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Preface

Writing Device Drivers provides information on developing device drivers for
character-oriented devices, block-oriented devices, and small computer system
interface (SCSI) target devices. This book discusses the development of a dynamically
loadable and unloadable, multithreaded re-entrant device driver applicable to all
architectures that conform to the Solaris 9™ DDI/DKI. A common driver
programming approach is taken so that drivers can be written without concern for
platform-specific issues, such as endianness and data ordering.

Who Should Use This Book
The audience for this book is UNIX® programmers familiar with UNIX device drivers.
Several overview chapters at the beginning of the book provide background
information for the detailed technical chapters that follow, but they are not intended as
a general tutorial on device drivers.
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Note – The Solaris operating environment runs on two types of hardware, or
platforms—SPARC™ and IA. The Solaris operating environment also runs on both
64–bit and 32–bit address spaces. The information in this document pertains to both
platforms and address spaces unless called out in a special chapter, section, note,
bullet, figure, table, example, or code example.

How This Book Is Organized
This book is organized into the following chapters.

� Chapter 1 provides an overview of the Solaris kernel and the manner in which it
represents devices as nodes in a device tree.

� Chapter 2 gives an outline of the kinds of device drivers and their basic structure.
It points out the common data access routines and concludes with an illustrated
roadmap of common driver entry points and structures.

� Chapter 3 describes the mechanisms of the Solaris multithreaded kernel that are of
interest to driver writers.

� Chapter 4 describes the set of interfaces used to read an update device node
properties. It also contains information on handling events and on name-value
pairs.

� Chapter 5 explains the support a driver must provide for autoconfiguration.

� Chapter 6 describes the interfaces and methodologies for drivers to use to access
(read or write) device memory.

� Chapter 7 describes the interrupt handling mechanisms. These include registering,
servicing, and removing interrupts.

� Chapter 8 describes direct memory access (DMA) and the DMA interfaces.

� Chapter 9 explains the interfaces for Power Management™, a framework designed
to regulate and reduce the power consumed by computer systems and devices.

� Chapter 10 describes the structure and functions of a driver for a character-oriented
device.

� Chapter 11 describes the structure and functions of a driver for a block-oriented
device.

� Chapter 12 describes the set of interfaces that enable device drivers to manage
access to memory, control the context of user processes accessing a device, and take
advantage of large data transfers using new MMU hardware.

� Chapter 13 describes the set of interfaces that enable device drivers to manage user
access to devices.
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� Chapter 14 outlines the Sun Common SCSI Architecture and describes the
additional requirements of SCSI target drivers.

� Chapter 15 explains how to write a SCSI Host Bus Adapter (HBA) driver using the
Sun Common SCSI Architecture (SCSA).

� Chapter 17 provides information on compiling and linking a driver, and for
installing it in the system.

� Chapter 18 gives hints, a simple mdb/kadb tutorial, and some hints on testing the
driver.

� Chapter 19 describes the recommended coding practices for writing drivers.

� Appendix A discusses multi-platform hardware issues related to device drivers.

� Appendix B summarizes, by topic, the kernel functions that device driver can use.

� Appendix C provides guidelines for updating a device driver to run in a 64-bit
environment.

Related Books and Papers
For detailed reference information about the device driver interfaces, see the man page
sections 9, 9E (entry points), 9F (functions), and 9S (structures). For information on
hardware issues and other driver-related issues, the following books might be helpful.

From Sun Microsystems:

� Application Packaging Developer’s Guide, Sun Microsystems, 2000.

� Open Boot PROM Toolkit User’s Guide, Sun Microsystems Computer Company, 1996.

� STREAMS Programming Guide. Sun Microsystems, 2000.

� Multithreaded Programming Guide. Sun Microsystems, 2000.

� Solaris 64-bit Developer’s Guide. Sun Microsystems, 2000.

� Solaris Modular Debugger Guide. Sun Microsystems, 2000.

From other sources:

� The SPARC Architecture Manual, Version 9. Prentice Hall, 1998. ISBN 0–13–099227–5.

� The SPARC Architecture Manual, Version 8. Prentice Hall, 1994. ISBN 0-13-825001-4.

� Pentium Pro Family Developer’s Manual, Volumes 1-3. Intel Corporation, 1996. ISBN
1-55512-259-0 (Volume 1) , ISBN 1-55512-260-4 (Volume 2) , ISBN 1-55512-261-2
(Volume 3).
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Note – In this document, the term “IA” refers to the Intel 32–bit processor architecture,
which includes the Pentium™, Pentium Pro™, Pentium II™, Pentium II Xeon™,
Celeron™, Pentium III™, and Pentium III Xeon™ processors, and compatible
microprocessor chips made by AMD and Cyrix.

Ordering Sun Documents
Fatbrain.com, an Internet professional bookstore, stocks select product documentation
from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center on
Fatbrain.com at http://www1.fatbrain.com/documentation/sun.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.
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TABLE P–1 Typographic Conventions (Continued)
Typeface or Symbol Meaning Example

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #
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CHAPTER 1

Solaris Kernel and Device Tree

This chapter provides an overview of the Solaris kernel and the manner in which it
represents devices as nodes in a device tree. It covers general kernel structure and
function and the Solaris 9 Device Driver Interface/Driver Kernel Interface (DDI/DKI).

What Is the Kernel?
The Solaris kernel is a program that manages system resources. It insulates
applications from the system hardware and provides them with essential system
services such as input/output (I/O) management, virtual memory, and scheduling.
The kernel consists of object modules that are dynamically loaded into memory when
needed. The reader should have a working knowledge of this information.

The Solaris kernel can be separated into two parts: the first part, referred to as the
kernel, manages file systems, scheduling, and virtual memory. The second part,
referred to as the I/O subsystem, manages the physical components, as described in
Figure 1–1.

The kernel provides a set of interfaces for applications to use called system calls.
System calls are documented in the Solaris 9 Reference Manual Collection (see Intro(2)).
The function of some system calls is to invoke a device driver to perform I/O. Device
drivers are loadable kernel modules that insulate the rest of the kernel from device
hardware and manage data transfers.
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FIGURE 1–1 The Solaris Kernel

This book discusses the specifics of device drivers. The following sections provide
additional high-level information on the Solaris operating environment.

Multithreaded Execution Environment
The Solaris kernel is multithreaded. On a multiprocessor machine, multiple kernel
threads can be running kernel code, and can do so concurrently. Kernel threads can
also be pre-empted by other kernel threads at any time.

The multithreading of the kernel imposes some additional restrictions on the device
drivers. For more information on multithreading considerations, see Chapter 3. Device
drivers must be coded to run as needed at the request of many different threads. For
each thread, it must handle contention problems from overlapping I/O requests.
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Virtual Memory
A complete overview of the Solaris virtual memory system is beyond the scope of this
book, but two virtual memory terms of special importance are used when discussing
device drivers: virtual address and address space.

� Virtual address – A virtual address is an address that is mapped by the memory
management unit (MMU) to a physical hardware address. All addresses directly
accessible by the driver are kernel virtual addresses; they refer to the kernel address
space.

� Address space – An address space is a set of virtual address segments, each of which is
a contiguous range of virtual addresses. Each user process has an address space
called the user address space. The kernel has its own address space called the kernel
address space.

Special Files
Devices are treated as files. They are represented in the file system by special files. In
the Solaris operating environment these files reside in the /devices directory
hierarchy.

Special files can be of type block or character. The type indicates which kind of device
driver operates the device. Drivers can be implemented to operate on both types. For
example, disk drivers export a character interface for use by the fsck(1) and
mkfs(1) utilities, and a block interface for use by the file system.

Associated with each special file is a device number (dev_t). This consists of a major
number and a minor number. The major number identifies the device driver associated
with the special file. The minor number is created and used by the device driver to
further identify the special file. Usually, the minor number is an encoding that
identifies the device instance the driver should access and the type of access to
perform. The minor number, for example, could identify a tape device used for
backup and also specify whether the tape needs to be rewound when the backup
operation is complete.

Solaris 9 DDI/DKI
In System V Release 4 (SVR4), the interface between device drivers and the rest of the
UNIX kernel was standardized as the DDI/DKI. The Solaris 9 DDI/DKI is
documented in Section 9 of the Solaris 8 Reference Manual Collection. The reference
manual documents driver entry points, driver-callable functions, and kernel data
structures used by device drivers.
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The Solaris 9 DDI/DKI, like its SVR4 counterpart, is intended to standardize and
document all interfaces between device drivers and the rest of the kernel. In addition,
the Solaris 9 DDI/DKI allows source compatibility for drivers on any machine
running the Solaris 9 operating environment, regardless of the processor architecture
(such as SPARC or IA). It is also intended to provide binary compatibility for drivers
running on any Solaris 9–based processor, regardless of the specific platform
architecture. Drivers using only kernel facilities that are part of the Solaris 9 DDI/DKI
are known as Solaris 9 DDI/DKI-compliant device drivers.

The Solaris 9 DDI/DKI allows platform-independent device drivers to be written for
Solaris 9 based machines. These shrink-wrapped (binary compatible) drivers enable
third-party hardware and software to be more easily integrated into Solaris 9-based
machines. The Solaris 9 DDI/DKI is designed to be architecture independent and
enable the same driver to work across a diverse set of machine architectures.

Platform independence is accomplished by the design of DDI in Solaris 9 DDI/DKI.
The following main areas are addressed:

� Dynamic loading and unloading of modules

� Power management

� Interrupt handling

� Accessing the device space from the kernel or a user process (register mapping and
memory mapping)

� Accessing kernel or user process space from the device (DMA services)

� Managing device properties

Device Tree
Devices in Solaris are represented as a tree of interconnected device nodes. The tree
begins at the “root” device node, which represents the platform. Below the root node
are “branches” of the device tree, where a branch consists of one or more bus nexus
devices and a terminating leaf device. The system builds a tree structure that contains
information about the devices connected to the machine at boot time. The device tree
can also be modified by dynamic reconfiguration operations while the system is in
normal operation.

The tree structure creates a parent-child relationship between nodes. This parent-child
relationship is the key to architectural independence. When a leaf or bus nexus driver
requires a service that is architecturally dependent in nature, it requests its parent to
provide the service. This approach enables drivers to function regardless of the
architecture of the machine or the processor.
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Bus nexus devices are devices that provide bus mapping and translation services to
devices that are subordinate to it in the device tree. PCI - PCI bridges, PCMCIA
adapters, and SCSI HBAs are all example of nexus devices. The discussion of writing
drivers for nexus devices is limited to that of developing SCSI HBA drivers.

Leaf devices are typical peripheral devices such as disks, tapes, network adapters,
frame buffers, and so forth. Drivers for these devices export the traditional character
and block driver interfaces for use by user processes to read and write data to storage
or communication devices.

Example Device Tree
Figure 1–2 illustrates a sample device tree.

root node

PCI bus
nexus node

SUNW, ffb
leaf node

PCI bus
nexus node

PCI bus
nexus node

dad
leaf node

sd
leaf node

fdthree
leaf node

se
leaf node

pseudo
nexus node

network
leaf node

ide
nexus node

ebus
nexus node

.

.

.

.

.

.

. . .

FIGURE 1–2 Example Device Tree

In Figure 1–2, the root node is the parent node of the child nodes SUNW,ffb leaf node
(a frame buffer), a pseudo bus nexus node, and a PCI bus nexus node.

The SUNW,ffb leaf node represents a system frame buffer. The pseudo bus nexus
node is the parent of any pseudo device drivers (drivers without hardware). The PCI
bus nexus node further has two PCI bus nexus nodes as its children representing two
PCI-to-PCI bridges.

The lower-left PCI bus nexus node is the parent of the following child nodes; ebus bus
nexus node, network leaf node (ethernet), and ide bus nexus node.
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The ebus bus nexus node is the parent of the child nodes fdthree leaf node (a floppy
disk device) and se leaf node (a serial device).

The ide bus nexus node is the parent of the child nodes dad leaf node (a disk device)
and sd leaf node (a CD-ROM device).

Device Drivers
Associated with each leaf or bus nexus node can be a device driver. Each driver
exports a device operations structure dev_ops(9S) that defines the operations that the
device driver can perform. The device operations structure contains function pointers
for generic operations such as attach(9E), detach(9E), and getinfo(9E). It also
contains a pointer to a set of operations specific to bus nexus drivers and a pointer to a
set of operations specific to leaf drivers.

Displaying the Device Tree
The device tree can be displayed in three ways. The libdevinfo library provides
interfaces to access the contents of the device tree programmatically. The
prtconf(1M) command displays the complete contents of the device tree. The
/devices hierarchy is a representation of the device tree; use ls(1) to view it.

Note – /devices displays only devices that have drivers configured into the system.
prtconf(1M) shows all device nodes regardless of whether a driver for the device
exists on the system.

libdevinfo(3DEVINFO)
libdevinfo(3DEVINFO) provides interfaces for accessing all public device
configuration data. See libdevinfo(3LIB) for a list of interfaces. See
http://soldc.sun.com/developer/support/driver/docs/whitepapers.html for the
libdevinfo whitepaper.

prtconf(1M)
The prtconf(1M) command (excerpted example follows) displays all the devices in
the system:

System Configuration: Sun Microsystems sun4u
Memory size: 128 Megabytes
System Peripherals (Software Nodes):
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SUNW,Ultra-5_10
packages (driver not attached)

terminal-emulator (driver not attached)
deblocker (driver not attached)
obp-tftp (driver not attached)
disk-label (driver not attached)
SUNW,builtin-drivers (driver not attached)
sun-keyboard (driver not attached)
ufs-file-system (driver not attached)

chosen (driver not attached)
openprom (driver not attached)

client-services (driver not attached)
options, instance #0
aliases (driver not attached)
memory (driver not attached)
virtual-memory (driver not attached)
pci, instance #0

pci, instance #0
ebus, instance #0

auxio (driver not attached)
power, instance #0
SUNW,pll (driver not attached)
se, instance #0
su, instance #0
su, instance #1
ecpp (driver not attached)
fdthree, instance #0
eeprom (driver not attached)
flashprom (driver not attached)
SUNW,CS4231 (driver not attached)

network, instance #0
SUNW,m64B (driver not attached)
ide, instance #0

disk (driver not attached)
cdrom (driver not attached)
dad, instance #0
sd, instance #15

pci, instance #1
pci, instance #0

pci108e,1000 (driver not attached)
SUNW,hme, instance #1
SUNW,isptwo, instance #0

sd (driver not attached)
st (driver not attached)
sd, instance #0 (driver not attached)
sd, instance #1 (driver not attached)
sd, instance #2 (driver not attached)
....

SUNW,UltraSPARC-IIi (driver not attached)
SUNW,ffb, instance #0

pseudo, instance #0
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/devices

The /devices hierarchy provides a name space representing the device tree.
Following is an abbreviated listing of the /devices name space. The sample output
corresponds to the example device tree and prtconf(1M) output shown previously.

/devices
/devices/pseudo
/devices/pci@1f,0:devctl
/devices/SUNW,ffb@1e,0:ffb0
/devices/pci@1f,0
/devices/pci@1f,0/pci@1,1
/devices/pci@1f,0/pci@1,1/SUNW,m64B@2:m640
/devices/pci@1f,0/pci@1,1/ide@3:devctl
/devices/pci@1f,0/pci@1,1/ide@3:scsi
/devices/pci@1f,0/pci@1,1/ebus@1
/devices/pci@1f,0/pci@1,1/ebus@1/power@14,724000:power_button
/devices/pci@1f,0/pci@1,1/ebus@1/se@14,400000:a
/devices/pci@1f,0/pci@1,1/ebus@1/se@14,400000:b
/devices/pci@1f,0/pci@1,1/ebus@1/se@14,400000:0,hdlc
/devices/pci@1f,0/pci@1,1/ebus@1/se@14,400000:1,hdlc
/devices/pci@1f,0/pci@1,1/ebus@1/se@14,400000:a,cu
/devices/pci@1f,0/pci@1,1/ebus@1/se@14,400000:b,cu
/devices/pci@1f,0/pci@1,1/ebus@1/ecpp@14,3043bc:ecpp0
/devices/pci@1f,0/pci@1,1/ebus@1/fdthree@14,3023f0:a
/devices/pci@1f,0/pci@1,1/ebus@1/fdthree@14,3023f0:a,raw
/devices/pci@1f,0/pci@1,1/ebus@1/SUNW,CS4231@14,200000:sound,audio
/devices/pci@1f,0/pci@1,1/ebus@1/SUNW,CS4231@14,200000:sound,audioctl
/devices/pci@1f,0/pci@1,1/ide@3
/devices/pci@1f,0/pci@1,1/ide@3/sd@2,0:a
/devices/pci@1f,0/pci@1,1/ide@3/sd@2,0:a,raw
/devices/pci@1f,0/pci@1,1/ide@3/dad@0,0:a
/devices/pci@1f,0/pci@1,1/ide@3/dad@0,0:a,raw
/devices/pci@1f,0/pci@1
/devices/pci@1f,0/pci@1/pci@2
/devices/pci@1f,0/pci@1/pci@2/SUNW,isptwo@4:devctl

/devices/pci@1f,0/pci@1/pci@2/SUNW,isptwo@4:scsi

Binding a Driver to a Device
In addition to constructing the device tree, the kernel also determines the drivers that
will be used to manage the devices.

Binding a driver to a device refers to the process by which the system selects a driver
to manage a particular device. The driver binding name is the name that links a driver
to a unique device node in the device information tree. For each device in the device
tree, the system attempts to choose a driver from a list of installed drivers.

Each device node has a name property associated with it. This property can be
assigned either from an external agent, such as the PROM, during system boot or from
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a driver.conf configuration file. In either case, the name property represents the
node name assigned to a device in the device tree. The node name is the name
visible in /devices and listed in the prtconf(1M) output.

glm

st sd

SUNW, CS4231 hme
device node names

.  .  .

(name property)

FIGURE 1–3 Device Node Names

A device node can also have a compatible property associated with it. The compatible
property (if it exists) contains an ordered list of one or more possible driver names or
driver aliases for the device.

The system uses both the name and the compatible properties to select a driver for the
device. If the compatible property exists, the system first attempts to match the contents
of the compatible property to a driver on the system. Beginning with the first driver
name on the compatible property list, the system attempts to match the driver name to
a known driver on the system. It processes each entry on the list until either a match is
found or the end of the list is reached.

If the contents of either the name property or the compatible property match a driver on
the system, then that driver is bound to the device node. If no match is found, no
driver is bound to the device node.

Generic Device Names
Some devices specify a generic device name as the value for the name property. Generic
device names describe the function of a device without actually identifying a specific
driver for the device. For example, a SCSI host bus adapter might have a generic
device name of scsi. An Ethernet device might have a generic device name of
ethernet.
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The compatible property allows the system to determine alternate driver names (like
glm for scsi HBA device drivers or hme for ethernet device drivers) for devices
with a generic device name.

Devices with generic device names are required to supply a compatible property.
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Note – For a complete description of generic device names, see the IEEE 1275 Open
Firmware Boot Standard.

Figure 1–4 and Figure 1–5 show two device nodes: one node uses a specific device
name and the other uses a generic device name. For the device node with a specific
device name, the driver binding name SUNW,ffb is the same name as the device node
name.

binding name =

Device Node A

name = SUNW,ffb

/devices/SUNW,ffb@le,0:ffb0

SUNW,ffb

FIGURE 1–4 Specific Driver Node Binding

For the device node with the generic device name display, the driver binding name
SUNW,ffb is the first name on the compatible property driver list that matches a driver
on the system driver list. In this case, display is a generic device name for frame
buffers.

compatible =

Device Node B

name = display

/devices/display@le,0:ffb0

fast_fb
SUNW,ffb
slow_fb

binding name = SUNW,ffb

FIGURE 1–5 Generic Driver Node Binding
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CHAPTER 2

Overview of Solaris Device Drivers

This chapter gives an overview of Solaris device drivers. It discusses what a device
driver is and the types of device drivers that Solaris 9 supports. It also provides a
general discussion of the routines that device drivers must implement and points out
compiler-related issues.

What Is a Device Driver?
A device driver is a kernel module responsible for managing low-level I/O operations
for a particular hardware device. Device drivers can also be software-only, emulating a
device that exists only in software, such as a RAM disk or a pseudo-terminal.

A device driver contains all the device-specific code necessary to communicate with a
device and provides a standard set of interfaces to the rest of the system. This interface
protects the kernel from device specifics just as the system call interface protects
application programs from platform specifics. Application programs and the rest of
the kernel need little (if any) device-specific code to address the device. In this way,
device drivers make the system more portable and easier to maintain.

Types of Device Drivers
There are several kinds of device drivers, each handling a different kind of I/O. Block
device drivers manage devices with physically addressable storage media, such as
disks. All other devices are considered character devices. Two types of character device
drivers are standard character device drivers and STREAMS device drivers.
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Block Device Drivers
Devices that support a file system are known as block devices. Drivers written for these
devices are known as block device drivers. Block device drivers take a file system
request, in the form of a buf(9S) structure, and issue the I/O operations to the disk to
transfer the specified block. The main interface to the file system is the strategy(9E)
routine. See Chapter 11 for more information.

Block device drivers can also provide a character driver interface that allows utility
programs to bypass the file system and access the device directly. This device access is
commonly referred to as the raw interface to a block device.

Character Device Drivers
Character device drivers normally perform I/O in a byte stream. Examples of devices
using character drivers include tape drives and serial ports. Character device drivers
can also provide additional interfaces not present in block drivers, such as I/O control
(ioctl) commands, memory mapping, and device polling. See Chapter 10 for more
information.

Byte-Stream I/O
The main task of any device driver is to perform I/O, and many character device
drivers do what is called byte-stream or character I/O. The driver transfers data to and
from the device without using a specific device address. This is in contrast to block
device drivers, where part of the file system request identifies a specific location on the
device.

The read(9E) and write(9E) entry points handle byte-stream I/O for standard
character drivers. See “I/O Request Handling” on page 162 for more information.

Memory Mapped Devices
For certain devices, such as frame buffers, application programs having direct access
to device memory is more efficient than byte-stream I/O. Applications can map device
memory into their address spaces using the mmap(2) system call. To support memory
mapping, device drivers implement segmap(9E) and devmap(9E) entry points. For
information on devmap(9E), see Chapter 12. For information on segmap(9E), see
Chapter 10.

Drivers that define the devmap(9E) entry point usually do not define read(9E) and
write(9E) entry points, as application programs perform I/O directly to the devices
after calling mmap(2).
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STREAMS Drivers
STREAMS is a separate programming model for writing a character driver. Devices
that receive data asynchronously (such as terminal and network devices) are suited to
a STREAMS implementation. STREAMS device drivers must provide the loading and
autoconfiguration support described in Chapter 5. See the Streams Programming Guide
for additional information on how to write STREAMS drivers.

Driver Module Entry Points
Each device driver defines a standard set of functions called entry points, which are
listed in Intro(9E). These entry points are called by the Solaris kernel to load and
unload the driver, autoconfigure devices, and provide the character, block, or
STREAMS driver I/O services. Drivers for different types of devices have different sets
of entry points according to the kinds of operations the devices perform. A driver for a
memory-mapped character-oriented device, for example, supports a devmap(9E) entry
point, while a block driver does not.

Loadable module interfaces

Device autoconfiguration interfaces

Character/block driver entry points

modlinkage(9S)

modldrv(9S)

dev_ops(9S)

cb_ops(9S)

FIGURE 2–1 Device Driver Overview

Some operations are common to all drivers, such as the functions that are required for
module loading (_init(9E), _info(9E), and _fini(9E)), and the required
autoconfiguration entry points attach(9E), detach(9E), and getinfo(9E). Drivers
also support the optional autoconfiguration entry point for probe(9E). Most leaf
drivers have open(9E) and close(9E) entry points to control access to their devices.

Traditionally, all driver function and variable names have some prefix added to them.
Usually this is the name of the driver, such as xxopen() for the open(9E) routine of
driver xx. In subsequent examples, xx is used as the driver prefix.
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Note – In the Solaris 9 operating environment, only the loadable module routines
must be visible outside the driver object module. Other routines can have the storage
class static.

Loadable Module Entry Points
All drivers are required to implement the loadable module entry points _init(9E),
_fini(9E), and _info(9E) to load, unload, and report information about the driver
module.

Drivers should allocate and initialize any global resources in _init(9E) and release
their resources in _fini(9E).

Autoconfiguration Entry Points
Drivers are required to implement the attach(9E), detach(9E), and getinfo(9E)
entry points for device autoconfiguration. Drivers might need to implement (9E) if the
driver supports devices that are not self identifying, such as SCSI target devices. See
Chapter 5 for more information on these routines.

Character and Block Driver Entry Points
Drivers for character and block devices export a cb_ops(9S) structure, which defines
the driver entry points for block device access and character device access. Both types
of drivers are required to support open(9E) and close(9E). Block drivers are required
to support strategy(9E), while character drivers can choose to implement whatever
mix of read(9E), write(9E), ioctl(9E), mmap(9E), ordevmap(9E) entry points as
appropriate for the type of device. Character drivers can also support a polling
interface through chpoll(9E), as well as asynchronous I/O through aread(9E) and
awrite(9E).

For information on character driver entry points, see Chapter 10. For information on
block driver entry points, see Chapter 11.

Power Management Entry Point
Drivers for hardware devices that provide Power Management functionality can
support the optional power(9E) entry point. See Chapter 9 for details about this entry
point.
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Driver Context
The driver context determines which kernel routines the driver is permitted to call.
There are four contexts in which driver code executes:

� User context – A driver entry point has user context if it was directly invoked
because of a user thread. For example, the read(9E) entry point of the driver,
invoked by a read(2) system call, has user context.

� Kernel context – A driver function has kernel context if it was invoked by some
other part of the kernel. In a block device driver, the strategy(9E) entry point can
be called by the pageout daemon to write pages to the device. Because the page
daemon has no relation to the current user thread, strategy(9E) has kernel
context in this case.

� Interrupt context – Interrupt context is a more restrictive form of kernel context.
Driver interrupt routines operate in interrupt context and have an interrupt level
associated with them. Callback routines also operate in an interrupt context. See
Chapter 7 for more information.

� High-level interrupt context – High-level interrupt context is a more restricted form
of interrupt context. If ddi_intr_hilevel(9F) indicates that an interrupt is high
level, the driver interrupt handler will run in high-level interrupt context. See
Chapter 7 for more information.

The manual pages in section 9F document the allowable contexts for each function.
For example, in kernel context the driver must not call copyin(9F).

Interrupt Handling
The Solaris 9 DDI/DKI addresses these aspects of device interrupt handling:

� Registering device interrupts with the system
� Removing device interrupts
� Dispatching interrupts to interrupt handlers

Device interrupt sources are contained in a property called interrupts, which is either
provided by the PROM of a self-identifying device, in a hardware configuration file, or
by the booting system on the IA platform.
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Callback Functions
Certain DDI mechanisms provide a callback mechanism. DDI functions provide a
mechanism for scheduling a callback when a condition is met. Conditions for which
callback functions are used include:

� When a transfer has completed
� When a resource might have become available
� When a time-out period has expired

In some sense, callback functions are similar to entry points—interrupt handlers, for
example. DDI functions that allow callbacks expect the callback function to perform
certain tasks. In the case of DMA routines, a callback function must return a value
indicating whether the callback function needs to be rescheduled in case of a failure.

Callback functions execute as a separate interrupt thread and must handle all the
usual multithreading issues.

Note – A driver must cancel all scheduled callback functions before detaching a
device.

Printing Messages
Device drivers do not usually print messages. Instead, the driver entry points should
return error codes so that the application can determine how to handle the error. If the
driver must print a message, it should use cmn_err(9F) to do so. This is similar to the
C function printf(3C), which prints to the console, to the message buffer, or both.

The format string specifier interpreted by cmn_err(9F) is similar to the printf(3C)
format string, with the addition of the format %b, which prints bit fields. Callers to
cmn_err(9F) also specify the level, which indicates the label to be printed. The first
character of the format string is treated specially. See the cmn_err(9F) man page for
more details.

CE_PANIC has the side effect of crashing the system. This level should be used only if
the system is in such an unstable state that to continue would cause more problems. It
can also be used to get a system core dump when debugging. It should not be used in
production device drivers.
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Device IDs
The Solaris DDI provides interfaces that allow drivers to provide a persistent unique
identifier for a device, a device ID, which can be used to identify or locate a device
and which is independent of the device’s name or number (dev_t). Applications can
use the functions defined in libdevid(3LIB) to read and manipulate the device IDs
registered by the drivers.

Software State Management
To assist device driver writers in allocating state structures, the Solaris 9 DDI/DKI
provides a set of memory management routines called the software state management
routines (also known as the soft state routines). These routines dynamically allocate,
retrieve, and destroy memory items of a specified size, and hide the details of list
management. An instance number is used to identify the desired memory item; this
number can be (and usually is) the instance number assigned by the system.

Routines are provided to:

� Initialize a driver’s soft state list
� Allocate space for an instance of a driver’s soft state
� Retrieve a pointer to an instance of a driver’s soft state
� Free the memory for an instance of a driver’s soft state
� Finish using a driver’s soft state list

See “Loadable Driver Interfaces” on page 73 for an example of how to use these
routines.

Dynamic Memory Allocation
Device drivers must be prepared to simultaneously handle all attached devices that
they claim to drive. There should be no driver limit on the number of devices that the
driver handles, and all per-device information must be dynamically allocated.

void *kmem_alloc(size_t size, int flag);
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The standard kernel memory allocation routine is kmem_alloc(9F). It is similar to the
C library routine malloc(3C), with the addition of the flag argument. The flag
argument can be either KM_SLEEP or KM_NOSLEEP, indicating whether the caller is
willing to block if the requested size is not available. If KM_NOSLEEP is set, and
memory is not available, kmem_alloc(9F) returns NULL.

kmem_zalloc(9F) is similar to kmem_alloc(9F), but also clears the contents of the
allocated memory.

Note – Kernel memory is a limited resource, not pageable, and competes with user
applications and the rest of the kernel for physical memory. Drivers that allocate a
large amount of kernel memory can cause system performance to degrade.

void kmem_free(void *cp, size_t size);

Memory allocated by kmem_alloc(9F) or by kmem_zalloc(9F) is returned to the
system with kmem_free(9F). This is similar to the C library routinefree(3C), with the
addition of the size argument. Drivers must keep track of the size of each object they
allocate in order to call kmem_free(9F) later.

Programmed I/O Device Access
Programmed I/O device access is the act of reading and writing of device registers or
device memory by the host CPU. The Solaris DDI provides interfaces for mapping a
device’s registers or memory by the kernel as well as interfaces for reading and
writing to device memory from the driver. These interfaces are designed to enable
drivers to be developed that are platform and bus independent, by automatically
managing any difference in device and host endianness as well as enforcing any
memory-store ordering requirements imposed by the device.

Direct Memory Access (DMA)
Solaris defines a high-level, architecture-independent model for supporting
DMA-capable devices. The Solaris DDI is designed to shield drivers from
platform-specific details, which enables a common driver to be developed that runs
across multiple platforms and architectures.
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Properties
Properties define attributes of the device or device driver. Properties can be defined by
the FCode of a self-identifying device, by a hardware configuration file (see the
driver.conf(4) man page), or by the driver itself using the ddi_prop_update(9F)
family of routines.

A property is a name-value pair. The name is a string that identifies the property with
an associated value. The value of a property can be one of five types:

� A byte array that has an arbitrary length and whose value is a series of bytes

� An integer property whose value is an integer

� An integer array property whose value is an array of integers

� A string property whose value is a NULL-terminated string

� A string array property whose value is a list of NULL-terminated strings

A property that has no value is known as a Boolean property. It is considered to be
true if it exists and false if it doesn’t exist.

Driver and Device Statistics
Solaris provides a rich set of interfaces for maintaining and exporting kernel-level
statistics, or “kstats.” Drivers are free to use these interfaces to export driver and
device statistics that can be used by user applications to observe the internal state of
the driver. See the kstat_create(9F) and kstat(3KSTAT) man pages for additional
information.

Hotplugging
In general, this manual does not highlight hotplugging information; following the
rules and suggestions for writing device drivers given in this book should enable any
driver to handle hotplugging. In particular, you should ensure that autoconfiguration
works (see Chapter 5) and always include a working detach(9E) routine in any
driver. Writers of drivers with power management issues should also follow the
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information given in Chapter 9. SCSI HBA drivers may need to add a cb_ops
structure to their dev_ops structure (see Chapter 15) to take advantage of
hotplugging capabilities.

Previous versions of the Solaris operating system required hotpluggable drivers to
include a DT_HOTPLUG property, but such a property is no longer required. (Driver
writers are free, however, to include it and have routines make use of it as they see fit.)

For more information, visit
http://soldc.sun.com/developer/support/driver/notes/scsi-hotplug.html, which
contains links to hotplugging whitepapers.

64-Bit Considerations
The Solaris system can run in 64-bit mode on appropriate hardware and provides a
64-bit kernel with a 64-bit address space for applications. To update a device driver to
be 64-bit ready, driver writers need to understand the 32-bit and 64-bit C data type
models, know how to use the system-derived types and the fundamental C data types,
and understand specific driver issues, such as how to enable a 64-bit driver and a
32-bit application to share data structures.

For details on making a device driver ready for a 64-bit environment, see Appendix C.

Kernel Programming Model
The Solaris kernel is a large collection of code that is compiled in one of two ways;
either as a 32-bit program that supports solely 32-bit applications, or as a 64-bit
program that supports both 32-bit and 64-bit applications. To enable drivers and
STREAMS modules to be used on both systems, you must write kernel code that is
both portable between these two compilation environments and supportive of 32-bit
and 64-bit applications. The resulting code must be compiled in two ways, creating
two separate modules: a 32-bit module for the 32-bit kernel, and a 64-bit module for
the 64-bit kernel.

Some classes of portability issues can best be solved using the standard derived types,
such as size_t, off_t, time_t, and caddr_t, since these grow and shrink appropriately. To
provide better support of 32-bit applications in the 64-bit kernel, fixed-width types
corresponding to the sizes expected by 32-bit applications are available in
<sys/types32.h>, for example, size32_t, off32_t, time32_t, and caddr32_t.

Other classes of portability problems, in particular those describing hardware registers
or data sent over the wire, are best described using the size-invariant types in
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<sys/inttypes.h>, for example, uint16_t, and int64_t. <sys/inttypes.h> also
includes the definition of intptr_t and uintptr_t.

See the Solaris 64-bit Developer’s Guide for the full list of changes to derived types and
more information on fixed-width types.

Data Model Concepts
The term data model is used here to describe the model for addresses and data that is
used by the kernel and applications.

On the 32-bit kernel, the same data model is used by both kernel and applications:
ILP32. There is no 64-bit application support on the 32-bit kernel.

On the 64-bit kernel, two different kinds of applications are supported concurrently:
32-bit applications using the ILP32 data model, and 64-bit applications using the LP64
data model. The 64-bit kernel itself uses the LP64 data model.

These concepts are captured in three flags that are associated with every system call,
including ioctl(2). The application data model may be one of the following: ILP32,
LP64, or native.

At first sight, the most useful question to answer about the application invoking the
kernel is: “Is it ILP32 or LP64?” However, a better test is: “Is the application using the
same model as the kernel, or a different model?” The concept of native data model
serves to answer that question; it is conditionally defined to match the data model of
the kernel implementation. This approach enables you to write substantially cleaner
code.

ioctl(9E) Considerations
Most driver entry points are managed by the 32-bit and 64-bit system caller handlers
in the kernel in such a way that a driver does not need to be concerned about whether
it is performing an operation on behalf of a 32-bit or a 64-bit application. However,
ioctl(9E) offers a direct connection between applications and the kernel. It enables a
driver to implement device-specific operations. By causing the driver to perform a
device-specific command or to pass arbitrary data between the driver and the
application.

The third argument to ioctl() is either a simple integral value or a pointer to some
other value, typically a data structure. The data structure might be different in size and
alignment between a 32-bit and a 64-bit application. Because the form of the interface
between the driver and application is generally a private agreement between the
driver and the application, the kernel cannot intervene to automatically translate the
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data structures. It cannot even tell whether the argument is an integer or a pointer.
Therefore, drivers and STREAMS modules need to know how to interpret the data
structures passed in from an application.
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CHAPTER 3

Multithreading

This chapter describes the locking primitives and thread synchronization mechanisms
of the Solaris multithreaded kernel.

Locking Primitives
In traditional UNIX systems, every section of kernel code runs until it explicitly gives
up the processor by calling sleep(1) or is interrupted by hardware. This is not true in
the Solaris operating environment. A kernel thread can be preempted at any time to
run another thread. Because all kernel threads share kernel address space and often
need to read and modify the same data, the kernel provides a number of locking
primitives to prevent threads from corrupting shared data. These mechanisms include
mutual exclusion locks (or mutex), readers/writer locks, and semaphores.

Storage Classes of Driver Data
The storage class of data is a guide to whether the driver might need to take explicit
steps to control access to the data. The three types of data storage classes are:

� Automatic (stack) data – Every thread has a private stack, so drivers never need to
lock automatic variables.

� Global and static data – Global and static data can be shared by any number of
threads in the driver; the driver might need to lock this type of data at times.

� Kernel heap data – Any number of threads in the driver might share kernel heap
data, such as data allocated by kmem_alloc(9F). If this data is shared, the driver
needs to protect it at times.
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Mutual-Exclusion Locks
A mutual-exclusion lock, or mutex, is usually associated with a set of data and
regulates access to that data. Mutexes provide a way to allow only one thread at a time
access to that data.

TABLE 3–1 Mutex Routines

Name Description

mutex_init(9F) Initializes a mutex

mutex_destroy(9F) Releases any associated storage

mutex_enter(9F) Acquires a mutex

mutex_tryenter(9F) Acquires a mutex if available; but does not block

mutex_exit(9F) Releases a mutex

mutex_owned(9F) Tests to determine if the mutex is held by the current
thread. To be used in ASSERT(9F) only

Setting Up Mutexes
Device drivers usually allocate a mutex for each driver data structure. The mutex is
typically a field in the structure and is of type kmutex_t. mutex_init(9F) is called to
prepare the mutex for use. This is usually done at attach(9E) time for per-device
mutexes and _init(9E) time for global driver mutexes.

For example,

struct xxstate *xsp;
...
mutex_init(&xsp->mu, NULL, MUTEX_DRIVER, NULL);

...

For a more complete example of mutex initialization, see Chapter 5.

The driver must destroy the mutex with mutex_destroy(9F) before being unloaded.
This is usually done at detach(9E) time for per-device mutexes and _fini(9E) time
for global driver mutexes.

Using Mutexes
Every section of the driver code that needs to read or write the shared data structure
must do the following:

� Acquire the mutex
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� Access the data
� Release the mutex

The scope of a mutex—the data it protects—is entirely up to the programmer. A mutex
protects some particular data structure because the programmer chooses to do so and uses
it accordingly. A mutex protects a data structure only if every code path that accesses
the data structure does so while holding the mutex.

Readers/Writer Locks
A readers/writer lock regulates access to a set of data. The readers/writer lock is so
called because many threads can hold the lock simultaneously for reading, but only
one thread can hold it for writing.

Most device drivers do not use readers/writer locks. These locks are slower than
mutexes and provide a performance gain only when protecting data that is not
frequently written but is commonly read by many concurrent threads. In this case,
contention for a mutex could become a bottleneck, so using a readers/writer lock
might be more efficient. See the rwlock(9F) man page for more information.

TABLE 3–2 Readers/Writer Locks

Name Description

rw_init(9F) Initializes a readers/writer lock

rw_destroy(9F) Destroys a readers/writer lock

rw_enter(9F) Acquires a readers/writer lock

rw_tryenter Attempts to acquire a reader/writer lock without waiting

rw_tryupgrade(9F) Attempts to upgrade readers/writer lock holding from reader
to writer

rw_downgrade(9F) Downgrades a readers/writer lock holding from writer to
reader

rw_exit(9F) Releases a readers/writer lock

rw_read_locked(9F) Determines whether readers/writer lock is held for read or
write

Semaphores
Counting semaphores are available as an alternative primitive for managing threads
within device drivers. See the semaphore(9F) man page for more information.
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TABLE 3–3 Semaphores

Name Description

sema_init(9F) Initialize a semaphore

sema_destroy(9F) Destroys a semaphore

sema_p(9F) Decrement semaphore and possibly block

sema_tryp(9F) Attempt to decrement semaphore, but do not block

sema_p_sig(9F) Decrement semaphore, but do not block if signal is pending

sema_v(9F) Increment semaphore and possibly unblock waiter

Thread Synchronization
In addition to protecting shared data, drivers often need to synchronize execution
among multiple threads.

Condition Variables
Condition variables are a standard form of thread synchronization. They are designed
to be used with mutexes. The associated mutex is used to ensure that a condition can
be checked atomically, and that the thread can block on the associated condition
variable without missing either a change to the condition or a signal that the condition
has changed.

Table 3–4 lists the condvar(9F) interfaces.

TABLE 3–4 Condition Variable Routines

Name Description

cv_init(9F) Initializes a condition variable

cv_destroy(9F) Destroys a condition variable

cv_wait(9F) Waits for condition

cv_timedwait(9F) Waits for condition or timeout

cv_wait_sig Waits for condition or return zero on receipt of a signal

cv_timedwait_sig(9F) Waits for condition or timeout or signal
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TABLE 3–4 Condition Variable Routines (Continued)
Name Description

cv_signal(9F) Signals one thread waiting on the condition variable

cv_broadcast(9F) Signals all threads waiting on the condition variable

Initializing Condition Variables
Declare a condition variable (type kcondvar_t) for each condition. Usually, this is
done in the driver’s soft-state structure. Use cv_init(9F) to initialize each one.
Similar to mutexes, condition variables are usually initialized at attach(9E) time. For
example:

cv_init(&xsp->cv, NULL, CV_DRIVER, NULL);

For a more complete example of condition variable initialization see Chapter 5.

Waiting for the Condition
To use condition variables, follow these steps in the code path waiting for the
condition:

1. Acquire the mutex guarding the condition.

2. Test the condition.

3. If the test results do not allow the thread to continue, use cv_wait(9F) to block the
current thread on the condition. cv_wait(9F) releases the mutex before blocking.
Upon return from cv_wait(9F) (which will reacquire the mutex before returning),
repeat the test.

4. Once the test allows the thread to continue, set the condition to its new value. For
example, set a device flag to busy.

5. Release the mutex.

Signaling the Condition
Follow these steps in the code path signaling the condition:

1. Acquire the mutex guarding the condition.
2. Set the condition.
3. Signal the blocked thread with cv_broadcast(9F).
4. Release the mutex.

Example 3–1 uses a busy flag along with mutex and condition variables to force the
read(9E) routine to wait until the device is no longer busy before starting a transfer.
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EXAMPLE 3–1 Using Mutexes and Condition Variables

static int
xxread(dev_t dev, struct uio *uiop, cred_t *credp)
{

struct xxstate *xsp;
...
mutex_enter(&xsp->mu);
while (xsp->busy)

cv_wait(&xsp->cv, &xsp->mu);
xsp->busy = 1;
mutex_exit(&xsp->mu);
/* perform the data access */

}

static uint_t
xxintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
mutex_enter(&xsp->mu);
xsp->busy = 0;
cv_broadcast(&xsp->cv);
mutex_exit(&xsp->mu);

}

cv_wait(9F) and cv_timedwait(9F)
If a thread blocks on a condition with cv_wait(9F), and that condition does not occur,
it can wait forever. For that reason, it is often preferable to use cv_timedwait(9F),
which depends upon another thread to perform a wakeup. cv_timedwait(9F) takes
an absolute wait time as an argument and returns -1 if the time is reached and the
event has not occurred. It returns a positive value if the condition is met.

cv_timedwait(9F) requires an absolute wait time expressed in clock ticks since the
system was last rebooted. This can be determined by retrieving the current value with
ddi_get_lbolt(9F). The driver usually has a maximum number of seconds or
microseconds to wait, so this value is converted to clock ticks with
drv_usectohz(9F) and added to the value from ddi_get_lbolt(9F).

Example 3–2 shows how to use cv_timedwait(9F) to wait up to five seconds to
access the device before returning EIO to the caller.

EXAMPLE 3–2 Using cv_timedwait(9F)

clock_t cur_ticks, to;
mutex_enter(&xsp->mu);
while (xsp->busy) {

cur_ticks = ddi_get_lbolt();
to = cur_ticks + drv_usectohz(5000000); /* 5 seconds from now */
if (cv_timedwait(&xsp->cv, &xsp->mu, to) == -1) {
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EXAMPLE 3–2 Using cv_timedwait(9F) (Continued)

/*
* The timeout time ’to’ was reached without the
* condition being signalled.
*/
/* tidy up and exit */
mutex_exit(&xsp->mu);
return (EIO);

}
}
xsp->busy = 1;

mutex_exit(&xsp->mu);

Although device driver writers generally find it preferable to use cv_timedwait(9F)
over cv_wait(9F), there are situations in which cv_wait(9F) is a better choice. For
example, cv_wait(9F) would be better when a driver is waiting on:

� Internal driver state changes, where such a state change may require some
command to be executed, or a set amount of time to pass.

� Something the driver needs to single-thread.

� Some situation that is already managing a possible timeout, as when “A” depends
on “B,” and “B” itself is using cv_timedwait(9F).

cv_wait_sig(9F)
There is always the possibility that either the driver accidentally waits for a condition
that will never occur or that the condition will not happen for a long time. In either
case, the user can abort the thread by sending it a signal. Whether the signal causes the
driver to wake up depends upon the driver.

cv_wait_sig(9F) allows a signal to unblock the thread. This enables the user to
break out of potentially long waits by sending a signal to the thread with kill(1) or
by typing the interrupt character. cv_wait_sig(9F) returns zero if it is returning
because of a signal, or nonzero if the condition occurred.

Example 3–3 shows how to use cv_wait_sig(9F) to allow a signal to unblock the
thread.

EXAMPLE 3–3 Using cv_wait_sig(9F)

mutex_enter(&xsp->mu);
while (xsp->busy) {

if (cv_wait_sig(&xsp->cv, &xsp->mu) == 0) {
/* Signalled while waiting for the condition */

/* tidy up and exit */
mutex_exit(&xsp->mu);
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EXAMPLE 3–3 Using cv_wait_sig(9F) (Continued)

return (EINTR);
}

}
xsp->busy = 1;

mutex_exit(&xsp->mu);

cv_timedwait_sig(9F)
cv_timedwait_sig(9F) is similar to cv_timedwait(9F) and cv_wait_sig(9F),
except that it returns -1 without the condition being signaled after a timeout has been
reached, or 0 if a signal (for example, kill(2)) is sent to the thread.

For both cv_timedwait(9F) and cv_timedwait_sig(9F), time is measured in
absolute clock ticks since the last system reboot.

Choosing a Locking Scheme
The locking scheme for most device drivers should be kept straightforward. Using
additional locks allows more concurrency but increases overhead. Using fewer locks is
less time consuming but allows less concurrency. Generally, use one mutex per data
structure, a condition variable for each event or condition the driver must wait for,
and a mutex for each major set of data global to the driver. Avoid holding mutexes for
long periods of time.

� Use the multithreading semantics of the entry point to your advantage.

� Make all entry points re-entrant and reduce the amount of shared data by changing
static variable to automatic.

� If your driver acquires multiple mutexes, acquire and release the mutexes in the
same order in all code paths.

� Hold and release locks within the same functional space.

� Avoid holding driver mutexes when calling DDI interfaces which can block, for
example, kmem_alloc(9F) with KM_SLEEP.

To look at lock usage, use lockstat(1M). lockstat(1M) monitors all kernel lock
events, gathers frequency and timing data about the events, and displays the data.

See the Multithreaded Programming Guide for more details on multithreaded operations.
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Potential Pitfalls
Following is a set of mutex-related panics:

panic: recursive mutex_enter. mutex %x caller %x

Mutexes are not re-entrant by the same thread. If you already own the mutex, you
cannot own it again. Doing this leads to this panic.

panic: mutex_adaptive_exit: mutex not held by thread

Releasing a mutex that the current thread does not hold causes this panic.

panic: lock_set: lock held and only one CPU

This panic occurs only on a uniprocessor. It indicates that a spin mutex is held and
will spin forever, because there is no other CPU to release it. This could happen
because the driver forgot to release the mutex on one code path, or blocked while
holding it.

A common cause of this panic is that the device’s interrupt is high-level and is calling
a routine that blocks the interrupt handler while holding a spin mutex. This is obvious
if the driver explicitly calls cv_wait(9F), but might not be so if the driver is blocking
while grabbing an adaptive mutex with mutex_enter(9F).
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CHAPTER 4

Properties and Events

Properties and events both be user-defined, and both make use of name-value pairs,
although of different types.

Properties
Device attribute (or device-related) information may be represented with a name-value
pair notation called a property.

For example, a reg property represents device registers and onboard memory. The reg
property is a software abstraction that describes device hardware registers; its value
encodes the device register address location and size. Drivers use the reg property to
access device registers.

As another example, an interrupt property is a software abstraction that represents the
device interrupt; its value encodes the device-interrupt PIN number.

The value of a property can be one of five types:

� A byte array that has an arbitrary length and whose value is a series of bytes

� An integer property whose value is an integer

� An integer array property whose value is an array of integers

� A string property whose value is a NULL-terminated string

� A string array property whose value is a list of NULL-terminated strings

A property that has no value is known as a Boolean property. It is considered to be
true if it exists and false if it doesn’t exist.
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Property Names
Strictly speaking, DDI/DKI software property names are not restricted in any way;
however, there are certain recommended uses. As defined in IEEE 1275-1994 (the
Standard for Boot Firmware), a property “is a human readable text string consisting of
one to thirty-one printable characters. Property names shall not contain upper case
characters or the characters "/", "\", ":", "[", "]" and "@". Property names beginning
with the character "+" are reserved for use by future revisions of IEEE 1275-1994.” By
convention, underscores are not used in property names; use a hyphen (-) instead.
Also by convention, property names ending with the question mark character
(auto-boot?) contain values that are strings, typically TRUE or FALSE.

Predefined property names are listed in publications of the IEEE 1275 Working Group;
see http://playground.sun.com/1275 for information on how to obtain these
publications. Sun-defined properties are documented in man pages section 9: DDI and
DKI Properties and Data Structures.

Creating and Updating Properties
To create a property for a driver, or to update an existing property, use one of the DDI
driver update interfaces, such as ddi_prop_update_int(9F) or
ddi_prop_update_string(9F), with the appropriate type for the property you
want to create. (See Table 4–1 for a list of available property interfaces.) These
interfaces are typically called from the driver’s attach() entrypoint, although they
may be called at other times (I/O control being another common case). In this
example, the attach() routine creates a string property called
pm-hardware-state and gives it the value needs-suspend-resume:

/* The following code is to tell cpr that this device
* needs to be suspended and resumed.
*/
(void) ddi_prop_update_string(device, dip,

"pm-hardware-state", "needs-suspend-resume");

Looking up Properties
A driver can request a property from its parent, which in turn might ask its parent.
The driver can control whether the request can go higher than its parent.

For example, the “esp” driver maintains an integer property for each target called
targetx-sync-speed, where “x” is the target number. The prtconf(1M)
command in its verbose mode displays driver properties. The following example
shows a partial listing for the “esp” driver.

% prtconf -v
...

esp, instance #0
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Driver software properties:
name <target2-sync-speed> length <4>

value <0x00000fa0>.

...

Table 4–1 provides information on the property interfaces.

TABLE 4–1 Property Interface Uses

Family Property Interfaces Description

ddi_prop_lookup ddi_prop_exists(9F) Looks up a property and returns
successfully if one exists. Fails if one
does not exist

dd_prop_get_int(9F) Looks up and returns an integer
property

ddi_prop_get_int_64(9F) Looks up and returns a 64–bit integer
property

ddi_prop_lookup_int_array(9F) Looks up and returns an integer array
property

ddi_prop_lookup_int64_array(9F) Looks up and returns a 64–bit integer
array property

ddi_prop_lookup_string(9F) Looks up and returns a string property

ddi_prop_lookup_string_array(9F) Looks up and returns a string array
property

ddi_prop_lookup_byte_array(9F) Looks up and returns a byte array
property

ddi_prop_update ddi_prop_update_int(9F) Updates or creates an integer property

ddi_prop_update_int64(9F) Updates or creates a single 64–bit
integer property

ddi_prop_update_int_array(9F) Updates or creates an integer array
property

ddi_prop_update_string(9F) Updates or creates a string property

ddi_prop_update_string_array(9F) Updates or creates a string array
property

ddi_prop_update_int64_array(9F) Updates or creates a 64–bit integer array
property

ddi_prop_update_byte_array(9F) Updates or creates a byte array property

ddi_prop_remove ddi_prop_remove(9F) Removes a property

Properties and Events 61



TABLE 4–1 Property Interface Uses (Continued)
Family Property Interfaces Description

ddi_prop_remove_all(9F) Removes all properties associated with
a device

Whenever possible, use 64–bit versions of int property interfaces (such as
ddi_prop_update_int64(9E)) instead of 32–bit versions (such as
ddi_prop_update_int(9E)). Some pre-existing int properties exist in both 32– and
64–bit versions, such as nblocks and Nblocks, and using the 64–bit versions makes
it less likely that you will encounter a value too large for your property to store.. The
64–bit properties require 64–bit versions of property interfaces. However, 32–bit
properties will be supported indefinitely, for backward compatibility.

prop_op(9E)
The prop_op(9E) entry point reports the values of device properties to the system. In
many cases, the ddi_prop_op(9F) routine may be used as the driver’s prop_op(9E)
entry point in the cb_ops(9S) structure. ddi_prop_op(9F) performs all of the
required processing and is sufficient for drivers that do not need to perform any
special processing when handling a device property request.

However, there are cases when the driver must provide a prop_op(9E) entry point.
For example, if a driver maintains a property whose value changes frequently,
updating the property with ddi_prop_update(9F) each time the value changes may
not be efficient. Instead, the driver can maintain a local copy of the property in a C
variable. The driver updates the C variable when the value of the property changes
and does not call one of the ddi_prop_update(9F) routines. In this case, the
prop_op(9E) entry point would need to intercept requests for this property and call
one of the ddi_prop_update(9F) routines to update the value of the property before
passing the request to ddi_prop_op(9F) to process the property request.

In Example 4–1, prop_op(9E) intercepts requests for the temperature property. The
driver updates a variable in the state structure whenever the property changes but
only updates the property when a request is made. It then uses the system routine
ddi_prop_op(9F) to process the property request. If the property request is not
specific to a device, the driver does not intercept the request. This is indicated when
the value of the dev parameter is equal to DDI_DEV_T_ANY (the wildcard device
number).

EXAMPLE 4–1 prop_op(9E) Routine

static int
xxprop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,

int flags, char *name, caddr_t valuep, int *lengthp)
{

minor_t instance;
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EXAMPLE 4–1 prop_op(9E) Routine (Continued)

struct xxstate *xsp;
if (dev != DDI_DEV_T_ANY) {

return (ddi_prop_op(dev, dip, prop_op, flags, name,
valuep, lengthp));

}

instance = getminor(dev);
xsp = ddi_get_soft_state(statep, instance);
if (xsp == NULL)

return (DDI_PROP_NOTFOUND);
if (strcmp(name, "temperature") == 0) {

ddi_prop_update_int(dev, dip, name, temperature);
}

/* other cases */

}

Events
A system often needs to respond in specialized ways to asynchronous occurrences
involving devices. For example, it may display a help menu when a user presses a
particular key, or issue a warning when a component begins to overheat, or start a
movie player when a DVD is inserted into a drive. In order for these responses to
happen, device drivers use the ddi_log_sysevent(9F) interface to generate and log
events with the system; these events tell the system what has just occurred to the
device. The system, in turn, queues events and passes them to the syseventd
daemon outside of kernel process space. syseventd then passes the events on to an
appropriate event-handling process, as shown in Figure 4–1.
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FIGURE 4–1 Event Plumbing

ddi_log_sysevent(9F)
ddi_log_sysevent()ddi_log_sysevent(9F) takes the following arguments:

dip A pointer to the dev_info node for this driver.

vendor A pointer to a string defining the driver’s vendor. Third-party drivers
should use their company’s stock symbol or a similarly enduring
indentifier. Sun-supplied drivers use DDI_VENDOR_SUNW.

class A pointer to a string defining the event’s class. This is a driver–specific
value. An example of a class might be a string representing a set of
environmental conditions affecting a device. This value must be
intelligible to the event consumer.

subclass Also a driver-specific string, this parameter represents a subset of the
class argument. For example, within a class representing environmental
conditions, an event subclass might refer to the device’s temperature.
This value must be intelligible to the event consumer.
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attr_list A pointer to an nvlist_t structure, listing name-value attributes
associated with the event. Name-value attributes, like class and subclass,
are driver-defined; they refer to some specific attribute or condition of the
device. For example, a device that reads both CD-ROMs and DVDs may
create a string name-value pair in which the name is disc_type and the
value is either cd_rom or dvd. As with class and subclass, the driver
handle (outside of kernel process space) must be able to interpret
name–value pairs and respond to them in an appropriate manner.

For more on name-value pairs and the nvlist_t structure, see
“Name-Value Pairs” on page 65, as well as nvlist_alloc(9F)

If there are no such attributes for an event, then this argument should be
set to NULL.

eidp The address of a sysevent_id_t structure. The sysevent_id_t
structure is used to provide a unique identification for the event.
ddi_log_sysevent(9F) returns this structure with a system-provided
event sequence number and timestamp. See the ddi_log_sysevent(9F)
page for more information on the sysevent_id_t structure.

sleep_flag This flag indicates how a caller will handle the possibility of resources
not being available. If sleep_flag is DDI_NOSLEEP, then it does not matter
if allocation fails or the queue is full; the caller will handle such a failure
appropriately. If sleep_flag is set to DDI_SLEEP, the caller will have
allocation and queuing routines wait for resources to become available.

char *vendor_name = "DDI_VENDOR_JGJG"
char *my_class = "EC_ENVIRONMENT";
char *my_subclass = "ESC_TEMPERATURE";
nvlist_t *nvl;
...
nvl = create_nvlist();
...

/* an event occurs... */ ...
if (ddi_log_sysevent(dip, vendor_name, my_class, my_subclass, nvl, \

NULL, DDI_SLEEP)!= DDI_SUCCESS)

cmn_err(CE_WARN, "error logging system event");

Name-Value Pairs
For interfaces such as ddi_log_sysevent(9F), the Solaris DDI provides a way to
store information in name-value pairs. Name-value pairs are retained in an nvlist_t
structure, which is opaque to the driver.

The value for a name-value pair may be a boolean, an int (16, 32, and 64-bit, signed
or unsigned), a string, or an arrays of ints, bytes, or strings.

The steps in creating a list of name-value pairs are as follows.
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1. Create an nvlist_t structure with nvlist_alloc(9F).

The nvlist_alloc(9F) interface takes three arguments. The first is a pointer to an
nvlist_t structure.

The second is a flag relating to the uniqueness of the names of the pairs. If this flag
is set to NV_UNIQUE_NAME_TYPE, any existing pair in the list will be removed if a
new pair with the same name and type is added. If the flag is set to
NV_UNIQUE_NAME, then any existing pair with the same name as one being added
will be removed, regardless of its type. Specifying NV_UNIQUE_NAME_TYPE allows
a list to contain two or more pairs with the same name, as long as their types are
different, whereas with NV_UNIQUE_NAME only one instance of a pair name can be
in the list. If neither value is used, then no uniqueness checking is done, and the
consumer of the list must parse it in such a way as to ensure that any pair retrieved
is the one wanted.

The third argument relates to kernel memory allocation policy. If it is set to
KM_SLEEP, then the driver will block until the requested memory is available for
allocation. KM_SLEEP allocations may sleep but are guaranteed to succeed.
KM_NOSLEEP allocations are guaranteed not to sleep but may fail (return NULL ) if
no memory is currently available.

2. Populate the nvlist with name-value pairs. For example, to add a string, use
nvlist_add_string(9F); to add an array of 32-bit integers, use
nvlist_add_int32_array(9F). The nvlist_add_boolean(9F) man page
contains a complete list of interfaces for adding pairs.

To deallocate a list, use nvlist_free(9F).

EXAMPLE 4–2 Creating and Populating a Name-Value Pair List

nvlist_t *
create_nvlist()
{

int err;
char *str = "child";
int32_t ints[] = {0, 1, 2};
nvlist_t *nvl;

err = nvlist_alloc(&nvl, 0); /* allocate list */
if (err)

return (NULL);

/* name="child" & prop={0, 1, 1} */
if ((nvlist_add_string(nvl, "name", str) != 0) ||

(nvlist_add_int32_array(nvl, "prop", ints, 3) != 0)) {
nvlist_free(nvl);
return (NULL);

}
return (nvl);

}
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Drivers can retrieve the elements of an nvlist by using a lookup function for that type,
such as nvlist_lookup_int32_array(9F), which takes as its arguments the name
and type of the pair being searched for. Note, however, that these interfaces will only
work if either NV_UNIQUE_NAME or NV_UNIQUE_NAME_TYPE was specified when
nvlist_alloc(9F) was called.

Name-value lists can be placed in contiguous memory (for example, to pass them to
another process or send them to another host). To do so, first get the size of the
memory block needed for the list with nvlist_size(9F), and then pack the list into
the buffer with nvlist_pack(9F). The consumer receiving the buffer’s content can
unpack the buffer with nvlist_unpack(9F).
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CHAPTER 5

Autoconfiguration

Autoconfiguration is the process of getting the driver’s code and static data loaded
into memory and registered with the system. Autoconfiguration also involves
configuring (attaching) individual device instances that are controlled by the driver.
“Loadable Driver Interfaces” on page 73 and “Device Configuration Concepts”
on page 76 discuss these processes in more detail.

Driver Loading and Unloading
The system loads driver binary modules from the drv subdirectory of the kernel
module directory (see “Copying the Driver to a Module Directory” on page 333). Once
a module is read into memory with all symbols resolved, the system will call the
_init(9E) entry point for that module. Upon successful completion of _init(9E), the
driver is properly registered with the system, or "loaded.” At this point, the driver is
not actively managing any device; that will happen as part of device configuration.

The system unloads driver binary modules either to conserve system memory or at
the explicit request of a user. Before deleting the driver code and data from memory,
the _fini(9E) entry point of the driver is invoked. The driver is unloaded if and only
if _fini(9E) returns success.

Figure 5–1 illustrates a structural overview of a device driver. The shaded area of this
figure highlights the driver data structures and entry points. The upper half of the
shaded area contains data structures and entry points supporting driver loading and
unloading; the lower half, driver configuration.
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FIGURE 5–1 Module Loading and Autoconfiguration Entry Points

Data Structures
Drivers are required to statically initialize a number of data structures to support
autoconfiguration. These structures include modlinkage(9S), modldrv(9S),
dev_ops(9S), and cb_ops(9S) if the driver is not a SCSI HBA.

The data structures illustrated in Figure 5-1 must be provided and initialized correctly
for the driver to load and for its routines to be called. If an operation is not supported
by the driver, the address of the routine nodev(9F) can be used to fill it in. If the driver
supports the entry point, but does not need to do anything except return success, the
address of the routine nulldev(9F) can be used.
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Note – These structures should be initialized at compile-time. They should not be
accessed or changed by the driver at any other time.

modlinkage Structure
static struct modlinkage xxmodlinkage = {

MODREV_1, /* ml_rev */
&xxmodldrv, /* ml_linkage[] */
NULL /* NULL termination */

};

The first field is the version number of the module loading subsystem and should be
MODREV_1. The second field points to driver’s modldrv structure defined next. The
last element of the structure should always be NULL.

modldrv Structure
static struct modldrv xxmodldrv = {

&mod_driverops, /* drv_modops */
"generic driver v1.1", /* drv_linkinfo */
&xx_dev_ops /* drv_dev_ops */

};

This structure describes the module in more detail. The first field provides information
on how to install and uninstall the module. It should be set to &mod_driverops for
driver modules. The second field is a string to be displayed by modinfo(1M). It
should contain sufficient information for identifying the version of source code that
generated the driver binary. The last field points to the driver’s dev_ops structure
defined in the following section.

dev_ops Structure
static struct dev_ops xx_dev_ops = {

DEVO_REV, /* devo_rev, */
0, /* devo_refcnt */
xxgetinfo, /* getinfo(9E) */
nulldev, /* identify(9E) */
xxprobe, /* probe(9E) */
xxattach, /* attach(9E) */
xxdetach, /* detach(9E) */
nodev, /* devo_reset */
&xx_cb_ops, /* devo_cb_ops */
NULL, /* devo_bus_ops */
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&xxpower /* power(9E) */

};

The dev_ops(9S) structure enables the kernel to find the autoconfiguration entry
points of the device driver. The devo_rev field identifies the revision number of the
structure itself, and must be set to DEVO_REV. The devo_refcnt field must be
initialized to zero. The function address fields should be filled in with the address of
the appropriate driver entry point. Exceptions are:

� If a probe(9E) routine is not needed, set the dev_ptr field to nulldev(9F).

� identify(9E) is obsolete and no longer required. Set this field to nulldev(9F).

� Set devo_reset to nodev(9F).

� Drivers for devices that provide Power Management functionality must have a
power(9E) entry point. If a power(9E) routine is not needed, set this field to NULL.

The devo_cb_ops member should include the address of the cb_ops(9S) structure.
The devo_bus_ops field must be set to NULL.

cb_ops Structure
static struct cb_ops xx_cb_ops = {

xxopen, /* open(9E) */
xxclose, /* close(9E) */
xxstrategy, /* strategy(9E) */
xxprint, /* print(9E) */
xxdump, /* dump(9E) */
xxread, /* read(9E) */
xxwrite, /* write(9E) */
xxioctl, /* ioctl(9E) */
xxdevmap, /* devmap(9E) */
nodev, /* mmap(9E) */
xxsegmap, /* segmap(9E) */
xxchpoll, /* chpoll(9E) */
xxprop_op, /* prop_op(9E) */
NULL, /* streamtab(9S) */
D_MP | D_64BIT, /* cb_flag */
CB_REV, /* cb_rev */
xxaread, /* aread(9E) */
xxawrite /* awrite(9E) */

};

The cb_ops(9S) structure contains the entry points for the character and block
operations of the device driver. Any entry points the driver does not support should
be initialized to nodev(9F). For example, character device drivers should set all the
block-only fields, such as cb_stategy, to nodev(9F). Note that the mmap(9E) entry
point is maintained for compatibility with previous releases, and drivers should use
the devmap(9E) entry point for device memory mapping. If devmap(9E) is supported,
set mmap(9E) to nodev(9F).
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The streamtab field indicates whether this is a STREAMS-based driver. The device
drivers discussed in this book are not STREAMS based. For a non-STREAMS-based
driver, the streamtab field must be set to NULL.

The cb_flag member contains the following flags:

� The D_MP flag indicates that the driver is safe for multi-threading. Solaris 9
operating environment only supports thread safe drivers, so, D_MP must be set.

� If the driver properly handles 64-bit offsets, it should set the D_64BIT flag in the
cb_flag field. This specifies that the driver will use the uio_loffset field of the
uio(9S) structure.

� If the driver supports the devmap(9E) entry point, it should set the D_DEVMAP flag.
For information on devmap(9E), see Chapter 12.

cb_rev is the cb_ops(9S) structure revision number. This field must be set to
CB_REV.

Loadable Driver Interfaces
Device drivers must be dynamically loadable and should be unloadable to help
conserve memory resources. Drivers that can be unloaded are also easier to test and
debug.

Each device driver is required to implement _init(9E), _fini(9E), and_info(9E)
entry points to support driver loading and unloading. Example 5–1 shows a typical
implementation of loadable driver interfaces.

EXAMPLE 5–1 Loadable Interface Section

static void *statep; /* for soft state routines */
static struct cb_ops xx_cb_ops; /* forward reference */
static struct dev_ops xx_ops = {

DEVO_REV,
0,
xxgetinfo,
nulldev,
xxprobe,
xxattach,
xxdetach,
xxreset,
nodev,
&xx_cb_ops,
NULL,

xxpower
};
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EXAMPLE 5–1 Loadable Interface Section (Continued)

static struct modldrv modldrv = {
&mod_driverops,
"xx driver v1.0",
&xx_ops

};

static struct modlinkage modlinkage = {
MODREV_1,

&modldrv,
NULL

};

int
_init(void)
{

int error;
ddi_soft_state_init(&statep, sizeof (struct xxstate),

estimated number of instances);
further per-module initialization if necessary
error = mod_install(&modlinkage);
if (error != 0) {

undo any per-module initialization done earlier
ddi_soft_state_fini(&statep);

}
return (error);

}

int
_fini(void)
{

int error;
error = mod_remove(&modlinkage);
if (error == 0) {

release per-module resources if any were allocated
ddi_soft_state_fini(&statep);

}
return (error);

}

int
_info(struct modinfo *modinfop)
{

return (mod_info(&modlinkage, modinfop));

}

_init(9E)
Example 5–2 shows a typical _init(9E) interface.
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EXAMPLE 5–2 _init(9E)

static void *xxstatep;
int
_init(void)
{

int error;
const int max_instance = 20; /* max possible device instances */

ddi_soft_state_init(&xxstatep, sizeof (struct xxstate), max_instance);
error = mod_install(&xxmodlinkage);
if (error != 0) {

/*
* Cleanup after a failure
*/
ddi_soft_state_fini(&xxstatep);

}
return (error);

}

The driver should perform any one-time resource allocation or data initialization
during driver loading in _init(9E). For example, it should initialize any mutexes
global to the driver in this routine. The driver should not, however, use _init(9E) to
allocate or initialize anything that has to do with a particular instance of the device.
Per-instance initialization must be done in attach(9E). For example, if a driver for a
printer can handle more than one printer at the same time, it should allocate resources
specific to each printer instance in attach(9E).

Note – Once _init(9E) has called mod_install(9F), the driver should not change
any of the data structures attached to the modlinkage(9S) structure, as the system
may make copies of them or change them.

_fini(9E)
int
_fini(void)
{

int error;
error = mod_remove(&modlinkage);
if (error != 0) {

return (error);
}
/*
* Cleanup resources allocated in _init()
*/
ddi_soft_state_fini(&xxstatep);
return (0);

}
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Similarly, in _fini(9E), the driver should release any resources that were allocated in
_init(9E) and must remove itself from the system module list.

Note – _fini(9E) may be called when driver attached to hardware instances. In this
case, mod_remove(9F) returns failure. Therefore, driver resources should not be
released until mod_remove(9F) returns success.

_info(9E)
int
_info(struct modinfo *modinfop)
{

return (mod_info(&xxmodlinkage, modinfop));

}

The driver is called to return module information. The entry point should be
implemented as shown above.

Device Configuration Concepts
For each node in the kernel device tree, the system selects a driver for the node based
on the node name and the compatible property (see “Binding a Driver to a Device”
on page 32). The same driver may bind to device nodes; the driver can differentiate
different nodes by instance numbers assigned by the system.

Once a driver is selected for a device node, the driver’s probe(9E) entry point is called
to determine the presence of device on the system. If probe(9E) is successful, the
driver’s attach(9E) entry point is invoked to set up and manage the device. The
device can be opened if and only if attach(9E) returns success (see “attach(9E) ”
on page 81).

A device may be unconfigured to conserve system memory resources or to allow
device to be hot removed. To allow device to be unconfigured, the system first checks
if the device instance is referenced. This check involves calling the driver’s
getinfo(9E) entry point to obtain information known only to the driver (see
“getinfo(9E) ” on page 88). If the device instance is not referenced, the driver’s
detach(9E) routine is invoked to unconfigure the device (see “detach(9E) ”
on page 86).

In short, each driver must define the following entry points that are used by the kernel
for device configuration:

76 Writing Device Drivers • February 2002 (Beta)



� probe(9E)
� attach(9E)
� detach(9E)
� getinfo(9E)

Every device driver must have an attach(9E) and getinfo(9E) routine. probe(9E)
is only required for non self-identifying devices. For self-identifying devices, an
explicit probe(9E) routine may be provided, or nulldev(9E) may be specified in the
dev_ops structure for the probe(9E) entry point.

Device Instances and Instance Numbers
The system assigns an instance number to each device. The driver may not reliably
predict the value of the instance number assigned to a particular device. The driver
should retrieve the particular instance number that has been assigned by calling
ddi_get_instance(9F).

Instance numbers represent the system’s notion of devices. Each dev_info (that is,
each node in the device tree) for a particular driver is assigned an instance number by
the kernel. Furthermore, instance numbers provide a convenient mechanism for
indexing data specific to a particular physical device. The most common usage for this
is ddi_get_soft_state(9F), which uses an instance number to retrieve soft state
data for a particular physical device.

Caution – For pseudo devices (children of pseudo nexuses), the instance numbers are
defined in the driver.conf(4) file via the instance property. If the
driver.conf(4) file does not contain the instance property, the behavior is
undefined. For hardware device nodes, the system assigns instance numbers when the
device is first seen by the OS. The instance numbers persist across system reboots and
OS upgrades.

Minor Nodes and Minor Numbers
Drivers can manage their minor number name space. For example the sd driver needs
to export 16 minor nodes (8 character, 8 block) to the file system for each disk. Each
represents a different piece of the same disk, or a different interface to the same data
(character/block). However, the driver still needs to be able to retrieve the instance
number of the device in order to get soft state, and so forth. The getinfo(9E) entry
point informs the system about the mapping from minor number to device instance
(see “getinfo(9E) ” on page 88).
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probe(9E)
For non-self-identifying devices, this entry point should determine whether the
hardware device is present on the system.

For probe(9E) to determine whether the instance of the device is present, probe(9E)
may need to do many of the things also commonly done by attach(9E). In particular,
it may need to map the device registers.

Probing the device registers is device-specific. The driver often has to perform a series
of tests of the hardware to assure that the hardware is really there. The test criteria
must be rigorous enough to avoid misidentifying devices. For example, a device may
appear to be present when in fact it is not, because a different device seems to behave
like the expected device.

The test returns:

DDI_PROBE_SUCCESS if the probe was successful

DDI_PROBE_FAILURE if the probe failed

DDI_PROBE_DONTCARE if the probe was unsuccessful yet attach(9E) should still be
called

DDI_PROBE_PARTIAL if the instance is not present now, but may be present in the
future

For a given device instance, attach(9E) will not be called before probe(9E) has
succeeded at least once on that device.

probe(9E) must free all the resources that it allocates, because it may be called
multiple times; however, attach(9E) will not necessarily be called even if probe(9E)
succeeds.

ddi_dev_is_sid(9F) may be used in a driver’s probe(9E) routine to determine if
the device is self-identifying. This is useful in drivers written for self-identifying and
non-self-identifying versions of the same device.

Example 5–3 is a sample probe(9E) routine.

EXAMPLE 5–3 probe(9E) Routine

static int
xxprobe(dev_info_t *dip)
{

ddi_acc_handle_t dev_hdl;
ddi_device_acc_attr_t dev_attr;
Pio_csr *csrp;
uint8_t csrval;
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EXAMPLE 5–3 probe(9E) Routine (Continued)

/*
* if the device is self identifying, no need to probe
*/
if (ddi_dev_is_sid(dip) == DDI_SUCCESS)

return (DDI_PROBE_DONTCARE);

/*
* Initalize the device access attrributes and map in
* the devices CSR register (register 0)
*/
dev_attr.devacc_attr_version - DDI_DEVICE_ATTR_V0;
dev_attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
dev_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;

if (ddi_regs_map_setup(dip, 0, (caddr_t *)&csrp, 0, sizeof (Pio_csr),
&dev_attr, &dev_hdl) != DDI_SUCCESS)
return (DDI_PROBE_FAILURE);

/*
* Reset the device
* Once the reset completes the CSR should read back
* (PIO_DEV_READY | PIO_IDLE_INTR)
*/
ddi_put8(dev_hdl, csrp, PIO_RESET);
csrval = ddi_get8(dev_hdl, csrp);

/*
* tear down the mappings and return probe success/failure
*/
ddi_regs_map_free(&dev_hdl);
if ((csrval & 0xff) == (PIO_DEV_READY | PIO_IDLE_INTR))

return (DDI_PROBE_SUCCESS);
else

return (DDI_PROBE_FAILURE);

}

When the driver’s probe(9E) routine is called, it does not know whether the device
being probed exists on the bus. Therefore, it is possible that the driver may attempt to
access device registers for a nonexistent device. A bus fault may be generated on some
buses as a result.

Example 5–4 shows a probe(9E) routine that uses ddi_poke8(9F) to check for the
existence of the device. (ddi_poke8(9F) cautiously attempts to write a value to a
specified virtual address, using the parent nexus driver to assist in the process where
necessary. If the address is not valid, or the value cannot be written without an error
occurring, an error code is returned. See also ddi_peek(9F).)

In this example, ddi_regs_map_setup(9F) is used to map the device registers.
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EXAMPLE 5–4 probe(9E) Routine Using ddi_poke8(9F)

static int
xxprobe(dev_info_t *dip)
{

ddi_acc_handle_t dev_hdl;
ddi_device_acc_attr_t dev_attr;
Pio_csr *csrp;
uint8_t csrval;

/*
* if the device is self identifying, no need to probe
*/
if (ddi_dev_is_sid(dip) == DDI_SUCCESS)

return (DDI_PROBE_DONTCARE);

/*
* Initalize the device access attrributes and map in
* the devices CSR register (register 0)
*/
dev_attr.devacc_attr_version - DDI_DEVICE_ATTR_V0;
dev_attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
dev_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;

if (ddi_regs_map_setup(dip, 0, (caddr_t *)&csrp, 0, sizeof (Pio_csr),
&dev_attr, &dev_hdl) != DDI_SUCCESS)
return (DDI_PROBE_FAILURE);

/*
* The bus can generate a fault when probing for devices which
* do not exist. Use ddi_poke8(9f) to handle any faults which
* may occur.
*
* Reset the device. Once the reset completes the CSR should read
* back (PIO_DEV_READY | PIO_IDLE_INTR)
*/
if (ddi_poke8(dip, csrp, PIO_RESET) != DDI_SUCCESS) {

ddi_regs_map_free(&dev_hdl);
return (DDI_FAILURE);

csrval = ddi_get8(dev_hdl, csrp);
/*
* tear down the mappings and return probe success/failure
*/
ddi_regs_map_free(&dev_hdl);
if ((csrval & 0xff) == (PIO_DEV_READY | PIO_IDLE_INTR))

return (DDI_PROBE_SUCCESS);
else

return (DDI_PROBE_FAILURE);

}
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attach(9E)
The kernel calls a driver’s attach(9E) entry point to attach an instance of a device or
to resume operation for an instance of a device that has been suspended or shut down
by the power management framework. This section discusses only the operation of
attaching device instances; the power management discussion is left to Chapter 9.

A driver’s attach(9E) entry point is called to attach each instance of a device that is
bound to the driver. The entry point is called with the instance of the device node to
attach, with DDI_ATTACH specified as the cmd argument to attach(9E). The attach
entry point will typically include the following types of processing:

� Allocating a soft state structure for the device instance
� Initializing per-instance mutexes and condition variables
� Registering the device’s interrupts
� Mapping the registers and memory of the device instance
� Creating minor device nodes for the device instance
� Reporting that the device instance has attached

Driver Soft State Management
To assist device driver writers in allocating state structures, the Solaris 9 DDI/DKI
provides a set of memory management routines called software state management
routines (also known as the soft state routines). These routines dynamically allocate,
retrieve, and destroy memory items of a specified size, and hide the details of list
management. An instance number identifies the desired memory item. This number can
be (and usually is) the instance number assigned by the system.

Drivers will typically allocate a soft state structure for each device instance that
attaches to the driver by calling ddi_soft_state_zalloc(9F), passing the instance
number of the device. Because there cannot be two device nodes with the same
instance number, ddi_soft_state_zalloc(9F) will fail if an allocation already
exists for a given instance number.

