
man pages section 5: Standards,
Environments, and Macros

Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303-4900
U.S.A.

Part No: 806-0634-10
February 2000



Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun
and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or
service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer
industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.
RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et
la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les
produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se
conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle



Contents

Preface 7

Intro(5) 13

ascii(5) 14

attributes(5) 16

architecture(5) 16

availability(5) 16

CSI(5) 16

stability(5) 16

MT-Level(5) 16

charmap(5) 24

environ(5) 27

eqnchar(5) 35

extensions(5) 36

filesystem(5) 37

fnmatch(5) 56

fns(5) 60

fns_dns(5) 62

fns_files(5) 65

fns_initial_context(5) 67

Contents 3



fns_nis+(5) 71

fns_nis(5) 73

fns_policies(5) 75

fns_references(5) 79

fns_x500(5) 83

formats(5) 86

iconv_1250(5) 92

iconv_1251(5) 98

iconv(5) 106

iconv_646(5) 112

iconv_852(5) 115

iconv_8859-1(5) 121

iconv_8859-2(5) 127

iconv_8859-5(5) 133

iconv_dhn(5) 141

iconv_koi8-r(5) 145

iconv_mac_cyr(5) 153

iconv_maz(5) 160

iconv_pc_cyr(5) 164

iconv_unicode(5) 169

isalist(5) 174

largefile(5) 176

lf64(5) 179

lfcompile(5) 185

lfcompile64(5) 188

locale(5) 190

man(5) 220

mansun(5) 225

4 man pages section 5: Standards, Environments, and Macros ♦ February 2000



me(5) 229

mm(5) 234

ms(5) 241

nfssec(5) 247

pam_dial_auth(5) 249

pam_krb5(5) 250

pam_ldap(5) 254

pam_rhosts_auth(5) 257

pam_roles(5) 258

pam_sample(5) 260

pam_smartcard(5) 262

pam_unix(5) 264

prof(5) 267

rbac(5) 268

regex(5) 271

regexp(5) 281

compile(5) 281

step(5) 281

advance(5) 281

SEAM(5) 289

sgml(5) 291

solbook(5) 291

smartcard(5) 296

standards(5) 298

ANSI(5) 298

C(5) 298

ISO(5) 298

POSIX(5) 298

Contents 5



POSIX.1(5) 298

POSIX.2(5) 298

SUS(5) 298

SUSv2(5) 298

SVID(5) 298

SVID3(5) 298

XNS(5) 298

XNS4(5) 298

XNS5(5) 298

XPG(5) 298

XPG3(5) 298

XPG4(5) 298

XPG4v2(5) 298

sticky(5) 303

term(5) 304

vgrindefs(5) 308

Index 310

6 man pages section 5: Standards, Environments, and Macros ♦ February 2000



Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page
is intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the information
it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character-set tables.

� Section 6 contains available games and demos.

� Section 7 describes various special files that refer to specific hardware
peripherals and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

Preface 7



� Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver/Kernel Interface (DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.

� Section 9S describes the data structures used by drivers to share information
between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there are
no bugs to report, there is no BUGS section. See the intro pages for more information
and detail about each section, and man(1) for more information about man pages in
general.

NAME This section gives the names of the commands
or functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not
exist in the standard path, its full path name is
shown. Options and arguments are alphabetized,
with single letter arguments first, and options
with arguments next, unless a different argument
order is required.

The following special characters are used in
this section:

[ ] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

. . . Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename
. . ." .

| Separator. Only one of the arguments
separated by this character can be
specified at a time.

{ } Braces. The options and/or
arguments enclosed within braces are

8 man pages section 5: Standards, Environments, and Macros ♦ February 2000



interdependent, such that everything
enclosed must be treated as a unit.

PROTOCOL This section occurs only in subsection 3R to
indicate the protocol description file.

DESCRIPTION This section defines the functionality and
behavior of the service. Thus it describes
concisely what the command does. It does not
discuss OPTIONS or cite EXAMPLES. Interactive
commands, subcommands, requests, macros, and
functions are described under USAGE.

IOCTL This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioctl (2) system call is called
ioctl and generates its own heading. ioctl
calls for a specific device are listed alphabetically
(on the man page for that specific device). ioctl
calls are used for a particular class of devices all
of which have an io ending, such as mtio (7I).

OPTIONS This secton lists the command options with
a concise summary of what each option does.
The options are listed literally and in the order
they appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output – standard
output, standard error, or output files – generated
by the command.

RETURN VALUES If the man page documents functions that
return values, this section lists these values and
describes the conditions under which they are
returned. If a function can return only constant
values, such as 0 or –1, these values are listed
in tagged paragraphs. Otherwise, a single
paragraph describes the return values of each
function. Functions declared void do not return
values, so they are not discussed in RETURN
VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno indicating why they

9



failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than
one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE This section lists special rules, features, and
commands that require in-depth explanations.
The subsections listed here are used to explain
built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage
or of how to use a command or function.
Wherever possible a complete example
including command-line entry and machine
response is shown. Whenever an example is
given, the prompt is shown as example% ,
or if the user must be superuser, example# .
Examples are followed by explanations, variable
substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS This section lists the values the command returns
to the calling program or shell and the conditions
that cause these values to be returned. Usually,
zero is returned for successful completion,
and values other than zero for various error
conditions.

FILES This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes (5) for more information.

10 man pages section 5: Standards, Environments, and Macros ♦ February 2000



SEE ALSO This section lists references to other man
pages, in-house documentation, and outside
publications.

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special
conditions which could seriously affect your
working conditions. This is not a list of
diagnostics.

NOTES This section lists additional information that
does not belong anywhere else on the page. It
takes the form of an aside to the user, covering
points of special interest. Critical information is
never covered here.

BUGS This section describes known bugs and, wherever
possible, suggests workarounds.

11



CHAPTER

Headers, Tables, and Macros

12



Headers, Tables, and Macros Intro(5)

NAME Intro – introduction to miscellany

DESCRIPTION Among the topics presented in this section are:
Standards The POSIX (IEEE) Standards and the X/Open Specifications

are described on the standards page.

Environments The user environment (environ ), the subset of the user
environment that depends on language and cultural
conventions (locale ), the large file compilation
environment (lfcompile ), and the transitional compilation
environment (lfcompile64 ) are described.

Macros The macros to format Reference Manual pages (man and
mansun) as well as other text format macros (me, mm, and
ms) are described.

Characters Tables of character sets (ascii , charmap , eqnchar , and
iconv ), file format notation (formats ), file name pattern
matching (fnmatch ), and regular expressions (regex and
regexp ) are presented.

FNS Topics concerning the Federated Naming Service
(fns , fns_initial_context , fns_policies , and
fns_references ) are discussed.

Last modified 12 May 1999 SunOS 5.8 13



ascii(5) Headers, Tables, and Macros

NAME ascii – map of ASCII character set

SYNOPSIS cat /usr/pub/ascii

DESCRIPTION /usr/pub/ascii is a map of the ASCII character set, to be printed as needed.
It contains octal and hexadecimal values for each character. While not included
in that file, a chart of decimal values is also shown here.

Octal − Character

000 NUL 001 SOH 002 STX 003 ETX 004 EOT 005 ENQ 006 ACK 007 BEL
010 BS 011 HT 012 NL 013 VT 014 NP 015 CR 016 SO 117 SI
020 DLE 021 DC1 022 DC2 023 DC3 024 DC4 025 NAK 026 SYN 027 ETB
030 CAN 031 EM 032 SUB 033 ESC 034 FS 035 GS 036 RS 037 US
040 SP 041 ! 042 " 043 # 044 $ 045 % 046 & 047 ’
050 ( 051 ) 052 * 053 + 054 , 055 − 056 . 057 /
060 0 061 1 062 2 063 3 064 4 065 5 066 6 067 7
070 8 071 9 072 : 073 ; 074 < 075 = 076 > 077 ?
100 @ 101 A 102 B 103 C 104 D 105 E 106 F 107 G
110 H 111 I 112 J 113 K 114 L 115 M 116 N 117 O
120 P 121 Q 122 R 123 S 124 T 125 U 126 V 127 W
130 X 131 Y 132 Z 133 [ 134 \ 135 ] 136 ^ 137 _
140 ‘ 141 a 142 b 143 c 144 d 145 e 146 f 147 g
150 h 151 i 152 j 153 k 154 l 155 m 156 n 157 o
160 p 161 q 162 r 163 s 164 t 165 u 166 v 167 w
170 x 171 y 172 z 173 { 174 | 175 } 176 ~ 177 DEL

Hexadecimal − Character

00 NUL 01 SOH 02 STX 03 ETX 04 EOT 05 ENQ 06 ACK 07 BEL
08 BS 09 HT 0A NL 0B VT 0C NP 0D CR 0E SO 0F SI
10 DLE 11 DC1 12 DC2 13 DC3 14 DC4 15 NAK 16 SYN 17 ETB
18 CAN 19 EM 1A SUB 1B ESC 1C FS 1D GS 1E RS 1F US
20 SP 21 ! 22 " 23 # 24 $ 25 % 26 & 27 ’
28 ( 29 ) 2A * 2B + 2C , 2D − 2E . 2F /
30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7
38 8 39 9 3A : 3B ; 3C < 3D = 3E > 3F ?
40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G
48 H 49 I 4A J 4B K 4C L 4D M 4E N 4F O
50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W
58 X 59 Y 5A Z 5B [ 5C \ 5D ] 5E ^ 5F _
60 ‘ 61 a 62 b 63 c 64 d 65 e 66 f 67 g
68 h 69 i 6A j 6B k 6C l 6D m 6E n 6F o
70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w
78 x 79 y 7A z 7B { 7C | 7D } 7E ~ 7F DEL

Decimal − Character

0 NUL 1 SOH 2 STX 3 ETX 4 EOT 5 ENQ 6 ACK 7 BEL
8 BS 9 HT 10 NL 11 VT 12 NP 13 CR 14 SO 15 SI

16 DLE 17 DC1 18 DC2 19 DC3 20 DC4 21 NAK 22 SYN 23 ETB
24 CAN 25 EM 26 SUB 27 ESC 28 FS 29 GS 30 RS 31 US

14 SunOS 5.8 Last modified 11 Aug 1994



Headers, Tables, and Macros ascii(5)

32 SP 33 ! 34 " 35 # 36 $ 37 % 38 & 39 ’
40 ( 41 ) 42 * 43 + 44 , 45 − 46 . 47 /
48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7
56 8 57 9 58 : 59 ; 60 < 61 = 62 > 63 ?
64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G
72 H 73 I 74 J 75 K 76 L 77 M 78 N 79 O
80 P 81 Q 82 R 83 S 84 T 85 U 86 V 87 W
88 X 89 Y 90 Z 91 [ 92 \ 93 ] 94 ^ 95 _
96 ‘ 97 a 98 b 99 c 100 d 101 e 102 f 103 g

104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o
112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w
120 x 121 y 122 z 123 { 124 | 125 } 126 ~ 127 DEL

FILES /usr/pub/ascii On-line chart of octal and hexadecimal values for
the ASCII character set.

Last modified 11 Aug 1994 SunOS 5.8 15



attributes(5) Headers, Tables, and Macros

NAME attributes, architecture, availability, CSI, stability, MT-Level – characteristics of
commands, utilities, and device drivers

DESCRIPTION The ATTRIBUTESman page section contains a table (see below) defining
attribute types and their corresponding values.

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

Availability SUNWcsu

CSI Enabled

Interface Stability Unstable

MT-Level Safe

Architecture Architecture defines processor or specific hardware. (See −p option of uname(1)
). In some cases, it may indicate required adapters or peripherals.

Availability This refers to the software package which contains the command or component
being described on the man page. To be able to use the command, the indicated
package must have been installed. For information on how to add a package see
pkgadd (1M) .

Code Set
Independence (CSI)

OS utilities and libraries which are free of dependencies on the properties of any
code sets are said to have Code Set Independence (CSI). They have the attribute
of being CSI enabled. This is in contrast to many commands and utilities in
Solaris, for example, that work only with Extended Unix Codesets (EUC), an
encoding method that allows concurrent support for up to four code sets and is
commonly used to represent Asian character sets.

However, for practical reasons, this independence is not absolute. Certain
assumptions are still applied to the current CSI implementation:

� File code is a superset of ASCII.

� In order to support multi-byte characters and NULL -terminated UNIX file
names, the NULL and / (slash) characters cannot be part of any multi-byte
characters.

� Only "stateless" file code encodings are supported. Stateless encoding
avoids shift, locking shift, designation, invocation, and so forth, although
single shift is not excluded.

� Process code (wchar_t values) is implementation dependent and can
change over time or between implementations or between locales.

� Not every object in Solaris 2 and Solaris 7can have names composed of
arbitrary characters. The names of the following objects must be composed
of ASCII characters:

16 SunOS 5.8 Last modified 3 June 1997



Headers, Tables, and Macros attributes(5)

– User names, group name, and passwords

– System name

– Names of printers and special devices

– Names of terminals (/dev/tty* )

– Process ID numbers

– Message queues, semaphores, and shared memory labels.

– The following may be composed of ISO Latin-1 or EUC characters:

– File names

– Directory names

– Command names

– Shell variables and environmental variable names

– Mount points for file systems

– NIS key names and domain names

� The names of NFS shared files should be composed of ASCII characters.
Although files and directories may have names and contents composed of
characters from non-ASCII code sets, using only the ASCII codeset allows
NFS mounting across any machine, regardless of localization. For the
commands and utilities that are CSI enabled, all can handle single-byte and
multi-byte locales released in 2.6. For applications to get full support of
internationalization services, dynamic binding has to be applied. Statically
bound programs will only get support for C and POSIX locales.

Interface Stability Sun often provides developers with early access to new technologies, which
allows developers to evaluate with them as soon as possible. Unfortunately, new
technologies are prone to changes and standardization often results in interface
incompatibility from previous versions.

To make reasonable risk assessments, developers need to know how likely an
interface is to change in future releases. To aid developers in making these
assessments, interface stability information is included on some manual pages
for commands, entry-points, and file formats.

The more stable interfaces can safely be used by nearly all applications, because
Sun will endeavor to ensure that these continue to work in future minor releases.
Applications that depend only on Standard and Stable interfaces should reliably
continue to function correctly on future minor releases (but not necessarily
on earlier major releases).

The less stable interfaces allow experimentation and prototyping, but should be
used only with the understanding that they might change incompatibly or even
be dropped or replaced with alternatives in future minor releases.

Last modified 3 June 1997 SunOS 5.8 17



attributes(5) Headers, Tables, and Macros

"Interfaces" that Sun does not document (for example, most kernel data
structures and some symbols in system header files) may be implementation
artifacts. Such internal interfaces are not only subject to incompatible change or
removal, but we are unlikely to mention such a change in release notes.

Release Levels Products are given release levels, as well as names, to aid compatibility
discussions. Each release level may also include changes suitable for lower levels.

Release Version Significance

Major x.0 Likely to contain major feature additions; adhere to different,
possibly incompatible Standard revisions; and though unlikely,
could change, drop, or replace Standard or Stable interfaces.
Initial product releases are usually 1.0.

Minor x.y Compared to an x.0 or earlier release (y!=0), it’s likely to
contain: minor feature additions, compatible Standard and
Stable interfaces, possibly incompatible Evolving interfaces,
or likely incompatible Unstable interfaces.

Micro x.y.z Intended to be interface compatible with the previous release
(z!=0), but likely to add bug fixes, performance enhancements,
and support for additional hardware.

Classifications The following table summarizes how stability level classifications relate to
release level. The first column lists the Stability Level. The second column lists
the Release Level for Incompatable Changes, and the third column lists other
comments. For a complete discussion of individual classifications, see the
appropriate subsection below.

Stability Release Comments

Standard Major
(x.0)

Actual or de facto.

Stable Major
(x.0)

Incompatibilities are exceptional.

Evolving Minor
(x.y)

Migration advice might accompany an incompatibility.

Unstable Minor
(x.y)

Experimental or transitional: incompatibilities are common.

Obsolete Minor
(x.y)

Deprecated interface: likely to be removed in a
future minor release.

18 SunOS 5.8 Last modified 3 June 1997



Headers, Tables, and Macros attributes(5)

The interface stability levels described in this manual page apply to both source
and binary interfaces unless otherwise stated. The stability level of each interface
is unknown unless explicitly stated.
Standard: organization_name, standard_name, version

The documented command or function complies with the standard listed.
Most of these interfaces are defined by a formal standard, and controlled
by a standards organization. Changes will usually be made in accordance
with approved changes to that standard. his stability level can also apply
to interfaces that have been adopted (without a formal standard) by an
"industry convention."

Support is provided for only the specified version(s) of a standard; support
of later versions is not guaranteed. If the standards organization approves a
non-upwards-compatible change to a Standard interface that Sun decides to
support, we will announce a compatibility and migration strategy.

Stable
A Stable interface is a mature interface under Sun’s control. Sun will try
to avoid non-upwards-compatible changes to these interfaces, especially
in minor or micro releases.

If support of a Stable interface must be discontinued, Sun will attempt to
provide notification and the stability level changes to Obsolete.

Evolving
An Evolving interface may eventually become Standard or Stable but
is still in transition.

Sun will make reasonable efforts to ensure compatibility with previous
releases as it evolves. When non-upwards compatible changes become
necessary, they will occur in minor and major releases; such changes will be
avoided in micro releases whenever possible. If such a change is necessary,
it will be documented in the release notes for the effected release, and
when feasible, Sun will provide migration aids for binary compatibility
and continued source development.

Unstable
An Unstable interface is provided to give developers early access to new
or rapidly changing technology or as an interim solution to a problem for
which a more stable solution is anticipated in the future.

For Unstable interfaces, Sun no claims about either source or binary
compatibility from one minor release to another. Applications developed
based on these interfaces may not work in future minor releases.

Obsolete: Scheduled for removal after event

Last modified 3 June 1997 SunOS 5.8 19



attributes(5) Headers, Tables, and Macros

An Obsolete interface is supported in the current release, but is scheduled to
be removed in a future (minor) release. When support of an interface is to be
discontinued, Sun will attempt to provide notification before discontinuing
support. Use of an Obsolete interface may produce warning messages.

MT-Level Libraries are classified into four categories which define their ability to support
multiple threads. Manual pages containing routines that are of multiple or
differing levels show this within their NOTESor USAGEsection.
Safe

Safe is an attribute of code that can be called from a multithreaded
application. The effect of calling into a Safe interface or a safe code segment
is that the results are valid even when called by multiple threads. Often
overlooked is the fact that the result of this Safe interface or safe code
segment can have global consequences that affect all threads. For example,
the action of opening or closing a file from one thread is visible by all the
threads within a process. A multi-threaded application has the responsibility
for using these interfaces in a safe manner, which is different from whether
or not the interface is Safe. For example, a multi-threaded application that
closes a file that is still in use by other threads within the application is not
using the close (2) interface safely.

Unsafe
An Unsafe library contains global and static data that is not protected. It is
not safe to use unless the application arranges for only one thread at time to
execute within the library. Unsafe libraries may contain routines that are
Safe; however, most of the library’s routines are unsafe to call.

The following table contains reentrant counterparts for Unsafe functions.
This table is subject to change by Sun.

Reentrant functions for libc:

Unsafe Function Reentrant counterpart

ctime ctime_r

localtime localtime_r

asctime asctime_r

gmtime gmtime_r

ctermid ctermid_r

getlogin getlogin_r

rand rand_r

readdir readdir_r

20 SunOS 5.8 Last modified 3 June 1997



Headers, Tables, and Macros attributes(5)

Unsafe Function Reentrant counterpart

strtok strtok_r

tmpnam tmpnam_r

MT-Safe
An MT-Safe library is fully prepared for multithreaded access. It protects its
global and static data with locks, and can provide a reasonable amount of
concurrency. Note that a library can be safe to use, but not MT-Safe. For
example, surrounding an entire library with a monitor makes the library
Safe, but it supports no concurrency so it is not considered MT-Safe. An
MT-Safe library must permit a reasonable amount of concurrency. (This
definition’s purpose is to give precision to what is meant when a library is
described as Safe. The definition of a Safe library does not specify if the
library supports concurrency. The MT-Safe definition makes it clear that
the library is Safe, and supports some concurrency. This clarifies the Safe
definition, which can mean anything from being single threaded to being
any degree of multithreaded.)

Async-Signal-Safe
Async-Signal-Safe refers to particular library routines that can be safely
called from a signal handler. A thread that is executing an Async-Signal-Safe
routine will not deadlock with itself if interrupted by a signal. Signals are
only a problem for MT-Safe routines that acquire locks.

Signals are disabled when locks are acquired in Async-Signal-Safe routines.
This prevents a signal handler that might acquire the same lock from being
called. The list of Async-Signal-Safe functions includes:

_exit access aio_error

aio_return aio_suspend alarm

cfgetispeed cfgetospeed cfsetispeed

cfsetospeed chdir chmod

chown clock_gettime close

creat dup dup2

execle execve fcntl

fdatasync fork fstat

fsync getegid geteuid

getgid getgroups getpgrp

getpid getppid getuid

Last modified 3 June 1997 SunOS 5.8 21



attributes(5) Headers, Tables, and Macros

kill link lseek

mkdir mkfifo open

pathconf pause pipe

read rename rmdir

sem_post sema_post setgid

setpgid setsid setuid

sigaction sigaddset sigdelset

sigemptyset sigfillset sigismember

sigpending sigprocmask sigqueue

sigsuspend sleep stat

sysconf tcdrain tcflow

tcflush tcgetattr tcgetpgrp

tcsendbreak tcsetattr tcsetpgrp

thr_kill thr_sigsetmask time

timer_getoverrun timer_gettime timer_settime

times umask uname

unlink utime wait

waitpid write

MT-Safe with Exceptions
See the NOTESor USAGEsections of these pages for a description of the
exceptions.

Safe with Exceptions
See the NOTESor USAGEsections of these pages for a description of the
exceptions.

Fork1-Safe
A Fork1-Safe library releases the locks it had held whenever fork1 (2) is
called in a Solaris thread program, or fork (2) in a POSIX (see standards (5)
) thread program. Calling fork (2) in a POSIX thread program has the same
semantic as calling fork1 (2) in a Solaris thread program. All system calls,
libpthread , and libthread are Fork1-Safe . Otherwise, you should
handle the locking clean-up yourself (see pthread_atfork (3THR) ).

Cancel-Safety

22 SunOS 5.8 Last modified 3 June 1997



Headers, Tables, and Macros attributes(5)

If a multi-threaded application uses pthread_cancel (3THR) to cancel
(that is, kill) a thread, it is possible that the target thread is killed while
holding a resource, such as a lock or allocated memory. If the thread
has not installed the appropriate cancellation cleanup handlers to
release the resources appropriately (see pthread_cancel (3THR) ),
the application is "cancel-unsafe", that is, it is not safe with respect to
cancellation. This unsafety could result in deadlocks due to locks not
released by a thread that gets cancelled, or resource leaks; for example,
memory not being freed on thread cancellation. All applications that use
pthread_cancel (3THR) should ensure that they operate in a Cancel-Safe
environment. Libraries that have cancellation points and which acquire
resources such as locks or allocate memory dynamically, also contribute
to the cancel-unsafety of applications that are linked with these libraries.
This introduces another level of safety for libraries in a multi-threaded
program: Cancel-Safety. There are two sub-categories of Cancel-Safety:
Deferred-Cancel-Safety, and Asynchronous-Cancel-Safety. An application is
considered to be Deferred-Cancel-Safe when it is Cancel-Safe for threads
whose cancellation type is PTHREAD_CANCEL_DEFERRED. An application
is considered to be Asynchronous-Cancel-Safe when it is Cancel-Safe for
threads whose cancellation type is PTHREAD_CANCEL_ASYNCHRONOUS.
Deferred-Cancel-Safety is easier to achieve than Asynchronous-Cancel-Safety,
since a thread with the deferred cancellation type can be cancelled only at
well-defined cancellation points, whereas a thread with the asynchronous
cancellation type can be cancelled anywhere. Since all threads are created by
default to have the deferred cancellation type, it may never be necessary
to worry about asynchronous cancel safety. Indeed, most applications
and libraries are expected to always be Asynchronous-Cancel-Unsafe.
An application which is Asynchronous-Cancel-Safe is also, by definition,
Deferred-Cancel-Safe.

SEE ALSO uname(1) , pkgadd (1M) , Intro (3) , standards (5)

Last modified 3 June 1997 SunOS 5.8 23



charmap(5) Headers, Tables, and Macros

NAME charmap – character set description file

DESCRIPTION A character set description file or charmap defines characteristics for a coded
character set. Other information about the coded character set may also be in the
file. Coded character set character values are defined using symbolic character
names followed by character encoding values.

The character set description file provides:

� The capability to describe character set attributes (such as collation order or
character classes) independent of character set encoding, and using only
the characters in the portable character set. This makes it possible to create
generic localedef (1) source files for all codesets that share the portable
character set.

� Standardized symbolic names for all characters in the portable character set,
making it possible to refer to any such character regardless of encoding.

Symbolic Names Each symbolic name is included in the file and is mapped to a unique encoding
value (except for those symbolic names that are shown with identical glyphs).
If the control characters commonly associated with the symbolic names in the
following table are supported by the implementation, the symbolic names
and their corresponding encoding values are included in the file. Some of the
encodings associated with the symbolic names in this table may be the same as
characters in the portable character set table.

<ACK> <DC2> <ENQ> <FS> <IS4> <SOH>

<BEL> <DC3> <EOT> <GS> <LF> <STX>

<BS> <DC4> <ESC> <HT> <NAK> <SUB>

<CAN> <DEL> <ETB> <IS1> <RS> <SYN>

<CR> <DLE> <ETX> <IS2> <SI> <US>

<DC1> <EM> <FF> <IS3> <SO> <VT>

Declarations The following declarations can precede the character definitions. Each must
consist of the symbol shown in the following list, starting in column 1, including
the surrounding brackets, followed by one or more blank characters, followed by
the value to be assigned to the symbol.
<code_set_name> The name of the coded character set for which

the character set description file is defined.

<mb_cur_max> The maximum number of bytes in a multi-byte
character. This defaults to 1.

24 SunOS 5.8 Last modified 3 May 1995



Headers, Tables, and Macros charmap(5)

<mb_cur_min> An unsigned positive integer value that defines
the minimum number of bytes in a character for
the encoded character set.

<escape_char> The escape character used to indicate that the
characters following will be interpreted in a
special way, as defined later in this section. This
defaults to backslash ( \thinsp; ), which is the
character glyph used in all the following text and
examples, unless otherwise noted.

<comment_char> The character that when placed in column 1 of
a charmap line, is used to indicate that the line
is to be ignored. The default character is the
number sign (#).

Format The character set mapping definitions will be all the lines immediately following
an identifier line containing the string CHARMAPstarting in column 1, and
preceding a trailer line containing the string END CHARMAPstarting in column
1. Empty lines and lines containing a <comment_char> in the first column will
be ignored. Each non-comment line of the character set mapping definition
(that is, between the CHARMAPand END CHARMAPlines of the file) must be in
either of two forms:

"%s %s %s\n", <symbolic-name>,<encoding>,<comments>

or

"%s. . .%s %s %s\n", <symbolic-name>,<symbolic-name>,
<encoding>,<comments>

In the first format, the line in the character set mapping definition defines a
single symbolic name and a corresponding encoding. A character following
an escape character is interpreted as itself; for example, the sequence <\i\ >
represents the symbolic name \ enclosed between angle brackets.

In the second format, the line in the character set mapping definition defines a
range of one or more symbolic names. In this form, the symbolic names must
consist of zero or more non-numeric characters, followed by an integer formed
by one or more decimal digits. The characters preceding the integer must be
identical in the two symbolic names, and the integer formed by the digits in the
second symbolic name must be equal to or greater than the integer formed by the
digits in the first name. This is interpreted as a series of symbolic names formed
from the common part and each of the integers between the first and the second

Last modified 3 May 1995 SunOS 5.8 25



charmap(5) Headers, Tables, and Macros

integer, inclusive. As an example, <j0101>. . .<j0104> is interpreted as the
symbolic names <j0101> , <j0102> , <j0103> , and <j0104> , in that order.

A character set mapping definition line must exist for all symbolic names and
must define the coded character value that corresponds to the character glyph
indicated in the table, or the coded character value that corresponds with the
control character symbolic name. If the control characters commonly associated
with the symbolic names are supported by the implementation, the symbolic
name and the corresponding encoding value must be included in the file.
Additional unique symbolic names may be included. A coded character value
can be represented by more than one symbolic name.

The encoding part is expressed as one (for single-byte character values) or more
concatenated decimal, octal or hexadecimal constants in the following formats:

"%cd%d", <escape_char>,<decimal byte value>
"%cx%x", <escape_char>,<hexadecimal byte value>
"%c%o", <escape_char>,<octal byte value>

Decimal Constants Decimal constants must be represented by two or three decimal digits, preceded
by the escape character and the lower-case letter d; for example, \d05 , \d97 , or
\d143 . Hexadecimal constants must be represented by two hexadecimal digits,
preceded by the escape character and the lower-case letter x ; for example, \x05 ,
\x61 , or \x8f . Octal constants must be represented by two or three octal digits,
preceded by the escape character; for example, \05 , \141 , or \217 . In a portable
charmap file, each constant must represent an 8-bit byte. Implementations
supporting other byte sizes may allow constants to represent values larger than
those that can be represented in 8-bit bytes, and to allow additional digits in
constants. When constants are concatenated for multi-byte character values, they
must be of the same type, and interpreted in byte order from first to last with the
least significant byte of the multi-byte character specified by the last constant.

Ranges of Symbolic
Names

In lines defining ranges of symbolic names, the encoded value is the value for
the first symbolic name in the range (the symbolic name preceding the ellipsis).
Subsequent symbolic names defined by the range will have encoding values in
increasing order. For example, the line

<j0101>. . .<j0104> \d129\d254

will be interpreted as:

<j0101> \d129\d254
<j0102> \d129\d255
<j0103> \d130\d0
<j0104> \d130\d1

Note that this line will be interpreted as the example even on systems with bytes
larger than 8 bits. The comment is optional.

SEE ALSO locale (1) localedef (1) nl_langinfo (3C) extensions (5), locale (5)

26 SunOS 5.8 Last modified 3 May 1995



Headers, Tables, and Macros environ(5)

NAME environ – user environment

DESCRIPTION When a process begins execution, one of the exec family of functions
makes available an array of strings called the environment; see exec (2).
By convention, these strings have the form variable=value, for example,
PATH=/sbin:/usr/sbin . These environmental variables provide a way to
make information about a program’s environment available to programs.

A name may be placed in the environment by the export command and
name=value arguments in sh (1), or by one of the exec functions. It is unwise to
conflict with certain shell variables such as MAIL, PS1, PS2, and IFS that are
frequently exported by .profile files; see profile (4).

The following environmental variables can be used by applications and are
expected to be set in the target run-time environment.
HOME The name of the user’s login directory, set by login (1) from

the password file; see passwd (4).

LANG The string used to specify internationalization information
that allows users to work with different national conventions.
The setlocale (3C) function checks the LANGenvironment
variable when it is called with "" as the locale argument.
LANGis used as the default locale if the corresponding
environment variable for a particular category is unset or
null. If, however, LC_ALL is set to a valid, non-empty value,
its contents are used to override both the LANGand the other
LC_* variables. For example, when invoked as

setlocale(LC_CTYPE, ""),

setlocale( ) will query the LC_CTYPEenvironment
variable first to see if it is set and non-null. If LC_CTYPEis
not set or null, then setlocale( ) will check the LANG
environment variable to see if it is set and non-null. If both
LANGand LC_CTYPEare unset or NULL, the default "C"
locale will be used to set the LC_CTYPEcategory.

Most commands will invoke

setlocale(LC_ALL, "")

prior to any other processing. This allows the command to
be used with different national conventions by setting the
appropriate environment variables.

Last modified 16 Sep 1997 SunOS 5.8 27



environ(5) Headers, Tables, and Macros

The following environment variables correspond to each
category of setlocale (3C):

LC_ALL If set to a valid, non-empty
string value, override the
values of LANGand all the
other LC_* variables.

LC_COLLATE This category specifies the
character collation sequence
being used. The information
corresponding to this category
is stored in a database
created by the localedef (1)
command. This environment
variable affects strcoll (3C)
and strxfrm (3C).

LC_CTYPE This category specifies
character classification,
character conversion, and
widths of multibyte characters.
When LC_CTYPEis set to a
valid value, the calling utility
can display and handle text
and file names containing
valid characters for that
locale; Extended Unix Code
(EUC) characters where any
individual character can be 1,
2, or 3 bytes wide; and EUC
characters of 1, 2, or 3 column
widths. The default "C" locale
corresponds to the 7-bit ASCII
character set; only characters
from ISO 8859-1 are valid. The
information corresponding
to this category is stored
in a database created by the
localedef( ) command. This
environment variable is used
by ctype (3C), mblen (3C), and
many commands, such as
cat (1), ed(1), ls (1), and vi (1).

28 SunOS 5.8 Last modified 16 Sep 1997



Headers, Tables, and Macros environ(5)

LC_MESSAGES This category specifies the
language of the message
database being used. For
example, an application may
have one message database
with French messages, and
another database with
German messages. Message
databases are created by the
mkmsgs(1) command. This
environment variable is used
by exstr (1), gettxt (1),
srchtxt (1), gettxt (3C), and
gettext (3C).

LC_MONETARY This category specifies
the monetary symbols
and delimiters used for
a particular locale. The
information corresponding
to this category is stored
in a database created by the
localedef (1) command. This
environment variable is used
by localeconv (3C).

LC_NUMERIC This category specifies the
decimal and thousands
delimiters. The information
corresponding to this category
is stored in a database
created by the localedef( )
command. The default C
locale corresponds to "." as
the decimal delimiter and no
thousands delimiter. This
environment variable is
used by localeconv (3C),
printf (3C), and strtod (3C).

LC_TIME This category specifies date and
time formats. The information
corresponding to this category
is stored in a database specified
in localedef( ) . The

Last modified 16 Sep 1997 SunOS 5.8 29



environ(5) Headers, Tables, and Macros

default C locale corresponds
to U.S. date and time
formats. This environment
variable is used by many
commands and functions; for
example: at (1), calendar (1),
date (1), strftime (3C), and
getdate (3C).

MSGVERB Controls which standard format message components
fmtmsg selects when messages are displayed to stderr ; see
fmtmsg (1) and fmtmsg (3C).

NETPATH A colon-separated list of network identifiers. A network
identifier is a character string used by the Network Selection
component of the system to provide application-specific
default network search paths. A network identifier must
consist of non-null characters and must have a length of at
least 1. No maximum length is specified. Network identifiers
are normally chosen by the system administrator. A network
identifier is also the first field in any /etc/netconfig
file entry. NETPATHthus provides a link into the
/etc/netconfig file and the information about a network
contained in that network’s entry. /etc/netconfig is
maintained by the system administrator. The library routines
described in getnetpath (3NSL) access the NETPATH
environment variable.

NLSPATH Contains a sequence of templates which catopen (3C)
and gettext (3C) use when attempting to locate message
catalogs. Each template consists of an optional prefix, one or
more substitution fields, a filename and an optional suffix.
For example:

NLSPATH="/system/nlslib/%N.cat"

defines that catopen() should look for all message catalogs
in the directory /system/nlslib , where the catalog name
should be constructed from the name parameter passed to
catopen ( ), %N, with the suffix .cat .

Substitution fields consist of a %symbol, followed by a
single-letter keyword. The following keywords are currently
defined:

30 SunOS 5.8 Last modified 16 Sep 1997



Headers, Tables, and Macros environ(5)

%N The value of the name parameter passed to
catopen() .

%L The value of LANGor LC_MESSAGES.

%l The language element from LANGor LC_MESSAGES.

%t The territory element from LANGor LC_MESSAGES.

%c The codeset element from LANGor LC_MESSAGES.

%% A single %character.

An empty string is substituted if the specified value is not
currently defined. The separators “_” and “. ” are not
included in %t and %c substitutions.

Templates defined in NLSPATHare separated by colons (: ).
A leading colon or two adjacent colons (:: ) is equivalent to
specifying %N. For example:

NLSPATH=":%N.cat:/nlslib/%L/%N.cat"

indicates to catopen ( ) that it should look for the
requested message catalog in name, name.cat and
/nlslib/$LANG/ name.cat. For gettext() , %N
automatically maps to "messages".

If NLSPATHis unset or NULL, catopen() and gettext( )
call setlocale (3C), which checks LANGand the LC_*
variables to locate the message catalogs.

NLSPATHwill normally be set up on a system wide basis (in
/etc/profile ) and thus makes the location and naming
conventions associated with message catalogs transparent to
both programs and users.

PATH The sequence of directory prefixes that sh (1), time (1),
nice (1), nohup (1), and other utilities apply in searching for
a file known by an incomplete path name. The prefixes are
separated by colons (: ). login (1) sets PATH=/usr/bin .
For more detail, see sh (1).

SEV_LEVEL Define severity levels and associate and print strings
with them in standard format error messages; see
addseverity (3C), fmtmsg (1), and fmtmsg (3C).

Last modified 16 Sep 1997 SunOS 5.8 31



environ(5) Headers, Tables, and Macros

TERM The kind of terminal for which output is to be prepared.
This information is used by commands, such as vi (1), which
may exploit special capabilities of that terminal.

TZ Timezone information. The contents of this environment
variable are used by the functions ctime (3C),
localtime (3C), strftime (3C), and mktime (3C) to
override the default timezone. If TZ is not in the following
form, it designates a path to a timezone database file relative
to /usr/share/lib/zoneinfo/ , ignoring the first
character if it is a colon (: ); otherwise, TZ has the form:

std offset [ dst [ offset ], [start [ /time ], end [ /time ] ] ]

std and dst Three or more bytes that
are the designation for the
standard (std) and daylight
savings time (dst) timezones.
Only std is required. If dst
is missing, then daylight
savings time does not apply
in this locale. Upper- and
lower-case letters are allowed.
Any characters except a leading
colon (: ), digits, a comma
(, ), a minus (–) or a plus (+)
are allowed.

offset Indicates the value one must
add to the local time to arrive
at Coordinated Universal Time.
The offset has the form:

hh [ : mm [ : ss ] ]

The minutes (mm) and seconds
(ss) are optional. The hour (hh)
is required and may be a single
digit. The offset following std is
required. If no offset follows
dst , daylight savings time is
assumed to be one hour ahead
of standard time. One or more
digits may be used; the value

32 SunOS 5.8 Last modified 16 Sep 1997



Headers, Tables, and Macros environ(5)

is always interpreted as a
decimal number. The hour
must be between 0 and 24, and
the minutes (and seconds) if
present between 0 and 59. Out
of range values may cause
unpredictable behavior. If
preceded by a “–” the timezone
is east of the Prime Meridian;
otherwise it is west (which may
be indicated by an optional
preceding “+” sign).

start/time, end/time Indicate when to change to and
back from daylight savings
time, where start/time describes
when the change from standard
time to daylight savings time
occurs, and end/time describes
when the change back happens.
Each time field describes
when, in current local time,
the change is made.

The formats of start and end are
one of the following:

Jn The Julian day n
(1 ≤ n ≤ 365).
Leap days are not
counted. That
is, in all years,
February 28 is day
59 and March 1
is day 60. It is
impossible to refer
to the occasional
February 29.

n The zero-based
Julian day (0 ≤ n ≤
365). Leap days
are counted, and it
is possible to refer
to February 29.

Last modified 16 Sep 1997 SunOS 5.8 33



environ(5) Headers, Tables, and Macros

Mm.n.d The dth day, (0 ≤
d ≤ 6) of week n
of month m of
the year (1 ≤ n ≤
5, 1 ≤ m ≤ 12),
where week 5
means “the last
d-day in month
m” which may
occur in either the
fourth or the fifth
week). Week 1 is
the first week in
which the dth day
occurs. Day zero
is Sunday.

Implementation specific
defaults are used for start and
end if these optional fields are
not given.

The time has the same format
as offset except that no leading
sign (“–” or “+” is allowed.
The default, if time is not
given is 02:00:00.

SEE ALSO cat (1), date (1), ed(1), fmtmsg (1), localedef (1), login (1), ls (1), mkmsgs(1),
nice (1), nohup (1), sh (1), sort (1), time (1), vi (1), exec (2), addseverity (3C),
catopen (3C), ctime (3C), ctype (3C), fmtmsg (3C), getdate (3C),
getnetpath (3NSL), gettext (3C), gettxt (3C), localeconv (3C), mblen (3C),
mktime (3C), printf (3C), setlocale (3C), strcoll (3C), strftime (3C),
strtod (3C), strxfrm (3C), TIMEZONE(4), netconfig (4), passwd (4),
profile (4)

34 SunOS 5.8 Last modified 16 Sep 1997



Headers, Tables, and Macros eqnchar(5)

NAME eqnchar – special character definitions for eqn

SYNOPSIS eqn /usr/share/lib/pub/eqnchar filename | troff options

neqn /usr/share/lib/pub/eqnchar filename | troff options

DESCRIPTION The eqnchar command contains nroff (1) and troff (1) character definitions
for constructing characters that are not available on the Graphic Systems
typesetter. These definitions are primarily intended for use with eqn (1) and
neqn (1). It contains definitions for the following characters:

FILES /usr/share/lib/pub/eqnchar

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

SEE ALSO eqn (1), nroff (1), troff (1), attributes (5)

Last modified 15 Nov 1999 SunOS 5.8 35



extensions(5) Headers, Tables, and Macros

NAME extensions – localedef extensions description file

DESCRIPTION A localedef extensions description file or extensions file defines various
extensions for the localedef (1) command.

The localedef extensions description file provides:

� EUC code set width information via the cswidth keyword: cswidth
bc1 : sw1,bc2 : sw2,bc3 : sw3 where bc1 , bc2 , and bc3 indicate the
number of bytes (byte count) per character for EUC codesets 1, 2, and 3,
respectively. sw1, sw2, and sw3 indicate screen width for EUC codesets
1, 2, and 3, respectively.

� Other extensions which will be documented in a future release.

SEE ALSO locale (1), localedef (1), environ (5), locale (5)

36 SunOS 5.8 Last modified 20 Dec 1996



Headers, Tables, and Macros filesystem(5)

NAME filesystem – file system organization

SYNOPSIS /

/usr

DESCRIPTION The file system tree is organized for administrative convenience. Distinct areas
within the file system tree are provided for files that are private to one machine,
files that can be shared by multiple machines of a common platform, files that
can be shared by all machines, and home directories. This organization allows
sharable files to be stored on one machine but accessed by many machines using
a remote file access mechanism such as NFS. Grouping together similar files
makes the file system tree easier to upgrade and manage.

The file system tree consists of a root file system and a collection of mountable
file systems. The mount (2) program attaches mountable file systems to the
file system tree at mount points (directory entries) in the root file system
or other previously mounted file systems. Two file systems, / (the root) and
/usr , must be mounted in order to have a completely functional system. The
root file system is mounted automatically by the kernel at boot time; the /usr
file system is mounted by the system start-up script, which is run as part of
the booting process.

Certain locations, noted below, are approved installation locations for bundled
Foundation Solaris software. In some cases, the approved locations for bundled
software are also approved locations for add-on system software or for
applications. The following descriptions make clear where the two locations
differ. For example, /etc is the installation location for platform-dependent
configuration files that are bundled with Solaris software. The analogous
location for applications is /etc/opt/ packagename.

In the following descriptions, subsystem is a category of application or system
software, such as a window system (dt ) or a language (java1.2 )

The following descriptions make use of the terms platform, platform-dependent,
platform-independent, and platform-specific. Platform refers to a machines
Instruction Set Architecture or processor type, such as is returned by uname −i .
Platform-dependent refers to a file that is installed on all platforms and whose
contents vary depending on the platform. Like a platform-dependent file,
a platform-independent file is installed on all platforms. However, the contents
of the latter type remains the same on all platforms. An example of a
platform-dependent file is compiled, executable program. An example of a
platform-independent file is a standard configuration file, such as /etc/hosts .
Unlike a platform-dependent or a platform-independent file, the platform-specific
file is installed only on a subset of supported platforms. Most platform-specific
files are gathered under /platform and /usr/platform .

Last modified 9 Nov 1999 SunOS 5.8 37



filesystem(5) Headers, Tables, and Macros

Root File System The root file system contains files that are unique to each machine. It contains
the following directories:
/dev

Primary location for special files. Typically, device files are built to match
the kernel and hardware configuration of the machine.

/dev/cfg
Symbolic links to physical ap_ids.

/dev/cua
Device files for uucp .

/dev/dsk
Block disk devices.

/dev/fbs
Frame buffer device files.

/dev/fd
File descriptors.

/dev/md
Logical volume management meta-disk devices.

/dev/pts
Pseudo-terminal devices.

/dev/rdsk
Raw disk devices.

/dev/rmt
Raw tape devices.

/dev/sad
Entry points for the STREAMS Administrative driver.

/dev/sound
Audio device and audio device control files.

/dev/swap
Default swap device.

/dev/term
Terminal devices.

/etc
Platform-dependent administrative and configuration files and databases
that are not shared among systems. /etc may be viewed as the directory
that defines the machine’s identity. An approved installation location

38 SunOS 5.8 Last modified 9 Nov 1999



Headers, Tables, and Macros filesystem(5)

for bundled Solaris software. The analogous location for add-on system
software or for applications is /etc/opt/ packagename.

/etc/acct
Accounting system configuration information.

/etc/cron.d
Configuration information for cron (1M).

/etc/default
Defaults information for various programs.

/etc/dfs
Configuration information for shared file systems.

/etc/dhcp
Dynamic Host Configuration Protocol (DHCP) configuration files.

/etc/dmi
Solstice Enterprise Agents configuration files.

/etc/fn
Federated Naming Service and X.500 support files.

/etc/fs
Binaries organized by file system types for operations required before
/usr is mounted.

/etc/gss
Generic Security Service (GSS) Application Program Interface configuration
files.

/etc/inet
Configuration files for Internet services.

/etc/init.d
Shell scripts for transitioning between run levels.

/etc/lib
Shared libraries needed during booting.

/etc/lp
Configuration information for the printer subsystem.

/etc/llc2
Logical link control (llc2 ) driver configuration files.

/etc/lp
Configuration information for the printer subsystem.

/etc/mail

Last modified 9 Nov 1999 SunOS 5.8 39



filesystem(5) Headers, Tables, and Macros

Mail subsystem configuration.

/etc/net
Configuration information for transport independent network services.

/etc/nfs
NFS server logging configuration file.

/etc/opt
Configuration information for optional packages.

/etc/openwin
OpenWindows configuration files.

/etc/rc0.d
Scripts for entering or leaving run level 0. See init (1M).

/etc/rc1.d
Scripts for entering or leaving run level 1. See init (1M).

/etc/rc2.d
Scripts for entering or leaving run level 2. See init (1M).

/etc/rc3.d
Scripts for entering or leaving run level 3. See init (1M).

/etc/rcS.d
Scripts for bringing the system up in single user mode.

/etc/rpcsec
This directory might contain an NIS+ authentication configuration file.

/etc/saf
Service Access Facility files.

/etc/security
Basic Security Module (BSM) configuration files.

/etc/skel
Default profile scripts for new user accounts. See useradd (1M).

/etc/ subsystem
Platform-dependent subsystem configuration files that are not shared among
systems. An approved installation location for bundled Solaris software.
The analogous location for add-on system software or for applications is
/etc/opt/ packagename.

/etc/tm
Trademark files; contents displayed at boot time.

/etc/uucp

40 SunOS 5.8 Last modified 9 Nov 1999



Headers, Tables, and Macros filesystem(5)

UUCP configuration information. See uucp (1C).

/etc/volatile
Non-permanent, temporary files created by the system. An approved
installation location for bundled Solaris software and for add-on system
software.

/export
Default root of the shared file system tree.

/home
Default root of a subtree for user directories.

/kernel
Subtree of platform-dependent loadable kernel modules required as part
of the boot process. It includes the generic part of the core kernel that is
platform-independent, /kernel/genunix . See kernel (1M) An approved
installation location for bundled Solaris software and for add-on system
software.

/kernel/drv
32-bit device drivers.

/kernel/drv/sparcv9
64-bit SPARC device drivers.

/kernel/genunix
Platform-independent kernel.

/kernel/ subsystem/ia64
64-bit Intel IA64 platform-dependent modules required for boot. An
approved installation location for bundled Solaris software and for add-on
system software. Note that ia64 is an example name; the actual name
might be different.

/kernel/ subsystem/sparcv9
64-bit SPARC platform-dependent modules required for boot. An approved
installation location for bundled Solaris software and for add-on system
software.

/mnt
Default temporary mount point for file systems. This is an empty directory
on which file systems can be temporarily mounted.

/opt
Root of a subtree for add-on application packages.

/platform

Last modified 9 Nov 1999 SunOS 5.8 41



filesystem(5) Headers, Tables, and Macros

Subtree of platform-specific objects which need to reside on the root
filesystem. It contains a series of directories, one per supported platform.
The semantics of the series of directories is equivalent to / (root).

/platform/‘uname −i‘/kernel
Platform-specific modules required for boot. These modules have semantics
equivalent to /kernel . It includes the file unix , the core kernel. See
kernel (1M). An approved installation location for bundled Solaris software
and for add-on system software.

/platform/‘uname −m‘/kernel
Hardware class-specific modules required for boot. An approved installation
location for bundled Solaris software and for add-on system software.

/platform/‘uname −i‘/kernel/ subsystem/ia64
Intel 64-bit, platform-dependent modules required for boot. Note that ia64
is an example name; the actual name might be different. An approved
installation location for bundled Solaris software.

/platform/‘uname −i‘/kernel/ subsystem/sparcv9
SPARC 64-bit platform-specific modules required for boot. An approved
installation location for bundled Solaris software.

/platform/‘uname −i‘/kernel/sparcv9/unix
64-bit platform-dependent kernel.

/platform/‘uname −i‘/kernel/unix
32-bit platform-dependent kernel.

/platform/‘uname −i‘/lib
Platform-specific shared objects required for boot. Semantics are equivalent
to /lib . An approved installation location for bundled Solaris software
and for add-on system software.

/platform/‘uname −i‘/sbin
Platform-specific administrative utilities required for boot. Semantics are
equivalent to /sbin . An approved installation location for bundled Solaris
software and for add-on system software.

/proc
Root of a subtree for the process file system.

/sbin
Essential executables used in the booting process and in manual system
recovery. The full complement of utilities is available only after /usr is
mounted. /sbin is an approved installation location for bundled Solaris
software.

/tmp

42 SunOS 5.8 Last modified 9 Nov 1999



Headers, Tables, and Macros filesystem(5)

Temporary files; cleared during the boot operation.

/usr
Mount point for the /usr file system. See description of /usr file system,
below.

/var
Root of a subtree for varying files. Varying files are files that are unique
to a machine but that can grow to an arbitrary (that is, variable) size.
An example is a log file. An approved installation location for bundled
Solaris software. The analogous location for add-on system software or for
applications is /var/opt/ packagename.

/var/adm
System logging and accounting files.

/var/audit
Basic Security Module (BSM) audit files.

/var/crash
Default depository for kernel crash dumps.

/var/cron
Log files for cron (1M).

/var/dmi
Solstice Enterprise Agents (SEA) Desktop Management Interface (DMI)
run-time components.

/var/dt
dtlogin configuration files.

/var/ftp
FTP server directory.

/var/inet
IPv6 router state files.

/var/log
System log files.

/var/lp
Line printer subsystem logging information.

/var/mail
Directory where users’ mail is kept.

/var/news
Community service messages. This is not the same as USENET-style news.

/var/nfs

Last modified 9 Nov 1999 SunOS 5.8 43



filesystem(5) Headers, Tables, and Macros

NFS server log files.

/var/nis
NIS+ databases.

/var/ntp
Network Time Protocol (NTP) server state directory.

/var/opt
Root of a subtree for varying files associated with optional software
packages. An approved installation location for add-on system software
and applications.

/var/preserve
Backup files for vi (1) and ex (1).

/var/run
Temporary files which are not needed across reboots. Only root may modify
the contents of this directory.

/var/sadm
Databases maintained by the software package management utilities.

/var/sadm/system/logs
Status log files produced by software management functions and/or
applications. For example, log files produced for product installation. An
approved installation location for bundled Solaris software and for add-on
system software and applications.

/var/saf
Service access facility logging and accounting files.

/var/spool
Contains directories for files used in printer spooling, mail delivery,
cron (1M), at (1), and so forth.

/var/spool/cron
cron (1M) and at (1) spooling files.

/var/spool/locks
Spooling lock files.

/var/spool/lp
Line printer spool files. See lp (1).

/var/spool/mqueue
Mail queued for delivery.

/var/spool/pkg
Spooled packages.

44 SunOS 5.8 Last modified 9 Nov 1999



Headers, Tables, and Macros filesystem(5)

/var/spool/uucp
Queued uucp (1C) jobs.

