N

< Sun

microsystems

Network Interface Guide

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part Number 806-1017-10
February 2000

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or
service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon
an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS 1S” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I'utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque
moyen gue ce soit, sans I'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractéres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées du systéme Berkeley BSD licenciés par I’'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays.
Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour I'industrie de I'informatique. Sun détient une licence non exclusive de Xerox sur I'interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place I'interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

9] @O
Adobe PostScript Please
Recycle

Contents

Preface

Introduction to Network Interfaces 13
Networking in SunOS 5.8 13
Open Systems Interconnect Reference Model 14
OSI Layer Definitions 15
Socket Interfaces 17
Sockets Are Multithread Safe 17
SunOS 4 Binary Compatibility 17
Overview of Sockets 18
Socket Libraries 18
Socket Types 18
Interface Sets 19
Socket Basics 20
Socket Creation 20
Binding Local Names 21
Connection Establishment 21
Connection Errors 22
Data Transfer 23

Closing Sockets 24

Connecting Stream Sockets 24
Datagram Sockets 28
Input/Output Multiplexing 32
Standard Routines 34
Host and Service Names 34
hostent — Host Names 36
netent — Network Names 36
protoent - Protocol Names 37
servent - Service Names 37
Other Routines 38
Client-Server Programs 39
Servers 39
Clients 41
Connectionless Servers 42
Advanced Topics 44
Out-of-Band Data 44
Nonblocking Sockets 46
Asynchronous Socket 1I/0 47
Interrupt-Driven Socket I/0 47
Signals and Process Group ID 48
Selecting Specific Protocols 49
Address Binding 49
Using Multicast 51
Zero Copy and Checksum Off-load 57
Socket Options 58
inetd (1M) Daemon 59
Broadcasting and Determining Network Configuration

3. Programming With XTIl and TLI 63

Network Interface Guide ¢ February 2000

60

XTI/TLI Is Multithread Safe 63

XTI/TLI Are Not Asynchronous Safe 64

What Are XTI and TLI? 64
Connectionless Mode 66

Connectionless Mode Routines
Connectionless Mode Service 67

Endpoint Initiation 67

Data Transfer 68

Datagram Errors 70
Connection Mode 71

Connection Mode Routines 72
Connection Mode Service 75

Endpoint Initiation 75

Connection Establishment 80

Data Transfer 85

Connection Release 89
Read/Write Interface 91

Write 92

Read 92

Close 93

Advanced Topics 93

Asynchronous Execution Mode 94

Advanced Programming Example 94

Asynchronous Networking 99

Networking Programming Models 99
Asynchronous Connectionless-Mode Service 100

Asynchronous Connection-Mode Service 101

Asynchronous Open 103

Contents 5

State Transitions 104
XTI/TLI States 104
Outgoing Events 105
Incoming Events 107
Transport User Actions 108
State Tables 108
Guidelines to Protocol Independence 112
XTI/TLI Versus Socket Interfaces 113
Socket-to-XTI/TLI Equivalents 113
Additions to XTI Interface 116
Scatter/Gather Data Transfer Interfaces 116
XTI Utility Functions 117
Additional Connection Release Interfaces 117
4, Transport Selection and Name-to-Address Mapping 119
Transport Selection Is Multithread Safe 119
Transport Selection 120
How Transport Selection Works 120
/etc/netconfig File 121
NETPATHEnvironment Variable 123
NETPATHACccess to netconfig (4) Data 124
Accessing netconfig (4) 125
Loop Through All Visible netconfig (4) Entries 126
Looping Through User-Defined netconfig (4) Entries 127
Name-to-Address Mapping 127
straddr.so Library 128
Using the Name-to-Address Mapping Routines 129
A. UNIX Domain Sockets 135

Introduction 135

Network Interface Guide ¢ February 2000

Socket Creation 135
Binding Local Names 136
Connection Establishment 136
Live Code Example 139
Live Code Examples 139
Index 141

Contents 7

Network Interface Guide ¢ February 2000

Preface

The SunOS™ 5.8 Network Interfaces Programmer’s Guide describes the basic

facilities to implement distributed applications, and guides the programmer in the
use of these facilities.

All utilities, their options, and library functions in this manual reflect SunOS Release
5.8. SunOS 5.8 is a new operating system release developed by Sun Microsystems
Inc. If you are using a different version of SunOS, some utilities and library functions
might function differently.

Audience

A programmer who must convert an existing single-computer application to a
networked, distributed application, design a distributed application, implement a
distributed application, or maintain a distributed application on the SunOS 5.8
operating system platform should read this manual. Additional techniques for
networked applications are described in ONC+ Developer’s Guide. This manual
assumes basic competence in programming, a working familiarity with the C
programming language, and a working familiarity with the UNIX operating system.
Previous experience in network programming is helpful, but is not required to use
this manual.

Organization of the Manual

The services and capabilities of the Network Interfaces portion of the SunOS 5.8
platform are described in the following pages.

Chapter 1 describes this manual and its intent.
Chapter 2 describes the socket interface at the transport layer.
Chapter 3 describes the UNIX System V System Transport Level Interface.

Chapter 4 describes the network selection mechanisms used by applications to select
a network transport and its configuration.

Appendixes
Appendix A describes UNIX family sockets.

Appendix B contains complete, functional listings of the code included in the
document as examples. These modules are furnished as examples under the
provision stated at the beginning of the appendix.

Ordering Sun Documents

Fatbrain.com, an Internet professional bookstore, stocks select product
documentation from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center
on Fatbrain.com at http://www1.fatbrain.com/documentation/sun

10

Accessing Sun Documentation Online

The docs.sun.com® Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com

Network Interface Guide ¢ February 2000

What Typographic Conventions Mean

The following table describes the typographic changes used in this book.

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning

Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use Is -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su
Password:

AaBbCc123 Command-line placeholder: replace
with a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s
Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples

The following table shows the default system prompt and superuser prompt for the

C shell, Bourne shell, and Korn shell.

TABLE P-2 Shell Prompts

Shell Prompt
C shell prompt machine_name%
C shell superuser prompt machine_name#

Preface 11

12

TABLE P—2 Shell Prompts (continued)

prompt

Shell Prompt
Bourne shell and Korn shell prompt $
Bourne shell and Korn shell superuser #

Network Interface Guide ¢ February 2000

CHAPTER 1

Introduction to Network Interfaces

This manual describes the programmer’s interface to network services in the SunOS
5.8 operating system.

SunOS 5.8 is fully compatible with System V, Release 4 (SVR4) and conforms to the
third edition of the System V Interface Description (SVID). It supports all System V
network services.

Networking in SunOS 5.8

The theme of networking in SunOS 5.8 is transport independence. Networked
applications can execute without having to be tailored to a specific transport protocol.

Previous versions of the system contain sockets, TLI, and name-to-address translation
functions. In SunOS 5.8 these are enhanced and work with the new network selection
facility to free user applications of the details of specific protocols and address
formats.

Transport independent RPC provides interfaces that let applications be free of or
more closely tied to the underlying transport. It is the developer’s choice to use the
most appropriate level.

Applications that must adjust options or use specific addresses can still do so. But
you can now write applications to be very portable over different protocol stacks.

Another important feature of SunOS 5.8 is standardized internal kernel network
interfaces at the transport and link levels. At the transport level, the AT&T Transport
Provider Interface is required. At the link level, the UNIX International Data Link
Provider Interface is required.

13

14

Standardizing on these interfaces lets you interchange STREAMS drivers at the
transport and link level with no changes to the modules or drivers communicating
with them. In particular, TLI and sockets can interface to any transport provider
supporting TPI, and any device driver supporting DLPI can be linked beneath the
Internet Protocol (IP).

Open Systems Interconnect Reference
Model

The Open Systems Interconnect (OSI) reference model is the basis of commercially
available network service architectures. Other network protocols, developed
independently, conform loosely to the model. The TCP/IP Internet Protocol suite is
an example.

The OSI reference model is a convenient framework for networking concepts.
Basically, data are injected into a network by a sender. The data are transmitted along
a communication connection and are delivered to a receiver. To do this, a variety of
networking hardware and software must work together.

The OSI reference model divides the functions of networking into seven layers, as
depicted in Figure 1-1.

Application Layer Layer 7

Presentation Layer Layer 6

Session Layer Layer 5

Transport Layer Layer 4
Network Layer Layer 3

Datalink Layer Layer 2
Physical Layer Layer 1

Figure 1-1 OSI Reference Model

Each protocol layer performs services for the layer above it. The ISO definition of the
protocol layers provides designers some freedom of implementation. For example,
some applications skip the presentation and session layers to interface directly with
the Transport layer.

Network Interface Guide ¢ February 2000

OSI Layer Definitions

Layer 1. Physical Layer

The hardware layer of the model. On SPARC systems, it consists of the connector
to the network transmission medium, any multiplexor boxes, and cables.

Layer 2: Data Link Layer

Does the sending and receiving. On the sending end, Ethernet (or similar) software
organizes the data into packets of appropriate size and packages them. The
packaging includes the physical address of the intended receiver. The layer also
transmits the message packets and retransmits them if needed.

On the receiving end, the Ethernet hardware recognizes packets with its address and
receives them. The Ethernet software strips the transmission packaging and
reassembles the data. It can detect transmission errors.

Layer 3: Network Layer

Does the message routing, including translation from logical to physical addresses.
The Internet Protocol (IP) is the normal network layer for SPARC systems.

Layer 4: Transport Layer

Controls the flow of data on the network. In SunOS 5.8, any of the Transport Layer
Interface (TLI), the Transmission Control Protocol (TCP), or the User Datagram
Protocol (UDP) can be used. In SPARC systems, connection mode service is typically
provided through TCP, and connectionless service is typically provided through
UDP.

Layer 5: Session Layer

Manages reliable sessions between processes. Remote Procedure Calls (RPC) belong
at this layer. The interface at this layer allows remote communication using function
call semantics.

Layer 6: Presentation Layer

Performs the translation between the data representation local to the computer and
the processor-independent format that is sent across the network. In the SunOS 5.8
environment, the processor-independent data format is XDR.

Introduction to Network Interfaces 15

16

Layer 7: Application Layer

At this top layer are the user-level programs and services. Examples of user-level
programs are telnet ,rlogin , ftp , and yppasswd . Examples of services are
NFS™, NIS, and DNS.

Industry standards have been or are being defined for each layer of the reference
model. Two standards are defined for each layer: one specifies the interface to the
services provided by the layer, and the other specifies the protocol observed by the
services in the layer. Users of a service interface standard should be able to ignore
the protocol and any other implementation details of the layer.

The Transport Layer

The transport layer (layer 4) is the lowest layer of the model that provides
applications and higher layers with end-to-end service. This layer hides the topology
and characteristics of the underlying network from users. The transport layer also
defines a set of services common to many contemporary protocol suites including the
ISO protocols, Transmission Control Protocol and TCP/IP Internet Protocol Suite,
Xerox Network Systems (XNS), and Systems Network Architecture (SNA).

In RPC programming, the term “network” is frequently used as a synonym for
transport or transport type.

Transport Layer Interface

The Transport Layer Interface (TLI) is modeled on the industry standard Transport
Service Definition (ISO 8072). It also can be used to access both TCP and UDP. It is
implemented as a user library using the STREAMS 1/0 mechanism.

Network Interface Guide ¢ February 2000

CHAPTER 2

Socket Interfaces

This chapter presents the socket interface and illustrates it with sample programs.
The programs demonstrate the Internet family sockets.

m “Overview of Sockets” on page 18

m “Socket Basics” on page 20

m “Standard Routines” on page 34

m “Client-Server Programs” on page 39

m “Advanced Topics” on page 44

Sockets Are Multithread Safe

The interface described in this chapter is multithread safe. Applications that contain
socket function calls can be used freely in a multithreaded application. Note,
however, that the degree of concurrency available to applications is not specified.

SunOS 4 Binary Compatibility

Two major changes from SunOS 4 hold true for SunOS 5 releases. The binary
compatibility package allows SunOS 4-based dynamically linked socket applications
to run on SunOS 5.

1. You must explicitly specify the socket library (-lsocket or libsocket) on the
compilation line.

17

18

2. You may need to link with libnsl also (use -Isocket -Insl , hot -Insl
-lsocket).

3. You must recompile all SunOS 4 socket-based applications with the socket library
to run under SunOS 5.

Overview of Sockets

Sockets are the most commonly used low-level interface to network protocols. They
have been an integral part of SunOS releases since 1981. A socket is an endpoint of
communication to which a name can be bound. A socket has a type and one
associated process. Sockets were designed to implement the client-server model for
interprocess communication where:

m The interface to network protocols needs to accommodate multiple communication
protocols, such as TCP/IP, Xerox internet protocols (XNS), and UNIX family.

m The interface to network protocols needs to accommodate server code that waits
for connections and client code that initiates connections.

m It also needs to operate differently, depending on whether communication is
connection-oriented or connectionless.

m Application programs might want to specify the destination address of the
datagrams it delivers instead of binding the address with the open (2) call.

Sockets make network protocols available, while behaving like UNIX files.
Applications create sockets when they are needed. Sockets work with the close (2),
read (2), write (2), ioctl (2),and fcntl (2) interfaces, and the operating system
differentiates between the file descriptors for files and the file descriptors for sockets.

Socket Libraries

The socket interface routines are in a library that must be linked with the application.
The library libsocket.so is contained in /usr/lib with the rest of the system
service libraries. libsocket.so is used for dynamic linking.

Socket Types

Socket types define the communication properties visible to a user. The Internet
family sockets provide access to the TCP/IP transport protocols. The Internet family
is identified by the value AF_INET6, for sockets that can communicate over both
IPv6 and IPv4. The value AF_INET is also supported for source compatibility with
old applications and for “raw” access to IPv4.

Network Interface Guide ¢ February 2000

Three types of sockets are supported:

1. Stream sockets allow processes to communicate using TCP. A stream socket
provides bidirectional, reliable, sequenced, and unduplicated flow of data with no
record boundaries. After the connection has been established, data can be read
from and written to these sockets as a byte stream. The socket type is
SOCK_STREAM

2. Datagram sockets allow processes to use UDP to communicate. A datagram
socket supports bidirectional flow of messages. A process on a datagram socket
can receive messages in a different order from the sending sequence and can
receive duplicate messages. Record boundaries in the data are preserved. The
socket type is SOCK_DGRAM

3. Raw sockets provide access to ICMP. These sockets are normally datagram
oriented, although their exact characteristics are dependent on the interface
provided by the protocol. Raw sockets are not for most applications. They are
provided to support developing new communication protocols or for access to
more esoteric facilities of an existing protocol. Only superuser processes can use
raw sockets. The socket type is SOCK_RAW

See “Selecting Specific Protocols” on page 49 for further information.

Interface Sets

SunOS 5.8 provides two sets of socket interfaces. The BSD socket interfaces are
provided and, since SunOS 5.7 the XNS 5 (Unix98) Socket interfaces are also
provided. The XNS 5 interfaces differ slightly from the BSD interfaces.

The XNS 5 Socket interfaces are documented in the man pages: accept (3XNET),
bind (3XNET), connect (3XNET), endhostent (3XNET), endnetent (3XNET),
endprotoent (3XNET), endservent (3XNET), gethostbyaddr (3XNET),
gethostbyname (3XNET), gethostent (3XNET), gethostname (3XNET),
getnetbyaddr (3XNET), getnetbyname (3XNET), getnetent (3XNET),
getpeername (3XNET), getprotobyname (3XNET), getprotobynumber (3XNET),
getprotoent (3XNET), getservbyname (3XNET), getservbyport (3XNET),
getservent (3XNET), getsockname (3XNET), getsockopt (3XNET),

htonl (3XNET), htons (3XNET), inet_addr (3XNET), inet_Inaof (3XNET),
inet_makeaddr (3XNET), inet_netof (3XNET), inet_network (3XNET),
inet_ntoa (3XNET), listen (3XNET), ntohl (3XNET), ntohs (3XNET),

recv (3XNET), recvfrom (3XNET), recvmsg (3XNET), send (3XNET),

sendmsg (3XNET), sendto (3XNET), sethostent (3XNET), setnetent (3XNET),
setprotoent (3XNET), setservent (3XNET), setsockopt (3XNET),

shutdown (3XNET), socket (3XNET), and socketpair (3XNET).

The traditional SunOS 5 BSD Socket behavior is documented in the corresponding
3N man pages. In addition, a number of new interfaces have been added to section
3N: freeaddrinfo (3SOCKET), freehostent (3SOCKET),

getaddrinfo (3SOCKET), getipnodebyaddr (3SOCKET),

Socket Interfaces 19

20

getipnodebyname (3SOCKET), getnameinfo (3SOCKET), inet_ntop (3SOCKET),
inet_pton (3SOCKET), See the standards (5) man page for information on
building applications that use the XNS 5 (Unix98) socket interface.

Socket Basics

This section describes the use of the basic socket interfaces.

Socket Creation

The socket (3SOCKET) call creates a socket in the specified family and of the
specified type.

s = socket(family, type, protocol);

If the protocol is unspecified (a value of 0), the system selects a protocol that
supports the requested socket type. The socket handle (a file descriptor) is returned.

The family is specified by one of the constants defined in sys/socket.h . Constants
named AF_suite specify the address format to use in interpreting names, as shown in
Table 2-1.

TABLE 2-1 Protocol Family

AF_APPLETALK Apple Computer Inc. Appletalk network

AF_INET6 Internet family for IPv6 and 1Pv4
AF_INET Internet family for 1Pv4 only
AF_PUP Xerox Corporation PUP internet
AF_UNIX Unix file system

Socket types are defined in sys/socket.h . These types—SOCK_STREAM
SOCK_DGRAMr SOCK_RAWare supported by AF_INET6, AF_INET, and AF_UNIX.
The following creates a stream socket in the Internet family:

s = socket(AF_INET6, SOCK_STREAM, 0);

Network Interface Guide ¢ February 2000

This call results in a stream socket with the TCP protocol providing the underlying
communication. Use the default protocol (the protocol argument is 0) in most
situations. You can specify a protocol other than the default, as described in
“Advanced Topics” on page 44.

Binding Local Names

A socket is created with no name. A remote process has no way to refer to a socket
until an address is bound to it. Communicating processes are connected through
addresses. In the Internet family, a connection is composed of local and remote
addresses, and local and remote ports. There can never be duplicate ordered sets,
such as: protocol , local address ,local port , foreign address , foreign
port . In most families, connections must be unique.

The bind (3SOCKET) call allows a process to specify the local address of the socket.
This forms the set local address |, local port . connect (3SOCKET), and
accept (3SOCKET) complete a socket’s association by fixing the remote half of the
address tuple. The bind (3SOCKET) call is used as follows:

bind (s, name, namelen);

The socket handle is s. The bound name is a byte string that is interpreted by the
supporting protocol(s). Internet family names contain an Internet address and port
number.

This example demonstrates binding an Internet address:

#include <sys/types.h>
#include <netinet/in.h>

struct sockaddr_in6 sin6;

s = socket(AF_INET6, SOCK_STREAM, 0);
bzero (&sin6, sizeof (sinG));

sin6.sin6_family = AF_INET®6;
sin6.sin6_addr.s6_addr = in6addr_arg;
sin6.sin6_port = htons(MYPORT);

bind(s, (struct sockaddr *) &sin6, sizeof sin6);

The content of the address sin6 is described in “Address Binding” on page 49,
where Internet address bindings are discussed.

Connection Establishment

Connection establishment is usually asymmetric, with one process acting as the client
and the other as the server. The server binds a socket to a well-known address
associated with the service and blocks on its socket for a connect request. An
unrelated process can then connect to the server. The client requests services from the

Socket Interfaces 21

22

server by initiating a connection to the server’s socket. On the client side, the
connect (3SOCKET) call initiates a connection. In the Internet family, this might
appear as:

struct sockaddr_in6 server;

connect(s, (struct sockaddr *)&server, sizeof server);

If the client’s socket is unbound at the time of the connect call, the system
automatically selects and binds a name to the socket. See “Address Binding” on page
49. This is the usual way that local addresses are bound to a socket on the client side.

To receive a client’s connection, a server must perform two steps after binding its
socket. The first is to indicate how many connection requests can be queued. The
second step is to accept a connection:

struct sockaddr_in6 from;

listen(s, 5); /* Allow queue of 5 connections */
fromlen = sizeof(from);
newsock = accept(s, (struct sockaddr *) &from, &fromlen);

The socket handle s is the socket bound to the address to which the connection
request is sent. The second parameter of listen (3SOCKET) specifies the maximum
number of outstanding connections that might be queued. from is a structure that is
filled with the address of the client. A NULL pointer might be passed. fromlen is the
length of the structure. (In the UNIX family, from is declared a

struct sockaddr_un)

accept (3SOCKET) normally blocks. accept (3SOCKET) returns a new socket
descriptor that is connected to the requesting client. The value of fromlen is changed
to the actual size of the address.

A server cannot indicate that it accepts connections only from specific addresses. The
server can check the from address returned by accept (3SOCKET) and close a
connection with an unacceptable client. A server can accept connections on more
than one socket, or avoid blocking on the accept call. These techniques are presented
in “Advanced Topics” on page 44.

Connection Errors

An error is returned if the connection is unsuccessful (however, an address bound by
the system remains). Otherwise, the socket is associated with the server and data
transfer can begin.

Table 2-2 lists some of the more common errors returned when a connection attempt
fails.

Network Interface Guide ¢ February 2000

TABLE 2-2 Socket Connection Errors

Socket Errors

Error Description

ENOBUFS

EPROTONOSUPPORT

EPROTOTYPE

ETIMEDOUT

ECONNREFUSED

ENETDOWBr EHOSTDOWN

ENETUNREACHr
EHOSTUNREACH

Lack of memory available to support the call.

Request for an unknown protocol.

Request for an unsupported type of socket.

No connection established in specified time. This happens
when the destination host is down or when problems in the
network result in lost transmissions.

The host refused service. This happens when a server
process is not present at the requested address.

These errors are caused by status information delivered by
the underlying communication interface.

These operational errors can occur either because there is no
route to the network or host, or because of status information
returned by intermediate gateways or switching nodes. The
status returned is not always sufficient to distinguish
between a network that is down and a host that is down.

Data Transfer

This section describes the functions to send and receive data. You can send or receive
a message with the normal read (2) and write (2) interfaces:

write(s, buf, sizeof buf);
read(s, buf, sizeof buf);

Or the calls send (3SOCKET) and recv (3SOCKET) can be used:

send(s, buf, sizeof buf, flags);
recv(s, buf, sizeof buf, flags);

Socket Interfaces 23

24

send (3SOCKET) and recv (3SOCKET) are very similar to read (2) and write (2),
but the flags argument is important. The flags, defined in sys/socket.h , can be
specified as a nonzero value if one or more of the following is required:

MSG_0OOB Send and receive out-of-band data
MSG_PEEK Look at data without reading
MSG_DONTROUTE Send data without routing packets

Out-of-band data is specific to stream sockets. When MSG_PEEKSs specified with a
recv (3SOCKET) call, any data present is returned to the user but treated as still
unread. The next read (2) or recv (3SOCKET) call on the socket returns the same
data. The option to send data without routing packets applied to the outgoing
packets is currently used only by the routing table management process and is
unlikely to be interesting to most users.

Closing Sockets

A SOCK_STREAMNDcket can be discarded by a close (2) function call. If data is
gueued to a socket that promises reliable delivery after a close (2), the protocol
continues to try to transfer the data. If the data is still undelivered after an arbitrary
period, it is discarded.

A shutdown (3SOCKET) closes SOCK_STREAIsbckets gracefully. Both processes can
acknowledge that they are no longer sending. This call has the form:

shutdown(s, howy);

Where how is defined as:

0 Disallows further receives
1 Disallows further sends
2 Disallows both further sends and receives

Connecting Stream Sockets

Figure 2-1 and the next two examples illustrate initiating and accepting an Internet
family stream connection.

Network Interface Guide ¢ February 2000

Server

\
\bﬂ)/ Client
\

Y

Connection
y establishment \

Y

read()/ Data read()/

) A

shutdown() shutdown()
and/or and/or
close() W

Figure 2-1 Connection-Oriented Communication Using Stream Sockets

The program in Code Example 2-1 is a server. It creates a socket and binds a name
to it, then displays the port number. The program calls listen (3SOCKET) to mark
the socket ready to accept connection requests and initialize a queue for the requests.
The rest of the program is an infinite loop. Each pass of the loop accepts a new
connection and removes it from the queue, creating a new socket. The server reads
and displays the messages from the socket and closes it. The use of in6addr_any is
explained in “Address Binding” on page 49.

CODE EXAMPLE 2-1 Accepting an Internet Stream Connection (Server)

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#define TRUE 1

/*

* This program creates a socket and then begins an infinite loop.
* Each time through the loop it accepts a connection and prints
* data from it. When the connection breaks, or the client closes
* the connection, the program accepts a new connection.

*/

Socket Interfaces 25

main()
{
int sock, length;
struct sockaddr_in6 server;
int msgsock;
char buf[1024];
int rval;

/* Create socket. */
sock = socket(AF_INET6, SOCK_STREAM, 0);
if (sock == -1) {

perror("opening stream socket");

exit(1);

/* Bind socket using wildcards.*/
bzero (&server, sizeof(server));
bzero (&sin6, sizeof (sinG));
server.sin6_family = AF_INETS;
server.sin6_addr.s6_addr = in6addr_any;
server.sin6é_port = 0;
if (bind(sock, (struct sockaddr *) &server, sizeof server)
== -1) {
perror("binding stream socket");
exit(1);

/* Find out assigned port number and print it out. */
length = sizeof server;
if (getsockname(sock,(struct sockaddr *) &server,&length)

perror(“getting socket name");
exit(1);

printf("Socket port #%d\n", ntohs(server.sin6_port));
/* Start accepting connections. */
listen(sock, 5);
do {
msgsock = accept(sock,(struct sockaddr *) 0,(int *) 0);
if (msgsock == -1
perror(“accept”);
else do {
memset(buf, 0, sizeof buf);
if ((rval = read(msgsock,buf, 1024)) == -1)
perror(“reading stream message");
if (rval == 0)
printf("Ending connection\n");
else
/* assumes the data is printable */
printf("-->%s\n", buf);
} while (rval > 0);
close(msgsock);
} while(TRUE);
/*
* Since this program has an infinite loop, the socket "sock" is
* never explicitly closed. However, all sockets will be closed
* automatically when a process is killed or terminates normally.
*/
exit(0);

26 Network Interface Guide ¢ February 2000

To initiate a connection, the client program in Code Example 2-2 creates a stream
socket and calls connect (3SOCKET), specifying the address of the socket for
connection. If the target socket exists and the request is accepted, the connection is
complete and the program can send data. Data are delivered in sequence with no
message boundaries. The connection is destroyed when either socket is closed. For
more information about data representation routines, such as ntohl (3SOCKET),
ntohs (3SOCKET), htons (3SOCKET), and htonl (3XNET), in this program, see the
byteorder (3SOCKET) man page.