A driver’s character or block entry point (cb_ops(9S)) will reference a particular soft
state structure by first decoding the device’s instance number from the dev_t
argument that is passed to the entry point function. The driver then calls
ddi_get_soft_state(9F), passing the per-driver soft state list and the instance
number that was derived. If ddi_get_soft_state(9F) returns a NULL value, the
driver should treat this as if the device does not exist and return the appropriate code.

See “Creating Minor Device Nodes” on page 82 for additional information on how
instance numbers and device numbers, or dev_t’s, are related.
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Lock and Conditional Variable Initialization
Drivers should initialize any per-instance locks and condition variables during attach.
The initialization of any locks which are acquired by the driver’s interrupt handler
must be initialized prior to adding any interrupt handlers. See Chapter 3 for a
description of lock initialization and usage. See Chapter 7 for a discussion of the issues
surrounding interrupt handler and locks.

Creating Minor Device Nodes
An important part of the attach process is the creation of minor nodes for the device
instance. A minor node contains the information exported by the device and the DDI
framework which the system uses to create a special file for the minor node under
/devices.

Minor nodes are created when the driver calls ddi_create_minor_node(9F). The
driver supplies a minor number, a minor name, a minor node type, and whether the minor
node represents a block or character device.

Drivers can choose to create any number of minor nodes for a device. The Solaris
DDI/DDK expects certain classes of devices to have minor nodes created in a
particular format. For example, disk drivers are expected to create 16 minor nodes for
each physical disk instance attached; 8 minor nodes are created, representing the a -
h block device interfaces, with an additional 8 minor nodes for the a,raw - h,raw
character device interfaces.

The minor number passed to ddi_create_minor_node(9F) is defined wholly by the
driver itself. The minor number is usually an encoding of the device’s instance
number with a minor node identifier. Taking the above example, the driver creates
minor numbers for each of the minor nodes by taking the devices instance number,
shifting it left 3 bits, and OR’ing in the minor node index whose values range from 0
to 15.

The minor node type passed to ddi_create_minor_node(9F) classifies the type of
device, such as disks, tapes, network interfaces, frame buffers, and so forth. Table 5–1
lists the types of possible nodes that may be created.

TABLE 5–1 Possible Node Types

Constant Description

DDI_NT_SERIAL Serial port

DDI_NT_SERIAL_DO Dialout ports

DDI_NT_BLOCK Hard disks

DDI_NT_BLOCK_CHAN Hard disks with channel or target numbers

82 Writing Device Drivers • February 2002 (Beta)



TABLE 5–1 Possible Node Types (Continued)
Constant Description

DDI_NT_CD ROM drives (CD-ROM)

DDI_NT_CD_CHAN ROM drives with channel or target numbers

DDI_NT_FD Floppy disks

DDI_NT_TAPE Tape drives

DDI_NT_NET Network devices

DDI_NT_DISPLAY Display devices

DDI_NT_MOUSE Mouse

DDI_NT_KEYBOARD Keyboard

DDI_NT_AUDIO Audio Device

DDI_PSEUDO General pseudo devices

The node types DDI_NT_BLOCK, DDI_NT_BLOCK_CHAN, DDI_NT_CD, and
DDI_NT_CD_CHAN cause devfsadm(1M) to identify the device instance as a disk and
to create a symbolic link in the /dev/dsk or /dev/rdsk directory pointing to the
device node in the /devices directory tree.

The node type DDI_NT_TAPE causes devfsadm(1M) to identify the device instance as
a tape and to create a symbolic link from the /dev/rmt directory to the device node
in the /devices directory tree.

The node types DDI_NT_SERIAL and DDI_NT_SERIAL_DO causes ports(1M) to
identify the device instance as a serial port and to create symbolic links from the
/dev/term and /dev/cua directories to the device node in the /devices directory
tree and to entries to the port monitor database/etc/inittab.

Vendor-supplied strings should include an identifying value to make them unique,
such as their name or stock symbol (if appropriate). The string can be used in
conjunction with devfsadm(1M) and devlink.tab(4) to create logical names in
/dev.

Deferred Attach
open(9E) might be called on a minor device before attach(9E) has succeeded on the
corresponding instance. open(9E) must then return ENXIO, which will cause the
system to attempt to attach the device. If the attach succeeds, the open is retried
automatically.
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EXAMPLE 5–5 Example attach(9E) Entry Point

/*
* Attach an instance of the driver. We take all the knowledge we
* have about our board and check it against what has been filled in for
* us from our FCode or from our driver.conf(4) file.
*/
static int
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

int instance;
Pio *pio_p;
ddi_device_acc_attr_t da_attr;
static int pio_validate_device(dev_info_t *);

switch (cmd) {
case DDI_ATTACH:

/*
* first validate the device conforms to a configuration this driver
* supports
*/
if (pio_validate_device(dip) == 0)

return (DDI_FAILURE);

/*
* Allocate a soft state structure for this device instance
* Store a pointer to the device node in our soft state structure
* and a reference to the soft state structure in the device
* node.
*/
instance = ddi_get_instance(dip);
if (ddi_soft_state_zalloc(pio_softstate, instance) != 0)

return (DDI_FAILURE);
pio_p = ddi_get_soft_state(pio_softstate, instance);
ddi_set_driver_private(dip, (caddr_t)pio_p);
pio_p->dip = dip;

/*
* Before adding the interrupt, get the interrupt block
* cookie associated with the interrupt specification to
* initialize the mutex used by the interrupt handler.
*/
if (ddi_get_iblock_cookie(dip, 0, &pio_p->iblock_cookie) !=
DDI_SUCCESS) {
ddi_soft_state_free(pio_softstate, instance);
return (DDI_FAILURE);

}

mutex_init(&pio_p->mutex, NULL, MUTEX_DRIVER, pio_p->iblock_cookie);

/*
* Now that the mutex is initialized, add the interrupt itself.
*/
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EXAMPLE 5–5 Example attach(9E) Entry Point (Continued)

if (ddi_add_intr(dip, 0, NULL, NULL, pio_intr, (caddr_t)instance) !=
DDI_SUCCESS) {
mutex_destroy(&pio_p>mutex);
ddi_soft_state_free(pio_softstate, instance);
return (DDI_FAILURE);

}

/*
* Initialize the device access attributes for the register
* mapping
*/
dev_acc_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
dev_acc_attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
dev_acc_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;

/*
* Map in the csr register (register 0)
*/
if (ddi_regs_map_setup(dip, 0, (caddr_t *)&(pio_p->csr), 0,

sizeof (Pio_csr), &dev_acc_attr, &pio_p->csr_handle) !=
DDI_SUCCESS) {
ddi_remove_intr(pio_p->dip, 0, pio_p->iblock_cookie);
mutex_destroy(&pio_p->mutex);
ddi_soft_state_free(pio_softstate, instance);
return (DDI_FAILURE);

}

/*
* Map in the data register (register 1)
*/
if (ddi_regs_map_setup(dip, 1, (caddr_t *)&(pio_p->data), 0,

sizeof (uchar_t), &dev_acc_attr, &pio_p->data_handle) !=
DDI_SUCCESS) {
ddi_remove_intr(pio_p->dip, 0, pio_p->iblock_cookie);
ddi_regs_map_free(&pio_p->csr_handle);
mutex_destroy(&pio_p->mutex);
ddi_soft_state_free(pio_softstate, instance);
return (DDI_FAILURE);

}

/*
* Create an entry in /devices for user processes to open(2)
* This driver will create a minor node entry in /devices
* of the form: /devices/..../pio@X,Y:pio
*/
if (ddi_create_minor_node(dip, ddi_get_name(dip), S_IFCHR,

instance, DDI_PSEUDO, 0) == DDI_FAILURE) {
ddi_remove_intr(pio_p->dip, 0, pio_p->iblock_cookie);
ddi_regs_map_free(&pio_p->csr_handle);
ddi_regs_map_free(&pio_p->data_handle);
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EXAMPLE 5–5 Example attach(9E) Entry Point (Continued)

mutex_destroy(&pio_p->mutex);
ddi_soft_state_free(pio_softstate, instance);
return (DDI_FAILURE);

}

/*
* reset device (including disabling interrupts)
*/
ddi_put8(pio_p->csr_handle, pio_p->csr, PIO_RESET);

/*
* report the name of the device instance which has attached
*/
ddi_report_dev(dip);
return (DDI_SUCCESS);

case DDI_RESUME:
return (DDI_SUCCESS);

default:
return (DDI_FAILURE);

}

}

Note – The attach(9E) routine must not make any assumptions about the order of
invocations on different device instances. The system may invoke attach(9E)
concurrently on different device instances. The system may also invoke attach(9E)
and detach(9E) concurrently on different device instances.

detach(9E)
The kernel calls a driver’s detach(9E) entry point to detach an instance of a device or
to suspend operation for an instance of a device by power management. This section
discusses the operation of detaching device instances. Refer to Chapter 9 for a
discussion of power management issues.

A driver’s detach(9E) entry point is called to detach an instance of a device that is
bound to the driver. The entry point is called with the instance of the device node to
detach and DDI_DETACH specified as the cmd argument to the entry point.

A driver is required to cancel or wait for any time-outs or callbacks to complete, then
release any resources that are allocated to the device instance before returning. If for
some reason a driver cannot cancel outstanding callbacks for free resources, the driver
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is required to return the device to its original state and return DDI_FAILURE from the
entry point, leaving the device instance in the attached state.

There are two types of callback routines: those that can be canceled and those that
cannot. timeout(9F) and bufcall(9F) callbacks can be atomically cancelled by the
driver during detach(9E). Other types of callbacks such as scsi_init_pkt(9F) and
ddi_dma_buf_bind_handle(9F) cannot be canceled, requiring the driver to either
block in detach(9E) until the callback completes or to fail the request to detach.

EXAMPLE 5–6 detach(9E) Routine

/*
* detach(9e)
* free the resources that were allocated in attach(9e)
*/
static int
xxdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{

Pio *pio_p;
int instance;

switch (cmd) {
case DDI_DETACH:

instance = ddi_get_instance(dip);
pio_p = ddi_get_soft_state(pio_softstate, instance);

/*
* turn off the device
* free any resources allocated in attach
*/
ddi_put8(pio_p->csr_handle, pio_p->csr, PIO_RESET);

ddi_remove_minor_node(dip, NULL);
ddi_regs_map_free(&pio_p->csr_handle);
ddi_regs_map_free(&pio_p->data_handle);
ddi_remove_intr(pio_p->dip, 0, pio_p->iblock_cookie);
mutex_destroy(&pio_p->mutex);
ddi_soft_state_free(pio_softstate, instance);
/* FALLTHRU */

case DDI_SUSPEND:
default:

return (DDI_FAILURE);
}

}
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getinfo(9E)
The system calls getinfo(9E) to obtain configuration information that only the driver
knows. The mapping of minor numbers to device instances is entirely under the
control of the driver. The system sometimes needs to ask the driver which device a
particular dev_t represents.

getinfo(9E) is called during module loading and at other times during the life of the
driver. It can take one of two commands as its infocmd argument:
DDI_INFO_DEVT2INSTANCE, which asks for a device’s instance number, and
DDI_INFO_DEVT2DEVINFO, which asks for pointer to the device’s dev_info
structure.

In the DDI_INFO_DEVT2INSTANCE case, arg is a dev_t, and getinfo(9E) must
translate the minor number to an instance number. In the following example, the
minor number is the instance number, so getinfo(9E) simply passes back the minor
number. In this case, the driver must not assume that a state structure is available,
since getinfo(9E) may be called before attach(9E). The mapping that the driver
defines between the minor device number and the instance number does not
necessarily follow the mapping shown in the example. In all cases, however, the
mapping must be static.

In the DDI_INFO_DEVT2DEVINFO case, arg is again a dev_t, so getinfo(9E) first
decodes the instance number for the device. It then passes back the dev_info pointer
saved in the driver’s soft state structure for the appropriate device. This is shown in
Example 5–7.

EXAMPLE 5–7 getinfo(9E) Routine

/*
* getinfo(9e)
* Return the instance number or device node given a dev_t
*/
static int
xxgetinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
{

int error;
Pio *pio_p;
int instance = getminor((dev_t)arg);

switch (infocmd) {

/*
* return the device node if the driver has attached the
* device instace identified by the dev_t value which was passed
*/
case DDI_INFO_DEVT2DEVINFO:

pio_p = ddi_get_soft_state(pio_softstate, instance);
if (pio_p == NULL) {

*result = NULL;
error = DDI_FAILURE;
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EXAMPLE 5–7 getinfo(9E) Routine (Continued)

} else {
mutex_enter(&pio_p->mutex);
*result = pio_p->dip;
mutex_exit(&pio_p->mutex);
error = DDI_SUCCESS;

}
break;

/*
* the driver can always return the instance number given a dev_t
* value, even if the instance is not attached.
*/
case DDI_INFO_DEVT2INSTANCE:

*result = (void *)instance;
error = DDI_SUCCESS;
break;

default:
*result = NULL;
error = DDI_FAILURE;

}

return (error);

}

Note – The getinfo(9E) routine must be kept in sync with minor nodes that the
driver creates. Failure to do so may cause failure of hotplug operations and result in
system panics.

Device IDs
The Solaris DDI provides interfaces allows drivers to provide a persistent unique
identifier for a device, a device ID, which can be used to identify or locate a device and
which is independent of the devices name or number (dev_t). Applications can use
the functions defined in libdevid(3LIB) to read and manipulate the device IDs
registered by the drivers.

Before a driver can export a device ID, it needs to verify that the device is capable of
either providing a unique ID, such as WWN, or is capable of storing a host-generated
unique ID in an area not accessible through normal operations, such as device
NVRAM, reserved sectors, etc.
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Registering Device IDs
Drivers will typically initialize and register device IDs in the drivers attach(9E)
handler. As mentioned above, the driver is responsible for registering a device ID
which is persistent. As such, the driver may be required to handle both devices which
can provide a unique ID directly (WWN), and devices where fabricated IDs are
written to and read from stable storage.

Registering a Device-Supplied ID
If the device can supply the driver with an identifier that is unique, the driver can
simply initialize the device ID with this identifier and register the ID with the Solaris
DDI.

/*
* The device provides a guaranteed unique identifier,
* in this case a SCSI3-WWN. The WWN for the device has been
* stored in the devices soft state.
*/
if (ddi_devid_init(dip, DEVID_SCSI3_WWN, un->un_wwn_len, un->un_wwn,

&un->un_devid) != DDI_SUCCESS)
return (DDI_FAILURE);

(void) ddi_devid_register(dip, un->un_devid);

Registering a Fabricated ID
A driver may also register device IDs for devices which do not directly supply a
unique ID. If the device is capable of storing and retrieving a small amount of data in
a reserved area, the driver can create a fabricated device ID and write it to the
reserved area.

/*
* the device doesn’t supply a unique ID, attempt to read
* a fabricated ID from the devices reserved data.
*/

if (xxx_read_deviceid(un, &devid_buf) == XXX_OK) {
if (ddi_devid_valid(devid_buf) == DDI_SUCCESS) {

devid_sz = ddi_devi_sizeof(devid_buf);
un->un_devid = kmem_alloc(devid_sz, KM_SLEEP);
bcopy(devid_buf, un->un_devid, devid_sz);
ddi_devid_register(dip, un->un_devid);
return (XXX_OK);

}
}

/*
* we failed to read a valid device ID from the device
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* fabricate an ID, store it on the device, and register
* it with the DDI
*/

if (ddi_devid_init(dip, DEVID_FAB, 0, NULL, &un->un_devid)
== DDI_FAILURE) {

return (XXX_FAILURE);
}

if (xxx_write_deviceid(un) != XXX_OK) {
ddi_devid_free(un->un_devid);
un->un_devid = NULL;
return (XXX_FAILURE);

}

ddi_devid_register(dip, un->un_devid);

return (XXX_OK);

Unregistering Device IDs
Drivers will typically unregister and free any device IDs they allocated as part of the
detach(9E) handling. The driver will first call ddi_devid_unregister(9F) to
unregister the device ID for the device instance. The driver must then free the device ID
handle itself by calling ddi_devid_free(9F), passing the handle which had been
returned by ddi_devid_init(9F). The driver is responsible for managing any space
allocated for WWN or Serial Number data.
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CHAPTER 6

Device Access — Programmed I/O

The Solaris operating environment provides driver developers with a comprehensive
set of interfaces for accessing device memory. These interfaces are designed to shield
the driver from platform-specific dependencies by handling mismatches between
processor and device endianness as well as enforcing any data ordering dependencies
the device might have. By using these interfaces, a single source driver can be
developed that runs on both that SPARC and IA processor architectures as well as the
various platforms from each respective processor family.

Note – In this manual, the term “IA” refers to the Intel 32–bit processor architecture,
which includes the Pentium™, Pentium Pro™, Pentium II™, Pentium II Xeon™,
Celeron™, Pentium III™, and Pentium III Xeon™ processors, and compatible
microprocessor chips made by AMD and Cyrix.

Device Memory
Devices that support programmed I/O are assigned one or more regions of bus
address space that map to addressable regions of the device. These mappings are
described as pairs of values in the reg property associated with the device. Each value
pair describes a segment of a bus address.

Drivers identify a particular bus address mapping by specifying the register number,
or regspec, which is an index into the devices’reg property that identifies a
(busaddr, size) pair. Drivers pass the register number when making calls to DDI
functions such as ddi_regs_map_setup(9F). Drivers can determine how many
mappable regions have been assigned to the device by calling ddi_dev_nregs(9F).
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Managing Differences in Device and Host
Endianness
The data format of the host can have different endian characteristics than the data
format of the device. If this is the case, data transferred between the host and device
needs to be byte swapped to conform to the data format requirements of the
destination location. Other devices can have the same endian characteristics of the
host and require no byte swapping of the data.

Drivers specify the endian characteristics of the device by setting the appropriate flag
in the ddi_device_acc_attr(9S) structure that is passed to
ddi_regs_map_setup(9F). The DDI framework then performs any required byte
swapping when the driver calls a ddi_getX routine (such as ddi_get8(9F)) or a
ddi_putX routine (such as ddi_put16(9F)) to read or write device memory.

Managing Data Ordering Requirements
Platforms can choose to reorder loads and stores of data to optimize performance of
the platform. Because reordering might not be allowed by certain devices, the driver is
required to specify the device’s ordering requirements when setting up mappings to
the device.

ddi_device_acc_attr(9S)
This structure describes the endian and data ordering requirements of the device. The
driver is required to initialize and pass one of these structures as an argument to
ddi_regs_map_setup(9F).

typedef struct ddi_device_acc_attr {
ushort_t devacc_attr_version;
uchar_t devacc_attr_endian_flags;
uchar_t devacc_attr_dataorder;

} ddi_device_acc_attr_t;

devacc_attr_version Specify DDI_DEVICE_ATTR_V0

devacc_attr_endian_flags Describes the endian characteristics of the
device. Specified as a bit value whose
possible values are:

� DDI_NEVERSWAP_ACC – Never swap
data

� DDI_STRUCTURE_BE_ACC – The device
data format is big-endian
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� DDI_STRUCTURE_LE_ACC – The device
data format is little-endian

devacc_attr_dataorder Describes the order in which the CPU must
reference data as required by the device.
Specified as an enumerated value, where
data access restrictions are ordered from
most to least strict.

� DDI_STRICTORDER_ACC – The host
must issue the references in order, as
specified by the programmer. This is the
default behavior

� DDI_UNORDERED_OK_ACC – The host is
allowed to reorder loads and stores to
device memory

� DDI_MERGING_OK_ACC – The host is
allowed to merge individual stores to
consecutive locations. This setting also
implies reordering

� DDI_LOADCACHING_OK_ACC – The host
is allowed to read data from the device
until a store occurs

� DDI_STORECACHING_OK_ACC – The
host is allowed to cache data written to
the device and defer writing it to the
device until some future time.

Note – The system can access data more strictly than the driver specified in
devacc_attr_dataorder. The restriction to the host diminishes while moving from
strict data ordering to cache storing in terms of data accesses by the driver.

Mapping Device Memory
Drivers typically map all regions of a device during attach(9E). The driver maps a
region of device memory by calling ddi_regs_map_setup(9F), specifying the
register number of the region to map, the device access attributes for the region, an
offset, and size. The DDI framework sets up the mappings for the device region and
returns an opaque handle to the driver. This data access handle is passed as an
argument to the ddi_get8(9F) or ddi_put8(9F) family of routines when reading or
writing data to that region of the device.
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The driver verifies that the shape of the device mappings match what the driver is
expecting by checking the number of mappings exported by the device. It calls
ddi_dev_nregs(9F), then verifies the size of each mapping by calling
ddi_dev_regsize(9F).

Mapping Setup
Example 6–1 is a simple example demonstrating the setup and use of the DDI data
access interfaces. This driver is for a fictional little endian device that accepts one
character at a time and generates an interrupt when ready for another. This device
implements two register sets: the first is an 8-bit CSR register, and the second is an
8-bit data register.

EXAMPLE 6–1 Mapping Setup

#define CSR_REG 0
#define DATA_REG 1

/*
* Initialize the device access attributes for the register
* mapping
*/
dev_acc_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
dev_acc_attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
dev_acc_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;

/*
* Map in the csr register (register 0)
*/
if (ddi_regs_map_setup(dip, CSR_REG, (caddr_t *)&(pio_p->csr), 0,
sizeof (Pio_csr), &dev_acc_attr, &pio_p->csr_handle) != DDI_SUCCESS) {
mutex_destroy(&pio_p->mutex);
ddi_soft_state_free(pio_softstate, instance);
return (DDI_FAILURE);

}

/*
* Map in the data register (register 1)
*/
if (ddi_regs_map_setup(dip, DATA_REG, (caddr_t *)&(pio_p->data), 0,
sizeof (uchar_t), &dev_acc_attr, &pio_p->data_handle) \

!= DDI_SUCCESS) {
mutex_destroy(&pio_p->mutex);
ddi_regs_map_free(&pio_p->csr_handle);
ddi_soft_state_free(pio_softstate, instance);
return (DDI_FAILURE);

}
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Device Access Functions
Drivers use the ddi_get8(9F) and ddi_put8(9F) family of routines in conjunction
with the handle returned by ddi_regs_map_setup(9F) to transfer data to and from
a device. The DDI framework automatically handles any byte swapping that is
required to meet host or device endian formats, and enforces any store-ordering
constraints the device might have.

The DDI provides interfaces for transferring data in 8, 16, 32, and 64 bit quantities, as
well as interfaces for transferring multiple values repeatedly. See the man pages for
the ddi_get8(9F), ddi_put8(9F), ddi_rep_get8(9F) and ddi_rep_put8(9F)
families of routines for a complete listing and description of these interfaces.

Example 6–2 builds on Example 6–1 where the driver mapped the device’s CSR and
data registers. Here, the driver’s write(9E) entry point, when called, will write a
buffer of data to the device one byte at a time.

EXAMPLE 6–2

static int
pio_write(dev_t dev, struct uio *uiop, cred_t *credp)
{

int retval;
int error = OK;
Pio *pio_p = ddi_get_soft_state(pio_softstate, getminor(dev));

if (pio_p == NULL)
return (ENXIO);

mutex_enter(&pio_p->mutex);
/*
* enable interrupts from the device by setting the Interrupt
* Enable bit in the devices CSR register
*/
ddi_put8(pio_p->csr_handle, pio_p->csr,
(ddi_get8(pio_p->csr_handle, pio_p->csr) | PIO_INTR_ENABLE));

while (uiop->uio_resid > 0) {
/*
* this device issues an IDLE interrupt when it is ready
* to accept a character; the interrupt can be cleared
* by setting PIO_INTR_CLEAR. The interrupt is reasserted
* after the next character is written or the next time
* PIO_INTR_ENABLE is toggled on.
*
* wait for interrupt (see pio_intr)
*/
cv_wait(&pio_p->cv, &pio_p->mutex);

/*
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EXAMPLE 6–2 (Continued)

* get a character from the user’s write request
* fail the write request if any errors are encountered
*/
if ((retval = uwritec(uiop)) == -1) {

error = retval;
break;

}

/*
* pass the character to the device by writing it to
* the devices data register
*/
ddi_put8(pio_p->data_handle, pio_p->data, (uchar_t)retval);

}

/*
* disable interrupts by clearing the Interrupt Enable bit
* in the CSR
*/
ddi_put8(pio_p->csr_handle, pio_p->csr,
(ddi_get8(pio_p->csr_handle, pio_p->csr) & ~PIO_INTR_ENABLE));

mutex_exit(&pio_p->mutex);
return (error);

}

Alternate Device Access Interfaces
While having a driver implement all device accesses using the ddi_get8(9F) and
ddi_put8(9F) family of interfaces, Solaris provides interfaces specific to particular
bus implementations. While these functions are more efficient on some platforms, use
of these routines can limit the ability of the driver to remain portable across different
bus versions of the device.

Memory Space Access
With memory mapped access, device registers appear in memory address space. The
ddi_getX family of routines (such as ddi_get16(9F)) and the ddi_putX family
(such as ddi_put8(9F)) are available for use by drivers as an alternative to the
standard device access interfaces.
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I/O Space Access
With I/O space access, the device registers appear in I/O space, where each
addressable element is called an I/O port. The ddi_io_get8(9F) and
ddi_io_put8(9F) family of routines is available for use by drivers as an alternative to
the standard device access interfaces.

PCI Configuration Space Access
To access PCI configuration space without using the normal device access interfaces, a
driver is required to map PCI configuration space by calling pci_config_setup(9F)
in place of ddi_regs_map_setup(9F). The driver can then call the
pci_config_get8(9F) and pci_config_put8(9F) family of interfaces to access PCI
configuration space.
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CHAPTER 7

Interrupt Handlers

This chapter describes interrupt handling mechanisms. These include registering,
servicing, and removing interrupts.

Interrupt Handler Overview
An interrupt is a hardware signal from a device to a CPU. It tells the CPU that the
device needs attention and that the CPU should stop performing what it is doing and
respond to the device. If a CPU is available (it is not performing a task with higher
priority), it suspends the current thread and eventually invokes the interrupt handler
for that device. The job of the interrupt handler is to service the device and stop it
from interrupting. Once the handler returns, the CPU resumes what it was doing
before the interrupt occurred.

The Solaris 9 DDI/DKI provides interfaces for registering and servicing interrupts.

Interrupt Specification
The interrupt specification is information the system uses to bind a device interrupt
source with a specific device interrupt handler. The specification describes the
information provided by the hardware to the system when making an interrupt
request. Because an interrupt specification is bus specific, the information it contains
varies from bus to bus.

Interrupt specifications typically include a bus-interrupt level. For vectored interrupts
the specifications include an interrupt vector. On IA platforms the interrupt
specification defines the relative interrupt priority of the device. Because interrupt
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specifications are bus specific, see the man pages for isa(4), eisa(4), sbus(4), and
pci(4) for information on interrupt specifications for these buses.

Interrupt Number
When registering interrupts the driver must provide the system with an interrupt
number. This interrupt number identifies the interrupt specification for which the
driver is registering a handler. Most devices have one interrupt: interrupt number 0.
However, there are devices that have different interrupts for different events. A
communications controller may have one interrupt for receive ready and one for
transmit ready. The device driver normally knows how many interrupts the device
has, but if the driver has to support several variations of a controller, it can call
ddi_dev_nintrs(9F) to find out the number of device interrupts.

Interrupt Block Cookies
An iblock cookie is an opaque data structure that represented the information the
system needs on how to block interrupts and is returned from
ddi_get_iblock_cookie(9F) or ddi_get_soft_iblock_cookie(9F). This
interface uses an interrupt number to return the iblock cookie associated with a
specific interrupt source. The value of the iblock cookie (not the address) must be
passed to mutex_init(9F) when initializing driver mutexes that will be used in the
interrupt routine. The value of the iblock cookie is obtained by passing the address of
the cookie to ddi_get_iblock_cookie(9F) or
ddi_get_soft_iblock_cookie(9F). For example:

ddi_get_soft_iblock_cookie(dip, DDI_SOFTINT_HI,
&xsp->low_iblock_cookie)

mutex_init(&xsp->low_mu, NULL, MUTEX_DRIVER,

(void *)xsp->low_iblock_cookie);

Device Interrupts
There are two common ways in which buses implement interrupts: vectored and polled.
Both methods commonly supply a bus-interrupt priority level. However, vectored
devices also supply an interrupt vector; polled devices do not.
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High-Level Interrupts
Buses prioritize device interrupts at one of several bus-interrupt levels. These bus
interrupt levels are then mapped to different processor-interrupt levels. A bus
interrupt level that maps to a CPU interrupt priority level above the scheduler priority
level is called a high-level interrupt. High-level interrupt handlers are restricted in what
DDI interfaces they can call. In particular, the only DDI routines that high-level
interrupt handlers are allowed to call are:

� mutex_enter(9F) and mutex_exit(9F) on a mutex initialized with an iblock
cookie associated with the high-level interrupt

� ddi_trigger_softintr(9F)

� the ddi_getX/ddi_putX families of routines (such as ddi_get8(9F))

A bus-interrupt level by itself does not determine whether a device interrupts at high
level: a given bus-interrupt level may map to a high-level interrupt on one platform,
but map to an ordinary interrupt on another platform.

The driver can choose whether to support devices that have high-level interrupts, but
it always has to check—it cannot assume that its interrupts are not high level. The
function ddi_intr_hilevel(9F), given an interrupt number, returns a value
indicating whether the interrupt is high level.

Normal Interrupts
The only information the system has about a device interrupt is either the bus
interrupt priority level (IPL, on an SBus in a SPARC machine, for example) or the
interrupt request number (IRQ on an ISA bus in an IA machine, for example).

When an interrupt handler is registered, the system adds the handler to a list of
potential interrupt handlers for each IPL or IRQ. Once the interrupt occurs, the system
must determine which device, of all the devices associated with a given IPL or IRQ,
actually interrupted. It does this by calling all the interrupt handlers for the
designated IPL or IRQ, until one handler claims the interrupt.

The SBus, ISA, EISA, and PCI buses are capable of supporting polled interrupts.

Software Interrupts
The Solaris 9 DDI/DKI supports software interrupts, also known as soft interrupts. Soft
interrupts are initiated by software, rather than by a hardware device. Handlers for
these interrupts must also be added to and removed from the system. Soft interrupt
handlers run in interrupt context and therefore can be used to do many of the tasks
that belong to an interrupt handler.
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Hardware interrupt handlers are supposed to perform their tasks quickly, since they
may suspend other system activity while running. This is particularly true for
high-level interrupt handlers, which operate at priority levels greater than that of the
system scheduler. High-level interrupt handlers mask the operations of all
lower-priority interrupts—including those of the system clock. Consequently, the
interrupt handler must avoid involving itself in an activity (such as acquiring a mutex)
that might cause it to sleep.

If the handler sleeps, then the system may hang because the clock is masked and
incapable of scheduling the sleeping process. For this reason, high-level interrupt
handlers normally perform a minimum amount of work at high-priority levels and
delegate remaining tasks to software interrupts, which run below the priority level of
the high-level interrupt handler. Because software interrupt handlers run below the
priority level of the system scheduler, they can do the work that the high-level
interrupt handler was incapable of doing.

Software interrupt handlers must not perform as if they have work to do when they
run, since (like hardware interrupt handlers) they can be called because some other
driver triggered the interrupt. For this reason, the driver must indicate to the soft
interrupt handler that it should do work before the driver triggers the soft interrupt.

Registering Interrupts
Before a device driver can receive and service interrupts, it must register an interrupt
handler with the system by calling ddi_add_intr(9F). Registering interrupts
provides the system with a way to associate an interrupt handler with an interrupt
specification. The interrupt handler is called when the device might have been
responsible for the interrupt. The handler has the responsibility of determining if it
should handle the interrupt and, if so, of claiming it.

Caution – There is a potential race condition between adding the interrupt handler
and initializing mutexes. The interrupt routine is eligible to be called as soon as
ddi_add_intr(9F) returns, as another device might interrupt and cause the handler
to be invoked. This may result in the interrupt routine being called before any mutexes
have been initialized with the returned interrupt block cookie. If the interrupt routine
acquires the mutex before it has been initialized, undefined behavior may result. To
ensure that this race condition does not occur, always initialize mutexes and any other
data used in the interrupt handler before adding the interrupt.

To register a driver’s interrupt handler, the driver usually performs the following steps
in attach(9E).
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1. Test for high-level interrupts by calling ddi_intr_hilevel(9F) to find out if the
interrupt specification maps to a high-level interrupt. If it does, one possibility is to
post a message to that effect and return DDI_FAILURE. See Example 7–1.

2. Get the iblock cookie by calling ddi_get_iblock_cookie(9F).

3. Initialize any associated mutexes with the iblock cookie by calling
mutex_init(9F).

4. Register the interrupt handler by calling ddi_add_intr(9F).

Example 7–1 shows how to install an interrupt handler.

EXAMPLE 7–1 attach(9E) Routine Installing an Interrupt Handler

static int
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

struct xxstate *xsp;
switch (cmd) {
case DDI_ATTACH:

...
if (ddi_intr_hilevel(dip, inumber) != 0){
cmn_err(CE_CONT,

"xx: high-level interrupts are not supported\n");
return (DDI_FAILURE);

}
ddi_get_iblock_cookie(dip, inumber, &xsp->iblock_cookie);

mutex_init(&xsp->mu, NULL, MUTEX_DRIVER,
(void *)xsp->iblock_cookie);

cv_init(&xsp->cv, NULL, CV_DRIVER, NULL);
if (ddi_add_intr(dip, inumber, NULL,

NULL, xxintr,
(caddr_t)xsp) != DDI_SUCCESS){

cmn_err(CE_WARN, "xx: cannot add interrupt handler.");
goto failed;

}
return (DDI_SUCCESS);

case DDI_RESUME:
For information, see Chapter 9

default:
return (DDI_FAILURE);

}
failed:

remove interrupt handler if necessary, destroy mutex and condition variable
return (DDI_FAILURE);

}
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Interrupt Handlers
The interrupt handler has a set of responsibilities to perform. Some are required by the
framework, and some are required by the device. All interrupt handlers are required
to do the following:

� Determine if the device is interrupting and possibly reject the interrupt.

The interrupt handler must first examine the device and determine if it has issued
the interrupt. If it has not, the handler must return DDI_INTR_UNCLAIMED. This
step allows the implementation of device polling: it tells the system whether this
device, among a number of devices at the given interrupt priority level, has issued
the interrupt.

� Inform the device that it is being serviced.

This is a device-specific operation, but it is required for the majority of devices. For
example, SBus devices are required to interrupt until the driver tells them to stop.
This guarantees that all SBus devices interrupting at the same priority level will be
serviced.

� Perform any I/O request-related processing.

Devices interrupt for different reasons, such as transfer done or transfer error. This
step may involve using data access functions to read the device’s data buffer,
examine the device’s error register, and set the status field in a data structure
accordingly. Interrupt dispatching and processing are relatively time consuming.

� Do any additional processing that could save another interrupt, for example, read
the next data from the device.

� Return DDI_INTR_CLAIMED.

Example 7–2 shows an interrupt routine.

EXAMPLE 7–2 Interrupt Example

static uint_t
xxintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
uint8_t status;

volatile uint8_t temp;

/*
* Claim or reject the interrupt.This example assumes
* that the device’s CSR includes this information.
*/
mutex_enter(&xsp->high_mu);
/* use data access routines to read status */
status = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);
if (!(status & INTERRUPTING)) {

mutex_exit(&xsp->high_mu);
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EXAMPLE 7–2 Interrupt Example (Continued)

return (DDI_INTR_UNCLAIMED); /* dev not interrupting */
}
/*
* Inform the device that it is being serviced, and re-enable
* interrupts. The example assumes that writing to the
* CSR accomplishes this. The driver must ensure that this data
* access operation makes it to the device before the interrupt
* service routine returns. For example, using the data access
* functions to read the CSR, if it does not result in unwanted
* effects, can ensure this.
*/
ddi_put8(xsp->data_access_handle, &xsp->regp->csr,

CLEAR_INTERRUPT | ENABLE_INTERRUPTS);
/* flush store buffers */

temp = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);

mutex_exit(&xsp->mu);
return (DDI_INTR_CLAIMED);

}

Most of the steps performed by the interrupt routine depend on the specifics of the
device itself. Consult the hardware manual for the device to determine the cause of the
interrupt, detect error conditions, and access the device data registers.

Handling High-Level Interrupts
High-level interrupts are those that interrupt at the level of the scheduler and above.
This level does not allow the scheduler to run; therefore, high-level interrupt handlers
cannot be preëmpted by the scheduler, nor can they rely on the scheduler (that is, they
cannot block because of the scheduler)—they can only use mutual exclusion locks for
locking.

Because of this, the driver must use ddi_intr_hilevel(9F) to determine if it is
using high-level interrupts. If ddi_intr_hilevel(9F) returns true, the driver can fail
to attach, or it can use a two-level scheme to handle interrupts.

The suggested method is to add a high-level interrupt handler, which simply triggers
a lower-priority software interrupt to handle the device. The driver should allow more
concurrency by using a separate mutex for protecting data from the high-level
handler.
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High-level Mutexes
A mutex initialized with the interrupt block cookie that represents a high-level
interrupt is known as a high-level mutex. While holding a high-level mutex, the driver
is subject to the same restrictions as a high-level interrupt handler. The only routines it
can call are:

� mutex_exit(9F) to release the high-level mutex
� ddi_trigger_softintr(9F) to trigger a soft interrupt

High-Level Interrupt Handling Example
In the example presented in Example 7–3, the high-level mutex (xsp->high_mu) is
used only to protect data shared between the high-level interrupt handler and the soft
interrupt handler. This includes a queue that the high-level interrupt handler appends
data to (and the low-level handler removes data from), and a flag that indicates the
low-level handler is running. A separate low-level mutex (xsp->low_mu) protects the
rest of the driver from the soft interrupt handler.

EXAMPLE 7–3 attach(9E) Routine Handling High-Level Interrupts

static int
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

struct xxstate *xsp;
...
if (ddi_intr_hilevel(dip, inumber)) {

ddi_get_iblock_cookie(dip, inumber,
&xsp->high_iblock_cookie);

mutex_init(&xsp->high_mu, NULL, MUTEX_DRIVER,
(void *)xsp->high_iblock_cookie);

if (ddi_add_intr(dip, inumber, &xsp->high_iblock_cookie,
&xsp->high_idevice_cookie, xxhighintr, (caddr_t)xsp)
!= DDI_SUCCESS)
goto failed;

ddi_get_soft_iblock_cookie(dip, DDI_SOFTINT_HI,
&xsp->low_iblock_cookie)

mutex_init(&xsp->low_mu, NULL, MUTEX_DRIVER,
(void *)xsp->low_iblock_cookie);

if (ddi_add_softintr(dip, DDI_SOFTINT_HI, &xsp->id,
&xsp->low_iblock_cookie, NULL,
xxlowintr, (caddr_t)xsp) != DDI_SUCCESS)
goto failed;

} else {
add normal interrupt handler

}
cv_init(&xsp->cv, NULL, CV_DRIVER, NULL);
...
return (DDI_SUCCESS);

failed:
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EXAMPLE 7–3 attach(9E) Routine Handling High-Level Interrupts (Continued)

free allocated resources, remove interrupt handlers
return (DDI_FAILURE);

}

The high-level interrupt routine services the device, and enqueues the data. The
high-level routine triggers a software interrupt if the low-level routine is not running,
as Example 7–4 demonstrates.

EXAMPLE 7–4 High-level Interrupt Routine

static uint_t
xxhighintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
uint8_t status;
volatile uint8_t temp;
int need_softint;

mutex_enter(&xsp->high_mu);
/* read status */
status = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);
if (!(status & INTERRUPTING)) {

mutex_exit(&xsp->high_mu);
return (DDI_INTR_UNCLAIMED); /* dev not interrupting */

}

ddi_put8(xsp->data_access_handle,&xsp->regp->csr,
CLEAR_INTERRUPT | ENABLE_INTERRUPTS);
/* flush store buffers */

temp = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);
read data from device and queue the data for the low-level interrupt handler;

if (xsp->softint_running)
need_softint = 0;

else {
xsp->softint_count++;
need_softint = 1;

}
mutex_exit(&xsp->high_mu);
/* read-only access to xsp->id, no mutex needed */
if (need_softint)

ddi_trigger_softintr(xsp->id);
return (DDI_INTR_CLAIMED);

}

The low-level interrupt routine is started by the high-level interrupt routine triggering
a software interrupt. Once running, it should continue to do so until there is nothing
left to process, as Example 7–5 shows.
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EXAMPLE 7–5 Low-level Interrupt Routine

static uint_t
xxlowintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
....
mutex_enter(&xsp->low_mu);
mutex_enter(&xsp->high_mu);
if (xsp->softint_count > 1) {

xsp->softint_count--;
mutex_exit(&xsp->high_mu);
mutex_exit(&xsp->low_mu);
return (DDI_INTR_CLAIMED);

}
if ( queue empty) {

mutex_exit(&xsp->high_mu);
mutex_exit(&xsp->low_mu);
return (DDI_INTR_UNCLAIMED);

}
xsp->softint_running = 1;
while ( data on queue) {

ASSERT(mutex_owned(&xsp->high_mu);
dequeue data from high-level queue;

mutex_exit(&xsp->high_mu);
normal interrupt processing

mutex_enter(&xsp->high_mu);
}
xsp->softint_running = 0;
xsp->softint_count = 0;
mutex_exit(&xsp->high_mu);
mutex_exit(&xsp->low_mu);
return (DDI_INTR_CLAIMED);

}
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CHAPTER 8

Direct Memory Access (DMA)

Many devices can temporarily take control of the bus and perform data transfers to
(and from) main memory or other devices. Because the device is doing the work
without the help of the CPU, this type of data transfer is known as direct memory access
(DMA). DMA transfers can be performed between two devices, between a device and
memory, or between memory and memory. This chapter explains transfers between a
device and memory only.

DMA Model
The Solaris Device Driver Interface/Driver-Kernel Interface (DDI/DKI) provides a
high-level, architecture-independent model for DMA. This allows the framework (the
DMA routines) to hide such architecture-specific details as:

� Setting up DMA mappings
� Building scatter-gather lists
� Ensuring that I/O and CPU caches are consistent

There are several abstractions that are used in the DDI/DKI to describe aspects of a
DMA transaction. These include:

� DMA object – Memory that is the source or destination of a DMA transfer.

� DMA handle – An opaque object returned from a successful
ddi_dma_alloc_handle(9F) call. The DMA handle can be used in subsequent
DMA subroutine calls to refer to such DMA objects.

� DMA cookie – A ddi_dma_cookie(9S) structure (ddi_dma_cookie_t) describes a
contiguous portion of a DMA object that is entirely addressable by the device. It
contains DMA addressing information required to program the DMA engine.
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Rather than knowing that a platform needs to map an object (typically a memory
buffer) into a special DMA area of the kernel address space, device drivers instead
allocate DMA resources for the object. The DMA routines then perform any
platform-specific operations needed to set the object up for DMA access. The driver
receives a DMA handle to identify the DMA resources allocated for the object. This
handle is opaque to the device driver; the driver must save the handle and pass it in
subsequent calls to DMA routines, but should not interpret it in any way.

Operations are defined on a DMA handle that provide the following services:

� Manipulating DMA resources
� Synchronizing DMA objects
� Retrieving attributes of the allocated resources

Types of Device DMA
Devices perform one of the following three types of DMA: bus-master DMA,
third-party DMA, and first-party DMA.

Bus-Master DMA
If the device is capable of acting as a true bus master (where the DMA engine resides
on the device board), the driver should program the device’s DMA registers directly.
The transfer address and count are obtained from the DMA cookie and given to the
device.

Third-party DMA
Third-party DMA utilizes a system DMA engine resident on the main system board,
which has several DMA channels available for use by devices. The device relies on the
system’s DMA engine to perform the data transfers between the device and memory.
The driver uses DMA engine routines (see ddi_dmae(9F)) to initialize and program
the DMA engine. For each DMA data transfer, the driver programs the DMA engine
and then gives the device a command to initiate the transfer in cooperation with that
engine.
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First-party DMA
Under first-party DMA, the device drives its own DMA bus cycles using a channel
from the system’s DMA engine. The ddi_dmae_1stparty(9F) function is used to
configure this channel in a cascade mode so that the DMA engine will not interfere
with the transfer.

Types of Host Platform DMA
The platform that the device operates on provides one of two types of memory access:
direct memory access (DMA) or direct virtual memory access (DVMA).

On platforms that support DMA, the system provides the device with a physical
address in order to perform transfers. In this case, the transfer of a DMA object can
actually consist of a number of physically discontiguous transfers. An example of this
occurs when an application transfers a buffer that spans several contiguous virtual
pages that map to physically discontiguous pages. To deal with the discontiguous
memory, devices for these platforms usually have some kind of scatter-gather DMA
capability. Typically, IA systems provide physical addresses for direct memory
transfers.

On platforms that support DVMA, the system provides the device with a virtual
address to perform transfers. In this case, the underlying platform provides some form
of memory management unit (MMU) that translates device accesses to these virtual
addresses into the proper physical addresses. The device transfers to and from a
contiguous virtual image that can be mapped to discontiguous physical pages.
Devices that operate in these platforms don’t need scatter-gather DMA capability.
Typically, SPARC platforms provide virtual addresses for direct memory transfers.

DMA Software Components: Handles,
Windows, and Cookies
A DMA handle is an opaque pointer representing an object (usually a memory buffer or
address) where a device can perform DMA transfers. Several different calls to DMA
routines use the handle to identify the DMA resources allocated for the object.

An object represented by a DMA handle is completely covered by one or more DMA
cookies. A DMA cookie represents a contiguous piece of memory to or from which the
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DMA engine can transfer data. The system uses the information in a DMA attribute
ddi_dma_attr(9S) structure provided by the driver, as well as the memory location
and alignment of the target object, to decide how to divide an object into multiple
cookies.

If the object is too big to fit the request within system resource limitations, it has to be
broken up into multiple DMA windows. Only one window is activated at one time and
has resources allocated. The ddi_dma_getwin(9F) function is used to position
between windows within an object. Each DMA window consists of one or more DMA
cookies. For more information, see “DMA Windows” on page 131.

Some DMA engines can accept more than one cookie. Such engines perform
scatter-gather I/O without the help of the system. In this case, it is most efficient if the
driver uses ddi_dma_nextcookie(9F) to get as many cookies as the DMA engine
can handle and program them all into the engine. The device can then be programmed
to transfer the total number of bytes covered by all these DMA cookies combined.

DMA Operations
The steps involved in a DMA transfer are similar among the types of DMA. The
sections below present methods for performing DMA transfers.

Note – You do not have to ensure the DMA object is locked in memory in block
drivers for buffers coming from the file system, as the file system has already locked
the data in memory.

Bus-Master DMA
In general, the driver should perform the following steps for bus-master DMA.

1. Describe the DMA attributes. This enables the routines to ensure that the device
will be able to access the buffer.

2. Allocate a DMA handle.

3. Ensure that the DMA object is locked in memory (see physio(9F) or
ddi_umem_lock(9F)).

4. Allocate DMA resources for the object.

5. Program the DMA engine on the device and start it (this is device specific). When
the transfer is complete, continue the bus master operation.

6. Perform any required object synchronizations.
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7. Release the DMA resources.

8. Free the DMA handle.

First-Party DMA
In general, the driver should perform the following steps for first-party DMA.

1. Allocate a DMA channel.

2. Configure the channel with ddi_dmae_1stparty(9F).

3. Ensure that the DMA object is locked in memory (see physio(9F) or
ddi_umem_lock(9F)).

4. Allocate DMA resources for the object.

5. Program the DMA engine on the device and start it (this is device specific). When
the transfer is complete, continue the bus-master operation.

6. Perform any required object synchronizations.

7. Release the DMA resources.

8. Deallocate the DMA channel.

Third-Party DMA
In general, the driver should perform these steps for third-party DMA.

1. Allocate a DMA channel.

2. Retrieve the system’s DMA engine attributes with ddi_dmae_getattr(9F).

3. Lock the DMA object in memory (see physio(9F) or ddi_umem_lock(9F)).

4. Allocate DMA resources for the object.

5. Program the system DMA engine to perform the transfer with
ddi_dmae_prog(9F).

6. Perform any required object synchronizations.

7. Stop the DMA engine with ddi_dmae_stop(9F).

8. Release the DMA resources.

9. Deallocate the DMA channel.

Certain hardware platforms restrict DMA capabilities in a bus-specific way. Drivers
should use ddi_slaveonly(9F) to determine if the device is in a slot in which DMA
is possible.
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DMA Attributes
DMA attributes describe the built-in attributes and limits of a DMA engine, including:

� Limits on addresses the device can access
� Maximum transfer count
� Address alignment restrictions

To ensure that DMA resources allocated by the system can be accessed by the device’s
DMA engine, device drivers must inform the system of their DMA engine limitations
using a ddi_dma_attr(9S) structure. The system might impose additional
restrictions on the device attributes, but it never removes any of the driver-supplied
restrictions.

ddi_dma_attr Structure
The DMA attribute structure has the following members:

typedef struct ddi_dma_attr {
uint_t dma_attr_version; /* version number */
uint64_t dma_attr_addr_lo; /* low DMA address range */
uint64_t dma_attr_addr_hi; /* high DMA address range */
uint64_t dma_attr_count_max; /* DMA counter register */
uint64_t dma_attr_align; /* DMA address alignment */
uint_t dma_attr_burstsizes; /* DMA burstsizes */
uint32_t dma_attr_minxfer; /* min effective DMA size */
uint64_t dma_attr_maxxfer; /* max DMA xfer size */
uint64_t dma_attr_seg; /* segment boundary */
int dma_attr_sgllen; /* s/g length */
uint32_t dma_attr_granular; /* granularity of device */
uint_t dma_attr_flags; /* Bus specific DMA flags */

} ddi_dma_attr_t;

dma_attr_version Version number of the attribute structure. It should be
set to DMA_ATTR_V0.

dma_attr_addr_lo Lowest bus address that the DMA engine can access

dma_attr_addr_hi Highest bus address that the DMA engine can access

dma_attr_count_max Specifies the maximum transfer count that the DMA
engine can handle in one cookie. The limit is expressed
as the maximum count minus one. It is used as a bit
mask, so it must also be one less than a power of two.

dma_attr_align Specifies additional alignment requirements for any
allocated DMA resources. This field can be used to force
more restrictive alignment than implicitly specified by
other DMA attributes, such as alignment on a page
boundary.
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dam_attr_burstsizes Specifies the burst sizes that the device supports. (A burst
size is the amount of data the device can transfer before
relinquishing the bus.) This member is a binary
encoding of burst sizes, assumed to be powers of two.
For example, if the device is capable of doing 1-, 2-, 4-,
and 16-byte bursts, this field should be set to 0 x 17. The
system also uses this field to determine alignment
restrictions.

dma_attr_minxfer Minimum effective transfer size the device can perform.
It also influences alignment and padding restrictions.

dma_attr_maxxfer Describes the maximum number of bytes that the DMA
engine can transmit or receive in one I/O command.
This limitation is only significant if it is less than
(dma_attr_count_max + 1) * dma_attr_sgllen.

dma_attr_seg Upper bound of the DMA engine’s address register. This
is often used where the upper 8 bits of an address
register are a latch containing a segment number, and
the lower 24 bits are used to address a segment. In this
case, dma_attr_seg would be set to 0xFFFFFF, which
prevents the system from crossing a 24-bit segment
boundary when allocating resources for the object.

dma_attr_sgllen Specifies the maximum number of entries in the
scatter-gather list. It is the number of cookies that the
DMA engine can consume in one I/O request to the
device. If the DMA engine has no scatter-gather list, this
field should be set to one.

dma_attr_granular This field describes the granularity of the device’s DMA
transfer ability, in units of bytes. This value is used to
specify, for example, the sector size of a mass storage
device. DMA requests will be broken into multiples of
this value. If there is no scatter-gather capability, then
the size of each DMA transfer will be a multiple of this
value. If there is scatter-gather capability, then a single
segment will not be smaller than the minimum transfer
value, but can be less than the granularity; however the
total transfer length of the scatter-gather list will be a
multiple of the granularity value.

dma_attr_flags This field can be set to DDI_DMA_FORCE_PHYSICAL,
which indicates that the system should return physical
rather than virtual I/O addresses if the system supports
both. If the system does not support physical DMA, the
return value from ddi_dma_alloc_handle(9F) will
be DDI_DMA_BADATTR. In this case, the driver has to
clear DDI_DMA_FORCE_PHYSICAL and retry the
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operation.

SBus Example
A DMA engine on an SBus in a SPARC machine has the following attributes:

� It can access only addresses ranging from 0xFF000000 to 0xFFFFFFFF.

� It has a 32-bit DMA counter register.

� It can handle byte-aligned transfers.

� It supports 1-, 2- and 4-byte burst sizes.

� It has a minimum effective transfer size of 1 byte.

� It has a 32-bit address register.

� It doesn’t have a scatter-gather list.

� The device operates on sectors only (for example a disk).

The resulting attribute structure is:

static ddi_dma_attr_t attributes = {
DMA_ATTR_V0, /* Version number */
0xFF000000, /* low address */
0xFFFFFFFF, /* high address */
0xFFFFFFFF, /* counter register max */
1, /* byte alignment */
0x7, /* burst sizes: 0x1 | 0x2 | 0x4 */
0x1, /* minimum transfer size */
0xFFFFFFFF, /* max xfer size */
0xFFFFFFFF, /* address register max */
1, /* no scatter-gather */
512, /* device operates on sectors */
0, /* attr flag: set to 0 */

};

ISA Bus Example
A DMA engine on an ISA bus in an IA machine has the following attributes:

� It accesses only the first 16 megabytes of memory.
� It cannot cross a 1 megabyte boundary in a single DMA transfer.
� It has a 16-bit counter register.
� It can handle byte-aligned transfers.
� It supports 1-, 2- and 4-byte burst sizes.
� It has a minimum effective transfer size of 1 byte.
� It can hold up to 17 scatter-gather transfers.
� The device operates on sectors only (for example a disk).

The resulting attribute structure is:
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static ddi_dma_attr_t attributes = {
DMA_ATTR_V0, /* Version number */
0x00000000, /* low address */
0x00FFFFFF, /* high address */
0xFFFF, /* counter register max */
1, /* byte alignment */
0x7, /* burst sizes */
0x1, /* minimum transfer size */
0xFFFFFFFF, /* max xfer size */
0x000FFFFF, /* address register max */
17, /* scatter-gather */
512, /* device operates on sectors */
0, /* attr flag: set to 0 */

};

Object Locking
Before allocating the DMA resources for a memory object, the object must be
prevented from moving. Otherwise, the system can remove the object from memory
while the device is writing to it, causing the data transfer to fail, and possibly
corrupting the system. The process of preventing memory objects from moving during
a DMA transfer is known as locking down the object.

The following object types do not require explicit locking:

� Buffers coming from the file system through strategy(9E). These buffers are
already locked by the file system.

� Kernel memory allocated within the device driver, such as that allocated by
ddi_dma_mem_alloc(9F).

For other objects (such as buffers from user space), physio(9F) or
ddi_umem_lock(9F) must be used to lock down the objects. This is usually
performed in the read(9E) or write(9E) routines of a character device driver. See
“Data Transfer Methods” on page 165 for an example.

Allocating a DMA Handle
A DMA handle is an opaque object that is used as a reference to subsequently
allocated DMA resources. It is usually allocated in the driver’s attach entry point using
ddi_dma_alloc_handle(9F). ddi_dma_alloc_handle(9F) takes the device
information referred to by dip and the device’s DMA attributes described by a
ddi_dma_attr(9S) structure as parameters. ddi_dma_alloc_handle(9F) has the
following syntax:

int ddi_dma_alloc_handle(dev_info_t *dip,
ddi_dma_attr_t *attr, int (*callback)(caddr_t),
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caddr_t arg, ddi_dma_handle_t *handlep);

dip Pointer to the device’s dev_info structure

attr Pointer to a ddi_dma_attr(9S) structure as described in “DMA
Attributes” on page 116

callback Address of the callback function for handling resource allocation failures

arg Argument to be passed to the callback function

handlep Pointer to a DMA handle to store the returned handle

Allocating DMA Resources
Two interfaces allocate DMA resources:

� ddi_dma_buf_bind_handle(9F) – Used with buf(9S) structures

� ddi_dma_addr_bind_handle(9F) – Used with virtual addresses

DMA resources are usually allocated in the driver’s xxstart() routine, if one exists.
See “Asynchronous Data Transfers” on page 197 for discussion of xxstart. These two
interfaces have the following syntax:

int ddi_dma_addr_bind_handle(ddi_dma_handle_t handle,
struct as *as, caddr_t addr,
size_t len, uint_t flags, int (*callback)(caddr_t),

caddr_t arg, ddi_dma_cookie_t *cookiep, uint_t *ccountp);

int ddi_dma_buf_bind_handle(ddi_dma_handle_t handle,
struct buf *bp, uint_t flags,
int (*callback)(caddr_t), caddr_t arg,

ddi_dma_cookie_t *cookiep, uint_t *ccountp);

The following arguments are common to both ddi_dma_addr_bind_handle(9F)
and ddi_dma_buf_bind_handle(9F):

handle DMA handle and the object for allocating resources

flags Set of flags indicating the transfer direction and other attributes.
DDI_DMA_READ indicates a data transfer from device to memory.
DDI_DMA_WRITE indicates a data transfer from memory to device.
See the ddi_dma_addr_bind_handle(9F) or
ddi_dma_buf_bind_handle(9F) man pages for a complete
discussion of the allowed flags.

callback Address of callback function for handling resource allocation
failures. See the ddi_dma_addr_bind_handle(9F) man page.

arg Argument to pass to the callback function.

cookiep Pointer to the first DMA cookie for this object.
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ccountp Pointer to the number of DMA cookies for this object.

� For ddi_dma_addr_bind_handle(9F), the object is described by an address
range, where as is a pointer to an address space structure (this must be NULL),
addr is the base kernel address of the object, and len is the length of the object in
bytes.

� For ddi_dma_buf_bind_handle(9F), the object is described by a buf(9S)
structure pointed to by bp.

Device Register Structure
DMA capable devices have more registers than have been used in previous examples.
This section adds the following fields to the device register structure to support
DMA-capable device examples.

For DMA engines without scatter-gather support:

uint32_t dma_addr; /* starting address for DMA */

uint32_t dma_size; /* amount of data to transfer */

For DMA engines with scatter-gather support:

struct sglentry {
uint32_t dma_addr;
uint32_t dma_size;

} sglist[SGLLEN];

caddr_t iopb_addr; /* When written informs device of the next */
/* command’s parameter block address. */
/* When read after an interrupt,contains */

/* the address of the completed command. */

DMA Callback Example
In Example 8–1, xxstart() is used as the callback function and the per-device state
structure is given as its argument. xxstart() attempts to start the command. If the
command cannot be started because resources are not available, xxstart() is
scheduled to be called sometime later, when resources might be available.

Because xxstart() is used as a DMA callback, it must follow these rules imposed on
DMA callbacks:

� It must not assume that resources are available (it must try to allocate them again).

� It must indicate to the system whether allocation succeeded by returning
DDI_DMA_CALLBACK_RUNOUT if it fails to allocate resources (and needs to be
called again later) or DDI_DMA_CALLBACK_DONE indicating success (so no further
callback is necessary).
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EXAMPLE 8–1 DMA Callback Example

static int
xxstart(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
struct device_reg *regp;
int flags;
mutex_enter(&xsp->mu);
if (xsp->busy) {

/* transfer in progress */
mutex_exit(&xsp->mu);
return (DDI_DMA_CALLBACK_RUNOUT);

}
xsp->busy = 1;
regp = xsp->regp;
if ( transfer is a read) {

flags = DDI_DMA_READ;
} else {

flags = DDI_DMA_WRITE;
}
mutex_exit(&xsp->mu);
if (ddi_dma_buf_bind_handle(xsp->handle,xsp->bp,flags,

xxstart,
(caddr_t)xsp, &cookie, &ccount) != DDI_DMA_MAPPED) {
/* really should check all return values in a switch */

mutex_enter(&xsp->mu);
xsp->busy=0;
mutex_exit(&xsp->mu);

return (DDI_DMA_CALLBACK_RUNOUT);
}
...

program the DMA engine
...
return (DDI_DMA_CALLBACK_DONE);

}

Determining Maximum Burst Sizes
Drivers specify the DMA burst sizes that their device supports in the
dma_attr_burstsizes field of the ddi_dma_attr(9S) structure. This is a bitmap
of the supported burst sizes. However, when DMA resources are allocated, the system
might impose further restrictions on the burst sizes that might be actually used by the
device. The ddi_dma_burstsizes(9F) routine can be used to obtain the allowed
burst sizes. It returns the appropriate burst size bitmap for the device. When DMA
resources are allocated, a driver can ask the system for appropriate burst sizes to use
for its DMA engine.

122 Writing Device Drivers • February 2002 (Beta)



EXAMPLE 8–2 Determining Burst Size

#define BEST_BURST_SIZE 0x20 /* 32 bytes */

if (ddi_dma_buf_bind_handle(xsp->handle,xsp->bp, flags, xxstart,
(caddr_t)xsp, &cookie, &ccount) != DDI_DMA_MAPPED) {

/* error handling */
}

burst = ddi_dma_burstsizes(xsp->handle);
/* check which bit is set and choose one burstsize to */
/* program the DMA engine */
if (burst & BEST_BURST_SIZE) {

program DMA engine to use this burst size } else {

other cases }

Allocating Private DMA Buffers
Some device drivers might need to allocate memory for DMA transfers to or from a
device, besides doing transfers requested by user threads and the kernel. Examples of
this are setting up shared memory for communication with the device and allocating
intermediate transfer buffers. Use ddi_dma_mem_alloc(9F) to allocate memory for
DMA transfers.

int ddi_dma_mem_alloc(ddi_dma_handle_t handle, size_t length,
ddi_device_acc_attr_t *accattrp, uint_t flags,
int (*waitfp)(caddr_t), caddr_t arg, caddr_t *kaddrp,

size_t *real_length, ddi_acc_handle_t *handlep);

handle DMA handle

length Length in bytes of the desired allocation

accattrp Pointer to a device access attribute structure

flags Data transfer mode flags; possible values are: DDI_DMA_CONSISTENT
and DDI_DMA_STREAMING

waitfp Address of callback function for handling resource allocation failures.
See the ddi_dma_mem_alloc(9F) man page.

arg Argument to pass to the callback function

kaddrp Pointer (on a successful return) that contains the address of the
allocated storage

real_length Length in bytes that was allocated

handlep Pointer to a data access handle

flags should be set to DDI_DMA_CONSISTENT if the device accesses in a
nonsequential fashion, or if synchronization steps using ddi_dma_sync(9F) should
be as lightweight as possible (because of frequent use on small objects). This type of
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access is commonly known as consistent access. I/O parameter blocks that are used for
communication between a device and the driver are set up this way.

On the IA platform, to allocate memory for DMA using physically contiguous pages,
set the length of the scatter/gather list dma_attr_sgllen in the ddi_dma_attr(9S)
structure to 1, and do not specify DDI_DMA_PARTIAL which would otherwise permit
partial resource allocation.

Example 8–3 shows how to allocate IOPB memory and the necessary DMA resources
to access it. DMA resources must still be allocated, and the DDI_DMA_CONSISTENT
flag must be passed to the allocation function.

EXAMPLE 8–3 Using ddi_dma_mem_alloc(9F)

if (ddi_dma_mem_alloc(xsp->iopb_handle, size, &accattr,
DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &xsp->iopb_array,
&real_length, &xsp->acchandle) != DDI_SUCCESS) {

error handling
goto failure;

}
if (ddi_dma_addr_bind_handle(xsp->iopb_handle, NULL,

xsp->iopb_array, real_length,
DDI_DMA_READ | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP,
NULL, &cookie, &count) != DDI_DMA_MAPPED) {

error handling
ddi_dma_mem_free(&xsp->acchandle);
goto failure;

}

flags should be set to DDI_DMA_STREAMING if the device is doing sequential,
unidirectional, block-sized and block-aligned transfers to or from memory. This type
of access is commonly known as streaming access.

For example, if an I/O transfer can be sped up by using an I/O cache, which at a
minimum transfers (flushes) one cache line, ddi_dma_mem_alloc(9F) will round the
size to a multiple of the cache line to avoid data corruption.

ddi_dma_mem_alloc(9F) returns the actual size of the allocated memory object.
Because of padding and alignment requirements, the actual size might be larger than
the requested size. ddi_dma_addr_bind_handle(9F) requires the actual length.

ddi_dma_mem_free(9F) is used to free the memory allocated by
ddi_dma_mem_alloc(9F).
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Note – If the memory is not properly aligned, the transfer will succeed but the system
will choose a different (and possibly less efficient) transfer mode that requires fewer
restrictions. For this reason, ddi_dma_mem_alloc(9F) is preferred over
kmem_alloc(9F) when allocating memory for the device to access.

Handling Resource Allocation Failures
The resource-allocation routines provide the driver with several options when
handling allocation failures. The waitfp argument indicates whether the allocation
routines will block, return immediately, or schedule a callback, as shown in Table 8–1.

TABLE 8–1 Resource Allocation Handling

waitfp value Indicated Action

DDI_DMA_DONTWAIT Driver does not want to wait for resources to become
available

DDI_DMA_SLEEP Driver is willing to wait indefinitely for resources to become
available

Other values The address of a function to be called when resources are
likely to be available

Programming the DMA Engine
When the resources have been successfully allocated, the device must be programmed.
Although programming a DMA engine is device specific, all DMA engines require a
starting address and a transfer count. Device drivers retrieve these two values from
the DMA cookie returned by a successful call from
ddi_dma_addr_bind_handle(9F), ddi_dma_buf_bind_handle(9F), or
ddi_dma_getwin(9F). These functions all return the first DMA cookie and a cookie
count indicating whether the DMA object consists of more than one cookie. If the
cookie count N is greater than 1, ddi_dma_nextcookie(9F) has to be called N-1
times to retrieve all the remaining cookies.

A cookie is of type ddi_dma_cookie(9S) and has the following fields:

uint64_t _dmac_ll; /* 64-bit DMA address */
uint32_t _dmac_la[2]; /* 2 x 32-bit address */
size_t dmac_size; /* DMA cookie size */

uint_t dmac_type; /* bus specific type bits */

The dmac_laddress specifies a 64-bit I/O address appropriate for programming the
device’s DMA engine. If a device has a 64-bit DMA address register, a driver should
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use this field to program the DMA engine. The dmac_address field specifies a 32-bit
I/O address that should be used for devices that have a 32-bit DMA address register.
dmac_size contains the transfer count. Depending on the bus architecture, the
dmac_type field in the cookie might be required by the driver. The driver should not
perform any manipulations, such as logical or arithmetic, on the cookie.

EXAMPLE 8–4 ddi_dma_cookie(9S) Example

ddi_dma_cookie_t cookie;

if (ddi_dma_buf_bind_handle(xsp->handle,xsp->bp, flags, xxstart,
(caddr_t)xsp, &cookie, &xsp->ccount) != DDI_DMA_MAPPED) {

/* error handling */
}
sglp = regp->sglist;
for (cnt = 1; cnt <= SGLLEN; cnt++, sglp++) {

/* store the cookie parms into the S/G list */
ddi_put32(xsp->access_hdl, &sglp->dma_size,

(uint32_t)cookie.dmac_size);
ddi_put32(xsp->access_hdl, &sglp->dma_addr,

cookie.dmac_address);
/* Check for end of cookie list */
if (cnt == xsp->ccount)

break;
/* Get next DMA cookie */
(void) ddi_dma_nextcookie(xsp->handle, &cookie);

}
/* start DMA transfer */

ddi_put8(xsp->access_hdl, &regp->csr,

ENABLE_INTERRUPTS | START_TRANSFER);

Note – ddi_dma_addr_bind_handle(9F) and
ddi_dma_buf_bind_handle(9F) can return more DMA cookies than fit into the
scatter-gather list. In this case, the driver has to continue the transfer in the interrupt
routine and reprogram the scatter-gather list with the remaining DMA cookies. You
must handle sgllen cookies at a time.

Freeing the DMA Resources
After a DMA transfer is completed (usually in the interrupt routine), the driver can
release DMA resources by calling ddi_dma_unbind_handle(9F).

As described in “Synchronizing Memory Objects” on page 129,
ddi_dma_unbind_handle(9F) calls ddi_dma_sync(9F), eliminating the need for
any explicit synchronization. After calling ddi_dma_unbind_handle(9F), the DMA
resources become invalid, and further references to them have undefined results.
Example 8–5 shows how to use ddi_dma_unbind_handle(9F).
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EXAMPLE 8–5 Freeing DMA Resources

static uint_t
xxintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
uint8_t status;

volatile uint8_t temp;
mutex_enter(&xsp->mu);
/* read status */
status = ddi_get8(xsp->access_hdl, &xsp->regp->csr);
if (!(status & INTERRUPTING)) {

mutex_exit(&xsp->mu);
return (DDI_INTR_UNCLAIMED);

}
ddi_put8(xsp->access_hdl, &xsp->regp->csr, CLEAR_INTERRUPT);
/* for store buffers */
temp = ddi_get8(xsp->access_hdl, &xsp->regp->csr);
ddi_dma_unbind_handle(xsp->handle);
...

/* check for errors */
...
xsp->busy = 0;
mutex_exit(&xsp->mu);
if ( pending transfers) {

(void) xxstart((caddr_t)xsp);
}
return (DDI_INTR_CLAIMED);

}

The DMA resources should be released and reallocated if a different object will be
used in the next transfer. However, if the same object is always used, the resources can
be allocated once and continually reused as long as there are intervening calls to
ddi_dma_sync(9F).

Freeing the DMA Handle
When the driver is detached, the DMA handle must be freed.
ddi_dma_free_handle(9F) destroys the DMA handle and any residual resources
the system is caching on the handle. Any further references of the DMA handle will
have undefined results.

Canceling DMA Callbacks
DMA callbacks cannot be canceled. This requires some additional code in the drivers
detach(9E) routine, as it must not return DDI_SUCCESS if there are any outstanding
callbacks. (See Example 8–6.) When DMA callbacks occur, the detach(9E) routine
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must wait for the callback to run and must prevent it from rescheduling itself. This can
be done using additional fields in the state structure, as shown below.

EXAMPLE 8–6 Canceling DMA Callbacks

static int
xxdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{

...
mutex_enter(&xsp->callback_mutex);
xsp->cancel_callbacks = 1;
while (xsp->callback_count > 0) {

cv_wait(&xsp->callback_cv, &xsp->callback_mutex);
}
mutex_exit(&xsp->callback_mutex);
...

}

static int
xxstrategy(struct buf *bp)
{

...
mutex_enter(&xsp->callback_mutex);
xsp->bp = bp;

error = ddi_dma_buf_bind_handle(xsp->handle, xsp->bp, flags,
xxdmacallback, (caddr_t)xsp, &cookie, &ccount);

if (error == DDI_DMA_NORESOURCES)
xsp->callback_count++;

mutex_exit(&xsp->callback_mutex);
...

}

static int
xxdmacallback(caddr_t callbackarg)
{

struct xxstate *xsp = (struct xxstate *)callbackarg;
...
mutex_enter(&xsp->callback_mutex);
if (xsp->cancel_callbacks) {

/* do not reschedule, in process of detaching */
xsp->callback_count--;
if (xsp->callback_count == 0)

cv_signal(&xsp->callback_cv);
mutex_exit(&xsp->callback_mutex);
return (DDI_DMA_CALLBACK_DONE); /* don’t reschedule it */

}
/*

* Presumably at this point the device is still active
* and will not be detached until the DMA has completed.
* A return of 0 means try again later
*/

error = ddi_dma_buf_bind_handle(xsp->handle, xsp->bp, flags,
DDI_DMA_DONTWAIT, NULL, &cookie, &ccount);

if (error == DDI_DMA_MAPPED) {
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EXAMPLE 8–6 Canceling DMA Callbacks (Continued)

...
/* program the DMA engine */
...
xsp->callback_count--;
mutex_exit(&xsp->callback_mutex);
return (DDI_DMA_CALLBACK_DONE);

}
if (error != DDI_DMA_NORESOURCES) {

xsp->callback_count--;
mutex_exit(&xsp->callback_mutex);
return (DDI_DMA_CALLBACK_DONE);

}
mutex_exit(&xsp->callback_mutex);
return (DDI_DMA_CALLBACK_RUNOUT);

}

Synchronizing Memory Objects
At various points when the memory object is accessed (including the time of removal
of the DMA resources), the driver might need to synchronize the memory object with
respect to various caches. This section gives guidelines on when and how to
synchronize memory objects.

Cache
Cache is a very high-speed memory that sits between the CPU and the system’s main
memory (CPU cache), or between a device and the system’s main memory (I/O
cache), as shown in Figure 8–1.
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FIGURE 8–1 CPU and System I/O Caches

When an attempt is made to read data from main memory, if the associated cache
determines whether it contains the requested data, it quickly satisfies the request. If
the cache does not have the data, it retrieves the data from main memory, passes the
data on to the requestor, and saves the data in case that data is requested again.

Similarly, on a write cycle, the data is stored in the cache quickly and the CPU or
device is allowed to continue executing (transferring). This takes much less time than
if the CPU or device had to wait for the data to be written to memory.

With this model, after a device transfer has been completed, the data can still be in the
I/O cache but not yet in main memory. If the CPU accesses the memory, it might read
the wrong data from the CPU cache. To ensure a consistent view of the memory for
the CPU, the driver must call a synchronization routine to flush the data from the I/O
cache and update the CPU cache with the new data. Similarly, a synchronization step
is required if data modified by the CPU is to be accessed by a device.

There might also be additional caches and buffers between the device and memory,
such as caches associated with bus extenders or bridges. Use ddi_dma_sync(9F) to
synchronize all applicable caches.

ddi_dma_sync(9F)

If a memory object has multiple mappings—such as for a device (through the DMA
handle) and for the CPU—and one mapping is used to modify the memory object, the
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driver needs to call ddi_dma_sync(9F) to ensure that the modification of the memory
object is complete before accessing the object through another mapping.
ddi_dma_sync(9F) can also inform other mappings of the object that any cached
references to the object are now stale. Additionally, ddi_dma_sync(9F) flushes or
invalidates stale cache references as necessary.

Generally, the driver has to call ddi_dma_sync(9F) when a DMA transfer completes.
The exception to this is that deallocating the DMA resources with
ddi_dma_unbind_handle(9F), does an implicit ddi_dma_sync(9F) on behalf of the
driver.

int ddi_dma_sync(ddi_dma_handle_t handle, off_t off,

size_t length, uint_t type);

If the object is going to be read by the DMA engine of the device, the device’s view of
the object must be synchronized by setting type to DDI_DMA_SYNC_FORDEV. If the
DMA engine of the device has written to the memory object, and the object is going to
be read by the CPU, the CPU’s view of the object must be synchronized by setting type
to DDI_DMA_SYNC_FORCPU.

Here is an example of synchronizing a DMA object for the CPU:

if (ddi_dma_sync(xsp->handle, 0, length, DDI_DMA_SYNC_FORCPU)
== DDI_SUCCESS) {
/* the CPU can now access the transferred data */
...

} else {
error handling

}

If the only mapping that concerns the driver is one for the kernel (such as memory
allocated by ddi_dma_mem_alloc(9F)), the flag DDI_DMA_SYNC_FORKERNEL can be
used. If the system can synchronize the kernel’s view faster than the CPU’s view, it
will do so; otherwise, it acts the same as DDI_DMA_SYNC_FORCPU.

DMA Windows
The system might be unable to allocate resources for a large object. If this occurs, the
transfer must be broken into a series of smaller transfers. The driver can either do this
itself, or it can let the system allocate resources for only part of the object, thereby
creating a series of DMA windows. Allowing the system to allocate resources is the
preferred solution, as the system can manage the resources more effectively than the
driver.
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A DMA window has attributes offset (from the beginning of the object) and length.
After a partial allocation, only a range of length bytes starting at offset has resources
allocated for it.

A DMA window is requested by specifying the DDI_DMA_PARTIAL flag as a
parameter to ddi_dma_buf_bind_handle(9F) or
ddi_dma_addr_bind_handle(9F). Both functions return DDI_DMA_PARTIAL_MAP
if a window can be established. However, the system might allocate resources for the
entire object (less overhead), in which case DDI_DMA_MAPPED is returned. The driver
should check the return value (see Example 8–7) to determine whether DMA windows
are in use.

EXAMPLE 8–7 Setting Up DMA Windows

static int
xxstart (caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
struct device_reg *regp = xsp->reg;
ddi_dma_cookie_t cookie;
int status;
mutex_enter(&xsp->mu);
if (xsp->busy) {

/* transfer in progress */
mutex_exit(&xsp->mu);
return (DDI_DMA_CALLBACK_RUNOUT);

}
xsp->busy = 1;
mutex_exit(&xsp->mu);
if ( transfer is a read) {

flags = DDI_DMA_READ;
} else {

flags = DDI_DMA_WRITE;
}
flags |= DDI_DMA_PARTIAL;
status = ddi_dma_buf_bind_handle(xsp->handle, xsp->bp,

flags, xxstart, (caddr_t)xsp, &cookie, &ccount);
if (status != DDI_DMA_MAPPED &&

status != DDI_DMA_PARTIAL_MAP)
return (DDI_DMA_CALLBACK_RUNOUT);

if (status == DDI_DMA_PARTIAL_MAP) {
ddi_dma_numwin(xsp->handle, &xsp->nwin);
xsp->partial = 1;
xsp->windex = 0;

} else {
xsp->partial = 0;

}
...

program the DMA engine
...
return (DDI_DMA_CALLBACK_DONE);

}
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Two functions operate with DMA windows. The first, ddi_dma_numwin(9F), returns
the number of DMA windows for a particular DMA object. The other function,
ddi_dma_getwin(9F), allows repositioning (reallocation of system resources) within
the object. It shifts the current window to a new window within the object. Because
ddi_dma_getwin(9F) reallocates system resources to the new window, the previous
window becomes invalid.

Caution – Do not move the DMA windows with a call to ddi_dma_getwin(9F)
before transfers into the current window are complete. Wait until the transfer to the
current window is complete (when the interrupt arrives) then call
ddi_dma_getwin(9F) or data will be corrupted.

ddi_dma_getwin(9F) is normally called from an interrupt routine (see Example 8–8).
The first DMA transfer is initiated as a result of a call to the driver. Subsequent
transfers are started from the interrupt routine.

The interrupt routine examines the status of the device to determine if the device
completed the transfer successfully. If not, normal error recovery occurs. If the transfer
was successful, the routine must determine if the logical transfer is complete (the
entire transfer specified by the buf(9S) structure) or if only one DMA window was
moved. If it was only one window, the interrupt routine moves the window with
ddi_dma_getwin(9F), retrieves a new cookie, and starts another DMA transfer.

If the logical request has been completed, the interrupt routine checks for pending
requests and starts a transfer, if necessary. Otherwise, it returns without invoking
another DMA transfer. Example 8–8 illustrates the usual flow control.