/var/spool/uucppublic
Files deposited by uucp (1C).

/var/statmon
Network status monitor files.

/var/tmp
Files that vary in size or presence during normal system operations. This
directory is not cleared during the boot operation. An approved installation
location for bundled Solaris software and for add-on system software and
applications.

/var/uucp
uucp (1C) log and status files.

/var/yp
Databases needed for backwards compatibility with NIS and ypbind (1M);
unnecessary after full transition to NIS+.

/usr File System Because it is desirable to keep the root file system small and not volatile, on
disk-based systems larger file systems are often mounted on /home , /opt ,
/usr , and /var .

The file system mounted on /usr contains platform-dependent and
platform-independent sharable files. The subtree rooted at /usr/share
contains platform-independent sharable files; the rest of the /usr tree contains
platform-dependent files. By mounting a common remote file system, a group of
machines with a common platform may share a single /usr file system. A single
/usr/share file system can be shared by machines of any platform. A machine
acting as a file server can share many different /usr file systems to support
several different architectures and operating system releases. Clients usually
mount /usr read-only so that they do not accidentally change any shared files.

The /usr file system contains the following subdirectories:
/usr/4lib

a.out libraries for the Binary Compatibility Package. See the Binary
Compatibility Guide.

/usr/5bin
Symbolic link to the /usr/bin directory.

/usr/X
Symbolic link to the /usr/openwin directory.

/usr/adm
Symbolic link to the /var/adm directory.

Last modified 9 Nov 1999 SunOS 5.8 45



filesystem(5) Headers, Tables, and Macros

/usr/aset
Directory for Automated Security Enhancement Tools (ASET) programs
and files.

/usr/bin
Platform-dependent, user-invoked executables. These are commands users
expect to be run as part of their normal $PATH. For executables that are
different on a 64–bit system than on a 32–bit system, a wrapper that selects
the appropriate executable is placed here. See isaexec (3C). An approved
installation location for bundled Solaris software. The analogous location for
add-on system software or for applications is /opt/ packagename/bin .

/usr/bin/ia64
Intel 64–bit, platform-dependent, user-invoked executables. Note that ia64
is an example name; the actual name might be different. This directory
should not be part of a user’s $PATH. A wrapper in /usr/bin should
invoke the executable in this directory. See isaexec (3C). An approved
installation location for bundled Solaris software. The analogous location for
add-on system software or for applications is /opt/ packagename/bin/ia64 .

/usr/bin/sparcv9
SPARC 64–bit, platform-dependent, user-invoked executables. This
directory should not be part of a user’s $PATH. A wrapper in /usr/bin
should invoke the executable in this directory. See isaexec (3C).
An approved installation location for bundled Solaris software. The
analogous location for add-on system software or for applications is
/opt/ packagename/bin/sparcv9 .

/usr/bin/ subsystem
Platform-dependent user-invoked executables that are associated with
subsystem. These are commands users expect to be run as part of their
normal $PATH. An approved installation location for bundled Solaris
software. The analogous location for add-on system software or for
applications is /opt/ packagename/bin .

/usr/bin/ subsystem/ia64
Intel 64–bit, platform-dependent, user-invoked executables. Note that ia64
is an example name; the actual name might be different. This directory
should not be part of a user’s $PATH. A wrapper in /usr/bin should
invoke the executable in this directory. See isaexec (3C). An approved
installation location for bundled Solaris software. The analogous location for
add-on system software or for applications is /opt/ packagename/bin/ia64 .

/usr/bin/ subsystem/sparcv9
SPARC 64–bit, platform-dependent, user-invoked executables. This
directory should not be part of a user’s $PATH. A wrapper in /usr/bin

46 SunOS 5.8 Last modified 9 Nov 1999



Headers, Tables, and Macros filesystem(5)

should invoke the executable in this directory. See isaexec (3C).
An approved installation location for bundled Solaris software. The
analogous location for add-on system software or for applications is
/opt/ packagename/bin/sparcv9 .

/usr/ subsystem/bin
Platform-dependent user-invoked executables that are associated with
subsystem. These are commands users expect to be run as part of their
normal $PATH. An approved installation location for bundled Solaris
software. The analogous location for add-on system software or for
applications is /opt/ packagename/bin .

/usr/ subsystem/bin/ia64
Intel 64–bit, platform-dependent, user-invoked executables. Note that ia64
is an example name; the actual name might be different. This directory
should not be part of a user’s $PATH. A wrapper in /usr/bin should
invoke the executable in this directory. See isaexec (3C). An approved
installation location for bundled Solaris software. The analogous location for
add-on system software or for applications is /opt/ packagename/bin/ia64 .

/usr/ subsystem/bin/sparcv9
SPARC 64–bit, platform-dependent, user-invoked executables. This
directory should not be part of a user’s $PATH. A wrapper in /usr/bin
should invoke the executable in this directory. See isaexec (3C).
An approved installation location for bundled Solaris software. The
analogous location for add-on system software or for applications is
/opt/ packagename/bin/sparcv9 .

/usr/ccs
C compilation system.

/usr/ccs/bin
C compilation commands and system utilities.

/usr/ccs/lib
Symbolic link to /usr/lib .

/usr/demo
Demo programs and data.

/usr/dict
Symbolic link to the /usr/share/lib/dict directory, which contains the
dictionary file used by the UNIX spell program.

/usr/dt
root of a subtree for CDE software.

/usr/dt/bin

Last modified 9 Nov 1999 SunOS 5.8 47



filesystem(5) Headers, Tables, and Macros

Primary location for CDE system utilities.

/usr/dt/include
Header files for CDE software.

/usr/dt/lib
Libraries for CDE software.

/usr/dt/man
On-line reference manual pages for CDE software.

/usr/games
An empty directory, a remnant of the SunOS 4.0/4.1 software.

/usr/include
Include headers (for C programs).

/usr/java *
Directories containing Java programs and libraries.

/usr/kernel
Subtree of platform-dependent loadable kernel modules, not needed in
the root filesystem. An approved installation location for bundled Solaris
software.

/usr/kvm
A mount point, retained for backward compatibility, that formerly contained
platform-specific binaries and libraries.

/usr/lib
Platform-dependent libraries, various databases, commands and daemons
not invoked directly by a human user. An approved installation location
for bundled Solaris software. The analogous location for add-on system
software or for applications is /opt/ packagename/lib .

/usr/lib/64
Symbolic link to the most portable 64-bit Solaris interfaces.

/usr/lib/acct
Accounting scripts and binaries. See acct (1M).

/usr/lib/class
Scheduling-class-specific directories containing executables for priocntl (1)
and dispadmin (1M).

/usr/lib/dict
Database files for spell (1).

/usr/lib/font
troff (1) font description files.

48 SunOS 5.8 Last modified 9 Nov 1999



Headers, Tables, and Macros filesystem(5)

/usr/lib/fs
File system type dependent modules; generally not intended to be invoked
directly by the user.

/usr/lib/ia64
Intel 64–bit, platform-dependent libraries, various databases, commands
and daemons not invoked directly by a human user. Note that ia64 is an
example name; the actual name might be different. An approved installation
location for bundled Solaris software. The analogous location for add-on
system software or for applications is /opt/ packagename/lib/ia64 .

/usr/lib/iconv
Conversion tables for iconv (1).

/usr/lib/libp
Profiled libraries.

/usr/lib/locale
Localization databases.

/usr/lib/lp
Line printer subsystem databases and back-end executables.

/usr/lib/mail
Auxiliary programs for the mail (1) subsystem.

/usr/lib/netsvc
Internet network services.

/usr/lib/nfs
Auxiliary NFS-related programs and daemons.

/usr/lib/pics
Position Independent Code (PIC) archives needed to rebuild the run-time
linker.

/usr/lib/refer
Auxiliary programs for refer (1).

/usr/lib/sa
Scripts and commands for the system activity report package. See sar (1).

/usr/lib/saf
Auxiliary programs and daemons related to the service access facility.

/usr/lib/sparcv9
SPARC 64-bit, platform-dependent libraries, various databases,
commands and daemons not invoked directly by a human user. An
approved installation location for bundled Solaris software. The

Last modified 9 Nov 1999 SunOS 5.8 49



filesystem(5) Headers, Tables, and Macros

analogous location for add-on system software or for applications is
/opt/ packagename/lib/sparcv9 .

/usr/lib/spell
Auxiliary programs and databases for spell (1). This directory is only
present when the Binary Compatibility Package is installed.

/usr/lib/uucp
Auxiliary programs and daemons for uucp (1C).

/usr/lib/ subsystem
Platform-dependent libraries, various databases, commands and daemons
that are associated with subsystem and that are not invoked directly by a
human user. An approved installation location for bundled Solaris software.
The analogous location for add-on system software or for applications is
/opt/ packagename/lib .

/usr/lib/ subsystem/ia64
Intel 64–bit, platform-dependent libraries, various databases, commands
and daemons that are associated with subsystem and that are not invoked
directly by a human user. Note that ia64 is an example name; the actual
name might be different. An approved installation location for bundled
Solaris software. The analogous location for add-on system software or for
applications is /opt/ packagename/lib/ia64 .

/usr/lib/ subsystem/sparcv9
SPARC 64-bit, platform-dependent libraries, various databases, commands
and daemons that are associated with subsystem and that are not invoked
directly by a human user. An approved installation location for bundled
Solaris software. The analogous location for add-on system software or for
applications is /opt/ packagename/lib/sparcv9 .

/usr/ subsystem/lib
Platform-dependent libraries, various databases, commands and daemons
not invoked directly by a human user. An approved installation location
for bundled Solaris software. The analogous location for add-on system
software or for applications is /opt/ packagename/lib .

/usr/ subsystem/lib/ia64
Intel 64–bit, platform-dependent libraries, various databases, commands
and daemons that are associated with subsystem and that are not invoked
directly by a human user. Note that ia64 is an example name; the actual
name might be different. An approved installation location for bundled
Solaris software. The analogous location for add-on system software or for
applications is /opt/ packagename/lib/ia64 .

/usr/ subsystem/lib/sparcv9

50 SunOS 5.8 Last modified 9 Nov 1999



Headers, Tables, and Macros filesystem(5)

SPARC 64-bit, platform-dependent libraries, various databases, commands
and daemons that are associated with subsystem and that are not invoked
directly by a human user. An approved installation location for bundled
Solaris software. The analogous location for add-on system software or for
applications is /opt/ packagename/lib/sparcv9 .

/usr/local
Commands local to a site.

/usr/mail
Symbolic link to the /var/mail directory.

/usr/man
Symbolic link to the /usr/share/man directory.

/usr/net/servers
Entry points for foreign name service requests relayed using the network
listener. See listen (1M).

/usr/news
Symbolic link to the /var/news directory.

/usr/oasys
Commands and files related to the Form and Menu Language Interpreter
(FMLI) execution environment. See face (1).

/usr/old
Programs that are being phased out.

/usr/openwin
Installation or mount point for the OpenWindows software.

/usr/perl5
Perl 5 programs and documentation

/usr/platform
Subtree of platform-specific objects which does not need to reside on the root
filesystem. It contains a series of directories, one per supported platform.
The semantics of the series of directories is equivalent to /platform , except
for subdirectories which do not provide utility under one or the other (for
example, /platform/include is not needed).

/usr/platform/‘uname −i‘/include
Platform-specific system (sys , vm) header files with semantics equivalent
to /usr/include . An approved installation location for bundled Solaris
software and for add-on system software.

/usr/platform/‘uname −i‘/kernel

Last modified 9 Nov 1999 SunOS 5.8 51



filesystem(5) Headers, Tables, and Macros

Platform-specific modules with semantics equivalent to /usr/kernel .
An approved installation location for bundled Solaris software and for
add-on system software.

/usr/platform/‘uname −i‘/lib
Platform-specific daemon and shared objects with semantics equivalent to
/usr/lib . An approved installation location for bundled Solaris software
and for add-on system software.

/usr/platform/‘uname −i‘/lib/ia64
Intel IA64 64–bit, platform-specific daemon and shared objects. Note that
ia64 is an example name; the actual name might be different. An approved
installation location for bundled Solaris software and for add-on system
software.

/usr/platform/‘uname −i‘/lib/sparcv9
SPARC 64–bit, platform-specific daemon and shared objects. An approved
installation location for bundled Solaris software and for add-on system
software.

/usr/platform/‘uname −i‘/[s]man num
Where num can be one of 3x , 1m, 4, 7d , or 9e . Platform-specific system
manual pages for documenting platform-specific, shared objects,
administration utilities, configuration files, special files/modules, and
header files. An approved installation location for bundled Solaris software
and for add-on system software.

/usr/platform/‘uname −i‘/sbin
Platform-specific system administration utilities with semantics equivalent
to /usr/sbin . An approved installation location for bundled Solaris
software and for add-on system software.

/usr/preserve
Symbolic link to the /var/preserve directory.

/usr/proc
Directory for the proc tools.

/usr/proc/bin
Contains links to SPARC Version 8 binaries in /usr/bin .

/usr/pub
Files for online man page and character processing.

/usr/sadm
System administration files and directories.

/usr/sadm/bin

52 SunOS 5.8 Last modified 9 Nov 1999



Headers, Tables, and Macros filesystem(5)

Binaries for the Form and Menu Language Interpreter (FMLI) scripts. See
fmli (1).

/usr/sadm/install
Executables and scripts for package management.

/usr/sbin
Platform-dependent executables for system administration, expected to
be run only by system administrators. An approved installation location
for bundled Solaris software. The analogous location for add-on system
software or for applications is /opt/ packagename/sbin .

/usr/sbin/ subsystem
Platform-dependent executables for system administration, expected to
be run only by system administrators, and associated with subsystem.
An approved installation location for bundled Solaris software. The
analogous location for add-on system software or for applications is
/opt/ packagename/sbin .

/usr/ subsystem/sbin
Platform-dependent executables for system administration, expected to
be run only by system administrators, and associated with subsystem.
An approved installation location for bundled Solaris software. The
analogous location for add-on system software or for applications is
/opt/ packagename/sbin .

/usr/sbin/static
Statically linked version of selected programs from /usr/bin and
/usr/sbin . These are used to recover from broken dynamic linking and
before all pieces necessary for dynamic linking are present.

/usr/share
Platform-independent sharable files. An approved installation location for
bundled Solaris software.

/usr/share/lib
Platform-independent sharable databases. An approved installation location
for bundled Solaris software.

/usr/share/lib/dict
Contains word list for spell (1).

/usr/share/lib/keytables
Keyboard layout description tables.

/usr/share/lib/mailx
Help files for mailx (1).

/usr/share/lib/nterm

Last modified 9 Nov 1999 SunOS 5.8 53



filesystem(5) Headers, Tables, and Macros

nroff (1) terminal tables.

/usr/share/lib/pub
Character set data files.

/usr/share/lib/tabset
Tab setting escape sequences.

/usr/share/lib/terminfo
Terminal description files for terminfo (4).

/usr/share/lib/tmac
Macro packages and related files for text processing tools, for example,
nroff (1) and troff (1).

/usr/share/lib/zoneinfo
Time zone information.

/usr/share/[s]man
Platform-independent sharable manual pages. An approved installation
location for bundled Solaris software. The analogous location for add-on
system software or for applications is /opt/ packagename/[s]man .

/usr/share/src
Source code for kernel, utilities, and libraries.

/usr/snadm
Files related to system and network administration..

/usr/spool
Symbolic link to the /var/spool directory.

/usr/src
Symbolic link to the /usr/share/src directory.

/usr/tmp
Symbolic link to the var/tmp directory.

/usr/ucb
Berkeley compatibility package binaries. See Source Compatibility Guide

/usr/ucbinclude
Berkeley compatibility package headers.

/usr/ucblib
Berkeley compatibility package libraries.

/usr/vmsys
Commands and files related to the Framed Access Command Environment
(FACE) programs. See face (1).

54 SunOS 5.8 Last modified 9 Nov 1999



Headers, Tables, and Macros filesystem(5)

/usr/xpg4
Directory for POSIX-compliant utilities.

SEE ALSO at (1), ex (1), face (1), fmli (1), iconv (1), lp (1), isainfo (1), mail (1), mailx (1),
nroff (1), priocntl (1), refer (1), sar (1), sh (1), spell (1), troff (1),
uname(1), uucp (1C), vi (1), acct (1M), cron (1M), dispadmin (1M), fsck (1M),
init (1M), kernel (1M), mknod(1M), mount (1M), useradd (1M), ypbind (1M),
mount (2), intro (4), terminfo (4)

Binary Compatibility Guide Source Compatibility Guide

Last modified 9 Nov 1999 SunOS 5.8 55



fnmatch(5) Headers, Tables, and Macros

NAME fnmatch – file name pattern matching

DESCRIPTION The pattern matching notation described below is used to specify patterns for
matching strings in the shell. Historically, pattern matching notation is related
to, but slightly different from, the regular expression notation. For this reason,
the description of the rules for this pattern matching notation is based on the
description of regular expression notation described on the regex (5) manual
page.

Patterns Matching a
Single Character

The following patterns matching a single character match a single character:
ordinary characters, special pattern characters and pattern bracket expressions. The
pattern bracket expression will also match a single collating element.

An ordinary character is a pattern that matches itself. It can be any character in
the supported character set except for NUL, those special shell characters that
require quoting, and the following three special pattern characters. Matching
is based on the bit pattern used for encoding the character, not on the graphic
representation of the character. If any character (ordinary, shell special, or
pattern special) is quoted, that pattern will match the character itself. The shell
special characters always require quoting.

When unquoted and outside a bracket expression, the following three characters
will have special meaning in the specification of patterns:
? A question-mark is a pattern that will match any character.

* An asterisk is a pattern that will match multiple characters, as
described in Patterns Matching Multiple Characters , below.

[ The open bracket will introduce a pattern bracket expression.

The description of basic regular expression bracket expressions on the regex (5)
manual page also applies to the pattern bracket expression, except that the
exclamation-mark character ( ! ) replaces the circumflex character (^ ) in its role
in a non-matching list in the regular expression notation. A bracket expression
starting with an unquoted circumflex character produces unspecified results.

The restriction on a circumflex in a bracket expression is to allow
implementations that support pattern matching using the circumflex as the
negation character in addition to the exclamation-mark. A portable application
must use something like [\^! ] to match either character.

When pattern matching is used where shell quote removal is not performed
(such as in the argument to the find –name primary when find is being called
using one of the exec functions, or in the pattern argument to the fnmatch (3C)
function, special characters can be escaped to remove their special meaning
by preceding them with a backslash character. This escaping backslash will
be discarded. The sequence \\ represents one literal backslash. All of the

56 SunOS 5.8 Last modified 28 Mar 1995



Headers, Tables, and Macros fnmatch(5)

requirements and effects of quoting on ordinary, shell special and special pattern
characters will apply to escaping in this context.

Both quoting and escaping are described here because pattern matching must
work in three separate circumstances:

� Calling directly upon the shell, such as in pathname expansion or in a case
statement. All of the following will match the string or file abc :

abc "abc" a"b"c a\bc a[b]c

a["b"]c a[\b]c a["\b"]c a?c a*c

The following will not:

"a?c" a\*c a\[b]c

� Calling a utility or function without going through a shell, as described for
find (1) and the function fnmatch (3C)

� Calling utilities such as find , cpio , tar or pax through the shell command
line. In this case, shell quote removal is performed before the utility sees the
argument. For example, in:

find /bin -name e\c[\h]o -print

after quote removal, the backslashes are presented to find and it treats
them as escape characters. Both precede ordinary characters, so the c and
h represent themselves and echo would be found on many historical
systems (that have it in /bin ). To find a file name that contained shell
special characters or pattern characters, both quoting and escaping are
required, such as:

pax -r . . . "*a\ ( \?"

to extract a filename ending with a(? .

Conforming applications are required to quote or escape the shell special
characters (sometimes called metacharacters). If used without this protection,
syntax errors can result or implementation extensions can be triggered. For
example, the KornShell supports a series of extensions based on parentheses in
patterns; see ksh (1)

Patterns Matching
Multiple Characters

The following rules are used to construct patterns matching multiple characters
from patterns matching a single character:

� The asterisk (*) is a pattern that will match any string, including the null
string.

Last modified 28 Mar 1995 SunOS 5.8 57



fnmatch(5) Headers, Tables, and Macros

� The concatenation of patterns matching a single character is a valid pattern that
will match the concatenation of the single characters or collating elements
matched by each of the concatenated patterns.

� The concatenation of one or more patterns matching a single character with
one or more asterisks is a valid pattern. In such patterns, each asterisk will
match a string of zero or more characters, matching the greatest possible
number of characters that still allows the remainder of the pattern to match
the string.

Since each asterisk matches zero or more occurrences, the patterns a*b and a**b
have identical functionality.

Examples:
a[bc] matches the strings ab and ac .

a*d matches the strings ad , abd and abcd , but not the string
abc .

a*d* matches the strings ad , abcd , abcdef , aaaad and adddd .

*a*d matches the strings ad , abcd , efabcd , aaaad and adddd .

Patterns Used for
Filename Expansion

The rules described so far in Patterns Matching Multiple Characters and
Patterns Matching a Single Character are qualified by the following
rules that apply when pattern matching notation is used for filename expansion.

1. The slash character in a pathname must be explicitly matched by using
one or more slashes in the pattern; it cannot be matched by the asterisk or
question-mark special characters or by a bracket expression. Slashes in the
pattern are identified before bracket expressions; thus, a slash cannot be
included in a pattern bracket expression used for filename expansion. For
example, the pattern a[b/c]d will not match such pathnames as abd or
a/d . It will only match a pathname of literally a[b/c]d .

2. If a filename begins with a period (.), the period must be explicitly matched
by using a period as the first character of the pattern or immediately
following a slash character. The leading period will not be matched by:

• the asterisk or question-mark special characters

• a bracket expression containing a non-matching list, such as:

[!a]

a range expression, such as:

[%−0]

58 SunOS 5.8 Last modified 28 Mar 1995



Headers, Tables, and Macros fnmatch(5)

or a character class expression, such as:

[[:punct:]]

It is unspecified whether an explicit period in a bracket expression matching
list, such as:

[.abc]

can match a leading period in a filename.

3. Specified patterns are matched against existing filenames and pathnames, as
appropriate. Each component that contains a pattern character requires read
permission in the directory containing that component. Any component,
except the last, that does not contain a pattern character requires search
permission. For example, given the pattern:

/foo/bar/x*/bam

search permission is needed for directories / and foo , search and read
permissions are needed for directory bar , and search permission is needed
for each x* directory.

If the pattern matches any existing filenames or pathnames, the pattern will
be replaced with those filenames and pathnames, sorted according to the
collating sequence in effect in the current locale. If the pattern contains an
invalid bracket expression or does not match any existing filenames or
pathnames, the pattern string is left unchanged.

SEE ALSO find (1), ksh (1), fnmatch (3C), regex (5)

Last modified 28 Mar 1995 SunOS 5.8 59



fns(5) Headers, Tables, and Macros

NAME fns – overview of FNS

DESCRIPTION Federated Naming Service (FNS) provides a method for federating multiple
naming services under a single, simple interface for the basic naming operations.
The service supports resolution of composite names, names that span multiple
naming systems, through the naming interface. In addition to the naming
interface, FNS also specifies policies for composing names in the enterprise
namespace. See fns_policies (5) and fns_initial_context (5).

Fundamental to the FNS model are the notions of composite names and contexts.
A context provides operations for:

� associating (binding) names to objects

� resolving names to objects

� removing bindings, listing names, renaming and so on.

A context contains a set of names to reference bindings. A reference contains a
list of communication end-points. Every naming operation in the FNS interface
is performed on a context object.

The federated naming system is formed by contexts from one naming system
being bound in the contexts of another naming system. Resolution of a
composite name proceeds from contexts within one naming system to those in
the next, until the name is resolved.

XFN XFN is X/Open Federated Naming. The programming interface and policies that
FNS supports are specified by XFN. See xfn (3XFN) and fns_policies (5).

Composite Names A composite name is a name that spans multiple naming systems. It consists of
an ordered list of components. Each component is a name from the namespace of
a single naming system. FNS defines the syntax for constructing a composite
name using names from component naming systems. Individual naming
systems are responsible for the syntax of each component.

The syntax for composite names is that components are composed left to
right using the slash character (’/’) as the component separator. For example,
the composite name . . . /Wiz.Com/site/Oceanview.East consists
of four components: . . . , Wiz.COM, site , and Oceanview.East . See
fns_policies (5) and fns_initial_context (5) for more examples of
composite names.

Why FNS? FNS is useful for the following reasons:

� A single uniform naming interface is provided to clients for accessing
naming services. Consequently, the addition of new naming services
does not require changes to applications or existing naming services.

60 SunOS 5.8 Last modified 22 Nov 1996



Headers, Tables, and Macros fns(5)

Furthermore, applications that use FNS will be portable across platforms
because the interface exported by FNS is XFN, a public, open interface
endorsed by other vendors and by the X/Open Company.

� Names can be composed in a uniform way (that is, FNS supports a model in
which composite names are constructed in a uniform syntactic way and can
have any number of components).

� Coherent naming is encouraged through the use of shared contexts and
shared names.

FNS and Naming
Systems

FNS has support for NIS+, NIS, and files as enterprise-level naming services.
This means that FNS implements the enterprise-level policies using NIS+, NIS,
and files. FNS also supports DNS and X.500 (via DAP or LDAP) as global
naming services, as well as support for federating NIS+ and NIS with DNS and
X.500. See the corresponding individual man page for information about the
implementation for a specific naming service.

SEE ALSO nis+ (1), xfn (3XFN), fns_dns (5), fns_files (5), fns_initial_context (5),
fns_nis (5), fns_nis+ (5), fns_policies (5), fns_references (5),
fns_x500 (5)

Last modified 22 Nov 1996 SunOS 5.8 61



fns_dns(5) Headers, Tables, and Macros

NAME fns_dns – overview of FNS over DNS implementation

DESCRIPTION Federated Naming Service (FNS) provides a method for federating multiple
naming services under a single, simple interface for the basic naming operations.
One of the naming services supported by FNS is the Internet Domain Name
System, or DNS (see in.named (1M)). DNS is a hierarchical collection of name
servers that provide the Internet community with host and domain name
resolution. FNS uses DNS to name entities globally. Names can be constructed
for any enterprise that is accessible on the Internet; consequently, names can also
be constructed for objects exported by these enterprises.

FNS provides the XFN interface for performing naming resolution on DNS
domains and hosts. In addition, enterprise namespaces such as those served
by NIS+ and NIS can be federated with DNS by adding TXT records to DNS.
To federate an NIS+ or NIS namespace under DNS, you first obtain the root
reference for the NIS+ hierarchy or NIS domain. This reference is referred to
as the next naming system reference because it refers to the next naming system
beneath the DNS domain. This reference contains information about how to
communicate with the NIS+ or NIS servers and has the following format:

<domainname > <server name> [ <server address> ]

where <domainname > is the fully qualified domain name. Notice that NIS+
and NIS have slightly different syntaxes for domain names. For NIS+, the fully
qualified domain name is case-insensitive and terminated by a dot character (’. ’).
For NIS, the fully qualified domain name is case-sensitive and is not terminated
by a dot character. For both NIS+ and NIS, <server address> is optional. If it is not
supplied, a host name lookup will be performed to get the machine’s address.

For example, if the machine wiz-nisplus-server with address
133.33.33.33 serves the NIS+ domain wiz.com. , the reference would look
like this:

wiz.com. wiz-nisplus-server 133.33.33.33

For NIS, the reference information is of the form:

<domainname > <server name>

62 SunOS 5.8 Last modified 22 Nov 1996



Headers, Tables, and Macros fns_dns(5)

For example, if the machine woz-nis-server serves the NIS domain Woz.COM,
the reference would look like this:

Woz.COM woz-nis-server

After obtaining this information, you then edit the DNS table (see
in.named (1M)) and add a TXT record with this reference information. The TXT
record must be associated with a DNS domain that includes an NIS record. For
example, the reference information shown in the examples above would be
entered as follows.

For NIS+:

TXT "XFNNISPLUS wiz.com. wiz-nisplus-server 133.33.33.33"

For NIS:

TXT "XFNNIS woz.com woz-nis-server"

Note the mandatory double quotes (’ " ’) delimiting the contents of the TXT
record. After making any changes to the DNS table, you must notify the server
by either restarting it or sending it a signal to reread the table:

#kill -HUP ‘cat /etc/named.pid‘

This update effectively adds the next naming system reference to DNS. You can
look up this reference using fnlookup (1) to see if the information has been
added properly. For example, the following command looks up the next naming
system reference of the DNS domain Wiz.COM:

#fnlookup -v .../Wiz.COM/

Note the mandatory trailing slash (’/ ’).

After this administrative step has been taken, clients outside of the NIS+
hierarchy or NIS domain can access and perform operations on the contexts in
the NIS+ hierarchy or NIS domain. Foreign NIS+ clients access the hierarchy as

Last modified 22 Nov 1996 SunOS 5.8 63



fns_dns(5) Headers, Tables, and Macros

unauthenticated NIS+ clients. Continuing the example above, and assuming
that NIS+ is federated underneath the DNS domain Wiz.COM, you can now list
the root of the NIS+ enterprise using the command:

#fnlist .../Wiz.COM/

SEE ALSO fnlist (1), fnlookup (1), nis+ (1), in.named (1M), ypserv (1M), xfn (3XFN),
fns (5), fns_nis (5), fns_nis+ (5), fns_references (5), fns_x500 (5)

64 SunOS 5.8 Last modified 22 Nov 1996



Headers, Tables, and Macros fns_files(5)

NAME fns_files – overview of FNS over files implementation

DESCRIPTION The Federated Naming Service (FNS) provides a method for federating multiple
naming services under a single, simple interface for the basic naming operations.
One of the naming services supported by FNS is /etc files. FNS provides the
XFN interface for performing naming and attribute operations on FNS enterprise
objects (organization, site, user, host, and service objects), using files as the
naming service. FNS stores bindings for these objects in files and uses them in
conjunction with existing /etc files objects.

FNS Policies and /etc
Files

FNS defines policies for naming objects in the federated namespace (see
fns_policies (5)). At the enterprise level, FNS policies specify naming for
organizations, hosts, users, sites, and services. The enterprise-level naming
service provides contexts to allow other objects to be named relative to these
objects.

The organizational unit namespace provides a hierarchical namespace for
naming subunits of an enterprise. In /etc files, there is no concept of an
organization. Hence, with respect to /etc files as the naming service, there is a
single organizational unit context that represents the entire system. Users in an
FNS organizational unit correspond to the users in the /etc/passwd file. FNS
provides a context for each user in the /etc/passwd file.

Hosts in an FNS organizational unit correspond to the hosts in the /etc/hosts
file. FNS provides a context for each host in the /etc/hosts file.

Security
Considerations

Changes to the FNS information (using the commands fncreate (1M),
fncreate_fs (1M), fnbind (1), fndestroy (1M) and fnunbind (1)) can be
performed only by the privileged users on the system that exports the /var/fn
directory. Also, based on the UNIX user IDs, users are allowed to modify their
own contexts, bindings, and attributes, from any machine that mounts the
/var/fn directory.

For example, the command fncreate (1M) creates FNS related files and
directories in the system on which the command is executed. Hence, the
invoker of the fncreate (1M) command must have super-user privileges in
order to create the user, host, site, and service contexts. However, a user could
use the fnunbind (1) command to create calendar bindings in the user’s own
context, as in this example:

fnbind –r thisuser/service/calendar onc_calendar
onc_cal_str jsmith@beatrix

The files object name that corresponds to an FNS composite name can be
obtained using fnlookup (1) and fnlist (1).

Last modified 13 Dec 1996 SunOS 5.8 65



fns_files(5) Headers, Tables, and Macros

USAGE The files used for storing FNS information are placed in the directory /var/fn .
The machine on which /var/fn is located has access to the FNS file. The FNS
information can be made accessible to other machines by exporting /var/fn .
Client machines that NFS mount the /var/fn directory would then be able to
access the FNS information.

SEE ALSO fnbind (1), fnlist (1), fnlookup (1), fnunbind (1), fncreate (1M),
fncreate_fs (1M), fndestroy (1M), xfn (3XFN), fns (5),
fns_initial_context (5), fns_nis (5), fns_nis+ (5), fns_policies (5),
fns_references (5)

66 SunOS 5.8 Last modified 13 Dec 1996



Headers, Tables, and Macros fns_initial_context(5)

NAME fns_initial_context – overview of the FNS Initial Context

DESCRIPTION Every FNS name is interpreted relative to some context, and every FNS naming
operation is performed on a context object. The FNS programming interface
(XFN) provides a function that allows the client to obtain an Initial Context object.
The Initial Context provides the initial pathway to other FNS contexts. FNS
defines a set of bindings that the client can expect to find in this context,

FNS assumes that for every process:

1. There is a user associated with the process when
fn_ctx_handle_from_initial( ) is invoked. This
association is based on the effective uid of the process. In the following
discussion this user is denoted by U. The association of user to process may
change during the life of a process but does not affect the context handle
originally returned by fn_ctx_handle_from_initial( ) .

2. The process is running on a host when fn_ctx_handle_from_initial( )
is invoked. In the following discussion this host is denoted by H.

The following atomic names can appear in the Initial Context:

. . . thishost thisorgunit

thisens myself myorgunit

myens orgunit site

user host

Except for . . . , these names with an added underscore (’_’) prefix are also in
the Initial Context and have the same binding as their counterpart (for example,
thishost and _thishost have the same binding). In addition, org has the
same binding as orgunit , and thisuser has the same binding as myself . The
bindings for these names are summarized in the following table.

Some of these names may not necessarily appear in all Initial Contexts. For
example, a process owned by the super-user of a machine does not have any of
the user-related bindings. Or, for another example, an installation that has not
set up a site namespace will not have the site-related bindings.
… global context for resolving DNS or X.500 names.

Synonym: /. . .

thishost H’s host context. Synonym: _thishost

thisens the enterprise root of H. Synonym: _thisens

Last modified 1 Nov 1994 SunOS 5.8 67



fns_initial_context(5) Headers, Tables, and Macros

thisorgunit H’s distinguished organizational unit context. In
Solaris, this is H’s NIS+ home domain. Synonym:
_thisorgunit

myself U’s user context. Synonyms: _myself ,
thisuser

myens the enterprise root of U. Synonym: _myens

myorgunit U’s distinguished organizational unit context. In
Solaris, this is U’s NIS+ home domain. Synonym:
_myorgunit

user the context in which users in the same
organizational unit as H are named. Synonym:
_user

host the context in which hosts in the same
organizational unit as H are named. Synonym:
_host

org the root context of the organizational unit
namespace in H’s enterprise. In Solaris, this
corresponds to the NIS+ root domain. Synonyms:
orgunit , _orgunit

site the root context of the site namespace in H’s
enterprise, if the site namespace has been
configured. Synonym: _site

EXAMPLES EXAMPLE 1 Names beginning with the enterprise root

The types of objects that may be named relative to the enterprise root are user,
host, service, organizational unit, file, and site. Here are some examples of names
that begin with the enterprise root:
thisens/orgunit/multimedia.servers.engineering

names an organizational unit multimedia.servers.engineering in
H’s enterprise.

thisens/site/northwing.floor3.admin
names the north wing site, on the third floor of the administrations building
in H’s enterprise.

myens/user/hdiffie
names the user hdiffie in U’s enterprise.

myens/service/teletax
names the teletax service of U’s enterprise.

68 SunOS 5.8 Last modified 1 Nov 1994



Headers, Tables, and Macros fns_initial_context(5)

EXAMPLE 2 Names beginning with organizational unit names

The types of objects that may be named relative to an organizational unit name
are: user, host, service, file, and site. Here are some examples of names that
begin with organizational unit names (either explicitly via org , or implicitly via
thisorgunit or myorgunit ), and name objects relative to organizational unit
names when resolved in the Initial Context:
org/accounts_payable.finance/site/videoconference.northwing

names a conference room videoconference located in the
north wing of the site associated with the organizational unit
accounts_payable.finance .

org/finance/user/mjones
names a user mjones in the organizational unit finance .

org/finance/host/inmail
names a machine inmail belonging to the organizational unit finance .

org/accounts_payable.finance/fs/pub/blue-and-whites/FY92-124
names a file pub/blue-and-whites/FY92-124 belonging to the
organizational unit accounts_payable.finance .

org/accounts_payable.finance/service/calendar
names the calendar service of the organizational unit
accounts_payable.finance . This might manage the meeting schedules
of the organizational unit.

thisorgunit/user/cmead
names the user cmead in H’s organizational unit.

myorgunit/fs/pub/project_plans/widget.ps
names the file pub/project_plans/widget.ps exported by U’s
organizational unit’s file system.

EXAMPLE 3 Names beginning with site names

The types of objects that may be named relative to a site name are users, hosts,
services, and files. Here are some examples of names that begin with site names
via site , and name objects relative to sites when resolved in the Initial Context:
site/b5.mtv/service/printer/speedy

names a printer speedy in the b5.mtv site.

site/admin/fs/usr/dist
names a file directory usr/dist available in the site admin .

EXAMPLE 4 Names beginning with user names

The types of objects that may be named relative to a user name are services and
files. Here are some examples of names that begin with user names (explicitly

Last modified 1 Nov 1994 SunOS 5.8 69



fns_initial_context(5) Headers, Tables, and Macros

via user or implicitly via thisuser ), and name objects relative to users when
resolved in the Initial Context:
user/jsmith/service/calendar

names the calendar service of the user jsmith .

user/jsmith/fs/bin/games/riddles
names the file bin/games/riddles of the user jsmith .

thisuser/service/printer
names the printer service of U.

EXAMPLE 5 Names beginning with host names

The types of objects that may be named relative to a host name are services and
files. Here are some examples of names that begin with host names (explicitly
via host or implicitly via thishost ), and name objects relative to hosts
when resolved in the Initial Context:
host/mailhop/service/mailbox

names the mailbox service associated with the machine mailhop .

host/mailhop/fs/pub/saf/archives.91
names the directory pub/saf/archives.91 found under the root
directory of the machine mailhop .

thishost/service/printer
names the printer service of H.

SEE ALSO nis+ (1), geteuid (2), fn_ctx_handle_from_initial (3XFN), xfn (3XFN),
fns (5), fns_policies (5)

70 SunOS 5.8 Last modified 1 Nov 1994



Headers, Tables, and Macros fns_nis+(5)

NAME fns_nis+ – overview of FNS over NIS+ implementation

DESCRIPTION Federated Naming Service (FNS) provides a method for federating multiple
naming services under a single, simple interface for the basic naming operations.
One of the naming services supported by FNS is NIS+, the enterprise-wide
information service in Solaris (see nis+ (1)). FNS provides the XFN interface
for performing naming and attribute operations on FNS enterprise objects
(organization, site, user, host, and service objects) using NIS+. FNS stores
bindings for these objects in NIS+ and uses them in conjunction with existing
NIS+ objects.

FNS Policies and
NIS+

FNS defines policies for naming objects in the federated namespace (see
fns_policies (5)). At the enterprise level, FNS policies specify naming for
organizations, hosts, users, sites, and services. The enterprise-level naming
service provides contexts to allow other objects to be named relative to these
objects.

The organizational unit namespace provides a hierarchical namespace for
naming subunits of an enterprise. An organizational unit maps to an NIS+
domain. Organizational unit names can be either fully qualified NIS+ domain
names or relatively NIS+ domain names. If a terminal dot is present in the
name, it is treated as a fully qualified name. Otherwise, the name is resolved
relative to the root NIS+ domain.

Users in the NIS+ namespace are found in the passwd.org_dir table of an
NIS+ domain. Users in an FNS organizational unit correspond to the users in the
passwd.org_dir table of the corresponding NIS+ domain. FNS provides a
context for each user in the passwd.org_dir table.

Hosts in the NIS+ namespace are found in the hosts.org_dir table of an
NIS+ domain. Hosts in an FNS organizational unit correspond to the hosts in
the hosts.org_dir table of the corresponding NIS+ domain. FNS provides a
context for each host in the hosts.org_dir table.

In NIS+, users and hosts have a notion of a home domain. It is the primary NIS+
domain that maintains information associated with them. A user or host’s
home domain can be determined directly using its NIS+ principal name, which
is composed of the atomic user (login) name or the atomic host name, and the
name of the NIS+ home domain. For example, user jsmith with home domain
wiz.com has an NIS+ principal name, jsmith.wiz.com .

A user’s NIS+ home domain corresponds to the user’s FNS organizational unit
and determines the binding for myens and myorgunit .

A host’s NIS+ home domain corresponds to the host’s FNS organizational unit
and determines the binding for thisens , thisorgunit , user , and host .

Last modified 22 Nov 1996 SunOS 5.8 71



fns_nis+(5) Headers, Tables, and Macros

Federating NIS+ with
DNS or X.500

Federating NIS+ with the global naming systems DNS or X.500 makes NIS+
contexts accessible outside of an NIS+ hierarchy. To enable the federation, the
administrator must first add address information in either DNS or X.500 (see
fns_dns (5) and fns_x500 (5)). After this administrative step has been taken,
clients outside of the NIS+ hierarchy can access contexts and perform operations
from outside the hierarchy as an unauthenticated NIS+ client.

NIS+ Security The command fncreate (1M) creates NIS+ tables and directories in the NIS+
hierarchy associated with the domain of the host on which it executes. The
invoker of fncreate (1M) and other FNS commands is expected to have
the necessary NIS+ credentials. (See nis+ (1) and nisdefaults (1)). The
environment variable NIS_GROUPof the process specifies the group owner for
the NIS+ objects thus created. In order to facilitate administration of the NIS+
objects, NIS_GROUPshould be set to the name of the NIS+ administration group
for the domain prior to executing fncreate (1M) and other FNS commands.
Changes to NIS+-related properties, including default access control rights,
could be effected using NIS+ administration tools and interfaces after the context
has been created. The NIS+ object name that corresponds to an FNS composite
name can be obtained using fnlookup (1) and fnlist (1).

SEE ALSO fnlist (1), fnlookup (1), nis+ (1), nischgrp (1), nischmod (1), nischown (1),
nisdefaults (1), nisls (1), fncreate (1M), xfn (3XFN), fns (5), fns_dns (5),
fns_files (5), fns_initial_context (5), fns_nis (5), fns_policies (5),
fns_references (5), fns_x500 (5)

72 SunOS 5.8 Last modified 22 Nov 1996



Headers, Tables, and Macros fns_nis(5)

NAME fns_nis – overview of FNS over NIS (YP) implementation

DESCRIPTION Federated Naming Service (FNS) provides a method for federating multiple
naming services under a single, simple interface for the basic naming operations.
One of the naming services supported by FNS is NIS (YP), the enterprise-wide
information services in Solaris (see ypcat (1), ypmatch (1), ypfiles (4)). FNS
provides the XFN interface for performing naming and attribute operations on
FNS enterprise objects (organization, site, user, host and service objects) using
NIS. FNS stores bindings for these objects in NIS and uses them in conjunction
with existing NIS objects.

FNS Policies and NIS FNS defines policies for naming objects in the federated namespace (see
fns_policies (5)). At the enterprise level, FNS policies specify naming for
organizations, hosts, users, sites, and services. The enterprise-level naming
service provides contexts to allow other objects to be named relative to these
objects.

The FNS organizational unit namespace provides a hierarchical namespace
for naming subunits of an enterprise. However, NIS does not support a
hierarchical organizational structure. Therefore, a NIS domain maps to a single
organizational unit in the FNS namespace.

Users in an FNS organizational unit correspond to the users in the
passwd.byname map of the corresponding NIS domain. FNS provides a
context for each user in the passwd.byname map.

Hosts in an FNS organizational unit correspond to the hosts in the
hosts.byname map of the corresponding NIS domain. FNS provides a context
for each host in the hosts.byname map.

Federating NIS with
DNS or X.500

Federating NIS with the global naming systems DNS or X.500 makes NIS
contexts accessible outside of an NIS domain. To enable the federation, the
administrator must first add address information in either DNS or X.500 (see
fns_dns (5) and fns_x500 (5)). After this administrative step has been taken,
clients outside of the NIS domain can access contexts and perform operations.

Security
Considerations

Changes to the FNS information (using the commands fncreate (1M),
fncreate_fs (1M), fncreate_printer (1M), fnbind (1), fndestroy (1M),
fncheck (1M), and fnunbind (1)) can be performed only by the privileged users
on the NIS master server that maintains the FNS information.

For example, the command fncreate (1M) creates the NIS map for the
associated NIS domain in the system on which it is executed. Hence, the
command must be run by a privileged user either on the NIS master server or on
a system that will serve as a NIS master server for FNS.

The NIS object name that corresponds to an FNS composite name can be
obtained using fnlookup (1) and fnlist (1).

Last modified 22 Nov 1996 SunOS 5.8 73



fns_nis(5) Headers, Tables, and Macros

SEE ALSO fnbind (1), fnlist (1), fnlookup (1), fnunbind (1), ypcat (1), ypmatch (1),
fncheck (1M), fncreate (1M), fncreate_fs (1M), fncreate_printer (1M),
fndestroy (1M), xfn (3XFN), ypfiles (4), fns (5), fns_dns (5),
fns_files (5), fns_initial_context (5), fns_nis+ (5), fns_policies (5),
fns_references (5), fns_x500 (5)

74 SunOS 5.8 Last modified 22 Nov 1996



Headers, Tables, and Macros fns_policies(5)

NAME fns_policies – overview of the FNS Policies

DESCRIPTION FNS defines policies for naming objects in the federated namespace. The goal of
these policies is to allow easy and uniform composition of names. The policies
use the basic rule that objects with narrower scopes are named relative to objects
with wider scopes.

FNS policies are described in terms of the following three categories: global,
enterprise, and application.
Global naming service A global naming service is a

naming service that has world-wide
scope. Internet DNS and X.500
are examples of global naming
services. The types of objects named
at this global level are typically
countries, states, provinces, cities,
companies, universities, institutions,
and government departments and
ministries. These entities are referred
to as enterprises.

Enterprise-level naming service Enterprise-level naming services
are used to name objects within an
enterprise. Within an enterprise, there
are naming services that provide
contexts for naming common entities
such as organizational units, physical
sites, human users, and computers.
Enterprise-level naming services are
bound below the global naming
services. Global naming services
provide contexts in which the root
contexts of enterprise-level naming
services can be bound.

Application-level naming service Application-level naming services
are incorporated in applications
offering services such as file service,
mail service, print service, and so on.
Application-level naming services
are bound below enterprise naming
services. The enterprise-level naming
services provide contexts in which
contexts of application-level naming
services can be bound.

Last modified 4 Nov 1994 SunOS 5.8 75



fns_policies(5) Headers, Tables, and Macros

FNS has policies for global and enterprise naming. Naming within applications
is left to individual applications or groups of related applications and not
specified by FNS.

FNS policy specifies that DNS and X.500 are global naming services that are used
to name enterprises. The global namespace is named using the name . . . . A
DNS name or an X.500 name can appear after the . . . . Support for federating
global naming services is planned for a future release of FNS.

Within an enterprise, there are namespaces for organizational units, sites, hosts,
users, files and services, referred to by the names orgunit , site , host , user ,
fs , and service . In addition, these namespaces can be named using these
names with an added underscore (’_’) prefix (for example, host and _host
have the same binding). The following table summarizes the FNS policies.

Context Subordinate Parent

Type Context Context

org unit site enterprise root

user

host

file system

service

site user enterprise root

host org unit

file system

service

user service enterprise root

file system org unit

host service enterprise root

file system org unit

service not specified enterprise root

org unit

site

user

host

file system none enterprise root

76 SunOS 5.8 Last modified 4 Nov 1994



Headers, Tables, and Macros fns_policies(5)

Context Subordinate Parent

Type Context Context

org unit

site

user

host

In Solaris, an organizational unit name corresponds to an NIS+ domain name
and is identified using either the fully-qualified form of its NIS+ domain
name, or its NIS+ domain name relative to the NIS+ root. Fully-qualified NIS+
domain names have a terminal dot (’. ’). For example, assume that the NIS+
root domain is "Wiz.COM." and "sales" is a subdomain of that. Then, the names
org/sales.Wiz.COM. and org/sales both refer to the organizational unit
corresponding to the same NIS+ domain sales.Wiz.COM .

User names correspond to names in the corresponding NIS+ passwd.org_dir table.
The file system context associated with a user is obtained from his entry in the
NIS+ passwd.org_dir table.

Host names correspond to names in the corresponding NIS+ hosts.org_dir table.
The file system context associated with a host corresponds to the files systems
exported by the host.

EXAMPLES EXAMPLE 1 The types of objects that may be named relative to an organizational unit
name are: user, host, service, file, and site. Here are some examples of names name
objects relative to organizational unit names:
org/accounts_payable.finance/site/videoconference.northwing

names a conference room videoconference located in the
north wing of the site associated with the organizational unit
accounts_payable.finance .

org/finance/user/mjones
names a user mjones in the organizational unit finance .

org/finance/host/inmail
names a machine inmail belonging to the organizational unit finance .

org/accounts_payable.finance/fs/pub/blue-and-whites/FY92-124
names a file pub/blue-and-whites/FY92-124 belonging to the
organizational unit accounts_payable.finance .

org/accounts_payable.finance/service/calendar

Last modified 4 Nov 1994 SunOS 5.8 77



fns_policies(5) Headers, Tables, and Macros

names the calendar service of the organizational unit
accounts_payable.finance . This might manage the meeting schedules
of the organizational unit.

EXAMPLE 2 The types of objects that may be named relative to a site name are
services and files. Here are some examples of names that name objects relative to sites:
site/b5.mtv/service/printer/speedy

names a printer speedy in the b5.mtv site.

site/admin/fs/usr/dist
names a file directory usr/dist available in the site admin .

EXAMPLE 3 The types of objects that may be named relative to a user name are
services and files. Here are some examples of names that name objects relative to
users:
user/jsmith/service/calendar

names the calendar service of the user jsmith .

user/jsmith/fs/bin/games/riddles
names the file bin/games/riddles of the user jsmith .

EXAMPLE 4 The types of objects that may be named relative to a host name are
services and files. Here are some examples of names that name objects relative to
hosts:
host/mailhop/service/mailbox

names the mailbox service associated with the machine mailhop .

host/mailhop/fs/pub/saf/archives.91
names the directory pub/saf/archives.91 found under the root
directory of the machine mailhop .

SEE ALSO fncreate (1M), nis+ (1), xfn (3XFN), fns (5), fns_initial_context (5),
fns_references (5)

78 SunOS 5.8 Last modified 4 Nov 1994



Headers, Tables, and Macros fns_references(5)

NAME fns_references – overview of FNS References

DESCRIPTION Every composite name in FNS is bound to a reference. A reference consists
of a type and a list of addresses. The reference type is used to identify the
type of object.

An address is something that can be used with some communication mechanism
to invoke operations on an object or service. Multiple addresses are intended to
identify multiple communication endpoints for a single conceptual object or
service. Each address in a reference consists of an address type and an opaque
buffer. The address type determines the format and interpretation of the
address data. Together, the address’s type and data specify how to reach the
object. Many communication mechanisms are possible; FNS does not place any
restrictions on them.

The following summarizes the reference and address types that are currently
defined. New types should be registered with the Federated Naming Group
at SunSoft.

Reference Types All reference types use the FN_ID_STRING identifier format unless otherwise
qualified.
onc_fn_enterprise Enterprise root context.

onc_fn_organization A context for naming objects related to an
organizational unit.

onc_fn_hostname A context for naming hosts.

onc_fn_username A context for naming users.

onc_fn_user A context for naming objects related to a user.

onc_fn_host A context for naming objects related to a
computer.

onc_fn_site A context for naming sites.

onc_fn_service A context for naming services.

onc_fn_nsid A context for naming namespace identifiers.

onc_fn_generic A context for naming application-specific objects.

onc_fn_fs A context for naming files, directories, and file
systems.

onc_fn_printername A context for naming printers.

onc_printers A printer object. When implemented on top of
NIS+, this could also be a context for naming
printers.

Last modified 13 Dec 1996 SunOS 5.8 79



fns_references(5) Headers, Tables, and Macros

fn_link_ref An XFN link.

inet_domain An Internet domain.

