not required to return all attributes requested by attr_ids .
Some may choose to return only the attributes found successfully, followed by a
status of FN_E_PARTIAL_RESULT; such implementations may not necessarily
return attributes identifying those that could not be read. Implementations are
not required to return the attributes in any order.

There may be a relationship between the ctx argument supplied to
fn_attr_multi_get() and the FN_multigetlist_t object it returns. For
example, some implementations may store the context handle ctx within the
FN_multigetlist_t object for subsequent fn_multigetlist_next()

calls. In general, a fn_ctx_handle_destroy() should not be invoked on ctx
until the enumeration has terminated.

EXAMPLE 1 A sample program displaying how to use fn_attr_multi_get()
function.

The following code fragment illustrates to obtain all attributes associated with a

given name using the fn_attr_multi_get() operations.
/* list all attributes associated with given name */
extern FN_string_t *input_string;
FN_ctx_t *ctx;
FN_composite_name_t *target_name = fn_composite_name_from_string(input_string);
FN_multigetlist_t *ml;
FN_status_t *status = fn_status_create();
FN_attribute_t *attr;
int done = 0O;
ctx = fn_ctx_handle_from_initial(status);
/* error checking on ’status’ */
/* attr_ids == 0 indicates all attributes are to be returned */
if ((ml=fn_attr_multi_get(ctx, target_name, 0, status)) == 0) {
/* report ’status’ and exit */

while ((attr=fn_multigetlist_next(ml, status)) && !done) {
switch (fn_status_code(status)) {
case FN_SUCCESS:
/* do something with ’attr’ */
break;
case FN_E_ATTR_NO_PERMISSION:
case FN_E_ATTR_INVALID_ATTR_IDENTIFIER:
case FN_E_NO_SUCH_ATTRIBUTE:
[* report error using identifier in ’attr */

break;

default:

[* other error handling */
done = 1;

}

if (attr)
fn_attribute_destroy(attr);

Last modified 13 Dec 1996 Sun0S 5.8 117

fn_attr_multi_get(3XFN) XFN Interface Library Functions

ATTRIBUTES

SEE ALSO

NOTES

118

/* check ’status’ for reason for end of enumeration and report if necessary */
/* clean up */

fn_multigetlist_destroy(ml, status);

[* report ’status’ */

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_attribute_t (3XFN) , FN_attrset t (3XFN) ,

FN_composite_name_t (3XFN) , FN_ctx_t (3XFN)

FN_identifier_t (3XFN), FN_status_t (3XFN), fn_attr_get (3XFN) ,
fn_ctx_handle_destroy (3XFN), fn_ctx_list_names (3XFN), xfn (3XFN)
, Xfn_attributes (3XFN) , xfn_status_codes (3XFN) , attributes (5)

The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Sun0OS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_attr_multi_modify(3XFN)

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

fn_attr_multi_modify — modify multiple attributes associated with named object

cc [flag ...] file ... =Ixfn [library ...]
#include <xfn/xfn.h>

int fn_attr_multi_modify (FN_ctx_t *ctx, const FN_composite_name_t *name, const
FN_attrmodlist_t *mods, unsigned int follow_link, FN_attrmodlist_t **unexecuted_mods,
FN_status_t *status);

This operation modifies the attributes associated with the object named name
relative to ctx. If name is empty, the attributes associated with ctx are modified.

The value of follow_link determines what happens when the terminal atomic
part of name is bound to an XFN link. If follow_link is non-zero, such a link is
followed, and the values of the attribute associated with the final named object
are returned; if follow_link is zero, such a link is not followed. Any XFN links
encountered before the terminal

In the mods parameter, the caller specifies a sequence of modifications that are to
be done in order on the attributes. Each modification in the sequence specifies a
modification operation code (see fn_attr_modify (3XFN)) and an attribute
on which to operate.

The FN_attrmodlist_t type is described in FN_attrmodlist_t (3XFN).

fn_attr_multi_modify() returns 1 if all the modification operations were
performed successfully. The function returns O if it any error occurs. If the
operation fails, status and unexecuted_mods are set as described below.

If an error is encountered while performing the list of modifications, status
indicates the type of error and unexecuted_mods is set to a list of unexecuted
modifications. The contents of unexecuted_mods do not share any state with mods;
items in unexecuted_mods are copies of items in mods and appear in the same
order in which they were originally supplied in mods. The first operation in
unexecuted_mods is the first one that failed and the code in status applies to this
modification operation in particular. If status indicates failure and a NULL pointer
(0) is returned in unexecuted_mods, that indicates no modifications were executed.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_attrmodlist_t (3XFN), FN_composite_name_t (3XFN),
FN_ctx_t (3XFN), FN_status_t (3XFN), fn_attr_modify (3XFN),
xfn (3XFN), xfn_attributes (3XFN), xfn_status_codes (3XFN),
attributes (5)

Last modified 13 Dec 1996 Sun0OS 5.8 119

fn_attr_multi_modify(3XFN) XFN Interface Library Functions

120

NOTES

The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Sun0OS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_attr_search(3XFN)

NAME

SYNOPSIS

DESCRIPTION

fn_attr_search, FN_searchlist_t, fn_searchlist_next, fn_searchlist_destroy — search
for the atomic name of objects with the specified attributes in a single context

#include <xfn/xfn.h>

FN_searchlist_t *fn_attr_search (FN_ctx_t *ctx, const FN_composite_name_t *name,
const FN_attrset_t *match_attrs, unsigned int return_ref, const FN_attrset_t *return_attr_ids,
FN_status_t *status);

FN_string_t *fn_searchlist_next (FN_searchlist_t *sl, FN_ref_t **returned_ref,
FN_attrset_t **returned_attrs, FN_status_t *status);

void fn_searchlist_destroy (FN_searchlist_t *sl);

This set of operations is used to enumerate names of objects bound in the target
context named name relative to the context ctx with attributes whose values
match all those specified by match_attrs .

The attributes specified by match_attrs form a conjunctive ANDexpression against
which the attributes of each named object in the target context are evaluated. For
multi-valued attributes, the list order of values is ignored and attribute values
not specified in match_attrs are ignored. If no value is specified for an attribute in
match_attrs , the presence of the attribute is tested. If the value of match_attrs is

0, all names in the target context are enumerated.

If a non-zero value of return_ref is passed to fn_attr_search() , the
reference bound to the name is returned in the returned_ref argument to
fn_searchlist_next()

Attribute identifiers and values associated with named objects that satisfy
match_attrs may be returned by fn_searchlist_next() . The attributes
returned are those listed in the return_attr_ids argument to fn_attr_search()

. If the value of return_attr_ids is O , all attributes are returned. If return_attr_ids
is an empty FN_attrset_t (3XFN) object, no attributes are returned. Any
attribute values in return_attr_ids are ignored; only the attribute identifiers are
relevant for return_attr_ids .

The call to fn_attr_search() initiates the enumeration process. It returns a
handle to an FN_searchlist_t object that is used to enumerate the names of
the objects whose attributes match the attributes specified by match_attrs .

The operation fn_searchlist_next() returns the next name in the
enumeration identified by the sl . The reference of the name is returned

in returned_ref if return_ref was set in the call to fn_attr_search() .

The attributes specified by return_attr_ids are returned in returned_attrs

. fn_searchlist_next() also updates sl to indicate the state of the
enumeration. Successive calls to fn_searchlist_next() using sl return
successive names, and optionally, references and attributes, in the enumeration;
these calls further update the state of the enumeration.

Last modified 22 Nov 1996 Sun0OS 5.8 121

fn_attr_search(3XFN) XFN Interface Library Functions

fn_searchlist_destroy() releases resources used during the enumeration.
This can be invoked at any time to terminate the enumeration.

fn_attr_search() does not follow XFN links that are bound in the target
context.

RETURN VALUES fn_attr_search() returns a pointer to an FN_searchlist_t object if
the enumeration is successfully initiated; it returns a NULL pointer if the
enumeration cannot be initiated or if no named object with attributes whose
values match those specified in match_attrs is found.

fn_searchlist_next() returns a pointer to an FN_string_t (3XFN) object;
it returns a NULL pointer if no more names can be returned in the enumeration.
If returned_ref is a NULL pointer, or if the return_ref parameter to fn_attr_search
was 0, no reference is returned; otherwise, returned_ref contains the reference
bound to the name. If returned_attrs is a NULL pointer, no attributes are returned;
otherwise, returned_attrs contains the attributes associated with the named
object, as specified by the return_attr_ids parameter to fn_attr_search()

In the case of a failure, these operations return in the status argument a code
indicating the nature of the failure.

ERRORS fn_attr_search() returns a NULL pointer if the enumeration could not be
initiated. The status argument is set in the following way:
FN_SUCCESS A named object could not be found

whose attributes satisfied the implied
filter of equality and conjunction.

FN_E_ATTR_NO_PERMISSION The caller did not have permission
to read one or more of the specified
attributes.

FN_E_INVALID_ATTR_VALUE A value type in the specified

attributes did not match the syntax
of the attribute against which it was
being evaluated.

Other status codes are possible as described in FN_status_t (3XFN) and
xfn_status_codes (3XFN) .

Each successful call to fn_searchlist_next() returns a name and,

optionally, the reference and requested attributes. status is set in the following

way:

FN_SUCCESS All requested attributes were
returned successfully with the name.

122 Sun0S 5.8 Last modified 22 Nov 1996

Last modified 22 Nov 1996

XFN Interface Library Functions

FN_E_ATTR_NO_PERMISSION

FN_E_INVALID_ATTR_IDENTIFIER

FN_E_NO_SUCH_ATTRIBUTE

FN_E_INSUFFICIENT _RESOURCES

FN_E_ATTR_NO_PERMISSION
FN_E_INVALID_ATTR_IDENTIFIER
FN_E_NO_SUCH_ATTRIBUTE
FN_E_INSUFFICIENT _RESOURCES

fn_searchlist_next()

fn_attr_search(3XFN)

The caller did not have permission to
read one or more of the requested
attributes.

A requested attribute identifier was
not in a format acceptable to the
naming system, or its contents was
not valid for the format specified.

The named object did not have one of
the requested attributes.

Insufficient resources are available
to return all the requested attributes
and their values.

These indicate that some of the
requested attributes may have

been returned in returned_attrs but
one or more of them could not be
returned. Use fn_attr_get (3XFN)
or fn_attr_multi_get (3XFN) to
discover why these attributes could
not be returned.

returns a NULL pointer if no more names can be

returned. The status argument is set in the following way:

FN_SUCCESS

FN_E_PARTIAL_RESULT

FN_E_ATTR_NO_PERMISSION

FN_E_INVALID_ENUM_HANDLE

The search has completed
successfully.

The enumeration is not yet complete
but cannot be continued.

The caller did not have permission
to read one or more of the specified
attributes.

The supplied enumeration handle
was not valid. Possible reasons could
be that the handle was from another
enumeration, or the context being
enumerated no longer accepts the
handle (due to such events as handle
expiration or updates to the context).

SunOS 5.8 123

fn_attr_search(3XFN) XFN Interface Library Functions

Other status codes are possible as described in FN_status_t (3XFN) and
xfn_status_codes (3XFN) .

USAGE The names enumerated using fn_searchlist_next() are not ordered in any
way. Furthermore, there is no guarantee that any two series of enumerations
on the same context with identical match_attrs will return the names in the

same order.
EXAMPLES EXAMPLE 1 A sample program of displaying how to use fn_attr_search()
function.
The following code fragment illustrates how the fn_attr_search() operation

may be used. The code consists of three parts: preparing the arguments for the
search, performing the search, and cleaning up.

The first part involves getting the name of the context to start the search and
constructing the set of attributes that named objects in the context must
satisfy. This is done in the declarations part of the code and by the routine
get_search_query

The next part involves doing the search and enumerating the results of the
search. This is done by first getting a context handle to the Initial Context, and
then passing that handle along with the name of the target context and matching
attributes to fn_attr_search() . This particular call to fn_attr_search()

is requesting that no reference be returned (by passing in O for return_ref), and
that all attributes associated with the named object be returned (by passing in 0
as the return_attr_ids argument). If successful, fn_attr_search() returnssl, a
handle for enumerating the results of the search. The results of the search are
enumerated using calls to fn_searchlist_next() , Which returns the name
of the object and the attributes associated with the named object in returned_attrs .

The last part of the code involves cleaning up the resources used during the
search and enumeration. The call to fn_searchlist_destroy() releases
resources reserved for this enumeration. The other calls release the context

handle, name, attribute set, and status objects created earlier.
/* Declarations */
FN_ctx_t *ctx;
FN_searchlist_t *sl;
FN_string_t *name;
FN_attrset_t *returned_attrs;
FN_status_t *status = fn_status_create();
FN_composite_name_t *target_name = get_name_from_user_input();
FN_attrset_t *match_attrs = get_search_query();
/* Get context handle to Initial Context */
ctx = fn_ctx_handle_from_initial(status);
/* error checking on ’status’ */
[* Initiate search */
if ((sl=fn_attr_search(ctx, target_name, match_attrs,
/* no reference */ 0, /* return all attrs */ 0, status)) == 0) {
/* report ’status’, cleanup, and exit */

124 Sun0OS 5.8 Last modified 22 Nov 1996

XFN Interface Library Functions fn_attr_search(3XFN)

}

/* Enumerate names and attributes requested */

while (name=fn_searchlist_next(sl, 0, &returned_attrs, status)) {
/* do something with 'name’ and ’returned_attrs™/
fn_string_destroy(name);

fn_attrset_destroy(returned_attrs);

/* check ’'status’ for reason for end of enumeration */
/* Clean up */

fn_searchlist_destroy(sl); /* Free resources of 'sI' */
fn_status_destroy(status);
fn_attrset_destroy(match_attrs);
fn_ctx_handle_destroy(ctx);
fn_composite_name_destroy(target_name);

/*

* Procedure for constructing attribute set containing
* attributes to be matched:

* "zip_code" attribute value is "02158"

AND "employed" attribute is present.

*
*/
FN_attrset_t *
get_search_query()

{

/* Zip code and employed attribute identifier, syntax */

extern FN_attribute_t *attr_zip_code;

extern FN_attribute_t *attr_employed;

FN_attribute_t *zip_code = fn_attribute_copy(attr_zip_code);

FN_attr_value_t zc_value {5, "02158"};

FN_attrset_t *match_attrs = fn_attrset_create();
fn_attribute_add(zip_code, &zc_value, 0);
fn_attrset_add(match_attrs, zip_code, 0);
fn_attrset_add(match_attrs, attr_employed, 0);
return (match_attrs);

}
ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
MT-Level MT-Safe

SEE ALSO FN_attribute_t (3XFN), FN_attrset_ t (3XFN), FN_attrvalue_t (3XFN),

FN_composite_name_t (3XFN), FN_ctx_t (3XFN), FN_status_t (3XFN),
FN_string_t (3XFN), fn_attr_ext_search (3XFN) , fn_attr_get (3XFN)
, fn_attr_multi_get (3XFN) , fn_ctx_list_names (3XFN) ,
xfn_status_codes (3XFN) , attributes (5)

Last modified 22 Nov 1996 Sun0OS 5.8 125

FN_attrset_t(3XFN)

NAME

SYNOPSIS

DESCRIPTION

126

XFN Interface Library Functions

FN_attrset_t, fn_attrset_create, fn_attrset_destroy, fn_attrset_copy,
fn_attrset_assign, fn_attrset_get, fn_attrset_count, fn_attrset_first,
fn_attrset_next, fn_attrset_add, fn_attrset_remove — a set of XFN attributes

cc [flag ...] file ... =Ixfn [library ...]
#include <xfn/xfn.h>
FN_attrset_t *fn_attrset_create (void);

void fn_attrset_destroy (FN_attrset_t *aset);
FN_attrset_t *fn_attrset_copy (constFN_attrset_t *aset);
FN_attrset_t *fn_attrset_assign (FN_attrset_t *dst, const FN_attrset_t *src);

const FN_attribute_t *fn_attrset_get (constconst FN_attrset_t *aset, const
FN_identifier_t *attr_id);

unsigned int fn_attrset_count (constFN_attrset_t *aset);
const FN_attribute_t *fn_attrset_first (constFN_attrset_t *aset, void **iter_pos);
const FN_attribute_t *fn_attrset_next (constFN_attrset_t *aset, void **iter_pos);

int fn_attrset_add (FN_attrset_t *aset, const FN_attribute_t *attr, unsigned int exclusive);
int fn_attrset_remove (FN_attrset_t *aset, const FN_identifier_t *attr_id);

An attribute set is a set of attribute objects with distinct identifiers. The
fn_attr_multi_get (3XFN) operation takes an attribute set as parameter and
returns an attribute set. The fn_attr_get_ids (3XFN) operation returns an
attribute set containing the identifiers of the attributes.

Attribute sets are represented by the type FN_attrset_t . The following
operations are defined for manipulating attribute sets.

fn_attrset_create() creates an empty attribute set.
fn_attrset_destroy() releases the storage associated with the attribute
set aset . fn_attrset_copy() returns a copy of the attribute set aset

. fn_attrset_assign() makes a copy of the attribute set src and assigns
it to dst, releasing any old contents of dst . A pointer to the same object as
dst is returned.

fn_attrset_get() returns the attribute with the given identifier attr_id from
aset . fn_attrset_count() returns the number attributes found in the
attribute set aset

fn_attrset_first() and fn_attrset_next() are functions that can

be used to return an enumeration of all the attributes in an attribute set. The
attributes are not ordered in any way. There is no guaranteed relation between
the order in which items are added to an attribute set and the order of the
enumeration. The specification does guarantee that any two enumerations will

Sun0S 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_attrset_t(3XFN)

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

NOTES

return the members in the same order, provided that no fn_attrset_add() or
fn_attrset_remove() operation was performed on the object in between or
during the two enumerations. fn_attrset_first() returns the first attribute
from the set and sets iter_pos after the first attribute. fn_attrset_next ()

returns the attribute following iter_pos and advances iter_pos .

fn_attrset_add() adds the attribute attr to the attribute set aset |, replacing
the attribute’s values if the identifier of attr is not distinct in aset and exclusive
is O . If exclusive is non-zero and the identifier of attr is not distinct in aset

, the operation fails.

fn_attrset_remove() removes the attribute with the identifier attr_id from
aset . The operation succeeds even if no such attribute occurs in aset
fn_attrset_first() returns O if the attribute set is empty.
fn_attrset_next() returns O if there are no more attributes in the set.
fn_attrset_add() and fn_attrset_remove() return 1 if the operation

succeeds, and 0 if the operation fails.

Manipulation of attributes using the operations described in this manual page
does not affect their representation in the underlying naming system. Changes
to attributes in the underlying naming system can only be effected through the
use of the interfaces described in xfn_attributes (3XFN) .

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_attribute_t (3XFN) , FN_attrvalue_t (3XFN) ,

FN_identifier_t (3XFN) , fn_attr_get_ids (3XFN) ,
fn_attr_multi_get (3XFN) , xfn (3XFN) , xfn_attributes (3XFN) ,
attributes (5)

The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Last modified 13 Dec 1996 SunOS 5.8 127

FN_attrvalue_t(3XFN)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

128

XFN Interface Library Functions

FN_attrvalue_t — an XFN attribute value

cc[flag ...] file ... =Ixfn [library ...]
#include <xfn/xfn.h>

The type FN_attrvalue_t is used to represent the contents of a single attribute
value, within an attribute of type FN_attribute_t

The representation of this structure is defined by XFN as follows;

typedef struct { size_t length;
void *contents; } FN_attrvalue_t;

FN_attribute_t (3XFN), fn_attr_get_values (3XFN), xfn (3XFN)

Sun0S 5.8 Last modified 4 Nov 1994

XFN Interface Library Functions FN_composite_name_t(3XFN)

NAME

SYNOPSIS

FN_composite_name_t, fn_composite_name_create,
fn_composite_name_destroy, fn_composite_name_from_str,
fn_composite_name_from_string, fn_string_from_composite_name,
fn_composite_name_copy, fn_composite_name_assign,
fn_composite_name_is_empty, fn_composite_name_count,
fn_composite_name_first, fn_composite_name_next, fn_composite_name_prev,
fn_composite_name_last, fn_composite_name_prefix,
fn_composite_name_suffix, fn_composite_name_is_equal,
fn_composite_name_is_prefix, fn_composite_name_is_suffix,
fn_composite_name_prepend_comp, fn_composite_name_append_comp,
fn_composite_name_insert_comp, fn_composite_name_delete_comp,
fn_composite_name_prepend_name, fn_composite_name_append_name,
fn_composite_name_insert_name — a sequence of component names spanning
multiple naming systems

cc [flag ...] file ... =Ixfn [library ...]
#include <xfn/xfn.h>
FN_composite_name_t *fn_composite_name_create (void);

void fn_composite_name_destroy (FN_composite_name_t *name);
FN_composite_name_t *fn_composite_name_from_str (const unsigned char *cstr);
FN_composite_name_t *fn_composite_name_from_string (const FN_string_t *str);

FN_string_t *fn_string_from_composite_name (const FN_composite_name_t *name,
unsigned int *status);

FN_composite_name_t *fn_composite_name_copy (const FN_composite_name_t
*name);

FN_composite_name_t *fn_composite_name_assign (FN_composite_name_t *dst,
const FN_composite_name_t *src);

int fn_composite_name_is_empty (const FN_composite_name_t *name);
unsigned int fn_composite_name_count (const FN_composite_name_t *name);

const FN_string_t *fn_composite_name_first (const FN_composite_name_t *name,
void **iter_pos);

const FN_string_t *fn_composite_name_next (const FN_composite_name_t *name,
void **iter_pos);

const FN_string_t *fn_composite_name_prev (const FN_composite_name_t *name,
void **iter_pos);

const FN_string_t *fn_composite_name_last (const FN_composite_name_t *name,
void **iter_pos);

Last modified 13 Dec 1996 Sun0S 5.8 129

FN_composite_name_t(3XFN) XFN Interface Library Functions

DESCRIPTION

130

FN_composite_name_t *fn_composite_name_prefix (const FN_composite_name_t
*name, const void *iter_pos);

FN_composite_name_t *fn_composite_name_suffix (const FN_composite_name_t
*name, const void *iter_pos);

int fn_composite_name_is_equal (const FN_composite_name_t *name, const
FN_composite_name_t *name2, unsigned int *status);

int fn_composite_name_is_prefix (const FN_composite_name_t *name, const
FN_composite_name_t *prefix, void **iter_pos, unsigned int *status);

int fn_composite_name_is_suffix (const FN_composite_name_t *name, const
FN_composite_name_t *suffix, void **iter_pos, unsigned int *status);

int fn_composite_name_prepend_comp (FN_composite_name_t *name, const
FN_string_t *newcomp);

int fn_composite_name_append_comp (FN_composite_name_t *name, const
FN_string_t *newcomp);

int fn_composite_name_insert_comp (FN_composite_name_t *name, void **iter_pos,
const FN_string_t *newcomp);

int fn_composite_name_delete_comp (FN_composite_name_t *name, void **iter_pos);

int fn_composite_name_prepend_name (FN_composite_name_t *name, const
FN_composite_name_t *newcomps);

int fn_composite_name_append_name (FN_composite_name_t *name, const
FN_composite_name_t *newcomps);

int fn_composite_name_insert_name (FN_composite_name_t *name, void **iter_pos,
const FN_composite_name_t *newcomps);

A composite name is represented by an object of type FN_composite_name_t
Each component is a string name, of type FN_string_t , from the namespace
of a single naming system. It may be an atomic name or a compound name

in that namespace.

fn_composite_name_create creates an FN_composite_name_t

object with zero components. Components may be subsequently added
to the composite name using the modify operations described below.
fn_composite_name_destroy releases any storage associated with the
given FN_composite_name_t handle.

fn_composite_name_from_str() creates an FN_composite_name_t
from the given null-terminated string based on the code set of

the current locale setting, using the XFN composite name syntax.
fn_composite_name_from_string() creates an FN_composite_name_t

Sun0S 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_composite_name_t(3XFN)

from the string str using the XFN composite name syntax.

fn_string_from_composite_name() returns the standard string form of
the given composite name, by concatenating the components of the composite
name in a left to right order, each separated by the XFN component separator.

fn_composite_name_copy() returns a copy of the given composite name
object. fn_composite_name_assign() makes a copy of the composite name
object pointed to by src and assigns it to dst , releasing any old contents of dst. A
pointer to the same object as dst is returned.

fn_composite_name_is_empty() returns 1 if the given composite name
is an empty composite name (that is, it consists of a single, empty component
name); otherwise, it returns 0 . fn_composite_name_count() returns the
number of components in the given composite name.

The iteration scheme is based on the exchange of an opaque void * argument,
iter_pos , that serves to record the position of the iteration in the sequence.
Conceptually, iter_pos records a position between two successive components (or
at one of the extreme ends of the sequence).

The function fn_composite_name_first() returns a handle to the
FN_string_t that is the first component in the name, and sets iter_pos

to indicate the position immediately following the first component. It

returns O if the name has no components. Thereafter, successive calls of the
fn_composite_name_next() function return pointers to the component
following the iteration marker, and advance the iteration marker. If the iteration
marker is at the end of the sequence, fn_composite_name_next() returns O .
Similarly, fn_composite_name_prev() returns the component preceding

the iteration pointer and moves the marker back one component. If the marker
is already at the beginning of the sequence, fn_composite_name_prev()

returns O . The function fn_composite_name_last() returns a pointer to the
last component of the name and sets the iteration marker immediately preceding
this component (so that subsequent calls to fn_composite_name_prev() can
be used to step through leading components of the name).

The fn_composite_name_suffix() function returns a composite
name consisting of a copy of those components following the supplied
iteration marker. The method fn_composite_name_prefix()

returns a composite name consisting of those components that precede
the iteration marker. Using these functions with an iteration marker

that was not initialized using fn_composite_name_first() ,
fn_composite_name_last() , fn_composite_name_is_prefix() ,
or fn_composite_name_is_suffix() yields undefined and generally
undesirable behavior.

The functions fn_composite_name_is_equal()
, fn_composite_name_is_prefix() , and

Last modified 13 Dec 1996 SunOS 5.8 131

FN_composite_name_t(3XFN) XFN Interface Library Functions

fn_composite_name_is_suffix() test for equality between composite
names or between parts of composite names. For these functions, equality is
defined as exact string equality, not name equivalence. A name’s syntactic
property, such as case-insensitivity, is not taken into account by these functions.

The function fn_composite_name_is_prefix() tests if one composite
name is a prefix of another. If so, it returns 1 and sets the iteration marker
immediately following the prefix. (For example, a subsequent call to
fn_composite_name_suffix() will return the remainder of the name.)
Otherwise, it returns 0 and the value of the iteration marker is undefined.
The function fn_composite_name_is_suffix() is similar. It tests if one
composite name is a suffix of another. If so, it returns 1 and sets the iteration
marker immediately preceding the suffix.

The functions fn_composite_name_prepend_comp() and
fn_composite_name_append_comp() prepend and append a

single component to the given composite name, respectively. These
operations invalidate any iteration marker the client holds for that object.
fn_composite_name_insert_comp() inserts a single component before
iter_pos to the given composite name and sets iter_pos to be immediately after
the component just inserted. fn_composite_name_delete_comp() deletes
the component located before iter_pos from the given composite name and sets
iter_pos back one component.

The functions fn_composite_name_prepend_name()

, fn_composite_name_append_name() , and
fn_composite_name_insert_name() perform the same

update functions as their _comp counterparts, respectively, except that multiple
components are being added, rather than single components. For example,
fn_composite_name_insert_name() sets iter_pos to be immediately after
the name just added.

RETURN VALUES The functions fn_composite_name_is_empty() ,
fn_composite_name_is_equal() , fn_composite_name_is_suffix()

, and fn_composite_name_is_prefix() return 1 if the test indicated
is true; O otherwise.

The update functions fn_composite_name_prepend_comp()

, fn_composite_name_append_comp() ,
fn_composite_name_insert_comp() ,
fn_composite_name_delete_comp() , and their _name
counterparts return 1 if the update was successful; 0 otherwise.

If a function is expected to return a pointer to an object, a NULL pointer (0) is
returned if the function fails.

132 Sun0S 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_composite_name_t(3XFN)

ERRORS

ATTRIBUTES

SEE ALSO
NOTES

Code set mismatches that occur during the composition of the string
form or during comparisons of composite names are resolved in an
implementation-dependent way. fn_string_from_composite_name()
fn_composite_name_is_equal() , fn_composite_name_is_suffix()
, and fn_composite_name_is_prefix() set status to
FN_E_INCOMPATIBLE_CODE_SETfr composite names whose components
have code sets that are determined by the implementation to be incompatible.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_string_t (3XFN), xfn (3XFN) , attributes (5)

The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Last modified 13 Dec 1996 Sun0S 5.8 133

FN_compound_name_t(3XFN) XFN Interface Library Functions

134

NAME

SYNOPSIS

FN_compound_name_t, fn_compound_name_from_syntax_attrs,
fn_compound_name_get_syntax_attrs, fn_compound_name_destroy,
fn_string_from_compound_name, fn_compound_name_copy,
fn_compound_name_assign, fn_compound_name_count,
fn_compound_name_first, fn_compound_name_next,
fn_compound_name_prev, fn_compound_name_last,
fn_compound_name_prefix, fn_compound_name_suffix,
fn_compound_name_is_empty, fn_compound_name_is_equal,
fn_compound_name_is_prefix, fn_compound_name_is_suffix,
fn_compound_name_prepend_comp, fn_compound_name_append_comp,
fn_compound_name_insert_comp, fn_compound_name_delete_comp,
fn_compound_name_delete_all — an XFN compound name

cc [flag ...] file ... =Ixfn [library ...]

#include <xfn/xfn.h>

FN_compound_name_t *fn_compound_name_from_syntax_attrs (const FN_attrset_t
*aset, const FN_string_t *name, FN_status_t *status);

FN_attrset_t *fn_compound_name_get_syntax_attrs (const FN_compound_name_t
*name);

void fn_compound_name_destroy (FN_compound_name_t *name);
FN_string_t *fn_string_from_compound_name (const FN_compound_name_t *name);

FN_compound_name_t *fn_compound_name_copy (const FN_compound_name_t
*name);

FN_compound_name_t *fn_compound_name_assign (FN_compound_name_t *dst,
const FN_compound_name_t *src);

unsigned int fn_compound_name_count (const FN_compound_name_t *name);

const FN_string_t *fn_compound_name_first (const FN_compound_name_t *name,
void **iter_pos);

const FN_string_t *fn_compound_name_next (const FN_compound_name_t *name,
void **iter_pos);

const FN_string_t *fn_compound_name_prev (const FN_compound_name_t *name,
void **iter_pos);

const FN_string_t *fn_compound_name_last (const FN_compound_name_t *name,
void **iter_pos);

FN_compound_name_t *fn_compound_name_prefix ~ (const FN_compound_name_t
*name, const void *iter_pos);

FN_compound_name_t *fn_compound_name_suffix ~ (const FN_compound_name_t
*name, const void *iter_pos);

SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_compound_name_t(3XFN)

DESCRIPTION

int fn_compound_name_is_empty (const FN_compound_name_t *name);

int fn_compound_name_is_equal (const FN_compound_name_t *namel, const
FN_compound_name_t *name2, unsigned int *status);

int fn_compound_name_is_prefix (const FN_compound_name_t *name, const
FN_compound_name_t *pre, void **iter_pos, unsigned int *status);

int fn_compound_name_is_suffix (const FN_compound_name_t *name, const
FN_compound_name_t *suffix, void **iter_pos, unsigned int *status);

int fn_compound_name_prepend_comp (FN_compound_name_t *name, const
FN_string_t *atomic_comp, unsigned int *status);

int fn_compound_name_append_comp (FN_compound_name_t *name, const
FN_string_t *atomic_comp, unsigned int *status);

int fn_compound_name_insert_comp (FN_compound_name_t *name, void **iter_pos,
const FN_string_t *atomic_comp, unsigned int *status);

int fn_compound_name_delete_comp (FN_compound_name_t *name, void **iter_pos);
int fn_compound_name_delete_all (FN_compound_name_t *name);

Most applications treat names as opaque data. Hence, the majority of clients of
the XFN interface will not need to parse names. Some applications, however,
such as browsers, need to parse names. For these applications, XFN provides
support in the form of the FN_compound_name_t object.

Each naming system in an XFN federation potentially has its own naming
conventions. The FN_compound_name_t object has associated operations
for applications to process compound names that conform to the XFN
model of expressing compound name syntax. The XFN syntax model for
compound names covers a large number of specific name syntaxes and

is expressed in terms of syntax properties of the naming convention. See
xfn_compound_names (3XFN) .

An FN_compound_name_t object is constructed by the operation
fn_compound_name_from_syntax_attrs , using a string name and

an attribute set containing the "fn_syntax_type" (with identifier format
FN_ID_STRING) attribute identifying the namespace syntax of the string
name. The value "standard" (with identifier format FN_ID_STRING) in the
"fn_syntax_type" specifies a syntax model that is by default supported by the
FN_compound_name_t object. An implementation may support other syntax
types instead of the XFN standard syntax model, in which case the value

of the "fn_syntax_type" attribute would be set to an implementation-specific
string. fn_compound_name_get_syntax_attrs() returns an attribute set
containing the syntax attributes that describes the given compound name.
fn_compound_name_destroy() releases the storage associated with the

Last modified 13 Dec 1996 Sun0OS 5.8 135

FN_compound_name_t(3XFN) XFN Interface Library Functions

136

given compound name. fn_string_from_compound_name() returns the
string form of the given compound name. fn_compound_name_copy()
returns a copy of the given compound name. fn_compound_name_assign()
makes a copy of the compound name src and assigns it to dst , releasing any
old contents of dst . A pointer to the object pointed to by dst is returned.
fn_compound_name_count() returns the number of atomic components in
the given compound name.

The function fn_compound_name_first() returns a handle to the
FN_string_t that is the first atomic component in the compound name, and
sets iter_pos to indicate the position immediately following the first component.
It returns O if the name has no components. Thereafter, successive calls of the
fn_compound_name_next() function return pointers to the component
following the iteration marker, and advance the iteration marker. If the iteration
marker is at the end of the sequence, fn_compound_name_next() returns O .
Similarly, fn_compound_name_prev() returns the component preceding the
iteration pointer and moves the marker back one component. If the marker is
already at the beginning of the sequence, fn_compound_name_prev() returns
0 . The function fn_compound_name_last() returns a pointer to the last
component of the name and sets the iteration marker immediately preceding this
component (so that subsequent calls to fn_compound_name_prev() can be
used to step through trailing components of the name).

The fn_compound_name_suffix() function returns a compound name
consisting of a copy of those components following the supplied iteration
marker. The function fn_compound_name_prefix() returns a compound
name consisting of those components that precede the iteration marker. Using
these functions with an iteration marker that was not initialized with the

use of fn_compound_name_first() , fn_compound_name_last() ,
fn_compound_name_is_prefix() , or fn_compound_name_is_suffix()
yields undefined and generally undesirable behavior.

The functions fn_compound_name_is_equal()

, fn_compound_name_is_prefix() , and
fn_compound_name_is_suffix() test for equality between compound
names or between parts of compound names. For these functions, equality
is defined as name equivalence. A name’s syntactic property, such as
case-insensitivity, is taken into account by these functions.

The function fn_compound_name_is_prefix() tests if one compound
name is a prefix of another. If so, it returns 1 and sets the iteration marker
immediately following the prefix. (For example, a subsequent call to
fn_compound_name_suffix() will return the remainder of the name.)
Otherwise, it returns 0 and value of the iteration marker is undefined. The
function fn_compound_name_is_suffix() is similar. It tests if one

Sun0S 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_compound_name_t(3XFN)

RETURN VALUES

ERRORS

compound name is a suffix of another. If so, it returns 1 and sets the iteration
marker immediately preceding the suffix.

The functions fn_compound_name_prepend_comp() and
fn_compound_name_append_comp() prepend and append a single
atomic component to the given compound name, respectively. These
operations invalidate any iteration marker the client holds for that object.
fn_compound_name_insert_comp() inserts an atomic component before
iter_pos to the given compound name and sets iter_pos to be immediately after
the component just inserted. fn_compound_name_delete_comp() deletes
the atomic component located before iter_pos from the given compound name
and sets iter_pos back one component. fn_compound_name_delete_all ()
deletes all the atomic components from name .

The following test functions return 1 if the test indicated is true; otherwise,
they return O :

fn_compound_name_is_empty()
fn_compound_name_is_equal()
fn_compound_name_is_suffix()
fn_compound_name_is_prefix()

The following update functions return 1 if the update was successful; otherwise,
they return O :

fn_compound_name_prepend_comp()
fn_compound_name_append_comp()
fn_compound_name_insert_comp()
fn_compound_name_delete_comp()

fn_compound_name_delete_all()

If a function is expected to return a pointer to an object, a NULL pointer (0) is
returned if the function fails.

When the function fn_compound_name_from_syntax_attrs() fails, it
returns a status code in status . The possible status codes are:
FN_E_ILLEGAL_NAME The name supplied to the operation

was not a well- formed XFN
compound name, or one of

the component names was not
well-formed according to the syntax
of the naming system(s) involved in
its resolution.

Last modified 13 Dec 1996 Sun0OS 5.8 137

FN_compound_name_t(3XFN) XFN Interface Library Functions

138

ATTRIBUTES

SEE ALSO

NOTES

FN_E_INCOMPATIBLE_CODE_SETS The code set of the given string is
incompatible with that supported by
the compound name.

FN_E_INVALID_SYNTAX_ATTRS The syntax attributes supplied are
invalid or insufficient to fully specify
the syntax.

FN_E_SYNTAX_NOT_SUPPORTED The syntax type specified is not
supported.

The following functions may return in status the status code
FN_E_INCOMPATIBLE_CODE_SET@&hen the code set of the given string is
incompatible with that of the compound name:

fn_compound_name_is_equal()
fn_compound_name_is_suffix()
fn_compound_name_is_prefix()
fn_compound_name_prepend_comp()
fn_compound_name_append_comp()
fn_compound_name_insert_comp()

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_attribute_t (3XFN) , FN_attrset t (3XFN) ,

FN_composite_name_t (3XFN) , FN_status_ t (3XFN) ,

FN_string_t (3XFN), fn_ctx_get_syntax_attrs (3XFN) , xfn (3XFN) ,
xfn_compound_names (3XFN), attributes (5)

The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Sun0S 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_ctx_bind(3XFN)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES
ERRORS

USAGE

ATTRIBUTES

SEE ALSO

NOTES

fn_ctx_bind - bind a reference to a name

cc [flag ...] file ... =Ixfn [library ...]
#include <xfn/xfn.h>

intfn_ctx_bind (FN_ctx_t *ctx, const FN_composite_name_t *name, const FN_ref t *ref,
unsigned int exclusive, FN_status_t *status);

This operation binds the supplied reference ref to the supplied composite name
name relative to ctx. The binding is made in the target context, that is, the context
named by all but the terminal atomic part of name. The operation binds the
terminal atomic name to the supplied reference in the target context. The target
context must already exist.

The value of exclusive determines what happens if the terminal atomic part of the
name is already bound in the target context. If exclusive is nonzero and name is
already bound, the operation fails. If exclusive is 0, the new binding replaces
any existing binding.

When the bind operation is successful it returns 1; on error it returns 0.

fn_ctx_bind sets status as described in FN_status_t (3XFN) and
xfn_status_codes . Of special relevance for this operation is the status code
FN_E_NAME_IN_USE,which indicates that the supplied name is already in use.