EXAMPLE 8–8 Interrupt Handler Using DMA Windows

static uint_t
xxintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
uint8_t status;
volatile uint8_t temp;
mutex_enter(&xsp->mu);
/* read status */
status = ddi_get8(xsp->access_hdl, &xsp->regp->csr);
if (!(status & INTERRUPTING)) {

mutex_exit(&xsp->mu);
return (DDI_INTR_UNCLAIMED);

}
ddi_put8(xsp->access_hdl,&xsp->regp->csr, CLEAR_INTERRUPT);
/* for store buffers */
temp = ddi_get8(xsp->access_hdl, &xsp->regp->csr);
if ( an error occurred during transfer) {

bioerror(xsp->bp, EIO);
xsp->partial = 0;

} else {
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EXAMPLE 8–8 Interrupt Handler Using DMA Windows (Continued)

xsp->bp->b_resid -= amount transferred;
}

if (xsp->partial && (++xsp->windex < xsp->nwin)) {
/* device still marked busy to protect state */
mutex_exit(&xsp->mu);
(void) ddi_dma_getwin(xsp->handle, xsp->windex,

&offset, &len, &cookie, &ccount);
program the DMA engine with the new cookie(s)
...
return (DDI_INTR_CLAIMED);

}
ddi_dma_unbind_handle(xsp->handle);
biodone(xsp->bp);
xsp->busy = 0;
xsp->partial = 0;
mutex_exit(&xsp->mu);
if ( pending transfers) {

(void) xxstart((caddr_t)xsp);
}
return (DDI_INTR_CLAIMED);

}
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CHAPTER 9

Power Management

Power management provides the ability to control and manage the electrical power
usage of a computer system or device. Power management enables systems to
conserve energy by using less power when idle and by shutting down completely
when not in use. For example, desktop computer systems can use a significant amount
of power, and often (particularly at night) are left idle. Power management software
can detect that the system is not being used and power it or some of its components
down.

Power Management Framework
The Solaris Power Management framework depends on device drivers to implement
device-specific power management functionality. The framework is implemented in
two parts:

� Device power management – Automatically turns off unused devices to reduce
power consumption

� System power management – Automatically turns off the computer when the
entire system is idle

Device Power Management
The framework allows devices to reduce their energy consumption after a specified
idle time interval. To perform effective device power management, system software
monitors the different devices and determines when they are not in use. Since only
device drivers are able to determine when a device is idle, and only device drivers are
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able to reduce power consumption of a device, the Power Management framework
exports interfaces to enable communication between the system software and the
device driver.

The Solaris Power Management framework provides the following:

� A device-independent model for power-manageable devices.

� dtpower(1M), a graphical user interface for workstation power management.
(Power management can also be implemented through thepower.conf(4) and
/etc/default/power files.)

� A set of DDI interfaces for the device driver to notify the framework if the device
can be power managed, and when it is idle or busy.

System Power Management
System power management consists of turning off the entire computer after saving its
state so that it can be returned to the same state immediately when it is turned back
on.

To shut down an entire system and later return it to the state it was in prior to the
shutdown:

� Stop (and later restart) kernel threads and user processes.

� Save the hardware state of all devices on the system to disk (and later restore it).

SPARC only – System power management is currently implemented only on some
SPARC systems supported by the Solaris 9 operating environment.

The Solaris operating environment System Power Management framework provides
the following:

� A platform-independent model of system idleness

� dtpower(1M), a graphical user interface for workstation power management.
(Power management can also be implemented through thepower.conf(4) and
/etc/default/power files.)

� A set of interfaces for the device driver to override the method for determining
which drivers have hardware state

� A set of interfaces to allow the framework to call into the driver to save and restore
the device state

� A mechanism for notifying processes that a resume operation has occurred
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Device Power Management Model
The following sections describe the details of the device power management model.
This model includes the following elements:

� Components
� Idleness
� Power levels
� Dependency
� Policy
� Device power management interfaces
� Power management entry points

Components
A device is power manageable if the power consumption of the device can be reduced
when it is idle. Conceptually, a power manageable device consists of a number of
power-manageable hardware units called components.

The device driver notifies the system of the existence of device components and the
power levels that they support by creating a pm-components(9P) property in its
attach(9E) entry point as part of driver initialization.

Most devices that are power manageable implement only a single component. An
example of a single-component, power-manageable device is a disk whose spindle
motor can be stopped to save power when the disk is idle.

If a device has multiple power-manageable units that are separately controllable, it
should implement multiple components.

An example of a two-component, power-manageable device is a frame buffer card
with a monitor connected to it. Frame buffer electronics is the first component
[component 0]. Its power consumption can be reduced when not in use. The monitor
is the second component [component 1], which can also enter a lower power mode
when not in use. The combination of frame buffer electronics and monitor is
considered by the system as one device with two components.

Multiple Components
To the power management framework, all components are considered equal and
completely independent of each other. If this is not true for a particular device, the
device driver must ensure that undesirable state combinations do not occur. For
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example, with a frame buffer/monitor card with a monitor attached to it, for each
possible power state of the monitor (On, Standby, Suspend, Off) there are states of
the frame buffer electronics (D0, D1, D2, D3) that are not allowed if the device is to
work properly. If the monitor is On, then the frame buffer must be at D0 (full on), so if
the frame buffer driver gets a request to power up the monitor to On while the frame
buffer is D3, it must ask the system to bring the frame buffer back up (by calling
pm_raise_power(9F)) before setting the monitor On. If the frame buffer driver gets a
request from the system to lower the power of the frame buffer while the monitor is
On, it must fail that request.

Idleness
Each component of a device may be in one of two states: busy or idle. The device driver
notifies the framework of changes in the device state by calling
pm_busy_component(9F) and pm_idle_component(9F). When components are
initially created, they are considered idle.

Power Levels
From the pm-components property exported by the device, the Device Power
Management framework knows what power levels the device supports. Power level
values must be positive integers. The interpretation of power levels is determined by
the device driver writer, but they must be listed in monotonically increasing order in
the pm-components property, and a power level of 0 is interpreted by the framework
to mean off. When the framework must power up a device because of a dependency, it
will bring each component to its highest power level.

Example 9–1 is an example pm-components entry from the .conf file of a driver
that implements a single power-managed component consisting of a disk spindle
motor. The disk spindle motor is component 0 and it supports 2 power levels, which
represent stopped and spinning full speed.

EXAMPLE 9–1 Sample pm-component Entry

pm-components="NAME=Spindle Motor", "0=Stopped", "1=Full Speed";

Example 9–2 shows an example of how Example 9–1 could be implemented in the
attach() routine of the driver.

EXAMPLE 9–2 attach(9E) Routine With pm-components Property

static char *pmcomps[] = {
"NAME=Spindle Motor",
"0=Stopped",
"1=Full Speed"
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EXAMPLE 9–2 attach(9E) Routine With pm-components Property (Continued)

};

...

xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
...

if (ddi_prop_update_string_array(DDI_DEV_T_NONE, dip,
"pm-components", &pmcomp[0],
sizeof (pmcomps) / sizeof (char *)) != DDI_PROP_SUCCESS)

goto failed;

...

Example 9–3 shows a frame buffer that implements two components. Component 0 is
the frame buffer electronics that support four different power levels. Component 1
represents the state of power management of the attached monitor.

EXAMPLE 9–3 Multiple Component pm-components Entry

pm-components="NAME=Frame Buffer", "0=Off", "1=Suspend", \
"2=Standby", "3=On",

"NAME=Monitor", "0=Off", "1=Suspend", "2=Standby", "3=On";

When a device driver is first attached, the framework does not know the power level
of the device. A power transition may occur when:

� The driver calls pm_raise_power(9F) or pm_lower_power(9F).

� The framework has lowered the power level of a component because it has
exceeded its threshold time.

� Another device has changed power, and there is a dependency between the two
devices. See “Dependency” on page 140.

Once a power transition has occurred or the driver has informed the framework of the
power level, the framework tracks the current power level of each component of the
device. The driver can inform the framework of a power level change by calling
pm_power_has_changed(9F).

The system calculates a default threshold for each possible transition from one power
level to the next lower level, based on the system idleness threshold. These default
thresholds can be overridden using dtpower(1M) or power.conf(4). Another default
threshold based on the system idleness threshold is used when the component power
level is unknown.
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Dependency
Some devices should be powered down only when other devices are also powered
down. For example, if removable-media devices such as CD-ROM drives or Zip drives
are allowed to power down by themselves, functionality associated with their current
state, such as the ability to eject a CD or to respond when a new Zip disk is inserted,
may be lost.

One way to prevent a device from powering down independently is to make the
device dependent on another device that is likely to remain powered on while its
functionality is required. Typically, the device is made dependent upon a frame buffer,
because a monitor is generally on whenever a user is utilizing a system.

The power.conf(4) file specifies the dependencies among devices. (A parent node in
the device tree implicitly depends upon its children. This dependency is handled
automatically by the power management framework.) You can specify a particular
dependency with a power.conf(4) entry of this form:

device-dependency dependent_phys_path phys_path

where dependent_phys_path is the device that is kept powered up (such as the CD-ROM
drive) and phys_path is the device whose power state it depends on (such as the frame
buffer).

Because it would be burdensome to add an entry to power.conf for every new
device plugged into the system, another syntax enables you to indicate dependency in
a more general fashion:

device-dependency-property property phys_path

Such an entry mandates that any device that exports the property property will be
dependent upon the device named by phys_path. Because this dependency applies
especially to removable-media devices, /etc/power.conf includes the following
line by default:

device_dependent-property removable-media /dev/fb

to signal that any device exporting the removable-media property will not be
powered down unless the console frame buffer is also powered down.

For more information, see the power.conf(4) and removable-media(9P) man
pages.
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Policy
If automatic power management is enabled by dtpower(1M) or power.conf(4), then
all devices with a pm-components(9P) property automatically will be power
managed. After each component has been idle for a default period, it will be
automatically brought to its next lowest power level. The default period is calculated
by the power management framework to set the entire device to its lowest power state
within the system idleness threshold.

Note – By default automatic power management is enabled on all SPARC desktop
systems first shipped after July 1, 1999. This feature is disabled by default for all other
systems. To determine if automatic power management is enabled on your machine,
refer to the power.conf(4) man page for instructions.

dtpower(1M) or power.conf(4) may be used to override the defaults calculated by
the framework.

Device Power Management Interfaces
A device driver that supports a device with power-manageable components must
notify the system of the existence of these components and the power levels that they
support by creating a pm-components(9P) property. This is typically done from the
driver’s attach(9E) entry point by calling ddi_prop_update_string_array(9F),
but may be done from a driver.conf(4) file instead. See the pm-components(9P)
man page for details.

Busy-Idle State Transitions
The driver must keep the framework informed of device state transitions from idle to
busy or busy to idle. Where these transitions happen is entirely device-specific. The
transitions from idle to busy and from busy to idle depend on the nature of the device
and the abstraction represented by the specific component. For example, SCSI disk
target drivers typically export a single component, which represents whether the SCSI
target disk drive is spun up or not. It is marked busy whenever there is an
outstanding request to the drive and idle when the last queued request finishes. Some
components are created and never marked busy (components created by
pm-components(9P) are created in an idle state).

The pm_busy_component(9F) and pm_idle_component(9F) interfaces notify the
power management framework of busy-idle state transitions. The syntax for
pm_busy_component(9F) is:

int pm_busy_component(dev_info_t *dip, int component);
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pm_busy_component(9F) marks component as busy. While the component is busy, it
will not be powered off. If the component is already powered off, then marking it busy
doesn’t change its power level. The driver needs to call pm_raise_power(9F) for this
purpose. Calls to pm_busy_component(9F) are cumulative and require a
corresponding number of calls to pm_idle_component(9F) to idle the component.

The syntax for pm_idle_component(9F) is:

int pm_idle_component(dev_info_t *dip, int component);

pm_idle_component(9F) marks component as idle. An idle component is subject to
being powered off. pm_idle_component(9F) must be called once for each call to
pm_busy_component(9F) in order to idle the component.

Device Power State Transitions
A device driver can call pm_raise_power(9F) to request that a component be set to at
least a given power level. This is necessary before using a component that has been
powered off. For example, a SCSI disk target driver’s read(9E) or write(9E) routine
might need to spin up the disk before completing the read or write, if the disk has
already been powered off. pm_raise_power(9F) requests the power management
framework to initiate a device power state transition to a higher power level.
Normally, reductions in component power levels are initiated by the framework.
However, a device driver should call pm_lower_power(9F) when detaching, in order
to reduce the power consumption of unused devices as much as possible.

Powering down can pose risks for some devices. For example, some tape drives
damage tapes when power is removed; likewise, some disk drives have a limited
tolerance for power cycles, since each cycle results in a head landing. Such devices
should export the no-involuntary-power-cycles(9P) property to notify the
system that all power cycles for the device must be under control of a device driver.
This prevents power from being removed from a device while the device driver is
detached, unless the device was powered off by a driver’s call to
pm_lower_power(9F).

The syntax for pm_raise_power(9F) is:

int pm_raise_power(dev_info_t *dip, int component, int level);

pm_raise_power(9F) is called when the driver discovers that a component needed
for some operation is at a power level less than is needed for that operation. This
interface arranges for the driver to be called to raise the current power level of the
component at least to the level specified in the request. All the devices that depend on
this device are also brought back to full power by this call.

pm_lower_power(9F) is called when the device is detaching, once access to the
device is no longer needed. It should be called for each component to set each
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component to its lowest power so that the device uses as little power as possible while
it is not in use. The syntax for pm_lower_power(9F) is the same as that for
pm_raise_power(9F).

pm_power_has_changed(9F) is called to notify the framework when a device has
made a power transition on its own, or to inform the framework of the power level of
a device, for example, after a suspend-resume operation. The syntax for
pm_power_has_changed(9F) is the same as that for pm_raise_power(9F).

The power(9E) Entry Point
The power management framework uses the power(9E) entry point.

The syntax for power(9E) is:

int power(dev_info_t *dip, int component, int level);

The system calls the power(9E) entry point (either directly or as a result of a call to
pm_raise_power(9F) or pm_lower_power(9F)) when it determines that a
component’s current power level needs to be changed. The action taken by this entry
point is device driver specific. In the example of the SCSI target disk driver mentioned
previously, setting the power level to 0 results in sending a SCSI command to spin
down the disk, while setting the power level to the full power level results in sending
a SCSI command to spin up the disk.

If a power transition will cause the device to lose state, then the driver must ensure
that any necessary state is saved in memory so that it can be restored when it is
needed again. If a power transition will require that saved state be restored before the
device can be used again, then the driver must restore that state. The framework
makes no assumptions about what power transactions cause the loss of or require the
restoration of state for automatically power-manage devices. Example 9–4 shows a
sample power(9E) routine.

EXAMPLE 9–4 power(9E) Routine for Single-Component Device

int
xxpower(dev_info_t *dip, int component, int level)
{

struct xxstate *xsp;
int instance;

instance = ddi_get_instance(dip);
xsp = ddi_get_soft_state(statep, instance);
/*
* Make sure the request is valid
*/
if (!xx_valid_power_level(component, level))

return (DDI_FAILURE);
mutex_enter(&xsp->mu);
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EXAMPLE 9–4 power(9E) Routine for Single-Component Device (Continued)

/*
* If the device is busy, don’t lower its power level
*/
if (xsp->xx_busy[component] &&

xsp->xx_power_level[component] > level) {
mutex_exit(&xsp->mu);
return (DDI_FAILURE);

}

if (xsp->xx_power_level[component] != level) {
/*
* device- and component-specific setting of power level
* goes here
*/
...
xsp->xx_power_level[component] = level;

}
mutex_exit(&xsp->mu);
return (DDI_SUCCESS);

}

Example 9–5 is a power(9E) routine for a device with two components, where
component 0 must be on when component 1 is on.

EXAMPLE 9–5 power(9E) Routine for Multiple Component Device

int
xxpower(dev_info_t *dip, int component, int level)
{

struct xxstate *xsp;
int instance;

instance = ddi_get_instance(dip);
xsp = ddi_get_soft_state(statep, instance);
/*
* Make sure the request is valid
*/
if (!xx_valid_power_level(component, level))

return (DDI_FAILURE);
mutex_enter(&xsp->mu);
/*
* If the device is busy, don’t lower its power level
*/
if (xsp->xx_busy[component] &&

xsp->xx_power_level[component] > level) {
mutex_exit(&xsp->mu);
return (DDI_FAILURE);

}

/*
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EXAMPLE 9–5 power(9E) Routine for Multiple Component Device (Continued)

* This code implements inter-component dependencies:
* If we are bringing up component 1 and component 0 is off, we must
* bring component 0 up first, and if we are asked to shut down
* component 0 while component 1 is up we must refuse
*/
if (component == 1 && level > 0 && xsp->xx_power_level[0] == 0) {

xsp->xx_busy[0]++;
if (pm_busy_component(dip, 0) != DDI_SUCCESS) {

/*
* This can only happen if the args to
* pm_busy_component()
* are wrong, or pm-components property was not
* exported by the driver.
*/
xsp->xx_busy[0]--;
mutex_exit(&xsp->mu);
cmn_err(CE_WARN, "xxpower pm_busy_component() failed");
return (DDI_FAILURE);

}
mutex_exit(&xsp->mu);
if (pm_raise_power(dip, 0, XX_FULL_POWER_0) != DDI_SUCCESS)

return (DDI_FAILURE);
mutex_enter(&xsp->mu);

}
if (component == 0 && level == 0 && xsp->xx_power_level[1] != 0) {

mutex_exit(&xsp->mu);
return (DDI_FAILURE);

}
if (xsp->xx_power_level[component] != level) {

/*
* device- and component-specific setting of power level
* goes here
*/
...
xsp->xx_power_level[component] = level;

}
mutex_exit(&xsp->mu);
return (DDI_SUCCESS);

}

System Power Management Model
This section describes the details of the System Power Management model. The model
includes the following components:

� Autoshutdown threshold
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� Busy state
� Hardware state
� Policy
� Power management entry points

Autoshutdown Threshold
The system may be shut down (powered off) automatically after a configurable period
of idleness. This period is known as the autoshutdown threshold. This behavior is
enabled by default for SPARC desktop systems first shipped after October 1, 1995 and
before July 1, 1999. It may be overridden using dtpower(1M) or power.conf(4).

Busy State
There are several ways to measure the busy state of the system. The currently
supported built-in metrics are keyboard characters, mouse activity, tty characters,
load average, disk reads, and NFS requests. Any one of these may make the system
busy. In addition to the built-in metrics, an interface is defined for running a
user-specified process that may indicate that the system is busy.

Hardware State
Devices that export a reg property are considered to have hardware state that must be
saved prior to shutting down the system. A device that does not have a reg property
is considered to be stateless. However, this consideration can be overridden by the
device driver.

A device that has hardware state but no reg property (such as a SCSI target driver,
which has hardware at the other end of the SCSI bus), is called to save and restore its
state if it exports a pm-hardware-state property with the value
needs-suspend-resume. Otherwise, the lack of a reg property is taken to mean
that the device has no hardware state. For information on device properties, see
Chapter 4.

A device that has a reg property but no hardware state may export a
pm-hardware-state property with the value no-suspend-resume to keep the
framework from calling into the driver to save and restore that state. For more
information on power management properties, see the pm-components(9P) man
page.
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Policy
The system will be shut down if the following conditions apply:

� Autoshutdown is enabled by dtpower(1M) or power.conf(4).
� The system has been idle for autoshutdown threshold minutes.
� All the metrics specified in power.conf(4) have been satisfied.

Entry Points Used by System Power Management
System power management passes the command DDI_SUSPEND to the detach(9E)
driver entry point to request the driver to save the device hardware state. It passes the
command DDI_RESUME to the attach(9E) driver entry point to request the driver to
restore the device hardware state.

detach(9E)
int detach(dev_info_t *dip, ddi_detach_cmd_t cmd);

If a device has a reg property or a pm-hardware-state property with a value of
needs-suspend-resume, then the framework calls into the driver’s detach(9E)
entry point to allow the driver to save the hardware state of the device to memory so
that it can be restored after the system power returns. To process the DDI_SUSPEND
command, detach(9E) must do the following:

� Block further operations from being initiated until the device is resumed (except
for dump(9E) requests).

� Wait until outstanding operations have completed (or abort them if they can be
restarted).

� Cancel pending timeouts and callbacks.

� Save any volatile hardware state to memory. The state includes the contents of
device registers, and may also include downloaded firmware.

If for some reason the driver is not able to suspend the device and save its state to
memory, then it must return DDI_FAILURE, and the framework aborts the system
power management operation.

In some cases, powering down a device involves certain risks. For example, if a tape
drive is powered off with a tape inside it, the tape can be damaged. In such a case,
attach(9E) should:

� Call ddi_removing_power(9F) to determine if a DDI_SUSPEND command may
cause power to be removed from the device.

� Determine if power removal will cause problems.
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If both of these are true, the DDI_SUSPEND request should be rejected. Example 9–6
shows an example of an attach(9E) routine using ddi_removing_power(9F) to
check whether a DDI_SUSPEND causes problems.

Dump requests must be honored. The framework uses the dump(9E) entry point to
write out the state file containing the contents of memory. See the dump(9E) man page
for restrictions imposed on the device driver when using this entry point.

If the device implements power-manageable components, the device may have had its
state saved and powered off when its detach(9E) entry point is called with the
DDI_SUSPEND command. In this case the driver should cancel pending timeouts and
suppress the call to pm_raise_power(9F) (except for dump(9E) requests) until the
device is resumed by a call to attach(9E) with a command of DDI_RESUME. The
driver must keep sufficient track of its state to be able to deal appropriately with this
possibility. Example 9–6 shows an example of a detach(9E) routine with the
DDI_SUSPEND command implemented.

EXAMPLE 9–6 detach(9E) Routine Implementing DDI_SUSPEND

int
xxdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{

struct xxstate *xsp;
int instance;

instance = ddi_get_instance(dip);
xsp = ddi_get_soft_state(statep, instance);

switch (cmd) {
case DDI_DETACH:
...

case DDI_SUSPEND:
/*
* We do not allow DDI_SUSPEND if power will be removed and
* we have a device that damages tape when power is removed
* We do support DDI_SUSPEND for Device Reconfiguration.

.
*/
if (ddi_removing_power(dip) && xxdamages_tape(dip))

return (DDI_FAILURE);

mutex_enter(&xsp->mu);
xsp->xx_suspended = 1; /* stop new operations */

/*
* Sleep waiting for all the commands to be completed
*/
...

/*
* If a callback is outstanding which cannot be cancelled

148 Writing Device Drivers • February 2002 (Beta)



EXAMPLE 9–6 detach(9E) Routine Implementing DDI_SUSPEND (Continued)

* then either wait for the callback to complete or fail the
* suspend request
*/
...

/*
* This section is only needed if the driver maintains a
* running timeout
*/
if (xsp->xx_timeout_id) {

timeout_id_t temp_timeout_id = xsp->xx_timeout_id;

xsp->xx_timeout_id = 0;
mutex_exit(&xsp->mu);
untimeout(temp_timeout_id);
mutex_enter(&xsp->mu);

}

if (!xsp->xx_state_saved) {
/*
* Save device register contents into
* xsp->xx_device_state
*/
...

}
mutex_exit(&xsp->mu);
return (DDI_SUCCESS);

default:
return (DDI_FAILURE);

}

attach(9E)
int attach(dev_info_t *dip, ddi_attach_cmd_t cmd);

When power is restored to the system, each device with a reg property or with a
pm-hardware-state property of value needs-suspend-resume has its
attach(9E) entry point called with a command value of DDI_RESUME. If the system
shutdown was aborted for some reason, each driver that was suspended is called to
resume, even though the power has not been shut off. Consequently, the resume code
in attach(9E) must make no assumptions about the state of the hardware; it may or
may not have lost power.

The power management framework considers the power level of the components to
be unknown at DDI_RESUME time. Depending on the nature of the device, the driver
writer has two choices:
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� If it can determine the actual power level of the components of the device without
powering them up (by reading a register, for example), then the driver should
notify the framework of the power level of each component by calling
pm_power_has_changed(9F).

� If it cannot determine the power levels of the components, then the driver should
mark each of them internally as unknown and call pm_raise_power(9F) before
the first access to each one.

Example 9–7 shows an example of an attach(9E) routine with the DDI_RESUME
command.

EXAMPLE 9–7 attach(9E) Routine Implementing DDI_RESUME

int
xxattach(devinfo_t *dip, ddi_attach_cmd_t cmd)
{

struct xxstate *xsp;
int instance;

instance = ddi_get_instance(dip);
xsp = ddi_get_soft_state(statep, instance);

switch (cmd) {
case DDI_ATTACH:
...

case DDI_RESUME:
mutex_enter(&xsp->mu);
if (xsp->xx_pm_state_saved) {

/*
* Restore device register contents from
* xsp->xx_device_state
*/
...

}
/*
* This section is optional and only needed if the
* driver maintains a running timeout
*/
xsp->xx_timeout_id = timeout(...);

xsp->xx_suspended = 0; /* allow new operations */
cv_broadcast(&xsp->xx_suspend_cv);

/* If it is possible to determine in a device-specific
* way what the power levels of components are without
* powering the components up,
* then the following code is recommended
*/
for (i = 0; i < num_components; i++) {

xsp->xx_power_level[i] = xx_get_power_level(dip, i);
if (xsp->xx_power_level[i] != XX_LEVEL_UNKNOWN)

(void) pm_power_has_changed(dip, i,
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EXAMPLE 9–7 attach(9E) Routine Implementing DDI_RESUME (Continued)

xsp->xx_power_level[i]);
}
mutex_exit(&xsp->mu);
return(DDI_SUCCESS);

default:
return(DDI_FAILURE);

}

}

Note – The detach(9E) and attach(9E) interfaces may also be used to resume a
system that has been quiesced.

Device Access
If power management is supported, and detach(9E) and attach(9E) have code such
as shown in the previous examples, the code fragment in Example 9–8 can be used
where device access is about to be made to the device from user context (for example,
in read(2), write(2), ioctl(2)).

The following example assumes that the operation about to be performed requires a
component component that is operating at power level level.

EXAMPLE 9–8 Device Access

...
mutex_enter(&xsp->mu);
/*
* Block command while device is suspeded via DDI_SUSPEND
*/
while (xsp->xx_suspended)

cv_wait(&xsp->xx_suspend_cv, &xsp->mu);

/*
* Mark component busy so power() will reject attempt to lower power
*/
xsp->xx_busy[component]++;
if (pm_busy_component(dip, component) != DDI_SUCCESS) {

xsp->xx_busy[component]--;
/*
* Log error and abort
*/
....

}
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EXAMPLE 9–8 Device Access (Continued)

if (xsp->xx_power_level[component] < level) {
mutex_exit(&xsp->mu);
if (pm_raise_power(dip, component, level) != DDI_SUCESS) {

/*
* Log error and abort
*/
...

}
mutex_enter(&xsp->mu);

}

...

The code fragment in Example 9–9 can be used when device operation completes (for
example, in the device’s interrupt handler).

EXAMPLE 9–9 Device Operation Completion

...
/*
* For each command completion, decrement the busy count and unstack
* the pm_busy_component() call by calling pm_idle_component(). This
* will allow device power to be lowered when all commands complete
* (all pm_busy_component() counts are unstacked)
*/
xsp->xx_busy[component]--;
if (pm_idle_component(dip, component) != DDI_SUCCESS) {

xsp->xx_busy[component]++;
/*
* Log error and abort
*/
....

}

/*
* If no more outstanding commands, wake up anyone (like DDI_SUSPEND)
* waiting for all commands to be completed
*/

...

Power Management Flow of Control
Figure 9–1 illustrates the flow of control in the power management framework.

152 Writing Device Drivers • February 2002 (Beta)



When a component’s activity is complete, a driver can call pm_idle_component(9F)
to mark the component as idle. When the component has been idle for its threshold
time, the framework may lower the power of the component to its next lower level.
The framework does this by calling the power(9E) function to set the power level of
the component to its next lower supported power level (if any). The driver’s
power(9E) function should reject any attempt to lower the power level of a
component when it is busy. The driver’s power(9E) function should also save any
state that will be lost as a result of the transition to the lower power level before
making that transition.

When the component is needed again at a higher power level, the driver calls
pm_busy_component(9F) to keep the framework from lowering the power still
further, and then calls pm_raise_power(9F) on the component. The framework then
calls power(9E) to raise the power of the component (before the call to
pm_raise_power(9F) returns). The driver’s power(9E) code must restore any state
that was lost in the lower level but is needed in the higher level after making the
power transition.

When a driver is detaching, it should call pm_lower_power(9F) for each component
to lower its power to its lowest level. The framework may then call into the driver’s
power(9E) routine (before the call to pm_lower_power(9F) returns) to lower the
power of the component.
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pm_lower_power(9F)
power(9E) (b)

pm_lower_power(9F)
power(9E) (b)

pm_raise_power(9F)
power(9E) (a)

Higher Power Level

Lower Power Level

Note:
9E routines are always called by the framework
9F routines are always called by the driver

(a) power(9E) may be called by the framework to raise the power level of a 
     component as a result of a dependency or may be called by the framework 
     as a result of the driver's calll to pm_raise_power(9F)

(b) power(9E) may be called by the framework to lower the power level of a 
     component as a result of a device idleness, or may be called by the framework
     as a result of the driver's calll to pm_lower_power(9F) when the driver is 
     detaching

pm_raise_power(9F)
power(9E) (a)

busy idle
pm_busy_component(9F)

pm_idle_component(9F)

busy idle
pm_busy_component(9F)

pm_idle_component(9F)

FIGURE 9–1 Power Management Conceptual State Diagram
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CHAPTER 10

Drivers for Character Devices

Character devices are devices that do not have physically addressable storage media,
such as tape drives or serial ports, where I/O is normally performed in a byte stream.
This chapter describes the structure of a character device driver, focusing in particular
on character driver entry points. In addition, this chapter covers the use of
physio(9F) (in read(9E) and write(9E)) and aphysio(9F) (in aread(9E) and
awrite(9E)) in the context of synchronous and asynchronous I/O transfers.

Character Driver Structure Overview
Figure 10–1 shows data structures and routines that define the structure of a character
device driver. Device drivers typically include the following:

� Device-loadable driver section
� Device configuration section
� Character driver entry points

The shaded device access section in Figure 10–1 illustrates character driver entry
points.
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modlinkage(9S)

modldrv(9S)

dev_ops(9S)

cb_ops(9S) Character Device
open(9E)
close(9E)
read(9E)
write(9E)
ioctl(9E)
chpoll(9E)
aread(9E)
awrite(9E)
mmap(9E)
devmap(9E)
segmap(9E)
prop_op(9E)

FIGURE 10–1 Character Driver Roadmap

Associated with each device driver is a dev_ops(9S) structure, which in turn refers to
a cb_ops(9S) structure. These structures contain pointers to the driver entry points.
Note that some of these entry points can be replaced with nodev(9F) or nulldev(9F)
as appropriate.
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Autoconfiguration
The attach(9E) routine should perform the common initialization tasks that all
devices require. Typically, these tasks include:

� Allocating per-instance state structures
� Registering device interrupts
� Mapping the device’s registers
� Initializing mutex and condition variables
� Creating power-manageable components
� Creating minor nodes

See “attach(9E) ” on page 81 for code examples of these tasks.

Character device drivers create minor nodes of type S_IFCHR. This causes a character
special file representing the node to eventually appear in the /devices hierarchy.
Example 10–1 shows a character driver attach(9E) routine.

Example 10–1 shows a sample attach(9E) routine. It’s common to declare any
properties associated with the device in an attach() routine; in this example, it is the
predefined Size property. (Size is the equivalent of the Nblocks property used for
getting the size of partition in a block device. If, for example, you are doing character
I/O on a disk device, you might use Size to get the size of a partition. Since Size is a
64–bit property—the 32–bit version is size—you must use a 64–bit property interface,
in this case ddi_prop_updtate_int64(9E) See “Properties” on page 59 for more on
properties.)

EXAMPLE 10–1 Character Driver attach(9E) Routine

static int
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
switch (cmd) {
case DDI_ATTACH:

allocate a state structure and initialize it.
map the device’s registers.
add the device driver’s interrupt handler(s).
initialize any mutexes and condition variables.
create power manageable components.

/*
* Create the device’s minor node. Note that the node_type
* argument is set to DDI_NT_TAPE.
*/
if (ddi_create_minor_node(dip, "minor_name", S_IFCHR,

minor_number, DDI_NT_TAPE, 0) == DDI_FAILURE) {
free resources allocated so far.

/* Remove any previously allocated minor nodes */
ddi_remove_minor_node(dip, NULL);
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EXAMPLE 10–1 Character Driver attach(9E) Routine (Continued)

return (DDI_FAILURE);
}
/*
* Create driver properties like "Size." Use "Size"
* instead of "size" to ensure the property works
* for large bytecounts.
*/
xsp->Size = size of device in bytes;
maj_number = ddi_driver_major(dip);
if (ddi_prop_update_int64(makedevice(maj_number, instance),

dip, "Size", xsp->Size) != DDI_PROP_SUCCESS) {
cmn_err(CE_CONT, "%s: cannot create Size property\n",

ddi_get_name(dip));
free resources allocated so far

return (DDI_FAILURE);
}
...
return (DDI_SUCCESS);

case DDI_RESUME:
For information, see Chapter 9

default:
return (DDI_FAILURE);

}

}

Device Access
Access to a device by one or more application programs is controlled through the
open(9E) and close(9E) entry points. The open(9E) routine of a character driver is
always called whenever an open(2) system call is issued on a special file representing
the device. For a particular minor device, open(9E) can be called many times, but the
close(9E) routine is called only when the final reference to a device is removed. If the
device is accessed through file descriptors, the call is to close(2) or exit(2). If the
device is accessed through memory mapping, the call is to munmap(2).

open(9E)
int xxopen(dev_t *devp, int flag, int otyp, cred_t *credp);

The primary function of open(9E) is to verify that the open request is allowed. devp is
a pointer to a device number. The open(9E) routine is passed a pointer so that the
driver can change the minor number. This enables drivers to dynamically create minor
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instances of the device. An example of this might be a pseudo-terminal driver that
creates a new pseudo-terminal whenever the driver is opened. A driver that
dynamically chooses the minor number, normally creates only one minor device node
in attach(9E) with ddi_create_minor_node(9F), then changes the minor number
component of *devp using makedevice(9F) and getmajor(9F):

*devp = makedevice(getmajor(*devp), new_minor);

The driver must keep track of available minor numbers internally.

otyp indicates how open(9E) was called. The driver must check that the value of otyp
is appropriate for the device. For character drivers, otyp should be OTYP_CHR (see the
open(9E) manual page).

flag contains bits indicating whether the device is being opened for reading (FREAD),
writing (FWRITE), or both. User threads issuing the open(2) system call can also
request exclusive access to the device (FEXCL) or specify that the open should not
block for any reason (FNDELAY), but the driver must enforce both cases. A driver for a
write-only device such as a printer might consider an open(9E) for reading invalid.

credp is a pointer to a credential structure containing information about the caller, such
as the user ID and group IDs. Drivers should not examine the structure directly, but
should instead use drv_priv(9F) to check for the common case of root privileges. In
this example, only root is allowed to open the device for writing.

Example 10–2 shows a character driver open(9E) routine.

EXAMPLE 10–2 Character Driver open(9E) Routine

static int
xxopen(dev_t *devp, int flag, int otyp, cred_t *credp)
{

minor_t instance;

if (getminor(*devp) is invalid)
return (EINVAL);

instance = getminor(*devp); /* one-to-one example mapping */
/* Is the instance attached? */
if (ddi_get_soft_state(statep, instance) == NULL)

return (ENXIO);
/* verify that otyp is appropriate */
if (otyp != OTYP_CHR)

return (EINVAL);
if ((flag & FWRITE) && drv_priv(credp) == EPERM)

return (EPERM);
return (0);

}
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close(9E)
int xxclose(dev_t dev, int flag, int otyp, cred_t *credp);

close(9E) should perform any cleanup necessary to finish using the minor device,
and prepare the device (and driver) to be opened again. For example, the open routine
might have been invoked with the exclusive access (FEXCL) flag. A call to close(9E)
would allow further open routines to continue. Other functions that close(9E) might
perform are:

� Waiting for I/O to drain from output buffers before returning
� Rewinding a tape (tape device)
� Hanging up the phone line (modem device)

I/O Request Handling
This section gives the details of I/O request processing: from the application to the
kernel, the driver, the device, the interrupt handler, and back to the user.

User Addresses
When a user thread issues a write(2) system call, it passes the address of a buffer in
user space:

char buffer[] = "python";

count = write(fd, buffer, strlen(buffer) + 1);

The system builds a uio(9S) structure to describe this transfer by allocating an
iovec(9S) structure and setting the iov_base field to the address passed to
write(2), in this case, buffer. The uio(9S) structure is passed to the driver
write(9E) routine (see “Vectored I/O” on page 163 for more information about the
uio(9S) structure).

The problem is that this address is in user space, not kernel space, and so is not
guaranteed to be currently in memory. It is not even guaranteed to be a valid address.
In either case, accessing a user address directly from the device driver or from the
kernel could crash the system, so device drivers should never access user addresses
directly. Instead, they should always use one of the data transfer routines in the Solaris
9 DDI/DKI that transfer data into or out of the kernel. These routines are able to
handle page faults, either by bringing the proper user page in and continuing the copy
transparently, or by returning an error on an invalid access.
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Two routines commonly used are copyout(9F) to copy data from kernel space to user
space and copyin(9F) to copy data from user space to kernel space.
ddi_copyout(9F) and ddi_copyin(9F) operate similarly but are to be used in the
ioctl(9E) routine. copyin(9F) and copyout(9F) can be used on the buffer described
by each iovec(9S) structure, or uiomove(9F) can perform the entire transfer to or
from a contiguous area of driver (or device) memory.

Vectored I/O
In character drivers, transfers are described by a uio(9S) structure. The uio(9S)
structure contains information about the direction and size of the transfer, plus an
array of buffers for one end of the transfer (the other end is the device).

The uio(9S) structure contains the following members:

iovec_t *uio_iov; /* base address of the iovec */
/* buffer description array */

int uio_iovcnt; /* the number of iovec structures */
off_t uio_offset; /* offset into device where data */

/* is transferred from or to */
offset_t uio_loffset /* 64-bit offset into file where */

/* data is transferred from or to */
int uio_resid; /* amount (in bytes) not */

/* transferred on completion */

A uio(9S) structure is passed to the driver read(9E) and write(9E) entry points. This
structure is generalized to support what is called gather-write and scatter-read. When
writing to a device, the data buffers to be written do not have to be contiguous in
application memory. Similarly, when reading from a device into memory, the data
comes off the device in a contiguous stream but can go into noncontiguous areas of
application memory. See the readv(2), writev(2), pread(2), and pwrite(2) man
pages for more information on scatter-gather I/O.

Each buffer is described by an iovec(9S) structure. This structure contains a pointer to
the data area and the number of bytes to be transferred.

caddr_t iov_base; /* address of buffer */

int iov_len; /* amount to transfer */

The uio structure contains a pointer to an array of iovec(9S) structures. The base
address of this array is held in uio_iov, and the number of elements is stored in
uio_iovcnt.

The uio_offset field contains the 32-bit offset into the device at which the
application needs to begin the transfer. uio_loffset is used for 64-bit file offsets. If
the device does not support the notion of an offset, these fields can be safely ignored.
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The driver should interpret either uio_offset or uio_loffset (but not both). If the
driver has set the D_64BIT flag in the cb_ops(9S) structure, it should use
uio_loffset.

The uio_resid field starts out as the number of bytes to be transferred (the sum of
all the iov_len fields in uio_iov) and must be set by the driver to the number of
bytes not transferred before returning. The read(2) and write(2) system calls use the
return value from the read(9E) and write(9E) entry points to determine if the
transfer failed (and then return -1). If the return value indicates success, the system
calls return the number of bytes requested minus uio_resid. If uio_resid is not
changed by the driver, the read(2) and write(2) calls will return 0 (indicating
end-of-file), even though all the data was transferred.

The support routines uiomove(9F), physio(9F), and aphysio(9F) update the
uio(9S) structure directly, updating the device offset to account for the data transfer.
When used with a seekable device, for which the concept of position is relevant, the
driver does not need to adjust either the uio_offset or uio_loffset fields. I/O
performed to a device in this manner is constrained by the maximum possible value of
uio_offset or uio_loffset. An example of such a usage is raw I/O on a disk.

When performing I/O on a device on which the concept of position has no relevance,
the driver can save uio_offset or uio_loffset, perform the I/O operation, then
restore uio_offset or uio_loffset to the field’s initial value. I/O performed to a
device in this manner is not constrained by the maximum possible value of
uio_offset or uio_loffset. An example of such a usage is I/O on a serial line.

The following example shows one way to preserve uio_loffset in the read(9E)
function.

static int
xxread(dev_t dev, struct uio *uio_p, cred_t *cred_p)
{

offset_t off;
...

off = uio_p->uio_loffset; /* save the offset */
/* do the transfer */
uio_p->uio_loffset = off; /* restore it */

}

Synchronous Versus Asynchronous I/O
Data transfers can be synchronous or asynchronous depending on whether the entry
point scheduling the transfer returns immediately or waits until the I/O has been
completed.
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The read(9E) and write(9E) entry points are synchronous entry points; they must
not return until the I/O is complete. Upon return from the routines, the process knows
whether the transfer has succeeded.

The aread(9E) and awrite(9E) entry points are asynchronous entry points. They
schedule the I/O and return immediately. Upon return, the process issuing the request
knows that the I/O has been scheduled and that the status of the I/O must be
determined later. In the meantime, the process can perform other operations.

When an asynchronous I/O request is made to the kernel by a user process, the
process is not required to wait while the I/O is in process. A process can perform
multiple I/O requests and let the kernel handle the data transfer details. This is useful
in applications such as transaction processing where concurrent programming
methods can take advantage of asynchronous kernel I/O operations to increase
performance or response time. Any performance boost for applications using
asynchronous I/O, however, comes at the expense of greater programming
complexity.

Data Transfer Methods
Data can be transferred using either programmed I/O or DMA. These data transfer
methods can be used by either synchronous or asynchronous entry points, depending
on the capabilities of the device.

Programmed I/O Transfers
Programmed I/O devices rely on the CPU to perform the data transfer. Programmed
I/O data transfers are identical to other device register read and write operations.
Various data access routines are used to read or store values to device memory.

uiomove(9F) can be used to transfer data to some programmed I/O devices.
uiomove(9F) transfers data between the user space (defined by the uio(9S)
structure) and the kernel. uiomove(9F) can handle page faults, so the memory to
which data is transferred need not be locked down. It also updates the uio_resid
field in the uio(9S) structure. Example 10–3 shows one way to write a ramdisk
read(9E) routine. It uses synchronous I/O and relies on the presence of the following
fields in the ramdisk state structure:

caddr_t ram; /* base address of ramdisk */

int ramsize; /* size of the ramdisk */

EXAMPLE 10–3 Ramdisk read(9E) Routine Using uiomove(9F)

static int
rd_read(dev_t dev, struct uio *uiop, cred_t *credp)
{
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EXAMPLE 10–3 Ramdisk read(9E) Routine Using uiomove(9F) (Continued)

rd_devstate_t *rsp;

rsp = ddi_get_soft_state(rd_statep, getminor(dev));
if (rsp == NULL)

return (ENXIO);
if (uiop->uio_offset >= rsp->ramsize)

return (EINVAL);
/*
* uiomove takes the offset into the kernel buffer,
* the data transfer count (minimum of the requested and
* the remaining data), the UIO_READ flag, and a pointer
* to the uio structure.
*/
return (uiomove(rsp->ram + uiop->uio_offset,

min(uiop->uio_resid, rsp->ramsize - uiop->uio_offset),
UIO_READ, uiop));

}

Another example of programmed I/O might be a driver writing data one byte at a
time directly to the device’s memory. Each byte is retrieved from the uio(9S) structure
using uwritec(9F), then sent to the device. read(9E) can use ureadc(9F) to transfer
a byte from the device to the area described by the uio(9S) structure.

EXAMPLE 10–4 Programmed I/O write(9E) Routine Using uwritec(9F)

static int
xxwrite(dev_t dev, struct uio *uiop, cred_t *credp)
{

int value;
struct xxstate *xsp;

xsp = ddi_get_soft_state(statep, getminor(dev));
if (xsp == NULL)

return (ENXIO);
if the device implements a power manageable component, do this:

pm_busy_component(xsp->dip, 0);
if (xsp->pm_suspended)

ddi_dev_is_needed(xsp->dip, normal power);

while (uiop->uio_resid > 0) {
/*
* do the programmed I/O access
*/
value = uwritec(uiop);
if (value == -1)

return (EFAULT);
ddi_put8(xsp->data_access_handle, &xsp->regp->data,

(uint8_t)value);
ddi_put8(xsp->data_access_handle, &xsp->regp->csr,

START_TRANSFER);
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EXAMPLE 10–4 Programmed I/O write(9E) Routine Using uwritec(9F) (Continued)

/*
* this device requires a ten microsecond delay
* between writes
*/
drv_usecwait(10);

}
pm_idle_component(xsp->dip, 0);
return (0);

}

DMA Transfers (Synchronous)
Most character drivers use physio(9F) to do most of the setup work for DMA
transfers in read(9E) and write(9E), as is shown in Example 10–5.

int physio(int (*strat)(struct buf *), struct buf *bp,
dev_t dev, int rw, void (*mincnt)(struct buf *),

struct uio *uio);

physio(9F) requires the driver to provide the address of a strategy(9E) routine.
physio(9F) ensures that memory space is locked down (cannot be paged out) for the
duration of the data transfer. This is necessary for DMA transfers because they cannot
handle page faults. physio(9F) also provides an automated way of breaking a larger
transfer into a series of smaller, more manageable ones. See “minphys(9F) ”
on page 169 for more information.

EXAMPLE 10–5 read(9E) and write(9E) Routines Using physio(9F)

static int
xxread(dev_t dev, struct uio *uiop, cred_t *credp)
{

struct xxstate *xsp;
int ret;

xsp = ddi_get_soft_state(statep, getminor(dev));
if (xsp == NULL)

return (ENXIO);
ret = physio(xxstrategy, NULL, dev, B_READ, xxminphys, uiop);
pm_idle_component(xsp->dip, 0);
return (ret);

}

static int
xxwrite(dev_t dev, struct uio *uiop, cred_t *credp)
{

struct xxstate *xsp;
int ret;
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EXAMPLE 10–5 read(9E) and write(9E) Routines Using physio(9F) (Continued)

xsp = ddi_get_soft_state(statep, getminor(dev));
if (xsp == NULL)

return (ENXIO);
ret = physio(xxstrategy, NULL, dev, B_WRITE, xxminphys, uiop);
pm_idle_component(xsp->dip, 0);
return (ret);

}

In the call to physio(9F), xxstrategy() is a pointer to the driver strategy routine.
Passing NULL as the buf(9S) structure pointer tells physio(9F) to allocate a buf(9S)
structure. If the driver must provide physio(9F) with a buf(9S) structure,
getrbuf(9F) should be used to allocate one. physio(9F) returns zero if the transfer
completes successfully, or an error number on failure. After calling strategy(9E),
physio(9F) calls biowait(9F) to block until the transfer is completed or fails. The
return value of physio(9F) is determined by the error field in the buf(9S) structure
set by bioerror(9F).

DMA Transfers (Asynchronous)
Character drivers supporting aread(9E) and awrite(9E) use aphysio(9F) instead of
physio(9F).

int aphysio(int (*strat)(struct buf *), int (*cancel)(struct buf *),
dev_t dev, int rw, void (*mincnt)(struct buf *),

struct aio_req *aio_reqp);

Note – The address of anocancel(9F) is the only value that can currently be passed
as the second argument to aphysio(9F).

aphysio(9F) requires the driver to pass the address of a strategy(9E) routine.
aphysio(9F) ensures that memory space is locked down (cannot be paged out) for the
duration of the data transfer. This is necessary for DMA transfers because they cannot
handle page faults. aphysio(9F) also provides an automated way of breaking a larger
transfer into a series of smaller, more manageable ones. See “minphys(9F) ”
on page 169 for more information. Example 10–5 and Example 10–6 demonstrate that
the aread(9E) and awrite(9E) entry points differ only slightly from the read(9E)
and write(9E) entry points; the difference lies mainly in their use of aphysio(9F)
instead of physio(9F).

EXAMPLE 10–6 aread(9E) andawrite(9E) Routines Using aphysio(9F)

static int
xxaread(dev_t dev, struct aio_req *aiop, cred_t *cred_p)
{
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EXAMPLE 10–6 aread(9E) andawrite(9E) Routines Using aphysio(9F) (Continued)

struct xxstate *xsp;

xsp = ddi_get_soft_state(statep, getminor(dev));
if (xsp == NULL)

return (ENXIO);
return (aphysio(xxstrategy, anocancel, dev, B_READ,

xxminphys, aiop));
}

static int
xxawrite(dev_t dev, struct aio_req *aiop, cred_t *cred_p)
{

struct xxstate *xsp;

xsp = ddi_get_soft_state(statep, getminor(dev));
if (xsp == NULL)

return (ENXIO);
return (aphysio(xxstrategy, anocancel, dev, B_WRITE,

xxminphys,aiop));

}

In the call to aphysio(9F), xxstrategy() is a pointer to the driver strategy routine.
aiop is a pointer to the aio_req(9S) structure and is also passed to aread(9E) and
awrite(9E). aio_req(9S) describes where the data is to be stored in user space.
aphysio(9F) returns zero if the I/O request is scheduled successfully or an error
number on failure. After calling strategy(9E), aphysio(9F) returns without waiting
for the I/O to complete or fail.

minphys(9F)
xxminphys() is a pointer to a function to be called by physio(9F) or aphysio(9F) to
ensure that the size of the requested transfer does not exceed a driver-imposed limit. If
the user requests a larger transfer, strategy(9E) will be called repeatedly, requesting
no more than the imposed limit at a time. This is important because DMA resources
are limited. Drivers for slow devices, such as printers, should be careful not to tie up
resources for a long time.

Usually, a driver passes the address of the kernel function minphys(9F), but the driver
can define its own xxminphys() routine instead. The job of xxminphys() is to keep
the b_bcount field of the buf(9S) structure below a driver limit. There might be
additional system limits that the driver should not circumvent, so the driver
xxminphys() routine should call the system minphys(9F) routine after setting the
b_bcount field and before returning.
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EXAMPLE 10–7 minphys(9F) Routine

#define XXMINVAL (512 << 10) /* 512 KB */
static void
xxminphys(struct buf *bp)
{

if (bp->b_bcount > XXMINVAL)
bp->b_bcount = XXMINVAL

minphys(bp);

}

strategy(9E)
The strategy(9E) routine originated in block drivers and is so called because it can
implement a strategy for efficient queuing of I/O requests to a block device. A driver
for a character-oriented device can also use a strategy(9E) routine. In the character
I/O model presented here, strategy(9E) does not maintain a queue of requests, but
rather services one request at a time.

In Example 10–8, the strategy(9E) routine for a character-oriented DMA device
allocates DMA resources for synchronous data transfer and starts the command by
programming the device register (see Chapter 8 for a detailed description).

Note – strategy(9E) does not receive a device number (dev_t) as a parameter;
instead, this is retrieved from the b_edev field of the buf(9S) structure passed to
strategy(9E).

EXAMPLE 10–8 strategy(9E) Routine

static int
xxstrategy(struct buf *bp)
{

minor_t instance;
struct xxstate *xsp;
ddi_dma_cookie_t cookie;

instance = getminor(bp->b_edev);
xsp = ddi_get_soft_state(statep, instance);
...

if the device has power manageable components
mark the device busy with pm_busy_components(9F),
and then ensure that the device
is powered up by calling ddi_dev_is_needed(9F).

set up DMA resources with ddi_dma_alloc_handle(9F) and
ddi_dma_buf_bind_handle(9F).

xsp->bp = bp; /* remember bp */
program DMA engine and start command

return (0);
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EXAMPLE 10–8 strategy(9E) Routine (Continued)

}

Note – Although strategy(9E) is declared to return an int, it must always return
zero.

On completion of the DMA transfer, the device generates an interrupt, causing the
interrupt routine to be called. In Example 10–9, xxintr() receives a pointer to the
state structure for the device that might have generated the interrupt.

EXAMPLE 10–9 Interrupt Routine

static u_int
xxintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
if ( device did not interrupt) {

return (DDI_INTR_UNCLAIMED);
}
if ( error) {

error handling
}

release any resources used in the transfer, such as DMA resources
ddi_dma_unbind_handle(9F) and ddi_dma_free_handle(9F)

/* notify threads that the transfer is complete */
biodone(xsp->bp);
return (DDI_INTR_CLAIMED);

}

The driver indicates an error by calling bioerror(9F). The driver must call
biodone(9F) when the transfer is complete or after indicating an error with
bioerror(9F).

Mapping Device Memory
Some devices, such as frame buffers, have memory that is directly accessible to user
threads by way of memory mapping. Drivers for these devices typically do not
support the read(9E) and write(9E) interfaces. Instead, these drivers support
memory mapping with the devmap(9E) entry point. A typical example is a frame
buffer driver that implements the devmap(9E) entry point to allow the frame buffer to
be mapped in a user thread.
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segmap(9E)
int xxsegmap(dev_t dev, off_t off, struct as *asp, caddr_t *addrp,

off_t len, unsigned int prot, unsigned int maxprot,
unsigned int flags, cred_t *credp);

segmap(9E) is the entry point responsible for actually setting up a memory mapping
requested by the system on behalf of an mmap(2) system call. Drivers for many
memory-mapped devices will use ddi_devmap_segmap(9F) as the entry point rather
than defining their own segmap(9E) routine.

If a driver wants to check mapping permissions or allocate private mapping resources
before setting up the mapping, the driver can provide its own segmap(9E) entry point.
segmap(9E) must call devmap_setup(9F) before returning.

In Example 10–10, the driver controls a frame buffer that allows write-only mappings.
The driver returns EINVAL if the application tries to gain read access and then calls
devmap_setup(9F) to set up the user mapping.

EXAMPLE 10–10 segmap(9E) Routine

static int
xxsegmap(dev_t dev, off_t off, struct as *asp, caddr_t *addrp,

off_t len, unsigned int prot, unsigned int maxprot,
unsigned int flags, cred_t *credp)

{
if (prot & PROT_READ)

return (EINVAL);
return (devmap_setup(dev, (offset_t)off, as, addrp,

(size_t)len, prot, maxprot, flags, cred));

}

devmap(9E)
int xxdevmap(dev_t dev, devmap_cookie_t handle, offset_t off,

size_t len, size_t *maplen, uint_t model);

This entry point is called to export device memory or kernel memory to user
applications. devmap(9E) is called from devmap_setup(9F) inside segmap(9E) or on
behalf of ddi_devmap_segmap(9F). See Chapter 12 and Chapter 13 for details.

Multiplexing I/O on File Descriptors
A thread sometimes needs to handle I/O on more than one file descriptor. One
example is an application program that needs to read the temperature from a
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temperature-sensing device and then report the temperature to an interactive display.
If the program makes a read request and there is no data available, it should not block
waiting for the temperature before interacting with the user again.

The poll(2) system call provides users with a mechanism for multiplexing I/O over a
set of file descriptors that reference open files. poll(2) identifies those file descriptors
on which a program can send or receive data without blocking, or on which certain
events have occurred.

To allow a program to poll a character driver, the driver must implement the
chpoll(9E) entry point. Its syntax is:

int xxchpoll(dev_t dev, short events, int anyyet, short *reventsp,
struct pollhead **phpp);

The system calls chpoll(9E) when a user process issues a poll(2) system call on a
file descriptor associated with the device. The chpoll(9E) entry point routine is used
by non-STREAMS character device drivers that need to support polling.

In chpoll(9E), the driver must follow these rules:

� Implement the following algorithm when the chpoll(9E) entry point is called:

if ( events are satisfied now) {
*reventsp = mask of satisfied events;

} else {
*reventsp = 0;
if (!anyyet)

*phpp = & local pollhead structure;
}

return (0);

xxchpoll() should check to see if certain events have occurred; see the chpoll(9E)
man page. It should then return the mask of satisfied events by setting the return
events in *reventsp.

If no events have occurred, the return field for the events is cleared. If the anyyet field
is not set, the driver must return an instance of the pollhead structure. It is usually
allocated in a state structure and should be treated as opaque by the driver. None of its
fields should be referenced.

� Call pollwakeup(9F) whenever a device condition of type events, listed in
Example 10–11, occurs. This function should be called only with one event at a
time. pollwakeup(9F) might be called in the interrupt routine when the condition
has occurred.

Example 10–11 and Example 10–12 show how to implement the polling discipline and
how to use pollwakeup(9F).
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EXAMPLE 10–11 chpoll(9E) Routine

static int
xxchpoll(dev_t dev, short events, int anyyet,

short *reventsp, struct pollhead **phpp)
{

uint8_t status;
short revent;
struct xxstate *xsp;

xsp = ddi_get_soft_state(statep, getminor(dev));
if (xsp == NULL)

return (ENXIO);
revent = 0;
/*

* Valid events are:
* POLLIN | POLLOUT | POLLPRI | POLLHUP | POLLERR
* This example checks only for POLLIN and POLLERR.
*/

status = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);
if ((events & POLLIN) && data available to read) {

revent |= POLLIN;
}
if ((events & POLLERR) && (status & DEVICE_ERROR)) {

revent |= POLLERR;
}
/* if nothing has occurred */
if (revent == 0) {

if (!anyyet) {
*phpp = &xsp->pollhead;

}
}
*reventsp = revent;

return (0);

}

In Example 10–12, the driver can handle the POLLIN and POLLERR events. The driver
first reads the status register to determine the current state of the device. The
parameter events specifies which conditions the driver should check. If the
appropriate conditions have occurred, the driver sets that bit in *reventsp. If none of
the conditions have occurred and anyyet is not set, the address of the pollhead
structure is returned in *phpp.

EXAMPLE 10–12 Interrupt Routine Supporting chpoll(9E)

static u_int
xxintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
uint8_t status;

normal interrupt processing
...
status = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);
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EXAMPLE 10–12 Interrupt Routine Supporting chpoll(9E) (Continued)

if (status & DEVICE_ERROR) {
pollwakeup(&xsp->pollhead, POLLERR);

}
if ( just completed a read) {

pollwakeup(&xsp->pollhead, POLLIN);
}
...
return (DDI_INTR_CLAIMED);

}

pollwakeup(9F) is usually called in the interrupt routine when a supported condition
has occurred. The interrupt routine reads the status from the status register and checks
for the conditions. It then calls pollwakeup(9F) for each event to possibly notify
polling threads that they should check again. Note that pollwakeup(9F) should not
be called with any locks held, as it could cause the chpoll(9E) routine to be entered,
resulting in deadlock if that routine tries to grab the same lock.

Miscellaneous I/O Control
The ioctl(9E) routine is called when a user thread issues an ioctl(2) system call on
a file descriptor associated with the device. The I/O control mechanism is a catchall
for getting and setting device-specific parameters. It is frequently used to set a
device-specific mode, either by setting internal driver software flags or by writing
commands to the device. It can also be used to return information to the user about
the current device state. In short, it can do whatever the application and driver need it
to do.

ioctl(9E)
int xxioctl(dev_t dev, int cmd, intptr_t arg, int mode,

cred_t *credp, int *rvalp);

The cmd parameter indicates which command ioctl(9E) should perform. By
convention, I/O control commands indicate the driver they belong to in bits 8-15 of
the command (usually given by the ASCII code of a character representing the driver),
and the driver-specific command in bits 0-7. They are usually created in the following
way:

#define XXIOC (‘x’ << 8) /* ‘x’ is a character representing */

/* device xx */
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#define XX_GET_STATUS (XXIOC | 1) /* get status register */

#define XX_SET_CMD (XXIOC | 2) /* send command */

The interpretation of arg depends on the command. I/O control commands should be
documented (in the driver documentation or a manual page) and defined in a public
header file, so that applications can determine the names, what they do, and what they
accept or return as arg. Any data transfer of arg (into or out of the driver) must be
performed by the driver.

Certain classes of devices such as frame buffers or disks must support standard sets of
I/O control requests. These standard I/O control interfaces are documented in the
Solaris 8 Reference Manual Collection. For example, fbio(7I) documents the I/O controls
that frame buffers must support, and dkio(7I) documents standard disk I/O controls.
See “Miscellaneous I/O Control” on page 175 for more information on I/O control.

Drivers must use ddi_copyin(9F) to transfer arg data from the userland application
to the kernel and ddi_copyout(9F) from kernel to userland. Failure to use
ddi_copyin(9F) or ddi_copyout(9F) will result in panics on architectures that
separate kernel and user address spaces, or if the user address has been swapped out.

ioctl(9E) is usually a switch statement with a case for each supported ioctl(9E)
request.

EXAMPLE 10–13 ioctl(9E) Routine

static int
xxioctl(dev_t dev, int cmd, intptr_t arg, int mode,

cred_t *credp, int *rvalp)
{

uint8_t csr;
struct xxstate *xsp;

xsp = ddi_get_soft_state(statep, getminor(dev));
if (xsp == NULL) {

return (ENXIO);
}
switch (cmd) {
case XX_GET_STATUS:

csr = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);
if (ddi_copyout(&csr, (void *)arg,

sizeof (uint8_t), mode) != 0) {
return (EFAULT);

}
break;

case XX_SET_CMD:
if (ddi_copyin((void *)arg, &csr,
sizeof (uint8_t), mode) != 0) {

return (EFAULT);
}
ddi_put8(xsp->data_access_handle, &xsp->regp->csr, csr);
break;

default:

176 Writing Device Drivers • February 2002 (Beta)



EXAMPLE 10–13 ioctl(9E) Routine (Continued)

/* generic "ioctl unknown" error */
return (ENOTTY);

}
return (0);

}

The cmd variable identifies a specific device control operation. If arg contains a user
virtual address, ioctl(9E) must call ddi_copyin(9F) or ddi_copyout(9F) to
transfer data between the data structure in the application program pointed to by arg
and the driver. In Example 10–13, for the case of an XX_GET_STATUS request the
contents of xsp->regp->csr are copied to the address in arg. When a request succeeds,
ioctl(9E) can store in *rvalp any integer value to be the return value of the ioctl(2)
system call that made the request. Negative return values, such as -1, should be
avoided, as they usually indicate the system call failed, and many application
programs assume that negative values indicate failure.

An application that uses the I/O controls discussed above could look like Example
10–14.

EXAMPLE 10–14 Using ioctl(9E)

#include <sys/types.h>
#include "xxio.h" /* contains device’s ioctl cmds and args */
int
main(void)
{

uint8_t status;
...

/*
* read the device status
*/
if (ioctl(fd, XX_GET_STATUS, &status) == -1) {

error handling
}
printf("device status %x\n", status);
exit(0);

}

I/O Control Support for 64-Bit Capable Device
Drivers
The Solaris kernel runs in 64-bit mode on suitable hardware and supports both 32-bit
and 64-bit applications. A 64-bit device driver is required to support I/O control
commands from 32-bit and 64-bit user mode programs. The difference between a
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32-bit program and a 64-bit program is its C language type model: a 32-bit program is
ILP32 and a 64-bit program is LP64. See Appendix C for information on C data type
models.

Any data that flows between programs and the kernel and vice versa (for example
using ddi_copyin(9F) or ddi_copyout(9F)) will either need to be identical in
format regardless of the type model of the kernel and application, or the device driver
should be able to handle a model mismatch between it and the application and adjust
the data format accordingly.

To determine if there is a model mismatch, the ioctl(9E) mode parameter passes the
data model bits to the driver. As Example 10–15 shows, the mode parameter is then
passed to ddi_model_convert_from(9F) to determine if any model conversion is
necessary.

The data model is passed to the ioctl(9E) routine using the mode field or flags
argument. The flag will be set to one of:

� FILP32
� FLP64

with FNATIVE conditionally defined to match the data model of the kernel
implementation. The flag should be extracted using the FMODELS mask. The driver
can then determine the data model explicitly to work out how to copy the application
data structure.

The DDI function ddi_model_convert_from(9F) is a convenience routine that can
assist some drivers with their ioctl() calls. The function takes the data type model
of the user application as an argument and returns one of the following values:

� DDI_MODEL_ILP32 — Convert from ILP32 application
� DDI_MODEL_NONE — No conversion needed

DDI_MODEL_NONE is returned if no data conversion is necessary. This is the case when
the application and driver have the same data model. DDI_MODEL_ILP32 is returned
if the driver is compiled to the LP64 data model and is communicating with a 32-bit
application.

In the following example, the driver copies a data structure that contains a user
address. Because the data structure changes size from ILP32 to LP64, the 64-bit driver
uses a 32-bit version of the structure when communicating with a 32-bit application.

EXAMPLE 10–15 ioctl(9E) Routine to Support 32-bit and 64-bit Applications

struct args32 {
uint32_t addr; /* 32-bit address in LP64 */
int len;

}
struct args {

caddr_t addr; /* 64-bit address in LP64 */
int len;
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EXAMPLE 10–15 ioctl(9E) Routine to Support 32-bit and 64-bit Applications (Continued)

}

static int
xxioctl(dev_t dev, int cmd, intptr_t arg, int mode,

cred_t *credp, int *rvalp)
{

struct xxstate *xsp;
struct args a;
xsp = ddi_get_soft_state(statep, getminor(dev));
if (xsp == NULL) {

return (ENXIO);
}
switch (cmd) {
case XX_COPYIN_DATA:

switch(ddi_model_convert_from(mode & FMODELS)) {
case DDI_MODEL_ILP32:
{

struct args32 a32;

/* copy 32-bit args data shape */
if (ddi_copyin((void *)arg, &a32,

sizeof (struct args32), mode) != 0) {
return (EFAULT);

}
/* convert 32-bit to 64-bit args data shape */
a.addr = a32.addr;
a.len = a32.len;
break;

}
case DDI_MODEL_NONE:

/* application and driver have same data model. */
if (ddi_copyin((void *)arg, &a, sizeof (struct args),

mode) != 0) {
return (EFAULT);

}
}
/* continue using data shape in native driver data model. */
break;

case XX_COPYOUT_DATA:
/* copyout handling */
break;

default:
/* generic "ioctl unknown" error */
return (ENOTTY);

}
return (0);

}
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Handling copyout(9F) Overflow
Sometimes a driver needs to copy out a native quantity that no longer fits in the 32-bit
sized structure. In this case, the driver should return EOVERFLOW to the caller as an
indication that the data type in the interface is too small to hold the value to be
returned, as shown in Example 10–16.

EXAMPLE 10–16 Handling copyout(9F) Overflow

int
xxioctl(dev_t dev, int cmd, intptr_t arg, int mode,

cred_t *cr, int *rval_p)
{

struct resdata res;

... body of driver code ...

switch (ddi_model_convert_from(mode & FMODELS)) {
case DDI_MODEL_ILP32: {

struct resdata32 res32;

if (res.size > UINT_MAX)
return (EOVERFLOW);

res32.size = (size32_t)res.size;
res32.flag = res.flag;
if (copyout(&res32,

(void *)arg, sizeof (res32)))
return (EFAULT);

}
break;

case DDI_MODEL_NONE:
if (copyout(&res, (void *)arg, sizeof (res)))

return (EFAULT);
break;

}
return (0);

}

32–bit and 64–bit Data Structure Macros
While the method shown in the previous example works well for many drivers, an
alternate scheme is to use the data structure macros provided in <sys/model.h> to
move data between the application and the kernel. These make the code less cluttered
and behave identically, from a functional perspective.
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EXAMPLE 10–17 Using Data Structure Macros to Move Data

int
xxioctl(dev_t dev, int cmd, intptr_t arg, int mode,

cred_t *cr, int *rval_p)
{

STRUCT_DECL(opdata, op);

if (cmd != OPONE)
return (ENOTTY);

STRUCT_INIT(op, mode);

if (copyin((void *)arg,
STRUCT_BUF(op), STRUCT_SIZE(op)))

return (EFAULT);

if (STRUCT_FGET(op, flag) != XXACTIVE ||
STRUCT_FGET(op, size) > XXSIZE)

return (EINVAL);
xxdowork(device_state, STRUCT_FGET(op, size));
return (0);

}

How Do the Structure Macros Work?
In a 64-bit device driver, these macros do all that is necessary to use the same piece of
kernel memory as a buffer for the contents of the native form of the data structure
(that is, the LP64 form), and for the ILP32 form of the same structure. This usually
means that each structure access is implemented by a conditional expression. When
compiled as a 32-bit driver, only one data model is supported and only the native
form exists, so no conditional expression is used.

The 64-bit versions of the macros depend on the definition of a shadow version of the
data structure that describes the 32-bit interface using fixed-width types. The name of
the shadow data structure is formed by appending “32” to the name of the native data
structure. For convenience, place the definition of the shadow structure in the same
file as the native structure to ease future maintenance costs.

The macros take arguments such as:

structname The structure name (as would appear after the struct keyword)
of the native form of the data structure

umodel A flag word containing the user data model, such as FILP32 or
FLP64, extracted from the mode parameter of ioctl(9E)

handle The name used to refer to a particular instance of a structure that is
manipulated by these macros

fieldname The name of the field within the structure
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When to Use Structure Macros
Macros enable you to make in-place references only to the fields of a data item. They
do not provide a way to take separate code paths based on the data model. They
should be avoided if the number of fields in the data structure is large or the
frequency of references to these fields is high.

Because the macros hide many of the differences between data models in the
implementation of the macros, code written with this interface is generally easier to
read. When compiled as a 32-bit driver, the resulting code is compact without needing
clumsy #ifdefs, but still preserves type checking.

Macros are best suited for making in-place references to the fields of a data structure,
particularly if the number of fields in the data structure is small and the frequency of
references to these fields is low.

Declaring and Initializing Structure Handles
STRUCT_DECL(9F) and STRUCT_INIT(9F) can be used to declare and initialize a
handle and space for decoding an ioctl on the stack. STRUCT_HANDLE(9F) and
STRUCT_SET_HANDLE(9F) declare and initialize a handle without allocating space on
the stack. The latter macros can be useful if the structure is very large, or is contained
in some other data structure.

Note – Because the STRUCT_DECL(9F) and STRUCT_HANDLE(9F) macros expand to
data structure declarations, they should be grouped with such declarations in C code.

STRUCT_DECL(structname, handle)
Declares a structure handle called handle for a struct structname data structure, and
allocates space for its native form on the stack. The native form is assumed to be
larger than or equal to the ILP32 form of the structure.

STRUCT_INIT(handle, umodel)
Initializes the data model for handle to umodel. This macro must be invoked before
any access is made to a structure handle declared with STRUCT_DECL(9F).

STRUCT_HANDLE(structname, handle)
Declares a structure handle called handle. Contrast with STRUCT_DECL(9F).

STRUCT_SET_HANDLE(handle, umodel, addr)
Initializes the data model for handle to umodel, and sets addr as the buffer used for
subsequent manipulation. Invoke this macro before accessing a structure handle
declared with STRUCT_DECL(9F).
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Operations on Structure Handles
size_t STRUCT_SIZE(handle)

Returns the size of the structure referred to by handle, according to its embedded
data model.

typeof fieldname STRUCT_FGET(handle, fieldname)
Returns the indicated field (non-pointer type) in the data structure referred to by
handle.

typeof fieldname STRUCT_FGETP(handle, fieldname)
Returns the indicated field (pointer type) in the data structure referred to by handle.

STRUCT_FSET(handle, fieldname, val)
Sets the indicated field (non-pointer type) in the data structure referred to by handle
to value val. The type of val should match the type of fieldname.

STRUCT_FSETP(handle, fieldname, val)
Sets the indicated field (pointer type) in the data structure referred to by handle to
value val.

typeof fieldname *STRUCT_FADDR(handle, fieldname)
Returns the address of the indicated field in the data structure referred to by handle.

struct structname *STRUCT_BUF(handle)
Returns a pointer to the native structure described by handle.

Other Operations
size_t SIZEOF_STRUCT(struct_name, datamodel)

Returns the size of struct_name based on the given data model.

size_t SIZEOF_PTR(datamodel)
Returns the size of a pointer based on the given data model.
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CHAPTER 11

Drivers for Block Devices

This chapter describes the structure of block device drivers. The kernel views a block
device as a set of randomly accessible logical blocks. The file system buffers the data
blocks between a block device and the user space using a list of buf(9S) structures.
Only block devices can support a file system.

Block Driver Structure Overview
Figure 11–1 shows data structures and routines that define the structure of a block
device driver. Device drivers typically include the following:

� Device-loadable driver section
� Device configuration section
� Device access section

The shaded device access section in Figure 11–1 illustrates block driver entry points.
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modlinkage(9S)

modldrv(9S)

dev_ops(9S)

cb_ops(9S) Block Device
open(9E)
close(9E)
strategy(9E)
print(9E)

FIGURE 11–1 Block Driver Roadmap

Associated with each device driver is a dev_ops(9S) structure, which in turn refers to
a cb_ops(9S) structure. See Chapter 5, for details regarding driver data structures.

Note – Some of the entry points can be replaced by nodev(9F) or nulldev(9F) as
appropriate.

File I/O
A file system is a tree-structured hierarchy of directories and files. Some file systems,
such as the UNIX File System (UFS), reside on block-oriented devices. File systems are
created by format(1M) and newfs(1M).
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When an application issues a read(2) or write(2) system call to an ordinary file on
the UFS file system, the file system can call the device driver strategy(9E) entry
point for the block device on which the file resides. The file system code can call
strategy(9E) several times for a single read(2) or write(2) system call.

The file system code what determines the logical device address, or logical block
number, for each block and builds a block I/O request in the form of a buf(9S)
structure. The driver strategy(9E) entry point then interprets the buf(9S) structure
and completes the request.

Autoconfiguration
attach(9E) should perform the common initialization tasks for each instance of a
device. Typically, these tasks include:

� Allocating per-instance state structures
� Mapping the device’s registers
� Registering device interrupts
� Initializing mutex and condition variables
� Creating power manageable components
� Creating minor nodes

Block device drivers create minor nodes of type S_IFBLK. This causes a block special
file representing the node to eventually appear in the /devices hierarchy.

Logical device names for block devices appear in the /dev/dsk directory, and consist
of a controller number, bus-address number, disk number, and slice number. These
names are created by the devfsadm(1M) program if the node type is set to
DDI_NT_BLOCK or DDI_NT_BLOCK_CHAN. DDI_NT_BLOCK_CHAN should be specified
if the device communicates on a channel (a bus with an additional level of
addressability), such as SCSI disks, and causes a bus-address field (tN) to appear in
the logical name. DDI_NT_BLOCK should be used for most other devices.

For each minor device (which corresponds to each partition on the disk), the driver
must also create an nblocks or Nblocks property. This is an integer property giving
the number of blocks supported by the minor device expressed in units of DEV_BSIZE
(512 bytes). The file system uses the nblocks and Nblocks properties to determine
device limits; Nblocks is the 64–bit version of nblocks and should be used with
storage devices with over 1 Tbyte of storage per disk.). See “Properties” on page 45
and “Properties” on page 59 for more information.

Example 11–1 shows a typical attach(9E) entry point with emphasis on creating the
device’s minor node and the Nblocks property. Note that because this example uses
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Nblocks and not nblocks, it calls ddi_prop_update_int64(9F) instead of
ddi_prop_update_int(9F).

As a side note, this example shows the use of makedevice(9F) to create a device
number for ddi_prop_update_int64(9F). makedevice(9F) itself makes use of
ddi_driver_major(9F), which generates a major number from a pointer to a
dev_info_t structure, just as getmajor(9F) does with a dev_t structure pointer.

EXAMPLE 11–1 Block Driver attach(9E) Routine

static int
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

switch (cmd) {
case DDI_ATTACH:

allocate a state structure and initialize it
map the devices registers
add the device driver’s interrupt handler(s)
initialize any mutexs and condition variables
read label information if the device is a disk
create power manageable components

/*
* Create the device minor node. Note that the node_type
* argument is set to DDI_NT_BLOCK.
*/
if (ddi_create_minor_node(dip, "minor_name", S_IFBLK,

minor_number, DDI_NT_BLOCK, 0) == DDI_FAILURE) {
free resources allocated so far
/* Remove any previously allocated minor nodes */
ddi_remove_minor_node(dip, NULL);
return (DDI_FAILURE);

}
/*
* Create driver properties like "Nblocks". If the device
* is a disk, the Nblocks property is usually calculated from
* information in the disk label. Use "Nblocks" instead of
* "nblocks" to ensure the property works for large disks.
*/
xsp->Nblocks = size of device in 512 byte blocks;
maj_number = ddi_driver_major(dip);
if (ddi_prop_update_int64(makedevice(maj_number, instance), dip,

"Nblocks", xsp->Nblocks) != DDI_PROP_SUCCESS) {
cmn_err(CE_CONT, "%s: cannot create Nblocks property\n",

ddi_get_name(dip));
free resources allocated so far

return (DDI_FAILURE);
}
xsp->open = 0;
xsp->nlayered = 0;
...
return (DDI_SUCCESS);

case DDI_RESUME:
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EXAMPLE 11–1 Block Driver attach(9E) Routine (Continued)

For information, see Chapter 9
default:

return (DDI_FAILURE);
}

}

Properties are associated with device numbers. In Example 11–1, attach(9E) builds a
device number using makedevice(9F). At this point, however, only the minor
number component of the device number is known, so it must use the special major
number DDI_MAJOR_T_UNKNOWN to build the device number.

Controlling Device Access
This section describes aspects of the open(9E) and close(9E) entry points that are
specific to block device drivers. See Chapter 10 for more information on open(9E) and
close(9E).

open(9E)
The open(9E) entry point is used to gain access to a given device. The open(9E)
routine of a block driver is called when a user thread issues an open(2) or mount(2)
system call on a block special file associated with the minor device, or when a layered
driver calls open(9E). See “File I/O” on page 186 for more information.

The open(9E) entry point should check for the following:

� The device can be opened; for example, it is online and ready.

� The device can be opened as requested; the device supports the operation, and the
device’s current state does not conflict with the request.

� The caller has permission to open the device.

Example 11–2 demonstrates a block driver open(9E) entry point.

EXAMPLE 11–2 Block Driver open(9E) Routine

static int
xxopen(dev_t *devp, int flags, int otyp, cred_t *credp)
{

minor_t instance;
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EXAMPLE 11–2 Block Driver open(9E) Routine (Continued)

struct xxstate *xsp;

instance = getminor(*devp);
xsp = ddi_get_soft_state(statep, instance);
if (xsp == NULL)

return (ENXIO);
mutex_enter(&xsp->mu);
/*

* only honor FEXCL. If a regular open or a layered open
* is still outstanding on the device, the exclusive open
* must fail.
*/

if ((flags & FEXCL) && (xsp->open || xsp->nlayered)) {
mutex_exit(&xsp->mu);
return (EAGAIN);

}
switch (otyp) {
case OTYP_LYR:

xsp->nlayered++;
break;

case OTYP_BLK:
xsp->open = 1;
break;

default:
mutex_exit(&xsp->mu);
return (EINVAL);

}
mutex_exit(&xsp->mu);

return (0);

}

The otyp argument is used to specify the type of open on the device. OTYP_BLK is the
typical open type for a block device. A device can be opened several times with otyp
set to OTYP_BLK, although close(9E) will be called only once when the final close of
type OTYP_BLK has occurred for the device. otyp is set to OTYP_LYR if the device is
being used as a layered device. For every open of type OTYP_LYR, the layering driver
issues a corresponding close of type OTYP_LYR. The example keeps track of each type
of open so the driver can determine when the device is not being used in close(9E).

close(9E)
The arguments of the close(9E) entry point are identical to arguments of open(9E),
except that dev is the device number, as opposed to a pointer to the device number.

190 Writing Device Drivers • February 2002 (Beta)



The close(9E) routine should verify otyp in the same way as was described for the
open(9E) entry point. In Example 11–3, close(9E) must determine when the device
can really be closed based on the number of block opens and layered opens.