Address Types All address types use the FN_ID_STRING identifier format unless otherwise
qualified. The format of address contents is determined by the corresponding
address type.
onc_fn_nisplus For an FNS enterprise-level object

implemented on top of NIS+. The
address contains the context type,
context representation type (either
normal or merged), version number
of the reference, and the NIS+ name
of the object. The only intended use
of this reference is that it be passed to
fn_ctx_handle_from_ref (3XFN)

onc_fn_nis For an FNS enterprise-level object
implemented on top of NIS. The
address contains the context
type and version number of the
reference, and the NIS name of the
object. The only intended use of
this reference is that it be passed to
fn_ctx_handle_from_ref (3XFN).

onc_fn_files For an FNS enterprise-level object
implemented on top of /etc files.
The address contains the context
type and version number of the
reference, and the location of the
object in the /etc file system.
The only intended use of this
reference is that it be passed to
fn_ctx_handle_from_ref (3XFN).

onc_fn_fs_user For a user’s home directory. The
address contains the user’s name
and the name of the naming service
password table where the user’s
home directory is stored.

onc_fn_fs_user_nisplus For a user’s home directory. The
address contains the user’s name and
the name of the NIS+ password table

80 SunOS 5.8 Last modified 13 Dec 1996



Headers, Tables, and Macros fns_references(5)

where the user’s home directory
is stored.

onc_fn_fs_host For all file systems exported by a
host. The address contains the host’s
name.

onc_fn_fs_mount For a single mount point. The
address contains the mount options,
the name of the servers and the
exported path. See mount (1M).

onc_fn_printer_files For a printer’s address in the files
naming service.

onc_fn_printer_nis For a printer’s address in the NIS
naming service.

onc_fn_printer_nisplus For a printer’s address in the NIS+
naming service.

fn_link_addr For an XFN link address. The
contents is the string form of the
composite name.

inet_domain For an Internet domain. The address
contains the fully-qualified domain
name (for example, "Wiz.COM.")

inet_ipaddr_string For an object with an Internet
address. The address contains an
internet IP address in dotted string
form (for example, "192.144.2.3").

x500 For an X.500 object. The address
contains an X.500 Distinguished
Name, in the syntax specified in
the X/Open DCE: Directory
Services.

osi_paddr For an object with an OSI
presentation address. The address
contains the string encoding
of an OSI Presentation
Address as defined in
A string encoding of Presentation Address
(RFC 1278).

Last modified 13 Dec 1996 SunOS 5.8 81



fns_references(5) Headers, Tables, and Macros

onc_printers_bsaddr For a printer that understands the
BSD print protocol. The address
contains the machine name and
printer name used by the protocol.

onc_printers_use For a printer alias. The address
contains a printer name.

onc_printers_all For a list of printers that are
enumerated using the "all" option.
The address contains a list of printer
names.

onc_printers_location For a printer’s location. The address
format is unspecified.

onc_printers_type For a printer’s type. The address
format is unspecified.

onc_printers_speed For a printer’s speed. The address
format is unspecified.

SEE ALSO mount (1M), fn_ctx_handle_from_ref (3XFN), xfn (3XFN), fns (5),
fns_policies (5)

Hardcastle-Kille, S.E., A string encoding of Presentation Address, RFC 1278,
University College London, November 1991.

82 SunOS 5.8 Last modified 13 Dec 1996



Headers, Tables, and Macros fns_x500(5)

NAME fns_x500 – overview of FNS over X.500 implementation

DESCRIPTION Federated Naming Service (FNS) provides a method for federating multiple
naming services under a single, simple interface for the basic naming operations.
One of the naming services supported by FNS is the X.500 Directory Service (see
ITU-T X.500 or ISO/IEC 9594). X.500 is a global directory service. Its components
cooperate to manage information about a hierarchy of objects on a worldwide
scope. Such objects include countries, organizations, people, services, and
machines. FNS uses X.500 to name entities globally.

FNS provides the XFN interface for retrieval and modification of information
stored in X.500. In addition, enterprise namespaces such as those served by NIS+
and NIS can be federated with X.500 by adding reference information to X.500
describing how to reach the desired next naming service. To federate a NIS+ or
NIS namespace under X.500, perform the following steps:

1. Obtain the root reference for the NIS+ hierarchy or NIS domain.

2. Enhance the X.500 schema to support the addition of XFN references.

3. Create an X.500 entry to store the XFN reference.

4. Add the XFN reference.

The root reference is referred to as the next naming system reference because
it refers to the next naming system beneath X.500. This reference contains
information about how to communicate with the NIS+ or NIS servers and has
the following format:

<domainname> <server name> [ <server address> ]

where <domainname> is the fully qualified domain name. Notice that NIS+ and
NIS have slightly different syntaxes for domain names. For NIS+, the fully
qualified domain name is case-insensitive and terminated by a dot character (’. ’).
For NIS, the fully qualified domain name is case-sensitive and not terminated by
a dot character. For both NIS+ and NIS, <server address> is optional. If it is not
supplied, a host name lookup will be performed to get the machine’s address.

For example, if the machine wiz-nisplus-server with address
133.33.33.33 serves the NIS+ domain wiz.com. , the reference would look
like this:

wiz.com. wiz-nisplus-server 133.33.33.33

For another example, if the machine woz-nis-server serves the NIS domain
Woz.COM, the reference would look like this:

Last modified 29 Jan 1998 SunOS 5.8 83



fns_x500(5) Headers, Tables, and Macros

Woz.COM woz-nis-server

Before the next naming system reference can be added to X.500, the X.500 schema
must be altered to include the following object class and associated attributes
(defined in ASN.1 notation).

xFNSupplement OBJECT-CLASS ::= {
SUBCLASS OF { top }
KIND auxiliary
MAY CONTAIN { objectReferenceString | nNSReference-

String }
ID id-oc-xFNSupplement }

id-oc-xFNSupplement OBJECT IDENTIFIER ::= {
iso member-body(2) ansi(840) sun(113536) 25 }

objectReferenceString ATTRIBUTE ::= {
WITH SYNTAX OCTET STRING
EQUALITY MATCHING RULE octetStringMatch
SINGLE VALUE TRUE
ID id-at-objectReferenceString }

id-at-objectReferenceString OBJECT IDENTIFIER ::= {
iso member-body(2) ansi(840) sun(113536) 30 }

nNSReferenceString ATTRIBUTE ::= {
WITH SYNTAX OCTET STRING
EQUALITY MATCHING RULE octetStringMatch
SINGLE VALUE TRUE
ID id-at-nNSReferenceString }

id-at-nNSReferenceString OBJECT IDENTIFIER ::= {
so member-body(2) ansi(840) sun(113536) 31 }

The procedures for altering the X.500 schema will vary from implementation to
implementation. Consult Solstice X.500 or the schema administration guide for
your X.500 product.

Once X.500 supports XFN references, the next naming system reference can be
added by first creating an X.500 object and then adding the new reference
to it. For example, the following commands create entries for the Wiz and
Wozorganizations in the U.S.A. and add the reference information shown in
the examples above to them.

For NIS+:

example% fnattr .../c=us/o=wiz -a objectclass \
top organization xfnsupplement

example% fnbind -r .../c=us/o=wiz/ onc_fn_enterprise \
onc_fn_nisplus_root "wiz.com. wiz-nisplus-server"

For NIS:

84 SunOS 5.8 Last modified 29 Jan 1998



Headers, Tables, and Macros fns_x500(5)

example% fnattr .../c=us/o=woz -a objectclass \
top organization xfnsupplement

example% fnbind -r .../c=us/o=woz/ onc_fn_enterprise \
onc_fn_nis_root "Woz.COM woz-nis-server"

Notice the mandatory trailing slash (’/ ’) in the name argument to fnbind (1).

This modification effectively adds the next naming system reference to X.500.
The reference may be retrieved using fnlookup (1) to see if the information has
been added properly. For example, the following command looks up the next
naming system reference of the Wiz organization:

example% fnlookup -v .../c=us/o=wiz/

Note the mandatory trailing slash.

After this administrative step has been taken, clients outside of the NIS+
hierarchy or NIS domain can access and perform operations on the contexts in
the NIS+ hierarchy or NIS domain. Foreign NIS+ clients access the hierarchy as
unauthenticated NIS+ clients. Continuing the example above, and assuming
that NIS+ is federated underneath the Wiz organization, the root of the NIS+
enterprise may be listed using the command:

example% fnlist .../c=us/o=wiz/

Note the mandatory trailing slash.

The next naming system reference may be removed using the command:

example% fnunbind .../c=us/o=wiz/

Note the mandatory trailing slash.

SEE ALSO fnattr (1), fnbind (1), fnlist (1), fnlookup (1), nis+ (1), ypserv (1M),
xfn (3XFN), fns (5), fns_dns (5), fns_nis (5), fns_nis+ (5),
fns_references (5)

Solstice X.500

NOTES In a 64-bit XFN application, retrieval and modification of information stored in
the X.500 directory service is not supported.

Last modified 29 Jan 1998 SunOS 5.8 85



formats(5) Headers, Tables, and Macros

NAME formats – file format notation

DESCRIPTION Utility descriptions use a syntax to describe the data organization within
files—stdin, stdout, stderr, input files, and output files—when that organization
is not otherwise obvious. The syntax is similar to that used by the printf (3C)
function. When used for stdin or input file descriptions, this syntax describes the
format that could have been used to write the text to be read, not a format that
could be used by the scanf (3C) function to read the input file.

Format The description of an individual record is as follows:

"<format >", [<arg1>, <arg2>, . . ., <argn>]

The format is a character string that contains three types of objects defined
below:
characters Characters that are not escape sequences or

conversion specifications, as described below, are
copied to the output.

escape sequences Represent non-graphic characters.

conversion specifications Specifies the output format of each argument.
(See below.)

The following characters have the following special meaning in the format string:
„ “ (An empty character position.) One or more

blank characters.

/\ Exactly one space character.

The notation for spaces allows some flexibility for application output. Note that
an empty character position in format represents one or more blank characters
on the output (not white space, which can include newline characters). Therefore,
another utility that reads that output as its input must be prepared to parse the
data using scanf (3C), awk(1), and so forth. The character is used when exactly
one space character is output.

Escape Sequences The following table lists escape sequences and associated actions on display
devices capable of the action.

Sequence Character Terminal Action

\\ backslash None.

\a alert Attempts to alert the user through audible
or visible notification.

\b backspace Moves the printing position to one column
before the current position, unless the current
position is the start of a line.

86 SunOS 5.8 Last modified 28 Mar 1995



Headers, Tables, and Macros formats(5)

Sequence Character Terminal Action

\f form-feed Moves the printing position to the initial printing
position of the next logical page.

\n newline Moves the printing position to the start
of the next line.

\r carriage-return Moves the printing position to the start
of the current line.

\t tab Moves the printing position to the next
tab position on the current line. If there
are no more tab positions left on the line,
the behavior is undefined.

\v vertical-tab Moves the printing position to the start of
the next vertical tab position. If there are
no more vertical tab positions left on the
page, the behavior is undefined.

Conversion
Specifications

Each conversion specification is introduced by the percent-sign character (%).
After the character %, the following appear in sequence:
flags Zero or more flags, in any order, that modify the

meaning of the conversion specification.

field width An optional string of decimal digits to specify a
minimum field width. For an output field, if the
converted value has fewer bytes than the field
width, it is padded on the left (or right, if the
left-adjustment flag (−), described below, has been
given to the field width).

precision Gives the minimum number of digits to appear
for the d, o, i, u, x or X conversions (the field is
padded with leading zeros), the number of digits
to appear after the radix character for the e and f
conversions, the maximum number of significant
digits for the g conversion; or the maximum
number of bytes to be written from a string in
s conversion. The precision takes the form of a
period (.) followed by a decimal digit string; a
null digit string is treated as zero.

conversion characters A conversion character (see below) that indicates
the type of conversion to be applied.

Last modified 28 Mar 1995 SunOS 5.8 87



formats(5) Headers, Tables, and Macros

flags The flags and their meanings are:
− The result of the conversion is left-justified within the field.

+ The result of a signed conversion always begins with a
sign (+ or −).

<space> If the first character of a signed conversion is not a sign, a
space character is prefixed to the result. This means that
if the space character and + flags both appear, the space
character flag is ignored.

# The value is to be converted to an alternative form. For c, d,
i, u, and s conversions, the behaviour is undefined. For o
conversion, it increases the precision to force the first digit
of the result to be a zero. For x or X conversion, a non-zero
result has 0x or 0X prefixed to it, respectively. For e, E, f,
g, and G conversions, the result always contains a radix
character, even if no digits follow the radix character. For g
and G conversions, trailing zeros are not removed from the
result as they usually are.

0 For d, i, o, u, x, X, e, E, f, g, and G conversions, leading zeros
(following any indication of sign or base) are used to pad
to the field width; no space padding is performed. If the 0
and − flags both appear, the 0 flag is ignored. For d, i, o, u, x
and X conversions, if a precision is specified, the 0 flag is
ignored. For other conversions, the behaviour is undefined.

Conversion
Characters

Each conversion character results in fetching zero or more arguments. The
results are undefined if there are insufficient arguments for the format. If the
format is exhausted while arguments remain, the excess arguments are ignored.

The conversion characters and their meanings are:
d,i,o,u,x,X The integer argument is written as signed decimal (d or

i), unsigned octal (o), unsigned decimal (u), or unsigned
hexadecimal notation (x and X). The d and i specifiers
convert to signed decimal in the style [ −] dddd. The x
conversion uses the numbers and letters 0123456789abcdef
and the X conversion uses the numbers and letters
0123456789ABCDEF. The precision component of the
argument specifies the minimum number of digits to
appear. If the value being converted can be represented in
fewer digits than the specified minimum, it is expanded
with leading zeros. The default precision is 1. The result
of converting a zero value with a precision of 0 is no
characters. If both the field width and precision are omitted,

88 SunOS 5.8 Last modified 28 Mar 1995



Headers, Tables, and Macros formats(5)

the implementation may precede, follow or precede and
follow numeric arguments of types d, i and u with blank
characters; arguments of type o (octal) may be preceded
with leading zeros.

The treatment of integers and spaces is different from the
printf (3C) function in that they can be surrounded with
blank characters. This was done so that, given a format
such as:

"%d\n",<foo>

the implementation could use a printf( ) call such as:

printf("%6d\n", foo);

and still conform. This notation is thus somewhat like
scanf() in addition to printf( ).

f The floating point number argument is written in decimal
notation in the style [ −] ddd.ddd, where the number of digits
after the radix character (shown here as a decimal point) is
equal to the precision specification. The LC_NUMERIClocale
category determines the radix character to use in this format.
If the precision is omitted from the argument, six digits are
written after the radix character; if the precision is explicitly 0,
no radix character appears.

e,E The floating point number argument is written in the style
[ −] d.ddde±dd (the symbol ± indicates either a plus or minus
sign), where there is one digit before the radix character
(shown here as a decimal point) and the number of digits
after it is equal to the precision. The LC_NUMERIClocale
category determines the radix character to use in this format.
When the precision is missing, six digits are written after
the radix character; if the precision is 0, no radix character
appears. The E conversion character produces a number
with E instead of e introducing the exponent. The exponent
always contains at least two digits. However, if the value
to be written requires an exponent greater than two digits,
additional exponent digits are written as necessary.

Last modified 28 Mar 1995 SunOS 5.8 89



formats(5) Headers, Tables, and Macros

g,G The floating point number argument is written in style f or e
(or in style E in the case of a G conversion character), with
the precision specifying the number of significant digits. The
style used depends on the value converted: style g is used
only if the exponent resulting from the conversion is less
than −4 or greater than or equal to the precision. Trailing
zeros are removed from the result. A radix character appears
only if it is followed by a digit.

c The integer argument is converted to an unsigned char
and the resulting byte is written.

s The argument is taken to be a string and bytes from the
string are written until the end of the string or the number of
bytes indicated by the precision specification of the argument
is reached. If the precision is omitted from the argument,
it is taken to be infinite, so all bytes up to the end of the
string are written.

% Write a % character; no argument is converted.

In no case does a non-existent or insufficient field width cause truncation of a
field; if the result of a conversion is wider than the field width, the field is simply
expanded to contain the conversion result. The term field width should not be
confused with the term precision used in the description of %s.

One difference from the C function printf() is that the l and h conversion
characters are not used. There is no differentiation between decimal values for
type int , type long , or type short . The specifications %d or %i should be
interpreted as an arbitrary length sequence of digits. Also, no distinction is made
between single precision and double precision numbers (float or double in
C). These are simply referred to as floating point numbers.

Many of the output descriptions use the term line , such as:

"%s", <input line>

Since the definition of line includes the trailing newline character already, there
is no need to include a \n in the format; a double newline character would
otherwise result.

EXAMPLES EXAMPLE 1 To represent the output of a program that prints a date and time in the
form Sunday, July 3, 10:02, where <weekday> and <month> are strings:

"%s,/\%s/\%d,/\%d:%.2d\n",<weekday>,<month>,<day>,<hour>,<min>

90 SunOS 5.8 Last modified 28 Mar 1995



Headers, Tables, and Macros formats(5)

EXAMPLE 2 To show pi written to 5 decimal places:

"pi/\=/\%.5f\n",<value of pi>
EXAMPLE 3 To show an input file format consisting of five colon-separated fields:

"%s:%s:%s:%s:%s\n",<arg1>,<arg2>,<arg3>,<arg4>,<arg5>

SEE ALSO awk(1), printf (1), printf (3C), scanf (3C)

Last modified 28 Mar 1995 SunOS 5.8 91



iconv_1250(5) Headers, Tables, and Macros

NAME iconv_1250 – code set conversion tables for MS 1250 (Windows Latin 2)

DESCRIPTION The following code set conversions are supported:

Code Set Conversions Supported

Code Symbol Target Code Symbol Target Output

MS 1250 win2 ISO 8859-2 iso2 ISO Latin 2

MS 1250 win2 MS 852 dos2 MS-DOS Latin 2

MS 1250 win2 Mazovia maz Mazovia

MS 1250 win2 DHN dhn Dom Handlowy Nauki

CONVERSIONS The conversions are performed according to the following tables. All values in
the tables are given in octal.

MS 1250 to ISO 8859-2 For the conversion of MS 1250 to ISO 8859-2, all characters not in the following
table are mapped unchanged.

Conversions Performed

MS 1250 ISO 8859-2 MS 1250 ISO 8859-2

24-211 40 235 273

212 251 236 276

213 40 237 274

214 246 241 267

215 253 245 241

216 256 246-267 40

217 254 271 261

221-231 40 273 40

232 271 274 245

233 40 276 265

234 266 247 365

MS 1250 to MS 852 For the conversion of MS 1250 to MS 852, all characters not in the following
table are mapped unchanged.

92 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_1250(5)

Conversions Performed

MS 1250 MS 852 MS 1250 MS 852

200-211 40 311 220

212 346 312 250

213 40 313 323

214 227 314 267

215 233 315 326

216 246 316 327

217 215 317 322

220-231 40 320 321

232 347 321 343

233 40 322 325

234 230 323 340

235 234 324 342

236 247 325 212

237 253 326 231

240 377 327 236

241 363 330 374

242 364 331 336

243 235 332 351

244 317 333 353

245 244 334 232

246 40 335 355

247 365 336 335

250 371 337 341

251 40 340 352

252 270 341 240

253 256 342 203

254 252 343 307

255 360 344 204

256 40 345 222

Last modified 18 Apr 1997 SunOS 5.8 93



iconv_1250(5) Headers, Tables, and Macros

Conversions Performed

MS 1250 MS 852 MS 1250 MS 852

257 275 346 206

260 370 347 207

261 40 350 237

262 362 351 202

263 210 352 251

264 357 353 211

265-267 40 354 330

270 367 355 241

271 245 356 214

272 255 357 324

273 257 360 320

274 225 361 344

275 361 362 345

276 226 363 242

277 276 364 223

300 350 365 213

301 265 366 224

302 266 367 366

303 306 370 375

304 216 371 205

305 221 372 243

306 217 374 201

307 200 375 354

310 254 376 356

MS 1250 to Mazovia For the conversion of MS 1250 to Mazovia, all characters not in the following
table are mapped unchanged.

94 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_1250(5)

Conversions Performed

MS 1250 Mazovia MS 1250 Mazovia

200-213 40 310-311 40

214 230 312 220

215-216 40 313-320 40

217 240 321 245

220-233 40 322 40

234 236 323 243

235-236 40 324-325 40

237 246 326 231

240 377 327-333 40

241-242 40 334 232

243 234 335-336 40

244 40 337 341

245 217 340-341 40

246-252 40 342 203

253 256 343 40

254 252 344 204

255-256 40 345 40

257 241 346 215

260 370 347 207

261 361 350 40

262 40 351 202

263 222 352 221

264 40 353 211

265 346 354-355 40

266 40 356 214

267 372 357-360 40

270 40 361 244

271 206 362 40

272 40 363 242

Last modified 18 Apr 1997 SunOS 5.8 95



iconv_1250(5) Headers, Tables, and Macros

Conversions Performed

MS 1250 Mazovia MS 1250 Mazovia

273 257 364 223

274-276 40 365 40

277 247 366 224

300-303 40 367 366

304 216 370-373 40

305 40 374 201

306 225 375-376 40

307 200

MS 1250 to DHN For the conversion of MS 1250 to DHN, all characters not in the following
table are mapped unchanged.

Conversions Performed

MS 1250 DHN MS 1250 DHN

200-213 40 306 201

214 206 307-311 40

215-216 40 312 202

217 207 313-320 40

220-233 40 321 204

234 217 322 40

235-236 40 323 205

237 220 324-325 40

240 377 326 231

241-242 40 327-333 40

243 203 334 232

244 40 335-336 40

245 200 337 341

246-252 40 340 40

253 256 341 240

254 252 342-345 40

255-256 40 346 212

96 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_1250(5)

Conversions Performed

MS 1250 DHN MS 1250 DHN

257 210 347-351 40

260 370 352 213

261 361 353-354 40

262 40 355 241

263 214 356-360 40

264 40 361 215

265 346 362 40

266 40 363 216

267 372 364 223

270 40 365 40

271 211 366 224

272 40 367 366

273 257 370-371 40

274-276 40 372 243

277 221 373-376 40

300-305 40

FILES /usr/lib/iconv/*.so conversion modules

/usr/lib/iconv/*.t conversion tables

/usr/lib/iconv/iconv_data list of conversions supported by
conversion tables

SEE ALSO iconv (1), iconv (3C), iconv (5)

Last modified 18 Apr 1997 SunOS 5.8 97



iconv_1251(5) Headers, Tables, and Macros

NAME iconv_1251 – code set conversion tables for MS 1251 (Windows Cyrillic)

DESCRIPTION The following code set conversions are supported:

Code Set Conversions Supported

Code Symbol Target Code Symbol Target Output

MS 1251 win5 ISO 8859-5 iso5 ISO 8859-5 Cyrillic

MS 1251 win5 KOI8-R koi8 KOI8-R

MS 1251 win5 PC Cyrillic alt Alternative PC Cyrillic

MS 1251 win5 Mac Cyrillic mac Macintosh Cyrillic

CONVERSIONS The conversions are performed according to the following tables. All values in
the tables are given in octal.

MS 1251 to ISO 8859-5 For the conversion of MS 1251 to ISO 8859-5, all characters not in the following
table are mapped unchanged.

Conversions Performed

MS 1251 ISO 8859-5 MS 1251 ISO 8859-5

24 4 310 270

200 242 311 271

201 243 312 272

202 40 313 273

203 363 314 274

204-207 40 315 275

210 255 316 276

211 40 317 277

212 251 320 300

213 40 321 301

214 252 322 302

215 254 323 303

216 253 324 304

217 257 325 305

220 362 326 306

221-227 40 327 307

230 255 330 310

98 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_1251(5)

Conversions Performed

MS 1251 ISO 8859-5 MS 1251 ISO 8859-5

231 40 331 311

232 371 332 312

233 40 333 313

234 372 334 314

235 374 335 315

236 373 336 316

237 377 337 317

241 256 340 320

242 376 341 321

243 250 342 322

244-247 40 343 323

250 241 344 324

251 40 345 325

252 244 346 326

253-254 40 347 327

255 55 350 330

256 40 351 331

257 247 352 332

260-261 40 353 333

262 246 354 334

263 366 355 335

264-267 40 356 336

270 361 357 337

271 360 360 340

272 364 361 341

273 40 362 342

274 370 363 343

275 245 364 344

276 365 365 345

Last modified 18 Apr 1997 SunOS 5.8 99



iconv_1251(5) Headers, Tables, and Macros

Conversions Performed

MS 1251 ISO 8859-5 MS 1251 ISO 8859-5

277 367 366 346

300 260 367 347

301 261 370 350

302 262 371 351

303 263 372 352

304 264 373 353

305 265 374 354

306 266 375 355

307 267 376 356

MS 1251 to KOI8-R For the conversion of MS 1251 to KOI8-R , all characters not in the following
table are mapped unchanged.

Conversions Performed

MS 1251 KOI8-R MS 1251 KOI8-R

24 4 310 351

200 261 311 352

201 262 312 353

202 40 313 354

203 242 314 355

204-207 40 315 356

210 255 316 357

211 40 317 360

212 271 320 362

213 40 321 363

214 272 322 364

215 274 323 365

216 273 324 346

217 277 325 350

220 241 326 343

221-227 40 327 376

100 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_1251(5)

Conversions Performed

MS 1251 KOI8-R MS 1251 KOI8-R

230 255 330 373

231 40 331 375

232 251 332 377

233 40 333 371

234 252 334 370

235 254 335 374

236 253 336 340

237 257 337 361

241 276 340 301

242 256 341 302

243 270 342 327

244-247 40 343 307

250 263 344 304

251 40 345 305

252 264 346 326

253-254 40 347 332

255 55 350 311

256 40 351 312

257 267 352 313

260-261 40 353 314

262 266 354 315

263 246 355 316

264-267 40 356 317

270 243 357 320

271 260 360 322

272 244 361 323

273 40 362 324

274 250 363 325

275 265 364 306

Last modified 18 Apr 1997 SunOS 5.8 101



iconv_1251(5) Headers, Tables, and Macros

Conversions Performed

MS 1251 KOI8-R MS 1251 KOI8-R

276 245 365 310

277 247 366 303

300 341 367 336

301 342 370 333

302 367 371 335

303 347 372 337

304 344 373 331

305 345 374 330

306 366 375 334

307 372 376 300

MS 1251 to PC Cyrillic For the conversion of MS 1251 to PC Cyrillic, all characters not in the following
table are mapped unchanged.

Conversions Performed

MS 1251 PC Cyrillic MS 1251 PC Cyrillic

24 4 332 232

200-207 40 333 233

210 260 334 234

211-227 40 335 235

230 260 336 236

231-247 40 337 237

250 360 340 240

251-254 40 341 241

255 55 342 242

256-267 40 343 243

270 361 344 244

271-277 40 345 245

300 200 346 246

301 201 347 247

302 202 350 250

102 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_1251(5)

Conversions Performed

MS 1251 PC Cyrillic MS 1251 PC Cyrillic

303 203 351 251

304 204 352 252

305 205 353 253

306 206 354 254

307 207 355 255

310 210 356 256

311 211 357 257

312 212 360 340

313 213 361 341

314 214 362 342

315 215 363 343

316 216 364 344

317 217 365 345

320 220 366 346

321 221 367 347

322 222 370 350

323 223 371 351

324 224 372 352

325 225 373 353

326 226 374 354

327 227 375 355

330 230 376 356

331 231

MS 1251 to Mac
Cyrillic

For the conversion of MS 1251 to Mac Cyrillic, all characters not in the following
table are mapped unchanged.

Last modified 18 Apr 1997 SunOS 5.8 103



iconv_1251(5) Headers, Tables, and Macros

Conversions Performed

MS 1251 Mac Cyrillic MS 1251 Mac Cyrillic

24 4 260 241

200 253 262 247

201 256 263 264

202 40 264 266

203 257 266 246

204 327 267 245

205 311 270 336

206 240 271 334

207-211 40 272 271

212 274 273 310

213 40 274 300

214 276 275 301

215 315 276 317

216 40 277 273

217 332 300 200

220 254 301 201

221 324 302 202

222 325 303 203

223 322 304 204

224 323 305 205

225 40 306 206

226 320 307 207

227 321 310 210

230 40 311 211

231 252 312 212

232 275 313 213

233 40 314 214

234 277 315 215

235 316 316 216

104 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_1251(5)

Conversions Performed

MS 1251 Mac Cyrillic MS 1251 Mac Cyrillic

236 40 317 217

237 333 320 220

240 312 321 221

241 330 322 222

242 331 323 223

243 267 324 224

244 377 325 225

245 242 326 226

246 40 327 227

247 244 330 230

250 335 331 231

252 270 332 232

253 307 333 233

254 302 334 234

255 55 335 235

256 250 336 236

257 272 337 237

355 316

FILES /usr/lib/iconv/*.so conversion modules

/usr/lib/iconv/*.t conversion tables

/usr/lib/iconv/iconv_data list of conversions supported by
conversion tables

SEE ALSO iconv (1), iconv (3C), iconv (5)

Last modified 18 Apr 1997 SunOS 5.8 105



iconv(5) Headers, Tables, and Macros

NAME iconv – code set conversion tables

DESCRIPTION The following code set conversions are supported:

Code Set Conversions Supported

Code Symbol Target Code Symbol Target
Output

ISO 646 646 ISO 8859-1 8859 US ASCII

ISO 646de 646de ISO 8859-1 8859 German

ISO 646da 646da ISO 8859-1 8859 Danish

ISO 646en 646en ISO 8859-1 8859 English ASCII

ISO 646es 646es ISO 8859-1 8859 Spanish

ISO 646fr 646fr ISO 8859-1 8859 French

ISO 646it 646it ISO 8859-1 8859 Italian

ISO 646sv 646sv ISO 8859-1 8859 Swedish

ISO 8859-1 8859 ISO 646 646 7 bit ASCII

ISO 8859-1 8859 ISO 646de 646de German

ISO 8859-1 8859 ISO 646da 646da Danish

ISO 8859-1 8859 ISO 646en 646en English ASCII

ISO 8859-1 8859 ISO 646es 646es Spanish

ISO 8859-1 8859 ISO 646fr 646fr French

ISO 8859-1 8859 ISO 646it 646it Italian

ISO 8859-1 8859 ISO 646sv 646sv Swedish

ISO 8859-2 iso2 MS 1250 win2 Windows Latin
2

ISO 8859-2 iso2 MS 852 dos2 MS-DOS Latin
2

ISO 8859-2 iso2 Mazovia maz Mazovia

ISO 8859-2 iso2 DHN dhn Dom
Handlowy
Nauki

MS 1250 win2 ISO 8859-2 iso2 ISO Latin 2

MS 1250 win2 MS 852 dos2 MS-DOS Latin
2

MS 1250 win2 Mazovia maz Mazovia

106 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv(5)

Code Set Conversions Supported

MS 1250 win2 DHN dhn Dom
Handlowy
Nauki

MS 852 dos2 ISO 8859-2 iso2 ISO Latin 2

MS 852 dos2 MS 1250 win2 Windows Latin
2

MS 852 dos2 Mazovia maz Mazovia

MS 852 dos2 DHN dhn Dom
Handlowy
Nauki

Code Set Conversions Supported

Code Symbol Target Code Symbol Target
Output

Mazovia maz ISO 8859-2 iso2 ISO Latin 2

Mazovia maz MS 1250 win2 Windows Latin
2

Mazovia maz MS 852 dos2 MS-DOS Latin
2

Mazovia maz DHN dhn Dom
Handlowy
Nauki

DHN dhn ISO 8859-2 iso2 ISO Latin 2

DHN dhn MS 1250 win2 Windows Latin
2

DHN dhn MS 852 dos2 MS-DOS Latin
2

DHN dhn Mazovia maz Mazovia

ISO 8859-5 iso5 KOI8-R koi8 KOI8-R

ISO 8859-5 iso5 PC Cyrillic alt Alternative PC
Cyrillic

ISO 8859-5 iso5 MS 1251 win5 Windows
Cyrillic

ISO 8859-5 iso5 Mac Cyrillic mac Macintosh
Cyrillic

Last modified 18 Apr 1997 SunOS 5.8 107



iconv(5) Headers, Tables, and Macros

Code Set Conversions Supported

KOI8-R koi8 ISO 8859-5 iso5 ISO 8859-5
Cyrillic

KOI8-R koi8 PC Cyrillic alt Alternative PC
Cyrillic

KOI8-R koi8 MS 1251 win5 Windows
Cyrillic

KOI8-R koi8 Mac Cyrillic mac Macintosh
Cyrillic

PC Cyrillic alt ISO 8859-5 iso5 ISO 8859-5
Cyrillic

PC Cyrillic alt KOI8-R koi8 KOI8-R

PC Cyrillic alt MS 1251 win5 Windows
Cyrillic

PC Cyrillic alt Mac Cyrillic mac Macintosh
Cyrillic

MS 1251 win5 ISO 8859-5 iso5 ISO 8859-5
Cyrillic

MS 1251 win5 KOI8-R koi8 KOI8-R

MS 1251 win5 PC Cyrillic alt Alternative PC
Cyrillic

MS 1251 win5 Mac Cyrillic mac Macintosh
Cyrillic

Mac Cyrillic mac ISO 8859-5 iso5 ISO 8859-5
Cyrillic

Mac Cyrillic mac KOI8-R koi8 KOI8-R

Mac Cyrillic mac PC Cyrillic alt Alternative PC
Cyrillic

Mac Cyrillic mac MS 1251 win5 Windows
Cyrillic

CONVERSIONS The conversions are performed according to the tables contained in the manual
pages cross-referenced in the Index of Conversion Code Tables below.

Index of Conversion Code Tables

Code Target Code See Manual Page

ISO 646 ISO 8859-1 iconv_646 (5)

108 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv(5)

Index of Conversion Code Tables

ISO 646de ISO 8859-1

ISO 646da ISO 8859-1

ISO 646en ISO 8859-1

ISO 646es ISO 8859-1

ISO 646fr ISO 8859-1

ISO 646it ISO 8859-1

ISO 646sv ISO 8859-1

ISO 8859-1 ISO 646 iconv_8859-1 (5)

ISO 8859-1 ISO 646de

ISO 8859-1 ISO 646da

ISO 8859-1 ISO 646en

ISO 8859-1 ISO 646es

ISO 8859-1 ISO 646fr

ISO 8859-1 ISO 646it

ISO 8859-1 ISO 646sv

ISO 8859-2 MS 1250 iconv_8859-2 (5)

ISO 8859-2 MS 852

ISO 8859-2 Mazovia

ISO 8859-2 DHN

MS 1250 ISO 8859-2 iconv_1250 (5)

MS 1250 MS 852

MS 1250 Mazovia

MS 1250 DHN

MS 852 ISO 8859-2 iconv_852 (5)

MS 852 MS 1250

MS 852 Mazovia

MS 852 DHN

Mazovia ISO 8859-2 iconv_maz (5)

Mazovia MS 1250

Last modified 18 Apr 1997 SunOS 5.8 109



iconv(5) Headers, Tables, and Macros

Index of Conversion Code Tables

Mazovia MS 852

Mazovia DHN

Index of Conversion Code Tables

Code Target Code See Manual Page

DHN ISO 8859-2 iconv_dhn (5)

DHN MS 1250

DHN MS 852

DHN Mazovia

ISO 8859-5 KOI8-R iconv_8859-5 (5)

ISO 8859-5 PC Cyrillic

ISO 8859-5 MS 1251

ISO 8859-5 Mac Cyrillic

KOI8-R ISO 8859-5 iconv_koi8-r (5)

KOI8-R PC Cyrillic

KOI8-R MS 1251

KOI8-R Mac Cyrillic

PC Cyrillic ISO 8859-5 iconv_pc_cyr (5)

PC Cyrillic KOI8-R

PC Cyrillic MS 1251

PC Cyrillic Mac Cyrillic

MS 1251 ISO 8859-5 iconv_1251 (5)

MS 1251 KOI8-R

MS 1251 PC Cyrillic

MS 1251 Mac Cyrillic

Mac Cyrillic ISO 8859-5 iconv_mac_cyr (5)

Mac Cyrillic KOI8-R

Mac Cyrillic PC Cyrillic

Mac Cyrillic MS 1251

110 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv(5)

FILES /usr/lib/iconv/*.so conversion modules

/usr/lib/iconv/*.t conversion tables

/usr/lib/iconv/iconv_data list of conversions supported by
conversion tables

SEE ALSO iconv (1), iconv (3C), iconv_1250 (5), iconv_1251 (5), iconv_646 (5),
iconv_852 (5), iconv_8859-1 (5), iconv_8859-2 (5), iconv_8859-5 (5),
iconv_dhn (5), iconv_koi8-r (5), iconv_mac_cyr (5), iconv_maz (5),
iconv_pc_cyr (5), iconv_unicode (5)

Last modified 18 Apr 1997 SunOS 5.8 111



iconv_646(5) Headers, Tables, and Macros

NAME iconv_646 – code set conversion tables for ISO 646

DESCRIPTION The following code set conversions are supported:

Code Set Conversions Supported

Code Symbol Target Code Symbol Target Output

ISO
646

646 ISO 8859-1 8859 US ASCII

ISO
646de

646de ISO 8859-1 8859 German

ISO
646da

646da ISO 8859-1 8859 Danish

ISO
646en

646en ISO 8859-1 8859 English ASCII

ISO
646es

646es ISO 8859-1 8859 Spanish

ISO
646fr

646fr ISO 8859-1 8859 French

ISO
646it

646it ISO 8859-1 8859 Italian

ISO
646sv

646sv ISO 8859-1 8859 Swedish

CONVERSIONS The conversions are performed according to the following tables. All values in
the tables are given in octal.

ISO 646 (US ASCII) to
ISO 8859-1

For the conversion of ISO 646 to ISO 8859-1, all characters in ISO 646 can be
mapped unchanged to ISO 8859-1

ISO 646de
(GERMAN) to ISO

8859-1

For the conversion of ISO 646de to ISO 8859-1, all characters not in the following
table are mapped unchanged.

Conversions Performed

ISO 646de ISO 8859-1 ISO 646de ISO 8859-1

100 247 173 344

133 304 174 366

134 326 175 374

135 334 176 337

ISO 646da (DANISH)
to ISO 8859-1

For the conversion of ISO 646da to ISO 8859-1, all characters not in the following
table are mapped unchanged.

112 SunOS 5.8 Last modified 28 Apr 1997



Headers, Tables, and Macros iconv_646(5)

Conversions Performed

ISO 646da ISO 8859-1 ISO 646da ISO 8859-1

133 306 173 346

134 330 174 370

135 305 175 345

ISO 646en (ENGLISH
ASCII) to ISO 8859-1

For the conversion of ISO 646en to ISO 8859-1, all characters not in the following
table are mapped unchanged.

Conversions Performed

ISO 646en ISO 8859-1

043 243

ISO 646es (SPANISH)
to ISO 8859-1

For the conversion of ISO 646es to ISO 8859-1, all characters not in the following
table are mapped unchanged.

Conversions Performed

ISO 646es ISO 8859-1 ISO 646es ISO 8859-1

100 247 173 260

133 241 174 361

134 321 175 347

135 277

ISO 646fr (FRENCH)
to ISO 8859-1

For the conversion of ISO 646fr to ISO 8859-1, all characters not in the following
table are mapped unchanged.

Conversions Performed

ISO 646fr ISO 8859-1 ISO 646fr ISO 8859-1

043 243 173 351

100 340 174 371

133 260 175 350

134 347 176 250

135 247

ISO 646it (ITALIAN)
to ISO 8859-1

For the conversion of ISO 646it to ISO 8859-1, all characters not in the following
table are mapped unchanged.

Last modified 28 Apr 1997 SunOS 5.8 113



iconv_646(5) Headers, Tables, and Macros

Conversions Performed

ISO 646it ISO 8859-1 ISO 646it ISO 8859-1

043 243 140 371

100 247 173 340

133 260 174 362

134 347 175 350

135 351 176 354

ISO 646sv
(SWEDISH) to ISO

8859-1

For the conversion of ISO 646sv to ISO 8859-1, all characters not in the following
table are mapped unchanged.

Conversions Performed

ISO 646sv ISO 8859-1 ISO 646sv ISO 8859-1

100 311 140 351

133 304 173 344

134 326 174 366

135 305 175 345

136 334 176 374

FILES /usr/lib/iconv/*.so conversion modules

/usr/lib/iconv/*.t conversion tables

/usr/lib/iconv/iconv_data list of conversions supported by
conversion tables

SEE ALSO iconv (1), iconv (3C), iconv (5)

114 SunOS 5.8 Last modified 28 Apr 1997



Headers, Tables, and Macros iconv_852(5)

NAME iconv_852 – code set conversion tables for MS 852 (MS-DOS Latin 2)

DESCRIPTION The following code set conversions are supported:

Code Set Conversions Supported

Code Symbol Target Code Symbol Target Output

MS 852 dos2 ISO 8859-2 iso2 ISO Latin 2

MS 852 dos2 MS 1250 win2 Windows Latin 2

MS 852 dos2 Mazovia maz Mazovia

MS 852 dos2 DHN dhn Dom Handlowy Nauki

CONVERSIONS The conversions are performed according to the following tables. All values in
the tables are given in octal.

MS 852 to ISO 8859-2 For the conversion of MS 852 to ISO 8859-2, all characters not in the following
table are mapped unchanged.

Conversions Performed

MS 852 ISO 8859-2 MS 852 ISO 8859-2

24-177 40 271-274 40

200 307 275 257

201 374 276 277

202 351 277-305 40

203 342 306 303

204 344 307 343

205 371 310-316 40

206 346 317 244

207 347 320 360

210 263 321 320

211 353 322 317

212 325 323 313

213 365 324 357

214 356 325 322

215 254 326 315

216 304 327 316

217 306 330 354

Last modified 18 Apr 1997 SunOS 5.8 115



iconv_852(5) Headers, Tables, and Macros

Conversions Performed

MS 852 ISO 8859-2 MS 852 ISO 8859-2

220 311 331-334 40

221 305 335 336

222 345 336 331

223 364 337 40

224 366 340 323

225 245 341 337

226 265 342 324

227 246 343 321

230 266 344 361

231 326 345 362

232 334 346 251

233 253 347 271

234 273 350 300

235 243 351 332

236 327 352 340

237 350 353 333

240 341 354 375

241 355 355 335

242 363 356 376

243 372 357 264

244 241 360 255

245 261 361 275

246 256 362 262

247 276 363 267

250 312 364 242

251 352 365 247

252 40 366 367

253 274 367 270

254 310 370 260

116 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_852(5)

Conversions Performed

MS 852 ISO 8859-2 MS 852 ISO 8859-2

255 272 371 250

256-264 40 372 377

265 301 374 330

266 302 375 370

267 314 376 40

270 252

MS 852 to MS 1250 For the conversion of MS 852 to MS 1250, all characters not in the following
table are mapped unchanged.

Conversions Performed

MS 852 MS 1250 MS 852 MS 1250

200 307 270 252

201 374 271-274 40

202 351 275 257

203 342 276 277

204 344 277-305 40

205 371 306 303

206 346 307 343

207 347 310-316 40

210 263 317 244

211 353 320 360

212 325 321 320

213 365 322 317

214 356 323 313

215 217 324 357

216 304 325 322

217 306 326 315

220 311 327 316

221 305 330 354

222 345 331-334 40

Last modified 18 Apr 1997 SunOS 5.8 117



iconv_852(5) Headers, Tables, and Macros

Conversions Performed

MS 852 MS 1250 MS 852 MS 1250

223 364 335 336

224 366 336 331

225 274 337 40

226 276 340 323

227 214 341 337

230 234 342 324

231 326 343 321

232 334 344 361

233 215 345 362

234 235 346 212

235 243 347 232

236 327 350 300

237 350 351 332

240 341 352 340

241 355 353 333

242 363 354 375

243 372 355 335

244 245 356 376

245 271 357 264

246 216 360 255

247 236 361 275

250 312 362 262

251 352 363 241

252 254 364 242

253 237 365 247

254 310 366 367

255 272 367 270

256 253 370 260

257 273 371 250

118 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_852(5)

Conversions Performed

MS 852 MS 1250 MS 852 MS 1250

260-264 40 372 377

265 301 374 330

266 302 375 370

267 314 376 40

MS 852 to Mazovia For the conversion of MS 852 to Mazovia, all characters not in the following
table are mapped unchanged.

Conversions Performed

MS 852 Mazovia MS 852 Mazovia

205 40 246-247 40

206 215 250 220

210 222 251 221

212-213 40 253 246

215 240 254-270 40

217 225 275 241

220-226 40 276 247

227 230 306-336 40

230 236 340 243

233-234 40 342 40

235 234 343 245

236-243 40 344 244

244 217 345-375 40

245 206

MS 852 to DHN For the conversion of MS 852 to DHN, all characters not in the following table
are mapped unchanged.

Last modified 18 Apr 1997 SunOS 5.8 119



iconv_852(5) Headers, Tables, and Macros

Conversions Performed

MS 852 DHN MS 852 DHN

200-205 40 244 200

206 212 245 211

207 40 246-247 40

210 214 250 202

211-214 40 251 213

215 207 253 220

216 40 254-270 40

217 201 275 210

220-226 40 276 221

227 206 306-336 40

230 217 340 205

233-234 40 342 40

235 203 343 204

236-237 40 344 215

242 216 345-375 40

252 254

FILES /usr/lib/iconv/*.so conversion modules

/usr/lib/iconv/*.t conversion tables

/usr/lib/iconv/iconv_data list of conversions supported by
conversion tables

SEE ALSO iconv (1), iconv (3C), iconv (5)

120 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_8859-1(5)

NAME iconv_8859-1 – code set conversion tables for ISO 8859-1 (Latin 1)

DESCRIPTION The following code set conversions are supported:

Code Set Conversions Supported

Code Symbol Target Code Symbol Target Output

ISO 8859-1 8859 ISO 646 646 7 bit ASCII

ISO 8859-1 8859 ISO 646de 646de German

ISO 8859-1 8859 ISO 646da 646da Danish

ISO 8859-1 8859 ISO 646en 646en English ASCII

ISO 8859-1 8859 ISO 646es 646es Spanish

ISO 8859-1 8859 ISO 646fr 646fr French

ISO 8859-1 8859 ISO 646it 646it Italian

ISO 8859-1 8859 ISO 646sv 646sv Swedish

CONVERSIONS The conversions are performed according to the following tables. All values in
the tables are given in octal.

ISO 8859-1 to ISO 646
(7-bit ASCII)

For the conversion of ISO 8859-1 to ISO 646, all characters not in the following
table are mapped unchanged.

Converted to Underscore ’_’ (137)
---------------------------------
200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 243 244 245 246 247
250 251 252 253 254 255 256 257
260 261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 304 305 306 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 326 327
330 331 332 333 334 335 336 337
340 341 342 343 344 345 346 347
350 351 352 353 354 355 356 357
360 361 362 363 364 365 366 367
370 371 372 373 374 375 376 377

ISO 8859-1 to ISO
646de (GERMAN)

For the conversion of ISO 8859-1 to ISO 646de, all characters not in the following
tables are mapped unchanged.

Last modified 28 Apr 1997 SunOS 5.8 121



iconv_8859-1(5) Headers, Tables, and Macros

Conversions Performed

ISO 8859-1 ISO 646de ISO 8859-1 ISO 646de

247 100 337 176

304 133 344 173

326 134 366 174

334 135 374 175

Converted to Underscore ’_’ (137)
---------------------------------
100 133 134 135 173 174 175 176
200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 243 244 245 246
250 251 252 253 254 255 256 257
260 261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 305 306 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 327
330 331 332 333 335 336 337
340 341 342 343 345 346 347
350 351 352 353 354 355 356 357
360 361 362 363 364 365 367
370 371 372 373 375 376 377

ISO 8859-1 to ISO
646da (DANISH)

For the conversion of ISO 8859-1 to ISO 646da, all characters not in the following
tables are mapped unchanged.

Conversions Performed

ISO 8859-1 ISO 646da ISO 8859-1 ISO 646da

305 135 345 175

306 133 346 173

330 134 370 174

Converted to Underscore ’_’ (137)
---------------------------------
133 134 135 173 174 175
200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 243 244 245 246 247
250 251 252 253 254 255 256 257

122 SunOS 5.8 Last modified 28 Apr 1997



Headers, Tables, and Macros iconv_8859-1(5)

260 261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 304 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 326 327

331 332 333 334 335 336 337
340 341 342 343 344 347
350 351 352 353 354 355 356 357
360 361 362 363 364 365 366 367
371 372 373 374 376 377

ISO 8859-1 to ISO
646en (ENGLISH

ASCII)

For the conversion of ISO 8859-1 to ISO 646en, all characters not in the following
tables are mapped unchanged.

Conversions Performed

ISO 8859-1 ISO 646en

243 043

Converted to Underscore ’_’ (137)
---------------------------------
043
200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 244 245 246 247
250 251 252 253 254 255 256 257
260 261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 304 305 306 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 326 327
330 331 332 333 334 335 336 337
340 341 342 343 344 345 346 347
350 351 352 353 354 355 356 357
360 361 362 363 364 365 366 367
370 371 372 373 374 375 376 377

ISO 8859-1 to ISO
646fr (FRENCH)

For the conversion of ISO 8859-1 to ISO 646fr, all characters not in the following
tables are mapped unchanged.

Conversions Performed

ISO 8859-1 ISO 646fr ISO 8859-1 ISO 646fr

243 043 347 134

247 135 350 175

250 176 351 173

Last modified 28 Apr 1997 SunOS 5.8 123



iconv_8859-1(5) Headers, Tables, and Macros

Conversions Performed

ISO 8859-1 ISO 646fr ISO 8859-1 ISO 646fr

260 133 371 174

340 100

Converted to Underscore ’_’ (137)
---------------------------------
043
100 133 134 135 173 174 175 176
200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 244 245 246

251 252 253 254 255 256 257
261 262 263 264 265 266 267

270 271 272 273 274 275 276 277
300 301 302 303 304 305 306 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 326 327
330 331 332 333 334 335 336 337

341 342 343 344 345 346
352 353 354 355 356 357

360 361 362 363 364 365 366 367
370 372 373 374 375 376 377

ISO 8859-1 to ISO
646it (ITALIAN)

For the conversion of ISO 8859-1 to ISO 646it, all characters not in the following
tables are mapped unchanged.

Conversions Performed

ISO 8859-1 ISO 646it ISO 8859-1 ISO 646it

243 043 350 175

247 100 351 135

260 133 354 176

340 173 362 174

347 134 371 140

Converted to Underscore ’_’ (137)
---------------------------------
043
100 133 134 135 173 174 175 176
200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237

124 SunOS 5.8 Last modified 28 Apr 1997



Headers, Tables, and Macros iconv_8859-1(5)

240 241 242 244 245 246
250 251 252 253 254 255 256 257

261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 304 305 306 307
310 311 312 313 314 315 316 317
320 321 322 323 324 325 326 327
330 331 332 333 334 335 336 337

341 342 343 344 345 346
352 353 354 355 356 357

360 361 362 363 364 365 366 367
370 372 373 374 375 376 377

ISO 8859-1 to ISO
646es (SPANISH)

For the conversion of ISO 8859-1 to ISO 646es, all characters not in the following
tables are mapped unchanged.

Conversions Performed

ISO 8859-1 ISO 646es ISO 8859-1 ISO 646es

241 133 321 134

247 100 347 175

260 173 361 174

277 135

Converted to Underscore ’_’ (137)
---------------------------------
100 133 134 135 173 174 175
200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 242 243 244 245 246
250 251 252 253 254 255 256 257

261 262 263 264 265 266 267
270 271 272 273 274 275 276
300 301 302 303 304 305 306 307
310 311 312 313 314 315 316 317
320 322 323 324 325 326 327
330 331 332 333 334 335 336 337
340 341 342 343 344 345 346
350 351 352 353 354 355 356 357
360 362 363 364 365 366 367
370 371 372 373 374 375 376 377

ISO 8859-1 to ISO
646sv (SWEDISH)

For the conversion of ISO 8859-1 to ISO 646sv, all characters not in the following
tables are mapped unchanged.

Last modified 28 Apr 1997 SunOS 5.8 125



iconv_8859-1(5) Headers, Tables, and Macros

Conversions Performed

ISO 8859-1 ISO 646sv ISO 8859-1 ISO 646sv

304 133 344 173

305 135 345 175

311 100 351 140

326 134 366 174

334 136 374 176

Converted to Underscore ’_’ (137)
---------------------------------
100 133 134 135 136 140
173 174 175 176
200 201 202 203 204 205 206 207
210 211 212 213 214 215 216 217
220 221 222 223 224 225 226 227
230 231 232 233 234 235 236 237
240 241 242 243 244 245 246 247
250 251 252 253 254 255 256 257
260 261 262 263 264 265 266 267
270 271 272 273 274 275 276 277
300 301 302 303 306 307
310 312 313 314 315 316 317
320 321 322 323 324 325 327
330 331 332 333 335 336 337
340 341 342 343 346 347
350 352 353 354 355 356 357
360 361 362 363 364 365 367
370 371 372 373 375 376 377

FILES /usr/lib/iconv/*.so conversion modules

/usr/lib/iconv/*.t conversion tables

/usr/lib/iconv/iconv_data list of conversions supported by
conversion tables

SEE ALSO iconv (1), iconv (3C), iconv (5)

126 SunOS 5.8 Last modified 28 Apr 1997



Headers, Tables, and Macros iconv_8859-2(5)

NAME iconv_8859-2 – code set conversion tables for ISO 8859-2 (Latin 2)

DESCRIPTION The following code set conversions are supported:

Code Set Conversions Supported

Code Symbol Target Code Symbol Target Output

ISO 8859-2 iso2 MS 1250 win2 Windows Latin 2

ISO 8859-2 iso2 MS 852 dos2 MS-DOS Latin 2

ISO 8859-2 iso2 Mazovia maz Mazovia

ISO 8859-2 iso2 DHN dhn Dom Handlowy Nauki

CONVERSIONS The conversions are performed according to the following tables. All values in
the tables are given in octal.