The value of ref cannot be NULL If the intent is to reserve a name using
fn_ctx_bind() , a reference containing no address should be supplied. This
reference may be name service-specific or it may be the conventional NULL
reference defined in the X/Open registry (see fns_references (5)).

If multiple sources are updating a reference, they must synchronize amongst
each other when adding, modifying, or removing from the address list of a
bound reference.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_composite_name_t (3XFN), FN_ctx_t (3XFN), FN_ref t (3XFN),
FN_status_t (3XFN), fn_ctx_lookup (3XFN), fn_ctx_unbind (3XFN),
xfn (3XFN), xfn_status_codes (3XFN), attributes (5),
fns_references (5)

The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next

Last modified 13 Dec 1996 Sun0OS 5.8 139

fn_ctx_bind(3XFN)

140

XFN Interface Library Functions

minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Sun0OS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_ctx_create_subcontext(3XFN)

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUE

ERRORS

APPLICATION
USAGE

ATTRIBUTES

SEE ALSO

fn_ctx_create_subcontext — create a subcontext in a context

cc [flag ...] file ... =Ixfn [library ...]
#include <xfn/xfn.h>

FN_ref_t *fn_ctx_create_subcontext (FN_ctx_t *ctx, const FN_composite_name_t
*name, FN_status_t *status);

This operation creates a new XFN context of the same type as the target context
— that named by all but the terminal atomic component of name — and binds
it to the supplied composite name.

As with fn_ctx_bind(), the target context must already exist. The new
context is created and bound in the target context using the terminal atomic
name in name. The operation returns a reference to the newly created context.

fn_ctx_create_subcontext() returns a reference to the newly created
context; if the operation fails, it returns a NULL pointer (0).

fn_ctx_create_subcontext() sets status as described in

FN_status_t (3XFN) and xfn_status_codes (3XFN). Of special relevance for

this operation is the following status code:

FN_E_NAME_IN_USE The terminal atomic name already exists in the
target context.

The new subcontext is an XFN context and is created in the same naming system
as the target context. The new subcontext also inherits the same syntax attributes
as the target context. XFN does not specify any further properties of the new
subcontext. The target context and its naming system determine these.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

FN_composite_name_t (3XFN), FN_ctx_t (3XFN), FN_ref t (3XFN),
FN_status_t (3XFN), fn_ctx_bind (3XFN), fn_ctx_lookup (3XFN),
fn_ctx_destroy_subcontext (3XFN), xfn_status_codes (3XFN),
xfn (3XFN), attributes (5)

Last modified 30 Dec 1996 Sun0S 5.8 141

fn_ctx_destroy_subcontext(3XFN) XFN Interface Library Functions

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUE
ERRORS

APPLICATION
USAGE

ATTRIBUTES

142

fn_ctx_destroy_subcontext — destroy the named context and remove its binding
from the parent context

cc [flag ...] file ... =Ixfn [library ...]
#include <xfn/xfn.h>

int fn_ctx_destroy_subcontext (FN_ctx_t *ctx, const FN_composite_name_t *name,
FN_status_t *status);

This operation destroys the subcontext named by name relative to ctx, and
unbinds the name.

As with fn_ctx_unbind(), this operation succeeds even if the terminal
atomic name is not bound in the target context — the context named by all but
the terminal atomic name in name.

fn_ctx_destroy_subcontext() returns 1 on success and O on failure.
fn_ctx_destroy_subcontext() sets status as described in

FN_status_t (3XFN) and xfn_status_codes (3XFN). Of special relevance for
fn_ctx_destroy_subcontext() are the following status codes:

FN_E_CTX_NOT_A_CONTEXdme does not name a context.

FN_E_CTX_NOT_EMPTY The naming system being asked to do the destroy
does not support removal of a context that still
contains bindings.

Some aspects of this operation are not specified by XFN, but are determined by
the target context and its naming system. For example, XFN does not specify
what happens if the named subcontext is non-empty when the operation

is invoked.

In naming systems that support attributes, and store the attributes along
with names or contexts, this operation removes the name, the context, and its
associated attributes.

Normal resolution always follows links. In a

fn_ctx_destroy_subcontext() operation, resolution of name continues to
the target context; the terminal atomic name is not resolved. If the terminal
atomic name is bound to a link, the link is not followed and the operation fails
with FN_E_CTX_NOT_A_CONTEX¥cause the name is not bound to a context.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

SunOS 5.8 Last modified 30 Dec 1996

XFN Interface Library Functions fn_ctx_destroy_subcontext(3XFN)

SEE ALSO FN_ctx_t (3XFN), FN_composite_name_t (3XFN), FN_status_t (3XFN),
fn_ctx_create_subcontext (3XFN), fn_ctx_unbind (3XFN), xfn (3XFN),
xfn_status_codes (3XFN), attributes (5)

Last modified 30 Dec 1996 Sun0S 5.8 143

fn_ctx_equivalent_name(3XFN) XFN Interface Library Functions

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

144

fn_ctx_equivalent_name - construct an equivalent name in same context

#include <xfn/xfn.h>

FN_composite_name_t *fn_ctx_equivalent_name (FN_ctx_t *ctx, const
FN_composite_name_t *name, const FN_string_t *leading_name, FN_status_t * status);

Given the name of an object name relative to the context ctx, this operation
returns an equivalent name for that object, relative to the same context ctx, that
has leading_name as its initial atomic name. Two names are said to be equivalent
if they have prefixes that resolve to the same context, and the parts of the names
immediately following the prefixes are identical.

The existence of a binding for leading_name in ctx does not guarantee

that a name equivalent to name can be constructed. The failure may

be because such equivalence is not meaningful, or due to the inability

of the system to construct a name with the equivalence. For example,
supplying _thishost as leading_name when name starts with _myself to
fn_ctx_equivalent_name() in the Initial Context would not be meaningful;
this results in the return of the error code FN_E_NO_EQUIVALENT_NAME.

If an equivalent name cannot be constructed, the value 0 is returned and status
is set appropriately.

fn_ctx_equivalent_name() sets status as described in FN_status_t (3XFN)

and xfn_status_codes (3XFN). The following status code is especially

relevant for this operation:

FN_E_NO_EQUIVALENT_NAME No equivalent name can be
constructed, either because there is
no meaningful equivalence between
name and leading_name, or the system
does not support constructing the
requested equivalent name, for
implementation-specific reasons.

EXAMPLE 1 Naming Files

In the Initial Context supporting XFN enterprise policies, a user jsmith is able
to name one of her files relative to this context in several ways.
_myself/_fs/map.ps

_user/jsmith/_fs/map.ps
_orgunit/finance/_user/jsmith/_fs/map.ps

The first of these may be appealing to the user jsmith in her day-to-day
operations. This name is not, however, appropriate for her to use when referring

Sun0OS 5.8 Last modified 22 Nov 1996

XFN Interface Library Functions

ATTRIBUTES

SEE ALSO

the file in an electronic mail message sent to a colleague. The second of these
names would be appropriate if the colleague were in the same organizational
unit, and the third appropriate for anyone in the same enterprise.

When the following sequence of instructions is executed by the user jsmith

fn_ctx_equivalent_name(3XFN)

in

the organizational unit finance , enterprise_wide_name would contain the

composite name _orgunit/finance/_user/jsmith/_fs/map.ps

FN_string_t* namestr =

fn_string_from_str((const unsigned char*)"_myself/_fs/map.ps");
FN_composite_name_t* name = fn_composite_name_from_string(namestr);
FN_string_t* org_lead =

fn_string_from_str((const unsigned char*)"_orgunit");
FN_status_t* status = fn_status_create();
FN_composite_name_t* enterprise_wide_name;
FN_ctx_t* init_ctx = fn_ctx_handle_from_initial(status);
/* check status of from_initial() */
enterprise_wide_name = fn_ctx_equivalent_name(init_ctx, name, org_lead,
status);

When the following sequence of instructions is executed by the user jsmith
in the organizational unit finance , shortest name would contain the
composite name _myself/_fs/map.ps

FN_string_t* namestr =

fn_string_from_str((const unsigned char*)

"_orgunit/finance/_user_jsmith/_fs/map.ps");

FN_composite_name_t* name = fn_composite_name_from_string(namestr);
FN_string_t* mylead = fn_string_from_str((const unsigned char*)"_myself");
FN_status_t* status = fn_status_create();
FN_composite_name_t* shortest_name;
FN_ctx_t* init_ctx = fn_ctx_handle_from_initial(status);
/* check status of from_initial() */
shortest_name = fn_ctx_equivalent_name(init_ctx, name, mylead, status);

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_composite_name_t (3XFN), FN_ctx_t (3XFN), FN_status_t (3XFN),
FN_string_t (3XFN), xfn_status_codes (3XFN), attributes (5)

Last modified 22 Nov 1996 Sun0OS 5.8

145

fn_ctx_get_ref(3XFN)

NAME
SYNOPSIS

DESCRIPTION
RETURN VALUE

ERRORS

APPLICATION
USAGE

ATTRIBUTES

SEE ALSO

146

XFN Interface Library Functions

fn_ctx_get_ref — return a context’s reference

cc [flag ...] file ... =Ixfn [library ...]
#include <xfn/xfn.h>

FN_ref_t *fn_ctx_get_ref (const FN_ctx_t *ctx, FN_status_t *status);
This operation returns a reference to the supplied context object.

fn_ctx_get_ref() returns a pointer to an FN_ref_t object if the operation
succeeds, it returns O if the operation fails.

fn_ctx_get_ref() sets status as described in FN_status_t (3XFN) and
xfn_status_codes (3XFN). The following status code is of particular relevance
to this operation:
FN_E_OPERATION_NOT_SUPPORTED Using the fn_ctx_get_ref()
operation on the Initial Context
returns this status code.

fn_ctx_get_ref() cannot be used on the Initial Context.
fn_ctx_get_ref() can be used on contexts bound in the Initial Context (in
other words, the bindings in the Initial Context have references).

If the context handle was created earlier using the

fn_ctx_handle_from_ref() operation, the reference returned
by the fn_ctx_get_ref() operation may not necessarily be
exactly the same in content as that originally supplied. For example,
fn_ctx_handle_from_ref() may construct the context handle from one
address from the list of addresses. The context implementation may return with
a call to fn_ctx_get_ref() only that address, or a more complete list of
addresses than what was supplied in fn_ctx_handle_from_ref().
See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

FN_ctx_t (3XFN), FN_ref_t (3XFN), FN_status_t (3XFN),
fn_ctx_handle_from_initial (3XFN),
fn_ctx_handle_from_ref (3XFN), xfn_status_codes
(3XFN), xfn (3XFN), attributes (5)

SunOS 5.8 Last modified 30 Dec 1996

XFN Interface Library Functions fn_ctx_get_syntax_attrs(3XFN)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUE

ERRORS

APPLICATION
USAGE

ATTRIBUTES

SEE ALSO

fn_ctx_get_syntax_attrs — return syntax attributes associated with named context

cc [flag ...] file ... =Ixfn [library ...]
#include <xfn/xfn.h>

FN_attrset_t *fn_ctx_get_syntax_attrs (FN_ctx_t *ctx, const FN_composite_name_t
*name, FN_status_t *status);

Each context has an associated set of syntax-related attributes. This operation
returns the syntax attributes associated with the context named by name relative
to the context ctx.

The attributes must contain the attribute fn_syntax_type (FN_ID_STRING
format). If the context supports a syntax that conforms to the XFN standard
syntax model, fn_syntax_type is set to "standard" (ASCII attribute syntax)
and the attribute set contains the rest of the relevant syntax attributes described
in xfn_compound_names (3XFN).

This operation is different from other XFN attribute operations in that these
syntax attributes could be obtained directly from the context. Attributes obtained
through other XFN attribute operations may not necessarily be associated with
the context; they may be associated with the reference of context, rather than
the context itself (see xfn_attributes (3XFN)).

fn_ctx_get_syntax_attrs() returns an attribute set if successful; it returns
a NULL pointer (0) if the operation fails.

fn_ctx_get_syntax_attrs() sets status as described in
FN_status_t (3XFN) and xfn_status_codes (3XFN).

Implementations may choose to support other syntax types in addition to, or
in place of, the XFN standard syntax model, in which case, the value of the
fn_syntax_type attribute would be set to an implementation-specific string,
and different or additional syntax attributes will be in the set.

Syntax attributes of a context may be generated automatically by a context, in
response to fn_ctx_get_syntax_attrs(), or they may be created and
updated using the base attribute operations. This is implementation-dependent.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

FN_attrset t (3XFN), FN_composite_name_t (3XFN),
FN_compound_name_t (3XFN), FN_ctx_t (3XFN), FN_status_t (3XFN),
fn_attr_get (3XFN), fn_attr_multi_get (3XFN),

Last modified 30 Dec 1996 Sun0OS 5.8 147

fn_ctx_get_syntax_attrs(3XFN) XFN Interface Library Functions

xfn_compound_names (3XFN), xfn_attributes (3XFN),
xfn_status_codes (3XFN), xfn (3XFN), attributes (5)

148 Sun0OS 5.8 Last modified 30 Dec 1996

XFN Interface Library Functions fn_ctx_handle_destroy(3XFN)

NAME fn_ctx_handle_destroy - release storage associated with context handle

SYNOPSIS cc [flag ...] file ... —Ixfn [library ...]
#include <xfn/xfn.h>

void fn_ctx_handle_destroy (FN_ctx_t *ctx);

DESCRIPTION This operation destroys the context handle ctx and allows the implementation
to free resources associated with the context handle. This operation does not
affect the state of the context itself.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

SEE ALSO FN_ctx_t (3XFN), fn_ctx_handle_from_initial (3XFN),
fn_ctx_handle_from_ref (3XFN), xfn (3XFN), attributes (5)

Last modified 30 Dec 1996 Sun0S 5.8 149

fn_ctx_handle_from_initial(3XFN) XFN Interface Library Functions

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

150

fn_ctx_handle_from_initial — return a handle to the Initial Context

cc [flag ...] file ... =Ixfn [library ...]
#include <xfn/xfn.h>

FN_ctx_t *fn_ctx_handle_from_initial (unsigned int authoritative, FN_status_t
*status);

This operation returns a handle to the caller’s Initial Context. On successful
return, the handle points to a context which meets the specification of the XFN
Initial Context (see fns_initial_context (5)).

authoritative specifies whether the handle to the context returned should be
authoritative with respect to information the context obtains from the naming
service. When the flag is non-zero, subsequent operations on the context will
access the most authoritative information. When authoritative is 0, the handle
to the context returned need not be authoritative.

fn_ctx_handle_from_initial() returns a pointer toan FN_ctx_t object if
the operation succeeds; it returns a NULL pointer (0) otherwise.

fn_ctx_handle_from_initial() sets only the status code portion of the
status object status.

Authoritativeness is determined by specific naming services. For example, in

a naming service that supports replication using a master/slave model, the
source of authoritative information would come from the master server. In some
naming systems, bypassing the naming service cache may reach servers which
provide the most authoritative information. The availability of an authoritative
context might be lower due to the lower number of servers offering this service.
For the same reason, it might also provide poorer performance than contexts that
need not be authoritative.

Applications set authoritative to O for typical day-to-day operations. Applications
only set authoritative to a non-zero value when they require access to the most
authoritative information, possibly at the expense of lower availability and/or
poorer performance.

It is implementation-dependent whether authoritativeness is transferred from
one context to the next as composite name resolution proceeds. Getting an
authoritative context handle to the Initial Context means that operations on
bindings in the Initial Context are processed using the most authoritative
information. Contexts referenced implicitly through an authoritative Initial
Context (for example, through the use of composite names) may not necessarily
themselves be authoritative.

See attributes (5) for descriptions of the following attributes:

Sun0S 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_ctx_handle_from_initial(3XFN)

SEE ALSO

NOTES

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_ctx_t (3XFN), FN_status_t (3XFN), fn_ctx_get_ref (3XFN),
fn_ctx_handle_from_ref (3XFN), xfn (3XFN), xfn_status_codes (3XFN),
attributes (5), fns_initial_context (5)

The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Last modified 13 Dec 1996 Sun0S 5.8 151

fn_ctx_handle_from_ref(3XFN) XFN Interface Library Functions

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

152

fn_ctx_handle_from_ref — construct a handle to a context object using the
given reference

cc [flag ...] file ... =Ixfn [library ...]
#include <xfn/xfn.h>

FN_ctx_t *fn_ctx_handle_from_ref (const FN_ref_t *ref, unsigned int authoritative,
FN_status_t *status);

This operation creates a handle to an FN_ctx_t object using an FN_ref_t
object for that context.

authoritative specifies whether the handle to the context returned should be
authoritative with respect to information the context obtains from the naming
service. When the flag is non-zero, subsequent operations on the context will
access the most authoritative information. When authoritative is 0, the handle
to the context returned need not be authoritative.

This operation returns a pointer to an FN_ctx_t object if the operation succeeds;
otherwise, it returns a NULL pointer (0).

fn_ctx_handle_from_ref() sets status as described in FN_status_t (3XFN)

and xfn_status_codes (3XFN). The following status code is of particular

relevance to this operation:

FN_E_NO_SUPPORTED_ADDRESS A context object could not be
constructed from a particular
reference. The reference contained no
address type over which the context
interface was supported.

Authoritativeness is determined by specific naming services. For example, in

a naming service that supports replication using a master/slave model, the
source of authoritative information would come from the master server. In some
naming systems, bypassing the naming service cache may reach servers which
provide the most authoritative information. The availability of an authoritative
context might be lower due to the lower number of servers offering this service.
For the same reason, it might also provide poorer performance than contexts that
need not be authoritative.

Applications set authoritative to O for typical day-to-day operations. Applications
only set authoritative to a non-zero value when they require access to the most
authoritative information, possibly at the expense of lower availability and/or
poorer performance.

To control the authoritativeness of the target context, the application first resolves
explicitly to the target context using fn_ctx_lookup (3XFN). It then uses
fn_ctx_handle_from_ref() with the appropriate authoritative argument

Sun0S 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_ctx_handle_from_ref(3XFN)

ATTRIBUTES

SEE ALSO

NOTES

to obtain a handle to the context. This returns a handle to a context with the
specified authoritativeness. The application then uses the XFN operations, such
as lookup and list, with this context handle.

It is implementation-dependent whether authoritativeness is transferred from
one context to the next as composite name resolution proceeds. The application
should use the approach recommended above to achieve the desired level of
authoritativeness on a per context basis.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_ctx_t (3XFN), FN_ref_t (3XFN), FN_status_t (3XFN),
fn_ctx_get_ref (3XFN), fn_ctx_handle_destroy (3XFN),
fn_ctx_lookup (3XFN), xfn (3XFN), xfn_status_codes (3XFN),
attributes (5), fns_references (5)

The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Last modified 13 Dec 1996 Sun0S 5.8 153

fn_ctx_list_bindings(3XFN) XFN Interface Library Functions

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

NOTES

154

fn_ctx_list_bindings, FN_bindinglist_t, fn_bindinglist_next,
fn_bindinglist_destroy - list the atomic names and references bound in a context

cc [flag ...] file ... =Ixfn [library ...]

#include <xfn/xfn.h>

FN_bindinglist_t *fn_ctx_list_bindings (FN_ctx_t *ctx, const FN_composite_name_t
*name, FN_status_t *status);

FN_string_t *fn_bindinglist_next (FN_bindinglist_t *bl, FN_ref_t **ref, FN_status_t
*status);
void fn_bindinglist_destroy (FN_bindinglist_t *bl, FN_status_t *status);

This set of operations is used to list the names and bindings in the context named
by name relative to the context ctx . Note that name must name a context. If the
intent is to list the contents of ctx , name should be an empty composite name.

The semantics of these operations are similar to those for listing names (see
fn_ctx_list_names (3XFN)). In addition to a name string being returned,
fn_bindinglist_next() also returns the reference of the binding for each
member of the enumeration.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_composite_name_t (3XFN), FN_ctx_t (3XFN), FN_ref t (3XFN),
FN_status_t (3XFN), FN_string_t (3XFN), fn_ctx_list_names (3XFN),
xfn (3XFN), xfn_status_codes (3XFN) , attributes (5)

The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Sun0S 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_ctx_list_names(3XFN)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

fn_ctx_list_names, FN_namelist_t, fn_namelist_next, fn_namelist_destroy - list
the atomic names bound in a context

cc [flag ...] file ... =Ixfn [library ...]

#include <xfn/xfn.h>

FN_namelist_t *fn_ctx_list_names (FN_ctx_t *ctx, const FN_composite_name_t
*name, FN_status_t *status);

FN_string_t *fn_namelist_next (FN_namelist_t *nl, FN_status_t *status);
void fn_namelist_destroy (FN_namelist_t *nl, FN_status_t *status);

This set of operations is used to list the names bound in the target context named
name relative to the context ctx . Note that name must name a context. If the
intent is to list the contents of ctx , name should be an empty composite name.

The call to fn_ctx_list_names() initiates the enumeration process. It
returns a handle to an FN_namelist_t object that can be used to enumerate the
names in the target context.

The operation fn_namelist_next() returns the next name in the enumeration
identified by nl and updates nl to indicate the state of the enumeration.
Successive calls to fn_namelist_next() using nl return successive

names in the enumeration and further update the state of the enumeration.
fn_namelist_next() returns a NULL pointer (0) when the enumeration

has been completed.

fn_namelist_destroy() is used to release resources used during the
enumeration. This may be invoked at any time to terminate the enumeration.

fn_ctx_list_names() returns a pointer to an FN_namelist_t object if the
enumeration is successfully initiated; otherwise it returns a NULL pointer (0).

fn_namelist_next() returns a NULL pointer (0) if no more names can be
returned in the enumeration.

In the case of a failure, these operations return in status a code indicating the
nature of the failure.

Each successful call to fn_namelist_next() returns a name and sets status to

FN_SUCCESS.

When fn_namelist_next() returns a NULL pointer (0), it indicates that no

more names can be returned. status is set in the following way:

FN_SUCCESS The enumeration has completed
successfully.

FN_E_INVALID_ENUM_HANDLE The supplied enumeration handle

is not valid. Possible reasons could
be that the handle was from another

Last modified 13 Dec 1996 Sun0S 5.8 155

fn_ctx_list_names(3XFN) XFN Interface Library Functions

156

USAGE

EXAMPLES

enumeration, or the context being
enumerated no longer accepts the
handle (due to such events as handle
expiration or updates to the context).

FN_E_PARTIAL_RESULT The enumeration is not yet complete
but cannot be continued.

Other status codes, such as FN_E_COMMUNICATION_FAILUREare also
possible in calls to fn_ctx_list_names() , fn_namelist_next() ,and
fn_namelist_destroy() . These functions set status for these other status
codes as described in FN_status_t (3XFN) and xfn_status_codes (3XFN) .

The names enumerated using fn_namelist_next() are not ordered in

any way. There is no guaranteed relation between the order in which names
are added to a context and the order of names obtained by enumeration. The
specification does not guarantee that any two series of enumerations will return
the names in the same order.

When a name is added to or removed from a context, this may or may

not invalidate the enumeration handle that the client holds for that

context. If the enumeration handle becomes invalid, the status code
FN_E_INVALID_ENUM_HANDLEs returned in status . If the enumeration handle
remains valid, the update may or may not be visible to the client.

In addition, there may be a relationship between the ctx argument supplied
to fn_ctx_list_names() and the FN_namelist_t object it returns. For
example, some implementations may store the context handle ctx within the
FN_namelist_t object for subsequent fn_namelist_next() calls. In
general, a fn_ctx_handle_destroy (3XFN) should not be invoked on ctx
until the enumeration has terminated.

EXAMPLE 1 A sample program.

The following code fragment illustrates how the list names operations may be

used:
extern FN_string_t *user_input;
FN_ctx_t *ctx;
FN_composite_name_t *target_name = fn_composite_name_from_string(user_input);
FN_status_t *status = fn_status_create();
FN_string_t *name;
FN_namelist_t *nl;
ctx = fn_ctx_handle_from_initial(status);
/* error checking on ’status’ */
if ((nl=fn_ctx_list_names(ctx, target_name, status)) == 0) {
/* report ’status’ and exit */

while (name=fn_namelist_next(nl, status)) {

/* do something with 'name’ */
fn_string_destroy(name);

SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_ctx_list_names(3XFN)

ATTRIBUTES

SEE ALSO

NOTES

/* check ’status’ for reason for end of enumeration and report if necessary */
[* clean up */

fn_namelist_destroy(nl, status);

[* report ’status’ */

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_composite_name_t (3XFN), FN_ctx_t (3XFN), FN_status_t (3XFN),
FN_string_t (3XFN), fn_ctx_handle_destroy (3XFN) , xfn (3XFN),
xfn_status_codes (3XFN) , attributes (5)

The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Last modified 13 Dec 1996 Sun0OS 5.8 157

fn_ctx_lookup(3XFN)

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUE

ERRORS

APPLICATION
USAGE

ATTRIBUTES

SEE ALSO

158

XFN Interface Library Functions

fn_ctx_lookup - look up name in context

cc [flag ...] file ... =Ixfn [library ...]
#include <xfn/xfn.h>

FN_ref t *fn_ctx_lookup (FN_ctx_t *ctx, const FN_composite_name_t *name,
FN_status_t *status);

This operation returns the reference bound to name relative to the context ctx.

If the operation succeeds, the fn_ctx_lookup() function returns a handle
to the reference bound to name. Otherwise, O is returned and status is set
appropriately.

fn_ctx_lookup() sets status as described FN_status t (3XFN) and
xfn_status_codes (3XFN).

Some naming services may not always have reference information for all names
in their contexts; for such names, such naming services may return a special
reference whose type indicates that the name is not bound to any address. This
reference may be name service specific or it may be the conventional NULL
reference defined in the X/Open registry. See fns_references (5).

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

FN_composite_name_t (3XFN), FN_ctx_t (3XFN), FN_ref t (3XFN),
FN_status_t (3XFN), fns_references (5), xfn_status_codes (3XFN),
xfn (3XFN), attributes (5)

Sun0S 5.8 Last modified 30 Dec 1996

XFN Interface Library Functions fn_ctx_lookup_link(3XFN)

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES
ERRORS

ATTRIBUTES

SEE ALSO

NOTES

fn_ctx_lookup_link — look up the link reference bound to a name

cc [flag ...] file ... =Ixfn [library ...]
#include <xfn/xfn.h>

FN_ref_t *fn_ctx_lookup_link (FN_ctx_t *ctx, const FN_composite_name_t *name,
FN_status_t *status);

This operation returns the XFN link bound to name. The terminal atomic part of
name must be bound to an XFN link.

The normal fn_ctx_lookup (3XFN) operation follows all links encountered,
including any bound to the terminal atomic part of name. This operation differs
from the normal lookup in that when the terminal atomic part of name is an XFN
link, this link is not followed, and the operation returns the link.

If fn_ctx_lookup_link() fails, a NULL pointer (0) is returned.
fn_ctx_lookup_link() sets status as described in FN_status_t (3XFN)
and xfn_status_codes (3XFN). Of special relevance for
fn_ctx_lookup_link() is the following status code:

FN_E_MALFORMED_LINK name resolved to a reference that was not a link.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_composite_name_t (3XFN), FN_ctx_t (3XFN), FN_ref t (3XFN),
FN_status_t (3XFN), fn_ctx_lookup (3XFN), xfn (3XFN),
xfn_links (3XFN), xfn_status_codes (3XFN), attributes (5)

The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Last modified 13 Dec 1996 SunOS 5.8 159

fn_ctx_rename(3XFN)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES
ERRORS

USAGE

ATTRIBUTES

SEE ALSO

160

XFN Interface Library Functions

fn_ctx_rename - rename the name of a binding

cc [flag ...] file ... =Ixfn [library ...]
#include <xfn/xfn.h>

int fn_ctx_rename (FN_ctx_t *ctx, const FN_composite_name_t *oldname, const
FN_composite_name_t *newname, unsigned int exclusive, FN_status_t *status);

The fn_ctx_rename() operation binds the reference currently bound to
oldname relative to ctx, to the name newname, and unbinds oldname. newname
is resolved relative to the target context (that named by all but the terminal
atomic part of oldname).

If exclusive is 0, the operation overwrites any old binding of newname. If exclusive
is nonzero, the operation fails if newname is already bound.

fn_ctx_rename() returns 1 if the operation is successful, O otherwise.

fn_ctx_rename() sets status as described FN_status_t (3XFN) and
xfn_status_codes (3XFN).

The only restriction that XFN places on newname is that it be resolved relative to
the target context. XFN does not specify further restrictions on newname. For
example, in some implementations, newname might be restricted to be a name
in the same naming system as the terminal component of oldname. In another
implementation, newname might be restricted to be an atomic name.

Normal resolution always follows links. In an fn_ctx_rename() operation,
resolution of oldname continues to the target context; the terminal atomic name
is not resolved. If the terminal atomic name is bound to a link, the link is not
followed and the operation binds newname to the link and unbinds the terminal
atomic name of oldname.

In naming systems that support attributes and store the attributes along with
the names, the unbind of the terminal atomic name of oldname also removes its
associated attributes. It is implementation-dependent whether these attributes
become associated with newname.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_composite_name_t (3XFN), FN_ctx_t (3XFN), FN_ref t (3XFN),
FN_status_t (3XFN), fn_ctx_bind (3XFN) fn_ctx_unbind (3XFN),
xfn (3XFN), xfn_status_codes (3XFN), attributes (5)

SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_ctx_rename(3XFN)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Last modified 13 Dec 1996 Sun0S 5.8 161

FN_ctx_t(3XFN)

162

NAME
SYNOPSIS

XFN Interface Library Functions

FN_ctx_t — an XFN context

cc [flag ...] file ... =Ixfn [library ...]
#include <xfn/xfn.h>

FN_ctx_t *fn_ctx_handle_from_initial (unsigned int authoritative, FN_status_t
*status);
FN_ctx_t *fn_ctx_handle_from_ref (const FN_ref_t *ref, unsigned int authoritative,

FN_status_t *status);
FN_ref_t *fn_ctx_get_ref (const FN_ctx_t *ctx, FN_status_t *status);
void fn_ctx_handle_destroy (FN_ctx_t *ctx);

FN_ref t *fn_ctx_lookup (FN_ctx_t *ctx, const FN_composite_name_t *name,
FN_status_t *status);

FN_namelist_t *fn_ctx_list_names (FN_ctx_t *ctx, const FN_composite_name_t
*name, FN_status_t *status);

FN_string_t *fn_namelist_next (FN_namelist_t *nl, FN_status_t *status);

void fn_namelist_destroy (FN_namelist_t *nl, FN_status_t *status);

FN_bindinglist_t *fn_ctx_list_bindings (FN_ctx_t *ctx, const FN_composite_name_t
*name, FN_status_t *status);

FN_string_t *fn_bindinglist_next (FN_bindinglist_t *iter, FN_ref_t **ref, FN_status_t
*status);

void fn_bindinglist_destroy (FN_bindinglist_t *iter_pos, FN_status_t *status);

intfn_ctx_bind (FN_ctx_t *ctx, const FN_composite_name_t *name, const FN_ref t *ref,
unsigned int exclusive, FN_status_t *status);

int fn_ctx_unbind (FN_ctx_t *ctx, const FN_composite_name_t *name, FN_status_t
*status);

int fn_ctx_rename (FN_ctx_t *ctx, const FN_composite_name_t *oldname, const
FN_composite_name_t *newname, unsigned int exclusive, FN_status_t *status);

FN_ref_t *fn_ctx_create_subcontext (FN_ctx_t *ctx, const FN_composite_name_t
*name, FN_status_t *status);

int fn_ctx_destroy_subcontext (FN_ctx_t *ctx, const FN_composite_name_t *name,
FN_status_t *status);

FN_ref_t *fn_ctx_lookup_link (FN_ctx_t *ctx, const FN_composite_name_t *name,
FN_status_t *status);

SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_ctx_t(3XFN)

DESCRIPTION

ERRORS

USAGE

FN_attrset_t *fn_ctx_get_syntax_attrs (FN_ctx_t *ctx, const FN_composite_name_t
*name, FN_status_t *status);

An XFN context consists of a set of name to reference bindings. An XFN context
is represented by the type FN_ctx_t in the client interface. The operations for
manipulating an FN_ctx_t object are described in detail in separate reference
manual pages.

The following contains a brief summary of these operations:

fn_ctx_handle_from_initial() returns a pointer to an Initial

Context that provides a starting point for resolution of composite names.
fn_ctx_handle_from_ref() returns a handle to an FN_ctx_t object using
the given reference ref. fn_ctx_get_ref() returns the reference of the context
ctx. fn_ctx_handle_destroy() releases the resources associated with the
FN_ctx_t object ctx; it does not affect the state of the context itself.

fn_ctx_lookup() returns the reference bound to name resolved relative to ctx.
fn_ctx_list_names() is used to enumerate the atomic names bound in the
context named by name resolved relative to ctx. fn_ctx_list_bindings() is
used to enumerate the atomic names and their references in the context named
by name resolved relative to ctx.

fn_ctx_bind() binds the composite name name to a reference ref resolved
relative to ctx. fn_ctx_unbind() unbinds name resolved relative to ctx.
fn_ctx_rename() binds newname to the reference bound to oldname and
unbinds oldname. oldname is resolved relative to ctx; newname is resolved relative
to the target context.

fn_ctx_create_subcontext() creates a new context
with the given composite name name resolved relative to ctx.
fn_ctx_destroy_subcontext() destroys the context named by name

resolved relative to ctx.

Normal resolution always follows links. fn_ctx_lookup_link() looks up
name relative to ctx, following links except for the last atomic part of name,
which must be bound to an XFN link.

fn_ctx_get_syntax_attrs() returns an attribute set containing attributes
that describe a context’s syntax. name must name a context.

In each context operation, the caller supplies an FN_status_t object as
a parameter. The called function sets this status object as described in
FN_status_t (3XFN) and xfn_status_codes (3XFN).

In most of the operations of the base context interface, the caller supplies a
context and a composite name. The supplied name is always interpreted relative
to the supplied context.

Last modified 13 Dec 1996 Sun0S 5.8 163

FN_ctx_t(3XFN) XFN Interface Library Functions

The operation may eventually be effected on a different context called the
operation’s target context. Each operation has an initial resolution phase that
conveys the operation to its target context, and the operation is then applied.
The effect (but not necessarily the implementation) is that of doing a lookup on
that portion of the name that represents the target context, and then invoking the
operation on the target context. The contexts involved only in the resolution
phase are called intermediate contexts.

Normal resolution of names in context operations always follows XFN links.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO FN_attrset t (3XFN), FN_composite_name_t (3XFN), FN_ref t (3XFN),
FN_status_t (3XFN), fn_ctx_bind (3XFN),

fn_ctx_create_subcontext (3XFN),

fn_ctx_destroy_subcontext (3XFN),

fn_ctx_get_ref (3XFN), fn_ctx_get_syntax_attrs (3XFN),
fn_ctx_handle_destroy (3XFN), fn_ctx_handle_from_initial (3XFN),
fn_ctx_handle_from_ref (3XFN), fn_ctx_list_bindings (3XFN),

fn_ctx_list_names (3XFN), fn_ctx_lookup (3XFN),
fn_ctx_lookup_link (3XFN), fn_ctx_rename (3XFN),
fn_ctx_unbind (3XFN), xfn (3XFN), xfn_links (3XFN),
xfn_status_codes (3XFN), attributes (5)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

164 Sun0OS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions fn_ctx_unbind(3XFN)

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUE
ERRORS

APPLICATION
USAGE

ATTRIBUTES

SEE ALSO

fn_ctx_unbind - unbind a name from a context

cc [flag ...] file ... =Ixfn [library ...]
#include <xfn/xfn.h>

int fn_ctx_unbind (FN_ctx_t *ctx, const FN_composite_name_t *name, FN_status_t
*status);

This operation removes the terminal atomic name in name from the the target
context — that named by all but the terminal atomic part of name.

This operation is successful even if the terminal atomic name was not bound
in target context, but fails if any of the intermediate names are not bound.
fn_ctx_unbind() is idempotent.

The operation returns 1 if successful, and 0 otherwise.

fn_ctx_unbind() sets status as described in FN_status_t and
xfn_status_codes (3XFN).

Certain naming systems may disallow unbinding a name if the name
is bound to an existing context in order to avoid orphan contexts that
cannot be reached via any name. In such situations, the status code
FN_E_OPERATION_NOT_SUPPORTEDeturned.

In naming systems that support attributes, and store the attributes along with
the names, the unbind operation removes the name and its associated attributes.

Normal resolution always follows links. In an fn_ctx_unbind() operation,
resolution of name continues to the target context; the terminal atomic name is
not resolved. If the terminal atomic name is bound to a link, the link is not
followed and the link itself is unbound from the terminal atomic name.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

FN_composite_name_t (3XFN), FN_ctx_t (3XFN), FN_ref t (3XFN),
FN_status_t (3XFN), fn_ctx_bind (3XFN), fn_ctx_lookup (3XFN),
xfn_status_codes (3XFN), xfn (3XFN), attributes (5)

Last modified 30 Dec 1996 Sun0S 5.8 165

FN_identifier_t(3XFN) XFN Interface Library Functions

NAME FN_identifier_t — an XFN identifier

DESCRIPTION Identifiers are used to identify reference types and address types in an XFN
reference, and to identify attributes and their syntax in the attribute operations.

An XFN identifier consists of an unsigned int , which determines the format
of identifier, and the actual identifier, which is expressed as a sequence of octets.

The representation of this structure is defined by XFN as follows:

typedef struct {
unsigned int format;
size_t length;
void *contents;
} FN_identifier_t;

XFN defines a small number of standard forms for identifiers:

FN_ID_STRING The identifier is an ASCII string
(ISO 646).
FN_ID_DCE_UUID The identifier is an OSF DCE UUID

in string representation. (See the
X/Open DCE RPQ)

FN_ID_ISO_OID_STRING The identifier is an 1SO OID in ASN.1
dot-separated integer list string
format. (See the ISO ASN.1.)

FN_ID_ISO_OID_BER The identifier is an 1SO OID in ASN.1
Basic Encoding Rules (BER) format.
(See the ISO BER)

FILES #include <xfn/xfn.h>

SEE ALSO FN_attribute_t (3XFN), FN_ref_addr_t (3XFN), FN_ref t (3XFN),
xfn (3XFN)

NOTES The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

166 Sun0S 5.8 Last modified 4 Nov 1994

XFN Interface Library Functions FN_ref_addr_t(3XFN)

NAME

SYNOPSIS

DESCRIPTION

FN_ref_addr_t, fn_ref_addr_create, fn_ref_addr_destroy, fn_ref_addr_copy,
fn_ref_addr_assign, fn_ref_addr_type, fn_ref_addr_length, fn_ref_addr_data,
fn_ref_addr_description — an address in an XFN reference

cc [flag ...] file ... =Ixfn [library ...]