EXAMPLE 11–3 Block Device close(9E) Routine

static int
xxclose(dev_t dev, int flag, int otyp, cred_t *credp)
{

minor_t instance;
struct xxstate *xsp;

instance = getminor(dev);
xsp = ddi_get_soft_state(statep, instance);
if (xsp == NULL)

return (ENXIO);
mutex_enter(&xsp->mu);
switch (otyp) {
case OTYP_LYR:

xsp->nlayered--;
break;

case OTYP_BLK:
xsp->open = 0;
break;

default:
mutex_exit(&xsp->mu);
return (EINVAL);

}

if (xsp->open || xsp->nlayered) {
/* not done yet */
mutex_exit(&xsp->mu);
return (0);

}
/* cleanup (rewind tape, free memory, etc.) */

/* wait for I/O to drain */
mutex_exit(&xsp->mu);

return (0);

}

strategy(9E)
The strategy(9E) entry point is used to read and write data buffers to and from a
block device. The name strategy refers to the fact that this entry point might implement
some optimal strategy for ordering requests to the device.

strategy(9E) can be written to process one request at a time (synchronous transfer),
or to queue multiple requests to the device (asynchronous transfer). When choosing a
method, the abilities and limitations of the device should be taken into account.
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The strategy(9E) routine is passed a pointer to a buf(9S) structure. This structure
describes the transfer request, and contains status information on return. buf(9S) and
strategy(9E) are the focus of block device operations.

buf Structure
The following buf structure members are important to block drivers:

int b_flags; /* Buffer Status */
struct buf *av_forw; /* Driver work list link */
struct buf *av_back; /* Driver work lists link */
size_t b_bcount; /* # of bytes to transfer */
union {

caddr_t b_addr; /* Buffer’s virtual address */
} b_un;
daddr_t b_blkno; /* Block number on device */
diskaddr_t b_lblkno; /* Expanded block number on device */
size_t b_resid; /* # of bytes not transferred */

/* after error */
int b_error; /* Expanded error field */
void *b_private; /* “opaque” driver private area */

dev_t b_edev; /* expanded dev field */

b_flags contains status and transfer attributes of the buf structure. If B_READ is set,
the buf structure indicates a transfer from the device to memory; otherwise, it
indicates a transfer from memory to the device. If the driver encounters an error
during data transfer, it should set the B_ERROR field in the b_flags member and
provide a more specific error value in b_error. Drivers should use bioerror(9F)
rather than setting B_ERROR.

Caution – Drivers should never clear b_flags.

av_forw and av_back Pointers that the driver can use to manage a list of buffers
by the driver. See “Asynchronous Data Transfers”
on page 197 for a discussion of the av_forw and
av_back pointers.

b_bcount Specifies the number of bytes to be transferred by the
device.

b_un.b_addr The kernel virtual address of the data buffer.

b_blkno The starting 32-bit logical block number on the device for
the data transfer, expressed in DEV_BSIZE (512 bytes)
units. The driver should use either b_blkno or
b_lblkno, but not both.

192 Writing Device Drivers • February 2002 (Beta)



b_lblkno he starting 64-bit logical block number on the device for
the data transfer, expressed in DEV_BSIZE (512 bytes)
units. The driver should use either b_blkno or
b_lblkno, but not both.

b_resid Set by the driver to indicate the number of bytes that were
not transferred because of an error. See Example 11–8 for
an example of setting b_resid. The b_resid member is
overloaded: it is also used by disksort(9F).

b_error Set to an error number by the driver when a transfer error
occurs. It is set in conjunction with the b_flags B_ERROR
bit. See Intro(9E) for details regarding error values.
Drivers should use bioerror(9F) rather than setting
b_error directly.

b_private For exclusive use by the driver to store driver-private
data.

b_edev Contains the device number of the device involved in the
transfer.

bp_mapin(9F)
When a buf structure pointer is passed into the device driver’s strategy(9E)
routine, the data buffer referred to by b_un.b_addr is not necessarily mapped in the
kernel’s address space. This means that the driver cannot directly access the data.
Most block-oriented devices have DMA capability, and therefore do not need to access
the data buffer directly. Instead, they use the DMA mapping routines to allow the
device’s DMA engine to do the data transfer. For details about using DMA, see
Chapter 8.

If a driver needs to directly access the data buffer (as opposed to having the device
access the data), it must first map the buffer into the kernel’s address space using
bp_mapin(9F). bp_mapout(9F) should be used when the driver no longer needs to
access the data directly.

Caution – bp_mapout(9F) should only be called on buffers that have been allocated
and are owned by the device driver. It must not be called on buffers passed to the
driver through the strategy(9E) entry point (for example a file system). Because
bp_mapin(9F) does not keep a reference count, bp_mapout(9F) will remove any
kernel mapping that a layer above the device driver might rely on.
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Synchronous Data Transfers
This section presents a simple method for performing synchronous I/O transfers. It
assumes that the hardware is a simple disk device that can transfer only one data
buffer at a time using DMA, and that the disk can be spun up and spun down by
software command. The device driver’s strategy(9E) routine waits for the current
request to be completed before accepting a new one. The device interrupts when the
transfer is complete or when an error occurs.

1. Check for invalid buf(9S) requests.

Check the buf(9S) structure passed to strategy(9E) for validity. All drivers should
check that:

� The request begins at a valid block. The driver converts the b_blkno field to the
correct device offset and then determines if the offset is valid for the device.

� The request does not go beyond the last block on the device.

� Device-specific requirements are met.

If an error is encountered, the driver should indicate the appropriate error with
bioerror(9F) and complete the request by calling biodone(9F). biodone(9F)
notifies the caller of strategy(9E) that the transfer is complete (in this case, because
of an error).

2. Check whether the device is busy.

Synchronous data transfers allow single-threaded access to the device. The device
driver enforces this by maintaining a busy flag (guarded by a mutex), and by waiting
on a condition variable with cv_wait(9F) when the device is busy.

If the device is busy, the thread waits until a cv_broadcast(9F) or cv_signal(9F)
from the interrupt handler indicates that the device is no longer busy. See Chapter 3
for details on condition variables.

When the device is no longer busy, the strategy(9E) routine marks it as busy and
prepares the buffer and the device for the transfer.

3. Set up the buffer for DMA.

Prepare the data buffer for a DMA transfer by allocating a DMA handle using
ddi_dma_alloc_handle(9F) and binding the data buffer to the handle using
ddi_dma_buf_bind_handle(9F). See Chapter 8 for information on setting up DMA
resources and related data structures.

4. Begin the transfer.

At this point, a pointer to the buf(9S) structure is saved in the state structure of the
device. The interrupt routine can then complete the transfer by calling biodone(9F).

The device driver then accesses device registers to initiate a data transfer. In most
cases, the driver should protect the device registers from other threads by using
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mutexes. In this case, because strategy(9E) is single-threaded, guarding the device
registers is not necessary. (See Chapter 3 for details about data locks.)

Once the executing thread has started the device’s DMA engine, the driver can return
execution control to the calling routine, as shown in Example 11–4:

EXAMPLE 11–4 Synchronous Block Driver strategy(9E) Routine

static int
xxstrategy(struct buf *bp)
{

struct xxstate *xsp;
struct device_reg *regp;
minor_t instance;
ddi_dma_cookie_t cookie;
instance = getminor(bp->b_edev);
xsp = ddi_get_soft_state(statep, instance);
if (xsp == NULL) {

bioerror(bp, ENXIO);
biodone(bp);
return (0);

}
/* validate the transfer request */
if ((bp->b_blkno >= xsp->Nblocks) || (bp->b_blkno < 0)) {

bioerror(bp, EINVAL);
biodone(bp);
return (0);

}
/*
* Hold off all threads until the device is not busy.
*/
mutex_enter(&xsp->mu);
while (xsp->busy) {

cv_wait(&xsp->cv, &xsp->mu);
}
xsp->busy = 1;
mutex_exit(&xsp->mu);

if the device has power manageable components (see Chapter 9),
mark the device busy with pm_busy_components(9F)
, and then ensure that the device
is powered up by calling ddi_dev_is_needed(9F).

Set up DMA resources with ddi_dma_alloc_handle(9F) and ddi_dma_buf_bind_handle(9F).

xsp->bp = bp;
regp = xsp->regp;
ddi_put32(xsp->data_access_handle, &regp->dma_addr,

cookie.dmac_address);
ddi_put32(xsp->data_access_handle, &regp->dma_size,

(uint32_t)cookie.dmac_size);
ddi_put8(xsp->data_access_handle, &regp->csr,

ENABLE_INTERRUPTS | START_TRANSFER);
return (0);

}
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5. Handle the interrupting device.

When the device finishes the data transfer it generates an interrupt, which eventually
results in the driver’s interrupt routine being called. Most drivers specify the state
structure of the device as the argument to the interrupt routine when registering
interrupts (see the ddi_add_intr(9F) man page and “Registering Interrupts”
on page 104). The interrupt routine can then access the buf(9S) structure being
transferred, plus any other information available from the state structure.

The interrupt handler should check the device’s status register to determine if the
transfer completed without error. If an error occurred, the handler should indicate the
appropriate error with bioerror(9F). The handler should also clear the pending
interrupt for the device and then complete the transfer by calling biodone(9F).

As the final task, the handler clears the busy flag and calls cv_signal(9F) or
cv_broadcast(9F) on the condition variable, signaling that the device is no longer
busy. This allows other threads waiting for the device (in strategy(9E)) to proceed
with the next data transfer.

EXAMPLE 11–5 Synchronous Block Driver Interrupt Routine

static u_int
xxintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
struct buf *bp;
uint8_t status;
mutex_enter(&xsp->mu);
status = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);
if (!(status & INTERRUPTING)) {

mutex_exit(&xsp->mu);
return (DDI_INTR_UNCLAIMED);

}
/* Get the buf responsible for this interrupt */
bp = xsp->bp;
xsp->bp = NULL;
/*
* This example is for a simple device which either
* succeeds or fails the data transfer, indicated in the
* command/status register.
*/
if (status & DEVICE_ERROR) {

/* failure */
bp->b_resid = bp->b_bcount;
bioerror(bp, EIO);

} else {
/* success */
bp->b_resid = 0;

}
ddi_put8(xsp->data_access_handle, &xsp->regp->csr,

CLEAR_INTERRUPT);
/* The transfer has finished, successfully or not */
biodone(bp);

if the device has power manageable components that were marked busy in strategy(9F).
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EXAMPLE 11–5 Synchronous Block Driver Interrupt Routine (Continued)

mark them idle now with pm_idle_component(9F)
release any resources used in the transfer, such as DMA resources (ddi_dma_unbind_handle(9F) and
ddi_dma_free_handle(9F)).

/* Let the next I/O thread have access to the device */
xsp->busy = 0;
cv_signal(&xsp->cv);
mutex_exit(&xsp->mu);
return (DDI_INTR_CLAIMED);

}

Asynchronous Data Transfers
This section presents a method for performing asynchronous I/O transfers. The driver
queues the I/O requests and then returns control to the caller. Again, the assumption
is that the hardware is a simple disk device that allows one transfer at a time. The
device interrupts when a data transfer has completed or when an error occurs.

1. Check for invalid buf(9S) requests.

As in the synchronous case, the device driver should check the buf(9S) structure
passed to strategy(9E) for validity. See “Synchronous Data Transfers” on page 194
for more details.

2. Enqueue the request.

Unlike synchronous data transfers, a driver does not wait for an asynchronous request
to complete. Instead, it adds the request to a queue. The head of the queue can be the
current transfer, or a separate field in the state structure can be used to hold the active
request (as in Example 11–6). If the queue was initially empty, then the hardware is not
busy, and strategy(9E) starts the transfer before returning. Otherwise, whenever a
transfer completes and the queue is non-empty, the interrupt routine begins a new
transfer. This example actually places the decision of whether to start a new transfer
into a separate routine for convenience.

The driver can use the av_forw and the av_back members of the buf(9S) structure
to manage a list of transfer requests. A single pointer can be used to manage a singly
linked list, or both pointers can be used together to build a doubly linked list. The
device hardware specification specifies which type of list management (such as
insertion policies) will optimize the performance of the device. The transfer list is a
per-device list, so the head and tail of the list are stored in the state structure.

Example 11–6 allows multiple threads access to the driver shared data, so you must
identify any such data (such as the transfer list) and protect it with a mutex. (See
Chapter 3 for more details about mutex locks.)

Drivers for Block Devices 197



EXAMPLE 11–6 Asynchronous Block Driver strategy(9E) Routine

static int
xxstrategy(struct buf *bp)
{

struct xxstate *xsp;
minor_t instance;
instance = getminor(bp->b_edev);
xsp = ddi_get_soft_state(statep, instance);
...

validate transfer request
...

Add the request to the end of the queue. Depending on the device, a sorting algorithm, such as
disksort(9F)

may be used if it improves the performance of the device.
mutex_enter(&xsp->mu);
bp->av_forw = NULL;
if (xsp->list_head) {

/* Non-empty transfer list */
xsp->list_tail->av_forw = bp;
xsp->list_tail = bp;

} else {
/* Empty Transfer list */
xsp->list_head = bp;
xsp->list_tail = bp;

}
mutex_exit(&xsp->mu);
/* Start the transfer if possible */
(void) xxstart((caddr_t)xsp);
return (0);

}

3. Start the first transfer.

Device drivers that implement queuing usually have a start() routine. start()
dequeues the next request and starts the data transfer to or from the device. In this
example, start() processes all requests, regardless of the state of the device (busy or
free).

Note – start() must be written so that it can be called from any context, because it
can be called by both the strategy routine (in kernel context) and the interrupt routine
(in interrupt context).

start() is called by strategy(9E) every time it queues a request so that an idle
device can be started. If the device is busy, start() returns immediately.

start() is also called by the interrupt handler before it returns from a claimed
interrupt so that a nonempty queue can be serviced. If the queue is empty, start()
returns immediately.
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Because start() is a private driver routine, it can take any arguments and return any
type. Example 11–7 is written as if it will also be used as a DMA callback (although
that portion is not shown), so it must take a caddr_t as an argument and return an
int. See “Handling Resource Allocation Failures” on page 125 for more information
about DMA callback routines.

EXAMPLE 11–7 Block Driver start() Routine

static int
xxstart(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
struct buf *bp;

mutex_enter(&xsp->mu);
/*
* If there is nothing more to do, or the device is
* busy, return.
*/
if (xsp->list_head == NULL || xsp->busy) {

mutex_exit(&xsp->mu);
return (0);

}
xsp->busy = 1;
/* Get the first buffer off the transfer list */
bp = xsp->list_head;
/* Update the head and tail pointer */
xsp->list_head = xsp->list_head->av_forw;
if (xsp->list_head == NULL)

xsp->list_tail = NULL;
bp->av_forw = NULL;
mutex_exit(&xsp->mu);

if the device has power manageable components (see Chapter 9),
mark the device busy with pm_busy_components, and then ensure that the device

is powered up by calling ddi_dev_is_needed.
Set up DMA resources with ddi_dma_alloc_handle(9F) and

ddi_dma_buf_bind_handle(9F).
xsp->bp = bp;
ddi_put32(xsp->data_access_handle, &xsp->regp->dma_addr,

cookie.dmac_address);
ddi_put32(xsp->data_access_handle, &xsp->regp->dma_size,

(uint32_t)cookie.dmac_size);
ddi_put8(xsp->data_access_handle, &xsp->regp->csr,

ENABLE_INTERRUPTS | START_TRANSFER);
return (0);

}

4. Handle the interrupting device.

The interrupt routine is similar to the asynchronous version, with the addition of the
call to start() and the removal of the call to cv_signal(9F).
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EXAMPLE 11–8 Asynchronous Block Driver Interrupt Routine

static u_int
xxintr(caddr_t arg)
{

struct xxstate *xsp = (struct xxstate *)arg;
struct buf *bp;
uint8_t status;
mutex_enter(&xsp->mu);
status = ddi_get8(xsp->data_access_handle, &xsp->regp->csr);
if (!(status & INTERRUPTING)) {

mutex_exit(&xsp->mu);
return (DDI_INTR_UNCLAIMED);

}
/* Get the buf responsible for this interrupt */
bp = xsp->bp;
xsp->bp = NULL;
/*
* This example is for a simple device which either
* succeeds or fails the data transfer, indicated in the
* command/status register.
*/
if (status & DEVICE_ERROR) {

/* failure */
bp->b_resid = bp->b_bcount;
bioerror(bp, EIO);

} else {
/* success */
bp->b_resid = 0;

}
ddi_put8(xsp->data_access_handle, &xsp->regp->csr,

CLEAR_INTERRUPT);
/* The transfer has finished, successfully or not */
biodone(bp);

if the device has power manageable components that were marked busy in strategy(9F)
(9E), mark them idle now with pm_idle_component(9F)

release any resources used in the transfer, such as DMA resources
ddi_dma_unbind_handle(9F) and
ddi_dma_free_handle(9F)
/* Let the next I/O thread have access to the device */
xsp->busy = 0;
mutex_exit(&xsp->mu);
(void) xxstart((caddr_t)xsp);
return (DDI_INTR_CLAIMED);

}

Miscellaneous Entry Points
This section discusses the dump(9E) and print(9E) entry points.
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dump(9E)
The dump(9E) entry point is used to copy a portion of virtual address space directly to
the specified device in the case of a system failure. It is also used to copy the state of
the kernel out to disk during a checkpoint operation (see the cpr(7) and dump(9E)
man pages). It must be capable of performing this operation without the use of
interrupts, since they are disabled during the checkpoint operation.

int dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)

dev is the device number of the device to dump to, addr is the base kernel virtual
address at which to start the dump, blkno is the first block to dump to, and nblk is the
number of blocks to dump. The dump depends upon the existing driver working
properly.

print(9E)
int print(dev_t dev, char *str)

The print(9E) entry point is called by the system to display a message about an
exception it has detected. print(9E) should call cmn_err(9F) to post the message to
the console on behalf of the system. Here is an example:

static int
xxprint(dev_t dev, char *str)
{

cmn_err(CE_CONT, “xx: %s\n”, str);
return (0);

}

Disk Device Drivers
Disk devices represent an important class of block device drivers.

Disk ioctls
Solaris disk drivers need to support a minimum set of ioctl commands specific to
Solaris disk drivers. These I/O controls are specified in the dkio(7) manual page. Disk
I/O controls transfer disk information to or from the device driver. A Solaris disk
device is one that is supported by disk utility commands such as format(1M) and
newfs(1M). Table 11–1 lists the mandatory Sun disk I/O controls.

Drivers for Block Devices 201



TABLE 11–1 Mandatory Solaris Disk ioctls

ioctl Description

DKIOCINFO Returns information describing the disk controller

DKIOCGAPART Returns a disk’s partition map

DKIOCSAPART Sets a disk’s partition map

DKIOCGGEOM Returns a disk’s geometry

DKIOCSGEOM Sets a disk’s geometry

DKIOCGVTOC Returns a disk’s Volume Table of Contents

DKIOCSVTOC Sets a disk’s Volume Table of Contents

Disk Performance
The Solaris DDI/DKI provides facilities to optimize I/O transfers for improved file
system performance. It supports a mechanism to manage the list of I/O requests so as
to optimize disk access for a file system. See “Asynchronous Data Transfers”
on page 197 for a description of enqueuing an I/O request.

The diskhd structure is used to manage a linked list of I/O requests.

struct diskhd {
long b_flags; /* not used, needed for consistency*/
struct buf *b_forw, *b_back; /* queue of unit queues */
struct buf *av_forw, *av_back; /* queue of bufs for this unit */
long b_bcount; /* active flag */

};

The diskhd data structure has two buf pointers that the driver can manipulate. The
av_forw pointer points to the first active I/O request. The second pointer, av_back,
points to the last active request on the list.

A pointer to this structure is passed as an argument to disksort(9F), along with a
pointer to the current buf structure being processed. The disksort(9F) routine is
used to sort the buf requests in a fashion that optimizes disk seek and then inserts the
buf pointer into the diskhd list. The disksort(9F) program uses the value that is in
b_resid of the buf structure as a sort key. The driver is responsible for setting this
value. Most Sun disk drivers use the cylinder group as the sort key. This tends to
optimize the file system read-ahead accesses.

Once data has been added to the diskhd list, the device needs to transfer the data. If
the device is not busy processing a request, the xxstart() routine pulls the first buf
structure off the diskhd list and starts a transfer.
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If the device is busy, the driver should return from the xxstrategy() entry point.
Once the hardware is done with the data transfer, it generates an interrupt. The
driver’s interrupt routine is then called to service the device. After servicing the
interrupt, the driver can then call the start() routine to process the next buf
structure in the diskhd list.
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CHAPTER 12

Mapping Device or Kernel Memory

Some device drivers allow applications to access device or kernel memory using
mmap(2). Examples are frame buffer drivers, which allow the frame buffer to be
mapped into a user thread, or a pseudo driver that communicates with an application
using a shared kernel memory pool. This chapter describes how to associate device or
kernel memory with user mappings.

Memory Mapping Operation Overview
In general, the steps a driver must take to export device or kernel memory are:

1. Set the D_DEVMAP flag in the cb_flag flag of the cb_ops(9S) structure.

2. Define a devmap(9E) driver entry point to export the mapping.

3. Use devmap_devmem_setup(9F) to set up user mappings to a device. To set up
user mappings to kernel memory, use devmap_umem_setup(9F).

Exporting the Mapping
The devmap(9E) entry point is called as a result of the mmap(2) system call.
devmap(9E) is used to:

� Validate the user mapping to the device or kernel memory.

� Translate the logical offset within the application mapping to the corresponding
offset within the device or kernel memory.
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� Pass the mapping information to the system for setting up the mapping.

int devmap(dev_t dev, devmap_cookie_t handle, offset_t off,
size_t len, size_t *maplen, uint_t model);

where:

dev Device whose memory is to be mapped

handle Device-mapping handle that the system creates and uses to describe a
mapping to contiguous device or kernel memory

off Logical offset within the application mapping that has to be translated by
the driver to the corresponding offset within the device or kernel memory

len Length (in bytes) of the memory being mapped.

maplen Allows driver to associate different kernel memory regions or multiple
physically discontiguous memory regions with one contiguous user
application mapping

model Data model type of the current thread

The system creates multiple mapping handles in one mmap(2) system call (for example,
if the mapping contains multiple physically discontiguous memory regions).

Initially devmap(9E) is called with parameters off and len, which were passed by the
application to mmap(2). devmap(9E) sets *maplen to the length from off to the end of a
contiguous memory region. *maplen must be rounded up to a multiple of a page size.
If *maplen is set to less than the original mapping length len, the system will
repeatedly call devmap(9E) with a new mapping handle and adjusted off and len
parameters until the initial mapping length is satisfied.

If a driver supports multiple application data models, model has to be passed to
ddi_model_convert_from(9F) to determine whether there is a data model
mismatch between the current thread and the device driver. The device driver might
have to adjust the shape of data structures before exporting them to a user thread that
supports a different data model. See the Appendix C man page for more details.

devmap(9E) must return -1 if the logical offset, off, is out of the range of memory
exported by the driver.
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Associating Device Memory With User
Mappings
devmap_devmem_setup(9F) is provided to export device memory to user
applications.

Note – devmap_devmem_setup(9F) has to be called from the driver’s devmap(9E)
entry point.

int devmap_devmem_setup(devmap_cookie_t handle, dev_info_t *dip,
struct devmap_callback_ctl *callbackops, uint_t rnumber,
offset_t roff, size_t len, uint_t maxprot, uint_t flags,
ddi_device_acc_attr_t *accattrp);

where:

handle Opaque device-mapping handle that the system uses to identify the
mapping

dip Pointer to the device’s dev_info structure

callbackops Pointer to a devmap_callback_ctl(9S) structure that allows the driver
to be notified of user events on the mapping

rnumber Index number to the register address space set

roff Offset into the device memory

len Length in bytes that is exported

maxprot Allows the driver to specify different protections for different regions
within the exported device memory

flags Must be set to DEVMAP_DEFAULTS

accattrp Pointer to a ddi_device_acc_attr(9S) structure

roff and len describe a range within the device memory specified by the register set
rnumber. The register specifications referred to by rnumber are described by the reg
property. For devices with only one register set, pass zero for rnumber. The range
described by roff and len are made accessible to the user’s application mapping at the
offset passed in by the devmap(9E) entry point. Usually the driver passes the
devmap(9E) offset directly to devmap_devmem_setup(9F). The return address of
mmap(2) then maps to the beginning address of the register set.
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maxprot allows the driver to specify different protections for different regions within
the exported device memory. For example, one region might not allow write access by
setting only PROT_READ and PROT_USER.

Example 12–1 shows how to export device memory to an application. The driver first
determines whether the requested mapping falls within the device memory region.
The size of the device memory is determined using ddi_dev_regsize(9F). The
length of the mapping is rounded up to a multiple of a page size using ptob(9F) and
btopr(9F), and devmap_devmem_setup(9F) is called to export the device memory to
the application.

EXAMPLE 12–1 devmap_devmem_setup(9F) Routine

static int
xxdevmap(dev_t dev, devmap_cookie_t handle, offset_t off, size_t len,

size_t *maplen, uint_t model)
{

struct xxstate *xsp;
int error, rnumber;
off_t regsize;

/* Set up data access attribute structure */
struct ddi_device_acc_attr xx_acc_attr = {

DDI_DEVICE_ATTR_V0,
DDI_NEVERSWAP_ACC,
DDI_STRICTORDER_ACC

};
xsp = ddi_get_soft_state(statep, getminor(dev));
if (xsp == NULL)

return (-1);
/* use register set 0 */
rnumber = 0;
/* get size of register set */
if (ddi_dev_regsize(xsp->dip, rnumber, &regsize) != DDI_SUCCESS)

return (-1);
/* round up len to a multiple of a page size */

len = ptob(btopr(len));
if (off + len > regsize)

return (-1);
/* Set up the device mapping */
error = devmap_devmem_setup(handle, xsp->dip, NULL, rnumber,
off, len, PROT_ALL, DEVMAP_DEFAULTS, &xx_acc_attr);
/* acknowledge the entire range */
*maplen = len;
return (error);

}
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Associating Kernel Memory With User
Mappings
Some device drivers might need to allocate kernel memory that is made accessible to
user programs by using mmap(2). Examples of this are setting up shared memory for
communication between two applications or between driver and application.

In general, the steps for exporting kernel memory to user applications are:

1. Allocate kernel memory using ddi_umem_alloc(9F).
2. Export the memory using devmap_umem_setup(9F).
3. Free the memory using ddi_umem_free(9F) when no longer needed.

Allocating Kernel Memory for User Access
ddi_umem_alloc(9F) is provided to allocate kernel memory that is exported to
applications:

void *ddi_umem_alloc(size_t size, int flag, ddi_umem_cookie_t *cookiep);

size Number of bytes to allocate

flag Used to determine the sleep conditions and the memory type

cookiep Pointer to a kernel memory cookie

ddi_umem_alloc(9F) allocates page-aligned kernel memory and returns a pointer to
the allocated memory. The initial contents of the memory is zero-filled. The number of
bytes allocated is a multiple of the system page size (roundup of size). The allocated
memory can be used in the kernel and can be exported to applications. cookiep is a
pointer to the kernel memory cookie that describes the kernel memory being allocated.
It is used in devmap_umem_setup(9F) when the driver exports the kernel memory to
a user application.

The flag argument indicates whether ddi_umem_alloc(9F) will block or return
immediately, and whether the allocated kernel memory is pageable. Table 12–1 lists
the values for flag.

TABLE 12–1 ddi_umem_alloc(9F) flag Values

Values Indicated Action

DDI_UMEM_NOSLEEP Driver does not need to wait for memory to become available.
Return NULL if memory unavailable.
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TABLE 12–1 ddi_umem_alloc(9F) flag Values (Continued)
Values Indicated Action

DDI_UMEM_SLEEP Driver can wait indefinitely for memory to become available.

DDI_UMEM_PAGEABLE Driver allows memory to be paged out. If not set, the memory
is locked down.

Example 12–2 shows how to allocate kernel memory for application access. The driver
exports one page of kernel memory, which is used by multiple applications as a shared
memory area. The memory is allocated in segmap(9E) when an application maps the
shared page the first time. An additional page is allocated if the driver has to support
multiple application data models (for example a 64-bit driver exporting memory to
64-bit and 32-bit applications). 64-bit applications share the first page, and 32-bit
applications share the second page.

EXAMPLE 12–2 ddi_umem_alloc(9F) Routine

static int
xxsegmap(dev_t dev, off_t off, struct as *asp, caddr_t *addrp, off_t len,

unsigned int prot, unsigned int maxprot, unsigned int flags,
cred_t *credp)

{
int error;
minor_t instance = getminor(dev);
struct xxstate *xsp = ddi_get_soft_state(statep, instance);

size_t mem_size;
/* 64-bit driver supports 64-bit and 32-bit applications */

switch (ddi_mmap_get_model()) {
case DDI_MODEL_LP64:

mem_size = ptob(2);
break;

case DDI_MODEL_ILP32:
mem_size = ptob(1);
break;

}

mutex_enter(&xsp->mu);
if (xsp->umem == NULL) {

/* allocate the shared area as kernel pageable memory */
xsp->umem = ddi_umem_alloc(mem_size,

DDI_UMEM_SLEEP | DDI_UMEM_PAGEABLE, &xsp->ucookie);
}
mutex_exit(&xsp->mu);
/* Set up the user mapping */
error = devmap_setup(dev, (offset_t)off, asp, addrp, len,

prot, maxprot, flags, credp);

return (error);

}
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Exporting Kernel Memory to Applications
devmap_umem_setup(9F) is provided to export kernel memory to user applications.
devmap_umem_setup(9F) must be called from the driver’s devmap(9E) entry point:

int devmap_umem_setup(devmap_cookie_t handle, dev_info_t *dip,
struct devmap_callback_ctl *callbackops, ddi_umem_cookie_t cookie,
offset_t koff, size_t len, uint_t maxprot, uint_t flags,
ddi_device_acc_attr_t *accattrp);

handle Opaque structure used to describe the mapping

dip Pointer to the device’s dev_info structure.

callbackops Pointer to a devmap_callback_ctl(9S) structure

cookie Kernel memory cookie returned by ddi_umem_alloc(9F)

koff Offset into the kernel memory specified by cookie

len Length in bytes that is exported

maxprot Specifies the maximum protection possible for the exported mapping

flags Must be set to DEVMAP_DEFAULTS

accattrp Pointer to a ddi_device_acc_attr(9S) structure

handle is a device-mapping handle that the system uses to identify the mapping. It is
passed in by the devmap(9E) entry point. dip is a pointer to the device’s dev_info
structure. callbackops allows the driver to be notified of user events on the mapping.
Most drivers set callbackops to NULL when kernel memory is exported.

koff and len specify a range within the kernel memory allocated by
ddi_umem_alloc(9F). This range will be made accessible to the user’s application
mapping at the offset passed in by the devmap(9E) entry point. Usually the driver will
pass the devmap(9E) offset directly to devmap_umem_setup(9F). The return address
of mmap(2) will then map to the kernel address returned by ddi_umem_alloc(9F). koff
and len must be page-aligned.

maxprot enables the driver to specify different protections for different regions within
the exported kernel memory. For example, one region might not allow write access by
only setting PROT_READ and PROT_USER.

Example 12–3 shows how to export kernel memory to an application. The driver first
checks if the requested mapping falls within the allocated kernel memory region. If a
64-bit driver receives a mapping request from a 32-bit application, the request is
redirected to the second page of the kernel memory area. This ensures that only
applications compiled to the same data model will share the same page.

EXAMPLE 12–3 devmap_umem_setup(9F) Routine

static int
xxdevmap(dev_t dev, devmap_cookie_t handle, offset_t off, size_t len,
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EXAMPLE 12–3 devmap_umem_setup(9F) Routine (Continued)

size_t *maplen, uint_t model)
{

struct xxstate *xsp;
int error;

/* round up len to a multiple of a page size */
len = ptob(btopr(len));
/* check if the requested range is ok */
if (off + len > ptob(1))

return (ENXIO);
xsp = ddi_get_soft_state(statep, getminor(dev));
if (xsp == NULL)

return (ENXIO);

if (ddi_model_convert_from(model) == DDI_MODEL_ILP32)
/* request from 32-bit application. Skip first page */
off += ptob(1);

/* export the memory to the application */
error = devmap_umem_setup(handle, xsp->dip, NULL, xsp->ucookie,

off, len, PROT_ALL, DEVMAP_DEFAULTS, NULL);
*maplen = len;
return (error);

}

Freeing Kernel Memory Exported for User Access
When the driver is unloaded, the memory that was allocated by
ddi_umem_alloc(9F) must be freed by calling ddi_umem_free(9F).

void ddi_umem_free(ddi_umem_cookie_t cookie);

cookie is the kernel memory cookie returned by ddi_umem_alloc(9F).
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CHAPTER 13

Device Context Management

Some device drivers, such as those for graphics hardware, provide user processes with
direct access to the device. These devices often require that only one process at a time
accesses the device.

This chapter describes the set of interfaces that allow device drivers to manage access
to such devices.

What Is a Device Context?
The context of a device is the current state of the device hardware. The device driver
manages the device context for a process on behalf of the process. It must maintain a
separate device context for each process that accesses the device. The device driver has
the responsibility to restore the correct device context when a process accesses the
device.

Context Management Model
An accelerated frame buffer is an example of a device that allows user processes (such
as graphics applications) to directly manipulate the control registers of the device
through memory-mapped access. Because these processes are not using the traditional
I/O system calls (read(2), write(2), and ioctl(2)), the device driver is no longer
called when a process accesses the device. However, the device driver must be notified
when a process is about to access a device so that it can restore the correct device
context and provide any needed synchronization.
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To resolve this problem, the device context management interfaces enable a device
driver to be notified when a user process accesses memory-mapped regions of the
device, and to control accesses to the device’s hardware. Synchronization and
management of the various device contexts are responsibilities of the device driver.
When a user process accesses a mapping, the device driver must restore the correct
device context for that process.

A device driver will be notified whenever a user process:

� Accesses a mapping
� Duplicates a mapping
� Frees a mapping
� Creates a mapping

Figure 13–1 shows multiple user processes that have memory-mapped a device. The
driver has granted process B access to the device, and process B no longer notifies the
driver of accesses. However, the driver is still notified if either process A or process C
accesses the device.

Process A

Process B DeviceCurrent Context

User Processes Device Memory

Process C

FIGURE 13–1 Device Context Management

At some point in the future, process A accesses the device. The device driver is
notified of this and blocks future access to the device by process B. It then saves the
device context for process B, restores the device context of process A, and grants access
to process A, as illustrated in Figure 13–2. At this point, the device driver will be
notified if either process B or process C accesses the device.
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Process A

Process B Device

Current Context

User Processes Device Memory

Process C

FIGURE 13–2 Device Context Switched to User Process A

On a multiprocessor machine, multiple processes could be attempting to access the
device at the same time. This can cause thrashing. Some devices require a longer time
to restore a device context. To prevent more CPU time from being used to restore a
device context than to actually use that device context, the minimum time that a
process needs to have access to the device can be set using
devmap_set_ctx_timeout(9F).

The kernel guarantees that once a device driver has granted access to a process, no
other process will be allowed to request access to the same device for the time interval
specified by devmap_set_ctx_timeout(9F).

Context Management Operation
In general, the steps for performing device context management are:

1. Define a devmap_callback_ctl(9S) structure.

2. Allocate space to save device context if necessary.

3. Set up user mappings to the device and driver notifications with
devmap_devmem_setup(9F).

4. Manage user access to the device with devmap_load(9F) and
devmap_unload(9F).

5. Free the device context structure, if needed.
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devmap_callback_ctl(9S) Structure
The device driver must allocate and initialize a devmap_callback_ctl(9S) structure
to inform the system of its device context management entry point routines. This
structure contains the following fields:

struct devmap_callback_ctl {
int devmap_rev;
int (*devmap_map)(devmap_cookie_t dhp, dev_t dev,

uint_t flags, offset_t off, size_t len, void **pvtp);
int (*devmap_access)(devmap_cookie_t dhp, void *pvtp,

offset_t off, size_t len, uint_t type, uint_t rw);
int (*devmap_dup)(devmap_cookie_t dhp, void *pvtp,

devmap_cookie_t new_dhp, void **new_pvtp);
void (*devmap_unmap)(devmap_cookie_t dhp, void *pvtp,

offset_t off, size_t len, devmap_cookie_t new_dhp1,
void **new_pvtp1, devmap_cookie_t new_dhp2,
void **new_pvtp2);

};

devmap_rev The version number of the devmap_callback_ctl(9S) structure.
It must be set to DEVMAP_OPS_REV.

devmap_map Must be set to the address of the driver’s devmap_map(9E) entry
point.

devmap_access Must be set to the address of the driver’s devmap_access(9E)
entry point.

devmap_dup Must be set to the address of the driver’s devmap_dup(9E) entry
point.

devmap_unmap Must be set to the address of the driver’s devmap_unmap(9E)
entry point.

Device Context Management Entry Points
The following device driver entry points are used to manage device context:

� devmap(9E)
� devmap_access(9E)
� devmap_contextmgt(9E)
� devmap_dup(9E)
� devmap_unmap(9E)

devmap(9E)
The syntax for devmap(9E) is:
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int xxdevmap_map(devmap_cookie_t handle, dev_t dev, uint_t flags,
offset_t offset, size_t len, void **new_devprivate);

This entry point is called after the driver returns from its devmap(9E) entry point and
the system has established the user mapping to the device memory. The
devmap_map(9E) entry point enables a driver to perform additional processing or to
allocate mapping specific private data. For example, in order to support context
switching, the driver has to allocate a context structure and associate it with the
mapping.

The system expects the driver to return a pointer to the allocated private data in
*new_devprivate. The driver must store offset and len, which define the range of the
mapping, in its private data. Later, when the system calls devmap_unmap(9E), the
driver will use offset and len stored in new_devprivate to check if the entire mapping, or
just a part of it, is being unmapped.

flags indicates whether the driver should allocate a private context for the mapping.
For example, a driver can allocate a memory region to store the device context if flags
is set to MAP_PRIVATE, or it might return a pointer to a shared region if MAP_SHARED
is set.

Example 13–1 shows an example of a devmap_map(9E) entry point. The driver
allocates a new context structure and saves relevant parameters passed in by the entry
point. Then the mapping is assigned a new context by either allocating a new one or
attaching it to an already existing shared context. The minimum time interval that the
mapping should have access to the device is set to one millisecond.

EXAMPLE 13–1 devmap(9E) Routine

static int
int xxdevmap_map(devmap_cookie_t handle, dev_t dev, uint_t flags,

offset_t offset, size_t len, void **new_devprivate)
{

struct xxstate *xsp = ddi_get_soft_state(statep,
getminor(dev));

struct xxctx *newctx;

/* create a new context structure */
newctx = kmem_alloc(sizeof (struct xxctx), KM_SLEEP);
newctx->xsp = xsp;
newctx->handle = handle;
newctx->offset = offset;
newctx->flags = flags;
newctx->len = len;
mutex_enter(&xsp->ctx_lock);
if (flags & MAP_PRIVATE) {

/* allocate a private context and initialize it */
newctx->context = kmem_alloc(XXCTX_SIZE, KM_SLEEP);
xxctxinit(newctx);

} else {
/* set a pointer to the shared context */
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EXAMPLE 13–1 devmap(9E) Routine (Continued)

newctx->context = xsp->ctx_shared;
}
mutex_exit(&xsp->ctx_lock);
/* give at least 1 ms access before context switching */
devmap_set_ctx_timeout(handle, drv_usectohz(1000));
/* return the context strcuture */
*new_devprivate = newctx;
return(0);

}

devmap_access(9E)
The syntax for devmap_access(9E) is:

int xxdevmap_access(devmap_cookie_t handle, void *devprivate,
offset_t offset, size_t len, uint_t type, uint_t rw);

This entry point is called when an access is made to a mapping whose translations are
invalid. Mapping translations are invalidated when the mapping is created with
devmap_devmem_setup(9F) in response to mmap(2), duplicated by fork(2), or
explicitly invalidated by a call to devmap_unload(9F).

handle Mapping handle of the mapping that was accessed by a user
process.

devprivate Pointer to the driver private data associated with the mapping.

offset Offset within the mapping that was accessed.

len Length in bytes of the memory being accessed.

type Type of access operation.

rw Specifies the direction of access.

The system expects devmap_access(9E) to call either devmap_do_ctxmgt(9F) or
devmap_default_access(9F) to load the memory address translations before it
returns. For mappings that support context switching, the device driver should call
devmap_do_ctxmgt(9F). This routine is passed all parameters from
devmap_access(9E), as well as a pointer to the driver entry point
devmap_contextmgt(9E), which handles the context switching. For mappings that
do not support context switching, the driver should call
devmap_default_access(9F), whose only purpose is to call devmap_load(9F) to
load the user translation.
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Example 13–2 shows an example of a devmap_access(9E) entry point. The mapping
is divided into two regions. The region starting at offset OFF_CTXMG with a length of
CTXMGT_SIZE bytes supports context management. The rest of the mapping supports
default access.

EXAMPLE 13–2 devmap_access(9E) Routine

#define OFF_CTXMG 0
#define CTXMGT_SIZE 0x20000
static int
xxdevmap_access(devmap_cookie_t handle, void *devprivate,

offset_t off, size_t len, uint_t type, uint_t rw)
{

offset_t diff;
int error;

if ((diff = off - OFF_CTXMG) >= 0 && diff < CTXMGT_SIZE) {
error = devmap_do_ctxmgt(handle, devprivate, off,

len, type, rw, xxdevmap_contextmgt);
} else {

error = devmap_default_access(handle, devprivate,
off, len, type, rw);

}
return (error);

}

devmap_contextmgt(9E)
The syntax for devmap_contextmgt(9E) is:

int xxdevmap_contextmgt(devmap_cookie_t handle, void *devprivate,
offset_t offset, size_t len, uint_t type, uint_t rw);

In general, devmap_contextmgt(9E) should call devmap_unload(9F), with the
handle of the mapping that currently has access to the device, to invalidate the
translations for that mapping. This ensures that a call to devmap_access(9E) occurs
for the current mapping the next time it is accessed. To validate the mapping
translations for the mapping that caused the access event to occur, the driver must
restore the device context for the process requesting access and call devmap_load(9F)
on the handle of the mapping that generated the call to this entry point.

Accesses to portions of mappings that have had their mapping translations validated
by a call to devmap_load(9F) do not generate a call to devmap_access(9E). A
subsequent call to devmap_unload(9F) invalidates the mapping translations and
allows devmap_access(9E) to be called again.

If either devmap_load(9F) or devmap_unload(9F) returns an error,
devmap_contextmgt(9E) should immediately return that error. If the device driver
encounters a hardware failure while restoring a device context, a -1 should be
returned. Otherwise, after successfully handling the access request,
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devmap_contextmgt(9E) should return zero. A return of other than zero from
devmap_contextmgt(9E) will cause a SIGBUS or SIGSEGV to be sent to the process.

Example 13–3 shows how to manage a one-page device context.

Note – xxctxsave() and xxctxrestore() are device-dependent context save and
restore functions. xxctxsave() reads data from the registers using the Solaris 9
DDI/DKI data access routines and saves it in the soft state structure.
xxctxrestore() takes data saved in the soft state structure and writes it to device
registers using the Solaris 9 DDI/DKI data access routines.

EXAMPLE 13–3 devmap_contextmgt(9E) Routine

static int
xxdevmap_contextmgt(devmap_cookie_t handle, void *devprivate,

offset_t off, size_t len, uint_t type, uint_t rw)
{

int error;
struct xxctx *ctxp = devprivate;
struct xxstate *xsp = ctxp->xsp;
mutex_enter(&xsp->ctx_lock);
/* unload mapping for current context */
if (xsp->current_ctx != NULL) {

if ((error = devmap_unload(xsp->current_ctx->handle,
off, len)) != 0) {

xsp->current_ctx = NULL;
mutex_exit(&xsp->ctx_lock);
return (error);

}
}
/* Switch device context - device dependent */
if (xxctxsave(xsp->current_ctx, off, len) < 0) {

xsp->current_ctx = NULL;
mutex_exit(&xsp->ctx_lock);
return (-1);

}
if (xxctxrestore(ctxp, off, len) < 0){

xsp->current_ctx = NULL;
mutex_exit(&xsp->ctx_lock);
return (-1);

}
xsp->current_ctx = ctxp;
/* establish mapping for new context and return */
error = devmap_load(handle, off, len, type, rw);
if (error)

xsp->current_ctx = NULL;
mutex_exit(&xsp->ctx_lock);
return (error);

}
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devmap_dup(9E)
The syntax for devmap_dup(9E) is:

int xxdevmap_dup(devmap_cookie_t handle, void *devprivate,
devmap_cookie_t new_handle, void **new_devprivate);

This entry point is called when a device mapping is duplicated, for example, by a user
process calling fork(2). The driver is expected to generate new driver private data for
the new mapping.

handle Mapping handle of the mapping being duplicated

new_handle Mapping handle of the mapping that was duplicated

devprivate Pointer to the driver private data associated with the mapping
being duplicated

*new_devprivate Should be set to point to the new driver private data for the new
mapping

Mappings created with devmap_dup(9E) will, by default, have their mapping
translations invalidated. This will force a call to the devmap_access(9E) entry point
the first time the mapping is accessed.

Example 13–4 shows a devmap_dup(9E) routine.

EXAMPLE 13–4 devmap_dup(9E) Routine

static int
xxdevmap_dup(devmap_cookie_t handle, void *devprivate,

devmap_cookie_t new_handle, void **new_devprivate)
{

struct xxctx *ctxp = devprivate;
struct xxstate *xsp = ctxp->xsp;
struct xxctx *newctx;
/* Create a new context for the duplicated mapping */
newctx = kmem_alloc(sizeof (struct xxctx), KM_SLEEP);
newctx->xsp = xsp;
newctx->handle = new_handle;
newctx->offset = ctxp->offset;
newctx->flags = ctxp->flags;
newctx->len = ctxp->len;
mutex_enter(&xsp->ctx_lock);
if (ctxp->flags & MAP_PRIVATE) {

newctx->context = kmem_alloc(XXCTX_SIZE, KM_SLEEP);
bcopy(ctxp->context, newctx->context, XXCTX_SIZE);

} else {
newctx->context = xsp->ctx_shared;

}
mutex_exit(&xsp->ctx_lock);
*new_devprivate = newctx;
return(0);

}
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devmap_unmap(9E)
void xxdevmap_unmap(devmap_cookie_t handle, void *devprivate,

offset_t off, size_t len, devmap_cookie_t new_handle1,
void **new_devprivate1, devmap_cookie_t new_handle2,
void **new_devprivate2);

This entry point is called when a mapping is unmapped. This can be caused by a user
process exiting or calling the munmap(2) system call.

handle Mapping handle of the mapping being freed.

devprivate Pointer to the driver private data associated with the mapping.

off Offset within the logical device memory at which the unmapping
begins.

len Length in bytes of the memory being unmapped.

new_handle1 Handle that the system uses to describe the new region that ends
at off - 1. new_handle1 may be NULL.

new_devprivate1 Pointer to be filled in by the driver with the driver -private
mapping data for the new region that ends at off - 1. It is ignored if
new_handle1 is NULL.

new_handle2 Handle that the system uses to describe the new region that begins
at off + len. new_handle2 may be NULL.

new_devprivate2 Pointer to be filled in by the driver with the driver private
mapping data for the new region that begins at off + len. It is
ignored if new_handle2 is NULL.

The devmap_unmap(9E) routine is expected to free any driver private resources that
were allocated when this mapping was created, either by devmap_map(9E) or by
devmap_dup(9E). If only a part of the mapping is being unmapped, the driver must
allocate a new private data for the remaining mapping before freeing the old private
data. There is no need to call devmap_unload(9F) on the handle of the mapping
being freed, even if it is the mapping with the valid translations. However, to prevent
future problems in devmap_access(9E), the device driver should make sure that its
representation of the current mapping is set to “no current mapping”.

Example 13–5 shows an example of a devmap_unmap(9E) routine.

EXAMPLE 13–5 devmap_unmap(9E) Routine

static void
xxdevmap_unmap(devmap_cookie_t handle, void *devprivate,

offset_t off, size_t len, devmap_cookie_t new_handle1,
void **new_devprivate1, devmap_cookie_t new_handle2,
void **new_devprivate2)

{
struct xxctx *ctxp = devprivate;
struct xxstate *xsp = ctxp->xsp;
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EXAMPLE 13–5 devmap_unmap(9E) Routine (Continued)

mutex_enter(&xsp->ctx_lock);

/*
* If new_handle1 is not NULL, we are unmapping
* at the end of the mapping.
*/
if (new_handle1 != NULL) {

/* Create a new context structure for the mapping */
newctx = kmem_alloc(sizeof (struct xxctx), KM_SLEEP);
newctx->xsp = xsp;

if (ctxp->flags & MAP_PRIVATE) {
/* allocate memory for the private context
/* and copy it */

newctx->context = kmem_alloc(XXCTX_SIZE, KM_SLEEP);
bcopy(ctxp->context, newctx->context, XXCTX_SIZE);

} else {
/* point to the shared context */
newctx->context = xsp->ctx_shared;

}
newctx->handle = new_handle1;
newctx->offset = ctxp->offset;
newctx->len = off - ctxp->offset;
*new_devprivate1 = newctx;

}
/*
* If new_handle2 is not NULL, we are unmapping
* at the beginning of the mapping.
*/
if (new_handle2 != NULL) {

/* Create a new context for the mapping */
newctx = kmem_alloc(sizeof (struct xxctx), KM_SLEEP);
newctx->xsp = xsp;
if (ctxp->flags & MAP_PRIVATE) {

newctx->context = kmem_alloc(XXCTX_SIZE, KM_SLEEP);
bcopy(ctxp->context, newctx->context, XXCTX_SIZE);

} else {
newctx->context = xsp->ctx_shared;

}
newctx->handle = new_handle2;
newctx->offset = off + len;
newctx->flags = ctxp->flags;
newctx->len = ctxp->len - (off + len - ctxp->off);
*new_devprivate2 = newctx;

}
if (xsp->current_ctx == ctxp)

xsp->current_ctx = NULL;
mutex_exit(&xsp->ctx_lock);
if (ctxp->flags & MAP_PRIVATE)

kmem_free(ctxp->context, XXCTX_SIZE);
kmem_free(ctxp, sizeof (struct xxctx));

}
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Associating User Mappings With Driver
Notifications
When a user process requests a mapping to a device with mmap(2), the driver‘s
segmap(9E) entry point is called. The driver must use ddi_devmap_segmap(9F) or
devmap_setup(9F) when setting up the memory mapping if it needs to manage
device contexts. Both functions will call the driver’s devmap(9E) entry point, which
uses devmap_devmem_setup(9F) to associate the device memory with the user
mapping. See Chapter 12 for details on how to map device memory.

For the driver to get notifications on accesses to the user mapping, it has to inform the
system of the devmap_callback_ctl(9S) entry points. It does this by providing a
pointer to a devmap_callback_ctl(9S) structure to devmap_devmem_setup(9F).
A devmap_callback_ctl(9S) structure describes a set of context management entry
points that are called by the system to notify a device driver to manage events on the
device mappings.

The system associates each mapping with a mapping handle. This handle is passed to
each of the context management entry points. The mapping handle can be used to
invalidate and validate the mapping translations. If the driver invalidates the mapping
translations, it will be notified of any future access to the mapping. If the driver
validates the mapping translations, it will no longer be notified of accesses to the
mapping. Mappings are always created with the mapping translations invalidated so
that the driver will be notified on first access to the mapping.

Example 13–6 shows how to set up a mapping using the device context management
interfaces.

EXAMPLE 13–6 devmap(9E) Entry Point With Context Management Support

static struct devmap_callback_ctl xx_callback_ctl = {
DEVMAP_OPS_REV, xxdevmap_map, xxdevmap_access,
xxdevmap_dup, xxdevmap_unmap

};

static int
xxdevmap(dev_t dev, devmap_cookie_t handle, offset_t off,

size_t len, size_t *maplen, uint_t model)
{

struct xxstate *xsp;
uint_t rnumber;
int error;

/* Setup data access attribute structure */
struct ddi_device_acc_attr xx_acc_attr = {

DDI_DEVICE_ATTR_V0,
DDI_NEVERSWAP_ACC,
DDI_STRICTORDER_ACC

};
xsp = ddi_get_soft_state(statep, getminor(dev));
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EXAMPLE 13–6 devmap(9E) Entry Point With Context Management Support (Continued)

if (xsp == NULL)
return (ENXIO);

len = ptob(btopr(len));
rnumber = 0;
/* Set up the device mapping */
error = devmap_devmem_setup(handle, xsp->dip, &xx_callback_ctl,

rnumber, off, len, PROT_ALL, 0, &xx_acc_attr);
*maplen = len;
return (error);

}

Managing Mapping Accesses
The device driver is notified when a user process accesses an address in the
memory-mapped region that does not have valid mapping translations. When the
access event occurs, the mapping translations of the process that currently has access
to the device must be invalidated. The device context of the process requesting access
to the device must be restored, and the translations of the mapping of the process
requesting access must be validated.

The functions devmap_load(9F) and devmap_unload(9F) are used to validate and
invalidate mapping translations.

devmap_load(9F)
The syntax for devmap_load(9F) is:

int devmap_load(devmap_cookie_t handle, offset_t offset,
size_t len, uint_t type, uint_t rw);

devmap_load(9F) validates the mapping translations for the pages of the mapping
specified by handle,offset, and len. By validating the mapping translations for
these pages, the driver is telling the system not to intercept accesses to these pages of
the mapping and to allow accesses to proceed without notifying the device driver.

devmap_load(9F) must be called with the offset and the handle of the mapping that
generated the access event for the access to complete. If devmap_load(9F) is not
called on this handle, the mapping translations will not be validated, and the process
will receive a SIGBUS.

devmap_unload(9F)
The syntax for devmap_unload(9F) is:
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int devmap_unload(devmap_cookie_t handle, offset_t offset,
size_t len);

devmap_unload(9F) invalidates the mapping translations for the pages of the
mapping specified by handle, offset, and len. By invalidating the mapping translations
for these pages, the device driver is telling the system to intercept accesses to these
pages of the mapping and notify the device driver the next time these pages of the
mapping are accessed by calling the devmap_access(9E) entry point.

For both functions, requests affect the entire page containing the offset and all pages up
to and including the entire page containing the last byte, as indicated by offset + len.
The device driver must ensure that for each page of device memory being mapped
only one process has valid translations at any one time.

Both functions return zero if they are successful. If, however, there was an error in
validating or invalidating the mapping translations, that error is returned to the device
driver. The device driver must return this error to the system.
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CHAPTER 14

SCSI Target Drivers

The Solaris DDI/DKI divides the software interface to SCSI devices into two major
parts: target drivers and host bus adapter (HBA) drivers. Target refers to a driver for a
device on a SCSI bus, such as a disk or a tape drive. Host bus adapter refers to the
driver for the SCSI controller on the host machine. SCSA defines the interface between
these two components. This chapter discusses target drivers only. See Chapter 15 for
information on host bus adapter drivers.

Note – The terms “host bus adapter” or “HBA” used in this manual are equivalent to
the phrase “host adapter” defined in SCSI specifications.

Target drivers can be either character or block device drivers, depending on the
device. Drivers for tape drives are usually character device drivers, while disks are
handled by block device drivers. This chapter describes how to write a SCSI target
driver and discusses the additional requirements that SCSA places on block and
character drivers for SCSI target devices.

The following reference documents provide supplemental information needed by the
designers of target drivers and host bus adapter drivers.

Small Computer System Interface 2 (SCSI-2), ANSI/NCITS X3.131-1994, Global
Engineering Documents, 1998. ISBN 1199002488.

The Basics of SCSI, Fourth Edition, ANCOT Corporation, 1998. ISBN 0963743988.

Also refer to the SCSI command specification for the target device, provided by the
hardware vendor.
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Sun Common SCSI Architecture
Overview
The Sun Common SCSI Architecture (SCSA) is the Solaris DDI/DKI programming
interface for the transmission of SCSI commands from a target driver to a host bus
adapter driver. This interface is independent of the type of host bus adapter hardware,
the platform, the processor architecture, and the SCSI command being transported
across the interface.

By conforming to the SCSA, the target driver can pass any SCSI command to a target
device without knowledge of the hardware implementation of the host bus adapter.

The SCSA conceptually separates building the SCSI command (by the target driver)
from transporting the SCSI command and data across the SCSI bus. The architecture
defines the software interface between high-level and low-level software components.
The higher level software component consists of one or more SCSI target drivers,
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which translate I/O requests into SCSI commands appropriate for the peripheral
device. Figure 14–1 illustrates the SCSI architecture.

Application Program 1 Application Program 2

System Calls

Sun Common SCSI Architecture (SCSA)

Target

Host Bus Adapter
Driver 1

SCSI Hardware
Interface

Driver 1
Target

Driver 2
Target

Driver 3

Host Bus Adapter
Driver 2

SCSI Hardware
Interface

Kernel

Applications

Hardware

FIGURE 14–1 SCSA Block Diagram

The lower-level software component consists of a SCSA interface layer and one or
more host bus adapter drivers. The target driver is responsible for the generation of
the proper SCSI commands required to execute the desired function and for
processing the results.

General Flow of Control
Assuming no transport errors occur, the following steps describe the general flow of
control for a read or write request.

1. The target driver’s read(9E) or write(9E) entry point is invoked. physio(9F) is
used to lock down memory, prepare a buf structure, and call the strategy routine.

2. The target driver’s strategy(9E) routine checks the request and allocates a
scsi_pkt(9S) using scsi_init_pkt(9F). The target driver initializes the packet
and sets the SCSI command descriptor block (CDB) using the
scsi_setup_cdb(9F) function. The target driver also specifies a timeout and
provides a pointer to a callback function, which is called by the host bus adapter
driver on completion of the command. The buf(9S) pointer should be saved in the
SCSI packet’s target-private space.
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3. The target driver submits the packet to the host bus adapter driver using
scsi_transport(9F). The target driver is then free to accept other requests. The
target driver should not access the packet while it is in transport. If either the host
bus adapter driver or the target supports queueing, new requests can be submitted
while the packet is in transport.

4. As soon as the SCSI bus is free and the target not busy, the host bus adapter driver
selects the target and passes the CDB. The target executes the command and
performs the requested data transfers.

5. After the target sends completion status and the command completes, the host bus
adapter driver notifies the target driver by calling the completion function that was
specified in the SCSI packet. At this time the host bus adapter driver is no longer
responsible for the packet, and the target driver has regained ownership of the
packet.

6. The SCSI packet’s completion routine analyzes the returned information and
determines whether the SCSI operation was successful. If a failure has occurred,
the target driver retries the command by calling scsi_transport(9F) again. If
the host bus adapter driver does not support auto request sense, the target driver
must submit a request sense packet to retrieve the sense data in the event of a
check condition.

7. If either the command was completed successfully or cannot be retried, the target
driver calls scsi_destroy_pkt(9F), which synchronizes the data and frees the
packet. If the target driver needs to access the data before freeing the packet, it calls
scsi_sync_pkt(9F).

8. Finally, the target driver notifies the application program that originally requested
the read or write that the transaction is complete, either by returning from the
read(9E) entry point in the driver (for a character device) or indirectly through
biodone(9F).

SCSA allows the execution of many of such operations, both overlapped and queued,
at various points in the process. The model places the management of system
resources on the host bus adapter driver. The software interface enables the execution
of target driver functions on host bus adapter drivers using SCSI bus adapters of
varying degrees of sophistication.

SCSA Functions
SCSA defines functions to manage the allocation and freeing of resources, the sensing
and setting of control states, and the transport of SCSI commands. These functions are
listed in Table 14–1.
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TABLE 14–1 Standard SCSA Functions

Function Name Category

scsi_init_pkt(9F) Resource management

scsi_sync_pkt(9F)

scsi_dmafree(9F)

scsi_destroy_pkt(9F)

scsi_alloc_consistent_buf(9F)

scsi_free_consistent_buf(9F)

scsi_transport(9F) Command transport

()scsi_ifgetcap(9F) Transport information and control

scsi_ifsetcap(9F)

scsi_abort(9F) Error handling

scsi_reset(9F)

scsi_poll(9F) Polled I/O

scsi_probe(9F) Probe functions

scsi_unprobe(9F)

scsi_setup_cdb(9F) CDB initialization function

Note – If your driver needs to work with a SCSI-1 device, use the makecom(9F)
function.

Hardware Configuration File
Because SCSI devices are not self-identifying, a hardware configuration file is required
for a target driver (see driver.conf(4) and scsi(4) for details). A typical
configuration file looks like this:

name="xx" class="scsi" target=2 lun=0;

The system reads the file during autoconfiguration and uses the class property to
identify the driver’s possible parent. The system then attempts to attach the driver to
any parent driver that is of class scsi. All host bus adapter drivers are of this class.
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Using the class property rather than the parent property enables the target driver to be
attached to any host bus adapter driver that finds the expected device at the specified
target and lun IDs. The target driver is responsible for verifying this in its probe(9E)
routine.

Declarations and Data Structures
Target drivers must include the header file <sys/scsi/scsi.h>.

SCSI target drivers must use the following command to generate a binary module:

ld -r xx xx.o -N"misc/scsi"

scsi_device Structure
The host bus adapter driver allocates and initializes a scsi_device(9S) structure for
the target driver before either the probe(9E) or attach(9E) routine is called. This
structure stores information about each SCSI logical unit, including pointers to
information areas that contain both generic and device-specific information. There is
one scsi_device(9S) structure for each logical unit attached to the system. The
target driver can retrieve a pointer to this structure by calling
ddi_get_driver_private(9F).

Caution – Because the host bus adapter driver uses the private field in the target
device’s dev_info structure, target drivers must not use
ddi_set_driver_private(9F).

The scsi_device(9S) structure contains the following fields:

struct scsi_device {
struct scsi_address sd_address; /* opaque address */
dev_info_t *sd_dev; /* device node */
kmutex_t sd_mutex;
void *sd_reserved;
struct scsi_inquiry *sd_inq;
struct scsi_extended_sense *sd_sense;
caddr_t sd_private;

};

sd_addressData structure that is passed to the SCSI resource allocation routines.

sd_dev Pointer to the target’s dev_info structure.
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sd_mutexMutex for use by the target driver. This is initialized by the host bus
adapter driver and can be used by the target driver as a per-device mutex.
Do not hold this mutex across a call to scsi_transport(9F) or
scsi_poll(9F). See Chapter 3 for more information on mutexes.

sd_inq Pointer for the target device’s SCSI inquiry data. The scsi_probe(9F)
routine allocates a buffer, fills it in with inquiry data, and attaches it to this
field.

sd_sensePointer to a buffer to contain SCSI request sense data from the device. The
target driver must allocate and manage this buffer itself; see “attach(9E) ”
on page 237.

sd_privatePointer field for use by the target driver. It is commonly used to store a
pointer to a private target driver state structure.

scsi_pkt Structure
The scsi_pkt structure contains the following fields:

struct scsi_pkt {
opaque_t pkt_ha_private; /* private data for host adapter */
struct scsi_address pkt_address; /* destination packet is for */
opaque_t pkt_private; /* private data for target driver */
void (*pkt_comp)(struct scsi_pkt *); /* completion routine */
uint_t pkt_flags; /* flags */
int pkt_time; /* time allotted to complete command */
uchar_t *pkt_scbp; /* pointer to status block */
uchar_t *pkt_cdbp; /* pointer to command block */
ssize_t pkt_resid; /* data bytes not transferred */
uint_t pkt_state; /* state of command */
uint_t pkt_statistics; /* statistics */
uchar_t pkt_reason; /* reason completion called */

};

pkt_address Target device’s address set by scsi_init_pkt(9F).

pkt_private Place to store private data for the target driver. It is commonly
used to save the buf(9S) pointer for the command.

pkt_comp Address of the completion routine. The host bus adapter driver
calls this routine when it has transported the command. This does
not mean that the command succeeded; the target might have been
busy or might not have responded before the time-out time
elapsed (see the description for pkt_time field). The target driver
must supply a valid value in this field, though it can be NULL if the
driver does not want to be notified.
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Note – There are two different SCSI callback routines. The pkt_comp field identifies a
completion callback routine, which is called when the host bus adapter completes its
processing. There is also a resource callback routine, called when currently unavailable
resources are likely to be available (as in scsi_init_pkt(9F)).

pkt_flags Provides additional control information, for example, to transport
the command without disconnect privileges (FLAG_NODISCON) or
to disable callbacks (FLAG_NOINTR). See the scsi_pkt(9S) man
page for details.

pkt_time Time-out value (in seconds). If the command is not completed
within this time, the host bus adapter calls the completion routine
with pkt_reason set to CMD_TIMEOUT. The target driver should
set this field to longer than the maximum time the command
might take. If the timeout is zero, no timeout is requested. Timeout
starts when the command is transmitted on the SCSI bus.

pkt_scbp Pointer to the SCSI status completion block; this is filled in by the
host bus adapter driver.

pkt_cdbp Pointer to the SCSI command descriptor block, the actual
command to be sent to the target device. The host bus adapter
driver does not interpret this field. The target driver must fill it in
with a command that the target device can process.

pkt_resid Residual of the operation. When allocating DMA resources for a
command scsi_init_pkt(9F), pkt_resid indicates the number
of bytes for which DMA resources could not be allocated because
of DMA hardware scatter-gather or other device limitations. After
command transport, pkt_resid indicates the number of data
bytes not transferred; this is filled in by the host bus adapter driver
before the completion routine is called.

pkt_state Indicates the state of the command. The host bus adapter driver
fills in this field as the command progresses. One bit is set in this
field for each of the five following command states:

� STATE_GOT_BUS – Acquired the bus
� STATE_GOT_TARGET – Selected the target
� STATE_SENT_CMD – Sent the command
� STATE_XFERRED_DATA – Transferred data (if appropriate)
� STATE_GOT_STATUS – Received status from the device

pkt_statistics Contains transport-related statistics set by the host bus adapter
driver.

pkt_reason Gives the reason the completion routine was called. The main
function of the completion routine is to decode this field and take
the appropriate action. If the command completed—in other
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words, if there were no transport errors—this field is set to
CMD_CMPLT; other values in this field indicate an error. After a
command is completed, the target driver should examine the
pkt_scbp field for a check condition status. See the
scsi_pkt(9S) man page for more information.

Autoconfiguration
SCSI target drivers must implement the standard autoconfiguration routines
_init(9E), _fini(9E), and _info(9E). See “Loadable Driver Interfaces” on page 73
for more information.

probe(9E), attach(9E), detach(9E), and getinfo(9E) are also required, but they
must perform SCSI (and SCSA) specific processing.

probe(9E)
SCSI target devices are not self-identifying, so target drivers must have a probe(9E)
routine. This routine must determine whether the expected type of device is present
and responding.

The general structure and return codes of the probe(9E) routine are the same as those
of other device drivers. SCSI target drivers must use the scsi_probe(9F) routine in
their probe(9E) entry point. scsi_probe(9F) sends a SCSI inquiry command to the
device and returns a code indicating the result. If the SCSI inquiry command is
successful, scsi_probe(9F) allocates a scsi_inquiry(9S) structure and fills it in
with the device’s inquiry data. Upon return from scsi_probe(9F), the sd_inq field
of the scsi_device(9S) structure points to this scsi_inquiry(9S) structure.

Because probe(9E) must be stateless, the target driver must call scsi_unprobe(9F)
before probe(9E) returns, even if scsi_probe(9F) fails.

Example 14–1 shows a typical probe(9E) routine. It retrieves its scsi_device(9S)
structure from the private field of its dev_info structure. It also retrieves the device’s
SCSI target and logical unit numbers so that it can print them in messages. The
probe(9E) routine then calls scsi_probe(9F) to verify that the expected device (a
printer in this case) is present.

If scsi_probe(9F) succeeds, it has attached the device’s SCSI inquiry data in a
scsi_inquiry(9S) structure to the sd_inq field of the scsi_device(9S) structure.
The driver can then determine if the device type is a printer (reported in the
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inq_dtype field). If it is, the type is reported with scsi_log(9F), using
scsi_dname(9F) to convert the device type into a string.

EXAMPLE 14–1 SCSI Target Driver probe(9E) Routine

static int
xxprobe(dev_info_t *dip)
{

struct scsi_device *sdp;
int rval, target, lun;
/*
* Get a pointer to the scsi_device(9S) structure
*/
sdp = (struct scsi_device *)ddi_get_driver_private(dip);

target = sdp->sd_address.a_target;
lun = sdp->sd_address.a_lun;
/*
* Call scsi_probe(9F) to send the Inquiry command. It will
* fill in the sd_inq field of the scsi_device structure.
*/
switch (scsi_probe(sdp, NULL_FUNC)) {
case SCSIPROBE_FAILURE:
case SCSIPROBE_NORESP:
case SCSIPROBE_NOMEM:

/*
* In these cases, device may be powered off,
* in which case we may be able to successfully
* probe it at some future time - referred to
* as ‘deferred attach’.
*/
rval = DDI_PROBE_PARTIAL;
break;

case SCSIPROBE_NONCCS:
default:

/*
* Device isn’t of the type we can deal with,
* and/or it will never be usable.
*/
rval = DDI_PROBE_FAILURE;
break;

case SCSIPROBE_EXISTS:
/*
* There is a device at the target/lun address. Check
* inq_dtype to make sure that it is the right device
* type. See scsi_inquiry(9S)for possible device types.
*/
switch (sdp->sd_inq->inq_dtype) {
case DTYPE_PRINTER:

scsi_log(sdp, "xx", SCSI_DEBUG,
"found %s device at target%d, lun%d\n",
scsi_dname((int)sdp->sd_inq->inq_dtype),
target, lun);

rval = DDI_PROBE_SUCCESS;
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EXAMPLE 14–1 SCSI Target Driver probe(9E) Routine (Continued)

break;
case DTYPE_NOTPRESENT:
default:

rval = DDI_PROBE_FAILURE;
break;

}
}
scsi_unprobe(sdp);
return (rval);

}

A more thorough probe(9E) routine could also check other fields of the
scsi_inquiry(9S) structure as necessary to make sure that the device is of the type
expected by a particular driver.

attach(9E)
After the probe(9E) routine has verified that the expected device is present,
attach(9E) is called. This routine allocates and initializes any per-instance data,
creates minor device node information, and restores the hardware state of a device
when the device or the system has been suspended. (See “attach(9E) ” on page 81
for details.) In addition to these steps, a SCSI target driver again calls
scsi_probe(9F) to retrieve the device’s inquiry data and also creates a SCSI request
sense packet. If the attach is successful, the attach(9E) function should not call
scsi_unprobe(9F).

Three routines are used to create the request sense packet:
scsi_alloc_consistent_buf(9F), scsi_init_pkt(9F), and
scsi_setup_cdb(9F). scsi_alloc_consistent_buf(9F) allocates a buffer
suitable for consistent DMA and returns a pointer to a buf(9S) structure. The
advantage of a consistent buffer is that no explicit synchronization of the data is
required. In other words, the target driver can access the data after the callback. The
sd_sense element of the device’s scsi_device(9S) structure must be initialized
with the address of the sense buffer. scsi_init_pkt(9F) creates and partially
initializes a scsi_pkt(9S) structure. scsi_setup_cdb(9F) creates a SCSI command
descriptor block, in this case creating a SCSI request sense command.

Note that since a SCSI device is not self-identifying and does not have a reg property,
the driver must set the pm-hardware-state property to inform the framework that
this device needs to be suspended and resumed.

Example 14–2 shows the SCSI target driver’s attach(9E) routine.
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EXAMPLE 14–2 SCSI Target Driver attach(9E) Routine

static int
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

struct xxstate *xsp;
struct scsi_pkt *rqpkt = NULL;
struct scsi_device *sdp;
struct buf *bp = NULL;
int instance;
instance = ddi_get_instance(dip);
switch (cmd) {

case DDI_ATTACH:
break;

case DDI_RESUME:
For information, see Chapter 9

default:
return (DDI_FAILURE);

}
allocate a state structure and initialize it

...
xsp = ddi_get_soft_state(statep, instance);
sdp = (struct scsi_device *)ddi_get_driver_private(dip);
/*
* Cross-link the state and scsi_device(9S) structures.
*/
sdp->sd_private = (caddr_t)xsp;
xsp->sdp = sdp;

call scsi_probe(9F) again to get and validate inquiry data
/*
* Allocate a request sense buffer. The buf(9S) structure
* is set to NULL to tell the routine to allocate a new
* one. The callback function is set to NULL_FUNC to tell
* the routine to return failure immediately if no
* resources are available.
*/
bp = scsi_alloc_consistent_buf(&sdp->sd_address, NULL,

SENSE_LENGTH, B_READ, NULL_FUNC, NULL);
if (bp == NULL)

goto failed;
/*
* Create a Request Sense scsi_pkt(9S) structure.
*/
rqpkt = scsi_init_pkt(&sdp->sd_address, NULL, bp,

CDB_GROUP0, 1, 0, PKT_CONSISTENT, NULL_FUNC, NULL);
if (rqpkt == NULL)

goto failed;
/*
* scsi_alloc_consistent_buf(9F) returned a buf(9S) structure.
* The actual buffer address is in b_un.b_addr.
*/
sdp->sd_sense = (struct scsi_extended_sense *)bp->b_un.b_addr;
/*
* Create a Group0 CDB for the Request Sense command
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EXAMPLE 14–2 SCSI Target Driver attach(9E) Routine (Continued)

*/
if (scsi_setup_cdb((union scsi_cdb *)rqpkt->pkt_cdbp,

SCMD_REQUEST_SENSE, 0, SENSE__LENGTH, 0) == 0)
goto failed;;

/*
* Fill in the rest of the scsi_pkt structure.
* xxcallback() is the private command completion routine.
*/
rqpkt->pkt_comp = xxcallback;
rqpkt->pkt_time = 30; /* 30 second command timeout */
rqpkt->pkt_flags |= FLAG_SENSING;
xsp->rqs = rqpkt;
xsp->rqsbuf = bp;

create minor nodes, report device, and do any other initialization
/*
* Since the device does not have the ’reg’ property,
* cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
* The following code is to tell cpr that this device
* needs to be suspended and resumed.
*/
(void) ddi_prop_update_string(device, dip,

"pm-hardware-state", "needs-suspend-resume");
xsp->open = 0;
return (DDI_SUCCESS);

failed:
if (bp)

scsi_free_consistent_buf(bp);
if (rqpkt)

scsi_destroy_pkt(rqpkt);
sdp->sd_private = (caddr_t)NULL;
sdp->sd_sense = NULL;
scsi_unprobe(sdp);

free any other resources, such as the state structure
return (DDI_FAILURE);

}

detach(9E)
The detach(9E) entry point is the inverse of attach(9E); it must free all resources
that were allocated in attach(9E). If successful, the detach should call
scsi_unprobe(9F). Example 14–3 shows a target driver detach(9E) routine.

EXAMPLE 14–3 SCSI Target Driver detach(9E) Routine

static int
xxdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{

struct xxstate *xsp;
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EXAMPLE 14–3 SCSI Target Driver detach(9E) Routine (Continued)

switch (cmd) {
case DDI_DETACH:

normal detach(9E) operations, such as getting a
pointer to the state structure

...
scsi_free_consistent_buf(xsp->rqsbuf);
scsi_destroy_pkt(xsp->rqs);
xsp->sdp->sd_private = (caddr_t)NULL;
xsp->sdp->sd_sense = NULL;
scsi_unprobe(xsp->sdp);

remove minor nodes
free resources, such as the state structure and properties
return (DDI_SUCCESS);

case DDI_SUSPEND:
For information, see Chapter 9

default:
return (DDI_FAILURE);

}

}

getinfo(9E)
The getinfo(9E) routine for SCSI target drivers is much the same as for other drivers
(see “getinfo(9E) ” on page 88 for more information on
DDI_INFO_DEVT2INSTANCE case). However, in the DDI_INFO_DEVT2DEVINFO case
of the getinfo(9E) routine, the target driver must return a pointer to its dev_info
node. This pointer can be saved in the driver state structure or can be retrieved from
the sd_dev field of the scsi_device(9S) structure. Example 14–4 shows an
alternative SCSI target driver getinfo(9E) code fragment.

EXAMPLE 14–4 Alternative SCSI Target Driver getinfo(9E) Code Fragment

...
case DDI_INFO_DEVT2DEVINFO:

dev = (dev_t)arg;
instance = getminor(dev);
xsp = ddi_get_soft_state(statep, instance);
if (xsp == NULL)

return (DDI_FAILURE);
*result = (void *)xsp->sdp->sd_dev;
return (DDI_SUCCESS);

...
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Resource Allocation
To send a SCSI command to the device, the target driver must create and initialize a
scsi_pkt(9S) structure and pass it to the host bus adapter driver.

scsi_init_pkt(9F)
The scsi_init_pkt(9F) routine allocates and zeros a scsi_pkt(9S) structure; it also
sets pointers to pkt_private, *pkt_scbp, and *pkt_cdbp. Additionally, it
provides a callback mechanism to handle the case where resources are not available.
This function has the following syntax:

struct scsi_pkt *scsi_init_pkt(struct scsi_address *ap,
struct scsi_pkt *pktp, struct buf *bp, int cmdlen,
int statuslen, int privatelen, int flags,
int (*callback)(caddr_t), caddr_t arg)

ap Pointer to a scsi_address structure. This is the sd_address field of the
device’s scsi_device(9S) structure.

pktp Pointer to the scsi_pkt(9S) structure to be initialized. If this is set to
NULL, a new packet is allocated.

bp Pointer to a buf(9S) structure. If this is non-NULL and contains a valid
byte count, DMA resources are allocated.

cmdlen Length of the SCSI command descriptor block in bytes.

statuslen Required length of the SCSI status completion block in bytes.

privatelen Number of bytes to allocate for the pkt_private field.

flags Set of flags. Possible bits include:

� PKT_CONSISTENT – This bit must be set if the DMA buffer was
allocated using scsi_alloc_consistent_buf(9F). In this case, the
host bus adapter driver guarantees that the data transfer is properly
synchronized before performing the target driver’s command
completion callback.

� PKT_DMA_PARTIAL – This bit can be set if the driver accepts a partial
DMA mapping. If set, scsi_init_pkt(9F) allocates DMA resources
with the DDI_DMA_PARTIAL flag set. The pkt_resid field of the
scsi_pkt(9S) structure can be returned with a nonzero residual,
indicating the number of bytes for which scsi_init_pkt(9F) was
unable to allocate DMA resources.
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callback Specifies the action to take if resources are not available. If set to
NULL_FUNC, scsi_init_pkt(9F) returns immediately (returning NULL).
If set to SLEEP_FUNC, it does not return until resources are available. Any
other valid kernel address is interpreted as the address of a function to be
called when resources are likely to be available.

arg Parameter to pass to the callback function.

The scsi_init_pkt(9F) routine synchronizes the data prior to transport. If the
driver needs to access the data after transport, it should call scsi_sync_pkt(9F) to
flush any intermediate caches. The scsi_sync_pkt(9F) routine can be used to
synchronize any cached data.

scsi_sync_pkt(9F)
If the target driver needs to resubmit the packet after changing the data,
scsi_sync_pkt(9F) must be called before calling scsi_transport(9F). However,
if the target driver does not need to access the data, there is no need to call
scsi_sync_pkt(9F) after the transport.

scsi_destroy_pkt(9F)
The scsi_destroy_pkt(9F) routine synchronizes any remaining cached data
associated with the packet, if necessary, and then frees the packet and associated
command, status, and target driver-private data areas. This routine should be called in
the command completion routine.

scsi_alloc_consistent_buf(9F)
For most I/O requests, the data buffer passed to the driver entry points is not accessed
directly by the driver; it is just passed on to scsi_init_pkt(9F). If a driver sends
SCSI commands that operate on buffers that the driver itself examines (such as the
SCSI request sense command), the buffers should be DMA consistent. The
scsi_alloc_consistent_buf(9F) routine allocates a buf(9S) structure and a data
buffer suitable for DMA-consistent operations. The HBA will perform any necessary
synchronization of the buffer before performing the command completion callback.
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Caution – scsi_alloc_consistent_buf(9F) uses scarce system resources; use it
sparingly.

scsi_free_consistent_buf(9F)
scsi_free_consistent_buf(9F) releases a buf(9S) structure and the associated
data buffer allocated with scsi_alloc_consistent_buf(9F). See “attach(9E) ”
on page 237 and “detach(9E) ” on page 239 for examples.

