
man pages section 9F: DDI and
DKI Kernel Functions

Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303-4900
U.S.A.

Part No: 806-0639-10
February 2000

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun
and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or
service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer
industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.
RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et
la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les
produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se
conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface 27

Intro(9F) 33

adjmsg(9F) 51

allocb(9F) 52

anocancel(9F) 54

aphysio(9F) 55

ASSERT(9F) 57

assert(9F) 57

backq(9F) 58

bcanput(9F) 59

bcmp(9F) 60

bcopy(9F) 61

bioclone(9F) 63

biodone(9F) 66

bioerror(9F) 68

biofini(9F) 69

bioinit(9F) 70

biomodified(9F) 71

bioreset(9F) 72

Contents 3

biosize(9F) 73

biowait(9F) 74

bp_mapin(9F) 75

bp_mapout(9F) 76

btop(9F) 77

btopr(9F) 78

bufcall(9F) 79

bzero(9F) 82

canput(9F) 83

canputnext(9F) 84

bcanputnext(9F) 84

clrbuf(9F) 85

cmn_err(9F) 86

vcmn_err(9F) 86

condvar(9F) 92

cv_init(9F) 92

cv_destroy(9F) 92

cv_wait(9F) 92

cv_signal(9F) 92

cv_broadcast(9F) 92

cv_wait_sig(9F) 92

cv_timedwait(9F) 92

cv_timedwait_sig(9F) 92

copyb(9F) 95

copyin(9F) 97

copymsg(9F) 99

copyout(9F) 101

csx_AccessConfigurationRegister(9F) 103

4 man pages section 9F: DDI and DKI Kernel Functions ♦ February 2000

csx_ConvertSize(9F) 105

csx_ConvertSpeed(9F) 107

csx_CS_DDI_Info(9F) 109

csx_DeregisterClient(9F) 111

csx_DupHandle(9F) 112

csx_Error2Text(9F) 115

csx_Event2Text(9F) 116

csx_FreeHandle(9F) 117

csx_Get8(9F) 118

csx_Get16(9F) 118

csx_Get32(9F) 118

csx_Get64(9F) 118

csx_GetFirstClient(9F) 119

csx_GetNextClient(9F) 119

csx_GetFirstTuple(9F) 121

csx_GetNextTuple(9F) 121

csx_GetHandleOffset(9F) 123

csx_GetMappedAddr(9F) 124

csx_GetStatus(9F) 125

csx_GetTupleData(9F) 129

csx_MakeDeviceNode(9F) 131

csx_RemoveDeviceNode(9F) 131

csx_MapLogSocket(9F) 134

csx_MapMemPage(9F) 135

csx_ModifyConfiguration(9F) 136

csx_ModifyWindow(9F) 139

csx_Parse_CISTPL_BATTERY(9F) 141

csx_Parse_CISTPL_BYTEORDER(9F) 143

Contents 5

csx_Parse_CISTPL_CFTABLE_ENTRY(9F) 145

csx_Parse_CISTPL_CONFIG(9F) 152

csx_Parse_CISTPL_DATE(9F) 155

csx_Parse_CISTPL_DEVICE(9F) 157

csx_Parse_CISTPL_DEVICE_A(9F) 157

csx_Parse_CISTPL_DEVICE_OC(9F) 157

csx_Parse_CISTPL_DEVICE_OA(9F) 157

csx_Parse_CISTPL_DEVICEGEO(9F) 161

csx_Parse_CISTPL_DEVICEGEO_A(9F) 163

csx_Parse_CISTPL_FORMAT(9F) 165

csx_Parse_CISTPL_FUNCE(9F) 168

csx_Parse_CISTPL_FUNCID(9F) 178

csx_Parse_CISTPL_GEOMETRY(9F) 181

csx_Parse_CISTPL_JEDEC_C(9F) 183

csx_Parse_CISTPL_JEDEC_A(9F) 183

csx_Parse_CISTPL_LINKTARGET(9F) 185

csx_Parse_CISTPL_LONGLINK_A(9F) 187

csx_Parse_CISTPL_LONGLINK_C(9F) 187

csx_Parse_CISTPL_LONGLINK_MFC(9F) 189

csx_Parse_CISTPL_MANFID(9F) 191

csx_Parse_CISTPL_ORG(9F) 193

csx_Parse_CISTPL_SPCL(9F) 195

csx_Parse_CISTPL_SWIL(9F) 197

csx_Parse_CISTPL_VERS_1(9F) 199

csx_Parse_CISTPL_VERS_2(9F) 201

csx_ParseTuple(9F) 203

csx_Put8(9F) 205

csx_Put16(9F) 205

6 man pages section 9F: DDI and DKI Kernel Functions ♦ February 2000

csx_Put32(9F) 205

csx_Put64(9F) 205

csx_RegisterClient(9F) 206

csx_ReleaseConfiguration(9F) 209

csx_RepGet8(9F) 211

csx_RepGet16(9F) 211

csx_RepGet32(9F) 211

csx_RepGet64(9F) 211

csx_RepPut8(9F) 213

csx_RepPut16(9F) 213

csx_RepPut32(9F) 213

csx_RepPut64(9F) 213

csx_RequestConfiguration(9F) 215

csx_RequestIO(9F) 219

csx_ReleaseIO(9F) 219

csx_RequestIRQ(9F) 224

csx_ReleaseIRQ(9F) 224

csx_RequestSocketMask(9F) 227

csx_ReleaseSocketMask(9F) 227

csx_RequestWindow(9F) 229

csx_ReleaseWindow(9F) 229

csx_ResetFunction(9F) 234

csx_SetEventMask(9F) 235

csx_GetEventMask(9F) 235

csx_SetHandleOffset(9F) 237

csx_ValidateCIS(9F) 238

datamsg(9F) 239

ddi_add_intr(9F) 240

Contents 7

ddi_get_iblock_cookie(9F) 240

ddi_remove_intr(9F) 240

ddi_add_softintr(9F) 243

ddi_get_soft_iblock_cookie(9F) 243

ddi_remove_softintr(9F) 243

ddi_trigger_softintr(9F) 243

ddi_binding_name(9F) 250

ddi_get_name(9F) 250

ddi_btop(9F) 251

ddi_btopr(9F) 251

ddi_ptob(9F) 251

ddi_check_acc_handle(9F) 252

ddi_check_dma_handle(9F) 252

ddi_copyin(9F) 254

ddi_copyout(9F) 257

ddi_create_minor_node(9F) 260

ddi_device_copy(9F) 263

ddi_device_zero(9F) 265

ddi_devid_compare(9F) 266

ddi_devid_free(9F) 266

ddi_devid_init(9F) 266

ddi_devid_register(9F) 266

ddi_devid_sizeof(9F) 266

ddi_devid_unregister(9F) 266

ddi_devid_valid(9F) 266

ddi_dev_is_needed(9F) 270

ddi_dev_is_sid(9F) 272

ddi_dev_nintrs(9F) 273

8 man pages section 9F: DDI and DKI Kernel Functions ♦ February 2000

ddi_dev_nregs(9F) 274

ddi_dev_regsize(9F) 275

ddi_dev_report_fault(9F) 276

ddi_dma_addr_bind_handle(9F) 279

ddi_dma_addr_setup(9F) 283

ddi_dma_alloc_handle(9F) 285

ddi_dma_buf_bind_handle(9F) 287

ddi_dma_buf_setup(9F) 291

ddi_dma_burstsizes(9F) 292

ddi_dma_coff(9F) 293

ddi_dma_curwin(9F) 294

ddi_dma_devalign(9F) 295

ddi_dmae(9F) 296

ddi_dmae_alloc(9F) 296

ddi_dmae_release(9F) 296

ddi_dmae_prog(9F) 296

ddi_dmae_disable(9F) 296

ddi_dmae_enable(9F) 296

ddi_dmae_stop(9F) 296

ddi_dmae_getcnt(9F) 296

ddi_dmae_1stparty(9F) 296

ddi_dmae_getlim(9F) 296

ddi_dmae_getattr(9F) 296

ddi_dma_free(9F) 301

ddi_dma_free_handle(9F) 302

ddi_dma_getwin(9F) 303

ddi_dma_htoc(9F) 305

ddi_dma_mem_alloc(9F) 306

Contents 9

ddi_dma_mem_free(9F) 309

ddi_dma_movwin(9F) 310

ddi_dma_nextcookie(9F) 312

ddi_dma_nextseg(9F) 314

ddi_dma_nextwin(9F) 316

ddi_dma_numwin(9F) 318

ddi_dma_segtocookie(9F) 319

ddi_dma_set_sbus64(9F) 321

ddi_dma_setup(9F) 323

ddi_dma_sync(9F) 325

ddi_dma_unbind_handle(9F) 327

ddi_driver_name(9F) 328

ddi_enter_critical(9F) 329

ddi_exit_critical(9F) 329

ddi_ffs(9F) 330

ddi_fls(9F) 330

ddi_get8(9F) 331

ddi_get16(9F) 331

ddi_get32(9F) 331

ddi_get64(9F) 331

ddi_getb(9F) 331

ddi_getw(9F) 331

ddi_getl(9F) 331

ddi_getll(9F) 331

ddi_get_cred(9F) 333

ddi_get_devstate(9F) 334

ddi_get_driver_private(9F) 336

ddi_set_driver_private(9F) 336

10 man pages section 9F: DDI and DKI Kernel Functions ♦ February 2000

ddi_getiminor(9F) 337

ddi_get_instance(9F) 338

ddi_get_lbolt(9F) 339

ddi_get_parent(9F) 340

ddi_get_pid(9F) 341

ddi_get_time(9F) 342

ddi_in_panic(9F) 343

ddi_intr_hilevel(9F) 344

ddi_io_get8(9F) 345

ddi_io_get16(9F) 345

ddi_io_get32(9F) 345

ddi_io_getb(9F) 345

ddi_io_getw(9F) 345

ddi_io_getl(9F) 345

ddi_iomin(9F) 347

ddi_iopb_alloc(9F) 348

ddi_iopb_free(9F) 348

ddi_io_put8(9F) 350

ddi_io_put16(9F) 350

ddi_io_put32(9F) 350

ddi_io_putw(9F) 350

ddi_io_putl(9F) 350

ddi_io_putb(9F) 350

ddi_io_rep_get8(9F) 352

ddi_io_rep_get16(9F) 352

ddi_io_rep_get32(9F) 352

ddi_io_rep_getw(9F) 352

ddi_io_rep_getb(9F) 352

Contents 11

ddi_io_rep_getl(9F) 352

ddi_io_rep_put8(9F) 354

ddi_io_rep_put16(9F) 354

ddi_io_rep_put32(9F) 354

ddi_io_rep_putw(9F) 354

ddi_io_rep_putl(9F) 354

ddi_io_rep_putb(9F) 354

ddi_mapdev(9F) 356

ddi_mapdev_intercept(9F) 358

ddi_mapdev_nointercept(9F) 358

ddi_mapdev_set_device_acc_attr(9F) 360

ddi_map_regs(9F) 362

ddi_unmap_regs(9F) 362

ddi_mem_alloc(9F) 364

ddi_mem_free(9F) 364

ddi_mem_get8(9F) 366

ddi_mem_get16(9F) 366

ddi_mem_get32(9F) 366

ddi_mem_get64(9F) 366

ddi_mem_getw(9F) 366

ddi_mem_getl(9F) 366

ddi_mem_getll(9F) 366

ddi_mem_getb(9F) 366

ddi_mem_put8(9F) 368

ddi_mem_put16(9F) 368

ddi_mem_put32(9F) 368

ddi_mem_put64(9F) 368

ddi_mem_putb(9F) 368

12 man pages section 9F: DDI and DKI Kernel Functions ♦ February 2000

ddi_mem_putw(9F) 368

ddi_mem_putl(9F) 368

ddi_mem_putll(9F) 368

ddi_mem_rep_get8(9F) 370

ddi_mem_rep_get16(9F) 370

ddi_mem_rep_get32(9F) 370

ddi_mem_rep_get64(9F) 370

ddi_mem_rep_getw(9F) 370

ddi_mem_rep_getl(9F) 370

ddi_mem_rep_getll(9F) 370

ddi_mem_rep_getb(9F) 370

ddi_mem_rep_put8(9F) 372

ddi_mem_rep_put16(9F) 372

ddi_mem_rep_put32(9F) 372

ddi_mem_rep_put64(9F) 372

ddi_mem_rep_putw(9F) 372

ddi_mem_rep_putl(9F) 372

ddi_mem_rep_putll(9F) 372

ddi_mem_rep_putb(9F) 372

ddi_mmap_get_model(9F) 374

ddi_model_convert_from(9F) 376

ddi_node_name(9F) 378

ddi_peek(9F) 379

ddi_peek8(9F) 379

ddi_peek16(9F) 379

ddi_peek32(9F) 379

ddi_peek64(9F) 379

ddi_peekc(9F) 379

Contents 13

ddi_peeks(9F) 379

ddi_peekl(9F) 379

ddi_peekd(9F) 379

ddi_poke(9F) 381

ddi_poke8(9F) 381

ddi_poke16(9F) 381

ddi_poke32(9F) 381

ddi_poke64(9F) 381

ddi_pokec(9F) 381

ddi_pokes(9F) 381

ddi_pokel(9F) 381

ddi_poked(9F) 381

ddi_prop_create(9F) 383

ddi_prop_modify(9F) 383

ddi_prop_remove(9F) 383

ddi_prop_remove_all(9F) 383

ddi_prop_undefine(9F) 383

ddi_prop_exists(9F) 388

ddi_prop_get_int(9F) 390

ddi_prop_lookup(9F) 392

ddi_prop_lookup_int_array(9F) 392

ddi_prop_lookup_string_array(9F) 392

ddi_prop_lookup_string(9F) 392

ddi_prop_lookup_byte_array(9F) 392

ddi_prop_free(9F) 392

ddi_prop_op(9F) 397

ddi_getprop(9F) 397

ddi_getlongprop(9F) 397

14 man pages section 9F: DDI and DKI Kernel Functions ♦ February 2000

ddi_getlongprop_buf(9F) 397

ddi_getproplen(9F) 397

ddi_prop_update(9F) 401

ddi_prop_update_int_array(9F) 401

ddi_prop_update_int(9F) 401

ddi_prop_update_string_array(9F) 401

ddi_prop_update_string(9F) 401

ddi_prop_update_byte_array(9F) 401

ddi_put8(9F) 405

ddi_put16(9F) 405

ddi_put32(9F) 405

ddi_put64(9F) 405

ddi_putb(9F) 405

ddi_putl(9F) 405

ddi_putll(9F) 405

ddi_putw(9F) 405

ddi_regs_map_free(9F) 407

ddi_regs_map_setup(9F) 408

ddi_remove_minor_node(9F) 410

ddi_rep_get8(9F) 411

ddi_rep_get16(9F) 411

ddi_rep_get32(9F) 411

ddi_rep_get64(9F) 411

ddi_rep_getw(9F) 411

ddi_rep_getl(9F) 411

ddi_rep_getll(9F) 411

ddi_rep_getb(9F) 411

ddi_report_dev(9F) 413

Contents 15

ddi_rep_put8(9F) 414

ddi_rep_put16(9F) 414

ddi_rep_put32(9F) 414

ddi_rep_put64(9F) 414

ddi_rep_putb(9F) 414

ddi_rep_putw(9F) 414

ddi_rep_putl(9F) 414

ddi_rep_putll(9F) 414

ddi_root_node(9F) 416

ddi_segmap(9F) 417

ddi_segmap_setup(9F) 417

ddi_slaveonly(9F) 420

ddi_soft_state(9F) 421

ddi_get_soft_state(9F) 421

ddi_soft_state_fini(9F) 421

ddi_soft_state_free(9F) 421

ddi_soft_state_init(9F) 421

ddi_soft_state_zalloc(9F) 421

ddi_umem_alloc(9F) 426

ddi_umem_free(9F) 426

ddi_umem_iosetup(9F) 428

ddi_umem_lock(9F) 430

ddi_umem_unlock(9F) 430

delay(9F) 432

devmap_default_access(9F) 434

devmap_devmem_setup(9F) 437

devmap_umem_setup(9F) 437

devmap_do_ctxmgt(9F) 441

16 man pages section 9F: DDI and DKI Kernel Functions ♦ February 2000

devmap_set_ctx_timeout(9F) 444

devmap_setup(9F) 445

ddi_devmap_segmap(9F) 445

devmap_unload(9F) 448

devmap_load(9F) 448

disksort(9F) 451

drv_getparm(9F) 452

drv_hztousec(9F) 454

drv_priv(9F) 455

drv_usectohz(9F) 456

drv_usecwait(9F) 457

dupb(9F) 458

dupmsg(9F) 461

enableok(9F) 462

esballoc(9F) 463

esbbcall(9F) 465

flushband(9F) 466

flushq(9F) 467

freeb(9F) 469

freemsg(9F) 470

freerbuf(9F) 471

freezestr(9F) 472

unfreezestr(9F) 472

geterror(9F) 473

getmajor(9F) 474

getminor(9F) 475

get_pktiopb(9F) 476

free_pktiopb(9F) 476

Contents 17

getq(9F) 478

getrbuf(9F) 479

hat_getkpfnum(9F) 480

inb(9F) 481

inw(9F) 481

inl(9F) 481

repinsb(9F) 481

repinsw(9F) 481

repinsd(9F) 481

insq(9F) 482

IOC_CONVERT_FROM(9F) 484

kmem_alloc(9F) 485

kmem_zalloc(9F) 485

kmem_free(9F) 485

kstat_create(9F) 487

kstat_delete(9F) 490

kstat_install(9F) 491

kstat_named_init(9F) 492

kstat_queue(9F) 493

kstat_waitq_enter(9F) 493

kstat_waitq_exit(9F) 493

kstat_runq_enter(9F) 493

kstat_runq_exit(9F) 493

kstat_waitq_to_runq(9F) 493

kstat_runq_back_to_waitq(9F) 493

linkb(9F) 495

makecom(9F) 496

makecom_g0(9F) 496

18 man pages section 9F: DDI and DKI Kernel Functions ♦ February 2000

makecom_g0_s(9F) 496

makecom_g1(9F) 496

makecom_g5(9F) 496

makedevice(9F) 498

max(9F) 499

min(9F) 500

mkiocb(9F) 501

mod_install(9F) 504

mod_remove(9F) 504

mod_info(9F) 504

msgdsize(9F) 505

msgpullup(9F) 506

mt-streams(9F) 507

mutex(9F) 509

mutex_enter(9F) 509

mutex_exit(9F) 509

mutex_init(9F) 509

mutex_destroy(9F) 509

mutex_owned(9F) 509

mutex_tryenter(9F) 509

nochpoll(9F) 512

nodev(9F) 513

noenable(9F) 514

nulldev(9F) 515

OTHERQ(9F) 516

otherq(9F) 516

outb(9F) 517

outw(9F) 517

Contents 19

outl(9F) 517

repoutsb(9F) 517

repoutsw(9F) 517

repoutsd(9F) 517

pci_config_get8(9F) 519

pci_config_get16(9F) 519

pci_config_get32(9F) 519

pci_config_get64(9F) 519

pci_config_put8(9F) 519

pci_config_put16(9F) 519

pci_config_put32(9F) 519

pci_config_put64(9F) 519

pci_config_getb(9F) 519

pci_config_getl(9F) 519

pci_config_getll(9F) 519

pci_config_getw(9F) 519

pci_config_putb(9F) 519

pci_config_putl(9F) 519

pci_config_putll(9F) 519

pci_config_putw(9F) 519

pci_config_setup(9F) 521

pci_config_teardown(9F) 521

pci_report_pmcap(9F) 522

physio(9F) 524

minphys(9F) 524

pm_busy_component(9F) 526

pm_idle_component(9F) 526

pm_create_components(9F) 528

20 man pages section 9F: DDI and DKI Kernel Functions ♦ February 2000

pm_destroy_components(9F) 528

pm_get_normal_power(9F) 530

pm_set_normal_power(9F) 530

pm_power_has_changed(9F) 532

pm_raise_power(9F) 534

pm_lower_power(9F) 534

pm_trans_check(9F) 538

pollwakeup(9F) 540

proc_signal(9F) 541

proc_ref(9F) 541

proc_unref(9F) 541

ptob(9F) 543

pullupmsg(9F) 544

put(9F) 546

putbq(9F) 547

putctl1(9F) 548

putctl(9F) 549

putnext(9F) 551

putnextctl1(9F) 552

putnextctl(9F) 553

putq(9F) 555

qbufcall(9F) 556

qenable(9F) 558

qprocson(9F) 559

qprocsoff(9F) 559

qreply(9F) 560

qsize(9F) 562

qtimeout(9F) 563

Contents 21

qunbufcall(9F) 564

quntimeout(9F) 565

qwait(9F) 566

qwait_sig(9F) 566

qwriter(9F) 568

RD(9F) 569

rd(9F) 569

rmalloc(9F) 570

rmallocmap(9F) 573

rmallocmap_wait(9F) 573

rmfreemap(9F) 573

rmalloc_wait(9F) 575

rmfree(9F) 576

rmvb(9F) 577

rmvq(9F) 579

rwlock(9F) 581

rw_init(9F) 581

rw_destroy(9F) 581

rw_enter(9F) 581

rw_exit(9F) 581

rw_tryenter(9F) 581

rw_downgrade(9F) 581

rw_tryupgrade(9F) 581

rw_read_locked(9F) 581

SAMESTR(9F) 584

samestr(9F) 584

scsi_abort(9F) 585

scsi_alloc_consistent_buf(9F) 586

22 man pages section 9F: DDI and DKI Kernel Functions ♦ February 2000

scsi_cname(9F) 588

scsi_dname(9F) 588

scsi_mname(9F) 588

scsi_rname(9F) 588

scsi_sname(9F) 588

scsi_destroy_pkt(9F) 590

scsi_dmaget(9F) 591

scsi_dmafree(9F) 591

scsi_errmsg(9F) 593

scsi_free_consistent_buf(9F) 596

scsi_hba_attach_setup(9F) 597

scsi_hba_attach(9F) 597

scsi_hba_detach(9F) 597

scsi_hba_init(9F) 600

scsi_hba_fini(9F) 600

scsi_hba_lookup_capstr(9F) 601

scsi_hba_pkt_alloc(9F) 603

scsi_hba_pkt_free(9F) 603

scsi_hba_probe(9F) 605

scsi_hba_tran_alloc(9F) 606

scsi_hba_tran_free(9F) 606

scsi_ifgetcap(9F) 607

scsi_ifsetcap(9F) 607

scsi_init_pkt(9F) 611

scsi_log(9F) 615

scsi_pktalloc(9F) 617

scsi_resalloc(9F) 617

scsi_pktfree(9F) 617

Contents 23

scsi_resfree(9F) 617

scsi_poll(9F) 619

scsi_probe(9F) 620

scsi_reset(9F) 622

scsi_reset_notify(9F) 623

scsi_setup_cdb(9F) 625

scsi_slave(9F) 626

scsi_sync_pkt(9F) 628

scsi_transport(9F) 629

scsi_unprobe(9F) 630

scsi_unslave(9F) 630

scsi_vu_errmsg(9F) 631

semaphore(9F) 634

sema_init(9F) 634

sema_destroy(9F) 634

sema_p(9F) 634

sema_p_sig(9F) 634

sema_v(9F) 634

sema_tryp(9F) 634

sprintf(9F) 636

stoi(9F) 638

numtos(9F) 638

strchr(9F) 639

strcmp(9F) 640

strncmp(9F) 640

strcpy(9F) 641

strncpy(9F) 641

strlen(9F) 642

24 man pages section 9F: DDI and DKI Kernel Functions ♦ February 2000

strlog(9F) 643

strqget(9F) 645

strqset(9F) 646

STRUCT_DECL(9F) 647

SIZEOF_PTR(9F) 647

SIZEOF_STRUCT(9F) 647

STRUCT_BUF(9F) 647

STRUCT_FADDR(9F) 647

STRUCT_FGET(9F) 647

STRUCT_FGETP(9F) 647

STRUCT_FSET(9F) 647

STRUCT_FSETP(9F) 647

STRUCT_HANDLE(9F) 647

STRUCT_INIT(9F) 647

STRUCT_SIZE(9F) 647

STRUCT_SET_HANDLE(9F) 647

swab(9F) 652

testb(9F) 653

timeout(9F) 655

uiomove(9F) 657

unbufcall(9F) 658

unlinkb(9F) 659

untimeout(9F) 660

ureadc(9F) 662

uwritec(9F) 663

va_arg(9F) 664

va_start(9F) 664

va_copy(9F) 664

Contents 25

va_end(9F) 664

vsprintf(9F) 667

WR(9F) 670

wr(9F) 670

Index 670

26 man pages section 9F: DDI and DKI Kernel Functions ♦ February 2000

Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page
is intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the information
it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character-set tables.

� Section 6 contains available games and demos.

� Section 7 describes various special files that refer to specific hardware
peripherals and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

Preface 27

� Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver/Kernel Interface (DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.

� Section 9S describes the data structures used by drivers to share information
between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there are
no bugs to report, there is no BUGS section. See the intro pages for more information
and detail about each section, and man(1) for more information about man pages in
general.

NAME This section gives the names of the commands
or functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not
exist in the standard path, its full path name is
shown. Options and arguments are alphabetized,
with single letter arguments first, and options
with arguments next, unless a different argument
order is required.

The following special characters are used in
this section:

[] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

. . . Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename
. . ." .

| Separator. Only one of the arguments
separated by this character can be
specified at a time.

{ } Braces. The options and/or
arguments enclosed within braces are

28 man pages section 9F: DDI and DKI Kernel Functions ♦ February 2000

interdependent, such that everything
enclosed must be treated as a unit.

PROTOCOL This section occurs only in subsection 3R to
indicate the protocol description file.

DESCRIPTION This section defines the functionality and
behavior of the service. Thus it describes
concisely what the command does. It does not
discuss OPTIONS or cite EXAMPLES. Interactive
commands, subcommands, requests, macros, and
functions are described under USAGE.

IOCTL This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioctl (2) system call is called
ioctl and generates its own heading. ioctl
calls for a specific device are listed alphabetically
(on the man page for that specific device). ioctl
calls are used for a particular class of devices all
of which have an io ending, such as mtio (7I).

OPTIONS This secton lists the command options with
a concise summary of what each option does.
The options are listed literally and in the order
they appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output – standard
output, standard error, or output files – generated
by the command.

RETURN VALUES If the man page documents functions that
return values, this section lists these values and
describes the conditions under which they are
returned. If a function can return only constant
values, such as 0 or –1, these values are listed
in tagged paragraphs. Otherwise, a single
paragraph describes the return values of each
function. Functions declared void do not return
values, so they are not discussed in RETURN
VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno indicating why they

29

failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than
one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE This section lists special rules, features, and
commands that require in-depth explanations.
The subsections listed here are used to explain
built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage
or of how to use a command or function.
Wherever possible a complete example
including command-line entry and machine
response is shown. Whenever an example is
given, the prompt is shown as example% ,
or if the user must be superuser, example# .
Examples are followed by explanations, variable
substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS This section lists the values the command returns
to the calling program or shell and the conditions
that cause these values to be returned. Usually,
zero is returned for successful completion,
and values other than zero for various error
conditions.

FILES This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes (5) for more information.

30 man pages section 9F: DDI and DKI Kernel Functions ♦ February 2000

SEE ALSO This section lists references to other man
pages, in-house documentation, and outside
publications.

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special
conditions which could seriously affect your
working conditions. This is not a list of
diagnostics.

NOTES This section lists additional information that
does not belong anywhere else on the page. It
takes the form of an aside to the user, covering
points of special interest. Critical information is
never covered here.

BUGS This section describes known bugs and, wherever
possible, suggests workarounds.

31

CHAPTER

Kernel Functions for Drivers

32

Kernel Functions for Drivers Intro(9F)

NAME Intro – introduction to DDI/DKI functions

DESCRIPTION Section 9F describes the kernel functions available for use by device drivers.

In this section, the information for each driver function is organized under the
following headings:

� NAMEsummarizes the function’s purpose.

� SYNOPSISshows the syntax of the function’s entry point in the source code.
#include directives are shown for required headers.

� INTERFACE LEVELdescribes any architecture dependencies.

� ARGUMENTSdescribes any arguments required to invoke the function.

� DESCRIPTIONdescribes general information about the function.

� RETURN VALUESdescribes the return values and messages that can result
from invoking the function.

� CONTEXTindicates from which driver context (user, kernel, interrupt, or
high-level interrupt) the function can be called.

� A driver function has user context if it was directly invoked because of a
user thread. The read (9E) entry point of the driver, invoked by a read (2)
system call, has user context.

� A driver function has kernel context if was invoked by some other part of
the kernel. In a block device driver, the strategy (9E) entry point may be
called by the page daemon to write pages to the device. The page daemon
has no relation to the current user thread, so in this case strategy (9E)
has kernel context.

� Interrupt context is kernel context, but also has an interrupt level associated
with it. Driver interrupt routines have interrupt context.

� High-level interrupt context is a more restricted form of interrupt context. If
ddi_intr_hilevel (9F) indicates that an interrupt is high-level, driver
interrupt routines added for that interrupt with ddi_add_intr (9F) run in
high-level interrupt context. These interrupt routines are only allowed to
call ddi_trigger_softintr (9F) mutex_enter (9F) and mutex_exit (9F).
Furthermore, mutex_enter (9F) and mutex_exit (9F) may only be
called on mutexes initialized with the ddi_iblock_cookie returned by
ddi_get_iblock_cookie (9F).

� SEE ALSOindicates functions that are related by usage and sources, and
which can be referred to for further information.

� EXAMPLESshows how the function can be used in driver code.

Every driver MUST include <sys/ddi.h> and <sys/sunddi.h> , in that
order, and as the last files the driver includes.

Last modified 22 Jan 1997 SunOS 5.8 33

Intro(9F) Kernel Functions for Drivers

STREAMS Kernel
Function Summary

The following table summarizes the STREAMS functions described in this
section.

Routine Type

adjmsg DDI/DKI

allocb DDI/DKI

backq DDI/DKI

bcanput DDI/DKI

bcanputnext DDI/DKI

bufcall DDI/DKI

canput DDI/DKI

canputnext DDI/DKI

clrbuf DDI/DKI

copyb DDI/DKI

copymsg DDI/DKI

datamsg DDI/DKI

dupb DDI/DKI

dupmsg DDI/DKI

enableok DDI/DKI

esballoc DDI/DKI

esbbcall DDI/DKI

flushband DDI/DKI

flushq DDI/DKI

freeb DDI/DKI

freemsg DDI/DKI

freezestr DDI/DKI

getq DDI/DKI

insq DDI/DKI

linkb DDI/DKI

msgdsize DDI/DKI

msgpullup DDI/DKI

mt-streams Solaris DDI

34 SunOS 5.8 Last modified 22 Jan 1997

Kernel Functions for Drivers Intro(9F)

Routine Type

noenable DDI/DKI

OTHERQ DDI/DKI

pullupmsg DDI/DKI

put DDI/DKI

putbq DDI/DKI

putctl DDI/DKI

putctl1 DDI/DKI

putnext DDI/DKI

putnextctl DDI/DKI

putq DDI/DKI

qbufcall Solaris DDI

qenable DDI/DKI

qprocson DDI/DKI

qprocsoff DDI/DKI

qreply DDI/DKI

qsize DDI/DKI

qtimeout Solaris DDI

qunbufcall Solaris DDI

quntimeout Solaris DDI

qwait Solaris DDI

qwait_sig Solaris DDI

qwriter Solaris DDI

RD DDI/DKI

rmvb DDI/DKI

rmvq DDI/DKI

SAMESTR DDI/DKI

strlog DDI/DKI

strqget DDI/DKI

strqset DDI/DKI

Last modified 22 Jan 1997 SunOS 5.8 35

Intro(9F) Kernel Functions for Drivers

Routine Type

testb DDI/DKI

unbufcall DDI/DKI

unfreezestr DDI/DKI

unlinkb DDI/DKI

WR DDI/DKI

The following table summarizes the functions not specific to STREAMS.

Routine Type

ASSERT DDI/DKI

anocancel Solaris DDI

aphysio Solaris DDI

bcmp DDI/DKI

bcopy DDI/DKI

biodone DDI/DKI

bioclone Solaris DDI

biofini Solaris DDI

bioinit Solaris DDI

biomodified Solaris DDI

biosize Solaris DDI

bioerror Solaris DDI

bioreset Solaris DDI

biowait DDI/DKI

bp_mapin DDI/DKI

bp_mapout DDI/DKI

btop DDI/DKI

btopr DDI/DKI

bzero DDI/DKI

cmn_err DDI/DKI

copyin DDI/DKI

36 SunOS 5.8 Last modified 22 Jan 1997

Kernel Functions for Drivers Intro(9F)

Routine Type

copyout DDI/DKI

cv_broadcast Solaris DDI

cv_destroy Solaris DDI

cv_init Solaris DDI

cv_signal Solaris DDI

cv_timedwait Solaris DDI

cv_wait Solaris DDI

cv_wait_sig Solaris DDI

ddi_add_intr Solaris DDI

ddi_add_softintr Solaris DDI

ddi_btop Solaris DDI

ddi_btopr Solaris DDI

ddi_copyin Solaris DDI

ddi_copyout Solaris DDI

ddi_create_minor_node Solaris DDI

ddi_dev_is_sid Solaris DDI

ddi_dev_nintrs Solaris DDI

ddi_dev_nregs Solaris DDI

ddi_dev_regsize Solaris DDI

ddi_device_copy Solaris DDI

ddi_device_zero Solaris DDI

ddi_devmap_segmap Solaris DDI

ddi_dma_addr_bind_handle Solaris DDI

ddi_dma_addr_setup Solaris DDI

ddi_dma_alloc_handle Solaris DDI

ddi_dma_buf_bind_handle Solaris DDI

ddi_dma_buf_setup Solaris DDI

ddi_dma_burstsizes Solaris DDI

ddi_dma_coff Solaris SPARC DDI

Last modified 22 Jan 1997 SunOS 5.8 37

Intro(9F) Kernel Functions for Drivers

Routine Type

ddi_dma_curwin Solaris SPARC DDI

ddi_dma_devalign Solaris DDI

ddi_dma_free Solaris DDI

ddi_dma_free_handle Solaris DDI

ddi_dma_getwin Solaris DDI

ddi_dma_htoc Solaris SPARC DDI

ddi_dma_mem_alloc Solaris DDI

ddi_dma_mem_free Solaris DDI

ddi_dma_movwin Solaris SPARC DDI

ddi_dma_nextcookie Solaris DDI

ddi_dma_nextseg Solaris DDI

ddi_dma_nextwin Solaris DDI

ddi_dma_numwin Solaris DDI

ddi_dma_segtocookie Solaris DDI

ddi_dma_set_sbus64 Solaris DDI

ddi_dma_setup Solaris DDI

ddi_dma_sync Solaris DDI

ddi_dma_unbind_handle Solaris DDI

ddi_dmae Solaris IA DDI

ddi_dmae_1stparty Solaris IA DDI

ddi_dmae_alloc Solaris IA DDI

ddi_dmae_disable Solaris IA DDI

ddi_dmae_enable Solaris IA DDI

ddi_dmae_getattr Solaris IA DDI

ddi_dmae_getcnt Solaris IA DDI

ddi_dmae_getlim Solaris IA DDI

ddi_dmae_prog Solaris IA DDI

ddi_dmae_release Solaris IA DDI

ddi_dmae_stop Solaris IA DDI

38 SunOS 5.8 Last modified 22 Jan 1997

Kernel Functions for Drivers Intro(9F)

Routine Type

ddi_enter_critical Solaris DDI

ddi_exit_critical Solaris DDI

ddi_ffs Solaris DDI

ddi_fls Solaris DDI

ddi_get16 Solaris DDI

ddi_get32 Solaris DDI

ddi_get64 Solaris DDI

ddi_get8 Solaris DDI

ddi_get_cred Solaris DDI

ddi_get_driver_private Solaris DDI

ddi_get_iblock_cookie Solaris DDI

ddi_get_instance Solaris DDI

ddi_get_name Solaris DDI

ddi_get_parent Solaris DDI

ddi_get_soft_iblock_cookie Solaris DDI

ddi_get_soft_state Solaris DDI

ddi_getb Solaris DDI

ddi_getl Solaris DDI

ddi_getll Solaris DDI

ddi_getlongprop Solaris DDI

ddi_getlongprop_buf Solaris DDI

ddi_getprop Solaris DDI

ddi_getproplen Solaris DDI

ddi_getw Solaris DDI

ddi_intr_hilevel Solaris DDI

ddi_io_get16 Solaris DDI

ddi_io_get32 Solaris DDI

ddi_io_get8 Solaris DDI

ddi_io_getb Solaris DDI

Last modified 22 Jan 1997 SunOS 5.8 39

Intro(9F) Kernel Functions for Drivers

Routine Type

ddi_io_getl Solaris DDI

ddi_io_getw Solaris DDI

ddi_io_put16 Solaris DDI

ddi_io_put32 Solaris DDI

ddi_io_put8 Solaris DDI

ddi_io_putb Solaris DDI

ddi_io_putl Solaris DDI

ddi_io_putw Solaris DDI

ddi_io_rep_get16 Solaris DDI

ddi_io_rep_get32 Solaris DDI

ddi_io_rep_get8 Solaris DDI

ddi_io_rep_getb Solaris DDI

ddi_io_rep_getl Solaris DDI

ddi_io_rep_getw Solaris DDI

ddi_io_rep_put16 Solaris DDI

ddi_io_rep_put32 Solaris DDI

ddi_io_rep_put8 Solaris DDI

ddi_io_rep_putb Solaris DDI

ddi_io_rep_putl Solaris DDI

ddi_io_rep_putw Solaris DDI

ddi_iomin Solaris DDI

ddi_iopb_alloc Solaris DDI

ddi_iopb_free Solaris DDI

ddi_map_regs Solaris DDI

ddi_mapdev Solaris DDI

ddi_mapdev_intercept Solaris DDI

ddi_mapdev_nointercept Solaris DDI

ddi_mapdev_set_device_acc_attr Solaris DDI

ddi_mem_alloc Solaris DDI

40 SunOS 5.8 Last modified 22 Jan 1997

Kernel Functions for Drivers Intro(9F)

Routine Type

ddi_mem_free Solaris DDI

ddi_mem_get16 Solaris DDI

ddi_mem_get32 Solaris DDI

ddi_mem_get64 Solaris DDI

ddi_mem_get8 Solaris DDI

ddi_mem_getb Solaris DDI

ddi_mem_getl Solaris DDI

ddi_mem_getll Solaris DDI

ddi_mem_getw Solaris DDI

ddi_mem_put16 Solaris DDI

ddi_mem_put32 Solaris DDI

ddi_mem_put64 Solaris DDI

ddi_mem_put8 Solaris DDI

ddi_mem_putb Solaris DDI

ddi_mem_putl Solaris DDI

ddi_mem_putll Solaris DDI

ddi_mem_putw Solaris DDI

ddi_mem_rep_get16 Solaris DDI

ddi_mem_rep_get32 Solaris DDI

ddi_mem_rep_get64 Solaris DDI

ddi_mem_rep_get8 Solaris DDI

ddi_mem_rep_getb Solaris DDI

ddi_mem_rep_getl Solaris DDI

ddi_mem_rep_getll Solaris DDI

ddi_mem_rep_getw Solaris DDI

ddi_mem_rep_put16 Solaris DDI

ddi_mem_rep_put32 Solaris DDI

ddi_mem_rep_put64 Solaris DDI

ddi_mem_rep_put8 Solaris DDI

Last modified 22 Jan 1997 SunOS 5.8 41

Intro(9F) Kernel Functions for Drivers

Routine Type

ddi_mem_rep_putb Solaris DDI

ddi_mem_rep_putl Solaris DDI

ddi_mem_rep_putll Solaris DDI

ddi_mem_rep_putw Solaris DDI

ddi_mmap_get_model Solaris DDI

ddi_model_convert_from Solaris DDI

ddi_node_name Solaris DDI

ddi_peek16 Solaris DDI

ddi_peek32 Solaris DDI

ddi_peek64 Solaris DDI

ddi_peek8 Solaris DDI

ddi_peekc Solaris DDI

ddi_peekd Solaris DDI

ddi_peekl Solaris DDI

ddi_peeks Solaris DDI

ddi_poke16 Solaris DDI

ddi_poke32 Solaris DDI

ddi_poke64 Solaris DDI

ddi_poke8 Solaris DDI

ddi_pokec Solaris DDI

ddi_poked Solaris DDI

ddi_pokel Solaris DDI

ddi_pokes Solaris DDI

ddi_prop_create Solaris DDI

ddi_prop_exists Solaris DDI

ddi_prop_free Solaris DDI

ddi_prop_get_int Solaris DDI

ddi_prop_lookup Solaris DDI

ddi_prop_lookup_byte_array Solaris DDI

42 SunOS 5.8 Last modified 22 Jan 1997

Kernel Functions for Drivers Intro(9F)

Routine Type

ddi_prop_lookup_int_array Solaris DDI

ddi_prop_lookup_string Solaris DDI

ddi_prop_lookup_string_array Solaris DDI

ddi_prop_modify Solaris DDI

ddi_prop_op Solaris DDI

ddi_prop_remove Solaris DDI

ddi_prop_remove_all Solaris DDI

ddi_prop_undefine Solaris DDI

ddi_prop_update Solaris DDI

ddi_prop_update_byte_array Solaris DDI

ddi_prop_update_int Solaris DDI

ddi_prop_update_int_array Solaris DDI

ddi_prop_update_string Solaris DDI

ddi_prop_update_string_array Solaris DDI

ddi_ptob Solaris DDI

ddi_put16 Solaris DDI

ddi_put32 Solaris DDI

ddi_put64 Solaris DDI

ddi_put8 Solaris DDI

ddi_putb Solaris DDI

ddi_putl Solaris DDI

ddi_putll Solaris DDI

ddi_putw Solaris DDI

ddi_regs_map_free Solaris DDI

ddi_regs_map_setup Solaris DDI

ddi_remove_intr Solaris DDI

ddi_remove_minor_node Solaris DDI

ddi_remove_softintr Solaris DDI

ddi_rep_get16 Solaris DDI

Last modified 22 Jan 1997 SunOS 5.8 43

Intro(9F) Kernel Functions for Drivers

Routine Type

ddi_rep_get32 Solaris DDI

ddi_rep_get64 Solaris DDI

ddi_rep_get8 Solaris DDI

ddi_rep_getb Solaris DDI

ddi_rep_getl Solaris DDI

ddi_rep_getll Solaris DDI

ddi_rep_getw Solaris DDI

ddi_rep_put16 Solaris DDI

ddi_rep_put32 Solaris DDI

ddi_rep_put64 Solaris DDI

ddi_rep_put8 Solaris DDI

ddi_rep_putb Solaris DDI

ddi_rep_putl Solaris DDI

ddi_rep_putll Solaris DDI

ddi_rep_putw Solaris DDI

ddi_report_dev Solaris DDI

ddi_root_node Solaris DDI

ddi_segmap Solaris DDI

ddi_segmap_setup Solaris DDI

ddi_set_driver_private Solaris DDI

ddi_slaveonly Solaris DDI

ddi_soft_state Solaris DDI

ddi_soft_state_fini Solaris DDI

ddi_soft_state_free Solaris DDI

ddi_soft_state_init Solaris DDI

ddi_soft_state_zalloc Solaris DDI

ddi_trigger_softintr Solaris DDI

ddi_umem_alloc Solaris DDI

ddi_umem_free Solaris DDI

44 SunOS 5.8 Last modified 22 Jan 1997

Kernel Functions for Drivers Intro(9F)

Routine Type

ddi_unmap_regs Solaris DDI

delay DDI/DKI

devmap_default_access Solaris DDI

devmap_devmem_setup Solaris DDI

devmap_do_ctxmgt Solaris DDI

devmap_load Solaris DDI

devmap_set_ctx_timeout Solaris DDI

devmap_setup Solaris DDI

devmap_umem_setup Solaris DDI

devmap_unload Solaris DDI

disksort Solaris DDI

drv_getparm DDI/DKI

drv_hztousec DDI/DKI

drv_priv DDI/DKI

drv_usectohz DDI/DKI

drv_usecwait DDI/DKI

free_pktiopb Solaris DDI

freerbuf DDI/DKI

get_pktiopb Solaris DDI

geterror DDI/DKI

getmajor DDI/DKI

getminor DDI/DKI

getrbuf DDI/DKI

hat_getkpfnum DKI only

inb Solaris IA DDI

inl Solaris IA DDI

inw Solaris IA DDI

kmem_alloc DDI/DKI

kmem_free DDI/DKI

Last modified 22 Jan 1997 SunOS 5.8 45

Intro(9F) Kernel Functions for Drivers

Routine Type

kmem_zalloc DDI/DKI

kstat_create Solaris DDI

kstat_delete Solaris DDI

kstat_install Solaris DDI

kstat_named_init Solaris DDI

kstat_queue Solaris DDI

kstat_runq_back_to_waitq Solaris DDI

kstat_runq_enter Solaris DDI

kstat_runq_exit Solaris DDI

kstat_waitq_enter Solaris DDI

kstat_waitq_exit Solaris DDI

kstat_waitq_to_runq Solaris DDI

makecom_g0 Solaris DDI

makecom_g0_s Solaris DDI

makecom_g1 Solaris DDI

makecom_g5 Solaris DDI

makedevice DDI/DKI

max DDI/DKI

min DDI/DKI

minphys Solaris DDI

mod_info Solaris DDI

mod_install Solaris DDI

mod_remove Solaris DDI

mutex_destroy Solaris DDI

mutex_enter Solaris DDI

mutex_exit Solaris DDI

mutex_init Solaris DDI

mutex_owned Solaris DDI

mutex_tryenter Solaris DDI

46 SunOS 5.8 Last modified 22 Jan 1997

Kernel Functions for Drivers Intro(9F)

Routine Type

nochpoll Solaris DDI

nodev DDI/DKI

nulldev DDI/DKI

numtos Solaris DDI

outb Solaris IA DDI

outl Solaris IA DDI

outw Solaris IA DDI

pci_config_get16 Solaris DDI

pci_config_get32 Solaris DDI

pci_config_get64 Solaris DDI

pci_config_get8 Solaris DDI

pci_config_getb Solaris DDI

pci_config_getl Solaris DDI

pci_config_getw Solaris DDI

pci_config_put16 Solaris DDI

pci_config_put32 Solaris DDI

pci_config_put64 Solaris DDI

pci_config_put8 Solaris DDI

pci_config_putb Solaris DDI

pci_config_putl Solaris DDI

pci_config_putw Solaris DDI

pci_config_setup Solaris DDI

pci_config_teardown Solaris DDI

physio Solaris DDI

pollwakeup DDI/DKI

proc_ref Solaris DDI

proc_signal Solaris DDI

proc_unref Solaris DDI

ptob DDI/DKI

Last modified 22 Jan 1997 SunOS 5.8 47

Intro(9F) Kernel Functions for Drivers

Routine Type

repinsb Solaris IA DDI

repinsd Solaris IA DDI

repinsw Solaris IA DDI

repoutsb Solaris IA DDI

repoutsd Solaris IA DDI

repoutsw Solaris IA DDI

rmalloc DDI/DKI

rmalloc_wait DDI/DKI

rmallocmap DDI/DKI

rmallocmap_wait DDI/DKI

rmfree DDI/DKI

rmfreemap DDI/DKI

rw_destroy Solaris DDI

rw_downgrade Solaris DDI

rw_enter Solaris DDI

rw_exit Solaris DDI

rw_init Solaris DDI

rw_read_locked Solaris DDI

rw_tryenter Solaris DDI

rw_tryupgrade Solaris DDI

scsi_abort Solaris DDI

scsi_alloc_consistent_buf Solaris DDI

scsi_cname Solaris DDI

scsi_destroy_pkt Solaris DDI

scsi_dmafree Solaris DDI

scsi_dmaget Solaris DDI

scsi_dname Solaris DDI

scsi_errmsg Solaris DDI

scsi_free_consistent_buf Solaris DDI

48 SunOS 5.8 Last modified 22 Jan 1997

Kernel Functions for Drivers Intro(9F)

Routine Type

scsi_hba_attach Solaris DDI

scsi_hba_attach_setup Solaris DDI

scsi_hba_detach Solaris DDI

scsi_hba_fini Solaris DDI

scsi_hba_init Solaris DDI

scsi_hba_lookup_capstr Solaris DDI

scsi_hba_pkt_alloc Solaris DDI

scsi_hba_pkt_free Solaris DDI

scsi_hba_probe Solaris DDI

scsi_hba_tran_alloc Solaris DDI

scsi_hba_tran_free Solaris DDI

scsi_ifgetcap Solaris DDI

scsi_ifsetcap Solaris DDI

scsi_init_pkt Solaris DDI

scsi_log Solaris DDI

scsi_mname Solaris DDI

scsi_pktalloc Solaris DDI

scsi_pktfree Solaris DDI

scsi_poll Solaris DDI

scsi_probe Solaris DDI

scsi_resalloc Solaris DDI

scsi_reset Solaris DDI

scsi_reset_notify Solaris DDI

scsi_resfree Solaris DDI

scsi_rname Solaris DDI

scsi_slave Solaris DDI

scsi_sname Solaris DDI

scsi_sync_pkt Solaris DDI

scsi_transport Solaris DDI

Last modified 22 Jan 1997 SunOS 5.8 49

Intro(9F) Kernel Functions for Drivers

Routine Type

scsi_unprobe Solaris DDI

scsi_unslave Solaris DDI

sema_destroy Solaris DDI

sema_init Solaris DDI

sema_p Solaris DDI

sema_p_sig Solaris DDI

sema_tryp Solaris DDI

sema_v Solaris DDI

sprintf Solaris DDI

stoi Solaris DDI

strchr Solaris DDI

strcmp Solaris DDI

strcpy Solaris DDI

strlen Solaris DDI

strncmp Solaris DDI

strncpy Solaris DDI

swab DDI/DKI

timeout DDI/DKI

uiomove DDI/DKI

untimeout DDI/DKI

ureadc DDI/DKI

uwritec DDI/DKI

va_arg Solaris DDI

va_end Solaris DDI

va_start Solaris DDI

vcmn_err DDI/DKI

vsprintf Solaris DDI

50 SunOS 5.8 Last modified 22 Jan 1997

Kernel Functions for Drivers adjmsg(9F)

NAME adjmsg – trim bytes from a message

SYNOPSIS #include <sys/stream.h>

int adjmsg (mblk_t *mp, ssize_t len);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS mp Pointer to the message to be trimmed.

len The number of bytes to be removed.

DESCRIPTION The adjmsg() function removes bytes from a message. |len| (the absolute
value of len) specifies the number of bytes to be removed. The adjmsg()
function only trims bytes across message blocks of the same type.

The adjmsg() function finds the maximal leading sequence of message blocks
of the same type as that of mp and starts removing bytes either from the head of
that sequence or from the tail of that sequence. If len is greater than 0, adjmsg()
removes bytes from the start of the first message block in that sequence. If len
is less than 0, it removes bytes from the end of the last message block in that
sequence.

The adjmsg() function fails if |len| is greater than the number of bytes in the
maximal leading sequence it finds.

The adjmsg() function may remove any except the first zero-length message
block created during adjusting. It may also remove any zero-length message
blocks that occur within the scope of |len|.

RETURN VALUES The adjmsg() function returns:
1 Successful completion.

0 An error occurred.

CONTEXT The adjmsg() function can be called from user or interrupt context.

SEE ALSO STREAMS Programming Guide

Last modified 20 Nov 1996 SunOS 5.8 51

allocb(9F) Kernel Functions for Drivers

NAME allocb – allocate a message block

SYNOPSIS #include <sys/stream.h>

mblk_t *allocb (size_t size, uint_t pri);

Architecture independent level 1 (DDI/DKI).

PARAMETERS size The number of bytes in the message block.

pri Priority of the request (no longer used).

DESCRIPTION allocb() tries to allocate a STREAMSmessage block. Buffer allocation
fails only when the system is out of memory. If no buffer is available, the
bufcall (9F) function can help a module recover from an allocation failure.

A STREAMSmessage block is composed of three structures. The first structure
is a message block (mblk_t). See msgb(9S). The mblk_t structure points to a
data block structure (dblk_t). See datab (9S). Together these two structures
describe the message type (if applicable) and the size and location of the third
structure, the data buffer. The data buffer contains the data for this message
block. The allocated data buffer is at least double-word aligned, so it can hold
any C data structure.

The fields in the mblk_t structure are initialized as follows:
b_cont set to NULL

b_rptr points to the beginning of the data buffer

b_wptr points to the beginning of the data buffer

b_datap points to the dblk_t structure

The fields in the dblk_t structure are initialized as follows:
db_base points to the first byte of the data buffer

db_lim points to the last byte + 1 of the buffer

db_type set to M_DATA

The following figure identifies the data structure members that are affected
when a message block is allocated.

52 SunOS 5.8 Last modified 23 Jun 1997

Kernel Functions for Drivers allocb(9F)

RETURN VALUES A pointer to the allocated message block of type M_DATAon success.

A NULLpointer on failure.

CONTEXT allocb() can be called from user or interrupt context.

EXAMPLES EXAMPLE 1 allocb() Code Sample

Given a pointer to a queue (q) and an error number (err), the send_error()
routine sends an M_ERRORtype message to the stream head.

If a message cannot be allocated, NULL is returned, indicating an allocation
failure (line 8). Otherwise, the message type is set to M_ERROR(line 10). Line
11 increments the write pointer (bp->b_wptr) by the size (one byte) of the
data in the message.

A message must be sent up the read side of the stream to arrive at the stream
head. To determine whether q points to a read queue or to a write queue, the
q->q_flag member is tested to see if QREADRis set (line 13). If it is not set, q
points to a write queue, and in line 14 the RD(9F) function is used to find the
corresponding read queue. In line 15, the putnext (9F) function is used to send
the message upstream, returning 1 if successful.

1 send_error(q,err)
2 queue_t *q;
3 unsigned char err;
4 {
5 mblk_t *bp;
6
7 if ((bp = allocb(1, BPRI_HI)) == NULL) /* allocate msg. block */
8 return(0);
9
10 bp->b_datap->db_type = M_ERROR; /* set msg type to M_ERROR */
11 *bp->b_wptr++ = err; /* increment write pointer */
12
13 if (!(q->q_flag & QREADR)) /* if not read queue */
14 q = RD(q); /* get read queue */
15 putnext(q,bp); /* send message upstream */
16 return(1);
17 }

SEE ALSO RD(9F), bufcall (9F), esballoc (9F), esbbcall (9F), putnext (9F), testb (9F),
datab (9S), msgb(9S)

Writing Device Drivers

STREAMS Programming Guide

NOTES The pri argument is no longer used, but is retained for compatibility with
existing drivers.

Last modified 23 Jun 1997 SunOS 5.8 53

anocancel(9F) Kernel Functions for Drivers

NAME anocancel – prevent cancellation of asynchronous I/O request

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int anocancel ();

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION anocancel() should be used by drivers that do not support canceling
asynchronous I/O requests. anocancel() is passed as the driver cancel routine
parameter to aphysio (9F).

RETURN VALUES anocancel() returns ENXIO.

SEE ALSO aread (9E), awrite (9E), aphysio (9F)

Writing Device Drivers

54 SunOS 5.8 Last modified 9 Nov 1994

Kernel Functions for Drivers aphysio(9F)

NAME aphysio – perform asynchronous physical I/O

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>
#include <sys/uio.h>
#include <sys/aio_req.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int aphysio (int (* strat)(struct buf *) , int (* cancel)(struct buf *) , dev_t dev,
int rw, void (* mincnt)(struct buf *) , struct aio_req *aio_reqp);

PARAMETERS strat Pointer to device strategy routine.

cancel Pointer to driver cancel routine. Used to cancel a submitted
request. The driver must pass the address of the function
anocancel (9F) because cancellation is not supported.

dev The device number.

rw Read/write flag. This is either B_READwhen reading from
the device or B_WRITEwhen writing to the device.

mincnt Routine which bounds the maximum transfer unit size.

aio_reqp Pointer to the aio_req (9S) structure which describes the
user I/O request.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION aphysio() performs asynchronous I/O operations between the device and
the address space described by aio_reqp→aio_uio.

Prior to the start of the transfer, aphysio() verifies the requested operation is
valid. It then locks the pages involved in the I/O transfer so they can not be
paged out. The device strategy routine, strat, is then called one or more times to
perform the physical I/O operations. aphysio() does not wait for each transfer
to complete, but returns as soon as the necessary requests have been made.

aphysio() calls mincnt to bound the maximum transfer unit size to a sensible
default for the device and the system. Drivers which do not provide their own
local mincnt routine should call aphysio() with minphys (9F). minphys (9F)
is the system mincnt routine. minphys (9F) ensures the transfer size does not
exceed any system limits.

If a driver supplies a local mincnt routine, this routine should perform the
following actions:

Last modified 9 Nov 1994 SunOS 5.8 55

aphysio(9F) Kernel Functions for Drivers

� If bp→b_bcount exceeds a device limit, set bp→b_bcount to a value supported
by the device.

� Call minphys (9F) to ensure that the driver does not circumvent additional
system limits.

RETURN VALUES aphysio() returns:
0 Upon success.

non-zero Upon failure.

CONTEXT aphysio() can be called from user context only.

SEE ALSO aread (9E), awrite (9E), strategy (9E), anocancel (9F), biodone (9F),
biowait (9F), minphys (9F), physio (9F), aio_req (9S), buf (9S), uio (9S)

Writing Device Drivers

WARNINGS It is the driver’s responsibility to call biodone (9F) when the transfer is complete.

BUGS Cancellation is not supported in this release. The address of the function
anocancel (9F) must be used as the cancel argument.

56 SunOS 5.8 Last modified 9 Nov 1994

Kernel Functions for Drivers ASSERT(9F)

NAME ASSERT, assert – expression verification

SYNOPSIS #include <sys/debug.h>
void ASSERT(EX);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS EX boolean expression.

DESCRIPTION ASSERT() is a macro which checks to see if the expression EX is true. If it is
not, then ASSERT() causes an error message to be logged to the console and
the system to panic. ASSERT() works only if the preprocessor symbol DEBUG
is defined.

CONTEXT ASSERT() can be used from user or interrupt context.

SEE ALSO Writing Device Drivers

Last modified 11 Apr 1991 SunOS 5.8 57

backq(9F) Kernel Functions for Drivers

NAME backq – get pointer to the queue behind the current queue

SYNOPSIS #include <sys/stream.h>

queue_t *backq (queue_t *cq);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS cq The pointer to the current queue. queue_t is an alias for the
queue (9S) structure.

DESCRIPTION backq() returns a pointer to the queue preceding cq (the current queue). If cq is
a read queue, backq() returns a pointer to the queue downstream from cq,
unless it is the stream end. If cq is a write queue, backq() returns a pointer to
the next queue upstream from cq, unless it is the stream head.

RETURN VALUES If successful, backq() returns a pointer to the queue preceding the current
queue. Otherwise, it returns NULL.

CONTEXT backq() can be called from user or interrupt context.

SEE ALSO queue (9S)

Writing Device Drivers

STREAMS Programming Guide

58 SunOS 5.8 Last modified 11 Apr 1991

Kernel Functions for Drivers bcanput(9F)

NAME bcanput – test for flow control in specified priority band

SYNOPSIS #include <sys/stream.h>

int bcanput (queue_t *q, unsigned char pri);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q Pointer to the message queue.

pri Message priority.

DESCRIPTION bcanput() searches through the stream (starting at q) until it finds a queue
containing a service routine where the message can be enqueued, or until it
reaches the end of the stream. If found, the queue containing the service routine
is tested to see if there is room for a message of priority pri in the queue.

If pri is 0, bcanput() is equivalent to a call with canput (9F).

canputnext(q) and bcanputnext(q, pri) should always be used in
preference to canput(q→q_next) and bcanput(q→q_next, pri)
respectively.

RETURN VALUES 1 If a message of priority pri can be placed on the queue.

0 If the priority band is full.

CONTEXT bcanput() can be called from user or interrupt context.

SEE ALSO bcanputnext (9F), canput (9F), canputnext (9F), putbq (9F), putnext (9F)

Writing Device Drivers

STREAMS Programming Guide

WARNINGS Drivers are responsible for both testing a queue with bcanput() and refraining
from placing a message on the queue if bcanput() fails.

Last modified 11 Apr 1991 SunOS 5.8 59

bcmp(9F) Kernel Functions for Drivers

NAME bcmp – compare two byte arrays

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>

int bcmp(const void *s1, const void *s2, size_t len);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS s1 Pointer to the first character string.

s2 Pointer to the second character string.

len Number of bytes to be compared.

DESCRIPTION bcmp() compares two byte arrays of length len.

RETURN VALUES bcmp() returns 0 if the arrays are identical, or 1 if they are not.

CONTEXT bcmp() can be called from user or interrupt context.

SEE ALSO strcmp (9F)

Writing Device Drivers

NOTES Unlike strcmp (9F), bcmp() does not terminate when it encounters a null byte.

60 SunOS 5.8 Last modified 1 May 1996

Kernel Functions for Drivers bcopy(9F)

NAME bcopy – copy data between address locations in the kernel

SYNOPSIS #include <sys/types.h>

void bcopy (const void *from, void *to, size_t bcount);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS from Source address from which the copy is made.

to Destination address to which copy is made.

bcount The number of bytes moved.

DESCRIPTION bcopy() copies bcount bytes from one kernel address to another. If the input
and output addresses overlap, the command executes, but the results may
not be as expected.

Note that bcopy() should never be used to move data in or out of a user buffer,
because it has no provision for handling page faults. The user address space can
be swapped out at any time, and bcopy() always assumes that there will be no
paging faults. If bcopy() attempts to access the user buffer when it is swapped
out, the system will panic. It is safe to use bcopy() to move data within kernel
space, since kernel space is never swapped out.

CONTEXT bcopy() can be called from user or interrupt context.

EXAMPLES EXAMPLE 1 Copying data between address locations in the kernel:

An I/O request is made for data stored in a RAM disk. If the I/O operation is
a read request, the data is copied from the RAM disk to a buffer (line 8). If it
is a write request, the data is copied from a buffer to the RAM disk (line 15).
bcopy() is used since both the RAM disk and the buffer are part of the kernel
address space.

1 #define RAMDNBLK 1000 /* blocks in the RAM disk */
2 #define RAMDBSIZ 512 /* bytes per block */
3 char ramdblks[RAMDNBLK][RAMDBSIZ]; /* blocks forming RAM

/* disk
...

4
5 if (bp->b_flags & B_READ) /* if read request, copy data */
6 /* from RAM disk data block */
7 /* to system buffer */
8 bcopy(&ramdblks[bp->b_blkno][0], bp->b_un.b_addr,
9 bp->b_bcount);

10
11 else /* else write request, */
12 /* copy data from a */
13 /* system buffer to RAM disk */
14 /* data block */
15 bcopy(bp->b_un.b_addr, &ramdblks[bp->b_blkno][0],

Last modified 1 May 1996 SunOS 5.8 61

bcopy(9F) Kernel Functions for Drivers

16 bp->b_bcount);

SEE ALSO copyin (9F), copyout (9F)

Writing Device Drivers

WARNINGS The from and to addresses must be within the kernel space. No range checking is
done. If an address outside of the kernel space is selected, the driver may corrupt
the system in an unpredictable way.

62 SunOS 5.8 Last modified 1 May 1996

Kernel Functions for Drivers bioclone(9F)

NAME bioclone – clone another buffer

SYNOPSIS #include <sys/ddi.h> #include <sys/sunddi.h>

struct buf *bioclone (struct buf *bp, off_t off, size_t len, dev_t dev, daddr_t blkno, int
(*iodone) (struct buf *), struct buf *bp_mem, int sleepflag);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS bp Pointer to the buf (9S) structure describing the original I/O
request.

off Offset within original I/O request where new I/O request
should start.

len Length of the I/O request.

dev Device number.

blkno Block number on device.

iodone Specific biodone (9F) routine.

bp_mem Pointer to a buffer structure to be filled in or NULL.

sleepflag Determines whether caller can sleep for memory. Possible
flags are KM_SLEEPto allow sleeping until memory is
available, or KM_NOSLEEPto return NULL immediately if
memory is not available.

DESCRIPTION bioclone() returns an initialized buffer to perform I/O to a portion of another
buffer. The new buffer will be set up to perform I/O to the range within the
original I/O request specified by the parameters off and len. An offset 0 starts
the new I/O request at the same address as the original request. off + len must
not exceed b_bcount, the length of the original request. The device number dev
specifies the device to which the buffer is to perform I/O. blkno is the block
number on device. It will be assigned to the b_blkno field of the cloned buffer
structure. iodone lets the driver identify a specific biodone (9F) routine to be
called by the driver when the I/O is complete. bp_mem determines from where
the space for the buffer should be allocated. If bp_mem is NULL, bioclone()
will allocate a new buffer using getrbuf (9F). If sleepflag is set to KM_SLEEP, the
driver may sleep until space is freed up. If sleepflag is set to KM_NOSLEEP, the
driver will not sleep. In either case, a pointer to the allocated space is returned or
NULL to indicate that no space was available. After the transfer is completed, the
buffer has to be freed using freerbuf (9F). If bp_mem is not NULL, it will be
used as the space for the buffer structure. The driver has to ensure that bp_mem is
initialized properly either using getrbuf (9F) or bioinit (9F).

Last modified 20 Nov 1996 SunOS 5.8 63

bioclone(9F) Kernel Functions for Drivers

If the original buffer is mapped into the kernel virtual address space using
bp_mapin (9F) before calling bp_clone() , a clone buffer will share the kernel
mapping of the original buffer. An additional bp_mapin() to get a kernel
mapping for the clone buffer is not necessary.

The driver has to ensure that the original buffer is not freed while any of the
clone buffers is still performing I/O. The biodone() function has to be called
on all clone buffers before it is called on the original buffer.

RETURN VALUES The bioclone() function returns a pointer to the initialized buffer header, or
NULL if no space is available.

CONTEXT bioclone() can be called from user or interrupt context. Drivers must not
allow bioclone() to sleep if called from an interrupt routine.

EXAMPLES EXAMPLE 1 : Using bioclone()

A device driver can use bioclone() for disk striping. For each disk in the
stripe, a clone buffer is created which performs I/O to a portion of the original
buffer.

static int
stripe_strategy(struct buf *bp)
{

...
bp_orig = bp;
bp_1 = bioclone(bp_orig, 0, size_1, dev_1, blkno_1,

stripe_done, NULL, KM_SLEEP);
fragment++;
...
bp_n = bioclone(bp_orig, offset_n, size_n, dev_n,

blkno_n, stripe_done, NULL, KM_SLEEP);
fragment++;
/* submit bp_1 ... bp_n to device */
xxstrategy(bp_x);
return (0);

}

static uint_t
xxintr(caddr_t arg)
{

...
/*
* get bp of completed subrequest. biodone(9F) will
* call stripe_done()
*/
biodone(bp);
return (0);

}

static int
stripe_done(struct buf *bp)
{

64 SunOS 5.8 Last modified 20 Nov 1996

Kernel Functions for Drivers bioclone(9F)

...
freerbuf(bp);
fragment--;
if (fragment == 0) {

/* get bp_orig */
biodone(bp_orig);

}
return (0);

}

SEE ALSO biodone (9F), bp_mapin (9F), freerbuf (9F), getrbuf (9F), buf (9S)

Writing Device Drivers

Last modified 20 Nov 1996 SunOS 5.8 65

biodone(9F) Kernel Functions for Drivers

NAME biodone – release buffer after buffer I/O transfer and notify blocked threads

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>

void biodone (struct buf *bp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS bp Pointer to a buf (9S) structure.

DESCRIPTION biodone() notifies blocked processes waiting for the I/O to complete, sets
the B_DONEflag in the b_flags field of the buf (9S) structure, and releases the
buffer if the I/O is asynchronous. biodone() is called by either the driver
interrupt or strategy (9E) routines when a buffer I/O request is complete.

biodone() provides the capability to call a completion routine if bp describes a
kernel buffer. The address of the routine is specified in the b_iodone field of the
buf (9S) structure. If such a routine is specified, biodone() calls it and returns
without performing any other actions. Otherwise, it performs the steps above.

CONTEXT biodone() can be called from user or interrupt context.

EXAMPLES EXAMPLE 1

Generally, the first validation test performed by any block device strategy (9E)
routine is a check for an end-of-file (EOF) condition. The strategy (9E) routine
is responsible for determining an EOF condition when the device is accessed
directly. If a read (2) request is made for one block beyond the limits of the
device (line 10), it will report an EOF condition. Otherwise, if the request is
outside the limits of the device, the routine will report an error condition. In
either case, report the I/O operation as complete (line 27).

1 #define RAMDNBLK 1000 /* Number of blocks in RAM disk */
2 #define RAMDBSIZ 512 /* Number of bytes per block */
3 char ramdblks[RAMDNBLK][RAMDBSIZ]; /* Array containing RAM disk */
4
5 static int
6 ramdstrategy(struct buf *bp)
7 {
8 daddr_t blkno = bp->b_blkno; /* get block number */
9

10 if ((blkno < 0) || (blkno >= RAMDNBLK)) {
11 /*
12 * If requested block is outside RAM disk
13 * limits, test for EOF which could result
14 * from a direct (physio) request.
15 */
16 if ((blkno == RAMDNBLK) && (bp->b_flags & B_READ)) {
17 /*
18 * If read is for block beyond RAM disk

66 SunOS 5.8 Last modified 23 Apr 1996

Kernel Functions for Drivers biodone(9F)

19 * limits, mark EOF condition.
20 */
21 bp->b_resid = bp->b_bcount; /* compute return value */
22
23 } else { /* I/O attempt is beyond */
24 bp->b_error = ENXIO; /* limits of RAM disk */
25 bp->b_flags |= B_ERROR; /* return error */
26 }
27 biodone(bp); /* mark I/O complete (B_DONE) */
28 /*
29 * Wake any processes awaiting this I/O
30 * or release buffer for asynchronous
31 * (B_ASYNC) request.
32 */
33 return (0);
34 }

. . .

SEE ALSO read (2), strategy (9E), biowait (9F), ddi_add_intr (9F), delay (9F),
timeout (9F), untimeout (9F), buf (9S)

Writing Device Drivers

WARNINGS After calling biodone() , bp is no longer available to be referred to by the
driver. If the driver makes any reference to bp after calling biodone() , a
panic may result.

NOTES Drivers that use the b_iodone field of the buf (9S) structure to specify a
substitute completion routine should save the value of b_iodone before
changing it, and then restore the old value before calling biodone() to release
the buffer.

Last modified 23 Apr 1996 SunOS 5.8 67

bioerror(9F) Kernel Functions for Drivers

NAME bioerror – indicate error in buffer header

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>
#include <sys/ddi.h>

void bioerror (struct buf *bp, int error);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

PARAMETERS bp Pointer to the buf (9S) structure describing the transfer.

error Error number to be set, or zero to clear an error indication.

DESCRIPTION If error is non-zero, bioerror() indicates an error has occured in the buf (9S)
structure. A subsequent call to geterror (9F) will return error.

If error is 0, the error indication is cleared and a subsequent call to geterror (9F)
will return 0.

CONTEXT bioerror() can be called from any context.

SEE ALSO strategy (9E), geterror (9F), getrbuf (9F), buf (9S)

68 SunOS 5.8 Last modified 26 May 1994

Kernel Functions for Drivers biofini(9F)

NAME biofini – uninitialize a buffer structure

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

voidbiofini (struct buf *bp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS bp Pointer to the buffer header structure.

DESCRIPTION The biofini() function uninitializes a buf (9S) structure. If a buffer structure
has been allocated and initialized using kmem_alloc (9F) and bioinit (9F) it
needs to be uninitialized using biofini() before calling kmem_free (9F). It
is not necessary to call biofini() before freeing a buffer structure using
freerbuf (9F) because freerbuf() will call biofini() directly.

CONTEXT The biofini() function can be called from any context.

EXAMPLES EXAMPLE 1 Using biofini()

struct buf *bp = kmem_alloc(biosize(), KM_SLEEP);
bioinit(bp);
/* use buffer */
biofini(bp);
kmem_free(bp, biosize());

SEE ALSO bioinit (9F), bioreset (9F), biosize (9F), freerbuf (9F), kmem_alloc (9F),
kmem_free (9F), buf (9S)

Writing Device Drivers

Last modified 20 Nov 1996 SunOS 5.8 69

bioinit(9F) Kernel Functions for Drivers

NAME bioinit – initialize a buffer structure

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

voidbioinit (struct buf *bp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS bp Pointer to the buffer header structure.

DESCRIPTION The bioinit() function initializes a buf (9S) structure. A buffer structure
contains state information which has to be initialized if the memory for the
buffer was allocated using kmem_alloc (9F). This is not necessary for a buffer
allocated using getrbuf (9F) because getrbuf() will call bioinit() directly.

CONTEXT The bioinit() function can be called from any context.

EXAMPLES EXAMPLE 1 Using bioinit()

struct buf *bp = kmem_alloc(biosize(), KM_SLEEP);
bioinit(bp);
/* use buffer */

SEE ALSO biofini (9F), bioreset (9F), biosize (9F), getrbuf (9F), kmem_alloc (9F),
buf (9S)

Writing Device Drivers

70 SunOS 5.8 Last modified 20 Nov 1996

Kernel Functions for Drivers biomodified(9F)

NAME biomodified – check if a buffer is modified

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

intbiomodified (struct buf *bp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS bp Pointer to the buffer header structure.

DESCRIPTION The biomodified() function returns status to indicate if the buffer is modified.
The biomodified() function is only supported for paged- I/O request, that is
the B_PAGEIO flag must be set in the b_flags field of the buf (9S) structure. The
biomodified() function will check the memory pages associated with this
buffer whether the Virtual Memory system’s modification bit is set. If at least
one of these pages is modified, the buffer is indicated as modified. A filesystem
will mark the pages unmodified when it writes the pages to the backing store.
The biomodified() function can be used to detect any modifications to the
memory pages while I/O is in progress.

A device driver can use biomodified() for disk mirroring. An application is
allowed to mmap a file which can reside on a disk which is mirrored by multiple
submirrors. If the file system writes the file to the backing store, it is written to
all submirrors in parallel. It must be ensured that the copies on all submirrors
are identical. The biomodified() function can be used in the device driver to
detect any modifications to the buffer by the user program during the time the
buffer is written to multiple submirrors.

RETURN VALUES The biomodified() function returns the following values:
1 Buffer is modified.

0 Buffer is not modified.

-1 Buffer is not used for paged I/O request.

CONTEXT biomodified() can be called from any context.

SEE ALSO bp_mapin (9F), buf (9S)

Writing Device Drivers

Last modified 20 Nov 1996 SunOS 5.8 71

bioreset(9F) Kernel Functions for Drivers

NAME bioreset – reuse a private buffer header after I/O is complete

SYNOPSIS #include <sys/buf.h>
#include <sys/ddi.h>

void bioreset (struct buf *bp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

PARAMETERS bp Pointer to the buf (9S) structure.

DESCRIPTION bioreset() is used by drivers that allocate private buffers with getrbuf (9F)
or kmem_alloc (9F) and want to reuse them in multiple transfers before freeing
them with freerbuf (9F) or kmem_free (9F). bioreset() resets the buffer
header to the state it had when initially allocated by getrbuf() or initialized
by bioinit (9F).

CONTEXT bioreset() can be called from any context.

SEE ALSO strategy (9E), bioinit (9F), biofini (9F), freerbuf (9F), getrbuf (9F),
kmem_alloc (9F), kmem_free (9F), buf (9S)

NOTES bp must not describe a transfer in progress.

72 SunOS 5.8 Last modified 15 Nov 1996

Kernel Functions for Drivers biosize(9F)

NAME biosize – returns size of a buffer structure

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

size_tbiosize (void);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION The biosize() function returns the size in bytes of the buf (9S) structure. The
biosize() function is used by drivers in combination with kmem_alloc (9F)
and bioinit (9F) to allocate buffer structures embedded in other data structures.

CONTEXT The biosize() function can be called from any context.

SEE ALSO biofini (9F), bioinit (9F), getrbuf (9F), kmem_alloc (9F), buf (9S)

Writing Device Drivers

Last modified 20 Nov 1996 SunOS 5.8 73

biowait(9F) Kernel Functions for Drivers

NAME biowait – suspend processes pending completion of block I/O

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>

int biowait (struct buf *bp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS bp Pointer to the buf structure describing the transfer.

DESCRIPTION Drivers allocating their own buf structures with getrbuf (9F) can use the
biowait() function to suspend the current thread and wait for completion
of the transfer.

Drivers must call biodone (9F) when the transfer is complete to notify the thread
blocked by biowait() . biodone() is usually called in the interrupt routine.

RETURN VALUES 0 Upon success

non-zero Upon I/O failure. biowait() calls geterror (9F) to
retrieve the error number which it returns.

CONTEXT biowait() can be called from user context only.

SEE ALSO biodone (9F), geterror (9F), getrbuf (9F), buf (9S)

Writing Device Drivers

74 SunOS 5.8 Last modified 11 Apr 1991

Kernel Functions for Drivers bp_mapin(9F)

NAME bp_mapin – allocate virtual address space

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>

void bp_mapin (struct buf *bp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS bp Pointer to the buffer header structure.

DESCRIPTION bp_mapin() is used to map virtual address space to a page list maintained by
the buffer header during a paged- I/O request. bp_mapin() allocates system
virtual address space, maps that space to the page list, and returns the starting
address of the space in the bp->b_un.b_addr field of the buf (9S) structure.
Virtual address space is then deallocated using the bp_mapout (9F) function.

If a null page list is encountered, bp_mapin() returns without allocating
space and no mapping is performed.

CONTEXT bp_mapin() can be called from user and kernel contexts.

SEE ALSO bp_mapout (9F), buf (9S)

Writing Device Drivers

Last modified 13 Sep 1992 SunOS 5.8 75

bp_mapout(9F) Kernel Functions for Drivers

NAME bp_mapout – deallocate virtual address space

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>

void bp_mapout (struct buf *bp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS bp Pointer to the buffer header structure.

DESCRIPTION bp_mapout() deallocates system virtual address space allocated by a previous
call to bp_mapin (9F).bp_mapout() should only be called on buffers which
have been allocated and are owned by the device driver. It must not be called
on buffers passed to the driver through the strategy (9E) entry point (for
example a filesystem). Because bp_mapin (9F) does not keep a reference count,
bp_mapout() will wipe out any kernel mapping that a layer above the device
driver might rely on.

CONTEXT bp_mapout() can be called from user context only.

SEE ALSO strategy (9E), bp_mapin (9F), buf (9S)

Writing Device Drivers

76 SunOS 5.8 Last modified 15 Nov 1996

Kernel Functions for Drivers btop(9F)

NAME btop – convert size in bytes to size in pages (round down)

SYNOPSIS #include <sys/ddi.h>

unsigned long btop (unsigned long numbytes);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS numbytes Number of bytes.

DESCRIPTION btop() returns the number of memory pages that are contained in the specified
number of bytes, with downward rounding in the case that the byte count is not
a page multiple. For example, if the page size is 2048 , then btop(4096) returns
2, and btop(4097) returns 2 as well. btop(0) returns 0.

RETURN VALUES The return value is always the number of pages. There are no invalid input
values, and therefore no error return values.

CONTEXT btop() can be called from user or interrupt context.

SEE ALSO btopr (9F), ddi_btop (9F), ptob (9F)

Writing Device Drivers

Last modified 11 Apr 1991 SunOS 5.8 77

btopr(9F) Kernel Functions for Drivers

NAME btopr – convert size in bytes to size in pages (round up)

SYNOPSIS #include <sys/ddi.h>

unsigned long btopr (unsigned long numbytes);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS numbytes Number of bytes.

DESCRIPTION btopr() returns the number of memory pages contained in the specified
number of bytes memory, rounded up to the next whole page. For example, if the
page size is 2048, then btopr(4096) returns 2, and btopr(4097) returns 3.

RETURN VALUES The return value is always the number of pages. There are no invalid input
values, and therefore no error return values.

CONTEXT btopr() can be called from user or interrupt context.

SEE ALSO btop (9F), ddi_btopr (9F), ptob (9F)

Writing Device Drivers

78 SunOS 5.8 Last modified 11 Apr 1991

Kernel Functions for Drivers bufcall(9F)

NAME bufcall – call a function when a buffer becomes available

SYNOPSIS #include <sys/types.h>
#include <sys/stream.h>

bufcall_id_t bufcall (size_t size, uint_t pri, void (*func)(void *arg), void *arg);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS size Number of bytes required for the buffer.

pri Priority of the allocb (9F) allocation request (not used).

func Function or driver routine to be called when a buffer becomes
available.

arg Argument to the function to be called when a buffer becomes available.

DESCRIPTION bufcall() serves as a timeout (9F) call of indeterminate length. When a
buffer allocation request fails, bufcall() can be used to schedule the routine
func, to be called with the argument arg when a buffer becomes available. func
may call allocb() or it may do something else.

RETURN VALUES If successful, bufcall() returns a bufcall ID that can be used in a call to
unbufcall() to cancel the request. If the bufcall() scheduling fails, func is
never called and 0 is returned.

CONTEXT bufcall() can be called from user or interrupt context.

EXAMPLES EXAMPLE 1 Calling a function when a buffer becomes available:

The purpose of this srv (9E) service routine is to add a header to all M_DATA
messages. Service routines must process all messages on their queues before
returning, or arrange to be rescheduled

While there are messages to be processed (line 13), check to see if it is a high
priority message or a normal priority message that can be sent on (line 14).
Normal priority message that cannot be sent are put back on the message queue
(lie 34). If the message was a high priority one, or if it was normal priority and
canputnext (9F) succeeded, then send all but M_DATAmessages to the next
module with putnext (9F) (line 16).

For M_DATAmessages, try to allocate a buffer large enough to hold the header
(line 18). If no such buffer is available, the service routine must be rescheduled
for a time when a buffer is available. The original message is put back on the
queue (line 20) and bufcall (line 21) is used to attempt the rescheduling. It
will succeed if the rescheduling succeeds, indicating that qenable will be called
subsequently with the argument q once a buffer of the specified size (sizeof
(struct hdr)) becomes available. If it does, qenable (9F) will put q on the list

Last modified 13 Feb 1998 SunOS 5.8 79

bufcall(9F) Kernel Functions for Drivers

of queues to have their service routines called. If bufcall() fails, timeout (9F)
(line 22) is used to try again in about a half second.

If the buffer allocation was successful, initialize the header (lines 25–28), make
the message type M_PROTO(line 29), link the M_DATAmessage to it (line 30), and
pass it on (line 31).

Note that this example ignores the bookkeeping needed to handle bufcall()
and timeout (9F) cancellation for ones that are still outstanding at close time.

1 struct hdr {
2 unsigned int h_size;
3 int h_version;
4 };
5
6 void xxxsrv(q)
7 queue_t *q;
8 {
9 mblk_t *bp;

10 mblk_t *mp;
11 struct hdr *hp;
12
13 while ((mp = getq(q)) != NULL) { /* get next message */
14 if (mp->b_datap->db_type >= QPCTL || /* if high priority */

canputnext(q)) { /* normal & can be passed */
15 if (mp->b_datap->db_type != M_DATA)
16 putnext(q, mp); /* send all but M_DATA */
17 else {
18 bp = allocb(sizeof(struct hdr), BPRI_LO);
19 if (bp == NULL) { /* if unsuccessful */
20 putbq(q, mp); /* put it back */
21 if (!bufcall(sizeof(struct hdr), BPRI_LO,

qenable, q)) /* try to reschedule */
22 timeout(qenable, q, drv_usectohz(500000));
23 return (0);
24 }
25 hp = (struct hdr *)bp->b_wptr;
26 hp->h_size = msgdsize(mp); /* initialize header */
27 hp->h_version = 1;
28 bp->b_wptr += sizeof(struct hdr);
29 bp->b_datap->db_type = M_PROTO; /* make M_PROTO */
30 bp->b_cont = mp; /* link it */
31 putnext(q, bp); /* pass it on */
32 }
33 } else { /* normal priority, canputnext failed */
34 putbq(q, mp); /* put back on the message queue */
35 return (0);
36 }
37 }

return (0);
38 }

SEE ALSO srv (9E), allocb (9F), canputnext (9F), esballoc (9F), esbbcall (9F),
putnext (9F), qenable (9F), testb (9F), timeout (9F), unbufcall (9F)

80 SunOS 5.8 Last modified 13 Feb 1998

Kernel Functions for Drivers bufcall(9F)

Writing Device Drivers

STREAMS Programming Guide

WARNINGS Even when func is called by bufcall(), allocb (9F) can fail if another module
or driver had allocated the memory before func was able to call allocb (9F).

Last modified 13 Feb 1998 SunOS 5.8 81

bzero(9F) Kernel Functions for Drivers

NAME bzero – clear memory for a given number of bytes

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>

void bzero (void *addr, size_t bytes);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS addr Starting virtual address of memory to be cleared.

bytes The number of bytes to clear starting at addr.

DESCRIPTION bzero() clears a contiguous portion of memory by filling it with zeros.

CONTEXT bzero() can be called from user or interrupt context.

SEE ALSO bcopy (9F), clrbuf (9F), kmem_zalloc (9F)

Writing Device Drivers

WARNINGS The address range specified must be within the kernel space. No range checking
is done. If an address outside of the kernel space is selected, the driver may
corrupt the system in an unpredictable way.

82 SunOS 5.8 Last modified 1 May 1996

Kernel Functions for Drivers canput(9F)

NAME canput – test for room in a message queue

SYNOPSIS #include <sys/stream.h>

int canput (queue_t *q);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q Pointer to the message queue.

DESCRIPTION canput() searches through the stream (starting at q) until it finds a queue
containing a service routine where the message can be enqueued, or until it
reaches the end of the stream. If found, the queue containing the service routine
is tested to see if there is room for a message in the queue.

canputnext(q) and bcanputnext(q, pri) should always be used in
preference to canput(q→q_next) and bcanput(q→q_next, pri)
respectively.

RETURN VALUES 1 If the message queue is not full.

0 If the queue is full.

CONTEXT canput() can be called from user or interrupt context.

SEE ALSO bcanput (9F), bcanputnext (9F), canputnext (9F), putbq (9F), putnext (9F)

Writing Device Drivers

STREAMS Programming Guide

WARNINGS Drivers are responsible for both testing a queue with canput() and refraining
from placing a message on the queue if canput() fails.

Last modified 11 Apr 1991 SunOS 5.8 83

canputnext(9F) Kernel Functions for Drivers

NAME canputnext, bcanputnext – test for room in next module’s message queue

SYNOPSIS #include <sys/stream.h>
int canputnext (queue_t *q);

int bcanputnext (queue_t *q, unsigned char pri);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q Pointer to a message queue belonging to the invoking module.

pri Minimum priority level.

DESCRIPTION The invocation canputnext(q); is an atomic equivalent of the canput(q
->q_next); routine. That is, the STREAMS framework provides whatever
mutual exclusion is necessary to insure that dereferencing q through its q_next
field and then invoking canput (9F) proceeds without interference from other
threads.

bcanputnext(q , pri); is the equivalent of the bcanput(q ->q_next,
pri); routine.

canputnext(q); and bcanputnext(q , pri); should always be used
in preference to canput(q ->q_next); and bcanput(q ->q_next, pri
); respectively.

See canput (9F) and bcanput (9F) for further details.

RETURN VALUES 1 If the message queue is not full.

0 If the queue is full.

CONTEXT canputnext() and bcanputnext() can be called from user or interrupt
context.

WARNINGS Drivers are responsible for both testing a queue with canputnext() or
bcanputnext() and refraining from placing a message on the queue if the
queue is full.

SEE ALSO bcanput (9F) , canput (9F)

Writing Device Drivers

STREAMS Programming Guide

84 SunOS 5.8 Last modified 31 Jan 1993

Kernel Functions for Drivers clrbuf(9F)

NAME clrbuf – erase the contents of a buffer

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>

void clrbuf (struct buf *bp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS bp Pointer to the buf (9S) structure.

DESCRIPTION clrbuf() zeros a buffer and sets the b_resid member of the buf (9S) structure
to 0. Zeros are placed in the buffer starting at bp→b_un.b_addr for a length
of bp→b_bcount bytes. b_un.b_addr and b_bcount are members of the
buf (9S) data structure.

CONTEXT clrbuf() can be called from user or interrupt context.

SEE ALSO getrbuf (9F), buf (9S)

Writing Device Drivers

Last modified 27 Jan 1993 SunOS 5.8 85

cmn_err(9F) Kernel Functions for Drivers

NAME cmn_err, vcmn_err – display an error message or panic the system

SYNOPSIS #include <sys/cmn_err.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
void cmn_err (int level, char *format ...);

#include <sys/varargs.h>
void vcmn_err (int level, char *format, va_list ap);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS
cmn_err() level A constant indicating the severity of the error condition.

format The message to be displayed.

vcmn_err() vcmn_err() takes level and format as described for cmn_err() , but its third
argument is different:
ap The variable argument list passed to the function.

DESCRIPTION
cmn_err() cmn_err() displays a specified message on the console. cmn_err() can also

panic the system. When the system panics, it attempts to save recent changes to
data, display a "panic message" on the console, attempt to write a core file, and
halt system processing. See the CE_PANIClevel below.

level is a constant indicating the severity of the error condition. The four severity
levels are:
CE_CONT Used to continue another message or to display an

informative message not associated with an error. Note that
multiple CE_CONTmessages without a newline may or may
not appear on the system console or in the system buffer
as a single line message. A single line message may be
produced by constructing the message with sprintf (9F) or
vsprintf (9F) before calling cmn_err() .

CE_NOTE Used to display a message preceded with NOTICE . This
message is used to report system events that do not
necessarily require user action, but may interest the system
administrator. For example, a message saying that a sector
on a disk needs to be accessed repeatedly before it can be
accessed correctly might be noteworthy.

86 SunOS 5.8 Last modified 7 Jun 1996

Kernel Functions for Drivers cmn_err(9F)

CE_WARN Used to display a message preceded with WARNING.
This message is used to report system events that require
immediate attention, such as those where if an action is
not taken, the system may panic. For example, when a
peripheral device does not initialize correctly, this level
should be used.

CE_PANIC Used to display a message preceded with "panic" , and
to panic the system. Drivers should specify this level only
under the most severe conditions or when debugging a
driver. A valid use of this level is when the system cannot
continue to function. If the error is recoverable, or not
essential to continued system operation, do not panic the
system.

format is the message to be displayed. It is a character string which may contain
plain characters and conversion specifications. By default, the message is sent
both to the system console and to the system buffer.

Each conversion specification in format is introduced by the %character, after
which the following appear in sequence:

An optional decimal digit specifying a minimum field width for numeric
conversion. The converted value will be right-justified and padded with leading
zeroes if it has fewer characters than the minimum.

An optional l (ll) specifying that a following d , D , o , O , x , X , or u conversion
character applies to a long (long long) integer argument. An l (ll) before
any other conversion character is ignored.

A character indicating the type of conversion to be applied:
d
,D
,o
,O
,x
,X
,u

The integer argument is converted to signed decimal (d , D
), unsigned octal (o , O), unsigned hexadecimal (x , X), or
unsigned decimal (u), respectively, and displayed. The
letters abcdef are used for x and X conversion.

c The character value of the argument is displayed.

b The %bconversion specification allows bit values to be
displayed meaningfully. Each %btakes an integer value and
a format string from the argument list. The first character
of the format string should be the output base encoded
as a control character. This base is used to display the
integer argument. The remaining groups of characters in the

Last modified 7 Jun 1996 SunOS 5.8 87

cmn_err(9F) Kernel Functions for Drivers

format string consist of a bit number (between 1 and 32, also
encoded as a control character) and the next characters (up
to the next control character or ’\\0’) give the name of the
bit field. The string corresponding to the bit fields set in the
integer argument is displayed after the numerical value. See
EXAMPLE section.

p The argument is taken to be a pointer; the value of the
pointer is displayed in unsigned hexadecimal. The display
format is equivalent to %lx . To avoid lint warnings, cast
pointers to type void * when using the %pformat specifier.

s The argument is taken to be a string (character pointer), and
characters from the string are displayed until a null character
is encountered. If the character pointer is NULL , the string
<null string> is used in its place.

% Copy a %; no argument is converted.

The first character in format affects where the message will be written:
! the message goes only to the system buffer.

^ the message goes only to the console.

? If level is also CE_CONT,the message is always sent to the system
buffer, but is only written to the console when the system has been
booted in verbose mode. See kernel (1M) . If neither condition is met,
the ’?’ character has no effect and is simply ignored.

To display the contents of the system buffer, use the dmesg(1M) command.

cmn_err() appends a \ to each format , except when level is CE_CONT.

vcmn_err() vcmn_err() is identical to cmn_err() except that its last argument, ap , is a
pointer to a variable list of arguments. ap contains the list of arguments used
by the conversion specifications in format . ap must be initialized by calling
va_start (9F) . va_end (9F) is used to clean up and must be called after each
traversal of the list. Multiple traversals of the argument list, each bracketed by
va_start (9F) and va_end (9F) , are possible.

RETURN VALUES None. However, if an unknown level is passed to cmn_err() , the following
panic error message is displayed:

panic: unknown level in cmn_err (level= level , msg= format)

CONTEXT cmn_err() can be called from user or kernel context.

88 SunOS 5.8 Last modified 7 Jun 1996

Kernel Functions for Drivers cmn_err(9F)

EXAMPLES EXAMPLE 1 Using cmn_err()

This first example shows how cmn_err() can record tracing and debugging
information only in the system buffer (lines 17); display problems with a device
only on the system console (line 23); or display problems with the device on both
the system console and in the system buffer (line 28).

1 struct reg {
2 uchar_t data;
3 uchar_t csr;
4 };
5
6 struct xxstate {
7 ...
8 dev_info_t *dip;
9 struct reg *regp;
10 ...
11 };
12
13 dev_t dev;
14 struct xxstate *xsp;
15 ...
16 #ifdef DEBUG /* in debugging mode, log function call */
17 cmn_err(CE_CONT, "!%s%d: xxopen function called.",
18 ddi_binding_name(xsp->dip), getminor(dev));
19 #endif /* end DEBUG */
20 ...
21 /* display device power failure on system console */
22 if ((xsp->regp->csr & POWER) == OFF)
23 cmn_err(CE_NOTE, "^OFF.",
24 ddi_binding_name(xsp->dip), getminor(dev));
25 ...
26 /* display warning if device has bad VTOC */
27 if (xsp->regp->csr & BADVTOC)
28 cmn_err(CE_WARN, "%s%d: xxopen: Bad VTOC.",
29 ddi_binding_name(xsp->dip), getminor(dev));

EXAMPLE 2 Using the %b conversion specification

This example shows how to use the %bconversion specification. Because of the
leading ’?’ character in the format string, this message will always be logged, but
it will only be displayed when the kernel is booted in verbose mode.

cmn_err(CE_CONT, "?reg=0x%b\
", regval, "\\020\\3Intr\\2Err\\1Enable");

EXAMPLE 3 Using regval

When regval is set to (decimal) 13 , the following message would be displayed:
reg=0xd<Intr,,Enable>

Last modified 7 Jun 1996 SunOS 5.8 89

cmn_err(9F) Kernel Functions for Drivers

EXAMPLE 4 Error Routine

The third example is an error reporting routine which accepts a variable number
of arguments and displays a single line error message both in the system buffer
and on the system console. Note the use of vsprintf() to construct the error
message before calling cmn_err() .

#include <sys/varargs.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#define MAX_MSG 256;

void
xxerror(dev_info_t *dip, int level, const char *fmt, ...)
{

va_list ap;
int instance;
char buf[MAX_MSG], *name;

instance = ddi_get_instance(dip);
name = ddi_binding_name(dip);

/* format buf using fmt and arguments contained in ap */

va_start(ap, fmt);
vsprintf(buf, fmt, ap);
va_end(ap);

/* pass formatted string to cmn_err(9F) */

cmn_err(level, "%s%d: %s", name, instance, buf);

}

SEE ALSO dmesg(1M) , kernel (1M) , printf (3C) , ddi_binding_name (9F) ,
sprintf (9F) , va_arg (9F) , va_end (9F) , va_start (9F) , vsprintf (9F)

Writing Device Drivers

WARNINGS cmn_err() with the CE_CONTargument can be used by driver developers as a
driver code debugging tool. However, using cmn_err() in this capacity can
change system timing characteristics.

NOTES At times, a driver may encounter error conditions requiring the attention of a
primary or secondary system console monitor. These conditions may mean
halting multiuser processing; however, this must be done with caution. Except
during the debugging stage, a driver should never stop the system.

See the "Debugging" chapter in Writing Device Drivers

For severities of CE_NOTEand CE_WARN, the maximum message length is 256
bytes excluding "Note:" or "Warning:" respectively.

90 SunOS 5.8 Last modified 7 Jun 1996

Kernel Functions for Drivers cmn_err(9F)

Any message greater than 128 bytes in length is divided into separate 128 byte
messages.

BUGS cmn_err() does not provide all of the functionality provided by printf (3C)

Last modified 7 Jun 1996 SunOS 5.8 91

condvar(9F) Kernel Functions for Drivers

NAME condvar, cv_init, cv_destroy, cv_wait, cv_signal, cv_broadcast, cv_wait_sig,
cv_timedwait, cv_timedwait_sig – condition variable routines

SYNOPSIS #include <sys/ksynch.h>
void cv_init (kcondvar_t *cvp, char *name, kcv_type_t type, void *arg);

voidcv_destroy (kcondvar_t *cvp);

void cv_wait (kcondvar_t *cvp, kmutex_t *mp);

void cv_signal (kcondvar_t *cvp);

void cv_broadcast (kcondvar_t *cvp);

int cv_wait_sig (kcondvar_t *cvp, kmutex_t *mp);

clock_t cv_timedwait (kcondvar_t *cvp, kmutex_t *mp, clock_t timeout);

clock_t cv_timedwait_sig (kcondvar_t *cvp, kmutex_t *mp, clock_t timeout);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS cvp A pointer to an abstract data type kcondvar_t .

mp A pointer to a mutual exclusion lock (kmutex_t), initialized
by mutex_init (9F) and held by the caller.

name Descriptive string. This is obsolete and should be NULL .
(Non-NULL strings are legal, but they’re a waste of kernel
memory.)

type The constant CV_DRIVER.

arg A type-specific argument, drivers should pass arg as NULL .

timeout A time, in absolute ticks since boot, when cv_timedwait()
or cv_timedwait_sig() should return.

DESCRIPTION Condition variables are a standard form of thread synchronization. They are
designed to be used with mutual exclusion locks (mutexes). The associated
mutex is used to ensure that a condition can be checked atomically and that the
thread can block on the associated condition variable without missing either a
change to the condition or a signal that the condition has changed. Condition
variables must be initialized by calling cv_init() , and must be deallocated by
calling cv_destroy() .

92 SunOS 5.8 Last modified 17 Feb 1998

Kernel Functions for Drivers condvar(9F)

The usual use of condition variables is to check a condition (for example, device
state, data structure reference count, etc.) while holding a mutex which keeps
other threads from changing the condition. If the condition is such that the
thread should block, cv_wait() is called with a related condition variable
and the mutex. At some later point in time, another thread would acquire
the mutex, set the condition such that the previous thread can be unblocked,
unblock the previous thread with cv_signal() or cv_broadcast() , and
then release the mutex.

cv_wait() suspends the calling thread and exits the mutex atomically so that
another thread which holds the mutex cannot signal on the condition variable
until the blocking thread is blocked. Before returning, the mutex is reacquired.

cv_signal() signals the condition and wakes one blocked thread. All
blocked threads can be unblocked by calling cv_broadcast() . You must
acquire the mutex passed into cv_wait() before calling cv_signal() or
cv_broadcast() .

The function cv_wait_sig() is similar to cv_wait() but returns 0 if a
signal (for example, by kill (2)) is sent to the thread. In any case, the mutex is
reacquired before returning.

The function cv_timedwait() is similar to cv_wait() , except that it returns
-1 without the condition being signaled after the timeout time has been reached.

The function cv_timedwait_sig() is similar to cv_timedwait() , and
cv_wait_sig() , except that it returns -1 without the condition being signaled
after the timeout time has been reached, or 0 if a signal (for example, by kill (2)
) is sent to the thread.

For both cv_timedwait() and cv_timedwait_sig() , time is in absolute
clock ticks since the last system reboot. The current time may be found by
calling ddi_get_lbolt (9F) .

RETURN VALUES 0 For cv_wait_sig() and cv_timedwait_sig() indicates
that the condition was not necessarily signaled and the
function returned because a signal (as in kill (2)) was
pending.

-1 For cv_timedwait() and cv_timedwait_sig()
indicates that the condition was not necessarily signaled and
the function returned because the timeout time was reached.

>0 For cv_wait_sig() , cv_timedwait() or
cv_timedwait_sig() indicates that the condition was met
and the function returned due to a call to cv_signal() or
cv_broadcast() .

Last modified 17 Feb 1998 SunOS 5.8 93

condvar(9F) Kernel Functions for Drivers

CONTEXT These functions can be called from user, kernel or interrupt context. In most
cases, however, cv_wait() , cv_timedwait() , cv_wait_sig() , and
cv_timedwait_sig() should not be called from interrupt context, and cannot
be called from a high-level interrupt context.

If cv_wait() , cv_timedwait() , cv_wait_sig() , or
cv_timedwait_sig() are used from interrupt context, lower-priority
interrupts will not be serviced during the wait. This means that if the thread that
will eventually perform the wakeup becomes blocked on anything that requires
the lower-priority interrupt, the system will hang.

For example, the thread that will perform the wakeup may need to first allocate
memory. This memory allocation may require waiting for paging I/O to
complete, which may require a lower-priority disk or network interrupt to be
serviced. In general, situations like this are hard to predict, so it is advisable to
avoid waiting on condition variables or semaphores in an interrupt context.

EXAMPLES EXAMPLE 1 : Waiting for a flag value in a driver’s unit

Here the condition being waited for is a flag value in a driver’s unit structure.
The condition variable is also in the unit structure, and the flag word is protected
by a mutex in the unit structure.

mutex_enter(&un->un_lock);
while (un->un_flag & UNIT_BUSY)

cv_wait(&un->un_cv, &un->un_lock);
un->un_flag |= UNIT_BUSY;
mutex_exit(&un->un_lock);

EXAMPLE 2 : Unblocking threads blocked by the code in Example 1

At some later point in time, another thread would execute the following to
unblock any threads blocked by the above code.

mutex_enter(&un->un_lock);
un->un_flag &= ~UNIT_BUSY;
cv_broadcast(&un->un_cv);
mutex_exit(&un->un_lock);

SEE ALSO kill (2) , ddi_get_lbolt (9F) , mutex (9F) , mutex_init (9F)

Writing Device Drivers

94 SunOS 5.8 Last modified 17 Feb 1998

Kernel Functions for Drivers copyb(9F)

NAME copyb – copy a message block

SYNOPSIS #include <sys/stream.h>

mblk_t *copyb (mblk_t *bp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS bp Pointer to the message block from which data is copied.

DESCRIPTION copyb() allocates a new message block, and copies into it the data from the
block that bp denotes. The new block will be at least as large as the block being
copied. copyb() uses the b_rptr and b_wptr members of bp to determine
how many bytes to copy.

RETURN VALUES If successful, copyb() returns a pointer to the newly allocated message block
containing the copied data. Otherwise, it returns a NULLpointer.

CONTEXT copyb() can be called from user or interrupt context.

EXAMPLES EXAMPLE 1 : Using copyb

For each message in the list, test to see if the downstream queue is full with the
canputnext (9F) function (line 21). If it is not full, use copyb to copy a header
message block, and dupmsg(9F) to duplicate the data to be retransmitted. If
either operation fails, reschedule a timeout at the next valid interval.

Update the new header block with the correct destination address (line 34),
link the message to it (line 35), and send it downstream (line 36). At the end
of the list, reschedule this routine.

1 struct retrans {
2 mblk_t *r_mp;
3 int r_address;
4 queue_t *r_outq;
5 struct retrans *r_next;
6 };
7
8 struct protoheader {

…
9 int h_address;

…
10 };
11
12 mblk_t *header;
13
14 void
15 retransmit(struct retrans *ret)
16 {
17 mblk_t *bp, *mp;
18 struct protoheader *php;
19

Last modified 07 Nov 1996 SunOS 5.8 95

copyb(9F) Kernel Functions for Drivers

20 while (ret) {
21 if (!canputnext(ret->r_outq)) { /* no room */
22 ret = ret->r_next;
23 continue;
24 }
25 bp = copyb(header); /* copy header msg. block */
26 if (bp == NULL)
27 break;
28 mp = dupmsg(ret->r_mp); /* duplicate data */
29 if (mp == NULL) { /* if unsuccessful */
30 freeb(bp); /* free the block */
31 break;
32 }
33 php = (struct protoheader *)bp->b_rptr;
34 php->h_address = ret->r_address; /* new header */
35 bp->bp_cont = mp; /* link the message */
36 putnext(ret->r_outq, bp); /* send downstream */
37 ret = ret->r_next;
38 }
39 /* reschedule */
40 (void) timeout(retransmit, (caddr_t)ret, RETRANS_TIME);
41 }

SEE ALSO allocb (9F), canputnext (9F), dupmsg(9F)

Writing Device Drivers

STREAMS Programming Guide

96 SunOS 5.8 Last modified 07 Nov 1996

Kernel Functions for Drivers copyin(9F)

NAME copyin – copy data from a user program to a driver buffer

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>

int copyin (const void *userbuf, void *driverbuf, size_t cn);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS userbuf User program source address from which data is transferred.

driverbuf Driver destination address to which data is transferred.

cn Number of bytes transferred.

DESCRIPTION copyin() copies data from a user program source address to a driver buffer.
The driver developer must ensure that adequate space is allocated for the
destination address.

Addresses that are word-aligned are moved most efficiently. However, the driver
developer is not obligated to ensure alignment. This function automatically finds
the most efficient move according to address alignment.

RETURN VALUES Under normal conditions a 0 is returned indicating a successful copy. Otherwise,
a -1 is returned if one of the following occurs:

� paging fault; the driver tried to access a page of memory for which it did
not have read or write access

� invalid user address, such as a user area or stack area

� invalid address that would have resulted in data being copied into the
user block

If a -1 is returned to the caller, driver entry point routines should return EFAULT.

CONTEXT copyin() can be called from user context only.

EXAMPLES EXAMPLE 1 An ioctl() Routine

A driver ioctl (9E) routine (line 10) can be used to get or set device attributes or
registers. In the XX_GETREGScondition (line 17), the driver copies the current
device register values to a user data area (line 18). If the specified argument
contains an invalid address, an error code is returned.

1 struct device { /* layout of physical device registers */
2 int control; /* physical device control word */
3 int status; /* physical device status word */
4 short recv_char; /* receive character from device */
5 short xmit_char; /* transmit character to device */
6 };

Last modified 1 May 1996 SunOS 5.8 97

copyin(9F) Kernel Functions for Drivers

7
8 extern struct device xx_addr[]; /* phys. device regs. location */
9 . . .

10 xx_ioctl(dev_t dev, int cmd, int arg, int mode,
11 cred_t *cred_p, int *rval_p)
12 ...
13 {
14 register struct device *rp = &xx_addr[getminor(dev) >> 4];
15 switch (cmd) {
16
17 case XX_GETREGS: /* copy device regs. to user program */
18 if (copyin(arg, rp, sizeof(struct device)))
19 return(EFAULT);
20 break;
21 ...
22 }
23 ...
24 }

SEE ALSO ioctl (9E), bcopy (9F), copyout (9F), ddi_copyin (9F), ddi_copyout (9F),
uiomove (9F).

Writing Device Drivers

NOTES Driver writers who intend to support layered ioctls in their ioctl (9E) routines
should use ddi_copyin (9F) instead.

Driver defined locks should not be held across calls to this function.

This should not be used from a streams driver. See M_COPYINand M_COPYOUT
in STREAMS Programming Guide.

98 SunOS 5.8 Last modified 1 May 1996

Kernel Functions for Drivers copymsg(9F)

NAME copymsg – copy a message

SYNOPSIS #include <sys/stream.h>

mblk_t *copymsg (mblk_t *mp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS mp Pointer to the message to be copied.

DESCRIPTION copymsg() forms a new message by allocating new message blocks, and
copying the contents of the message referred to by mp (using the copyb (9F)
function). It returns a pointer to the new message.

RETURN VALUES If the copy is successful, copymsg() returns a pointer to the new message.
Otherwise, it returns a NULLpointer.

CONTEXT copymsg() can be called from user or interrupt context.

EXAMPLES EXAMPLE 1 : Using copymsg

The routine lctouc() converts all the lowercase ASCII characters in the
message to uppercase. If the reference count is greater than one (line 8), then the
message is shared, and must be copied before changing the contents of the data
buffer. If the call to the copymsg() function fails (line 9), return NULL (line 10),
otherwise, free the original message (line 11). If the reference count was equal to
1, the message can be modified. For each character (line 16) in each message
block (line 15), if it is a lowercase letter, convert it to an uppercase letter (line 18).
A pointer to the converted message is returned (line 21).