CODE EXAMPLE 2-2 Internet family Stream Connection (Client)

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#define DATA "Half a league, half a league . . ."

/*

This program creates a socket and initiates a connection with

the socket given in the command line. Some data are sent over the
connection and then the socket is closed, ending the connection.
The form of the command line is: streamwrite hostname portnumber
Usage: pgm host port

* % % % ok

*/

main(argc, argv)
int argc;
char *argv([];

int sock, errnum h_addr_index;
struct sockaddr_in6 server;
struct hostent *hp;

char buf[1024];

/* Create socket. */
sock = socket(AF_INET6, SOCK_STREAM, 0);

if (sock == -1) {
perror("opening stream socket");
exit(1);

/* Connect socket using name specified by command line. */
bzero (&sin6, sizeof (sin6));
server.sin6_family = AF_INETS;
hp = getipnodebyname(AF_INET6, argv[l], Al_DEFAULT, &errnum);
/*
* getinodebyname returns a structure including the network address
* of the specified host.
*
/
if (hp == (struct hostent *) 0) {
fprintf(stderr, "%s: unknown host\n", argv[1]);
exit(2);

h_addr_index = 0;
while (hp->h_addr_listfh_addr_index] != NULL) {
bcopy(hp->h_addr_listth_addr_index], &server.sin6_addr,

Socket Interfaces 27

hp->h_length);
server.sin6_port = htons(atoi(argv[2]));
if (connect(sock, (struct sockaddr *) &server,
sizeof (server)) == -1) {
if (hp->h_addr_list[++h_addr_index] !'= NULL) {
/* Try next address */

continue;
}
perror("connecting stream socket");
freehostent(hp);
exit(1);
}
break;
freehostent(hp);
if (write(sock, DATA, sizeof DATA) == -1)

perror("writing on stream socket");
close(sock);
freehostent (hp);
exit(0);

Datagram Sockets

A datagram socket provides a symmetric data exchange interface. There is no
requirement for connection establishment. Each message carries the destination
address. Figure 2-2 shows the flow of communication between server and client.

Note - The bind (3SOCKET) step shown below for the server is optional.

28 Network Interface Guide ¢ February 2000

Server

Y

Client

Y

y

\TG-CM)/ sendto()
_/

Normally block until a %

request is received

l

Process
the request

k '

Normally block
waiting
for reply

Figure 2-2 Connectionless Communication Using Datagram Sockets

Datagram sockets are created as described in “Socket Creation” on page 20. If a
particular local address is needed, the bind (3SOCKET) operation must precede the
first data transmission. Otherwise, the system sets the local address and/or port
when data is first sent. To send data, sendto (3SOCKET) is used:

sendto(s, buf, buflen, flags, (struct sockaddr *) &to, tolen);

The s, buf, buflen, and flags parameters are the same as in connection-oriented sockets.
The to and tolen values indicate the address of the intended recipient of the message.
A locally detected error condition (such as an unreachable network) causes a return
of =1 and errno to be set to the error number.

To receive messages on a datagram socket, recvfrom (3SOCKET) is used:

recvfrom(s, buf, buflen, flags, (struct sockaddr *) &from, &fromlen);

Before the call, fromlen is set to the size of the from buffer. On return, it is set to the
size of the address from which the datagram was received.

Socket Interfaces 29

30

Datagram sockets can also use the connect (3SOCKET) call to associate a socket
with a specific destination address. It can then use the send (3SOCKET) call. Any
data sent on the socket without explicitly specifying a destination address is
addressed to the connected peer, and only data received from that peer is delivered.
Only one connected address is permitted for one socket at a time. A second
connect (3SOCKET) call changes the destination address. Connect requests on
datagram sockets return immediately. The system records the peer’s address.
accept (3SOCKET), and listen (3SOCKET) are not used with datagram sockets.

While a datagram socket is connected, errors from previous send (3SOCKET) calls
can be returned asynchronously. These errors can be reported on subsequent
operations on the socket, or an option of getsockopt (3SOCKET), SO_ERRORan
be used to interrogate the error status.

Code Example 2-3 shows how to send an Internet call by creating a socket, binding a
name to the socket, and sending the message to the socket.

CODE EXAMPLE 2-3 Sending an Internet Family Datagram

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#define DATA "The sea is calm, the tide is full . . ."

* Here | send a datagram to a receiver whose name | get from
* the command line arguments. The form of the command line is:
* dgramsend hostname portnumber
*/
main(argc, argv)

int argc, errnum;

char *argv([];

int sock;
struct sockaddr_in6 name;
struct hostent *hp;

/* Create socket on which to send. */
sock = socket(AF_INET6,SOCK_DGRAM, 0);

if (sock == -1) {
perror("opening datagram socket");
exit(1);

/*
* Construct name, with no wildcards, of the socket to “send”
* to. getinodebyname returns a structure including the network
* address of the specified host. The port number is taken from
* the command line.
*/
hp = getipnodebyname(AF_INET6, argv[l], Al_DEFAULT, &errnum);
if (hp == (struct hostent *) 0) {
fprintf(stderr, "%s: unknown host\n", argv([1]);
exit(2);

Network Interface Guide ¢ February 2000

}

bzero (&sin6, sizeof (sinG));

bzero (&name, sizeof (name));

memcpy((char *) &name.sin6_addr, (char *) hp->h_addr,
hp->h_length);

name.sin6_family = AF_INET6;

name.sin6_port = htons(atoi(argv[2]));

/* Send message. */

if (sendto(sock,DATA, sizeof DATA ,0,
(struct sockaddr *) &name,sizeof name) == -1)
perror("sending datagram message");

close(sock);

exit(0);

Code Example 2-4 shows how to read an Internet call by creating a socket, binding a
name to the socket, and then reading from the socket.

CODE EXAMPLE 2-4 Reading Internet Family Datagrams

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>

/*

* This program creates a datagram socket, binds a name to it, then
* reads from the socket.

*/

main()
int sock, length;
struct sockaddr_in6 name;

char buf[1024];

/* Create socket from which to read. */
sock = socket(AF_INET6, SOCK_DGRAM, 0);

if (sock == -1) {
perror("opening datagram socket");
exit(1);

/* Create name with wildcards. */

bzero (&sin6, sizeof (sinG));

name.sin6_family = AF_INET6;

name.sin6_addr.s6_addr = in6addr_any;

name.sin6_port = 0;

if (bind(sock,(struct sockaddr *)&name, sizeof name) == -1) {
perror("binding datagram socket");
exit(1);

/* Find assigned port value and print it out. */
length = sizeof(name);
if (getsockname(sock,(struct sockaddr *) &name, &length)
== —1)
perror(“getting socket name");
exit(1);

Socket Interfaces 31

32

printf("Socket port #%d\n", ntohs(name.sin6_port));

/* Read from the socket. */

if (read(sock, buf, 1024) == -1)
perror("receiving datagram packet");

/* Assumes the data is printable */

printf("-->%s\n", buf);

close(sock);

exit(0);

Input/Output Multiplexing

Requests can be multiplexed among multiple sockets or files. Use select (3C) to do
this:
#include <sys/time.h>

#include <sys/types.h>
#include <sys/select.h>

fd_set readmask, writemask, exceptmask;
struct timeval timeout;

select(nfds, &readmask, &writemask, &exceptmask, &timeout);

The first argument of select (3C) is the number of file descriptors in the lists
pointed to by the next three arguments.

The second, third, and fourth arguments of select (3C) point to three sets of file
descriptors: a set of descriptors to read on, a set to write on, and a set on which
exception conditions are accepted. Out-of-band data is the only exceptional
condition. Any of these pointers can be a properly cast null. Each set is a structure
containing an array of long integer bit masks. The size of the array is set by
FD_SETSIZE (defined in select.h). The array is long enough to hold one bit for
each FD_SETSIZE file descriptor.

The macros FD_SET(fd, &mask) and FD_CLRfd, &mask) add and delete, respectively,
the file descriptor fd in the set mask. The set should be zeroed before use, and the
macro FD_ZER@&mask) clears the set mask.

The fifth argument of select (3C) allows a time-out value to be specified. If the
timeout pointer is NULL, select (3C) blocks until a descriptor is selectable, or
until a signal is received. If the fields in timeout are set to 0, select (3C) polls and
returns immediately.

select (3C) normally returns the number of file descriptors selected. select (3C)
returns a O if the time-out has expired. select (3C) returns =1 for an error or
interrupt with the error number in errno and the file descriptor masks unchanged.
For a successful return, the three sets indicate which file descriptors are ready to be
read from, written to, or have exceptional conditions pending.

You should test the status of a file descriptor in a select mask with the FD_ISSET(fd,
&mask) macro. It returns a nonzero value if fd is in the set mask, and 0 if it is not.

Network Interface Guide ¢ February 2000

Use select (3C) followed by a FD_ISSET(fd, &mask) macro on the read set to check

for queued connect requests on a socket.

Code Example 2-5 shows how to select on a “listening” socket for readability to
determine when a new connection can be picked up with a call to
accept (3SOCKET). The program accepts connection requests, reads data, and

disconnects on a single socket.

CODE EXAMPLE 2-5 Using select (3C) to Check for Pending Connections

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#define TRUE 1

/*

* This program uses select to check that someone is
* trying to connect before calling accept.

*/

main()

int sock, length;

struct sockaddr_in6 server;
int msgsock;

char buf[1024];

int rval;

fd_set ready;

struct timeval to;

/* Open a socket and bind it as in previous examples. */

/* Start accepting connections. */
listen(sock, 5);
do {
FD_ZERO(&ready);
FD_SET(sock, &ready);
to.tv_sec = 5;
to.tv_usec = 0;

if (select(sock + 1, &ready, (fd_set *)0, (fd_set *)0, &to)

perror(“select");
continue;

}
if (FD_ISSET(sock, &ready)) {
msgsock = accept(sock, (struct sockaddr *)0,
(int %)0);
if (msgsock == -1)
perror("accept");
else do {
memset(buf, 0, sizeof buf);
if ((rval = read(msgsock, buf, 1024)) ==
perror(“reading stream message");
else if (rval == 0)
printf("Ending connection\n");

== -1) {

-1)

Socket Interfaces

33

34

else
printf("-->%s\n", buf);
} while (rval > 0);
close(msgsock);
} else
printf("Do something else\n");
} while (TRUE);
exit(0);

In previous versions of the select (3C) routine, its arguments were pointers to
integers instead of pointers to fd_sets . This style of call still works if the number of
file descriptors is smaller than the number of bits in an integer.

select (3C) provides a synchronous multiplexing scheme. The SIGIO and SIGURG
signals (described in “Advanced Topics” on page 44) provide asynchronous
notification of output completion, input availability, and exceptional conditions.

Standard Routines

You might need to locate and construct network addresses. This section describes the
routines that manipulate network addresses. Unless otherwise stated, functions
presented in this section apply only to the Internet family.

Locating a service on a remote host requires many levels of mapping before client
and server communicate. A service has a name for human use. The service and host
names must be translated to network addresses. Finally, the address is used to locate
and route to the host. The specifics of the mappings can vary between network
architectures. Preferably, a network does not require that hosts be named, thus
protecting the identity of their physical locations. It is more flexible to discover the
location of the host when it is addressed.

Standard routines map host names to network addresses, network names to network
numbers, protocol names to protocol numbers, and service names to port numbers,
and the appropriate protocol to use in communicating with the server process. The
file netdb.h must be included when using any of these routines.

Host and Service Names

The interfaces getaddrinfo (3SOCKET), getnameinfo (3SOCKET), and
freeaddrinfo (3SOCKET) provide a simplified method of translating between the
names and addresses of a service on a host. For IPv6, these interfaces can be used
instead of calling getipnodebyname (3SOCKET) and getservbyname (3SOCKET)
and then figuring out how to combine the addresses. Similarly, for IPv4, these
interfaces can be used instead of gethostbyname (3NSL) and

Network Interface Guide ¢ February 2000

getservbyname (3SOCKET). Both IPv6 and IPv4 addresses are handled
transparently.

getaddrinfo (3SOCKET) returns the combined address and port number of the
specified host and service names. Since all of the information returned by
getaddrinfo (3SOCKET) is dynamically allocated, it must be freed by
freeaddrinfo (3SOCKET) to prevent memory leaks. gethameinfo (3SOCKET)
returns the host and services names associated with a specified address and port
number. To print error messages based on the EAl_xxx codes returned by
getaddrinfo (3SOCKET) and getnameinfo (3SOCKET), call

gai_strerror (3SOCKET).

An example of using getaddrinfo (3SOCKET) follows:

struct addrinfo *res, *aip;
struct addrinfo hints;

int sock = -1;
int error;

/* Get host address. Any type of address will do. */
bzero(&hints, sizeof (hints));

hints.ai_flags = AI_ALL|AI_ADDRCONFIG;
hints.ai_socktype = SOCK_STREAM;

error = getaddrinfo(hostname, servicename, &hints, &res);
if (error = 0) {
(void) fprintf(stderr, "getaddrinfo: %s for host %s service %s\n",
gai_strerror(error), hostname, servicename);
return (-1);

After processing the information returned by getaddrinfo (3SOCKET) in the
structure pointed to by res , the storage should be released by

freeaddrinfo(res);

getnameinfo (3SOCKET) is particularly useful in identifying the cause of an error
as in the following example:

struct sockaddr_storage faddr;

int sock, new_sock;
socklen_t faddrlen;

int error;

char hname[NI_MAXHOST];
char sname[NI_MAXSERV];

faddrlen = sizeof (faddr);
new_sock = accept(sock, (struct sockaddr *)&faddr, &faddrlen);
if (new_sock == -1) {
if (ermo != EINTR && errno !|= ECONNABORTED) {
perror("accept");

Socket Interfaces 35

36

continue;
}
error = getnameinfo((struct sockaddr *)&faddr, faddrlen, hname,
sizeof (hname), sname, sizeof (sname), 0);
if (error) {
(void) fprintf(stderr, "getnameinfo: %s\n",
gai_strerror(error));
} else {
(void) printf("Connection from %s/%s\n", hname, sname);

hostent - Host Names

An Internet host-name-to-address mapping is represented by the hostent structure:

struct hostent {

char *h_name; /* official name of host */
char **h_aliases; /* alias list */

int h_addrtype; /* hostaddrtype(e.g.,AF_INET6) */
int h_length; /* length of address */

char **h_addr_list; /* list of addrs, null terminated */

/*’*lst addr, net byte order*/
#define h_addr h_addr_list[O]

getipnodebyname (3SOCKET) maps an Internet host name to a hostent structure,
getipnodebyaddr (3SOCKET) maps an Internet host address to a hostent

structure, freehostent (3SOCKET) frees the memory of a hostent structure, and
inet_ntop (3SOCKET) maps an Internet host address to a displayable string.

The routines return a hostent structure containing the name of the host, its aliases,
the address type (address family), and a NULL-terminated list of variable length
addresses. The list of addresses is required because a host can have many addresses.
The h_addr definition is for backward compatibility, and is the first address in the
list of addresses in the hostent structure.

netent - Network Names

The routines to map network names to numbers and back return a netent structure;

/*

* Assumes that a network number fits in 32 bits.
*/

struct netent {

char *n_name; /* official name of net */

char **n_aliases; [* alias list */

int n_addrtype; /* net address type */

int n_net; /* net number, host byte order */

Network Interface Guide ¢ February 2000

getnetbyname (3SOCKET), getnetbyaddr r (3SOCKET), and
getnetent (3SOCKET) are the network counterparts to the host routines described
above.

protoent - Protocol Names

The protoent structure defines the protocol-name mapping used with
getprotobyname (3SOCKET), getprotobynumber (3SOCKET), and
getprotoent (3SOCKET):

struct protoent {

char *p_name; /* official protocol name */
char **p_aliases [* alias list */
int p_proto; /* protocol number */

servent — Service Names

An Internet family service resides at a specific, well-known port and uses a
particular protocol. A service-name-to-port-number mapping is described by the
servent structure:

struct servent {

char *s_name; /* official service name */

char **s_aliases; /* alias list */

int S_port; /* port number, network byte order */
char *s_proto; [* protocol to use */

getservbyname (3SOCKET) maps service names and, optionally, a qualifying
protocol to a servent structure. The call:

sp = getservbyname("telnet”, (char *) 0);

returns the service specification of a telnet server using any protocol. The call:

sp = getservbyname("telnet”, "tcp");

returns the telnet server that uses the TCP protocol. getservbyport (3SOCKET)
and getservent (3SOCKET) are also provided. getservbyport (3SOCKET) has
an interface similar to that of getservbyname (3SOCKET); an optional protocol
name can be specified to qualify lookups.

Socket Interfaces 37

Other Routines

In addition to address-related database routines, there are several other routines that
simplify manipulating names and addresses. Table 2-3 summarizes the routines for
manipulating variable-length byte strings and byte-swapping network addresses and
values.

TABLE 2-3 Runtime Library Routines

Call Synopsis

Compares byte-strings; O if same, not 0 otherwise
memcm(fBC)

Copies n bytes from s2 to s1
memcpy3C)

Sets n bytes to value starting at base
memset(3C)

32-bit quantity from host into network byte order
htonl (3SOCKET)

16-bit quantity from host into network byte order
htons (3SOCKET)

32-bit quantity from network into host byte order
ntohl (3SOCKET)

16-bit quantity from network into host byte order
ntohs (3SOCKET)

The byte-swapping routines are provided because the operating system expects
addresses to be supplied in network order. On some architectures, the host byte
ordering is different from network byte order, so programs must sometimes
byte-swap values. Routines that return network addresses do so in network order.
Byte-swapping problems occur only when interpreting network addresses. For
example, the following code formats a TCP or UDP port:

printf("port number %d\n", ntohs(sp->s_port));

38 Network Interface Guide ¢ February 2000

On certain machines, where these routines are not needed, they are defined as null
macros.

Client-Server Programs

The most common form of distributed application is the client/server model. In this
scheme, client processes request services from a server process.

An alternate scheme is a service server that can eliminate dormant server processes.
An example is inetd (1M), the Internet service daemon. inetd (1M) listens at a
variety of ports, determined at start up by reading a configuration file. When a
connection is requested on an inetd (1M) serviced port, inetd (1M) spawns the
appropriate server to serve the client. Clients are unaware that an intermediary has
played any part in the connection. inetd (1M) is described in more detail in “
inetd (1M) Daemon” on page 59.

Servers

Most servers are accessed at well-known Internet port numbers or UNIX family
names. Code Example 2-6 illustrates the main loop of a remote-login server.

CODE EXAMPLE 2-6 Remote Login Server

main(argc, argv)
int argc;
char *argv([];

int f;

struct sockaddr_in6 from;
struct sockaddr_in6 sin;
struct servent *sp;

sp = getservbyname("login", "tcp");

if (sp == (struct servent *) NULL) {
fprintf(stderr, "rlogind: tcp/login: unknown service");
exit(1);

}

#ifndef DEBUG
/* Disassociate server from controlling terminal. */

#endif
sin.sin6_port = sp->s_port; /* Restricted port */
sin.sin6_addr.s6_addr = in6addr_any;

f = socket(AF_INET6, SOCK_STREAM, 0);

Socket Interfaces 39

40

if (bind(f, (struct sockaddr *) &sin, sizeof sin) == -1) {

listen(f, 5);
while (TRUE) {
int g, len = sizeof from;
g = accept(f, (struct sockaddr *) &from, &len);
if(g== -1{
if (errno != EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");
continue;

}

if (fork() == 0) {
close(f);
doit(g, &from);

close(g);

exit(0);

Code Example 2-7 shows how the server gets its service definition.

CODE EXAMPLE 2-7 Remote Login Server: Step 1

sp = getservbyname("login", "tcp");

if (sp == (struct servent *) NULL) {
fprintf(stderr, "rlogind: tcp/login: unknown service\n");
exit(1);

}

The result from getservbyname (3SOCKET) is used later to define the Internet port
at which the program listens for service requests. Some standard port numbers are in
fusr/include/netinet/in.h

Code Example 2-8 shows how the server dissociates from the controlling terminal of
its invoker in the non-DEBUGMode of operation.

CODE EXAMPLE 2-8 Dissociating From the Controlling Terminal

(void) close(0);

(void) close(1);

(void) close(2);

(void) open("/", O_RDONLY);
(void) dup2(0, 1);

(void) dup2(0, 2);

setsid();

This prevents the server from receiving signals from the process group of the
controlling terminal. After a server has dissociated itself, it cannot send reports of
errors to a terminal and must log errors with syslog (3C).

Network Interface Guide ¢ February 2000

A server next creates a socket and listens for service requests. bind (3SOCKET)
ensures that the server listens at the expected location. (The remote login server
listens at a restricted port number, so it runs as superuser.)

Code Example 2-9 illustrates the main body of the loop.

CODE EXAMPLE 2-9 Remote Login Server: Main Body

while(TRUE) {
int g, len = sizeof(from);
if (g = accept(f, (struct sockaddr *) &from, &len) == -1) {
if (errno != EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");
continue;

}

if (fork() == 0) { /* Child */
close(f);

doit(g, &from);

close(g); /* Parent */

}

accept (3SOCKET) blocks messages until a client requests service.

accept (3SOCKET) returns a failure indication if it is interrupted by a signal, such as
SIGCHLD The return value from accept (3SOCKET) is checked and an error is
logged with syslog (3C) if an error has occurred.

The server then fork (2)s a child process and invokes the main body of the remote
login protocol processing. The socket used by the parent to queue connection
requests is closed in the child. The socket created by accept (3SOCKET) is closed in
the parent. The address of the client is passed to the server application’s doit()
routine, which performs the actual application protocol with the client, for
authenticating clients.

Clients

This section describes the steps taken by the client remote login process. As in the
server, the first step is to locate the service definition for a remote login:

sp = getservbyname("login”, "tcp");

if (sp == (struct servent *) NULL) {
fprintf(stderr,"rlogin: tcp/login: unknown service");
exit(1);

}

Next, the destination host is looked up by a call to getipnodebyname (3SOCKET):

hp = getipnodebyname (AF_INET6, argv[l], Al_DEFAULT, &errnum);
if (hp == (struct hostent *) NULL) {

fprintf(stderr, "rlogin: %s: unknown host", argv[1]);

exit(2);
}

Socket Interfaces 41

42

The next step is to connect to the server at the requested host and start the remote
login protocol. The address buffer is cleared and filled with the Internet address of
the foreign host and the port number at which the login server listens:

memset((char *) &server, 0, sizeof server);

bzero (&sin6, sizeof (sinG));

memcpy((char*) &server.sin6_addr,hp->h_addr,hp->h_length);
server.sin6_family = hp->h_addrtype;

server.sin6é_port = sp->s_port;

A socket is created, and a connection initiated. connect (3SOCKET) implicitly does
a bind (3SOCKET), since s is unbound.
s = socket(hp->h_addrtype, SOCK_STREAM, 0);
if (5 <0){
perror(“rlogin: socket");
exit(3);
}

if (connect(s, (struct sockaddr *) &server, sizeof server) < 0) {
perror(“rlogin: connect");
exit(4);

Connectionless Servers

Some services use datagram sockets. The rwho (1) service provides status
information on hosts connected to a local area network. (Avoid running

in.rwhod (1M) because it causes heavy network traffic.) This service requires the
ability to broadcast information to all hosts connected to a particular network. It is
an example of datagram socket use.

A user on a host running the rwho (1) server can get the current status of another
host with ruptime (1). Typical output is illustrated in Code Example 2-10.

CODE EXAMPLE 2-10 Output of ruptime (1) Program

itchy up 9:45, 5 users, load 1.15, 1.39, 1.31
scratchy up 2+12:04, 8 users, load 4.67, 5.13, 4.59
click up 10:10, O users, load 0.27, 0.15, 0.14
clack up 2+06:28, 9 users, load 1.04, 1.20, 1.65
ezekiel up 25+09:48, 0 users, load 1.49, 1.43, 1.41
dandy 5+00:05, O users, load 1.51, 1.54, 1.56
peninsula down 0:24

wood down 17:04

carpediem down 16:09

chances up 2+15:57, 3 users, load 1.52, 1.81, 1.86

Status information is periodically broadcast by the rwho (1) server processes on each
host. The server process also receives the status information and updates a database.
This database is interpreted for the status of each host. Servers operate
autonomously, coupled only by the local network and its broadcast capabilities.

Network Interface Guide ¢ February 2000

Use of broadcast is fairly inefficient because a lot of net traffic is generated. Unless
the service is used widely and frequently, the expense of periodic broadcasts
outweighs the simplicity.

Code Example 2-11 shows a simplified version of the rwho (1) server. It performs
two tasks: receives status information broadcast by other hosts on the network and
supplies the status of its host. The first task is done in the main loop of the program:
Packets received at the rwho (1) port are checked to be sure they were sent by
another rwho (1) server process, and are stamped with the arrival time. They then
update a file with the status of the host. When a host has not been heard from for an
extended time, the database routines assume the host is down and logs it. This
application is prone to error, as a server might be down while a host is up.