Building and Transporting a Command
The host bus adapter driver is responsible for transmitting the command to the device
and handling the low-level SCSI protocol. The scsi_transport(9F) routine hands a
packet to the host bus adapter driver for transmission. The target driver has the
responsibility to create a valid scsi_pkt(9S) structure.

Building a Command
The routine scsi_init_pkt(9F) allocates space for a SCSI CDB, allocates DMA
resources if necessary, and sets the pkt_flags field, as shown in this example:

pkt = scsi_init_pkt(&sdp->sd_address, NULL, bp,

CDB_GROUP0, 1, 0, 0, SLEEP_FUNC, NULL);

This example creates a new packet and allocates DMA resources as specified in the
passed buf(9S) structure pointer. A SCSI CDB is allocated for a Group 0 (6-byte)
command, the pkt_flags field is set to zero, but no space is allocated for the
pkt_private field. This call to scsi_init_pkt(9F), because of the SLEEP_FUNC
parameter, waits indefinitely for resources if none are currently available.

The next step is to initialize the SCSI CDB, using the scsi_setup_cdb(9F) function:

if (scsi_setup_cdb((union scsi_cdb *)pkt->pkt_cdbp,
SCMD_READ, bp->b_blkno, bp->b_bcount >> DEV_BSHIFT, 0) == 0)

goto failed;

This example builds a Group 0 command descriptor block and fills in the pkt_cdbp
field as follows:
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� The command itself (byte 0) is set from the parameter (SCMD_READ).

� The address field (bits 0-4 of byte 1 and bytes 2 and 3) is set from bp->b_blkno.

� The count field (byte 4) is set from the last parameter. In this case it is set to
bp->b_bcount >> DEV_BSHIFT, where DEV_BSHIFT is the byte count of the
transfer converted to the number of blocks.

Note – scsi_setup_cdb(9F) does not support setting a target device’s logical unit
number (LUN) in bits 5-7 of byte 1 of the SCSI command block, as defined by SCSI-1.
For SCSI-1 devices requiring the LUN bits set in the command block, use
makecom_g0(9F) (or equivalent) rather than scsi_setup_cdb(9F).

After initializing the SCSI CDB, initialize three other fields in the packet and store as a
pointer to the packet in the state structure.

pkt->pkt_private = (opaque_t)bp;
pkt->pkt_comp = xxcallback;
pkt->pkt_time = 30;

xsp->pkt = pkt;

The buf(9S) pointer is saved in the pkt_private field for later use in the completion
routine.

Setting Target Capabilities
The target drivers use scsi_ifsetcap(9F) to set the capabilities of the host adapter
driver. A cap is a name-value pair whose name is a null terminated character string
and whose value is an integer. The current value of a capability can be retrieved using
scsi_ifgetcap(9F). scsi_ifsetcap(9F) allows capabilities to be set for all targets
on the bus.

In general, however, setting capabilities of targets that are not owned by the target
driver is not recommended and is not universally supported by HBA drivers. Some
capabilities (such as disconnect and synchronous) can be set by default by the HBA
driver but others might need to be set explicitly by the target driver (wide-xfer or
tagged-queueing, for example).

Transporting a Command
After creating and filling in the scsi_pkt(9S) structure, the final step is to hand it to
the host bus adapter driver using scsi_transport(9F):

if (scsi_transport(pkt) != TRAN_ACCEPT) {
bp->b_resid = bp->b_bcount;
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bioerror(bp, EIO);
biodone(bp);

}

The other return values from scsi_transport(9F) are:

� TRAN_BUSY – There is already a command in progress for the specified target.

� TRAN_BADPKT – The DMA count in the packet was too large, or the host adapter
driver rejected this packet for other reasons.

� TRAN_FATAL_ERROR – The host adapter driver is unable to accept this packet.

Caution – The mutex sd_mutex in the scsi_device(9S) structure must not be held
across a call to scsi_transport(9F).

If scsi_transport(9F) returns TRAN_ACCEPT, the packet is the responsibility of the
host bus adapter driver and should not be accessed by the target driver until the
command completion routine is called.

Synchronous scsi_transport(9F)
If FLAG_NOINTR is set in the packet, then scsi_transport(9F) will not return until
the command is complete, and no callback will be performed.

Note – Do not use FLAG_NOINTR in interrupt context.

Command Completion
Once the host bus adapter driver has done all it can with the command, it invokes the
packet’s completion callback routine, passing a pointer to the scsi_pkt(9S) structure
as a parameter. The completion routine decodes the packet and takes the appropriate
action.

Example 14–5 presents a simple completion callback routine. This code checks for
transport failures and gives up rather than retry the command. If the target is busy,
extra code is required to resubmit the command at a later time.

If the command results in a check condition, the target driver needs to send a request
sense command unless auto request sense has been enabled.

Otherwise, the command succeeded. If this is the end of processing for the command,
it destroys the packet and calls biodone(9F).
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In the event of a transport error (such as a bus reset or parity problem), the target
driver can resubmit the packet using scsi_transport(9F). There is no need to
change any values in the packet prior to resubmitting.

Example 14–5 does not attempt to retry incomplete commands.

Note – Normally, the target driver’s callback function is called in interrupt context.
Consequently, the callback function should never sleep.

EXAMPLE 14–5 SCSI Driver Completion Routine

static void
xxcallback(struct scsi_pkt *pkt)
{

struct buf *bp;
struct xxstate *xsp;
minor_t instance;
struct scsi_status *ssp;
/*
* Get a pointer to the buf(9S) structure for the command
* and to the per-instance data structure.
*/
bp = (struct buf *)pkt->pkt_private;
instance = getminor(bp->b_edev);
xsp = ddi_get_soft_state(statep, instance);
/*
* Figure out why this callback routine was called
*/
if (pkt->pkt_reason != CMP_CMPLT) {

bp->b_resid = bp->b_bcount;
bioerror(bp, EIO);
scsi_destroy_pkt(pkt); /* release resources */
biodone(bp); /* notify waiting threads */ ;

} else {
/*
* Command completed, check status.
* See scsi_status(9S)
*/
ssp = (struct scsi_status *)pkt->pkt_scbp;
if (ssp->sts_busy) {

error, target busy or reserved
} else if (ssp->sts_chk) {

send a request sense command
} else {

bp->b_resid = pkt->pkt_resid; /*packet completed OK */
scsi_destroy_pkt(pkt);
biodone(bp);

}
}

}
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Reuse of Packets
A target driver can reuse packets in the following ways:

� Resubmit the packet unchanged.

� Use scsi_sync_pkt(9F) to synchronize the data, then process the data in the
driver and resubmit.

� Free DMA resources, using scsi_dmafree(9F), and pass the pkt pointer to
scsi_init_pkt(9F) for binding to a new bp. The target driver is responsible for
reinitializing the packet. The CDB has to have the same length as the previous
CDB.

� If partial DMA was allocated during the first call to scsi_init_pkt(9F),
subsequent calls to scsi_init_pkt(9F) can be made for the same packet and bp
to adjust the DMA resources to the next portion of the transfer.

Auto-Request Sense Mode
Auto-request sense mode is most desirable if tagged or untagged queuing is used. A
contingent allegiance condition is cleared by any subsequent command and,
consequently, the sense data is lost. Most HBA drivers will start the next command
before performing the target driver callback. Other HBA drivers can use a separate
and lower-priority thread to perform the callbacks, which might increase the time
needed to notify the target driver that the packet completed with a check condition. In
this case, the target driver might not be able to submit a request sense command in
time to retrieve the sense data.

To avoid this loss of sense data, the HBA driver, or controller, should issue a request
sense command as soon as a check condition has been detected; this mode is known as
auto-request sense mode. Note that not all HBA drivers are capable of auto-request
sense mode, and some can only operate with auto-request sense mode enabled.

A target driver enables auto-request-sense mode by using scsi_ifsetcap(9F).
Example 14–6 shows enabling auto request sense.

EXAMPLE 14–6 Enabling Auto Request Sense

static int
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

struct xxstate *xsp;
struct scsi_device *sdp = (struct scsi_device *)

ddi_get_driver_private(dip);
...
/*
* enable auto-request-sense; an auto-request-sense cmd may

fail
* due to a BUSY condition or transport error. Therefore, it is
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EXAMPLE 14–6 Enabling Auto Request Sense (Continued)

* recommended to allocate a separate request sense packet as
* well.
* Note that scsi_ifsetcap(9F) may return -1, 0, or 1
*/
xsp->sdp_arq_enabled =

((scsi_ifsetcap(ROUTE, “auto-rqsense”, 1, 1) == 1) ? 1 :
0);

/*
* if the HBA driver supports auto request sense then the
* status blocks should be sizeof (struct scsi_arq_status);

else
* one byte is sufficient
*/
xsp->sdp_cmd_stat_size = (xsp->sdp_arq_enabled ?

sizeof (struct scsi_arq_status) : 1);
...

}

When a packet is allocated using scsi_init_pkt(9F) and auto request sense is
desired on this packet, then the target driver must request additional space for the
status block to hold the auto request sense structure. The sense length used in the
request sense command is sizeof (struct scsi_extended_sense). Auto request
sense can be disabled per individual packet by just allocating sizeof (struct
scsi_status) for the status block.

The packet is submitted using scsi_transport(9F) as usual. When a check
condition occurs on this packet, the host adapter driver:

� Issues a request sense command if the controller doesn’t have auto-request-sense
capability

� Obtains the sense data

� Fills in the scsi_arq_status information in the packet’s status block

� Sets STATE_ARQ_DONE in the packet’s pkt_state field

� Calls the packet’s callback handler (pkt_comp())

The target driver’s callback routine should verify that sense data is available by
checking the STATE_ARQ_DONE bit in pkt_state, which implies that a check
condition has occurred and a request sense has been performed. If auto-request-sense
has been temporarily disabled in a packet, there is no guarantee that the sense data
can be retrieved at a later time.

The target driver should then verify whether the auto request sense command
completed successfully and decode the sense data.
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Dump Handling
The dump(9E) entry point is used to copy a portion of virtual address space directly to
the specified device in the case of system failure or checkpoint operation. See the
cpr(7) and dump(9E) man pages. The dump(9E) entry point must be capable of
performing this operation without the use of interrupts.

dev is the device number of the dump device, addr is the kernel virtual address at
which to start the dump, blkno is the first destination block on the device, and nblk is
the number of blocks to dump.

EXAMPLE 14–7 dump(9E) Routine

static int
xxdump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
{

struct xxstate *xsp;
struct buf *bp;
struct scsi_pkt *pkt;
int rval;
int instance;

instance = getminor(dev);
xsp = ddi_get_soft_state(statep, instance);

if (tgt->suspended) {
(void) ddi_dev_is_needed(DEVINFO(tgt), 0, 1);

}

bp = getrbuf(KM_NOSLEEP);
if (bp == NULL) {

return (EIO);
}

Calculate block number relative to partition

bp->b_un.b_addr = addr;
bp->b_edev = dev;
bp->b_bcount = nblk * DEV_BSIZE;
bp->b_flags = B_WRITE | B_BUSY;
bp->b_blkno = blkno;

pkt = scsi_init_pkt(ROUTE(tgt), NULL, bp, CDB_GROUP1,
sizeof (struct scsi_arq_status),
sizeof (struct bst_pkt_private), 0, NULL_FUNC, NULL);

if (pkt == NULL) {
freerbuf(bp);
return (EIO);

}
(void) scsi_setup_cdb((union scsi_cdb *)pkt->pkt_cdbp,

SCMD_WRITE_G1, blkno, nblk, 0);

/*
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EXAMPLE 14–7 dump(9E) Routine (Continued)

* while dumping in polled mode, other cmds might complete
* and these should not be resubmitted. we set the
* dumping flag here which prevents requeueing cmds.
*/
tgt->dumping = 1;
rval = scsi_poll(pkt);
tgt->dumping = 0;

scsi_destroy_pkt(pkt);
freerbuf(bp);

if (rval != DDI_SUCCESS) {
rval = EIO;

}

return (rval);
}

SCSI Options
SCSA defines a global variable, scsi_options, which can be used for debug and control.
The defined bits in scsi_options can be found in the file
<sys/scsi/conf/autoconf.h>. Table 14–2 shows their meanings when set.

TABLE 14–2 SCSA Options

Option Description

SCSI_OPTIONS_DR Enables global disconnect/reconnect

SCSI_OPTIONS_SYNC Enables global synchronous transfer capability

SCSI_OPTIONS_LINK Enables global link support

SCSI_OPTIONS_PARITY Enables global parity support

SCSI_OPTIONS_TAG Enables global tagged queuing support

SCSI_OPTIONS_FAST Enables global FAST SCSI support: 10 Mbytes/sec
transfers, as opposed to 5 Mbytes/sec

SCSI_OPTIONS_FAST20 Enables global FAST20 SCSI support: 20 Mbytes/sec
transfers
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TABLE 14–2 SCSA Options (Continued)
Option Description

SCSI_OPTIONS_FAST40 Enables global FAST40 SCSI support: 40 Mbytes/sec
transfers

SCSI_OPTIONS_FAST80 Enables global FAST80 SCSI support: 80 Mbytes/sec
transfers

SCSI_OPTIONS_WIDE Enables global WIDE SCSI

Note – The setting of scsi_options affects all host adapter and target drivers present on
the system (as opposed to scsi_ifsetcap(9F). Refer to the scsi_hba_attach(9F)
man page for information on controlling these options for a particular host adapter.
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CHAPTER 15

SCSI Host Bus Adapter Drivers

This chapter contains information on creating SCSI host bus adapter (HBA) drivers
and provides sample code illustrating the structure of a typical HBA driver and
showing the use of the HBA driver interfaces provided by the Sun Common SCSI
Architecture (SCSA).

As described in Chapter 14, the Solaris 9 DDI/DKI divides the software interface to
SCSI devices into two major parts:

� Target devices and drivers
� Host bus adapter devices and drivers

Target device refers to a device on a SCSI bus, such as a disk or a tape drive. Target
driver refers to a software component installed as a device driver. Each target device on
a SCSI bus is controlled by one instance of the target driver.

Host bus adapter device refers to HBA hardware, such as an SBus or PCI SCSI adapter
card. Host bus adapter driver refers to a software component installed as a device driver,
such as the esp driver on a SPARC machine or the ncrs driver on an IA machine, and
the isp driver, which works on both. An instance of the HBA driver controls each of
its host bus adapter devices configured in the system.

The Sun Common SCSI Architecture (SCSA) defines the interface between these target
and HBA components.

Note – Understanding SCSI target drivers is an essential prerequisite to writing
effective SCSI HBA drivers. For information on SCSI target drivers, see Chapter 14.
Target driver developers can also benefit from reading this chapter.

The host bus adapter driver is responsible for:

� Managing host bus adapter hardware
� Accepting SCSI commands from the SCSI target driver
� Transporting the commands to the specified SCSI target device
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� Performing any data transfers that the command requires
� Collecting status
� Handling auto-request sense (optional)
� Informing the target driver of command completion (or failure)

SCSI Interface
SCSA is the Solaris 9 DDI/DKI programming interface for the transmission of SCSI
commands from a target driver to a host adapter driver. By conforming to the SCSA,
the target driver can pass any combination of SCSI commands and sequences to a
target device without knowledge of the hardware implementation of the host adapter.
SCSA conceptually separates the building of a SCSI command (by the target driver)
from the transporting of the command to and data to and from the SCSI bus (by the
HBA driver) for the appropriate target device. SCSA manages the connections between
the target and HBA drivers through an HBA transport layer, as shown in Figure 15–1.

Layer

HBA
Driver

Target Driver

Target devices

SCSI Bus

HBA Transport

HBA
Device

tapediskdisk tape

Target devices

SCSA
Interface

FIGURE 15–1 SCSA Interface

The HBA transport layer is a software and hardware layer responsible for transporting
a SCSI command to a SCSI target device. The HBA driver provides resource allocation,
DMA management, and transport services in response to requests made by SCSI target
drivers through SCSA. The host adapter driver also manages the host adapter
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hardware and the SCSI protocols necessary to perform the commands. When a
command has been completed, the HBA driver calls the target driver’s SCSI pkt
command completion routine.

Figure 15–2 illustrates this flow, with emphasis placed on the transfer of information
from target drivers to SCSA to HBA drivers. Figure 15–2 also shows typical transport
entry points and function calls.

Target Driver Request

scsi_transport(9F)

Allocate scsi_pkt(9S)

Build SCSI Command

Transport Command

Free scsi_pkt(9S)

Request Completion

tran_init_pkt(9E)scsi_init_pkt(9F)

tran_start(9E)

tran_destroy_pkt(9E)scsi_destroy_pkt(9F)

Callback Handling

TARGET DRIVER

SCSA INTERFACE HBA DRIVER

Command Completion

FIGURE 15–2 Transport Layer Flow

SCSA HBA Interfaces
SCSA HBA interfaces include HBA entry points, HBA data structures, and an HBA
framework.
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SCSA HBA Entry Point Summary
SCSA defines a number of HBA driver entry points, listed in Table 15–1. These entry
points are called by the system when configuring a target driver instance connected to
the HBA driver, or when the target driver makes a SCSA request. See “SCSA HBA
Entry Points” on page 273 for more information.

TABLE 15–1 SCSA HBA Entry Point Summary

Function Name Called as a Result of

tran_tgt_init(9E) System attaching target device instance

tran_tgt_probe(9E) Target driver calling scsi_probe(9F)

tran_tgt_free(9E) System detaching target device instance

tran_start(9E) Target driver calling scsi_transport(9F)

tran_reset(9E) Target driver calling scsi_reset(9F)

tran_abort(9E) Target driver calling scsi_abort(9F)

tran_getcap(9E) Target driver calling scsi_ifgetcap(9F)

tran_setcap(9E) Target driver calling scsi_ifsetcap(9F)

tran_init_pkt(9E) Target driver calling scsi_init_pkt(9F)

tran_destroy_pkt(9E) Target driver calling scsi_destroy_pkt(9F)

tran_dmafree(9E) Target driver calling scsi_dmafree(9F)

tran_sync_pkt(9E) Target driver calling scsi_sync_pkt(9F)

(9E)tran_reset_notify Target driver calling scsi_reset_notify(9F)

tran_quiesce(9E) System quiescing bus

tran_unquiesce(9E) System resuming activity on bus

tran_bus_reset(9E) System resetting bus

SCSA HBA Data Structures
SCSA defines data structures to enable the exchange of information between the target
and HBA drivers. These data structures include:

� scsi_hba_tran(9S)
� scsi_address(9S)
� scsi_device(9S)
� scsi_pkt(9S)
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scsi_hba_tran(9S) Structure
Each instance of an HBA driver must allocate a scsi_hba_tran(9S) structure using
scsi_hba_tran_alloc(9F) in the attach(9E) entry point.
scsi_hba_tran_alloc(9F) initializes the scsi_hba_tran(9S) structure before it
returns. The HBA driver must initialize specific vectors in the transport structure to
point to entry points within the HBA driver. Once initialized, the HBA driver exports
the transport structure to SCSA by calling scsi_hba_attach_setup(9F).

Caution – Because SCSA keeps a pointer to the transport structure in the
driver-private field on the devinfo node, HBA drivers must not use
ddi_set_driver_private(9F). They can, however, use
ddi_get_driver_private(9F) to retrieve the pointer to the transport structure.

The scsi_hba_tran(9S) structure contains the following fields:

struct scsi_hba_tran {
dev_info_t *tran_hba_dip;
void *tran_hba_private; /* HBA softstate */
void *tran_tgt_private; /* target-specific info */
struct scsi_device *tran_sd;
int (*tran_tgt_init)();
int (*tran_tgt_probe)();
void (*tran_tgt_free)();
int (*tran_start)();
int (*tran_reset)();
int (*tran_abort)();
int (*tran_getcap)();
int (*tran_setcap)();
struct scsi_pkt *(*tran_init_pkt)();
void (*tran_destroy_pkt)();
void (*tran_dmafree)();
void (*tran_sync_pkt)();
int (*tran_reset_notify)();
int (*tran_get_bus_addr)();
int (*tran_get_name)();
int (*tran_clear_aca)();
int (*tran_clear_task_set)();
int (*tran_terminate_task)();
int (*tran_get_eventcookie)();
int (*tran_add_eventcall)();
int (*tran_remove_eventcall)();
int (*tran_post_event)();
int (*tran_quiesce)();
int (*tran_unquiesce)();
int (*tran_bus_reset)();

};
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Note – Code fragments presented subsequently in this chapter use these fields to
describe practical HBA driver operations. See “SCSA HBA Entry Points” on page 273
for more information.

tran_hba_dip Pointer to the HBA device instance dev_info structure. The
function scsi_hba_attach_setup(9F) sets this field.

tran_hba_privatePointer to private data maintained by the HBA driver. Usually,
tran_hba_private contains a pointer to the state structure of
the HBA driver.

tran_tgt_privatePointer to private data maintained by the HBA driver when using
cloning. By specifying SCSI_HBA_TRAN_CLONE when calling
scsi_hba_attach_setup(9F), the scsi_hba_tran(9S)
structure is cloned once per target, permitting the HBA to initialize
this field to point to a per-target instance data structure in the
tran_tgt_init(9E) entry point. If SCSI_HBA_TRAN_CLONE is
not specified, tran_tgt_private is NULL and must not be
referenced. See “Transport Structure Cloning” on page 263 for
more information.

tran_sd Pointer to a per-target instance scsi_device(9S) structure used
when cloning. If SCSI_HBA_TRAN_CLONE is passed to
scsi_hba_attach_setup(9F), tran_sd is initialized to point to
the per-target scsi_device structure before any HBA functions
are called on behalf of that target. If SCSI_HBA_TRAN_CLONE is
not specified, tran_sd is NULL and must not be referenced. See
“Transport Structure Cloning” on page 263 for more information.

tran_tgt_init Pointer to the HBA driver entry point called when initializing a
target device instance. If no per-target initialization is required, the
HBA can leave tran_tgt_init set to NULL.

tran_tgt_probe Pointer to the HBA driver entry point called when a target driver
instance calls scsi_probe(9F) to probe for the existence of a
target device. If no target probing customization is required for
this HBA, the HBA should set tran_tgt_probe to
scsi_hba_probe(9F).

tran_tgt_free Pointer to the HBA driver entry point called when a target device
instance is destroyed. If no per-target deallocation is necessary, the
HBA can leave tran_tgt_free set to NULL.

tran_start Pointer to the HBA driver entry point called when a target driver
calls scsi_transport(9F).

tran_reset Pointer to the HBA driver entry point called when a target driver
calls scsi_reset(9F).
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tran_abort Pointer to the HBA driver entry point called when a target driver
calls scsi_abort(9F).

tran_getcap Pointer to the HBA driver entry point called when a target driver
calls scsi_ifgetcap(9F) .

tran_setcap Pointer to the HBA driver entry point called when a target driver
calls scsi_ifsetcap(9F).

tran_init_pkt Pointer to the HBA driver entry point called when a target driver
calls scsi_init_pkt(9F).

tran_destroy_pktPointer to the HBA driver entry point called when a target driver
calls scsi_destroy_pkt(9F).

tran_dmafree Pointer to the HBA driver entry point called when a target driver
calls scsi_dmafree(9F).

tran_sync_pkt Pointer to the HBA driver entry point called when a target driver
calls scsi_sync_pkt(9F).

tran_reset_notifyPointer to the HBA driver entry point called when a target driver
calls tran_reset_notify(9E).

scsi_address Structure
The scsi_address(9S) structure provides transport and addressing information for
each SCSI command allocated and transported by a target driver instance.

The scsi_address(9S) structure contains the following fields:

struct scsi_address {
struct scsi_hba_tran *a_hba_tran; /* Transport vectors */
ushort_t a_target; /* Target identifier */
uchar_t a_lun; /* Lun on that Target */
uchar_t a_sublun; /* Sublun on that Lun */

/* Not used */

};

a_hba_tran Pointer to the scsi_hba_tran(9S) structure, as allocated and
initialized by the HBA driver. If SCSI_HBA_TRAN_CLONE was
specified as the flag to scsi_hba_attach_setup(9F),
a_hba_tran points to a copy of that structure.

a_target Identifies the SCSI target on the SCSI bus.

a_lun Identifies the SCSI logical unit on the SCSI target.
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scsi_device Structure
The HBA framework allocates and initializes a scsi_device(9S) structure for each
instance of a target device before calling an HBA driver’s tran_tgt_init(9E) entry
point. This structure stores information about each SCSI logical unit, including
pointers to information areas that contain both generic and device-specific
information. There is one scsi_device(9S) structure for each target device instance
attached to the system.

If the per-target initialization is successful (in other words, if either
tran_tgt_init(9E) returns success or the vector is NULL), the HBA framework will
set the target driver’s per-instance private data to point to the scsi_device(9S)
structure, using ddi_set_driver_private(9F).

The scsi_device(9S) structure contains the following fields:

struct scsi_device {
struct scsi_address sd_address; /* routing information */
dev_info_t *sd_dev; /* device dev_info node */
kmutex_t sd_mutex; /* mutex used by device */
void *sd_reserved;
struct scsi_inquiry *sd_inq;
struct scsi_extended_sense *sd_sense;
caddr_t sd_private; /* for driver’s use */

};

sd_address Data structure that is passed to the SCSI resource allocation
routines.

sd_dev Pointer to the target’s dev_info structure.

sd_mutex Mutex for use by the target driver. This is initialized by the HBA
framework and can be used by the target driver as a per-device
mutex. This mutex should not be held across a call to
scsi_transport(9F) or scsi_poll(9F). See Chapter 3 for more
information on mutexes.

sd_inq Pointer for the target device’s SCSI inquiry data. The
scsi_probe(9F) routine allocates a buffer, fills it in, and attaches
it to this field.

sd_sense Pointer to a buffer to contain Request Sense data from the device.
The target driver must allocate and manage this buffer itself. See
the target driver’s attach(9E) routine in “attach(9E) ”
on page 81 for more information.

sd_private Pointer field for use by the target driver. It is commonly used to
store a pointer to a private target driver state structure.
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scsi_pkt Structure
To execute SCSI commands, a target driver must first allocate a scsi_pkt(9S)
structure for the command, specifying its own private data area length, the command
status, and the command length. The HBA driver is responsible for implementing the
packet allocation in the tran_init_pkt(9E) entry point. The HBA driver is also
responsible for freeing the packet in its tran_destroy_pkt(9E) entry point. See
scsi_pkt(9S) in Chapter 14, for more information.

The scsi_pkt(9S) structure contains these fields:

struct scsi_pkt {
opaque_t pkt_ha_private; /* private data for host adapter */
struct scsi_address pkt_address; /* destination address */
opaque_t pkt_private; /* private data for target driver */
void (*pkt_comp)(struct scsi_pkt *); /* completion routine */
uint_t pkt_flags; /* flags */
int pkt_time; /* time allotted to complete command */
uchar_t *pkt_scbp; /* pointer to status block */
uchar_t *pkt_cdbp; /* pointer to command block */
ssize_t pkt_resid; /* data bytes not transferred */
uint_t pkt_state; /* state of command */
uint_t pkt_statistics; /* statistics */
uchar_t pkt_reason; /* reason completion called */

};

pkt_ha_private Pointer to per-command HBA-driver private data.

pkt_address Pointer to the scsi_address(9S) structure providing address
information for this command.

pkt_private Pointer to per-packet target-driver private data.

pkt_comp Pointer to the target driver completion routine called by the HBA
driver when the transport layer has completed this command.

pkt_flags Flags for the command.

pkt_time Specifies the completion timeout in seconds for the command.

pkt_scbp Pointer to the status completion block for the command.

pkt_cdbp Pointer to the command descriptor block (CDB) for the command.

pkt_resid Count of the data bytes not transferred when the command has
been completed or the amount of data for which resources have
not been allocated. The HBA must modify this field during
transport.

pkt_state State of the command. The HBA must modify this field during
transport.

pkt_statistics Provides a history of the events the command experienced while
in the transport layer. The HBA must modify this field during
transport.
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pkt_reason Reason for command completion. The HBA must modify this field
during transport.

Per-Target Instance Data
An HBA driver must allocate a scsi_hba_tran(9S) structure during attach(9E)
and initialize the vectors in this transport structure to point to the required HBA
driver entry points. This scsi_hba_tran(9S) structure is then passed into
scsi_hba_attach_setup(9F).

The scsi_hba_tran(9S) structure contains a tran_hba_private field, which can
be used to refer to the HBA driver’s per-instance state.

Each scsi_address(9S) structure contains a pointer to the scsi_hba_tran(9S)
structure and also provides the target (a_target) and logical unit (a_lun) addresses
for the particular target device. Because every HBA driver entry point is passed a
pointer to the scsi_address(9S) structure, either directly or indirectly through the
scsi_device(9S) structure, the HBA driver can reference its own state and can
identify the target device being addressed.

Figure 15–3 illustrates the HBA data structures for transport operations.
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FIGURE 15–3 HBA Transport Structures

Transport Structure Cloning
Cloning can be useful if an HBA driver needs to maintain per-target private data in
the scsi_hba_tran(9S) structure, or if it needs to maintain a more complex address
than is provided in the scsi_address(9S) structure.

When cloning, the HBA driver must still allocate a scsi_hba_tran(9S) structure at
attach(9E) time and initialize the tran_hba_private soft state pointer and HBA
entry point vectors as before. The difference occurs when the framework begins to
connect an instance of a target driver to the HBA driver. Before calling the HBA
driver’s tran_tgt_init(9E) entry point, the framework duplicates (clones) the
scsi_hba_tran(9S) structure associated with that instance of the HBA. This means
that each scsi_address(9S) structure, allocated and initialized for a particular target
device instance, points to a per-target instance copy of the scsi_hba_tran(9S)
structure, not to the scsi_hba_tran(9S) structure allocated by the HBA driver at
attach(9E) time.
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Two important pointers that an HBA driver can use when it has specified cloning are
contained in the scsi_hba_tran(9S) structure. The first pointer is the
tran_tgt_private field, which the driver can use to point to per-target HBA
private data. This is useful, for example, if an HBA driver needs to maintain a more
complex address than the a_target and a_lun fields in the scsi_address(9S)
structure allow. The second pointer is the tran_sd field, which is a pointer to the
scsi_device(9S) structure referring to the particular target device.

When specifying cloning, the HBA driver must allocate and initialize the per-target
data and initialize the tran_tgt_private field to point to this data during its
tran_tgt_init(9E) entry point. The HBA driver must free this per-target data
during its tran_tgt_free(9E) entry point.

When cloning, the framework initializes the tran_sd field to point to the
scsi_device(9S) structure before the HBA driver tran_tgt_init(9E) entry point
is called. The driver requests cloning by passing the SCSI_HBA_TRAN_CLONE flag to
scsi_hba_attach_setup(9F). Figure 15–4 illustrates the HBA data structures for
cloning transport operations.
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SCSA HBA Functions
SCSA also provides a number of functions, listed in Table 15–2, for use by HBA
drivers.

TABLE 15–2 SCSA HBA Functions

Function Name Called by Driver Entry Point

scsi_hba_init(9F) _init(9E)

scsi_hba_fini(9F) _fini(9E)
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TABLE 15–2 SCSA HBA Functions (Continued)
Function Name Called by Driver Entry Point

scsi_hba_attach_setup(9F) attach(9E)

scsi_hba_detach(9F) detach(9E)

scsi_hba_tran_alloc(9F) attach(9E)

scsi_hba_tran_free(9F) detach(9E)

scsi_hba_probe(9F) tran_tgt_probe(9E)

scsi_hba_pkt_alloc(9F) tran_init_pkt(9E)

scsi_hba_pkt_free(9F) tran_destroy_pkt(9E)

scsi_hba_lookup_capstr(9F) tran_getcap(9E) and tran_setcap(9E)

HBA Driver Dependency and
Configuration Issues
In addition to incorporating SCSA HBA entry points, structures, and functions into a
driver, HBA driver developers must also concern themselves with issues surrounding
driver dependency and configuration. These issues involve configuration properties,
dependency declarations, state structure and per-command structure, module
initialization entry points, and autoconfiguration entry points.

Declarations and Structures
HBA drivers must include the following header files:

#include <sys/scsi/scsi.h>
#include <sys/ddi.h>

#include <sys/sunddi.h>

To inform the system that the module depends on SCSA routines (see “SCSA HBA
Interfaces” on page 255 for more information), the driver binary must be generated
with the following command:

% ld -r xx.o -o xx -N "misc/scsi"

The code samples are derived from a simplified isp driver for the QLogic Intelligent
SCSI Peripheral device. The isp driver supports WIDE SCSI, with up to 15 target
devices and 8 logical units (LUNs) per target.
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Per-Command Structure
An HBA driver will usually need to define a structure to maintain state for each
command submitted by a target driver. The layout of this per-command structure is
entirely up to the device driver writer and needs to reflect the capabilities and features
of the hardware and the software algorithms used in the driver.

The following structure is an example of a per-command structure. The remaining
code fragments of this chapter use this structure to illustrate the HBA interfaces.

struct isp_cmd {
struct isp_request cmd_isp_request;
struct isp_response cmd_isp_response;
struct scsi_pkt *cmd_pkt;
struct isp_cmd *cmd_forw;
uint32_t cmd_dmacount;
ddi_dma_handle_t cmd_dmahandle;
uint_t cmd_cookie;
uint_t cmd_ncookies;
uint_t cmd_cookiecnt;
uint_t cmd_nwin;
uint_t cmd_curwin;
off_t cmd_dma_offset;
uint_t cmd_dma_len;
ddi_dma_cookie_t cmd_dmacookies[ISP_NDATASEGS];
u_int cmd_flags;
u_short cmd_slot;
u_int cmd_cdblen;
u_int cmd_scblen;

};

Module Initialization Entry Points
Drivers for different types of devices have different sets of entry points, depending on
the operations they perform. Some operations, however, are common to all drivers,
such as the as _init(9E), _info(9E), and _fini(9E) entry points for module
initialization. Chapter 2 gives a complete description of these loadable module
routines. This section describes only those entry points associated with operations
performed by SCSI HBA drivers.

The following code for a SCSI HBA driver illustrates a representative dev_ops(9S)
structure. The driver must initialize the devo_bus_ops field in this structure to
NULL. A SCSI HBA driver can provide leaf driver interfaces for special purposes, in
which case the devo_cb_ops field might point to a cb_ops(9S) structure. In this
example, no leaf driver interfaces are exported, so the devo_cb_ops field is
initialized to NULL.
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_init(9E)
The _init(9E) function initializes a loadable module and is called before any other
routine in the loadable module.

In a SCSI HBA, the _init(9E) function must call scsi_hba_init(9F) to inform the
framework of the existence of the HBA driver before calling mod_install(9F). If
scsi_hba_init(9F) returns a nonzero value, _init(9E) should return this value.
Otherwise, _init(9E) must return the value returned by mod_install(9F).

The driver should initialize any required global state before calling mod_install(9F).

If mod_install(9F) fails, the _init(9E) function must free any global resources
allocated and must call scsi_hba_fini(9F) before returning.

Example 15–1 uses a global mutex to show how to allocate data that is global to all
instances of a driver. The code declares global mutex and soft-state structure
information. The global mutex and soft state are initialized during _init(9E).

_fini(9E)
The _fini(9E) function is called when the system is about to try to unload the SCSI
HBA driver. The _fini(9E) function must call mod_remove(9F) to determine if the
driver can be unloaded. If mod_remove(9F) returns 0, the module can be unloaded,
and the HBA driver must deallocate any global resources allocated in _init(9E) and
must call scsi_hba_fini(9F).

_fini(9E) must return the value returned by mod_remove(9F).

Note – The HBA driver must not free any resources or call scsi_hba_fini(9F)
unless mod_remove(9F) returns 0.

Example 15–1 shows SCSI HBA module initialization.

EXAMPLE 15–1 SCSI HBA Module Initialization

static struct dev_ops isp_dev_ops = {
DEVO_REV, /* devo_rev */
0, /* refcnt */
isp_getinfo, /* getinfo */
nulldev, /* probe */
isp_attach, /* attach */
isp_detach, /* detach */
nodev, /* reset */
NULL, /* driver operations */
NULL, /* bus operations */
isp_power, /* power management */

};
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EXAMPLE 15–1 SCSI HBA Module Initialization (Continued)

/*
* Local static data
*/
static kmutex_t isp_global_mutex;
static void *isp_state;

int
_init(void)
{

int err;

if ((err = ddi_soft_state_init(&isp_state,
sizeof (struct isp), 0)) != 0) {

return (err);
}
if ((err = scsi_hba_init(&modlinkage)) == 0) {

mutex_init(&isp_global_mutex, "isp global mutex",
MUTEX_DRIVER, NULL);
if ((err = mod_install(&modlinkage)) != 0) {

mutex_destroy(&isp_global_mutex);
scsi_hba_fini(&modlinkage);
ddi_soft_state_fini(&isp_state);

}
}
return (err);

}

int
_fini(void)
{

int err;

if ((err = mod_remove(&modlinkage)) == 0) {
mutex_destroy(&isp_global_mutex);
scsi_hba_fini(&modlinkage);
ddi_soft_state_fini(&isp_state);

}
return (err);

}

Autoconfiguration Entry Points
Associated with each device driver is a dev_ops(9S) structure, which allows the
kernel to locate the autoconfiguration entry points of the driver. A complete
description of these autoconfiguration routines is given in Chapter 5. This section
describes only those entry points associated with operations performed by SCSI HBA
drivers. These include attach(9E) and detach(9E).
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attach(9E)
The attach(9E) entry point for a SCSI HBA driver must perform a number of tasks to
configure and attach an instance of the driver for the device. For a typical driver of
real devices, the following operating system and hardware concerns must be
addressed:

� Soft-state structure
� DMA
� Transport structure
� Attaching an HBA driver
� Register mapping
� Interrupt specification
� Interrupt handling
� Create power manageable components
� Report attachment status

Soft State Structure

The driver should allocate the per-device-instance soft state structure, being careful to
clean up properly if an error occurs.

DMA

The HBA driver must describe the attributes of its DMA engine by properly
initializing the ddi_dma_attr_t structure.

static ddi_dma_attr_t isp_dma_attr = {
DMA_ATTR_V0, /* ddi_dma_attr version */
0, /* low address */
0xffffffff, /* high address */
0x00ffffff, /* counter upper bound */
1, /* alignment requirements */
0x3f, /* burst sizes */
1, /* minimum DMA access */
0xffffffff, /* maximum DMA access */
(1<<24)-1, /* segment boundary restrictions */
1, /* scatter/gather list length */
512, /* device granularity */
0 /* DMA flags */

};

The driver, if providing DMA, should also check that its hardware is installed in a
DMA-capable slot:

if (ddi_slaveonly(dip) == DDI_SUCCESS) {
return (DDI_FAILURE);

}
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Transport Structure

The driver should further allocate and initialize a transport structure for this instance.
The tran_hba_private field is set to point to this instance’s soft-state structure.
tran_tgt_probe can be set to NULL to achieve the default behavior, if no special
probe customization is needed.

tran = scsi_hba_tran_alloc(dip, SCSI_HBA_CANSLEEP);

isp->isp_tran = tran;
isp->isp_dip = dip;

tran->tran_hba_private = isp;
tran->tran_tgt_private = NULL;
tran->tran_tgt_init = isp_tran_tgt_init;
tran->tran_tgt_probe = scsi_hba_probe;
tran->tran_tgt_free = (void (*)())NULL;

tran->tran_start = isp_scsi_start;
tran->tran_abort = isp_scsi_abort;
tran->tran_reset = isp_scsi_reset;
tran->tran_getcap = isp_scsi_getcap;
tran->tran_setcap = isp_scsi_setcap;
tran->tran_init_pkt = isp_scsi_init_pkt;
tran->tran_destroy_pkt = isp_scsi_destroy_pkt;
tran->tran_dmafree = isp_scsi_dmafree;
tran->tran_sync_pkt = isp_scsi_sync_pkt;
tran->tran_reset_notify = isp_scsi_reset_notify;
tran->tran_bus_quiesce = isp_tran_bus_quiesce
tran->tran_bus_unquiesce = isp_tran_bus_unquiesce

tran->tran_bus_reset = isp_tran_bus_reset

Attaching an HBA Driver

The driver should attach this instance of the device, and perform error cleanup if
necessary.

i = scsi_hba_attach_setup(dip, &isp_dma_attr, tran, 0);
if (i != DDI_SUCCESS) {

do error recovery
return (DDI_FAILURE);

}

Register Mapping

The driver should map in its device’s registers, specifying the index of the register set,
the data access characteristics of the device and the size of the register set to be
mapped.

ddi_device_acc_attr_t dev_attributes;
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dev_attributes.devacc_attr_version = DDI_DEVICE_ATTR_V0;
dev_attributes.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
dev_attributes.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;

if (ddi_regs_map_setup(dip, 0, (caddr_t *)&isp->isp_reg,
0, sizeof (struct ispregs), &dev_attributes,
&isp->isp_acc_handle) != DDI_SUCCESS) {

do error recovery
return (DDI_FAILURE);

}

Adding an Interrupt Handler

The driver must first obtain the iblock cookie to initialize mutexes used in the driver
handler. Only after those mutexes have been initialized can the interrupt handler be
added.

i = ddi_get_iblock_cookie(dip, 0, &isp->iblock_cookie};
if (i != DDI_SUCCESS) {

do error recovery
return (DDI_FAILURE);

}

mutex_init(&isp->mutex, "isp_mutex", MUTEX_DRIVER,
(void *)isp->iblock_cookie);

i = ddi_add_intr(dip, 0, &isp->iblock_cookie,
0, isp_intr, (caddr_t)isp);

if (i != DDI_SUCCESS) {
do error recovery
return (DDI_FAILURE);

}

The driver should determine if a high-level interrupt handler is required. If a
high-level handler is required and the driver is not coded to provide one, rewrite the
driver to include either a high-level interrupt or fail the attach. See “Handling
High-Level Interrupts” on page 107 for a description of high-level interrupt handling.

Create Power Manageable Components

If the host bus adapter hardware supports power management, and the host bus
adapter only needs to be powered down when all of the target adapters are power
manageable and are at power level 0, then the host bus adapter driver only needs to
provide a power(9E) entry point as described in Chapter 9 and create a
pm-components(9P) property that describes the components that the device
implements.

Nothing more is necessary, since the components will default to idle, and the power
management framework’s default dependency processing will ensure that the host
bus adapter will be powered up whenever an target adapter is powered up and will
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automatically power down the host bus adapter whenever all of the target adapters
are powered down (provided that automatic power management is enabled).

Report Attachment Status

Finally, the driver should report that this instance of the device is attached and return
success.

ddi_report_dev(dip);

return (DDI_SUCCESS);

detatch(9E)
The driver should perform standard detach operations. See “detach(9E) ” on page 86.

Example 15–2 provides an example of the isp_detach() function.

EXAMPLE 15–2 isp_detach()

static int
isp_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{

switch (cmd) {
case DDI_DETACH:

/*
* At present, detaching HBA drivers is not supported
*/
return (DDI_FAILURE);

default:
return (DDI_FAILURE);

}

}

SCSA HBA Entry Points
For an HBA driver to work with target drivers using the SCSA interface, each HBA
driver must supply a number of entry points, callable through the
scsi_hba_tran(9S) structure.These entry points fall into five functional groups:

� Target driver instance initialization
� Resource allocation and deallocation
� Command transport
� Capability management
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� Abort and reset handling
� Dynamic reconfiguration

Table 15–3 lists the SCSA HBA entry points arranged by function groups.

TABLE 15–3 SCSA Entry Points

Function Groups Entry Points Within Group Description

Target Driver Instance
Initialization

tran_tgt_init(9E) Performs per-target initialization
(optional)

tran_tgt_probe(9E) Probes SCSI bus for existence of a
target (optional)

tran_tgt_free(9E) Performs per-target deallocation
(optional)

Resource Allocation tran_init_pkt(9E) Allocates SCSI packet and DMA
resources

tran_destroy_pkt(9E) Frees SCSI packet and DMA
resources

tran_sync_pkt(9E) Synchronizes memory before and
after DMA

tran_dmafree(9E) Frees DMA resources

Command Transport tran_start(9E) Transports a SCSI command

Capability Management tran_getcap(9E) Inquires about a capability’s value

tran_setcap(9E) Sets a capability’s value

Abort and Reset tran_abort(9E) Aborts one or all outstanding SCSI
commands

tran_reset(9E) Resets a target device or the SCSI
bus

tran_bus_reset(9E) Resets the SCSI bus

tran_reset_notify(9E) Request to notify target of bus reset
(optional)

Dynamic Reconfiguration tran_quiesce(9E) Stops activity on the bus

tran_unquiesce(9E) Resume activity on the bus

Target Driver Instance Initialization
The following sections explain target entry points.
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tran_tgt_init(9E)
The tran_tgt_init(9E) entry point enables the HBA to allocate and/or initialize
any per-target resources. It also enables the HBA to qualify the device’s address as
valid and supportable for that particular HBA. By returning DDI_FAILURE, the
instance of the target driver for that device will not be probed or attached.

This entry point is not required, and if none is supplied, the framework will attempt to
probe and attach all possible instances of the appropriate target drivers.

static int
isp_tran_tgt_init(

dev_info_t *hba_dip,
dev_info_t *tgt_dip,
scsi_hba_tran_t *tran,
struct scsi_device *sd)

{
return ((sd->sd_address.a_target < N_ISP_TARGETS_WIDE &&

sd->sd_address.a_lun < 8) ? DDI_SUCCESS : DDI_FAILURE);

}

tran_tgt_probe(9E)
The tran_tgt_probe(9E) entry point enables the HBA to customize the operation of
scsi_probe(9F), if necessary. This entry point is called only when the target driver
calls scsi_probe(9F).

The HBA driver can retain the normal operation of scsi_probe(9F) by calling
scsi_hba_probe(9F) and returning its return value.

This entry point is not required, and if not needed, the HBA driver should set the
tran_tgt_probe vector in the scsi_hba_tran(9S) structure to point to
scsi_hba_probe(9F).

scsi_probe(9F) allocates a scsi_inquiry(9S) structure and sets the sd_inq field
of the scsi_device(9S) structure to point to the data in scsi_inquiry(9S).
scsi_hba_probe(9F) handles this automatically. scsi_unprobe(9F) then frees the
scsi_inquiry(9S) data.

Other than during the allocation of scsi_inquiry(9S) data, normally handled by
scsi_hba_probe(9F), tran_tgt_probe(9E) must be stateless, as the same SCSI
device might call it multiple times.
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Note – The allocation of the scsi_inquiry(9S) structure is handled automatically by
scsi_hba_probe(9F). This is only of concern if you want custom scsi_probe(9F)
handling.

static int
isp_tran_tgt_probe(

struct scsi_device *sd,
int (*callback)())

{
Perform any special probe customization needed. /*

* Normal probe handling
*/
return (scsi_hba_probe(sd, callback));

}

tran_tgt_free(9E)
The tran_tgt_free(9E) entry point enables the HBA to perform any deallocation or
clean-up procedures for an instance of a target. This entry point is optional.

static void
isp_tran_tgt_free(

dev_info_t *hba_dip,
dev_info_t *tgt_dip,
scsi_hba_tran_t *hba_tran,
struct scsi_device *sd)

{
Undo any special per-target initialization done
earlier in tran_tgt_init(9F) and tran_tgt_probe(9F)

}

Resource Allocation
The following sections discuss resource allocation.

tran_init_pkt(9E)
The tran_init_pkt(9E) entry point is the HBA driver function that allocates and
initializes, on behalf of the target driver, a scsi_pkt(9S) structure and DMA
resources for a target driver request.

The tran_init_pkt(9E) entry point is called when the target driver calls the SCSA
function scsi_init_pkt(9F).
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Each call of the tran_init_pkt(9E) entry point is a request to perform one or more
of three possible services:

� Allocation and initialization of a scsi_pkt(9S) structure

� Allocation of DMA resources for data transfer

� Reallocation of DMA resources for the next portion of the data transfer

Allocation and Initialization of a scsi_pkt(9S) Structure
The tran_init_pkt(9E) entry point must allocate a scsi_pkt(9S) structure if pkt
is NULL through scsi_hba_pkt_alloc(9F).

scsi_hba_pkt_alloc(9F) allocates the following:

� scsi_pkt(9S)
� SCSI CDB of length cmdlen
� SCSI status completion area of length statuslen
� Per-packet target driver private data area of length tgtlen
� Per-packet HBA driver private data area of length hbalen

The scsi_pkt(9S) structure members, as well as pkt itself, must be initialized to zero
except for the following members: pkt_scbp (status completion), pkt_cdbp (CDB),
pkt_ha_private (HBA driver private data), pkt_private (target driver private
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data). These members are pointers to memory space where the values of the fields are
stored, as illustrated in Figure 15–5. For more information, refer to “scsi_pkt
Structure” on page 261.

CDB

pkt_private

scsi_address

Status

TGT driver

scsi_pkt structure

pkt_ha_private

pkt_scbp

pkt_cdbp

per pkt data

HBA driver
per pkt data

FIGURE 15–5 scsi_pkt(9S) Structure Pointers

Example 15–3 provides an example of allocation and initialization of a scsi_pkt(9S)
structure.

EXAMPLE 15–3 HBA Driver Initialization of a SCSI Packet Structure

static struct scsi_pkt *
isp_scsi_init_pkt(

struct scsi_address *ap,
struct scsi_pkt *pkt,
struct buf *bp,
int cmdlen,
int statuslen,
int tgtlen,
int flags,
int (*callback)(),
caddr_t arg)

{
struct isp_cmd *sp;
struct isp *isp;
struct scsi_pkt *new_pkt;

ASSERT(callback == NULL_FUNC || callback == SLEEP_FUNC);

isp = (struct isp *)ap->a_hba_tran->tran_hba_private;
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EXAMPLE 15–3 HBA Driver Initialization of a SCSI Packet Structure (Continued)

/*
* First step of isp_scsi_init_pkt: pkt allocation
*/
if (pkt == NULL) {

pkt = scsi_hba_pkt_alloc(isp->isp_dip, ap, cmdlen,
statuslen, tgtlen, sizeof (struct isp_cmd),
callback, arg);

if (pkt == NULL) {
return (NULL);

}

sp = (struct isp_cmd *)pkt->pkt_ha_private;

/*
* Initialize the new pkt
*/
sp->cmd_pkt = pkt;
sp->cmd_flags = 0;
sp->cmd_scblen = statuslen;
sp->cmd_cdblen = cmdlen;
sp->cmd_dmahandle = NULL;
sp->cmd_ncookies = 0;
sp->cmd_cookie = 0;
sp->cmd_cookiecnt = 0;
sp->cmd_nwin = 0;
pkt->pkt_address = *ap;
pkt->pkt_comp = (void (*)())NULL;
pkt->pkt_flags = 0;
pkt->pkt_time = 0;
pkt->pkt_resid = 0;
pkt->pkt_statistics = 0;
pkt->pkt_reason = 0;

new_pkt = pkt;
} else {

sp = (struct isp_cmd *)pkt->pkt_ha_private;
new_pkt = NULL;

}

/*
* Second step of isp_scsi_init_pkt: dma allocation/move
*/
if (bp && bp->b_bcount != 0) {

if (sp->cmd_dmahandle == NULL) {
if (isp_i_dma_alloc(isp, pkt, bp,

flags, callback) == 0) {
if (new_pkt) {

scsi_hba_pkt_free(ap, new_pkt);
}
return ((struct scsi_pkt *)NULL);

}
} else {
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EXAMPLE 15–3 HBA Driver Initialization of a SCSI Packet Structure (Continued)

ASSERT(new_pkt == NULL);
if (isp_i_dma_move(isp, pkt, bp) == 0) {

return ((struct scsi_pkt *)NULL);
}

}
}

return (pkt);

}

Allocation of DMA Resources
If bp is not NULL and bp->b_bcount is not zero and DMA resources have not yet
been allocated for this scsi_pkt(9S), the tran_init_pkt(9E) entry point must
allocate DMA resources for a data transfer. The HBA driver needs to keep track of
whether DMA resources have been allocated for a particular command with a flag bit
or a DMA handle in the per-packet HBA driver private data.

By setting the PKT_DMA_PARTIAL flag in the pkt, the target driver indicates it can
accept breaking up the data transfer into multiple SCSI commands to accommodate
the complete request. This might be necessary if the HBA hardware scatter-gather
capabilities or system DMA resources are insufficient to accommodate the complete
request in a single SCSI command.

If the PKT_DMA_PARTIAL flag is set, the HBA driver can set the DDI_DMA_PARTIAL
flag when allocating DMA resources (using, for example,
ddi_dma_buf_bind_handle(9F)) for this SCSI command. The DMA attributes used
when allocating the DMA resources should accurately describe any constraints placed
on the ability of the HBA hardware to perform DMA. If the system can only allocate
DMA resources for part of the request, ddi_dma_buf_bind_handle(9F) will return
DDI_DMA_PARTIAL_MAP.

The tran_init_pkt(9E) entry point must return the amount of DMA resources not
allocated for this transfer in the field pkt_resid.

A target driver can make one request to tran_init_pkt(9E) to simultaneously
allocate both a scsi_pkt(9S) structure and DMA resources for that pkt. In this case,
if the HBA driver is unable to allocate DMA resources, it must free the allocated
scsi_pkt(9S) before returning. The scsi_pkt(9S) must be freed by calling
scsi_hba_pkt_free(9F).

The target driver might first allocate the scsi_pkt(9S) and allocate DMA resources
for this pkt at a later time. In this case, if the HBA driver is unable to allocate DMA
resources, it must not free pkt. The target driver in this case is responsible for freeing
the pkt.
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EXAMPLE 15–4 HBA Driver Allocation of DMA Resources

static int
isp_i_dma_alloc(

struct isp *isp,
struct scsi_pkt *pkt,
struct buf *bp,
int flags,
int (*callback)())

{
struct isp_cmd *sp = (struct isp_cmd *)pkt->pkt_ha_private;
int dma_flags;
ddi_dma_attr_t tmp_dma_attr;
int (*cb)(caddr_t);
int i;

ASSERT(callback == NULL_FUNC || callback == SLEEP_FUNC);

if (bp->b_flags & B_READ) {
sp->cmd_flags &= ~CFLAG_DMASEND;
dma_flags = DDI_DMA_READ;

} else {
sp->cmd_flags |= CFLAG_DMASEND;
dma_flags = DDI_DMA_WRITE;

}
if (flags & PKT_CONSISTENT) {

sp->cmd_flags |= CFLAG_CMDIOPB;
dma_flags |= DDI_DMA_CONSISTENT;

}
if (flags & PKT_DMA_PARTIAL) {

dma_flags |= DDI_DMA_PARTIAL;
}

tmp_dma_attr = isp_dma_attr;
tmp_dma_attr.dma_attr_burstsizes = isp->isp_burst_size;

cb = (callback == NULL_FUNC) ? DDI_DMA_DONTWAIT :
DDI_DMA_SLEEP;

if ((i = ddi_dma_alloc_handle(isp->isp_dip, &tmp_dma_attr,
cb, 0, &sp->cmd_dmahandle)) != DDI_SUCCESS) {

switch (i) {
case DDI_DMA_BADATTR:

bioerror(bp, EFAULT);
return (0);

case DDI_DMA_NORESOURCES:
bioerror(bp, 0);
return (0);

}
}

i = ddi_dma_buf_bind_handle(sp->cmd_dmahandle, bp, dma_flags,
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EXAMPLE 15–4 HBA Driver Allocation of DMA Resources (Continued)

cb, 0, &sp->cmd_dmacookies[0], &sp->cmd_ncookies);

switch (i) {
case DDI_DMA_PARTIAL_MAP:

if (ddi_dma_numwin(sp->cmd_dmahandle, &sp->cmd_nwin) ==
DDI_FAILURE) {

cmn_err(CE_PANIC, "ddi_dma_numwin() failed\n");
}

if (ddi_dma_getwin(sp->cmd_dmahandle, sp->cmd_curwin,
&sp->cmd_dma_offset, &sp->cmd_dma_len,
&sp->cmd_dmacookies[0], &sp->cmd_ncookies) ==

DDI_FAILURE) {
cmn_err(CE_PANIC, "ddi_dma_getwin() failed\n");

}
goto get_dma_cookies;

case DDI_DMA_MAPPED:
sp->cmd_nwin = 1;
sp->cmd_dma_len = 0;
sp->cmd_dma_offset = 0;

get_dma_cookies:
i = 0;
sp->cmd_dmacount = 0;
for (;;) {

sp->cmd_dmacount += sp->cmd_dmacookies[i++].dmac_size;

if (i == ISP_NDATASEGS || i == sp->cmd_ncookies)
break;

ddi_dma_nextcookie(sp->cmd_dmahandle,
&sp->cmd_dmacookies[i]);

}
sp->cmd_cookie = i;
sp->cmd_cookiecnt = i;

sp->cmd_flags |= CFLAG_DMAVALID;
pkt->pkt_resid = bp->b_bcount - sp->cmd_dmacount;
return (1);

case DDI_DMA_NORESOURCES:
bioerror(bp, 0);
break;

case DDI_DMA_NOMAPPING:
bioerror(bp, EFAULT);
break;

case DDI_DMA_TOOBIG:
bioerror(bp, EINVAL);
break;
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EXAMPLE 15–4 HBA Driver Allocation of DMA Resources (Continued)

case DDI_DMA_INUSE:
cmn_err(CE_PANIC, "ddi_dma_buf_bind_handle:"

" DDI_DMA_INUSE impossible\n");

default:
cmn_err(CE_PANIC, "ddi_dma_buf_bind_handle:"

" 0x%x impossible\n", i);
}

ddi_dma_free_handle(&sp->cmd_dmahandle);
sp->cmd_dmahandle = NULL;
sp->cmd_flags &= ~CFLAG_DMAVALID;
return (0);

}

Reallocation of DMA Resources for Data Transfer
For a previously allocated packet with data remaining to be transferred, the
tran_init_pkt(9E) entry point must reallocate DMA resources when the following
conditions apply:

� Partial DMA resources have already been allocated.

� A non-zero pkt_resid was returned in the previous call to tran_init_pkt(9E).

� bp is not NULL.

� bp->b_bcount is not zero.

When reallocating DMA resources to the next portion of the transfer,
tran_init_pkt(9E) must return the amount of DMA resources not allocated for this
transfer in the field pkt_resid.

If an error occurs while attempting to move DMA resources, tran_init_pkt(9E)
must not free the scsi_pkt(9S). The target driver in this case is responsible for
freeing the pkt.

If the callback parameter is NULL_FUNC, the tran_init_pkt(9E) entry point must
not sleep or call any function that might sleep. If the callback parameter is
SLEEP_FUNC and resources are not immediately available, the tran_init_pkt(9E)
entry point should sleep until resources are available, unless the request is impossible
to satisfy.

EXAMPLE 15–5 HBA Driver DMA Resource Reallocation

static int
isp_i_dma_move(

struct isp *isp,
struct scsi_pkt *pkt,
struct buf *bp)
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EXAMPLE 15–5 HBA Driver DMA Resource Reallocation (Continued)

{
struct isp_cmd *sp = (struct isp_cmd *)pkt->pkt_ha_private;
int i;

ASSERT(sp->cmd_flags & CFLAG_COMPLETED);
sp->cmd_flags &= ~CFLAG_COMPLETED;

/*
* If there are no more cookies remaining in this window,
* must move to the next window first.
*/
if (sp->cmd_cookie == sp->cmd_ncookies) {

/*
* For small pkts, leave things where they are
*/
if (sp->cmd_curwin == sp->cmd_nwin && sp->cmd_nwin == 1)

return (1);

/*
* At last window, cannot move
*/
if (++sp->cmd_curwin >= sp->cmd_nwin)

return (0);

if (ddi_dma_getwin(sp->cmd_dmahandle, sp->cmd_curwin,
&sp->cmd_dma_offset, &sp->cmd_dma_len,
&sp->cmd_dmacookies[0], &sp->cmd_ncookies) ==

DDI_FAILURE)
return (0);

sp->cmd_cookie = 0;
} else {

/*
* Still more cookies in this window - get the next one
*/
ddi_dma_nextcookie(sp->cmd_dmahandle,

&sp->cmd_dmacookies[0]);
}

/*
* Get remaining cookies in this window, up to our maximum
*/
i = 0;
for (;;) {

sp->cmd_dmacount += sp->cmd_dmacookies[i++].dmac_size;
sp->cmd_cookie++;
if (i == ISP_NDATASEGS ||

sp->cmd_cookie == sp->cmd_ncookies)
break;

ddi_dma_nextcookie(sp->cmd_dmahandle,
&sp->cmd_dmacookies[i]);

}
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EXAMPLE 15–5 HBA Driver DMA Resource Reallocation (Continued)

sp->cmd_cookiecnt = i;

pkt->pkt_resid = bp->b_bcount - sp->cmd_dmacount;
return (1);

}

tran_destroy_pkt(9E)
The tran_destroy_pkt(9E) entry point is the HBA driver function that deallocates
scsi_pkt(9S) structures. The tran_destroy_pkt(9E) entry point is called when the
target driver calls scsi_destroy_pkt(9F).

The tran_destroy_pkt(9E) entry point must free any DMA resources allocated for
the packet. Freeing the DMA resources causes an implicit DMA synchronization if any
cached data remained after the completion of the transfer. The
tran_destroy_pkt(9E) entry point frees the SCSI packet itself by calling
scsi_hba_pkt_free(9F).

EXAMPLE 15–6 HBA Driver tran_destroy_pkt(9E) Entry Point

static void
isp_scsi_destroy_pkt(

struct scsi_address *ap,
struct scsi_pkt *pkt)

{
struct isp_cmd *sp = (struct isp_cmd *)pkt->pkt_ha_private;

/*
* Free the DMA, if any
*/
if (sp->cmd_flags & CFLAG_DMAVALID) {

sp->cmd_flags &= ~CFLAG_DMAVALID;
(void) ddi_dma_unbind_handle(sp->cmd_dmahandle);
ddi_dma_free_handle(&sp->cmd_dmahandle);
sp->cmd_dmahandle = NULL;

}
/*
* Free the pkt
*/
scsi_hba_pkt_free(ap, pkt);

}
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tran_sync_pkt(9E)
The tran_sync_pkt(9E) entry point is the HBA driver function that synchronizes the
DMA object allocated for the scsi_pkt(9S) structure before or after a DMA transfer.
The tran_sync_pkt(9E) entry point is called when the target driver calls
scsi_sync_pkt(9F).

If the data transfer direction is a DMA read from device to memory,
tran_sync_pkt(9E) must synchronize the CPU’s view of the data. If the data
transfer direction is a DMA write from memory to device, tran_sync_pkt(9E) must
synchronize the device’s view of the data.

EXAMPLE 15–7 HBA Driver tran_sync_pkt(9E) Entry Point

static void
isp_scsi_sync_pkt(

struct scsi_address *ap,
struct scsi_pkt *pkt)

{
struct isp_cmd *sp = (struct isp_cmd *)pkt->pkt_ha_private;

if (sp->cmd_flags & CFLAG_DMAVALID) {
(void)ddi_dma_sync(sp->cmd_dmahandle, sp->cmd_dma_offset,
sp->cmd_dma_len,
(sp->cmd_flags & CFLAG_DMASEND) ?
DDI_DMA_SYNC_FORDEV : DDI_DMA_SYNC_FORCPU);

}
}

}

tran_dmafree(9E)
The tran_dmafree(9E) entry point is the HBA driver function that deallocates DMA
resources allocated for a scsi_pkt(9S) structure. The tran_dmafree(9E) entry point
is called when the target driver calls scsi_dmafree(9F).

tran_dmafree(9E) must free only DMA resources allocated for a scsi_pkt(9S)
structure, not the scsi_pkt(9S) itself. Freeing the DMA resources implicitly performs
a DMA synchronization.
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Note – The scsi_pkt(9S) will be freed in a separate request to
tran_destroy_pkt(9E). Because tran_destroy_pkt(9E) must also free DMA
resources, the HBA driver must keep accurate note of whether scsi_pkt(9S)
structures have DMA resources allocated.

EXAMPLE 15–8 HBA Driver tran_dmafree(9E) Entry Point

static void
isp_scsi_dmafree(

struct scsi_address *ap,
struct scsi_pkt *pkt)

{
struct isp_cmd *sp = (struct isp_cmd *)pkt->pkt_ha_private;

if (sp->cmd_flags & CFLAG_DMAVALID) {
sp->cmd_flags &= ~CFLAG_DMAVALID;
(void)ddi_dma_unbind_handle(sp->cmd_dmahandle);
ddi_dma_free_handle(&sp->cmd_dmahandle);
sp->cmd_dmahandle = NULL;

}

}

Command Transport
As part of command transport, the HBA driver accepts a command from the target
driver, issues the command to the device hardware, services any interrupts that occur,
and manages timeouts.

tran_start(9E)
The tran_start(9E) entry point for a SCSI HBA driver is called to transport a SCSI
command to the addressed target. The SCSI command is described entirely within the
scsi_pkt(9S) structure, which the target driver allocated through the HBA driver’s
tran_init_pkt(9E) entry point. If the command involves a data transfer, DMA
resources must also have been allocated for the scsi_pkt(9S) structure.

The tran_start(9E) entry point is called when a target driver calls
scsi_transport(9F).

tran_start(9E) should perform basic error checking along with whatever
initialization the command requires. If the flag FLAG_NOINTR is not set in the
pkt_flags field of the scsi_pkt(9S) structure, tran_start(9E) must queue the
command for execution on the hardware and return immediately. Upon completion of
the command, the HBA driver should call the pkt() completion routine.
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For commands with the FLAG_NOINTR bit set in the pkt_flags field of the
scsi_pkt(9S) structure, tran_start(9E) should not return until the command has
been completed, and the HBA driver should not call the pkt() completion routine.

Example 15–9 demonstrates how to handle the tran_start(9E) entry point. The ISP
hardware provides a queue per-target device. For devices that can manage only one
active outstanding command, the driver itself is typically required to manage a
per-target queue and starts up a new command upon completion of the current
command in a round-robin fashion.

EXAMPLE 15–9 HBA Driver tran_start(9E) Entry Point

static int
isp_scsi_start(

struct scsi_address *ap,
struct scsi_pkt *pkt)

{
struct isp_cmd *sp;
struct isp *isp;
struct isp_request *req;
u_long cur_lbolt;
int xfercount;
int rval = TRAN_ACCEPT;
int i;

sp = (struct isp_cmd *)pkt->pkt_ha_private;
isp = (struct isp *)ap->a_hba_tran->tran_hba_private;

sp->cmd_flags = (sp->cmd_flags & ~CFLAG_TRANFLAG) |
CFLAG_IN_TRANSPORT;

pkt->pkt_reason = CMD_CMPLT;

/*
* set up request in cmd_isp_request area so it is ready to
* go once we have the request mutex
*/
req = &sp->cmd_isp_request;

req->req_header.cq_entry_type = CQ_TYPE_REQUEST;
req->req_header.cq_entry_count = 1;
req->req_header.cq_flags = 0;
req->req_header.cq_seqno = 0;
req->req_reserved = 0;
req->req_token = (opaque_t)sp;
req->req_target = TGT(sp);
req->req_lun_trn = LUN(sp);
req->req_time = pkt->pkt_time;
ISP_SET_PKT_FLAGS(pkt->pkt_flags, req->req_flags);

/*
* Set up dma transfers data segments.
*/
if (sp->cmd_flags & CFLAG_DMAVALID) {
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EXAMPLE 15–9 HBA Driver tran_start(9E) Entry Point (Continued)

if (sp->cmd_flags & CFLAG_CMDIOPB) {
(void) ddi_dma_sync(sp->cmd_dmahandle,

sp->cmd_dma_offset, sp->cmd_dma_len,
DDI_DMA_SYNC_FORDEV);

}

ASSERT(sp->cmd_cookiecnt > 0 &&
sp->cmd_cookiecnt <= ISP_NDATASEGS);

xfercount = 0;
req->req_seg_count = sp->cmd_cookiecnt;
for (i = 0; i < sp->cmd_cookiecnt; i++) {

req->req_dataseg[i].d_count =
sp->cmd_dmacookies[i].dmac_size;

req->req_dataseg[i].d_base =
sp->cmd_dmacookies[i].dmac_address;

xfercount +=
sp->cmd_dmacookies[i].dmac_size;

}

for (; i < ISP_NDATASEGS; i++) {
req->req_dataseg[i].d_count = 0;
req->req_dataseg[i].d_base = 0;

}

pkt->pkt_resid = xfercount;

if (sp->cmd_flags & CFLAG_DMASEND) {
req->req_flags |= ISP_REQ_FLAG_DATA_WRITE;

} else {
req->req_flags |= ISP_REQ_FLAG_DATA_READ;

}
} else {

req->req_seg_count = 0;
req->req_dataseg[0].d_count = 0;

}

/*
* Set up cdb in the request
*/
req->req_cdblen = sp->cmd_cdblen;
bcopy((caddr_t)pkt->pkt_cdbp, (caddr_t)req->req_cdb,

sp->cmd_cdblen);

/*
* Start the cmd. If NO_INTR, must poll for cmd completion.
*/
if ((pkt->pkt_flags & FLAG_NOINTR) == 0) {

mutex_enter(ISP_REQ_MUTEX(isp));
rval = isp_i_start_cmd(isp, sp);

SCSI Host Bus Adapter Drivers 289



EXAMPLE 15–9 HBA Driver tran_start(9E) Entry Point (Continued)

mutex_exit(ISP_REQ_MUTEX(isp));
} else {

rval = isp_i_polled_cmd_start(isp, sp);
}

return (rval);

}

Interrupt Handler and Command Completion
The interrupt handler must check the status of the device to be sure the device is
generating the interrupt in question. It must also check for any errors that have
occurred and service any interrupts generated by the device.

If data was transferred, the hardware should be checked to determine how much data
was actually transferred, and the pkt_resid field in the scsi_pkt(9S) structure
should be set to the residual of the transfer.

For commands marked with the PKT_CONSISTENT flag when DMA resources were
allocated through tran_init_pkt(9E), the HBA driver must ensure that the data
transfer for the command is correctly synchronized before the target driver’s
command completion callback is performed.

Once a command has completed, there are two requirements:

� Start a new command (if one is queued up) on the hardware as quickly as possible.

� Call the command completion callback as set up in the scsi_pkt(9S) structure by
the target driver to notify the target driver that the command is now complete.

Start a new command on the hardware, if possible, before calling the PKT_COMP
command completion callback. The command completion handling can take
considerable time, as the target driver will typically call functions such as
biodone(9F) and possibly scsi_transport(9F) to begin a new command.

The interrupt handler must return DDI_INTR_CLAIMED if this interrupt is claimed by
this driver; otherwise, the handler returns DDI_INTR_UNCLAIMED.

Example 15–10 shows an interrupt handler for the SCSI HBA isp driver. The
caddr_t argument is the parameter set up when the interrupt handler was added in
attach(9E) and is typically a pointer to the state structure allocated per instance.

EXAMPLE 15–10 HBA Driver Interrupt Handler

static u_int
isp_intr(caddr_t arg)
{

struct isp_cmd *sp;
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EXAMPLE 15–10 HBA Driver Interrupt Handler (Continued)

struct isp_cmd *head, *tail;
u_short response_in;
struct isp_response *resp;
struct isp *isp = (struct isp *)arg;
struct isp_slot *isp_slot;
int n;

if (ISP_INT_PENDING(isp) == 0) {
return (DDI_INTR_UNCLAIMED);

}

do {
again:

/*
* head list collects completed packets for callback later
*/
head = tail = NULL;

/*
* Assume no mailbox events (e.g. mailbox cmds, asynch
* events, and isp dma errors) as common case.
*/
if (ISP_CHECK_SEMAPHORE_LOCK(isp) == 0) {

mutex_enter(ISP_RESP_MUTEX(isp));

/*
* Loop through completion response queue and post
* completed pkts. Check response queue again
* afterwards in case there are more
*/
isp->isp_response_in =

response_in = ISP_GET_RESPONSE_IN(isp);

/*
* Calculate the number of requests in the queue
*/
n = response_in - isp->isp_response_out;
if (n < 0) {

n = ISP_MAX_REQUESTS -
isp->isp_response_out + response_in;

}

while (n-- > 0) {
ISP_GET_NEXT_RESPONSE_OUT(isp, resp);
sp = (struct isp_cmd *)resp->resp_token;

/*
* copy over response packet in sp
*/
isp_i_get_response(isp, resp, sp);
}
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EXAMPLE 15–10 HBA Driver Interrupt Handler (Continued)

if (head) {
tail->cmd_forw = sp;
tail = sp;
tail->cmd_forw = NULL;

} else {
tail = head = sp;
sp->cmd_forw = NULL;

}
}

ISP_SET_RESPONSE_OUT(isp);
ISP_CLEAR_RISC_INT(isp);
mutex_exit(ISP_RESP_MUTEX(isp));

if (head) {
isp_i_call_pkt_comp(isp, head);

}
} else {

if (isp_i_handle_mbox_cmd(isp) != ISP_AEN_SUCCESS) {
return (DDI_INTR_CLAIMED);

}
/*
* if there was a reset then check the response
* queue again
*/
goto again;

}

} while (ISP_INT_PENDING(isp));

return (DDI_INTR_CLAIMED);
}

static void
isp_i_call_pkt_comp(

struct isp *isp,
struct isp_cmd *head)

{
struct isp *isp;
struct isp_cmd *sp;
struct scsi_pkt *pkt;
struct isp_response *resp;
u_char status;

while (head) {
sp = head;
pkt = sp->cmd_pkt;
head = sp->cmd_forw;

ASSERT(sp->cmd_flags & CFLAG_FINISHED);

resp = &sp->cmd_isp_response;
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EXAMPLE 15–10 HBA Driver Interrupt Handler (Continued)

pkt->pkt_scbp[0] = (u_char)resp->resp_scb;
pkt->pkt_state = ISP_GET_PKT_STATE(resp->resp_state);
pkt->pkt_statistics = (u_long)

ISP_GET_PKT_STATS(resp->resp_status_flags);
pkt->pkt_resid = (long)resp->resp_resid;

/*
* if data was xferred and this is a consistent pkt,
* we need to do a dma sync
*/
if ((sp->cmd_flags & CFLAG_CMDIOPB) &&

(pkt->pkt_state & STATE_XFERRED_DATA)) {

(void) ddi_dma_sync(sp->cmd_dmahandle,
sp->cmd_dma_offset, sp->cmd_dma_len,
DDI_DMA_SYNC_FORCPU);

}

sp->cmd_flags = (sp->cmd_flags & ~CFLAG_IN_TRANSPORT) |
CFLAG_COMPLETED;

/*
* Call packet completion routine if FLAG_NOINTR is not set.
*/
if (((pkt->pkt_flags & FLAG_NOINTR) == 0) &&

pkt->pkt_comp) {
(*pkt->pkt_comp)(pkt);

}
}

}

Timeout Handler
The HBA driver should be prepared to time out the command if it is not complete
within a specified time unless a zero timeout was specified in the scsi_pkt(9S)
structure.

When a command times out, the HBA driver should mark the scsi_pkt(9S) with
pkt_reason set to CMD_TIMEOUT and pkt_statistics OR’d with
STAT_TIMEOUT. The HBA driver should also attempt to recover the target and/or bus
and, if this recovery can be performed successfully, mark the scsi_pkt(9S) with
pkt_statistics OR’d with either STAT_BUS_RESET or STAT_DEV_RESET.

Once the command has timed out and the target and bus recovery attempt has
completed, the HBA driver should call the command completion callback.
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Note – If recovery was unsuccessful or not attempted, the target driver might attempt
to recover from the timeout by calling scsi_reset(9F).

The ISP hardware manages command timeout directly and returns timed-out
commands with the necessary status, so the isp sample driver timeout handler checks
active commands for timeout state only once every 60 seconds.

The isp sample driver uses the timeout(9F) facility to arrange for the kernel to call
the timeout handler every 60 seconds. The caddr_t argument is the parameter set up
when the timeout is initialized at attach(9E) time. In this case, the caddr_t
argument is a pointer to the state structure allocated per driver instance.

If the driver discovers timed-out commands that have not been returned as timed-out
by the ISP hardware, the hardware is not functioning correctly and needs to be reset.

Capability Management
The following sections discuss capability management.

tran_getcap(9E)
The tran_getcap(9E) entry point for a SCSI HBA driver is called when a target
driver calls scsi_ifgetcap(9F) to determine the current value of one of a set of
SCSA-defined capabilities.

The target driver can request the current setting of the capability for a particular target
by setting the whom parameter to nonzero. A whom value of 0 means the request is for
the current setting of the capability for the SCSI bus or for adapter hardware in
general.

tran_getcap(9E) should return -1 for undefined capabilities or the current value of
the requested capability.

The HBA driver can use the function scsi_hba_lookup_capstr(9F) to compare the
capability string against the canonical set of defined capabilities.

EXAMPLE 15–11 HBA Driver tran_getcap(9E) Entry Point

static int
isp_scsi_getcap(

struct scsi_address *ap,
char *cap,
int whom)

{
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EXAMPLE 15–11 HBA Driver tran_getcap(9E) Entry Point (Continued)

struct isp *isp;
int rval = 0;
u_char tgt = ap->a_target;

/*
* We don’t allow getting capabilities for other targets
*/
if (cap == NULL || whom == 0) {

return (-1);
}

isp = (struct isp *)ap->a_hba_tran->tran_hba_private;

ISP_MUTEX_ENTER(isp);

switch (scsi_hba_lookup_capstr(cap)) {

case SCSI_CAP_DMA_MAX:
rval = 1 << 24; /* Limit to 16MB max transfer */
break;

case SCSI_CAP_MSG_OUT:
rval = 1;
break;

case SCSI_CAP_DISCONNECT:
if ((isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_DR) == 0) {
break;

} else if (
(isp->isp_cap[tgt] & ISP_CAP_DISCONNECT) == 0) {
break;

}
rval = 1;
break;

case SCSI_CAP_SYNCHRONOUS:
if ((isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_SYNC) == 0) {
break;

} else if (
(isp->isp_cap[tgt] & ISP_CAP_SYNC) == 0) {
break;

}
rval = 1;
break;

case SCSI_CAP_WIDE_XFER:
if ((isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_WIDE) == 0) {
break;

} else if (
(isp->isp_cap[tgt] & ISP_CAP_WIDE) == 0) {
break;

}
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EXAMPLE 15–11 HBA Driver tran_getcap(9E) Entry Point (Continued)

rval = 1;
break;

case SCSI_CAP_TAGGED_QING:
if ((isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_DR) == 0 ||
(isp->isp_target_scsi_options[tgt] &
SCSI_OPTIONS_TAG) == 0) {
break;

} else if (
(isp->isp_cap[tgt] & ISP_CAP_TAG) == 0) {
break;

}
rval = 1;
break;

case SCSI_CAP_UNTAGGED_QING:
rval = 1;
break;

case SCSI_CAP_PARITY:
if (isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_PARITY) {
rval = 1;

}
break;

case SCSI_CAP_INITIATOR_ID:
rval = isp->isp_initiator_id;
break;

case SCSI_CAP_ARQ:
if (isp->isp_cap[tgt] & ISP_CAP_AUTOSENSE) {

rval = 1;
}
break;

case SCSI_CAP_LINKED_CMDS:
break;

case SCSI_CAP_RESET_NOTIFICATION:
rval = 1;
break;

case SCSI_CAP_GEOMETRY:
rval = (64 << 16) | 32;
break;

default:
rval = -1;
break;

}

ISP_MUTEX_EXIT(isp);

return (rval);

}
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tran_setcap(9E)
The tran_setcap(9E) entry point for a SCSI HBA driver is called when a target
driver calls scsi_ifsetcap(9F) to change the current one of a set of SCSA-defined
capabilities.