#include <xfn/xfn.h>

FN_ref _addr_t *fn_ref _addr_create (constFN_identifier_t *type, size_t length, const
void *data);

void fn_ref_addr_destroy (FN_ref_addr_t *addr);

FN_ref_addr_t *fn_ref_addr_copy (constFN_ref_addr_t *addr);

FN_ref _addr_t *fn_ref _addr_assign (FN_ref_addr_t *dst, const FN_ref_addr_t *src);
const FN_identifier_t *fn_ref_addr_type (constFN_ref_addr_t *addr);

size_t fn_ref_addr_length (const FN_ref_addr_t *addr);

const void* fn_ref_addr_data (const FN_ref_addr_t *addr);

FN_string_t *fn_ref_addr_description (constFN_ref_addr_t *addr, unsigned int
detail, unsigned int *more_detail);

An XFN reference is represented by the type FN_ref t . An object of this type
contains a reference type and a list of addresses. Each address in the list is
represented by an object of type FN_ref_addr_t . An address consists of an
opaque data buffer and a type field, of type FN_identifier_t

fn_ref_addr_create() creates and returns an address with the given type
and data. length indicates the size of the data. fn_ref_addr_destroy()

releases the storage associated with the given address. fn_ref_addr_copy()
returns a copy of the given address object. fn_ref_addr_assign() makes
a copy of the address pointed to by src and assigns it to dst, releasing any old
contents of dst . A pointer to the same object as dst is returned.

fn_ref_addr_type() returns the type of the given address.
fn_ref_addr_length() returns the size of the address in bytes.
fn_ref_addr_data() returns the contents of the address.
fn_ref_addr_description() returns the implementation-defined textual

description of the address. It takes as arguments a number, detail , and a pointer
to a number, more_detail . detail specifies the level of detail for which the
description should be generated; the higher the number, the more detail is to be
provided. If more_detail is O , it is ignored. If more_detail is non-zero, it is set by
the description operation to indicate the next level of detail available, beyond
that specified by detail . If no higher level of detail is available, more_detail

is set to detail .

Last modified 13 Dec 1996 Sun0S 5.8 167

FN_ref_addr_t(3XFN)

USAGE

ATTRIBUTES

SEE ALSO

NOTES

168

XFN Interface Library Functions

The address type of an FN_ref _addr_t object is intended to identify the
mechanism that should be used to reach the object using that address. The client
must interpret the contents of the opaque data buffer of the address based on
the type of the address, and on the type of the reference that the address is in.
However, this interpretation is intended to occur below the application layer.
Most applications developers should not have to manipulate the contents of
either address or reference objects themselves. These interfaces would generally
be used within service libraries.

Multiple addresses in a single reference are intended to identify multiple
communication endpoints for the same conceptual object. Multiple addresses
may arise for various reasons, such as the object offering interfaces over more
than one communication mechanism.

Manipulation of addresses using the operations described in this manual page
does not affect their representation in the underlying naming system. Changes
to addresses in the underlying naming system can only be effected through the
use of the interfaces described in FN_ctx_t (3XFN).

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_ctx_t (3XFN), FN_identifier_t (3XFN) , FN_ref t (3XFN),
FN_string_t (3XFN), xfn (3XFN) , attributes (5)

The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Sun0S 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_ref_t(3XFN)

NAME

SYNOPSIS

DESCRIPTION

FN_ref_t, fn_ref_create, fn_ref_destroy, fn_ref_copy, fn_ref_assign,
fn_ref_type, fn_ref_addrcount, fn_ref_first, fn_ref_next, fn_ref_prepend_addr,
fn_ref_append_addr, fn_ref_insert_addr, fn_ref_delete_addr, fn_ref_delete_all,
fn_ref_create_link, fn_ref_is_link, fn_ref_link_name, fn_ref_description — an
XFN reference

cc [flag ...] file ... =Ixfn [library ...]
#include <xfn/xfn.h>
FN_ref_t *fn_ref_create (const FN_identifier_t *ref_type);

void fn_ref_destroy (FN_ref_t *ref);

FN_ref t*fn_ref copy (const FN_ref t *ref);

FN_ref_t *fn_ref_assign (FN_ref _t *dst, const FN_ref_t *src);

const FN_identifier_t *fn_ref type (const FN_ref t *ref);

unsigned int fn_ref_addrcount (const FN_ref_t *ref);

const FN_ref_addr_t *fn_ref_first (const FN_ref_t *ref, void **iter_pos);

const FN_ref_addr_t *fn_ref next (const FN_ref _t *ref, void **iter_pos);

int fn_ref_prepend_addr (FN_ref_t *ref, const FN_ref_addr_t *addr);

int fn_ref_append_addr (FN_ref_t *ref, const FN_ref_addr_t *addr);

int fn_ref_insert_addr (FN_ref_t *ref, void **iter_pos, const FN_ref _addr_t *addr);

int fn_ref_delete_addr (FN_ref_t *ref, void **iter_pos);

int fn_ref_delete_all (FN_ref_t *ref);
FN_ref_t *fn_ref_create_link (const FN_composite_name_t *link_name);
int fn_ref_is_link (const FN_ref t *ref);

FN_composite_name_t *fn_ref _link_name (const FN_ref_t *link_ref);

FN_string_t *fn_ref_description (const FN_ref_t *ref, unsigned int detail, unsigned
int *more_detail);

An XFN reference is represented by the type FN_ref t . An object of this
type contains a reference type and a list of addresses. The ordering in this list
at the time of binding might not be preserved when the reference is returned
upon lookup.

The reference type is represented by an object of type FN_identifier_t
The reference type is intended to identify the class of object referenced. XFN
does not dictate the precise use of this.

Each address is represented by an object of type FN_ref_addr_t

Last modified 13 Dec 1996 SunOS 5.8 169

FN_ref_t(3XFN)

RETURN VALUES

170

USAGE

XFN Interface Library Functions

fn_ref_create() creates a reference with no address, using ref_type as its
reference type. Addresses can be added later to the reference using the functions
described below. fn_ref_destroy() releases the storage associated with ref .
fn_ref_copy() creates a copy of ref and returns it. fn_ref_assign()

creates a copy of src and assigns it to dst , releasing any old contents of dst. A
pointer to the same object as dst is returned.

fn_ref_addrcount() returns the number of addresses in the reference ref .

fn_ref_first() returns the first address in ref and sets iter_pos to be after the
address. It returns O if there is no address in the list. fn_ref_next() returns
the address following iter_pos in ref and sets iter_pos to be after the address. If
the iteration marker iter_pos is at the end of the sequence, fn_ref_next()

returns O .

fn_ref_prepend_addr() adds addr to the front of the list of addresses in ref .
fn_ref_append_addr() adds addr to the end of the list of addresses in ref .
fn_ref_insert_addr() adds addr to ref before iter_pos and sets iter_pos to be
immediately after the new reference added. fn_ref_delete_addr() deletes
the address located before iter_pos in the list of addresses in ref and sets iter_pos
back one address. fn_ref_delete_all () deletes all addresses in ref .

fn_ref_create_link() creates a reference using the given composite name
link_name as an address. fn_ref_is_link() tests if refisa link. It returns 1 if
itis; O if itis not. fn_ref_link_name() returns the composite name stored in
a link reference. It returns O if link_ref is not a link.

fn_ref_description() returns a string description of the given reference. It
takes as argument an integer, detail , and a pointer to an integer, more_detail .
detail specifies the level of detail for which the description should be generated;
the higher the number, the more detail is to be provided. If more_detail is O , it

is ignored. If more_detail is non-zero, it is set by the description operation to
indicate the next level of detail available, beyond that specified by detail . If no
higher level of detail is available, more_detail is set to detail .

The following operations return 1 if the operation succeeds, O if the operation
fails:

fn_ref_prepend_addr()

fn_ref_append_addr()

fn_ref_insert_addr()

fn_ref_delete_addr()

fn_ref_delete_all()

The reference type is intended to identify the class of object referenced. XFN
does not dictate the precise use of this.

Sun0OS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_ref_t(3XFN)

ATTRIBUTES

SEE ALSO

NOTES

Multiple addresses in a single reference are intended to identify multiple
communication endpoints for the same conceptual object. Multiple addresses
may arise for various reasons, such as the object offering interfaces over more
than one communication mechanism.

The client must interpret the contents of a reference based on the type of the
addresses and the type of the reference. However, this interpretation is intended
to occur below the application layer. Most applications developers should not
have to manipulate the contents of either address or reference objects themselves.
These interfaces would generally be used within service libraries.

Manipulation of references using the operations described in this manual page
does not affect their representation in the underlying naming system. Changes
to references in the underlying naming system can only be effected through the
use of the interfaces described in FN_ctx_t (3XFN).

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_composite_name_t (3XFN) , FN_ctx_t (3XFN) ,

FN_identifier_t (3XFN), FN_ref _addr_t (3XFN), FN_string_t (3XFN)
, fn_ctx_lookup (3XFN) , fn_ctx_lookup_link (3XFN) , xfn (3XFN),
xfn_links (3XFN), attributes (5)

The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Last modified 13 Dec 1996 Sun0S 5.8 171

FN_search_control_t(3XFN) XFN Interface Library Functions

NAME

SYNOPSIS

DESCRIPTION

172

FN_search_control_t, fn_search_control_create, fn_search_control_destroy;,
fn_search_control_copy, fn_search_control_assign, fn_search_control_scope,
fn_search_control_follow_links, fn_search_control_max_names,
fn_search_control_return_ref, fn_search_control_return_attr_ids — options for
attribute search

#include <xfn/xfn.h>

FN_search_control_t *fn_search_control_create (unsigned int scope, unsigned
int follow_links, unsigned int max_names, unsigned int return_ref, const FN_attrset_t
*return_attr_ids, unsigned int *status);

void fn_search_control_destroy (FN_search_control_t *scontrol);
FN_search_control_t *fn_search_control_copy (const FN_search_control_t *scontrol);
FN_search_control_t *fn_search_control_assign (FN_search_control_t *dst, const

FN_search_control_t *src);

unsigned int fn_search_control_scope (const FN_search_control_t *scontrol);
unsigned int fn_search_control_follow_links (const FN_search_control_t
*scontrol);

unsigned int fn_search_control_max_names (const FN_search_control_t *scontrol);
unsigned int fn_search_control_return_ref (const FN_search_control_t *scontrol);
const FN_attrset_t *fn_search_control_return_attr_ids (const

FN_search_control_t *scontrol);

The FN_search_control_t object is used to specify options for the attribute
search operation fn_attr_ext_search (3XFN) .
fn_search_control_create() creates an FN_search_control_t

object using information in scope , follow_links , max_names , return_ref
, and return_attr_ids to set the search options. If the operation

succeeds, fn_search_control_create() returns a pointer to an
FN_search_control_t object; otherwise, it returns a NULL pointer.

The scope of the search, scope , is either the named object, the named context,
the named context and its subcontexts, or the named context and a context
implementation defined set of subcontexts. The values for scope are:

FN_SEARCH_NAMED_OBJECT Search just the given named object.

FN_SEARCH_ONE_CONTEXT Search just the given context.

FN_SEARCH_SUBTREE Search given context and all its
subcontexts.

Sun0S 5.8 Last modified 22 Nov 1996

XFN Interface Library Functions FN_search_control_t(3XFN)

FN_SEARCH_CONSTRAINED_SUBTREREearch given context and its
subcontexts as constrained by the
context-specific policy in place at the
named context.

follow_links further defines the scope and nature of the search. If follow_links is
nonzero, the search follows XFN links. If follow_links is 0 , XFN links are not
followed. See fn_attr_ext_search (3XFN) for more detail about how XFN
links are treated.

max_names specifies the maximum number of names to return

in an FN_ext_searchlist_t (3XFN) enumeration (see
fn_attr_ext_search (3XFN)). The names of all objects whose attributes
satisfy the filter are returned when max_names is O .

If return_ref is non-zero, the reference bound to the named object is returned
with the object’s name by fn_ext_searchlist_next (3XFN) (see
fn_attr_ext_search (3XFN)). If return_ref is O , the reference is not returned.

Attribute identifiers and values associated with named objects that satisfy the
filter may be returned by fn_ext_searchlist_next (3XFN) . The attributes
returned are those listed in return_attr_ids . If the value of return_attr_idsis O,
all attributes are returned. If return_attr_ids is an empty FN_attrset_t object
(see FN_attrset_t (3XFN)), no attributes are returned. Any attribute values
in return_attr_ids are ignored; only the attribute identifiers are relevant for
this operation.

fn_attr_ext_search (3XFN) interprets a value of 0 for the search control

argument as a default search control which has the following option settings:

scope FN_SEARCH_ONE_CONTEXT

follow_links 0 (do not follow links)

max_names 0 (return all named objects that match filter)

return_ref 0 (do not return the reference of the named
object)

return_attr_ids an empty FN_attrset_t object (do not return
any attributes of the named object)

fn_search_control_destroy() releases the storage associated with

scontrol .

fn_search_control_copy() returns a copy of the search control scontrol .

fn_search_control_assign() makes a copy of the search control src and

assigns it to dst, releasing the old contents of dst . A pointer to the same object as
dst is returned.

Last modified 22 Nov 1996 Sun0OS 5.8 173

FN_search_control_t(3XFN) XFN Interface Library Functions

174

ERRORS

ATTRIBUTES

SEE ALSO

fn_search_control_scope() returns the scope for the search.
fn_search_control_follow_links() returns non-zero if links are
followed; O if not.

fn_search_control_max_names() returns the maximum number of names.
fn_search_control_return_ref() returns nonzero if the reference

is returned; O if not.

fn_search_control_return_attr_ids() returns a pointer to the list of
attributes; a NULL pointer indicates that all attributes and values are returned.

fn_search_control_create() returns a NULL pointer if the operation fails

and sets status as follows:

FN_E_SEARCH_INVALID_OPTION A supplied search option was invalid
or inconsistent.

Other status codes are possible (see xfn_status_codes (3XFN)).

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_attrset t (3XFN) , fn_attr_ext_search (3XFN) ,
xfn_status_codes (3XFN) , attributes (5)

Sun0S 5.8 Last modified 22 Nov 1996

XFN Interface Library Functions FN_search_filter_t(3XFN)

NAME

SYNOPSIS

DESCRIPTION

FN_search_filter_t, fn_search_filter_create, fn_search_filter_destroy,
fn_search_filter_copy, fn_search_filter_assign, fn_search_filter_expression,
fn_search_filter_arguments — filter expression for attribute search

#include <xfn/xfn.h>
FN_search_filter_t *fn_search_filter_create (unsigned int *status, const unsigned
char *estr, .);

void fn_search_filter_destroy (FN_search_filter_t *sfilter);
FN_search_filter_t *fn_search_filter_copy (const FN_search_filter_t *sfilter);
FN_search_filter_t *fn_search_filter_assign (FN_search_filter_t *dst, const

FN_search_filter_t *src);
const char *fn_search_filter_expression (const FN_search_filter_t *sfilter);

const void **fn_search_filter_arguments (const FN_search_filter_t *sfilter, size_t
*number_of_arguments);

The FN_search_filter_t type is an expression that is evaluated against
the attributes of named objects bound in the scope of the search operation
fn_attr_ext_search (3XFN) . The filter evaluates to TRUEor FALSE. If the
filter is empty, it evaluates to TRUE. Names of objects whose attribute values
satisfy the filter expression are returned by the search operation.

If the identifier in any subexpression of the filter does not exist as an attribute
of an object, then the innermost logical expression containing that identifier is
FALSE. A subexpression that is only an attribute tests for the presence of the
attribute; the subexpression evaluates to TRUEIf the attribute has been defined
for the object and FALSE otherwise.

fn_search_filter_create() creates a search filter from the expression
string estr and the remaining arguments.

fn_search_filter_destroy() releases the storage associated with the
search filter sfilter .

fn_search_filter_copy() returns a copy of the search filter sfilter .
fn_search_filter_assign() makes a copy of the search filter src and

assigns it to dst, releasing the old contents of dst . A pointer to the same object as
dst is returned.

fn_search_filter_expression() returns the filter expression of sfilter.

fn_search_filter_arguments() returns an array of pointers to arguments
supplied to the filter constructor. number_of_arguments is set to the size of this
array. The types of the arguments are determined by the substitution tokens

in the expression in sfilter .

Last modified 22 Nov 1996 SunOS 5.8 175

FN_search_filter_t(3XFN) XFN Interface Library Functions

BNF of Filter <FilterExpr> = [<Expr>]
Expression <Expr> = <Expr> "or" <Expr>
<Expr> "and" <Expr>
| "not" <Expr>
| "(" <Expr> ")
| <Attribute> [<Rel_Op> <Value>]
| <Ext>
<Rel_Op> = "==" | "I=" | "<" | "<=" | ">" | ">=" | "[ap ="
<Attribute> ::= "%a"
<Value> := <Integer>

| "%v"
|<Wildcarded_string>
<Wildcarded_string> = "
| <String>
| {<String> "*}+ [<String>]
| { <String>}+ [*]
<String> = "" { <Char> } * ™"
| "%s"
<Char> = <PCS> // See BNF in Section 4.1.2 for PCSdefinition
| Characters in the repertoire of a string representation
<ldentifier> ::=" "%i"
<Ext> := <Ext_Op> "(" [Arg_List] ")"
<Ext_Op> := <String> | <ldentifier>
<Arg_List> = <Arg> | <Arg> "" <Arg_List>

<Arg> = <Value> | <Attribute> | <Identifier>
Specification of Filter The arguments to fn_search_filter_create() are a return status,
Expression an expression string, and a list of arguments. The string contains the filter

expression with substitution tokens for the attributes, attribute values,
strings, and identifiers that are part of the expression. The remaining list

of arguments contains the attributes and values in the order of appearance

of their corresponding substitution tokens in the expression. The arguments
are of types FN_attribute_t* , FN_attrvalue_t* , FN_string_t* , or
FN_identifier_t* . Any attribute values in an FN_attribute_t* type of
argument are ignored; only the attribute identifier and attribute syntax are
relevant. The argument type expected by each substitution token are listed in
the following table.

Token Argument Type
%a FN_attribute_t*
%V FN_attrvalue_t*
%s FN_string_t*
%i FN_identifier_t*
Precedence The following precedence relations hold in the absence of parentheses, in the

order of lowest to highest:

176 Sun0S 5.8 Last modified 22 Nov 1996

XFN Interface Library Functions

or
and
not

relational operators

FN_search_filter_t(3XFN)

These boolean and relational operators are left associative.

Relational Operators Comparisons and ordering are specific to the syntax and/or rules of the supplied

attribute.

Locale (code set, language, or territory) mismatches that occur

during string comparisons and ordering operations are resolved in an
implementation-dependent way. Relational operations that have ordering
semantics may be used for strings of code sets in which ordering is meaningful,
but is not of general use in internationalized environments.

An attribute that occurs in the absence of any relational operator tests for the
presence of the attribute.

Operator

Meaning

[ap 1=

The sub-expression is TRUEIf at least one value of the
specified attribute is equal to the supplied value.

The sub-expression is TRUEIf no values of the specified
attribute equal the supplied value.

The sub-expression is TRUEIf at least one value of the
attribute is greater than or equal to the supplied value.

The sub-expression is TRUEIf at least one value of the
attribute is greater then the supplied value.

The sub-expression is TRUEIf at least one value of the
attribute is less than or equal to the supplied value.

The sub-expression is TRUEIf at least one value of the
attribute is less than the supplied value.

The sub-expression is TRUEIf at least one value of the
specified attribute matches the supplied value according
to some context-specific approximate matching criterion.
This criterion must subsume strict equality.

Wildcarded Strings A wildcarded string consists of a sequence of alternating wildcard specifiers

Last modified 22 Nov 1996

and strings. The sequence can start with either a wildcard specifier or a string,
and end with either a wildcard specifier or a string.

Sun0S 5.8 177

FN_search_filter_t(3XFN) XFN Interface Library Functions

Extended Operations

178

The wildcard specifier is denoted by the asterisk character ("* ’) and means zero
or more occurrences of any character.

Wildcarded strings can be used to specify substring matches. The following are
examples of wildcarded strings and what they mean:

Wildcarded String Meaning
* Any string

*ing’ Any string ending with ing

Any _string

starting

with jo , and
containing the substring
ph ,

and which contains
the substring ne
in the portion

of the string

following ph , and

which ends with er

T}

%s* Any string starting with the supplied string
Any string

starting with bix
and ending with the
supplied string

T}

String matches involving strings of different locales (code set, language, or
territory) are resolved in an implementation-dependent way.

In addition to the relational operators, extended operators can be specified. All
extended operators return either TRUEor FALSE. A filter expression can contain
both relational and extended operations.

Extended operators are specified using an identifier (see

FN_identifier_t (3XFN)) or a string. If the operator is specified using a
string, the string is used to construct an identifier of format FN_ID_STRING .
Identifiers of extended operators and signatures of the corresponding extended
operations, as well as their suggested semantics, are registered with X/Open
Company Ltd.

The following three extended operations are currently defined:

SunOS 5.8 Last modified 22 Nov 1996

XFN Interface Library Functions

'name’(< Wildcarded

String>)

'reftype’(%i)

‘addrtype’(%i)

operations:

FN_search_filter_t(3XFN)

The identifier for this operation is
‘'name’ (FN_ID_STRING) . The
argument to this operation is a
wildcard string. The operation
returns TRUEIf the name of the object
matches the supplied wildcard string.

The identifier for this operation is
reftype’ (FN_ID_STRING) . The
argument to this operation is an
identifier. The operation returns TRUE
if the reference type of the object is
equal to the supplied identifier.

The identifier for this operation is
‘addrtype’ (LM FN_ID_STRING)

. The argument to the operation is
an identifier. The operation returns
TRUEIf any of the address types in
the reference of the object is equal to
the supplied identifier.

Support and exact semantics of extended operations are context-specific.
If a context does not support an extended operation, or if the filter
expression supplies the extended operation with either an incorrect
number or type of arguments, the error FN_E_SEARCH_INVALID_OHs
returned. (Note: FN_E_OPERATION_NOT_SUPPORTEDeturned when
fn_attr_ext_search (3XFN) is not supported.)

The following are examples of filter expressions that contain extended

Expression

Meaning

Evaluates to
TRUE

if the name of the object
starts with

bill
T}

Last modified 22 Nov 1996

Sun0S 5.8 179

FN_search_filter_t(3XFN) XFN Interface Library Functions

RETURN VALUES

180

ERRORS

EXAMPLES

Expression Meaning

%i(%a, %v) Evaluates to result of applying the specified
operation to the supplied arguments.

(Ya == %v) and 'name’(joe™) Evaluates to TRUEIf the specified attribute
has the given value and if the name of
the object starts with joe .

fn_search_filter_create() returns a pointer to an

FN_search_filter_t object if the operation succeeds; otherwise it returns

a NULL pointer.

fn_search_filter_create() returns a NULL pointer if the operation fails

and sets status in the following way:

FN_E_SEARCH_INVALID_FILTER The filter expression had a syntax
error or some other problem.

FN_E_SEARCH_INVALID_OP An operator in the filter expression is

not supported or, if the operator is

an extended operator, the number of
types of arguments supplied does not
match the signature of the operation.

FN_E_INVALID_ATTR_IDENTIFIER The left hand side of an operator
expression was not an attribute.

FN_E_INVALID_ATTR_VALUE The right hand side of an operator
expression was not an integer,
attribute value, or (wildcarded)
string.

Other status codes are possible as described in the reference manual pages for
FN_status_t (3XFN) and xfn_status_codes (3XFN) .

EXAMPLE 1 Creating Different Filters
The following examples illustrate how to create three different filters.

The first example shows how to construct a filter involving substitution tokens
and literals in the same filter expression. This example creates a filter for named
objects whose color attribute contains a string value of red , blue , or white
The first two values are specified using substitution tokens; the last value,
white , is specified as a literal in the expression.

unsigned int status;

extern FN_attribute_t *attr_color;
FN_string_t *red = fn_string_from_str((unsigned char *)"red");

Sun0OS 5.8 Last modified 22 Nov 1996

XFN Interface Library Functions FN_search_filter_t(3XFN)

ATTRIBUTES

SEE ALSO

FN_string_t *blue = fn_string_from_str((unsigned char *)"blue");
FN_search_filter_t *sfilter;
sfilter = fn_search_filter_create(

&status,

"(%a == %s) or (Ya == %s) or (%a == 'white’)",
attr_color, red, attr_color, blue,

attr_color);

The second example illustrates how to construct a filter involving a wildcarded
string. This example creates a filter for searching for named objects whose
last_name attribute has a value that begins with the character m.

unsigned int status;

extern FN_attribute_t *attr_last_name;

FN_search_filter_t *sfilter;

sfilter = fn_search_filter_create(
&status, "%a == 'm™", attr_last_name);

The third example illustrates how to construct a filter involving extended
operations. This example creates a filter for finding all named objects whose
name ends with ton

unsigned int status;

FN_search_filter_t *sfilter;
sfilter= fn_search_filter_create(&status, "name’(*ton’)");

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_attribute_t (3XFN) , FN_attrvalue_t (3XFN) ,
FN_identifier_t (3XFN), FN_status_t (3XFN), FN_string_t (3XFN),
fn_attr_ext_search (3XFN) , xfn_status_codes (3XFN) , attributes (5)

Last modified 22 Nov 1996 Sun0OS 5.8 181

FN_status_t(3XFN) XFN Interface Library Functions

NAME FN_status_t, fn_status_create, fn_status_destroy, fn_status_copy,
fn_status_assign, fn_status_code, fn_status_remaining_name,
fn_status_resolved_name, fn_status_resolved_ref, fn_status_diagnostic_message,
fn_status_link_code, fn_status_link_remaining_name,
fn_status_link_resolved_name, fn_status_link_resolved_ref,
fn_status_link_diagnostic_message, fn_status_is_success, fn_status_set_success,
fn_status_set, fn_status_set_code, fn_status_set_remaining_name,
fn_status_set_resolved_name, fn_status_set_resolved_ref,
fn_status_set_diagnostic_message, fn_status_set_link_code,
fn_status_set_link_remaining_name, fn_status_set_link_resolved_name,
fn_status_set_link_resolved_ref, fn_status_set_link_diagnostic_message,
fn_status_append_resolved_name, fn_status_append_remaining_name,
fn_status_advance_by_name, fn_status_description — an XFN status object

SYNOPSIS cc [flag ...] file ... —Ixfn [library ...]
#include <xfn/xfn.h>
FN_status_t *fn_status_create (void);

void fn_status_destroy (FN_status_t *stat);
FN_status_t *fn_status_copy (const FN_status_t *stat);
FN_status_t *fn_status_assign (FN_status_t *dst, const FN_status_t *src);

unsigned int fn_status_code (const FN_status_t *stat);

const FN_composite_name_t *fn_status_remaining_name (constFN_status_t *stat);
const FN_composite_name_t *fn_status_resolved_name (constFN_status_t *stat);
const FN_ref t *fn_status_resolved_ref (constFN_status_t *stat);

const FN_string_t *fn_status_diagnostic_message (constFN_status_t *stat);
unsigned int fn_status_link_code (const FN_status_t *stat);

const FN_composite_name_t *fn_status_link_remaining_name (constFN_status_t
*stat);

const FN_composite_name_t *fn_status_link_resolved_name (constFN_status_t
*stat);

const FN_ref t *fn_status_link_resolved_ref (constFN_status_t *stat);

const FN_string_t *fn_status_link_diagnostic_message (constFN_status_t *stat);
int fn_status_is_success (const FN_status_t *stat);

int fn_status_set_success (FN_status_t *stat);

182 SunOS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_status_t(3XFN)

DESCRIPTION

int fn_status_set (FN_status_t *stat, unsigned int code, const FN_ref _t *resolved_ref,
const FN_composite_name_t *resolved_name, const FN_composite_name_t
*remaining_name);

int fn_status_set_code (FN_status_t *stat, unsigned int code);

int fn_status_set_remaining_name (FN_status_t *stat, const FN_composite_name_t
*name);

int fn_status_set_resolved_name (FN_status_t *stat, const FN_composite_name_t
*name);

int fn_status_set_resolved_ref (FN_status_t *stat, const FN_ref _t *ref);

int fn_status_set_diagnostic_message (FN_status_t *stat, const FN_string_t *msg);
int fn_status_set_link_code (FN_status_t *stat, unsigned int code);

int fn_status_set_link_remaining_name (FN_status_t *stat, const

FN_composite_name_t *name);

int fn_status_set_link_resolved_name (FN_status_t *stat, const
FN_composite_name_t *name);

int fn_status_set_link_resolved_ref (FN_status_t *stat, const FN_ref _t *ref);

int fn_status_set_link_diagnostic_message (FN_status_t *stat, const FN_string_t
*msg);

int fn_status_append_resolved_name (FN_status_t *stat, const

FN_composite_name_t *name);

int fn_status_append_remaining_name (FN_status_t *stat, const
FN_composite_name_t *name);

int fn_status_advance_by name (FN_status_t *stat, const FN_composite_name_t
*prefix, const FN_ref_t *resolved_ref);

FN_string_t *fn_status_description (const FN_status_t *stat, unsigned int detail,
unsigned int *more_detail);

The result status of operations in the context interface and the attribute interface
is encapsulated in an FN_status_t object. This object contains information
about how the operation completed: whether an error occurred in performing
the operation, the nature of the error, and information that helps locate where the
error occurred. In the case that the error occurred while resolving an XFN link,
the status object contains additional information about that error.

The context status object consists of several items of information:
primary status code An unsigned int code describing the
disposition of the operation.

Last modified 13 Dec 1996 Sun0S 5.8 183

FN_status_t(3XFN) XFN Interface Library Functions

resolved name In the case of a failure during the resolution
phase of the operation, this is the leading portion
of the name that was resolved successfully.
Resolution may have been successful beyond this
point, but the error might not be pinpointed
further.

resolved reference The reference to which resolution was successful
(in other words, the reference to which the
resolved name is bound).

remaining name The remaining unresolved portion of the name.

diagnostic message This contains any diagnostic message returned
by the context implementation. This message
provides the context implementation a way of
notifying the end-user or administrator of any
implementation-specific information related
to the returned error status. The diagnostic
message could then be used by the end-user or
administrator to take appropriate out-of-band
action to rectify the problem.

link status code In the case that an error occurred while resolving
an XFN link, the primary status code has the
value FN_E_LINK_ERRORand the link status
code describes the error that occurred while
resolving the XFN link.

resolved link name In the case of a link error, this contains the
resolved portion of the name in the XFN link.

resolved link reference In the case of a link error, this contains the
reference to which the resolved link name is
bound.

remaining link name In the case of a link error, this contains the
remaining unresolved portion of the name in
the XFN link.

link diagnostic message In the case of a link error, this contains any
diagnostic message related to the resolution
of the link.

Both the primary status code and the link status code are values of type
unsigned int that are drawn from the same set of meaningful values.
XFN reserves the values 0 through 127 for standard meanings. The

184 Sun0S 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_status_t(3XFN)

values and interpretations for the codes are determined by XFN. See
xfn_status_codes (3XFN) .

fn_status_create() creates a status object with status FN_SUCCESS

. fn_status_destroy() releases the storage associated with stat

. fn_status_copy() returns a copy of the status object stat .
fn_status_assign() makes a copy of the status object src and assigns it to dst
, releasing any old contents of dst . A pointer to the same object as dst is returned.
fn_status_code() returns the status code.

fn_status_remaining_name() returns the remaining part of name

to be resolved. fn_status_resolved_name() returns the part of the

composite name that has been resolved. fn_status_resolved_ref()

returns the reference to which resolution was successful.
fn_status_diagnostic_message returns any diagnostic message set by the
context implementation.

fn_status_link_code() returns the link status code.
fn_status_link_remaining_name() returns the remaining part of the link
name that has not been resolved. fn_status_link_resolved_name()

returns the part of the link name that has been resolved.
fn_status_link_resolved_ref() returns the reference to which resolution
of the link was successful. fn_status_link_diagnostic_message()

returns any diagnostic message set by the context implementation during
resolution of the link.

fn_status_is_success() returns 1 if the status indicates success, 0
otherwise.

fn_status_set_success() sets the status code to FN_SUCCESand
clears all other parts of stat . fn_status_set() sets the non-link contents
of the status object stat . fn_status_set_code() sets the primary status

code field of the status object stat . fn_status_set_remaining_name()

sets the remaining name part of the status object stat to name .
fn_status_set_resolved_name() sets the resolved name part

of the status object stat to name . fn_status_set_resolved_ref

() sets the resolved reference part of the status objectstat to ref .
fn_status_set_diagnostic_message() sets the diagnostic message part
of the status object to msg .

fn_status_set_link_code() sets the link status code field

of the status object stat to indicate why resolution of the link

failed. fn_status_set_link_remaining_name() sets the

remaining link name part of the status object stat to name .
fn_status_set_link_resolved_name() sets the resolved link name part
of the status object stat to name . fn_status_set_link_resolved_ref()

sets the resolved link reference part of the status object stat to ref .

Last modified 13 Dec 1996 Sun0S 5.8 185

FN_status_t(3XFN)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

186

XFN Interface Library Functions

fn_status_set_link_diagnostic_message() sets the link diagnostic
message part of the status object to msg .

fn_status_append_resolved_name() appends as additional
components name to the resolved name part of the status object stat

. fn_status_append_remaining_name() appends as additional
components name to the remaining name part of the status object stat .
fn_status_advance_by_name() removes prefix from the remaining name,

and appends it to the resolved name. The resolved reference part is set to
resolved_ref . This operation returns 1 on success, 0 if the prefix is not a prefix of
the remaining name.

The fn_status_set_*() operations return 1 if the operation succeeds, 0
if the operation fails.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_composite_name_t (3XFN), FN_ref t (3XFN), FN_string_t (3XFN),
xfn (3XFN), xfn_status_codes (3XFN) , attributes (5)

The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Sun0OS 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_string_t(3XFN)

NAME FN_string_t, fn_string_create, fn_string_destroy, fn_string_from_str,
fn_string_from_str_n, fn_string_str, fn_string_from_contents, fn_string_code_set,
fn_string_charcount, fn_string_bytecount, fn_string_contents, fn_string_copy,
fn_string_assign, fn_string_from_strings, fn_string_from_substring,
fn_string_is_empty, fn_string_compare, fn_string_compare_substring,
fn_string_next_substring, fn_string_prev_substring — a character string

SYNOPSIS cc [flag ...] file ... —Ixfn [library ...]
#include <xfn/xfn.h>
FN_string_t *fn_string_create (void);

void fn_string_destroy (FN_string_t *str);

FN_string_t *fn_string_from_str (const unsigned char *cstr);

FN_string_t *fn_string_from_str_n (const unsigned char *cstr, size_t n);

const unsigned char *fn_string_str (const FN_string_t *str, unsigned int *status);
FN_string_t *fn_string_from_contents (unsigned long code_set, const void

*locale_info, size_t locale_info_len, size_t charcount, size_t bytecount, const void *contents,
unsigned int *status);

unsigned long fn_string_code_set (const FN_string_t *str, const void **locale_info,
size_t *locale_info_len);

size_t fn_string_charcount (const FN_string_t *str);
size_t fn_string_bytecount (const FN_string_t *str);
const void *fn_string_contents (const FN_string_t *str);

FN_string_t *fn_string_copy (const FN_string_t *str);
FN_string_t *fn_string_assign (FN_string_t *dst, const FN_string_t *src);

FN_string_t *fn_string_from_strings (unsigned int *status, const FN_string_t *s1,
const FN_string_t *s2, ...);

FN_string_t *fn_string_from_substring (constFN_string_t *str, int first, int last);
int fn_string_is_empty (const FN_string_t *str);

int fn_string_compare (const FN_string_t *strl, const FN_string_t *str2, unsigned int
string_case, unsigned int *status);

int fn_string_compare_substring (const FN_string_t *strl, int first, int last, const
FN_string_t *str2, unsigned int string_case, unsigned int *status);

int fn_string_next_substring (const FN_string_t *str, const FN_string_t *sub, int
index, unsigned int string_case, unsigned int *status);

Last modified 13 Dec 1996 Sun0S 5.8 187

FN_string_t(3XFN)

DESCRIPTION

188

XFN Interface Library Functions

int fn_string_prev_substring (const FN_string_t *str, const FN_string_t *sub, int
index, unsigned int string_case, unsigned int *status);

The FN_string_t type is used to represent character strings in the XFN
interface. It provides insulation from specific string representations.

The FN_string_t supports multiple code sets. It provides creation

functions for character strings of the code set of the current locale setting and

a generic creation function for arbitrary code sets. The degree of support

for the functions that manipulate FN_string_t for arbitrary code sets is
implementation-dependent. An XFN implementation is required to support the
ISO 646 code set; all other code sets are optional.

fn_string_destroy() releases the storage associated with the given string.
fn_string_create() creates an empty string.
fn_string_from_str() creates an FN_string_t object from the given null

terminated string based on the code set of the current locale setting. The number
of characters in the string is determined by the code set of the current locale
setting. fn_string_from_str_n() is like fn_string_from_str() except
only n characters from the given string are used. fn_string_str() returns
the contents of the given string str in the form of a null terminated string in the
code set and current locale setting.

fn_string_from_contents() creates an FN_string_t object using the
specified code set code_set , locale information locale_info , and data in the given
buffer contents . bytecount specifies the number of bytes in contents and charcount
specifies the number of characters represented by contents .

fn_string_code_set() returns the code set associated with the

given string object and, if present, the locale information in locale_info .
fn_string_charcount() returns the number of characters in the given
string object. fn_string_bytecount() returns the number of bytes used to
represent the given string object. fn_string_contents() returns a pointer to
the contents of the given string object.

fn_string_copy() returns a copy of the given string object.
fn_string_assign() makes a copy of the string object src and assigns it to dst
, releasing any old contents of dst . A pointer to the same object as dst is returned.
fn_string_from_strings() is a function that takes a variable number of
arguments (minimum of 2), the last of which must be NULL (0); it returns a new
string object composed of the left to right concatenation of the given strings,

in the given order. The support for strings with different code sets and/or
locales as arguments to a single invocation of fn_string_from_strings() is
implementation-dependent. fn_string_from_substring() returns a new
string object consisting of the characters located between first and last inclusive
from str . Indexing begins with 0 . Iflast is FN_STRING_INDEX_LASTor

Sun0S 5.8 Last modified 13 Dec 1996

XFN Interface Library Functions FN_string_t(3XFN)

ERRORS

exceeds the length of the string, the index of the last character of the string is
used.

fn_string_is_empty() returns whether str is an empty string.

Comparison of two strings must take into account code set and locale
information. If strings are in the same code set and same locale, case sensitivity
is applied according to the case sensitivity rules applicable for the code set and
locale; case sensitivity may not necessarily be relevant for all string encodings. If
string_case is non-zero, case is significant and equality for strings of the same
code set is defined as equality between byte-wise encoded values of the strings.
If string_case is zero, case is ignored and equality for strings of the same code
set is defined using the definition of case-insensitive equality for the specific
code set. Support for comparison between strings of different code sets, or lack
thereof, is implementation-dependent.

fn_string_compare() compares strings strl and str2 and returns O if
they are equal, non-zero if they are not equal. If two strings are not equal,
fn_string_compare() returns a positive value if the difference of str2

precedes that of strl in terms of byte-wise encoded value (with case-sensitivity
taken into account when string_case is non-zero), and a negative value if

the difference of strl precedes that of str2 , in terms of byte-wise encoded
value (with case-sensitivity taken into account when string_case is non-zero).
Such information (positive versus negative return value) may be used by
applications that use strings of code sets in which ordering is meaningful;

this information is not of general use in internationalized environments.
fn_string_compare_substring() is similar to fn_string_compare()
except that fn_string_compare_substring() compares characters
between first and last inclusive of str2 with strl . Comparison of strings with
incompatible code sets returns a negative or positive value (never 0) depending
on the implementation.

fn_string_next_substring() returns the index of the next occurrence
of sub at or after index in the string str . FN_STRING_INDEX_NONHs
returned if sub does not occur. fn_string_prev_substring() returns the
index of the previous occurrence of sub at or before index in the string str .
FN_STRING_INDEX_NONEs returned if sub does not occur. In both of these
functions, string_case specifies whether the search should take case-sensitivity
into account.

fn_string_str() returns 0 and sets status to
FN_E_INCOMPATIBLE_CODE_SETS the given string’s

representation cannot be converted into the code set of the current locale setting.
It is implementation-dependent which code sets can be converted into the

code set of the current locale.