CODE EXAMPLE 2-11 rwho (1) Server
main()
sp = getservbyname("who", "udp");
net = getnetbyname("localnet");
sin.sin6_addr = inet_makeaddr(net->n_net, in6addr_any);
sin.sin6_port = sp->s_port;

s = socket(AF_INET6, SOCK_DGRAM, 0);

on = 1;

if (setsockopt(s, SOL_SOCKET, SO_BROADCAST, &on, sizeof on)
= -1) {
syslog(LOG_ERR, "setsockopt SO_BROADCAST: %m");
exit(1);

bind(s, (struct sockaddr *) &sin, sizeof sin);

signal(SIGALRM, onalrm);
onalrm();
while(1) {
struct whod wd;
int cc, whod, len = sizeof from;
cc = recvfrom(s, (char *) &wd, sizeof(struct whod), O,
(struct sockaddr *) &from, &len);

if (cc <= 0) {

if (cc == -1 && errmo != EINTR)
syslog(LOG_ERR, "rwhod: recv: %m");

continue;

if (from.sin6_port != sp->s_port) {
syslog(LOG_ERR, "rwhod: %d: bad from port",
ntohs(from.sin6_port));
continue;

}
if (tverify(wd.wd_hostname)) {
syslog(LOG_ERR, "rwhod: bad host name from %x",

ntohl(from.sin6_addr.s6_addr));
continue;

}
(void) sprintf(path, "%s/whod.%s", RWHODIR, wd.wd_hostname);

Socket Interfaces 43

whod = open(path, O_WRONLY|O_CREAT|O_TRUNC, 0666);

(void) time(&wd.wd_recvtime);
(void) write(whod, (char *) &wd, cc);
(void) close(whod);

}
exit(0);
}

The second server task is to supply the status of its host. This requires periodically
acquiring system status information, packaging it in a message, and broadcasting it
on the local network for other rwho (1) servers to hear. This task is run by a timer
and triggered with a signal. Locating the system status information is involved but
uninteresting.

Status information is broadcast on the local network. For networks that do not
support broadcast, use another scheme.

44

Advanced Topics

For most programmers, the mechanisms already described are enough to build
distributed applications. Others need some of the additional features in this section.

Out-of-Band Data

The stream socket abstraction includes out-of-band data. Out-of-band data is a
logically independent transmission channel between a pair of connected stream
sockets. Out-of-band data is delivered independent of normal data. The out-of-band
data facilities must support the reliable delivery of at least one out-of-band message
at a time. This message can contain at least one byte of data, and at least one
message can be pending delivery at any time.

For communications protocols that support only in-band signaling (that is, urgent

data is delivered in sequence with normal data), the message is extracted from the
normal data stream and stored separately. This lets users choose between receiving
the urgent data in order and receiving it out of sequence, without having to buffer
the intervening data.

You can peek (with MSG_PEEKat out-of-band data. If the socket has a process
group, a SIGURGsignal is generated when the protocol is notified of its existence. A
process can set the process group or process ID to be informed by SIGURGwith the
appropriate fcntl (2) call, as described in “Interrupt-Driven Socket I1/0” on page 47
for SIGIO . If multiple sockets have out-of-band data waiting delivery, a select (3C)
call for exceptional conditions can be used to determine the sockets with such data
pending.

Network Interface Guide ¢ February 2000

A logical mark is placed in the data stream at the point at which the out-of-band
data was sent. The remote login and remote shell applications use this facility to
propagate signals between client and server processes. When a signal is received, all
data up to the mark in the data stream is discarded.

To send an out-of-band message, the MSG_OOHmag is applied to send (3SOCKET) or
sendto (3SOCKET). To receive out-of-band data, specify MSG_OORBo

recvfrom (3SOCKET) or recv (3SOCKET) (unless out-of-band data is taken in line,
in which case the MSG_OOHMBlag is not needed). The SIOCATMARK ioctl (2) tells
whether the read pointer currently points at the mark in the data stream:

int yes;
ioctl(s, SIOCATMARK, &yes);

If yes is 1 on return, the next read returns data after the mark. Otherwise, assuming
out-of-band data has arrived, the next read provides data sent by the client before
sending the out-of-band signal. The routine in the remote login process that flushes
output on receipt of an interrupt or quit signal is shown in Code Example 2-12. This
code reads the normal data up to the mark (to discard it), then reads the out-of-band
byte.

A process can also read or peek at the out-of-band data without first reading up to
the mark. This is more difficult when the underlying protocol delivers the urgent
data in-band with the normal data, and only sends notification of its presence ahead
of time (for example, TCP, the protocol used to provide socket streams in the Internet
family). With such protocols, the out-of-band byte might not yet have arrived when a
recv (3SOCKET) is done with the MSG_OOHmag. In that case, the call returns the
error of EWOULDBLOCHIso, there might be enough in-band data in the input buffer
that normal flow control prevents the peer from sending the urgent data until the
buffer is cleared. The process must then read enough of the queued data before the
urgent data can be delivered.

CODE EXAMPLE 2-12 Flushing Terminal 1/0 on Receipt of Out-of-Band Data

#include <sys/ioctl.h>
#include <sys/file.h>

oob()
int out = FWRITE;

char waste[BUFSIZ];
int mark = O;

/* flush local terminal output */

ioctl(1, TIOCFLUSH, (char *) &out);

while(1) {

if (ioctl(rem, SIOCATMARK, &mark) == -1) {
perror(“ioctl");
break;

}
if (mark)

break;
(void) read(rem, waste, sizeof waste);

Socket Interfaces 45

46

}
if (recv(rem, &mark, 1, MSG_OOB) == -1) {
perror("recv");

-
)

There is also a facility to retain the position of urgent in-line data in the socket
stream. This is available as a socket-level option, SO_OOBINLINE See the

getsockopt (3SOCKET) manpage for usage. With this option, the position of urgent
data (the mark) is retained, but the urgent data immediately follows the mark in the
normal data stream returned without the MSG_OOMag. Reception of multiple urgent
indications causes the mark to move, but no out-of-band data are lost.

Nonblocking Sockets

Some applications require sockets that do not block. For example, requests that
cannot complete immediately and would cause the process to be suspended
(awaiting completion) are not executed. An error code would be returned. After a
socket is created and any connection to another socket is made, it can be made
nonblocking by issuing a fcntl (2) call, as shown in Code Example 2-13.

CODE EXAMPLE 2-13 Set Nonblocking Socket

#include <fcntl.h>
#include <sys/file.h>

int fileflags;
int s;

s = socket(AF_INET6, SOCK_STREAM, 0);

if (fileflags = fentl(s, F_GETFL, 0) == -1)
perror("fcntl F_GETFL");
exit(1);

if (fentl(s, F_SETFL, fileflags | FNDELAY) == -1)
perror("fcntl F_SETFL, FNDELAY");
exit(1);

When doing 170 on a nonblocking socket, check for the error EWOULDBLOQCH
errno.h), which occurs when an operation would normally block.

accept (3SOCKET), connect (3SOCKET), send (3SOCKET), recv (3SOCKET),
read (2), and write (2) can all return EWOULDBLOCK an operation such as a
send (3SOCKET) cannot be done in its entirety, but partial writes work (such as
when using a stream socket), the data that can be sent immediately are processed,
and the return value is the amount actually sent.

Network Interface Guide ¢ February 2000

Asynchronous Socket 170

Asynchronous communication between processes is required in applications that
handle multiple requests simultaneously. Asynchronous sockets must be
SOCK_STREAM/pe. To make a socket asynchronous, you issue a fcntl (2) call, as
shown in Code Example 2-14.

CODE EXAMPLE 2-14 Making a Socket Asynchronous

#include <fcntl.h>
#include <sys/file.h>

int fileflags;
int s;

s = socket(AF_INET6, SOCK_STREAM, 0);

if (fileflags = fentl(s, F_GETFL) == -1)
perror("fcntl F_GETFL");
exit(1);
}
if (fentl(s, F_SETFL, fileflags | FNDELAY | FASYNC) == -1)
perror("fcntl F_SETFL, FNDELAY | FASYNC");
exit(1);

After sockets are initialized, connected, and made asynchronous, communication is
similar to reading and writing a file asynchronously. A send (3SOCKET), write (2),
recv (3SOCKET), or read (2) initiates a data transfer. A data transfer is completed
by a signal-driven 1/0 routine, described in the next section.

Interrupt-Driven Socket 170

The SIGIO signal notifies a process when a socket (actually any file descriptor) has
finished a data transfer. The steps in using SIGIO are:

m Set up a SIGIO signal handler with the signal (3C) or sigvec (3UCB) calls.

m Use fentl (2) to set the process ID or process group ID to route the signal to its
own process ID or process group ID (the default process group of a socket is
group 0).

m Convert the socket to asynchronous, as shown in “Asynchronous Socket 1/0” on
page 47.

Code Example 2-15 shows some sample code to allow a given process to receive
information on pending requests as they occur for a socket. With the addition of a
handler for SIGURG this code can also be used to prepare for receipt of SIGURG
signals.

Socket Interfaces 47

48

CODE EXAMPLE 2-15 Asynchronous Notification of 1/0 Requests

#include <fcntl.h>
#include <sys/file.h>

signal(SIGIO, io_handler);
/* Set the process receiving SIGIO/SIGURG signals to us. */
if (fcntl(s, F_SETOWN, getpid()) < 0) {
perror("fcntl F_SETOWN");
exit(1);
}

Signals and Process Group ID

For SIGURGand SIGIO, each socket has a process number and a process group ID.
These values are initialized to zero, but can be redefined at a later time with the
F_SETOWN fcntl (2), as in the previous example. A positive third argument to
fcntl (2) sets the socket’s process ID. A negative third argument to fcntl (2) sets
the socket’s process group ID. The only allowed recipient of SIGURGand SIGIO
signals is the calling process. A similar fcntl (2), F_GETOWNeturns the process
number of a socket.

Reception of SIGURGand SIGIO can also be enabled by using ioctl (2) to assign
the socket to the user’s process group:

/* oobdata is the out-of-band data handling routine */

sigset(SIGURG, oobdata);

int pid = -getpid();

if (ioctl(client, SIOCSPGRP, (char *) &pid) < 0) {
perror(“ioctl: SIOCSPGRP");

}

Another signal that is useful in server processes is SIGCHLD This signal is delivered
to a process when any child process changes state. Normally, servers use the signal
to “reap” child processes that have exited without explicitly awaiting their
termination or periodically polling for exit status. For example, the remote login
server loop shown previously can be augmented as shown in Code Example 2-16.

CODE EXAMPLE 2-16 ~ SIGCHLD Signal
int reaper();

sigset(SIGCHLD, reaper);
listen(f, 5);
while (1) {
int g, len = sizeof from;
g = accept(f, (struct sockaddr *) &from, &len);
if (g < 0) {
if (errno != EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");
continue;

}

Network Interface Guide ¢ February 2000

#include <wait.h>
reaper()

int options;
int error;
siginfo_t info;

options = WNOHANG | WEXITED;

bzero((char *) &info, sizeof(info));

error = waitid(P_ALL, 0, &info, options);
}

If the parent server process fails to reap its children, zombie processes result.

Selecting Specific Protocols

If the third argument of the socket (3SOCKET) call is 0, socket (3SOCKET) selects
a default protocol to use with the returned socket of the type requested. The default
protocol is usually correct, and alternate choices are not usually available. When
using “raw” sockets to communicate directly with lower-level protocols or hardware
interfaces, it can be important for the protocol argument to set up de-multiplexing.
For example, raw sockets in the Internet family can be used to implement a new
protocol on IP, and the socket receives packets only for the protocol specified. To
obtain a particular protocol, determine the protocol number as defined in the
protocol family. For the Internet family, use one of the library routines discussed in
“Standard Routines” on page 34, such as getprotobyname (3SOCKET):

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>
#include <netdb.h>

pp = getprotobyname("newtcp");
s = socket(AF_INET6, SOCK_STREAM, pp->p_proto);

This results in a socket s using a stream-based connection, but with protocol type of
newtcp instead of the default tcp .

Address Binding

TCP and UDP use a 4-tuple of local IP address, local port number, foreign IP address,
and foreign port number to do their addressing. TCP requires these 4-tuples to be
unique. UDP does not. It is unrealistic to expect user programs to always know
proper values to use for the local address and local port, since a host can reside on
multiple networks and the set of allocated port numbers is not directly accessible to
a user. To avoid these problems, you can leave parts of the address unspecified and

Socket Interfaces 49

50

let the system assign the parts appropriately when needed. Various portions of these
tuples may be specified by various parts of the sockets API.

bind (3SOCKET) Local address or local port or both
connect (3SOCKET) Foreign address and foreign port

A call to accept (3SOCKET) retrieves connection information from a foreign client,
so it causes the local address and port to be specified to the system (even though the
caller of accept (3SOCKET) didn’t specify anything), and the foreign address and
port to be returned.

A call to listen (3SOCKET) can cause a local port to be chosen. If no explicit
bind (3SOCKET) has been done to assign local information, listen (3SOCKET)
causes an ephemeral port number to be assigned.

A service that resides at a particular port, but which does not care what local address
is chosen, can bind (3SOCKET) itself to its port and leave the local address
unspecified (set to in6addr_any , a variable with a constant value in <netinet/

in.h>). If the local port need not be fixed, a call to listen (3SOCKET) causes a port
to be chosen. Specifying an address of in6addr_any or a port number of 0 is known
as wildcarding. (For AF_INET, INADDR_ANYis used in place of in6addr_any .)

The wildcard address simplifies local address binding in the Internet family. The
sample code below binds a specific port number, MYPORT, to a socket, and leaves
the local address unspecified.

CODE EXAMPLE 2-17 Bind Port Number to Socket

#include <sys/types.h>
#include <netinet/in.h>

struct sockaddr_in6 sin;

s = socket(AF_INET6, SOCK_STREAM, 0);
bzero (&sin6, sizeof (sinG));

sin.sin6_family = AF_INET®6;
sin.sin6_addr.s6_addr = in6addr_any;
sin.sin6_port = htons(MYPORT);

bind(s, (struct sockaddr *) &sin, sizeof sin);

Each network interface on a host typically has a unique IP address. Sockets with
wildcard local addresses can receive messages directed to the specified port number
and sent to any of the possible addresses assigned to a host. For example, if a host
has two interfaces with addresses 128.32.0.4 and 10.0.0.78, and a socket is bound as
in Code Example 2-17, the process can accept connection requests addressed to
128.32.0.4 or 10.0.0.78. To allow only hosts on a specific network to connect to it, a
server binds the address of the interface on the appropriate network.

Similarly, a local port number can be left unspecified (specified as 0), in which case
the system selects a port number. For example, to bind a specific local address to a
socket, but to leave the local port number unspecified:

Network Interface Guide ¢ February 2000

bzero (&sin, sizeof (sin));

(void) inet_pton (AF_INET6, "ffff:127.0.0.1", sin.sin6_addr.s6_addr);
sin.sin6_family = AF_INETS6;

sin.sin6_port = htons(0);

bind(s, (struct sockaddr *) &sin, sizeof sin);

The system uses two criteria to select the local port number:

m The first is that Internet port numbers less than 1024 (IPPORT_RESERVEPare
reserved for privileged users (that is, the superuser). Nonprivileged users can use
any Internet port number greater than 1024. The largest Internet port number is
65535.

m The second criterion is that the port number is not currently bound to some other
socket.

The port number and IP address of the client is found through either
accept (3SOCKET) (the from result) or getpeername (3SOCKET).

In certain cases, the algorithm used by the system to select port numbers is
unsuitable for an application. This is because associations are created in a two-step
process. For example, the Internet file transfer protocol specifies that data
connections must always originate from the same local port. However, duplicate
associations are avoided by connecting to different foreign ports. In this situation, the
system would disallow binding the same local address and port number to a socket
if a previous data connection’s socket still existed. To override the default port
selection algorithm, you must perform an option call before address binding:

int on = 1;

setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &on, sizeof on);
bind(s, (struct sockaddr *) &sin, sizeof sin);

With this call, local addresses already in use can be bound. This does not violate the
uniqueness requirement, because the system still verifies at connect time that any
other sockets with the same local address and port do not have the same foreign
address and port. If the association already exists, the error EADDRINUSHS returned.

Using Multicast

IP multicasting is only supported on AF_INET6 and AF_INETsockets of type
SOCK_DGRARKNhd SOCK_RAWANd only on subnetworks for which the interface
driver supports multicasting.

Sending IPv4 Multicast Datagrams

To send a multicast datagram, specify an IP multicast address in the range 224.0.0.0
to 239.255.255.255 as the destination address in a sendto (3SOCKET) call.

Socket Interfaces 51

52

By default, IP multicast datagrams are sent with a time-to-live (TTL) of 1, which
prevents them from being forwarded beyond a single subnetwork. The socket option
IP_MULTICAST_TTL allows the TTL for subsequent multicast datagrams to be set to
any value from 0 to 255, to control the scope of the multicasts:

u_char ttl;
setsockopt(sock, IPPROTO_IP, IP_MULTICAST_TTL, &ttl,sizeof(ttl))

Multicast datagrams with a TTL of 0 are not transmitted on any subnet, but can be
delivered locally if the sending host belongs to the destination group and if multicast
loopback has not been disabled on the sending socket (see below). Multicast
datagrams with TTL greater than one can be delivered to more than one subnet if
one or more multicast routers are attached to the first-hop subnet. To provide
meaningful scope control, the multicast routers support the notion of TTL
"thresholds", which prevent datagrams with less than a certain TTL from traversing
certain subnets. The thresholds enforce the following convention that multicast
datagrams with initial TTL:

0 Are restricted to the same host

1 Are restricted to the same subnet
32 Are restricted to the same site

64 Are restricted to the same region
128 Are restricted to the same continent
255 Are unrestricted in scope

"Sites" and "regions" are not strictly defined, and sites can be subdivided into smaller
administrative units, as a local matter.

An application can choose an initial TTL other than the ones listed above. For
example, an application might perform an "expanding-ring search" for a network
resource by sending a multicast query, first with a TTL of 0, and then with larger and
larger TTLs, until a reply is received, using (for example) the TTL sequence 0, 1, 2, 4,
8, 16, 32.

The multicast router refuses to forward any multicast datagram with a destination
address between 224.0.0.0 and 224.0.0.255, inclusive, regardless of its TTL. This range
of addresses is reserved for the use of routing protocols and other low-level topology
discovery or maintenance protocols, such as gateway discovery and group
membership reporting.

Each multicast transmission is sent from a single network interface, even if the host
has more than one multicast-capable interface. (If the host is also a multicast router

Network Interface Guide ¢ February 2000

and the TTL is greater than 1, a multicast can be forwarded to interfaces other than
originating interface.) A socket option is available to override the default for
subsequent transmissions from a given socket:

struct in_addr addr;
setsockopt(sock, IPPROTO_IP, IP_MULTICAST_IF, &addr, sizeof(addr))

where addr is the local IP address of the outgoing interface you want. Revert to the
default interface by specifying the address INADDR_ANY The local IP address of an
interface is obtained with the SIOCGIFCONFioctl. To determine if an interface
supports multicasting, fetch the interface flags with the SIOCGIFFLAGS ioctl and test
if the IFF_MULTICAST flag is set. (This option is intended primarily for multicast
routers and other system services specifically concerned with internet topology.)

If a multicast datagram is sent to a group to which the sending host itself belongs
(on the outgoing interface), a copy of the datagram is, by default, looped back by the
IP layer for local delivery. Another socket option gives the sender explicit control
over whether or not subsequent datagrams are looped back:

u_char loop;
setsockopt(sock, IPPROTO_IP, IP_MULTICAST_LOOP, &loop, sizeof(loop))

where loop is 0 to disable loopback, and 1 to enable loopback. This option provides
a performance benefit for applications that have only one instance on a single host
(such as a router or a mail demon), by eliminating the overhead of receiving their
own transmissions. It should not normally be used by applications that can have
more than one instance on a single host (such as a conferencing program) or for
which the sender does not belong to the destination group (such as a time querying
program).

If the sending host belongs to the destination group on another interface, a multicast
datagram sent with an initial TTL greater than 1 can be delivered to the sending host
on the other interface. The loopback control option has no effect on such delivery.

Receiving IPv4 Multicast Datagrams

Before a host can receive IP multicast datagrams, it must become a member of one,
or more, IP multicast group. A process can ask the host to join a multicast group by
using the following socket option:

struct ip_mreq mreq;
setsockopt(sock, IPPROTO_IP, IP_ADD_MEMBERSHIP, &mreq, sizeof(mreq))

where mreq is the structure

struct ip_mreq {
struct in_addr imr_multiaddr; /* multicast group to join */

Socket Interfaces 53

54

struct in_addr imr_interface; /* interface to join on */

}

Each membership is associated with a single interface, and it is possible to join the
same group on more than one interface. Specify imr_interface to be
inbaddr_any to choose the default multicast interface, or one of the host’s local
addresses to choose a particular (multicast-capable) interface.

To drop a membership, use

struct ip_mreq mreq;
setsockopt(sock, IPPROTO_IP, IP_DROP_MEMBERSHIP, &mreq, sizeof(mreq))

where mreqg contains the same values used to add the membership. The
memberships associated with a socket are also dropped when the socket is closed or
the process holding the socket is killed. More than one socket can claim a
membership in a particular group, and the host remains a member of that group
until the last claim is dropped.

Incoming multicast packets are accepted by the kernel IP layer if any socket has
claimed a membership in the destination group of the datagram. Delivery of a
multicast datagram to a particular socket is based on the destination port and the
memberships associated with the socket (or protocol type, for raw sockets), just as
with unicast datagrams. To receive multicast datagrams sent to a particular port,
bind to the local port, leaving the local address unspecified (such as, INADDR_ANY.

More than one process can bind to the same SOCK_DGRAMDP port if the
bind (3SOCKET) is preceded by:

int one = 1;
setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one))

In this case, every incoming multicast or broadcast UDP datagram destined to the
shared port is delivered to all sockets bound to the port. For backwards compatibility
reasons, this does not apply to incoming unicast datagrams. Unicast datagrams are never
delivered to more than one socket, regardless of how many sockets are bound to the
datagram’s destination port. SOCK_RAWbckets do not require the SO_REUSEADDR
option to share a single IP protocol type.

The definitions required for the new, multicast-related socket options are found in
<netinet/in.h> . All IP addresses are passed in network byte-order.

Sending IPv6 Multicast Datagrams

To send a multicast datagram, specify an IP multicast address in the range
ff00::0/8 as the destination address in a sendto (3SOCKET) call.

By default, IP multicast datagrams are sent with a hop limit of 1, which prevents
them from being forwarded beyond a single subnetwork. The socket option

Network Interface Guide ¢ February 2000

IPV6_MULTICAST_HOPSallows the hoplimit for subsequent multicast datagrams to
be set to any value from 0 to 255, to control the scope of the multicasts:

uint_I;
setsockopt(sock, IPPROTO_IPV6, IPV6_MULTICAST_HOPS, &hops,sizeof(hops))

Multicast datagrams with a hoplimit of 0 are not transmitted on any subnet, but can
be delivered locally if the sending host belongs to the destination group and if

multicast loopback has not been disabled on the sending socket (see below). Multicast
datagrams with hoplimit greater than one can be delivered to more than one subnet if
one or more multicast routers are attached to the first-hop subnet. The IPv6 multicast
addresses, unlike their IPv4 counterparts, contain explicit scope information encoded
in the first part of the address. The defined scopes are (where X is unspecified):

ffX1::0/16 Node-local scope — restricted to the same node
ffX2::0/16 Link-local scope

ffX5::0/16 Site—local scope

ffX8::0/16 Organization-local scope

ffXe::0/16 Global scope

An application can, separately from the scope of the multicast address, use different
hoplimit values. For example, an application might perform an "expanding-ring
search" for a network resource by sending a multicast query, first with a hoplimit of
0, and then with larger and larger hoplimits, until a reply is received, using (for
example) the hoplimit sequence 0, 1, 2, 4, 8, 16, 32.

Each multicast transmission is sent from a single network interface, even if the host
has more than one multicast-capable interface. (If the host is also a multicast router
and the hoplimit is greater than 1, a multicast can be forwarded to interfaces other
than originating interface.) A socket option is available to override the default for
subsequent transmissions from a given socket:

uint_t ifindex;

ifindex = if_nametoindex)"hme3");
setsockopt(sock, IPPROTO_IPV6, IPV6_MULTICAST_IF, &ifindex, sizeof(ifindex))

where ifindex s the interface index for the desired outgoing interface. Revert to
the default interface by specifying the value 0.

If a multicast datagram is sent to a group to which the sending host itself belongs
(on the outgoing interface), a copy of the datagram is, by default, looped back by the

Socket Interfaces 55

56

IP layer for local delivery. Another socket option gives the sender explicit control
over whether or not subsequent datagrams are looped back:

uint_t loop;
setsockopt(sock, IPPROTO_IPV6, IPV6_MULTICAST_LOOP, &loop, sizeof(loop))

where loop is 0 to disable loopback, and 1 to enable loopback. This option provides
a performance benefit for applications that have only one instance on a single host
(such as a router or a mail demon), by eliminating the overhead of receiving their
own transmissions. It should not normally be used by applications that can have
more than one instance on a single host (such as a conferencing program) or for
which the sender does not belong to the destination group (such as a time querying
program).

If the sending host belongs to the destination group on another interface, a multicast
datagram sent with an initial hoplimit greater than 1 can be delivered to the sending
host on the other interface. The loopback control option has no effect on such delivery.

Receiving IPv6 Multicast Datagrams

Before a host can receive IP multicast datagrams, it must become a member of one,
or more, IP multicast group. A process can ask the host to join a multicast group by
using the following socket option:

struct ipv6_mreq mreq;
setsockopt(sock, IPPROTO_IPV6, IPV6_JOIN_GROUP, &mreq, sizeof(mreq))

where mreq is the structure

struct ipv6_mreq {
struct in6_addr ipvémr_multiaddr; /* IPv6 multicast addr */
unsigned int ipvémr_interface; /* interface index */

}

Each membership is associated with a single interface, and it is possible to join the
same group on more than one interface. Specify ipv6_interface to be 0 to choose
the default multicast interface, or an interface index for one of the host’s interfaces to
choose that (multicast capable) interface.