ISO 8859-2 to MS 1250 For the conversion of ISO 8859-2 to MS 1250, all characters not in the following
table are mapped unchanged.

Conversions Performed

ISO 8859-2 MS 1250 ISO 8859-2 MS 1250

24 4 261 271

177-237 40 265 276

241 245 266 234

245 274 267 241

246 214 271 232

251 212 273 235

253 215 274 237

254 217 276 236

256 216 266 236

ISO 8859-2 to MS 852 For the conversion of ISO 8859-2 to MS 852, all characters not in the following
table are mapped unchanged.

Conversions Performed

ISO 8859-2 MS 852 ISO 8859-2 MS 852

24 4 316 327

177-237 40 317 322

240 377 320 321

Last modified 18 Apr 1997 SunOS 5.8 127



iconv_8859-2(5) Headers, Tables, and Macros

Conversions Performed

ISO 8859-2 MS 852 ISO 8859-2 MS 852

241 244 321 343

242 364 322 325

243 235 323 340

244 317 324 342

245 225 325 212

246 227 326 231

247 365 327 236

250 371 330 374

251 346 331 336

252 270 332 351

253 233 333 353

254 215 334 232

255 360 335 355

256 246 336 335

257 275 337 341

260 370 340 352

261 245 341 240

262 362 342 203

263 210 343 307

264 357 344 204

265 226 345 222

266 230 346 206

267 363 347 207

270 367 350 237

271 347 351 202

272 255 352 251

273 234 353 211

274 253 354 330

275 361 355 241

128 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_8859-2(5)

Conversions Performed

ISO 8859-2 MS 852 ISO 8859-2 MS 852

276 247 356 214

277 276 357 324

300 350 360 320

301 265 361 344

302 266 362 345

303 306 363 242

304 216 364 223

305 221 365 213

306 217 366 224

307 200 367 366

310 254 370 375

311 220 371 205

312 250 372 243

313 323 374 201

314 267 375 354

315 326 376 356

366 367

ISO 8859-2 to
Mazovia

For the conversion of ISO 8859-2 to Mazovia, all characters not in the following
table are mapped unchanged.

Conversions Performed

ISO 8859-2 Mazovia ISO 8859-2 Mazovia

24 4 323 243

177-237 40 324-325 40

240 377 326 231

241 217 327-333 40

242 40 334 232

243 234 335-336 40

244-245 40 337 341

246 230 340-341 40

Last modified 18 Apr 1997 SunOS 5.8 129



iconv_8859-2(5) Headers, Tables, and Macros

Conversions Performed

ISO 8859-2 Mazovia ISO 8859-2 Mazovia

247-253 40 342 203

254 240 343 40

255-256 40 344 204

257 241 345 40

260 370 346 215

261 206 347 207

262 40 350 40

263 222 351 202

264-265 40 352 221

266 236 353 211

267-273 40 354-355 40

274 246 356 214

275-276 40 357-360 40

277 247 361 244

300-303 40 362 40

304 216 363 242

305 40 364 223

306 225 365 40

307 200 366 224

310-311 40 367 366

312 220 370-373 40

313-320 40 374 201

321 245 375-376 40

322 40

ISO 8859-2 to DHN For the conversion of ISO 8859-2 to DHN, all characters not in the following
table are mapped unchanged.

130 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_8859-2(5)

Conversions Performed

ISO 8859-2 DHN ISO 8859-2 DHN

24 4 322 40

177-237 40 323 205

240 377 324-325 40

241 200 326 231

242 40 327-333 40

243 203 334 232

244-245 40 335-336 40

246 206 337 341

247-253 40 340 40

254 207 341 240

255-256 40 342-345 40

257 210 346 212

260 370 347-351 40

261 211 352 213

262 40 353-354 40

263 214 355 241

264-265 40 356-360 40

266 217 361 215

267-273 40 362 40

274 220 363 216

275-276 40 364 223

277 221 365 40

300-305 40 366 224

306 201 367 366

307-311 40 370-371 40

312 202 372 243

313-320 40 373-376 40

321 204

Last modified 18 Apr 1997 SunOS 5.8 131



iconv_8859-2(5) Headers, Tables, and Macros

FILES /usr/lib/iconv/*.so conversion modules

/usr/lib/iconv/*.t conversion tables

/usr/lib/iconv/iconv_data list of conversions supported by
conversion tables

SEE ALSO iconv (1), iconv (3C), iconv (5)

132 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_8859-5(5)

NAME iconv_8859-5 – code set conversion tables for ISO 8859-5 (Cyrillic)

DESCRIPTION The following code set conversions are supported:

Code Set Conversions Supported

Code Symbol Target Code Symbol Target
Output

ISO
8859-5

iso5 KOI8-R koi8 KOI8-R

ISO
8859-5

iso5 PC Cyrillic alt Alternative
PC
Cyrillic

ISO
8859-5

iso5 MS 1251 win5 Windows
Cyrillic

ISO
8859-5

iso5 Mac Cyrillic mac Macintosh
Cyrillic

CONVERSIONS The conversions are performed according to the following tables. All values in
the tables are given in octal.

ISO 8859-5 to KOI8-R For the conversion of ISO 8859-5 to KOI8-R, all characters not in the following
table are mapped unchanged.

Conversions Performed

ISO 8859-5 KOI8-R ISO 8859-5 KOI8-R

24 4 320 301

241 263 321 302

242 261 322 327

243 262 323 307

244 264 324 304

245 265 325 305

246 266 327 332

247 267 330 311

250 270 331 312

251 271 332 313

252 272 333 314

253 273 334 315

254 274 335 316

Last modified 18 Apr 1997 SunOS 5.8 133



iconv_8859-5(5) Headers, Tables, and Macros

Conversions Performed

ISO 8859-5 KOI8-R ISO 8859-5 KOI8-R

256 276 336 317

257 277 337 320

260 341 340 322

261 342 341 323

262 367 342 324

263 347 343 325

264 344 344 306

265 345 345 310

266 366 346 303

267 372 347 336

270 351 350 333

271 352 351 335

272 353 352 337

273 354 353 331

274 355 354 330

275 356 355 334

276 357 356 300

277 360 357 321

300 362 360 260

301 363 361 243

302 364 362 241

303 365 363 242

304 346 364 244

305 350 365 245

306 343 366 246

307 376 367 247

310 373 370 250

311 375 371 251

312 377 372 252

134 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_8859-5(5)

Conversions Performed

ISO 8859-5 KOI8-R ISO 8859-5 KOI8-R

313 371 373 253

314 370 374 254

315 374 375 255

316 340 376 256

317 361

ISO 8859-5 to PC
Cyrillic

For the conversion of ISO 8859-5 to PC Cyrillic, all characters not in the following
table are mapped unchanged.

Conversions Performed

ISO 8859-5 PC Cyrillic ISO 8859-5 PC Cyrillic

24 4 307 227

200-240 40 310 230

241 360 311 231

242-254 40 312 232

255 260 313 233

256-257 40 314 234

260 200 315 235

261 201 316 236

262 202 317 237

263 203 320 240

264 204 321 241

265 205 322 242

266 206 323 243

267 207 324 244

270 210 325 245

271 211 326 246

272 212 327 247

273 213 330 250

274 214 331 251

275 215 332 252

Last modified 18 Apr 1997 SunOS 5.8 135



iconv_8859-5(5) Headers, Tables, and Macros

Conversions Performed

ISO 8859-5 PC Cyrillic ISO 8859-5 PC Cyrillic

276 216 333 253

277 217 334 254

300 220 335 255

301 221 336 256

302 222 337 257

303 223 360-374 40

304 224 375 260

305 225 376 40

306 226 365 40

ISO 8859-5 to MS 1251 For the conversion of ISO 8859-5 to MS 1251, all characters not in the following
table are mapped unchanged.

Conversions Performed

ISO 8859-5 MS 1251 ISO 8859-5 MS 1251

24 4 317 337

200-237 40 320 340

241 250 321 341

242 200 322 342

243 201 323 343

244 252 324 344

245 275 325 345

246 262 326 346

247 257 327 347

250 243 330 350

251 212 331 351

252 214 332 352

253 216 333 353

254 215 334 354

255 210 335 355

256 241 336 356

136 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_8859-5(5)

Conversions Performed

ISO 8859-5 MS 1251 ISO 8859-5 MS 1251

257 217 337 357

260 300 340 360

261 301 341 361

262 302 342 362

263 303 343 363

264 304 344 364

265 305 345 365

266 306 346 366

267 307 347 367

270 310 350 370

271 311 351 371

272 312 352 372

273 313 353 373

274 314 354 374

275 315 355 375

276 316 356 376

277 317 357 377

300 320 360 271

301 321 361 270

302 322 362 220

303 323 363 203

304 324 364 272

305 325 365 276

306 326 366 263

307 327 367 277

310 330 370 274

311 331 371 232

312 332 372 234

313 333 373 236

Last modified 18 Apr 1997 SunOS 5.8 137



iconv_8859-5(5) Headers, Tables, and Macros

Conversions Performed

ISO 8859-5 MS 1251 ISO 8859-5 MS 1251

314 334 374 235

315 335 375 210

316 336 376 242

376 331

ISO 8859-5 to Mac
Cyrillic

For the conversion of ISO 8859-5 to Mac Cyrillic, all characters not in the
following table are mapped unchanged.

Conversions Performed

ISO 8859-5 Mac Cyrillic ISO 8859-5 Mac Cyrillic

24 4 317 237

200-237 40 320 340

240 312 321 341

241 335 322 342

242 253 323 343

243 256 324 344

244 270 325 345

245 301 326 346

246 247 327 347

247 272 330 350

250 267 331 351

251 274 332 352

252 276 333 353

253 40 334 354

254 315 335 355

255 40 336 356

256 330 337 357

257 332 340 360

260 200 341 361

261 201 342 362

262 202 343 363

138 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_8859-5(5)

Conversions Performed

ISO 8859-5 Mac Cyrillic ISO 8859-5 Mac Cyrillic

263 203 344 364

264 204 345 365

265 205 346 366

266 206 347 367

267 207 350 370

270 210 351 371

271 211 352 372

272 212 353 373

273 213 354 374

274 214 355 375

275 215 356 376

276 216 357 337

277 217 360 334

300 220 361 336

301 221 362 254

302 222 363 257

303 223 364 271

304 224 365 317

305 225 366 264

306 226 367 273

307 227 370 300

310 230 371 275

311 231 372 277

312 232 373 40

313 233 374 316

314 234 375 40

315 235 376 331

316 236

Last modified 18 Apr 1997 SunOS 5.8 139



iconv_8859-5(5) Headers, Tables, and Macros

FILES /usr/lib/iconv/*.so conversion modules

/usr/lib/iconv/*.t conversion tables

/usr/lib/iconv/iconv_data list of conversions supported by
conversion tables

SEE ALSO iconv (1), iconv (3C), iconv (5)

140 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_dhn(5)

NAME iconv_dhn – code set conversion tables for DHN (Dom Handlowy Nauki)

DESCRIPTION The following code set conversions are supported:

Code Set Conversions Supported

Code Symbol Target Code Symbol Target Output

DHN dhn ISO 8859-2 iso2 ISO Latin 2

DHN dhn MS 1250 win2 Windows Latin 2

DHN dhn MS 852 dos2 MS-DOS Latin 2

DHN dhn Mazovia maz Mazovia

CONVERSIONS The conversions are performed according to the following tables. All values in
the tables are given in octal.

DHN to ISO 8859-2 For the conversion of DHN to ISO 8859-2, all characters not in the following
table are mapped unchanged.

Conversions Performed

DHN ISO 8859-2 DHN ISO 8859-2

24-177 40 222 40

200 241 223 364

201 306 224 366

202 312 225-230 40

203 243 231 326

204 321 232 334

205 323 233-237 40

206 246 240 341

207 254 241 355

210 257 242 363

211 261 243 372

212 346 244-340 40

213 352 341 337

214 263 342-365 40

215 361 366 367

216 363 367 40

217 266 370 260

Last modified 18 Apr 1997 SunOS 5.8 141



iconv_dhn(5) Headers, Tables, and Macros

Conversions Performed

DHN ISO 8859-2 DHN ISO 8859-2

220 274 371-376 40

221 277

DHN to MS 1250 For the conversion of DHN to MS 1250, all characters not in the following
table are mapped unchanged.

Conversions Performed

DHN MS 1250 DHN MS 1250

200 245 233-237 40

201 306 240 341

202 312 241 355

203 243 242 363

204 321 243 372

205 323 244-251 40

206 214 252 254

207 217 253-255 40

210 257 256 253

211 271 257 273

212 346 260-340 40

213 352 341 337

214 263 342-345 40

215 361 346 265

216 363 347-360 40

217 234 361 261

220 237 362-365 40

221 277 366 367

222 40 367 40

223 364 370 260

224 366 371 40

225-230 40 372 267

142 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_dhn(5)

Conversions Performed

DHN MS 1250 DHN MS 1250

231 326 373-376 40

232 334

DHN to MS 852 For the conversion of DHN to MS 852, all characters not in the following table
are mapped unchanged.

Conversions Performed

DHN MS 852 DHN MS 852

200 244 212 206

201 217 213 251

202 250 214 210

203 235 215 344

204 343 216 242

205 340 217 230

206 227 220 253

207 215 221 276

210 275 222-375 40

211 245

DHN to Mazovia For the conversion of DHN to Mazovia, all characters not in the following
table are mapped unchanged.

Conversions Performed

DHN Mazovia DHN Mazovia

200 217 212 215

201 225 213 221

202 220 214 222

203 234 215 244

204 245 216 242

205 243 217 236

206 230 220 246

207 240 221 247

Last modified 18 Apr 1997 SunOS 5.8 143



iconv_dhn(5) Headers, Tables, and Macros

Conversions Performed

DHN Mazovia DHN Mazovia

210 241 222-247 40

211 206

FILES /usr/lib/iconv/*.so conversion modules

/usr/lib/iconv/*.t conversion tables

/usr/lib/iconv/iconv_data list of conversions supported by
conversion tables

SEE ALSO iconv (1), iconv (3C), iconv (5)

144 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_koi8-r(5)

NAME iconv_koi8-r – code set conversion tables for KOI8-R

DESCRIPTION The following code set conversions are supported:

Code Set Conversions Supported

Code Symbol Target Code Symbol Target Output

KOI8-R koi8 ISO 8859-5 iso5 ISO 8859-5 Cyrillic

KOI8-R koi8 PC Cyrillic alt Alternative PC Cyrillic

KOI8-R koi8 MS 1251 win5 Windows Cyrillic

KOI8-R koi8 Mac Cyrillic mac Macintosh Cyrillic

CONVERSIONS The conversions are performed according to the following tables. All values in
the tables are given in octal.

KOI8-R to ISO 8859-5 For the conversion of KOI8-R to ISO 8859-5, all characters not in the following
table are mapped unchanged.

Conversions Performed

KOI8-R ISO 8859-5 KOI8-R ISO 8859-5

24 4 320 337

241 362 321 357

242 363 322 340

243 361 323 341

244 364 324 342

245 365 325 343

246 366 327 322

247 367 330 354

250 370 331 353

251 371 332 327

252 372 333 350

253 373 334 355

254 374 335 351

256 376 336 347

257 377 337 352

260 360 340 316

261 242 341 260

Last modified 18 Apr 1997 SunOS 5.8 145



iconv_koi8-r(5) Headers, Tables, and Macros

Conversions Performed

KOI8-R ISO 8859-5 KOI8-R ISO 8859-5

262 243 342 261

263 241 343 306

264 244 344 264

265 245 345 265

266 246 346 304

267 247 347 263

270 250 350 305

271 251 351 270

272 252 352 271

273 253 353 272

274 254 354 273

275 255 355 274

276 256 356 275

277 257 357 276

300 356 360 277

301 320 361 317

302 321 362 300

303 346 363 301

304 324 364 302

305 325 365 303

306 344 366 266

307 323 367 262

310 345 370 314

311 330 371 313

312 331 372 267

313 332 373 310

314 333 374 315

315 334 375 311

146 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_koi8-r(5)

Conversions Performed

KOI8-R ISO 8859-5 KOI8-R ISO 8859-5

316 335 376 307

317 336

KOI8-R to PC Cyrillic For the conversion of KOI8-R to PC Cyrillic, all characters not in the following
table are mapped unchanged.

Conversions Performed

KOI8-R PC Cyrillic KOI8-R PC Cyrillic

24 4 333 350

200-242 40 334 355

243 361 335 351

244-254 40 336 347

255 260 337 352

256-262 40 340 236

263 360 341 200

264-274 40 342 201

275 260 343 226

276-277 40 344 204

300 356 345 205

301 240 346 224

302 241 347 203

303 346 350 225

304 244 351 210

305 245 352 211

306 344 353 212

307 243 354 213

310 345 355 214

311 250 356 215

312 251 357 216

313 252 360 217

314 253 361 237

Last modified 18 Apr 1997 SunOS 5.8 147



iconv_koi8-r(5) Headers, Tables, and Macros

Conversions Performed

KOI8-R PC Cyrillic KOI8-R PC Cyrillic

315 254 362 220

316 255 363 221

317 256 364 222

320 257 365 223

321 357 366 206

322 340 367 202

323 341 370 234

324 342 371 233

325 343 372 207

326 246 373 230

327 242 374 235

330 354 375 231

331 353 376 227

332 247

KOI8-R to MS 1251 For the conversion of KOI8-R to MS 1251, all characters not in the following
table are mapped unchanged.

Conversions Performed

KOI8-R MS 1251 KOI8-R MS 1251

24 4 317 356

200-237 40 320 357

241 220 321 377

242 203 322 360

243 270 323 361

244 272 324 362

245 276 325 363

246 263 326 346

247 277 327 342

250 274 330 374

251 232 331 373

148 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_koi8-r(5)

Conversions Performed

KOI8-R MS 1251 KOI8-R MS 1251

252 234 332 347

253 236 333 370

254 235 334 375

255 210 335 371

256 242 336 367

257 237 337 372

260 271 340 336

261 200 341 300

262 201 342 301

263 250 343 326

264 252 344 304

265 275 345 305

266 262 346 324

267 257 347 303

270 243 350 325

271 212 351 310

272 214 352 311

273 216 353 312

274 215 354 313

275 210 355 314

276 241 356 315

277 217 357 316

300 376 360 317

301 340 361 337

302 341 362 320

303 366 363 321

304 344 364 322

305 345 365 323

306 364 366 306

Last modified 18 Apr 1997 SunOS 5.8 149



iconv_koi8-r(5) Headers, Tables, and Macros

Conversions Performed

KOI8-R MS 1251 KOI8-R MS 1251

307 343 367 302

310 365 370 334

311 350 371 333

312 351 372 307

313 352 373 330

314 353 374 335

315 354 375 331

316 355 376 327

376 227

KOI8-R to Mac
Cyrillic

For the conversion of KOI8-R to Mac Cyrillic, all characters not in the following
table are mapped unchanged.

Conversions Performed

KOI8-R Mac Cyrillic KOI8-R Mac Cyrillic

24 4 317 356

200-237 40 320 357

240 312 321 337

241 254 322 360

242 257 323 361

243 336 324 362

244 271 325 363

245 317 326 346

246 264 327 342

247 273 330 374

250 300 331 373

251 275 332 347

252 277 333 370

253 40 334 375

254 316 335 371

255 40 336 367

150 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_koi8-r(5)

Conversions Performed

KOI8-R Mac Cyrillic KOI8-R Mac Cyrillic

256 331 337 372

257 333 340 236

260 334 341 200

261 253 342 201

262 256 343 226

263 335 344 204

264 270 345 205

265 301 346 224

266 247 347 203

267 272 350 225

270 267 351 210

271 274 352 211

272 276 353 212

273 40 354 213

274 315 355 214

275 40 356 215

276 330 357 216

277 332 360 217

300 376 361 237

301 340 362 220

302 341 363 221

303 366 364 222

304 344 365 223

305 345 366 206

306 364 367 202

307 343 370 234

310 365 371 233

311 350 372 207

312 351 373 230

Last modified 18 Apr 1997 SunOS 5.8 151



iconv_koi8-r(5) Headers, Tables, and Macros

Conversions Performed

KOI8-R Mac Cyrillic KOI8-R Mac Cyrillic

313 352 374 235

314 353 375 231

315 354 376 227

316 355

FILES /usr/lib/iconv/*.so conversion modules

/usr/lib/iconv/*.t conversion tables

/usr/lib/iconv/iconv_data list of conversions supported by
conversion tables

SEE ALSO iconv (1), iconv (3C), iconv (5)

152 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_mac_cyr(5)

NAME iconv_mac_cyr – code set conversion tables for Macintosh Cyrillic

DESCRIPTION The following code set conversions are supported:

Code Set Conversions Supported

Code Symbol Target Code Symbol Target Output

Mac Cyrillic mac ISO 8859-5 iso5 ISO 8859-5 Cyrillic

Mac Cyrillic mac KOI8-R koi8 KOI8-R

Mac Cyrillic mac PC Cyrillic alt Alternative PC Cyrillic

Mac Cyrillic mac MS 1251 win5 Windows Cyrillic

CONVERSIONS The conversions are performed according to the following tables. All values in
the tables are given in octal.

Mac Cyrillic to ISO
8859-5

For the conversion of Mac Cyrillic to ISO 8859-5, all characters not in the
following table are mapped unchanged.

Conversions Performed

Mac Cyrillic ISO 8859-5 Mac Cyrillic ISO 8859-5

24 4 276 252

200 260 277 372

201 261 300 370

202 262 301 245

203 263 302-311 40

204 264 312 240

205 265 313 242

206 266 314 362

207 267 315 254

210 270 316 374

211 271 317 365

212 272 320-327 40

213 273 330 256

214 274 331 376

215 275 332 257

216 276 333 377

Last modified 18 Apr 1997 SunOS 5.8 153



iconv_mac_cyr(5) Headers, Tables, and Macros

Conversions Performed

Mac Cyrillic ISO 8859-5 Mac Cyrillic ISO 8859-5

217 277 334 360

220 300 335 241

221 301 336 361

222 302 337 357

223 303 340 320

224 304 341 321

225 305 342 322

226 306 343 323

227 307 344 324

230 310 345 325

231 311 346 326

232 312 347 327

233 313 350 330

234 314 351 331

235 315 352 332

236 316 353 333

237 317 354 334

240-246 40 355 335

247 246 356 336

250-252 40 357 337

253 242 360 340

254 362 361 341

255 40 362 342

256 243 363 343

257 363 364 344

260-263 40 365 345

264 366 366 346

265-266 40 367 347

267 250 370 350

154 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_mac_cyr(5)

Conversions Performed

Mac Cyrillic ISO 8859-5 Mac Cyrillic ISO 8859-5

270 244 371 351

271 364 372 352

272 247 373 353

273 367 374 354

274 251 375 355

275 371 376 356

375 370

Mac Cyrillic to
KOI8-R

For the conversion of Mac Cyrillic to KOI8-R, all characters not in the following
table are mapped unchanged.

Conversions Performed

Mac Cyrillic KOI8-R Mac Cyrillic KOI8-R

24 4 276 272

200 341 277 252

201 342 300 250

202 367 301 265

203 347 302-311 40

204 344 312 240

205 345 313 261

206 366 314 241

207 372 315 274

210 351 316 254

211 352 317 245

212 353 320-327 40

213 354 330 276

214 355 331 256

215 356 332 277

216 357 333 257

217 360 334 260

220 362 335 263

Last modified 18 Apr 1997 SunOS 5.8 155



iconv_mac_cyr(5) Headers, Tables, and Macros

Conversions Performed

Mac Cyrillic KOI8-R Mac Cyrillic KOI8-R

221 363 336 243

222 364 337 321

223 365 340 301

224 346 341 302

225 350 342 327

226 343 343 307

227 376 344 304

230 373 345 305

231 375 346 326

232 377 347 332

233 371 350 311

234 370 351 312

235 374 352 313

236 340 353 314

237 361 354 315

240-246 40 355 316

247 266 356 317

250-252 40 357 320

253 261 360 322

254 241 361 323

255 40 362 324

256 262 363 325

257 242 364 306

260-263 40 365 310

264 246 366 303

265-266 40 367 336

267 270 370 333

270 264 371 335

271 244 372 337

156 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_mac_cyr(5)

Conversions Performed

Mac Cyrillic KOI8-R Mac Cyrillic KOI8-R

272 267 373 331

273 247 374 330

274 271 375 334

275 251 376 300

375 370

Mac Cyrillic to PC
Cyrillic

For the conversion of Mac Cyrillic to PC Cyrillic, all characters not in the
following table are mapped unchanged.

Conversions Performed

Mac Cyrillic PC Cyrillic Mac Cyrillic PC Cyrillic

24 4 355 255

240-334 40 356 256

335 360 357 257

336 361 360 340

337 357 361 341

340 240 362 342

341 241 363 343

342 242 364 344

343 243 365 345

344 244 366 346

345 245 367 347

346 246 370 350

347 247 371 351

350 250 372 352

351 251 373 353

352 252 374 354

353 253 375 355

354 254 376 356

303 366

Last modified 18 Apr 1997 SunOS 5.8 157



iconv_mac_cyr(5) Headers, Tables, and Macros

Mac Cyrillic to MS
1251

For the conversion of Mac Cyrillic to MS 1251, all characters not in the following
table are mapped unchanged.

Conversions Performed

Mac Cyrillic MS 1251 Mac Cyrillic MS 1251

24 4 255 40

200 300 256 201

201 301 257 203

202 302 260-263 40

203 303 264 263

204 304 266 264

205 305 267 243

206 306 270 252

207 307 271 272

210 310 272 257

211 311 273 277

212 312 274 212

213 313 275 232

214 314 276 214

215 315 277 234

216 316 300 274

217 317 301 275

220 320 302 254

221 321 303-306 40

222 322 307 253

223 323 310 273

224 324 311 205

225 325 312 240

226 326 313 200

227 327 314 220

230 330 315 215

231 331 316 235

158 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_mac_cyr(5)

Conversions Performed

Mac Cyrillic MS 1251 Mac Cyrillic MS 1251

232 332 317 276

233 333 320 226

234 334 321 227

235 335 322 223

236 336 323 224

237 337 324 221

240 206 325 222

241 260 326 40

242 245 327 204

243 40 330 241

244 247 331 242

245 267 332 217

246 266 333 237

247 262 334 271

250 256 335 250

252 231 336 270

253 200 337 377

254 220 362 324

FILES /usr/lib/iconv/*.so conversion modules

/usr/lib/iconv/*.t conversion tables

/usr/lib/iconv/iconv_data list of conversions supported by
conversion tables

SEE ALSO iconv (1), iconv (3C), iconv (5)

Last modified 18 Apr 1997 SunOS 5.8 159



iconv_maz(5) Headers, Tables, and Macros

NAME iconv_maz – code set conversion tables for Mazovia

DESCRIPTION The following code set conversions are supported:

Code Set Conversions Supported

Code Symbol Target Code Symbol Target Output

Mazovia maz ISO 8859-2 iso2 ISO Latin 2

Mazovia maz MS 1250 win2 Windows Latin 2

Mazovia maz MS 852 dos2 MS-DOS Latin 2

Mazovia maz DHN dhn Dom Hanlowy Nauki

CONVERSIONS The conversions are performed according to the following tables. All values in
the tables are given in octal.

Mazovia to ISO
8859-2

For the conversion of Mazovia to ISO 8859-2, all characters not in the following
table are mapped unchanged.

Conversions Performed

Mazovia ISO 8859-2 Mazovia ISO 8859-2

24–177 40 230 246

200 307 231 326

201 374 232 334

202 351 233 40

203 342 234 243

204 344 235 40

205 40 236 266

206 261 237 40

207 347 240 254

210 40 241 257

211 353 242 363

212-213 40 243 323

214 356 244 361

215 346 245 321

216 304 246 274

217 241 247 277

160 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_maz(5)

Conversions Performed

Mazovia ISO 8859-2 Mazovia ISO 8859-2

220 312 250-340 40

221 352 341 337

222 263 342-365 40

223 364 366 367

224 366 367 40

225 306 370 260

226-227 40 371-376 40

256 201

Mazovia to MS 1250 For the conversion of Mazovia to MS 1250, all characters not in the following
table are mapped unchanged.

Mazovia MS 1250 Mazovia MS 1250

200 307 236 234

201 374 237 40

202 351 240 217

203 342 241 257

204 344 242 363

205 40 243 323

206 271 244 361

207 347 245 321

210 40 246 237

211 353 247 277

212-213 40 250-251 40

214 356 252 254

215 346 253-255 40

216 304 256 253

217 245 257 273

220 312 260-340 40

221 352 341 337

222 263 342-345 40

Last modified 18 Apr 1997 SunOS 5.8 161



iconv_maz(5) Headers, Tables, and Macros

Mazovia MS 1250 Mazovia MS 1250

223 364 346 265

224 366 347-360 40

225 306 361 261

226-227 40 362-365 0

230 214 366 367

231 326 367 40

232 334 370 260

233 40 371 40

234 243 372 267

235 40 373-376 40

274 212

Mazovia to MS 852 For the conversion of Mazovia to MS 852, all characters not in the following
table are mapped unchanged.

Conversions Performed

Mazovia MS 852 Mazovia MS 852

205 40 234 235

206 245 235 40

210-213 40 236 230

215 206 237 40

217 244 240 215

220 250 241 275

221 251 243 340

222 210 244 344

225 217 245 343

226-227 40 246 253

230 227 247 276

233 40 250-375 40

227 327

Mazovia to DHN For the conversion of Mazovia to DHN, all characters not in the following
table are mapped unchanged.

162 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_maz(5)

Conversions Performed

Mazovia DHN Mazovia DHN

200-205 40 234 203

206 211 236 217

207-214 40 240 207

215 212 241 210

216 40 242 216

217 200 243 205

220 202 244 215

221 214 246 220

225 201 247 221

230 206

FILES /usr/lib/iconv/*.so conversion modules

/usr/lib/iconv/*.t conversion tables

/usr/lib/iconv/iconv_data list of conversions supported by
conversion tables

SEE ALSO iconv (1), iconv (3C), iconv (5)

Last modified 18 Apr 1997 SunOS 5.8 163



iconv_pc_cyr(5) Headers, Tables, and Macros

NAME iconv_pc_cyr – code set conversion tables for Alternative PC Cyrillic

DESCRIPTION The following code set conversions are supported:

Code Set Conversions Supported

Code Symbol Target Code Symbol Target Output

PC Cyrillic alt ISO 8859-5 iso5 ISO 8859-5 Cyrillic

PC Cyrillic alt KOI8-R koi8 KOI8-R

PC Cyrillic alt MS 1251 win5 Windows Cyrillic

PC Cyrillic alt Mac Cyrillic mac Macintosh Cyrillic

CONVERSIONS The conversions are performed according to the following tables. All values in
the tables are given in octal.

PC Cyrillic to ISO
8859-5

For the conversion of PC Cyrillic to ISO 8859-5, all characters not in the following
table are mapped unchanged.

Conversions Performed

PC Cyrillic ISO 8859-5 PC Cyrillic ISO 8859-5

24 4 231 311

200 260 232 312

201 261 233 313

202 262 234 314

203 263 235 315

204 264 236 316

205 265 237 317

206 266 240 320

207 267 241 321

210 270 242 322

211 271 243 323

212 272 244 324

213 273 245 325

214 274 246 326

215 275 247 327

216 276 250 330

217 277 251 331

164 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_pc_cyr(5)

Conversions Performed

PC Cyrillic ISO 8859-5 PC Cyrillic ISO 8859-5

220 300 252 332

221 301 253 333

222 302 254 334

223 303 255 335

224 304 256 336

225 305 257 337

226 306 260-337 255

227 307 360 241

230 310 362-376 255

PC Cyrillic to KOI8-R For the conversion of PC Cyrillic to KOI8-R, all characters not in the following
table are mapped unchanged.

Conversions Performed

PC Cyrillic KOI8-R PC Cyrillic KOI8-R

24 4 242 327

200 341 243 307

201 342 244 304

202 367 245 305

203 347 246 326

204 344 247 332

205 345 250 311

206 366 251 312

207 372 252 313

210 351 253 314

211 352 254 315

212 353 255 316

213 354 256 317

214 355 257 320

215 356 260-337 255

216 357 340 322

Last modified 18 Apr 1997 SunOS 5.8 165



iconv_pc_cyr(5) Headers, Tables, and Macros

Conversions Performed

PC Cyrillic KOI8-R PC Cyrillic KOI8-R

217 360 341 323

220 362 342 324

221 363 343 325

222 364 344 306

223 365 345 310

224 346 346 303

225 350 347 336

226 343 350 333

227 376 351 335

230 373 352 337

231 375 353 331

232 377 354 330

233 371 355 334

234 370 356 300

235 374 357 321

236 340 360 263

237 361 361 243

240 301 362-376 255

241 302

PC Cyrillic to MS
1251

For the conversion of PC Cyrillic to MS 1251, all characters not in the following
table are mapped unchanged.

Conversions Performed

PC Cyrillic MS 1251 PC Cyrillic MS 1251

24 4 242 342

200 300 243 343

201 301 244 344

202 302 245 345

203 303 246 346

204 304 247 347

166 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_pc_cyr(5)

Conversions Performed

PC Cyrillic MS 1251 PC Cyrillic MS 1251

205 305 250 350

206 306 251 351

207 307 252 352

210 310 253 353

211 311 254 354

212 312 255 355

213 313 256 356

214 314 257 357

215 315 260-337 210

216 316 340 360

217 317 341 361

220 320 342 362

221 321 343 363

222 322 344 364

223 323 345 365

224 324 346 366

225 325 347 367

226 326 350 370

227 327 351 371

230 330 352 372

231 331 353 373

232 332 354 374

233 333 355 375

234 334 356 376

235 335 357 377

236 336 360 250

237 337 361 270

240 340 362-376 210

241 341

Last modified 18 Apr 1997 SunOS 5.8 167



iconv_pc_cyr(5) Headers, Tables, and Macros

PC Cyrillic to Mac
Cyrillic

For the conversion of PC Cyrillic to Mac Cyrillic, all characters not in the
following table are mapped unchanged.

Conversions Performed

PC Cyrillic Mac Cyrillic PC Cyrillic Mac Cyrillic

24 4 341 361

240 340 342 362

241 341 343 363

242 342 344 364

243 343 345 365

244 344 346 366

245 345 347 367

246 346 350 370

247 347 351 371

250 350 352 372

251 351 353 373

252 352 354 374

253 353 355 375

254 354 356 376

255 355 357 337

256 356 360 335

257 357 361 336

260-337 40 362-376 40

340 360

FILES /usr/lib/iconv/*.so conversion modules

/usr/lib/iconv/*.t conversion tables

/usr/lib/iconv/iconv_data list of conversions supported by
conversion tables

SEE ALSO iconv (1), iconv (3C), iconv (5)

168 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_unicode(5)

NAME iconv_unicode – code set conversion tables for Unicode

DESCRIPTION The following code set conversions are supported:

CODE SET CONVERSIONS SUPPORTED
------------------------------

FROM Code Set TO Code Set
Code FROM Target Code TO

Filename Filename
Element Element

ISO 8859-1 (Latin 1) 8859-1 UTF-8 UTF-8
ISO 8859-2 (Latin 2) 8859-2 UTF-8 UTF-8
ISO 8859-3 (Latin 3) 8859-3 UTF-8 UTF-8
ISO 8859-4 (Latin 4) 8859-4 UTF-8 UTF-8
ISO 8859-5 (Cyrillic) 8859-5 UTF-8 UTF-8
ISO 8859-6 (Arabic) 8859-6 UTF-8 UTF-8
ISO 8859-7 (Greek) 8859-7 UTF-8 UTF-8
ISO 8859-8 (Hebrew) 8859-8 UTF-8 UTF-8
ISO 8859-9 (Latin 5) 8859-9 UTF-8 UTF-8
ISO 8859-10 (Latin 6) 8859-10 UTF-8 UTF-8
Japanese EUC eucJP UTF-8 UTF-8
Chinese/PRC EUC
(GB 2312-1980) gb2312 UTF-8 UTF-8
ISO-2022 iso2022 UTF-8 UTF-8
Korean EUC ko_KR-euc Korean UTF-8 ko_KR-UTF-8
ISO-2022-KR ko_KR-iso2022-7 Korean UTF-8 ko_KR_UTF-8
Korean Johap
(KS C 5601-1987) ko_KR-johap Korean UTF-8 ko_KR-UTF-8
Korean Johap
(KS C 5601-1992) ko_KR-johap92 Korean UTF-8 ko_KR-UTF-8
Korean UTF-8 ko_KR-UTF-8 Korean EUC ko_KR-euc
Korean UTF-8 ko_KR-UTF-8 Korean Johap ko_KR-johap

(KS C 5601-1987)
Korean UTF-8 ko_KR-UTF-8 Korean Johap ko_KR-johap92

(KS C 5601-1992)
KOI8-R (Cyrillic) KOI8-R UCS-2 UCS-2
KOI8-R (Cyrillic) KOI8-R UTF-8 UTF-8
PC Kanji (SJIS) PCK UTF-8 UTF-8
PC Kanji (SJIS) SJIS UTF-8 UTF-8
UCS-2 UCS-2 KOI8-R (Cyrillic) KOI8-R
UCS-2 UCS-2 UCS-4 UCS-4

CODE SET CONVERSIONS SUPPORTED
------------------------------

FROM Code Set TO Code Set
Code FROM Target Code TO

Filename Filename
Element Element

UCS-2 UCS-2 UTF-7 UTF-7
UCS-2 UCS-2 UTF-8 UTF-8
UCS-4 UCS-4 UCS-2 UCS-2

Last modified 18 Apr 1997 SunOS 5.8 169



iconv_unicode(5) Headers, Tables, and Macros

UCS-4 UCS-4 UTF-16 UTF-16
UCS-4 UCS-4 UTF-7 UTF-7
UCS-4 UCS-4 UTF-8 UTF-8
UTF-16 UTF-16 UCS-4 UCS-4
UTF-16 UTF-16 UTF-8 UTF-8
UTF-7 UTF-7 UCS-2 UCS-2
UTF-7 UTF-7 UCS-4 UCS-4
UTF-7 UTF-7 UTF-8 UTF-8
UTF-8 UTF-8 ISO 8859-1 (Latin 1) 8859-1
UTF-8 UTF-8 ISO 8859-2 (Latin 2) 8859-2
UTF-8 UTF-8 ISO 8859-3 (Latin 3) 8859-3
UTF-8 UTF-8 ISO 8859-4 (Latin 4) 8859-4
UTF-8 UTF-8 ISO 8859-5 (Cyrillic) 8859-5
UTF-8 UTF-8 ISO 8859-6 (Arabic) 8859-6
UTF-8 UTF-8 ISO 8859-7 (Greek) 8859-7
UTF-8 UTF-8 ISO 8859-8 (Hebrew) 8859-8
UTF-8 UTF-8 ISO 8859-9 (Latin 5) 8859-9
UTF-8 UTF-8 ISO 8859-10 (Latin 6) 8859-10
UTF-8 UTF-8 Japanese EUC eucJP
UTF-8 UTF-8 Chinese/PRC EUC gb2312

(GB 2312-1980)
UTF-8 UTF-8 ISO-2022 iso2022
UTF-8 UTF-8 KOI8-R (Cyrillic) KOI8-R
UTF-8 UTF-8 PC Kanji (SJIS) PCK
UTF-8 UTF-8 PC Kanji (SJIS) SJIS
UTF-8 UTF-8 UCS-2 UCS-2
UTF-8 UTF-8 UCS-4 UCS-4
UTF-8 UTF-8 UTF-16 UTF-16
UTF-8 UTF-8 UTF-7 UTF-7
UTF-8 UTF-8 Chinese/PRC EUC zh_CN.euc

(GB 2312-1980)

CODE SET CONVERSIONS SUPPORTED
------------------------------

FROM Code Set TO Code Set
Code FROM Target Code TO

Filename Filename
Element Element

UTF-8 UTF-8 ISO 2022-CN zh_CN.iso2022-7
UTF-8 UTF-8 Chinese/Taiwan Big5 zh_TW-big5
UTF-8 UTF-8 Chinese/Taiwan EUC zh_TW-euc

(CNS 11643-1992)
UTF-8 UTF-8 ISO 2022-TW zh_TW-iso2022-7
Chinese/PRC EUC zh_CN.euc UTF-8 UTF-8
(GB 2312-1980)
ISO 2022-CN zh_CN.iso2022-7 UTF-8 UTF-8
Chinese/Taiwan Big5 zh_TW-big5 UTF-8 UTF-8
Chinese/Taiwan EUC zh_TW-euc UTF-8 UTF-8
(CNS 11643-1992)
ISO 2022-TW zh_TW-iso2022-7 UTF-8 UTF-8

170 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_unicode(5)

EXAMPLES EXAMPLE 1 The library module filename

In the conversion library, /usr/lib/iconv (see iconv (3C)), the library
module filename is composed of two symbolic elements separated by the
percent sign (%). The first symbol specifies the code set that is being converted;
the second symbol specifies the target code, that is, the code set to which the
first one is being converted.

In the conversion table above, the first symbol is termed the "FROM Filename
Element". The second symbol, representing the target code set, is the "TO
Filename Element".

For example, the library module filename to convert from the Korean EUC code
set to the Korean UTF-8 code set is

ko_KR-euc%ko_KR-UTF-8

FILES /usr/lib/iconv/*.so conversion modules

SEE ALSO iconv (1), iconv (3C), iconv (5)

Chernov, A., Registration of a Cyrillic Character Set, RFC 1489, RELCOM
Development Team, July 1993.

Chon, K., H. Je Park, and U. Choi, Korean Character Encoding for Internet
Messages, RFC 1557, Solvit Chosun Media, December 1993.

Goldsmith, D., and M. Davis, UTF-7 – A Mail-Safe Transformation Format of
Unicode, RFC 1642, Taligent, Inc., July 1994.

Lee, F., HZ – A Data Format for Exchanging Files of Arbitrarily Mixed Chinese
and ASCII characters, RFC 1843, Stanford University, August 1995.

Murai, J., M. Crispin, and E. van der Poel, Japanese Character Encoding for
Internet Messages, RFC 1468, Keio University, Panda Programming, June 1993.

Nussbacher, H., and Y. Bourvine, Hebrew Character Encoding for Internet
Messages, RFC 1555, Israeli Inter-University, Hebrew University, December 1993.

Ohta, M., Character Sets ISO-10646 and ISO-10646-J-1, RFC 1815, Tokyo
Institute of Technology, July 1995.

Ohta, M., and K. Handa, ISO-2022-JP-2: Multilingual Extension of ISO-2022-JP,
RFC 1554, Tokyo Institute of Technology, December 1993.

Reynolds, J., and J. Postel, ASSIGNED NUMBERS, RFC 1700, University of
Southern California/Information Sciences Institute, October 1994.

Simonson, K., Character Mnemonics & Character Sets, RFC 1345, Rationel
Almen Planlaegning, June 1992.

Last modified 18 Apr 1997 SunOS 5.8 171



iconv_unicode(5) Headers, Tables, and Macros

Spinellis, D., Greek Character Encoding for Electronic Mail Messages, RFC
1947, SENA S.A., May 1996.

The Unicode Consortium, The Unicode Standard, Version 2.0, Addison Wesley
Developers Press, July 1996.

Wei, Y., Y. Zhang, J. Li, J. Ding, and Y. Jiang, ASCII Printable Characters-Based
Chinese Character Encoding for Internet Messages, RFC 1842, AsiaInfo Services
Inc., Harvard University, Rice University, University of Maryland, August 1995.

Yergeau, F., UTF-8, a transformation format of Unicode and ISO 10646, RFC
2044, Alis Technologies, October 1996.

Zhu, H., D. Hu, Z. Wang, T. Kao, W. Chang, and M. Crispin, Chinese Character
Encoding for Internet Messages, RFC 1922, Tsinghua University, China
Information Technology Standardization Technical Committee (CITS), Institute
for Information Industry (III), University of Washington, March 1996.

NOTES ISO 8859 character sets using Latin alphabetic characters are distinguished
as follows:
ISO 8859-1 (Latin 1)

For most West European languages, including:

Albanian Finnish Italian

Catalan French Norwegian

Danish German Portuguese

Dutch Galician Spanish

English Irish Swedish

Faeroese Icelandic

ISO 8859-2 (Latin 2)
For most Latin-written Slavic and Central European languages:

Czech Polish Slovak

German Rumanian Slovene

Hungarian Croatian

ISO 8859-3 (Latin 3)
Popularly used for Esperanto, Galician, Maltese, and Turkish.

ISO 8859-4 (Latin 4)

172 SunOS 5.8 Last modified 18 Apr 1997



Headers, Tables, and Macros iconv_unicode(5)

Introduces letters for Estonian, Latvian, and Lithuanian. It is an incomplete
predecessor of ISO 8859-10 (Latin 6).

ISO 8859-9 (Latin 5)
Replaces the rarely needed Icelandic letters in ISO 8859-1 (Latin 1) with the
Turkish ones.

ISO 8859-10 (Latin 6)
Adds the last Inuit (Greenlandic) and Sami (Lappish) letters that were not
included in ISO 8859-4 (Latin 4) to complete coverage of the Nordic area.

Last modified 18 Apr 1997 SunOS 5.8 173



isalist(5) Headers, Tables, and Macros

NAME isalist – the native instruction sets known to Solaris software

DESCRIPTION The possible instruction set names returned by isalist (1) and the
SI_ISALIST command of sysinfo (2) are listed here.

The list is ordered within an instruction set family in the sense that later names
are generally faster then earlier names; note that this is in the reverse order than
listed by isalist (1) and sysinfo (2). In the following list of values, numbered
entries generally represent increasing performance; lettered entries are either
mutually exclusive or cannot be ordered.

SPARC Platforms Where appropriate, correspondence with a given value of the –xarch option of
Sun’s C 4.0 compiler is indicated. Other compilers may have similar options.
1a. sparc Indicates the SPARC V8 instruction set, as defined

in The SPARC Architecture Manual, Version 8,
Prentice-Hall, Inc., 1992. Some instructions (such
as integer multiply and divide, FSMULD, and all
floating point operations on quad operands) may
be emulated by the kernel on certain systems.

1b. sparcv7 Same as sparc. This corresponds to code
produced with the –xarch=v7 option of Sun’s
C 4.0 compiler.

2. sparcv8–fsmuld Like sparc, except that integer multiply and
divide must be executed in hardware. This
corresponds to code produced with the
–xarch=v8a option of Sun’s C 4.0 compiler.

3. sparcv8 Like sparcv8–fsmuld, except that FSMULD must
also be executed in hardware. This corresponds
to code produced with the –xarch=v8 option of
Sun’s C 4.0 compiler.

4. sparcv8plus Indicates the SPARC V8 instruction set plus those
instructions in the SPARC V9 instruction set, as
defined in The SPARC Architecture Manual,
Version 9, Prentice-Hall, 1994, that can be used
according to The V8+ Technical Specification.
This corresponds to code produced with the
–xarch=v8plus option of Sun’s C 4.0 compiler.

5a. sparcv8plus+vis Like sparcv8plus, with the addition of those
UltraSPARC I Visualization Instructions that
can be used according to The V8+ Technical
Specification. This corresponds to code produced
with the –xarch=v8plusa option of Sun’s C 4.0
compiler.

174 SunOS 5.8 Last modified 18 Feb 1997



Headers, Tables, and Macros isalist(5)

5b. sparcv8plus+fmuladd Like sparcv8plus, with the addition of the
Hal SPARC64 floating multiply-add and
multiply-subtract instructions.

6. sparcv9 Indicates the SPARC V9 instruction set, as defined
in The SPARC Architecture Manual, Version 9,
Prentice-Hall, 1994.

7a. sparcv9+vis Like sparcv9, with the addition of the
UltraSPARC I Visualization Instructions.

7b. sparcv9+fmuladd Like sparcv9, with the addition of the
Hal SPARC64 floating multiply-add and
multiply-subtract instructions.

Intel Platforms 1. i386 The Intel 80386 instruction set, as described in
The i386 Microprocessor Programmer’s Reference
Manual.

2. i486 The Intel 80486 instruction set, as described in
The i486 Microprocessor Programmer’s Reference
Manual. (This is effectively i386, plus the
CMPXCHG, BSWAP, and XADD instructions.)

3. pentium The Intel Pentium instruction set, as described
in The Pentium Processor User’s Manual. (This
is effectively i486, plus the CPU_ID instruction,
and any features that the CPU_ID instruction
indicates are present.)

4. pentium+mmx Like pentium, with the MMX instructions
guaranteed present.

5. pentium_pro The Intel PentiumPro instruction set, as described
in The PentiumPro Family Developer’s Manual.
(This is effectively pentium, with the CMOVcc,
FCMOVcc, FCOMI, and RDPMC instructions
guaranteed present.)

6. pentium_pro+mmx Like pentium_pro, with the MMX instructions
guaranteed present.

SEE ALSO isalist (1), sysinfo (2)

Last modified 18 Feb 1997 SunOS 5.8 175



largefile(5) Headers, Tables, and Macros

NAME largefile – large file status of utilities

DESCRIPTION A large file is a regular file whose size is greater than or equal to 2 Gbyte ( 231

bytes). A small file is a regular file whose size is less than 2 Gbyte.
Large file aware

utilities
A utility is called large file aware if it can process large files in the same manner as
it does small files. A utility that is large file aware is able to handle large files as
input and generate as output large files that are being processed. The exception
is where additional files are used as system configuration files or support files
that can augment the processing. For example, the file utility supports the −m
option for an alternative "magic" file and the −f option for a support file that
can contain a list of file names. It is unspecified whether a utility that is large
file aware will accept configuration or support files that are large files. If a
large file aware utility does not accept configuration or support files that are
large files, it will cause no data loss or corruption upon encountering such files
and will return an appropriate error.

The following /usr/bin utilities are large file aware:

adb awk bdiff cat chgrp

chmod chown cksum cmp compress

cp csh csplit cut dd

dircmp du egrep fgrep file

find ftp getconf grep head

join jsh ksh ln ls

mdb mkdir mkfifo more mv

nawk page paste pathchk pg

rcp remsh rksh rm rmdir

rsh sed sh sort split

sum tail tar tee test

touch tr uncompress uudecode uuencode

wc zcat

The following /usr/xpg4/bin utilities are large file aware:

awk cp du egrep fgrep

grep ln ls more mv

rm sed sh sort tail

tr

176 SunOS 5.8 Last modified 13 Aug 1999



Headers, Tables, and Macros largefile(5)

The following /usr/sbin utilities are large file aware:

install mkfile mknod mvdir swap

See the USAGEsection of the swap(1M) manual page for limitations of swap on
block devices greater than 2 Gbyte on a 32–bit operating system.

The following /usr/ucb utilities are large file aware:

chown from ln ls sed

sum touch

The /usr/bin/cpio and /usr/bin/pax utilities are large file aware, but
cannot archive a file whose size exceeds 8 Gbyte – 1 byte.

The /usr/sbin/crash and /usr/bin/truss utilities have been modified to
read a dump file and display information relevant to large files, such as offsets.

cachefs file systems The following /usr/bin utilities are large file aware for cachefs file systems:

cachefspack cachefsstat

The following /usr/sbin utilities are large file aware for cachefs file systems:

cachefslog cachefswssize cfsadmin fsck

mount umount

nfs file systems The following utilities are large file aware for nfs file systems:

/usr/lib/autofs/automountd /usr/sbin/mount

ufs file systems The following /usr/bin utility is large file aware for ufs file systems:

df

The following /usr/xpg4/bin utility is large file aware for ufs file systems:

df

The following /usr/sbin utilities are large file aware for ufs file systems:

clri dcopy edquota ff fsck

fsdb fsirand fstyp labelit lockfs

mkfs mount ncheck newfs quot

Last modified 13 Aug 1999 SunOS 5.8 177



largefile(5) Headers, Tables, and Macros

quota quotacheck quotaoff quotaon repquota

tunefs ufsdump ufsrestore umount

Large file safe
utilities

A utility is called large file safe if it causes no data loss or corruption when it
encounters a large file. A utility that is large file safe is unable to process
properly a large file, but returns an appropriate error.