Last modified 13 Dec 1996 Sun0OS 5.8 189

FN_string_t(3XFN)

190

ATTRIBUTES

SEE ALSO
NOTES

XFN Interface Library Functions

Code set mismatches that occur during concatenation, searches, or comparisons
are resolved in an implementation-dependent way. When an implementation
discovers that arguments to substring searches and comparison operations have
incompatible code sets, it sets status to FN_E_INCOMPATIBLE_CODE_SETSn
such cases, fn_string_from_strings() returns O . The returned value for
comparison operations when there is code set or locale incompatibility is either
negative or positive (greater than 0); it is never O .

fn_string_from_contents() returns O and status is set to
FN_E_INCOMPATIBLE_CODE_SETHB the supplied code set and/or locale
information are not supported by the XFN implementation.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

xfn (3XFN) , attributes (5)

The implementation of XFN in this Solaris release is based on the X/Open
preliminary specification. It is likely that there will be minor changes to these
interfaces to reflect changes in the final version of this specification. The next
minor release of Solaris will offer binary compatibility for applications developed
using the current interfaces. As the interfaces evolve toward standardization, it
is possible that future releases of Solaris will require minor source code changes
to applications that have been developed against the preliminary specification.

Sun0OS 5.8 Last modified 13 Dec 1996

Network Functions

NAME

SYNOPSIS

DESCRIPTION

getaddrinfo(3SOCKET)

getaddrinfo, getnameinfo, freeaddrinfo, gai_strerror — translate between node
name and address

cc [flag..] file... -Isocket —Insl [library ...]

#include <sys/socket.h>

#include <netdb.h>

int getaddrinfo (const char *nodename, const char *servname, const struct addrinfo *hints,
struct addrinfo **res);

int getnameinfo (const struct sockaddr *sa, socklen_t salen, char *host, size_t hostlen, char
*serv, size_t servlen, int flags);

void freeaddrinfo (struct addrinfo *ai);

char *gai_strerror (int errcode);

These functions perform translations from node name to address and from
address to node name in a protocol-independent manner.

The getaddrinfo() function performs the node name to address translation.
The nodename and servname arguments are pointers to null-terminated strings or
NULL. One or both of these arguments must be a non-null pointer. In the normal
client scenario, both the nodename and servname are specified. In the normal
server scenario, only the servname is specified. A non-null nodename string can
be either a node name or a numeric host address string (a dotted-decimal 1Pv4
address or an IPv6 hex address). A non-null servname string can be either a
service name or a decimal port number.

The caller can optionally pass an addrinfo structure, pointed to by the third
argument, to provide hints concerning the type of socket that the caller supports.

The addrinfo structure is defined as:

struct addrinfo {

int ai_flags; /* Al_PASSIVE, Al_CANONNAME, Al_NUMERICHOST */
int ai_family; I* PF_xxx */

int ai_socktype; I* SOCK_xxx */

int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */

size_t ai_addrlen; /* length of ai_addr */

char *ai_canonname; /* canonical name for nodename */

struct sockaddr *ai_addr; /* binary address */

struct addrinfo *ai_next; /* next structure in linked list */

I

In this hints structure, all members other than ai_flags , ai_family
ai_socktype , and ai_protocol must be 0 or a null pointer. A value of

PF_UNSPEGor ai_family indicates that the caller will accept any protocol
family. A value of 0 for ai_socktype indicates that the caller will accept any
socket type. A value of 0 for ai_protocol indicates that the caller will accept
any protocol. For example, if the caller handles only TCP and not UDP, then the
ai_socktype member of the hints structure should be set to SOCK_STREAM

Last modified 30 Jun 1999 Sun0OS 5.8 191

getaddrinfo(3SOCKET) Network Functions

when getaddrinfo() is called. If the caller handles only IPv4 and not IPv6,
then the ai_family =~ member of the hints structure should be set to PF_INET
when getaddrinfo() is called. If the third argument to getaddrinfo() isa

null pointer, it is as if the caller had filled in an addrinfo structure initialized to
0 with ai_family set to PF_UNSPEC

Upon success, a pointer to a linked list of one or more addrinfo structures is
returned through the final argument. The caller can process each addrinfo
structure in this list by following the ai_next pointer, until a null pointer

is encountered. In each returned addrinfo structure the three members
ai_family , ai_socktype , and ai_protocol are the corresponding
arguments for a call to the socket (3SOCKET) function. In each addrinfo
structure the ai_addr member points to a filled-in socket address structure
whose length is specified by the ai_addrlen member.

If the AI_PASSIVE bitissetinthe ai_flags member of the hints structure,
the caller plans to use the returned socket address structure in a call to

bind (3SOCKET) . In this case, if the nodename argument is a null pointer, the IP
address portion of the socket address structure will be set to INADDR_ANYfor an
IPv4 address or INGADDR_ANY_INIT for an IPv6 address.

If the AI_PASSIVE bit is not set in the ai_flags member of the hints
structure, then the returned socket address structure will be ready for a
call to connect (3SOCKET) (for a connection-oriented protocol) or either
connect (3SOCKET), sendto (3SOCKET) , or sendmsg (3SOCKET) (for a
connectionless protocol). If the nodename argument is a null pointer, the IP
address portion of the socket address structure will be set to the loopback
address.

If the AI_CANONNAMMit is set in the ai_flags =~ member of the hints structure,
then upon successful return the ai_canonname member of the first addrinfo
structure in the linked list will point to a null-terminated string containing the
canonical name of the specified nodename .

If the AL NUMERICHOSTDit is set in the ai_flags member of the hints
structure, then a non-null nodename string must be a numeric host address string.
Otherwise an error of EAIl_NONAMEs returned. This flag prevents any type of
name resolution service (such as DNS) from being called.

All of the information returned by getaddrinfo() is dynamically allocated:
the addrinfo structures as well as the socket address structures and

canonical node name strings pointed to by the addrinfo structures. The
freeaddrinfo() function is called to return this information to the system the
function . For freeaddrinfo() , the addrinfo structure pointed to by the ai
argument is freed, along with any dynamic storage pointed to by the structure.
This operation is repeated until a null ai_next pointer is encountered.

192 Sun0S 5.8 Last modified 30 Jun 1999

Network Functions

getaddrinfo(3SOCKET)

To aid applications in printing error messages based on the EAI_ * codes
returned by getaddrinfo() , the gai_strerror() is defined. The argument
is one of the EAI_ * values defined below and the return value points to a string
describing the error. If the argument is not one of the EAI_ * values, the function
still returns a pointer to a string whose contents indicate an unknown error.

The getnameinfo() function looks up an IP address and port number
provided by the caller in the name service database and system-specific
database, and returns text strings for both in buffers provided by the caller.
The function indicates successful completion by a 0 return value; a non-zero
return value indicates failure.

The first argument, sa, points to either a sockaddr_in structure (for IPv4) or a
sockaddr_in6 structure (for IPv6) that holds the IP address and port number.
The salen argument gives the length of the sockaddr_in or sockaddr_in6
structure.

The function returns the node name associated with the IP address in the buffer
pointed to by the host argument. The caller provides the size of this buffer with
the hostlen argument. The service name associated with the port number is
returned in the buffer pointed to by serv, and the servlen argument gives the
length of this buffer. The caller specifies not to return either string by providing a
0 value for the hostlen or servlen arguments. Otherwise, the caller must provide
buffers large enough to hold the node name and the service name, including the
terminating null characters.

To aid the application in allocating buffers for these two returned strings, the
following constants are defined in <netdb.h>

#define NI_MAXHOST 1025
#define NI_MAXSERV 32

The final argument is a flag that changes the default actions of this function. By
default, the fully-qualified domain name (FQDN for the host is looked up in the
name service database and returned. If the flag bit NI_NOFQDNs set, only the
node name portion of the FQDNis returned for local hosts.

If the flag bit NI_NUMERICHOSTs set, or if the host’s name cannot be located in
the name service, the numeric form of the host’s address is returned instead of its
name, for example, by calling inet_ntop() (see inet (3SOCKET)) instead of
getipnodebyname (3SOCKET) . If the flag bit NI_NAMEREQU set, an error is
returned if the host’s name cannot be located in the name service database.

If the flag bit NI_ NUMERICSER\Ms set, the numeric form of the service
address is returned (for example, its port number) instead of its name. The
two NI_NUMERIC* flags are required to support the "-n " flag that many
commands provide.

Last modified 30 Jun 1999 Sun0OS 5.8 193

getaddrinfo(3SOCKET) Network Functions

A fifth flag bit, NI_DGRAM specifies that the service is a datagram service, and
causes getservbyport (3SOCKET) to be called with a second argument of
"udp" instead of the default "tcp”. This is required for the few ports (for example,
512-514) that have different services for UDP and TCP.

These NI_ * flags are defined in <netdb.h> along with the Al_ * flags already
defined for getaddrinfo()

RETURN VALUES For getaddrinfo() , if the query is successful, a pointer to a linked list of
one or more addrinfo structuresgetaddrinfo() is returned by the fourth
argument and the function returns 0 . If the query fails, a non-zero error code
will be returned. For getnameinfo() , if successful, the strings hostname and
service are copied into host and serv , respectively. If unsuccessful, zero values
for either hostlen or servlen will suppress the associated lookup; in this case no
data is copied into the applicable buffer. If gai_strerror() is successful, a
pointer to a string containing an error message appropriate for the EAI_ *
errors is returned. If errcode is not one of the EAI_ * values, a pointer to a string
indicating an unknown error is returned.

ERRORS The following names are the error values returned by getaddrinfo() and
are defined in <netdb.h>

EAI_ADDRFAMILY address family for nodename not supported

EAI_AGAIN temporary failure in name resolution
EAI_BADFLAGS invalid value for ai_flags

EAI_FAIL non-recoverable failure in name resolution
EAI_FAMILY ai_family not supported

EAI_MEMORY memory allocation failure

EAI_NODATA no address associated with nodename
EAI_NONAME nodename nor servname provided, or not known
EAI_SERVICE servname not supported for ai_socktype
EAI_SOCKTYPE ai_socktype not supported

EAI_SYSTEM system error returned in errno

FILES letc/inet/hosts
/etc/inet/ipnodes
/etc/netconfig
/etc/nsswitch.conf

SEE ALSO gethostbyname (3NSL), getipnodebyname (3SOCKET), htonl (3SOCKET)
, inet (3SOCKET), netdb (3HEAD) , socket (3SOCKET), hosts (4),
ipnodes (4) , nsswitch.conf (4)

194 Sun0S 5.8 Last modified 30 Jun 1999

Networking Services Library Functions gethostbyname(3NSL)

NAME

SYNOPSIS

DESCRIPTION

gethostbyname, gethostbyname_r, gethostbyaddr, gethostbyaddr_r, gethostent,
gethostent_r, sethostent, endhostent — get network host entry

cc [flag ...] file ... =Insl [library ...]
#include <netdb.h>
struct hostent *gethostbyname (const char *name);

struct hostent *gethostbyname_r (const char *name, struct hostent *result, char *buffer,
intbuflen, int *h_errnop);

struct hostent *gethostbyaddr (const char *addr, int len, int type);

struct hostent *gethostbyaddr r (const char *addr, int length, int type, struct hostent
*result, char *buffer, int buflen, int *h_errnop);

struct hostent *gethostent (void);
struct hostent *gethostent_r (struct hostent *result, char *buffer, int buflen, int *h_errnop);
int sethostent (int stayopen);

int endhostent (void);

These functions are used to obtain entries describing hosts. An entry may come
from any of the sources for hosts specified in the /etc/nsswitch.conf

file. See nsswitch.conf (4) . Please take note that these functions have

been superseded by the newer functions, getipnodebyname (3SOCKET),
getipnodebyaddr (3SOCKET), and getaddrinfo ~ (3SOCKET) . The newer
functions provide greater portability to applications when multithreading is
done or technologies such as IPv6 are used. For example, the functions described
below cannot be used with applications targeted to work with IPv6.

gethostbyname() searches for information for a host with the hostname
specified by the character-string parameter name .

gethostbyaddr() searches for information for a host with a given host
address. The parameter type specifies the family of the address. This should
be one of the address families defined in <sys/socket.h> . The parameter
addr must be a pointer to a buffer containing the address. The address is given
in a form specific to the address family. See the NOTESsection below for more
information. Also see the EXAMPLESection below on how to convert a “.”
separated Internet IP address notation into the addr parameter. The parameter

len specifies the length of the buffer indicated by addr .

All addresses are returned in network order. In order to interpret the addresses,
byteorder (3SOCKET) must be used for byte order conversion.

The functions sethostent() , gethostent() , and endhostent() are used
to enumerate host entries from the database.

Last modified 17 Nov 1999 Sun0S 5.8 195

gethostbyname(3NSL) Networking Services Library Functions

sethostent() sets (or resets) the enumeration to the beginning of the
set of host entries. This function should be called before the first call to
gethostent() . Calls to gethostbyname() and gethostbyaddr() leave

the enumeration position in an indeterminate state. If the stayopen flag is
non-zero, the system may keep allocated resources such as open file descriptors
until a subsequent call to endhostent()

Successive calls to gethostent() return either successive entries or NULL,
indicating the end of the enumeration.

endhostent() may be called to indicate that the caller expects to do no further
host entry retrieval operations; the system may then deallocate resources it was
using. It is still allowed, but possibly less efficient, for the process to call more
host retrieval functions after calling endhostent()

Reentrant Interfaces The functions gethostbyname() , gethostbyaddr() , and gethostent()

use static storage that is reused in each call, making these functions unsafe for
use in multi-threaded applications.

The functions gethostbyname_r() , gethostbyaddr_r() , and
gethostent_r() provide reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant
counterpart, named by removing the “_r ” suffix. The reentrant interfaces,
however, use buffers supplied by the caller to store returned results, and are safe
for use in both single-threaded and multi-threaded applications.

Each reentrant interface takes the same parameters as its non-reentrant
counterpart, as well as the following additional parameters. The parameter result
must be a pointer to a struct hostent structure allocated by the caller. On
successful completion, the function returns the host entry in this structure. The
parameter buffer must be a pointer to a buffer supplied by the caller. This buffer
is used as storage space for the host data. All of the pointers within the returned
struct hostent result point to data stored within this buffer. See RETURN
VALUES. The buffer must be large enough to hold all of the data associated with
the host entry. The parameter buflen should give the size in bytes of the buffer
indicated by buffer . The parameter h_errnop should be a pointer to an integer. An
integer error status value is stored there on certain error conditions. See ERRORS

For enumeration in multi-threaded applications, the position within the
enumeration is a process-wide property shared by all threads. sethostent()

may be used in a multi-threaded application but resets the enumeration position
for all threads. If multiple threads interleave calls to gethostent_r() , the
threads will enumerate disjoint subsets of the host database.

Like their non-reentrant counterparts, gethostbyname_r() and
gethostbyaddr_r() leave the enumeration position in an indeterminate state.

196 Sun0OS 5.8 Last modified 17 Nov 1999

Networking Services Library Functions gethostbyname(3NSL)

RETURN VALUES

ERRORS

Host entries are represented by the struct hostent structure defined in
<netdb.h>
struct hostent {
char *h_name; /* canonical name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type */
int h_length; /* length of address */
char **h_addr_list; /* list of addresses */

h

See the EXAMPLESection below for information about how to retrieve a

.” separated Internet IP address string from the h_addr_list field of struct
hostent

The functions gethostbyname() , gethostbyname_r() ,

gethostbyaddr() , and gethostbyaddr_r() each return a pointer to a
struct hostent if they successfully locate the requested entry; otherwise
they return NULL.

The functions gethostent() and gethostent_r() each return a pointer to
a struct hostent if they successfully enumerate an entry; otherwise they

return NULL, indicating the end of the enumeration.

The functions gethostbyname() , gethostbyaddr() , and gethostent()
use static storage, so returned data must be copied before a subsequent call to
any of these functions if the data is to be saved.

When the pointer returned by the reentrant functions gethostbyname_r() ,
gethostbyaddr_r() , and gethostent_r() is not NULL, it is always equal
to the result pointer that was supplied by the caller.

The functions sethostent() and endhostent() return O on success.

The reentrant functions gethostbyname_r() , gethostbyaddr_r() , and
gethostent_r() will return NULLand set errno to ERANGET the length of the
buffer supplied by caller is not large enough to store the result. See Intro (2) for
the proper usage and interpretation of errno in multithreaded applications.

The reentrant functions gethostbyname_r() and gethostbyaddr_r() set
the integer pointed to by h_errnop to one of these values in case of error.

On failures, the non-reentrant functions gethostbyname() and
gethostbyaddr() set a global integer h_errno to indicate one of these
error codes (defined in <netdb.h>): HOST_NOT_FOUND, TRY_AGAIN,
NO_RECOVERY, NO_DAT/Aand NO_ADDRESS.

Note however that if a resolver is provided with a malformed address,
or if any other error occurs before gethostbyname() is resolved, then
gethostbyname() returns an internal error with a value of -1.

Last modified 17 Nov 1999 Sun0S 5.8 197

gethostbyname(3NSL)

198

EXAMPLES

FILES

Networking Services Library Functions

gethostbyname() will set h_errno to NETDB_INTERNALwhen it returns
a NULL value.

EXAMPLE 1 Using gethostbyname()

Here is a sample program that gets the canonical name, aliases, and “.” separated

Internet IP addresses for a given “.” separated IP address:
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpal/inet.h>
#include <netdb.h>
main(int argc, const char **argv)

ulong_t addr;
struct hostent *hp;
char **p;
if (argc = 2) {
(void) printf("'usage: %s IP-address\
", argv[0]);
exit (1);

if ((int)(addr = inet_addr(argv[1])) == -1) {
(void) printf("IP-address must be of the form a.b.c.d\

exit (2);

}
hp = gethostbyaddr((char *)&addr, sizeof (addr), AF_INET);
if (hp == NULL) {
(void) printf("host information for %s not found\
", argv[1]);
exit (3);

for (p = hp->h_addr_list; *p != 0; p++) {
struct in_addr in;
char **q;
(void) memcpy(&in.s_addr, *p, sizeof (in.s_addr));
(void) printf("%s\\t%s", inet_ntoa(in), hp->h_name);
for (g = hp->h_aliases; *q != 0; g++)
(void) printf(" %s", *q);
(void) putchar(\
);

}
exit (0);
}

Note that the above sample program is unsafe for use in multithreadeded
applications.

/etc/hosts
/etc/netconfig
/etc/nsswitch.conf

Sun0S 5.8 Last modified 17 Nov 1999

Networking Services Library Functions gethostbyname(3NSL)

ATTRIBUTES

SEE ALSO

WARNINGS

NOTES

See attributes (5) for descriptions of the following attributes:
ATTRIBUTE TYPE ATTRIBUTE VALUE
MT-Level See "Reentrant Interfaces" in
DESCRIPTION.

Intro (2), Intro (3), byteorder (3SOCKET), inet (3SOCKET),
netdir (3NSL), hosts (4) , netconfig (4) , nsswitch.conf (4),
attributes (5) , netdb (3HEAD)

The reentrant interfaces gethostbyname_r() , gethostbyaddr_r() ,and
gethostent_r() are included in this release on an uncommitted basis only,
and are subject to change or removal in future minor releases.

Programs that use the interfaces described in this manual page cannot be linked
statically since the implementations of these functions employ dynamic loading
and linking of shared objects at run time.

In order to ensure that they all return consistent results, gethostbyname() ,
gethostbyname_r() , and netdir_getbyname() are implemented in terms
of the same internal library function. This function obtains the system-wide
source lookup policy based on the inet family entries in netconfig (4) and
the hosts: entry in nsswitch.conf (4) . Similarly, gethostbyaddr() ,
gethostbyaddr_r() , and netdir_getbyaddr() are implemented in terms
of the same internal library function. If the inet family entries in netconfig (4)
have a “-” in the last column for nametoaddr libraries, then the entry for hosts
in nsswitch.conf will be used; otherwise the nametoaddr libraries in that
column will be used, and nsswitch.conf will not be consulted.

There is no analogue of gethostent() and gethostent_r() in the netdir
functions, so these enumeration functions go straight to the hosts entry

in nsswitch.conf . Thus enumeration may return results from a different
source than that used by gethostbyname() , gethostbyname_r() ,
gethostbyaddr() , and gethostbyaddr_r()

All the functions that return a struct hostent must always return the
canonical name in the h_name field. This name, by definition, is the well-known
and official hostname shared between all aliases and all addresses. The
underlying source that satisfies the request determines the mapping of the input
name or address into the set of names and addresses in hostent . Different
sources might do that in different ways. If there is more than one alias and more
than one address in hostent , no pairing is implied between them.

The system will strive to put the addresses on the same subnet as that of the
caller first.

Last modified 17 Nov 1999 Sun0S 5.8 199

gethostbyname(3NSL)

200

Networking Services Library Functions

When compiling multi-threaded applications, see Intro (3) ,
Notes On Multithread Applications , for information about the use of the
_REENTRANTlag.

Use of the enumeration interfaces gethostent() and gethostent_r() is
discouraged; enumeration may not be supported for all database sources. The
semantics of enumeration are discussed further in nsswitch.conf ~ (4) .

The current implementations of these functions only return or accept addresses
for the Internet address family (type AF_INET) .

The form for an address of type AF_INET is a struct in_addr defined
in <netinet/in.h> . The functions described in inet (3SOCKET), and
illustrated in the EXAMPLESection above, are helpful in constructing and
manipulating addresses in this form.

Sun0S 5.8 Last modified 17 Nov 1999

X/0pen Networking Services Library Functions gethostname(3XNET)

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES
ERRORS
ATTRIBUTES

SEE ALSO

gethostname — get name of current host

cc [flag ...] file ... —=Ixnet [library ...]
#include <unistd.h>
int gethostname (char *name, size_t namelen);

The gethostname() function returns the standard host name for the current
machine. The namelen argument specifies the size of the array pointed to by the
name argument. The returned name is null-terminated, except that if namelen is
an insufficient length to hold the host name, then the returned name is truncated
and it is unspecified whether the returned name is null-terminated.

Host names are limited to 255 bytes.
On successful completion, 0 is returned. Otherwise, -1 is returned.
No errors are defined.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

uname(l), gethostid (3C), attributes (5)

Last modified 8 May 1998 Sun0S 5.8 201

getipnodebyname(3SOCKET) Network Functions

NAME
SYNOPSIS

DESCRIPTION

202

getipnodebyname, getipnodebyaddr, freehostent — get IP node entry

cc [flag..] file... -Isocket —Insl [library ...]

#include <sys/socket.h>
#include <netdb.h>
struct hostent *getipnodebyname (const char *name, int af, int flags, int *error_num);

struct hostent *getipnodebyaddr (const void *src, size_t len, int af, int *error_num);
void freehostent (struct hostent *ptr);

The getipnodebyname() function searches the ipnodes database from the
beginning and finds the first entry for which the hostname specified by name
matches the h_name member. It takes an af argument which specifies the address
family, which can be either AF_INET for IPv4 addresses or AF_INET6 for IPv6
addresses. The flags argument determines what results will be returned based
on the value of flags . If the flags argument is set to 0 (zero), then the default
operation of this function is specified as follows:

m If the af argument is AF_INET , then a query is made for an IPv4 address. If
successful, IPv4 addresses are returned and the h_length member of the
hostent structure will be 4. Otherwise, the function returns a null pointer.

m If the af argument is AF_INET6 , then a query is made for an IPv6 address.
If successful, IPv6 addresses are returned and the h_length member of the
hostent structure will be 16. Otherwise, the function returns a null pointer.

The flags argument will change the default actions of the function. The flags
argument can be set by logically ORing any of the following values together:
Al_V4AMAPPED
Al_ALL
Al_ADDRCONFIG

Note that a special flags value of AI_DEFAULT as defined below should handle
most applications. That is, porting simple applications to use IPv6 replaces
the call

hptr = gethostbyname(name);

with

hptr = getipnodebyname(name, AF_INET6, Al_DEFAULT);

A flags of 0 implies a strict interpretation of the af argument:

m If flags is 0 and af is AF_INET , then the caller wants only IPv4 addresses. A
qguery is made for A records. If successful, the IPv4 addresses are returned
and the h_length member of the hostent structure will be 4; otherwise,
the function returns a null pointer.

Sun0S 5.8 Last modified 17 Nov 1999

Network Functions getipnodebyname(3SOCKET)

m If flags is 0, and if af is AF_INET6 , then the caller wants only IPv6
addresses. A query is made for AAAArecords. If successful, the IPv6
addresses are returned and the h_length member of the hostent
structure will be 16; otherwise, the function returns a null pointer.

Other constants can be logically-ORed into the flags argument, to modify the
behavior of the function.

m If the Al_VAMAPPEDflag is specified along with an af of AF_INET6 , then
the caller will accept IPv4-mapped IPv6 addresses. That is, if no AAAA
records are found, then a query is made for A records, and any found are
returned as IPv4-mapped IPv6 addresses (h_length will be 16). The
Al_VAMAPPEDflag is ignored unless af equals AF_INET6 .

m The Al_ALL flag is used in conjunction with the Al_V4MAPPEDflag, and
is only used with the IPv6 address family. When Al_ALL is logically OR
'd with Al_V4AMAPPEDflag then the caller wants all addresses: IPv6 and
IPv4-mapped IPv6. A query is first made for AAAArecords and if successful,
the IPv6 addresses are returned. Another query is then made for A records,
and any found are returned as IPv4-mapped IPv6 addresses. h_length
will be 16. Only if both queries fail does the function return a null pointer.
This flag is ignored unless af equals AF_INET6 .

m The Al_ADDRCONFIGflag specifies that a query for AAAArecords should
occur only if the node has at least one IPv6 source address configured and
a query for A records should occur only if the node has at least one IPv4
source address configured. For example, if the node has no IPv6 source
addresses configured, and af equals AF_INET6 , and the node name being
looked up has both AAAAand A records, then

1. If only Al_ADDRCONFIGis specified, the function returns a null pointer;

2. If AI_ADDRCONFIGor Al_V4AMAPPED:s specified, the A records are
returned as IPv4-mapped IPv6 addresses;

The special flags value of Al_DEFAULT is defined as
#define AI_DEFAULT (AI_VAMAPPED | Al_ADDRCONFIG)

The getipnodebyname() function must allow the name argument to be
either a node name or a literal address string, that is, a dotted-decimal IPv4
address or an IPv6 hex address. This saves applications from having to call
inet_pton (3SOCKET) to handle literal address strings.

There are four scenarios based on the type of literal address string and the value
of the af argument. The two simple cases are when name is a dotted-decimal IPv4
address and af equals AF_INET , or when name is an IPv6 hex address and af
equals AF_INET6 . The members of the returned hostent structure are:

Last modified 17 Nov 1999 SunOS 5.8 203

getipnodebyname(3SOCKET)

h_name
h_aliases
h_addrtype
h_length
h_addr_list[0]

h_addr_list[1]

PARAMETERS af

flags

name
error_num
src

len

ptr

RETURN VALUES

The hostent

struct hostent

struct hostent {

h

gethostbyaddr

204 SunOS 5.8

Upon successful completion, getipnodebyname()
return a hostent

The getipnodebyaddr()
(3NSL) function, but adds an error number. As with
getipnodebyname()
value is returned to the caller with the appropriate error code to support

Network Functions

points to a copy of the name argument

is a null pointer.

is a copy of the af argument.

is either 4 (for AF_INET) or 16 (for AF_INET6).

is a pointer to the 4-byte or 16-byte binary
address.

is a null pointer

address family
various flags
name of host

error storage
address for lookup
length of address

pointer to hostent structure

and getipnodebyaddr()
structure. Otherwise they return NULL.

structure does not change from its existing definition when used
with gethostbyname (3NSL) . For example, host entries are represented by the

structure defined in <netdb.h>

/* canonical name of host */
/* alias list */
/* host address type */
/* length of address */
/* list of addresses */

char *h_name;
char **h_aliases;
int h_addrtype;
int h_length;
char **h_addr_list;

It is an error when name is an IPv6 hex address and af equals AF_INET
. The function’s return value is a null pointer and error_num
HOST_NOT_FOUND

equals

function has the same arguments as the existing

, getipnodebyaddr() is thread safe. The error_num

Last modified 17 Nov 1999

Network Functions

EXAMPLES

getipnodebyname(3SOCKET)

thread safe error code returns. The following error conditions may be returned
for error_num
HOST_NOT_FOUND Host is unknown.

NO_DATA No address is available for the name specified
in the server request. This is not a soft error.
Another type of name server request may be
successful.

NO_RECOVERY An unexpected server failure occurred. This is a
nonrecoverable error.

TRY_AGAIN This is a soft error that indicates that the local
server did not receive a response from an
authoritative server. A retry at some later time
may be successful.

One possible source of confusion is the handling of IPv4-mapped IPv6 addresses
and IPv4-compatible IPv6 addresses, but the following logic should apply.

1. If af is AF_INET6 , and if len equals 16, and if the IPv6 address is an
IPv4-mapped IPv6 address or an IPv4-compatible IPv6 address, then skip
over the first 12 bytes of the IPv6 address, set af to AF_INET , and set len to
4,

2. If af is AF_INET , lookup the name for the given IPv4 address.
3. If af is AF_INET6 , lookup the name for the given IPv6 address.

4. If the function is returning success, then the single address that is returned
in the hostent structure is a copy of the first argument to the function with
the same address family that was passed as an argument to this function.

All four steps listed are performed, in order.

This structure, and the information pointed to by this structure, are dynamically
allocated by getipnodebyname() and getipnodebyaddr() . The
freehostent() function frees this memory.

EXAMPLE 1 Getting the canonical name, aliases, and all Internet IP addresses for a
given hostname

The following is a sample program that retrieves the canonical name, aliases,

and all Internet IP addresses, both version 6 and version 4, for a given hostname.
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

Last modified 17 Nov 1999 SunOS 5.8 205

getipnodebyname(3SOCKET) Network Functions

#include <arpa/inet.h>
#include <netdb.h>

main(int argc, const char **argv)

{

char abuf[INET6_ADDRSTRLEN];
int error_num;

struct hostent *hp;

char **p;

if (argc 1= 2) {
(void) printf("'usage: %s hostname\

, argv[0]);
exit (1);

/* argv[1l] can be a pointer to a hostname or literal IP address */
hp = getipnodebyname(argv[1l], AF_INET6, AI_ALL | AI_ADDRCONFIG |
Al_VAMAPPED, &error_num);
if (hp == NULL) {
if (error_num == TRY_AGAIN) {
printf("%s: unknown host or invalid literal address "
"(try again later)\

", argv[l]);
} else {
printf("%s: unknown host or invalid literal address\
’ argv[1]);
}
exit (1);
}

for (p = hp->h_addr_list; *p = 0; p++) {
struct in6_addr in6;
char **q;

bcopy(*p, (caddr_t)&in6, hp->h_length);

(void) printf("%s\\t%s", inet_ntop(AF_INET6, (void *)&in6,
abuf, sizeof(abuf)), hp->h_name);

for (g = hp->h_aliases; *q != 0; g++)

(void) printf(" %s", *q);

(void) putchar(’\

}
freehostent(hp);
exit (0);

FILES letc/inet/hosts
/etc/inet/ipnodes
/etc/netconfig
/etc/nsswitch.conf

206 Sun0OS 5.8 Last modified 17 Nov 1999

Network Functions

SEE ALSO

NOTES

getipnodebyname(3SOCKET)

getaddrinfo (3SOCKET) , gethostbyname (3NSL), htonl (3SOCKET)
, inet (3SOCKET) , netdb (3HEAD) , hosts (4) , ipnodes (4),
nsswitch.conf (4)

Programs that use the interfaces described in this manual page cannot be linked
statically since the implementations of these functions employ dynamic loading
and linking of shared objects at run time.

There is no enumeration functions provided for IPv6. Existing enumeration
functions, for example, sethostent (3NSL) , will not work in combination with
getipnodebyname() and getipnodebyaddr()

All the functions that return a struct hostent must always return the
canonical in the h_name field. This name, by definition, is the well-known and
official hostname shared between all aliases and all addresses. The underlying
source that satisfies the request determines the mapping of the input name or
address into the set of names and addresses in hostent . Different sources
might do that in different ways. If there is more than one alias and more than
one address in hostent , no pairing is implied between them.

The current implementations of these functions only return or accept addresses
for the Internet address family (type AF_INET) or the Internet address family
Version 6 (type AF_INET6).

The form for an address of type AF_INET is a struct in_addr defined

in <netinet/in.h> . The form for an address of type AF_INET6 is a

struct in6_addr defined also in <netinet/in.h> . The functions described
ininet_ntop (3SOCKET) and inet_pton (3SOCKET) that are illustrated in the
EXAMPLES section are helpful in constructing and manipulating addresses in
either of these forms.

Last modified 17 Nov 1999 Sun0OS 5.8 207

getnetbyname(3SOCKET) Sockets Library Functions

NAME

SYNOPSIS

DESCRIPTION

208

getnetbyname, getnetbyname_r, getnetbyaddr, getnetbyaddr_r, getnetent,
getnetent_r, setnetent, endnetent — get network entry

cc [flag ...] file ... —Isocket -Insl [library ...]
#include <netdb.h>
struct netent *getnetbyname (const char *name);

struct netent *getnetbyname_r (const char *name, struct netent *result, char *buffer, int
buflen);

struct netent *getnetbyaddr (long net, inttype);

struct netent *getnetbyaddr_r (long net, inttype, struct netent *result, char *buffer, int
buflen);

struct netent *getnetent (void);
struct netent *getnetent_r (struct netent *result, char *buffer, int buflen);
int setnetent (int stayopen);

int endnetent (void);

These functions are used to obtain entries for networks. An entry may come
from any of the sources for networks specified in the /etc/nsswitch.conf
file. See nsswitch.conf (4).

getnetbyname() searches for a network entry with the network name
specified by the character string parameter name .

getnetbyaddr() searches for a network entry with the network address
specified by net . The parameter type specifies the family of the address. This
should be one of the address families defined in <sys/socket.h> . See the
NOTESsection below for more information.

All addresses are returned in network order. In order to interpret the addresses,
byteorder (3SOCKET) must be used for byte order conversion.

The functions setnetent() , getnetent() ,and endnetent() are used
to enumerate network entries from the database.

setnetent() sets (or resets) the enumeration to the beginning of the set

of network entries. This function should be called before the first call to
getnetent() . Calls to getnetbyname() and getnetbyaddr() leave the
enumeration position in an indeterminate state. If the stayopen flag is non-zero,
the system may keep allocated resources such as open file descriptors until a
subsequent call to endnetent()

Successive calls to getnetent() return either successive entries or NULL,
indicating the end of the enumeration.

Sun0S 5.8 Last modified 23 May 1998

Sockets Library Functions getnetbyname(3SOCKET)

Reentrant Interfaces

RETURN VALUES

endnetent() may be called to indicate that the caller expects to do no further
network entry retrieval operations; the system may then deallocate resources it
was using. It is still allowed, but possibly less efficient, for the process to call
more network entry retrieval functions after calling endnetent()

The functions getnetbyname() , getnetbyaddr() , and getnetent()

use static storage that is reused in each call, making these routines unsafe for
use in multi-threaded applications.

The functions getnetbyname_r() , getnetbyaddr_r() , and
getnetent_r() provide reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant
counterpart, named by removing the “_r ” suffix. The reentrant interfaces,
however, use buffers supplied by the caller to store returned results, and are safe
for use in both single-threaded and multi-threaded applications.

Each reentrant interface takes the same parameters as its non-reentrant
counterpart, as well as the following additional parameters. The parameter result
must be a pointer to a struct netent structure allocated by the caller. On
successful completion, the function returns the network entry in this structure.
The parameter buffer must be a pointer to a buffer supplied by the caller. This
buffer is used as storage space for the network entry data. All of the pointers
within the returned struct netent result point to data stored within this
buffer. See RETURN VALUESThe buffer must be large enough to hold all of
the data associated with the network entry. The parameter buflen should give
the size in bytes of the buffer indicated by buffer .

For enumeration in multi-threaded applications, the position within the
enumeration is a process-wide property shared by all threads. setnetent()

may be used in a multi-threaded application but resets the enumeration position
for all threads. If multiple threads interleave calls to getnetent_r() , the
threads will enumerate disjointed subsets of the network database.

Like their non-reentrant counterparts, getnetbyname_r() and
getnetbyaddr_r() leave the enumeration position in an indeterminate state.

Network entries are represented by the struct netent structure defined
in <netdb.h>

The functions getnetbyname() , getnetbyname_r() , getnetbyaddr() ,
and getnetbyaddr_r() each return a pointer to a struct netent if they
successfully locate the requested entry; otherwise they return NULL.

The functions getnetent() and getnetent_r() each return a pointer to a
struct netent if they successfully enumerate an entry; otherwise they return
NULL, indicating the end of the enumeration.

Last modified 23 May 1998 Sun0S 5.8 209

getnetbyname(3SOCKET) Sockets Library Functions

210

ERRORS

FILES

ATTRIBUTES

SEE ALSO

WARNINGS

NOTES

The functions getnetbyname() , getnetbyaddr() , and getnetent() use
static storage, so returned data must be copied before a subsequent call to any of
these functions if the data is to be saved.

When the pointer returned by the reentrant functions getnetbyname_r() ,
getnetbyaddr_r() , and getnetent_r() is non-NULL, it is always equal to
the result pointer that was supplied by the caller.

The functions setnetent() and endnetent() return O on success.

The reentrant functions getnetbyname_r() , getnetbyaddr_r() and
getnetent_r() will return NULL and set errno to ERANGEH(f the length of the
buffer supplied by caller is not large enough to store the result. See intro (2) for
the proper usage and interpretation of errno in multi-threaded applications.

/etc/networks
letc/nsswitch.conf

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Intro (2),Intro (3), byteorder (3SOCKET), inet (3SOCKET), networks (4)
, hsswitch.conf (4) , attributes (5) , netdb (3HEAD)

The reentrant interfaces getnetbyname_r() , getnetbyaddr_r() ,and
getnetent_r() are included in this release on an uncommitted basis only, and
are subject to change or removal in future minor releases.

The current implementation of these functions only return or accept network
numbers for the Internet address family (type AF_INET). The functions
described in inet (3SOCKET) may be helpful in constructing and manipulating
addresses and network numbers in this form.

Programs that use the interfaces described in this manual page cannot be linked
statically since the implementations of these functions employ dynamic loading
and linking of shared objects at run time.

When compiling multi-threaded applications, see Intro (3) ,
Notes On Multithread Applications , for information about the use of the
_REENTRANTIag.

Use of the enumeration interfaces getnetent() and getnetent_r() is
discouraged; enumeration may not be supported for all database sources. The
semantics of enumeration are discussed further in nsswitch.conf (4) .