The target driver might request that the new value be set for a particular target by
setting the whom parameter to nonzero. A whom value of 0 means the request is to set
the new value for the SCSI bus or for adapter hardware in general.

tran_setcap(9E) should return -1 for undefined capabilities, 0 if the HBA driver
cannot set the capability to the requested value, or 1 if the HBA driver is able to set the
capability to the requested value.

The HBA driver can use the function scsi_hba_lookup_capstr(9F) to compare the
capability string against the canonical set of defined capabilities.

EXAMPLE 15–12 HBA Driver tran_setcap(9E) Entry Point

static int
isp_scsi_setcap(

struct scsi_address *ap,
char *cap,
int value,
int whom)

{
struct isp *isp;
int rval = 0;
u_char tgt = ap->a_target;
int update_isp = 0;

/*
* We don’t allow setting capabilities for other targets
*/
if (cap == NULL || whom == 0) {

return (-1);
}

isp = (struct isp *)ap->a_hba_tran->tran_hba_private;

ISP_MUTEX_ENTER(isp);

switch (scsi_hba_lookup_capstr(cap)) {

case SCSI_CAP_DMA_MAX:
case SCSI_CAP_MSG_OUT:
case SCSI_CAP_PARITY:
case SCSI_CAP_UNTAGGED_QING:
case SCSI_CAP_LINKED_CMDS:
case SCSI_CAP_RESET_NOTIFICATION:

/*
* None of these are settable via
* the capability interface.
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EXAMPLE 15–12 HBA Driver tran_setcap(9E) Entry Point (Continued)

*/
break;

case SCSI_CAP_DISCONNECT:
if ((isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_DR) == 0) {
break;

} else {
if (value) {

isp->isp_cap[tgt] |= ISP_CAP_DISCONNECT;
} else {

isp->isp_cap[tgt] &= ~ISP_CAP_DISCONNECT;
}

}
rval = 1;
break;

case SCSI_CAP_SYNCHRONOUS:
if ((isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_SYNC) == 0) {
break;

} else {
if (value) {

isp->isp_cap[tgt] |= ISP_CAP_SYNC;
} else {

isp->isp_cap[tgt] &= ~ISP_CAP_SYNC;
}

}
rval = 1;
break;

case SCSI_CAP_TAGGED_QING:
if ((isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_DR) == 0 ||
(isp->isp_target_scsi_options[tgt] &
SCSI_OPTIONS_TAG) == 0) {
break;

} else {
if (value) {

isp->isp_cap[tgt] |= ISP_CAP_TAG;
} else {

isp->isp_cap[tgt] &= ~ISP_CAP_TAG;
}

}
rval = 1;
break;

case SCSI_CAP_WIDE_XFER:
if ((isp->isp_target_scsi_options[tgt] &

SCSI_OPTIONS_WIDE) == 0) {
break;

} else {
if (value) {

isp->isp_cap[tgt] |= ISP_CAP_WIDE;
} else {
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EXAMPLE 15–12 HBA Driver tran_setcap(9E) Entry Point (Continued)

isp->isp_cap[tgt] &= ~ISP_CAP_WIDE;
}

}
rval = 1;
break;

case SCSI_CAP_INITIATOR_ID:
if (value < N_ISP_TARGETS_WIDE) {

struct isp_mbox_cmd mbox_cmd;

isp->isp_initiator_id = (u_short) value;

/*
* set Initiator SCSI ID
*/
isp_i_mbox_cmd_init(isp, &mbox_cmd, 2, 2,

ISP_MBOX_CMD_SET_SCSI_ID,
isp->isp_initiator_id,
0, 0, 0, 0);

if (isp_i_mbox_cmd_start(isp, &mbox_cmd) == 0) {
rval = 1;

}
}
break;

case SCSI_CAP_ARQ:
if (value) {

isp->isp_cap[tgt] |= ISP_CAP_AUTOSENSE;
} else {

isp->isp_cap[tgt] &= ~ISP_CAP_AUTOSENSE;
}
rval = 1;
break;

default:
rval = -1;
break;

}
ISP_MUTEX_EXIT(isp);

return (rval);

}

Abort and Reset Management
The following sections discuss the abort and reset entry points for SCSI HBA.

SCSI Host Bus Adapter Drivers 299



tran_abort(9E)
The tran_abort(9E) entry point for a SCSI HBA driver is called to abort one or all
the commands currently in transport for a particular target. This entry point is called
when a target driver calls scsi_abort(9F).

The tran_abort(9E) entry point should attempt to abort the command denoted by
the pkt parameter. If the pkt parameter is NULL, tran_abort(9E) should attempt to
abort all outstanding commands in the transport layer for the particular target or
logical unit.

Each command successfully aborted must be marked with pkt_reason
CMD_ABORTED and pkt_statistics OR’d with STAT_ABORTED.

tran_reset(9E)
The tran_reset(9E) entry point for a SCSI HBA driver is called to reset either the
SCSI bus or a particular SCSI target device. This entry point is called when a target
driver calls scsi_reset(9F).

The tran_reset(9E) entry point must reset the SCSI bus if level is RESET_ALL. If
level is RESET_TARGET, just the particular target or logical unit must be reset.

Active commands affected by the reset must be marked with pkt_reason
CMD_RESET, and with pkt_statistics OR’d with either STAT_BUS_RESET or
STAT_DEV_RESET, depending on the type of reset.

Commands in the transport layer, but not yet active on the target, must be marked
with pkt_reason CMD_RESET, and pkt_statistics OR’d with STAT_ABORTED.

tran_bus_reset(9E)
tran_bus_reset(9E) must reset the SCSI bus without resetting targets.

#include <sys/scsi/scsi.h>

int tran_bus_reset(dev_info_t *hba_dip, int level);

Where level must be the following:

RESET_BUS Reset the SCSI bus only, not the targets

The tran_bus_reset() vector in the scsi_hba_tran(9S) structure should be
initialized during the HBA driver’s attach(9E) to point to an HBA entry point to be
called when a user initiates a bus reset.
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Implementation is hardware specific. If it cannot reset the SCSI bus without affecting
the targets, the HBA driver should fail RESET_BUS or not initialize this vector.

tran_reset_notify(9E)
The tran_reset_notify(9E) entry point for a SCSI HBA driver is called to request
that the HBA driver notify the target driver by callback when a SCSI bus reset occurs.

EXAMPLE 15–13 HBA Driver tran_reset_notify(9E) Entry Point

isp_scsi_reset_notify(
struct scsi_address *ap,
int flag,
void (*callback)(caddr_t),
caddr_t arg)

{
struct isp *isp;
struct isp_reset_notify_entry *p, *beforep;
int rval = DDI_FAILURE;

isp = (struct isp *)ap->a_hba_tran->tran_hba_private;

mutex_enter(ISP_REQ_MUTEX(isp));

/*
* Try to find an existing entry for this target
*/
p = isp->isp_reset_notify_listf;
beforep = NULL;

while (p) {
if (p->ap == ap)

break;
beforep = p;
p = p->next;

}

if ((flag & SCSI_RESET_CANCEL) && (p != NULL)) {
if (beforep == NULL) {

isp->isp_reset_notify_listf = p->next;
} else {

beforep->next = p->next;
}
kmem_free((caddr_t)p, sizeof (struct

isp_reset_notify_entry));
rval = DDI_SUCCESS;

} else if ((flag & SCSI_RESET_NOTIFY) && (p == NULL)) {
p = kmem_zalloc(sizeof (struct isp_reset_notify_entry),

KM_SLEEP);
p->ap = ap;
p->callback = callback;
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EXAMPLE 15–13 HBA Driver tran_reset_notify(9E) Entry Point (Continued)

p->arg = arg;
p->next = isp->isp_reset_notify_listf;
isp->isp_reset_notify_listf = p;
rval = DDI_SUCCESS;

}

mutex_exit(ISP_REQ_MUTEX(isp));

return (rval);

}

Dynamic Reconfiguration
To support the minimal set of hot-plugging operations, drivers might need to
implement support for bus quiesce, bus unquiesce, and bus reset. The
scsi_hba_tran(9S) structure supports these operations. If quiesce/unquiesce/reset
is not required by hardware, no driver changes are needed.

The scsi_hba_tran structure includes the following fields:

int (*tran_quiesce)(dev_info_t *hba_dip);
int (*tran_unquiesce)(dev_info_t *hba_dip);
int (*tran_bus_reset)(dev_info_t *hba_dip, int level);

These interfaces quiesce and unquiesce a SCSI bus.

#include <sys/scsi/scsi.h>

int prefixtran_quiesce(dev_info_t *hba_dip);

int prefixtran_unquiesce(dev_info_t *hba_dip);

tran_quiesce(9E) and tran_unquiesce(9E) must be implemented by an HBA
driver to support dynamic reconfiguration (DR) of SCSI devices on buses that were
not designed to support hot-plugging.

The tran_quiesce(9E) and tran_unquiesce(9E) vectors in the
scsi_hba_tran(9S) structure should be initialized during the HBA driver’s
attach(9E) to point to HBA entry points so they are called when a user initiates
quiesce and unquiesce operations.

tran_quiesce(9E) is called by the SCSA framework to stop all activity on a SCSI bus
prior to and during the reconfiguration of devices attached to the SCSI bus.
tran_unquiesce(9E) is called by the SCSA framework to resume activity on the
SCSI bus after the reconfiguration operation has been completed.
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HBA drivers are required to handle tran_quiesce(9E) by waiting for all outstanding
commands to complete before returning success. After the HBA has quiesced the bus,
it must queue any new I/O requests from target drivers until the SCSA framework
calls the corresponding tran_unquiesce(9E) entrypoint.

HBA drivers handle calls to tran_unquiesce(9E) by starting any target driver I/O
requests that were queued by the HBA during the time the bus was quiesced.

SCSI HBA Driver Specific Issues
The section covers issues specific to SCSI HBA drivers.

Installing HBA Drivers
A SCSI HBA driver is installed like a leaf driver (see Chapter 17), except that the
add_drv(1M) command must specify the driver class as SCSI, such as:

# add_drv -m" * 0666 root root" -i’"pci1077,1020"’ -c scsi isp

HBA Configuration Properties
When attaching an instance of an HBA device, scsi_hba_attach_setup(9F) creates
a number of SCSI configuration parameter properties for that HBA instance. A
particular property is created only if there is no existing property of the same name
already attached to the HBA instance, permitting a default property value to be
overridden in an HBA configuration file.

An HBA driver must use ddi_prop_get_int(9F) to retrieve each property. The HBA
driver then modifies (or accepts the default value of) the properties to configure its
specific operation.

scsi-reset-delay Property
The scsi-reset-delay property is an integer specifying the SCSI bus or device
reset delay recovery time in milliseconds.
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scsi-options Property
The scsi-options property is an integer specifying a number of options through
individually defined bits. The bits in scsi_options are:

� SCSI_OPTIONS_DR (0x008) – If not set, the HBA should not grant disconnect
privileges to a target device.

� SCSI_OPTIONS_LINK (0x010) – If not set, the HBA should not enable linked
commands.

� SCSI_OPTIONS_SYNC (0x020) – If not set, the HBA should not negotiate
synchronous data transfer, and should reject any attempt to negotiate synchronous
data transfer initiated by a target.

� SCSI_OPTIONS_PARITY (0x040) – If not set, the HBA should run the SCSI bus
without parity.

� SCSI_OPTIONS_TAG (0x080) – If not set, the HBA should not operate in
Command Tagged Queuing mode.

� SCSI_OPTIONS_FAST (0x100) – If not set, the HBA should not operate the bus
in FAST SCSI mode.

� SCSI_OPTIONS_WIDE (0x200) – If not set, the HBA should not operate the bus
in WIDE SCSI mode.

Per-target scsi-options
An HBA driver might support a per-target scsi-options feature in the following
format:

target<n>-scsi-options=<hex value>

In this example, < n> is the target ID. If the per-target scsi-options property is
defined for a particular target, the HBA driver uses the value of the per-target
scsi-options property for that target rather than the per-HBA driver instance
scsi-options property. This can provide more precise control if, for example,
synchronous data transfer needs to be disabled for just one particular target device.
The per-target scsi-options property can be defined in the driver.conf(4) file.

Here is an example of a per-target scsi-options property definition to disable
synchronous data transfer for target device 3:

target3-scsi-options=0x2d8

IA Target Driver Configuration Properties
Some IA SCSI target drivers (such as the cmdk disk target driver) use the following
configuration properties:
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� disk
� queue
� flow_control

When using the cmdk sample driver to write an HBA driver for an IA platform, one or
more of these properties (as appropriate to the HBA driver and hardware) need to be
defined in the driver.conf(4) file.

Note – These property definitions should appear only in an HBA driver’s
driver.conf(4) file. The HBA driver itself should not inspect or attempt to interpret
these properties in any way. These properties are advisory only and serve as an
adjunct to the cmdk driver. They should not be relied upon in any way. The property
definitions might or might not be used in future releases.

The disk property can be used to define the type of disk supported by cmdk. For a
SCSI HBA, the only possible value for the disk property is:

� disk="scdk" – Disk type is a SCSI disk

The queue property defines how the disk driver sorts the queue of incoming requests
during strategy(9E). There are two possible values:

� queue="qsort" – One-way elevator queuing model, provided by disksort(9F)

� queue="qfifo" – FIFO (first in, first out) queuing model

The flow_control property defines how commands are transported to the HBA
driver. There are three possible values:

� flow_control="dsngl" – Single command per HBA driver

� flow_control="dmult" – Multiple commands per HBA driver—when the HBA
queue is full, the driver returns TRAN_BUSY

� flow_control="duplx" – The HBA can support separate read and write
queues, with multiple commands per queue. FIFO ordering is used for the write
queue; the queuing model used for the read queue is described by the queue
property. When an HBA queue is full, the driver returns TRAN_BUSY

Here is an example of a driver.conf(4) file for use with an IA HBA PCI device
designed for use with the cmdk sample driver:

#
# config file for ISP 1020 SCSI HBA driver
#

flow_control="dsngl" queue="qsort" disk="scdk"
scsi-initiator-id=7;
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Support for Queuing
For a definition of tagged queuing, refer to the SCSI-2 specification. To support tagged
queuing, first check the scsi_options flag SCSI_OPTIONS_TAG to see if tagged queuing
is enabled globally. Next, check to see if the target is a SCSI-2 device and whether it
has tagged queuing enabled. If this is all true, attempt to enable tagged queuing by
using scsi_ifsetcap(9F).

If tagged queuing fails, you can attempt to set untagged queuing. In this mode, you
submit as many commands as you think necessary or optimal to the host adapter
driver. Then the host adapter queues the commands to the target one at a time (as
opposed to tagged queuing, where the host adapter submits as many commands as it
can until the target indicates that the queue is full).
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CHAPTER 16

Drivers for Network Devices

The Generic LAN driver (GLD) implements much of the STREAMS and Data Link
Provider Interface (DLPI) functionality for a Solaris network driver.

The GLD module is available for Solaris SPARC Platform Edition network drivers, as
well as for Solaris Intel Platform Edition network drivers.

For more information, see the gld(7D), dlpi(7P), gld(9E), gld(9F),
gld_mac_info(9S), gld_stats(9S) man pages.

Generic LAN Driver Overview
GLD is a multi-threaded, clonable, loadable kernel module providing support for
Solaris local area network device drivers. Local area network (LAN) device drivers in
Solaris are STREAMS-based drivers that use DLPI to communicate with network
protocol stacks. These protocol stacks use the network drivers to send and receive
packets on a local area network. A network device driver must implement and
conform to the requirements imposed by the DDI/DKI specification, STREAMS
specification, DLPI specification, and programmatic interface of the device itself.

GLD implements most STREAMS and DLPI functionality required of a Solaris LAN
driver. Several Solaris network drivers are implemented using GLD.

A Solaris network driver implemented using GLD is made up of two distinct parts: a
generic component that deals with STREAMS and DLPI interfaces, and a
device-specific component that deals with the particular hardware device. The
device-specific module indicates its dependency on the GLD module (which is found
at /kernel/misc/gld) and registers itself with GLD from within the driver’s
attach(9E) function. After it is successfully loaded, the driver is DLPI-compliant. The
device-specific part of the driver calls gld(9F) functions when it receives data or needs
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some service from GLD. GLD makes calls into the gld(9E) entry points of the
device-specific driver through pointers provided to GLD by the device-specific driver
when it registered itself with GLD. The gld_mac_info(9S) structure is the main data
interface between GLD and the device-specific driver.

The GLD facility currently supports devices of type DL_ETHER, DL_TPR, and
DL_FDDI. GLD drivers are expected to process fully formed MAC-layer packets and
should not perform logical link control (LLC) handling.

In some cases, you might need or want to implement a full DLPI-compliant driver
without using the GLD facility. This is true for devices that are not ISO 8802-style
(IEEE 802) LAN devices, or where you need a device type or DLPI service not
supported by GLD.

Type DL_ETHER: Ethernet V2 and ISO 8802-3 (IEEE
802.3)
For devices designated type DL_ETHER, GLD provides support for both Ethernet V2
and ISO 8802-3 (IEEE 802.3) packet processing. Ethernet V2 enables a data link service
user to access and use any of a variety of conforming data link service providers
without special knowledge of the provider’s protocol. A service access point (SAP) is
the point through which the user communicates with the service provider.

Streams bound to SAP values in the range [0-255] are treated as equivalent and denote
that the user wants to use 8802-3 mode. If the value of the SAP field of the
DL_BIND_REQ is within this range, GLD computes the length (not including the
14-byte media access control (MAC) header) of each subsequent DL_UNITDATA_REQ
message on that Stream and transmits 8802-3 frames having those lengths in the MAC
frame header type fields. Such lengths never exceed 1500.

All frames received from the media that have a type field in the range [0-1500] are
assumed to be 8802-3 frames and are routed up all open Streams that are in 8802-3
mode (those Streams bound to a SAP value in the [0-255] range). If more than one
Stream is in 8802-3 mode, the incoming frame is duplicated and routed up each such
Stream.

Streams bound to SAP values greater than 1500 (Ethernet V2 mode) receive incoming
packets whose Ethernet MAC header type value exactly matches the value of the SAP
to which the Stream is bound.

Types DL_TPR and DL_FDDI: SNAP Processing
For media types DL_TPR and DL_FDDI, GLD implements minimal SNAP (Sub-Net
Access Protocol) processing for any Stream bound to a SAP value greater than 255.
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SAP values in the range [0-255] are LLC SAP values and are carried naturally by the
media packet format. SAP values greater than 255 require a SNAP header, subordinate
to the LLC header, to carry the 16-bit Ethernet V2-style SAP value.

SNAP headers are carried under LLC headers with destination SAP 0xAA. For
outgoing packets with SAP values greater than 255, GLD creates an LLC+SNAP
header that always looks like:

AA AA 03 00 00 00 XX XX

where ‘‘XX XX’’ represents the 16-bit SAP, corresponding to the Ethernet V2 style
‘‘type.’’ This is the only class of SNAP header supported—non-zero OUI fields and
LLC control fields other than 03 are considered to be LLC packets with SAP 0xAA.
Clients wanting to use SNAP formats other than this one must use LLC and bind to
SAP 0xAA.

Incoming packets are examined to ascertain whether they conform to the format
shown above. Packets that conform to this format are matched to any Streams bound
to the packet’s 16-bit SNAP type, as well as being considered to match the LLC SNAP
SAP 0xAA.

Packets received for any LLC SAP are passed up all Streams that are bound to an LLC
SAP, as described for media type DL_ETHER.

Type DL_TPR: Source Routing
For type DL_TPR devices, GLD implements minimal support for source routing.
Source routing enables a station that is sending a packet across a bridged medium to
specify (in the packet MAC header) routing information that determines the route that
the packet will take through the network.

Functionally, the source routing support provided by GLD learns routes, solicits and
responds to requests for information about possible multiple routes, and selects
among available routes. It adds Routing Information Fields to the MAC headers of
outgoing packets and recognizes such fields in incoming packets.

GLD’s source routing support does not implement the full Route Determination Entity
(RDE) specified in Section 9 of ISO 8802-2 (IEEE 802.2). However, it can interoperate
with any such implementations that might exist in the same (or a bridged) network.

Style 1 and Style 2 DLPI Providers
GLD implements both Style 1 and Style 2 DLPI providers. A physical point of
attachment (PPA) is the point at which a system attaches itself to a physical
communication medium. All communication on that physical medium funnels
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through the PPA. The Style 1 provider attaches the Stream to a particular PPA based
on the major/minor device that has been opened. The Style 2 provider requires the
DLS user to explicitly identify the desired PPA using DL_ATTACH_REQ. In this case,
open(9E) creates a Stream between the user and GLD, and DL_ATTACH_REQ
subsequently associates a particular PPA with that Stream. Style 2 is denoted by a
minor number of zero. If a device node whose minor number is not zero is opened,
Style 1 is indicated and the associated PPA is the minor number minus 1. In both Style
1 and Style 2 opens, the device is cloned.

Implemented DLPI Primitives
GLD implements several DLPI primitives. The DL_INFO_REQ primitive requests
information about the DLPI Stream. The message consists of one M_PROTO message
block. GLD returns device-dependent values in the DL_INFO_ACK response to this
request, based on information the GLD-based driver specified in the
gldm_mac_info(9S) structure passed to gld_register(). However, GLD returns
the following values on behalf of all GLD-based drivers:

� Version is DL_VERSION_2

� Service mode is DL_CLDLS — GLD implements connectionless-mode service

� Provider style is DL_STYLE1 or DL_STYLE2, depending on how the Stream was
opened

� No optional Quality of Service (QOS) support is present and the QOS fields are
zero

Note – Contrary to the DLPI specification, GLD returns the device’s correct address
length and broadcast address in DL_INFO_ACK even before the Stream has been
attached to a PPA.

The DL_ATTACH_REQ primitive is used to associate a PPA with a Stream. This request
is needed for Style 2 DLS providers to identify the physical medium over which the
communication will transpire. Upon completion, the state changes from
DL_UNATTACHED to DL_UNBOUND. The message consists of one M_PROTO message
block. This request is not permitted when using the driver in Style 1 mode; Streams
opened using Style 1 are already attached to a PPA by the time the open completes.

The DL_DETACH_REQ primitive requests to detach the PPA from the Stream. This is
only allowed if the Stream was opened using Style 2.

The DL_BIND_REQ and DL_UNBIND_REQ primitives bind and unbind a DLSAP to the
Stream. The PPA associated with a Stream will have completed initialization before
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completion of the processing of the DL_BIND_REQ on that Stream. Binding multiple
Streams to the same SAP is allowed; each such Stream receives a copy of any packets
received for that SAP.

The DL_ENABMULTI_REQ and DL_DISABMULTI_REQ primitives enable and disable
reception of individual multicast group addresses. An application or other DLS user is
permitted to create or modify a set of multicast addresses on a per-Stream basis by
iterative use of these primitives. The Stream must be attached to a PPA for these
primitives to be accepted.

The DL_PROMISCON_REQ and DL_PROMISCOFF_REQ primitives enable and disable
promiscuous mode on a per-Stream basis, either at a physical level or at the SAP level.
The DL Provider routes all received messages on the media to the DLS user until
either a DL_DETACH_REQ or a DL_PROMISCOFF_REQ is received or the Stream is
closed. You can specify physical level promiscuous reception of all packets on the
medium or of multicast packets only.

Note – The Stream must be attached to a PPA for these promiscuous mode primitives
to be accepted.

The DL_UNITDATA_REQ primitive is used to send data in a connectionless transfer.
Because this is an unacknowledged service, there is no guarantee of delivery. The
message consists of one M_PROTO message block followed by one or more M_DATA
blocks containing at least one byte of data.

The DL_UNITDATA_IND type is used when a packet is received and is to be passed
upstream. The packet is put into an M_PROTO message with the primitive set to
DL_UNITDATA_IND.

The DL_PHYS_ADDR_REQ primitive requests the MAC address currently associated
with the PPA attached to the Stream. The address is returned by the
DL_PHYS_ADDR_ACK primitive. When using Style 2, this primitive is only valid
following a successful DL_ATTACH_REQ.

The DL_SET_PHYS_ADDR_REQ primitive changes the MAC address currently
associated with the PPA attached to the Stream. This primitive affects all other current
and future Streams attached to this device. Once changed, all Streams currently or
subsequently opened and attached to this device will obtain this new physical
address. The new physical address remains in effect until this primitive is used to
change the physical address again or the driver is reloaded.
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Note – The superuser is allowed to change the physical address of a PPA while other
Streams are bound to the same PPA.

The DL_GET_STATISTICS_REQ primitive requests a DL_GET_STATISTICS_ACK
response containing statistics information associated with the PPA attached to the
Stream. Style 2 Streams must be attached to a particular PPA using DL_ATTACH_REQ
before this primitive can succeed.

Implemented ioctl Functions
GLD implements the ioctl ioc_cmd function described below. If GLD receives an
ioctl command that it does not recognize, it passes it to the device-specific driver’s
gldm_ioctl() routine, as described in gld(9E).

The DLIOCRAW ioctl function is used by some DLPI applications, most notably the
snoop(1M) command. The DLIOCRAW command puts the Stream into a raw mode,
which causes the driver to pass full MAC-level incoming packets upstream in M_DATA
messages instead of transforming them into the DL_UNITDATA_IND form that is
normally used for reporting incoming packets. Packet SAP filtering is still performed
on Streams that are in raw mode. If a Stream user wants to receive all incoming
packets, it must also select the appropriate promiscuous mode or modes. After
successfully selecting raw mode, the application is also allowed to send fully
formatted packets to the driver as M_DATA messages for transmission. DLIOCRAW
takes no arguments. Once enabled, the Stream remains in this mode until closed.

GLD Driver Requirements
GLD-based drivers must include the header file <sys/gld.h>.

GLD-based drivers must also include the following declaration:

char _depends_on[] = "misc/gld";

GLD implements the open(9E) and close(9E) functions and the required STREAMS
put(9E) and srv(9E) functions on behalf of the device-specific driver. GLD also
implements the getinfo(9E) function for the driver.

The mi_idname element of the module_info(9S) structure is a string specifying the
name of the driver. This must exactly match the name of the driver module as it exists
in the file system.

The read-side qinit(9S) structure should specify the following elements:
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qi_putp NULL

qi_srvp gld_rsrv

qi_qopen gld_open

qi_qclose gld_close

The write-side qinit(9S) structure should specify these elements:

qi_putp gld_wput

qi_srvp gld_wsrv

qi_qopen NULL

qi_qclose NULL

The devo_getinfo element of the dev_ops(9S) structure should specify
gld_getinfo as the getinfo(9E) routine.

The driver’s attach(9E) function does all the work of associating the
hardware-specific device driver with the GLD facility and preparing the device and
driver for use.

The attach(9E) function allocates a gld_mac_info(9S) (‘‘macinfo’’) structure using
gld_mac_alloc(). The driver usually needs to save more information per device
than is defined in the macinfo structure. It should allocate the additional required data
structure and save a pointer to it in the gldm_private member of the
gld_mac_info(9S) structure.

The attach(9E) routine must initialize the macinfo structure as described in
gld_mac_info(9S) and then call gld_register() to link the driver with the GLD
module. The driver should map registers if necessary and be fully initialized and
prepared to accept interrupts before calling gld_register(). The attach(9E)
function should add interrupts but not enable the device to generate them. The driver
should reset the hardware before calling gld_register() to ensure it is quiescent.
The device must not be started or put into a state where it might generate an interrupt
before gld_register() is called. That will be done later when GLD calls the
driver’s gldm_start() entry point, described in the gld(9E) man page. After
gld_register() succeeds, the gld(9E) entry points might be called by GLD at any
time.

The attach(9E) routine should return DDI_SUCCESS if gld_register() succeeds.
If gld_register() fails, it returns DDI_FAILURE, and the attach(9E) routine
should deallocate any resources it allocated before calling gld_register() and then
also return DDI_FAILURE. Under no circumstances should a failed macinfo structure
be reused; it should be deallocated using gld_mac_free().

The detach(9E)function should attempt to unregister the driver from GLD by calling
gld_unregister() (described in gld(9F) man page). The detach(9E) routine can
get a pointer to the needed gld_mac_info(9S) structure from the device’s private
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data using ddi_get_driver_private(9F). gld_unregister() checks certain
conditions that could require that the driver not be detached. If the checks fail,
gld_unregister() returns DDI_FAILURE, in which case the driver’s detach(9E)
routine must leave the device operational and return DDI_FAILURE.

If the checks succeed, gld_unregister() ensures that the device interrupts are
stopped (calling the driver’s gldm_stop() routine if necessary), unlinks the driver
from the GLD framework, and returns DDI_SUCCESS. In this case, the detach(9E)
routine should remove interrupts, deallocate any data structures allocated in the
attach(9E) routine (using gld_mac_free() to deallocate the macinfo structure),
and return DDI_SUCCESS. The routine must remove the interrupt before calling
gld_mac_free().

Network Statistics
Solaris network drivers must implement statistics variables. GLD itself tallies some
network statistics, but other statistics must be counted by each GLD-based driver.
GLD provides support for GLD-based drivers to report a standard set of network
driver statistics. Statistics are reported by GLD using the kstat(7D) and kstat(9S)
mechanisms. The DL_GET_STATISTICS_REQ DLPI command can also be used to
retrieve the current statistics counters. All statistics are maintained as unsigned, and
all are 32 bits unless otherwise noted.

GLD maintains and reports the following statistics.

rbytes64 Total bytes successfully received on the interface (64
bits)

rbytes Total bytes successfully received on the interface

obytes64 Total bytes requested to be transmitted on the interface
(64 bits)

obytes Total bytes requested to be transmitted on the interface

ipackets64 Total packets successfully received on the interface (64
bits)

ipackets Total packets successfully received on the interface

opackets64 Total packets requested to be transmitted on the
interface (64 bits)

opackets Total packets requested to be transmitted on the
interface

multircv Multicast packets successfully received, including
group and functional addresses (long)
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multixmt Multicast packets requested to be transmitted,
including group and functional addresses (long)

brdcstrcv Broadcast packets successfully received (long)

brdcstxmt Broadcast packets requested to be transmitted (long)

unknowns Valid received packets not accepted by any Stream
(long)

noxmtbuf Packets discarded on output because transmit buffer
was busy, or no buffer could be allocated for transmit
(long)

blocked Number of times a received packet could not be put up
a Stream because the queue was flow-controlled (long)

xmtretry Times transmit was retried after having been delayed
due to lack of resources (long)

promisc Current ‘‘promiscuous’’ state of the interface (string)

The device-dependent driver counts the following statistics, keeping track of them in a
private per-instance structure. When GLD is asked to report statistics, it calls the
driver’s gldm_get_stats() entry point (as described in the gld(9E) man page) to
update the device-specific statistics in the gld_stats(9S) structure. GLD then reports
the updated statistics using the named statistics variables shown below.

ifspeed Current estimated bandwidth of the interface in bits
per second (64 bits)

media Current media type in use by the device (string)

intr Times interrupt handler was called and claimed the
interrupt (long)

norcvbuf Number of times a valid incoming packet was known
to have been discarded because no buffer could be
allocated for receive (long)

ierrors Total packets received that could not be processed
because they contained errors (long)

oerrors Total packets that were not successfully transmitted
because of errors (long)

missed Packets known to have been dropped by the hardware
on receive (long)

uflo Times FIFO underflowed on transmit (long)

oflo Times receiver overflowed during receive (long)

The following group of statistics applies to networks of type DL_ETHER. These
statistics are maintained by device-specific drivers of that type, as shown previously.
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align_errors Packets received with framing errors (not an integral
number of octets) (long)

fcs_errors Packets received with CRC errors (long)

duplex Current duplex mode of the interface (string)

carrier_errors Number of times carrier was lost or never detected on
a transmission attempt (long)

collisions Ethernet collisions during transmit (long)

ex_collisions Frames where excess collisions occurred on transmit,
causing transmit failure (long)

tx_late_collisions Number of times a transmit collision occurred late
(after 512 bit times) (long)

defer_xmts Packets without collisions where first transmit attempt
was delayed because the medium was busy (long)

first_collisions Packets successfully transmitted with exactly one
collision

multi_collisions Packets successfully transmitted with multiple
collisions

sqe_errors Number of times SQE test error was reported

macxmt_errors Packets encountering transmit MAC failures, except
carrier and collision failures

macrcv_errors Packets received with MAC errors, except
align_errors, fcs_errors, and toolong_errors

toolong_errors Packets received larger than the maximum permitted
length

runt_errors Packets received smaller than the minimum permitted
length (long)

The following group of statistics applies to networks of type DL_TPR; these are
maintained by device-specific drivers of that type, as shown above.

line_errors Packets received with non-data bits or FCS errors

burst_errors Number of times an absence of transitions for five
half-bit timers was detected

signal_losses Number of times loss of signal condition on the ring
was detected

ace_errors Number of times an AMP or SMP frame, in which A is
equal to C is equal to 0, was followed by another such
SMP frame without an intervening AMP frame
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internal_errors Number of times the station recognized an internal
error

lost_frame_errors Number of times the TRR timer expired during
transmit

frame_copied_errors Number of times a frame addressed to this station was
received with the FS field ‘A’ bit set to 1

token_errors Number of times the station acting as the active
monitor recognized an error condition that needed a
token transmitted

freq_errors Number of times the frequency of the incoming signal
differed from the expected frequency

The following group of statistics applies to networks of type DL_FDDI; these are
maintained by device-specific drivers of that type, as shown above

mac_errors Frames detected in error by this MAC that had not
been detected in error by another MAC

mac_lost_errors Frames received with format errors such that the frame
was stripped

mac_tokens Number of tokens received (total of non-restricted and
restricted)

mac_tvx_expired Number of times that TVX has expired

mac_late Number of TRT expirations since this MAC was reset
or a token was received

mac_ring_ops Number of times the ring has entered the ‘‘Ring
Operational’’ state from the ‘‘Ring Not Operational’’
state

Declarations and Data Structures
This section describes the gld_mac_info(9S) and gld_stats structures.

gld_mac_info Structure
The GLD MAC information (gld_mac_info) structure is the main data interface
between the device-specific driver and GLD. It contains data required by GLD and a
pointer to an optional additional driver-specific information structure.
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Allocate the gld_mac_info structure using gld_mac_alloc() and deallocate it
using gld_mac_free(). Drivers must not make any assumptions about the length of
this structure, which might vary in different releases of Solaris, GLD, or both. Structure
members private to GLD, not documented here, should not be set or read by the
device-specific driver.

The gld_mac_info(9S) structure contains the following fields.

caddr_t gldm_private; /* Driver private data */
int (*gldm_reset)(); /* Reset device */
int (*gldm_start)(); /* Start device */
int (*gldm_stop)(); /* Stop device */
int (*gldm_set_mac_addr)(); /* Set device phys addr */
int (*gldm_set_multicast)(); /* Set/delete multicast addr */
int (*gldm_set_promiscuous)(); /* Set/reset promiscuous mode */
int (*gldm_send)(); /* Transmit routine */
uint_t (*gldm_intr)(); /* Interrupt handler */
int (*gldm_get_stats)(); /* Get device statistics */
int (*gldm_ioctl)(); /* Driver-specific ioctls */
char *gldm_ident; /* Driver identity string */
uint32_t gldm_type; /* Device type */
uint32_t gldm_minpkt; /* Minimum packet size */

/* accepted by driver */
uint32_t gldm_maxpkt; /* Maximum packet size */

/* accepted by driver */
uint32_t gldm_addrlen; /* Physical address length */
int32_t gldm_saplen; /* SAP length for DL_INFO_ACK */
unsigned char *gldm_broadcast_addr; /* Physical broadcast addr */
unsigned char *gldm_vendor_addr; /* Factory MAC address */
t_uscalar_t gldm_ppa; /* Physical Point of */

/* Attachment (PPA) number */
dev_info_t *gldm_devinfo; /* Pointer to device’s */

/* dev_info node */
ddi_iblock_cookie_t gldm_cookie; /* Device’s interrupt */

/* block cookie */

The gldm_private structure member is visible to the device driver; it is also private
to the device-specific driver and is not used or modified by GLD. Conventionally, this
is used as a pointer to private data, pointing to a driver-defined and driver-allocated
per-instance data structure.

The following group of structure members must be set by the driver before calling
gld_register(), and should not thereafter be modified by the driver. Because
gld_register() might use or cache the values of some of these structure members,
changes made by the driver after calling gld_register() might cause
unpredictable results.

gldm_reset Pointer to driver entry point; see the gld(9E) man
page.

gldm_start Pointer to driver entry point; see the gld(9E) man
page.
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gldm_stop Pointer to driver entry point; see the gld(9E) man
page.

gldm_set_mac_addr Pointer to driver entry point; see the gld(9E) man
page.

gldm_set_multicast Pointer to driver entry point; see the gld(9E) man
page.

gldm_set_promiscuous Pointer to driver entry point; see the gld(9E) man
page.

gldm_send Pointer to driver entry point; see the gld(9E) man
page.

gldm_intr Pointer to driver entry point; see the gld(9E) man
page.

gldm_get_stats Pointer to driver entry point; see the gld(9E) man
page.

gldm_ioctl Pointer to driver entry point; is allowed to be NULL; see
the gld(9E) man page.

gldm_ident Pointer to a string containing a short description of the
device. It is used to identify the device in system
messages.

gldm_type Type of device the driver handles. The values currently
supported by GLD are DL_ETHER (ISO 8802-3 (IEEE
802.3) and Ethernet Bus), DL_TPR (IEEE 802.5 Token
Passing Ring), and DL_FDDI (ISO 9314-2 Fibre
Distributed Data Interface). This structure member
must be correctly set for GLD to function properly.

gldm_minpkt Minimum Service Data Unit size—the minimum packet
size, not including the MAC header, that the device
will transmit. This size is allowed to be zero if the
device-specific driver handles any required padding.

gldm_maxpkt Maximum Service Data Unit size — the maximum size
of packet, not including the MAC header, that can be
transmitted by the device. For Ethernet, this number is
1500.

gldm_addrlen The length in bytes of physical addresses handled by
the device. For Ethernet, Token Ring, and FDDI, the
value of this structure member should be 6.

gldm_saplen The length in bytes of the SAP address used by the
driver. For GLD-based drivers, this should always be
set to -2, to indicate that 2-byte SAP values are
supported and that the SAP appears after the physical

Drivers for Network Devices 319



address in a DLSAP address. See ‘‘Message
DL_INFO_ACK’’ in the DLPI specification for more
details.

gldm_broadcast_addr Pointer to an array of bytes of length gldm_addrlen
containing the broadcast address to be used for
transmit. The driver must provide space to hold the
broadcast address, fill it in with the appropriate value,
and set gldm_broadcast_addr to point to it. For
Ethernet, Token Ring, and FDDI, the broadcast address
is normally 0xFF-FF-FF-FF-FF-FF.

gldm_vendor_addr Pointer to an array of bytes of length gldm_addrlen
containing the vendor-provided network physical
address of the device. The driver must provide space to
hold the address, fill it in with information read from
the device, and set gldm_vendor_addr to point to it.

gldm_ppa PPA number for this instance of the device. Normally
this should be set to the instance number, returned
from ddi_get_instance(9F).

gldm_devinfo Pointer to the dev_info node for this device.

gldm_cookie Interrupt block cookie returned by
ddi_get_iblock_cookie(9F), ddi_add_intr(9F),
ddi_get_soft_iblock_cookie(9F), or
ddi_add_softintr(9F). This must correspond to the
device’s receive-interrupt, from which gld_recv() is
called.

gld_stats Structure
The GLD statistics (gld_stats) structure communicates statistics and state
information from a GLD-based driver to GLD when returning from a driver’s
gldm_get_stats() routine, as discussed in the gld(9E) and gld(7D) man pages.
The members of this structure, filled in by the GLD-based driver, are used when GLD
reports the statistics. In the tables below, the name of the statistics variable reported by
GLD is noted in the comments. See the gld(7D) man page for a more detailed
description of the meaning of each statistic.

Drivers must not make any assumptions about the length of this structure, which
might vary in different releases of the Solaris operating environment, GLD, or both.
Structure members private to GLD, not documented here, should not be set or read by
the device-specific driver.

The following structure members are defined for all media types:
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uint64_t glds_speed; /* ifspeed */
uint32_t glds_media; /* media */
uint32_t glds_intr; /* intr */
uint32_t glds_norcvbuf; /* norcvbuf */
uint32_t glds_errrcv; /* ierrors */
uint32_t glds_errxmt; /* oerrors */
uint32_t glds_missed; /* missed */
uint32_t glds_underflow; /* uflo */

uint32_t glds_overflow; /* oflo */

The following structure members are defined for media type DL_ETHER:

uint32_t glds_frame; /* align_errors */
uint32_t glds_crc; /* fcs_errors */
uint32_t glds_duplex; /* duplex */
uint32_t glds_nocarrier; /* carrier_errors */
uint32_t glds_collisions; /* collisions */
uint32_t glds_excoll; /* ex_collisions */
uint32_t glds_xmtlatecoll; /* tx_late_collisions */
uint32_t glds_defer; /* defer_xmts */
uint32_t glds_dot3_first_coll; /* first_collisions */
uint32_t glds_dot3_multi_coll; /* multi_collisions */
uint32_t glds_dot3_sqe_error; /* sqe_errors */
uint32_t glds_dot3_mac_xmt_error; /* macxmt_errors */
uint32_t glds_dot3_mac_rcv_error; /* macrcv_errors */
uint32_t glds_dot3_frame_too_long; /* toolong_errors */

uint32_t glds_short; /* runt_errors */

The following structure members are defined for media type DL_TPR:

uint32_t glds_dot5_line_error /* line_errors */
uint32_t glds_dot5_burst_error /* burst_errors */
uint32_t glds_dot5_signal_loss /* signal_losses */
uint32_t glds_dot5_ace_error /* ace_errors */
uint32_t glds_dot5_internal_error /* internal_errors */
uint32_t glds_dot5_lost_frame_error /* lost_frame_errors */
uint32_t glds_dot5_frame_copied_error /* frame_copied_errors */
uint32_t glds_dot5_token_error /* token_errors */

uint32_t glds_dot5_freq_error /* freq_errors */

The following structure members are defined for media type DL_FDDI:

uint32_t glds_fddi_mac_error; /* mac_errors */
uint32_t glds_fddi_mac_lost; /* mac_lost_errors */
uint32_t glds_fddi_mac_token; /* mac_tokens */
uint32_t glds_fddi_mac_tvx_expired; /* mac_tvx_expired */
uint32_t glds_fddi_mac_late; /* mac_late */

uint32_t glds_fddi_mac_ring_op; /* mac_ring_ops */

Most of the above statistics variables are counters denoting the number of times the
particular event was observed. Exceptions are:

glds_speed Estimate of the interface’s current bandwidth in bits
per second. For interfaces that do not vary in
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bandwidth or for those where no accurate estimation
can be made, this object should contain the nominal
bandwidth.

glds_media Type of media (wiring) or connector used by the
hardware. Currently supported media names include
GLDM_AUI, GLDM_BNC, GLDM_TP, GLDM_10BT,
GLDM_100BT, GLDM_100BTX, GLDM_100BT4,
GLDM_RING4, GLDM_RING16, GLDM_FIBER, and
GLDM_PHYMII. GLDM_UNKNOWN is also permitted.

glds_duplex Current duplex state of the interface. Supported values
are GLD_DUPLEX_HALF and GLD_DUPLEX_FULL.
GLD_DUPLEX_UNKNOWN is also permitted.

Arguments Used by GLD Routines
macinfo Pointer to a gld_mac_info(9S) structure.

macaddr Pointer to the beginning of a character array containing a valid
MAC address. The array will be of the length specified by the
driver in the gldm_addrlen element of the gld_mac_info(9S)
structure.

multicastaddr Pointer to the beginning of a character array containing a
multicast, group, or functional address. The array will be of the
length specified by the driver in the gldm_addrlen element of
the gld_mac_info(9S) structure.

multiflag Flag indicating whether reception of the multicast address is to be
enabled or disabled. This argument is specified as
GLD_MULTI_ENABLE or GLD_MULTI_DISABLE.

promiscflag Flag indicating what type of promiscuous mode, if any, is to be
enabled. This argument is specified as GLD_MAC_PROMISC_PHYS,
GLD_MAC_PROMISC_MULTI, or GLD_MAC_PROMISC_NONE.

mp gld_ioctl() uses mp as a pointer to a STREAMS message block
containing the ioctl to be executed. gld_send() uses it as a
pointer to a STREAMS message block containing the packet to be
transmitted. gld_recv() uses it as a pointer to a message block
containing a received packet.

stats Pointer to a gld_stats(9S) structure to be filled in with the
current values of statistics counters.
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q Pointer to the queue(9S) structure to be used in the reply to the
ioctl.

dip Pointer to the device’s dev_info structure.

name Device interface name.

Entry Points
Entry points must be implemented by a device-specific network driver designed to
interface with GLD.

As described in the gld(7D)man page, the main data structure for communication
between the device-specific driver and the GLD module is the gld_mac_info(9S)
structure. Some of the elements in that structure are function pointers to the entry
points described here. The device-specific driver must, in its attach(9E) routine,
initialize these function pointers before calling gld_register().

int prefix_reset(gld_mac_info_t * macinfo);

gldm_reset() resets the hardware to its initial state.

int prefix_start(gld_mac_info_t * macinfo);

gldm_start() enables the device to generate interrupts and prepares the driver to
call gld_recv() for delivering received data packets to GLD.

int prefix_stop(gld_mac_info_t * macinfo);

gldm_stop() disables the device from generating any interrupts and stops the driver
from calling gld_recv() for delivering data packets to GLD. GLD depends on the
gldm_stop() routine to ensure that the device will no longer interrupt, and it must
do so without fail. This function should always return GLD_SUCCESS.

int prefix_set_mac_addr(gld_mac_info_t * macinfo, unsigned char * macaddr);

gldm_set_mac_addr() sets the physical address that the hardware is to use for
receiving data. This function enables the device to be programmed via the passed
MAC address macaddr. If sufficient resources are currently not available to carry out
the request, it should return GLD_NORESOURCES. If the requested function is not
supported, it should return GLD_NOTSUPPORTED.

int prefix_set_multicast(gld_mac_info_t * macinfo,

unsigned char * multicastaddr, int multiflag);

gldm_set_multicast() enables and disables device-level reception of specific
multicast addresses. If the third argument multiflag is set to GLD_MULTI_ENABLE, then
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the function sets the interface to receive packets with the multicast address pointed to
by the second argument. If multiflag is set to GLD_MULTI_DISABLE, the driver is
allowed to disable reception of the specified multicast address.

This function is called whenever GLD wants to enable or disable reception of a
multicast, group, or functional address. GLD makes no assumptions about how the
device does multicast support and calls this function to enable or disable a specific
multicast address. Some devices might use a hash algorithm and a bitmask to enable
collections of multicast addresses; this procedure is allowed, and GLD filters out any
superfluous packets. If disabling an address could result in disabling more than one
address at the device level, the device driver should keep whatever information it
needs in order to avoid disabling an address that GLD has enabled but not disabled.

gldm_set_multicast() will not be called to enable a particular multicast address
that is already enabled, nor will it be called to disable an address that is not currently
enabled. GLD keeps track of multiple requests for the same multicast address and
only calls the driver’s entry point when the first request to enable, or the last request
to disable, a particular multicast address is made. If sufficient resources are currently
not available to carry out the request, the function should return GLD_NORESOURCES.
The function should return GLD_NOTSUPPORTED if the requested function is not
supported.

int prefix_set_promiscuous(gld_mac_info_t * macinfo, int promiscflag);

gldm_set_promiscuous() enables and disables promiscuous mode. This function
is called whenever GLD wants to enable or disable the reception of all packets on the
medium, or of all multicast packets on the medium. If the second argument promiscflag
is set to the value of GLD_MAC_PROMISC_PHYS, then the function enables
physical-level promiscuous mode, resulting in the reception of all packets on the
medium. If promiscflag is set to GLD_MAC_PROMISC_MULTI, then reception of all
multicast packets will be enabled. If promiscflag is set to GLD_MAC_PROMISC_NONE,
then promiscuous mode is disabled.

In the case of a request for promiscuous multicast mode, drivers for devices that have
no multicast-only promiscuous mode must set the device to physical promiscuous
mode to ensure that all multicast packets are received. In this case the routine should
return GLD_SUCCESS. The GLD software filters out any superfluous packets. If
sufficient resources are currently not available to carry out the request, the function
should return GLD_NORESOURCES. It should return GLD_NOTSUPPORTED if the
requested function is not supported.

For forward compatibility, gldm_set_promiscuous() routines should treat any
unrecognized values for promiscflag as though they were GLD_MAC_PROMISC_PHYS.

int prefix_send(gld_mac_info_t * macinfo, mblk_t * mp);

gldm_send() queues a packet to the device for transmission. This routine is passed a
STREAMS message containing the packet to be sent. The message might include
multiple message blocks, and the send routine must traverse all the message blocks in
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the message to access the entire packet to be sent. The driver should be prepared to
handle and skip over any zero-length message continuation blocks in the chain. The
driver should check that the packet does not exceed the maximum allowable packet
size, and it must pad the packet, if necessary, to the minimum allowable packet size. If
the send routine successfully transmits or queues the packet, it should return
GLD_SUCCESS.

The send routine should return GLD_NORESOURCES if it cannot immediately accept
the packet for transmission; in this case GLD will retry it later. If gldm_send() ever
returns GLD_NORESOURCES, the driver must, at a later time when resources have
become available, call gld_sched(). This call to gld_sched() informs GLD that it
should retry packets that the driver previously failed to queue for transmission. (If the
driver’s gldm_stop() routine is called, the driver is absolved from this obligation
until it later again returns GLD_NORESOURCES from its gldm_send() routine.
However, extra calls to gld_sched() will not cause incorrect operation.)

If the driver’s send routine returns GLD_SUCCESS, then the driver is responsible for
freeing the message when the driver and the hardware no longer need it. If the send
routine copied the message into the device, or into a private buffer, then the send
routine is permitted to free the message after the copy is made. If the hardware uses
DMA to read the data directly out of the message data blocks, then the driver must not
free the message until the hardware has completed reading the data. In this case the
driver will probably free the message in the interrupt routine, or in a buffer reclaim
operation at the beginning of a future send operation. If the send routine returns
anything other than GLD_SUCCESS, then the driver must not free the message. Return
GLD_NOLINK if gldm_send() is called when there is no physical connection to the
network or link partner.

int prefix_intr(gld_mac_info_t * macinfo);

gldm_intr() is called when the device might have interrupted. Because interrupts
can be shared with other devices, the driver must check the device status to determine
whether it actually caused an interrupt. If the device that the driver controls did not
cause the interrupt, then this routine must return DDI_INTR_UNCLAIMED. Otherwise,
it must service the interrupt and should return DDI_INTR_CLAIMED. If the interrupt
was caused by successful receipt of a packet, this routine should put the received
packet into a STREAMS message of type M_DATA and pass that message to
gld_recv().

gld_recv() will pass the inbound packet upstream to the appropriate next layer of
the network protocol stack. The routine must correctly set the b_rptr and b_wptr
members of the STREAMS message before calling gld_recv().

The driver should avoid holding mutex or other locks during the call to gld_recv().
In particular, locks that could be taken by a transmit thread must not be held during a
call to gld_recv(): the interrupt thread that calls gld_recv() will in some cases
carry out processing that includes sending an outgoing packet, resulting in a call to the
driver’s gldm_send() routine. If the gldm_send() routine were to try to acquire a
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mutex being held by the gldm_intr() routine at the time it calls gld_recv(), a
panic occurs due to recursive mutex entry. If other driver entry points attempt to
acquire a mutex that the driver holds across a call to gld_recv(), deadlock can
result.

The interrupt code should increment statistics counters for any errors. This includes
failure to allocate a buffer needed for the received data and any hardware-specific
errors, such as CRC errors or framing errors.

int prefix_get_stats(gld_mac_info_t * macinfo, struct gld_stats * stats);

gldm_get_stats() gathers statistics from the hardware, driver private counters, or
both, and updates the gld_stats(9S) structure pointed to by stats. This routine is
called by GLD when it gets a request for statistics, and provides the mechanism by
which GLD acquires device-dependent statistics from the driver before composing its
reply to the statistics request. See the gld_stats(9S) and gld(7D) man page for a
description of the defined statistics counters.

int prefix_ioctl(gld_mac_info_t * macinfo, queue_t * q, mblk_t * mp);

gldm_ioctl() implements any device-specific ioctl commands. This element is
allowed to be NULL if the driver does not implement any ioctl functions. The driver
is responsible for converting the message block into an ioctl reply message and
calling the qreply(9F) function before returning GLD_SUCCESS. This function should
always return GLD_SUCCESS; any errors the driver might want to report should be
returned by the message passed to qreply(9F). If the gldm_ioctl element is
specified as NULL, GLD returns a message of type M_IOCNAK with an error of EINVAL.

Return Values
In addition to the return values described above, and subject to the restrictions above,
some of the GLD entry point functions can return these values:

GLD_BADARG If the function detected an unsuitable argument, for
example, a bad multicast address, a bad MAC address,
or a bad packet or packet length

GLD_FAILURE On hardware failure

GLD_SUCCESS On success

Service Routines
gld_mac_info_t * gld_mac_alloc(dev_info_t * dip);
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gld_mac_alloc() allocates a new gld_mac_info(9S) structure and returns a
pointer to it. Some of the GLD-private elements of the structure might be initialized
before gld_mac_alloc() returns; all other elements are initialized to zero. The
device driver must initialize some structure members, as described in the
gld_mac_info(9S) man page, before passing the pointer to the mac_info structure
to gld_register().

void gld_mac_free(gld_mac_info_t * macinfo);

gld_mac_free() frees a gld_mac_info(9S) structure previously allocated by
gld_mac_alloc().

int gld_register(dev_info_t * dip, char * name, gld_mac_info_t * macinfo);

gld_register() is called from the device driver’s attach(9E) routine and is used
to link the GLD-based device driver with the GLD framework. Before calling
gld_register(), the device driver’s attach(9E) routine must first use
gld_mac_alloc() to allocate a gld_mac_info(9S) structure, and initialize several
of its structure elements. See gld_mac_info(9S) for more information. A successful
call to gld_register() performs the following actions:

� Links the device-specific driver with the GLD system

� Sets the device-specific driver’s private data pointer (using
ddi_set_driver_private(9F)) to point to the macinfo structure

� Creates the minor device node

� Returns DDI_SUCCESS

The device interface name passed to gld_register() must exactly match the name
of the driver module as it exists in the file system.

The driver’s attach(9E) routine should return DDI_SUCCESS if gld_register()
succeeds. If gld_register() does not return DDI_SUCCESS, the attach(9E)
routine should deallocate any resources it allocated before calling gld_register(),
and then return DDI_FAILURE.

int gld_unregister(gld_mac_info_t * macinfo);

gld_unregister() is called by the device driver’s detach(9E) function, and if
successful, performs the following tasks:

� Ensures that the device’s interrupts are stopped, calling the driver’s gldm_stop()
routine if necessary

� Removes the minor device node

� Unlinks the device-specific driver from the GLD system

� Returns DDI_SUCCESS

If gld_unregister() returns DDI_SUCCESS, the detach(9E) routine should
deallocate any data structures allocated in the attach(9E) routine, using
gld_mac_free() to deallocate the macinfo structure, and return DDI_SUCCESS. If
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gld_unregister() does not return DDI_SUCCESS, the driver’s detach(9E) routine
must leave the device operational and return DDI_FAILURE.

void gld_recv(gld_mac_info_t * macinfo, mblk_t * mp);

gld_recv() is called by the driver’s interrupt handler to pass a received packet
upstream. The driver must construct and pass a STREAMS M_DATA message
containing the raw packet. gld_recv() determines which STREAMS queues, if any,
should receive a copy of the packet, duplicating it if necessary. It then formats a
DL_UNITDATA_IND message, if required, and passes the data up all appropriate
Streams.

The driver should avoid holding mutex or other locks during the call to gld_recv().
In particular, locks that could be taken by a transmit thread must not be held during a
call to gld_recv(): the interrupt thread that calls gld_recv() will in some cases
carry out processing that includes sending an outgoing packet, resulting in a call to the
driver’s gldm_send() routine. If the gldm_send() routine were to try to acquire a
mutex being held by the gldm_intr() routine at the time it calls gld_recv(), this
would result in a panic caused by a recursive mutex entry. If other driver entry points
attempt to acquire a mutex that the driver holds across a call to gld_recv(),
deadlock can result.

void gld_sched(gld_mac_info_t * macinfo);

gld_sched() is called by the device driver to reschedule stalled outbound packets.
Whenever the driver’s gldm_send() routine has returned GLD_NORESOURCES, the
driver must later call gld_sched() to inform the GLD framework that it should retry
the packets that previously could not be sent. gld_sched() should be called as soon
as possible after resources are again available, to ensure that GLD resumes passing
outbound packets to the driver’s gldm_send() routine in a timely way. (If the
driver’s gldm_stop() routine is called, the driver is absolved from this obligation
until it later again returns GLD_NORESOURCES from its gldm_send() routine;
however, extra calls to gld_sched() will not cause incorrect operation.)

uint_t gld_intr(caddr_t);

gld_intr() is GLD’s main interrupt handler. Normally, gld_intr() is specified as
the interrupt routine in the device driver’s call to ddi_add_intr(9F). The argument
to the interrupt handler (specified as int_handler_arg in the call to ddi_add_intr(9F))
must be a pointer to the gld_mac_info(9S) structure. gld_intr() will, when
appropriate, call the device driver’s gldm_intr() function, passing that pointer to
the gld_mac_info(9S) structure. However, if the driver uses a high-level interrupt, it
must provide its own high-level interrupt handler and trigger a soft interrupt from
within that. In this case, gld_intr() would normally be specified as the soft
interrupt handler in the call to ddi_add_softintr(). gld_intr() will return a
value appropriate for an interrupt handler.
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CHAPTER 17

Compiling, Loading, Packaging, and
Testing Drivers

This chapter describes the procedure for driver development, including code layout,
compilation, packaging, and testing.

Driver Code Layout Structure
The code for a device driver is usually divided into the following files:

� Header files (.h files)
� Source files (.c files)
� Optional configuration file (driver.conf file)

Header Files
Header files define:

� Data structures specific to the device, such as a structure representing the device
registers

� Data structures defined by the driver for maintaining state information

� Defined constants, such as those representing the bits of the device registers

� Macros, such as those defining the static mapping between the minor device
number and the instance number

Some of this information, such as the state structure, might be needed only by the
device driver. This information should go in private header files that are only included
by the device driver itself.
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Any information that an application might require, such as the I/O control
commands, should be in public header files. These are included by the driver and any
applications that need information about the device.

While there is no standard for naming private and public files, one convention is to
name the private header file xximpl.h and the public header file xxio.h.

.c Files
A .c file for a device driver contains the data declarations and the code for the entry
points of the driver. It contains the #include statements the driver needs, declares
extern references, declares local data, sets up the cb_ops and dev_ops structures,
declares and initializes the module configuration section, makes any other necessary
declarations, and defines the driver entry points.

driver.conf Files
driver.conf files are required for devices that are not self-identifying. Entries in the
driver.conf file specify possible device instances the driver will probe for existence.
For more information, see the scsi(4) and driver.conf(4) man pages. Driver global
properties can also be set by entries in the driver.conf(4) file. driver.conf files
are optional for SID devices, where the entries can be used to add properties into
self-identifying device nodes. See the sbus(4) and pci(4) man pages for details.

Preparing for Installation
Before the driver is installed, it must be compiled into a binary, and a configuration
file created, if necessary. The driver’s module name must either match the name of the
device nodes, or the system must be informed that this driver should manage other
names.

The system maintains a one-to-one association between the name of the driver module
and the name of the dev_info node. For example, a dev_info node for a device
named wombat is handled by a driver module called wombat in a subdirectory called
drv (resulting in drv/wombat) found in the module path.

If the driver is a STREAMS network driver, then the driver name needs to meet the
following constraints:
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� Alphanumeric characters (a-z, A-Z, 0-9), plus the underscore (’_’), are permitted
only.

� Neither the first nor the last character of the name may be a digit.

� The name cannot exceed 16 characters in length. Names in the range of 3-8
characters in length are preferable.

If the driver should manage dev_info nodes with different names, the add_drv(1M)
utility can create aliases. The -i flag specifies the names of other dev_info nodes
that the driver handles.

Compiling and Linking the Driver
Compile each driver source file and link the resulting object files into a driver module.
The example below shows a driver called xx that has two C-language source files and
generates a driver module xx. This driver created in this example is intended for the
32–bit kernel:

% cc -D_KERNEL -c xx1.c
% cc -D_KERNEL -c xx2.c
% ld -r -o xx xx1.o xx2.o

The _KERNEL symbol must be defined while compiling kernel (driver) code. No other
symbols (such as sun4m) should be defined, aside from driver private symbols. DEBUG
can also be defined to enable any calls to assert(9F). There is no need to use the -I
flag for the standard headers.

Drivers intended for the 64-bit SPARC kernel should specify the -xarch=v9 option.
Use the following compile line:

% cc -D_KERNEL -xarch=v9 -c xx1.c

After the driver is stable, optimization flags can be used to build a production quality
driver. For the Sun WorkShop™ Compilers C, the normal -O flag, or its equivalent
-xO3, can be used. Note that -xO3 is the highest level of optimization device drivers
should use (see cc(1)).

The following compile line was used to create 64–bit SPARC drivers provided with the
Solaris 9 operating environment:

% cc -D_KERNEL -xcg92 -xarch=v9 -xcode=abs32 -xO3 -c xx1.c

Where -xcg92 refers to the code generator, and the use of -xcode=abs32 leads to
more compact code.
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Note – Running ld -r is necessary even if there is only one object module.

Module Dependencies
If the driver module depends on symbols exported by another kernel module, the
dependency can be specified by the -dy and -N options of ld. If the driver depends
on a symbol exported by misc/foo, the example below should be used to create the
driver binary. See the ld(1) man page.

% ld -dy -r -o xx xx1.o xx2.o -N misc/foo

Writing a Hardware Configuration File
If the device is non-self-identifying, the kernel requires a hardware configuration file
for it. If the driver is called xx, the hardware configuration file for it should be called
xx.conf. See the driver.conf(4), pseudo(4), sbus(4), and scsi(4) man pages for
more information on hardware configuration files. On the Intel platform, device
information is now supplied by the booting system. Hardware configuration files
should no longer be needed, even for non-self-identifying devices.

Arbitrary properties can be defined in hardware configuration files by adding entries
of the form property=value, where property is the property name, and value is its initial
value. This enables devices to be configured by changing the property values.

Installing, Updating, and Removing
Drivers
Before a driver can be used, the system must be informed that it exists. The
add_drv(1M) utility must be used to correctly install the device driver. After the
driver is installed, it can be loaded and unloaded from memory without using
add_drv(1M) again.
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Copying the Driver to a Module Directory
Device drivers reside in different directories depending on the platform they run on
and whether they are needed at boot time. Platform-dependent device drivers reside
in the following locations:

� /platform/‘uname -i‘/kernel/drv – Contains 32–bit drivers that run only
on a specific platform, such as the Ultra™ 2

� /platform/‘uname -m‘/kernel/drv – Contains 32–bit drivers that run on a
family of platforms. This directory might not be present on some platforms.

Platform-independent drivers reside in either of these directories:

� /usr/kernel/drv – Contains 32–bit drivers not required for system booting

� /kernel/drv – Contains 32–bit drivers required for booting

� 64–bit SPARC drivers reside in the drv/sparcv9 directory in the module path

To install a 32–bit driver, the driver and its configuration file must be copied to a drv
directory in the module path. For example, to copy a driver to /usr/kernel/drv,
type:

$ su# cp xx /usr/kernel/drv# cp xx.conf /usr/kernel/drv

To install a 64-bit SPARC driver, copy the driver to a drv/sparcv9 directory in the
module path. Copy the driver configuration file to the drv directory in the module
path. For example, to copy a driver to /usr/kernel/drv, type:

$ su# cp xx /usr/kernel/drv/sparcv9# cp xx.conf /usr/kernel/drv

Note – Driver configuration files (.conf files) must go in the drv directory in the
module path. Even on 64–bit systems, the .conf file goes in the drv directory, not the
drv/sparcv9 directory.

If the driver creates minor nodes that do not represent disks, tapes, or ports (terminal
devices), /etc/devlink.tab can be modified to cause devfsadm(1M) to create
logical device names in /dev.

Alternatively, logical names can be created by a program run at driver installation
time.

Running add_drv(1M)
Run add_drv(1M) to install the driver in the system. If the driver installs successfully,
add_drv(1M) will run devfsadm(1M) to create the logical names in /dev.

# add_drv xx
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This is a simple case in which the device identifies itself as xx and the device special
files will have default ownership and permissions (0600 root sys). add_drv(1M)
also allows additional names for the device (aliases) to be specified. See add_drv(1M)
to determine how to add aliases and set file permissions explicitly.

Note – add_drv(1M) should not be run when installing a STREAMS module. See the
STREAMS Programming Guide for details.

Updating Driver Information
Use the update_drv(1M) command to notify the system of any changes to an
installed device driver. By default, the system re-reads the driver.conf(4) file and
reloads the driver binary module.

The update_drv(1M) command can also be used to modify the minor node
permissions and aliases for a driver.

Removing the Driver
To remove a driver from the system, use rem_drv(1M), then delete the driver module
and configuration file from the module path. The driver cannot be used again until it
is reinstalled with add_drv(1M). Removing a SCSI HBA driver will require a reboot
to take effect.

Loading and Unloading Drivers
Opening a special file associated with the device driver causes the driver to be loaded.
modload(1M) can also be used to load the driver into memory, but it does not call any
routines in the module. Opening the device is the preferred method.

Normally, the system automatically unloads device drivers when they are no longer in
use. During development, it might be necessary to use modunload(1M) to unload the
driver explicitly. In order for modunload(1M) to be successful, the device driver must
not be active; there must be no outstanding references to the device, such as through
open(2) or mmap(2).
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Use modunload(1M) to unload a driver from the system. modunload takes a
module_id that is run time dependent as an argument. It can be found by using
grep to search the output of modinfo for the driver name in question and looking at
the first column.

# modunload -i module_id

To unload all currently unloadable modules, specify module ID zero:

# modunload -i 0

In addition to being inactive, the driver must have working detach(9E) and
_fini(9E) routines for modunload(1M) to succeed.

Driver Packaging
The normal delivery vehicle for unbundled software is to create a package with all the
components of the software packaged together. A package provides a controlled
mechanism for installation and removal of all the components of a software product,
including applications, configuration tools, drivers, man pages, and other
documentation.

Package Postinstall
After installing a package that includes a driver binary onto a system, the
add_drv(1M) command must be run to complete the installation of the driver. Here is
an example package postinstall script to run add_drv(1M) to complete the driver
installation.

#!/bin/sh
#
# @(#)postinstall 1.1

PATH="/usr/bin:/usr/sbin:${PATH}"
export PATH

#
# Driver info
#
DRV=<driver-name>
DRVALIAS="<company-name>,<driver-name>"
DRVPERM=’* 0666 root sys’

ADD_DRV=/usr/sbin/add_drv
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#
# Select the correct add_drv options to execute.
# add_drv touches /reconfigure to cause the
# next boot to be a reconfigure boot.
#
if [ "${BASEDIR}" = "/" ]; then

#
# On a running system, modify the
# system files and attach the driver
#
ADD_DRV_FLAGS=""

else
#
# On a client, modify the system files
# relative to BASEDIR
#
ADD_DRV_FLAGS="-b ${BASEDIR}"

fi

#
# Make sure add_drv has not been previously executed
# before attempting to add the driver.
#
grep "^${DRV} " $BASEDIR/etc/name_to_major > /dev/null 2>&1
if [ $? -ne 0 ]; then

${ADD_DRV} ${ADD_DRV_FLAGS} -m "${DRVPERM}" -i "${DRVALIAS}" ${DRV}
if [ $? -ne 0 ]; then

echo "postinstall: add_drv $DRV failed\n" >&2
exit 1

fi
fi

exit 0

Package Preremove
When removing a package, a package that includes a driver must run rem_drv(1M)
to complete the removal of the driver, before removing the driver binary and other
components from a system. Here is an example package preremove script to run
rem_drv(1M) to complete the driver removal.

#!/bin/sh
#
# @(#)preremove 1.1

PATH="/usr/bin:/usr/sbin:${PATH}"
export PATH

#
# Driver info
#
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DRV=<driver-name>
REM_DRV=/usr/sbin/rem_drv

#
# Select the correct rem_drv options to execute.
# rem_drv touches /reconfigure to cause the
# next boot to be a reconfigure boot.
#
if [ "${BASEDIR}" = "/" ]; then

#
# On a running system, modify the
# system files and remove the driver
#
REM_DRV_FLAGS=""

else
#
# On a client, modify the system files
# relative to BASEDIR
#
REM_DRV_FLAGS="-b ${BASEDIR}"

fi

${REM_DRV} ${REM_DRV_FLAGS} ${DRV}

exit 0

Testing
Once a device driver is functional, it should be thoroughly tested before it is
distributed. In addition to testing traditional UNIX device driver features, Solaris 9
drivers require testing of power management features, such as dynamic loading and
unloading of drivers.

Configuration Testing
A driver’s ability to handle multiple device configurations is an important part of the
test process. Once the driver is working on a simple, or default, configuration,
additional configurations should be tested. Depending upon the device, this can be
accomplished by changing jumpers or DIP switches. If the number of possible
configurations is small, all of them should be tried. If the number is large, various
classes of possible configurations should be defined, and a sampling of configurations
from each class should be tested. The designation of such classes depends on how the
different configuration parameters might interact, which in turn depends on the
device and on how the driver was written.

Compiling, Loading, Packaging, and Testing Drivers 337



For each device configuration, the basic functions must be tested, which include
loading, opening, reading, writing, closing, and unloading the driver. Any function
that depends upon the configuration deserves special attention. For example,
changing the base memory address of device registers is not likely to affect the
behavior of most driver functions; if the driver works well with one address, it is
likely to work as well with a different address, provided the configuration code
enables it to work at all. On the other hand, a special I/O control call might have
different effects depending upon the particular device configuration.

Loading the driver with varying configurations ensures that the probe(9E) and
attach(9E) entry points can find the device at different addresses. For basic
functional testing, using regular UNIX commands such as cat(1) or dd(1M) is usually
sufficient for character devices. Mounting or booting might be required for block
devices.

Functionality Testing
After a driver has been completely tested for configuration, all of its functionality
should be thoroughly tested. This requires exercising the operation of all the driver’s
entry points.

Many drivers will require custom applications to test functionality, but basic drivers
for devices such as disks, tapes, or asynchronous boards can be tested using standard
system utilities. All entry points should be tested in this process, including
devmap(9E), chpoll(9E), and ioctl(9E), if applicable. The ioctl(9E) tests might be
quite different for each driver, and for nonstandard devices, a custom testing
application will be required.

Error Handling
A driver might perform correctly in an ideal environment, but fail to handle cases
where a device encounters an error or an application specifies erroneous operations or
sends bad data to the driver. Therefore, an important part of driver testing is the
testing of its error handling.

All possible error conditions of a driver should be exercised, including error
conditions for actual hardware malfunctions. Some hardware error conditions might
be difficult to induce, but an effort should be made to cause them or to simulate them
if possible. All of these conditions could be encountered in the field. Cables should be
removed or loosened, boards should be removed, and erroneous user application code
should be written to test those error paths.
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Caution – Be sure to take proper electrical precautions when testing.

Testing Loading and Unloading
Because a driver that will not load or unload can force unscheduled downtime,
loading and unloading must be thoroughly tested.

A script like the following should suffice:

#!/bin/sh
cd <location_of_driver>
while [ 1 ]
do

modunload -i ’modinfo | grep " <driver_name> " | cut -cl-3’ &
modload <driver_name> &

done

Stress, Performance, and Interoperability Testing
To help ensure that the driver performs well, it should be subjected to vigorous stress
testing. Running single threads through a driver will not test any of the locking logic
and might not test condition variable waits. Device operations should be performed
by multiple processes at once to cause several threads to execute the same code
simultaneously. The way to do this depends upon the driver; some drivers will require
special testing applications, but starting several UNIX commands in the background
will be suitable for others. Appropriate testing depends upon where the particular
driver uses locks and condition variables. Testing a driver on a multiprocessor
machine is more likely to expose problems than testing on a single-processor machine.

Interoperability between drivers must also be tested, particularly because different
devices can share interrupt levels. If possible, configure another device at the same
interrupt level as the one being tested. Then stress-test the driver to determine if it
correctly claims its own interrupts and otherwise operates according to expectations.
Stress tests should be run on both devices at once. Even if the devices do not share an
interrupt level, this test can still be valuable; for example, if serial communication
devices start to experience errors while a network driver is being tested, this could
indicate that the network driver is causing the rest of the system to encounter
interrupt latency problems.

Driver performance under these stress tests should be measured using UNIX
performance-measuring tools. This can be as simple as using the time(1) command
along with commands used for stress tests.
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DDI/DKI Compliance Testing
To ensure compatibility with later releases and reliable support for the current release,
every driver should be Solaris 9 DDI/DKI compliant. One way to determine if the
driver is compliant is by inspection. The driver can be visually inspected to ensure
that only kernel routines and data structures specified in man pages section 9F: DDI and
DKI Kernel Functions and man pages section 9S: DDI and DKI Data Structures of the
Solaris 8 Reference Manual Collection are used.

The Solaris 9 Driver Developer Kit (DDK) includes a DDI compliance tool (DDICT)
that checks device driver C source code for non-DDI/DKI compliance and issues
either error or warning messages when it finds non-compliant code. For best results,
all drivers should be written to pass DDICT. See www.sun.com/solaris/ddk.

Installation and Packaging Testing
Drivers are delivered to customers in packages. A package can be added and removed
from the system using a standard mechanism (see the Application Packaging Guide).

Test to be sure the driver has been correctly packaged, to ensure that the end user can
add it to and remove it from a system. In testing, the package should be installed and
removed from every type of media on which it will be released and on several system
configurations. Packages must not make unwarranted assumptions about the
directory environment of the target system. Certain valid assumptions, however, can
be made about where standard kernel files are kept. Also test adding and removing of
packages on newly installed machines that have not been modified for a development
environment. A common packaging error is for a package to use a tool or file that
exists only in a development environment, or only on the driver writer’s own
development system. For example, no tools from Source Compatibility package,
SUNWscpu, should be used in driver installation programs.

The driver installation must be tested on a minimal Solaris system without any of the
optional packages installed.

Testing Specific Types of Drivers
Because each type of device is different, it is difficult to describe how to test them all
specifically. This section provides some information about how to test certain types of
standard devices.
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Tape Drivers
Tape drivers should be tested by performing several archive and restore operations.
The cpio(1) and tar(1) commands can be used for this purpose. The dd(1M)
command can be used to write an entire disk partition to tape, which can then be read
back and written to another partition of the same size, and the two copies compared.
The mt(1) command will exercise most of the I/O controls that are specific to tape
drivers (see mtio(7I)); all the options should be attempted. The error handling of tape
drivers can be tested by attempting various operations with the tape removed,
attempting writes with the write protect on, and removing power during operations.
Tape drivers typically implement exclusive-access open(9E) calls, which should be
tested by having a second process try to open the device while a first process already
has it open.

Disk Drivers
Disk drivers should be tested in both the raw and block device modes. For block
device tests, a new file system should be created on the device and mounted. Multiple
file operations can be performed on the device at this time.

Note – The file system uses a page cache, so reading the same file over and over again
will not really exercise the driver. The page cache can be forced to retrieve data from
the device by memory-mapping the file (with mmap(2)), and using msync(3C) to
invalidate the in-memory copies.

Another (unmounted) partition of the same size can be copied to the raw device and
then commands such as fsck(1M) can be used to verify the correctness of the copy.
The new partition can also be mounted and compared to the old one on a file-by-file
basis.

Asynchronous Communication Drivers
Asynchronous drivers can be tested at the basic level by setting up a login line to the
serial ports. A good test is if a user can log in on this line. To sufficiently test an
asynchronous driver, however, all the I/O control functions must be tested, with many
interrupts at high speed. A test involving a loopback serial cable and high data
transfer rates will help determine the reliability of the driver. Running uucp(1C) over
the line also provides some exercise; however, since uucp(1C) performs its own error
handling, verify that the driver is not reporting excessive numbers of errors to the
uucp(1C) process.

These types of devices are usually STREAMS based.
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Network Drivers
Network drivers can be tested using standard network utilities. ftp(1) and rcp(1) are
useful because the files can be compared on each end of the network. The driver
should be tested under heavy network loading, so that various commands can be run
by multiple processes. Heavy network loading means:

� Traffic to the test machine is heavy.
� Traffic among all machines on the network is heavy.

Network cables should be unplugged while the tests are executing to ensure that the
driver recovers gracefully from the resulting error conditions. Another important test
is for the driver to receive multiple packets in rapid succession (back-to-back packets).
In this case, a relatively fast host on a lightly loaded network should send multiple
packets in quick succession to the test machine. Verify that the receiving driver does
not drop the second and subsequent packets.

These types of devices are usually STREAMS based.
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CHAPTER 18

Debugging

Debugging is the process of finding and eliminating faults from software. Almost
every device driver writer will be faced with a difficult bug at some point in the
development process. This chapter presents an overview of the tools available to make
this process easier.

Note – In this document the term ”IA” refers to the Intel 32–bit processor architecture,
which includes the Pentium™, Pentium Pro™, Pentium II™, Pentium II Xeon™,
Celeron™, Pentium III™, and Pentium III Xeon™ processors and compatible
microprocessor chips made by AMD and Cyrix.

Machine Configuration
Before you begin developing a Solaris driver, set up your test platform for this
purpose. Testing on a separate system is safest. This section explains how to set up a
pair of machines for development, and how to prepare a test system for disaster
recovery.

Setting Up a tip(1) Connection
A serial connection can be made between a test system (the machine executing the
code to be debugged) and a host system using tip(1). This connection enables a
window on the host system, called a tip window, to be used as the console of the test
machine. See the tip(1) man page for additional information.

Using a tip window confers the following advantages:
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� Interactions with the test system or kadb can be monitored. For example, the
window can keep a log of the session for use if the driver crashes the test system.

� The test machine can be accessed remotely by logging into a host machine (often
called a tip host) and using tip(1) to connect to the test machine.

Note – A tip connection (and a second machine) is not required to debug a Solaris 9
device driver, but is recommended.

� To Set Up the Host System
To set up the host system, do the following:

1. Connect the host system to the test machine using serial port A on both machines.

This connection must be made with a null modem cable.

2. On the host system, make an entry in /etc/remote for the connection if it is not
already there (see the remote(4) man page for details).

The terminal entry must match the serial port being used. The Solaris 9 operating
environment comes with the correct entry for serial port B, but a terminal entry must
be added for serial port A:

debug:\
:dv=/dev/term/a:br#9600:el=^C^S^Q^U^D:ie=%$:oe=^D:

Note – The baud rate must be set to 9600.