The following /usr/bin utilities are large file safe:

audioconvert audioplay audiorecord comm diff

diff3 diffmk ed lp mail

mailcompat mailstats mailx pack pcat

red rmail sdiff unpack vi

view

The following /usr/xpg4/bin utilities are large file safe:

ed vi view

The following /usr/sbin utilities are large file safe:

lpfilter lpforms

The following /usr/ucb utilities are large file safe:

Mail lpr

The following /usr/lib utility is large file safe:

sendmail

SEE ALSO lf64 (5), lfcompile (5), lfcompile64 (5)

178 SunOS 5.8 Last modified 13 Aug 1999



Headers, Tables, and Macros lf64(5)

NAME lf64 – transitional interfaces for 64-bit file offsets

DESCRIPTION The data types, interfaces, and macros described on this page provide explicit
access to 64-bit file offsets. They are accessible through the transitional
compilation environment described on the lfcompile64 (5) manual page. The
function prototype and semantics of a transitional interface are equivalent to
those of the standard version of the call, except that relevant data types are
64-bit entities.

Data Types The following tables list the standard data or struct types in the left-hand column
and their corresponding explicit 64-bit file offset types in the right-hand column,
grouped by header. The absence of an entry in the left-hand column indicates
that there is no existing explicit 32-bit type that corresponds to the 64–bit type
listed in the right—hand column. Note that in a 64-bit application, the standard
definition is equivalent to the 64-bit file offset definition.

<aio.h>

struct aiocb struct aiocb64

off_t aio_offset; off64_t aio_offset;

<sys/dirent.h>

struct dirent struct dirent64

ino_t d_ino; ino64_t d_ino;

off_t d_off; off64_t d_off;

<sys/fcntl.h>

struct flock struct flock64

off_t l_start; off64_t l_start;

off_t l_len; off64_t l_len;

F_SETLK F_SETLK64

F_SETLKW F_SETLKW64

F_GETLK F_GETLK64

F_FREESP F_FREESP64

O_LARGEFILE

<sys/stdio.h>

fpos_t fpos64_t

Last modified 26 Jan 1998 SunOS 5.8 179



lf64(5) Headers, Tables, and Macros

<sys/resource.h>

rlim_t rlim64_t

struct rlimit struct rlimit64

rlim_t rlim_cur; rlim64_t rlim_cur;

rlim_t rlim_max; rlim64_t rlim_max;

RLIM_INFINITY RLIM64_INFINITY

RLIM_SAVED_MAX RLIM64_SAVED_MAX

RLIM_SAVED_CUR RLIM64_SAVED_CUR

<sys/stat.h>

struct stat struct stat64

ino_t st_ino; ino64_t st_ino;

off_t st_size; off64_t st_size;

blkcnt_t st_blocks; blkcnt64_t st_blocks;

<sys/statvfs.h>

struct statvfs struct statvfs64

fsblkcnt_t f_blocks; fsblkcnt64_t f_blocks;

fsblkcnt_t f_bfree; fsblkcnt64_t f_bfree;

fsblkcnt_t f_bavial; fsblkcnt64_t f_bavial;

fsfilcnt_t f_files; fsfilcnt64_t f_files;

fsfilcnt_t f_ffree; fsfilcnt64_t f_ffree;

fsfilcnt_t f_favail; fsfilcnt64_t f_favail;

<sys/types.h>

off_t ; off64_t ;

ino_t ; ino64_t ;

blkcnt_t ; blkcnt64_t ;

fsblkcnt_t ; fsblkcnt64_t ;

fsfilcnt_t ; fsfilcnt64_t ;

<unistd.h>

180 SunOS 5.8 Last modified 26 Jan 1998



Headers, Tables, and Macros lf64(5)

_LFS64_LARGEFILE

_LFS64_STDIO

<sys/unistd.h>

_CS_LFS64_CFLAGS

_CS_LFS64_LDFLAGS

_CS_LFS64_LIBS

_CS_LFS64_LINTFLAGS

System Interfaces The following tables display the standard API and the corresponding transitional
interfaces for 64-bit file offsets. The interfaces are grouped by header. The
interface name and the affected data types are displayed in courier font..

<aio.h>

int aio_cancel (. . ., int aio_cancel64 (. . .,

struct aiocb *); struct aiocb64 *);

int aio_error ( int aio_error64 (

const struct aiocb *); const struct aiocb64 *);

int aio_fsync (. . ., int aio_fsync64 (. . .,

struct aiocb *); struct aiocb64 *);

int aio_read (struct aiocb *); int aio_read64 (struct aiocb64 *);

int aio_return (struct aiocb *); int aio_return64 (struct aiocb64 *);

int aio_suspend ( int aio_suspend64 (

const struct aiocb *, . . .); const struct aiocb64 *, . . .);

int aio_write (struct aiocb *); int aio_write64 (struct aiocb64 *);

int lio_listio (. . ., int lio_listio64 (. . .,

const struct aiocb *, . . .); const struct aiocb64 *, . . .);

<dirent.h>

struct dirent *readdir ( ); struct dirent64 *readdir64 ( );

struct dirent *readdir_r ( ); struct dirent64 *readdir64_r ( );

<fcntl.h>

Last modified 26 Jan 1998 SunOS 5.8 181



lf64(5) Headers, Tables, and Macros

int creat ( ); int creat64 ( );

int open ( ); int open64 ( );

<ftw.h>

int ftw (. . ., int ftw64 (. . .,

const struct stat *, const struct stat64 *,

. . .); . . .);

int nftw (. . int nftw64 (. . .,

const struct stat *, const struct stat64 *,

. . .); . . .);

<libgen.h>

char *copylist (. . ., off_t ); char *copylist64 (. . .,

off64_t );

<stdio.h>

int fgetpos ( ); int fgetpos64 ( );

FILE *fopen ( ); FILE *fopen64 ( );

FILE *freopen ( ); FILE *freopen64 ( );

int fseeko (. . ., int fseeko64 (. . .,

off_t , . . .); off64_t , . . .);

int fsetpos (. . ., int fsetpos64 (. . .,

const fpos_t *); const fpos64_t *);

off_t ftello ( ); off64_t ftello64 ( );

FILE *tmpfile ( ); FILE *tmpfile64 ( );

<stdlib.h>

int mkstemp ( ); int mkstemp64 ( );

<sys/async.h>

int aioread (. . ., off_t , int aioread64 (. . ., off64_t ,

. . .); . . .);

182 SunOS 5.8 Last modified 26 Jan 1998



Headers, Tables, and Macros lf64(5)

int aiowrite (. . ., off_t , int aiowrite64 (. . .,

. . .); off64_t , . . .);

<ucbinclude/sys/dir.h>

int alphasort ( int alphasort64 (

struct direct **, struct direct64 **,

struct direct **); struct direct64 **);

struct direct *readdir ( ) struct direct64 *readdir64 ( );

int scandir (. . ., int scandir64 (. . .,

struct direct *(*[ ]);, struct direct64 *(*[ ]);,

. . .); . . .);

<sys/dirent.h>

int getdents (. . ., dirent ); int getdents64 (. . .,

dirent64 );

<sys/mman.h>

void mmap(. . ., off_t ); void mmap64(. . ., off64_t );

<sys/resource.h>

int getrlimit (. . ., int getrlimit64 (. . .,

struct rlimit *); struct rlimit64 *);

int setrlimit (. . ., int setrlimit64 (. . .,

const struct rlimit *); const struct rlimit64 *);

<sys/stat.h>

int fstat (. . ., int fstat64 (. . .,

struct stat *); struct stat64 *);

int lstat (. . ., int lstat64 (. . .,

struct stat *); struct stat64 *);

Last modified 26 Jan 1998 SunOS 5.8 183



lf64(5) Headers, Tables, and Macros

int stat (. . ., int stat64 (. . .,

struct stat *); struct stat64 *);

<sys/statvfs.h>

int statvfs (. . ., int statvfs64 (. . .,

struct statvfs *); struct statvfs64 *);

int fstatvfs (. . ., int fstatvfs64 (. . .,

struct statvfs *); struct statvfs64 *);

<unistd.h>

int lockf (. . ., off_t ); int lockf64 (. . .,

off64_t );

off_t lseek (. . ., off_t , off64_t lseek64 (. . .,

. . .); off64_t , . . .);

int ftruncate (. . ., off_t ); int ftruncate64 (. . .,

off64_t );

ssize_t pread (. . ., off_t ); ssize_t pread64 (. . .,

off64_t );

ssize_t pwrite (. . ., off_t ); ssize_t pwrite64 (. . .,

off64_t );

int truncate (. . ., off_t ); int truncate64 (. . .,

off64_t );

SEE ALSO lfcompile (5), lfcompile64 (5)

184 SunOS 5.8 Last modified 26 Jan 1998



Headers, Tables, and Macros lfcompile(5)

NAME lfcompile – large file compilation environment for 32-bit applications

DESCRIPTION All 64-bit applications can manipulate large files by default. The methods
described on this page allow 32-bit applications to manipulate large files.

In the large file compilation environment, source interfaces are bound
to appropriate 64-bit functions, structures, and types. Compiling in this
environment allows 32-bit applications to access files whose size is greater
than or equal to 2 Gbyte ( 231 bytes).

Each interface named xxx( ) that needs to access 64-bit entities to access large
files maps to a xxx64() call in the resulting binary. All relevant data types are
defined to be of correct size (for example, off_t has a typedef definition for
a 64-bit entity).

An application compiled in this environment is able to use the xxx() source
interfaces to access both large and small files, rather than having to explicitly
utilize the transitional xxx64() interface calls to access large files. See the
lfcompile64 (5) manual page for information regarding the transitional
compilation environment.

Applications can be compiled in the large file compilation environment by
using the following methods:

� Use the getconf (1) utility with one or more of the arguments listed in the
table below. This method is recommended for portable applications.

argument purpose

LFS_CFLAGS obtain compilation flags necessary to enable the
large file compilation environment

LFS_LDFLAGS obtain link editor options

LFS_LIBS obtain link library names

LFS_LINTFLAGS obtain lint options

� Set the compile-time flag _FILE_OFFSET_BITS to 64 before including
any headers. Applications may combine objects produced in the
large file compilation environment with objects produced in the
transitional compilation environment, but must be careful with respect to
interoperability between those objects. Applications should not declare
global variables of types whose sizes change between compilation
environments.

Access to Additional
Large File Interfaces

The fseek() and ftell( ) functions do not map to functions named
fseek64() and ftell64() ; rather, the large file additions fseeko() and
ftello( ) , have functionality identical to fseek() and ftell( ) and do map
to the 64-bit functions fseeko64() and ftello64() . Applications wishing to

Last modified 26 Jan 1998 SunOS 5.8 185



lfcompile(5) Headers, Tables, and Macros

access large files should use fseeko() and ftello( ) in place of fseek()
and ftell( ) . See the fseek (3C) and ftell (3C) manual pages for information
about fseeko() and ftello( ) .

Applications wishing to access fseeko() and ftello() as well as the
POSIX and X/Open specification-conforming interfaces should define the
macro _LARGEFILE_SOURCEto be 1 and set whichever feature test macros are
appropriate to obtain the desired environment (see standards (5)).

EXAMPLES In the following examples, the large file compilation environment is accessed
by invoking the getconf utility with one of the arguments listed in the
table above. The additional large file interfaces are accessed by specifying
–D_LARGEFILE_SOURCE.

The examples that use the form of command substitution specifying the
command within parentheses preceded by a dollar sign can be executed only in
a POSIX-conforming shell such as the Korn Shell (see ksh (1)). In a shell that
is not POSIX-conforming, such as the Bourne Shell (see sh (1)) and the C Shell
(see csh (1)), the getconf calls must be enclosed within grave accent marks, as
shown in the second example.
EXAMPLE 1 An example of compiling a program with a “large” off_t , and that uses
fseeko() , ftello() , and yacc (1)

$ c89 -D_LARGEFILE_SOURCE \
-D_FILE_OFFSET_BITS=64 -o foo \
$(getconf LFS_CFLAGS) y.tab.c b.o \
$(getconf LFS_LDFLAGS) \
-ly $(getconf LFS_LIBS)

CODE EXAMPLE 1 An example of compiling a program with a “large” off_t that
does not use fseeko() and ftello( ) and has no application specific libraries:

% c89 -D_FILE_OFFSET_BITS=64 \
g` etconf LFS_CFLAGS a` .c \
g` etconf LFS_LDFLAGS \`
g` etconf LFS_LIBS \`

CODE EXAMPLE 2 An example of compiling a program with a “default” off_t and
that uses fseeko() and ftello( ) :

$ c89 –D_LARGEFILE_SOURCE a.c

SEE ALSO csh (1), getconf (1), ksh (1), lint (1B), sh (1), fseek (3C), ftell (3C), lf64 (5),
lfcompile64 (5), standards (5)

NOTES Certain system-specific or non-portable interfaces are not usable in the large file
compilation environment. Known cases are:

� Kernel data structures read from /dev/kmem .

� Interfaces in the kernel virtual memory library, –lkvm .

� Interfaces in the ELF access library, –lelf .

� Interfaces to /proc defined in <procfs.h> .

186 SunOS 5.8 Last modified 26 Jan 1998



Headers, Tables, and Macros lfcompile(5)

Programs that use these interfaces should not be compiled in the large file
compilation environment. As a partial safeguard against making this mistake,
including either of the <libelf.h> or <sys/procfs.h> header files will
induce a compilation error when the large file compilation environment is
enabled.

In general, caution should be exercised when using any separately-compiled
library whose interfaces include data items of type off_t or the other redefined
types either directly or indirectly, such as with ’struct stat ’. (The redefined
types are off_t , rlim_t , ino_t , blkcnt_t , fsblkcnt_t , and fsfilcnt_t .)
For the large file compilation environment to work correctly with such a library,
the library interfaces must include the appropriate xxx64() binary entry points
and must have them mapped to the corresponding primary functions when
_FILE_OFFSET_BITS is set to 64.

Care should be exercised using any of the printf() or scanf() routines
on variables of the types mentioned above. In the large file compilation
environment, these variables should be printed or scanned using long long
formats.

BUGS The lint (1B) utility will generate spurious error messages when
_FILE_OFFSET_BITS is set to 64. This is because the binary libc lint library,
/usr/lib/llib-lc.ln , is compiled only for the standard interfaces, not with
_FILE_OFFSET_BITS set to 64. This deficiency hampers static error-checking
for programs compiled in the large file compilation environment.

Symbolic formats analogous to those found in <sys/int_fmtio.h> do not
exist for printing or scanning variables of the types that are redefined in the
large file compilation environment.

Last modified 26 Jan 1998 SunOS 5.8 187



lfcompile64(5) Headers, Tables, and Macros

NAME lfcompile64 – transitional compilation environment

DESCRIPTION All 64-bit applications can manipulate large files by default. The transitional
interfaces described on this page can be used by 32-bit and 64-bit applications to
manipulate large files.

In the transitional compilation environment, explicit 64-bit functions, structures,
and types are added to the API. Compiling in this environment allows both
32-bit and 64-bit applications to access files whose size is greater than or equal to
2 Gbyte ( 231 bytes).

The transitional compilation environment exports all the explicit 64-bit functions
(xxx64() ) and types in addition to all the regular functions (xxx( ) ) and types.
Both xxx( ) and xxx64( ) functions are available to the program source. A 32-bit
application must use the xxx64() functions in order to access large files. See the
lf64 (5) manual page for a complete listing of the 64-bit transitional interfaces.

The transitional compilation environment differs from the large file compilation
environment, wherein the underlying interfaces are bound to 64-bit functions,
structures, and types. An application compiled in the large file compilation
environment is able to use the xxx( ) source interfaces to access both large and
small files, rather than having to explicitly utilize the transitional xxx64()
interface calls to access large files. See the lfcompile (5) manual page for more
information regarding the large file compilation environment.

Applications may combine objects produced in the large file compilation
environment with objects produced in the transitional compilation environment,
but must be careful with respect to interoperability between those objects.
Applications should not declare global variables of types whose sizes change
between compilation environments.

For applications that do not wish to conform to the POSIX or X/Open
specifications, the 64-bit transitional interfaces are available by default. No
compile-time flags need to be set.

Access to Additional
Large File Interfaces

Applications that wish to access the transitional interfaces as well as the POSIX
or X/Open specification-conforming interfaces should use the following
compilation methods and set whichever feature test macros are appropriate to
obtain the desired environment (see standards (5)).

� Set the compile-time flag _LARGEFILE64_SOURCEto 1 before including
any headers.

� Use the getconf (1) command with one or more of the following
arguments:

188 SunOS 5.8 Last modified 26 Jan 1998



Headers, Tables, and Macros lfcompile64(5)

argument purpose

LFS64_CFLAGS obtain compilation flags necessary to enable the
transitional compilation environment

LFS64_LDFLAGS obtain link editor options

LFS64_LIBS obtain link library names

LFS64_LINTFLAGS obtain lint options

EXAMPLES In the following examples, the transitional compilation environment is accessed
by invoking the getconf utility with one of the arguments listed in the table
above. The additional large file interfaces are accessed either by specifying
–D_LARGEFILE64_SOURCEor by invoking the getconf utility with the
arguments listed above.

The example that uses the form of command substitution specifying the
command within parentheses preceded by a dollar sign can be executed only in
a POSIX-conforming shell such as the Korn Shell (see ksh (1)). In a shell that is
not POSIX-conforming, such as the Bourne Shell (see sh (1)) and the C Shell (see
csh (1)), the command must be enclosed within grave accent marks.
EXAMPLE 1 An example of compiling a program using transitional interfaces such as
lseek64() and fopen64( ) :

$ c89 -D_LARGEFILE64_SOURCE \
$(getconf LFS64_CFLAGS) a.c \
$(getconf LFS64_LDFLAGS) \
$(getconf LFS64_LIBS)

CODE EXAMPLE 1 An example of running lint on a program using transitional
interfaces:

% lint -D_LARGEFILE64_SOURCE \
g` etconf LFS64_LINTFLAGS …̀ \
g` etconf LFS64_LIBS

S

`

EE ALSO getconf (1), lseek (2), fopen (3C), lf64 (5), standards (5)

Last modified 26 Jan 1998 SunOS 5.8 189



locale(5) Headers, Tables, and Macros

NAME locale – subset of a user’s environment that depends on language and cultural
conventions

DESCRIPTION A locale is the definition of the subset of a user’s environment that depends on
language and cultural conventions. It is made up from one or more categories.
Each category is identified by its name and controls specific aspects of the
behavior of components of the system. Category names correspond to the
following environment variable names:
LC_CTYPE Character classification and case conversion.

LC_COLLATE Collation order.

LC_TIME Date and time formats.

LC_NUMERIC Numeric formatting.

LC_MONETARY Monetary formatting.

LC_MESSAGES Formats of informative and diagnostic messages
and interactive responses.

The standard utilities base their behavior on the current locale, as defined in the
ENVIRONMENTsection for each utility. The behavior of some of the C-language
functions will also be modified based on the current locale, as defined by the
last call to setlocale (3C).

Locales other than those supplied by the implementation can be created by the
application via the localedef (1) utility. The value that is used to specify
a locale when using environment variables will be the string specified as the
name operand to localedef when the locale was created. The strings "C" and
"POSIX" are reserved as identifiers for the POSIX locale.

Applications can select the desired locale by invoking the setlocale( )
function with the appropriate value. If the function is invoked with an empty
string, such as:

setlocale(LC_ALL, "");

the value of the corresponding environment variable is used. If the environment
variable is unset or is set to the empty string, the setlocale( ) function sets the
appropriate environment.

Locale Definition Locales can be described with the file format accepted by the localedef utility.

The locale definition file must contain one or more locale category source
definitions, and must not contain more than one definition for the same locale
category.

190 SunOS 5.8 Last modified 20 Dec 1996



Headers, Tables, and Macros locale(5)

A category source definition consists of a category header, a category body and a
category trailer. A category header consists of the character string naming of the
category, beginning with the characters LC_. The category trailer consists of
the string END, followed by one or more blank characters and the string used in
the corresponding category header.

The category body consists of one or more lines of text. Each line contains an
identifier, optionally followed by one or more operands. Identifiers are either
keywords, identifying a particular locale element, or collating elements. Each
keyword within a locale must have a unique name (that is, two categories cannot
have a commonly-named keyword); no keyword can start with the characters
LC_. Identifiers must be separated from the operands by one or more blank
characters.

Operands must be characters, collating elements or strings of characters. Strings
must be enclosed in double-quotes. Literal double-quotes within strings must
be preceded by the <escape character>, described below. When a keyword
is followed by more than one operand, the operands must be separated by
semicolons; blank characters are allowed both before and after a semicolon.

The first category header in the file can be preceded by a line modifying the
comment character. It has the following format, starting in column 1:

"comment_char %c\n",< comment character>

The comment character defaults to the number sign (#). Blank lines and lines
containing the <comment character> in the first position are ignored.

The first category header in the file can be preceded by a line modifying the
escape character to be used in the file. It has the following format, starting in
column 1:

"escape_char %c\n",< escape character>

The escape character defaults to backslash.

A line can be continued by placing an escape character as the last character
on the line; this continuation character will be discarded from the input.
Although the implementation need not accept any one portion of a continued
line with a length exceeding {LINE_MAX} bytes, it places no limits on the
accumulated length of the continued line. Comment lines cannot be continued
on a subsequent line using an escaped newline character.

Individual characters, characters in strings, and collating elements must be
represented using symbolic names, as defined below. In addition, characters

Last modified 20 Dec 1996 SunOS 5.8 191



locale(5) Headers, Tables, and Macros

can be represented using the characters themselves or as octal, hexadecimal
or decimal constants. When non-symbolic notation is used, the resultant
locale definitions will in many cases not be portable between systems. The left
angle bracket (<) is a reserved symbol, denoting the start of a symbolic name;
when used to represent itself it must be preceded by the escape character. The
following rules apply to character representation:

1. A character can be represented via a symbolic name, enclosed within angle
brackets < and >. The symbolic name, including the angle brackets, must
exactly match a symbolic name defined in the charmap file specified via the
localedef −f option, and will be replaced by a character value determined
from the value associated with the symbolic name in the charmap file.
The use of a symbolic name not found in the charmap file constitutes an
error, unless the category is LC_CTYPEor LC_COLLATE, in which case it
constitutes a warning condition (see localedef (1) for a description of
action resulting from errors and warnings). The specification of a symbolic
name in a collating-element or collating-symbol section that
duplicates a symbolic name in the charmap file (if present) is an error. Use
of the escape character or a right angle bracket within a symbolic name is
invalid unless the character is preceded by the escape character.

Example :

<c>;<c−cedilla > "<M><a><y>"

2. A character can be represented by the character itself, in which case the
value of the character is implementation-dependent. Within a string, the
double-quote character, the escape character and the right angle bracket
character must be escaped (preceded by the escape character) to be
interpreted as the character itself. Outside strings, the characters

, ; < > escape_char

must be escaped to be interpreted as the character itself.

Example :

c beta-char "May"

3. A character can be represented as an octal constant. An octal constant is
specified as the escape character followed by two or more octal digits. Each
constant represents a byte value. Multi-byte values can be represented
by concatenated constants specified in byte order with the last constant
specifying the least significant byte of the character.

192 SunOS 5.8 Last modified 20 Dec 1996



Headers, Tables, and Macros locale(5)

Example :

\143;\347;\143\150 "\115\141\171"

4. A character can be represented as a hexadecimal constant. A hexadecimal
constant is specified as the escape character followed by an x followed by
two or more hexadecimal digits. Each constant represents a byte value.
Multi-byte values can be represented by concatenated constants specified
in byte order with the last constant specifying the least significant byte of
the character.

Example :

\x63;\xe7;\x63\x68 "\x4d\x61\x79"

5. A character can be represented as a decimal constant. A decimal constant is
specified as the escape character followed by a d followed by two or more
decimal digits. Each constant represents a byte value. Multi-byte values can
be represented by concatenated constants specified in byte order with the
last constant specifying the least significant byte of the character.

Example :

\d99;\d231;\d99\d104 "\d77\d97\d121"

Only characters existing in the character set for which the locale definition
is created can be specified, whether using symbolic names, the characters
themselves, or octal, decimal or hexadecimal constants. If a charmap file
is present, only characters defined in the charmap can be specified using
octal, decimal or hexadecimal constants. Symbolic names not present in
the charmap file can be specified and will be ignored, as specified under
item 1 above.

LC_CTYPE The LC_CTYPEcategory defines character classification, case conversion and
other character attributes. In addition, a series of characters can be represented
by three adjacent periods representing an ellipsis symbol (. . .). The ellipsis
specification is interpreted as meaning that all values between the values
preceding and following it represent valid characters. The ellipsis specification
is valid only within a single encoded character set; that is, within a group of
characters of the same size. An ellipsis is interpreted as including in the list all
characters with an encoded value higher than the encoded value of the character
preceding the ellipsis and lower than the encoded value of the character
following the ellipsis.

Example :

Last modified 20 Dec 1996 SunOS 5.8 193



locale(5) Headers, Tables, and Macros

\x30;. . .;\x39;

includes in the character class all characters with encoded values between
the endpoints.

The following keywords are recognized. In the descriptions, the term
“automatically included” means that it is not an error either to include or omit
any of the referenced characters.

The character classes digit , xdigit , lower , upper , and space have a set
of automatically included characters. These only need to be specified if the
character values (that is, encoding) differ from the implementation default
values.
cswidth Moved to extensions file (see extensions (5)).

upper Define characters to be classified as upper-case
letters.

In the POSIX locale, the 26 upper-case letters are
included:

A B C D E F G H I J K L M N O P Q R S T U V
W X Y Z

In a locale definition file, no character specified
for the keywords cntrl , digit , punct , or
space can be specified. The upper-case letters A
to Z are automatically included in this class.

lower Define characters to be classified as lower-case
letters. In the POSIX locale, the 26 lower-case
letters are included:

a b c d e f g h i j k l m n o p q r s t u v w x y z

In a locale definition file, no character specified
for the keywords cntrl , digit , punct ,
or space can be specified. The lower-case
letters a to z of the portable character set are
automatically included in this class.

alpha Define characters to be classified as letters.

In the POSIX locale, all characters in the classes
upper and lower are included.

194 SunOS 5.8 Last modified 20 Dec 1996



Headers, Tables, and Macros locale(5)

In a locale definition file, no character specified
for the keywords cntrl , digit , punct , or
space can be specified. Characters classified
as either upper or lower are automatically
included in this class.

digit Define the characters to be classified as numeric
digits.

In the POSIX locale, only

0 1 2 3 4 5 6 7 8 9

are included.

In a locale definition file, only the digits 0, 1, 2,
3, 4, 5, 6, 7, 8, and 9 can be specified, and in
contiguous ascending sequence by numerical
value. The digits 0 to 9 of the portable character
set are automatically included in this class.

The definition of character class digit requires
that only ten characters; the ones defining digits
can be specified; alternative digits (for example,
Hindi or Kanji) cannot be specified here.

space Define characters to be classified as white-space
characters.

In the POSIX locale, at a minimum, the characters
SPACE, FORMFEED, NEWLINE, CARRIAGE
RETURN, TAB, and VERTICAL TABare included.

In a locale definition file, no character specified
for the keywords upper , lower , alpha ,
digit , graph , or xdigit can be specified.
The characters SPACE, FORMFEED, NEWLINE,
CARRIAGE RETURN, TAB, and VERTICAL TAB
of the portable character set, and any characters
included in the class blank are automatically
included in this class.

cntrl Define characters to be classified as control
characters.

In the POSIX locale, no characters in classes
alpha or print are included.

Last modified 20 Dec 1996 SunOS 5.8 195



locale(5) Headers, Tables, and Macros

In a locale definition file, no character specified
for the keywords upper , lower , alpha , digit ,
punct , graph , print , or xdigit can be
specified.

punct Define characters to be classified as punctuation
characters.

In the POSIX locale, neither the space character
nor any characters in classes alpha , digit , or
cntrl are included.

In a locale definition file, no character specified
for the keywords upper , lower , alpha , digit ,
cntrl , xdigit or as the space character can be
specified.

graph Define characters to be classified as printable
characters, not including the space character.

In the POSIX locale, all characters in classes
alpha , digit , and punct are included; no
characters in class cntrl are included.

In a locale definition file, characters specified for
the keywords upper , lower , alpha , digit ,
xdigit , and punct are automatically included
in this class. No character specified for the
keyword cntrl can be specified.

print Define characters to be classified as printable
characters, including the space character.

In the POSIX locale, all characters in class graph
are included; no characters in class cntrl are
included.

In a locale definition file, characters specified for
the keywords upper , lower , alpha , digit ,
xdigit , punct , and the space character are
automatically included in this class. No character
specified for the keyword cntrl can be specified.

xdigit Define the characters to be classified as
hexadecimal digits.

In the POSIX locale, only:

0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

196 SunOS 5.8 Last modified 20 Dec 1996



Headers, Tables, and Macros locale(5)

are included.

In a locale definition file, only the characters
defined for the class digit can be specified, in
contiguous ascending sequence by numerical
value, followed by one or more sets of six
characters representing the hexadecimal digits 10
to 15 inclusive, with each set in ascending order
(for example A, B, C, D, E, F, a, b, c , d, e, f ). The
digits 0 to 9, the upper-case letters A to F and the
lower-case letters a to f of the portable character
set are automatically included in this class.

The definition of character class xdigit requires
that the characters included in character class
digit be included here also.

blank Define characters to be classified as blank
characters.

In the POSIX locale, only the space and tab
characters are included.

In a locale definition file, the characters space and
tab are automatically included in this class.

charclass Define one or more locale-specific character class
names as strings separated by semi-colons.
Each named character class can then be defined
subsequently in the LC_CTYPEdefinition. A
character class name consists of at least one
and at most {CHARCLASS_NAME_MAX}bytes
of alphanumeric characters from the portable
filename character set. The first character of a
character class name cannot be a digit. The name
cannot match any of the LC_CTYPEkeywords
defined in this document.

charclass-name Define characters to be classified as belonging
to the named locale-specific character class. In
the POSIX locale, the locale-specific named
character classes need not exist. If a class name
is defined by a charclass keyword, but no
characters are subsequently assigned to it, this
is not an error; it represents a class without any
characters belonging to it. The charclass-name
can be used as the property argument to the

Last modified 20 Dec 1996 SunOS 5.8 197



locale(5) Headers, Tables, and Macros

wctype (3C) function, in regular expression and
shell pattern-matching bracket expressions, and
by the tr (1) command.

toupper Define the mapping of lower-case letters to
upper-case letters.

In the POSIX locale, at a minimum, the 26
lower-case characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z

are mapped to the corresponding 26 upper-case
characters:

A B C D E F G H I J K L M N O P Q R S T U V
W X Y Z

In a locale definition file, the operand consists
of character pairs, separated by semicolons. The
characters in each character pair are separated by
a comma and the pair enclosed by parentheses.
The first character in each pair is the lower-case
letter, the second the corresponding upper-case
letter. Only characters specified for the keywords
lower and upper can be specified. The
lower-case letters a to z , and their corresponding
upper-case letters A to Z, of the portable character
set are automatically included in this mapping,
but only when the toupper keyword is omitted
from the locale definition.

tolower Define the mapping of upper-case letters to
lower-case letters.

In the POSIX locale, at a minimum, the 26
upper-case characters:

A B C D E F G H I J K L M N O P Q R S T U V
W X Y Z

are mapped to the corresponding 26 lower-case
characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z

198 SunOS 5.8 Last modified 20 Dec 1996



Headers, Tables, and Macros locale(5)

In a locale definition file, the operand consists
of character pairs, separated by semicolons. The
characters in each character pair are separated by
a comma and the pair enclosed by parentheses.
The first character in each pair is the upper-case
letter, the second the corresponding lower-case
letter. Only characters specified for the keywords
lower and upper can be specified. If the
tolower keyword is omitted from the locale
definition, the mapping will be the reverse
mapping of the one specified for toupper .

LC_COLLATE The LC_COLLATEcategory provides a collation sequence definition for
numerous utilities (such as sort (1), uniq (1), and so forth), regular expression
matching (see regex (5)), and the strcoll (3C), strxfrm (3C), wcscoll (3C),
and wcsxfrm (3C) functions.

A collation sequence definition defines the relative order between collating
elements (characters and multi-character collating elements) in the locale. This
order is expressed in terms of collation values; that is, by assigning each element
one or more collation values (also known as collation weights). At least the
following capabilities are provided:

1. Multi-character collating elements . Specification of multi-character
collating elements (that is, sequences of two or more characters to be
collated as an entity).

2. User-defined ordering of collating elements . Each collating
element is assigned a collation value defining its order in the character (or
basic) collation sequence. This ordering is used by regular expressions and
pattern matching and, unless collation weights are explicity specified, also
as the collation weight to be used in sorting.

3. Multiple weights and equivalence classes . Collating elements
can be assigned one or more (up to the limit {COLL_WEIGHTS_MAX} )
collating weights for use in sorting. The first weight is hereafter referred
to as the primary weight.

4. One-to-Many mapping . A single character is mapped into a string of
collating elements.

5. Equivalence class definition . Two or more collating elements have
the same collation value (primary weight).

6. Ordering by weights . When two strings are compared to determine
their relative order, the two strings are first broken up into a series of
collating elements; the elements in each successive pair of elements are
then compared according to the relative primary weights for the elements.

Last modified 20 Dec 1996 SunOS 5.8 199



locale(5) Headers, Tables, and Macros

If equal, and more than one weight has been assigned, then the pairs of
collating elements are recompared according to the relative subsequent
weights, until either a pair of collating elements compare unequal or the
weights are exhausted. The following keywords are recognized in a collation
sequence definition. They are described in detail in the following sections.

7. Define a collating-element symbol representing a multi-character collating
element. This keyword is optional.

8. Define a collating symbol for use in collation order statements. This
keyword is optional.

9. Define collation rules. This statement is followed by one or more collation
order statements, assigning character collation values and collation weights
to collating elements.

10.Specify the end of the collation-order statements.

collating-element
keyword

In addition to the collating elements in the character set, the
collating-element keyword is used to define multi-character collating
elements. The syntax is:

"collating-element %s from \"%s\"\n", <collating-symbol>,<string>

The <collating-symbol> operand is a symbolic name, enclosed between angle
brackets (< and >), and must not duplicate any symbolic name in the current
charmap file (if any), or any other symbolic name defined in this collation
definition. The string operand is a string of two or more characters that collates
as an entity. A <collating-element> defined via this keyword is only recognized
with the LC_COLLATEcategory.

Example:
collating-element <ch > from "<c><h>"
collating-element <e-acute > from "<acute ><e>"
collating-element <ll > from "ll "

collating-symbol
keyword

This keyword will be used to define symbols for use in collation sequence
statements; that is, between the order_start and the order_end keywords.
The syntax is:

"collating-symbol %s\n", <collating-symbol>

The <collating-symbol> is a symbolic name, enclosed between angle brackets (<
and >), and must not duplicate any symbolic name in the current charmap file (if
any), or any other symbolic name defined in this collation definition.

A collating-symbol defined via this keyword is only recognized with
the LC_COLLATEcategory.

200 SunOS 5.8 Last modified 20 Dec 1996



Headers, Tables, and Macros locale(5)

Example :
collating-symbol <UPPER_CASE>
collating-symbol <HIGH>

The collating-symbol keyword defines a symbolic name that can be
associated with a relative position in the character order sequence. While such
a symbolic name does not represent any collating element, it can be used as a
weight.

order_start keyword The order_start keyword must precede collation order entries and also
defines the number of weights for this collation sequence definition and other
collation rules.

The syntax of the order_start keyword is:

"order_start %s;%s;. . .;%s\n", <sort-rules>,<sort-rules>

The operands to the order_start keyword are optional. If present, the
operands define rules to be applied when strings are compared. The number of
operands define how many weights each element is assigned; if no operands
are present, one forward operand is assumed. If present, the first operand
defines rules to be applied when comparing strings using the first (primary)
weight; the second when comparing strings using the second weight, and so on.
Operands are separated by semicolons (; ). Each operand consists of one or more
collation directives, separated by commas (, ). If the number of operands exceeds
the {COLL_WEIGHTS_MAX}limit, the utility will issue a warning message. The
following directives will be supported:
forward Specifies that comparison operations for the

weight level proceed from start of string towards
the end of string.

backward Specifies that comparison operations for the
weight level proceed from end of string towards
the beginning of string.

position Specifies that comparison operations for the
weight level will consider the relative position of
elements in the strings not subject to IGNORE.
The string containing an element not subject
to IGNOREafter the fewest collating elements
subject to IGNOREfrom the start of the compare
will collate first. If both strings contain a
character not subject to IGNOREin the same
relative position, the collating values assigned to
the elements will determine the ordering. In case

Last modified 20 Dec 1996 SunOS 5.8 201



locale(5) Headers, Tables, and Macros

of equality, subsequent characters not subject to
IGNOREare considered in the same manner.

The directives forward and backward are mutually exclusive.

Example:

order_start forward;backward

If no operands are specified, a single forward operand is assumed. The
character (and collating element) order is defined by the order in which
characters and elements are specified between the order_start and
order_end keywords. This character order is used in range expressions in
regular expressions (see regex (5)). Weights assigned to the characters and
elements define the collation sequence; in the absence of weights, the character
order is also the collation sequence. The position keyword provides the
capability to consider, in a compare, the relative position of characters not subject
to IGNORE. As an example, consider the two strings “o-ring” and “or-ing”.
Assuming the hyphen is subject to IGNOREon the first pass, the two strings will
compare equal, and the position of the hyphen is immaterial. On second pass,
all characters except the hyphen are subject to IGNORE, and in the normal case
the two strings would again compare equal. By taking position into account,
the first collates before the second.

Collation Order The order_start keyword is followed by collating identifier entries. The
syntax for the collating element entries is

"%s %s;%s;. . .;%s\n"< collating-identifier>,< weight>,< weight>, . . .

Each collating-identifier consists of either a character described in Locale
Definition above, a <collating-element>, a <collating-symbol>, an ellipsis, or
the special symbol UNDEFINED. The order in which collating elements are
specified determines the character order sequence, such that each collating
element compares less than the elements following it. The NUL character
compares lower than any other character.

A <collating-element> is used to specify multi-character collating elements, and
indicates that the character sequence specified via the <collating-element> is to be
collated as a unit and in the relative order specified by its place.

A <collating-symbol> is used to define a position in the relative order for use in
weights. No weights are specified with a <collating-symbol>.

The ellipsis symbol specifies that a sequence of characters will collate according
to their encoded character values. It is interpreted as indicating that all characters
with a coded character set value higher than the value of the character in the
preceding line, and lower than the coded character set value for the character
in the following line, in the current coded character set, will be placed in the

202 SunOS 5.8 Last modified 20 Dec 1996



Headers, Tables, and Macros locale(5)

character collation order between the previous and the following character in
ascending order according to their coded character set values. An initial ellipsis
is interpreted as if the preceding line specified the NUL character, and a trailing
ellipsis as if the following line specified the highest coded character set value in
the current coded character set. An ellipsis is treated as invalid if the preceding
or following lines do not specify characters in the current coded character set.

The symbol UNDEFINEDis interpreted as including all coded character set values
not specified explicitly or via the ellipsis symbol. Such characters are inserted
in the character collation order at the point indicated by the symbol, and in
ascending order according to their coded character set values. If no UNDEFINED
symbol is specified, and the current coded character set contains characters not
specified in this section, the utility will issue a warning message and place such
characters at the end of the character collation order.

The optional operands for each collation-element are used to define the primary,
secondary, or subsequent weights for the collating element. The first operand
specifies the relative primary weight, the second the relative secondary weight,
and so on. Two or more collation-elements can be assigned the same weight;
they belong to the same equivalence class if they have the same primary weight.
Collation behaves as if, for each weight level, elements subject to IGNORE
are removed, unless the position collation directive is specified for the
corresponding level with the order_start keyword. Then each successive pair
of elements is compared according to the relative weights for the elements. If the
two strings compare equal, the process is repeated for the next weight level, up
to the limit {COLL_WEIGHTS_MAX}.

Weights are expressed as characters described in Locale Definition above,
<collating-symbol>s, <collating-element>s, an ellipsis, or the special symbol
IGNORE. A single character, a <collating–symbol> or a <collating–element>
represent the relative position in the character collating sequence of the character
or symbol, rather than the character or characters themselves. Thus, rather
than assigning absolute values to weights, a particular weight is expressed
using the relative order value assigned to a collating element based on its order
in the character collation sequence.

One-to-many mapping is indicated by specifying two or more concatenated
characters or symbolic names. For example, if the character <eszet > is given
the string "<s><s>" as a weight, comparisons are performed as if all occurrences
of the character <eszet > are replaced by <s><s> (assuming that <s> has the
collating weight <s>). If it is necessary to define <eszet > and <s><s> as an
equivalence class, then a collating element must be defined for the string ss .

All characters specified via an ellipsis will by default be assigned unique
weights, equal to the relative order of characters. Characters specified via an
explicit or implicit UNDEFINEDspecial symbol will by default be assigned the

Last modified 20 Dec 1996 SunOS 5.8 203



locale(5) Headers, Tables, and Macros

same primary weight (that is, belong to the same equivalence class). An ellipsis
symbol as a weight is interpreted to mean that each character in the sequence has
unique weights, equal to the relative order of their character in the character
collation sequence. The use of the ellipsis as a weight is treated as an error if the
collating element is neither an ellipsis nor the special symbol UNDEFINED.

The special keyword IGNOREas a weight indicates that when strings are
compared using the weights at the level where IGNOREis specified, the collating
element is ignored; that is, as if the string did not contain the collating element.
In regular expressions and pattern matching, all characters that are subject to
IGNOREin their primary weight form an equivalence class.

An empty operand is interpreted as the collating element itself.

For example, the order statement:

<a> <a>;<a>

is equal to:

<a>

An ellipsis can be used as an operand if the collating element was an ellipsis, and
is interpreted as the value of each character defined by the ellipsis.

The collation order as defined in this section defines the interpretation of bracket
expressions in regular expressions.

Example :

order_start forward;backward

UNDEFINED IGNORE;IGNORE

<LOW>

<space> <LOW>;<space>

. . . <LOW>;. . .

<a> <a>;<a>

<a-acute> <a>;<a-acute>

<a-grave> <a>;<a-grave>

<A> <a>;<A>

<A-acute> <a>;<A-acute>

204 SunOS 5.8 Last modified 20 Dec 1996



Headers, Tables, and Macros locale(5)

<A-grave> <a>;<A-grave>

<ch> <ch>;<ch>

<Ch> <ch>;<Ch>

<s> <s>;<s>

<eszet> "<s><s>";"<eszet><eszet>"

order_end

This example is interpreted as follows:

1. The UNDEFINEDmeans that all characters not specified in this definition
(explicitly or via the ellipsis) are ignored for collation purposes; for regular
expression purposes they are ordered first.

2. All characters between <space > and <a> have the same primary
equivalence class and individual secondary weights based on their ordinal
encoded values.

3. All characters based on the upper– or lower–case character a belong to the
same primary equivalence class.

4. The multi-character collating element <ch > is represented by the collating
symbol <ch > and belongs to the same primary equivalence class as the
multi-character collating element <Ch>.

order_end keyword The collating order entries must be terminated with an order_end keyword.

LC_MONETARY The LC_MONETARYcategory defines the rules and symbols that are used to
format monetary numeric information. This information is available through the
localeconv (3C) function

The following items are defined in this category of the locale. The item names are
the keywords recognized by the localedef (1) utility when defining a locale.
They are also similar to the member names of the lconv structure defined in
<locale.h >. The localeconv function returns {CHAR_MAX}for unspecified
integer items and the empty string ("" ) for unspecified or size zero string items.

In a locale definition file the operands are strings. For some keywords, the
strings can contain only integers. Keywords that are not provided, string values
set to the empty string ("" ), or integer keywords set to –1 , are used to indicate
that the value is not available in the locale.
int_curr_symbol The international currency symbol. The operand

is a four-character string, with the first three
characters containing the alphabetic international
currency symbol in accordance with those
specified in the ISO 4217:1987 standard. The

Last modified 20 Dec 1996 SunOS 5.8 205



locale(5) Headers, Tables, and Macros

fourth character is the character used to separate
the international currency symbol from the
monetary quantity.

currency_symbol The string used as the local currency symbol.

mon_decimal_point The operand is a string containing the symbol
that is used as the decimal delimiter (radix
character) in monetary formatted quantities. In
contexts where standards (such as the ISO C
standard) limit the mon_decimal_point to a
single byte, the result of specifying a multi-byte
operand is unspecified.

mon_thousands_sep The operand is a string containing the symbol
that is used as a separator for groups of digits
to the left of the decimal delimiter in formatted
monetary quantities. In contexts where standards
limit the mon_thousands_sep to a single byte,
the result of specifying a multi-byte operand
is unspecified.

mon_grouping Define the size of each group of digits in
formatted monetary quantities. The operand is a
sequence of integers separated by semicolons.
Each integer specifies the number of digits in
each group, with the initial integer defining the
size of the group immediately preceding the
decimal delimiter, and the following integers
defining the preceding groups. If the last integer
is not –1, then the size of the previous group (if
any) will be repeatedly used for the remainder of
the digits. If the last integer is –1, then no further
grouping will be performed.

The following is an example of the interpretation
of the mon_grouping keyword. Assuming that
the value to be formatted is 123456789 and the
mon_thousands_sep is ’ , then the following
table shows the result. The third column shows
the equivalent string in the ISO C standard that
would be used by the localeconv function to
accommodate this grouping.

206 SunOS 5.8 Last modified 20 Dec 1996



Headers, Tables, and Macros locale(5)

mon_grouping Formatted
Value

ISO C
String

3;−1 123456’789 "\3\177"

3 123’456’789 "\3"

3;2;−1 1234’56’789 "\3\2\177"

3;2 12’34’56’789 "\3\2"

−1 123456789 "\177"

In these examples, the octal value of {CHAR_MAX}
is 177.

positive_sign A string used to indicate a non-negative-valued
formatted monetary quantity.

negative_sign A string used to indicate a negative-valued
formatted monetary quantity.

int_frac_digits An integer representing the number of fractional
digits (those to the right of the decimal delimiter)
to be written in a formatted monetary quantity
using int_curr_symbol .

frac_digits An integer representing the number of fractional
digits (those to the right of the decimal delimiter)
to be written in a formatted monetary quantity
using currency_symbol .

p_cs_precedes An integer set to 1 if the currency_symbol or
int_curr_symbol precedes the value for a
monetary quantity with a non-negative value,
and set to 0 if the symbol succeeds the value.

p_sep_by_space An integer set to 0 if no space separates the
currency_symbol or int_curr_symbol
from the value for a monetary quantity with a
non-negative value, set to 1 if a space separates
the symbol from the value, and set to 2 if a space
separates the symbol and the sign string, if
adjacent.

n_cs_precedes An integer set to 1 if the currency_symbol or
int_curr_symbol precedes the value for a
monetary quantity with a negative value, and set
to 0 if the symbol succeeds the value.

Last modified 20 Dec 1996 SunOS 5.8 207



locale(5) Headers, Tables, and Macros

n_sep_by_space An integer set to 0 if no space separates the
currency_symbol or int_curr_symbol from
the value for a monetary quantity with a negative
value, set to 1 if a space separates the symbol
from the value, and set to 2 if a space separates
the symbol and the sign string, if adjacent.

p_sign_posn An integer set to a value indicating the
positioning of the positive_sign for a
monetary quantity with a non-negative value.
The following integer values are recognized for
both p_sign_posn and n_sign_posn :

0 Parentheses enclose the quantity
and the currency_symbol or
int_curr_symbol .

1 The sign string precedes the quantity
and the currency_symbol or
int_curr_symbol .

2 The sign string succeeds the quantity
and the currency_symbol or
int_curr_symbol .

3 The sign string precedes
the currency_symbol or
int_curr_symbol .

4 The sign string succeeds
the currency_symbol or
int_curr_symbol .

n_sign_posn An integer set to a value indicating the
positioning of the negative_sign for a negative
formatted monetary quantity.

The following table shows the result of various combinations:

p_sep_by_space

2 1 0

p_cs_precedes = 1 p_sign_posn = 0 ($1.25) ($1.25) ($1.25)

p_sign_posn = 1 +$1.25 +$1.25 +$1.25

p_sign_posn = 2 $1.25+ $1.25+ $1.25+

p_sign_posn = 3 +$1.25 +$1.25 +$1.25

208 SunOS 5.8 Last modified 20 Dec 1996



Headers, Tables, and Macros locale(5)

p_sign_posn = 4 $+1.25 $+1.25 $+1.25

p_cs_precedes = 0 p_sign_posn = 0 (1.25
$)

(1.25
$)

(1.25$)

p_sign_posn = 1 +1.25 $ +1.25 $ +1.25$

p_sign_posn = 2 1.25$ + 1.25 $+ 1.25$+

p_sign_posn = 3 1.25+ $ 1.25 +$ 1.25+$

p_sign_posn = 4 1.25$ + 1.25 $+ 1.25$+

The monetary formatting definitions for the POSIX locale follow; the code listing
depicting the localedef (1) input, the table representing the same information
with the addition of localeconv (3C) and nl_langinfo (3C) formats. All
values are unspecified in the POSIX locale.

LC_MONETARY
# This is the POSIX locale definition for
# the LC_MONETARY category.
#

int_curr_symbol ""

currency_symbol ""

mon_decimal_point ""

mon_thousands_sep ""

mon_grouping -1

positive_sign ""

negative_sign ""

int_frac_digits -1

p_cs_precedes -1

p_sep_by_space -1

n_cs_precedes -1

n_sep_by_space -1

p_sign_posn -1

n_sign_posn -1

# END LC_MONETARY

Last modified 20 Dec 1996 SunOS 5.8 209



locale(5) Headers, Tables, and Macros

The entry n/a indicates that the value is not available in the POSIX locale.

LC_NUMERIC The LC_NUMERICcategory defines the rules and symbols that will be used
to format non-monetary numeric information. This information is available
through the localeconv (3C) function.

The following items are defined in this category of the locale. The item names
are the keywords recognized by the localedef utility when defining a locale.
They are also similar to the member names of the lconv structure defined
in <locale.h >. The localeconv() function returns {CHAR_MAX}for
unspecified integer items and the empty string ("" ) for unspecified or size
zero string items.

In a locale definition file the operands are strings. For some keywords, the strings
only can contain integers. Keywords that are not provided, string values set to
the empty string ("" ), or integer keywords set to –1, will be used to indicate that
the value is not available in the locale. The following keywords are recognized:
decimal_point The operand is a string containing the symbol

that is used as the decimal delimiter (radix
character) in numeric, non-monetary formatted
quantities. This keyword cannot be omitted and
cannot be set to the empty string. In contexts
where standards limit the decimal_point to a
single byte, the result of specifying a multi-byte
operand is unspecified.

thousands_sep The operand is a string containing the symbol
that is used as a separator for groups of
digits to the left of the decimal delimiter in
numeric, non-monetary formatted monetary
quantities. In contexts where standards limit the
thousands_sep to a single byte, the result of
specifying a multi-byte operand is unspecified.

grouping Define the size of each group of digits in
formatted non-monetary quantities. The operand
is a sequence of integers separated by semicolons.
Each integer specifies the number of digits in each
group, with the initial integer defining the size of
the group immediately preceding the decimal
delimiter, and the following integers defining the
preceding groups. If the last integer is not −1,
then the size of the previous group (if any) will
be repeatedly used for the remainder of the digits.
If the last integer is –1, then no further grouping
will be performed. The non-monetary numeric

210 SunOS 5.8 Last modified 20 Dec 1996



Headers, Tables, and Macros locale(5)

formatting definitions for the POSIX locale
follow; the code listing depicting the localedef
input, the table representing the same information
with the addition of localeconv values and
nl_langinfo constants.

LC_NUMERIC
# This is the POSIX locale definition for
# the LC_NUMERIC category.
#
decimal_point "<period>"
thousands_sep ""
grouping -1
#
END LC_NUMERIC

POSIX
locale

langinfo localeconv() localedef

Item Value Constant Value Value

decimal_point "." RADIXCHAR "." .

thousands_sep n/a THOUSEP "" ""

grouping n/a - "" −1

The entry n/a indicates that the value is not available in the POSIX locale.