1 mblk_t *lctouc(mp)
2 mblk_t *mp;
3 {
4 mblk_t *cmp;
5 mblk_t *tmp;
6 unsigned char *cp;
7
8 if (mp->b_datap->db_ref > 1) {
9 if ((cmp = copymsg(mp)) == NULL)

10 return (NULL);
11 freemsg(mp);
12 } else {
13 cmp = mp;
14 }
15 for (tmp = cmp; tmp; tmp = tmp->b_cont) {
16 for (cp = tmp->b_rptr; cp < tmp->b_wptr; cp++) {
17 if ((*cp <= ’z’) && (*cp >= ’a’))
18 *cp -= 0x20;
19 }
20 }
21 return(cmp);

Last modified 27 Jun 1995 SunOS 5.8 99

copymsg(9F) Kernel Functions for Drivers

22 }

SEE ALSO allocb (9F), copyb (9F), msgb(9S)

Writing Device Drivers

STREAMS Programming Guide

100 SunOS 5.8 Last modified 27 Jun 1995

Kernel Functions for Drivers copyout(9F)

NAME copyout – copy data from a driver to a user program

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>

int copyout (const void *driverbuf, void *userbuf, size_t cn);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS driverbuf Source address in the driver from which the data is
transferred.

userbuf Destination address in the user program to which the data
is transferred.

cn Number of bytes moved.

DESCRIPTION copyout() copies data from driver buffers to user data space.

Addresses that are word-aligned are moved most efficiently. However, the driver
developer is not obligated to ensure alignment. This function automatically finds
the most efficient move algorithm according to address alignment.

RETURN VALUES Under normal conditions a 0 is returned to indicate a successful copy. Otherwise,
a -1 is returned if one of the following occurs:

� paging fault; the driver tried to access a page of memory for which it did
not have read or write access

� invalid user address, such as a user area or stack area

� invalid address that would have resulted in data being copied into the
user block

If a -1 is returned to the caller, driver entry point routines should return EFAULT.

CONTEXT copyout() can be called from user context only.

EXAMPLES EXAMPLE 1 An ioctl() Routine

A driver ioctl (9E) routine (line 10) can be used to get or set device attributes or
registers. In the XX_GETREGScondition (line 17), the driver copies the current
device register values to a user data area (line 18). If the specified argument
contains an invalid address, an error code is returned.

1 struct device { /* layout of physical device registers */
2 int control; /* physical device control word */
3 int status; /* physical device status word */
4 short recv_char; /* receive character from device */
5 short xmit_char; /* transmit character to device */
6 };
7

Last modified 1 May 1996 SunOS 5.8 101

copyout(9F) Kernel Functions for Drivers

8 extern struct device xx_addr[]; /* phys. device regs. location */
9 . . .

10 xx_ioctl(dev_t dev, int cmd, int arg, int mode,
11 cred_t *cred_p, int *rval_p)
12 ...
13 {
14 register struct device *rp = &xx_addr[getminor(dev) >> 4];
15 switch (cmd) {
16
17 case XX_GETREGS: /* copy device regs. to user program */
18 if (copyout(rp, arg, sizeof(struct device)))
19 return(EFAULT);
20 break;
21 ...
22 }
23 ...
24 }

SEE ALSO ioctl (9E), bcopy (9F), copyin (9F), ddi_copyin (9F), ddi_copyout (9F),
uiomove (9F)

Writing Device Drivers

NOTES Driver writers who intend to support layered ioctls in their ioctl (9E) routines
should use ddi_copyout (9F) instead.

Driver defined locks should not be held across calls to this function.

This should not be used from a streams driver. See M_COPYINand M_COPYOUT
in STREAMS Programming Guide.

102 SunOS 5.8 Last modified 1 May 1996

Kernel Functions for Drivers csx_AccessConfigurationRegister(9F)

NAME csx_AccessConfigurationRegister – read or write a PC Card Configuration
Register

SYNOPSIS #include <sys/pccard.h>

int32_t csx_AccessConfigurationRegister (client_handle_t ch, access_config_reg_t
*acr);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

acr Pointer to an access_config_reg_t structure.

DESCRIPTION This function allows a client to read or write a PC Card Configuration Register.

STRUCTURE
MEMBERS

The structure members of access_config_reg_t are:

uint32_t Socket; /* socket number*/
uint32_t Action; /* register access operation*/
uint32_t Offset; /* config register offset*/
uint32_t Value; /* value read or written*/

The fields are defined as follows:
Socket Not used in Solaris, but for portability with other Card

Services implementations, it should be set to the logical
socket number.

Action May be set to CONFIG_REG_READor CONFIG_REG_WRITE.
All other values in the Action field are reserved for future
use. If the Action field is set to CONFIG_REG_WRITE,the
Value field is written to the specified configuration register.
Card Services does not read the configuration register after
a write operation. For that reason, the Value field is only
updated by a CONFIG_REG_READrequest.

Offset Specifies the byte offset for the desired configuration register
from the PC Card configuration register base specified in
csx_RequestConfiguration (9F).

Value Contains the value read from the PC Card Configuration
Register for a read operation. For a write operation, the
Value field contains the value to write to the configuration
register. As noted above, on return from a write request, the
Value field is the value written to the PC Card and not any

Last modified 19 Jul 1996 SunOS 5.8 103

csx_AccessConfigurationRegister(9F) Kernel Functions for Drivers

changed value that may have resulted from the write request
(that is, no read after write is performed).

A client must be very careful when writing to the COR (Configuration Option
Register) at offset 0. This has the potential to change the type of interrupt request
generated by the PC Card or place the card in the reset state. Either request may
have undefined results. The client should read the register to determine the
appropriate setting for the interrupt mode (Bit 6) before writing to the register.

If a client wants to reset a PC Card, the csx_ResetFunction (9F) function
should be used. Unlike csx_AccessConfigurationRegister() , the
csx_ResetFunction (9F) function generates a series of event notifications to
all clients using the PC Card, so they can re-establish the appropriate card state
after the reset operation is complete.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_ARGS Specified arguments are
invalid. Client specifies an
Offset that is out of range or
neither CONFIG_REG_READor
CONFIG_REG_WRITEis set.

CS_UNSUPPORTED_MODE Client has not called
csx_RequestConfiguration (9F)
before calling this function.

CS_BAD_HANDLE Client handle is invalid.

CS_NO_CARD No PC card in socket.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_ParseTuple (9F), csx_RegisterClient (9F),
csx_RequestConfiguration (9F), csx_ResetFunction (9F)

PCCard 95 Standard, PCMCIA/JEIDA

104 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_ConvertSize(9F)

NAME csx_ConvertSize – convert device sizes

SYNOPSIS #include <sys/pccard.h>

int32_t csx_ConvertSize (convert_size_t *cs);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS cs Pointer to a convert_size_t structure.

DESCRIPTION csx_ConvertSize() is a Solaris-specific extension that provides a method for
clients to convert from one type of device size representation to another, that is,
from devsize format to bytes and vice versa.

STRUCTURE
MEMBERS

The structure members of convert_size_t are:

uint32_t Attributes;
uint32_t bytes;
uint32_t devsize;

The fields are defined as follows:
Attributes This is a bit-mapped field that identifies the type of size

conversion to be performed. The field is defined as follows:

CONVERT_BYTES_TO_DEVSIZE

Converts bytes to devsize format.

CONVERT_DEVSIZE_TO_BYTES

Converts devsize format to bytes.

bytes If CONVERT_BYTES_TO_DEVSIZEis set, the value in the
bytes field is converted to a devsize format and returned in
the devsize field.

devsize If CONVERT_DEVSIZE_TO_BYTESis set, the value in the
devsize field is converted to a bytes value and returned
in the bytes field.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_SIZE Invalid bytes or devsize.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_ModifyWindow (9F), csx_RequestWindow (9F)

Last modified 19 Jul 1996 SunOS 5.8 105

csx_ConvertSize(9F) Kernel Functions for Drivers

PCCard 95 Standard, PCMCIA/JEIDA

106 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_ConvertSpeed(9F)

NAME csx_ConvertSpeed – convert device speeds

SYNOPSIS #include <sys/pccard.h>

int32_t csx_ConvertSpeed (convert_speed_t *cs);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS cs Pointer to a convert_speed_t structure.

DESCRIPTION This function is a Solaris-specific extension that provides a method for clients to
convert from one type of device speed representation to another, that is, from
devspeed format to nS and vice versa.

STRUCTURE
MEMBERS

The structure members of convert_speed_t are:

uint32_t Attributes;
uint32_t nS;
uint32_t devspeed;

The fields are defined as follows:
Attributes This is a bit-mapped field that identifies the type of speed

conversion to be performed. The field is defined as follows:

CONVERT_NS_TO_DEVSPEED

Converts nS to devspeed format

CONVERT_DEVSPEED_TO_NS

Converts devspeed format to nS

nS If CONVERT_NS_TO_DEVSPEEDis set, the value in the nS
field is converted to a devspeed format and returned in the
devspeed field.

devspeed If CONVERT_DEVSPEED_TO_NSis set, the value in the
devspeed field is converted to an nS value and returned
in the nS field.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_SPEED Invalid nS or devspeed.

CS_BAD_ATTRIBUTE Bad Attributes value.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

Last modified 19 Jul 1996 SunOS 5.8 107

csx_ConvertSpeed(9F) Kernel Functions for Drivers

SEE ALSO csx_ModifyWindow (9F), csx_RequestWindow (9F)

PC Card 95 Standard, PCMCIA/JEIDA

108 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_CS_DDI_Info(9F)

NAME csx_CS_DDI_Info – obtain DDI information

SYNOPSIS #include <sys/pccard.h>

int32_t csx_CS_DDI_Info (cs_ddi_info_t *cdi);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS cdi Pointer to a cs_ddi_info_t structure.

DESCRIPTION This function is a Solaris-specific extension that is used by clients that need
to provide the xx_getinfo driver entry point (see getinfo (9E)). It provides a
method for clients to obtain DDI information based on their socket number and
client driver name.

STRUCTURE
MEMBERS

The structure members of cs_ddi_info_t are:

uint32_t Socket; /* socket number */
char* driver_name; /* unique driver name */
dev_info_t *dip; /* dip */
int32_t instance; /* instance */

The fields are defined as follows:
Socket This field must be set to the physical socket number that the

client is interested in getting information about.

driver_name This field must be set to a string containing the name of the
client driver to get information about.

If csx_CS_DDI_Info() is used in a client’s xx_getinfo function, then the client
will typically extract the Socket value from the * arg argument and it must set the
driver_name field to the same string used with csx_RegisterClient (9F).

If the driver_name is found on the Socket , the csx_CS_DDI_Info()
function returns both the dev_info pointer and the instance fields for the
requested driver instance.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_SOCKET Client not found on Socket .

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

Last modified 19 Jul 1996 SunOS 5.8 109

csx_CS_DDI_Info(9F) Kernel Functions for Drivers

EXAMPLES EXAMPLE 1 : Using csx_CS_DDI_Info

The following example shows how a client might call the csx_CS_DDI_Info()
in the client’s xx_getinfo function to return the dip or the instance number:

static int
pcepp_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg,

void **result)
{

int error = DDI_SUCCESS;
pcepp_state_t *pps;
cs_ddi_info_t cs_ddi_info;

switch (cmd) {

case DDI_INFO_DEVT2DEVINFO:
cs_ddi_info.Socket = getminor((dev_t)arg) & 0x3f;
cs_ddi_info.driver_name = pcepp_name;
if (csx_CS_DDI_Info(&cs_ddi_info) != CS_SUCCESS)

return (DDI_FAILURE);
if (!(pps = ddi_get_soft_state(pcepp_soft_state_p,

cs_ddi_info.instance))) {
*result = NULL;

} else {
*result = pps->dip;

}
break;

case DDI_INFO_DEVT2INSTANCE:
cs_ddi_info.Socket = getminor((dev_t)arg) & 0x3f;
cs_ddi_info.driver_name = pcepp_name;
if (csx_CS_DDI_Info(&cs_ddi_info) != CS_SUCCESS)

return (DDI_FAILURE);
*result = (void *)cs_ddi_info.instance;
break;

default:
error = DDI_FAILURE;
break;

}

return (error);
}

SEE ALSO getinfo (9E), csx_RegisterClient (9F), ddi_get_instance (9F)

PC Card 95 Standard, PCMCIA/JEIDA

110 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_DeregisterClient(9F)

NAME csx_DeregisterClient – remove client from Card Services list

SYNOPSIS #include <sys/pccard.h>

int32_t csx_DeregisterClient (client_handle_t ch);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

DESCRIPTION This function removes a client from the list of registered clients maintained by
Card Services. The Client Handle returned by csx_RegisterClient (9F) is
passed in the client_handle_t argument.

The client must have returned all requested resources before this function is
called. If any resources have not been released, CS_IN_USE is returned.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_IN_USE Resources not released by this client.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_RegisterClient (9F)

PC Card 95 Standard, PCMCIA/JEIDA

WARNINGS Clients should be prepared to receive callbacks until Card Services returns
from this request successfully.

Last modified 19 Jul 1996 SunOS 5.8 111

csx_DupHandle(9F) Kernel Functions for Drivers

NAME csx_DupHandle – duplicate access handle

SYNOPSIS #include <sys/pccard.h>

int32_t csx_DupHandle (acc_handle_t handle1, acc_handle_t *handle2, uint32_t flags);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS handle1 The access handle returned from csx_RequestIO (9F) or
csx_RequestWindow (9F) that is to be duplicated.

handle2 A pointer to the newly-created duplicated data access
handle.

flags The access attributes that will be applied to the new handle.

DESCRIPTION This function duplicates the handle, handle1, into a new handle, handle2, that has
the access attributes specified in the flags argument. Both the original handle and
the new handle are active and can be used with the common access functions.

Both handles must be explicitly freed when they are no longer necessary.

The flags argument is bit-mapped. The following bits are defined:

WIN_ACC_NEVER_SWAP Host endian byte ordering
WIN_ACC_BIG_ENDIAN Big endian byte ordering
WIN_ACC_LITTLE_ENDIAN Little endian byte ordering
WIN_ACC_STRICT_ORDER Program ordering references
WIN_ACC_UNORDERED_OK May re-order references
WIN_ACC_MERGING_OK Merge stores to consecutive locations
WIN_ACC_LOADCACHING_OK May cache load operations
WIN_ACC_STORECACHING_OK May cache store operations

WIN_ACC_BIG_ENDIANand WIN_ACC_LITTLE_ENDIANdescribe the endian
characteristics of the device as big endian or little endian, respectively. Even
though most of the devices will have the same endian characteristics as
their busses, there are examples of devices with an I/O processor that has
opposite endian characteristics of the busses. When WIN_ACC_BIG_ENDIAN
or WIN_ACC_LITTLE_ENDIAN is set, byte swapping will automatically be
performed by the system if the host machine and the device data formats have
opposite endian characteristics. The implementation may take advantage of
hardware platform byte swapping capabilities. When WIN_ACC_NEVER_SWAPis
specified, byte swapping will not be invoked in the data access functions. The
ability to specify the order in which the CPU will reference data is provided by
the following flags bits. Only one of the following bits may be specified:

112 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_DupHandle(9F)

WIN_ACC_STRICT_ORDER The data references must be issued
by a CPU in program order. Strict
ordering is the default behavior.

WIN_ACC_UNORDERED_OK The CPU may re-order the data
references. This includes all kinds of
re-ordering (that is, a load followed
by a store may be replaced by a store
followed by a load).

WIN_ACC_MERGING_OK The CPU may merge individual
stores to consecutive locations. For
example, the CPU may turn two
consecutive byte stores into one
halfword store. It may also batch
individual loads. For example, the
CPU may turn two consecutive byte
loads into one halfword load. Setting
this bit also implies re-ordering.

WIN_ACC_LOADCACHING_OK The CPU may cache the data it
fetches and reuse it until another
store occurs. The default behavior
is to fetch new data on every load.
Setting this bit also implies merging
and re-ordering.

WIN_ACC_STORECACHING_OK The CPU may keep the data in the
cache and push it to the device
(perhaps with other data) at a later
time. The default behavior is to push
the data right away. Setting this bit
also implies load caching, merging,
and re-ordering.

These values are advisory, not mandatory. For example, data can be ordered
without being merged or cached, even though a driver requests unordered,
merged and cached together.

RETURN VALUES CS_SUCCESS Successful operation.

CS_FAILURE Error in flags argument or
handle could not be duplicated
for some reason.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware
installed.

Last modified 19 Jul 1996 SunOS 5.8 113

csx_DupHandle(9F) Kernel Functions for Drivers

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_Get8 (9F), csx_GetMappedAddr (9F), csx_Put8 (9F), csx_RepGet8 (9F),
csx_RepPut8 (9F), csx_RequestIO (9F), csx_RequestWindow (9F)

PC Card 95 Standard, PCMCIA/JEIDA

114 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_Error2Text(9F)

NAME csx_Error2Text – convert error return codes to text strings

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Error2Text (error2text_t *er);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS er Pointer to an error2text_t structure.

DESCRIPTION This function is a Solaris-specific extension that provides a method for clients to
convert Card Services error return codes to text strings.

STRUCTURE
MEMBERS

The structure members of error2text_t are:

uint32_t item; /*the error code*/
char test[CS_ERROR_MAX_BUFSIZE}; /*the error code*/

A pointer to the text for the Card Services error return code in the item field
is returned in the text field if the error return code is found. The client is not
responsible for allocating a buffer to hold the text. If the Card Services error
return code specified in the item field is not found, the text field will be set to
a string of the form:

"{unknown Card Services return code}"

RETURN VALUES CS_SUCCESS Successful operation.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

EXAMPLES EXAMPLE 1 : Using the csxError2Text function

if ((ret = csx_RegisterClient(&client_handle, &
client_reg)) != CS_SUCCESS)

{
error2text_t error2text;
error2text.item = ret;
csx_Error2Text(&error2text);
cmn_err(CE_CONT, "RegisterClient failed %s (0x%x)",

error2text.text, ret);
}

SEE ALSO csx_Event2Text (9F)

PC Card 95 Standard, PCMCIA/JEIDA

Last modified 19 Jul 1996 SunOS 5.8 115

csx_Event2Text(9F) Kernel Functions for Drivers

NAME csx_Event2Text – convert events to text strings

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Event2Text (event2text_t *ev);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ev Pointer to an event2text_t structure.

DESCRIPTION This function is a Solaris-specific extension that provides a method for clients to
convert Card Services events to text strings.

STRUCTURE
MEMBERS

The structure members of event2text_t are:

event_t event; /*the event code*/
char text[CS_EVENT_MAX_BUFSIZE] /*the event code*/

The fields are defined as follows:
event The text for the event code in the event field is returned in

the text field.

text The text string describing the name of the event.

RETURN VALUES CS_SUCCESS Successful operation.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

EXAMPLES EXAMPLE 1 : Using csx_Event2Text()

xx_event(event_t event, int priority, event_callback_args_t *eca)
{

event2text_t event2text;

event2text.event = event;
csx_Event2Text(&event2text);
cmn_err(CE_CONT, "event %s (0x%x)", event2text.text, (int)event);

}

SEE ALSO csx_event_handler (9E), csx_Error2Text (9F)

PC Card 95 Standard, PCMCIA/JEIDA

116 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_FreeHandle(9F)

NAME csx_FreeHandle – free access handle

SYNOPSIS #include <sys/pccard.h>

int32_t csx_FreeHandle (acc_handle_t *handle);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS handle The access handle returned from csx_RequestIO (9F),
csx_RequestWindow (9F), or csx_DupHandle (9F).

DESCRIPTION This function frees the handle, handle. If the handle was created by the
csx_DupHandle (9F) function, this function will free the storage associated with
this handle, but will not modify any resources that the original handle refers to.
If the handle was created by a common access setup function, this function will
release the resources associated with this handle.

RETURN VALUES CS_SUCCESS Successful operation.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_DupHandle (9F), csx_RequestIO (9F), csx_RequestWindow (9F)

PC Card95 Standard, PCMCIA/JEIDA

Last modified 19 Jul 1996 SunOS 5.8 117

csx_Get8(9F) Kernel Functions for Drivers

NAME csx_Get8, csx_Get16, csx_Get32, csx_Get64 – read data from device address

SYNOPSIS #include <sys/pccard.h>
uint8_t csx_Get8 (acc_handle_t handle, uint32_t offset);

uint16_t csx_Get16 (acc_handle_t handle, uint32_t offset);

uint32_t csx_Get32 (acc_handle_t handle, uint32_t offset);

uint64_t csx_Get64 (acc_handle_t handle, uint64_t offset);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS handle The access handle returned from csx_RequestIO (9F) ,
csx_RequestWindow (9F) , or csx_DupHandle (9F) .

offset The offset in bytes from the base of the mapped resource.

DESCRIPTION These functions generate a read of various sizes from the mapped memory or
device register.

The csx_Get8() , csx_Get16() , csx_Get32() , and csx_Get64()
functions read 8 bits, 16 bits, 32 bits, and 64 bits of data, respectively, from
the device address represented by the handle, handle , at an offset in bytes
represented by the offset, offset .

Data that consists of more than one byte will automatically be translated to
maintain a consistent view between the host and the device based on the
encoded information in the data access handle. The translation may involve byte
swapping if the host and the device have incompatible endian characteristics.

RETURN VALUES These functions return the value read from the mapped address.

CONTEXT These functions may be called from user, kernel, or interrupt context.

SEE ALSO csx_DupHandle (9F) , csx_GetMappedAddr (9F) , csx_Put8 (9F)
, csx_RepGet8 (9F) , csx_RepPut8 (9F) , csx_RequestIO (9F) ,
csx_RequestWindow (9F)

PC Card 95 Standard, PCMCIA/JEIDA

118 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_GetFirstClient(9F)

NAME csx_GetFirstClient, csx_GetNextClient – return first or next client

SYNOPSIS #include <sys/pccard.h>
int32_t csx_GetFirstClient (get_firstnext_client_t *fnc);

int32_t csx_GetNextClient (get_firstnext_client_t *fnc);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS fnc Pointer to a get_firstnext_client_t structure.

DESCRIPTION The functions csx_GetFirstClient() and csx_GetNextClient()
return information about the first or subsequent PC cards, respectively, that
are installed in the system.

STRUCTURE
MEMBERS

The structure members of get_firstnext_client_t are:

uint32_t Socket; /* socket number */
uint32_t Attributes; /* attributes */
client_handle_t client_handle; /* client handle */
uint32_t num_clients; /* number of clients */

The fields are defined as follows:
Socket If the CS_GET_FIRSTNEXT_CLIENT_SOCKET_ONLY

attribute is set, return information only on the PC card
installed in this socket.

Attributes This field indicates the type of client. The field is
bit-mapped; the following bits are defined:

CS_GET_FIRSTNEXT_CLIENT_ALL_CLIENTS

Return information on all clients.

CS_GET_FIRSTNEXT_CLIENT_SOCKET_ONLY

Return client information for the specified socket only.

client_handle The client handle of the PC card driver is returned in this
field.

num_clients The number of clients is returned in this field.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

Last modified 16 May 1997 SunOS 5.8 119

csx_GetFirstClient(9F) Kernel Functions for Drivers

CS_BAD_SOCKET Socket number is invalid.

CS_NO_CARD No PC Card in socket.

CS_NO_MORE_ITEMS PC Card driver does not handle the
CS_EVENT_CLIENT_INFOevent.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_event_handler (9E)

PC Card 95 Standard, PCMCIA/JEIDA

120 SunOS 5.8 Last modified 16 May 1997

Kernel Functions for Drivers csx_GetFirstTuple(9F)

NAME csx_GetFirstTuple, csx_GetNextTuple – return Card Information Structure tuple

SYNOPSIS #include <sys/pccard.h>
int32_t csx_GetFirstTuple (client_handle_t ch, tuple_t *tu);

int32_t csx_GetNextTuple (client_handle_t ch, tuple_t *tu);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F) .

tu Pointer to a tuple_t structure.

DESCRIPTION The functions csx_GetFirstTuple() and csx_GetNextTuple() return the
first and next tuple, respectively, of the specified type in the Card Information
Structure (CIS) for the specified socket.

STRUCTURE
MEMBERS

The structure members of tuple_t are:

uint32_t Socket; /* socket number */
uint32_t Attributes; /* Attributes */
cisdata_t DesiredTuple; /* tuple to search for or flags */
cisdata_t TupleCode; /* tuple type code */
cisdata_t TupleLink; /* tuple data body size */

The fields are defined as follows:
Socket

Not used in Solaris, but for portability with other Card Services
implementations, it should be set to the logical socket number.

Attributes
This field is bit-mapped. The following bits are defined:

TUPLE_RETURN_LINK

Return link tuples if set. The following are link tuples and will only
be returned by this function if the TUPLE_RETURN_LINKbit in the
Attributes field is set:

CISTPL_NULL CISTPL_LONGLINK_MFC
CISTPL_LONGLINK_A CISTPL_LINKTARGET
CISTPL_LONGLINK_C CISTPL_NO_LINK
CISTPL_LONGLINK_CB CISTPL_END

TUPLE_RETURN_IGNORED_TUPLES

Return ignored tuples if set. Ignored tuples will be returned by this
function if the TUPLE_RETURN_IGNORED_TUPLESbit in the Attributes
field is set, see tuple (9S) for more information. The CIS is parsed

Last modified 20 Dec 1996 SunOS 5.8 121

csx_GetFirstTuple(9F) Kernel Functions for Drivers

from the location setup by the previous csx_GetFirstTuple() or
csx_GetNextTuple() request.

DesiredTuple
This field is the tuple value desired. If it is RETURN_FIRST_TUPLE,the
very first tuple of the CIS is returned (if it exists). If this field is set to
RETURN_NEXT_TUPLE,the very next tuple of the CIS is returned (if it
exists). If the DesiredTuple field is any other value on entry, the CIS is
searched in an attempt to locate a tuple which matches.

TupleCode,TupleLink
These fields are the values returned from the tuple found. If there are no
tuples on the card, CS_NO_MORE_ITEMSis returned.

Since the csx_GetFirstTuple() , csx_GetNextTuple() , and
csx_GetTupleData (9F) functions all share the same tuple_t structure,
some fields in the tuple_t structure are unused or reserved when calling this
function and these fields must not be initialized by the client.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS)
on PC card.

CS_NO_MORE_ITEMS Desired tuple not found.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT These functions may be called from user or kernel context.

SEE ALSO csx_GetTupleData (9F) , csx_ParseTuple (9F) , csx_RegisterClient (9F)
, csx_ValidateCIS (9F) , tuple (9S)

PC Card 95Standard, PCMCIA/JEIDA

122 SunOS 5.8 Last modified 20 Dec 1996

Kernel Functions for Drivers csx_GetHandleOffset(9F)

NAME csx_GetHandleOffset – return current access handle offset

SYNOPSIS #include <sys/pccard.h>
int32_t csx_GetHandleOffset (acc_handle_t handle, uint32_t *offset);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS handle Access handle returned by csx_RequestIRQ (9F) or
csx_RequestIO (9F).

offset Pointer to a uint32_t in which the current access handle
offset is returned.

DESCRIPTION This function returns the current offset for the access handle, handle, in offset.

RETURN VALUES CS_SUCCESS Successful operation.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_RequestIO (9F), csx_RequestIRQ (9F), csx_SetHandleOffset (9F)

PC Card 95 Standard, PCMCIA/JEIDA

Last modified 16 May 1997 SunOS 5.8 123

csx_GetMappedAddr(9F) Kernel Functions for Drivers

NAME csx_GetMappedAddr – return mapped virtual address

SYNOPSIS #include <sys/pccard.h>

int32_t csx_GetMappedAddr (acc_handle_t handle, void **addr);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS handle The access handle returned from csx_RequestIO (9F),
csx_RequestWindow (9F), or csx_DupHandle (9F).

addr The virtual or I/O port number represented by the handle.

DESCRIPTION This function returns the mapped virtual address or the mapped I/O port
number represented by the handle, handle.

RETURN VALUES CS_SUCCESS The resulting address or I/O port
number can be directly accessed
by the caller.

CS_FAILURE The resulting address or I/O port
number can not be directly accessed
by the caller; the caller must make all
accesses to the mapped area via the
common access functions.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user, kernel, or interrupt context.

SEE ALSO csx_DupHandle (9F), csx_Get8 (9F), csx_Put8 (9F), csx_RepGet8 (9F),
csx_RepPut8 (9F), csx_RequestIO (9F), csx_RequestWindow (9F)

PC Card 95 Standard, PCMCIA/JEIDA

124 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_GetStatus(9F)

NAME csx_GetStatus – return the current status of a PC Card and its socket

SYNOPSIS #include <sys/pccard.h>

int32_t csx_GetStatus (client_handle_t ch, get_status_t *gs);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

gs Pointer to a get_status_t structure.

DESCRIPTION This function returns the current status of a PC Card and its socket.

STRUCTURE
MEMBERS

The structure members of get_status_t are:

uint32_t Socket; /* socket number*/
uint32_t CardState; /* "live" card status for this client*/
uint32_t SocketState; /* latched socket values */
uint32_t raw_CardState; /* raw live card status */

The fields are defined as follows:
Socket Not used in Solaris, but for portability with other Card

Services implementations, it should be set to the logical
socket number.

CardState The CardState field is the bit-mapped output data
returned from Card Services. The bits identify what Card
Services thinks the current state of the installed PC Card
is. The bits are:

CS_STATUS_WRITE_PROTECTED

Card is write protected

CS_STATUS_CARD_LOCKED

Card is locked

CS_STATUS_EJECTION_REQUEST

Ejection request in progress

CS_STATUS_INSERTION_REQUEST

Insertion request in progress

CS_STATUS_BATTERY_DEAD

Card battery is dead

Last modified 19 Jul 1996 SunOS 5.8 125

csx_GetStatus(9F) Kernel Functions for Drivers

CS_STATUS_BATTERY_DEAD

Card battery is dead (BVD1)

CS_STATUS_BATTERY_LOW

Card battery is low (BVD2)

CS_STATUS_CARD_READY

Card is READY

CS_STATUS_CARD_INSERTED

Card is inserted

CS_STATUS_REQ_ATTN

Extended status attention request

CS_STATUS_RES_EVT1

Extended status reserved event status

CS_STATUS_RES_EVT2

Extended status reserved event status

CS_STATUS_RES_EVT3

Extended status reserved event status

CS_STATUS_VCC_50

5.0 Volts Vcc Indicated

CS_STATUS_VCC_33

3.3 Volts Vcc Indicated

CS_STATUS_VCC_XX

X.X Volts Vcc Indicated

The state of the CS_STATUS_CARD_INSERTEDbit indicates
whether the PC Card associated with this driver instance,
not just any card, is inserted in the socket. If an I/O card is
installed in the specified socket, card state is returned from
the PRR (Pin Replacement Register) and the ESR (Extended
Status Register) (if present). If certain state bits are not
present in the PRR or ESR, a simulated state bit value is
returned as defined below:

CS_STATUS_WRITE_PROTECTED

Not write protected

126 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_GetStatus(9F)

CS_STATUS_BATTERY_DEAD

Power good

PCS_STATUS_BATTERY_LOW

Power good

CS_STATUS_CARD_READY

Ready

CS_STATUS_REQ_ATTN

Not set

CS_STATUS_RES_EVT1

Not set

CS_STATUS_RES_EVT2

Not set

CS_STATUS_RES_EVT3

Not set

SocketState The SocketState field is a bit-map of the current card and
socket state. The bits are:

CS_SOCK_STATUS_WRITE_PROTECT_CHANGE

Write Protect

ECS_SOCK_STATUS_CARD_LOCK_CHANGE

Card Lock Change

CS_SOCK_STATUS_EJECTION_PENDING

Ejection Request

CS_SOCK_STATUS_INSERTION_PENDING

Insertion Request

CS_SOCK_STATUS_BATTERY_DEAD_CHANGE

Battery Dead

CS_SOCK_STATUS_BATTERY_LOW_CHANGE

Battery Low

CS_SOCK_STATUS_CARD_READY_CHANGE

Ready Change

Last modified 19 Jul 1996 SunOS 5.8 127

csx_GetStatus(9F) Kernel Functions for Drivers

CS_SOCK_STATUS_CARD_INSERTION_CHANGE

Card is inserted

The state reported in the SocketState field may be different
from the state reported in the CardState field. Clients
should normally depend only on the state reported in
the CardState field.

The state reported in the SocketState field may be
different from the state reported in the CardState field.
Clients should normally depend only on the state reported
in the CardState field.

raw_CardState The raw_CardState field is a Solaris-specific extension
that allows the client to determine if any card is inserted
in the socket. The bit definitions in the raw_CardState
field are identical to those in the CardState field with the
exception that the CS_STATUS_CARD_INSERTEDbit in the
raw_CardState field is set whenever any card is inserted
into the socket.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_BAD_SOCKET Error getting socket state.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CS_NO_CARDwill not be returned if there is no PC Card present in the socket.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_RegisterClient (9F)

PC Card 95 Standard, PCMCIA/JEIDA

128 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_GetTupleData(9F)

NAME csx_GetTupleData – return the data portion of a tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_GetTupleData (client_handle_t ch, tuple_t *tu);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

tu Pointer to a tuple_t structure.

DESCRIPTION This function returns the data portion of a tuple, as returned by the
csx_GetFirstTuple (9F) and csx_GetNextTuple (9F) functions.

STRUCTURE
MEMBERS

The structure members of tuple_t are:

The fields are defined as follows:

uint32_t Socket; /* socket number */
uint32_t Attributes; /* tuple attributes*/
cisdata_t DesiredTuple; /* tuple to search for*/
cisdata_t TupleOffset; /* tuple data offset*/
cisdata_t TupleDataMax; /* max tuple data size*/
cisdata_t TupleDataLen; /* actual tuple data length*/
cisdata_t TupleData[CIS_MAX_TUPLE_DATA_LEN]; /* tuple body data buffer*/
cisdata_t TupleCode; /* tuple type code*/
cisdata_t TupleLink; /* tuple link */

Socket Not used in Solaris, but for portability with other
Card Services implementations, it should be set
to the logical socket number.

Attributes Initialized by csx_GetFirstTuple (9F) or
csx_GetNextTuple (9F); the client must not
modify the value in this field.

DesiredTuple Initialized by csx_GetFirstTuple (9F) or
csx_GetNextTuple (9F); the client must not
modify the value in this field.

TupleOffset This field allows partial tuple information to be
retrieved, starting anywhere within the tuple.

TupleDataMax This field is the size of the tuple data buffer
that Card Services uses to return raw tuple data
from csx_GetTupleData (9F). It can be larger
than the number of bytes in the tuple data body.

Last modified 20 Dec 1996 SunOS 5.8 129

csx_GetTupleData(9F) Kernel Functions for Drivers

Card Services ignores any value placed here by
the client.

TupleDataLen This field is the actual size of the tuple data
body. It represents the number of tuple data
body bytes returned.

TupleData This field is an array of bytes containing the raw
tuple data body contents.

TupleCode Initialized by csx_GetFirstTuple (9F) or
csx_GetNextTuple (9F); the client must not
modify the value in this field.

TupleLink Initialized by csx_GetFirstTuple (9F) or
csx_GetNextTuple (9F); the client must not
modify the value in this field.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_BAD_ARGS Data from prior
csx_GetFirstTuple (9F) or
csx_GetNextTuple (9F) is corrupt.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS)
on PC Card.

CS_NO_MORE_ITEMS Card Services was not able to read
the tuple from the PC Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple (9F), csx_ParseTuple (9F), csx_RegisterClient (9F),
csx_ValidateCIS (9F), tuple (9S)

PC Card 95 Standard, PCMCIA/JEIDA

130 SunOS 5.8 Last modified 20 Dec 1996

Kernel Functions for Drivers csx_MakeDeviceNode(9F)

NAME csx_MakeDeviceNode, csx_RemoveDeviceNode – create and remove minor
nodes on behalf of the client

SYNOPSIS #include <sys/pccard.h>
int32_t csx_MakeDeviceNode (client_handle_t ch, make_device_node_t *dn);

int32_t csx_RemoveDeviceNode (client_handle_t ch, remove_device_node_t *dn);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F) .

dn Pointer to a make_device_node_t or remove_device_node_t
structure.

DESCRIPTION csx_MakeDeviceNode() and csx_RemoveDeviceNode() are
Solaris-specific extensions to allow the client to request that device nodes in the
filesystem are created or removed, respectively, on its behalf.

STRUCTURE
MEMBERS

The structure members of make_device_node_t are:

uint32_t Action; /* device operation */
uint32_t NumDevNodes; /* number of nodes to create */
devnode_desc_t *devnode_desc; /* description of device nodes */

The structure members of remove_device_node_t are:

uint32_t Action; /* device operation */
uint32_t NumDevNodes; /* number of nodes to remove */
devnode_desc_t *devnode_desc; /* description of device nodes */

The structure members of devnode_desc_t are:

char *name; /* device node path and name */
int32_t spec_type; /* device special type (block or char) */
int32_t minor_num; /* device node minor number */
char *node_type; /* device node type */

The Action field is used to specify the operation that csx_MakeDeviceNode()
and csx_RemoveDeviceNode() should perform.

The following Action values are defined for csx_MakeDeviceNode() :
CREATE_DEVICE_NODE

Create NumDevNodes minor nodes

The following Action values are defined for csx_RemoveDeviceNode() :

Last modified 19 Jul 1996 SunOS 5.8 131

csx_MakeDeviceNode(9F) Kernel Functions for Drivers

REMOVE_DEVICE_NODE
Remove NumDevNodes minor nodes

REMOVE_ALL_DEVICE_NODES
Remove all minor nodes for this client

For csx_MakeDeviceNode() , if the Action field is:
CREATE_DEVICE_NODE

The NumDevNodes field must be set to the number of minor devices to
create, and the client must allocate the quantity of devnode_desc_t
structures specified by NumDevNodes and fill out the fields in the
devnode_desc_t structure with the appropriate minor node information.
The meanings of the fields in the devnode_desc_t structure are identical
to the parameters of the same name to the ddi_create_minor_node (9F)
DDI function.

For csx_RemoveDeviceNode() , if the Action field is:
REMOVE_DEVICE_NODE

The NumDevNodes field must be set to the number of minor devices to
remove, and the client must allocate the quantity of devnode_desc_t
structures specified by NumDevNodes and fill out the fields in the
devnode_desc_t structure with the appropriate minor node information.
The meanings of the fields in the devnode_desc_t structure are identical
to the parameters of the same name to the ddi_remove_minor_node (9F)
DDI function.

REMOVE_ALL_DEVICE_NODES
The NumDevNodes field must be set to 0 and the devnode_desc_t
structure pointer must be set to NULL . All device nodes for this client will
be removed from the filesystem.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_BAD_ATTRIBUTE The value of one or more arguments
is invalid.

CS_BAD_ARGS Action is invalid.

CS_OUT_OF_RESOURCE Unable to create or remove device
node.

132 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_MakeDeviceNode(9F)

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT These functions may be called from user or kernel context.

SEE ALSO csx_RegisterClient (9F) , ddi_create_minor_node (9F) ,
ddi_remove_minor_node (9F)

PC Card 95 Standard, PCMCIA/JEIDA

Last modified 19 Jul 1996 SunOS 5.8 133

csx_MapLogSocket(9F) Kernel Functions for Drivers

NAME csx_MapLogSocket – return the physical socket number associated with the
client handle

SYNOPSIS #include <sys/pccard.h>

int32_t csx_MapLogSocket (client_handle_t ch, map_log_socket_t *ls);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

ls Pointer to a map_log_socket_t structure.

DESCRIPTION This function returns the physical socket number associated with the client
handle.

STRUCTURE
MEMBERS

The structure members of map_log_socket_t are:

uint32_t LogSocket; /* logical socket number */
uint32_t PhyAdapter; /* physical adapter number */
uint32_t PhySocket; /* physical socket number */

The fields are defined as follows:
LogSocket Not used by this implementation of Card Services and can

be set to any arbitrary value.

PhyAdapter Returns the physical adapter number, which is always 0 in
the Solaris implementation of Card Services.

PhySocket Returns the physical socket number associated with the
client handle. The physical socket number is typically used
as part of an error or message string or if the client creates
minor nodes based on the physical socket number.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_RegisterClient (9F)

PC Card 95 Standard, PCMCIA/JEIDA

134 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_MapMemPage(9F)

NAME csx_MapMemPage – map the memory area on a PC Card

SYNOPSIS #include <sys/pccard.h>

int32_t csx_MapMemPage(window_handle_t wh, map_mem_page_t *mp);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS wh Window handle returned from csx_RequestWindow (9F).

mp Pointer to a map_mem_page_t structure.

DESCRIPTION This function maps the memory area on a PC Card into a page of a window
allocated with the csx_RequestWindow (9F) function.

STRUCTURE
MEMBERS

The structure members of map_mem_page_t are:

uint32_t CardOffset; /* card offset */
uint32_t Page; /* page number */

The fields are defined as follows:
CardOffset The absolute offset in bytes from the beginning of the PC

Card to map into system memory.

Page Used internally by Card Services; clients must set this field
to 0 before calling this function.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_BAD_OFFSET Offset is invalid.

CS_BAD_PAGE Page is not zero.

CS_NO_CARD No PC Card in socket.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_ModifyWindow (9F), csx_ReleaseWindow (9F),
csx_RequestWindow (9F)

PC Card 95 Standard, PCMCIA/JEIDA

Last modified 19 Jul 1996 SunOS 5.8 135

csx_ModifyConfiguration(9F) Kernel Functions for Drivers

NAME csx_ModifyConfiguration – modify socket and PC Card Configuration Register

SYNOPSIS #include <sys/pccard.h>

int32_t csx_ModifyConfiguration (client_handle_t ch, modify_config_t *mc);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

mc Pointer to a modify_config_t structure.

DESCRIPTION This function allows a socket and PC Card configuration to be
modified. This function can only modify a configuration requested via
csx_RequestConfiguration (9F).

STRUCTURE
MEMBERS

The structure members of modify_config_t are:

uint32_t Socket; /* socket number */
uint32_t Attributes; /* attributes to modify */
uint32_t Vpp1; /* Vpp1 value */
uint32_t Vpp2; /* Vpp2 value */

The fields are defined as follows:
Socket Not used in Solaris, but for portability with other Card

Services implementations, it should be set to the logical
socket number.

Attributes This field is bit-mapped. The following bits are defined:

CONF_ENABLE_IRQ_STEERING

Enable IRQ steering. Set to connect the PC Card IREQ line
to a previously selected system interrupt.

CONF_IRQ_CHANGE_VALID

IRQ change valid. Set to request the IRQ steering enable to
be changed.

CONF_VPP1_CHANGE_VALID

Vpp1 change valid. These bits are set to request a change
to the corresponding voltage level for the PC Card.

CONF_VPP2_CHANGE_VALID

Vpp2 change valid. These bits are set to request a change
to the corresponding voltage level for the PC Card.

136 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_ModifyConfiguration(9F)

CONF_VSOVERRIDE

Override VS pins. For Low Voltage keyed cards, must be
set if a client desires to apply a voltage inappropriate
for this card to any pin. After card insertion and prior
to the first csx_RequestConfiguration (9F) call for
this client, the voltage levels applied to the card will be
those specified by the Card Interface Specification. (See
WARNINGS.)

Vpp1, Vpp2 Represent voltages expressed in tenths of a volt. Values from
0 to 25.5 volts may be set. To be valid, the exact voltage
must be available from the system. To be compliant with the
PC Card 95 Standard, PCMCIA/JEIDA, systems must always
support 5.0 volts for both Vcc and Vpp. (See WARNINGS.)

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid or
csx_RequestConfiguration (9F)
not done.

CS_BAD_SOCKET Error getting/setting socket
hardware parameters.

CS_BAD_VPP Requested Vpp is not available
on socket.

CS_NO_CARD No PC Card in socket.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware
installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_RegisterClient (9F), csx_ReleaseConfiguration (9F),
csx_ReleaseIO (9F), csx_ReleaseIRQ (9F),
csx_RequestConfiguration (9F), csx_RequestIO (9F),
csx_RequestIRQ (9F)

PC Card 95 Standard, PCMCIA/JEIDA

WARNINGS 1. CONF_VSOVERRIDEis provided for clients that have a need to override the
information provided in the CIS. The client must excercise caution when
setting this as it overrides any voltage level protection provided by Card
Services.

Last modified 19 Jul 1996 SunOS 5.8 137

csx_ModifyConfiguration(9F) Kernel Functions for Drivers

2. Using csx_ModifyConfiguration() to set Vpp to 0 volts may result in
the loss of a PC Card’s state. Any client setting Vpp to 0 volts is responsible
for insuring that the PC Card’s state is restored when power is re-applied to
the card.

NOTES Mapped IO addresses can only be changed by first releasing the current
configuration and IO resources with csx_ReleaseConfiguration (9F) and
csx_ReleaseIO (9F), requesting new IO resources and a new configuration
with csx_RequestIO (9F), followed by csx_RequestConfiguration (9F).

IRQ priority can only be changed by first releasing the current configuration
and IRQ resources with csx_ReleaseConfiguration (9F) and
csx_ReleaseIRQ (9F), requesting new IRQ resources and a new configuration
with csx_RequestIRQ (9F), followed by csx_RequestConfiguration (9F).

Vcc can not be changed using csx_ModifyConfiguration() . Vcc may be
changed by first invoking csx_ReleaseConfiguration (9F), followed by
csx_RequestConfiguration (9F) with a new Vcc value.

138 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_ModifyWindow(9F)

NAME csx_ModifyWindow – modify window attributes

SYNOPSIS #include <sys/pccard.h>

int32_t csx_ModifyWindow (window_handle_t wh, modify_win_t *mw);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS wh Window handle returned from csx_RequestWindow (9F).

mw Pointer to a modify_win_t structure.

DESCRIPTION This function modifies the attributes of a window allocated by the
csx_RequestWindow (9F) function.

Only some of the window attributes or the access speed field may be modified
by this request. The csx_MapMemPage(9F) function is also used to set the offset
into PC Card memory to be mapped into system memory for paged windows.
The csx_RequestWindow (9F) and csx_ReleaseWindow (9F) functions must
be used to change the window base or size.

STRUCTURE
MEMBERS

The structure members of modify_win_t are:

uint32_t Attributes; /* window flags */
uint32_t AccessSpeed; /* window access speed */

The fields are defined as follows:
Attributes This field is bit-mapped and defined as follows:

WIN_MEMORY_TYPE_CM

Window points to Common Memory area. Set this to map
the window to Common Memory.

WIN_MEMORY_TYPE_AM

Window points to Attribute Memory area. Set this to map
the window to Attribute Memory.

WIN_ENABLE

Enable Window. The client must set this to enable the
window.

WIN_ACCESS_SPEED_VALID

AccessSpeed valid. The client must set this when the
AccessSpeed field has a value that the client wants
set for the window.

Last modified 19 Jul 1996 SunOS 5.8 139

csx_ModifyWindow(9F) Kernel Functions for Drivers

AccessSpeed The bit definitions for this field use the format of the
extended speed byte of the Device ID tuple. If the mantissa
is 0 (noted as reserved in the PC Card 95 Standard), the
lower bits are a binary code representing a speed from the
following list:

Code Speed

0 Reserved: do not use

1 250 nsec

2 200 nsec

3 150 nsec

4 100 nsec

5 - 7 Reserved: do not use

It is recommended that clients use the
csx_ConvertSpeed (9F) function to generate the
appropriate AccessSpeed values rather than manually
perturbing the AccessSpeed field.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Window handle is invalid.

CS_NO_CARD No PC Card in socket.

CS_BAD_OFFSET Error getting/setting window
hardware parameters.

CS_BAD_WINDOW Error getting/setting window
hardware parameters.

CS_BAD_SPEED AccessSpeedis invalid.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_ConvertSpeed (9F), csx_MapMemPage(9F), csx_ReleaseWindow (9F),
csx_RequestWindow (9F)

PC Card 95 Standard, PCMCIA/JEIDA

140 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_Parse_CISTPL_BATTERY(9F)

NAME csx_Parse_CISTPL_BATTERY – parse the Battery Replacement Date tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_BATTERY (client_handle_t ch, tuple_t *tu, cistpl_battery_t
*cb);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

tu Pointer to a tuple_t structure (see tuple (9S)) returned by a call to
csx_GetFirstTuple (9F) or csx_GetNextTuple (9F).

cb Pointer to a cistpl_battery_t structure which contains the parsed
CISTPL_BATTERYtuple information upon return from this function.

DESCRIPTION This function parses the Battery Replacement Date tuple, CISTPL_BATTERY,
into a form usable by PC Card drivers.

The CISTPL_BATTERYtuple is an optional tuple which shall be present only in
PC Cards with battery-backed storage. It indicates the date on which the battery
was replaced, and the date on which the battery is expected to need replacement.
Only one CISTPL_BATTERYtuple is allowed per PC Card.

STRUCTURE
MEMBERS

The structure members of cistpl_battery_t are:

uint32_t rday; /* date battery last replaced */
uint32_t xday; /* date battery due for replacement */

The fields are defined as follows:
rday This field indicates the date on which the battery was last

replaced.

xday This field indicates the date on which the battery should be
replaced.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse
tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS)
on PC Card.

Last modified 20 Dec 1996 SunOS 5.8 141

csx_Parse_CISTPL_BATTERY(9F) Kernel Functions for Drivers

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple (9F), csx_GetTupleData (9F),
csx_RegisterClient (9F), csx_ValidateCIS (9F), tuple (9S)

PC Card 95 Standard, PCMCIA/JEIDA

142 SunOS 5.8 Last modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_BYTEORDER(9F)

NAME csx_Parse_CISTPL_BYTEORDER – parse the Byte Order tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_BYTEORDER(client_handle_t ch, tuple_t *tu,
cistpl_byteorder_t *cbo);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

tu Pointer to a tuple_t structure (see tuple (9S)) returned by a call to
csx_GetFirstTuple (9F) or csx_GetNextTuple (9F).

cbo Pointer to a cistpl_byteorder_t structure which contains the
parsed CISTPL_BYTEORDERtuple information upon return from
this function.

DESCRIPTION This function parses the Byte Order tuple, CISTPL_BYTEORDER,into a form
usable by PC Card drivers.

The CISTPL_BYTEORDERtuple shall only appear in a partition tuple set for a
memory-like partition. It specifies two parameters: the order for multi-byte data,
and the order in which bytes map into words for 16-bit cards.

STRUCTURE
MEMBERS

The structure members of cistpl_byteorder_t are:

uint32_t order; /* byte order code */
uint32_t map; /* byte mapping code */

The fields are defined as follows:
order This field specifies the byte order for multi-byte numeric

data.

TPLBYTEORD_LOW

Little endian order

TPLBYTEORD_VS

Vendor specific

map This field specifies the byte mapping for 16-bit or wider
cards.

TPLBYTEMAP_LOW

Byte zero is least significant byte

Last modified 20 Dec 1996 SunOS 5.8 143

csx_Parse_CISTPL_BYTEORDER(9F) Kernel Functions for Drivers

TPLBYTEMAP_HIGH

Byte zero is most significant byte

TPLBYTEMAP_VS

Vendor specific mapping

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse
tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS)
PC Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple (9F), csx_GetTupleData (9F),
csx_RegisterClient (9F), csx_ValidateCIS (9F), tuple (9S)

PC Card 95 Standard, PCMCIA/JEIDA

144 SunOS 5.8 Last modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_CFTABLE_ENTRY(9F)

NAME csx_Parse_CISTPL_CFTABLE_ENTRY – parse 16-bit Card Configuration Table
Entry tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_CFTABLE_ENTRY (client_handle_t ch, tuple_t *tu,
cistpl_cftable_entry_t *cft);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

tu Pointer to a tuple_t structure (see tuple (9S)) returned by a call to
csx_GetFirstTuple (9F) or csx_GetNextTuple (9F).

cft Pointer to a cistpl_cftable_entry_t structure which contains
the parsed CISTPL_CFTABLE_ENTRYtuple information upon return
from this function.

DESCRIPTION This function parses the 16 bit Card Configuration Table Entry tuple,
CISTPL_CFTABLE_ENTRY,into a form usable by PC Card drivers.

The CISTPL_CFTABLE_ENTRYtuple is used to describe each
possible configuration of a PC Card and to distinguish among the
permitted configurations. The CISTPL_CONFIG tuple must precede all
CISTPL_CFTABLE_ENTRYtuples.

STRUCTURE
MEMBERS

The structure members of cistpl_cftable_entry_t are:

uint32_t flags; /* valid descriptions */
uint32_t ifc; /* interface description */

/* information */
uint32_t pin; /* values for PRR */
uint32_t index; /* configuration index number */
cistpl_cftable_entry_pd_t pd; /* power requirements */

/* description */
cistpl_cftable_entry_speed_t speed; /* device speed description */
cistpl_cftable_entry_io_t io; /* device I/O map */
cistpl_cftable_entry_irq_t irq; /* device IRQ utilization */
cistpl_cftable_entry_mem_t mem; /* device memory space */
cistpl_cftable_entry_misc_t misc; /* miscellaneous

/* device features */

The flags field is defined and bit-mapped as follows:
CISTPL_CFTABLE_TPCE_DEFAULT

This is a default configuration

CISTPL_CFTABLE_TPCE_IF
If configuration byte exists

Last modified 20 Dec 1996 SunOS 5.8 145

csx_Parse_CISTPL_CFTABLE_ENTRY(9F) Kernel Functions for Drivers

CISTPL_CFTABLE_TPCE_FS_PWR
Power information exists

CISTPL_CFTABLE_TPCE_FS_TD
Timing information exists

CISTPL_CFTABLE_TPCE_FS_IO
I/O information exists

CISTPL_CFTABLE_TPCE_FS_IRQ
IRQ information exists

CISTPL_CFTABLE_TPCE_FS_MEM
MEM space information exists

CISTPL_CFTABLE_TPCE_FS_MISC
MISC information exists

CISTPL_CFTABLE_TPCE_FS_STCE_EV
STCE_EV exists

CISTPL_CFTABLE_TPCE_FS_STCE_PD
STCE_PD exists

If the CISTPL_CFTABLE_TPCE_IF flag is set, the ifc field is bit-mapped and
defined as follows:
CISTPL_CFTABLE_TPCE_IF_MEMORY

Memory interface

CISTPL_CFTABLE_TPCE_IF_IO_MEM
IO and memory

CISTPL_CFTABLE_TPCE_IF_CUSTOM_0
Custom interface 0

CISTPL_CFTABLE_TPCE_IF_CUSTOM_1
Custom interface 1

CISTPL_CFTABLE_TPCE_IF_CUSTOM_2
Custom interface 2

CISTPL_CFTABLE_TPCE_IF_CUSTOM_3
Custom interface 3

CISTPL_CFTABLE_TPCE_IF_MASK
Interface type mask

CISTPL_CFTABLE_TPCE_IF_BVD
BVD active in PRR

CISTPL_CFTABLE_TPCE_IF_WP

146 SunOS 5.8 Last modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_CFTABLE_ENTRY(9F)

WP active in PRR

CISTPL_CFTABLE_TPCE_IF_RDY
RDY active in PRR

CISTPL_CFTABLE_TPCE_IF_MWAIT
WAIT - mem cycles

pin is a value for the Pin Replacement Register.

index is a configuration index number.

The structure members of cistpl_cftable_entry_pd_t are:

uint32_t flags; /* which descriptions are valid */
cistpl_cftable_entry_pwr_t pd_vcc; /* VCC power description */
cistpl_cftable_entry_pwr_t pd_vpp1; /* Vpp1 power description */
cistpl_cftable_entry_pwr_t pd_vpp2; /* Vpp2 power description */

This flags field is bit-mapped and defined as follows:
CISTPL_CFTABLE_TPCE_FS_PWR_VCC

Vcc description valid

CISTPL_CFTABLE_TPCE_FS_PWR_VPP1
Vpp1 description valid

CISTPL_CFTABLE_TPCE_FS_PWR_VPP2
Vpp2 description valid

The structure members of cistpl_cftable_entry_pwr_t are:

uint32_t nomV; /* nominal supply voltage */
uint32_t nomV_flags;
uint32_t minV; /* minimum supply voltage */
uint32_t minV_flags;
uint32_t maxV; /* maximum supply voltage */
uint32_t maxV_flags;
uint32_t staticI; /* continuous supply current */
uint32_t staticI_flags;
uint32_t avgI; /* max current required averaged over 1 sec. */
uint32_t avgI_flags;
uint32_t peakI; /* max current required averaged over 10mS */
uint32_t peakI_flags;
uint32_t pdownI; /* power down supply current required */
uint32_t pdownI_flags;

nomV, minV , maxV, staticI , avgI , peakI_flag , and pdownI are defined
and bit-mapped as follows:
CISTPL_CFTABLE_PD_NOMV

Nominal supply voltage

CISTPL_CFTABLE_PD_MINV

Last modified 20 Dec 1996 SunOS 5.8 147

csx_Parse_CISTPL_CFTABLE_ENTRY(9F) Kernel Functions for Drivers

Minimum supply voltage

CISTPL_CFTABLE_PD_MAXV
Maximum supply voltage

CISTPL_CFTABLE_PD_STATICI
Continuous supply current

CISTPL_CFTABLE_PD_AVGI
Maximum current required averaged over 1 second

CISTPL_CFTABLE_PD_PEAKI
Maximum current required averaged over 10mS

CISTPL_CFTABLE_PD_PDOWNI
Power down supply current required

nomV_flags , minV_flags , maxV_flags , staticI_flags , avgI_flags ,
peakI_flags , and pdownI_flags are defined and bit-mapped as follows:
CISTPL_CFTABLE_PD_EXISTS

This parameter exists

CISTPL_CFTABLE_PD_MUL10
Multiply return value by 10

CISTPL_CFTABLE_PD_NC_SLEEP
No connection on sleep/power down

CISTPL_CFTABLE_PD_ZERO
Zero value required

CISTPL_CFTABLE_PD_NC
No connection ever

The structure members of cistpl_cftable_entry_speed_t are:

uint32_t flags; /* which timing information is present */
uint32_t wait; /* max WAIT time in device speed format */
uint32_t nS_wait; /* max WAIT time in nS */
uint32_t rdybsy; /* max RDY/BSY time in device speed format */
uint32_t nS_rdybsy; /* max RDY/BSY time in nS */
uint32_t rsvd; /* max RSVD time in device speed format */
uint32_t nS_rsvd; /* max RSVD time in nS */

The flags field is bit-mapped and defined as follows:
CISTPL_CFTABLE_TPCE_FS_TD_WAIT

WAIT timing exists

CISTPL_CFTABLE_TPCE_FS_TD_RDY
RDY/BSY timing exists

148 SunOS 5.8 Last modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_CFTABLE_ENTRY(9F)

CISTPL_CFTABLE_TPCE_FS_TD_RSVD
RSVD timing exists

The structure members of cistpl_cftable_entry_io_t are:

uint32_t flags; /* direct copy of TPCE_IO byte in tuple */
uint32_t addr_lines; /* number of decoded I/O address lines */
uint32_t ranges; /* number of I/O ranges */
cistpl_cftable_entry_io_range_t

range[CISTPL_CFTABLE_ENTRY_MAX_IO_RANGES];

The flags field is defined and bit-mapped as follows:
CISTPL_CFTABLE_TPCE_FS_IO_BUS

Bus width mask

CISTPL_CFTABLE_TPCE_FS_IO_BUS8
8-bit flag

CISTPL_CFTABLE_TPCE_FS_IO_BUS16
16-bit flag

CISTPL_CFTABLE_TPCE_FS_IO_RANGE
IO address ranges exist

The structure members of cistpl_cftable_entry_io_range_t are:

uint32_t addr; /* I/O start address */
uint32_t length; /* I/O register length */

The structure members of cistpl_cftable_entry_irq_t are:

uint32_t flags; /* direct copy of TPCE_IR byte in tuple */
uint32_t irqs; /* bit mask for each allowed IRQ */

The structure members of cistpl_cftable_entry_mem_t are:

uint32_t flags; /* memory descriptor type and host addr info */
uint32_t windows; /* number of memory space descriptors */
cistpl_cftable_entry_mem_window_t

window[CISTPL_CFTABLE_ENTRY_MAX_MEM_WINDOWS];

The flags field is defined and bit-mapped as follows:
CISTPL_CFTABLE_TPCE_FS_MEM3

Space descriptors

CISTPL_CFTABLE_TPCE_FS_MEM2
host_addr =card_addr

CISTPL_CFTABLE_TPCE_FS_MEM1
Card address=0 any host address

Last modified 20 Dec 1996 SunOS 5.8 149

csx_Parse_CISTPL_CFTABLE_ENTRY(9F) Kernel Functions for Drivers

CISTPL_CFTABLE_TPCE_FS_MEM_HOST
If host address is present in MEM3

The structure members of cistpl_cftable_entry_mem_window_t are:

uint32_t length; /* length of this window */
uint32_t card_addr; /* card address */
uint32_t host_addr; /* host address */

The structure members of cistpl_cftable_entry_misc_t are:

uint32_t flags; /* miscellaneous features flags */

The flags field is defined and bit-mapped as follows:
CISTPL_CFTABLE_TPCE_MI_MTC_MASK

Max twin cards mask

CISTPL_CFTABLE_TPCE_MI_AUDIO
Audio on BVD2

CISTPL_CFTABLE_TPCE_MI_READONLY
R/O storage

CISTPL_CFTABLE_TPCE_MI_PWRDOWN
Powerdown capable

CISTPL_CFTABLE_TPCE_MI_DRQ_MASK
DMAREQ mask

CISTPL_CFTABLE_TPCE_MI_DRQ_SPK
DMAREQ on SPKR

CISTPL_CFTABLE_TPCE_MI_DRQ_IOIS
DMAREQ on IOIS16

CISTPL_CFTABLE_TPCE_MI_DRQ_INP
DMAREQ on INPACK

CISTPL_CFTABLE_TPCE_MI_DMA_8
DMA width 8 bits

CISTPL_CFTABLE_TPCE_MI_DMA_16
DMA width 16 bits

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

150 SunOS 5.8 Last modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_CFTABLE_ENTRY(9F)

CS_UNKNOWN_TUPLE Parser does not know how to
parse tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure
(CIS) on PC Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware
installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple (9F), csx_GetTupleData (9F),
csx_Parse_CISTPL_CONFIG (9F), csx_RegisterClient (9F),
csx_ValidateCIS (9F), tuple (9S)

PC Card 95 Standard, PCMCIA/JEIDA

Last modified 20 Dec 1996 SunOS 5.8 151

csx_Parse_CISTPL_CONFIG(9F) Kernel Functions for Drivers

NAME csx_Parse_CISTPL_CONFIG – parse Configuration tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_CONFIG (client_handle_t ch, tuple_t *tu, cistpl_config_t *cc);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

tu Pointer to a tuple_t structure (see tuple (9S)) returned by a call to
csx_GetFirstTuple (9F) or csx_GetNextTuple (9F).

cc Pointer to a cistpl_config_t structure which contains the parsed
CISTPL_CONFIG tuple information upon return from this function.

DESCRIPTION This function parses the Configuration tuple, CISTPL_CONFIG, into a form
usable by PC Card drivers. The CISTPL_CONFIG tuple is used to describe
the general characteristics of 16-bit PC Cards containing I/O devices or using
custom interfaces. It may also describe PC Cards, including Memory Only cards,
which exceed nominal power supply specifications, or which need descriptions
of their power requirements or other information.

STRUCTURE
MEMBERS

The structure members of cistpl_config_t are:

uint32_t present; /* register present flags */
uint32_t nr; /* number of config registers found */
uint32_t hr; /* highest config register index found */
uint32_t regs[CISTPL_CONFIG_MAX_CONFIG_REGS]; /* reg offsets */
uint32_t base; /* base offset of config registers */
uint32_t last; /* last config index */

The fields are defined as follows:
present This field indicates which configuration registers are present

on the PC Card.

CONFIG_OPTION_REG_PRESENT

Configuration Option Register present

CONFIG_STATUS_REG_PRESENT

Configuration Status Register present

CONFIG_PINREPL_REG_PRESENT

Pin Replacement Register present

CONFIG_COPY_REG_PRESENT

152 SunOS 5.8 Last modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_CONFIG(9F)

Copy Register present

CONFIG_EXSTAT_REG_PRESENT

Extended Status Register present

CONFIG_IOBASE0_REG_PRESENT

IO Base 0 Register present

CONFIG_IOBASE1_REG_PRESENT

IO Base 1 Register present

CONFIG_IOBASE2_REG_PRESENT

IO Base2 Register present

CONFIG_IOBASE3_REG_PRESENT

IO Base3 Register present

CONFIG_IOLIMIT_REG_PRESENT

IO Limit Register present

nr This field specifies the number of configuration registers that
are present on the PC Card.

hr This field specifies the highest configuration register number
that is present on the PC Card.

regs This array contains the offset from the start of Attribute
Memory space for each configuration register that is present
on the PC Card. If a configuration register is not present on
the PC Card, the value in the corresponding entry in the
regs array is undefined.

base This field contains the offset from the start of Attribute
Memory space to the base of the PC Card configuration
register space.

last This field contains the value of the last valid configuration
index for this PC Card.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to
parse tuple.

CS_NO_CARD No PC Card in socket.

Last modified 20 Dec 1996 SunOS 5.8 153

csx_Parse_CISTPL_CONFIG(9F) Kernel Functions for Drivers

CS_NO_CIS No Card Information Structure
(CIS) on PC Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware
installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple (9F), csx_GetTupleData (9F),
csx_Parse_CISTPL_CFTABLE_ENTRY (9F), csx_RegisterClient (9F),
csx_ValidateCIS (9F), tuple (9S)

PC Card 95 Standard, PCMCIA/JEIDA

NOTES PC Card drivers should not attempt to use configurations beyond the "last"
member in the cistpl_config_t structure.

154 SunOS 5.8 Last modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_DATE(9F)

NAME csx_Parse_CISTPL_DATE – parse the Card Initialization Date tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_DATE (client_handle_t ch, tuple_t *tu, cistpl_date_t *cd);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

tu Pointer to a tuple_t structure (see tuple (9S)) returned by a call to
csx_GetFirstTuple (9F) or csx_GetNextTuple (9F).

cd Pointer to a cistpl_date_t structure which contains the parsed
CISTPL_DATE tuple information upon return from this function.

DESCRIPTION This function parses the Card Initialization Date tuple, CISTPL_DATE, into
a form usable by PC Card drivers.

The CISTPL_DATE tuple is an optional tuple. It indicates the date and time at
which the card was formatted. Only one CISTPL_DATE tuple is allowed per PC
Card.

STRUCTURE
MEMBERS

The structure members of cistpl_date_t are:

uint32_t time;
uint32_t day

The fields are defined as follows:
time This field indicates the time at which the PC Card was

initialized.

day This field indicates the date the PC Card was initialized.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse
tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS)
on PC Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

Last modified 20 Dec 1996 SunOS 5.8 155

csx_Parse_CISTPL_DATE(9F) Kernel Functions for Drivers

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple (9F), csx_GetTupleData (9F),
csx_RegisterClient (9F), csx_ValidateCIS (9F), tuple (9S)

PC Card 95 Standard, PCMCIA/JEIDA

156 SunOS 5.8 Last modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_DEVICE(9F)

NAME csx_Parse_CISTPL_DEVICE, csx_Parse_CISTPL_DEVICE_A,
csx_Parse_CISTPL_DEVICE_OC, csx_Parse_CISTPL_DEVICE_OA – parse
Device Information tuples

SYNOPSIS #include <sys/pccard.h>
int32_t csx_Parse_CISTPL_DEVICE (client_handle_t ch, tuple_t *tu, cistpl_device_t *cd);

int32_t csx_Parse_CISTPL_DEVICE_A (client_handle_t ch, tuple_t *tu, cistpl_device_t
*cd);

int32_t csx_Parse_CISTPL_DEVICE_OC (client_handle_t ch, tuple_t *tu, cistpl_device_t
*cd);

int32_t csx_Parse_CISTPL_DEVICE_OA (client_handle_t ch, tuple_t *tu, cistpl_device_t
*cd);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F) .

tu Pointer to a tuple_t structure (see tuple (9S)) returned by a call to
csx_GetFirstTuple (9F) or csx_GetNextTuple (9F) .

cd Pointer to a cistpl_device_t structure which contains the parsed
CISTPL_DEVICE, CISTPL_DEVICE_A, CISTPL_DEVICE_OC, or
CISTPL_DEVICE_OA tuple information upon return from these
functions, respectively.

DESCRIPTION csx_Parse_CISTPL_DEVICE() and csx_Parse_CISTPL_DEVICE_A()
parse the 5 volt Device Information tuples, CISTPL_DEVICE and
CISTPL_DEVICE_A, respectively, into a form usable by PC Card drivers.

csx_Parse_CISTPL_DEVICE_OC() and
csx_Parse_CISTPL_DEVICE_OA() parse the Other
Condition Device Information tuples, CISTPL_DEVICE_OCand
CISTPL_DEVICE_OA, respectively, into a form usable by PC Card drivers.

The CISTPL_DEVICE and CISTPL_DEVICE_A tuples are used to describe the
card’s device information, such as device speed, device size, device type, and
address space layout information for Common Memory or Attribute Memory
space, respectively.

The CISTPL_DEVICE_OCand CISTPL_DEVICE_OAtuples are used to describe
the information about the card’s device under a set of operating conditions for
Common Memory or Attribute Memory space, respectively.

Last modified 20 Dec 1996 SunOS 5.8 157

csx_Parse_CISTPL_DEVICE(9F) Kernel Functions for Drivers

STRUCTURE
MEMBERS

The structure members of cistpl_device_t are:

uint32_t num_devices; /* number of devices found */
cistpl_device_node_t devnode[CISTPL_DEVICE_MAX_DEVICES];

The structure members of cistpl_device_node_t are:

uint32_t flags; /* flags specific to this device */
uint32_t speed; /* device speed in device

/* speed code format */
uint32_t nS_speed; /* device speed in nS */
uint32_t type; /* device type */
uint32_t size; /* device size */
uint32_t size_in_bytes; /* device size in bytes */

The fields are defined as follows:
flags This field indicates whether or not the device is writable,

and describes a Vcc voltage at which the PC Card can be
operated.

CISTPL_DEVICE_WPS

Write Protect Switch bit is set

Bits which are applicable only for CISTPL_DEVICE_OCand
CISTPL_DEVICE_OA are:

CISTPL_DEVICE_OC_MWAIT

Use MWAIT

CISTPL_DEVICE_OC_Vcc_MASK

Mask for Vcc value

CISTPL_DEVICE_OC_Vcc5

5.0 volt operation

CISTPL_DEVICE_OC_Vcc33

3.3 volt operation

CISTPL_DEVICE_OC_VccXX

X.X volt operation

CISTPL_DEVICE_OC_VccYY

Y.Y volt operation

speed The device speed value described in the
device speed code unit. If this field is set to

158 SunOS 5.8 Last modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_DEVICE(9F)

CISTPL_DEVICE_SPEED_SIZE_IGNORE, then
the speed information will be ignored.

nS_speed The device speed value described in nanosecond
units.

size The device size value described in the
device size code unit. If this field is set to
CISTPL_DEVICE_SPEED_SIZE_IGNORE, then
the size information will be ignored.

size_in_bytes The device size value described in byte units.

type This is the device type code field which is defined
as follows:

CISTPL_DEVICE_DTYPE_NULL

No device

CISTPL_DEVICE_DTYPE_ROM

Masked ROM

CISTPL_DEVICE_DTYPE_OTPROM

One Time Programmable ROM

CISTPL_DEVICE_DTYPE_EPROM

UV EPROM

CISTPL_DEVICE_DTYPE_EEPROM

EEPROM

CISTPL_DEVICE_DTYPE_FLASH

FLASH

CISTPL_DEVICE_DTYPE_SRAM

Static RAM

CISTPL_DEVICE_DTYPE_DRAM

Dynamic RAM

CISTPL_DEVICE_DTYPE_FUNCSPEC

Function-specific memory address range

CISTPL_DEVICE_DTYPE_EXTEND

Extended type follows

Last modified 20 Dec 1996 SunOS 5.8 159

csx_Parse_CISTPL_DEVICE(9F) Kernel Functions for Drivers

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse
tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS)
on PC Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT These functions may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple (9F) , csx_GetTupleData (9F) ,
csx_Parse_CISTPL_JEDEC_C (9F) , csx_RegisterClient (9F) ,
csx_ValidateCIS (9F) , tuple (9S)

PC Card 95 Standard, PCMCIA/JEIDA

160 SunOS 5.8 Last modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_DEVICEGEO(9F)

NAME csx_Parse_CISTPL_DEVICEGEO – parse the Device Geo tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_DEVICEGEO (client_handle_t ch, tuple_t *tp,
cistpl_devicegeo_t *pt);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

tp Pointer to a tuple_t structure (see tuple (9S)) returned by a call to
csx_GetFirstTuple (9F) or csx_GetNextTuple (9F).

pt Pointer to a cistpl_devicegeo_t structure which contains the
parsed Device Geo tuple information upon return from this function.

DESCRIPTION This function parses the Device Geo tuple, CISTPL_DEVICEGEO, into a form
usable by PC Card drivers.

The CISTPL_DEVICEGEOtuple describes the device geometry of common
memory partitions.

STRUCTURE
MEMBERS

The structure members of cistpl_devicegeo_t are:

uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].bus;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].ebs;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].rbs;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].wbs;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].part;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].hwil;

The fields are defined as follows:
info[CISTPL_DEVICEGEO_MAX_PARTITIONS].bus

This field indicates the card interface width in bytes for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].ebs
This field indicates the minimum erase block size for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].rbs
This field indicates the minimum read block size for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].wbs
This field indicates the minimum write block size for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].part
This field indicates the segment partition subdivisions for the given
partition.

Last modified 16 May 1997 SunOS 5.8 161

csx_Parse_CISTPL_DEVICEGEO(9F) Kernel Functions for Drivers

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].hwil
This field indicates the hardware interleave

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to
parse tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure
(CIS) on PC Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware
installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple (9F), csx_GetNextTuple (9F), csx_GetTupleData (9F),
csx_Parse_CISTPL_DEVICEGEO_A (9F), csx_RegisterClient (9F),
tuple (9S)

PC Card 95 Standard, PCMCIA/JEIDA

162 SunOS 5.8 Last modified 16 May 1997

Kernel Functions for Drivers csx_Parse_CISTPL_DEVICEGEO_A(9F)

NAME csx_Parse_CISTPL_DEVICEGEO_A – parse the Device Geo A tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_DEVICEGEO_A (client_handle_t ch, tuple_t *tp,
cistpl_devicegeo_t *pt);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

tp Pointer to a tuple_t structure (see tuple (9S)) returned by a call to
csx_GetFirstTuple (9F) or csx_GetNextTuple (9F).

pt Pointer to a cistpl_devicegeo_t structure which contains the
parsed Device Geo A tuple information upon return from this function.

DESCRIPTION This function parses the Device Geo A tuple, CISTPL_DEVICEGEO_A, into
a form usable by PC Card drivers.

The CISTPL_DEVICEGEO_Atuple describes the device geometry of attribute
memory partitions.

STRUCTURE
MEMBERS

The structure members of cistpl_devicegeo_t are:

uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].bus;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].ebs;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].rbs;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].wbs;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].part;
uint32_t info[CISTPL_DEVICEGEO_MAX_PARTITIONS].hwil;

The fields are defined as follows:
info[CISTPL_DEVICEGEO_MAX_PARTITIONS].bus

This field indicates the card interface width in bytes for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].ebs
This field indicates the minimum erase block size for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].rbs
This field indicates the minimum read block size for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].wbs
This field indicates the minimum write block size for the given partition.

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].part
This field indicates the segment partition subdivisions for the given
partition.

Last modified 16 May 1997 SunOS 5.8 163

csx_Parse_CISTPL_DEVICEGEO_A(9F) Kernel Functions for Drivers

info[CISTPL_DEVICEGEO_MAX_PARTITIONS].hwil
This field indicates the hardware interleave for the given partition.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to
parse tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure
(CIS) on PC Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware
installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple (9F), csx_GetNextTuple (9F), csx_GetTupleData (9F),
csx_Parse_CISTPL_DEVICEGEO (9F), csx_RegisterClient (9F), tuple (9S)

PC Card 95 Standard, PCMCIA/JEIDA

164 SunOS 5.8 Last modified 16 May 1997

Kernel Functions for Drivers csx_Parse_CISTPL_FORMAT(9F)

NAME csx_Parse_CISTPL_FORMAT – parse the Data Recording Format tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_FORMAT (client_handle_t ch, tuple_t *tu, cistpl_format_t *pt);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

tu Pointer to a tuple_t structure (see tuple (9S)) returned by a call to
csx_GetFirstTuple (9F) or csx_GetNextTuple (9F).

pt Pointer to a cistpl_format_t structure which contains the parsed
CISTPL_FORMATtuple information upon return from this function.

DESCRIPTION This function parses the Data Recording Format tuple, CISTPL_FORMAT, into
a form usable by PC Card drivers.

The CISTPL_FORMATtuple indicates the data recording format for a device
partition.

STRUCTURE
MEMBERS

The structure members of cistpl_format_t are:

uint32_t type;
uint32_t edc_length;
uint32_t edc_type;
uint32_t offset;
uint32_t nbytes;
uint32_t dev.disk.bksize;
uint32_t dev.disk.nblocks;
uint32_t dev.disk.edcloc;
uint32_t dev.mem.flags;
uint32_t dev.mem.reserved;
caddr_t dev.mem.address;
uint32_t dev.mem.edcloc;

The fields are defined as follows:
type This field indicates the type of device:

TPLFMTTYPE_DISK

disk-like device

TPLFMTTYPE_MEM

memory-like device

TPLFMTTYPE_VS

vendor-specific device

Last modified 24 Jan 1997 SunOS 5.8 165

csx_Parse_CISTPL_FORMAT(9F) Kernel Functions for Drivers

edc_length This field indicates the error detection code
length.

edc_type This field indicates the error detection code type.

offset This field indicates the offset of the first byte of
data in this partition.

nbytes This field indicates the number of bytes of data
in this partition

dev.disk.bksize This field indicates the block size, for disk
devices.

dev.disk.nblocks This field indicates the number of blocks, for
disk devices.

dev.disk.edcloc This field indicates the location of the error
detection code, for disk devices.

dev.mem.flags This field provides flags, for memory devices.
Valid flags are:

TPLFMTFLAGS_ADDR

address is valid

TPLFMTFLAGS_AUTO

automatically map memory region

dev.mem.reserved This field is reserved.

dev.mem.address This field indicates the physical address, for
memory devices.

dev.mem.edcloc This field indicates the location of the error
detection code, for memory devices.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse
tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS)
on PC Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

166 SunOS 5.8 Last modified 24 Jan 1997

Kernel Functions for Drivers csx_Parse_CISTPL_FORMAT(9F)

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple (9F), csx_GetTupleData (9F),
csx_RegisterClient (9F), csx_ValidateCIS (9F), tuple (9S)

PC Card 95 Standard, PCMCIA/JEIDA

Last modified 24 Jan 1997 SunOS 5.8 167

csx_Parse_CISTPL_FUNCE(9F) Kernel Functions for Drivers

NAME csx_Parse_CISTPL_FUNCE – parse Function Extension tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_FUNCE (client_handle_t ch, tuple_t *tu, cistpl_funce_t
*cf, uint32_t fid);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

tu Pointer to a tuple_t structure (see tuple (9S)) returned by a call to
csx_GetFirstTuple (9F) or csx_GetNextTuple (9F).

cf Pointer to a cistpl_funce_t structure which contains the parsed
CISTPL_FUNCEtuple information upon return from this function.

fid The function ID code to which this CISTPL_FUNCEtuple refers. See
csx_Parse_CISTPL_FUNCID (9F).

DESCRIPTION This function parses the Function Extension tuple, CISTPL_FUNCE, into a form
usable by PC Card drivers.

The CISTPL_FUNCEtuple is used to describe information about a specific
PC Card function. The information provided is determined by the Function
Identification tuple, CISTPL_FUNCID, that is being extended. Each
function has a defined set of extension tuples.

STRUCTURE
MEMBERS

The structure members of cistpl_funce_t are:

uint32_t function; /* type of extended data */
uint32_t subfunction;
union {

struct serial {
uint32_t ua; /* UART in use */
uint32_t uc; /* UART capabilities */

} serial;
struct modem {

uint32_t fc; /* supported flow control methods */
uint32_t cb; /* size of DCE command buffer */
uint32_t eb; /* size of DCE to DCE buffer */
uint32_t tb; /* size of DTE to DCE buffer */

} modem;
struct data_modem {

uint32_t ud; /* highest data rate */
uint32_t ms; /* modulation standards */
uint32_t em; /* err correct proto and

/* non-CCITT modulation */
uint32_t dc; /* data compression protocols */
uint32_t cm; /* command protocols */
uint32_t ex; /* escape mechanisms */
uint32_t dy; /* standardized data encryption */

168 SunOS 5.8 Last modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_FUNCE(9F)

uint32_t ef; /* miscellaneous end user features */
uint32_t ncd; /* number of country codes */
uchar_t cd[16]; /* CCITT country code */

} data_modem;
struct fax {

uint32_t uf; /* highest data rate in DTE/UART */
uint32_t fm; /* CCITT modulation standards */
uint32_t fy; /* standardized data encryption */
uint32_t fs; /* feature selection */
uint32_t ncf; /* number of country codes */
uchar_t cf[16]; /* CCITT country codes */

} fax;
struct voice {

uint32_t uv; /* highest data rate */
uint32_t nsr;
uint32_t sr[16]; /* voice sampling rates (*100) */
uint32_t nss;
uint32_t ss[16]; /* voice sample sizes (*10) */
uint32_t nsc;
uint32_t sc[16]; /* voice compression methods */

} voice;
struct lan {

uint32_t tech; /* network technology */
uint32_t speed; /* media bit or baud rate */
uint32_t media; /* network media supported */
uint32_t con; /* open/closed connector standard */
uint32_t id_sz; /* length of lan station id */uchar_t id[16];/* station ID */

} lan;
} data;

The fields are defined as follows:
function This field identifies the type of extended

information provided about a function by the
CISTPL_FUNCEtuple. This field is defined as
follows:

TPLFE_SUB_SERIAL

Serial port interface

TPLFE_SUB_MODEM_COMMON

Common modem interface

TPLFE_SUB_MODEM_DATA

Data modem services

TPLFE_SUB_MODEM_FAX

Fax modem services

TPLFE_SUB_VOICE

Last modified 20 Dec 1996 SunOS 5.8 169

csx_Parse_CISTPL_FUNCE(9F) Kernel Functions for Drivers

Voice services

TPLFE_CAP_MODEM_DATA

Capabilities of the data modem interface

TPLFE_CAP_MODEM_FAX

Capabilities of the fax modem interface

TPLFE_CAP_MODEM_VOICE

Capabilities of the voice modem interface

TPLFE_CAP_SERIAL_DATA

Serial port interface for data modem services

TPLFE_CAP_SERIAL_FAX

Serial port interface for fax modem services

TPLFE_CAP_SERIAL_VOICE

Serial port interface for voice modem services

subfunction This is for identifying a sub-category of services
provided by a function in the CISTPL_FUNCE
tuple. The numeric value of the code is in the
range of 1 to 15 .

ua This is the serial port UART identification and is
defined as follows:

TPLFE_UA_8250

Intel 8250

TPLFE_UA_16450

NS 16450

TPLFE_UA_16550

NS 16550

uc This identifies the serial port UART capabilities
and is defined as follows:

TPLFE_UC_PARITY_SPACE

Space parity supported

TPLFE_UC_PARITY_MARK

Mark parity supported

170 SunOS 5.8 Last modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_FUNCE(9F)

TPLFE_UC_PARITY_ODD

Odd parity supported

TPLFE_UC_PARITY_EVEN

Even parity supported

TPLFE_UC_CS5

5 bit characters supported

TPLFE_UC_CS6

6 bit characters supported

TPLFE_UC_CS7

7 bit characters supported

TPLFE_UC_CS8

8 bit characters supported

TPLFE_UC_STOP_1

1 stop bit supported

TPLFE_UC_STOP_15

1.5 stop bits supported

TPLFE_UC_STOP_2

2 stop bits supported

fc This identifies the modem flow control methods
and is defined as follows:

TPLFE_FC_TX_XONOFF

Transmit XON/XOFF

TPLFE_FC_RX_XONOFF

Receiver XON/XOFF

TPLFE_FC_TX_HW

Transmit hardware flow control (CTS)

TPLFE_FC_RX_HW

Receiver hardware flow control (RTS)

TPLFE_FC_TRANS

Tranparent flow control

Last modified 20 Dec 1996 SunOS 5.8 171

csx_Parse_CISTPL_FUNCE(9F) Kernel Functions for Drivers

ms This identifies the
modem modulation
standards and is
defined as follows:

TPLFE_MS_BELL103

300bps

TPLFE_MS_V21

300bps (V.21)

TPLFE_MS_V23

600/1200bps (V.23)

TPLFE_MS_V22AB

1200bps (V.22A V.22B)

TPLFE_MS_BELL212

2400bsp (US Bell 212

TPLFE_MS_V22BIS

2400bps (V.22bis)

TPLFE_MS_V26

2400bps leased line (V.26)

TPLFE_MS_V26BIS

2400bps (V.26bis)

TPLFE_MS_V27BIS

4800/2400bps leased line (V.27bis)

TPLFE_MS_V29

9600/7200/4800 leased line (V.29)

TPLFE_MS_V32

Up to 9600bps (V.32)

TPLFE_MS_V32BIS

Up to 14400bps (V.32bis)

TPLFE_MS_VFAST

Up to 28800 V.FAST

em This identifies modem error correction/detection
protocols and is defined as follows:

172 SunOS 5.8 Last modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_FUNCE(9F)

TPLFE_EM_MNP

MNP levels 2-4

TPLFE_EM_V42

CCITT LAPM (V.42)

dc This identifies modem data compression
protocols and is defined as follows:

TPLFE_DC_V42BI

CCITT compression V.42

TPLFE_DC_MNP5

MNP compression (uses MNP 2, 3 or 4)

cm This identifies modem command protocols and is
defined as follows:

TPLFE_CM_AT1

ANSI/EIA/TIA 602 "Action" commands

TPLFE_CM_AT2

ANSI/EIA/TIA 602 "ACE/DCE IF Params"

TPLFE_CM_AT3

ANSI/EIA/TIA 602 "Ace Parameters"

TPLFE_CM_MNP_AT

MNP specification AT commands

TPLFE_CM_V25BIS

V.25bis calling commands

TPLFE_CM_V25A

V.25bis test procedures

TPLFE_CM_DMCL

DMCL command mode

ex This identifies the modem escape mechanism and
is defined as follows:

TPLFE_EX_BREAK

BREAK support standardized

Last modified 20 Dec 1996 SunOS 5.8 173

csx_Parse_CISTPL_FUNCE(9F) Kernel Functions for Drivers

TPLFE_EX_PLUS

+++ returns to command mode

TPLFE_EX_UD

User defined escape character

dy This identifies modem standardized data
encryption and is a reserved field for future use
and must be set to 0.

ef This identifies modem miscellaneous features and
is defined as follows:

TPLFE_EF_CALLERID

Caller ID is supported

fm This identifies fax modulation standards and is
defined as follows:

TPLFE_FM_V21C2

300bps (V.21-C2)

TPLFE_FM_V27TER

4800/2400bps (V.27ter)

TPLFE_FM_V29

9600/7200/4800 leased line (V.29)

TPLFE_FM_V17

14.4K/12K/9600/7200bps (V.17)

TPLFE_FM_V33

4.4K/12K/9600/7200 leased line (V.33)

fs This identifies the fax feature selection and is
defined as follows:

TPLFE_FS_T3

Group 2 (T.3) service class

TPLFE_FS_T4

Group 3 (T.4) service class

TPLFE_FS_T6

Group 4 (T.6) service class

174 SunOS 5.8 Last modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_FUNCE(9F)

TPLFE_FS_ECM

Error Correction Mode

TPLFE_FS_VOICEREQ

Voice requests allowed

TPLFE_FS_POLLING

Polling support

TPLFE_FS_FTP

File transfer support

TPLFE_FS_PASSWORD

Password support

tech This identifies the LAN technology type and is
defined as follows:

TPLFE_LAN_TECH_ARCNET

Arcnet

TPLFE_LAN_TECH_ETHERNET

Ethernet

TPLFE_LAN_TECH_TOKENRING

Token Ring

TPLFE_LAN_TECH_LOCALTALK

Local Talk

TPLFE_LAN_TECH_FDDI

FDDI/CDDI

TPLFE_LAN_TECH_ATM

ATM

TPLFE_LAN_TECH_WIRELESS

Wireless

media This identifies the LAN media type and is
defined as follows:

TPLFE_LAN_MEDIA_INHERENT

Generic interface

Last modified 20 Dec 1996 SunOS 5.8 175

csx_Parse_CISTPL_FUNCE(9F) Kernel Functions for Drivers

TPLFE_LAN_MEDIA_UTP

Unshielded twisted pair

TPLFE_LAN_MEDIA_STP

Shielded twisted pair

TPLFE_LAN_MEDIA_THIN_COAX

Thin coax

TPLFE_LAN_MEDIA_THICK_COAX

Thick coax

TPLFE_LAN_MEDIA_FIBER

Fiber

TPLFE_LAN_MEDIA_SSR_902

Spread spectrum radio 902-928 MHz

TPLFE_LAN_MEDIA_SSR_2_4

Spread spectrum radio 2.4 GHz

TPLFE_LAN_MEDIA_SSR_5_4

Spread spectrum radio 5.4 GHz

TPLFE_LAN_MEDIA_DIFFUSE_IR

Diffuse infra red

TPLFE_LAN_MEDIA_PTP_IR

Point to point infra red

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to
parse tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure
(CIS) on PC Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware
installed.

CONTEXT This function may be called from user or kernel context.

176 SunOS 5.8 Last modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_FUNCE(9F)

SEE ALSO csx_GetFirstTuple (9F), csx_GetTupleData (9F),
csx_Parse_CISTPL_FUNCID (9F), csx_RegisterClient (9F),
csx_ValidateCIS (9F), tuple (9S)

PC Card 95 Standard, PCMCIA/JEIDA

Last modified 20 Dec 1996 SunOS 5.8 177

csx_Parse_CISTPL_FUNCID(9F) Kernel Functions for Drivers

NAME csx_Parse_CISTPL_FUNCID – parse Function Identification tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_FUNCID (client_handle_t ch, tuple_t *tu, cistpl_funcid_t *cf);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

tu Pointer to a tuple_t structure (see tuple (9S)) returned by a call to
csx_GetFirstTuple (9F) or csx_GetNextTuple (9F).

cf Pointer to a cistpl_funcid_t structure which contains the parsed
CISTPL_FUNCID tuple information upon return from this function.

DESCRIPTION This function parses the Function Identification tuple, CISTPL_FUNCID, into
a form usable by PC Card drivers.

The CISTPL_FUNCID tuple is used to describe information about the
functionality provided by a PC Card. Information is also provided to enable
system utilities to decide if the PC Card should be configured during system
initialization. If additional function specific information is available, one or
more function extension tuples of type CISTPL_FUNCEfollow this tuple (see
csx_Parse_CISTPL_FUNCE (9F)).

STRUCTURE
MEMBERS

The structure members of cistpl_funcid_t are:

uint32_t function; /* PC Card function code */
uint32_t sysinit; /* system initialization mask */

The fields are defined as follows:
function This is the function type for CISTPL_FUNCID:

TPLFUNC_MULTI

Vendor-specific multifunction card

TPLFUNC_MEMORY

Memory card

TPLFUNC_SERIAL

Serial I/O port

TPLFUNC_PARALLEL

Parallel printer port

178 SunOS 5.8 Last modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_FUNCID(9F)

TPLFUNC_FIXED

Fixed disk, silicon or removable

TPLFUNC_VIDEO

Video interface

TPLFUNC_LAN

Local Area Network adapter

TPLFUNC_AIMS

Auto Incrementing Mass Storage

TPLFUNC_SCSI

SCSI bridge

TPLFUNC_SECURITY

Security cards

TPLFUNC_VENDOR_SPECIFIC

Vendor specific

TPLFUNC_UNKNOWN

Unknown function(s)

sysinit This field is bit-mapped and defined as follows:

TPLINIT_POST

POST should attempt configure

TPLINIT_ROM

Map ROM during sys init

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to
parse tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure
(CIS) on PC Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware
installed.

Last modified 20 Dec 1996 SunOS 5.8 179

csx_Parse_CISTPL_FUNCID(9F) Kernel Functions for Drivers

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple (9F), csx_GetTupleData (9F),
csx_Parse_CISTPL_FUNCE (9F), csx_RegisterClient (9F),
csx_ValidateCIS (9F), tuple (9S)

PC Card 95 Standard, PCMCIA/JEIDA

180 SunOS 5.8 Last modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_GEOMETRY(9F)

NAME csx_Parse_CISTPL_GEOMETRY – parse the Geometry tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_GEOMETRY(client_handle_t ch, tuple_t *tu,
cistpl_geometry_t *pt);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

tu Pointer to a tuple_t structure (see tuple (9S)) returned by a call to
csx_GetFirstTuple (9F) or csx_GetNextTuple (9F).

pt Pointer to a cistpl_geometry_t structure which contains the parsed
CISTPL_GEOMETRYtuple information upon return from this function.

DESCRIPTION This function parses the Geometry tuple, CISTPL_GEOMETRY, into a form
usable by PC Card drivers.

The CISTPL_GEOMETRYtuple indicates the geometry of a disk-like device.

STRUCTURE
MEMBERS

The structure members of cistpl_geometry_t are:

uint32_t spt;
uint32_t tpc;
uint32_t ncyl;

The fields are defined as follows:
spt This field indicates the number of sectors per track.

tpc This field indicates the number of tracks per cylinder.

ncyl This field indicates the number of cylinders.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse
tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS)
on PC Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

Last modified 24 Jan 1997 SunOS 5.8 181

csx_Parse_CISTPL_GEOMETRY(9F) Kernel Functions for Drivers

SEE ALSO csx_GetFirstTuple (9F), csx_GetTupleData (9F),
csx_RegisterClient (9F), csx_ValidateCIS (9F), tuple (9S)

PC Card 95 Standard, PCMCIA/JEIDA

182 SunOS 5.8 Last modified 24 Jan 1997

Kernel Functions for Drivers csx_Parse_CISTPL_JEDEC_C(9F)

NAME csx_Parse_CISTPL_JEDEC_C, csx_Parse_CISTPL_JEDEC_A – parse JEDEC
Identifier tuples

SYNOPSIS #include <sys/pccard.h>
int32_t csx_Parse_CISTPL_JEDEC_C (client_handle_t ch, tuple_t *tu, cistpl_jedec_t *cj);

int32_t csx_Parse_CISTPL_JEDEC_A (client_handle_t ch, tuple_t *tu, cistpl_jedec_t *cj);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F) .

tu Pointer to a tuple_t structure (see tuple (9S)) returned by a call to
csx_GetFirstTuple (9F) or csx_GetNextTuple (9F) .

cj Pointer to a cistpl_jedec_t structure which contains the parsed
CISTPL_JEDEC_Cor CISTPL_JEDEC_A tuple information upon
return from these functions, respectively.

DESCRIPTION csx_Parse_CISTPL_JEDEC_C() and csx_Parse_CISTPL_JEDEC_A()
parse the JEDEC Identifier tuples, CISTPL_JEDEC_Cand CISTPL_JEDEC_A,
respectively, into a form usable by PC Card drivers.

The CISTPL_JEDEC_Cand CISTPL_JEDEC_A tuples are optional tuples
provided for cards containing programmable devices. They describe information
for Common Memory or Attribute Memory space, respectively.

STRUCTURE
MEMBERS

The structure members of cistpl_jedec_t are:

uint32_t nid; /* # of JEDEC identifiers present */
jedec_ident_t jid[CISTPL_JEDEC_MAX_IDENTIFIERS];

The structure members of jedec_ident_t are:

uint32_t id; /* manufacturer id */
uint32_t info; /* manufacturer specific info */

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse
tuple.

CS_NO_CARD No PC Card in socket.

Last modified 20 Dec 1996 SunOS 5.8 183

csx_Parse_CISTPL_JEDEC_C(9F) Kernel Functions for Drivers

CS_NO_CIS No Card Information Structure (CIS
) on PC Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT These functions may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple (9F) , csx_GetTupleData (9F) ,
csx_Parse_CISTPL_DEVICE (9F) , csx_RegisterClient (9F) ,
csx_ValidateCIS (9F) , tuple (9S)

PC Card 95 Standard , PCMCIA/JEIDA

184 SunOS 5.8 Last modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_LINKTARGET(9F)

NAME csx_Parse_CISTPL_LINKTARGET – parse the Link Target tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_LINKTARGET (client_handle_t ch, tuple_t *tu,
cistpl_linktarget_t *pt);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

tu Pointer to a tuple_t structure (see tuple (9S)) returned by a call to
csx_GetFirstTuple (9F) or csx_GetNextTuple (9F).

pt Pointer to a cistpl_linktarget_t structure which contains the
parsed CISTPL_LINKTARGET tuple information upon return from
this function.

DESCRIPTION This function parses the Link Target tuple, CISTPL_LINKTARGET, into a form
usable by PCCard drivers.

The CISTPL_LINKTARGET tuple is used to verify that tuple chains other than
the primary chain are valid. All secondary tuple chains are required to contain
this tuple as the first tuple of the chain.

STRUCTURE
MEMBERS

The structure members of cistpl_linktarget_t are:

uint32_t length;
char tpltg_tag[CIS_MAX_TUPLE_DATA_LEN];

The fields are defined as follows:
length This field indicates the number of bytes in tpltg_tag .

tpltg_tag This field provides the Link Target tuple information.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse
tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS)
on PC Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

Last modified 24 Jan 1997 SunOS 5.8 185

csx_Parse_CISTPL_LINKTARGET(9F) Kernel Functions for Drivers

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple (9F), csx_GetTupleData (9F),
csx_RegisterClient (9F), csx_ValidateCIS (9F), tuple (9S)

PC Card 95 Standard, PCMCIA/JEIDA

186 SunOS 5.8 Last modified 24 Jan 1997

Kernel Functions for Drivers csx_Parse_CISTPL_LONGLINK_A(9F)

NAME csx_Parse_CISTPL_LONGLINK_A, csx_Parse_CISTPL_LONGLINK_C – parse
the Long Link A and C tuples

SYNOPSIS #include <sys/pccard.h>
int32_t csx_Parse_CISTPL_LONGLINK_A (client_handle_t ch, tuple_t *tu,
cistpl_longlink_ac_t *pt);

int32_t csx_Parse_CISTPL_LONGLINK_C (client_handle_t ch, tuple_t *tu,
cistpl_longlink_ac_t *pt);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F) .

tu Pointer to a tuple_t structure (see tuple (9S)) returned by a call to
csx_GetFirstTuple (9F) or csx_GetNextTuple (9F) .

pt Pointer to a cistpl_longlink_ac_t structure which contains
the parsed CISTPL_LONGLINK_A or CISTPL_LONGLINK_C tuple
information upon return from this function.

DESCRIPTION This function parses the Long Link A and C tuples, CISTPL_LONGLINK_Aand
CISTPL_LONGLINK_A, into a form usable by PC Card drivers.

The CISTPL_LONGLINK_A and CISTPL_LONGLINK_Ctuples provide links
to Attribute and Common Memory.

STRUCTURE
MEMBERS

The structure members of cistpl_longlink_ac_t are:

uint32_t flags;
uint32_t tpll_addr;

The fields are defined as follows:
flags This field indicates the type of memory:

CISTPL_LONGLINK_AC_AM

long link to Attribute Memory

CISTPL_LONGLINK_AC_CM

long link to Common Memory

tpll_addr This field provides the offset from the beginning of the
specified address space.

RETURN VALUES CS_SUCCESS Successful operation.

Last modified 24 Jan 1997 SunOS 5.8 187

csx_Parse_CISTPL_LONGLINK_A(9F) Kernel Functions for Drivers

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse
tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS)
on PC Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple (9F) , csx_GetTupleData (9F) ,
csx_RegisterClient (9F) , csx_ValidateCIS (9F) , tuple (9S)

PC Card 95 Standard, PCMCIA/JEIDA

188 SunOS 5.8 Last modified 24 Jan 1997

Kernel Functions for Drivers csx_Parse_CISTPL_LONGLINK_MFC(9F)

NAME csx_Parse_CISTPL_LONGLINK_MFC – parse the Multi-Function tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_LONGLINK_MFC (client_handle_t ch, tuple_t *tu,
cistpl_longlink_mfc_t *pt);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

tu Pointer to a tuple_t structure (see tuple (9S)) returned by a call to
csx_GetFirstTuple (9F) or csx_GetNextTuple (9F).

pt Pointer to a cistpl_longlink_mfc_t structure which contains
the parsed CISTPL_LONGLINK_MFCtuple information upon return
from this function.

DESCRIPTION This function parses the Multi-Function tuple, CISTPL_LONGLINK_MFC, into
a form usable by PC Card drivers.

The CISTPL_LONGLINK_MFCtuple describes the start of the function-specific
CIS for each function on a multi-function card.

STRUCTURE
MEMBERS

The structure members of cistpl_longlink_mfc_t are:

uint32_t nfuncs;
uint32_t nregs;
uint32_t function[CIS_MAX_FUNCTIONS].tas
uint32_t function[CIS_MAX_FUNCTIONS].addr

The fields are defined as follows:
nfuncs

This field indicates the number of functions on the PC card.

nregs
This field indicates the number of configuration register sets.

function[CIS_MAX_FUNCTIONS].tas
This field provides the target address space for each function on the PC
card. This field can be one of:

CISTPL_LONGLINK_MFC_TAS_AM

CIS in attribute memory

CISTPL_LONGLINK_MFC_TAS_CM

CIS in common memory

function[CIS_MAX_FUNCTIONS].addr

Last modified 24 Jan 1997 SunOS 5.8 189

csx_Parse_CISTPL_LONGLINK_MFC(9F) Kernel Functions for Drivers

This field provides the target address offset for each function on the PC
card.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse
tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS)
on PC Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple (9F), csx_GetTupleData (9F),
csx_RegisterClient (9F), csx_ValidateCIS (9F), tuple (9S)

PC Card 95 Standard, PCMCIA/JEIDA

190 SunOS 5.8 Last modified 24 Jan 1997

Kernel Functions for Drivers csx_Parse_CISTPL_MANFID(9F)

NAME csx_Parse_CISTPL_MANFID – parse Manufacturer Identification tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_MANFID (client_handle_t ch, tuple_t *tu, cistpl_manfid_t
*cm);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

tu Pointer to a tuple_t structure (see tuple (9S)) returned by a call to
csx_GetFirstTuple (9F) or csx_GetNextTuple (9F).

cm Pointer to a cistpl_manfid_t structure which contains the parsed
CISTPL_MANFID tuple information upon return from this function.

DESCRIPTION This function parses the Manufacturer Identification tuple, CISTPL_MANFID,
into a form usable by PC Card drivers.

The CISTPL_MANFID tuple is used to describe the information about the
manufacturer of a PC Card. There are two types of information, the PC Card’s
manufacturer and a manufacturer card number.

STRUCTURE
MEMBERS

The structure members of cistpl_manfid_t are:

uint32_t manf; /* PCMCIA assigned manufacturer code */
uint32_t card; /* manufacturer information

(part number and/or revision) */

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse
tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS)
on PC card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple (9F), csx_GetTupleData (9F),
csx_RegisterClient (9F), csx_ValidateCIS (9F), tuple (9S)

Last modified 20 Dec 1996 SunOS 5.8 191

csx_Parse_CISTPL_MANFID(9F) Kernel Functions for Drivers

PC Card 95 Standard, PCMCIA/JEIDA

192 SunOS 5.8 Last modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_ORG(9F)

NAME csx_Parse_CISTPL_ORG – parse the Data Organization tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_ORG (client_handle_t ch, tuple_t *tu, cistpl_org_t *pt);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

tu Pointer to a tuple_t structure (see tuple (9S)) returned by a call to
csx_GetFirstTuple (9F) or csx_GetNextTuple (9F).

pt Pointer to a cistpl_org_t structure which contains the parsed
CISTPL_ORGtuple information upon return from this function.

DESCRIPTION This function parses the Data Organization tuple, CISTPL_ORG, into a form
usable by PC Card drivers.

The CISTPL_ORGtuple provides a text description of the organization.

STRUCTURE
MEMBERS

The structure members of cistpl_org_t are:

uint32_t type;
char desc[CIS_MAX_TUPLE_DATA_LEN];

The fields are defined as follows:
type

This field indicates type of data organization.

desc[CIS_MAX_TUPLE_DATA_LEN]
This field provides the text description of this organization.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse
tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS)
on PC Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

Last modified 24 Jan 1997 SunOS 5.8 193

csx_Parse_CISTPL_ORG(9F) Kernel Functions for Drivers

SEE ALSO csx_GetFirstTuple (9F), csx_GetTupleData (9F),
csx_RegisterClient (9F), csx_ValidateCIS (9F), tuple (9S)

PC Card 95 Standard, PCMCIA/JEIDA

194 SunOS 5.8 Last modified 24 Jan 1997

Kernel Functions for Drivers csx_Parse_CISTPL_SPCL(9F)

NAME csx_Parse_CISTPL_SPCL – parse the Special Purpose tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_SPCL (client_handle_t ch, tuple_t *tu, cistpl_spcl_t *csp);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

tu Pointer to a tuple_t structure (see tuple (9S)) returned by a call to
csx_GetFirstTuple (9F) or csx_GetNextTuple (9F).

csp Pointer to a cistpl_spcl_t structure which contains the parsed
CISTPL_SPCL tuple information upon return from this function.

DESCRIPTION This function parses the Special Purpose tuple, CISTPL_SPCL, into a form
usable by PC Card drivers.

The CISTPL_SPCL tuple is identified by an identification field that is assigned
by PCMCIA or JEIDA. A sequence field allows a series of CISTPL_SPCL tuples
to be used when the data exceeds the size that can be stored in a single tuple; the
maximum data area of a series of CISTPL_SPCL tuples is unlimited. Another
field gives the number of bytes in the data field in this tuple.

STRUCTURE
MEMBERS

The structure members of cistpl_date_t are:

uint32_t id; /* tuple contents identification */
uint32_t seq; /* data sequence number */
uint32_t bytes; /* number of bytes following */
uchar_t data[CIS_MAX_TUPLE_DATA_LEN];

The fields are defined as follows:
id This field contains a PCMCIA or JEIDA assigned value that identifies

this series of one or more CISTPL_SPCL tuples. These field values are
assigned by contacting either PCMCIA or JEIDA.

seq This field contains a data sequence number. CISTPL_SPCL_SEQ_END
is the last tuple in sequence.

bytes This field contains the number of data bytes in the
data[CIS_MAX_TUPLE_DATA_LEN] .

data The data component of this tuple.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

Last modified 20 Dec 1996 SunOS 5.8 195

csx_Parse_CISTPL_SPCL(9F) Kernel Functions for Drivers

CS_UNKNOWN_TUPLE Parser does not know how to parse
tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS)
on PC Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple (9F), csx_GetTupleData (9F),
csx_RegisterClient (9F), csx_ValidateCIS (9F), tuple (9S)

PC Card 95 Standard, PCMCIA/JEIDA

196 SunOS 5.8 Last modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_SWIL(9F)

NAME csx_Parse_CISTPL_SWIL – parse the Software Interleaving tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_SWIL (client_handle_t ch, tuple_t *tu, cistpl_swil_t *pt);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

tu Pointer to a tuple_t structure (see tuple (9S)) returned by a call to
csx_GetFirstTuple (9F) or csx_GetNextTuple (9F).

pt Pointer to a cistpl_swil_t structure which contains the parsed
CISTPL_SWIL tuple information upon return from this function.

DESCRIPTION This function parses the Software Interleaving tuple, CISTPL_SWIL, into
a form usable by PC Card drivers.

The CISTPL_SWIL tuple provides the software interleaving of data within a
partition on the card.

STRUCTURE
MEMBERS

The structure members of cistpl_swil_t are:

uint32_t intrlv;

The fields are defined as follows:
intrlv This field provides the software interleaving for a partition.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse
tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS)
on PC Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple (9F), csx_GetTupleData (9F),
csx_RegisterClient (9F), csx_ValidateCIS (9F), tuple (9S)

Last modified 24 Jan 1997 SunOS 5.8 197

csx_Parse_CISTPL_SWIL(9F) Kernel Functions for Drivers

PC Card 95 Standard, PCMCIA/JEIDA

198 SunOS 5.8 Last modified 24 Jan 1997

Kernel Functions for Drivers csx_Parse_CISTPL_VERS_1(9F)

NAME csx_Parse_CISTPL_VERS_1 – parse Level-1 Version/Product Information tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_VERS_1 (client_handle_t ch, tuple_t *tu, cistpl_vers_1_t
*cv1);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

tu Pointer to a tuple_t structure (see tuple (9S)) returned by a call to
csx_GetFirstTuple (9F) or csx_GetNextTuple (9F).

cv1 Pointer to a cistpl_vers_1_t structure which contains the parsed
CISTPL_VERS_1 tuple information upon return from this function.

DESCRIPTION This function parses the Level-1 Version/Product Information tuple,
CISTPL_VERS_1, into a form usable by PC Card drivers.

The CISTPL_VERS_1 tuple is used to describe the card Level-1 version
compliance and card manufacturer information.

