
AIX

 

5L

 

Version

 

5.2

Understanding

 

the

 

Diagnostic

 

Subsystem

 

for

 

AIX

 

SC23-4873-02

  

���





AIX

 

5L

 

Version

 

5.2

Understanding

 

the

 

Diagnostic

 

Subsystem

 

for

 

AIX

 

SC23-4873-02

  

���



Note

 

Before

 

using

 

this

 

information

 

and

 

the

 

product

 

it

 

supports,

 

read

 

the

 

information

 

in

 

“Notices,”

 

on

 

page

 

251.

Sixth

 

Edition

 

(May

 

2004)

 

This

 

edition

 

applies

 

to

 

AIX

 

5L

 

Version

 

5.2

 

and

 

to

 

all

 

subsequent

 

releases

 

of

 

this

 

product

 

until

 

otherwise

 

indicated

 

in

 

new

 

editions.

 

A

 

reader’s

 

comment

 

form

 

is

 

provided

 

at

 

the

 

back

 

of

 

this

 

publication.

 

If

 

the

 

form

 

has

 

been

 

removed,

 

address

 

comments

 

to

 

Information

 

Development,

 

Department

 

H6DS-905-6C006,

 

11501

 

Burnet

 

Road,

 

Austin,

 

Texas

 

78758-3493.

 

To

 

send

 

comments

 

electronically,

 

use

 

this

 

commercial

 

Internet

 

address:

 

aix6kpub@austin.ibm.com.

 

Any

 

information

 

that

 

you

 

supply

 

may

 

be

 

used

 

without

 

incurring

 

any

 

obligation

 

to

 

you.

 

©

 

Copyright

 

International

 

Business

 

Machines

 

Corporation

 

1997,

 

2004.

 

All

 

rights

 

reserved.

 

US

 

Government

 

Users

 

Restricted

 

Rights

 

–

 

Use,

 

duplication

 

or

 

disclosure

 

restricted

 

by

 

GSA

 

ADP

 

Schedule

 

Contract

 

with

 

IBM

 

Corp.

 



Contents

 

About

 

This

 

Book

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. v

 

Who

 

Should

 

Use

 

This

 

Book

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. v

 

Highlighting

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. v

 

Case-Sensitivity

 

in

 

AIX

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. v

 

ISO

 

9000

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. v

 

Related

 

Publications

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. v

 

Chapter

 

1.

 

Introduction

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 1

 

Structure

 

of

 

Diagnostics

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 1

 

Strategy

 

for

 

Diagnostics

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 3

 

Diagnostic

 

Commands

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 5

 

Chapter

 

2.

 

Operating

 

Environments

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 7

 

Online

 

Diagnostics

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 7

 

Standalone

 

Diagnostics

 

(POWER-based

 

only)

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 8

 

NIM

 

Diagnostics

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 10

 

Chapter

 

3.

 

Diagnostic

 

Components

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 11

 

Diagnostic

 

Controller

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 11

 

Diagnostic

 

Applications

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 14

 

Tasks

 

and

 

Service

 

Aids

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 22

 

Application

 

Test

 

Units

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 46

 

Test

 

Unit

 

64-bit

 

Porting

 

Guide

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 62

 

Diagnostic

 

Kernel

 

Extension

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 65

 

Diagnostic

 

Library

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 96

 

Diagnostic

 

Object

 

Classes

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 168

 

Diagnostic

 

Header

 

Files

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 185

 

Diagnostic

 

User

 

Interface

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 185

 

Diagnostic

 

Menu

 

Examples

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 194

 

Chapter

 

4.

 

Diagnostic

 

Features

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 201

 

Missing

 

Options

 

Resolution

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 201

 

Error

 

Log

 

Analysis

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 205

 

Periodic

 

Diagnostics

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 205

 

Automatic

 

Error

 

Log

 

Analysis

 

(DIAGELA)

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 206

 

Loop

 

Testing

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 208

 

Chapter

 

5.

 

Diagnostic

 

Packaging

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 209

 

Hardfile

 

Packaging

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 209

 

CDROM

 

Packaging

 

(POWER-based

 

only)

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 210

 

Diagnostic

 

Supplemental

 

Media

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 210

 

Chapter

 

6.

 

Diagnostic

 

Debugging

 

Hints

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 215

 

Debugging

 

Hints

 

for

 

Diagnostic

 

Applications

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 215

 

Debugging

 

Hints

 

for

 

Diagnostic

 

Kernel

 

Extension

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 215

 

Diagnostic

 

Patch

 

Diskette

 

Procedure

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 218

 

Chapter

 

7.

 

Code

 

Examples

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 221

 

Example

 

{DEVICE}_ERR_DETAIL.H:

 

TU

 

Specific

 

Outputs

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 221

 

Example

 

{DEVICE}_INPUT_PARAMS.H:

 

TU

 

Specific

 

Inputs

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 222

 

Example

 

TU

 

Local

 

Header

 

File

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 222

 

Example

 

TU

 

exectu

 

Function

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 223

 

Example

 

TU

 

Open/Close

 

Device

 

Interface

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 225

  

©

 

Copyright

 

IBM

 

Corp.

 

1997,

 

2004

 

iii



Example

 

TU

 

Makefiles

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 231

 

Example

 

C

 

Source

 

File

 

for

 

TU

 

Interrupt

 

Handler

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 231

 

Example

 

TU

 

Interrupt

 

Handler

 

Makefile

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 233

 

Example

 

Diagnostic

 

Application

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 234

 

Example

 

Diagnostic

 

Application

 

Message

 

File

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 243

 

Chapter

 

8.

 

Diagnostic

 

Task

 

Matrix

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 247

 

Appendix.

 

Notices

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 251

 

Trademarks

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 252

 

Index

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 255

  

iv

 

Understanding

 

the

 

Diagnostic

 

Subsystem



About

 

This

 

Book

 

This

 

publication

 

describes

 

the

 

hardware

 

diagnostic

 

subsystem.

 

This

 

edition

 

supports

 

the

 

release

 

of

 

AIX

 

5L

 

Version

 

5.2

 

with

 

the

 

5200-03

 

Recommended

 

Maintenance

 

package.

 

Any

 

specific

 

references

 

to

 

this

 

maintenance

 

package

 

are

 

indicated

 

as

 

AIX

 

5.2

 

with

 

5200-03.

 

Who

 

Should

 

Use

 

This

 

Book

 

The

 

book

 

is

 

intended

 

for

 

developers

 

of

 

diagnostic

 

applications,

 

application

 

test

 

units,

 

device-driver

 

test

 

units,

 

the

 

diagnostic

 

controller,

 

and

 

the

 

diagnostic

 

user

 

interface.

 

Highlighting

 

The

 

following

 

highlighting

 

conventions

 

are

 

used

 

in

 

this

 

guide:

  

Bold

 

Identifies

 

commands,

 

subroutines,

 

keywords,

 

files,

 

structures,

 

directories,

 

and

 

other

 

items

 

whose

 

names

 

are

 

predefined

 

by

 

the

 

system.

 

italics

 

Identifies

 

parameters

 

whose

 

actual

 

names

 

or

 

values

 

are

 

to

 

be

 

supplied

 

by

 

the

 

user.

 

monospace

 

Identifies

 

examples

 

of

 

specific

 

data

 

values,

 

examples

 

of

 

text

 

similar

 

to

 

what

 

you

 

might

 

see

 

displayed,

 

examples

 

of

 

portions

 

of

 

program

 

code

 

similar

 

to

 

what

 

you

 

might

 

write

 

as

 

a

 

programmer,

 

messages

 

from

 

the

 

system,

 

or

 

information

 

you

 

should

 

actually

 

type.

   

Case-Sensitivity

 

in

 

AIX

 

Everything

 

in

 

the

 

AIX

 

operating

 

system

 

is

 

case-sensitive,

 

which

 

means

 

that

 

it

 

distinguishes

 

between

 

uppercase

 

and

 

lowercase

 

letters.

 

For

 

example,

 

you

 

can

 

use

 

the

 

ls

 

command

 

to

 

list

 

files.

 

If

 

you

 

type

 

LS,

 

the

 

system

 

responds

 

that

 

the

 

command

 

is

 

″not

 

found.″

 

Likewise,

 

FILEA,

 

FiLea,

 

and

 

filea

 

are

 

three

 

distinct

 

file

 

names,

 

even

 

if

 

they

 

reside

 

in

 

the

 

same

 

directory.

 

To

 

avoid

 

causing

 

undesirable

 

actions

 

to

 

be

 

performed,

 

always

 

ensure

 

that

 

you

 

use

 

the

 

correct

 

case.

 

ISO

 

9000

 

ISO

 

9000

 

registered

 

quality

 

systems

 

were

 

used

 

in

 

the

 

development

 

and

 

manufacturing

 

of

 

this

 

product.

 

Related

 

Publications

    

AIX

 

5L

 

Version

 

5.2

 

General

 

Programming

 

Concepts:

 

Writing

 

and

 

Debugging

 

Programs

    

AIX

 

5L

 

Version

 

5.2

 

Kernel

 

Extensions

 

and

 

Device

 

Support

 

Programming

 

Concepts

    

AIX

 

5L

 

Version

 

5.2

 

Commands

 

Reference

    

AIX

 

5L

 

Version

 

5.2

 

Technical

 

Reference:

 

Base

 

Operating

 

System

 

and

 

Extensions

 

Volume

 

1

 

©

 

Copyright

 

IBM

 

Corp.

 

1997,

 

2004

 

v



vi

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Chapter

 

1.

 

Introduction

 

This

 

chapter

 

contains

 

the

 

following

 

topics:

 

v

   

Structure

 

v

   

Strategy

 

v

   

Diagnostic

 

Commands

The

 

Structure

 

section

 

gives

 

an

 

overview

 

of

 

the

 

diagnostic

 

system.

 

Key

 

application

 

modules

 

are

 

described

 

and

 

their

 

relationships

 

to

 

one

 

another

 

is

 

shown.

 

Also,

 

a

 

figure

 

is

 

displayed

 

that

 

shows

 

the

 

relationship

 

between

 

the

 

Diagnostic

 

Controller,

 

Diagnostic

 

Applications,

 

and

 

Application

 

Test

 

Units.

 

The

 

Strategy

 

section

 

gives

 

an

 

overview

 

of

 

the

 

strategy

 

used

 

by

 

the

 

diagnostic

 

system

 

to

 

discover

 

and

 

analyze

 

problems

 

on

 

the

 

system.

 

The

 

Diagnostic

 

Commands

 

section

 

gives

 

the

 

usage

 

and

 

command

 

line

 

flags

 

for

 

the

 

diag

 

and

 

diagrpt

 

commands.

 

Structure

 

of

 

Diagnostics

 

The

 

Diagnostic

 

System

 

is

 

a

 

collection

 

of

 

application

 

modules

 

that

 

work

 

together

 

to

 

perform

 

some

 

software

 

or

 

hardware

 

action.

 

This

 

collection

 

of

 

application

 

modules

 

are

 

comprised

 

of

 

various

 

distinct

 

components.

  

©

 

Copyright

 

IBM

 

Corp.

 

1997,

 

2004

 

1



The

 

following

 

figure

 

illustrates

 

the

 

diagnostic

 

architecture:

 

Diagnostic
Controller

Resource
Selection

Task
Selection

Diagnostic
Applications

Tasks

Application
Test Units

Device  Driver

Diagnostic Kernel
Extension

or

(Service Aids)

Diagnostic Architecture

   

The

 

architecture

 

shows

 

that

 

the

 

Diagnostic

 

Controller

 

has

 

two

 

main

 

functions:

 

v

   

Resource

 

Selection

 

v

   

Task

 

Selection

 

Tasks

 

are

 

operations

 

that

 

can

 

be

 

performed

 

on

 

a

 

resource.

 

Running

 

Diagnostics,

 

Displaying

 

VPD,

 

or

 

Formatting

 

a

 

Resource,

 

are

 

examples

 

of

 

tasks.

 

Service

 

aids

 

are

 

also

 

considered

 

as

 

tasks.

 

Resources

 

are

 

devices

 

contained

 

by

 

the

 

system

 

unit.

 

The

 

diskette

 

drive

 

and

 

CD

 

ROM

 

drive

 

are

 

examples

 

of

 

resources.

 

The

 

Function

 

Selection

 

Menu

 

contains

 

selections

 

allowing

 

either

 

resources

 

or

 

tasks

 

to

 

be

 

displayed.

 

When

 

Task

 

Selection

 

is

 

made

 

and

 

a

 

task

 

has

 

been

 

selected,

 

a

 

list

 

of

 

resources

 

supporting

 

that

 

task

 

is

 

displayed.

 

Alternatively,

 

when

 

Resource

 

Selection

 

is

 

made,

 

and

 

a

 

resource

 

or

 

group

 

of

 

resources

 

are

 

selected,

 

then

 

a

 

list

 

of

 

tasks

 

supporting

 

the

 

selected

 

resources

 

is

 

displayed.

 

A

 

Diagnostic

 

Application

 

or

 

Task,

 

may

 

involve

 

the

 

use

 

of

 

Application

 

Test

 

Unit

 

code,

 

which

 

in

 

turn

 

may

 

involve

 

the

 

use

 

of

 

a

 

Diagnostic

 

Kernel

 

Extension,

 

or

 

a

 

Device

 

Driver

 

to

 

gain

 

access

 

to

 

the

 

hardware.

   

2

 

Understanding

 

the

 

Diagnostic

 

Subsystem



The

 

figure

 

below

 

illustrates

 

the

 

current

 

diagnostic

 

structure

 

that

 

allows

 

access

 

to

 

diagnostic

 

function

 

concurrent

 

with

 

system

 

operation.

 

Diagnostics

 

for

 

a

 

given

 

resource

 

consists

 

of

 

an

 

executable

 

file

 

containing

 

Diagnostic

 

Application

 

code,

 

which

 

controls

 

the

 

execution

 

of

 

one

 

or

 

more

 

Application

 

Test

 

Units.

 

This

 

executable

 

is

 

started

 

by

 

the

 

Diagnostic

 

Controller,

 

which

 

allows

 

the

 

user

 

to

 

select

 

diagnostic

 

modes

 

and

 

devices

 

to

 

test.

 

To

 

properly

 

execute

 

the

 

Application

 

Test

 

Units,

 

the

 

Diagnostic

 

Application

 

currently

 

must

 

have

 

detailed

 

specific

 

knowledge

 

about

 

each

 

of

 

the

 

Application

 

Test

 

Units.

    

The

 

exectu()

 

interface

 

is

 

the

 

call

 

interface

 

for

 

Application

 

Test

 

Units,

 

and

 

contains

 

all

 

the

 

information

 

necessary

 

to

 

run

 

the

 

Application

 

Test

 

Unit

 

against

 

a

 

particular

 

device

 

and

 

return

 

results.

 

PDiagex

 

is

 

a

 

special

 

generic

 

device

 

driver

 

written

 

for

 

use

 

by

 

Application

 

Test

 

Units,

 

which

 

can

 

be

 

used

 

in

 

place

 

of

 

the

 

functional

 

device

 

driver

 

to

 

provide

 

a

 

simple

 

direct

 

interface

 

to

 

the

 

device

 

under

 

test.

 

Doing

 

so

 

places

 

a

 

greater

 

requirement

 

on

 

the

 

Application

 

Test

 

Unit

 

to

 

directly

 

manipulate

 

the

 

device

 

hardware,

 

but

 

in

 

doing

 

so,

 

it

 

provides

 

earlier

 

use

 

of

 

the

 

Application

 

Test

 

Unit

 

during

 

the

 

hardware

 

bring-up

 

and

 

debug

 

phase,

 

since

 

the

 

Application

 

Test

 

Unit

 

is

 

not

 

dependent

 

on

 

the

 

availability

 

of

 

a

 

working

 

functional

 

device

 

driver.

 

Strategy

 

for

 

Diagnostics

 

The

 

strategy

 

for

 

diagnostics

 

is

 

founded

 

on:

 

v

   

Staging

 

diagnostics

 

based

 

on

 

underlying

 

hardware

 

capabilities

 

according

 

to

 

three

 

levels

 

of

 

testing:

 

–

   

Shared

 

–

   

Subtest

 

–

   

Full-test

v

   

Isolating

 

defective

 

field

 

replaceable

 

units

 

(FRUs)

 

such

 

that

 

there

 

is

 

the

 

least

 

impact

 

to

 

the

 

system.

 

This

 

is

 

accomplished

 

by

 

either:

 

–

   

Option

 

Checkout

 

–

   

System

 

Checkout

  

Chapter

 

1.

 

Introduction

 

3



Staging

 

the

 

Impact

 

of

 

Diagnostics

 

The

 

impact

 

of

 

diagnostics

 

is

 

staged.

 

There

 

are

 

three

 

levels

 

of

 

tests

 

supported

 

by

 

diagnostics:

  

Shared

 

The

 

tests

 

in

 

this

 

category

 

are

 

nondisruptive.

 

Diagnostics

 

does

 

not

 

need

 

exclusive

 

access

 

to

 

run

 

these

 

tests.

 

All

 

Diagnostic

 

Applications

 

(DA)

 

should

 

support

 

the

 

shared

 

testing

 

category

 

since

 

DAs

 

perform

 

error-log

 

analysis.

 

Other

 

possible

 

shared

 

tests

 

are

 

error

 

circuitry

 

testing,

 

cyclic

 

redundancy

 

checks

 

of

 

Loadable

 

ROS,

 

On

 

Board

 

Self

 

Tests

 

(provided

 

the

 

appropriate

 

recovery

 

procedures

 

are

 

included),

 

and

 

selected

 

functional

 

testing

 

such

 

as

 

diagnostic

 

reads

 

and

 

writes.

 

Subtest

 

The

 

tests

 

in

 

this

 

category

 

apply

 

to

 

multiplexed

 

resources

 

such

 

as

 

Native

 

I/O

 

Planar

 

and

 

multiport

 

async

 

cards.

 

The

 

sub-tests

 

are

 

disruptive,

 

but

 

only

 

to

 

a

 

portion

 

of

 

the

 

resource.

 

To

 

run

 

these

 

tests,

 

diagnostics

 

needs

 

exclusive

 

access

 

to

 

the

 

portion

 

of

 

the

 

resource

 

that

 

is

 

being

 

tested.

 

Full-test

 

The

 

tests

 

in

 

this

 

category

 

impact

 

the

 

entire

 

resource.

 

Diagnostics

 

must

 

have

 

exclusive

 

access

 

to

 

the

 

entire

 

resource

 

to

 

run

 

these

 

tests.

   

Option

 

Checkout

 

If

 

the

 

configuration

 

is

 

viewed

 

as

 

a

 

tree

 

structure,

 

diagnostics

 

starts

 

testing

 

at

 

the

 

leaves

 

of

 

the

 

tree,

 

and

 

moves

 

vertically

 

and

 

horizontally

 

down

 

the

 

tree

 

toward

 

the

 

root.

 

The

 

leaves

 

represent

 

terminal

 

devices,

 

and

 

the

 

root

 

is

 

the

 

processor.

 

The

 

following

 

algorithm

 

generally

 

describes

 

the

 

isolation

 

strategy.

 

It

 

starts

 

at

 

an

 

arbitrary

 

node

 

in

 

the

 

tree

 

and

 

isolates

 

to

 

the

 

correct

 

FRU

 

bucket

 

based

 

on

 

the

 

good

 

or

 

bad

 

status

 

of

 

siblings

 

and

 

parent

 

resources.

 

The

 

steps

 

are:

 

1.

   

Test

 

resource

 

x.

 

If

 

no

 

problems

 

are

 

detected,

 

no

 

further

 

isolation

 

is

 

required.

 

2.

   

Test

 

a

 

sibling

 

of

 

resource

 

x,

 

called

 

resource

 

y.

 

If

 

no

 

problems

 

are

 

found,

 

the

 

fault

 

of

 

resource

 

x

 

is

 

isolated

 

to

 

resource

 

x.

 

3.

   

Test

 

the

 

parent

 

of

 

resources

 

x

 

and

 

y.

 

If

 

no

 

problems

 

are

 

detected,

 

the

 

problem

 

has

 

not

 

been

 

isolated

 

to

 

a

 

single

 

failing

 

resource.

 

The

 

FRU

 

buckets

 

associated

 

with

 

resources

 

x

 

and

 

y

 

will

 

both

 

be

 

reported.

 

No

 

further

 

isolation

 

is

 

required.

 

However,

 

if

 

the

 

parent

 

fails

 

its

 

tests,

 

disregard

 

the

 

failures

 

of

 

resources

 

x

 

and

 

y

 

and

 

continue

 

isolating

 

the

 

problem

 

for

 

the

 

parent.

This

 

general

 

process

 

of

 

testing

 

siblings

 

and

 

parents

 

is

 

repeated

 

until

 

a

 

resource

 

passes

 

its

 

tests

 

or

 

until

 

a

 

DA

 

indicates

 

that

 

no

 

further

 

testing

 

is

 

required.

 

The

 

diagnostic

 

subsystem

 

attempts

 

to

 

isolate

 

to

 

a

 

single

 

failing

 

device.

 

When

 

multiple

 

child

 

devices

 

fail

 

their

 

tests,

 

the

 

fault

 

most

 

likely

 

lies

 

with

 

the

 

parent.

 

Thus

 

the

 

DA

 

testing

 

the

 

parent

 

in

 

step

 

3

 

should

 

name

 

the

 

parent

 

as

 

being

 

defective

 

and

 

indicate

 

that

 

no

 

more

 

devices

 

should

 

be

 

tested,

 

in

 

which

 

case

 

the

 

diagnostic

 

controller

 

would

 

only

 

report

 

the

 

parent.

 

The

 

status

 

of

 

the

 

child

 

devices

 

that

 

have

 

been

 

tested

 

is

 

identified

 

in

 

the

 

DA’s

 

control

 

block.

 

System

 

Checkout

 

Each

 

resource

 

in

 

the

 

system

 

that

 

has

 

not

 

been

 

deleted

 

from

 

the

 

resource

 

selection

 

list

 

is

 

tested

 

during

 

system

 

checkout.

 

System

 

Checkout

 

selection

 

is

 

accomplished

 

by

 

selecting

 

All

 

Resources

 

from

 

the

 

Resource

 

Selection

 

Menu.

 

User

 

interaction

 

is

 

not

 

allowed

 

unless

 

a

 

problem

 

has

 

been

 

detected

 

and

 

a

 

question

 

needs

 

to

 

be

 

asked

 

to

 

isolate

 

the

 

problem.

 

Configuration

 

processing

 

for

 

system

 

checkout

 

is

 

different

 

from

 

that

 

for

 

option

 

checkout,

 

which

 

impacts

 

the

 

effectiveness

 

of

 

the

 

FRU

 

Callout.

 

Option

 

checkout

 

is

 

the

 

specification

 

of

 

an

 

individual

 

resource

 

to

 

test.

 

When

 

option

 

checkout

 

is

 

chosen,

 

the

 

option

 

chosen

 

is

 

tested

 

first,

 

and

 

if

 

a

 

problem

 

is

 

found,

 

it

 

is

 

traced

 

back

 

through

 

its

 

siblings

 

and

 

parents

 

until

 

it

 

has

 

been

 

isolated.

 

The

 

configuration

 

is

 

processed

 

from

 

the

 

outside

 

in.

 

When

 

system

 

checkout

 

is

 

chosen,

 

the

 

configuration

 

is

 

processed

 

from

 

the

 

inside

 

out.

 

For

 

example,

 

the

 

configuration

 

is

 

processed

 

starting

 

with

 

the

 

system

 

planar,

 

and

 

works

 

its

 

way

 

out

 

on

 

a

   

4

 

Understanding

 

the

 

Diagnostic

 

Subsystem



per-card

 

basis.

 

First

 

a

 

card

 

is

 

tested,

 

then

 

the

 

devices

 

attached

 

to

 

the

 

card

 

are

 

tested,

 

and

 

then

 

the

 

devices

 

attached

 

to

 

the

 

device

 

attached

 

to

 

the

 

card

 

are

 

tested,

 

and

 

so

 

on.

 

This

 

process

 

is

 

repeated

 

for

 

each

 

card

 

attached

 

to

 

the

 

system

 

planar.

 

Option

 

Checkout

 

is

 

more

 

effective

 

because

 

the

 

children

 

are

 

tested

 

before

 

the

 

parent,

 

which

 

allows

 

the

 

parent

 

to

 

determine

 

its

 

own

 

culpability

 

above

 

and

 

beyond

 

its

 

own

 

test

 

results.

 

The

 

parent

 

can

 

implicate

 

itself

 

for

 

no

 

other

 

reason

 

than

 

that

 

its

 

children

 

are

 

failing.

 

Diagnostic

 

Commands

 

This

 

chapter

 

describes

 

the

 

commands

 

available

 

in

 

the

 

Diagnostic

 

Subsystem.

 

v

   

diag

 

Command

 

v

   

diagrpt

 

Command

diag

 

Command

 

The

 

diag

 

command

 

performs

 

hardware

 

problem

 

determination.

 

When

 

you

 

suspect

 

there

 

is

 

a

 

problem,

 

diag

 

assists

 

you

 

in

 

finding

 

it.

 

The

 

command

 

has

 

the

 

following

 

syntax:

 

diag

 

[

 

[

 

-a

 

]

 

|

 

[

 

-s

 

]

 

|

 

[

 

[

 

-d

 

Device

 

]

 

[

 

-v

 

]

 

[

 

-c

 

]

 

[

 

-e

 

]

 

[

 

-A

 

]

 

[

 

-E

 

Days

 

]

 

|

 

[

 

-B

 

]

 

|

 

[

 

-T

 

taskname

 

]

 

[-S

 

testsuite

 

]

 

Most

 

users

 

should

 

enter

 

the

 

diag

 

command

 

without

 

any

 

flags.

 

The

 

following

 

flags

 

perform

 

various

 

actions:

  

-A

 

Advanced

 

mode.

 

Default

 

is

 

non-advanced

 

mode.

 

-a

 

Processes

 

the

 

changes

 

in

 

the

 

hardware

 

configuration.

 

For

 

example,

 

missing

 

and/or

 

new

 

resources.

 

-B

 

Tests

 

the

 

base

 

system

 

devices,

 

such

 

as

 

planar,

 

memory,

 

processor.

 

-c

 

Indicates

 

that

 

the

 

machine

 

will

 

not

 

be

 

attended.

 

No

 

questions

 

will

 

be

 

asked.

 

Results

 

are

 

written

 

to

 

standard

 

output.

 

Normally

 

used

 

by

 

shell

 

scripts.

 

-d

 

Device

 

Names

 

the

 

resource

 

that

 

should

 

be

 

tested.

 

The

 

Device

 

parameter

 

is

 

a

 

resource

 

name

 

displayed

 

by

 

the

 

lscfg

 

command.

 

-E

 

Days

 

Number

 

of

 

days

 

used

 

to

 

search

 

the

 

error

 

log.

 

-e

 

Causes

 

the

 

device’s

 

Diagnostic

 

Application

 

to

 

be

 

run

 

in

 

Error

 

Log

 

Analysis

 

mode.

 

-S

 

testsuite

 

Tests

 

the

 

Test

 

Suite

 

Group:

 

1.

   

Base

 

System

 

2.

    

I/O

 

Devices

 

3.

    

Async

 

Devices

 

4.

    

Graphics

 

Devices

 

5.

    

SCSI

 

Devices

 

6.

   

Storage

 

Devices

 

7.

   

Commo

 

Devices

 

8.

   

Multimedia

 

Devices

 

-s

 

Causes

 

the

 

system

 

to

 

be

 

tested

 

in

 

System

 

Checkout

 

mode.

 

-T

 

taskstring

 

Specifies

 

a

 

particular

 

Task

 

to

 

execute.

 

The

 

taskstring

 

depends

 

on

 

the

 

particular

 

task

 

to

 

be

 

executed.

 

See

 

Tasks

 

for

 

more

 

information.

 

-v

 

System

 

Verification

 

Mode.

 

Default

 

is

 

Problem

 

Determination

 

mode.

   

diagrpt

 

Command

 

Displays

 

the

 

conclusions

 

made

 

by

 

diagnostics.

 

The

 

diagrpt

 

command

 

has

 

the

 

following

 

syntax:

 

/usr/lpp/diagnostics/bin/diagrpt

 

[

 

[

 

-o

 

]

 

|

 

[

 

-s

 

mmddyy

 

]

 

|

 

[

 

-a

 

]

 

|

 

[

 

-r

 

]

 

The

 

diagrpt

 

command

 

reports

 

the

 

conclusions

 

made

 

by

 

diagnostics.

   

Chapter

 

1.

 

Introduction

 

5



If

 

the

 

user

 

does

 

not

 

specify

 

a

 

flag,

 

a

 

scrollable

 

menu

 

with

 

all

 

diagnostic

 

conclusion

 

reports

 

is

 

displayed.

  

-o

 

Displays

 

the

 

latest

 

diagnostic

 

conclusion.

 

-smmddyy

 

Reports

 

diagnostic

 

conclusions

 

made

 

after

 

the

 

date

 

specified

 

(mmddyy).

 

-a

 

Displays

 

the

 

long

 

version

 

of

 

the

 

Diagnostic

 

Event

 

Log.

 

-r

 

Displays

 

the

 

short

 

version

 

of

 

the

 

Diagnostic

 

Event

 

Log.

   

6

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Chapter

 

2.

 

Operating

 

Environments

 

This

 

chapter

 

contains

 

the

 

following

 

topics:

 

v

   

Online

 

Diagnostics

 

v

   

Standalone

 

Diagnostics

 

v

   

NIM

 

Diagnostics

The

 

Diagnostics

 

operating

 

environment

 

consists

 

of

 

online

 

and

 

standalone

 

diagnostics.

 

The

 

two

 

environments

 

differ

 

in

 

the

 

way

 

they

 

are

 

packaged,

 

installed,

 

and

 

executed.

 

Diagnostics

 

is

 

a

 

collection

 

of

 

applications,

 

the

 

majority

 

of

 

which

 

are

 

device

 

specific.

 

These

 

applications

 

are

 

packaged

 

as

 

filesets,

 

with

 

each

 

fileset

 

associated

 

with

 

a

 

device.

 

Online

 

diagnostics

 

is

 

commonly

 

referred

 

to

 

as

 

running

 

diagnostics

 

from

 

an

 

installed

 

hardfile.

 

This

 

implies

 

that

 

the

 

operating

 

system,

 

and

 

the

 

various

 

device

 

related

 

packages

 

have

 

been

 

installed.

 

Standalone

 

diagnostics

 

are

 

packaged

 

on

 

removable

 

media.

 

The

 

removable

 

media

 

contains

 

the

 

operating

 

system,

 

and

 

all

 

device

 

related

 

applications,

 

device

 

drivers,

 

ODM

 

stanzas,

 

etc.

 

supported

 

at

 

a

 

particular

 

release

 

level.

 

Third

 

party

 

devices

 

and

 

other

 

devices

 

not

 

available

 

for

 

inclusion

 

on

 

the

 

removable

 

media

 

at

 

release

 

time

 

are

 

supported

 

by

 

Diagnostic

 

Supplemental

 

Media.

 

Hardware

 

Diagnostics

 

can

 

also

 

be

 

performed

 

on

 

NIM

 

clients

 

using

 

a

 

diagnostic

 

boot

 

image

 

from

 

a

 

NIM

 

server,

 

rather

 

than

 

booting

 

from

 

removable

 

media

 

or

 

hardfile.

 

Not

 

only

 

does

 

this

 

eliminate

 

the

 

need

 

for

 

diagnostic

 

boot

 

media,

 

it

 

eliminates

 

the

 

need

 

to

 

have

 

diagnostics

 

installed

 

on

 

the

 

local

 

hardfiles

 

of

 

the

 

client

 

machines.

 

Diagnostics

 

are

 

a

 

secure

 

application.

 

The

 

user

 

must

 

know

 

the

 

appropriate

 

password

 

to

 

run

 

diagnostics.

 

Diagnostics

 

are

 

inherently

 

destructive,

 

but

 

this

 

destructiveness

 

is

 

managed.

 

The

 

run-time

 

status

 

of

 

each

 

device

 

identifies

 

the

 

level

 

of

 

diagnostics

 

that

 

can

 

be

 

safely

 

executed.

 

In

 

addition,

 

the

 

testing

 

has

 

been

 

structured

 

so

 

that

 

some

 

tests

 

can

 

only

 

be

 

executed

 

in

 

standalone

 

mode.

 

Online

 

Diagnostics

 

Online

 

diagnostics

 

can

 

be

 

run

 

in

 

three

 

modes:

  

Concurrent

 

Mode

 

Allows

 

the

 

normal

 

system

 

functions

 

to

 

continue

 

while

 

selected

 

resources

 

are

 

being

 

checked.

 

Service

 

Mode

 

Allows

 

checking

 

of

 

most

 

system

 

resources.

 

Maintenance

 

Mode

 

Allows

 

checking

 

of

 

most

 

system

 

resources.

   

Concurrent

 

Mode

 

Concurrent

 

mode

 

provides

 

a

 

way

 

to

 

run

 

online

 

diagnostics

 

on

 

some

 

of

 

the

 

system

 

resources

 

while

 

the

 

system

 

is

 

running

 

normal

 

system

 

activity.

 

Because

 

the

 

system

 

is

 

running

 

in

 

normal

 

operation,

 

devices

 

such

 

as

 

the

 

following

 

may

 

require

 

additional

 

actions

 

by

 

the

 

user

 

or

 

diagnostic

 

application

 

before

 

testing

 

can

 

be

 

done.

 

v

   

SCSI

 

adapters

 

connected

 

to

 

paging

 

devices

 

v

   

Disk

 

drive(s)

 

used

 

for

 

paging,

 

or

 

are

 

part

 

of

 

the

 

rootvg

 

v

   

LFT

 

devices

 

and

 

graphic

 

adapters

 

if

 

a

 

Windowing

 

system

 

is

 

active

 

v

   

Memory

 

v

   

Processor

 

©

 

Copyright

 

IBM

 

Corp.

 

1997,

 

2004

 

7



Service

 

Mode

 

Service

 

mode

 

provides

 

the

 

most

 

complete

 

checkout

 

of

 

the

 

system

 

resources.

 

This

 

mode

 

also

 

requires

 

that

 

no

 

other

 

programs

 

be

 

running

 

on

 

the

 

system.

 

All

 

system

 

resources,

 

except

 

the

 

SCSI

 

adapter

 

and

 

the

 

disk

 

drives

 

used

 

for

 

paging,

 

can

 

be

 

tested.

 

However,

 

note

 

that

 

the

 

memory

 

and

 

processor

 

are

 

only

 

tested

 

during

 

Power

 

On

 

Self

 

Tests

 

(POSTs).

 

Service

 

Mode

 

is

 

entered

 

by

 

booting

 

the

 

operating

 

system

 

in

 

service

 

mode.

 

Maintenance

 

Mode

 

Maintenance

 

mode

 

provides

 

the

 

exact

 

same

 

test

 

coverage

 

as

 

Service

 

Mode.

 

The

 

difference

 

between

 

the

 

two

 

modes

 

is

 

the

 

way

 

they

 

are

 

invoked.

 

Maintenance

 

mode

 

requires

 

that

 

all

 

activity

 

on

 

the

 

operating

 

system

 

be

 

stopped.

 

The

 

shutdown

 

-m

 

command

 

is

 

used

 

to

 

stop

 

all

 

activity

 

on

 

the

 

operating

 

system

 

and

 

put

 

the

 

operating

 

system

 

into

 

maintenance

 

mode.

 

After

 

setting

 

the

 

terminal

 

type,

 

use

 

the

 

diag

 

command

 

to

 

start

 

Diagnostics.

 

Standalone

 

Diagnostics

 

(POWER-based

 

only)

 

Standalone

 

diagnostics

 

provide

 

a

 

method

 

to

 

test

 

the

 

system

 

when

 

the

 

online

 

diagnostics

 

are

 

not

 

installed

 

and

 

a

 

method

 

of

 

testing

 

the

 

disk

 

drives

 

that

 

cannot

 

be

 

tested

 

by

 

the

 

online

 

diagnostics.

 

Standalone

 

diagnostics

 

are

 

currently

 

packaged

 

on

 

CDROM.

 

They

 

are

 

run

 

by

 

placing

 

the

 

Standalone

 

Diagnostic

 

CDROM

 

into

 

the

 

cdrom

 

drive,

 

then

 

booting

 

the

 

system

 

in

 

service

 

mode.

 

The

 

Standalone

 

Diagnostic

 

CDROM

 

file

 

system

 

is

 

mounted

 

over

 

a

 

RAM-file

 

system

 

for

 

execution.

 

Because

 

of

 

this,

 

the

 

CDROM

 

drive

 

(and

 

the

 

SCSI

 

controller

 

that

 

controls

 

it)

 

cannot

 

be

 

tested

 

by

 

the

 

standalone

 

diagnostics.

 

Device

 

support

 

that

 

is

 

not

 

on

 

the

 

Diagnostic

 

CDROM

 

must

 

be

 

supported

 

by

 

Diagnostic

 

Supplemental

 

Media.

 

Tasks

 

not

 

Supported

 

in

 

Standalone

 

Diagnostics

 

Some

 

tasks

 

and

 

service

 

aids

 

are

 

not

 

supported

 

in

 

standalone

 

diagnostics.

 

This

 

is

 

due

 

to

 

the

 

fact

 

that

 

Standalone

 

diagnostics

 

runs

 

from

 

a

 

RAM-file

 

system,

 

they

 

have

 

no

 

direct

 

access

 

to

 

the

 

hardfile.

 

See

 

the

 

Diagnostic

 

Task

 

Matrix

 

for

 

the

 

list

 

of

 

supported

 

tasks

 

and

 

their

 

operating

 

environments.

 

Console

 

Configuration

 

Diskette

 

The

 

Standalone

 

Diagnostic

 

Package

 

allows

 

the

 

use

 

of

 

a

 

Console

 

Configuration

 

Diskette

 

to

 

accomplish

 

two

 

tasks:

 

v

   

Use

 

a

 

Different

 

Async

 

Terminal

 

as

 

the

 

Console

 

v

   

Set

 

the

 

Refresh

 

rate

 

on

 

a

 

High-Function

 

Terminal

 

The

 

Create

 

Customized

 

Configuration

 

Diskette

 

task

 

allows

 

this

 

diskette

 

to

 

be

 

created.

 

Different

 

Async

 

Terminal

 

for

 

Console

 

The

 

Standalone

 

Diagnostic

 

Package

 

allows

 

a

 

terminal

 

attached

 

to

 

any

 

RS232

 

or

 

RS422

 

adapter

 

to

 

be

 

selected

 

as

 

a

 

console

 

device.

 

The

 

default

 

device

 

is

 

an

 

RS232

 

tty

 

attached

 

to

 

the

 

first

 

native

 

serial

 

port.

 

However,

 

a

 

file

 

is

 

provided

 

allowing

 

the

 

console

 

device

 

to

 

be

 

changed.

 

The

 

file

 

name

 

is

 

/etc/consdef.

 

The

 

format

 

of

 

the

 

file

 

is:

 

#

 

COMPONENT_NAME:

 

(cfgmeth)

 

Device

 

Configuration

 

Methods

 

#

 

#

 

FUNCTIONS:

 

consdef

 

#

 

#

 

ORIGINS:

 

27,

 

28

  

8

 

Understanding

 

the

 

Diagnostic

 

Subsystem



#

 

#

 

(C)

 

COPYRIGHT

 

International

 

Business

 

Machines

 

Corp.

 

YYYY,YYYY

 

#

 

All

 

Rights

 

Reserved

 

#

 

Licensed

 

Materials

 

-

 

Property

 

of

 

IBM

 

#

 

#

 

US

 

Government

 

Users

 

Restricted

 

Rights

 

-

 

Use,

 

duplication

 

or

 

#

 

disclosure

 

restricted

 

by

 

GSA

 

ADP

 

Schedule

 

Contract

 

with

 

IBM

 

Corp

 

#

 

#

 

#

 

The

 

console

 

definition

 

file

 

is

 

used

 

for

 

defining

 

async

 

terminal

 

#

 

devices,

 

which

 

are

 

the

 

console

 

candidates

 

at

 

system

 

boot.

 

During

 

#

 

system

 

boot,all

 

natively

 

attached

 

graphic

 

displays,

 

any

 

async

 

#

 

terminal

 

on

 

native

 

serial

 

port

 

s1,

 

and

 

async

 

terminals

 

defined

 

in

 

#

 

this

 

file

 

will

 

display

 

the

 

"Select

 

System

 

Console"

 

message.

 

Only

 

#

 

one

 

terminal

 

may

 

be

 

selected

 

as

 

console.

 

If

 

the

 

terminal

 

#

 

attributes

 

are

 

not

 

specified

 

in

 

this

 

file,

 

default

 

values

 

from

 

the

 

#

 

odm

 

database

 

are

 

assumed.

 

However,

 

the

 

location

 

and

 

connection

 

#

 

attributes

 

are

 

mandatory.

 

The

 

location

 

value

 

may

 

be

 

displayed

 

with

 

#

 

the

 

lsdev

 

command.

 

#

 

#

 

The

 

entries

 

must

 

be

 

in

 

the

 

following

 

format:

 

#

 

#ALTTTY:

 

#

       

connection=value

 

#

       

location=nn-nn-ss-nn

 

#

       

attribute=value

 

#

       

.

 

#

       

.

 

#ALTTTY:

 

#

       

connection=value

 

#

       

location=nn-nn-ss-nn

 

#

       

attribute=value

 

#

       

.

 

#

       

.

 

#

 

Lines

 

in

 

this

 

file

 

must

 

not

 

exceed

 

80

 

characters.

 

All

 

comments

 

#

 

must

 

be

 

preceded

 

by

 

a

 

pound

 

sign

 

(#)

 

in

 

the

 

first

 

column.

 

#

 

#

 

For

 

backward

 

compatibility,

 

the

 

"ALTTTY:"

 

keyword

 

is

 

not

 

required

 

#

 

for

 

the

 

first

 

entry.

 

#

 

#

 

#

 

For

 

example,

 

to

 

display

 

the

 

console

 

selection

 

message

 

on

 

the

 

ttys

 

#

 

attached

 

to

 

the

 

S1

 

and

 

S2

 

ports,

 

uncomment

 

the

 

following

 

stanzas:

 

#

 

#ALTTTY:

 

#

       

connection=rs232

 

#

       

location=00-00-S1-00

 

#

       

speed=9600

 

#

       

bpc=8

 

#

       

stops=1

 

#

       

xon=yes

 

#

       

parity=none

 

#

       

term=ibm3163

 

#ALTTTY:

 

#

       

connection=rs232

 

#

       

location=00-00-S2-00

 

#

       

speed=9600

 

#

       

bpc=8

 

#

       

stops=1

 

#

       

xon=yes

 

#

       

parity=none

 

#

       

term=ibm3151

 

High-Function

 

Terminals

 

60/77-Mhz

 

Refresh

 

Rate

 

Certain

 

high-function

 

terminals

 

may

 

be

 

set

 

to

 

run

 

at

 

a

 

different

 

refresh

 

rate.

 

The

 

Console

 

Configuration

 

Diskette

 

may

 

be

 

created

 

setting

 

the

 

appropriate

 

refresh

 

rate

 

for

 

the

 

terminal

 

used

 

as

 

the

 

console.

 

The

 

Standalone

 

Diagnostic

 

Package

 

uses

 

the

 

default

 

60-Mhz

 

rate.

 

The

 

Create

 

Customized

 

Configuration

 

Diskette

 

task

 

allows

 

this

 

value

 

to

 

be

 

changed,

 

and

 

a

 

new

 

Console

 

Configuration

 

Diskette

 

to

 

be

 

created.

   

Chapter

 

2.

 

Operating

 

Environments

 

9



NIM

 

Diagnostics

 

Hardware

 

diagnostics

 

can

 

be

 

performed

 

on

 

all

 

NIM

 

clients

 

using

 

a

 

diagnostic

 

boot

 

image

 

from

 

a

 

NIM

 

server,

 

rather

 

than

 

booting

 

from

 

removable

 

media

 

or

 

hard

 

disk.

 

This

 

is

 

useful

 

for

 

standalone

 

clients,

 

because

 

the

 

diagnostics

 

do

 

not

 

have

 

to

 

be

 

installed

 

on

 

the

 

local

 

hardfile.

 

Diagnostic

 

support

 

comes

 

from

 

a

 

SPOT

 

resource.

 

In

 

addition,

 

diskless

 

and

 

dataless

 

clients

 

have

 

another

 

way

 

of

 

loading

 

diagnostics

 

from

 

the

 

network.

 

You

 

can

 

boot

 

a

 

diskless

 

or

 

dataless

 

client

 

from

 

the

 

network

 

the

 

same

 

way

 

you

 

do

 

for

 

normal

 

use,

 

but

 

with

 

the

 

machine’s

 

key

 

mode

 

switch

 

in

 

the

 

Service

 

position.

 

If

 

the

 

client’s

 

key

 

mode

 

switch

 

is

 

in

 

the

 

Service

 

position

 

at

 

the

 

end

 

of

 

the

 

boot

 

process,

 

hardware

 

diagnostics

 

from

 

the

 

server’s

 

SPOT

 

are

 

loaded.

 

If

 

a

 

standalone

 

client

 

boots

 

with

 

the

 

key

 

in

 

the

 

Service

 

position,

 

the

 

diagnostics

 

(if

 

installed)

 

are

 

loaded

 

from

 

the

 

hard

 

disk.

 

Running

 

diagnostics

 

in

 

a

 

NIM

 

environment

 

is

 

very

 

similar

 

to

 

running

 

in

 

Standalone

 

mode.

 

See

 

theAIX

 

5L

 

Version

 

5.2

 

Network

 

Installation

 

Management

 

Guide

 

and

 

Reference

 

for

 

more

 

information

 

on

 

the

 

NIM

 

environment.

   

10

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Chapter

 

3.

 

Diagnostic

 

Components

 

This

 

chapter

 

contains

 

information

 

on

 

the

 

various

 

components

 

that

 

make

 

up

 

the

 

Diagnostic

 

Subsystem

 

environment.

 

v

   

Diagnostic

 

Controller

 

v

   

Diagnostic

 

Applications

 

v

   

Tasks

 

&

 

Service

 

Aids

 

v

   

Application

 

Test

 

Units

 

v

   

Diagnostic

 

Kernel

 

Extension

 

v

   

Diagnostic

 

Library

 

v

   

Diagnostic

 

Object

 

Classes

 

v

   

Diagnostic

 

Header

 

Files

 

v

   

User

 

Interface

 

v

   

Diagnostic

 

Menu

 

Examples

Diagnostic

 

Controller

 

The

 

Diagnostic

 

Controller

 

function

 

is

 

started

 

when

 

the

 

root

 

user

 

enters

 

the

 

diag

 

command.

 

Various

 

flags

 

that

 

allow

 

operations

 

to

 

be

 

performed

 

directly

 

may

 

be

 

specified

 

as

 

input.

 

For

 

example,

 

a

 

flag

 

may

 

specify

 

that

 

the

 

system

 

or

 

a

 

particular

 

resource

 

is

 

to

 

be

 

tested

 

or

 

that

 

the

 

system

 

is

 

to

 

be

 

run

 

unattended.

 

If

 

no

 

flags

 

are

 

specified,

 

then

 

the

 

Diagnostic

 

Controller

 

presents

 

menus

 

to

 

determine

 

what

 

the

 

user

 

wants

 

to

 

do.

 

Diagnostic

 

object

 

classes

 

define

 

the

 

resources

 

and

 

tasks

 

available

 

for

 

the

 

Diagnostic

 

Controller

 

to

 

work

 

with.

 

Predefined

 

data

 

in

 

these

 

object

 

classes

 

specify

 

various

 

attributes

 

about

 

the

 

resources

 

and

 

tasks

 

that

 

may

 

be

 

available

 

on

 

the

 

system.

 

The

 

Customized

 

Device

 

object

 

class

 

(CuDv)contains

 

information

 

describing

 

the

 

resource

 

instances

 

actually

 

defined

 

to

 

the

 

system.

 

A

 

defined

 

resource

 

instance

 

may

 

or

 

may

 

not

 

have

 

a

 

corresponding

 

device

 

driver

 

that

 

is

 

used

 

to

 

control

 

it.

 

A

 

resource

 

may

 

be

 

a

 

rack,

 

drawer,

 

adapter,

 

disk,

 

memory

 

card,

 

floating

 

point

 

chip,

 

planar,

 

bus,

 

and

 

so

 

on.

 

The

 

Diagnostic

 

Controller

 

is

 

a

 

data-driven

 

program.

 

It

 

uses

 

information

 

found

 

in

 

both

 

the

 

CuDv

 

and

 

the

 

Predefined

 

Diagnostic

 

Resources

 

object

 

class

 

(PDiagRes)

 

to

 

generate

 

a

 

list

 

of

 

supported

 

resources.

 

This

 

list

 

of

 

supported

 

resources

 

is

 

used

 

to

 

build

 

the

 

Resource

 

Selection

 

menu.

 

The

 

Diagnostic

 

Controller

 

supports

 

dynamic

 

reconfiguration

 

of

 

processors

 

by

 

updating

 

the

 

Resource

 

Selection

 

menu

 

if

 

a

 

reconfiguration

 

operation

 

occurs

 

while

 

the

 

diagnostic

 

controller

 

is

 

running.

 

Given

 

the

 

user’s

 

selection

 

from

 

the

 

Resource

 

Selection

 

Menu,

 

the

 

Diagnostic

 

Controller

 

employs

 

the

 

PDiagRes

 

object

 

class

 

to

 

determine

 

the

 

appropriate

 

Diagnostic

 

Application

 

(DA)

 

to

 

start.

 

The

 

Diagnostic

 

Controller

 

waits

 

for

 

the

 

DA

 

to

 

complete.

 

Diagnostic

 

Application

 

status

 

is

 

returned

 

by

 

the

 

exit

 

system

 

call.

 

The

 

Diagnostic

 

Controller

 

employs

 

a

 

system-wide

 

view

 

of

 

the

 

configuration

 

enabling

 

the

 

Diagnostic

 

Controller

 

to

 

walk

 

through

 

the

 

configuration

 

database

 

testing

 

resources.

 

For

 

example,

 

if

 

a

 

resource

 

fails

 

its

 

tests,

 

the

 

Diagnostic

 

Controller

 

may

 

attempt

 

to

 

test

 

other

 

resources

 

until

 

the

 

problem

 

has

 

been

 

isolated.

 

The

 

Diagnostic

 

Controller

 

understands

 

the

 

dependencies

 

between

 

the

 

resources.

 

The

 

term

 

″resource″

 

is

 

used

 

in

 

a

 

generic

 

sense

 

and

 

includes

 

adapters,

 

as

 

well

 

as

 

terminal

 

devices.

 

The

 

Diagnostic

 

Controller

 

analyzes

 

the

 

conclusions

 

made

 

by

 

the

 

Diagnostic

 

Applications

 

and

 

generates

 

a

 

Problem

 

Report.

 

The

 

Problem

 

Report

 

lists

 

the

 

field

 

replaceable

 

units

 

(FRUs)

 

that

 

should

 

be

 

replaced,

 

the

 

probability

 

of

 

failure

 

associated

 

with

 

each

 

FRU,

 

and

 

the

 

reason

 

why

 

the

 

diagnosis

 

was

 

made.

  

©

 

Copyright

 

IBM

 

Corp.

 

1997,

 

2004

 

11



The

 

Diagnostic

 

Controller

 

writes

 

its

 

analysis

 

to

 

the

 

directory

 

/etc/lpp/diagnostics/data,

 

and

 

the

 

diagrpt

 

command,

 

or

 

″Display

 

Previous

 

Diagnostic

 

Results″

 

task,

 

can

 

be

 

used

 

at

 

a

 

later

 

date

 

to

 

retrieve

 

these

 

results.

 

In

 

addition,

 

notification

 

of

 

problems

 

can

 

be

 

sent

 

to

 

external

 

programs

 

registered

 

with

 

the

 

Diagnostic

 

Controller.

 

The

 

registration

 

is

 

by

 

ODM

 

objects

 

in

 

the

 

PDiagAtt

 

class.