3. In a shell window on the host, run tip(1) and specify the name of the entry:

% tip debug
connected

The shell window is now a tip window connected to the console of the test machine.

Caution – Do not use STOP-A (for SPARC machines) or F1-A (for IA machines) on the
host machine to send a break to stop the test machine. This action actually stops the
host machine. To send a break to the test machine, type ~# in the tip window.
Commands such as this are recognized only if they are the first characters on a line, so
press the Return key or Control-U first if there is no effect.

Setting Up the Test System for SPARC Platforms
A quick way to set up the test machine is to unplug the keyboard before turning on
the machine. The machine then automatically uses serial port A as the console.
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Another way to set up the test machine is to use boot PROM commands to make serial
port A the console. On the test machine, at the boot PROM ok prompt, direct console
I/O to the serial line. To make the test machine always come up with serial port A as
the console, set the environment variables input-device and output-device.

ok setenv input-device ttya

ok setenv output-device ttya

The eeprom command can also be used to make serial port A the console. As
superuser, execute the following commands to make the input-device and output-device
parameters point to serial port A.

# eeprom input-device=ttya

# eeprom output-device=ttya

Executing the eeprom commands causes the console to be redirected to serial port A
at each subsequent system boot.

Setting Up the Test System for IA Platforms
On IA platforms, use the eeprom command to make serial port A the console. The
procedure for this is the same as for SPARC platform and is discussed above.
Executing the eeprom commands causes the console to switch to serial port A (COM1)
during reboot.

Note – Unlike SPARC machines, where the tip connection maintains console control
throughout the boot process, IA machines don’t transfer console control to the tip
connection until an early stage in the boot process.

Preparing for Disasters
Under certain circumstances, a driver can render the system incapable of booting. To
avoid system reinstallation in this event, some advance work must be done.

Back Up Critical System Files
A number of driver-related system files are difficult, if not impossible, to reconstruct.
Files such as /etc/name_to_major,/etc/driver_aliases,
/etc/driver_classes, and /etc/minor_perm can be corrupted if the driver
crashes the system during installation (see the add_drv(1M) man page).

To be safe, after the test machine is in the proper configuration, make a backup copy of
the root file system. If you plan on modifying the /etc/system file, make a backup
copy of the file before modifying it.
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Prepare and Boot an Alternate Kernel
A good strategy to avoid rendering a system inoperable is to make a copy of the
kernel and associated binaries, and to boot that instead of the default kernel. To do so,
make a copy of the drivers in /platform/* as follows:

# cp -r /platform/‘uname -i‘/kernel /platform/‘uname -i‘/kernel.test

When developing your driver, place it in /platform/‘uname
-i‘/kernel.test/drv and boot that kernel instead of the default kernel:

# reboot -- kernel.test/unix

or from the PROM:

ok boot kernel.test/unix

This results in the test kernel and drivers being booted:

Rebooting with command: boot kernel.test/unix
Boot device: /sbus@1f,0/espdma@e,8400000/esp@e,8800000/sd@0,0:a File and args:
kernel.test/unix
SunOS Release 5.9 Version Generic 32-bit
Copyright 1983-2002 Sun Microsystems, Inc. All rights reserved.

...

Alternately, the module path can be changed by booting with the ask (-a) option:

ok boot -a

This results in a series of prompts which you can use to configure the way the kernel
boots:

Rebooting with command: boot -a
Boot device: /sbus@1f,0/espdma@e,8400000/esp@e,8800000/sd@0,0:a File and args: -a
Enter filename [kernel/sparcv9/unix]: kernel.test/sparcv9/unix
Enter default directory for modules
[/platform/sun4u/kernel.test /kernel /usr/kernel]: <CR>
Name of system file [etc/system]: <CR>
SunOS Release 5.9 Version Generic 64-bit
Copyright 1983-2002 Sun Microsystems, Inc. All rights reserved.
root filesystem type [ufs]: <CR>
Enter physical name of root device

[/sbus@1f,0/espdma@e,8400000/esp@e,8800000/sd@0,0:a]: <CR>

Prepare Other Backup Plans
If the system is attached to a network, the test machine can be added as a client of a
server. If a problem occurs, the system can be booted off the network. The local disks
can then be mounted and fixed. Alternatively, the system can be booted directly from
the Solaris 9 CD-ROM.
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Another way to recover from disaster is to have another bootable root file system. Use
format(1M) to make a partition the exact size of the original, then use dd(1M) to copy
it. After making a copy, run fsck(1M) on the new file system to ensure its integrity.

Later, if the system cannot boot from the original root partition, boot the backup
partition and use dd(1M) to copy the backup partition onto the original one. If the
system will not boot but the root file system is undamaged (just the boot block or boot
program was destroyed), boot off the backup partition with the ask (-a) option, then
specify the original file system as the root file system.

Saving System Crash Dumps
When the system panics, it writes an image of kernel memory to the dump device. The
dump device by default is the most suitable swap device. The dump is a system crash
dump, similar to core dumps generated by applications. On rebooting after a panic,
savecore(1M) checks the dump device for a crash dump. If one is found, it makes a
copy of the kernel’s symbol table (called unix.n) and dumps a core file (called
vmcore.n) in the core image directory which by default is
/var/crash/machine_name. There must be enough space in /var/crash to contain
the core dump or it will be truncated. mdb(1) can then be used on the core dump and
the saved kernel.

In the Solaris 9 operating system, crash dump is enabled by default. The
dumpadm(1M) command is used to configure system crash dumps. Use the
dumpadm(1M) command to verify that crash dumps are enabled and to determine the
location of the directory where core files are saved. See the dumpadm(1M) man page
for more information.

Note – savecore(1M) can be prevented from filling the file system if there is a file
called minfree in the directory in which the dump will be saved. This file contains a
number of kilobytes to remain free after savecore(1M) has run. However, if not
enough space is available, the core file is not saved.

Disaster Recovery
If the /devices or /dev directories are damaged—most likely to occur if the driver
crashes during attach(9E)—they can be re-created by booting the system and
running fsck(1M) to repair the damaged root file system. The root file system can
then be mounted. Re-create /dev and /devices by running devfsadm(1M) and
specifying the /devices directory on the mounted disk.

On SPARC, for example, if the damaged disk is /dev/dsk/c0t3d0s0, and an
alternate boot disk is /dev/dsk/c0t1d0s0, do the following:
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ok boot disk1
...
Rebooting with command: boot kernel.test/unix
Boot device: /sbus@1f,0/espdma@e,8400000/esp@e,8800000/sd@31,0:a File and args:
kernel/unix
SunOS Release 5.9 Version Generic 32-bit
Copyright 1983-2002 Sun Microsystems, Inc. All rights reserved.
...
# fsck /dev/dsk/c0t3d0s0** /dev/dsk/c0t3d0s0
** Last Mounted on /
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cyl groups
1478 files, 9922 used, 29261 free

(141 frags, 3640 blocks, 0.4% fragmentation)
# mount /dev/dsk/c0t3d0s0 /mnt

# devfsadm -r /mnt

Caution – Fixing /devices and /dev may allow the system to boot, but other parts
of the system can still be corrupted. This is only a temporary fix to allow saving
information (such as system crash dumps) before reinstalling the system.

Runtime Debugging Tools
This section describes some of the mechanisms that can be used to debug drivers at
runtime. Runtime debugging is typically performed during driver development; this
process is substantially simplified if you have followed the coding practices described
in the previous section. Although the kadb debugger is a runtime debugging tool, it is
treated at length in a separate section, “The kadb Kernel Debugger” on page 351.

/etc/system
The /etc/system file serves several purposes, but for driver development, the most
important is that it allows you to set the value of kernel variables at boot time. This
can be used to toggle different behaviors in a driver, or to enable certain debugging
features made available by the kernel.

/etc/system is read only once, while the kernel is booting. After this file is
modified, the system must be rebooted for the changes to take effect. If a change in the
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file causes the system not to work, boot with the ask (-a) option and specify
/dev/null as the system file.

The set command is used to change the value of module or kernel variables:

� To set module variables, specify the module name and the variable:

set module_name:variable=value

For example, to set the variable test_debug in the driver test, use the following
set command:

set test:test_debug=1

� To set a variable exported by the kernel itself, omit the module name. Other
assignments are also supported, such as bitwise OR’ing a value into an existing
value:

set moddebug | 0x80000000

See the system(4) man page for more information.

Note – Most kernel variables are not guaranteed to be present in subsequent releases.

moddebug

moddebug is a kernel variable that controls the module loading process. The possible
values are:

0x80000000 Prints messages to the console when loading or unloading modules.

0x40000000 Gives more detailed error messages.

0x20000000 Prints more detail when loading or unloading (such as including the
address and size).

0x00001000 No auto-unloading drivers: the system will not attempt to unload the
device driver when the system resources become low.

0x00000080 No auto-unloading streams: the system will not attempt to unload the
streams module when the system resources become low.

0x00000010 No auto-unloading of kernel modules of any type.

0x00000001 If running with kadb, moddebug causes a breakpoint to be executed
and a return to kadb immediately before each module’s _init(9E)
routine is called. Also generates additional debug messages when the
module’s _info and _fini routines are executed.
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kmem_flags

kmem_flags is a kernel variable used to enable debugging features in the kernel’s
memory allocator. Setting kmem_flags to 0xf enables the allocator’s debugging
features. These include runtime checks to find:

� Code that writes to a buffer after it is freed
� Code using memory before it is initialized
� Code that writes past the end of a buffer

The “Debugging With the Kernel Memory Allocator” section of the Solaris Modular
Debugger Guide describes how the kernel memory allocator can be used to determine
the root cause of these problems.

Note – Testing and developing with kmem_flags set to 0xf is extremely valuable
because it can detect latent memory corruption bugs. Because setting kmem_flags to
0xf changes the internal behavior of the kernel memory allocator, you should
thoroughly test without kmem_flags as well.

modload(1M), modunload(1M), and
modinfo(1M)
The kernel automatically loads needed modules and unloads unused ones, so
modload(1M), modunload(1M), and modinfo(1M) are not very useful for system
administration. However, they can be useful when debugging and stress testing driver
load/unload scenarios.

modload(1M) can be used to force a module into memory. The kernel might
subsequently unload the module, but modload(1M) can be used to verify that the
driver has no unresolved references when loaded. Keep in mind that loading a driver
does not mean that the driver will attach. A driver that loads successfully will have its
_info(9E) entrypoint called, but will not necessarily attach.

You can use modinfo(1M) to confirm that your driver is loaded. Here is an example:

$ modinfo
Id Loadaddr Size Info Rev Module Name
6 101b6000 732 - 1 obpsym (OBP symbol callbacks)
7 101b65bd 1acd0 226 1 rpcmod (RPC syscall)
7 101b65bd 1acd0 226 1 rpcmod (32-bit RPC syscall)
7 101b65bd 1acd0 1 1 rpcmod (rpc interface str mod)
8 101ce8dd 74600 0 1 ip (IP Streams module)
8 101ce8dd 74600 3 1 ip (IP Streams device)

...

$ modinfo | grep mydriver

169 781a8d78 13fb 0 1 mydriver (Test Driver 1.5)
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The number in the info field is the major number chosen for the driver.
modunload(1M) can be used to unload a module, given a module ID (which can be
found in the leftmost column of modinfo(1M) output). A common bug is that a driver
refuses to unload, even after a modunload(1M) is issued. Note that a driver will not
unload if the system thinks the driver is busy. This occurs when the driver fails
detach(9E), either because the driver really is busy, or because the detach entry
point is implemented incorrectly.

To remove all currently unused modules from memory, run modunload with a
module ID of 0:

# modunload -i 0

The kadb Kernel Debugger
kadb(1M) is a kernel debugger with facilities for disassembly, breakpoints, watch
points, data display, and stack tracing. This section provides a tutorial on some of the
features of kadb. For further information, consult the kadb(1M) man page.

Starting kadb
In order to start up kadb, the system must be booted with kadb(1M) enabled:

ok boot kadb
...
Rebooting with command: boot kadb
Boot device: /sbus@1f,0/espdma@e,8400000/esp@e,8800000/sd@0,0:a
File and args: kadb
kadb: kernel/sparcv9/unix
Size: 499808+109993+132503 Bytes
/platform/sun4u/kernel/sparcv9/unix loaded - 0x11e000 bytes used
SunOS Release 5.9 Version Generic 64-bit
Copyright 1983-2002 Sun Microsystems, Inc. All rights reserved

....

By default, kadb(1M) boots (and debugs) kernel/unix, or kernel/sparcv9/unix
on a system capable of running a 64-bit kernel. To boot kadb with an alternate kernel,
pass the -D flag to boot, as follows:

ok boot kadb -D kernel.test/unix
...
Rebooting with command: boot kadb -D kernel.test/unix
Boot device: /sbus@1f,0/espdma@e,8400000/esp@e,8800000/sd@0,0:a File
and args: kadb -D kernel.test/unix
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kadb: kernel.test/unix
Size: 482384+67201+88883 Bytes
/platform/sun4u/kernel.test/unix loaded - 0xfe000 bytes used
SunOS Release 5.9 Version dacf-fixes:11/13/99 32-bit
Copyright 1983-2002 Sun Microsystems, Inc. All rights reserved.

...

In this example, the 32-bit version of the alternate kernel kernel.test was booted.
Another option is to pass kadb the -d flag, which causes kadb to prompt for the
kernel name. The -d flag also causes kadb(1M) to provide a prompt after it has loaded
the kernel, so breakpoints can be set.

ok boot kadb -d
...
Rebooting with command: boot kadb -d
Boot device: /sbus@1f,0/espdma@e,8400000/esp@e,8800000/sd@0,0:a File
and args: kadb -d
kadb: kernel.test/unix
Size: 482384+67201+88883 Bytes
/platform/sun4u/kernel.test/unix loaded - 0xfc000 bytes used
stopped at _start: sethi %hi(0x10006c00), %g1

kadb[0]:

At this point you can set breakpoints or continue execution with the :c command.

Note – Kernel modules are dynamically loaded. Consequently, driver symbols are not
available until the driver is loaded. To set breakpoints in modules that have not been
loaded, use deferred breakpoints. For information on deferred breakpoints, refer to
“Breakpoints” on page 357.

kadb(1M) passes any kernel flags to the booted kernel. For example, to boot an
alternate kernel and pass the -r flag:

ok boot kadb -r -D kernel.test/unix
...
Rebooting with command: boot kadb -r -D kernel.test/unix
Boot device: /sbus@1f,0/espdma@e,8400000/esp@e,8800000/sd@0,0:a
File and args: kadb -r -D kernel.test/unix
kadb: kernel.test/unix
Size: 482384+67201+88883 Bytes
/platform/sun4u/kernel.test/unix loaded - 0xfe000 bytes used
SunOS Release 5.9 Version Generic 32-bit
Copyright 1983-2002 Sun Microsystems, Inc. All rights reserved.
obpsym: symbolic debugging is available.
Read 208377 bytes from misc/forthdebug
configuring IPv4 interfaces: le0.
Hostname: test

Configuring /dev and /devices
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After the system is booted, sending a break passes control to kadb(1M). A break is
generated with STOP-A (on the console of SPARC machines), or with F1-A (on the
console of IA machines), or by using ~# (if the console is connected through a tip
window).

...

The system is ready.

test console login: ~#
stopped at edd000d8: ta %icc,%g0 + 125

kadb[0]:

The number in brackets is the CPU that kadb(1M) is currently executing on; the
remaining CPUs are halted. The CPU number is zero on a uniprocessor system.

Caution – Before rebooting or turning off the power, always halt the system cleanly
(with init 0 or shutdown). Buffers might not be flushed otherwise. If the shutdown
must occur from the boot PROM prompt, make sure to flush buffers using the sync
command at the ok prompt.

To return control to the operating system, use :c.

kadb[0]: :c

test console login:

Exiting
To exit kadb(1M), use $q. On SPARC machines, this will exit to the ok prompt. On IA
machines, you will be prompted to reboot the system.

kadb[0]: $q
Type ‘go’ to resume

ok

kadb(1M) can be resumed by typing go at the ok prompt.

Caution – No other commands should be performed from the PROM if the system is
to be resumed. PROM commands other than go can change system state that the
Solaris 9 operating environment depends upon.

Staying at the kadb(1M) prompt for too long can cause the system to lose track of the
time of day, and can cause network connections to time out.
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Commands
The general form of a kadb command is:

[ address ] [ ,count ] command [;]

If address is omitted, the current location is used (‘.’ could also be used to represent the
current location). The address can be a kernel symbol. If count is omitted, it defaults to
1.

Commands to kadb consist of a verb followed by a modifier or list of modifiers. Verbs
can be:

/ Prints locations starting at address in the kernel address space

= Prints the value of address itself

> Assigns a value to a debugger variable or machine register

< Reads a value from a debugger variable or machine register

RETURN Repeats the previous command with a count of 1. Increments ‘.’ (the
current location)

With / and =, output format specifiers can be used. Lowercase letters normally print 2
bytes, uppercase letters print 4 bytes. The values of these specifiers are:

o, O 2-, 4-byte octal

g 8-byte octal

G 8-byte unsigned octal

d, D 2-, 4-byte decimal

e 8-byte decimal

E 8-byte unsigned decimal

x, X 2-, 4-byte hexadecimal

J 8-byte hexadecimal

K 4–byte hexadecimal for 32–bit programs, 8–byte hexadecimal for 64–bit
programs. Use this format specifier to examine pointers.

u, U 2-, 4-byte unsigned decimal

c Prints the addressed character

C Prints the addressed character using ^ escape notation

s Prints the addressed string
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S Prints the addressed string using ^ escape notation

i Prints as machine instructions (disassemble)

a Prints the value of ‘.’ in symbolic form

w, W 2-, 4-byte write

Z 8-byte write

Caution – When using w, W or Z to modify a kernel variable, make sure that the size
of the variable matches the size of the write you are performing. If you specify an
incorrect size you could corrupt neighboring data.

For example, to set a bit in the moddebug variable when debugging a driver, first
examine the value of moddebug, then set it to the desired bit.

kadb[0]: moddebug/X
moddebug:
moddebug: 1000
kadb[0]: moddebug/W 0x80001000

moddebug: 0x1000 = 0x80001000

Routines can be disassembled with the ‘i’ command. This is useful when tracing
crashes, since the only information might be the program counter at the time of the
crash. For example, to print the first four instructions of the kmem_alloc function:

kadb[0]: kmem_alloc,4/i
kmem_alloc:
kmem_alloc: save %sp, -0x60, %sp
sub %i0, 0x1, %l6
sra %l6, 0x3, %i5

tst %i5

Specify symbolic notation with the ‘a’ command, to show the addresses:

kadb[0]: kmem_alloc,4/ai
kmem_alloc:
kmem_alloc: save %sp, -0x60, %sp
kmem_alloc+4: sub %i0, 0x1, %l6
kmem_alloc+8: sra %l6, 0x3, %i5

kmem_alloc+0xc: tst %i5

Register Identifiers
You can discover what machine registers are available on your processor architecture
using the $r command. This example shows the output of $r on a SPARC system
with the sun4 architecture:
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kadb[0]: $r

g0 0 l0 0
g1 100130a4 debug_enter l1 edd00028
g2 10411c00 tsbmiss_area+0xe00 l2 10449c90
g3 10442000 ti_statetbl+0x1ba l3 1b
g4 3000061a004 l4 10474400
ecc_syndrome_tab+0x80
g5 0 l5 3b9aca00
g6 0 l6 0
g7 2a10001fd40 l7 0
o0 0 i0 0
o1 c i1 10449e50
o2 20 i2 0
o3 300006b2d08 i3 10
o4 0 i4 0
o5 0 i5 b0
sp 2a10001b451 fp 2a10001b521
o7 1001311c debug_enter+0x78 i7 1034bb24
zsa_xsint+0x2c4
y 0
tstate: 1604 (ccr=0x0, asi=0x0, pstate=0x16, cwp=0x4)
pstate: ag:0 ie:1 priv:1 am:0 pef:1 mm:0 tle:0 cle:0 mg:0 ig:0
winreg: cur:4 other:0 clean:7 cansave:1 canrest:5 wstate:14
tba 0x10000000
pc edd000d8 edd000d8: ta %icc,%g0 + 125

npc edd000dc edd000dc: nop

kadb exports each of these registers as a debugger variable with the same name.
Reading from the variable fetches the current value of the register. Writing to the
variable changes the value of the associated machine register. For example, you can
change the value of the ’%o0’ register:

kadb[0]: <o0=K
0

kadb[0]: 0x1>o0
kadb[0]: <o0=K

1

Display and Control Commands
The following commands display and control the status of kadb(1M):

$b Display all breakpoints

$c Display stack trace

$d Change default radix to value of dot

$q Quit
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$r Display registers

$M Display built-in macros

‘$c’ is useful when a breakpoint is reached, but is usually not useful if kadb(1M) is
entered at a random time. The number of arguments to print can be passed following
the ‘$c’ (‘$c 2’ for two arguments).

Breakpoints
In kadb(1M), breakpoints can be set. When reached, the kernel will automatically
drop back into kadb. The standard form of a breakpoint command is:

[module_name#] addr [, count]:b [command]

addr is the address at which the program will be stopped and the debugger will
receive control, count is the number of times that the breakpoint address occurs
before stopping, and command is almost any adb(1) command.

The optional module_name specifies deferred breakpoints that are set when the
module is loaded. module_name identifies a particular module that contains addr. If
the module has been loaded, kadb will try to set a regular breakpoint; if the module is
not loaded, kadb will set a deferred breakpoint. When the module is loaded, kadb
will try to resolve the location of the breakpoint and convert the breakpoint to a
regular breakpoint.

Other breakpoint commands are:

:c Continue execution

:d Delete breakpoint

:s Single step

:e Single step, but step over function calls

:u Stop after return to caller of current function

:z Delete all breakpoints

The following example sets a breakpoint in scsi_transport(9F), a commonly used
routine. Upon reaching the breakpoint, ’$c’ is used to print a stack trace. The top of
the stack is displayed first. Note that kadb does not know how many arguments were
passed to each function.

stopped at edd000d8: ta %icc,%g0 + 125
kadb[0]: scsi_transport:b
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kadb[0]: :c
test console login: root
breakpoint at:
scsi_transport: save %sp, -0x60, %sp
kadb[0]: $c
scsi_transport(702bb578,1000,1,10000,0,702bb7fe)
sdstrategy(1019c8c0,702bb61c,0,0,702bb578,70cad7b8) + 704
bdev_strategy(1042a808,70cad7b8,705f3efc,40,10597900,2000) + 98
ufs_getpage_miss(70cad7b8,0,10597900,0,0,4023ba8c) + 2b0
ufs_getpage(0,0,0,0,2000,4023ba8c) + 7c0
segvn_fault(4023ba8c,2000,ff3b0000,0,0,0) + 7c8
as_fault(1,ff3b0000,70d98030,2000,0,ff3b0000) + 49c
pagefault(0,0,70df8048,705c7450,0,ff3b0000) + 4c
trap(10080,10000,ff3c4ea4,70df8048,ff3b0000,1) + db4
kadb[0]: $b
breakpoints
count bkpt type len command
1 scsi_transport :b instr 4
kadb[0]: scsi_transport:d

kadb[0]: :c

Conditional Breakpoints
Breakpoints can also be set to occur only if a certain condition is met. By providing a
command, the breakpoint will be taken only if the count is reached or the command
returns zero. For example, a breakpoint that occurs only on certain I/O controls could
be set in the driver’s ioctl(9E) routine. This is the general syntax of conditional
breakpoints:

address,count:b command

In this example, address is the address at which to set the breakpoint. count is the
number of times the breakpoint should be ignored (note that 0 means break only when
the command returns zero). command is the kadb(1M) command to execute.

Here is an example of breaking only in the sdioctl() routine if the DKIOGVTOC (get
volume table of contents) I/O control occurs.

kadb[0]: sdioctl+4,0:b <i1-0x40B
kadb[0]: $b
breakpoints
count bkpt type len command
0 sdioctl+4 :b instr 4 <i1-0x40B

kadb[0]: :c

Adding four to sdioctl skips to the second instruction in the routine, bypassing the
save instruction that establishes the stack. The ‘<i1’ refers to the first input register,
which is the second parameter to the routine (the cmd argument of ioctl(9E)). The
count of zero is impossible to reach, so it stops only when the command returns zero,
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which is when ‘i1 - 0x40B’ is true. This means i1 contains 0x40B (the value of the
ioctl(9E) command, determined by examining the ioctl definition).

To force the breakpoint to be reached, the prtvtoc(1M) command, which is known to
issue the following I/O control, is used:

# prtvtoc /dev/rdsk/c0t0d0s0
breakpoint at:
sdioctl+4: mov %i5, %l0
kadb[0]: $c
sdioctl(800000,40b,ffbefb54,100005,704a3ce8,4026bc7c) + 4

ioctl(3,40b,70ca27b8,40b,ffbefb54,0) + 1e0

Macros
kadb(1M) supports macros that are used for displaying kernel data structures.
kadb(1M) macros can be displayed with $M. Macros are used in the form:

[ address ] $<macroname

Note – Neither the information displayed by these macros, nor the format in which
the information is displayed constitute an interface. Therefore, the information and
format can change at any time.

Device Macros
This section describes the kadb(1M) macros that can be used to retrieve information
from the kernel about a device during a debugging session.

devinfo_brief Prints a brief summary of a dev_info_t structure; the name and addr
fields are shown in string form and are used in the /devices path to
the node

devinfo Prints devinfo_brief information for a dev_info_t structure
followed by an in-order dump of all fields

devinfo.parent Prints devinfo_brief information for the specified node and its
parents all the way back to the root of the devinfo tree

devinfo.sibling Prints devinfo_brief information for all siblings of the specified
node; you see all sibling nodes if you start at the parent’s child

devinfo.minor Prints the ddi_minor_data structure for all minor name nodes
associated with the specified device node

devinfo.prop Prints all the property lists associated with the specified device node
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devinfo_major Prints devinfo_brief information for all device nodes associated with
the specified driver major number

devt Breaks a dev_t into its major and minor parts and prints the values in
hexadecimal and decimal

devnames Prints the contents of the specified devnames structure

devnames_major Prints the contents of the devnames structure for the specified major
number

bus_op Prints the contents of a bus_ops structure

The devinfo commands, such as devinfo and devinfo_brief, return a node_state
value, which may be one of the following:

DS_LINKED This device node has been linked into the kernel’s device tree,
but the system has not yet found a driver for it.

DS_BOUND The node is bound to a driver, but the driver’s probe(9E)
routine has not yet been called.

DS_INITIALIZED The parent nexus has assigned a bus address for the driver and
completed implementation-specific initializations, but the
driver’s probe(9E) routine has not yet been called.

DS_PROBED The driver’s probe(9E) routine returned successfully.

DS_ATTACHED The driver’s attach(9E) routine returned successfully.

DS_READY The device is fully configured

Examples: Use of Device Macros
The examples in this section show how some of the device-related macros can be used
to debug a driver.

The following ls -l command shows how the /devices path fits into the devinfo
structure:

# ls -l /dev/ttya
lrwxrwxrwx 1 root root 6 Aug 17 17:50 /dev/ttya -> term/a
# ls -l /dev/term/a
lrwxrwxrwx 1 root root 32 Aug 17 17:42 /dev/term/a ->

../../devices/obio/zs@0,100000:a

Example 18–1 shows how to obtain information about the /dev/ttya device from the
devinfo structure and other kernel structures, beginning with devinfo_major.
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EXAMPLE 18–1 The devinfo_major Macro

# ls -lL /dev/ttya
crw-rw-rw- 1 root sys 29, 0 Aug 17 17:42 /dev/ttya
# ~stopped at:
edd000d8: ta %icc,%g0 + 125
kadb[0]: 0t29$<devinfo_major

============== devinfo f5f0dcd0
binding_name

0xf5bb38f8: zs
node_name

0xf5bb38f8: zs
addr

0xf5f8d6a0: 0,100000
node_state
6 DS_READY

major (hex)
1d

instance
0

0xf5f0dcd0: parent child sibling
f5f0f380 0 f5f0dba8

============== devinfo f5f0dba8
binding_name

0xf5bb3a18: zs
node_name

0xf5bb3a18: zs
addr

0xf5f90560: 0,0
node_state
6 DS_READY

major (hex)
1d

instance
1

0xf5f0dba8: parent child sibling
f5f0f380 0 f5f0da80

Example 18–2 shows the use of the devinfo_brief macro. It also shows the use of
top_devinfo. top_devinfo is a pointer to the root of the devinfo tree
(rootnexus)—all other devinfo nodes are descendants of this node. If you want to look
at the device tree top-down in the debugger, this is where you start.

EXAMPLE 18–2 The devinfo_brief Macro

kadb[0]: *top_devinfo$<devinfo_brief

============== devinfo f5f0fde8
binding_name
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EXAMPLE 18–2 The devinfo_brief Macro (Continued)

0xf5bc6a30: SUNW,SPARCstation-10
node_name

0xf5bc6af8: SUNW,SPARCstation-10
addr

0xf5f90950:
node_state
6 DS_READY

major (hex)
1

0xf5f0fde8: parent child sibling

0 f5f0fcc0 0

Thread Macros
threadlist is a useful macro that displays the stacks of all the threads in the system.

EXAMPLE 18–3 The threadlist Macro

kadb[0]: $<threadlist

============== thread_id 10404000
p0+0x300:

process args sched

t0+0xa8: lwp procp wchan
1041b810 10424688 0

t0+0x24:
pc sp
sched+0x4f4 10403be8

?(10404000,1040c000,2,10424604,0,6e)
_start(10006ef4,1041adb0,1041adb0,1041adb0,10462910,50) + 15c

...

============== thread_id 40043e60
p0+0x300:

process args sched

40043f08: lwp procp wchan
0 10424688 10473c56

40043e84:
pc sp
cv_wait+0x60 40043c08

?(10473c56,10473c5c,0,40043cd0,40043e60,10093084)
ufs_thread_idle(10471e80,0,10473c5c,10424688,81010100,0) + bc
thread_start(0,0,0,0,0,0) + 4

...
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Another useful macro is thread. Given a thread ID, this macro prints the
corresponding thread structure. This can be used to look at a certain thread found
with the threadlist macro, to look at the owner of a mutex, or to look at the current
thread, as shown here:

EXAMPLE 18–4 The thread Macro

kadb[0]: <g7$<thread
70e87ac0: link stk startpc

0 4026bc80 0
70e87acc: bound_cpu affinitycnt bind_cpu

0 0 -1
70e87ad4: flag proc_flag schedflag

0 4 3
70e87ada: preempt preempt_lk state

0 0 4
70e87ae0: pri epri

40 0
70e87ae4:

pc sp
10098350 4026b618

70e87aec: wchan0 wchan sobj_ops
0 0 0

70e87af8: cid clfuncs cldata
1 10470ffc 702c0488

70e87b04: ctx lofault onfault
0 0 0

...

Note – No type information is maintained by kadb, so using a macro on an
inappropriate address results in garbage output.

Macros do not necessarily output all the fields of the structures, nor is the output
necessarily in the order given in the structure definition. Occasionally, memory needs
to be dumped for certain structures and then matched with the structure definition in
the kernel header files.
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Caution – Drivers should never reference system header files or structures not listed
in man pages section 9S: DDI and DKI Data Structures. However, examining
non-DDI-compliant structures (such as thread structures) can be useful in debugging
drivers.

Output Pager
Some kadb commands (like $<threadlist) output lots of data, which can scroll off
of the screen very rapidly. kadb provides a simple output pager to remedy this
problem. The pager command is lines::more, where lines represents the number of
lines to print before pausing the console output. Keep in mind that this does not take
into account lines that wrap because they are wider than the terminal width. Here is
an example usage:

kadb[0]: 0t10::more
kadb[0]: $<threadlist

============== thread_id 10408000
p0+0x4c0:

process args sched

t0+0x128: lwp procp wchan
10429ed0 104393e8 0

t0+0x38:
pc sp
sched+0x4e4 104071f1

?(10408000,10414c00,2,104393e8,10439308,0)
_start(10007588,104292e0,104292e0,104292e0,1043b8b0,10429360) + 200

============== thread_id 2a10001fd40
p0+0x4c0:

process args sched
--More-- <SPACE>

...

Pressing the space bar at the “--More--” prompt pages the output by the number of
lines specified to ::more (in this case, 10). Pressing "Return" prints only the next line
of output. You can abort the output and return to the kadb prompt by typing Ctrl-C.
To disable the pager, issue ’0::more’ at the kadb prompt.

Example: kadb on a Deadlocked Thread
This example shows how kadb can be used to debug a driver bug. This example was
taken from the development of the ramdisk sample driver. This driver exports
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physical memory as a virtual disk. In this case, the dd(1M) command hangs while
trying to copy some data onto the device and cannot be aborted. Though a crash
dump could be forced, for illustrative purposes, kadb(1M) will be used. After logging
into the system remotely, ps was used to determine that the system was still running;
and only the dd(1M) command is hung.

At this point, the system is rebooted with kadb, which can now be entered by typing
STOP-A on the system console. After the rest of the kernel has loaded, moddebug is
patched to see if loading is the problem:

stopped at:
edd000d8: ta %icc,%g0 + 125
kadb[0]: moddebug/X
moddebug:
moddebug: 0
kadb[0]: moddebug/W 0x80000000
moddebug: 0x0 = 0x80000000

kadb[0]: :c

modload(1M) is used to load the driver, to separate module loading from the real
access:

# modload /home/driver/drv/ramdisk

It loads without errors, so loading is not the problem. The condition is recreated with
dd(1M):

# dd if=/dev/zero of=/devices/pseudo/ramdisk@0:c,raw

dd(1M) hangs. At this point, kadb(1M) is entered and the stack examined:

stopped at:
edd000d8: ta %icc,%g0 + 125
kadb[0]: $c
intr_vector() + 7dcfc0d8
debug_enter(0,0,10431e50,10,1,b0) + 78
zsa_xsint(80,7044a06c,44,7044a000,ff0113,0) + 278
zs_high_intr(7044a000,1,1,1042f78c,10424680,100949d0) + 20c
sbus_intr_wrapper(704dfad4,0,702bd048,7029cec0,630,10260250) + 30
current_thread(4001fe60,1041a550,10424698,10424698,10150f08,0) + 180
idle(1040b6c0,0,0,1041a550,704d6a98,0) + 54

thread_start(0,0,0,0,0,0) + 4

The presence of idle on the current thread stack indicates that this thread is not the
cause of the deadlock. To determine the deadlocked thread, the entire thread list is
checked:

kadb[0]: $<threadlist
...

============== thread_id 70cef120
70c8b1c0:

process args dd if=/dev/zero of=/devices/pseudo/ramdisk@0:c,raw
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70cef1c8: lwp procp wchan
70fa9080 70c8aec0 70691fc8

70cef144:
pc sp
sema_p+0x290 40313a78

?(70691fc8,10424680,1,1042b99c,10460f8c,70691fc8)
biowait(70691f60,1041a6c4,70691f60,70c385d0,40313bcc,705c73a0) + 8c
default_physio(1042e8fc,200,129,100,70eb5b54,705c73a0) + 3bc
write(2002,70aac1d0,70f9f9ac,200,4,200) + 23c

...

Of all the threads, only one has a stack trace which references the ramdisk driver. It
seems that the process running dd(1M) is blocked in biowait(9F). biowait(9F)’s
first parameter is a buf(9S) structure. The next step is to examine this structure:

kadb[0]: 70691f60$70691f60$
70691f60: flags forw back

204129 0 0
70691f6c: av_forw av_back bcount

0 0 512
70691fa0: bufsize error edev

0 0 1180000
70691f7c: un.b_addr _b_blkno resid

710e8000 0 0
70691f94: proc iodone vp

70c8aec0 0 0
70691f98: pages

0

The resid field is 0, which indicates that the transfer is complete. physio(9F) is still
blocked, however. The reference for physio(9F) in the Solaris 9 Reference Manual
Collection points out that biodone(9F) should be called to unblock biowait(9F). This
is the problem; rd_strategy() did not call biodone(9F). Adding a call to
biodone(9F) before returning fixes this problem.

Post-Mortem Debugging
When kadb is running and the system panics, control is passed to the debugger so
that you can investigate the source of the problem. However, kadb is not always the
best tool for problem analysis; frequently it is easier to use ’:c’ to continue execution
and allow the system to save a crash dump. When the system reboots, you can
perform post-mortem analysis on the saved crash dump. This process is analogous to
debugging an application crash from a process core file.

Post-mortem analysis offers several advantages to driver developers: it allows more
than one developer to examine a problem in parallel; it allows developers to retrieve
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information on a problem that occurred in production at a customer site, where it is
not acceptable to debug interactively; it is necessary to perform certain types of
advanced kernel analysis, such as checking for kernel memory leaks.

Getting Started With the Modular Debugger
The modular debugger, MDB, provides sophisticated debugging support for
analyzing kernel problems. This section provides an overview of MDB’s features. For
a more complete discussion of MDB’s capabilities, refer to the Solaris Modular Debugger
Guide.

MDB’s command syntax is compatible with the kadb syntax and MDB can execute all
of the kadb (and legacy adb) macros. These are stored in /usr/lib/adb and in
/usr/platform/‘uname -i‘/lib/adb for 32-bit kernels; and in
/usr/lib/adb/sparcv9 and /usr/platform/‘uname -i‘/lib/adb/sparcv9
for 64-bit kernels.

In addition to macro files, MDB supports debugger commands (or dcmds). These
dcmds can be dynamically loaded at runtime from a set of debugger modules. MDB
provides a first-class programming API for implementing debugger modules so that
driver developers can implement their own custom debugging support. MDB also
provides a host of usability features, such as command line editing, command history,
an output pager, and online help.

MDB provides a rich set of modules and dcmds for debugging the Solaris kernel and
associated modules and device drivers. Some of the activities these facilities enable
you to do include:

� formulate complex debugging queries
� locate all the memory allocated by a particular thread
� print a visual picture of a kernel STREAM
� determine what type of structure a particular address refers to
� locate leaked memory blocks in the kernel
� analyze memory to locate stack traces

Note – In earlier versions of the Solaris operating environment, adb(1) was the
recommended tool for post-mortem analysis. In the Solaris 9 operating environment,
mdb(1) is the recommended tool for post-mortem analysis. It provides an
upward-compatible syntax and feature set that surpass the set of commands available
from the legacy crash(1M) utility, which has been removed from Solaris 9.

To get started, type mdb and supply it with a system crash dump:

% cd /var/crash/testsystem
% ls
bounds unix.0 vmcore.0
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% mdb unix.0 vmcore.0
Loading modules: [ unix krtld genunix ufs_log ip usba s1394 cpc nfs ]
> ::status
debugging crash dump vmcore.0 (64-bit) from testsystem
operating system: 5.9 Generic (sun4u)
panic message: zero

dump content: kernel pages only

When MDB responds with the ’>’ prompt, it is ready for commands. To examine the
running kernel on a live system, type:

# mdb -k
Loading modules: [ unix krtld genunix ufs_log ip usba s1394 ptm cpc ipc nfs ]
> ::status
debugging live kernel (64-bit) on testsystem

operating system: 5.9 Generic (sun4u)

Important MDB Commands
This section provides a tutorial for some of the MDB debugger commands most
applicable to driver authors. Note that the information presented here is dependent on
the type of system used. A Sun Blade™ 100 workstation running the 64-bit kernel was
used to produce these examples.

The Solaris Modular Debugger Guide provides details about each debugger command
discussed here, as well as more information about all aspects of MDB. Online help is
available from within MDB using the ::help built-in command.

Displaying Data Structures
MDB provides a powerful facility for displaying kernel data structures, so that earlier
kadb(1) and mdb(1) debugger macros are no longer needed. Starting in Solaris 9, the
operating system kernel maintains a highly compressed database of data structure
type information in nonpageable system memory. This means that when a crash
occurs, this type information is saved as part of the crash dump.

Here is an example of using the kernel type information to display all of the fields of a
scsi_pkt structure:

EXAMPLE 18–5 Displaying Kernel Information with MDB

> 7079ceb0::print -t ’struct scsi_pkt’
{

opaque_t pkt_ha_private = 0x7079ce20
struct scsi_address pkt_address = {

struct scsi_hba_tran *a_hba_tran = 0x70175e68
ushort_t a_target = 0x6
uchar_t a_lun = 0
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EXAMPLE 18–5 Displaying Kernel Information with MDB (Continued)

uchar_t a_sublun = 0
}
opaque_t pkt_private = 0x708db4d0
int (*)() *pkt_comp = sd_intr
uint_t pkt_flags = 0
int pkt_time = 0x78
uchar_t *pkt_scbp = 0x7079ce74
uchar_t *pkt_cdbp = 0x7079ce64
ssize_t pkt_resid = 0
uint_t pkt_state = 0x37
uint_t pkt_statistics = 0
uchar_t pkt_reason = 0

}

Each data structure member is presented along with its type. Nested structures are
expanded for easy viewing. ::print can also decode arrays and unions.

It is frequently helpful to discover the size of a particular kernel data structure; doing
so is simple, using the ::sizeof dcmd:

> ::sizeof ’struct scsi_pkt’

sizeof (struct scsi_pkt) = 0x58

You can also locate the offset of a field within a data structure:

> ::offsetof ’struct scsi_pkt’ pkt_state

offsetof (pkt_state) = 0x48

The -a option may be used to view the offset of each member of a data structure; if no
address is specified to ::print, the output begins at address 0, providing the offset of
each field:

EXAMPLE 18–6 MDB: Viewing Data Members

> ::print -at ’struct scsi_pkt’

{
0 opaque_t pkt_ha_private
8 struct scsi_address pkt_address {

8 struct scsi_hba_tran *a_hba_tran
10 ushort_t a_target
12 uchar_t a_lun
13 uchar_t a_sublun

}
18 opaque_t pkt_private
20 int (*)() *pkt_comp
28 uint_t pkt_flags
2c int pkt_time
30 uchar_t *pkt_scbp
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EXAMPLE 18–6 MDB: Viewing Data Members (Continued)

38 uchar_t *pkt_cdbp
40 ssize_t pkt_resid
48 uint_t pkt_state
4c uint_t pkt_statistics
50 uchar_t pkt_reason

}

The ::print, ::sizeof and ::offsetof facilities make it possible to more rapidly
debug problems which arise when your driver interacts with the Solaris kernel.

Caution – This facility provides access to “raw” kernel data structures. You may
examine any structure whether it appears as part of the DDI or not; therefore, refrain
from relying on any data structure that is not explicitly part of the DDI.

Note – These dcmds may only be used with objects that contain compressed symbolic
debugging information designed for use with MDB. This information is currently only
available for certain Solaris kernel modules. The SUNWzlib (32-bit) or SUNWzlibx
(64-bit) decompression software must be installed in order to process the symbolic
debugging information.

Navigating the Device Tree
MDB provides the ::prtconf dcmd to display the kernel device tree. The output of
this dcmd is similar to the output of the prtconf(1M) command:

> ::prtconf
300015d3e08 SUNW,Sun-Blade-100

300015d3c28 packages (driver not attached)
300015d3868 SUNW,builtin-drivers (driver not attached)
300015d3688 deblocker (driver not attached)
300015d34a8 disk-label (driver not attached)
300015d32c8 terminal-emulator (driver not attached)
300015d30e8 obp-tftp (driver not attached)
300015d2f08 dropins (driver not attached)
300015d2d28 kbd-translator (driver not attached)
300015d2b48 ufs-file-system (driver not attached)

300015d3a48 chosen (driver not attached)
300015d2968 openprom (driver not attached)

...

The node can then be displayed using a macro (such as the $<devinfo_brief
macro) or the ::devinfo dcmd:
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> 300015d3e08::devinfo
300015d3e08 SUNW,Sun-Blade-100

System properties at 0x300015abdc0:
name=’relative-addressing’ type=int items=1

value=00000001
name=’MMU_PAGEOFFSET’ type=int items=1

value=00001fff
name=’MMU_PAGESIZE’ type=int items=1

value=00002000
name=’PAGESIZE’ type=int items=1

value=00002000
Driver properties at 0x300015abe00:

name=’pm-hardware-state’ type=string items=1
value=’no-suspend-resume’

> 300015d3e08$<devinfo_brief

============== devinfo 300015d3e08
binding_name

0x300013b3058: SUNW,Sun-Blade-100
node_name

0x300013b3118: SUNW,Sun-Blade-100
addr

0x300015b1760:
node_state
6 DS_READY

major (hex)
1

0x300015d3e08: parent child sibling

0 300015d3c28 0

Use ::prtconf to see where your driver has attached in the device tree, and to
display device properties. You can also specify the verbose (-v) flag to ::prtconf to
display the properties for each device node:

> ::prtconf -v
DEVINFO NAME
300015d3e08 SUNW,Sun-Blade-100

System properties at 0x300015abdc0:
name=’relative-addressing’ type=int items=1

value=00000001
name=’MMU_PAGEOFFSET’ type=int items=1

value=00001fff
name=’MMU_PAGESIZE’ type=int items=1

value=00002000
name=’PAGESIZE’ type=int items=1

value=00002000
Driver properties at 0x300015abe00:

name=’pm-hardware-state’ type=string items=1
value=’no-suspend-resume’

...
300015ce798 pci10b9,5229, instance #0

Driver properties at 0x300015ab980:
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name=’target2-dcd-options’ type=any items=4
value=00.00.00.a4

name=’target1-dcd-options’ type=any items=4
value=00.00.00.a2

name=’target0-dcd-options’ type=any items=4
value=00.00.00.a4

...

Another way to locate instances of your driver is the ::devbindings dcmd. Given a
driver name, it displays a list of all instances of the named driver:

> ::devbindings dad
300015ce3d8 ide-disk (driver not attached)
300015c9a60 dad, instance #0

System properties at 0x300015ab400:
name=’lun’ type=int items=1

value=00000000
name=’target’ type=int items=1

value=00000000
name=’class_prop’ type=string items=1

value=’ata’
name=’type’ type=string items=1

value=’ata’
name=’class’ type=string items=1

value=’dada’
...

300015c9880 dad, instance #1
System properties at 0x300015ab080:

name=’lun’ type=int items=1
value=00000000

name=’target’ type=int items=1
value=00000002

name=’class_prop’ type=string items=1
value=’ata’

name=’type’ type=string items=1
value=’ata’

name=’class’ type=string items=1
value=’dada’

...

Retrieving Driver Soft State Information
A common problem when debugging a driver is retrieving the soft state for a particular
driver instance. The soft state is allocated with the ddi_soft_state_zalloc(9F)
routine and obtained by drivers using ddi_get_soft_state(9F). If you know the
name of the soft state pointer (the first argument to ddi_soft_state_init(9F)),
MDB enables you to retrieve the soft state for a particular driver instance using the
::softstate dcmd:

> *bst_state::softstate 0x3

702b7578
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In this case, ::softstate is used to fetch the soft state for instance 3 of the bst
sample driver. This pointer points to a bst_soft structure used by the driver to track
state for this instance.

Detecting Kernel Memory Leaks
The ::findleaks dcmd provides powerful and efficient detection of memory leaks
in kernel crash dumps. The full set of kernel-memory debugging features should be
enabled for ::findleaks to be effective. For more information see “kmem_flags”
on page 350. Running ::findleaks during driver development and testing can
detect code which is leaking memory and wasting kernel resources. See “Debugging
With the Kernel Memory Allocator” in the Solaris Modular Debugger Guide for a
complete discussion of ::findleaks.

Note – Use ::findleaks to detect and eliminate kernel memory leaks caused by
your code. Code that leaks kernel memory can render the system vulnerable to
denial-of-service attacks.

Writing Debugger Commands
MDB provides a powerful API for implementing new debugger facilities that you can
use to debug your driver. The Solaris Modular Debugger Guide explains the
programming API in more detail, and the SUNWmdbdm package installs sample MDB
source code in the directory /usr/demo/mdb. You can use MDB to automate lengthy
debugging chores or help to validate that your driver is behaving properly. You can
also package your MDB debugging modules with your driver product so that these
facilities will be available to service personnel at a customer site.
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CHAPTER 19

Recommended Coding Practices

This chapter describes how to write drivers that are robust. Drivers that are written in
accordance with the following guidelines:

� Are easier to debug
� Protect the system from hardware and software faults

Debugging
Kernel code is more difficult to debug than user-level code because:

� The driver operates much closer to the hardware
� The driver operates without the protection of the operating system

Be sure to build debugging support into your driver. Debugging support facilitates
both development and maintenance work.

Use cmn_err(9F) to Log Driver Activity
Use the cmn_err(9F) function to print messages to the console from within the device
driver. This function provides additional format characters (such as %b) to print device
register bits. See the cmn_err(9F) man page and “Printing Messages” on page 42 for
more information.
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Note – To ensure that the driver is DDI-compliant, use cmn_err(9F) instead of
printf() and uprintf().

Use ASSERT(9F) to Catch Invalid Assumptions
void ASSERT(EXPRESSION)

ASSERT(9F) is a macro that is used to halt the execution of the kernel if a condition
expected to be true is actually false. ASSERT provides a way for the programmer to
validate the assumptions made by a piece of code.

The ASSERT macro is defined only when the DEBUG compilation symbol is defined.
However, when DEBUG is not defined, the ASSERT macro has no effect.

For example, if a driver pointer should be non-NULL and is not, the following
assertion can be used to check the code:

ASSERT(ptr != NULL);

If the driver is compiled with DEBUG defined and the assertion fails, a message is
printed to the console and the system panics:

panic: assertion failed: ptr != NULL, file: driver.c, line: 56

Note – Because ASSERT(9F) uses the DEBUG compilation symbol, any conditional
debugging code should also use DEBUG.

Assertions are an extremely valuable form of active documentation.

Use mutex_owned(9F) to Validate and Document
Locking Requirements
int mutex_owned(kmutex_t *mp);

A significant portion of driver development involves properly handling multiple
threads. Comments should always be used when a mutex is acquired; they are even
more useful when an apparently necessary mutex is not acquired. To determine if a
mutex is held by a thread, use mutex_owned(9F) within ASSERT(9F):

void helper(void)
{

/* this routine should always be called with xsp’s mutex held */
ASSERT(mutex_owned(&xsp->mu));
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...

}

Caution – mutex_owned(9F) is only valid within ASSERT(9F) macros. Under no
circumstances should you use it to control the behavior of a driver.

Use Conditional Compilation to Toggle Costly
Debugging Features
Debugging code can be placed in a driver by conditionally compiling code based on a
preprocessor symbol such as DEBUG or by using a global variable. Conditional
compilation has the advantage that unnecessary code can be removed in the
production driver. Using a variable allows the amount of debugging output to be
chosen at runtime. This can be accomplished by setting a debugging level at runtime
with an ioctl or through a debugger. Commonly, these two methods are combined.

The following example relies on the compiler to remove unreachable code (the code
following the always-false test of zero), and also provides a local variable that can be
set in /etc/system or patched by a debugger.

#ifdef DEBUG
comments on values of xxdebug and what they do
static int xxdebug;
#define dcmn_err if (xxdebug) cmn_err
#else
#define dcmn_err if (0) cmn_err
#endif
...

dcmn_err(CE_NOTE, "Error!\n");

This method handles the fact that cmn_err(9F) has a variable number of arguments.
Another method relies on the macro having one argument, a parenthesized argument
list for cmn_err(9F), which the macro removes. It also removes the reliance on the
optimizer by expanding the macro to nothing if DEBUG is not defined.

#ifdef DEBUG
comments on values of xxdebug and what they do

static int xxdebug;
#define dcmn_err(X) if (xxdebug) cmn_err X
#else
#define dcmn_err(X) /* nothing */
#endif

...
/* Note:double parentheses are required when using dcmn_err. */

dcmn_err((CE_NOTE, "Error!"));
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You can extend this in many ways, such as by having different messages from
cmn_err(9F), depending on the value of xxdebug, but be careful not to obscure the
code with too much debugging information.

Another common scheme is to write an xxlog() function, which uses vsprintf(9F)
or vcmn_err(9F) to handle variable argument lists.

Defensive Programming
Use the following defensive programming techniques to protect the operating system
from:

� Introducing system panics
� Introducing system hangs
� Draining system resources
� Allowing the uncontrolled spread of corrupted data

All Solaris drivers should abide by these coding practices:

� Each piece of hardware should be controlled by a separate instance of the device
driver. (See “Device Configuration Concepts” on page 76.)

� Programmed I/O (PIO) must be performed only through the DDI access functions,
using the appropriate data access handle. (See Chapter 6.)

� The device driver must assume that data it receives from the device could be
corrupted. The driver must check the integrity of the data before using it.

� The driver must avoid releasing bad data to the rest of the system.

� Use only documented DDI functions and interfaces in your driver.

� The driver must ensure that all writes by the device into DMA buffers
(DDI_DMA_READ) are contained within pages of memory controlled entirely by the
driver. This prevents a DMA fault from corrupting an arbitrary part of the system’s
main memory.

� The device driver must not be an unlimited drain on system resources if the device
locks up. It should time-out if a device claims to be continuously busy. The driver
should also detect a pathological (stuck) interrupt request and take appropriate
action.

� The device driver must support Solaris Hot-Plug.

� The device driver must use callbacks instead of waiting on resources.

� The driver must free up resources after a fault. For example, the system must be
able to close all minor devices and detach driver instances even after the hardware
fails.
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Device Driver Instances
The Solaris kernel allows multiple instances of a driver. Each instance has its own data
space but shares the text and some global data with other instances. The device is
managed on a per-instance basis. Drivers should use a separate instance for each piece
of hardware unless the driver is designed to handle fail-over internally. There can be
multiple instances of a driver per slot, for example, multi-function cards, which is
standard behavior for Solaris device drivers.

Exclusive Use of DDI Access Handles
All PIO access by a driver must use Solaris DDI access functions from the ddi_getX,
ddi_putX, ddi_rep_getX, and ddi_rep_putX families of routines. The driver
should not directly access the mapped registers by the address returned from
ddi_regs_map_setup(9F). (Avoid the ddi_peek(9F) and ddi_poke(9F) routines
because they do not use access handles.)

The DDI access mechanism is important because it provides an opportunity to control
how data is read into the kernel.

Detecting Corrupted Data
The following sections consider where data corruption can occur and the steps you
can take to detect it.

Corruption of Device Management and Control Data
The driver should assume that any data obtained from the device, whether by PIO or
DMA, could have been corrupted. In particular, extreme care should be taken with
pointers, memory offsets, or array indexes read or calculated from data supplied by
the device. Such values can be malignant, meaning they can cause a kernel panic if
dereferenced. All such values should be checked for range and alignment (if required)
before use.

Even if a pointer is not malignant, it can still be misleading. For example, it can point
at a valid instance of an object, but not the correct one. Where possible, the driver
should cross-check the pointer with the pointed-to object, or otherwise validate the
data obtained through it.

Other types of data can also be misleading, such as packet lengths, status words, or
channel IDs. Each should be checked to the extent possible: a packet length can be
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range-checked to ensure that it is not negative or larger than the containing buffer; a
status word can be checked for ”impossible” bits; and a channel ID can be matched
against a list of valid IDs.

Where a value is used to identify a Stream, the driver must ensure that the Stream still
exists. The asynchronous nature of STREAMS processing means that a Stream can be
dismantled while device interrupts are still outstanding.

The driver should not reread data from the device; the data should be read once,
validated, and stored in the driver’s local state. This avoids the hazard presented by
data that, although correct when initially read and validated, is incorrect when reread
later.

The driver should also ensure that all loops are bounded, so that a device returning a
continuous BUSY status, or claiming that another buffer needs to be processed, does
not lock up the entire system.

Corruption of Received Data
Device errors can result in corrupted data being placed in receive buffers. Such
corruption is indistinguishable from corruption that occurs beyond the domain of the
device—for example, within a network. Typically, existing software is already in place
to handle such corruption; for example, through integrity checks at the transport layer
of a protocol stack or within the application using the device.

If the received data will not be checked for integrity at a higher layer—as in the case of
a disk driver, for example—it can be integrity-checked within the driver itself.
Methods of detecting corruption in received data are typically device-specific
(checksums, CRC, and so forth).

DMA Isolation
A defective device might initiate an improper DMA transfer over the bus. This data
transfer could corrupt good data that was previously delivered. A device that fails
might generate a corrupt address that can contaminate memory that does not even
belong to its own driver.

In systems with an IOMMU, a device can write only to pages mapped as writable for
DMA. Therefore, pages that are to be the target of DMA writes should be owned
solely by one driver instance and not shared with any other kernel structure. While
the page in question is mapped as writable for DMA, the driver should be suspicious
of data in that page. The page must be unmapped from the IOMMU before it is passed
beyond the driver, or before any validation of the data.
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You can use ddi_umem_alloc(9F) to guarantee that a whole aligned page is
allocated, or allocate multiple pages and ignore the memory below the first page
boundary. You can find the size of an IOMMU page by using ddi_ptob(9F)

Alternatively, the driver can choose to copy the data into a safe part of memory before
processing it. If this is done, the data must first be synchronized using
ddi_dma_sync(9F)

Calls to ddi_dma_sync(9F) should specify SYNC_FOR_DEV before using DMA to
transfer data to a device, and SYNC_FOR_CPU after using DMA to transfer data from
the device to memory.

On some PCI-based systems with an IOMMU, devices may be able to use PCI dual
address cycles (64-bit addresses) to bypass the IOMMU. This gives the device the
potential to corrupt any region of main memory. Device drivers must not attempt to
use such a mode and should disable it.

Handling Stuck Interrupts
The driver must identify stuck interrupts because a persistently asserted interrupt
severely affects system performance, almost certainly stalling a single-processor
machine.

Sometimes the driver might have difficulty in identifying a particular interrupt as
bogus. For network drivers, if a receive interrupt is indicated but no new buffers have
been made available, no work was needed. When this is an isolated occurrence, it is
not a problem, as the actual work might already have been completed by another
routine (read service, for example).

On the other hand, continuous interrupts with no work for the driver to process can
indicate a stuck interrupt line. For this reason, all platforms allow a number of
apparently bogus interrupts to occur before taking defensive action.

While appearing to have work to do, a hung device might be failing to update its
buffer descriptors. The driver should defend against such repetitive requests.

In some cases, platform–specific bus drivers might be capable of identifying a
persistently unclaimed interrupt and can disable the offending device. However, this
relies on the driver’s ability to identify the valid interrupts and return the appropriate
value. The driver should therefore return a DDI_INTR_UNCLAIMED result unless it
detects that the device legitimately asserted an interrupt (that is, the device actually
requires the driver to do some useful work).

The legitimacy of other, more incidental, interrupts is much harder to certify. To this
end, an interrupt-expected flag is a useful tool for evaluating whether an interrupt is
valid. Consider an interrupt such as descriptor free, which can be generated if all the
device’s descriptors had been previously allocated. If the driver detects that it has
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taken the last descriptor from the card, it can set an interrupt-expected flag. If this flag
is not set when the associated interrupt is delivered, it is suspicious.

Some informative interrupts might not be predictable, such as one indicating that a
medium has become disconnected or frame sync has been lost. The easiest method of
detecting whether such an interrupt is stuck is to mask this particular source on first
occurrence until the next polling cycle.

If the interrupt occurs again while disabled, this should be considered a false
interrupt. Some devices have interrupt status bits that can be read even if the mask
register has disabled the associated source and might not be causing the interrupt.
Driver designers can devise more appropriate algorithms specific to their devices.

Avoid looping on interrupt status bits indefinitely. Break such loops if none of the
status bits set at the start of a pass requires any real work.

Additional Programming Considerations
In addition to the requirements discussed in the previous sections, the driver
developer must consider a few other issues. These are:

� Thread interaction
� Threats from top-down requests
� Adaptive strategies

Thread Interaction
Kernel panics in a device driver are often caused by unexpected interaction of kernel
threads after a device failure. When a device fails, threads can interact in ways that the
designer had not anticipated.

For example, if processing routines terminate early, they may fail to signal other
threads that are waiting on condition variables. Attempting to inform other modules
of the failure or handling unanticipated callbacks can result in undesirable thread
interactions. Examine the sequence of mutex acquisition and relinquishment that can
occur during device failures.

Threads that originate in an upstream STREAMS module can run into unfortunate
paradoxes if used to call back into that module unexpectedly. You might use
alternative threads to handle exception messages. For instance, a wput procedure
might use a read-side service routine to communicate an M_ERROR, rather than doing
it directly with a read-side putnext.

A failing STREAMS device that cannot be quiesced during close (because of the fault)
can generate an interrupt after the Stream has been dismantled. The interrupt handler
must not attempt to use a stale Stream pointer to try to process the message.
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Threats From Top-Down Requests
While protecting the system from defective hardware, the driver designer also needs
to protect against driver misuse. Although the driver can assume that the kernel
infrastructure is always correct (a trusted core), user requests passed to it can be
potentially destructive.

For example, a user can request an action to be performed upon a user-supplied data
block (M_IOCTL) that is smaller than that indicated in the control part of the message.
The driver should never trust a user application.

The design should consider the construction of each type of ioctl that it can receive
with a view to the potential harm that it could cause. The driver should make checks
to be sure that it does not process malformed ioctls.

Adaptive Strategies
A driver can continue to provide service with faulty hardware, attempting to work
around the identified problem by using an alternative strategy for accessing the
device. Given that broken hardware is unpredictable and given the risk associated
with additional design complexity, adaptive strategies are not always wise. At most,
they should be limited to periodic interrupt polling and retry attempts. Periodically
retrying the device lets the driver know when a device has recovered. Periodic polling
can control the interrupt mechanism after a driver has been forced to disable
interrupts.

Ideally, a system always has an alternative device to provide a vital system service.
Service multiplexors in kernel or user space offer the best method of maintaining
system services when a device fails. Such practices are beyond the scope of this
chapter.

Serviceability
To ensure serviceability, the driver must be enabled to do the following:

� Detect faulty devices and report the fault

� Remove a device (as supported by the Solaris hot-plug model)

� Add a new device (as supported by the Solaris hot-plug model)

� Perform periodic health checks to enable the detection of latent faults

Recommended Coding Practices 383



Periodic Health Checks
A latent fault is one that does not show itself until some other action occurs. For
example, a hardware failure occurring in a device that is a cold stand-by could remain
undetected until a fault occurs on the master device. At this point, the system now
contains two defective devices and might be unable to continue operation.

As a general rule, latent faults that are allowed to remain undetected will eventually
cause system failure. Without latent fault checking, the overall availability of a
redundant system is jeopardized. To avoid this, a device driver must detect latent
faults and report them in the same way as other faults.

The driver should ensure that it has a mechanism for making periodic health checks
on the device. In a fault-tolerant situation where the device can be the secondary or
fail-over device, early detection of a failed secondary device is essential to ensure that
it can be repaired or replaced before any failure in the primary device occurs.

Periodic health checks can:

� Check a register or memory location on the device whose value the driver expects
to have been deterministically altered since the last poll.

Features of a device that typically exhibit deterministic behavior include heartbeat
semaphores, device timers (for example, local lbolt used by download), and
event counters. Reading an updated predictable value from the device gives a
degree of confidence that things are proceeding satisfactorily.

� Time-stamp outgoing requests (transmit blocks or commands) when issued by the
driver.

The periodic health check can look for any over-age requests that have not
completed.

� Initiate an action on the device that should be completed before the next scheduled
check.

If this action is an interrupt, this is an ideal way of ensuring that the device’s
circuitry is still capable of delivering an interrupt.
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APPENDIX A

Hardware Overview

This chapter discusses general issues about hardware capable of supporting the Solaris
9 operating environment. This includes issues related to the processor, bus
architectures, and memory models supported by the Solaris 9 operating environment,
various device issues, and the PROM used in Sun platforms.

Note – The information presented here is for informational purposes only and might
be of help during driver debugging. However, the Solaris 9 DDI/DKI hides many of
these implementation details from device drivers.

SPARC Processor Issues
This section describes a number of SPARC processor-specific topics including data
alignment, byte ordering, register windows, and availability of floating-point
instructions. For information on IA processor-specific topics, see “IA Processor Issues”
on page 387.

Caution – Drivers should not perform floating-point operations, as they are not
supported in the kernel.

SPARC Data Alignment
All quantities must be aligned on their natural boundaries. Using standard C data
types:
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� short integers are aligned on 16-bit boundaries.

� int integers are aligned on 32-bit boundaries.

� long integers are aligned on either 32-bit boundaries or 64-bit boundaries,
depending on whether the data model of the kernel is 64-bit or 32-bit. For
information on data models, see Appendix C.

� long long integers are aligned on 64-bit boundaries.

Usually, the compiler handles alignment issues. However, driver writers are more
likely to be concerned about alignment as they must use the proper data types to
access their device. Because device registers are commonly accessed through a
pointer reference, drivers must ensure that pointers are properly aligned when
accessing the device.

SPARC Structure Member Alignment
Because of the data alignment restrictions imposed by the SPARC processor, C
structures also have alignment requirements. Structure alignment requirements are
imposed by the most strictly-aligned structure component. For example, a structure
containing only characters has no alignment restrictions, while a structure containing a
long long member must be constructed to guarantee that this member falls on a
64-bit boundary.

SPARC Byte Ordering
The SPARC processor uses big-endian byte ordering; in other words, the most
significant byte (MSB) of an integer is stored at the lowest address of the integer.

byte 0 byte 1 byte 2 byte 3

MSB LSB

SPARC Register Windows
SPARC processors use register windows. Each register window consists of 8 in
registers, 8 local registers, and 8 out registers (which are the in registers of the next
window). There are also 8 global registers. The number of register windows ranges
from 2 to 32, depending on the processor implementation.
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Because drivers are normally written in C, the compiler usually hides the fact that
register windows are used. However, you might have to use them when debugging
the driver.

SPARC Multiply and Divide Instructions
The Version 7 SPARC processors do not have multiply or divide instructions. These
instructions are emulated in software and should be avoided. Because a driver cannot
determine whether it is running on a Version 7, Version 8, or Version 9 processor,
intensive integer multiplication and division should be avoided if possible. Instead,
use bitwise left and right shifts to multiply and divide by powers of two.

The SPARC Architecture Manual, Version 9, contains more specific information on the
SPARC CPU. The SPARC Compliance Definition, Version 2.4, contains details of the
SPARC V9 application binary interface (ABI). It describes the 32–bit SPARC V8 ABI
and the 64–bit SPARC V9 ABI. You can obtain this document from SPARC
International at http://www.sparc.com.

IA Processor Issues
Data types have no alignment restrictions on data types. However, extra memory
cycles might be required for the IA processor to properly handle misaligned data
transfers.

Caution – Drivers should not perform floating-point operations, as they are not
supported in the kernel.

IA Byte Ordering
The IA processor uses little-endian byte ordering. The least significant byte (LSB) of an
integer is stored at the lowest address of the integer.
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byte 3 byte 2 byte 1 byte 0

MSB LSB

IA Architecture Manuals
Intel Corporation publishes a number of books on the IA family of processors:

� Intel Corporation, Pentium Pro Family Developer’s Manual, Volume 1, 1996. ISBN
1-55512-250–0.

� Intel Corporation, Pentium Pro Family Developer’s Manual, Volume 2, 1996. ISBN
1-55512-260–4.

� Intel Corporation, Pentium Pro Family Developer’s Manual, Volume 3, 1996. ISBN
1-55512-261–2.

Endianness
To achieve the goal of multiple-platform, multiple-instruction-set architecture
portability, host bus dependencies were removed from the drivers. The first
dependency issue to be addressed was the endianness (or byte ordering) of the
processor. For example, the IA processor family is little-endian while the SPARC
architecture is big-endian.

Bus architectures display the same endianness types as processors. The PCI local bus,
for example, is little-endian, the SBus is big-endian, the ISA bus is little-endian, and so
on.

To maintain portability between processors and buses, DDI-compliant drivers must be
endian neutral. Although drivers could conceivably manage their endianness by
runtime checks or by preprocessor directives like #ifdef _LITTLE_ENDIAN or
_BIG_ENDIAN statements in the source code, long-term maintenance would be
troublesome. In some cases, the DDI framework performs the byte swapping using a
software approach. In other cases, where byte swapping can be done by hardware (as
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in memory management unit (MMU) page-level swapping or by special machine
instructions), the DDI framework will take advantage of the hardware features to
improve performance.

 Byte Ordering

big endian host

little endian host
SWAP

CPU

b0 27 a9 fe

fe a9 27 b0

fe a9 27 b0

big endian device

Data = 0xfea927b0

FIGURE A–1 Byte Ordering Host Bus Dependency

Along with being endian-neutral, portable drivers must also be independent from
data ordering of the processor. Under most circumstances, data must be transferred in
the sequence instructed by the driver. However, sometimes data can be merged,
batched, or reordered to streamline the data transfer, as illustrated in Figure A–2. For
example, data merging can be applied to accelerate graphics display on frame buffers.
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Drivers have the option to advise the DDI framework to use other optimal data
transfer mechanisms during the transfer.

Data Ordering strict order

data merging

data reordering

CPUff 00 aa ee

ff 00 aa ee

ff 00 aa ee

00 aa ee ff

FIGURE A–2 Data Ordering Host Bus Dependency

Store Buffers
To improve performance, the CPU uses internal store buffers to temporarily store data.
This can affect the synchronization of device I/O operations. Therefore, the driver
needs to take explicit steps to make sure that writes to registers are completed at the
proper time.

For example, when access to device space (such as registers or a frame buffer) is
synchronized by a lock, the driver needs to check that the store to the device space has
actually completed before releasing the lock. Releasing the lock does not guarantee the
flushing of I/O buffers.

To give another example, when acknowledging an interrupt, the driver usually sets or
clears a bit in a device control register. The driver must ensure that the write to the
control register has reached the device before the interrupt handler returns. Similarly,
if the device requires a delay (the driver busy-waits) after writing a command to the
control register, the driver must ensure that the write has reached the device before
delaying.

If the device registers can be read without undesirable side effects, verification of a
write can be as simple as reading the register immediately after writing to it. If that
particular register cannot be read without undesirable side effects, another device
register in the same register set can be used.
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System Memory Model
The system memory model defines the semantics of memory operations such as load
and store and specifies how the order in which these operations are issued by a
processor is related to the order in which they reach memory. The memory model
applies to both uniprocessors and shared-memory multiprocessors. Two memory
models are supported: total store ordering (TSO) and partial store ordering (PSO).

Total Store Ordering (TSO)
TSO guarantees that the sequence in which store, FLUSH, and atomic load-store
instructions appear in memory for a given processor is identical to the sequence in
which they were issued by the processor.

Both IA and SPARC processors support TSO.

Partial Store Ordering (PSO)
PSO does not guarantee that the sequence in which store, FLUSH, and atomic
load-store instructions appear in memory for a given processor is identical to the
sequence in which they were issued by the processor. The processor can reorder the
stores so that the sequence of stores to memory is not the same as the sequence of
stores issued by the CPU.

SPARC processors support PSO; IA processors do not.

For SPARC processors, conformance between issuing order and memory order is
provided by the system framework using the STBAR instruction: if two of the above
instructions are separated by an STBAR in the issuing order of a processor, or if they
reference the same location, the memory order of the two instructions is the same as
the issuing order. Note that enforcement of strong data ordering in DDI-compliant
drivers is provided by the ddi_regs_map_setup(9F) interface. Compliant drivers
cannot use the STBAR instruction directly.

See the SPARC Architecture Manual, Version 9, for more details on the SPARC memory
model.
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Bus Architectures
This section describes device identification, device addressing, and interrupts.

Device Identification
Device identification is the process of determining which devices are present in the
system. Some devices are self-identifying—the device itself provides information to
the system so that it can identify the device driver that needs to be used. SBus and PCI
local bus devices are examples of self-identifying devices. On SBus, the information is
usually derived from a small Forth program stored in the FCode PROM on the device.
PCI devices provide a configuration space containing device configuration
information. See the sbus(4) and pci(4) man pages for more information.

Devices that do not provide information to the system to identify themselves are
called non-self-identifying devices. Drivers for these devices must have a probe(9E)
routine that determines whether the device is really present. In addition, information
about the device must be provided in a hardware configuration file (see the
driver.conf(4) man page) so that the system can provide probe(9E) with the
information it needs to contact the device.

Interrupts
Solaris supports both polling and vectored interrupts. The Solaris 9 DDI/DKI
interrupt model is the same for both. See Chapter 7 for more information about
interrupt handling.

Bus Specifics
This section covers addressing and device configuration issues specific to the buses
that Solaris supports.
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PCI Local Bus
The PCI local bus is a high-performance bus designed for high-speed data transfer.
The PCI bus resides on the system board and is normally used as an interconnect
mechanism between highly integrated peripheral components, peripheral add-on
boards, and host processor or memory systems. The host processor, main memory, and
the PCI bus itself are connected through a PCI host bridge, as shown in Figure A–3.

A tree structure of interconnected I/O buses is supported through a series of PCI bus
bridges. Subordinate PCI bus bridges can be extended underneath the PCI host bridge
to enable a single bus system to be expanded into a complex system with multiple
secondary buses. PCI devices can be connected to one or more of these secondary
buses. In addition, other bus bridges, such as SCSI or USB, can be connected.

Every PCI device has a unique vendor ID and device ID. Multiple devices of the same
kind are further identified by their unique device numbers on the bus where they
reside.

Vendor-id = 8006
Device-id = 4a3
Device # = 3

Vendor-id = 1020
Device-id = 3
Device # = 1

Vendor-id = 8080
Device-id = 520
Device # = 2

Vendor-id = 1001
Device-id = 4b
Device # = 3

Vendor-id = 1000
Device-id = 4
Device # = 1

CPU

PCI
Bridge

Host

Graphics PCI LAN
Adapter Bridge Adapter

Bus

SCSI HBA

Bus 0

Bus 1

PCI Bus

RAM

FIGURE A–3 Machine Block Diagram

The PCI host bridge provides an interconnect between the processor and peripheral
components. Through the PCI host bridge, the processor can directly access main
memory independent of other PCI bus masters. For example, while the CPU is
fetching data from the cache controller in the host bridge, other PCI devices can also
access the system memory through the host bridge. The advantage of this architecture
lies in its separation of the I/O bus from the processor’s host bus.

The PCI host bridge also provides data access mappings between the CPU and
peripheral I/O devices. It maps every peripheral device to the host address domain so
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that the processor can access the device through programmed I/O. On the local bus
side, the PCI host bridge maps the system memory to the PCI address domain so that
the PCI device can access the host memory as a bus master. Figure A–3 shows the two
address domains.

PCI Address Domain
The PCI address domain consists of three distinct address spaces: configuration,
memory, and I/O space.

PCI Configuration Address Space
Configuration space is defined geographically; in other words, the location of a
peripheral device is determined by its physical location within an interconnected tree
of PCI bus bridges. A device is located by its bus number and device (slot) number. Each
peripheral device contains a set of well-defined configuration registers in its PCI
configuration space. The registers are used not only to identify devices but also to
supply device configuration information to the configuration framework. For example,
base address registers in the device configuration space must be mapped before a
device can respond to data access.

The method for generating configuration cycles is host dependent. In IA machines,
special I/O ports are used. On other platforms, the PCI configuration space can be
memory-mapped to certain address locations corresponding to the PCI host bridge in
the host address domain. When a device configuration register is accessed by the
processor, the request is routed to the PCI host bridge. The bridge then translates the
access into proper configuration cycles on the bus.

PCI Configuration Base Address Registers
The PCI configuration space consists of up to six 32-bit base address registers for each
device. These registers provide both size and data type information. System firmware
assigns base addresses in the PCI address domain to these registers.

Each addressable region can be either memory or I/O space. The value contained in
bit 0 of the base address register identifies the type. A value of 0 in bit 0 indicates a
memory space and a value of 1 indicates an I/O space. Figure A–4 shows two base
address registers: one for memory; the other for I/O types.
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FIGURE A–4 Base Address Registers for Memory and I/O

PCI Memory Address Space
PCI supports both 32-bit and 64-bit addresses for memory space. System firmware
assigns regions of memory space in the PCI address domain to PCI peripherals. The
base address of a region is stored in the base address register of the device’s PCI
configuration space. The size of each region must be a power of two, and the assigned
base address must be aligned on a boundary equal to the size of the region. Device
addresses in memory space are memory-mapped into the host address domain so that
data access to any device can be performed by the processor’s native load or store
instructions.

PCI I/O Address Space
PCI supports 32-bit I/O space. I/O space can be accessed differently on different
platforms. Processors with special I/O instructions, like the Intel processor family,
access the I/O space with in and out instructions. Machines without special I/O
instructions will map to the address locations corresponding to the PCI host bridge in
the host address domain. When the processor accesses the memory-mapped
addresses, an I/O request will be sent to the PCI host bridge, which then translates the
addresses into I/O cycles and puts them on the PCI bus. Memory-mapped I/O is
performed by the native load/store instructions of the processor.
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PCI Hardware Configuration Files
Hardware configuration files should be unnecessary for PCI local bus devices.
However, on some occasions drivers for PCI devices need to use hardware
configuration files to augment the driver private information. See the
driver.conf(4) and pci(4) man pages for further details.

SBus
Typical SBus systems consist of a motherboard (containing the CPU and SBus interface
logic), a number of SBus devices on the motherboard itself, and a number of SBus
expansion slots. An SBus can also be connected to other types of buses through an
appropriate bus bridge.

The SBus is geographically addressed; each SBus slot exists at a fixed physical address
in the system. An SBus card has a different address, depending on which slot it is
plugged into. Moving an SBus device to a new slot causes the system to treat it as a
new device.

The SBus uses polling interrupts. When an SBus device interrupts, the system only
knows which of several devices might have issued the interrupt. The system interrupt
handler must ask the driver for each device whether it is responsible for the interrupt.

SBus Physical Address Space
Table A–1 shows the physical address space layout of the Sun Ultra 2 computer. A
physical address on the Ultra 2 consists of 41 bits. The 41-bit physical address space is
further broken down into multiple 33-bit address spaces identified by PA(40:33).

TABLE A–1 Device Physical Space in the Ultra 2

PA(40:33) 33-bit Space Usage

0x0 0x000000000 - 0x07FFFFFFF 2 Gbytes Main memory

0x80 – 0xDF Reserved on Ultra 2 Reserved on Ultra 2

0xE0 Processor 0 Processor 0

0xE1 Processor 1 Processor 1

0xE2 – 0xFD Reserved on Ultra 2 Reserved on Ultra 2

0xFE 0x000000000 - 0x1FFFFFFFF UPA Slave (FFB)

0xFF 0x000000000 - 0x0FFFFFFFF System I/O space

0x100000000 - 0x10FFFFFFF SBus Slot 0
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TABLE A–1 Device Physical Space in the Ultra 2 (Continued)
PA(40:33) 33-bit Space Usage

0x110000000 - 0x11FFFFFFF SBus Slot 1

0x120000000 - 0x12FFFFFFF SBus Slot 2

0x130000000 - 0x13FFFFFFF SBus Slot 3

0x1D0000000 - 0x1DFFFFFFF SBus Slot D

0x1E0000000 - 0x1EFFFFFFF SBus Slot E

0x1F0000000 - 0x1FFFFFFFF SBus Slot F

Physical SBus Addresses
The SBus has 32 address bits, as described in the SBus Specification. Table A–2 describes
how the Ultra 2 uses the address bits.

TABLE A–2 Ultra 2 SBus Address Bits

Bits Description

0 - 27 These bits are the SBus address lines used by an SBus card to address
the contents of the card.

28 - 31 Used by the CPU to select one of the SBus slots. These bits generate the
SlaveSelect lines.

This addressing scheme yields the Ultra 2 addresses shown in Table A–1. Other
implementations might use a different number of address bits.

The Ultra 2 has seven SBus slots, four of which are physical. Slots 0 through 3 are
available for SBus cards. Slots 4-12 are reserved. The slots are used in the following
way:

� Slots 0–3 are physical slots that have DMA-master capability.