STRUCTURE
MEMBERS

The structure members of cistpl_vers_1_t are:

uint32_t major; /* major version number */
uint32_t minor; /* minor version number */
uint32_t ns; /* number of information strings */
char pi[CISTPL_VERS_1_MAX_PROD_STRINGS]

[CIS_MAX_TUPLE_DATA_LEN];
/* pointers to product information strings */

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse
tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS)
on PC Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

Last modified 20 Dec 1996 SunOS 5.8 199

csx_Parse_CISTPL_VERS_1(9F) Kernel Functions for Drivers

SEE ALSO csx_GetFirstTuple (9F), csx_GetTupleData (9F),
csx_RegisterClient (9F), csx_ValidateCIS (9F), tuple (9S)

PC Card 95 Standard, PCMCIA/JEIDA

200 SunOS 5.8 Last modified 20 Dec 1996

Kernel Functions for Drivers csx_Parse_CISTPL_VERS_2(9F)

NAME csx_Parse_CISTPL_VERS_2 – parse Level-2 Version and Information tuple

SYNOPSIS #include <sys/pccard.h>

int32_t csx_Parse_CISTPL_VERS_2 (client_handle_t ch, tuple_t *tu, cistpl_vers_2_t
*cv2);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

tu Pointer to a tuple_t structure (see tuple (9S)) returned by a call to
csx_GetFirstTuple (9F) or csx_GetNextTuple (9F).

cv2 Pointer to a cistpl_vers_2_t structure which contains the parsed
CISTPL_VERS_2 tuple information upon return from this function.

DESCRIPTION This function parses the Level-2 Version and Information tuple,
CISTPL_VERS_2, into a form usable by PC Card drivers.

The CISTPL_VERS_2 tuple is used to describe the card Level-2 information
which has the logical organization of the card’s data.

STRUCTURE
MEMBERS

The structure members of cistpl_vers_2_t are:

uint32_t vers; /* version number */
uint32_t comply; /* level of compliance */
uint32_t dindex; /* byte address of first data byte in card */
uint32_t vspec8; /* vendor specific (byte 8) */
uint32_t vspec9; /* vendor specific (byte 9) */
uint32_t nhdr; /* number of copies of CIS present on device */
char oem[CIS_MAX_TUPLE_DATA_LEN];

/* Vendor of software that formatted card */
char info[CIS_MAX_TUPLE_DATA_LEN];

/* Informational message about card */

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_UNKNOWN_TUPLE Parser does not know how to parse
tuple.

CS_NO_CARD No PC Card in socket.

CS_NO_CIS No Card Information Structure (CIS)
on PC Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

Last modified 20 Dec 1996 SunOS 5.8 201

csx_Parse_CISTPL_VERS_2(9F) Kernel Functions for Drivers

SEE ALSO csx_GetFirstTuple (9F), csx_GetTupleData (9F),
csx_RegisterClient (9F), csx_ValidateCIS (9F), tuple (9S)

PC Card 95 Standard, PCMCIA/JEIDA

202 SunOS 5.8 Last modified 20 Dec 1996

Kernel Functions for Drivers csx_ParseTuple(9F)

NAME csx_ParseTuple – generic tuple parser

SYNOPSIS #include <sys/pccard.h>

int32_t csx_ParseTuple (client_handle_t ch, tuple_t *tu, cisparse_t *cp, cisdata_t cd);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

tu Pointer to a tuple_t structure (see tuple (9S)) returned by a call to
csx_GetFirstTuple (9F) or csx_GetNextTuple (9F).

cp Pointer to a cisparse_t structure that unifies all tuple parsing
structures.

cd Extended tuple data for some tuples.

DESCRIPTION This function is the generic tuple parser entry point.

STRUCTURE
MEMBERS

The structure members of cisparse_t are:

typedef union cisparse_t {
cistpl_config_t cistpl_config;
cistpl_device_t cistpl_device;
cistpl_vers_1_t cistpl_vers_1;
cistpl_vers_2_t cistpl_vers_2;
cistpl_jedec_t cistpl_jedec;
cistpl_format_t cistpl_format;
cistpl_geometry_t cistpl_geometry;
cistpl_byteorder_t cistpl_byteorder;
cistpl_date_t cistpl_date;
cistpl_battery_t cistpl_battery;
cistpl_org_t cistpl_org;
cistpl_manfid_t cistpl_manfid;
cistpl_funcid_t cistpl_funcid;
cistpl_funce_t cistpl_funce;
cistpl_cftable_entry_t cistpl_cftable_entry;
cistpl_linktarget_t cistpl_linktarget;
cistpl_longlink_ac_t cistpl_longlink_ac;
cistpl_longlink_mfc_t cistpl_longlink_mfc;
cistpl_spcl_t cistpl_spcl;
cistpl_swil_t cistpl_swil;
cistpl_bar_t cistpl_bar;
cistpl_devicegeo_t cistpl_devicegeo;
cistpl_longlink_cb_t cistpl_longlink_cb;
cistpl_get_tuple_name_t cistpl_get_tuple_name;

} cisparse_t;

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

Last modified 20 Dec 1996 SunOS 5.8 203

csx_ParseTuple(9F) Kernel Functions for Drivers

CS_UNKNOWN_TUPLE Parser does not know how to parse
tuple.

CS_NO_CARD No PC Card in socket.

CS_BAD_CIS Generic parser error.

CS_NO_CIS No Card Information Structure (CIS)
on PC Card.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple (9F), csx_GetTupleData (9F),
csx_Parse_CISTPL_BATTERY (9F), csx_Parse_CISTPL_BYTEORDER(9F),
csx_Parse_CISTPL_CFTABLE_ENTRY (9F),
csx_Parse_CISTPL_CONFIG (9F), csx_Parse_CISTPL_DATE (9F),
csx_Parse_CISTPL_DEVICE (9F), csx_Parse_CISTPL_FUNCE (9F),
csx_Parse_CISTPL_FUNCID (9F), csx_Parse_CISTPL_JEDEC_C (9F),
csx_Parse_CISTPL_MANFID (9F), csx_Parse_CISTPL_SPCL (9F),
csx_Parse_CISTPL_VERS_1 (9F), csx_Parse_CISTPL_VERS_2 (9F),
csx_RegisterClient (9F), csx_ValidateCIS (9F), tuple (9S)

PC Card 95 Standard, PCMCIA/JEIDA

204 SunOS 5.8 Last modified 20 Dec 1996

Kernel Functions for Drivers csx_Put8(9F)

NAME csx_Put8, csx_Put16, csx_Put32, csx_Put64 – write to device register

SYNOPSIS #include <sys/pccard.h>
void csx_Put8 (acc_handle_t handle, uint32_t offset, uint8_t value);

void csx_Put16 (acc_handle_t handle, uint32_t offset, uint16_t value);

void csx_Put32 (acc_handle_t handle, uint32_t offset, uint32_t value);

void csx_Put64 (acc_handle_t handle, uint32_t offset, uint64_t value);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS handle The access handle returned from csx_RequestIO (9F) ,
csx_RequestWindow (9F) , or csx_DupHandle (9F) .

offset The offset in bytes from the base of the mapped resource.

value The data to be written to the device.

DESCRIPTION These functions generate a write of various sizes to the mapped memory or
device register.

The csx_Put8() , csx_Put16() , csx_Put32() , and csx_Put64()
functions write 8 bits, 16 bits, 32 bits, and 64 bits of data, respectively, to
the device address represented by the handle, handle , at an offset in bytes
represented by the offset, offset .

Data that consists of more than one byte will automatically be translated to
maintain a consistent view between the host and the device based on the
encoded information in the data access handle. The translation may involve byte
swapping if the host and the device have incompatible endian characteristics.

CONTEXT These functions may be called from user, kernel, or interrupt context.

SEE ALSO csx_DupHandle (9F) , csx_Get8 (9F) , csx_GetMappedAddr (9F)
, csx_RepGet8 (9F) , csx_RepPut8 (9F) , csx_RequestIO (9F) ,
csx_RequestWindow (9F)

PC Card 95 Standard , PCMCIA/JEIDA

Last modified 19 Jul 1996 SunOS 5.8 205

csx_RegisterClient(9F) Kernel Functions for Drivers

NAME csx_RegisterClient – register a client

SYNOPSIS #include <sys/pccard.h>

int32_t csx_RegisterClient (client_handle_t *ch, client_reg_t *cr);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Pointer to a client_handle_t structure.

mc Pointer to a client_reg_t structure.

DESCRIPTION This function registers a client with Card Services and returns a unique
client handle for the client. The client handle must be passed to
csx_DeregisterClient (9F) when the client terminates.

STRUCTURE
MEMBERS

The structure members of client_reg_t are:

uint32_t Attributes;
uint32_t EventMask;
event_callback_args_t event_callback_args;
uint32_t Version; /* CS version to expect */
csfunction_t *event_handler;
ddi_iblock_cookie_t *iblk_cookie; /* event iblk cookie */
ddi_idevice_cookie_t *idev_cookie; /* event idev cookie */
dev_info_t *dip; /* client’s dip */
char driver_name[MODMAXNAMELEN];

The fields are defined as follows:
Attributes

This field is bit-mapped and defined as follows:

INFO_MEM_CLIENT

Memory client device driver.

INFO_MTD_CLIENT

Memory Technology Driver client.

INFO_IO_CLIENT

IO client device driver.

INFO_CARD_SHARE

Generate artificial CS_EVENT_CARD_INSERTIONand
CS_EVENT_REGISTRATION_COMPLETEevents.

INFO_CARD_EXCL

206 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_RegisterClient(9F)

Generate artificial CS_EVENT_CARD_INSERTIONand
CS_EVENT_REGISTRATION_COMPLETEevents.

INFO_MEM_CLIENT
INFO_MTD_CLIENT
INFO_IO_CLIENT

These bits are mutually exclusive (that is, only one bit may be set),
but one of the bits must be set.

INFO_CARD_SHARE
INFO_CARD_EXCL

If either of these bits is set, the client will receive a
CS_EVENT_REGISTRATION_COMPLETEevent when Card Services has
completed its internal client registration processing and after a sucessful
call to csx_RequestSocketMask (9F).

Also, if either of these bits is set, and if a card of the type that the client
can control is currently inserted in the socket (and after a successful call
to csx_RequestSocketMask (9F)), the client will receive an artificial
CS_EVENT_CARD_INSERTIONevent.

Event Mask
This field is bit-mapped and specifies the client’s global event mask.
Card Services performs event notification based on this field. See
csx_event_handler (9E) for valid event definitions and for additional
information about handling events.

event_callback_args
The event_callback_args_t structure members are:

void *client_data;

The client_data field may be used to provide data available to the
event handler (see csx_event_handler (9E)). Typically, this is the client
driver’s soft state pointer.

Version
This field contains the specific Card Services version number that the client
expects to use. Typically, the client will use the CS_VERSIONmacro to
specify to Card Services which version of Card Services the client expects.

event_handler
The client event callback handler entry point is passed in the
event_handler field.

iblk_cookie
idev_cookie

Last modified 19 Jul 1996 SunOS 5.8 207

csx_RegisterClient(9F) Kernel Functions for Drivers

These fields must be used by the client to set up mutexes that are used in
the client’s event callback handler when handling high priority events.

dip
The client must set this field with a pointer to the client’s dip.

driver_name
The client must copy a driver-unique name into this member. This name
must be identical across all instances of the driver.

RETURN VALUES CS_SUCCESS
Successful operation.

CS_BAD_ATTRIBUTE
No client type or more than one client type specified.

CS_OUT_OF_RESOURCE
Card Services is unable to register client.

CS_BAD_VERSION
Card Services version is incompatable with client.

CS_BAD_HANDLE
Client has already registered for this socket.

CS_UNSUPPORTED_FUNCTION
No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_DeregisterClient (9F), csx_RequestSocketMask (9F)

PC Card 95 Standard, PCMCIA/JEIDA

208 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_ReleaseConfiguration(9F)

NAME csx_ReleaseConfiguration – release PC Card and socket configuration

SYNOPSIS #include <sys/pccard.h>

int32_t csx_ReleaseConfiguration (client_handle_t ch, release_config_t *rc);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

rc Pointer to a release_config_t structure.

DESCRIPTION This function returns a PC Card and socket to a simple memory only interface
and sets the card to configuration zero by writing a 0 to the PC card’s COR
(Configuration Option Register).

Card Services may remove power from the socket if no clients have indicated
their usage of the socket by an active csx_RequestConfiguration (9F) or
csx_RequestWindow (9F).

Card Services is prohibited from resetting the PC Card and is not required to
cycle power through zero (0) volts.

After calling csx_ReleaseConfiguration() any resources requested
via the request functions csx_RequestIO (9F), csx_RequestIRQ (9F), or
csx_RequestWindow (9F) that are no longer needed should be returned to Card
Services via the corresponding csx_ReleaseIO (9F), csx_ReleaseIRQ (9F), or
csx_ReleaseWindow (9F) functions. csx_ReleaseConfiguration() must
be called to release the current card and socket configuration before releasing
any resources requested by the driver via the request functions named above.

STRUCTURE
MEMBERS

The structure members of release_config_t are:

uint32_t Socket; /* socket number */

The Socket field is not used in Solaris, but for portability with other Card
Services implementations, it should be set to the logical socket number.

RETURN VALUES CS_SUCCESS
Successful operation.

CS_BAD_HANDLE
Client handle is invalid or csx_RequestConfiguration (9F) not done.

CS_BAD_SOCKET
Error getting or setting socket hardware parameters.

CS_NO_CARD
No PC card in socket.

Last modified 19 Jul 1996 SunOS 5.8 209

csx_ReleaseConfiguration(9F) Kernel Functions for Drivers

CS_UNSUPPORTED_FUNCTION
No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_RegisterClient (9F), csx_RequestConfiguration (9F),
csx_RequestIO (9F), csx_RequestIRQ (9F), csx_RequestWindow (9F)

PC Card 95 Standard, PCMCIA/JEIDA

210 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_RepGet8(9F)

NAME csx_RepGet8, csx_RepGet16, csx_RepGet32, csx_RepGet64 – read repetitively
from the device register

SYNOPSIS #include <sys/pccard.h>
void csx_RepGet8 (acc_handle_t handle, uint8_t *hostaddr, uint32_t offset, uint32_t
repcount, uint32_t flags);

void csx_RepGet16 (acc_handle_t handle, uint16_t *hostaddr, uint32_t offset, uint32_t
repcount, uint32_t flags);

void csx_RepGet32 (acc_handle_t handle, uint32_t *hostaddr, uint32_t offset, uint32_t
repcount, uint32_t flags);

void csx_RepGet64 (acc_handle_t handle, uint64_t *hostaddr, uint32_t offset, uint32_t
repcount, uint32_t flags);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS handle The access handle returned from csx_RequestIO (9F) ,
csx_RequestWindow (9F) , or csx_DupHandle (9F) .

hostaddr Source host address.

offset The offset in bytes from the base of the mapped resource.

repcount Number of data accesses to perform.

flags Device address flags.

DESCRIPTION These functions generate multiple reads of various sizes from the mapped
memory or device register.

The csx_RepGet8() , csx_RepGet16() , csx_RepGet32() , and
csx_RepGet64() functions generate repcount reads of 8 bits, 16 bits, 32
bits, and 64 bits of data, respectively, from the device address represented by
the handle, handle , at an offset in bytes represented by the offset, offset . The
data read is stored consecutively into the buffer pointed to by the host address
pointer, hostaddr .

Data that consists of more than one byte will automatically be translated to
maintain a consistent view between the host and the device based on the
encoded information in the data access handle. The translation may involve byte
swapping if the host and the device have incompatible endian characteristics.

Last modified 19 Jul 1996 SunOS 5.8 211

csx_RepGet8(9F) Kernel Functions for Drivers

When the flags argument is set to CS_DEV_AUTOINCR, these functions increment
the device offset, offset , after each datum read operation. However, when the
flags argument is set to CS_DEV_NO_AUTOINCR, the same device offset will
be used for every datum access. For example, this flag may be useful when
reading from a data register.

CONTEXT These functions may be called from user, kernel, or interrupt context.

SEE ALSO csx_DupHandle (9F) , csx_Get8 (9F) , csx_GetMappedAddr (9F)
, csx_Put8 (9F) , csx_RepPut8 (9F) , csx_RequestIO (9F) ,
csx_RequestWindow (9F)

PC Card 95 Standard , PCMCIA/JEIDA

212 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_RepPut8(9F)

NAME csx_RepPut8, csx_RepPut16, csx_RepPut32, csx_RepPut64 – write repetitively
to the device register

SYNOPSIS #include <sys/pccard.h>
void csx_RepPut8 (acc_handle_t handle, uint8_t *hostaddr, uint32_t offset, uint32_t
repcount, uint32_t flags);

void csx_RepPut16 (acc_handle_t handle, uint16_t *hostaddr, uint32_t offset, uint32_t
repcount, uint32_t flags);

void csx_RepPut32 (acc_handle_t handle, uint32_t *hostaddr, uint32_t offset, uint32_t
repcount, uint32_t flags);

void csx_RepPut64 (acc_handle_t handle, uint64_t *hostaddr, uint32_t offset, uint32_t
repcount, uint32_t flags);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS handle The access handle returned from csx_RequestIO (9F) ,
csx_RequestWindow (9F) , or csx_DupHandle (9F) .

hostaddr Source host address.

offset The offset in bytes from the base of the mapped resource.

repcount Number of data accesses to perform.

flags Device address flags.

DESCRIPTION These functions generate multiple writes of various sizes to the mapped memory
or device register.

The csx_RepPut8() , csx_RepPut16() , csx_RepPut32() , and
csx_RepPut64() functions generate repcount writes of 8 bits, 16 bits, 32 bits,
and 64 bits of data, respectively, to the device address represented by the handle,
handle , at an offset in bytes represented by the offset, offset . The data written
is read consecutively from the buffer pointed to by the host address pointer,
hostaddr .

Data that consists of more than one byte will automatically be translated to
maintain a consistent view between the host and the device based on the
encoded information in the data access handle. The translation may involve byte
swapping if the host and the device have incompatible endian characteristics.

Last modified 19 Jul 1996 SunOS 5.8 213

csx_RepPut8(9F) Kernel Functions for Drivers

When the flags argument is set to CS_DEV_AUTOINCR, these functions increment
the device offset, offset , after each datum write operation. However, when the
flags argument is set to CS_DEV_NO_AUTOINCR, the same device offset will
be used for every datum access. For example, this flag may be useful when
writing to a data register.

CONTEXT These functions may be called from user, kernel, or interrupt context.

SEE ALSO csx_DupHandle (9F) , csx_Get8 (9F) , csx_GetMappedAddr (9F)
, csx_Put8 (9F) , csx_RepGet8 (9F) , csx_RequestIO (9F) ,
csx_RequestWindow (9F)

PC Card 95 Standard , PCMCIA/JEIDA

214 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_RequestConfiguration(9F)

NAME csx_RequestConfiguration – configure the PC Card and socket

SYNOPSIS #include <sys/pccard.h>

int32_t csx_RequestConfiguration (client_handle_t ch, config_req_t *cr);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

cr Pointer to a config_req_t structure.

DESCRIPTION This function configures the PC Card and socket. It must be used by clients that
require I/O or IRQ resources for their PC Card.

csx_RequestIO (9F) and csx_RequestIRQ (9F) must be used before calling
this function to specify the I/O and IRQ requirements for the PC Card and socket
if necessary. csx_RequestConfiguration() establishes the configuration in
the socket adapter and PC Card, and it programs the Base and Limit registers of
multi-function PC Cards if these registers exist. The values programmed into
these registers depend on the IO requirements of this configuration.

STRUCTURE
MEMBERS

The structure members of config_req_t are:

uint32_t Socket; /* socket number */
uint32_t Attributes; /* configuration attributes */
uint32_t Vcc; /* Vcc value */
uint32_t Vpp1; /* Vpp1 value */
uint32_t Vpp2; /* Vpp2 value */
uint32_t IntType; /* socket interface type - mem or IO */
uint32_t ConfigBase; /* offset from start of AM space */
uint32_t Status; /* value to write to STATUS register */
uint32_t Pin; /* value to write to PRR */
uint32_t Copy; /* value to write to COPY register */
uint32_t ConfigIndex; /* value to write to COR */
uint32_t Present; /* which config registers present */
uint32_t ExtendedStatus; /* value to write to EXSTAT register */

The fields are defined as follows:
Socket

Not used in Solaris, but for portability with other Card Services
implementations, it should be set to the logical socket number.

Attributes
This field is bit-mapped. It indicates whether the client wishes the IRQ
resources to be enabled and whether Card Services should ignore the VS bits
on the socket interface. The following bits are defined:

Last modified 19 Jul 1996 SunOS 5.8 215

csx_RequestConfiguration(9F) Kernel Functions for Drivers

CONF_ENABLE_IRQ_STEERING

Enable IRQ Steering. Set to connect the PC Card IREQ
line to a system interrupt previously selected by a call to
csx_RequestIRQ (9F). If CONF_ENABLE_IRQ_STEERINGis set, once
csx_RequestConfiguration() has successfully returned, the client
may start receiving IRQ callbacks at the IRQ callback handler established
in the call to csx_RequestIRQ (9F).

CONF_VSOVERRIDE

Override VS pins. After card insertion and prior to the first successful
csx_RequestConfiguration() , the voltage levels applied to the card
shall be those indicated by the card’s physical key and/or the VS[2:1]
voltage sense pins. For Low Voltage capable host systems (hosts which
are capable of VS pin decoding), if a client desires to apply a voltage not
indicated by the VS pin decoding, then CONF_VSOVERRIDEmust be set in
the Attributes field; otherwise, CS_BAD_VCCshall be returned.

Vcc, Vpp1, Vpp2
These fields all represent voltages expressed in tenths of a volt. Values
from zero (0) to 25.5 volts may be set. To be valid, the exact voltage must
be available from the system. PC Cards indicate multiple Vcc voltage
capability in their CIS via the CISTPL_CFTABLE_ENTRYtuple. After card
insertion, Card Services processes the CIS, and when multiple Vcc voltage
capability is indicated, Card Services will allow the client to apply Vcc
voltage levels which are contrary to the VS pin decoding without requiring
the client to set CONF_VSOVERRIDE.

IntType
This field is bit-mapped. It indicates how the socket should be configured.
The following bits are defined:

SOCKET_INTERFACE_MEMORY

Memory only interface.

SOCKET_INTERFACE_MEMORY_AND_IO

Memory and I/O interface.

ConfigBase
This field is the offset in bytes from the beginning of attribute memory of
the configuration registers.

Present
This field identifies which of the configuration registers are present. If
present, the corresponding bit is set. This field is bit-mapped as follows:

216 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_RequestConfiguration(9F)

CONFIG_OPTION_REG_PRESENT

Configuration Option Register (COR) present

CONFIG_STATUS_REG_PRESENT

Configuration Status Register (CCSR) present

CONFIG_PINREPL_REG_PRESENT

Pin Replacement Register (PRR) present

CONFIG_COPY_REG_PRESENT

Socket and Copy Register (SCR) present

CONFIG_ESR_REG_PRESENT

Extended Status Register (ESR) present

Status, Pin, Copy, ExtendedStatus
These fields represent the initial values that should be written to those
registers if they are present, as indicated by the Present field.

The Pin field is also used to inform Card Services which pins in the PC
Card’s PRR (Pin Replacement Register) are valid. Only those bits which
are set are considered valid. This affects how status is returned by the
csx_GetStatus (9F) function. If a particular signal is valid in the PRR, both
the mask (STATUS) bit and the change (EVENT) bit must be set in the Pin
field. The following PRR bit definitions are provided for client use:

PRR_WP_STATUS WRITE PROTECTmask

PRR_READY_STATUS READYmask

PRR_BVD2_STATUS BVD2mask

PRR_BVD1_STATUS BVD1mask

PRR_WP_EVENT WRITE PROTECTchanged

PRR_READY_EVENT READYchanged

PRR_BVD2_EVENT BVD2changed

PRR_BVD1_EVENT BVD1changed

ConfigIndex
This field is the value written to the COR (Configuration Option Register)
for the configuration index required by the PC Card. Only the least
significant six bits of the ConfigIndex field are significant; the upper
two (2) bits are ignored. The interrupt type in the COR is always set to
level mode by Card Services.

Last modified 19 Jul 1996 SunOS 5.8 217

csx_RequestConfiguration(9F) Kernel Functions for Drivers

RETURN VALUES CS_SUCCESS
Successful operation.

CS_BAD_HANDLE
Client handle is invalid or csx_RequestConfiguration() not done.

CS_BAD_SOCKET
Error in getting or setting socket hardware parameters.

CS_BAD_VCC
Requested Vcc is not available on socket.

CS_BAD_VPP
Requested Vpp is not available on socket.

CS_NO_CARD
No PC Card in socket.

CS_BAD_TYPE
I/O and memory interface not supported on socket.

CS_CONFIGURATION_LOCKED
csx_RequestConfiguration() already done.

CS_UNSUPPORTED_FUNCTION
No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_AccessConfigurationRegister (9F), csx_GetStatus (9F),
csx_RegisterClient (9F), csx_ReleaseConfiguration (9F),
csx_RequestIO (9F), csx_RequestIRQ (9F)

PC Card 95 Standard, PCMCIA/JEIDA

218 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_RequestIO(9F)

NAME csx_RequestIO, csx_ReleaseIO – request or release I/O resources for the client

SYNOPSIS #include <sys/pccard.h>
int32_t csx_RequestIO (client_handle_t ch, io_req_t *ir);

int32_t csx_ReleaseIO (client_handle_t ch, io_req_t *ir);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F) .

ir Pointer to an io_req_t structure.

DESCRIPTION The functions csx_RequestIO() and csx_ReleaseIO() request or release,
respectively, I/O resources for the client.

If a client requires I/O resources, csx_RequestIO() must be called to request
I/O resources from Card Services; then csx_RequestConfiguration (9F)
must be used to establish the configuration. csx_RequestIO() can be
called multiple times until a successful set of I/O resources is found.
csx_RequestConfiguration (9F) only uses the last configuration specified.

csx_RequestIO() fails if it has already been called without a corresponding
csx_ReleaseIO() .

csx_ReleaseIO() releases previously requested I/O resources. The Card
Services window resource list is adjusted by this function. Depending on the
adapter hardware, the I/O window might also be disabled.

STRUCTURE
MEMBERS

The structure members of io_req_t are:

uint32_t Socket; /* socket number*/

uint32_t Baseport1.base; /* IO range base port address */
acc_handle_t Baseport1.handle; /* IO range base address

/* or port num */
uint32_t NumPorts1; /* first IO range number contiguous

/* ports */
uint32_t Attributes1; /* first IO range attributes */

uint32_t Baseport2.base; /* IO range base port address */
acc_handle_t Baseport2.handle; /* IO range base address or port num */
uint32_t NumPorts2; /* second IO range number contiguous

/* ports */
uint32_t Attributes2; /* second IO range attributes */

uint32_t IOAddrLines; /* number of IO address lines decoded */

The fields are defined as follows:

Last modified 19 Jul 1996 SunOS 5.8 219

csx_RequestIO(9F) Kernel Functions for Drivers

Socket
Not used in Solaris, but for portability with other Card Services
implementations, it should be set to the logical socket number.

BasePort1.base
BasePort1.handle
BasePort2.base
BasePort2.handle

Two I/O address ranges can be requested by csx_RequestIO() . Each
I/O address range is specified by the BasePort , NumPorts , and
Attributes fields. If only a single I/O range is being requested, the
NumPorts2 field must be reset to 0 .

When calling csx_RequestIO() , the BasePort.base field
specifies the first port address requested. Upon successful return from
csx_RequestIO() , the BasePort.handle field contains an access
handle, corresponding to the first byte of the allocated I/O window, which
the client must use when accessing the PC Card’s I/O space via the common
access functions. A client must not make any assumptions as to the format
of the returned BasePort.handle field value.

If the BasePort.base field is set to 0 , Card Services returns an I/O
resource based on the available I/O resources and the number of contiguous
ports requested. When BasePort.base is 0 , Card Services aligns the
returned resource in the host system’s I/O address space on a boundary that
is a multiple of the number of contiguous ports requested, rounded up to
the nearest power of two. For example, if a client requests two I/O ports,
the resource returned will be a multiple of two. If a client requests five
contiguous I/O ports, the resource returned will be a multiple of eight.

If multiple ranges are being requested, at least one of the BasePort.base
fields must be non-zero.

NumPorts
This field is the number of contiguous ports being requested.

Attributes
This field is bit-mapped. The following bits are defined:

IO_DATA_WIDTH_8

I/O resource uses 8-bit data path.

IO_DATA_WIDTH_16

I/O resource uses 16-bit data path.

WIN_ACC_NEVER_SWAP

220 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_RequestIO(9F)

Host endian byte ordering.

WIN_ACC_BIG_ENDIAN

Big endian byte ordering

WIN_ACC_LITTLE_ENDIAN

Little endian byte ordering.

WIN_ACC_STRICT_ORDER

Program ordering references.

WIN_ACC_UNORDERED_OK

May re-order references.

WIN_ACC_MERGING_OK

Merge stores to consecutive locations.

WIN_ACC_LOADCACHING_OK

May cache load operations.

WIN_ACC_STORECACHING_OK

May cache store operations.

For some combinations of host system busses and adapter hardware, the
width of an I/O resource can not be set via RequestIO() ; on those
systems, the host bus cycle access type determines the I/O resource data
path width on a per-cycle basis.

WIN_ACC_BIG_ENDIANand WIN_ACC_LITTLE ENDIANdescribe the endian
characteristics of the device as big endian or little endian, respectively. Even
though most of the devices will have the same endian characteristics as
their busses, there are examples of devices with an I/O processor that has
opposite endian characteristics of the busses. When WIN_ACC_BIG_ENDIAN
or WIN_ACC_LITTLE ENDIANis set, byte swapping will automatically
be performed by the system if the host machine and the device data
formats have opposite endian characteristics. The implementation may take
advantage of hardware platform byte swapping capabilities.

When WIN_ACC_NEVER_SWAPis specified, byte swapping will not be
invoked in the data access functions. The ability to specify the order
in which the CPU will reference data is provided by the following
Attributes bits. Only one of the following bits may be specified:

WIN_ACC_STRICT_ORDER

Last modified 19 Jul 1996 SunOS 5.8 221

csx_RequestIO(9F) Kernel Functions for Drivers

The data references must be issued by a CPU in program order. Strict
ordering is the default behavior.

WIN_ACC_UNORDERED_OK

The CPU may re-order the data references. This includes all kinds of
re-ordering (that is, a load followed by a store may be replaced by a
store followed by a load).

WIN_ACC_MERGING_OK

The CPU may merge individual stores to consecutive locations. For
example, the CPU may turn two consecutive byte stores into one halfword
store. It may also batch individual loads. For example, the CPU may turn
two consecutive byte loads into one halfword load. IO_MERGING_OK_ACC
also implies re-ordering.

WIN_ACC_LOADCACHING_OK

The CPU may cache the data it fetches and reuse it until another
store occurs. The default behavior is to fetch new data on every load.
WIN_ACC_LOADCACHING_OKalso implies merging and re-ordering.

WIN_ACC_STORECACHING_OK

The CPU may keep the data in the cache and push it to the device
(perhaps with other data) at a later time. The default behavior is to push
the data right away. WIN_ACC_STORECACHING_OKalso implies load
caching, merging, and re-ordering.

These values are advisory, not mandatory. For example, data can be ordered
without being merged or cached, even though a driver requests unordered,
merged and cached together. All other bits in the Attributes field must be
set to 0 .

IOAddrLines
This field is the number of I/O address lines decoded by the PC Card in
the specified socket.

On some systems, multiple calls to csx_RequestIO() with different
BasePort , NumPorts , and/or IOAddrLines values will have to be made to
find an acceptable combination of parameters that can be used by Card Services
to allocate I/O resources for the client. (See NOTES).

RETURN VALUES CS_SUCCESS
Successful operation.

222 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_RequestIO(9F)

CS_BAD_ATTRIBUTE
Invalid Attributes specified.

CS_BAD_BASE
BasePort value is invalid.

CS_BAD_HANDLE
Client handle is invalid.

CS_CONFIGURATION_LOCKED
csx_RequestConfiguration (9F) has already been done.

CS_IN_USE
csx_RequestIO() has already been done without a corresponding
csx_ReleaseIO() .

CS_NO_CARD
No PC Card in socket.

CS_BAD_WINDOW
Unable to allocate I/O resources.

CS_OUT_OF_RESOURCE
Unable to allocate I/O resources.

CS_UNSUPPORTED_FUNCTION
No PCMCIA hardware installed.

CONTEXT These functions may be called from user or kernel context.

SEE ALSO csx_RegisterClient (9F) , csx_RequestConfiguration (9F)

PC Card 95 Standard , PCMCIA/JEIDA

NOTES It is important for clients to try to use the minimum amount of I/O resources
necessary. One way to do this is for the client to parse the CIS of the PC Card and
call csx_RequestIO() first with any IOAddrLines values that are 0 or that
specify a minimum number of address lines necessary to decode the I/O space
on the PC Card. Also, if no convenient minimum number of address lines can
be used to decode the I/O space on the PC Card, it is important to try to avoid
system conflicts with well-known architectural hardware features.

Last modified 19 Jul 1996 SunOS 5.8 223

csx_RequestIRQ(9F) Kernel Functions for Drivers

NAME csx_RequestIRQ, csx_ReleaseIRQ – request or release IRQ resource

SYNOPSIS #include <sys/pccard.h>
int32_t csx_RequestIRQ (client_handle_t ch, irq_req_t *ir);

int32_t csx_ReleaseIRQ (client_handle_t ch, irq_req_t *ir);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F) .

ir Pointer to an irq_req_t structure.

DESCRIPTION The function csx_RequestIRQ() requests an IRQ resource and registers the
client’s IRQ handler with Card Services.

If a client requires an IRQ ,csx_RequestIRQ() must be called to request
an IRQ resource as well as to register the client’s IRQ handler with Card
Services. The client will not receive callbacks at the IRQ callback handler until
csx_RequestConfiguration (9F) or csx_ModifyConfiguration (9F)
has successfully returned when either of these functions are called with the
CONF_ENABLE_IRQ_STEERINGbit set.

The function csx_ReleaseIRQ() releases a previously requested IRQ resource.

The Card Services IRQ resource list is adjusted by csx_ReleaseIRQ() .
Depending on the adapter hardware, the host bus IRQ connection might
also be disabled. Client IRQ handlers always run above lock level and so
should take care to perform only Solaris operations that are appropriate for an
above-lock-level IRQ handler.

csx_RequestIRQ() fails if it has already been called without a corresponding
csx_ReleaseIRQ() .

STRUCTURE
MEMBERS

The structure members of irq_req_t are:

uint32_t Socket; /* socket number */
uint32_t Attributes; /* IRQ attribute flags */
csfunction_t *irq_handler; /* IRQ handler */
caddr_t irq_handler_arg; /* IRQ handler argument */
ddi_iblock_cookie_t *iblk_cookie; /* IRQ interrupt

/* block cookie */
ddi_idevice_cookie_t *idev_cookie; /* IRQ interrupt device

/* cookie */

The fields are defined as follows:
Socket

224 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_RequestIRQ(9F)

Not used in Solaris, but for portability with other Card Services
implementations, it should be set to the logical socket number.

Attributes
This field is bit-mapped. It specifies details about the type of IRQ desired by
the client. The following bits are defined:

IRQ_TYPE_EXCLUSIVE

IRQ is exclusive to this socket.

IRQ_ISR_ADDRESS_PROVIDED

IRQ handler address provided.

IRQ_TYPE_EXCLUSIVE

This bit must be set. It indicates that the system IRQ is dedicated to
this PC Card.

IRQ_ISR_ADDRESS_PROVIDED

This bit must be set. It indicates that the irq_handler field contains
the address of the client’s IRQ handler.

irq_handler
The client IRQ callback handler entry point is passed in the irq_handler
field.

irq_handler_arg
The client can use the irq_handler_arg field to pass client-specific data
to the client IRQ callback handler.

iblk_cookie
idev_cookie

These fields must be used by the client to set up mutexes that are used in
the client’s IRQ callback handler.

For a specific csx_ReleaseIRQ() call, the values in the irq_req_t structure
must be the same as those returned from the previous csx_RequestIRQ()
call; otherwise, CS_BAD_ARGSis returned and no changes are made to Card
Services resources or the socket and adapter hardware.

RETURN VALUES CS_SUCCESS
Successful operation.

CS_BAD_ARGS
IRQ description does not match allocation.

Last modified 19 Jul 1996 SunOS 5.8 225

csx_RequestIRQ(9F) Kernel Functions for Drivers

CS_BAD_ATTRIBUTE
IRQ_TYPE_EXCLUSIVEand IRQ_ISR_ADDRESS_PROVIDEDnot set.

CS_BAD_HANDLE
Client handle is invalid or csx_RequestConfiguration (9F) not done.

CS_BAD_IRQ
Unable to allocate IRQ resources.

CS_IN_USE
csx_RequestIRQ() already done or a previous csx_RequestIRQ() has
not been done for a corresponding csx_ReleaseIRQ() .

CS_CONFIGURATION_LOCKED
csx_RequestConfiguration (9F) already done or
csx_ReleaseConfiguration (9F) has not been done.

CS_NO_CARD
No PC Card in socket.

CS_UNSUPPORTED_FUNCTION
No PCMCIA hardware installed.

CONTEXT These functions may be called from user or kernel context.

SEE ALSO csx_ReleaseConfiguration (9F) , csx_RequestConfiguration (9F)

PC Card Card 95 Standard , PCMCIA/JEIDA

226 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_RequestSocketMask(9F)

NAME csx_RequestSocketMask, csx_ReleaseSocketMask – set or clear the client’s client
event mask

SYNOPSIS #include <sys/pccard.h>
int32_t csx_RequestSocketMask (client_handle_t ch, request_socket_mask_t *sm);

int32_t csx_ReleaseSocketMask (client_handle_t ch, release_socket_mask_t *rm);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F) .

sm Pointer to a request_socket_mask_t structure.

rm Pointer to a release_socket_mask_t structure.

DESCRIPTION The function csx_RequestSocketMask() sets the client’s client event mask
and enables the client to start receiving events at its event callback handler.
Once this function returns successfully, the client can start receiving events
at its event callback handler. Any pending events generated from the call to
csx_RegisterClient (9F) will be delivered to the client after this call as well.
This allows the client to set up the event handler mutexes before the event
handler gets called.

csx_RequestSocketMask() must be used before calling
csx_GetEventMask (9F) or csx_SetEventMask (9F) for the client event mask
for this socket.

The function csx_ReleaseSocketMask() clears the client’s client event mask.

STRUCTURE
MEMBERS

The structure members of request_socket_mask_t are:

uint32_t Socket; /* socket number */
uint32_t EventMask; /* event mask to set or return */

The structure members of release_socket_mask_t are:

uint32_t Socket; /* socket number */

The fields are defined as follows:
Socket Not used in Solaris, but for portability with other Card

Services implementations, it should be set to the logical
socket number.

EventMask This field is bit-mapped. Card Services performs
event notification based on this field. See

Last modified 19 Jul 1996 SunOS 5.8 227

csx_RequestSocketMask(9F) Kernel Functions for Drivers

csx_event_handler (9E) for valid event definitions and for
additional information about handling events.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_IN_USE csx_ReleaseSocketMask() has
not been done.

CS_BAD_SOCKET csx_RequestSocketMask() has
not been done.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT These functions may be called from user or kernel context.

SEE ALSO csx_event_handler (9E) , csx_GetEventMask (9F) ,
csx_RegisterClient (9F) , csx_SetEventMask (9F)

PC Card 95 Standard , PCMCIA/JEIDA

228 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_RequestWindow(9F)

NAME csx_RequestWindow, csx_ReleaseWindow – request or release window resources

SYNOPSIS #include <sys/pccard.h>
int32_t csx_RequestWindow (client_handle_t ch, window_handle_t *wh, win_req_t *wr);

int32_t csx_ReleaseWindow (window_handle_t wh);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F) .

wh Pointer to a window_handle_t structure.

wr Pointer to a win_req_t structure.

DESCRIPTION The function csx_RequestWindow() requests a block of system address space
be assigned to a PC Card in a socket.

The function csx_ReleaseWindow() releases window resources which were
obtained by a call to csx_RequestWindow() . No adapter or socket hardware
is modified by this function.

The csx_MapMemPage(9F) and csx_ModifyWindow (9F) functions use the
window handle returned by csx_RequestWindow() . This window handle
must be freed by calling csx_ReleaseWindow() when the client is done
using this window.

The PC Card Attribute or Common Memory offset for this window is set by
csx_MapMemPage(9F) .

STRUCTURE
MEMBERS

The structure members of win_req_t are:

uint32_t Socket; /* socket number */
uint32_t Attributes; /* window flags */
uint32_t Base.base; /* requested window */

/* base address */
acc_handle_t Base.handle; /* returned handle for

/* base of window */
uint32_t Size; /* window size requested */

/* or granted */
uint32_t win_params.AccessSpeed; /* window access speed */
uint32_t win_params.IOAddrLines; /* IO address lines decoded */
uint32_t ReqOffset; /* required window offest */

The fields are defined as follows:
Socket

Not used in Solaris, but for portability with other Card Services
implementations, it should be set to the logical socket number.

Last modified 19 Jul 1996 SunOS 5.8 229

csx_RequestWindow(9F) Kernel Functions for Drivers

Attributes
This field is bit-mapped. It is defined as follows:

WIN_MEMORY_TYPE_IO Window points to I/O space
WIN_MEMORY_TYPE_CM Window points to Common Memory space
WIN_MEMORY_TYPE_AM Window points to Attribute Memory space
WIN_ENABLE Enable window
WIN_DATA_WIDTH_8 Set window to 8-bit data path
WIN_DATA_WIDTH_16 Set window to 16-bit data path
WIN_ACC_NEVER_SWAP Host endian byte ordering
WIN_ACC_BIG_ENDIAN Big endian byte ordering
WIN_ACC_LITTLE_ENDIAN Little endian byte ordering
WIN_ACC_STRICT_ORDER Program ordering references
WIN_ACC_UNORDERED_OK May re-order references
WIN_ACC_MERGING_OK Merge stores to consecutive locations
WIN_ACC_LOADCACHING_OK May cache load operations
WIN_ACC_STORECACHING_OK May cache store operations

WIN_MEMORY_TYPE_IO

WIN_MEMORY_TYPE_CM

WIN_MEMORY_TYPE_AM These bits select which type of window is
being requested. One of these bits must be set.

WIN_ENABLE The client must set this bit to enable the
window.

WIN_ACC_BIG_ENDIAN

WIN_ACC_LITTLE_ENDIAN These bits describe the endian characteristics
of the device as big endian or little endian,
respectively. Even though most of the devices
will have the same endian characteristics as
their busses, there are examples of devices
with an I/O processor that has opposite
endian characteristics of the busses. When
either of these bits are set, byte swapping will
automatically be performed by the system if
the host machine and the device data formats
have opposite endian characteristics. The
implementation may take advantage of
hardware platform byte swapping capabilities.

WIN_ACC_NEVER_SWAP When this is specified, byte swapping will not
be invoked in the data access functions.

230 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_RequestWindow(9F)

The ability to specify the order in which the CPU will reference data is
provided by the following Attributes bits, only one of which may be
specified:

WIN_ACC_STRICT_ORDER The data references must be issued
by a CPU in program order. Strict
ordering is the default behavior.

WIN_ACC_UNORDERED_OK The CPU may re-order the data
references. This includes all kinds of
re-ordering (that is, a load followed
by a store may be replaced by a store
followed by a load).

WIN_ACC_MERGING_OK The CPU may merge individual stores
to consecutive locations. For example,
the CPU may turn two consecutive
byte stores into one halfword store.
It may also batch individual loads.
For example, the CPU may turn two
consecutive byte loads into one
halfword load. This bit also implies
re-ordering.

WIN_ACC_LOADCACHING_OK The CPU may cache the data it fetches
and reuse it until another store occurs.
The default behavior is to fetch new
data on every load. This bit also
implies merging and re-ordering.

WIN_ACC_STORECACHING_OK The CPU may keep the data in the
cache and push it to the device
(perhaps with other data) at a later
time. The default behavior is to push
the data right away. This bit also
implies load caching, merging, and
re-ordering.

These values are advisory, not mandatory. For example, data can be ordered
without being merged or cached, even though a driver requests unordered,
merged and cached together.

All other bits in the Attributes field must be set to 0 .

Last modified 19 Jul 1996 SunOS 5.8 231

csx_RequestWindow(9F) Kernel Functions for Drivers

On successful return from csx_RequestWindow() , WIN_OFFSET_SIZEis
set in the Attributes field when the client must specify card offsets to
csx_MapMemPage(9F) that are a multiple of the window size.

Base.base
This field must be set to 0 on calling csx_RequestWindow() .

Base.handle
On successful return from csx_RequestWindow() , the Base.handle
field contains an access handle corresponding to the first byte of the
allocated memory window which the client must use when accessing the
PC Card’s memory space via the common access functions. A client must
not make any assumptions as to the format of the returned Base.handle
field value.

Size
On calling csx_RequestWindow() , the Size field is the size in bytes of
the memory window requested. Size may be zero to indicate that Card
Services should provide the smallest sized window available. On successful
return from csx_RequestWindow() , the Size field contains the actual
size of the window allocated.

win_params.AccessSpeed
This field specifies the access speed of the window if the client is requesting
a memory window. The AccessSpeed field bit definitions use the format of
the extended speed byte of the Device ID tuple. If the mantissa is 0 (noted
as reserved in the PC Card 95 Standard), the lower bits are a binary code
representing a speed from the following table:

Code Speed

0 (Reserved - do not use).

1 250 nsec

2 200 nsec

3 150 nsec

4 100 nse

5-7 (Reserved–do not use.)

To request a window that supports the WAIT signal, OR-in the
WIN_USE_WAITbit to the AccessSpeed value before calling this function.

It is recommended that clients use the csx_ConvertSpeed (9F) function
to generate the appropriate AccessSpeed values rather than manually
perturbing the AccessSpeed field.

232 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_RequestWindow(9F)

win_params.IOAddrLines
If the client is requesting an I/O window, the IOAddrLines field
is the number of I/O address lines decoded by the PC Card in the
specified socket. Access to the I/O window is not enabled until
csx_RequestConfiguration (9F) has been invoked successfully.

ReqOffset
This field is a Solaris-specific extension that can be used by clients to
generate optimum window offsets passed to csx_MapMemPage(9F) .

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_ATTRIBUTE Attributes are invalid.

CS_BAD_SPEED Speed is invalid.

CS_BAD_HANDLE Client handle is invalid.

CS_BAD_SIZE Window size is invalid.

CS_NO_CARD No PC Card in socket.

CS_OUT_OF_RESOURCE Unable to allocate window.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware
installed.

CONTEXT These functions may be called from user or kernel context.

SEE ALSO csx_ConvertSpeed (9F) , csx_MapMemPage(9F) , csx_ModifyWindow (9F) ,
csx_RegisterClient (9F) , csx_RequestConfiguration (9F)

PC Card 95 Standard, PCMCIA/JEIDA

Last modified 19 Jul 1996 SunOS 5.8 233

csx_ResetFunction(9F) Kernel Functions for Drivers

NAME csx_ResetFunction – reset a function on a PC card

SYNOPSIS #include <sys/pccard.h>

int32_t csx_ResetFunction (client_handle_t ch, reset_function_t *rf);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

rf Pointer to a reset_function_t structure.

DESCRIPTION csx_ResetFunction() requests that the specified function on the PC card
initiate a reset operation.

STRUCTURE
MEMBERS

The structure members of reset_function_t are:

uint32_t Socket; /* socket number */
uint32_t Attributes; /* reset attributes */

The fields are defined as follows:
Socket Not used in Solaris, but for portability with other Card

Services implementations, it should be set to the logical
socket number.

Attributes Must be 0.

RETURN VALUES CS_SUCCESS Card Services has noted the reset
request.

CS_IN_USE This Card Services implementation
does not permit configured cards
to be reset.

CS_BAD_HANDLE Client handle is invalid.

CS_NO_CARD No PC card in socket.

CS_BAD_SOCKET Specified socket or function number
is invalid.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_event_handler (9E), csx_RegisterClient (9F)

PC Card 95 Standard, PCMCIA/JEIDA

NOTES csx_ResetFunction() has not been implemented in this release and always
returns CS_IN_USE.

234 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_SetEventMask(9F)

NAME csx_SetEventMask, csx_GetEventMask – set or return the client event mask
for the client

SYNOPSIS #include <sys/pccard.h>
int32_t csx_SetEventMask (client_handle_t ch, sockevent_t *se);

int32_t csx_GetEventMask (client_handle_t ch, sockevent_t *se);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F) .

se Pointer to a sockevent_t structure

DESCRIPTION The function csx_SetEventMask() sets the client or global event mask for
the client.

The function csx_GetEventMask() returns the client or global event mask for
the client.

csx_RequestSocketMask (9F) must be called before calling
csx_SetEventMask() for the client event mask for this socket.

STRUCTURE
MEMBERS

The structure members of sockevent_t are:

uint32_t uint32_t /* attribute flags for call */
uint32_t EventMask; /* event mask to set or return */
uint32_t Socket; /* socket number if necessary */

The fields are defined as follows:
Attributes

This is a bit-mapped field that identifies the type of event mask to be
returned. The field is defined as follows:

CONF_EVENT_MASK_GLOBAL

Client’s global event mask. If set, the client’s global event mask is
returned.

CONF_EVENT_MASK_CLIENT

Client’s local event mask. If set, the client’s local event mask is returned.

EventMask

Last modified 19 Jul 1996 SunOS 5.8 235

csx_SetEventMask(9F) Kernel Functions for Drivers

This field is bit-mapped. Card Services performs event notification based on
this field. See csx_event_handler (9E) for valid event definitions and for
additional information about handling events.

Socket
Not used in Solaris, but for portability with other Card Services
implementations, it should be set to the logical socket number.

RETURN VALUES CS_SUCCESS Successful operation.

CS_BAD_HANDLE Client handle is invalid.

CS_BAD_SOCKET csx_RequestSocketMask (9F)
not called for
CONF_EVENT_MASK_CLIENT.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware installed.

CONTEXT These functions may be called from user or kernel context.

SEE ALSO csx_event_handler (9E) , csx_RegisterClient (9F) ,
csx_ReleaseSocketMask (9F) , csx_RequestSocketMask (9F)

PC Card 95 Standard, PCMCIA/JEIDA

236 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers csx_SetHandleOffset(9F)

NAME csx_SetHandleOffset – set current access handle offset

SYNOPSIS #include <sys/pccard.h>

int32_t csx_SetHandleOffset (acc_handle_t handle, uint32_t offset);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS handle Access handle returned by csx_RequestIRQ (9F) or
csx_RequestIO (9F).

offset New access handle offset.

DESCRIPTION This function sets the current offset for the access handle, handle, to offset.

RETURN VALUES CS_SUCCESS Successful operation.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetHandleOffset (9F), csx_RequestIO (9F), csx_RequestIRQ (9F)

PC Card 95 Standard, PCMCIA/JEIDA

Last modified 16 May 1997 SunOS 5.8 237

csx_ValidateCIS(9F) Kernel Functions for Drivers

NAME csx_ValidateCIS – validate the Card Information Structure (CIS)

SYNOPSIS #include <sys/pccard.h>

int32_t csx_ValidateCIS (client_handle_t ch, cisinfo_t *ci);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS ch Client handle returned from csx_RegisterClient (9F).

ci Pointer to a cisinfo_t structure.

DESCRIPTION This function validates the Card Information Structure (CIS) on the PC Card in
the specified socket.

STRUCTURE
MEMBERS

The structure members of cisinfo_t are:

uint32_t Socket; /* socket number to validate CIS on */
uint32_t Chains; /* number of tuple chains in CIS */
uint32_t Tuples; /* total number of tuples in CIS */

The fields are defined as follows:
Socket Not used in Solaris, but for portability with other Card

Services implementations, it should be set to the logical
socket number.

Chains This field returns the number of valid tuple chains located in
the CIS. If 0 is returned, the CIS is not valid.

Tuples This field is a Solaris-specific extension and it returns the
total number of tuples on all the chains in the PC Card’s CIS.

RETURN VALUES CS_SUCCESS Successful operation.

CS_NO_CIS No CIS on PC Card or CIS is
invalid.

CS_NO_CARD No PC Card in socket.

CS_UNSUPPORTED_FUNCTION No PCMCIA hardware
installed.

CONTEXT This function may be called from user or kernel context.

SEE ALSO csx_GetFirstTuple (9F), csx_GetTupleData (9F), csx_ParseTuple (9F),
csx_RegisterClient (9F)

PC Card 95 Standard, PCMCIA/JEIDA

238 SunOS 5.8 Last modified 19 Jul 1996

Kernel Functions for Drivers datamsg(9F)

NAME datamsg – test whether a message is a data message

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

int datamsg (unsigned char type);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS type The type of message to be tested. The db_type field of the datab (9S)
structure contains the message type. This field may be accessed
through the message block using mp->b_datap->db_type .

DESCRIPTION datamsg() tests the type of message to determine if it is a data message type
(M_DATA, M_DELAY, M_PROTO, or M_PCPROTO).

RETURN VALUES datamsg returns
1 if the message is a data message

0 otherwise.

CONTEXT datamsg() can be called from user or interrupt context.

EXAMPLES EXAMPLE 1 The put (9E) routine enqueues all data messages for handling by the
srv (9E) (service) routine. All non-data messages are handled in the put (9E) routine.

1 xxxput(q, mp)
2 queue_t *q;
3 mblk_t *mp;
4 {
5 if (datamsg(mp->b_datap->db_type)) {
6 putq(q, mp);
7 return;
8 }
9 switch (mp->b_datap->db_type) {

10 case M_FLUSH:
…

11 }
12 }

SEE ALSO put (9E), srv (9E), allocb (9F), datab (9S), msgb(9S)

Writing Device Drivers

STREAMS Programming Guide

Last modified 11 Apr 1991 SunOS 5.8 239

ddi_add_intr(9F) Kernel Functions for Drivers

NAME ddi_add_intr, ddi_get_iblock_cookie, ddi_remove_intr – hardware interrupt
handling routines

SYNOPSIS #include <sys/types.h>
#include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
int ddi_get_iblock_cookie (dev_info_t *dip, uint_t inumber, ddi_iblock_cookie_t
*iblock_cookiep);

int ddi_add_intr (dev_info_t *dip, uint_t inumber, ddi_iblock_cookie_t *iblock_cookiep,
ddi_idevice_cookie_t *idevice_cookiep, uint_t (*int_handler) (caddr_t),, caddr_t
int_handler_arg);

void ddi_remove_intr (dev_info_t *dip, uint_t inumber, ddi_iblock_cookie_t
iblock_cookie);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS For ddi_get_iblock_cookie() :
dip Pointer to dev_info structure.

inumber Interrupt number.

iblock_cookiep Pointer to an interrupt block cookie.

For ddi_add_intr() :
dip Pointer to dev_info structure.

inumber Interrupt number.

iblock_cookiep Optional pointer to an interrupt block cookie where a
returned interrupt block cookie is stored.

idevice_cookiep Optional pointer to an interrupt device cookie where a
returned interrupt device cookie is stored.

int_handler Pointer to interrupt handler.

int_handler_arg Argument for interrupt handler.

For ddi_remove_intr() :

240 SunOS 5.8 Last modified 4 Oct 1996

Kernel Functions for Drivers ddi_add_intr(9F)

dip Pointer to dev_info structure.

inumber Interrupt number.

iblock_cookie Block cookie which identifies the interrupt handler to be
removed.

DESCRIPTION
ddi_get_iblock_cookie() ddi_get_iblock_cookie() retrieves the interrupt block cookie associated

with a particular interrupt specification. This routine should be called before
ddi_add_intr() to retrieve the interrupt block cookie needed to initialize
locks (mutex (9F) , rwlock (9F)) used by the interrupt routine. The interrupt
number inumber determines which interrupt specification to retrieve the cookie
for. inumber is associated with information provided either by the device (see
sbus (4)) or the hardware configuration file (see sysbus (4) , isa (4) , eisa (4)
, and driver.conf (4)). If only one interrupt is associated with the device,
inumber should be 0 .

On a successful return, *iblock_cookiep contains information needed for
initializing locks associated with the interrupt specification corresponding to
inumber (see mutex_init (9F) and rw_init (9F)). The driver can then initialize
locks acquired by the interrupt routine before calling ddi_add_intr() which
prevents a possible race condition where the driver’s interrupt handler is called
immediately after the driver has called ddi_add_intr() but before the driver
has initialized the locks. This may happen when an interrupt for a different
device occurs on the same interrupt level. If the interrupt routine acquires the
lock before the lock has been initialized, undefined behavior may result.

ddi_add_intr() ddi_add_intr() adds an interrupt handler to the system. The interrupt
number inumber determines which interrupt the handler will be associated with.
(Refer to ddi_get_iblock_cookie() above.)

On a successful return, iblock_cookiep contains information used for initializing
locks associated with this interrupt specification (see mutex_init (9F) and
rw_init (9F)). Note that the interrupt block cookie is usually obtained using
ddi_get_iblock_cookie() to avoid the race conditions described above
(refer to ddi_get_iblock_cookie() above). For this reason, iblock_cookiep is
no longer useful and should be set to NULL .

On a successful return, idevice_cookiep contains a pointer to a
ddi_idevice_cookie_t structure (see ddi_idevice_cookie (9S))
containing information useful for some devices that have programmable
interrupts. If idevice_cookiep is set to NULL , no value is returned.

Last modified 4 Oct 1996 SunOS 5.8 241

ddi_add_intr(9F) Kernel Functions for Drivers

The routine intr_handler , with its argument int_handler_arg , is called upon
receipt of the appropriate interrupt. The interrupt handler should return
DDI_INTR_CLAIMED if the interrupt was claimed, DDI_INTR_UNCLAIMED
otherwise.

If successful, ddi_add_intr() will return DDI_SUCCESS; if the interrupt
information cannot be found, it will return DDI_INTR_NOTFOUND.

ddi_remove_intr() ddi_remove_intr() removes an interrupt handler from the system.
Unloadable drivers should call this routine during their detach (9E) routine
to remove their interrupt handler from the system.

The device interrupt routine for this instance of the device will not execute
after ddi_remove_intr() returns. ddi_remove_intr() may need to
wait for the device interrupt routine to complete before returning. Therefore,
locks acquired by the interrupt handler should not be held across the call to
ddi_remove_intr() or deadlock may result.

For all three
functions:

For certain bus types, you can call these DDI functions from a high-interrupt
context. These types include ISA , EISA , and SBus buses. See sysbus (4) , isa (4)
, eisa (4) , and sbus (4) for details.

RETURN VALUES ddi_add_intr() and ddi_get_iblock_cookie() return:
DDI_SUCCESS On success.

DDI_INTR_NOTFOUND On failure to find the interrupt.

CONTEXT ddi_add_intr() , ddi_remove_intr() , and
ddi_get_iblock_cookie() can be called from user or kernel
context.

SEE ALSO driver.conf (4) , eisa (4) , isa (4) , sbus (4) , sysbus (4) , attach (9E) ,
detach (9E) , ddi_intr_hilevel (9F) , mutex (9F) , mutex_init (9F) ,
rw_init (9F) , rwlock (9F) , ddi_idevice_cookie (9S)

Writing Device Drivers

NOTES ddi_get_iblock_cookie() must not be called after the driver adds an
interrupt handler for the interrupt specification corresponding to inumber .

BUGS The idevice_cookiep should really point to a data structure that is specific to the
bus architecture that the device operates on. Currently only VMEbus and SBus
are supported and a single data structure is used to describe both.

242 SunOS 5.8 Last modified 4 Oct 1996

Kernel Functions for Drivers ddi_add_softintr(9F)

NAME ddi_add_softintr, ddi_get_soft_iblock_cookie, ddi_remove_softintr,
ddi_trigger_softintr – software interrupt handling routines

SYNOPSIS #include <sys/types.h>
#include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
int ddi_get_soft_iblock_cookie (dev_info_t *dip, int preference, ddi_iblock_cookie_t
*iblock_cookiep);

int ddi_add_softintr (dev_info_t *dip, int preference, ddi_softintr_t *idp,
ddi_iblock_cookie_t *iblock_cookiep, ddi_idevice_cookie_t *idevice_cookiep,
uint_t(*int_handler) (caddr_t int_handler_arg), caddr_t int_handler_arg);

void ddi_remove_softintr (ddi_softintr_t id);

void ddi_trigger_softintr (ddi_softintr_t id);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS ddi_get_soft_iblock_cookie()
dip Pointer to a dev_info structure.

preference The type of soft interrupt to retrieve the cookie for.

iblock_cookiep Pointer to a location to store the interrupt block cookie.

ddi_add_softintr()
dip Pointer to dev_info structure.

preference A hint value describing the type of soft interrupt to generate.

idp Pointer to a soft interrupt identifier where a returned soft
interrupt identifier is stored.

iblock_cookiep Optional pointer to an interrupt block cookie where a
returned interrupt block cookie is stored.

idevice_cookiep Optional pointer to an interrupt device cookie where a
returned interrupt device cookie is stored (not used).

int_handler Pointer to interrupt handler.

Last modified 13 Oct 1994 SunOS 5.8 243

ddi_add_softintr(9F) Kernel Functions for Drivers

int_handler_arg Argument for interrupt handler.

ddi_remove_softintr()
id The identifier specifying which soft interrupt handler to

remove.

ddi_trigger_softintr()
id The identifier specifying which soft interrupt to trigger and

which soft interrupt handler will be called.

DESCRIPTION ddi_get_soft_iblock_cookie()

ddi_get_soft_iblock_cookie() retrieves the interrupt block cookie
associated with a particular soft interrupt preference level. This routine should
be called before ddi_add_softintr() to retrieve the interrupt block cookie
needed to initialize locks (mutex (9F) , rwlock (9F)) used by the software
interrupt routine. preference determines which type of soft interrupt to retrieve
the cookie for. The possible values for preference are:
DDI_SOFTINT_LOW Low priority soft interrupt.

DDI_SOFTINT_MED Medium priority soft interrupt.

DDI_SOFTINT_HIGH High priority soft interrupt.

On a successful return, iblock_cookiep contains information needed for initializing
locks associated with this soft interrupt (see mutex_init (9F) and rw_init (9F)
). The driver can then initialize mutexes acquired by the interrupt routine before
calling ddi_add_softintr() which prevents a possible race condition where
the driver’s soft interrupt handler is called immediately after the driver has
called ddi_add_softintr() but before the driver has initialized the mutexes.
This can happen when a soft interrupt for a different device occurs on the same
soft interrupt priority level. If the soft interrupt routine acquires the mutex
before it has been initialized, undefined behavior may result.

ddi_add_softintr()

ddi_add_softintr() adds a soft interrupt to the system. The user specified
hint preference identifies three suggested levels for the system to attempt to
allocate the soft interrupt priority at. The value for preference should be the same
as that used in the corresponding call to ddi_get_soft_iblock_cookie() .
Refer to the description of ddi_get_soft_iblock_cookie() above.

The value returned in the location pointed at by idp is the soft interrupt
identifier. This value is used in later calls to ddi_remove_softintr() and
ddi_trigger_softintr() to identify the soft interrupt and the soft interrupt
handler.

244 SunOS 5.8 Last modified 13 Oct 1994

Kernel Functions for Drivers ddi_add_softintr(9F)

The value returned in the location pointed at by iblock_cookiep is an
interrupt block cookie which contains information used for initializing
mutexes associated with this soft interrupt (see mutex_init (9F) and
rw_init (9F)). Note that the interrupt block cookie is normally obtained using
ddi_get_soft_iblock_cookie() to avoid the race conditions described
above (refer to the description of ddi_get_soft_iblock_cookie() above).
For this reason, iblock_cookiep is no longer useful and should be set to NULL .

idevice_cookiep is not used and should be set to NULL .

The routine int_handler , with its argument int_handler_arg , is called upon receipt
of a software interrupt. Software interrupt handlers must not assume that they
have work to do when they run, since (like hardware interrupt handlers) they
may run because a soft interrupt occurred for some other reason. For example,
another driver may have triggered a soft interrupt at the same level. For this
reason, before triggering the soft interrupt, the driver must indicate to its soft
interrupt handler that it should do work. This is usually done by setting a flag in
the state structure. The routine int_handler checks this flag, reachable through
int_handler_arg , to determine if it should claim the interrupt and do its work.

The interrupt handler must return DDI_INTR_CLAIMED if the interrupt was
claimed, DDI_INTR_UNCLAIMEDotherwise.

If successful, ddi_add_softintr() will return DDI_SUCCESS; if the interrupt
information cannot be found, it will return DDI_FAILURE .

ddi_remove_softintr()

ddi_remove_softintr() removes a soft interrupt from the system. The soft
interrupt identifier id , which was returned from a call to ddi_add_softintr()
, is used to determine which soft interrupt and which soft interrupt handler to
remove. Drivers must remove any soft interrupt handlers before allowing the
system to unload the driver.

ddi_trigger_softintr()

ddi_trigger_softintr() triggers a soft interrupt. The soft interrupt
identifier id is used to determine which soft interrupt to trigger. This function is
used by device drivers when they wish to trigger a soft interrupt which has been
set up using ddi_add_softintr() .

RETURN VALUES ddi_add_softintr() and ddi_get_soft_iblock_cookie() return:
DDI_SUCCESS on success

DDI_FAILURE on failure

Last modified 13 Oct 1994 SunOS 5.8 245

ddi_add_softintr(9F) Kernel Functions for Drivers

CONTEXT These functions can be called from user or kernel context.
ddi_trigger_softintr() may be called from high-level interrupt context
as well.

EXAMPLES EXAMPLE 1 device using high-level interrupts

In the following example, the device uses high-level interrupts. High-level
interrupts are those that interrupt at the level of the scheduler and above.
High level interrupts must be handled without using system services
that manipulate thread or process states, because these interrupts are not
blocked by the scheduler. In addition, high level interrupt handlers must
take care to do a minimum of work because they are not preemptable. See
ddi_intr_hilevel (9F) .

In the example, the high-level interrupt routine minimally services the device,
and enqueues the data for later processing by the soft interrupt handler. If the
soft interrupt handler is not currently running, the high-level interrupt routine
triggers a soft interrupt so the soft interrupt handler can process the data. Once
running, the soft interrupt handler processes all the enqueued data before
returning.

The state structure contains two mutexes. The high-level mutex is used to protect
data shared between the high-level interrupt handler and the soft interrupt
handler. The low-level mutex is used to protect the rest of the driver from
the soft interrupt handler.

struct xxstate {
...
ddi_softintr_t id;

ddi_iblock_cookie_t high_iblock_cookie;
kmutex_t high_mutex;
ddi_iblock_cookie_t low_iblock_cookie;
kmutex_t low_mutex;
int softint_running;

...
};
struct xxstate *xsp;
static uint_t xxsoftintr(caddr_t);
static uint_t xxhighintr(caddr_t);
...

EXAMPLE 2 sample attach() routine

The following code fragment would usually appear in the driver’s attach (9E)
routine. ddi_add_intr (9F) is used to add the high-level interrupt handler and
ddi_add_softintr() is used to add the low-level interrupt routine.

static uint_t
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

struct xxstate *xsp;

246 SunOS 5.8 Last modified 13 Oct 1994

Kernel Functions for Drivers ddi_add_softintr(9F)

...
/* get high-level iblock cookie */

if (ddi_get_iblock_cookie(dip, inumber ,
&xsp->high_iblock_cookie) != DDI_SUCCESS) {

/* clean up */
return (DDI_FAILURE); /* fail attach */

}

/* initialize high-level mutex */
mutex_init(&xsp->high_mutex, "xx high mutex", MUTEX_DRIVER,

(void *)xsp->high_iblock_cookie);

/* add high-level routine - xxhighintr() */
if (ddi_add_intr(dip, inumber , NULL, NULL,

xxhighintr, (caddr_t) xsp) != DDI_SUCCESS) {
/* cleanup */
return (DDI_FAILURE); /* fail attach */

}

/* get soft iblock cookie */
if (ddi_get_soft_iblock_cookie(dip, DDI_SOFTINT_MED,

&xsp->low_iblock_cookie) != DDI_SUCCESS) {
/* clean up */
return (DDI_FAILURE); /* fail attach */

}

/* initialize low-level mutex */
mutex_init(&xsp->low_mutex, "xx low mutex", MUTEX_DRIVER,

(void *)xsp->low_iblock_cookie);

/* add low level routine - xxsoftintr() */
if (ddi_add_softintr(dip, DDI_SOFTINT_MED, &xsp->id,

NULL, NULL, xxsoftintr, (caddr_t) xsp) != DDI_SUCCESS) {
/* cleanup */
return (DDI_FAILURE); /* fail attach */

}

...
}

EXAMPLE 3 High-level interrupt routine

The next code fragment represents the high-level interrupt routine. The
high-level interrupt routine minimally services the device, and enqueues the data
for later processing by the soft interrupt routine. If the soft interrupt routine is
not already running, ddi_trigger_softintr() is called to start the routine.
The soft interrupt routine will run until there is no more data on the queue.

static uint_t
xxhighintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *) arg;
int need_softint;
...

Last modified 13 Oct 1994 SunOS 5.8 247

ddi_add_softintr(9F) Kernel Functions for Drivers

mutex_enter(&xsp->high_mutex);
/*
* Verify this device generated the interrupt
* and disable the device interrupt.
* Enqueue data for xxsoftintr() processing.
*/

/* is xxsoftintr() already running ? */
if (xsp->softint_running)

need_softint = 0;
else

need_softint = 1;
mutex_exit(&xsp->high_mutex);

/* read-only access to xsp->id, no mutex needed */
if (need_softint)

ddi_trigger_softintr(xsp->id);
...
return (DDI_INTR_CLAIMED);

}

static uint_t
xxsoftintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *) arg;
...

mutex_enter(&xsp->low_mutex);
mutex_enter(&xsp->high_mutex);

/* verify there is work to do */
if (work queue empty || xsp->softint_running) {

mutex_exit(&xsp->high_mutex);
mutex_exit(&xsp->low_mutex);
return (DDI_INTR_UNCLAIMED);

}

xsp->softint_running = 1;

while (data on queue) {
ASSERT(mutex_owned(&xsp->high_mutex));

/* de-queue data */

mutex_exit(&xsp->high_mutex);

/* Process data on queue */

mutex_enter(&xsp->high_mutex);
}

xsp->softint_running = 0;
mutex_exit(&xsp->high_mutex);
mutex_exit(&xsp->low_mutex);

return (DDI_INTR_CLAIMED);

248 SunOS 5.8 Last modified 13 Oct 1994

Kernel Functions for Drivers ddi_add_softintr(9F)

}

SEE ALSO ddi_add_intr (9F) , ddi_intr_hilevel (9F) , ddi_remove_intr (9F)
, mutex_init (9F)

Writing Device Drivers

NOTES ddi_add_softintr() may not be used to add the same software interrupt
handler more than once. This is true even if a different value is used for
int_handler_arg in each of the calls to ddi_add_softintr() . Instead, the
argument passed to the interrupt handler should indicate what service(s) the
interrupt handler should perform. For example, the argument could be a pointer
to the device’s soft state structure, which could contain a ’which_service’ field
that the handler examines. The driver must set this field to the appropriate value
before calling ddi_trigger_softintr() .

Last modified 13 Oct 1994 SunOS 5.8 249

ddi_binding_name(9F) Kernel Functions for Drivers

NAME ddi_binding_name, ddi_get_name – return driver binding name

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
char *ddi_binding_name (dev_info_t *dip);

char *ddi_get_name (dev_info_t *dip);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dip A pointer to the device’s dev_info structure.

DESCRIPTION ddi_binding_name() and ddi_get_name() return the driver binding
name. This is the name used to select a driver for the device. This name is
typically derived from the device name property or the device compatible
property. The name returned may be a driver alias or the driver name.

RETURN VALUES ddi_binding_name() and ddi_get_name() return the name used to bind
a driver to a device.

CONTEXT ddi_binding_name() and ddi_get_name() can be called from user, kernel,
or interrupt context.

SEE ALSO ddi_node_name (9F)

Writing Device Drivers

WARNINGS The name returned by ddi_binding_name() and ddi_get_name() is
read-only.

250 SunOS 5.8 Last modified 3 May 1996

Kernel Functions for Drivers ddi_btop(9F)

NAME ddi_btop, ddi_btopr, ddi_ptob – page size conversions

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
unsigned long ddi_btop (dev_info_t *dip, unsigned long bytes);

unsigned long ddi_btopr (dev_info_t *dip, unsigned long bytes);

unsigned long ddi_ptob (dev_info_t *dip, unsigned long pages);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION This set of routines use the parent nexus driver to perform conversions in page
size units.

ddi_btop() converts the given number of bytes to the number of memory
pages that it corresponds to, rounding down in the case that the byte count is
not a page multiple.

ddi_btopr() converts the given number of bytes to the number of memory
pages that it corresponds to, rounding up in the case that the byte count is
not a page multiple.

ddi_ptob() converts the given number of pages to the number of bytes that it
corresponds to.

Because bus nexus may possess their own hardware address translation facilities,
these routines should be used in preference to the corresponding DDI/DKI
routines btop (9F) , btopr (9F) , and ptob (9F) , which only deal in terms of the
pagesize of the main system MMU.

RETURN VALUES ddi_btop() and ddi_btopr() return the number of corresponding pages.
ddi_ptob() returns the corresponding number of bytes. There are no error
return values.

CONTEXT This function can be called from user or interrupt context.

EXAMPLES EXAMPLE 1 Find the size (in bytes) of one page

pagesize = ddi_ptob(dip, 1L);

SEE ALSO btop (9F) , btopr (9F) , ptob (9F)

Writing Device Drivers

Last modified 11 Sep 1991 SunOS 5.8 251

ddi_check_acc_handle(9F) Kernel Functions for Drivers

NAME ddi_check_acc_handle, ddi_check_dma_handle – Check data access and DMA
handles

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
int ddi_check_acc_handle (ddi_acc_handle_t acc_handle);

int ddi_check_dma_handle (ddi_dma_handle_t dma_handle);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

PARAMETERS acc_handle Data access handle obtained from a previous call to
ddi_regs_map_setup (9F) , ddi_dma_mem_alloc (9F) ,
or similar function.

dma_handle DMA handle obtained from a previous call to
ddi_dma_setup (9F) or one of its derivatives.

DESCRIPTION

The ddi_check_acc_handle() and ddi_check_dma_handle() functions
check for faults that can interfere with communication between a driver and the
device it controls. Each function checks a single handle of a specific type and
returns a status value indicating whether faults affecting the resource mapped by
the supplied handle have been detected.

If a fault is indicated when checking a data access handle, this implies that
the driver is no longer able to access the mapped registers or memory using
programmed I/O through that handle. Typically, this might occur after the
device has failed to respond to an I/O access (for example, has incurred
a bus error or timed out). The effect of programmed I/O accesses made
after this happens is undefined; for example, read accesses (for example,
ddi_get8 (9F)) may return random values, and write accesses (for example,
ddi_put8 (9F)) may or may not have any effect. This type of fault is normally
fatal to the operation of the device, and the driver should report it via
ddi_dev_report_fault (9F) specifying DDI_SERVICE_LOSTfor the impact,
and DDI_DATAPATH_FAULTfor the location.

If a fault is indicated when checking a DMA handle, it implies that a fault has
been detected that has (or will) affect DMA transactions between the device and
the memory currently bound to the handle (or most recently bound, if the handle
is currently unbound). Possible causes include the failure of a component in
the DMA data path, or an attempt by the device to make an invalid DMA
access. The driver may be able to continue by falling back to a non-DMA mode
of operation, but in general, DMA faults are non-recoverable. The contents of
the memory currently (or previously) bound to the handle should be regarded
as indeterminate. The fault indication associated with the current transaction

252 SunOS 5.8 Last modified 13 August 1999

Kernel Functions for Drivers ddi_check_acc_handle(9F)

is lost once the handle is (re-)bound, but because the fault may persist, future
DMA operations may not succeed.

Some implementations cannot detect all types of failure. If a fault is not indicated,
this does not constitute a guarantee that communication is possible. However, if
a check fails, this is a positive indication that a problem does exist with respect
to communication using that handle.

RETURN VALUES The ddi_check_acc_handle() and ddi_check_dma_handle() functions
return DDI_SUCCESSif no faults affecting the supplied handle are detected and
DDI_FAILURE if any fault affecting the supplied handle is detected.

EXAMPLES static int
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

\\&...
/* This driver uses only a single register-access handle */
status = ddi_regs_map_setup(dip, REGSET_ZERO, ®addr,

0, 0, , &acc_attrs, &acc_hdl);
if (status != DDI_SUCCESS)

return (DDI_FAILURE);
\\&...

}

static int
xxread(dev_t dev, struct uio *uio_p, cred_t *cred_p)
{

\\&...
if (ddi_check_acc_handle(acc_hdl) != DDI_SUCCESS) {

ddi_dev_report_fault(dip, DDI_SERVICE_LOST,
DDI_DATAPATH_FAULT, "register access fault during read");

return (EIO);
}
\\&...

CONTEXT The ddi_check_acc_handle() and ddi_check_dma_handle() functions
may be called from user, kernel, or interrupt context.

SEE ALSO ddi_regs_map_setup (9F) , ddi_dma_setup (9F) ,
ddi_dev_report_fault (9F) , ddi_get8 (9F) , ddi_put8 (9F)

Last modified 13 August 1999 SunOS 5.8 253

ddi_copyin(9F) Kernel Functions for Drivers

NAME ddi_copyin – copy data to a driver buffer

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_copyin (const void *buf, void *driverbuf, size_t cn, int flags);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS buf Source address from which data is transferred.

driverbuf Driver destination address to which data is transferred.

cn Number of bytes transferred.

flags Set of flag bits that provide address space information
about buf.

DESCRIPTION This routine is designed for use in driver ioctl (9E) routines for drivers that
support layered ioctls. ddi_copyin() copies data from a source address to a
driver buffer. The driver developer must ensure that adequate space is allocated
for the destination address.

The flags argument is used to determine the address space information about
buf. If the FKIOCTL flag is set, this indicates that buf is a kernel address, and
ddi_copyin() behaves like bcopy (9F). Otherwise buf is interpreted as a user
buffer address, and ddi_copyin() behaves like copyin (9F).

Addresses that are word-aligned are moved most efficiently. However, the driver
developer is not obliged to ensure alignment. This function automatically finds
the most efficient move according to address alignment.

RETURN VALUES ddi_copyin() returns 0, indicating a successful copy. It returns −1 if one of
the following occurs:

� paging fault; the driver tried to access a page of memory for which it did
not have read or write access

� invalid user address, such as a user area or stack area

� invalid address that would have resulted in data being copied into the
user block

If −1 is returned to the caller, driver entry point routines should return EFAULT.

CONTEXT ddi_copyin() can be called from user or kernel context only.

254 SunOS 5.8 Last modified 1 May 1996

Kernel Functions for Drivers ddi_copyin(9F)

EXAMPLES EXAMPLE 1 ddi_copyin() example

A driver ioctl (9E) routine (line 12) can be used to get or set device attributes or
registers. For the XX_SETREGScondition (line 25), the driver copies the user
data in arg to the device registers. If the specified argument contains an invalid
address, an error code is returned.

1 struct device { /* layout of physical device registers */
2 int control; /* physical device control word */
3 int status; /* physical device status word */
4 short recv_char; /* receive character from device */
5 short xmit_char; /* transmit character to device */
6 };
7 struct device_state {
8 volatile struct device *regsp; /* pointer to device registers */
9 kmutex_t reg_mutex; /* protect device registers */

. . .
10 };

11 static void *statep; /* for soft state routines */

12 xxioctl(dev_t dev, int cmd, int arg, int mode,
13 cred_t *cred_p, int *rval_p)
14 {
15 struct device_state *sp;
16 volatile struct device *rp;
17 struct device reg_buf; /* temporary buffer for registers */
18 int instance;

19 instance = getminor(dev);
20 sp = ddi_get_soft_state(statep, instance);
21 if (sp == NULL)
22 return (ENXIO);
23 rp = sp->regsp;

. . .
24 switch (cmd) {

25 case XX_GETREGS: /* copy data to temp. regs. buf */
26 if (ddi_copyin(arg, ®_buf,
27 sizeof (struct device), mode) != 0) {
28 return (EFAULT);
29 }

30 mutex_enter(&sp->reg_mutex);
31 /*
32 * Copy data from temporary device register
33 * buffer to device registers.
34 * e.g. rp->control = reg_buf.control;
35 */
36 mutex_exit(&sp->reg_mutex);

37 break;
38 }
39 }

Last modified 1 May 1996 SunOS 5.8 255

ddi_copyin(9F) Kernel Functions for Drivers

SEE ALSO ioctl (9E), bcopy (9F), copyin (9F), copyout (9F), ddi_copyout (9F),
uiomove (9F)

Writing Device Drivers

NOTES The value of the flags argument to ddi_copyin() should be passed through
directly from the mode argument of ioctl() untranslated.

Driver defined locks should not be held across calls to this function.

This should not be used from a streams driver. See M_COPYINand M_COPYOUT
in STREAMS Programming Guide.

256 SunOS 5.8 Last modified 1 May 1996

Kernel Functions for Drivers ddi_copyout(9F)

NAME ddi_copyout – copy data from a driver

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_copyout (const void *driverbuf, void *buf, size_t cn, int flags);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS driverbuf Source address in the driver from which the data is
transferred.

buf Destination address to which the data is transferred.

cn Number of bytes to copy.

flags Set of flag bits that provide address space information
about buf.

DESCRIPTION This routine is designed for use in driver ioctl (9E) routines for drivers that
support layered ioctls. ddi_copyout() copies data from a driver buffer to
a destination address, buf.

The flags argument is used to determine the address space information about
buf. If the FKIOCTL flag is set, this indicates that buf is a kernel address, and
ddi_copyout() behaves like bcopy (9F). Otherwise buf is interpreted as a user
buffer address, and ddi_copyout() behaves like copyout (9F).

Addresses that are word-aligned are moved most efficiently. However, the driver
developer is not obliged to ensure alignment. This function automatically finds
the most efficient move algorithm according to address alignment.

RETURN VALUES Under normal conditions, 0 is returned to indicate a successful copy. Otherwise,
-1 is returned if one of the following occurs:

� paging fault; the driver tried to access a page of memory for which it did
not have read or write access

� invalid user address, such as a user area or stack area

� invalid address that would have resulted in data being copied into the
user block

If -1 is returned to the caller, driver entry point routines should return EFAULT.

CONTEXT ddi_copyout() can be called from user or kernel context only.

Last modified 1 May 1996 SunOS 5.8 257

ddi_copyout(9F) Kernel Functions for Drivers

EXAMPLES EXAMPLE 1 ddi_copyout() example

A driver ioctl (9E) routine (line 12) can be used to get or set device attributes or
registers. In the XX_GETREGScondition (line 25), the driver copies the current
device register values to another data area. If the specified argument contains an
invalid address, an error code is returned.

1 struct device { /* layout of physical device registers */
2 int control; /* physical device control word */
3 int status; /* physical device status word */
4 short recv_char; /* receive character from device */
5 short xmit_char; /* transmit character to device */
6 };

7 struct device_state {
8 volatile struct device *regsp; /* pointer to device registers */
9 kmutex_t reg_mutex; /* protect device registers */

. . .
10 };

11 static void *statep; /* for soft state routines */

12 xxioctl(dev_t dev, int cmd, int arg, int mode,
13 cred_t *cred_p, int *rval_p)
14 {
15 struct device_state *sp;
16 volatile struct device *rp;
17 struct device reg_buf; /* temporary buffer for registers */
18 int instance;

19 instance = getminor(dev);
20 sp = ddi_get_soft_state(statep, instance);
21 if (sp == NULL)
22 return (ENXIO);
23 rp = sp->regsp;

. . .
24 switch (cmd) {

25 case XX_GETREGS: /* copy registers to arg */
26 mutex_enter(&sp->reg_mutex);
27 /*
28 * Copy data from device registers to
29 * temporary device register buffer
30 * e.g. reg_buf.control = rp->control;
31 */
32 mutex_exit(&sp->reg_mutex);
33 if (ddi_copyout(®_buf, arg,
34 sizeof (struct device), mode) != 0) {
35 return (EFAULT);
36 }

37 break;
38 }
39 }

258 SunOS 5.8 Last modified 1 May 1996

Kernel Functions for Drivers ddi_copyout(9F)

SEE ALSO ioctl (9E), bcopy (9F), copyin (9F), copyout (9F), ddi_copyin (9F),
uiomove (9F)

Writing Device Drivers

NOTES The value of the flags argument to ddi_copyout() should be passed through
directly from the mode argument of ioctl() untranslated.

Driver defined locks should not be held across calls to this function.

This should not be used from a streams driver. See M_COPYINand M_COPYOUT
in STREAMS Programming Guide.

Last modified 1 May 1996 SunOS 5.8 259

ddi_create_minor_node(9F) Kernel Functions for Drivers

NAME ddi_create_minor_node – create a minor node for this device

SYNOPSIS #include <sys/stat.h>
#include <sys/sunddi.h>

int ddi_create_minor_node (dev_info_t *dip, char *name, int spec_type, minor_t
minor_num, char *node_type, int flag);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dip A pointer to the device’s dev_info structure.

name The name of this particular minor device.

spec_type S_IFCHR or S_IFBLK for character or block minor devices
respectively.

minor_num The minor number for this particular minor device.

node_type Any string that uniquely identifies the type of node. The
following predefined node types are provided with this
release:

DDI_NT_SERIAL For serial ports

DDI_NT_SERIAL_MB For on board serial ports

DDI_NT_SERIAL_DO For dial out ports

DDI_NT_SERIAL_MB_DO For on board dial out ports

DDI_NT_BLOCK For hard disks

DDI_NT_BLOCK_CHAN For hard disks with channel
or target numbers

DDI_NT_CD For CDROM drives

DDI_NT_CD_CHAN For CDROM drives with
channel or target numbers

DDI_NT_FD For floppy disks

DDI_NT_TAPE For tape drives

DDI_NT_NET For network devices

DDI_NT_DISPLAY For display devices

DDI_PSEUDO For pseudo devices

260 SunOS 5.8 Last modified 13 Oct 1998

Kernel Functions for Drivers ddi_create_minor_node(9F)

flag If the device is a clone device then this flag is set to
CLONE_DEVelse it is set to 0. The device node class can also
be specified using this flag. The device classes do not have
an effect in the creation of the device node in a non-clustered
environment; but for device drivers intended for use in a
clustered environment, one of the following needs to be
specified. If the device class is not indicated the default class
for pseudo devices will be NODESPECIFIC_DEVand for
physical devices will be ENUMERATE_DEV.

GLOBAL_DEV The device is a node invariant
device and can be opened from
any node in the cluster.

NODEBOUND_DEV The device is node invariant
but it has cluster wide state
associated with it so that all
subsequent opens must be
directed there.

NODESPECIFIC_DEV The device node provides node
specific information and must
be opened co-located with
the process.

ENUMERATE_DEV Unique cluster wide device
nodes. The i/o must take place
at the host where the device
node was created.

DESCRIPTION ddi_create_minor_node() provides the necessary information to enable
the system to create the /dev and /devices hierarchies. The name is used to
create the minor name of the block or character special file under the /devices
hierarchy. At-sign (@), slash (/), and space are not allowed. The spec_type
specifies whether this is a block or character device. The minor_num is the minor
number for the device. The node_type is used to create the names in the /dev
hierarchy that refers to the names in the /devices hierarchy. See disks (1M),
ports (1M), tapes (1M), devlinks (1M). Finally flag determines if this is a clone
device or not, and what device class the node belongs to.

RETURN VALUES ddi_create_minor_node() returns:
DDI_SUCCESS Was able to allocate memory, create the minor data structure,

and place it into the linked list of minor devices for this
driver.

DDI_FAILURE Minor node creation failed.

Last modified 13 Oct 1998 SunOS 5.8 261

ddi_create_minor_node(9F) Kernel Functions for Drivers

EXAMPLES EXAMPLE 1 create a data structure describing a minor device with minor number of 0

The following example creates a data structure describing a minor device called
foo which has a minor number of 0. It is of type DDI_NT_BLOCK(a block device)
and it is not a clone device.

ddi_create_minor_node(dip, "foo", S_IFBLK, 0, DDI_NT_BLOCK, 0);

SEE ALSO add_drv (1M), devlinks (1M), disks (1M), drvconfig (1M), ports (1M),
tapes (1M), attach (9E), ddi_remove_minor_node (9F)

Writing Device Drivers

262 SunOS 5.8 Last modified 13 Oct 1998

Kernel Functions for Drivers ddi_device_copy(9F)

NAME ddi_device_copy – copy data from one device register to another device register

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_device_copy (ddi_acc_handle_t src_handle, caddr_t src_addr, ssize_t src_advcnt,
ddi_acc_handle_t dest_handle, caddr_t dest_addr, ssize_t dest_advcnt, size_t bytecount,
uint_t dev_datasz);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS src_handle The data access handle of the source device.

src_addr Base data source address.

src_advcnt Number of dev_datasz units to advance on every access.

dest_handle The data access handle of the destination device.

dest_addr Base data destination address.

dest_advcnt Number of dev_datasz units to advance on every access.

bytecount Number of bytes to transfer.

dev_datasz The size of each data word. Possible values are defined as:

DDI_DATA_SZ01_ACC 1 byte data size

DDI_DATA_SZ02_ACC 2 bytes data size

DDI_DATA_SZ04_ACC 4 bytes data size

DDI_DATA_SZ08_ACC 8 bytes data size

DESCRIPTION ddi_device_copy() copies bytecount bytes from the source address, src_addr,
to the destination address, dest_addr. The attributes encoded in the access
handles, src_handle and dest_handle, govern how data is actually copied from
the source to the destination. Only matching data sizes between the source and
destination are supported.

Data will automatically be translated to maintain a consistent view between the
source and the destination. The translation may involve byte-swapping if the
source and the destination devices have incompatible endian characteristics.

The src_advcnt and dest_advcnt arguments specifies the number of dev_datasz
units to advance with each access to the device addresses. A value of 0 will use
the same source and destination device address on every access. A positive
value increments the corresponding device address by certain number of data

Last modified 15 Nov 1996 SunOS 5.8 263

ddi_device_copy(9F) Kernel Functions for Drivers

size units in the next access. On the other hand, a negative value decrements
the device address.

The dev_datasz argument determines the size of the data word on each access.
The data size must be the same between the source and destination.

RETURN VALUES ddi_device_copy() returns:
DDI_SUCCESS Successfully transferred the data.

DDI_FAILURE The byte count is not a multiple dev_datasz.

CONTEXT ddi_device_copy() can be called from user, kernel, or interrupt context.

SEE ALSO ddi_regs_map_free (9F), ddi_regs_map_setup (9F)

Writing Device Drivers

264 SunOS 5.8 Last modified 15 Nov 1996

Kernel Functions for Drivers ddi_device_zero(9F)

NAME ddi_device_zero – zero fill the device

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_device_zero (ddi_acc_handle_t handle, caddr_t dev_addr, size_t bytecount,
ssize_t dev_advcnt, uint_t dev_datasz);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS handle The data access handle returned from setup calls, such as
ddi_regs_map_setup (9F).

dev_addr Beginning of the device address.

bytecount Number of bytes to zero.

dev_advcnt Number of dev_datasz units to advance on every access.

dev_datasz The size of each data word. Possible values are defined as:

DDI_DATA_SZ01_ACC 1 byte data size

DDI_DATA_SZ02_ACC 2 bytes data size

DDI_DATA_SZ04_ACC 4 bytes data size

DDI_DATA_SZ08_ACC 8 bytes data size

DESCRIPTION ddi_device_zero() function fills the given, bytecount, number of byte of
zeroes to the device register or memory.

The dev_advcnt argument determines the value of the device address, dev_addr,
on each access. A value of 0 will use the same device address, dev_addr, on every
access. A positive value increments the device address in the next access while
a negative value decrements the address. The device address is incremented
and decremented in dev_datasz units.

The dev_datasz argument determines the size of data word on each access.

RETURN VALUES ddi_device_zero() returns:
DDI_SUCCESS Successfully zeroed the data.

DDI_FAILURE The byte count is not a multiple of dev_datasz.

CONTEXT ddi_device_zero() can be called from user, kernel, or interrupt context.

SEE ALSO ddi_regs_map_free (9F), ddi_regs_map_setup (9F)

Writing Device Drivers

Last modified 25 Sep 1996 SunOS 5.8 265

ddi_devid_compare(9F) Kernel Functions for Drivers

NAME ddi_devid_compare, ddi_devid_free, ddi_devid_init, ddi_devid_register,
ddi_devid_sizeof, ddi_devid_unregister, ddi_devid_valid – Kernel interfaces for
device ids

SYNOPSIS int ddi_devid_compare (ddi_devid_t devid1, ddi_devid_t devid2);

size_t ddi_devid_sizeof (ddi_devid_t devid);

int ddi_devid_init (dev_info_t *dip, ushort_t devid_type, ushort_t nbytes, void *id,
ddi_devid_t *retdevid);

void ddi_devid_free (ddi_devid_t devid);

int ddi_devid_register (dev_info_t *dip, ddi_devid_t devid);

void ddi_devid_unregister (dev_info_t *dip);

int ddi_devid_valid (ddi_devid_t devid);

PARAMETERS devid The device id address.

devid1 The first of two device id addresses to be compared calling
ddi_devid_compare() .

devid2 The second of two device id addresses to be compared
calling ddi_devid_compare() .

dip A dev_info pointer, which identifies the device.

devid_type The following device id types may be accepted by the
ddi_devid_init() function:

DEVID_SCSI3_WWN World Wide Name associated
with SCSI-3 devices.

DEVID_SCSI_SERIAL Vendor ID and serial number
associated with a SCSI device.
Note: This may only be used if
known to be unique; otherwise
a fabricated device id must
be used.

DEVID_ENCAP Device ID of another device.
This is for layered device
driver usage.

DEVID_FAB Fabricated device ID .

266 SunOS 5.8 Last modified 26 Nov 1996

Kernel Functions for Drivers ddi_devid_compare(9F)

nbytes The length in bytes of device ID .

retdevid The return address of the device ID created by
ddi_devid_init() .

DESCRIPTION The following routines are used to provide unique identifiers, device ID s, for
devices. Specifically, kernel modules use these interfaces to identify and locate
devices, independent of the device’s physical connection or its logical device
name or number.

ddi_devid_compare() compares two device ID s byte-by-byte and
determines both equality and sort order.

ddi_devid_sizeof() returns the number of bytes allocated for the passed in
device ID (devid).

ddi_devid_init() allocates memory and initializes the opaque device ID
structure. This function does not store the devid . If the device id is not derived
from the device’s firmware, it is the driver’s responsibility to store the devid
on some reliable store. When a devid_type of either DEVID_SCSI3_WWN,
DEVID_SCSI_SERIAL , or DEVID_ENCAPis accepted, an array of bytes (id)
must be passed in (nbytes).

When the devid_type DEVID_FAB is used, the array of bytes (id) must be NULL
and the length (nbytes) must be zero. The fabricated device ids, DEVID_FABwill
be initialized with the machine’s host id and a timestamp.

Drivers must free the memory allocated by this function, using the
ddi_devid_free() function.

ddi_devid_free() frees the memory allocated by the ddi_devid_init()
function.

ddi_devid_register() registers the device ID address (devid) with the DDI
framework, associating it with the dev_info passed in (dip). The drivers must
register device ID s at attach time. See attach (9E) .

ddi_devid_unregister() removes the device ID address from the
dev_info passed in (dip). Drivers must use this function to unregister the
device ID when devices are being detached. This function does not free the space
allocated for the device ID . The driver must free the space allocated for the
device ID , using the ddi_devid_free() function. See detach (9E) .

ddi_devid_valid() validates the device ID (devid) passed in. The driver
must use this function to validate any fabricated device ID that has been
stored on a device.

RETURN VALUES ddi_devid_init() returns the following values:

Last modified 26 Nov 1996 SunOS 5.8 267

ddi_devid_compare(9F) Kernel Functions for Drivers

DDI_SUCCESS Success.

DDI_FAILURE Out of memory. An invalid devid_type was passed in.

ddi_devid_valid() returns the following values:
DDI_SUCCESS Valid device ID .

DDI_FAILURE Invalid device ID .

ddi_devid_register() returns the following values:
DDI_SUCCESS Success.

DDI_FAILURE Failure. The device ID is already registered or the device
ID is invalid.

ddi_devid_valid() returns the following values:
DDI_SUCCESS Valid device ID .

DDI_FAILURE Invalid device ID .

ddi_devid_compare() returns the following values:
-1 The device ID pointed to by devid1 is less than the device ID pointed

to by devid2 .

0 The device ID pointed to by devid1 is equal to the device ID pointed
to by devid2 .

1 The device ID pointed to by devid1 is greater than the device ID
pointed to by devid2 .

ddi_devid_sizeof() returns the size of the devid in numbers of bytes.

CONTEXT These functions can be called from a user context only.

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO devid_compare (3DEVID) , devid_deviceid_to_nmlist (3DEVID)
, devid_free (3DEVID) , devid_free_nmlist (3DEVID) ,
devid_get (3DEVID) , devid_get_minor_name (3DEVID) ,

268 SunOS 5.8 Last modified 26 Nov 1996

Kernel Functions for Drivers ddi_devid_compare(9F)

devid_sizeof (3DEVID) , libdevid (3LIB) , attributes (5) , attach (9E)
, detach (9E)

Writing Device Drivers

Last modified 26 Nov 1996 SunOS 5.8 269

ddi_dev_is_needed(9F) Kernel Functions for Drivers

NAME ddi_dev_is_needed – Inform the system that a device’s component is required

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dev_is_needed (dev_info_t *dip, int component, int level);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

PARAMETERS dip Pointer to the device’s dev_info structure.

component Component of the driver which is needed.

level Power level at which the component is needed.

DESCRIPTION The ddi_dev_is_needed() function is obsolete and will be removed in a
future release. It is recommended that device drivers use pm_raise_power (9F)
and pm_lower_power (9F).

The ddi_dev_is_needed() function informs the system that a device
component is needed at the specified power level. The level argument must be
non-zero.

This function sets a component to the required level and sets all devices which
depend on this to their normal power levels. If component 0 of a device using
original Power Management interfaces (calls pm_create_components (9F)) is
at power level 0, the ddi_dev_is_needed() call will result in component 0
being returned to normal power and the device being resumed via attach (9E)
before ddi_dev_is_needed() returns.

The state of the device should be examined before each physical access. The
ddi_dev_is_needed() function should be called to set a component to the
required power level if the operation to be performed requires the component
to be at a power level other than its current level.

The ddi_dev_is_needed() function might cause re-entry of the
driver. Deadlock may result if driver locks are held across the call to
ddi_dev_is_needed() .

RETURN VALUES The ddi_dev_is_needed() function returns:
DDI_SUCCESS Power successfully set to the requested level.

DDI_FAILURE An error occurred.

EXAMPLES EXAMPLE 1 disk driver code

A hypothetical disk driver might include this code:

static int
xxdisk_spun_down(struct xxstate *xsp)

270 SunOS 5.8 Last modified 15 Oct 1999

Kernel Functions for Drivers ddi_dev_is_needed(9F)

{
return (xsp->power_level[DISK_COMPONENT] < POWER_SPUN_UP);

}
static int
xxdisk_strategy(struct buf *bp)
{

. . .

mutex_enter(&xxstate_lock);
/*

* Since we have to drop the mutex, we have to do this in a loop
* in case we get preempted and the device gets taken away from
* us again
*/

while (device_spun_down(sp)) {
mutex_exit(&xxstate_lock);
if (ddi_dev_is_needed(xsp->mydip,

XXDISK_COMPONENT, XXPOWER_SPUN_UP) != DDI_SUCCESS) {
bioerror(bp,EIO);
biodone(bp);
return (0);

}
mutex_enter(&xxstate_lock);

}
xsp->device_busy++;
mutex_exit(&xxstate_lock);

. . .

}

CONTEXT This function can be called from user or kernel context.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface stability Obsolete

SEE ALSO pm(7D), pm-components (9), attach (9E), detach (9E), power (9E),
pm_busy_components (9F), pm_create_components (9F),
pm_destroy_components (9F), pm_idle_component (9F)

Writing Device Drivers

Last modified 15 Oct 1999 SunOS 5.8 271

ddi_dev_is_sid(9F) Kernel Functions for Drivers

NAME ddi_dev_is_sid – tell whether a device is self-identifying

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dev_is_sid (dev_info_t *dip);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dip A pointer to the device’s dev_info structure.

DESCRIPTION ddi_dev_is_sid() tells the caller whether the device described by dip is
self-identifying, that is, a device that can unequivocally tell the system that it
exists. This is useful for drivers that support both a self-identifying as well as a
non-self-identifying variants of a device (and therefore must be probed).

RETURN VALUES DDI_SUCCESS Device is self-identifying.

DDI_FAILURE Device is not self-identifying.

CONTEXT ddi_dev_is_sid() can be called from user or interrupt context.

EXAMPLES EXAMPLE 1

1 ...
2 int
3 bz_probe(dev_info_t *dip)
4 {
5 ...
6 if (ddi_dev_is_sid(dip) == DDI_SUCCESS) {
7 /*
8 * This is the self-identifying version (OpenBoot).
9 * No need to probe for it because we know it is there.

10 * The existence of dip && ddi_dev_is_sid() proves this.
11 */
12 return (DDI_PROBE_DONTCARE);
13 }
14 /*
15 * Not a self-identifying variant of the device. Now we have to
16 * do some work to see whether it is really attached to the
17 * system.
18 */
19 ...

SEE ALSO probe (9E) Writing Device Drivers

272 SunOS 5.8 Last modified 24 Oct 1991

Kernel Functions for Drivers ddi_dev_nintrs(9F)

NAME ddi_dev_nintrs – return the number of interrupt specifications a device has

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dev_nintrs (dev_info_t *dip, int *resultp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_dev_nintrs() returns the number of interrupt specifications a device
has in * resultp.

RETURN VALUES ddi_dev_nintrs() returns:
DDI_SUCCESS A successful return. The number of interrupt specifications

that the device has is set in resultp.

DDI_FAILURE The device has no interrupt specifications.

CONTEXT ddi_dev_nintrs() can be called from user or interrupt context.

SEE ALSO isa (4), sbus (4), ddi_add_intr (9F), ddi_dev_nregs (9F),
ddi_dev_regsize (9F)

Writing Device Drivers

Last modified 2 Dec 1993 SunOS 5.8 273

ddi_dev_nregs(9F) Kernel Functions for Drivers

NAME ddi_dev_nregs – return the number of register sets a device has

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dev_nregs (dev_info_t *dip, int *resultp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dip A pointer to the device’s dev_info structure.

resultp Pointer to an integer that holds the number of register sets
on return.

DESCRIPTION The function ddi_dev_nregs() returns the number of sets of registers the
device has.

RETURN VALUES ddi_dev_nregs() returns:
DDI_SUCCESS A successful return. The number of register sets is returned

in resultp.

DDI_FAILURE The device has no registers.

CONTEXT ddi_dev_nregs() can be called from user or interrupt context.

SEE ALSO ddi_dev_nintrs (9F), ddi_dev_regsize (9F)

Writing Device Drivers

274 SunOS 5.8 Last modified 24 Oct 1991

Kernel Functions for Drivers ddi_dev_regsize(9F)

NAME ddi_dev_regsize – return the size of a device’s register

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dev_regsize (dev_info_t *dip, uint_t rnumber, off_t *resultp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dip A pointer to the device’s dev_info structure.

rnumber The ordinal register number. Device registers are associated
with a dev_info and are enumerated in arbitrary sets
from 0 on up. The number of registers a device has can be
determined from a call to ddi_dev_nregs (9F).

resultp Pointer to an integer that holds the size, in bytes, of the
described register (if it exists).

DESCRIPTION ddi_dev_regsize() returns the size, in bytes, of the device register specified
by dip and rnumber. This is useful when, for example, one of the registers is a
frame buffer with a varying size known only to its proms.

RETURN VALUES ddi_dev_regsize() returns:
DDI_SUCCESS A successful return. The size, in bytes, of the specified

register, is set in resultp.

DDI_FAILURE An invalid (nonexistent) register number was specified.

CONTEXT ddi_dev_regsize() can be called from user or interrupt context.

SEE ALSO ddi_dev_nintrs (9F), ddi_dev_nregs (9F)

Writing Device Drivers

Last modified 24 Oct 1991 SunOS 5.8 275

ddi_dev_report_fault(9F) Kernel Functions for Drivers

NAME ddi_dev_report_fault – Report a hardware failure

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

void ddi_dev_report_fault (dev_info_t *dip, ddi_fault_impact_t impact,
ddi_fault_location_t location, const char *message);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

PARAMETERS dip Pointer to the driver’s dev_info structure to which the
fault report relates. (Normally the caller’s own dev_info
pointer).

impact One of a set of enumerated values indicating the impact of
the fault on the device’s ability to provide normal service.

location One of a set of enumerated values indicating the location of
the fault, relative to the hardware controlled by the driver
specified by dip .

message Text of the message describing the fault being reported.

DESCRIPTION This function provides a standardized mechanism through which device drivers
can report hardware faults. Use of this reporting mechanism enables systems
equipped with a fault management system to respond to faults discovered by a
driver. On a suitably equipped system, this might include automatic failover to
an alternative device and/or scheduling replacement of the faulty hardware.

The driver must indicate the impact of the fault being reported on its ability to
provide service by passing one of the following values for the impact parameter:
DDI_SERVICE_LOST

Indicates a total loss of service. The driver is unable to implement the
normal functions of its hardware.

DDI_SERVICE_DEGRADED
The driver is unable to provide normal service, but can provide a partial or
degraded level of service. The driver may have to make repeated attempts
to perform an operation before it succeeds, or it may be running at less
than its configured speed. A driver may use this value to indicate that
an alternative device should be used if available, but that it can continue
operation if no alternative exists.

DDI_SERVICE_UNAFFECTED
The service provided by the device is currently unaffected by the reported
fault. This value may be used to report recovered errors for predictive
failure analysis.

276 SunOS 5.8 Last modified 13 August 1999

Kernel Functions for Drivers ddi_dev_report_fault(9F)

DDI_SERVICE_RESTORED
The driver has resumed normal service, following a previous report that
service was lost or degraded. This message implies that any previously
reported fault condition no longer exists.

The location parameter should be one of the following values:
DDI_DATAPATH_FAULT

The fault lies in the datapath between the driver and the device. The
device may be unplugged, or a problem may exist in the bus on which the
device resides. This value is appropriate if the device is not responding
to accesses, (for example, the device may not be present) or if a call to
ddi_check_acc_handle (9F) returns DDI_FAILURE .

DDI_DEVICE_FAULT
The fault lies in the device controlled by the driver. This value is appropriate
if the device returns an error from a selftest function, or if the driver is able
to determine that device is present and accessible, but is not functioning
correctly.

DDI_EXTERNAL_FAULT
The fault is external to the device. For example, an Ethernet driver would
use this value when reporting a cable fault.

If a device returns detectably bad data during normal operation (an
"impossible" value in a register or DMA status area, for example), the driver
should check the associated handle using ddi_check_acc_handle (9F)
or ddi_check_dma_handle (9F) before reporting the fault. If
the fault is associated with the handle, the driver should specify
DDI_DATAPATH_FAULTrather than DDI_DEVICE_FAULT. As a consequence
of this call, the device’s state may be updated to reflect the level of service
currently available. See ddi_get_devstate (9F).

Note that if a driver calls ddi_get_devstate (9F) and discovers that its
device is down, a fault should not be reported- the device is down as the
result of a fault that has already been reported. Additionally, a driver should
avoid incurring or reporting additional faults when the device is already
known to be unusable. The ddi_dev_report_fault() call should only
be used to report hardware (device) problems and should not be used
to report purely software problems such as memory (or other resource)
exhaustion.

EXAMPLES An Ethernet driver receives an error interrupt from its device if various fault
conditions occur. The driver must read an error status register to determine the
nature of the fault, and report it appropriately:

Last modified 13 August 1999 SunOS 5.8 277

ddi_dev_report_fault(9F) Kernel Functions for Drivers

static int
xx_error_intr(xx_soft_state *ssp)
{

...
error_status = ddi_get32(ssp->handle, &ssp->regs->xx_err_status);
if (ddi_check_acc_handle(ssp->handle) != DDI_SUCCESS) {

ddi_dev_report_fault(ssp->dip, DDI_SERVICE_LOST,
DDI_DATAPATH_FAULT, "register access fault");

return DDI_INTR_UNCLAIMED;
}
if (ssp->error_status & XX_CABLE_FAULT) {

ddi_dev_report_fault(ssp->dip, DDI_SERVICE_LOST,
DDI_EXTERNAL_FAULT, "cable fault")

return DDI_INTR_CLAIMED;
}
if (ssp->error_status & XX_JABBER) {

ddi_dev_report_fault(ssp->dip, DDI_SERVICE_DEGRADED,
DDI_EXTERNAL_FAULT, "jabbering detected")

return DDI_INTR_CLAIMED;
}
...

}

CONTEXT The ddi_dev_report_fault() function may be called from user, kernel,
or interrupt context.