 

There

 

are

 

2

 

possible

 

registrations:

 

For

 

Systems

 

attached

 

to

 

a

 

Hardware

 

Management

 

Console:

 

PDiagAtt:

         

DType

 

=

 

<fileset

 

nickname>

         

DSClass

 

=

 

""

         

attribute

 

=

 

"notify_service"

         

value

 

=

 

""

         

rep

 

=

 

"s"

         

DClass

 

=

 

""

         

DApp

 

=

 

<complete

 

path

 

to

 

external

 

notification

 

program>

 

The

 

program

 

specified

 

in

 

DApp

 

of

 

the

 

notify_service

 

attribute

 

is

 

invoked

 

when

 

the

 

system

 

is

 

managed

 

by

 

a

 

Hardware

 

Management

 

Console

 

(HMC).

 

The

 

program

 

is

 

invoked

 

with

 

the

 

diagnostic

 

event

 

log

 

sequence

 

number

 

of

 

the

 

diagnostic

 

conclusion.

 

The

 

diagnostic

 

event

 

log

 

API

 

can

 

be

 

used

 

to

 

extract

 

the

 

specific

 

data

 

of

 

the

 

diagnostic

 

analysis

 

and

 

perform

 

any

 

customized

 

notifications.

 

The

 

<fileset

 

nickname>

 

is

 

any

 

15

 

character

 

(or

 

less)

 

string

 

that

 

represents

 

which

 

fileset

 

ships

 

this

 

stanza.

 

Diagnostics

 

does

 

not

 

use

 

the

 

nickname,

 

but

 

a

 

unique

 

value

 

per

 

fileset

 

is

 

required

 

in

 

DType

 

to

 

facilitate

 

installing

 

and

 

updating

 

the

 

attribute

 

because

 

the

 

same

 

attribute

 

name

 

can

 

be

 

shipped

 

in

 

other

 

filesets.

 

For

 

example,

 

fileset

 

devices.chrp.base.diag

 

would

 

ship

 

a

 

stanza

 

like:

 

PDiagAtt:

         

DType

 

=

 

"DevChrBasDia"

         

DSClass

 

=

 

""

         

attribute

 

=

 

"notify_service"

         

value

 

=

 

""

         

rep

 

=

 

"s"

         

DClass

 

=

 

""

         

DApp

 

=

 

/usr/lpp/diagnostics/bin/diagServiceEvent

 

For

 

Systems

 

not

 

attached

 

to

 

a

 

Hardware

 

Management

 

Console:

 

PDiagAtt:

         

DType

 

=

 

<fileset

 

nickname>

         

DSClass

 

=

 

""

         

attribute

 

=

 

"notify_extern"

         

value

 

=

 

""

         

rep

 

=

 

"s"

         

DClass

 

=

 

""

         

DApp

 

=

 

<complete

 

path

 

to

 

external

 

notification

 

program>

 

The

 

program

 

specified

 

in

 

DApp

 

of

 

the

 

notify_extern

 

attribute

 

is

 

invoked

 

when

 

the

 

system

 

is

 

not

 

managed

 

by

 

a

 

Hardware

 

Management

 

Console

 

(HMC).

 

The

 

program

 

is

 

invoked

 

with

 

the

 

diagnostic

 

event

 

log

 

sequence

 

number

 

of

 

the

 

diagnostic

 

conclusion.

 

The

 

diagnostic

 

event

 

log

 

API

 

can

 

be

 

used

 

to

 

extract

 

the

 

specific

 

data

 

of

 

the

 

diagnostic

 

analysis

 

and

 

perform

 

any

 

customized

 

notifications.

 

The

 

<fileset

 

nickname>

 

is

 

any

 

15

 

character

 

(or

 

less)

 

string

 

that

 

represents

 

which

 

fileset

 

ships

 

this

 

stanza.

 

Diagnostics

 

does

 

not

 

use

 

the

 

nickname,

 

but

 

a

 

unique

 

value,

 

per

 

fileset,

 

is

 

required

 

in

 

DType

 

to

 

facilitate

 

installing

 

and

 

updating

 

the

 

attribute

 

because

 

the

 

same

 

attribute

 

name

 

can

 

be

 

shipped

 

in

 

other

 

filesets.

 

For

 

example,

 

fileset

 

devices.chrp.base.diag

 

would

 

ship

 

a

 

stanza

 

like:

 

PDiagAtt:

         

DType

 

=

 

"DevChrBasDia"

         

DSClass

 

=

 

""

         

attribute

 

=

 

"notify_extern"

         

value

 

=

 

""

  

12

 

Understanding

 

the

 

Diagnostic

 

Subsystem



rep

 

=

 

"s"

         

DClass

 

=

 

""

         

DApp

 

=

 

/usr/lpp/diagnostics/bin/diagServiceEvent

 

Control

 

Flow

 

of

 

the

 

Diagnostic

 

Controller

 

Invoking

 

the

 

diag

 

command

 

without

 

any

 

flags

 

starts

 

the

 

Diagnostic

 

Controller

 

which

 

performs

 

the

 

following:

 

1.

   

Displays

 

the

 

Operating

 

Instructions

 

menu.

 

The

 

version

 

number

 

will

 

reflect

 

the

 

version

 

of

 

the

 

Diagnostic

 

code

 

installed.

 

2.

   

Displays

 

the

 

Function

 

Selection

 

menu,

 

and

 

starts

 

the

 

command

 

associated

 

with

 

the

 

user’s

 

selection.

 

Invoking

 

the

 

diag

 

command

 

with

 

flags

 

starts

 

the

 

Diagnostic

 

Controller

 

and

 

passes

 

the

 

flags

 

on

 

to

 

the

 

Controller.

 

The

 

Diagnostic

 

Controller

 

performs

 

the

 

following

 

tasks:

 

1.

   

Initialize

 

the

 

user

 

interface.

 

It

 

is

 

assumed

 

that

 

if

 

there

 

is

 

no

 

display

 

and

 

keyboard,

 

then

 

the

 

initialization

 

will

 

fail.

 

v

   

If

 

-a,

 

then

 

performs

 

configuration

 

management.

 

v

   

If

 

-s,

 

then

 

performs

 

system

 

checkout

 

once.

 

v

   

If

 

-S#,

 

then

 

runs

 

diagnostics

 

on

 

the

 

resources

 

indicated

 

by

 

the

 

Test

 

Suite

 

ID.

 

v

   

If

 

a

 

flag

 

was

 

not

 

specified,

 

Diagnostics

 

prompts

 

the

 

user.

2.

   

From

 

the

 

Function

 

Selection

 

Menu,

 

allows

 

the

 

user

 

to

 

select

 

one

 

of

 

the

 

following:

 

v

   

Select

 

Diagnostics

 

v

   

Select

 

Advanced

 

Diagnostics

 

v

   

Select

 

Task

 

Selection

 

Menu

 

v

   

Select

 

Resource

 

Selection

 

Menu

3.

   

If

 

Diagnostics

 

or

 

Advanced

 

Diagnostics

 

is

 

selected,

 

then

 

the

 

following

 

happens:

 

v

   

The

 

Diagnostic

 

Mode

 

Selection

 

menu

 

is

 

displayed,

 

to

 

determine

 

if

 

System

 

Verification

 

or

 

Problem

 

Determination

 

should

 

be

 

run.

 

v

   

If

 

Problem

 

Determination

 

is

 

chosen,

 

then

 

the

 

Diagnostic

 

Controller

 

automatically

 

scans

 

the

 

error

 

log

 

for

 

any

 

PERMANENT

 

HARDWARE

 

errors

 

that

 

have

 

been

 

logged

 

within

 

the

 

last

 

7

 

days

 

to

 

determine

 

if

 

any

 

devices

 

should

 

be

 

automatically

 

tested.

 

A

 

problem

 

report

 

may

 

be

 

generated.

 

v

   

Walks

 

the

 

configuration

 

database

 

to

 

determine

 

which

 

resources

 

in

 

the

 

current

 

configuration

 

can

 

be

 

tested.

 

This

 

information

 

is

 

presented

 

in

 

the

 

Resource

 

Selection

 

Menu.

 

v

   

If

 

Advanced

 

Diagnostics

 

Routines

 

is

 

chosen,

 

and

 

the

 

system

 

is

 

in

 

Online

 

Service

 

mode

 

of

 

operation,

 

the

 

Diagnostic

 

Controller

 

will

 

display

 

the

 

Test

 

Method

 

menu

 

to

 

determine

 

if

 

the

 

tests

 

should

 

be

 

repeated.

 

v

   

Initializes

 

the

 

input

 

parameters

 

to

 

the

 

Diagnostic

 

Application

 

(DA),

 

which

 

are

 

contained

 

in

 

the

 

TMInput

 

-

 

Test

 

Mode

 

Input

 

object

 

class.

 

v

   

Runs

 

the

 

Diagnostic

 

Application

 

(DA)

 

of

 

the

 

resource

 

to

 

be

 

tested.

 

v

   

Waits

 

for

 

the

 

DA

 

to

 

complete.

 

v

   

The

 

Diagnostic

 

Controller

 

then:

 

–

   

Performs

 

isolation

 

process.

 

–

   

Presents

 

conclusions

 

to

 

the

 

screen.

 

–

   

If

 

no

 

trouble

 

is

 

found,

 

diagnostics

 

exits

 

with

 

a

 

return

 

value

 

of

 

0.

 

Otherwise,

 

a

 

value

 

of

 

1

 

is

 

returned

 

if

 

the

 

hardware

 

was

 

tested

 

bad.

4.

   

If

 

Task

 

Selection

 

Menu

 

is

 

selected,

 

then

 

the

 

following

 

happens:

 

v

   

The

 

Diagnostic

 

Controller

 

displays

 

a

 

list

 

of

 

Tasks

 

that

 

are

 

available

 

for

 

the

 

system.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

13



v

   

After

 

a

 

task

 

has

 

been

 

selected,

 

a

 

Resource

 

Selection

 

Menu

 

appears

 

if

 

the

 

selected

 

task

 

supports

 

a

 

resource

 

selection.

 

After

 

selection

 

of

 

a

 

Resource,

 

the

 

task

 

is

 

called

 

with

 

the

 

selected

 

resource

 

name

 

as

 

a

 

command-line

 

argument.

 

v

   

If

 

the

 

selected

 

task

 

does

 

not

 

support

 

resource

 

selection,

 

then

 

the

 

task

 

is

 

invoked.

5.

   

If

 

Resource

 

Selection

 

Menu

 

is

 

selected,

 

then

 

the

 

following

 

happens:

 

v

   

The

 

Diagnostic

 

Controller

 

displays

 

a

 

list

 

of

 

Resources

 

available

 

on

 

the

 

system.

 

v

   

After

 

a

 

Resource

 

has

 

been

 

selected,

 

a

 

Task

 

Selection

 

Menu

 

will

 

appear

 

containing

 

the

 

commonly

 

supported

 

tasks

 

for

 

each

 

selected

 

Resource.

 

After

 

selection

 

of

 

a

 

task,

 

the

 

task

 

is

 

invoked.

Return

 

Status

 

The

 

Diagnostic

 

Controller

 

returns

 

the

 

following

 

values:

  

Diagnostic

 

Controller

 

Value

 

Meaning

 

DIAG_EXIT_GOOD

 

0

 

No

 

problems

 

found

 

DIAG_EXIT_DEVICE_ERROR

 

1

 

Error

 

running

 

diagnostics

 

DIAG_EXIT_INTERRUPT

 

2

 

Received

 

an

 

interrupt

 

while

 

running

 

diagnostics

 

DIAG_EXIT_NO_DEVICE

 

3

 

Device

 

to

 

test

 

was

 

not

 

found

 

in

 

system

 

configuration

 

DIAG_EXIT_BUSY

 

4

 

Another

 

Dctrl

 

program

 

is

 

running

 

DIAG_EXIT_LOCK_ERROR

 

5

 

Cannot

 

create

 

lock

 

file

 

for

 

diagnostic

 

controller

 

DIAG_EXIT_OBJCLASS_ERROR

 

6

 

Error

 

accessing

 

ODM

 

database

 

DIAG_EXIT_USAGE

 

7

 

Usage

 

error

 

DIAG_EXIT_SCREEN

 

8

 

Screen

 

size

 

incorrect

 

DIAG_EXIT_NoPDiagDev

 

9

 

Device

 

not

 

supported

 

by

 

diagnostics

 

DIAG_EXIT_NO_DIAGSUPPORT

 

10

 

Diagnostics

 

is

 

not

 

supported

 

DIAG_EXIT_NOT_MISSING

 

11

 

Device

 

is

 

not

 

missing

 

DIAG_EXIT_NO_AUTHORIZATION

 

12

 

User

 

is

 

not

 

authorized

 

to

 

run

 

diagnostics

 

DIAG_EXIT_KERNSUPPORT

 

13

 

Device

 

is

 

not

 

supported

 

on

 

the

 

64-bit

 

kernel

   

Diagnostic

 

Applications

 

Note:

  

The

 

Diagnostic

 

subsystem

 

supports

 

32-bit

 

diagnostic

 

applications

 

only.

 

Most

 

resources

 

in

 

a

 

system

 

have

 

a

 

Diagnostic

 

Application

 

(DA),

 

started

 

by

 

the

 

Diagnostic

 

Controller,

 

that

 

tests

 

an

 

area.

 

DAs

 

are

 

associated

 

with

 

each

 

resource

 

supported

 

by

 

diagnostics

 

in

 

the

 

configuration

 

database.

 

DAs

 

analyze

 

the

 

error

 

log,

 

display

 

prompts

 

and

 

questions

 

to

 

the

 

user,

 

control

 

which

 

tests

 

are

 

run,

 

call

 

Application

 

Test

 

Units,

 

and

 

analyze

 

test

 

results.

 

The

 

following

 

topics

 

are

 

discussed

 

in

 

detail:

 

v

   

Device

 

Configuration

 

v

   

Determining

 

the

 

Level

 

of

 

Tests

 

to

 

Execute

 

v

   

Drivers

 

Used

 

for

 

Diagnostic

 

Purposes

 

–

   

Production

 

Driver

 

Used

 

for

 

Diagnostic

 

Purposes

 

–

   

Separate

 

Diagnostic

 

Driver

 

Used

 

for

 

Diagnostic

 

Purposes

 

–

   

Diagnostic

 

Kernel

 

Extension

 

Used

 

for

 

Diagnostic

 

Purposes

v

   

Acquiring

 

a

 

Greater

 

Share

 

of

 

the

 

Resource

   

14

 

Understanding

 

the

 

Diagnostic

 

Subsystem



v

   

Error

 

Log

 

Analysis

 

v

   

Enhanced

 

Error

 

Handling

 

Option

 

v

   

Persistent

 

Variables

 

v

   

Field

 

Replaceable

 

Units

 

(FRUs)

 

v

   

Specifying

 

a

 

Text

 

Conclusion

 

v

   

Library

 

Restrictions

 

for

 

Diagnostic

 

Programs

 

v

   

Guidelines

 

for

 

Writing

 

Diagnostic

 

Programs

 

using

 

C++

 

v

   

Completion

 

Status

 

for

 

Diagnostic

 

Applications

 

v

   

Control

 

Flow

 

of

 

a

 

Diagnostic

 

Application

 

v

   

SRN

 

Architecture

 

v

   

Diagnostic

 

Application

 

Code

 

Checklist

Device

 

Configuration

 

In

 

some

 

cases,

 

the

 

DA

 

will

 

have

 

to

 

configure

 

a

 

device

 

in

 

order

 

to

 

test

 

it.

 

If

 

the

 

Configuration

 

Method

 

associated

 

with

 

the

 

device

 

does

 

not

 

contain

 

the

 

code

 

that

 

is

 

required

 

to

 

load

 

the

 

device

 

driver

 

into

 

the

 

kernel

 

and

 

initialize

 

it,

 

then

 

the

 

DA

 

performs

 

this

 

function.

 

However,

 

in

 

most

 

cases,

 

the

 

DA

 

may

 

use

 

one

 

of

 

the

 

diagnostic

 

library

 

functions

 

provided

 

to

 

perform

 

the

 

configuration.

 

The

 

following

 

library

 

functions

 

aid

 

in

 

the

 

configuration/unconfiguration

 

process:

 

v

   

configure_device

 

v

   

initial_state

 

v

   

diagex_cfg_state

 

v

   

diagex_initial_state

 

If

 

a

 

resource

 

is

 

reconfigured,

 

then

 

it

 

must

 

be

 

restored

 

to

 

its

 

initial

 

state

 

before

 

the

 

DA

 

exits.

 

Also,

 

never

 

assume

 

that

 

the

 

parent

 

resource(s)

 

are

 

always

 

configured.

 

Determining

 

the

 

Level

 

of

 

Tests

 

to

 

Execute

 

Each

 

DA

 

is

 

responsible

 

for

 

determining

 

the

 

level

 

of

 

tests

 

that

 

can

 

be

 

safely

 

executed.

 

This

 

determination

 

is

 

a

 

function

 

of

 

how

 

the

 

underlying

 

device

 

drivers

 

support

 

access

 

to

 

the

 

device.

 

For

 

nonshared,

 

nonmultiplexed

 

devices,

 

the

 

DA

 

should

 

attempt

 

to

 

open()

 

the

 

device

 

with

 

read/write

 

privileges

 

and

 

thus

 

determine

 

its

 

access

 

privileges.

 

For

 

shared

 

or

 

multiplexed

 

devices,

 

a

 

more

 

complicated

 

strategy

 

needs

 

to

 

be

 

developed.

 

Perhaps

 

the

 

simplest

 

method

 

-

 

at

 

least

 

from

 

an

 

application

 

standpoint

 

-

 

is

 

to

 

add

 

support

 

for

 

an

 

openx()

 

system

 

call

 

to

 

the

 

device

 

driver,

 

where

 

the

 

ext

 

parameter

 

distinguishes

 

between

 

port-level

 

and

 

card-level

 

diagnostics.

 

Drivers

 

Used

 

for

 

Diagnostic

 

Purposes

 

There

 

are

 

different

 

scenarios

 

for

 

configuring

 

a

 

resource

 

to

 

test.

 

Depending

 

on

 

the

 

relationship

 

the

 

resource

 

to

 

be

 

tested

 

has

 

with

 

other

 

resources,

 

it

 

may

 

be

 

desirable

 

to

 

use

 

one

 

method

 

over

 

another.

 

For

 

instance,

 

to

 

unconfigure

 

a

 

resource

 

in

 

order

 

to

 

load

 

a

 

separate

 

diagnostic

 

driver

 

or

 

kernel

 

extension,

 

it

 

is

 

necessary

 

to

 

unconfigure

 

all

 

of

 

the

 

children

 

resources

 

connected

 

to

 

the

 

particular

 

resource,

 

if

 

any.

 

This

 

could

 

cause

 

a

 

problem

 

if

 

the

 

child

 

resources

 

are

 

in

 

use.

 

In

 

this

 

case,

 

it

 

is

 

desirable

 

to

 

use

 

the

 

production

 

driver

 

for

 

diagnostic

 

purposes.

 

In

 

all

 

cases,

 

it

 

is

 

important

 

to

 

restore

 

the

 

resource

 

(and

 

child

 

resources)

 

to

 

their

 

original

 

state

 

after

 

testing.

 

Production

 

Driver

 

Used

 

for

 

Diagnostic

 

Purposes

 

If

 

the

 

resource

 

is

 

in

 

the

 

DEFINED

 

state,

 

the

 

resource

 

must

 

be

 

configured

 

before

 

testing.

 

After

 

the

 

resource

 

is

 

configured,

 

tests

 

can

 

be

 

performed

 

on

 

the

 

resource,

 

and

 

then

 

the

 

resource

 

must

 

be

 

put

 

back

 

into

 

its

 

original

 

state.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

15



Separate

 

Diagnostic

 

Driver

 

Used

 

for

 

Diagnostic

 

Purposes

 

If

 

the

 

resource

 

is

 

in

 

the

 

DEFINED

 

state,

 

the

 

diagnostic

 

driver

 

may

 

be

 

loaded

 

for

 

testing,

 

then

 

unloaded

 

after

 

testing.

 

If

 

the

 

resource

 

is

 

in

 

the

 

AVAILABLE

 

state

 

because

 

the

 

production

 

driver

 

is

 

loaded,

 

it

 

is

 

necessary

 

to

 

unload

 

the

 

production

 

driver,

 

load

 

the

 

diagnostic

 

driver,

 

perform

 

the

 

tests,

 

unload

 

the

 

diagnostic

 

driver,

 

and

 

then

 

reload

 

the

 

production

 

driver.

 

Any

 

child

 

resources

 

must

 

be

 

unconfigured

 

before

 

the

 

resource

 

under

 

test

 

can

 

be

 

unconfigured.

 

Diagnostic

 

Kernel

 

Extension

 

Used

 

for

 

Diagnostic

 

Purposes

 

If

 

the

 

resource

 

is

 

in

 

the

 

DEFINED

 

state,

 

the

 

resource

 

must

 

be

 

put

 

into

 

the

 

DIAGNOSE

 

state

 

for

 

testing.

 

If

 

the

 

resource

 

is

 

in

 

the

 

AVAILABLE

 

state

 

because

 

the

 

production

 

driver

 

is

 

loaded,

 

it

 

is

 

necessary

 

to

 

unconfigure

 

the

 

resource

 

and

 

all

 

its

 

children,

 

reconfigure

 

the

 

resource

 

into

 

the

 

DIAGNOSE

 

state,

 

test

 

it,

 

and

 

then

 

reconfigure

 

the

 

resource

 

and

 

all

 

its

 

children

 

back

 

to

 

their

 

original

 

states.

 

Acquiring

 

a

 

Greater

 

Share

 

of

 

the

 

Resource

 

If

 

further

 

testing

 

is

 

required,

 

then

 

the

 

DA

 

should

 

assist

 

the

 

user

 

in

 

determining

 

if

 

the

 

user

 

should

 

proceed

 

with

 

the

 

testing.

 

For

 

some

 

devices,

 

it

 

may

 

be

 

best

 

to

 

ask

 

the

 

user

 

to

 

switch

 

to

 

another

 

window

 

and

 

vary

 

the

 

device

 

offline

 

before

 

continuing.

 

For

 

others,

 

it

 

may

 

be

 

best

 

to

 

send

 

software-terminate

 

signals.

 

And

 

for

 

still

 

others,

 

it

 

may

 

be

 

best

 

to

 

start

 

the

 

commands

 

that

 

have

 

been

 

specifically

 

provided

 

to

 

gracefully

 

degrade

 

the

 

system.

 

Error

 

Log

 

Analysis

 

If

 

the

 

dmode

 

field

 

in

 

the

 

TMInput,

 

Test

 

Mode

 

Input,

 

object

 

class

 

is

 

set

 

to

 

either

 

DMODE_ELA

 

or

 

DMODE_PD,

 

then

 

Error

 

Log

 

Analysis

 

should

 

be

 

performed.

 

Error

 

log

 

analysis

 

should

 

be

 

considered

 

a

 

shared

 

test.

 

The

 

getdainput

 

subroutine

 

is

 

used

 

to

 

get

 

the

 

test

 

mode

 

input

 

parameters.

 

resource_alias

 

Attribute

 

When

 

a

 

DA

 

needs

 

to

 

analyze

 

error

 

logs

 

from

 

multiple

 

resources,

 

like

 

the

 

base

 

system

 

DA

 

and

 

system

 

planar,

 

memory

 

and

 

l2

 

cache

 

resources,

 

or

 

a

 

DA

 

wants

 

to

 

analyze

 

error

 

logs

 

that

 

are

 

logged

 

against

 

hardware

 

events,

 

like

 

machine

 

checks

 

or

 

environmental

 

and

 

power

 

warnings

 

(EPOW),

 

then

 

a

 

PDiagAtt

 

stanza

 

must

 

be

 

used

 

to

 

define

 

the

 

alias

 

between

 

the

 

device

 

under

 

test

 

and

 

the

 

additional

 

resources.

 

For

 

example,

 

the

 

DA

 

for

 

the

 

system

 

planar

 

on

 

the

 

RSPC

 

platform

 

performs

 

error

 

log

 

analysis

 

for

 

machine

 

checks

 

that

 

are

 

logged

 

by

 

the

 

RSPC

 

Machine

 

Check

 

Error

 

Handler.

 

The

 

following

 

PDiagAtt

 

stanza

 

must

 

be

 

used

 

to

 

define

 

the

 

alias

 

between

 

the

 

resource,

 

sysplanar0,

 

and

 

the

 

machine

 

check

 

event,

 

MACHCHECK.

 

PDiagAtt:

   

DClass

 

=

 

"planar"

   

DSClass

 

=

 

"sys"

   

DType

 

=

 

"sysplanar_rspc"

   

attribute

 

=

 

"resource_alias"

   

value

 

=

 

"MACHCHECK"

   

rep

 

=

 

"n"

   

DApp

 

=

 

""

 

Thus,

 

any

 

error

 

logged

 

against

 

″MACHCHECK″

 

is

 

analyzed

 

by

 

the

 

DA

 

for

 

the

 

resource

 

of

 

the

 

class,

 

subclass

 

and

 

type

 

of

 

″planar/sys/sysplanar_rspc″,

 

which

 

is

 

typically

 

″sysplanar0″.

 

Any

 

repair

 

action

 

done

 

for

 

the

 

resource

 

(sysplanar0)

 

is

 

associated

 

with

 

the

 

error

 

logged

 

against

 

″MACHCHECK″.

 

Another

 

example:

 

The

 

Diagnostic

 

Application

 

for

 

the

 

base

 

system

 

on

 

the

 

CHRP

 

platform

 

performs

 

error

 

log

 

analysis

 

for

 

the

 

firmware

 

generated

 

error

 

logs

 

for

 

the

 

system

 

planar,

 

memory

 

and

 

l2

 

cache

 

resources.

 

The

 

following

 

stanzas

 

are

 

used

 

to

 

invoke

 

error

 

log

 

analysis

 

from

 

Problem

 

Determination

 

mode

 

and

 

to

 

record

 

the

 

repair

 

action

 

in

 

the

 

error

 

log

 

after

 

the

 

system

 

verification

 

procedure.

   

16

 

Understanding

 

the

 

Diagnostic

 

Subsystem



PDiagAtt:

    

DClass

 

=

 

"planar"

    

DSClass

 

=

 

"sys"

    

DType

 

=

 

"sysplanar_rspc"

    

attribute

 

=

 

"resource_alias"

    

value

 

=

 

"mem0"

    

rep

 

=

 

"n"

    

DApp

 

=

 

""

   

PDiagAtt:

    

DClass

 

=

 

"planar"

    

DSClass

 

=

 

"sys"

    

DType

 

=

 

"sysplanar_rspc"

    

attribute

 

=

 

"resource_alias"

    

value

 

=

 

"l2cache0"

    

rep

 

=

 

"n"

    

DApp

 

=

 

""

 

Enhanced

 

Error

 

Handling

 

(EEH)

 

Option

 

The

 

Diagnostics

 

Application

 

interface

 

includes

 

the

 

pdiag_set_eeh_option,

 

pdiag_set_slot_reset,

 

and

 

pdiag_read_slot_reset

 

subroutines.

 

These

 

subroutines

 

provide

 

the

 

DA

 

with

 

the

 

necessary

 

tools

 

for

 

adequate

 

testing

 

on

 

the

 

EEH

 

option.

 

The

 

DA

 

Support

 

for

 

this

 

feature

 

requires

 

that

 

the

 

DA

 

perform

 

the

 

following

 

sequence

 

of

 

instructions

 

in

 

order:

 

1.

   

Open

 

I/O

 

Adapter

 

Test

 

Units

 

(TU_OPEN).

 

2.

   

Call

 

pdiag_read_slot_reset.
Verify

 

that

 

the

 

EEH

 

option

 

is

 

supported.

 

3.

   

Execute

 

full

 

suite

 

of

 

Test

 

Units

 

(normal

 

Test

 

Units

 

execution

 

for

 

affected

 

component).
If

 

an

 

EEH

 

error

 

is

 

reported

 

and

 

EEH

 

is

 

supported:
-

 

Call

 

pdiag_set_slot_reset.
-

 

Set

 

the

 

PCI

 

slot

 

to

 

reset

 

state

 

(reset

 

active)

 

for

 

the

 

I/O

 

adapter

 

being

 

tested.
-

 

Report

 

EEH

 

error.
If

 

an

 

EEH

 

error

 

is

 

reported

 

and

 

EEH

 

is

 

not

 

supported:

 

-

 

Report

 

a

 

software

 

error

 

4.

   

Close

 

I/O

 

Adapter

 

Test

 

Units

 

(TU_CLOSE).

Persistent

 

Variables

 

DAs

 

must

 

store

 

state

 

variables

 

in

 

the

 

DAVars,

 

Diagnostic

 

Application

 

Variables,

 

object

 

class

 

to

 

support

 

loop

 

mode.

 

DAs

 

are

 

executed

 

for

 

each

 

pass

 

of

 

loop

 

mode,

 

and

 

thus

 

lose

 

state.

 

The

 

putdavar

 

and

 

getdavar

 

subroutines

 

are

 

used

 

to

 

put

 

or

 

get

 

persistent

 

variables.

 

Field

 

Replaceable

 

Units

 

(FRUs)

 

DAs

 

report

 

FRU

 

Buckets

 

to

 

identify

 

parts

 

that

 

need

 

to

 

be

 

replaced.

 

The

 

addfrub

 

subroutine

 

is

 

used

 

to

 

add

 

a

 

FRU

 

bucket

 

to

 

the

 

FRU

 

Bucket

 

object

 

class

 

in

 

the

 

configuration

 

database.

 

As

 

part

 

of

 

the

 

FRU

 

information,

 

a

 

FRU

 

part

 

number

 

for

 

a

 

fru

 

not

 

in

 

the

 

ODM

 

database

 

can

 

be

 

returned

 

by

 

the

 

DA.

 

The

 

FRU

 

part

 

number

 

is

 

placed

 

in

 

the

 

DAVars

 

object

 

class.

 

Also,

 

if

 

the

 

FRU

 

bucket

 

contains

 

a

 

sub-FRU

 

(for

 

example

 

a

 

memory

 

module

 

or

 

daughter

 

cards),

 

the

 

DA

 

must

 

return

 

its

 

physical

 

or

 

logical

 

location

 

code

 

as

 

part

 

of

 

the

 

FRU

 

bucket.

 

Each

 

DA

 

should

 

base

 

its

 

good

 

or

 

bad

 

status

 

on

 

the

 

status

 

of

 

its

 

children.

 

A

 

resource

 

may

 

pass

 

its

 

tests

 

and

 

be

 

labeled

 

bad

 

when

 

it

 

has

 

multiple

 

children

 

that

 

have

 

been

 

labeled

 

bad.

 

If

 

a

 

problem

 

is

 

detected

 

with

 

resource

 

x,

 

which

 

has

 

a

 

parent

 

called

 

resource

 

y

 

and

 

a

 

sibling

 

called

 

resource

 

z,

 

then

 

two

 

FRU

 

Buckets

 

should

 

be

 

output.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

17



v

   

FRU

 

Bucket

 

1

 

should

 

identify

 

the

 

resources

 

x

 

and

 

y,

 

and

 

any

 

cables

 

that

 

can

 

be

 

identified.

 

If

 

the

 

cables

 

cannot

 

be

 

uniquely

 

identified,

 

then

 

the

 

Service

 

Repair

 

Action

 

should

 

implicitly

 

include

 

any

 

cables

 

that

 

may

 

be

 

needed.

 

v

   

FRU

 

Bucket

 

2

 

should

 

only

 

identify

 

resource

 

x

 

and

 

any

 

cables

 

if

 

possible.

 

The

 

Diagnostic

 

Controller

 

decides

 

which

 

FRU

 

Bucket

 

to

 

use,

 

based

 

on

 

the

 

good/bad

 

status

 

of

 

the

 

sibling.

 

If

 

the

 

sibling

 

passes

 

its

 

tests,

 

then

 

FRU

 

Bucket

 

2

 

is

 

named.

 

Specifying

 

a

 

Text

 

Conclusion

 

DAs

 

can

 

also

 

specify

 

a

 

menu

 

as

 

a

 

conclusion.

 

A

 

menu

 

should

 

be

 

specified

 

if

 

the

 

repair

 

action

 

can

 

be

 

performed

 

by

 

the

 

customer.

 

For

 

example,

 

if

 

the

 

problem

 

can

 

be

 

solved

 

by

 

formatting

 

a

 

hard

 

disk,

 

then

 

a

 

menu

 

should

 

be

 

specified.

 

The

 

menugoal

 

subroutine

 

performs

 

this

 

function

 

by

 

adding

 

the

 

menu

 

goal

 

to

 

the

 

Menugoal

 

object

 

class.

 

Library

 

Restrictions

 

for

 

Diagnostic

 

Programs

 

Library

 

libc.a.min

 

is

 

the

 

libc

 

included

 

in

 

the

 

standalone

 

diagnostic

 

package.

 

Do

 

not

 

use

 

any

 

function

 

that

 

is

 

not

 

part

 

of

 

libc.a.min

 

in

 

your

 

application.

 

If

 

a

 

function

 

is

 

used

 

in

 

a

 

diagnostic

 

program

 

that

 

is

 

not

 

an

 

exported

 

symbol

 

of

 

libc.a.min,

 

then

 

an

 

immediate

 

software

 

error

 

(803-xxx)

 

occurs

 

when

 

attempting

 

to

 

run

 

the

 

diagnostic

 

program

 

in

 

standalone

 

diagnostic

 

mode.

 

To

 

ensure

 

that

 

all

 

symbols

 

used

 

by

 

your

 

diagnostics

 

application

 

are

 

included

 

in

 

the

 

standalone

 

environment,

 

compile

 

and

 

link

 

the

 

application

 

code

 

with

 

the

 

libc.a.min

 

library

 

found

 

in

 

the

 

/usr/ccs/lib

 

directory.

 

One

 

method

 

is

 

to

 

create

 

a

 

directory

 

containing

 

the

 

libraries

 

needed

 

for

 

linking:

 

1.

   

Copy

 

libraries

 

libodm.a,

 

libcfg.a,

 

and

 

libcrypt.a

 

to

 

the

 

new

 

directory.

 

2.

   

Make

 

a

 

link

 

from

 

/usr/ccs/lib/libc.a.min

 

to

 

libc.a

 

in

 

the

 

new

 

directory.

 

3.

   

Make

 

a

 

link

 

from

 

/usr/ccs/lib/libc.a.min

 

to

 

libbind.a

 

in

 

the

 

new

 

directory.

 

4.

   

Export

 

LIBPATH

 

to

 

the

 

new

 

directory.

 

5.

   

Compile

 

and

 

Link

 

your

 

application.

 

You

 

can

 

ignore

 

any

 

unresolved

 

symbols

 

coming

 

from

 

libasl,

 

or

 

others

 

that

 

you

 

know

 

about.

 

Errors

 

found

 

indicating

 

unresolved

 

symbols

 

must

 

be

 

fixed

 

before

 

the

 

program

 

will

 

properly

 

execute

 

in

 

standalone

 

diagnostics

 

mode.

 

Guidelines

 

for

 

Writing

 

Diagnostic

 

Programs

 

using

 

C++

 

1.

   

The

 

standard

 

library

 

libC.a

 

is

 

not

 

supported.

 

Do

 

not

 

use

 

this

 

library’s

 

API.

 

2.

   

All

 

of

 

the

 

language

 

support

 

functions

 

in

 

libC.a

 

need

 

to

 

be

 

statically

 

linked

 

at

 

compile

 

time.

 

Use

 

-lCns.a

 

and

 

-bI:/usr/lpp/xlC/lib/libC.imp

 

arguments

 

to

 

compile

 

with

 

xlC.

 

3.

   

Use

 

an

 

exception

 

only

 

for

 

exceptional

 

cases.

 

For

 

example,

 

an

 

exception

 

should

 

not

 

be

 

used

 

for

 

a

 

program’s

 

normal

 

flow

 

of

 

control.

 

4.

   

Never

 

throw

 

an

 

exception

 

across

 

a

 

shared

 

library

 

and

 

executable

 

boundaries.

 

5.

   

No

 

kernel

 

extension

 

shall

 

be

 

written

 

in

 

C++.

Completion

 

Status

 

for

 

Diagnostic

 

Applications

 

DAs

 

must

 

issue

 

the

 

macro

 

DA_EXIT()

 

to

 

exit.

 

Individual

 

values

 

can

 

be

 

set

 

by

 

calling

 

the

 

appropriate

 

DA_SETRC_XXXXXX()

 

macro

 

definition.

   

18

 

Understanding

 

the

 

Diagnostic

 

Subsystem



The

 

following

 

values

 

are

 

defined:

  

DA_STATUS_GOOD

 

No

 

problems

 

were

 

found.

 

DA_STATUS_BAD

 

A

 

FRU

 

Bucket

 

or

 

a

 

Menu

 

Goal

 

was

 

reported.

 

DA_USER_NOKEY

 

No

 

special

 

function

 

keys

 

were

 

entered.

 

DA_USER_EXIT

 

The

 

Exit

 

key

 

was

 

entered

 

by

 

the

 

user.

 

DA_USER_QUIT

 

The

 

Cancel

 

key

 

was

 

entered

 

by

 

the

 

user.

 

DA_ERROR_NONE

 

No

 

errors

 

were

 

encountered

 

performing

 

a

 

normal

 

operation

 

such

 

as

 

displaying

 

a

 

menu,

 

accessing

 

the

 

object

 

repository,

 

and

 

allocating

 

memory.

 

DA_ERROR_OPEN

 

Could

 

not

 

open

 

the

 

device.

 

DA_ERROR_OTHER

 

An

 

error

 

was

 

encountered

 

performing

 

a

 

normal

 

operation.

 

DA_TESTS_NOTEST

 

No

 

tests

 

were

 

executed.

 

DA_TEST_FULL

 

The

 

full

 

tests

 

were

 

executed.

 

DA_TEST_SUB

 

The

 

subtests

 

were

 

executed.

 

DA_TEST_SHR

 

The

 

shared

 

tests

 

were

 

executed.

 

DA_MORE_NOCONT

 

The

 

isolation

 

process

 

is

 

complete.

 

DA_MORE_CONT

 

The

 

path

 

to

 

the

 

device

 

should

 

be

 

tested.

 

The

 

next

 

DA

 

to

 

be

 

called

 

is

 

either

 

the

 

parent

 

or

 

sibling,

 

depending

 

on

 

the

 

value

 

of

 

DNext

 

in

 

the

 

Predefined

 

Diagnostic

 

Resources

 

PDiagRes

 

object

 

class.

   

Control

 

Flow

 

of

 

a

 

Diagnostic

 

Application

 

The

 

DA

 

performs

 

these

 

tasks:

  

1.

   

Displays

 

first

 

stand-by

 

menu.

  

2.

   

Obtains

 

its

 

input

 

from

 

the

 

TMInput

 

object

 

class.

  

3.

   

References

 

the

 

state1

 

and

 

state2

 

variables

 

in

 

the

 

TMInput

 

object

 

class

 

to

 

determine

 

if

 

the

 

child

 

devices

 

which

 

were

 

tested

 

during

 

the

 

current

 

session

 

are

 

defective.

 

If

 

so,

 

then

 

the

 

DA

 

should

 

name

 

the

 

parent

 

as

 

being

 

bad.

  

4.

   

Determines

 

the

 

level

 

of

 

tests

 

to

 

run.

  

5.

   

Calls

 

TU_OPEN.

  

6.

   

Calls

 

Application

 

Test

 

Units

 

(TU).

  

7.

   

Calls

 

TU_CLOSE.

  

8.

   

Reconfigures

 

the

 

device

 

if

 

DA

 

caused

 

it

 

to

 

be

 

configured.

  

9.

   

Performs

 

error-log

 

analysis

 

if

 

the

 

dmode

 

variable

 

in

 

the

 

TMInput

 

object

 

class

 

is

 

equal

 

to

 

PD

 

or

 

ELA.

 

10.

   

Returns

 

status

 

to

 

the

 

Diagnostic

 

Controller

 

through

 

the

 

DA_EXIT()

 

macro

 

call.

SRN

 

Architecture

 

Diagnostic

 

applications

 

report

 

problems

 

through

 

SRNs

 

(Service

 

Request

 

Numbers).

 

SRNs

 

take

 

the

 

following

 

forms:

 

v

   

Six-digit

 

SRNs

 

consist

 

of

 

two

 

grouping

 

of

 

three

 

digits

 

seperated

 

by

 

the

 

character

 

″-″

 

(for

 

example,

 

922-101,

 

where

 

the

 

first

 

group

 

of

 

three

 

digits

 

is

 

referred

 

to

 

as

 

the

 

source

 

number.

 

The

 

second

 

group

 

of

 

three

 

digits

 

is

 

referred

 

to

 

as

 

the

 

reason

 

code.

 

The

 

source

 

number

 

is

 

a

 

unique

 

number

 

that

 

identifies

 

the

 

diagnostic

 

application

 

that

 

produced

 

the

 

SRN.

 

The

 

source

 

number

 

is

 

usually

 

synonymous

 

with

 

the

 

LED

 

field

 

of

 

the

 

PdDV

 

object

 

class

 

of

 

the

 

configuration

 

database.

 

For

 

a

 

diagnostic

 

applications

 

that

 

can

 

not

 

use

 

the

 

LED

 

value,

 

for

 

whatever

 

reason,

 

a

 

value

 

must

 

be

 

assigned

 

to

 

avoid

 

duplication.

 

The

 

reason

 

code

 

can

 

be

 

used

 

to

 

identify

 

a

 

particular

 

failure

 

cause

 

detected

 

by

 

the

 

diagnostic

 

application.

 

v

   

Other

 

SRN

 

Types.

 

See

 

the

 

addfrub

 

subroutine

 

for

 

details.

 

Six-digit

 

SRNs

 

should

 

be

 

grouped

 

so

 

that

 

each

 

set

 

of

 

FRU

 

callouts

 

are

 

grouped

 

together.

 

For

 

example,

 

if

 

a

 

Diagnostic

 

Application

 

callout

 

consists

 

of:

 

v

   

10

 

SRNs

 

for

 

FRU

 

A

   

Chapter

 

3.

 

Diagnostic

 

Components

 

19



v

   

20

 

SRNs

 

for

 

FRU

 

B

 

v

    

5

 

SRNs

 

for

 

FRU

 

A

 

most

 

likely

 

with

 

FRU

 

B

 

next

 

v

    

6

 

SRNs

 

for

 

FRU

 

B

 

most

 

likely

 

with

 

FRU

 

A

 

next

 

Then

 

the

 

SRNs

 

should

 

be

 

grouped

 

like

 

the

 

following:

 

v

   

921-111

 

to

 

921-120

 

FRU

 

A

 

v

   

921-131

 

to

 

921-150

 

FRU

 

B

 

v

   

921-211

 

to

 

921-215

 

FRU

 

A

 

FRU

 

B

 

v

   

921-221

 

to

 

921-226

 

FRU

 

B

 

FRU

 

A

The

 

guidelines

 

for

 

the

 

Reason

 

Codes

 

for

 

SRN

 

Source

 

Numbers

 

700

 

to

 

799

 

and

 

811

 

to

 

999

 

that

 

are

 

not

 

decoded

 

from

 

some

 

type

 

of

 

special

 

information

 

are:

  

000

 

Reserved

 

001

 

Indicates

 

that

 

an

 

adapter

 

or

 

device

 

could

 

not

 

be

 

found

 

002

 

to

 

100

 

Reserved

 

101

 

to

 

199

 

Reserved

 

for

 

non-ELA

 

callouts

 

with

 

a

 

single

 

FRU

 

200

 

to

 

299

 

Reserved

 

for

 

non-ELA

 

callouts

 

with

 

two

 

FRUs

 

300

 

to

 

399

 

Reserved

 

for

 

non-ELA

 

callouts

 

with

 

three

 

FRUs

 

400

 

to

 

499

 

Reserved

 

for

 

non-ELA

 

callouts

 

with

 

four

 

or

 

more

 

FRUs

 

500

 

to

 

599

 

Reserved

 

for

 

non-ELA

 

cases

 

that

 

require

 

a

 

special

 

action

 

such

 

as

 

waiting

 

for

 

a

 

thermal

 

device

 

to

 

cool

 

or

 

checking

 

the

 

level

 

of

 

a

 

device.

 

600

 

to

 

699

 

Reserved

 

for

 

ELA

 

callouts

 

with

 

a

 

single

 

FRU

 

700

 

to

 

799

 

Reserved

 

for

 

ELA

 

callouts

 

with

 

two

 

or

 

more

 

FRUs

 

800

 

to

 

899

 

Reserved

 

for

 

ELA

 

cases

 

that

 

require

 

a

 

special

 

action,

 

such

 

as

 

waiting

 

for

 

a

 

thermal

 

device

 

to

 

cool

 

or

 

checking

 

the

 

level

 

of

 

a

 

device.

 

900

 

to

 

999

 

Reserved

   

This

 

is

 

done

 

to

 

group

 

the

 

SRNs

 

with

 

like

 

FRUs

 

into

 

one

 

entry

 

in

 

the

 

SRN

 

Tables.

 

Diagnostic

 

Controller

 

Generated

 

SRNs

 

The

 

following

 

table

 

lists

 

SRN

 

generated

 

by

 

the

 

diagnostic

 

controller

 

when

 

the

 

event

 

shown

 

in

 

the

 

description

 

column

 

occurs.

Note:

  

″xxx″

 

in

 

the

 

following

 

table

 

represents

 

the

 

source

 

number

 

of

 

the

 

diagnostic

 

application

 

that

 

executed.

  

SRN

 

Description

 

802-xxx

 

The

 

diagnostic

 

did

 

not

 

detect

 

an

 

installed

 

device

 

(Online

 

Diagnostics).

 

803-xxx

 

An

 

error

 

not

 

related

 

to

 

the

 

diagnostic

 

tests

 

occurred.

 

804-xxx

 

A

 

halt

 

occurred

 

in

 

the

 

diagnostic

 

application.

 

801-101

 

801-102

 

The

 

diagnostics

 

did

 

not

 

detect

 

an

 

installed

 

device

 

(Standalone

 

Diagnostics).

   

Source

 

Numbers

 

The

 

following

 

source

 

numbers

 

are

 

defined

 

for

 

use

 

by

 

third

 

party

 

vendors.

Note:

  

If

 

the

 

LED

 

field

 

of

 

the

 

PdDV

 

object

 

class

 

for

 

a

 

particular

 

device

 

is

 

different

 

than

 

the

 

source

 

number

 

shown

 

in

 

the

 

table

 

below,

 

the

 

LED

 

takes

 

precedence.

 

Source

 

Numbers

 

shown

 

in

 

the

 

following

 

table

 

are

 

hexadecimal

 

values.

  

20

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Source

 

Number

 

Description

 

661

 

IDE

 

Tape

 

Drive

 

66a

 

USB

 

Open

 

Host

 

Controller

 

Type

 

66b

 

USB

 

Universal

 

Host

 

Controller

 

Type

 

74b

 

ATM

 

Adapter

 

74d

 

Sound

 

Card

 

74e

 

Fibre

 

Channel

 

Adapter

 

892

 

Graphics

 

Display

 

Adapter

 

893

 

Local

 

Area

 

Network

 

(LAN)

 

Adapter

 

894

 

Async

 

Protocol

 

Adapter

 

901

 

SCSI

 

Protocol

 

Device

 

902

 

Graphics

 

Display

 

904

 

Parallel

 

Port

 

Attached

 

Device

 

753

 

IDE

 

CD

 

ROM

 

Drive

 

891

 

SCSI

 

Device

 

Adapter

 

752

 

IDE

 

Disk

 

Drive

 

805

 

CD

 

Read/Write

 

Drive

 

711

 

Generic

 

Adapter

 

(Not

 

covered

 

above)

   

Diagnostic

 

Application

 

Code

 

Checklist

 

The

 

following

 

checklist

 

can

 

be

 

helpful

 

in

 

ensuring

 

successful

 

Diagnostic

 

Application

 

(DA)

 

code.

 

1.

   

Code

 

must

 

execute

 

Good

 

Machine

 

Path

 

(GMP)

 

testing

 

without

 

abending

 

or

 

returning

 

an

 

SRN

 

under

 

the

 

following

 

conditions:

 

a.

   

IPL

 

Mode:

 

Service

 

from

 

hard

 

disk.

 

b.

   

Select

 

Advanced

 

mode.

 

c.

   

Select

 

PD

 

mode.

 

d.

   

Run

 

a

 

single

 

time.

 

Follow

 

all

 

instructions

 

presented

 

by

 

the

 

DA.

 

If

 

the

 

question

 

presented

 

on

 

a

 

screen

 

is

 

unclear,

 

note

 

the

 

ambiguity

 

and

 

answer

 

the

 

question

 

as

 

you

 

understand

 

it.

 

Use

 

wrap

 

plugs

 

where

 

required.

 

Unplug

 

cables

 

as

 

required.

 

Look

 

for:

 

a.

   

Spelling

 

errors

 

b.

   

Grammatical

 

errors

2.

   

Code

 

must

 

execute

 

GMP

 

testing

 

without

 

abending

 

or

 

returning

 

an

 

SRN

 

under

 

the

 

following

 

conditions:

 

a.

   

IPL

 

Mode:

 

Service

 

from

 

CD-ROM.

 

b.

   

Select

 

Advanced

 

mode.

 

c.

   

Select

 

PD

 

mode.

 

d.

   

Run

 

a

 

single

 

time.

Use

 

wrap

 

plugs

 

where

 

required.

 

Unplug

 

cables

 

as

 

required.

 

3.

   

Code

 

must

 

execute

 

GMP

 

testing

 

without

 

abending

 

or

 

returning

 

an

 

SRN

 

under

 

the

 

following

 

conditions:

 

a.

   

IPL

 

Mode:

 

Normal.

 

b.

   

Run

 

diagnostics

 

from

 

command

 

line

 

in

 

no-console

 

mode.

 

diag

 

-cd

   

device

   

Chapter

 

3.

 

Diagnostic

 

Components

 

21



c.

   

Run

 

diagnostics

 

from

 

command

 

line

 

in

 

no-console

 

Advanced

 

mode.

 

diag

 

-Acd

    

device

4.

   

Code

 

must

 

execute

 

Good

 

Machine

 

Path

 

(GMP)

 

testing

 

without

 

abending

 

or

 

returning

 

an

 

SRN

 

under

 

the

 

following

 

conditions:

 

a.

   

IPL

 

Mode:

 

Service

 

from

 

hard

 

disk.

 

b.

   

Select

 

PD

 

mode.

 

c.

   

Select

 

Advanced

 

mode.

 

d.

   

Select

 

ALL

 

Resources.

Follow

 

all

 

instructions

 

presented

 

by

 

the

 

DA.

 

If

 

the

 

question

 

presented

 

on

 

a

 

screen

 

is

 

unclear,

 

note

 

the

 

ambiguity

 

and

 

answer

 

the

 

question

 

as

 

you

 

understand

 

it.

 

Look

 

for:

 

No

 

interactive

 

menus

 

displayed

 

while

 

the

 

application

 

is

 

executing.

Other

 

test

 

scenarios

 

include:

 

1.

   

Bring

 

the

 

device

 

to

 

the

 

DEFINED

 

State;

 

then

 

run

 

diagnostics

 

to

 

ensure

 

the

 

DA

 

causes

 

the

 

device

 

to

 

be

 

made

 

available.

 

After

 

testing

 

is

 

completed,

 

ensure

 

adapter

 

is

 

placed

 

back

 

in

 

the

 

DEFINED

 

State.

 

2.

   

If

 

microcode

 

is

 

used

 

by

 

the

 

device,

 

rename

 

the

 

microcode

 

file,

 

run

 

the

 

DA,

 

and

 

make

 

sure

 

the

 

DA

 

reports

 

the

 

absence

 

of

 

the

 

file.

 

3.

   

Run

 

Advanced

 

Diagnostics

 

on

 

the

 

device.

 

When

 

a

 

wrap

 

plug

 

is

 

called

 

for,

 

do

 

not

 

use

 

it.

 

Make

 

sure

 

an

 

SRN

 

is

 

generated.

 

Alternatively,

 

do

 

anything

 

that

 

causes

 

an

 

SRN

 

to

 

be

 

reported.

 

Check

 

the

 

SRN

 

for

 

accuracy.

 

4.

   

Try

 

to

 

cause

 

an

 

open

 

error

 

by

 

renaming

 

device

 

driver.

 

Ensure

 

that

 

a

 

software

 

error

 

is

 

reported.

 

5.

   

Place

 

the

 

adapter

 

in

 

the

 

DEFINED

 

state.