Sun0S 5.8 Last modified 23 May 1998

Networking Services Library Functions getnetconfig(3NSL)

NAME

SYNOPSIS

DESCRIPTION

getnetconfig, setnetconfig, endnetconfig, getnetconfigent, freenetconfigent,
nc_perror, nc_sperror — get network configuration database entry

#include <netconfig.h>

struct netconfig *getnetconfig (void *handlep);

void *setnetconfig (void);

int endnetconfig (void *handlep);

struct netconfig *getnetconfigent (const char *netid);
void freenetconfigent (struct netconfig *netconfigp);
void nc_perror (const char *msg);

char *nc_sperror (void);

The library routines described on this page are part of the Network Selection
component. They provide the application access to the system network
configuration database, /etc/netconfig . In addition to the routines for
accessing the netconfig database, Network Selection includes the environment
variable NETPATHsee environ (5)) and the NETPATHaccess routines described
in getnetpath (3NSL) .

getnetconfig() returns a pointer to the current entry in the netconfig
database, formatted as a struct netconfig . Successive calls will return
successive netconfig entries in the netconfig database. getnetconfig()
can be used to search the entire netconfig file. getnetconfig()

returns NULL at the end of the file. handlep is the handle obtained through
setnetconfig()

A call to setnetconfig() has the effect of “binding” to or “rewinding” the
netconfig database. setnetconfig() must be called before the first call to
getnetconfig() and may be called at any other time. setnetconfig()

need not be called before a call to getnetconfigent() . setnetconfig()
returns a unique handle to be used by getnetconfig()

endnetconfig() should be called when processing is complete to release
resources for reuse. handlep is the handle obtained through setnetconfig()
Programmers should be aware, however, that the last call to endnetconfig()
frees all memory allocated by getnetconfig() for the struct netconfig
data structure. endnetconfig() may not be called before setnetconfig()

getnetconfigent() returns a pointer to the struct netconfig structure
corresponding to netid . It returns NULL if netid is invalid (that is, does not name
an entry in the netconfig database).

Last modified 30 Dec 1996 Sun0OS 5.8 211

getnetconfig(3NSL)

RETURN VALUES

ATTRIBUTES

SEE ALSO

212

Networking Services Library Functions

freenetconfigent() frees the netconfig structure pointed to by netconfigp
(previously returned by getnetconfigent()).

nc_perror() prints a message to the standard error indicating why any of the
above routines failed. The message is prepended with the string msg and a colon.
A NEWLINE is appended at the end of the message.

nc_sperror() is similar to nc_perror() but instead of sending the message
to the standard error, will return a pointer to a string that contains the error
message.

nc_perror() and nc_sperror() can also be used with the NETPATHaccess
routines defined in getnetpath (3NSL) .

setnetconfig() returns a unique handle to be used by getnetconfig()

In the case of an error, setnetconfig() returns NULL and nc_perror() or
nc_sperror() can be used to print the reason for failure.

getnetconfig() returns a pointer to the current entry in the netconfig()
database, formatted as a struct netconfig . getnetconfig() returns
NULL at the end of the file, or upon failure.

endnetconfig() returns 0 on success and -1 on failure (for example, if
setnetconfig() was not called previously).

On success, getnetconfigent() returns a pointer to the struct netconfig

structure corresponding to netid ; otherwise it returns NULL.

nc_sperror() returns a pointer to a buffer which contains the error message
string. This buffer is overwritten on each call. In multithreaded applications,
this buffer is implemented as thread-specific data.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getnetpath (3NSL), netconfig (4), attributes (5), environ (5)

ONC+ Developer’s Guide Transport Interfaces Programming Guide

Sun0OS 5.8 Last modified 30 Dec 1996

Networking Services Library Functions getnetpath(3NSL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

getnetpath, setnetpath, endnetpath — get /etc/netconfig entry corresponding to
NETPATH component

#include <netconfig.h>
struct netconfig *getnetpath (void *handlep);

void *setnetpath (void);
int endnetpath (void *handlep);

The routines described on this page are part of the Network Selection component.
They provide the application access to the system network configuration
database, /etc/netconfig , as it is "filtered" by the NETPATHenvironment
variable. See environ (5). See getnetconfig ~ (3NSL) for other routines that
also access the network configuration database directly. The NETPATHvariable is
a list of colon-separated network identifiers.

getnetpath() returns a pointer to the netconfig database entry
corresponding to the first valid NETPATHomponent. The netconfig entry is
formatted as a struct netconfig . On each subsequent call, getnetpath()

returns a pointer to the netconfig entry that corresponds to the next

valid NETPATHomponent. getnetpath() can thus be used to search the
netconfig database for all networks included in the NETPATHvariable. When
NETPATHas been exhausted, getnetpath() returns NULL.

A call to setnetpath() "binds" to or "rewinds" NETPATH setnetpath()
must be called before the first call to getnetpath() and may be called at any
other time. It returns a handle that is used by getnetpath()

getnetpath() silently ignores invalid NETPATHomponents. A NETPATH
component is invalid if there is no corresponding entry in the netconfig
database.

If the NETPATHvariable is unset , getnetpath() behaves as if NETPATHwere
set to the sequence of "default” or "visible" networks in the netconfig database,
in the order in which they are listed.

endnetpath() may be called to "unbind" from NETPATHw~hen processing is
complete, releasing resources for reuse. Programmers should be aware, however,
that endnetpath() frees all memory allocated by getnetpath() for the
struct netconfig data structure. endnetpath() returns O on success and
-1 on failure (for example, if setnetpath() was not called previously).

setnetpath() returns a handle that is used by getnetpath() . In case of an
error, setnetpath() returns NULL. nc_perror() or nc_sperror() can be
used to print out the reason for failure. See getnetconfig ~ (3NSL).

Last modified 30 Dec 1996 Sun0S 5.8 213

getnetpath(3NSL)

214

ATTRIBUTES

SEE ALSO

Networking Services Library Functions

When first called, getnetpath() returns a pointer to the netconfig database
entry corresponding to the first valid NETPATHomponent. When NETPATHhas
been exhausted, getnetpath() returns NULL.

endnetpath() returns 0 on success and -1 on failure (for example, if
setnetpath() was not called previously).

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getnetconfig ~ (3NSL), netconfig (4), attributes (5), environ (5)

ONC+ Developer’s Guide Transport Interfaces Programming Guide

Sun0S 5.8 Last modified 30 Dec 1996

Sockets Library Functions

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

getpeername — get name of connected peer

cc [flag ...] file ... —Isocket -Insl [library ...]
#include <sys/types.h>
#include <sys/socket.h>

int getpeername (int s, struct sockaddr *name, socklen_t *namelen);

getpeername() returns the name of the peer connected to socket s. The
int pointed to by the namelen parameter should be initialized to indicate the
amount of space pointed to by name. On return it contains the actual size of
the name returned (in bytes), prior to any truncation. The name is truncated
if the buffer provided is too small.

If successful, getpeername() returns O; otherwise it returns -1 and sets
errno to indicate the error.

The call succeeds unless:

EBADF The argument s is not a valid descriptor.

ENOMEM There was insufficient user memory for the
operation to complete.

ENOSR There were insufficient STREAMS resources
available for the operation to complete.

ENOTCONN The socket is not connected.

ENOTSOCK The argument s is not a socket.

See attributes (5) for descriptions of the following attributes:

getpeername(3SOCKET)

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

accept (3SOCKET), bind (3SOCKET), getsockname (3SOCKET),
socket (3SOCKET), attributes (5), socket (3HEAD)

Last modified 26 Mar 1998 SunOS 5.8

215

getpeername(3XNET) X/0pen Networking Services Library Functions

NAME getpeername — get the name of the peer socket

SYNOPSIS cc [flag ...] file ... —-Ixnet [library ...]
#include <sys/socket.h>

int getpeername (int socket, struct sockaddr *address, socklen_t *address_len);

DESCRIPTION The getpeername() function retrieves the peer address of the specified
socket, stores this address in the sockaddr structure pointed to by the address
argument, and stores the length of this address in the object pointed to by the
address_len argument.

If the actual length of the address is greater than the length of the supplied
sockaddr structure, the stored address will be truncated.

If the protocol permits connections by unbound clients, and the peer is not
bound, then the value stored in the object pointed to by address is unspecified.

RETURN VALUES Upon successful completion, 0 is returned. Otherwise, -1 is returned and errno
is set to indicate the error.

ERRORS The getpeername() function will fail if;

EBADF The socket argument is not a valid file descriptor.

EFAULT The address or address_len parameter can not be accessed
or written.

EINVAL The socket has been shut down.

ENOTCONN The socket is not connected or otherwise has not had the
peer prespecified.

ENOTSOCK The socket argument does not refer to a socket.
EOPNOTSUPP The operation is not supported for the socket protocol.

The getpeername() function may fail if:
ENOBUFS Insufficient resources were available in the system to
complete the call.

ENOSR There were insufficient STREAMS resources available for
the operation to complete.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

216 Sun0S 5.8 Last modified 8 May 1998

X/0pen Networking Services Library Functions getpeername(3XNET)

SEE ALSO accept (3XNET), bind (3XNET), getsockname (3XNET), socket (3XNET),
attributes (5)

Last modified 8 May 1998 Sun0S 5.8 217

getprotobyname(3SOCKET) Sockets Library Functions

NAME

SYNOPSIS

DESCRIPTION

218

getprotobyname, getprotobyname_r, getprotobynumber, getprotobynumber _r,
getprotoent, getprotoent_r, setprotoent, endprotoent — get protocol entry

cc [flag ...] file ... —Isocket -Insl [library ...]
#include <netdb.h>
struct protoent *getprotobyname (const char *name);

struct protoent *getprotobyname_r (const char *name, struct protoent *result, char
*puffer, int buflen);

struct protoent *getprotobynumber (int proto);

struct protoent *getprotobynumber_r (int proto, struct protoent *result, char *buffer, int
buflen);

struct protoent *getprotoent (void);
struct protoent *getprotoent_r (struct protoent *result, char *buffer, int buflen);
int setprotoent (int stayopen);

int endprotoent (void);

These routines return a protocol entry. Two types of interfaces are

supported: reentrant (getprotobyname_r() , getprotobynumber_r()
, and getprotoent_r()) and non-reentrant (getprotobyname() ,
getprotobynumber() , and getprotoent()). The reentrant routines

may be used in single-threaded applications and are safe for multi-threaded
applications, making them the preferred interfaces.

The reentrant routines require additional parameters which are used to return
results data. result is a pointer to a struct protoent structure and will be
where the returned results will be stored. buffer is used as storage space for
elements of the returned results. buflen is the size of buffer and should be large
enough to contain all returned data. buflen must be at least 1024 bytes.

getprotobyname_r() , getprotobynumber_r() , and getprotoent_r()
each return a protocol entry.

The entry may come from one of the following sources: the protocols file (see
protocols (4)), the NIS maps “protocols.byname” and “protocols.bynumber”,
and the NIS+ table “protocols”. The sources and their lookup order are specified
in the /etc/nsswitch.conf file (see nsswitch.conf (4) for details). Some
name services such as NIS will return only one name for a host, whereas others
such as NIS+ or DNS will return all aliases.

getprotobyname_r() and getprotobynumber_r() sequentially search
from the beginning of the file until a matching protocol name or protocol number
is found, or until an EOF is encountered.

Sun0S 5.8 Last modified 16 May 1997

Sockets Library Functions getprotobyname(3SOCKET)

RETURN VALUES

getprotobyname() and getprotobynumber() have the same functionality
as getprotobyname_r() and getprotobynumber_r() except that a

static buffer is used to store returned results. These routines are unsafe in a
multi-threaded application.

getprotoent_r() enumerates protocol entries; successive calls to
getprotoent_r() will return either successive protocol entries or NULL.
Enumeration may not be supported by some sources. Note that if multiple
threads call getprotoent_r() , each will retrieve a subset of the protocol
database.

getprotent() has the same functionality as getprotent_r() except that
a static buffer is used to store returned results. This routine is unsafe in a
multi-threaded application.

setprotoent() "rewinds" to the beginning of the enumeration

of protocol entries. If the stayopen flag is non-zero, resources

such as open file descriptors are not deallocated after each call to
getprotobynumber_r() and getprotobyname_r() . Calls to
getprotobyname_r() , getprotobyname() , getprotobynumber_r()

and getprotobynumber() may leave the enumeration in an indeterminate
state, so setprotoent() should be called before the first getprotoent_r()

or getprotoent() . Note that setprotoent() has process-wide scope, and
“rewinds” the protocol entries for all threads calling getprotoent_r() as well
as main-thread calls to getprotoent()

endprotoent() may be called to indicate that protocol processing is complete;
the system may then close any open protocols file, deallocate storage, and so
forth. It is legitimate, but possibly less efficient, to call more protocol routines
after endprotoent()

The internal representation of a protocol entry is a protoent structure defined
in <netdb.h> with the following members:

char *p_name;
char **p_aliases;
int p_proto;

getprotobyname_r(), getprotobyname(), getprotobynumber_r(),
and getprotobynumber() return a pointer to a struct protoent if they
successfully locate the requested entry; otherwise they return NULL.

getprotoent_r() and getprotoent() return a pointer to a struct
protoent if they successfully enumerate an entry; otherwise they return NULL,
indicating the end of the enumeration.

Last modified 16 May 1997 Sun0S 5.8 219

getprotobyname(3SOCKET) Sockets Library Functions

ERRORS

FILES

ATTRIBUTES

SEE ALSO

NOTES

BUGS

220

getprotobyname_r(), getprotobynumber_r(), and getprotoent_r()
will fail if the following is true:
ERANGE length of the buffer supplied by caller is not large enough

to store the result.

letc/protocols
letc/nsswitch.conf

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTESbelow.

intro (3), nsswitch.conf (4), protocols (4), attributes (5),
netdb (3HEAD)

Although getprotobyname_r() , getprotobynumber_r() , and
getprotoent_r() are not mentioned by POSIX.4a Draft 6, they were added
to complete the functionality provided by similar thread-safe functions. These
interfaces are subject to change to be compatible with the "spirit" of POSIX.4a
when it is approved as a standard.

When compiling multithreaded applications, see intro (3) ,
Notes On Multithread Applications , for information about the use of the
_REENTRANTIag.

The routines getprotobyname_r() , getprotobynumber_r() , and
getprotoent_r() are reentrant and multi-thread safe. The reentrant interfaces
can be used in single-threaded as well as multi-threaded applications and are
therefore the preferred interfaces.

The routines getprotobyname() , getprotobyaddr() , and

getprotoent() use static storage, so returned data must be copied if it is to be
saved. Because of their use of static storage for returned data, these routines are
not safe for multi-threaded applications.

setprotoent() and endprotoent() have process-wide scope, and are
therefore not safe in multi-threaded applications.

Use of getprotoent_r() and getprotoent() is discouraged; enumeration
is well-defined for the protocols file and is supported (albeit inefficiently) for NIS
and NIS+, but in general may not be well-defined. The semantics of enumeration
are discussed in nsswitch.conf (4) .

Only the Internet protocols are currently understood.

Sun0S 5.8 Last modified 16 May 1997

Sockets Library Functions getprotobyname(3SOCKET)

Programs that call getprotobyname_r() or getprotobynumber_r()
routines cannot be linked statically since the implementation of these routines
requires dynamic linker functionality to access shared objects at run time.

Last modified 16 May 1997 Sun0S 5.8 221

getpublickey(3NSL)

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO
WARNINGS

222

Networking Services Library Functions

getpublickey, getsecretkey, publickey — retrieve public or secret key

#include <rpc/rpc.h>

#include <rpc/key_prot.h>

int getpublickey (const char netname[MAXNETNAMELEN], char
publickey[HEXKEYBYTES+1]);

int getsecretkey (const char netname[MAXNETNAMELEN], char
secretkey[HEXKEYBYTES+1], const char *passwd);

getpublickey() and getsecretkey() get public and secret keys

for netname . The key may come from one of the following sources: the
letc/publickey file (see publickey (4)) or the NIS map “publickey.byname
or the NIS+ table “cred.org_dir”. The sources and their lookup order are
specified in the /etc/nsswitch.conf file (see nsswitch.conf (4)).

getsecretkey() has an extra argument, passwd , used to decrypt the
encrypted secret key stored in the database.

Both routines return 1 if they are successful in finding the key, O otherwise. The
keys are returned as NULL-terminated, hexadecimal strings. If the password
supplied to getsecretkey() fails to decrypt the secret key, the routine will
return 1 but the secretkey [0] will be set to NULL.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

secure_rpc (3NSL), nsswitch.conf ~ (4), publickey (4), attributes (5)

If getpublickey() gets the public key from any source other than NIS+, all
authenticated NIS+ operations may fail. To ensure that this does not happen,
edit the nsswitch.conf (4) file to make sure that the public key is obtained
from NIS+.

Sun0S 5.8 Last modified 30 Dec 1996

Networking Services Library Functions getrpcbyname(3NSL)

NAME getrpcbyname, getrpcbyname_r, getrpcbynumber, getrpcbynumber _r, getrpcent,
getrpcent_r, setrpcent, endrpcent — get RPC entry

SYNOPSIS cc [flag ...] file ... —=Insl [library ...]
#include <rpc/rpcent.h>
struct rpcent *getrpcbyname (const char *name);

struct rpcent *getrpcbyname_r (const char *name, struct rpcent *result, char *buffer, int
buflen);

struct rpcent *getrpcbynumber (const int number);

struct rpcent *getrpcbynumber_r (const int number, struct rpcent *result, char *buffer, int
buflen);

struct rpcent *getrpcent (void);
struct rpcent *getrpcent_r (struct rpcent *result, char *buffer, int buflen);
void setrpcent (const int stayopen);

void endrpcent (void);

DESCRIPTION These functions are used to obtain entries for RPC (Remote Procedure Call)
services. An entry may come from any of the sources for rpc specified in the
/etc/nsswitch.conf file (see nsswitch.conf (4)).

getrpcbyname() searches for an entry with the RPC service name specified by
the parameter name .

getrpcbynumber() searches for an entry with the RPC program number
number .

The functions setrpcent() , getrpcent() ,and endrpcent() are used to
enumerate RPC entries from the database.

setrpcent() sets (or resets) the enumeration to the beginning of the set of RPC
entries. This function should be called before the first call to getrpcent()

Calls to getrpcbyname() and getrpcbynumber() leave the enumeration
position in an indeterminate state. If the stayopen flag is non-zero, the system
may keep allocated resources such as open file descriptors until a subsequent
call to endrpcent()

Successive calls to getrpcent() return either successive entries or NULL,
indicating the end of the enumeration.

endrpcent() may be called to indicate that the caller expects to do no further
RPC entry retrieval operations; the system may then deallocate resources it was
using. It is still allowed, but possibly less efficient, for the process to call more
RPC entry retrieval functions after calling endrpcent()

Last modified 20 Feb 1998 Sun0OS 5.8 223

getrpcbyname(3NSL)

Reentrant Interfaces

RETURN VALUES

224

Networking Services Library Functions

The functions getrpcbyname() , getrpcbynumber() , and getrpcent()
use static storage that is re-used in each call, making these routines unsafe for
use in multithreaded applications.

The functions getrpcbyname_r() , getrpcbynumber_r() , and
getrpcent_r() provide reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant
counterpart, named by removing the “_r ” suffix. The reentrant interfaces,
however, use buffers supplied by the caller to store returned results, and are safe
for use in both single-threaded and multithreaded applications.

Each reentrant interface takes the same parameters as its non-reentrant
counterpart, as well as the following additional parameters. The parameter result
must be a pointer to a struct rpcent structure allocated by the caller. On
successful completion, the function returns the RPC entry in this structure. The
parameter buffer must be a pointer to a buffer supplied by the caller. This buffer
is used as storage space for the RPC entry data. All of the pointers within the
returned struct rpcent result point to data stored within this buffer (see
RETURN VALUESP The buffer must be large enough to hold all of the data
associated with the RPC entry. The parameter buflen should give the size in
bytes of the buffer indicated by buffer .

For enumeration in multithreaded applications, the position within the
enumeration is a process-wide property shared by all threads. setrpcent()

may be used in a multithreaded application but resets the enumeration position
for all threads. If multiple threads interleave calls to getrpcent_r() , the
threads will enumerate disjoint subsets of the RPC entry database.

Like their non-reentrant counterparts, getrpcbyname_r() and

getrpcbynumber_r() leave the enumeration position in an indeterminate
state.
RPC entries are represented by the struct rpcent structure defined in

<rpc/rpcent.h>

struct rpcent {

char *r_name; /* name of this rpc service
char **r_aliases; /* zero-terminated list of alternate names */
int r_number; /* rpc program number */
b
The functions getrpcbyname() , getrpcbyname_r() ,
getrpcbynumber() , and getrpcbynumber_r() each return a pointer to
a struct rpcent if they successfully locate the requested entry; otherwise

they return NULL.

Sun0S 5.8 Last modified 20 Feb 1998

Networking Services Library Functions getrpcbyname(3NSL)

ERRORS

FILES

ATTRIBUTES

SEE ALSO
WARNINGS

NOTES

The functions getrpcent() and getrpcent_r() each return a pointer to a
struct rpcent if they successfully enumerate an entry; otherwise they return
NULL, indicating the end of the enumeration.

The functions getrpcbyname() , getrpcbynumber() , and getrpcent()
use static storage, so returned data must be copied before a subsequent call to
any of these functions if the data is to be saved.

When the pointer returned by the reentrant functions getrpcbyname_r() ,
getrpcbynumber_r() , and getrpcent_r() is non-NULL, it is always equal
to the result pointer that was supplied by the caller.

The reentrant functions getrpcyname_r() , getrpcbynumber_r() and
getrpcent_r() will return NULL and set errno to ERANGE(the length of
the buffer supplied by caller is not large enough to store the result. See intro (2)
for the proper usage and interpretation of errno in multithreaded applications.

letc/rpc
letc/nsswitch.conf

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See "Reentrant Interfaces" in
DESCRIPTION.

rpcinfo (IM), rpc (3NSL), nsswitch.conf (4), rpc (4) , attributes (5)

The reentrant interfaces getrpcbyname_r() , getrpcbynumber_r() ,and
getrpcent_r() are included in this release on an uncommitted basis only, and
are subject to change or removal in future minor releases.

Programs that use the interfaces described in this manual page cannot be linked
statically since the implementations of these functions employ dynamic loading
and linking of shared objects at run time.

When compiling multithreaded applications, see intro (3) ,
Notes On Multithreaded Applications , for information about the use of the
_REENTRANTIag.

Use of the enumeration interfaces getrpcent() and getrpcent_r() is
discouraged; enumeration may not be supported for all database sources. The
semantics of enumeration are discussed further in nsswitch.conf ~ (4) .

Last modified 20 Feb 1998 Sun0S 5.8 225

getservbyname(3SOCKET) Sockets Library Functions

NAME

SYNOPSIS

DESCRIPTION

226

getservbyname, getservbyname_r, getservbyport, getservbyport_r, getservent,
getservent_r, setservent, endservent — get service entry

cc [flag ...] file ... —Isocket -Insl [library ...]
#include <netdb.h>
struct servent *getservbyname (const char *name, const char *proto);

struct servent *getservbyname_r (const char *name, const char *proto, struct servent
*result, char *buffer, int buflen);

struct servent *getservbyport (int port, const char *proto);

struct servent *getservbyport_r (int port, const char *proto, struct servent *result,
char *buffer, int buflen);

struct servent *getservent (void);
struct servent *getservent_r (struct servent *result, char *buffer, int buflen);
int setservent (int stayopen);

int endservent (void);

These functions are used to obtain entries for Internet services. An
entry may come from any of the sources for services specified in the
/etc/nsswitch.conf file. See nsswitch.conf (4) .

getservbyname() and getservbyport() sequentially search from the
beginning of the file until a matching protocol name or port number is found, or
until end-of-file is encountered. If a protocol name is also supplied (non- NULL),
searches must also match the protocol.

getservbyname() searches for an entry with the Internet service name
specified by the parameter name .

getservbyport() searches for an entry with the Internet port number port .

All addresses are returned in network order. In order to interpret the addresses,
byteorder (3SOCKET)

must be used for byte order conversion. The string proto is used by both
getservbyname() and getservbyport() to restrict the search to entries
with the specified protocol. If proto is NULL, entries with any protocol may
be returned.

The functions setservent() , getservent() , and endservent() are used
to enumerate entries from the services database.

setservent() sets (or resets) the enumeration to the beginning of the
set of service entries. This function should be called before the first call
to getservent() . Calls to the functions getservbyname() and

SunOS 5.8 Last modified 23 Mar 1998

Sockets Library Functions getservbyname(3SOCKET)

Reentrant Interfaces

getservbyport() leave the enumeration position in an indeterminate state. If
the stayopen flag is non-zero, the system may keep allocated resources such as
open file descriptors until a subsequent call to endservent()

getservent() reads the next line of the file, opening the file if necessary.
getservent() opens and rewinds the file. If the stayopen flag is non-zero, the
net data base will not be closed after each call to getservent() (either directly,
or indirectly through one of the other "getserv" calls).

Successive calls to getservent() return either successive entries or NULL,
indicating the end of the enumeration.

endservent() closes the file. endservent() may be called to indicate that
the caller expects to do no further service entry retrieval operations; the system
may then deallocate resources it was using. It is still allowed, but possibly less
efficient, for the process to call more service entry retrieval functions after
calling endservent()

The functions getservbyname() , getservbyport() , and getservent()
use static storage that is re-used in each call, making these functions unsafe for
use in multithreaded applications.

The functions getservbyname_r() , getservbyport_r() , and
getservent_r() provide reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant
counterpart, named by removing the "_r " suffix. The reentrant interfaces,
however, use buffers supplied by the caller to store returned results, and are safe
for use in both single-threaded and multithreaded applications.

Each reentrant interface takes the same parameters as its non-reentrant
counterpart, as well as the following additional parameters. The parameter result
must be a pointer to a struct servent structure allocated by the caller. On
successful completion, the function returns the service entry in this structure.
The parameter buffer must be a pointer to a buffer supplied by the caller. This
buffer is used as storage space for the service entry data. All of the pointers
within the returned struct servent result point to data stored within this
buffer. See the RETURN VALUESkection of this man page. The buffer must

be large enough to hold all of the data associated with the service entry. The
parameter buflen should give the size in bytes of the buffer indicated by buffer .

For enumeration in multithreaded applications, the position within the
enumeration is a process-wide property shared by all threads. setservent()
may be used in a multithreaded application but resets the enumeration position
for all threads. If multiple threads interleave calls to getservent_r() , the
threads will enumerate disjoint subsets of the service database.

Like their non-reentrant counterparts, getservbyname_r() and
getservbyport_r() leave the enumeration position in an indeterminate state.

Last modified 23 Mar 1998 Sun0S 5.8 227

getservbyname(3SOCKET) Sockets Library Functions

RETURN VALUES

228

ERRORS

FILES

ATTRIBUTES

Service entries are represented by the struct servent structure defined
in <netdb.h>

struct servent {
char *s_name; /* official name of service */
char **s_aliases; /* alias list */
int s_port; /* port service resides at */
char *s_proto; /* protocol to use */

h

The members of this structure are:
S_hame The official name of the service.

s_aliases A zero terminated list of alternate names for the service.

s_port The port number at which the service resides. Port numbers
are returned in network byte order.

s_proto The name of the protocol to use when contacting the service

The functions getservbyname() , getservbyname_r() ,
getservbyport() , and getservbyport_r() each return a pointer to a
struct servent if they successfully locate the requested entry; otherwise
they return NULL.

The functions getservent() and getservent_r() each return a pointer to
a struct servent if they successfully enumerate an entry; otherwise they
return NULL, indicating the end of the enumeration.

The functions getservbyname() , getservbyport() , and getservent()
use static storage, so returned data must be copied before a subsequent call to
any of these functions if the data is to be saved.

When the pointer returned by the reentrant functions getservbyname_r() ,
getservbyport_r() , and getservent_r() is non-null, it is always equal to
the result pointer that was supplied by the caller.

The reentrant functions getservbyname_r() , getservbyport_r() and
getservent_r() will return NULLand set errno to ERANGE(the length of
the buffer supplied by caller is not large enough to store the result. See intro (2)
for the proper usage and interpretation of errno in multithreaded applications.

/etc/services Internet network services
/etc/netconfig network configuration file
/etc/nsswitch.conf configuration file for the name-service switch

See attributes (5) for descriptions of the following attributes:

Sun0OS 5.8 Last modified 23 Mar 1998

Sockets Library Functions getservbyname(3SOCKET)

SEE ALSO

WARNINGS

NOTES

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See "Reentrant Interfaces" in
DESCRIPTION.

intro (2),intro (3), byteorder (3SOCKET), netdir (3NSL), netconfig (4),
nsswitch.conf (4), services (4), attributes (5) , netdb (3HEAD)

The reentrant interfaces getservbyname_r() , getservbyport_r() ,and
getservent_r() are included in this release on an uncommitted basis only,
and are subject to change or removal in future minor releases.

The functions that return struct servent return the least significant

16-bits of the s_port field in network byte order . getservbyport()

and getservbyport_r() also expect the input parameter port in the

network byte order . See htons (3SOCKET) for more details on converting between
host and network byte orders.

Programs that use the interfaces described in this manual page cannot be linked
statically since the implementations of these functions employ dynamic loading
and linking of shared objects at run time.

In order to ensure that they all return consistent results, getservbyname() ,
getservbyname_r() , and netdir_getbyname() are implemented in terms
of the same internal library function. This function obtains the system-wide
source lookup policy based on the inet family entries in netconfig (4) and
the services: entry in nsswitch.conf (4) . Similarly, getservbyport() ,

getservbyport_r() , and netdir_getbyaddr() are implemented in terms
of the same internal library function. If the inet family entries in netconfig (4)
have a “-” in the last column for nametoaddr libraries, then the entry for

services in nsswitch.conf will be used; otherwise the nametoaddr libraries
in that column will be used, and nsswitch.conf will not be consulted.

There is no analogue of getservent() and getservent_r() in the netdir
functions, so these enumeration functions go straight to the services entry
in nsswitch.conf . Thus enumeration may return results from a different
source than that used by getservbyname() , getservbyname_r() ,
getservbyport() , and getservbyport_r()

When compiling multithreaded applications, see intro (3) ,
Notes On Multithread Applications , for information about the use of the
_REENTRANTlag.

Use of the enumeration interfaces getservent() and getservent_r() is
discouraged; enumeration may not be supported for all database sources. The
semantics of enumeration are discussed further in nsswitch.conf ~ (4) .

Last modified 23 Mar 1998 Sun0OS 5.8 229

getsockname(3SOCKET) Sockets Library Functions

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

230

getsockname - get socket name

cc [flag ...] file ... —Isocket —Insl [library ...]
#include <sys/types.h>
#include <sys/socket.h>

int getsockname (int s, struct sockaddr *name, socklen_t *namelen);

getsockname() returns the current name for socket s. The namelen parameter
should be initialized to indicate the amount of space pointed to by name. On
return it contains the actual size in bytes of the name returned.

If successful, getsockname() returns 0; otherwise it returns -1 and sets
errno to indicate the error.

The call succeeds unless:

EBADF The argument s is not a valid file descriptor.

ENOMEM There was insufficient memory available for the operation to
complete.

ENOSR There were insufficient STREAMS resources available for

the operation to complete.

ENOTSOCK The argument s is not a socket.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

bind (3SOCKET), getpeername (3SOCKET), socket (3SOCKET),
attributes (5)

Sun0S 5.8 Last modified 12 Dec 1997

X/0pen Networking Services Library Functions getsockname(3XNET)

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

getsockname - get the socket name

cc [flag ...] file ... —=Ixnet [library ...]
#include <sys/socket.h>

int getsockname (int socket, struct sockaddr *address, socklen_t *address_len);

The getsockname() function retrieves the locally-bound name of the specified
socket, stores this address in the sockaddr structure pointed to by the address
argument, and stores the length of this address in the object pointed to by the
address_len argument.

If the actual length of the address is greater than the length of the supplied
sockaddr structure, the stored address will be truncated.

If the socket has not been bound to a local name, the value stored in the object
pointed to by address is unspecified.

Upon successful completion, 0 is returned, the address argument points to the
address of the socket, and the address_len argument points to the length of the
address. Otherwise, -1 is returned and errno is set to indicate the error.

The getsockname() function will fail:

EBADF The socket argument is not a valid file descriptor.
EFAULT The address or address_len parameter can not be accessed
or written.

ENOTSOCK The socket argument does not refer to a socket.
EOPNOTSUPP The operation is not supported for this socket’s protocol.

The getsockname() function may fail if;
EINVAL The socket has been shut down.

ENOBUFS Insufficient resources were available in the system to
complete the call.

ENOSR There were insufficient STREAMS resources available for
the operation to complete.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

accept (3XNET), bind (3XNET), getpeername (3XNET), socket (3XNET)
attributes (5)

Last modified 8 May 1998 Sun0S 5.8 231

getsockopt(3SOCKET) Sockets Library Functions

NAME getsockopt, setsockopt — get and set options on sockets

SYNOPSIS cc [flag ...] file ... -Isocket —Insl [library ...]

#include <sys/types.h>

#include <sys/socket.h>

int getsockopt (ints, int level, int optname, void *optval, int *optlen);

int setsockopt (ints, int level, int optname, const void *optval, int optlen);

DESCRIPTION getsockopt() and setsockopt() manipulate options associated with a
socket. Options may exist at multiple protocol levels; they are always present at
the uppermost "socket" level.

When manipulating socket options, the level at which the option resides and the
name of the option must be specified. To manipulate options at the "socket" level,
level is specified as SOL_SOCKET To manipulate options at any other level, level
is the protocol number of the protocol that controls the option. For example, to
indicate that an option is to be interpreted by the TCP protocol, level is set to the
TCP protocol number (see getprotobyname (3SOCKET)).

The parameters optval and optlen are used to access option values for
setsockopt() . For getsockopt() , they identify a buffer in which the
value(s) for the requested option(s) are to be returned. For getsockopt() ,
optlen is a value-result parameter, initially containing the size of the buffer
pointed to by optval , and modified on return to indicate the actual size of the
value returned. Use a 0 optval if no option value is to be supplied or returned.

optname and any specified options are passed uninterpreted to the appropriate
protocol module for interpretation. The include file <sys/socket.h> contains
definitions for the socket-level options described below. Options at other
protocol levels vary in format and name.

Most socket-level options take an int for optval . For setsockopt() , the
optval parameter should be non-zero to enable a boolean option, or zero if the
option is to be disabled. SO_LINGERuses a struct linger parameter that
specifies the desired state of the option and the linger interval (see below).
struct linger is defined in <sys/socket.h> . struct linger contains
the following members:

|_onoff on=1/0off =0

|_linger linger time, in seconds

The following options are recognized at the socket level. Except as noted, each
may be examined with getsockopt() and set with setsockopt()

SO_DEBUG enable/disable recording of debugging
information
SO_REUSEADDR enable/disable local address reuse

232 Sun0S 5.8 Last modified 8 Nov 1999

Sockets Library Functions getsockopt(3SOCKET)

SO_KEEPALIVE enable/disable keep connections alive

SO_DONTROUTE enable/disable routing bypass for outgoing
messages

SO_LINGER linger on close if data is present

SO_BROADCAST enable/disable permission to transmit broadcast
messages

SO_OOBINLINE enable/disable reception of out-of-band data
in band

SO_SNDBUF set buffer size for output

SO_RCVBUF set buffer size for input

SO_DGRAM_ERRIND application wants delayed error

SO_TYPE get the type of the socket (get only)

SO_ERROR get and clear error on the socket (get only)

SO_DEBUGnables debugging in the underlying protocol modules.
SO_REUSEADDIRdicates that the rules used in validating addresses supplied in
a bind (3SOCKET) call should allow reuse of local addresses. SO_KEEPALIVE
enables the periodic transmission of messages on a connected socket. If the
connected party fails to respond to these messages, the connection is considered
broken and processes using the socket are notified using a SIGPIPE signal.
SO_DONTROUTiBdicates that outgoing messages should bypass the standard
routing facilities. Instead, messages are directed to the appropriate network
interface according to the network portion of the destination address.

SO_LINGERcontrols the action taken when unsent messages are queued on a
socket and a close (2) is performed. If the socket promises reliable delivery of
data and SO_LINGER:Is set, the system will block the process on the close()
attempt until it is able to transmit the data or until it decides it is unable to
deliver the information (a timeout period, termed the linger interval, is specified
in the setsockopt() call when SO_LINGERIs requested). If SO_LINGERIs
disabled and a close() s issued, the system will process the close() ina
manner that allows the process to continue as quickly as possible.

The option SO_BROADCASEquests permission to send broadcast datagrams on
the socket. With protocols that support out-of-band data, the SO_OOBINLINE
option requests that out-of-band data be placed in the normal data input queue
as received; it will then be accessible with recv() orread() calls without the
MSG_OOHag.

SO_SNDBURNd SO_RCVBUFRre options that adjust the normal buffer sizes
allocated for output and input buffers, respectively. The buffer size may be

Last modified 8 Nov 1999 Sun0S 5.8 233

getsockopt(3SOCKET) Sockets Library Functions

increased for high-volume connections or may be decreased to limit the possible
backlog of incoming data. SunOS sets the maximum buffer size for both UDP
and TCP to 256 Kbytes.

By default, delayed errors (such as ICMP port unreachable packets) are returned
only for connected datagram sockets. SO_DGRAM_ERRINMakes it possible to
receive errors for datagram sockets that are not connected. When this option

is set, certain delayed errors received after completion of a sendto() or
sendmsg() operation will cause a subsequent sendto() or sendmsg()
operation using the same destination address (to parameter) to fail with the
appropriate error. See send (3SOCKET) .

Finally, SO_TYPEand SO_ERRORre options used only with getsockopt()

. SO_TYPEreturns the type of the socket (for example, SOCK_STREAM It is
useful for servers that inherit sockets on startup. SO_ERROReturns any pending
error on the socket and clears the error status. It may be used to check for
asynchronous errors on connected datagram sockets or for other asynchronous
errors.

RETURN VALUES If successful, getsockopt() returns O ; otherwise, it returns -1 and sets
errno to indicate the error.

ERRORS The call succeeds unless:

EBADF The argument s is not a valid file descriptor.

ENOMEM There was insufficient memory available for the
operation to complete.

ENOPROTOOPT The option is unknown at the level indicated.

ENOSR There were insufficient STREAMS resources

available for the operation to complete.

ENOTSOCK The argument s is not a socket.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO close (2),ioctl (2),read (2), bind (3SOCKET), getprotobyname (3SOCKET)
, recv (3SOCKET), send (3SOCKET), socket (3SOCKET), attributes (5)

234 Sun0OS 5.8 Last modified 8 Nov 1999

X/0pen Networking Services Library Functions getsockopt(3XNET)

NAME
SYNOPSIS

DESCRIPTION

getsockopt — get the socket options

cc [flag ...] file ... —=Ixnet [library ...]
#include <sys/socket.h>

int getsockopt (int socket, int level, int option_name, void *option_value, socklen_t
*option_len);

The getsockopt() function retrieves the value for the option specified by the
option_name argument for the socket specified by the socket argument. If the size
of the option value is greater than option_len, the value stored in the object
pointed to by the option_value argument will be silently truncated. Otherwise,
the object pointed to by the option_len argument will be modified to indicate the
actual length of the value.

The level argument specifies the protocol level at which the option resides. To
retrieve options at the socket level, specify the level argument as SOL_SOCKET.
To retrieve options at other levels, supply the appropriate protocol number for
the protocol controlling the option. For example, to indicate that an option will
be interpreted by the TCP (Transport Control Protocol), set level to the protocol
number of TCP, as defined in the <netinet/in.h > header, or as determined by
using getprotobyname (3XNET) function.