SEE ALSO ddi_check_acc_handle (9F), ddi_check_dma_handle (9F),
ddi_get_devstate (9F)

278 SunOS 5.8 Last modified 13 August 1999

Kernel Functions for Drivers ddi_dma_addr_bind_handle(9F)

NAME ddi_dma_addr_bind_handle – binds an address to a DMA handle

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_addr_bind_handle (ddi_dma_handle_t handle, struct as *as, caddr_t addr,
size_t len, uint_t flags, int (*callback) (caddr_t) , caddr_t arg, ddi_dma_cookie_t *cookiep,
uint_t *ccountp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS handle The DMA handle previously allocated by a call to
ddi_dma_alloc_handle (9F).

as A pointer to an address space structure. This parameter
should be set to NULL, which implies kernel address space.

addr Virtual address of the memory object.

len Length of the memory object in bytes.

flags Valid flags include:

DDI_DMA_WRITE Transfer direction is from
memory to I/O.

DDI_DMA_READ Transfer direction is from I/O
to memory.

DDI_DMA_RDWR Both read and write.

DDI_DMA_REDZONE Establish an MMU redzone at
end of the object.

DDI_DMA_PARTIAL Partial resource allocation.

DDI_DMA_CONSISTENT Nonsequential, random, and
small block transfers.

DDI_DMA_STREAMING Sequential, unidirectional,
block-sized, and block-aligned
transfers.

callback The address of a function to call back later if resources are
not currently available. The following special function
addresses may also be used.

DDI_DMA_SLEEP Wait until resources are
available.

Last modified 26 Jul 1996 SunOS 5.8 279

ddi_dma_addr_bind_handle(9F) Kernel Functions for Drivers

DDI_DMA_DONTWAIT Do not wait until resources are
available and do not schedule
a callback.

arg Argument to be passed to the callback function, callback, if
such a function is specified.

cookiep A pointer to the first ddi_dma_cookie (9S) structure.

ccountp Upon a successful return, ccountp points to a value
representing the number of cookies for this DMA object.

DESCRIPTION ddi_dma_addr_bind_handle() allocates DMA resources for a memory
object such that a device can perform DMA to or from the object. DMA
resources are allocated considering the device’s DMA attributes as expressed by
ddi_dma_attr (9S) (see ddi_dma_alloc_handle (9F)).

ddi_dma_addr_bind_handle() fills in the first DMA cookie pointed to by
cookiep with the appropriate address, length, and bus type. * ccountp is set to
the number of DMA cookies representing this DMA object. Subsequent DMA
cookies must be retrieved by calling ddi_dma_nextcookie (9F) the number of
times specified by * countp-1.

When a DMA transfer completes, the driver frees up system DMA resources by
calling ddi_dma_unbind_handle (9F).

The flags argument contains information for mapping routines.
DDI_DMA_WRITE, DDI_DMA_READ, DDI_DMA_RDWR

These flags describe the intended direction of the DMA transfer.

DDI_DMA_STREAMING
This flag should be set if the device is doing sequential, unidirectional,
block-sized, and block-aligned transfers to or from memory. The
alignment and padding constraints specified by the minxfer and
burstsizes fields in the DMA attribute structure, ddi_dma_attr (9S)
(see ddi_dma_alloc_handle (9F)) is used to allocate the most effective
hardware support for large transfers.

DDI_DMA_CONSISTENT
This flag should be set if the device accesses memory randomly, or if
synchronization steps using ddi_dma_sync (9F) need to be as efficient as
possible. I/O parameter blocks used for communication between a device
and a driver should be allocated using DDI_DMA_CONSISTENT.

DDI_DMA_REDZONE
If this flag is set, the system attempts to establish a protected red zone after
the object. The DMA resource allocation functions do not guarantee the

280 SunOS 5.8 Last modified 26 Jul 1996

Kernel Functions for Drivers ddi_dma_addr_bind_handle(9F)

success of this request as some implementations may not have the hardware
ability to support a red zone.

DDI_DMA_PARTIAL
Setting this flag indicates the caller can accept resources for part of the
object. That is, if the size of the object exceeds the resources available, only
resources for a portion of the object are allocated. The system indicates this
condition by returning status DDI_DMA_PARTIAL_MAP. At a later point, the
caller can use ddi_dma_getwin (9F) to change the valid portion of the
object for which resources are allocated. If resources were allocated for only
part of the object, ddi_dma_addr_bind_handle() returns resources for
the first DMAwindow. Even when DDI_DMA_PARTIALis set, the system
may decide to allocate resources for the entire object (less overhead) in
which case DDI_DMA_MAPPEDis returned.

The callback function callback indicates how a caller wants to handle
the possibility of resources not being available. If callback is set to
DDI_DMA_DONTWAIT, the caller does not care if the allocation fails, and can
handle an allocation failure appropriately. If callback is set to DDI_DMA_SLEEP,
the caller wishes to have the allocation routines wait for resources to become
available. If any other value is set and a DMA resource allocation fails,
this value is assumed to be the address of a function to be called when
resources become available. When the specified function is called, arg is
passed to it as an argument. The specified callback function must return
either DDI_DMA_CALLBACK_RUNOUTor DDI_DMA_CALLBACK_DONE.
DDI_DMA_CALLBACK_RUNOUTindicates that the callback function attempted
to allocate DMA resources but failed. In this case, the callback function is put
back on a list to be called again later. DDI_DMA_CALLBACK_DONEindicates that
either the allocation of DMA resources was successful or the driver no longer
wishes to retry.

The callback function is called in interrupt context. Therefore, only system
functions accessible from interrupt context are be available. The callback
function must take whatever steps are necessary to protect its critical resources,
data structures, queues, and so on.

RETURN VALUES ddi_dma_addr_bind_handle() returns:
DDI_DMA_MAPPED Successfully allocated resources for the entire

object.

DDI_DMA_PARTIAL_MAP Successfully allocated resources for a part of the
object. This is acceptable when partial transfers
are permitted by setting the DDI_DMA_PARTIAL
flag in flags.

Last modified 26 Jul 1996 SunOS 5.8 281

ddi_dma_addr_bind_handle(9F) Kernel Functions for Drivers

DDI_DMA_INUSE Another I/O transaction is using the DMA
handle.

DDI_DMA_NORESOURCES No resources are available at the present time.

DDI_DMA_NOMAPPING The object cannot be reached by the device
requesting the resources.

DDI_DMA_TOOBIG The object is too big. A request of this size can
never be satisfied on this particular system. The
maximum size varies depending on machine and
configuration.

CONTEXT ddi_dma_addr_bind_handle() can be called from user, kernel, or interrupt
context, except when callback is set to DDI_DMA_SLEEP, in which case it can only
be called from user or kernel context.

SEE ALSO ddi_dma_alloc_handle (9F), ddi_dma_free_handle (9F),
ddi_dma_getwin (9F), ddi_dma_mem_alloc (9F),
ddi_dma_mem_free (9F), ddi_dma_nextcookie (9F), ddi_dma_sync (9F),
ddi_dma_unbind_handle (9F), ddi_dma_attr (9S), ddi_dma_cookie (9S)

Writing Device Drivers

NOTES If the driver permits partial mapping with the DDI_DMA_PARTIALflag,
the number of cookies in each window may exceed the size of the device’s
scatter/gather list as specified in the dma_attr_sgllen field in the
ddi_dma_attr (9S) structure. In this case, each set of cookies comprising a DMA
window will satisfy the DMA attributes as described in the ddi_dma_attr (9S)
structure in all aspects. The driver should set up its DMA engine and perform
one transfer for each set of cookies sufficient for its scatter/gather list, up to
the number of cookies for this window, before advancing to the next window
using ddi_dma_getwin (9F).

282 SunOS 5.8 Last modified 26 Jul 1996

Kernel Functions for Drivers ddi_dma_addr_setup(9F)

NAME ddi_dma_addr_setup – easier DMA setup for use with virtual addresses

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_addr_setup (dev_info_t *dip, struct as *as, caddr_t addr, size_t len, uint_t
flags, int (*waitfp) (caddr_t),, caddr_t arg, ddi_dma_lim_t * lim, ddi_dma_handle_t *handlep);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dip A pointer to the device’s dev_info structure.

as A pointer to an address space structure. Should be set to
NULL, which implies kernel address space.

addr Virtual address of the memory object.

len Length of the memory object in bytes.

flags Flags that would go into the ddi_dma_req structure (see
ddi_dma_req (9S)).

waitfp The address of a function to call back later if resources
aren’t available now. The special function addresses
DDI_DMA_SLEEPand DDI_DMA_DONTWAIT(see
ddi_dma_req (9S)) are taken to mean, respectively, wait
until resources are available or, do not wait at all and do not
schedule a callback.

arg Argument to be passed to a callback function, if such a
function is specified.

lim A pointer to a DMA limits structure for this device (see
ddi_dma_lim_sparc (9S) or ddi_dma_lim_x86 (9S)). If
this pointer is NULL, a default set of DMA limits is assumed.

handlep Pointer to a DMA handle. See ddi_dma_setup (9F) for a
discussion of handle.

DESCRIPTION ddi_dma_addr_setup() is an interface to ddi_dma_setup (9F). It uses
its arguments to construct an appropriate ddi_dma_req structure and calls
ddi_dma_setup (9F) with it.

RETURN VALUES See ddi_dma_setup (9F) for the possible return values for this function.

CONTEXT ddi_dma_addr_setup() can be called from user or interrupt context, except
when waitfp is set to DDI_DMA_SLEEP, in which case it can be called from
user context only.

Last modified 15 Nov 1996 SunOS 5.8 283

ddi_dma_addr_setup(9F) Kernel Functions for Drivers

SEE ALSO ddi_dma_buf_setup (9F), ddi_dma_free (9F), ddi_dma_htoc (9F),
ddi_dma_setup (9F), ddi_dma_sync (9F), ddi_iopb_alloc (9F),
ddi_dma_lim_sparc (9S), ddi_dma_lim_IA (9S), ddi_dma_req (9S)

Writing Device Drivers

284 SunOS 5.8 Last modified 15 Nov 1996

Kernel Functions for Drivers ddi_dma_alloc_handle(9F)

NAME ddi_dma_alloc_handle – allocate DMA handle

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_alloc_handle (dev_info_t *dip, ddi_dma_attr_t *attr, int (*callback)
(caddr_t), caddr_t arg, ddi_dma_handle_t *handlep);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dip Pointer to the device’s dev_info structure.

attr Pointer to a DMA attribute structure for this device (see
ddi_dma_attr (9S)).

callback The address of a function to call back later if resources aren’t
available now. The following special function addresses
may also be used.

DDI_DMA_SLEEP Wait until resources are
available.

DDI_DMA_DONTWAIT Do not wait until resources are
available and do not schedule
a callback.

arg Argument to be passed to a callback function, if such a
function is specified.

handlep Pointer to the DMA handle to be initialized.

DESCRIPTION ddi_dma_alloc_handle() allocates a new DMA handle. A DMA handle
is an opaque object used as a reference to subsequently allocated DMA
resources. ddi_dma_alloc_handle() accepts as parameters the device
information referred to by dip and the device’s DMA attributes described by a
ddi_dma_attr (9S) structure. A successful call to ddi_dma_alloc_handle()
fills in the value pointed to by handlep. A DMA handle must only be used by
the device for which it was allocated and is only valid for one I/O transaction
at a time.

The callback function, callback, indicates how a caller wants to handle
the possibility of resources not being available. If callback is set to
DDI_DMA_DONTWAIT, then the caller does not care if the allocation fails,
and can handle an allocation failure appropriately. If callback is set to
DDI_DMA_SLEEP, then the caller wishes to have the the allocation routines
wait for resources to become available. If any other value is set, and a DMA
resource allocation fails, this value is assumed to be a function to call at a later

Last modified 22 Sep 1996 SunOS 5.8 285

ddi_dma_alloc_handle(9F) Kernel Functions for Drivers

time when resources may become available. When the specified function is
called, it is passed arg as an argument. The specified callback function must
return either DDI_DMA_CALLBACK_RUNOUTor DDI_DMA_CALLBACK_DONE.
DDI_DMA_CALLBACK_RUNOUTindicates that the callback routine attempted to
allocate DMA resources but failed to do so, in which case the callback function is
put back on a list to be called again later. DDI_DMA_CALLBACK_DONEindicates
either success at allocating DMA resources or the driver no longer wishes to retry.

The callback function is called in interrupt context. Therefore, only system
functions that are accessible from interrupt context is available. The callback
function must take whatever steps necessary to protect its critical resources,
data structures, queues, and so forth.

When a DMA handle is no longer needed, ddi_dma_free_handle (9F) must be
called to free the handle.

RETURN VALUES ddi_dma_alloc_handle() returns:
DDI_SUCCESS Successfully allocated a new DMA handle.

DDI_DMA_BADATTR The attributes specified in the ddi_dma_attr (9S)
structure make it impossible for the system to
allocate potential DMA resources.

DDI_DMA_NORESOURCES No resources are available.

CONTEXT ddi_dma_alloc_handle() can be called from user, kernel, or interrupt
context, except when callback is set to DDI_DMA_SLEEP, in which case it can be
called from user or kernel context only.

SEE ALSO ddi_dma_addr_bind_handle (9F), ddi_dma_buf_bind_handle (9F),
ddi_dma_burstsizes (9F), ddi_dma_free_handle (9F),
ddi_dma_unbind_handle (9F), ddi_dma_attr (9S)

Writing Device Drivers

286 SunOS 5.8 Last modified 22 Sep 1996

Kernel Functions for Drivers ddi_dma_buf_bind_handle(9F)

NAME ddi_dma_buf_bind_handle – binds a system buffer to a DMA handle

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_buf_bind_handle (ddi_dma_handle_t handle, struct buf *bp, uint_t flags,
int (*callback)(caddr_t), caddr_t arg, ddi_dma_cookie_t *cookiep, uint_t *ccountp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS handle The DMA handle previously allocated by a call to
ddi_dma_alloc_handle (9F).

bp A pointer to a system buffer structure (see buf (9S)).

flags Valid flags include:

DDI_DMA_WRITE Transfer direction is from
memory to I/O

DDI_DMA_READ Transfer direction is from I/O
to memory

DDI_DMA_RDWR Both read and write

DDI_DMA_REDZONE Establish an MMU redzone at
end of the object.

DDI_DMA_PARTIAL Partial resource allocation

DDI_DMA_CONSISTENT Nonsequential, random, and
small block transfers.

DDI_DMA_STREAMING Sequential, unidirectional,
block-sized, and block-aligned
transfers.

callback The address of a function to call back later if resources are
not available now. The following special function addresses
may also be used.

DDI_DMA_SLEEP Wait until resources are
available.

DDI_DMA_DONTWAIT Do not wait until resources are
available and do not schedule
a callback.

Last modified 27 Jul 1996 SunOS 5.8 287

ddi_dma_buf_bind_handle(9F) Kernel Functions for Drivers

arg Argument to be passed to the callback function, callback, if
such a function is specified.

cookiep A pointer to the first ddi_dma_cookie (9S) structure.

ccountp Upon a successful return, ccountp points to a value
representing the number of cookies for this DMA object.

DESCRIPTION ddi_dma_buf_bind_handle() allocates DMA resources for a system buffer
such that a device can perform DMA to or from the buffer. DMA resources
are allocated considering the device’s DMA to toattributes as expressed by
ddi_dma_attr (9S) (see ddi_dma_alloc_handle (9F)).

ddi_dma_buf_bind_handle() fills in the first DMA tocookie pointed to by
cookiep with the appropriate address, length, and bus type. * ccountp is set to
the number of DMA cookies representing this DMA object. Subsequent DMA
cookies must be retrieved by calling ddi_dma_nextcookie (9F) * countp-1
times.

When a DMA transfer completes, the driver should free up system DMA to
toresources by calling ddi_dma_unbind_handle (9F).

The flags argument contains information for mapping routines.
DDI_DMA_WRITE, DDI_DMA_READ, DDI_DMA_RDWR

These flags describe the intended direction of the DMA transfer.

DDI_DMA_STREAMING
This flag should be set if the device is doing sequential, unidirectional,
block-sized, and block-aligned transfers to or from memory. The
alignment and padding constraints specified by the minxfer and
burstsizes fields in the DMA attribute structure, ddi_dma_attr (9S)
(see ddi_dma_alloc_handle (9F)) is used to allocate the most effective
hardware support for large transfers.

DDI_DMA_CONSISTENT
This flag should be set if the device accesses memory randomly, or if
synchronization steps using ddi_dma_sync (9F) need to be as efficient as
possible. I/O parameter blocks used for communication between a device
and a driver should be allocated using DDI_DMA_CONSISTENT.

DDI_DMA_REDZONE
If this flag is set, the system attempts to establish a protected red zone after
the object. The DMA resource allocation functions do not guarantee the
success of this request as some implementations may not have the hardware
ability to support a red zone.

DDI_DMA_PARTIAL

288 SunOS 5.8 Last modified 27 Jul 1996

Kernel Functions for Drivers ddi_dma_buf_bind_handle(9F)

Setting this flag indicates the caller can accept resources for part of the
object. That is, if the size of the object exceeds the resources available, only
resources for a portion of the object are allocated. The system indicates this
condition returning status DDI_DMA_PARTIAL_MAP. At a later point, the
caller can use ddi_dma_getwin (9F) to change the valid portion of the
object for which resources are allocated. If resources were allocated for only
part of the object, ddi_dma_addr_bind_handle() returns resources for
the first DMA window. Even when DDI_DMA_PARTIALis set, the system
may decide to allocate resources for the entire object (less overhead) in
which case DDI_DMA_MAPPEDis returned.

The callback function, callback, indicates how a caller wants to handle
the possibility of resources not being available. If callback is set to
DDI_DMA_DONTWAIT, the caller does not care if the allocation fails, and can
handle an allocation failure appropriately. If callback is set to DDI_DMA_SLEEP,
the caller wishes to have the allocation routines wait for resources to become
available. If any other value is set, and a DMA resource allocation fails,
this value is assumed to be the address of a function to call at a later time
when resources may become available. When the specified function is
called, it is passed arg as an argument. The specified callback function must
return either DDI_DMA_CALLBACK_RUNOUTor DDI_DMA_CALLBACK_DONE.
DDI_DMA_CALLBACK_RUNOUTindicates that the callback function attempted to
allocate DMA resources but failed to do so. In this case the callback function is
put back on a list to be called again later. DDI_DMA_CALLBACK_DONEindicates
either a successful allocation of DMA resources or that the driver no longer
wishes to retry.

The callback function is called in interrupt context. Therefore, only system
functions accessible from interrupt context are be available. The callback
function must take whatever steps necessary to protect its critical resources,
data structures, queues, etc.

RETURN VALUES ddi_dma_buf_bind_handle() returns:
DDI_DMA_MAPPED Successfully allocated resources for

the entire object.

DDI_DMA_PARTIAL_MAP Successfully allocated resources for a
part of the object. This is acceptable
when partial transfers are permitted
by setting the DDI_DMA_PARTIAL
flag in flags.

DDI_DMA_INUSE Another I/O transaction is using the
DMA handle.

Last modified 27 Jul 1996 SunOS 5.8 289

ddi_dma_buf_bind_handle(9F) Kernel Functions for Drivers

DDI_DMA_NORESOURCES No resources are available at the
present time.

DDI_DMA_NOMAPPING The object cannot be reached by the
device requesting the resources.

DDI_DMA_TOOBIG The object is too big. A request of
this size can never be satisfied on this
particular system. The maximum size
varies depending on machine and
configuration.

CONTEXT ddi_dma_buf_bind_handle() can be called from user, kernel, or interrupt
context, except when callback is set to DDI_DMA_SLEEP, in which case it can be
called from user or kernel context only.

SEE ALSO ddi_dma_addr_bind_handle (9F), ddi_dma_alloc_handle (9F),
ddi_dma_free_handle (9F), ddi_dma_getwin (9F),
ddi_dma_nextcookie (9F), ddi_dma_sync (9F),
ddi_dma_unbind_handle (9F), buf (9S), ddi_dma_attr (9S),
ddi_dma_cookie (9S)

Writing Device Drivers

NOTES If the driver permits partial mapping with the DDI_DMA_PARTIALflag,
the number of cookies in each window may exceed the size of the device’s
scatter/gather list as specified in the dma_attr_sgllen field in the
ddi_dma_attr (9S) structure. In this case, each set of cookies comprising a DMA
window will satisfy the DMA attributes as described in the ddi_dma_attr (9S)
structure in all aspects. The driver should set up its DMA engine and perform
one transfer for each set of cookies sufficient for its scatter/gather list, up to
the number of cookies for this window, before advancing to the next window
using ddi_dma_getwin (9F).

290 SunOS 5.8 Last modified 27 Jul 1996

Kernel Functions for Drivers ddi_dma_buf_setup(9F)

NAME ddi_dma_buf_setup – easier DMA setup for use with buffer structures

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_buf_setup (dev_info_t *dip, struct buf *bp, uint_t flags, int (*waitfp)
(caddr_t),, caddr_t arg, ddi_dma_lim_t *lim, ddi_dma_handle_t *handlep);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dip A pointer to the device’s dev_info structure.

bp A pointer to a system buffer structure (see buf (9S)).

flags Flags that go into a ddi_dma_req structure (see
ddi_dma_req (9S)).

waitfp The address of a function to call back later if resources
aren’t available now. The special function addresses
DDI_DMA_SLEEPand DDI_DMA_DONTWAIT(see
ddi_dma_req (9S)) are taken to mean, respectively, wait
until resources are available, or do not wait at all and do not
schedule a callback.

arg Argument to be passed to a callback function, if such a
function is specified.

lim A pointer to a DMA limits structure for this device (see
ddi_dma_lim_sparc (9S) or ddi_dma_lim_x86 (9S)). If
this pointer is NULL, a default set of DMA limits is assumed.

handlep Pointer to a DMA handle. See ddi_dma_setup (9F) for a
discussion of handle.

DESCRIPTION ddi_dma_buf_setup() is an interface to ddi_dma_setup (9F). It uses its
arguments to construct an appropriate ddi_dma_req structure and calls
ddi_dma_setup() with it.

RETURN VALUES See ddi_dma_setup (9F) for the possible return values for this function.

CONTEXT ddi_dma_buf_setup() can be called from user or interrupt context, except
when waitfp is set to DDI_DMA_SLEEP, in which case it can be called from
user context only.

SEE ALSO ddi_dma_addr_setup (9F), ddi_dma_free (9F), ddi_dma_htoc (9F),
ddi_dma_setup (9F), ddi_dma_sync (9F), physio (9F), buf (9S),
ddi_dma_lim_sparc (9S), ddi_dma_lim_x86 (9S), ddi_dma_req (9S)

Writing Device Drivers

Last modified 1 Feb 1994 SunOS 5.8 291

ddi_dma_burstsizes(9F) Kernel Functions for Drivers

NAME ddi_dma_burstsizes – find out the allowed burst sizes for a DMA mapping

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_burstsizes (ddi_dma_handle_t handle);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS handle A DMA handle that was filled in by a successful call to
ddi_dma_setup (9F).

DESCRIPTION ddi_dma_burstsizes() returns the allowed burst sizes for a DMA
mapping. This value is derived from the dlim_burstsizes member of the
ddi_dma_lim_sparc (9S) structure, but it shows the allowable burstsizes after
imposing on it the limitations of other device layers in addition to device’s
own limitations.

RETURN VALUES ddi_dma_burstsizes() returns a binary encoded value of the allowable
DMA burst sizes. See ddi_dma_lim_sparc (9S) for a discussion of DMA
burst sizes.

CONTEXT This function can be called from user or interrupt context.

SEE ALSO ddi_dma_devalign (9F), ddi_dma_setup (9F), ddi_dma_lim_sparc (9S),
ddi_dma_req (9S)

Writing Device Drivers

292 SunOS 5.8 Last modified 1 Feb 1994

Kernel Functions for Drivers ddi_dma_coff(9F)

NAME ddi_dma_coff – convert a DMA cookie to an offset within a DMA handle

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_coff (ddi_dma_handle_t handle, ddi_dma_cookie_t *cookiep, off_t *offp);

INTERFACE
LEVEL

Solaris SPARC DDI (Solaris SPARC DDI).

PARAMETERS handle The handle filled in by a call to ddi_dma_setup (9F).

cookiep A pointer to a DMA cookie (see ddi_dma_cookie (9S)) that
contains the appropriate address, length and bus type to be
used in programming the DMA engine.

offp A pointer to an offset to be filled in.

DESCRIPTION ddi_dma_coff() converts the values in DMA cookie pointed to by cookiep
to an offset (in bytes) from the beginning of the object that the DMA handle
has mapped.

ddi_dma_coff() allows a driver to update a DMA cookie with values it reads
from its device’s DMA engine after a transfer completes and convert that value
into an offset into the object that is mapped for DMA.

RETURN VALUES ddi_dma_coff() returns:
DDI_SUCCESS Successfully filled in offp.

DDI_FAILURE Failed to successfully fill in offp.

CONTEXT ddi_dma_coff() can be called from user or interrupt context.

SEE ALSO ddi_dma_setup (9F), ddi_dma_sync (9F), ddi_dma_cookie (9S)

Writing Device Drivers

Last modified 4 Nov 1991 SunOS 5.8 293

ddi_dma_curwin(9F) Kernel Functions for Drivers

NAME ddi_dma_curwin – report current DMA window offset and size

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_curwin (ddi_dma_handle_t handle, off_t *offp, uint_t *lenp);

INTERFACE
LEVEL

Solaris SPARC DDI specific (Solaris SPARC DDI).

PARAMETERS handle The DMA handle filled in by a call to ddi_dma_setup (9F).

offp A pointer to a value which will be filled in with the current
offset from the beginning of the object that is mapped for
DMA.

lenp A pointer to a value which will be filled in with the size,
in bytes, of the current window onto the object that is
mapped for DMA.

DESCRIPTION ddi_dma_curwin() reports the current DMA window offset and size. If a
DMA mapping allows partial mapping, that is if the DDI_DMA_PARTIALflag in
the ddi_dma_req (9S) structure is set, its current (effective) DMA window offset
and size can be obtained by a call to ddi_dma_curwin() .

RETURN VALUES ddi_dma_curwin() returns:
DDI_SUCCESS The current length and offset can be established.

DDI_FAILURE Otherwise.

CONTEXT ddi_dma_curwin() can be called from user or interrupt context.

SEE ALSO ddi_dma_movwin (9F), ddi_dma_setup (9F), ddi_dma_req (9S)

Writing Device Drivers

294 SunOS 5.8 Last modified 7 Nov 1991

Kernel Functions for Drivers ddi_dma_devalign(9F)

NAME ddi_dma_devalign – find DMA mapping alignment and minimum transfer size

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_devalign (ddi_dma_handle_t handle, uint_t *alignment, uint_t *minxfr);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS handle The DMA handle filled in by a successful call to
ddi_dma_setup (9F).

alignment A pointer to an unsigned integer to be filled in with the
minimum required alignment for DMA. The alignment is
guaranteed to be a power of two.

minxfr A pointer to an unsigned integer to be filled in with the
minimum effective transfer size (see ddi_iomin (9F),
ddi_dma_lim_sparc (9S) and ddi_dma_lim_IA (9S)). This
also is guaranteed to be a power of two.

DESCRIPTION ddi_dma_devalign() determines after a successful DMA mapping (see
ddi_dma_setup (9F)) the minimum required data alignment and minimum
DMA transfer size.

RETURN VALUES ddi_dma_devalign() returns:
DDI_SUCCESS The alignment and minxfr values have been filled.

DDI_FAILURE The handle was illegal.

CONTEXT ddi_dma_devalign() can be called from user or interrupt context.

SEE ALSO ddi_dma_setup (9F), ddi_iomin (9F), ddi_dma_lim_sparc (9S),
ddi_dma_lim_IA (9S), ddi_dma_req (9S)

Writing Device Drivers

Last modified 1 Feb 1994 SunOS 5.8 295

ddi_dmae(9F) Kernel Functions for Drivers

NAME ddi_dmae, ddi_dmae_alloc, ddi_dmae_release, ddi_dmae_prog,
ddi_dmae_disable, ddi_dmae_enable, ddi_dmae_stop, ddi_dmae_getcnt,
ddi_dmae_1stparty, ddi_dmae_getlim, ddi_dmae_getattr – system DMA engine
functions

SYNOPSIS int ddi_dmae_alloc (dev_info_t *dip, int chnl, int (*callback) (caddr_t), caddr_t arg);

int ddi_dmae_release (dev_info_t *dip, int chnl);

int ddi_dmae_prog (dev_info_t *dip, struct ddi_dmae_req *dmaereqp, ddi_dma_cookie_t
*cookiep, int chnl);

int ddi_dmae_disable (dev_info_t *dip, int chnl);

int ddi_dmae_enable (dev_info_t *dip, int chnl);

int ddi_dmae_stop (dev_info_t *dip, int chnl);

int ddi_dmae_getcnt (dev_info_t *dip, int chnl, int *countp);

int ddi_dmae_1stparty (dev_info_t *dip, int chnl);

int ddi_dmae_getlim (dev_info_t *dip, ddi_dma_lim_t *limitsp);

int ddi_dmae_getattr (dev_info_t *dip, ddi_dma_attr_t *attrp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dip A dev_info pointer that identifies the device.

chnl A DMA channel number. On ISA or EISA buses this number
must be 0 , 1 , 2 , 3 , 5 , 6 , or 7 .

callback The address of a function to call back later if resources are
not currently available. The following special function
addresses may also be used:

DDI_DMA_SLEEP Wait until resources are
available.

DDI_DMA_DONTWAIT Do not wait until resources are
available and do not schedule
a callback.

arg Argument to be passed to the callback function, if specified.

dmaereqp A pointer to a DMA engine request structure. See
ddi_dmae_req (9S) .

296 SunOS 5.8 Last modified 1 Jan 1997

Kernel Functions for Drivers ddi_dmae(9F)

cookiep A pointer to a ddi_dma_cookie (9S) object, obtained from
ddi_dma_segtocookie (9F) , which contains the address
and count.

countp A pointer to an integer that will receive the count of the
number of bytes not yet transferred upon completion of
a DMA operation.

limitsp A pointer to a DMA limit structure. See
ddi_dma_lim_IA (9S) .

attrp A pointer to a DMA attribute structure. See
ddi_dma_attr (9S) .

DESCRIPTION There are three possible ways that a device can perform DMA engine functions:
Bus master DMA

If the device is capable of acting as a true bus master, then the driver should
program the device’s DMA registers directly and not make use of the DMA
engine functions described here. The driver should obtain the DMA address
and count from ddi_dma_segtocookie (9F) . See ddi_dma_cookie (9S)
for a description of a DMA cookie.

Third-party DMA
This method uses the system DMA engine that is resident on the main
system board. In this model, the device cooperates with the system’s DMA
engine to effect the data transfers between the device and memory. The
driver uses the functions documented here, except ddi_dmae_1stparty()
, to initialize and program the DMA engine. For each DMA data transfer,
the driver programs the DMA engine and then gives the device a command
to initiate the transfer in cooperation with that engine.

First-party DMA
Using this method, the device uses its own DMA bus cycles, but requires a
channel from the system’s DMA engine. After allocating the DMA channel,
the ddi_dmae_1stparty() function may be used to perform whatever
configuration is necessary to enable this mode.

ddi_dmae_alloc() The ddi_dmae_alloc() function is used to acquire a DMA channel of the
system DMA engine. ddi_dmae_alloc() allows only one device at a time to
have a particular DMA channel allocated. It must be called prior to any other
system DMA engine function on a channel. If the device allows the channel to be
shared with other devices, it must be freed using ddi_dmae_release() after
completion of the DMA operation. In any case, the channel must be released
before the driver successfully detaches. See detach (9E) . No other driver may
acquire the DMA channel until it is released.

Last modified 1 Jan 1997 SunOS 5.8 297

ddi_dmae(9F) Kernel Functions for Drivers

If the requested channel is not immediately available, the value of
callback determines what action will be taken. If the value of callback is
DDI_DMA_DONTWAIT, ddi_dmae_alloc() will return immediately. The
value DDI_DMA_SLEEPwill cause the thread to sleep and not return until
the channel has been acquired. Any other value is assumed to be a callback
function address. In that case, ddi_dmae_alloc() returns immediately, and
when resources might have become available, the callback function is called
(with the argument arg) from interrupt context. When the callback function is
called, it should attempt to allocate the DMA channel again. If it succeeds or no
longer needs the channel, it must return the value DDI_DMA_CALLBACK_DONE.
If it tries to allocate the channel but fails to do so, it must return the value
DDI_DMA_CALLBACK_RUNOUT. In this case, the callback funtion is put back on a
list to be called again later.

ddi_dmae_prog() The ddi_dmae_prog() function programs the DMA channel for a DMA
transfer. The ddi_dmae_req structure contains all the information necessary
to set up the channel, except for the memory address and count. Once the
channel has been programmed, subsequent calls to ddi_dmae_prog() may
specify a value of NULL for dmaereqp if no changes to the programming are
required other than the address and count values. It disables the channel prior
to setup, and enables the channel before returning. The DMA address and
count are specified by passing ddi_dmae_prog() a cookie obtained from
ddi_dma_segtocookie (9F) . Other DMA engine parameters are specified by
the DMA engine request structure passed in through dmaereqp . The fields of that
structure are documented in ddi_dmae_req (9S) .

Before using ddi_dmae_prog() , you must allocate system DMA
resources using DMA setup functions such as ddi_dma_buf_setup (9F)
. ddi_dma_segtocookie (9F) can then be used to retrieve a cookie
which contains the address and count. Then this cookie is passed to
ddi_dmae_prog() .

ddi_dmae_disable() The ddi_dmae_disable() function disables the DMA channel so that it no
longer responds to a device’s DMA service requests.

ddi_dmae_enable() The ddi_dmae_enable() function enables the DMA channel for operation.
This may be used to re-enable the channel after a call to ddi_dmae_disable()
. The channel is automatically enabled after successful programming by
ddi_dmae_prog() .

ddi_dmae_stop() The ddi_dmae_stop() function disables the channel and terminates any
active operation.

ddi_dmae_getcnt() The ddi_dmae_getcnt() function examines the count register of the DMA
channel and sets *countp to the number of bytes remaining to be transferred. The
channel is assumed to be stopped.

298 SunOS 5.8 Last modified 1 Jan 1997

Kernel Functions for Drivers ddi_dmae(9F)

ddi_dmae_1stparty() In the case of ISA and EISA buses, ddi_dmae_1stparty() configures a
channel in the system’s DMA engine to operate in a “slave” (“cascade”) mode.

When operating in ddi_dmae_1stparty() mode, the DMA channel must
first be allocated using ddi_dmae_alloc() and then configured using
ddi_dmae_1stparty() . The driver then programs the device to perform
the I/O, including the necessary DMA address and count values obtained
from ddi_dma_segtocookie (9F) .

ddi_dmae_getlim() The ddi_dmae_getlim() function fills in the DMA limit structure, pointed
to by limitsp , with the DMA limits of the system DMA engine. Drivers
for devices that perform their own bus mastering or use first-party DMA
must create and initialize their own DMA limit structures; they should
not use ddi_dmae_getlim() . The DMA limit structure must be passed
to the DMA setup routines so that they will know how to break the DMA
request into windows and segments (see ddi_dma_nextseg (9F) and
ddi_dma_nextwin (9F)). If the device has any particular restrictions on transfer
size or granularity (such as the size of disk sector), the driver should further
restrict the values in the structure members before passing them to the DMA
setup routines. The driver must not relax any of the restrictions embodied
in the structure after it is filled in by ddi_dmae_getlim() . After calling
ddi_dmae_getlim() , a driver must examine, and possibly set, the size of
the DMA engine’s scatter/gather list to determine whether DMA chaining will
be used. See ddi_dma_lim_IA (9S) and ddi_dmae_req (9S) for additional
information on scatter/gather DMA.

ddi_dmae_getattr The ddi_dmae_getattr() function fills in the DMA attribute structure,
pointed to by attrp , with the DMA attributes of the system DMA engine.
Drivers for devices that perform their own bus mastering or use first-party
DMA must create and initialize their own DMA attribute structures; they
should not use ddi_dmae_getattr() . The DMA attribute structure must
be passed to the DMA resource allocation functions to provide the information
necessary to break the DMA request into DMA windows and DMA cookies. See
ddi_dma_nextcookie (9F) and ddi_dma_getwin (9F) .

RETURN VALUES DDI_SUCCESS Upon success, for all of these routines.

DDI_FAILURE May be returned due to invalid arguments.

DDI_DMA_NORESOURCES May be returned by ddi_dmae_alloc() if the
requested resources are not available and the
value of dmae_waitfp is not DDI_DMA_SLEEP.

Last modified 1 Jan 1997 SunOS 5.8 299

ddi_dmae(9F) Kernel Functions for Drivers

CONTEXT If ddi_dmae_alloc() is called from interrupt context, then its dmae_waitfp
argument and the callback function must not have the value DDI_DMA_SLEEP.
Otherwise, all these routines may be called from user or interrupt context.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO eisa (4) , isa (4) , attributes (5) , ddi_dma_buf_setup (9F) ,
ddi_dma_getwin (9F) , ddi_dma_nextcookie (9F) , ddi_dma_nextseg (9F) ,
ddi_dma_nextwin (9F) , ddi_dma_segtocookie (9F) , ddi_dma_setup (9F)
, ddi_dma_attr (9S) , ddi_dma_cookie (9S) , ddi_dma_lim_x86 (9S) ,
ddi_dma_req (9S) , ddi_dmae_req (9S)

300 SunOS 5.8 Last modified 1 Jan 1997

Kernel Functions for Drivers ddi_dma_free(9F)

NAME ddi_dma_free – release system DMA resources

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_free (ddi_dma_handle_t handle);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS handle The handle filled in by a call to ddi_dma_setup (9F).

DESCRIPTION ddi_dma_free() releases system DMA resources set up by
ddi_dma_setup (9F). When a DMA transfer completes, the driver should
free up system DMA resources established by a call to ddi_dma_setup (9F).
This is done by a call to ddi_dma_free() . ddi_dma_free() does an
implicit ddi_dma_sync (9F) for you so any further synchronization steps are
not necessary.

RETURN VALUES ddi_dma_free() returns:
DDI_SUCCESS Successfully released resources

DDI_FAILURE Failed to free resources

CONTEXT ddi_dma_free() can be called from user or interrupt context.

SEE ALSO ddi_dma_addr_setup (9F), ddi_dma_buf_setup (9F), ddi_dma_htoc (9F),
ddi_dma_sync (9F), ddi_dma_req (9S)

Writing Device Drivers

Last modified 13 Sep 1992 SunOS 5.8 301

ddi_dma_free_handle(9F) Kernel Functions for Drivers

NAME ddi_dma_free_handle – free DMA handle

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

void ddi_dma_free_handle (ddi_dma_handle_t *handle);

PARAMETERS handle A pointer to the DMA handle previously allocated by a call
to ddi_dma_alloc_handle (9F).

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_dma_free_handle() destroys the DMA handle pointed to by
handle. Any further references to the DMA handle will have undefined
results. Note that ddi_dma_unbind_handle (9F) must be called prior to
ddi_dma_free_handle() to free any resources the system may be caching
on the handle.

CONTEXT ddi_dma_free_handle() can be called from user, kernel, or interrupt context.

SEE ALSO ddi_dma_alloc_handle (9F), ddi_dma_unbind_handle (9F)

Writing Device Drivers

302 SunOS 5.8 Last modified 26 Sep 1994

Kernel Functions for Drivers ddi_dma_getwin(9F)

NAME ddi_dma_getwin – activate a new DMA window

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_getwin (ddi_dma_handle_t handle, uint_t win, off_t *offp, size_t *lenp,
ddi_dma_cookie_t *cookiep, uint_t *ccountp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS handle The DMA handle previously allocated by a call to
ddi_dma_alloc_handle (9F).

win Number of the window to activate.

offp Pointer to an offset. Upon a successful return, offp will
contain the new offset indicating the beginning of the
window within the object.

lenp Upon a successful return, lenp will contain the size, in bytes,
of the current window.

cookiep A pointer to the first ddi_dma_cookie (9S) structure.

ccountp Upon a successful return, ccountp will contain the number of
cookies for this DMA window.

DESCRIPTION ddi_dma_getwin() activates a new DMA window. If a DMA resource
allocation request returns DDI_DMA_PARTIAL_MAPindicating that resources
for less than the entire object were allocated, the current DMA window can be
changed by a call to ddi_dma_getwin() .

The caller must first determine the number of DMA windows, N, using
ddi_dma_numwin (9F). ddi_dma_getwin() takes a DMA window number
from the range [0..N-1] as the parameter win and makes it the current DMA
window.

ddi_dma_getwin() fills in the first DMA cookie pointed to by cookiep with
the appropriate address, length, and bus type. * ccountp is set to the number of
DMA cookies representing this DMA object. Subsequent DMA cookies must be
retrieved using ddi_dma_nextcookie (9F).

ddi_dma_getwin() takes care of underlying resource synchronizations
required to shift the window. However accessing the data prior to or
after moving the window requires further synchronization steps using
ddi_dma_sync (9F).

Last modified 15 Nov 1996 SunOS 5.8 303

ddi_dma_getwin(9F) Kernel Functions for Drivers

ddi_dma_getwin() is normally called from an interrupt routine. The
first invocation of the DMA engine is done from the driver. All subsequent
invocations of the DMA engine are done from the interrupt routine. The
interrupt routine checks to see if the request has been completed. If it has, the
interrupt routine returns without invoking another DMA transfer. Otherwise,
it calls ddi_dma_getwin() to shift the current window and start another
DMA transfer.

RETURN VALUES ddi_dma_getwin() returns:
DDI_SUCCESS Resources for the specified DMA window are allocated.

DDI_FAILURE win is not a valid window index.

CONTEXT ddi_dma_getwin() can be called from user, kernel, or interrupt context.

SEE ALSO ddi_dma_addr_bind_handle (9F), ddi_dma_alloc_handle (9F),
ddi_dma_buf_bind_handle (9F), ddi_dma_nextcookie (9F),
ddi_dma_numwin (9F), ddi_dma_sync (9F), ddi_dma_unbind_handle (9F),
ddi_dma_cookie (9S)

Writing Device Drivers

304 SunOS 5.8 Last modified 15 Nov 1996

Kernel Functions for Drivers ddi_dma_htoc(9F)

NAME ddi_dma_htoc – convert a DMA handle to a DMA address cookie

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_htoc (ddi_dma_handle_t handle, off_t off, ddi_dma_cookie_t *cookiep);

INTERFACE
LEVEL

Solaris SPARC DDI specific (Solaris SPARC DDI).

PARAMETERS handle The handle filled in by a call to ddi_dma_setup (9F).

off An offset into the object that handle maps.

cookiep A pointer to a ddi_dma_cookie (9S) structure.

DESCRIPTION ddi_dma_htoc() takes a DMA handle (established by ddi_dma_setup (9F)),
and fills in the cookie pointed to by cookiep with the appropriate address, length,
and bus type to be used to program the DMA engine.

RETURN VALUES ddi_dma_htoc() returns:
DDI_SUCCESS Successfully filled in the cookie pointed to by cookiep.

DDI_FAILURE Failed to successfully fill in the cookie.

CONTEXT ddi_dma_htoc() can be called from user or interrupt context.

SEE ALSO ddi_dma_addr_setup (9F), ddi_dma_buf_setup (9F), ddi_dma_setup (9F),
ddi_dma_sync (9F), ddi_dma_cookie (9S)

Writing Device Drivers

Last modified 11 Apr 1991 SunOS 5.8 305

ddi_dma_mem_alloc(9F) Kernel Functions for Drivers

NAME ddi_dma_mem_alloc – allocate memory for DMA transfer

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_mem_alloc (ddi_dma_handle_t handle, size_t length, ddi_device_acc_attr_t
*accattrp, uint_t flags, int (*waitfp) (caddr_t),, caddr_t arg, caddr_t *kaddrp, size_t
*real_length, ddi_acc_handle_t *handlep);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS handle The DMA handle previously allocated by a call to
ddi_dma_alloc_handle (9F).

length The length in bytes of the desired allocation.

accattrp Pointer to a device access attribute structure of this device
(see ddi_device_acc_attr (9S)).

flags Data transfer mode flags. Possible values are:

DDI_DMA_STREAMING Sequential, unidirectional,
block-sized, and block-aligned
transfers.

DDI_DMA_CONSISTENT Nonsequential transfers of
small objects.

waitfp The address of a function to call back later if resources are
not available now. The callback function indicates how
a caller wants to handle the possibility of resources not
being available. If callback is set to DDI_DMA_DONTWAIT,
the caller does not care if the allocation fails, and can
handle an allocation failure appropriately. If callback
is set to DDI_DMA_SLEEP, the caller wishes to have
the allocation routines wait for resources to become
available. If any other value is set and a DMA resource
allocation fails, this value is assumed to be the address of a
function to be called when resources become available.
When the specified function is called, arg is passed
to it as an argument. The specified callback function
must return either DDI_DMA_CALLBACK_RUNOUTor
DDI_DMA_CALLBACK_DONE. DDI_DMA_CALLBACK_RUNOUT
indicates that the callback function attempted to allocate
DMA resources but failed. In this case, the callback
function is put back on a list to be called again later.

306 SunOS 5.8 Last modified 15 Nov 1996

Kernel Functions for Drivers ddi_dma_mem_alloc(9F)

DDI_DMA_CALLBACK_DONEindicates that either the
allocation of DMA resources was successful or the driver
no longer wishes to retry. The callback function is called in
interrupt context. Therefore, only system functions accessible
from interrupt context are be available.

The callback function must take whatever steps are necessary
to protect its critical resources, data structures, queues, and
so on.

arg Argument to be passed to the callback function, if such a
function is specified.

kaddrp On successful return, kaddrp points to the allocated memory.

real_length The amount of memory, in bytes, allocated. Alignment and
padding requirements may require ddi_dma_mem_alloc()
to allocate more memory than requested in length.

handlep Pointer to a data access handle.

DESCRIPTION ddi_dma_mem_alloc() allocates memory for DMA transfers to or from a
device. The allocation will obey the alignment, padding constraints and device
granularity as specified by the DMA attributes (see ddi_dma_attr (9S)) passed
to ddi_dma_alloc_handle (9F) and the more restrictive attributes imposed
by the system.

flags should be set to DDI_DMA_STREAMINGif the device is doing sequential,
unidirectional, block-sized, and block-aligned transfers to or from memory.
The alignment and padding constraints specified by the minxfer and
burstsizes fields in the DMA attribute structure, ddi_dma_attr (9S) (see
ddi_dma_alloc_handle (9F)) will be used to allocate the most effective
hardware support for large transfers. For example, if an I/O transfer can be sped
up by using an I/O cache, which has a minimum transfer of one cache line,
ddi_dma_mem_alloc() will align the memory at a cache line boundary and it
will round up real_length to a multiple of the cache line size.

flags should be set to DDI_DMA_CONSISTENTif the device accesses memory
randomly, or if synchronization steps using ddi_dma_sync (9F) need to be as
efficient as possible. I/O parameter blocks used for communication between a
device and a driver should be allocated using DDI_DMA_CONSISTENT.

The device access attributes are specified in the location pointed by the accattrp
argument (see ddi_device_acc_attr (9S)).

The data access handle is returned in handlep. handlep is opaque – drivers may
not attempt to interpret its value. To access the data content, the driver must

Last modified 15 Nov 1996 SunOS 5.8 307

ddi_dma_mem_alloc(9F) Kernel Functions for Drivers

invoke ddi_get8 (9F) or ddi_put8 (9F) (depending on the data transfer
direction) with the data access handle.

DMA resources must be established before performing a DMA transfer by
passing kaddrp and real_length as returned from ddi_dma_mem_alloc()
and the flag DDI_DMA_STREAMINGor DDI_DMA_CONSISTENTto
ddi_dma_addr_bind_handle (9F). In addition, to ensure the consistency
of a memory object shared between the CPU and the device after a DMA
transfer, explicit synchronization steps using ddi_dma_sync (9F) or
ddi_dma_unbind_handle (9F) are required.

RETURN VALUES ddi_dma_mem_alloc() returns:
DDI_SUCCESS Memory successfully allocated.

DDI_FAILURE Memory allocation failed.

CONTEXT ddi_dma_mem_alloc() can be called from user or interrupt context, except
when waitfp is set to DDI_DMA_SLEEP, in which case it can be called from
user context only.

SEE ALSO ddi_dma_addr_bind_handle (9F), ddi_dma_alloc_handle (9F),
ddi_dma_mem_free (9F), ddi_dma_sync (9F), ddi_dma_unbind_handle (9F),
ddi_get8 (9F), ddi_put8 (9F), ddi_device_acc_attr (9S),
ddi_dma_attr (9S)

Writing Device Drivers

WARNINGS If DDI_NEVERSWAP_ACCis specified, memory can be used for any purpose;
but if either endian mode is specified, you must use ddi_get/put* and never
anything else.

308 SunOS 5.8 Last modified 15 Nov 1996

Kernel Functions for Drivers ddi_dma_mem_free(9F)

NAME ddi_dma_mem_free – free previously allocated memory

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

void ddi_dma_mem_free (ddi_acc_handle_t *handlep);

PARAMETERS handlep Pointer to the data access handle previously allocated by a
call to ddi_dma_mem_alloc (9F).

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_dma_mem_free() deallocates the memory acquired by
ddi_dma_mem_alloc (9F). In addition, it destroys the data access handle
handlep associated with the memory.

CONTEXT ddi_dma_mem_free() can be called from user, kernel, or interrupt context.

SEE ALSO ddi_dma_mem_alloc (9F)

Writing Device Drivers

Last modified 26 Sep 1994 SunOS 5.8 309

ddi_dma_movwin(9F) Kernel Functions for Drivers

NAME ddi_dma_movwin – shift current DMA window

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_movwin (ddi_dma_handle_t handle, off_t *offp, uint_t *lenp,
ddi_dma_cookie_t *cookiep);

INTERFACE
LEVEL

Solaris SPARC DDI specific (Solaris SPARC DDI).

PARAMETERS handle The DMA handle filled in by a call to ddi_dma_setup (9F).

offp A pointer to an offset to set the DMA window to. Upon a
successful return, it will be filled in with the new offset from
the beginning of the object resources are allocated for.

lenp A pointer to a value which must either be the current
size of the DMA window (as known from a call to
ddi_dma_curwin (9F) or from a previous call to
ddi_dma_movwin()). Upon a successful return, it will be
filled in with the size, in bytes, of the current window.

cookiep A pointer to a DMA cookie (see ddi_dma_cookie (9S)).
Upon a successful return, cookiep is filled in just as if an
implicit ddi_dma_htoc (9F) had been made.

DESCRIPTION ddi_dma_movwin() shifts the current DMA window. If a DMA request allows
the sytem to allocate resources for less than the entire object by setting the
DDI_DMA_PARTIALflag in the ddi_dma_req (9S) structure, the current DMA
window can be shifted by a call to ddi_dma_movwin() .

The caller must first determine the current DMA window size by a call to
ddi_dma_curwin (9F). Using the current offset and size of the window thus
retrieved, the caller of ddi_dma_movwin() may change the window onto the
object by changing the offset by a value which is some multiple of the size
of the DMA window.

ddi_dma_movwin() takes care of underlying resource synchronizations
required to shift the window. However, if you want to access the data prior to
or after moving the window, further synchronizations using ddi_dma_sync (9F)
are required.

This function is normally called from an interrupt routine. The first invocation
of the DMA engine is done from the driver. All subsequent invocations of the
DMA engine are done from the interrupt routine. The interrupt routine checks
to see if the request has been completed. If it has, it returns without invoking

310 SunOS 5.8 Last modified 13 Sep 1992

Kernel Functions for Drivers ddi_dma_movwin(9F)

another DMA transfer. Otherwise it calls ddi_dma_movwin() to shift the
current window and starts another DMA transfer.

RETURN VALUES ddi_dma_movwin() returns:
DDI_SUCCESS The current length and offset are legal and have been set.

DDI_FAILURE Otherwise.

CONTEXT ddi_dma_movwin() can be called from user or interrupt context.

SEE ALSO ddi_dma_curwin (9F), ddi_dma_htoc (9F), ddi_dma_setup (9F),
ddi_dma_sync (9F), ddi_dma_cookie (9S), ddi_dma_req (9S)

Writing Device Drivers

WARNINGS The caller must guarantee that the resources used by the object are inactive
prior to calling this function.

Last modified 13 Sep 1992 SunOS 5.8 311

ddi_dma_nextcookie(9F) Kernel Functions for Drivers

NAME ddi_dma_nextcookie – retrieve subsequent DMA cookie

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

void ddi_dma_nextcookie (ddi_dma_handle_t handle, ddi_dma_cookie_t *cookiep);

PARAMETERS handle The handle previously allocated by a call to
ddi_dma_alloc_handle (9F).

cookiep A pointer to a ddi_dma_cookie (9S) structure.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_dma_nextcookie() retrieves subsequent DMA cookies for a DMA object.
ddi_dma_nextcookie() fills in the ddi_dma_cookie (9S) structure pointed
to by cookiep. The ddi_dma_cookie (9S) structure must be allocated prior to
calling ddi_dma_nextcookie() .

The DMA cookie count returned by ddi_dma_buf_bind_handle (9F),
ddi_dma_addr_bind_handle (9F), or ddi_dma_getwin (9F) indicates the
number of DMA cookies a DMA object consists of. If the resulting cookie
count, N, is larger than 1, ddi_dma_nextcookie() must be called N-1 times
to retrieve all DMA cookies.

CONTEXT ddi_dma_nextcookie() can be called from user, kernel, or interrupt context.

EXAMPLES EXAMPLE 1 process a scatter-gather list of I/O requests

This example demonstrates the use of ddi_dma_nextcookie() to process a
scatter-gather list of I/O requests.

/* setup scatter-gather list with multiple DMA cookies */
ddi_dma_cookie_t dmacookie;
uint_t ccount;
. . .

status = ddi_dma_buf_bind_handle(handle, bp, DDI_DMA_READ,
NULL, NULL, &dmacookie, &ccount);

if (status == DDI_DMA_MAPPED) {

/* program DMA engine with first cookie */

while (--ccount > 0) {
ddi_dma_nextcookie(handle, &dmacookie);
/* program DMA engine with next cookie */

}
}
. . .

312 SunOS 5.8 Last modified 26 Sep 1994

Kernel Functions for Drivers ddi_dma_nextcookie(9F)

SEE ALSO ddi_dma_addr_bind_handle (9F), ddi_dma_alloc_handle (9F),
ddi_dma_buf_bind_handle (9F), ddi_dma_unbind_handle (9F),
ddi_dma_cookie (9S)

Writing Device Drivers

Last modified 26 Sep 1994 SunOS 5.8 313

ddi_dma_nextseg(9F) Kernel Functions for Drivers

NAME ddi_dma_nextseg – get next DMA segment

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_nextseg (ddi_dma_win_t win, ddi_dma_seg_t seg, ddi_dma_seg_t *nseg);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS win A DMA window.

seg The current DMA segment or NULL.

nseg A pointer to the next DMA segment to be filled in. If seg is
NULL, a pointer to the first segment within the specified
window is returned.

DESCRIPTION ddi_dma_nextseg() gets the next DMA segment within the specified window
win. If the current segment is NULL, the first DMA segment within the window
is returned.

A DMA segment is always required for a DMA window. A DMA segment is a
contiguous portion of a DMA window (see ddi_dma_nextwin (9F)) which is
entirely addressable by the device for a data transfer operation.

An example where multiple DMA segments are allocated is where the system
does not contain DVMA capabilities and the object may be non-contiguous. In
this example the object will be broken into smaller contiguous DMA segments.
Another example is where the device has an upper limit on its transfer size (for
example an 8-bit address register) and has expressed this in the DMA limit
structure (see ddi_dma_lim_sparc (9S) or ddi_dma_lim_x86 (9S)). In this
example the object will be broken into smaller addressable DMA segments.

RETURN VALUES ddi_dma_nextseg() returns:
DDI_SUCCESS Successfully filled in the next segment pointer.

DDI_DMA_DONE There is no next segment. The current segment is
the final segment within the specified window.

DDI_DMA_STALE win does not refer to the currently active window.

CONTEXT ddi_dma_nextseg() can be called from user or interrupt context.

EXAMPLES For an example, see ddi_dma_segtocookie (9F).

SEE ALSO ddi_dma_addr_setup (9F), ddi_dma_buf_setup (9F),
ddi_dma_nextwin (9F), ddi_dma_segtocookie (9F), ddi_dma_sync (9F),
ddi_dma_lim_sparc (9S), ddi_dma_lim_IA (9S), ddi_dma_req (9S)

314 SunOS 5.8 Last modified 1 Feb 1994

Kernel Functions for Drivers ddi_dma_nextseg(9F)

Writing Device Drivers

Last modified 1 Feb 1994 SunOS 5.8 315

ddi_dma_nextwin(9F) Kernel Functions for Drivers

NAME ddi_dma_nextwin – get next DMA window

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_nextwin (ddi_dma_handle_t handle, ddi_dma_win_t win, ddi_dma_win_t
*nwin);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS handle A DMA handle.

win The current DMA window or NULL.

nwin A pointer to the next DMA window to be filled in. If win
is NULL, a pointer to the first window within the object is
returned.

DESCRIPTION ddi_dma_nextwin() shifts the current DMA window win within the object
referred to by handle to the next DMA window nwin. If the current window
is NULL, the first window within the object is returned. A DMA window is
a portion of a DMA object or might be the entire object. A DMA window
has system resources allocated to it and is prepared to accept data transfers.
Examples of system resources are DVMA mapping resources and intermediate
transfer buffer resources.

All DMA objects require a window. If the DMA window represents the
whole DMA object it has system resources allocated for the entire data
transfer. However, if the system is unable to setup the entire DMA object
due to system resource limitations, the driver writer may allow the system
to allocate system resources for less than the entire DMA object. This can be
accomplished by specifying the DDI_DMA_PARTIALflag as a parameter to
ddi_dma_buf_setup (9F) or ddi_dma_addr_setup (9F) or as part of a
ddi_dma_req (9S) structure in a call to ddi_dma_setup (9F).

Only the window that has resources allocated is valid per object at any one time.
The currently valid window is the one that was most recently returned from
ddi_dma_nextwin() . Furthermore, because a call to ddi_dma_nextwin()
will reallocate system resources to the new window, the previous window will
become invalid. It is a severe error to call ddi_dma_nextwin() before any
transfers into the current window are complete.

ddi_dma_nextwin() takes care of underlying memory synchronizations
required to shift the window. However, if you want to access the data before or
after moving the window, further synchronizations using ddi_dma_sync (9F)
are required.

316 SunOS 5.8 Last modified 12 Oct 1992

Kernel Functions for Drivers ddi_dma_nextwin(9F)

RETURN VALUES ddi_dma_nextwin() returns:
DDI_SUCCESS Successfully filled in the next window pointer.

DDI_DMA_DONE There is no next window. The current window is the final
window within the specified object.

DDI_DMA_STALEwin does not refer to the currently active window.

CONTEXT ddi_dma_nextwin() can be called from user or interrupt context.

EXAMPLES For an example see ddi_dma_segtocookie (9F).

SEE ALSO ddi_dma_addr_setup (9F), ddi_dma_buf_setup (9F),
ddi_dma_nextseg (9F), ddi_dma_segtocookie (9F), ddi_dma_sync (9F),
ddi_dma_req (9S)

Writing Device Drivers

Last modified 12 Oct 1992 SunOS 5.8 317

ddi_dma_numwin(9F) Kernel Functions for Drivers

NAME ddi_dma_numwin – retrieve number of DMA windows

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_numwin (ddi_dma_handle_t handle, uint_t *nwinp);

PARAMETERS handle The DMA handle previously allocated by a call to
ddi_dma_alloc_handle (9F).

nwinp Upon a successful return, nwinp will contain the number of
DMA windows for this object.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_dma_numwin() returns the number of DMA windows for a DMA object if
partial resource allocation was permitted.

RETURN VALUES ddi_dma_numwin() returns:
DDI_SUCCESS Successfully filled in the number of DMA

windows.

DDI_FAILURE DMA windows are not activated.

CONTEXT ddi_dma_numwin() can be called from user, kernel, or interrupt context.

SEE ALSO ddi_dma_addr_bind_handle (9F), ddi_dma_alloc_handle (9F),
ddi_dma_buf_bind_handle (9F), ddi_dma_unbind_handle (9F)

Writing Device Drivers

318 SunOS 5.8 Last modified 29 Sep 1994

Kernel Functions for Drivers ddi_dma_segtocookie(9F)

NAME ddi_dma_segtocookie – convert a DMA segment to a DMA address cookie

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_segtocookie (ddi_dma_seg_t seg, off_t *offp, off_t *lenp, ddi_dma_cookie_t
*cookiep);

PARAMETERS seg A DMA segment.

offp A pointer to an off_t . Upon a successful return, it is
filled in with the offset. This segment is addressing within
the object.

lenp The byte length. This segment is addressing within the
object.

cookiep A pointer to a DMA cookie (see ddi_dma_cookie (9S)).

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_dma_segtocookie() takes a DMA segment and fills in the cookie
pointed to by cookiep with the appropriate address, length, and bus type to be
used to program the DMA engine. ddi_dma_segtocookie() also fills in *offp
and *lenp, which specify the range within the object.

RETURN VALUES ddi_dma_segtocookie() returns:
DDI_SUCCESS Successfully filled in all values.

DDI_FAILURE Failed to successfully fill in all values.

CONTEXT ddi_dma_segtocookie() can be called from user or interrupt context.

EXAMPLES CODE EXAMPLE 1 ddi_dma_segtocookie() example

for (win = NULL; (retw = ddi_dma_nextwin(handle, win, &nwin)) !=
DDI_DMA_DONE; win = nwin) {

if (retw != DDI_SUCCESS) {
/* do error handling */

} else {
for (seg = NULL; (rets = ddi_dma_nextseg(nwin, seg, &nseg)) !=

DDI_DMA_DONE; seg = nseg) {
if (rets != DDI_SUCCESS) {

/* do error handling */
} else {

ddi_dma_segtocookie(nseg, &off, &len, &cookie);

/* program DMA engine */
}

}

Last modified 12 Oct 1992 SunOS 5.8 319

ddi_dma_segtocookie(9F) Kernel Functions for Drivers

}
}

SEE ALSO ddi_dma_nextseg (9F), ddi_dma_nextwin (9F), ddi_dma_sync (9F),
ddi_dma_cookie (9S)

Writing Device Drivers

320 SunOS 5.8 Last modified 12 Oct 1992

Kernel Functions for Drivers ddi_dma_set_sbus64(9F)

NAME ddi_dma_set_sbus64 – allow 64–bit transfers on SBus

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_set_sbus64 (ddi_dma_handle_t handle, uint_t burstsizes);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS handle The handle filled in by a call to
ddi_dma_alloc_handle (9F).

burstsizes The possible burst sizes the device’s DMA engine can accept
in 64–bit mode.

DESCRIPTION ddi_dma_set_sbus64() informs the system that the device wishes to perform
64–bit data transfers on the SBus. The driver must first allocate a DMA handle
using ddi_dma_alloc_handle (9F) with a ddi_dma_attr (9S) structure
describing the DMA attributes for a 32–bit transfer mode.

burstsizes describes the possible burst sizes the device’s DMA engine can accept
in 64–bit mode. It may be distinct from the burst sizes for 32–bit mode set in the
ddi_dma_attr (9S) structure. The system will activate 64–bit SBus transfers if
the SBus supports them. Otherwise, the SBus will operate in 32–bit mode.

After DMA resources have been allocated (see
ddi_dma_addr_bind_handle (9F) or ddi_dma_buf_bind_handle (9F)),
the driver should retrieve the available burst sizes by calling
ddi_dma_burstsizes (9F). This function will return the burst sizes in 64–bit
mode if the system was able to activate 64–bit transfers. Otherwise burst sizes
will be returned in 32–bit mode.

RETURN VALUES ddi_dma_set_sbus64() returns:
DDI_SUCCESS Successfully set the SBus to 64–bit mode.

DDI_FAILURE 64–bit mode could not be set.

CONTEXT ddi_dma_set_sbus64() can be called from user, kernel, or interrupt context.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SBus

SEE ALSO attributes (5), ddi_dma_addr_bind_handle (9F),
ddi_dma_alloc_handle (9F), ddi_dma_buf_bind_handle (9F),
ddi_dma_burstsizes (9F), ddi_dma_attr (9S)

Last modified 1 Jan 1997 SunOS 5.8 321

ddi_dma_set_sbus64(9F) Kernel Functions for Drivers

NOTES 64–bit SBus mode is activated on a per SBus slot basis. If there are multiple
SBus cards in one slot, they all must operate in 64–bit mode or they all must
operate in 32–bit mode.

322 SunOS 5.8 Last modified 1 Jan 1997

Kernel Functions for Drivers ddi_dma_setup(9F)

NAME ddi_dma_setup – setup DMA resources

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_setup (dev_info_t *dip, ddi_dma_req_t *dmareqp, ddi_dma_handle_t
*handlep);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dip A pointer to the device’s dev_info structure.

dmareqp A pointer to a DMA request structure (see
ddi_dma_req (9S)).

handlep A pointer to a DMA handle to be filled in. See below for
a discussion of a handle. If handlep is NULL, the call to
ddi_dma_setup() is considered an advisory call, in which
case no resources are allocated, but a value indicating the
legality and the feasibility of the request is returned.

DESCRIPTION ddi_dma_setup() allocates resources for a memory object such that a device
can perform DMA to or from that object.

A call to ddi_dma_setup() informs the system that device referred to by dip
wishes to perform DMA to or from a memory object. The memory object, the
device’s DMA capabilities, the device driver’s policy on whether to wait for
resources, are all specified in the ddi_dma_req structure pointed to by dmareqp.

A successful call to ddi_dma_setup() fills in the value pointed to by handlep.
This is an opaque object called a DMA handle. This handle is then used in
subsequent DMA calls, until ddi_dma_free (9F) is called.

Again a DMA handle is opaque—drivers may not attempt to interpret its value.
When a driver wants to enable its DMA engine, it must retrieve the appropriate
address to supply to its DMA engine using a call to ddi_dma_htoc (9F), which
takes a pointer to a DMA handle and returns the appropriate DMA address.

When DMA transfer completes, the driver should free up the the allocated DMA
resources by calling ddi_dma_free() .

RETURN VALUES ddi_dma_setup() returns:
DDI_DMA_MAPPED Successfully allocated resources for the object.

In the case of an advisory call, this indicates that
the request is legal.

DDI_DMA_PARTIAL_MAP Successfully allocated resources for a part of
the object. This is acceptable when partial

Last modified 7 Jun 1993 SunOS 5.8 323

ddi_dma_setup(9F) Kernel Functions for Drivers

transfers are allowed using a flag setting in the
ddi_dma_req structure (see ddi_dma_req (9S)
and ddi_dma_movwin (9F)).

DDI_DMA_NORESOURCES When no resources are available.

DDI_DMA_NOMAPPING The object cannot be reached by the device
requesting the resources.

DDI_DMA_TOOBIG The object is too big and exceeds the available
resources. The maximum size varies depending
on machine and configuration.

CONTEXT ddi_dma_setup() can be called from user or interrupt context, except when
the dmar_fp member of the ddi_dma_req structure pointed to by dmareqp is
set to DDI_DMA_SLEEP, in which case it can be called from user context only.

SEE ALSO ddi_dma_addr_setup (9F), ddi_dma_buf_setup (9F), ddi_dma_free (9F),
ddi_dma_htoc (9F), ddi_dma_movwin (9F), ddi_dma_sync (9F),
ddi_dma_req (9S)

Writing Device Drivers

NOTES The construction of the ddi_dma_req structure is complicated. Use of the
provided interface functions such as ddi_dma_buf_setup (9F) simplifies
this task.

324 SunOS 5.8 Last modified 7 Jun 1993

Kernel Functions for Drivers ddi_dma_sync(9F)

NAME ddi_dma_sync – synchronize CPU and I/O views of memory

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_sync (ddi_dma_handle_t handle, off_t offset, size_t length, uint_t type);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS handle The handle filled in by a call to
ddi_dma_alloc_handle (9F).

offset The offset into the object described by the handle.

length The length, in bytes, of the area to synchronize. When length
is zero, the entire range starting from offset to the end of the
object has the requested operation applied to it.

type Indicates the caller’s desire about what view of the
memory object to synchronize. The possible values are
DDI_DMA_SYNC_FORDEV, DDI_DMA_SYNC_FORCPUand
DDI_DMA_SYNC_FORKERNEL.

DESCRIPTION ddi_dma_sync() is used to selectively synchronize either a DMA device’s or
a CPU’s view of a memory object that has DMA resources allocated for I/O .
This may involve operations such as flushes of CPU or I/O caches, as well as
other more complex operations such as stalling until hardware write buffers
have drained.

This function need only be called under certain circumstances. When
resources are allocated for DMA using ddi_dma_addr_bind_handle() or
ddi_dma_buf_bind_handle() , an implicit ddi_dma_sync() is done.
When DMA resources are deallocated using ddi_dma_unbind_handle (9F),
an implicit ddi_dma_sync() is done. However, at any time between
DMA resource allocation and deallocation, if the memory object has been
modified by either the DMA device or a CPU and you wish to ensure that
the change is noticed by the party that didnot do the modifying, a call to
ddi_dma_sync() is required. This is true independent of any attributes of
the memory object including, but not limited to, whether or not the memory
was allocated for consistent mode I/O (see ddi_dma_mem_alloc (9F)) or
whether or not DMA resources have been allocated for consistent mode I/O (see
ddi_dma_addr_bind_handle (9F) or ddi_dma_buf_bind_handle (9F)).

This cannot be stated too strongly. If a consistent view of the memory object
must be ensured between the time DMA resources are allocated for the object

Last modified 20 Nov 1996 SunOS 5.8 325

ddi_dma_sync(9F) Kernel Functions for Drivers

and the time they are deallocated, you must call ddi_dma_sync() to ensure
that either a CPU or a DMA device has such a consistent view.

What to set type to depends on the view you are trying to ensure consistency
for. If the memory object is modified by a CPU, and the object is going to be
read by the DMA engine of the device, use DDI_DMA_SYNC_FORDEV. This
ensures that the device’s DMA engine sees any changes that a CPU has made
to the memory object. If the DMA engine for the device has written to the
memory object, and you are going to read (with a CPU) the object (using an
extant virtual address mapping that you have to the memory object), use
DDI_DMA_SYNC_FORCPU. This ensures that a CPU’s view of the memory object
includes any changes made to the object by the device’s DMA engine. If you are
only interested in the kernel’s view (kernel-space part of the CPU’s view) you
may use DDI_DMA_SYNC_FORKERNEL. This gives a hint to the system—that
is, if it is more economical to synchronize the kernel’s view only, then do so;
otherwise, synchronize for CPU.

RETURN VALUES ddi_dma_sync() returns:
DDI_SUCCESS Caches are successfully flushed.

DDI_FAILURE The address range to be flushed is out of the address
range established by ddi_dma_addr_bind_handle (9F)
or ddi_dma_buf_bind_handle (9F).

CONTEXT ddi_dma_sync() can be called from user or interrupt context.

SEE ALSO ddi_dma_addr_bind_handle (9F), ddi_dma_alloc_handle (9F),
ddi_dma_buf_bind_handle (9F), ddi_dma_mem_alloc (9F),
ddi_dma_unbind_handle (9F)

Writing Device Drivers

326 SunOS 5.8 Last modified 20 Nov 1996

Kernel Functions for Drivers ddi_dma_unbind_handle(9F)

NAME ddi_dma_unbind_handle – unbinds the address in a DMA handle

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_dma_unbind_handle (ddi_dma_handle_t handle);

PARAMETERS handle The DMA handle previously allocated by a call to
ddi_dma_alloc_handle (9F).

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_dma_unbind_handle() frees all DMA resources associated
with an existing DMA handle. When a DMA transfer completes, the
driver should call ddi_dma_unbind_handle() to free system DMA
resources established by a call to ddi_dma_buf_bind_handle (9F) or
ddi_dma_addr_bind_handle (9F). ddi_dma_unbind_handle() does an
implicit ddi_dma_sync (9F) making further synchronization steps unnecessary.

RETURN VALUES DDI_SUCCESS on success

DDI_FAILURE on failure

CONTEXT ddi_dma_unbind_handle() can be called from user, kernel, or interrupt
context.

SEE ALSO ddi_dma_addr_bind_handle (9F), ddi_dma_alloc_handle (9F),
ddi_dma_buf_bind_handle (9F), ddi_dma_free_handle (9F),
ddi_dma_sync (9F)

Writing Device Drivers

Last modified 26 Sep 1994 SunOS 5.8 327

ddi_driver_name(9F) Kernel Functions for Drivers

NAME ddi_driver_name – return normalized driver name

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
const char *ddi_driver_name (dev_info_t *devi);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dip A pointer to the device’s dev_info structure.

DESCRIPTION ddi_driver_name() returns the normalized driver name. This name is
typically derived from the device name property or the device compatible
property. If this name is a driver alias, the corresponding driver name is returned.

RETURN VALUES ddi_driver_name() returns the actual name of the driver bound to a device.

CONTEXT ddi_driver_name() can be called from kernel, or interrupt context.

SEE ALSO ddi_get_name (9F)

Writing Device Drivers

WARNINGS The name returned by ddi_driver_name() is read-only.

328 SunOS 5.8 Last modified 2 Dec 1998

Kernel Functions for Drivers ddi_enter_critical(9F)

NAME ddi_enter_critical, ddi_exit_critical – enter and exit a critical region of control

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
unsigned int ddi_enter_critical (void);

void ddi_exit_critical (unsignedint ddic);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS ddic The returned value from the call to
ddi_enter_critical() must be passed to
ddi_exit_critical() .

DESCRIPTION Nearly all driver operations can be done without any special synchronization
and protection mechanisms beyond those provided by, for example, mutexes
(see mutex (9F)). However, for certain devices there can exist a very short
critical region of code which must be allowed to run uninterrupted. The function
ddi_enter_critical() provides a mechanism by which a driver can ask the
system to guarantee to the best of its ability that the current thread of execution
will neither be preempted nor interrupted. This stays in effect until a bracketing
call to ddi_exit_critical() is made (with an argument which was the
returned value from ddi_enter_critical()).

The driver may not call any functions external to itself in between the time it
calls ddi_enter_critical() and the time it calls ddi_exit_critical() .

RETURN VALUES ddi_enter_critical() returns an opaque unsigned integer which must be
used in the subsequent call to ddi_exit_critical() .

CONTEXT This function can be called from user or interrupt context.

WARNINGS Driver writers should note that in a multiple processor system this function does
not temporarily suspend other processors from executing. This function also
cannot guarantee to actually block the hardware from doing such things as
interrupt acknowledge cycles. What it can do is guarantee that the currently
executing thread will not be preempted.

Do not write code bracketed by ddi_enter_critical() and
ddi_exit_critical() that can get caught in an infinite loop, as the machine
may crash if you do.

SEE ALSO mutex (9F)

Writing Device Drivers

Last modified 4 Nov 1991 SunOS 5.8 329

ddi_ffs(9F) Kernel Functions for Drivers

NAME ddi_ffs, ddi_fls – find first (last) bit set in a long integer

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
intddi_ffs (long mask);

int ddi_fls (long mask);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS mask A 32-bit argument value to search through.

DESCRIPTION The function ddi_ffs() takes its argument and returns the shift count that
the first (least significant) bit set in the argument corresponds to. The function
ddi_fls() does the same, only it returns the shift count for the last (most
significant) bit set in the argument.

RETURN VALUES 0 No bits are set in mask.

N Bit N is the least significant (ddi_ffs) or most significant (ddi_fls)
bit set in mask. Bits are numbered from 1 to 32 , with bit 1 being the
least significant bit position and bit 32 the most significant position.

CONTEXT This function can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

330 SunOS 5.8 Last modified 20 Dec 1995

Kernel Functions for Drivers ddi_get8(9F)

NAME ddi_get8, ddi_get16, ddi_get32, ddi_get64, ddi_getb, ddi_getw, ddi_getl,
ddi_getll – read data from the mapped memory address, device register or
allocated DMA memory address

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
uint8_t ddi_get8 (ddi_acc_handle_t handle, uint8_t *dev_addr);

uint16_t ddi_get16 (ddi_acc_handle_t handle, uint16_t *dev_addr);

uint32_t ddi_get32 (ddi_acc_handle_t handle, uint32_t *dev_addr);

uint64_t ddi_get64 (ddi_acc_handle_t handle, uint64_t *dev_addr);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS handle The data access handle returned from setup calls, such as
ddi_regs_map_setup (9F) .

dev_addr Base device address.

DESCRIPTION The ddi_get8() , ddi_get16() , ddi_get32() , and ddi_get64()
functions read 8 bits, 16 bits, 32 bits and 64 bits of data, respectively, from the
device address, dev_addr .

Each individual datum will automatically be translated to maintain a consistent
view between the host and the device based on the encoded information in the
data access handle. The translation may involve byte-swapping if the host and
the device have incompatible endian characteristics.

For certain bus types, you can call these DDI functions from a high-interrupt
context. These types include ISA , EISA , and SBus buses. See sysbus (4) , isa (4)
, eisa (4) , and sbus (4) for details. For the PCI bus, you can, under certain
conditions, call these DDI functions from a high-interrupt context. See pci (4) .

RETURN VALUES These functions return the value read from the mapped address.

CONTEXT These functions can be called from user, kernel, or interrupt context.

SEE ALSO ddi_put8 (9F) , ddi_regs_map_free (9F) , ddi_regs_map_setup (9F) ,
ddi_rep_get8 (9F) , ddi_rep_put8 (9F)

NOTES The functions described in this manual page previously used symbolic names
which specified their data access size; the function names have been changed
so they now specify a fixed-width data size. See the following table for the
new name equivalents:

Last modified 22 Nov 1996 SunOS 5.8 331

ddi_get8(9F) Kernel Functions for Drivers

Previous Name New Name

ddi_getb ddi_get8

ddi_getw ddi_get16

ddi_getl ddi_get32

ddi_getll ddi_get64

332 SunOS 5.8 Last modified 22 Nov 1996

Kernel Functions for Drivers ddi_get_cred(9F)

NAME ddi_get_cred – returns a pointer to the credential structure of the caller

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

cred_t *ddi_get_cred (void);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_get_cred() returns a pointer to the user credential structure of the caller.

RETURN VALUES ddi_get_cred() returns a pointer to the caller’s credential structure.

CONTEXT ddi_get_cred() can be called from user context only.

SEE ALSO Writing Device Drivers

Last modified 11 Apr 1991 SunOS 5.8 333

ddi_get_devstate(9F) Kernel Functions for Drivers

NAME ddi_get_devstate – Check device state

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
ddi_devstate_t ddi_get_devstate (dev_info_t *dip);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

PARAMETERS dip Pointer to the device’s dev_info structure

DESCRIPTION The ddi_get_devstate() function returns a value indicating the state
of the device specified by dip , as derived from the configuration operations
that have been performed on it (or on the bus on which it resides) and any
fault reports relating to it.

RETURN VALUES DDI_DEVSTATE_OFFLINE
The device is offline. In this state, the device driver is not attached, nor will
it be attached automatically. The device cannot be used until it is brought
online.

DDI_DEVSTATE_DOWN
The device is online but unusable due to a fault.

DDI_DEVSTATE_QUIESCED
The bus on which the device resides has been quiesced. This is not a fault,
but no operations on the device should be performed while the bus remains
quiesced.

DDI_DEVSTATE_DEGRADED
The device is online but only able to provide a partial or degraded service,
due to a fault.

DDI_DEVSTATE_UP
The device is online and fully operational.

CONTEXT The ddi_get_devstate() function may be called from user, kernel, or
interrupt context.

NOTES A device driver should call this function to check its own state at each major
entry point, and before committing resources to a requested operation. If a
driver discovers that its device is already down, it should perform required
cleanup actions and return as soon as possible. If appropriate, it should return
an error to its caller, indicating that the device has failed (for example, a driver’s
read (9E) routine would return EIO).

Depending on the driver, some non-I/O operations (for example, calls to the
driver’s ioctl (9E) routine) may still succeed; only functions which would
require fully accessible and operational hardware will necessarily fail. If the bus

334 SunOS 5.8 Last modified 13 August 1999

Kernel Functions for Drivers ddi_get_devstate(9F)

on which the device resides is quiesced, the driver may return a value indicating
the operation should be retried later (for example, EAGAIN). Alternatively, for
some classes of device, it may be appropriate for the driver to enqueue the
operation and service it once the bus has been unquiesced. Note that not all
busses support the quiesce/unquiesce operations, so this value may never be
seen by some drivers.

SEE ALSO attach (9E), ioctl (9E), open (9E), read (9E), strategy (9E), write (9E),
ddi_dev_report_fault (9F)

Last modified 13 August 1999 SunOS 5.8 335

ddi_get_driver_private(9F) Kernel Functions for Drivers

NAME ddi_get_driver_private, ddi_set_driver_private – get or set the address of the
device’s private data area

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
void ddi_set_driver_private (dev_info_t *dip, caddr_t data);

caddr_t ddi_get_driver_private (dev_info_t *dip);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS ddi_get_driver_private()
dip Pointer to device information structure to get from.

ddi_set_driver_private()
dip Pointer to device information structure to set.

data Data area address to set.

DESCRIPTION ddi_get_driver_private() returns the address of the device’s private data
area from the device information structure pointed to by dip .

ddi_set_driver_private() sets the address of the device’s private data
area in the device information structure pointed to by dip with the value of data .

RETURN VALUES ddi_get_driver_private() returns the contents of devi_driver_data
. If ddi_set_driver_private() has not been previously called with dip ,
an unpredictable value is returned.

CONTEXT These functions can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

336 SunOS 5.8 Last modified 6 Feb 1995

Kernel Functions for Drivers ddi_getiminor(9F)

NAME ddi_getiminor – get kernel internal minor number from an external dev_t

SYNOPSIS #include <sys/types.h>
#include <sys/mkdev.h>
#include <sys/ddi.h>

minor_t ddi_getiminor (dev_t dev);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS The following parameters are supported:
dev Device number.

DESCRIPTION ddi_getiminor() extracts the minor number from a device number. This call
should be used only for device numbers that have been passed to the kernel from
the user space through opaque interfaces such as the contents of ioctl (9E) and
putmsg (2). The device numbers passed in using standard device entry points
must continue to be interpreted using the getminor (9F) interface. This new
interface is used to translate between user visible device numbers and in kernel
device numbers. The two numbers may differ in a clustered system.

For certain bus types, you can call this DDI function from a high-interrupt
context. These types include ISA, EISA, and SBus buses. See sysbus (4), isa (4),
eisa (4), and sbus (4) for details.

CONTEXT ddi_getiminor() can be called from user context only.

RETURN VALUES The minor number or EMINOR_UNKNOWNif the minor number of the device
is invalid.

SEE ALSO getmajor (9F), getminor (9F), makedevice (9F)

Writing Device Drivers

WARNINGS Validity checking is performed. If dev is invalid, EMINOR_UNKNOWNis returned.
This behavior differs from getminor (9F).

Last modified 25 Feb 1998 SunOS 5.8 337

ddi_get_instance(9F) Kernel Functions for Drivers

NAME ddi_get_instance – get device instance number

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_get_instance (dev_info_t *dip);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dip Pointer to dev_info structure.

DESCRIPTION ddi_get_instance() returns the instance number of the device
corresponding to dip.

The system assigns an instance number to every device. Instance numbers for
devices attached to the same driver are unique. This provides a way for the
system and the driver to uniquely identify one or more devices of the same type.
The instance number is derived by the system from different properties for
different device types in an implementation specific manner.

Once an instance number has been assigned to a device, it will remain the same
even across reconfigurations and reboots. Therefore, instance numbers seen by
a driver may not appear to be in consecutive order. For example, if device
foo0 has been assigned an instance number of 0 and device foo1 has been
assigned an instance number of 1, if foo0 is removed, foo1 will continue to be
associated with instance number 1 (even though foo1 is now the only device
of its type on the system).

RETURN VALUES ddi_get_instance() returns the instance number of the device
corresponding to dip.

CONTEXT ddi_get_instance() can be called from user or interrupt context.

SEE ALSO path_to_inst (4)

Writing Device Drivers

338 SunOS 5.8 Last modified 20 Jul 1994

Kernel Functions for Drivers ddi_get_lbolt(9F)

NAME ddi_get_lbolt – returns the value of lbolt

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

clock_t ddi_get_lbolt (void);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_get_lbolt() returns the value of lbolt where lbolt is an integer that
represents the number of clock ticks since the last system reboot. This value is
used as a counter or timer inside the system kernel. The tick frequency can be
determined by using drv_usectohz (9F) which converts microseconds into
clock ticks.

RETURN VALUES ddi_get_lbolt() returns the value oflbolt .

CONTEXT This routine can to be called from any context.

SEE ALSO ddi_get_time (9F), drv_getparm (9F), drv_usectohz (9F)

Writing Device Drivers

STREAMS Programming Guide

Last modified 18 Feb 1998 SunOS 5.8 339

ddi_get_parent(9F) Kernel Functions for Drivers

NAME ddi_get_parent – find the parent of a device information structure

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

dev_info_t *ddi_get_parent (dev_info_t *dip);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dip Pointer to a device information structure.

DESCRIPTION ddi_get_parent() returns a pointer to the device information structure
which is the parent of the one pointed to by dip.

RETURN VALUES ddi_get_parent() returns a pointer to a device information structure.

CONTEXT ddi_get_parent() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

340 SunOS 5.8 Last modified 5 Oct 1991

Kernel Functions for Drivers ddi_get_pid(9F)

NAME ddi_get_pid – returns the process ID

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

pid_t ddi_get_pid (void);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_get_pid() the process ID of the current process. This value can be used
to allow only a select process to perform a certain operation. It can also be used
to determine if a device context belongs to the current process.

RETURN VALUES ddi_get_pid() returns process ID .

CONTEXT This routine can to be called from user context only.

SEE ALSO drv_getparm (9F)

Writing Device Drivers

STREAMS Programming Guide

Last modified 18 Feb 1998 SunOS 5.8 341

ddi_get_time(9F) Kernel Functions for Drivers

NAME ddi_get_time – returns the current time in seconds

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

time_t ddi_get_time (void);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_get_ time() returns the current time in seconds since 00:00:00 UTC,
January 1, 1970. This value can be used to set of wait or expiration intervals.

RETURN VALUES ddi_get_time() returns the time in seconds.

CONTEXT This routine can to be called from any context.

SEE ALSO ddi_get_lbolt (9F), drv_getparm (9F), drv_usectohz (9F)

Writing Device Drivers

STREAMS Programming Guide

342 SunOS 5.8 Last modified 18 Feb 1998

Kernel Functions for Drivers ddi_in_panic(9F)

NAME ddi_in_panic – determine if system is in panic state

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_in_panic (void);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION Drivers controlling devices on which the system may dump a kernel core image
in the event of a panic may determine if the system is panicing by calling
ddi_in_panic() .

When the system is panicing, the calls of functions scheduled by timeout (9F)
and ddi_trigger_softintr (9F) will never occur. Neither can delay (9F) be
relied upon, since it is implemented via timeout (9F).

Drivers that need to enforce a time delay such as SCSI bus reset delay time must
busy-wait when the system is panicing.

RETURN VALUES ddi_in_panic() returns 1 if the system is in panic, or 0 otherwise.

CONTEXT ddi_in_panic() may be called from any context.

SEE ALSO dump(9E), delay (9F), ddi_trigger_softintr (9F), timeout (9F)

Writing Device Drivers

Last modified 23 Jun 1997 SunOS 5.8 343

ddi_intr_hilevel(9F) Kernel Functions for Drivers

NAME ddi_intr_hilevel – indicate interrupt handler type

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_intr_hilevel (dev_info_t *dip, uint_t inumber);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dip Pointer to dev_info structure.

inumber Interrupt number.

DESCRIPTION ddi_intr_hilevel() returns non-zero if the specified interrupt is a "high
level" interrupt.

High level interrupts must be handled without using system services that
manipulate thread or process states, because these interrupts are not blocked by
the scheduler.

In addition, high level interrupt handlers must take care to do a minimum of
work because they are not preemptable.

A typical high level interrupt handler would put data into a circular buffer and
schedule a soft interrupt by calling ddi_trigger_softintr() . The circular
buffer could be protected by using a mutex that was properly initialized for
the interrupt handler.

ddi_intr_hilevel() can be used before calling ddi_add_intr() to
decide which type of interrupt handler should be used. Most device drivers
are designed with the knowledge that the devices they support will always
generate low level interrupts, however some devices, for example those using
SBus or VME bus level 6 or 7 interrupts must use this test because on some
machines those interrupts are high level (above the scheduler level) and on
other machines they are not.

RETURN VALUES non-zero indicates a high-level interrupt.

CONTEXT These functions can be called from user or interrupt context.

SEE ALSO ddi_add_intr (9F), mutex (9F)

Writing Device Drivers

344 SunOS 5.8 Last modified 7 Jan 1992

Kernel Functions for Drivers ddi_io_get8(9F)

NAME ddi_io_get8, ddi_io_get16, ddi_io_get32, ddi_io_getb, ddi_io_getw, ddi_io_getl –
read data from the mapped device register in I/O space

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
uint8_t ddi_io_get8 (ddi_acc_handle_t handle, uint8_t *dev_addr);

uint16_t ddi_io_get16 (ddi_acc_handle_t handle, uint16_t *dev_addr);

uint32_t ddi_io_get32 (ddi_acc_handle_t handle, uint32_t *dev_addr);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS handle Data access handle returned from setup calls, such as
ddi_regs_map_setup (9F) .

dev_addr Device address.

DESCRIPTION These routines generate a read of various sizes from the device address,
dev_addr , in I/O space. The ddi_io_get8() , ddi_io_get16() , and
ddi_io_get32() functions read 8 bits, 16 bits, and 32 bits of data, respectively,
from the device address, dev_addr .

Each individual datum will automatically be translated to maintain a consistent
view between the host and the device based on the encoded information in the
data access handle. The translation may involve byte-swapping if the host and
the device have incompatible endian characteristics.

CONTEXT These functions can be called from user, kernel, or interrupt context.

SEE ALSO isa (4) , ddi_io_put8 (9F) , ddi_io_rep_get8 (9F) , ddi_io_rep_put8 (9F)
, ddi_regs_map_free (9F) , ddi_regs_map_setup (9F) ,
ddi_device_acc_attr (9S)

NOTES For drivers using these functions, it may not be easy to maintain a single source
to support devices with multiple bus versions. For example, devices may offer
I/O space in ISA bus (see isa (4)) but memory space only in PCI local bus. This
is especially true in instruction set architectures such as IA where accesses to the
memory and I/O space are different.

The functions described in this manual page previously used symbolic names
which specified their data access size; the function names have been changed
so they now specify a fixed-width data size. See the following table for the
new name equivalents:

Last modified 29 June 1999 SunOS 5.8 345

ddi_io_get8(9F) Kernel Functions for Drivers

Previous Name New Name

ddi_io_getb ddi_io_get8

ddi_io_getw ddi_io_get16

ddi_io_getl ddi_io_get32

346 SunOS 5.8 Last modified 29 June 1999

Kernel Functions for Drivers ddi_iomin(9F)

NAME ddi_iomin – find minimum alignment and transfer size for DMA

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_iomin (dev_info_t *dip, int initial, int streaming);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dip A pointer to the device’s dev_info structure.

initial The initial minimum DMA transfer size in bytes. This may
be zero or an appropriate dlim_minxfer value for device’s
ddi_dma_lim structure (see ddi_dma_lim_sparc (9S) or
ddi_dma_lim_IA (9S)). This value must be a power of two.

streaming This argument, if non-zero, indicates that the returned value
should be modified to account for streaming mode accesses
(see ddi_dma_req (9S) for a discussion of streaming versus
non-streaming access mode).

DESCRIPTION ddi_iomin() , finds out the minimum DMA transfer size for the device pointed
to by dip. This provides a mechanism by which a driver can determine the effects
of underlying caches as well as intervening bus adapters on the granularity
of a DMA transfer.

RETURN VALUES ddi_iomin() returns the minimum DMA transfer size for the calling device, or
it returns zero, which means that you cannot get there from here.

CONTEXT This function can be called from user or interrupt context.

SEE ALSO ddi_dma_devalign (9F), ddi_dma_setup (9F), ddi_dma_sync (9F),
ddi_dma_lim_sparc (9S), ddi_dma_lim_IA (9S), ddi_dma_req (9S)

Writing Device Drivers

Last modified 1 Feb 1994 SunOS 5.8 347

ddi_iopb_alloc(9F) Kernel Functions for Drivers

NAME ddi_iopb_alloc, ddi_iopb_free – allocate and free non-sequentially accessed
memory

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
int ddi_iopb_alloc (dev_info_t *dip, ddi_dma_lim_t *limits, uint_t length, caddr_t
*iopbp);

void ddi_iopb_free (caddr_t iopb);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS
ddi_iopb_alloc() dip A pointer to the device’s dev_info structure.

limits A pointer to a DMA limits structure for this device (see
ddi_dma_lim_sparc (9S) or ddi_dma_lim_IA (9S)). If this
pointer is NULL , a default set of DMA limits is assumed.

length The length in bytes of the desired allocation.

iopbp A pointer to a caddr_t . On a successful return, *iopbp
points to the allocated storage.

ddi_iopb_free() iopb The iopb returned from a successful call to
ddi_iopb_alloc() .

DESCRIPTION ddi_iopb_alloc() allocates memory for DMA transfers and should be used
if the device accesses memory in a non-sequential fashion, or if synchronization
steps using ddi_dma_sync (9F) should be as lightweight as possible, due to
frequent use on small objects. This type of access is commonly known as
consistent access. The allocation will obey the alignment and padding constraints
as specified in the limits argument and other limits imposed by the system.

Note that you still must use DMA resource allocation functions (see
ddi_dma_setup (9F)) to establish DMA resources for the memory allocated
using ddi_iopb_alloc() .

In order to make the view of a memory object shared between a CPU and a DMA
device consistent, explicit synchronization steps using ddi_dma_sync (9F) or
ddi_dma_free (9F) are still required. The DMA resources will be allocated so
that these synchronization steps are as efficient as possible.

ddi_iopb_free() frees up memory allocated by ddi_iopb_alloc() .

RETURN VALUES ddi_iopb_alloc() returns:

348 SunOS 5.8 Last modified 17 May 1994

Kernel Functions for Drivers ddi_iopb_alloc(9F)

DDI_SUCCESS Memory successfully allocated.

DDI_FAILURE Allocation failed.

CONTEXT These functions can be called from user or interrupt context.

SEE ALSO ddi_dma_free (9F) , ddi_dma_setup (9F) , ddi_dma_sync (9F) ,
ddi_mem_alloc (9F) , ddi_dma_lim_sparc (9S) , ddi_dma_lim_x86 (9S) ,
ddi_dma_req (9S)

Writing Device Drivers

NOTES This function uses scarce system resources. Use it selectively.

Last modified 17 May 1994 SunOS 5.8 349

ddi_io_put8(9F) Kernel Functions for Drivers

NAME ddi_io_put8, ddi_io_put16, ddi_io_put32, ddi_io_putw, ddi_io_putl,
ddi_io_putb – write data to the mapped device register in I/O space

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
void ddi_io_put8 (ddi_acc_handle_t handle, uint8_t *dev_addr, uint8_t value);

void ddi_io_put16 (ddi_acc_handle_t handle, uint16_t *dev_addr, uint16_t value);

void ddi_io_put32 (ddi_acc_handle_t handle, uint32_t *dev_addr, uint32_t value);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS handle Data access handle returned from setup calls, such as
ddi_regs_map_setup (9F) .

dev_addr Base device address.

value Data to be written to the device.

DESCRIPTION These routines generate a write of various sizes to the device address,
dev_addr , in I/O space. The ddi_io_put8() , ddi_io_put16() , and
ddi_io_put32() functions write 8 bits, 16 bits, and 32 bits of data, respectively,
to the device address, dev_addr .

Each individual datum will automatically be translated to maintain a consistent
view between the host and the device based on the encoded information in the
data access handle. The translation may involve byte-swapping if the host and
the device have incompatible endian characteristics.

CONTEXT These functions can be called from user, kernel, or interrupt context.

SEE ALSO isa (4) , ddi_io_get8 (9F) , ddi_io_rep_get8 (9F) , ddi_io_rep_put8 (9F) ,
ddi_regs_map_setup (9F) , ddi_device_acc_attr (9S)

NOTES For drivers using these functions, it may not be easy to maintain a single source
to support devices with multiple bus versions. For example, devices may offer
I/O space in ISA bus (see isa (4)) but memory space only in PCI local bus. This
is especially true in instruction set architectures such as IA where accesses to the
memory and I/O space are different.

The functions described in this manual page previously used symbolic names
which specified their data access size; the function names have been changed
so they now specify a fixed-width data size. See the following table for the
new name equivalents:

350 SunOS 5.8 Last modified 29 June 1999

Kernel Functions for Drivers ddi_io_put8(9F)

Previous Name New Name

ddi_io_putb ddi_io_put8

ddi_io_putw ddi_io_put16

ddi_io_putl ddi_io_put32

Last modified 29 June 1999 SunOS 5.8 351

ddi_io_rep_get8(9F) Kernel Functions for Drivers

NAME ddi_io_rep_get8, ddi_io_rep_get16, ddi_io_rep_get32, ddi_io_rep_getw,
ddi_io_rep_getb, ddi_io_rep_getl – read multiple data from the mapped device
register in I/O space

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
void ddi_io_rep_get8 (ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr ,,
size_t repcount);

void ddi_io_rep_get16 (ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t
*dev_addr ,, size_t repcount);

void ddi_io_rep_get32 (ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t
*dev_addr ,, size_t repcount);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS handle The data access handle returned from setup calls, such as
ddi_regs_map_setup (9F) .

host_addr Base host address.

dev_addr Base device address.

repcount Number of data accesses to perform.

DESCRIPTION These routines generate multiple reads from the device address, dev_addr , in
I/O space. repcount data is copied from the device address, dev_addr , to the
host address, host_addr . For each input datum, the ddi_io_rep_get8() ,
ddi_io_rep_get16() , and ddi_io_rep_get32() functions read 8 bits, 16
bits, and 32 bits of data, respectively, from the device address. host_addr must be
aligned to the datum boundary described by the function.

Each individual datum will automatically be translated to maintain a consistent
view between the host and the device based on the encoded information in the
data access handle. The translation may involve byte-swapping if the host and
the device have incompatible endian characteristics.

CONTEXT These functions can be called from user, kernel, or interrupt context.

SEE ALSO isa (4) , ddi_io_get8 (9F) , ddi_io_put8 (9F) , ddi_io_rep_put8 (9F)
, ddi_regs_map_free (9F) , ddi_regs_map_setup (9F) ,
ddi_device_acc_attr (9S)

352 SunOS 5.8 Last modified 29 June 1999

Kernel Functions for Drivers ddi_io_rep_get8(9F)

NOTES For drivers using these functions, it may not be easy to maintain a single source
to support devices with multiple bus versions. For example, devices may offer
I/O space in ISA bus (see isa (4)) but memory space only in PCI local bus. This
is especially true in instruction set architectures such as IA where accesses to the
memory and I/O space are different.

The functions described in this manual page previously used symbolic names
which specified their data access size; the function names have been changed
so they now specify a fixed-width data size. See the following table for the
new name equivalents:

Previous Name New Name

ddi_io_rep_getb ddi_io_rep_get8

ddi_io_rep_getw ddi_io_rep_get16

ddi_io_rep_getl ddi_io_rep_get32

Last modified 29 June 1999 SunOS 5.8 353

ddi_io_rep_put8(9F) Kernel Functions for Drivers

NAME ddi_io_rep_put8, ddi_io_rep_put16, ddi_io_rep_put32, ddi_io_rep_putw,
ddi_io_rep_putl, ddi_io_rep_putb – write multiple data to the mapped device
register in I/O space

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
void ddi_io_rep_put8 (ddi_acc_handle_t handle, uint8_t *host_addr, uin8_t *dev_addr,
size_t repcount);

void ddi_io_rep_put16 (ddi_acc_handle_t handle, uint16_t *host_addr, uin16_t
*dev_addr, size_t repcount);

void ddi_io_rep_put32 (ddi_acc_handle_t handle, uint32_t *host_addr, uin32_t
*dev_addr, size_t repcount);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS handle Data access handle returned from setup calls, such as
ddi_regs_map_setup (9F) .

host_addr Base host address.

dev_addr Base device address.

repcount Number of data accesses to perform.

DESCRIPTION These routines generate multiple writes to the device address, dev_address , in
I/O space. repcount data is copied from the host address, host_addr , to the
device address, dev_addr . For each input datum, the ddi_io_rep_put8() ,
ddi_io_rep_put16() , and ddi_io_rep_put32() functions write 8 bits, 16
bits, and 32 bits of data, respectively, to the device address. host_addr must be
aligned to the datum boundary described by the function.

Each individual datum will automatically be translated to maintain a consistent
view between the host and the device based on the encoded information in the
data access handle. The translation may involve byte-swapping if the host and
the device have incompatible endian characteristics.

CONTEXT These functions can be called from user, kernel, or interrupt context.

SEE ALSO isa (4) , ddi_io_get8 (9F) , ddi_io_put8 (9F) , ddi_io_rep_get8 (9F) ,
ddi_regs_map_setup (9F) , ddi_device_acc_attr (9S)

NOTES For drivers using these functions, it may not be easy to maintain a single source
to support devices with multiple bus versions. For example, devices may offer

354 SunOS 5.8 Last modified 30 Sep 1996

Kernel Functions for Drivers ddi_io_rep_put8(9F)

I/O space in ISA bus (see isa (4)) but memory space only in PCI local bus. This
is especially true in instruction set architectures such as IA where accesses to the
memory and I/O space are different.

The functions described in this manual page previously used symbolic names
which specified their data access size; the function names have been changed
so they now specify a fixed-width data size. See the following table for the
new name equivalents:

Previous Name New Name

ddi_io_rep_putb ddi_io_rep_put8

ddi_io_rep_putw ddi_io_rep_put16

ddi_io_rep_putl ddi_io_rep_put32

Last modified 30 Sep 1996 SunOS 5.8 355

ddi_mapdev(9F) Kernel Functions for Drivers

NAME ddi_mapdev – create driver-controlled mapping of device

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_mapdev (dev_t dev, off_t offset, struct as *asp, caddr_t *addrp, off_t len, uint_t prot,
uint_t maxprot, uint_t flags, cred_t *cred, struct ddi_mapdev_ctl *ctl, ddi_mapdev_handle_t
*handlep, void *devprivate);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dev The device whose memory is to be mapped.

offset The offset within device memory at which the mapping
begins.

as An opaque pointer to the user address space into which the
device memory should be mapped.

addrp Pointer to the starting address within the user address space
to which the device memory should be mapped.

len Length (in bytes) of the memory to be mapped.

prot A bit field that specifies the protections.

maxprot Maximum protection flag possible for attempted mapping.

flags Flags indicating type of mapping.

cred Pointer to the user credentials structure.

ctl A pointer to a ddi_mapdev_ctl (9S) structure. The structure
contains pointers to device driver-supplied functions that
manage events on the device mapping.

handlep An opaque pointer to a device mapping handle. A handle to
the new device mapping is generated and placed into the
location pointed to by *handlep. If the call fails, the value of
*handlep is undefined.

devprivate Driver private mapping data. This value is passed into each
mapping call back routine.

DESCRIPTION Future releases of Solaris will provide this function for binary and source
compatibility. However, for increased functionality, use devmap_setup (9F)
instead. See devmap_setup (9F) for deatils.

ddi_mapdev () sets up user mappings to device space. The driver is notified of
user events on the mappings via the entry points defined by ctl.

356 SunOS 5.8 Last modified 17 Jan 1997

Kernel Functions for Drivers ddi_mapdev(9F)

The user events that the driver is notified of are:
access User has accessed an address in the mapping that has no

translations.

duplication User has duplicated the mapping. Mappings are duplicated
when the process calls fork (2).

unmapping User has called munmap(2) on the mapping or is exiting.

See mapdev_access (9E), mapdev_dup (9E), and mapdev_free (9E) for details
on these entry points.

The range to be mapped, defined by offset and len must be valid.

The arguments dev, asp, addrp, len, prot, maxprot, flags, and cred are provided by
the segmap(9E) entry point and should not be modified. See segmap(9E) for a
description of these arguments. Unlike ddi_segmap (9F), the drivers mmap(9E)
entry point is not called to verify the range to be mapped.

With the handle, device drivers can use ddi_mapdev_intercept (9F) and
ddi_mapdev_nointercept (9F) to inform the system of whether or not they
are interested in being notified when the user process accesses the mapping.
By default, user accesses to newly created mappings will generate a call to the
mapdev_access() entry point. The driver is always notified of duplications
and unmaps.

The device may also use the handle to assign certain characteristics to the
mapping. See ddi_mapdev_set_device_acc_attr (9F) for details.

The device driver can use these interfaces to implement a device context and
control user accesses to the device space. ddi_mapdev() is typically called from
the segmap(9E) entry point.

RETURN VALUES ddi_mapdev() returns zero on success and non-zero on failure. The return
value from ddi_mapdev() should be used as the return value for the drivers
segmap() entry point.

CONTEXT This routine can be called from user or kernel context only.

SEE ALSO fork (2), mmap(2), munmap(2), mapdev_access (9E), mapdev_dup (9E),
mapdev_free (9E), mmap(9E), segmap(9E), ddi_mapdev_intercept (9F),
ddi_mapdev_nointercept (9F), ddi_mapdev_set_device_acc_attr (9F),
ddi_segmap (9F), ddi_mapdev_ctl (9S)

Writing Device Drivers

NOTES Only mappings of type MAP_PRIVATEshould be used with ddi_mapdev() .

Last modified 17 Jan 1997 SunOS 5.8 357

ddi_mapdev_intercept(9F) Kernel Functions for Drivers

NAME ddi_mapdev_intercept, ddi_mapdev_nointercept – control driver notification
of user accesses

SYNOPSIS #include <sys/sunddi.h>
int ddi_mapdev_intercept (ddi_mapdev_handle_t handle, off_t offset, off_t len);

int ddi_mapdev_nointercept (ddi_mapdev_handle_t handle, off_t offset, off_t len);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS handle An opaque pointer to a device mapping handle.

offset An offset in bytes within device memory.

len Length in bytes.

DESCRIPTION Future releases of Solaris will provide these functions for binary and source
compatibility. However, for increased functionality, use devmap_load (9F) or
devmap_unload (9F) instead. See devmap_load (9F) and devmap_unload (9F)
for details.

The ddi_mapdev_intercept() and ddi_mapdev_nointercept()
functions control whether or not user accesses to device mappings created
by ddi_mapdev (9F) in the specified range will generate calls to the
mapdev_access (9E) entry point. ddi_mapdev_intercept() tells the system
to intercept the user access and notify the driver to invalidate the mapping
translations. ddi_mapdev_nointercept() tells the system to not intercept
the user access and allow it to proceed by validating the mapping translations.

For both routines, the range to be affected is defined by the offset and len
arguments. Requests affect the entire page containing the offset and all pages up
to and including the page containing the last byte as indicated by offset + len .

Supplying a value of 0 for the len argument affects all addresses from the offset to
the end of the mapping. Supplying a value of 0 for the offset argument and a
value of 0 for len argument affect all addresses in the mapping.

To manage a device context, a device driver would call
ddi_mapdev_intercept() on the context about to be switched out, switch
contexts, and then call ddi_mapdev_nointercept() on the context switched
in.

RETURN VALUES ddi_mapdev_intercept() and ddi_mapdev_nointercept() return
the following values:

358 SunOS 5.8 Last modified 21 Jan 1997

Kernel Functions for Drivers ddi_mapdev_intercept(9F)

0 Successful completion.

Non-zero An error occurred.

EXAMPLES EXAMPLE 1 managing a device context that is one page in length

The following shows an example of managing a device context that is one
page in length.

ddi_mapdev_handle_t cur_hdl;
static int
xxmapdev_access(ddi_mapdev_handle_t handle, void *devprivate,

off_t offset)
{

int err;
/* enable access callbacks for the current mapping */
if (cur_hdl != NULL) {

if ((err = ddi_mapdev_intercept(cur_hdl, offset, 0)) != 0)
return (err);

}
/* Switch device context - device dependent*/
...
/* Make handle the new current mapping */
cur_hdl = handle;
/*

* Disable callbacks and complete the access for the
* mapping that generated this callback.
*/

return (ddi_mapdev_nointercept(handle, offset, 0));
}

CONTEXT These routines can be called from user or kernel context only.

SEE ALSO mapdev_access (9E) , ddi_mapdev (9F)

Writing Device Drivers

Last modified 21 Jan 1997 SunOS 5.8 359

ddi_mapdev_set_device_acc_attr(9F) Kernel Functions for Drivers

NAME ddi_mapdev_set_device_acc_attr – set the device attributes for the mapping

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_mapdev_set_device_acc_attr (ddi_mapdev_handle_t mapping_handle, off_t
offset, off_t len, ddi_device_acc_attr_t *accattrp, uint_t rnumber);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS mapping_handle A pointer to a device mapping handle.

offset The offset within device memory to which the device access
attributes structure applies.

len Length (in bytes) of the memory to which the device access
attributes structure applies.

*accattrp Pointer to a ddi_device_acc_attr (9S) structure. Contains
the device access attributes to be applied to this range of
memory.

rnumber Index number to the register address space set.

DESCRIPTION Future releases of Solaris will provide this function for binary and source
compatibility. However, for increased functionality, use devmap(9E) instead.
See devmap(9E) for details.

The ddi_mapdev_set_device_acc_attr() function assigns device access
attributes to a range of device memory in the register set given by rnumber.