 

Cause

 

the

 

configuration

 

to

 

fail

 

by

 

renaming

 

the

 

method.

 

Observe

 

how

 

the

 

DA

 

handles

 

this.

 

In

 

most

 

instances,

 

an

 

SRN

 

should

 

be

 

generated

 

stating

 

that

 

the

 

device

 

could

 

not

 

be

 

configured.

 

6.

   

Place

 

the

 

adapter

 

in

 

the

 

second

 

I/O

 

planar

 

of

 

a

 

supported

 

system.

 

Ensure

 

the

 

adapter

 

is

 

in

 

the

 

DEFINED

 

state.

 

Run

 

diagnostics

 

to

 

ensure

 

the

 

DA

 

causes

 

the

 

device

 

to

 

be

 

made

 

available.

 

After

 

testing

 

is

 

completed,

 

ensure

 

adapter

 

is

 

placed

 

back

 

in

 

the

 

DEFINED

 

state.

Tasks

 

and

 

Service

 

Aids

 

The

 

Diagnostic

 

Package

 

contains

 

programs

 

that

 

are

 

called

 

Tasks.

 

Tasks

 

can

 

be

 

thought

 

of

 

as

 

performing

 

a

 

specific

 

function

 

on

 

a

 

resource;

 

for

 

example,

 

running

 

diagnostics,

 

or

 

performing

 

a

 

Service

 

Aid

 

on

 

a

 

resource.

 

Creating

 

a

 

Task

 

Note:

  

The

 

diagnostic

 

subsystem

 

only

 

supports

 

32-bit

 

Tasks

 

and

 

Service

 

Aids.

 

Tasks

 

are

 

represented

 

by

 

an

 

entry

 

in

 

the

 

Predefined

 

Diagnostic

 

Task

 

object

 

class

 

(PDiagTask).

 

To

 

create

 

a

 

new

 

task,

 

a

 

PDiagTask

 

object

 

is

 

needed

 

plus

 

the

 

binary

 

executable

 

of

 

the

 

task

 

itself,

 

as

 

specified

 

by

 

the

 

PDiagTask->Action

 

class

 

member.

 

Some

 

Task

 

IDs

 

are

 

reserved

 

for

 

use

 

by

 

the

 

Diagnostic

 

Controller:

 

Task

 

ID

 

0

 

Built-in

 

Controller

 

Task

 

Task

 

ID

 

1000+

 

Reserved

 

for

 

Third-Party

 

Use.

 

Any

 

number

 

may

 

be

 

used

 

above

 

999.

 

A

 

clash

 

of

 

task

 

IDs

 

by

 

third-party

 

tasks

 

may

 

occur

 

if

 

the

 

same

 

task

 

ID

 

is

 

used.

 

The

 

problem

 

may

 

appear

 

to

 

the

 

user

 

as

 

seeing

 

a

 

particular

 

resource

 

supported

 

by

 

a

 

task,

 

when

 

in

 

reality

 

it

 

is

 

not.

 

Each

 

third-party

 

supported

 

task

 

should

 

be

 

able

 

to

 

handle

 

the

 

condition

 

of

 

a

 

nonsupported

 

resource

 

given

 

as

 

a

 

command-line

 

argument,

 

if

 

the

 

PDiagTask->ResourceFlag

 

is

 

set.

  

22

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Performing

 

a

 

Task

 

Menu

 

Select

 

the

 

following

 

from

 

the

 

Function

 

Selection

 

Menu:

 

Task

 

Selection

 

(Diagnostics,

 

Advanced

 

Diagnostics,

 

Service

 

Aids,

 

etc.)

 

This

 

selection

 

will

 

list

 

the

 

tasks

 

supported

 

by

 

these

 

procedures.

 

Once

 

a

 

task

 

is

 

selected,

 

a

 

resource

 

menu

 

may

 

be

 

presented

 

showing

 

all

 

resources

 

supported

 

by

 

the

 

task.

 

The

 

displaying

 

of

 

the

 

resource

 

menu

 

is

 

dependent

 

on

 

the

 

value

 

of

 

the

 

PDiagTask->ResourceFlag

 

value.

Note:

  

Many

 

of

 

these

 

tasks

 

work

 

on

 

all

 

system

 

model

 

architectures.

 

(The

 

Diagnostic

 

Task

 

Matrix

 

shows

 

all

 

current

 

supported

 

tasks

 

and

 

their

 

supported

 

platforms.)

 

Some

 

tasks

 

are

 

only

 

accessible

 

from

 

Online

 

Diagnostics

 

in

 

Service

 

or

 

Concurrent

 

mode,

 

others

 

may

 

be

 

accessible

 

only

 

from

 

Standalone

 

Diagnostics.

 

While

 

still

 

other

 

tasks

 

may

 

only

 

be

 

supported

 

on

 

a

 

particular

 

system

 

architecture,

 

such

 

as

 

CHRP

 

(Common

 

Hardware

 

Reference

 

Platform),

 

or

 

RSPC

 

(PowerPC

 

Reference

 

Platform).

 

Fastpath

 

with

 

Unknown

 

Resource

 

A

 

fastpath

 

method

 

is

 

also

 

available

 

to

 

perform

 

a

 

task

 

by

 

using

 

the

 

-T

 

flag

 

with

 

the

 

diag

 

command.

 

This

 

means

 

that

 

the

 

user

 

does

 

not

 

have

 

to

 

go

 

through

 

most

 

of

 

the

 

introductory

 

menus

 

just

 

to

 

get

 

to

 

a

 

particular

 

task.

 

Instead

 

the

 

user

 

is

 

presented

 

with

 

a

 

list

 

of

 

resources

 

available

 

that

 

support

 

the

 

task

 

specified.

 

The

 

current

 

fastpath

 

tasks

 

are:

  

format

 

Format

 

Media

 

certify

 

Certify

 

Media

 

download

 

Download

 

Microcode

 

disp_mcode

 

Display

 

Microcode

 

Level

 

chkspares

 

Spare

 

Sector

 

Availability

 

identify

 

PCI

 

RAID

 

Physical

 

Disk

 

Identify

   

Fastpath

 

with

 

Known

 

Resource

 

Each

 

of

 

these

 

tasks

 

can

 

also

 

be

 

invoked

 

directly

 

from

 

the

 

command

 

line

 

specifying

 

the

 

resource

 

and

 

other

 

task

 

unique

 

flags.

 

This

 

implies

 

that

 

the

 

user

 

already

 

knows

 

the

 

resource

 

to

 

perform

 

the

 

task

 

operation

 

on.

 

See

 

publications

 

Diagnostic

 

Information

 

for

 

Micro

 

Channel

 

Bus

 

Systems

 

or

 

Diagnostic

 

Information

 

for

 

Multiple

 

Bus

 

Systems

 

for

 

more

 

specific

 

information

 

on

 

the

 

tasks

 

and

 

flags.

 

Task

 

List

 

The

 

following

 

is

 

a

 

list

 

of

 

all

 

known

 

supported

 

tasks

 

on

 

the

 

latest

 

level

 

of

 

diagnostics.

 

Tasks

 

have

 

been

 

separated

 

into

 

one

 

of

 

six

 

groups.

 

v

   

Run

 

Diagnostics

 

v

   

Run

 

Error

 

Log

 

Analysis

 

v

   

Automatic

 

Error

 

Log

 

Analysis

 

and

 

Notification

 

v

   

Run

 

Exercisers

 

v

   

Display

 

or

 

Change

 

Diagnostic

 

Run

 

Time

 

Options

 

v

   

7135

 

RAIDiant

 

Array

 

Service

 

Aid

 

v

   

Add

 

or

 

Delete

 

Drawer

 

Configuration

 

v

   

Add

 

Resource

 

to

 

Resource

 

List

 

v

   

AIX

 

Shell

 

Prompt

 

v

   

Analyze

 

Adapter

 

Internal

 

Log

 

v

   

Backup

 

and

 

Restore

 

Media

   

Chapter

 

3.

 

Diagnostic

 

Components

 

23



v

   

Certify

 

Media

 

v

   

Change

 

Hardware

 

Vital

 

Product

 

Data

 

v

   

Configure

 

Dials

 

and

 

LPFKeys

 

v

   

Configure

 

ISA

 

Adapter

 

v

   

Configure

 

Reboot

 

Policy

 

(CHRP)

 

v

   

Configure

 

Remote

 

Maintenance

 

Policy

 

(CHRP)

 

v

   

Configure

 

Ring

 

Indicate

 

Power

 

On

 

Policy

 

(CHRP)

 

v

   

Configure

 

Ring

 

Indicate

 

Power

 

On

 

(RSPC)

 

v

   

Configure

 

Service

 

Processor

 

(RSPC)

 

–

   

Call

 

In/Out

 

Setup

 

–

   

Modem

 

Configuration

 

–

   

Site

 

Specific

 

Call

 

In/Out

 

Setup

 

–

   

Surveillance

 

Setup

v

   

Configure

 

Surveillance

 

Policy

 

(CHRP)

 

v

   

Create

 

Customized

 

Configuration

 

Diskette

 

v

   

Delete

 

Resource

 

from

 

Resource

 

List

 

v

   

Disk

 

Maintenance

 

–

   

Disk

 

to

 

Disk

 

Copy

 

–

   

Display/Alter

 

Sector

v

   

Display

 

Checkstop

 

Analysis

 

Results

 

v

   

Display

 

Configuration

 

and

 

Resource

 

List

 

v

   

Display

 

Firmware

 

Device

 

Node

 

Information

 

(CHRP)

 

v

   

Display

 

Hardware

 

Error

 

Report

 

v

   

Display

 

Hardware

 

Vital

 

Product

 

Data

 

v

   

Display

 

Machine

 

Check

 

Error

 

Log

 

v

   

Display

 

Microcode

 

Level

 

v

   

Display

 

Previous

 

Diagnostic

 

Results

 

v

   

Display

 

Resource

 

Attributes

 

v

   

Display

 

Service

 

Hints

 

v

   

Display

 

Software

 

Product

 

Data

 

v

   

Display

 

System

 

Environmental

 

Sensors

 

(CHRP)

 

v

   

Display

 

or

 

Change

 

Bootlist

 

v

   

Display

 

or

 

Change

 

BUMP

 

Configuration

 

v

   

Display

 

or

 

Change

 

Electronic

 

Mode

 

Switch

 

v

   

Display

 

or

 

Change

 

Multiprocessor

 

Configuration

 

v

   

Display

 

Test

 

Patterns

 

v

   

Display

 

USB

 

Devices

 

v

   

Download

 

Microcode

 

v

   

ESCON

 

Bit

 

Error

 

Rate

 

Service

 

Aid

 

v

   

Fibre

 

Channel

 

RAID

 

Service

 

Aids

 

v

   

Flash

 

SK-NET

 

FDDI

 

Firmware

 

v

   

Format

 

Media

 

v

   

Generic

 

Microcode

 

Download

 

v

   

Local

 

Area

 

Network

 

Analyzer

 

v

   

PCI

 

RAID

 

Physical

 

Disk

 

Identify

   

24

 

Understanding

 

the

 

Diagnostic

 

Subsystem



v

   

Periodic

 

Diagnostics

 

v

   

Process

 

Supplemental

 

Media

 

v

   

Save

 

or

 

Restore

 

Hardware

 

Management

 

Policies

 

(CHRP)

 

v

   

Save

 

or

 

Restore

 

Service

 

Processor

 

Configuration

 

(RSPC)

 

v

   

SCSD

 

Tape

 

Drive

 

Service

 

Aid

 

v

   

SCSI

 

Bus

 

Analyzer

 

v

   

SCSI

 

Device

 

Identification

 

and

 

Removal

 

v

   

Service

 

Aids

 

for

 

use

 

with

 

Ethernet

 

v

   

Spare

 

Sector

 

Availability

 

v

   

SSA

 

Service

 

Aids

 

v

   

Update

 

Disk

 

Based

 

Diagnostics

 

v

   

Update

 

System

 

Flash

 

(RSPC)

 

v

   

Update

 

System

 

or

 

Service

 

Processor

 

Flash

 

(CHRP)

Add

 

or

 

Delete

 

Drawer

 

Configuration

  

Attention:

  

This

 

diagnostic

 

task

 

has

 

been

 

removed

 

in

 

AIX

 

5.2.

 

The

 

information

 

has

 

been

 

retained

 

for

 

reference

 

only.

Note:

  

Not

 

applicable

 

to

 

RSPC

 

or

 

CHRP

 

systems.

 

This

 

task

 

invokes

 

SMIT

 

to

 

provide

 

the

 

following

 

options:

 

v

   

List

 

all

 

Drawers

 

v

   

Add

 

a

 

Drawer

 

v

   

Remove

 

a

 

Drawer

 

The

 

supported

 

drawer

 

types

 

are:

 

v

   

Media

 

SCSI

 

Device

 

Drawer

 

v

   

DASD

 

SCSI

 

DASD

 

Drawer

Add

 

Resource

 

to

 

Resource

 

List

 

Use

 

this

 

task

 

to

 

add

 

resources

 

back

 

to

 

the

 

resource

 

list.

Note:

  

Only

 

resources

 

that

 

were

 

previously

 

detected

 

by

 

the

 

diagnostics

 

and

 

deleted

 

from

 

the

 

Diagnostic

 

Test

 

List

 

are

 

listed.

 

If

 

no

 

resources

 

are

 

available

 

to

 

be

 

added,

 

then

 

none

 

are

 

listed.

 

Shell

 

Prompt

 

Note:

  

Online

 

Service

 

Mode

 

only.

 

This

 

Service

 

Aid

 

allows

 

access

 

to

 

the

 

command

 

line.

 

To

 

use

 

this

 

Service

 

Aid

 

the

 

user

 

must

 

know

 

the

 

root

 

password

 

(when

 

a

 

root

 

password

 

has

 

been

 

established).

 

Do

 

not

 

use

 

this

 

task

 

to

 

install

 

code,

 

or

 

change

 

the

 

configuration

 

of

 

the

 

system.

 

It

 

is

 

intended

 

to

 

be

 

used

 

to

 

look

 

at

 

files,

 

configuration,

 

data,

 

etc.

 

Changing

 

the

 

system

 

configuration,

 

or

 

installing

 

code

 

may

 

produce

 

problems

 

after

 

exiting

 

back

 

to

 

the

 

Diagnostic

 

Controller.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

25



Analyze

 

Adapter

 

Internal

 

Log

 

(Device

 

Specific)

 

The

 

PCI

 

RAID

 

adapter

 

has

 

an

 

internal

 

log

 

that

 

logs

 

information

 

about

 

the

 

adapter

 

and

 

the

 

disk

 

drives

 

attached

 

to

 

the

 

adapter.

 

Whenever

 

data

 

is

 

logged

 

in

 

the

 

internal

 

log,

 

the

 

device

 

driver

 

copies

 

the

 

entries

 

to

 

the

 

system

 

error

 

log

 

and

 

clears

 

the

 

internal

 

log.

 

The

 

Analyze

 

Adapter

 

Internal

 

Log

 

Service

 

Aid

 

analyzes

 

these

 

entries

 

in

 

the

 

system

 

error

 

log.

 

The

 

Service

 

Aid

 

displays

 

the

 

errors

 

and

 

the

 

associated

 

service

 

actions.

 

Entries

 

that

 

do

 

not

 

require

 

any

 

service

 

actions

 

are

 

ignored.

 

Backup

 

and

 

Restore

 

Media

 

This

 

Service

 

Aid

 

allows

 

verification

 

of

 

backup

 

media

 

and

 

devices.

 

It

 

presents

 

a

 

menu

 

of

 

tape

 

and

 

diskette

 

devices

 

available

 

for

 

testing

 

and

 

prompts

 

for

 

selection

 

of

 

the

 

desired

 

device.

 

It

 

then

 

presents

 

a

 

menu

 

of

 

available

 

backup

 

formats

 

and

 

prompts

 

for

 

selection

 

of

 

the

 

desired

 

format.

 

The

 

supported

 

formats

 

are

 

tar,

 

backup,

 

and

 

cpio.

 

After

 

the

 

device

 

and

 

format

 

are

 

selected,

 

the

 

Service

 

Aid

 

backups

 

a

 

known

 

file

 

to

 

the

 

selected

 

device,

 

restores

 

that

 

file

 

to

 

/tmp,

 

and

 

compares

 

the

 

original

 

file

 

to

 

the

 

restored

 

file.

 

The

 

restored

 

file

 

is

 

also

 

left

 

in

 

/tmp

 

to

 

allow

 

for

 

visual

 

comparison.

 

All

 

errors

 

are

 

reported.

 

Certify

 

Media

 

This

 

task

 

allows

 

the

 

selection

 

of

 

diskette

 

or

 

hardfiles

 

to

 

be

 

certified.

 

Hardfiles

 

can

 

be

 

connected

 

either

 

to

 

a

 

SCSI

 

adapter(non

 

RAID)

 

or

 

a

 

PCI

 

SCSI

 

RAID

 

adapter.

 

The

 

usage

 

and

 

certify

 

criteria

 

for

 

a

 

hardfile

 

connected

 

to

 

a

 

non

 

RAID

 

SCSI

 

adapter

 

are

 

different

 

from

 

those

 

for

 

a

 

hardfile

 

connected

 

to

 

a

 

PCI

 

SCSI

 

RAID

 

adapter.

Note:

  

The

 

certify

 

function

 

for

 

devices

 

attached

 

to

 

a

 

PCI

 

SCSI

 

RAID

 

adapter

 

is

 

supported

 

for

 

certain

 

PCI

 

SCSI

 

RAID

 

adapters

 

only.

 

This

 

task

 

may

 

be

 

run

 

directly

 

from

 

the

 

command

 

line.

 

The

 

following

 

usage

 

statement

 

describes

 

the

 

syntax

 

of

 

the

 

fastpath

 

command:

 

Usage:

 

diag

 

-T

 

″certify″

 

Change

 

Hardware

 

Vital

 

Product

 

Data

 

Use

 

this

 

Service

 

Aid

 

to

 

display

 

the

 

Display/Alter

 

VPD

 

Selection

 

Menu.

 

The

 

menu

 

lists

 

all

 

resources

 

installed

 

on

 

the

 

system.

 

When

 

a

 

resource

 

is

 

selected,

 

a

 

menu

 

displays

 

all

 

the

 

VPD

 

that

 

are

 

recognized

 

by

 

the

 

operating

 

system

 

for

 

that

 

resource.

Note:

  

The

 

user

 

cannot

 

alter

 

the

 

VPD

 

for

 

a

 

specific

 

resource

 

unless

 

it

 

is

 

not

 

machine

 

readable.

 

Configure

 

Dials

 

and

 

LPFKeys

 

This

 

Service

 

Aid

 

provides

 

a

 

tool

 

for

 

configuring

 

and

 

removing

 

dials/LPFKs

 

to

 

the

 

asynchronous

 

serial

 

ports.

 

Since

 

version

 

4.1.3

 

a

 

tty

 

must

 

be

 

defined

 

on

 

the

 

async

 

port

 

before

 

the

 

Dials

 

and

 

LPFKs

 

can

 

be

 

configured

 

on

 

the

 

port.

 

Before

 

version

 

4.2

 

the

 

Dials

 

and

 

LPFKs

 

could

 

only

 

be

 

configured

 

on

 

the

 

standard

 

serial

 

ports.

 

At

 

version

 

4.2

 

the

 

Dials

 

and

 

LPFKs

 

can

 

be

 

configured

 

on

 

any

 

async

 

port.

 

This

 

selection

 

invokes

 

the

 

SMIT

 

utility

 

to

 

allow

 

Dials

 

and

 

LPFKs

 

configuration.

 

A

 

tty

 

must

 

be

 

in

 

the

 

available

 

state

 

on

 

the

 

async

 

port

 

before

 

the

 

Dials

 

and

 

LPFKs

 

can

 

be

 

configured

 

on

 

the

 

port.

 

The

 

task

 

allows

 

an

 

async

 

adapter

 

to

 

be

 

configured,

 

then

 

a

 

tty

 

port

 

defined

 

on

 

the

 

adapter,

 

and

 

then

 

Dials

 

and

 

LPFKs

 

can

 

be

 

defined

 

on

 

the

 

port.

   

26

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Configure

 

ISA

 

Adapter

  

Attention:

  

This

 

diagnostic

 

task

 

has

 

been

 

removed

 

in

 

AIX

 

5.2.

 

The

 

information

 

has

 

been

 

retained

 

for

 

reference

 

only.

 

This

 

task

 

invokes

 

SMIT

 

to

 

allow

 

the

 

identification

 

and

 

configuration

 

of

 

ISA

 

adapters

 

on

 

systems

 

that

 

have

 

an

 

ISA

 

bus

 

and

 

adapters.

 

Diagnostic

 

support

 

for

 

ISA

 

adapters

 

not

 

shown

 

in

 

the

 

list

 

may

 

be

 

supported

 

from

 

a

 

Supplemental

 

Diskette.

 

ISA

 

adapter

 

support

 

can

 

be

 

added

 

from

 

a

 

Supplemental

 

Diskette

 

with

 

the

 

Process

 

Supplemental

 

Media

 

task.

 

Whenever

 

an

 

ISA

 

adapter

 

is

 

installed,

 

this

 

Service

 

Aid

 

must

 

be

 

run

 

and

 

the

 

adapter

 

configured

 

before

 

the

 

adapter

 

can

 

be

 

tested.

 

This

 

Service

 

Aid

 

must

 

also

 

be

 

run

 

(and

 

the

 

adapter

 

removed)

 

whenever

 

an

 

ISA

 

adapter

 

is

 

physically

 

removed

 

from

 

the

 

system.

 

If

 

diagnostics

 

are

 

run

 

on

 

an

 

ISA

 

adapter

 

that

 

has

 

been

 

removed

 

from

 

the

 

system,

 

the

 

diagnostics

 

fail.

 

ISA

 

adapters

 

cannot

 

be

 

detected

 

by

 

the

 

system.

Note:

  

When

 

using

 

this

 

Service

 

Aid

 

choose

 

the

 

option

 

that

 

places

 

the

 

adapter

 

in

 

the

 

″Defined

 

State″.

 

Do

 

not

 

select

 

the

 

option

 

that

 

places

 

the

 

device

 

in

 

the

 

″Available

 

State″.

 

Configure

 

Reboot

 

Policy

 

(CHRP)

 

This

 

Service

 

Aid

 

controls

 

how

 

the

 

system

 

tries

 

to

 

recover

 

from

 

a

 

system

 

crash.

 

Use

 

this

 

Service

 

Aid

 

to

 

display

 

and

 

change

 

the

 

following

 

settings

 

for

 

the

 

Reboot

 

Policy.

Notes:

  

1.

   

Runs

 

on

 

CHRP

 

systems

 

units

 

only.

 

2.

   

Because

 

of

 

system

 

capability,

 

some

 

of

 

the

 

following

 

settings

 

may

 

not

 

be

 

displayed

 

by

 

this

 

Service

 

Aid.

v

   

Maximum

 

Number

 

of

 

Reboot

 

Attempts

 

Enter

 

a

 

number

 

that

 

is

 

0

 

or

 

greater.

Note:

  

A

 

value

 

of

 

0

 

indicates

 

’do

 

not

 

attempt

 

to

 

reboot’

 

to

 

a

 

crashed

 

system.

 

This

 

number

 

is

 

the

 

maximum

 

number

 

of

 

consecutive

 

attempts

 

to

 

reboot

 

the

 

system.

 

The

 

term

 

″reboot″,

 

in

 

the

 

context

 

of

 

this

 

Service

 

Aid,

 

is

 

used

 

to

 

describe

 

bringing

 

system

 

hardware

 

back

 

up

 

from

 

scratch,

 

for

 

example

 

from

 

a

 

system

 

reset

 

or

 

power

 

on.

 

When

 

the

 

reboot

 

process

 

completes

 

successfully,

 

the

 

reboot

 

attempts

 

count

 

is

 

reset

 

to

 

0,

 

and

 

a

 

″restart″

 

begins.

 

The

 

term

 

″restart″,

 

in

 

the

 

context

 

of

 

this

 

Service

 

Aid,

 

is

 

used

 

to

 

describe

 

the

 

operating

 

system

 

activation

 

process.

 

Restart

 

always

 

follows

 

a

 

successful

 

reboot.

 

When

 

a

 

restart

 

fails,

 

and

 

a

 

restart

 

policy

 

is

 

enabled,

 

the

 

system

 

attempts

 

to

 

reboot

 

for

 

the

 

maximum

 

number

 

of

 

attempts.

 

v

   

Use

 

the

 

O/S

 

Defined

 

Restart

 

Policy

 

(1=Yes,

 

0=No)

 

When

 

’Use

 

the

 

O/S

 

Defined

 

Restart

 

Policy’

 

is

 

set

 

to

 

Yes,

 

the

 

system

 

attempts

 

to

 

reboot

 

from

 

a

 

crash

 

if

 

the

 

operating

 

system

 

has

 

an

 

enabled

 

Defined

 

Restart

 

or

 

Reboot

 

Policy.

 

When

 

’Use

 

the

 

O/S

 

Defined

 

Restart

 

Policy’

 

is

 

set

 

to

 

No,

 

or

 

the

 

operating

 

system

 

restart

 

policy

 

is

 

undefined,

 

then

 

the

 

restart

 

policy

 

is

 

determined

 

by

 

the

 

’Supplemental

 

Restart

 

Policy’.

 

v

   

Enable

 

Supplemental

 

Restart

 

Policy

 

(1=Yes,

 

0=No)

 

The

 

’Supplemental

 

Restart

 

Policy’,

 

if

 

enabled,

 

is

 

used

 

when

 

the

 

O/S

 

Defined

 

Restart

 

Policy

 

is

 

undefined,

 

or

 

is

 

set

 

to

 

False.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

27



When

 

surveillance

 

detects

 

operating

 

system

 

inactivity

 

during

 

restart,

 

an

 

enabled

 

’Supplemental

 

Restart

 

Policy’

 

causes

 

a

 

system

 

reset

 

and

 

the

 

reboot

 

process

 

begins.

 

v

   

Call-Out

 

Before

 

Restart

 

(on/off)

 

When

 

enabled,

 

Call-Out

 

Before

 

Restart

 

allows

 

the

 

system

 

to

 

call

 

out

 

(on

 

a

 

serial

 

port

 

that

 

is

 

enabled

 

for

 

call

 

out)

 

when

 

an

 

operating

 

system

 

restart

 

is

 

initiated.

 

Such

 

calls

 

can

 

be

 

valuable

 

if

 

the

 

number

 

of

 

these

 

events

 

becomes

 

excessive,

 

thus

 

signaling

 

bigger

 

problems.

 

v

   

Enable

 

Unattended

 

Start

 

Mode

 

(1=Yes,

 

0=No)

 

When

 

enabled,

 

’Unattended

 

Start

 

Mode’

 

allows

 

the

 

system

 

to

 

recover

 

from

 

the

 

loss

 

of

 

AC

 

power.

 

If

 

the

 

system

 

was

 

powered-on

 

when

 

the

 

AC

 

loss

 

occurred,

 

the

 

system

 

reboots

 

when

 

power

 

is

 

restored.

 

If

 

the

 

system

 

was

 

powered-off

 

when

 

the

 

AC

 

loss

 

occurred,

 

the

 

system

 

remains

 

off

 

when

 

power

 

is

 

restored.

 

This

 

Service

 

Aid

 

may

 

be

 

accessed

 

directly

 

from

 

the

 

command

 

line,

 

by

 

entering:

 

/usr/lpp/diagnostics/bin/uspchrp

 

-b

 

Configure

 

Remote

 

Maintenance

 

Policy

 

(CHRP)

 

The

 

Remote

 

Maintenance

 

Policy

 

includes

 

modem

 

configurations

 

and

 

phone

 

numbers

 

to

 

use

 

for

 

remote

 

maintenance

 

support.

 

Use

 

this

 

Service

 

Aid

 

to

 

display

 

and

 

change

 

the

 

following

 

settings

 

for

 

the

 

Remote

 

Maintenance

 

Policy.

Notes:

  

1.

   

Runs

 

on

 

CHRP

 

systems

 

units

 

only.

 

2.

   

Because

 

of

 

system

 

capability,

 

some

 

of

 

the

 

following

 

settings

 

may

 

not

 

be

 

displayed

 

by

 

this

 

Service

 

Aid.

v

   

Configuration

 

File

 

for

 

Modem

 

on

 

S1

 

Configuration

 

File

 

for

 

Modem

 

on

 

S2

 

Enter

 

the

 

name

 

of

 

a

 

modem

 

configuration

 

file

 

to

 

load

 

on

 

either

 

serial

 

port

 

1

 

(S1)

 

or

 

serial

 

port

 

2

 

(S2).

 

The

 

modem

 

configuration

 

files

 

are

 

located

 

in

 

the

 

directory

 

/usr/share/modems.

 

If

 

a

 

modem

 

file

 

is

 

already

 

loaded,

 

it

 

is

 

showed

 

by

 

Modem

 

file

 

currently

 

loaded.

 

v

   

Modem

 

file

 

currently

 

loaded

 

on

 

S1

 

Modem

 

file

 

currently

 

loaded

 

on

 

S2

 

This

 

is

 

the

 

name

 

of

 

the

 

file

 

that

 

is

 

currently

 

loaded

 

on

 

serial

 

port

 

1

 

or

 

serial

 

port

 

2.

Note:

  

These

 

settings

 

are

 

only

 

shown

 

when

 

a

 

modem

 

file

 

is

 

loaded

 

for

 

a

 

serial

 

port.

 

v

   

Call

 

In

 

Authorized

 

on

 

S1

 

(on/off)

 

Call

 

In

 

Authorized

 

on

 

S2

 

(on/off)

 

Call

 

In

 

allows

 

the

 

Service

 

Processor

 

to

 

receive

 

a

 

call

 

from

 

a

 

remote

 

terminal.

 

v

   

Call

 

Out

 

Authorized

 

on

 

S1

 

(on/off)

 

Call

 

Out

 

Authorized

 

on

 

S2

 

(on/off)

 

Call

 

Out

 

allows

 

the

 

Service

 

Processor

 

to

 

place

 

calls

 

for

 

maintenance.

 

v

   

S1

 

Line

 

Speed

 

S2

 

Line

 

Speed

 

A

 

list

 

of

 

line

 

speeds

 

is

 

available

 

by

 

using

 

’List’

 

on

 

the

 

screen.

 

v

   

Service

 

Center

 

Phone

 

Number

 

This

 

is

 

the

 

number

 

of

 

the

 

service

 

center

 

computer.

 

The

 

service

 

center

 

usually

 

includes

 

a

 

computer

 

that

 

takes

 

calls

 

from

 

systems

 

with

 

call-out

 

capability.

 

This

 

computer

 

is

 

referred

 

to

 

as

 

″the

 

catcher″.

 

The

 

catcher

 

expects

 

messages

 

in

 

a

 

specific

 

format

 

to

 

which

 

the

 

Service

 

Processor

 

conforms.

 

For

 

more

 

information

 

about

 

the

 

format

 

and

 

catcher

 

computers,

 

refer

 

to

 

the

 

README

 

file

 

in

 

the

 

/usr/samples/syscatch

 

directory.

 

Contact

 

the

 

service

 

provider

 

for

 

the

 

correct

 

telephone

 

number

 

to

 

enter

 

here.

 

v

   

Customer

 

Administration

 

Center

 

Phone

 

Number

   

28

 

Understanding

 

the

 

Diagnostic

 

Subsystem



This

 

is

 

the

 

number

 

of

 

the

 

System

 

Administration

 

Center

 

computer

 

(catcher)

 

that

 

receives

 

problem

 

calls

 

from

 

systems.

 

Contact

 

the

 

system

 

administrator

 

for

 

the

 

correct

 

telephone

 

number

 

to

 

enter

 

here.

 

v

   

Digital

 

Pager

 

Phone

 

Number

 

In

 

Event

 

of

 

Emergency

 

This

 

is

 

the

 

number

 

for

 

a

 

pager

 

carried

 

by

 

someone

 

who

 

responds

 

to

 

problem

 

calls

 

from

 

your

 

system.

 

v

   

Customer

 

Voice

 

Phone

 

Number

 

This

 

is

 

the

 

number

 

for

 

a

 

telephone

 

near

 

the

 

system,

 

or

 

answered

 

by

 

someone

 

responsible

 

for

 

the

 

system.

 

This

 

is

 

the

 

telephone

 

number

 

left

 

on

 

the

 

pager

 

for

 

callback.

 

v

   

Customer

 

System

 

Phone

 

Number

 

This

 

is

 

the

 

number

 

to

 

which

 

your

 

system’s

 

modem

 

is

 

connected.

 

The

 

service

 

or

 

administration

 

center

 

representatives

 

need

 

this

 

number

 

to

 

make

 

direct

 

contact

 

with

 

your

 

system

 

for

 

problem

 

investigation.

 

This

 

is

 

also

 

referred

 

to

 

as

 

the

 

Call

 

In

 

phone

 

number.

 

v

   

Customer

 

Account

 

Number

 

This

 

number

 

could

 

be

 

used

 

by

 

a

 

service

 

provider

 

for

 

record

 

keeping

 

and

 

billing.

 

v

   

Call

 

Out

 

Policy

 

Numbers

 

to

 

call

 

if

 

failure

 

This

 

is

 

set

 

to

 

either

 

’first’

 

or

 

’all’.

 

If

 

the

 

call

 

out

 

policy

 

is

 

set

 

to

 

’first’,

 

call

 

out

 

stops

 

at

 

the

 

first

 

successful

 

call

 

to

 

one

 

of

 

the

 

following

 

numbers

 

in

 

the

 

order

 

listed:

 

1.

   

Service

 

Center

 

2.

   

Customer

 

Admin

 

Center

 

3.

   

Pager

 

If

 

Call

 

Out

 

Policy

 

is

 

set

 

to

 

’all’,

 

call

 

out

 

attempts

 

to

 

call

 

all

 

of

 

the

 

following

 

numbers

 

in

 

the

 

order

 

listed:

 

1.

   

Service

 

Center

 

2.

   

Customer

 

Admin

 

Center

 

3.

   

Pager

v

   

Customer

 

RETAIN

 

Login

 

ID

 

Customer

 

RETAIN

 

Login

 

Password

 

These

 

settings

 

apply

 

to

 

the

 

RETAIN

 

service

 

function.

 

v

   

Remote

 

Timeout,

 

in

 

seconds

 

Remote

 

Latency,

 

in

 

seconds

 

These

 

settings

 

are

 

functions

 

of

 

the

 

service

 

provider’s

 

catcher

 

computer.

 

v

   

Number

 

of

 

Retries

 

While

 

Busy

 

This

 

is

 

the

 

number

 

of

 

times

 

the

 

system

 

should

 

retry

 

calls

 

that

 

resulted

 

in

 

busy

 

signals.

 

v

   

System

 

Name

 

(System

 

Administrator

 

Aid)

 

This

 

is

 

the

 

name

 

given

 

to

 

the

 

system

 

and

 

is

 

used

 

when

 

reporting

 

problem

 

messages.

Note:

  

Knowing

 

the

 

system

 

name

 

aids

 

the

 

support

 

team

 

to

 

quickly

 

identify

 

the

 

location,

 

configuration,

 

history,

 

etc.

 

of

 

your

 

system.

This

 

Service

 

Aid

 

may

 

be

 

accessed

 

directly

 

from

 

the

 

command

 

line,

 

by

 

entering:

 

/usr/lpp/diagnostics/bin/uspchrp

 

-m

 

Configure

 

Ring

 

Indicate

 

Power

 

On

 

(RSPC)

  

Attention:

  

This

 

diagnostic

 

task

 

has

 

been

 

removed

 

in

 

AIX

 

5.2.

 

The

 

information

 

has

 

been

 

retained

 

for

 

reference

 

only.

 

This

 

Service

 

Aid

 

allows

 

the

 

user

 

to

 

display

 

and

 

change

 

the

 

NVRAM

 

settings

 

for

 

the

 

Ring

 

Indicate

 

Power

 

On

 

capability

 

of

 

the

 

service

 

processor.

Note:

  

Runs

 

on

 

RSPC

 

systems

 

units

 

only.

  

Chapter

 

3.

 

Diagnostic

 

Components

 

29



The

 

settings

 

allows

 

the

 

user

 

to:

 

v

   

Enable/Disable

 

power

 

on

 

from

 

Ring

 

Indicate

 

v

   

Read/Set

 

the

 

number

 

of

 

rings

 

before

 

power

 

on

Configure

 

Ring

 

Indicate

 

Power

 

On

 

Policy

 

(CHRP)

 

This

 

Service

 

Aid

 

allows

 

the

 

user

 

to

 

power

 

on

 

a

 

system

 

by

 

telephone

 

from

 

a

 

remote

 

location.

 

If

 

the

 

system

 

is

 

powered

 

off,

 

and

 

Ring

 

Indicate

 

Power

 

On

 

is

 

enabled,

 

the

 

system

 

powers

 

on

 

at

 

a

 

predetermined

 

number

 

of

 

rings.

 

If

 

the

 

system

 

is

 

already

 

on,

 

no

 

action

 

is

 

taken.

 

In

 

either

 

case,

 

the

 

telephone

 

call

 

is

 

not

 

answered

 

and

 

the

 

caller

 

receives

 

no

 

feedback

 

that

 

the

 

system

 

has

 

powered

 

on.

 

Use

 

this

 

Service

 

Aid

 

to

 

display

 

and

 

change

 

the

 

following

 

settings

 

for

 

the

 

Ring

 

Indicate

 

Power

 

On

 

Policy.

Notes:

  

1.

   

Runs

 

on

 

CHRP

 

systems

 

units

 

only.

 

2.

   

Because

 

of

 

system

 

capability,

 

some

 

of

 

the

 

following

 

settings

 

may

 

not

 

be

 

displayed

 

by

 

this

 

Service

 

Aid.

v

   

Power

 

On

 

Via

 

Ring

 

Indicate

 

(on/off)

 

v

   

Number

 

of

 

Rings

 

Before

 

Power

 

On

 

This

 

Service

 

Aid

 

may

 

be

 

accessed

 

directly

 

from

 

the

 

command

 

line,

 

by

 

entering:

 

/usr/lpp/diagnostics/bin/uspchrp

 

-r

 

Configure

 

Service

 

Processor

 

(RSPC)

  

Attention:

  

This

 

diagnostic

 

task

 

has

 

been

 

removed

 

in

 

AIX

 

5.2.

 

The

 

information

 

has

 

been

 

retained

 

for

 

reference

 

only.

 

This

 

Service

 

Aid

 

allows

 

you

 

to

 

display

 

and

 

change

 

the

 

NVRAM

 

settings

 

for

 

the

 

service

 

processor.

 

This

 

Service

 

Aid

 

supports

 

the

 

following

 

functions:

Note:

  

Runs

 

on

 

RSPC

 

systems

 

units

 

only.

 

v

   

Surveillance

 

Setup

 

v

   

Modem

 

Configuration

 

v

   

Call

 

In/Call

 

Out

 

Setup

 

v

   

Site

 

Specific

 

Call

 

In/Call

 

Out

 

Setup

Surveillance

 

Setup

 

This

 

selection

 

allows

 

you

 

to

 

display

 

and

 

change

 

the

 

NVRAM

 

settings

 

for

 

the

 

surveillance

 

capability

 

of

 

the

 

service

 

processor.

 

The

 

settings

 

allow

 

you

 

to:

 

v

   

Enable/disable

 

surveillance

 

v

   

Set

 

the

 

surveillance

 

time

 

interval,

 

in

 

minutes

 

v

   

Set

 

the

 

surveillance

 

delay,

 

in

 

minutes

 

The

 

current

 

settings

 

are

 

read

 

from

 

NVRAM

 

and

 

displayed

 

on

 

the

 

screen.

 

Any

 

changes

 

made

 

to

 

the

 

data

 

shown

 

are

 

written

 

to

 

NVRAM.

 

Modem

 

Configuration

 

Use

 

this

 

selection

 

when

 

setting

 

the

 

NVRAM

 

for

 

a

 

modem

 

attached

 

to

 

any

 

of

 

the

 

Service

 

Processor’s

 

serial

 

ports.

 

The

 

user

 

inputs

 

the

 

file

 

name

 

of

 

a

 

modem

 

configuration

 

file

 

and

 

the

 

serial

 

port

 

number.

 

The

   

30

 

Understanding

 

the

 

Diagnostic

 

Subsystem



formatted

 

modem

 

configuration

 

file

 

is

 

read,

 

converted

 

for

 

NVRAM

 

than

 

loaded

 

into

 

NVRAM.

 

Refer

 

to

 

the

 

Service

 

Processor

 

Installation

 

and

 

User’s

 

Guide

 

for

 

more

 

information.

 

Call

 

In/Out

 

Setup

 

This

 

selection

 

allows

 

the

 

user

 

to

 

display

 

and

 

change

 

the

 

NVRAM

 

settings

 

for

 

the

 

Call

 

In/Call

 

Out

 

capability

 

of

 

the

 

service

 

processor.

 

The

 

settings

 

allows

 

the

 

user

 

to:

 

v

   

Enable/Disable

 

call

 

in

 

on

 

either

 

serial

 

port.

 

v

   

Enable/Disable

 

call

 

out

 

on

 

either

 

serial

 

port.

 

v

   

Set

 

the

 

line

 

speed

 

on

 

either

 

serial

 

port.

Site

 

Specific

 

Call

 

In/Out

 

Setup

 

This

 

selection

 

allows

 

you

 

to

 

display

 

and

 

change

 

the

 

NVRAM

 

settings

 

that

 

are

 

site

 

specific

 

for

 

the

 

call

 

in/call

 

out

 

capability

 

of

 

the

 

service

 

processor.

 

The

 

site

 

specific

 

NVRAM

 

settings

 

allow

 

you

 

to:

 

v

   

Set

 

the

 

phone

 

number

 

for

 

the

 

service

 

center

 

v

   

Set

 

the

 

phone

 

number

 

for

 

the

 

customer

 

administration

 

center

 

v

   

Set

 

the

 

phone

 

number

 

for

 

a

 

digital

 

pager

 

v

   

Set

 

the

 

phone

 

number

 

for

 

the

 

customer

 

system

 

to

 

call

 

in

 

v

   

Set

 

the

 

phone

 

number

 

for

 

the

 

customer

 

voice

 

phone

 

v

   

Set

 

the

 

customer

 

account

 

number

 

v

   

Set

 

the

 

call

 

out

 

policy

 

v

   

Set

 

the

 

customer

 

RETAIN

 

id

 

v

   

Set

 

the

 

customer

 

RETAIN

 

password

 

v

   

Set

 

the

 

remote

 

timeout

 

value

 

v

   

Set

 

the

 

remote

 

latency

 

value

 

v

   

Set

 

the

 

number

 

of

 

retries

 

while

 

busy

 

v

   

Set

 

the

 

system

 

name

 

The

 

current

 

settings

 

are

 

read

 

from

 

NVRAM

 

and

 

displayed

 

on

 

the

 

screen.

 

Any

 

changes

 

made

 

to

 

the

 

data

 

shown

 

are

 

written

 

to

 

NVRAM.

 

Configure

 

Surveillance

 

Policy

 

(CHRP)

 

This

 

Service

 

Aid

 

monitors

 

the

 

system

 

for

 

hang

 

conditions,

 

that

 

is,

 

hardware

 

or

 

software

 

failures

 

that

 

cause

 

operating

 

system

 

inactivity.

 

When

 

enabled,

 

and

 

surveillance

 

detects

 

operating

 

system

 

inactivity,

 

a

 

call

 

is

 

placed

 

to

 

report

 

the

 

failure.

 

Use

 

this

 

Service

 

Aid

 

to

 

display

 

and

 

change

 

the

 

following

 

settings

 

for

 

the

 

Surveillance

 

Policy.

Notes:

  

1.

   

Runs

 

on

 

CHRP

 

systems

 

units

 

only.

 

2.

   

Because

 

of

 

system

 

capability,

 

some

 

of

 

the

 

following

 

settings

 

may

 

not

 

be

 

displayed

 

by

 

this

 

Service

 

Aid.

v

   

Surveillance

 

(on/off)

 

v

   

Surveillance

 

Time

 

Interval

 

This

 

is

 

the

 

maximum

 

time

 

between

 

heartbeats

 

from

 

the

 

operating

 

system.

 

v

   

Surveillance

 

Time

 

Delay

   

Chapter

 

3.

 

Diagnostic

 

Components

 

31



This

 

is

 

the

 

time

 

to

 

delay

 

between

 

when

 

the

 

operating

 

system

 

is

 

in

 

control

 

and

 

when

 

to

 

begin

 

operating

 

system

 

surveillance.

 

v

   

Changes

 

are

 

to

 

take

 

affect

 

immediately

 

Set

 

this

 

to

 

Yes

 

if

 

the

 

changes

 

made

 

to

 

the

 

settings

 

in

 

this

 

menu

 

are

 

to

 

take

 

place

 

immediately.

 

Otherwise

 

the

 

changes

 

takes

 

place

 

beginning

 

with

 

the

 

next

 

system

 

boot.

 

This

 

Service

 

Aid

 

may

 

be

 

accessed

 

directly

 

from

 

the

 

command

 

line,

 

by

 

entering:

 

/usr/lpp/diagnostics/bin/uspchrp

 

-s

 

Create

 

Customized

 

Configuration

 

Diskette

 

This

 

selection

 

invokes

 

the

 

Diagnostic

 

Package

 

Utility

 

Service

 

Aid

 

which

 

allows

 

the

 

user

 

to

 

Create

 

a

 

Standalone

 

Diagnostic

 

Package

 

Configuration

 

Diskette

 

The

 

Standalone

 

Diagnostic

 

Package

 

Configuration

 

Diskette

 

allows

 

the

 

following

 

to

 

be

 

changed

 

when

 

running

 

diagnostics

 

from

 

removable

 

media:

 

v

    

High-Function

 

Terminals

 

60/77-Mhz

 

Refresh

 

Rate

 

The

 

refresh

 

rate

 

used

 

by

 

the

 

standalone

 

diagnostic

 

package

 

is

 

60Hz.

 

If

 

the

 

display’s

 

refresh

 

rate

 

is

 

77Hz,

 

then

 

set

 

the

 

refresh

 

rate

 

to

 

77.

 

v

   

Different

 

async

 

terminal

 

console

 

A

 

console

 

configuration

 

file

 

that

 

allows

 

a

 

terminal

 

attached

 

to

 

any

 

RS232

 

or

 

RS422

 

adapter

 

to

 

be

 

selected

 

as

 

a

 

console

 

device

 

can

 

be

 

created

 

using

 

this

 

Service

 

Aid.

 

The

 

default

 

device

 

is

 

a

 

RS232

 

tty

 

attached

 

to

 

the

 

first

 

standard

 

serial

 

port

 

(S1).

Delete

 

Resource

 

from

 

Resource

 

List

 

Use

 

this

 

task

 

to

 

delete

 

resources

 

from

 

the

 

resource

 

list.

Note:

  

Only

 

resources

 

that

 

were

 

previously

 

detected

 

by

 

the

 

diagnostics

 

and

 

have

 

not

 

been

 

deleted

 

from

 

the

 

Diagnostic

 

Test

 

List

 

are

 

listed.

 

If

 

no

 

resources

 

are

 

available

 

to

 

be

 

deleted,

 

then

 

none

 

are

 

listed.

 

Disk

 

Maintenance

 

(SCSI

 

Disks)

 

v

   

Disk

 

to

 

Disk

 

Copy

 

v

   

Display/Alter

 

Sector

Disk

 

to

 

Disk

 

Copy

 

This

 

selection

 

allows

 

you

 

to

 

recover

 

data

 

from

 

an

 

old

 

drive

 

when

 

replacing

 

it

 

with

 

a

 

new

 

drive.

 

The

 

Service

 

Aid

 

only

 

supports

 

copying

 

from

 

a

 

drive

 

to

 

another

 

drive

 

of

 

similar

 

size.

 

This

 

Service

 

Aid

 

cannot

 

be

 

used

 

to

 

update

 

to

 

a

 

different

 

size

 

drive.

 

The

 

migratepv

 

command

 

should

 

be

 

used

 

when

 

updating

 

drives.

 

The

 

Service

 

Aid

 

recovers

 

all

 

LVM

 

software

 

reassigned

 

blocks.

 

To

 

prevent

 

corrupted

 

data

 

from

 

being

 

copied

 

to

 

the

 

new

 

drive,

 

the

 

Service

 

Aid

 

aborts

 

if

 

an

 

unrecoverable

 

read

 

error

 

is

 

detected.

 

To

 

help

 

prevent

 

possible

 

problems

 

with

 

the

 

new

 

drive,

 

the

 

Service

 

Aid

 

aborts

 

if

 

the

 

number

 

of

 

bad

 

blocks

 

being

 

reassigned

 

reaches

 

a

 

threshold.

Note:

  

Use

 

the

 

migratepv

 

command

 

when

 

copying

 

the

 

contents

 

to

 

other

 

disk

 

drive

 

types.

 

This

 

command

 

also

 

works

 

when

 

copying

 

SCSI

 

disk

 

drives

 

or

 

when

 

copying

 

to

 

a

 

different

 

size

 

SCSI

 

disk

 

drive.

 

Refer

 

to

 

AIX

 

5L

 

Version

 

5.2

 

System

 

Management

 

Guide:

 

Operating

 

System

 

and

 

Devices

 

for

 

a

 

procedure

 

on

 

Migrating

 

the

 

Contents

 

of

 

a

 

Physical

 

Volume.

 

The

 

procedure

 

for

 

using

 

this

 

Service

 

Aid

 

requires

 

that

 

both

 

the

 

old

 

and

 

new

 

disks

 

be

 

installed

 

in

 

or

 

attached

 

to

 

the

 

system

 

with

 

unique

 

SCSI

 

addresses.

 

This

 

requires

 

that

 

the

 

new

 

disk

 

drive

 

SCSI

 

address

 

must

 

be

 

set

 

to

 

an

 

address

 

that

 

is

 

not

 

currently

 

in

 

use

 

and

 

the

 

drive

 

be

 

installed

 

in

 

an

 

empty

 

location.

 

If

 

there

 

are

 

no

 

empty

 

locations,

 

then

 

one

 

of

 

the

 

other

 

drives

 

must

 

be

 

removed.

 

Once

 

the

 

copy

 

is

 

complete,

 

only

 

one

 

drive

 

may

 

remain

 

installed.

 

Either

 

remove

 

the

 

target

 

drive

 

to

 

return

 

to

 

the

 

original

 

configuration,

 

or

 

perform

 

the

 

following

 

procedure

 

to

 

complete

 

the

 

replacement

 

of

 

the

 

old

 

drive

 

with

 

the

 

new

 

drive.

   

32

 

Understanding

 

the

 

Diagnostic

 

Subsystem



1.

   

Remove

 

both

 

drives.

 

2.

   

Set

 

the

 

SCSI

 

address

 

of

 

the

 

new

 

drive

 

to

 

the

 

SCSI

 

address

 

of

 

the

 

old

 

drive.

 

3.

   

Install

 

the

 

new

 

drive

 

in

 

the

 

old

 

drive’s

 

location.

 

4.

   

Install

 

any

 

other

 

drives

 

that

 

were

 

removed

 

into

 

their

 

original

 

location.

 

To

 

prevent

 

problems

 

that

 

may

 

occur

 

when

 

running

 

this

 

Service

 

Aid

 

from

 

disk,

 

it

 

is

 

suggested

 

that

 

this

 

Service

 

Aid

 

be

 

run

 

from

 

the

 

diagnostics

 

that

 

are

 

loaded

 

from

 

removable

 

media

 

when

 

possible.

 

Display/Alter

 

Sector

 

This

 

selection

 

allows

 

the

 

user

 

to

 

display

 

and

 

alter

 

information

 

on

 

a

 

disk

 

sector.

 

Care

 

must

 

be

 

used

 

when

 

using

 

this

 

Service

 

Aid

 

because

 

inappropriate

 

modification

 

to

 

some

 

disk

 

sectors

 

may

 

result

 

in

 

total

 

loss

 

of

 

all

 

data

 

on

 

the

 

disk.

 

Sectors

 

are

 

addressed

 

by

 

their

 

decimal

 

sector

 

number.

 

Data

 

is

 

displayed

 

both

 

in

 

hex

 

and

 

in

 

ASCII.

 

To

 

prevent

 

corrupted

 

data

 

from

 

being

 

incorrectly

 

corrected,

 

the

 

Service

 

Aid

 

does

 

not

 

display

 

information

 

that

 

cannot

 

be

 

read

 

correctly.