To leave a group, use

struct ipv6_mreq mreq;
setsockopt(sock, IPPROTO_IPV6, IP_LEAVE_GROUP, &mreq, sizeof(mreq))

where mreqg contains the same values used to add the membership. The
memberships associated with a socket are also dropped when the socket is closed or
the process holding the socket is killed. More than one socket can claim a

Network Interface Guide ¢ February 2000

membership in a particular group, and the host remains a member of that group
until the last claim is dropped.

Incoming multicast packets are accepted by the kernel IP layer if any socket has
claimed a membership in the destination group of the datagram. Delivery of a
multicast datagram to a particular socket is based on the destination port and the
memberships associated with the socket (or protocol type, for raw sockets), just as
with unicast datagrams. To receive multicast datagrams sent to a particular port,
bind to the local port, leaving the local address unspecified (such as, INADDR_ANY.

More than one process can bind to the same SOCK_DGRAMDP port if the
bind (3SOCKET) is preceded by:

int one = 1;
setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one))

In this case, every incoming multicast UDP datagram destined to the shared port is
delivered to all sockets bound to the port. For backwards compatibility reasons, this
does not apply to incoming unicast datagrams. Unicast datagrams are never delivered to
more than one socket, regardless of how many sockets are bound to the datagram’s
destination port. SOCK_RAWobckets do not require the SO_REUSEADD®ption to
share a single IP protocol type.

The definitions required for the new, multicast-related socket options are found in
<netinet/in.h> . All IP addresses are passed in network byte-order.

Zero Copy and Checksum Off-load

In SunOS 5.6 and later, the TCP/IP protocol stack has been enhanced to support two
new features: zero copy and TCP checksum off-load.

m Zero copy uses virtual memory MMU remapping and a copy-on-write technique
to move data between the application and the kernel space.

m Checksum off-loading relies on special hardware logic to off-load the TCP
checksum calculation.

Note - Although zero copy and checksum off-loading are functionally independent
of one another, they have to work together to obtain the optimal performance.
Checksum off-loading requires hardware support from the network interface and,
without this hardware support, zero copy is not enabled.

Zero copy requires that the applications supply page-aligned buffers before VM page
remapping can be applied. Applications should use large, circular buffers on the
transmit side to avoid expensive copy-on-write faults. A typical buffer allocation is
sixteen 8K buffers.

Socket Interfaces 57

58

Socket Options

You can set and get several options on sockets through setsockopt (3SOCKET) and
getsockopt (3SOCKET); for example by changing the send or receive buffer space.
The general forms of the calls are:

setsockopt(s, level, optname, optval, optlen);

and

getsockopt(s, level, optname, optval, optlen);

In some cases, such as setting the buffer sizes, these are only hints to the operating
system. The operating system reserves the right to adjust the values appropriately.

Table 2-4 shows the arguments of the calls.

TABLE 2-4 setsockopt (3SOCKET) and getsockopt (3SOCKET) Arguments

Arguments Description
s Socket on which the option is to be applied
level Specifies the protocol level, such as socket level, indicated by the

symbolic constant SOL_SOCKETn sys/socket.h

optname Symbolic constant defined in sys/socket.h that specifies the option
optval Points to the value of the option
optlen Points to the length of the value of the option

For getsockopt (3SOCKET), optlen is a value-result argument, initially set to the
size of the storage area pointed to by optval and set on return to the length of storage
used.

It is sometimes useful to determine the type (for example, stream or datagram) of an
existing socket. Programs invoked by inetd (1M) can do this by using the SO_TYPE
socket option and the getsockopt (3SOCKET) call:

#include <sys/types.h>
#include <sys/socket.h>

int type, size;

size = sizeof (int);

Network Interface Guide ¢ February 2000

if (getsockopt(s, SOL_SOCKET, SO_TYPE, (char *) &type, &size) <0) {

}

After getsockopt (3SOCKET), type is set to the value of the socket type, as
defined in sys/socket.h . For a datagram socket, type would be SOCK_DGRAM

inetd (1M) Daemon

One of the daemons provided with the system is inetd (1M). It is invoked at
start-up time, and gets the services for which it listens from the /etc/inet/
inetd.conf file. The daemon creates one socket for each service listed in /etc/
inet/inetd.conf , binding the appropriate port number to each socket. See the
inetd (1M) man page for details.

inetd (1M) polls each socket, waiting for a connection request to the service
corresponding to that socket. For SOCK_STREAM/pe sockets, inetd (1M) does an
accept (3SOCKET) on the listening socket, fork (2)s, dup(2)s the new socket to file
descriptors 0 and 1 (stdin and stdout), closes other open file descriptors, and
exec (2)s the appropriate server.

The primary benefit of inetd (1M) is that services that are not in use are not taking
up machine resources. A secondary benefit is that inetd (1M) does most of the work
to establish a connection. The server started by inetd (1M) has the socket connected
to its client on file descriptors 0 and 1, and can immediately read (2), write (2),
send (3SOCKET), or recv (3SOCKET). Servers can use buffered 1/0 as provided by
the stdio conventions, as long as they use fflush (3C) when appropriate.

getpeername (3SOCKET) returns the address of the peer (process) connected to a
socket; it is useful in servers started by inetd (1M). For example, to log the Internet
address (such as fec0::56:a00:20ff:fe7d:3dd2 , which is conventional for
representing the IPv6 address of a client), an inetd (1M) server could use the
following:

struct sockaddr_storage name;
int namelen = sizeof (name);
char abuf[INET6_ADDRSTRLEN];
struct in6_addr addr6;

struct in_addr addr;

if (getpeername(fd, (struct sockaddr *)&name, &namelen) == -1) {
perror("getpeername");
exit(1);
} else {
addr = ((struct sockaddr_in *)&name)->sin_addr;
addré = ((struct sockaddr_in6 *)&name)->sin6_addr;
if (name.ss_family == AF_INET) {
(void) inet_ntop(AF_INET, &addr, abuf, sizeof (abuf));
} else if (name.ss_family == AF_INET6 && IN6_IS_ADDR_V4AMAPPED(&addr6)) {
/* this is a IPv4-mapped IPv6 address */
IN6_MAPPED_TO_IN(&addr6, &addr);
(void) inet_ntop(AF_INET, &addr, abuf, sizeof (abuf));

Socket Interfaces 59

60

} else if (name.ss_family == AF_INET6) {
(void) inet_ntop(AF_INET6, &addr6, abuf, sizeof (abuf));

syslog("Connection from %s\n", abuf);

Broadcasting and Determining Network
Configuration
Broadcasting is not supported in IPv6. It is supported only in IPv4,

Messages sent by datagram sockets can be broadcast to reach all of the hosts on an
attached network. The network must support broadcast; the system provides no
simulation of broadcast in software. Broadcast messages can place a high load on a
network since they force every host on the network to service them. Broadcasting is
usually used for either of two reasons: to find a resource on a local network without
having its address, or functions like routing require that information be sent to all
accessible neighbors.

To send a broadcast message, create an Internet datagram socket:
s = socket(AF_INET, SOCK_DGRAM, 0);

and bind a port number to the socket:

sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl(INADDR_ANY);
sin.sin_port = htons(MYPORT);

bind(s, (struct sockaddr *) &sin, sizeof sin);

The datagram can be broadcast on only one network by sending to the network’s
broadcast address. A datagram can also be broadcast on all attached networks by
sending to the special address INADDR_BROADCAS efined in netinet/in.h

The system provides a mechanism to determine a number of pieces of information
(including the IP address and broadcast address) about the network interfaces on the
system. The SIOCGIFCONF ioctl (2) call returns the interface configuration of a host
in a single ifconf structure. This structure contains an array of ifreq structures,
one for each address family supported by each network interface to which the host is
connected. Code Example 2-18 shows these structures defined in net/if.h

CODE EXAMPLE 2-18 net/if.h Header File

struct ifreq {
#define IFNAMSIZ 16
char ifr_name[IFNAMSIZ]; /* if name, e.g., "en0" */
union {
struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;

Network Interface Guide ¢ February 2000

char ifru_oname[IFNAMSIZ]; /* other if name */
struct sockaddr ifru_broadaddr;
short ifru_flags;
int ifru_metric;
char ifru_data[l]; /* interface dependent data */
char ifru_enaddr[6];
} ifr_ifru;
#define ifr_addr ifr_ifru.ifru_addr
#define ifr_dstaddr ifr_ifru.ifru_dstaddr
#define ifr_oname ifr_ifru.ifru_oname
#define ifr_broadaddr ifr_ifru.ifru_broadaddr
#define ifr_flags ifr_ifru.ifru_flags
#define ifr_metric ifr_ifru.ifru_metric
#define ifr_data ifr_ifru.ifru_data
#define ifr_enaddr ifr_ifru.ifru_enaddr

h

The call that obtains the interface configuration is:

/*
* Do SIOCGIFNUM ioctl to find the number of interfaces
*
* Allocate space for number of interfaces found
*
* Do SIOCGIFCONF with allocated buffer
*
*/
if (ioctl(s, SIOCGIFNUM, (char *)&numifs) == -1) {
numifs = MAXIFS;
}

bufsize = numifs * sizeof(struct ifreq);
regbuf = (struct ifreq *)malloc(bufsize);
if (reqbuf == NULL) {
fprintf(stderr, "out of memory\n");
exit(1);

}
ifc.ifc_buf = (caddr_t)&reqbuf[0];
ifc.ifc_len = bufsize;

if (ioctl(s, SIOCGIFCONF, (char *)&ifc) == -1) {
perror("ioctl(SIOCGIFCONF)");
exit(1);

}

}

After this call, buf contains an array of ifreq structures, one for each network to
which the host is connected. These structures are ordered first by interface name,
then by supported address families. ifc.ifc_len is set to the number of bytes

used by the ifreq structures.

Each structure has a set of interface flags that tell whether the corresponding
network is up or down, point-to-point or broadcast, and so on. Code Example 2-19
shows the SIOCGIFFLAGS ioctl (2) returning these flags for an interface specified
by an ifreq structure.

Socket Interfaces 61

62

CODE EXAMPLE 2-19 Obtaining Interface Flags

struct ifreq *ifr;
ifr = ifc.ifc_req;
for (n = ifc.ifc_len/sizeof (struct ifreq); —-—n >= 0; ifr++) {
/*
* Be careful not to use an interface devoted to an address
* family other than those intended.
*/
if (ifr->ifr_addr.sa_family != AF_INET)
continue;
if (ioctl(s, SIOCGIFFLAGS, (char *) ifr) < 0) {

/* Skip boring cases */

if ((ifr->ifr_flags & IFF_UP) == 0 ||
(ifr->ifr_flags & IFF_LOOPBACK)
(ifr->ifr_flags & (IFF_BROADCAST | IFF_POINTOPOINT)) == 0)
continue;

Code Example 2-20 shows the broadcast of an interface can be obtained with the
SIOGGIFBRDADDR ioctl (2).

CODE EXAMPLE 2-20 Broadcast Address of an Interface
if (ioctl(s, SIOCGIFBRDADDR, (char *) ifr) < 0) {

}
memcpy((char *) &dst, (char *) &ifr->ifr_broadaddr,
sizeof ifr->ifr_broadaddr);

The SIOGGIFBRDADDR ioctl (2) can also be used to get the destination address of a
point-to-point interface.

After the interface broadcast address is obtained, transmit the broadcast datagram
with sendto (3SOCKET):

sendto(s, buf, buflen, 0, (struct sockaddr *)&dst, sizeof dst);

Use one sendto (3SOCKET) for each interface to which the host is connected that
supports the broadcast or point-to-point addressing.

Network Interface Guide ¢ February 2000

CHAPTER 3

Programming With XTI and TLI

The X/Open Transport Interface (XTI) and the Transport Layer Interface (TLI) are a
set of functions that constitute a network programming interface. XTI is an evolution
from the older TLI interface available on SunOS 4. Both interfaces are supported,
though XTI represents the future direction of this set of interfaces.

m “What Are XTI and TLI?” on page 64

m “Connectionless Mode” on page 66

m “Connection Mode” on page 71

m “Read/Write Interface” on page 91

m “Advanced Topics” on page 93

m “State Transitions” on page 104

m “XTI/TLI Versus Socket Interfaces” on page 113
m “Socket-to-XTI/TLI Equivalents” on page 113

m “Additions to XTI Interface” on page 116

XTI/TLI Is Multithread Safe

The interfaces described in this chapter are multithread safe. This means that
applications containing XTI/TLI function calls can be used freely in a multithreaded
application. However, the degree of concurrency available to applications is not
specified.

63

XTI/TLI Are Not Asynchronous Safe

The XTI/TLI interface behavior has not been well specified in an asynchronous
environment. It is not recommended that these interfaces be used from signal
handler routines.

64

What Are XTI and TLI?

TLI was introduced with AT&T’s System V, Release 3 in 1986. It provided a transport
layer interface API. TLI was modeled after the ISO Transport Service Definition and
provides an API between the OSI transport and session layers. TLI interfaces evolved
further in AT&T System V, Release 4 version of Unix and were made available in
SunOS 5.6 operating system interfaces, too.

XTI interfaces are an evolution of TLI interfaces and represent the future direction of
this family of interfaces. Compatibility for applications using TLI interfaces is
available. There is no intrinsic need to port TLI applications to XTI immediately.
New applications can use the XTI interfaces and older applications can be ported to
XTI when necessary.

TLI is implemented as a set of function calls in a library (libnsl) with which the
applications link. XTI applications are compiled using the c89 front end and must be
linked with the xnet library (libxnet). For additional information on compiling
with XTI, see standards (5).

Note - An application using the XTI interface uses the xti.h header file, whereas an
application using the TLI interface includes the tiuser.h header file.

Intrinsic to XTI/TLI are the notions of transport endpoints and a transport provider. The
transport endpoints are two entities that are communicating, and the transport
provider is the set of routines on the host that provides the underlying
communication support. XTI/TLI is the interface to the transport provider, not the
provider itself. See Figure 3-1.

Network Interface Guide ¢ February 2000

Transport user

Service requests
Transport (From user) \

interface ‘

A Service events and
requests
(from provider)

Transport provider

Figure 3-1 How XTI/TLI Works

XTI/TLI code can be written to be independent of current transport providers in
conjunction with some additional interfaces and mechanisms described in Chapter 4.
The SunOS 5 product includes some transport providers (TCP, for example) as part of
the base operating system. A transport provider performs services, and the transport
user requests the services. The transport user issues service requests to the transport
provider. An example is a request to transfer data over a connection TCP and UDP.

XTI/TLI can also be used for transport-independent programming. XTI/TLI has two
components to achieve this:

m Library routines that perform the transport services, in particular, transport
selection and name-to-address translation. The network services library includes a
set of functions that implement XTI/TLI for user processes. See Chapter 4.

Programs using TLI should be linked with the network services library, libnsl
as follows:

% cc prog.c -Insl

m State transition rules that define the sequence in which the transport routines can
be invoked. For more information on state transition rules, see section, “State
Transitions” on page 104. The state tables define the legal sequence of library calls
based on the state and the handling of events. These events include user-generated
library calls, as well as provider-generated event indications. XTI/TLI
programmers should understand all state transitions before using the interface.

XTI/TLI provides two modes of service: connection mode and connectionless mode.
The next two sections give an overview of these modes.

Programming With XTI and TLI 65

66

Connectionless Mode

Connectionless mode is message oriented. Data are transferred in self-contained units
with no relationship between the units. This service requires only an established
association between the peer users that determines the characteristics of the data. All
information required to deliver a message (such as the destination address) is
presented to the transport provider, with the data to be transmitted, in one service
request. Each message is entirely self-contained. Use connectionless mode service for
applications that;

m Have short-term request/response interactions
m Are dynamically reconfigurable
m Do not require sequential delivery of data

Connectionless transports can be unreliable. They need not necessarily maintain
message sequence, and messages are sometimes lost.

Connectionless Mode Routines

Connectionless-mode transport service has two phases: local management and data
transfer. The local management phase defines the same local operations as for the
connection mode service.

The data transfer phase lets a user transfer data units (usually called datagrams) to
the specified peer user. Each data unit must be accompanied by the transport address
of the destination user. t sndudata (3NSL) sends and t_rcvvudata (3NSL)
receives messages. Table 3—-1summarizes all routines for connectionless mode data
transfer.

TABLE 3-1 Routines for Connectionless-Mode Data Transfer

Command Description

t_sndudata Sends a message to another user of the transport

t_rcvudata Receives a message sent by another user of the transport

t_rcvuderr Retrieves error information associated with a previously sent message

Network Interface Guide ¢ February 2000

Connectionless Mode Service

Connectionless mode service is appropriate for short-term request/response
interactions, such as transaction-processing applications. Data are transferred in
self-contained units with no logical relationship required among multiple units.

Endpoint Initiation

Transport users must initialize XTI/TLI endpoints before transferring data. They
must choose the appropriate connectionless service provider using t_open (3NSL)
and establish its identity using t_bind (3NSL).

Use t_optmgmt (3NSL) to negotiate protocol options. Like connection mode service,
each transport provider specifies the options, if any, it supports. Option negotiation
is a protocol-specific activity. In Code Example 3-1, the server waits for incoming
queries, and processes and responds to each query. The example also shows the
definitions and initiation sequence of the server.

CODE EXAMPLE 3-1 CLTS Server

#include <stdio.h>

#include <fcntl.h>

#include <xti.h> /* TLI applications use <tiuser.h> */
#define SRV_ADDR 2 /* server's well known address */

main()

int fd;

int flags;

struct t_bind *bind;
struct t_unitdata *ud;
struct t_uderr *uderr;
extern int t_errno;

if (fd = t_open("/deviexmp”, O_RDWR, (struct t_info *) NULL))
= -1) {
t_error("unable to open /dev/exmp");
exit(1);

}
if ((bind = (struct t_bind *)t_alloc(fd, T_BIND, T_ADDR))
== (struct t_bind *) NULL) {
t_error("t_alloc of t_bind structure failed");
exit(2);

bind->addr.len = sizeof(int);
*(int *)bind->addr.buf = SRV_ADDR;
bind->glen = O;
if (t_bind(fd, bind, bind) == -1) {
t_error("t_bind failed");
exit(3);

Programming With XTI and TLI 67

68

~
*

TLI interface applications need the following code which
is no longer needed for XTI interface applications.

Verify if the bound address correct?

if (bind -> addr.len != sizeof(int) ||

*(int *)bind->addr.buf != SRV_ADDR) {
fprintf(stderr, "t_bind bound wrong address\n");
exit(4);

L O

*
<

The server establishes a transport endpoint with the desired transport provider using
t open (3NSL). Each provider has an associated service type, so the user can choose
a particular service by opening the appropriate transport provider file. This
connectionless mode server ignores the characteristics of the provider returned by
t_open (3NSL) by setting the third argument to NULL The transaction server
assumes the transport provider has the following characteristics:

m The transport address is an integer value that uniquely identifies each user.

m The transport provider supports the T_CLTS service type (connectionless transport
service, or datagram).

m The transport provider does not require any protocol-specific options.

The connectionless server binds a transport address to the endpoint so that potential
clients can access the server. At _bind structure is allocated using t_alloc (3NSL)
and the buf and len fields of the address are set accordingly.

One difference between a connection mode server and a connectionless mode server
is that the glen field of the t_bind structure is O for connectionless mode service.
There are no connection requests to queue.

XTI/TLI interfaces define an inherent client-server relationship between two users
while establishing a transport connection in the connection mode service. No such
relationship exists in connectionless mode service.

TLI requires that the server check the bound address returned by t bind (3NSL) to
ensure that it is the same as the one supplied. t_bind (3NSL) can also bind the
endpoint to a separate, free address if the one requested is busy.

Data Transfer

After a user has bound an address to the transport endpoint, datagrams can be sent
or received over the endpoint. Each outgoing message carries the address of the
destination user. XTI/TLI also lets you specify protocol options to the transfer of the
data unit (for example, transit delay). Each transport provider defines the set of

Network Interface Guide ¢ February 2000

options on a datagram. When the datagram is passed to the destination user, the

associated protocol options can be passed, too.

Code Example 3-2 illustrates the data transfer phase of the connectionless mode

Server.

CODE EXAMPLE 3-2 Data Transfer Routine

if ((ud = (struct t_unitdata *) t_alloc(fd, T_UNITDATA,T_ALL))

== (struct t_unitdata *) NULL) {
t_error("t_alloc of t_unitdata struct failed");
exit(5);

if ((uderr = (struct t_uderr *) t_alloc(fd, T_UDERROR, T_ALL))

== (struct t_uderr *) NULL) {
t_error("t_alloc of t_uderr struct failed");
exit(6);

while(1) {
if (t_rcvudata(fd, ud, &flags) == -1) {
if (t_errno == TLOOK) {

[* Error on previously sent datagram */
if(t_rcvuderr(fd, uderr) == -1) {

exit(7);

fprintf(stderr, "bad datagram, error=%d\n",
uderr->error);

continue;
}
t_error("t_rcvudata failed");
exit(8);
}
/*

* Query() processes the request and places the response in

* ud->udata.buf, setting ud->udata.len
*
/
query(ud);
if (t_sndudata(fd, ud) == -1) {
t_error("t_sndudata failed");
exit(9);

}

/* ARGS USED */
void

query(ud)

struct t_unitdate *ud;

/* Merely a stub for simplicity */

To buffer datagrams, the server first allocates a t_unitdata

following format:

struct t_unitdata {
struct netbuf addr;
struct netbuf opt;

Programming With XTI and TLI

structure, which has the

69

70

struct netbuf udata;

}

addr holds the source address of incoming datagrams and the destination address of
outgoing datagrams. opt holds any protocol options on the datagram. udata holds
the data. The addr , opt , and udata fields must all be allocated with buffers large
enough to hold any possible incoming values. The T_ALL argument of

t alloc (3NSL) ensures this and sets the maxlen field of each netbuf structure
accordingly. The provider does not support protocol options in this example, so
maxlen is set to O in the opt netbuf structure. The server also allocates a t_uderr
structure for datagram errors.

The transaction server loops forever, receiving queries, processing the queries, and
responding to the clients. It first calls t_rcvudata (3NSL) to receive the next query.
t rcvudata (3NSL) blocks until a datagram arrives, and returns it.

The second argument of t rcvudata (3NSL) identifies the t_unitdata structure
in which to buffer the datagram.

The third argument, flags , points to an integer variable and can be set to T_MORE
on return from t_rcvudata (3NSL) to indicate that the user’s udata buffer is too
small to store the full datagram.

If this happens, the next call to t_rcvudata (3NSL) retrieves the rest of the
datagram. Because t_alloc (3NSL) allocates a udata buffer large enough to store
the maximum size datagram, this transaction server does not have to check flags
This is true only of t_rcvudata (3NSL) and not of any other receive primitives.

When a datagram is received, the transaction server calls its query routine to
process the request. This routine stores a response in the structure pointed to by ud,
and sets ud-->udata.len to the number of bytes in the response. The source
address returned by t rcvudata (3NSL) in ud-->addr is the destination address
for t sndudata (3NSL). When the response is ready, t sndudata (3NSL) is called
to send the response to the client.

Datagram Errors

If the transport provider cannot process a datagram sent by t sndudata (3NSL), it
returns a unit data error event, T_UDERRto the user. This event includes the
destination address and options of the datagram, and a protocol-specific error value
that identifies the error. Datagram errors are protocol specific.

Note - A unit data error event does not always indicate success or failure in
delivering the datagram to the specified destination. Remember, connectionless
service does not guarantee reliable delivery of data.

The transaction server is notified of an error when it tries to receive another
datagram. In this case, t rcvudata (3NSL) fails, settingt_errno to TLOOK If

Network Interface Guide ¢ February 2000

TLOOKis set, the only possible event is T_UDERRSso the server calls
t rcvudata (3NSL) to retrieve the event. The second argument of
t rcvuderr (3NSL) is the t_uderr structure that was allocated earlier. This
structure is filled in by t rcvuderr (3NSL) and has the following format:
struct t_uderr {

struct netbuf addr;

struct netbuf opt;
t_scalar_t error;

}

where addr and opt identify the destination address and protocol options specified
in the bad datagram, and error is a protocol-specific error code. The transaction
server prints the error code, then continues.

Connection Mode

Connection mode is circuit oriented. Data are transmitted in sequence over an
established connection. The mode also provides an identification procedure that
avoids address resolution and transmission in the data transfer phase. Use this
service for applications that require data-stream-oriented interactions. Connection
mode transport service has four phases:

m Local management

m Connection establishment
m Data transfer

m Connection release

The local management phase defines local operations between a transport user and a
transport provider, as shown in Figure 3-2. For example, a user must establish a
channel of communication with the transport provider. Each channel between a
transport user and transport provider is a unique endpoint of communication, and is
called the transport endpoint. t_open (3NSL) lets a user choose a particular
transport provider to supply the connection mode services, and establishes the
transport endpoint.

Programming With XTI and TLI 71

Transport user

Transport

/' endpoint
AW

'

Transport provider

Transport

interface

Figure 3-2 Transport Endpoint

Connection Mode Routines

Each user must establish an identity with the transport provider. A transport address
is associated with each transport endpoint. One user process can manage several
transport endpoints. In connection mode service, one user requests a connection to
another user by specifying the other’s address. The structure of a transport address is
defined by the transport provider. An address can be as simple as an unstructured
character string (for example, file_server), or as complex as an encoded bit
pattern that specifies all information needed to route data through a network. Each
transport provider defines its own mechanism for identifying users. Addresses can
be assigned to the endpoint of a transport by t_bind (3NSL).

In addition to t_open (3NSL) and t_bind (3NSL), several routines support local
operations. Table 3-2 summarizes all local management routines of XTI/TLI.

TABLE 3-2 Routines of XTI/TLI for Operating on the Endpoint

Command Description

t_alloc Allocates XTI/TLI data structures

t_bind Binds a transport address to a transport endpoint
t_close Closes a transport endpoint

t_error Prints an XTI/TLI error message

t_free Frees structures allocated using t_alloc (3NSL)

72 Network Interface Guide ¢ February 2000

TABLE 3-2 Routines of XTI/TLI for Operating on the Endpoint (continued)

Command

Description

t_getinfo

t_getprotaddr

t_getstate

t_look

t_open

t_optmgmt

t_sync

t_unbind

Returns a set of parameters associated with a particular
transport provider

Returns the local and/or remote address associated with
endpoint (XTI only)

Returns the state of a transport endpoint

Returns the current event on a transport endpoint

Establishes a transport endpoint connected to a chosen
transport provider

Negotiates protocol-specific options with the transport
provider

Synchronizes a transport endpoint with the transport
provider

Unbinds a transport address from a transport endpoint

The connection phase lets two users create a connection, or virtual circuit, between
them, as shown in Figure 3-3.