*accattrp defines the device access attributes. See ddi_device_acc_attr (9S)
for more details.

mapping_handle is a mapping handle returned from a call to ddi_mapdev (9F).

The range to be affected is defined by the offset and len arguments. Requests
affect the entire page containing the offset and all pages up to and including the
page containing the last byte as indicated by offset+len. Supplying a value of
0 for the len argument affects all addresses from the offset to the end of the
mapping. Supplying a value of 0 for the offset argument and a value of 0 for the
len argument affect all addresses in the mapping.

RETURN VALUES The ddi_mapdev_set_device_acc_attr() function returns the following
values:
DDI_SUCCESS The attributes were successfully set.

DDI_FAILURE It is not possible to set these attributes for this
mapping handle.

360 SunOS 5.8 Last modified 13 Jan 1997

Kernel Functions for Drivers ddi_mapdev_set_device_acc_attr(9F)

CONTEXT This routine can be called from user or kernel context only.

SEE ALSO segmap(9E), ddi_mapdev (9F), ddi_segmap_setup (9F),
ddi_device_acc_attr (9S)

Writing Device Drivers

Last modified 13 Jan 1997 SunOS 5.8 361

ddi_map_regs(9F) Kernel Functions for Drivers

NAME ddi_map_regs, ddi_unmap_regs – map or unmap registers

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
int ddi_map_regs (dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp, off_t offset, off_t len);

void ddi_unmap_regs (dev_info_t *dip, uint_t rnumber, caddr_t *kaddrp, off_t offset,
off_t len);

PARAMETERS
ddi_map_regs() dip Pointer to the device’s dev_info structure.

rnumber Register set number.

kaddrp Pointer to the base kernel address of the mapped region
(set on return).

offset Offset into register space.

len Length to be mapped.

ddi_unmap_regs() dip Pointer to the device’s dev_info structure.

rnumber Register set number.

kaddrp Pointer to the base kernel address of the region to be
unmapped.

offset Offset into register space.

len Length to be unmapped.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_map_regs() maps in the register set given by rnumber . The register
number determines which register set will be mapped if more than one exists.
The base kernel virtual address of the mapped register set is returned in kaddrp .
offset specifies an offset into the register space to start from and len indicates the
size of the area to be mapped. If len is non-zero, it overrides the length given in
the register set description. See the discussion of the reg property in sbus (4)

362 SunOS 5.8 Last modified 27 Jan 1993

Kernel Functions for Drivers ddi_map_regs(9F)

and for more information on register set descriptions. If len and offset are 0,
the entire space is mapped.

ddi_unmap_regs() undoes mappings set up by ddi_map_regs() . This is
provided for drivers preparing to detach themselves from the system, allowing
them to release allocated mappings. Mappings must be released in the same
way they were mapped (a call to ddi_unmap_regs() must correspond to a
previous call to ddi_map_regs()). Releasing portions of previous mappings
is not allowed. rnumber determines which register set will be unmapped if more
than one exists. The kaddrp , offset and len specify the area to be unmapped.
kaddrp is a pointer to the address returned from ddi_map_regs() ; offset and
len should match what ddi_map_regs() was called with.

RETURN VALUES ddi_map_regs() returns:
DDI_SUCCESS on success.

CONTEXT These functions can be called from user or interrupt context.

SEE ALSO sbus (4)

Writing Device Drivers

Last modified 27 Jan 1993 SunOS 5.8 363

ddi_mem_alloc(9F) Kernel Functions for Drivers

NAME ddi_mem_alloc, ddi_mem_free – allocate and free sequentially accessed memory

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
int ddi_mem_alloc (dev_info_t *dip, ddi_dma_lim_t *limits, uint_t length, uint_t flags,
caddr_t *kaddrp, uint_t *real_length);

void ddi_mem_free (caddr_t kaddr);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS
ddi_mem_alloc() dip A pointer to the device’s dev_info structure.

limits A pointer to a DMA limits structure for this device (see
ddi_dma_lim_sparc (9S) or ddi_dma_lim_IA (9S)). If this
pointer is NULL , a default set of DMA limits is assumed.

length The length in bytes of the desired allocation.

flags The possible flags 1 and 0 are taken to mean, respectively,
wait until memory is available, or do not wait.

kaddrp On a successful return, *kaddrp points to the allocated
memory.

real_length The length in bytes that was allocated. Alignment and
padding requirements may cause ddi_mem_alloc() to
allocate more memory than requested in length .

ddi_mem_free() kaddr The memory returned from a successful call to
ddi_mem_alloc() .

DESCRIPTION ddi_mem_alloc() allocates memory for DMA transfers and should be
used if the device is performing sequential, unidirectional, block-sized and
block-aligned transfers to or from memory. This type of access is commonly
known as streaming access. The allocation will obey the alignment and padding
constraints as specified by the limits argument and other limits imposed by
the system.

Note that you must still use DMA resource allocation functions (see
ddi_dma_setup (9F)) to establish DMA resources for the memory allocated
using ddi_mem_alloc() . ddi_mem_alloc() returns the actual size of the
allocated memory object. Because of padding and alignment requirements,
the actual size might be larger than the requested size. ddi_dma_setup (9F)
requires the actual length.

364 SunOS 5.8 Last modified 4 Apr 1996

Kernel Functions for Drivers ddi_mem_alloc(9F)

In order to make the view of a memory object shared between a CPU and a DMA
device consistent, explicit synchronization steps using ddi_dma_sync (9F)
or ddi_dma_free (9F) are required.

ddi_mem_free() frees up memory allocated by ddi_mem_alloc() .

RETURN VALUES ddi_mem_alloc() returns:
DDI_SUCCESS Memory successfully allocated.

DDI_FAILURE Allocation failed.

CONTEXT ddi_mem_alloc() can be called from user or interrupt context, except when
flags is set to 1 , in which case it can be called from user context only.

SEE ALSO ddi_dma_free (9F) , ddi_dma_setup (9F) , ddi_dma_sync (9F) ,
ddi_iopb_alloc (9F) , ddi_dma_lim_sparc (9S) , ddi_dma_lim_x86 (9S) ,
ddi_dma_req (9S)

Writing Device Drivers

Last modified 4 Apr 1996 SunOS 5.8 365

ddi_mem_get8(9F) Kernel Functions for Drivers

NAME ddi_mem_get8, ddi_mem_get16, ddi_mem_get32, ddi_mem_get64,
ddi_mem_getw, ddi_mem_getl, ddi_mem_getll, ddi_mem_getb – read data from
mapped device in the memory space or allocated DMA memory

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
uint8_t ddi_mem_get8 (ddi_acc_handle_t handle, uint8_t *dev_addr);

uint16_t ddi_mem_get16 (ddi_acc_handle_t handle, uint16_t * dev_addr);

uint32_t ddi_mem_get32 (ddi_acc_handle_t handle, uint32_t *dev_addr);

uint64_t ddi_mem_get64 (ddi_acc_handle_t handle, uint64_t *dev_addr);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS handle The data access handle returned from setup calls, such as
ddi_regs_map_setup (9F) .

dev_addr Base device address.

DESCRIPTION These routines generate a read of various sizes from memory space or
allocated DMA memory. The ddi_mem_get8() , ddi_mem_get16() ,
ddi_mem_get32() , and ddi_mem_get64() functions read 8 bits, 16 bits,
32 bits and 64 bits of data, respectively, from the device address, dev_addr , in
memory space.

Each individual datum will automatically be translated to maintain a consistent
view between the host and the device based on the encoded information in the
data access handle. The translation may involve byte-swapping if the host and
the device have incompatible endian characteristics.

CONTEXT These functions can be called from user, kernel, or interrupt context.

SEE ALSO ddi_mem_put8 (9F) , ddi_mem_rep_get8 (9F) , ddi_mem_rep_put8 (9F) ,
ddi_regs_map_setup (9F) , ddi_device_acc_attr (9S)

NOTES The functions described in this manual page previously used symbolic names
which specified their data access size; the function names have been changed
so they now specify a fixed-width data size. See the following table for the
new name equivalents:

Previous Name New Name

ddi_mem_getb ddi_mem_get8

ddi_mem_getw ddi_mem_get16

366 SunOS 5.8 Last modified 30 Sep 1996

Kernel Functions for Drivers ddi_mem_get8(9F)

Previous Name New Name

ddi_mem_getl ddi_mem_get32

ddi_mem_getll ddi_mem_get64

Last modified 30 Sep 1996 SunOS 5.8 367

ddi_mem_put8(9F) Kernel Functions for Drivers

NAME ddi_mem_put8, ddi_mem_put16, ddi_mem_put32, ddi_mem_put64,
ddi_mem_putb, ddi_mem_putw, ddi_mem_putl, ddi_mem_putll – write data to
mapped device in the memory space or allocated DMA memory

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
void ddi_mem_put8 (ddi_acc_handle_t handle, uint8_t *dev_addr, uint8_t value);

void ddi_mem_put16 (ddi_acc_handle_t handle, uint16_t *dev_addr, uint16_t value);

void ddi_mem_put32 (ddi_acc_handle_t handle, uint32_t *dev_addr, uint32_t value);

void ddi_mem_put64 (ddi_acc_handle_t handle, uint64_t *dev_addr, uint64_t value);

PARAMETERS handle The data access handle returned from setup calls, such as
ddi_regs_map_setup (9F) .

dev_addr Base device address.

value The data to be written to the device.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION These routines generate a write of various sizes to memory space or
allocated DMA memory. The ddi_mem_put8() , ddi_mem_put16() ,
ddi_mem_put32() , and ddi_mem_put64() functions write 8 bits, 16 bits,
32 bits and 64 bits of data, respectively, to the device address, dev_addr , in
memory space.

Each individual datum will automatically be translated to maintain a consistent
view between the host and the device based on the encoded information in the
data access handle. The translation may involve byte-swapping if the host and
the device have incompatible endian characteristics.

CONTEXT These functions can be called from user, kernel, or interrupt context.

SEE ALSO ddi_mem_get8 (9F) , ddi_mem_rep_get8 (9F) , ddi_regs_map_setup (9F) ,
ddi_device_acc_attr (9S)

NOTES The functions described in this manual page previously used symbolic names
which specified their data access size; the function names have been changed
so they now specify a fixed-width data size. See the following table for the
new name equivalents:

368 SunOS 5.8 Last modified 28 Sep 1996

Kernel Functions for Drivers ddi_mem_put8(9F)

Previous Name New Name

ddi_mem_putb ddi_mem_put8

ddi_mem_putw ddi_mem_put16

ddi_mem_putl ddi_mem_put32

ddi_mem_putll ddi_mem_put64

Last modified 28 Sep 1996 SunOS 5.8 369

ddi_mem_rep_get8(9F) Kernel Functions for Drivers

NAME ddi_mem_rep_get8, ddi_mem_rep_get16, ddi_mem_rep_get32,
ddi_mem_rep_get64, ddi_mem_rep_getw, ddi_mem_rep_getl,
ddi_mem_rep_getll, ddi_mem_rep_getb – read multiple data from mapped
device in the memory space or allocated DMA memory

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
void ddi_mem_rep_get8 (ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr,
size_t repcount, uint_t flags);

void ddi_mem_rep_get16 (ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t
*dev_addr, size_t repcount, uint_t flags);

void ddi_mem_rep_get32 (ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t
*dev_addr, size_t repcount, uint_t flags);

void ddi_mem_rep_get64 (ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t
*dev_addr, size_t repcount, uint_t flags);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS handle The data access handle returned from setup calls, such as
ddi_regs_map_setup (9F) .

host_addr Base host address.

dev_addr Base device address.

repcount Number of data accesses to perform.

flags Device address flags:

DDI_DEV_AUTOINCR Automatically increment the
device address, dev_addr ,
during data accesses.

DDI_DEV_NO_AUTOINCR Do not advance the device
address, dev_addr , during
data accesses.

DESCRIPTION These routines generate multiple reads from memory space or allocated
DMA memory. repcount data is copied from the device address, dev_addr ,
in memory space to the host address, host_addr . For each input datum, the
ddi_mem_rep_get8() , ddi_mem_rep_get16() , ddi_mem_rep_get32()
, and ddi_mem_rep_get64() functions read 8 bits, 16 bits, 32 bits and 64 bits

370 SunOS 5.8 Last modified 28 Aug 1996

Kernel Functions for Drivers ddi_mem_rep_get8(9F)

of data, respectively, from the device address, dev_addr . dev_addr and host_addr
must be aligned to the datum boundary described by the function.

Each individual datum will automatically be translated to maintain a consistent
view between the host and the device based on the encoded information in the
data access handle. The translation may involve byte-swapping if the host and
the device have incompatible endian characteristics.

When the flags argument is set to DDI_DEV_AUTOINCR, these functions will
treat the device address, dev_addr , as a memory buffer location on the device
and increments its address on the next input datum. However, when the flags
argument is set to DDI_DEV_NO_AUTOINCR, the same device address will be
used for every datum access. For example, this flag may be useful when reading
from a data register.

CONTEXT These functions can be called from user, kernel, or interrupt context.

SEE ALSO ddi_mem_get8 (9F) , ddi_mem_put8 (9F) , ddi_mem_rep_put8 (9F) ,
ddi_regs_map_setup (9F) , ddi_device_acc_attr (9S)

NOTES The functions described in this manual page previously used symbolic names
which specified their data access size; the function names have been changed
so they now specify a fixed-width data size. See the following table for the
new name equivalents:

Previous Name New Name

ddi_mem_rep_getb ddi_mem_rep_get8

ddi_mem_rep_getw ddi_mem_rep_get16

ddi_mem_rep_getl ddi_mem_rep_get32

ddi_mem_rep_getll ddi_mem_rep_get64

Last modified 28 Aug 1996 SunOS 5.8 371

ddi_mem_rep_put8(9F) Kernel Functions for Drivers

NAME ddi_mem_rep_put8, ddi_mem_rep_put16, ddi_mem_rep_put32,
ddi_mem_rep_put64, ddi_mem_rep_putw, ddi_mem_rep_putl,
ddi_mem_rep_putll, ddi_mem_rep_putb – write multiple data to mapped device
in the memory space or allocated DMA memory

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
void ddi_mem_rep_put8 (ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr,
size_t repcount, uint_t flags);

void ddi_mem_rep_put16 (ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t
*dev_addr, size_t repcount, uint_t flags);

void ddi_mem_rep_put32 (ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t
*dev_addr, size_t repcount, uint_t flags);

void ddi_mem_rep_put64 (ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t
*dev_addr, size_t repcount, uint_t flags);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS handle The data access handle returned from setup calls, such as
ddi_regs_map_setup (9F) .

host_addr Base host address.

dev_addr Base device address.

repcount Number of data accesses to perform.

flags Device address flags:

DDI_DEV_AUTOINCR

Automatically increment the device address, dev_addr ,
during data accesses.

DDI_DEV_NO_AUTOINCR

Do not advance the device address, dev_addr , during
data accesses.

DESCRIPTION These routines generate multiple writes to memory space or allocated DMA
memory. repcount data is copied from the host address, host_addr , to the

372 SunOS 5.8 Last modified 28 Oct 1996

Kernel Functions for Drivers ddi_mem_rep_put8(9F)

device address, dev_addr , in memory space. For each input datum, the
ddi_mem_rep_put8() , ddi_mem_rep_put16() , ddi_mem_rep_put32()
, and ddi_mem_rep_put64() functions write 8 bits, 16 bits, 32 bits and 64 bits
of data, respectively, to the device address. dev_addr and host_addr must be
aligned to the datum boundary described by the function.

Each individual datum will automatically be translated to maintain a consistent
view between the host and the device based on the encoded information in the
data access handle. The translation may involve byte-swapping if the host and
the device have incompatible endian characteristics.

When the flags argument is set to DDI_DEV_AUTOINCR, these functions will
treat the device address, dev_addr , as a memory buffer location on the device
and increments its address on the next input datum. However, when the flags
argument is set to DDI_DEV_NO_AUTOINCR, the same device address will be
used for every datum access. For example, this flag may be useful when writing
from a data register.

CONTEXT These functions can be called from user, kernel, or interrupt context.

SEE ALSO ddi_mem_get8 (9F) , ddi_mem_put8 (9F) , ddi_mem_rep_get8 (9F) ,
ddi_regs_map_setup (9F) , ddi_device_acc_attr (9S)

NOTES The functions described in this manual page previously used symbolic names
which specified their data access size; the function names have been changed
so they now specify a fixed-width data size. See the following table for the
new name equivalents:

Previous Name New Name

ddi_mem_rep_putb ddi_mem_rep_put8

ddi_mem_rep_putw ddi_mem_rep_put16

ddi_mem_rep_putl ddi_mem_rep_put32

ddi_mem_rep_putll ddi_mem_rep_put64

Last modified 28 Oct 1996 SunOS 5.8 373

ddi_mmap_get_model(9F) Kernel Functions for Drivers

NAME ddi_mmap_get_model – return data model type of current thread

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

uint_tddi_mmap_get_model (void););

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_mmap_get_model() returns the C Language Type Model which the
current thread expects. ddi_mmap_get_model() is used in combination
with ddi_model_convert_from (9F) in the mmap(9E) driver entry point to
determine whether there is a data model mismatch between the current thread
and the device driver. The device driver might have to adjust the shape of data
structures before exporting them to a user thread which supports a different
data model.

RETURN VALUES DDI_MODEL_ILP32 Current thread expects 32-bit (ILP32) semantics.

DDI_MODEL_LP64 Current thread expects 64-bit (LP64) semantics.

DDI_FAILURE The ddi_mmap_get_model() function was not
called from the mmap(9E) entry point.

CONTEXT The ddi_mmap_get_model() function can only be called from the mmap(9E)
driver entry point.

EXAMPLES EXAMPLE 1 : Using ddi_mmap_get_model()

The following is an example of the mmap(9E) entry point and how to support
32-bit and 64-bit applications with the same device driver.

struct data32 {
int len;
caddr32_t addr;

};

struct data {
int len;
caddr_t addr;

};
xxmmap(dev_t dev, off_t off, int prot) {

struct data dtc; /* a local copy for clash resolution */
struct data *dp = (struct data *)shared_area;

#ifdef _MULTI_DATAMODEL
switch (ddi_model_convert_from(ddi_mmap_get_model())) {
case DDI_MODEL_ILP32:
{

struct data32 *da32p;

374 SunOS 5.8 Last modified 20 Oct 1996

Kernel Functions for Drivers ddi_mmap_get_model(9F)

da32p = (struct data32 *)shared_area;
dp = &dtc;
dp->len = da32p->len;
dp->address = da32->address;
break;

}
case DDI_MODEL_NONE:

break;
}

#endif /* _MULTI_DATAMODEL */
/* continues along using dp */

…
}

SEE ALSO mmap(9E), ddi_model_convert_from (9F)

Writing Device Drivers

Last modified 20 Oct 1996 SunOS 5.8 375

ddi_model_convert_from(9F) Kernel Functions for Drivers

NAME ddi_model_convert_from – determine data model type mismatch

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
uint_tddi_model_convert_from (uint_t model);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS model The data model type of the current thread.

DESCRIPTION ddi_model_convert_from() is used to determine if the current thread uses a
different C Language Type Model than the device driver. The 64-bit version of
Solaris will require a 64-bit kernel to support both 64-bit and 32-bit user mode
programs. The difference between a 32-bit program and a 64-bit program is in its
C Language Type Model: a 32-bit program is ILP32 (integer, longs, and pointers
are 32-bit) and a 64-bit program is LP64 (longs and pointers are 64-bit). There are
a number of driver entry points such as ioctl (9E) and mmap(9E) where it is
necessary to identify the C Language Type Model of the user-mode originator
of an kernel event. For example any data which flows between programs and
the device driver or vice versa need to be identical in format. A 64-bit device
driver may need to modify the format of the data before sending it to a 32-bit
application. ddi_model_convert_from() is used to determine if data that is
passed between the device driver and the application requires reformatting to
any non-native data model.

RETURN VALUES DDI_MODEL_ILP32 A conversion to/from ILP32 is
necessary.

DDI_MODEL_NONE No conversion is necessary. Current
thread and driver use the same data
model.

CONTEXT ddi_model_convert_from() can be called from any context.

EXAMPLES EXAMPLE 1 : Using ddi_model_convert_from() in the ioctl() entry point to
support both 32-bit and 64-bit applications.

The following is an example how to use ddi_model_convert_from() in the
ioctl() entry point to support both 32-bit and 64-bit applications.

struct passargs32 {
int len;
caddr32_t addr;

};

struct passargs {
int len;
caddr_t addr;

376 SunOS 5.8 Last modified 20 Sep 1996

Kernel Functions for Drivers ddi_model_convert_from(9F)

};
xxioctl(dev_t dev, int cmd, intptr_t arg, int mode,

cred_t *credp, int *rvalp) {
struct passargs pa;

#ifdef _MULTI_DATAMODEL
switch (ddi_model_convert_from(mode & FMODELS)) {

case DDI_MODEL_ILP32:
{

struct passargs32 pa32;

ddi_copyin(arg, &pa32, sizeof (struct passargs32), mode);
pa.len = pa32.len;
pa.address = pa32.address;
break;

}
case DDI_MODEL_NONE:

ddi_copyin(arg, &pa, sizeof (struct passargs), mode);
break;

}
#else /* _MULTI_DATAMODEL */

ddi_copyin(arg, &pa, sizeof (struct passargs), mode);
#endif /* _MULTI_DATAMODEL */

do_ioctl(&pa);
. . . .

}

SEE ALSO ioctl (9E), mmap(9E), ddi_mmap_get_model (9F)

Writing Device Drivers

Last modified 20 Sep 1996 SunOS 5.8 377

ddi_node_name(9F) Kernel Functions for Drivers

NAME ddi_node_name – return the devinfo node name

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

char *ddi_node_name (dev_info_t *dip);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dip A pointer the device’s dev_info structure.

DESCRIPTION ddi_node_name() returns the device node name contained in the dev_info
node pointed to by dip.

RETURN VALUES ddi_node_name() returns the device node name contained in the dev_info
structure.

CONTEXT ddi_node_name() can be called from user or interrupt context.

SEE ALSO ddi_binding_name (9F)

Writing Device Drivers

378 SunOS 5.8 Last modified 3 May 1996

Kernel Functions for Drivers ddi_peek(9F)

NAME ddi_peek, ddi_peek8, ddi_peek16, ddi_peek32, ddi_peek64, ddi_peekc,
ddi_peeks, ddi_peekl, ddi_peekd – read a value from a location

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
int ddi_peek8 (dev_info_t *dip, int8_t *addr, int8_t *valuep);

int ddi_peek16 (dev_info_t *dip, int16_t *addr, int16_t *valuep);

int ddi_peek32 (dev_info_t *dip, int32_t *addr, int32_t *valuep);

int ddi_peek64 (dev_info_t *dip, int64_t *addr, int64_t *valuep);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dip A pointer to the device’s dev_info structure.

addr Virtual address of the location to be examined.

valuep Pointer to a location to hold the result. If a null pointer is specified,
then the value read from the location will simply be discarded.

DESCRIPTION These routines cautiously attempt to read a value from a specified virtual
address, and return the value to the caller, using the parent nexus driver to
assist in the process where necessary.

If the address is not valid, or the value cannot be read without an error occurring,
an error code is returned.

The routines are most useful when first trying to establish the presence of a
device on the system in a driver’s probe (9E) or attach (9E) routines.

RETURN VALUES DDI_SUCCESS The value at the given virtual address was successfully read,
and if valuep is non-null, *valuep will have been updated.

DDI_FAILURE An error occurred while trying to read the location. *valuep
is unchanged.

CONTEXT These functions can be called from user or interrupt context.

EXAMPLES EXAMPLE 1 Checking to see that the status register of a device is mapped into the
kernel address space:

if (ddi_peek8(dip, csr, (int8_t *)0) != DDI_SUCCESS) {
cmn_err(CE_WARN, "Status register not mapped");
return (DDI_FAILURE);

}

Last modified 20 Nov 1996 SunOS 5.8 379

ddi_peek(9F) Kernel Functions for Drivers

EXAMPLE 2 Reading and logging the device type of a particular device:

int
xx_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

...
/* map device registers */

...

if (ddi_peek32(dip, id_addr, &id_value) != DDI_SUCCESS) {
cmn_err(CE_WARN, "%s%d: cannot read device identifier",

ddi_get_name(dip), ddi_get_instance(dip));
goto failure;

} else
cmn_err(CE_CONT, "!%s%d: device type 0x%x\

",
ddi_get_name(dip), ddi_get_instance(dip), id_value);

...

...

ddi_report_dev(dip);
return (DDI_SUCCESS);

failure:
/* free any resources allocated */
...
return (DDI_FAILURE);

}

SEE ALSO attach (9E) , probe (9E) , ddi_poke (9F)

Writing Device Drivers

NOTES The functions described in this manual page previously used symbolic names
which specified their data access size; the function names have been changed
so they now specify a fixed-width data size. See the following table for the
new name equivalents:

Previous Name New Name

ddi_peekc ddi_peek8

ddi_peeks ddi_peek16

ddi_peekl ddi_peek32

ddi_peekd ddi_peek64

380 SunOS 5.8 Last modified 20 Nov 1996

Kernel Functions for Drivers ddi_poke(9F)

NAME ddi_poke, ddi_poke8, ddi_poke16, ddi_poke32, ddi_poke64, ddi_pokec,
ddi_pokes, ddi_pokel, ddi_poked – write a value to a location

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
intddi_poke8 (dev_info_t *dip, int8_t *addr, int8_t value);

intddi_poke16 (dev_info_t *dip, int16_t *addr, int16_t value);

intddi_poke32 (dev_info_t *dip, int32_t *addr, int32_t value);

intddi_poke64 (dev_info_t *dip, int64_t *addr, int64_t value);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dip A pointer to the device’s dev_info structure.

addr Virtual address of the location to be written to.

value Value to be written to the location.

DESCRIPTION These routines cautiously attempt to write a value to a specified virtual address,
using the parent nexus driver to assist in the process where necessary.

If the address is not valid, or the value cannot be written without an error
occurring, an error code is returned.

These routines are most useful when first trying to establish the presence of a
given device on the system in a driver’s probe (9E) or attach (9E) routines.

On multiprocessing machines these routines can be extremely heavy-weight, so
use the ddi_peek (9F) routines instead if possible.

RETURN VALUES DDI_SUCCESS The value was successfully written to the given virtual
address.

DDI_FAILURE An error occurred while trying to write to the location.

CONTEXT These functions can be called from user or interrupt context.

SEE ALSO attach (9E) , probe (9E) , ddi_peek (9F)

Writing Device Drivers

NOTES The functions described in this manual page previously used symbolic names
which specified their data access size; the function names have been changed

Last modified 20 Nov 1996 SunOS 5.8 381

ddi_poke(9F) Kernel Functions for Drivers

so they now specify a fixed-width data size. See the following table for the
new name equivalents:

Previous Name New Name

ddi_pokec ddi_poke8

ddi_pokes ddi_poke16

ddi_pokel ddi_poke32

ddi_poked ddi_poke64

382 SunOS 5.8 Last modified 20 Nov 1996

Kernel Functions for Drivers ddi_prop_create(9F)

NAME ddi_prop_create, ddi_prop_modify, ddi_prop_remove, ddi_prop_remove_all,
ddi_prop_undefine – create, remove, or modify properties for leaf device drivers

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
int ddi_prop_create (dev_t dev, dev_info_t *dip, int flags, char *name, caddr_t valuep,
int length);

int ddi_prop_undefine (dev_t dev, dev_info_t *dip, int flags, char *name);

int ddi_prop_modify (dev_t dev, dev_info_t *dip, int flags, char *name, caddr_t valuep,
int length);

int ddi_prop_remove (dev_t dev, dev_info_t *dip, char *name);

void ddi_prop_remove_all (dev_info_t *dip);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS
ddi_prop_create() dev dev_t of the device.

dip dev_info_t pointer of the device.

flags flag modifiers. The only possible flag value is
DDI_PROP_CANSLEEP:Memory allocation may sleep.

name name of property.

valuep pointer to property value.

length property length.

ddi_prop_undefine() dev dev_t of the device.

dip dev_info_t pointer of the device.

flags flag modifiers. The only possible flag value is
DDI_PROP_CANSLEEP:Memory allocation may sleep.

name name of property.

Last modified 18 Sep 1992 SunOS 5.8 383

ddi_prop_create(9F) Kernel Functions for Drivers

ddi_prop_modify() dev dev_t of the device.

dip dev_info_t pointer of the device.

flags flag modifiers. The only possible flag value is
DDI_PROP_CANSLEEP:Memory allocation may sleep.

name name of property.

valuep pointer to property value.

length property length.

ddi_prop_remove() dev dev_t of the device.

dip dev_info_t pointer of the device.

name name of property.

ddi_prop_remove_all() dip dev_info_t pointer of the device.

DESCRIPTION Device drivers have the ability to create and manage their own properties
as well as gain access to properties that the system creates on behalf of the
driver. A driver uses ddi_getproplen (9F) to query whether or not a specific
property exists.

Property creation is done by creating a new property definition in the driver’s
property list associated with dip .

Property definitions are stacked; they are added to the beginning of the driver’s
property list when created. Thus, when searched for, the most recent matching
property definition will be found and its value will be return to the caller.

ddi_prop_create() ddi_prop_create() adds a property to the device’s property list. If the
property is not associated with any particular dev but is associated with the
physical device itself, then the argument dev should be the special device
DDI_DEV_T_NONE.If you do not have a dev for your device (for example
during attach (9E) time), you can create one using makedevice (9F) with a
major number of DDI_MAJOR_T_UNKNOWN. ddi_prop_create() will then
make the correct dev for your device.

384 SunOS 5.8 Last modified 18 Sep 1992

Kernel Functions for Drivers ddi_prop_create(9F)

For boolean properties, you must set length to 0. For all other properties, the
length argument must be set to the number of bytes used by the data structure
representing the property being created.

Note that creating a property involves allocating memory for the
property list, the property name and the property value. If flags does
not contain DDI_PROP_CANSLEEP, ddi_prop_create() returns
DDI_PROP_NO_MEMORYon memory allocation failure or DDI_PROP_SUCCESS
if the allocation succeeded. If DDI_PROP_CANSLEEPwas set, the caller may
sleep until memory becomes available.

ddi_prop_undefine() ddi_prop_undefine() is a special case of property creation where the value
of the property is set to undefined. This property has the effect of terminating a
property search at the current devinfo node, rather than allowing the search to
proceed up to ancestor devinfo nodes. See ddi_prop_op (9F) .

Note that undefining properties does involve memory allocation, and therefore,
is subject to the same memory allocation constraints as ddi_prop_create() .

ddi_prop_modify() ddi_prop_modify() modifies the length and the value of a property. If
ddi_prop_modify() finds the property in the driver’s property list, allocates
memory for the property value and returns DDI_PROP_SUCCESS.If the
property was not found, the function returns DDI_PROP_NOT_FOUND.

Note that modifying properties does involve memory allocation, and therefore,
is subject to the same memory allocation constraints as ddi_prop_create() .

ddi_prop_remove() ddi_prop_remove() unlinks a property from the device’s property list. If
ddi_prop_remove() finds the property (an exact match of both name and dev
), it unlinks the property, frees its memory, and returns DDI_PROP_SUCCESS,
otherwise, it returns DDI_PROP_NOT_FOUND.

ddi_prop_remove_all() ddi_prop_remove_all() removes the properties of all the dev_t ’s
associated with the dip . It is called before unloading a driver.

RETURN VALUES
ddi_prop_create() DDI_PROP_SUCCESS on success.

DDI_PROP_NO_MEMORY on memory allocation failure.

DDI_PROP_INVAL_ARG if an attempt is made to create
a property with dev equal to
DDI_DEV_T_ANYor if name is NULL
or name is the NULL string.

ddi_prop_undefine() DDI_PROP_SUCCESS on success.

Last modified 18 Sep 1992 SunOS 5.8 385

ddi_prop_create(9F) Kernel Functions for Drivers

DDI_PROP_NO_MEMORY on memory allocation failure.

DDI_PROP_INVAL_ARG if an attempt is made to create a
property with dev DDI_DEV_T_ANY
or if name is NULL or name is the
NULL string.

ddi_prop_modify() DDI_PROP_SUCCESS on success.

DDI_PROP_NO_MEMORY on memory allocation failure.

DDI_PROP_INVAL_ARG if an attempt is made to create
a property with dev equal to
DDI_DEV_T_ANYor if name is NULL
or name is the NULL string.

DDI_PROP_NOT_FOUND on property search failure.

ddi_prop_remove() DDI_PROP_SUCCESS on success.

DDI_PROP_INVAL_ARG if an attempt is made to create
a property with dev equal to
DDI_DEV_T_ANYor if name is NULL
or name is the NULL string.

DDI_PROP_NOT_FOUND on property search failure.

CONTEXT If DDI_PROP_CANSLEEPis set, these functions can only be called from user
context; otherwise, they can be called from interrupt or user context.

EXAMPLES EXAMPLE 1 : Creating a property

The following example creates a property called nblocks for each partition on
a disk.

for (minor = 0; minor < 8; minor ++) {
(void) ddi_prop_create(makedevice(DDI_MAJOR_T_UNKNOWN, minor),

dev, DDI_PROP_CANSLEEP, "nblocks", 8192, sizeof (int));
...

}

SEE ALSO driver.conf (4) , attach (9E) , ddi_getproplen (9F) , ddi_prop_op (9F)
, makedevice (9F)

386 SunOS 5.8 Last modified 18 Sep 1992

Kernel Functions for Drivers ddi_prop_create(9F)

Writing Device Drivers

Last modified 18 Sep 1992 SunOS 5.8 387

ddi_prop_exists(9F) Kernel Functions for Drivers

NAME ddi_prop_exists – check for the existence of a property

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_prop_exists (dev_t match_dev, dev_info_t *dip, uint_t flags, char *name);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS match_dev Device number associated with property or
DDI_DEV_T_ANY.

dip Pointer to the device info node of device whose property list
should be searched.

flags Possible flag values are some combination of:

DDI_PROP_DONTPASS

Do not pass request to parent device information node if
the property is not found.

DDI_PROP_NOTPROM

Do not look at PROM properties (ignored on platforms
that do not support PROM properties).

name String containing the name of the property.

DESCRIPTION ddi_prop_exists() checks for the existence of a property regardless of
the property value data type.

Properties are searched for based on the dip, name, and match_dev. The property
search order is as follows:

1. Search software properties created by the driver.

2. Search the software properties created by the system (or nexus nodes in
the device info tree).

3. Search the driver global properties list.

4. If DDI_PROP_NOTPROMis not set, search the PROM properties (if they exist).

5. If DDI_PROP_DONTPASSis not set, pass this request to the parent device
information node.

6. Return 0 if not found and 1 if found.

Usually, the match_dev argument should be set to the actual device number
that this property is associated with. However, if the match_dev argument
is DDI_DEV_T_ANY, then ddi_prop_exists() will match the request

388 SunOS 5.8 Last modified 22 May 1995

Kernel Functions for Drivers ddi_prop_exists(9F)

regardless of the match_dev the property was created with. That is the first
property whose name matches name will be returned. If a property was created
with match_dev set to DDI_DEV_T_NONEthen the only way to look up this
property is with a match_dev set to DDI_DEV_T_ANY. PROM properties are
always created with match_dev set to DDI_DEV_T_NONE.

name must always be set to the name of the property being looked up.

RETURN VALUES ddi_prop_exists() returns 1 if the property exists and 0 otherwise.

CONTEXT These functions can be called from user or kernel context.

EXAMPLES EXAMPLE 1 : Using ddi_prop_exists()

The following example demonstrates the use of ddi_prop_exists() .

/*
* Enable "whizzy" mode if the "whizzy-mode" property exists
*/
if (ddi_prop_exists(xx_dev, xx_dip, DDI_PROP_NOTPROM,

"whizzy-mode") == 1) {
xx_enable_whizzy_mode(xx_dip);

} else {
xx_disable_whizzy_mode(xx_dip);

}

SEE ALSO ddi_prop_get_int (9F), ddi_prop_lookup (9F), ddi_prop_remove (9F),
ddi_prop_update (9F)

Writing Device Drivers

Last modified 22 May 1995 SunOS 5.8 389

ddi_prop_get_int(9F) Kernel Functions for Drivers

NAME ddi_prop_get_int – lookup integer property

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_prop_get_int (dev_t match_dev, dev_info_t *dip, uint_t flags, char *name, int
defvalue);

PARAMETERS match_dev Device number associated with property or
DDI_DEV_T_ANY.

dip Pointer to the device info node of device whose property list
should be searched.

flags Possible flag values are some combination of:

DDI_PROP_DONTPASS

Do not pass request to parent device information node if
property not found.

DDI_PROP_NOTPROM

Do not look at PROM properties (ignored on platforms
that do not support PROM properties).

name String containing the name of the property.

defvalue An integer value that is returned if the property cannot
be found.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_prop_get_int() searches for an integer property and, if found, returns
the value of the property.

Properties are searched for based on the dip, name, match_dev, and the type of the
data (integer). The property search order is as follows:

1. Search software properties created by the driver.

2. Search the software properties created by the system (or nexus nodes in
the device info tree).

3. Search the driver global properties list.

4. If DDI_PROP_NOTPROMis not set, search the PROM properties (if they exist).

5. If DDI_PROP_DONTPASSis not set, pass this request to the parent device
information node.

6. Return DDI_PROP_NOT_FOUND.

390 SunOS 5.8 Last modified 17 Nov 1994

Kernel Functions for Drivers ddi_prop_get_int(9F)

Usually, the match_dev argument should be set to the actual device number
that this property is associated with. However, if the match_dev argument
is DDI_DEV_T_ANY, then ddi_prop_get_int() will match the request
regardless of the match_dev the property was created with. If a property was
created with match_dev set to DDI_DEV_T_NONE,then the only way to look up
this property is with a match_dev set to DDI_DEV_T_ANY. PROM properties are
always created with match_dev set to DDI_DEV_T_NONE.

name must always be set to the name of the property being looked up.

The return value of the routine is the value of the property. If the property is not
found, the argument defvalue is returned as the value of the property.

RETURN VALUES ddi_prop_get_int() returns the value of the property. If the property is not
found, the argument defvalue is returned.

CONTEXT ddi_prop_get_int() can be called from user or kernel context.

EXAMPLES EXAMPLE 1 : Using ddi_prop_get_int()

The following example demonstrates the use of ddi_prop_get_int() .

/*
* Get the value of the integer "width" property, using
* our own default if no such property exists
*/
width = ddi_prop_get_int(xx_dev, xx_dip, 0, "width",

XX_DEFAULT_WIDTH);

SEE ALSO ddi_prop_exists (9F), ddi_prop_lookup (9F), ddi_prop_remove (9F),
ddi_prop_update (9F)

Writing Device Drivers

Last modified 17 Nov 1994 SunOS 5.8 391

ddi_prop_lookup(9F) Kernel Functions for Drivers

NAME ddi_prop_lookup, ddi_prop_lookup_int_array, ddi_prop_lookup_string_array,
ddi_prop_lookup_string, ddi_prop_lookup_byte_array, ddi_prop_free – look up
property information

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
int ddi_prop_lookup_int_array (dev_t match_dev, dev_info_t *dip, uint_t flags,
char *name, int **datap, uint_t *nelementsp);

int ddi_prop_lookup_string_array (dev_t match_dev, dev_info_t *dip, uint_t flags,
char *name, char ***datap, uint_t *nelementsp);

int ddi_prop_lookup_string (dev_t match_dev, dev_info_t *dip, uint_t flags, char
*name, char **datap);

int ddi_prop_lookup_byte_array (dev_t match_dev, dev_info_t *dip, uint_t flags, char
*name, uchar_t **datap, uint_t *nelementsp);

void ddi_prop_free (void *data);

PARAMETERS match_dev Device number associated with property or
DDI_DEV_T_ANY.

dip Pointer to the device info node of device whose property list
should be searched.

flags Possible flag values are some combination of:

DDI_PROP_DONTPASS

Do not pass request to parent device information node if
the property is not found.

DDI_PROP_NOTPROM

Do not look at PROM properties (ignored on platforms
that do not support PROM properties).

name String containing the name of the property.

nelementsp The address of an unsigned integer which, upon successful
return, will contain the number of elements accounted for in
the memory pointed at by datap . The elements are either
integers, strings or bytes depending on the interface used.

datap ddi_prop_lookup_int_array()

392 SunOS 5.8 Last modified 17 Nov 1994

Kernel Functions for Drivers ddi_prop_lookup(9F)

The address of a pointer to an array of integers which,
upon successful return, will point to memory containing
the integer array property value.

ddi_prop_lookup_string_array()

The address of a pointer to an array of strings which,
upon successful return, will point to memory containing
the array of strings. The array of strings is formatted as
an array of pointers to NULL terminated strings, much
like the argv argument to execve (2) .

ddi_prop_lookup_string()

The address of a pointer to a string which, upon successful
return, will point to memory containing the NULL
terminated string value of the property.

ddi_prop_lookup_byte_array()

The address of pointer to an array of bytes which, upon
successful return, will point to memory containing the
byte array value of the property.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION The property look up routines search for and, if found, return the value of a given
property. Properties are searched for based on the dip , name , match_dev , and the
type of the data (integer, string or byte). The property search order is as follows:

1. Search software properties created by the driver.

2. Search the software properties created by the system (or nexus nodes in
the device info tree).

3. Search the driver global properties list.

4. If DDI_PROP_NOTPROMis not set, search the PROM properties (if they exist).

5. If DDI_PROP_DONTPASSis not set, pass this request to the parent device
information node.

6. Return DDI_PROP_NOT_FOUND.

Usually, the match_dev argument should be set to the actual device number
that this property is associated with. However, if the match_dev argument
is DDI_DEV_T_ANY, the property look up routines will match the request
regardless of the actual match_dev the property was created with. If a property
was created with match_dev set to DDI_DEV_T_NONE,then the only way to look

Last modified 17 Nov 1994 SunOS 5.8 393

ddi_prop_lookup(9F) Kernel Functions for Drivers

up this property is with a match_dev set to DDI_DEV_T_ANY. PROM properties
are always created with match_dev set to DDI_DEV_T_NONE.

name must always be set to the name of the property being looked up.

For the routines ddi_prop_lookup_int_array() ,
ddi_prop_lookup_string_array() , ddi_prop_lookup_string() ,
and ddi_prop_lookup_byte_array() , datap is the address of a pointer
which, upon successful return, will point to memory containing the value of the
property. In each case *datap points to a different type of property value. See the
individual descriptions of the routines below for details on the different return
values. nelementsp is the address of an unsigned integer which, upon successful
return, will contain the number of integer, string or byte elements accounted for
in the memory pointed at by *datap .

All of the property look up routines may block to allocate memory needed
to hold the value of the property.

When a driver has obtained a property with any look up routine and is
finished with that property, it must be freed by calling ddi_prop_free() .
ddi_prop_free() must be called with the address of the allocated property.
For instance, if one called ddi_prop_lookup_int_array() with datap set to
the address of a pointer to an integer, &my_int_ptr , then the companion free call
would be ddi_prop_free(my_int_ptr) .
ddi_prop_lookup_int_array()

This routine searches for and returns an array of integer property values.
An array of integers is defined to *nelementsp number of 4 byte long integer
elements. datap should be set to the address of a pointer to an array of
integers which, upon successful return, will point to memory containing the
integer array value of the property.

ddi_prop_lookup_string_array()
This routine searches for and returns a property that is an array of strings.
datap should be set to address of a pointer to an array of strings which, upon
successful return, will point to memory containing the array of strings.
The array of strings is formatted as an array of pointers to null-terminated
strings, much like the argv argument to execve (2) .

ddi_prop_lookup_string()
This routine searches for and returns a property that is a null-terminated
string. datap should be set to the address of a pointer to string which, upon
successful return, will point to memory containing the string value of the
property.

ddi_prop_lookup_byte_array()
This routine searches for and returns a property that is an array of bytes.
datap should be set to the address of a pointer to an array of bytes which,

394 SunOS 5.8 Last modified 17 Nov 1994

Kernel Functions for Drivers ddi_prop_lookup(9F)

upon successful return, will point to memory containing the byte array
value of the property.

ddi_prop_free()
Frees the resources associated with a property previously
allocated using ddi_prop_lookup_int_array() ,
ddi_prop_lookup_string_array() , ddi_prop_lookup_string() ,
or ddi_prop_lookup_byte_array() .

RETURN VALUES The functions ddi_prop_lookup_int_array() ,
ddi_prop_lookup_string_array() , ddi_prop_lookup_string() ,
and ddi_prop_lookup_byte_array() return the following values:
DDI_PROP_SUCCESS Upon success.

DDI_PROP_INVAL_ARG If an attempt is made to look up a
property with match_dev equal to
DDI_DEV_T_NONE, name is NULL or
name is the null string.

DDI_PROP_NOT_FOUND Property not found.

DDI_PROP_UNDEFINED Property explicitly not defined (see
ddi_prop_undefine (9F)).

DDI_PROP_CANNOT_DECODE The value of the property cannot be
decoded.

CONTEXT These functions can be called from user or kernel context.

EXAMPLES EXAMPLE 1 Using ddi_prop_lookup() :

The following example demonstrates the use of ddi_prop_lookup() .

int *options;
int noptions;

/*
* Get the data associated with the integer "options" property
* array, along with the number of option integers
*/
if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, xx_dip, 0,

"options", &options, &noptions) == DDI_PROP_SUCCESS) {
/*
* Do "our thing" with the options data from the property
*/
xx_process_options(options, noptions);

/*

Last modified 17 Nov 1994 SunOS 5.8 395

ddi_prop_lookup(9F) Kernel Functions for Drivers

* Free the memory allocated for the property data
*/

ddi_prop_free(options);
}

SEE ALSO execve (2) , ddi_prop_exists (9F) , ddi_prop_get_int (9F) ,
ddi_prop_remove (9F) , ddi_prop_undefine (9F) , ddi_prop_update (9F)

Writing Device Drivers

396 SunOS 5.8 Last modified 17 Nov 1994

Kernel Functions for Drivers ddi_prop_op(9F)

NAME ddi_prop_op, ddi_getprop, ddi_getlongprop, ddi_getlongprop_buf,
ddi_getproplen – get property information for leaf device drivers

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
int ddi_prop_op (dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int flags, char
*name, caddr_t valuep, int *lengthp);

int ddi_getprop (dev_t dev, dev_info_t *dip, int flags, char *name, int defvalue);

int ddi_getlongprop (dev_t dev, dev_info_t *dip, int flags, char *name, caddr_t valuep,
int *lengthp);

int ddi_getlongprop_buf (dev_t dev, dev_info_t *dip, int flags, char *name, caddr_t
valuep, int *lengthp);

int ddi_getproplen (dev_t dev, dev_info_t *dip, int flags, char *name, int *lengthp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dev Device number associated with property or DDI_DEV_T_ANYas the
wildcard device number.

dip Pointer to a device info node.

prop_op Property operator.

flags Possible flag values are some combination of:

DDI_PROP_DONTPASS

do not pass request to parent device information node if property
not found

DDI_PROP_CANSLEEP

the routine may sleep while allocating memory

DDI_PROP_NOTPROM

do not look at PROM properties (ignored on architectures that do
not support PROM properties)

Last modified 7 Jun 1993 SunOS 5.8 397

ddi_prop_op(9F) Kernel Functions for Drivers

name String containing the name of the property.

valuep If prop_op is PROP_LEN_AND_VAL_BUF,this should be a pointer
to the users buffer. If prop_op is PROP_LEN_AND_VAL_ALLOC,this
should be the address of a pointer.

lengthp On exit, *lengthp will contain the property length. If prop_op is
PROP_LEN_AND_VAL_BUFthen before calling ddi_prop_op() ,
lengthp should point to an int that contains the length of callers buffer.

defvalue The value that ddi_getprop() returns if the property is not found.

DESCRIPTION ddi_prop_op() gets arbitrary-size properties for leaf devices. The routine
searches the device’s property list. If it does not find the property at the device
level, it examines the flags argument, and if DDI_PROP_DONTPASSis set, then
ddi_prop_op() returns DDI_PROP_NOT_FOUND.Otherwise, it passes the
request to the next level of the device info tree. If it does find the property, but
the property has been explicitly undefined, it returns DDI_PROP_UNDEFINED.
Otherwise it returns either the property length, or both the length and value of
the property to the caller via the valuep and lengthp pointers, depending on the
value of prop_op , as described below, and returns DDI_PROP_SUCCESS.If a
property cannot be found at all, DDI_PROP_NOT_FOUNDis returned.

Usually, the dev argument should be set to the actual device number that this
property applies to. However, if the dev argument is DDI_DEV_T_ANY, the
wildcard dev , then ddi_prop_op() will match the request based on name only
(regardless of the actual dev the property was created with). This property/dev
match is done according to the property search order which is to first search
software properties created by the driver in last-in, first-out (LIFO) order, next
search software properties created by the system in LIFO order, then search
PROM properties if they exist in the system architecture.

Property operations are specified by the prop_op argument. If prop_op is
PROP_LEN,then ddi_prop_op() just sets the callers length, *lengthp, to the
property length and returns the value DDI_PROP_SUCCESSto the caller. The
valuep argument is not used in this case. Property lengths are 0 for boolean
properties, sizeof(int) for integer properties, and size in bytes for long
(variable size) properties.

If prop_op is PROP_LEN_AND_VAL_BUF,then valuep should be a pointer to a
user-supplied buffer whose length should be given in *lengthp by the caller.
If the requested property exists, ddi_prop_op() first sets *lengthp to the
property length. It then examines the size of the buffer supplied by the caller,
and if it is large enough, copies the property value into that buffer, and returns

398 SunOS 5.8 Last modified 7 Jun 1993

Kernel Functions for Drivers ddi_prop_op(9F)

DDI_PROP_SUCCESS.If the named property exists but the buffer supplied is
too small to hold it, it returns DDI_PROP_BUF_TOO_SMALL.

If prop_op is PROP_LEN_AND_VAL_ALLOC,and the property is found,
ddi_prop_op() sets *lengthp to the property length. It then attempts to
allocate a buffer to return to the caller using the kmem_alloc (9F) routine,
so that memory can be later recycled using kmem_free (9F) . The driver is
expected to call kmem_free() with the returned address and size when it is
done using the allocated buffer. If the allocation is successful, it sets *valuep to
point to the allocated buffer, copies the property value into the buffer and
returns DDI_PROP_SUCCESS.Otherwise, it returns DDI_PROP_NO_MEMORY.
Note that the flags argument may affect the behavior of memory allocation in
ddi_prop_op() . In particular, if DDI_PROP_CANSLEEPis set, then the routine
will wait until memory is available to copy the requested property.

ddi_getprop() returns boolean and integer-size properties. It is a convenience
wrapper for ddi_prop_op() with prop_op set to PROP_LEN_AND_VAL_BUF,
and the buffer is provided by the wrapper. By convention, this function returns a
1 for boolean (zero-length) properties.

ddi_getlongprop() returns arbitrary-size properties. It is a convenience
wrapper for ddi_prop_op() with prop_op set to PROP_LEN_AND_VAL_ALLOC,
so that the routine will allocate space to hold the buffer that will be returned to
the caller via *valuep .

ddi_getlongprop_buf() returns arbitrary-size properties. It is a convenience
wrapper for ddi_prop_op() with prop_op set to PROP_LEN_AND_VAL_BUFso
the user must supply a buffer.

ddi_getproplen() returns the length of a given property. It is a convenience
wrapper for ddi_prop_op() with prop_op set to PROP_LEN.

RETURN VALUES ddi_prop_op() ddi_getlongprop() ddi_getlongprop_buf()
ddi_getproplen() return:
DDI_PROP_SUCCESS Property found and returned.

DDI_PROP_NOT_FOUND Property not found.

DDI_PROP_UNDEFINED Property already explicitly undefined.

DDI_PROP_NO_MEMORY Property found, but unable to allocate
memory. lengthp points to the correct
property length.

Last modified 7 Jun 1993 SunOS 5.8 399

ddi_prop_op(9F) Kernel Functions for Drivers

DDI_PROP_BUF_TOO_SMALL Property found, but the supplied
buffer is too small. lengthp points to
the correct property length.

ddi_getprop() returns:

The value of the property or the value passed into the routine as defvalue if
the property is not found. By convention, the value of zero length properties
(boolean properties) are returned as the integer value 1.

CONTEXT These functions can be called from user or interrupt context, provided
DDI_PROP_CANSLEEPis not set; if it is set, they can be called from user context
only.

SEE ALSO ddi_prop_create (9F) , kmem_alloc (9F) , kmem_free (9F)

Writing Device Drivers

400 SunOS 5.8 Last modified 7 Jun 1993

Kernel Functions for Drivers ddi_prop_update(9F)

NAME ddi_prop_update, ddi_prop_update_int_array, ddi_prop_update_int,
ddi_prop_update_string_array, ddi_prop_update_string,
ddi_prop_update_byte_array – update properties

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
int ddi_prop_update_int_array (dev_t dev, dev_info_t *dip, char *name, int *data,
uint_t nelements);

int ddi_prop_update_int (dev_t dev, dev_info_t *dip, char *name, int data);

int ddi_prop_update_string_array (dev_t dev, dev_info_t *dip, char *name, char
**data, uint_t nelements);

int ddi_prop_update_string (dev_t dev, dev_info_t *dip, char *name, char *data);

int ddi_prop_update_byte_array (dev_t dev, dev_info_t *dip, char *name, uchar_t
*data, uint_t nelements);

PARAMETERS dev Device number associated with the device.

dip Pointer to the device info node of device whose property list
should be updated.

name String containing the name of the property to be updated.

nelements The number of elements contained in the memory pointed
at by data .

ddi_prop_update_int_array()
data A pointer an integer array with which to update the

property.

ddi_prop_update_int()
data An integer value with which to update the property.

ddi_prop_update_string_array()
data A pointer to a string array with which to update the

property. The array of strings is formatted as an array of
pointers to NULL terminated strings, much like the argv
argument to execve (2) .

ddi_prop_update_string()
data A pointer to a string value with which to update the

property.

ddi_prop_update_byte_array()

Last modified 17 Nov 1994 SunOS 5.8 401

ddi_prop_update(9F) Kernel Functions for Drivers

data A pointer to a byte array with which to update the property.

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION The property update routines search for and, if found, modify the value of a
given property. Properties are searched for based on the dip , name , dev , and
the type of the data (integer, string or byte). The driver software properties list
is searched. If the property is found, it is updated with the supplied value. If
the property is not found on this list, a new property is created with the value
supplied. For example, if a driver attempts to update the "foo" property, a
property named "foo" is searched for on the driver’s software property list.
If "foo" is found, the value is updated. If "foo" is not found, a new property
named "foo" is created on the driver’s software property list with the supplied
value even if a "foo" property exists on another property list (such as a PROM
property list).

Every property value has a data type associated with it: byte, integer, or
string. A property should be updated using a function with the same
corresponding data type as the property value. For example, an integer
property must be updated using either ddi_prop_update_int_array() or
ddi_prop_update_int() . Attempts to update a property with a function
that does correspond to the property value data type will result in the creation
of another property with the same name. However, the data type of the new
property value will correspond to the data type called out in the function name.

Usually, the dev argument should be set to the actual device number that
this property is associated with. If the property is not associated with any
particular dev , then the argument dev should be set to DDI_DEV_T_NONE.
This property will then match a look up request (see ddi_prop_lookup (9F)
) with the match_dev argument set to DDI_DEV_T_ANY. If no dev is available
for the device (for example during attach (9E) time), one can be created using
makedevice (9F) with a major number of DDI_MAJOR_T_UNKNOWN.The
update routines will then generate the correct dev when creating or updating
the property.

name must always be set to the name of the property being updated.

For the routines ddi_prop_update_int_array (),
ddi_prop_update_string_array (), ddi_prop_update_string (), and
ddi_prop_update_byte_array () data is a pointer which points to memory
containing the value of the property. In each case *data points to a different
type of property value. See the individual descriptions of the routines below
for details concerning the different values. nelements is an unsigned integer

402 SunOS 5.8 Last modified 17 Nov 1994

Kernel Functions for Drivers ddi_prop_update(9F)

which contains the number of integer, string, or byte elements accounted for
in the memory pointed at by *data .

For the routine ddi_prop_update_int (), data is the new value of the property.

ddi_prop_update_int_array()

Updates or creates an array of integer property values. An array of integers is
defined to be nelements of 4 byte long integer elements. data must be a pointer to
an integer array with which to update the property.

ddi_prop_update_int()

Update or creates a single integer value of a property. data must be an integer
value with which to update the property.

ddi_prop_update_string_array()

Updates or creates a property that is an array of strings. data must be a pointer
to a string array with which to update the property. The array of strings is
formatted as an array of pointers to NULL terminated strings, much like the argv
argument to execve (2) .

ddi_prop_update_string()

Updates or creates a property that is a single string value. data must be a pointer
to a string with which to update the property.

ddi_prop_update_byte_array()

Updates or creates a property that is an array of bytes. data should be a pointer
to a byte array with which to update the property.

The property update routines may block to allocate memory needed to hold the
value of the property.

RETURN VALUES All of the property update routines return:
DDI_PROP_SUCCESS On success.

DDI_PROP_INVAL_ARG If an attempt is made to update a
property with name set to NULL or
name set to the null string.

DDI_PROP_CANNOT_ENCODE If the bytes of the property cannot be
encoded.

CONTEXT These functions can only be called from user or kernel context.

EXAMPLES EXAMPLE 1 Updating Properties

The following example demonstrates the use of ddi_prop_update() .

Last modified 17 Nov 1994 SunOS 5.8 403

ddi_prop_update(9F) Kernel Functions for Drivers

int options[4];

/*
* Create the "options" integer array with
* our default values for these parameters
*/

options[0] = XX_OPTIONS0;
options[1] = XX_OPTIONS1;
options[2] = XX_OPTIONS2;
options[3] = XX_OPTIONS3;
i = ddi_prop_update_int_array(xx_dev, xx_dip, "options",

&options, sizeof (options) / sizeof (int));

SEE ALSO execve (2) , attach (9E) , ddi_prop_lookup (9F) , ddi_prop_remove (9F)
, makedevice (9F)

Writing Device Drivers

404 SunOS 5.8 Last modified 17 Nov 1994

Kernel Functions for Drivers ddi_put8(9F)

NAME ddi_put8, ddi_put16, ddi_put32, ddi_put64, ddi_putb, ddi_putl, ddi_putll,
ddi_putw – write data to the mapped memory address, device register or
allocated DMA memory address

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
void ddi_put8 (ddi_acc_handle_t handle, uint8_t *dev_addr, uint8_t value);

void ddi_put16 (ddi_acc_handle_t handle, uint16_t *dev_addr, uint16_t value);

void ddi_put32 (ddi_acc_handle_t handle, uint32_t *dev_addr, uint32_t value);

void ddi_put64 (ddi_acc_handle_t handle, uint64_t *dev_addr, uint64_t value);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS handle The data access handle returned from setup calls, such as
ddi_regs_map_setup (9F) .

value The data to be written to the device.

dev_addr Base device address.

DESCRIPTION These routines generate a write of various sizes to the mapped memory or
device register. The ddi_put8() , ddi_put16() , ddi_put32() , and
ddi_put64() functions write 8 bits, 16 bits, 32 bits and 64 bits of data,
respectively, to the device address, dev_addr .

Each individual datum will automatically be translated to maintain a consistent
view between the host and the device based on the encoded information in the
data access handle. The translation may involve byte-swapping if the host and
the device have incompatible endian characteristics.

For certain bus types, you can call these DDI functions from a high-interrupt
context. These types include ISA , EISA , and SBus buses. See sysbus (4) , isa (4)
, eisa (4) , and sbus (4) for details. For the PCI bus, you can, under certain
conditions, call these DDI functions from a high-interrupt context. See pci (4) .

CONTEXT These functions can be called from user, kernel, or interrupt context.

SEE ALSO ddi_get8 (9F) , ddi_regs_map_free (9F) , ddi_regs_map_setup (9F) ,
ddi_rep_get8 (9F) , ddi_rep_put8 (9F) , ddi_device_acc_attr (9S)

NOTES The functions described in this manual page previously used symbolic names
which specified their data access size; the function names have been changed
so they now specify a fixed-width data size. See the following table for the
new name equivalents:

Last modified 30 Sep 1996 SunOS 5.8 405

ddi_put8(9F) Kernel Functions for Drivers

Previous Name New Name

ddi_putb ddi_put8

ddi_putw ddi_put16

ddi_putl ddi_put32

ddi_putll ddi_put64

406 SunOS 5.8 Last modified 30 Sep 1996

Kernel Functions for Drivers ddi_regs_map_free(9F)

NAME ddi_regs_map_free – free a previously mapped register address space

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

void ddi_regs_map_free (ddi_acc_handle_t *handle);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS handle Pointer to a data access handle previously allocated by a call
to a setup routine such as ddi_regs_map_setup (9F).

DESCRIPTION ddi_regs_map_free() frees the mapping represented by the data access
handle handle. This function is provided for drivers preparing to detach
themselves from the system, allowing them to release allocated system resources
represented in the handle.

CONTEXT ddi_regs_map_free() must be called from user or kernel context.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI Local Bus, SBus, ISA, EISA

SEE ALSO attributes (5), ddi_regs_map_setup (9F)

Writing Device Drivers

Last modified 1 Jan 1997 SunOS 5.8 407

ddi_regs_map_setup(9F) Kernel Functions for Drivers

NAME ddi_regs_map_setup – set up a mapping for a register address space

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_regs_map_setup (dev_info_t *dip, uint_t rnumber, caddr_t *addrp, offset_t offset,
offset_t len, ddi_device_acc_attr_t *accattrp, ddi_acc_handle_t *handlep);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dip Pointer to the device’s dev_info structure.

rnumber Index number to the register address space set.

addrp A platform-dependent value that, when added to an offset
that is less than or equal to the len parameter (see below),
is used for the dev_addr argument to the ddi_get ,
ddi_mem_get , and ddi_io_get /put routines.

offset Offset into the register address space.

len Length to be mapped.

accattrp Pointer to a device access attribute structure of this mapping
(see ddi_device_acc_attr (9S)).

handlep Pointer to a data access handle.

DESCRIPTION ddi_regs_map_setup() maps in the register set given by rnumber. The
register number determines which register set is mapped if more than one exists.

offset specifies the starting location within the register space and len indicates the
size of the area to be mapped. If len is non-zero, it overrides the length given in
the register set description. If both len and offset are 0, the entire space is mapped.
The base of the mapped register space is returned in addrp.

The device access attributes are specified in the location pointed by the accattrp
argument (see ddi_device_acc_attr (9S) for details).

The data access handle is returned in handlep. handlep is opaque; drivers should
not attempt to interpret its value. The handle is used by the system to encode
information for subsequent data access function calls to maintain a consistent
view between the host and the device.

RETURN VALUES ddi_regs_map_setup() returns:
DDI_SUCCESS Successfully set up the mapping

for data access.

408 SunOS 5.8 Last modified 1 Jan 1997

Kernel Functions for Drivers ddi_regs_map_setup(9F)

DDI_FAILURE Invalid register number rnumber,
offset offset, or length len.

DDI_REGS_ACC_CONFLICT Cannot enable the register mapping
due to access conflicts with other
enabled mappings.

CONTEXT ddi_regs_map_setup() must be called from user or kernel context.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI Local Bus, SBus, ISA, EISA

SEE ALSO attributes (5), ddi_regs_map_free (9F), ddi_device_acc_attr (9S)

Writing Device Drivers

Last modified 1 Jan 1997 SunOS 5.8 409

ddi_remove_minor_node(9F) Kernel Functions for Drivers

NAME ddi_remove_minor_node – remove a minor node for this dev_info

SYNOPSIS void ddi_remove_minor_node (dev_info_t *dip, char *name);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dip A pointer to the device’s dev_info structure.

name The name of this minor device. If name is NULL, then remove all minor
data structures from this dev_info .

DESCRIPTION ddi_remove_minor_node() removes a data structure from the linked list of
minor data structures that is pointed to by the dev_info structure for this driver.

EXAMPLES EXAMPLE 1 Removing a minor node

This will remove a data structure describing a minor device called dev1 which is
linked into the dev_info structure pointed to by dip :

ddi_remove_minor_node(dip, "dev1");

SEE ALSO attach (9E), detach (9E), ddi_create_minor_node (9F)

Writing Device Drivers

410 SunOS 5.8 Last modified 10 Mar 1992

Kernel Functions for Drivers ddi_rep_get8(9F)

NAME ddi_rep_get8, ddi_rep_get16, ddi_rep_get32, ddi_rep_get64, ddi_rep_getw,
ddi_rep_getl, ddi_rep_getll, ddi_rep_getb – read data from the mapped memory
address, device register or allocated DMA memory address

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
void ddi_rep_get8 (ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr, size_t
repcount, uint_t flags);

void ddi_rep_get16 (ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t *dev_addr,
size_t repcount, uint_t flags);

void ddi_rep_get32 (ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t *dev_addr,
size_t repcount, uint_t flags);

void ddi_rep_get64 (ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t *dev_addr,
size_t repcount, uint_t flags);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS handle The data access handle returned from setup calls, such as
ddi_regs_map_setup (9F) .

host_addr Base host address.

dev_addr Base device address.

repcount Number of data accesses to perform.

flags Device address flags:

DDI_DEV_AUTOINCR

Automatically increment the device address, dev_addr ,
during data accesses.

DDI_DEV_NO_AUTOINCR

Do not advance the device address, dev_addr , during
data accesses.

DESCRIPTION These routines generate multiple reads from the mapped memory or device
register. repcount data is copied from the device address, dev_addr , to the
host address, host_addr . For each input datum, the ddi_rep_get8() ,

Last modified 10 Aug 1996 SunOS 5.8 411

ddi_rep_get8(9F) Kernel Functions for Drivers

ddi_rep_get16() , ddi_rep_get32() , and ddi_rep_get64() functions
read 8 bits, 16 bits, 32 bits, and 64 bits of data, respectively, from the device
address, dev_addr . dev_addr and host_addr must be aligned to the datum
boundary described by the function.

Each individual datum will automatically be translated to maintain a consistent
view between the host and the device based on the encoded information in the
data access handle. The translation may involve byte-swapping if the host and
the device have incompatible endian characteristics.

When the flags argument is set to DDI_DEV_AUTOINCR, these functions treat
the device address, dev_addr , as a memory buffer location on the device and
increment its address on the next input datum. However, when the flags
argument is to DDI_DEV_NO_AUTOINCR, the same device address will be used
for every datum access. For example, this flag may be useful when reading
from a data register.

RETURN VALUES These functions return the value read from the mapped address.

CONTEXT These functions can be called from user, kernel, or interrupt context.

SEE ALSO ddi_get8 (9F) , ddi_put8 (9F) , ddi_regs_map_free (9F) ,
ddi_regs_map_setup (9F) , ddi_rep_put8 (9F)

NOTES The functions described in this manual page previously used symbolic names
which specified their data access size; the function names have been changed
so they now specify a fixed-width data size. See the following table for the
new name equivalents:

Previous Name New Name

ddi_rep_getb ddi_rep_get8

ddi_rep_getw ddi_rep_get16

ddi_rep_getl ddi_rep_get32

ddi_rep_getll ddi_rep_get64

412 SunOS 5.8 Last modified 10 Aug 1996

Kernel Functions for Drivers ddi_report_dev(9F)

NAME ddi_report_dev – announce a device

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

void ddi_report_dev (dev_info_t *dip);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dip a pointer the device’s dev_info structure.

DESCRIPTION ddi_report_dev() prints a banner at boot time, announcing the device
pointed to by dip. The banner is always placed in the system logfile (displayed
by dmesg(1M)), but is only displayed on the console if the system was booted
with the verbose (−v) argument.

CONTEXT ddi_report_dev() can be called from user context.

SEE ALSO dmesg(1M), kernel (1M)

Writing Device Drivers

Last modified 7 Jun 1993 SunOS 5.8 413

ddi_rep_put8(9F) Kernel Functions for Drivers

NAME ddi_rep_put8, ddi_rep_put16, ddi_rep_put32, ddi_rep_put64, ddi_rep_putb,
ddi_rep_putw, ddi_rep_putl, ddi_rep_putll – write data to the mapped memory
address, device register or allocated DMA memory address

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
void ddi_rep_put8 (ddi_acc_handle_t handle, uint8_t *host_addr, uint8_t *dev_addr, size_t
repcount, uint_t flags);

void ddi_rep_put16 (ddi_acc_handle_t handle, uint16_t *host_addr, uint16_t *dev_addr,
size_t repcount, uint_t flags);

void ddi_rep_put32 (ddi_acc_handle_t handle, uint32_t *host_addr, uint32_t *dev_addr,
size_t repcount, uint_t flags);

void ddi_rep_put64 (ddi_acc_handle_t handle, uint64_t *host_addr, uint64_t *dev_addr,
size_t repcount, uint_t flags);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS handle The data access handle returned from setup calls, such as
ddi_regs_map_setup (9F) .

host_addr Base host address.

dev_addr Base device address.

repcount Number of data accesses to perform.

flags Device address flags:

DDI_DEV_AUTOINCR

Automatically increment the device address, dev_addr ,
during data accesses.

DDI_DEV_NO_AUTOINCR

Do not advance the device address, dev_addr , during
data accesses.

DESCRIPTION These routines generate multiple writes to the mapped memory or device
register. repcount data is copied from the host address, host_addr , to the
device address, dev_addr . For each input datum, the ddi_rep_put8() ,

414 SunOS 5.8 Last modified 10 Sep 1996

Kernel Functions for Drivers ddi_rep_put8(9F)

ddi_rep_put16() , ddi_rep_put32() , and ddi_rep_put64() functions
write 8 bits, 16 bits, 32 bits, and 64 bits of data, respectively, to the device address,
dev_addr . dev_addr and host_addr must be aligned to the datum boundary
described by the function.

Each individual datum will automatically be translated to maintain a consistent
view between the host and the device based on the encoded information in the
data access handle. The translation may involve byte-swapping if the host and
the device have incompatible endian characteristics.

When the flags argument is set to DDI_DEV_AUTOINCR, these functions treat
the device address, dev_addr , as a memory buffer location on the device and
increment its address on the next input datum. However, when the flags
argument is set to DDI_DEV_NO_AUTOINCR, the same device address will be
used for every datum access. For example, this flag may be useful when writing
to a data register.

CONTEXT These functions can be called from user, kernel, or interrupt context.

SEE ALSO ddi_get8 (9F) , ddi_put8 (9F) , ddi_regs_map_free (9F)
, ddi_regs_map_setup (9F) , ddi_rep_get8 (9F) ,
ddi_device_acc_attr (9S)

NOTES The functions described in this manual page previously used symbolic names
which specified their data access size; the function names have been changed
so they now specify a fixed-width data size. See the following table for the
new name equivalents:

Previous Name New Name

ddi_rep_putb ddi_rep_put8

ddi_rep_putw ddi_rep_put16

ddi_rep_putl ddi_rep_put32

ddi_rep_putll ddi_rep_put64

Last modified 10 Sep 1996 SunOS 5.8 415

ddi_root_node(9F) Kernel Functions for Drivers

NAME ddi_root_node – get the root of the dev_info tree

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

dev_info_t *ddi_root_node (void);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION ddi_root_node() returns a pointer to the root node of the device information
tree.

RETURN VALUES ddi_root_node() returns a pointer to a device information structure.

CONTEXT ddi_root_node() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

416 SunOS 5.8 Last modified 19 Nov 1992

Kernel Functions for Drivers ddi_segmap(9F)

NAME ddi_segmap, ddi_segmap_setup – set up a user mapping using seg_dev

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
int ddi_segmap (dev_t dev, off_t offset, struct as *asp, caddr_t *addrp, off_t len, uint_t prot,
uint_t maxprot, uint_t flags, cred_t *credp);

int ddi_segmap_setup (dev_t dev, off_t offset, struct as *asp, caddr_t *addrp, off_t len,
uint_t prot, uint_t maxprot, uint_t flags, cred_t *credp, ddi_device_acc_attr_t *accattrp,
uint_t rnumber);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dev The device whose memory is to be mapped.

offset The offset within device memory at which the mapping begins.

asp An opaque pointer to the user address space into which the device
memory should be mapped.

addrp Pointer to the starting address within the user address space to which
the device memory should be mapped.

len Length (in bytes) of the memory to be mapped.

prot A bit field that specifies the protections. Some combinations of
possible settings are:

PROT_READ

Read access is desired.

PROT_WRITE

Write access is desired.

PROT_EXEC

Execute access is desired.

PROT_USER

Last modified 14 Jan 1997 SunOS 5.8 417

ddi_segmap(9F) Kernel Functions for Drivers

User-level access is desired (the mapping is being done as a result of
a mmap(2) system call).

PROT_ALL

All access is desired.

maxprot Maximum protection flag possible for attempted mapping (the
PROT_WRITEbit may be masked out if the user opened the special
file read-only). If (maxprot & prot) != prot then there is an access
violation.

flags Flags indicating type of mapping. Possible values are (other bits
may be set):

MAP_PRIVATE

Changes are private.

MAP_SHARED

Changes should be shared.

MAP_FIXED

The user specified an address in *addrp rather than letting the
system pick and address.

credp Pointer to user credential structure.

ddi_segmap_setup() dev_acc_attr Pointer to a ddi_device_acc_attr (9S) structure which
contains the device access attributes to apply to this
mapping.

rnumber Index number to the register address space set.

DESCRIPTION Future releases of Solaris will provide this function for binary and
source compatibility. However, for increased functionality, use
ddi_devmap_segmap (9F) instead. See ddi_devmap_segmap (9F) for details.

ddi_segmap () and ddi_segmap_setup() set up user mappings to
device space. When setting up the mapping, the ddi_segmap () and
ddi_segmap_setup() routines call the mmap(9E) entry point to validate the
range to be mapped. When a user process accesses the mapping, the drivers
mmap(9E) entry point is again called to retrieve the page frame number that

418 SunOS 5.8 Last modified 14 Jan 1997

Kernel Functions for Drivers ddi_segmap(9F)

needs to be loaded. The mapping translations for that page are then loaded on
behalf of the driver by the DDI framework.

ddi_segmap() is typically used as the segmap(9E) entry in the cb_ops (9S)
structure for those devices that do not choose to provide their own segmap(9E)
entry point. However, some drivers may have their own segmap(9E) entry point
to do some initial processing on the parameters and then call ddi_segmap() to
establish the default memory mapping.

ddi_segmap_setup() is used in the drivers segmap(9E) entry point to set
up the mapping and assign device access attributes to that mapping. rnumber
specifies the register set representing the range of device memory being mapped.
See ddi_device_acc_attr (9S) for details regarding what device access
attributes are available.

ddi_segmap_setup() cannot be used directly in the cb_ops (9S) structure
and requires a driver to have a segmap(9E) entry point.

RETURN VALUES ddi_segmap() and ddi_segmap_setup() return the following values:
0 Successful completion.

Non-zero An error occurred. In particular, they return ENXIO if the
range to be mapped is invalid.

CONTEXT ddi_segmap() and ddi_segmap_setup() can be called from user or
kernel context only.

SEE ALSO mmap(2) , mmap(9E) , segmap(9E) , ddi_mapdev (9F) , cb_ops (9S) ,
ddi_device_acc_attr (9S)

Writing Device Drivers

NOTES If driver notification of user accesses to the mappings is required, the driver
should use ddi_mapdev (9F) instead.

Last modified 14 Jan 1997 SunOS 5.8 419

ddi_slaveonly(9F) Kernel Functions for Drivers

NAME ddi_slaveonly – tell if a device is installed in a slave access only location

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

int ddi_slaveonly (dev_info_t *dip);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dip A pointer to the device’s dev_info structure.

DESCRIPTION ddi_slaveonly() tells the caller if the bus, or part of the bus that the device
is installed on, does not permit the device to become a DMA master, that is,
whether the device has been installed in a slave access only slot.

RETURN VALUES DDI_SUCCESS The device has been installed in a slave access only location.

DDI_FAILURE The device has not been installed in a slave access only
location.

CONTEXT ddi_slaveonly() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

420 SunOS 5.8 Last modified 24 Oct 1991

Kernel Functions for Drivers ddi_soft_state(9F)

NAME ddi_soft_state, ddi_get_soft_state, ddi_soft_state_fini, ddi_soft_state_free,
ddi_soft_state_init, ddi_soft_state_zalloc – driver soft state utility routines

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
void *ddi_get_soft_state (void *state, int item);

void ddi_soft_state_fini (void **state_p);

void ddi_soft_state_free (void *state, int item);

int ddi_soft_state_init (void **state_p, size_t size, size_t n_items);

int ddi_soft_state_zalloc (void *state, int item);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS state_p Address of the opaque state pointer which will be initialized by
ddi_soft_state_init() to point to implementation dependent
data.

size Size of the item which will be allocated by subsequent calls to
ddi_soft_state_zalloc() .

n_items A hint of the number of items which will be preallocated; zero is
allowed.

state An opaque pointer to implementation-dependent data that describes
the soft state.

item The item number for the state structure; usually the instance number
of the associated devinfo node.

DESCRIPTION Most device drivers maintain state information with each instance of the device
they control; for example, a soft copy of a device control register, a mutex that
must be held while accessing a piece of hardware, a partition table, or a unit
structure. These utility routines are intended to help device drivers manage the
space used by the driver to hold such state information.

For example, if the driver holds the state of each instance in a single state
structure, these routines can be used to dynamically allocate and deallocate a
separate structure for each instance of the driver as the instance is attached
and detached.

To use the routines, the driver writer needs to declare a state pointer, state_p ,
which the implementation uses as a place to hang a set of per-driver structures;
everything else is managed by these routines.

Last modified 7 Jun 1993 SunOS 5.8 421

ddi_soft_state(9F) Kernel Functions for Drivers

The routine ddi_soft_state_init() is usually called in the drivers
_init (9E) routine to initialize the state pointer, set the size of the soft state
structure, and to allow the driver to pre-allocate a given number of such
structures if required.

The routine ddi_soft_state_zalloc() is usually called in the drivers
attach (9E) routine. The routine is passed an item number which is used to
refer to the structure in subsequent calls to ddi_get_soft_state() and
ddi_soft_state_free() . The item number is usually just the instance
number of the devinfo node, obtained with ddi_get_instance (9F) . The
routine attempts to allocate space for the new structure, and if the space
allocation was successful, DDI_SUCCESSis returned to the caller.

A pointer to the space previously allocated for a soft state structure can be
obtained by calling ddi_get_soft_state() with the appropriate item
number.

The space used by a given soft state structure can be returned to the system
using ddi_soft_state_free() . This routine is usually called from the
drivers detach (9E) entry point.

The space used by all the soft state structures allocated on a given state pointer,
together with the housekeeping information used by the implementation can be
returned to the system using ddi_soft_state_fini() . This routine can be
called from the drivers _fini (9E) routine.

The ddi_soft_state_zalloc() , ddi_soft_state_free() and
ddi_get_soft_state() routines coordinate access to the underlying data
structures in an MT-safe fashion, thus no additional locks should be necessary.

RETURN VALUES ddi_get_soft_state()
NULL The requested state structure was not allocated at the time

of the call.

pointer The pointer to the state structure.

ddi_soft_state_init()
0 The allocation was successful.

EINVAL Either the size parameter was zero, or the state_p parameter
was invalid.

ddi_soft_state_zalloc()
DDI_SUCCESS The allocation was successful.

422 SunOS 5.8 Last modified 7 Jun 1993

Kernel Functions for Drivers ddi_soft_state(9F)

DDI_FAILURE The routine failed to allocate the storage required; either the
state parameter was invalid, the item number was negative,
or an attempt was made to allocate an item number that
was already allocated.

CONTEXT ddi_soft_state_init() , and ddi_soft_state_alloc() can be called
from user context only, since they may internally call kmem_zalloc (9F) with
the KM_SLEEPflag.

The ddi_soft_state_fini() , ddi_soft_state_free() and
ddi_get_soft_state() routines can be called from any driver context.

EXAMPLES CODE EXAMPLE 1 Creating and Removing Data Structures

The following example shows how the routines described above can be used
in terms of the driver entry points of a character-only driver. The example
concentrates on the portions of the code that deal with creating and removing
the driver’s data structures.

typedef struct {
volatile caddr_t *csr; /* device registers */
kmutex_t csr_mutex; /* protects ’csr’ field */
unsigned int state;
dev_info_t *dip; /* back pointer to devinfo */

} devstate_t;
static void *statep;

int
_init(void)
{

int error;

error = ddi_soft_state_init(&statep, sizeof (devstate_t), 0);
if (error != 0)

return (error);
if ((error = mod_install(&modlinkage)) != 0)

ddi_soft_state_fini(&statep);
return (error);

}

int
_fini(void)
{

int error;

if ((error = mod_remove(&modlinkage)) != 0)
return (error);

ddi_soft_state_fini(&statep);
return (0);

}

static int
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

Last modified 7 Jun 1993 SunOS 5.8 423

ddi_soft_state(9F) Kernel Functions for Drivers

int instance;
devstate_t *softc;

switch (cmd) {
case DDI_ATTACH:

instance = ddi_get_instance(dip);
if (ddi_soft_state_zalloc(statep, instance) != DDI_SUCCESS)

return (DDI_FAILURE);
softc = ddi_get_soft_state(statep, instance);
softc->dip = dip;
...
return (DDI_SUCCESS);

default:
return (DDI_FAILURE);

}
}

static int
xxdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{

int instance;

switch (cmd) {

case DDI_DETACH:
instance = ddi_get_instance(dip);
...

ddi_soft_state_free(statep, instance);
return (DDI_SUCCESS);

default:
return (DDI_FAILURE);

}
}

static int
xxopen(dev_t *devp, int flag, int otyp, cred_t *cred_p)
{

devstate_t *softc;
int instance;

instance = getminor(*devp);
if ((softc = ddi_get_soft_state(statep, instance)) == NULL)

return (ENXIO);
...
softc->state |= XX_IN_USE;
...
return (0);

}

SEE ALSO _fini (9E) , _init (9E) , attach (9E) , detach (9E) , ddi_get_instance (9F) ,
getminor (9F) , kmem_zalloc (9F)

Writing Device Drivers

424 SunOS 5.8 Last modified 7 Jun 1993

Kernel Functions for Drivers ddi_soft_state(9F)

WARNINGS There is no attempt to validate the item parameter given to
ddi_soft_state_zalloc() other than it must be a positive signed integer.
Therefore very large item numbers may cause the driver to hang forever waiting
for virtual memory resources that can never be satisfied.

NOTES If necessary, a hierarchy of state structures can be constructed by embedding
state pointers in higher order state structures.

DIAGNOSTICS All of the messages described below usually indicate bugs in the driver and
should not appear in normal operation of the system.

WARNING: ddi_soft_state_zalloc: bad handle
WARNING: ddi_soft_state_free: bad handle
WARNING: ddi_soft_state_fini: bad handle

The implementation-dependent information kept in the state variable is corrupt.

WARNING: ddi_soft_state_free: null handle
WARNING: ddi_soft_state_fini: null handle

The routine has been passed a null or corrupt state pointer. Check that
ddi_soft_state_init() has been called.

WARNING: ddi_soft_state_free: item %d not in range [0..%d]

The routine has been asked to free an item which was never allocated. The
message prints out the invalid item number and the acceptable range.

Last modified 7 Jun 1993 SunOS 5.8 425

ddi_umem_alloc(9F) Kernel Functions for Drivers

NAME ddi_umem_alloc, ddi_umem_free – allocate and free page-aligned kernel
memory

SYNOPSIS #include <sys/types.h>
#include <sys/sunddi.h>

void *ddi_umem_alloc (size_t size, int flag, ddi_umem_cookie_t *cookiep);

void ddi_umem_free (ddi_umem_cookie_t cookie);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS
ddi_umem_alloc() size Number of bytes to allocate.

flag Used to determine the sleep and pageable conditions.

Possible sleep flags are DDI_UMEM_SLEEP, which allows sleeping
until memory is available, and DDI_UMEM_NOSLEEP, which returns
NULL immediately if memory is not available.

The default condition is to allocate locked memory; this can be
changed to allocate pageable memory using the DDI_UMEM_PAGEABLE
flag.

cookiep Pointer to a kernel memory cookie.

ddi_umem_free() cookie A kernel memory cookie allocated in ddi_umem_alloc() .

DESCRIPTION ddi_umem_alloc() allocates page-aligned kernel memory and returns a
pointer to the allocated memory. The number of bytes allocated is a multiple
of the system page size (roundup of size). The allocated memory can be
used in the kernel and can be exported to user space. See devmap(9E) and
devmap_umem_setup (9F) for further information.

flag determines whether the caller can sleep for memory and whether the
allocated memory is locked or not. DDI_UMEM_SLEEPallocations may
sleep but are guaranteed to succeed. DDI_UMEM_NOSLEEPallocations do
not sleep but may fail (return NULL) if memory is currently unavailable. If
DDI_UMEM_PAGEABLEis set, pageable memory will be allocated. These pages
can be swapped out to secondary memory devices. The initial contents of
memory allocated using ddi_umem_alloc() is zero-filled.

*cookiep is a pointer to the kernel memory cookie that describes the kernel
memory being allocated. A typical use of cookiep is in devmap_umem_setup (9F)
when the drivers want to export the kernel memory to a user application.

426 SunOS 5.8 Last modified 14 Jan 1997

Kernel Functions for Drivers ddi_umem_alloc(9F)

To free the allocated memory, a driver calls ddi_umem_free() with the cookie
obtained from ddi_umem_alloc() . ddi_umem_free() releases the entire
buffer.

RETURN VALUES Non-null Successful completion.ddi_umem_alloc() returns a
pointer to the allocated memory.

NULL Memory cannot be allocated by ddi_umem_alloc()
because DDI_UMEM_NOSLEEPis set and the system is out
of resources.

CONTEXT ddi_umem_alloc() can be called from any context if flag is set to
DDI_UMEM_NOSLEEP.If DDI_UMEM_SLEEPis set, ddi_umem_alloc() can
be called from user and kernel context only. ddi_umem_free() can be called
from any context.

SEE ALSO devmap(9E) , condvar (9F) , devmap_umem_setup (9F) , kmem_alloc (9F) ,
mutex (9F) , rwlock (9F) , semaphore (9F)

Writing Device Drivers

WARNINGS Setting the DDI_UMEM_PAGEABLEflag in ddi_umem_alloc() will result in
an allocation of pageable memory. Because these pages can be swapped out to
secondary memory devices, drivers should use this flag with care. This memory
should not be used for synchronization objects such as locks and condition
variables. See mutex (9F) , semaphore (9F) , rwlock (9F) , and condvar (9F) .
This memory also should not be accessed in the driver interrupt routines.

Memory allocated using ddi_umem_alloc() without setting
DDI_UMEM_PAGEABLEflag cannot be paged. Available memory is therefore
limited by the total physical memory on the system. It is also limited by the
available kernel virtual address space, which is often the more restrictive
constraint on large-memory configurations.

Excessive use of kernel memory is likely to effect overall system performance.
Over-commitment of kernel memory may cause unpredictable consequences.

Misuse of the kernel memory allocator, such as writing past the end of a buffer,
using a buffer after freeing it, freeing a buffer twice, or freeing an invalid pointer,
will cause the system to corrupt data or panic.

NOTES ddi_umem_alloc(0, flag , cookiep) always returns NULL.
ddi_umem_free(NULL) has no effects on system.

Last modified 14 Jan 1997 SunOS 5.8 427

ddi_umem_iosetup(9F) Kernel Functions for Drivers

NAME ddi_umem_iosetup – Setup I/O requests to application memory

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

struct buf *ddi_umem_iosetup (ddi_umem_cookie_t cookie,off_t off, size_t len, int
direction, dev_t dev, daddr_t blkno, int (*iodone) (struct buf *), int sleepflag);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

PARAMETERS cookie The kernel memory cookie allocated by
ddi_umem_lock (9F).

off Offset from the start of the cookie.

len Length of the I/O request in bytes.

direction Must be set to B_READfor reads from the device or B_WRITE
for writes to the device.

dev Device number

blkno Block number on device.

iodone Specific biodone (9F) routine.

sleepflag Determines whether caller can sleep for memory. Possible
flags are DDI_UMEM_SLEEPto allow sleeping until memory
is available, or DDI_UMEM_NOSLEEPto return NULL
immediately if memory is not available.

DESCRIPTION The ddi_umem_iosetup (9F) function is used by drivers to setup I/O requests
to application memory which has been locked down using ddi_umem_lock (9F).

The ddi_umem_iosetup (9F) function returns a pointer to a buf (9S) structure
corresponding to the memory cookie cookie. Drivers can setup multiple
buffer structures simultaneously active using the same memory cookie. The
buf (9S) structures can span all or part of the region represented by the
cookie and can overlap each other. The buf (9S) structure can be passed to
ddi_dma_buf_bind_handle (9F) to initiate DMA transfers to or from the
locked down memory.

The off parameter specifies the offset from the start of the cookie. The len
parameter represents the length of region to be mapped by the buffer. The
direction parameter can be set to B_READor B_WRITEto indicate the action
that will be performed by the device. (Note that this direction is in the
opposite sense of the VM system’s direction of DDI_UMEMLOCK_READand

428 SunOS 5.8 Last modified 17 August 1999

Kernel Functions for Drivers ddi_umem_iosetup(9F)

DDI_UMEMLOCK_WRITE.) The direction must be compatible with the flags used
to create the memory cookie in ddi_umem_lock (9F).

The dev parameter specifies the device to which the buffer is to perform I/O.The
blkno parameter represents the block number on the device. It will be assigned to
the b_blkno field of the returned buffer structure. The iodone parameter enables
the driver to identify a specific biodone (9F) routine to be called by the driver
when the I/O is complete. The sleepflag parameter determines if the caller can
sleep for memory. DDI_UMEM_SLEEPallocations may sleep but are guaranteed
to succeed. DDI_UMEM_NOSLEEPallocations do not sleep but may fail (return
NULL) if memory is currently not available.

After the I/O has completed and the buffer structure is no longer needed, the
driver calls freerbuf (9F) to free the buffer structure.

RETURN VALUES The ddi_umem_iosetup (9F) function returns a pointer to the initialized buffer
header, or NULL if no space is available.

CONTEXT The ddi_umem_iosetup (9F) function can be called from any context
only if flag is set to DDI_UMEM_NOSLEEP. If DDI_UMEM_SLEEPis set,
ddi_umem_iosetup (9F) can be called from user and kernel context only.

SEE ALSO ddi_umem_lock (9F), ddi_dma_buf_bind_handle (9F),
ddi_umem_unlock (9F), freerbuf (9F), physio (9F), buf (9S)

Last modified 17 August 1999 SunOS 5.8 429

ddi_umem_lock(9F) Kernel Functions for Drivers

NAME ddi_umem_lock, ddi_umem_unlock – Locks and unlocks memory pages

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
int ddi_umem_lock (caddr_t addr , size_t len, int flags, ddi_umem_cookie_t *cookiep);

void ddi_umem_unlock (ddi_umem_cookie_t cookie);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

PARAMETERS
ddi_umem_lock addr Virtual address of memory object

len Length of memory object in bytes

flags Valid flags include:

DDI_UMEMLOCK_READ Memory pages are locked to
be read from. (Disk write or
a network send.)

DDI_UMEMLOCK_WRITE Memory pages are locked to
be written to. (Disk read or a
network receive.)

cookiep Pointer to a kernel memory cookie.

ddi_umem_unlock cookie Kernel memory cookie allocated by
ddi_umem_lock() .

DESCRIPTION The ddi_umem_lock (9F) function locks down the physical pages (including
I/O pages) that correspond to the current process’ virtual address range [addr,
addr + size) and fills in a cookie representing the locked pages. This cookie can
be used to create a buf (9S) structure that can be used to perform I/O (see
ddi_umem_iosetup (9F) and ddi_dma_buf_bind_handle (9F)) , or it can be
used with devmap_umem_setup (9F) to export the memory to an application.

The flags argument indicates the intended use of the locked memory. Set flags to
DDI_UMEMLOCK_READif the memory pages will be read (for example, in a disk
write or a network send.) Set flags to DDI_UMEMLOCK_WRITEif the memory
pages will be written (for example, in a disk read or a network receive).

430 SunOS 5.8 Last modified 17 August 1999

Kernel Functions for Drivers ddi_umem_lock(9F)

To unlock the locked pages, the drivers call ddi_umem_unlock (9F) with the
cookie obtained from ddi_umem_lock (9F) .

The process is not allowed to exec (2) or fork (2) while its physical pages are
locked down by the device driver.

The device driver must ensure that the physical pages have been unlocked after
the application has called close (2) .

RETURN VALUES On success, a 0 is returned. Otherwise, one of the following errno values is
returned.
EFAULT User process has no mapping at that address

range or does not support locking

EACCES User process does not have the required
permission.

ENOMEM The system does not have sufficient resources to
lock memory.

CONTEXT The ddi_umem_lock (9F) and ddi_umem_unlock (9F) functions can be called
from user context only.

SEE ALSO ddi_umem_iosetup (9F) , ddi_dma_buf_bind_handle (9F) ,
devmap_umem_setup (9F) , ddi_umem_alloc (9F)

NOTES The ddi_umem_lock (9F) function consumes physical memory. The driver is
responsible for a speedy unlock to free up the resources.

Last modified 17 August 1999 SunOS 5.8 431

delay(9F) Kernel Functions for Drivers

NAME delay – delay execution for a specified number of clock ticks

SYNOPSIS #include <sys/ddi.h>

void delay (clock_t ticks);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS ticks The number of clock cycles to delay.

DESCRIPTION delay() provides a mechanism for a driver to delay its execution for a given
period of time. Since the speed of the clock varies among systems, drivers
should base their time values on microseconds and use drv_usectohz (9F) to
convert microseconds into clock ticks.

delay() uses timeout (9F) to schedule an internal function to be called after
the specified amount of time has elapsed. delay() then waits until the function
is called.

delay() does not busy-wait. If busy-waiting is required, use
drv_usecwait (9F).

CONTEXT delay() can be called from user and kernel contexts.

EXAMPLES EXAMPLE 1 delay() Example

Before a driver I/O routine allocates buffers and stores any user data in them, it
checks the status of the device (line 12). If the device needs manual intervention
(such as, needing to be refilled with paper), a message is displayed on the system
console (line 14). The driver waits an allotted time (line 17) before repeating
the procedure.

1 struct device { /* layout of physical device registers */
2 int control; /* physical device control word */
3 int status; /* physical device status word */
4 short xmit_char; /* transmit character to device */
5 };
6
7

. . .
9 /* get device registers */

10 register struct device *rp = ...
11
12 while (rp->status & NOPAPER) { /* while printer is out of paper */
13 /* display message and ring bell */

/* on system console */
14 cmn_err(CE_WARN, "^\007",
15 (getminor(dev) & 0xf));
16 /* wait one minute and try again */
17 delay(60 * drv_usectohz(1000000));
18 }

432 SunOS 5.8 Last modified 20 Sep 1996

Kernel Functions for Drivers delay(9F)

SEE ALSO biodone (9F), biowait (9F), drv_hztousec (9F), drv_usectohz (9F),
drv_usecwait (9F), timeout (9F), untimeout (9F)

Writing Device Drivers

Last modified 20 Sep 1996 SunOS 5.8 433

devmap_default_access(9F) Kernel Functions for Drivers

NAME devmap_default_access – default driver memory access function

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int devmap_default_access (devmap_cookie_t dhp, void *pvtp, offset_t off, size_t len,
uint_t type, uint_t rw);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dhp An opaque mapping handle that the system uses to describe the
mapping.

pvtp Driver private mapping data.

off User offset within the logical device memory at which the access
begins.

len Length (in bytes) of the memory being accessed.

type Type of access operation.

rw Type of access.

DESCRIPTION devmap_default_access() is a function providing the semantics of
devmap_access (9E). The drivers call devmap_default_access() to handle
the mappings that do not support context switching. The drivers should call
devmap_do_ctxmgt (9F) for the mappings that support context management.

devmap_default_access() can either be called from devmap_access (9E)
or be used as the devmap_access (9E) entry point. The arguments dhp, pvtp,
off, len, type, and rw are provided by the devmap_access (9E) entry point
and must not be modified.

RETURN VALUES 0 Successful completion.

Non-zero An error occurred.

CONTEXT devmap_default_access() must be called from the driver’s
devmap_access (9E) entry point.

EXAMPLES EXAMPLE 1 Using devmap_default_access in devmap_access.

The following shows an example of using devmap_default_access() in the
devmap_access (9E) entry point.

. . .
#define OFF_DO_CTXMGT 0x40000000
#define OFF_NORMAL 0x40100000
#define CTXMGT_SIZE 0x100000
#define NORMAL_SIZE 0x100000

434 SunOS 5.8 Last modified 14 Jan 1997

Kernel Functions for Drivers devmap_default_access(9F)

/*
* Driver devmap_contextmgt(9E) callback function.
*/

static int
xx_context_mgt(devmap_cookie_t dhp, void *pvtp, offset_t offset,

size_t length, uint_t type, uint_t rw)
{

......
/*

* see devmap_contextmgt(9E) for an example
*/

}

/*
* Driver devmap_access(9E) entry point
*/

static int
xxdevmap_access(devmap_cookie_t dhp, void *pvtp, offset_t off,

size_t len, uint_t type, uint_t rw)
{

offset_t diff;
int err;

/*
* check if off is within the range that supports
* context management.
*/

if ((diff = off - OFF_DO_CTXMG) >= 0 && diff < CTXMGT_SIZE) {
/*

* calculates the length for context switching
*/

if ((len + off) > (OFF_DO_CTXMGT + CTXMGT_SIZE))
return (-1);

/*
* perform context switching
*/

err = devmap_do_ctxmgt(dhp, pvtp, off, len, type,
rw, xx_context_mgt);

/*
* check if off is within the range that does normal
* memory mapping.
*/

} else if ((diff = off - OFF_NORMAL) >= 0 && diff < NORMAL_SIZE) {
if ((len + off) > (OFF_NORMAL + NORMAL_SIZE))

return (-1);
err = devmap_default_access(dhp, pvtp, off, len, type, rw);

} else
return (-1);

return (err);
}

SEE ALSO devmap_access (9E), devmap_do_ctxmgt (9F), devmap_callback_ctl (9S)

Last modified 14 Jan 1997 SunOS 5.8 435

devmap_default_access(9F) Kernel Functions for Drivers

Writing Device Drivers

436 SunOS 5.8 Last modified 14 Jan 1997

Kernel Functions for Drivers devmap_devmem_setup(9F)

NAME devmap_devmem_setup, devmap_umem_setup – set driver memory mapping
parameters

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
int devmap_devmem_setup (devmap_cookie_t dhp, dev_info_t *dip, struct
devmap_callback_ctl *callbackops, uint_t rnumber, offset_t roff, size_t len, uint_t maxprot,
uint_t flags, ddi_device_acc_attr_t *accattrp);

intdevmap_umem_setup (devmap_cookie_t dhp, dev_info_t *dip, struct
devmap_callback_ctl * callbackops, ddi_umem_cookie_t cookie, offset_t koff, size_t len, uint_t
maxprot, uint_t flags, ddi_device_acc_attr_t *accattrp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS
devmap_devmem_setup() dhp An opaque mapping handle that the system uses to describe

the mapping.

dip Pointer to the device’s dev_info structure.

callbackops Pointer to a devmap_callback_ctl (9S) structure. The
structure contains pointers to device driver-supplied
functions that manage events on the device mapping. The
framework will copy the structure to the system private
memory.

rnumber Index number to the register address space set.

roff Offset into the register address space.

len Length (in bytes) of the mapping to be mapped.

maxprot Maximum protection flag possible for attempted mapping.
Some combinations of possible settings are:

PROT_READ Read access is allowed.

PROT_WRITE Write access is allowed.

PROT_EXEC Execute access is allowed.

Last modified 22 Jan 1997 SunOS 5.8 437

devmap_devmem_setup(9F) Kernel Functions for Drivers

PROT_USER User-level access is allowed (the mapping
is being done as a result of a mmap(2)
system call).

PROT_ALL All access is allowed.

flags Must be set to 0 .

accattrp Pointer to a ddi_device_acc_attr (9S) structure. The
structure contains the device access attributes to be applied
to this range of memory.

devmap_umem_setup() dhp An opaque data structure that the system uses to describe
the mapping.

dip Pointer to the device’s dev_info structure.

callbackops Pointer to a devmap_callback_ctl (9S) structure. The
structure contains pointers to device driver-supplied
functions that manage events on the device mapping.

cookie A kernel memory cookie (see ddi_umem_alloc (9F)).

koff Offset into the kernel memory defined by cookie .

len Length (in bytes) of the mapping to be mapped.

maxprot Maximum protection flag possible for attempted mapping.
Some combinations of possible settings are:

PROT_READ Read access is allowed.

PROT_WRITE Write access is allowed.

PROT_EXEC Execute access is allowed.

PROT_USER User-level access is allowed (the mapping
is being done as a result of a mmap(2)
system call).

438 SunOS 5.8 Last modified 22 Jan 1997

Kernel Functions for Drivers devmap_devmem_setup(9F)

PROT_ALL All access is allowed.

flags Must be set to 0 .

accattrp Pointer to a ddi_device_acc_attr (9S) structure. The
structure contains the device access attributes to be applied
to this range of memory.

DESCRIPTION devmap_devmem_setup() and devmap_umem_setup() are used in the
devmap(9E) entry point to pass mapping parameters from the driver to the
system.

dhp is a device mapping handle that the system uses to store all mapping
parameters of a physical contiguous memory. The system copies the data
pointed to by callbackops to a system private memory. This allows the driver
to free the data after returning from either devmap_devmem_setup() or
devmap_umem_setup() . The driver is notified of user events on the mappings
via the entry points defined by devmap_callback_ctl (9S) . The driver is
notified of the following user events:
Mapping Setup User has called mmap(2) to create a mapping to the device

memory.

Access User has accessed an address in the mapping that has no
translations.

Duplication User has duplicated the mapping. Mappings are duplicated
when the process calls fork (2) .

Unmapping User has called munmap(2) on the mapping or is exiting,
exit (2) .

See devmap_map(9E) , devmap_access (9E) , devmap_dup (9E) , and
devmap_unmap(9E) for details on these entry points.

By specifying a valid callbackops to the system, device drivers can manage events
on a device mapping. For example, the devmap_access (9E) entry point allows
the drivers to perform context switching by unloading the mappings of other
processes and to load the mapping of the calling process. Device drivers may
specify NULL to callbackops which means the drivers do not want to be notified
by the system.

The maximum protection allowed for the mapping is specified in maxprot .
accattrp defines the device access attributes. See ddi_device_acc_attr (9S)
for more details.

devmap_devmem_setup() is used for device memory to map in the register
set given by rnumber and the offset into the register address space given by roff .

Last modified 22 Jan 1997 SunOS 5.8 439

devmap_devmem_setup(9F) Kernel Functions for Drivers

The system uses rnumber and roff to go up the device tree to get the physical
address that corresponds to roff . The range to be affected is defined by len and
roff . The range from roff to roff + len must be a physical contiguous memory
and page aligned.

Drivers use devmap_umem_setup() for kernel memory to map in the kernel
memory described by cookie and the offset into the kernel memory space given
by koff . cookie is a kernel memory pointer obtained from ddi_umem_alloc (9F) .
If cookie is NULL, devmap_umem_setup() returns -1. The range to be affected
is defined by len and koff . The range from koff to koff + len must be within the
limits of the kernel memory described by koff + len and must be page aligned.

Drivers use devmap_umem_setup() to export the kernel memory allocated by
ddi_umem_alloc (9F) to user space. The system selects a user virtual address
that is aligned with the kernel virtual address being mapped to avoid cache
incoherence if the mapping is not MAP_FIXED.

RETURN VALUES 0 Successful completion.

-1 An error occurred.

CONTEXT devmap_devmem_setup() and devmap_umem_setup() can be called from
user, kernel, and interrupt context.

SEE ALSO exit (2) , fork (2) , mmap(2) , munmap(2) , devmap(9E) , ddi_umem_alloc (9F) ,
ddi_device_acc_attr (9S) , devmap_callback_ctl (9S)

Writing Device Drivers

440 SunOS 5.8 Last modified 22 Jan 1997

Kernel Functions for Drivers devmap_do_ctxmgt(9F)

NAME devmap_do_ctxmgt – perform device context switching on a mapping

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int devmap_do_ctxmgt (devmap_cookie_t,dhp, void *pvtp, offset_t off, size_t
len, uint_t type, uint_t rw, int (*devmap_contextmgt), (devmap_cookie_t,void
*,offset_t,size_t,uint_t,uint_t));

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dhp An opaque mapping handle that the system uses to describe
the mapping.

pvtp Driver private mapping data.

off User offset within the logical device memory at which the
access begins.

len Length (in bytes) of the memory being accessed.

devmap_contextmgtThe address of driver function that the system will
call to perform context switching on a mapping. See
devmap_contextmgt (9E) for details.

type Type of access operation. Provided by devmap_access (9E).
Should not be modified.

rw Direction of access. Provided by devmap_access (9E).
Should not be modified.

DESCRIPTION Device drivers call devmap_do_ctxmgt() in the devmap_access (9E)
entry point to perform device context switching on a mapping.
devmap_do_ctxmgt() passes a pointer to a driver supplied callback function,
devmap_contextmgt (9E), to the system that will perform the actual device
context switching. If devmap_contextmgt (9E) is not a valid driver callback
function, the system will fail the memory access operation which will result in a
SIGSEGVor SIGBUSsignal being delivered to the process.

devmap_do_ctxmgt() performs context switching on the mapping object
identified by dhp and pvtp in the range specified by off and len. The arguments
dhp, pvtp, type, and rw are provided by the devmap_access (9E) entry point
and must not be modified. The range from off to off+len must support context
switching.

The system will pass through dhp, pvtp, off, len, type, and rw to
devmap_contextmgt (9E) in order to perform the actual device context

Last modified 22 Jan 1997 SunOS 5.8 441

devmap_do_ctxmgt(9F) Kernel Functions for Drivers

switching. The return value from devmap_contextmgt (9E) will be returned
directly to devmap_do_ctxmgt() .

RETURN VALUES 0 Successful completion.

Non-zero An error occurred.

CONTEXT devmap_do_ctxmgt() must be called from the driver’s devmap_access (9E)
entry point.

EXAMPLES EXAMPLE 1 Using devmap_do_ctxmgt in the devmap_access entry point.

The following shows an example of using devmap_do_ctxmgt() in the
devmap_access (9E) entry point.

. . .
#define OFF_DO_CTXMGT 0x40000000
#define OFF_NORMAL 0x40100000
#define CTXMGT_SIZE 0x100000
#define NORMAL_SIZE 0x100000

/*
* Driver devmap_contextmgt(9E) callback function.
*/

static int
xx_context_mgt(devmap_cookie_t dhp, void *pvtp, offset_t offset,

size_t length, uint_t type, uint_t rw)
{

......
/*

* see devmap_contextmgt(9E) for an example
*/

}

/*
* Driver devmap_access(9E) entry point
*/

static int
xxdevmap_access(devmap_cookie_t dhp, void *pvtp, offset_t off,

size_t len, uint_t type, uint_t rw)
{

offset_t diff;
int err;

/*
* check if off is within the range that supports
* context management.
*/

if ((diff = off - OFF_DO_CTXMG) >= 0 && diff < CTXMGT_SIZE) {
/*

* calculates the length for context switching
*/

if ((len + off) > (OFF_DO_CTXMGT + CTXMGT_SIZE))
return (-1);

/*

442 SunOS 5.8 Last modified 22 Jan 1997

Kernel Functions for Drivers devmap_do_ctxmgt(9F)

* perform context switching
*/

err = devmap_do_ctxmgt(dhp, pvtp, off, len, type,
rw, xx_context_mgt);

/*
* check if off is within the range that does normal
* memory mapping.
*/

} else if ((diff = off - OFF_NORMAL) >= 0 && diff < NORMAL_SIZE) {
if ((len + off) > (OFF_NORMAL + NORMAL_SIZE))

return (-1);
err = devmap_default_access(dhp, pvtp, off, len, type, rw);

} else
return (-1);

return (err);
}

SEE ALSO devmap_access (9E), devmap_contextmgt (9E),
devmap_default_access (9F)

Writing Device Drivers

Last modified 22 Jan 1997 SunOS 5.8 443

devmap_set_ctx_timeout(9F) Kernel Functions for Drivers

NAME devmap_set_ctx_timeout – set the timeout value for the context management
callback

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

void devmap_set_ctx_timeout (devmap_cookie_t dhp, clock_t ticks);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dhp An opaque mapping handle that the system uses to describe the
mapping.

ticks Number of clock ticks to wait between successive calls to the context
management callback function.

DESCRIPTION devmap_set_ctx_timeout() specifies the time interval for the system to
wait between successive calls to the driver’s context management callback
function, devmap_contextmgt (9E).

Device drivers typically call devmap_set_ctx_timeout()
in the devmap_map(9E) routine. If the drivers do not call
devmap_set_ctx_timeout() to set the timeout value, the default timeout
value of 0 will result in no delay between successive calls to the driver’s
devmap_contextmgt (9E) callback function.

CONTEXT devmap_set_ctx_timeout() can be called from user or interrupt context.