 

Display

 

Checkstop

 

Analysis

 

Results

  

Attention:

  

This

 

diagnostic

 

task

 

has

 

been

 

removed

 

in

 

AIX

 

5.2.

 

The

 

information

 

has

 

been

 

retained

 

for

 

reference

 

only.

 

This

 

Service

 

Aid

 

analyzes

 

checkstop

 

files

 

and

 

displays

 

the

 

results.

 

During

 

a

 

system

 

reboot,

 

following

 

a

 

checkstop,

 

a

 

data

 

file

 

is

 

written

 

to

 

/usr/lib/ras

 

that

 

contains

 

the

 

state

 

of

 

the

 

system

 

at

 

the

 

time

 

of

 

the

 

checkstop.

 

The

 

files

 

have

 

names

 

that

 

begin

 

with

 

checkstop

 

and

 

end

 

with

 

either

 

.A

 

or

 

.B.

 

The

 

analysis

 

of

 

the

 

file(s)

 

produce

 

a

 

description

 

of

 

the

 

problem

 

and

 

provide

 

an

 

action

 

plan

 

with

 

repair

 

instructions

 

or

 

recommendations.

 

Following

 

the

 

action

 

plans,

 

a

 

detailed

 

dump

 

of

 

the

 

data

 

that

 

was

 

saved

 

for

 

the

 

checkstop

 

is

 

displayed.

 

The

 

following

 

options

 

are

 

provided:

 

v

   

Analyze

 

Checkstop

 

Files

 

Created

 

Within

 

the

 

Last

 

7

 

Days

 

Analyze

 

and

 

display

 

the

 

results

 

of

 

any

 

checkstop

 

file

 

that

 

was

 

created

 

in

 

the

 

last

 

7

 

days.

 

This

 

is

 

the

 

same

 

file(s)

 

that

 

the

 

system

 

planar

 

diagnostics

 

analyzed,

 

but

 

will

 

provide

 

more

 

detail.

 

v

   

Analyze

 

All

 

of

 

the

 

Checkstop

 

Files

 

Analyze

 

and

 

display

 

the

 

results

 

of

 

all

 

of

 

checkstop

 

files.

 

For

 

either

 

option,

 

carefully

 

read

 

the

 

results

 

of

 

the

 

analysis

 

and

 

perform

 

any

 

recommended

 

actions.

 

Display

 

Configuration

 

and

 

Resource

 

List

 

This

 

Service

 

Aid

 

displays

 

the

 

item

 

header

 

only

 

for

 

all

 

installed

 

resources.

 

Use

 

this

 

Service

 

Aid

 

when

 

there

 

is

 

no

 

need

 

of

 

seeing

 

the

 

VPD.

 

(No

 

VPD

 

is

 

displayed.)

 

Display

 

Firmware

 

Device

 

Node

 

Information

 

(CHRP)

 

This

 

task

 

displays

 

the

 

firmware

 

device

 

node

 

information

 

that

 

appears

 

on

 

CHRP

 

platforms.

 

The

 

format

 

of

 

the

 

output

 

data

 

does

 

not

 

necessarily

 

have

 

to

 

be

 

the

 

same

 

between

 

different

 

levels

 

of

 

the

 

operating

 

system.

 

It

 

is

 

intended

 

to

 

be

 

used

 

to

 

gather

 

more

 

information

 

about

 

individual

 

or

 

particular

 

devices

 

on

 

the

 

system.

Note:

  

Runs

 

on

 

CHRP

 

systems

 

units

 

only.

 

Display

 

Hardware

 

Error

 

Report

 

This

 

Service

 

Aid

 

provides

 

a

 

tool

 

for

 

viewing

 

the

 

hardware

 

error

 

log.

 

It

 

uses

 

the

 

errpt

 

command.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

33



The

 

Display

 

Error

 

Summary

 

and

 

Display

 

Error

 

Detail

 

selection

 

provide

 

the

 

same

 

type

 

of

 

report

 

as

 

the

 

errpt

 

command.

 

The

 

Display

 

Error

 

Analysis

 

Summary

 

and

 

Display

 

Error

 

Analysis

 

Detail

 

selection

 

provide

 

additional

 

analysis.

 

Display

 

Hardware

 

Vital

 

Product

 

Data

 

This

 

Service

 

Aid

 

displays

 

all

 

installed

 

resources

 

along

 

with

 

any

 

VPD

 

that

 

is

 

recognized

 

by

 

the

 

operating

 

system

 

for

 

those

 

resources.

 

Use

 

this

 

Service

 

Aid

 

when

 

you

 

want

 

to

 

look

 

at

 

the

 

VPD

 

for

 

a

 

specific

 

resource.

 

Display

 

Machine

 

Check

 

Error

 

Log

 

When

 

a

 

machine

 

check

 

occurs,

 

information

 

is

 

collected

 

and

 

logged

 

in

 

a

 

NVRAM

 

error

 

log

 

before

 

the

 

system

 

unit

 

shuts

 

down.

 

This

 

information

 

is

 

logged

 

in

 

the

 

error

 

log

 

and

 

cleared

 

from

 

NVRAM

 

when

 

the

 

system

 

is

 

rebooted

 

from

 

either

 

hard

 

disk

 

or

 

LAN.

 

The

 

information

 

is

 

not

 

cleared

 

when

 

booting

 

from

 

Standalone

 

Diagnostics.

 

When

 

booting

 

from

 

Standalone

 

Diagnostics,

 

this

 

Service

 

Aid

 

can

 

take

 

the

 

logged

 

information

 

and

 

turn

 

it

 

into

 

a

 

readable

 

format

 

that

 

can

 

be

 

used

 

to

 

isolate

 

the

 

problem.

 

When

 

booting

 

from

 

the

 

hard

 

disk

 

or

 

LAN,

 

the

 

information

 

can

 

be

 

viewed

 

from

 

the

 

error

 

log

 

using

 

the

 

Hardware

 

Error

 

Report

 

Service

 

Aid.

 

In

 

either

 

case

 

the

 

information

 

is

 

analyzed

 

when

 

running

 

the

 

sysplanar0

 

diagnostics

 

in

 

Problem

 

Determination

 

Mode.

Note:

  

The

 

Machine

 

Check

 

Error

 

Log

 

Service

 

Aid

 

is

 

available

 

only

 

on

 

Standalone

 

Diagnostics.

 

Display

 

Microcode

 

Level

 

This

 

selection

 

provides

 

a

 

way

 

to

 

display

 

microcode

 

on

 

a

 

device

 

or

 

adapter.

 

Once

 

invoked,

 

a

 

list

 

of

 

resources

 

are

 

available

 

for

 

selection

 

that

 

supports

 

this

 

function.

 

Once

 

a

 

resource

 

is

 

selected,

 

a

 

specific

 

application

 

that

 

supports

 

that

 

function

 

on

 

the

 

resource

 

is

 

invoked.

 

See

 

the

 

description

 

on

 

PDiagAtt

 

for

 

the

 

stanza

 

that

 

is

 

needed

 

to

 

achieve

 

this.

 

This

 

task

 

may

 

be

 

run

 

directly

 

from

 

the

 

command

 

line.

 

The

 

following

 

usage

 

statement

 

describes

 

the

 

syntax

 

of

 

the

 

fastpath

 

command:

 

Usage:

 

diag

 

-T

 

"disp_mcode"

 

Display

 

or

 

Change

 

Bootlist

 

This

 

Service

 

Aid

 

allows

 

the

 

bootlist

 

to

 

be

 

displayed,

 

altered,

 

or

 

erased.

 

The

 

system

 

attempts

 

to

 

perform

 

an

 

IPL

 

from

 

the

 

first

 

device

 

in

 

the

 

list.

 

If

 

the

 

device

 

is

 

not

 

a

 

valid

 

IPL

 

device

 

or

 

if

 

the

 

IPL

 

fails,

 

the

 

system

 

proceeds

 

in

 

turn

 

to

 

the

 

other

 

devices

 

in

 

the

 

list

 

to

 

attempt

 

an

 

IPL.

 

Display

 

or

 

Change

 

BUMP

 

Configuration

  

Attention:

  

This

 

diagnostic

 

task

 

has

 

been

 

removed

 

in

 

AIX

 

5.2.

 

The

 

information

 

has

 

been

 

retained

 

for

 

reference

 

only.

 

This

 

Service

 

Aid

 

is

 

unique

 

to

 

the

 

POWER-based

 

SMP

 

system

 

units

 

and

 

provides

 

the

 

following

 

functions:

 

v

   

Display

 

or

 

Change

 

Remote

 

Support

 

Phone

 

Number

 

This

 

function

 

allows

 

the

 

remote

 

support

 

phone

 

number

 

to

 

be

 

displayed

 

or

 

altered.

 

v

   

Display

 

or

 

Change

 

Diagnostics

 

Modes

 

This

 

function

 

displays

 

a

 

dialog

 

screen

 

that

 

lists

 

the

 

states

 

of

 

all

 

the

 

BUMP

 

(Bringup

 

Micro-Processor)

 

Diagnostic

 

Flags.

 

The

 

states

 

can

 

be

 

changed

 

via

 

the

 

dialog

 

screen.

 

v

   

Save

 

or

 

Restore

 

Diagnostics

 

Modes

 

and

 

Remote

 

Support

 

Phone

 

Number

   

34

 

Understanding

 

the

 

Diagnostic

 

Subsystem



This

 

function

 

allows

 

the

 

diagnostics

 

modes

 

and

 

remote

 

support

 

phone

 

number

 

to

 

be

 

saved

 

or

 

restored.

 

The

 

location

 

of

 

the

 

save

 

area

 

is

 

to

 

be

 

defined.

 

v

   

Flash

 

EPROM

 

Download

 

This

 

function

 

updates

 

the

 

Flash

 

EPROM.

Display

 

or

 

Change

 

Diagnostic

 

Run

 

Time

 

Options

 

The

 

Display

 

or

 

Change

 

Diagnostic

 

Run

 

Time

 

Options

 

task

 

allows

 

the

 

diagnostic

 

run

 

time

 

options

 

to

 

be

 

set.

 

The

 

run

 

time

 

options

 

are:

 

v

   

Display

 

Diagnostic

 

Mode

 

Selection

 

Menus

 

This

 

option

 

allows

 

the

 

user

 

to

 

turn

 

on

 

or

 

turn

 

off

 

displaying

 

the

 

DIAGNOSTIC

 

MODE

 

SELECTION

 

MENU.

 

The

 

default

 

value

 

is

 

on.

 

v

   

Include

 

Advanced

 

Diagnostics

 

This

 

option

 

allows

 

the

 

user

 

to

 

turn

 

on

 

or

 

off

 

including

 

the

 

Advanced

 

Diagnostics.

 

The

 

default

 

value

 

is

 

off.

 

v

   

Run

 

Tests

 

Multiple

 

Times

 

This

 

option

 

allows

 

the

 

user

 

to

 

turn

 

on

 

or

 

off

 

running

 

the

 

diagnostic

 

in

 

Loop

 

Mode.

 

The

 

default

 

value

 

is

 

off.

Note:

  

This

 

option

 

is

 

only

 

displayed

 

when

 

running

 

Online

 

Diagnostics

 

in

 

Service

 

Mode.

 

v

   

Include

 

Error

 

Log

 

Analysis

 

This

 

option

 

allows

 

the

 

user

 

to

 

turn

 

on

 

or

 

off

 

including

 

the

 

Error

 

Log

 

Analysis

 

(ELA).

 

The

 

default

 

value

 

is

 

off.

 

v

   

Number

 

of

 

days

 

used

 

to

 

search

 

error

 

log

 

This

 

option

 

allows

 

the

 

user

 

to

 

select

 

the

 

number

 

of

 

days

 

to

 

search

 

the

 

error

 

log

 

for

 

errors

 

when

 

running

 

Error

 

Log

 

Analysis.

 

The

 

default

 

value

 

is

 

7

 

days,

 

but

 

can

 

be

 

changed

 

from

 

1

 

to

 

60

 

days.

 

v

   

Display

 

Progress

 

Indicators

 

This

 

option

 

allows

 

the

 

user

 

to

 

turn

 

on

 

or

 

off

 

the

 

progress

 

indicators

 

shown

 

when

 

running

 

Diagnostic

 

Applications.

 

The

 

progress

 

indicators

 

are

 

a

 

popup

 

box

 

at

 

the

 

bottom

 

of

 

the

 

screen

 

indicating

 

the

 

test

 

being

 

run.

 

The

 

default

 

value

 

is

 

on.

 

v

   

Diagnostic

 

Event

 

Logging

 

This

 

option

 

allows

 

the

 

user

 

to

 

turn

 

on

 

or

 

off

 

logging

 

information

 

to

 

the

 

Diagnostics

 

Event

 

Log.

 

The

 

default

 

value

 

is

 

on.

 

v

   

Diagnostic

 

Event

 

Log

 

file

 

size

 

This

 

option

 

allows

 

the

 

user

 

to

 

select

 

the

 

maximum

 

size

 

of

 

the

 

Diagnostic

 

Event

 

Log.

 

The

 

default

 

value

 

is

 

100K,

 

but

 

can

 

be

 

changed

 

from

 

100K

 

to

 

1000K.

 

v

   

Save

 

changes

 

to

 

the

 

database

 

This

 

option

 

allows

 

the

 

user

 

to

 

save

 

any

 

changes

 

made

 

to

 

the

 

run

 

time

 

options.

 

Without

 

saving

 

the

 

changes,

 

any

 

changes

 

made

 

are

 

only

 

applicable

 

to

 

that

 

session

 

of

 

diagnostics.

 

The

 

default

 

value

 

is

 

no.

Display

 

or

 

Change

 

Electronic

 

Mode

 

Switch

  

Attention:

  

This

 

diagnostic

 

task

 

has

 

been

 

removed

 

in

 

AIX

 

5.2.

 

The

 

information

 

has

 

been

 

retained

 

for

 

reference

 

only.

 

This

 

Service

 

Aid

 

is

 

unique

 

to

 

the

 

POWER-based

 

SMP

 

system

 

units

 

and

 

displays

 

the

 

states

 

of

 

the

 

Physical

 

and

 

Electronic

 

Keys.

 

It

 

also

 

allows

 

the

 

electronic

 

keys

 

to

 

be

 

set.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

35



Display

 

or

 

Change

 

Multiprocessor

 

Configuration

 

(Multiprocessor

 

Service)

  

Attention:

  

This

 

diagnostic

 

task

 

has

 

been

 

removed

 

in

 

AIX

 

5.2.

 

The

 

information

 

has

 

been

 

retained

 

for

 

reference

 

only.

 

This

 

Service

 

Aid

 

is

 

unique

 

to

 

the

 

POWER-based

 

SMP

 

system

 

units

 

and

 

provides

 

the

 

following

 

functions:

 

v

   

Display

 

or

 

Change

 

Processor

 

States

 

This

 

function

 

displays

 

or

 

changes

 

the

 

state

 

of

 

available

 

processors.

 

v

   

Bind

 

Process

 

This

 

function

 

provides

 

a

 

tool

 

for

 

binding

 

a

 

process

 

and

 

all

 

its

 

threads

 

to

 

a

 

specified

 

processor.

Display

 

Previous

 

Diagnostic

 

Results

 

This

 

service

 

aid

 

allows

 

a

 

service

 

representative

 

to

 

display

 

results

 

from

 

a

 

previous

 

diagnostic

 

session.

 

When

 

the

 

Display

 

Previous

 

Results

 

option

 

is

 

selected,

 

the

 

user

 

will

 

be

 

able

 

to

 

view

 

up

 

to

 

25

 

no

 

trouble

 

found

 

(NTF)

 

and

 

service

 

request

 

number

 

(SRN)

 

results.

 

This

 

service

 

aid

 

also

 

displays

 

diagnostic

 

log

 

information.

 

The

 

diagnostic

 

log

 

can

 

be

 

displayed

 

in

 

a

 

short

 

version

 

or

 

a

 

long

 

version.

 

The

 

diagnostic

 

log

 

contains

 

information

 

about

 

events

 

logged

 

by

 

a

 

diagnostic

 

session.

 

This

 

service

 

aid

 

displays

 

the

 

information

 

in

 

reverse

 

chronological

 

order.

 

If

 

more

 

information

 

is

 

available

 

than

 

what

 

can

 

be

 

displayed

 

on

 

the

 

screen,

 

the

 

Page

 

Down

 

and

 

Page

 

Up

 

keys

 

can

 

be

 

used

 

to

 

scroll

 

through

 

the

 

information.

Note:

  

This

 

Service

 

Aid

 

is

 

not

 

available

 

when

 

you

 

load

 

the

 

diagnostics

 

from

 

a

 

source

 

other

 

than

 

a

 

disk

 

drive

 

or

 

from

 

a

 

network.

 

This

 

information

 

is

 

not

 

from

 

the

 

error

 

log

 

maintained

 

by

 

the

 

operating

 

system.

 

This

 

information

 

is

 

stored

 

in

 

the

 

/var/adm/ras

 

directory.

 

Display

 

Resource

 

Attributes

 

This

 

task

 

displays

 

the

 

Customized

 

Device

 

Attributes

 

associated

 

with

 

a

 

selected

 

resource.

 

This

 

task

 

is

 

similar

 

to

 

running

 

the

 

lsattr

 

-E

 

-l

 

resource

 

command.

 

Display

 

Service

 

Hints

 

This

 

Service

 

Aid

 

reads

 

and

 

displays

 

the

 

information

 

in

 

the

 

CEREADME

 

file

 

from

 

the

 

diagnostics

 

media.

 

This

 

file

 

contains

 

information

 

that

 

is

 

not

 

in

 

the

 

publications

 

for

 

this

 

version

 

of

 

the

 

diagnostics.

 

It

 

also

 

contains

 

information

 

about

 

using

 

this

 

particular

 

version

 

of

 

diagnostics.

 

This

 

Service

 

Aid

 

presents

 

a

 

menu

 

if

 

multiple

 

CEREADME

 

files

 

are

 

present

 

in

 

the

 

/usr/lpp/diagnostics/

 

directory.

 

This

 

allows

 

other

 

non-related

 

CEREADME

 

files

 

to

 

be

 

displayed

 

containing

 

information

 

about

 

unrelated

 

functions.

 

Use

 

the

 

arrow

 

keys

 

to

 

scroll

 

through

 

the

 

information

 

in

 

the

 

file.

 

Display

 

Software

 

Product

 

Data

 

This

 

task

 

invokes

 

SMIT

 

to

 

display

 

information

 

about

 

the

 

installed

 

software

 

and

 

provides

 

the

 

following

 

functions:

 

v

   

List

 

Installed

 

Software

 

v

   

List

 

Applied

 

but

 

Not

 

Committed

 

Software

 

Updates

 

v

   

Show

 

Software

 

Installation

 

History

   

36

 

Understanding

 

the

 

Diagnostic

 

Subsystem



v

   

Show

 

Fix

 

(APAR)

 

Installation

 

Status

 

v

   

List

 

Fileset

 

Requisites

 

v

   

List

 

Fileset

 

Dependents

 

v

   

List

 

Files

 

Included

 

in

 

a

 

Fileset

 

v

   

List

 

File

 

Owner

 

by

 

Fileset

Display

 

System

 

Environmental

 

Sensors

 

(CHRP)

 

This

 

Service

 

Aid

 

displays

 

the

 

environmental

 

sensors

 

implemented

 

on

 

a

 

CHRP

 

system.

 

The

 

information

 

displayed

 

is

 

the

 

sensor

 

name,

 

physical

 

location

 

code,

 

literal

 

value

 

of

 

the

 

sensor

 

status,

 

and

 

the

 

literal

 

value

 

of

 

the

 

sensor

 

reading.

Note:

  

Runs

 

on

 

CHRP

 

systems

 

units

 

only.

 

The

 

sensor

 

status

 

can

 

be

 

any

 

one

 

of

 

the

 

following:

 

v

   

Normal

 

The

 

sensor

 

reading

 

is

 

within

 

the

 

normal

 

operating

 

range.

 

v

   

Critical

 

High

 

The

 

sensor

 

reading

 

indicates

 

a

 

serious

 

problem

 

with

 

the

 

device.

 

Run

 

diagnostics

 

on

 

sysplanar0

 

to

 

determine

 

what

 

repair

 

action

 

is

 

needed.

 

v

   

Critical

 

Low

 

The

 

sensor

 

reading

 

indicates

 

a

 

serious

 

problem

 

with

 

the

 

device.

 

Run

 

diagnostics

 

on

 

sysplanar0

 

to

 

determine

 

what

 

repair

 

action

 

is

 

needed.

 

v

   

Warning

 

High

 

The

 

sensor

 

reading

 

indicates

 

a

 

problem

 

with

 

the

 

device.

 

This

 

could

 

become

 

a

 

critical

 

problem

 

if

 

action

 

is

 

not

 

taken.

 

Run

 

diagnostics

 

on

 

sysplanar0

 

to

 

determine

 

what

 

repair

 

action

 

is

 

needed.

 

v

   

Warning

 

Low

 

The

 

sensor

 

reading

 

indicates

 

a

 

problem

 

with

 

the

 

device.

 

This

 

could

 

become

 

a

 

critical

 

problem

 

if

 

action

 

is

 

not

 

taken.

 

Run

 

diagnostics

 

on

 

sysplanar0

 

to

 

determine

 

what

 

repair

 

action

 

is

 

needed.

 

v

   

Hardware

 

Error

 

The

 

sensor

 

could

 

not

 

be

 

read

 

because

 

of

 

a

 

hardware

 

error.

 

Run

 

diagnostics

 

on

 

sysplanar0

 

in

 

problem

 

determination

 

mode

 

to

 

determine

 

what

 

repair

 

action

 

is

 

needed.

 

v

   

Hardware

 

Busy

 

The

 

system

 

has

 

repeatedly

 

returned

 

a

 

busy

 

indication,

 

and

 

a

 

reading

 

is

 

not

 

available.

 

Try

 

the

 

Service

 

Aid

 

again.

 

If

 

the

 

problem

 

continues,

 

run

 

diagnostics,

 

on

 

sysplanar0

 

in

 

problem

 

determination

 

mode

 

to

 

determine

 

what

 

repair

 

action

 

is

 

needed.

 

This

 

Service

 

Aid

 

can

 

also

 

be

 

run

 

as

 

a

 

command.

 

The

 

command

 

can

 

be

 

used

 

to

 

list

 

the

 

sensors

 

and

 

their

 

values

 

in

 

a

 

text

 

format,

 

list

 

the

 

sensors

 

and

 

their

 

values

 

in

 

numerical

 

format,

 

or

 

a

 

specific

 

sensor

 

can

 

be

 

queried

 

to

 

return

 

either

 

the

 

sensor

 

status

 

or

 

sensor

 

value.

 

The

 

command

 

can

 

be

 

run

 

by

 

entering

 

one

 

of

 

the

 

following:

 

/usr/lpp/diagnostics/bin/uesensor

 

-l

 

|

 

-a

 

/usr/lpp/diagnostics/bin/uesensor

 

-t

 

token

 

-i

 

index

 

[-v]

 

Flags

  

-l

 

List

 

the

 

sensors

 

and

 

their

 

values

 

in

 

a

 

text

 

format.

 

-a

 

List

 

the

 

sensors

 

and

 

their

 

values

 

in

 

a

 

numerical

 

format.

 

For

 

each

 

sensor,

 

the

 

following

 

numerical

 

values

 

are

 

displayed

 

as:

 

<token>

 

<index>

 

<status>

 

<measured

 

value>

 

<location

 

code>

   

Chapter

 

3.

 

Diagnostic

 

Components

 

37



-t

 

token

 

Specifies

 

the

 

sensor

 

token

 

to

 

query.

 

-i

 

index

 

Specifies

 

the

 

sensor

 

index

 

to

 

query.

 

-v

 

Indicates

 

to

 

return

 

the

 

sensor

 

measured

 

value.

 

The

 

sensor

 

status

 

is

 

returned

 

by

 

default.

   

Examples

 

1.

   

Display

 

a

 

list

 

of

 

the

 

environmental

 

sensors:

 

/usr/lpp/diagnostics/bin/uesensor

 

-l

 

Sensor

 

Token

 

=

 

Fan

 

Speed

 

Status

 

=

 

Normal

 

Value

 

=

 

2436

 

RPM

 

Location

 

Code

 

=

 

F1

   

Sensor

 

Token

 

=

 

Power

 

Supply

 

Status

 

=

 

Normal

 

Value

 

=

 

Present

 

and

 

operational

 

Location

 

Code

 

=

 

V1

   

Sensor

 

Token

 

=

 

Power

 

Supply

 

*Status

 

=

 

Critical

 

low

 

Value

 

=

 

Present

 

and

 

not

 

operational

 

Location

 

Code

 

=

 

V2

 

2.

   

Display

 

a

 

list

 

of

 

the

 

environmental

 

sensors

 

in

 

a

 

numerical

 

list:

 

/usr/lpp/diagnostics/bin/uesensor

 

-a

 

3

 

0

 

11

 

87

 

P1

 

9001

 

0

 

11

 

2345

 

F1

 

9004

 

0

 

11

 

2

 

V1

 

9004

 

1

 

9

 

2

 

V2

 

3.

   

Return

 

the

 

status

 

of

 

sensor

 

9004,

 

index

 

1:

 

/usr/lpp/diagnostics/bin/uesensor

 

-t

 

9004

 

-i

 

1

   

9

 

4.

   

Return

 

the

 

value

 

of

 

sensor

 

9004,

 

index

 

1:

 

/usr/lpp/diagnostics/bin/uesensor

 

-t

 

9004

 

-i

 

1

 

-v

   

2

 

Display

 

Test

 

Patterns

 

This

 

Service

 

Aid

 

provides

 

a

 

means

 

of

 

adjusting

 

system

 

display

 

units

 

by

 

providing

 

displayable

 

test

 

patterns.

 

Through

 

a

 

series

 

of

 

menus

 

the

 

user

 

selects

 

the

 

display

 

type

 

and

 

test

 

pattern.

 

After

 

the

 

selections

 

are

 

made

 

the

 

test

 

pattern

 

is

 

displayed.

 

Display

 

USB

 

Devices

 

The

 

following

 

are

 

the

 

main

 

functions

 

of

 

this

 

service

 

aid:

 

v

   

Display

 

a

 

list

 

of

 

USB

 

controllers

 

on

 

an

 

adapter.

 

v

   

Display

 

a

 

list

 

of

 

USB

 

devices

 

that

 

are

 

connected

 

to

 

the

 

selected

 

controller.

To

 

run

 

the

 

USB

 

devices

 

service

 

aid,

 

go

 

to

 

the

 

diagnostics

 

TASKS

 

SELECTION

 

menu,

 

select

 

Display

 

USB

 

Devices.

 

From

 

the

 

controller

 

list

 

that

 

displayed

 

on

 

the

 

screen,

 

select

 

one

 

of

 

the

 

items

 

that

 

begins

 

with

 

OHCDX,

 

where

 

X

 

is

 

a

 

number.

 

A

 

list

 

of

 

devices

 

attached

 

to

 

the

 

controller

 

displays.

   

38

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Download

 

Microcode

 

This

 

selection

 

provides

 

a

 

way

 

to

 

update

 

microcode

 

to

 

a

 

device

 

or

 

adapter.

 

Once

 

invoked,

 

a

 

list

 

of

 

resources

 

are

 

available

 

for

 

selection

 

that

 

supports

 

this

 

function.

 

Once

 

a

 

resource

 

is

 

selected,

 

a

 

specific

 

application

 

that

 

supports

 

that

 

function

 

on

 

the

 

resource

 

is

 

invoked.

 

See

 

the

 

description

 

on

 

PDiagAtt

 

for

 

the

 

stanza

 

that

 

is

 

needed

 

to

 

achieve

 

this.

 

This

 

task

 

may

 

be

 

run

 

directly

 

from

 

the

 

command

 

line.

 

The

 

following

 

usage

 

statement

 

describes

 

the

 

syntax

 

of

 

the

 

fastpath

 

command:

 

Usage:

 

diag

 

-T

 

"download"

 

ESCON

 

Bit

 

Error

 

Rate

  

Attention:

  

This

 

diagnostic

 

task

 

has

 

been

 

removed

 

in

 

AIX

 

5.2.

 

The

 

information

 

has

 

been

 

retained

 

for

 

reference

 

only.

 

This

 

Service

 

Aid

 

is

 

used

 

to

 

check

 

the

 

bit

 

error

 

rate

 

for

 

an

 

ESCON

 

adapter

 

to

 

assure

 

that

 

the

 

link

 

to

 

the

 

host

 

system

 

is

 

functioning

 

properly.

 

To

 

run

 

the

 

ESCON

 

Bit

 

Error

 

Rate

 

Service

 

Aid,

 

the

 

adapter

 

must

 

be

 

connected,

 

configured,

 

and

 

on-line.

 

If

 

the

 

adapter

 

is

 

not

 

configured

 

properly,

 

the

 

Service

 

Aid

 

is

 

not

 

able

 

to

 

check

 

the

 

bit

 

error

 

rate.

 

Fibre

 

Channel

 

RAID

 

(Device

 

Specific)

 

The

 

Fibre

 

Channel

 

RAID

 

Service

 

Aids

 

contain

 

the

 

following

 

functions:

 

v

   

Certify

 

LUN

 

This

 

selection

 

reads

 

and

 

checks

 

each

 

block

 

of

 

data

 

in

 

the

 

LUN.

 

If

 

excessive

 

errors

 

are

 

encountered

 

the

 

user

 

is

 

notified.

 

This

 

task

 

may

 

be

 

run

 

directly

 

from

 

the

 

command

 

line.

 

The

 

following

 

usage

 

statement

 

describes

 

the

 

syntax

 

of

 

the

 

fastpath

 

command:

 

Usage:

 

diag

 

-T

 

"certify"

 

v

   

Certify

 

Spare

 

Physical

 

Disk

 

This

 

selection

 

allows

 

the

 

user

 

to

 

certify

 

(check

 

the

 

integrity

 

of

 

the

 

data)

 

on

 

drives

 

designated

 

as

 

spares.

 

This

 

task

 

may

 

be

 

run

 

directly

 

from

 

the

 

command

 

line.

 

The

 

following

 

usage

 

statement

 

describes

 

the

 

syntax

 

of

 

the

 

fastpath

 

command:

 

Usage:

 

diag

 

-T

 

″certify″

 

v

   

Format

 

Physical

 

Disk

 

This

 

selection

 

is

 

used

 

to

 

format

 

a

 

selected

 

disk

 

drive.

 

This

 

task

 

may

 

be

 

run

 

directly

 

from

 

the

 

command

 

line.

 

The

 

following

 

usage

 

statement

 

describes

 

the

 

syntax

 

of

 

the

 

fastpath

 

command:

 

Usage:

 

diag

 

-T

 

″format″

 

v

   

Array

 

Controller

 

Microcode

 

Download

 

This

 

selection

 

allows

 

the

 

microcode

 

on

 

the

 

Fibre

 

Channel

 

RAID

 

controller

 

to

 

be

 

updated

 

when

 

required.

 

This

 

task

 

may

 

be

 

run

 

directly

 

from

 

the

 

command

 

line.

 

The

 

following

 

usage

 

statement

 

describes

 

the

 

syntax

 

of

 

the

 

fastpath

 

command:

 

Usage:

 

diag

 

-T

 

″download″

 

v

   

Physical

 

Disk

 

Microcode

 

Download

   

Chapter

 

3.

 

Diagnostic

 

Components

 

39



This

 

selection

 

is

 

used

 

to

 

update

 

the

 

microcode

 

on

 

any

 

of

 

the

 

disk

 

drives

 

in

 

the

 

array.

 

This

 

task

 

may

 

be

 

run

 

directly

 

from

 

the

 

command

 

line.

 

The

 

following

 

usage

 

statement

 

describes

 

the

 

syntax

 

of

 

the

 

fastpath

 

command:

 

Usage:

 

diag

 

-T

 

″download″

 

v

   

Update

 

EEPROM

 

This

 

selection

 

is

 

used

 

to

 

update

 

the

 

contents

 

of

 

the

 

EEPROM

 

on

 

a

 

selected

 

controller.

 

v

   

Replace

 

Controller

 

Use

 

this

 

selection

 

when

 

it

 

is

 

necessary

 

to

 

replace

 

a

 

controller

 

in

 

the

 

array.

Flash

 

SK-NET

 

FDDI

 

Firmware

 

This

 

task

 

allows

 

the

 

Flash

 

firmware

 

on

 

the

 

SysKonnect

 

SK-NET

 

FDDI

 

adapter

 

to

 

be

 

updated.

 

Format

 

Media

 

The

 

Format

 

Media

 

task

 

supports

 

the

 

selection

 

of

 

diskettes,

 

SCSI

 

hardfiles,

 

or

 

SCSI

 

optical

 

media.

 

This

 

task

 

may

 

be

 

run

 

directly

 

from

 

the

 

command

 

line.

 

The

 

following

 

usage

 

statement

 

describes

 

the

 

syntax

 

of

 

the

 

fastpath

 

command:

 

Usage:

 

diag

 

-T

 

″format″

 

Generic

 

Microcode

 

Download

 

This

 

Service

 

Aid

 

provides

 

a

 

means

 

of

 

executing

 

a

 

″generic″

 

script

 

from

 

a

 

diskette.

 

The

 

intended

 

purpose

 

for

 

this

 

″generic″

 

script

 

is

 

to

 

load

 

microcode

 

to

 

a

 

supported

 

resource.

 

This

 

script

 

is

 

responsible

 

for

 

executing

 

whatever

 

program

 

is

 

required

 

in

 

order

 

to

 

download

 

the

 

microcode

 

onto

 

the

 

adapter

 

or

 

device.

 

This

 

Service

 

Aid

 

is

 

supported

 

in

 

both

 

concurrent

 

and

 

standalone

 

modes

 

from

 

disk,

 

LAN,

 

or

 

removable

 

media.

 

On

 

entry,

 

the

 

Service

 

Aid

 

displays

 

information

 

about

 

what

 

it

 

does.

 

It

 

then

 

asks

 

for

 

a

 

″Genucode″

 

diskette

 

to

 

be

 

inserted

 

into

 

the

 

diskette

 

drive.

 

The

 

diskette

 

must

 

be

 

in

 

tar

 

format.

 

The

 

Service

 

Aid

 

then

 

restores

 

the

 

script

 

file,

 

″genucode″,

 

to

 

the

 

/tmp

 

directory.

 

Then

 

the

 

script

 

is

 

executed.

 

The

 

script

 

must

 

at

 

that

 

point

 

then

 

pull

 

off

 

any

 

other

 

needed

 

files

 

from

 

the

 

diskette.

 

The

 

script

 

should

 

then

 

exec

 

whatever

 

program

 

is

 

necessary

 

in

 

order

 

to

 

perform

 

its

 

function.

 

On

 

completion,

 

a

 

status

 

code

 

is

 

returned,

 

and

 

the

 

user

 

is

 

returned

 

to

 

the

 

Service

 

Aid.

 

The

 

genucode

 

script

 

should

 

have

 

a

 

#!/usr/bin/ksh

 

line

 

at

 

the

 

beginning

 

of

 

the

 

file.

 

Return

 

status

 

of

 

0

 

should

 

be

 

returned

 

if

 

the

 

program

 

was

 

successful,

 

else

 

a

 

non-zero

 

status

 

should

 

be

 

returned.

 

Hot

 

Plug

 

Task

 

This

 

Service

 

Aid

 

allows

 

the

 

user

 

to

 

choose

 

a

 

SCSI

 

device

 

or

 

location

 

from

 

a

 

menu

 

and

 

to

 

identify

 

a

 

device,

 

located

 

in

 

a

 

7027

 

system

 

unit.

 

The

 

Service

 

Aid

 

also

 

does

 

the

 

following:

 

v

   

Generates

 

a

 

menu

 

displaying

 

all

 

SCSI

 

devices.

 

v

   

Lists

 

the

 

device

 

and

 

all

 

of

 

it’s

 

sibling

 

devices.

 

v

   

List

 

all

 

SCSI

 

adapters

 

and

 

their

 

ports.

 

v

   

List

 

all

 

SCSI

 

devices

 

on

 

a

 

port.

  

40

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Local

 

Area

 

Network

 

Analyzer

 

This

 

selection

 

is

 

used

 

to

 

exercise

 

the

 

LAN

 

communications

 

adapters

 

(Token-Ring,

 

Ethernet,

 

and

 

(FDDI)

 

Fiber

 

Distributed

 

Data

 

Interface).

 

The

 

following

 

services

 

are

 

available:

 

v

   

Connectivity

 

testing

 

between

 

two

 

network

 

stations

 

Data

 

is

 

transferred

 

between

 

the

 

two

 

stations.

 

This

 

requires

 

the

 

user

 

to

 

input

 

the

 

Internet

 

Addresses

 

of

 

both

 

stations.

 

v

   

Monitoring

 

ring

 

(Token-Ring

 

only)

 

The

 

ring

 

is

 

monitored

 

for

 

a

 

period

 

of

 

time.

 

Soft

 

and

 

hard

 

errors

 

are

 

analyzed.

PCI

 

RAID

 

Physical

 

Disk

 

Identify

 

This

 

selection

 

identifies

 

physical

 

disks

 

connected

 

to

 

a

 

PCI

 

SCSI-2

 

F/W

 

RAID

 

adapter.

 

This

 

task

 

may

 

be

 

run

 

directly

 

from

 

the

 

command

 

line.

 

The

 

following

 

usage

 

statement

 

describes

 

the

 

syntax

 

of

 

the

 

fastpath

 

command:

 

Usage:

 

diag

 

-T

 

"identify"

 

Periodic

 

Diagnostics

 

This

 

selection

 

provides

 

a

 

tool

 

for

 

configuring

 

periodic

 

diagnostics.

 

You

 

can

 

select

 

a

 

hardware

 

resource

 

to

 

be

 

tested

 

once

 

a

 

day,

 

at

 

a

 

user-specified

 

time.

 

If

 

a

 

problem

 

is

 

detected

 

by

 

periodic

 

diagnostics,

 

information

 

about

 

the

 

failure,

 

such

 

as

 

the

 

service

 

request

 

number,

 

is

 

posted

 

to

 

the

 

system

 

console

 

and

 

to

 

the

 

following:

 

1.

   

If

 

an

 

error

 

notification

 

mailing

 

list

 

has

 

been

 

configured,

 

then

 

information

 

about

 

the

 

failure

 

is

 

sent

 

to

 

the

 

email

 

addresses

 

and

 

system

 

users

 

in

 

this

 

list.

 

2.

   

If

 

there

 

is

 

an

 

attached

 

HMC,

 

then

 

information

 

about

 

the

 

failure

 

is

 

sent

 

to

 

Service

 

Focal

 

Point.

 

3.

   

If

 

the

 

mailing

 

list

 

has

 

not

 

been

 

configured

 

and

 

there

 

is

 

not

 

an

 

attached

 

HMC,

 

then

 

information

 

about

 

the

 

failure

 

is

 

sent

 

to

 

all

 

users

 

belonging

 

to

 

the

 

system

 

group.

The

 

service

 

aid

 

provides

 

the

 

following

 

functions:

 

v

   

Add

 

or

 

delete

 

a

 

resource

 

to

 

the

 

periodic

 

test

 

list

 

v

   

Modify

 

the

 

time

 

to

 

test

 

a

 

resource

 

v

   

Display

 

the

 

periodic

 

test

 

list

In

 

releases

 

of

 

AIX

 

prior

 

to

 

5.2.0.30,

 

the

 

Periodic

 

Diagnostics

 

Task

 

provided

 

additional

 

functions.

 

For

 

more

 

information

 

on

 

these

 

functions,

 

see

 

the

 

Automatic

 

Error

 

Log

 

Analysis

 

and

 

Notification

 

Task.

 

Process

 

Supplemental

 

Media

 

Diagnostic

 

Supplemental

 

Media

 

contains

 

all

 

the

 

necessary

 

diagnostic

 

programs

 

and

 

files

 

required

 

to

 

test

 

a

 

particular

 

resource.

 

The

 

supplemental

 

is

 

normally

 

released

 

and

 

shipped

 

with

 

the

 

resource

 

as

 

indicated

 

on

 

the

 

diskette

 

label.

 

Diagnostic

 

Supplemental

 

Media

 

must

 

be

 

used

 

when

 

the

 

device

 

support

 

has

 

not

 

been

 

incorporated

 

into

 

the

 

latest

 

Diagnostic

 

CDROM.

 

This

 

task

 

processes

 

the

 

Diagnostic

 

Supplemental

 

Media.

 

Insert

 

the

 

Supplemental

 

Media

 

when

 

prompted,

 

then

 

press

 

Enter.

 

After

 

processing

 

has

 

occurred,

 

go

 

to

 

the

 

Resource

 

Selection

 

list

 

to

 

find

 

the

 

resource

 

to

 

test.

 

Notes:

 

v

   

This

 

task

 

is

 

supported

 

in

 

Standalone

 

Diagnostics

 

only.

 

v

   

Always

 

process

 

and

 

test

 

one

 

resource

 

at

 

a

 

time.

 

v

   

Do

 

not

 

process

 

multiple

 

supplementals

 

at

 

a

 

time.

  

Chapter

 

3.

 

Diagnostic

 

Components

 

41



More

 

information

 

on

 

Diagnostic

 

Supplemental

 

Media

 

can

 

be

 

found

 

at

 

the

 

following

 

link:Diagnostic

 

Supplemental

 

Media.

 

Run

 

Diagnostics

 

The

 

Run

 

Diagnostics

 

task

 

invokes

 

the

 

Resource

 

Selection

 

List

 

menu.

 

When

 

the

 

commit

 

key

 

is

 

pressed,

 

Diagnostics

 

are

 

run

 

on

 

all

 

selected

 

resources.

 

The

 

procedures

 

for

 

running

 

the

 

diagnostics

 

depends

 

on

 

the

 

state

 

of

 

the

 

Diagnostics

 

Run

 

Time

 

Options.

 

See

 

Display

 

or

 

Change

 

Diagnostic

 

Run

 

Time

 

Options

 

section.

 

Automatic

 

Error

 

Log

 

Analysis

 

and

 

Notification

 

This

 

selection

 

provides

 

a

 

tool

 

for

 

configuring

 

the

 

error

 

notification

 

mailing

 

list.

 

The

 

error

 

notification

 

mailing

 

list

 

can

 

consist

 

of

 

system

 

users

 

and

 

and

 

email

 

addresses

 

of

 

the

 

form

 

user@domain.

 

Also,

 

this

 

task

 

allows

 

automatic

 

error

 

log

 

analysis

 

to

 

be

 

disabled

 

or

 

enabled.

 

By

 

default

 

automatic

 

error

 

log

 

analysis

 

is

 

enabled.

 

The

 

service

 

aid

 

provides

 

the

 

following

 

functions:

 

v

   

Add

 

to

 

the

 

error

 

notitification

 

mailing

 

list

 

v

   

Delete

 

from

 

the

 

error

 

notification

 

mailing

 

list

 

v

   

Display

 

the

 

error

 

notification

 

mailing

 

list

 

v

   

Disable

 

or

 

enable

 

automatic

 

error

 

log

 

analysis

Hardware

 

errors

 

logged

 

against

 

a

 

resource

 

can

 

also

 

be

 

monitored

 

by

 

enabling

 

automatic

 

error

 

log

 

analysis.

 

This

 

allows

 

error

 

log

 

analysis

 

to

 

be

 

performed

 

every

 

time

 

a

 

hardware

 

error

 

is

 

put

 

into

 

the

 

error

 

log.

 

If

 

a

 

problem

 

is

 

detected,

 

information

 

about

 

the

 

failure,

 

such

 

as

 

the

 

service

 

request

 

number,

 

is

 

posted

 

to

 

the

 

system

 

console

 

and

 

to

 

the

 

following:

 

1.

   

If

 

an

 

error

 

notification

 

mailing

 

list

 

has

 

been

 

configured,

 

then

 

information

 

about

 

the

 

failure

 

is

 

sent

 

to

 

the

 

email

 

addresses

 

and

 

system

 

users

 

in

 

this

 

list.

 

2.

   

If

 

there

 

is

 

an

 

attached

 

HMC,

 

then

 

information

 

about

 

the

 

failure

 

is

 

sent

 

to

 

Service

 

Focal

 

Point.

 

3.

   

If

 

the

 

mailing

 

list

 

has

 

not

 

been

 

configured

 

and

 

there

 

is

 

not

 

an

 

attached

 

HMC,

 

then

 

information

 

about

 

the

 

failure

 

is

 

sent

 

to

 

all

 

users

 

belonging

 

to

 

the

 

system

 

group.

In

 

releases

 

of

 

AIX

 

prior

 

to

 

5.2.0.30,

 

this

 

task

 

does

 

not

 

exist.

 

To

 

perform

 

the

 

functions

 

provided

 

by

 

this

 

task

 

in

 

levels

 

of

 

AIX

 

below

 

5.2.0.30,

 

use

 

the

 

Periodic

 

Diagnostics

 

Task.

 

Run

 

Error

 

Log

 

Analysis

 

The

 

Run

 

Error

 

Log

 

Analysis

 

task

 

invokes

 

the

 

Resource

 

Selection

 

List

 

menu.

 

When

 

the

 

commit

 

key

 

is

 

pressed,

 

Error

 

Log

 

Analysis

 

is

 

run

 

on

 

all

 

selected

 

resources.

 

Save

 

or

 

Restore

 

Hardware

 

Management

 

Policies

 

(CHRP)

 

Use

 

this

 

Service

 

Aid

 

to

 

save

 

or

 

restore

 

the

 

settings

 

from

 

Ring

 

Indicate

 

Power

 

On

 

Policy,

 

Surveillance

 

Policy,

 

Remote

 

Maintenance

 

Policy

 

and

 

Reboot

 

Policy.

Note:

  

Runs

 

on

 

CHRP

 

systems

 

units

 

only.

 

v

   

Save

 

Hardware

 

Management

 

Policies

 

This

 

selection

 

writes

 

all

 

of

 

the

 

settings

 

for

 

the

 

hardware

 

management

 

policies

 

to

 

the

 

file:

 

/etc/lpp/diagnostics/data/hmpolicies

 

v

   

Restore

 

Hardware

 

Management

 

Policies

 

This

 

selection

 

restores

 

all

 

of

 

the

 

settings

 

for

 

the

 

hardware

 

management

 

policies

 

from

 

the

 

contents

 

of

 

the

 

file:

 

/etc/lpp/diagnostics/data/hmpolicies

 

This

 

Service

 

Aid

 

may

 

be

 

accessed

 

directly

 

from

 

the

 

command

 

line,

 

by

 

entering:

   

42

 

Understanding

 

the

 

Diagnostic

 

Subsystem



/usr/lpp/diagnostics/bin/uspchrp

 

-a

 

Save

 

or

 

Restore

 

Service

 

Processor

 

Configuration

 

(RSPC)

  

Attention:

  

This

 

diagnostic

 

task

 

has

 

been

 

removed

 

in

 

AIX

 

5.2.

 

The

 

information

 

has

 

been

 

retained

 

for

 

reference

 

only.

 

Use

 

this

 

Service

 

Aid

 

to

 

save

 

or

 

restore

 

the

 

Service

 

Processor

 

Configuration

 

to

 

or

 

from

 

a

 

file.

 

The

 

Service

 

Processor

 

Configuration

 

includes

 

the

 

Ring

 

Indicator

 

Power

 

On

 

Configuration.

Note:

  

Supported

 

on

 

RSPC

 

system

 

units

 

only.

 

v

   

Save

 

Service

 

Processor

 

Configuration

 

This

 

selection

 

will

 

write

 

all

 

of

 

the

 

settings

 

for

 

the

 

Ring

 

Indicate

 

Power

 

On

 

and

 

the

 

Service

 

Processor

 

to

 

the

 

file:

 

/etc/lpp/diagnostics/data/spconfig

 

v

   

Restore

 

Service

 

Processor

 

Configuration

 

This

 

selection

 

will

 

restore

 

all

 

of

 

the

 

settings

 

for

 

the

 

Ring

 

Indicate

 

Power

 

On

 

and

 

the

 

Service

 

Processor

 

from

 

the

 

file:

 

/etc/lpp/diagnostics/data/spconfig

 

SCSD

 

Tape

 

Drive

 

Service

 

Aid

 

This

 

Service

 

Aid

 

provides

 

a

 

means

 

to

 

obtain

 

the

 

status

 

or

 

maintenance

 

information

 

from

 

a

 

SCSD

 

tape

 

drive.

 

Only

 

some

 

models

 

of

 

SCSI

 

tape

 

drive

 

are

 

supported.

 

The

 

Service

 

Aid

 

provides

 

the

 

following

 

options:

 

v

   

Display

 

time

 

since

 

a

 

tape

 

drive

 

was

 

last

 

cleaned.

 

The

 

time

 

since

 

the

 

drive

 

was

 

last

 

cleaned

 

is

 

displayed

 

onto

 

the

 

screen.

 

In

 

addition,

 

a

 

message

 

whether

 

the

 

drive

 

is

 

recommended

 

to

 

be

 

cleaned

 

is

 

also

 

displayed.

 

v

   

Copy

 

a

 

tape

 

drive’s

 

trace

 

table.

 

v

   

The

 

trace

 

table

 

of

 

the

 

tape

 

drive

 

is

 

written

 

to

 

diskettes.

 

The

 

required

 

diskettes

 

must

 

be

 

formatted

 

for

 

DOS.

 

Writing

 

the

 

trace

 

table

 

may

 

require

 

several

 

diskettes.

 

The

 

actual

 

number

 

of

 

required

 

diskettes

 

is

 

determined

 

by

 

the

 

Service

 

Aid

 

based

 

on

 

the

 

size

 

of

 

the

 

trace

 

table.

 

The

 

names

 

of

 

the

 

data

 

files

 

are

 

of

 

the

 

following

 

format:

 

TRACE[X].DAT

 

where

 

X

 

is

 

the

 

sequential

 

diskette

 

number.

 

The

 

complete

 

trace

 

table

 

consists

 

of

 

the

 

sequential

 

concatenation

 

of

 

all

 

the

 

diskette

 

data

 

files.

 

v

   

Display

 

or

 

copy

 

a

 

tape

 

drive’s

 

log

 

sense

 

information.

 

The

 

Service

 

Aid

 

provides

 

options

 

to

 

display

 

the

 

log

 

sense

 

information

 

onto

 

the

 

screen,

 

to

 

copy

 

it

 

to

 

a

 

DOS

 

formatted

 

diskette

 

or

 

to

 

copy

 

it

 

to

 

a

 

file.

 

The

 

file

 

name

 

LOGSENSE.DAT

 

is

 

used

 

when

 

the

 

log

 

sense

 

data

 

is

 

written

 

on

 

the

 

diskette.

 

The

 

Service

 

Aid

 

prompts

 

for

 

a

 

file

 

name

 

when

 

the

 

log

 

sense

 

data

 

is

 

chosen

 

to

 

be

 

copied

 

to

 

a

 

file.

SCSI

 

Bus

 

Analyzer

 

This

 

Service

 

Aid

 

provides

 

a

 

means

 

to

 

diagnose

 

a

 

SCSI

 

Bus

 

problem

 

in

 

a

 

free-lance

 

mode.

 

To

 

use

 

this

 

Service

 

Aid,

 

the

 

user

 

should

 

have

 

an

 

understanding

 

of

 

how

 

a

 

SCSI

 

Bus

 

works.

 

This

 

Service

 

Aid

 

should

 

be

 

used

 

when

 

the

 

diagnostics

 

cannot

 

communicate

 

with

 

anything

 

on

 

the

 

SCSI

 

Bus

 

and

 

cannot

 

isolate

 

the

 

problem.

 

Normally

 

the

 

procedure

 

for

 

finding

 

a

 

problem

 

on

 

the

 

SCSI

 

Bus

 

with

 

this

 

Service

 

Aid

 

is

 

to

 

start

 

with

 

a

 

single

 

device

 

attached,

 

ensure

 

that

 

it

 

is

 

working,

 

then

 

start

 

adding

 

additional

 

devices

 

and

 

cables

 

to

 

the

 

bus

 

ensuring

 

that

 

each

 

one

 

works.

 

This

 

Service

 

Aid

 

works

 

with

 

any

 

valid

 

SCSI

 

Bus

 

configuration.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

43



The

 

SCSI

 

Bus

 

Service

 

Aid

 

transmits

 

a

 

SCSI

 

Inquiry

 

command

 

to

 

a

 

selectable

 

SCSI

 

Address.