The socket in use may require the process to have appropriate privileges to use
the getsockopt() function.

The option_name argument specifies a single option to be retrieved. It can be one

of the following values defined in <sys/socket.h>

SO_DEBUG Reports whether debugging information is being
recorded. This option stores an int value. This
is a boolean option.

SO_ACCEPTCONN Reports whether socket listening is enabled. This
option stores an int value.

SO_BROADCAST Reports whether transmission of broadcast
messages is supported, if this is supported by the
protocol. This option stores an int value. This
is a boolean option.

SO_REUSEADDR Reports whether the rules used in validating
addresses supplied to bind (3XNET) should allow
reuse of local addresses, if this is supported by
the protocol. This option stores an int value.
This is a boolean option.

Last modified 8 May 1998 Sun0S 5.8 235

getsockopt(3XNET) X/0pen Networking Services Library Functions

SO_KEEPALIVE Reports whether connections are kept active
with periodic transmission of messages, if this
is supported by the protocol.

If the connected socket fails to respond to these
messages, the connection is broken and processes
writing to that socket are notified with a
SIGPIPE signal. This option stores an int value.

This is a boolean option.

SO_LINGER Reports whether the socket lingers on close (2) if
data is present. If SO_LINGER is set, the system
blocks the process during close (2) until it can
transmit the data or until the end of the interval
indicated by the |_linger member, whichever
comes first. If SO_LINGER is not specified, and
close (2) is issued, the system handles the call
in a way that allows the process to continue as
quickly as possible. This option stores a linger
structure.

SO_OOBINLINE Reports whether the socket leaves received
out-of-band data (data marked urgent) in line.
This option stores an int value. This is a boolean

option.

SO_SNDBUF Reports send buffer size information. This option
stores an int value.

SO_RCVBUF Reports receive buffer size information. This
option stores an int value.

SO_ERROR Reports information about error status and clears
it. This option stores an int value.

SO_TYPE Reports the socket type. This option stores an
int value.

SO_DONTROUTE Reports whether outgoing messages bypass the

standard routing facilities. The destination must
be on a directly-connected network, and messages
are directed to the appropriate network interface
according to the destination address. The effect,

if any, of this option depends on what protocol

is in use. This option stores an int value. This

is a boolean option.

236 Sun0S 5.8 Last modified 8 May 1998

X/0pen Networking Services Library Functions getsockopt(3XNET)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

For boolean options, a zero value indicates that the option is disabled and a
non-zero value indicates that the option is enabled.

Options at other protocol levels vary in format and name.

The socket in use may require the process to have appropriate privileges to use
the getsockopt() function.

Upon successful completion, getsockopt() returns 0. Otherwise, -1 is
returned and errno s set to indicate the error.

The getsockopt() function will fail if;

EBADF The socket argument is not a valid file descriptor.

EFAULT The option_value or option_len parameter can not be accessed
or written.

EINVAL The specified option is invalid at the specified socket level.

ENOPROTOOPT The option is not supported by the protocol.
ENOTSOCK The socket argument does not refer to a socket.
The getsockopt() function may fail if;

EACCES The calling process does not have the appropriate privileges.

EINVAL The socket has been shut down.

ENOBUFS Insufficient resources are available in the system to complete
the call.

ENOSR There were insufficient STREAMS resources available for

the operation to complete.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

close (2), bind (3XNET), endprotoent (3XNET), setsockopt (3XNET),
socket (3XNET), attributes

Last modified 8 May 1998 Sun0S 5.8 237

htonl(3XNET) X/0pen Networking Services Library Functions

NAME htonl, htons, ntohl, ntohs — convert values between host and network byte order
SYNOPSIS cc [flag ...] file ... —-Ixnet [library ...]
#include <arpa/inet.h>
uint32_t htonl (uint32_t hostlong);
uintl6_t htons (uintl6_t hostshort);
uint32_t ntohl (uint32_t netlong);
uintl6_t ntohs (uintl6_t netshort);

DESCRIPTION These functions convert 16-bit and 32-bit quantities between network byte
order and host byte order.

The uint32_t and uintl6_t types are made available by inclusion of
<inttypes.h>

USAGE These functions are most often used in conjunction with Internet addresses and
ports as returned by gethostent (3XNET) and getservent (3XNET).

On some architectures these functions are defined as macros that expand to
the value of their argument.

RETURN VALUES The htonl() and htons() functions return the argument value converted
from host to network byte order.

The ntohl() and ntohs() functions return the argument value converted
from network to host byte order.

ERRORS No errors are defined.
ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO endhostent (3XNET), endservent (3XNET), attributes (5)

238 Sun0S 5.8 Last modified 8 May 1998

Networking Services Library Functions if_nametoindex(3NSL)

NAME

SYNOPSIS

DESCRIPTION

if_nametoindex()

if_indextoname()

*if_nameindex()

if_nametoindex, if_indextoname, if_nameindex, if_freenameindex - routines to
map Internet Protocol network interface names and interface indexes

cc [flag ...] file ... =Ixnet [library ...]
#include <net/if.h>
unsigned int if_nametoindex (const char *ifname);

char *if_indextoname (unsigned int ifindex, char *ifname);
struct if_nameindex *if_nameindex (void);
void if_freenameindex (struct if_nameindex *ptr);

This API defines two functions that map between an Internet Protocol network
interface name and index, a third function that returns all the interface names
and indexes, and a fourth function to return the dynamic memory allocated
by the previous function.

Network interfaces are normally known by names such as "le0", "sI1",

"ppp2", and the like. The ifname argument must point to a buffer of at least
IF_NAMESIZE bytes into which the interface name corresponding to the
specified index is returned. IF_NAMESIZE is defined in <net/if.h> and its
value includes a terminating null byte at the end of the interface name.

The if_nametoindex() function returns the interface index corresponding to
the interface name pointed to by the ifname pointer. If the specified interface
name does not exist, the return value is 0 , and errno is set to ENXIO. If there
was a system error, such as running out of memory, the return value is 0 and
errno is set to the proper value, for example, ENOMEM

The if_indextoname() function maps an interface index into its
corresponding name. This pointer is also the return value of the function. If
there is no interface corresponding to the specified index, NULL is returned, and
errno is set to ENXIO, if there was a system error, such as running out of
memory, if_indextoname() returns NULLand errno would be set to the
proper value, for example, ENOMEM

The if_nameindex() function returns an array of if_nameindex structures,
one structure per interface. The if_nameindex structure holds the information
about a single interface and is defined when the <net/if.h> header is included:

struct if_nameindex {
unsigned int if_index; /* 1, 2, ... */
char *if_name; /* null terminated name: "le0", ... */

L

The end of the array of structures is indicated by a structure with an if_index
of 0 and an if_name of NULL. The function returns a null pointer upon an error
and sets errno to the appropriate value. The memory used for this array of

Last modified 10 Nov 1999 Sun0OS 5.8 239

if_nametoindex(3NSL) Networking Services Library Functions

structures along with the interface names pointed to by the if_name members is
obtained dynamically. This memory is freed by the if_freenameindex()

function.

if_freenameindex() The if_freenameindex() function frees the dynamic memory that was
allocated by if_nameindex() . The argument to this function must be a
pointer that was returned by if_nameindex()

PARAMETERS

ifname interface name.
ifindex interface index.
ptr pointer returned by if_nameindex()

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWecsl (32-bit)
SUNWEcsIx (64-bit)
MT Level MT Safe
Interface Stability Standard

SEE ALSO ifconfig (1M), attributes (5),if (7P)

240 Sun0S 5.8 Last modified 10 Nov 1999

X/0pen Networking Services Library Functions if_nametoindex(3XNET)

NAME

SYNOPSIS

DESCRIPTION

if_nametoindex()

if_indextoname()

*if_nameindex()

if_nametoindex, if_indextoname, if_nameindex, if_freenameindex — functions to
map Internet Protocol network interface names and interface indexes

cc [flag ...] file ... =Ixnet [library ...]
#include <net/if.h>
unsigned int if_nametoindex (const char *ifname);

char *if_indextoname (unsigned int ifindex, char *ifname);
struct if_nameindex *if_nameindex (void);
void if_freenameindex (struct if_nameindex *ptr);

This API defines two functions that map between an Internet Protocol network
interface name and index, a third function that returns all the interface names
and indexes, and a fourth function to return the dynamic memory allocated
by the previous function.

Network interfaces are normally known by names such as "le0", "sI1",

"ppp2", and the like. The ifname argument must point to a buffer of at least
IF_NAMESIZE bytes into which the interface name corresponding to the
specified index is returned. IF_NAMESIZE is defined in <net/if.h> and its
value includes a terminating null byte at the end of the interface name.

The if_nametoindex() function returns the interface index corresponding to
the interface name pointed to by the ifname pointer. If the specified interface
name does not exist, the return value is 0 , and errno is set to ENXIO. If there
was a system error, such as running out of memory, the return value is 0 and
errno is set to the proper value, for example, ENOMEM

The if_indextoname() function maps an interface index into its
corresponding name. This pointer is also the return value of the function. If
there is no interface corresponding to the specified index, NULL is returned, and
errno is set to ENXIO, if there was a system error, such as running out of
memory, if_indextoname() returns NULLand errno would be set to the
proper value, for example, ENOMEM

The if_nameindex() function returns an array of if_nameindex structures,
one structure per interface. The if_nameindex structure holds the information
about a single interface and is defined when the <net/if.h> header is included:

struct if_nameindex {
unsigned int if_index; /* 1, 2, ... */
char *if_name; /* null terminated name: "le0", ... */

L

The end of the array of structures is indicated by a structure with an if_index
of 0 and an if_name of NULL. The function returns a null pointer upon an error
and sets errno to the appropriate value. The memory used for this array of

Last modified 18 Jun 1999 Sun0OS 5.8 241

if_nametoindex(3XNET) X/0pen Networking Services Library Functions

if_freenameindex()

PARAMETERS

242

ATTRIBUTES

SEE ALSO

structures along with the interface names pointed to by the if_name members is
obtained dynamically. This memory is freed by the if_freenameindex()
function.

The if_freenameindex() function frees the dynamic memory that was
allocated by if_nameindex() . The argument to this function must be a
pointer that was returned by if_nameindex()

ifname interface name.
ifindex interface index.
ptr pointer returned by if_nameindex()

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWecsl (32-bit)
SUNWEcsIx (64-bit)
MT Level MT Safe
Interface Stability Standard

ifconfig (1M), attributes (5),if (7P)

Sun0S 5.8 Last modified 18 Jun 1999

Sockets Library Functions inet(3SOCKET)

NAME

SYNOPSIS

DESCRIPTION

inet, inet6, inet_ntop, inet_pton, inet_addr, inet_network, inet_makeaddr,
inet_Inaof, inet_netof, inet_ntoa — Internet address manipulation

cc [flag ...] file ... —Isocket -Insl [library ...]

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpaZinet.h>

const char *inet_ntop (int af, const void *addr, char *cp, size_t size);

intinet_pton (int af, const char *cp, void *addr);

in_addr_t inet_addr (const char *cp);

in_addr_t inet_network (const char *cp);

struct in_addr inet_makeaddr (const int net, const int Ina);
intinet_Inaof (const struct in_addr in);

intinet_netof (const struct in_addr in);

char *inet_ntoa (const struct in_addr in);

The inet_ntop() and inet_pton() routines can manipulate both
IPv4 and IPv6 addresses, whereas inet_addr() , inet_network() ,
inet_makeaddr() , inet_Inaof() , inet_netof() , and inet_ntoa()

can only manipulate IPv4 addresses.

The inet_ntop() routine converts a numeric address into a string suitable for
presentation. The af argument specifies the family of the address. This can be
AF_INET or AF_INET6 . The addr argument points to a buffer holding an IPv4
address if the af argument is AF_INET , or an IPv6 address if the af argument is
AF_INET®6 ; the address must be in network byte order. The cp argument points
to a buffer where the routine will store the resulting string. The size argument
specifies the size of this buffer. The application must specify a non-NULLcp
argument. For IPv6 addresses, the buffer must be at least 46-octets. For IPv4
addresses, the buffer must be at least 16-octets. In order to allow applications to
easily declare buffers of the proper size to store IPv4 and IPv6 addresses in string
form, the following two constants are defined in <netinet/in.h>

#define INET_ADDRSTRLEN 16
#define INET6_ADDRSTRLEN 46

The inet_pton() routine converts an address in its standard text presentation
form into its numeric binary form. The af argument specifies the family of the
address. Currently the AF_INET and AF_INET6 address families are supported.
The cp argument points to the string being passed in. The addr argument points
to a buffer into which the routine stores the numeric address. The calling

Last modified 3 Nov 1999 Sun0OS 5.8 243

inet(3SOCKET)

244

INTERNET
ADDRESSES
IPv6 Addresses

Sockets Library Functions

application must ensure that the buffer referred to by addr is large enough to hold
the numeric address, at least 4 bytes for AF_INET or 16 bytes for AF_INET6 .

The inet_addr() and inet_network() routines interpret character strings
representing numbers expressed in the IPv4 standard ‘. ’ notation, returning
numbers suitable for use as IPv4 addresses and IPv4 network numbers,
respectively. The routine inet_makeaddr() takes an IPv4 network number
and a local network address and constructs an IPv4 address from it. The routines
inet_netof() and inet_lnaof() break apart IPv4 host addresses, returning
the network number and local network address part, respectively.

The inet_ntoa() routine returns a pointer to a string in the base 256 notation
d.d.d.d . See INTERNET ADDRESSES.

Internet addresses are returned in network order, bytes ordered from left to
right. Network numbers and local address parts are returned as machine format
integer values.

There are three conventional forms for representing IPv6 addresses as strings:

1. The preferred form is X:X:X:X:X:X:X:X , where the 'x’s are the
hexadecimal values of the eight 16-bit pieces of the address, for example,

1080:0:0:0:8:800:200C:417A

Note that it is not necessary to write the leading zeros in an individual
field. However, there must be at least one numeral in every field, except
as described below.

2. Due to some methods of allocating certain styles of IPv6 addresses, it will be
common for addresses to contain long strings of zero bits. In order to make
writing addresses containing zero bits easier, a special syntax is available to
compress the zeros. The use of ":; " indicates multiple groups of 16-bits
of zeros. The ":: " can only appear once in an address. The ":: " can
also be used to compress the leading and/or trailing zeros in an address.
For example,

1080::8:800:200C:417A

3. An alternative form that is sometimes more convenient when dealing with a
mixed environment of IPv4 and IPv6 nodes is x:x:x:x:x:x:d.d.d.d ,
where the ’x ’s are the hexadecimal values of the six high-order 16-bit pieces
of the address, and the ’d ’s are the decimal values of the four low-order
8-bit pieces of the standard IPv4 representation address, for example,

'FFFF:129.144.52.38
11129.144.52.38

Sun0OS 5.8 Last modified 3 Nov 1999

Sockets Library Functions inet(3SOCKET)

where "::FFFF:d.d.d.d "and "::d.d.d.d " are, respectively, the
general forms of an IPv4-mapped IPv6 address and an IPv4-compatible
IPv6 address. Note that the IPv4 portion must be in the "d.d.d.d " form.
The following forms are invalid:

:FFFF:d.d.d

FFFF:d.d

d.d.d

ndd

The following form:

FFFFd

is valid, however it is an unconventional representation of the
IPv4-compatible IPv6 address,

::255.255.0.d
while "::d " corresponds to the general IPv6 address "0:0:0:0:0:0:0:d

IPv4 Addresses Values specified using ‘.’ notation take one of the following forms:

d.d.dd
d.d.d
d.d

d

When four parts are specified, each is interpreted as a byte of data and assigned,
from left to right, to the four bytes of an IPv4 address.

When a three part address is specified, the last part is interpreted as a 16-bit
guantity and placed in the right most two bytes of the network address. This
makes the three part address format convenient for specifying Class B network
addresses as 128.net.host

When a two part address is supplied, the last part is interpreted as a 24-bit
guantity and placed in the right most three bytes of the network address. This
makes the two part address format convenient for specifying Class A network
addresses as net.host

When only one part is given, the value is stored directly in the network address
without any byte rearrangement.

With the exception of inet_pton() , humbers supplied as parts in . ’ notation
may be decimal, octal, or hexadecimal, as specified in the C language. For
example, a leading Ox or OX implies hexadecimal; otherwise, a leading O implies
octal; otherwise, the number is interpreted as decimal.

For IPv4 addresses, inet_pton() only accepts a string in the standard IPv4
dotted-decimal form:

Last modified 3 Nov 1999 Sun0S 5.8 245

inet(3SOCKET)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

BUGS

246

Sockets Library Functions

d.d.dd

where each number has one to three digits with a decimal value between 0
and 255.

The inet_ntop() routine returns a pointer to the buffer containing a string
if the conversion succeeds, and NULL otherwise. Upon failure, errno is set to
EAFNOSUPPORT the af argument is invalid or ENOSPGT the size of the result
buffer is inadequate.

inet_pton() returns 1 if the conversion succeeds, 0O if the input is not a valid
IPv4 dotted-decimal string or a valid IPv6 address string, or -1 with errno set
to EAFNOSUPPORT the af argument is unknown.

The value -1 is returned by inet_addr() and inet_network() for
malformed requests.

The routines inet_netof() and inet_Inaof() break apart IPv4 host
addresses, returning the network number and local network address part,
respectively.

The routine inet_ntoa() returns a pointer to a string in the base 256 notation
d.d.d.d described in INTERNET ADDRESSES.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gethostbyname (3NSL) , getipnodebyname (3SOCKET) ,
getnetbyname (3SOCKET), inet (3HEAD), hosts (4), ipnodes (4) ,
networks (4) , attributes (5)

The return value from inet_ntoa() points to a buffer which is overwritten on
each call. This buffer is implemented as thread-specific data in multithreaded
applications.

The problem of host byte ordering versus network byte ordering is confusing. A
simple way to specify Class C network addresses in a manner similar to that
for Class B and Class A is needed.

Sun0OS 5.8 Last modified 3 Nov 1999

X/0pen Networking Services Library Functions inet_addr(3XNET)

NAME

SYNOPSIS

DESCRIPTION

inet_addr, inet_network, inet_makeaddr, inet_Inaof, inet_netof, inet_ntoa -
Internet address manipulation

cc [flag ...] file ... =Ixnet [library ...]
#include <arpaZinet.h>
in_addr_t inet_addr (const char *cp);

in_addr_tinet_Inaof (struct in_addr in);
struct in_addr inet_makeaddr (in_addr_t net, in_addr_t Ina);
in_addr_t inet_netof (struct in_addr in);
in_addr_t inet_network (const char *cp);

char *inet_ntoa (struct in_addr in);

The inet_addr() function converts the string pointed to by cp , in the Internet
standard dot notation, to an integer value suitable for use as an Internet address.

The inet_Inaof() function takes an Internet host address specified by in and
extracts the local network address part, in host byte order.

The inet_makeaddr() function takes the Internet network number specified
by net and the local network address specified by Ina , both in host byte order,
and constructs an Internet address from them.

The inet_netof() function takes an Internet host address specified by in and
extracts the network number part, in host byte order.

The inet_network() function converts the string pointed to by cp , in the
Internet standard dot notation, to an integer value suitable for use as an Internet
network number.

The inet_ntoa() function converts the Internet host address specified by in to
a string in the Internet standard dot notation.

All Internet addresses are returned in network order (bytes ordered from left to
right).

Values specified using dot notation take one of the following forms:

a.b.cd When four parts are specified, each is interpreted as a byte
of data and assigned, from left to right, to the four bytes of
an Internet address.

a.b.c When a three-part address is specified, the last part is
interpreted as a 16-bit quantity and placed in the rightmost
two bytes of the network address. This makes the three-part
address format convenient for specifying Class B network
addresses as 128. net .host .

Last modified 8 May 1998 Sun0S 5.8 247

inet_addr(3XNET)

USAGE

RETURN VALUES

ERRORS
ATTRIBUTES

SEE ALSO

248

X/0pen Networking Services Library Functions

a.b When a two-part address is supplied, the last part is
interpreted as a 24-bit quantity and placed in the rightmost
three bytes of the network address. This makes the two-part
address format convenient for specifying Class A network
addresses as net . host .

a When only one part is given, the value is stored directly in
the network address without any byte rearrangement.

All numbers supplied as parts in dot notation may be decimal, octal, or
hexadecimal, that is, a leading Ox or 0X implies hexadecimal, as specified in the
ISO C standard; otherwise, a leading 0 implies octal; otherwise, the number

is interpreted as decimal).

The return value of inet_ntoa() may point to static data that may be
overwritten by subsequent calls to inet_ntoa()

Upon successful completion, inet_addr() returns the Internet address.
Otherwise, it returns (in_addr_t)(-1).

Upon successful completion, inet_network() returns the converted Internet
network number. Otherwise, it returns (in_addr_t)(-1).

The inet_makeaddr() function returns the constructed Internet address.
The inet_Inaof() function returns the local network address part.
The inet_netof() function returns the network number.

The inet_ntoa() function returns a pointer to the network address in
Internet-standard dot notation.

No errors are defined.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

endhostent (3XNET), endnetent (3XNET), attributes (5)

Sun0S 5.8 Last modified 8 May 1998

Kerberos Library Functions kerberos(3KRB)

NAME

SYNOPSIS

DESCRIPTION

kerberos, krb_mk_req, krb_rd_req, krb_kntoln, krb_set_key, krb_get_cred,
krb_mk_safe, krb_rd_safe, krb_mk_err, krb_rd_err — Kerberos authentication
library

cc [flag ...] file ... =lkrb [library ...]

#include <kerberos/krb.h>

extern char *krb_err_txt[];

intkrb_mk_req (KTEXT authent, const char *service, const char *instance, const char *realm,
const long checksum);

intkrb_rd_req (const KTEXT authent, const char * service, char * instance, const long
from_addr, AUTH_DAT *ad, const char *fn);

intkrb_kntoln (const AUTH_DAT *ad, char *Iname);
intkrb_set_key (const char *key, const int cvt);

int krb_get_cred (const char *service, const char *instance, const char *realm,
CREDENTIALS *c);

long krb_mk_safe (const uchar_t *in, uchar_t *out, const ulong_t in_length, const
des_cblock *key, const struct sockaddr_in *sender, const struct sockaddr_in *receiver);

long krb_rd_safe (const uchar_t *in, const ulong_t length, const des_cblock *key, const
struct sockaddr_in *sender, const struct sockaddr_in *receiver, MSG_DAT *msg_data);

long krb_mk_err (uchar_t *out, const long code, const char *string);

long krb_rd_err (const uchar_t *in, const ulong_t length, long *code, MSG_DAT
*msg_data);

This library supports network authentication and various related operations.
The library contains many routines beyond those described in this man page, but
they are not intended to be used directly. Instead, they are called by the routines
that are described, the authentication server and the login program.

krb_err_txt]] contains text string descriptions of various Kerberos error
codes returned by some of the routines below.

krb_mk_req() takes a pointer to a text structure in which an authenticator

is to be built. It also takes the name, instance, and realm of the service to be
used and an optional checksum. It is up to the application to decide how to
generate the checksum. krb_mk_req() then retrieves a ticket for the desired
service and creates an authenticator. The authenticator is built in authent and is
accessible to the calling procedure.

It is up to the application to get the authenticator to the service where it will
be read by krb_rd_req() . Unless an attacker possesses the session key
contained in the ticket, it will be unable to modify the authenticator. Thus, the

Last modified 30 Dec 1996 Sun0OS 5.8 249

kerberos(3KRB)

250

Kerberos Library Functions

checksum can be used to verify the authenticity of the other data that will
pass through a connection.

krb_mk_req() returns KSUCCESS if successful, otherwise a Kerberos error
code as defined in <kerberos/krb.h>

krb_rd_req() takes an authenticator of type KTEXT, a service name, an
instance, the address of the host originating the request, and a pointer to a
structure of type AUTH_DAT which is filled in with information obtained from
the authenticator. It also optionally takes the name of the file in which it will
find the secret key(s) for the service. If the supplied instance is "*", then the first
service key with the same service name found in the service key file will be used,
and the instance argument will be filled in with the chosen instance. This means
that the caller must provide space for such an instance name.

If the last argument is the null string ("), krb_rd_req() will use the file
letc/srvtab to find its keys. If the last argument is NULL, it will assume that
the key has been set by krb_set_key() and will not bother looking further.

krb_rd_req() is used to find out information about the principal when a
request has been made to a service. It is up to the application protocol to get the
authenticator from the client to the service. The authenticator is then passed to
krb_rd_req() to extract the desired information.

krb_rd_req() returns zero (RD_AP_OK) upon successful authentication.
If a packet was forged, modified, or replayed, authentication will fail. If the
authentication fails, a non-zero value is returned indicating the particular
problem encountered. See <kerberos/krb.h> for the list of error codes.

krb_kntoln() converts a Kerberos name to a local name. It takes a structure
of type AUTH_DAT and uses the name, instance, and realm to determine the
corresponding local name. A valid local name is returned if the instance is NULL
and the realm is the same as the local realm. The local name returned is the
Kerberos name and can be used by an application to change uids, directories,

or other parameters. This routine is not an integral part of Kerberos, but is
provided to support the use of Kerberos in existing utilities. This routine returns
KSUCCESS or KFAILURE.

krb_set_key() takes as an argument a DES key. It then creates a key schedule
from it and saves the original key to be used as an initialization vector. It is used
to set the server’s key which must be used to decrypt tickets.

If called with a non-zero second argument, krb_set_key() will first convert
the input from a string of arbitrary length to a DES key by encrypting it with
a one-way function.

In most cases it should not be necessary to call krb_set_key() . The necessary
keys will usually be obtained and set inside krb_rd_req() . krb_set_key()

Sun0S 5.8 Last modified 30 Dec 1996

Kerberos Library Functions kerberos(3KRB)

is provided for those applications that do not wish to place the application keys
on disk. It returns 0 for success, otherwise a non-zero value.

krb_get_cred() searches the caller’s ticket file for a ticket for the given service
, instance , and realm . If a ticket is found, the given CREDENTIALS structure is
filled in with the ticket information.

If the ticket was found, krb_get_cred() returns GC_OK. If the ticket file
cannot be found, cannot be read, does not belong to the user (other than root), is
not a regular file, or is in the wrong mode, the error GC_TKFIL is returned.

krb_mk_safe() creates an authenticated, but unencrypted message from any
arbitrary application data, pointed to by in and in_length bytes long. The private
session key, pointed to by key, is used to seed the quad_cksum() checksum
algorithm used as part of the authentication. sender and receiver point to the
Internet address of the two parties. This message does not provide privacy, but
does protect (via detection) against modifications, insertions or replays. The
encapsulated message and header are placed in the area pointed to by out and
the routine returns the length of the output, or -1 indicating an error.

krb_rd_safe() authenticates a received krb_mk_safe() = message. in points
to the beginning of the received message, whose length is specified in in_length .
The private session key, pointed to by key , is used to seed the quad_cksum()
routine as part of the authentication. msg_data is a pointer to a MSG_DAT struct,
defined in <kerberos/krb.h> . The routine fills in these MSG_DAT fields: the
app_data field with a pointer to the application data, app_length with the length of
the app_data field, time_sec and time_5ms with the timestamps in the message,
and swap with a 1 if the byte order of the receiver is different than that of the
sender. (The application must still determine if it is appropriate to byte-swap
application data; the Kerberos protocol fields are already taken care of.)

The routine returns zero if successful, or a Kerberos error code. Modified
messages and old messages cause errors, but it is up to the caller to check the
time sequence of messages, and to check against recently replayed messages.

krb_mk_err() constructs an application level error message that may be used
along with krb_mk_safe() . out is a pointer to the output buffer, code is an
application specific error code, and string is an application specific error string.
This routine returns the length of the error reply.

krb_rd_err() unpacks a received krb_mk_err() message. in points to

the beginning of the received message, whose length is specified in in_length

. code is a pointer to a value to be filled in with the error value provided

by the application. msg_data is a pointer to a MSG_DAT struct, defined in
<kerberos/krb.h> . The routine fills in these MSG_DAT fields: the app_data
field with a pointer to the application error text, app_length with the length of the
app_data field, and swap with a 1 if the byte order of the receiver is different

Last modified 30 Dec 1996 Sun0OS 5.8 251

kerberos(3KRB)

FILES

ATTRIBUTES

SEE ALSO

NOTES

BUGS

AUTHORS

RESTRICTIONS

252

Kerberos Library Functions

than that of the sender. (The application must still determine if it is appropriate
to byte-swap application data; the Kerberos protocol fields are already taken
care of).

The routine returns zero if the error message has been successfully received, or a
Kerberos error code.

The KTEXT structure is used to pass around text of varying lengths. It consists of
a buffer for the data, and a length. krb_rd_req() takes an argument of this
type containing the authenticator, and krb_mk_req() returns the authenticator
in a structure of this type. KTEXT itself is really a pointer to the structure. The
actual structure is of type KTEXT_ST.

The AUTH_DAT structure is filled in by krb_rd_req() . It must be allocated
before calling krb_rd_req() , and a pointer to it is passed. The structure is
filled in with data obtained from Kerberos. The MSG_DAT structure is filled in
by either krb_rd_safe() or krb_rd_err() . It must be allocated before the
call and a pointer to it is passed. The structure is filled in with data obtained
from Kerberos.

Jusr/lib/libkrb.*
/etc/aname
letc/srvtab
/tmp/tkt

uid

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

kerberos (1), kerberos_rpc (3KRB), krb_realmofhost (3KRB) ,
krb_sendauth (3KRB), krb_set_tkt_string (3KRB) , krb.conf (4),
krb.realms (4), attributes (5)

These interfaces are unsafe in multithreaded applications. Unsafe interfaces
should be called only from the main thread.

The caller of krb_rd_req() and krb_rd_safe() must check time order and
for replay attempts.

Clifford Neuman, MIT Project Athena Steve Miller, MIT Project Athena/Digital
Equipment Corporation

COPYRIGHT 1985,1986,1989 Massachusetts Institute of Technology

Sun0S 5.8 Last modified 30 Dec 1996

Kerberos Library Functions kerberos_rpc(3KRB)

NAME

SYNOPSIS

DESCRIPTION

Routines

kerberos_rpc, authkerb_getucred, authkerb_seccreate, svc_kerb_reg - library
routines for remote procedure calls using Kerberos authentication

cc [flag ...] file ... =lkrb [library ...]
#include <rpc/rpc.h>
#include <sys/types.h>

int authkerb_getucred (const struct svc_req *rgst, uid_t *uidp, gid_t *gidp, short
*gidlenp, int gidlist [NGROUPS]));

AUTH *authkerb_seccreate (const char *service, const char *srv_inst, const char *realm,
const uint_t window, const char *timehost, int *status);

int svc_kerb_reg (const SVCXPRT *xprt, const char *name, const char *inst, const char
*realm);

RPC library routines allow C programs to make procedure calls on other
machines across the network.

RPC supports various authentication flavors. Among them are:
AUTH_NONE (none) no authentication.

AUTH_SYS Traditional UNIX-style authentication.
AUTH_DES DES encryption-based authentication.
AUTH_KERB Kerberos encryption-based authentication.

The authkerb_getucred() , authkerb_seccreate() , and
svc_kerb_reg() routines implement the AUTH_KERRBwthentication flavor.
The kerbd daemon (see kerbd (1M)) must be running for the AUTH_KERB
authentication system to work for kernel based services such as NFS, and
kinit (1) must have been run by the user in all cases. Only the AUTH_KERB
style of authentication is discussed here. For information about the AUTH_NONE
and AUTH_SY Sstyles of authentication, refer to rpc_cint_auth (3NSL)
. For information about the AUTH_DESstyle of authentication, refer to
secure_rpc (3NSL) .
See rpc (3NSL) for the definition of the AUTHdata structure.
int authkerb_getucred(const struct svc_req *rgst , uid_t *uidp , gid_t *gidp ,
short *gidlenp , int gidlist [NGROUPS]);
authkerb_getucred() is used on the server side for converting an
AUTH_KERRredential received in an RPC request, which is operating
system independent, into an AUTH_SYScredential. This routine returns 1
if it succeeds, O if it fails.

* uidp is set to the numerical ID of the user associated with the RPC request
referenced by rgst . * gidp is set to the numerical ID of the user’s group. The
numerical IDs of the other groups to which the user belongs are stored in

Last modified 20 Feb 1998 SunOS 5.8 253

kerberos_rpc(3KRB)

254

Kerberos Library Functions

gidlist []. * gidlenp is set to the number of valid group ID entries returned in
gidlist []. All information returned by this routine is based on the Kerberos
principal name contained in rgst . This principal name is taken to be the
login name of the user, and the IDs returned are the same as if that user had
physically logged in to the system.

AUTH *authkerb_seccreate(const char *service , const char *srv_inst , const char

*realm , const uint_t window , const char *timehost , int *status);
authkerb_seccreate() is used on the client side to return an
authentication handle that will enable the use of the Kerberos authentication
system. The first parameter service is the Kerberos principal name of the
service to be used. This name is generally a constant with respect to the
service being used. srv_instance is the instance of the service to be called, and
may be NULL to indicate any instance. realm is the Kerberos realm name of
the desired service. If it is NULL, then the local default realm will be used.

The fourth parameter is the window on the validity of the client credential,
given in seconds. If the difference in time between the client’s clock and the
server’s clock exceeds window , the server will reject the client’s credentials,
and the clock will have to be resynchronized. A small window is more
secure than a large one, but choosing too small of a window will increase
the frequency of resynchronizations because of clock drift.

The fifth parameter, timehost , is optional. If it is NULL, then the
authentication system will assume that the local clock is always in sync with
the timehost clock, and will not attempt resynchronizations. If a timehost is
supplied, however, then the system will consult with the remote time service
whenever resynchronization is required. This parameter is usually the name
of the host on which the server is running.

The final parameter status is also optional. If status is supplied, then it will
be used to return a Kerberos error status codes if an error occurs. If status is
NULL, then no detailed error codes will be returned.

If authkerb_seccreate() fails, it returns NULL.

int svc_kerb_reg(const SVCXPRT *xprt , const char *name , const char *inst ,

const char *realm);
svc_kerb_reg() performs registration tasks in the server which are
required before AUTH_KERBequests can be processed. xprt is the RPC
transport to which this information is to be associated. If xprt is NULL then
this registration will be effective for any requests arriving on transports that
have not been specifically registered. The service handles associated with
connection endpoints are not exposed to the programmer. Consequently,
xprt should be NULL for connection-oriented transports.

Sun0S 5.8 Last modified 20 Feb 1998

Kerberos Library Functions kerberos_rpc(3KRB)

The other parameters describe the Kerberos principal identity that this
server will take on. This must be the same identity that the clients will use
when requesting Kerberos tickets for authentication. name is the principal
name of the service and must be provided. inst is the instance. This
parameter may be NULL to specify the NULL instance of the service. Most
common would be for inst to be "*" which allows the Kerberos library to
determine the correct instance to use, such as the hostname that the service
is running on. realm is the Kerberos realm name to use in validating tickets.
If it is NULL, then the local default realm will be used.

svc_kerb_reg() should generally be called immediately before
svc_run() . Itreturns O if it succeeds, and -1 if it fails.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO kerberos (1), kinit (1), kerbd (1M), rpc (3NSL), rpc_cInt_auth (3NSL),
secure_rpc (3NSL), svc_run (3NSL) attributes (5)

NOTES These interfaces are unsafe in multithreaded applications. Unsafe interfaces
should be called only from the main thread.

Last modified 20 Feb 1998 Sun0S 5.8 255

krb_realmofhost(3KRB)

NAME

SYNOPSIS

DESCRIPTION

256

Kerberos Library Functions

krb_realmofhost, krb_get_phost, krb_get_krbhst, krb_get_admbhst,
krb_get_Irealm — additional Kerberos utility routines

cc [flag ...] file ... =lkrb [library ...]
#include <kerberos/krb.h>

#include <netinet/in.h>

char *krb_realmofhost (const char *host);

char *krb_get_phost (const char *alias);
int krb_get_krbhst (char *host, const char *realm, const int n);
int krb_get_admhst (char *host, const char *realm, const int n);

int krb_get_Irealm (char *realm, const int n);

krb_realmofhost() returns the Kerberos realm of the host host , as
determined by the translation table /etc/krb.realms . host should be the
fully-qualified domain-style primary host name of the host in question. In
order to prevent certain security attacks, this routine must either have a prior
knowledge of a host’s realm, or obtain such information securely.

The format of the translation file is described by krb.realms (4) . If host exactly
matches a host_name line, the corresponding realm is returned. Otherwise, if the
domain portion of host matches a domain_name line, the corresponding realm is
returned. If host contains a domain, but no translation is found, host ’s domain is
converted to upper-case and returned. If host contains no discernible domain, or
an error occurs, the local realm name, as supplied by krb_get_Irealm() ,

is returned.

krb_get_phost() converts the hostname alias (which can be either an
official name or an alias) into the instance name to be used in obtaining Kerberos
tickets for most services, including the Berkeley rcmd suite (rlogin, rcp, rsh).
The current convention is to return the first ssgment of the official domain-style
name after conversion to lower case.

krb_get_krbhst() fills in host with the hostname of the n th host running

a Kerberos key distribution center (KDC) for realm realm , as specified in the
configuration file (/etc/krb.conf or krb.conf NIS map). The configuration
format is described by krb.conf (4) . If the host is successfully filled in, the
routine returns KSUCCESS. If the file (or NIS map) cannot be accessed, and n
equals 1, then the hostname kerberos s filled in, and KSUCCESS is returned. If
there are fewer than n hosts running a Kerberos KDC for the requested realm, or
the configuration file is malformed, the routine returns KFAILURE.

When there is both a local /etc/krb.conf and a krb.conf NIS map, then
the entries are counted starting first with the local file, then continuing with the
NIS map. For example, if the local /etc/krb.conf file contains two entries

Sun0S 5.8 Last modified 30 Dec 1996

Kerberos Library Functions krb_realmofhost(3KRB)

ATTRIBUTES

SEE ALSO
FILES

NOTES

BUGS

which match realm , and the NIS map contains one matching entry, then there
are three possible matches that krb_get_krbhst() can return. The first
two (for n values 1 and 2) come from the file, and the third (for n equal to 3)
comes from the map.

krb_get_admhst() fills in host with the hostname of the n th host running a
Kerberos KDC database administration server for realm realm , as specified in
letc/krb.conf . If the file cannot be opened or is malformed, or there are
fewer than n hosts running a Kerberos KDC database administration server, the
routine returns KFAILURE.

The character arrays used as return values for krb_get_krbhst() and
krb_get_admhst() should be large enough to hold any hostname.

krb_get_Irealm() fills in realm with the n th realm of the local host, as
specified in the configuration file. realm should be at least REALM_SZ (from
<kerberos/krb.h>) characters long. The return value is either KSUCCESS
or KFAILURE.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

kerberos (3KRB), krb.conf (4), krb.realms (4), attributes (5)

letc/krb.realms translation file for host-to-realm mapping.
/etc/krb.conf local realm-name and realm/server configuration
file.

These interfaces are unsafe in multithreaded applications. Unsafe interfaces
should be called only from the main thread.

The current convention for instance names is too limited; the full domain name
should be used.

krb_get_Irealm() currently only supports n equal to 1. It should really
consult the user’s ticket cache to determine the user’s current realm, rather than
consulting a file on the host.