SEE ALSO devmap_contextmgt (9E), devmap_map(9E), timeout (9F)

444 SunOS 5.8 Last modified 22 Jan 1997

Kernel Functions for Drivers devmap_setup(9F)

NAME devmap_setup, ddi_devmap_segmap – set up a user mapping to device memory
using the devmap framework

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
int devmap_setup (dev_t dev, offset_t off, ddi_as_handle_t as, caddr_t *addrp, size_tlen,
uint_t prot, uint_t maxprot, uint_t flags, cred_t *cred);

int ddi_devmap_segmap (dev_t dev, off_t off, ddi_as_handle_t as, caddr_t *addrp, off_tlen,
uint_t prot, uint_t maxprot, uint_t flags, cred_t *cred);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dev Device whose memory is to be mapped.

off User offset within the logical device memory at which the mapping
begins.

as An opaque data structure that describes the address space into which
the device memory should be mapped.

addrp Pointer to the starting address in the address space into which the
device memory should be mapped.

len Length (in bytes) of the memory to be mapped.

prot A bit field that specifies the protections. Some possible settings
combinations are:

PROT_READ Read access is desired.

PROT_WRITE Write access is desired.

PROT_EXEC Execute access is desired.

PROT_USER User-level access is desired (the mapping is being
done as a result of a mmap(2) system call).

PROT_ALL All access is desired.

maxprot Maximum protection flag possible for attempted mapping; the
PROT_WRITEbit may be masked out if the user opened the special
file read-only.

Last modified 22 Jan 1997 SunOS 5.8 445

devmap_setup(9F) Kernel Functions for Drivers

flags Flags indicating type of mapping. The following flags can be specified:

MAP_PRIVATE Changes are private.

MAP_SHARED Changes should be shared.

MAP_FIXED The user specified an address in *addrp rather than
letting the system choose an address.

cred Pointer to the user credential structure.

DESCRIPTION devmap_setup() and ddi_devmap_segmap() allow device drivers to use
the devmap framework to set up user mappings to device memory. The devmap
framework provides several advantages over the default device mapping
framework that is used by ddi_segmap (9F) or ddi_segmap_setup (9F) .
Device drivers should use the devmap framework, if the driver wants to:

� use an optimal MMU pagesize to minimize address translations,

� conserve kernel resources,

� receive callbacks to manage events on the mapping,

� export kernel memory to applications,

� set up device contexts for the user mapping if the device requires context
switching,

� assign device access attributes to the user mapping, or

� change the maximum protection for the mapping.

devmap_setup() must be called in the segmap(9E) entry point to establish
the mapping for the application. ddi_devmap_segmap() can be called
in, or be used as, the segmap(9E) entry point. The differences between
devmap_setup() and ddi_devmap_segmap() are in the data type used
for off and len .

When setting up the mapping, devmap_setup() and ddi_devmap_segmap()
call the devmap(9E) entry point to validate the range to be mapped. The
devmap(9E) entry point also translates the logical offset (as seen by the
application) to the corresponding physical offset within the device address
space. If the driver does not provide its own devmap(9E) entry point, EINVAL
will be returned to the mmap(2) system call.

RETURN VALUES 0 Successful completion.

446 SunOS 5.8 Last modified 22 Jan 1997

Kernel Functions for Drivers devmap_setup(9F)

Non-zero An error occurred. The return value of devmap_setup()
and ddi_devmap_segmap() should be used directly in
the segmap(9E) entry point.

CONTEXT devmap_setup() and ddi_devmap_segmap() can be called from user or
kernel context only.

SEE ALSO mmap(2) , devmap(9E) , segmap(9E) , ddi_segmap (9F) ,
ddi_segmap_setup (9F) , cb_ops (9S)

Writing Device Drivers

Last modified 22 Jan 1997 SunOS 5.8 447

devmap_unload(9F) Kernel Functions for Drivers

NAME devmap_unload, devmap_load – control validation of memory address
translations

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
int devmap_load (devmap_cookie_t dhp, offset_t off, size_t len, uint_t type, uint_t rw);

int devmap_unload (devmap_cookie_t dhp, offset_t off, size_t len);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dhp An opaque mapping handle that the system uses to describe the
mapping.

off User offset within the logical device memory at which the loading or
unloading of the address translations begins.

len Length (in bytes) of the range being affected.

devmap_load() only type Type of access operation.

rw Direction of access.

DESCRIPTION devmap_unload() and devmap_load() are used to control the
validation of the memory mapping described by dhp in the specified range.
devmap_unload() invalidates the mapping translations and will generate calls
to the devmap_access (9E) entry point next time the mapping is accessed. The
drivers use devmap_load() to validate the mapping translations during
memory access.

A typical use of devmap_unload() and devmap_load() is in the driver’s
context management callback function, devmap_contextmgt (9E) . To manage
a device context, a device driver calls devmap_unload() on the context about
to be switched out. It switches contexts, and then calls devmap_load()
on the context switched in. devmap_unload() can be used to unload the
mappings of other processes as well as the mappings of the calling process,
but devmap_load() can only be used to load the mappings of the calling
process. Attempting to load another process’s mappings with devmap_load()
will result in a system panic.

For both routines, the range to be affected is defined by the off and len arguments.
Requests affect the entire page containing the off and all pages up to and
including the page containing the last byte as indicated by off + len . The

448 SunOS 5.8 Last modified 22 Jan 1997

Kernel Functions for Drivers devmap_unload(9F)

arguments type and rw are provided by the system to the calling function (for
example, devmap_contextmgt (9E)) and should not be modified.

Supplying a value of 0 for the len argument affects all addresses from the off to
the end of the mapping. Supplying a value of 0 for the off argument and a value
of 0 for len argument affect all addresses in the mapping.

A non-zero return value from either devmap_unload() or devmap_load()
will cause the corresponding operation to fail. The failure may result in a
SIGSEGVor SIGBUSsignal being delivered to the process.

RETURN VALUES 0 Successful completion.

Non-zero An error occurred.

CONTEXT These routines can be called from user or kernel context only.

EXAMPLES EXAMPLE 1 Managing a One-Page Device Context

The following shows an example of managing a device context that is one
page in length.

struct xx_context cur_ctx;

static int
xxdevmap_contextmgt(devmap_cookie_t dhp, void *pvtp, offset_t off,

size_t len, uint_t type, uint_t rw)
{

int err;
devmap_cookie_t cur_dhp;
struct xx_pvt *p;
struct xx_pvt *pvp = (struct xx_pvt *)pvtp;
/* enable access callbacks for the current mapping */
if (cur_ctx != NULL && cur_ctx != pvp->ctx) {

p = cur_ctx->pvt;
/*

* unload the region from off to the end of the mapping.
*/

cur_dhp = p->dhp;
if ((err = devmap_unload(cur_dhp, off, len)) != 0)

return (err);
}
/* Switch device context - device dependent*/
...
/* Make handle the new current mapping */
cur_ctx = pvp->ctx;
/*

* Disable callbacks and complete the access for the
* mapping that generated this callback.
*/

return (devmap_load(pvp->dhp, off, len, type, rw));
}

Last modified 22 Jan 1997 SunOS 5.8 449

devmap_unload(9F) Kernel Functions for Drivers

SEE ALSO devmap_access (9E) , devmap_contextmgt (9E)

Writing Device Drivers

450 SunOS 5.8 Last modified 22 Jan 1997

Kernel Functions for Drivers disksort(9F)

NAME disksort – single direction elevator seek sort for buffers

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
void
disksort (struct diskhd *dp, struct buf *bp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dp A pointer to a diskhd structure. A diskhd structure is essentially
identical to head of a buffer structure (see buf (9S)). The only defined
items of interest for this structure are the av_forw and av_back
structure elements which are used to maintain the front and tail
pointers of the forward linked I/O request queue.

bp A pointer to a buffer structure. Typically this is the I/O request that
the driver receives in its strategy routine (see strategy (9E)). The
driver is responsible for initializing the b_resid structure element to
a meaningful sort key value prior to calling disksort() .

DESCRIPTION The function disksort() sorts a pointer to a buffer into a single forward linked
list headed by the av_forw element of the argument *dp.

It uses a one-way elevator algorithm that sorts buffers into the queue in
ascending order based upon a key value held in the argument buffer structure
element b_resid .

This value can either be the driver calculated cylinder number for the I/O
request described by the buffer argument, or simply the absolute logical block
for the I/O request, depending on how fine grained the sort is desired to be or
how applicable either quantity is to the device in question.

The head of the linked list is found by use of the av_forw structure element
of the argument *dp. The tail of the linked list is found by use of the av_back
structure element of the argument *dp. The av_forw element of the *bp
argument is used by disksort() to maintain the forward linkage. The value at
the head of the list presumably indicates the currently active disk area.

CONTEXT This function can be called from user or interrupt context.

SEE ALSO strategy (9E), buf (9S)

Writing Device Drivers

WARNINGS disksort() does no locking. Therefore, any locking is completely the
responsibility of the caller.

Last modified 30 Jul 1993 SunOS 5.8 451

drv_getparm(9F) Kernel Functions for Drivers

NAME drv_getparm – retrieve kernel state information

SYNOPSIS #include <sys/ddi.h>

int drv_getparm (unsigned int parm, void *value_p);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS parm The kernel parameter to be obtained. Possible values are:

LBOLT Read the value of lbolt . lbolt is a clock_t that is
unconditionally incremented by one at each clock tick. No
special treatment is applied when this value overflows the
maximum value of the signed integral type clock_t . When
this occurs, its value will be negative, and its magnitude will
be decreasing until it again passes zero. It can therefore
not be relied upon to provide an indication of the amount
of time that passes since the last system reboot, nor should
it be used to mark an absolute time in the system. Only
the difference between two measurements of lbolt is
significant. It is used in this way inside the system kernel
for timing purposes.

PPGRP Read the process group identification number. This number
determines which processes should receive a HANGUPor
BREAKsignal when detected by a driver.

UPROCP Read the process table token value.

PPID Read process identification number.

PSID Read process session identification number.

TIME Read time in seconds.

UCRED Return a pointer to the caller’s credential structure.

value_p A pointer to the data space in which the value of the
parameter is to be copied.

DESCRIPTION drv_getparm() function verifies that parm corresponds to a kernel parameter
that may be read. If the value of parm does not correspond to a parameter or
corresponds to a parameter that may not be read, -1 is returned. Otherwise, the
value of the parameter is stored in the data space pointed to by value_p.

drv_getparm() does not explicitly check to see whether the device has the
appropriate context when the function is called and the function does not
check for correct alignment in the data space pointed to by value_p. It is the

452 SunOS 5.8 Last modified 24 Jun 1997

Kernel Functions for Drivers drv_getparm(9F)

responsibility of the driver writer to use this function only when it is appropriate
to do so and to correctly declare the data space needed by the driver.

RETURN VALUES drv_getparm() returns 0 to indicate success, –1 to indicate failure. The value
stored in the space pointed to by value_p is the value of the parameter if 0 is
returned, or undefined if –1 is returned. –1 is returned if you specify a value
other than LBOLT, PPGRP, PPID, PSID, TIME, UCRED, or UPROCP. Always check
the return code when using this function.

CONTEXT drv_getparm() can be called from user context only when using PPGRP, PPID,
PSID, UCRED, or UPROCP. It can be called from user or interrupt context when
using the LBOLTor TIME argument.

SEE ALSO buf (9S)

Writing Device Drivers

Last modified 24 Jun 1997 SunOS 5.8 453

drv_hztousec(9F) Kernel Functions for Drivers

NAME drv_hztousec – convert clock ticks to microseconds

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>

clock_t drv_hztousec (clock_t hertz);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS hertz The number of clock ticks to convert.

DESCRIPTION drv_hztousec() converts into microseconds the time expressed by hertz,
which is in system clock ticks.

The kernel variable lbolt , whose value should be retrieved by calling
ddi_get_lbolt (9F), is the length of time the system has been up since boot
and is expressed in clock ticks. Drivers often use the value of lbolt before and
after an I/O request to measure the amount of time it took the device to process
the request. drv_hztousec() can be used by the driver to convert the reading
from clock ticks to a known unit of time.

RETURN VALUES The number of microseconds equivalent to the hertz parameter. No error value is
returned. If the microsecond equivalent to hertz is too large to be represented as a
clock_t , then the maximum clock_t value will be returned.

CONTEXT drv_hztousec() can be called from user or interrupt context.

SEE ALSO ddi_get_lbolt (9F), drv_usectohz (9F), drv_usecwait (9F)

Writing Device Drivers

454 SunOS 5.8 Last modified 12 Nov 1992

Kernel Functions for Drivers drv_priv(9F)

NAME drv_priv – determine driver privilege

SYNOPSIS #include <sys/types.h>
#include <sys/cred.h>
#include <sys/ddi.h>

int drv_priv (cred_t *cr);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS cr Pointer to the user credential structure.

DESCRIPTION drv_priv() provides a general interface to the system privilege policy. It
determines whether the credentials supplied by the user credential structure
pointed to by cr identify a privileged process. This function should only be used
when file access modes and special minor device numbers are insufficient to
provide protection for the requested driver function. It is intended to replace
all calls to suser() and any explicit checks for effective user ID = 0 in
driver code.

RETURN VALUES This routine returns 0 if it succeeds, EPERMif it fails.

CONTEXT drv_priv() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

Last modified 11 Apr 1991 SunOS 5.8 455

drv_usectohz(9F) Kernel Functions for Drivers

NAME drv_usectohz – convert microseconds to clock ticks

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>

clock_t drv_usectohz (clock_t microsecs);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS microsecs The number of microseconds to convert.

DESCRIPTION drv_usectohz() converts a length of time expressed in microseconds to
a number of system clock ticks. The time arguments to timeout (9F) and
delay (9F) are expressed in clock ticks.

drv_usectohz() is a portable interface for drivers to make calls to
timeout (9F) and delay (9F) and remain binary compatible should the driver
object file be used on a system with a different clock speed (a different number
of ticks in a second).

RETURN VALUES The value returned is the number of system clock ticks equivalent to the microsecs
argument. No error value is returned. If the clock tick equivalent to microsecs
is too large to be represented as a clock_t , then the maximum clock_t
value will be returned.

CONTEXT drv_usectohz() can be called from user or interrupt context.

SEE ALSO delay (9F), drv_hztousec (9F), timeout (9F)

Writing Device Drivers

456 SunOS 5.8 Last modified 12 Nov 1992

Kernel Functions for Drivers drv_usecwait(9F)

NAME drv_usecwait – busy-wait for specified interval

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>

void drv_usecwait (clock_t microsecs);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS microsecs The number of microseconds to busy-wait.

DESCRIPTION drv_usecwait() gives drivers a means of busy-waiting for a specified
microsecond count. The amount of time spent busy-waiting may be greater than
the microsecond count but will minimally be the number of microseconds
specified.

delay (9F) can be used by a driver to delay for a specified number of system
ticks, but it has two limitations. First, the granularity of the wait time is limited
to one clock tick, which may be more time than is needed for the delay. Second,
delay (9F) may only be invoked from user context and hence cannot be used at
interrupt time or system initialization.

Often, drivers need to delay for only a few microseconds, waiting for a write to a
device register to be picked up by the device. In this case, even in user context,
delay (9F) produces too long a wait period.

CONTEXT drv_usecwait() can be called from user or interrupt context.

SEE ALSO delay (9F), timeout (9F), untimeout (9F)

Writing Device Drivers

NOTES The driver wastes processor time by making this call since drv_usecwait()
does not block but simply busy-waits. The driver should only make calls
to drv_usecwait() as needed, and only for as much time as needed.
drv_usecwait() does not mask out interrupts.

Last modified 12 Nov 1992 SunOS 5.8 457

dupb(9F) Kernel Functions for Drivers

NAME dupb – duplicate a message block descriptor

SYNOPSIS #include <sys/stream.h>

mblk_t *dupb (mblk_t *bp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS .bp Pointer to the message block to be duplicated. mblk_t is an instance
of the msgb(9S) structure.

DESCRIPTION dupb() creates a new mblk_t structure (see msgb(9S)) to reference the message
block pointed to by bp.

Unlike copyb (9F), dupb () does not copy the information in the dblk_t
structure (see datab (9S)), but creates a new mblk_t structure to point to it. The
reference count in the dblk_t structure (db_ref) is incremented. The new
mblk_t structure contains the same information as the original. Note that
b_rptr and b_wptr are copied from the bp.

RETURN VALUES If successful, dupb() returns a pointer to the new message block. A NULL
pointer is returned if dupb() cannot allocate a new message block descriptor
or if the db_ref field of the data block structure (see datab (9S)) has reached
a maximum value (255).

CONTEXT dupb() can be called from user, kernel, or interrupt context.

EXAMPLES EXAMPLE 1 Using dupb()

This srv (9E) (service) routine adds a header to all M_DATAmessages before
passing them along. dupb is used instead of copyb (9F) because the contents of
the header block are not changed.

458 SunOS 5.8 Last modified 07 Nov 1996

Kernel Functions for Drivers dupb(9F)

For each message on the queue, if it is a priority message, pass it along
immediately (lines 10–11). Otherwise, if it is anything other than an M_DATA
message (line 12), and if it can be sent along (line 13), then do so (line 14).
Otherwise, put the message back on the queue and return (lines 16–17). For all
M_DATAmessages, first check to see if the stream is flow-controlled (line 20). If it
is, put the message back on the queue and return (lines 37–38). If it is not, the
header block is duplicated (line 21).

dupb() can fail either due to lack of resources or because the message block has
already been duplicated 255 times. In order to handle the latter case, the example
calls copyb (9F) (line 22). If copyb (9F) fails, it is due to buffer allocation failure.
In this case, qbufcall (9F) is used to initiate a callback (lines 30-31) if one is
not already pending (lines 26-27).

The callback function, xxxcallback() , clears the recorded qbufcall (9F)
callback id and schedules the service procedure (lines 49-50). Note that the close
routine, xxxclose() , must cancel any outstanding qbufcall (9F) callback
requests (lines 58-59).

If dupb() or copyb (9F) succeed, link the M_DATAmessage to the new message
block (line 34) and pass it along (line 35).

1 xxxsrv(q)
2 queue_t *q;
3 {
4 struct xx *xx = (struct xx *)q->q_ptr;
5 mblk_t *mp;
6 mblk_t *bp;
7 extern mblk_t *hdr;
8
9 while ((mp = getq(q)) != NULL) {

10 if (mp->b_datap->db_type >= QPCTL) {
11 putnext(q, mp);
12 } else if (mp->b_datap->db_type != M_DATA) {
13 if (canputnext(q))
14 putnext(q, mp);
15 else {
16 putbq(q, mp);
17 return;
18 }
19 } else { /* M_DATA */
20 if (canputnext(q)) {
21 if ((bp = dupb(hdr)) == NULL)
22 bp = copyb(hdr);
23 if (bp == NULL) {
24 size_t size = msgdsize(mp);
25 putbq(q, mp);
26 if (xx->xx_qbufcall_id) {
27 /* qbufcall pending */
28 return;
29 }
30 xx->xx_qbufcall_id = qbufcall(q, size,

Last modified 07 Nov 1996 SunOS 5.8 459

dupb(9F) Kernel Functions for Drivers

31 BPRI_MED, xxxcallback, (intptr_t)q);
32 return;
33 }
34 linkb(bp, mp);
35 putnext(q, bp);
36 } else {
37 putbq(q, mp);
38 return;
39 }
40 }
41 }
42 }
43 void
44 xxxcallback(q)
45 queue_t *q;
46 {
47 struct xx *xx = (struct xx *)q->q_ptr;
48
49 xx->xx_qbufcall_id = 0;
50 qenable(q);
51 }

52 xxxclose(q, cflag, crp)
53 queue_t *q;
54 int cflag;
55 cred_t *crp;
56 {
57 struct xx *xx = (struct xx *)q->q_ptr;

...
58 if (xx->xx_qbufcall_id)
59 qunbufcall(q, xx->xx_qbufcall_id);

...
60 }

SEE ALSO srv (9E), copyb (9F), qbufcall (9F), datab (9S), msgb(9S)

Writing Device Drivers STREAMS Programming Guide

460 SunOS 5.8 Last modified 07 Nov 1996

Kernel Functions for Drivers dupmsg(9F)

NAME dupmsg – duplicate a message

SYNOPSIS #include <sys/stream.h>

mblk_t *dupmsg(mblk_t *mp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS mp Pointer to the message.

DESCRIPTION dupmsg() forms a new message by copying the message block descriptors
pointed to by mp and linking them. dupb (9F) is called for each message block.
The data blocks themselves are not duplicated.

RETURN VALUES If successful, dupmsg() returns a pointer to the new message block. Otherwise,
it returns a NULLpointer. A return value of NULL indicates either memory
depletion or the data block reference count, db_ref (see datab (9S)), has
reached a limit (255). See dupb (9F).

CONTEXT dupmsg() can be called from user, kernel, or interrupt context.

EXAMPLES EXAMPLE 1 Using dupmsg()

See copyb (9F) for an example using dupmsg() .

SEE ALSO copyb (9F), copymsg (9F), dupb (9F), datab (9S)

Writing Device Drivers

STREAMS Programming Guide

Last modified 11 Apr 1991 SunOS 5.8 461

enableok(9F) Kernel Functions for Drivers

NAME enableok – reschedule a queue for service

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

void enableok (queue_t *q);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q A pointer to the queue to be rescheduled.

DESCRIPTION enableok() enables queue q to be rescheduled for service. It reverses the effect
of a previous call to noenable (9F) on q by turning off the QNOENBflag in
the queue.

CONTEXT enableok() can be called from user or interrupt context.

EXAMPLES EXAMPLE 1 Using emableok()

The qrestart() routine uses two STREAMS functions to restart a queue
that has been disabled. The enableok() function turns off the QNOENBflag,
allowing the qenable (9F) to schedule the queue for immediate processing.

1 void
2 qrestart(rdwr_q)
3 register queue_t *rdwr_q;
4 {
5 enableok(rdwr_q);
6 /* re-enable a queue that has been disabled */
7 (void) qenable(rdwr_q);
8 }

SEE ALSO noenable (9F), qenable (9F)

Writing Device Drivers STREAMS Programming Guide

462 SunOS 5.8 Last modified 11 Apr 1991

Kernel Functions for Drivers esballoc(9F)

NAME esballoc – allocate a message block using a caller-supplied buffer

SYNOPSIS #include <sys/stream.h>

mblk_t *esballoc (uchar *base, size_t size, uint_t pri, frtn_t *fr_rtnp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS base Address of user supplied data buffer.

size Number of bytes in data buffer.

pri Priority of allocation request (to be used by allocb (9F)
function, called by esballoc()) .

fr_rtnp Free routine data structure.

DESCRIPTION esballoc() creates a STREAMS message and attaches a user-supplied data
buffer in place of a STREAMS data buffer. It calls allocb (9F) to get a message
and data block header only. The newly allocated message will have both the
b_wptr and b_rptr set to the base of the buffer. As when using allocb (9F),
the newly allocated message will have both b_wptr and b_rptr set to the base
of the data buffer. The user-supplied data buffer, pointed to by base, is used
as the data buffer for the message.

When freeb (9F) is called to free the message, the driver’s message freeing
routine (referenced through the free_rtn structure) is called, with appropriate
arguments, to free the data buffer.

The free_rtn structure includes the following members:

void (*free_func)(); /* user’s freeing routine */
char *free_arg; /* arguments to free_func() */

Instead of requiring a specific number of arguments, the free_arg field is
defined of type char * . This way, the driver can pass a pointer to a structure if
more than one argument is needed.

The method by which free_func is called is implementation-specific. The
module writer must not assume that free_func will or will not be called directly
from STREAMS utility routines like freeb (9F) which free a message block.

free_func must not call another modules put procedure nor attempt to acquire
a private module lock which may be held by another thread across a call to a
STREAMS utility routine which could free a message block. Otherwise, the
possibility for lock recursion and/or deadlock exists.

Last modified 23 Jun 1997 SunOS 5.8 463

esballoc(9F) Kernel Functions for Drivers

free_func must not access any dynamically allocated data structure that
might no longer exist when it runs.

RETURN VALUES On success, a pointer to the newly allocated message block is returned. On
failure, NULL is returned.

CONTEXT esballoc() can be called from user or interrupt context.

SEE ALSO allocb (9F), freeb (9F), datab (9S), free_rtn (9S)

Writing Device Drivers STREAMS Programming Guide

WARNINGS The free_func must be defined in kernel space, should be declared void and
accept one argument. It has no user context and must not sleep.

464 SunOS 5.8 Last modified 23 Jun 1997

Kernel Functions for Drivers esbbcall(9F)

NAME esbbcall – call function when buffer is available

SYNOPSIS #include <sys/stream.h>

bufcall_id_t esbbcall (uint_t pri, void (*func)(void *arg), void (arg));

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS pri Priority of allocation request (to be used by allocb (9F) function,
called by esbbcall())

func Function to be called when buffer becomes available.

arg Argument to func.

DESCRIPTION esbbcall() , like bufcall (9F), serves as a timeout (9F) call of indeterminate
length. If esballoc (9F) is unable to allocate a message and data block header
to go with its externally supplied data buffer, esbbcall() can be used to
schedule the routine func, to be called with the argument arg when a buffer
becomes available. func may be a routine that calls esballoc (9F) or it may
be another kernel function.

RETURN VALUES On success, a bufcall IDis returned. On failure, 0 is returned. The value
returned from a successful call should be saved for possible future use with
unbufcall() should it become necessary to cancel the esbbcall() request
(as at driver close time).

CONTEXT esbbcall() can be called from user or interrupt context.

SEE ALSO allocb (9F), bufcall (9F), esballoc (9F), timeout (9F), datab (9S),
unbufcall (9F)

Writing Device Drivers STREAMS Programming Guide

Last modified 18 Feb 98 SunOS 5.8 465

flushband(9F) Kernel Functions for Drivers

NAME flushband – flush messages for a specified priority band

SYNOPSIS #include <sys/stream.h>

void flushband (queue_t *q, unsigned char pri, int flag);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q Pointer to the queue.

pri Priority of messages to be flushed.

flag Valid flag values are:

FLUSHDATA Flush only data messages (types M_DATA, M_DELAY,
M_PROTO,and M_PCPROTO).

FLUSHALL Flush all messages.

DESCRIPTION flushband() flushes messages associated with the priority band specified by
pri. If pri is 0, only normal and high priority messages are flushed. Otherwise,
messages are flushed from the band pri according to the value of flag.

CONTEXT flushband() can be called from user or interrupt context.

SEE ALSO flushq (9F)

Writing Device Drivers STREAMS Programming Guide

466 SunOS 5.8 Last modified 11 Apr 1991

Kernel Functions for Drivers flushq(9F)

NAME flushq – remove messages from a queue

SYNOPSIS #include <sys/stream.h>

void flushq (queue_t *q, int flag);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q Pointer to the queue to be flushed.

flag Valid flag values are:

FLUSHDATA Flush only data messages (types M_DATA M_DELAY M_PROTO
and M_PCPROTO).

FLUSHALL Flush all messages.

DESCRIPTION flushq() frees messages and their associated data structures by calling
freemsg (9F). If the queue’s count falls below the low water mark and the queue
was blocking an upstream service procedure, the nearest upstream service
procedure is enabled.

CONTEXT flushq() can be called from user or interrupt context.

EXAMPLES EXAMPLE 1 Using flushq()

This example depicts the canonical flushing code for STREAMS modules. The
module has a write service procedure and potentially has messages on the
queue. If it receives an M_FLUSHmessage, and if the FLUSHRbit is on in the
first byte of the message (line 10), then the read queue is flushed (line 11). If
the FLUSHWbit is on (line 12), then the write queue is flushed (line 13). Then
the message is passed along to the next entity in the stream (line 14). See the
example for qreply (9F) for the canonical flushing code for drivers.

1 /*
2 * Module write-side put procedure.
3 */
4 xxxwput(q, mp)
5 queue_t *q;
6 mblk_t *mp;
7 {
8 switch(mp->b_datap->db_type) {
9 case M_FLUSH:

10 if (*mp->b_rptr & FLUSHR)
11 flushq(RD(q), FLUSHALL);
12 if (*mp->b_rptr & FLUSHW)
13 flushq(q, FLUSHALL);
14 putnext(q, mp);
15 break;

. . .
16 }

Last modified 11 Apr 1991 SunOS 5.8 467

flushq(9F) Kernel Functions for Drivers

17 }

SEE ALSO flushband (9F), freemsg (9F), putq (9F), qreply (9F)

Writing Device Drivers STREAMS Programming Guide

468 SunOS 5.8 Last modified 11 Apr 1991

Kernel Functions for Drivers freeb(9F)

NAME freeb – free a message block

SYNOPSIS #include <sys/stream.h>

void freeb (mblk_t *bp);

PARAMETERS bp Pointer to the message block to be deallocated. mblk_t is an instance
of the msgb(9S) structure.

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION freeb() () deallocates a message block. If the reference count of the db_ref
member of the datab (9S) structure is greater than 1, freeb() () decrements
the count. If db_ref equals 1, it deallocates the message block and the
corresponding data block and buffer.

If the data buffer to be freed was allocated with the esballoc (9F), the buffer
may be a non-STREAMS resource. In that case, the driver must be notified that
the attached data buffer needs to be freed, and run its own freeing routine. To
make this process independent of the driver used in the stream, freeb() ()
finds the free_rtn (9S) structure associated with the buffer. The free_rtn
structure contains a pointer to the driver-dependent routine, which releases the
buffer. Once this is accomplished, freeb() () releases the STREAMS resources
associated with the buffer.

CONTEXT freeb() () can be called from user or interrupt context.

EXAMPLES CODE EXAMPLE 1 Using freeb()

See copyb (9F) for an example of using freeb() ().

SEE ALSO allocb (9F), copyb (9F), dupb (9F), esballoc (9F), free_rtn (9S)

Writing Device Drivers

STREAMS Programming Guide

Last modified 11 Apr 1991 SunOS 5.8 469

freemsg(9F) Kernel Functions for Drivers

NAME freemsg – free all message blocks in a message

SYNOPSIS #include <sys/stream.h>

void freemsg (mblk_t *mp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS mp Pointer to the message blocks to be deallocated. mblk_t is an instance
of the msgb(9S) structure.

DESCRIPTION freemsg() calls freeb (9F) to free all message and data blocks associated
with the message pointed to by mp.

CONTEXT freemsg() can be called from user or interrupt context.

EXAMPLES CODE EXAMPLE 1 Using freemsg()

See copymsg (9F).

SEE ALSO copymsg (9F), freeb (9F), msgb(9S)

Writing Device Drivers

STREAMS Programming Guide

470 SunOS 5.8 Last modified 11 Apr 1991

Kernel Functions for Drivers freerbuf(9F)

NAME freerbuf – free a raw buffer header

SYNOPSIS #include <sys/buf.h>
#include <sys/ddi.h>

void freerbuf (struct buf *bp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS bp Pointer to a previously allocated buffer header structure.

DESCRIPTION freerbuf() frees a raw buffer header previously allocated by getrbuf (9F).
This function does not sleep and so may be called from an interrupt routine.

CONTEXT freerbuf() can be called from user or interrupt context.

SEE ALSO getrbuf (9F), kmem_alloc (9F), kmem_free (9F), kmem_zalloc (9F)

Last modified 11 Apr 1991 SunOS 5.8 471

freezestr(9F) Kernel Functions for Drivers

NAME freezestr, unfreezestr – freeze, thaw the state of a stream

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>
void freezestr (queue_t *q);

void unfreezestr (queue_t *q);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q Pointer to the message queue to freeze/unfreeze.

DESCRIPTION freezestr() freezes the state of the entire stream containing the queue pair q
. A frozen stream blocks any thread attempting to enter any open, close, put
or service routine belonging to any queue instance in the stream, and blocks
any thread currently within the stream if it attempts to put messages onto or
take messages off of any queue within the stream (with the sole exception of
the caller). Threads blocked by this mechanism remain so until the stream is
thawed by a call to unfreezestr() .

Drivers and modules must freeze the stream before manipulating the queues
directly (as opposed to manipulating them through programmatic interfaces
such as getq (9F) , putq (9F) , putbq (9F) , etc.)

CONTEXT These routines may be called from any stream open, close, put or service routine
as well as interrupt handlers, callouts and call-backs.

SEE ALSO getq (9F) , insq (9F) , putbq (9F) , putq (9F) , rmvq (9F) , strqget (9F) ,
strqset (9F)

Writing Device Drivers

STREAMS Programming Guide

NOTES Calling freezestr() to freeze a stream that is already frozen by the caller
will result in a single-party deadlock.

The caller of unfreezestr() must be the thread who called freezestr() .

There are usually better ways to accomplish things than by freezing the stream.

STREAMS utility functions such as getq (9F) , putq (9F) , putbq (9F) , etc. may
not be called by the caller of freezestr() while the stream is still frozen, as
they indirectly freeze the stream to ensure atomicity of queue manipulation.

472 SunOS 5.8 Last modified 8 Aug 1995

Kernel Functions for Drivers geterror(9F)

NAME geterror – return I/O error

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>
#include <sys/ddi.h>

int geterror (struct buf *bp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS bp Pointer to a buf (9S) structure.

DESCRIPTION geterror() returns the error number from the error field of the buffer header
structure.

RETURN VALUES An error number indicating the error condition of the I/O request is returned. If
the I/O request completes successfully, 0 is returned.

CONTEXT geterror() can be called from user or interrupt context.

SEE ALSO buf (9S)

Writing Device Drivers

Last modified 11 Apr 1991 SunOS 5.8 473

getmajor(9F) Kernel Functions for Drivers

NAME getmajor – get major device number

SYNOPSIS #include <sys/types.h>
#include <sys/mkdev.h>
#include <sys/ddi.h>

major_t getmajor (dev_t dev);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS dev Device number.

DESCRIPTION getmajor() extracts the major number from a device number.

RETURN VALUES The major number.

CONTEXT getmajor() can be called from user or interrupt context.

EXAMPLES CODE EXAMPLE 1 Using getmajor()

The following example shows both the getmajor() and getminor (9F)
functions used in a debug cmn_err (9F) statement to return the major and minor
numbers for the device supported by the driver.

dev_t dev;

#ifdef DEBUG
cmn_err(CE_NOTE,"Driver Started. Major# = %d,

Minor# = %d", getmajor(dev), getminor(dev));
#endif

SEE ALSO cmn_err (9F), getminor (9F), makedevice (9F)

Writing Device Drivers

WARNINGS No validity checking is performed. If dev is invalid, an invalid number is
returned.

474 SunOS 5.8 Last modified 11 Apr 1991

Kernel Functions for Drivers getminor(9F)

NAME getminor – get minor device number

SYNOPSIS #include <sys/types.h>
#include <sys/mkdev.h>
#include <sys/ddi.h>

minor_t getminor (dev_t dev);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS dev Device number.

DESCRIPTION getminor() extracts the minor number from a device number.

RETURN VALUES The minor number.

CONTEXT getminor() can be called from user or interrupt context.

EXAMPLES See the getmajor (9F) manual page for an example of how to use getminor() .

SEE ALSO getmajor (9F), makedevice (9F)

Writing Device Drivers

WARNINGS No validity checking is performed. If dev is invalid, an invalid number is
returned.

Last modified 11 Apr 1991 SunOS 5.8 475

get_pktiopb(9F) Kernel Functions for Drivers

NAME get_pktiopb, free_pktiopb – allocate/free a SCSI packet in the iopb map

SYNOPSIS #include <sys/scsi/scsi.h>
struct scsi_pkt *get_pktiopb (struct scsi_address *ap, caddr_t *datap, int cdblen, int
statuslen, int datalen, int readflag, int (*callback);

void free_pktiopb (struct scsi_pkt *pkt, caddr_t datap, int datalen);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS ap Pointer to the target’s scsi_address structure.

datap Pointer to the address of the packet, set by this function.

cdblen Number of bytes required for the SCSI command descriptor
block (CDB).

statuslen Number of bytes required for the SCSI status area.

datalen Number of bytes required for the data area of the SCSI
command.

readflag If non-zero, data will be transferred from the SCSI target.

callback Pointer to a callback function, or NULL_FUNCor
SLEEP_FUNC

pkt Pointer to a scsi_pkt (9S) structure.

DESCRIPTION get_pktiopb() allocates a scsi_pkt structure that has a small data area
allocated. It is used by some SCSI commands such as REQUEST_SENSE, which
involve a small amount of data and require cache-consistent memory for proper
operation. It uses ddi_iopb_alloc (9F) for allocating the data area and
scsi_resalloc (9F) to allocate the packet and DMA resources.

callback indicates what get_pktiopb() should do when resources are not
available:
NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

476 SunOS 5.8 Last modified 21 Dec 1992

Kernel Functions for Drivers get_pktiopb(9F)

Other Values callback points to a function which is called when resources
may have become available. callback must return either 0
(indicating that it attempted to allocate resources but failed
to do so again), in which case it is put back on a list to be
called again later, or 1 indicating either success in allocating
resources or indicating that it no longer cares for a retry.

free_pktiopb() is used for freeing the packet and its associated resources.

RETURN VALUES get_pktiopb() returns a pointer to the newly allocated scsi_pkt or a
NULLpointer.

CONTEXT If callback is SLEEP_FUNC, then this routine may only be called from user-level
code. Otherwise, it may be called from either user or interrupt level. The callback
function may not block or call routines that block.

free_pktiopb() can be called from user or interrupt context.

SEE ALSO ddi_iopb_alloc (9F) , scsi_alloc_consistent_buf (9F)
, scsi_free_consistent_buf (9F) , scsi_pktalloc (9F) ,
scsi_resalloc (9F) , scsi_pkt (9S)

Writing Device Drivers

NOTES get_pktiopb() and free_pktiopb() are old functions and
should be replaced with scsi_alloc_consistent_buf (9F) and
scsi_free_consistent_buf (9F) . get_pktiopb() uses scarce resources.
Use it selectively.

Last modified 21 Dec 1992 SunOS 5.8 477

getq(9F) Kernel Functions for Drivers

NAME getq – get the next message from a queue

SYNOPSIS #include <sys/stream.h>

mblk_t *getq (queue_t *q);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q Pointer to the queue from which the message is to be retrieved.

DESCRIPTION getq() is used by a service (srv (9E)) routine to retrieve its enqueued messages.

A module or driver may include a service routine to process enqueued messages.
Once the STREAMS scheduler calls srv() it must process all enqueued
messages, unless prevented by flow control. getq() obtains the next available
message from the top of the queue pointed to by q. It should be called in a
while loop that is exited only when there are no more messages or flow control
prevents further processing.

If an attempt was made to write to the queue while it was blocked by flow
control, getq() back-enables (restarts) the service routine once it falls below
the low water mark.

RETURN VALUES If there is a message to retrieve, getq() returns a pointer to it. If no message is
queued, getq() returns a NULLpointer.

CONTEXT getq() can be called from user or interrupt context.

EXAMPLES See dupb (9F).

SEE ALSO srv (9E), bcanput (9F), canput (9F), dupb (9F), putbq (9F), putq (9F),
qenable (9F)

Writing Device Drivers

STREAMS Programming Guide

478 SunOS 5.8 Last modified 12 Nov 1992

Kernel Functions for Drivers getrbuf(9F)

NAME getrbuf – get a raw buffer header

SYNOPSIS #include <sys/buf.h>
#include <sys/kmem.h>
#include <sys/ddi.h>

struct buf *getrbuf (int sleepflag);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS sleepflag Indicates whether driver should sleep for free space.

DESCRIPTION getrbuf() allocates the space for a buffer header to the caller. It is used in
cases where a block driver is performing raw (character interface) I/O and needs
to set up a buffer header that is not associated with the buffer cache.

getrbuf() calls kmem_alloc (9F) to perform the memory allocation.
kmem_alloc() requires the information included in the sleepflag argument. If
sleepflag is set to KM_SLEEP, the driver may sleep until the space is freed up. If
sleepflag is set to KM_NOSLEEP, the driver will not sleep. In either case, a pointer
to the allocated space is returned or NULLto indicate that no space was available.

RETURN VALUES getrbuf() returns a pointer to the allocated buffer header, or NULL if no
space is available.

CONTEXT getrbuf() can be called from user or interrupt context. (Drivers must not
allow getrbuf() to sleep if called from an interrupt routine.)

SEE ALSO bioinit (9F), freerbuf (9F), kmem_alloc (9F), kmem_free (9F)

Writing Device Drivers

Last modified 20 Nov 1996 SunOS 5.8 479

hat_getkpfnum(9F) Kernel Functions for Drivers

NAME hat_getkpfnum – get page frame number for kernel address

SYNOPSIS #include <sys/types.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

uint_t hat_getkpfnum (caddr_t addr);

INTERFACE
LEVEL

Architecture independent level 2 (DKI only).

PARAMETERS addr The kernel virtual address for which the page frame number is to
be returned.

DESCRIPTION hat_getkpfnum() returns the page frame number corresponding to the kernel
virtual address, addr.

addr must be a kernel virtual address which maps to device memory.
ddi_map_regs (9F) can be used to obtain this address. For example,
ddi_map_regs (9F) can be called in the driver’s attach (9E) routine.
The resulting kernel virtual address can be saved by the driver (see
ddi_soft_state (9F)) and used in mmap(9E). The corresponding
ddi_unmap_regs (9F) call can be made in the driver’s detach (9E) routine.
Refer to mmap(9E) for more information.

RETURN VALUES The page frame number corresponding to the valid virtual address addr.
Otherwise the return value is undefined.

CONTEXT hat_getkpfnum() can be called only from user or kernel context.

SEE ALSO attach (9E), detach (9E), mmap(9E), ddi_map_regs (9F),
ddi_soft_state (9F), ddi_unmap_regs (9F)

Writing Device Drivers

NOTES For some devices, mapping device memory in the driver’s attach (9E) routine
and unmapping device memory in the driver’s detach (9E) routine is a sizeable
drain on system resources. This is especially true for devices with a large amount
of physical address space. Refer to mmap(9E) for alternative methods.

480 SunOS 5.8 Last modified 02 Sep 1994

Kernel Functions for Drivers inb(9F)

NAME inb, inw, inl, repinsb, repinsw, repinsd – read from an I/O port

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

unsigned char inb (intport);

unsigned short inw (intport);

unsigned long inl (intport);

void repinsb (intport, unsignedchar*addr, intcount);

void repinsw (intport, unsignedshort*addr, intcount);

void repinsd (intport, unsignedlong*addr, intcount);

INTERFACE
LEVEL

Solaris IA DDI specific (Solaris IA DDI).

PARAMETERS port A valid I/O port address.

addr The address of a buffer where the values will be stored.

count The number of values to be read from the I/O port.

DESCRIPTION These routines read data of various sizes from the I/O port with the address
specified by port .

The inb() , inw() , and inl() functions read 8 bits, 16 bits, and 32 bits of data
respectively, returning the resulting values.

The repinsb() , repinsw() , and repinsd() functions read multiple 8-bit,
16-bit, and 32-bit values, respectively. count specifies the number of values to be
read. A a pointer to a buffer will receive the input data; the buffer must be long
enough to hold count values of the requested size.

RETURN VALUES inb() , inw() , and inl() return the value that was read from the I/O port.

CONTEXT These functions may be called from user or interrupt context.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO eisa (4) , isa (4) , attributes (5) , outb (9F)

Writing Device Drivers

Last modified 1 Jan 1997 SunOS 5.8 481

insq(9F) Kernel Functions for Drivers

NAME insq – insert a message into a queue

SYNOPSIS #include <sys/stream.h>

int insq (queue_t *q, mblk_t *emp, mblk_t *nmp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q Pointer to the queue containing message emp.

emp Enqueued message before which the new message is to be inserted.
mblk_t is an instance of the msgb(9S) structure.

nmp Message to be inserted.

DESCRIPTION insq() inserts a message into a queue. The message to be inserted, nmp,
is placed in q immediately before the message emp. If emp is NULL, the new
message is placed at the end of the queue. The queue class of the new message
is ignored. All flow control parameters are updated. The service procedure is
enabled unless QNOENBis set.

RETURN VALUES insq() returns 1 on success, and 0 on failure.

CONTEXT insq() can be called from user or interrupt context.

EXAMPLES This routine illustrates the steps a transport provider may take to place
expedited data ahead of normal data on a queue (assume all M_DATAmessages
are converted into M_PROTO T_DATA_REQmessages). Normal T_DATA_REQ
messages are just placed on the end of the queue (line 16). However, expedited
T_EXDATA_REQmessages are inserted before any normal messages already on
the queue (line 25). If there are no normal messages on the queue, bp will
be NULLand we fall out of the for loop (line 21). insq acts like putq (9F)
in this case.

1 #include
2 #include
3
4 static int
5 xxxwput(queue_t *q, mblk_t *mp)
6 {
7 union T_primitives *tp;
8 mblk_t *bp;
9 union T_primitives *ntp;

10
11 switch (mp->b_datap->db_type) {
12 case M_PROTO:
13 tp = (union T_primitives *)mp->b_rptr;
14 switch (tp->type) {
15 case T_DATA_REQ:
16 putq(q, mp);

482 SunOS 5.8 Last modified 28 Jan 1993

Kernel Functions for Drivers insq(9F)

17 break;
18
19 case T_EXDATA_REQ:
20 freezestr(q);
21 for (bp = q->q_first; bp; bp = bp->b_next) {
22 if (bp->b_datap->db_type == M_PROTO) {
23 ntp = (union T_primitives *)bp->b_rptr;
24 if (ntp->type != T_EXDATA_REQ)
25 break;
26 }
27 }
28 (void)insq(q, bp, mp);
29 unfreezestr(q);
30 break;

. . .
31 }
32 }
33 }

SEE ALSO freezestr (9F), putq (9F), rmvq (9F), unfreezestr (9F), msgb(9S)

Writing Device Drivers

STREAMS Programming Guide

WARNINGS If emp is non-NULL, it must point to a message on q or a system panic could
result.

NOTES The stream must be frozen using freezestr (9F) before calling insq() .

Last modified 28 Jan 1993 SunOS 5.8 483

IOC_CONVERT_FROM(9F) Kernel Functions for Drivers

NAME IOC_CONVERT_FROM – determine if there is a need to translate M_IOCTL
contents.

SYNOPSIS #include <sys/stream.h>

uint_t IOC_CONVERT_FROM(struct iocblk *iocp);

INTERFACE
LEVEL

Solaris DDI Specific (Solaris DDI)

PARAMETERS iocp A pointer to the M_IOCTL control structure.

DESCRIPTION The IOC_CONVERT_FROMmacro is used to see if the contents of the current
M_IOCTLmessage had its origin in a different C Language Type Model.

RETURN VALUES IOC_CONVERT_FROM()returns the following values:
IOC_ILP32 This is an LP64 kernel and the M_IOCTL originated in an

ILP32 user process.

IOC_NONE The M_IOCTL message uses the same C Language Type
Model as this calling module or driver.

CONTEXT IOC_CONVERT_FROM()can be called from user or interrupt context.

SEE ALSO ddi_model_convert_from (9F)

Writing Device Drivers

STREAMS Programming Guide

484 SunOS 5.8 Last modified 11 Nov 1996

Kernel Functions for Drivers kmem_alloc(9F)

NAME kmem_alloc, kmem_zalloc, kmem_free – allocate kernel memory

SYNOPSIS #include <sys/types.h>
#include <sys/kmem.h>
void *kmem_alloc (size_t size, int flag);

void *kmem_zalloc (size_t size, int flag);

void kmem_free (void*buf, size_t size);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS size Number of bytes to allocate.

flag Determines whether caller can sleep for memory. Possible
flags are KM_SLEEPto allow sleeping until memory is
available, or KM_NOSLEEPto return NULL immediately if
memory is not available.

buf Pointer to allocated memory.

DESCRIPTION kmem_alloc() allocates size bytes of kernel memory and returns a pointer to
the allocated memory. The allocated memory is at least double-word aligned,
so it can hold any C data structure. No greater alignment can be assumed. flag
determines whether the caller can sleep for memory. KM_SLEEPallocations may
sleep but are guaranteed to succeed. KM_NOSLEEPallocations are guaranteed
not to sleep but may fail (return NULL) if no memory is currently available. The
initial contents of memory allocated using kmem_alloc() are random garbage.

kmem_zalloc() is like kmem_alloc() but returns zero-filled memory.

kmem_free() frees previously allocated kernel memory. The buffer address
and size must exactly match the original allocation. Memory cannot be returned
piecemeal.

RETURN VALUES If successful, kmem_alloc() and kmem_zalloc() return a pointer to the
allocated memory. If KM_NOSLEEPis set and memory cannot be allocated
without sleeping, kmem_alloc() and kmem_zalloc() return NULL .

CONTEXT kmem_alloc() and kmem_zalloc() can be called from interrupt context only
if the KM_NOSLEEPflag is set. They can be called from user context with any
valid flag . kmem_free() can be called from user or interrupt context.

SEE ALSO copyout (9F) , freerbuf (9F) , getrbuf (9F)

Writing Device Drivers

Last modified 20 Jul 1994 SunOS 5.8 485

kmem_alloc(9F) Kernel Functions for Drivers

WARNINGS Memory allocated using kmem_alloc() is not paged. Available memory is
therefore limited by the total physical memory on the system. It is also limited
by the available kernel virtual address space, which is often the more restrictive
constraint on large-memory configurations.

Excessive use of kernel memory is likely to affect overall system performance.
Overcommitment of kernel memory will cause the system to hang or panic.

Misuse of the kernel memory allocator, such as writing past the end of a buffer,
using a buffer after freeing it, freeing a buffer twice, or freeing a null or invalid
pointer, will corrupt the kernel heap and may cause the system to corrupt
data or panic.

The initial contents of memory allocated using kmem_alloc() are random
garbage. This random garbage may include secure kernel data. Therefore,
uninitialized kernel memory should be handled carefully. For example, never
copyout (9F) a potentially uninitialized buffer.

NOTES kmem_alloc(0, flag) always returns NULL . kmem_free(NULL, 0) is legal.

486 SunOS 5.8 Last modified 20 Jul 1994

Kernel Functions for Drivers kstat_create(9F)

NAME kstat_create – create and initialize a new kstat

SYNOPSIS #include <sys/types.h>
#include <sys/kstat.h>

kstat_t *kstat_create (char *module, int instance, char *name, char *class, uchar_t type,
ulong_t ndata, uchar_t ks_flag);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

PARAMETERS module The name of the provider’s module (such as "sd", "esp", ...).
The "core" kernel uses the name "unix".

instance The provider’s instance number, as from
ddi_get_instance (9F). Modules which do not have a
meaningful instance number should use 0.

name A pointer to a string that uniquely identifies this structure.
Only KSTAT_STRLEN− 1 characters are significant.

class The general class that this kstat belongs to. The following
classes are currently in use: disk , tape , net , controller ,
vm, kvm, hat , streams , kstat , and misc .

type The type of kstat to allocate. Valid types are:

KSTAT_TYPE_NAMED

Allows more than one data record per kstat .

KSTAT_TYPE_INTR

Interrupt; only one data record per kstat .

KSTAT_TYPE_IO

I/O; only one data record per kstat

ndata The number of type-specific data records to allocate.

flag A bit-field of various flags for this kstat . flag is some
combination of:

KSTAT_FLAG_VIRTUAL

Tells kstat_create() not to allocate memory for
the kstat data section; instead, the driver will set the
ks_data field to point to the data it wishes to export.
This provides a convenient way to export existing data
structures.

Last modified 10 Sep 1994 SunOS 5.8 487

kstat_create(9F) Kernel Functions for Drivers

KSTAT_FLAG_WRITABLE

Makes the kstat data section writable by root.

KSTAT_FLAG_PERSISTENT

Indicates that this kstat is to be persistent over time. For
persistent kstat s, kstat_delete (9F) simply marks
the kstat as dormant; a subsequent kstat_create()
reactivates the kstat. This feature is provided so that
statistics are not lost across driver close/open (such as raw
disk I/O on a disk with no mounted partitions.) Note:
Persistent kstat s cannot be virtual, since ks_data points
to garbage as soon as the driver goes away.

DESCRIPTION kstat_create() is used in conjunction with kstat_install (9F) to allocate
and initialize a kstat (9S) structure. The method is generally as follows:

kstat_create() allocates and performs necessary system initialization of a
kstat (9S) structure. kstat_create() allocates memory for the entire kstat
(header plus data), initializes all header fields, initializes the data section to all
zeroes, assigns a unique kstat ID (KID), and puts the kstat onto the system’s
kstat chain. The returned kstat is marked invalid because the provider (caller)
has not yet had a chance to initialize the data section.

After a successful call to kstat_create() the driver must perform any
necessary initialization of the data section (such as setting the name fields in a
kstat of type KSTAT_TYPE_NAMED). Virtual kstat s must have the ks_data
field set at this time. The provider may also set the ks_update , ks_private ,
and ks_lock fields if necessary.

Once the kstat is completely initialized, kstat_install (9F) is used to make
the kstat accessible to the outside world.

RETURN VALUES If successful, kstat_create() returns a pointer to the allocated kstat .
NULL is returned upon failure.

CONTEXT kstat_create() can be called from user or kernel context.

EXAMPLES CODE EXAMPLE 1 Allocating and Initializing a kstat Structure

pkstat_t *ksp;
ksp = kstat_create(module, instance, name, class, type, ndata, flags);
if (ksp) {

/* ... provider initialization, if necessary */
kstat_install(ksp);

}

488 SunOS 5.8 Last modified 10 Sep 1994

Kernel Functions for Drivers kstat_create(9F)

SEE ALSO kstat (3KSTAT), ddi_get_instance (9F), kstat_delete (9F),
kstat_install (9F), kstat_named_init (9F), kstat (9S), kstat_named (9S)

Writing Device Drivers

Last modified 10 Sep 1994 SunOS 5.8 489

kstat_delete(9F) Kernel Functions for Drivers

NAME kstat_delete – remove a kstat from the system

SYNOPSIS #include <sys/types.h>
#include <sys/kstat.h>

voidkstat_delete (kstat_t *ksp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

PARAMETERS ksp Pointer to a currently installed kstat (9S) structure.

DESCRIPTION kstat_delete() removes ksp from the kstat chain and frees all associated
system resources.

RETURN VALUES None.

CONTEXT kstat_delete() can be called from any context.

SEE ALSO kstat_create (9F), kstat_install (9F), kstat_named_init (9F),
kstat (9S)

Writing Device Drivers

NOTES When calling kstat_delete() , the driver must not be holding that kstat ’s
ks_lock . Otherwise, it may deadlock with a kstat reader.

490 SunOS 5.8 Last modified 4 Apr 1994

Kernel Functions for Drivers kstat_install(9F)

NAME kstat_install – add a fully initialized kstat to the system

SYNOPSIS #include <sys/types.h>
#include <sys/kstat.h>

void kstat_install (kstat_t *ksp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

PARAMETERS ksp Pointer to a fully initialized kstat (9S) structure.

DESCRIPTION kstat_install() is used in conjunction with kstat_create (9F) to allocate
and initialize a kstat (9S) structure.

After a successful call to kstat_create() the driver must perform any
necessary initialization of the data section (such as setting the name fields in a
kstat of type KSTAT_TYPE_NAMED). Virtual kstats must have the ks_data field
set at this time. The provider may also set the ks_update , ks_private , and
ks_lock fields if necessary.

Once the kstat is completely initialized, kstat_install is used to make the
kstat accessible to the outside world.

RETURN VALUES None.

CONTEXT kstat_install() can be called from user or kernel context.

EXAMPLES CODE EXAMPLE 1 Allocating and Initializing a kstat Structure

The method for allocating and initializing a kstat structure is generally
as follows:

kstat_t *ksp;
ksp = kstat_create(module, instance, name, class, type, ndata, flags);
if (ksp) {

/* ... provider initialization, if necessary */
kstat_install(ksp);

}

SEE ALSO kstat_create (9F), kstat_delete (9F), kstat_named_init (9F), kstat (9S)

Writing Device Drivers

Last modified 26 May 1994 SunOS 5.8 491

kstat_named_init(9F) Kernel Functions for Drivers

NAME kstat_named_init – initialize a named kstat

SYNOPSIS #include <sys/types.h>
#include <sys/kstat.h>

void kstat_named_init (kstat_named_t *knp, char *name, uchar_t data_type);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

PARAMETERS knp Pointer to a kstat_named (9S) structure.

name The name of the statistic.

data_type The type of value. This indicates which field of the
kstat_named (9S) structure should be used. Valid values
are:

KSTAT_DATA_CHAR

The "char" field.

KSTAT_DATA_LONG

The "long" field.

KSTAT_DATA_ULONG

The "unsigned long" field.

KSTAT_DATA_LONGLONG

The "long long" field.

KSTAT_DATA_ULONGLONG

The "unsigned long long" field.

DESCRIPTION kstat_named_init() associates a name and a type with a kstat_named (9S)
structure.

RETURN VALUES None.

CONTEXT kstat_named_init() can be called from user or kernel context.

SEE ALSO kstat_create (9F), kstat_install (9F), kstat (9S), kstat_named (9S)

Writing Device Drivers

492 SunOS 5.8 Last modified 4 Apr 1994

Kernel Functions for Drivers kstat_queue(9F)

NAME kstat_queue, kstat_waitq_enter, kstat_waitq_exit, kstat_runq_enter,
kstat_runq_exit, kstat_waitq_to_runq, kstat_runq_back_to_waitq – update I/O
kstat statistics

SYNOPSIS #include <sys/types.h>
#include <sys/kstat.h>
void kstat_waitq_enter (kstat_io_t *kiop);

void kstat_waitq_exit (kstat_io_t *kiop);

void kstat_runq_enter (kstat_io_t *kiop);

void kstat_runq_exit (kstat_io_t *kiop);

void kstat_waitq_to_runq (kstat_io_t *kiop);

void kstat_runq_back_to_waitq (kstat_io_t *kiop);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

PARAMETERS kiop Pointer to a kstat_io (9S) structure.

DESCRIPTION A large number of I/O subsystems have at least two basic "lists" (or queues)
of transactions they manage: one for transactions that have been accepted for
processing but for which processing has yet to begin, and one for transactions
which are actively being processed (but not done). For this reason, two
cumulative time statistics are kept: wait (pre-service) time, and run (service) time.

The kstat_queue() family of functions manage these times based on the
transitions between the driver wait queue and run queue.
kstat_waitq_enter()

kstat_waitq_enter() should be called when a request arrives and is
placed into a pre-service state (such as just prior to calling disksort (9F)).

kstat_waitq_exit()
kstat_waitq_exit() should be used when a request is removed from its
pre-service state. (such as just prior to calling the driver’s start routine).

kstat_runq_enter()
kstat_runq_enter() is also called when a request is placed in its
service state (just prior to calling the driver’s start routine, but after
kstat_waitq_exit()).

kstat_runq_exit()
kstat_runq_exit() is used when a request is removed from its service
state (just prior to calling biodone (9F)).

kstat_waitq_to_runq()

Last modified 4 Apr 1994 SunOS 5.8 493

kstat_queue(9F) Kernel Functions for Drivers

kstat_waitq_to_runq() transitions a request from the wait queue to the
run queue. This is useful wherever the driver would have normally done a
kstat_waitq_exit() followed by a call to kstat_runq_enter() .

kstat_runq_back_to_waitq()
kstat_runq_back_to_waitq() transitions a request from the run
queue back to the wait queue. This may be necessary in some cases (write
throttling is an example).

RETURN VALUES None.

CONTEXT kstat_create() can be called from user or kernel context.

WARNINGS These transitions must be protected by holding the kstat ’s ks_lock , and
must be completely accurate (all transitions are recorded). Forgetting a transition
may, for example, make an idle disk appear 100% busy.

SEE ALSO biodone (9F) , disksort (9F) , kstat_create (9F) , kstat_delete (9F) ,
kstat_named_init (9F) , kstat (9S) , kstat_io (9S)

Writing Device Drivers

494 SunOS 5.8 Last modified 4 Apr 1994

Kernel Functions for Drivers linkb(9F)

NAME linkb – concatenate two message blocks

SYNOPSIS #include <sys/stream.h>

void linkb (mblk_t *mp1, mblk_t *mp2);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS mp1 The message to which mp2 is to be added. mblk_t is an instance of
the msgb(9S) structure.

mp2 The message to be added.

DESCRIPTION linkb() creates a new message by adding mp2 to the tail of mp1. The
continuation pointer, b_cont , of mp1 is set to point to mp2.

linkb(mp1, mp2);

CONTEXT linkb() can be called from user or interrupt context.

EXAMPLES See dupb (9F) for an example of using linkb() .

SEE ALSO dupb (9F), unlinkb (9F), msgb(9S)

Writing Device Drivers

STREAMS Programming Guide

Last modified 20 Jul 1994 SunOS 5.8 495

makecom(9F) Kernel Functions for Drivers

NAME makecom, makecom_g0, makecom_g0_s, makecom_g1, makecom_g5 – make a
packet for SCSI commands

SYNOPSIS #include <sys/scsi/scsi.h>
void makecom_g0(struct scsi_pkt *pkt, struct scsi_device *devp, int flag, int cmd, int
addr, int cnt);

void makecom_g0_s (struct scsi_pkt *pkt, struct scsi_device *devp, int flag, int cmd, int
cnt, int fixbit);

void makecom_g1(struct scsi_pkt *pkt, struct scsi_device *devp, int flag, int cmd, int
addr, int cnt);

void makecom_g5(struct scsi_pkt *pkt, struct scsi_device *devp, int flag, int cmd, int
addr, int cnt);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS pkt Pointer to an allocated scsi_pkt (9S) structure.

devp Pointer to the target’s scsi_device (9S) structure.

flag Flags for the pkt_flags member.

cmd First byte of a group 0 or 1 or 5 SCSI CDB .

addr Pointer to the location of the data.

cnt Data transfer length in units defined by the SCSI device type.
For sequential devices cnt is the number of bytes. For block
devices, cnt is the number of blocks.

fixbit Fixed bit in sequential access device commands.

DESCRIPTION makecom functions initialize a packet with the specified command descriptor
block, devp and transport flags. The pkt_address , pkt_flags , and the
command descriptor block pointed to by pkt_cdbp are initialized using the
remaining arguments. Target drivers may use makecom_g0() for Group 0
commands (except for sequential access devices), or makecom_g0_s() for
Group 0 commands for sequential access devices, or makecom_g1() for Group
1 commands, or makecom_g5() for Group 5 commands. fixbit is used by

496 SunOS 5.8 Last modified 30 Aug 1995

Kernel Functions for Drivers makecom(9F)

sequential access devices for accessing fixed block sizes and sets the the tag
portion of the SCSI CDB .

CONTEXT These functions can be called from user or interrupt context.

EXAMPLES CODE EXAMPLE 1 Using makecom Functions

if (blkno >= (1<<20)) {
makecom_g1(pkt, SD_SCSI_DEVP, pflag, SCMD_WRITE_G1,

(int) blkno, nblk);
} else {

makecom_g0(pkt, SD_SCSI_DEVP, pflag, SCMD_WRITE,
(int) blkno, nblk);

}

SEE ALSO scsi_device (9S) , scsi_pkt (9S)

ANSI Small Computer System Interface-2 (SCSI-2)

Writing Device Drivers

Last modified 30 Aug 1995 SunOS 5.8 497

makedevice(9F) Kernel Functions for Drivers

NAME makedevice – make device number from major and minor numbers

SYNOPSIS #include <sys/types.h>
#include <sys/mkdev.h>
#include <sys/ddi.h>

dev_t makedevice (major_t majnum, minor_t minnum);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS majnum Major device number.

minnum Minor device number.

DESCRIPTION makedevice() creates a device number from a major and minor device
number. makedevice() should be used to create device numbers so the driver
will port easily to releases that treat device numbers differently.

RETURN VALUES The device number, containing both the major number and the minor number, is
returned. No validation of the major or minor numbers is performed.

CONTEXT makedevice() can be called from user or interrupt context.

SEE ALSO getmajor (9F), getminor (9F)

498 SunOS 5.8 Last modified 11 Apr 1991

Kernel Functions for Drivers max(9F)

NAME max – return the larger of two integers

SYNOPSIS #include <sys/ddi.h>

int max(int int1, int int2);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS int1 The first integer.

int2 The second integer.

DESCRIPTION max() compares two signed integers and returns the larger of the two.

RETURN VALUES The larger of the two numbers.

CONTEXT max() can be called from user or interrupt context.

SEE ALSO min (9F)

Writing Device Drivers

Last modified 11 Apr 1991 SunOS 5.8 499

min(9F) Kernel Functions for Drivers

NAME min – return the lesser of two integers

SYNOPSIS #include <sys/ddi.h>

int min (int int1, int int2);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS int1 The first integer.

int2 The second integer.

DESCRIPTION min() compares two signed integers and returns the lesser of the two.

RETURN VALUES The lesser of the two integers.

CONTEXT min() can be called from user or interrupt context.

SEE ALSO max(9F)

Writing Device Drivers

500 SunOS 5.8 Last modified 11 Apr 1991

Kernel Functions for Drivers mkiocb(9F)

NAME mkiocb – allocates a STREAMS ioctl block for M_IOCTL messages in the kernel.

SYNOPSIS #include <sys/stream.h>

mblk_t *mkiocb (uint_t command);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS command The ioctl command for the ioc_cmd field.

DESCRIPTION STREAMS modules or drivers might need to issue an ioctl to a lower module or
driver.The mkiocb() function tries to allocate (using allocb (9F)) a STREAMS
M_IOCTLmessage block (iocblk (9S)). Buffer allocation fails only when the
system is out of memory. If no buffer is available, the qbufcall (9F) function
can help a module recover from an allocation failure.

The mkiocb function returns a mblk_t structure which is large enough to hold
any of the ioctl messages (iocblk (9S), copyreq (9S) or copyresp (9S)), and
has the following special properties:
b_wptr Set to b_rptr + sizeof(struct iocblk) .

b_cont Set to NULL.

b_datap->db_type Set to M_IOCTL.

The fields in the iocblk structure are initialized as follows:
ioc_cmd Set to the command value passed in.

ioc_id Set to a unique identifier.

ioc_cr Set to point to a credential structure encoding the
maximum system privilege and which does not
need to be freed in any fashion.

ioc_count Set to 0.

ioc_rval Set to 0.

ioc_error Set to 0.

ioc_flags Set to IOC_NATIVE to reflect that this is native to
the running kernel.

RETURN VALUES Upon success, the mkiocb() function returns a pointer to the allocated mblk_t
of type M_IOCTL .

On failure, it returns a null pointer.

Last modified 13 Nov 1996 SunOS 5.8 501

mkiocb(9F) Kernel Functions for Drivers

CONTEXT The mkiocb() function can be called from user or interrupt context.

EXAMPLES EXAMPLE 1 M_IOCTL Allocation

The first example shows an M_IOCTL allocation with the ioctl command
TEST_CMD. If the iocblk (9S) cannot be allocated, NULLis returned, indicating
an allocation failure (line 5). In line 11, the putnext (9F) function is used to send
the message downstream.

1 test_function(queue_t *q, test_info_t *testinfo)
2 {
3 mblk_t *mp;
4
5 if ((mp = mkiocb(TEST_CMD)) == NULL)
6 return (0);
7
8 /* save off ioctl ID value */
9 testinfo->xx_iocid = ((struct iocblk *)mp->b_rptr)->ioc_id;

10
11 putnext(q, mp); /* send message downstream */
12 return (1);
13 }

EXAMPLE 2 The ioctl ID Value

During the read service routine, the ioctl ID value for M_IOCACKor M_IOCNACK
should equal the ioctl that was previously sent by this module before processing.

1 test_lrsrv(queue_t *q)
2 {
3 ...
4
5 switch (DB_TYPE(mp)) {
6 case M_IOCACK:
7 case M_IOCNACK:
8 /* Does this match the ioctl that this module sent */
9 ioc = (struct iocblk*)mp->b_rptr;

10 if (ioc->ioc_id == testinfo->xx_iocid) {
11 /* matches, so process the message */
12 ...
13 freemsg(mp);
14 }
15 break;
16 }
17 ...
18 }

EXAMPLE 3 An iocblk Allocation Which Fails

The next example shows an iocblk allocation which fails. Since the open routine
is in user context, the caller may block using qbufcall (9F) until memory is
available.

502 SunOS 5.8 Last modified 13 Nov 1996

Kernel Functions for Drivers mkiocb(9F)

1 test_open(queue_t *q, dev_t devp, int oflag, int sflag, cred_t *credp)
2 {
3 while ((mp = mkiocb(TEST_IOCTL)) == NULL) {
4 int id;
5
6 id = qbufcall(q, sizeof (union ioctypes), BPRI_HI,
7 dummy_callback, 0);
8 /* Handle interrupts */
9 if (!qwait_sig(q)) {

10 qunbufcall(q, id);
11 return (EINTR);
12 }
13 }
14 putnext(q, mp);
15 }

SEE ALSO allocb (9F), putnext (9F), qbufcall (9F), qwait_sig (9F), copyreq (9S),
copyresp (9S), iocblk (9S)

Writing Device Drivers

STREAMS Programming Guide

WARNINGS It is the module’s responsibility to remember the ID value of the M_IOCTL that
was allocated. This will ensure proper cleanup and ID matching when the
M_IOCACKor M_IOCNACKis received.

Last modified 13 Nov 1996 SunOS 5.8 503

mod_install(9F) Kernel Functions for Drivers

NAME mod_install, mod_remove, mod_info – add, remove or query a loadable module

SYNOPSIS #include <sys/modctl.h>
int mod_install (struct modlinkage *modlinkage);

int mod_remove (struct modlinkage *modlinkage);

int mod_info (struct modlinkage *modlinkage, struct modinfo *modinfo);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS modlinkage Pointer to the loadable module’s modlinkage structure
which describes what type(s) of module elements are
included in this loadable module.

modinfo Pointer to the modinfo structure passed to _info (9E) .

DESCRIPTION mod_install() must be called from a module’s _init (9E) routine.

mod_remove() must be called from a module’s _fini (9E) routine.

mod_info() must be called from a module’s _info (9E) routine.

RETURN VALUES mod_install() and mod_remove() return 0 upon success and non-zero on
failure. mod_info() returns a non-zero value on success and 0 upon failure.

EXAMPLES See _init (9E) for an example that uses these functions.

SEE ALSO _fini (9E) , _info (9E) , _init (9E) , modldrv (9S) , modlinkage (9S) ,
modlstrmod (9S)

Writing Device Drivers

504 SunOS 5.8 Last modified 19 Sep 1994

Kernel Functions for Drivers msgdsize(9F)

NAME msgdsize – return the number of bytes in a message

SYNOPSIS #include <sys/stream.h>

size_t msgdsize (mblk_t *mp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS mp Message to be evaluated.

DESCRIPTION msgdsize() counts the number of bytes in a data message. Only bytes included
in the data blocks of type M_DATAare included in the count.

RETURN VALUES The number of data bytes in a message, expressed as an integer.

CONTEXT msgdsize() can be called from user or interrupt context.

EXAMPLES See bufcall (9F) for an example that uses msgdsize() .

SEE ALSO bufcall (9F)

Writing Device Drivers

STREAMS Programming Guide

Last modified 11 Nov 1996 SunOS 5.8 505

msgpullup(9F) Kernel Functions for Drivers

NAME msgpullup – concatenate bytes in a message

SYNOPSIS #include <sys/stream.h>

mblk_t *msgpullup (mblk_t *mp, ssize_t len);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS mp Pointer to the message whose blocks are to be concatenated.

len Number of bytes to concatenate.

DESCRIPTION msgpullup() concatenates and aligns the first len data bytes of the message
pointed to by mp, copying the data into a new message. Any remaining bytes in
the remaining message blocks will be copied and linked onto the new message.
The original message is unaltered. If len equals −1, all data are concatenated.
If len bytes of the same message type cannot be found, msgpullup() fails
and returns NULL.

RETURN VALUES msgpullup returns the following values:
Non-null Successful completion. A pointer to the new message is

returned.

NULL An error occurred.

CONTEXT msgpullup() can be called from user or interrupt context.

SEE ALSO srv (9E), allocb (9F), pullupmsg (9F), msgb(9S)

Writing Device Drivers

STREAMS Programming Guide

NOTES msgpullup() is a DKI-compliant replacement for the older pullupmsg (9F)
routine. Users are strongly encouraged to use msgpullup() instead of
pullupmsg (9F).

506 SunOS 5.8 Last modified 11 Nov 1996

Kernel Functions for Drivers mt-streams(9F)

NAME mt-streams – STREAMS multithreading

SYNOPSIS #include <sys/conf.h>

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

DESCRIPTION STREAMS drivers configures the degree of concurrency using the cb_flag
field in the cb_ops structure (see cb_ops (9S)). The corresponding field for
STREAMS modules is the f_flag in the fmodsw structure.

For the purpose of restricting and controlling the concurrency in
drivers/modules, we define the concepts of inner and outer perimeters. A
driver/module can be configured either to have no perimeters, to have only an
inner or an outer perimeter, or to have both an inner and an outer perimeter.
Each perimeter acts as a readers-writers lock, that is, there can be multiple
concurrent readers or a single writer. Thus, each perimeter can be entered in
two modes: shared (reader) or exclusive (writer). The mode depends on the
perimeter configuration and can be different for the different STREAMS entry
points (open (9E), close (9E), put (9E), or srv (9E)).

The concurrency for the different entry points is (unless specified otherwise) to
enter with exclusive access at the inner perimeter (if present) and shared access
at the outer perimeter (if present).

The perimeter configuration consists of flags that define the presence and scope
of the inner perimeter, the presence of the outer perimeter (which can only have
one scope), and flags that modify the default concurrency for the different
entry points.

All MT safe modules/drivers specify the D_MPflag.
Inner Perimeter Flags The inner perimeter presence and scope are controlled by the mutually exclusive

flags:
D_MTPERQ The module/driver has an inner perimeter

around each queue.

D_MTQPAIR The module/driver has an inner perimeter
around each read/write pair of queues.

D_MTPERMOD The module/driver has an inner perimeter that
encloses all the module’s/driver’s queues.

None of the above The module/driver has no inner perimeter.

Outer Perimeter Flags The outer perimeter presence is configured using:
D_MTOUTPERIM In addition to any inner perimeter, the

module/driver has an outer perimeter that

Last modified 2 Mar 1993 SunOS 5.8 507

mt-streams(9F) Kernel Functions for Drivers

encloses all the module’s/driver’s queues. This
can be combined with all the inner perimeter
options except D_MTPERMOD.

The default concurrency can be modified using:
D_MTPUTSHARED This flag modifies the default behavior when

put (9E) procedure are invoked so that the inner
perimeter is entered shared instead of exclusively.

D_MTOCEXCL This flag modifies the default behavior when
open (9E) and close (9E) procedures are invoked
so the the outer perimeter is entered exclusively
instead of shared.

The module/driver can use qwait (9F) or qwait_sig() in the open (9E) and
close (9E) procedures if it needs to wait "outside" the perimeters.

The module/driver can use qwriter (9F) to upgrade the access at the inner or
outer perimeter from shared to exclusive.

The use and semantics of qprocson() and qprocsoff (9F) is independent
of the inner and outer perimeters.

SEE ALSO close (9E), open (9E), put (9E), srv (9E), qprocsoff (9F), qprocson (9F),
qwait (9F), qwriter (9F), cb_ops (9S)

STREAMS Programming Guide

Writing Device Drivers

508 SunOS 5.8 Last modified 2 Mar 1993

Kernel Functions for Drivers mutex(9F)

NAME mutex, mutex_enter, mutex_exit, mutex_init, mutex_destroy, mutex_owned,
mutex_tryenter – mutual exclusion lock routines

SYNOPSIS #include <sys/ksynch.h>
void mutex_init (kmutex_t *mp, char *name, kmutex_type_t type, void *arg);

void mutex_destroy (kmutex_t *mp);

void mutex_enter (kmutex_t *mp);

void mutex_exit (kmutex_t *mp);

int mutex_owned (kmutex_t *mp);

int mutex_tryenter (kmutex_t *mp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS mp Pointer to a kernel mutex lock (kmutex_t).

name Descriptive string. This is obsolete and should be NULL .
(Non-NULL strings are legal, but they are a waste of kernel
memory.)

type Type of mutex lock.

arg Type-specific argument for initialization routine.

DESCRIPTION A mutex enforces a policy of mutual exclusion. Only one thread at a time may
hold a particular mutex. Threads trying to lock a held mutex will block until the
mutex is unlocked.

Mutexes are strictly bracketing and may not be recursively locked. That is to
say, mutexes should be exited in the opposite order they were entered, and
cannot be reentered before exiting.

mutex_init() initializes a mutex. It is an error to initialize a mutex more than
once. The type argument should be set to MUTEX_DRIVER.

arg provides type-specific information for a given variant type of mutex. When
mutex_init() is called for driver mutexes, if the mutex is used by the
interrupt handler, the arg should be the ddi_iblock_cookie returned from
ddi_get_iblock_cookie (9F) or ddi_get_soft_iblock_cookie (9F)
. If the mutex is never used inside an interrupt handler, the argument should
be NULL .

Last modified 7 May 1997 SunOS 5.8 509

mutex(9F) Kernel Functions for Drivers

mutex_enter() is used to acquire a mutex. If the mutex is already held, then
the caller blocks. After returning, the calling thread is the owner of the mutex. If
the mutex is already held by the calling thread, a panic will ensue.

mutex_owned() should only be used in ASSERT() and may be enforced by
not being defined unless the preprocessor symbol DEBUGis defined. Its return
value is non-zero if the current thread (or, if that cannot be determined, at least
some thread) holds the mutex pointed to by mp .

mutex_tryenter() is very similar to mutex_enter() except that it doesn’t
block when the mutex is already held. mutex_tryenter() returns non-zero
when it acquired the mutex and 0 when the mutex is already held.

mutex_exit() releases a mutex and will unblock another thread if any are
blocked on the mutex.

mutex_destroy() releases any resources that might have been allocated
by mutex_init() . mutex_destroy() must be called before freeing the
memory containing the mutex, and should be called with the mutex unheld (not
owned by any thread). The caller must somehow be sure that no other thread
will attempt to use the mutex.

RETURN VALUES mutex_tryenter() returns non-zero on success and zero of failure.

mutex_owned() returns non-zero if the calling thread currently holds the
mutex pointed to by mp , or when that cannot be determined, if any thread holds
the mutex. mutex_owned() returns zero otherwise.

CONTEXT These functions can be called from user, kernel, or high-level interrupt context,
except for mutex_init() and mutex_destroy() , which can be called from
user or kernel context only.

EXAMPLES CODE EXAMPLE 1 Initializing a Mutex

A driver might do this to initialize a mutex that is part of its unit structure and
used in its interrupt routine:

ddi_get_iblock_cookie(dip, 0, &iblock);
mutex_init(&un->un_lock, NULL, MUTEX_DRIVER,

(void *)iblock);
ddi_add_intr(dip, 0, NULL, &dev_cookie, xxintr,

(caddr_t)un);

CODE EXAMPLE 2 Calling a Routine with a Lock

A routine that expects to be called with a certain lock held might have the
following ASSERT:

xxstart(struct xxunit *un)
{

ASSERT(mutex_owned(&un->un_lock));
...

510 SunOS 5.8 Last modified 7 May 1997

Kernel Functions for Drivers mutex(9F)

SEE ALSO lockstat (1M) , condvar (9F) , ddi_add_intr (9F) ,
ddi_get_iblock_cookie (9F) , ddi_get_soft_iblock_cookie (9F) ,
rwlock (9F) , semaphore (9F)

Writing Device Drivers

NOTES Compiling with _LOCKTESTor _MPSTATSdefined no longer has any effect. To
gather lock statistics, see lockstat (1M) .

Last modified 7 May 1997 SunOS 5.8 511

nochpoll(9F) Kernel Functions for Drivers

NAME nochpoll – error return function for non-pollable devices

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int nochpoll (dev_t dev, short events, int anyyet, short *reventsp, struct pollhead **pollhdrp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dev Device number.

events Event flags.

anyyet Check current events only.

reventsp Event flag pointer.

pollhdrp Poll head pointer.

DESCRIPTION nochpoll() is a routine that simply returns the value ENXIO. It is intended
to be used in the cb_ops (9S) structure of a device driver for devices that do
not support the poll (2) system call.

RETURN VALUES nochpoll() returns ENXIO.

CONTEXT nochpoll() can be called from user or interrupt context.

SEE ALSO poll (2), chpoll (9E), cb_ops (9S)

Writing Device Drivers

512 SunOS 5.8 Last modified 11 Oct 1995

Kernel Functions for Drivers nodev(9F)

NAME nodev – error return function

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>

int nodev ();

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION nodev() returns ENXIO. It is intended to be used in the cb_ops (9S) data
structure of a device driver for device entry points which are not supported by
the driver. That is, it is an error to attempt to call such an entry point.

RETURN VALUES nodev() returns ENXIO.

CONTEXT nodev() can be only called from user context.

SEE ALSO nulldev (9F), cb_ops (9S)

Writing Device Drivers

Last modified 27 Jan 1993 SunOS 5.8 513

noenable(9F) Kernel Functions for Drivers

NAME noenable – prevent a queue from being scheduled

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

void noenable (queue_t *q);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q Pointer to the queue.

DESCRIPTION noenable() prevents the queue q from being scheduled for service by
insq (9F), putq (9F) or putbq (9F) when enqueuing an ordinary priority
message. The queue can be re-enabled with the enableok (9F) function.

CONTEXT noenable() can be called from user or interrupt context.

SEE ALSO enableok (9F), insq (9F), putbq (9F), putq (9F), qenable (9F)

Writing Device Drivers

STREAMS Programming Guide

514 SunOS 5.8 Last modified 11 Apr 1991

Kernel Functions for Drivers nulldev(9F)

NAME nulldev – zero return function

SYNOPSIS #include <sys/conf.h>
#include <sys/ddi.h>

int nulldev ();

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

DESCRIPTION nulldev() returns 0. It is intended to be used in the cb_ops (9S) data structure
of a device driver for device entry points that do nothing.

RETURN VALUES nulldev() returns a 0.

CONTEXT nulldev() can be called from any context.

SEE ALSO nodev (9F), cb_ops (9S)

Writing Device Drivers

Last modified 11 Apr 1991 SunOS 5.8 515

OTHERQ(9F) Kernel Functions for Drivers

NAME OTHERQ, otherq – get pointer to queue’s partner queue

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>
queue_t *OTHERQ(queue_t *q);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q Pointer to the queue.

DESCRIPTION The OTHERQ() function returns a pointer to the other of the two queue
structures that make up a STREAMS module or driver. If q points to the read
queue the write queue will be returned, and vice versa.

RETURN VALUES OTHERQ()returns a pointer to a queue’s partner.

CONTEXT OTHERQ()can be called from user or interrupt context.

EXAMPLES EXAMPLE 1 Setting Queues

This routine sets the minimum packet size, the maximum packet size, the high
water mark, and the low water mark for the read and write queues of a given
module or driver. It is passed either one of the queues. This could be used if a
module or driver wished to update its queue parameters dynamically.

1 void
2 set_q_params(q, min, max, hi, lo)
3 queue_t *q;
4 short min;
5 short max;
6 ushort_t hi;
7 ushort_t lo;
8 {
9 q->q_minpsz = min;

10 q->q_maxpsz = max;
11 q->q_hiwat = hi;
12 q->q_lowat = lo;
13 OTHERQ(q)->q_minpsz = min;
14 OTHERQ(q)->q_maxpsz = max;
15 OTHERQ(q)->q_hiwat = hi;
16 OTHERQ(q)->q_lowat = lo;
17 }

SEE ALSO Writing Device Drivers

STREAMS Programming Guide

516 SunOS 5.8 Last modified 11 Apr 1991

Kernel Functions for Drivers outb(9F)

NAME outb, outw, outl, repoutsb, repoutsw, repoutsd – write to an I/O port

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

voidoutb (intport, unsignedcharvalue);

void outw (intport, unsignedshortvalue);

void outl (intport, unsignedlongvalue);

void repoutsb (intport, unsignedchar*addr, intcount);

void repoutsw (intport, unsignedshort*addr, intcount);

voidrepoutsd (intport, unsignedlong*addr, intcount);

INTERFACE
LEVEL

Solaris IA DDI specific (Solaris IA DDI).

PARAMETERS port A valid I/O port address.

value The data to be written to the I/O port.

addr The address of a buffer from which the values will be
fetched.

count The number of values to be written to the I/O port.

DESCRIPTION These routines write data of various sizes to the I/O port with the address
specified by port .

The outb() , outw() , and outl() functions write 8 bits, 16 bits, and 32 bits of
data respectively, writing the data specified by value .

The repoutsb() , repoutsw() , and repoutsd() functions write multiple
8-bit, 16-bit, and 32-bit values, respectively. count specifies the number of
values to be written. addr is a pointer to a buffer from which the output values
are fetched.

CONTEXT These functions may be called from user or interrupt context.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture IA

SEE ALSO eisa (4) , isa (4) , attributes (5) , inb (9F)

Last modified 1 Jan 1997 SunOS 5.8 517

outb(9F) Kernel Functions for Drivers

Writing Device Drivers

518 SunOS 5.8 Last modified 1 Jan 1997

Kernel Functions for Drivers pci_config_get8(9F)

NAME pci_config_get8, pci_config_get16, pci_config_get32, pci_config_get64,
pci_config_put8, pci_config_put16, pci_config_put32, pci_config_put64,
pci_config_getb, pci_config_getl, pci_config_getll, pci_config_getw,
pci_config_putb, pci_config_putl, pci_config_putll, pci_config_putw – read or
write single datum of various sizes to the PCI Local Bus Configuration space

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
uint8_t pci_config_get8 (ddi_acc_handle_t handle, off_t offset);

uint16_t pci_config_get16 (ddi_acc_handle_t handle, off_t offset);

uint32_t pci_config_get32 (ddi_acc_handle_t handle, off_t offset);

uint64_t pci_config_get64 (ddi_acc_handle_t handle, off_t offset);

void pci_config_put8 (ddi_acc_handle_t handle, off_t offset, uint8_t value);

void pci_config_put16 (ddi_acc_handle_t handle, off_t offset, uint16_t value);

void pci_config_put32 (ddi_acc_handle_t handle, off_t offset, uint32_t value);

void pci_config_put64 (ddi_acc_handle_t handle, off_t offset, uint64_t value);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS handle The data access handle returned from
pci_config_setup (9F) .

offset Byte offset from the beginning of the PCI Configuration
space.

value Output data.

DESCRIPTION These routines read or write a single datum of various sizes from or
to the PCI Local Bus Configuration space. The pci_config_get8()
, pci_config_get16() , pci_config_get32() , and
pci_config_get64() functions read 8 bits, 16 bits, 32 bits, and 64 bits of
data, respectively. The pci_config_put8() , pci_config_put16() ,
pci_config_put32() , and pci_config_put64() functions write 8 bits,
16 bits, 32 bits, and 64 bits of data, respectively. The offset argument must be a
multiple of the datum size.

Since the PCI Local Bus Configuration space is represented in little endian
data format, these functions translate the data from or to native host format to
or from little endian format.

pci_config_setup (9F) must be called before invoking these functions.

Last modified 1 Jan 1997 SunOS 5.8 519

pci_config_get8(9F) Kernel Functions for Drivers

RETURN VALUES pci_config_get8() , pci_config_get16() , pci_config_get32() ,
and pci_config_get64() return the value read from the PCI Local Bus
Configuration space.

CONTEXT These routines can be called from user, kernel, or interrupt context.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI Local Bus

SEE ALSO attributes (5) , pci_config_setup (9F) , pci_config_teardown (9F)

NOTES These functions are specific to PCI bus device drivers. For drivers using these
functions, a single source to support devices with multiple bus versions may not
be easy to maintain.

The functions described in this manual page previously used symbolic names
which specified their data access size; the function names have been changed
so they now specify a fixed-width data size. See the following table for the
new name equivalents:

Previous Name New Name

pci_config_getb pci_config_get8

pci_config_getw pci_config_get16

pci_config_getl pci_config_get32

pci_config_getll pci_config_get64

pci_config_putb pci_config_put8

pci_config_putw pci_config_put16

pci_config_putl pci_config_put32

pci_config_putll pci_config_put64

520 SunOS 5.8 Last modified 1 Jan 1997

Kernel Functions for Drivers pci_config_setup(9F)

NAME pci_config_setup, pci_config_teardown – setup or tear down the resources for
enabling accesses to the PCI Local Bus Configuration space

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int pci_config_setup (dev_info_t *dip, ddi_acc_handle_t *handle);

void pci_config_teardown (ddi_acc_handle_t *handle);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dip Pointer to the device’s dev_info structure.

handle Pointer to a data access handle.

DESCRIPTION pci_config_setup() sets up the necessary resources for enabling
subsequent data accesses to the PCI Local Bus Configuration space.
pci_config_teardown() reclaims and removes those resources represented
by the data access handle returned from pci_config_setup() .

RETURN VALUES pci_config_setup() returns:
DDI_SUCCESS Successfully setup the resources.

DDI_FAILURE Unable to allocate resources for setup.

CONTEXT pci_config_setup() must be called from user or kernel context.
pci_config_teardown() can be called from any context.

NOTES These functions are specific to PCI bus device drivers. For drivers using these
functions, a single source to support devices with multiple bus versions may not
be easy to maintain.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI Local Bus

SEE ALSO attributes (5)

IEEE 1275 PCI Bus Binding

Last modified 1 Jan 1997 SunOS 5.8 521

pci_report_pmcap(9F) Kernel Functions for Drivers

NAME pci_report_pmcap – Report Power Management capability of a PCI device

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

int pci_report_pmcap (dev_info_t *dip, int cap, void *arg);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

PARAMETERS dip Pointer to the device’s dev_info structure

cap Power management capability

arg Argument for the capability

DESCRIPTION Some PCI devices provide power management capabilities in addition
to those provided by the PCI Power Management Specification. The
pci_report_pmcap (9F) function reports those Power Management capabilities
of the PCI device to the framework. Framework supports dynamic changing of
the capability by allowing pci_report_pmcap (9F) to be called multiple times.
Following are the supported capabilities as indicated by the cap :

PCI_PM_IDLESPEED— The PCI_PM_IDLESPEEDvalue indicates the lowest
PCI clock speed that a device can tolerate when idle, and is applicable only to
33 MHz PCI bus. arg represents the lowest possible idle speed in KHz. The
integer value representing the speed should be cast to (void *) before passing
as arg to pci_report_pmcap (9F).

The special values of arg are:
PCI_PM_IDLESPEED_ANY The device can tolerate any idle clock speed.

PCI_PM_IDLESPEED_NONEThe device cannot tolerate slowing down of PCI
clock even when idle.

If the driver doesn’t make this call, PCI_PM_IDLESPEED_NONEis assumed.
In this case, one offending device can keep the entire bus from being power
managed.

RETURN VALUES The pci_report_pmcap (9F) function returns:
DDI_SUCCESS Successful reporting of the capability

DDI_FAILURE Failure to report capability because of invalid argument(s)

CONTEXT The pci_report_pmcap (9F) function can be called from user, kernel and
interrupt context.

522 SunOS 5.8 Last modified 13 August 1999

Kernel Functions for Drivers pci_report_pmcap(9F)

EXAMPLES 1. A device driver knows that the device it controls works with any clock
between DC and 33 MHz as specified in Section 4.2.3.1: Clock Specification of
the PCI Bus Specification Revision 2.1. The device driver makes the following
call from its attach (9E):

if (pci_report_pmcap(dip, PCI_PM_IDLESPEED, PCI_PM_IDLESPEED_ANY) !=
DDI_SUCCESS)

cmn_err(CE_WARN, "%s%d: pci_report_pmcap failed\n",
ddi_driver_name(dip), ddi_get_instance(dip));

2. A device driver controls a 10/100 Mb Ethernet device which runs the device
state machine on the chip from the PCI clock. For the device state machine to
receive packets at 100 Mb, the PCI clock cannot drop below 4 MHz. The driver
makes the following call whenever it negotiates a 100 Mb Ethernet connection:

if (pci_report_pmcap(dip, PCI_PM_IDLESPEED, (void *)4096) !=
DDI_SUCCESS)

cmn_err(CE_WARN, "%s%d: pci_report_pmcap failed\n",
ddi_driver_name(dip), ddi_get_instance(dip));

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO Writing Device Drivers

PCI Bus Power Management Interface Specification Version 1.1

PCI Bus Specification Revision 2.1

Last modified 13 August 1999 SunOS 5.8 523

physio(9F) Kernel Functions for Drivers

NAME physio, minphys – perform physical I/O

SYNOPSIS #include <sys/types.h>
#include <sys/buf.h>
#include <sys/uio.h>
int physio (int(* strat)(struct buf *) , struct buf *bp, dev_t dev, int rw, void (*

mincnt)(struct buf *) , struct uio *uio);

voidminphys (struct buf *bp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS
physio() strat Pointer to device strategy routine.

bp Pointer to a buf (9S) structure describing the transfer. If
bp is set to NULL then physio() allocates one which is
automatically released upon completion.

dev The device number.

rw Read/write flag. This is either B_READwhen reading from
the device, or B_WRITEwhen writing to the device.

mincnt Routine which bounds the maximum transfer unit size.

uio Pointer to the uio structure which describes the user I/O
request.

minphys() bp Pointer to a buf structure.

DESCRIPTION physio() performs unbuffered I/O operations between the device dev and
the address space described in the uio structure.

Prior to the start of the transfer physio() verifies the requested operation
is valid by checking the protection of the address space specified in the uio
structure. It then locks the pages involved in the I/O transfer so they can not be
paged out. The device strategy routine, strat() , is then called one or more
times to perform the physical I/O operations. physio() uses biowait (9F)
to block until strat() has completed each transfer. Upon completion, or
detection of an error, physio() unlocks the pages and returns the error status.

physio() uses mincnt() to bound the maximum transfer unit size to the
system, or device, maximum length. minphys() is the system mincnt()

524 SunOS 5.8 Last modified 2 Apr 1993

Kernel Functions for Drivers physio(9F)

routine for use with physio() operations. Drivers which do not provide their
own local mincnt() routines should call physio() with minphys() .

minphys() limits the value of bp ->b_bcount to a sensible default for the
capabilities of the system. Drivers that provide their own mincnt() routine
should also call minphys() to make sure they do not exceed the system limit.

RETURN VALUES physio() returns:
0 Upon success.

non-zero Upon failure.

CONTEXT physio() can be called from user context only.

SEE ALSO strategy (9E) , biodone (9F) , biowait (9F) , buf (9S) , uio (9S)

Writing Device Drivers

WARNINGS Since physio() calls biowait() to block until each buf transfer is complete, it
is the drivers responsibility to call biodone (9F) when the transfer is complete,
or physio() will block forever.

Last modified 2 Apr 1993 SunOS 5.8 525

pm_busy_component(9F) Kernel Functions for Drivers

NAME pm_busy_component, pm_idle_component – Control device component
availability for Power Management

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
int pm_busy_component (dev_info_t *dip, int component);

int pm_idle_component (dev_info_t *dip, int component);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

PARAMETERS
pm_busy_component() dip Pointer to the device’s dev_info structure.

component The number of the component to be power-managed.

pm_idle_component() dip Pointer to the device’s dev_info structure.

component The number of the component to be power-managed.

DESCRIPTION The pm_busy_component() function sets component of dip to be busy. Calls to
pm_busy_component() are stacked, requiring a corresponding number of
calls to pm_idle_component() to make the component idle again. When a
device is busy it will not be power-managed by the system.

The pm_idle_component() function marks component idle, recording the
time that component went idle. This function must be called once for each call
to pm_busy_component() . A component which is idle is available to be
power-managed by the system. The pm_idle_component() function has no
effect if the component is already idle, except to update the system’s notion of
when the device went idle.

RETURN VALUES The pm_busy_component() and pm_idle_component() functions return:
DDI_SUCCESS Successfully set the indicated component busy or idle.

DDI_FAILURE Invalid component number component or the device has no
components.

CONTEXT These functions can be called from user or kernel context. These functions may
also be called from interrupt context, providing they are not the first Power
Managment function called by the driver.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

526 SunOS 5.8 Last modified 14 Oct 1999

Kernel Functions for Drivers pm_busy_component(9F)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface stability Evolving

SEE ALSO power.conf (4) , pm(7D) , pm(9) , pm-components (9) ,
pm_create_components (9F) , pm_destroy_components (9F) ,
pm_raise_power (9F)

Writing Device Drivers

Last modified 14 Oct 1999 SunOS 5.8 527

pm_create_components(9F) Kernel Functions for Drivers

NAME pm_create_components, pm_destroy_components – Create or destroy
power-manageable components

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
int pm_create_components (dev_info_t *dip, int components);

void pm_destroy_components (dev_info_t *dip);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dip Pointer to the device’s dev_info structure

components Number of components to create

DESCRIPTION The pm_create_components() and pm_destroy_components() functions
are now obsolete and will be removed in a future release. It is recommended that
the driver use pm-components (9) instead.

The pm_create_components() function creates power-manageable
components for a device. It should be called from the driver’s attach (9E) entry
point if the device has power-manageable components.

The correspondence of components to parts of the physical device controlled
by the driver are the responsibility of the driver.

The pm_destroy_components() function removes all components from the
device. It should be called from the driver’s detach (9E) entry point.

RETURN VALUES The pm_create_components() function returns:
DDI_SUCCESS Components are successfully created.

DDI_FAILURE The device already has components.

CONTEXT These functions may be called from user or kernel context.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface stability Obsolete

SEE ALSO power.conf (4) , pm(7D) , pm-components (9) , attach (9E) , detach (9E) ,
pm(9) , pm_busy_component (9F) , pm_idle_component (9F)

528 SunOS 5.8 Last modified 14 Oct 1999

Kernel Functions for Drivers pm_create_components(9F)

Writing Device Drivers

Last modified 14 Oct 1999 SunOS 5.8 529

pm_get_normal_power(9F) Kernel Functions for Drivers

NAME pm_get_normal_power, pm_set_normal_power – Get or set a device
component’s normal power level

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
int pm_get_normal_power (dev_info_t *dip, int component);

void pm_set_normal_power (dev_info_t *dip, int component, int level);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

PARAMETERS
pm_get_normal_power dip Pointer to the device’s dev_info structure

component Number of component from which to get normal power level

pm_set_normal_power dip Pointer to the device’s dev_info structure

component Number of component for which to set normal power level

level Component’s new normal power level

DESCRIPTION The pm_get_normal_power() and pm_set_normal_power() functions are
now obsolete and will be removed in a future release. It is recommended that
device drivers use new automatic device Power Management interfaces.

The pm_get_normal_power() function returns the normal power level of
component of the device dip .

The pm_set_normal_power() function sets the normal power level of
component of the device dip to level .

When a device has been power managed and is being returned to a state to be
used by the system, it will be brought to its normal power level. Except for a
power level of 0 , which is defined by the system to mean "powered off," the
interpretation of the meaning of the power level is entirely up to the driver.

RETURN VALUES The pm_get_normal_power() function returns:
level The normal power level of the specified component (a

positive integer).

DDI_FAILURE Invalid component number component or the device has no
components.

530 SunOS 5.8 Last modified 14 Oct 1999

Kernel Functions for Drivers pm_get_normal_power(9F)

CONTEXT These functions can be called from user or kernel context.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface stability Obsolete

SEE ALSO power.conf (4) , pm(7D) , pm(9) , power (9E) , pm_busy_component (9F)
, pm_create_components (9F) , pm_destroy_components (9F) ,
pm_idle_component (9F)

Writing Device Drivers

Last modified 14 Oct 1999 SunOS 5.8 531

pm_power_has_changed(9F) Kernel function

NAME pm_power_has_changed – Notify Power Management framework of
autonomous power level change

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
int pm_power_has_changed (dev_info_t *dip, int component, int level);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

PARAMETERS dip Pointer to the device dev_info structure

component Number of the component that has changed power level

level Power level to which the indicated component has changed

DESCRIPTION The pm_power_has_changed (9) function notifies the Power Management
framework that the power level of component of dip has changed to level.

Normally power level changes are initiated by the Power Management
framework due to device idleness, or through a request to the framework from
the driver via pm_raise_power (9F) or pm_lower_power (9F), but some devices
may change power levels on their own. For the framework to track the power
level of the device under these circumstances, the framework must be notified of
autonomous power level changes by a call to pm_power_has_changed() .

Because of the asynchronous nature of these events, the Power Management
framework might have called power (9E) between the device’s autonomous
power level change and the driver calling pm_power_has_changed() ,
or the framework may be in the process of changing the power level
when pm_power_has_changed() is called. To handle these situations
correctly, the driver should verify that the device is indeed at the level
or set the device to the level if it doesn’t support inquirying of power
levels, before calling pm_power_has_changed() . In addition, the driver
should prevent a power (9E) entry point from running in parallel with
pm_power_has_changed() .

RETURN VALUES The pm_power_has_changed() function returns:
DDI_SUCCESS The power level of component was successfully updated

to level.

DDI_FAILURE Invalid component component or power level level

CONTEXT This function can be called from user or kernel context. This function can
also be called from interrupt context, providing that it is not the first Power
Management function called by the driver.

EXAMPLES A hypothetical driver might include this code to handle
pm_power_has_changed (9):

532 SunOS 5.8 Last modified 15 Sep 1999

Kernel function pm_power_has_changed(9F)

static int
xxusb_intr(struct buf *bp)
{

...

/*
* At this point the device has informed us that it has
* changed power level on its own. Inform this to framework.
* We need to take care of the case when framework has
* already called power() entry point and changed power level
* before we were able to inform framework of this change.

* Handle this by comparing the informed power level with
* the actual power level and only doing the call if they
* are same. In addition, make sure that power() doesn’t get
* run in parallel with this code by holding the mutex.
*/

ASSERT(mutex_owned(&xsp->lock));
if (level_informed == *(xsp->level_reg_addr)) {

if (pm_power_has_changed(xsp->dip, XXUSB_COMPONENT,
level_informed) != DDI_SUCCESS) {

mutex_exit(&xsp->lock);
return(DDI_INTR_UNCLAIMED);

}
}

....

}

xxdisk_power(dev_info *dip, int comp, int level)
{

mutex_enter(xsp->lock);

...

...

}

ATTRIBUTES See attributes (5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Stability level Evolving

SEE ALSO power.conf (4), pm(7D), pm-components (9), pm(9), power (9E),
pm_busy_components (9F), pm_idle_components (9F),
pm_raise_power (9F), pm_lower_power (9F)

Writing Device Drivers

Last modified 15 Sep 1999 SunOS 5.8 533

pm_raise_power(9F) Kernel function

NAME pm_raise_power, pm_lower_power – Raise or lower power of components

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
int pm_raise_power (dev_info_t *dip, int component , int level);

int pm_lower_power (dev_info_t *dip, int component , int level);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

PARAMETERS
pm_raise_power dip Pointer to the device’s dev_info structure

component The number of the component for which a power level change
is desired

level The power level to which the indicated component will be
raised

pm_lower_power dip Pointer to the device’s dev_info structure

component The number of the component for which a power level change
is desired

level The power level to which the indicated component will be
lowered

DESCRIPTION The pm_raise_power (9F) function requests the Power Management
framework to raise the power level of component of dip to at least level.

The state of the device should be examined before each physical access. The
pm_raise_power (9F) function should be called to set a component to the
required power level if the operation to be performed requires the component to
be at a power level higher than its current power level.

When pm_raise_power (9F) returns with success, the component is guaranteed
to be at least at the requested power level. All devices that depend on this will be
at their full power level. Since the actual device power level may be higher than
requested by the driver, the driver should not make any assumption about the
absolute power level on successful return from pm_raise_power (9F) .

The pm_raise_power (9F) function may cause re-entry of the driver power (9E)
to raise the power level. Deadlock may result if the driver locks are held across
the call to pm_raise_power (9F) .

The pm_lower_power (9F) function requests the Power Management
framework to lower the power level of component of dip to at most level .

534 SunOS 5.8 Last modified 16 Sep1999

Kernel function pm_raise_power(9F)

Normally, transitions to lower power levels are initiated by the Power
Management framework based on component idleness. However, when
detaching, the driver should also initiate reduced power levels by setting
the power level of all device components to their lowest levels. The
pm_lower_power (9F) function is intended for this use only, and will return
DDI_FAILURE if the driver is not detaching at the time of the call.

If automatic Power Management is disabled (see dtpower (1M) and
power.conf (4)) , pm_lower_power (9F) returns DDI_SUCCESS
without changing the power level of the component. Otherwise, when
pm_lower_power (9F) returns with success, the component is guaranteed to be at
most at the requested power level. Since the actual device power level may be
lower than requested by the driver, the driver should not make any assumption
about the absolute power level on successful return from pm_lower_power (9F)
.

The pm_lower_power (9F) may cause re-entry of the driver power (9E) to
lower the power level. Deadlock may result if the driver locks are held across
the call to pm_raise_power (9F) .

RETURN VALUES The pm_raise_power (9F) function returns:
DDI_SUCCESS Component is now at the requested power level or higher.

DDI_FAILURE Component or level is out of range, or the framework was
unable to raise the power level of the component to the
requested level.

The pm_lower_power (9F) function returns:
DDI_SUCCESS Component is now at the requested power level or lower, or

automatic Power Management is disabled.

DDI_FAILURE Component or level is out of range, or the framework was
unable to lower the power level of the component to the
requested level, or the device is not detaching.

EXAMPLES A hypothetical disk driver might include this code to handle
pm_raise_power (9F) :

static int
xxdisk_strategy(struct buf *bp)
{

...

/*
* At this point we have determined that we need to raise the
* power level of the device. Since we have to drop the
* mutex, we need to take care of case where framework is
* lowering power at the same time we are raising power.
* We resolve this by marking the device busy and failing

Last modified 16 Sep1999 SunOS 5.8 535

pm_raise_power(9F) Kernel function

* lower power in power() entry point when device is busy.
*/

ASSERT(mutex_owned(xsp->lock));
if (xsp->pm_busycnt < 1) {

/*
* Component is not already marked busy
*/

if (pm_busy_component(xsp->dip,
XXDISK_COMPONENT) != DDI_SUCCESS) {

bioerror(bp,EIO);
biodone(bp);
return (0);

}
xsp->pm_busycnt++;

}
mutex_exit(xsp->lock);
if (pm_raise_power(xsp->dip,

XXDISK_COMPONENT, XXPOWER_SPUN_UP) != DDI_SUCCESS) {
bioerror(bp,EIO);
biodone(bp);
return (0);

}
mutex_enter(xsp->lock);

....

}

xxdisk_power(dev_info *dip, int comp, int level)
{

...

/*
* We fail the power() entry point if the device is busy and
* request is to lower the power level.
*/
ASSERT(mutex_owned(xsp->lock));
if (xsp->pm_busycnt >= 1) {

(level < xsp->cur_level) {
mutex_exit(xsp->lock);
return (DDI_FAILURE);

}
}

...

}

CONTEXT These functions can be called from user or kernel context.

ATTRIBUTES See attributes (5) for a description of the following attribute:

536 SunOS 5.8 Last modified 16 Sep1999

Kernel function pm_raise_power(9F)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface stability Evolving

SEE ALSO power.conf (4) , pm(7D) , pm(9) , pm-components (9) , power (9E) ,
pm_busy_component (9F) , pm_idle_component (9F)

Writing Device Drivers

Last modified 16 Sep1999 SunOS 5.8 537

pm_trans_check(9F) Kernel Functions for Drivers

NAME pm_trans_check – Device power cycle advisory check

SYNOPSIS #include <sys/sunddi.h>
int pm_trans_check (struct pm_trans_data *datap, time_t *intervalp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI)

PARAMETERS datap Pointer to a pm_trans_data structure

intervalp Pointer to time difference when next power cycle will be
advised

DESCRIPTION The pm_trans_check (9F) function checks if a power-cycle is currently advised
based on data in the pm_trans_data structure. This function is provided to
prevent damage to devices from excess power cycles; drivers for devices that are
sensitive to the number of power cycles should call pm_trans_check (9F) from
their power (9E) function before powering-off a device. If pm_trans_check (9F)
indicates that the device should not be power cycled, the driver should not
attempt to power cycle the device and should fail the call to power (9E) entry
point.

If pm_trans_check (9F) returns that it is not advised to power cycle the device,
it attempts to calculate when the next power cycle is advised, based on the
supplied parameters. In such case, intervalp returns the time difference (in
seconds) from the current time to when the next power cycle is advised. If the
time for the next power cycle cannot be determined, intervalp indicates 0.

To avoid excessive calls to the power (9E) entry point during a period when
power cycling is not advised, the driver should mark the corresponding device
component busy for the intervalp time period (if interval is not 0). Conveniently,
the driver can utilize the fact that calls to pm_busy_component (9F) are stacked.
If power cycling is not advised, the driver can call pm_busy_component (9F)
and issue a timeout (9F) for the intervalp time. The timeout() handler can
issue the corresponding pm_idle_component (9F) call.

When the format field of pm_trans_data is set to DC_SCSI_FORMAT, the caller
must provide valid data in svc_date[] , lifemax , and ncycles . Currently,
flag must be set to 0.

struct pm_scsi_cycles {
int lifemax; /* lifetime max power cycles */
int ncycles; /* number of cycles so far */
char svc_date[DC_SCSI_MFR_LEN]; /* service date YYYYWW */
int flag; /* reserved for future */

};

struct pm_trans_data {
int format; /* data format */
union {

538 SunOS 5.8 Last modified 16 Oct 1999

Kernel Functions for Drivers pm_trans_check(9F)

struct pm_scsi_cycles scsi_cycles;
} un;

};

RETURN VALUES 1 Power cycle is advised

0 Power cycle is not advised

-1 Error due to invalid argument.

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO power.conf (4), attributes (5), power (9E)

Writing Device Drivers

Using Power Management

Last modified 16 Oct 1999 SunOS 5.8 539

pollwakeup(9F) Kernel Functions for Drivers

NAME pollwakeup – inform a process that an event has occurred

SYNOPSIS #include <sys/poll.h>

void pollwakeup (struct pollhead *php, short event);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS php Pointer to a pollhead structure.

event Event to notify the process about.