 

The

 

Service

 

Aid

 

then

 

waits

 

for

 

a

 

response.

 

If

 

no

 

response

 

is

 

received

 

within

 

a

 

defined

 

amount

 

of

 

time,

 

the

 

Service

 

Aid

 

displays

 

a

 

timeout

 

message.

 

If

 

an

 

error

 

occurs

 

or

 

a

 

response

 

is

 

received,

 

the

 

Service

 

Aid

 

then

 

displays

 

one

 

of

 

the

 

following

 

messages:

 

v

   

The

 

Service

 

Aid

 

transmitted

 

a

 

SCSI

 

Inquiry

 

Command

 

and

 

received

 

a

 

valid

 

response

 

back

 

without

 

any

 

errors

 

being

 

detected.

 

v

   

The

 

Service

 

Aid

 

transmitted

 

a

 

SCSI

 

Inquiry

 

Command

 

and

 

did

 

not

 

receive

 

any

 

response

 

or

 

error

 

status

 

back.

 

v

   

The

 

Service

 

Aid

 

transmitted

 

a

 

SCSI

 

Inquiry

 

Command

 

and

 

the

 

adapter

 

indicated

 

a

 

SCSI

 

bus

 

error.

 

v

   

The

 

Service

 

Aid

 

transmitted

 

a

 

SCSI

 

Inquiry

 

Command

 

and

 

an

 

adapter

 

error

 

occurred.

 

v

   

The

 

Service

 

Aid

 

transmitted

 

a

 

SCSI

 

Inquiry

 

Command

 

and

 

a

 

check

 

condition

 

occurred.

 

When

 

the

 

SCSI

 

Bus

 

Service

 

Aid

 

is

 

entered

 

a

 

description

 

of

 

the

 

Service

 

Aid

 

is

 

displayed.

 

Pressing

 

the

 

Enter

 

key

 

displays

 

the

 

Adapter

 

Selection

 

menu.

 

This

 

menu

 

allows

 

the

 

user

 

to

 

enter

 

which

 

address

 

to

 

transmit

 

the

 

SCSI

 

Inquiry

 

Command.

 

When

 

the

 

adapter

 

is

 

selected

 

the

 

SCSI

 

Bus

 

Address

 

Selection

 

menu

 

is

 

displayed.

 

This

 

menu

 

allows

 

the

 

user

 

to

 

enter

 

which

 

address

 

to

 

transmit

 

the

 

SCSI

 

Inquiry

 

Command.

 

Once

 

the

 

address

 

is

 

selected

 

the

 

SCSI

 

Bus

 

Test

 

Run

 

menu

 

is

 

displayed.

 

This

 

menus

 

allows

 

the

 

user

 

to

 

transmit

 

the

 

SCSI

 

Inquiry

 

Command

 

by

 

pressing

 

the

 

Enter

 

key.

 

The

 

Service

 

Aid

 

then

 

indicates

 

the

 

status

 

of

 

the

 

transmission.

 

When

 

the

 

transmission

 

is

 

completed,

 

the

 

results

 

of

 

the

 

transmission

 

are

 

displayed.

Notes:

  

1.

   

A

 

Check

 

Condition

 

can

 

be

 

returned

 

when

 

there

 

is

 

nothing

 

wrong

 

with

 

the

 

bus

 

or

 

device.

 

2.

   

The

 

operating

 

system

 

does

 

not

 

allow

 

the

 

command

 

to

 

be

 

sent

 

if

 

the

 

device

 

is

 

in

 

use

 

by

 

another

 

process.

Service

 

Aids

 

for

 

use

 

with

 

Ethernet

  

Attention:

  

This

 

diagnostic

 

task

 

has

 

been

 

removed

 

in

 

AIX

 

5.2.

 

The

 

information

 

has

 

been

 

retained

 

for

 

reference

 

only.

 

This

 

selection

 

provides

 

a

 

tool

 

for

 

diagnosing

 

Ethernet

 

problems.

 

This

 

Service

 

Aid

 

is

 

used

 

to

 

exercise

 

the

 

Ethernet

 

adapter

 

and

 

parts

 

of

 

the

 

Ethernet

 

network.

 

The

 

Service

 

Aid

 

works

 

by

 

transmitting

 

a

 

data

 

block

 

to

 

itself.

 

This

 

Service

 

Aid

 

works

 

with

 

a

 

wrap

 

plug

 

or

 

with

 

any

 

valid

 

Ethernet

 

network

 

and

 

can

 

be

 

used

 

as

 

a

 

tool

 

to

 

diagnose

 

Ethernet

 

network

 

problems.

 

When

 

the

 

Ethernet

 

Service

 

Aid

 

is

 

executed,

 

one

 

of

 

the

 

following

 

messages

 

is

 

returned:

 

v

   

No

 

errors

 

occurred.

 

v

   

An

 

adapter

 

error

 

occurred.

 

v

   

A

 

transmit

 

time-out

 

occurred.

 

v

   

A

 

transmit

 

error

 

occurred.

 

v

   

A

 

receive

 

time-out

 

occurred.

 

v

   

A

 

receive

 

error

 

occurred.

 

v

   

A

 

system

 

error

 

occurred.

 

v

   

Receive

 

and

 

transmit

 

data

 

did

 

not

 

match.

 

v

   

An

 

error

 

occurred

 

that

 

could

 

not

 

be

 

identified.

 

v

   

The

 

configuration

 

indicates

 

that

 

there

 

are

 

no

 

Ethernet

 

adapters

 

in

 

this

 

system

 

unit.

 

v

   

Another

 

application

 

is

 

currently

 

using

 

the

 

adapter.

   

44

 

Understanding

 

the

 

Diagnostic

 

Subsystem



v

   

The

 

resource

 

could

 

not

 

be

 

configured.

Spare

 

Sector

 

Availability

 

This

 

selection

 

checks

 

the

 

number

 

of

 

spare

 

sectors

 

available

 

on

 

the

 

optical

 

disk.

 

The

 

spare

 

sectors

 

are

 

used

 

to

 

reassign

 

when

 

defective

 

sectors

 

are

 

encountered

 

during

 

normal

 

usage

 

or

 

during

 

a

 

format

 

and

 

certify

 

operation.

 

Low

 

availability

 

of

 

spare

 

sectors

 

shows

 

that

 

the

 

disk

 

needs

 

to

 

be

 

backed

 

up

 

and

 

replaced.

 

Formatting

 

the

 

disk

 

does

 

not

 

improve

 

the

 

availability

 

of

 

spare

 

sectors.

 

This

 

task

 

may

 

be

 

run

 

directly

 

from

 

the

 

command

 

line.

 

The

 

following

 

usage

 

statement

 

describes

 

the

 

syntax

 

of

 

the

 

fastpath

 

command:

 

Usage:

 

diag

 

-T

 

″chkspares″

 

SSA

 

Service

 

Aids

 

This

 

Service

 

Aid

 

provides

 

tools

 

for

 

diagnosing

 

and

 

resolving

 

problems

 

on

 

SSA

 

attached

 

devices.

 

The

 

following

 

tools

 

are

 

provided:

 

v

   

Set

 

Service

 

Mode

 

v

   

Link

 

Verification

 

v

   

Configuration

 

Verification

 

v

   

Format

 

and

 

Certify

 

Disk

Update

 

Disk

 

Based

 

Diagnostics

 

This

 

Service

 

Aid

 

allows

 

fixes

 

(APARs)

 

to

 

be

 

applied.

 

This

 

task

 

invokes

 

the

 

SMIT

 

Update

 

Software

 

by

 

Fix

 

(APAR)

 

task.

 

The

 

task

 

allows

 

the

 

input

 

device

 

and

 

APARs

 

to

 

be

 

selected.

 

Any

 

APAR

 

can

 

be

 

installed

 

using

 

this

 

task.

 

Update

 

System

 

Flash

 

(RSPC)

 

This

 

selection

 

updates

 

the

 

system

 

flash

 

for

 

RSPC

 

systems.

 

The

 

user

 

provides

 

a

 

valid

 

binary

 

image

 

either

 

on

 

diskette

 

or

 

qualified

 

path

 

name.

 

The

 

diskettes

 

can

 

be

 

in

 

DOS

 

or

 

a

 

backup

 

format.

 

The

 

flash

 

update

 

image

 

is

 

copied

 

to

 

the

 

/var

 

file

 

system.

 

If

 

there

 

is

 

not

 

enough

 

space

 

in

 

the

 

file

 

system

 

for

 

the

 

flash

 

update

 

image

 

file,

 

an

 

error

 

will

 

be

 

reported.

 

If

 

this

 

occurs,

 

increase

 

the

 

file

 

size

 

of

 

the

 

/var

 

file

 

system.

 

The

 

current

 

flash

 

image

 

is

 

not

 

saved.

 

The

 

command

 

automatically

 

removes

 

the

 

/var/update_flash_image.

 

After

 

user

 

confirmation,

 

the

 

command

 

will

 

reboot

 

the

 

system

 

twice

 

to

 

complete

 

the

 

flash

 

update.

Note:

  

Supported

 

on

 

RSPC

 

system

 

units

 

only.

 

Update

 

System

 

or

 

Service

 

Processor

 

Flash

 

(CHRP)

 

This

 

selection

 

updates

 

the

 

system

 

or

 

service

 

processor

 

flash

 

for

 

CHRP

 

system

 

units.

 

Further

 

update

 

and

 

recovery

 

instructions

 

may

 

be

 

provided

 

with

 

the

 

update.

 

It

 

is

 

necessary

 

to

 

know

 

the

 

fully

 

qualified

 

path

 

and

 

file

 

name

 

of

 

the

 

flash

 

update

 

image

 

file

 

that

 

was

 

provided.

 

If

 

the

 

flash

 

update

 

image

 

file

 

is

 

on

 

a

 

diskette,

 

the

 

Service

 

Aid

 

can

 

list

 

the

 

files

 

on

 

the

 

diskette

 

for

 

selection.

 

Refer

 

to

 

the

 

update

 

instructions,

 

or

 

the

 

system

 

unit’s

 

service

 

guide

 

to

 

determine

 

the

 

level

 

of

 

the

 

system

 

unit

 

or

 

service

 

processor

 

flash.

  

Chapter

 

3.

 

Diagnostic

 

Components

 

45



Note:

  

Runs

 

on

 

CHRP

 

system

 

units

 

only.

 

When

 

run

 

from

 

online

 

diagnostics,

 

the

 

flash

 

update

 

image

 

file

 

is

 

copied

 

to

 

the

 

/var

 

file

 

system.

 

If

 

there

 

is

 

not

 

enough

 

space

 

in

 

the

 

/var

 

file

 

system

 

for

 

the

 

flash

 

update

 

image

 

file,

 

an

 

error

 

is

 

reported.

 

If

 

this

 

occurs,

 

exit

 

the

 

Service

 

Aid,

 

increase

 

the

 

size

 

of

 

the

 

/var

 

file

 

system

 

and

 

retry

 

the

 

Service

 

Aid.

 

After

 

the

 

file

 

is

 

copied,

 

a

 

warning

 

screen

 

asks

 

for

 

confirmation

 

to

 

continue

 

the

 

update

 

flash.

 

Continuing

 

the

 

update

 

flash

 

reboots

 

the

 

system.

 

The

 

system

 

does

 

not

 

return

 

to

 

diagnostics.

 

The

 

current

 

flash

 

image

 

is

 

not

 

saved.

 

After

 

the

 

reboot,

 

the

 

/var/update_flash_image

 

can

 

be

 

removed.

 

When

 

running

 

from

 

standalone

 

diagnostics,

 

the

 

flash

 

update

 

image

 

file

 

is

 

copied

 

to

 

the

 

file

 

system

 

from

 

diskette.

 

The

 

user

 

needs

 

to

 

provide

 

the

 

image

 

on

 

a

 

diskette

 

since

 

the

 

user

 

does

 

not

 

have

 

access

 

to

 

remote

 

file

 

systems

 

or

 

any

 

other

 

files

 

that

 

are

 

on

 

the

 

system.

 

If

 

enough

 

space

 

is

 

not

 

available,

 

an

 

error

 

is

 

reported

 

stating

 

additional

 

system

 

memory

 

is

 

needed.

 

After

 

the

 

file

 

is

 

copied,

 

a

 

warning

 

screen

 

asks

 

for

 

confirmation

 

to

 

continue

 

the

 

update

 

flash.

 

Continuing

 

the

 

update

 

flash

 

reboots

 

the

 

system.

 

The

 

current

 

flash

 

image

 

is

 

not

 

saved.

 

The

 

update_flash

 

command

 

can

 

be

 

used

 

in

 

place

 

of

 

this

 

Service

 

Aid.

 

It

 

is

 

located

 

in

 

the

 

/usr/lpp/diagnostics/bin

 

directory.

  

Attention:

  

The

 

update_flash

 

command

 

reboots

 

the

 

entire

 

system.

 

Do

 

not

 

use

 

this

 

command

 

if

 

more

 

than

 

one

 

user

 

is

 

signed

 

onto

 

the

 

system.

 

7135

 

RAIDiant

 

Array

 

Service

 

Aid

 

The

 

7135

 

RAIDiant

 

Array

 

Service

 

Aids

 

contain

 

the

 

following

 

functions:

 

v

   

Certify

 

LUN

 

This

 

selection

 

reads

 

and

 

checks

 

each

 

block

 

of

 

data

 

in

 

the

 

LUN.

 

If

 

excessive

 

errors

 

are

 

encountered

 

the

 

user

 

is

 

notified.

 

v

   

Certify

 

Spare

 

Physical

 

Disk

 

This

 

selection

 

allows

 

the

 

user

 

to

 

certify

 

(check

 

the

 

integrity

 

of

 

the

 

data)

 

on

 

drives

 

designated

 

as

 

spares.

 

v

   

Format

 

Physical

 

Disk

 

This

 

selection

 

is

 

used

 

to

 

format

 

a

 

selected

 

disk

 

drive.

 

v

   

Array

 

Controller

 

Microcode

 

Download

 

This

 

selection

 

allows

 

the

 

microcode

 

on

 

the

 

7135

 

controller

 

to

 

be

 

updated

 

when

 

required.

 

v

   

Physical

 

Disk

 

Microcode

 

Download

 

This

 

selection

 

is

 

used

 

to

 

update

 

the

 

microcode

 

on

 

any

 

of

 

the

 

disk

 

drives

 

in

 

the

 

array.

 

v

   

Update

 

EEPROM

 

This

 

selection

 

is

 

used

 

to

 

update

 

the

 

contents

 

of

 

the

 

EEPROM

 

on

 

a

 

selected

 

controller.

 

v

   

Replace

 

Controller

 

Use

 

this

 

selection

 

when

 

it

 

is

 

necessary

 

to

 

replace

 

a

 

controller

 

in

 

the

 

array.

Application

 

Test

 

Units

 

Application

 

Test

 

Units

 

(TU)

 

are

 

used

 

by

 

the

 

Diagnostic

 

Applications

 

to

 

test

 

a

 

device.

 

Typically,

 

due

 

to

 

either

 

their

 

large

 

size

 

or

 

their

 

functional

 

composition,

 

TUs

 

are

 

more

 

appropriately

 

written

 

as

 

applications

 

as

 

opposed

 

to

 

being

 

included

 

within

 

device

 

drivers.

 

This

 

chapter

 

defines

 

requirements

 

for

 

Application

 

Test

 

Unit

 

code

 

and

 

provides

 

guidance

 

for

 

TU

 

Developers

 

who

 

need

 

to

 

develop

 

code

 

for

 

multiple

 

target

 

environments.

 

The

 

TU

 

code

 

should

 

be

 

developed

 

in

 

ANSI

 

C

 

language

 

and

 

according

 

to

 

generally

 

accepted

 

good

 

programming

 

practices,

 

including,

 

but

 

not

 

limited

 

to:

 

v

   

Modularity

 

v

   

Readability

   

46

 

Understanding

 

the

 

Diagnostic

 

Subsystem



v

   

Self

 

Documenting

 

v

   

Maintainability

 

v

   

Re-entrant

 

Capability

 

The

 

use

 

of

 

assembler-level

 

code

 

is

 

strongly

 

discouraged,

 

but

 

may

 

be

 

necessary

 

in

 

certain

 

cases

 

where

 

performance

 

is

 

critical

 

to

 

the

 

effectiveness

 

of

 

the

 

test

 

function.

 

Such

 

code

 

would

 

not

 

be

 

considered

 

portable

 

and

 

would

 

have

 

to

 

be

 

rewritten

 

for

 

the

 

target

 

platform.

 

The

 

following

 

topics

 

are

 

discussed

 

in

 

detail:

 

v

   

Test

 

Unit

 

Definition

 

v

   

Hardware

 

Functional

 

Coverage

 

v

   

Test

 

Unit

 

Numbering

 

v

   

Test

 

Unit

 

Code

 

Device

 

Open

 

and

 

Close

 

v

   

Portability

 

v

   

In-Service

 

versus

 

Out-of-Service

 

Test

 

Units

 

v

   

Recommended

 

General

 

Structure

 

of

 

Test

 

Unit

 

Code

 

v

   

Designing

 

for

 

Multitasking

 

Environments

 

v

   

Persistent

 

Data

 

and

 

the

 

TU_INFO_HANDLE

 

v

   

Test

 

Unit

 

Call

 

Interface

 

v

   

Definition

 

of

 

TU_TYPE

 

Input

 

Structure

 

v

   

Definition

 

of

 

TU_RETURN_TYPE

 

Output

 

Structure

 

v

   

Return

 

Codes

 

v

   

Interrupt

 

Handler

 

Call

 

Interface

 

v

   

Interrupt

 

Handling

 

in

 

Test

 

Units

 

v

   

Using

 

the

 

Interrupt

 

Flag

 

Bit

 

Mask

 

v

   

Programming

 

Interfaces

 

for

 

TUs

 

and

 

Interrupt

 

Handlers

 

v

   

Configuration

 

Services

 

Device

 

Attributes

 

v

   

Message

 

Handling

 

v

   

Signal

 

Handling

 

v

   

Definition

 

of

 

EXECTU()

 

v

   

PCI

 

Configuration

 

Space

 

for

 

I/O

 

Devices

 

v

   

Test

 

Unit

 

64-bit

 

Porting

 

Guide

 

v

   

Microcode

 

Download/Display

 

Requirements

 

for

 

Test

 

Units

 

v

   

Enhanced

 

Error

 

Handling

 

Option

Test

 

Unit

 

Definition

 

Fundamental

 

to

 

the

 

Test

 

Unit

 

methodology

 

is

 

a

 

basic,

 

modular

 

building

 

block

 

that

 

is

 

referred

 

to

 

as

 

a

 

Test

 

Unit.

 

A

 

test

 

unit

 

is

 

a

 

single

 

operation

 

performed

 

on

 

the

 

system

 

or

 

subsystem

 

under

 

test.

 

Most

 

often

 

this

 

is

 

an

 

individual

 

function

 

test,

 

such

 

as

 

a

 

register

 

read/write

 

test.

 

Several

 

basic

 

assumptions

 

are

 

made

 

for

 

the

 

test

 

units:

 

v

   

Only

 

one

 

modular

 

test

 

function

 

is

 

performed

 

in

 

each

 

individual

 

test

 

unit.

 

v

   

Test

 

units

 

are

 

numbered,

 

and

 

the

 

calling

 

application

 

specifies

 

the

 

number

 

of

 

the

 

test

 

unit

 

it

 

wishes

 

to

 

execute.

 

v

   

No

 

environmental

 

specific

 

code

 

is

 

allowed

 

in

 

a

 

test

 

unit.

 

This

 

specifically

 

includes

 

user

 

interface

 

calls.

 

Also,

 

device-access

 

methods

 

such

 

as

 

reads

 

or

 

writes

 

are

 

done

 

with

 

generic

 

function

 

calls,

 

which

 

can

 

then

 

be

 

defined

 

in

 

a

 

different

 

source

 

file

 

and

 

coded,

 

if

 

necessary,

 

to

 

meet

 

the

 

specific

 

requirements

 

of

 

the

 

target

 

environments.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

47



v

   

Test

 

units

 

are

 

grouped

 

appropriately

 

in

 

source

 

files.

 

This

 

allows

 

custom

 

building

 

of

 

executable

 

libraries

 

to

 

meet

 

the

 

requirements

 

of

 

the

 

target

 

environments.

 

v

   

In

 

cases

 

where

 

the

 

same

 

test

 

unit

 

may

 

be

 

used

 

to

 

test

 

hardware

 

in

 

different

 

ways

 

based

 

on

 

some

 

control

 

variables

 

(for

 

example,

 

speed

 

or

 

mode

 

settings),

 

that

 

test

 

unit

 

may

 

be

 

used

 

to

 

represent

 

several

 

″logical″

 

test

 

units,

 

each

 

with

 

a

 

different

 

test

 

unit

 

number.

 

When

 

the

 

test

 

unit

 

is

 

called,

 

it

 

would

 

interpret

 

the

 

test

 

unit

 

number

 

requested

 

and

 

set

 

the

 

control

 

variables

 

appropriately.

Hardware

 

Functional

 

Coverage

 

The

 

Test

 

Unit

 

package

 

should

 

be

 

designed

 

and

 

implemented

 

such

 

that

 

if

 

the

 

TUs

 

are

 

run

 

in

 

the

 

recommended

 

order

 

as

 

documented,

 

then

 

a

 

minimum

 

coverage

 

of

 

95%

 

of

 

the

 

hardware

 

function

 

is

 

achieved.

 

Test

 

Unit

 

Numbering

 

Test

 

Units

 

should

 

be

 

numbered

 

according

 

to

 

some

 

logical

 

sequence,

 

which

 

is

 

determined

 

by

 

the

 

TU

 

Developer.

 

Zero

 

should

 

not

 

be

 

used

 

as

 

a

 

TU

 

number.

 

The

 

allowable

 

range

 

for

 

TU

 

numbers

 

is

 

1

 

through

 

61439

 

(1

 

through

 

EFFF

 

hex).

 

This

 

numbering

 

requirement

 

must

 

be

 

respected

 

even

 

though

 

the

 

TU

 

member

 

of

 

the

 

tucb

 

header

 

structure

 

is

 

defined

 

as

 

a

 

32

 

bit

 

integer.

 

It

 

is

 

desirable

 

that

 

a

 

numbering

 

scheme

 

be

 

developed

 

by

 

the

 

TU

 

Developer

 

allowing

 

TUs

 

to

 

be

 

executed

 

in

 

sequential

 

numerical

 

order

 

when

 

executing

 

them

 

as

 

designated.

 

This

 

might

 

include

 

spacing

 

the

 

TUs

 

so

 

that

 

future

 

TUs

 

can

 

be

 

inserted

 

into

 

the

 

number

 

sequence,

 

where

 

appropriate.

 

Test

 

Unit

 

Code

 

Device

 

Open

 

and

 

Close

 

Before

 

a

 

device

 

can

 

be

 

tested

 

by

 

one

 

of

 

the

 

test

 

units,

 

it

 

must

 

be

 

opened

 

for

 

access

 

through

 

the

 

interfaces

 

defined

 

in

 

″Programming

 

Interfaces

 

for

 

TUs

 

and

 

Interrupt

 

Handlers″

 

.

 

Also,

 

when

 

testing

 

is

 

complete,

 

the

 

device

 

must

 

be

 

closed

 

and

 

restored

 

to

 

its

 

original

 

state.

 

The

 

opening

 

and

 

closing

 

of

 

the

 

device

 

for

 

testing

 

presents

 

some

 

problems

 

that

 

must

 

be

 

accounted

 

for

 

in

 

the

 

design

 

of

 

the

 

Test

 

Unit

 

library

 

for

 

the

 

device:

 

v

   

Errors

 

may

 

occur

 

on

 

the

 

open

 

and

 

close

 

operation,

 

and

 

these

 

must

 

be

 

presented

 

back

 

to

 

the

 

calling

 

applications

 

in

 

a

 

form

 

those

 

applications

 

know

 

how

 

to

 

handle;

 

that

 

is,

 

test

 

unit

 

results.

 

v

   

Since

 

the

 

calling

 

application

 

will

 

typically

 

run

 

through

 

all

 

or

 

most

 

of

 

the

 

Test

 

Units

 

for

 

a

 

given

 

device,

 

the

 

performance

 

penalty

 

of

 

opening

 

and

 

closing

 

the

 

device

 

for

 

each

 

call

 

to

 

a

 

Test

 

Unit

 

is

 

prohibitive.

 

v

   

Under

 

different

 

conditions,

 

test

 

units

 

may

 

be

 

run

 

in

 

different

 

combinations

 

and

 

sequences,

 

so

 

the

 

calling

 

application

 

must

 

be

 

able

 

to

 

call

 

the

 

functions

 

which

 

do

 

device

 

open

 

and

 

close

 

independent

 

of

 

the

 

other

 

test

 

functions.

Test

 

Unit

 

Conventions

 

To

 

provide

 

a

 

standard

 

solution

 

for

 

handling

 

the

 

above

 

problems,

 

the

 

following

 

conventions

 

for

 

Test

 

Units

 

within

 

a

 

specific

 

device

 

library

 

are

 

required:

 

1.

   

There

 

must

 

be

 

a

 

Test

 

Unit

 

number

 

1,

 

referred

 

to

 

as

 

TU_OPEN,

 

which

 

includes

 

functions

 

to

 

initialize

 

data

 

structures,

 

place

 

the

 

device

 

in

 

the

 

correct

 

state

 

for

 

diagnostics,

 

and

 

open

 

the

 

device

 

for

 

testing.

 

It

 

does

 

not

 

perform

 

any

 

other

 

test

 

functions.

 

Any

 

error

 

conditions

 

are

 

returned

 

as

 

diagnostic

 

results.

 

The

 

define

 

value

 

TU_OPEN

 

should

 

be

 

used

 

as

 

the

 

numerical

 

identifier

 

for

 

this

 

Test

 

Unit.

 

Specifically,

 

TU_OPEN

 

performs

 

the

 

following:

 

a.

   

Sees

 

that

 

the

 

TU_INFO_HANDLE

 

parameter

 

is

 

set

 

to

 

NULL,

 

allocates

 

a

 

memory

 

buffer

 

to

 

hold

 

persistent

 

data,

 

and

 

assigns

 

TU_INFO_HANDLE

 

to

 

that

 

address.

 

For

 

more

 

information,

 

see

 

″Persistent

 

Data

 

and

 

the

 

TU_INFO_HANDLE″.

 

b.

   

Reads

 

needed

 

device

 

attribute

 

information

 

by

 

making

 

calls

 

to

 

the

 

configuration

 

services

 

(pdiag_cs_get_attr),

 

and

 

places

 

appropriate

 

information

 

into

 

the

 

pdiagex_dds_t

 

structure

 

that

 

is

 

passed

 

as

 

a

 

parameter

 

on

 

the

 

pdiag_open

 

call.

 

c.

   

Calls

 

pdiag_diagnose_state

 

to

 

place

 

the

 

device

 

into

 

a

 

testable

 

state.

 

d.

   

Calls

 

pdiag_open

 

to

 

open

 

the

 

device

 

for

 

testing,

 

and

 

loads

 

the

 

interrupt

 

handler,

 

if

 

one

 

exists.

   

48

 

Understanding

 

the

 

Diagnostic

 

Subsystem



e.

   

Assuming

 

all

 

the

 

above

 

functions

 

are

 

performed

 

without

 

error,

 

returns

 

a

 

value

 

of

 

″0″

 

as

 

the

 

major

 

return

 

code.

2.

   

There

 

must

 

be

 

a

 

Test

 

Unit

 

number

 

61439

 

(0xEFFF

 

hex),

 

referred

 

to

 

as

 

TU_CLOSE,

 

which

 

closes

 

the

 

device

 

and

 

restores

 

the

 

device

 

to

 

the

 

original

 

state

 

it

 

was

 

in

 

prior

 

to

 

diagnostics

 

being

 

invoked.

 

The

 

define

 

value

 

TU_CLOSE

 

should

 

be

 

used

 

as

 

the

 

numerical

 

identifier

 

for

 

this

 

test

 

unit.

 

Specifically,

 

TU_CLOSE

 

performs

 

the

 

following:

 

a.

   

Calls

 

pdiag_close

 

to

 

close

 

the

 

device,

 

and

 

unloads

 

the

 

interrupt

 

handler.

 

b.

   

Calls

 

pdiag_restore_state

 

to

 

return

 

the

 

device

 

to

 

the

 

state

 

it

 

was

 

in

 

prior

 

to

 

TU_OPEN.

 

c.

   

Frees

 

any

 

memory

 

buffers

 

that

 

were

 

allocated

 

by

 

TU_OPEN.

 

For

 

the

 

most

 

part,

 

the

 

buffers

 

that

 

need

 

to

 

be

 

freed

 

are

 

″secondary″

 

persistent

 

data

 

buffers,

 

pointed

 

to

 

by

 

pointers

 

in

 

TU_INFO_HANDLE.

 

d.

   

Assuming

 

all

 

the

 

above

 

functions

 

are

 

performed

 

without

 

error,

 

returns

 

a

 

value

 

of

 

″0″

 

as

 

the

 

major

 

return

 

code.

 

e.

   

A

 

valid

 

diagnostic

 

sequence

 

consists

 

of

 

a

 

call

 

to

 

Test

 

Unit

 

TU_OPEN,

 

some

 

arbitrary

 

number

 

of

 

calls

 

to

 

Test

 

Units

 

other

 

than

 

TU_OPEN

 

or

 

TU_CLOSE,

 

and

 

then

 

a

 

final

 

call

 

to

 

Test

 

Unit

 

TU_CLOSE.

Portability

 

With

 

today’s

 

systems,

 

multiple

 

operating

 

systems

 

are

 

typically

 

supported

 

on

 

a

 

single

 

hardware

 

platform.

 

Since

 

these

 

systems

 

usually

 

share

 

the

 

same

 

hardware

 

features,

 

diagnostics

 

need

 

to

 

be

 

written

 

to

 

support

 

hardware

 

failure

 

analysis

 

that

 

works

 

within

 

any

 

of

 

these

 

operating

 

environments.

 

For

 

this

 

reason,

 

all

 

TU

 

packages

 

must

 

be

 

designed

 

with

 

portability

 

in

 

mind.

 

Besides

 

the

 

operating

 

environment

 

differences,

 

there

 

is

 

also

 

the

 

need

 

for

 

different

 

types

 

of

 

user

 

interfaces

 

for

 

the

 

different

 

execution

 

environments.

 

For

 

instance,

 

system

 

diagnostics

 

for

 

the

 

field

 

may

 

use

 

a

 

different

 

interface

 

than

 

the

 

hardware

 

exerciser

 

used

 

in

 

the

 

design

 

verification

 

test.

 

By

 

ensuring

 

that

 

the

 

TU

 

package

 

performs

 

no

 

interaction

 

with

 

the

 

user

 

(output

 

to

 

screen

 

and

 

input

 

from

 

keyboard),

 

one

 

third

 

of

 

the

 

problem

 

will

 

have

 

been

 

solved.

 

Then

 

all

 

the

 

invocations

 

of

 

the

 

TUs

 

will

 

be

 

made

 

through

 

one

 

interface,

 

and

 

different

 

types

 

of

 

user

 

interfaces

 

can

 

be

 

developed

 

with

 

no

 

need

 

to

 

change

 

the

 

TU

 

package.

 

Another

 

third

 

of

 

the

 

problem

 

concerns

 

how

 

the

 

device

 

gets

 

accessed

 

through

 

the

 

operating

 

environment.

 

Since

 

different

 

operating

 

environments

 

have

 

different

 

device

 

drivers

 

(for

 

example,

 

UNIX

 

drivers,

 

DOS/WIN

 

drivers,

 

Firmware

 

based,

 

or

 

generic

 

I/O,

 

there

 

must

 

be

 

a

 

way

 

to

 

isolate

 

the

 

functional

 

test

 

from

 

the

 

burden

 

of

 

knowing

 

what

 

driver/environment

 

is

 

being

 

used

 

for

 

access.

 

Therefore,

 

standard

 

device-access

 

routines

 

are

 

needed

 

to

 

perform

 

the

 

device

 

accesses

 

on

 

the

 

functional

 

test’s

 

behalf.

 

The

 

device

 

accesses

 

typically

 

needed

 

for

 

functional

 

tests

 

are:

 

v

   

Device

 

Open

 

v

   

Read

 

v

   

Write

 

v

   

Interrupt

 

Setup

 

and

 

Handling

 

v

   

Direct

 

Memory

 

Access

 

(DMA)

 

Setup

 

and

 

Cleanup

 

v

   

Device

 

Close

 

The

 

interface

 

of

 

these

 

routines

 

must

 

be

 

independent

 

of

 

the

 

underlying

 

device-access

 

method

 

(that

 

is,

 

execution

 

environment)

 

by

 

design,

 

and

 

must

 

not

 

change

 

across

 

operating

 

environments.

 

The

 

internals

 

of

 

these

 

routines

 

will

 

change

 

per

 

operating

 

environment,

 

using

 

the

 

appropriate

 

system/driver

 

calls

 

to

 

accomplish

 

the

 

device-access

 

requests

 

on

 

the

 

functional

 

tests’

 

behalf.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

49



In-Service

 

versus

 

Out-of-Service

 

Test

 

Units

 

The

 

architecture

 

described

 

in

 

this

 

document

 

is

 

primarily

 

for

 

the

 

creation

 

of

 

″out-of-service″

 

Test

 

Units,

 

meaning

 

that

 

the

 

device

 

being

 

tested

 

is

 

not

 

available

 

for

 

any

 

other

 

use

 

by

 

the

 

operating

 

system

 

while

 

it

 

is

 

under

 

test.

 

In

 

high-availability

 

systems,

 

however,

 

it

 

is

 

often

 

desirable

 

to

 

have

 

Test

 

Units

 

which

 

can

 

be

 

used

 

while

 

the

 

device

 

is

 

″in-service.″

 

This

 

may

 

be

 

especially

 

true

 

for

 

devices

 

which

 

can

 

have

 

partial

 

failures;

 

for

 

example,

 

DASD

 

media,

 

RAID,

 

memory/cache

 

arrays,

 

and

 

multi-port

 

adapters.

 

A

 

variation

 

of

 

In-Service

 

diagnostics

 

can

 

sometimes

 

be

 

done

 

with

 

an

 

Out-of-Service

 

Test

 

Unit

 

that

 

takes

 

over

 

the

 

device

 

for

 

such

 

a

 

short

 

period

 

of

 

time

 

that

 

no

 

service

 

outage

 

is

 

detected.

 

Test

 

units

 

designed

 

to

 

be

 

run

 

truly

 

concurrently

 

with

 

other

 

operations

 

on

 

the

 

same

 

hardware

 

component

 

will,

 

in

 

general,

 

have

 

to

 

perform

 

their

 

testing

 

through

 

the

 

″normal″

 

functional

 

device

 

driver

 

installed

 

by

 

the

 

operating

 

system.

 

Because

 

the

 

device

 

driver

 

model

 

tends

 

to

 

be

 

unique

 

to

 

each

 

operating

 

system,

 

the

 

Test

 

Unit

 

written

 

to

 

that

 

interface

 

may

 

not

 

be

 

easily

 

portable

 

to

 

other

 

operating

 

systems.

 

However,

 

proper

 

structuring

 

of

 

the

 

Test

 

Unit

 

library,

 

as

 

discussed

 

below

 

in

 

″Recommended

 

General

 

Structure

 

of

 

Test

 

Unit

 

Code,″

 

will

 

help

 

isolate

 

into

 

a

 

single

 

source

 

file

 

those

 

functions

 

which

 

must

 

be

 

modified.

 

Recommended

 

General

 

Structure

 

of

 

Test

 

Unit

 

Code

 

The

 

TU

 

environment

 

specified

 

in

 

this

 

document

 

is

 

designed

 

to

 

provide

 

source

 

code

 

portability

 

of

 

TUs

 

across

 

multiple

 

operating

 

environments.

 

TUs

 

should

 

only

 

use

 

the

 

device

 

and

 

system

 

interfaces

 

specified

 

in

 

this

 

document

 

to

 

ensure

 

portability.

 

However,

 

experience

 

has

 

shown

 

that

 

it

 

is

 

good

 

programming

 

practice

 

to

 

isolate

 

and

 

abstract

 

external

 

functions

 

so

 

that

 

any

 

problems

 

in

 

porting

 

can

 

be

 

corrected

 

within

 

a

 

single

 

source

 

code

 

file.

 

For

 

this

 

reason,

 

it

 

is

 

strongly

 

recommended

 

that

 

TU

 

developers

 

include

 

a

 

special

 

source

 

file

 

in

 

their

 

TU

 

library

 

for

 

the

 

purpose

 

of

 

providing

 

that

 

isolation

 

and

 

abstraction.

 

The

 

following

 

describes

 

a

 

recommended

 

implementation

 

of

 

that

 

source

 

file,

 

given

 

to

 

help

 

promote

 

consistency

 

in

 

TU

 

development.

 

The

 

consistency

 

is

 

very

 

important

 

for

 

long-term

 

maintenance

 

of

 

the

 

Test

 

Unit

 

code.

 

TU

 

libraries

 

should

 

include

 

a

 

C

 

source

 

file

 

called

 

interface.c,

 

which

 

provides

 

a

 

set

 

of

 

abstracted

 

device

 

functions

 

that

 

can

 

be

 

used

 

by

 

the

 

actual

 

TU

 

functions.

 

The

 

following

 

is

 

a

 

list

 

of

 

functions

 

that

 

should

 

be

 

implemented

 

within

 

the

 

interface.c.

  

TU

 

Function

 

Description

 

dd_open

 

Prepares

 

a

 

device

 

for

 

testing

 

and

 

obtains

 

needed

 

device

 

attributes.

 

dd_close

 

Cleans

 

up

 

after

 

testing.

 

dd_read

 

Performs

 

a

 

read

 

operation.

 

dd_write

 

Performs

 

a

 

write

 

operation.

 

dd_dma

 

Initializes,

 

pins,

 

and

 

cross-memory

 

attaches

 

the

 

user

 

buffer

 

for

 

a

 

DMA

 

operation.

 

dd_dma_enable

 

Enables/Disables

 

a

 

DMA

 

operation.

 

dd_dma_cleanup

 

Deallocates

 

any

 

resources

 

previously

 

allocated

 

for

 

a

 

DMA

 

operation.

 

dd_interrupt

 

Processes

 

interrupt

 

conditions.

   

As

 

illustrated

 

below,

 

these

 

functions

 

should

 

provide

 

mappings

 

to

 

one

 

or

 

more

 

of

 

the

 

services

 

described

 

in

 

″Programming

 

Interfaces

 

for

 

TUs

 

and

 

Interrupt

 

Handlers″

 

.

 

The

 

figure

 

also

 

illustrates

 

how

 

TU

 

libraries

 

should

 

include

 

a

 

C

 

source

 

file

 

that

 

implements

 

the

 

exectu()

 

interface,

 

which

 

provides

 

the

 

program

 

entry

 

point

 

for

 

the

 

TU

 

library,

 

decodes

 

the

 

specified

 

TU

 

number

 

to

 

the

 

correct

 

internal

 

function,

 

and

 

calls

 

that

 

function.

   

50

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Designing

 

for

 

Multitasking

 

Environments

 

Test

 

units

 

should

 

be

 

designed

 

with

 

rules

 

of

 

re-entrance

 

in

 

mind.

 

Although

 

it

 

is

 

unlikely

 

that

 

a

 

given

 

set

 

of

 

Test

 

Units

 

could

 

be

 

run

 

simultaneously

 

against

 

the

 

same

 

device,

 

it

 

is

 

possible

 

that

 

more

 

than

 

one

 

of

 

the

 

same

 

type

 

of

 

device

 

(or

 

devices

 

which

 

are

 

tested

 

by

 

the

 

same

 

TU

 

code)

 

exists

 

in

 

the

 

system.

 

Since

 

it

 

may

 

be

 

desirable

 

to

 

run

 

the

 

Test

 

Units

 

concurrently

 

as

 

part

 

of

 

a

 

system

 

exerciser

 

or

 

a

 

stress

 

test

 

for

 

a

 

specific

 

subsystem,

 

it

 

is

 

possible

 

that

 

the

 

same

 

TU

 

code

 

may

 

be

 

run

 

in

 

different

 

threads

 

under

 

the

 

same

 

process.

 

The

 

use

 

of

 

static

 

variables

 

in

 

this

 

case

 

could

 

lead

 

to

 

data

 

conflicts

 

between

 

the

 

multiple

 

instances

 

of

 

TU

 

code

 

execution.

 

Persistent

 

Data

 

and

 

the

 

TU_INFO_HANDLE

 

Because

 

of

 

the

 

requirement

 

to

 

allow

 

multi-threaded,

 

simultaneous

 

execution

 

of

 

Test

 

Units,

 

the

 

TU

 

functions

 

must

 

be

 

written

 

to

 

be

 

re-entrant,

 

implying

 

that

 

statically

 

defined

 

variables

 

or

 

structure

 

are

 

not

 

allowed.

Note:

  

Static

 

constant

 

values

 

are

 

not

 

a

 

problem.

 

To

 

illustrate

 

the

 

problem,

 

imagine

 

two

 

threads

 

of

 

execution

 

calling

 

the

 

same

 

TU

 

to

 

run

 

simultaneously

 

against

 

two

 

device

 

instances

 

of

 

the

 

same

 

type.

 

Values

 

stored

 

in

 

static

 

variables

 

would

 

get

 

changed

 

in

 

both

 

threads

 

of

 

execution,

 

probably

 

leading

 

to

 

a

 

program

 

failure.

 

Therefore,

 

all

 

variables

 

and

 

structures

 

must

 

be

 

either

 

defined

 

locally

 

as

 

stack

 

variables,

 

or

 

created

 

using

 

allocated

 

memory.

 

Without

 

static

 

variables,

 

it

 

is

 

difficult

 

to

 

retain

 

any

 

data

 

around

 

from

 

one

 

execution

 

of

 

a

 

TU

 

to

 

the

 

next.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

51



The

 

intent

 

of

 

the

 

TU_INFO_HANDLE

 

pointer

 

in

 

the

 

exectu()interface

 

is

 

to

 

provide

 

the

 

TU

 

writer

 

with

 

a

 

pointer

 

to

 

a

 

data

 

buffer

 

that

 

will

 

persist

 

across

 

multiple

 

execution

 

calls

 

to

 

specific

 

Test

 

Units.

 

On

 

the

 

first

 

call

 

to

 

a

 

TU

 

library,

 

the

 

TU_INFO_HANDLE

 

pointer

 

will

 

be

 

set

 

to

 

NULL.

 

The

 

first

 

TU,

 

TU_OPEN,

 

must

 

allocate

 

the

 

buffer

 

and

 

set

 

the

 

TU_INFO_HANDLE

 

pointer.

 

Data

 

that

 

the

 

TU

 

writer

 

wants

 

to

 

have

 

persist

 

(for

 

example,

 

device

 

attribute

 

information)

 

can

 

then

 

be

 

placed

 

within

 

that

 

buffer,

 

and

 

the

 

pointer

 

to

 

the

 

buffer

 

will

 

be

 

passed

 

back

 

on

 

each

 

subsequent

 

call

 

to

 

the

 

TU

 

library.

 

Because

 

the

 

data

 

buffer

 

remains

 

allocated

 

after

 

the

 

TU

 

returns

 

control

 

to

 

the

 

calling

 

application,

 

it

 

is

 

the

 

responsibility

 

of

 

the

 

calling

 

application

 

to

 

free

 

the

 

buffer

 

any

 

time

 

that

 

a

 

premature

 

termination

 

is

 

required,

 

or

 

after

 

it

 

calls

 

the

 

last

 

TU

 

(TU_CLOSE).

 

Data

 

that

 

should

 

be

 

kept

 

in

 

the

 

persistent

 

data

 

buffer

 

includes:

 

v

   

The

 

pdiagex_dds_t

 

structure

 

which

 

contains

 

several

 

device

 

attributes

 

and

 

is

 

used

 

as

 

a

 

parameter

 

to

 

the

 

pdiag_open

 

call.

 

v

   

The

 

PDIAG_INFO_HANDLE

 

returned

 

from

 

the

 

pdiag_open

 

call,

 

which

 

is

 

used

 

as

 

an

 

input

 

parameter

 

to

 

all

 

the

 

other

 

device

 

operation

 

functions.

 

v

   

An

 

indicator

 

of

 

the

 

state

 

of

 

the

 

device

 

(DIAGNOSE

 

or

 

NORMAL)

 

v

   

Other

 

device-attribute

 

information

 

obtained

 

from

 

Configuration

 

Services

 

using

 

the

 

pdiag_cs_get_attr

 

function

 

(to

 

avoid

 

the

 

overhead

 

of

 

rerequesting

 

it

 

for

 

each

 

TU

 

call).

 

v

   

Any

 

other

 

information

 

the

 

TU

 

writer

 

would

 

like

 

to

 

have

 

persist

 

from

 

one

 

call

 

to

 

the

 

next.

Test

 

Unit

 

Call

 

Interface

 

To

 

execute

 

test

 

units,

 

a

 

C

 

language

 

function

 

with

 

the

 

name

 

exectu()

 

has

 

been

 

defined

 

to

 

provide

 

the

 

interface

 

between

 

the

 

test

 

unit

 

code

 

and

 

the

 

managing

 

application.

 

The

 

definition

 

of

 

this

 

interface

 

has

 

been

 

developed

 

to:

 

v

   

Hide

 

the

 

complexity

 

of

 

the

 

structures

 

and

 

protocols

 

used

 

in

 

performing

 

functional

 

tests

 

v

   

Provide

 

a

 

uniform

 

interface

 

for

 

all

 

the

 

different

 

management

 

applications

 

that

 

may

 

invoke

 

the

 

test

 

unit

 

code.

 

See

 

the

 

section

 

″Definition

 

of

 

EXECTU″.

 

Definition

 

of

 

TU_TYPE

 

Input

 

Structure

 

The

 

exectu()

 

interface

 

is

 

dependent

 

on

 

the

 

definition

 

of

 

a

 

Test

 

Unit

 

Control

 

Block

 

(TUCB)

 

structure.

 

The

 

TUCB

 

is

 

defined

 

as

 

a

 

C

 

language

 

data

 

type

 

called

 

TU_TYPE,

 

and

 

is

 

located

 

in

 

the

 

diag/tucb.h

 

header

 

file.

 

This

 

header

 

file

 

must

 

be

 

used

 

without

 

modification

 

and

 

included

 

in

 

each

 

source

 

file

 

using

 

the

 

structure.

 

To

 

make

 

the

 

test

 

unit

 

functions

 

available

 

to

 

a

 

wide

 

range

 

of

 

managing

 

applications,

 

this

 

TUCB

 

structure

 

must

 

not

 

deviate

 

from

 

the

 

defined

 

structure.

 

No

 

new

 

data

 

types

 

or

 

structures

 

may

 

be

 

added.

 

Each

 

test

 

unit

 

should

 

be

 

self-sufficient

 

in

 

the

 

function

 

provided.

 

The

 

data

 

types

 

OUTPUT_DATA

 

and

 

INPUT_DATA

 

are

 

declared

 

as

 

’void’

 

in

 

the

 

diag/tucb.h

 

file.

 

If

 

these

 

structures

 

are

 

to

 

be

 

used,

 

two

 

header

 

files

 

are

 

required

 

to

 

redefine

 

these

 

parameters:

 

v

   

The

 

{DEVICE}_err_detail.h

 

File

 

file

 

should

 

be

 

used

 

to

 

define

 

device

 

specific

 

error

 

log

 

detail

 

output

 

data

 

(OUTPUT_DATA).

 

v

   

The

 

{DEVICE}_input_params.h

 

File

 

file

 

should

 

be

 

used

 

to

 

define

 

device

 

specific

 

input

 

parameter

 

data

 

for

 

a

 

test

 

unit

 

(INPUT_DATA).

 

Both

 

header

 

files

 

(if

 

used)

 

should

 

be

 

included

 

before

 

the

 

diag/tucb.h

 

file.

 

The

 

TU_TYPE

 

structure

 

is

 

specified

 

as

 

follows:

 

typedef

 

struct

 

tucb_t

 

{

            

char

  

*resource_name;

            

TU_INPUT_TYPE

 

parms;

 

}

 

TU_TYPE;

   

52

 

Understanding

 

the

 

Diagnostic

 

Subsystem



The

 

resource_name

 

is

 

a

 

string

 

containing

 

the

 

name

 

of

 

the

 

hardware

 

or

 

physical

 

device

 

(as

 

defined

 

by

 

the

 

operating

 

system)

 

on

 

which

 

to

 

run

 

the

 

test

 

unit.

 

TU_INPUT_TYPE

 

is

 

a

 

substructure

 

of

 

TU_TYPE,

 

and

 

contains

 

several

 

input

 

parameters,

 

as

 

specified

 

in

 

the

 

following:

 

typedef

 

struct

 

tucb_in_t

 

{

             

ulong

 

tu;

             

ulong

 

loop;

             

OUTPUT_DATA

 

*data_log;

             

ulong

 

data_log_length;

             

INPUT_DATA

 

*tu_data;

             

ulong

 

tu_data_length;

             

FILE

 

*msg_file;

 

}

 

TU_INPUT_TYPE;

 

See

 

″Definition

 

of

 

EXECTU()″

 

for

 

structure

 

member

 

definitions.

Note:

  

For

 

most

 

applications,

 

the

 

TU

 

number

 

and

 

loop

 

count

 

are

 

the

 

only

 

parameters

 

required.

 

However,

 

this

 

interface

 

allows

 

for

 

an

 

open

 

way

 

of

 

passing

 

special

 

parameters

 

into

 

the

 

Test

 

Units

 

and

 

receiving

 

detailed

 

data

 

back

 

out,

 

to

 

allow

 

for

 

specialized

 

testing

 

environments.

 

Using

 

such

 

data

 

requires

 

specific

 

knowledge

 

about

 

the

 

Test

 

Unit

 

design

 

in

 

the

 

calling

 

application,

 

and

 

does

 

not

 

allow

 

for

 

generic

 

diagnostic

 

handling,

 

as

 

would

 

be

 

required

 

from

 

a

 

system

 

management

 

application.

 

However,

 

this

 

design

 

would

 

allow

 

a

 

remote

 

diagnostic

 

application,

 

which

 

could

 

have

 

detailed

 

diagnostic

 

design

 

knowledge,

 

to

 

work

 

through

 

a

 

local

 

agent

 

function

 

which

 

only

 

has

 

generic

 

diagnostic

 

knowledge.

 

The

 

local

 

agent

 

would

 

only

 

have

 

to

 

allocate

 

buffers

 

of

 

the

 

requested

 

size,

 

and

 

pass

 

data

 

between

 

the

 

Test

 

Units

 

and

 

the

 

remote

 

diagnostic

 

application.

 

Definition

 

of

 

TU_RETURN_TYPE

 

Output

 

Structure

 

The

 

exectu()

 

interface

 

expects,

 

as

 

a

 

return

 

value,

 

a

 

unsigned

 

long

 

major_rc

 

return

 

code

 

value.

 

As

 

an

 

extension

 

of

 

this

 

return

 

value,

 

a

 

Test

 

Unit

 

Control

 

Block

 

(TUCB)

 

return

 

structure

 

is

 

included

 

as

 

a

 

third

 

argument

 

to

 

the

 

exectu()

 

function

 

call.

 

The

 

TUCB

 

return

 

structure

 

is

 

defined

 

as

 

a

 

C

 

language

 

data

 

type

 

called

 

TU_RETURN_TYPE,

 

and

 

is

 

defined

 

in

 

the

 

diag/tucb.h

 

header

 

file.

 

This

 

header

 

file

 

must

 

be

 

used

 

without

 

modification

 

and

 

included

 

in

 

each

 

source

 

file

 

where

 

the

 

structure

 

is

 

used.

 

typedef

 

struct

 

tucb_out_t

 

{

             

ulong

                 

major_rc;

             

ulong

                 

minor_rc;

             

ulong

                 

actual_loop;

             

ulong

                 

data_log_length;

             

ulong

                 

severity;

 

}

 

TU_RETURN_TYPE;

 

See

 

″Definition

 

of

 

EXECTU()″

 

for

 

structure

 

member

 

definitions.