Last modified 30 Dec 1996 Sun0S 5.8 257

krb_sendauth(3KRB)

NAME

SYNOPSIS

DESCRIPTION

krb_sendauth()

258

Kerberos Library Functions

krb_sendauth, krb_recvauth, krb_net_write, krb_net_read — Kerberos routines
for sending authentication via network stream sockets

cc [flag ...] file ... =lkrb [library ...]

#include <kerberos/krb.h>

#include <netinet/in.h>

int krb_sendauth (const long options, const int fd, KTEXT ktext, const char *service, const
char *inst, const char *realm, const ulong_t checksum, MSG_DAT *msg_data, CREDENTIALS
*cred, Key_schedule schedule, const struct sockaddr_in *laddr, const struct sockaddr_in
*faddr, const char *version);

int krb_recvauth (const long options, const int fd, KTEXT ktext, const char *service,
char *inst, const struct sockaddr_in *faddr, const struct sockaddr_in *laddr, AUTH_DAT
*auth_data, const char *filename, Key_schedule schedule, char *version);

int krb_net_write (const int fd, const char *buf, const int len);

intkrb_net read (const int fd, char *buf, const int len);

These functions, which are built on top of the core Kerberos library, provide
a convenient means for client and server programs to send authentication
messages to one another through network connections.

The krb_sendauth() function sends an authenticated ticket from the client
program to the server program by writing the ticket to a network socket.

The krb_recvauth() function receives the ticket from the client by reading
from a network socket.

This function writes the ticket to the network socket specified by the file
descriptor fd , returning KSUCCESS if the write proceeds successfully, and
an error code if it does not.

The ktext argument should point to an allocated KTEXT_ST structure. The service
, inst, and realm arguments specify the server program’s Kerberos principal
name, instance, and realm. If you are writing a client that uses the local realm
exclusively, you can set the realm argument to NULL.

The version argument allows the client program to pass an application-specific
version string that the server program can then match against its own
version string. The version string can be up to KSEND_VNO_LEN (see
<kerberos/krb.h>) characters in length.

The checksum argument can be used to pass checksum information to the server
program. The client program is responsible for specifying this information. This
checksum information is difficult to corrupt because krb_sendauth() passes it
over the network in encrypted form. The checksum argument is passed as the
checksum argument to krb_mk_req() (see kerberos (3KRB)).

Sun0S 5.8 Last modified 30 Dec 1996

Kerberos Library Functions krb_sendauth(3KRB)

krb_sendauth()
and Mutual
Authentication

krb_recvauth()

You can set krb_sendauth() ’s other arguments to NULL unless you want the
client and server programs to mutually authenticate themselves. In the case of
mutual authentication, the client authenticates itself to the server program, and
demands that the server in turn authenticate itself to the client.

If you want mutual authentication, make sure that you read all pending data
from the local socket before calling krb_sendauth() . Set krb_sendauth()

’s options argument to KOPT_DO_MUTUAL (this macro is defined in
<kerberos/krb.h>); make sure that the laddr argument points to the address
of the local socket, and that faddr points to the foreign socket’s network address.

krb_sendauth() fills in the other arguments — msg_data , cred , and schedule —
before sending the ticket to the server program. You must, however, allocate
space for these arguments before calling the function.

krb_sendauth() supports two other options: KOPT_DONT_MK_REQ and
KOPT_DONT_CANON. If called with options set as KOPT_DONT_MK_REQ,
krb_sendauth() will not use the krb_mk_req() (see kerberos (3KRB))
function to retrieve the ticket from the Kerberos server. The ktext argument
must point to an existing ticket and authenticator (such as would be created by
krb_mk_req()), and the service, inst, and realm arguments can be set to NULL.

If called with options set as KOPT_DONT_CANON, krb_sendauth() will
not convert the service’s instance to canonical form using krb_get_phost()
(see krb_realmofhost (3KRB)).

If you want to call krb_sendauth() with a multiple options specification,
construct options as a bitwise-OR of the options you want to specify.

The krb_recvauth() function reads a ticket/authenticator pair from the socket
pointed to by the fd argument. Set the options argument as a bitwise-OR of the
options desired. Currently only KOPT_DO_MUTUAL is useful to the receiver.

The ktext argument should point to an allocated KTEXT_ST structure.
krb_recvauth() fills ktext with the ticket/authenticator pair read from fd ,
then passes it to krb_rd_req() (see kerberos (3KRB)).

The service and inst arguments specify the expected service and instance for
which the ticket was generated. They are also passed to krb_rd_req() (see
kerberos (3KRB)). The inst argument may be set to "*" if the caller wishes
krb_mk_req() (see kerberos (3KRB)) to fill in the instance used (note that
there must be space in the inst argument to hold a full instance name, see
krb_mk_req() on kerberos (3KRB)).

The faddr argument should point to the address of the peer which is presenting
the ticket. It is also passed to krb_rd_req() (see kerberos (3KRB)).

Last modified 30 Dec 1996 Sun0S 5.8 259

krb_sendauth(3KRB) Kerberos Library Functions

If the client and server plan to mutually authenticate one another, the laddr
argument should point to the local address of the file descriptor. Otherwise
you can set this argument to NULL.

The auth_data argument should point to an allocated AUTH_DAT area. It

is passed to and filled in by krb_rd_req() (see kerberos (3KRB)). The
checksum passed to the corresponding krb_sendauth() is available as part of
the filled-in AUTH_DAT area.

The filename argument specifies the filename which the service program

should use to obtain its service key. krb_recvauth() passes filename to the
krb_rd_req() function, see kerberos (3KRB), If you set this argument to ",
krb_rd_req() looks for the service key in the file /etc/srvtab

If the client and server are performing mutual authentication, the schedule
argument should point to an allocated Key_schedule. Otherwise it is ignored
and may be NULL.

The version argument should point to a character array of at least
KSEND_VNO_LEN characters. It is filled in with the version string passed
by the client to krb_sendauth()

krb_net_write() and The krb_net_write() function emulates the write (2) system call, but
krb_net_read() guarantees that all data specified is written to fd before returning, unless
an error condition occurs.

The krb_net_read() function emulates the read (2) system call, but
guarantees that the requested amount of data is read from fd before returning,
unless an error condition occurs.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

SEE ALSO read (2) , write (2) , kerberos (3KRB) , kerberos_rpc (3KRB) ,
krb_realmofhost (3KRB) , attributes (5)

NOTES These interfaces are unsafe in multithreaded applications. Unsafe interfaces
should be called only from the main thread.

BUGS krb_sendauth() , krb_recvauth() , krb_net_write() , and
krb_net_read() will not work properly on sockets set to non-blocking 1/0
mode.

AUTHOR John T. Kohl, MIT Project Athena

260 Sun0S 5.8 Last modified 30 Dec 1996

Kerberos Library Functions krb_sendauth(3KRB)

RESTRICTIONS Copyright 1988, Massachusetts Institute of Technology. For
copying and distribution information, please see the header
<kerberos/mit-copyright.h>.

Last modified 30 Dec 1996 Sun0S 5.8 261

krb_set_tkt_string(3KRB) Kerberos Library Functions

NAME
SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO
NOTES

262

krb_set_tkt_string — set Kerberos ticket cache file name

cc [flag ...] file ... =lkrb [library ...]
#include <kerberos/krb.h>

void krb_set_tkt_string (const char *filename);

krb_set_tkt_string() sets the name of the file that holds the user’s cache of
Kerberos server tickets and associated session keys.

The string filename passed in is copied into local storage. Only MAXPATHLEN-1
(see <sys/param.h>) characters of the filename are copied in for use as the
cache file name.

This routine should be called during initialization, before other Kerberos routines
are called; otherwise the routines which fetch the ticket cache file name may be
called and return an undesired ticket file name until this routine is called.

/tmp/tkt uid default ticket file name, unless the environment
variable KRBTKFILE is set. uid denotes the user’s
uid, in decimal.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

kerberos (3KRB), attributes (5)

This interface is unsafe in multithreaded applications. Unsafe interfaces should
be called only from the main thread.

Sun0S 5.8 Last modified 30 Dec 1996

LDAP Library Functions Idap(3LDAP)

NAME

SYNOPSIS

DESCRIPTION

Search Filters

Displaying Results

Uniform Resource
Locators (URLS)

Idap - Lightweight Directory Access Protocol package

ccl[flag...] file... -lldap[library...]
#include <lber.h>
#include <ldap.h>

The Lightweight Directory Access Protocol provides TCP/IP access to the X.500
Directory or to a stand-alone LDAP server. The SUNWIIdap package includes
various LDAP clients and an LDAP client library used to provide programmatic
access to the LDAP protocol. This man page gives an overview of the LDAP
library functions.

Both synchronous and asynchronous APIs are provided. Also included are
various functions to parse the results returned from these functions. These
functions are found in the libldap.so0.3 shared object.

The basic interaction is as follows. A connection is made to an LDAP server
by calling Idap_open (3LDAP). An LDAP bind operation is performed by
calling one of Idap_bind (3LDAP) and friends. Next, other operations are
performed by calling one of the synchronous or asynchronous functions (for
example, Idap_search_s (3LDAP) or Idap_search (3LDAP) followed by
I[dap_result (3LDAP)). Results returned from these functions are interpreted
by calling the LDAP parsing functions. The LDAP association is terminated
by calling Idap_unbind (3LDAP). Errors can be interpreted by calling
Idap_perror (3LDAP). The Idap_set_rebind_proc (BLDAP) function can
be used to set a function to be called back when an LDAP bind operation needs
to occur when handling a client referral.

Search filters to be passed to the Idap search functions can be constructed by
hand, or by calling the Idap_getffilter (BLDAP) functions.

Results obtained from the Idap search functions can be output by hand, by
calling Idap_first_entry (3LDAP) and Idap_next_entry (3LDAP) to
step through the entries returned, Idap_first_attribute (3LDAP) and
I[dap_next_attribute (BLDAP) to step through an entry’s attributes, and
ldap_get values (3LDAP) to retrieve a given attribute’s value, and then
calling printf (3C) or whatever to display the values.

Alternatively, the entry can be output automatically by calling the
Idap_entry2text (BLDAP), Idap_entry2text_search (3LDAP),
Idap_entry2html (BLDAP), or Idap_entry2html_search (3LDAP)
functions. These functions look up the object class of the entry they are passed in
the Idaptemplates.conf (4) file to decide which attributes to display and how
to display them. Output is handled via a function passed in as a parameter.

The Idap_url (3LDAP) functions can be used test a URL to see if it is an LDAP
URL, to parse LDAP URLs into their component pieces, to initiate searches

Last modified 25 May 1998 Sun0S 5.8 263

Idap(3LDAP)

User Friendly
Naming

Caching

Utility Functions

Connectionless
Access

BER Library

Index

264

LDAP Library Functions

directly using an LDAP URL, and to retrieve the URL associated with a DNS
domain name or a distinguished name.

The Idap_ufn (3LDAP) functions implement a user friendly naming scheme
via LDAP. This scheme allows you to look up entries using fuzzy, untyped
names like "mark smith, umich, us".

The Idap_cache (3LDAP) functions implement a local client caching scheme,
providing a substantial performance increase for repeated queries.

Also provided are various utility functions. The Idap_sort (3LDAP) functions
are used to sort the entries and values returned via the Idap search functions.
The Idap_friendly (BLDAP) functions are used to map from short two

letter country codes (or other strings) to longer "friendlier" names. The
Idap_charset (3LDAP) functions can be used to translate to and from the T.61
character set used for many character strings in the LDAP protocol.

The cldap_search_s (3LDAP) function allows you to access the directory

via Connectionless LDAP (CLDAP), which is similar to LDAP but operates
over UDP, obviating the need to set up and tear down a connection by calling
Idap_open (3LDAP), Idap_bind (3LDAP), and Idap_unbind (3LDAP).
cldap_open (3LDAP) should be called before using cldap_search_s (3LDAP).
All the same getfilter, parsing, and display that can be used with regular LDAP
functions can be used with the CLDAP functions.

Also included in the distribution is a set of lightweight Basic Encoding Rules
functions. These functions are used by the LDAP library functions to encode
and decode LDAP protocol elements using the (slightly simplified) Basic
Encoding Rules defined by LDAP. They are not normally used directly by
an LDAP application program. The functions provide a printf and scanf-like
interface, as well as lower-level access.

Idap_open (3LDAP) open a connection to an LDAP
server

I[dap_init (SLDAP) initialize the LDAP library
without opening a connection
to a server

I[dap_result (3LDAP) wait for the result from an
asynchronous operation

Idap_abandon (3LDAP) abandon (abort) an
asynchronous operation

Idap_add (3LDAP) asynchronously add an entry

ldap_add_s (3LDAP) synchronously add an entry

Sun0S 5.8 Last modified 25 May 1998

LDAP Library Functions

Idap_bind (3LDAP)

Idap_simple_bind

Idap_simple_bind_s

Idap_enable_cache
Idap_disable_cache

Idap_destroy_cache

Idap_flush_cache

I[dap_uncache_entry

Idap_compare_ext

Last modified 25 May 1998

Idap_uncache_request
Idap_set_cache_options

Idap_compare (3LDAP)

Idap_add_ext (3LDAP)

ldap_add_ext_ s (3LDAP)

[dap_bind_s (3LDAP)

(3LDAP)

(3LDAP)

[dap_unbind (3LDAP)

[dap_unbind_s (3LDAP)

(3LDAP)
(3LDAP)
(3LDAP)

(3LDAP)
(3LDAP)

ldap_compare_s (3LDAP)

(3LDAP)

(3LDAP)
(3LDAP)

Sun0S 5.8

Idap(3LDAP)

asynchronously add an entry,
return value and place message

synchronously add an entry,
return value and place message

asynchronously bind to the
directory

synchronously bind to the
directory

asynchronously bind to
the directory using simple
authentication

synchronously bind to the
directory using simple
authentication

synchronously unbind from the
LDAP server and close the
connection

equivalent to
[dap_unbind (3LDAP)

enable LDAP client caching
disable LDAP client caching

disable LDAP client caching
and destroy cache contents

flush LDAP client cache

uncache requests pertaining
to an entry

uncache a request
set cache options

asynchronous compare to a
directory entry

synchronous compare to a
directory entry

asynchronous compare to a
directory entry, return value
and place message

265

Idap(3LDAP)

266

ldap_compare_ext_ s (3LDAP)

Idap_control_free (3LDAP)
Idap_controls_free (3LDAP)
Idap_delete (3LDAP)
ldap_delete_s (3LDAP)
ldap_delete_ext (3LDAP)

ldap_delete_ext_s (BLDAP)

Idap_init_templates (3LDAP)

Idap_init_templates_buf (3LDAP)

ldap_free_templates (3LDAP)

Idap_first_reference (3LDAP)

Idap_count_references (3LDAP)

Idap_first_message (3LDAP)

Idap_count_messages (3LDAP)

[dap_next_message (3LDAP)

Idap_msgtype (3LDAP)

Idap_first_disptmpl (3LDAP)

Sun0S 5.8

LDAP Library Functions

synchronous compare to a
directory entry, return value
and place message

LDAP control disposal

LDAP control disposal
asynchronously delete an entry
synchronously delete an entry

asynchronously delete an entry,
return value and place message

synchronously delete an entry,
return value and place

initialize display template
functions from a file

initialize display template
functions from a buffer

free display template function
memory

steps through
I[dap_result (3LDAP)
message chain

counts the messages in an
I[dap_result (3LDAP)
message chain

steps through
I[dap_result (3LDAP)
message chain

counts the messages in an
I[dap_result (3LDAP)
message chain

steps through
I[dap_result (3LDAP)
message chain

returns the type of LDAP
message

get first display template

Last modified 25 May 1998

LDAP Library Functions

Idap_tmplattrs

Idap_vals2text

Idap_vals2html

Idap_perror

Idap_errlist

Idap_err2string

Last modified 25 May 1998

Idap_entry2text_search

Idap_entry2html_search

Idap_next_disptmpl (3LDAP)
Idap_oc2template (3LDAP)

(3LDAP)

Idap_first_tmplrow (3LDAP)

[dap_next_tmplrow (3LDAP)

Idap_first_tmplcol (3LDAP)

Idap_next_tmplcol (3LDAP)

Idap_entry2text (3LDAP)

(3LDAP)

Idap_entry2html (3LDAP)

(3LDAP)
(3LDAP)

Id_errno (3LDAP)
Idap_result2error (3LDAP)

(3LDAP)

(3LDAP)

(3LDAP)

(3LDAP)

Sun0S 5.8

Idap(3LDAP)

get next display template

return template appropriate for
objectclass

return attributes needed by
template

return first row of displayable
items in a template

return next row of displayable
items in a template

return first column of
displayable items in a template

return next column of
displayable items in a template

display an entry as text using
a display template

search for and display an entry
as text using a display template

display values as text

display an entry as HTML
(HyperText Markup Language)
using a display template

search for and display an entry
as HTML using a display
template

display values as HTML

print an LDAP error indication
to standard error

LDAP error indication

extract LDAP error indication
from LDAP result

list of Idap errors and their
meanings

convert LDAP error indication
to a string

267

Idap(3LDAP)

268

Idap_first_attribute (BLDAP)

Idap_next_attribute (3LDAP)

Idap_first_entry (3LDAP)

ldap_next_entry (3LDAP)

Idap_count_entries (3LDAP)

Idap_friendly_name (3LDAP)

Idap_free_friendlymap (3LDAP)

ldap_get_dn (3LDAP)
Idap_explode_dn (3LDAP)

Idap_explode_dns (3LDAP)

ldap_is_dns_dn (3LDAP)

ldap_dns_to_dn (3LDAP)

[dap_dn2ufn (3LDAP)

ldap_get values (3LDAP)
ldap_get_values_len (3LDAP)

ldap_value_free (3LDAP)

ldap_value_free_len (3LDAP)

Idap_count_values (3LDAP)

Sun0S 5.8

LDAP Library Functions

return first attribute name
in an entry

return next attribute name
in an entry

return first entry in a chain of
search results

return next entry in a chain of
search results

return number of entries in a
search result

map from unfriendly to friendly
names

free resources used by
Idap_friendly (3N)

extract the DN from an entry

convert a DN into its
component parts

convert a DNS-style DN into its
component parts (experimental)

check to see if a DN is a
DNS-style DN (experimental)

convert a DNS domain name
into an X.500 distinguished
name

convert a DN into user friendly
form

return an attribute’s values

return an attribute values with
lengths

free memory allocated by |
ldap_get _values (3LDAP)

free memory allocated by
ldap_get_values_len (3LDAP)

return number of values

Last modified 25 May 1998

LDAP Library Functions

[dap_modify (3LDAP)

ldap_modify_s (3LDAP)

[dap_modify_ext (3LDAP)

Idap_modify_ext_s (3LDAP)

ldap_mods_free (3LDAP)

Idap_modrdn2 (3LDAP)

[dap_modrdn2_s (3LDAP)

Idap_modrdn (3LDAP)

[dap_modrdn_s (3LDAP)

Idap_rename (3LDAP)

Last modified 25 May 1998

Idap_count_values_len (3LDAP)

Idap_init_getfilter (3LDAP)
Idap_init_getfilter_buf (SLDAP)
ldap_getfilter_free (3LDAP)
Idap_getfirstfilter (3LDAP)
Idap_getnextfilter (3LDAP)
Idap_build_filter (3LDAP)
Idap_setffilteraffixes (3LDAP)

Sun0S 5.8

Idap(3LDAP)

return number of values

initialize getfilter functions
from a file

initialize getfilter functions
from a buffer

free resources allocated by
Idap_init_getfilter (3N)

return first search filter
return next search filter

construct an LDAP search filter
from a pattern

set prefix and suffix for search
filters

asynchronously modify an
entry

synchronously modify an entry

asynchronously modify an
entry, return value, place
message

synchronously modify an entry,
return value, place message

free array of pointers to mod
structures used by Idap_modify
(3N)

asynchronously modify the
RDN of an entry

synchronously modify the RDN
of an entry

depreciated - use Idap_modrdn2
(3N)

depreciated - use
Idap_modrdn2_s (3N)

asynchronously modify the
name of an LDAP entry

269

Idap(3LDAP)

270

Idap_rename_s (3LDAP)

Idap_msgfree (3LDAP)

Idap_parse_result

(3LDAP)

Idap_parse_extended_result

Idap_parse_sasl_bind_result

Idap_search (3LDAP)

Idap_search_s (3LDAP)

Idap_search_ext (3LDAP)

ldap_search_ext_s

(3LDAP)

ldap_search_st (3LDAP)

Idap_ufn_search_s

Idap_ufn_search_c

ldap_ufn_search_ct

Idap_ufn_setfilter

Idap_ufn_setprefix

Idap_ufn_timeout
Idap_is_Idap_url
Sun0S 5.8

(3LDAP)

(3LDAP)

(3LDAP)

(3LDAP)

(3LDAP)

(3LDAP)

(3LDAP)

(3LDAP)
(3LDAP)

LDAP Library Functions

synchronously modify the name
of an LDAP entry

free results allocated by
Idap_result (3N)

search for a message to parse
search for a message to parse
search for a message to parse

asynchronously search the
directory

synchronously search the
directory

asynchronously search the
directory, return value and
place message

synchronously search the
directory, return value and
place message

synchronously search the
directory with timeout

user friendly search the
directory

user friendly search the
directory with cancel

user friendly search the
directory with cancel and
timeout

set filter file used by Idap_ufn
(3N) functions

set prefix used by ldap_ufn
(3N) functions

set timeout used by Idap_ufn
(3N) functions

check a URL string to see if it
is an LDAP URL

Last modified 25 May 1998

LDAP Library Functions

Last modified 25 May 1998

Idap_url_parse (3LDAP)
Idap_url_search (3LDAP)
Idap_url_search_s (3LDAP)
Idap_url_search_st (3LDAP)
ldap_dns_to_url (3LDAP)
I[dap_dn_to_url (3LDAP)
Idap_init_searchprefs (3LDAP)

Idap_init_searchprefs_buf (3LDAP)
Idap_free_searchprefs (3LDAP)
Idap_first_searchobj (3LDAP)
Idap_next_searchobj (3LDAP)
Idap_sort_entries (3LDAP)
Idap_sort_values (3LDAP)
Idap_sort_strcasecmp (3LDAP)
Idap_set_string_translators (3LDAP)
Idap_translate_from_t61 (3LDAP)
Idap_translate_to_t61 (3LDAP)
Idap_enable_translation (3LDAP)
Sun0OS 5.8

Idap(3LDAP)

break up an LDAP URL string
into its components

asynchronously search using an
LDAP URL

synchronously search using an
LDAP URL

synchronously search using an
LDAP URL and a timeout

locate the LDAP URL associated
with a DNS domain name.

locate the LDAP URL associated
with a distinguished name.

initialize searchprefs functions
from a file

initialize searchprefs functions
from a buffer

free memory allocated by
searchprefs functions

return first searchpref object
return next searchpref object
sort a list of search results

sort a list of attribute values

case insensitive string
comparison

set character set translation
functions used by LDAP library

translate from the T.61 character
set to another character set

translate to the T.61 character
set from another character set

enable or disable character
translation for an LDAP entry
result

271

Idap(3LDAP) LDAP Library Functions

cldap_open (3LDAP) open a connectionless LDAP
(CLDAP) session

cldap_search_s (3LDAP) perform a search using
connectionless LDAP

cldap_setretryinfo (3LDAP) set retry and timeout
information using
connectionless LDAP

cldap_close (3LDAP) terminate a connectionless
LDAP session

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWIIdap (32-bit)
SUNWIdapx (64-bit)

Stability Level Evolving

272 Sun0S 5.8 Last modified 25 May 1998

LDAP Library Functions Idap_abandon(3LDAP)

NAME
SYNOPSIS

DESCRIPTION

ERRORS

ATTRIBUTES

SEE ALSO

Idap_abandon — abandon an LDAP operation in progress

cc[flag...] file... -lldap[library...]

#include <Iber.h>
#include <ldap.h>
int Idap_abandon (LDAP *Id, int msgid);

The ldap_abandon() function is used to abandon or cancel an LDAP operation
in progress. The msgid passed should be the message id of an outstanding LDAP
operation, as returned by Idap_search (3LDAP), Idap_modify (3LDAP), etc.

Idap_abandon () checks to see if the result of the operation has already come
in. If it has, it deletes it from the queue of pending messages. If not, it sends an
LDAP abandon operation to the the LDAP server.

The caller can expect that the result of an abandoned operation will not be
returned from a future call to I[dap_result ~ (3LDAP).

Idap_abandon() returns O if successful or —1otherwise and setting Id_errno
appropriately. See Idap_error (3LDAP) for details.

See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWIIdap (32-bit)
SUNWIdapx (64-bit)

Stability Level Evolving

Idap(3N), Idap_result(3N), Idap_error(3N)

Last modified 25 May 1998 Sun0S 5.8 273

Idap_add(3LDAP)

NAME

SYNOPSIS

DESCRIPTION

ERRORS

ATTRIBUTES

274

LDAP Library Functions

Idap_add, ldap_add_s, Idap_add_ext, Idap_add_ext_s — perform an LDAP
add operation

cc[flag...] file... -lldap[library...]

#include <Iber.h>
#include <ldap.h>
intidap_add (LDAP *Id, char *dn, LDAPMod *attrs []);

intidap_add_s (LDAP *Id, char *dn, LDAPMod *attrs []);

intldap_add_ext (LDAP *Id, char *dn, LDAPMod **attrs, LDAPControl **serverctrls,
int * msgidp);

intldap_add_ext_ s (LDAP *Id, char *dn, LDAPMod **attrs, LDAPControl **serverctrls,
LDAPControl **clientctrls);

The Idap_add_s() function is used to perform an LDAP add operation. It
takes dn , the DN of the entry to add, and attrs, a null-terminated array of the
entry’s attributes. The LDAPMod structure is used to represent attributes,
with the mod_type and mod_values fields being used as described under
Idap_modify (3LDAP), and the Idap_op field being used only if you need to
specify the LDAP_MOD_BVALUESption. Otherwise, it should be set to zero.

Note that all entries except that specified by the last component in the given
DN must already exist. [dap_add_s() returns an LDAP error code indicating
success or failure of the operation. See Idap_error (3LDAP) for more details.

The Idap_add() function works just like [dap_add_s() , butitis
asynchronous. It returns the message id of the request it initiated. The result of
this operation can be obtained by calling [dap_result ~ (3LDAP) .

The |dap_add_ext() function initiates an asynchronous add operation and
returns LDAP_SUCCESH the request was successfully sent to the server, or else
it returns a LDAP error code if not (see Idap_error (3LDAP)). If successful,
Idap_add_ext() places the message id of *msgidp . A subsequent call to
Idap_result() , can be used to obtain the result of the add request.

The Idap_add_ext_s() function initiates a synchronous add operation and
returns the result of the operation itself.

ldap_add() returns -1 in case of error initiating the request, and will set the
Id_errno field in the Id parameter to indicate the error. Idap_add_s() will
return an LDAP error code directly (LDAP_SUCCESH everything went ok,
an error otherwise).

See attributes (5) for a description of the following attributes:

Sun0S 5.8 Last modified 25 May 1998

LDAP Library Functions Idap_add(3LDAP)

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWIIdap (32-bit)
SUNWIdapx (64-bit)

Stability Level Evolving

SEE ALSO ldap (BLDAP),Idap_error (3LDAP), Idap_modify (3LDAP)

Last modified 25 May 1998 Sun0S 5.8 275

Idap_bind(3LDAP)

NAME

SYNOPSIS

DESCRIPTION

Simple
Authentication

General
Authentication

276

LDAP Library Functions

Idap_bind, Idap_bind_s, Idap_sasl_bind, Idap_sasl_bind_s, Idap_simple_bind,
Idap_simple_bind_s, Idap_unbind, Idap_unbind_s, Idap_set_rebind_proc -
LDAP bind functions

cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>
intldap_bind (LDAP *Id, char *who, char *cred, int method);

intldap_bind_s (LDAP *Id, char *who, char *cred, int method);
int Idap_simple_bind (LDAP *Id, char *who, char *passwd);
int Idap_simple_bind_s (LDAP *Id, char *who, char *passwd);
int Idap_unbind (LDAP *Id);

intIdap_unbind_s (LDAP *Id);

void Idap_set_rebind_proc (LDAP *Id, int (*rebindproc);

int Idap_sasl_bind (LDAP *Id, char *dn, char *mechanism, struct berval *cred,
LDAPControl **serverctrls, LDAPControl **clientctrls, int *msgidp);

int Idap_sasl_bind_s (LDAP *Id, char *dn, char *mechanism, struct berval *cred,
LDAPControl **serverctrls, LDAPControl **clientctrls);

These functions provide various interfaces to the LDAP bind operation. After a
connection is made to an LDAP server using Idap_open (3LDAP), an LDAP
bind operation must be performed before other operations can be attempted
over the conection. Both synchronous and asynchronous versions of each
variant of the bind call are provided. There are three types of calls, providing
simple authentication, kerberos authentication, and general functions to do
either one. All functions take Id as their first parameter, as returned from
Idap_open (3LDAP).

The simplest form of the bind call is [dap_simple_bind_s (). It takes the
DN to bind as in who, and the userPassword associated with the entry in
passwd . It returns an LDAP error indication (see [dap_error (3LDAP)). The
Idap_simple_bind() call is asynchronous, taking the same parameters but
only initiating the bind operation and returning the message id of the request
it sent. The result of the operation can be obtained by a subsequent call to
[dap_result (3LDAP) .

The Idap_bind() and Idap_bind_s() functions can be used when the
authentication method to use needs to be selected at runtime. They both take an
extra method parameter selecting the authentication method to use. It should

be set to LDAP_AUTH_SIMPLHo select simple authentication. Idap_bind()

Sun0S 5.8 Last modified 25 May 1998

LDAP Library Functions Idap_bind(3LDAP)

Unbinding

Re-Binding While
Following Referral

RETURN VALUES

ERRORS

returns the message id of the request it initiates. |dap_bind_s() returns
an LDAP error indication.

The Idap_sasl_bind() and Idap_sasl_bind_s() functions are used for
general and extensible authentication over LDAP through the use of the Simple
Authentication Security Layer. The routines both take the dn to bind as, the
method to use, as a dotted-string representation of an OID identifying the
method, and a struct berval holding the credentials. The special constant value
LDAP_SASL_SIMPLE("") can be passed to request simple authentication, or

the simplified routines Idap_simple_bind() or Idap_simple_bind_s()

can be use.

The Idap_unbind() call is used to unbind from the directory, terminate the
current association, and free the resources contained in the Id structure. Once it
is called, the connection to the LDAP server is closed, and the Id structure is
invalid. The Idap_unbind_s() call is just another name for Idap_unbind()

; both of these calls are synchronous in nature.

The |dap_set_rebind_proc() call is used to set a function that will be called
back to obtain bind credentials used when a new server is contacted during the
following of an LDAP referral. Note that this function is only available when the
LDAP libraries are compiled with LDAP_REFERRALSefined and is only used
when the Id_options field in the LDAP structure has LDAP_OPT_REFERRALS
set (this is the default). If Idap_set_rebind_proc() is never called, or if it

is called with a NULL rebindproc parameter, an unauthenticated simple LDAP
bind will always be done when chasing referrals.

rebindproc should be a function that is declared like this:

int rebindproc(LDAP *Id, char **whop, char **credp,
int *methodp, int freeit);

The LDAP library will first call the rebindproc to obtain the referral bind
credentials, and the freeit parameter will be zero. The whop , credp , and methodp
should be set as appropriate. If the rebindproc returns LDAP_SUCCESSreferral
processing continues, and the rebindproc will be called a second time with
freeit non-zero to give your application a chance to free any memory allocated
in the previous call.

If anything but LDAP_SUCCESS$ returned by the first call to the rebindproc,
then referral processing is stopped and that error code is returned for the
original LDAP operation.

A call to Idap_result (3LDAP), can be used to obtain the result of the bind
operations.

Asynchronous functions will return -1 in case of error, setting the Id_errno
parameter of the Id structure. Synchronous functions return whatever Id_errno is

Last modified 25 May 1998 Sun0S 5.8 277

Idap_bind(3LDAP) LDAP Library Functions

set to. See Idap_error (3LDAP) for more information. If no credentials are
returned the result parameter is set to NULL.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWIIdap (32-bit)
SUNWIdapx (64-bit)

Stability Level Evolving

SEE ALSO Idap (BLDAP),Idap_error (3LDAP), Idap_open (3LDAP)

278 Sun0S 5.8 Last modified 25 May 1998

LDAP Library Functions Idap_cache(3LDAP)

NAME

SYNOPSIS

DESCRIPTION

Idap_cache, Idap_enable_cache, Idap_disable_cache, Idap_destroy_cache,
Idap_flush_cache, ldap_uncache_entry, Idap_uncache_request,
Idap_set_cache_options — LDAP client caching functions

cc[flag...] file... -lldap[library...]

#include <Iber.h>
#include <ldap.h>
Idap_enable_cache (LDAP *Id, long timeout, long maxmem);

void Idap_disable_cache (LDAP *Id);

void Idap_destroy_cache (LDAP *Id);

void Idap_flush_cache (LDAP *Id);

void Idap_uncache_entry ~ (LDAP *Id, char *dn);
void Idap_uncache_request (LDAP *Id, int msgid);

void Idap_set_cache_options (LDAP *Id, unsigned long opts);

These functions are used to control the behavior of client caching

of Idap_search (3LDAP), cldap_search_s (3LDAP), and

Idap_compare (3LDAP) operations. By default, the cache is disabled and no
caching is done. Enabling the cache can greatly improve performance and reduce
network bandwidth when a client DUA makes repeated requests.

Idap_enable_cache() should be called to turn on local caching or to change
cache parameters (lifetime of cached requests and memory used). The Id
parameter should be the result of a successful call to Idap_open (3LDAP) . The
timeout is specified in seconds, and is used to decide how long to keep cached
requests. The maxmem value is in bytes, and is used to set an upper bound on
how memory the cache will use. You can specify 0 for maxmem to restrict the
cache size by the timeout only. The first call to Idap_enable_cache creates the
cache; subsequent calls re-enable the cache and set the timeout and memory
values.

Idap_disable_cache() temporarily disables use of the cache (new requests
are not cached and the cache is not checked when returning results). It does
not delete the cache contents.

Idap_destroy_cache() turns off caching and completely removes the cache
from memory.

Idap_flush_cache() deletes the cache contents, but does not effect it in
any other way.

Last modified 25 May 1998 Sun0S 5.8 279

Idap_cache(3LDAP)

ERRORS

ATTRIBUTES

SEE ALSO

280

LDAP Library Functions

Idap_uncache_entry() removes all requests that make reference to the
distinguished name dn from the cache. It should be used, for example, after
doing an Idap_maodify (3LDAP) call involving dn .

Idap_uncache_request() removes the request indicated by the LDAP
request id msgid from the cache.

ldap_set_cache_options() is used to change caching behavior. The current
supported options are LDAP_CACHE_OPT_CACHENOER®&Suppress caching of
any requests that result in an error, and LDAP_CACHE_OPT_CACHEALLERRS
to enable caching of all requests. The default behavior is to not cache

requests that result in errors, except that request that result in the error
LDAP_SIZELIMIT_EXCEEDEDare cached.

Idap_enable_cache() returns O upon success, and -1 if it is unable to
allocate space for the cache. All the other calls are declared as void and return
nothing.

See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWIIdap (32-bit)
SUNWIdapx (64-bit)

Stability Level Evolving

Idap (3LDAP), Idap_search (3LDAP), Idap_compare (3LDAP),
cldap_search_s (3LDAP)

Sun0S 5.8 Last modified 25 May 1998

LDAP Library Functions Idap_charset(3LDAP)

NAME

SYNOPSIS

DESCRIPTION

Idap_charset, Idap_set_string_translators, Idap_t61_to_ 8859, Idap_8859 to_t61,
Idap_translate_from_t61, Idap_translate_to_t61, Idap_enable_translation - LDAP
character set translation functions

cc[flag...] file... -lldap[library...]

#include <Iber.h>

#include <ldap.h>

void Idap_set_string_translators (LDAP *Id, BERTranslateProc encode_proc,
BERTranslateProc decodeproc);

typedef int (*BERTranslateProc)(char **bufp, unsigned long *buflenp, int free_input);
intldap_t61 to 8859 (char **bufp, unsigned long *buflenp, int free_input);

intldap_8859 to t61 (char **bufp, unsigned long *buflenp, int free_input);

int Idap_translate_from_t61 (LDAP *Id, char **bufp, unsigned long *lenp, int
free_input);

int [dap_translate_to_t61 (LDAP *Id, char **bufp, unsigned long *lenp, int free_input);
void Idap_enable_translation (LDAP *Id, LDAPMessage *entry, int enable);

These functions are used to used to enable translation of character strings used in
the LDAP library to and from the T.61 character set used in the LDAP protocol.
These functions are only available if the LDAP and LBER libraries are compiled
with STR_TRANSLATIONdefined. It is also possible to turn on character
translation by default so that all LDAP library callers will experience translation;
see the LDAP Make-common source file for details.

Idap_set_string_translators() sets the translation functions that will be
used by the LDAP library. They are not actually used until the Id_Iberoptions field
of the LDAP structure is set to include the LBER_TRANSLATE_STRINGSption.

ldap_t61 to_8859() and Idap_8859 to_t61() are translation functions
for converting between T.61 characters and 1SO-8859 characters. The specific
8859 character set used is determined at compile time.

Idap_translate_from_t61() is used to translate a string of characters
from the T.61 character set to a different character set. The actual translation

is done using the decode_proc that was passed to a previous call to
Idap_set_string_translators(). On entry, *bufp should point to the
start of the T.61 characters to be translated and *lenp should contain the number
of bytes to translate. If free_input is non-zero, the input buffer will be freed if
translation is a success. If the translation is a success, LDAP_SUCCES®Vvill be
returned, *bufp will point to a newly malloc’d buffer that contains the translated
characters, and *lenp will contain the length of the result. If translation fails, an
LDAP error code will be returned.

Last modified 25 May 1998 Sun0S 5.8 281

Idap_charset(3LDAP)

282

ATTRIBUTES

SEE ALSO

LDAP Library Functions

Idap_translate_to_t61() is used to translate a string of characters to
the T.61 character set from a different character set. The actual translation
is done using the encode_proc that was passed to a previous call to
Idap_set_string_translators(). This function is called just like
Idap_translate_from_t61().

Idap_enable_translation() is used to turn on or off string translation for
the LDAP entry entry (typically obtained by calling Idap_first_entry() or
Idap_next_entry() after a successful LDAP search operation). If enable is
zero, translation is disabled; if non-zero, translation is enabled. This function is
useful if you need to ensure that a particular attribute is not translated when

it is extracted using Idap_get_values() or |[dap_get_values_len()

. For example, you would not want to translate a binary attributes such as
jpegPhoto

See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWIIdap (32-bit)
SUNWIdapx (64-bit)

Stability Level Evolving

Idap (3LDAP)

Sun0S 5.8 Last modified 25 May 1998

LDAP Library Functions Idap_compare(3LDAP)

NAME

SYNOPSIS

DESCRIPTION

ERRORS

ATTRIBUTES

Idap_compare, ldap_compare_s, ldap_compare_ext, Idap_compare_ext_s —
LDAP compare operation

cc[flag...] file... -lldap[library...]