DESCRIPTION pollwakeup() wakes a process waiting on the occurrence of an event. It
should be called from a driver for each occurrence of an event. The pollhead
structure will usually be associated with the driver’s private data structure
associated with the particular minor device where the event has occurred. See
chpoll (9E) and poll (2) for more detail.

CONTEXT pollwakeup() can be called from user or interrupt context.

SEE ALSO poll (2), chpoll (9E)

Writing Device Drivers

NOTES Driver defined locks should not be held across calls to this function.

540 SunOS 5.8 Last modified 11 Apr 1991

Kernel Functions for Drivers proc_signal(9F)

NAME proc_signal, proc_ref, proc_unref – send a signal to a process

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/signal.h>
void *proc_ref (void);

voidproc_unref (void *pref);

int proc_signal (void *pref, int sig);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS pref A handle for the process to be signalled.

sig Signal number to be sent to the process.

DESCRIPTION This set of routines allows a driver to send a signal to a process. The routine
proc_ref() is used to retrieve an unambiguous reference to the process for
signalling purposes. The return value can be used as a unique handle on the
process, even if the process dies. Because system resources are committed to a
process reference, proc_unref() should be used to remove it as soon as it is
no longer needed.proc_signal() is used to send signal sig to the referenced
process. The following set of signals may be sent to a process from a driver:
SIGHUP The device has been disconnected.

SIGINT The interrupt character has been received.

SIGQUIT The quit character has been received.

SIGPOLL A pollable event has occurred.

SIGKILL Kill the process (cannot be caught or ignored).

SIGWINCH Window size change.

SIGURG Urgent data are available.

Last modified 7 Feb 1994 SunOS 5.8 541

proc_signal(9F) Kernel Functions for Drivers

See signal (5) for more details on the meaning of these signals.

If the process has exited at the time the signal was sent, proc_signal()
returns an error code; the caller should remove the reference on the process by
calling proc_unref() .

The driver writer must ensure that for each call made to proc_ref() , there is
exactly one corresponding call to proc_unref() .

RETURN VALUES proc_ref() returns the following:
pref An opaque handle used to refer to the current process.

proc_signal() returns the following:
0 The process existed before the signal was sent.

-1 The process no longer exists; no signal was sent.

CONTEXT proc_unref() and proc_signal() can be called from user or interrupt
context. proc_ref() should only be called from user context.

SEE ALSO signal (5) , putnextctl1 (9F)

Writing Device Drivers

542 SunOS 5.8 Last modified 7 Feb 1994

Kernel Functions for Drivers ptob(9F)

NAME ptob – convert size in pages to size in bytes

SYNOPSIS #include <sys/ddi.h>

unsigned long ptob (unsigned long numpages);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS numpages Size in number of pages to convert to size in bytes.

DESCRIPTION This function returns the number of bytes that are contained in the specified
number of pages. For example, if the page size is 2048, then ptob(2) returns
4096 . ptob(0) returns 0.

RETURN VALUES The return value is always the number of bytes in the specified number of
pages. There are no invalid input values, and no checking will be performed
for overflow in the case of a page count whose corresponding byte count
cannot be represented by an unsigned long . Rather, the higher order bits
will be ignored.

CONTEXT ptob() can be called from user or interrupt context.

SEE ALSO btop (9F), btopr (9F), ddi_ptob (9F)

Writing Device Drivers

Last modified 11 Apr 1991 SunOS 5.8 543

pullupmsg(9F) Kernel Functions for Drivers

NAME pullupmsg – concatenate bytes in a message

SYNOPSIS #include <sys/stream.h>

int pullupmsg (mblk_t *mp, ssize_t len);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS mp Pointer to the message whose blocks are to be concatenated. mblk_t
is an instance of the msgb(9S) structure.

len Number of bytes to concatenate.

DESCRIPTION pullupmsg() tries to combine multiple data blocks into a single block.
pullupmsg() concatenates and aligns the first len data bytes of the message
pointed to by mp. If len equals -1 , all data are concatenated. If len bytes of the
same message type cannot be found, pullupmsg() fails and returns 0.

RETURN VALUES On success, 1 is returned; on failure, 0 is returned.

CONTEXT pullupmsg() can be called from user or interrupt context.

EXAMPLES EXAMPLE 1 Using pullupmsg()

This is a driver write srv (9E) (service) routine for a device that does not support
scatter/gather DMA. For all M_DATAmessages, the data will be transferred to
the device with DMA. First, try to pull up the message into one message block
with the pullupmsg() function (line 12). If successful, the transfer can be
accomplished in one DMA job. Otherwise, it must be done one message block at
a time (lines 19–22). After the data has been transferred to the device, free the
message and continue processing messages on the queue.

1 xxxwsrv(q)
2 queue_t *q;
3 {
4 mblk_t *mp;
5 mblk_t *tmp;
6 caddr_t dma_addr;
7 ssize_t dma_len;
8
9 while ((mp = getq(q)) != NULL) {

10 switch (mp->b_datap->db_type) {
11 case M_DATA:
12 if (pullupmsg(mp, -1)) {
13 dma_addr = vtop(mp->b_rptr);
14 dma_len = mp->b_wptr - mp->b_rptr;
15 xxx_do_dma(dma_addr, dma_len);
16 freemsg(mp);
17 break;
18 }
19 for (tmp = mp; tmp; tmp = tmp->b_cont) {

544 SunOS 5.8 Last modified 11 Nov 1996

Kernel Functions for Drivers pullupmsg(9F)

20 dma_addr = vtop(tmp->b_rptr);
21 dma_len = tmp->b_wptr - tmp->b_rptr;
22 xxx_do_dma(dma_addr, dma_len);
23 }
24 freemsg(mp);
25 break;

. . .
26 }
27 }
28 }

SEE ALSO srv (9E), allocb (9F), msgpullup (9F), msgb(9S)

Writing Device Drivers

STREAMS Programming Guide

NOTES pullupmsg() is not included in the DKI and will be removed from the system
in a future release. Device driver writers are strongly encouraged to use
msgpullup (9F) instead of pullupmsg() .

Last modified 11 Nov 1996 SunOS 5.8 545

put(9F) Kernel Functions for Drivers

NAME put – call a STREAMS put procedure

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

void put (queue_t *q, mblk_t *mp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q Pointer to a STREAMS queue.

mp Pointer to message block being passed into queue.

DESCRIPTION put() calls the put procedure (put (9E) entry point) for the STREAMS queue
specified by q, passing it the message block referred to by mp. It is typically used
by a driver or module to call its own put procedure.

CONTEXT put() can be called from a STREAMS module or driver put or service routine,
or from an associated interrupt handler, timeout, bufcall, or esballoc call-back. In
the latter cases the calling code must guarantee the validity of the q argument.

Since put() may cause re-entry of the module (as it is intended to do),
mutexes or other locks should not be held across calls to it, due to the risk of
single-party deadlock (put (9E), putnext (9F), putctl (9F), qreply (9F).) This
function is provided as a DDI/DKI conforming replacement for a direct call
to a put procedure.

SEE ALSO put (9E), freezestr (9F), putctl (9F), putctl1 (9F), putnext (9F),
putnextctl (9F), putnextctl1 (9F), qreply (9F)

Writing Device Drivers

STREAMS Programming Guide

NOTES The caller cannot have the stream frozen when calling this function. See
freezestr (9F).

DDI/DKI conforming modules and drivers are no longer permitted to call put
procedures directly, but must call through the appropriate STREAMS utility
function, for example, put (9E), putnext (9F), putctl (9F), and qreply (9F).
This function is provided as a DDI/DKI conforming replacement for a direct call
to a put procedure.

546 SunOS 5.8 Last modified 28 Apr 1992

Kernel Functions for Drivers putbq(9F)

NAME putbq – place a message at the head of a queue

SYNOPSIS #include <sys/stream.h>

int putbq (queue_t *q, mblk_t *bp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q Pointer to the queue.

bp Pointer to the message block.

DESCRIPTION putbq() places a message at the beginning of the appropriate section of the
message queue. There are always sections for high priority and ordinary
messages. If other priority bands are used, each will have its own section of the
queue, in priority band order, after high priority messages and before ordinary
messages. putbq() can be used for ordinary, priority band, and high priority
messages. However, unless precautions are taken, using putbq() with a high
priority message is likely to lead to an infinite loop of putting the message back
on the queue, being rescheduled, pulling it off, and putting it back on.

This function is usually called when bcanput (9F) or canput (9F) determines
that the message cannot be passed on to the next stream component. The flow
control parameters are updated to reflect the change in the queue’s status. If
QNOENBis not set, the service routine is enabled.

RETURN VALUES putbq() returns 1 upon success and 0 upon failure.

CONTEXT putbq() can be called from user or interrupt context.

EXAMPLES See the bufcall (9F) function page for an example of putbq() .

SEE ALSO bcanput (9F), bufcall (9F), canput (9F), getq (9F), putq (9F)

Writing Device Drivers

STREAMS Programming Guide

Last modified 11 Apr 1991 SunOS 5.8 547

putctl1(9F) Kernel Functions for Drivers

NAME putctl1 – send a control message with a one-byte parameter to a queue

SYNOPSIS #include <sys/stream.h>

int putctl1 (queue_t *q, int type, int p);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q Queue to which the message is to be sent.

type Type of message.

p One-byte parameter.

DESCRIPTION putctl1() , like putctl (9F), tests the type argument to make sure a data
type has not been specified, and attempts to allocate a message block. The p
parameter can be used, for example, to specify how long the delay will be
when an M_DELAYmessage is being sent. putctl1() fails if type is M_DATA,
M_PROTO, or M_PCPROTO, or if a mesage block cannot be allocated. If successful,
putctl1() calls the put (9E) routine of the queue pointed to by q with the
newly allocated and initialized message.

RETURN VALUES On success, 1 is returned. 0 is returned if type is a data type, or if a message
block cannot be allocated.

CONTEXT putctl1() can be called from user or interrupt context.

EXAMPLES See the putctl (9F) function page for an example of putctl1() .

SEE ALSO put (9E), allocb (9F), datamsg (9F), putctl (9F), putnextctl1 (9F)

Writing Device Drivers

STREAMS Programming Guide

548 SunOS 5.8 Last modified 11 Apr 1991

Kernel Functions for Drivers putctl(9F)

NAME putctl – send a control message to a queue

SYNOPSIS #include <sys/stream.h>

int putctl (queue_t *q, int type);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q Queue to which the message is to be sent.

type Message type (must be control, not data type).

DESCRIPTION putctl() tests the type argument to make sure a data type has not been
specified, and then attempts to allocate a message block. putctl() fails if type
is M_DATA, M_PROTO, or M_PCPROTO, or if a message block cannot be allocated.
If successful, putctl() calls the put (9E) routine of the queue pointed to by q
with the newly allocated and initialized messages.

RETURN VALUES On success, 1 is returned. If type is a data type, or if a message block cannot
be allocated, 0 is returned.

CONTEXT putctl() can be called from user or interrupt context.

EXAMPLES CODE EXAMPLE 1 Using putctl()

The send_ctl() routine is used to pass control messages downstream.
M_BREAKmessages are handled with putctl() (line 11). putctl1 (9F) (line 16)
is used for M_DELAYmessages, so that parm can be used to specify the length
of the delay. In either case, if a message block cannot be allocated a variable
recording the number of allocation failures is incremented (lines 12, 17). If an
invalid message type is detected, cmn_err (9F) panics the system (line 21).

1 void
2 send_ctl(wrq, type, parm)
3 queue_t *wrq;
4 uchar_t type;
5 uchar_t parm;
6 {
7 extern int num_alloc_fail;
8
9 switch (type) {

10 case M_BREAK:
11 if (!putctl(wrq->q_next, M_BREAK))
12 num_alloc_fail++;
13 break;
14
15 case M_DELAY:
16 if (!putctl1(wrq->q_next, M_DELAY, parm))
17 num_alloc_fail++;
18 break;
19

Last modified 11 Apr 1991 SunOS 5.8 549

putctl(9F) Kernel Functions for Drivers

20 default:
21 cmn_err(CE_PANIC, "send_ctl: bad message type passed");
22 break;
23 }
24 }

SEE ALSO put (9E), cmn_err (9F), datamsg (9F), putctl1 (9F), putnextctl (9F)

Writing Device Drivers

STREAMS Programming Guide

550 SunOS 5.8 Last modified 11 Apr 1991

Kernel Functions for Drivers putnext(9F)

NAME putnext – send a message to the next queue

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

void putnext (queue_t *q, mblk_t *mp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q Pointer to the queue from which the message mp will be sent.

mp Message to be passed.

DESCRIPTION putnext() is used to pass a message to the put (9E) routine of the next
queue in the stream.

RETURN VALUES None.

CONTEXT putnext() can be called from user or interrupt context.

EXAMPLES See allocb (9F) for an example of using putnext() .

SEE ALSO put (9E), allocb (9F)

Writing Device Drivers

STREAMS Programming Guide

Last modified 18 Feb1998 SunOS 5.8 551

putnextctl1(9F) Kernel Functions for Drivers

NAME putnextctl1 – send a control message with a one-byte parameter to a queue

SYNOPSIS #include <sys/stream.h>

int putnextctl1 (queue_t *q, int type, int p);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q Queue to which the message is to be sent.

type Type of message.

p One-byte parameter.

DESCRIPTION putnextctl1() , like putctl1 (9F), tests the type argument to make sure a
data type has not been specified, and attempts to allocate a message block.
The p parameter can be used, for example, to specify how long the delay will
be when an M_DELAYmessage is being sent. putnextctl1() fails if type is
M_DATA, M_PROTO, or M_PCPROTO, or if a message block cannot be allocated. If
successful, putnextctl1() calls the put (9E) routine of the queue pointed to
by q with the newly allocated and initialized message.

A call to putnextctl1(q,type, p) is an atomic equivalent of
putctl1(q->q_next, type, p). The STREAMS framework provides
whatever mutual exclusion is necessary to insure that dereferencing q through its
q_next field and then invoking putctl1 (9F) proceeds without interference
from other threads.

putnextctl1() should always be used in preference to putctl1 (9F)

RETURN VALUES On success, 1 is returned. 0 is returned if type is a data type, or if a message
block cannot be allocated.

CONTEXT putnextctl1() can be called from user or interrupt context.

EXAMPLES See the putnextctl (9F) function page for an example of putnextctl1() .

SEE ALSO put (9E), allocb (9F), datamsg (9F), putctl1 (9F), putnextctl (9F)

Writing Device Drivers

STREAMS Programming Guide

552 SunOS 5.8 Last modified 29 Mar 1993

Kernel Functions for Drivers putnextctl(9F)

NAME putnextctl – send a control message to a queue

SYNOPSIS #include <sys/stream.h>

int putnextctl (queue_t *q, int type);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q Queue to which the message is to be sent.

type Message type (must be control, not data type).

DESCRIPTION putnextctl() tests the type argument to make sure a data type has not been
specified, and then attempts to allocate a message block. putnextctl() fails if
type is M_DATA, M_PROTO, or M_PCPROTO, or if a message block cannot be
allocated. If successful, putnextctl() calls the put (9E) routine of the queue
pointed to by q with the newly allocated and initialized messages.

A call to putnextctl(q, type) is an atomic equivalent of
putctl(q->q_next ,type). The STREAMS framework provides whatever
mutual exclusion is necessary to insure that dereferencing q through its q_next
field and then invoking putctl (9F) proceeds without interference from other
threads.

putnextctl() should always be used in preference to putctl (9F)

RETURN VALUES On success, 1 is returned. If type is a data type, or if a message block cannot
be allocated, 0 is returned.

CONTEXT putnextctl() can be called from user or interrupt context.

EXAMPLES CODE EXAMPLE 1

The send_ctl routine is used to pass control messages downstream. M_BREAK
messages are handled with putnextctl () (line 8). putnextctl1 (9F) (line 13)
is used for M_DELAYmessages, so that parm can be used to specify the length
of the delay. In either case, if a message block cannot be allocated a variable
recording the number of allocation failures is incremented (lines 9, 14). If an
invalid message type is detected, cmn_err (9F) panics the system (line 18).

1 void
2 send_ctl(queue_t *wrq, uchar_t type, uchar_t parm)
3 {
4 extern int num_alloc_fail;
5
6 switch (type) {
7 case M_BREAK:
8 if (!putnextctl(wrq, M_BREAK))
9 num_alloc_fail++;

10 break;

Last modified 29 Mar 1993 SunOS 5.8 553

putnextctl(9F) Kernel Functions for Drivers

11
12 case M_DELAY:
13 if (!putnextctl1(wrq, M_DELAY, parm))
14 num_alloc_fail++;
15 break;
16
17 default:
18 cmn_err(CE_PANIC, "send_ctl: bad message type passed");
19 break;
20 }
21 }

SEE ALSO put (9E), cmn_err (9F), datamsg (9F), putctl (9F), putnextctl1 (9F)

Writing Device Drivers

STREAMS Programming Guide

554 SunOS 5.8 Last modified 29 Mar 1993

Kernel Functions for Drivers putq(9F)

NAME putq – put a message on a queue

SYNOPSIS #include <sys/stream.h>

int putq (queue_t *q, mblk_t *bp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q Pointer to the queue to which the message is to be added.

bp Message to be put on the queue.

DESCRIPTION putq() is used to put messages on a driver’s queue after the module’s put
routine has finished processing the message. The message is placed after any
other messages of the same priority, and flow control parameters are updated. If
QNOENBis not set, the service routine is enabled. If no other processing is done,
putq() can be used as the module’s put routine.

RETURN VALUES putq() returns 1 on success and 0 on failure.

CONTEXT putq() can be called from user or interrupt context.

EXAMPLES See the datamsg (9F) function page for an example of putq() .

SEE ALSO datamsg (9F), putbq (9F), qenable (9F), rmvq (9F)

Writing Device Drivers

STREAMS Programming Guide

Last modified 11 Apr 1991 SunOS 5.8 555

qbufcall(9F) Kernel Functions for Drivers

NAME qbufcall – call a function when a buffer becomes available

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

bufcall_id_t qbufcall (queue_t *q, size_t size, uint_t pri, void(*func)(void *arg), void *arg);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS q Pointer to STREAMS queue structure.

size Number of bytes required for the buffer.

pri Priority of the allocb (9F) allocation request (not used).

func Function or driver routine to be called when a buffer
becomes available.

arg Argument to the function to be called when a buffer becomes
available.

DESCRIPTION qbufcall() serves as a qtimeout (9F) call of indeterminate length. When a
buffer allocation request fails, qbufcall() can be used to schedule the routine
func to be called with the argument arg when a buffer becomes available. func
may call allocb() or it may do something else.

The qbufcall() function is tailored to be used with the enhanced STREAMS
framework interface, which is based on the concept of perimeters. (See
mt-streams (9F).) qbufcall() schedules the specified function to execute
after entering the perimeters associated with the queue passed in as the first
parameter to qbufcall() . All outstanding bufcalls should be cancelled before
the close of a driver or module returns.

qprocson (9F) must be called before calling either qbufcall() or
qtimeout (9F).

RETURN VALUES If successful, qbufcall() returns a qbufcall ID that can be used in a call to
qunbufcall (9F) to cancel the request. If the qbufcall() scheduling fails,
func is never called and 0 is returned.

CONTEXT qbufcall() can be called from user or interrupt context.

SEE ALSO allocb (9F), mt-streams (9F), qprocson (9F), qtimeout (9F),
qunbufcall (9F), quntimeout (9F)

Writing Device Drivers

STREAMS Programming Guide

556 SunOS 5.8 Last modified 18 Feb 1998

Kernel Functions for Drivers qbufcall(9F)

WARNINGS Even when func is called by qbufcall() , allocb (9F) can fail if another module
or driver had allocated the memory before func was able to call allocb (9F).

Last modified 18 Feb 1998 SunOS 5.8 557

qenable(9F) Kernel Functions for Drivers

NAME qenable – enable a queue

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

void qenable (queue_t *q);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q Pointer to the queue to be enabled.

DESCRIPTION qenable() adds the queue pointed to by q to the list of queues whose service
routines are ready to be called by the STREAMS scheduler.

CONTEXT qenable() can be called from user or interrupt context.

EXAMPLES See the dupb (9F) function page for an example of the qenable() .

SEE ALSO dupb (9F)

Writing Device Drivers

STREAMS Programming Guide

558 SunOS 5.8 Last modified 11 Apr 1991

Kernel Functions for Drivers qprocson(9F)

NAME qprocson, qprocsoff – enable, disable put and service routines

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>
void qprocson (queue_t *q);

void qprocsoff (queue_t *q);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q Pointer to the RD side of a STREAMS queue pair.

DESCRIPTION qprocson() enables the put and service routines of the driver or module
whose read queue is pointed to by q . Threads cannot enter the module instance
through the put and service routines while they are disabled.

qprocson() must be called by the open routine of a driver or module before
returning, and after any initialization necessary for the proper functioning of
the put and service routines.

qprocson() must be called before calling qbufcall (9F) , qtimeout (9F)
, qwait (9F) , or qwait_sig (9F) ,

qprocsoff() must be called by the close routine of a driver or module
before returning, and before deallocating any resources necessary for the
proper functioning of the put and service routines. It also removes the queue’s
service routines from the service queue, and blocks until any pending service
processing completes.

The module or driver instance is guaranteed to be single-threaded before
qprocson() is called and after qprocsoff() is called, except for threads
executing asynchronous events such as interrupt handlers and callbacks, which
must be handled separately.

CONTEXT These routines can be called from user or interrupt context.

SEE ALSO close (9E) , open (9E) , put (9E) , srv (9E) , qbufcall (9F) , qtimeout (9F) ,
qwait (9F) , qwait_sig (9F)

Writing Device Drivers

STREAMS Programming Guide

NOTES The caller may not have the STREAM frozen during either of these calls.

Last modified 11 Nov 1992 SunOS 5.8 559

qreply(9F) Kernel Functions for Drivers

NAME qreply – send a message on a stream in the reverse direction

SYNOPSIS #include <sys/stream.h>

void qreply (queue_t *q, mblk_t *mp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q Pointer to the queue.

mp Pointer to the message to be sent in the opposite direction.

DESCRIPTION qreply() sends messages in the reverse direction of normal flow. That is,
qreply(q, mp) is equivalent to putnext(OTHERQ(q), mp).

CONTEXT qreply() can be called from user or interrupt context.

EXAMPLES CODE EXAMPLE 1 Canonical Flushing Code for STREAMS Drivers.

This example depicts the canonical flushing code for STREAMS drivers. Assume
that the driver has service procedures so that there may be messages on its
queues. See srv (9E). Its write-side put procedure handles M_FLUSHmessages
by first checking the FLUSHWbit in the first byte of the message, then the write
queue is flushed (line 8) and the FLUSHWbit is turned off (line 9). See put (9E). If
the FLUSHRbit is on, then the read queue is flushed (line 12) and the message is
sent back up the read side of the stream with the qreply (9F) function (line 13).
If the FLUSHRbit is off, then the message is freed (line 15). See the example for
flushq (9F) for the canonical flushing code for modules.

1 xxxwput(q, mp)
2 queue_t *q;
3 mblk_t *mp;
4 {
5 switch(mp->b_datap->db_type) {
6 case M_FLUSH:
7 if (*mp->b_rptr & FLUSHW) {
8 flushq(q, FLUSHALL);
9 *mp->b_rptr &= ~FLUSHW;

10 }
11 if (*mp->b_rptr & FLUSHR) {
12 flushq(RD(q), FLUSHALL);
13 qreply(q, mp);
14 } else {
15 freemsg(mp);
16 }
17 break;

. . .
18 }
19 }

560 SunOS 5.8 Last modified 11 Apr 1991

Kernel Functions for Drivers qreply(9F)

SEE ALSO put (9E), srv (9E), flushq (9F), OTHERQ(9F), putnext (9F)

Writing Device Drivers

STREAMS Programming Guide

Last modified 11 Apr 1991 SunOS 5.8 561

qsize(9F) Kernel Functions for Drivers

NAME qsize – find the number of messages on a queue

SYNOPSIS #include <sys/stream.h>

int qsize (queue_t *q);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q Queue to be evaluated.

DESCRIPTION qsize() evaluates the queue q and returns the number of messages it contains.

RETURN VALUES If there are no message on the queue, qsize() returns 0. Otherwise, it returns
the integer representing the number of messages on the queue.

CONTEXT qsize() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

STREAMS Programming Guide

562 SunOS 5.8 Last modified 11 Apr 1991

Kernel Functions for Drivers qtimeout(9F)

NAME qtimeout – execute a function after a specified length of time

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

timeout_id_t qtimeout (queue_t *q, void (*func)(void *), void *arg, clock_t ticks);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS q Pointer to STREAMS queue structure.

func Kernel function to invoke when the time increment expires.

arg Argument to the function.

ticks Number of clock ticks to wait before the function is called.

DESCRIPTION The qtimeout() function schedules the specified function func to be called
after a specified time interval. func is called with arg as a parameter. Control is
immediately returned to the caller. This is useful when an event is known to
occur within a specific time frame, or when you want to wait for I/O processes
when an interrupt is not available or might cause problems. The exact time
interval over which the timeout takes effect cannot be guaranteed, but the
value given is a close approximation.

The qtimeout() function is tailored to be used with the enhanced STREAMS
framework interface which is based on the concept of perimeters. (See
mt-streams (9F).) qtimeout() schedules the specified function to execute
after entering the perimeters associated with the queue passed in as the first
parameter to qtimeout() . All outstanding timeouts should be cancelled before
a driver closes or module returns.

qprocson (9F) must be called before calling qtimeout() .

RETURN VALUES qtimeout() returns an opaque non-zero timeout identifier that can be passed
to quntimeout (9F) to cancel the request. Note: No value is returned from
the called function.

CONTEXT qtimeout() can be called from user or interrupt context.

SEE ALSO mt-streams (9F), qbufcall (9F), qprocson (9F), qunbufcall (9F),
quntimeout (9F)

Writing Device Drivers

STREAMS Programming Guide

Last modified 11 Nov 1996 SunOS 5.8 563

qunbufcall(9F) Kernel Functions for Drivers

NAME qunbufcall – cancel a pending qbufcall request

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

void qunbufcall (queue_t *q, bufcall_id_t id);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS q Pointer to STREAMS queue_t structure.

id Identifier returned from qbufcall (9F)

DESCRIPTION qunbufcall() cancels a pending qbufcall() request. The argument id is
a non-zero identifier of the request to be cancelled. id is returned from the
qbufcall() function used to issue the cancel request.

The qunbufcall() function is tailored to be used with the enhanced
STREAMS framework interface which is based on the concept of perimeters.
(See mt-streams (9F).) qunbufcall() returns when the bufcall has been
cancelled or finished executing. The bufcall will be cancelled even if it is blocked
at the perimeters associated with the queue. All outstanding bufcalls should be
cancelled before the driver closes or module returns.

CONTEXT qunbufcall() can be called from user or interrupt context.

SEE ALSO mt-streams (9F), qbufcall (9F), qtimeout (9F), quntimeout (9F)

Writing Device Drivers

STREAMS Programming Guide

564 SunOS 5.8 Last modified 18 Feb 1998

Kernel Functions for Drivers quntimeout(9F)

NAME quntimeout – cancel previous qtimeout function call

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

clock_t quntimeout (queue_t *q, timeout_id_t id);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS q Pointer to a STREAMS queue structure.

id Opaque timeout ID a previous qtimeout (9F) call.

DESCRIPTION quntimeout() cancels a pending qtimeout (9F) request. The quntimeout()
function is tailored to be used with the enhanced STREAMS framework
interface, which is based on the concept of perimeters. (See mt-streams (9F).)
quntimeout() returns when the timeout has been cancelled or finished
executing. The timeout will be cancelled even if it is blocked at the perimeters
associated with the queue. quntimeout() should be executed for all
outstanding timeouts before a driver or module close returns.

RETURN VALUES quntimeout() returns -1 if the id is not found. Otherwise, quntimeout()
returns a 0 or positive value.

CONTEXT quntimeout() can be called from user or interrupt context.

SEE ALSO mt-streams (9F), qbufcall (9F), qtimeout (9F), qunbufcall (9F)

Writing Device Drivers

STREAMS Programming Guide

Last modified 18 Feb 98 SunOS 5.8 565

qwait(9F) Kernel Functions for Drivers

NAME qwait, qwait_sig – STREAMS wait routines

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>
void qwait (queue_t *q);

int qwait_sig (queue_t *q);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS qp Pointer to the queue that is being opened or closed.

DESCRIPTION qwait() and qwait_sig() are used to wait for a message to arrive to the
put (9E) or srv (9E) procedures. qwait() and qwait_sig() can also be used
to wait for qbufcall (9F) or qtimeout (9F) callback procedures to execute.
These routines can be used in the open (9E) and close (9E) procedures in a
STREAMS driver or module. qwait() and qwait_sig() atomically exit the
inner and outer perimeters associated with the queue, and wait for a thread to
leave the module’s put (9E) , srv (9E) , or qbufcall (9F) / qtimeout (9F)
callback procedures. Upon return they re-enter the inner and outer perimeters.

This can be viewed as there being an implicit wakeup when a thread leaves
a put (9E) or srv (9E) procedure or after a qtimeout (9F) or qbufcall (9F)
callback procedure has been run in the same perimeter.

qprocson (9F) must be called before calling qwait() or qwait_sig() .

qwait() is not interrupted by a signal, whereas qwait_sig() is interrupted
by a signal. qwait_sig() normally returns non-zero, and returns zero when
the waiting was interrupted by a signal.

qwait() and qwait_sig() are similar to cv_wait() and cv_wait_sig()
except that the mutex is replaced by the inner and outer perimeters and the
signalling is implicit when a thread leaves the inner perimeter. See condvar (9F) .

RETURN VALUES 0 For qwait_sig() , indicates that the condition was not necessarily
signaled, and the function returned because a signal was pending.

CONTEXT These functions can only be called from an open (9E) or close (9E) routine.

EXAMPLES EXAMPLE 1 Using qwait()

The open routine sends down a T_INFO_REQmessage and waits for the
T_INFO_ACK . The arrival of the T_INFO_ACK is recorded by resetting a flag in
the unit structure (WAIT_INFO_ACK). The example assumes that the module is
D_MTQPAIRor D_MTPERMOD.

xxopen(qp, ...)
queue_t *qp;

566 SunOS 5.8 Last modified 1 Mar 1993

Kernel Functions for Drivers qwait(9F)

{
struct xxdata *xx;

/* Allocate xxdata structure */
qprocson(qp);
/* Format T_INFO_ACK in mp */
putnext(qp, mp);
xx->xx_flags |= WAIT_INFO_ACK;
while (xx->xx_flags & WAIT_INFO_ACK)

qwait(qp);
return (0);

}
xxrput(qp, mp)

queue_t *qp;
mblk_t *mp;

{
struct xxdata *xx = (struct xxdata *)q->q_ptr;

...

case T_INFO_ACK:
if (xx->xx_flags & WAIT_INFO_ACK) {

/* Record information from info ack */
xx->xx_flags &= ~WAIT_INFO_ACK;
freemsg(mp);
return;

}

...
}

SEE ALSO close (9E) , open (9E) , put (9E) , srv (9E) condvar (9F) , mt-streams (9F) ,
qbufcall (9F) , qprocson (9F) , qtimeout (9F)

STREAMS Programming Guide

Writing Device Drivers

Last modified 1 Mar 1993 SunOS 5.8 567

qwriter(9F) Kernel Functions for Drivers

NAME qwriter – asynchronous STREAMS perimeter upgrade

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>

void qwriter (queue_t *qp, mblk_t *mp, void (*func, int perimeter);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS qp Pointer to the queue.

mp Pointer to a message that will be passed in to the callback
function.

func A function that will be called when exclusive (writer) access
has been acquired at the specified perimeter.

perimeter Either PERIM_INNERor PERIM_OUTER.

DESCRIPTION qwriter() is used to upgrade the access at either the inner or the outer
perimeter from shared to exclusive and call the specified callback function
when the upgrade has succeeded. See mt-streams (9F). The callback function
is called as:

(*func)(queue_t * qp, mblk_t * mp);

qwriter() will acquire exclusive access immediately if possible, in which case
the specified callback function will be executed before qwriter() returns. If
this is not possible, qwriter() will defer the upgrade until later and return
before the callback function has been executed. Modules should not assume
that the callback function has been executed when qwriter() returns. One
way to avoid dependencies on the execution of the callback function is to
immediately return after calling qwriter() and let the callback function
finish the processing of the message.

When qwriter() defers calling the callback function, the STREAMS
framework will prevent other messages from entering the inner perimeter
associated with the queue until the upgrade has completed and the callback
function has finished executing.

CONTEXT qwriter() can only be called from an put (9E) or srv (9E) routine, or from a
qwriter() , qtimeout (9F), or qbufcall (9F) callback function.

SEE ALSO put (9E), srv (9E), mt-streams (9F), qbufcall (9F), qtimeout (9F)

STREAMS Programming Guide

Writing Device Drivers

568 SunOS 5.8 Last modified 1 Mar 1993

Kernel Functions for Drivers RD(9F)

NAME RD, rd – get pointer to the read queue

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>
queue_t *RD(queue_t *q);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI) .

PARAMETERS q Pointer to the write queue whose read queue is to be returned.

DESCRIPTION The RD() function accepts a write queue pointer as an argument and returns
a pointer to the read queue of the same module.

CAUTION: Make sure the argument to this function is a pointer to a write
queue. RD() will not check for queue type, and a system panic could result if it
is not the right type.

RETURN VALUES The pointer to the read queue.

CONTEXT RD() can be called from user or interrupt context.

EXAMPLES EXAMPLE 1 Function page reference

See the qreply (9F) function page for an example of RD() .

SEE ALSO qreply (9F) , WR(9F)

Writing Device Drivers

STREAMS Programming Guide

Last modified 15 Nov 1991 SunOS 5.8 569

rmalloc(9F) Kernel Functions for Drivers

NAME rmalloc – allocate space from a resource map

SYNOPSIS #include <sys/map.h>
#include <sys/ddi.h>

unsigned long rmalloc (struct map *mp, size_t size);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS mp Resource map from where the resource is drawn.

size Number of units of the resource.

DESCRIPTION rmalloc() is used by a driver to allocate space from a previously defined and
initialized resource map. The map itself is allocated by calling the function
rmallocmap (9F). rmalloc() is one of five functions used for resource map
management. The other functions include:
rmalloc_wait (9F) Allocate space from a resource map, wait if

necessary.

rmfree (9F) Return previously allocated space to a map.

rmallocmap (9F) Allocate a resource map and initialize it.

rmfreemap (9F) Deallocate a resource map.

rmalloc() allocates space from a resource map in terms of arbitrary units.
The system maintains the resource map by size and index, computed in units
appropriate for the resource. For example, units may be byte addresses, pages of
memory, or blocks. The normal return value is an unsigned long set to the
value of the index where sufficient free space in the resource was found.

RETURN VALUES Under normal conditions, rmalloc() returns the base index of the allocated
space. Otherwise, rmalloc() returns a 0 if all resource map entries are already
allocated.

CONTEXT rmalloc() can be called from user or interrupt context.

EXAMPLES EXAMPLE 1 Illustrating the principles of map management

The following example is a simple memory map, but it illustrates the principles
of map management. A driver allocates and initializes the map by calling both
the rmallocmap (9F) and rmfree (9F) functions. rmallocmap (9F) is called to
establish the number of slots or entries in the map, and rmfree (9F) to initialize
the resource area the map is to manage. The following example is a fragment
from a hypothetical start routine and illustrates the following procedures:

� Panics the system if the required amount of memory can not be allocated
(lines 11–15).

570 SunOS 5.8 Last modified 19 Nov 1992

Kernel Functions for Drivers rmalloc(9F)

� Uses rmallocmap (9F) to configure the total number of entries in the map,
and rmfree (9F) to initialize the total resource area.

1 #define XX_MAPSIZE 12
2 #define XX_BUFSIZE 2560
3 static struct map *xx_mp; /* Private buffer space map */

. . .
4 xxstart()
5 /*
6 * Allocate private buffer. If insufficient memory,
7 * display message and halt system.
8 */
9 {
10 register caddr_t bp;

. . .
11 if ((bp = kmem_alloc(XX_BUFSIZE, KM_NOSLEEP) == 0) {
12
13 cmn_err(CE_PANIC, "xxstart: kmem_alloc failed before %d buffer"
14 "allocation", XX_BUFSIZE);
15 }
16
17 /*
18 * Initialize the resource map with number
19 * of slots in map.
20 */
21 xx_mp = rmallocmap(XX_MAPSIZE);
22
24 /*
25 * Initialize space management map with total
26 * buffer area it is to manage.
27 */
28 rmfree(xx_mp, XX_BUFSIZE, bp);

. . .

EXAMPLE 2 Allocating buffers

The rmalloc() function is then used by the driver’s read or write routine to
allocate buffers for specific data transfers. The uiomove (9F) function is used to
move the data between user space and local driver memory. The device then
moves data between itself and local driver memory through DMA.

The next example illustrates the following procedures:

� The size of the I/O request is calculated and stored in the size variable
(line 10).

� Buffers are allocated through the rmalloc() function using the size value
(line 15). If the allocation fails the system will panic.

� The uiomove (9F) function is used to move data to the allocated buffer
(line 23).

� If the address passed to uiomove (9F) is invalid, rmfree (9F) is called to
release the previously allocated buffer, and an EFAULTerror is returned.

Last modified 19 Nov 1992 SunOS 5.8 571

rmalloc(9F) Kernel Functions for Drivers

1 #define XX_BUFSIZE 2560
2 #define XX_MAXSIZE (XX_BUFSIZE / 4)
3
4 static struct map *xx_mp; /* Private buffer space map */

...
5 xxread(dev_t dev, uio_t *uiop, cred_t *credp)
6 {
7
8 register caddr_t addr;
9 register int size;
10 size = min(COUNT, XX_MAXSIZE); /* Break large I/O request */
11 /* into small ones */
12 /*
13 * Get buffer.
14 */
15 if ((addr = (caddr_t)rmalloc(xx_mp, size)) == 0)
16 cmn_err(CE_PANIC, "read: rmalloc failed allocation of size %d",
17 size);
18
19 /*
20 * Move data to buffer. If invalid address is found,
21 * return buffer to map and return error code.
22 */
23 if (uiomove(addr, size, UIO_READ, uiop) == –1) {
24 rmfree(xx_mp, size, addr);
25 return(EFAULT);
26 }
27 }

SEE ALSO kmem_alloc (9F), rmalloc_wait (9F), rmallocmap (9F), rmfree (9F),
rmfreemap (9F), uiomove (9F)

Writing Device Drivers

572 SunOS 5.8 Last modified 19 Nov 1992

Kernel Functions for Drivers rmallocmap(9F)

NAME rmallocmap, rmallocmap_wait, rmfreemap – allocate and free resource maps

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
struct map *rmallocmap (size_t mapsize);

struct map *rmallocmap_wait (size_t mapsize);

void rmfreemap (struct map *mp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS mapsize Number of entries for the map.

mp A pointer to the map structure to be deallocated.

DESCRIPTION rmallocmap() dynamically allocates a resource map structure. The argument
mapsize defines the total number of entries in the map. In particular, it is the total
number of allocations that can be outstanding at any one time.

rmallocmap() initializes the map but does not associate it with the actual
resource. In order to associate the map with the actual resource, a call to
rmfree (9F) is used to make the entirety of the actual resource available for
allocation, starting from the first index into the resource. Typically, the call to
rmallocmap() is followed by a call to rmfree (9F) , passing the address of
the map returned from rmallocmap() , the total size of the resource, and the
first index into the actual resource.

The resource map allocated by rmallocmap() can be used to describe an
arbitrary resource in whatever allocation units are appropriate, such as blocks,
pages, or data structures. This resource can then be managed by the system by
subsequent calls to rmalloc (9F) , rmalloc_wait (9F) , and rmfree (9F) .

rmallocmap_wait() is similar to rmallocmap() , with the exception that it
will wait for space to become available if necessary.

rmfreemap() deallocates a resource map structure previously allocated by
rmallocmap() or rmallocmap_wait() . The argument mp is a pointer to
the map structure to be deallocated.

RETURN VALUES Upon successful completion, rmallocmap() and rmallocmap_wait() return
a pointer to the newly allocated map structure. Upon failure, rmallocmap()
returns a NULLpointer.

CONTEXT rmallocmap() and rmfreemap() can be called from user, kernel, or interrupt
context.

Last modified 20 Nov 1996 SunOS 5.8 573

rmallocmap(9F) Kernel Functions for Drivers

rmallocmap_wait() can only be called from user or kernel context.

SEE ALSO rmalloc (9F) , rmalloc_wait (9F) , rmfree (9F)

Writing Device Drivers

574 SunOS 5.8 Last modified 20 Nov 1996

Kernel Functions for Drivers rmalloc_wait(9F)

NAME rmalloc_wait – allocate space from a resource map, wait if necessary

SYNOPSIS #include <sys/map.h>
#include <sys/ddi.h>

unsigned long rmalloc_wait (struct map *mp, size_t size);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS mp Pointer to the resource map from which space is to be allocated.

size Number of units of space to allocate.

DESCRIPTION rmalloc_wait() requests an allocation of space from a resource map.
rmalloc_wait() is similar to the rmalloc (9F) function with the exception
that it will wait for space to become available if necessary.

RETURN VALUES rmalloc_wait() returns the base of the allocated space.

CONTEXT This function can be called from user or interrupt context. However, in most
cases rmalloc_wait() should be called from user context only.

SEE ALSO rmalloc (9F), rmallocmap (9F), rmfree (9F), rmfreemap (9F)

Writing Device Drivers

Last modified 28 Apr 1992 SunOS 5.8 575

rmfree(9F) Kernel Functions for Drivers

NAME rmfree – free space back into a resource map

SYNOPSIS #include <sys/map.h>
#include <sys/ddi.h>

void rmfree (struct map *mp, size_t size, ulong_t index);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS mp Pointer to the map structure.

size Number of units being freed.

index Index of the first unit of the allocated resource.

DESCRIPTION rmfree() releases space back into a resource map. It is the opposite of
rmalloc (9F), which allocates space that is controlled by a resource map
structure.

Drivers may define resource maps for resource allocation, in terms of arbitrary
units, using the rmallocmap (9F) function. The system maintains the resource
map structure by size and index, computed in units appropriate for the resource.
For example, units may be byte addresses, pages of memory, or blocks.
rmfree() frees up unallocated space for re-use.

CONTEXT rmfree() can be called from user or interrupt context.

SEE ALSO rmalloc (9F), rmalloc_wait (9F), rmallocmap (9F), rmfreemap (9F)

Writing Device Drivers

576 SunOS 5.8 Last modified 19 Nov 1992

Kernel Functions for Drivers rmvb(9F)

NAME rmvb – remove a message block from a message

SYNOPSIS #include <sys/stream.h>

mblk_t *rmvb (mblk_t *mp, mblk_t *bp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS mp Message from which a block is to be removed. mblk_t is an instance
of the msgb(9S) structure.

bp Message block to be removed.

DESCRIPTION rmvb() removes a message block (bp) from a message (mp), and returns a pointer
to the altered message. The message block is not freed, merely removed from the
message. It is the module or driver’s responsibility to free the message block.

RETURN VALUES If successful, a pointer to the message (minus the removed block) is returned.
The pointer is NULL if bp was the only block of the message before rmvb() was
called. If the designated message block (bp) does not exist, -1 is returned.

CONTEXT rmvb() can be called from user or interrupt context.

EXAMPLES This routine removes all zero-length M_DATAmessage blocks from the given
message. For each message block in the message, save the next message block
(line 10). If the current message block is of type M_DATAand has no data in its
buffer (line 11), then remove it from the message (line 12) and free it (line 13). In
either case, continue with the next message block in the message (line 16).

1 void
2 xxclean(mp)
3 mblk_t *mp;
4 {
5 mblk_t *tmp;
6 mblk_t *nmp;
7
8 tmp = mp;
9 while (tmp) {

10 nmp = tmp->b_cont;
11 if ((tmp->b_datap->db_type == M_DATA) &&

(tmp->b_rptr == tmp->b_wptr)) {
12 (void) rmvb(mp, tmp);
13 freeb(tmp);
14 }
15 tmp = nmp;
16 }
17 }

SEE ALSO freeb (9F), msgb(9S)

Last modified 11 Apr 1991 SunOS 5.8 577

rmvb(9F) Kernel Functions for Drivers

Writing Device Drivers

STREAMS Programming Guide

578 SunOS 5.8 Last modified 11 Apr 1991

Kernel Functions for Drivers rmvq(9F)

NAME rmvq – remove a message from a queue

SYNOPSIS #include <sys/stream.h>

void rmvq (queue_t *q, mblk_t *mp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q Queue containing the message to be removed.

mp Message to remove.

DESCRIPTION rmvq() removes a message from a queue. A message can be removed from
anywhere on a queue. To prevent modules and drivers from having to deal with
the internals of message linkage on a queue, either rmvq() or getq (9F) should
be used to remove a message from a queue.

CONTEXT rmvq() can be called from user or interrupt context.

EXAMPLES This code fragment illustrates how one may flush one type of message from a
queue. In this case, only M_PROTO T_DATA_INDmessages are flushed. For each
message on the queue, if it is an M_PROTOmessage (line 8) of type T_DATA_IND
(line 10), save a pointer to the next message (line 11), remove the T_DATA_IND
message (line 12) and free it (line 13). Continue with the next message in the
list (line 19).

1 mblk_t *mp, *nmp;
2 queue_t *q;
3 union T_primitives *tp;
4
5 freezestr(q);
6 mp = q->q_first;
7 while (mp) {
8 if (mp->b_datap->db_type == M_PROTO) {
9 tp = (union T_primitives *)mp->b_rptr;

10 if (tp->type == T_DATA_IND) {
11 nmp = mp->b_next;
12 rmvq(q, mp);
13 freemsg(mp);
14 mp = nmp;
15 } else {
16 mp = mp->b_next;
17 }
18 } else {
19 mp = mp->b_next;
20 }
21 }
22 unfreezestr(q);

SEE ALSO freemsg (9F), freezestr (9F), getq (9F), insq (9F), unfreezestr (9F)

Last modified 28 Jan 1993 SunOS 5.8 579

rmvq(9F) Kernel Functions for Drivers

Writing Device Drivers

STREAMS Programming Guide

WARNINGS Make sure that the message mp is linked onto q to avoid a possible system panic.

NOTES The stream must be frozen using freezestr (9F) before calling rmvq().

580 SunOS 5.8 Last modified 28 Jan 1993

Kernel Functions for Drivers rwlock(9F)

NAME rwlock, rw_init, rw_destroy, rw_enter, rw_exit, rw_tryenter, rw_downgrade,
rw_tryupgrade, rw_read_locked – readers/writer lock functions

SYNOPSIS #include <sys/ksynch.h>
voidrw_init (krwlock_t *rwlp, char *name, krw_type_t type, void *arg);

voidrw_destroy (krwlock_t *rwlp);

voidrw_enter (krwlock_t *rwlp, krw_t enter_type);

voidrw_exit (krwlock_t *rwlp);

intrw_tryenter (krwlock_t *rwlp, krw_t enter_type);

voidrw_downgrade (krwlock_t *rwlp);

intrw_tryupgrade (krwlock_t *rwlp);

intrw_read_locked (krwlock_t *rwlp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS rwlp Pointer to a krwlock_t readers/writer lock.

name Descriptive string. This is obsolete and should be NULL
. (Non-null strings are legal, but they’re a waste of kernel
memory.)

type Type of readers/writer lock.

arg Type-specific argument for initialization function.

enter_type Indication of whether the lock is to be acquired
non-exclusively or exclusively RW_READERor RW_WRITER.

DESCRIPTION A multiple-readers, single-writer lock is represented by the krwlock_t data
type. This type of lock will allow many threads to have simultaneous read-only
access to an object. Only one thread may have write access at any one time. An
object which is searched more frequently than it is changed is a good candidate
for a readers/writer lock.

Readers/writer locks are slightly more expensive than mutex locks, and the
advantage of multiple read access may not occur if the lock will only be held
for a short time.

rw_init() initializes a readers/writer lock. It is an error to initialize a lock
more than once. The type argument should be set to RW_DRIVER. If the lock

Last modified 7 May 1997 SunOS 5.8 581

rwlock(9F) Kernel Functions for Drivers

is used by the interrupt handler, the type-specific argument, arg, should be
the ddi_iblock_cookie returned from ddi_get_iblock_cookie (9F) or
ddi_get_soft_iblock_cookie (9F) . If the lock is not used by any interrupt
handler, the argument should be NULL.

rw_destroy() releases any resources that might have been allocated by
rw_init() . It should be called before freeing the memory containing the lock.

rw_enter() acquires the lock, and blocks if necessary. If enter_type is
RW_READER, the caller blocks if there is a writer or a thread attempting to
enter for writing. If enter_type is RW_WRITER, the caller blocks if any thread
holds the lock.

NOTE: It is a programming error for any thread to acquire an rwlock it already
holds, even as a reader. Doing so can deadlock the system: if thread R acquires
the lock as a reader, then thread W tries to acquire the lock as a writer, W will set
write-wanted and block. When R tries to get its second read hold on the lock, it
will honor the write-wanted bit and block waiting for W; but W cannot run until
R drops the lock. Thus threads R and W deadlock.

rw_exit() releases the lock and may wake up one or more threads waiting
on the lock.

rw_tryenter() attempts to enter the lock, like rw_enter() , but never
blocks. It returns a non-zero value if the lock was successfully entered, and
zero otherwise.

A thread which holds the lock exclusively (entered with RW_WRITER), may call
rw_downgrade() to convert to holding the lock non-exclusively (as if entered
with RW_READER). One or more waiting readers may be unblocked.

rw_tryupgrade() can be called by a thread which holds the lock for reading
to attempt to convert to holding it for writing. This upgrade can only succeed if
no other thread is holding the lock and no other thread is blocked waiting to
acquire the lock for writing.

rw_read_locked() returns non-zero if the calling thread holds the lock
for read, and zero if the caller holds the lock for write. The caller must hold
the lock. The system may panic if rw_read_locked() is called for a lock
that isn’t held by the caller.

RETURN VALUES 0 rw_tryenter() could not obtain the lock without blocking.

0 rw_tryupgrade() was unable to perform the upgrade
because of other threads holding or waiting to hold the lock.

0 rw_read_locked() returns 0 if the lock is held by the
caller for write.

582 SunOS 5.8 Last modified 7 May 1997

Kernel Functions for Drivers rwlock(9F)

non-zero from rw_read_locked() if the lock is held by the caller
for read.

non-zero successful return from rw_tryenter() or
rw_tryupgrade() .

CONTEXT These functions can be called from user or interrupt context, except for
rw_init() and rw_destroy() , which can be called from user context only.

SEE ALSO condvar (9F) , ddi_add_intr (9F) , ddi_get_iblock_cookie (9F) ,
ddi_get_soft_iblock_cookie (9F) , mutex (9F) , semaphore (9F)

Writing Device Drivers

NOTES Compiling with _LOCKTESTor _MPSTATSdefined no longer has any effect. To
gather lock statistics, see lockstat (1M) .

Last modified 7 May 1997 SunOS 5.8 583

SAMESTR(9F) Kernel Functions for Drivers

NAME SAMESTR, samestr – test if next queue is in the same stream

SYNOPSIS #include <sys/stream.h>
int SAMESTR(queue_t *q);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q Pointer to the queue.

DESCRIPTION The SAMESTR() function is used to see if the next queue in a stream (if it exists)
is the same type as the current queue (that is, both are read queues or both are
write queues). This function accounts for the twisted queue connections that
occur in a STREAMS pipe and should be used in preference to direct examination
of the q_next field of queue (9S) to see if the stream continues beyond q .

RETURN VALUES SAMESTR() returns 1 if the next queue is the same type as the current queue. It
returns 0 if the next queue does not exist or if it is not the same type.

CONTEXT SAMESTR() can be called from user or interrupt context.

SEE ALSO OTHERQ(9F)

Writing Device Drivers

STREAMS Programming Guide

584 SunOS 5.8 Last modified 11 Apr 1991

Kernel Functions for Drivers scsi_abort(9F)

NAME scsi_abort – abort a SCSI command

SYNOPSIS #include <sys/scsi/scsi.h>

intscsi_abort (struct scsi_address *ap, struct scsi_pkt *pkt);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS ap Pointer to a scsi_address structure.

pkt Pointer to a scsi_pkt (9S) structure.

DESCRIPTION scsi_abort() terminates a command that has been transported to the
host adapter driver. A NULLpkt causes all outstanding packets to be
aborted. On a successful abort, the pkt_reason is set to CMD_ABORTEDand
pkt_statistics is OR’ed with STAT_ABORTED.

RETURN VALUES scsi_abort() returns:
1 on success.

0 on failure.

CONTEXT scsi_abort() can be called from user or interrupt context.

EXAMPLES CODE EXAMPLE 1 Terminating a command.

if (scsi_abort(&devp->sd_address, pkt) == 0) {
(void) scsi_reset(&devp->sd_address, RESET_ALL);

}

SEE ALSO tran_abort (9E), scsi_reset (9F), scsi_pkt (9S)

Writing Device Drivers

Last modified 30 Aug 1995 SunOS 5.8 585

scsi_alloc_consistent_buf(9F) Kernel Functions for Drivers

NAME scsi_alloc_consistent_buf – allocate an I/O buffer for SCSI DMA

SYNOPSIS #include <sys/scsi/scsi.h>

struct buf *scsi_alloc_consistent_buf (structscsi_address*ap, struct buf *bp, size_t
datalen, uint_t bflags, int (*callback, caddr_t),caddr_t arg);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS ap Pointer to the scsi_address (9S) structure.

bp Pointer to the buf (9S) structure.

datalen Number of bytes for the data buffer.

bflags Flags setting for the allocated buffer header.

callback A pointer to a callback function, NULL_FUNCor
SLEEP_FUNC.

arg The callback function argument.

DESCRIPTION scsi_alloc_consistent_buf() allocates a buffer header and the associated
data buffer for direct memory access (DMA) transfer. This buffer is allocated
from the iobp space, which is considered consistent memory. For more details,
see ddi_dma_mem_alloc (9F) and ddi_dma_sync (9F).

For buffers allocated via scsi_alloc_consistent_buf() , and marked with
the PKT_CONSISTENTflag via scsi_init_pkt (9F), the HBA driver must
ensure that the data transfer for the command is correctly synchronized before
the target driver’s command completion callback is performed.

If bp is NULL, a new buffer header will be allocated using getrbuf (9F).
In addition, if datalen is non-zero, a new buffer will be allocated using
ddi_dma_mem_alloc (9F).

callback indicates what the allocator routines should do when direct memory
access (DMA) resources are not available; the valid values are:
NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

586 SunOS 5.8 Last modified 20 Nov 1996

Kernel Functions for Drivers scsi_alloc_consistent_buf(9F)

Other Values callback points to a function that is called when resources
may become available. callback must return either 0
(indicating that it attempted to allocate resources but failed
to do so), in which case it is put back on a list to be called
again later, or 1 indicating either success in allocating
resources or indicating that it no longer cares for a retry. The
last argument arg is supplied to the callback function when
it is invoked.

RETURN VALUES scsi_alloc_consistent_buf() returns a pointer to a buf (9S) structure on
success. It returns NULL if resources are not available even if waitfunc was not
SLEEP_FUNC.

CONTEXT If callback is SLEEP_FUNC, then this routine may be called only from user-level
code. Otherwise, it may be called from either user or interrupt level. The callback
function may not block or call routines that block.

EXAMPLES EXAMPLE 1 Allocate a request sense packet with consistent DMA resources attached.

bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);

rqpkt = scsi_init_pkt(&devp->sd_address,
NULL, bp, CDB_GROUP0, 1, 0,
PKT_CONSISTENT, SLEEP_FUNC, NULL);

EXAMPLE 2 Allocate an inquiry packet with consistent DMA resources attached.

bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
SUN_INQSIZE, B_READ, canwait, NULL);

if (bp) {
pkt = scsi_init_pkt(&devp->sd_address, NULL, bp,

CDB_GROUP0, 1, PP_LEN, PKT_CONSISTENT,
canwait, NULL);

}

SEE ALSO ddi_dma_mem_alloc (9F), ddi_dma_sync (9F),
getrbuf (9F), scsi_destroy_pkt (9F), scsi_init_pkt (9F),
scsi_free_consistent_buf (9F), buf (9S), scsi_address (9S)

Writing Device Drivers

Last modified 20 Nov 1996 SunOS 5.8 587

scsi_cname(9F) Kernel Functions for Drivers

NAME scsi_cname, scsi_dname, scsi_mname, scsi_rname, scsi_sname – decode a SCSI
name

SYNOPSIS #include <sys/scsi/scsi.h>
char *scsi_cname (uchar_t cmd, char **cmdvec);

char *scsi_dname (int dtype);

char *scsi_mname (uchar_t msg);

char *scsi_rname (uchar_t reason);

char *scsi_sname (uchar_t sense_key);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS cmd A SCSI command value.

cmdvec Pointer to an array of command strings.

dtype Device type.

msg A message value.

reason A packet reason value.

sense_key A SCSI sense key value.

DESCRIPTION scsi_cname() decodes SCSI commands. cmdvec is a pointer to an array of
strings. The first byte of the string is the command value, and the remainder is
the name of the command.

scsi_dname() decodes the peripheral device type (for example, direct access
or sequential access) in the inquiry data.

scsi_mname() decodes SCSI messages.

scsi_rname() decodes packet completion reasons.

scsi_sname() decodes SCSI sense keys.

RETURN VALUES These functions return a pointer to a string. If an argument is invalid, they
return a string to that effect.

CONTEXT These functions can be called from user or interrupt context.

588 SunOS 5.8 Last modified 21 Dec 1992

Kernel Functions for Drivers scsi_cname(9F)

EXAMPLES EXAMPLE 1 Decoding SCSI tape commands.

scsi_cname() decodes SCSI tape commands as follows:
static char *st_cmds[] = {

"\\000test unit ready",
"\\001rewind",
"\\003request sense",
"\\010read",
"\\012write",
"\\020write file mark",
"\\021space",
"\\022inquiry",
"\\025mode select",
"\\031erase tape",
"\\032mode sense",
"\\033load tape",
NULL

};
..
cmn_err(CE_CONT, "st: cmd=%s", scsi_cname(cmd, st_cmds));
..

SEE ALSO Writing Device Drivers

Last modified 21 Dec 1992 SunOS 5.8 589

scsi_destroy_pkt(9F) Kernel Functions for Drivers

NAME scsi_destroy_pkt – free an allocated SCSI packet and its DMA resource

SYNOPSIS #include <sys/scsi/scsi.h>

void scsi_destroy_pkt (struct scsi_pkt *pktp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS pktp Pointer to a scsi_pkt (9S) structure.

DESCRIPTION scsi_destroy_pkt() releases all necessary resources, typically at the end of
an I/O transfer. The data is synchronized to memory, then the DMA resources
are deallocated and pktp is freed.

CONTEXT scsi_destroy_pkt() may be called from user or interrupt context.

EXAMPLES CODE EXAMPLE 1 Releasing resources.

scsi_destroy_pkt(un->un_rqs);

SEE ALSO tran_destroy_pkt (9E), scsi_init_pkt (9F), scsi_pkt (9S)

Writing Device Drivers

590 SunOS 5.8 Last modified 30 Aug 1995

Kernel Functions for Drivers scsi_dmaget(9F)

NAME scsi_dmaget, scsi_dmafree – SCSI dma utility routines

SYNOPSIS #include <sys/scsi/scsi.h>
struct scsi_pkt *scsi_dmaget (struct scsi_pkt *pkt, opaque_t dmatoken, int(*
callback)(void));

void scsi_dmafree (struct scsi_pkt *pkt);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS pkt A pointer to a scsi_pkt (9S) structure.

dmatoken Pointer to an implementation dependent object

callback Pointer to a callback function, or NULL_FUNCor
SLEEP_FUNC.

DESCRIPTION scsi_dmaget() allocates DMA resources for an already allocated SCSI packet.
pkt is a pointer to the previously allocated SCSI packet (see scsi_pktalloc (9F)
).

dmatoken is a pointer to an implementation dependent object which defines the
length, direction, and address of the data transfer associated with this SCSI
packet (command). The dmatoken must be a pointer to a buf (9S) structure. If
dmatoken is NULL , no resources are allocated.

callback indicates what scsi_dmaget() should do when resources are not
available:
NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

Other Values callback points to a function which is called when resources
may have become available. callback must return either 0
(indicating that it attempted to allocate resouces but failed
to do so again), in which case it is put back on a list to be
called again later, or 1 indicating either success in allocating
resources or indicating that it no longer cares for a retry.

scsi_dmafree() frees the DMA resources associated with the SCSI packet.
The packet itself remains allocated.

RETURN VALUES scsi_dmaget() returns a pointer to a scsi_pkt on success. It returns NULLif
resources are not available.

Last modified 21 Dec 1992 SunOS 5.8 591

scsi_dmaget(9F) Kernel Functions for Drivers

CONTEXT If callback is SLEEP_FUNC, then this routine may only be called from user-level
code. Otherwise, it may be called from either user or interrupt level. The callback
function may not block or call routines that block.

scsi_dmafree() can be called from user or interrupt context.

SEE ALSO scsi_pktalloc (9F) , scsi_pktfree (9F) , scsi_resalloc (9F) ,
scsi_resfree (9F) , buf (9S) , scsi_pkt (9S)

Writing Device Drivers

592 SunOS 5.8 Last modified 21 Dec 1992

Kernel Functions for Drivers scsi_errmsg(9F)

NAME scsi_errmsg – display a SCSI request sense message

SYNOPSIS #include <sys/scsi/scsi.h>

void scsi_errmsg (struct scsi_device *devp, struct scsi_pkt *pktp, char *drv_name,
int severity, daddr_t blkno, daddr_t err_blkno, struct scsi_key_strings *cmdlist, struct
scsi_extended_sense *sensep);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS devp Pointer to the scsi_device (9S) structure.

pktp Pointer to a scsi_pkt (9S) structure.

drv_name String used by scsi_log (9F).

severity Error severity level, maps to severity strings below.

blkno Requested block number.

err_blkno Error block number.

cmdlist An array of SCSI command description strings.

sensep A pointer to a scsi_extended_sense (9S) structure.

DESCRIPTION scsi_errmsg() interprets the request sense information in the sensep pointer
and generates a standard message that is displayed using scsi_log (9F). The
first line of the message is always a CE_WARN,with the continuation lines
being CE_CONT. sensep may be NULL, in which case no sense key or vendor
information is displayed.

The driver should make the determination as to when to call this function based
on the severity of the failure and the severity level that the driver wants to report.

The scsi_device (9S) structure denoted by devp supplies the identification of
the device that requested the display. severity selects which string is used in the
"Error Level:" reporting, according to the following table:

Severity Value: String:

SCSI_ERR_ALL All

SCSI_ERR_UNKNOWN Unknown

SCSI_ERR_INFO Informational

SCSI_ERR_RECOVERE Recovered

SCSI_ERR_RETRYABL Retryable

SCSI_ERR_FATAL Fatal

Last modified 8 Oct 1997 SunOS 5.8 593

scsi_errmsg(9F) Kernel Functions for Drivers

blkno is the block number of the original request that generated the error.
err_blkno is the block number where the error occurred. cmdlist is a mapping table
for translating the SCSI command code in pktp to the actual command string.

The cmdlist is described in the structure below:

struct scsi_key_strings {
int key;
char *message;

};

For a basic SCSI disk, the following list is appropriate:

static struct scsi_key_strings scsi_cmds[] = {
0x00, "test unit ready",
0x01, "rezero/rewind",
0x03, "request sense",
0x04, "format",
0x07, "reassign",
0x08, "read",
0x0a, "write",
0x0b, "seek",
0x12, "inquiry",
0x15, "mode select",
0x16, "reserve",
0x17, "release",
0x18, "copy",
0x1a, "mode sense",
0x1b, "start/stop",
0x1e, "door lock",
0x28, "read(10)",
0x2a, "write(10)",
0x2f, "verify",
0x37, "read defect data",
0x3b, "write buffer",
–1, NULL

};

CONTEXT scsi_errmsg() may be called from user or interrupt context.

EXAMPLES EXAMPLE 1 Generating error information.

This entry:
scsi_errmsg(devp, pkt, "sd", SCSI_ERR_INFO, bp->b_blkno,

err_blkno, sd_cmds, rqsense);

Generates:
WARNING: /sbus@1,f8000000/esp@0,800000/sd@1,0 (sd1):

Error for Command: read Error Level: Informational
Requested Block: 23936 Error Block: 23936
Vendor: QUANTUM Serial Number: 123456

594 SunOS 5.8 Last modified 8 Oct 1997

Kernel Functions for Drivers scsi_errmsg(9F)

Sense Key: Unit Attention
ASC: 0x29 (reset), ASCQ: 0x0, FRU: 0x0

SEE ALSO cmn_err (9F), scsi_log (9F), scsi_device (9S), scsi_extended_sense (9S),
scsi_pkt (9S)

Writing Device Drivers

Last modified 8 Oct 1997 SunOS 5.8 595

scsi_free_consistent_buf(9F) Kernel Functions for Drivers

NAME scsi_free_consistent_buf – free a previously allocated SCSI DMA I/O buffer

SYNOPSIS #include <sys/scsi/scsi.h>

void scsi_free_consistent_buf (struct buf *bp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS bp Pointer to the buf (9S) structure.

DESCRIPTION scsi_free_consistent_buf() frees a buffer header and consistent data
buffer that was previously allocated using scsi_alloc_consistent_buf (9F).

CONTEXT scsi_free_consistent_buf() may be called from either the user or the
interrupt levels.

SEE ALSO freerbuf (9F), scsi_alloc_consistent_buf (9F), buf (9S)

Writing Device Drivers

WARNING scsi_free_consistent_buf() will call freerbuf (9F) to
free the buf (9S) that was allocated before or during the call to
scsi_alloc_consistent_buf (9F).

If consistent memory is bound to a scsi_pkt (9S), the pkt should be destroyed
before freeing the consistent memory.

596 SunOS 5.8 Last modified 20 Jul 1998

Kernel Functions for Drivers scsi_hba_attach_setup(9F)

NAME scsi_hba_attach_setup, scsi_hba_attach, scsi_hba_detach – SCSI HBA attach
and detach routines

SYNOPSIS #include <sys/scsi/scsi.h>
int scsi_hba_attach_setup (dev_info_t *dip, ddi_dma_attr_t *hba_dma_attr,
scsi_hba_tran_t *hba_tran, int hba_flags);

int scsi_hba_attach (dev_info_t *dip, ddi_dma_lim_t *hba_lim, scsi_hba_tran_t
*hba_tran, int hba_flags, void *hba_options);

int scsi_hba_detach (dev_info_t *dip);

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

PARAMETERS dip A pointer to the dev_info_t structure, referring to the
instance of the HBA device.

hba_lim A pointer to a ddi_dma_lim (9S) structure.

hba_tran A pointer to a scsi_hba_tran (9S) structure.

hba_flags Flag modifiers. The only defined flag value is
SCSI_HBA_TRAN_CLONE.

hba_options Optional features provided by the HBA driver for future
extensions; must be NULL .

hba_dma_attr A pointer to a ddi_dma_attr (9S) structure.

DESCRIPTION scsi_hba_attach_setup() is the recommended interface over
scsi_hba_attach() .

scsi_hba_attach_setup()

scsi_hba_attach()

scsi_hba_attach() registers the DMA limits hba_lim and the transport
vectors hba_tran of each instance of the HBA device defined by dip .
scsi_hba_attach_setup() registers the DMA attributes hba_dma_attr and
the transport vectors hba_tran of each instance of the HBA device defined by
dip . The HBA driver can pass different DMA limits or DMA attributes, and
transport vectors for each instance of the device, as necessary, to support any
constraints imposed by the HBA itself.

scsi_hba_attach() and scsi_hba_attach_setup() use the
dev_bus_ops field in the dev_ops (9S) structure. The HBA driver
should initialize this field to NULLbefore calling scsi_hba_attach() or
scsi_hba_attach_setup() .

Last modified 30 Aug 1995 SunOS 5.8 597

scsi_hba_attach_setup(9F) Kernel Functions for Drivers

If SCSI_HBA_TRAN_CLONEis requested in hba_flags , the hba_tran structure
will be cloned once for each target attached to the HBA . The cloning of
the structure will occur before the tran_tgt_init (9E) entry point is
called to initialize a target. At all subsequent HBA entry points, including
tran_tgt_init (9E) , the scsi_hba_tran_t structure passed as an argument
or found in a scsi_address structure will be the ’cloned’ scsi_hba_tran_t
structure, thus allowing the HBA to use the tran_tgt_private field in the
scsi_hba_tran_t structure to point to per-target data. The HBA must take
care to free only the same scsi_hba_tran_t structure it allocated when
detaching; all ’cloned’ scsi_hba_tran_t structures allocated by the system
will be freed by the system.

scsi_hba_attach() and scsi_hba_attach_setup() attach a number
of integer-valued properties to dip , unless properties of the same name are
already attached to the node. An HBA driver should retrieve these configuration
parameters via ddi_prop_get_int (9F) , and respect any settings for features
provided the HBA .
scsi-options Optional SCSI configuration bits

SCSI_OPTIONS_DR

If not set, the HBA should not grant Disconnect
privileges to target devices.

SCSI_OPTIONS_LINK

If not set, the HBA should not enable Linked
Commands.

SCSI_OPTIONS_TAG

If not set, the HBA should not operate in
Command Tagged Queueing mode.

SCSI_OPTIONS_FAST

If not set, the HBA should not operate the bus
in FAST SCSI mode.

SCSI_OPTIONS_FAST20

If not set, the HBA should not operate the bus
in FAST20 SCSI mode.

598 SunOS 5.8 Last modified 30 Aug 1995

Kernel Functions for Drivers scsi_hba_attach_setup(9F)

SCSI_OPTIONS_WIDE

If not set, the HBA should not operate the bus
in WIDE SCSI mode.

SCSI_OPTIONS_SYNC

If not set, the HBA should not operate the bus
in synchronous transfer mode.

scsi-reset-delay SCSI bus or device reset recovery time, in
milliseconds.

scsi_hba_detach() scsi_hba_detach() removes the reference to the DMA limits or attributes
structure and the transport vector for the given instance of an HBA driver.

RETURN VALUES scsi_hba_attach() , scsi_hba_attach_setup() , and
scsi_hba_detach() return DDI_SUCCESSif the function call succeeds,
and return DDI_FAILURE on failure.

CONTEXT scsi_hba_attach() and scsi_hba_attach_setup() should be called
from attach (9E) . scsi_hba_detach() should be called from detach (9E) .

SEE ALSO attach (9E) , detach (9E) , tran_tgt_init (9E) , ddi_prop_get_int (9F) ,
ddi_dma_attr (9S) , ddi_dma_lim (9S) , dev_ops (9S) , scsi_address (9S) ,
scsi_hba_tran (9S)

Writing Device Drivers

NOTES It is the HBA driver’s responsibility to ensure that no more transport
requests will be taken on behalf of any SCSI target device driver after
scsi_hba_detach() is called.

Last modified 30 Aug 1995 SunOS 5.8 599

scsi_hba_init(9F) Kernel Functions for Drivers

NAME scsi_hba_init, scsi_hba_fini – SCSI Host Bus Adapter system initialization and
completion routines

SYNOPSIS #include <sys/scsi/scsi.h>
int scsi_hba_init (struct modlinkage *modlp);

void scsi_hba_fini (struct modlinkage *modlp);

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

PARAMETERS modlp Pointer to the Host Bus Adapters module linkage structure.

DESCRIPTION
scsi_hba_init() scsi_hba_init() is the system-provided initialization routine for SCSI

HBA drivers. The scsi_hba_init() function registers the HBA in the
system and allows the driver to accept configuration requests on behalf of SCSI
target drivers. The scsi_hba_init() routine must be called in the HBA ’s
_init (9E) routine before mod_install (9F) is called. If mod_install (9F) fails,
the HBA ’s _init (9E) should call scsi_hba_fini() before returning failure.

scsi_hba_fini() scsi_hba_fini() is the system provided completion routine for SCSI HBA
drivers. scsi_hba_fini() removes all of the system references for the
HBA that were created in scsi_hba_init() . The scsi_hba_fini()
routine should be called in the HBA ’s _fini (9E) routine if mod_remove (9F) is
successful.

RETURN VALUES scsi_hba_init() returns 0 if successful, and a non-zero value otherwise. If
scsi_hba_init() fails, the HBA’s _init() entry point should return the
value returned by scsi_hba_init() .

CONTEXT scsi_hba_init() and scsi_hba_fini() should be called from _init (9E)
or _fini (9E) , respectively.

SEE ALSO _fini (9E) , _init (9E) , mod_install (9F) , mod_remove (9F) ,
scsi_pktalloc (9F) , scsi_pktfree (9F) , scsi_hba_tran (9S)

Writing Device Drivers

NOTES The HBA is responsible for ensuring that no DDI request routines are called on
behalf of its SCSI target drivers once scsi_hba_fini() is called.

600 SunOS 5.8 Last modified 1 Nov 1993

Kernel Functions for Drivers scsi_hba_lookup_capstr(9F)

NAME scsi_hba_lookup_capstr – return index matching capability string

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_hba_lookup_capstr (char *capstr);

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

PARAMETERS capstr Pointer to a string.

DESCRIPTION scsi_hba_lookup_capstr() attempts to match capstr against a known set of
capability strings, and returns the defined index for the matched capability, if
found.

The set of indices and capability strings is:
SCSI_CAP_DMA_MAX "dma-max"or "dma_max"

SCSI_CAP_MSG_OUT "msg-out" or "msg_out"

SCSI_CAP_DISCONNECT "disconnect"

SCSI_CAP_SYNCHRONOUS "synchronous"

SCSI_CAP_WIDE_XFER "wide-xfer" or
"wide_xfer"

SCSI_CAP_PARITY "parity"

SCSI_CAP_INITIATOR_ID "initiator-id"

SCSI_CAP_UNTAGGED_QING "untagged-qing"

SCSI_CAP_TAGGED_QING "tagged-qing"

SCSI_CAP_ARQ "auto-rqsense"

SCSI_CAP_LINKED_CMDS "linked-cmds"

SCSI_CAP_SECTOR_SIZE "sector-size"

SCSI_CAP_TOTAL_SECTORS "total-sectors"

SCSI_CAP_GEOMETRY "geometry"

SCSI_CAP_RESET_NOTIFICATION "reset-notification"

SCSI_CAP_QFULL_RETRIES "qfull-retries"

SCSI_CAP_QFULL_RETRY_INTERVAL "qfull-retry-interval"

Last modified 30 Aug 1995 SunOS 5.8 601

scsi_hba_lookup_capstr(9F) Kernel Functions for Drivers

RETURN VALUES scsi_hba_lookup_capstr() returns a non-negative index value
corresponding to the capability string, or –1 if the string does not match any
known capability.

CONTEXT scsi_hba_lookup_capstr() can be called from user or interrupt context.

SEE ALSO tran_getcap (9E), tran_setcap (9E), scsi_ifgetcap (9F),
scsi_ifsetcap (9F), scsi_reset_notify (9F)

Writing Device Drivers

602 SunOS 5.8 Last modified 30 Aug 1995

Kernel Functions for Drivers scsi_hba_pkt_alloc(9F)

NAME scsi_hba_pkt_alloc, scsi_hba_pkt_free – allocate and free a scsi_pkt structure

SYNOPSIS #include <sys/scsi/scsi.h>
struct scsi_pkt *scsi_hba_pkt_alloc (dev_info_t *dip, struct scsi_address *ap, int
cmdlen, int statuslen, int tgtlen, int hbalen, int (*callback, caddr_t arg, caddr_t arg);

void scsi_hba_pkt_free (struct scsi_address *ap, struct scsi_pkt *pkt);

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

PARAMETERS dip Pointer to a dev_info_t structure, defining the HBA driver
instance.

ap Pointer to a scsi_address (9S) structure, defining the
target instance.

cmdlen Length in bytes to be allocated for the SCSI command
descriptor block (CDB).

statuslen Length in bytes to be allocated for the SCSI status completion
block (SCB).

tgtlen Length in bytes to be allocated for a private data area for the
target driver’s exclusive use.

hbalen Length in bytes to be allocated for a private data area for the
HBA driver’s exclusive use.

callback Indicates what scsi_hba_pkt_alloc() should do when
resources are not available:

NULL_FUNC

Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC

Wait indefinitely for resources.

arg Must be NULL.

pkt A pointer to a scsi_pkt (9S) structure.

DESCRIPTION

Last modified 1 Nov 1993 SunOS 5.8 603

scsi_hba_pkt_alloc(9F) Kernel Functions for Drivers

scsi_hba_pkt_alloc() scsi_hba_pkt_alloc() allocates space for a scsi_pkt structure. HBA
drivers should use this interface when allocating a scsi_pkt from their
tran_init_pkt (9E) entry point.

If callback is NULL_FUNC, scsi_hba_pkt_alloc() may not sleep when
allocating resources, and callers should be prepared to deal with allocation
failures.

scsi_hba_pkt_alloc() copies the scsi_address (9S) structure pointed to
by ap to the pkt_address field in the scsi_pkt (9S) .

scsi_hba_pkt_alloc() also allocates memory for these scsi_pkt (9S) data
areas, and sets these fields to point to the allocated memory:
pkt_ha_private HBA private data area.

pkt_private Target driver private data area.

pkt_scbp SCSI status completion block.

pkt_cdbp SCSI command descriptor block.

scsi_hba_pkt_free() scsi_hba_pkt_free() frees the space allocated for the scsi_pkt (9S)
structure.

RETURN VALUES scsi_hba_pkt_alloc() returns a pointer to the scsi_pkt structure, or
NULL if no space is available.

CONTEXT scsi_hba_pkt_alloc() can be called from user or interrupt context. Drivers
must not allow scsi_hba_pkt_alloc() to sleep if called from an interrupt
routine.

scsi_hba_pkt_free() can be called from user or interrupt context.

SEE ALSO tran_init_pkt (9E) , scsi_address (9S) , scsi_pkt (9S)

Writing Device Drivers

604 SunOS 5.8 Last modified 1 Nov 1993

Kernel Functions for Drivers scsi_hba_probe(9F)

NAME scsi_hba_probe – default SCSI HBA probe function

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_hba_probe (struct scsi_device *sd, int(* waitfunc)(void));

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

PARAMETERS sd Pointer to a scsi_device (9S) structure describing the
target.

waitfunc NULL_FUNCor SLEEP_FUNC.

DESCRIPTION scsi_hba_probe() is a function providing the semantics of scsi_probe (9F).
An HBA driver may call scsi_hba_probe() from its tran_tgt_probe (9E)
entry point, to probe for the existence of a target on the SCSI bus, or the HBA
may set tran_tgt_probe (9E) to point to scsi_hba_probe directly.

RETURN VALUES See scsi_probe (9F) for the return values from scsi_hba_probe() .

CONTEXT scsi_hba_probe() should only be called from the HBA’s
tran_tgt_probe (9E) entry point.

SEE ALSO tran_tgt_probe (9E), scsi_probe (9F), scsi_device (9S)

Writing Device Drivers

Last modified 30 Aug 1995 SunOS 5.8 605

scsi_hba_tran_alloc(9F) Kernel Functions for Drivers

NAME scsi_hba_tran_alloc, scsi_hba_tran_free – allocate and free transport structures

SYNOPSIS #include <sys/scsi/scsi.h>
scsi_hba_tran_t *scsi_hba_tran_alloc (dev_info_t *dip, int flags);

void scsi_hba_tran_free (scsi_hba_tran_t *hba_tran);

INTERFACE
LEVEL

Solaris architecture specific (Solaris DDI).

PARAMETERS dip Pointer to a dev_info structure, defining the HBA driver
instance.

flag Flag modifiers. The only possible flag value is
SCSI_HBA_CANSLEEP(memory allocation may sleep).

hba_tran Pointer to a scsi_hba_tran (9S) structure.

DESCRIPTION
scsi_hba_tran_alloc() scsi_hba_tran_alloc() allocates a scsi_hba_tran (9S) structure for a

HBA driver. The HBA must use this structure to register its transport vectors
with the system by using scsi_hba_attach_setup (9F) .

If the flag SCSI_HBA_CANSLEEPis set in flags , scsi_hba_tran_alloc()
may sleep when allocating resources; otherwise it may not sleep, and callers
should be prepared to deal with allocation failures.

scsi_hba_tran_free() scsi_hba_tran_free() is used to free the scsi_hba_tran (9S) structure
allocated by scsi_hba_tran_alloc() .

RETURN VALUES scsi_hba_tran_alloc() returns a pointer to the allocated transport
structure, or NULL if no space is available.

CONTEXT scsi_hba_tran_alloc() can be called from user or interrupt context.
Drivers must not allow scsi_hba_tran_alloc() to sleep if called from
an interrupt routine.

scsi_hba_tran_free() can be called from user or interrupt context.

SEE ALSO scsi_hba_attach_setup (9F) , scsi_hba_tran (9S)

Writing Device Drivers

606 SunOS 5.8 Last modified 30 Aug 1995

Kernel Functions for Drivers scsi_ifgetcap(9F)

NAME scsi_ifgetcap, scsi_ifsetcap – get/set SCSI transport capability

SYNOPSIS #include <sys/scsi/scsi.h>
int scsi_ifgetcap (struct scsi_address *ap, char *cap, int whom);

int scsi_ifsetcap (struct scsi_address *ap, char *cap, int value, int whom);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS ap Pointer to the scsi_address structure.

cap Pointer to the string capability identifier.

value Defines the new state of the capability.

whom Determines if all targets or only the specified target is
affected.

DESCRIPTION The target drivers use scsi_ifsetcap() to set the capabilities of the host
adapter driver. A cap is a name-value pair whose name is a null terminated
character string and whose value is an integer. The current value of a capability
can be retrieved using scsi_ifgetcap() . If whom is 0 all targets are
affected, else the target specified by the scsi_address structure pointed
to by ap is affected.

A device may support only a subset of the capabilities listed below. It is the
responsibility of the driver to make sure that these functions are called with a
cap supported by the device.

The following capabilities have been defined:
dma-max Maximum dma transfer size supported by host

adapter.

msg-out Message out capability supported by host
adapter: 0 disables, 1 enables.

disconnect Disconnect capability supported by host adapter:
0 disables, 1 enables.

synchronous Synchronous data transfer capability supported
by host adapter: 0 disables, 1 enables.

wide-xfer Wide transfer capability supported by host
adapter: 0 disables, 1 enables.

Last modified 22 Apr 1999 SunOS 5.8 607

scsi_ifgetcap(9F) Kernel Functions for Drivers

parity Parity checking by host adapter: 0 disables,
1 enables.

initiator-id The host’s bus address is returned.

untagged-qing The host adapter’s capability to support internal
queueing of commands without tagged queueing:
0 disables, 1 enables.

tagged-qing The host adapter’s capability to support tagged
queuing: 0 disables, 1 enables.

auto-rqsense The host adapter’s capability to support auto
request sense on check conditions: 0 disables,
1 enables.

sector-size The target driver sets this capability to
inform the HBA of the granularity, in
bytes, of DMA breakup; the HBA ’s DMA
limit structure will be set to reflect this
limit (see ddi_dma_lim_sparc (9S) or
ddi_dma_lim_x86 (9S)). It should be set to
the physical disk sector size. This capability
defaults to 512 .

total-sectors The target driver sets this capability to inform
the HBA of the total number of sectors on the
device, as returned from the SCSI get capacity
command. This capability must be set before the
target driver “gets” the geometry capability.

geometry This capability returns the HBA geometry of
a target disk. The target driver must set the
total-sectors capability before “getting” the
geometry capability. The geometry is returned
as a 32-bit value: the upper 16 bits represent the
number of heads per cylinder; the lower 16 bits
represent the number of sectors per track. The
geometry capability cannot be “set.”

If geometry is not relevant or appropriate for this
target disk, because (for example) the HBA BIOS
supports Logical Block Addressing for this drive,
it is acceptable for scsi_ifgetcap() to return
-1 , indicating that the geometry is not defined.
This will cause failure of attempts to retreive the

608 SunOS 5.8 Last modified 22 Apr 1999

Kernel Functions for Drivers scsi_ifgetcap(9F)

"virtual geometry" from the target driver (the
DKIOCG_VIRTGEOMioctl will fail). See dkio (7I)
for more information about DKIOCG_VIRTGEOM.

reset-notification The host adapter’s capability to support bus
reset notification: 0 disables, 1 enables. Refer to
scsi_reset_notify (9F) .

linked
-cmds

The host adapter’s capability to support linked
commands: 0 disables, 1 enables.

qfull-retries This capability enables/disables QUEUE
FULL handling. If 0 , the HBA will not retry
a command when a QUEUE FULLstatus is
returned. If greater than 0 , then the HBA driver
will retry the command at specified number
of times at an interval determined by the
"qfull-retry-interval ". The range for
qfull-retries is 0-255 .

qfull-retry-interval This capability sets the retry interval (in
ms) for commands that were completed
with a QUEUE FULLstatus. The range for
qfull-retry-intervals is 0-1000 ms.

RETURN VALUES scsi_ifsetcap() returns:
1 If the capability was successfully set to the new value.

0 If the capability is not variable.

-1 If the capability was not defined, or setting the capability to a new
value failed.

scsi_ifgetcap() returns the current value of a capability, or:
-1 If the capability was not defined.

CONTEXT These functions can be called from user or interrupt context.

EXAMPLES EXAMPLE 1 Using scsi_ifgetcap()

un->un_arq_enabled =
((scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 1, 1) == 1)? 1: 0);

if (scsi_ifsetcap(&devp->sd_address, "tagged-qing", 1, 1) == 1) {

Last modified 22 Apr 1999 SunOS 5.8 609

scsi_ifgetcap(9F) Kernel Functions for Drivers

un->un_dp->options |= SD_QUEUEING;
un->un_throttle = MAX_THROTTLE;

} else if (scsi_ifgetcap(&devp->sd_address, "untagged-qing", 0) == 1) {
un->un_dp->options |= SD_QUEUEING;
un->un_throttle = 3;

} else {
un->un_dp->options &= ~SD_QUEUEING;

un->un_throttle = 1;
}

SEE ALSO scsi_reset_notify (9F) , ddi_dma_lim_sparc (9S) ,
ddi_dma_lim_x86 (9S) , scsi_address (9S) , scsi_arq_status (9S)

Writing Device Drivers

610 SunOS 5.8 Last modified 22 Apr 1999

Kernel Functions for Drivers scsi_init_pkt(9F)

NAME scsi_init_pkt – prepare a complete SCSI packet

SYNOPSIS #include <sys/scsi/scsi.h>

struct scsi_pkt *scsi_init_pkt (struct scsi_address *ap, struct scsi_pkt *pktp, struct buf
bp, int cmdlen, int statuslen, int privatelen, int flags, int (callback)(caddr_t) , caddr_t arg);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS ap Pointer to a scsi_address (9S) structure.

pktp A pointer to a scsi_pkt (9S) structure.

bp Pointer to a buf (9S) structure.

cmdlen The required length for the SCSI command descriptor block
(CDB) in bytes.

statuslen The required length for the SCSI status completion block
(SCB) in bytes.

privatelen The required length for the pkt_private area.

flags Flags modifier.

callback A pointer to a callback function, NULL_FUNC, or
SLEEP_FUNC.

arg The callback function argument.

DESCRIPTION Target drivers use scsi_init_pkt() to request the transport layer to allocate
and initialize a packet for a SCSI command which possibly includes a data
transfer. If pktp is NULL, a new scsi_pkt (9S) is allocated using the HBA
driver’s packet allocator. The bp is a pointer to a buf (9S) structure. If bp is
non-NULLand contains a valid byte count, the buf (9S) structure is also set up
for DMA transfer using the HBA driver DMA resources allocator. When bp is
allocated by scsi_alloc_consistent_buf (9F), the PKT_CONSISTENT
bit must be set in the flags argument to ensure proper operation. If privatelen
is non-zero then additional space is allocated for the pkt_private area of the
scsi_pkt (9S). On return pkt_private points to this additional space. Otherwise
pkt_private is a pointer that is typically used to store the bp during execution of
the command. In this case pkt_private is NULLon return.

The flags argument is a set of bit flags. Possible bits include:
PKT_CONSISTENT This must be set if the DMA buffer was allocated

using scsi_alloc_consistent_buf (9F).
In this case, the HBA driver will guarantee
that the data transfer is properly synchronized

Last modified 30 Aug 1995 SunOS 5.8 611

scsi_init_pkt(9F) Kernel Functions for Drivers

before performing the target driver’s command
completion callback.

PKT_DMA_PARTIAL This may be set if the driver can accept a partial
DMA mapping. If set, scsi_init_pkt()
will allocate DMA resources with the
DDI_DMA_PARTIALbit set in the dmar_flag
element of the ddi_dma_req (9S) structure.
The pkt_resid field of the scsi_pkt (9S)
structure may be returned with a non-zero value,
which indicates the number of bytes for which
scsi_init_pkt() was unable to allocate DMA
resources. In this case, a subsequent call to
scsi_init_pkt() may be made for the same
pktp and bp to adjust the DMA resources to the
next portion of the transfer. This sequence should
be repeated until the pkt_resid field is returned
with a zero value, which indicates that with
transport of this final portion the entire original
request will have been satisfied.

When calling scsi_init_pkt() to move already-allocated DMA resources,
the cmdlen, statuslen and privatelen fields are ignored.

The last argument arg is supplied to the callback function when it is invoked.

callback indicates what the allocator routines should do when resources are not
available:
NULL_FUNC Do not wait for resources. Return a NULLpointer.

SLEEP_FUNC Wait indefinitely for resources.

Other Values callback points to a function which is called when
resources may have become available. callback
must return either 0 (indicating that it attempted
to allocate resources but again failed to do so),
in which case it is put back on a list to be called
again later, or 1 indicating either success in
allocating resources or indicating that it no longer
cares for a retry.

When allocating DMA resources, scsi_init_pkt() returns the scsi_pkt
field pkt_resid as the number of residual bytes for which the system was

612 SunOS 5.8 Last modified 30 Aug 1995

Kernel Functions for Drivers scsi_init_pkt(9F)

unable to allocate DMA resources. A pkt_resid of 0 means that all necessary
DMA resources were allocated.

RETURN VALUES scsi_init_pkt() returns NULL if the packet or DMA resources could not
be allocated. Otherwise, it returns a pointer to an initialized scsi_pkt (9S). If
pktp was not NULL the return value will be pktp on successful initialization of
the packet.

CONTEXT If callback is SLEEP_FUNC, then this routine may only be called from user-level
code. Otherwise, it may be called from either user or interrupt level. The callback
function may not block or call routines that block.

EXAMPLES EXAMPLE 1 Allocating a Packet Without DMA Resources Attached

To allocate a packet without DMA resources attached, use:
pkt = scsi_init_pkt(&devp->sd_address, NULL, NULL, CDB_GROUP1,

STATUS_LEN, sizeof (struct my_pkt_private *), 0,
sd_runout, sd_unit);

EXAMPLE 2 Allocating a Packet With DMA Resources Attached

To allocate a packet with DMA resources attached use:
pkt = scsi_init_pkt(&devp->sd_address, NULL, bp, CDB_GROUP1,

STATUS_LEN, 0, 0, NULL_FUNC, NULL);

EXAMPLE 3 Attaching DMA Resources to a Preallocated Packet

To attach DMA resources to a preallocated packet, use:
pkt = scsi_init_pkt(&devp->sd_address, old_pkt, bp, 0,

0, 0, 0, sd_runout, (caddr_t) sd_unit);

EXAMPLE 4 Allocating a Packet with Consistent DMA Resources Attached

Since the packet is already allocated the cmdlen, statuslen and privatelen are 0. To
allocate a packet with consistent DMA resources attached, use:

bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);

pkt = scsi_init_pkt(&devp->sd_address, NULL, bp, CDB_GROUP0,
STATUS_LEN, sizeof (struct my_pkt_private *), PKT_CONSISTENT,
SLEEP_FUNC, NULL);

EXAMPLE 5 Allocating a Packet with Partial DMA Resources Attached

To allocate a packet with partial DMA resources attached, use:
my_pkt = scsi_init_pkt(&devp->sd_address, NULL, bp, CDB_GROUP0,

STATUS_LEN, sizeof (struct buf *), PKT_DMA_PARTIAL,
SLEEP_FUNC, NULL);

Last modified 30 Aug 1995 SunOS 5.8 613

scsi_init_pkt(9F) Kernel Functions for Drivers

SEE ALSO scsi_alloc_consistent_buf (9F), scsi_destroy_pkt (9F),
scsi_dmaget (9F), scsi_pktalloc (9F), buf (9S), ddi_dma_req (9S),
scsi_address (9S), scsi_pkt (9S)

Writing Device Drivers

NOTES If a DMA allocation request fails with DDI_DMA_NOMAPPING,the B_ERRORflag
will be set in bp, and the b_error field will be set to EFAULT.

If a DMA allocation request fails with DDI_DMA_TOOBIG, the B_ERRORflag will
be set in bp, and the b_error field will be set to EINVAL.

614 SunOS 5.8 Last modified 30 Aug 1995

Kernel Functions for Drivers scsi_log(9F)

NAME scsi_log – display a SCSI-device-related message

SYNOPSIS #include <sys/scsi/scsi.h>
#include <sys/cmn_err.h>

void scsi_log (dev_info_t *dip, char *drv_name, uint_t level, const char *fmt, ...);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dip Pointer to the dev_info structure.

drv_name String naming the device.

level Error level.

fmt Display format.

DESCRIPTION scsi_log() is a utility function that displays a message via the cmn_err (9F)
routine. The error levels that can be passed in to this function are CE_PANIC,
CE_WARN, CE_NOTE, CE_CONT, and SCSI_DEBUG. The last level is used to assist
in displaying debug messages to the console only. drv_name is the short name
by which this device is known; example disk driver names are sd and cmdk.
If the dev_info_t pointer is NULL, then the drv_name will be used with no unit
or long name.

If the first character in format is an ’!’ (exclamation point), the message goes only
to the system buffer. If the first character in format is a ’^CE_CONT,the message
is always sent to the system buffer, but is only written to the console when the
system has been booted in verbose mode. See kernel (1M). If neither condition
is met, the ’?’ character has no effect and is simply ignored.

All formatting conversions in use by cmn_err() also work with scsi_log() .

CONTEXT scsi_log() may be called from user or interrupt context.

EXAMPLES EXAMPLE 1

scsi_log(dev, "Disk Unit ", CE_PANIC, "Bad Value %d\n", foo);

generates:

PANIC: /eisa/aha@330,0/cmdk@0,0 (Disk Unit 0): Bad Value 5

This is followed by a PANIC.
EXAMPLE 2

scsi_log(dev, "sd", CE_WARN, "Label Bad\n");

generates:

Last modified 7 Jun 1993 SunOS 5.8 615

scsi_log(9F) Kernel Functions for Drivers

WARNING: /sbus@1,f8000000/esp@0,8000000/sd@1,0 (sd1): Label Bad

EXAMPLE 3

scsi_log((dev_info_t *) NULL, "Disk Unit ", CE_NOTE, "Disk Ejected\n");

generates:
Disk Unit: Disk Ejected

EXAMPLE 4

scsi_log(cmdk_unit, "Disk Unit ", CE_CONT, "Disk Inserted\n");

generates:
Disk Inserted

EXAMPLE 5

scsi_log(sd_unit, "sd", SCSI_DEBUG, "We really got here\n");

generates (only to the console):
DEBUG: sd1: We really got here

SEE ALSO kernel (1M), sd (7D), cmn_err (9F), scsi_errmsg (9F)

Writing Device Drivers

616 SunOS 5.8 Last modified 7 Jun 1993

Kernel Functions for Drivers scsi_pktalloc(9F)

NAME scsi_pktalloc, scsi_resalloc, scsi_pktfree, scsi_resfree – SCSI packet utility routines

SYNOPSIS #include <sys/scsi/scsi.h>
struct scsi_pkt *scsi_pktalloc (struct scsi_address*ap, intcmdlen, intstatuslen, int(*
callback)(void));

struct scsi_pkt *scsi_resalloc (struct scsi_address*ap, intcmdlen, intstatuslen,
opaque_tdmatoken, int(* callback)(void));

voidscsi_pktfree (struct scsi_pkt*pkt);

voidscsi_resfree (struct scsi_pkt*pkt);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS ap Pointer to a scsi_address structure.

cmdlen The required length for the SCSI command descriptor block
(CDB) in bytes.

statuslen The required length for the SCSI status completion block
(SCB) in bytes.

dmatoken Pointer to an implementation-dependent object.

callback A pointer to a callback function, or NULL_FUNCor
SLEEP_FUNC.

pkt Pointer to a scsi_pkt (9S) structure.

DESCRIPTION scsi_pktalloc() requests the host adapter driver to allocate a command
packet. For commands that have a data transfer associated with them,
scsi_resalloc() should be used.

ap is a pointer to a scsi_address structure. Allocator routines use it to
determine the associated host adapter.

cmdlen is the required length for the SCSI command descriptor block. This block
is allocated such that a kernel virtual address is established in the pkt_cdbp
field of the allocated scsi_pkt structure.

statuslen is the required length for the SCSI status completion block. The address
of the allocated block is placed into the pkt_scbp field of the scsi_pkt
structure.

Last modified 21 Dec 1992 SunOS 5.8 617

scsi_pktalloc(9F) Kernel Functions for Drivers

dmatoken is a pointer to an implementation dependent object which defines the
length, direction, and address of the data transfer associated with this SCSI
packet (command). The dmatoken must be a pointer to a buf (9S) structure. If
dmatoken is NULL , no DMA resources are required by this SCSI command, so
none are allocated. Only one transfer direction is allowed per command. If there
is an unexpected data transfer phase (either no data transfer phase expected,
or the wrong direction encountered), the command is terminated with the
pkt_reason set to CMD_DMA_DERR. dmatoken provides the information to
determine if the transfer count is correct.

callback indicates what the allocator routines should do when resources are not
available:
NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

Other Values callback points to a function which is called when resources
may have become available. callback must return either 0
(indicating that it attempted to allocate resources but again
failed to do so), in which case it is put back on a list to be
called again later, or 1 indicating either success in allocating
resources or indicating that it no longer cares for a retry.

scsi_pktfree() frees the packet.

scsi_resfree() free all resources held by the packet and the packet itself.

RETURN VALUES Both allocation routines return a pointer to a scsi_pkt structure on success,
or NULLon failure.

CONTEXT If callback is SLEEP_FUNC, then this routine may only be called from user-level
code. Otherwise, it may be called from either user or interrupt level. The callback
function may not block or call routines that block. Both deallocation routines can
be called from user or interrupt context.

SEE ALSO scsi_dmafree (9F) , scsi_dmaget (9F) , buf (9S) , scsi_pkt (9S)

Writing Device Drivers

618 SunOS 5.8 Last modified 21 Dec 1992

Kernel Functions for Drivers scsi_poll(9F)

NAME scsi_poll – run a polled SCSI command on behalf of a target driver

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_poll (struct scsi_pkt *pkt);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS pkt Pointer to the scsi_pkt (9S) structure.

DESCRIPTION scsi_poll() requests the host adapter driver to run a polled command.
Unlike scsi_transport (9F) which runs commands asynchronously,
scsi_poll() runs commands to completion before returning. If the pkt_time
member of pkt is 0, the value of pkt_time is defaulted to SCSI_POLL_TIMEOUT
to prevent an indefinite hang of the system.

RETURN VALUES scsi_poll() returns:
0 command completed successfully.

–1 command failed.

CONTEXT scsi_poll() can be called from user or interrupt level. This function should
not be called when the caller is executing timeout (9F) in the context of a thread.

SEE ALSO makecom(9F), scsi_transport (9F), scsi_pkt (9S)

Writing Device Drivers

WARNINGS Since scsi_poll() runs commands to completion before returning, it
may require more time than is desirable when called from interrupt context.
Therefore, calling scsi_poll from interrupt context is not recommended.

Last modified 30 Aug 1995 SunOS 5.8 619

scsi_probe(9F) Kernel Functions for Drivers

NAME scsi_probe – utility for probing a scsi device

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_probe (struct scsi_device *devp, int (*waitfunc);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS devp Pointer to a scsi_device (9S) structure

waitfunc NULL_FUNCor SLEEP_FUNC

DESCRIPTION scsi_probe() determines whether a target/lun is present and sets up the
scsi_device structure with inquiry data.

scsi_probe() uses the SCSI Inquiry command to test if the device exists. It
may retry the Inquiry command as appropriate. If scsi_probe() is successful,
it will allocate space for the scsi_inquiry structure and assign the address to
the sd_inq member of the scsi_device (9S) structure. scsi_probe() will
then fill in this scsi_inquiry (9S) structure and return SCSIPROBE_EXISTS.
If scsi_probe() is unsuccessful, it returns SCSIPROBE_NOMEMin spite of
callback set to SLEEP_FUNC.

scsi_unprobe (9F) is used to undo the effect of scsi_probe() .

If the target is a non-CCS device, SCSIPROBE_NONCCSwill be returned.

waitfunc indicates what the allocator routines should do when resources are
not available; the valid values are:
NULL_FUNC Do not wait for resources. Return SCSIPROBE_NOMEMor

SCSIPROBE_FAILURE

SLEEP_FUNC Wait indefinitely for resources.

RETURN VALUES scsi_probe() returns:
SCSIPROBE_BUSY Device exists but is currently busy.

SCSIPROBE_EXISTS Device exists and inquiry data is valid.

SCSIPROBE_FAILURE Polled command failure.

SCSIPROBE_NOMEM No space available for structures.

SCSIPROBE_NOMEM_CB No space available for structures but callback
request has been queued.

SCSIPROBE_NONCCS Device exists but inquiry data is not valid.

SCSIPROBE_NORESP Device does not respond to an INQUIRY.

620 SunOS 5.8 Last modified 24 Feb 1994

Kernel Functions for Drivers scsi_probe(9F)

CONTEXT scsi_probe() is normally called from the target driver’s probe (9E) or
attach (9E) routine. If waitfunc is SLEEP_FUNC,then this routine may only
be called from user-level code. Otherwise, it may be called from either user or
interrupt level.

EXAMPLES CODE EXAMPLE 1 Using scsi_probe()

switch (scsi_probe(devp, NULL_FUNC)) {
default:
case SCSIPROBE_NORESP:
case SCSIPROBE_NONCCS:
case SCSIPROBE_NOMEM:
case SCSIPROBE_FAILURE:
case SCSIPROBE_BUSY:

break;
case SCSIPROBE_EXISTS:

switch (devp->sd_inq->inq_dtype) {
case DTYPE_DIRECT:

rval = DDI_PROBE_SUCCESS;
break;

case DTYPE_RODIRECT:
rval = DDI_PROBE_SUCCESS;
break;

case DTYPE_NOTPRESENT:
default:

break;
}

}
scsi_unprobe(devp);

SEE ALSO attach (9E), probe (9E), scsi_slave (9F), scsi_unprobe (9F),
scsi_unslave (9F), scsi_device (9S), scsi_inquiry (9S)

ANSI Small Computer System Interface-2 (SCSI-2)

Writing Device Drivers

NOTES A waitfunc function other than NULL_FUNCor SLEEP_FUNCis not supported
and may have unexpected results.

Last modified 24 Feb 1994 SunOS 5.8 621

scsi_reset(9F) Kernel Functions for Drivers

NAME scsi_reset – reset a SCSI bus or target

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_reset (struct scsi_address *ap, int level);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS ap Pointer to the scsi_address structure.

level The level of reset required.

DESCRIPTION scsi_reset() asks the host adapter driver to reset the SCSI bus or a SCSI
target as specified by level. If level equals RESET_ALL, the SCSI bus is reset. If it
equals RESET_TARGET, ap is used to determine the target to be reset.

On a successful reset, the pkt_reason is set to CMD_RESETand
pkt_statistics is OR’d with STAT_BUS_RESETor STAT_DEV_RESET.

RETURN VALUES scsi_reset() returns:
1 Upon success.

0 Upon failure.

CONTEXT scsi_reset() can be called from user or interrupt context.

SEE ALSO tran_reset (9E), tran_reset_notify (9E), scsi_abort (9F)

Writing Device Drivers

622 SunOS 5.8 Last modified 30 Aug 1995

Kernel Functions for Drivers scsi_reset_notify(9F)

NAME scsi_reset_notify – notify target driver of bus resets

SYNOPSIS #include <sys/scsi/scsi.h>

void scsi_reset_notify (struct scsi_address *ap, int flag, void (* callback)(caddr_t) ,
caddr_t arg);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS ap Pointer to the scsi_address structure.

flag A flag indicating registration or cancellation of the
notification request.

callback A pointer to the target driver’s reset notification function.

arg The callback function argument.

DESCRIPTION scsi_reset_notify() is used by a target driver when it needs to be notified
of a bus reset. The bus reset could be issued by the transport layer (e.g. the host
bus adapter (HBA) driver or controller) or by another initiator.

The argument flag is used to register or cancel the notification. The supported
values for flag are as follows:
SCSI_RESET_NOTIFY Register callback as the reset notification function

for the target driver.

SCSI_RESET_CANCEL Cancel the reset notification request.

Target drivers can find out whether the HBA driver and controller support
reset notification by checking the reset-notification capability using
the scsi_ifgetcap (9F) function.

RETURN VALUES If flag is SCSI_RESET_NOTIFY, scsi_reset_notify() returns:
DDI_SUCCESS The notification request has been accepted.

DDI_FAILURE The transport layer does not support reset
notification or could not accept this request.

If flag is SCSI_RESET_CANCEL, scsi_reset_notify() returns:
DDI_SUCCESS The notification request has been canceled.

DDI_FAILURE No notification request was registered.

CONTEXT scsi_reset_notify() can be called from user or interrupt context.

Last modified 8 Sep 1994 SunOS 5.8 623

scsi_reset_notify(9F) Kernel Functions for Drivers

SEE ALSO scsi_address (9S), scsi_ifgetcap (9F)

Writing Device Drivers

624 SunOS 5.8 Last modified 8 Sep 1994

Kernel Functions for Drivers scsi_setup_cdb(9F)

NAME scsi_setup_cdb – setup SCSI command descriptor block (CDB)

SYNOPSIS int scsi_setup_cdb (union scsi_cdb *cdbp, uchar_t cmd, uint_t addr, uint_t cnt, uint_t
othr_cdb_data);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS cdbp Pointer to command descriptor block.

cmd The first byte of the SCSI group 0, 1, 2, 4, or 5 CDB.

addr Pointer to the location of the data.

cnt Data transfer length in units defined by the SCSI device type.
For sequential devices cnt is the number of bytes. For block
devices, cnt is the number of blocks.

othr_cdb_data Additional CDB data.

DESCRIPTION scsi_setup_cdb() function initializes a group 0, 1, 2, 4, or 5 type of command
descriptor block pointed to by cdbp using cmd, addr, cnt, othr_cdb_data.

addr should be set to 0 for commands having no addressing information (for
example, group 0 READ command for sequential access devices). othr_cdb_data
should be additional CDB data for Group 4 commands; otherwise, it should
be set to 0.

scsi_setup_cdb() function does not set the LUN bits in CDB[1] as the
makecom(9F) functions do. Also, the fixed bit for sequential access device
commands is not set.

RETURN VALUES scsi_setup_cdb() returns:
1 Upon success.

0 Upon failure.

CONTEXT These functions can be called from a user or interrupt context.

SEE ALSO makecom(9F), scsi_pkt (9S)

Writing Device Drivers

American National Standard Small Computer System Interface-2 (SCSI-2)

American National Standard SCSI-3 Primary Commands (SPC)

Last modified 23 Jun 1997 SunOS 5.8 625

scsi_slave(9F) Kernel Functions for Drivers

NAME scsi_slave – utility for SCSI target drivers to establish the presence of a target

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_slave (struct scsi_device *devp, int (* callback)(void));

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS devp Pointer to a scsi_device (9S) structure.

callback Pointer to a callback function, NULL_FUNCor SLEEP_FUNC.

DESCRIPTION scsi_slave() checks for the presence of a SCSI device. Target drivers may use
this function in their probe (9E) routines. scsi_slave() determines if the
device is present by using a Test Unit Ready command followed by an Inquiry
command. If scsi_slave() is successful, it will fill in the scsi_inquiry
structure, which is the sd_inq member of the scsi_device (9S) structure, and
return SCSI_PROBE_EXISTS. This information can be used to determine if the
target driver has probed the correct SCSI device type. callback indicates what the
allocator routines should do when DMA resources are not available:
NULL_FUNC Do not wait for resources. Return a NULL pointer.

SLEEP_FUNC Wait indefinitely for resources.

Other Values callback points to a function which is called when resources
may have become available. callback must return either 0
(indicating that it attempted to allocate resources but again
failed to do so), in which case it is put back on a list to be
called again later, or 1 indicating either success in allocating
resources or indicating that it no longer cares for a retry.

RETURN VALUES scsi_slave() returns:
SCSIPROBE_NOMEM No space available for structures.

SCSIPROBE_EXISTS Device exists and inquiry data is
valid.

SCSIPROBE_NONCCS Device exists but inquiry data is
not valid.

SCSIPROBE_FAILURE Polled command failure.

SCSIPROBE_NORESP No response to TEST UNIT READY.