 

Return

 

Codes

 

major_rc

 

The

 

major_rc

 

return

 

value

 

from

 

the

 

exectu()

 

function

 

should

 

indicate

 

the

 

success

 

or

 

failure

 

of

 

the

 

TU

 

which

 

was

 

executed.

 

If

 

all

 

testing

 

is

 

successful,

 

it

 

should

 

return

 

a

 

value

 

of

 

zero

 

(0),

 

otherwise

 

a

 

non-zero

 

value

 

should

 

be

 

returned

 

corresponding

 

to

 

a

 

specific

 

value.

 

A

 

managing

 

application

 

uses

 

the

 

major_rc

 

return

 

code

 

to

 

determine

 

the

 

flow

 

of

 

the

 

diagnostic

 

procedure,

 

and

 

to

 

look

 

up

 

the

 

appropriate

 

card

 

level

 

Field

 

Replaceable

 

Unit

 

(FRU)

 

or

 

FRUs

 

to

 

be

 

replaced.

 

To

 

satisfy

 

the

 

failure-isolation

 

requirements

 

of

 

all

 

managing

 

applications,

 

the

 

return

 

codes

 

should

 

be

 

designed

 

to

 

be

 

as

 

granular

 

as

 

possible

 

to

 

provide

 

maximum

 

fault

 

isolation.

 

For

 

most

 

purposes,

 

this

 

means

 

attempting

 

to

 

isolate

 

to

 

a

 

single

 

FRU.

Note:

  

When

 

defining

 

major_rc

 

return

 

codes,

 

keep

 

the

 

following

 

in

 

mind:

 

v

   

Never

 

return

 

memory

 

offset

 

information

 

in

 

the

 

return

 

code.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

53



v

   

Do

 

not

 

return

 

any

 

detailed

 

information,

 

such

 

as

 

failing

 

bits,

 

through

 

the

 

return

 

code.

 

Instead,

 

use

 

the

 

OUTPUT_DATA

 

error

 

log.

minor_rc

 

The

 

minor_rc

 

return

 

value

 

is

 

used

 

to

 

pass

 

back

 

a

 

more

 

specific

 

error

 

indication,

 

and

 

would

 

typically

 

be

 

provided

 

as

 

an

 

aid

 

for

 

fault

 

isolation

 

within

 

a

 

FRU,

 

perhaps

 

down

 

to

 

modules

 

or

 

I/O

 

lines.

 

This

 

information

 

is

 

intended

 

for

 

use

 

in

 

bring-up

 

and

 

debug,

 

and

 

in

 

manufacturing,

 

to

 

point

 

to

 

a

 

specific

 

hardware

 

defect.

 

Used

 

in

 

conjunction

 

with

 

the

 

OUTPUT_DATA

 

error

 

log,

 

the

 

TU

 

writer

 

should

 

be

 

able

 

to

 

pass

 

back

 

enough

 

information

 

to

 

isolate

 

to

 

a

 

failure

 

to

 

whatever

 

level

 

is

 

needed.

 

However,

 

most

 

management

 

applications

 

will

 

only

 

be

 

interested

 

in

 

the

 

major_rc

 

return

 

value.

 

Interrupt

 

Handler

 

Call

 

Interface

 

The

 

diagnostic

 

interrupt

 

handler

 

function

 

for

 

a

 

device

 

must

 

be

 

packaged

 

in

 

an

 

executable

 

module

 

separate

 

from

 

the

 

Test

 

Unit

 

library.

 

This

 

module

 

is

 

loaded

 

into

 

the

 

operating

 

system

 

and

 

registered

 

with

 

the

 

diagnostic

 

system

 

services

 

when

 

the

 

TU_OPEN

 

calls

 

the

 

pdiag_open

 

function.

 

When

 

the

 

services

 

receive

 

an

 

interrupt,

 

control

 

is

 

passed

 

to

 

these

 

″second-level″

 

interrupt

 

handlers

 

in

 

sequential

 

order.

 

Each

 

interrupt

 

handler

 

reads

 

the

 

status

 

of

 

its

 

respective

 

adapter

 

to

 

see

 

if

 

it

 

was

 

the

 

source

 

of

 

the

 

interrupt.

 

If

 

the

 

Test

 

Unit

 

is

 

waiting

 

for

 

the

 

interrupt

 

by

 

calling

 

the

 

pdiag_dd_watch_for_interrupt

 

service,

 

the

 

sleep_flag

 

will

 

be

 

set

 

to

 

1,

 

indicating

 

that

 

the

 

interrupt

 

handler

 

should

 

do

 

a

 

pdiag_dd_interrupt_notify

 

when

 

it

 

has

 

completed.

 

Interrupt

 

handlers

 

can

 

use

 

the

 

device

 

methods

 

to

 

read

 

and

 

write

 

operations

 

on

 

the

 

device.

 

Typically,

 

they

 

will

 

read

 

registers

 

on

 

the

 

device

 

to

 

obtain

 

more

 

information

 

about

 

the

 

interrupt,

 

and

 

write

 

registers

 

(if

 

necessary)

 

to

 

clear

 

the

 

interrupt

 

condition.

 

The

 

content

 

of

 

any

 

data

 

passed

 

back

 

to

 

the

 

TU

 

through

 

the

 

data_area

 

buffer,

 

and

 

whether

 

the

 

TUs

 

even

 

wait

 

for

 

interrupts,

 

is

 

a

 

decision

 

left

 

to

 

the

 

designer

 

of

 

the

 

TUs

 

and

 

interrupt

 

handler.

 

That

 

decision

 

depends

 

upon

 

the

 

operation

 

of

 

the

 

specific

 

device

 

and

 

how

 

it

 

is

 

being

 

tested.

 

Syntax

 

The

 

function

 

entry

 

prototype

 

for

 

an

 

interrupt

 

handler

 

is

 

as

 

follows:

 

int

 

device_interrupt

 

(

         

PDIAG_INFO_HANDLE

 

*handle,

         

pdiag_addr_t

 

data_area,

         

int32

 

*interrupt_flag,

         

uint32

 

sleep_flag,

         

uint32

 

*sleep_word

 

)

 

Parameters

  

Parameter

 

Description

 

handle

 

Pointer

 

to

 

a

 

handle

 

for

 

use

 

in

 

device

 

operations

 

data_area

 

Buffer

 

area

 

where

 

the

 

interrupt

 

handler

 

can

 

store

 

information

 

that

 

the

 

Test

 

Unit

 

can

 

review

 

after

 

interrupt

 

processing

 

is

 

complete.

 

interrupt_flag

 

Bit

 

field

 

indicating

 

which

 

interrupt

 

occurred

 

sleep_flag

 

Boolean

 

value

 

to

 

indicate

 

whether

 

the

 

waiting

 

Test

 

Unit

 

should

 

be

 

notified

 

sleep_word

 

Semaphore

 

that

 

the

 

Test

 

Unit

 

is

 

waiting

 

for,

 

used

 

as

 

a

 

parameter

 

to

 

the

 

pdiag_dd_interrupt_notify

 

service

   

Interrupt

 

Handling

 

in

 

Test

 

Units

 

A

 

typical

 

sequence

 

of

 

events

 

in

 

the

 

functional

 

flow

 

of

 

a

 

Test

 

Unit

 

is

 

to

 

set

 

up

 

a

 

device

 

operation

 

through

 

reads

 

and

 

writes

 

to

 

the

 

device

 

address

 

space,

 

and

 

then

 

wait

 

to

 

receive

 

an

 

interrupt

 

from

 

the

 

device

 

to

 

indicate

 

that

 

an

 

operation

 

has

 

completed

 

or

 

needs

 

attention.

 

Since

 

interrupt

 

handling

 

is

 

device-specific

 

and

 

part

 

of

 

the

 

test

 

process,

 

an

 

interrupt

 

handler

 

function

 

must

 

be

 

provided

 

in

 

addition

 

to

 

the

 

Test

 

Unit

 

library.

   

54

 

Understanding

 

the

 

Diagnostic

 

Subsystem



When

 

a

 

device

 

is

 

opened

 

for

 

testing

 

by

 

Test

 

Unit

 

1

 

(TU_OPEN),

 

an

 

interrupt

 

handler

 

may

 

be

 

loaded

 

(if

 

one

 

is

 

needed)

 

by

 

passing

 

an

 

interrupt

 

handler

 

module

 

name

 

as

 

one

 

of

 

the

 

parameters

 

on

 

the

 

pdiag_open

 

system

 

service.

 

A

 

data

 

buffer

 

address

 

is

 

also

 

passed

 

as

 

part

 

of

 

the

 

input

 

to

 

the

 

pdiag_open

 

function,

 

so

 

the

 

device

 

methods

 

know

 

which

 

interrupt

 

handler

 

to

 

use,

 

as

 

well

 

as

 

where

 

to

 

pass

 

back

 

data

 

from

 

the

 

interrupt

 

handler.

 

The

 

purpose

 

of

 

the

 

interrupt

 

handler

 

function

 

is

 

to

 

receive

 

the

 

interrupt

 

indication,

 

possibly

 

gather

 

some

 

information

 

from

 

the

 

device,

 

clear

 

the

 

interrupt

 

condition

 

on

 

the

 

device,

 

and

 

notify

 

a

 

waiting

 

Test

 

Unit

 

that

 

the

 

interrupt

 

has

 

occurred.

 

Clearing

 

of

 

the

 

interrupt

 

condition

 

is

 

critical,

 

because

 

the

 

interrupt

 

handler

 

will

 

be

 

called

 

continuously

 

as

 

long

 

as

 

the

 

interrupt

 

condition

 

exists.

 

Since

 

this

 

function

 

is

 

called

 

to

 

handle

 

a

 

specific

 

device

 

I/O

 

interrupt,

 

the

 

information

 

it

 

gathers

 

from

 

the

 

device

 

is

 

useful

 

in

 

diagnosing

 

the

 

device

 

behavior.

 

The

 

interrupt

 

handler

 

puts

 

this

 

information

 

into

 

the

 

data

 

buffer

 

area

 

(defined

 

at

 

device-open

 

time),

 

where

 

the

 

waiting

 

Test

 

Unit

 

can

 

access

 

it

 

for

 

analysis.

 

The

 

basic

 

flow

 

of

 

interrupt

 

processing

 

is

 

shown

 

in

 

the

 

″Interrupt

 

Processing

 

in

 

Test

 

Units″

 

illustration.

 

The

 

flow

 

of

 

events

 

is

 

as

 

follows:

 

Test Units

Common Service Layer

Interrupt 
Handler

Test Unit Library

data
buffer

exectu

Interrupt Processing in Test Units

    

1.

   

An

 

exectu()

 

call

 

is

 

made

 

to

 

Test

 

Unit

 

1

 

(TU_OPEN),

 

which

 

calls

 

pdiag_open

 

to

 

open

 

the

 

device

 

for

 

testing.

 

Included

 

in

 

the

 

input

 

information

 

passed

 

to

 

pdiag_open

 

is

 

the

 

name

 

of

 

the

 

interrupt

 

handler

 

module

 

and

 

the

 

address

 

of

 

a

 

memory-allocated

 

data

 

buffer

 

area.

 

2.

   

A

 

Test

 

Unit

 

is

 

started,

 

which

 

performs

 

some

 

operations

 

on

 

the

 

device,

 

and

 

then

 

calls

 

pdiag_dd_watch_for_interrupt

 

to

 

wait

 

for

 

a

 

response

 

in

 

the

 

form

 

of

 

a

 

device

 

interrupt

 

(or

 

a

 

time-out

 

if

 

no

 

interrupt

 

occurs).

 

3.

   

The

 

device-methods

 

layer

 

receives

 

an

 

interrupt

 

indication

 

from

 

the

 

operating

 

system.

 

4.

   

The

 

device-methods

 

pass

 

control

 

to

 

the

 

registered

 

interrupt

 

handler.

 

5.

   

The

 

interrupt

 

handler

 

function

 

gathers

 

data

 

from

 

the

 

device

 

and

 

places

 

it

 

in

 

the

 

data

 

buffer

 

area,

 

clears

 

the

 

interrupt,

 

and

 

releases

 

the

 

Test

 

Unit

 

from

 

its

 

WAIT

 

state.

 

6.

   

The

 

interrupt

 

handler

 

completes

 

and

 

returns

 

to

 

the

 

caller

 

(the

 

device

 

methods).

 

7.

   

The

 

Test

 

Unit

 

continues

 

execution

 

by

 

processing

 

the

 

data

 

returned

 

from

 

the

 

interrupt

 

handler.

 

8.

   

When

 

testing

 

is

 

completed,

 

a

 

call

 

is

 

made

 

to

 

Test

 

Unit

 

0xEFFF

 

(TU_CLOSE),

 

which

 

calls

 

pdiag_close

 

to

 

close

 

the

 

device

 

and

 

unload

 

the

 

interrupt

 

handler.

  

Chapter

 

3.

 

Diagnostic

 

Components

 

55



The

 

cycle

 

of

 

device

 

setup

 

and

 

wait

 

for

 

interrupt

 

can

 

be

 

repeated

 

as

 

often

 

as

 

necessary

 

during

 

the

 

execution

 

of

 

the

 

Test

 

Units.

 

Registration

 

of

 

the

 

interrupt

 

handler

 

only

 

needs

 

to

 

be

 

done

 

once,

 

at

 

the

 

time

 

when

 

the

 

device

 

is

 

opened

 

for

 

testing.

 

However,

 

different

 

interrupt

 

handlers

 

could

 

be

 

used

 

(if

 

necessary)

 

by

 

closing

 

the

 

device,

 

then

 

reopening

 

the

 

device

 

with

 

a

 

different

 

interrupt

 

handler

 

module-name

 

parameter.

 

Using

 

the

 

Interrupt

 

Flag

 

Bit

 

Mask

 

The

 

interrupt_flag

 

parameter

 

to

 

the

 

interrupt

 

handling

 

routine

 

and

 

the

 

flag_mask

 

parameter

 

on

 

the

 

pdiag_dd_watch_for_interrupt

 

system

 

service

 

are

 

used

 

by

 

the

 

Test

 

Unit

 

and

 

interrupt

 

handler

 

to

 

communicate

 

the

 

type

 

of

 

interrupt

 

that

 

occurred,

 

and

 

which

 

types

 

of

 

interrupts

 

the

 

Test

 

Unit

 

wants

 

to

 

know

 

about.

 

The

 

bit

 

fields

 

within

 

these

 

words

 

can

 

be

 

defined

 

in

 

whatever

 

way

 

the

 

TU

 

developer

 

wants

 

to

 

assign

 

them,

 

based

 

on

 

the

 

device

 

involved

 

and

 

how

 

many

 

different

 

interrupt

 

types

 

it

 

can

 

surface.

 

However,

 

it

 

is

 

important

 

to

 

understand

 

how

 

these

 

parameters

 

should

 

be

 

used.

 

When

 

an

 

interrupt

 

handler

 

is

 

called

 

as

 

the

 

result

 

of

 

an

 

interrupt

 

condition,

 

it

 

should

 

examine

 

its

 

device

 

to

 

see

 

which

 

type

 

of

 

interrupt,

 

if

 

any,

 

occurred

 

on

 

that

 

device.

 

If

 

it

 

detects

 

no

 

interrupt

 

condition,

 

the

 

interrupt_flag

 

should

 

be

 

set

 

to

 

0

 

before

 

it

 

returns.

 

If

 

it

 

does

 

detect

 

an

 

interrupt

 

condition,

 

then

 

it

 

should

 

set

 

an

 

appropriate

 

bit

 

equal

 

to

 

1

 

in

 

the

 

interrupt_flag

 

before

 

it

 

returns.

 

A

 

TU

 

waits

 

for

 

an

 

interrupt

 

condition

 

to

 

occur

 

by

 

calling

 

the

 

pdiag_dd_watch_for_interrupt

 

service,

 

and

 

one

 

of

 

the

 

parameters

 

to

 

that

 

function

 

is

 

a

 

flag_mask

 

word.

 

This

 

is

 

defined

 

as

 

a

 

bit

 

mask,

 

using

 

the

 

same

 

bit

 

definitions

 

as

 

in

 

the

 

interrupt

 

handler,

 

to

 

indicate

 

the

 

interrupt

 

types

 

for

 

which

 

the

 

TU

 

wants

 

to

 

watch.

 

It

 

does

 

this

 

by

 

setting

 

one

 

or

 

more

 

bit

 

values

 

equal

 

to

 

1,

 

where

 

each

 

bit

 

represents

 

an

 

interrupt

 

type.

 

The

 

pdiag_dd_watch_for_interrupt

 

will

 

not

 

return

 

until

 

either

 

an

 

appropriate

 

interrupt

 

is

 

detected

 

(essentially

 

determined

 

by

 

a

 

non-zero

 

result

 

when

 

″and″ing

 

the

 

flag_mask

 

and

 

the

 

interrupt_flag

 

0

 

values),

 

or

 

until

 

the

 

time

 

limit

 

is

 

reached.

Note:

  

If

 

the

 

Test

 

Unit

 

writer

 

wants

 

to

 

watch

 

for

 

more

 

than

 

one

 

interrupt

 

type,

 

but

 

also

 

needs

 

to

 

know

 

which

 

specific

 

interrupt

 

occurred,

 

the

 

writer

 

should

 

define

 

a

 

structure

 

element

 

in

 

the

 

data_area

 

buffer

 

where

 

the

 

interrupt

 

handler

 

can

 

pass

 

back

 

that

 

information.

 

Example

 

#define

 

Int_A

 

80000000

       

/*

 

Common

 

defines

 

used

 

by

 

both

 

the

 

TU

 

and

 

*/

 

#define

 

Int_B

 

40000000

       

/*

 

interrupt

 

handler

                     

*/

 

#define

 

Int_C

 

20000000

 

Assume

 

TU

 

calls

 

pdiag_dd_watch_for_interrupt

 

with:

 

flag_mask

 

=

 

Int_A

 

|

 

Int_B

 

Case

 

1:

 

1.

   

Interrupt

 

received

 

2.

   

Interrupt

 

handler

 

reads

 

device,

 

sees

 

Interrupt

 

C,

 

sets:

 

interrupt_flag

 

=

 

Int_C

 

3.

   

pdiag_dd_watch_for_interrupt

 

does

 

not

 

return

 

until

 

timeout

 

occurs.

 

Case

 

2:

 

1.

   

Interrupt

 

received

 

2.

   

Interrupt

 

handler

 

reads

 

device,

 

sees

 

interrupt

 

A,

 

sets:

 

interrupt_flag

 

=

 

Int_A

 

3.

   

pdiag_dd_watch_for_interrupt

 

returns

 

Case

 

3:

 

1.

   

Interrupt

 

received

 

2.

   

Interrupt

 

handler

 

reads

 

device,

 

sees

 

both

 

interrupt

 

B

 

and

 

C,

 

sets:

   

56

 

Understanding

 

the

 

Diagnostic

 

Subsystem



interrupt_flag

 

=

 

Int_B

 

|

 

Int_C

 

3.

   

pdiag_dd_watch_for_interrupt

 

returns

Programming

 

Interfaces

 

for

 

TUs

 

and

 

Interrupt

 

Handlers

 

System

 

interface

 

calls

 

and

 

use

 

of

 

header

 

files

 

should

 

conform

 

to

 

the

 

X/Open

 

Portability

 

Guide

 

Issue

 

4

 

standards.

 

This

 

ensures

 

portability

 

to

 

other

 

platforms

 

meeting

 

the

 

same

 

standards.

 

The

 

following

 

table

 

lists

 

the

 

standard

 

set

 

of

 

services

 

available

 

to

 

TU

 

developers.

 

Using

 

only

 

these

 

services

 

provides

 

portability

 

of

 

TUs

 

to

 

other

 

platforms

 

where

 

this

 

diagnostic

 

infrastructure

 

is

 

supported.

 

See

 

″Diagnostic

 

Kernel

 

Extension

 

Interfaces″

 

for

 

more

 

information

 

on

 

these

 

functions,

 

their

 

input

 

parameters,

 

and

 

the

 

function

 

prototypes.

  

Function

 

Name

 

Description

 

Usable

 

by:

 

pdiag_open

 

Opens

 

a

 

device

 

for

 

testing

 

TU

 

pdiag_close

 

Frees

 

up

 

a

 

device

 

after

 

testing

 

TU

 

pdiag_dd_read

 

Performs

 

a

 

read

 

operation

 

to

 

a

 

device

 

TU,

 

32-bit

 

Interrupt

 

pdiag_dd_write

 

Performs

 

a

 

write

 

operation

 

to

 

a

 

device

 

TU,

 

32-bit

 

Interrupt

 

pdiag_dd_dma_setup

 

Initializes,

 

pins,

 

and

 

cross-memory

 

attaches

 

user

 

buffer

 

for

 

a

 

dma

 

operation

 

TU

 

pdiag_dd_dma_enable

 

Enables/disables

 

a

 

dma

 

operation

 

TU

 

pdiag_dd_dma_complete

 

Unpins

 

the

 

dma

 

user

 

buffer

 

and

 

detaches

 

the

 

cross-memory

 

descriptor

 

TU

 

pdiag_dd_watch_for_interrupt

 

Waits

 

for

 

device

 

interrupt

 

to

 

occur,

 

or

 

until

 

a

 

specified

 

timeout

 

is

 

reached

 

TU

 

pdiag_dd_interrupt_notify

 

Notifies

 

waiting

 

test

 

unit

 

that

 

an

 

interrupt

 

has

 

been

 

received

 

32-bit

 

Interrupt

 

pdiag_diagnose_state

 

Places

 

device

 

under

 

test

 

into

 

a

 

testable

 

state

 

TU

 

pdiag_restore_state

 

Places

 

device

 

under

 

test

 

into

 

original

 

state

 

before

 

testing

 

TU

 

pdiag_cs_open

 

Open/Initialize

 

configuration

 

data

 

services

 

TU

 

pdiag_cs_close

 

Close/Terminate

 

configuration

 

data

 

services

 

TU

 

pdiag_cs_get_attr

 

Obtain

 

device

 

attribute

 

value

 

TU

 

pdiag_cs_free_attr

 

Free

 

storage

 

that

 

was

 

allocated

 

by

 

pdiag_cs_get_attr

 

TU

 

findmcode

 

Locate

 

specific

 

microcode

 

file

 

for

 

loading

 

TU

 

pdiag_dd_read_64

 

Performs

 

a

 

read

 

operation

 

to

 

a

 

device

 

64-bit

 

Interrupt

 

pdiag_dd_write_64

 

Performs

 

a

 

write

 

operation

 

to

 

a

 

device

 

64-bit

 

Interrupt

   

Configuration

 

Services

 

Device

 

Attributes

 

The

 

configuration

 

data

 

services

 

provided

 

by

 

the

 

pdiag_cs_*

 

functions

 

(described

 

in

 

the

 

previous

 

table)

 

define

 

the

 

interface

 

by

 

which

 

the

 

TU

 

developer

 

may

 

obtain

 

information

 

about

 

the

 

device

 

under

 

test.

 

The

 

table

 

below

 

lists

 

the

 

standard

 

attributes

 

which

 

may

 

be

 

available

 

for

 

a

 

given

 

device;

 

however,

 

not

 

all

 

attributes

 

are

 

supported

 

for

 

all

 

devices,

 

since

 

some

 

are

 

specific

 

to

 

particular

 

device

 

types.

 

Normally,

 

the

 

TU

 

developer

 

should

 

use

 

this

 

service

 

to

 

gather

 

the

 

required

 

attribute

 

information

 

during

 

the

 

call

 

to

 

Test

 

Unit

 

TU_OPEN

 

(the

 

Test

 

Unit

 

which

 

opens

 

the

 

device

 

for

 

testing),

 

and

 

save

 

this

 

device

 

information

 

for

 

reference

 

during

 

subsequent

 

Test

 

Unit

 

calls.

 

This

 

avoids

 

the

 

performance

 

overhead

 

of

 

calling

 

the

 

configuration

 

services

 

many

 

times

 

during

 

the

 

execution

 

of

 

a

 

set

 

of

 

Test

 

Units.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

57



Standard

 

Attribute

 

Description

 

bus_id

 

Adapter

 

I/O

 

bus

 

ID

 

value

 

bus_intr_lvl

 

Bus

 

interrupt

 

level

 

bus_io_length

 

Base

 

address

 

of

 

bus

 

I/O

 

area

 

bus_mem_addr

 

Base

 

address

 

of

 

Shared

 

Bus

 

Memory

 

area

 

bus_mem_length

 

Length

 

of

 

Shared

 

Bus

 

Memory

 

area

 

bus_type

 

Type

 

of

 

bus

 

(for

 

example,

 

Microchannel,

 

PCI,

 

60X)

 

connwhere

 

Connwhere

 

location

 

as

 

stored

 

in

 

CuDv

 

dms_bus_flags

 

Bus

 

flags

 

for

 

DMA

 

operation

 

(PCI/ISA

 

only)

 

dma_bus_length

 

Length

 

of

 

bus

 

memory

 

DMA

 

area

 

in

 

bytes

 

(MCA

 

only)

 

dma_bus_mem

 

Address

 

of

 

bus

 

memory

 

used

 

for

 

DMA

 

(MCA

 

only)

 

dma_chan_id

 

DMA

 

channel

 

ID

 

of

 

device

 

dma_flags

 

Flags

 

to

 

indicate

 

DMA

 

actions

 

(MCA

 

only)

 

dma_lvl

 

DMA

 

bus

 

arbitration

 

level

 

(MCA

 

only)

 

intr_flags

 

Interrupt

 

flags

 

intr_priority

 

Interrupt

 

priority

 

maxmaster

 

Maximum

 

number

 

of

 

concurrent

 

DMA

 

master

 

calls

 

parent_name

 

Parent

 

device

 

name

 

slot_num

 

Slot

 

number

 

of

 

adapter

 

(for

 

MCA,

 

actual

 

slot

 

number,

 

for

 

PCI,

 

device

 

number)

   

Message

 

Handling

 

In

 

general,

 

there

 

should

 

be

 

no

 

printf()

 

or

 

fprintf()

 

calls

 

imbedded

 

in

 

TU

 

code

 

which

 

is

 

delivered

 

for

 

production

 

use.

 

This

 

includes

 

debug

 

messages,

 

execution-progress

 

messages,

 

and

 

so

 

on.

 

However,

 

it

 

is

 

understood

 

that

 

such

 

practices

 

are

 

common

 

and

 

useful

 

during

 

the

 

initial

 

code

 

development,

 

and

 

sometimes

 

desirable

 

at

 

a

 

later

 

time

 

when

 

something

 

breaks.

 

Therefore,

 

to

 

satisfy

 

both

 

requirements,

 

the

 

messages

 

should

 

be

 

allowed

 

to

 

be

 

conditionally

 

compiled

 

in

 

and

 

out

 

of

 

the

 

code.

 

To

 

allow

 

the

 

calling

 

application

 

to

 

redirect

 

the

 

messages

 

to

 

any

 

file,

 

including

 

stdout,

 

only

 

the

 

fprintf()

 

call

 

should

 

be

 

used.

 

Then,

 

to

 

conditionally

 

compile

 

the

 

messages,

 

the

 

following

 

convention

 

should

 

be

 

followed:

 

In

 

one

 

of

 

the

 

include

 

files,

 

define

 

the

 

following

 

PRINT

 

macros

 

conditionally

 

with

 

the

 

standard

 

conditional

 

flag

 

TU_DEBUG_MSG.

            

#ifdef

 

TU_DEBUG_MSG

            

#define

 

PRINT(

 

args

 

)

 

fprintf

 

args

            

#else

            

#define

 

PRINT(

 

args

 

)

            

#endif

 

Next,

 

use

 

the

 

″msg_file″

 

pointer

 

in

 

the

 

TUCB

 

structure

 

definition

 

which

 

determines

 

where

 

messages

 

will

 

be

 

sent.

 

Then,

 

at

 

any

 

place

 

in

 

the

 

code

 

where

 

a

 

message

 

should

 

be

 

output,

 

use

 

the

 

PRINT

 

macro.

 

The

 

calling

 

application

 

would

 

then

 

set

 

the

 

″msg_file″

 

parameter

 

to

 

stdout

 

in

 

order

 

to

 

have

 

messages

 

directed

 

to

 

a

 

terminal

 

or

 

monitor.

 

Alternatively,

 

to

 

have

 

messages

 

directed

 

to

 

a

 

file,

 

the

 

calling

 

application

 

would

 

use

 

the

 

fopen()

 

function

 

to

 

open

 

a

 

file

 

and

 

set

 

″msg_file″

 

to

 

the

 

pointer

 

returned

 

from

 

this

 

call.

 

For

 

example,

 

you

 

want

 

to

 

print

 

the

 

message

 

″Hello,

 

World

 

number

 

1″,

 

and

 

tucb_ptr

 

is

 

a

 

pointer

 

to

 

the

 

TU_TYPE

 

structure

 

passed

 

by

 

the

 

application,

 

and

 

w_num

 

is

 

a

 

variable

 

with

 

a

 

value

 

of

 

1.

 

You

 

could

 

then

 

insert,

 

at

 

an

 

appropriate

 

place

 

in

 

the

 

TU

 

code,

 

a

 

line

 

like

 

the

 

following:

 

PRINT((tucb_ptr->parms.msg_file,

 

"Hello,

 

World

 

number

 

%d",w_num));

   

58

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Note:

  

The

 

double

 

parentheses

 

are

 

required

 

to

 

pass

 

variable-length

 

argument

 

lists

 

through

 

the

 

PRINT

 

macro

 

to

 

the

 

fprintf()

 

function.

 

Signal

 

Handling

 

In

 

general,

 

signal

 

handling

 

is

 

the

 

responsibility

 

of

 

the

 

DA.

 

When

 

a

 

signal

 

to

 

terminate

 

is

 

caught,

 

the

 

signal

 

handler

 

must

 

start

 

TU_CLOSE

 

through

 

the

 

exectu()

 

interface,

 

so

 

that

 

a

 

proper

 

cleanup

 

of

 

the

 

device

 

is

 

performed

 

and

 

a

 

release

 

of

 

resources

 

occurs.

 

TU_CLOSE

 

should

 

be

 

started

 

only

 

if

 

TU_OPEN

 

has

 

already

 

been

 

called

 

successfully.

 

Definition

 

of

 

exectu()

 

Purpose

 

Executes

 

test

 

unit

 

(TU)

 

bound

 

into

 

a

 

Diagnostic

 

Application

 

(DA).

 

Syntax

 

#include

   

<diag/tucb.h>

 

ulong

 

exectu

 

(

 

TU_TYPE

 

*tucb_ptr,

 

TU_INFO_HANDLE

 

*tu_handle,

 

TU_RETURN_TYPE

 

*tu_rc)

 

Description

 

The

 

exectu

 

subroutine

 

runs

 

an

 

TU

 

referenced

 

by

 

the

 

test

 

unit

 

control

 

block.

 

The

 

test

 

units

 

are

 

normally

 

built

 

and

 

packaged

 

as

 

a

 

loadable

 

library.

 

The

 

device

 

to

 

be

 

tested

 

by

 

the

 

test

 

unit

 

is

 

referenced

 

by

 

a

 

character-string

 

designator

 

indicating

 

the

 

device

 

instance.

 

Parameters

  

Parameter

 

Description

 

tucb_ptr

 

Pointer

 

to

 

the

 

test-unit

 

control

 

block.

 

This

 

structure

 

is

 

defined

 

in

 

diag/tucb.h

 

file.

 

typedef

 

struct

 

tucb_t

 

{

             

char

  

*resource_name;

             

TU_INPUT_TYPE

 

parms;

       

}

 

TU_TYPE;

 

where

 

TU_INPUT_TYPE

 

is

 

as

 

follows:

 

typedef

 

struct

 

tucb_in_t

 

{

             

ulong

 

tu;

             

ulong

 

loop;

             

OUTPUT_DATA

 

*data_log;

             

ulong

 

data_log_length;

             

INPUT_DATA

 

*tu_data;

             

ulong

 

tu_data_length;

             

FILE

 

*msg_file;

 

}

 

TU_INPUT_TYPE;

 

tu

 

Test-unit

 

number

 

of

 

the

 

test

 

unit

 

to

 

run.

 

loop

 

Indicates

 

the

 

number

 

of

 

times

 

the

 

test

 

unit

 

should

 

be

 

run

 

provided

 

that

 

an

 

error

 

does

 

not

 

occur.

 

data_log

 

Error

 

details

 

log

 

and

 

or

 

output

 

data

 

log.

 

This

 

log

 

is

 

device

 

specific

 

and

 

is

 

defined

 

by

 

the

 

{device}_output_data.h

 

file.

 

It

 

should

 

point

 

to

 

an

 

empty

 

array

 

of

 

structures

 

and

 

then

 

filled

 

in

 

with

 

output

 

or

 

error

 

detail

 

data

 

by

 

the

 

test

 

unit(s).

 

This

 

parameter

 

should

 

be

 

initialized

 

by

 

the

 

calling

 

application

 

if

 

intended

 

to

 

be

 

used.

 

data_log_length

 

Size

 

of

 

the

 

data_log

 

structure.

 

This

 

field

 

is

 

used

 

when

 

passing

 

the

 

tucb

 

data

 

to

 

a

 

remote

 

managing

 

application.

 

This

 

number

 

is

 

initialized

 

by

 

the

 

calling

 

application

 

by

 

calculating

 

the

 

size

 

of

 

the

 

data

 

structure

 

to

 

be

 

filled

 

in

 

and

 

multiplying

 

it

 

by

 

the

 

number

 

of

 

records

 

to

 

be

 

logged.

 

The

 

test

 

unit

 

calculates

 

the

 

number

 

of

 

records

 

by

 

dividing

 

this

 

number

 

by

 

the

 

size

 

of

 

the

 

intended

 

OUTPUT_DATA

 

structure

 

to

 

be

 

used.

 

A

 

data_log_length

 

value

 

of

 

zero

 

results

 

in

 

no

 

data

 

being

 

logged

 

to

 

the

 

data_log.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

59



Parameter

 

Description

 

tu_data

 

Input

 

parameter

 

to

 

be

 

used

 

to

 

pass

 

extra

 

input

 

data

 

to

 

the

 

test

 

units.

 

This

 

parameter

 

must

 

only

 

be

 

used

 

as

 

special

 

case

 

scenarios.

 

It

 

is

 

intended

 

for

 

special

 

applications

 

such

 

as

 

manufacturing

 

or

 

hardware

 

exercisers.

 

tu_data_length

 

Size

 

of

 

the

 

tu_data

 

structure.

 

This

 

field

 

is

 

used

 

when

 

passing

 

the

 

tucb

 

data

 

to

 

a

 

remote

 

managing

 

application.

 

This

 

number

 

is

 

initialized

 

by

 

the

 

calling

 

application

 

by

 

calculating

 

the

 

size

 

of

 

the

 

data

 

structure

 

to

 

be

 

filled

 

in

 

and

 

multiplying

 

it

 

by

 

the

 

number

 

of

 

records

 

to

 

be

 

logged.

 

The

 

test

 

unit

 

calculates

 

the

 

number

 

of

 

data

 

records

 

by

 

dividing

 

this

 

number

 

by

 

the

 

size

 

of

 

the

 

intended

 

INPUT_DATA

 

structure

 

to

 

be

 

used.

 

tu_handle

 

Pointer

 

to

 

a

 

block

 

of

 

data

 

that

 

the

 

TUs

 

need

 

to

 

have

 

persist

 

between

 

subsequent

 

calls

 

to

 

the

 

TU

 

library.

 

Content

 

and

 

layout

 

of

 

the

 

persistent

 

data

 

is

 

a

 

decision

 

left

 

to

 

the

 

TU

 

writer,

 

but

 

there

 

are

 

certain

 

data

 

structures

 

which

 

should

 

be

 

kept

 

here,

 

as

 

described

 

in

 

the

 

next

 

section.

 

Pointer

 

variable

 

is

 

defined

 

in

 

the

 

diagnostic

 

application,

 

but

 

it

 

is

 

set

 

by

 

TU_OPEN

 

to

 

point

 

to

 

a

 

memory

 

buffer

 

allocated

 

by

 

the

 

TU_OPEN

 

code.

 

This

 

structure

 

is

 

defined

 

in

 

diag/tucb.h

 

file.

 

tu_rc

 

Pointer

 

to

 

the

 

test-unit

 

control

 

block

 

return

 

code

 

structure.

 

This

 

structure

 

is

 

defined

 

in

 

diag/tucb.h

 

file.

      

typedef

 

struct

 

tucb_out_t

 

{

                 

ulong

                  

major_rc;

                 

ulong

                  

minor_rc;

                 

ulong

                  

actual_loop;

                 

ulong

                  

data_log_length;

                 

ulong

                  

severity;

      

}

 

TU_RETURN_TYPE;

 

major_rc

 

Major

 

return

 

code.

 

Used

 

for

 

FRU

 

isolation.

 

minor_rc

 

Minor

 

return

 

code.

 

Used

 

for

 

more

 

granular

 

detailed

 

fault

 

isolation.

 

actual_loop

 

Indicates

 

the

 

number

 

of

 

times

 

the

 

test

 

unit

 

ran.

 

data_log_length

 

Returns

 

the

 

total

 

number

 

of

 

data

 

log

 

records

 

that

 

have

 

been

 

recorded.

 

severity

 

Indicates

 

the

 

severity

 

of

 

a

 

diagnostic

 

failure.

   

Return

 

Value

 

The

 

major_rc

 

return

 

code

 

is

 

defined

 

as

 

the

 

output

 

from

 

a

 

test

 

unit.

 

This

 

is

 

the

 

same

 

value

 

contained

 

in

 

the

 

TU_RETURN_TYPE

 

structure.

 

Upon

 

successful

 

completion

 

with

 

no

 

failure,

 

a

 

value

 

of

 

0

 

should

 

be

 

returned

 

in

 

the

 

major_rc

 

field.

 

PCI

 

Configuration

 

Space

 

for

 

I/O

 

Devices

 

There

 

are

 

several

 

writable

 

fields

 

in

 

the

 

standard

 

PCI

 

Configuration

 

Header

 

for

 

PCI

 

devices.

 

They

 

are:

 

v

   

Command

 

Register

 

v

   

Latency

 

Timer

 

v

   

Cache

 

Line

 

Size

 

v

   

Base

 

Address

 

Registers

 

v

   

Expanded

 

ROM

 

Base

 

Address

 

v

   

Interrupt

 

Line

 

Some

 

of

 

these

 

are

 

written

 

by

 

the

 

firmware

 

and

 

should

 

never

 

be

 

changed

 

by

 

the

 

device

 

driver.

 

The

 

PCI

 

Configuration

 

Header

 

Programming

 

Table

 

must

 

be

 

followed

 

when

 

programming

 

the

 

PCI

 

Configuration

 

Header

 

registers.

   

60

 

Understanding

 

the

 

Diagnostic

 

Subsystem



PCI

 

Configuration

 

Header

 

Programming

 

Table

  

Register/Bit

 

Name

 

Firmware

 

Action

 

(Boot

 

or

 

ibm,

 

configure-connector

 

call)

 

Software

 

(Device

 

Driver)

 

Action

 

Command/Fast

 

Back-to-Back

 

Enable

 

Write

 

to

 

a

 

value

 

of

 

0

 

on

 

platforms

 

capable

 

of

 

PCI

 

Hot

 

Plug.

 

May

 

be

 

written

 

to

 

a

 

value

 

of

 

1

 

on

 

non-Hot-Plug

 

capable

 

platforms

 

if

 

all

 

I/O

 

devices

 

on

 

the

 

same

 

PCI

 

bus

 

are

 

capable

 

of

 

Fast

 

Back-to-Back

 

transfers.

 

Preserve

 

value

 

Command/SERR#

 

enable

 

Write

 

a

 

value

 

of

 

1

 

Command/Wait

 

cycle

 

control

 

Write

 

to

 

a

 

value

 

of

 

0

 

(may

 

be

 

hardwired

 

to

 

a

 

1,

 

so

 

may

 

be

 

a

 

1

 

when

 

read

 

even

 

after

 

being

 

written

 

to

 

a

 

0)

 

Command/Parity

 

Error

 

Response

 

Write

 

a

 

value

 

of

 

1

 

Command/VGA

 

Palette

 

snoop

 

Write

 

a

 

value

 

of

 

0

 

Command/Memory

 

Write

 

and

 

Invalidate

 

Enable

 

Write

 

to

 

0

 

(reset

 

value)

 

Command/Special

 

Cycles

 

Command/Bus

 

Master

 

Write

 

to

 

0

 

(reset

 

value)

 

unless

 

boot

 

device.

 

Must

 

write

 

to

 

a

 

1

 

before

 

the

 

first

 

DMA

 

operation.

 

Must

 

write

 

to

 

a

 

0

 

before

 

unconfiguring

 

device

 

driver.

 

Command/Memory

 

Space

 

Write

 

a

 

value

 

of

 

0

 

(reset

 

value)

 

unless

 

boot

 

device,

 

in

 

which

 

case

 

does

 

not

 

write

 

a

 

value

 

of

 

1

 

until

 

BARs

 

and

 

Expansion

 

ROM

 

Base

 

Address

 

are

 

set.

 

Only

 

written

 

to

 

a

 

1

 

if

 

that

 

specific

 

address

 

space

 

is

 

used

 

for

 

that

 

I/O

 

device.

 

Must

 

write

 

to

 

a

 

1

 

before

 

the

 

first

 

operation

 

(if

 

any)

 

to

 

the

 

I/O

 

devices

 

memory

 

space.

 

Must

 

write

 

to

 

a

 

0

 

before

 

unconfiguring

 

device

 

driver.

 

Command/IO

 

Space

 

Must

 

write

 

to

 

a

 

1

 

before

 

the

 

first

 

operation

 

(if

 

any)

 

to

 

the

 

I/O

 

devices

 

I/O

 

space.

 

Must

 

write

 

to

 

a

 

0

 

before

 

unconfiguring

 

device

 

driver.

 

Build-in

 

Self

 

Test

 

(BIST)

 

Write

 

a

 

value

 

of

 

0

 

If

 

BIST

 

is

 

implemented,

 

can

 

write

 

to

 

a

 

1

 

to

 

initiate

 

BIST

 

Latency

 

Timer

 

Initialize

 

to

 

a

 

system-specific

 

value

 

Preserve

 

value

 

Cache

 

Line

 

Size

 

Base

 

Address

 

Registers

 

Initialize

 

based

 

on

 

size

 

requested

 

and

 

address

 

space

 

available

 

Writes

 

based

 

on

 

the

 

ODM

 

M.n

 

and

 

O.n

 

customized

 

attributes

 

Expansion

 

ROM

 

Base

 

Address

 

Writes

 

based

 

on

 

the

 

ODM

 

M.n

 

and

 

O.n

 

customized

 

attributes.

 

Write

 

LSB

 

to

 

a

 

0

 

before

 

enabling

 

the

 

Command/Memory

 

Space

 

if

 

Expansion

 

ROM

 

not

 

used

 

by

 

software.

 

Interrupt

 

Line

 

Ignore

 

Ignore

 

-

 

get

 

information

 

from

 

ODM

    

Chapter

 

3.

 

Diagnostic

 

Components

 

61



Test

 

Unit

 

64-bit

 

Porting

 

Guide

 

Changes

 

to

 

the

 

pdiagex

 

kernel

 

extension

 

running

 

under

 

a

 

64-bit

 

kernel

 

were

 

designed

 

with

 

the

 

test

 

unit

 

developer

 

in

 

mind.

 

Most

 

of

 

the

 

changes

 

required

 

to

 

port

 

the

 

test

 

units

 

are

 

done

 

at

 

the

 

Second

 

Level

 

Interrupt

 

Handler

 

(SLIH)

 

level.

 

For

 

a

 

test

 

unit

 

developer

 

that

 

has

 

followed

 

the

 

architecture

 

specified

 

in

 

this

 

document,

 

the

 

changes

 

are

 

minor

 

and

 

will

 

require

 

minimal

 

testing.

 

Before

 

porting

 

an

 

existing

 

set

 

of

 

test

 

units,

 

it

 

is

 

important

 

to

 

understand

 

the

 

test

 

units

 

application

 

environment

 

as

 

well

 

as

 

the

 

64-bit

 

C

 

language

 

data

 

model

 

and

 

how

 

it

 

differs

 

from

 

the

 

32-bit

 

model.

 

Test

 

units

 

execute

 

as

 

32-bit

 

applications

 

under

 

a

 

32-bit

 

kernel

 

and

 

therefore

 

only

 

use

 

32-bit

 

kernel

 

extensions

 

(pdiagex).

 

This

 

porting

 

guide

 

describes

 

the

 

required

 

changes

 

to

 

the

 

test

 

units

 

and

 

SLIH

 

in

 

order

 

to

 

function

 

under

 

a

 

64-bit

 

kernel.

 

The

 

test

 

units

 

will

 

continue

 

executing

 

as

 

32-bit

 

applications:

 

only

 

the

 

SLIHs

 

will

 

be

 

64-bit

 

applications.

 

C

 

Language

 

Data

 

Model

 

The

 

C

 

language

 

data

 

model

 

used

 

in

 

the

 

32-bit

 

and

 

64-bit

 

operating

 

system

 

environments

 

are

 

defined

 

in

 

the

 

following

 

table.

 

You

 

must

 

consider

 

the

 

size

 

of

 

the

 

data

 

passed

 

from

 

the

 

Test

 

Units

 

to

 

the

 

SLIHs

 

and

 

back,

 

since

 

sizes

 

can

 

change

 

as

 

they

 

are

 

passed

 

from

 

one

 

environment

 

to

 

the

 

other.

 

Use

 

special

 

care

 

when

 

passing

 

information

 

in

 

the

 

form

 

of

 

structures

 

or

 

pointers.

  

C

 

Type

 

32-bit

 

Data

 

Size

 

64-bit

 

Data

 

Size

 

char

 

8

 

bits

 

8

 

bits

 

short

 

16

 

bits

 

16

 

bits

 

int

 

32

 

bits

 

32

 

bits

 

long

 

32

 

bits

 

64

 

bits

 

long

 

long

 

64

 

bits

 

64

 

bits

 

pointer

 

32

 

bits

 

64

 

bits

   

Makefile

 

To

 

support

 

32-bit

 

and

 

64-bit

 

SLIHs,

 

the

 

SLIH

 

Makefile

 

has

 

to

 

be

 

modified

 

to

 

build

 

two

 

executables;

 

one

 

for

 

32-bits

 

that

 

will

 

remain

 

named

 

as

 

it

 

is

 

today

 

and

 

one

 

for

 

the

 

64-bit

 

SLIH

 

which

 

will

 

have

 

64

 

appended

 

to

 

the

 

name.

  

File

 

Names

 

Syntax

 

Example

 

32-bit

 

filename

 

fcphal_intr

 

64-bit

 

filename64

 

fcpthal_intr64

   

Makefile

 

Source

 

Here

 

is

 

an

 

example

 

of

 

what

 

a

 

common

 

source

 

32-bit

 

and

 

64-bit

 

SLIH

 

Makefile

 

might

 

look

 

like:

Note:

  

Replace

 

the

 

environment

 

variables

 

and

 

file

 

names

 

with

 

your

 

own

 

names

 

to

 

customize

 

this

 

example

 

for

 

your

 

own

 

use.

#

 

@(#)17

     

1.1

  

src/idd/en_US/aixprggd/diagunsd/TU_64bit_port.htm,

 

iddiagunsd,

 

idd500

 

5/23/00

 

13:54:31

 

#

   

.include

 

<${MAKETOP}bos/kernext/Kernext.mk>

     

TU_VPATH

   

=

 

${MAKETOP}/bos/diag/tu/tu_dir

  

62

 

Understanding

 

the

 

Diagnostic

 

Subsystem



VPATH

      

=

 

${MAKETOP}bos/kernel/exp:${MAKETOP}bos/kernext/exp:$TU_VPATH

   

#

 

32-bit

 

version

 

of

 

load

 

object

 

#

 

KERNEL_EXT

      

=

 

your_intr

   

#

 

64-bit

 

version

 

of

 

load

 

object

 

#

 

KERNEL_EXT64

    

=

 

your_intr64

   

IDIR

            

=

 

/usr/lpp/diagnostics/slih/

   

#

 

install

 

list

 

containing

 

32-bit

 

and

 

64-bit

 

version

 

#

 

ILIST

           

=

 

your_intr

 

your_intr64

   

OPT_LEVEL

       

=

    

-qlist

 

-qsource

   

#

 

entry

 

point,

 

import

 

and

 

export

 

files

 

for

 

32-bit

 

version

 

#

 

your_intr_DEPENDS

        

=

 

your_intr.exp

 

your_intr_ENTRYPOINT

     

=

 

your_interrupt

 

your_intr_IMPORTS

        

=

 

-bI:pdiagex.exp

 

your_intr_EXPORTS

        

=

 

-bE:your_intr.exp

   

#

 

entry

 

point,

 

import

 

and

 

export

 

files

 

for

 

64-bit

 

version

 

#

 

(common

 

with

 

32-bit

 

version)

 

your_intr64_DEPENDS

      

=

 

your_intr.exp

 

your_intr64_ENTRYPOINT

   

=

 

your_interrupt

 

your_intr64_IMPORTS

      

=

 

-bI:pdiagex.exp

 

\

                                  

pdiagex64.exp

 

your_intr64_EXPORTS

      

=

 

-bE:your_intr.exp

   

#

 

object

 

list

 

definition

 

for

 

32-bit

 

version

 

#

 

your_intr_OFILES

     

=

  

your_intr.o

   

#

 

object

 

list

 

definition

 

for

 

64-bit

 

version

 

(common

 

objects

 

#

 

across

 

32-bit

 

and

 

64-bit

 

versions),

 

with

 

64-bit

 

objects

 

#

 

renamed

 

to

 

.64o

 

#

 

your_intr64_OFILES

   

=

  

your_intr.64o

   

INCFLAGS

   

=

 

-I${MAKETOP}/bos/diag/tu/tu_dir

 

\

              

-I${MAKETOP}bos/usr/include

 

LIBS

       

=

 

${KERNEXT_LIBS}

     

.include

 

<${RULES_MK}>

 

SLIH

 

Conversion

 

Tips

 

To

 

achieve

 

a

 

clean

 

SLIH

 

conversion,

 

pay

 

special

 

attention

 

to

 

the

 

following:

 

v

    

Any

 

source

 

code

 

that

 

assumes

 

that

 

int,

 

long

 

and

 

pointer

 

types

 

are

 

the

 

same

 

size

 

must

 

be

 

corrected

 

(reshaped)

 

for

 

64-bit

 

environment.

 

v

    

Review

 

any

 

type

 

casting,

 

since

 

the

 

underlying

 

data

 

types

 

may

 

have

 

changed.

 

v

    

Make

 

sure

 

that

 

any

 

data

 

structures

 

containing

 

long

 

types

 

and

 

pointers

 

are

 

checked

 

for

 

sizes,

 

especially

 

data

 

passed

 

between

 

test

 

units

 

and

 

SLIHs

 

(data_area).

 

Refer

 

to

 

the

 

C

 

Language

 

Data

 

Model

 

table.

 

Also

 

see

 

Interrupt

 

Handler

 

Call

 

Interface

 

to

 

make

 

sure

 

the

 

data_area

 

contains

 

the

 

proper

 

data

 

types.

 

When

 

long

 

types

 

or

 

pointers

 

(or

 

both)

 

are

 

passed

 

in

 

this

 

structure,

 

the

 

structure

 

must

 

be

 

reshaped

 

before

 

it

 

is

 

used

 

by

 

the

 

SLIH.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

63



v

    

Use

 

system-derived

 

types

 

for

 

type

 

declarations

 

whenever

 

possible.

SLIH

 

Conversion

 

Required

 

Changes

 

The

 

following

 

required

 

changes

 

must

 

be

 

applied

 

to

 

all

 

SLIHs

 

being

 

ported

 

to

 

64-bit

 

kernel:

 

1.

   

Performing

 

Read

 

Operations

 

to

 

a

 

Device

 

All

 

instances

 

of

 

pdiag_dd_read

 

will

 

have

 

to

 

be

 

duplicated

 

with

 

pdiag_dd_read_64

 

for

 

64-bit.

 

Every

 

place

 

where

 

pdiag_dd_read

 

is

 

used

 

for

 

a

 

32-bit

 

SLIH,

 

a

 

pdiag_dd_read_64

 

will

 

be

 

used

 

for

 

a

 

64-bit

 

SLIH.

 

This

 

will

 

be

 

accomplished

 

by

 

using

 

conditional

 

preprocessor

 

compiler

 

statements

 

(#ifdef).