Transport user 1

Transport user 2

Transport K

J

interface \

/

v Transport connection

Transport provider

Figure 3-3 Transport Connection

For example, the connection phase occurs when a server advertises its service to a
group of clients, then blocks on t_listen (3NSL) to wait for a request. A client tries
to connect to the server at the advertised address by a call to t_connect (3NSL).

Programming With XTI and TLI 73

74

The connection request causes t_listen (3NSL) to return to the server, which can
call t accept (3NSL) to complete the connection.

Table 3-3 summarizes all routines available for establishing a transport connection.
Refer to man pages for the specifications on these routines.

TABLE 3-3 Routines for Establishing a Transport Connection

Command Description

t_accept Accepts a request for a transport connection

t connect Establishes a connection with the transport user at a specified

N destination

t listen Listens for connect request from another transport user

t revconnect Completes connection establishment if t_connect (3NSL) was called

in asynchronous mode (see “Advanced Topics” on page 93)

The data transfer phase lets users transfer data in both directions through the
connection. t_snd (3NSL) sends and t_rcv (3NSL) receives data through the
connection. It is assumed that all data sent by one user is guaranteed to be delivered
to the other user in the order in which it was sent. Table 3-4 summarizes the
connection mode data-transfer routines.

TABLE 3-4 Connection Mode Data Transfer Routines

Command Description

Receives data that has arrived over a transport connection
t_rcv (3NSL)

Sends data over an established transport connection
t_snd (3NSL)

XTI/TLI has two types of connection release. The abortive release directs the
transport provider to release the connection immediately. Any previously sent data
that has not yet been transmitted to the other user can be discarded by the transport
provider. t snddis (3NSL) initiates the abortive disconnect. t rcvdis (3NSL)
receives the abortive disconnect. Transport providers usually support some form of
abortive release procedure.

Network Interface Guide ¢ February 2000

Some transport providers also support an orderly release that terminates
communication without discarding data. t_sndrel (3NSL) and t rcvrel (3NSL)
perform this function. Table 3-5 summarizes the connection release routines. Refer to
man pages for the specifications on these routines.

TABLE 3-5 Connection Release Routines

Command Description

) Returns a reason code for a disconnection and any remaining user data
t rcvdis (3NSL)

Acknowledges receipt of an orderly release of a connection request
t rcvrel (3NSL)

) Aborts a connection or rejects a connect request
t snddis (3NSL)

Requests the orderly release of a connection
t sndrel (3NSL)

Connection Mode Service

The main concepts of connection mode service are illustrated through a client
program and its server. The examples are presented in segments.

In the examples, the client establishes a connection to a server process. The server
transfers a file to the client. The client receives the file contents and writes them to
standard output.

Endpoint Initiation

Before a client and server can connect, each must first open a local connection to the
transport provider (the transport endpoint) through t_open (3NSL), and establish its
identity (or address) through t_bind (3NSL).

Many protocols perform a subset of the services defined in XTI/TLI. Each transport
provider has characteristics that determine the services it provides and limit the

Programming With XTI and TLI 75

76

services. Data defining the transport characteristics are returned by t open (3NSL)
inat_ info structure. Table 3-6 shows the fields in a t_info structure.

TABLE 3-6 t_info Structure

Field Content
addr Maximum size of a transport address
options Maximum bytes of protocol-specific options that can be passed

between the transport user and transport provider

tsdu Maximum message size that can be transmitted in either connection
mode or connectionless mode

etsdu Maximum expedited data message size that can be sent over a
transport connection

connect Maximum number of bytes of user data that can be passed between
users during connection establishment

discon Maximum bytes of user data that can be passed between users during
the abortive release of a connection

servtype The type of service supported by the transport provider

The three service types defined by XTI/TLI are:

1. T_COTS— The transport provider supports connection mode service but does not
provide the orderly release facility. Connection termination is abortive, and any
data not already delivered is lost.

2. T_COTS_ORDB- The transport provider supports connection mode service with
the orderly release facility.

3. T_CLTS— The transport provider supports connectionless mode service.

Only one such service can be associated with the transport provider identified by
t_open (3NSL).

t_open (3NSL) returns the default provider characteristics of a transport endpoint.
Some characteristics can change after an endpoint has been opened. This happens
with negotiated options (option negotiation is described later in this section).
t_getinfo (3NSL) returns the current characteristics of a transport endpoint.

After a user establishes an endpoint with the chosen transport provider, the client
and server must establish their identities. t_bind (3NSL) does this by binding a
transport address to the transport endpoint. For servers, this routine informs the
transport provider that the endpoint is used to listen for incoming connect requests.

Network Interface Guide ¢ February 2000

t_optmgmt (3NSL) can be used during the local management phase. It lets a user
negotiate the values of protocol options with the transport provider. Each transport
protocol defines its own set of negotiable protocol options, such as quality-of-service
parameters. Because the options are protocol-specific, only applications written for a
specific protocol use this function.

Client

The local management requirements of the example client and server are used to
discuss details of these facilities. Code Example 3-3 shows the definitions needed by
the client program, followed by its necessary local management steps.

CODE EXAMPLE 3-3 Client Implementation of Open and Bind

#include <stdio.h>
#include <tiuser.h>
#include <fcntl.h>

#define SRV_ADDR 1 /* server's address */
main()

int fd;

int nbytes;

int flags = O;

char buf[1024];
struct t_call *sndcall;
extern int t_errno;

if ((fd = t_open("/dev/exmp", O_RDWR, (struct t_info *),NULL))
== -1) {
t_error("t_open failed");
exit(1);

}
if (t_bind(fd, (struct t_bind *) NULL, (struct t_bind *) NULL)
== -1) {
t_error("t_bind failed");
exit(2);

The first argument of t_open (3NSL) is the path of a file system object that identifies
the transport protocol. /dev/exmp is the example name of a special file that
identifies a generic, connection-based transport protocol. The second argument,
O_RDWRspecifies to open for both reading and writing. The third argument points to
at_ info structure in which to return the service characteristics of the transport.

This data is useful to write protocol-independent software (see “Guidelines to
Protocol Independence” on page 112). In this example, a NULL pointer is passed. For
Code Example 3-3, the transport provider must have the following characteristics:

m The transport address is an integer value that uniquely identifies each user.
m The transport provider supports the T_COTS_ORDBervice type, since the example

uses orderly release.

Programming With XTI and TLI 77

m The transport provider does not require protocol-specific options.

If the user needs a service other than T_COTS_ORpPanother transport provider can
be opened. An example of the T_CLTS service invocation is shown in the section
“Read/Write Interface” on page 91.

t_open (3NSL) returns the transport endpoint file handle that is used by all
subsequent XTI/TLI function calls. The identifier is a file descriptor from opening the
transport protocol file. See open(2).

The client then calls t_bind (3NSL) to assign an address to the endpoint. The first
argument of t _bind (3NSL) is the transport endpoint handle. The second argument
points to at_bind structure that describes the address to bind to the endpoint. The
third argument points to a t_bind structure that describes the address that the
provider has bound.

The address of a client is rarely important because no other process tries to access it.
That is why the second and third arguments to t bind (3NSL) are NULL The second
NULL argument directs the transport provider to choose an address for the user.

If t_ open (3NSL) or t_bind (3NSL) fails, the program calls t_error (3NSL) to
display an appropriate error message by stderr . The global integer t_error (3NSL)
is assigned an error value. A set of error values is defined in tiuser.h

t_error (3NSL) is analogous to perror (3C). If the transport function error is a
system error, t_errno (3NSL) is set to TSYSERRand errno is set to the
appropriate value.

Server

The server example must also establish a transport endpoint at which to listen for
connection requests. Code Example 3-4 shows the definitions and local management
steps.

CODE EXAMPLE 3-4 Server Implementation of Open and Bind

#include <tiuser.h>
#include <stropts.h>
#include <fcntl.h>
#include <stdio.h>
#include <signal.h>

#define DISCONNECT -1

#define SRV_ADDR 1 /* server's address */
int conn_fd; /* connection established here */
extern int t_errno;

main()
int listen_fd; /* listening transport endpoint */

struct t_bind *bind;
struct t_call *call;

78 Network Interface Guide ¢ February 2000

if ((listen_fd = t_open("/deviexmp"”, O_RDWR,
(struct t_info *) NULL)) == -1) {
t_error("t_open failed for listen_fd");
exit(1);

if ((bind = (struct t_bind *)t_alloc(listen_fd, T_BIND, T_ALL))
== (struct t_bind *) NULL) {
t_error("t_alloc of t_bind structure failed");
exit(2);

bind->glen = 1;

/*
* Because it assumes the format of the provider's address,

* this program is transport-dependent
*
/
bind->addr.len = sizeof(int);
*(int *) bind->addr.buf = SRV_ADDR;
if (t_bind (listen_fd, bind, bind) < 0) {
t_error("t_bind failed for listen_fd");
exit(3);
}

#if (!defined(_XOPEN_SOURCE) ||(_XOPEN_SOURCE_EXTENDED -0 != 1))
/*

* Was the correct address bound?

*

* When using XTI, this test is unnecessary
*/

if (bind->addr.len != sizeof(int) ||
*(int *)bind->addr.buf !'= SRV_ADDR) {
fprintf(stderr, “t_bind bound wrong address\n");
exit(4);

#endif

Like the client, the server first calls t_open (3NSL) to establish a transport endpoint
with the desired transport provider. The endpoint, listen_fd , is used to listen for
connect requests.

Next, the server binds its address to the endpoint. This address is used by each client
to access the server. The second argument points to a t_bind structure that specifies
the address to bind to the endpoint. The t_bind structure has the following format:
struct t_bind {

struct netbuf addr;
unsigned glen;

Where addr describes the address to be bound, and glen specifies the maximum
number of outstanding connect requests. All XTI structure and constant definitions
made visible for use by applications programs through xti.h . All TLI structure and
constant definitions are in tiuser.h

The address is specified in the netbuf structure with the following format:

Programming With XTI and TLI 79

80

struct netbuf {
unsigned int maxlen;
unsigned int len;
char *buf;

}

Where maxlen specifies the maximum length of the buffer in bytes, len specifies the
bytes of data in the buffer, and buf points to the buffer that contains the data.

In the t_bind structure, the data identifies a transport address. glen specifies the
maximum number of connect requests that can be queued. If the value of glen is
positive, the endpoint can be used to listen for connect requests. t_bind (3NSL)
directs the transport provider to queue connect requests for the bound address
immediately. The server must dequeue each connect request and accept or reject it.
For a server that fully processes a single connect request and responds to it before
receiving the next request, a value of 1 is appropriate for glen . Servers that dequeue
several connect requests before responding to any should specify a longer queue. The
server in this example processes connect requests one at a time, so glen is set to 1.

t alloc (3NSL) is called to allocate the t_bind structure. t_alloc (3NSL) has
three arguments: a file descriptor of a transport endpoint; the identifier of the
structure to allocate; and a flag that specifies which, if any, netbuf buffers to
allocate. T_ALL specifies to allocate all netbuf buffers, and causes the addr buffer
to be allocated in this example. Buffer size is determined automatically and stored in
the maxlen field.

Each transport provider manages its address space differently. Some transport
providers allow a single transport address to be bound to several transport
endpoints, while others require a unique address per endpoint. XTI and TLI differ in
some significant ways in providing the address binding.

In TLI, based on its rules, a provider determines if it can bind the requested address.
If not, it chooses another valid address from its address space and binds it to the
transport endpoint. The application program must check the bound address to
ensure that it is the one previously advertised to clients. In XTI, if the provider
determines it cannot bind to the requested address, it fails the t_bind (3NSL)
request with an error.

If t_bind (3NSL) succeeds, the provider begins queueing connect requests, entering
the next phase of communication.

Connection Establishment

XTI/TLI imposes different procedures in this phase for clients and servers. The client
starts connection establishment by requesting a connection to a specified server using
t_connect (3NSL). The server receives a client’s request by calling

t listen (3NSL). The server must accept or reject the client’s request. It calls
t_accept (3NSL) to establish the connection, or t_snddis (3NSL) to reject the
request. The client is notified of the result when t _connect (3NSL) returns.

Network Interface Guide ¢ February 2000

TLI supports two facilities during connection establishment that might not be
supported by all transport providers:

m Data transfer between the client and server when establishing the connection. The
client can send data to the server when it requests a connection. This data is
passed to the server by t_listen (3NSL). The server can send data to the client
when it accepts or rejects the connection. The connect characteristic returned by
t_open (3NSL) determines how much data, if any, two users can transfer during
connect establishment.

m The negotiation of protocol options. The client can specify preferred protocol
options to the transport provider and/or the remote user. XTI/TLI supports both
local and remote option negotiation. Option negotiation is a protocol-specific
capability.

These facilities produce protocol-dependent software (see “Guidelines to Protocol
Independence” on page 112).

Client

The steps for the client to establish a connection are shown in Code Example 3-5.

CODE EXAMPLE 3-5 Client-to-Server Connection

if ((sndcall = (struct t_call *) t_alloc(fd, T_CALL, T_ADDR))
== (struct t_call *) NULL) {
t_error("t_alloc failed");
exit(3);

/*

* Because it assumes it knows the format of the provider's
* address, this program is transport-dependent

*/

sndcall->addr.len = sizeof(int);

*(int *) sndcall->addr.buf = SRV_ADDR,;

if (t_connect(fd, sndcall, (struct t_call *) NULL) == -1) {
t_error("t_connect failed for fd");
exit(4);

The t_connect (3NSL) call connects to the server. The first argument of
t_connect (3NSL) identifies the client’s endpoint, and the second argument points
toat_call structure that identifies the destination server. This structure has the
following format:
struct t_call {

struct netbuf addr;

struct netbuf opt;

struct netbuf udata;
int sequence;

Programming With XTI and TLI 81

82

addr identifies the address of the server, opt specifies protocol-specific options to
the connection, and udata identifies user data that can be sent with the connect
request to the server. The sequence field has no meaning for t connect (3NSL). In
this example, only the server’s address is passed.

t_alloc (3NSL) allocates the t_call structure dynamically. The third argument of
t_alloc (3NSL) is T_ADDR which specifies that the system needs to allocate a
netbuf buffer. The server’s address is then copied to buf , and len is set
accordingly.

The third argument of t_connect (3NSL) can be used to return information about
the newly established connection, and can return any user data sent by the server in
its response to the connect request. The third argument here is set to NULL by the
client. The connection is established on successful return of t_connect (3NSL). If
the server rejects the connect request, t _connect (3NSL) setst_errno to TLOOK

Event Handling

The TLOOKerror has special significance. TLOOK:is set if an XTI/TLI routine is
interrupted by an unexpected asynchronous transport event on the endpoint. TLOOK
does not report an error with an XTI/TLI routine, but the normal processing of the
routine is not done because of the pending event. The events defined by XTI/TLI are
listed in Table 3-7.

TABLE 3-7 Asynchronous Endpoint Events

Name Description
T LISTEN Connection request arrived at the transport endpoint
T_CONNECT Confirmation of a previous connect request arrived (generated when a

server accepts a connect request)

T_DATA User data has arrived

T_EXDATA Expedited user data arrived

T_DISCONNECT Notice that an aborted connection or a rejected connect request arrived
T_ORDREL A request for orderly release of a connection arrived

T UDERR Notice of an error in a previous datagram arrived. (See “Read/Write
N Interface” on page 91.)

Network Interface Guide ¢ February 2000

The state table in “State Transitions” on page 104 shows which events can happen in
each state. t _look (3NSL) lets a user determine what event has occurred if a TLOOK
error is returned. In the example, if a connect request is rejected, the client exits.

Server

When the client calls t _connect (3NSL), a connect request is sent at the server’s
transport endpoint. For each client, the server accepts the connect request and
spawns a process to service the connection.

if ((call = (struct t_call *) t_alloc(listen_fd, T_CALL, T_ALL))

== (struct t_call *) NULL) {
t_error("t_alloc of t_call structure failed");

exit(5);
}
while(1) {
if (t_listen(listen_fd, call) == -1) {
t_error("t_listen failed for listen_fd");
exit(6);

}
if ((conn_fd = accept_call(listen_fd, call)) != DISCONNECT)
run_server(listen_fd);

}

The server allocates at_call structure, then does a closed loop. The loop blocks on
t listen (3NSL) for a connect request. When a request arrives, the server calls
accept_call() to accept the connect request. accept_call accepts the
connection on an alternate transport endpoint (as discussed below) and returns the
handle of that endpoint. (conn_fd is a global variable.) Because the connection is
accepted on an alternate endpoint, the server can continue to listen on the original
endpoint. If the call is accepted without error, run_server spawns a process to
service the connection.

XTI/TLI supports an asynchronous mode for these routines that prevents a process
from blocking. See “Advanced Topics” on page 93.

When a connect request arrives, the server calls accept_call to accept the client’s
request, as Code Example 3-6 shows.

Note - It is implicitly assumed that this server only needs to handle a single
connection request at a time. This is not normally true of a server. The code required
to handle multiple simultaneous connection requests is complicated because of XTI/
TLI event mechanisms. See “Advanced Programming Example” on page 94 for such
a server.

CODE EXAMPLE 3-6 accept_call Function
accept_call(listen_fd, call)

int listen_fd;

struct t_call *call;

{

Programming With XTI and TLI 83

84

int resfd;

if ((resfd = t_open("/dev/exmp”, O_RDWR, (struct t_info *) NULL))
== -1) {
t_error("t_open for responding fd failed");
exit(7);

if (t_bind(resfd,(struct t_bind *) NULL, (struct t_bind *NULL))
== {

t_error("t_bind for responding fd failed");

exit(8);
if (t_accept(listen_fd, resfd, call) == -1) {
if (t_errno == TLOOK) { /* must be a disconnect */
if (t_rcvdis(listen_fd,(struct t_discon *) NULL) == -1) {
t_error("t_rcvdis failed for listen_fd");
exit(9);
if (t_close(resfd) == -1) {
t_error("t_close failed for responding fd");
exit(10);

/* go back up and listen for other calls */
return(DISCONNECT);

}
t_error("t_accept failed");
exit(11);
return(resfd);
}
accept_call() has two arguments:
listen_fd The file handle of the transport endpoint where the connect request
arrived.
call Points to at_call structure that contains all information associated

with the connect request

The server first opens another transport endpoint by opening the clone device special
file of the transport provider and binding an address. A NULL specifies not to return
the address bound by the provider. The new transport endpoint, resfd, accepts the
client’s connect request.

The first two arguments of t accept (3NSL) specify the listening transport
endpoint and the endpoint where the connection is accepted, respectively. Accepting
a connection on the listening endpoint prevents other clients from accessing the
server for the duration of the connection.

The third argument of t_accept (3NSL) points to the t_call structure containing
the connect request. This structure should contain the address of the calling user and
the sequence number returned by t_listen (3NSL). The sequence number is
significant if the server queues multiple connect requests. The “Advanced Topics” on
page 93 shows an example of this. The t_call structure also identifies protocol

Network Interface Guide ¢ February 2000

options and user data to pass to the client. Because this transport provider does not
support protocol options or the transfer of user data during connection, the t_call
structure returned by t_listen (3NSL) is passed without change to

t_accept (3NSL).

The example is simplified. The server exits if either the t_open (3NSL) or

t bind (3NSL) call fails. exit (2) closes the transport endpoint of listen_fd
causing a disconnect request to be sent to the client. The client’s t_connect (3NSL)
call fails, setting t_errno to TLOOK

t_accept (3NSL) can fail if an asynchronous event occurs on the listening endpoint
before the connection is accepted, and t_errmno is set to TLOOK Table 3-8 shows
that only a disconnect request can be sent in this state with only one queued connect
request. This event can happen if the client undoes a previous connect request. If a
disconnect request arrives, the server must respond by calling t_rcvdis (3NSL).
This routine argument is a pointer to at_discon structure, which is used to retrieve
the data of the disconnect request. In this example, the server passes a NULL

After receiving a disconnect request, accept_call closes the responding transport
endpoint and returns DISCONNECTwhich informs the server that the connection
was disconnected by the client. The server then listens for further connect requests.

Figure 3-4 illustrates how the server establishes connections:

Client Server

Responding Listening
endpoint endpoint
Transport

interface

Transport provider

Figure 3-4 Listening and Responding Transport Endpoints

The transport connection is established on the new responding endpoint, and the
listening endpoint is freed to retrieve further connect requests.

Data Transfer

After the connection is established, both the client and the server can transfer data
through the connection using t snd (3NSL) and t_rcv (3NSL). XTI/TLI does not

Programming With XTI and TLI 85

86

differentiate the client from the server from this point on. Either user can send data,
receive data, or release the connection.

The two classes of data on a transport connection are:
1. Normal data
2. Expedited data

Expedited data is for urgent data. The exact semantics of expedited data vary
between transport providers. Not all transport protocols support expedited data (see
t open (3NSL)).

Most connection-oriented mode protocols transfer data in byte streams. “Byte stream”
implies no message boundaries in data sent over a connection. Some transport
protocols preserve message boundaries over a transport connection. This service is
supported by XTI/TLI, but protocol-independent software must not rely on it.

The message boundaries are invoked by the T_MORHlIag of t snd (3NSL) and
t_rcv (3NSL). The messages, called transport service data units (TSDU), can be
transferred between two transport users as distinct units. The maximum message
size is defined by the underlying transport protocol. Get the message size through
t open (3NSL) or t_getinfo (3NSL).

You can send a message in multiple units. Set the T_MORHlag on every

t_snd (3NSL) call, except the last to send a message in multiple units. The flag
specifies that the data in the current and the next t snd (3NSL) calls are a logical
unit. Send the last message unit with T_MORBRurned off to specify the end of the
logical unit.

Similarly, a logical unit can be sent in multiple units. If t_rcvv (3NSL) returns with
the T_MORHlag set, the user must call t_rcvv (3NSL) again to receive the rest of
the message. The last unit in the message is identified by a call to t_rcvv (3NSL)
that does not set T_MORE

The T_MORHlag implies nothing about how the data is packaged below XTI/TLI or
how the data is delivered to the remote user. Each transport protocol, and each
implementation of a protocol, can package and deliver the data differently.

For example, if a user sends a complete message in a single call to
t_snd (3NSL)t_snd , there is no guarantee that the transport provider delivers the
data in a single unit to the receiving user. Similarly, a message transmitted in two
units can be delivered in a single unit to the remote transport user.

If supported by the transport, the message boundaries are preserved only by setting
the value of T_MORHor t_snd (3NSL) and testing it after t_rcvv (3NSL). This
guarantees that the receiver sees a message with the same contents and message
boundaries as was sent.

Network Interface Guide ¢ February 2000

Client

The example server transfers a log file to the client over the transport connection.
The client receives the data and writes it to its standard output file. A byte stream
interface is used by the client and server, with no message boundaries. The client
receives data by the following:

while ((nbytes = t_rcv(fd, buf, nbytes, &flags))!= -1){
if (fwrite(buf, 1, nbytes, stdout) == -1) {
fprintf(stderr, "fwrite failed\n");
exit(5);
}
}

The client repeatedly calls t_rcvv (3NSL) to receive incoming data. t_rcvv (3NSL)
blocks until data arrives. t rcvv (3NSL) writes up to nbytes of the data available
into buf and returns the number of bytes buffered. The client writes the data to
standard output and continues. The data transfer loop ends when t_rcvww (3NSL)
fails. t_rcvw (3NSL) fails when an orderly release or disconnect request arrives. If
fwrite (3C) fails for any reason, the client exits, which closes the transport endpoint.
If the transport endpoint is closed (either by exit (2) or t_close (3NSL)) during
data transfer, the connection is aborted and the remote user receives a disconnect
request.

Server

The server manages its data transfer by spawning a child process to send the data to
the client. The parent process continues the loop to listen for more connect requests.
run_server is called by the server to spawn this child process, as shown in Code
Example 3-7.

CODE EXAMPLE 3-7 Spawning Child Process to Loopback and Listen
connrelease()
/¥ conn_fd is global because needed here */

if (t_look(conn_fd) == T_DISCONNECT) {
fprintf(stderr, “connection aborted\n”);

exit(12);
[* else orderly release request - normal exit */
exit(0);
run_server(listen_fd)
int listen_fd;
{
int nbytes;
FILE *logfp; /* file pointer to log file */

char buf[1024];
switch(fork()) {

case -1:
perror(“fork failed");

Programming With XTI and TLI 87

88

exit(20);

default: [* parent */
/* close conn_fd and then go up and listen again*/
if (t_close(conn_fd) == -1) {
t_error("t_close failed for conn_fd");
exit(21);
return;
case 0: /* child */
/* close listen_fd and do service */
if (t_close(listen_fd) == -1) {
t_error("t_close failed for listen_fd");
exit(22);

}
if ((logfp = fopen("logfile", "r")) == (FILE *) NULL) {
perror("cannot open logfile");

exit(23);
signal(SIGPOLL, connrelease);
if (ioctl(conn_fd, |_SETSIG, S_INPUT) == -1) {
perror(“ioctl I_SETSIG failed");
exit(24);
if (t_look(conn_fd) != 0){ /*disconnect there?*/
fprintf(stderr, "t_look: unexpected event\n");
exit(25);
while ((nbytes = fread(buf, 1, 1024, logfp)) > 0)
if (t_snd(conn_fd, buf, nbytes, 0) == -1) {
t_error("t_snd failed");
exit(26);
}

After the fork, the parent process returns to the main listening loop. The child
process manages the newly established transport connection. If the fork fails,

exit (2) closes both transport endpoints, sending a disconnect request to the client,
and the client’s t_connect (3NSL) call fails.