LC_TIME The LC_TIME category defines the interpretation of the field descriptors
supported by date (1) and affects the behavior of the strftime (3C),
wcsftime (3C), strptime (3C), and nl_langinfo (3C) functions. Because
the interfaces for C-language access and locale definition differ significantly,
they are described separately. For locale definition, the following mandatory
keywords are recognized:
abday Define the abbreviated weekday names, corresponding

to the %afield descriptor (conversion specification in the
strftime() , wcsftime() , and strptime() functions).
The operand consists of seven semicolon-separated strings,
each surrounded by double-quotes. The first string is the
abbreviated name of the day corresponding to Sunday, the
second the abbreviated name of the day corresponding to
Monday, and so on.

day Define the full weekday names, corresponding to the
%Afield descriptor. The operand consists of seven
semicolon-separated strings, each surrounded by

Last modified 20 Dec 1996 SunOS 5.8 211



locale(5) Headers, Tables, and Macros

double-quotes. The first string is the full name of the day
corresponding to Sunday, the second the full name of the
day corresponding to Monday, and so on.

abmon Define the abbreviated month names, corresponding
to the %bfield descriptor. The operand consists of
twelve semicolon-separated strings, each surrounded by
double-quotes. The first string is the abbreviated name of the
first month of the year (January), the second the abbreviated
name of the second month, and so on.

mon Define the full month names, corresponding to the
%Bfield descriptor. The operand consists of twelve
semicolon-separated strings, each surrounded by
double-quotes. The first string is the full name of the first
month of the year (January), the second the full name of the
second month, and so on.

d_t_fmt Define the appropriate date and time representation,
corresponding to the %c field descriptor. The operand
consists of a string, and can contain any combination of
characters and field descriptors. In addition, the string can
contain the escape sequences \\, \a , \b , \f , \n , \r , \t , \v .

date_fmt Define the appropriate date and time representation,
corresponding to the %Cfield descriptor. The operand
consists of a string, and can contain any combination of
characters and field descriptors. In addition, the string can
contain the escape sequences \\ , \a , \b , \f , \n , \r , \t , \v .

d_fmt Define the appropriate date representation, corresponding
to the %x field descriptor. The operand consists of a string,
and can contain any combination of characters and field
descriptors. In addition, the string can contain the escape
sequences \\ , \a , \b , \f , \n , \r , \t , \v .

t_fmt Define the appropriate time representation, corresponding
to the %Xfield descriptor. The operand consists of a string,
and can contain any combination of characters and field
descriptors. In addition, the string can contain the escape
sequences \\ , \a , \b , \f , \n , \r , \t , \v .

am_pm Define the appropriate representation of the ante meridiem
and post meridiem strings, corresponding to the %pfield
descriptor. The operand consists of two strings, separated by
a semicolon, each surrounded by double-quotes. The first

212 SunOS 5.8 Last modified 20 Dec 1996



Headers, Tables, and Macros locale(5)

string represents the ante meridiem designation, the last string
the post meridiem designation.

t_fmt_ampm Define the appropriate time representation in the 12-hour
clock format with am_pm, corresponding to the %r field
descriptor. The operand consists of a string and can contain
any combination of characters and field descriptors. If the
string is empty, the 12-hour format is not supported in the
locale.

era Define how years are counted and displayed for each era in a
locale. The operand consists of semicolon-separated strings.
Each string is an era description segment with the format:

direction:offset:start_date:end_date:era_name:era_format

according to the definitions below. There can be as many
era description segments as are necessary to describe the
different eras.

The start of an era might not be the earliest point For
example, the Christian era B.C. starts on the day before
January 1, A.D. 1, and increases with earlier time.

direction Either a + or a – character. The + character
indicates that years closer to the start_date
have lower numbers than those closer to
the end_date. The – character indicates that
years closer to the start_date have higher
numbers than those closer to the end_date.

offset The number of the year closest to the
start_date in the era, corresponding to the
%Egand %Eyfield descriptors.

start_date A date in the form yyyy/mm/dd , where
yyyy, mm, and dd are the year, month
and day numbers respectively of the
start of the era. Years prior to A.D. 1 are
represented as negative numbers.

end_date The ending date of the era, in the same
format as the start_date, or one of the
two special values –* or +*. The value
–* indicates that the ending date is the
beginning of time. The value +* indicates
that the ending date is the end of time.

Last modified 20 Dec 1996 SunOS 5.8 213



locale(5) Headers, Tables, and Macros

era_name A string representing the name of the era,
corresponding to the %ECfield descriptor.

era_format A string for formatting the year in the
era, corresponding to the %EGand %EY
field descriptors.

era_d_fmt Define the format of the date in alternative era notation,
corresponding to the %Exfield descriptor.

era_t_fmt Define the locale’s appropriate alternative time format,
corresponding to the %EXfield descriptor.

era_d_t_fmt Define the locale’s appropriate alternative date and time
format, corresponding to the %Ecfield descriptor.

alt_digits Define alternative symbols for digits, corresponding to
the %Ofield descriptor modifier. The operand consists
of semicolon-separated strings, each surrounded by
double-quotes. The first string is the alternative symbol
corresponding with zero, the second string the symbol
corresponding with one, and so on. Up to 100 alternative
symbol strings can be specified. The %Omodifier indicates
that the string corresponding to the value specified via the
field descriptor will be used instead of the value.

LC_TIME C-language
Access

The following information can be accessed. These correspond to constants
defined in <langinfo.h > and used as arguments to the nl_langinfo (3C)
function.
ABDAY_x The abbreviated weekday names (for example

Sun), where x is a number from 1 to 7.

DAY_x The full weekday names (for example Sunday),
where x is a number from 1 to 7.

ABMON_x The abbreviated month names (for example Jan),
where x is a number from 1 to 12.

MON_x The full month names (for example January),
where x is a number from 1 to 12.

D_T_FMT The appropriate date and time representation.

D_FMT The appropriate date representation.

T_FMT The appropriate time representation.

AM_STR The appropriate ante-meridiem affix.

PM_STR The appropriate post-meridiem affix.

214 SunOS 5.8 Last modified 20 Dec 1996



Headers, Tables, and Macros locale(5)

T_FMT_AMPM The appropriate time representation in the
12-hour clock format with AM_STRand PM_STR.

ERA The era description segments, which describe
how years are counted and displayed for each
era in a locale. Each era description segment
has the format:

direction: offset: start_date: end_date: era_name: era_format

according to the definitions below. There
will be as many era description segments as
are necessary to describe the different eras.
Era description segments are separated by
semicolons.

The start of an era might not be the earliest point
For example, the Christian era B.C. starts on
the day before January 1, A.D. 1, and increases
with earlier time.

direction Either a + or a – character. The
+ character indicates that years
closer to the start_date have
lower numbers than those
closer to the end_date. The –
character indicates that years
closer to the start_date have
higher numbers than those
closer to the end_date.

offset The number of the year closest
to the start_date in the era.

start_date A date in the form
yyyy/mm/dd, where yyyy, mm,
and dd are the year, month and
day numbers respectively of
the start of the era. Years prior
to AD 1 are represented as
negative numbers.

end_date The ending date of the era,
in the same format as the
start_date, or one of the two
special values –* or +*. The

Last modified 20 Dec 1996 SunOS 5.8 215



locale(5) Headers, Tables, and Macros

value –* indicates that the
ending date is the beginning of
time. The value +* indicates
that the ending date is the
end of time.

era_name The era, corresponding to the
%ECconversion specification.

era_format The format of the year in the
era, corresponding to the
%EYand %EYconversion
specifications.

ERA_D_FMT The era date format.

ERA_T_FMT The locale’s appropriate alternative time format,
corresponding to the %EXfield descriptor.

ERA_D_T_FMT The locale’s appropriate alternative date and time
format, corresponding to the %Ecfield descriptor.

ALT_DIGITS The alternative symbols for digits, corresponding
to the %Oconversion specification modifier. The
value consists of semicolon-separated symbols.
The first is the alternative symbol corresponding
to zero, the second is the symbol corresponding
to one, and so on. Up to 100 alternative symbols
may be specified. The following table displays
the correspondence between the items described
above and the conversion specifiers used by
date (1) and the strftime (3C), wcsftime (3C),
and strptime (3C) functions.

localedef langinfo Conversion

Keyword Constant Specifier

abday ABDAY_x %a

day DAY_x %A

abmon ABMON_x %b

mon MON %B

d_t_fmt D_T_FMT %c

date_fmt DATE_FMT %C

d_fmt D_FMT %x

216 SunOS 5.8 Last modified 20 Dec 1996



Headers, Tables, and Macros locale(5)

localedef langinfo Conversion

Keyword Constant Specifier

t_fmt T_FMT %X

am_pm AM_STR %p

am_pm PM_STR %p

t_fmt_ampm T_FMT_AMPM %r

era ERA %EC, %Eg,

%EG, %Ey, %EY

era_d_fmt ERA_D_FMT %Ex

era_t_fmt ERA_T_FMT %EX

era_d_t_fmt ERA_D_T_FMT %Ec

alt_digits ALT_DIGITS %O

LC_TIME General
Information

Although certain of the field descriptors in the POSIX locale (such as the name
of the month) are shown with initial capital letters, this need not be the case in
other locales. Programs using these fields may need to adjust the capitalization if
the output is going to be used at the beginning of a sentence.

The LC_TIME descriptions of abday , day , mon, and abmon imply a Gregorian
style calendar (7-day weeks, 12-month years, leap years, and so forth).
Formatting time strings for other types of calendars is outside the scope of this
document set.

As specified under date in Locale Definition and strftime (3C), the
field descriptors corresponding to the optional keywords consist of a modifier
followed by a traditional field descriptor (for instance %Ex). If the optional
keywords are not supported by the implementation or are unspecified for
the current locale, these field descriptors are treated as the traditional field
descriptor. For instance, assume the following keywords:

alt_digits "0th" ; "1st" ; "2nd" ; "3rd" ; "4th" ; "5th" ; \

"6th" ; "7th" ; "8th" ; "9th" ; "10th"

d_fmt "The %Od day of %B in %Y"

On 7/4/1776, the %xfield descriptor would result in “The 4th day of July in
1776” while 7/14/1789 would come out as “The 14 day of July in 1789” It can be
noted that the above example is for illustrative purposes only; the %Omodifier is
primarily intended to provide for Kanji or Hindi digits in date formats.

Last modified 20 Dec 1996 SunOS 5.8 217



locale(5) Headers, Tables, and Macros

LC_MESSAGES The LC_MESSAGEScategory defines the format and values for affirmative and
negative responses.

The following keywords are recognized as part of the locale definition file.
The nl_langinfo (3C) function accepts upper-case versions of the first four
keywords.
yesexpr The operand consists of an extended regular expression (see

regex (5)) that describes the acceptable affirmative response
to a question expecting an affirmative or negative response.

noexpr The operand consists of an extended regular expression that
describes the acceptable negative response to a question
expecting an affirmative or negative response.

yesstr The operand consists of a fixed string (not a regular
expression) that can be used by an application for
composition of a message that lists an acceptable affirmative
response, such as in a prompt.

nostr The operand consists of a fixed string that can be used by
an application for composition of a message that lists an
acceptable negative response. The format and values for
affirmative and negative responses of the POSIX locale
follow; the code listing depicting the localedef input, the
table representing the same information with the addition of
nl_langinfo() constants.

LC_MESSAGES
# This is the POSIX locale definition for
# the LC_MESSAGES category.
#
yesexpr "<circumflex><left-square-bracket><y><Y><right-square-bracket>"
#
noexpr "<circumflex><left-square-bracket><n><N><right-square-bracket>"
#
yesstr "yes"
nostr "no"
END LC_MESSAGES

localedef Keyword langinfo Constant POSIX Locale Value

yesexpr YESEXPR "^[yY]"

noexpr NOEXPR "^[nN]"

yesstr YESSTR "yes"

nostr NOSTR "no"

SEE ALSO date (1), locale (1), localedef (1), sort (1), tr (1), uniq (1), localeconv (3C),
nl_langinfo (3C), setlocale (3C), strcoll (3C), strftime (3C),

218 SunOS 5.8 Last modified 20 Dec 1996



Headers, Tables, and Macros locale(5)

strptime (3C), strxfrm (3C), wcscoll (3C), wcsftime (3C), wcsxfrm (3C),
wctype (3C), attributes (5), charmap (5), extensions (5), regex (5)

Last modified 20 Dec 1996 SunOS 5.8 219



man(5) Headers, Tables, and Macros

NAME man – macros to format Reference Manual pages

SYNOPSIS nroff −man filename…

troff −man filename…

DESCRIPTION These macros are used to lay out the reference pages in this manual. Note:
if filename contains format input for a preprocessor, the commands shown
above must be piped through the appropriate preprocessor. This is handled
automatically by the man(1) command. See the “Conventions” section.

Any text argument t may be zero to six words. Quotes may be used to include
SPACE characters in a “word”. If text is empty, the special treatment is applied to
the next input line with text to be printed. In this way .I may be used to italicize
a whole line, or .SB may be used to make small bold letters.

A prevailing indent distance is remembered between successive indented
paragraphs, and is reset to default value upon reaching a non-indented
paragraph. Default units for indents i are ens.

Type font and size are reset to default values before each paragraph, and after
processing font and size setting macros.

These strings are predefined by −man:
\*R ‘®’, ‘(Reg)’ in nroff .

\*S Change to default type size.

Requests * n.t.l. = next text line; p.i. = prevailing indent

Request Cause If no Explanation

Break Argument

.B t no t=n.t.l.* Text is in bold font.

.BI t no t=n.t.l. Join words, alternating bold and italic.

.BR t no t=n.t.l. Join words, alternating bold
and roman.

.DT no .5i 1i... Restore default tabs.

.HP i yes i=p.i.* Begin paragraph with hanging indent.
Set prevailing indent to i.

.I t no t=n.t.l. Text is italic.

.IB t no t=n.t.l. Join words, alternating italic and bold.

.IP x i yes x="" Same as .TP with tag x.

.IR t no t=n.t.l. Join words, alternating italic
and roman.

220 SunOS 5.8 Last modified 30 Jan 1995



Headers, Tables, and Macros man(5)

Request Cause If no Explanation

Break Argument

.IX t no - Index macro, for SunSoft internal use.

.LP yes - Begin left-aligned paragraph. Set
prevailing indent to .5i.

.P yes - Same as .LP .

.PD d no d=.4v Set vertical distance between
paragraphs.

.PP yes - Same as .LP .

.RE yes - End of relative indent. Restores
prevailing indent.

.RB t no t=n.t.l. Join words, alternating roman
and bold.

.RI t no t=n.t.l. Join words, alternating roman
and italic.

.RS i yes i=p.i. Start relative indent, increase indent
by i. Sets prevailing indent to .5i
for nested indents.

.SB t no - Reduce size of text by 1 point,
make text bold.

.SH t yes - Section Heading.

.SM t no t=n.t.l. Reduce size of text by 1 point.

.SS t yes t=n.t.l. Section Subheading.

.TH n s d f m yes - Begin reference page n, of of section s;
d is the date of the most recent change.
If present, f is the left page footer; m
is the main page (center) header. Sets
prevailing indent and tabs to .5i.

.TP i yes i=p.i. Begin indented paragraph, with
the tag given on the next text line.
Set prevailing indent to i.

.TX t p no - Resolve the title abbreviation t; join
to punctuation mark (or text) p.

Conventions When formatting a manual page, man examines the first line to determine
whether it requires special processing. For example a first line consisting of:

’\" t

Last modified 30 Jan 1995 SunOS 5.8 221



man(5) Headers, Tables, and Macros

indicates that the manual page must be run through the tbl (1) preprocessor.

A typical manual page for a command or function is laid out as follows:
.TH title [1-9] The name of the command or function, which

serves as the title of the manual page. This is
followed by the number of the section in which
it appears.

.SH NAME The name, or list of names, by which the
command is called, followed by a dash and then
a one-line summary of the action performed. All
in roman font, this section contains no troff (1)
commands or escapes, and no macro requests. It
is used to generate the windex database, which
is used by the whatis (1) command.

.SH SYNOPSIS Commands:

The syntax of the command and its arguments,
as typed on the command line. When in
boldface, a word must be typed exactly
as printed. When in italics, a word can be
replaced with an argument that you supply.
References to bold or italicized items are not
capitalized in other sections, even when they
begin a sentence.

Syntactic symbols appear in roman face:

[ ] An argument, when surrounded
by brackets is optional.

| Arguments separated by a vertical
bar are exclusive. You can supply
only one item from such a list.

. . . Arguments followed by an ellipsis
can be repeated. When an ellipsis
follows a bracketed set, the
expression within the brackets can
be repeated.

Functions:

If required, the data declaration, or #include
directive, is shown first, followed by the
function declaration. Otherwise, the function
declaration is shown.

222 SunOS 5.8 Last modified 30 Jan 1995



Headers, Tables, and Macros man(5)

.SH DESCRIPTION A narrative overview of the command or
function’s external behavior. This includes how it
interacts with files or data, and how it handles
the standard input, standard output and standard
error. Internals and implementation details are
normally omitted. This section attempts to
provide a succinct overview in answer to the
question, "what does it do?"

Literal text from the synopsis appears in constant
width, as do literal filenames and references to
items that appear elsewhere in the reference
manuals. Arguments are italicized.

If a command interprets either subcommands or
an input grammar, its command interface or
input grammar is normally described in a USAGE
section, which follows the OPTIONSsection.
The DESCRIPTIONsection only describes the
behavior of the command itself, not that of
subcommands.

.SH OPTIONS The list of options along with a description of
how each affects the command’s operation.

.SH RETURN VALUES A list of the values the library routine will return
to the calling program and the conditions that
cause these values to be returned.

.SH EXIT STATUS A list of the values the utility will return to the
calling program or shell, and the conditions that
cause these values to be returned.

.SH FILES A list of files associated with the command or
function.

.SH SEE ALSO A comma-separated list of related manual pages,
followed by references to other published
materials.

.SH DIAGNOSTICS A list of diagnostic messages and an explanation
of each.

.SH BUGS A description of limitations, known defects, and
possible problems associated with the command
or function.

Last modified 30 Jan 1995 SunOS 5.8 223



man(5) Headers, Tables, and Macros

FILES /usr/share/lib/tmac/an

/usr/share/man/windex

SEE ALSO man(1), nroff (1), troff (1), whatis (1)

Dale Dougherty and Tim O’Reilly, Unix Text Processing

224 SunOS 5.8 Last modified 30 Jan 1995



Headers, Tables, and Macros mansun(5)

NAME mansun – macros to format Reference Manual pages

SYNOPSIS nroff −mansun filename…

troff −mansun filename…

DESCRIPTION These macros are used to lay out the reference pages in this manual. Note:
if filename contains format input for a preprocessor, the commands shown
above must be piped through the appropriate preprocessor. This is handled
automatically by man(1). See the “Conventions” section.

Any text argument t may be zero to six words. Quotes may be used to include
SPACE characters in a “word”. If text is empty, the special treatment is applied to
the next input line with text to be printed. In this way .I may be used to italicize
a whole line, or .SB may be used to make small bold letters.

A prevailing indent distance is remembered between successive indented
paragraphs, and is reset to default value upon reaching a non-indented
paragraph. Default units for indents i are ens.

Type font and size are reset to default values before each paragraph, and after
processing font and size setting macros.

These strings are predefined by −mansun:
\*R ‘®’, ‘(Reg)’ in nroff .

\*S Change to default type size.

Requests * n.t.l. = next text line; p.i. = prevailing indent

Request Cause If no Explanation

Break Argument

.B t no t=n.t.l.* Text is in bold font.

.BI t no t=n.t.l. Join words, alternating bold and italic.

.BR t no t=n.t.l. Join words, alternating bold
and Roman.

.DT no .5i 1i... Restore default tabs.

.HP i yes i=p.i.* Begin paragraph with hanging indent.
Set prevailing indent to i.

.I t no t=n.t.l. Text is italic.

.IB t no t=n.t.l. Join words, alternating italic and bold.

.IP x i yes x="" Same as .TP with tag x.

.IR t no t=n.t.l. Join words, alternating italic
and Roman.

Last modified 11 Jun 1992 SunOS 5.8 225



mansun(5) Headers, Tables, and Macros

Request Cause If no Explanation

Break Argument

.IX t no - Index macro, for SunSoft internal use.

.LP yes - Begin left-aligned paragraph. Set
prevailing indent to .5i.

.P yes - Same as .LP .

.PD d no d=.4v Set vertical distance between
paragraphs.

.PP yes - Same as .LP .

.RE yes - End of relative indent. Restores
prevailing indent.

.RB t no t=n.t.l. Join words, alternating Roman
and bold.

.RI t no t=n.t.l. Join words, alternating Roman
and italic.

.RS i yes i=p.i. Start relative indent, increase indent
by i. Sets prevailing indent to .5i
for nested indents.

.SB t no - Reduce size of text by 1 point,
make text bold.

.SH t yes - Section Heading.

.SM t no t=n.t.l. Reduce size of text by 1 point.

.SS t yes t=n.t.l. Section Subheading.

.TH n s d f m yes - Begin reference page n, of of section s;
d is the date of the most recent change.
If present, f is the left page footer; m
is the main page (center) header. Sets
prevailing indent and tabs to .5i.

.TP i yes i=p.i. Begin indented paragraph, with
the tag given on the next text line.
Set prevailing indent to i.

.TX t p no - Resolve the title abbreviation t; join
to punctuation mark (or text) p.

Conventions When formatting a manual page, mansun examines the first line to determine
whether it requires special processing. For example a first line consisting of:

’\" t

226 SunOS 5.8 Last modified 11 Jun 1992



Headers, Tables, and Macros mansun(5)

indicates that the manual page must be run through the tbl (1) preprocessor.

A typical manual page for a command or function is laid out as follows:
.TH title [1-8] The name of the command or function, which

serves as the title of the manual page. This is
followed by the number of the section in which
it appears.

.SH NAME The name, or list of names, by which the
command is called, followed by a dash and then
a one-line summary of the action performed. All
in Roman font, this section contains no troff (1)
commands or escapes, and no macro requests. It
is used to generate the windex database, which
is used by the whatis (1) command.

.SH SYNOPSIS Commands:

The syntax of the command and its arguments,
as typed on the command line. When in
boldface, a word must be typed exactly
as printed. When in italics, a word can be
replaced with an argument that you supply.
References to bold or italicized items are not
capitalized in other sections, even when they
begin a sentence.

Syntactic symbols appear in Roman face:

[ ] An argument, when surrounded
by brackets is optional.

| Arguments separated by a vertical
bar are exclusive. You can supply
only one item from such a list.

. . . Arguments followed by an ellipsis
can be repeated. When an ellipsis
follows a bracketed set, the
expression within the brackets can
be repeated.

Functions:

If required, the data declaration, or #include
directive, is shown first, followed by the

Last modified 11 Jun 1992 SunOS 5.8 227



mansun(5) Headers, Tables, and Macros

function declaration. Otherwise, the function
declaration is shown.

.SH DESCRIPTION A narrative overview of the command or
function’s external behavior. This includes how it
interacts with files or data, and how it handles
the standard input, standard output and standard
error. Internals and implementation details are
normally omitted. This section attempts to
provide a succinct overview in answer to the
question, "what does it do?"

Literal text from the synopsis appears in constant
width, as do literal filenames and references to
items that appear elsewhere in the reference
manuals. Arguments are italicized.

If a command interprets either subcommands or
an input grammar, its command interface or
input grammar is normally described in a USAGE
section, which follows the OPTIONSsection.
The DESCRIPTIONsection only describes the
behavior of the command itself, not that of
subcommands.

.SH OPTIONS The list of options along with a description of
how each affects the command’s operation.

.SH FILES A list of files associated with the command or
function.

.SH SEE ALSO A comma-separated list of related manual pages,
followed by references to other published
materials.

.SH DIAGNOSTICS A list of diagnostic messages and an explanation
of each.

.SH BUGS A description of limitations, known defects, and
possible problems associated with the command
or function.

FILES /usr/share/lib/tmac/ansun

/usr/share/man/windex

SEE ALSO man(1), nroff (1), troff (1), whatis (1)

Dale Dougherty and Tim O’Reilly, Unix Text Processing

228 SunOS 5.8 Last modified 11 Jun 1992



Headers, Tables, and Macros me(5)

NAME me – macros for formatting papers

SYNOPSIS nroff −me [options] filename…

troff −me[options] filename…

DESCRIPTION This package of nroff and troff macro definitions provides a canned
formatting facility for technical papers in various formats. When producing
2-column output on a terminal, filter the output through col (1).

The macro requests are defined below. Many nroff and troff requests are
unsafe in conjunction with this package, however, these requests may be used
with impunity after the first .pp :
.bp begin new page

.br break output line here

.sp n insert n spacing lines

.ls n (line spacing) n=1 single, n=2 double space

.na no alignment of right margin

.ce n center next n lines

.ul n underline next n lines

.sz +n add n to point size

Output of the eqn (1), neqn (1), refer (1), and tbl (1) preprocessors for equations
and tables is acceptable as input.

REQUESTS In the following list, “initialization” refers to the first .pp, .lp , .ip , .np , .sh ,
or .uh macro. This list is incomplete.

Request Initial Cause Explanation

Value Break

.(c - yes Begin centered block.

.(d - no Begin delayed text.

.(f - no Begin footnote.

.(l - yes Begin list.

.(q - yes Begin major quote.

.(x x - no Begin indexed item in index x.

.(z - no Begin floating keep.

.)c - yes End centered block.

Last modified 25 Feb 1992 SunOS 5.8 229



me(5) Headers, Tables, and Macros

Request Initial Cause Explanation

Value Break

.)d - yes End delayed text.

.)f - yes End footnote.

.)l - yes End list.

.)q - yes End major quote.

.)x - yes End index item.

.)z - yes End floating keep.

.++ m H - no Define paper section.

m defines the part of the paper,

and can be C (chapter), A (appendix), P
(preliminary, for instance,

abstract, table of contents, etc.),

B (bibliography), RC(chapters

renumbered from page one each

chapter), or RA (appendix renumbered

from page one).

.+c T - yes Begin chapter (or appendix, etc.,

as set by .++ ). T is

the chapter title.

.1c 1 yes One column format on a new page.

.2c 1 yes Two column format.

.EN - yes Space after equation produced by eqn

or neqn .

.EQ x y - yes Precede equation; break out and

add space. Equation number is y.

The optional argument x may be I

to indent equation (default),

L to left-adjust the equation, or

C to center the equation.

.GE - yes End gremlin picture.

230 SunOS 5.8 Last modified 25 Feb 1992



Headers, Tables, and Macros me(5)

Request Initial Cause Explanation

Value Break

.GS - yes Begin gremlin picture.

.PE - yes End pic picture.

.PS - yes Begin pic picture.

.TE - yes End table.

.TH - yes End heading section of table.

.TS x - yes Begin table; if x is H table

has repeated heading.

.ac A N - no Set up for ACM style output.

A is the Author’s name(s), N is the

total number of pages. Must be given

before the first initialization.

.b x no no Print x in boldface; if no argument

switch to boldface.

.ba +n 0 yes Augments the base indent by n.

This indent is used to set the indent

on regular text (like paragraphs).

.bc no yes Begin new column.

.bi x no no Print x in bold italics

(nofill only).

.bu - yes Begin bulleted paragraph.

.bx x no no Print x in a box (nofill only).

.ef ’x’y’z ””’ no Set even footer to x y z.

.eh ’x’y’z ””’ no Set even header to x y z.

.fo ’x’y’z ””’ no Set footer to x y z.

.hx - no Suppress headers and footers on

next page.

.he ’x’y’z ””’ no Set header to x y z.

.hl - yes Draw a horizontal line.

Last modified 25 Feb 1992 SunOS 5.8 231



me(5) Headers, Tables, and Macros

Request Initial Cause Explanation

Value Break

.i x no no Italicize x; if x missing, italic

text follows.

.ip x y no yes Start indented paragraph, with

hanging tag x. Indentation is

y ens (default 5).

.lp yes yes Start left-blocked paragraph.

.lo - no Read in a file of local macros

of the form .* x. Must be

given before initialization.

.np 1 yes Start numbered paragraph.

.of ’x’y’z ””’ no Set odd footer to x y z.

.oh ’x’y’z ””’ no Set odd header to x y z.

.pd - yes Print delayed text.

.pp no yes Begin paragraph. First line indented.

.r yes no Roman text follows.

.re - no Reset tabs to default values.

.sc no no Read in a file of special characters

and diacritical marks. Must be

given before initialization.

.sh n x - yes Section head follows, font

automatically bold. n is level

of section, x is title of section.

.sk no no Leave the next page blank.

Only one page is remembered ahead.

.sm x - no Set x in a smaller pointsize.

.sz +n 10p no Augment the point size by n points.

.th no no Produce the paper in thesis format.

Must be given before initialization.

232 SunOS 5.8 Last modified 25 Feb 1992



Headers, Tables, and Macros me(5)

Request Initial Cause Explanation

Value Break

.tp no yes Begin title page.

.u x - no Underline argument (even in troff ).

(Nofill only).

.uh - yes Like .sh but unnumbered.

.xp x - no Print index x.

FILES /usr/share/lib/tmac/e
/usr/share/lib/tmac/*.me

SEE ALSO col (1), eqn (1), nroff (1), refer (1), tbl (1), troff (1)

Last modified 25 Feb 1992 SunOS 5.8 233



mm(5) Headers, Tables, and Macros

NAME mm – text formatting (memorandum) macros

SYNOPSIS nroff −mm[options] filename…

troff −mm[options] filename…

DESCRIPTION This package of nroff (1) and troff (1) macro definitions provides a formatting
facility for various styles of articles, theses, and books. When producing
2-column output on a terminal or lineprinter, or when reverse line motions are
needed, filter the output through col (1). All external −mmmacros are defined
below.

Note: this −mmmacro package is an extended version written at Berkeley and
is a superset of the standard −mmmacro packages as supplied by Bell Labs.
Some of the Bell Labs macros have been removed; for instance, it is assumed
that the user has little interest in producing headers stating that the memo
was generated at Whippany Labs.

Many nroff and troff requests are unsafe in conjunction with this package.
However, the first four requests below may be used with impunity after
initialization, and the last two may be used even before initialization:
.bp begin new page

.br break output line

.sp n insert n spacing lines

.ce n center next n lines

.ls n line spacing: n=1 single, n=2 double space

.na no alignment of right margin

Font and point size changes with \f and \s are also allowed; for example,
\fIword\fR will italicize word. Output of the tbl (1), eqn (1) and refer (1)
preprocessors for equations, tables, and references is acceptable as input.

REQUESTS Here is a table of macros.

Macro Name Initial Value
Break?
Reset? Explanation

.1C on y,y one column format on a new page

.2C [ l ] – y,y two column format l=line length

.AE – y end abstract

234 SunOS 5.8 Last modified 1 Jan 1997



Headers, Tables, and Macros mm(5)

Macro Name Initial Value
Break?
Reset? Explanation

.AL [ t ] [ i ] [ s ] t=1;i=.Li ;s=0 y Start automatic list type
t=[1,A,a,I ,i ] 1=arabic numbers;
A=uppercase letters a=lowercase
letters; I =uppercase Roman
numerals; i =lowercase
Roman numerals indentation
i; separation s

.AS m [ n ] n=0 y begin abstract

.AU – y author’s name

.AV x – y signature and date line of
verifier x

.B x – n embolden x; if no x, switch
to boldface

.BE – y end block text

.BI x y – n embolden x and underline y

.BL – y bullet list

.BR x y – n embolden x and use Roman
font for y

.BS – n start block text

.CN – y same as .DE (nroff )

.CS – y cover sheet

.CW – n same as .DS I (nroff )

.DE – y end display

.DF [ p ] [ f ] [ rp ] p=L;f=N y start floating display; position
p=[L,C,CB] L=left; I =indent;
C=center; CB=center block fill
f=[N,Y]; right position rp (fill only)

.DL [ i ] [ s ] – y start dash list

.DS [ p ] [ f ] [ rp ] p=L;f=N y begin static display (see .DF for
argument descriptions)

.EC x [ n ] n=1 y equation title; equation x;
number n

.EF x – n even footer appears at the
bottom of even-numbered pages;
x="l’ c’ r" l=left; c=center; r=right

Last modified 1 Jan 1997 SunOS 5.8 235



mm(5) Headers, Tables, and Macros

Macro Name Initial Value
Break?
Reset? Explanation

.EH x – n even header appears at the top of
even-numbered pages; x="l’ c’ r"
l=left; c=center; r=right

.EN – y end displayed equation
produced by eqn

.EQ – y break out equation produced
by eqn

.EX x [ n ] n=1 y exhibit title; exhibit x

number n

.FD [ f ] [ r ] f=10 ;r=1 n set footnote style format
f=[0-11 ]; renumber r=[0,1]

.FE – y end footnote

.FG x [ n ] n=1 y figure title; figure x; number n

.FS – n start footnote

.H l [ t ] – y produce numbered heading
level l=[1-7 ]; title t

.HU t – y produce unnumbered heading;
title t

.I x – n underline x

.IB x y – n underline x and embolden y

.IR x y – n underline x and use Roman
font on y

.LE [ s ] s=0 y end list; separation s

.LI [ m ] [ p ] – y start new list item; mark m

prefix p (mark only)

.ML m [ i ] [ s ] s=0 y start marked list; mark m
indentation i; separation s=[0,1]

.MT x y memo title; title x

.ND x n no date in page footer; x is
date on cover

.NE – y end block text

.NS – y start block text

236 SunOS 5.8 Last modified 1 Jan 1997



Headers, Tables, and Macros mm(5)

Macro Name Initial Value
Break?
Reset? Explanation

.OF x – n odd footer appears at the
bottom of odd-numbered pages;
x="l’ c’ r" l=left; c=center; r=right

.OF x – n odd header appears at the top of
odd-numbered pages; x="l’ c’ r"
l=left; c=center; r=right

.OP – y skip to the top of an odd-number
page

.P [ t ] t=0 y,y begin paragraph; t=[0,1]
0=justified; 1=indented

.PF x – n page footer appears at the
bottom of every page; x="l’ c’ r"
l=left; c=center; r=right

.PH x – n page header appears at the
top of every page; x="l’ c’ r"
l=left; c=center; r=right

.R on n return to Roman font

.RB x y – n use Roman on x and embolden y

.RI x y – n use Roman on x and underline y

.RP x - y,y released paper format ? x=no
stops title on first

.RS 5n y,y right shift: start level of
relative indentation

.S m n – n set character point size & vertical
space character point size m;
vertical space n

.SA x x=1 n justification; x=[0,1]

.SK x – y skip x pages

.SM – n smaller; decrease point size by 2

.SP [ x ] – y leave x blank lines

.TB x [ n ] n=1 y table title; table x; number n

.TC – y print table of contents (put at
end of input file)

.TE – y end of table processed by tbl

.TH – y end multi-page header of table

Last modified 1 Jan 1997 SunOS 5.8 237



mm(5) Headers, Tables, and Macros

Macro Name Initial Value
Break?
Reset? Explanation

.TL – n title in boldface and two
points larger

.TM – n UC Berkeley thesis mode

.TP i y y i=p.i. Begin indented paragraph,
with the tag given on the next text
line. Set prevailing indent to i.

.TS x – y,y begin table; if x=H table has
multi-page header

.TY – y display centered title CONTENTS

.VL i [ m ] [ s ] m=0;s=0 y start variable-item list;
indentation i mark-indentation
m; separation s

REGISTERS Formatting distances can be controlled in −mmby means of built-in number
registers. For example, this sets the line length to 6.5 inches:

.nr LL 6.5i

Here is a table of number registers and their default values:

Name Register Controls Takes Effect Default

Cl contents level table of
contents

2

De display eject display 0

Df display floating display 5

Ds display spacing display 1v

Hb heading break heading 2

Hc heading centering heading 0

Hi heading indent heading 1

Hi heading spacing heading 1

Hu heading unnumbered heading 2

Li list indentation list
6 (nroff )
5 (troff )

Ls list spacing list 6

238 SunOS 5.8 Last modified 1 Jan 1997



Headers, Tables, and Macros mm(5)

Name Register Controls Takes Effect Default

Pi paragraph indent paragraph 5

Pt paragraph type paragraph 1

Si static indent display
5 (nroff )
3 (troff )

When resetting these values, make sure to specify the appropriate units. Setting
the line length to 7, for example, will result in output with one character per line.
Setting Pi to 0 suppresses paragraph indentation

Here is a list of string registers available in −mm; they may be used anywhere
in the text:

Name String’s Function

\*Q quote (" in nroff, ‘‘ in troff )

\*U unquote (" in nroff, ’’ in troff )

\*– dash (-- in nroff, — in troff )

\*(MO month (month of the year)

\*(DY day (current date)

\** automatically numbered footnote

\*’ acute accent (before letter)

\*‘ grave accent (before letter)

\*^ circumflex (before letter)

\*, cedilla (before letter)

\*: umlaut (before letter)

\*~ tilde (before letter)

\(BU bullet item

\(DT date (month day, yr)

\(EM em dash

\(Lf LIST OF FIGURES title

\(Lt LIST OF TABLES title

\(Lx LIST OF EXHIBITS title

Last modified 1 Jan 1997 SunOS 5.8 239



mm(5) Headers, Tables, and Macros

Name String’s Function

\(Le LIST OF EQUATIONStitle

\(Rp REFERENCEStitle

\(Tm trademark character (TM)

When using the extended accent mark definitions available with .AM, these
strings should come after, rather than before, the letter to be accented.

FILES /usr/share/lib/tmac/m
/usr/share/lib/tmac/mm.[nt] nroff and troff definitions of mm.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdoc

SEE ALSO col (1), eqn (1), nroff (1), refer (1), tbl (1), troff (1), attributes (5)

BUGS Floating keeps and regular keeps are diverted to the same space, so they cannot
be mixed together with predictable results.

240 SunOS 5.8 Last modified 1 Jan 1997



Headers, Tables, and Macros ms(5)

NAME ms – text formatting macros

SYNOPSIS nroff −ms [options] filename…

troff −ms [options] filename…

DESCRIPTION This package of nroff (1) and troff (1) macro definitions provides a formatting
facility for various styles of articles, theses, and books. When producing
2-column output on a terminal or lineprinter, or when reverse line motions are
needed, filter the output through col (1). All external −msmacros are defined
below.

Note: this −msmacro package is an extended version written at Berkeley and
is a superset of the standard −ms macro packages as supplied by Bell Labs.
Some of the Bell Labs macros have been removed; for instance, it is assumed
that the user has little interest in producing headers stating that the memo
was generated at Whippany Labs.

Many nroff and troff requests are unsafe in conjunction with this package.
However, the first four requests below may be used with impunity after
initialization, and the last two may be used even before initialization:
.bp begin new page

.br break output line

.sp n insert n spacing lines

.ce n center next n lines

.ls n line spacing: n=1 single, n=2 double space

.na no alignment of right margin

Font and point size changes with \f and \s are also allowed; for example,
\fIword\fR will italicize word. Output of the tbl (1), eqn (1) and refer (1)
preprocessors for equations, tables, and references is acceptable as input.

REQUESTS

Macro
Name

Initial
Value

Break?
Reset? Explanation

.AB x – y begin abstract; if x=no do not label abstract

.AE – y end abstract

.AI – y author’s institution

.AM – n better accent mark definitions

.AU – y author’s name

Last modified 25 Feb 1992 SunOS 5.8 241



ms(5) Headers, Tables, and Macros

Macro
Name

Initial
Value

Break?
Reset? Explanation

.B x – n embolden x; if no x, switch to boldface

.B1 – y begin text to be enclosed in a box

.B2 – y end boxed text and print it

.BT date n bottom title, printed at foot of page

.BX x – n print word x in a box

.CM if t n cut mark between pages

.CT – y,y chapter title: page number moved to
CF (TM only)

.DA x if n n force date x at bottom of page; today if no x

.DE – y end display (unfilled text) of any kind

.DS x y I y begin display with keep; x=I, L, C, B; y=indent

.ID y 8n,.5i y indented display with no keep; y=indent

.LD – y left display with no keep

.CD – y centered display with no keep

.BD – y block display; center entire block

.EF x – n even page footer x (3 part as for .tl )

.EH x – n even page header x (3 part as for .tl )

.EN – y end displayed equation produced by eqn

.EQ x y – y break out equation; x=L,I,C; y=equation number

.FE – n end footnote to be placed at bottom of page

.FP – n numbered footnote paragraph; may be redefined

.FS x – n start footnote; x is optional footnote label

.HD undef n optional page header below header margin

.I x – n italicize x; if no x, switch to italics

.IP x y – y,y indented paragraph, with hanging tag
x; y=indent

.IX x y – y index words x y and so on (up to 5 levels)

.KE – n end keep of any kind

.KF – n begin floating keep; text fills remainder of page

.KS – y begin keep; unit kept together on a single page

242 SunOS 5.8 Last modified 25 Feb 1992



Headers, Tables, and Macros ms(5)

Macro
Name

Initial
Value

Break?
Reset? Explanation

.LG – n larger; increase point size by 2

.LP – y,y left (block) paragraph.

.MC x – y,y multiple columns; x=column width

.ND x if t n no date in page footer; x is date on cover

.NH x y – y,y numbered header; x=level, x=0 resets,
x=S sets to y

.NL 10p n set point size back to normal

.OF x – n odd page footer x (3 part as for .tl )

.OH x – n odd page header x (3 part as for .tl )

.P1 if TM n print header on first page

.PP – y,y paragraph with first line indented

.PT - % - n page title, printed at head of page

.PX x – y print index (table of contents); x=no
suppresses title

.QP – y,y quote paragraph (indented and shorter)

.R on n return to Roman font

.RE 5n y,y retreat: end level of relative indentation

.RP x – n released paper format; x=no stops title
on first page

.RS 5n y,y right shift: start level of relative indentation

.SH – y,y section header, in boldface

.SM – n smaller; decrease point size by 2

.TA 8n,5n n set TAB characters to 8n 16n . . . (nroff )
or 5n 10n . . . (troff )

.TC x – y print table of contents at end; x=no
suppresses title

.TE – y end of table processed by tbl

.TH – y end multi-page header of table

.TL – y title in boldface and two points larger

.TM off n UC Berkeley thesis mode

.TS x – y,y begin table; if x=H table has multi-page header

Last modified 25 Feb 1992 SunOS 5.8 243



ms(5) Headers, Tables, and Macros

Macro
Name

Initial
Value

Break?
Reset? Explanation

.UL x – n underline x, even in troff

.UX x – n UNIX; trademark message first time; x appended

.XA x y – y another index entry; x=page or no for
none; y=indent

.XE – y end index entry (or series of .IX entries)

.XP – y,y paragraph with first line indented,
others indented

.XS x y – y begin index entry; x=page or no for
none; y=indent

.1C on y,y one column format, on a new page

.2C – y,y begin two column format

.] – – n beginning of refer reference

.[ 0 – n end of unclassifiable type of reference

.[ N – n N= 1:journal-article, 2:book, 3:book-article,
4:report

REGISTERS Formatting distances can be controlled in −ms by means of built-in number
registers. For example, this sets the line length to 6.5 inches:

.nr LL 6.5i

Here is a table of number registers and their default values:

Name Register Controls Takes Effect Default

PS point size paragraph 10

VS vertical spacing paragraph 12

LL line length paragraph 6i

LT title length next page same as LL

FL footnote length next .FS 5.5i

PD paragraph distance paragraph 1v (if n), .3v (if t)

DD display distance displays 1v (if n), .5v (if t)

PI paragraph indent paragraph 5n

QI quote indent next .QP 5n

244 SunOS 5.8 Last modified 25 Feb 1992



Headers, Tables, and Macros ms(5)

Name Register Controls Takes Effect Default

FI footnote indent next .FS 2n

PO page offset next page 0 (if n), ≈1i (if t)

HM header margin next page 1i

FM footer margin next page 1i

FF footnote format next .FS 0 (1, 2, 3 available)

When resetting these values, make sure to specify the appropriate units. Setting
the line length to 7, for example, will result in output with one character per
line. Setting FF to 1 suppresses footnote superscripting; setting it to 2 also
suppresses indentation of the first line; and setting it to 3 produces an .IP -like
footnote paragraph.

Here is a list of string registers available in −ms; they may be used anywhere
in the text:

Name String’s Function

\*Q quote (" in nroff, “ in troff )

\*U unquote (" in nroff, ” in troff )

\*– dash (-- in nroff, — in troff )

\*(MO month (month of the year)

\*(DY day (current date)

\** automatically numbered footnote

\*’ acute accent (before letter)

\*‘ grave accent (before letter)

\*^ circumflex (before letter)

\*, cedilla (before letter)

\*: umlaut (before letter)

\*~ tilde (before letter)

When using the extended accent mark definitions available with .AM, these
strings should come after, rather than before, the letter to be accented.

FILES /usr/share/lib/tmac/s
/usr/share/lib/tmac/ms.???

SEE ALSO col (1), eqn (1), nroff (1), refer (1), tbl (1), troff (1)

Last modified 25 Feb 1992 SunOS 5.8 245



ms(5) Headers, Tables, and Macros

BUGS Floating keeps and regular keeps are diverted to the same space, so they cannot
be mixed together with predictable results.

246 SunOS 5.8 Last modified 25 Feb 1992



Headers, Tables, and Macros nfssec(5)

NAME nfssec – overview of NFS security modes

DESCRIPTION The mount_nfs (1M) and share_nfs (1M) commands each provide a way
to specify the security mode to be used on an NFS file system through the
sec= mode option. mode can be either sys , dh , krb4 , or none. These security
modes may also be added to the automount maps. Note that mount_nfs (1M)
and automount (1M) do not support sec= none at this time.

The sec= mode option on the share_nfs (1M) command line establishes the
security mode of NFS servers. If the NFS connection uses the NFS Version 3
protocol, the NFS clients must query the server for the appropriate mode to use.
If the NFS connection uses the NFS Version 2 protocol, then the NFS client will
use the default security mode, which is currently sys . NFS clients may force
the use of a specific security mode by specifying the sec= mode option on the
command line. However, if the file system on the server is not shared with that
security mode, the client may be denied access.

If the NFS client wants to authenticate the NFS server using a particular
(stronger) security mode, the client will want to specify the security mode to be
used, even if the connection uses the NFS Version 3 protocol. This guarantees
that an attacker masquerading as the server does not compromise the client.

The NFS security modes are described as follows:
sys Use AUTH_SYSauthentication. The user’s UNIX user-id and group-ids

are passed in the clear on the network, unauthenticated by the NFS
server. This is the simplest security method and requires no additional
administration. It is the default used by Solaris NFS Version 2 clients
and Solaris NFS servers.

dh Use a Diffie-Hellman public key system ( AUTH_DES,which is
referred to as AUTH_DHin the forthcoming Internet RFC).

krb4 Use the Kerberos Version 4 authentication system ( AUTH_KERB,
which is referred to as AUTH_KERB4in a forthcoming Internet RFC).

none Use null authentication ( AUTH_NONE). NFS clients using AUTH_NONE
have no identity and are mapped to the anonymous user nobody
by NFS servers. A client using a security mode other than the one
with which a Solaris NFS server shares the file system will have its
security mode mapped to AUTH_NONE.In this case, if the file system
is shared with sec= none, users from the client will be mapped to
the anonymous user. The NFS security mode none is supported by
share_nfs (1M), but not by mount_nfs (1M) or automount (1M).

FILES /etc/nfssec.conf NFS security service configuration
file.

Last modified 10 Mar 1997 SunOS 5.8 247



nfssec(5) Headers, Tables, and Macros

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

SEE ALSO automount (1M), mount_nfs (1M), share_nfs (1M), rpc_clnt_auth (3NSL),
secure_rpc (3NSL), attributes (5)

NOTES /etc/nfssec.conf lists the NFS security services. Do not edit this file. It is
not intended to be user-configurable.

248 SunOS 5.8 Last modified 10 Mar 1997



Headers, Tables, and Macros pam_dial_auth(5)

NAME pam_dial_auth – authentication management PAM module for dialups

SYNOPSIS /usr/lib/security/pam_dial_auth.so.1

DESCRIPTION The dialup PAM module, /usr/lib/security/pam_dial_auth.so.1 ,
authenticates a user according to the /etc/dialups and
/etc/d_passwd files. Only pam_sm_authenticate() is implemented
within this module. pam_sm_setcred() is a null function.
/usr/lib/security/pam_dial_auth.so.1 is designed to be stacked
immediately below the /usr/lib/security/pam_unix.so.1 module
for the login service.

pam_sm_authenticate() performs authentication only if both the
/etc/dialups and /etc/d_passwd files exist. The user’s terminal line is
checked against entries in the /etc/dialups file. If there is a match, the
user’s shell is compared against entries in the /etc/d_passwd file. If there
is a matching entry, the user is prompted for a password which is validated
against the entry in the /etc/d_passwd file. If the passwords match, the user is
authenticated. The following option may be passed in to this service module:
debug syslog (3C) debugging information at LOG_DEBUGlevel.

ATTRIBUTES See attributes (5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level MT-Safe with exceptions

SEE ALSO pam(3PAM), pam_authenticate (3PAM), d_passwd (4), dialups (4),
libpam (3LIB), pam.conf (4), attributes (5)

NOTES The interfaces in libpam() are MT-Safe only if each thread within the
multi-threaded application uses its own PAM handle.

Last modified 28 Oct 1996 SunOS 5.8 249



pam_krb5(5) Headers, Tables, and Macros

NAME pam_krb5 – authentication, account, session, and password management PAM
modules for Kerberos V5

SYNOPSIS /usr/lib/security/pam_krb5.so.1

DESCRIPTION The Kerberos V5 service module for PAM,
/usr/lib/security/pam_krb5.so.1 , provides
functionality for all four PAM modules: authentication, account management,
session management,and password management. The pam_krb5.so.1 module
is a shared object that can be dynamically loaded to provide the necessary
functionality upon demand. Its path is specified in the PAM configuration file.

Kerberos
Authentication

Module

The Kerberos V5 authentication component provides functions to verify the
identity of a user, (pam_sm_authenticate() ) and to refresh the Kerberos
credentials cache (pam_sm_setcred() ). pam_sm_authenticate( )
authenticates a user principal though the Kerberos authentication service. If
the authentication request is successful, the authentication service will send a
ticket-granting ticket (tgt) back to the pam_krb5.so.1 module, which will store
the tgt in the credentials cache for later use by Kerberized network applications.

The following options may be passed to the Kerberos V5 authentication module:
acceptor Prevent the PAM module from performing the

authentication service exchange used to obtain
the initial ticket-granting ticket. This should be
used on Kerberos application servers since the
initial ticket is not needed.

debug syslog (3C) debugging information at
LOG_DEBUGlevel.

nowarn Turn off warning messages.

use_first_pass Request Kerberos V5 authentication with the
user’s initial password (entered when the user
authenticated to the first authentication module
in the stack). If Kerberos V5 authentication fails,
or if no password has been entered, it quits and
does not prompt the user for a password. This
option should only be used if the authentication
service is designated as optional in the pam.conf
configuration file.

try_first_pass Request Kerberos V5 authentication with the
user’s initial password (entered when the user
authenticated to the first authentication module
in the stack). If Kerberos V5 authentication
fails, or if no password has been entered,

250 SunOS 5.8 Last modified 17 Nov 1999



Headers, Tables, and Macros pam_krb5(5)

prompt the user for a password with the prompt
"Kerberos Password: ".

use_xfn_pass Request Kerberos V5 authentication with a
mapped password that has been stored under
XFN. If Kerberos V5 authentication fails, or if
no password has been entered, it quits and
does not prompt the user for a password. This
option should only be used if the authentication
service is designated as optional in the pam.conf
configuration file.

try_xfn_Pass Request Kerberos V5 authentication with a
mapped password that has been stored under
XFN. If Kerberos V5 authentication fails,
or if no password has been stored, prompt
the user for a password with the prompt
"Kerberos Password: ".

Kerberos V5 Account
Management Module

The account management module returns success and performs no funtions.
This component is a null function.

Kerberos V5 Session
Management Module

The Kerberos V5 session management component provides functions to initiate
pam_sm_open_session() and terminate pam_sm_close_session()
Kerberos V5 sessions. For Kerberos V5, pam_sm_open_session is a null
function. pam_close_session will destory a principal’s credential cache as
well as the in kernel Kerberos credentials if the session being closed is the last
open session on this server for the calling principal.

Kerberos V5
Password

Management Module

The Kerberos V5 password management component provides a function to
change passwords pam_sm_chauthtok() in the Key Distribution Center
(KDC) database. The following options may be passed in to the Kerberos V5
password module:
debug syslog (3C) Debugging information at

LOG_DEBUGlevel.

nowarn Turn off warning messages.

use_first_pass Request Kerberos V5 authentication with the
user’s initial password (entered when the user
authenticated to the first authentication module
in the stack). If Kerberos V5 authentication fails,
or if no password has been entered, it quits and
does not prompt the user for a password. If
authentication succeeds, the user is prompted
by "New KRB5 password: " for a new password.
The user is then prompted a second time for the

Last modified 17 Nov 1999 SunOS 5.8 251



pam_krb5(5) Headers, Tables, and Macros

new password for verification and the KDC
database is updated with the new password if
both responses match.

try_first_pass Request Kerberos V5 authentication with the
user’s initial password (entered when the user
authenticated to the first authentication module
in the stack). If Kerberos V5 authentication
fails, or if no password has been entered,
prompt the user for a password with the prompt
"Old KRB5 Password: ". If authentication
succeeds, the user is prompted by "New KRB5
password:" for a new password. The user is then
prompted a second time for the new password
for verification and the KDC database is updated
with the new password if both responses match.

use_xfn_pass Request Kerberos V5 authentication with a
mapped password that has been stored under
XFN. If Kerberos V5 authentication fails, or
if no password has been stored, it quits and
does not prompt the user for a password. If
authentication succeeds, the user is prompted
by "New KRB5 password: " for a new password.
The user is then prompted a second time for the
new password for verification and the KDC
database is updated with the new password if
both responses match.

try_xfn_pass Request Kerberos V5 authentication with
a mapped password that has been stored
under XFN. If Kerberos V5 authentication
fails, or if no password has been stored,
prompt the user for a password with
the prompt "Old KRB5 Password: ". If
authentication succeeds, the user is prompted
by "New KRB5 password: " for a new password.
The user is then prompted a second time for the
new password for verification and the KDC
database is updated with the new password if
both responses match.