� Slots D, E, and F are not actual physical slots, but refer to the onboard direct
memory access (DMA), SCSI, Ethernet, and audio controllers. For convenience,
these are viewed as being plugged into slots D, E, and F.
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Note – Some SBus slots are slave-only slots. Drivers that require DMA capability
should use ddi_slaveonly(9F) to determine if their device is in a DMA-capable
slot. For an example of this function, see “attach(9E) ” on page 81.

SBus Hardware Configuration Files
Hardware configuration files are normally unnecessary for SBus devices. However, on
some occasions, drivers for SBus devices need to use hardware configuration files to
augment the information provided by the SBus card. See driver.conf(4) and
sbus(4) for further details.

ISA Bus
The following sections describe the ISA bus.

ISA Bus Memory and I/O Space
Two address spaces are provided: memory address space and I/O address space.
Depending on the device, registers can appear in one or both of these address spaces,
and are self-identifying. Table A–3 shows the registers for memory and I/O address
spaces in the ISA bus.

TABLE A–3 ISA Bus Address Space

ISA Space

Name

Address

Size

Data Transfer

Size

Physical Address

Range

Main memory 24 16 0x0-0xffffff

I/O — 8/16 0x0-0xfff

Registers can be mapped in memory address space and used by the driver as normal
memory.

Registers in I/O space are accessed through I/O port numbers using separate kernel
routines.

398 Writing Device Drivers • February 2002 (Beta)



ISA Bus Hardware Configuration Files
In the Solaris 9 operating environment, the use of hardware configuration files to
provide arguments to probe(9E) on IA platforms is highly discouraged, since probes
can lead to system hangs and resets. Exact device configuration information is
maintained by the booting system and is passed to the probe(9E) function.

Bootable (Realmode) Drivers

A separate realmode driver might need to be developed for the booting system. See
the Realmode Drivers white paper in the Driver Development Site at
http://soldc.sun.com/developer/support/driver for information on
realmode drivers. Hardware configuration files may be needed on some occasions to
augment the information provided by the booting system. See driver.conf(4) and
isa(4) for further details.

Device Issues
This section describes issues with special devices.

Timing-Critical Sections
While most driver operations can be performed without mechanisms for
synchronization and protection beyond those provided by the locking primitives,
some devices require that a sequence of events occur in order without interruption. In
conjunction with the locking primitives, the function ddi_enter_critical(9F) asks
the system to guarantee, to the best of its ability, that the current thread will neither be
preempted nor interrupted. This stays in effect until a closing call to
ddi_exit_critical(9F) is made. See the ddi_enter_critical(9F) man pages
for details.

Delays
Many chips specify that they can be accessed only at specified intervals. For example,
the Zilog Z8530 SCC has a “write recovery time” of 1.6 microseconds. This means that
a delay must be enforced with drv_usecwait(9F) when writing characters with an
8530. In some instances, the specifications do not make explicit what delays are
needed, so they must be determined empirically.
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Internal Sequencing Logic
Devices with internal sequencing logic map multiple internal registers to the same
external address. There are various kinds of internal sequencing logic:

� The Intel 8251A and the Signetics 2651 alternate the same external register between
two internal mode registers. Writing to the first internal register is accomplished by
writing to the external register. This write, however, has the side effect of setting up
the sequencing logic in the chip so that the next read/write operation refers to the
second internal register.

� The NEC PD7201 PCC has multiple internal data registers. To write a byte into a
particular register, two steps must be performed. The first step is to write into
register zero the number of the register into which the following byte of data will
go. The data is then written to the specified data register. The sequencing logic
automatically sets up the chip so that the next byte sent will go into data register
zero.

� The AMD 9513 timer has a data pointer register that points at the data register into
which a data byte will go. When sending a byte to the data register, the pointer is
incremented. The current value of the pointer register cannot be read.

Interrupt Issues
The following are some common interrupt-related issues:

� A controller interrupt does not necessarily indicate that both the controller and one
of its slave devices are ready. For some controllers, an interrupt can indicate that
either the controller is ready or one of its devices is ready, but not both.

� Not all devices power up with interrupts disabled and can begin interrupting at
any time.

� Some devices do not provide a way to determine that the board has generated an
interrupt.

� Not all interrupting boards shut off interrupts when told to do so or after a bus
reset.

PROM on SPARC Machines
Some platforms have a PROM monitor that provides support for debugging a device
without an operating system. This section describes how to use the PROM on SPARC
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machines to map device registers so that they can be accessed. Usually, the device can
be exercised enough with PROM commands to determine if the device is working
correctly.

See the boot(1M) man page for a description of the IA boot subsystem.

The PROM has several purposes, including:

� Bringing the machine up from power on, or from a hard reset PROM reset
command

� Providing an interactive tool for examining and setting memory, device registers,
and memory mappings

� Booting the Solaris system or the kernel debugger kadb(1M)

Simply powering up the computer and attempting to use its PROM to examine
device registers can fail. While the device might be correctly installed, those
mappings are specific to the Solaris operating environment and do not become
active until the Solaris kernel is booted. Upon power up, the PROM maps only
essential system devices, such as the keyboard.

� Taking a system crash dump using the sync command

Open Boot PROM 3
For complete documentation on the Open Boot PROM, see the Open Boot PROM Toolkit
User’s Guide and the monitor(1M) man page. The examples in this section refer to a
Sun-4u architecture; other architectures might require different commands to perform
actions.

Note – The Open Boot PROM is currently used on Sun machines with an SBus or
UPA/PCI. The Open Boot PROM uses an “ok” prompt. On older machines, you might
have to type ‘n’ to get the “ok” prompt.

If the PROM is in secure mode (the security-mode parameter is not set to none), the
PROM password might be required (set in the security-password parameter).

The printenv command displays all parameters and their values.

Help is available with the help command.

EMACS-style command-line history is available. Use Control-N (next) and Control-P
(previous) to traverse the history list.
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Forth Commands
The Open Boot PROM uses the Forth programming language. This is a stack-based
language; arguments must be pushed on the stack before running the correct
command (called a word), and the result is left on the stack.

To place a number on the stack, type its value.

ok 57

ok 68

To add the two top values on the stack, use the + operator.

ok +

The result remains on the stack. The stack is shown with the .s word.

ok .s

bf

The default base is hexadecimal. The hex and decimal words can be used to switch
bases.

ok decimal
ok .s

191

See the Forth User’s Guide for more information.

Walking the PROMs Device Tree
The commands pwd, cd, and ls walk the PROM device tree to get to the device. The
cd command must be used to establish a position in the tree before pwd will work.
This example is from an Ultra 1 workstation with a cgsix frame buffer on an SBus.

ok cd /

To see the devices attached to the current node in the tree, use ls.

ok ls
f006a064 SUNW,UltraSPARC@0,0
f00598b0 sbus@1f,0
f00592dc counter-timer@1f,3c00
f004eec8 virtual-memory
f004e8e8 memory@0,0
f002ca28 aliases
f002c9b8 options
f002c880 openprom
f002c814 chosen

f002c7a4 packages

The full node name can be used:
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ok cd sbus@1f,0
ok ls
f006a4e4 cgsix@2,0
f0068194 SUNW,bpp@e,c800000
f0065370 ledma@e,8400010
f006120c espdma@e,8400000
f005a448 SUNW,pll@f,1304000
f005a394 sc@f,1300000
f005a24c zs@f,1000000
f005a174 zs@f,1100000
f005a0c0 eeprom@f,1200000
f0059f8c SUNW,fdtwo@f,1400000
f0059ec4 flashprom@f,0
f0059e34 auxio@f,1900000

f0059d28 SUNW,CS4231@d,c000000

Rather than using the full node name in the previous example, you could have used
an abbreviation. The abbreviated command-line entry looks like this:

ok cd sbus

The name is actually device@slot,offset (for SBus devices). The cgsix device is
in slot 2 and starts at offset 0. If an SBus device is displayed in this tree, the device has
been recognized by the PROM.

The .properties command displays the PROM properties of a device. These can be
examined to determine which properties the device exports. (This is useful later to
ensure that the driver is looking for the correct hardware properties.) These are the
same properties that can be retrieved with ddi_getprop(9F).

ok cd cgsix
ok .properties
character-set ISO8859-1
intr 00000005 00000000
interrupts 00000005
reg 00000002 00000000 01000000
dblbuf 00 00 00 00
vmsize 00 00 00 01

...

The reg property defines an array of register description structures containing the
following fields:

uint_t bustype; /* cookie for related bus type*/
uint_t addr; /* address of reg relative to bus */

uint_t size; /* size of this register set */

For the cgsix example, the address is 0.
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Mapping the Device
To test the device, it must be mapped into memory. The PROM can then be used to
verify proper operation of the device by using data-transfer commands to transfer
bytes, words, and long words. If the device can be operated from the PROM, even in a
limited way, the driver should also be able to operate the device.

To set up the device for initial testing, perform the following steps:

1. Determine the SBus slot number the device is in.

In this example, the cgsix device is located in slot 2.

2. Determine the offset within the physical address space used by the device.

The offset used is specific to the device. In the cgsix example, the video memory
happens to start at an offset of 0x800000.

3. Use the select-dev word to select the Sbus device and the map-in word to map
the device in.

The select-dev word takes a string of the device path as its argument. The
map-in word takes an offset, a slot number, and a size as arguments to map. Like the
offset, the size of the byte transfer is specific to the device. In the cgsix example,
the size is set to 0x100000 bytes.

In the following code example, the sbus path is displayed as an argument to the
select-dev word, and the offset, slot number, and size values for the frame
buffer are displayed as arguments to the map-in word. Notice that there should be
a space between the opening quote and / in the select-dev argument. The
virtual address to use remains on top of the stack. The stack is shown using the .s
word. It can be assigned a name with the constant operation.

ok "/sbus@1f,0" select-dev
ok 800000 2 100000 map-in
ok .s
ffe98000

ok constant fb

Reading and Writing
The PROM provides a variety of 8-bit, 16-bit, and 32-bit operations. In general, a c
(character) prefix indicates an 8-bit (one byte) operation; a w (word) prefix indicates a
16-bit (two byte) operation; and an L (longword) prefix indicates a 32-bit (four byte)
operation.

A suffix of ! indicates a write operation. The write operation takes the first two items
off the stack; the first item is the address, and the second item is the value.

ok 55 ffe98000 c!
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A suffix of @ indicates a read operation. The read operation takes one argument (the
address) off the stack.

ok ffe98000 c@
ok .s

55

A suffix of ? is used to display the value, without affecting the stack.

ok ffe98000 c?

55

Be careful when trying to query the device. If the mappings are not set up correctly,
trying to read or write could cause errors. Special words are provided to handle these
cases. cprobe, wprobe, and lprobe, for example, read from the given address but
return zero if the location does not respond, or nonzero if it does.

ok fffa4000 c@
Data Access Error

ok fffa4000 cprobe
ok .s0

ok ffe98000 cprobe
ok .s

0 ffffffffffffffff

A region of memory can be shown with the dump word. This takes an address and a
length, and displays the contents of the memory region in bytes.

In the following example, the fill word is used to fill video memory with a pattern.
fill takes the address, the number of bytes to fill, and the byte to use (there is also a
wfill and an Lfill for words and longwords). This causes the cgsix to display
simple patterns based on the byte passed.

ok “ /sbus” select-dev
ok 800000 2 100000 map-in
ok constant fb
ok fb 10000 ff fill
ok fb 20000 0 fill
ok fb 18000 55 fill
ok fb 15000 3 fill

ok fb 10000 5 fillok fb 5000 f9 fill
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APPENDIX B

Summary of Solaris 9 DDI/DKI
Services

Introduction
This chapter discusses the interfaces provided by the Solaris 9 DDI/DKI. These
descriptions should not be considered complete or definitive, nor do they provide a
thorough guide to usage. The descriptions are intended to describe what the functions
do in general terms. See man pages section 9F: DDI and DKI Kernel Functions for more
detailed information. The categories are:

“Module Functions” on page 408
“Device Information Tree Node (dev_info_t) Functions” on page 408
“Device (dev_t) Functions” on page 409
“Property Functions” on page 409
“Device Software State Functions” on page 410
“Memory Allocation and Deallocation Functions” on page 411
“Kernel Thread Control and Synchronization Functions” on page 412
“Interrupt Functions” on page 413
“Programmed I/O Functions” on page 414
“Direct Memory Access (DMA) Functions” on page 420
“User Space Access Functions” on page 423
“User Process Event Functions” on page 424
“User Process Information Functions” on page 424
“User Application Kernel and Device Access Functions” on page 425
“Time-Related Functions” on page 426
“Power Management Functions” on page 427
“Kernel Statistics Functions” on page 427
“Kernel Logging and Printing Functions” on page 428
“Buffered I/O Functions” on page 428
“Virtual Memory Functions” on page 429
“Device ID Functions” on page 430
“SCSI Functions” on page 431
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“Resource Map Management Functions” on page 433
“System Global State” on page 433
“Utility Functions” on page 433

This appendix does not discuss STREAMS interfaces; to learn more about network
drivers, see the STREAMS Programming Guide.

Module Functions
TABLE B–1 Module Functions

Function Name Description

mod_info query a loadable module

mod_install add a loadable module

mod_remove remove a loadable module

Device Information Tree Node (dev_info_t)
Functions
TABLE B–2 Device Information Tree Node (dev_info_t) Functions

Function Name Description

ddi_binding_name return driver binding name

ddi_dev_is_sid tell whether a device is self-identifying

ddi_driver_major return driver major device number

ddi_driver_name return normalized driver name

ddi_node_name return the devinfo node name

ddi_get_devstate check device state

ddi_get_instance get device instance number

ddi_get_name return driver binding name

ddi_get_parent find the parent of a device information structure

ddi_root_node get the root of the dev_info tree
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Device (dev_t) Functions
TABLE B–3 Device (dev_t) Functions

Function Name Description

ddi_create_minor_node create a minor node for a device

ddi_getiminor get kernel internal minor number from an external
dev_t

ddi_remove_minor_node remove a minor mode for a device

getmajor get major device number

getminor get minor device number

makedevice make device number from major and minor
numbers

Property Functions
TABLE B–4 Property Functions

Function Name Description

ddi_prop_exists check for the existence of a property

ddi_prop_free free resources consumed by property lookup

ddi_prop_get_int look up integer property

ddi_prop_get_int64 look up 64–bit integer property

ddi_prop_lookup_byte_array look up byte array property

ddi_prop_lookup_int_array look up integer array property

ddi_prop_lookup_int64_array look up 64–bit integer array property

ddi_prop_lookup_string look up string property

ddi_prop_lookup_string_array look up string array property

ddi_prop_remove remove a property of a device

ddi_prop_remove_all remove all properties of a device

ddi_prop_undefine hide a property of a device

ddi_prop_update_byte_array create or update byte array property

ddi_prop_update_int create or update integer property
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TABLE B–4 Property Functions (Continued)
Function Name Description

ddi_prop_update_int64 create or update 64–bit integer property

ddi_prop_update_int_array create or update integer array property

ddi_prop_update_int64_array create or update 64–bit integer array property

ddi_prop_update_string create or update string property

ddi_prop_update_string_array create or update string array property

TABLE B–5 Deprecated Property Functions

Deprecated Functions Replacements

ddi_getlongprop see ddi_prop_lookup

ddi_getlongprop_buf see ddi_prop_lookup

ddi_getprop ddi_prop_get_int

ddi_getproplen see ddi_prop_lookup

ddi_prop_create see ddi_prop_lookup

ddi_prop_modify see ddi_prop_lookup

ddi_prop_op see ddi_prop_lookup

Device Software State Functions
TABLE B–6 Device Software State Functions

Function Name Description

ddi_get_driver_private get the address of the device’s private data area

ddi_get_soft_state get pointer to instance soft state structure

ddi_set_driver_private set the address of the device’s private data area

ddi_soft_state_fini destroy driver soft state structure

ddi_soft_state_free free instance soft state structure

ddi_soft_state_init initialize driver soft state structure

ddi_soft_state_zalloc allocate instance soft state structure
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Memory Allocation and Deallocation Functions
TABLE B–7 Memory Allocation and Deallocation Functions

Function Name Description

kmem_alloc allocate kernel memory

kmem_free free kernel memory

kmem_zalloc allocate zero-filled kernel memory

These functions allocate and free memory intended to be used for DMA. See “Direct
Memory Access (DMA) Functions” on page 420.

TABLE B–8

Function Name Description

ddi_dma_mem_alloc allocate memory for DMA transfer

ddi_dma_mem_free free previously allocated DMA memory

These functions allocate and free memory intended to be exported to user space. See
“User Space Access Functions” on page 423.

TABLE B–9

Function Name Description

ddi_umem_alloc allocate page-aligned kernel memory

ddi_umem_free free page-aligned kernel memory

TABLE B–10 Deprecated Memory Allocation and Deallocation Functions

Deprecated Functions Replacement

ddi_iopb_alloc ddi_dma_mem_alloc

ddi_iopb_free ddi_dma_mem_free

ddi_mem_alloc ddi_dma_mem_alloc

ddi_mem_free ddi_dma_mem_free
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Kernel Thread Control and Synchronization
Functions
TABLE B–11 Kernel Thread Control and Synchronization Functions

Function Name Description

cv_broadcast wakeup all waiting threads

cv_destroy free an allocated condition variable

cv_init allocate a condition variable

cv_signal wakeup one waiting thread

cv_timedwait await an event with timeout

cv_timedwait_sig await an event or signal with timeout

cv_wait await an event

cv_wait_sig await an event or signal

ddi_enter_critical enter a critical region of control

ddi_exit_critical exit a critical region of control

mutex_destroy destroy mutual exclusion lock

mutex_enter acquire mutual exclusion lock

mutex_exit release mutual exclusion lock

mutex_init initialize mutual exclusion lock

mutex_owned determine if current thread is holding mutual
exclusion lock

mutex_tryenter attempt to acquire mutual exclusion lock without
waiting

rw_destroy destroy a readers/writer lock

rw_downgrade downgrade a readers/writer lock holding from
writer to reader

rw_enter acquire a readers/writer lock

rw_exit release a readers/writer lock

rw_init initialize a readers/writer lock
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TABLE B–11 Kernel Thread Control and Synchronization Functions (Continued)
Function Name Description

rw_read_locked determine whether readers/writer lock is held for
read or write

rw_tryenter attempt to acquire a readers/writer lock without
waiting

rw_tryupgrade attempt to upgrade readers/writer lock holding
from reader to writer

sema_destroy destroy a semaphore

sema_init initialize a semaphore

sema_p decrement semaphore and possibly block

sema_p_sig decrement semaphore, but do not block if signal is
pending

sema_tryp attempt to decrement semaphore, but do not block

sema_v increment semaphore and possibly unblock waiter

Interrupt Functions
TABLE B–12 Interrupt Functions

Function Name Description

ddi_add_intr register a hardware interrupt handler

ddi_add_softintr register a software interrupt handler

ddi_dev_nintrs return the number of interrupt specifications a
device has

ddi_get_iblock_cookie get a hardware interrupt block cookie

ddi_get_soft_iblock_cookie get a software interrupt block cookie

ddi_intr_hilevel indicate interrupt type

ddi_remove_intr unregister a hardware interrupt handler

ddi_remove_softintr unregister a software interrupt handler

ddi_trigger_softintr trigger a software interrupt
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Programmed I/O Functions
TABLE B–13 Programmed I/O Functions

Function Name Description

ddi_dev_nregs return the number of register sets a device has

ddi_dev_regsize return the size of a device’s register

ddi_regs_map_setup set up a mapping for a register address space

ddi_regs_map_free free a previously mapped register address space

ddi_device_copy copy data from one device register to another
device register

ddi_device_zero zero fill the device

ddi_check_acc_handle check data access handle

ddi_get8 read 8–bit data from mapped memory, device
register or DMA memory

ddi_get16 read 16–bit data from mapped memory, device
register or DMA memory

ddi_get32 read 32–bit data from mapped memory, device
register or DMA memory

ddi_get64 read 64–bit data from mapped memory, device
register or DMA memory

ddi_put8 write 8–bit data to mapped memory, device register
or DMA memory

ddi_put16 write 16–bit data to mapped memory, device
register or DMA memory

ddi_put32 write 32–bit data to mapped memory, device
register or DMA memory

ddi_put64 write 64–bit data to mapped memory, device
register or DMA memory

ddi_rep_get8 read multiple 8–bit data from mapped memory,
device register or DMA memory

ddi_rep_get16 read multiple 16–bit data from mapped memory,
device register or DMA memory

ddi_rep_get32 read multiple 32–bit data from mapped memory,
device register or DMA memory
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TABLE B–13 Programmed I/O Functions (Continued)
Function Name Description

ddi_rep_get64 read multiple 64–bit data from mapped memory,
device register or DMA memory

ddi_rep_put8 write multiple 8–bit data to mapped memory,
device register or DMA memory

ddi_rep_put16 write multiple 16–bit data to mapped memory,
device register or DMA memory

ddi_rep_put32 write multiple 32–bit data to mapped memory,
device register or DMA memory

ddi_rep_put64 write multiple 64–bit data to mapped memory,
device register or DMA memory

ddi_peek8 cautiously read an 8–bit value from a location

ddi_peek16 cautiously read a 16–bit value from a location

ddi_peek32 cautiously read a 32–bit value from a location

ddi_peek64 cautiously read a 64–bit value from a location

ddi_poke8 cautiously write an 8–bit value to a location

ddi_poke16 cautiously write a 16–bit value to a location

ddi_poke32 cautiously write a 32–bit value to a location

ddi_poke64 cautiously write a 64–bit value to a location

The general programmed I/O functions above can always be used rather than the
mem, io, and pci_config functions below. However, the below functions may be
used as alternatives in cases where the type of access is known at compile time.

TABLE B–14 Alternate Access Mechanisms

Function Name Description

ddi_io_get8 read 8-bit data from mapped device register in I/O
space

ddi_io_get16 read 16-bit data from mapped device register in
I/O space

ddi_io_get32 read 32-bit data from mapped device register in
I/O space

ddi_io_put8 write 8-bit data to mapped device register in I/O
space
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TABLE B–14 Alternate Access Mechanisms (Continued)
Function Name Description

ddi_io_put16 write 16-bit data to mapped device register in I/O
space

ddi_io_put32 write 32-bit data to mapped device register in I/O
space

ddi_io_rep_get8 read multiple 8-bit data from mapped device
register in I/O space

ddi_io_rep_get16 read multiple 16-bit data from mapped device
register in I/O space

ddi_io_rep_get32 read multiple 32-bit data from mapped device
register in I/O space

ddi_io_rep_put8 write multiple 8-bit data to mapped device register
in I/O space

ddi_io_rep_put16 write multiple 16-bit data to mapped device
register in I/O space

ddi_io_rep_put32 write multiple 32-bit data to mapped device
register in I/O space

ddi_mem_get8 read 8-bit data from mapped device in memory
space or DMA memory

ddi_mem_get16 read 16-bit data from mapped device in memory
space or DMA memory

ddi_mem_get32 read 32-bit data from mapped device in memory
space or DMA memory

ddi_mem_get64 read 64-bit data from mapped device in memory
space or DMA memory

ddi_mem_put8 write 8-bit data to mapped device in memory space
or DMA memory

ddi_mem_put16 write 16-bit data to mapped device in memory
space or DMA memory

ddi_mem_put32 write 32-bit data to mapped device in memory
space or DMA memory

ddi_mem_put64 write 64-bit data to mapped device in memory
space or DMA memory
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TABLE B–14 Alternate Access Mechanisms (Continued)
Function Name Description

ddi_mem_rep_get8 read multiple 8-bit data from mapped device in
memory space or DMA memory

ddi_mem_rep_get16 read multiple 16-bit data from mapped device in
memory space or DMA memory

ddi_mem_rep_get32 read multiple 32-bit data from mapped device in
memory space or DMA memory

ddi_mem_rep_get64 read multiple 64-bit data from mapped device in
memory space or DMA memory

ddi_mem_rep_put8 write multiple 8-bit data to mapped device in
memory space or DMA memory

ddi_mem_rep_put16 write multiple 16-bit data to mapped device in
memory space or DMA memory

ddi_mem_rep_put32 write multiple 32-bit data to mapped device in
memory space or DMA memory

ddi_mem_rep_put64 write multiple 64-bit data to mapped device in
memory space or DMA memory

pci_config_setup setup access to PCI Local Bus Configuration space

pci_config_teardown tear down access to PCI Local Bus Configuration
space

pci_config_get8 read 8-bit data from the PCI Local Bus
Configuration space

pci_config_get16 read 16-bit data from the PCI Local Bus
Configuration space

pci_config_get32 read 32-bit data from the PCI Local Bus
Configuration space

pci_config_get64 read 64-bit data from the PCI Local Bus
Configuration space

pci_config_put8 write 8-bit data to the PCI Local Bus Configuration
space

pci_config_put16 write 16-bit data to the PCI Local Bus Configuration
space

pci_config_put32 write 32-bit data to the PCI Local Bus Configuration
space
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TABLE B–14 Alternate Access Mechanisms (Continued)
Function Name Description

pci_config_put64 write 64-bit data to the PCI Local Bus Configuration
space

TABLE B–15 Deprecated Programmed I/O Functions

Deprecated Function Replacement

ddi_getb ddi_get8

ddi_getl ddi_get32

ddi_getll ddi_get64

ddi_getw ddi_get16

ddi_io_getb ddi_io_get8

ddi_io_getl ddi_io_get32

ddi_io_getw ddi_io_get16

ddi_io_putb ddi_io_put8

ddi_io_putl ddi_io_put32

ddi_io_putw ddi_io_put16

ddi_io_rep_getb ddi_io_rep_get8

ddi_io_rep_getl ddi_io_rep_get32

ddi_io_rep_getw ddi_io_rep_get16

ddi_io_rep_putb ddi_io_rep_put8

ddi_io_rep_putl ddi_io_rep_put32

ddi_io_rep_putw ddi_io_rep_put16

ddi_map_regs ddi_regs_map_setup

ddi_mem_getb ddi_mem_get8

ddi_mem_getl ddi_mem_get32

ddi_mem_getll ddi_mem_get64

ddi_mem_getw ddi_mem_get16

ddi_mem_putb ddi_mem_put8

ddi_mem_putl ddi_mem_put32

ddi_mem_putll ddi_mem_put64
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TABLE B–15 Deprecated Programmed I/O Functions (Continued)
Deprecated Function Replacement

ddi_mem_putw ddi_mem_put16

ddi_mem_rep_getb ddi_mem_rep_get8

ddi_mem_rep_getl ddi_mem_rep_get32

ddi_mem_rep_getll ddi_mem_rep_get64

ddi_mem_rep_getw ddi_mem_rep_get16

ddi_mem_rep_putb ddi_mem_rep_put8

ddi_mem_rep_putl ddi_mem_rep_put32

ddi_mem_rep_putll ddi_mem_rep_put64

ddi_mem_rep_putw ddi_mem_rep_put16

ddi_peekc ddi_peek8

ddi_peekd ddi_peek64

ddi_peekl ddi_peek32

ddi_peeks ddi_peek16

ddi_pokec ddi_poke8

ddi_poked ddi_poke64

ddi_pokel ddi_poke32

ddi_pokes ddi_poke16

ddi_putb ddi_put8

ddi_putl ddi_put32

ddi_putll ddi_put64

ddi_putw ddi_put16

ddi_rep_getb ddi_rep_get8

ddi_rep_getl ddi_rep_get32

ddi_rep_getll ddi_rep_get64

ddi_rep_getw ddi_rep_get16

ddi_rep_putb ddi_rep_put8

ddi_rep_putl ddi_rep_put32

ddi_rep_putll ddi_rep_put64
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TABLE B–15 Deprecated Programmed I/O Functions (Continued)
Deprecated Function Replacement

ddi_rep_putw ddi_rep_put16

ddi_unmap_regs ddi_regs_map_free

inb ddi_io_get8

inl ddi_io_get32

inw ddi_io_get16

outb ddi_io_put8

outl ddi_io_put32

outw ddi_io_put16

pci_config_getb pci_config_get8

pci_config_getl pci_config_get32

pci_config_getll pci_config_get64

pci_config_getw pci_config_get16

pci_config_putb pci_config_put8

pci_config_putl pci_config_put32

pci_config_putll pci_config_put64

pci_config_putw pci_config_put16

repinsb ddi_io_rep_get8

repinsd ddi_io_rep_get32

repinsw ddi_io_rep_get16

repoutsb ddi_io_rep_put8

repoutsd ddi_io_rep_put32

repoutsw ddi_io_rep_put16

Direct Memory Access (DMA) Functions
TABLE B–16 Direct Memory Access (DMA) Functions

Function Name Description

ddi_dma_alloc_handle allocate a DMA handle

420 Writing Device Drivers • February 2002 (Beta)



TABLE B–16 Direct Memory Access (DMA) Functions (Continued)
Function Name Description

ddi_dma_free_handle free DMA handle

ddi_dma_mem_alloc allocate memory for DMA transfer

ddi_dma_mem_free free previously allocated DMA memory

ddi_dma_addr_bind_handle bind an address to a DMA handle

ddi_dma_buf_bind_handle bind a system buffer to a DMA handle

ddi_dma_unbind_handle unbind the address in a DMA handle

ddi_dma_nextcookie retrieve subsequent DMA cookie

ddi_dma_getwin activate a new DMA window

ddi_dma_numwin retrieve number of DMA windows

ddi_dma_sync synchronize CPU and I/O views of memory

ddi_check_dma_handle check DMA handle

ddi_dma_set_sbus64 allow 64-bit transfers on SBus

ddi_slaveonly tell if a device is installed in a slave access only
location

ddi_iomin find minimum alignment and transfer size for
DMA

ddi_dma_burstsizes find out the allowed burst sizes for a DMA
mapping

ddi_dma_devalign find DMA mapping alignment and minimum
transfer size

ddi_dmae_alloc acquire a DMA channel

ddi_dmae_release release a DMA channel

ddi_dmae_getattr get DMA engine attributes

ddi_dmae_prog program a DMA channel

ddi_dmae_stop terminate DMA engine operation

ddi_dmae_disable disable a DMA channel

ddi_dmae_enable enable a DMA channel

ddi_dmae_getcnt get DMA engine count remaining

Summary of Solaris 9 DDI/DKI Services 421



TABLE B–16 Direct Memory Access (DMA) Functions (Continued)
Function Name Description

ddi_dmae_1stparty configure DMA channel cascade mode

ddi_dma_coff convert a DMA cookie to an offset within a DMA
handle

TABLE B–17 Deprecated Direct Memory Access (DMA) Functions

Deprecated Function Replacement

ddi_dma_addr_setup ddi_dma_alloc_handle,
ddi_dma_addr_bind_handle

ddi_dma_buf_setup ddi_dma_alloc_handle, ddi_dma_buf_bind_handle

ddi_dma_curwin ddi_dma_getwin

ddi_dma_free ddi_dma_free_handle

ddi_dma_htoc ddi_dma_addr_bind_handle,
ddi_dma_buf_bind_handle

ddi_dma_movwin ddi_dma_getwin

ddi_dma_nextseg ddi_dma_nextcookie

ddi_dma_segtocookie ddi_dma_nextcookie

ddi_dma_setup ddi_dma_alloc_handle,
ddi_dma_addr_bind_handle,
ddi_dma_buf_bind_handle

ddi_dmae_getlim ddi_dmae_getattr

ddi_iopb_alloc ddi_dma_mem_alloc

ddi_iopb_free ddi_dma_mem_free

ddi_mem_alloc ddi_dma_mem_alloc

ddi_mem_free ddi_dma_mem_free

hat_getkpfnum ddi_dma_addr_bind_handle,
ddi_dma_buf_bind_handle, ddi_dma_nextcookie
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User Space Access Functions
TABLE B–18 User Space Access Functions

Function Name Description

ddi_copyin copy data to a driver buffer

ddi_copyout copy data from a driver

uiomove copy kernel data using uio structure

ureadc add character to a uio structure

uwritec remove a character from a uio structure

ddi_getiminor get kernel internal minor number from an external
dev_t

ddi_model_convert_from determine data model type mismatch

IOC_CONVERT_FROM determine if there is a need to translate M_IOCTL
contents

STRUCT_DECL establish handle to application data in possibly
differing data model

STRUCT_HANDLE establish handle to application data in possibly
differing data model

STRUCT_INIT establish handle to application data in possibly
differing data model

STRUCT_SET_HANDLE establish handle to application data in possibly
differing data model

SIZEOF_PTR return size of pointer in specified data model

SIZEOF_STRUCT return size of structure in specified data model

STRUCT_SIZE return size of structure in application data model

STRUCT_BUF return a pointer to the native mode instance of the
structure

STRUCT_FADDR return a pointer to the specified field of a structure

STRUCT_FGET return specified field of a structure in application
data model

STRUCT_FGETP return specified pointer field of a structure in
application data model

STRUCT_FSET set specified field of a structure in application data
model
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TABLE B–18 User Space Access Functions (Continued)
Function Name Description

STRUCT_FSETP set specified pointer field of a structure in
application data model

TABLE B–19 Deprecated User Space Access Functions

Deprecated Functions Replacement

copyin ddi_copyin

copyout ddi_copyout

User Process Event Functions
TABLE B–20 User Process Event Functions

Function Name Description

pollwakeup inform a process that an event has occurred

proc_ref get a handle on a process to signal

proc_unref release a handle on a process to signal

proc_signal send a signal to a process

User Process Information Functions
TABLE B–21 User Process Information Functions

Function Name Description

ddi_get_cred returns a pointer to the credential structure of the
caller

drv_priv determine process credentials privilege

ddi_get_pid return the process ID

TABLE B–22 Deprecated User Process Information Functions

Deprecated Functions Replacement

drv_getparm ddi_get_pid, ddi_get_cred
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User Application Kernel and Device Access
Functions
TABLE B–23 User Application Kernel and Device Access Functions

Function Name Description

ddi_dev_nregs return the number of register sets a device has

ddi_dev_regsize return the size of a device’s register

ddi_devmap_segmap set up a user mapping to device memory

devmap_setup set up a user mapping to device memory

devmap_devmem_setup export device memory to user space

devmap_load control validation of memory address translations

devmap_unload control validation of memory address translations

devmap_do_ctxmgt perform device context switching on a mapping

devmap_set_ctx_timeout set the timeout value for the context management
callback

devmap_default_access default driver memory access function

ddi_umem_alloc allocate page-aligned kernel memory

ddi_umem_free free page-aligned kernel memory

ddi_umem_lock lock memory pages

ddi_umem_unlock unlock memory pages

ddi_umem_iosetup setup I/O requests to application memory

devmap_umem_setup export kernel memory to user space

ddi_model_convert_from determine data model type mismatch

TABLE B–24 Deprecated User Application Kernel and Device Access Functions

Deprecated Functions Replacement

ddi_mapdev devmap_setup

ddi_mapdev_intercept devmap_load

ddi_mapdev_nointercept devmap_unload

ddi_mapdev_set_device_acc_attr see devmap(9e)
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TABLE B–24 Deprecated User Application Kernel and Device Access Functions
(Continued)
Deprecated Functions Replacement

ddi_segmap see devmap(9e)

ddi_segmap_setup devmap_setup

hat_getkpfnum see devmap(9e)

ddi_mmap_get_model see devmap(9e)

Time-Related Functions
TABLE B–25 Time-Related Functions

Function Name Description

ddi_get_lbolt returns clock ticks since reboot

ddi_get_time return the current time in seconds

delay delay execution for a specified number of clock
ticks

drv_hztousec convert clock ticks to microseconds

drv_usectohz convert microseconds to clock ticks

drv_usecwait busy-wait for specified interval

gethrtime get high-resolution time

gethrvtime get high-resolution LWP virtual time

timeout execute a function after a specified length of time

untimeout cancel previous timeout function call

drv_getparm ddi_get_lbolt, ddi_get_time

TABLE B–26 Deprecated Time-Related Functions

Deprecated Function Replacement

drv_getparm ddi_get_lbolt, ddi_get_time
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Power Management Functions
TABLE B–27 Power Management Functions

Function Name Description

ddi_removing_power check if device loses power with DDI_SUSPEND

pci_report_pmcap report power management capability of a PCI
device

pm_busy_component mark component as busy

pm_idle_component mark component as idle

pm_raise_power raise the power level of a component

pm_lower_power lower the power level of a component

pm_power_has_changed notify power management framework of
autonomous power level change

pm_trans_check device power cycle advisory check

TABLE B–28 Deprecated Power Management Functions

Function Name Description

ddi_dev_is_needed inform the system that a device’s component is
required

pm_create_components see pm-components(9P)

pm_destroy_components see pm-components(9P)

pm_get_normal_power see pm-components(9P)

pm_set_normal_power see pm-components(9P)

Kernel Statistics Functions
TABLE B–29 Kernel Statistics Functions

Function Name Description

kstat_create create and initialize a new kstat

kstat_delete remove a kstat from the system
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TABLE B–29 Kernel Statistics Functions (Continued)
Function Name Description

kstat_install add a fully initialized kstat to the system

kstat_named_init initialize a named kstat

kstat_runq_back_to_waitq record transaction migration from run queue to
wait queue

kstat_runq_enter record transaction add to run queue

kstat_runq_exit record transaction removal from run queue

kstat_waitq_enter record transaction add to wait queue

kstat_waitq_exit record transaction removal from wait queue

kstat_waitq_to_runq record transaction migration from wait queue to
run queue

Kernel Logging and Printing Functions
TABLE B–30 Kernel Logging and Printing Functions

Function Name Description

cmn_err display an error message

vcmn_err display an error message

ddi_report_dev announce a device

strlog submit messages to the log driver

ddi_dev_report_fault report a hardware failure

scsi_errmsg display a SCSI request sense message

scsi_log display a SCSI-device-related message

scsi_vu_errmsg display a SCSI request sense message

Buffered I/O Functions
TABLE B–31 Buffered I/O Functions

Function Name Description

physio perform physical I/O
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TABLE B–31 Buffered I/O Functions (Continued)
Function Name Description

aphysio perform asynchronous physical I/O

anocancel prevent cancellation of asynchronous I/O request

minphys limit physio buffer size

biowait suspend processes pending completion of block
I/O

biodone release buffer after buffer I/O transfer and notify
blocked threads

bioerror indicate error in buffer header

geterror return I/O error

bp_mapin allocate virtual address space

bp_mapout deallocate virtual address space

disksort single direction elevator seek sort for buffers

getrbuf get a raw buffer header

freerbuf free a raw buffer header

biosize returns size of a buffer structure

bioinit initialize a buffer structure

biofini uninitialize a buffer structure

bioreset reuse a private buffer header after I/O is complete

bioclone clone another buffer

biomodified check if a buffer is modified

clrbuf erase the contents of a buffer

Virtual Memory Functions
TABLE B–32 Virtual Memory Functions

Function Name Description

ddi_btop convert device bytes to pages (round down)

ddi_btopr convert device bytes to pages (round up)

ddi_ptob convert device pages to bytes
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TABLE B–32 Virtual Memory Functions (Continued)
Function Name Description

btop convert size in bytes to size in pages (round down)

btopr convert size in bytes to size in pages (round up)

ptob convert size in pages to size in bytes

TABLE B–33 Deprecated Virtual Memory Functions

Deprecated Functions Replacement

hat_getkpfnum see devmap(9e), ddi_dma_*_bind_handle,
ddi_dma_nextcookie

Device ID Functions
TABLE B–34 Device ID Functions

Function Name Description

ddi_devid_init allocate a device id structure

ddi_devid_free free a device id structure

ddi_devid_register register a device id

ddi_devid_unregister unregister a device id

ddi_devid_compare compare two device ids

ddi_devid_sizeof return the size of a device id

ddi_devid_valid validate a device id

ddi_devid_str_encode encode a device id and minor_name into a
null-terminated ASCII string; return a pointer to
that string

ddi_devid_str_decode decode the device id and minor_name from a
previously encoded string; allocate and return
pointers to the extracted parts

ddi_devid_str_free free all strings returned by the ddi_devid
functions
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SCSI Functions
TABLE B–35 SCSI Functions

Function Name Description

scsi_probe probe a SCSI device

scsi_unprobe free resources allocated during initial probing

scsi_alloc_consistent_buf allocate an I/O buffer for SCSI DMA

scsi_free_consistent_buf free a previously allocated SCSI DMA I/O buffer

scsi_init_pkt prepare a complete SCSI packet

scsi_destroy_pkt free an allocated SCSI packet and its DMA resource

scsi_setup_cdb setup SCSI command descriptor block (CDB)

scsi_transport start a SCSI command

scsi_poll run a polled SCSI command

scsi_ifgetcap get SCSI transport capability

scsi_ifsetcap set SCSI transport capability

scsi_sync_pkt synchronize CPU and I/O views of memory

scsi_abort abort a SCSI command

scsi_reset reset a SCSI bus or target

scsi_reset_notify notify target driver of bus resets

scsi_cname decode a SCSI command

scsi_dname decode a SCSI peripheral device type

scsi_mname decode a SCSI message

scsi_rname decode a SCSI packet completion reason

scsi_sname decode a SCSI sense key

scsi_errmsg display a SCSI request sense message

scsi_log display a SCSI-device-related message

scsi_vu_errmsg display a SCSI request sense message

scsi_hba_init SCSI HBA system initialization routine

scsi_hba_fini SCSI HBA system completion routine

scsi_hba_attach_setup SCSI HBA attach routine
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TABLE B–35 SCSI Functions (Continued)
Function Name Description

scsi_hba_detach SCSI HBA detach routine

scsi_hba_probe default SCSI HBA probe function

scsi_hba_tran_alloc allocate a transport structure

scsi_hba_tran_free free a transport structure

scsi_hba_pkt_alloc allocate a scsi_pkt structure

scsi_hba_pkt_free free a scsi_pkt structure

scsi_hba_lookup_capstr return index matching capability string

TABLE B–36 Deprecated SCSI Functions

Deprecated Functions Replacement

free_pktiopb scsi_free_consisten_buf

get_pktiopb scsi_alloc_consistent_buf

makecom_g0 scsi_setup_cdb

makecom_g0_s scsi_setup_cdb

makecom_g1 scsi_setup_cdb

makecom_g5 scsi_setup_cdb

scsi_dmafree scsi_destroy_pkt

scsi_dmaget scsi_init_pkt

scsi_hba_attach scsi_hba_attach_setup

scsi_pktalloc scsi_init_pkt

scsi_pktfree scsi_destroy_pkt

scsi_resalloc scsi_init_pkt

scsi_resfree scsi_destroy_pkt

scsi_slave scsi_probe

scsi_unslave scsi_unprobe
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Resource Map Management Functions
TABLE B–37 Resource Map Management Functions

Function Name Description

rmallocmap allocate resource map

rmallocmap_wait allocate resource map, wait if necessary

rmfreemap free resource map

rmalloc allocate space from a resource map

rmalloc_wait allocate space from a resource map, wait if
necessary

rmfree free space back into a resource map

System Global State
TABLE B–38 System Global State

Function Name Description

ddi_in_panic determine if system is in panic state

Utility Functions
TABLE B–39 Utility Functions

Function Name Description

nulldev zero return function

nodev error return function

nochpoll error return function for non-pollable devices

ASSERT expression verification

bcopy copy data between address locations in the kernel

bzero clear memory for a given number of bytes

bcmp compare two byte arrays
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TABLE B–39 Utility Functions (Continued)
Function Name Description

ddi_ffs find first bit set in a long integer

ddi_fls find last bit set in a long integer

swab swap bytes in 16-bit halfwords

strcmp compare two null-terminated strings

strncmp compare two null-terminated strings, with length
limit

strlen determine the number of non-null bytes in a string

strcpy copy a string from one location to another

strncpy copy a string from one location to another, with
length limit

strchr find a character in a string

sprintf format characters in memory

vsprintf format characters in memory

numtos convert integer to decimal string

stoi convert decimal string to an integer

max return the larger of two integers

min return the lesser of two integers

va_arg handle variable argument list

va_copy handle variable argument list

va_end handle variable argument list

va_start handle variable argument list
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APPENDIX C

Making a Device Driver 64-Bit Ready

This appendix provides information for device driver writers who are converting their
device drivers to support the 64-bit kernel. It presents the differences between 32-bit
and 64-bit device drivers and describes the steps to convert 32-bit device drivers to
64-bit. This information is specific to regular character and block device drivers only.

Introduction
For drivers that only need support for the 32-bit kernel, existing 32-bit device drivers
will continue to work without recompilation. However, most device drivers require
some changes to run correctly in the 64-bit kernel, and all device drivers require
recompilation to create a 64-bit driver module. The information in this appendix will
help you to enable drivers for 32-bit and 64-bit environments to be generated from
common source code, thus increasing code portability and reducing the maintenance
effort.

Before starting to clean up a device driver for the 64-bit environment, you should
understand how the 32-bit environment differs from the 64-bit environment. In
particular, you must be familiar with the C language data type models ILP32 and
LP64, and to be aware of driver-specific issues. Driver-specific issues are the subject of
this appendix, while more general issues are covered extensively in Solaris 64-bit
Developer’s Guide.

In addition to general code cleanup to support the data model changes for LP64,
driver writers have to provide support for both 32-bit and 64-bit applications.

The ioctl(9E), devmap(9E), and mmap(9E) entry points enable data structures to be
shared directly between applications and device drivers. If those data structures
change size between the 32-bit and 64-bit environments, then the entry points must be
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modified so that the driver can determine whether the data model of the application is
the same as that of the kernel. When the data models differ, data structures can be
adjusted, using the techniques discussed in the previous chapter.

Practically speaking, in many drivers, only a few ioctls need this kind of handling;
the others will work without change as long as they pass around data structures that
do not change in size.

General Conversion Steps
The sections below provide information on converting drivers to run in a 64-bit
environment. Driver writers might need to do one or more of the following:

1. Use fixed-width types for hardware registers.
2. Use fixed-width common access functions.
3. Check and extend use of derived types.
4. Check changed fields within DDI data structures.
5. Check changed arguments of DDI functions.
6. Modify the driver entry points that handle user data, where needed.

These steps are explained in detail below.

After each step is complete, fix all compiler warnings, and use lint to look for other
problems. The SC5.0 (or newer) version of lint should be used with -Xarch=v9 and
-errchk=longptr64 specified to find 64–bit problems. See the notes on using and
interpreting the output of lint in the Solaris 64-bit Developer’s Guide.

Caution – Do not ignore compilation warnings during conversion for LP64. Even
those that were safe to ignore previously in the ILP32 environment might now indicate
a more serious problem.

After all the steps are complete, compile and test the driver as both a 32-bit and 64-bit
modules.

Use Fixed-width Types for Hardware Registers
Many device drivers that manipulate hardware devices use C data structures to
describe the layout of the hardware. In the LP64 data model, data structures that use
long or unsigned long to define hardware registers are almost certainly incorrect,
because long is now a 64-bit quantity. Start by including <sys/inttypes.h>, and
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update this class of data structure to use int32_t or uint32_t instead of long for 32-bit
device data. This preserves the binary layout of 32-bit data structures. For example,
change:

struct device_regs {
ulong_t addr;
uint_t count;

}; /* Only works for ILP32 compilation */

to:

struct device_regs {
uint32_t addr;
uint32_t count;

}; /* Works for any data model */

Use Fixed-width Common Access Functions
The Solaris DDI permits device registers to be accessed by access functions for
portability to multiple platforms. Previously, the DDI common access functions
specified the size of data in terms of bytes, words, and so on. For example,
ddi_getl(9F) is used to access 32-bit quantities. This function is not available in the
64-bit DDI environment, and has been replaced by versions that are specified using
the number of bits that they manipulate.

These routines were added to the 32-bit kernel in the Solaris 2.6 operating
environment, to permit their early adoption by driver writers. For example, to be
portable to both 32-bit and 64-bit kernels, the driver must use ddi_get32(9F) to
access 32-bit data rather than ddi_getl(9F).

The entire set of common access routines is replaced by their fixed-width equivalents.
See the ddi_get8(9F), ddi_put8(9F), ddi_rep_get8(9F), and ddi_rep_put8(9F)
man pages for details.

Check and Extend Use of Derived Types
System-derived types, such as size_t, should be used where possible so that the
resulting variables make sense when passed between functions. The new derived
types uintptr_t or intptr_t should be used as the integral type for pointers.

Fixed-width integer types are useful for representing explicit sizes of binary data
structures or hardware registers, while fundamental C language data types, such as
int, can still be used for loop counters or file descriptors.
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Some system-derived types represent 32-bit quantities on a 32-bit system but represent
64-bit quantities on a 64-bit system. Derived types that change size in this way
include: clock_t, daddr_t, dev_t, ino_t, intptr_t, off_t, size_t, ssize_t, time_t, uintptr_t,
and timeout_id_t.

Drivers that use these derived types should pay particular attention to their use,
particularly if they are assigning these values to variables of another derived type,
such as a fixed-width type.

Check Changed Fields in DDI Data Structures
The data types of some of the fields within DDI data structures, such as buf(9S), have
been changed. Drivers that use these data structures should make sure that these fields
are being used appropriately. The data structures and the fields that were changed in a
significant way are listed below.

buf(9S)
size_t b_bcount; /* was type unsigned int */
size_t b_resid; /* was type unsigned int */

size_t b_bufsize; /* was type long */

The fields changed here pertain to transfer size, which can now exceed more than 4
Gbytes in future systems.

ddi_dma_attr(9S)
This structure defines attributes of the DMA engine and the device. Because these
attributes specify register sizes, fixed-width data types have been used instead of
fundamental types.

ddi_dma_cookie(9S)
uint32_t dmac_address; /* was type unsigned long */

size_t dmac_size; /* was type u_int */

This structure contains a 32-bit DMA address, so a fixed-width data type has been
used to define it. The size has been redefined as size_t.
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scsi_arq_status(9S)
uint_t sts_rqpkt_state; /* was type u_long */

uint_t sts_rqpkt_statistics; /* was type u_long */

These fields do not need to grow and have been redefined as 32-bit quantities.

scsi_pkt(9S)
uint_t pkt_flags; /* was type u_long */
int pkt_time; /* was type long */
ssize_t pkt_resid; /* was type long */
uint_t pkt_state; /* was type u_long */

uint_t pkt_statistics; /* was type u_long */

Because the pkt_flags, pkt_state, and pkt_statistics fields do not need to grow, they
have been redefined as 32-bit integers. The data transfer size pkt_resid field does
grow and has been redefined as ssize_t.

Check Changed Arguments of DDI Functions
Some DDI function argument data types have been changed. These routines are listed
below.

getrbuf(9F)
struct buf *getrbuf(int sleepflag);

In previous releases, sleepflag was defined as a type long.

drv_getparm(9F)
int drv_getparm(unsigned int parm, void *value_p);

In previous releases, value_p was defined as type unsigned long *.

In the 64-bit kernel, drv_getparm(9F) can be used to fetch both 32-bit and 64-bit
quantities, yet the interface does not define the data types of these quantities, which
encourages simple programming errors.

The following new routines offer a safer alternative:

clock_t ddi_get_lbolt(void);
time_t ddi_get_time(void);
cred_t *ddi_get_cred(void);
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pid_t ddi_get_pid(void);

Driver writers are strongly urged to use these routines instead of drv_getparm(9F).

delay(9F) and timeout(9F)
void delay(clock_t ticks);

timeout_id_t timeout(void (*func)(void *), void *arg, clock_t ticks);

The ticks argument to both of these routines has been changed from long to clock_t.

rmallocmap(9F) and rmallocmap_wait(9F)
struct map *rmallocmap(size_t mapsize);

struct map *rmallocmap_wait(size_t mapsize);

The mapsize argument to both of these routines has been changed from ulong_t to
size_t.

scsi_alloc_consistent_buf(9F)
struct buf *scsi_alloc_consistent_buf(struct scsi_address *ap,

struct buf *bp, size_t datalen, uint_t bflags,

int (*callback )(caddr_t), caddr_t arg);

In previous releases, datalen was defined as an int and bflags was defined as a
ulong.

uiomove(9F)
int uiomove(caddr_t address, size_t nbytes,

enum uio_rw rwflag, uio_t *uio_p);

The nbytes argument was defined as a type long, but because it represents a size in
bytes, size_t is more appropriate.

cv_timedwait(9F) and cv_timedwait_sig(9F)
int cv_timedwait(kcondvar_t *cvp, kmutex_t *mp, clock_t timeout);

int cv_timedwait_sig(kcondvar_t *cvp, kmutex_t *mp, clock_t timeout);

In previous releases, the timeout argument to both of these routines was defined to be
of type long. Because they represent time in ticks, clock_t is more appropriate.
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ddi_device_copy(9F)
int ddi_device_copy(ddi_acc_handle_t src_handle,

caddr_t src_addr, ssize_t src_advcnt,
ddi_acc_handle_t dest_handle, caddr_t dest_addr,

ssize_t dest_advcnt, size_t bytecount, uint_t dev_datasz);

The src_advcnt, dest_advcnt, dev_datasz arguments have changed type. These
were previously defined as long, long, and ulong_t respectively.

ddi_device_zero(9F)
int ddi_device_zero(ddi_acc_handle_t handle,

caddr_t dev_addr, size_t bytecount, ssize_t dev_advcnt,

uint_t dev_datasz):

In previous releases, dev_advcnt was defined as a type long and dev_datasz as a
ulong_t.

ddi_dma_mem_alloc(9F)
int ddi_dma_mem_alloc(ddi_dma_handle_t handle,

size_t length, ddi_device_acc_attr_t *accattrp,
uint_t flags, int (*waitfp)(caddr_t), caddr_t arg,
caddr_t *kaddrp, size_t *real_length,

ddi_acc_handle_t *handlep);

In previous releases, length, flags, and real_length were defined with types
uint_t, ulong_t, and uint_t *.

Modify Routines That Handle Data Sharing
If a device driver shares data structures that contain longs or pointers with a 32-bit
application using ioctl(9E), devmap(9E), or mmap(9E), and the driver is recompiled
for a 64-bit kernel, the binary layout of data structures will be incompatible. If a field is
currently defined in terms of type long, and there is no actual need for 64-bit data
items, change the data structure to use data types that remain as 32–bit quantities (int
and unsigned int). Otherwise, the driver needs to be aware of the different structure
shapes for ILP32 and LP64 and determine whether there is a model mismatch between
the application and the kernel.

To handle potential data model differences, the ioctl(9E), devmap(9E), andmmap(9E)
driver entry points, which interact directly with user applications, need to be written
to determine whether the argument came from an application using the same data
model as the kernel.
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ioctl(9E)
To determine whether there is a model mismatch between the application and the
driver, the driver uses the FMODELS mask to determine the model type from
theioctl(9E) mode argument. The following values are OR-ed into mode to identify
the application data model:

� FLP64 – Application uses the LP64 data model
� FILP32 – Application uses the ILP32 data model.

The code examples in “I/O Control Support for 64-Bit Capable Device Drivers”
on page 177 show how this can be handled using ddi_model_convert_from(9F).

devmap(9E)
To enable a 64-bit driver and a 32-bit application to share memory, the binary layout
generated by the 64-bit driver must be the same as consumed by the 32-bit application.
The mapped memory being exported to the application might need to contain
data-model-dependent data structures.

Few memory mapped devices face this problem because the device registers do not
change size when the kernel data model changes. However, some pseudo-devices that
export mappings to the user address space might want to export different data
structures to ILP32 or LP64 applications. To determine whether there is a data model
mismatch, devmap(9E) uses the model parameter to describe the data model expected
by the application. The model parameter is set to one of the following:

� DDI_MODEL_ILP32 – The application uses the ILP32 data model
� DDI_MODEL_LP64 – The application uses the LP64 data model

The model parameter can be passed untranslated to the
ddi_model_convert_from(9F) routine or to STRUCT_INIT().

mmap(9E)
Because mmap(9E) does not have a parameter that can be used to pass data model
information, the driver’s mmap(9E) entry point can be written to use the new DDI
function ddi_model_convert_from(9F). This function returns one of the following
values to indicate the application’s data type model:

� DDI_MODEL_ILP32 – Application expects the ILP32 data model
� DDI_MODEL_ILP64 – Application expects the LP64 data model
� DDI_FAILURE – Function was not called from mmap(9E)

As with ioctl(9E) and devmap(9E), the model bits can be passed to
ddi_model_convert_from(9F) to determine whether data conversion is necessary,
or the model can be handed to STRUCT_INIT().
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Alternatively, migrate the device driver to support the devmap(9E) entry point.

Well-known ioctl Interfaces
Many ioctl operations are common to a class of device drivers. For example, most
disk drivers implement many of the dkio(7I) family of ioctls. Many of these
interfaces copy in or copy out data structures from the kernel, and some of these data
structures have changed size in the LP64 data model. The following section lists the
ioctls that now require explicit conversion in 64-bit driver ioctl routines for the
dkio(7I), fdio(7I), fbio(7I), cdio(7I), and mtio(7I) families of ioctls.

ioctl command Affected data structure Reference

DKIOCGAPART

DKIOCSAPART

struct dk_map

struct dk_allmap

dkio(4)

DKIOGVTOC

DKIOSVTOC

struct partition

struct vtoc

dkio(4)

FBIOPUTCMAP

FBIOGETCMAP

struct fbcmap fbio(4)

FBIOPUTCMAPI

FBIOGETCMAPI

struct fbcmap_i fbio(4)

FBIOSCURSOR

FBIOSCURSOR

struct fbcursor fbio(4)

CDROMREADMODE1

CDROMREADMODE2

struct cdrom_read cdio(4)

CDROMCDDA struct cdrom_cdda cdio(4)

CDROMCDXA struct cdrom_cdxa cdio(4)

CDROMSUBCODE struct cdrom_subcode cdio(4)

FDIOCMD struct fd_cmd fdio(4)

FDRAW struct fd_raw fdio(4)

MTIOCTOP struct mtop mtio(4)

MTIOCGET struct mtget mtio(4)

Making a Device Driver 64-Bit Ready 443



ioctl command Affected data structure Reference

MTIOCGETDRIVETYPE struct mtdrivetype_request mtio(4)

USCSICMD struct uscsi_cmd scsi(4)

Device Sizes
The nblocks property is exported by each slice of a block device driver. It contains
the number of 512 byte blocks that each slice of the device can support. The nblocks
property is defined as a signed 32-bit quantity, which limits the maximum size of a
slice to 1 Tbyte.

Disk devices that provide more than 1 Tbyte of storage per disk must define the
Nblocks property, which should still contain the number of 512 byte blocks that the
device can support. However, Nblocks is a signed 64-bit quantity, which removes any
practical limit on disk space.

The nblocks property is now deprecated; all disk devices should provide the
Nblocks property.

444 Writing Device Drivers • February 2002 (Beta)



Index

Numbers and Symbols
_fini(9E), 40
_info(9E), 40
_init(9E), 40
64–bit device drivers, 178, 435

A
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B
binary compatibility, 28
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block driver
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block driver entry points, 186
close(9E), 190
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buf(9S) structure, 192
buffer allocation, DMA, 123
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architectures, 392
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PCI, 393
SBus, 396

SCSI, 227
bus nexus device drivers, 28
bus-master DMA, 112, 114
byte ordering, 388
byte-stream I/O, 38

C
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description of, 129
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callback functions, 42, 121
cb_ops(9S) structure, 72
character device driver

aphysio(9F) routine, 168
autoconfiguration of, 159
cb_ops(9S) structure, 72
close(9E) entry point, 162
data transfers, 162
device polling, 173
entry points for, 158
I/O control mechanism, 175
memory mapping, 171
minphys(9F) routine, 169
open(9E) entry point, 161
overview, 38
physio(9F) routine, 167
strategy(9E) entry point, 170

cloning SCSI HBA driver, 263
close(9E) entry point, 162, 190
cmn_err(9F) routine, 42, 201, 375
compiling and linking a driver, 331
condition variables

and mutex locks, 52
routines, 53

.conf files, See hardware configuration files
configuration entry points

attach(9E), 81
detach(9E), 86
getinfo(9E), 88

configuration files, hardware, See hardware
configuration files

context management, See device context
management

context of device driver, 41
cookies

DMA, 111
iblock, 102

copying data
copyin(9F) routine, 163
copyout(9F) routine, 163

crash dumps, saving, 347
crash(1M) command, 367
cv_ functions

cv_broadcast(9F)(), 53
cv_destroy(9F)(), 53
cv_init(9F)(), 53
cv_timedwait(9F)(), 54

cv_ functions (continued)
cv_timedwait_sig(9F)(), 56
cv_wait(9F)(), 53
cv_wait_sig(9F)(), 55

D
data alignment for SPARC, 385
data corruption

detecting, 379
malignant, definition of, 379
misleading, definition of, 379
of control data, 379
of device management data, 379
of received data, 380

data storage classes, 49
data structures

dev_ops(9S), 71
GLD, 317, 320
modldrv(9S), 71

data structures, displaying with MDB, 368
data transfers

character drivers, 162
DDI access functions

ddi_getX(), 379
ddi_putX(), 379
ddi_rep_getX(), 379
ddi_rep_putX(), 379

ddi_ functions
ddi_add_intr(9F)(), 104
ddi_create_minor_node(9F)(), 82
ddi_dma_getwin(9F)(), 114
ddi_dma_nextseg(9F)(), 114
ddi_enter_critical(9F)(), 399
ddi_prop_get_int(9F)(), 303
ddi_prop_lookup(9F)(), 61
ddi_prop_op(9F)(), 62
ddi_regs_map_setup(9F)(), 94
ddi_umem_alloc(9F)(), 209
ddi_umem_alloc(9F), 381
ddi_umem_free(9F)(), 212

DDI-compliant drivers
byte ordering, 389
compliance testing, 340

DDI/DKI
and disk performance, 202
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DDI/DKI (continued)
overview, 27

ddi_dma_attr structure, 116
ddi_driver_major(), 188
ddi_functions

ddi_driver_major(9F), 188
ddi_log_sysevent(9F), 64

ddi_get_driver_private(9F) function
network driver, 314

ddi_get_instance(9F) function
network driver, 320

DDI_INFO_DEVT2DEVINFO, 88
DDI_INFO_DEVT2INSTANCE, 88
ddi_log_sysevent, 64
ddi_removing_power, 147
DDI_RESUME, 147
DDI_RESUME command, 149
DDI_SUSPEND, 147
DDI_SUSPEND command, 147
debugging, 343

ASSERT(9F) macro, 376
booting an alternate kernel, 346
coding hints, 375
conditional compilation, 377
displaying data structures, 368
/etc/system file, 348
kadb (kernel debugger), 351
kmem_flags, 350
machine configuration, 343
macros, 359
MDB (modular debugger), 367
moddebug, 349
output pager (kadb), 364
post-mortem, 367
preparing for disasters, 345
SCSI target driver, 250
setting breakpoints in kadb, 357
setting conditional breakpoints, 358
setting up a tip(1) connection, 343
setting up IA test system, 345
setting up SPARC test system, 344
thread macros, 362
tools, 348
using the SPARC PROM for device

debugging, 401
writing MDB commands, 373

dependency, 140

detach(9E) entry point, 86
detecting kernel memory leaks with MDB, 373
devfsadm(1M) command, 333
device access

system calls, 161, 189
device configuration

entry points, 76
device context management, 213

entry points, 216
model, 214
operation, 215

device driver
See also loading drivers
64-bit drivers, 178, 435
64–bit drivers

See also 64–bit device drivers
aliases, 334
binding to device node, 32
block driver, 38
context, 41
debugging, 343

coding hints, 375
setting up a tip(1) connection, 343
tools, 348
using the PROM, 401

definition of, 37
entry points, 39
error handling, 338
header files, 329
loadable interface, 73
modifying information with

update_drv, 334
modifying permissions, 334
module configuration, 330
network driver, 307
overview, 37
packaging, 335
printing messages, 42
source files, 330
standard character driver, 38
testing, 337
types of, 37

device information
binding a driver to a device, 32
self-identifying, 392
tree structure, 28
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device interrupt handling, See interrupt
handling

device interrupts, See interrupts
device macros (kadb), 359
device memory

D_DEVMAP flag in cb_ops(9S), 73
mapping, 38, 205

device number, 27
device polling

in character drivers, 173
chpoll(9E) entry point, 173
poll(2) system call, 173

device power management
components, 137
definition of, 135
dependency, 140
entry points, 143
interfaces, 141
model, 137
power levels, 138
state transitions, 141

device power management functions
pm_busy_component(9F)(), 142
pm_idle_component(9F)(), 142
power(9E), 143

device registers
mapping, 81

device state in power management, 146
device tree, 28

navigating, in debugger, 370
device-dependency, 140
device-dependency-property, 140
devmap_ entry points

devmap(9E), 206
devmap_access(9E), 218, 226
devmap_contextmgt(9E), 219
devmap_dup(9E), 221
devmap_map(9E), 217
devmap_unmap(9E), 222

devmap_ functions
devmap_devmem_setup(9F)(), 207
devmap_load(9F)(), 225
devmap_umem_setup(9F)(), 211
devmap_unload(9F)(), 226

dev_ops(9S) structure, 71
disaster recovery, 347

disk
I/O controls, 201
performance, 202

disk drivers, testing, 341
displaying data structures with MDB, 368
DKI, See DDI/DKI
DL_ETHER, 308

Ethernet V2 packet processing, 308
GLD support, 308
ISO 8802-3 (IEEE 802.3) packet

processing, 308
network statistics, 315

DL_FDDI, 308
GLD support, 308
SNAP processing, 308

DLPI primitives, 310
DL_ATTACH_REQ, 310
DL_BIND_REQ, 310
DL_DETACH_REQ, 310
DL_DISABMULTI_REQ, 311
DL_ENABMULTI_REQ, 311
DL_GET_STATISTICS_ACK, 312
DL_GET_STATISTICS_REQ, 312, 314
DL_INFO_ACK, 310
DL_INFO_REQ, 310
DL_PHYS_ADDR_ACK, 311
DL_PHYS_ADDR_REQ, 311
DL_PROMISCOFF_REQ, 311
DL_PROMISCON_REQ, 311
DL_SET_PHYS_ADDR_REQ, 311
DL_UNBIND_REQ, 310
DL_UNITDATA_REQ, 311

DLPI providers, 309
DL_TPR, 308

GLD support, 308, 309
SNAP processing, 308
source routing, 309

DMA
buffer allocation, 123
burst sizes, 122
callbacks, 128
cookie, 111, 114
freeing handle, 127
freeing resources, 126
handle, 111, 113, 119
object, 111
object locking, 119
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DMA (continued)
operations, 114
physical addresses, 113
private buffer allocation, 123
register structure, 121
resource allocation, 120
restrictions, 116
transfers, 114, 167
types of, 112
virtual addresses, 113
windows, 114, 131

driver binding name, 32
driver entry points

attach(9E), 81, 149
for block drivers, 186
for character drivers, 158
detach(9E), 86, 147
ioctl(9E), 175
power(9E), 143
probe(9E), 78

driver module entry points
definition of, 39

driver.conf files, See hardware configuration
files

drv_usecwait(9F), 399
dump(9E) entry point, 201
DVMA

SBus slots supporting, 397
virtual addresses, 113

dynamic memory allocation, 44

E
entry points

See also driver entry points
for block drivers, 186
for character drivers, 158
for device power management, 143
device context management, 216
for device configuration, 76
for network drivers, 323
SCSA HBA summary, 256
for system power management, 147

error handling, 338
error messages, printing, 42, 201
/etc/system file, 348

/etc/power.conf file, 140
Ethernet V2 packet processing, 308
events, 63

structure, 64
exporting device memory to user

applications, 207
external registers, 400

F
faults

latent fault, definition of, 384
file system I/O, 186
_fini(9E), 76
first-party DMA, 113, 115
flow of control for power management, 152

G
getinfo(9E) entry point, 88
getinfo(9E) entry point

network driver, 312
getmajor(), 188
getting major numbers, 188
GLD, 307

definition of, 307
device types supported by, 308

GLD data structures
gld_intr structure, 328
gld_mac_free, 327
gld_mac_info, 317
gld_recv, 328
gld_register, 327
gld_sched, 328
gld_stats, 320
gld_unregister, 327

GLD entry points
gldm_get_stats(), 326
gldm_intr(), 325
gldm_ioctl(), 326
gldm_reset(), 323
gldm_send(), 324
gldm_set_mac_addr(), 323
gldm_set_multicast(), 323
gldm_set_promiscuous(), 324
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GLD entry points (continued)
gldm_start(), 323
gldm_stop(), 323

GLD ioctl functions, 312
GLD network statistics, 314
GLD service routines

gld_mac_alloc(), 326
gld(9E) entry point

network driver, 308
gld(9F) function

network driver, 307, 313
gld_mac_info(9S) structure

network driver, 308, 313, 318, 322, 323, 327,
328

gld_stats structure
network driver, 326

gld_stats(9S) structure
network driver, 315, 322

graphics devices
device context management of, 213

H
handle, DMA, 111, 119, 127
hardware configuration files, 330, 332

PCI devices, 396
SBus devices, 398
SCSI target devices, 231
where to place, 333

hardware context, 213
hardware state in power management, 146
HBA driver, See SCSI HBA driver
header files for device drivers, 329
host bus adapter transport layer, 255
hot-plug, See hotplugging
hotpluggable drivers, See hotplugging
hotplugging, 45

and SCSI HBA driver, 46, 302

I
IA processor

byte ordering, 387
data alignment, 387
floating point operations, 387

iblock cookie, 102
_info(9E), 76
_init(9E), 75
instance numbers, 77
internal mode registers, 400
internal sequencing logic, 400
interrupt handlers, responsibilities of, 106
interrupt handling

ddi_add_intr(9F)(), 104
gld_intr, 328
high-level interrupts, 103, 104, 107
overview, 41
registering an interrupt handler, 104
software interrupts, 103, 107

interrupt property, 41, 59
interrupts

common problems with, 400
description of, 101
for network drivers, 313
interrupt numbers, 102
priority levels, 103
specification, 101
stuck interrupt, 381
types of, 102

I/O
asynchronous data transfers, 165, 197
byte stream, 38
disk controls, 201
DMA transfers, 167
file system structure, 186
miscellaneous control of, 175
multiplexing, 173
programmed transfers, 165
scatter/gather structures, 163
synchronous data transfers, 165, 194

ioctl(9E) entry point, 175
iovec(9S) structure, 163
ISA bus, 398
ISO 8802-3 (IEEE 802.3) packet processing, 308

K
kadb, 351

breakpoints, 357
commands, 354
conditional breakpoints, 358
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kadb (continued)
device macros, 359
display and control commands, 356
exiting, 353
macros, 359
output pager, 364
register identifiers, 355
starting, 351

kernel debugger, See kadb
kernel, definition of, 25
kernel memory allocation, 43
kernel memory, associating with user

applications, 209
kernel memory leaks, detecting with

MDB, 373
kernel modules

directory of, 333
kmem_alloc(9F), 44
kmem_flags, 350
kstat(9S) structure

network driver, 314

L
latent fault

definition of, 384
leaf drivers, 28
linking a driver, 331
loading drivers

add_drv(1M) command, 333
compiling a driver, 331
hardware configuration file, 332
linking a driver, 331

loading modules, 40, 333
locking primitives, types of, 49
locks

mutex, 50
scheme for, 56

M
macros, 359

device macros, 359
kadb debugger, 359
thread macros, 362

major numbers, getting, 188
makedevice(), 188
MDB, 367

commands, 368
detecting kernel memory leaks, 373
displaying data structures, 368
getting started, 367
navigating device tree with, 370
retrieving soft state information, 372
writing commands, 373

memory, allocation of, 44
memory leaks, detecting with MDB, 373
memory management unit, 27
memory mapping

device context management of, 213
device memory management, 38, 171, 205

memory model
SPARC, 391
store buffers, 390

minor device node, 82
modifying permissions of, 334

minphys(9F) routine, 169
mmap(2) system call, 224
moddebug kernel variable, 349, 355
modinfo(1M) command, 350
mod_install(9F), 40
modldrv(9S) structure, 71
modlinkage(9S) structure, 71
modload(1M) command, 350
modular debugger, See MDB
module directory, 333
module_info(9S) structure

network driver, 312
modunload(1M) command, 335, 350
mount(2) system call, 189
multiplexing I/O, 173
multiprocessor considerations, 215
multithreading

and condition variables, 53
D_MP flag in cb_ops(9S), 73
and locking primitives, 49
thread synchronization, 52

mutex
functions, 50
high-level, 108
locks, 50
related panics, 57
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mutex (continued)
routines, 50

mutex_owned(9F), 376

N
name-value pairs, 65
Nblocks property, 62, 187
nblocks property, 62, 187
network driver

using GLD, 307
network drivers, testing, 342
network statistics

DL_ETHER, 315
gldm_get_stats(), 315
gld_stats, 315
kstat, 314

no-involuntary-power-cycles property, 142
normal interrupts, 103
nvlist_alloc, 66

O
object locking, 119
open(2) system call, 160, 189
open(9E) entry point

network driver, 310
output pager (kadb debugger), 364

P
packaging, 335
packet processing

Ethernet V2, 308
ISO 8802-3 (IEEE 802.3), 308

partial store ordering, 391
PCI bus, 393

configuration address space, 394
configuration base address registers, 394
hardware configuration files, 396
I/O address space, 395
memory address space, 395

PCI devices, 393
physical DMA, 113

physio(9F) routine, 167
post-mortem degugging, 367
power cycle, 142
power management

See also device power management
flow of control, 152
system, 136

power.conf file, See /etc/power.conf file
print(9E) entry point, 201
printing messages, 42
probe(9E) entry point, 78, 235
processor issues

IA, 387
SPARC, 385, 387

programmed I/O, 165
use of DDI routines, 379

PROM commands, 401
properties

32– and 64–bit, 62
class property, 232
ddi_prop_op(9F), 62
device node name property, 33
Nblocks property, 62, 187
nblocks property, 62, 187
no-involuntary-power-cycles, 142
overview, 45, 59
pm-hardware-state property, 146, 149,

237
prtconf(1M), 60
reg property, 146
removable-media, 140
reporting device properties, 62
SCSI HBA properties, 303
SCSI target driver, 304
Size property, 159
size property, 159
types of, 45, 59

prop_op(9E), 62
prtconf(1M), 30, 60
pseudo device driver, 29, 37

Q
queuing, 306

452 Writing Device Drivers • February 2002 (Beta)



R
read(9E) entry point, 165
readers/writer locks, 51
reg property, 59
register structure, DMA, 121
removable-media, 140

S
SAP

definition of, 308
saving crash dumps, 347
SBus

address bits, 397
geographical addressing, 396
hardware configuration files, 398
physical address space, 396

SBus slots supporting DVMA, 397
scatter-gather, 114
scatter/gather I/O, 163
SCSA, 227, 254

global data definitions, 250
HBA transport layer, 255
interfaces, 256

SCSI
architecture, 228
bus, 227

scsi_ functions
scsi_abort(9F), 231

scsi_ functions
scsi_alloc_consistent_buf(9F)(), 242
scsi_destroy_pkt(9F)(), 242
scsi_dmafree(9F)(), 247
scsi_free_consistent_buf(9F)(), 243
scsi_ifgetcap(9F)(), 244
scsi_ifsetcap(9F()), 244
scsi_init_pkt(9F)(), 241

scsi_ functions
scsi_poll(9F), 231

scsi_ functions
scsi_probe(9F)(), 275

scsi_ functions
scsi_reset(9F), 231

scsi_ functions
scsi_setup_cdb(9F)(), 243
scsi_sync_pkt(9F)(), 242, 247

scsi_ functions (continued)
scsi_transport(9F)(), 245
scsi_unprobe(9F)(), 275
summary list, 230

SCSI HBA driver
abort and reset management, 300
autoconfiguration, 269
capability management, 294
cloning, 263
command state structure, 267
command timeout, 293
command transport, 287
configuration properties, 303
data structures, 256
DMA resources, 280
driver instance initialization, 275
entry points summary, 256
header files, 266
and hotplugging, 46, 302
initializing a transport structure, 271
installation, 303
interrupt handling, 290
module initialization, 267
overview, 254, 255
properties, 305
resource allocation, 276

SCSI HBA driver entry points
by category, 274
tran_abort(9E), 300
tran_dmafree(9E), 286
tran_getcap(9E), 294
tran_init_pkt(9E), 276
tran_reset(9E), 300
tran_reset_notify(9E), 301
tran_setcap(9E), 297
tran_start(9E), 287
tran_sync_pkt(9E), 286
tran_tgt_free(9E), 276
tran_tgt_init(9E), 275
tran_tgt_probe(9E), 275

SCSI target driver
autoconfiguration of, 235
auto-request sense mode, 247
building a command, 243
callback routine, 245
data structures, 232
debugging, 250
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SCSI target driver (continued)
initializing a command descriptor
block, 243
overview, 227
properties, 232, 237, 304
resource allocation, 241
reusing packets, 247
SCSI routines, 230
transporting a command, 244

scsi_address(9S) structure, 259
scsi_device(9S) structure, 232, 260
scsi_hba_ functions

scsi_hba_pkt_free(9F)(), 285
scsi_hba_ functions

scsi_hba_attach_setup(9F)(), 303
scsi_hba_lookup_capstr(9F)(), 294
scsi_hba_pkt_alloc(9F)(), 277
scsi_hba_probe(9F)(), 275
summary list, 265

scsi_hba_tran(9S) structure, 257, 262
scsi_pkt(9S) structure, 233, 261
segmap(9E) entry point, 172, 224
self-identifying devices, 392
serviceability

add new device, 383
detect faulty device, 383
perform periodic ‘‘heath checks’’, 383
remove faulty device, 383
report faults, 383

S_IFCHR, 82
Size property, 159
size property, 159
slice number for block devices, 187
SNAP

definition of, 308
DL_FDDI, 308
DL_TPR, 308

snoop(1M) command
network driver, 312

soft interrupts, 103
soft state information, retrieving in MDB, 372
source compatibility, 28
source files for device drivers, 330
SPARC processor

byte ordering, 386
data alignment, 385
floating point operations, 385

SPARC processor (continued)
multiply and divide instructions, 387
register windows, 386
structure member alignment, 386

special files, 27
state structure, 43, 81
store buffers, 390
strategy(9E) entry point

block drivers, 191
character drivers, 170

STREAMS
cb_ops(9S) structure, 73
drivers, 39
support for network driver, 307

Style 1 DLPI provider, 309
Style 2 DLPI provider, 309
synchronous data transfers, 194
system call, description of, 25
system power management, 136

entry points, 147
model, 145
policy, 147
saving hardware state, 146

T
tagged queuing, 306
tape drivers, testing, 340
testing, 337

asynchronous communication drivers, 341
configuration, 337
DDI compliance, 340
disk drivers, 341
functionality, 338
installation and packaging, 340
network drivers, 342
tape drivers, 341

third-party DMA, 112, 115
thread macros (kadb), 362
thread synchronization

condition variables, 52
mutex locks, 50
mutex_init(9F), 50
per instance mutex, 81
readers/writer locks, 51
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threads
preemption of, 49

tip(1) connection, 343
total store ordering, 391
tran_abort(9E) entry point, 300
tran_destroy_pkt(9E) entry point, 285
tran_dmafree(9E) entry point, 286
tran_getcap(9E) entry point, 294
tran_init_pkt(9E) entry point, 276
tran_reset(9E) entry point, 300
tran_reset_notify(9E) entry point, 301
tran_setcap(9E) entry point, 297
tran_start(9E) entry point, 287
tran_sync_pkt(9E) entry point, 286

U
uiomove(9F) routine, 165
unloading drivers, 335
untagged queuing, 306
update_drv, 334

V
virtual addresses, 27
virtual DMA, 113
virtual memory

memory management unit (MMU), 27
virtual memory address spaces, 27

W
windows, DMA, 131
write(2) system call, 162
write(9E) entry point, 165
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