 

Here

 

is

 

an

 

example

 

of

 

what

 

a

 

common

 

source

 

32-bit

 

and

 

64-bit

 

read

 

call

 

might

 

look

 

like:

 

#ifdef

 

__64BIT_KERNEL

      

rc

 

=

 

pdiag_dd_read_64(pdiagex_handle,

 

IOSHORT16,

 

io_addr,

 

&datas,

 

&flags);

 

#else

      

rc

 

=

 

pdiag_dd_read(pdiagex_handle,

 

IOSHORT16,

 

io_addr,

 

&datas,

 

&flags);

 

#endif

 

Notes:

  

a.

   

The

 

__64BIT_KERNEL

 

compiler

 

directive

 

is

 

defined

 

for

 

64-bit

 

kernel

 

compilers,

 

therefore

 

the

 

user

 

will

 

not

 

need

 

to

 

define

 

it.

 

b.

   

Special

 

case

 

for

 

IOLONG32

 

reads,

 

the

 

data

 

has

 

to

 

be

 

shifted

 

32-bits

 

right

 

after

 

the

 

function

 

call,

 

such

 

as,

 

(data

 

=

 

data

 

>>

 

32;).

 

c.

   

The

 

pdiag_dd_read_64

 

function

 

is

 

used

 

in

 

kernel

 

environment

 

only,

 

therefore

 

the

 

intrlev

 

flag

 

must

 

always

 

be

 

set

 

to

 

INTRKMEM.

2.

   

Performing

 

Write

 

Operations

 

to

 

a

 

Device

 

All

 

instances

 

of

 

pdiag_dd_write

 

have

 

to

 

be

 

duplicated

 

with

 

pdiag_dd_write_64

 

for

 

64-bit.

 

Every

 

place

 

where

 

pdiag_dd_write

 

is

 

used

 

for

 

a

 

32-bit

 

SLIH,

 

a

 

pdiag_dd_write_64

 

will

 

be

 

used

 

for

 

a

 

64-bit

 

SLIH.

 

This

 

will

 

be

 

accomplished

 

by

 

using

 

conditional

 

preprocessor

 

compiler

 

statements

 

(#ifdef).

 

Here

 

is

 

an

 

example

 

of

 

what

 

a

 

common

 

source

 

32-bit

 

and

 

64-bit

 

write

 

call

 

might

 

look

 

like:

 

#ifdef

 

__64BIT_KERNEL

         

rc

 

=

 

pdiag_dd_write_64(pdiagex_handle,

 

IOLONG32,

 

io_addr,

 

&datal,

 

&flags);

 

#else

         

rc

 

=

 

pdiag_dd_write(pdiagex_handle,

 

IOLONG32,

 

io_addr,

 

&datal,

 

&flags);

 

#endif

 

Notes:

  

a.

   

The

 

__64BIT_KERNEL

 

compiler

 

directive

 

is

 

defined

 

for

 

64-bit

 

kernel

 

compilers,

 

therefore

 

the

 

user

 

will

 

not

 

need

 

to

 

define

 

it.

 

b.

   

The

 

pdiag_dd_read_64

 

function

 

is

 

used

 

in

 

kernel

 

environment

 

only,

 

therefore

 

the

 

intrlev

 

flag

 

must

 

always

 

be

 

set

 

to

 

INTRKMEM.

3.

   

SLIH

 

function

 

prototype

 

The

 

SLIH

 

function

 

prototype

 

requires

 

change

 

in

 

the

 

type

 

declaration

 

for

 

*sleep_word

 

and

 

sleep_flag

 

as

 

follows:

 

int

 

your_interrupt(pdiag_info_handle_t

 

pdiagex_handle,

 

char

 

*data_area,

 

int

 

*interrupt_flag,

 

#ifdef

 

__64BIT_KERNEL

         

long

 

sleep_flag,

 

long

 

*sleep_word)

 

#else

         

int

 

sleep_flag,

 

int

 

*sleep_word)

 

#endif

   

64

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Related

 

Information

 

Chapter

 

3,

 

“Diagnostic

 

Components,”

 

on

 

page

 

11

 

for

 

general

 

information

 

on

 

how

 

to

 

write

 

interrupt

 

handlers.

 

Interrupt

 

Handler

 

Call

 

Interface

 

pdiag_dd_read,

 

pdiag_dd_read_64

 

functions

 

pdiag_dd_write,

 

pdiag_dd_write_64

 

functions

 

Microcode

 

Download/Display

 

Requirements

 

for

 

Test

 

Units

 

Any

 

adapter

 

or

 

device

 

that

 

has

 

resident

 

microcode

 

or

 

firmware

 

that

 

can

 

be

 

updated

 

in

 

the

 

field

 

has

 

a

 

separate

 

Test

 

unit

 

for

 

both

 

the

 

display

 

of

 

the

 

installed

 

microcode

 

or

 

firmware

 

level

 

and

 

the

 

installation

 

of

 

the

 

microcode

 

or

 

firmware.

 

Use

 

a

 

separate

 

Test

 

Unit

 

for

 

each

 

specific

 

function

 

(display

 

and

 

install)

 

as

 

follows:

  

Test

 

Unit

 

Description

 

Microcode

 

Display:

 

This

 

Test

 

Unit

 

provides

 

the

 

calling

 

application

 

with

 

all

 

the

 

present

 

microcode

 

revision

 

levels

 

residing

 

in

 

the

 

adapter

 

or

 

device

 

under

 

test.

 

All

 

device

 

specific

 

output

 

resulting

 

from

 

a

 

microcode

 

device

 

or

 

adapter

 

queries

 

are

 

passed

 

to

 

the

 

calling

 

application

 

using

 

OUTPUT_DATA

 

(*data_log)

 

as

 

defined

 

in

 

TU_INPUT_TYPE.

 

For

 

more

 

information

 

refer

 

to

 

Definition

 

of

 

EXECTU().

 

Microcode

 

Installation:

 

This

 

Test

 

Unit

 

provides

 

a

 

function

 

to

 

update

 

the

 

Adapter

 

or

 

Device

 

Microcode.

 

The

 

Microcode

 

file

 

name

 

is

 

passed

 

from

 

the

 

calling

 

application

 

using

 

INPUT_DATA

 

(*tu_data)

 

as

 

defined

 

in

 

TU_INPUT_TYPE.

 

For

 

more

 

information

 

refer

 

to

 

Definition

 

of

 

EXECTU().

   

Enhanced

 

Error

 

Handling

 

Option

 

The

 

Diagnostics

 

Test

 

Units

 

Application

 

interface

 

consists

 

of

 

adapting

 

all

 

read

 

functions

 

as

 

follows:

 

v

   

All

 

data

 

reads

 

for

 

the

 

adapter

 

must

 

be

 

verified

 

that

 

the

 

data

 

read

 

is

 

other

 

than

 

all

 

1s,

 

unless

 

otherwise

 

expected.

 

Any

 

data

 

reads

 

that

 

result

 

in

 

all

 

1s

 

produce

 

a

 

unique

 

error,

 

which

 

is

 

reported

 

to

 

the

 

Diagnostics

 

application.

 

v

   

A

 

test

 

unit

 

that

 

expects

 

all

 

1s

 

as

 

normal

 

operation,

 

because

 

of

 

a

 

particular

 

test’s

 

nature,

 

does

 

not

 

report

 

the

 

error

 

until

 

that

 

error

 

is

 

verified

 

by

 

the

 

requesting

 

data

 

as

 

being

 

caused

 

by

 

all

 

1s.

 

v

   

Diagnostics

 

application

 

developers

 

and

 

test

 

unit

 

developers

 

must

 

determine

 

jointly

 

a

 

unique

 

error

 

code

 

for

 

enhanced

 

error

 

handling.

Diagnostic

 

Kernel

 

Extension

 

This

 

section

 

describes

 

the

 

use

 

of

 

and

 

programming

 

interfaces

 

to

 

the

 

Diagnostic

 

Kernel

 

Extension

 

(PDIAGEX)

 

and

 

device

 

configuration

 

services.

 

The

 

pdiag_

 

calls

 

are

 

contained

 

in

 

/usr/lib/libpdiag.a.

 

The

 

pdiag_dd_

 

calls

 

are

 

contained

 

in

 

/usr/lib/drivers/pdiagex

 

kernel

 

extension.

 

The

 

following

 

topics

 

are

 

discussed

 

in

 

detail:

 

v

   

Overview

 

v

   

Device

 

Configuration

 

v

   

Loading

 

PDIAGEX

 

v

   

Second-Level

 

Interrupt

 

Handlers

 

v

   

Programming

 

Interfaces

 

for

 

libpdiag.a

   

Chapter

 

3.

 

Diagnostic

 

Components

 

65



v

   

Programming

 

Interfaces

 

for

 

PDIAGEX

 

v

   

Data

 

Dictionary

Overview

 

The

 

Portable

 

Diagnostic

 

Kernel

 

Extension

 

(PDIAGEX)

 

is

 

designed

 

to

 

allow

 

a

 

user-level

 

application

 

to

 

exercise

 

or

 

test

 

a

 

device

 

without

 

requiring

 

specialized

 

diagnostic

 

code

 

to

 

be

 

added

 

to

 

the

 

device

 

driver.

 

PDIAGEX

 

is

 

loaded

 

and

 

bound

 

into

 

the

 

kernel

 

by

 

the

 

Diagnostic

 

Controller

 

before

 

the

 

application

 

is

 

invoked.

 

PDIAGEX

 

provides

 

system

 

calls

 

for

 

reading

 

and

 

writing

 

device

 

registers,

 

performing

 

Direct

 

Memory

 

Access

 

(DMA),

 

and

 

handling

 

interrupts.

 

To

 

use

 

PDIAGEX

 

for

 

exercising

 

a

 

device,

 

make

 

the

 

device

 

unavailable

 

to

 

the

 

rest

 

of

 

the

 

system

 

by

 

invoking

 

device

 

methods

 

to

 

move

 

the

 

device

 

from

 

the

 

DEFINED

 

or

 

AVAILABLE

 

state

 

to

 

the

 

DIAGNOSE

 

state.

 

Once

 

the

 

device

 

is

 

in

 

the

 

DIAGNOSE

 

state,

 

the

 

device

 

may

 

be

 

exercised

 

using

 

PDIAGEX.

 

This

 

is

 

accomplished

 

by

 

using

 

the

 

libpdiag.a

 

call

 

pdiag_diagnose_state.

 

Applications

 

using

 

PDIAGEX

 

must

 

be

 

linked

 

with

 

the

 

pdiagex.exp

 

file

 

specified

 

as

 

an

 

import

 

file.

 

Device

 

Configuration

 

Using

 

PDIAGEX

 

requires

 

that

 

serialization

 

be

 

used

 

to

 

limit

 

access

 

to

 

the

 

adapters

 

by

 

the

 

diagnostics

 

and

 

the

 

normal

 

device

 

drivers.

 

Serialization

 

is

 

provided

 

by

 

the

 

device

 

configuration

 

software.

 

A

 

device

 

state,

 

DIAGNOSE,

 

is

 

defined.

 

The

 

state

 

is

 

identified

 

by

 

state=4

 

in

 

the

 

CuDv

 

object

 

for

 

the

 

device.

 

A

 

define

 

statement:

 

#define

 

DIAGNOSE

  

4

 

has

 

been

 

added

 

to

 

the

 

/usr/include/sys/cfgdb.h

 

file.

 

This

 

state

 

can

 

be

 

entered

 

only

 

from

 

the

 

DEFINED

 

state

 

and

 

only

 

by

 

running

 

the

 

/usr/lib/methods/cfgdiag

 

method.

 

From

 

the

 

DIAGNOSE

 

state,

 

a

 

device

 

can

 

be

 

changed

 

back

 

to

 

the

 

DEFINED

 

state

 

only

 

by

 

running

 

the

 

/usr/lib/methods/ucfgdiag

 

method.

 

Transitions

 

between

 

the

 

AVAILABLE

 

and

 

DIAGNOSE

 

states

 

are

 

not

 

allowed.

 

This

 

provides

 

a

 

mechanism

 

for

 

serializing

 

access

 

to

 

the

 

devices

 

that

 

support

 

this

 

DIAGNOSE

 

state.

 

While

 

in

 

the

 

AVAILABLE

 

state,

 

a

 

device’s

 

normal

 

device

 

driver

 

is

 

loaded

 

and

 

operational,

 

but

 

while

 

it

 

is

 

in

 

the

 

DIAGNOSE

 

state,

 

the

 

PDIAGEX

 

(or

 

separate

 

diagnostic

 

device

 

driver)

 

is

 

loaded

 

and

 

has

 

control

 

of

 

the

 

device.

 

The

 

/usr/lib/methods/cfgdiag

 

method

 

checks

 

that

 

the

 

parent

 

of

 

the

 

device

 

is

 

in

 

the

 

correct

 

state.

 

If

 

the

 

device

 

is

 

a

 

Micro

 

Channel

 

adapter,

 

it

 

verifies

 

that

 

the

 

adapter

 

is

 

in

 

the

 

slot.

 

Busresolve

 

then

 

runs

 

to

 

ensure

 

that

 

bus

 

resources

 

are

 

allocated

 

properly.

 

Two

 

diagnostic

 

library

 

routines

 

have

 

been

 

created

 

to

 

move

 

the

 

device

 

and

 

its

 

children

 

to

 

their

 

appropriate

 

states

 

for

 

testing.

 

The

 

routines

 

are

 

pdiag_diagnose_state

 

and

 

pdiag_restore_state.

 

Loading

 

PDIAGEX

 

The

 

Diagnostic

 

Controller

 

coordinates

 

the

 

loading

 

and

 

unloading

 

of

 

the

 

kernel

 

extensions

 

required

 

before

 

executing

 

the

 

Diagnostic

 

Application.

 

The

 

KernExt

 

field

 

in

 

the

 

PDiagRes

 

and

 

PDiagTask

 

object

 

class

 

is

 

used

 

to

 

tell

 

the

 

Controller

 

that

 

the

 

device

 

requires

 

a

 

kernel

 

extension.

 

This

 

is

 

a

 

’,’

 

comma-separated

 

list

 

of

 

required

 

kernel

 

extensions

 

for

 

the

 

application.

 

Each

 

kernel

 

extension

 

is

 

loaded

 

before

 

the

 

application

 

is

 

invoked.

   

66

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Second-Level

 

Interrupt

 

Handlers

 

All

 

second-level

 

interrupt

 

handlers

 

should

 

reside

 

in

 

the

 

directory

 

/usr/lpp/diagnostics/slih.

 

This

 

directory

 

is

 

defined

 

by

 

environment

 

variable

 

DIAGX_SLIH_DIR.

 

Avoid

 

code

 

names

 

at

 

all

 

times.

 

Use

 

the

 

component

 

name

 

if

 

applicable.

 

Programming

 

Interfaces

 

for

 

libpdiag.a

 

This

 

section

 

provides

 

information

 

on

 

application

 

programming

 

interfaces

 

to

 

the

 

Portable

 

Diagnostic

 

library.

 

v

   

pdiag_diagnose_state

 

v

   

pdiag_diagnose_multifunc_state

 

v

   

pdiag_restore_state

 

v

   

pdiag_restore_multifunc_state

 

v

   

pdiag_cs_open

 

v

   

pdiag_cs_close

 

v

   

pdiag_cs_get_attr

 

v

   

pdiag_cs_free_attr

 

v

   

pdiag_open

 

v

   

pdiag_close

 

v

   

pdiag_pcicfg_read

 

v

   

pdiag_pcicfg_write

 

v

   

pdiag_set_eeh_option

 

v

   

pdiag_shared_slot

 

v

   

pdiag_read_slot_reset

 

v

   

pdiag_set_slot_reset

pdiag_diagnose_state

 

Purpose

 

Puts

 

the

 

device

 

under

 

test

 

into

 

the

 

correct

 

state

 

for

 

testing.

 

Syntax

 

#include

 

<sys/pdiag_def.h>

   

int32

  

pdiag_diagnose_state

 

(

 

char

 

*device_instance

 

)

 

Description

 

The

 

pdiag_diagnose_state

 

subroutine

 

unconfigures

 

the

 

device,

 

and

 

its

 

children

 

if

 

necessary,

 

to

 

set

 

the

 

device

 

into

 

the

 

DIAGNOSE

 

state.

 

Original

 

states

 

of

 

all

 

devices

 

changed

 

will

 

be

 

saved.

 

Use

 

pdiag_restore_state

 

to

 

put

 

the

 

changed

 

devices

 

back

 

to

 

their

 

original

 

states.

 

This

 

function

 

is

 

platform-implementation

 

specific.

 

Its

 

main

 

purpose

 

is

 

to

 

make

 

sure

 

that

 

the

 

target

 

device

 

is

 

in

 

the

 

correct

 

state

 

for

 

diagnostic

 

purposes

 

and

 

that

 

the

 

Enhanced

 

Error

 

Handling

 

(EEH)

 

option

 

is

 

enabled

 

during

 

the

 

test.

 

If

 

the

 

device

 

is

 

already

 

in

 

a

 

diagnostic

 

state,

 

or

 

any

 

state

 

allowed

 

by

 

the

 

operating

 

system

 

for

 

this

 

purpose,

 

then

 

this

 

function

 

should

 

return

 

a

 

successful

 

status

 

value

 

of

 

zero.

 

If

 

an

 

error

 

occurs,

 

then

 

this

 

function

 

should

 

return

 

a

 

non-zero

 

value.

 

The

 

global

 

variable

 

diag_cfg_errno

 

will

 

be

 

set

 

to

 

the

 

return

 

value

 

of

 

the

 

method

 

invoked

 

for

 

the

 

device.

 

Parameters

  

Parameter

 

Description

 

device_instance

 

Name

 

of

 

the

 

device

 

under

 

test.

    

Chapter

 

3.

 

Diagnostic

 

Components

 

67



Return

 

Value

 

The

 

pdiag_diagnose_state

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

0

 

Successful

 

return.

 

-1

 

Software

 

error.

 

1

 

Error

 

putting

 

device

 

in

 

diagnose

 

state.

 

-2

 

EEH

 

hardware

 

error.

   

Related

 

Information

 

The

 

pdiag_diagnose_multifunc_state,

 

pdiag_restore_state,

 

and

 

pdiag_restore_multifunc_state

 

subroutines.

 

pdiag_diagnose_multifunc_state

 

Purpose

 

Puts

 

a

 

single

 

function

 

device,

 

a

 

multifunction

 

non-bridged

 

device,

 

and

 

a

 

bridged

 

device

 

under

 

test,

 

into

 

the

 

correct

 

state

 

for

 

testing.

 

Syntax

 

#include

 

<sys/pdiag_def.h>

 

int32

 

pdiag_diagnose_multifunc_state

 

(char

 

*device_instance,

 

int

 

eeh_activate)

 

Description

 

The

 

pdiag_diagnose_multifunc_state

 

subroutine

 

unconfigures

 

the

 

device,

 

and

 

its

 

children

 

if

 

necessary,

 

to

 

set

 

the

 

device

 

into

 

the

 

DIAGNOSE

 

state.

 

The

 

original

 

states

 

of

 

all

 

changed

 

devices

 

will

 

be

 

saved.

 

Use

 

pdiag_restore_multifunc_state

 

to

 

put

 

the

 

changed

 

devices

 

back

 

to

 

their

 

original

 

states.

 

This

 

function

 

is

 

platform-implementation

 

specific.

 

Its

 

main

 

purpose

 

is

 

to

 

make

 

sure

 

that

 

the

 

target

 

device

 

is

 

in

 

the

 

correct

 

state

 

for

 

diagnostic

 

purposes,

 

and

 

that

 

the

 

Enhanced

 

Error

 

Handling

 

(EEH)

 

option

 

is

 

enabled

 

during

 

test.

 

If

 

the

 

device

 

is

 

already

 

in

 

a

 

diagnostic

 

state,

 

or

 

any

 

state

 

allowed

 

by

 

the

 

operating

 

system

 

for

 

this

 

purpose,

 

this

 

function

 

should

 

return

 

successful

 

status.

 

If

 

an

 

error

 

occurs,

 

this

 

function

 

should

 

return

 

a

 

non-zero.

 

The

 

global

 

variable,

 

diag_cfg_errno,

 

will

 

be

 

set

 

to

 

the

 

return

 

value

 

of

 

the

 

method

 

invoked

 

for

 

the

 

device.

 

Parameters

  

Parameter

 

Description

 

device_instance

 

Name

 

of

 

device

 

under

 

test.

 

eeh_activate

 

0

 

Do

 

not

 

enable

 

the

 

EEH

 

option

 

1

 

Enable

 

the

 

EEH

 

option

 

for

 

bridged

 

adapters

 

2

 

Enable

 

the

 

EEH

 

option

 

for

 

multifunction

 

non-bridged

 

adapters

 

3

 

Enable

 

the

 

EEH

 

option

 

for

 

single

 

function

 

adapters

   

Return

 

Value

 

The

 

pdiag_diagnose_multifunc_state

 

subroutine

 

function

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

0

 

Successful

 

return

 

-1

 

Software

 

error

 

1

 

Error

 

putting

 

device

 

in

 

diagnose

 

state

 

-2

 

Hardware

 

error

    

68

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Related

 

Information

 

The

 

pdiag_diagnose_state,

 

pdiag_restore_state,

 

and

 

pdiag_restore_multifunc_state

 

subroutines.

 

pdiag_restore_state

 

Purpose

 

Restores

 

resource

 

and

 

children

 

to

 

their

 

initial

 

state

 

before

 

testing.

 

Syntax

 

#include

    

<sys/pdiag_def.h>

   

int32

  

pdiag_restore_state

 

(

 

char

 

*device_instance

 

)

 

Description

 

The

 

pdiag_restore_state

 

subroutine

 

puts

 

the

 

device,

 

and

 

its

 

children

 

if

 

necessary,

 

back

 

to

 

the

 

original

 

state

 

before

 

the

 

pdiag_diagnose_state

 

routine

 

was

 

called.

 

This

 

function

 

is

 

platform-implementation

 

specific.

 

Its

 

main

 

purpose

 

is

 

to

 

make

 

sure

 

that

 

the

 

target

 

device

 

is

 

back

 

in

 

its

 

original

 

state

 

prior

 

to

 

performing

 

diagnostics

 

on

 

the

 

device,

 

and

 

that

 

the

 

Enhanced

 

Error

 

Handling

 

(EEH)

 

option

 

is

 

disabled.

 

If

 

the

 

device

 

is

 

already

 

in

 

the

 

correct

 

state,

 

then

 

this

 

function

 

should

 

return

 

a

 

successful

 

status

 

value

 

of

 

zero.

 

If

 

an

 

error

 

occurs,

 

then

 

this

 

function

 

should

 

return

 

a

 

non-zero

 

value.

 

Parameters

  

Parameter

 

Description

 

device_instance

 

Name

 

of

 

the

 

device

 

under

 

test.

   

Return

 

Value

 

The

 

pdiag_restore_state

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

0

 

Successful

 

return.

 

-1

 

Software

 

error.

 

1

 

Error

 

restoring

 

device

 

to

 

initial

 

state.

 

-2

 

EEH

 

hardware

 

error.

   

Related

 

Information

 

The

 

pdiag_diagnose_state,

 

pdiag_diagnose_multifunc_state,

 

and

 

pdiag_restore_multifunc_state

 

subroutines.

 

pdiag_restore_multifunc_state

 

Purpose

 

Restores

 

a

 

device

 

and

 

its

 

children

 

to

 

their

 

initial

 

state

 

before

 

testing.

 

Syntax

 

#include

 

<sys/pdiag_def.h>

 

int32

 

pdiag_restore_multifunc_state

 

(char

 

*device_instance,

 

int

 

eeh_activate)

 

Description

 

The

 

pdiag_restore_multifunc_state

 

subroutine

 

puts

 

the

 

device,

 

and

 

its

 

children

 

if

 

necessary,

 

back

 

to

 

the

 

original

 

state

 

before

 

the

 

pdiag_diagnose_multifunc_state

 

routine

 

was

 

called.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

69



This

 

function

 

is

 

platform-implementation

 

specific.

 

Its

 

main

 

purpose

 

is

 

to

 

make

 

sure

 

that

 

the

 

target

 

device

 

is

 

back

 

in

 

its

 

original

 

state

 

before

 

diagnostic

 

functions

 

were

 

performed

 

on

 

the

 

device

 

and

 

the

 

Enhanced

 

Error

 

handling

 

(EEH)

 

option

 

is

 

returned

 

to

 

the

 

state

 

originally

 

encountered.

 

If

 

the

 

device

 

is

 

already

 

in

 

the

 

correct

 

state,

 

this

 

function

 

should

 

return

 

a

 

successful

 

status.

 

If

 

an

 

error

 

occurs,

 

this

 

function

 

should

 

return

 

a

 

non-zero.

 

Parameters

  

Parameter

 

Description

 

device_instance

 

Name

 

of

 

device

 

under

 

test.

 

eeh_activate

 

0

 

Do

 

not

 

disable

 

the

 

EEH

 

option

 

1

 

Disable

 

the

 

EEH

 

option

   

Return

 

Value

 

The

 

pdiag_restore_multifunc_state

 

function

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

0

 

Successful

 

return

 

-1

 

Software

 

error

 

1

 

Error

 

putting

 

device

 

in

 

diagnose

 

state

 

-2

 

Hardware

 

error

   

Related

 

Information

 

The

 

pdiag_restore_state,

 

pdiag_diagnose_state,

 

and

 

pdiag_diagnose_multifunc_state

 

subroutines.

 

pdiag_cs_open

 

Purpose

 

Opens

 

and

 

initializes

 

the

 

configuration

 

services,

 

which

 

are

 

used

 

to

 

obtain

 

device

 

information.

 

This

 

is

 

the

 

Object

 

Data

 

Manager

 

(ODM).

 

Syntax

 

int32

 

pdiag_cs_open

 

(

 

)

 

Description

 

The

 

pdiag_cs_open

 

subroutine

 

issues

 

an

 

odm_initialize

 

call

 

to

 

the

 

Object

 

Data

 

Manager.

 

Parameters

 

Takes

 

no

 

parameters.

 

Return

 

Value

 

A

 

value

 

of

 

0

 

is

 

always

 

returned.

 

pdiag_cs_close

 

Purpose

 

Closes

 

the

 

configuration

 

services,

 

which

 

are

 

used

 

to

 

obtain

 

device

 

information.

 

This

 

is

 

the

 

Object

 

Data

 

Manager

 

(ODM).

 

Syntax

 

int32

 

pdiag_cs_close

 

(

 

)

 

Description

 

The

 

pdiag_cs_close

 

subroutine

 

issues

 

an

 

odm_terminate

 

call

 

to

 

the

 

Object

 

Data

 

Manager.

   

70

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Parameters

 

Takes

 

no

 

parameters.

 

Return

 

Value

 

A

 

value

 

of

 

0

 

is

 

always

 

returned.

 

pdiag_cs_get_attr

 

Purpose

 

Returns

 

resource

 

attribute

 

information.

 

Syntax

 

int32

 

pdiag_cs_get_attr

 

(

 

char

 

*device_instance,

 

char

 

*attribute,

                 

char

 

**cvalue,

 

char

 

*type

 

)

 

Description

 

The

 

pdiag_cs_get_attr

 

subroutine

 

searches

 

the

 

data

 

configuration

 

database

 

to

 

obtain

 

the

 

value

 

of

 

the

 

attribute

 

for

 

the

 

device.

 

The

 

value

 

and

 

type

 

is

 

returned

 

to

 

the

 

calling

 

application.

 

Parameters

  

Parameter

 

Description

 

device_instance

 

Name

 

of

 

the

 

device

 

under

 

test.

 

attribute

 

Character

 

string

 

describing

 

attribute

 

to

 

be

 

retrieved.

 

Supported

 

device

 

attribute

 

names:

 

alias

 

alt_addr

 

attn_mac

 

beacon_mac

 

bus_addr_start

 

bus_id

 

bus_intr_lvl

 

bus_io_addr

 

bus_io_length

 

bus_mem_addr

 

bus_mem_start

 

bus_type

 

dma1_start

 

dma2_start

 

dma3_start

 

dma4_start

 

dma_bus_mem

 

dma_channel

 

dma_lvl

 

gd_frequency

 

int_level

 

intr_priority

 

rcv_que_size

 

ring_speed

 

use_alt_addr

 

vram_start

 

xmt_que_size

 

cvalue

 

Pointer

 

to

 

data

 

buffer,

 

set

 

by

 

this

 

function

 

to

 

address

 

of

 

buffer

 

allocated

 

to

 

hold

 

the

 

attribute

 

data.

 

type

 

Character

 

set

 

by

 

this

 

function

 

to

 

indicate

 

the

 

returned

 

data

 

type.

 

Supported

 

data

 

types

 

are:

 

s

 

String

 

i

 

Long

 

integer

    

Chapter

 

3.

 

Diagnostic

 

Components

 

71



Return

 

Value

 

A

 

value

 

of

 

0

 

is

 

returned

 

if

 

successful.

 

pdiag_cs_free_attr

 

Purpose

 

Frees

 

a

 

buffer

 

allocated

 

by

 

a

 

pdiag_cs_get_attr

 

request.

 

Syntax

 

int32

 

pdiag_cs_free_attr

 

(

 

char

 

*cvalue

 

)

 

Description

 

The

 

pdiag_cs_free_attr

 

subroutine

 

frees

 

the

 

buffer

 

allocated

 

by

 

a

 

previous

 

pdiag_cs_get_attr

 

call.

 

Parameters

  

Parameter

 

Description

 

cvalue

 

Pointer

 

to

 

previously

 

allocated

 

data

 

buffer.

   

Return

 

Value

 

A

 

value

 

of

 

0

 

is

 

returned

 

if

 

successful.

 

pdiag_open

 

Purpose

 

Prepares

 

a

 

resource

 

for

 

testing.

 

Syntax

 

#include

 

<sys/pdiagex_dds.h>

 

#include

 

<sys/pdiag_def.h>

   

int32

 

pdiag_open(

 

device_instance,

 

dds_ptr,

 

int_handler,

 

handle

 

)

   

pdiag_addr_t

         

device_instance;

 

pdiagex_dds_t

       

*dds_ptr;

 

pdiag_addr_t

         

int_handler;

 

pdiag_info_handle_t

 

*handle;

 

Description

 

The

 

pdiag_open()

 

function

 

allocates

 

memory

 

for

 

a

 

handle

 

for

 

this

 

particular

 

resource.

 

The

 

pdiagex_dds_t

 

structure

 

contains

 

information

 

about

 

the

 

resource

 

to

 

be

 

tested.

 

The

 

Test

 

Unit

 

code

 

must

 

initialize

 

the

 

data

 

in

 

this

 

structure

 

before

 

calling

 

pdiag_open.

 

The

 

returned

 

pdiag_info_handle_t

 

structure

 

is

 

the

 

handle

 

created

 

for

 

the

 

resource.

 

The

 

Test

 

Unit

 

does

 

not

 

need

 

to

 

know

 

any

 

of

 

the

 

internal

 

details

 

of

 

this

 

structure,

 

but

 

must

 

retain

 

the

 

pointer

 

for

 

use

 

in

 

subsequent

 

function

 

calls.

 

The

 

DMA

 

channel

 

is

 

initialized

 

by

 

calling

 

the

 

d_init

 

kernel

 

service

 

and

 

then

 

the

 

DMA

 

channel

 

is

 

unmasked

 

for

 

transfer;

 

that

 

is,

 

you

 

are

 

not

 

required

 

to

 

do

 

a

 

pdiag_dd_dma_setup().

 

For

 

Micro

 

Channel

 

bus_types,

 

it

 

also

 

initializes

 

a

 

DMA

 

TCW

 

management

 

table

 

to

 

indicate

 

that

 

all

 

buffers

 

are

 

available.

 

If

 

a

 

user

 

interrupt-handler

 

routine

 

exists,

 

it

 

pins

 

the

 

handler,

 

initializes

 

this

 

handler

 

(using

 

the

 

i_init

 

kernel

 

service),

 

and

 

allocates

 

memory

 

for

 

interrupt

 

data.

 

Both

 

this

 

routine

 

and

 

pdiag_close()

 

share

 

a

 

common

 

lock

 

while

 

executing

 

to

 

prevent

 

simultaneous

 

resource

 

allocation/deallocation.

 

If

 

a

 

call

 

is

 

made

 

to

 

this

 

routine

 

or

 

pdiag_close()

 

while

 

the

 

lock

 

is

 

being

 

held

 

by

 

a

 

previous

 

call,

 

the

 

calling

 

process

 

will

 

sleep

 

until

 

the

 

routine

 

is

 

available.

Note:

  

In

 

some

 

instances,

 

the

 

members

 

of

 

the

 

dds

 

structure

 

may

 

not

 

be

 

necessary.

 

For

 

example,

 

if

 

dds->bus_type

 

is

 

equal

 

to

 

BUS_60X,

 

the

 

dds

 

members,

 

bus_io_addr,

 

bus_io_length,

   

72

 

Understanding

 

the

 

Diagnostic

 

Subsystem



dma_bus_addr,

 

dma_bus_length,

 

dma_lvl,

 

dma_flags,

 

and

 

dma_chan_id

 

are

 

not

 

used

 

and

 

are

 

ignored

 

by

 

PDIAGEX.

 

See

 

“Programming

 

Interfaces

 

for

 

libpdiag.a”

 

on

 

page

 

67.

 

Execution

 

Environment

 

The

 

pdiag_open()

 

function

 

can

 

be

 

called

 

from

 

the

 

process

 

environment

 

only.

 

Parameters

  

Parameter

 

Description

 

device_instance

 

Pointer

 

to

 

the

 

string

 

name

 

of

 

the

 

specific

 

device

 

to

 

open.

 

dds_ptr

 

Points

 

to

 

a

 

pdiagex_dds_t

 

structure

 

which

 

should

 

already

 

be

 

initialized

 

with

 

attributes

 

for

 

the

 

particular

 

resource

 

described

 

by

 

the

 

dds

 

(see

 

″

 

Data

 

Dictionary″).

 

int_handler

 

Pointer

 

to

 

the

 

string

 

name

 

of

 

the

 

interrupt

 

handler

 

to

 

be

 

loaded.

 

handle

 

Returned

 

pointer

 

to

 

diagnostic

 

resource

 

handle.

   

Return

 

Value

 

The

 

pdiag_open

 

function

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

DGX_OK

 

The

 

operation

 

was

 

successful.

 

The

 

errno

 

is

 

not

 

set.

 

DGX_BOUND_FAIL

 

An

 

input

 

parameter

 

is

 

out

 

of

 

bounds

 

(dds.dma_bus_len

 

is

 

not

 

a

 

multiple

 

of

 

PAGESIZE

 

or

 

zero)

 

(Micro

 

Channel

 

bus

 

type

 

only).

 

The

 

errno

 

is

 

not

 

set.

 

DGX_BADVAL_FAIL

 

An

 

input

 

parameter

 

(dds.bus_type)

 

is

 

not

 

valid.

 

The

 

errno

 

is

 

not

 

set.

 

DGX_INVALID_HANDLE

 

Specified

 

handle

 

pointer

 

is

 

not

 

valid.

 

The

 

errno

 

is

 

set

 

to

 

the

 

suword()

 

return

 

code.

 

DGX_COPYDDS_FAIL

 

Application

 

could

 

not

 

copy

 

the

 

dds

 

information.

 

The

 

errno

 

is

 

set

 

to

 

the

 

copyin()/copyout()

 

return

 

code.

 

DGX_DINIT_FAIL

 

Application

 

could

 

not

 

initialize

 

the

 

DMA

 

channel.

 

The

 

errno

 

is

 

set

 

to

 

the

 

d_init()

 

return

 

code.

 

DGX_IINIT_FAIL

 

Application

 

could

 

not

 

initialize

 

the

 

user’s

 

interrupt

 

handler.

 

The

 

errno

 

is

 

set

 

to

 

the

 

i_init()

 

return

 

code.

 

DGX_KMOD_FAIL

 

Application

 

could

 

not

 

locate

 

the

 

user’s

 

interrupt

 

handler

 

in

 

kernel

 

space.

 

The

 

errno

 

is

 

set

 

to

 

the

 

kmod_entrypt()

 

return

 

code.

 

DGX_PINCODE_FAIL

 

Application

 

could

 

not

 

pin

 

the

 

user’s

 

interrupt

 

handler

 

or

 

the

 

interrupt

 

environment

 

PDIAGEX

 

functions.

 

The

 

errno

 

is

 

set

 

to

 

the

 

pincode()

 

return

 

code.

 

DGX_PINU_FAIL

 

Application

 

could

 

not

 

pin

 

the

 

specified

 

user

 

buffer.

 

The

 

errno

 

is

 

set

 

to

 

the

 

pinu()

 

return

 

code.

 

DGX_XMALLOC_FAIL

 

Application

 

could

 

not

 

allocate

 

resources.

 

The

 

errno

 

is

 

set

 

to

 

the

 

xmalloc()

 

return

 

code.

 

DGX_XMATTACH_FAIL

 

Application

 

could

 

not

 

attach

 

user

 

buffer

 

to

 

the

 

physical

 

address.

 

The

 

errno

 

is

 

set

 

to

 

the

 

xmattach()

 

return

 

code.

   

Related

 

Information

 

pdiag_close()

 

function.

 

pdiag_close

 

Purpose

 

Frees

 

up

 

PDIAGEX

 

Kernel

 

Extension

 

resources.

 

Syntax

 

#include

 

<sys/pdiagex_dds.h>

 

#include

 

<sy/pdiag_def.h>

   

int

 

pdiag_close(

 

handle

 

)

 

pdiag_info_handle_t

  

handle;

   

Chapter

 

3.

 

Diagnostic

 

Components

 

73



Description

 

The

 

pdiag_close()

 

function

 

frees

 

the

 

DMA

 

and

 

interrupt

 

channels,

 

if

 

they

 

were

 

initialized.

 

This

 

function

 

also

 

masks

 

the

 

DMA

 

channel;

 

that

 

is,

 

you

 

are

 

not

 

required

 

to

 

do

 

a

 

pdiag_dd_dma_complete().

 

Any

 

memory

 

that

 

was

 

allocated,

 

pinned,

 

or

 

cross-memory

 

attached

 

is

 

detached,

 

unpinned,

 

and

 

freed

 

appropriately.

 

If

 

this

 

is

 

the

 

last

 

use

 

of

 

the

 

user’s

 

interrupt-handler

 

routine,

 

it

 

is

 

unloaded

 

from

 

kernel

 

memory.

 

Both

 

this

 

routine

 

and

 

pdiag_open()

 

share

 

a

 

common

 

lock

 

while

 

executing

 

to

 

prevent

 

simultaneous

 

resource

 

allocation

 

and

 

deallocation.

 

If

 

a

 

call

 

is

 

made

 

to

 

this

 

routine

 

or

 

pdiag_open()

 

while

 

the

 

lock

 

is

 

being

 

held

 

by

 

a

 

previous

 

call,

 

the

 

calling

 

process

 

will

 

sleep

 

until

 

the

 

routine

 

is

 

available.

Note:

  

All

 

pdiag_dd_dma_setup()

 

)

 

calls

 

should

 

be

 

matched

 

with

 

a

 

pdiag_dd_dma_complete()

 

call

 

prior

 

to

 

calling

 

this

 

routine.

 

Any

 

outstanding

 

DMA

 

operations

 

results

 

in

 

the

 

failure

 

of

 

this

 

routine.

 

Execution

 

Environment

 

The

 

pdiag_close()

 

function

 

can

 

be

 

called

 

from

 

the

 

process

 

environment

 

only.

 

Parameters

  

Parameter

 

Description

 

handle

 

Pointer

 

to

 

pdiag_info_handle_t

 

structure

 

which

 

is

 

returned

 

from

 

pdiag_open().

   

Return

 

Value

 

The

 

pdiag_close

 

function

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

DGX_OK

 

The

 

operation

 

was

 

successful.

 

The

 

errno

 

is

 

not

 

set.

 

DGX_INVALID_HANDLE

 

Specified

 

handle

 

has

 

been

 

closed

 

or

 

was

 

not

 

generated

 

by

 

the

 

(pdiag_open)

 

call.

 

The

 

errno

 

is

 

not

 

set.

 

DGX_OUTSTANDINGDMA_FAIL

 

An

 

outstanding

 

DMA

 

operation

 

is

 

preventing

 

closure.

 

The

 

errno

 

is

 

not

 

set.

   

Related

 

Information

 

pdiag_open

 

subroutine.

 

pdiag_pcicfg_read

 

Purpose

 

Reads

 

a

 

PCI

 

Configuration

 

register.

 

Syntax

 

#include

 

<sys/pdiagex_dds.h>

 

#include

 

<sys/pdiag_def.h>

   

int32

 

pdiag_pcicfg_read(

 

device_instance,

 

reg_offset,

 

datasize,

 

data

 

)

   

pdiag_addr_t

         

device_instance;

 

ulong

                

reg_offset;

 

int

                  

datasize;

 

uchar

                

*data;

 

Description

 

The

 

pdiag_pcicfg_read()

 

function

 

reads

 

8,

 

16,

 

or

 

32

 

bits

 

of

 

a

 

PCI

 

Configuration

 

register

 

for

 

this

 

particular

 

resource.

 

The

 

reg_offset

 

parameter

 

contains

 

the

 

register

 

offset

 

into

 

the

 

device’s

 

PCI

 

configuration

 

table.

 

The

 

calling

 

application

 

must

 

provide

 

a

 

valid

 

register

 

offset

 

before

 

calling

 

pdiag_pcicfg_read.

 

The

 

returned

   

74

 

Understanding

 

the

 

Diagnostic

 

Subsystem



data

 

is

 

the

 

8,

 

16,

 

or

 

32

 

bit

 

value

 

read

 

from

 

the

 

PCI

 

register

 

configuration

 

table.

 

All

 

the

 

byte

 

swapping

 

required

 

is

 

performed

 

internally

 

by

 

this

 

function;

 

the

 

calling

 

application

 

must

 

not

 

alter

 

the

 

byte

 

positioning

 

of

 

the

 

data.

 

Execution

 

Environment

 

The

 

pdiag_pcicfg_read()

 

function

 

can

 

be

 

called

 

from

 

the

 

process

 

environment

 

only.

 

Parameters

  

Parameter

 

Description

 

device_instance

 

Pointer

 

to

 

the

 

string

 

name

 

of

 

the

 

specific

 

device

 

to

 

read.

 

reg_offset

 

Contains

 

the

 

offset

 

within

 

the

 

PCI

 

configuration

 

table

 

register

 

to

 

be

 

read.

 

datasize

 

The

 

data

 

size

 

will

 

be

 

specified

 

as

 

follows:

 

Size

 

Type

 

8

 

bits

 

IOCHAR8

 

16

 

bits

 

IOSHORT16

 

32

 

bits

 

IOLONG32

 

data

 

Pointer

 

to

 

the

 

data

 

to

 

be

 

read

 

within

 

the

 

PCI

 

Configuration

 

Table.

 

Note:

 

The

 

value

 

read

 

is

 

the

 

specified

 

size

 

on

 

the

 

datasize

 

parameter.

   

Return

 

Value

 

The

 

pdiag_pcicfg_read

 

function

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

0

 

Successful

 

return

 

-1

 

Software

 

error

   

Related

 

Information

 

The

 

pdiag_pcicfg_write()

 

function.

 

pdiag_pcicfg_write

 

Purpose

 

Writes

 

to

 

a

 

PCI

 

Configuration

 

register.

 

Syntax

 

#include

 

<sys/pdiagex_dds.h>

 

#include

 

<sys/pdiag_def.h>

   

int32

 

pdiag_pcicfg_write(

 

device_instance,

 

reg_offset,

 

datasize,

 

data

 

)

   

pdiag_addr_t

         

device_instance;

 

ulong

                

reg_offset;

 

int

                  

datasize;

 

uchar

                

data;

 

Description

 

The

 

pdiag_pcicfg_write()

 

function

 

writes

 

8,

 

16,

 

or

 

32

 

bits

 

to

 

a

 

PCI

 

Configuration

 

register

 

for

 

this

 

particular

 

resource.

 

The

 

reg_offset

 

parameter

 

contains

 

the

 

register

 

offset

 

into

 

the

 

device’s

 

PCI

 

configuration

 

table.

 

The

 

Test

 

Unit

 

code

 

must

 

provide

 

a

 

valid

 

register

 

offset

 

when

 

calling

 

pdiag_pcicfg_write.

 

The

 

data

 

value

 

is

 

the

 

8,

 

16,

 

or

 

32

 

bit

 

value

 

to

 

be

 

written

 

to

 

the

 

PCI

 

register

 

configuration

 

table

 

depending

 

on

 

the

 

data

 

size

 

specified

 

in

 

the

 

datasize

 

parameter.

 

All

 

the

 

byte

 

swapping

 

required

 

is

 

performed

 

internally

 

by

 

this

 

function;

 

the

 

calling

 

application

 

must

 

not

 

alter

 

the

 

byte

 

positioning

 

of

 

the

 

data.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

75



Execution

 

Environment

 

The

 

pdiag_pcicfg_write()

 

function

 

can

 

be

 

called

 

from

 

the

 

process

 

environment

 

only.

 

Parameters

  

Parameter

 

Description

 

device_instance

 

Pointer

 

to

 

the

 

string

 

name

 

of

 

the

 

specific

 

device

 

to

 

write.

 

reg_offset

 

Contains

 

the

 

offset

 

within

 

the

 

PCI

 

configuration

 

table

 

register

 

to

 

be

 

written.

 

datasize

 

The

 

data

 

size

 

will

 

be

 

specified

 

as

 

follows:

 

Size

 

Type

 

8

 

bits

 

IOCHAR8

 

16

 

bits

 

IOSHORT16

 

32

 

bits

 

IOLONG32

 

data

 

Contains

 

the

 

value

 

to

 

be

 

written

 

to

 

a

 

specific

 

PCI

 

register.

 

Note:

 

The

 

size

 

of

 

the

 

value

 

must

 

be

 

specified

 

in

 

the

 

datasize

 

parameter

 

and

 

must

 

be

 

IOCHAR8,

 

IOSHORT16,

 

or

 

IOLONG32.

   

Return

 

Value

 

The

 

pdiag_pcicfg_write

 

function

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

0

 

Successful

 

return

 

-1

 

Software

 

error

   

Related

 

Information

 

The

 

pdiag_pcicfg_read

 

subroutine.

 

Programming

 

Interfaces

 

for

 

PDIAGEX

 

This

 

section

 

provides

 

information

 

on

 

application

 

programming

 

interfaces

 

to

 

the

 

Portable

 

Diagnostic

 

Kernel

 

Extension

 

PDIAGEX.

 

Test

 

unit

 

developers

 

should

 

use

 

these

 

interfaces

 

to

 

ensure

 

their

 

code

 

has

 

maximum

 

portability

 

across

 

platforms.

 

v

   

pdiag_dd_watch_for_interrupt

 

v

   

pdiag_dd_interrupt_notify

 

v

   

pdiag_dd_write

 

v

   

pdiag_dd_read

 

v

   

pdiag_dd_dma_setup

 

v

   

pdiag_dd_dma_complete

 

v

   

pdiag_dd_dma_enable

pdiag_dd_watch_for_interrupt

 

Purpose

 

The

 

pdiag_dd_watch_for_interrupt()

 

function

 

sleeps

 

until

 

a

 

desired

 

interrupt

 

condition

 

occurs,

 

or

 

a

 

time-out

 

occurs

 

if

 

the

 

interrupt

 

does

 

not

 

occur

 

within

 

the

 

specified

 

time.

   

76

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Syntax

 

#include

 

<sys/pdiagex_dds.h>

 

int32

 

pdiag_dd_watch_for_interrupt(

 

handle,

 

flag_mask,

 

timeout_sec

 

)

 

pdiag_info_handle_t

  

handle;

 

uint32

 

flag_mask;

 

uint32

 

timeout_sec;

 

Description

 

pdiag_dd_watch_for_interrupt()

 

sleeps

 

until

 

a

 

desired

 

interrupt

 

condition

 

occurs

 

or

 

timeout_sec

 

seconds

 

pass.

 

If

 

the

 

interrupt

 

condition

 

occurs

 

before

 

the

 

routine

 

is

 

called,

 

the

 

function

 

simply

 

returns,

 

without

 

sleeping.

 

To

 

be

 

awakened

 

from

 

the

 

sleep

 

state

 

and

 

get

 

interrupt

 

condition

 

information,

 

this

 

routine

 

is

 

highly

 

dependent

 

on

 

the

 

interaction

 

of

 

the

 

application’s

 

interrupt

 

handler.

 

This

 

interaction

 

is

 

maintained

 

by

 

using

 

the

 

handle.flag_word,

 

handle.sleep_word,

 

and

 

handle.sleep_flag.

 

The

 

application’s

 

interrupt

 

handler

 

should

 

update

 

the

 

handle.flag_word

 

each

 

time

 

it

 

receives

 

an

 

interrupt.

 

The

 

handle.flag_word

 

and

 

flag_mask

 

format

 

is

 

determined

 

by

 

the

 

application.

 

The

 

application’s

 

interrupt

 

handler

 

should

 

also

 

test

 

the

 

handle.sleep_flag

 

each

 

time

 

it

 

receives

 

an

 

interrupt

 

to

 

determine

 

if

 

the

 

pdiag_dd_watch_for_interrupt()

 

routine

 

is

 

sleeping.

 

If

 

handle.sleep_flag

 

is

 

TRUE,

 

the

 

application’s

 

interrupt

 

handler

 

should

 

wake

 

the

 

pdiag_dd_watch_for_interrupt()

 

routine

 

using

 

the

 

pdiag_dd_interrupt_notify()

 

service

 

with

 

handle.sleep_word

 

as

 

the

 

sleep

 

word.

 

Execution

 

Environment

 

The

 

pdiag_dd_watch_for_interrupt()

 

function

 

can

 

be

 

called

 

from

 

the

 

process

 

environment.

 

Parameters

  

Parameter

 

Description

 

handle

 

Points

 

to

 

pdiag_info_handle_t

 

structure

 

which

 

is

 

returned

 

from

 

pdiag_open().

 

flag_mask

 

32-bit

 

flag

 

mask

 

which,

 

when

 

bitwise

 

ANDed

 

with

 

the

 

handle.flag_word,

 

produces

 

a

 

nonzero

 

result

 

only

 

when

 

the

 

handle.flag_word

 

identifies

 

the

 

desired

 

interrupt

 

condition.

 

timeout_sec

 

Number

 

of

 

seconds

 

to

 

watch

 

for

 

the

 

interrupt

 

condition

 

before

 

timing

 

out.

 

(A

 

value

 

of

 

zero

 

will

 

never

 

time-out;

 

possible

 

hang

 

condition).

   

Return

 

Value

 

The

 

pdiag_dd_watch_for_interrupt

 

function

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

DGX_OK

 

The

 

operation

 

was

 

successful.

 

The

 

errno

 

is

 

not

 

set.

 

DGX_FAIL

 

The

 

interrupt

 

condition

 

did

 

not

 

occur

 

before

 

timeout_sec

 

seconds

 

passed.

 

DGX_INVALID_HANDLE

 

Specified

 

handle

 

has

 

been

 

closed

 

or

 

was

 

not

 

generated

 

by

 

the

 

pdiag_open()

 

call.

 

The

 

errno

 

is

 

not

 

set.

   

pdiag_dd_interrupt_notify

 

Purpose

 

The

 

pdiag_dd_interrupt_notify()

 

function

 

can

 

only

 

be

 

used

 

by

 

the

 

interrupt

 

handling

 

function

 

of

 

the

 

TU

 

library.

 

This

 

function

 

notifies

 

a

 

pending

 

pdiag_dd_watch_for_interrupt

 

call

 

that

 

an

 

interrupt

 

has

 

been

 

processed.

 

Syntax

 

#include

 

<sys/pdiagex_dds.h>

 

int32

 

pdiag_dd_interrupt_notify(

 

sleep_word

 

)

 

uint32

 

sleep_word;

   

Chapter

 

3.

 

Diagnostic

 

Components

 

77



Description

 

pdiag_dd_interrupt_notify()

 

is

 

used

 

to

 

notify

 

a

 

previously

 

pending

 

call

 

to

 

pdiag_dd_watch_for_interrupt

 

that

 

an

 

expected

 

interrupt

 

has

 

been

 

received

 

and

 

processed.