The server process reads 1024 bytes of the log file at a time and sends the data to the
client using t_snd (3NSL). buf points to the start of the data buffer, and nbytes
specifies the number of bytes to transmit. The fourth argument can be zero or one of
the two optional flags below:

m T_EXPEDITEDspecifies that the data is expedited.
m T_MORBpecifies that the next block continues the message in this block.
Neither flag is set by the server in this example.

If the user floods the transport provider with data, t snd (3NSL) blocks until
enough data is removed from the transport.

t snd (3NSL) does not look for a disconnect request (showing that the connection
was broken). If the connection is aborted, the server should be notified, since data
can be lost. One solution is to call t look (3NSL) to check for incoming events
before each t_snd (3NSL) call or after a t_snd (3NSL) failure. The example has a
cleaner solution. The |_SETSIG ioctl (2) lets a user request a signal when a

Network Interface Guide ¢ February 2000

specified event occurs. See the streamio (71) manpage. S_INPUT causes a signal to
be sent to the user process when any input arrives at the endpoint conn_fd . If a
disconnect request arrives, the signal-catching routine (connrelease) prints an
error message and exits.

If the server alternates t_snd (3NSL) and t_rcv (3NSL) calls, it can use
t_rcv (3NSL) to recognize an incoming disconnect request.

Connection Release

At any time during data transfer, either user can release the transport connection and
end the conversation. There are two forms of connection release.

m The first way, abortive release, breaks the connection immediately and discards
any data that has not been delivered to the destination user.

Either user can call t_snddis (3NSL) to perform an abortive release. The
transport provider can abort a connection if a problem occurs below XTI/TLI.

t snddis (3NSL) lets a user send data to the remote user when aborting a
connection. The abortive release is supported by all transport providers, the ability
to send data when aborting a connection is not.

When the remote user is notified of the aborted connection, call t_rcvdis (3NSL)
to receive the disconnect request. The call returns a code that identifies why the
connection was aborted, and returns any data that can have accompanied the
disconnect request (if the abort was initiated by the remote user). The reason code
is specific to the underlying transport protocol, and should not be interpreted by
protocol-independent software.

m The second way, orderly release, ends a connection so that no data is lost. All
transport providers must support the abortive release procedure, but orderly
release is an option not supported by all connection-oriented protocols.

See “Transport Selection” on page 120 for information on how to select a transport
that supports orderly release.

Server

This example assumes that the transport provider supports orderly release. When all
the data has been sent by the server, the connection is released as follows:

if (t_sndrel(conn_fd) == -1) {
t_error(*t_sndrel failed”);
exit(27);

pause(); /* until orderly release request arrives */

Orderly release requires two steps by each user. The server can call
t_sndrel (3NSL). This routine sends a disconnect request. When the client receives

Programming With XTI and TLI 89

90

the request, it can continue sending data back to the server. When all data have been
sent, the client calls t_sndrel (3NSL) to send a disconnect request back. The
connection is released only after both users have received a disconnect request.

In this example, data is transferred only from the server to the client. So there is no
provision to receive data from the client after the server initiates release. The server
calls pause (2) after initiating the release.

The client responds with its orderly release request, which generates a signal caught
by connrelease() . (In Code Example 3-7, the server issued an |_SETSIG

ioctl (2) to generate a signal on any incoming event.) The only XTI/TLI event
possible in this state is a disconnect request or an orderly release request, so
connrelease exits normally when the orderly release request arrives. exit (2)
from connrelease closes the transport endpoint and frees the bound address. To
close a transport endpoint without exiting, call t close (3NSL).

Client

The client releases the connection similar to the way the server releases it. The client
processes incoming data until t_rcv (3NSL) fails. When the server releases the
connection (using either t snddis (3NSL) or t sndrel (3NSL)), t_rcv (3NSL)
fails and sets t_errno to TLOOK The client then processes the connection release as
follows:

if ((t_errno == TLOOK) && (t_look(fd) == T_ORDREL)) {

if (t_rcvrel(fd) == -1) {
t_error(“t_rcvrel failed”);

exit(6);

}

if (t_sndrel(fd) == -1) {
t_error(“t_sndrel failed”);
exit(7);

exit(0);

Each event on the client’s transport endpoint is checked for an orderly release
request. When one is received, the client calls t_rcvrel (3NSL) to process the
request and t_sndrel (3NSL) to send the response release request. The client then
exits, closing its transport endpoint.

If a transport provider does not support the orderly release, use abortive release with
t snddis (3NSL) and t_rcvdis (3NSL). Each user must take steps to prevent data
loss. For example, use a special byte pattern in the data stream to indicate the end of
a conversation.

Network Interface Guide ¢ February 2000

Read/Write Interface

A user might want to establish a transport connection using exec (2) on an existing
program (such as /usr/bin/cat) to process the data as it arrives over the
connection. Existing programs use read (2) and write (2). XTI/TLI does not
directly support a read/write interface to a transport provider, but one is available.
The interface lets you issue read (2) and write (2) calls over a transport connection
in the data transfer phase. This section describes the read/write interface to the
connection mode service of XTI/TLI. This interface is not available with the
connectionless mode service.

The read/write interface is presented using the client example (with modifications)
of “Connection Mode Service” on page 75. The clients are identical until the data
transfer phase. Then the client uses the read/write interface and cat (1) to process
incoming data. cat (1) is run without change over the transport connection. Only the
differences between this client and that of the client in Code Example 3-3are shown
in Code Example 3-8.

CODE EXAMPLE 3-8 Read/Write Interface
#include <stropts.h>
I
Same local management and connection establishment steps.
*/

if (ioctl(fd, I_PUSH, "tirdwr") == -1) {
perror(“I_PUSH of tirdwr failed”);
exit(5);

close(0);

dup(fd);

execl(“/usr/bin/cat”, “/ust/bin/cat”, (char *) 0);
perror(“exec of /usr/bin/cat failed”);
exit(6);

}

The client invokes the read/write interface by pushing tirdwr onto the stream
associated with the transport endpoint. See |_PUSH in streamio (71). tirdwr
converts XTI/TLI above the transport provider into a pure read/write interface. With
the module in place, the client calls close (2) and dup(2) to establish the transport
endpoint as its standard input file, and uses /usr/bin/cat to process the input.

By pushing tirdwr onto the transport provider, XTI/TLI is changed. The semantics
of read (2) and write (2) must be used, and message boundaries are not preserved.
tirdwr can be popped from the transport provider to restore XTI/TLI semantics
(see |_POP in streamio (7).

Programming With XTI and TLI 91

92

Caution - The tirdwr module can only be pushed onto a stream when the
transport endpoint is in the data transfer phase. After the module is pushed, the user
cannot call any XTI/TLI routines. If an XTI/TLI routine is invoked, tirdwr

generates a fatal protocol error, EPROTQon the stream, rendering it unusable. If you
then pop the tirdwr module off the stream, the transport connection is aborted. See
|_POP in streamio (71).

Write

Send data over the transport connection with write (2). tirdwr passes data through
to the transport provider. If you send a zero-length data packet, which the mechanism
allows, tirdwr discards the message. If the transport connection is aborted—for
example, because the remote user aborts the connection using t_snddis (3NSL)—a
hang-up condition is generated on the stream, further write (2) calls fail, and

errno is set to ENXIO. You can still retrieve any available data after a hang-up.

Read

Receive data that arrives at the transport connection with read (2). tirdwr , which
passes data from the transport provider. Any other event or request passed to the
user from the provider is processed by tirdwr as follows:

m read (2) cannot identify expedited data to the user. If an expedited data request is
received, tirdwr generates a fatal protocol error, EPROTQon the stream. The
error causes further system calls to fail. Do not use read (2) to receive expedited
data.

m tirdwr discards an abortive disconnect request and generates a hang-up
condition on the stream. Subsequent read (2) calls retrieve any remaining data,
then return zero for all further calls (indicating end of file).

m tirdwr discards an orderly release request and delivers a zero-length message to
the user. As described in read (2), this notifies the user of end of file by returning
0.

m If any other XTI/TLI request is received, tirdwr generates a fatal protocol error,
EPROTQon the stream. This causes further system calls to fail. If a user pushes
tirdwr onto a stream after the connection has been established, no request is
generated.

Network Interface Guide ¢ February 2000

Close

With tirdwr on a stream, you can send and receive data over a transport connection
for the duration of the connection. Either user can terminate the connection by
closing the file descriptor associated with the transport endpoint or by popping the
tirdwr module off the stream. In either case, tirdwr does the following:

m If an orderly release request was previously received by tirdwr , it is passed to
the transport provider to complete the orderly release of the connection. The
remote user who initiated the orderly release procedure receives the expected
request when data transfer completes.

m If a disconnect request was previously received by tirdwr , no special action is
taken.

m If neither an orderly release nor a disconnect request was previously received by
tirdwr , a disconnect request is passed to the transport provider to abort the
connection.

m If an error previously occurred on the stream and a disconnect request has not
been received by tirdwr , a disconnect request is passed to the transport provider.

A process cannot initiate an orderly release after tirdwr is pushed onto a stream.
tirdwr handles an orderly release if it is initiated by the user on the other side of a
transport connection. If the client in this section is communicating with the server
program in “Connection Mode Service” on page 75, the server terminates the transfer
of data with an orderly release request. The server then waits for the corresponding
request from the client. At that point, the client exits and the transport endpoint is
closed. When the file descriptor is closed, tirdwr initiates the orderly release
request from the client’s side of the connection. This generates the request that the
server is blocked on.

Some protocols, like TCP, require this orderly release to ensure that the data is
delivered intact.

Advanced Topics

This section presents additional XTI/TLI concepts:
m An optional nonblocking (asynchronous) mode for some library calls
m How to set and get TCP and UDP options under XTI/TLI

m A program example of a server supporting multiple outstanding connect requests
and operating in an event-driven manner

Programming With XTI and TLI 93

94

Asynchronous Execution Mode

Many XTI/TLI library routines block to wait for an incoming event. However, some
time-critical applications should not block for any reason. An application can do
local processing while waiting for some asynchronous XTI/TLI event.

Asynchronous processing of XTI/TLI events is available to applications through the
combination of asynchronous features and the non-blocking mode of XTI/TLI library
routines. Use of the poll (2) system call and the |_SETSIG ioctl (2) command to
process events asynchronously is described in ONC+ Developer’s Guide.

Each XTI/TLI routine that blocks for an event can be run in a special non-blocking
mode. For example, t_listen (3NSL) normally blocks for a connect request. A
server can periodically poll a transport endpoint for queued connect requests by
calling t_listen (3NSL) in the non-blocking (or asynchronous) mode. The
asynchronous mode is enabled by setting O_NDELAYor O_NONBLOCI the file
descriptor. These modes can be set as a flag through t_open (3NSL), or by calling
fcntl (2) before calling the XTI/TLI routine. fcntl (2) enables or disables this mode
at any time. All program examples in this chapter use the default synchronous
processing mode.

O_NDELAYor O_NONBLOCKHffect each XTI/TLI routine differently. You will need to
determine the exact semantics of O_NDELAYor O_NONBLOCKor a particular routine.

Advanced Programming Example

The following example demonstrates two important concepts. The first is a server’s
ability to manage multiple outstanding connect requests. The second is event-driven
use of XTI/TLI and the system call interface.

The server example in Code Example 3-4 supports only one outstanding connect
request, but XTI/TLI lets a server manage multiple outstanding connect requests.
One reason to receive several simultaneous connect requests is to prioritize the
clients. A server can receive several connect requests, and accept them in an order
based on the priority of each client.

The second reason for handling several outstanding connect requests is the limits of
single-threaded processing. Depending on the transport provider, while a server
processes one connect request, other clients find it busy. If multiple connect requests
are processed simultaneously, the server will be found busy only if more than the
maximum number of clients try to call the server simultaneously.

The server example is event-driven: the process polls a transport endpoint for
incoming XTI/TLI events, and takes the appropriate actions for the event received.
The example demonstrates the ability to poll multiple transport endpoints for
incoming events.

The definitions and endpoint establishment functions of Code Example 3-9 are
similar to those of the server example in Code Example 3-4.

Network Interface Guide ¢ February 2000

CODE EXAMPLE 3-9 Endpoint Establishment (Convertible to Multiple Connections)

#include <tiuser.h>
#include <fcntl.h>
#include <stdio.h>
#include <poll.h>
#include <stropts.h>
#include <signal.h>

#define NUM_FDS 1
#define MAX_CONN_IND 4
#define SRV_ADDR 1 /* server's well known address */

int conn_fd; /* server connection here */
extern int t_errno;

/* holds connect requests */

struct t_call *callsfNUM_FDS][MAX_CONN_IND];

main()

{
struct pollfd pollfds[NUM_FDS];
struct t_bind *bind;
int i;

/*
* Only opening and binding one transport endpoint, but more can
* be supported
*/
if ((pollfds[0].fd = t_open(“/dev/tivc”, O_RDWR,
(struct t_info *) NULL)) == -1) {
t_error(“t_open failed”);
exit(1);

}
if ((bind = (struct t_bind *) t_alloc(pollfds[0].fd, T_BIND,
T_ALL)) == (struct t_bind *) NULL) {
t_error(“t_alloc of t_bind structure failed”);
exit(2);

}

bind->glen = MAX_CONN_IND;

bind->addr.len = sizeof(int);

*(int *) bind->addr.buf = SRV_ADDR;

if (t_bind(pollfds[0].fd, bind, bind) == -1) {
t_error(“t_bind failed”);
exit(3);

/* Was the correct address bound? */

if (bind->addr.len != sizeof(int) ||
*(@int *)bind->addr.buf != SRV_ADDR) {
fprintf(stderr, “t_bind bound wrong address\n”);
exit(4);

The file descriptor returned by t open (3NSL) is stored in a pollfd structure that
controls polling the transport endpoints for incoming data. See poll (2). Only one
transport endpoint is established in this example. However, the remainder of the
example is written to manage multiple transport endpoints. Several endpoints could
be supported with minor changes to Code Example 3-9.

Programming With XTI and TLI 95

96

This server sets glen to a value greater than 1 for t_bind (3NSL). This specifies
that the server queues multiple outstanding connect requests. The server accepts the
current connect request before accepting additional connect requests. This example
can queue up to MAX_CONN_INRonnect requests. The transport provider can
negotiate the value of glen smaller if it cannot support MAX_CONN_INDutstanding
connect requests.

After the server has bound its address and is ready to process connect requests, it
behaves as shown in Code Example 3-10.

CODE EXAMPLE 3-10 Processing Connection Requests
pollfds[0].events = POLLIN;

while (TRUE) {

if (poll(pollfds, NUM_FDS, -1) == -1) {
perror(“poll failed”);
exit(5);

for (i = 0; i < NUM_FDS; i++) {
switch (pollfds[i].revents) {
default:
perror(“poll returned error event”);
exit(6);
case O:
continue;
case POLLIN:
do_event(i, pollfds]i].fd);
service_conn_ind(i, pollfds]i].fd);
}
}
}

The events field of the pollfd structure is set to POLLIN, which notifies the server
of any incoming XTI/TLI events. The server then enters an infinite loop in which it
polls the transport endpoint(s) for events, and processes events as they occur.

The poll (2) call blocks indefinitely for an incoming event. On return, each entry
(one per transport endpoint) is checked for a new event. If revents is 0, no event
has occurred on the endpoint and the server continues to the next endpoint. If
revents is POLLIN, there is an event on the endpoint. do_event is called to
process the event. Any other value in revents indicates an error on the endpoint,
and the server exits. With multiple endpoints, it is better for the server to close this
descriptor and continue.

For each iteration of the loop, service_conn_ind is called to process any
outstanding connect requests. If another connect request is pending,
service_conn_ind saves the new connect request and responds to it later.

The do_event in Code Example 3-11 is called to process an incoming event.

Network Interface Guide ¢ February 2000

CODE EXAMPLE 3-11 Event Processing Routine

do_event(slot, fd)
int slot;
int fd;

{

struct t_discon *discon;
int i;

switch (t_look(fd)) {
default:
fprintf(stderr, "t_look: unexpected event\n");
exit(7);
case T_ERROR:
fprintf(stderr, "t_look returned T_ERROR event\n");
exit(8);
case -1:
t_error("t_look failed");
exit(9);
case O:
/* since POLLIN returned, this should not happen */
fprintf(stderr,"t_look returned no event\n");
exit(10);
case T_LISTEN:
/* find free element in calls array */
for (i = 0; i < MAX_CONN_IND; i++) {
if (calls[slot][i] == (struct t_call *) NULL)
break;

}
if ((calls[slot][i] = (struct t_call *) t_alloc(fd, T_CALL,
T_ALL)) == (struct t_call *) NULL) {
t_error("t_alloc of t_call structure failed");
exit(11);

}

if (t_listen(fd, calls[slot][i]) == -1) {
t_error("t_listen failed");
exit(12);

}

break;

case T_DISCONNECT:

discon = (struct t_discon *) t_alloc(fd, T_DIS, T_ALL);

if (discon == (struct t_discon *) NULL) {
t_error("t_alloc of t_discon structure failed");
exit(13)

}

if(t_rcvdis(fd, discon) == -1) {
t_error("t_rcvdis failed");
exit(14);

/* find call ind in array and delete it */
for (i = 0; i < MAX_CONN_IND; i++) {
if (discon->sequence == calls[slot][i]->sequence) {
t_free(calls[slot][i], T_CALL);
calls[slot][i] = (struct t_call *) NULL;

}
t_free(discon, T_DIS);
break;

Programming With XTI and TLI

97

98

The arguments are a number (slot) and a file descriptor (fd). slot is the index into the
global array calls which has an entry for each transport endpoint. Each entry is an
array of t_call structures that hold incoming connect requests for the endpoint.

do_event calls t_look (3NSL) to identify the XTI/TLI event on the endpoint
specified by fd. If the event is a connect request (T_LISTEN event) or disconnect
request (T_DISCONNECTevent), the event is processed. Otherwise, the server prints
an error message and exits.

For connect requests, do_event scans the array of outstanding connect requests for
the first free entry. A t_call structure is allocated for the entry, and the connect
request is received by t_listen (3NSL). The array is large enough to hold the
maximum number of outstanding connect requests. The processing of the connect
request is deferred.

A disconnect request must correspond to an earlier connect request. do_event
allocates a t_discon structure to receive the request. This structure has the
following fields:

struct t_discon {
struct netbuf udata;
int reason;
int sequence;

}

udata contains any user data sent with the disconnect request. reason contains a
protocol-specific disconnect reason code. sequence identifies the connect request
that matches the disconnect request.

t_rcvdis (3NSL) is called to receive the disconnect request. The array of connect
requests is scanned for one that contains the sequence number that matches the
sequence number in the disconnect request. When the connect request is found, its
structure is freed and the entry is set to NULL

When an event is found on a transport endpoint, service_conn_ind is called to
process all queued connect requests on the endpoint, as Code Example 3-12 shows.

CODE EXAMPLE 3-12 Process All Connect Requests

service_conn_ind(slot, fd)

{

int i;

for (i = 0; i < MAX_CONNL_IND; i++) {
if (calls[slot][i] == (struct t_call *) NULL)
continue;
if((conn_fd = t_open(“/dev/tivc”, O_RDWR,
(struct t_info *) NULL)) == -1) {
t_error("open failed");
exit(15);

}
if (t_bind(conn_fd, (struct t_bind *) NULL,
(struct t_bind *) NULL) == -1) {
t_error("t_bind failed");
exit(16);

Network Interface Guide ¢ February 2000

}
if (t_accept(fd, conn_fd, calls[slot][i]) == -1) {
if (t_errno == TLOOK) {
t_close(conn_fd);
return;
}

t_error("t_accept failed");
exit(167);

}
t_free(calls[slot][i], T_CALL);
calls[slot][i] = (struct t_call *) NULL,;
run_server(fd);
}
}

For each transport endpoint, the array of outstanding connect requests is scanned.
For each request, the server opens a responding transport endpoint, binds an address
to the endpoint, and accepts the connection on the endpoint. If another event
(connect request or disconnect request) arrives before the current request is accepted,
t_accept (3NSL) fails and setst_errno to TLOOK (You cannot accept an
outstanding connect request if any pending connect request events or disconnect
request events exist on the transport endpoint.)

If this error occurs, the responding transport endpoint is closed and
service_conn_ind returns immediately (saving the current connect request for
later processing). This causes the server’s main processing loop to be entered, and
the new event is discovered by the next call to poll (2). In this way, multiple
connect requests can be queued by the user.

Eventually, all events are processed, and service_conn_ind is able to accept each
connect request in turn. After the connection has been established, the run_server
routine used by the server in the Code Example 3-5 is called to manage the data
transfer.

Asynchronous Networking

This section discusses the techniques of asynchronous network communication using
XTI/TLI for real-time applications. SunOS provides support for asynchronous
network processing of XTI/TLI events using a combination of STREAMS
asynchronous features and the non-blocking mode of the XTI/TLI library routines.

Networking Programming Models

Like file and device 170, network transfers can be done synchronously or
asynchronously with process service requests.

Programming With XTI and TLI 99

100

Synchronous Networking

Synchronous networking proceeds similar to synchronous file and device 1/0. Like
the write (2) function, the request to send returns after buffering the message, but
might suspend the calling process if buffer space is not immediately available. Like
the read (2) function, a request to receive suspends execution of the calling process
until data arrives to satisfy the request. Because SunOS provides no guaranteed
bounds for transport services, synchronous networking is inappropriate for processes
that must have real-time behavior with respect to other devices.

Asynchronous Networking

Asynchronous networking is provided by non-blocking service requests.
Additionally, applications can request asynchronous notification when a connection
might be established, when data might be sent, or when data might be received.

Asynchronous Connectionless-Mode Service

Asynchronous connectionless mode networking is conducted by configuring the
endpoint for non-blocking service, and either polling for or receiving asynchronous
notification when data might be transferred. If asynchronous notification is used, the
actual receipt of data typically takes place within a signal handler.

Making the Endpoint Asynchronous

After the endpoint has been established using t_open (3NSL), and its identity
established using t_bind (3NSL), the endpoint can be configured for asynchronous
service. This is done by using the fcntl (2) function to set the O_NONBLOCHKag on
the endpoint. Thereafter, calls to t sndudata (3NSL) for which no buffer space is
immediately available return -1 with t_errno set to TFLOWLikewise, calls to
t_rcvudata (3NSL) for which no data are available return -1 witht_errno set to
TNODATA

Asynchronous Network Transfers

Although an application can use the poll (2) function to check periodically for the
arrival of data or to wait for the receipt of data on an endpoint, it might be necessary
to receive asynchronous notification when data has arrived. This can be done by
using the ioctl (2) function with the |_SETSIG command to request that a
SIGPOLL signal be sent to the process upon receipt of data at the endpoint.
Applications should check for the possibility of multiple messages causing a single
signal.

Network Interface Guide ¢ February 2000

In the following example, protocol is the name of the application-chosen transport
protocol.

#include <sys/types.h>

#include <tiuser.h>

#include <signal.h>
#include <stropts.h>

int fd;
struct t_bind *bind;
void sigpoll(int);

fd = t_open(protocol, O_RDWR, (struct t_info *) NULL);

bind = (struct t_bind *) t_alloc(fd, T_BIND, T_ADDR);
/* set up binding address */
t_bind(fd, bind, bin

/* make endpoint non-blocking */
fentl(fd, F_SETFL, fentl(fd, F_GETFL) | O_NONBLOCK);

[* establish signal handler for SIGPOLL */
signal(SIGPOLL, sigpoll);

/* request SIGPOLL signal when receive data is available */
ioctl(fd, I_SETSIG, S_INPUT | S_HIPRI);

void sigpoll(int sig)
{

int flags;
struct t_unitdata ud;

for (;;) {
... I* initialize ud */
if (t_rcvudata(fd, &ud, &flags) < 0) {
if (t_errno == TNODATA)
break; /* no more messages */
... I* process other error conditions */

}

... I* process message in ud */

}

Asynchronous Connection-Mode Service

For connection-mode service, an application can arrange for not only the data
transfer, but for the establishment of the connection itself to be done asynchronously.
The sequence of operations depends on whether the process is attempting to connect
to another process or is awaiting connection attempts.

Asynchronously Establishing a Connection

A process can attempt a connection and asynchronously complete the connection.
The process first creates the connecting endpoint, and, using fcntl (2), configures

Programming With XTI and TLI 101

the endpoint for non-blocking operation. As with connectionless data transfers, the
endpoint can also be configured for asynchronous notification upon completion of
the connection and subsequent data transfers. The connecting process then uses the
t_connect (3NSL) function to initiate setting up the transfer. Then the
t_rcvconnect (3NSL) function is used to confirm the establishment of the
connection.

Asynchronous Use of a Connection

To asynchronously await connections, a process first establishes a non-blocking
endpoint bound to a service address. When either the result of poll (2) or an
asynchronous notification indicates that a connection request has arrived, the process
can get the connection request by using the t_listen (3NSL) function. To accept
the connection, the process uses the t_accept (3NSL) function. The responding
endpoint must be separately configured for asynchronous data transfers.

The following example illustrates how to request a connection asynchronously.

#include <tiuser.h>

int fd;
struct t_call *call;
fd = .../* establish a non-blocking endpoint */

call = (struct t_call *) t_alloc(fd, T_CALL, T_ADDR);

..[* initialize call structure */

t_connect(fd, call, call);

[* connection request is now proceeding asynchronously */
...I* receive indication that connection has been accepted */
t_rcvconnect(fd, &call);

The following example illustrates listening for connections asynchronously.

#include <tiuser.h>

int fd, res_fd;
struct t_call call;
fd = ... /* establish non-blocking endpoint */

...I*receive indication that connection request has arrived
*/

call = (struct t_call *) t_alloc(fd, T_CALL, T_ALL);
t_listen(fd, &call);

...I* determine whether or not to accept connection */
res_fd = ... /* establish non-blocking endpoint for response
*/

t_accept(fd, res_fd, call);

102 Network Interface Guide ¢ February 2000

Asynchronous Open

Occasionally, an application might be required to dynamically open a regular file in a
file system mounted from a remote host, or on a device whose initialization might be
prolonged. However, while such an open is in progress, the application is unable to
achieve real-time response to other events. Fortunately, SunOS provides a means of
solving this problem by having a second process perform the actual open and then
pass the file descriptor to the real-time process.