#include <Iber.h>
#include <ldap.h>
int Idap_compare (LDAP *Id, char *dn, char *attr, char *value);

int Idap_compare_s (LDAP *Id, char *dn, char *attr, char *value);

intldap_compare_ext (LDAP *Id, char *dn, char *attr, struct berval *bvalue, LDAPControl
**serverctrls, LDAPControl **clientctrls, int *msgidp);

int Idap_compare_ext_ s (LDAP *Id, char *dn, char *attr, struct berval *bvalue,
LDAPControl **serverctrls, LDAPControl **clientctrls);

The Idap_compare_s() function is used to perform an LDAP compare
operation synchronously. It takes dn, the DN of the entry upon which to
perform the compare, and attr and value , the attribute type and value to
compare to those found in the entry. It returns an LDAP error code, which
will be LDAP_COMPARE_TRU#Ethe entry contains the attribute value and
LDAP_COMPARE_FALSEit does not. Otherwise, some error code is returned.

The Ildap_compare() function is used to perform an LDAP compare operation
asynchronously. It takes the same parameters as I[dap_compare_s() , but
returns the message id of the request it initiated. The result of the compare can
be obtained by a subsequent call to Idap_result (3LDAP) .

The Idap_compare_ext() function initiates an asynchronous compare
operation and returns LDAP_SUCCESH the request was successfully sent to the
server, or else it returns a LDAP error code if not (see Idap_error (3LDAP) .

If successful, Idap_compare_ext() places the message id of the request in
*msgidp . A subsequent call to Idap_result() , can be used to obtain the result
of the add request.

The Idap_compare_ext_s() function initiates a synchronous compare
operation and as such returns the result of the operation itself.

Idap_compare_s() returns an LDAP error code which can be interpreted by
calling one of [dap_perror (3LDAP) and friends. Idap_compare() returns

-1 if something went wrong initiating the request. It returns the non-negative

message id of the request if it was successful.

See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWIIdap (32-bit)

Last modified 25 May 1998 Sun0S 5.8 283

Idap_compare(3LDAP) LDAP Library Functions

SUNWIdapx (64-bit)

Stability Level Evolving

SEE ALSO Idap (BLDAP),Idap_error (3LDAP)

BUGS There is no way to compare binary values but there should be.

284 Sun0S 5.8 Last modified 25 May 1998

LDAP Library Functions Idap_control_free(3LDAP)

NAME Idap_control_free, Idap_controls_free — LDAP control disposal
SYNOPSIS cc[flag...] file... -lldap[library...]

#include <Iber.h>
#include <ldap.h>
void Idap_control_free (LDAPControl *ctrl);

void Idap_controls_free (LDAPControl *ctrls);

DESCRIPTION Idap_controls_free() and Idap_control_free() are routines which
can be used to dispose of a single control or an array of controls allocated by
other LDAP APIs.

RETURN VALUES None.
ERRORS No errors are defined for these functions.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWIIdap (32-bit)
SUNWIdapx (64-bit)

Stability Level Evolving

SEE ALSO Idap_error (3LDAP), Idap_result (3LDAP), attributes (5)

Last modified 25 May 1998 Sun0S 5.8 285

Idap_delete(3LDAP) LDAP Library Functions

NAME Idap_delete, Idap_delete_s, Idap_delete_ext, Idap_delete_ext_s — LDAP delete
operation

SYNOPSIS cc[flag...] file... -lldap[library...]

#include <Iber.h>
#include <ldap.h>
int Idap_delete (LDAP *Id, char *dn);

intldap_delete_s (LDAP *Id, char *dn);

int Idap_delete_ext (LDAP *Id, char *dn, LDAPControl **serverctrls, LDAPControl
**clientctrls, int *msgidp);

int [dap_delete_ext_s (LDAP *Id, char *dn, LDAPControl **serverctrls, LDAPControl
**clientctrls);

DESCRIPTION The |dap_delete_s() function is used to perform an LDAP delete operation
synchronously. It takes dn , the DN of the entry to be deleted. It returns an LDAP
error code, indicating the success or failure of the operation.

The Idap_delete() function is used to perform an LDAP delete operation
asynchronously. It takes the same parameters as Idap_delete_s() , but
returns the message id of the request it initiated. The result of the delete can be
obtained by a subsequent call to I[dap_result (3LDAP) .

The |dap_delete_ext() function initiates an asynchronous delete operation
and returns LDAP_SUCCESH the request was successfully sent to the server,

or else it returns a LDAP error code if not (see I[dap_error (3LDAP)). If
successful, Idap_delete_ext() places the message id of the request in
*msgidp . A subsequent call to Idap_result() , can be used to obtain the result
of the add request.

The |dap_delete_ext_s() function initiates a synchronous delete operation
and as such returns the result of the operation itself.

ERRORS Idap_delete_s() returns an LDAP error code which can be interpreted by
calling one of Idap_perror (3LDAP) functions. Idap_delete() returns -1
if something went wrong initiating the request. It returns the non-negative
message id of the request if things were successful.

ATTRIBUTES See attributes (5) for a description of the following attributes:
ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWIIdap (32-bit)

SUNWIdapx (64-bit)

Stability Level Evolving

286 Sun0S 5.8 Last modified 25 May 1998

LDAP Library Functions Idap_delete(3LDAP)

SEE ALSO Idap (3LDAP), Idap_error (3LDAP)

Last modified 25 May 1998 Sun0S 5.8 287

Idap_disptmpl(3LDAP)

NAME

SYNOPSIS

DESCRIPTION

288

LDAP Library Functions

Idap_disptmpl, Idap_init_templates, Idap_init_templates_buf,
Idap_free_templates, Idap_first_disptmpl, Idap_next_disptmpl,
Idap_oc2template, Idap_tmplattrs, Idap_first_tmplrow, ldap_next_tmplrow,
Idap_first_tmplcol, Idap_next_tmplcol - LDAP display template functions

cc[flag...] file... -lldap[library...]

#include <lber.h>
#include <ldap.h>

int I[dap_init_templates (char *file, struct Idap_disptmpl **tmpllistp);
int Idap_init_templates_buf (char *buf, unsigned long len, struct Idap_disptmpl
**tmpllistp);

void Idap_free_templates (struct Idap_disptmpl *tmpllist);
struct Idap_disptmpl *Idap_first_disptmpl (struct Idap_disptmpl *tmpllist);

struct Idap_disptmpl *Idap_next_disptmpl (struct Idap_disptmpl *tmpllist, struct
Idap_disptmpl *tmpl);

struct Idap_disptmpl *Idap_oc2template (char **oclist, struct Idap_disptmpl *tmpllist);

struct Idap_disptmpl *ldap_name2template (char *name, struct Idap_disptmpl
*tmpllist);

char **|dap_tmplattrs (struct Idap_disptmpl *tmpl, char **includeattrs, int exclude;,
unsigned long syntaxmask);

struct Idap_tmplitem *Ildap_first_tmplrow (struct Idap_disptmpl *tmpl);

struct Idap_tmplitem *Idap_next_tmplrow (struct Idap_disptmpl *tmpl, struct
Idap_tmplitem *row);

struct Idap_tmplitem *Idap_first_tmplcol (struct Idap_disptmpl *tmpl, struct
Idap_tmplitem *row, struct Idap_tmplitem *col);

struct Idap_tmplitem *Idap_next_tmplcol (struct Idap_disptmpl *tmpl, struct
Idap_tmplitem *row, struct Idap_tmplitem *col);

These functions provide a standard way to access LDAP entry display templates.
Entry display templates provide a standard way for LDAP applications to
display directory entries. The general idea is that it is possible to map the list of
object class values present in an entry to an appropriate display template. Display
templates are defined in a configuration file (see Idaptemplates.conf 4)).
Each display template contains a pre-determined list of items, where each

item generally corresponds to an attribute to be displayed. The items contain
information and flags that the caller can use to display the attribute and values
in a reasonable fashion. Each item has a syntaxid, which are described in the

Sun0S 5.8 Last modified 25 May 1998

LDAP Library Functions Idap_disptmpl(3LDAP)

SYNTAX IDS section below. The Idap_entry2text (BLDAP) functions use the
display template functions and produce text output.

Idap_init_templates() reads a sequence of templates from a valid LDAP
template configuration file (see Idaptemplates.conf (4)). Upon success, 0
is returned, and tmpllistp is set to point to a list of templates. Each member

of the list is an Idap_disptmpl structure (defined below in the DISPTMPL
Structure Elements section).

Idap_init_templates_buf() reads a sequence of templates from buf (whose
size is buflen). buf should point to the data in the format defined for an LDAP
template configuration file (see |[daptemplates.conf (4)). Upon success, 0 is
returned, and tmpllistp is set to point to a list of templates.

The LDAP_SET_DISPTMPL_APPDATA()macro is used to set the value of the
dt_appdata field in an Idap_disptmpl structure. This field is reserved for
the calling application to use; it is not used internally.

The LDAP_GET_DISPTMPL_APPDATA()macro is used to retrieve the value in
the dt_appdata field.

The LDAP_IS_DISPTMPL_OPTION_SET() macro is used to test a
Idap_disptmpl structure for the existence of a template option. The options
currently defined are: LDAP_DTMPL_OPT_ADDABL(H is appropriate to allow
entries of this type to be added), LDAP_DTMPL_OPT_ALLOWMODRIDMN
appropriate to offer the "modify rdn" operation), LDAP_DTMPL_OPT_ALTVIEW
(this template is merely an alternate view of another template, typically used for
templates pointed to be an LDAP_SYN_LINKACTIONitem).

Idap_free_templates() disposes of the templates allocated by
Idap_init_templates()

Idap_first_disptmpl() returns the first template in the list tmpllist. The
tmpllist is typically obtained by calling |dap_init_templates() .

Idap_next_disptmpl() returns the template after tmpl in the template list
tmpllist. A NULL pointer is returned if tmpl is the last template in the list.

Idap_oc2template() searches tmpllist for the best template to use to display
an entry that has a specific set of objectClass values. oclist should be a
null-terminated array of strings that contains the values of the objectClass
attribute of the entry. A pointer to the first template where all of the object classes
listed in one of the template’s dt_oclist elements are contained in oclist is
returned. A NULL pointer is returned if no appropriate template is found.

Idap_tmplattrs() returns a null-terminated array that contains the names of
attributes that need to be retrieved if the template tmpl is to be used to display
an entry. The attribute list should be freed using Idap_value_free 0. The
includeattrs parameter contains a null-terminated array of attributes that should

Last modified 25 May 1998 Sun0S 5.8 289

Idap_disptmpl(3LDAP) LDAP Library Functions

DISPTMPL Structure

290

Elements

always be included (it may be NULL if no extra attributes are required). If
syntaxmask is non-zero, it is used to restrict the attribute set returned. If exclude
is zero, only attributes where the logical AND of the template item syntax id
and the syntaxmask is non-zero are included. If exclude is non-zero, attributes
where the logical AND of the template item syntax id and the syntaxmask is
non-zero are excluded.

Idap_first_tmplrow() returns a pointer to the first row of items in template
tmpl.
Idap_next_tmplrow() returns a pointer to the row that follows row in

template tmpl.

Idap_first_tmplcol() returns a pointer to the first item (in the first column)
of row row within template tmpl . A pointer to an I[dap_tmplitem structure
(defined below in the TMPLITEM Structure Elements section) is returned.

The LDAP_SET_TMPLITEM_APPDATA()macro is used to set the value of the
ti_appdata field in a [dap_tmplitem structure. This field is reserved for the
calling application to use; it is not used internally.

The LDAP_GET_TMPLITEM_APPDATA()macro is used to retrieve the value of
the ti_appdata field.

The LDAP_IS_TMPLITEM_OPTION_SET() macro is used to test a
Idap_tmplitem structure for the existence of an item option. The options
currently defined are: LDAP_DITEM_OPT_READONL(this attribute should not
be modified), LDAP_DITEM_OPT_SORTVALUH& makes sense to sort the
values), LDAP_DITEM_OPT_SINGLEVALUELRis attribute can only hold a
single value), LDAP_DITEM_OPT_VALUEREQUIRKEIhis attribute must contain
at least one value), LDAP_DITEM_OPT_HIDEIFEMPTYdo not show this item
if there are no values), and LDAP_DITEM_OPT_HIDEIFFALSE(for boolean
attributes only: hide this item if the value is FALSE).

Idap_next_tmplcol() returns a pointer to the item (column) that follows
column col within row row of template tmpl.
The Idap_disptmpl structure is defined as:

struct Idap_disptmpl {

char *dt_name;

char *dt_pluralname;

char *dt_iconname;
unsigned long dt_options;

char *dt_authattrname;
char *dt_defrdnattrname;
char *dt_defaddlocation;

struct Idap_oclist *dt_oclist;

struct ldap_adddeflist *dt_adddeflist;
struct Idap_tmplitem *dt_items;
void *dt_appdata;

Sun0S 5.8 Last modified 25 May 1998

LDAP Library Functions Idap_disptmpl(3LDAP)

TMPLITEM Structure
Elements

struct Idap_disptmpl *dt_next;
b
The dt_name member is the singular name of the template. The
dt_pluralname s the plural name. The dt_iconname member will contain
the name of an icon or other graphical element that can be used to depict entries
that correspond to this display template. The dt_options contains options
which may be tested using the LDAP_IS_TMPLITEM_OPTION_SET() macro.

The dt_authattrname contains the name of the DN-syntax attribute

whose value(s) should be used to authenticate to make changes to an entry.

If dt_authattrname is NULL, then authenticating as the entry itself is
appropriate. The dt_defrdnattrname is the name of the attribute that is
normally used to name entries of this type, for example, "cn" for person entries.
The dt_defaddlocation is the distinguished name of an entry below which
new entries of this type are typically created (its value is site-dependent).

dt_oclist is a pointer to a linked list of object class arrays, defined as:

struct Idap_oclist {
char **oc_objclasses;
struct Idap_oclist *oc_next;

b

These are used by the Idap_oc2template() function.

dt_adddeflist is a pointer to a linked list of rules for defaulting the values of
attributes when new entries are created. The Idap_adddeflist structure is
defined as:

struct ldap_adddeflist {

int ad_source;

char *ad_attrname;

char *ad_value;

struct Idap_adddeflist *ad_next;
b
The ad_attrname member contains the name of the attribute whose value
this rule sets. If ad_source is LDAP_ADSRC_CONSTANTVALLtHEN the
ad_value member contains the (constant) value to use. If ad_source is
LDAP_ADSRC_ADDERSDIhen ad_value is ignored and the distinguished
name of the person who is adding the new entry is used as the default value
for ad_attrname

The Idap_tmplitem structure is defined as:

struct Idap_tmplitem {

unsigned long ti_syntaxid,;
unsigned long ti_options;

char *ti_attrname;

char *ti_label,

char **ti_args;

struct Idap_tmplitem *ti_next_in_row;
struct Idap_tmplitem *ti_next_in_col;

Last modified 25 May 1998 Sun0S 5.8 291

Idap_disptmpl(3LDAP) LDAP Library Functions

void *ti_appdata;

h

Syntax 1Ds Syntax ids are found in the I[dap_tmplitem structure element ti_syntaxid ,
and they can be used to determine how to display the values for the attribute
associated with an item. The LDAP_GET_SYN_TYPE()macro can be used

to return a general type from a syntax id. The five general types currently
defined are: LDAP_SYN_TYPE_TEXTfor attributes that are most appropriately
shown as text), LDAP_SYN_TYPE_IMAGHKor JPEG or FAX format images),
LDAP_SYN_TYPE_BOOLEA(fbr boolean attributes), LDAP_SYN_TYPE_BUTTON
(for attributes whose values are to be retrieved and display only upon request, for
example, in response to the press of a button, a JPEG image is retrieved, decoded,
and displayed), and LDAP_SYN_TYPE_ACTIONfor special purpose actions such
as "search for the entries where this entry is listed in the seeAlso attribute™).

The LDAP_GET_SYN_OPTIONS®acro can be used to retrieve an unsigned
long bitmap that defines options. The only currently defined option is
LDAP_SYN_OPT_DEFERwhich (if set) implies that the values for the attribute
should not be retrieved until requested.

There are sixteen distinct syntax ids currently defined. These generally
correspond to one or more X.500 syntaxes.

LDAP_SYN_CASEIGNORESTRused for text attributes which are simple strings
whose case is ignored for comparison purposes.

LDAP_SYN_MULTILINESTRIs used for text attributes which consist of
multiple lines, for example, postalAddress , homePostalAddress
multilineDescription , or any attributes of syntax caselgnoreList

LDAP_SYN_RFC822ADDR used for case ignore string attributes that are
RFC-822 conformant mail addresses, for example, mail.

LDAP_SYN_DNs used for attributes with a Distinguished Name syntax, for
example, seeAlso

LDAP_SYN_BOOLEAN used for attributes with a boolean syntax.

LDAP_SYN_JPEGIMAGIS used for attributes with a jpeg syntax, for example,
jpegPhoto.

LDAP_SYN_JPEGBUTTORN used to provide a button (or equivalent interface
element) that can be used to retrieve, decode, and display an attribute of jpeg
syntax.

LDAP_SYN_FAXIMAGHs used for attributes with a photo syntax, for example,
Photo. These are actually Group 3 Fax (T.4) format images.

292 Sun0S 5.8 Last modified 25 May 1998

LDAP Library Functions Idap_disptmpl(3LDAP)

ERRORS

ATTRIBUTES

LDAP_SYN_FAXBUTTON used to provide a button (or equivalent interface
element) that can be used to retrieve, decode, and display an attribute of photo
syntax.

LDAP_SYN_AUDIOBUTTONN used to provide a button (or equivalent interface
element) that can be used to retrieve and play an attribute of audio syntax.
Audio values are in the "mu law" format, also known as "au" format.

LDAP_SYN_TIMEis used for attributes with the UTCTime syntax, for example,
lastModifiedTime . The value(s) should be displayed in complete date
and time fashion.

LDAP_SYN_DATEHs used for attributes with the UTCTime syntax, for example,
lastModifiedTime . Only the date portion of the value(s) should be displayed.

LDAP_SYN_LABELEDURIs used for labeledURL attributes.

LDAP_SYN_SEARCHACTIOiN used to define a search that is used to retrieve
related information. If ti_attrname is not NULL, it is assumed to be a boolean
attribute which will cause no search to be performed if its value is FALSE. The
ti_args structure member will have four strings init: ti_args[0] should
be the name of an attribute whose values are used to help construct a search
filter or "-dn" is the distinguished name of the entry being displayed should be
used, ti_args[1] should be a filter pattern where any occurrences of "%v" are
replaced with the value derived from ti_args[0] ,ti_args[2] should
be the name of an additional attribute to retrieve when performing the search,
and ti_args[3] should be a human-consumable name for that attribute. The
ti_args[2] attribute is typically displayed along with a list of distinguished
names when multiple entries are returned by the search.

LDAP_SYN_LINKACTIONis used to define a link to another template by name.
ti_args[0] will contain the name of the display template to use. The
Idap_name2template() function can be used to obtain a pointer to the
correct Idap_disptmpl structure.

LDAP_SYN_ADDDNACTIO&hd LDAP_SYN_VERIFYDNACTIONMTre reserved
as actions but currently undefined.

The init template functions return LDAP_TMPL_ERR_VERSION buf points to
data that is newer than can be handled, LDAP_TMPL_ERR_MEi¥ithere is a
memory allocation problem, LDAP_TMPL_ERR_SYNTAiXthere is a problem
with the format of the templates buffer or file. LDAP_TMPL_ERR_FILEis
returned by Idap_init_templates if the file cannot be read. Other functions
generally return NULL upon error.

See attributes (5) for a description of the following attributes:

Last modified 25 May 1998 Sun0S 5.8 293

Idap_disptmpl(3LDAP) LDAP Library Functions

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWIIdap (32-bit)
SUNWIdapx (64-bit)

Stability Level Evolving

SEE ALSO ldap (3LDAP), Idap_entry2text (3LDAP) , Idaptemplates.conf 4)

294 Sun0S 5.8 Last modified 25 May 1998

LDAP Library Functions Idap_entry2text(3LDAP)

NAME

SYNOPSIS

DESCRIPTION

Idap_entry2text, ldap_entry2text_search, Idap_entry2html,
Idap_entry2html_search, Idap_vals2html, Idap_vals2text — LDAP entry display
functions

cc[flag...] file... -lldap[library...]

#include <Iber.h>

#include <ldap.h>

int [dap_entry2text (LDAP *Id, char *buf, LDAPMessage *entry, struct Idap_disptmpl
*tmpl, char **defattrs, char ***defvals, int (*writeproc)(), void *writeparm, char *eol, int
rdncount, unsigned long opts);

int Idap_entry2text_search (LDAP *Id, char *dn, char *base, LDAPMessage *entry,
struct Idap_disptmpl *tmpllist, char **defattrs, char ***defvals, int (*writeproc)(), void
*writeparm, char *eol, int rdncount, unsigned long opts);

int [dap_vals2text (LDAP *Id, char *buf, char **vals, char *label, int labelwidth, unsigned
longsyntaxid, int (*writeproc)(), void *writeparm, char *eol, int rdncount);

int [dap_entry2html (LDAP *Id, char *buf, LDAPMessage *entry, struct Idap_disptmpl
*tmpl, char **defattrs, char ***defvals, int (*writeproc)(), void *writeparm, char *eol, int
rdncount, unsigned long opts, char *urlprefix, char *base);

int Idap_entry2html_search (LDAP *Id, char *dn, LDAPMessage *entry, struct
Idap_disptmpl *tmpllist, char **defattrs, char ***defvals, int (*writeproc)(), void *writeparm,
char *eol, int rdncount, unsigned long opts, char *urlprefix);

int [dap_vals2html (LDAP *Id, char *buf, char **vals, char *label, int labelwidth, unsigned
long syntaxid, int (*writeproc)(), void *writeparm, char *eol, int rdncount, char *urlprefix);

#define LDAP_DISP_OPT_AUTOLABELWIDTH 0x00000001
#define LDAP_DISP_OPT_HTMLBODYONLY 0x00000002
#define LDAP_DTMPL_BUFSIZ 2048

These functions use the LDAP display template functions (see

ldap_disptmpl (3LDAP) and Idap_templates.conf(4)) to produce a
plain text or an HyperText Markup Language (HTML) display of an entry or a
set of values. Typical plain text output produced for an entry might look like:

"Barbara J Jensen, Information Technology Division"
Also Known As:

Babs Jensen

Barbara Jensen

Barbara J Jensen

E-Mail Address:
bjensen@terminator.rs.itd.umich.edu
Work Address:

535 W. William

Ann Arbor, Ml 48103

Title:

Last modified 25 May 1998 Sun0S 5.8 295

Idap_entry2text(3LDAP) LDAP Library Functions

296

Mythical Manager, Research Systems

The exact output produced will depend on the display template configuration.
HTML output is similar to the plain text output, but more richly formatted.

Idap_entry2text() produces a text representation of entry and writes the
text by calling the writeproc function. All of the attributes values to be displayed
must be present in entry; no interaction with the LDAP server will be performed
within Idap_entry2text . Id is the LDAP pointer obtained by a previous call
to Idap_open. writeproc should be declared as:
int writeproc(writeparm, p, len)

void *writeparm;

char *p;
int len;

where p is a pointer to text to be written and len is the length of the text. p is
guaranteed to be zero-terminated. Lines of text are terminated with the string
eol. buf is a pointer to a buffer of size LDAP_DTMPL_BUFSIZor larger. If buf is
NULL then a buffer is allocated and freed internally. tmpl is a pointer to the
display template to be used (usually obtained by calling Idap_oc2template

). If tmpl is NULL, no template is used and a generic display is produced.
defattrs is a NULL-terminated array of LDAP attribute names which you wish
to provide default values for (only used if entry contains no values for the
attribute). An array of NULL-terminated arrays of default values corresponding
to the attributes should be passed in defvals. The rdncount parameter is used to
limit the number of Distinguished Name (DN) components that are actually
displayed for DN attributes. If rdncount is zero, all components are shown.

opts is used to specify output options. The only values currently allowed are
zero (default output), LDAP_DISP_OPT_AUTOLABELWIDT¥hich causes

the width for labels to be determined based on the longest label in tmpl, and
LDAP_DISP_OPT_HTMLBODYONLYhe LDAP_DISP_OPT_HTMLBODYONLY
option instructs the library not to include <HTML>, <HEAD>, <TITLE>, and
<BODY> tags. In other words, an HTML fragment is generated, and the caller
is responsible for prepending and appending the appropriate HTML tags to
construct a correct HTML document.

Idap_entry2text_search() is similar to Idap_entry2text , and all of
the like-named parameters have the same meaning except as noted below. If
base is not NULL, it is the search base to use when executing search actions. If
it is NULL, search action template items are ignored. If entry is not NULL,

it should contain the objectClass attribute values for the entry to be displayed.
If entry is NULL, dn must not be NULL, and Idap_entry2text_search

will retrieve the objectClass values itself by calling Idap_search_s.
Idap_entry2text_search will determine the appropriate display template
to use by calling Idap_oc2template , and will call Idap_search_s to
retrieve any attribute values to be displayed. The tmpllist parameter is a

Sun0S 5.8 Last modified 25 May 1998

LDAP Library Functions Idap_entry2text(3LDAP)

ERRORS

FILES

ATTRIBUTES

pointer to the entire list of templates available (usually obtained by calling
Idap_init_templates or |dap_init_templates_buf). If tmpllist is NULL
, Idap_entry2text_search will attempt to read a load templates from the
default template configuration file ETCDIR/Idaptemplates.conf

Idap_vals2text produces a text representation of a single set of LDAP
attribute values. The Id, buf, writeproc, writeparm, eol, and rdncount parameters
are the same as the like-named parameters for Idap_entry2text .valsis a
NULL-terminated list of values, usually obtained by a call to Idap_get_values

. label is a string shown next to the values (usually a friendly form of an LDAP
attribute name). labelwidth specifies the label margin, which is the number of
blank spaces displayed to the left of the values. If zero is passed, a default label
width is used. syntaxid is a display template attribute syntax identifier (see
I[dap_disptmpl (3LDAP) for a list of the pre-defined LDAP_SYN_... values).

Idap_entry2html produces an HTML representation of entry. It behaves
exactly like I[dap_entry2text (BLDAP) , except for the formatted output

and the addition of two parameters. urlprefix is the starting text to use when
constructing an LDAP URL. The default is the string Idap:/// The second
additional parameter, base, the search base to use when executing search actions.
If it is NULL, search action template items are ignored.

Idap_entry2html_search behaves exactly like

Idap_entry2text_search (BLDAP) , except HTML output is

produced and one additional parameter is required. urlprefix is the starting text
to use when constructing an LDAP URL. The default is the string Idap:///

Idap_vals2html behaves exactly like Idap_vals2text ,except
HTMLoutput is and one additional parameter is required. urlprefix is the
starting text to use when constructing an LDAP URL. The default is the string
Idap:///

These functions all return an LDAP error code (LDAP_SUCCESS returned if no
error occurs). See Idap_error (3LDAP) for details. The Id_errno field of the Id
parameter is also set to indicate the error.

ETCDIR/Idaptemplates.conf

See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWIIdap (32-bit)
SUNWIdapx (64-bit)

Stability Level Evolving

Last modified 25 May 1998 Sun0S 5.8 297

Idap_entry2text(3LDAP) LDAP Library Functions

SEE ALSO Idap (BLDAP), Idap_disptmpl (3LDAP) , Idaptemplates.conf 4)

298 Sun0S 5.8 Last modified 25 May 1998

LDAP Library Functions Idap_error(3LDAP)

NAME

SYNOPSIS

DESCRIPTION

ERRORS

Idap_error, Idap_perror, Idap_result2error, Idap_errlist, Idap_err2string — LDAP
protocol error handling functions

cc[flag...] file... -lldap[library...]

#include <Iber.h>
#include <ldap.h>
struct Idap_error (int e_code, char *e_reason);

struct Idaperror Idap_errlist[];
char *Idap_err2string (int err);
void Idap_perror (LDAP *Id, char *s);

int Idap_result2error (LDAP *Id, LDAPMessage *res, int freeit);

These functions provide interpretation of the various error codes returned by the
LDAP protocol and LDAP library functions and assigned to an error field in

the Id structure. Idap_perror() and Idap_result2error() functions

are deprecated for all new development; Idap_err2string() should be
used instead.

The Idap_result2error() function takes res , a result as produced by
Ildap_result (3LDAP) or other synchronous LDAP calls, and returns the
corresponding error code. Possible error codes are listed below. If the freeit
parameter is non zero it indicates that the res parameter should be freed by a
call to Idap_msgfree (3LDAP) after the error code has been extracted. The
error field in Id is set and returned.

The returned value can be passed to Idap_err2string() or looked up in
Idap_errlist[] to get a text description of the message. The string returned
from |dap_err2string() is a pointer to a static area that should not be
modified. The last element in the Idap_errlist[] array is signaled by an
error code of -1 .

The Idap_perror() function can be called to print an indication of the error
on standard error, similar to the way perror (3C) works.

The possible values for an Idap error code are:

LDAP_SUCCESS The request was successful.
LDAP_OPERATIONS_ERROR An operations error occurred.
LDAP_PROTOCOL_ERROR A protocol violation was detected.

Last modified 25 May 1998 Sun0S 5.8 299

Idap_error(3LDAP)

300

LDAP_TIMELIMIT_EXCEEDED

LDAP_SIZELIMIT_EXCEEDED

LDAP_COMPARE_FALSE

LDAP_COMPARE_TRUE

LDAP Library Functions

An LDAP time limit was exceeded.

An LDAP size limit was exceeded.

A compare operation returned false.

A compare operation returned true.

LDAP_STRONG_AUTH_NOT_SUPPORTERR LDAP server does not support

LDAP_STRONG_AUTH_REQUIRED

LDAP_PARTIAL_RESULTS

LDAP_NO_SUCH_ATTRIBUTE

LDAP_UNDEFINED_TYPE

LDAP_INAPPROPRIATE_MATCHING

LDAP_CONSTRAINT_VIOLATION

LDAP_TYPE_OR_VALUE_EXISTS

LDAP_INVALID_SYNTAX

LDAP_NO_SUCH_OBJECT

LDAP_ALIAS_PROBLEM

LDAP_INVALID_DN_SYNTAX

Sun0S 5.8

strong authentication.

Strong authentication is required for
the operation.

Partial results only returned.

The attribute type specified does not
exist in the entry.

The attribute type specified is invalid.

Filter type not supported for the
specified attribute.

An attribute value specified violates
some constraint (for example, a
postalAddress has too many lines, or
a line that is too long).

An attribute type or attribute value
specified already exists in the entry.

An invalid attribute value was
specified.

The specified object does not exist in
The Directory.

An alias in The Directory points to a
nonexistent entry.

A syntactically invalid DN was
specified.

Last modified 25 May 1998

Last modified 25 May 1998

LDAP Library Functions

LDAP_IS_LEAF

LDAP_ALIAS_DEREF_PROBLEM

LDAP_INAPPROPRIATE_AUTH

LDAP_INVALID_CREDENTIALS

LDAP_INSUFFICIENT_ACCESS

LDAP_BUSY

LDAP_UNAVAILABLE

LDAP_UNWILLING_TO_PERFORM

LDAP_LOOP_DETECT

LDAP_NAMING_VIOLATION

LDAP_OBJECT_CLASS_VIOLATION

LDAP_NOT_ALLOWED_ON_NONLEAF

LDAP_NOT_ALLOWED_ON_RDN

LDAP_ALREADY_EXISTS

LDAP_NO_OBJECT_CLASS_MODS

LDAP_OTHER

Sun0S 5.8

Idap_error(3LDAP)

The object specified is a leaf.

A problem was encountered when
dereferencing an alias.

Inappropriate authentication

was specified (for example,
LDAP_AUTH_SIMPLEwas specified
and the entry does not have a
userPassword attribute).

Invalid credentials were presented
(for example, the wrong password).

The user has insufficient access to
perform the operation.

The DSA is busy.

The DSA is unavailable.

The DSA is unwilling to perform
the operation.

A loop was detected.

A naming violation occurred.

An object class violation occurred
(for example, a "must" attribute was
missing from the entry).

The operation is not allowed on a
nonleaf object.

The operation is not allowed on
an RDN.

The entry already exists.

Obiject class modifications are not
allowed.

An unknown error occurred.

301

Idap_error(3LDAP)

LDAP_SERVER_DOWN

LDAP_LOCAL_ERROR

LDAP_ENCODING_ERROR

LDAP_DECODING_ERROR

LDAP_TIMEOUT

LDAP_AUTH_UNKNOWN

LDAP_FILTER_ERROR

LDAP_PARAM_ERROR

LDAP_NO_MEMORY

LDAP Library Functions

The LDAP library can’t contact the
LDAP server.

Some local error occurred. This is
usually a failed malloc.

An error was encountered encoding
parameters to send to the LDAP
server.

An error was encountered decoding a
result from the LDAP server.

A timelimit was exceeded while
waiting for a result.

The authentication method specified
to Idap_bind() is not known.

An invalid filter was supplied
to Idap_search() (for example,
unbalanced parentheses).

An ldap function was called with a
bad parameter (for example, a NULL
Id pointer, etc.).

An memory allocation (for example,
malloc(3N)) call failed in an Idap
library function.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

SUNWIIdap (32-bit)
SUNWIdapx (64-bit)

Stability Level

Evolving

SEE ALSO attributes (5), |dap (3LDAP), perror

302 SunOS 5.8

3C)

Last modified 25 May 1998

LDAP Library Functions Idap_first_attribute(3LDAP)

NAME
SYNOPSIS

DESCRIPTION

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

Idap_first_attribute, Idap_next_attribute — step through LDAP entry attributes

cc[flag...] file... -lldap[library...]

#include <Iber.h>
#include <ldap.h>
char *ldap_first_attribute (LDAP *Id, LDAPMessage *entry, BerElement **berptr);

char *ldap_next_attribute (LDAP *Id, LDAPMessage *entry, BerElement *ber);

The Idap_first_attribute() and ldap_next_attribute()

functions are used to step through the attributes in an LDAP

entry. Idap_first_attribute() takes an entry as returned by
Idap_first_entry (3LDAP) or Idap_next_entry (3LDAP) and returns a
pointer to a per-connection buffer containing the first attribute type in the entry.
The return value should be treated as if it is a pointer to a static area (that is,
strdup (3C) it if you want to save it).

It also returns, in berptr , a pointer to a BerElement it has allocated to keep
track of its current position. This pointer should be passed to subsequent calls to

Idap_next_attribute() and is used used to effectively step through the
entry’s attributes. This pointer is freed by Idap_next_attribute() when
there are no more attributes (that is, when Idap_next_attribute() returns

NULL). Otherwise, the caller is responsible for freeing the BerElement pointed
to by berptr when it is no longer needed by calling ber_free (3LDAP) . When
calling ber_free (3LDAP) in this instance, be sure the second argument is "0’

The attribute names returned are suitable for inclusion in a call to
Idap_get values (3LDAP) to retrieve the attribute’s values.

If an error occurs, NULL s returned and the Id_errno field in the Id parameter
is set to indicate the error. See Idap_error (3LDAP) for a description of
possible error codes.

See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWIIdap (32-bit)
SUNWIdapx (64-bit)

Stability Level Evolving

Idap (BLDAP), Idap_first_entry (3LDAP) , Idap_get_values (3LDAP),
Idap_error (3LDAP)

The Idap_first_attribute() function mallocs memory that may need to be
freed by the caller via ber_free (3LDAP) .

Last modified 25 May 1998 Sun0S 5.8 303

Idap_first_entry(3LDAP) LDAP Library Functions

NAME

SYNOPSIS

DESCRIPTION

ERRORS

304

Idap_first_entry, Idap_next_entry, Idap_count_entries, ldap_count_references,
Idap_first_reference, Idap_first_reference — LDAP entry parsing and counting
functions

cc[flag...] file... -lldap[library...]

#include <Iber.h>
#include <ldap.h>
LDAPMessage *Idap_first_entry (LDAP*Id, LDAPMessage *result);

LDAPMessage *Idap_next_entry (LDAP *Id, LDAPMessage *entry);
Idap_count_entries (LDAP *Id, LDAPMessage *result);

LDAPMessage *Idap_first_reference (LDAP *Id, LDAPMessage *res);
LDAPMessage *Idap_next_reference (LDAP *Id, LDAPMessage *res);
int Idap_count_references (LDAP *Id, LDAPMessage *res);

These functions are used to parse results received from Idap_result (3LDAP)
or the synchronous LDAP search operation functions Idap_search_s (3LDAP)
and Idap_search_st (3LDAP).

The Idap_first_entry() function is used to retrieve the first entry in a chain
of search results. It takes the result as returned by a call to I[dap_result ~ (3LDAP)
or [dap_search_s (3LDAP) or Idap_search_st (3LDAP) and returns a
pointer to the first entry in the result.

This pointer should be supplied on a subsequent call to [dap_next_entry()
to get the next entry, the result of which should be supplied to the next
call to Idap_next_entry() , etc. Idap_next_entry() will return
NULLwhen there are no more entries. The entries returned from these calls
are used in calls to the functions described in Idap_get dn (3LDAP) ,
Idap_first_attribute (BLDAP), Idap_get_values (3LDAP), etc.

A count of the number of entries in the search result can be obtained by calling
Idap_count_entries()

Idap_first_reference() and |dap_next_reference() are used to step
through and retrieve the list of continuation references from a search result chain.

The Idap_count_references() function is used to count the number of
references that are contained in and remain in a search result chain.

If an error occurs in Idap_first_entry() or |[dap_next_entry() , NULL
is returned and the Id_errno field in the Id parameter is set to indicate the
error. If an error occurs in Idap_count_entries() , -1 isreturned, and
Id_errno is set appropriately. See Idap_error (3LDAP) for a description of
possible error codes.

Sun0S 5.8 Last modified 25 May 1998

LDAP Library Functions Idap_first_entry(3LDAP)

ATTRIBUTES See attributes (5) for a description of the following attributes:
ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWIIdap (32-bit)
SUNWIdapx (64-bit)

Stability Level Evolving

SEE ALSO ldap (BLDAP), Idap_result (3LDAP), Idap_search (3LDAP),
Idap_first_attribute (BLDAP) , Idap_get_values (3LDAP),
ldap_get_dn (3LDAP)

Last modified 25 May 1998 Sun0S 5.8 305

Idap_first_message(3LDAP) LDAP Library Functions

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

306

Idap_first_message, Idap_count_messages, Idap_next_message, ldap_msgtype —
LDAP message processing functions

cc[flag...] file... -lldap[library...]

#include <Iber.h>
#include <ldap.h>
int Idap_count_messages (LDAP *Id, LDAPMessage *res);

LDAPMessage *Idap_first._ message (LDAP *Id, LDAPMessage *res);
LDAPMessage *Idap_next_message (LDAP *Id, LDAPMessage *msg);
int Idap_msgtype (LDAPMessage *res);

Idap_count_messages() is used to count the number of
messages that remain in a chain of results if called with a message,
entry, or reference returned by Idap_first_message() ,

Idap_next_message() , Idap_first_entry() , Idap_next_entry() ,
Idap_first_reference() , and |dap_next_reference()
Idap_first_message() and Idap_next_message() functions are used to

step through the list of messages in a result chain returned by Idap_result()
Idap_msgtype() function returns the type of an LDAP message.

Idap_first_message() and Idap_next_message() return LDAPMessage
which can include referral messages, entry messages and result messages.

Idap_count_messages() returns the number of messages cont