ATTRIBUTES See attributes (5) for description of the following attributes:

252 SunOS 5.8 Last modified 17 Nov 1999



Headers, Tables, and Macros pam_krb5(5)

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level MT-Safe with exceptions

SEE ALSO keylogin (1), pam(3PAM), pam_authenticate (3PAM), syslog (3C),
libpam (4), pam.conf (4), attributes (5), SEAM(5)

Last modified 17 Nov 1999 SunOS 5.8 253



pam_ldap(5) Headers, Tables, and Macros

NAME pam_ldap – authentication and password management PAM modules for LDAP

SYNOPSIS /usr/lib/security/pam_ldap.so.1

DESCRIPTION The LDAP service module for PAM, /usr/lib/security/pam_ldap.so.1 ,
provides functionality for two PAM modules: authentication and password
management. The pam_ldap.so.1 module is a shared object that can be
dynamically loaded to provide the necessary functionality upon demand. Its
path is specified in the PAM configuration file.

The pam_ldap.so.1 module must be used in conjunction with pam_unix.so.1
module (see pam_unix (5)). The latter supports UNIX authentication and the
pam_ldap.so.1 module supports stronger authentication mechanisms such
as CRAM-MD5. When this moudule is used for authentication and password
management, it is designed to be stacked directly below the pam_unix.so.1
module. If any other module was designed to be stacked in this manner, it can be
stacked under the pam_ldap.so.1 module. If this design is not followed, UNIX
authentication or password management will not work. See the EXAMPLES
section below to see how the modules are to be stacked when using this module.

The pam_ldap.so.1 module supports two components: the Authentication
component and the Password management component.

LDAP Authentication
Component

The LDAP authentication component provides functions to verify the identity of
a user ( pam_sm_authenticate (3PAM)) and to set user specific credentials (
pam_sm_setcred (3PAM)). The pam_sm_authenticate() function uses the
password entered by the user to attempt to authenticate to the LDAP server. If
successful, the user is authenticated.

At present, the pam_sm_setcred() function succeeds all the time without
setting any credentials.

The following options may be passed to the LDAP service module:
debug syslog (3C) debugging information at LOG_DEBUGlevel.

nowarn Turn off warning messages.

use_first_pass Compare the password in the password database with the
user’s initial password (entered when the user authenticated
to the first authentication module in the stack). If the
passwords do not match, or if no password has been entered,
it quits and does not prompt the user for a password.

try_first_pass Compare the password in the password database with the
user’s initial password (entered when the user authenticated
to the first authentication module in the stack). If the
passwords do not match, or if no password has been entered,
prompt the user for a password.

254 SunOS 5.8 Last modified 14 Oct 1999



Headers, Tables, and Macros pam_ldap(5)

These options are case sensitive and must be used exactly as presented here.

LDAP Password
Management

Component

The LDAP password management component provides the
pam_sm_chauthtok (3PAM) function to change passwords in the LDAP
password database. The following options may be passed in to the LDAP
service module:
debug syslog (3C) debugging information at LOG_DEBUGlevel.

nowarn Turn off warning messages.

use_first_pass Compare the password in the password database with the
user’s old password (entered to the first password module in
the stack). If the passwords do not match, or if no password
has been entered, it quits and does not prompt the user for
the old password. It also attempts to use the new password
(entered to the first password module in the stack) as the
new password for this module. If the new password fails, it
quits and does not prompt the user for a new password.

try_first_pass Compare the password in the password database with the
user’s old password (entered to the first password module in
the stack). If the passwords do not match, or if no password
has been entered, it prompts the user for the old password.
It also attempts to use the new password (entered to the
first password module in the stack) as the new password
for this module. If the new password fails, it prompts the
user for a new password.

EXAMPLES EXAMPLE 1 Use pam_ldap.so.1 with authentication in pam.conf .

The following is a configuration for the login service when using
pam_ldap.so.1 . The service name ’login ’ can be substituted for any other
authentication service such as dtlogin or su . Lines that begin with the #
symbol are comments and are ignored.

# Authentication management for login service is stacked.
# If pam_unix succeeds, pam_ldap is not invoked.
login auth sufficient /usr/lib/security/pam_unix.so.1
login auth required /usr/lib/security/pam_ldap.so.1 try_first_pass

Note that the pam_unix.so.1 is qualified with the sufficient control flag.
EXAMPLE 2 Use pam_ldap.so.1 with password in pam.conf

The following is a configuration for the password management when using
pam_ldap.so.1 . Lines that begin with the # symbol are ignored.

# Password management
#
other password sufficient /usr/lib/security/pam_unix.so.1
other password required /usr/lib/security/pam_ldap.so.1

Last modified 14 Oct 1999 SunOS 5.8 255



pam_ldap(5) Headers, Tables, and Macros

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

SEE ALSO ldap (1), libpam (3LIB), pam(3PAM), pam_sm_authenticate (3PAM),
pam_sm_chauthtok (3PAM), pam_sm_setcred (3PAM), syslog (3C),
pam.conf (4), attributes (5)

NOTES The interfaces in libpam are MT-Safe only if each thread within the
multithreaded application uses its own PAM handle.

256 SunOS 5.8 Last modified 14 Oct 1999



Headers, Tables, and Macros pam_rhosts_auth(5)

NAME pam_rhosts_auth – authentication management PAM module using ruserok()

SYNOPSIS /usr/lib/security/pam_rhosts_auth.so.1

DESCRIPTION The rhosts PAM module, /usr/lib/security/pam_rhosts_auth.so.1 ,
authenticates a user via the rlogin authentication protocol. Only
pam_sm_authenticate() is implemented within this module.
pam_sm_authenticate() uses the ruserok (3SOCKET) library function to
authenticate the rlogin or rsh user. pam_sm_setcred() is a null function.

/usr/lib/security/pam_rhosts_auth.so.1 is designed to be stacked
on top of the /usr/lib/security/pam_unix.so.1 module for both
the rlogin and rsh services. This module is normally configured as
sufficient so that subsequent authentication is performed only on failure of
pam_sm_authenticate() . The following option may be passed in to this
service module:
debug syslog (3C) debugging information at LOG_DEBUG level.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level MT-Safe with exceptions

SEE ALSO pam(3PAM), pam_authenticate (3PAM), ruserok (3SOCKET), syslog (3C),
libpam (3LIB), pam.conf (4), attributes (5)

NOTES The interfaces in libpam() are MT-Safe only if each thread within the
multi-threaded application uses its own PAM handle.

Last modified 28 Oct 1996 SunOS 5.8 257



pam_roles(5) Headers, Tables, and Macros

NAME pam_roles – Role Account Management PAM module for Solaris

SYNOPSIS /usr/lib/security/pam_roles.so.1

DESCRIPTION The Role Account Management module for PAM,
/usr/lib/security/pam_roles.so.1 , provides functionality
for one PAM module: Account management. The pam_roles.so.1 is a shared
object that can be dynamically loaded to provide the necessary functionality
upon demand. Its path is specified in the PAM configuration file.

Role Account
Management module

The Role account management component provides a function to check for
authorization to assume a role. It prevents direct logins to a role. It uses the
user_attr (4) database to specify which users can assume which roles.

The following options may be passed to the Role Authentication service module:
debug syslog (3C) debugging information at LOG_DEBUGlevel.

If PAM_USER(see pam_set_item (3PAM)) is specified as type normal in the
user_attr (4) database, the module returns PAM_IGNORE.

If PAM_RUSER(see pam_set_item (3PAM)) is not set, the uid of the process
loading the module is used to determine PAM_RUSER.

The module returns success if the user_attr (4) entry for PAM_RUSERhas an
entry in the roles field for PAM_USER; otherwise it returns PAM_PERM_DENIED.

This module is generally stacked above the account management module
pam_unix.so.1 . The error messages indicating that roles cannot be logged into
correctly are only issued if the user has entered the correct password.

Here are some sample entries from pam.conf (4) demonstrating the use of the
pam_roles.so.1 module:

dtlogin account requisite /usr/lib/security/$ISA/pam_roles.so.1
dtlogin account required /usr/lib/security/$ISA/pam_unix.so.1
#
su account requisite /usr/lib/security/$ISA/pam_roles.so.1
su account requisite /usr/lib/security/$ISA/pam_roles.so.1
#
rlogin account requisite /usr/lib/security/$ISA/pam_roles.so.1
rlogin account required /usr/lib/security/$ISA/pam_unix.so.1
#

The dtlogin program invokes pam_roles.so.1 . PAM_RUSERis the username
corresponding to the uid of the dtlogin process, which is 0. The user_attr
entry for root user (uid 0 ) is empty, so all role logins are prevented through
dtlogin . The same rule applies to login .

258 SunOS 5.8 Last modified 19 Oct 1999



Headers, Tables, and Macros pam_roles(5)

The su program invokes pam_roles.so.1 . PAM_RUSERis the username of the
userid of the shell that invokes su . A user needs the appropriate entry in the
roles list in user_attr (4) to be able to su to another user.

In the example above, the rlogin program invokes the pam_roles.so.1
module. The module checks for PAM_RUSERand determines whether the
role being assumed, PAM_RUSER, is in the roles list of the userattr entry for
PAM_RUSER. If it is in the roles list, the module returns PAM_SUCCESS; otherwise
it returns PAM_PERM_DENIED.

SEE ALSO keylogin (1), libpam (3LIB), pam(3PAM), pam_acct_mgmt (3PAM),
pam_setcred (3PAM), pam_set_item (3PAM), syslog (3C), pam.conf (4),
user_attr (4), attributes (5)

NOTES The interfaces in libpam (3LIB) are MT-Safe only if each thread within the
multi-threaded application uses its own PAM handle.

Last modified 19 Oct 1999 SunOS 5.8 259



pam_sample(5) Headers, Tables, and Macros

NAME pam_sample – a sample PAM module

SYNOPSIS /usr/lib/security/pam_sample.so.1

DESCRIPTION The SAMPLE service module for PAM is divided into four components:
authentication, account management, password management, and session
management. The sample module is a shared object that is dynamically loaded
to provide the necessary functionality.

SAMPLE
Authentication

Component

The SAMPLE authentication module, typically
/usr/lib/security/pam_sample.so.1 , provides functions to test the PAM
framework functionality using the pam_sm_authenticate (3PAM) call. The
SAMPLE module implementation of the pam_sm_authenticate (3PAM)
function compares the user entered password with the password set in the
pam.conf (4) file, or the string "test" if a default test password has not been set.
The following options may be passed in to the SAMPLE Authentication module:
debug Syslog debugging information at the LOG_DEBUG

level.

passwd=newone Sets the password to be "newone."

first_pass_good The first password is always good when used
with the use_first_pass or try_first_pass option.

first_pass_bad The first password is always bad when used with
the use_first_pass or try_first_pass option.

always_fail Always returns PAM_AUTH_ERR.

always_succeed Always returns PAM_SUCCESS.

always_ignore Always returns PAM_IGNORE.

use_first_pass Use the user’s initial password (entered when the
user is authenticated to the first authentication
module in the stack) to authenticate with the
SAMPLE module. If the passwords do not match,
or if this is the first authentication module in the
stack, quit and do not prompt the user for a
password. It is recommended that this option
only be used if the SAMPLE authentication
module is designated as optional in the pam.conf
configuration file.

try_first_pass Use the user’s initial password (entered when the
user is authenticated to the first authentication
module in the stack) to authenticate with the
SAMPLE module. If the passwords do not match,

260 SunOS 5.8 Last modified 28 Oct 1996



Headers, Tables, and Macros pam_sample(5)

or if this is the first authentication module in
the stack, prompt the user for a password. The
SAMPLE module pam_sm_setcred (3PAM)
function always returns PAM_SUCCESS.

SAMPLE Account
Management

Component

The SAMPLE Account Management Component, typically pam_sample.so.1 ,
implements a simple access control scheme that limits machine access to a list of
authorized users. The list of authorized users is supplied as option arguments to
the entry for the SAMPLE account management PAM module in the pam.conf
file. Note that the module always permits access to the root super user.

The option field syntax to limit access is shown below: allow= name[,name]
allow= name [allow=name]

The example pam.conf show below permits only larry to login directly.
rlogin is allowed only for don and larry. Once a user is logged in, the user
can use su if the user are sam or eric.

login account require pam_sample.so.1 allow=larry

dtlogin account require pam_sample.so.1 allow=larry

rlogin account require pam_sample.so.1 allow=don
allow=larry

su account require pam_sample.so.1 allow=sam,eric

The debug and nowarn options are also supported.

SAMPLE Password
Management

Component

The SAMPLE Password Management Component function (
pam_sm_chauthtok (3PAM)), always returns PAM_SUCCESS.

SAMPLE Session
Management

Component

The SAMPLE Session Management Component functions (
pam_sm_open_session (3PAM), pam_sm_close_session (3PAM)) always
return PAM_SUCCESS.

ATTRIBUTES See attributes (5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level MT-Safe with exceptions

SEE ALSO pam(3PAM), pam_sm_authenticate (3PAM), pam_sm_chauthtok (3PAM),
pam_sm_close_session (3PAM), pam_sm_open_session (3PAM),
pam_sm_setcred (3PAM), libpam (3LIB), pam.conf (4), attributes (5)

NOTES The interfaces in libpam() are MT-Safe only if each thread within the
multi-threaded application uses its own PAM handle.

Last modified 28 Oct 1996 SunOS 5.8 261



pam_smartcard(5) Headers, Tables, and Macros

NAME pam_smartcard – PAM authentication module for Smart Card

SYNOPSIS /usr/lib/security/pam_smartcard.so

DESCRIPTION The Smart Card service module for PAM,
/usr/lib/security/pam_smartcard.so , provides
functionality for PAM smart card authentication. The pam_smartcard.so
module is a shared object that can be dynamically loaded to provide the
necessary functionality upon demand. Its path is specified in the PAM
configuration file pam.conf .

Smart Card
Authentication

Module

The Smart Card authentication component provides functions to verify the
identity of a smart card user, pam_sm_authenticate (3PAM).

The pam_sm_authenticate( ) function collects the user input such as user
name, PIN number, password and related authentication tokens. It passes this
data back to its underlying layer, OCF to perform card based authentication
except password. The password is passed from the smart card module to a
user-specified PAM module. This PAM module compares the password either
entered by the user or downloaded from the card with the password that this
module associates with the user. If all the authentication steps are successful, the
user is authenticated and this module returns PAM_SUCCESS.

The following options may be passed to the Smart Card service module:
debug sysolg (3C) debugging information at LOG_DEBUGlevel.

nowarn Turn off warning messages.

verbose Turn on verbose authentication failure reporting to the user.

password=xxx Specify name of PAM client to use when password
authentication is required. This option is used to specify
the client name to use when a password authentication
is required. This is the name that will be used in a call
to pam_start (3PAM) from inside the pam_smartcard
module. The appropriate entries in /etc/pam.conf must
exist to use this facility. The default value of this option is
smartcard_unix .

EXAMPLES EXAMPLE 1 pam.conf entries

The following pam.conf entries illustrate the use of the password option:

service type ctrl-flag Module_path Options

dtlogin auth required /usr/lib/security/ password=smartcard_unix
pam_smartcard.so.1

smartcard_unix auth required /usr/lib/security/ use_first_pass
pam_unix.so.1

262 SunOS 5.8 Last modified 2 Sep 1997



Headers, Tables, and Macros pam_smartcard(5)

This example shows that when pam_smartcard needs to perform a password
authentication, it will register with PAM as the client name smartcard_unix,
and PAM in turn will use the pam_unix (5) module to perform the password
authentication, returning the results to pam_smartcard

This module provides the ability to specify the number of retries that the user
is allowed when entering an invalid password or invalid PIN. To specify the
retry values, edit the /etc/default/login file and add or modify the
appropriate parameter. See FILES .

FILES /etc/default/login Values can be set for the following retry
parameters in the file /etc/default/login. If a
parameter is not specified, the default value is
used.

SCPW_RETRIES Sets the number of invalid
password retries allowed. The
default is 0.

SCPIN_RETRIES Sets the number of invalid PIN
retries allowed. The default
is 0.

SEE ALSO smartcard (1M), libpam (3LIB), pam(3PAM), pam_authenticate (3PAM),
pam_start (3PAM), pam.conf (4)

NOTES The interfaces in libpam are MT-Safe only if each thread within the
multithreaded application uses its own PAM handle.

Last modified 2 Sep 1997 SunOS 5.8 263



pam_unix(5) Headers, Tables, and Macros

NAME pam_unix – authentication, account, session, and password management PAM
modules for UNIX

SYNOPSIS /usr/lib/security/pam_unix.so.1

DESCRIPTION The UNIX service module for PAM, /usr/lib/security/pam_unix.so.1 ,
provides functionality for all four PAM modules: authentication, account
management, session management and password management. The
pam_unix.so.1 module is a shared object that can be dynamically loaded to
provide the necessary functionality upon demand. Its path is specified in the
PAM configuration file.

Unix
Authentication

Module

The UNIX authentication component provides functions to verify the identity
of a user, (pam_sm_authenticate( ) ) and to set user specific credentials
(pam_sm_setcred() ). pam_sm_authenticate( ) compares the user
entered password with the password from the UNIX password database. If the
passwords match, the user is authenticated. If the user also has secure RPC
credentials and the secure RPC password is the same as the UNIX password,
then the secure RPC credentials are also obtained.

The following options may be passed to the UNIX service module:
debug syslog (3C) debugging information at

LOG_DEBUGlevel.

nowarn Turn off warning messages.

use_first_pass It compares the password in the password
database with the user’s initial password
(entered when the user authenticated to the
first authentication module in the stack). If the
passwords do not match, or if no password has
been entered, it quits and does not prompt the
user for a password. This option should only be
used if the authentication service is designated as
optional in the pam.conf configuration file.

try_first_pass It compares the password in the password
database with the user’s initial password
(entered when the user authenticated to the
first authentication module in the stack). If the
passwords do not match, or if no password has
been entered, prompt the user for a password.
When prompting for the current password, the
UNIX authentication module will use the prompt,
"password:" unless one of the following scenarios
occur:

264 SunOS 5.8 Last modified 28 Oct 1996



Headers, Tables, and Macros pam_unix(5)

1. The option try_first_pass is specified and
the password entered for the first module in
the stack fails for the UNIX module.

2. The option try_first_pass is not specified,
and the earlier authentication modules listed
in the pam.conf file have prompted the user
for the password.

In these two cases, the UNIX authentication
module will use the prompt "SYSTEM
password:". The pam_sm_setcred() function
sets user specific credentials. If the user had
secure RPC credentials, but the secure RPC
password was not the same as the UNIX
password, then a warning message is printed. If
the user wants to get secure RPC credentials, then
keylogin (1) needs to be run.

Unix Account
Management

Module

The UNIX account management component provides a function to perform
account management, pam_sm_acct_mgmt() . The function retrieves the
user’s password entry from the UNIX password database and verifies that the
user’s account and password have not expired. The following options may be
passed in to the UNIX service module:
debug syslog (3C) debugging information at LOG_DEBUGlevel.

nowarn Turn off warning messages.

Unix Session
Management

Module

The UNIX session management component provides functions to initiate
pam_sm_open_session() and terminate pam_sm_close_session() UNIX
sessions. For UNIX, pam_open_session updates the /var/adm/lastlog
file. The account management module reads this file to determine the previous
time the user logged in. The following options may be passed in to the UNIX
service module:
debug syslog (3C) debugging information at LOG_DEBUGlevel.

nowarn Turn off warning messages. pam_close_session is a
null function.

Unix Password
Management

Module

The UNIX password management component provides a function to change
passwords pam_sm_chauthtok() in the UNIX password database. This
module must be required in pam.conf . It cannot be optional or sufficient. The
following options may be passed in to the UNIX service module:
debug syslog (3C) Debugging information at

LOG_DEBUGlevel.

Last modified 28 Oct 1996 SunOS 5.8 265



pam_unix(5) Headers, Tables, and Macros

nowarn Turn off warning messages.

use_first_pass It compares the password in the password
database with the user’s old password (entered to
the first password module in the stack). If the
passwords do not match, or if no password has
been entered, it quits and does not prompt the
user for the old password. It also attempts to use
the new password (entered to the first password
module in the stack) as the new password for this
module. If the new password fails, it quits and
does not prompt the user for a new password.

try_first_pass It compares the password in the password
database with the user’s old password (entered
to the first password module in the stack). If
the passwords do not match, or if no password
has been entered, it prompts the user for the
old password. It also attempts to use the new
password (entered to the first password module
in the stack) as the new password for this
module. If the new password fails, it prompts
the user for a new password. If the user’s
password has expired, the UNIX account module
saves this information in the authentication
handle using pam_set_data( ) , with a
unique name, SUNW_UNIX_AUTHOK_DATA.
The UNIX password module retrieves this
information from the authentication handle using
pam_get_data( ) to determine whether or not
to force the user to update the user’s password.

ATTRIBUTES See attributes (5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level MT-Safe with exceptions

SEE ALSO keylogin (1), pam(3PAM), pam_authenticate (3PAM),
pam_setcred (3PAM), syslog (3C), libpam (3LIB), pam.conf (4),
attributes (5)

NOTES The interfaces in libpam() are MT-Safe only if each thread within the
multi-threaded application uses its own PAM handle.

266 SunOS 5.8 Last modified 28 Oct 1996



Headers, Tables, and Macros prof(5)

NAME prof – profile within a function

SYNOPSIS #define MARK
#include <prof.h>
void MARK(name);

DESCRIPTION MARKintroduces a mark called name that is treated the same as a function
entry point. Execution of the mark adds to a counter for that mark, and
program-counter time spent is accounted to the immediately preceding mark or
to the function if there are no preceding marks within the active function.

name may be any combination of letters, numbers, or underscores. Each name
in a single compilation must be unique, but may be the same as any ordinary
program symbol.

For marks to be effective, the symbol MARKmust be defined before the header
prof.h is included, either by a preprocessor directive as in the synopsis, or by
a command line argument:

cc –p –DMARK work.c

If MARKis not defined, the MARK(name) statements may be left in the source files
containing them and are ignored. prof –g must be used to get information on
all labels.

EXAMPLES In this example, marks can be used to determine how much time is spent in each
loop. Unless this example is compiled with MARKdefined on the command
line, the marks are ignored.

#include <prof.h>
work( )
{

int i, j;
. . .
MARK(loop1);
for (i = 0; i < 2000; i++) {

. . .
}
MARK(loop2);
for (j = 0; j < 2000; j++) {

. . .
}

}

SEE ALSO profil (2), monitor (3C)

Last modified 3 Jul 1990 SunOS 5.8 267



rbac(5) Headers, Tables, and Macros

NAME rbac – role-based access control

DESCRIPTION The addition of role-based access control (RBAC) to the Solaris operating
environment gives developers the opportunity to deliver fine-grained security in
new and modified applications. RBAC is an alternative to the all-or-nothing
security model of traditional superuser-based systems. With RBAC, an
administrator can assign privileged functions to specific user accounts (or
special accounts called roles).

There are two ways of giving applications privileges:

1. Administrators can assign special attributes such as setUID to applications.

2. Administrators can assign special attributes such as setUID to applications.

Special attribute assignment along with the theory behind RBAC is discussed
in detail in “Role Based Access Control” chapter of the System Administration
Guide, Volume 2. This section describes what authorizations are and how to
code for them.

Authorizations An authorization is a unique string that represents a user’s right to perform
some operation or class of operations. Authorization definitions are stored in a
database called auth_attr(4). For programming authorization checks, only
the authorization name is significant.

Some typical values in an auth_attr database are shown below.

solaris.jobs.:::Cron and At Jobs::help=JobHeader.html
solaris.admin:::Cron & At Administrator::help=JobsAdmin.html
solaris.grant:::Delegate Cron & At Administration::help=JobsGrant.html
solaris.jobs.user:::Cron & At User::help=JobsUser.html

Note the authorization name strings ending with the grant suffix. These are
special authorizations; they give a user the ability to delegate authorizations
with the same prefix and functional area to other users.

Creating
Authorization Checks

To check authorizations, use the chkauthattr (3SECDB) library function, which
verifies whether or not a user has a given authorization. The synopsis is:

int chkauthattr(const char *authname, const char *username);

The chkauthattr( ) function checks the policy.conf(4), user_attr(4), and
prof_attr(4) databases in order for a match to the given authorization.

If you are modifying existing code that tests for root UID, you should find the
test in the code and replace it with the chkauthattr function. A typical root UID
check is shown in Figure 1, with the test underlined. An authorization check
replacing it is shown in Figure 2; it uses the solaris.jobs.admin authorization and
a variable called real_login representing the user.

268 SunOS 5.8 Last modified 12 Aug 1999



Headers, Tables, and Macros rbac(5)

EXAMPLE 1 Standard root check
ruid = getuid();

if ((eflag || lflag || rflag) && argc == 1) {
if ((pwp = getpwnam(*argv)) == NULL)

crabort(INVALIDUSER);

if (ruid != 0) {
if (pwp->pw_uid != ruid)

crabort(NOTROOT);
else

pp = getuser(ruid);
} else

pp = *argv++;
} else {

EXAMPLE 2 Authorization check
ruid = getuid();
if ((pwp = getpwuid(ruid)) == NULL)

crabort(INVALIDUSER);

strcpy(real_login, pwp->pw_name);

if ((eflag || lflag || rflag) && argc == 1) {
if ((pwp = getpwnam(*argv)) == NULL)

crabort(INVALIDUSER);

if (!chkauthattr("solaris.jobs.admin", real_login)) {
if (pwp->pw_uid != ruid)

crabort(NOTROOT);
else

pp = getuser(ruid);
} else

pp = *argv++;
} else {

For new applications, find an appropriate location for the test and use
chkauthattr( ) as shown above. Typically the authorization check makes
an access decision based on the identity of the calling user to determine if a
privileged action (for example, a system call) should be taken on behalf of
that user.

Applications that perform a test to restrict who can perform their
security-relevant functionality are generally setuid to root. Programs that were
written prior to RBAC and that are only available to the root user may not have
such checks. Remember that in most cases, the kernel requires an effective user
ID of root in order to override policy enforcement. Therefore, authorization
checking is most useful in programs that are setuid to root.

For instance, if you want to write a program that allows authorized users to set
the system date, the command must be run with an effective user ID of root.
Typically, this means that the file modes for the file would be -rwsr-xr-x
with root ownership.

Last modified 12 Aug 1999 SunOS 5.8 269



rbac(5) Headers, Tables, and Macros

Use caution, though, when making programs setuid to root. For example, the
effective UID should be set to the real UID as early as possible in the program’s
initialization function. The effective UID can then be set back to root after the
authorization check is performed and before the system call is made. On return
from the system call, the effective UID should be set back to the real UID again to
adhere to the principle of least privilege.

Another consideration is that LD_LIBRARYpath is ignored for setuid programs
(see SECURITY section in ld.so.1 (1)) and that shell scripts must be modified
to work properly when the effective and real UIDs are different. For example,
the −p flag in Bourne shell is required to avoid resetting the effective UID back
to the real UID.

Using an effective UID of root instead of the real UID requires extra care when
writing shell scripts. For example, many shell scripts check to see if the user is
root before executing their functionality. With RBAC, these shell scripts may
be running with the effective UID of root and with a real UID of a user or role.
Thus, the shell script should check euid instead of uid. For example,

WHO=‘id | cut -f1 -d" "‘
if [ ! "$WHO" = "uid=0(root)" ]
then

echo "$PROG: ERROR: you must be super-user to run this script."
exit 1

fi

should be changed to

WHO=‘/usr/xpg4/bin/id -n -u‘
if [ ! "$WHO" = "root" ]
then

echo "$PROG: ERROR: you are not authorized to run this script."
exit 1

fi

Authorizations can be explicitly checked in shell scripts by piping the output of
the auths (1) utility to grep (1). For example,

AUTHS=‘auths‘
echo $AUTHS|grep "^solaris.date$"
if [ $? -ne 0 ]
then

echo "$PROG: ERROR: you are not authorized to set the date."
exit 1

fi

SEE ALSO ld.so.1 (1), chkauthattr (3SECDB), policy.conf (4), prof_attr (4),
user_attr (4)

270 SunOS 5.8 Last modified 12 Aug 1999



Headers, Tables, and Macros regex(5)

NAME regex – internationalized basic and extended regular expression matching

DESCRIPTION Regular Expressions (REs) provide a mechanism to select specific strings from a
set of character strings. The Internationalized Regular Expressions described
below differ from the Simple Regular Expressions described on the regexp (5)
manual page in the following ways:

� both Basic and Extended Regular Expressions are supported

� the Internationalization features—character class, equivalence class, and
multi-character collation—are supported.

The Basic Regular Expression (BRE) notation and construction rules described in
the BASIC REGULAR EXPRESSIONSsection apply to most utilities supporting
regular expressions. Some utilities, instead, support the Extended Regular
Expressions (ERE) described in the EXTENDED REGULAR EXPRESSIONSsection;
any exceptions for both cases are noted in the descriptions of the specific utilities
using regular expressions. Both BREs and EREs are supported by the Regular
Expression Matching interfaces regcomp (3C) and regexec (3C).

BASIC REGULAR
EXPRESSIONS
BREs Matching a
Single Character

A BRE ordinary character, a special character preceded by a backslash, or a
period matches a single character. A bracket expression matches a single
character or a single collating element. See RE Bracket Expression , below.

BRE Ordinary
Characters

An ordinary character is a BRE that matches itself: any character in the
supported character set, except for the BRE special characters listed in BRE
Special Characters , below.

The interpretation of an ordinary character preceded by a backslash (\) is
undefined, except for:

1. the characters ), (, {, and }

2. the digits 1 to 9 inclusive (see BREs Matching Multiple Characters ,
below)

3. a character inside a bracket expression.

BRE Special
Characters

A BRE special character has special properties in certain contexts. Outside those
contexts, or when preceded by a backslash, such a character will be a BRE that
matches the special character itself. The BRE special characters and the contexts
in which they have their special meaning are:
. [ \ The period, left-bracket, and backslash are special except when used

in a bracket expression (see RE Bracket Expression , below). An
expression containing a [ that is not preceded by a backslash and is not
part of a bracket expression produces undefined results.

Last modified 12 Jul 1999 SunOS 5.8 271



regex(5) Headers, Tables, and Macros

* The asterisk is special except when used:

� in a bracket expression

� as the first character of an entire BRE (after an initial ^, if any)

� as the first character of a subexpression (after an initial ^, if any);
see BREs Matching Multiple Characters , below.

^ The circumflex is special when used:

� as an anchor (see BRE Expression Anchoring , below).

� as the first character of a bracket expression (see RE Bracket
Expression , below).

$ The dollar sign is special when used as an anchor.

Periods in BREs A period (. ), when used outside a bracket expression, is a BRE that matches any
character in the supported character set except NUL.

RE Bracket
Expression

A bracket expression (an expression enclosed in square brackets, [ ]) is an RE that
matches a single collating element contained in the non-empty set of collating
elements represented by the bracket expression.

The following rules and definitions apply to bracket expressions:

1. A bracket expression is either a matching list expression or a non-matching
list expression. It consists of one or more expressions: collating elements,
collating symbols, equivalence classes, character classes, or range
expressions (see rule 7 below). Portable applications must not use
range expressions, even though all implementations support them. The
right-bracket (]) loses its special meaning and represents itself in a bracket
expression if it occurs first in the list (after an initial circumflex (^), if any).
Otherwise, it terminates the bracket expression, unless it appears in a
collating symbol (such as [.].]) or is the ending right-bracket for a collating
symbol, equivalence class, or character class. The special characters:

. * [ \

(period, asterisk, left-bracket and backslash, respectively) lose their special
meaning within a bracket expression.

The character sequences:

[. [= [:

(left-bracket followed by a period, equals-sign, or colon) are special inside a
bracket expression and are used to delimit collating symbols, equivalence
class expressions, and character class expressions. These symbols must be
followed by a valid expression and the matching terminating sequence .], =]
or :], as described in the following items.

272 SunOS 5.8 Last modified 12 Jul 1999



Headers, Tables, and Macros regex(5)

2. A matching list expression specifies a list that matches any one of the
expressions represented in the list. The first character in the list must not
be the circumflex. For example, [abc] is an RE that matches any of the
characters a, b or c .

3. A non-matching list expression begins with a circumflex (^), and specifies
a list that matches any character or collating element except for the
expressions represented in the list after the leading circumflex. For example,
[^abc] is an RE that matches any character or collating element except the
characters a, b , or c . The circumflex will have this special meaning only
when it occurs first in the list, immediately following the left-bracket.

4. A collating symbol is a collating element enclosed within bracket-period
([..]) delimiters. Multi-character collating elements must be represented as
collating symbols when it is necessary to distinguish them from a list of the
individual characters that make up the multi-character collating element.
For example, if the string ch is a collating element in the current collation
sequence with the associated collating symbol <ch>, the expression [[.ch.]]
will be treated as an RE matching the character sequence ch , while [ch] will
be treated as an RE matching c or h. Collating symbols will be recognized
only inside bracket expressions. This implies that the RE [[.ch.]]*c
matches the first to fifth character in the string chchch. If the string is not
a collating element in the current collating sequence definition, or if the
collating element has no characters associated with it, the symbol will be
treated as an invalid expression.

5. An equivalence class expression represents the set of collating elements
belonging to an equivalence class. Only primary equivalence classes will
be recognised. The class is expressed by enclosing any one of the collating
elements in the equivalence class within bracket-equal ([==]) delimiters.
For example, if a, and belong to the same equivalence class, then [[=a=]b],
[[==]b] and [[==]b] will each be equivalent to [ab]. If the collating element
does not belong to an equivalence class, the equivalence class expression
will be treated as a collating symbol.

6. A character class expression represents the set of characters belonging to a
character class, as defined in the LC_CTYPEcategory in the current locale.
All character classes specified in the current locale will be recognized. A
character class expression is expressed as a character class name enclosed
within bracket-colon ([::]) delimiters.

The following character class expressions are supported in all locales:

[:alnum:] [:cntrl:] [:lower:] [:space:]

[:alpha:] [:digit:] [:print:] [:upper:]

[:blank:] [:graph:] [:punct:] [:xdigit:]

Last modified 12 Jul 1999 SunOS 5.8 273



regex(5) Headers, Tables, and Macros

In addition, character class expressions of the form:

[:name:]

are recognized in those locales where the name keyword has been given a
charclass definition in the LC_CTYPEcategory.

7. A range expression represents the set of collating elements that fall between
two elements in the current collation sequence, inclusively. It is expressed as
the starting point and the ending point separated by a hyphen (–).

Range expressions must not be used in portable applications because their
behavior is dependent on the collating sequence. Ranges will be treated
according to the current collating sequence, and include such characters
that fall within the range based on that collating sequence, regardless of
character values. This, however, means that the interpretation will differ
depending on collating sequence. If, for instance, one collating sequence
defines as a variant of a, while another defines it as a letter following z , then
the expression [–z] is valid in the first language and invalid in the second.

In the following, all examples assume the collation sequence specified for
the POSIX locale, unless another collation sequence is specifically defined.

The starting range point and the ending range point must be a collating
element or collating symbol. An equivalence class expression used as a
starting or ending point of a range expression produces unspecified results.
An equivalence class can be used portably within a bracket expression, but
only outside the range. For example, the unspecified expression [[=e=]−f]
should be given as [[=e=]e−f]. The ending range point must collate equal
to or higher than the starting range point; otherwise, the expression will
be treated as invalid. The order used is the order in which the collating
elements are specified in the current collation definition. One-to-many
mappings (see locale (5)) will not be performed. For example, assuming
that the character eszet is placed in the collation sequence after r and s , but
before t , and that it maps to the sequence ss for collation purposes, then
the expression [r−s] matches only r and s , but the expression [s−t] matches
s , beta , or t .

The interpretation of range expressions where the ending range point is also
the starting range point of a subsequent range expression (for instance
[a−m−o]) is undefined.

The hyphen character will be treated as itself if it occurs first (after an
initial ^, if any) or last in the list, or as an ending range point in a range
expression. As examples, the expressions [−ac] and [ac−] are equivalent and
match any of the characters a, c , or −; [^−ac] and [^ac−] are equivalent and
match any characters except a, c , or −; the expression [%− −] matches any of
the characters between % and − inclusive; the expression [− −@] matches
any of the characters between − and @ inclusive; and the expression [a− −@]

274 SunOS 5.8 Last modified 12 Jul 1999



Headers, Tables, and Macros regex(5)

is invalid, because the letter a follows the symbol − in the POSIX locale.
To use a hyphen as the starting range point, it must either come first in
the bracket expression or be specified as a collating symbol, for example:
[][.−.]−0], which matches either a right bracket or any character or collating
element that collates between hyphen and 0, inclusive.

If a bracket expression must specify both − and ], the ] must be placed first
(after the ^, if any) and the − last within the bracket expression.

Note: Latin-1 characters such as o` r aˆ re not printable in some locales, for
example, the ja locale.

BREs Matching
Multiple Characters

The following rules can be used to construct BREs matching multiple characters
from BREs matching a single character:

1. The concatenation of BREs matches the concatenation of the strings matched
by each component of the BRE.

2. A subexpression can be defined within a BRE by enclosing it between
the character pairs \( and \) . Such a subexpression matches whatever it
would have matched without the \( and \), except that anchoring within
subexpressions is optional behavior; see BRE Expression Anchoring ,
below. Subexpressions can be arbitrarily nested.

3. The back-reference expression \n matches the same (possibly empty) string
of characters as was matched by a subexpression enclosed between \(
and \) preceding the \n. The character n must be a digit from 1 to 9
inclusive, nth subexpression (the one that begins with the nth \( and
ends with the corresponding paired \) ). The expression is invalid if
less than n subexpressions precede the \n. For example, the expression
^\(.*\)\1$ matches a line consisting of two adjacent appearances of the
same string, and the expression \(a\)*\1 fails to match a. The limit of
nine back-references to subexpressions in the RE is based on the use of a
single digit identifier. This does not imply that only nine subexpressions are
allowed in REs. The following is a valid BRE with ten subexpressions:

\(\(\(ab\)*c\)*d\)\(ef\)*\(gh\)\{2\}\(ij\)*\(kl\)*\(mn\)*\(op\)*\(qr\)*

4. When a BRE matching a single character, a subexpression or a back-reference
is followed by the special character asterisk (*), together with that asterisk
it matches what zero or more consecutive occurrences of the BRE would
match. For example, [ab]* and [ab][ab] are equivalent when matching
the string ab .

5. When a BRE matching a single character, a subexpression, or a
back-reference is followed by an interval expression of the format \{m\},
\{m,\} or \{m,n\}, together with that interval expression it matches what
repeated consecutive occurrences of the BRE would match. The values of

Last modified 12 Jul 1999 SunOS 5.8 275



regex(5) Headers, Tables, and Macros

m and n will be decimal integers in the range 0 ≤ m ≤ n ≤ {RE_DUP_MAX},
where m specifies the exact or minimum number of occurrences and n
specifies the maximum number of occurrences. The expression \{m\}
matches exactly m occurrences of the preceding BRE, \{m,\} matches at least
m occurrences and \{m,n\} matches any number of occurrences between
m and n, inclusive.

For example, in the string abababccccccd , the BRE c\{3\} is matched by
characters seven to nine, the BRE \(ab\)\{4,\} is not matched at all and the
BRE c\{1,3\}d is matched by characters ten to thirteen.

The behavior of multiple adjacent duplication symbols ( * and intervals)
produces undefined results.

BRE Precedence The order of precedence is as shown in the following table:

BRE Precedence (from high to low)

collation-related bracket symbols [= =] [: :] [. .]

escaped characters \<special character>

bracket expression [ ]

subexpressions/back-references \( \) \n

single-character-BRE duplication * \{m,n\}

concatenation

anchoring ^ $

BRE Expression
Anchoring

A BRE can be limited to matching strings that begin or end a line; this is called
anchoring. The circumflex and dollar sign special characters will be considered
BRE anchors in the following contexts:

1. A circumflex ( ^ ) is an anchor when used as the first character of an entire
BRE. The implementation may treat circumflex as an anchor when used
as the first character of a subexpression. The circumflex will anchor the
expression to the beginning of a string; only sequences starting at the first
character of a string will be matched by the BRE. For example, the BRE ^ab
matches ab in the string abcdef, but fails to match in the string cdefab .
A portable BRE must escape a leading circumflex in a subexpression to
match a literal circumflex.

2. A dollar sign ( $ ) is an anchor when used as the last character of an entire
BRE. The implementation may treat a dollar sign as an anchor when used

276 SunOS 5.8 Last modified 12 Jul 1999



Headers, Tables, and Macros regex(5)

as the last character of a subexpression. The dollar sign will anchor the
expression to the end of the string being matched; the dollar sign can be
said to match the end-of-string following the last character.

3. A BRE anchored by both ^ and $ matches only an entire string. For
example, the BRE ^abcdef$ matches strings consisting only of abcdef .

4. ^ and $ are not special in subexpressions.

Note: The Solaris implementation does not support anchoring in BRE
subexpressions.

EXTENDED
REGULAR

EXPRESSIONS

The rules specififed for BREs apply to Extended Regular Expressions (EREs)
with the following exceptions:

� The characters | , +, and ? have special meaning, as defined below.

� The { and } characters, when used as the duplication operator, are not
preceded by backslashes. The constructs \{ and \} simply match the
characters { and } , respectively.

� The back reference operator is not supported.

� Anchoring (^$ ) is supported in subexpressions.

EREs Matching a
Single Character

An ERE ordinary character, a special character preceded by a backslash, or
a period matches a single character. A bracket expression matches a single
character or a single collating element. An ERE matching a single character
enclosed in parentheses matches the same as the ERE without parentheses
would have matched.

ERE Ordinary
Characters

An ordinary character is an ERE that matches itself. An ordinary character is any
character in the supported character set, except for the ERE special characters
listed in ERE Special Characters below. The interpretation of an ordinary
character preceded by a backslash (\ ) is undefined.

ERE Special
Characters

An ERE special character has special properties in certain contexts. Outside those
contexts, or when preceded by a backslash, such a character is an ERE that
matches the special character itself. The extended regular expression special
characters and the contexts in which they have their special meaning are:
. [ \ ( The period, left-bracket, backslash, and left-parenthesis

are special except when used in a bracket expression (see
RE Bracket Expression , above). Outside a bracket
expression, a left-parenthesis immediately followed by a
right-parenthesis produces undefined results.

) The right-parenthesis is special when matched with a
preceding left-parenthesis, both outside a bracket expression.

* + ? { The asterisk, plus-sign, question-mark, and left-brace are
special except when used in a bracket expression (see RE

Last modified 12 Jul 1999 SunOS 5.8 277



regex(5) Headers, Tables, and Macros

Bracket Expression , above). Any of the following uses
produce undefined results:

� if these characters appear first in an ERE, or immediately
following a vertical-line, circumflex or left-parenthesis

� if a left-brace is not part of a valid interval expression.

| The vertical-line is special except when used in a bracket
expression (see RE Bracket Expression , above). A
vertical-line appearing first or last in an ERE, or immediately
following a vertical-line or a left-parenthesis, or immediately
preceding a right-parenthesis, produces undefined results.

^ The circumflex is special when used:

� as an anchor (see ERE Expression Anchoring , below).

� as the first character of a bracket expression (see RE
Bracket Expression , above).

$ The dollar sign is special when used as an anchor.

Periods in EREs A period (. ), when used outside a bracket expression, is an ERE that matches
any character in the supported character set except NUL.

ERE Bracket
Expression

The rules for ERE Bracket Expressions are the same as for Basic Regular
Expressions; see RE Bracket Expression , above).

EREs Matching
Multiple Characters

The following rules will be used to construct EREs matching multiple characters
from EREs matching a single character:

1. A concatenation of EREs matches the concatenation of the character sequences
matched by each component of the ERE. A concatenation of EREs enclosed
in parentheses matches whatever the concatenation without the parentheses
matches. For example, both the ERE cd and the ERE (cd) are matched by
the third and fourth character of the string abcdefabcdef .

2. When an ERE matching a single character or an ERE enclosed in parentheses
is followed by the special character plus-sign (+), together with that
plus-sign it matches what one or more consecutive occurrences of the
ERE would match. For example, the ERE b+(bc) matches the fourth to
seventh characters in the string acabbbcde; [ab] + and [ab][ab]*
are equivalent.

3. When an ERE matching a single character or an ERE enclosed in parentheses
is followed by the special character asterisk (* ), together with that asterisk
it matches what zero or more consecutive occurrences of the ERE would
match. For example, the ERE b*c matches the first character in the string

278 SunOS 5.8 Last modified 12 Jul 1999



Headers, Tables, and Macros regex(5)

cabbbcde, and the ERE b*cd matches the third to seventh characters
in the string cabbbcdebbbbbbcdbc . And, [ab]* and [ab][ab] are
equivalent when matching the string ab .

4. When an ERE matching a single character or an ERE enclosed in parentheses
is followed by the special character question-mark (?), together with that
question-mark it matches what zero or one consecutive occurrences of the
ERE would match. For example, the ERE b?c matches the second character
in the string acabbbcde .

5. When an ERE matching a single character or an ERE enclosed in parentheses
is followed by an interval expression of the format {m}, {m,} or {m,n},
together with that interval expression it matches what repeated consecutive
occurrences of the ERE would match. The values of m and n will be decimal
integers in the range 0 ≤ m ≤ n ≤ {RE_DUP_MAX}, where m specifies the
exact or minimum number of occurrences and n specifies the maximum
number of occurrences. The expression {m} matches exactly m occurrences
of the preceding ERE, {m,} matches at least m occurrences and {m,n} matches
any number of occurrences between m and n, inclusive.

For example, in the string abababccccccd the ERE c{3} is matched by
characters seven to nine and the ERE (ab){2,} is matched by characters one to six.

The behavior of multiple adjacent duplication symbols ( +, * , ? and intervals)
produces undefined results.

ERE Alternation Two EREs separated by the special character vertical-line (|) match a string that
is matched by either. For example, the ERE a((bc)|d) matches the string abc and
the string ad. Single characters, or expressions matching single characters,
separated by the vertical bar and enclosed in parentheses, will be treated as
an ERE matching a single character.

ERE Precedence The order of precedence will be as shown in the following table:

ERE Precedence (from high to low)

collation-related bracket symbols [= =] [: :] [. .]

escaped characters \<special character>

bracket expression [ ]

grouping ( )

single-character-ERE duplication * + ? {m,n}

concatenation

Last modified 12 Jul 1999 SunOS 5.8 279



regex(5) Headers, Tables, and Macros

anchoring ^ $

alternation |

For example, the ERE abba | cde matches either the string abba or the string
cde (rather than the string abbade or abbcde , because concatenation has a
higher order of precedence than alternation).

ERE Expression
Anchoring

An ERE can be limited to matching strings that begin or end a line; this is called
anchoring. The circumflex and dollar sign special characters are considered
ERE anchors when used anywhere outside a bracket expression. This has the
following effects:

1. A circumflex (^) outside a bracket expression anchors the expression or
subexpression it begins to the beginning of a string; such an expression or
subexpression can match only a sequence starting at the first character
of a string. For example, the EREs ^ab and (^ab) match ab in the string
abcdef, but fail to match in the string cdefab, and the ERE a^b is valid, but
can never match because the a prevents the expression ^b from matching
starting at the first character.

2. A dollar sign ( $ ) outside a bracket expression anchors the expression
or subexpression it ends to the end of a string; such an expression or
subexpression can match only a sequence ending at the last character of a
string. For example, the EREs ef$ and (ef$) match ef in the string abcdef, but
fail to match in the string cdefab, and the ERE e$f is valid, but can never
match because the f prevents the expression e$ from matching ending
at the last character.

SEE ALSO localedef (1), regcomp (3C), attributes (5), environ (5), locale (5),
regexp (5)

280 SunOS 5.8 Last modified 12 Jul 1999



Headers, Tables, and Macros regexp(5)

NAME regexp, compile, step, advance – simple regular expression compile and match
routines

SYNOPSIS #define INIT declarations
#define GETC(void) getc code
#define PEEKC(void) peekc code
#define UNGETC(void) ungetc code
#define RETURN(ptr) return code
#define ERROR(val) error code

extern char *loc1, *loc2, *locs;

#include <regexp.h>
char *compile (char *instring, char *expbuf, const char *endfug, int eof);

int step (const char *string, const char *expbuf);

int advance (const char *string, const char *expbuf);

DESCRIPTION Regular Expressions (REs) provide a mechanism to select specific strings from a
set of character strings. The Simple Regular Expressions described below differ
from the Internationalized Regular Expressions described on the regex (5)
manual page in the following ways:

� only Basic Regular Expressions are supported

� the Internationalization features–character class, equivalence class, and
multi-character collation–are not supported.

The functions step( ) , advance() , and compile() are general purpose
regular expression matching routines to be used in programs that perform
regular expression matching. These functions are defined by the <regexp.h>
header.

The functions step( ) and advance() do pattern matching given a character
string and a compiled regular expression as input.

The function compile() takes as input a regular expression as defined
below and produces a compiled expression that can be used with step( )
or advance() .

Basic Regular
Expressions

A regular expression specifies a set of character strings. A member of this set
of strings is said to be matched by the regular expression. Some characters
have special meaning when used in a regular expression; other characters
stand for themselves.

The following one-character RE s match a single character:
1.1 An ordinary character ( not one of those discussed in 1.2 below) is a

one-character RE that matches itself.

Last modified 2 Apr 1996 SunOS 5.8 281



regexp(5) Headers, Tables, and Macros

1.2 A backslash (\\ ) followed by any special character is a one-character
RE that matches the special character itself. The special characters are:

a. . , * , [ , and \\ (period, asterisk, left square bracket, and
backslash, respectively), which are always special, except when
they appear within square brackets ([] ; see 1.4 below).

b. ^ (caret or circumflex), which is special at the beginning of an
entire RE (see 4.1 and 4.3 below), or when it immediately
follows the left of a pair of square brackets ([] ) (see 1.4
below).

c. $ (dollar sign), which is special at the end of an entire RE
(see 4.2 below).

d. The character used to bound (that is, delimit) an entire RE,
which is special for that RE (for example, see how slash (/ ) is
used in the g command, below.)

1.3 A period (. ) is a one-character RE that matches any character except
new-line.

1.4 A non-empty string of characters enclosed in square brackets ([]
) is a one-character RE that matches any one character in that string.
If, however, the first character of the string is a circumflex (^), the
one-character RE matches any character except new-line and the
remaining characters in the string. The ^ has this special meaning only
if it occurs first in the string. The minus (- ) may be used to indicate
a range of consecutive characters; for example, [0-9] is equivalent
to [0123456789] . The - loses this special meaning if it occurs first
(after an initial ^, if any) or last in the string. The right square bracket
(] ) does not terminate such a string when it is the first character
within it (after an initial ^, if any); for example, []a-f] matches either
a right square bracket (] ) or one of the ASCII letters a through f
inclusive. The four characters listed in 1.2.a above stand for themselves
within such a string of characters.

The following rules may be used to construct REs from one-character REs:
2.1 A one-character RE is a RE that matches whatever

the one-character RE matches.

2.2 A one-character RE followed by an asterisk (* )
is a RE that matches 0 or more occurrences of
the one-character RE. If there is any choice, the
longest leftmost string that permits a match
is chosen.

282 SunOS 5.8 Last modified 2 Apr 1996



Headers, Tables, and Macros regexp(5)

2.3 A one-character RE followed by \\{ m \\} , \\{
m, \\} , or \\{ m,n \\} is a RE that matches
a range of occurrences of the one-character RE.
The values of m and n must be non-negative
integers less than 256; \\{ m \\} matches exactly
m occurrences; \\{ m, \\} matches at least m
occurrences; \\{ m,n \\} matches any number
of occurrences between m and n inclusive.
Whenever a choice exists, the RE matches as
many occurrences as possible.

2.4 The concatenation of REs is a RE that matches
the concatenation of the strings matched by each
component of the RE.

2.5 A RE enclosed between the character sequences
\\( and \\) is a RE that matches whatever the
unadorned RE matches.

2.6 The expression \\ n matches the same string of
characters as was matched by an expression
enclosed between \\( and \\) earlier in the same
RE. Here n is a digit; the sub-expression specified
is that beginning with the n -th occurrence of
\\( counting from the left. For example, the
expression ^\\(.*\\)\\1$ matches a line
consisting of two repeated appearances of the
same string.