Transferring a File Descriptor

The STREAMS interface under SunOS provides a mechanism for passing an open file
descriptor from one process to another. The process with the open file descriptor
uses the ioctl (2) function with a command argument of |_SENDFD. The second
process obtains the file descriptor by calling ioctl (2) with a command argument of
|_RECVFD.

In this example, the parent process prints out information about the test file, and
creates a pipe. Next, the parent creates a child process, which opens the test file, and
passes the open file descriptor back to the parent through the pipe. The parent
process then displays the status information on the new file descriptor.

CODE EXAMPLE 3-13 File Descriptor Transfer

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stropts.h>
#include <stdio.h>

#define TESTFILE "“/dev/null
main(int argc, char *argv[])

int fd;
int pipefd[2];
struct stat statbuf;

stat(TESTFILE, &statbuf);
statout(TESTFILE, &statbuf);
pipe(pipefd);

if (fork() == 0) {
close(pipefd[0]);
sendfd(pipefd[1]);

} else {

close(pipefd[1])
recvfd(pipefd[O]);

}

}
sendfd(int p)
int tfd;

tfd = open(TESTFILE, O_RDWR);

Programming With XTI and TLI 103

ioctl(p, |_SENDFD, tfd);
}

recvfd(int p)
{

struct strrecvfd rfdbuf;
struct stat statbuf;
char fdbuf[32];

ioctl(p, |_RECVFD, &rfdbuf);
fstat(rfdbuf.fd, &statbuf);
sprintf(fdbuf, "recvfd=%d", rfdbuf.fd);
statout(fdbuf, &statbuf);

}

statout(char *f, struct stat *s)

printf("stat: from=%s mode=0%0, ino=%Id, dev=%lx, rdev=%lx\n",
f, s->st_mode, s->st_ino, s->st_dev, s->st_rdev);
fflush(stdout);

State Transitions

These tables describe all state transitions associated with XTI/TLI. First, however, the
states and events are described.

XTI/TLI States

Table 3-8 defines the states used in XTI/TLI state transitions, along with the service
types.

TABLE 3-8 XTI/TLI State Transitions and Service Types

State Description Service Type
T UNINIT Uninitialized - initial and final state of T COTST COTS ORD
- interface T CLTS h
T UNBND Initialized but not bound T COTST COTS ORD
T_CLTS
T_IDLE No connection established T_COTST_COTS_ORD
T_CLTS

104 Network Interface Guide ¢ February 2000

TABLE 3-8 XTI/TLI State Transitions and Service Types (continued)

State Description Service Type
T OUTCON Outgoing connection pending for client T COTST _COTS ORD
T_INCON Incoming connection pending for server T_COTST_COTS_ORD

T_DATAXFER Data transfer

T_COTST_COTS_ORD

T OUTREL Outgoing orderly release (waiting for orderly T coTs ORD

release request

T INREL Incoming orderly release (waiting to send T COTS ORD

orderly release request)

Outgoing Events

The outgoing events described in Table 3-9 correspond to the status returned from
the specified transport routines, where these routines send a request or response to
the transport provider. In the table, some events, such as ’accept’, are distinguished
by the context in which they occur. The context is based on the values of the

following variables:

m ocnt — Count of outstanding connect requests

m fd — File descriptor of the current transport endpoint

m resfd — File descriptor of the transport endpoint where a connection is accepted

TABLE 3-9 Outgoing Events
Event Description Service Type
opened Successful return of t_open (3NSL) T _COTST_COTS_ORpT_CLTS
bind Successful return of t_bind (3NSL) T_COTST_COTS_ORPT_CLTS
optmgmt Successful return of t_optmgmt (3NSL) T _COTST_COTS_ORpT_CLTS

Programming With XTI and TLI 105

TABLE 3-9 Outgoing Events (continued)

Event Description Service Type

unbind Successful return of t_unbind (3NSL) T COTST COTS ORDT CLTS

closed Successful return of t_close (3NSL) T COTST COTS ORPT CLT

connectl Successful return of t_connect (3NSL) in T COTST COTS ORD
synchronous mode N N B

connect2 TNODATAerror on t_connect (3NSL) in T_COTS T_COTS_ORD
asynchronous mode, or TLOOKerror due to a
disconnect request arriving on the transport
endpoint

acceptl Successful return of t_accept (3NSL) with T COTST COTS ORD
ocnt == 1 , fd == resfd - - -

accept2 Successful return of t_accept (3NSL) with T COTST COTS ORD
ocnt== 1 , fd!= resfd - - -

accept3 Successful return of t_accept (3NSL) with T COTST COTS ORD
ocnt > 1 N - B

snd Successful return of t snd (3NSL) T_COTST_COTS_ORD

snddis1 Successful return of t_snddis (3NSL) with T COTST COTS ORD
ocnt <=1

snddis2 Successful return of t_snddis (3NSL) with T COTST _COTS ORD
ocnt > 1 - B B

sndrel Successful return of t_sndrel (3NSL) T COTS ORD

sndudata Successful return of t sndudata (3NSL) T_CLTS

106 Network Interface Guide ¢ February 2000

Incoming Events

The incoming events correspond to the successful return of the specified routines.
These routines return data or event information from the transport provider. The
only incoming event not associated directly with the return of a routine is
pass_conn , which occurs when a connection is transferred to another endpoint. The
event occurs on the endpoint that is being passed the connection, although no XTI/
TLI routine is called on the endpoint.

In Table 3-10, the rcvdis events are distinguished by the value of ocnt , the count
of outstanding connect requests on the endpoint.

TABLE 3-10 Incoming Events

Event Description Service Type
listen Successful return of t_listen (3NSL) T COTST COTS ORD
rcvconnect Successful return of T _COTST COTS_ORD

t_rcvconnect (3NSL)

rcv Successful return of t_rcv (3NSL) T _COTST_COTS_ORD
rcvdisl Succes;ful return of _ . T COTST COTS_ORD
t_revdis (3NSL)revdislt_rcvdis() ,
onct <=0
rcvdis2 Successful return of t_rcvdis (3NSL), T COTST COTS ORD
ocnt == - - —
rcvdis3 Successful return of t_rcvdis (3NSL) T COTST COTS ORD

with ocnt > 1

rcvrel Successful return of t_rcvrel (3NSL) T COTS ORD

rcvudata Successful return of T CLTS
t_rcvudata (3NSL) -

rcvuderr Successful return of T CLTS
t_rcvuderr (3NSL) -

pass_conn Receive a passed connection T COTST COTS_ORD

Programming With XTI and TLI 107

108

TABLE 3-10 Incoming Events (continued)

Transport User Actions

Some state transitions (below) have a list of actions the transport user must take.
Each action is represented by a digit from the list below:

m Set the count of outstanding connect requests to zero.
m Increment the count of outstanding connect requests.
m Decrement the count of outstanding connect requests.

m Pass a connection to another transport endpoint, as indicated in
t_accept (3NSL).

State Tables

The tables describe the XTI/TLI state transitions. Each box contains the next state,
given the current state (column) and the current event (row). An empty box is an
invalid state/event combination. Each box can also have an action list. Actions must
be done in the order specified in the box.

The following should be understood when studying the state tables:

m t_close (3NSL) causes an established connection to be terminated for a
connection-oriented transport provider. The connection termination will be orderly
or abortive, depending on the service type supported by the transport provider.
See t_getinfo (3NSL).

m If a transport user issues a function out of sequence, the function fails and
t errno is set to TOUTSTATEThe state does not change.

m The error codes TLOOKor TNODATAafter t_connect (3NSL) can result in state
changes described in “Event Handling” on page 82. The state tables assume
correct use of XTI/TLI.

m Any other transport error does not change the state, unless the manual page for
the function says otherwise.

m The support functions t_getinfo (3NSL), t getstate (3NSL),
t alloc (3NSL), t free (3NSL), t sync (3NSL), t look (3NSL), and
t_error (3NSL) are excluded from the state tables because they do not affect the
state.

Table 3-11, Table 3-12, Table 3-13, and Table 3-14 show endpoint establishment, data
transfer in connectionless mode, and connection establishment/connection release/
data transfer in connection mode.

Network Interface Guide ¢ February 2000

TABLE 3-11 Connection Establishment State
Event/State T_UNINIT T_UNBND T_IDLE
opened T_UNBND
bind T_IDLE[1]
optmgmt (TLI only) T_IDLE
unbind T_UNBND
closed T_UNINIT
TABLE 3-12 Connection Mode State—Part 1
Event/State T_IDLE T _OUTCON T_INCON T_DATAXFER
connectl T_DATAXFER
connect2 T_OUTCON
rcvconnect T_DATAXFER
listen T_INCON [2] T_INCON [2]
acceptl T_DATAXFER [3]
accept2 T_IDLE [3] [4]
accept3 T_INCON [3] [4]
snd T_DATAXFER
rcv T_DATAXFER
snddis1 T_IDLE T_IDLE [3] T_IDLE

Programming With XTI and TLI

109

110

TABLE 3-12

Connection Mode State—Part 1 (continued)

Event/State

T_IDLE

T_OUTCON

T_INCON

T_DATAXFER

snddis2

T_INCON [3]

rcvdisl

T IDLE

T IDLE

rcvdis2

T_IDLE [3]

rcvdis3

T_INCON [3]

sndrel

T_OUTREL

rcvrel

T_INREL

pass_conn

T_DATAXFER

optmgmt

T IDLE

T_OUTCON

T_INCON

T_DATAXFER

closed

T_UNINIT

T_UNINIT

T_UNINIT

T_UNINIT

TABLE 3-13

Connection Mode State—Part 2

Event/State

T_OUTREL

T_INREL

T_UNBND

connectl

connect2

rcvconnect

listen

acceptl

accept2

accept3

Network Interface Guide ¢ February 2000

TABLE 3-13 Connection Mode State—Part 2 (continued)
Event/State T_OUTREL T_INREL T_UNBND
snd T_INREL
rcv T_OUTREL
snddisl T_IDLE T_IDLE
snddis2
rcvdisl T_IDLE T_IDLE
revdis2
revdis3
sndrel T_IDLE
rcvrel T_IDLE
pass_conn T_DATAXFER
optmgmt T_OUTREL T_INREL T_UNBND
closed T_UNINIT T_UNINIT
TABLE 3-14 Connectionless Mode State
Event/State T_IDLE
snudata T_IDLE
rcvdata T_IDLE
rcvuderr T_IDLE

Programming With XTI and TLI

111

112

Guidelines to Protocol Independence

XTI/TLI's set of services, common to many transport protocols, offers protocol
independence to applications. Not all transport protocols support all XTI/ZTLI
services. If software must run in a variety of protocol environments, use only the
common services. The following is a list of services that might not be common to all
transport protocols.

1.

10.

In connection mode service, a transport service data unit (TSDU) might not be
supported by all transport providers. Make no assumptions about preserving
logical data boundaries across a connection.

Protocol and implementation specific service limits are returned by the
t open (3NSL) and t_getinfo (3NSL) routines. Use these limits to allocate
buffers to store protocol-specific transport addresses and options.

Do not send user data with connect requests or disconnect requests, such as
t_connect (3NSL) and t_snddis (3NSL). Not all transport protocols work this
way.

The buffers in the t_call structure used for t_listen (3NSL) must be large
enough to hold any data sent by the client during connection establishment. Use
the T_ALL argument to t_alloc (3NSL) to set maximum buffer sizes to store the
address, options, and user data for the current transport provider.

Do not specify a protocol address on t_bind (3NSL) on a client side endpoint.
Let the transport provider assign an appropriate address to the transport
endpoint. A server should retrieve its address for t_bind (3NSL) in such a way
that it does not require knowledge of the transport provider’s name space.

Do not make assumptions about formats of transport addresses. Transport
addresses should not be constants in a program. Chapter 4 contains detailed
information.

The reason codes associated with t_rcvdis (3NSL) are protocol-dependent. Do
not interpret this information if protocol independence is important.

The t_rcvuderr (3NSL) error codes are protocol dependent. Do not interpret
this information if protocol independence is a concern.

Do not code the names of devices into programs. The device node identifies a
particular transport provider and is not protocol independent. See Chapter 4 for
details.

Do not use the optional orderly release facility of the connection mode
service—provided by t sndrel (3NSL) and t_rcvrel (3NSL)—in programs
targeted for multiple protocol environments. This facility is not supported by all
connection-based transport protocols. Its use can prevent programs from
successfully communicating with open systems.

Network Interface Guide ¢ February 2000

XTI/TLI Versus Socket Interfaces

XTI/TLI and sockets are different methods of handling the same tasks. Mostly, they
provide mechanisms and services that are functionally similar. They do not provide
one-to-one compatibility of routines or low-level services. Observe the similarities
and differences between the XTI/TLI and socket-based interfaces before you decide
to port an application.

The following issues are related to transport independence, and can have some
bearing on RPC applications:

m Privileged ports — Privileged ports are an artifact of the Berkeley Software
Distribution (BSD) implementation of the TCP/IP Internet Protocols. They are not
portable. The notion of privileged ports is not supported in the
transport-independent environment.

m Opaque addresses — There is no transport-independent way of separating the
portion of an address that names a host from the portion of an address that names
the service at that host. Be sure to change any code that assumes it can discern the
host address of a network service.

m Broadcast — There is no transport-independent form of broadcast address.

Socket-to-XTI/TLI Equivalents

Table 3-15 shows approximate equivalents between XTI/TLI functions and socket
functions. The comment field describes the differences. If there is no comment, either
the functions are similar or there is no equivalent function in either interface.

TABLE 3-15 TLI and Socket Equivalent Functions

TLI function

Socket function Comments

t open (3NSL)

socket (3SOCKET)

socketpair (3SOCKET)

Programming With XTI and TLI 113

TABLE 3-15 TLI and Socket Equivalent Functions (continued)

TLI function

Socket function

Comments

t bind (3NSL)

t_optmgmt (3NSL)

t_unbind (3NSL)

t_close (3NSL)

t_getinfo (3NSL)

t_getstate (3NSL)

t_sync (3NSL)

t_alloc (3NSL)

t_free (3NSL)

t_look (3NSL)

t_error (3NSL)

bind (3SOCKET)

getsockopt (3SOCKET)

setsockopt (3SOCKET)

close (2)

getsockopt (3SOCKET)

perror (3C)

t_bind (3NSL) sets the queue depth for passive
sockets, but bind (3SOCKET) doesn’t. For sockets, the
queue length is specified in the call to

listen (3SOCKET).

t_optmgmt (3NSL) manages only transport options.
getsockopt (3SOCKET) and setsockopt (3SOCKET)
can manage options at the transport layer, but also at
the socket layer and at the arbitrary protocol layer.

t_getinfo (3NSL) returns information about the
transport. getsockopt (3SOCKET) can return
information about the transport and the socket.

getsockopt (3SOCKET) with the SO_ERRORption
returns the same kind of error information as
t_look (3NSL)t_look()

114 Network Interface Guide ¢ February 2000

TABLE 3-15 TLI and Socket Equivalent Functions (continued)

TLI function

Socket function

Comments

t_connect (3NSL)

t_rcvconnect (3NSL)

t_listen (3NSL)

t_accept (3NSL)

t_snd (3NSL)

t_rcv (3NSL)

t_snddis (3NSL)

t_rcvdis (3NSL)

connect (3SOCKET)

listen (3SOCKET)

accept (3SOCKET)

send (3SOCKET)

sendto (3SOCKET)

sendmsg (3SOCKET)

recv (3SOCKET)

recvfrom (3SOCKET)

recvmsg (3SOCKET)

A connect (3SOCKET) can be done without first
binding the local endpoint. The endpoint must be
bound before calling t _connect (3NSL). A

connect (3SOCKET) can be done on a connectionless
endpoint to set the default destination address for
datagrams. Data can be sent on a connect (3SOCKET).

t_listen (3NSL) waits for connection indications.
listen (3SOCKET) merely sets the queue depth.

sendto (3SOCKET) and sendmsg (3SOCKET) operate
in connection mode as well as datagram mode.

recvfrom (3SOCKET) and recvmsg (3SOCKET)
operate in connection mode as well as datagram mode.

Programming With XTI and TLI 115

TABLE 3-15 TLI and Socket Equivalent Functions (continued)

TLI function Socket function Comments

t sndrel (3NSL) shutdown (3SOCKET)

t rcvrel (3NSL)

t sndudata (3NSL) sendto (3SOCKET)

recvmsg (3SOCKET)

t_rcvuderr (3NSL)

In XTI/TLI you must push the tirdwr (7M) module
before calling read (2) or write (2); in sockets, just
call read (2) or write (2).

read (2), write (2) read (2), write (2)

Additions to XTI Interface

The XNS 5 (Unix98) standard introduces some new XTI interfaces. These are briefly
described below. The details may be found in the relevant manual pages. These
interfaces are not available for TLI users.

Scatter/Gather Data Transfer Interfaces

t sndvudata (3NSL) Send a data unit from one or more non-contiguous buffers
t rcvvudata (3NSL) Receive a data unit into one or more non-contiguous
buffers

116 Network Interface Guide ¢ February 2000

t sndv (3NSL) Send data or expedited data from one or more
non-contiguous buffers on a connection

t rcvwwv (3NSL) Receive data or expedited data sent over a connection and
put the data into one or more non-contiguous buffers

XTI Utility Functions

t sysconf (3NSL) Get configurable XTI variables

Additional Connection Release Interfaces
t sndreldata (3NSL) Initiate/respond to an orderly release with user data

t_rcvreldata (3NSL) Receive an orderly release indication or confirmation
containing user data

Note - The additional interfaces t_sndreldata (3NSL) and t_rcvreldata (3NSL)
are only for use with a specific transport called “minimal OSI”, which is not
available on the Solaris platform. These interfaces are not available for use in
conjunction with Internet Transports (TCP or UDP).

Programming With XTIl and TLI 117

118 Network Interface Guide ¢ February 2000

CHAPTER 4

Transport Selection and
Name-to-Address Mapping

This chapter describes selecting transports and resolving network addresses. It
further describes interfaces that enable you to specify the available communication
protocols for an application. The chapter also explains additional functions that
provide direct mapping of names to network addresses.

m “How Transport Selection Works” on page 120
m “Name-to-Address Mapping” on page 127
m “Using the Name-to-Address Mapping Routines” on page 129

Note - In this chapter the terms network and transport are used interchangeably to
refer to the programmatic interface that conforms to the transport layer of the OSI
Reference Mode. The term network is also used to refer to the physical collection of
computers connected through some electronic medium.

Transport Selection Is Multithread Safe

The interface described in this chapter is multithread safe. This means that
applications that contain transport selection function calls can be used freely in a
multithreaded application. Note, however, that the degree of concurrency available to
applications is not specified.

119

Transport Selection

A distributed application must use a standard interface to the transport services to
be portable to different protocols. Transport selection services provide an interface
that allows an application to select which protocols to use. This makes an application
“protocol” and “medium” independent.

Transport selection makes it easy for a client application to try each available
transport until it establishes communication with a server. Transport selection lets
server applications accept requests on multiple transports, and in doing so,
communicate over a number of protocols. Transports can be tried in either the order
specified by the local default sequence or in an order specified by the user.

Choosing from the available transports is the responsibility of the application. The
transport selection mechanism makes that selection uniform and simple.

How Transport Selection Works

The transport selection component is built around:

m A network configuration database (the /etc/netconfig file), which contains an
entry for each network on the system

m Optional use of the NETPATHenvironment variable

The NETPATHvariable is set by the user; it contains an ordered list of transport
identifiers. The transport identifiers match the netconfig network ID field and are
links to records in the netconfig (4) file. The netconfig (4) file is described in “/
etc/netconfig File” on page 121. The network selection interface is a set of access
routines for the network-configuration database.

One set of library routines accesses only the /etc/netconfig entries identified by
the NETPATHenvironment variable:

setnetpath (3NSL) Initializes the search of NETPATH

getnetpath (3NSL) Returns a pointer to the netconfig (4) entry that corresponds to the
next component of the NETPATHvariable

endnetpath (3NSL) Releases the database pointer to elements in the NETPATHvariable
when processing is complete

These routines are described in “NETPATHAccess to netconfig (4) Data” on page
124 and in getnetpath (3NSL). They let the user influence the selection of
transports used by the application.

120 Network Interface Guide ¢ February 2000

To avoid user influence on transport selection, use the routines that access the
netconfig (4) database directly. These routines are described in “Accessing
netconfig (4)” on page 125 and in getnetconfig (3NSL):

setnetconfig (3NSL) Initializes the record pointer to the first index in the database

getnetconfig (3NSL) Returns a pointer to the current record in the netconfig (4)
database and increments the pointer to the next record

endnetconfig (3NSL) Releases the database pointer when processing is complete

The following two routines manipulate netconfig (4) entries and the data
structures they represent. These routines are described in “Accessing netconfig (4)”
on page 125:

getnetconfigent (3NSL) Returns a pointer to the struct netconfig structure
corresponding to netid

freenetconfigent (BNSL) Frees the structure returned by getnetconfigent (3NSL)

/etc/netconfig File

The netconfig (4) file describes all transport protocols on a host. The entries in the
netconfig (4) file are explained briefly in Table 4-1 and in more detail in the
netconfig (4) man page.

TABLE 4-1 netconfig (4) File

Entries Description

network ID A local representation of a transport name (such as tcp). Do not
assume that this field contains a well-known name (such as tcp or
udp) or that two systems use the same name for the same transport.

semantics The semantics of the particular transport protocol. Valid semantics are:
m tpi_clts — connectionless
m tpi_cots - connection oriented
m tpi_cots_ord — connection oriented with orderly release
flags Can take only the values, v, or hyphen (-). Only the visible flag (-v) is
defined.
protocol The protocol family name of the transport provider (for example, inet
family or loopback).

Transport Selection and Name-to-Address Mapping 121

TABLE 4-1 netconfig

(4) File (continued)

Entries

Description

protocol name

network device

name-to-
address
translation
libraries

The protocol name of the transport provider. For example, if protocol
family is inet , then protocol name is tcp , udp, or icmp . Otherwise, the
value of protocol name is a hyphen (-).

The full path name of the device file to open when accessing the
transport provider

Names of the shared objects. This field contains the comma-separated
file names of the shared objects that contain name-to-address mapping
routines. Shared objects are located through the path in the
LD_LIBRARY_PATHvariable. A “- " in this field indicates redirection to

the name service switch policies for hosts and services.

Code Example 4-1 shows a sample netconfig (4) file. Use of the netconfig (4)
file has been changed for the inet transports, as described in the commented section
in the sample file. This change is also described in “Name-to-Address Mapping” on

page 127.

CODE EXAMPLE 4-1 Sample netconfig (4) File

The “Network Configuration” File.

#

Each entry is of the form:

#

#<net <semantics> <flags> <proto <proto <device> <nametoaddr_libs>
id> family> name>

#

The "-" in <nametoaddr_libs> for inet family transports indicates redirection
to the name service switch policies for "hosts" and "services. The "-" may be
replaced by nametoaddr libraries that comply with the SVR4 specs, in which
case the name service switch will be used for netdir_getbyname, netdir_

getbyaddr, gethostbyname, gethostbyaddr, getservbyname, and getservbyport.
There are no nametoaddr_libs for the inet family in Solaris anymore.

#

udp tpi_clts vV inet udp /dev/udp -

#

tcp tpi_cots_ord v inet tcp /devitcp -

#

icmp tpi_raw - inet icmp /dev/icmp -

#

rawip tpi_raw - inet - /dev/rawip -

#

ticlts tpi_clts v loopback - /devlticlts straddr.so

#

ticots tpi_cots \Y loopback - /devlticots straddr.so

#

ticotsord tpi_cots_ord v loopback - /devilticotsord straddr.so

#

122 Network Interface Guide ¢ February 2000

Network selection library routines return pointers to netconfig entries. The
netconfig structure is shown in Code Example 4-2.

CODE EXAMPLE 4-2 netconfig Structure

struct netconfig {

char *nc_netid; /* network identifier */

unsigned int nc_semantics; /* semantics of protocol */
unsigned int nc_flag; /* flags for the protocol */

char *nc_protofmly; /* family name */

char *nc_proto; /* proto specific */

char *nc_device; /* device name for network id */
unsigned int nc_nlookups; [* # entries in nc_lookups */

char **nc_lookups; /* list of lookup libraries */

unsigned int nc_unused[8];

h

Valid network IDs are defined by the system administrator, who must ensure that
network IDs are locally unique. If they are not, some network selection routines can
fail. For example, it is not possible to know which network

getnetconfigent("udp") will use if there are two netconfig entries with the
network 1D udp.

The system administrator also sets the order of the entries in the netconfig (4)
database. The routines that find entries in /etc/netconfig return them in order,
from the beginning of the file. The order of transports in the netconfig (4) file is
the default transport search sequence of the routines. Loopback entries should be at
the end of the file.

The netconfig (4) file and the netconfig structure are described in greater detail
in the netconfig (4) man page.

NETPATHENnvironment Variable

An application usually uses the default transport search path set by the system
administrator to locate an available transport. However, when a user wants to
influence the choices made by an application, the application can modify the
interface by using the environment variable NETPATHand the routines described in
the section, “NETPATHAccess to netconfig (4) Data” on page 124. These routines
access only the transports specified in the NETPATHvariable.

NETPATHis similar to the PATHvariable. It is a colon-separated list of transport IDs.
Each transport ID in the NETPATHvariable corresponds to the network ID field of a
record in the netconfig (4) file. NETPATHis described in the environ (4) man

page.
The default transport set is different for the routines that access netconfig (4)
through the NETPATHenvironment variable (described in the next section) and the

routines that access netconfig (4) directly. The default transport set for routines
that access netconfig (4) via NETPATHconsists of the visible transports in the

Transport Selection and Name-to-Address Mapping 123

124

netconfig (4) file. For routines that access netconfig (4) directly, the default
transport set is the entire netconfig (4) file. A transport is visible if the system
administrator has included a v flag in the flags field of that transport’s
netconfig (4) entry.