626 SunOS 5.8 Last modified 21 Dec 1992

Kernel Functions for Drivers scsi_slave(9F)

CONTEXT scsi_slave() is normally called from the target driver’s probe (9E) or
attach (9E) routine. If callback is SLEEP_FUNC, then this routine may only be
called from user-level code. Otherwise, it may be called from either user or
interrupt level. The callback function may not block or call routines that block.

SEE ALSO attach (9E), probe (9E), ddi_iopb_alloc (9F), makecom(9F),
scsi_dmaget (9F), scsi_ifgetcap (9F), scsi_pktalloc (9F),
scsi_poll (9F), scsi_probe (9F), scsi_device (9S)

ANSI Small Computer System Interface-2 (SCSI-2)

Writing Device Drivers

Last modified 21 Dec 1992 SunOS 5.8 627

scsi_sync_pkt(9F) Kernel Functions for Drivers

NAME scsi_sync_pkt – synchronize CPU and I/O views of memory

SYNOPSIS #include <sys/scsi/scsi.h>

void scsi_sync_pkt (struct scsi_pkt *pktp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS pktp Pointer to a scsi_pkt (9S) structure.

DESCRIPTION scsi_sync_pkt() is used to selectively synchronize a CPU’s or device’s view
of the data associated with the SCSI packet that has been mapped for I/O.
This may involve operations such as flushes of CPU or I/O caches, as well as
other more complex operations such as stalling until hardware write buffers
have drained.

This function need only be called under certain circumstances. When a
SCSI packet is mapped for I/O using scsi_init_pkt (9F) and destroyed
using scsi_destroy_pkt (9F), then an implicit scsi_sync_pkt() will
be performed. However, if the memory object has been modified by either
the device or a CPU after the mapping by scsi_init_pkt (9F), then a call
to scsi_sync_pkt() is required.

If the same scsi_pkt is reused for a data transfer from memory to a device,
then scsi_sync_pkt() must be called before calling scsi_transport (9F).
If the same packet is reused for a data transfer from a device to memory
scsi_sync_pkt() must be called after the completion of the packet but
before accessing the data in memory.

CONTEXT scsi_sync_pkt() may be called from user or interrupt context.

SEE ALSO tran_sync_pkt (9E), ddi_dma_sync (9F), scsi_destroy_pkt (9F),
scsi_init_pkt (9F), scsi_transport (9F), scsi_pkt (9S)

Writing Device Drivers

628 SunOS 5.8 Last modified 25 Feb 1994

Kernel Functions for Drivers scsi_transport(9F)

NAME scsi_transport – request by a SCSI target driver to start a command

SYNOPSIS #include <sys/scsi/scsi.h>

int scsi_transport (struct scsi_pkt *pkt);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS pkt Pointer to a scsi_pkt (9S) structure.

DESCRIPTION Target drivers use scsi_transport() to request the host adapter driver to
transport a command to the SCSI target device specified by pkt. The target driver
must obtain resources for the packet using scsi_init_pkt (9F) prior to calling
this function. The packet may be initialized using one of the makecom(9F)
functions. scsi_transport() does not wait for the SCSI command to
complete. See scsi_poll (9F) for a description of polled SCSI commands.
Upon completion of the SCSI command the host adapter calls the completion
routine provided by the target driver in the pkt_comp member of the scsi_pkt
pointed to by pkt.

RETURN VALUES scsi_transport() returns:
TRAN_ACCEPT The packet was accepted by the transport layer.

TRAN_BUSY The packet could not be accepted because
there was already a packet in progress for this
target/lun, the host adapter queue was full, or
the target device queue was full.

TRAN_BADPKT The DMA count in the packet exceeded the DMA
engine’s maximum DMA size.

TRAN_FATAL_ERROR A fatal error has occurred in the transport layer.

CONTEXT scsi_transport() can be called from user or interrupt context.

EXAMPLES CODE EXAMPLE 1 Using scsi_transport()

if ((status = scsi_transport(rqpkt)) != TRAN_ACCEPT) {
scsi_log(devp, sd_label, CE_WARN,

"transport of request sense pkt fails (0x%x)\n", status);
}

SEE ALSO tran_start (9E), makecom(9F), scsi_init_pkt (9F), scsi_pktalloc (9F),
scsi_poll (9F), scsi_pkt (9S)

Writing Device Drivers

Last modified 30 Aug 1995 SunOS 5.8 629

scsi_unprobe(9F) Kernel Functions for Drivers

NAME scsi_unprobe, scsi_unslave – free resources allocated during initial probing

SYNOPSIS #include <sys/scsi/scsi.h>
void scsi_unslave (struct scsi_device *devp);

void scsi_unprobe (struct scsi_device *devp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS devp Pointer to a scsi_device (9S) structure.

DESCRIPTION scsi_unprobe() and scsi_unslave() are used to free any resources
that were allocated on the driver’s behalf during scsi_slave (9F) and
scsi_probe (9F) activity.

CONTEXT scsi_unprobe() and scsi_unslave() may be called from either the user or
the interrupt levels.

SEE ALSO scsi_probe (9F) , scsi_slave (9F) , scsi_device (9S)

Writing Device Drivers

630 SunOS 5.8 Last modified 21 Dec 1992

Kernel Functions for Drivers scsi_vu_errmsg(9F)

NAME scsi_vu_errmsg – display a SCSI request sense message

SYNOPSIS #include <sys/scsi/scsi.h>

void scsi_vu_errmsg (struct scsi_pkt *pktp, char *drv_name, int severity, int
err_blkno, struct scsi_key_strings *cmdlist, struct scsi_extended_sense *sensep, struct
scsi_asq_key_strings *asc_list, char *(*decode_fru)(struct scsi_device*, char *, int, char));

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS The following parameters are supported:
devp Pointer to the scsi_device (9S) structure.

pktp Pointer to a scsi_pkt (9S) structure.

drv_name String used by scsi_log (9F).

severity Error severity level, maps to severity strings
below.

blkno Requested block number.

err_blkno Error block number.

cmdlist An array of SCSI command description strings.

sensep A pointer to a scsi_extended_sense (9S)
structure.

asc_list A pointer to a array of asc and ascq message
list.The list must be terminated with -1 asc value.

decode_fru This is a function pointer that will be called after
the entire sense information has been decoded.
The parameters will be the scsi_device structure
to identify the device. Second argument will
be a pointer to a buffer of length specified by
third argument. The fourth argument will be the
FRU byte. decode_fru may be NULL if no special
decoding is required. decode_fru is expected
to return pointer to a char string if decoding
possible and NULL if no decoding is possible.

DESCRIPTION This function is very similar to scsi_errmsg (9F) but allows decoding of
vendor-unique ASC/ASCQ and FRU information.

scsi_vu_errmsg() interprets the request sense information in the sensep
pointer and generates a standard message that is displayed using scsi_log (9F).
It first searches the list array for a matching vendor unique code if supplied. If it

Last modified 2 Feb 1998 SunOS 5.8 631

scsi_vu_errmsg(9F) Kernel Functions for Drivers

does not find one in the list then the standard list is searched. The first line of the
message is always a CE_WARN, with the continuation lines being CE_CONT. sensep
may be NULL, in which case no sense key or vendor information is displayed.

The driver should make the determination as to when to call this function based
on the severity of the failure and the severity level that the driver wants to report.

The scsi_device (9S) structure denoted by devp supplies the identification of
the device that requested the display. severity selects which string is used in the
“Error Level:” reporting, according to the table below:

Severity Value: String:
SCSI_ERR_ALL All
SCSI_ERR_UNKNOWN Unknown
SCSI_ERR_INFO Information
SCSI_ERR_RECOVERED Recovered
SCSI_ERR_RETRYABLE Retryable
SCSI_ERR_FATAL Fatal

blkno is the block number of the original request that generated the error.
err_blkno is the block number where the error occurred. cmdlist is a mapping table
for translating the SCSI command code in pktp to the actual command string.

The cmdlist is described in the structure below:

struct scsi_key_strings {
int key;
char *message;

};

For a basic SCSI disk, the following list is appropriate:

static struct scsi_key_strings scsi_cmds[] = {
0x00, "test unit ready",
0x01, "rezero/rewind",
0x03, "request sense",
0x04, "format",
0x07, "reassign",
0x08, "read",
0x0a, "write",
0x0b, "seek",
0x12, "inquiry",
0x15, "mode select",
0x16, "reserve",
0x17, "release",
0x18, "copy",
0x1a, "mode sense",
0x1b, "start/stop",
0x1e, "door lock",
0x28, "read(10)",
0x2a, "write(10)",
0x2f, "verify",
0x37, "read defect data",
0x3b, "write buffer",

632 SunOS 5.8 Last modified 2 Feb 1998

Kernel Functions for Drivers scsi_vu_errmsg(9F)

-1, NULL
};

CONTEXT scsi_vu_errmsg() may be called from user or interrupt context.

EXAMPLES EXAMPLE 1 Using scsi_vu_errmsg()

struct scsi_asq_key_strings cd_slist[] = {
0x81, 0, "Logical Unit is inaccessable",
-1, 0, NULL,

};

scsi_vu_errmsg(devp, pkt, "sd",
SCSI_ERR_INFO, bp->b_blkno, err_blkno,
sd_cmds, rqsense, cd_list,
my_decode_fru);

This generates the following console warning:
WARNING: /sbus@1,f8000000/esp@0,800000/sd@1,0 (sd1):

Error for Command: read Error Level: Informational
Requested Block: 23936 Error Block: 23936
Vendor: XYZ Serial Number: 123456
Sense Key: Unit Attention
ASC: 0x81 (Logical Unit is inaccessable), ASCQ: 0x0
FRU: 0x11 (replace LUN 1, located in slot 1)

SEE ALSO cmn_err (9F), scsi_errmsg (9F), scsi_log (9F), scsi_errmsg (9F),
scsi_asc_key_strings (9S), scsi_device (9S),
scsi_extended_sense (9S), scsi_pkt (9S)

Writing Device Drivers

STREAMS Programming Guide

Last modified 2 Feb 1998 SunOS 5.8 633

semaphore(9F) Kernel Functions for Drivers

NAME semaphore, sema_init, sema_destroy, sema_p, sema_p_sig, sema_v, sema_tryp –
semaphore functions

SYNOPSIS #include <sys/ksynch.h>
void sema_init (ksema_t *sp, uint_t val, char *name, ksema_type_t type, void *arg);

void sema_destroy (ksema_t *sp);

void sema_p(ksema_t *sp);

void sema_v(ksema_t *sp);

int sema_p_sig (ksema_t *sp);

int sema_tryp (ksema_t *sp);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS sp A pointer to a semaphore, type ksema_t .

val Initial value for semaphore.

name Descriptive string. This is obsolete and should be NULL .
(Non-NULL strings are legal, but they are a waste of kernel
memory.)

type Variant type of the semaphore. Currently, only
SEMA_DRIVERis supported.

arg Type-specific argument; should be NULL .

DESCRIPTION These functions implement counting semaphores as described by Dijkstra. A
semaphore has a value which is atomically decremented by sema_p() and
atomically incremented by sema_v() . The value must always be greater than
or equal to zero. If sema_p() is called and the value is zero, the calling thread is
blocked until another thread performs a sema_v() operation on the semaphore.

Semaphores are initialized by calling sema_init() . The argument, val , gives
the initial value for the semaphore. The semaphore storage is provided by the
caller but more may be dynamically allocated, if necessary, by sema_init()
. For this reason, sema_destroy() should be called before deallocating the
storage containing the semaphore.

sema_p_sig() decrements the semaphore, as does sema_p() . However, if
the semaphore value is zero, sema_p_sig() will return without decrementing
the value if a signal (that is, from kill (2)) is pending for the thread.

634 SunOS 5.8 Last modified 7 May 1997

Kernel Functions for Drivers semaphore(9F)

sema_tryp() will decrement the semaphore value only if it is greater than
zero, and will not block.

RETURN VALUES 0 sema_tryp() could not decrement the semaphore value because
it was zero.

1 sema_p_sig() was not able to decrement the semaphore value
and detected a pending signal.

CONTEXT These functions can be called from user or interrupt context, except for
sema_init() and sema_destroy() , which can be called from user context
only. None of these functions can be called from a high-level interrupt context.
In most cases, sema_v() and sema_p() should not be called from any
interrupt context.

If sema_p() is used from interrupt context, lower-priority interrupts will not
be serviced during the wait. This means that if the thread that will eventually
perform the sema_v() becomes blocked on anything that requires the
lower-priority interrupt, the system will hang.

For example, the thread that will perform the sema_v() may need to first
allocate memory. This memory allocation may require waiting for paging I/O to
complete, which may require a lower-priority disk or network interrupt to be
serviced. In general, situations like this are hard to predict, so it is advisable to
avoid waiting on semaphores or condition variables in an interrupt context.

SEE ALSO kill (2) , condvar (9F) , mutex (9F)

Writing Device Drivers

Last modified 7 May 1997 SunOS 5.8 635

sprintf(9F) Kernel Functions for Drivers

NAME sprintf – format characters in memory

SYNOPSIS #include <sys/ddi.h>

char *sprintf (char *buf, const char *fmt, ...););

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS buf Pointer to a character string.

fmt Pointer to a character string.

DESCRIPTION sprintf() builds a string in buf under the control of the format fmt. The format
is a character string with either plain characters, which are simply copied into
buf, or conversion specifications, each of which converts zero or more arguments,
again copied into buf. The results are unpredictable if there are insufficient
arguments for the format; excess arguments are simply ignored. It is the user’s
responsibility to ensure that enough storage is available for buf.

Conversion
Specifications

Each conversion specification is introduced by the %character, after which
the following appear in sequence:

An optional value specifying a minimum field width for numeric conversion.
The converted value will be right-justified and, if it has fewer characters than the
minimum, is padded with leading spaces unless the field width is an octal value,
then it is padded with leading zeroes.

An optional l (ll) specifying that a following d, D, o, O, x , X, or u conversion
character applies to a long (long long) integer argument. An l (ll) before
any other conversion character is ignored.

A character indicating the type of conversion to be applied:
d,D,o,O,x ,X,u

The integer argument is converted to signed decimal (d, D), unsigned octal
(o, O), unsigned hexadecimal (x , X) or unsigned decimal (u), respectively,
and copied. The letters abcdef are used for x and X conversion.

c
The character value of argument is copied.

b
This conversion uses two additional arguments. The first is an integer, and
is converted according to the base specified in the second argument. The
second argument is a character string in the form <base>[< arg> . . .].
The base supplies the conversion base for the first argument as a binary
value; \10 gives octal, \20 gives hexadecimal. Each subsequent <arg> is a
sequence of characters, the first of which is the bit number to be tested,

636 SunOS 5.8 Last modified 27 Sep 1991

Kernel Functions for Drivers sprintf(9F)

and subsequent characters, up to the next bit number or terminating null,
supply the name of the bit.

A bit number is a binary-valued character in the range 1-32. For each bit
set in the first argument, and named in the second argument, the bit names
are copied, separated by commas, and bracketed by < and >. Thus, the
following function call would generate reg=3<BitTwo,BitOne>\n in buf.

sprintf(buf, "reg=%b\n", 3, "\10\2BitTwo\1BitOne")

s
The argument is taken to be a string (character pointer), and characters from
the string are copied until a null character is encountered. If the character
pointer is NULL, the string <null string> is used in its place.

%
Copy a %; no argument is converted.

RETURN VALUES sprintf() returns its first argument, buf.

CONTEXT sprintf() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

Last modified 27 Sep 1991 SunOS 5.8 637

stoi(9F) Kernel Functions for Drivers

NAME stoi, numtos – convert between an integer and a decimal string

SYNOPSIS #include <sys/ddi.h>
int stoi (char **str);

void numtos (unsigned long num, char *s);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS str Pointer to a character string to be converted.

num Decimal number to be converted to a character string.

s Character buffer to hold converted decimal number.

DESCRIPTION
stoi() stoi() returns the integer value of a string of decimal numeric characters

beginning at **str . No overflow checking is done. *str is updated to point at
the last character examined.

numtos() numtos() converts a long into a null-terminated character string. No bounds
checking is done. The caller must ensure there is enough space to hold the result.

RETURN VALUES stoi() returns the integer value of the string str .

CONTEXT stoi() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

NOTES stoi() handles only positive integers; it does not handle leading minus signs.

638 SunOS 5.8 Last modified 3 Mar 1994

Kernel Functions for Drivers strchr(9F)

NAME strchr – find a character in a string

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>

char *strchr (const char *str, int chr);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS str Pointer to a string to be searched.

chr The character to search for.

DESCRIPTION strchr() returns a pointer to the first occurrence of chr in the string pointed
to by str.

RETURN VALUES strchr() returns a pointer to a character, or NULL, if the search fails.

CONTEXT This function can be called from user or interrupt context.

SEE ALSO strcmp (9F)

Writing Device Drivers

Last modified 27 Mar 1992 SunOS 5.8 639

strcmp(9F) Kernel Functions for Drivers

NAME strcmp, strncmp – compare two null-terminated strings.

SYNOPSIS #include <sys/ddi.h>
int strcmp (const char *s1, const char *s2);

int strncmp (const char *s1, const char *s2, size_t n);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS s1
, s2

Pointers to character strings.

n Count of characters to be compared.

DESCRIPTION
strcmp() strcmp() returns 0 if the strings are the same, or the integer value of the

expression (*s1 - *s2) for the last characters compared if they differ.

strncmp() strncmp() returns 0 if the first n characters of s1 and s2 are the same, or
(*s1 - *s2) for the last characters compared if they differ.

RETURN VALUES strcmp () returns 0 if the strings are the same, or (*s1 - *s2) for the last characters
compared if they differ.

strncmp() returns 0 if the first n characters of strings are the same, or (*s1 - *s2)
for the last characters compared if they differ.

CONTEXT These functions can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

640 SunOS 5.8 Last modified 1 Apr 1994

Kernel Functions for Drivers strcpy(9F)

NAME strcpy, strncpy – copy a string from one location to another.

SYNOPSIS #include <sys/ddi.h>
char *strcpy (char *dst, char *srs);

char *strncpy (char *dst, char *srs, size_t n);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS dst
, srs

Pointers to character strings.

n Count of characters to be copied.

DESCRIPTION
strcpy() strcpy() copies characters in the string srs to dst , terminating at the first null

character in srs , and returns dst to the caller. No bounds checking is done.

strncpy() strncpy() copies srs to dst , null-padding or truncating at n bytes, and returns
dst . No bounds checking is done.

RETURN VALUES strcpy() and strncpy() return dst .

CONTEXT strcpy() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

Last modified 11 Apr 1991 SunOS 5.8 641

strlen(9F) Kernel Functions for Drivers

NAME strlen – determine the number of non-null bytes in a string

SYNOPSIS #include <sys/ddi.h>

size_tstrlen (const char *s);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS s Pointer to a character string.

DESCRIPTION strlen() returns the number of non-null bytes in the string argument s.

RETURN VALUES strlen() returns the number of non-null bytes in s.

CONTEXT strlen() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

642 SunOS 5.8 Last modified 11 Apr 1991

Kernel Functions for Drivers strlog(9F)

NAME strlog – submit messages to the log driver

SYNOPSIS #include <sys/stream.h>
#include <sys/strlog.h>

#include <sys/log.h>

int strlog (short mid, short sid, char level, unsigned short flags, char *fmt, ...););

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS mid Identification number of the module or driver submitting
the message (in the case of a module, its mi_idnum value
from module_info (9S)).

sid Identification number for a particular minor device.

level Tracing level for selective screening of low priority messages.
Larger values imply less important information.

flags Valid flag values are:

SL_ERROR Message is for error logger.

SL_TRACE Message is for trace.

SL_NOTIFY Mail copy of message to system
administrator.

SL_CONSOLE Log message to console.

SL_FATAL Error is fatal.

SL_WARN Error is a warning.

SL_NOTE Error is a notice.

fmt printf (3C) style format string. %e, %g, and %Gformats are
not allowed but %s is supported.

DESCRIPTION strlog() expands the printf (3C) style format string passed to it, that is, the
conversion specifiers are replaced by the actual argument values in the format
string. The 32–bit representations of the arguments (up to NLORGARGS) follow
the string starting at the next 32–bit boundary following the string. Note that the
64–bit argument will be truncated to 32–bits here but will be fully represented in
the string.

The messages can be retrieved with the getmsg (2) system call. The flags
argument specifies the type of the message and where it is to be sent.
strace (1M) receives messages from the log driver and sends them to the

Last modified 11 Apr 1991 SunOS 5.8 643

strlog(9F) Kernel Functions for Drivers

standard output. strerr (1M) receives error messages from the log driver and
appends them to a file called /var/adm/streams/error. mm-dd, where
mm-dd identifies the date of the error message.

RETURN VALUES strlog() returns 0 if it fails to submit the message to the log (7D) driver
and 1 otherwise.

CONTEXT strlog() can be called from user or interrupt context.

FILES /var/adm/streams/error. mm-dd
Error messages dated mm-dd appended by strerr (1M) from the log driver

SEE ALSO strace (1M), strerr (1M), getmsg (2), log (7D), module_info (9S)

Writing Device Drivers

STREAMS Programming Guide

644 SunOS 5.8 Last modified 11 Apr 1991

Kernel Functions for Drivers strqget(9F)

NAME strqget – get information about a queue or band of the queue

SYNOPSIS #include <sys/stream.h>

int strqget (queue_t *q, qfields_t what, unsigned char pri, void *valp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q Pointer to the queue.

what Field of the queue structure for (or the specified priority band) to
return information about. Valid values are one of:

QHIWAT High water mark.

QLOWAT Low water mark.

QMAXPSZ Largest packet accepted.

QMINPSZ Smallest packet accepted.

QCOUNT Approximate size (in bytes) of data.

QFIRST First message.

QLAST Last message.

QFLAG Status.

pri Priority band of interest.

valp The address of where to store the value of the requested field.

DESCRIPTION strqget() gives drivers and modules a way to get information about a queue
or a particular band of a queue without directly accessing STREAMS data
structures, thus insulating them from changes in the implementation of these
data structures from release to release.

RETURN VALUES On success, 0 is returned and the value of the requested field is stored in the
location pointed to by valp. An error number is returned on failure.

CONTEXT strqget() can be called from user or interrupt context.

SEE ALSO freezestr (9F), strqset (9F), unfreezestr (9F), queue (9S)

Writing Device Drivers

STREAMS Programming Guide

NOTES The stream must be frozen using freezestr (9F) before calling strqget() .

Last modified 12 Nov 1996 SunOS 5.8 645

strqset(9F) Kernel Functions for Drivers

NAME strqset – change information about a queue or band of the queue

SYNOPSIS #include <sys/stream.h>

int strqset (queue_t *q, qfields_t what, unsigned char pri, intptr_t val);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q Pointer to the queue.

what Field of the queue structure (or the specified priority band) to return
information about. Valid values are one of:

QHIWAT High water mark.

QLOWAT Low water mark.

QMAXPSZ Largest packet accepted.

QMINPSZ Smallest packet accepted.

pri Priority band of interest.

val The value for the field to be changed.

DESCRIPTION strqset() gives drivers and modules a way to change information about a
queue or a particular band of a queue without directly accessing STREAMS
data structures.

RETURN VALUES On success, 0 is returned. EINVAL is returned if an undefined attribute is
specified.

CONTEXT strqset() can be called from user or interrupt context.

SEE ALSO freezestr (9F), strqget (9F), unfreezestr (9F), queue (9S)

Writing Device Drivers

STREAMS Programming Guide

NOTES The stream must be frozen using freezestr (9F) before calling strqset()

To set the values of QMINPSZand QMAXPSZfrom within a single call to
freezestr (9F) and unfreezestr (9F): when lowering the existing values,
set QMINPSZbefore setting QMAXPSZ; when raising the existing values, set
QMAXPSZbefore setting QMINPSZ.

646 SunOS 5.8 Last modified 11 Nov 1996

Kernel Functions for Drivers STRUCT_DECL(9F)

NAME STRUCT_DECL, SIZEOF_PTR, SIZEOF_STRUCT, STRUCT_BUF,
STRUCT_FADDR, STRUCT_FGET, STRUCT_FGETP, STRUCT_FSET,
STRUCT_FSETP, STRUCT_HANDLE, STRUCT_INIT, STRUCT_SIZE,
STRUCT_SET_HANDLE – 32-bit application data access macros

SYNOPSIS #include <sys/ddi.h>
#include <sys/sunddi.h>
STRUCT_DECL(structname, handle);

STRUCT_HANDLE(structname, handle);

void STRUCT_INIT (handle, model_t umodel);

void STRUCT_SET_HANDLE(handle, model_t umodel, void *addr);

STRUCT_FGET(handle, field);

STRUCT_FGETP(handle, field);

STRUCT_FSET(handle, field, val);

STRUCT_FSETP(handle, field, val);

<typeof field> *STRUCT_FADDR(handle, field);

struct structname *STRUCT_BUF(handle);

size_t SIZEOF_STRUCT(structname, umodel);

size_t SIZEOF_PTR(umodel);

size_t STRUCT_SIZE(handle);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS The macros take the following parameters:
structname The structure name (as would appear after the C

keyword “struct”) of the native form.

umodel A bit field containing either ILP32 model bit
(DATAMODEL_ILP32), or the LP64 model
get (DATAMODEL_ILP64). In an ioctl (9E) ,
these bits will be present in the flag parameter;
in a devmap(9E) , they will be present in
the model parameter mmap(9E) and can call
ddi_mmap_get_model (9F) to get the data model
of the current thread.

handle The variable name used to refer to a particular
instance of a structure which is handled by
these macros.

Last modified 23 Feb 1998 SunOS 5.8 647

STRUCT_DECL(9F) Kernel Functions for Drivers

field The field name within the structure contain
substructures. If the structures contain
substructures, unions, or arrays, then field can be
whether complex expression could occur after
the first “.” or “->” .

DESCRIPTION The above macros allow a device driver to access data consumed from a 32-bit
application regardless whether the driver was compiled to the ILP32 or LP64
data model. These macros effectively hide the difference between the data model
of the user application and the driver.

The macros can be broken up into two main categories, the macros that declare
and initialize structure handles and the macros that operate on these structures
using the structure handles.

Declaration and
Initialization Macros

The macros STRUCT_DECL() and STRUCT_HANDLE()declare structure
handles on the stack, whereas the macros STRUCT_INIT() and
STRUCT_SET_HANDLE()initialize the structure handles to point to an instance
of the native form structure.

The macros STRUCT_HANDLE()and STRUCT_SET_HANDLE()are used
to declare and initialize a structure handle to an existing data structure, for
example, ioctls within a STREAMS module.

The macros STRUCT_DECL() and STRUCT_INIT() , on the other hand, are
used in modules which declare and initialize a structure handle to a data
structure allocated by STRUCT_DECL() , that is, any standard character or block
device driver ioctl (9E) routine that needs to copy in data from a user-mode
program.
STRUCT_DECL(structname, handle)

Declares a “structure handle” for a “struct” and allocates an instance of its
native form on the stack. It is assumed that the native form is larger than
or equal to the ILP32 form. handle is a variable name and is declared as
a variable by this macro.

void STRUCT_INIT(handle, model_t umodel)
Initializes handle to point to the instance allocated by STRUCT_DECL() , it
also sets data model for handle to umodel , and must be called before any
access is made through the macros that operate on these structures. When
used in an ioctl (9E) routine umodel is the flag parameter; in a devmap(9E)
routine umodel is the model parameter and in a mmap(9E) routine, is the
return value of ddi_mmap_get_model (9F) . This macro is intended for
handles created with STRUCT_DECL() only.

STRUCT_HANDLE(structname, handle)
Declares a “structure handle” handle but unlike STRUCT_DECL() does
not allocate an instance of "struct ".

648 SunOS 5.8 Last modified 23 Feb 1998

Kernel Functions for Drivers STRUCT_DECL(9F)

void STRUCT_SET_HANDLE(handle, model_t umodel, void *addr)
Initializes to point to the native form instance at addr , it also sets the data
model for handle to umodel . This is intended for handles created with
STRUCT_HANDLE(). Fields cannot be referenced via the handle until this
macro has been invoked. Typically, addr is the address of the native form
structure containing the user-mode programs data. When used in an
ioctl (9E) umodel is the flag parameter, in a devmap(9E) routine is the
model parameter and in a mmap(9E) routine, umodel is the return value of
ddi_mmap_get_model (9F) .

Operation Macros size_t STRUCT_SIZE(handle)
Returns size of the structure referred to by handle . It will return the
size depending upon the data model associated with handle . If the data
model stored by STRUCT_INIT() or STRUCT_SET_HANDLE()was
DATAMODEL_ILP32, it will return the size of the ILP32 form, else it will
return the size of the native form.

STRUCT_FGET(handle, field)
Returns the contents of field in the structure described by handle according to
the data model associated with handle .

STRUCT_FGETP(handle, field)
This is the same as STRUCT_FGET() except that the field in question is a
pointer of some kind. This macro will cast caddr32_t to a (void *) when it
is accessed. Failure to use this macro for a pointer will lead to compiler
warnings or failures.

STRUCT_FSET(handle, field, val)
Assigns val to the (non pointer) in the structure handle described by . It
should not be used within any other expression, but rather only as a
statement.

STRUCT_FSETP(handle, field, val)
Returns a pointer to the in the structure described by handle .

struct structname *STRUCT_BUF(handle)
Returns a pointer to the native mode instance of the structure described
by handle .

Macros Not Using
Handles

size_t SIZEOF_STRUCT(structname, umodel)

Returns size of structname based on umodel .

size_t SIZEOF_PTR(umodel)
Returns the size of a pointer based on umodel .

Last modified 23 Feb 1998 SunOS 5.8 649

STRUCT_DECL(9F) Kernel Functions for Drivers

EXAMPLES EXAMPLE 1 Copying a Structure

The following example uses an ioctl (9E) on a regular character device that
copies a data structure that looks like this into the kernel:

struct opdata {
size_t size;
uint_t flag;

};

EXAMPLE 2 Defining a Structure

This data structure definition describes what the ioctl (9E) would look like in a
32-bit application using fixed width types.

#if defined(_MULTI_DATAMODEL)
struct opdata32 {

size32_t size;
uint32_t flag;

};
#endif

EXAMPLE 3 Using STRUCT_DECL() and STRUCT_INIT()

Note: This example uses the STRUCT_DECL()and STRUCT_INIT() macros to
declare and initialize the structure handle.

int
xxioctl(dev_t dev, int cmd, intptr_t arg, int mode,

cred_t *cr, int *rval_p);
{

STRUCT_DECL(opdata, op);

if (cmd != OPONE)
return (ENOTTY);

STRUCT_INIT(op, mode);

if (copyin((void *)data,
STRUCT_BUF(op), STRUCT_SIZE(op)))
return (EFAULT);

if (STRUCT_FGET(op, flag) != FACTIVE ||
STRUCT_FGET(op, size) > sizeof (device_state))
return (EINVAL);

xxdowork(device_state, STRUCT_FGET(op, size));
return (0);

}

This piece of code is an excerpt from a STREAMS module that handles
ioctl (9E) data (M_IOCDATA) messages and uses the data structure defined
above. This code has been written to run in the ILP32 environment only.
EXAMPLE 4 Using STRUCT_HANDLE()and STRUCT_SET_HANDLE()

The next example illustrates the use of the STRUCT_HANDLE()and
STRUCT_SET_HANDLE()macros which declare and initialize the structure
handle to point to an already existing instance of the structure.

650 SunOS 5.8 Last modified 23 Feb 1998

Kernel Functions for Drivers STRUCT_DECL(9F)

The above code example can be converted to run in the LP64 environment using
the STRUCT_HANDLE()and STRUCT_SET_HANDLE()as follows:

struct strbuf {
int maxlen; /* no. of bytes in buffer */
int len; /* no. of bytes returned */
caddr_t buf; /* pointer to data */
};
static void
wput_iocdata(queue_t *q, mblk_t *msgp)
{

mblk_t *data; /* message block descriptor */
STRUCT_HANDLE(strbuf, sb);

/* copyin the data */
if (mi_copy_state(q, mp, &data) == -1) {

return;
}

STRUCT_SET_HANDLE(sb,((struct iocblk *)msgp->b_rptr)->ioc_flag,
(void *)data->b_rptr);

if (STRUCT_FGET(sb, maxlen) < (int)sizeof (ipa_t)) {
mi_copy_done(q, msgp, EINVAL);

return;
}

}

SEE ALSO devmap(9E) , ioctl (9E) , mmap(9E) , ddi_mmap_get_model (9F)

Writing Device Drivers

STREAMS Programming Guide

Last modified 23 Feb 1998 SunOS 5.8 651

swab(9F) Kernel Functions for Drivers

NAME swab – swap bytes in 16-bit halfwords

SYNOPSIS #include <sys/sunddi.h>

void swab(void *src, void *dst, size_t nbytes);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS src A pointer to the buffer containing the bytes to be swapped.

dst A pointer to the destination buffer where the swapped bytes will be
written. If dst is the same as src the buffer will be swapped in place.

nbytes Number of bytes to be swapped, rounded down to the nearest
half-word.

DESCRIPTION swab() copies the bytes in the buffer pointed to by src to the buffer pointer to by
dst, swapping the order of adjacent bytes in half-word pairs as the copy proceeds.
A total of nbytes bytes are copied, rounded down to the nearest half-word.

CONTEXT swab() can be called from user or interrupt context.

SEE ALSO Writing Device Drivers

NOTES Since swab() operates byte-by-byte, it can be used on non-aligned buffers.

652 SunOS 5.8 Last modified 1 Feb 1991

Kernel Functions for Drivers testb(9F)

NAME testb – check for an available buffer

SYNOPSIS #include <sys/stream.h>

int testb (size_t size, uint_t pri);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS size Size of the requested buffer.

pri Priority of the allocb request.

DESCRIPTION testb() checks to see if an allocb (9F) call is likely to succeed if a buffer of
size bytes at priority pri is requested. Even if testb() returns successfully,
the call to allocb (9F) can fail. The pri argument is no longer used, but is
retained for compatibility.

RETURN VALUES Returns 1 if a buffer of the requested size is available, and 0 if one is not.

CONTEXT testb() can be called from user or interrupt context.

EXAMPLES EXAMPLE 1 testb() example

In a service routine, if copymsg (9F) fails (line 6), the message is put back on the
queue (line 7) and a routine, tryagain , is scheduled to be run in one tenth of a
second. Then the service routine returns.

When the timeout (9F) function runs, if there is no message on the front of the
queue, it just returns. Otherwise, for each message block in the first message,
check to see if an allocation would succeed. If the number of message blocks
equals the number we can allocate, then enable the service procedure. Otherwise,
reschedule tryagain to run again in another tenth of a second. Note that
tryagain is merely an approximation. Its accounting may be faulty. Consider
the case of a message comprised of two 1024-byte message blocks. If there is
only one free 1024-byte message block and no free 2048-byte message blocks,
then testb() will still succeed twice. If no message blocks are freed of these
sizes before the service procedure runs again, then the copymsg (9F) will still fail.
The reason testb() is used here is because it is significantly faster than calling
copymsg . We must minimize the amount of time spent in a timeout() routine.

1 xxxsrv(q)
2 queue_t *q;
3 {
4 mblk_t *mp;
5 mblk_t *nmp;

. . .
6 if ((nmp = copymsg(mp)) == NULL) {
7 putbq(q, mp);
8 timeout(tryagain, (intptr_t)q, drv_usectohz(100000));
9 return;

Last modified 11 Nov 1996 SunOS 5.8 653

testb(9F) Kernel Functions for Drivers

10 }
. . .

11 }
12
13 tryagain(q)
14 queue_t *q;
15 {
16 register int can_alloc = 0;
17 register int num_blks = 0;
18 register mblk_t *mp;
19
20 if (!q->q_first)
21 return;
22 for (mp = q->q_first; mp; mp = mp->b_cont) {
23 num_blks++;
24 can_alloc += testb((mp->b_datap->db_lim -
25 mp->b_datap->db_base), BPRI_MED);
26 }
27 if (num_blks == can_alloc)
28 qenable(q);
29 else
30 timeout(tryagain, (intptr_t)q, drv_usectohz(100000));
31 }

SEE ALSO allocb (9F), bufcall (9F), copymsg (9F), timeout (9F)

Writing Device Drivers

STREAMS Programming Guide

NOTES The pri argument is provided for compatibility only. Its value is ignored.

654 SunOS 5.8 Last modified 11 Nov 1996

Kernel Functions for Drivers timeout(9F)

NAME timeout – execute a function after a specified length of time

SYNOPSIS #include <sys/types.h>
#include <sys/conf.h>

timeout_id_t timeout (void (* func)(void *), void *arg, clock_t ticks);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS func Kernel function to invoke when the time increment expires.

arg Argument to the function.

ticks Number of clock ticks to wait before the function is called.

DESCRIPTION The timeout() function schedules the specified function to be called after a
specified time interval. The exact time interval over which the timeout takes
effect cannot be guaranteed, but the value given is a close approximation.

The function called by timeout() must adhere to the same restrictions as a
driver soft interrupt handler.

The function called by timeout() is run in interrupt context and must not sleep
or call other functions which may sleep.

RETURN VALUES timeout() returns an opaque non-zero timeout identifier that can be passed
to untimeout (9F) to cancel the request.

CONTEXT timeout() can be called from user or interrupt context.

EXAMPLES EXAMPLE 1 Using timeout()

In the following example, the device driver has issued an IO request and is
waiting for the device to respond. If the device does not respond within 5
seconds, the device driver will print out an error message to the console.

static void
xxtimeout_handler(void *arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
mutex_enter(&xsp->lock);
cv_signal(&xsp->cv);
xsp->flags |= TIMED_OUT;
mutex_exit(&xsp->lock);
xsp->timeout_id = 0;

}
static uint_t
xxintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;

Last modified 19 Feb 1998 SunOS 5.8 655

timeout(9F) Kernel Functions for Drivers

.

.

.
mutex_enter(&xsp->lock);
/* Service interrupt */
cv_signal(&xsp->cv);
mutex_exit(&xsp->lock);
if (xsp->timeout_id != 0) {

(void) untimeout(xsp->timeout_id);
xsp->timeout_id = 0;

}
return(DDI_INTR_CLAIMED);

}
static void
xxcheckcond(struct xxstate *xsp)
{

.

.

.
xsp->timeout_id = timeout(xxtimeout_handler,

xsp, (5 * drv_usectohz(1000000)));
mutex_enter(&xsp->lock);
while (/* Waiting for interrupt or timeout*/)

cv_wait(&xsp->cv, &xsp->lock);
if (xsp->flags & TIMED_OUT)

cmn_err(CE_WARN, "Device not responding");
.
.
.

mutex_exit(&xsp->lock);
.
.
.

}

SEE ALSO bufcall (9F), delay (9F), untimeout (9F)

Writing Device Drivers

656 SunOS 5.8 Last modified 19 Feb 1998

Kernel Functions for Drivers uiomove(9F)

NAME uiomove – copy kernel data using uio structure

SYNOPSIS #include <sys/types.h>
#include <sys/uio.h>

int uiomove (caddr_t address, size_t nbytes, enum uio_rw rwflag, uio_t *uio_p);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS address Source/destination kernel address of the copy.

nbytes Number of bytes to copy.

rwflag Flag indicating read or write operation. Possible values are
UIO_READand UIO_WRITE.

uio_p Pointer to the uio structure for the copy.

DESCRIPTION The uiomove() function copies nbytes of data to or from the space defined by
the uio structure (described in uio (9S)) and the driver.

The uio_segflg member of the uio (9S) structure determines the type of space
to or from which the transfer is being made. If it is set to UIO_SYSSPACE, the
data transfer is between addresses in the kernel. If it is set to UIO_USERSPACE,
the transfer is between a user program and kernel space.

rwflag indicates the direction of the transfer. If UIO_READis set, the data will be
transferred from address to the buffer(s) described by uio_p. If UIO_WRITE is set,
the data will be transferred from the buffer(s) described by uio_p to address.

In addition to moving the data, uiomove() adds the number of bytes moved
to the iov_base member of the iovec (9S) structure, decreases the iov_len
member, increases the uio_offset member of the uio (9S) structure, and
decreases the uio_resid member.

This function automatically handles page faults. nbytes does not have to be
word-aligned.

RETURN VALUES uiomove() returns 0 upon success or EFAULTon failure.

CONTEXT User context only, if uio_segflg is set to UIO_USERSPACE. User or interrupt
context, if uio_segflg is set to UIO_SYSSPACE.

SEE ALSO ureadc (9F), uwritec (9F), iovec (9S), uio (9S)

Writing Device Drivers

WARNINGS If uio_segflg is set to UIO_SYSSPACEand address is selected from user space,
the system may panic.

Last modified 20 Sep 1996 SunOS 5.8 657

unbufcall(9F) Kernel Functions for Drivers

NAME unbufcall – cancel a pending bufcall request

SYNOPSIS #include <sys/stream.h>

void unbufcall (bufcall_id_t id);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS id Identifier returned from bufcall (9F) or esbbcall (9F) .

DESCRIPTION unbufcall cancels a pending bufcall() or esbbcall() request. The
argument id is a non-zero identifier for the request to be cancelled. id is
returned from the bufcall() or esbbcall() function used to issue the
request. unbufcall() will not return until the pending callback is cancelled or
has run. Because of this, locks acquired by the callback routine should not be
held across the call to unbufcall() or deadlock may result.

RETURN VALUES None.

CONTEXT unbufcall() can be called from user or interrupt context.

SEE ALSO bufcall (9F), esbbcall (9F)

Writing Device Drivers

STREAMS Programming Guide

658 SunOS 5.8 Last modified 18 Feb 1998

Kernel Functions for Drivers unlinkb(9F)

NAME unlinkb – remove a message block from the head of a message

SYNOPSIS #include <sys/stream.h>

mblk_t *unlinkb (mblk_t *mp);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS mp Pointer to the message.

DESCRIPTION unlinkb() removes the first message block from the message pointed to by mp.
A new message, minus the removed message block, is returned.

RETURN VALUES If successful, unlinkb() returns a pointer to the message with the first message
block removed. If there is only one message block in the message, NULL is
returned.

CONTEXT unlinkb() can be called from user or interrupt context.

EXAMPLES EXAMPLE 1 unlinkb() example

The routine expects to get passed an M_PROTO T_DATA_INDmessage. It will
remove and free the M_PROTOheader and return the remaining M_DATAportion
of the message.

1 mblk_t *
2 makedata(mp)
3 mblk_t *mp;
4 {
5 mblk_t *nmp;
6
7 nmp = unlinkb(mp);
8 freeb(mp);
9 return(nmp);

10 }

SEE ALSO linkb (9F)

Writing Device Drivers

STREAMS Programming Guide

Last modified 11 Apr 1991 SunOS 5.8 659

untimeout(9F) Kernel Functions for Drivers

NAME untimeout – cancel previous timeout function call

SYNOPSIS #include <sys/types.h>
#include <sys/conf.h>

clock_t untimeout (timeout_id_t id);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS id Opaque timeout ID from a previous timeout (9F) call.

DESCRIPTION untimeout() cancels a pending timeout (9F) request. untimeout() will
not return until the pending callback is cancelled or has run. Because of this,
locks acquired by the callback routine should not be held across the call to
untimeout() or a deadlock may result.

Since no mutex should be held across the call to untimeout() , there is a
race condition between the occurrence of an expected event and the execution
of the timeout handler. In particular, it should be noted that no problems will
result from calling untimeout() for a timeout which is either running on
another CPU, or has already completed. Drivers should be structured with
the understanding that the arrival of both an interrupt and a timeout for that
interrupt can occasionally occur, in either order.

RETURN VALUES untimeout() returns -1 if the id is not found. Otherwise, it returns an integer
value greater than or equal to 0.

CONTEXT untimeout() can be called from user or interrupt context.

EXAMPLES EXAMPLE 1

In the following example, the device driver has issued an IO request and is
waiting for the device to respond. If the device does not respond within 5
seconds, the device driver will print out an error message to the console.

static void
xxtimeout_handler(void *arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
mutex_enter(&xsp->lock);
cv_signal(&xsp->cv);
xsp->flags |= TIMED_OUT;
mutex_exit(&xsp->lock);
xsp->timeout_id = 0;

}
static uint_t
xxintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
.
.

660 SunOS 5.8 Last modified 18 Feb 1998

Kernel Functions for Drivers untimeout(9F)

.
mutex_enter(&xsp->lock);
/* Service interrupt */
cv_signal(&xsp->cv);
mutex_exit(&xsp->lock);
if (xsp->timeout_id != 0) {

(void) untimeout(xsp->timeout_id);
xsp->timeout_id = 0;

}
return(DDI_INTR_CLAIMED);

}
static void
xxcheckcond(struct xxstate *xsp)
{

.

.

.
xsp->timeout_id = timeout(xxtimeout_handler,

xsp, (5 * drv_usectohz(1000000)));
mutex_enter(&xsp->lock);
while (/* Waiting for interrupt or timeout*/)

cv_wait(&xsp->cv, &xsp->lock);
if (xsp->flags & TIMED_OUT)

cmn_err(CE_WARN, "Device not responding");
.
.
.

mutex_exit(&xsp->lock);
.
.
.

}

SEE ALSO open (9E), cv_signal (9F), cv_wait_sig (9F), delay (9F), timeout (9F)

Writing Device Drivers

Last modified 18 Feb 1998 SunOS 5.8 661

ureadc(9F) Kernel Functions for Drivers

NAME ureadc – add character to a uio structure

SYNOPSIS #include <sys/uio.h>
#include <sys/types.h>

int ureadc (int c, uio_t *uio_p);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS c The character added to the uio (9S) structure.

uio_p Pointer to the uio (9S) structure.

DESCRIPTION ureadc() transfers the character c into the address space of the uio (9S)
structure pointed to by uio_p, and updates the uio structure as for uiomove (9F).

RETURN VALUES 0 is returned on success and EFAULTon failure.

CONTEXT ureadc() can be called from user or interrupt context.

SEE ALSO uiomove (9F), uwritec (9F), iovec (9S), uio (9S)

Writing Device Drivers

662 SunOS 5.8 Last modified 11 Apr 1991

Kernel Functions for Drivers uwritec(9F)

NAME uwritec – remove a character from a uio structure

SYNOPSIS #include <sys/uio.h>

int uwritec (uio_t *uio_p);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS uio_p Pointer to the uio (9S) structure.

DESCRIPTION uwritec() returns a character from the uio structure pointed to by uio_p and
updates the uio structure as for uiomove (9F).

RETURN VALUES The next character for processing is returned on success, and -1 is returned
if uio is empty or there is an error.

CONTEXT uwritec() can be called from user or interrupt context.

SEE ALSO uiomove (9F), ureadc (9F), iovec (9S), uio (9S)

Writing Device Drivers

Last modified 11 Apr 1991 SunOS 5.8 663

va_arg(9F) Kernel Functions for Drivers

NAME va_arg, va_start, va_copy, va_end – handle variable argument list

SYNOPSIS #include <sys/varargs.h>
void va_start (va_list pvar, void parmN);

(type *)
va_arg (va_list pvar, type);

void va_copy (va_list dest, va_list src);

void va_end (va_list pvar);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS
va_start() pvar Pointer to variable argument list.

name Identifier of rightmost parameter in the function definition.

va_arg() pvar Pointer to variable argument list.

type Type name of the next argument to be returned.

va_copy() dest Destination variable argument list.

src Source variable argument list.

va_end() pvar Pointer to variable argument list.

DESCRIPTION This set of macros allows portable procedures that accept variable argument
lists to be written. Routines that have variable argument lists but do not use
the varargs() macros are inherently non-portable, as different machines
use different argument-passing conventions. Routines that accept a variable
argument list can use these macros to traverse the list.

va_list is the type defined for the variable used to traverse the list of
arguments.

va_start() is called to initialize pvar to the beginning of the variable argument
list. va_start() must be invoked before any access to the unnamed arguments.
The parameter name is the identifier of the rightmost parameter in the variable
parameter list in the function definition (the one just before the ", ... "). If this
parameter is declared with the register storage class or with a function or

664 SunOS 5.8 Last modified 21 Feb 1996

Kernel Functions for Drivers va_arg(9F)

array type, or with a type that is not compatible with the type that results after
application of the default argument promotions, the behavior is undefined.

va_arg() expands to an expression that has the type and value of the next
argument in the call. The parameter pvar must be initialized by va_start()
. Each invocation of va_arg() modifies pvar so that the values of successive
arguments are returned in turn. The parameter type is the type name of the next
argument to be returned. The type name must be specified in such a way so
that the type of a pointer to an object that has the specified type can be obtained
simply by postfixing a * to type . If there is no actual next argument, or if type is
not compatible with the type of the actual next argument (as promoted according
to the default argument promotions), the behavior is undefined.

The va_copy() macro saves the state represented by the va_list src in the
va_list dest . The va_list passed as dest should not be initialized by a
previous call to va_start() , and must be passed to va_end() before being
reused as a parameter to va_start() or as the dest parameter of a subsequent
call to va_copy() . The behavior is undefined should any of these restrictions
not be met.

The va_end() macro is used to clean up. It invalidates pvar for use (unless
va_start() is invoked again).

Multiple traversals, each bracketed by a call to va_start() and va_end() ,
are possible.

EXAMPLES EXAMPLE 1 Creating a Variable Length Command

The following example uses these routines to create a variable length command.
This may be useful for a device which provides for a variable length command
set. ncmdbytes is the number of bytes in the command. The new command
is written to cmdp .

static void
xx_write_cmd(uchar_t *cmdp, int ncmdbytes, ...)
{

va_list ap;
int i;

/*
* Write variable-length command to destination
*/
va_start(ap, ncmdbytes);
for (i = 0; i < ncmdbytes; i++) {

*cmdp++ = va_arg(ap, uchar_t);
}
va_end(ap);

}

SEE ALSO vcmn_err (9F) , vsprintf (9F)

Last modified 21 Feb 1996 SunOS 5.8 665

va_arg(9F) Kernel Functions for Drivers

NOTES It is up to the calling routine to specify in some manner how many arguments
there are, since it is not always possible to determine the number of arguments
from the stack frame.

It is non-portable to specify a second argument of char or short to va_arg ,
because arguments seen by the called function are not char or short . C
converts char and short arguments to int before passing them to a function.

666 SunOS 5.8 Last modified 21 Feb 1996

Kernel Functions for Drivers vsprintf(9F)

NAME vsprintf – format characters in memory

SYNOPSIS #include <sys/varargs.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

char *vsprintf (char *buf, const char *fmt, va_list ap);

INTERFACE
LEVEL

Solaris DDI specific (Solaris DDI).

PARAMETERS buf Pointer to a character string.

fmt Pointer to a character string.

ap Pointer to a variable argument list.

DESCRIPTION vsprintf() builds a string in buf under the control of the format fmt. The
format is a character string with either plain characters, which are simply copied
into buf, or conversion specifications, each of which converts zero or more
arguments, again copied into buf. The results are unpredictable if there are
insufficient arguments for the format; excess arguments are simply ignored. It is
the user’s responsibility to ensure that enough storage is available for buf.

ap contains the list of arguments used by the conversion specifications in fmt.
ap is a variable argument list and must be initialized by calling va_start (9F).
va_end (9F) is used to clean up and must be called after each traversal of the
list. Multiple traversals of the argument list, each bracketed by va_start (9F)
and va_end (9F), are possible.

Each conversion specification is introduced by the %character, after which
the following appear in sequence:

An optional decimal digit specifying a minimum field width for numeric
conversion. The converted value will be right-justified and padded with leading
zeroes if it has fewer characters than the minimum.

An optional l (ll) specifying that a following d, D, o, O, x , X, or u conversion
character applies to a long (long long) integer argument. An l (ll) before
any other conversion character is ignored.

A character indicating the type of conversion to be applied:
d,D,o,O,x ,X,u

The integer argument is converted to signed decimal (d, D), unsigned octal
(o, O), unsigned hexadecimal (x , X) or unsigned decimal (u), respectively,
and copied. The letters abcdef are used for x and X conversion.

c
The character value of the argument is copied.

Last modified 6 May 1996 SunOS 5.8 667

vsprintf(9F) Kernel Functions for Drivers

b
This conversion uses two additional arguments. The first is an integer, and
is converted according to the base specified in the second argument. The
second argument is a character string in the form <base>[< arg> . . .].
The base supplies the conversion base for the first argument as a binary
value; \10 gives octal, \20 gives hexadecimal. Each subsequent <arg> is a
sequence of characters, the first of which is the bit number to be tested,
and subsequent characters, up to the next bit number or terminating null,
supply the name of the bit.

A bit number is a binary-valued character in the range 1-32 . For each bit
set in the first argument, and named in the second argument, the bit names
are copied, separated by commas, and bracketed by < and >. Thus, the
following function call would generate reg=3<BitTwo,BitOne>\n in buf.

vsprintf(buf, "reg=%b\n", 3, "\10\2BitTwo\1BitOne")

s
The argument is taken to be a string (character pointer), and characters from
the string are copied until a null character is encountered. If the character
pointer is NULL on SPARC, the string <nullstring> is used in its place; on
IA, it is undefined.

%
Copy a %; no argument is converted.

RETURN VALUES vsprintf() returns its first parameter, buf.

CONTEXT vsprintf() can be called from user, kernel, or interrupt context.

EXAMPLES EXAMPLE 1 Using vsprintf()

In this example, xxerror() accepts a pointer to a dev_info_t structure
dip , an error level level , a format fmt , and a variable number of arguments.
The routine uses vsprintf() to format the error message in buf . Note that
va_start (9F) and va_end (9F) bracket the call to vsprintf() . instance ,
level , name, and buf are then passed to cmn_err (9F).

#include <sys/varargs.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#define MAX_MSG 256

void
xxerror(dev_info_t *dip, int level, const char *fmt, . . .)
{

va_list ap;
int instance;
char buf[MAX_MSG],

*name;

668 SunOS 5.8 Last modified 6 May 1996

Kernel Functions for Drivers vsprintf(9F)

instance = ddi_get_instance(dip);
name = ddi_binding_name(dip);

/* format buf using fmt and arguments contained in ap */
va_start(ap, fmt);
vsprintf(buf, fmt, ap);
va_end(ap);

/* pass formatted string to cmn_err(9F) */
cmn_err(level, "%s%d: %s", name, instance, buf);

}

SEE ALSO cmn_err (9F), ddi_binding_name (9F), ddi_get_instance (9F), va_arg (9F)

Writing Device Drivers

Last modified 6 May 1996 SunOS 5.8 669

WR(9F) Kernel Functions for Drivers

NAME WR, wr – get pointer to the write queue for this module or driver

SYNOPSIS #include <sys/stream.h>
#include <sys/ddi.h>
queue_t *WR(queue_t *q);

INTERFACE
LEVEL

Architecture independent level 1 (DDI/DKI).

PARAMETERS q Pointer to the read queue whose write queue is to be returned.

DESCRIPTION The WR() function accepts a read queue pointer as an argument and returns
a pointer to the write queue of the same module.

CAUTION: Make sure the argument to this function is a pointer to a read queue.
WR() will not check for queue type, and a system panic could result if the
pointer is not to a read queue.

RETURN VALUES The pointer to the write queue.

CONTEXT WR() can be called from user or interrupt context.

EXAMPLES EXAMPLE 1 Using WR()

In a STREAMS close (9E) routine, the driver or module is passed a pointer to
the read queue. These usually are set to the address of the module-specific
data structure for the minor device.

1 xxxclose(q, flag)
2 queue_t *q;
3 int flag;
4 {
5 q->q_ptr = NULL;
6 WR(q)->q_ptr = NULL;

. . .
7 }

SEE ALSO close (9E) , OTHERQ(9F) , RD(9F)

Writing Device Drivers

STREAMS Programming Guide

670 SunOS 5.8 Last modified 15 Nov 1991

Index

A
activate a new DMA window —

ddi_dma_getwin 303
add a fully initialized kstat to the system —

kstat_install 491
add a soft interrupt

– ddi_add_softintr 244
add an interrupt handler

– ddi_add_intr 241
address

return mapped virtual address —
csx_GetMappedAddr 124

adjmsg — trim bytes from a message 51
Device power cycle advisory check –

pm_trans_check 538
allocate and free a scsi_pkt structure –

scsi_hba_pkt_alloc 603, 606
scsi_hba_pkt_free 603
scsi_hba_tran_free 606

allocate and free non-sequentially accessed
memory

– ddi_iopb_alloc 348
– ddi_iopb_free 348

allocate DMA handle —
ddi_dma_alloc_handle 285

allocate kernel memory
– ddi_umem_alloc 426
– ddi_umem_free 426
– ddi_umem_zalloc 426
– kmem_alloc 485
– kmem_free 485
– kmem_zalloc 485

allocate memory for DMA transfer —
ddi_dma_mem_alloc 307

allocate space — rmalloc 570
allocate space from a resource map —

rmalloc_wait 575
allow 64 bit transfers on SBus —

ddi_dma_set_sbus64 321
anocancel — prevent cancellation of

asynchronous I/O request 54
aphysio — perform asynchronous physical

I/O 55
assert – expression verification 57
asynchronous physical I/O — aphysio 55
asynchronous STREAMS perimeter upgrade —

qwriter 568

B
bcopy — copy data between address locations

in kernel 61
binds a system buffer to a DMA handle —

ddi_dma_buf_bind_handle 288
binds an address to a DMA handle —

ddi_dma_addr_bind_handle 280
bioclone — clone another buffer 63
bioerror — indicate error in buffer header 68
biofini — uninitialize a buffer structure 69
bioinit — initialize a buffer structure 70
biomodified — check if a buffer is modified 71
bioreset — reuse a private buffer header after

I/O is complete 72
biosize — returns size of a buffer structure 73

Index-671

bufcall — call a function when a buffer becomes
available 79, 658

call a function when a buffer becomes
available 79

buffer header
indicate error — bioerror 68
reuse a private buffer header after I/O is

complete — bioreset 72
busy-wait for specified interval —

drv_usecwait 457
byte streams

compare two — bcmp 60
bytes, size

convert size in pages — ptob 543
convert to size in memory pages (round

down) — btop 77
convert to size in memory pages (round up)

— btopr 78

C
call a function when a buffer becomes available

— qbufcall 556
bufcall 79

call a STREAMS put procedure — put 546
cancel a pending qbufcall request —

qunbufcall 564
cancel previous timeout function call —

quntimeout 565
cancellation of asynchronous I/O —

anocancel 54
character strings

compare two null terminated strings –
strcmp, strncmp 640

convert between an integer and a decimal
string – stoi, numtos 638

copy a string from one location to another –
strcpy, strncpy 641

determine the number of non-null bytes in
a string — strlen 642

find a character in a string — strchr 639
format in memory — sprintf 636

check data access and DMA handles 252
check device state 334
check for an available buffer — testb 653
check for the existence of a property —

ddi_prop_exists 388

check if a buffer is modified — biomodified 71
CIS tuple

first tuple – csx_GetFirstTuple 121
next tuple – csx_GetNextTuple 121

clear client event mask –
csx_ReleaseSocketMask 227

client
register client — csx_RegisterClient 206

client event mask
return client event mask –

csx_GetEventMask 235
set client event mask –

csx_SetEventMask 235
client return

– csx_GetFirstClient 119
– csx_GetNextClient 119

clone another buffer — bioclone 63
condition variable routines, driver

– condvar 92
– cv_broadcast 92
– cv_init 92
– cv_signal 92
– cv_timedwait 92
– cv_timedwait_sig 92
– cv_wait 92
– cv_wait_sig 92

configure PC Card and socket —
csx_RequestConfiguration 215

control driver notification of user accesses –
ddi_mapdev_intercept 358

ddi_mapdev_nointercept 358
control device components’ availability for

Power Management
– pm_busy_component 526
– pm_idle_component 526

control the validation of memory address
translations

– devmap_load 448
– devmap_unload 448

convert a DMA segment to a DMA
address cookie —
ddi_dma_segtocookie 319

convert clock ticks to microseconds —
drv_hztousec 454

convert device sizes — csx_ConvertSize 105
convert device speeds —

csx_ConvertSpeed 107

man pages section 9F: DDI and DKI Kernel Functions ♦ February 2000

convert error return codes to text strings —
csx_Error2Text 115

convert events to text strings —
csx_Event2Text 116

convert microseconds to clock ticks —
drv_usectohz 456

copy data from one device register to
another device register —
ddi_device_copy 263

create minor nodes for client –
csx_MakeDeviceNode 131

create a minor node for this device —
ddi_create_minor_node 261

create and initialize a new kstat —
kstat_create 488

create driver-controlled mapping of device —
ddi_mapdev 356

csx_AccessConfigurationRegister — read or
write a PC Card Configuration
Register 103

csx_ConvertSize — convert device sizes 105
csx_ConvertSpeed — convert device

speeds 107
csx_CS_DDI_Info — obtain DDI

information 109
csx_DeregisterClient — remove client from

Card Services list 111
csx_DupHandle — duplicate access

handle 112
csx_Error2Text — convert error return codes to

text strings 115
csx_Event2Text — convert events to text

strings 116
csx_FreeHandle — free access handle 117
csx_Get16 – read from device register 118
csx_Get32 – read from device register 118
csx_Get64 – read from device register 118
csx_Get8 – read from device register 118
csx_GetEventMask – return client event

mask 235
csx_GetFirstClient – return first client 119
csx_GetFirstTuple – return first CIS tuple 121
csx_GetHandleOffset — return current access

handle offset 123
csx_GetMappedAddr — return mapped virtual

address 124
csx_GetNextClient – return next client 119

csx_GetNextTuple – return next CIS tuple 121
csx_GetStatus — return status of PC Card and

socket 125
csx_GetTupleData — return data portion of

tuple 129
csx_MakeDeviceNode – create minor nodes for

client 131
csx_MapLogSocket — return physical socket

number 134
csx_MapMemPage — map memory area on PC

Card 135
csx_ModifyConfiguration — modify PC Card

configuration 136
csx_ModifyWindow — modify window

attributes 139
csx_Parse_CISTPL_BATTERY — parse Battery

Replacement Date tuple 141
csx_Parse_CISTPL_BYTEORDER — parse Byte

Order tuple 143
csx_Parse_CISTPL_CFTABLE_ENTRY — parse

Card Configuration Table
tuple 145

csx_Parse_CISTPL_CONFIG — parse
Configuration tuple 152

csx_Parse_CISTPL_DATE — parse Card
Initialization Date tuple 155

csx_Parse_CISTPL_DEVICE – parse Device
Information tuple for
Common Memory 157

csx_Parse_CISTPL_DEVICE_A – parse Device
Information tuple for Attribute
Memory 157

csx_Parse_CISTPL_DEVICE_OA – parse
Other Condition Device
Information tuple for
Attribute Memory 157

csx_Parse_CISTPL_DEVICE_OC – parse
Other Condition Device
Information tuple for
Common Memory 157

csx_Parse_CISTPL_DEVICEGEO — parse
Device Geo tuple 161

csx_Parse_CISTPL_DEVICEGEO_A — parse
Device Geo A tuple 163

csx_Parse_CISTPL_FORMAT — parse Data
Recording Format tuple 165

Index-673

csx_Parse_CISTPL_FUNCE — parse Function
Extension tuple 168

csx_Parse_CISTPL_FUNCID — parse Function
Identification tuple 178

csx_Parse_CISTPL_GEOMETRY — parse
Geometry tuple 181

csx_Parse_CISTPL_JEDEC_A – parse JEDEC
Identifier tuple for Attribute
Memory 183

csx_Parse_CISTPL_JEDEC_C – parse JEDEC
Identifier tuple for Common
Memory 183

csx_Parse_CISTPL_LINKTARGET — parse
Link Target tuple 185

csx_Parse_CISTPL_LONGLINK_A – parse
Long Link A tuple 187

csx_Parse_CISTPL_LONGLINK_C – parse
Long Link C tuple 187

csx_Parse_CISTPL_LONGLINK_MFC — parse
Multi-Function tuple 189

csx_Parse_CISTPL_MANFID — parse
Manufacturer Identification
tuple 191

csx_Parse_CISTPL_ORG — parse Data
Organization tuple 193

csx_Parse_CISTPL_SPCL — parse Special
Purpose tuple 195

csx_Parse_CISTPL_SWIL — parse Software
Interleaving tuple 197

csx_Parse_CISTPL_VERS_1 — parse Level-1
Version/Product Information
tuple 199

csx_Parse_CISTPL_VERS_2 — parse Level-2
Version and Information
tuple 201

csx_ParseTuple — generic tuple parser 203
csx_Put16 – write to device register 205
csx_Put32 – write to device register 205
csx_Put64 – write to device register 205
csx_Put8 – write to device register 205
csx_RegisterClient — register client 206
csx_ReleaseConfiguration — release

configuration on PC
Card 209

csx_ReleaseIO – release I/O resources 219
csx_ReleaseIRQ – release IRQ resource 224

csx_ReleaseSocketMask – clear client event
mask 227

csx_ReleaseWindow – release window
resources 229

csx_RepGet16 – read repetitively from device
register 211

csx_RepGet32 – read repetitively from device
register 211

csx_RepGet64 – read repetitively from device
register 211

csx_RepGet8 – read repetitively from device
register 211

csx_RepPut16 – write repetitively to device
register 213

csx_RepPut32 – write repetitively to device
register 213

csx_RepPut64 – write repetitively to device
register 213

csx_RepPut8 – write repetitively to device
register 213

csx_RequestConfiguration — configure PC
Card and socket 215

csx_RequestIO – request I/O resources 219
csx_RequestIRQ – request IRQ resource 224
csx_RequestSocketMask – request client event

mask 227
csx_RequestWindow – request window

resources 229
csx_ResetFunction — reset a function on a PC

card 234
csx_SetEventMask – set client event mask 235
csx_SetHandleOffset — set current access

handle offset 237
csx_ValidateCIS — validate Card Information

Structure (CIS) 238

D
datamsg — test whether a message is a data

message 239
DDI access credential structure

— ddi_get_cred 333
DDI announce a device

— ddi_report_dev 413
DDI device access

slave access only — ddi_slaveonly 420
DDI device critical region of control

man pages section 9F: DDI and DKI Kernel Functions ♦ February 2000

enter – ddi_enter_critical 329
exit – ddi_exit_critical 329

DDI device information structure
find parent — ddi_get_parent 340
get the root of the dev_info tree —

ddi_root_node 416
remove a minor node for this devinfo —

ddi_remove_minor_node 410
DDI device instance number

get — ddi_get_instance 338
DDI device mapping

ddi_mapdev — create driver-controlled
mapping of device 356

ddi_mapdev_intercept – control
driver notification of user
accesses 358

ddi_mapdev_nointercept – control
driver notification of user
accesses 358

devmap_default_access — device mapping
access entry point 434

DDI device registers
map – ddi_map_regs 362
return the number of register sets —

ddi_dev_nregs 274
return the size — ddi_dev_regsize 275
unmap – ddi_unmap_regs 362

DDI device virtual address
read a value – ddi_peek 379
write 32 bit – ddi_poke32 381

DDI device’s private data area
get the address –

ddi_get_driver_private 336
set the address –

ddi_set_driver_private 336
DDI devinfo node name

return – ddi_get_name 250, 378
DDI direct memory access

convert DMA handle to DMA addressing
cookie — ddi_dma_htoc 305

DDI direct memory access services
allocate consistent memory–

ddi_iopb_alloc 364
convert a DMA cookie —

ddi_dma_coff 293

easier DMA setup —
ddi_dma_addr_setup 283,
291

find minimum alignment and transfer size
for device — ddi_iomin 347

find post DMA mapping alignment and
minimum effect properties —
ddi_dma_devalign 295

free consistent memory –
ddi_iopb_free 364

report current DMA window offset and
size — ddi_dma_curwin 294

setup DMA mapping —
ddi_dma_setup 314,
316, 319

setup DMA resources —
ddi_dma_setup 323

shift current DMA window —
ddi_dma_movwin 310

tear down DMA mapping —
ddi_dma_free 301

DDI information — csx_CS_DDI_Info 109
DDI interrupt handling

add an interrupt – ddi_add_intr 241
get interrupt block cookie –

ddi_get_iblock_cookie 241
indicate interrupt handler type —

ddi_intr_hilevel 344
remove an interrupt –

ddi_remove_intr 241
return the number of interrupt

specifications —
ddi_dev_nintrs 273

DDI memory mapping
map a segment – ddi_segmap 418, 446

DDI page size conversions
– ddi_btop 251
– ddi_btopr 251
– ddi_ptob 251

DDI property management
create properties for leaf device drivers –

ddi_prop_create 384
– ddi_getlongprop 398
– ddi_getlongprop_buf 398
– ddi_getprop 398
– ddi_getproplen 398
– ddi_prop_op 398

Index-675

modify properties for leaf device drivers –
ddi_prop_modify 384

remove properties for leaf device drivers –
ddi_prop_undefine 384

DDI self identifying devices
tell whether a device is self-identifying —

ddi_dev_is_sid 272
DDI soft interrupt handling

add a soft interrupt – ddi_add_softintr 244
get soft interrupt block cookie –

ddi_get_soft_iblock_cookie 244
remove a soft interrupt –

ddi_remove_softintr 244
DDI soft state utility routines

allocate state structure –
ddi_soft_state_zalloc 421

free soft state entry –
ddi_soft_state_free 421

get pointer to soft state –
ddi_get_soft_state 421

initialize state – ddi_soft_state_init 421
remove all state info –

ddi_soft_state_fini 421
ddi_add_intr – add an interrupt handler 241
ddi_add_softintr – add a soft interrupt 244
ddi_binding_name – return driver binding

name 250
ddi_check_dma_handle 252
ddi_create_minor_node — create a minor node

for this device 261
ddi_dev_is_needed — inform the system

that a device’s component is
required 270

ddi_dev_report_fault 276
ddi_device_copy — copy data from one device

register to another device
register 263

ddi_device_zero — zero fill the device
register 265

ddi_devid_compare – Kernel interfaces for
device ids 267

ddi_devid_free – Kernel interfaces for device
ids 267

ddi_devid_init – Kernel interfaces for device
ids 267

ddi_devid_register – Kernel interfaces for
device ids 267

ddi_devid_sizeof – Kernel interfaces for device
ids 267

ddi_devid_unregister – Kernel interfaces for
device ids 267

ddi_devid_valid – Kernel interfaces for device
ids 267

ddi_dma_addr_bind_handle — binds
an address to a DMA
handle 280

ddi_dma_alloc_handle — allocate DMA
handle 285

ddi_dma_buf_bind_handle — binds a system
buffer to a DMA handle 288

ddi_dma_burstsizes — find out the allowed
burst sizes for a DMA
mapping 292

ddi_dma_free_handle — free DMA handle 302
ddi_dma_getwin — activate a new DMA

window 303
ddi_dma_mem_alloc — allocate memory for

DMA transfer 307
ddi_dma_mem_free — free previously allocated

memory 309
ddi_dma_nextcookie — retrieve subsequent

DMA cookie 312
ddi_dma_nextseg — get next DMA

segment 314
ddi_dma_nextwin — get next DMA

window 316
ddi_dma_numwin — retrieve number of DMA

windows 318
ddi_dma_segtocookie — convert a DMA

segment to a DMA address
cookie 319

ddi_dma_set_sbus64 — allow 64 bit transfers
on SBus 321

ddi_dma_sync — synchronize CPU and I/O
views of memory 325

ddi_dma_unbind_handle — unbinds
the address in a DMA
handle 327

ddi_dmae – system DMA engine functions 297
ddi_dmae_1stparty – system DMA engine

functions 297
ddi_dmae_alloc – system DMA engine

functions 297

man pages section 9F: DDI and DKI Kernel Functions ♦ February 2000

ddi_dmae_disable – system DMA engine
functions 297

ddi_dmae_enable – system DMA engine
functions 297

ddi_dmae_getattr – system DMA engine
functions 297

ddi_dmae_getcnt – system DMA engine
functions 297

ddi_dmae_getlim – system DMA engine
functions 297

ddi_dmae_prog – system DMA engine
functions 297

ddi_dmae_release – system DMA engine
functions 297

ddi_dmae_stop – system DMA engine
functions 297

ddi_driver_name — return normalized driver
name 328

ddi_ffs – find first (last) bit set in a long
integer 330

ddi_fls – find first (last) bit set in a long
integer 330

ddi_check_acc_handle 334
ddi_get_iblock_cookie – get interrupt block

cookie 241
ddi_get_lbolt

returns the value of lbolt 339
ddi_get_name – return driver binding

name 250
ddi_get_pid

returns the process ID 341
ddi_get_soft_iblock_cookie – get soft interrupt

block cookie 244
ddi_get_time

returns the current time in seconds 342
ddi_get16 – read data from the device 331
ddi_get32 – read data from the device 331
ddi_get64 – read data from the device 331
ddi_get8 – read data from the device 331
ddi_getiminor

display a SCSI request sense message 337
ddi_in_panic — determine if system is in panic

state 343
ddi_io_get16 – read data from the mapped

device register in I/O
space 345

ddi_io_get32 – read data from the mapped
device register in I/O
space 345

ddi_io_get8 – read data from the mapped device
register in I/O space 345

ddi_io_getb – read data from the mapped device
register in I/O space 345

ddi_io_getl – read data from the mapped device
register in I/O space 345

ddi_io_getw – read data from the mapped
device register in I/O
space 345

ddi_io_put16 – write data to the mapped device
register in I/O space 350

ddi_io_put32 – write data to the mapped device
register in I/O space 350

ddi_io_put8 – write data to the mapped device
register in I/O space 350

ddi_io_putb – write data to the mapped device
register in I/O space 350

ddi_io_putl – write data to the mapped device
register in I/O space 350

ddi_io_putw – write data to the mapped device
register in I/O space 350

ddi_io_rep_get16 – read multiple data from the
mapped device register in I/O
space 352

ddi_io_rep_get32 – read multiple data from the
mapped device register in I/O
space 352

ddi_io_rep_get8 – read multiple data from the
mapped device register in I/O
space 352

ddi_io_rep_getb – read multiple data from the
mapped device register in I/O
space 352

ddi_io_rep_getl – read multiple data from the
mapped device register in I/O
space 352

ddi_io_rep_getw – read multiple data from the
mapped device register in I/O
space 352

ddi_io_rep_put16 – write multiple data to the
mapped device register in I/O
space 354

Index-677

ddi_io_rep_put32 – write multiple data to the
mapped device register in I/O
space 354

ddi_io_rep_put8 – write multiple data to the
mapped device register in I/O
space 354

ddi_io_rep_putb – write multiple data to the
mapped device register in I/O
space 354

ddi_io_rep_putl – write multiple data to the
mapped device register in I/O
space 354

ddi_io_rep_putw – write multiple data to the
mapped device register in I/O
space 354

ddi_iopb_alloc – allocate and free
non-sequentially accessed
memory 348

ddi_iopb_free – allocate and free
non-sequentially accessed
memory 348

ddi_mapdev — create driver-controlled
mapping of device 356

ddi_mapdev_intercept – control driver
notification of user
accesses 358

ddi_mapdev_intercept – control driver
notification of user
accesses 358

ddi_mapdev_set_device_acc_attr — Set the
device attributes for the
mapping 360

ddi_mem_get16 – read data from mapped
device in the memory space or
allocated DMA memory 366

ddi_mem_get32 – read data from mapped
device in the memory space or
allocated DMA memory 366

ddi_mem_get64 – read data from mapped
device in the memory space or
allocated DMA memory 366

ddi_mem_put16 – write data to mapped
device in the memory space or
allocated DMA memory 368

ddi_mem_put32 – write data to mapped
device in the memory space or
allocated DMA memory 368

ddi_mem_put64 – write data to mapped
device in the memory space or
allocated DMA memory 368

ddi_mem_rep_get16 – read data from mapped
device in the memory space or
allocated DMA memory 370

ddi_mem_rep_get32 – read data from mapped
device in the memory space or
allocated DMA memory 370

ddi_mem_rep_get64 – read data from mapped
device in the memory space or
allocated DMA memory 370

ddi_mem_rep_get8 – read data from mapped
device in the memory space or
allocated DMA memory 370

ddi_mem_rep_put16 – write data to mapped
device in the memory space or
allocated DMA memory 372

ddi_mem_rep_put32 – write data to mapped
device in the memory space or
allocated DMA memory 372

ddi_mem_rep_put64 – write data to mapped
device in the memory space or
allocated DMA memory 372

ddi_mem_rep_put8 – write data to mapped
device in the memory space or
allocated DMA memory 372

ddi_mmap_get_model — return data model
type of current thread 374

ddi_model_convert_from — determine data
model type mismatch 376

ddi_node_name — return the devinfo node
name 378

ddi_prop_exists — check for the existence of a
property 388

ddi_prop_get_int — look up integer
property 390

ddi_prop_lookup – lookup property
information 393

ddi_prop_lookup_byte_array – lookup property
information 393

ddi_prop_lookup_int_array – lookup property
information 393

ddi_prop_lookup_string – lookup property
information 393

ddi_prop_lookup_string_array – lookup
property information 393

man pages section 9F: DDI and DKI Kernel Functions ♦ February 2000

ddi_prop_update – update property
information. 402

ddi_prop_update_byte_array – update property
information. 402

ddi_prop_update_int – update property
information. 402

ddi_prop_update_int_array – update property
information. 402

ddi_prop_update_string – update property
information. 402

ddi_prop_update_string_array – update
property information. 402

ddi_put16 – write data to the device 405
ddi_put32 – write data to the device 405
ddi_put64 – write data to the device 405
ddi_put8 – write data to the device 405
ddi_regs_map_free — free mapped register

address space 407
ddi_regs_map_setup — set up a mapping for a

register address space 408
ddi_remove_intr – remove an interrupt

handler 241
ddi_remove_softintr – remove a soft

interrupt 244
ddi_rep_get16 – read data from the mapped

memory address, device
register or allocated DMA
memory address 411

ddi_rep_get32 – read data from the mapped
memory address, device
register or allocated DMA
memory address 411

ddi_rep_get64 – read data from the mapped
memory address, device
register or allocated DMA
memory address 411

ddi_rep_get8 – read data from the mapped
memory address, device
register or allocated DMA
memory address 411

ddi_rep_getb – read data from the mapped
memory address, device
register or allocated DMA
memory address 411

ddi_rep_getl – read data from the mapped
memory address, device

register or allocated DMA
memory address 411

ddi_rep_getll – read data from the mapped
memory address, device
register or allocated DMA
memory address 411

ddi_rep_getw – read data from the mapped
memory address, device
register or allocated DMA
memory address 411

ddi_rep_put16 – write data to the mapped
memory address, device
register or allocated DMA
memory address 414

ddi_rep_put32 – write data to the mapped
memory address, device
register or allocated DMA
memory address 414

ddi_rep_put64 – write data to the mapped
memory address, device
register or allocated DMA
memory address 414

ddi_rep_put8 – write data to the mapped
memory address, device
register or allocated DMA
memory address 414

ddi_rep_putb – write data to the mapped
memory address, device
register or allocated DMA
memory address 414

ddi_rep_putl – write data to the mapped
memory address, device
register or allocated DMA
memory address 414

ddi_rep_putll – write data to the mapped
memory address, device
register or allocated DMA
memory address 414

ddi_rep_putw – write data to the mapped
memory address, device
register or allocated DMA
memory address 414

ddi_trigger_softintr – trigger a soft
interrupt 244

ddi_umem_alloc – allocate kernel memory 426
ddi_umem_free – allocate kernel memory 426

Index-679

ddi_umem_lock – Locks and unlocks memory
pages 430

ddi_umem_zalloc – allocate kernel
memory 426

default SCSI HBA probe function —
scsi_hba_probe 605

delay — delay process execution for a specified
number of clock ticks 432

deregister client from Card Services list —
csx_DeregisterClient 111

determine data model type mismatch —
ddi_model_convert_from 376

Device Driver InterfaceDDI
device mapping access entry point —

devmap_default_access 434
device switch tables

return function for insignificant entries —
nulldev 515

devices
get major device number — getmajor 474
get minor device number — getminor 475
make device number from major and minor

numbers — makedevice 498
devices, non-pollable

error return function — nochpoll 512
devmap_default_access — device mapping

access entry point 434
devmap_devmem_setup – Set driver memory

mapping parameters 439
devmap_devmem_setup() 437
devmap_umem_setup() 438

devmap_do_ctxmgt — perform device context
switching on a mapping 441

devmap_load – control the validation
of memory address
translations 448

devmap_set_ctx_timeout — set context
management timeout
value 444

devmap_umem_setup – Set driver memory
mapping parameters 439

devmap_unload – control the validation
of memory address
translations 448

disksort — single direction elevator seek sort
for buffers 451

display a SCSI request sense message

scsi_vu_errmsg 631
DMA mapping, the allowed burst sizes for —

ddi_dma_burstsizes 292
driver buffers

copy data— ddi_copyin 254
copy data from driver — ddi_copyout 257
copy data from driver to user program —

copyout 101
copy data from user program — copyin 97

driver error messages
display an error message or panic the

system – cmn_err 86
driver privilege — drv_priv 455
drv_getparm — retrieve kernel state

information 452
drv_hztousec — convert clock ticks to

microseconds 454
drv_priv — determine driver privilege 455
drv_usectohz — convert microseconds to clock

ticks 456
drv_usecwait — busy-wait for specified

interval 457
dupb — duplicate a message block

descriptor 458
duplicate a message — dupmsg 461
duplicate a message block descriptor —

dupb 458
duplicate access handle —

csx_DupHandle 112
dupmsg — duplicate a message 461

E
enable/disable accesses to the PCI Local Bus

Configuration space.
– pci_config_setup 521
– pci_config_teardown 521

error return codes converted to text strings —
csx_Error2Text 115

error return function for illegal entries —
nodev 513

event mask
return client event mask –

csx_GetEventMask 235
set client event mask –

csx_SetEventMask 235

man pages section 9F: DDI and DKI Kernel Functions ♦ February 2000

events converted to text strings —
csx_Event2Text 116

expression verification
– assert 57

F
find first (last) bit set in a long integer –

ddi_ffs 330
ddi_fls 330

first CIS tuple – csx_GetFirstTuple 121
flushband — flush messages for specified

priority band 466
free access handle — csx_FreeHandle 117
free DMA handle

— ddi_dma_free_handle 302
free mapped register address space —

ddi_regs_map_free 407
free previously allocated memory —

ddi_dma_mem_free 309
free space — rmfree 576
freerbuf — free a raw buffer header 471
freeze, thaw the state of a stream – freezestr 472

unfreezestr 472
freezestr – freeze, thaw the state of a

stream 472

G
generic tuple parser — csx_ParseTuple 203
get interrupt block cookie

– ddi_get_iblock_cookie 241
get kernel internal minor number from an

external dev_t
scsi_vu_errmsg 337

get next DMA segment —
ddi_dma_nextseg 314

get next DMA window —
ddi_dma_nextwin 316

get soft interrupt block cookie
– ddi_get_soft_iblock_cookie 244

getmajor — get major device number 474
getminor — get minor device number 475
getrbuf — get a raw buffer header 479

H
handle variable argument list

– va_arg 664
– va_copy 664
– va_end 664
– va_start 664

I
I/O error

return — geterror 473
I/O resources

release I/O resources – csx_ReleaseIO 219
request I/O resources –

csx_RequestIO 219
I/O, block

suspend processes pending completion —
biowait 74

I/O, buffer
release buffer and notify processes —

biodone 66
I/O, paged request

allocate virtual address space —
bp_mapin 75

deallocate virtual address space —
bp_mapout 76

I/O, physical
– minphys 524
– physio 524

inb – read from an I/O port 481
inform the system that a device’s

component is required.
— ddi_dev_is_needed 270

initialize a buffer structure — bioinit 70
initialize a named kstat —

kstat_named_init 492
inl – read from an I/O port 481
interrupt handling

add an interrupt – ddi_add_intr 241
get interrupt block cookie –

ddi_get_iblock_cookie 241
remove an interrupt –

ddi_remove_intr 241
inw – read from an I/O port 481
IOC_CONVERT_FROM — Determine if there is

a need to translate M_IOCTL
contents 484

IRQ resource
release IRQ resource – csx_ReleaseIRQ 224

Index-681

request IRQ resource –
csx_RequestIRQ 224

K
kernel address locations

between locations — bcopy 61
kernel addresses

get page frame number —
hat_getkpfnum 480

Kernel interfaces for device ids
– ddi_devid_compare 267
– ddi_devid_free 267
– ddi_devid_init 267
– ddi_devid_register 267
– ddi_devid_sizeof 267
– ddi_devid_unregister 267
– ddi_devid_valid 267

kernel modules, dynamic loading
add loadable module – mod_install 504
query loadable module – mod_info 504
remove loadable module –

mod_remove 504
kernel state information — drv_getparm 452
kmem_alloc – allocate kernel memory 485
kmem_free – allocate kernel memory 485
kmem_zalloc – allocate kernel memory 485
kstat_create — create and initialize a new

kstat 488
kstat_delete — remove a kstat from the

system 490
kstat_install — add a fully initialized kstat to

the system 491
kstat_named_init — initialize a named

kstat 492
kstat_queue – update I/O kstat statistics 493
kstat_runq_back_to_waitq – update I/O kstat

statistics 493
kstat_runq_enter – update I/O kstat

statistics 493
kstat_runq_exit – update I/O kstat

statistics 493
kstat_waitq_enter – update I/O kstat

statistics 493
kstat_waitq_exit – update I/O kstat

statistics 493

kstat_waitq_to_runq – update I/O kstat
statistics 493

L
Locks and unlocks memory pages -

ddi_umem_lock 430
look up integer property —

ddi_prop_get_int 390
lookup property information

– ddi_prop_lookup 393
– ddi_prop_lookup_byte_array 393
– ddi_prop_lookup_int_array 393
– ddi_prop_lookup_string 393
– ddi_prop_lookup_string_array 393

M
makedevice — make device number from major

and minor numbers 498
map memory area on PC Card —

csx_MapMemPage 135
max — return the larger of two integers 499
memory

clear for a given number of bytes —
bzero 82

min — return the lesser of two integers 500
minor node for device

create — ddi_create_minor_node 261
modify PC Card configuration —

csx_ModifyConfiguration 136
modify window attributes —

csx_ModifyWindow 139
mt-streams — STREAMS multithreading 507
mutex routines

– mutex 509
– mutex_destroy 509
– mutex_enter 509
– mutex_exit 509
– mutex_init 509
– mutex_owned 509
– mutex_tryenter 509

mutual exclusion lockmutex

N
next CIS tuple – csx_GetNextTuple 121
nodes

man pages section 9F: DDI and DKI Kernel Functions ♦ February 2000

create minor nodes for client –
csx_MakeDeviceNode 131

Notify pm framework of autonomous
power level change –
pm_power_has_changed 532

notify target driver of bus resets —
scsi_reset_notify 623

O
obtain DDI information —

csx_CS_DDI_Info 109
OTHERQ – get pointer to queue’s partner

queue 516
outb – write to an I/O port 517
outl – write to an I/O port 517
outw – write to an I/O port 517

P
panic state — ddi_in_panic 343
parse Battery Replacement Date tuple —

csx_Parse_CISTPL_BATTERY 141
parse Byte

Order tuple —
csx_Parse_CISTPL_BYTEORDER 143

parse Card Configuration Table tuple —
csx_Parse_CISTPL_CFTABLE_ENTRY 145

parse Card Initialization Date tuple —
csx_Parse_CISTPL_DATE 155

parse Configuration tuple —
csx_Parse_CISTPL_CONFIG 152

parse Data Organization tuple —
csx_Parse_CISTPL_ORG 193

parse Data Recording Format tuple —
csx_Parse_CISTPL_FORMAT 165

parse Device Geo A tuple —
csx_Parse_CISTPL_DEVICEGEO_A 163

parse Device Geo tuple —
csx_Parse_CISTPL_DEVICEGEO 161

parse Device Information tuple
for Attribute Memory –

csx_Parse_CISTPL_DEVICE_A 157
parse Function Extension tuple —

csx_Parse_CISTPL_FUNCE 168
parse Function Identification tuple —

csx_Parse_CISTPL_FUNCID 178

parse Geometry tuple —
csx_Parse_CISTPL_GEOMETRY 181

parse JEDEC Identifier tuple
for Attribute Memory –

csx_Parse_CISTPL_JEDEC_A 183
parse Level-1 Version/Product

Information tuple —
csx_Parse_CISTPL_VERS_1 199

parse Level-2 Version and Information tuple —
csx_Parse_CISTPL_VERS_2 201

parse Link Target tuple —
csx_Parse_CISTPL_LINKTARGET 185

parse Long Link A tuple
– csx_Parse_CISTPL_LONGLINK_A 187

parse Long Link C tuple
– csx_Parse_CISTPL_LONGLINK_C 187

parse Manufacturer Identification tuple —
csx_Parse_CISTPL_MANFID 191

parse Multi-Function tuple —
csx_Parse_CISTPL_LONGLINK_MFC 189

parse Other Condition Device Information tuple
for Common Memory –

csx_Parse_CISTPL_DEVICE_OC 157
parse Software Interleaving tuple —

csx_Parse_CISTPL_SWIL 197
parse Special Purpose tuple —

csx_Parse_CISTPL_SPCL 195
parser, for tuples (generic) —

csx_ParseTuple 203
pci_config_get16 – read or write single datum of

various sizes to the PCI Local
Bus Configuration space 519

pci_config_get32 – read or write single datum of
various sizes to the PCI Local
Bus Configuration space 519

pci_config_get64 – read or write single datum of
various sizes to the PCI Local
Bus Configuration space 519

pci_config_get8 – read or write single datum of
various sizes to the PCI Local
Bus Configuration space 519

pci_config_getb – read or write single datum of
various sizes to the PCI Local
Bus Configuration space 519

pci_config_getl – read or write single datum of
various sizes to the PCI Local
Bus Configuration space 519

Index-683

pci_config_getll – read or write single datum of
various sizes to the PCI Local
Bus Configuration space 519

pci_config_getw – read or write single datum of
various sizes to the PCI Local
Bus Configuration space 519

pci_config_put16 – read or write single datum
of various sizes to the PCI
Local Bus Configuration
space 519

pci_config_put32 – read or write single datum
of various sizes to the PCI
Local Bus Configuration
space 519

pci_config_put64 – read or write single datum
of various sizes to the PCI
Local Bus Configuration
space 519

pci_config_put8 – read or write single datum of
various sizes to the PCI Local
Bus Configuration space 519

pci_config_putb – read or write single datum of
various sizes to the PCI Local
Bus Configuration space 519

pci_config_putl – read or write single datum of
various sizes to the PCI Local
Bus Configuration space 519

pci_config_putll – read or write single datum of
various sizes to the PCI Local
Bus Configuration space 519

pci_config_putw – read or write single datum of
various sizes to the PCI Local
Bus Configuration space 519

pci_config_setup – enable/disable accesses
to the PCI Local Bus
Configuration space. 521

pci_config_teardown – enable/disable
accesses to the PCI Local Bus
Configuration space. 521

pci_report_pmcap-Report power management
capability of a PCI device 522

perform device context switching on a mapping
— devmap_do_ctxmgt 441

pm_busy_component – control device
components’ availability for
Power Management 526

pm_idle_component – control device
components’ availability for
Power Management 526

pm_power_has_changed – Notify pm
framework of autonomous
power level change 532

pm_raise_power - Raise or lower power of
components 534

pm_trans_check – advisory check for device
power cycles 538

pollwakeup — inform a process that an event
has occurred 540

proc_ref – send a signal to a process 541
proc_signal – send a signal to a process 541
proc_unref – send a signal to a process 541
put — call a STREAMS put procedure 546

Q
qbufcall — call a function when a buffer

becomes available 556
qtimeout — execute a function after a specified

length of time 563
qunbufcall — cancel a pending qbufcall

request 564
quntimeout — cancel previous timeout function

call 565
qwait – STREAMS wait routines 566
qwait_sig – STREAMS wait routines 566
qwriter — asynchronous STREAMS perimeter

upgrade 568

R
Raise or lower power of components -

pm_raise_power 534
raw buffer

free a raw buffer header — freerbuf 471
get a raw buffer header — getrbuf 479

RD – get pointer to the read queue 569
read from an I/O port – inb 481

inl 481
inw 481
repinsb 481
repinsd 481
repinsw 481

man pages section 9F: DDI and DKI Kernel Functions ♦ February 2000

read data from mapped device in the memory
space or allocated DMA
memory

– ddi_mem_get16 366
– ddi_mem_get32 366
– ddi_mem_get64 366
– ddi_mem_get8 366
– ddi_mem_rep_get16 370
– ddi_mem_rep_get32 370
– ddi_mem_rep_get64 370
– ddi_mem_rep_get8 370

read data from the device
– ddi_get16 331
– ddi_get32 331
– ddi_get64 331
– ddi_get8 331

read data from the mapped device register in
I/O space

– ddi_io_get16 345
– ddi_io_get32 345
– ddi_io_get8 345
– ddi_io_getb 345
– ddi_io_getl 345
– ddi_io_getw 345

read data from the mapped memory address,
device register or allocated
DMA memory address

– ddi_rep_get16 411
– ddi_rep_get32 411
– ddi_rep_get64 411
– ddi_rep_get8 411
– ddi_rep_getb 411
– ddi_rep_getl 411
– ddi_rep_getll 411
– ddi_rep_getw 411

read from device register
– csx_Get16 118
– csx_Get32 118
– csx_Get64 118
– csx_Get8 118

read multiple data from the mapped device
register in I/O space

– ddi_io_rep_get16 352
– ddi_io_rep_get32 352
– ddi_io_rep_get8 352
– ddi_io_rep_getb 352
– ddi_io_rep_getl 352

– ddi_io_rep_getw 352
read or write a PC Card Configuration

Register —
csx_AccessConfigurationRegister 103

read or write single datum of various sizes to the
PCI Local Bus Configuration
space

– pci_config_get16 519
– pci_config_get32 519
– pci_config_get64 519
– pci_config_get8 519
– pci_config_getb 519
– pci_config_getl 519
– pci_config_getll 519
– pci_config_getw 519
– pci_config_put16 519
– pci_config_put32 519
– pci_config_put64 519
– pci_config_put8 519
– pci_config_putb 519
– pci_config_putl 519
– pci_config_putll 519
– pci_config_putw 519

read repetitively from device register
– csx_RepGet16 211
– csx_RepGet32 211
– csx_RepGet64 211
– csx_RepGet8 211

readers/writer lock functions
– rw_destroy 581
– rw_downgrade 581
– rw_enter 581
– rw_exit 581
– rw_init 581
– rw_read_locked 581
– rw_tryenter 581
– rw_tryupgrade 581
– rwlock 581

register client — csx_RegisterClient 206
release I/O resources – csx_ReleaseIO 219,

224, 227, 229
release configuration on PC Card —

csx_ReleaseConfiguration 209
remove a kstat from the system —

kstat_delete 490
remove a soft interrupt

– ddi_remove_softintr 244

Index-685

remove an interrupt handler
– ddi_remove_intr 241

remove client from Card Services list —
csx_DeregisterClient 111

repinsb – read from an I/O port 481
repinsd – read from an I/O port 481
repinsw – read from an I/O port 481
Report a hardware failure 276
Report power management capability of a PCI

device-pci_report_pmcap
522

repoutsb – write to an I/O port 517
repoutsd – write to an I/O port 517
repoutsw – write to an I/O port 517
request I/O resources – csx_RequestIO 219,

224, 227, 229
reset a function on a PC card —

csx_ResetFunction 234
resource map

allocate resource maps – rmallocmap 573
free resource maps – rmallocmap 573

retrieve number of DMA windows —
ddi_dma_numwin 318

retrieve subsequent DMA cookie —
ddi_dma_nextcookie 312

return client event mask –
csx_GetEventMask 235

return client
– csx_GetFirstClient 119
– csx_GetNextClient 119

return current access handle offset —
csx_GetHandleOffset 123

return data model type of current thread —
ddi_mmap_get_model 374

return data portion of tuple —
csx_GetTupleData 129

return driver binding name
– ddi_binding_name 250
– ddi_get_name 250

return index matching capability string —
scsi_hba_lookup_capstr 601

return normalized driver name —
ddi_driver_name 328

return physical socket number —
csx_MapLogSocket 134

return status of PC Card and socket —
csx_GetStatus 125

return the devinfo node name —
ddi_node_name 378

return the larger of two integers — max 499
return the lesser of two integers — min 500
return tuple

first CIS tuple – csx_GetFirstTuple 121
next CIS tuple – csx_GetNextTuple 121

returns size of a buffer structure — biosize 73
returns the current time in seconds

ddi_get_time 342
returns the process ID

ddi_get_pid 341
returns the value of lbolt

returns the value of lbolt 339
rmalloc — allocate space from a resource

map 570
rmalloc_wait — allocate space from a resource

map 575
rmfree — free space back into a resource

map 576

S
SAMESTR – test if next queue is in the same

stream 584
SCSI Host Bus Adapter system initialization

and completion routines
– scsi_hba_init 600
– scsi_hba_init 600

SCSI commands, make packet
– makecom 496
– makecom_g0 496
– makecom_g0_s 496
– makecom_g1 496
– makecom_g5 496

SCSI dma utility routines
– scsi_dmafree 591
– scsi_dmaget 591

SCSI HBA attach and detach routines
– scsi_hba_attach 597
– scsi_hba_attach_setup 597
– scsi_hba_detach 597

SCSI packet
allocate a SCSI packet in iopb map –

get_pktiopb 476
free a packet in iopb map –

free_pktiopb 476

man pages section 9F: DDI and DKI Kernel Functions ♦ February 2000

free an allocated SCSI packet and
its DMA resource —
scsi_destroy_pkt 590

SCSI packet utility routines
– scsi_pktalloc 617
– scsi_pktfree 617
– scsi_resalloc 617
– scsi_resfree 617

scsi_abort — abort a SCSI command 585
scsi_alloc_consistent_buf — scsi dma utility for

allocating an I/O buffer for
SCSI DMA 586

scsi_cname – decode SCSI commands 588
scsi_destroy_pkt — free an allocated SCSI

packet and its DMA
resource 590

scsi_dname – decode SCSI peripheral device
type 588

scsi_errmsg — display a SCSI request sense
message 593

scsi_free_consistent_buf — free a previously
allocated SCSI DMA I/O
buffer 596

scsi_hba_attach – SCSI HBA attach and detach
routines 597

scsi_hba_attach_setup – SCSI HBA attach and
detach routines 597

scsi_hba_detach – SCSI HBA attach and detach
routines 597

scsi_hba_fini – SCSI Host Bus Adapter system
completion routines 600

scsi_hba_init – SCSI Host Bus Adapter system
initialization routines 600

scsi_hba_lookup_capstr — return index
matching capability
string 601

scsi_hba_pkt_alloc – allocate and free a scsi_pkt
structure 603

scsi_hba_pkt_free – allocate and free a scsi_pkt
structure 603

scsi_hba_probe — default SCSI HBA probe
function 605

scsi_hba_tran_alloc – allocate and free transport
structures 606

scsi_hba_tran_free – allocate and free transport
structures 606

scsi_ifgetcap – get SCSI transport
capability 607

scsi_ifsetcap – set SCSI transport capability 607
scsi_init_pkt — prepare a complete SCSI

packet 611
scsi_log — display a SCSI-device-related

message 615
scsi_mname – decode SCSI messages 588
scsi_poll — run a polled SCSI command on

behalf of a target driver 619
scsi_probe — utility for probing a scsi

device 620
scsi_reset — reset a SCSI bus or target 622
scsi_reset_notify — notify target driver of bus

resets 623
scsi_rname – decode SCSI packet completion

reasons 588
scsi_setup_cdb — setup SCSI command

descriptor block (CDB) 625
scsi_slave — utility for SCSI target drivers to

establish the presence of a
target 626

scsi_sname – decode SCSI sense keys 588
scsi_sync_pkt — synchronize CPU and I/O

views of memory 628
scsi_transport — request by a target driver to

start a SCSI command 629
scsi_unprobe – free resources allocated during

initial probing 630
scsi_unslave – free resources allocated during

initial probing 630
scsi_vu_errmsg

display a SCSI request sense message 631
semaphore functions

– sema_destroy 634
– sema_init 634
– sema_p 634
– sema_p_sig 634
– sema_tryp 634
– sema_v 634
– semaphore 634

send a signal to a process
– proc_ref 541
– proc_signal 541
– proc_unref 541

Index-687

set client event mask –
csx_RequestSocketMask 227,
235

set current access handle offset —
csx_SetHandleOffset 237

Set driver memory mapping parameters
– devmap_devmem_setup 439
– devmap_umem_setup 439

Set the device attributes for the mapping —
ddi_mapdev_set_device_acc_attr 360

set up a mapping for a register address space —
ddi_regs_map_setup 408

setup SCSI command descriptor block (CDB) —
scsi_setup_cdb 625

single direction elevator seek sort for buffers —
disksort 451

size in bytes
convert size in pages — ptob 543
convert to size in memory pages (round

down) — btop 77
convert to size in memory pages (round up)

— btopr 78
socket number

return physical socket number —
csx_MapLogSocket 134

soft interrupt handling
add a soft interrupt – ddi_add_softintr 244
get soft interrupt block cookie –

ddi_get_soft_iblock_cookie 244
remove a soft interrupt –

ddi_remove_softintr 244
trigger a soft interrupt –

ddi_trigger_softintr 244
sprintf — format characters in memory 636
status of PC Card and socket —

csx_GetStatus 125
STREAMS wait routines – qwait, qwait_sig 566
STREAMS ioctl blocks

allocate — mkiocb 501
STREAMS message blocks

allocate — allocb 52
attach a user-supplied data buffer in place

— esballoc 463
call a function when a buffer becomes

available — bufcall 79, 556,
564, 658

call function when buffer is available —
esbbcall 465

concatenate bytes in a message —
msgpullup 506, 544

concatenate two — linkb 495
copy — copyb 95
erase the contents of a buffer — clrbuf 85
free all message blocks in a message —

freemsg 470
free one — freeb 469
remove from head of message —

unlinkb 659
remove one form a message — rmvb 577

STREAMS message queue
insert a message into a queue — insq 482

STREAMS message queues 58
reschedule a queue for service —

enableok 462
test for room – canputnext 84
test for room — canput 83

STREAMS Message queues
get next message — getq 478

STREAMS messages
copy a message — copymsg 99
flush for specified priority band —

flushband 466
remove form queue — flushq 467, 579
return the number of bytes in a message —

msgdsize 505
submit messages to the log driver —

strlog 643
test whether a message is a data message —

datamsg 239
trim bytes — adjmsg 51

STREAMS multithreading
— mt-streams 507
qbufcall — call a function when a buffer

becomes available 556
qtimeout — execute a function after a

specified length of time 563
qunbufcall — cancel a pending qbufcall

request 564
quntimeout — cancel previous timeout

function call 565
qwait, qwait_sig – STREAMS wait

routines 566

man pages section 9F: DDI and DKI Kernel Functions ♦ February 2000

qwriter — asynchronous STREAMS
perimeter upgrade 568

STREAMS put and service procedures
disable – qprocsoff 559
enable – qprocson 559

STREAMS queues
change information about a queue or band

of the queue — strqset 646
enable a queue — qenable 558
get pointer to queue’s partner queue –

OTHERQ 516, 569
get information about a queue or band of

the queue — strqget 645
number of messages on a queue —

qsize 562
place a message at the head of a queue —

putbq 547
prevent a queue from being scheduled —

noenable 514
put a message on a queue — putq 555
send a control message to a queue —

putctl 549, 553
send a control message with a one-byte

parameter to a queue —
putctl1 548, 552

send a message on a stream in the reverse
direction — qreply 560

send a message to the next queue —
putnext 551

test if next queue is in the same stream –
SAMESTR 584

test for flow control in specified priority
band — bcanput 59

STREAMS write queues
get pointer for this module or driver –

WR 670
STRUCT_DECL

32-bit application data access macros 647
swab — swap bytes in 16-bit halfwords 652
synchronize CPU and I/O views of memory —

ddi_dma_sync 325, 628
system DMA engine functions

– ddi_dmae 297
– ddi_dmae_1stparty 297
– ddi_dmae_alloc 297
– ddi_dmae_disable 297
– ddi_dmae_enable 297

– ddi_dmae_getattr 297
– ddi_dmae_getcnt 297
– ddi_dmae_getlim 297
– ddi_dmae_prog 297
– ddi_dmae_release 297
– ddi_dmae_stop 297

T
testb — check for an available buffer 653
timeout — execute a function after a specified

length of time 655
cancel previous timeout function call —

untimeout 660
trigger a soft interrupt

– ddi_trigger_softintr 244
tuple

first CIS tuple – csx_GetFirstTuple 121
next CIS tuple – csx_GetNextTuple 121
return data portion of tuple —

csx_GetTupleData 129
tuple entry

generic tuple parser —
csx_ParseTuple 203

parse Other Condition Device Information
tuple for Common Memory –
csx_Parse_CISTPL_DEVICE_OC 157,
183, 187

parse Battery Replacement Date tuple —
csx_Parse_CISTPL_BATTERY 141

parse Byte Order tuple —
csx_Parse_CISTPL_BYTEORDER 143

parse Card Configuration Table tuple —
csx_Parse_CISTPL_CFTABLE_ENTRY 145

parse Card Initialization Date tuple —
csx_Parse_CISTPL_DATE 155

parse Configuration tuple —
csx_Parse_CISTPL_CONFIG 152

parse Data Organization tuple —
csx_Parse_CISTPL_ORG 193

parse Data Recording Format tuple —
csx_Parse_CISTPL_FORMAT 165

parse Device Geo A tuple —
csx_Parse_CISTPL_DEVICE_A 163

parse Device Geo tuple —
csx_Parse_CISTPL_DEVICEGEO 161

Index-689

parse Function Extension tuple —
csx_Parse_CISTPL_FUNCE 168

parse Function Identification tuple —
csx_Parse_CISTPL_FUNCID 178

parse Geometry tuple —
csx_Parse_CISTPL_GEOMETRY 181

parse Level-1 Version/Product
Information tuple —
csx_Parse_CISTPL_VERS_1 199

parse Level-2 Version and
Information tuple —
csx_Parse_CISTPL_VERS_2 201

parse Link Target tuple —
csx_Parse_CISTPL_LINKTARGET 185

parse Manufacturer Identification tuple —
csx_Parse_CISTPL_MANFID 191

parse Multi-Function tuple —
csx_Parse_CISTPL_LONGLINK_MFC 189

parse Software Interleaving tuple —
csx_Parse_CISTPL_SWIL 197

parse Special Purpose tuple —
csx_Parse_CISTPL_SPCL 195

U
uio structure

add character — ureadc 662
remove a character — uwritec 663

uiomove — copy kernel data using uio
structure 657

unbinds the address in a DMA handle —
ddi_dma_unbind_handle 327

unfreezestr – freeze, thaw the state of a
stream 472

uninitialize a buffer structure — biofini 69
update I/O kstat statistics

– kstat_queue 493
– kstat_runq_back_to_waitq 493
– kstat_runq_enter 493
– kstat_runq_exit 493
– kstat_waitq_enter 493
– kstat_waitq_exit 493
– kstat_waitq_to_runq 493

update property information.
– ddi_prop_update 402
– ddi_prop_update_byte_array 402
– ddi_prop_update_int 402

– ddi_prop_update_int_array 402
– ddi_prop_update_string 402
– ddi_prop_update_string_array 402

V
va_arg – handle variable argument list 664
va_copy – handle variable argument list 664
va_end – handle variable argument list 664
va_start – handle variable argument list 664
validate Card Information Structure (CIS) —

csx_ValidateCIS 238
virtual address

return mapped virtual address —
csx_GetMappedAddr 124

vsprintf — format characters in memory 667

W
window resources

release window resources –
csx_ReleaseWindow 229

request window resources –
csx_RequestWindow 229

write data to mapped device in the memory
space or allocated DMA
memory

– ddi_mem_put16 368
– ddi_mem_put32 368
– ddi_mem_put64 368
– ddi_mem_put8 368
– ddi_mem_rep_put16 372
– ddi_mem_rep_put32 372
– ddi_mem_rep_put64 372
– ddi_mem_rep_put8 372

write data to the device
– ddi_put16 405
– ddi_put32 405
– ddi_put64 405
– ddi_put8 405

write data to the mapped device register in I/O
space

– ddi_io_put16 350
– ddi_io_put32 350
– ddi_io_put8 350
– ddi_io_putb 350
– ddi_io_putl 350

man pages section 9F: DDI and DKI Kernel Functions ♦ February 2000

– ddi_io_putw 350
write data to the mapped memory address,

device register or allocated
DMA memory address

– ddi_rep_put16 414
– ddi_rep_put32 414
– ddi_rep_put64 414
– ddi_rep_put8 414
– ddi_rep_putb 414
– ddi_rep_putl 414
– ddi_rep_putll 414
– ddi_rep_putw 414

write multiple data to the mapped device
register in I/O space

– ddi_io_rep_put16 354
– ddi_io_rep_put32 354
– ddi_io_rep_put8 354
– ddi_io_rep_putb 354
– ddi_io_rep_putl 354
– ddi_io_rep_putw 354

write or read a PC Card Configuration
Register —
csx_AccessConfigurationRegister 103

write repetitively to device register
– csx_RepPut16 213
– csx_RepPut32 213
– csx_RepPut64 213
– csx_RepPut8 213

write to an I/O port
– outb 517
– outl 517
– outw 517
– repoutsb 517
– repoutsd 517
– repoutsw 517

write to device register
– csx_Put16 205
– csx_Put32 205
– csx_Put64 205
– csx_Put8 205

Z
zero fill the device register —

ddi_device_zero 265

Index-691