An RE may be constrained to match words.
3.1 \\< constrains a RE to match the beginning of a

string or to follow a character that is not a digit,
underscore, or letter. The first character matching
the RE must be a digit, underscore, or letter.

3.2 \\> constrains a RE to match the end of a string
or to precede a character that is not a digit,
underscore, or letter.

An entire RE may be constrained to match only an initial segment or final
segment of a line (or both).
4.1 A circumflex (^) at the beginning of an entire RE

constrains that RE to match an initial segment
of a line.

Last modified 2 Apr 1996 SunOS 5.8 283



regexp(5) Headers, Tables, and Macros

4.2 A dollar sign ($ ) at the end of an entire RE
constrains that RE to match a final segment of
a line.

4.3 The construction ^entire RE $ constrains the
entire RE to match the entire line.

The null RE (for example, // ) is equivalent to the last RE encountered.

Addressing with REs Addresses are constructed as follows:

1. The character ". " addresses the current line.

2. The character "$ " addresses the last line of the buffer.

3. A decimal number n addresses the n -th line of the buffer.

4. ’x addresses the line marked with the mark name character x , which must
be an ASCII lower-case letter (a -z ). Lines are marked with the k command
described below.

5. A RE enclosed by slashes (/ ) addresses the first line found by searching
forward from the line following the current line toward the end of the
buffer and stopping at the first line containing a string matching the RE.
If necessary, the search wraps around to the beginning of the buffer and
continues up to and including the current line, so that the entire buffer is
searched.

6. A RE enclosed in question marks (? ) addresses the first line found by
searching backward from the line preceding the current line toward the
beginning of the buffer and stopping at the first line containing a string
matching the RE. If necessary, the search wraps around to the end of the
buffer and continues up to and including the current line.

7. An address followed by a plus sign (+ ) or a minus sign (- ) followed by
a decimal number specifies that address plus (respectively minus) the
indicated number of lines. A shorthand for .+5 is .5.

8. If an address begins with + or - , the addition or subtraction is taken with
respect to the current line; for example, -5 is understood to mean .-5 .

9. If an address ends with + or - , then 1 is added to or subtracted from
the address, respectively. As a consequence of this rule and of Rule 8,
immediately above, the address - refers to the line preceding the current
line. (To maintain compatibility with earlier versions of the editor, the
character ^ in addresses is entirely equivalent to - .) Moreover, trailing +
and - characters have a cumulative effect, so -- refers to the current line
less 2.

10.For convenience, a comma (, ) stands for the address pair 1,$ , while a
semicolon (; ) stands for the pair .,$ .

284 SunOS 5.8 Last modified 2 Apr 1996



Headers, Tables, and Macros regexp(5)

Characters With
Special Meaning

Characters that have special meaning except when they appear within square
brackets ([] ) or are preceded by \\ are: . , * , [ , \\ . Other special characters,
such as $ have special meaning in more restricted contexts.

The character ^ at the beginning of an expression permits a successful match
only immediately after a newline, and the character $ at the end of an expression
requires a trailing newline.

Two characters have special meaning only when used within square brackets.
The character - denotes a range, [ c - c ] , unless it is just after the open
bracket or before the closing bracket, [- c ] or [ c -] in which case it has no
special meaning. When used within brackets, the character ^ has the meaning
complement of if it immediately follows the open bracket (example: [^ c ]
); elsewhere between brackets (example: [ c ^] ) it stands for the ordinary
character ^ .

The special meaning of the \\ operator can be escaped only by preceding it
with another \\ , for example \\\\ .

Macros Programs must have the following five macros declared before the #include
<regexp.h> statement. These macros are used by the compile( ) routine.
The macros GETC, PEEKC, and UNGETCoperate on the regular expression
given as input to compile() .
GETC This macro returns the value of the next character (byte) in

the regular expression pattern. Successive calls to GETC
should return successive characters of the regular expression.

PEEKC This macro returns the next character (byte) in the regular
expression. Immediately successive calls to PEEKCshould
return the same character, which should also be the next
character returned by GETC.

UNGETC This macro causes the argument c to be returned by the next
call to GETCand PEEKC. No more than one character of
pushback is ever needed and this character is guaranteed to
be the last character read by GETC. The return value of the
macro UNGETC(c) is always ignored.

RETURN(
ptr
)

This macro is used on normal exit of the compile()
routine. The value of the argument ptr is a pointer to the
character after the last character of the compiled regular
expression. This is useful to programs which have memory
allocation to manage.

ERROR(
val
)

This macro is the abnormal return from the compile( )
routine. The argument val is an error number (see ERRORS
below for meanings). This call should never return.

Last modified 2 Apr 1996 SunOS 5.8 285



regexp(5) Headers, Tables, and Macros

compile( ) The syntax of the compile( ) routine is as follows:

compile( instring, expbuf, endbuf, eof)

The first parameter, instring , is never used explicitly by the compile( ) routine
but is useful for programs that pass down different pointers to input characters.
It is sometimes used in the INIT declaration (see below). Programs which call
functions to input characters or have characters in an external array can pass
down a value of (char *)0 for this parameter.

The next parameter, expbuf , is a character pointer. It points to the place where
the compiled regular expression will be placed.

The parameter endbuf is one more than the highest address where the compiled
regular expression may be placed. If the compiled expression cannot fit in
(endbuf-expbuf) bytes, a call to ERROR(50) is made.

The parameter eof is the character which marks the end of the regular expression.
This character is usually a / .

Each program that includes the <regexp.h> header file must have a #define
statement for INIT . It is used for dependent declarations and initializations.
Most often it is used to set a register variable to point to the beginning of the
regular expression so that this register variable can be used in the declarations
for GETC, PEEKC, and UNGETC. Otherwise it can be used to declare external
variables that might be used by GETC, PEEKCand UNGETC. (See EXAMPLES
below.)

step(), advance() The first parameter to the step() and advance() functions is a pointer to
a string of characters to be checked for a match. This string should be null
terminated.

The second parameter, expbuf , is the compiled regular expression which was
obtained by a call to the function compile( ) .

The function step() returns non-zero if some substring of string matches the
regular expression in expbuf and 0 if there is no match. If there is a match, two
external character pointers are set as a side effect to the call to step( ) . The
variable loc1 points to the first character that matched the regular expression;
the variable loc2 points to the character after the last character that matches
the regular expression. Thus if the regular expression matches the entire input
string, loc1 will point to the first character of string and loc2 will point to
the null at the end of string .

The function advance( ) returns non-zero if the initial substring of string
matches the regular expression in expbuf . If there is a match, an external

286 SunOS 5.8 Last modified 2 Apr 1996



Headers, Tables, and Macros regexp(5)

character pointer, loc2 , is set as a side effect. The variable loc2 points to the
next character in string after the last character that matched.

When advance() encounters a * or \\{ \\} sequence in the regular
expression, it will advance its pointer to the string to be matched as far as
possible and will recursively call itself trying to match the rest of the string to
the rest of the regular expression. As long as there is no match, advance()
will back up along the string until it finds a match or reaches the point in the
string that initially matched the * or \\{ \\} . It is sometimes desirable to stop
this backing up before the initial point in the string is reached. If the external
character pointer locs is equal to the point in the string at sometime during
the backing up process, advance() will break out of the loop that backs up
and will return zero.

The external variables circf , sed , and nbra are reserved.

EXAMPLES EXAMPLE 1 The following is an example of how the regular expression macros and
calls might be defined by an application program:

#define INIT register char *sp = instring;
#define GETC (*sp++)
#define PEEKC (*sp)
#define UNGETC(c) (--sp)
#define RETURN(*c) return;
#define ERROR(c) regerr
#include <regexp.h>

. . .
(void) compile(*argv, expbuf, &expbuf[ESIZE],’\\0’);

. . .
if (step(linebuf, expbuf))

succeed;

DIAGNOSTICS The function compile() uses the macro RETURNon success and the macro
ERRORon failure (see above). The functions step() and advance() return
non-zero on a successful match and zero if there is no match. Errors are:
11 range endpoint too large.

16 bad number.

25 \\ digit out of range.

36 illegal or missing delimiter.

41 no remembered search string.

42 \\( \\) imbalance.

43 too many \\( .

44 more than 2 numbers given in \\{ \\} .

45 } expected after \\ .

Last modified 2 Apr 1996 SunOS 5.8 287



regexp(5) Headers, Tables, and Macros

46 first number exceeds second in \\{ \\} .

49 [ ] imbalance.

50 regular expression overflow.

SEE ALSO regex (5)

288 SunOS 5.8 Last modified 2 Apr 1996



Headers, Tables, and Macros SEAM(5)

NAME SEAM – overview of Sun Enterprise Authentication Mechanism

DESCRIPTION SEAM (Sun Enterprise Authentication Mechanism) authenticates clients in a
network environment, allowing for secure transactions. (A client may be a user
or a network service) SEAM validates the identity of a client and the authenticity
of transferred data. SEAM is a single-sign-on system, meaning that a user needs
to provice a password only at the beginning of a session. SEAM is based on the
Kerberos™ system developed at MIT, and is compatible with Kerberos V5
systems over heterogeneous networks.

SEAM works by granting clients tickets, which uniquely identify a client,
and which have a finite lifetime. A client possessing a ticket is automatically
validated for network services for which it is entitled; for example, a user with a
valid SEAM ticket may rlogin into another machine running SEAM without
having to identify itself. Because each client has a unique ticket, its identity
is guaranteed.

To obtain tickets, a client must first initialize the SEAM session, either by using
the kinit (1) command or a PAM module. (See pam_krb5 (5)). kinit prompts
for a password, and then communicates with a Key Distribution Center (KDC).
The KDC returns a Ticket-Granting Ticket (TGT) and prompts for a confirmation
password. If the client confirms the password, it can use the Ticket-Granting
Ticket to obtain tickets for specific network services. Because tickets are granted
transparently, the user need not worry about their management. Current tickets
may be viewed by using the klist (1) command.

Tickets are valid according to the system policy set up at installation time. For
example, tickets have a default lifetime for which they are valid. A policy may
further dictate that privileged tickets, such as those belonging to root, have very
short lifetimes. Policies may allow some defaults to be overruled; for example, a
client may request a ticket with a lifetime greater or less than the default.

Tickets can be renewed using kinit . Tickets are also forwardable, allowing
you to use a ticket granted on one machine on a different host. Tickets can be
destroyed by using kdestroy (1). It is a good idea to include a call to kdestroy
in your .logout file.

Under SEAM, a client is referred to as a principal. A principal takes the following
form:

primary/instance@REALM

primary A user, a host, or a service.

instance A qualification of the primary. If the primary is a
host — indicated by the keyword host — then

Last modified 17 Nov 1999 SunOS 5.8 289



SEAM(5) Headers, Tables, and Macros

the instance is the fully-qualified domain name of
that host. If the primary is a user or service, then
the instance is optional. Some instances, such as
admin or root , are privileged.

realm The Kerberos equivalent of a domain; in fact, in
most cases the realm is directly mapped to a
DNS domain name. SEAM realms are given
in upper-case only. For examples of principal
names, see the EXAMPLES.

By taking advantage of the General Security Services API (GSS-API), SEAM
offers, besides user authentication, two other types of security service: integrity,
which authenticates the validity of transmitted data, and privacy, which encrypts
transmitted data. Developers can take advantage of the GSS-API through the use
of the RPCSEC_GSS API interface (see rpcsec_gss (3NSL)).

EXAMPLES EXAMPLE 1 Examples of valid principal names

The following are examples of valid principal names:
joe
joe/admin
joe@ENG.ACME.COM
joe/admin@ENG.ACME.COM
rlogin/bigmachine.eng.acme.com@ENG.ACME.COM
host/bigmachine.eng.acme.com@ENG.ACME.COM

The first four cases are user principals. In the first two cases, it is assumed that the
user joe is in the same realm as the client, so no realm is specified. Note that
joe and joe/admin are different principals, even if the same user uses them;
joe/admin has different privileges from joe . The fifth case is a service principal,
while the final case is a host principal. The word host is required for host
principals. With host principals, the instance is the fully qualified hostname.
Note that the words admin and host are reserved keywords.

SEE ALSO kdestroy (1), kinit (1), klist (1), kpasswd (1), krb5.conf (5)

Sun Enterprise Authentication Mechanism Guide

NOTES If you enter your username and kinit responds with this message:

Principal unknown (kerberos)

you haven’t been registered as a SEAM user. See your system administrator or
the Sun Enterprise Authentication Mechanism Guide.

290 SunOS 5.8 Last modified 17 Nov 1999



Headers, Tables, and Macros sgml(5)

NAME sgml, solbook – Standard Generalized Markup Language

DESCRIPTION Standard Generalized Markup Language (SGML ) is the ISO standard 8879:1986
that describes a syntax for marking up documents with tags that describe the
purpose of the text rather than the appearance on the page. This form of markup
facilitates document interchange between different platforms and applications.
SGML allows the management of information as data objects rather than text
on a page.

In an SGML document the main structural components are called elements .
The organization and structure of a document and the meaning of elements are
described in the Document Type Definition ( DTD ). Elements are the tags that
identify the content. Element names may be descriptive of the content for ease
of use. For example <para> for paragraphs. Elements can have attributes
which are used to modify or refine the properties or characteristics of the element.
Within the DTD a valid context for each element is defined and a framework is
provided for the types of elements that constitute a compliant document.

Another component of the DTD is entities . Entities are a collection of
characters that can be referenced as a unit. Entities are similar to constants
in a programming language such as C. They can be defined and referenced.
An entity can represent one character or symbol which does not appear on
a standard keyboard, a word or group of words, or an entire separate sgml
marked-up file. Entities allow reuse of standard text.

There is no single standard DTD , but the de facto standard for the computer
industry is the DocBook DTD , developed and maintained by the Davenport
Group. Within Sun, the SolBook DTD , which is a proper subset of DocBook
DTD , is used when writing reference manual pages. The SolBook DTD contains
a number of tags that are designed for the unique needs of the reference pages.

SolBook Elements Elements are defined with a hierarchical structure that gives a structure to the
document. The following is a description of some of the elements from the
SolBook DTD which are used for reference pages.

DOCTYPE The first line in an SGML file that identifies the location of the DTD that is used
to define the document. The <!DOCTYPEstring is what the SGML -aware man(1)
command uses to identify that a file is formatted in SGML rather than nroff (1) .

RefEntry The top layer element that contains a reference page is <refentry> . All of the
text and other tags must be contained within this tag.

RefMeta The next tag in a reference page is <refmeta> , which is a container for several
other tags. They are:
<refentrytitle> This is the title of the reference page. It is equivalent to the

name of the reference page’s file name, without the section
number extension.

Last modified 7 Jan 1997 SunOS 5.8 291



sgml(5) Headers, Tables, and Macros

<manvolnum> This is the section number that the reference page resides in.
The contents may be a text entity reference.

<refmiscinfo> There are one or more <refmiscinfo> tags which contain
meta information. Meta information is information about the
reference page. The <refmiscinfo> tag has the class
attribute. There are four classes that are routinely used.

date This is the date that the file was last
modified. By consensus this date is
changed only when the technical
information on the page changes and not
simply for an editorial change.

sectdesc This is the section title of the reference
page; for example User Commands . The
value of this attribute may be a text
entity reference.

software This is the name of the software product
that the topic discussed on the reference
page belongs to. For example UNIX
commands are part of the SunOS x.x
release. The value of this attribute may
be a text entity reference.

arch This is the architectural platform limitation
of the subject discussed on the reference
page. If there are no limitations the value
used is generic . Other values are
sparc and IA .

copyright This attribute contains the Sun
Microsystems copyright. Any other
copyrights that may pertain to the
individual reference page file should be
entered as separate <refmiscinfo>
entries. The value of this attribute may
be a text entity reference.

RefNameDiv This tag contains the equivalent information to the .TH macro line in an
nroff (1) reference page. <refnamediv> contains three tags. These tags contain
the text that is before and after the ‘-’ (dash) on the NAMEline.
<refname> These are the names of the topics that are discussed in

the file. There may be more than one <refname> for a
page. The first <refname> must match the name of the file

292 SunOS 5.8 Last modified 7 Jan 1997



Headers, Tables, and Macros sgml(5)

and the <refentrytitle> . If there are more than one
<refname> tags, each is separated by a ‘,’ (comma). The
comma is generated by the publisher of sgml files, so it
should not be typed. This is referred to as auto-generated text.

<refpurpose> The text after the dash on the NAMEline is contained in this
tag. This is a short summary of what the object or objects
described on the reference page do or are used for. The dash
is also auto-generated and should not be typed in.

<refdiscriptor> In some cases the <refentrytitle> is a general topic
descriptor of a group of related objects that are discussed
on the same page. In this case the first tag after the
<refnamediv> is a <refdiscriptor> . The <refname>
tags follow. Only one <refdiscriptor> is allowed, and it
should match the <refentrytitle> .

RefSynopsisDiv The SYNOPSISline of the reference page is contained by this tag. There is
a <title> that usually contains an entity reference. The text is the word
SYNOPSIS. There are several tags within <refsynopsisdiv> that are
designed specifically for the type of synopsis that is used in the different
reference page sections. The three types are:
<cmdsynopsis> Used for commands and utilities pages.

<funcsynopsis> Used for programming interface pages.

<synopsis> Used for pages that do not fall into the other two categories.

RefSect1 This tag is equivalent to the .SH nroff macro. It contains a <title> element that
is the title of the reference page section. Section names are the standard names
such as DESCRIPTION, OPTIONS, PARAMETERS, SEE ALSO,and others. The
contents of the <title> may be a text entity reference.

RefSect2 This tag is equivalent to the .SS nroff macro. It contains a <title> element
that contains the text of the sub-section heading. <refsect2> tags may
also be used within a <refsynopsisdiv> as a sub-section heading for the
SYNOPSISsection.

Block Elements There are a number of block elements that are used for grouping text. This
is a list of some of these elements.
<para> This tag is used to contain a paragraph of text.

<variablelist> This tag is used to create two column lists. For
example descriptions for command options,
where the first column lists the option and the
second column describes the option.

<orderedlist> An list of items in a specific order.

Last modified 7 Jan 1997 SunOS 5.8 293



sgml(5) Headers, Tables, and Macros

<itemizedlist> A list of items that are marked with a character
such as a bullet or a dash.

<literallayout> Formatted program output as produced by a
program or command. This tag is a container
for lines set off from the main text in which
line breaks, tabs, and leading white space are
significant.

<programlisting> A segment of program code. Line breaks and
leading white space are significant.

<table> This tag contains the layout and content for
tabular formatting of information. <table> has a
required <title> .

<informaltable> This tag is the same as the <table> tag except
the <title> is not required.

<example> This tag contains examples of source code or
usage of commands. It contains a required
<title> .

<informalexample> This tag is the same as the <example> tag except
the <title> is not required.

Inline Elements The inline elements are used for tagging text.
<command> An executable program or the entry a user makes

to execute a command.

<function> A subroutine in a program or external library.

<literal> Contains any literal string.

<parameter> An argument passed to a computer program by a
function or routine.

<inlineequation> An untitled mathematical equation occurring
in-line.

<link> A hypertext link to text within a book, in the
case of the reference manual it is used to cross
reference to another reference page.

<olink> A hypertext link used to create cross references to
books other than the reference manual.

<xref> A cross reference to another part of the same
reference page.

294 SunOS 5.8 Last modified 7 Jan 1997



Headers, Tables, and Macros sgml(5)

SEE ALSO man(1) , nroff (1) , man(5)

Last modified 7 Jan 1997 SunOS 5.8 295



smartcard(5) Headers, Tables, and Macros

NAME smartcard – overview of smartcard features on Solaris

DESCRIPTION The smartcard framework provides a mechanism to abstract the details of
interacting with smart cards and smart cardreaders (called card terminals).
The framework is based on the OpenCard Framework V1.1 (OCF) with Sun
extensions to allow OCF to operate in a multi-user environment. The core
OCF software protocol stack is implemented as a system service daemon. This
implementation allows smartcards and card terminals to be shared cooperatively
among many different clients on the system while providing access control to the
smart card and card terminal resources on a per-UID basis.

An event dispatcher is provided to inform clients of events occuring on the card
and at the card terminal, such as card insertion and card removal.

A high-level authentication mechanism is provided to allow clients to perform
smartcard-based authentications without requiring knowledge of specific card
or reader authentication features.

A set of applet administration tools is provided for JavaCards that support
downloading Java applets (although applet build tools are not provided).

Administration of the smartcard framework is provided with the
smartcard (1M) command line administration utility and the
smartcardguiadmin(1) GUI administration tool.

Support for several card terminals is provided:

� Sun External Smart Card Reader I (see ocf_escr1 (7D))

� Sun Internal Smart Card Reader I (see ocf_iscr1 (7D))

� Dallas iButton Serial Reader (see ocf_iButton (7D))

Support for several smart cards is provided:

� Schlumberger Cyberflex Access JavaCard

� Schlumberger MicroPayflex

� Dallas Semiconductor Java iButton JavaCard

Each of the supported cards has a complete set of OCF card services that
implement the necessary functionality for authentication and secure storage
of data. For the two supported JavaCards, an authentication and secure data
storage applet is provided that can be loaded into these cards with the supplied
applet administration tools. See smartcard (1M).

A PAM smart card module is provided to allow PAM clients to use
smartcard-based authentication. See pam_smartcard (5)

CDE is able to use the PAM smart card module for dtlogin and dtsession
authentication. CDE also uses the smartcard framework event dispatcher to

296 SunOS 5.8 Last modified 2 Sep 1997



Headers, Tables, and Macros smartcard(5)

listen for events on the card terminal and provide corresponding visual feedback
to the user.

SEE ALSO ocfserv (1M), smartcard (1M), pam_start (3PAM), pam_smartcard (5),
ocf_escri (7D), ocf_iButton (7D), ocf_iscr1 (7D), scmi2c (7D)

Last modified 2 Sep 1997 SunOS 5.8 297



standards(5) Headers, Tables, and Macros

NAME standards, ANSI, C, ISO, POSIX, POSIX.1, POSIX.2, SUS, SUSv2, SVID, SVID3,
XNS, XNS4, XNS5, XPG, XPG3, XPG4, XPG4v2 – standards and specifications
supported by Solaris

DESCRIPTION Solaris 7 supports IEEE Std 1003.1 and IEEE Std 1003.2, commonly known as
POSIX.1 and POSIX.2, respectively. The following table lists each version of
these standards with a brief description and the SunOS or Solaris release that
first conformed to it.

POSIX
Standard

Description Release

POSIX.1-1988 system interfaces and headers SunOS 4.1

POSIX.1-1990 POSIX.1-1988 update Solaris 2.0

POSIX.1b-1993 realtime extensions Solaris 2.4

POSIX.1c-1996 threads extensions Solaris 2.6

POSIX.2-1992 shell and utilities Solaris 2.5

POSIX.2a-1992 interactive shell and utilities Solaris 2.5

Solaris 7 also supports the X/Open Common Applications Environment (CAE)
Portability Guide Issue 3 (XPG3) and Issue 4 (XPG4), Single UNIX Specification
(SUS, also known as XPG4v2), and Single UNIX Specification, Version 2 (SUSv2).
Both XPG4 and SUS include Networking Services Issue 4 (XNS4). SUSv2
includes Networking Services Issue 5 (XNS5).

Solaris 7 also supports two application programming environments, ILP32
(32-bit) and LP64 (64-bit).

The following table lists each X/Open specification with a brief description and
the SunOS or Solaris release that first conformed to it.

X/Open CAE
Specification

Description Release

XPG3 superset of POSIX.1-1988 containing
utilities from SVID3

SunOS 4.1

XPG4 superset of POSIX.1-1990,
POSIX.2-1992, and POSIX.2a-1992
containing extensions to POSIX
standards from XPG3

Solaris 2.4

SUS (XPG4v2) superset of XPG4 containing historical
BSD interfaces widely used by
common application packages

Solaris 2.6

298 SunOS 5.8 Last modified 13 Jul 1998



Headers, Tables, and Macros standards(5)

X/Open CAE
Specification

Description Release

XNS4 sockets and XTI interfaces Solaris 2.6

SUSv2 superset of SUS extended to support
POSIX.1b-1993, POSIX.1c-1996,
and ISO/IEC 9899 (C Standard)
Amendment 1

Solaris 7

XNS5 superset and LP64-clean derivative
of XNS4.

Solaris 7

The XNS4 specification is safe for use only in ILP32 (32-bit) environments and
should not be used for LP64 (64-bit) application environments. Use XNS5, which
has LP64-clean interfaces that are portable across ILP32 and LP64 environments.

Solaris 7 has been branded to conform to The Open Group’s UNIX 98 Product
Standard.

Solaris releases 2.0 through 7 also support the interfaces specified by the
System V Interface Definition, Third Edition, Volumes 1 through 4 (SVID3).
Note, however, that since the developers of this specification (UNIX Systems
Laboratories) are no longer in business and since this specification defers to
POSIX and X/Open CAE specifications, there is some disagreement about what
is currently required for conformance to this specification.

When Sun WorkShop Compiler(TM) C 4.2 is installed, Solaris releases
2.0 through 7 support the ANSI X3.159-1989 Programming Language - C and
ISO/IEC 9899:1990 Programming Language - C (C) interfaces.

When Sun WorkShop Compiler(TM) C 5.0 is installed, Solaris 7 also
supports ISO/IEC 9899 Amendment 1: C Integrity.

Utilities If the behavior required by POSIX.2, POSIX.2a, XPG4, SUS, or SUSv2 conflicts
with historical Solaris utility behavior, the original Solaris version of the utility
is unchanged; a new version that is standard-conforming has been provided
in /usr/xpg4/bin . For applications wishing to take advantage of POSIX.2,
POSIX.2a, XPG4, SUS, or SUSv2 features, the PATH(sh or ksh ) or path (csh )
environment variables should be set with /usr/xpg4/bin preceding any other
directories in which utilities specified by those specifications are found, such as
/bin , /usr/bin , /usr/ucb , and /usr/ccs/bin .

Feature Test Macros Feature test macros are used by applications to indicate additional sets of features
that are desired beyond those specified by the C standard. If an application
uses only those interfaces and headers defined by a particular standard (such
as POSIX or X/Open CAE), then it need only define the appropriate feature

Last modified 13 Jul 1998 SunOS 5.8 299



standards(5) Headers, Tables, and Macros

test macro specified by that standard. If the application is using interfaces
and headers not defined by that standard, then in addition to defining the
appropriate standard feature test macro, it must also define __EXTENSIONS__.
Defining __EXTENSIONS__provides the application with access to all interfaces
and headers not in conflict with the specified standard. The application must
define __EXTENSIONS__either at compile time or within the application.

ANSI/ISO C

No feature test macros need to be defined to indicate that an application is a
conforming C application.

POSIX

Applications that are intended to be conforming POSIX.1 applications must
define the feature test macros specified by the standard before including any
headers. For the standards listed below, applications must define the feature test
macros listed. Application writers must check the corresponding standards for
other macros that can be queried to determine if desired options are supported
by the implementation.

POSIX Standard Feature Test Macros

POSIX.1-1990 _POSIX_SOURCE

POSIX.1-1990 and _POSIX_SOURCEand

POSIX.2-1992 C-Language _POSIX_C_SOURCE=2

Bindings Option

POSIX.1b-1993 _POSIX_C_SOURCE=199309L

POSIX.1c-1996 _POSIX_C_SOURCE=199506L

SVID3

The SVID3 specification does not specify any feature test macros to indicate that
an application is written to meet SVID3 requirements. The SVID3 specification
was written before the C standard was completed.

X/Open CAE

To build or compile an application that conforms to one of the X/Open CAE
specifications, use the following guidelines. Applications need not set the POSIX
feature test macros if they require both CAE and POSIX functionality.
XPG3 The application must define _XOPEN_SOURCEwith a value

other than 500 (preferably 1).

300 SunOS 5.8 Last modified 13 Jul 1998



Headers, Tables, and Macros standards(5)

XPG4 The application must define _XOPEN_SOURCEwith a value
other than 500 (preferably 1) and set _XOPEN_VERSION=4.

SUS (XPG4v2) The application must define _XOPEN_SOURCE
with a value other than 500 (preferably 1) and set
_XOPEN_SOURCE_EXTENDED=1.

SUSv2 The application must define _XOPEN_SOURCE=500.

Compilation A POSIX.2-, XPG4-, SUS-, or SUSv2-conforming implementation must include an
ANSI X3.159-1989 (ANSI C Language) standard-conforming compilation system
and the cc and c89 utilities. Solaris 7 was tested with the cc and c89 utilities
and the compilation system provided by Sun WorkShop Compiler(TM) C 5.0
in the SPARC and IA environments. When cc is used to link applications,
/usr/ccs/lib/values-xpg4.o must be specified on any link/load
command line, but the preferred way to build applications is described below.

An XNS4- or XNS5-conforming application must include −l XNS on any
link/load command line.

If the compiler suppports the redefine_extname pragma feature (the Sun
WorkShop Compiler(TM) C 4.2 and Sun WorkShop Compiler(TM)
C 5.0 compiler defines the macro __PRAGMA_REDEFINE_EXTNAMEto
indicate that it supports this feature), then the standard headers use #pragma
redefine_extname directives to properly map function names onto library
entry point names. This mapping provides full support for ISO C, POSIX, and
X/Open namespace reservations. The Sun WorkShop Compiler(TM) C 5.0
compiler was used for all branding and certification tests for Solaris 7.

If this pragma feature is not supported by the compiler, the headers use the
#define directive to map internal function names onto appropriate library
entry point names. In this instance, applications should avoid using the explicit
64-bit file offset symbols listed on the lf64 (5) manual page, since these names
are used by the implementation to name the alternative entry points.

When using Sun WorkShop Compiler(TM) C 5.0 , applications conforming
to the specifications listed above should be compiled using the utilities and
flags indicated in the following table:

Specification Compiler/Flags Feature Test Macros

ANSI/ISO C c89 none

SVID3 cc −Xt none

POSIX.1-1990 c89 _POSIX_SOURCE

POSIX.1-1990 and c89 _POSIX_SOURCEand

POSIX.2-1992 POSIX_C_SOURCE=2

Last modified 13 Jul 1998 SunOS 5.8 301



standards(5) Headers, Tables, and Macros

Specification Compiler/Flags Feature Test Macros

C-Language

Bindings Option

POSIX.1b-1993 c89 _POSIX_C_SOURCE=199309L

POSIX.1c-1996 c89 _POSIX_C_SOURCE=199506L

CAE XPG3 cc −Xa _XOPEN_SOURCE

CAE XPG4 c89 _XOPEN_SOURCEand

_XOPEN_VERSION=4

SUS (CAE XPG4v2) c89 _XOPEN_SOURCEand

(includes XNS4) _XOPEN_SOURCE_EXTENDED=1

SUSv2(includes XNS5) c89 _XOPEN_SOURCE=500

For platforms supporting the LP64 (64-bit) programming environment where
the SC5.0 Compilers have been installed, SUSv2-conforming LP64 applications
using XNS5 library calls should be built with command lines of the form:

c89 $(getconf XBS5_LP64_OFF64_CFLAGS) -D_XOPEN_SOURCE=500 \\
$(getconf XBS5_LP64_OFF64_LDFLAGS) foo.c -o foo \\
$(getconf XBS5_LP64_OFF64_LIBS) -lxnet

SEE ALSO sysconf (3C) , environ (5) , lf64 (5)

302 SunOS 5.8 Last modified 13 Jul 1998



Headers, Tables, and Macros sticky(5)

NAME sticky – mark files for special treatment

DESCRIPTION The sticky bit (file mode bit 01000 , see chmod(2)) is used to indicate special
treatment of certain files and directories. A directory for which the sticky bit
is set restricts deletion of files it contains. A file in a sticky directory may only
be removed or renamed by a user who has write permission on the directory,
and either owns the file, owns the directory, or is the super-user. This is useful
for directories such as /tmp , which must be publicly writable, but should deny
users permission to arbitrarily delete or rename the files of others.

If the sticky bit is set on a regular file and no execute bits are set, the system’s
page cache will not be used to hold the file’s data. This bit is normally set on
swap files of diskless clients so that accesses to these files do not flush more
valuable data from the system’s cache. Moreover, by default such files are
treated as swap files, whose inode modification times may not necessarily be
correctly recorded on permanent storage.

Any user may create a sticky directory. See chmod for details about modifying
file modes.

FILES /tmp

SEE ALSO chmod(1), chmod(2), chown (2), mkdir (2)

BUGS mkdir (2) will not create a directory with the sticky bit set.

Last modified 13 Feb 1995 SunOS 5.8 303



term(5) Headers, Tables, and Macros

NAME term – conventional names for terminals

DESCRIPTION Terminal names are maintained as part of the shell environment in the
environment variable TERM. See sh (1), profile (4), and environ (5). These
names are used by certain commands (for example, tabs , tput , and vi ) and
certain functions (for example, see curses (3CURSES)).

Files under /usr/share/lib/terminfo are used to name terminals
and describe their capabilities. These files are in the format described in
terminfo (4). Entries in terminfo source files consist of a number of
comma-separated fields. To print a description of a terminal term, use the
command infocmp -I term. See infocmp (1M). White space after each comma
is ignored. The first line of each terminal description in the terminfo database
gives the names by which terminfo knows the terminal, separated by bar
(| ) characters. The first name given is the most common abbreviation for the
terminal (this is the one to use to set the environment variable TERMINFO in
$HOME/.profile ; see profile (4)), the last name given should be a long
name fully identifying the terminal, and all others are understood as synonyms
for the terminal name. All names but the last should contain no blanks and
must be unique in the first 14 characters; the last name may contain blanks
for readability.

Terminal names (except for the last, verbose entry) should be chosen using the
following conventions. The particular piece of hardware making up the terminal
should have a root name chosen, for example, for the AT&T 4425 terminal,
att4425 . This name should not contain hyphens, except that synonyms may be
chosen that do not conflict with other names. Up to 8 characters, chosen from the
set a through z and 0 through 9, make up a basic terminal name. Names should
generally be based on original vendors rather than local distributors. A terminal
acquired from one vendor should not have more than one distinct basic name.
Terminal sub-models, operational modes that the hardware can be in, or user
preferences should be indicated by appending a hyphen and an indicator of the
mode. Thus, an AT&T 4425 terminal in 132 column mode is att4425 −w. The
following suffixes should be used where possible:

Suffix Meaning Example

−w Wide mode (more than
80 columns)

att4425−w

−am With auto. margins
(usually default)

vt100−am

−nam Without automatic margins vt100−nam

−n Number of lines on
the screen

aaa−60

304 SunOS 5.8 Last modified 3 Jul 1990



Headers, Tables, and Macros term(5)

−na No arrow keys (leave
them in local)

c100−na

−np Number of pages of
memory

c100−4p

−rv Reverse video att4415−rv

To avoid conflicts with the naming conventions used in describing the different
modes of a terminal (for example, −w), it is recommended that a terminal’s root
name not contain hyphens. Further, it is good practice to make all terminal
names used in the terminfo (4) database unique. Terminal entries that are
present only for inclusion in other entries via the use= facilities should have
a ’+’ in their name, as in 4415+nl .

Here are some of the known terminal names: (For a complete list, enter the
command ls -C /usr/share/lib/terminfo/? ).

2621,hp2621 Hewlett-Packard 2621 series

2631 Hewlett-Packard 2631 line printer

2631−c Hewlett-Packard 2631 line printer, compressed mode

2631−e Hewlett-Packard 2631 line printer, expanded mode

2640,hp2640 Hewlett-Packard 2640 series

2645,hp2645 Hewlett-Packard 2645 series

3270 IBM Model 3270

33,tty33 AT&T Teletype Model 33 KSR

35,tty35 AT&T Teletype Model 35 KSR

37,tty37 AT&T Teletype Model 37 KSR

4000a Trendata 4000a

4014,tek4014 TEKTRONIX 4014

40,tty40 AT&T Teletype Dataspeed 40/2

43,tty43 AT&T Teletype Model 43 KSR

4410,5410 AT&T 4410/5410 in 80-column mode, version 2

4410−nfk,5410−nfk AT&T 4410/5410 without function keys, version 1

4410−nsl,5410−nsl AT&T 4410/5410 without pln defined

4410−w,5410−w AT&T 4410/5410 in 132-column mode

4410v1,5410v1 AT&T 4410/5410 in 80-column mode, version 1

Last modified 3 Jul 1990 SunOS 5.8 305



term(5) Headers, Tables, and Macros

4410v1−w,5410v1−w AT&T 4410/5410 in 132-column mode, version 1

4415,5420 AT&T 4415/5420 in 80-column mode

4415−nl,5420−nl AT&T 4415/5420 without changing labels

4415−rv,5420−rv AT&T 4415/5420 80 columns in reverse video

4415−rv−nl,5420−rv−nl AT&T 4415/5420 reverse video without
changing labels

4415−w,5420−w AT&T 4415/5420 in 132-column mode

4415−w−nl,5420−w−nl AT&T 4415/5420 in 132-column mode
without changing labels

4415−w−rv,5420−w−rv AT&T 4415/5420 132 columns in reverse video

4418,5418 AT&T 5418 in 80-column mode

4418−w,5418−w AT&T 5418 in 132-column mode

4420 AT&T Teletype Model 4420

4424 AT&T Teletype Model 4424

4424-2 AT&T Teletype Model 4424 in display
function group ii

4425,5425 AT&T 4425/5425

4425−fk,5425−fk AT&T 4425/5425 without function keys

4425−nl,5425−nl AT&T 4425/5425 without changing labels
in 80-column mode

4425−w,5425−w AT&T 4425/5425 in 132-column mode

4425−w−fk,5425−w−fk AT&T 4425/5425 without function keys in
132-column mode

4425−nl−w,5425−nl−w AT&T 4425/5425 without changing labels
in 132-column mode

4426 AT&T Teletype Model 4426S

450 DASI 450 (same as Diablo 1620)

450−12 DASI 450 in 12-pitch mode

500,att500 AT&T-IS 500 terminal

510,510a AT&T 510/510a in 80-column mode

513bct,att513 AT&T 513 bct terminal

5320 AT&T 5320 hardcopy terminal

5420_2 AT&T 5420 model 2 in 80-column mode

306 SunOS 5.8 Last modified 3 Jul 1990



Headers, Tables, and Macros term(5)

5420_2−w AT&T 5420 model 2 in 132-column mode

5620,dmd AT&T 5620 terminal 88 columns

5620−24,dmd−24 AT&T Teletype Model DMD 5620 in a 24x80 layer

5620−34,dmd−34 AT&T Teletype Model DMD 5620 in a 34x80 layer

610,610bct AT&T 610 bct terminal in 80-column mode

610−w,610bct−w AT&T 610 bct terminal in 132-column mode

630,630MTG AT&T 630 Multi-Tasking Graphics terminal

7300,pc7300,unix_pc AT&T UNIX PC Model 7300

735,ti Texas Instruments TI735 and TI725

745 Texas Instruments TI745

dumb generic name for terminals that lack reverse line-feed
and other special escape sequences

hp Hewlett-Packard (same as 2645)

lp generic name for a line printer

pt505 AT&T Personal Terminal 505 (22 lines)

pt505−24 AT&T Personal Terminal 505 (24-line mode)

sync generic name for synchronous Teletype Model
4540-compatible terminals

Commands whose behavior depends on the type of terminal should accept
arguments of the form −Tterm where term is one of the names given above; if no
such argument is present, such commands should obtain the terminal type from
the environment variable TERM, which, in turn, should contain term.

FILES /usr/share/lib/terminfo/?/* compiled terminal description
database

SEE ALSO sh (1), stty (1), tabs (1), tput (1), vi (1), infocmp (1M), curses (3CURSES),
profile (4), terminfo (4), environ (5)

Last modified 3 Jul 1990 SunOS 5.8 307



vgrindefs(5) Headers, Tables, and Macros

NAME vgrindefs – vgrind’s language definition data base

SYNOPSIS /usr/lib/vgrindefs

DESCRIPTION vgrindefs contains all language definitions for vgrind (1). Capabilities in
vgrindefs are of two types: Boolean capabilities which indicate that the
language has some particular feature and string capabilities which give a regular
expression or keyword list. Entries may continue onto multiple lines by giving a
\ as the last character of a line. Lines starting with # are comments.

Capabilities The following table names and describes each capability.

Name Type Description

ab str Regular expression for the start of an alternate form comment

ae str Regular expression for the end of an alternate form comment

bb str Regular expression for the start of a block

be str Regular expression for the end of a lexical block

cb str Regular expression for the start of a comment

ce str Regular expression for the end of a comment

id str String giving characters other than letters and digits that
may legally occur in identifiers (default ‘_’)

kw str A list of keywords separated by spaces

lb str Regular expression for the start of a character constant

le str Regular expression for the end of a character constant

oc bool Present means upper and lower case are equivalent

pb str Regular expression for start of a procedure

pl bool Procedure definitions are constrained to the lexical level
matched by the ‘px’ capability

px str A match for this regular expression indicates that procedure
definitions may occur at the next lexical level. Useful
for lisp-like languages in which procedure definitions
occur as subexpressions of defuns.

sb str Regular expression for the start of a string

se str Regular expression for the end of a string

tc str Use the named entry as a continuation of this one

tl bool Present means procedures are only defined at the top lexical level

308 SunOS 5.8 Last modified 10 Aug 1994



Headers, Tables, and Macros vgrindefs(5)

Regular Expressions vgrindefs uses regular expressions similar to those of ex (1) and lex (1). The
characters ‘^’, ‘$’, ‘:’, and ‘\’ are reserved characters and must be ‘quoted’ with a
preceding \ if they are to be included as normal characters. The metasymbols
and their meanings are:
$ The end of a line

^ The beginning of a line

\d A delimiter (space, tab, newline, start of line)

\a Matches any string of symbols (like ‘.*’ in lex)

\p Matches any identifier. In a procedure definition (the ‘pb’
capability) the string that matches this symbol is used as
the procedure name.

() Grouping

| Alternation

? Last item is optional

\e Preceding any string means that the string will not match
an input string if the input string is preceded by an escape
character (\). This is typically used for languages (like C)
that can include the string delimiter in a string by escaping
it.

Unlike other regular expressions in the system, these match words and not
characters. Hence something like ‘(tramp|steamer)flies?’ would match ‘tramp’,
‘steamer’, ‘trampflies’, or ‘steamerflies’. Contrary to some forms of regular
expressions, vgrindef alternation binds very tightly. Grouping parentheses are
likely to be necessary in expressions involving alternation.

Keyword List The keyword list is just a list of keywords in the language separated by spaces. If
the ‘oc’ boolean is specified, indicating that upper and lower case are equivalent,
then all the keywords should be specified in lower case.

EXAMPLES EXAMPLE 1 A sample program.

The following entry, which describes the C language, is typical of a language
entry.

C|c|the C programming language:\
:pb=^\d?*?\d?\p\d?(\a?\)(\d|{):bb={:be=}:cb=/*:ce=*/:sb=":se=\e":\
:le=\e’:tl:\
:kw=asm auto break case char continue default do double else enum\
extern float for fortran goto if int long register return short\
sizeof static struct switch typedef union unsigned void while #define\
#else #endif #if #ifdef #ifndef #include #undef # define endif\
ifdef ifndef include undef defined:

Last modified 10 Aug 1994 SunOS 5.8 309



vgrindefs(5) Headers, Tables, and Macros

Note that the first field is just the language name (and any variants of it). Thus
the C language could be specified to vgrind (1) as ‘c’ or ‘C’.

FILES /usr/lib/vgrindefs file containing vgrind descriptions

SEE ALSO ex (1), lex (1), troff (1), vgrind (1)

310 SunOS 5.8 Last modified 10 Aug 1994



Index

A
ansi – standards and specifications supported

by Solaris 298
architecture – characteristics of commands,

utilities, and device
drivers 16

ascii — ASCII character set 14
attributes – characteristics of commands,

utilities, and device
drivers 16

Architecture 16
Availability 16
Interface Stability 17
MT-Level 20

authentication, account, session, and
password management PAM
modules for Kerberos V5 —
pam_krb5 250

availability – characteristics of commands,
utilities, and device
drivers 16

C
c – standards and specifications supported by

Solaris 298
C – standards and specifications supported by

Solaris 298
character set description file — charmap 24
characteristics of commands, utilities, and

device drivers

– architecture 16
– attributes 16
– availability 16
– CSI 16
– MT-Level 16
– stability 16

charmap — character set description file 24
Decimal Constants 26
Declarations 24
Format 25
Ranges of Symbolic Names 26
Symbolic Names 24

code set conversion tables — iconv_1250 92,
98, 106, 112, 115, 121, 127, 133,
141, 145, 153, 160, 164, 169

— iconv_1250 92
— iconv_1251 98
— iconv_646 112
— iconv_852 115
— iconv_8859-1 121
— iconv_8859-2 127
— iconv_8859-5 133
— iconv_dhn 141
— iconv_koi8-r 145
— iconv_mac_cyr 153
— iconv_maz 160
— iconv_pc_cyr 164

compilation environment, transitional —
lfcompile64 188

CSI – characteristics of commands, utilities, and
device drivers 16

Index-311



D
document production

man — macros to format manual
pages 220

mansun — macros to format manual
pages 225

me — macros to format technical
papers 229

mm — macros to format articles, theses and
books 234

ms — macros to format articles, theses and
books 241

E
environ — user environment 27
environment variables

HOME 27
LANG 27
LC_COLLATE 27
LC_CTYPE 27
LC_MESSAGES 27
LC_MONETARY 27
LC_NUMERIC 27
LC_TIME 27
MSGVERB 27
NETPATH 27
PATH 27
SEV_LEVEL 27
TERM 27
TZ 27

eqnchar — special character definitions for
eqn 35

extensions — localedef extensions description
file 36

F
file format notation — formats

formats 86
file name pattern matching — fnmatch 56
filesystem — file system organization 37

Root File System 38
/usr File System 45

fnmatch — file name pattern matching 56
fns — overview of FNS 60

Composite Names 60

FNS and Naming Systems 61
Why FNS? 60
XFN 60

FNS
overview — fns 60
overview of FNS References —

fns_references 79
overview over DNS implementation —

fns_dns 62
overview over files implementation —

fns_files 65
overview over NIS (YP) implementation

— fns_nis 73
overview over NIS+ implementation —

fns_nis+ 71
overview over X.500 implementation —

fns_x500 83
fns_dns — overview of FNS over DNS

implementation 62
fns_files — overview of FNS over files

implementation 65
FNS Policies and /etc Files 65

fns_initial_context — overview of the FNS
Initial Context 67

fns_nis — overview of FNS over NIS (YP)
implementation 73

Federating NIS with DNS or X.500 73
FNS Policies and NIS 73
NIS Security 73

fns_nis+ — overview of FNS over NIS+
implementation 71

FNS Policies and NIS+ 71
fns_policies — overview of the FNS Policies 75
fns_references — overview of FNS

References 79
Address Types 80
Reference Types 79

fns_x500 — overview of FNS over X.500
implementation 83

formats — file format notation 86

I
iconv — code set conversion tables 106
iconv_1250 — code set conversion tables for MS

1250 (Windows Latin 2) 92

man pages section 5: Standards, Environments, and Macros ♦ February 2000



iconv_1251 — code set conversion tables for MS
1251 (Windows Cyrillic) 98

iconv_646 — code set conversion tables for ISO
646 112

iconv_852 — code set conversion tables for MS
852 (MS-DOS Latin 2) 115

iconv_8859-1 — code set conversion tables for
ISO 8859-1 (Latin 1) 121

iconv_8859-2 — code set conversion tables for
ISO 8859-2 (Latin 2) 127

iconv_8859-5 — code set conversion tables for
ISO 8859-5 (Cyrillic) 133

iconv_dhn — code set conversion tables
for DHN (Dom Handlowy
Nauki) 141

iconv_koi8-r — code set conversion tables for
KOI8-R 145

iconv_mac_cyr — code set conversion tables for
Macintosh Cyrillic 153, 160

iconv_pc_cyr — code set conversion tables for
Alternative PC Cyrillic 164

iconv_unicode — code set conversion tables for
Unicode 169

internationalized basic and extended regular
expression matching —
regex 271

isalist — the native instruction sets known to
Solaris 174

ISO – standards and specifications supported
by Solaris 298

L
large file status of utilities — largefile 176
largefile — large file status of utilities 176

Large file aware utilities 176
Large file safe utilities 178

lf64 — transitional interfaces for 64-bit file
offsets 179

Data Types 179
System Interfaces 181

lfcompile — large file compilation environment
Access to Additional Large File

Interfaces 185
lfcompile64 — transitional compilation

environment 188

Access to Additional Large File
Interfaces 188

locale — subset of a user’s environment that
depends on language and
cultural conventions 190

collating-element keyword 200
collating-symbol keyword 200
Collation Order 202
LC_COLLATE 199
LC_CTYPE 193
LC_MESSAGES 218
LC_MONETARY 205
LC_NUMERIC 210
LC_TIME 211
LC_TIME C-language Access 214
LC_TIME General Information 217
Locale Definition 190
order_end keyword 205
order_start keyword 201

localedef extensions description file —
extensions 36

M
macros

to format articles, theses and books —
mm 234, 241

to format Manual pages — man 220, 225
to format technical papers — me 229

man — macros to format manual pages 220
mansun — macros to format manual pages 225
manual pages

macros to format manual pages —
man 220

Sun macros to format manual pages —
mansun 225

mark files for special treatment — sticky 303
me — macros to format technical papers 229
mm — macros to format articles, theses and

books 234
ms — macros to format articles, theses and

books 241
MT-Level – characteristics of commands,

utilities, and device
drivers 16

Index-313



N
native instruction sets known to Solaris —

isalist 174
NFS and sticky bits — sticky 303
nfssec — overview of NFS security modes 247

O
overview of FNS — fns 60
overview of FNS over DNS implementation —

fns_dns 62
overview of FNS over files implementation —

fns_files 65
overview of FNS over NIS (YP) implementation

— fns_nis 73
overview of FNS over NIS+ implementation —

fns_nis+ 71
overview of FNS over X.500 implementation —

fns_x500 83
overview of FNS References —

fns_references 79
overview of NFS security modes — nfssec 247
overview of the FNS Initial Context —

fns_initial_context 67
overview of the FNS Policies — fns_policies 75

P
pam_dial_auth — authentication management

for dialups 249
pam_krb5 — authentication, account, session

and password management
for Kerberos V5 250

pam_rhosts_auth — authentication
management using
ruserok() 257

pam_sample — sample module for PAM 260
pam_unix — authentication, account, session

and password management
for UNIX 264

POSIX – standards and specifications supported
by Solaris 298

POSIX.1 – standards and specifications
supported by Solaris 298

posix.2 – standards and specifications
supported by Solaris 298

profiling utilities

profile within a function — prof 267

R
rbac — role-based access control 268
regex — internationalized basic and

extended regular expression
matching 271

regular expression compile and match routines
– advance 281
– compile 281
– regexp 281
– step 281

role-based access control — rbac 268

S
ftp — authentication system 289
sgml – Standard Generalized Markup

Language 291
RefEntry 291
RefMeta 291
RefNameDiv 292
RefSect1 293
RefSect2 293
RefSynopsisDiv 293

shell environment
conventional names for terminals —

term 304
solbook – Standard Generalized Markup

Language 291
special character definitions for eqn —

eqnchar 35
stability – characteristics of commands, utilities,

and device drivers 16
Standard Generalized Markup Language

– sgml 291
– solbook 291

standards – standards and specifications
supported by Solaris 298

standards and specifications supported by
Solaris

– c 298
– C 298
– ansi 298
– ISO 298
– posix 298

man pages section 5: Standards, Environments, and Macros ♦ February 2000



– posix.1 298
– posix.2 298
– standards 298
– sus 298
– susv2 298
– svid 298
– SVID3 298
– XNS 298
– XNS4 298
– XNS5 298
– XPG 298
– XPG3 298
– xpg4 298
– xpg4v2 298

sticky — mark files for special treatment 303
subset of a user’s environment that depends

on language and cultural
conventions — locale 190

sus – standards and specifications supported
by Solaris 298

susv2 – standards and specifications supported
by Solaris 298

svid – standards and specifications supported
by Solaris 298

svid3 – standards and specifications supported
by Solaris 298

T
term — conventional names for terminals 304
terminals

conventional names — term 304
transitional compilation environment —

lfcompile64 188

transitional interfaces for 64-bit file offsets —
lf64 179

U
unicode

code set conversion tables —
iconv_unicode 169

user environment
— environ 27

V
vgrindefs — vgrind language definitions 308

X
XNS – standards and specifications supported

by Solaris 298
XNS4 – standards and specifications supported

by Solaris 298
XNS5 – standards and specifications supported

by Solaris 298
xpg – standards and specifications supported

by Solaris 298
xpg3 – standards and specifications supported

by Solaris 298
xpg4 – standards and specifications supported

by Solaris 298
xpg4v2 – standards and specifications

supported by Solaris 298

Index-315