NETPATHACccess to netconfig (4) Data

Three routines access the network configuration database indirectly through the
NETPATHenvironment variable. The variable specifies the transport or transports an
application is to use and the order to try them. NETPATHcomponents are read from
left to right. The functions have the following interfaces:

#include <netconfig.h>

void *setnetpath(void);
struct netconfig *getnetpath(void *);
int endnetpath(void *);

A call to setnetpath (3NSL) initializes the search of NETPATH It returns a pointer
to a database that contains the entries specified in a NETPATHvariable. The pointer,
called a handle, is used to traverse this database with getnetpath (3NSL). The
setnetpath (3NSL) function must be called before the first call to

getnetpath (3NSL).

When first called, getnetpath (3NSL) returns a pointer to the netconfig (4) file
entry that corresponds to the first component of the NETPATHvariable. On each
subsequent call, getnetpath (3NSL) returns a pointer to the netconfig (4) entry
that corresponds to the next component of the NETPATHvariable;

getnetpath (3NSL) returns NULL if there are no more components in NETPATHA
call to getnetpath (3NSL) without an initial call to setnetpath (3NSL) causes an
error; getnetpath (3NSL) requires the pointer returned by setnetpath (3NSL) as
an argument.

getnetpath (3NSL) silently ignores invalid NETPATHcomponents. A NETPATH
component is invalid if there is no corresponding entry in the netconfig (4)
database.

If the NETPATHvariable is unset, getnetpath (3NSL) behaves as if NETPATHwere
set to the sequence of default or visible transports in the netconfig (4) database, in
the order in which they are listed.

endnetpath (3NSL) is called to release the database pointer to elements in the
NETPATHvariable when processing is complete. endnetpath (3NSL) fails if
setnetpath (3NSL) was not called previously. Code Example 4-3 shows the
setnetpath (3NSL), getnetpath (3NSL), and endnetpath (3NSL) routines.

Network Interface Guide ¢ February 2000

CODE EXAMPLE 4-3 setnetpath (3NSL), getnetpath (3NSL), and endnetpath (3NSL)
Functions

#include <netconfig.h>

void *handlep;
struct netconfig *nconf;

if ((handlep = setnetpath()) == (void *)NULL) {
nc_perror(argv[0]);
exit(1);

}

while ((nconf = getnetpath(handlep)) != (struct netconfig *)NULL)

/*
* nconf now describes a transport provider.
*/

}
endnetpath(handlep);

The netconfig (4) structures obtained through getnetpath (3NSL) become invalid
after the execution of endnetpath (3NSL). To preserve the data in the structure, use
getnetconfigent(nconf->nc_netid) to copy them into a new data structure.

Accessing netconfig (4)

Three functions access /etc/netconfig and locate netconfig (4) entries. The
routines setnetconfig (3NSL), getnetconfigent (3NSL), and
endnetconfig (3NSL) have the following interfaces:

#include <netconfig.h>

void *setnetconfig(void);
struct netconfig *getnetconfig(void *);
int endnetconfig(void *);

A call to setnetconfig (3NISL) initializes the record pointer to the first index in the
database; setnetconfig (3NSL) must be used before the first use of

getnetconfig ~ (3NSL). setnetconfig (3NSL) returns a unique handle (a pointer
into the database) to be used by the getnetconfig ~ (3NSL) routine. Each call to
getnetconfig ~ (3NSL) returns the pointer to the current record in the

netconfig (4) database and increments its pointer to the next record. It can be used
to search the entire netconfig (4) database. getnetconfig ~ (3NSL) returns a NULL
at the end of file.

You must use endnetconfig (3NSL) to release the database pointer when
processing is complete. endnetconfig (3NSL) must not be called before
setnetconfig (3NSL).

Transport Selection and Name-to-Address Mapping 125

CODE EXAMPLE 4-4 setnetconfig (3NSL), getnetconfig ~ (3NSL), and
endnetconfig (3NSL) Functions

void *handlep;
struct netconfig *nconf;

if ((handlep = setnetconfig()) == (void *)NULL){
nc_perror(argv[0]);
exit(1);
}
/*
* transport provider information is described in nconf.
* process_transport is a user-supplied routine that
* tries to connect to a server over transport nconf.
*/
while ((nconf = getnetconfig(handlep)) != (struct netconfig *)NULL){
if (process_transport(nconf) == SUCCESS)
break;

endnetconfig(handlep);

The last two functions have the following interface:

#include <netconfig.h>
struct netconfig *getnetconfigent(char *);
int freenetconfigent(struct netconfig *);

getnetconfigent (3NISL) returns a pointer to the struct netconfig structure
corresponding to netid . It returns NULL if netid is invalid. setnetconfig (3NSL)
need not be called before getnetconfigent (3NSL).

freenetconfigent (3NSL) frees the structure returned by
getnetconfigent (3NSL). Code Example 4-5 shows the
getnetconfigent (3NSL) and freenetconfigent (3NSL) routines.

CODE EXAMPLE 4-5 getnetconfigent (3NSL) and freenetconfigent (3NSL)
Functions

/* assume udp is a netid on this host */
struct netconfig *nconf;

if ((nconf = getnetconfigent(“udp™)) == (struct netconfig *)NULL)
nc_perror(“no information about udp”);
exit(1);

}

process_transport(nconf);

freenetconfigent(nconf);

Loop Through All Visible netconfig (4) Entries

The setnetconfig (3NISL) call is used to step through all the transports marked
visible (by a v flag in the flags field) in the netconfig (4) database. The transport
selection routine returns a netconfig (4) pointer.

126 Network Interface Guide ¢ February 2000

Looping Through User-Defined netconfig (4)
Entries

Users can control the loop by setting the NETPATHenvironment variable to a
colon-separated list of transport names. If NETPATHis set as follows:

| NETPATH=tcp:udp

The loop first returns the tcp entry, then the udp entry. If NETPATHis not defined,
the loop returns all visible entries in the netconfig (4) file in the order in which
they are stored. The NETPATHenvironment variable lets users define the order in
which client-side applications try to connect to a service. It also lets the server
administrator limit transports on which a service can listen.

Use getnetpath (3NSL) and setnetpath (3NSL) to obtain or modify the network
path variable. Code Example 4-6 shows the form and use, which are similar to the
getnetconfig ~ (BNSL) and setnetconfig (3NISL) routines.

CODE EXAMPLE 4-6 Looping Through Visible Transports

void *handlep;
struct netconfig *nconf;

if ((handlep = setnetconfig() == (void *) NULL) {
nc_perror(“setnetconfig”);
exit(1);

while (nconf = getnetconfig(handlep))
if (nconf->nc_flag & NC_VISIBLE)
doit(nconf);
(void) endnetconfig(handlep);

Name-to-Address Mapping

Name-to-address mapping lets an application obtain the address of a service on a
specified host, independent of the transport used. Name-to-address mapping consists
of the following functions:
netdir_getbyname (3NSL) Maps the host and service name to a set of addresses
netdir_getbyaddr (3NSL) Maps addresses into host and service names

netdir_free (3NSL) Frees structures allocated by the name-to-address translation
routines

Transport Selection and Name-to-Address Mapping 127

128

taddr2uaddr (3NSL) Translates an address and returns a transport-independent
character representation of the address

uaddr2taddr (3NSL) The universal address is translated into a netbuf structure

netdir_options (3NSL) Interfaces to transport-specific capabilities (such as the
broadcast address and reserved port facilities of TCP and
UDP)

The first argument of each routine points to a netconfig (4) structure that describes
a transport. The routine uses the array of directory-lookup library paths in the
netconfig (4) structure to call each path until the translation succeeds.

The libraries are described in Table 4-2. The routines described in the section, “Using
the Name-to-Address Mapping Routines” on page 129, are defined in the
netdir (3NSL) man page.

Note - The following libraries no longer exist in the Solaris 2 environment:

tcpip.so , switch.so , and nis.so . For more information on this change, see the
nsswitch.conf (4) man page and the NOTES section of the

gethostbyname (3NSL) man page.

TABLE 4-2 Name-to-Address Libraries

Library Transport Description
Family
- inet For networks of the protocol family inet , its

name-to-address mapping is provided by the name
service switch based on the entries for hosts and
services in the file nsswitch.conf (4). For networks
of other families, the "-" indicates a nonfunctional
name-to-address mapping.

straddr.so loopback Contains the name-to-address mapping routines of
any protocol that accepts strings as addresses, such as
the loopback transports.

straddr.so Library

Name-to—address translation files for the library are created and maintained by the
system administrator. The straddr.so files are /etc/net/ transport-name/hosts
and /etc/net/ transport-name/services . transport-name is the local name of the
transport that accepts string addresses (specified in the network ID field of the /etc/

Network Interface Guide ¢ February 2000

netconfig file). For example, the host file for ticlts would be /etc/net/
ticlts/hosts , and the service file for ticlts would be /etc/nettfticlts/
services

Even though most string addresses do not distinguish between host and service,
separating the string into a host part and a service part is consistent with other
transports. The /etc/net/ transport-name/hosts file contains a text string that is
assumed to be the host address, followed by the host name. For example:
joyluckaddr joyluck

carpediemaddr carpediem

thehopaddr thehop
pongoaddr pongo

For loopback transports, it makes no sense to list other hosts because the service
cannot go outside the containing host.

The /etc/net/transport-name/services file contains service names followed
by strings identifying the service address. For example:

rpcbind rpc
listen serve

The routines create the full-string address by concatenating the host address, a
period (.), and the service address. For example, the address of the listen service
on pongo is pongoaddr.serve

When an application requests the address of a service on a particular host on a
transport that uses this library, the host name must be in /etc/net/ transport/

hosts , and the service name must be in /etc/net/ transport/services . If either is
missing, the name-to-address translation fails.

Using the Name-to-Address Mapping Routines

This section is an overview of what routines are available to use. The routines return
or convert the network names to their respective network addresses. Note that
netdir_getbyname (3NSL), netdir_getbyaddr (3NSL), and

taddr2uaddr (3NSL) return pointers to data that must be freed by calls to
netdir_free (3NSL).

int netdir_getbyname(struct netconfig *nconf,
struct nd_hostserv *service, struct nd_addrlist **addrs);

netdir_getbyname (3NSL) maps the host and service name specified in service to a
set of addresses consistent with the transport identified in nconf. The nd_hostserv
and nd_addrlist structures are defined in the netdir (3NSL) man page. A
pointer to the addresses is returned in addrs.

Transport Selection and Name-to-Address Mapping 129

130

To find all addresses of a host and service (on all available transports), call
netdir_getbyname (3NSL) with each netconfig (4) structure returned by either
getnetpath (3NSL) or getnetconfig ~ (3NSL).

int netdir_getbyaddr(struct netconfig *nconf,
struct nd_hostservlist **service, struct netbuf *netaddr);

netdir_getbyaddr (3NSL) maps addresses into host and service names. The
function is called with an address in netaddr and returns a list of host-name and
service-name pairs in service. The nd_hostservlist structure is defined in
netdir (3NSL).

void netdir_free(void *ptr, int struct_type);

The netdir_free (3NSL) routine frees structures allocated by the name-to-address
translation routines. The parameters can take the values shown in Table 4-3.

TABLE 4-3 netdir_free (3NSL) Routines

struct_type ptr

ND_HOSTSERV Pointer to an nd_hostserv structure
ND_HOSTSERVLIST Pointer to an nd_hostservlist structure
ND_ADDR Pointer to a netbuf structure
ND_ADDRLIST Pointer to an nd_addrlist structure

char *taddr2uaddr(struct netconfig *nconf, struct netbuf *addr);

taddr2uaddr (3NSL) translates the address pointed to by addr and returns a
transport-independent character representation of the address (“universal address”).
nconf specifies the transport for which the address is valid. The universal address can
be freed by free (3C).

struct netbuf *uaddr2taddr(struct netconfig *nconf, char *uaddr);

The “universal address” pointed to by uaddr is translated into a netbuf structure;
nconf specifies the transport for which the address is valid.
int netdir_options(struct netconfig *nconf,

int dt, int dt,
char *point_to_args);

Network Interface Guide ¢ February 2000

netdir_options (3NISL) interfaces to transport-specific capabilities (such as the
broadcast address and reserved port facilities of TCP and UDP). nconf specifies a
transport. option specifies the transport-specific action to take. fd might or might not
be used depending upon the value of option. The fourth argument points to
operation-specific data.

Table 4-4 shows the values used for option

TABLE 4-4 Values for netdir_options

Option Description

ND SET BROADCAST Sets the transport for broadcast (if the transport
-7 supports broadcast)

ND SET RESERVEDPORT Lets the application bind to a reserved port (if allowed
-7 by the transport)

ND CHECK RESERVEDPORT Verifies that an address corresponds to a reserved port
- B (if the transport supports reserved ports)

ND MERGEADDR Transforms a locally meaningful address into an
N address to which client hosts can connect

netdir_perror (3NSL) displays the message stating why one of the
name-to-address mapping routines failed on stderr

void netdir_perror(char *s);

netdir_sperror (3NSL) returns a string containing the error message stating why
one of the name-to-address mapping routines failed.

char *netdir_sperror(void);
Code Example 4-7 shows network selection and name-to-address mapping.

CODE EXAMPLE 4-7 Network Selection and Name-to-Address Mapping

#include <netconfig.h>
#include <netdir.h>
#include <sysftiuser.h>

struct nd_hostserv nd_hostserv; /* host and service information */
struct nd_addrlist *nd_addrlistp; /* addresses for the service */

struct netbuf *netbufp; /* the address of the service */

struct netconfig *nconf; /* transport information*/

int i; /* the number of addresses */

char *uaddr; /* service universal address */

void *handlep; /* a handle into network selection */

/*

Transport Selection and Name-to-Address Mapping 131

132

* Set the host structure to reference the "date"
* service on host "gandalf"
*/

nd_hostserv.h_host = "gandalf";
nd_hostserv.h_serv = "date";

/*

* |nitialize the network selection mechanism.
*/

if ((handlep = setnetpath()) == (void *)NULL) {
nc_perror(argv[0]);

exit(1);

}
/*

* Loop through the transport providers.

*

/
while ((nconf = getnetpath(handlep)) != (struct netconfig *)NULL)
{ R

* Print out the information associated with the
* transport provider described in the "netconfig"
* structure.
*/
printf("Transport provider name: %s\n", nconf->nc_netid);
printf("Transport protocol family: %s\n", nconf->nc_protofmly);
printf("The transport device file: %s\n", nconf->nc_device);
printf("Transport provider semantics: ");
switch (nconf->nc_semantics) {
case NC_TPI_COTS:
printf("virtual circuit\n");
break;
case NC_TPI_COTS_ORD:
printf("virtual circuit with orderly release\n");
break;

case NC_TPI_CLTS:
printf("datagram\n");
break;
}
/*
* Get the address for service "date” on the host
* named “"gandalf" over the transport provider
* specified in the netconfig structure.
*/
if (netdir_getbyname(nconf, &nd_hostserv, &nd_addrlistp) !'= ND_OK) {
printf("Cannot determine address for service\n");
netdir_perror(argv[0]);
continue;

printf("<%d> addresses of date service on gandalf:\n",
nd_addrlistp->n_cnt);

/*

* Print out all addresses for service "date" on

* host "gandalf" on current transport provider.

*/

netbufp = nd_addrlistp->n_addrs;

for (i = 0; i < nd_addrlistp->n_cnt; i++, netbufp++) {
uaddr = taddr2uaddr(nconf,netbufp);
printf("%s\n",uaddr);
free(uaddr);

Network Interface Guide ¢ February 2000

netdir_free(nd_addrlistp, ND_ADDRLIST);

endnetconfig(handlep);

Transport Selection and Name-to-Address Mapping 133

134 Network Interface Guide ¢ February 2000

APPENDIX A

UNIX Domain Sockets

Introduction

UNIX domain sockets are named with UNIX paths. For example, a socket might be
named /tmp/foo . UNIX domain sockets communicate only between processes on a
single host. Sockets in the UNIX domain are not considered part of the network
protocols because they can only be used to communicate between processes on a
single host.

Socket types define the communication properties visible to a user. The Internet
domain sockets provide access to the TCP/IP transport protocols. The Internet
domain is identified by the value AF_INET. Sockets exchange data only with sockets
in the same domain.

Socket Creation

The socket (3SOCKET) call creates a socket in the specified family and of the
specified type.

s = socket(family, type, protocol);

If the protocol is unspecified (a value of 0), the system selects a protocol that
supports the requested socket type. The socket handle (a file descriptor) is returned.

The family is specified by one of the constants defined in sys/socket.h . Constants
named AF_suite specify the address format to use in interpreting names as shown in
Table 2-1.

The following creates a datagram socket for intramachine use:

135

136

s = socket(AF_UNIX, SOCK_DGRAM, 0);

Use the default protocol (the protocol argument is 0) in most situations.

Binding Local Names

A socket is created with no name. A remote process has no way to refer to a socket
until an address is bound to it. Communicating processes are connected through
addresses. In the UNIX family, a connection is composed of (usually) one or two
path names. UNIX family sockets need not always be bound to a name, but, when
bound, there can never be duplicate ordered sets such as: local pathname or
foreign pathname . The path names cannot refer to existing files.

The bind (3SOCKET) call allows a process to specify the local address of the socket.
This provides local pathname , while connect (3SOCKET) and

accept (3SOCKET) complete a socket’s association by fixing the remote half of the
address. bind (3SOCKET) is used as follows:

bind (s, name, namelen);

The socket handle is s. The bound name is a byte string that is interpreted by the
supporting protocol(s). UNIX family names contain a path name and a family. The
example shows binding the name /tmp/foo to a UNIX family socket.

#include <sys/un.h>
struct sockaddr_un addr;

strcpy(addr.sun_path, "/tmp/foo");

addr.sun_family = AF_UNIX;

bind (s, (struct sockaddr *) &addr,
strlen(addr.sun_path) + sizeof (addr.sun_family));

When determining the size of an AF_UNIX socket address, null bytes are not
counted, which is why strlen (3C) use is fine.

The file name referred to in addr.sun_path is created as a socket in the system file
name space. The caller must have write permission in the directory where
addr.sun_path s created. The file should be deleted by the caller when it is no
longer needed. AF_UNIX sockets can be deleted with unlink (1M).

Connection Establishment

Connection establishment is usually asymmetric. One process acts as the client and
the other as the server. The server binds a socket to a well-known address associated
with the service and blocks on its socket for a connect request. An unrelated process
can then connect to the server. The client requests services from the server by
initiating a connection to the server’s socket. On the client side, the

Network Interface Guide ¢ February 2000

connect (3SOCKET) call initiates a connection. In the UNIX family, this might
appear as:

struct sockaddr_un server;
server.sun.family = AF_UNIX;

connect(s, (struct sockaddr *)&server, strlen(server.sun_path)
+ sizeof (server.sun_family));

See “Connection Errors” on page 22 for information on connection errors. “Data

Transfer” on page 23 tells you how to transfer data. “Closing Sockets” on page 24
tells you how to close a socket.

UNIX Domain Sockets 137

138 Network Interface Guide ¢ February 2000

APPENDIX B

Live Code Example

Live Code Examples

What follows in this appendix are copies of the complete live code modules used in
this book. They are compilable as they sit and will run (unless otherwise noted to be
pseudo-code or the like). They are provided for informational purposes only and
Solaris Software assumes no liability from their use.

139

140 Network Interface Guide ¢ February 2000

Index

A

accept 21, 136
accept_call 85
Additional Interfaces 117
asynchronous 170
endpoint service 100
listen for network connection 102
making connection request 102
notification of data arrival 100
opening a file 103
Asynchronous Safe 64
asynchronous socket 47

B

bind 21, 136
broadcast
sending message 60

C

checksum off-load 57
child process 48
client/server model 39
clone device special file 77
close 24
connect 21, 22, 30, 136, 137
connection mode 71
connection-mode
asynchronous network service 101

asynchronously connecting 101

using asynchronous connection 102
connectionless mode

asynchronous network service 100

definition 66

D

daemon
inetd 59
datagram 66
errors 70
socket 19, 28, 42

E

endnetpath 124
EWOULDBLOCK 46

F

file descriptor
passing to another process 103
transferring 103
file system
opening dynamically 103
fwrite 87
F_SETOWN fcntl 48

141

G

gethostbyaddr 36
gethostbyname 36
getnetconfigent 123, 125
getnetpath 124, 125, 127
getpeername 59
getservbyname 37
getservbyport 37
getservent 37
getsockopt 58

H

handle 124
socket 21, 136
transport endpoint 78
host name mapping 36
hostent structure 36

inet transport 122
inetd 39, 58, 59
inetd.conf 59
inet_ntoa 36
Internet
host name mapping 36
port numbers 51
well known address 37, 39
ioctl
I_SETSIG 89
SIOCATMARK 45
IPPORT_RESERVED 51
|_SETSIG ioctl 89

L

libnsl 64

M
MSG_DONTROUTE 24
MSG_OOB 24

MSG_PEEK 24, 44
multiple connect (TLI) 94
multithread safe 63

142 Network Interface Guide ¢ February 2000

N

name-to-address translation
inet 128
nis.so 128
straddr.so 129
switch.so 128
tcpip.so 128
netbuf structure 79
netconfig 120 to 126
netdir_free 129, 130
netdir_getbyaddr 129
netdir_getbyname 129
netdir_options 131
netdir_perror 131
netdir_sperror 131
netent structure 36
NETPATH 120, 123, 124, 127
network
asynchronous connection 99
asynchronous service 100
asynchronous transfers 100
asynchronous use 100
programming models for real-time
synchronous use 100

99

using STREAMS asynchronously 99
using Transport-Level Interface (TLI) 99

nis.so 128
non-blocking mode
configuring endpoint connections
defined 99
endpoint bound to service address
network service 100
polling for notification 100
service requests 100
Transport-Level Interface (TLI) 99
using the t_connect() function 102
nonblocking sockets 46

@)

Open Systems Interconnect reference
model 14

optmgmt 105, 109, 110

OSI reference model 14, 15

osinet 121

out-of-band data 44

102

102

P

poll 94
pollfd structure 95, 96
polling
for a connection request 102
notification of data 100
using the poll(2) function 100
port numbers for Internet 51
port to service mapping 37
porting from TLI to XTI 64
protoent structure 37

R

recvfrom 29
rpcbind 129
rwho 42

S

Scatter/Gather Data Transfer Interfaces
select 32, 44
send 30
sendto 29
servent structure 37
service to port mapping 37
setnetpath 124, 125, 127
setsockopt 58
shutdown 24
SIGIO 47
SIOCATMARK ioctl 45
SIOCGIFCONF ioctl 60
SIOCGIFFLAGS ioctl 61
socket
address binding 49
AF_INET
bind 21
create 21
getservbyname 37
getservbyport 37
getservent 37
inet_ntoa 36
socket 136
AF_UNIX
bind 21, 136
create 136
delete 136
asynchronous 47

116

close 24
connect stream 24
datagram 19, 28, 42
getsockopt 58
handle 21, 136
initiate connection 22, 137
multiplexed 32
nonblocking 46
out-of-band data 24, 44
select 32, 44
selecting protocols 49
setsockopt 58
SIOCGIFCONF ioctl 60
SIOCGIFFLAGS ioctl 61
SIOGGIFBRDADDR ioctl 62
SOCK_DGRAM
connect 30
recvfrom 29, 45
send 30
SOCK_STREAM 49
F_GETOWN fcntl 48
F_SETOWN fcntl 48
out-of-band 45
SIGCHLD signal 48
SIGIO signal 47, 48
SIGURG signal 48
TCP port 38
UDP port 38
SOCK_DGRAM 19, 59
SOCK_RAW 20
SOCK_STREAM 19, 49, 59
straddr.so 128
stream
data 45
socket 19, 24
switch.so 128

T

TCP 15
port 38
TCP/IP 16
TCP/IP Internet Protocol Suite 14
tcpip.so 128
tirdwr 116
tiuserh 64
TLI

143

abortive release 89 t_info structure 76

asynchronous mode 94 t_listen 74, 80, 81, 94, 112, 115
broadcast 113 t_look 73, 83, 89, 114
connection establishment 80, 81 T_MORE flag 86
connection release 74, 89 t_open 72, 73,75, 76, 78, 81, 85, 94, 112, 113
connection request 78, 80, 83 t_optmgmt 67, 73, 77, 114
data transfer 68 t_rcv 74, 86, 115
data transfer phase 74 t_rcvconnect 74, 115
incoming events 107 t_rcvdis 74, 75, 85, 112, 115
multiple connection requests 94 t_rcvrel 75, 113, 116
opaque addresses 113 t_rcvreldata 117
orderly release 89 t_rcvudata 66, 71
outgoing events 105 t_rcvuderr 66, 71, 112, 116
privileged ports 113 t_revv 117
protocol independence 112 t_rcvvudata 117
gqueue connect requests 96 t snd 74, 86, 88, 115
gueue multiple requests 96 t_snd flag
read/write interface 91 T_EXPEDITED 88
socket comparison 113 T_MORE 88
state transitions 108 t_snddis 74, 75, 80, 89, 92, 115
states 104 t_sndrel 75, 112, 116

transport address 77 t_sndreldata 117

transport endpoint t_sndudata 66, 70, 116
connection 75 t_ sndv 117
handle 78 t_sndvudata 116

transport endpoints 64 t sync 73, 114

transport layer 15, 16 t_sysconf 117

Transport Layer Interface t_unbind 73, 114
TLI 16 t_unitdata structure 69

transport provider 64

Transport-Level Interface (TLI) U
asynchronous endpoint 100

TSDU 86 UDP 15, 16

t_accept 80, 115 port 38

t alloc 68, 72, 80, 82, 112, 114 unlink 136

t_bind 68, 72, 75, 76, 78, 85, 112, 114

t_bind structure 80 X

t_call structure 81, 83 XTIl 64

t_close 72,90, 108, 114
t_connect 74, 80, 83, 85, 115 XTI Utility Functions 117

T_DATAXFER 111 XTI variables, getting 117
t_errno 78 <tih 64

t error 72,78, 114

t free 72,114

t getinfo 73, 76, 112, 114 Z
t_getprotaddr 73 zero copy 57
t_getstate 73, 114

XTI Interface 116

144 Network Interface Guide ¢ February 2000