 

This

 

call

 

is

 

only

 

used

 

by

 

the

 

second-level

 

interrupt-handler

 

code

 

provided

 

in

 

the

 

TU

 

library.

 

Execution

 

Environment

 

The

 

pdiag_dd_interrupt_notify()

 

function

 

can

 

only

 

be

 

called

 

from

 

the

 

interrupt

 

environment.

 

Parameters

  

Parameter

 

Description

 

sleep_word

 

Semaphore

 

handle

 

that

 

TU

 

is

 

waiting

 

on,

 

passed

 

in

 

as

 

a

 

parameter

 

to

 

the

 

interrupt

 

handler.

   

Return

 

Value

 

The

 

pdiag_dd_interrupt_notify

 

function

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

DGX_OK

 

The

 

operation

 

was

 

successful.

 

The

 

errno

 

is

 

not

 

set.

   

pdiag_dd_write,

 

pdiag_dd_write_64

 

Note:

  

pdiag_dd_write_64

 

is

 

only

 

used

 

in

 

64-bit

 

kernel.

 

Purpose

 

The

 

pdiag_dd_write()

 

and

 

the

 

pdiag_dd_write_64()

 

functions

 

perform

 

write

 

operations

 

on

 

a

 

resource.

 

Syntax

 

for

 

32-Bit

 

Kernel

 

#include

 

<sys/pdiagex_dds.h>

 

int32

 

pdiag_dd_write(

 

handle,

 

type,

 

offset,

 

data,

 

flags

 

)

 

pdiag_info_handle_t

  

handle;

 

uint32

  

type;

 

uint32

  

offset;

 

pdiag_addr_t

  

data;

 

pdiagex_opflags_t

  

*flags;

 

Syntax

 

for

 

64-Bit

 

Kernel

 

#include

 

<sys/pdiagex_dds.h>

 

int32

 

pdiag_dd_write_64(

 

handle,

 

type,

 

offset,

 

data,

 

flags

 

)

 

pdiag_info_handle_t

  

handle;

 

uint32

  

type;

 

uint32

  

offset;

 

pdiag_addr_t

  

data;

 

pdiagex_opflags_t

  

*flags;

 

Description

 

The

 

pdiag_dd_write()

 

and

 

the

 

pdiag_dd_write_64()

 

functions

 

write

 

the

 

specified

 

data

 

to

 

the

 

specified

 

offset

 

address.

 

If

 

the

 

user

 

enables

 

the

 

times

 

variable,

 

timing

 

information

 

for

 

this

 

function

 

is

 

also

 

returned.

 

Each

 

write

 

performed

 

is

 

dependent

 

on

 

the

 

memio

 

operation

 

and

 

count

 

parameters.

  

memio

 

Operation

 

Description

 

PDIAG_IO_OP

 

If

 

count

 

is1,

 

data

 

is

 

written

 

to

 

the

 

specified

 

bus

 

I/O

 

offset

 

address.

 

PDIAG_MEM_OP

 

If

 

count

 

is1,

 

data

 

is

 

written

 

to

 

the

 

specified

 

memory

 

offset

 

address.

 

PDIAG_POS_OP

 

If

 

count

 

is1,

 

data

 

is

 

written

 

to

 

the

 

specified

 

POS

 

offset

 

address.

   

A

 

specified

 

number

 

of

 

write

 

accesses

 

to

 

the

 

offset

 

address

 

may

 

be

 

performed

 

if

 

count

 

is

 

greater

 

than

 

1.

 

The

 

user

 

may

 

choose

 

to

 

write

 

the

 

data

 

to

 

one

 

location

 

(the

 

offset

 

address)

 

count

 

times,

 

or

 

write

 

the

 

data

 

to

   

78

 

Understanding

 

the

 

Diagnostic

 

Subsystem



count

 

consecutive

 

locations,

 

starting

 

at

 

the

 

offset

 

address.

 

In

 

either

 

case,

 

the

 

data

 

to

 

be

 

written

 

is

 

supplied

 

by

 

consecutive

 

locations

 

of

 

the

 

data

 

buffer

 

starting

 

at

 

the

 

specified

 

buffer

 

address.

 

Note:

  

When

 

writing

 

data,

 

it

 

is

 

imperative

 

that

 

the

 

write

 

data

 

buffer

 

is

 

at

 

least

 

the

 

size

 

of

 

count

 

*

 

type

 

(unless

 

the

 

write

 

data

 

buffer

 

address

 

is

 

not

 

being

 

incremented)

 

and

 

filled

 

with

 

valid

 

data

 

for

 

each

 

write

 

operation

 

to

 

be

 

performed.

 

If

 

this

 

is

 

not

 

done,

 

meaningless

 

data

 

is

 

written

 

to

 

the

 

designated

 

area.

 

This

 

may

 

cause

 

problems

 

with

 

your

 

testing.

 

Execution

 

Environment

 

The

 

pdiag_dd_write()

 

function

 

can

 

be

 

called

 

from

 

the

 

process

 

or

 

the

 

interrupt

 

environment.

 

The

 

pdiag_dd_write_64()

 

function

 

can

 

only

 

be

 

called

 

from

 

the

 

interrupt

 

environment.

 

Parameters

  

Parameter

 

Description

 

handle

 

Points

 

to

 

pdiag_info_handle_t

 

structure

 

which

 

is

 

returned

 

from

 

pdiag_open().

 

type

 

Defines

 

the

 

data

 

length

 

(byte,

 

word

 

or

 

long)

 

read

 

from

 

the

 

address

 

specified

 

when

 

type

 

is

 

IOCHAR8,

 

IOSHORT16,

 

and

 

IOLONG32

 

respectively.

 

offset

 

Offset

 

value

 

that

 

is

 

dependent

 

on

 

the

 

type

 

of

 

operation

 

being

 

performed.

 

It

 

can

 

be

 

one

 

of

 

the

 

following

 

values:

 

PDIAG_IO_OP

 

Offset

 

from

 

base

 

I/O

 

address.

 

PDIAG_MEM_OP

 

Offset

 

from

 

base

 

memory

 

address.

 

PDIAG_POS_OP

 

offset

 

from

 

base

 

POS

 

address.

 

data

 

Pointer

 

to

 

a

 

block

 

of

 

information

 

to

 

be

 

written

 

to

 

the

 

specified

 

address.

 

This

 

block

 

will

 

be

 

of

 

size:

 

count

 

for

 

type

 

IOCHAR8

 

(1

 

if

 

not

 

incrementing

 

data)

  

OR

 

count

 

*2

 

for

 

type

 

IOSHORT16

 

(2

 

if

 

not

 

incrementing

 

data)

  

OR

 

count

 

*4

 

for

 

type

 

IOLONG32

 

(4

 

if

 

not

 

incrementing

 

data).

 

flags

 

The

 

flags

 

structure

 

contains

 

the

 

following

 

members:

 

memio

 

Indication

 

of

 

the

 

type

 

of

 

read

 

operation

 

to

 

perform.

 

PDIAG_IO_OP

 

For

 

I/O

 

write

 

operations.

 

PDIAG_MEM_OP

 

For

 

memory

 

write

 

operations.

 

PDIAG_POS_OP

 

For

 

I/O

 

Configuration

 

Space

 

write

 

operations.

 

count

 

Number

 

of

 

accesses

 

to

 

perform.

 

PDIAG_IO_OP

 

Number

 

of

 

write

 

operations

 

to

 

be

 

performed.

 

PDIAG_MEM_OP

 

Number

 

of

 

times

 

data

 

is

 

written.

 

PDIAG_POS_OP

 

Count

 

should

 

be

 

set

 

to

 

1.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

79



Parameter

 

Description

 

addr_incr_flag

 

Determines

 

whether

 

the

 

data

 

buffer

 

address

 

and

 

the

 

offset

 

address

 

get

 

incremented

 

on

 

each

 

of

 

count

 

accesses:

 

PDIAG_SING_LOC_ACC

 

Single-location

 

accesses:

 

neither

 

address

 

is

 

incremented.

 

PDIAG_SING_LOC_BUF

 

Single-location

 

access

 

for

 

buffer:

 

the

 

data

 

address

 

is

 

never

 

incremented.

 

The

 

address

 

referred

 

to

 

by

 

offset

 

is

 

incremented

 

by

 

type.

 

PDIAG_SING_LOC_HW

 

Single-location

 

access

 

for

 

hardware:

 

the

 

data

 

address

 

is

 

incremented

 

by

 

type.

 

The

 

address

 

referred

 

to

 

by

 

offset

 

is

 

not

 

incremented.

 

PDIAG_MULT_LOC_ACC

 

Multiple-location

 

accesses:

 

both

 

addresses

 

are

 

incremented

 

by

 

type.

 

intrlev

 

Indicates

 

which

 

environment

 

the

 

calling

 

routine

 

is

 

in:

 

PROCLEV

 

If

 

calling

 

from

 

the

 

process

 

level.

 

INTRKMEM

 

If

 

calling

 

from

 

the

 

interrupt

 

level

 

and

 

the

 

data

 

buffer

 

is

 

in

 

kernel

 

memory.

Note:

 

For

 

the

 

pdiag_dd_write

 

function,

 

the

 

intrlev

 

parameter

 

may

 

be

 

set

 

to

 

either

 

PROCLEV

 

or

 

INTRKMEM.

 

For

 

the

 

pdiag_dd_write_64

 

function,

 

the

 

intrlev

 

parameter

 

must

 

always

 

be

 

set

 

to

 

INTRKMEM.

 

times

 

Points

 

to

 

the

 

timestruc_t

 

structure

 

which

 

returns

 

timing

 

information.

 

If

 

times

 

is

 

a

 

null

 

pointer,

 

no

 

timing

 

information

 

will

 

be

 

returned

 

back

 

to

 

the

 

user.

   

Return

 

Value

 

The

 

pdiag_dd_write

 

and

 

the

 

pdiag_dd_write_64

 

functions

 

return

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

DGX_OK

 

The

 

operation

 

was

 

successful.

 

The

 

errno

 

is

 

not

 

set.

 

DGX_INVALID_HANDLE

 

Specified

 

handle

 

has

 

been

 

closed

 

or

 

was

 

not

 

generated

 

by

 

the

 

pdiag_open()

 

call.

 

The

 

errno

 

is

 

not

 

set.

 

DGX_BOUND_FAIL

 

offset

 

given

 

was

 

larger

 

than

 

the

 

width

 

of

 

the

 

I/O

 

address

 

range.

 

The

 

errno

 

is

 

not

 

set.

 

DGX_BADVAL_FAIL

 

Type

 

field

 

was

 

not

 

valid

 

(that

 

is,

 

not

 

IOCHAR8,

 

IOSHORT16,

 

or

 

IOLONG32).

 

The

 

errno

 

is

 

not

 

set.

 

DGX_FAIL

 

Error

 

occurred

 

during

 

the

 

I/O

 

write

 

access.

 

The

 

errno

 

is

 

set

 

to

 

BUS_PUT(L/S/C)X

 

macro

 

return

 

code.

 

DGX_COPY_FAIL

 

User

 

data

 

buffer

 

could

 

not

 

be

 

copied

 

to

 

or

 

from

 

kernel

 

memory.

 

The

 

errno

 

is

 

set

 

to

 

the

 

xmemin/out

 

or

 

copyin/out

 

return

 

code.

   

Related

 

Information

 

pdiag_dd_read,

 

pdiag_dd_read_64

 

function.

 

pdiag_dd_read,

 

pdiag_dd_read_64

 

Note:

 

pdiag_dd_read_64

 

is

 

only

 

used

 

in

 

the

 

64-bit

 

kernel.

Purpose

 

The

 

pdiag_dd_read()

 

and

 

the

 

pdiag_dd_read_64()

 

functions

 

perform

 

read

 

operations

 

on

 

a

 

resource.

   

80

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Syntax

 

for

 

32-Bit

 

Kernel

 

#include

 

<sys/pdiagex_dds.h>

 

int32

 

pdiag_dd_read

 

(

 

handle,

 

type,

 

offset,

 

data,

 

flags

 

)

 

pdiag_info_handle_t

  

handle;

 

uint32

  

type;

 

uint32

  

offset;

 

pdiag_addr_t

  

data;

 

pdiagex_opflags_t

  

*flags;

 

Syntax

 

for

 

64-Bit

 

Kernel

 

#include

 

<sys/pdiagex_dds.h>

 

int32

 

pdiag_dd_read_64

 

(

 

handle,

 

type,

 

offset,

 

data,

 

flags

 

)

 

pdiag_info_handle_t

  

handle;

 

uint32

  

type;

 

uint32

  

offset;

 

pdiag_addr_t

  

data;

 

pdiagex_opflags_t

  

*flags;

 

Description

 

The

 

pdiag_dd_read()

 

and

 

the

 

pdiag_dd_read_64()

 

functions

 

read

 

the

 

data

 

from

 

the

 

specified

 

address.

 

If

 

the

 

user

 

enables

 

the

 

times

 

variable,

 

timing

 

information

 

for

 

this

 

function

 

is

 

also

 

returned.

 

Each

 

read

 

performed

 

is

 

dependent

 

on

 

the

 

memio

 

operation

 

and

 

count

 

parameters.

  

memio

 

Operation

 

Description

 

PDIAG_IO_OP

 

If

 

count

 

is

 

1,

 

data

 

is

 

read

 

from

 

the

 

specified

 

bus

 

I/O

 

offset

 

address.

 

PDIAG_MEM_OP

 

If

 

count

 

is

 

1,

 

data

 

is

 

read

 

from

 

the

 

specified

 

memory

 

offset

 

address.

 

PDIAG_POS_OP

 

If

 

count

 

is

 

1,

 

data

 

is

 

read

 

from

 

the

 

specified

 

POS

 

offset

 

address.

   

A

 

specified

 

number

 

of

 

read

 

accesses

 

from

 

the

 

offset

 

address

 

may

 

be

 

performed

 

if

 

count

 

is

 

greater

 

than

 

1.

 

The

 

user

 

may

 

choose

 

to

 

read

 

the

 

data

 

from

 

one

 

location

 

(the

 

offset

 

address)

 

count

 

times,

 

or

 

read

 

the

 

data

 

from

 

count

 

consecutive

 

locations,

 

starting

 

at

 

the

 

offset

 

address.

 

In

 

either

 

case,

 

the

 

read

 

data

 

is

 

stored

 

in

 

the

 

data

 

buffer

 

starting

 

at

 

the

 

specified

 

buffer

 

address.

 

Note:

 

When

 

reading

 

data,

 

it

 

is

 

imperative

 

that

 

the

 

read

 

data

 

buffer

 

is

 

at

 

least

 

the

 

size

 

of

 

count

 

*

 

type

 

(unless

 

the

 

read

 

data

 

buffer

 

address

 

is

 

not

 

being

 

incremented).

 

If

 

this

 

is

 

not

 

done,

 

meaningless

 

data

 

is

 

written

 

to

 

an

 

area

 

outside

 

the

 

read

 

buffer.

 

This

 

may

 

cause

 

problems

 

with

 

your

 

testing.

Execution

 

Environment

 

The

 

pdiag_dd_read()

 

function

 

can

 

be

 

called

 

from

 

the

 

process

 

or

 

the

 

interrupt

 

environment.

 

The

 

pdiag_dd_read_64()

 

function

 

can

 

only

 

be

 

called

 

from

 

the

 

interrupt

 

environment.

 

Parameters

  

Parameter

 

Description

 

handle

 

Points

 

to

 

pdiag_info_handle_t

 

structure

 

which

 

is

 

returned

 

from

 

pdiag_open().

 

type

 

Defines

 

the

 

data

 

length

 

(byte,

 

word

 

or

 

long)

 

read

 

from

 

the

 

address

 

specified

 

when

 

type

 

is

 

IOCHAR8,

 

IOSHORT16,

 

and

 

IOLONG32

 

respectively.

 

offset

 

Offset

 

value

 

that

 

is

 

dependent

 

on

 

the

 

type

 

of

 

operation

 

being

 

performed.

 

It

 

can

 

be

 

one

 

of

 

the

 

following

 

values:

 

PDIAG_IO_OP

 

offset

 

from

 

base

 

I/O

 

address.

 

PDIAG_MEM_OP

 

offset

 

from

 

base

 

memory

 

address.

 

PDIAG_POS_OP

 

offset

 

from

 

base

 

POS

 

address.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

81



Parameter

 

Description

 

data

 

Address

 

of

 

the

 

information

 

read

 

from

 

the

 

specified

 

address.

 

Note:

 

For

 

PDIAG_IO_OP

 

and

 

PDIAG_MEM_OP:

 

The

 

value

 

read

 

from

 

the

 

specified

 

offset

 

will

 

be

 

placed

 

at

 

the

 

specified

 

data

 

address

 

in

 

the

 

form

 

specified

 

by

 

type.

 

If

 

the

 

data

 

buffer

 

is

 

smaller

 

than

 

the

 

specified

 

type,

 

the

 

value

 

will

 

overwrite

 

the

 

bounds

 

of

 

your

 

buffer.

 

If

 

the

 

data

 

buffer

 

is

 

larger

 

than

 

the

 

specified

 

type,

 

the

 

value

 

will

 

reside

 

in

 

the

 

upper

 

type

 

bytes

 

of

 

the

 

buffer.

 

For

 

PDIAG_POS_OP:

 

The

 

value

 

read

 

from

 

the

 

specified

 

offset

 

will

 

be

 

placed

 

at

 

the

 

specified

 

data

 

address

 

and

 

will

 

occupy

 

1

 

byte.

 

If

 

the

 

data

 

buffer

 

is

 

larger

 

than

 

1

 

byte,

 

the

 

value

 

will

 

reside

 

in

 

the

 

upper

 

byte

 

of

 

the

 

buffer.

 

flags

 

The

 

flags

 

structure

 

contains

 

the

 

following

 

members:

 

memio

 

Indication

 

of

 

the

 

type

 

of

 

read

 

operation

 

to

 

perform.

 

PDIAG_IO_OP

 

For

 

I/O

 

read

 

operations.

 

PDIAG_MEM_OP

 

For

 

memory

 

read

 

operations..

 

PDIAG_POS_OP

 

For

 

I/O

 

Configuration

 

Space

 

read

 

operations.

 

count

 

Number

 

of

 

accesses

 

to

 

perform.

 

PDIAG_IO_OP

 

Number

 

of

 

read

 

operations

 

to

 

be

 

performed.

 

PDIAG_MEM_OP

 

Number

 

of

 

times

 

data

 

is

 

read.

 

PDIAG_POS_OP

 

Count

 

should

 

be

 

set

 

to

 

1.

 

addr_incr_flag

 

Determines

 

whether

 

the

 

data

 

buffer

 

address

 

and

 

the

 

offset

 

address

 

get

 

incremented

 

on

 

each

 

of

 

count

 

accesses:

 

PDIAG_SING_LOC_ACC

 

Single-location

 

accesses:

 

neither

 

address

 

is

 

incremented.

 

PDIAG_SING_LOC_BUF

 

Single-location

 

access

 

for

 

buffer:

 

the

 

data

 

address

 

is

 

never

 

incremented.

 

The

 

address

 

referred

 

to

 

by

 

offset

 

is

 

incremented

 

by

 

type.

 

PDIAG_SING_LOC_HW

 

Single-location

 

access

 

for

 

hardware:

 

the

 

data

 

address

 

is

 

incremented

 

by

 

type.

 

The

 

address

 

referred

 

to

 

by

 

offset

 

is

 

not

 

incremented.

 

PDIAG_MULT_LOC_ACC

 

Multiple-location

 

accesses:

 

both

 

addresses

 

are

 

incremented

 

by

 

type.

 

intrlev

 

Indicates

 

which

 

environment

 

the

 

calling

 

routine

 

is

 

in:

 

PROCLEV

 

If

 

calling

 

from

 

the

 

process

 

level

 

INTRKMEM

 

If

 

calling

 

from

 

the

 

interrupt

 

level

 

and

 

the

 

data

 

buffer

 

is

 

in

 

kernel

 

memory.

Note:

 

For

 

the

 

pdiag_dd_read

 

function,

 

the

 

intrlev

 

parameter

 

may

 

be

 

set

 

to

 

either

 

PROCLEV

 

or

 

INTRKMEM.

 

For

 

the

 

pdiag_dd_read_64

 

function,

 

the

 

intrlev

 

parameter

 

must

 

always

 

be

 

set

 

to

 

INTRKMEM.

 

times

 

Points

 

to

 

the

 

timestruc_t

 

structure

 

which

 

returns

 

timing

 

information.

 

If

 

times

 

is

 

a

 

null

 

pointer,

 

no

 

timing

 

information

 

will

 

be

 

returned

 

back

 

to

 

the

 

user.

    

82

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Return

 

Value

 

The

 

pdiag_dd_read

 

and

 

the

 

pdiag_dd_read_64

 

functions

 

return

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

DGX_OK

 

The

 

operation

 

was

 

successful.

 

The

 

errno

 

is

 

not

 

set.

 

DGX_INVALID_HANDLE

 

Specified

 

handle

 

has

 

been

 

closed

 

or

 

was

 

not

 

generated

 

by

 

the

 

pdiag_open()

 

call.

 

The

 

errno

 

is

 

not

 

set.

 

DGX_BOUND_FAIL

 

offset

 

given

 

was

 

larger

 

than

 

the

 

width

 

of

 

the

 

I/O

 

address

 

range.

 

The

 

errno

 

is

 

not

 

set.

 

DGX_BADVAL_FAIL

 

Type

 

field

 

was

 

not

 

valid

 

(that

 

is,

 

not

 

IOCHAR,

 

IOSHORT,

 

or

 

IOLONG).

 

The

 

errno

 

is

 

not

 

set.

 

DGX_FAIL

 

Error

 

occurred

 

during

 

the

 

I/O

 

read

 

access.

 

The

 

errno

 

is

 

set

 

to

 

BUS_GET(L/S/C)X

 

macro

 

return

 

code.

 

DGX_COPY_FAIL

 

User

 

data

 

buffer

 

could

 

not

 

be

 

copied

 

to

 

or

 

from

 

kernel

 

memory.

 

The

 

errno

 

is

 

set

 

to

 

the

 

xmemin/out

 

or

 

copyin/out

 

return

 

code.

   

Related

 

Information

 

pdiag_dd_write,

 

pdiag_dd_write_64

 

function.

 

pdiag_dd_dma_setup

 

Purpose

 

The

 

pdiag_dd_dma_setup()

 

function

 

initializes,

 

pins,

 

and

 

cross-memory

 

attaches

 

the

 

user

 

buffer

 

for

 

a

 

DMA

 

operation.

 

Syntax

 

#include

 

<sys/pdiagex_dds.h>

 

#include

 

<sys/dma.h>

 

int32

 

pdiag_dd_dma_setup(

 

handle,

 

dma_flags,

 

baddr,

 

users_daddr,

 

count,

 

minxfer,operation

 

)

 

pdiag_info_handle_t

  

handle;

 

int32

 

dma_flags;

 

pdiag_addr_t

 

baddr;

 

pdiag_addr_t

 

users_daddr;

 

uint32

 

count;

 

uint32

 

minxfer;

 

uint32

 

operation;

 

Description

 

The

 

following

 

is

 

performed

 

by

 

the

 

pdiag_dd_dma_setup

 

depending

 

on

 

the

 

bus

 

type

 

and

 

operation:

 

Where

 

bus

 

type

 

=

 

BUS_MICRO_CHANNEL

 

or

 

BUS_60X

 

and

 

operation

 

is

 

PDIAG_DMA_MASTER

 

v

   

The

 

DMA

 

master

 

function

 

on

 

Micro

 

Channel

 

and

 

60X

 

bus

 

sytems

 

pins

 

and

 

cross-memory

 

attaches

 

the

 

user

 

buffer

 

for

 

the

 

length

 

of

 

count.

 

For

 

Micro

 

Channel

 

bus

 

type

 

adapters,

 

the

 

DMA

 

master

 

function

 

issues

 

the

 

d_master

 

kernel

 

call

 

for

 

the

 

specified

 

address

 

and

 

length.

 

The

 

DMA

 

address

 

space

 

is

 

managed

 

for

 

you,

 

and

 

the

 

offset

 

into

 

the

 

DMA

 

buffer

 

is

 

supplied

 

in

 

the

 

daddr

 

parameter.

 

For

 

60X

 

bus

 

type

 

adapters,

 

the

 

DMA

 

master

 

function

 

issues

 

the

 

xmemdma

 

kernel

 

call

 

for

 

each

 

page

 

referred

 

to

 

by

 

the

 

specified

 

address

 

and

 

length.

 

The

 

flags

 

for

 

this

 

call

 

will

 

be

 

(XMEM_HIDE

 

|

 

XMEM_ACC_CHK).

 

The

 

DMA

 

address

 

space

 

is

 

not

 

managed

 

for

 

you,

 

and

 

the

 

offset

 

into

 

the

 

DMA

 

buffer

 

is

 

supplied

 

in

 

the

 

daddr

 

parameter.

Note:

  

The

 

dds

 

member,

 

maxmaster,

 

must

 

be

 

set

 

to

 

the

 

maximum

 

number

 

of

 

concurrent

 

pdiag_dd_dma_setup(

 

)s

 

to

 

be

 

used

 

(that

 

is,

 

maximum

 

number

 

of

 

pdiag_dd_dma_setup()s

 

called

 

above

 

the

 

number

 

of

 

associated

 

pdiag_dd_dma_complete

 

()s

 

at

 

any

 

given

 

time).

 

maxmaster

 

must

 

be

 

set

 

to

 

at

 

least

 

1

 

(one)

 

for

 

this

 

call

 

to

 

pass

 

without

 

a

 

DGX_BOUND_FAIL

 

error.

  

Chapter

 

3.

 

Diagnostic

 

Components

 

83



Where

 

bus

 

type

 

=

 

BUS_BID

 

and

 

operation

 

is

 

PDIAG_DMA_MASTER

 

v

   

The

 

pdiag_dd_dma_setup()

 

function

 

pins

 

and

 

cross-memory

 

attaches

 

the

 

user

 

buffer.

 

The

 

function

 

allows

 

for

 

a

 

transfer

 

of

 

4k

 

or

 

1

 

page.

 

The

 

transfer

 

cannot

 

cross

 

a

 

page

 

boundary.

 

Larger

 

transfers

 

are

 

not

 

allowed

 

at

 

this

 

time.

 

This

 

function

 

issues

 

the

 

d_map_page

 

kernel

 

call

 

for

 

the

 

specified

 

address.

 

The

 

DMA

 

space

 

is

 

managed

 

for

 

the

 

user,

 

and

 

the

 

offset

 

into

 

the

 

DMA

 

buffer

 

is

 

supplied

 

in

 

the

 

users_daddr

 

parameter.

 

Where

 

bus

 

type

 

=

 

BUS_MICRO_CHANNEL

 

and

 

operation

 

is

 

PDIAG_DMA_SLAVE

 

v

   

For

 

slave

 

operation

 

on

 

a

 

Micro

 

Channel,

 

the

 

pdiag_dd_dma_setup()

 

function

 

issues

 

the

 

d_slave

 

kernel

 

call

 

for

 

the

 

specified

 

length.

 

Only

 

one

 

Micro

 

Channel

 

slave

 

DMA

 

may

 

occur

 

at

 

a

 

time.

 

Note:

  

The

 

dds

 

member,

 

maxmaster,

 

must

 

be

 

set

 

to

 

at

 

least

 

1

 

(one)

 

for

 

this

 

call

 

to

 

pass

 

without

 

a

 

DGX_BOUND_FAIL

 

error.

Execution

 

Environment

 

The

 

pdiag_dd_dma_setup()

 

function

 

can

 

be

 

called

 

from

 

the

 

process

 

environment

 

only.

 

Parameters

  

Parameter

 

Description

 

handle

 

Points

 

to

 

pdiag_info_handle_t

 

structure

 

which

 

is

 

returned

 

from

 

pdiag_open().

 

dma_flags

 

This

 

flag

 

is

 

ignored

 

for

 

60X

 

bus

 

type

 

adapters.

 

The

 

following

 

refers

 

only

 

to

 

Micro

 

Channel

 

bus

 

type

 

adapters.

 

Use

 

the

 

DMA_READ

 

flag

 

for

 

transferring

 

data

 

from

 

the

 

adapter

 

to

 

user

 

memory.

 

Use

 

0

 

(zero)

 

for

 

transferring

 

data

 

from

 

the

 

system

 

to

 

the

 

adapter.

 

See

 

the

 

header

 

file

 

sys/dma.h

 

for

 

more

 

information

 

on

 

other

 

DMA

 

flags.

 

If

 

the

 

user

 

wants

 

to

 

read

 

or

 

modify

 

data

 

before

 

calling

 

pdiag_dd_dma_complete(),

 

then

 

DMA_NOHIDE

 

should

 

also

 

be

 

set.

 

This

 

may

 

be

 

useful

 

for

 

devices

 

that

 

set

 

up

 

long-term

 

DMA

 

mapping

 

for

 

purposes

 

of

 

communication

 

(such

 

as

 

command

 

blocks,

 

status

 

blocks,

 

common

 

buffer

 

pools).

 

Then

 

the

 

pdiag_dd_dma_complete()

 

does

 

not

 

have

 

to

 

be

 

called

 

each

 

time

 

they

 

want

 

to

 

let

 

the

 

application

 

read/write,

 

and

 

then

 

pdiag_dd_dma_setup()

 

again

 

for

 

the

 

next

 

DMA

 

transfer.

 

If

 

DMA_NOHIDE

 

is

 

set

 

and

 

the

 

user

 

wants

 

to

 

read

 

data

 

before

 

calling

 

pdiag_dd_dma_complete(),

 

then

 

call

 

the

 

pdiag_dd_dma_enable()

 

routine

 

to

 

flush

 

and

 

read

 

the

 

data.

 

If

 

DMA_NOHIDE

 

is

 

set

 

and

 

the

 

user

 

wants

 

to

 

write

 

data

 

before

 

calling

 

pdiag_dd_dma_complete(),

 

then

 

after

 

the

 

user

 

modifies

 

the

 

data,

 

call

 

the

 

pdiag_dd_dma_enable()

 

routine

 

with

 

a

 

flush

 

operation.

 

Make

 

sure

 

that

 

the

 

adapter

 

will

 

not

 

be

 

transferring

 

data

 

to

 

the

 

same

 

area

 

that

 

the

 

user

 

is

 

manipulating.

 

baddr

 

Points

 

to

 

user’s

 

read

 

or

 

write

 

buffer

 

where

 

DMA

 

transfer

 

should

 

take

 

place.

 

users_daddr

 

Points

 

to

 

an

 

integer

 

to

 

be

 

filled

 

with

 

the

 

physical

 

memory

 

address

 

of

 

baddr

 

upon

 

successful

 

completion

 

of

 

this

 

call.

 

count

 

Number

 

of

 

bytes

 

to

 

be

 

transferred.

 

minxfer

 

Minimum

 

transfer

 

length

 

that

 

the

 

device

 

will

 

handle.

 

(Slave

 

transfer

 

only

 

on

 

BUS_BID).

 

operation

 

Type

 

of

 

operation

 

to

 

perform:

 

PDIAG_DMA_MASTER

 

PDIAG_DMA_SLAVE

   

Return

 

Value

 

The

 

pdiag_dd_dma_setup

 

function

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

DGX_OK

 

The

 

operation

 

was

 

successful.

 

The

 

errno

 

is

 

not

 

set.

   

84

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Return

 

Value

 

Description

 

DGX_INVALID_HANDLE

 

Specified

 

handle

 

has

 

been

 

closed

 

or

 

was

 

not

 

generated

 

by

 

the

 

pdiag_open()

 

call.

 

The

 

errno

 

is

 

not

 

set.

 

DGX_BOUND_FAIL

 

Application

 

tried

 

to

 

setup

 

a

 

DMA

 

outside

 

its

 

resources,

 

the

 

resources

 

are

 

currently

 

unavailable,

 

or

 

the

 

dds

 

member

 

dma_bus_length

 

(Micro

 

Channel

 

only)

 

or

 

maxmaster

 

is

 

set

 

to

 

zero.

 

The

 

errno

 

is

 

not

 

set.

 

DGX_BADVAL_FAIL

 

PDIAGEX

 

was

 

unable

 

to

 

update

 

the

 

specified

 

daddr.

 

The

 

errno

 

is

 

set

 

to

 

the

 

suword()

 

return

 

code.

 

DGX_PINU_FAIL

 

Application

 

could

 

not

 

pin

 

the

 

specified

 

user

 

buffer.

 

The

 

errno

 

is

 

set

 

to

 

the

 

pinu()

 

return

 

code.

 

DGX_XMATTACH_FAIL

 

Application

 

could

 

not

 

attach

 

user

 

buffer

 

to

 

the

 

physical

 

address.

 

The

 

errno

 

is

 

set

 

to

 

the

 

xmattach()

 

return

 

code.

   

Related

 

Information

 

The

 

pdiag_dd_dma_enable

 

and

 

pdiag_dd_dma_complete

 

subroutines.

 

pdiag_dd_dma_complete

 

Purpose

 

The

 

pdiag_dd_dma_complete()

 

function

 

unpins

 

and

 

detaches

 

the

 

user

 

space

 

DMA

 

buffer.

 

If

 

the

 

handle’s

 

dds.bus_type

 

is

 

set

 

for

 

the

 

Micro

 

Channel,

 

this

 

function

 

also

 

calls

 

the

 

d_complete()

 

kernel

 

service,

 

which

 

checks

 

for

 

detected

 

IOCC

 

errors,

 

flushes

 

the

 

IOCC

 

buffer

 

(unhides

 

it

 

if

 

necessary)

 

and

 

sets

 

the

 

page

 

table

 

’modified’

 

bit

 

if

 

the

 

information

 

was

 

modified.

 

Syntax

 

#include

 

<sys/pdiagex_dds.h>

 

int32

 

pdiag_dd_dma_complete(

 

handle,

 

daddr,

 

operation

 

)

 

pdiag_info_handle_t

  

handle;

 

pdiag_addr_t

  

daddr;

 

uint32

 

operation;

 

Description

 

The

 

following

 

is

 

performed

 

by

 

the

 

pdiag_dd_dma_complete

 

depending

 

on

 

the

 

bus

 

type

 

and

 

operation:

 

Where

 

bus

 

type

 

=

 

BUS_MICRO_CHANNEL

 

and

 

operation

 

is

 

PDIAG_DMA_MASTER

 

or

 

PDIAG_DMA_SLAVE

 

v

   

The

 

pdiag_dd_dma_complete()

 

function

 

cleans

 

up

 

after

 

the

 

DMA

 

transfer.

 

First,

 

the

 

specified

 

daddr

 

is

 

used

 

to

 

retrieve

 

the

 

baddr,

 

count,

 

and

 

dma_flags

 

specified

 

in

 

the

 

corresponding

 

pdiag_dd_dma_setup()

 

calls.

 

pdiag_dd_dma_complete()

 

then

 

issues

 

the

 

d_complete

 

kernel

 

call

 

using

 

these

 

parameters.

 

The

 

user

 

address

 

space

 

used

 

for

 

the

 

DMA

 

transfer

 

is

 

then

 

unpinned,

 

detached,

 

and

 

made

 

available

 

for

 

another

 

DMA

 

transfer.

 

Where

 

bus

 

type

 

=

 

BUS_BID

 

and

 

operation

 

is

 

PDIAG_DMA_MASTER

 

v

   

The

 

pdiag_dd_dma_complete()

 

should

 

be

 

called

 

after

 

I/O

 

completion

 

involving

 

the

 

area

 

mapped

 

by

 

the

 

prior

 

pdiag_dd_dma_setup()

 

function

 

call.

 

This

 

function

 

utilizes

 

the

 

D_UNMAP_PAGE

 

macro

 

to

 

unmap

 

the

 

specified

 

address.

 

Where

 

bus

 

type

 

=

 

BUS_BID

 

and

 

operation

 

is

 

PDIAG_DMA_SLAVE

 

v

   

The

 

pdiag_dd_dma_complete()

 

should

 

be

 

called

 

after

 

I/O

 

completion

 

involving

 

the

 

area

 

mapped

 

by

 

the

 

prior

 

pdiag_dd_dma_setup()

 

function

 

call.

 

This

 

function

 

utilizes

 

the

 

D_UNMAP_SLAVE

 

macro

 

to

 

unmap

 

the

 

specified

 

address.

Execution

 

Environment

 

The

 

pdiag_dd_dma_complete()

 

function

 

can

 

be

 

called

 

from

 

the

 

process

 

or

 

the

 

interrupt

 

environment

 

on

 

a

 

BUS_MICRO_CHANNEL

 

system.

 

The

 

function

 

can

 

only

 

be

 

called

 

from

 

the

 

process

 

environment

 

on

 

a

 

BUS_BID

 

system.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

85



Parameters

  

Parameter

 

Description

 

handle

 

Points

 

to

 

pdiag_info_handle_t

 

structure

 

which

 

is

 

returned

 

from

 

pdiag_open().

 

daddr

 

The

 

offset

 

into

 

the

 

user’s

 

physical

 

DMA

 

address.

 

This

 

is

 

returned

 

by

 

pdiag_dd_dma_setup

 

()

 

routine.

 

For

 

DMA

 

slave

 

completes,

 

this

 

should

 

be

 

set

 

to

 

0.

 

operation

 

Type

 

of

 

operation

 

to

 

perform:

 

PDIAG_DMA_MASTER

 

PDIAG_DMA_SLAVE

   

Return

 

Value

 

The

 

pdiag_dd_dma_complete

 

function

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

DGX_OK

 

The

 

operation

 

was

 

successful.

 

The

 

errno

 

is

 

not

 

set.

 

DGX_INVALID_HANDLE

 

Specified

 

handle

 

has

 

been

 

closed

 

or

 

was

 

not

 

generated

 

by

 

the

 

pdiag_open()

 

call.

 

The

 

errno

 

is

 

not

 

set.

 

DGX_BADVAL_FAIL

 

daddr

 

value

 

was

 

not

 

valid.

 

The

 

errno

 

is

 

not

 

set.

 

DGX_DCOMPLETE_FAIL

 

Application

 

received

 

a

 

DMA

 

error

 

detected

 

by

 

the

 

system

 

hardware.

 

The

 

errno

 

is

 

set

 

to

 

the

 

d_complete()

 

return

 

code.

 

DGX_UNPINU_FAIL

 

Application

 

could

 

not

 

unpin

 

the

 

specified

 

user

 

buffer.

 

The

 

errno

 

is

 

set

 

to

 

the

 

unpinu()

 

return

 

code.

 

DGX_XMDETACH_FAIL

 

Application

 

could

 

not

 

detach

 

user

 

space

 

from

 

the

 

physical

 

address.

 

The

 

errno

 

is

 

set

 

to

 

the

 

xmdetach()

 

return

 

code.

   

Related

 

Information

 

pdiag_dd_dma_setup()

 

and

 

pdiag_dd_dma_enable()

 

functions.

 

pdiag_dd_dma_enable

 

Purpose

 

The

 

pdiag_dd_dma_enable()

 

function

 

enables

 

and

 

disables

 

a

 

DMA

 

operation.

 

The

 

actual

 

function

 

performed

 

depends

 

on

 

the

 

bus

 

type

 

and

 

operation

 

requested.

 

Syntax

 

#include

 

<sys/pdiagex_dds.h>

 

int32

 

pdiag_dd_dma_enable(

 

handle,

 

daddr,

 

operation

 

)

 

pdiag_info_handle_t>

  

handle;

 

pdiag_addr_t

  

daddr;

 

uint32

 

operation;

 

Description

 

Where

 

bus

 

type

 

=

 

BUS_MICRO_CHANNEL

 

and

 

operation

 

is

 

PDIAG_DMA_FLUSH

 

v

   

The

 

PDIAG_DMA_FLUSH

 

operation

 

uses

 

the

 

specified

 

daddr

 

to

 

retrieve

 

the

 

baddr

 

and

 

count

 

specified

 

in

 

the

 

corresponding

 

pdiag_dd_dma_setup()

 

call.

 

Then

 

the

 

d_cflush

 

and

 

d_bflush

 

kernel

 

routines

 

are

 

called

 

to

 

do

 

the

 

processor

 

cache

 

and

 

IOCC

 

buffer

 

flushes,

 

respectively.

 

If

 

users

 

need

 

to

 

change

 

data

 

in

 

the

 

DMA

 

address

 

space,

 

they

 

first

 

change

 

the

 

data

 

in

 

their

 

user

 

space

 

and

 

then

 

call

 

pdiag_dd_dma_enable()

 

with

 

a

 

PDIAG_DMA_FLUSH

 

operation.

 

If

 

they

 

need

 

to

 

read

 

data

 

in

 

the

 

DMA

 

address

 

space,

 

they

 

first

 

call

 

pdiag_dd_dma_enable

 

()

 

with

 

a

 

PDIAG_DMA_FLUSH

 

operation,

 

and

 

then

 

reads

 

the

 

data

 

in

 

the

 

user

 

space.

 

v

   

The

 

PDIAG_DMA_FLUSH

 

operation

 

flushes

 

the

 

processor

 

cache

 

and

 

the

 

IOCC

 

buffer.

 

This

 

may

 

be

 

used

 

if

 

a

 

user

 

is

 

required

 

to

 

look

 

at

 

or

 

change

 

the

 

DMA

 

area

 

after

 

a

 

pdiag_dd_dma_setup()

 

routine.

 

This

 

routine

 

works

 

only

 

if

 

pdiag_dd_dma_setup()

 

is

 

called

 

with

 

dma_flags

 

=

 

DMA_NOHIDE.

   

86

 

Understanding

 

the

 

Diagnostic

 

Subsystem



This

 

routine

 

is

 

required

 

only

 

if

 

the

 

user

 

wants

 

to

 

read

 

the

 

data

 

before

 

doing

 

pdiag_dd_dma_complete().

 

Where

 

bus

 

type

 

=

 

BUS_MICRO_CHANNEL

 

or

 

BUS_BID

 

and

 

operation

 

is

 

PDIAG_DMA_DISABLE

 

v

   

The

 

DMA

 

channel

 

for

 

that

 

handle

 

is

 

disabled.

 

Where

 

bus

 

type

 

=

 

BUS_MICRO_CHANNEL

 

or

 

BUS_BID

 

and

 

operation

 

is

 

PDIAG_DMA_ENABLE

 

v

   

The

 

DMA

 

channel

 

for

 

that

 

handle

 

is

 

enabled.

Execution

 

Environment

 

The

 

pdiag_dd_dma_enable()

 

function

 

can

 

be

 

called

 

from

 

the

 

process

 

or

 

the

 

interrupt

 

environment

 

on

 

a

 

BUS_MICRO_CHANNEL

 

system.

 

The

 

function

 

can

 

only

 

be

 

called

 

from

 

the

 

process

 

environment

 

on

 

a

 

BUS_BID

 

system.

 

Parameters

  

Parameter

 

Description

 

handle

 

Points

 

to

 

pdiag_info_handle_t

 

structure

 

which

 

is

 

returned

 

from

 

pdiag_open

 

().

 

daddr

 

Pointer

 

to

 

the

 

user’s

 

physical

 

DMA

 

address.

 

This

 

is

 

returned

 

by

 

pdiag_dd_dma_setup()

 

routine.

 

operation

 

Type

 

of

 

operation

 

to

 

perform:

 

PDIAG_DMA_ENABLE

 

PDIAG_DMA_DISABLE

 

PDIAG_DMA_FLUSH

   

Return

 

Value

 

The

 

pdiag_dd_dma_enable

 

function

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

DGX_OK

 

The

 

operation

 

was

 

successful.

 

The

 

errno

 

is

 

not

 

set.

 

DGX_INVALID_HANDLE

 

Specified

 

handle

 

has

 

been

 

closed

 

or

 

was

 

not

 

generated

 

by

 

the

 

pdiag_open()

 

call.

 

The

 

errno

 

is

 

not

 

set.

 

DGX_BADVAL_FAIL

 

Specified

 

daddr

 

is

 

not

 

valid.

 

The

 

errno

 

is

 

not

 

set.

 

DGX_FAIL

 

Application

 

could

 

not

 

transfer

 

data

 

between

 

the

 

processor

 

and

 

the

 

I/O

 

controller

 

(IOCC)

 

data

 

caches.

 

The

 

errno

 

is

 

set

 

to

 

the

 

d_cflush

 

or

 

d_bflush

 

return

 

code.

   

Related

 

Information

 

The

 

pdiag_dd_dma_setup

 

and

 

pdiag_dd_dma_complete

 

subroutines.

 

pdiag_shared_slot

 

Purpose

 

Finds

 

all

 

devices

 

that

 

share

 

a

 

slot

 

with

 

the

 

requested

 

device.

 

Syntax

 

#include

 

<sys/pdiag_def.h>

 

int32

 

pdiag_shared_slot

 

(char

 

*device_instance)

 

Description

 

The

 

pdiag_shared_slot

 

subroutine

 

finds

 

the

 

siblings

 

of

 

a

 

device

 

and

 

then

 

attempts

 

to

 

determine

 

which

 

siblings

 

are

 

on

 

the

 

same

 

slot.

 

Under

 

some

 

circumstances

 

this

 

function

 

may

 

return

 

more

 

devices

 

sharing

 

a

 

slot

 

than

 

physically

 

exist.

 

This

 

function

 

will

 

always

 

return

 

the

 

device

 

instance

 

at

 

the

 

front

 

of

 

the

 

list,

 

if

 

there

 

are

 

no

 

other

 

devices

 

sharing

 

the

 

slot,

 

the

 

function

 

will

 

return

 

a

 

pointer

 

to

 

the

 

device

 

instance.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

87



Note:

  

This

 

subroutine

 

function

 

will

 

return

 

adapters

 

that

 

are

 

in

 

available

 

and

 

in

 

defined

 

state.

 

It

 

is

 

the

 

responsibility

 

of

 

the

 

calling

 

application

 

to

 

determine

 

if

 

any

 

of

 

the

 

adapters

 

have

 

been

 

removed

 

from

 

the

 

system.

 

Parameters

  

Parameter

 

Description

 

device_instance

 

Name

 

of

 

device

 

under

 

test.

   

Return

 

Value

 

The

 

pdiag_shared_slot

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

A

 

pointer

 

to

 

the

 

head

 

of

 

a

 

doubly-linked

 

list

 

Successful

 

return.

 

Note:

 

The

 

device_instance

 

lies

 

at

 

the

 

front

 

of

 

the

 

list.

 

NULL

 

An

 

error

 

occurred

 

while

 

finding

 

siblings

 

or

 

retrieving

 

data

 

from

 

the

 

ODM.

   

Related

 

Information

 

The

 

pdiag_set_eeh_option

 

and

 

pdiag_read_slot_reset

 

subroutines.

 

pdiag_read_slot_reset

 

Purpose

 

Queries

 

the

 

state

 

of

 

the

 

physical

 

reset

 

signal

 

to

 

the

 

I/O

 

Adapter

 

and

 

the

 

Enhanced

 

Error

 

Handling

 

(EEH)

 

slot’s

 

capabilities.

 

Syntax

 

#include

 

<sys/pdiagex_dds.h>

 

#include

 

<sys/pdiag_def.h>

   

int32

 

pdiag_read_slot_reset(

 

char

 

*device_instance,

 

int32

 

operation_type

 

)

 

Description

 

The

 

pdiag_read_slot_reset

 

subroutine

 

issues

 

a

 

Run-Time

 

Abstraction

 

service

 

(RTAS)

 

call

 

to

 

query

 

the

 

state

 

of

 

the

 

physical

 

reset

 

signal

 

to

 

the

 

I/O

 

Adapter

 

and

 

the

 

EEH

 

slot’s

 

capability.

 

Parameters

  

Parameter

 

Description

 

device_instance

 

Name

 

of

 

the

 

device

 

under

 

test.

 

operation_type

 

Integer

 

indicating

 

the

 

function

 

to

 

be

 

performed.

 

0:

 

Query

 

Reset

 

State

 

This

 

option

 

returns

 

the

 

slot

 

reset

 

state,

 

indicating

 

if

 

the

 

slot

 

reset

 

is

 

activated

 

or

 

deactivated,

 

and

 

if

 

the

 

I/O

 

adapter

 

is

 

in

 

stopped

 

state

 

or

 

not.

 

1:

 

Query

 

Slot

 

Capabilities

 

This

 

option

 

returns

 

the

 

EEH

 

I/O

 

Adapter

 

capabilities,

 

indicating

 

if

 

EEH

 

is

 

supported

 

or

 

not.

   

Return

 

Value

 

The

 

pdiag_read_slot_reset

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values

 

for

 

the

 

Query

 

Reset

 

State

 

operation:

  

Return

 

Code

 

Description

 

-2

 

Software

 

error

 

-1

 

Hardware

 

error

   

88

 

Understanding

 

the

 

Diagnostic

 

Subsystem



0

 

Reset

 

deactivated

 

and

 

I/O

 

Adapter

 

is

 

not

 

in

 

the

 

EEH

 

stopped

 

state.

 

1

 

Reset

 

activated

 

and

 

I/O

 

Adapter

 

is

 

not

 

in

 

the

 

EEH

 

stopped

 

state.

 

2

 

I/O

 

Adapter

 

is

 

in

 

the

 

EEH

 

stopped

 

state

 

with

 

the

 

reset

 

signal

 

deactivated

 

and

 

the

 

Load/Store

 

Path

 

is

 

disabled.

 

3

 

I/O

 

Adapter

 

is

 

in

 

the

 

EEH

 

stopped

 

state

 

with

 

the

 

reset

 

signal

 

deactivated

 

and

 

the

 

Load/Store

 

Path

 

is

 

enabled.

 

4

 

I/O

 

Adapter

 

is

 

permanently

 

unavailable.

   

The

 

pdiag_read_slot_reset

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values

 

for

 

the

 

Query

 

Slot

 

Capabilities

 

operation:

  

Return

 

Code

 

Description

 

-2

 

Software

 

error.

 

-1

 

Hardware

 

error.

 

0

 

EEH

 

not

 

supported.

 

1

 

EEH

 

supported.

   

Related

 

Information

 

The

 

pdiag_set_slot_reset

 

and

 

pdiag_set_eeh_option

 

subroutines.

 

pdiag_set_eeh_option

 

Purpose

 

Enables

 

and

 

disables

 

the

 

Enhanced

 

Error

 

Handling

 

(EEH)

 

option

 

for

 

an

 

I/O

 

Adapter,

 

for

 

systems

 

supporting

 

the

 

EEH

 

option.

 

Syntax

 

#include

 

<sys/pdiagex_dds.h>

 

#include

 

<sys/pdiag_def.h>

   

int32

 

pdiag_set_eeh_option(

 

char

 

*device_instance,

 

int32

 

operation_type

 

)

 

Description

 

The

 

pdiag_set_eeh_option

 

subroutine

 

issues

 

Run-Time

 

Abstraction

 

Services

 

(RTAS)

 

calls

 

to

 

enable

 

and

 

disable

 

the

 

EEH

 

option

 

for

 

an

 

I/O

 

Adapter.

 

Parameters

  

Parameter

 

Description

 

device_instance

 

Name

 

of

 

the

 

device

 

under

 

test.

 

operation_type

 

Integer

 

indicating

 

the

 

function

 

to

 

be

 

performed.

 

Supported

 

operations:

 

0:

 

Disable

 

EEH

 

option:

 

This

 

operation

 

disables

 

the

 

EEH

 

option

 

for

 

the

 

selected

 

I/O

 

Adapter

 

(freeze

 

function

 

is

 

disabled).

 

An

 

error

 

is

 

reported

 

if

 

the

 

EEH

 

function

 

is

 

not

 

supported.

 

1:

 

Enable

 

EEH

 

option:

 

This

 

operation

 

enables

 

the

 

EEH

 

option

 

for

 

the

 

selected

 

I/O

 

Adapter

 

(freeze

 

function

 

enabled).

 

An

 

error

 

is

 

reported

 

if

 

the

 

EEH

 

function

 

is

 

not

 

supported.

   

Return

 

Value

 

The

 

pdiag_set_eeh_option

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Code

 

Description

 

-2

 

A

 

software

 

error

 

occurred.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

89



Return

 

Code

 

Description

 

-1

 

A

 

hardware

 

error

 

occurred.

 

0

 

The

 

operation

 

was

 

successful.

   

Related

 

Information

 

The

 

pdiag_set_slot_reset

 

and

 

pdiag_read_slot_reset

 

subroutines.

 

pdiag_set_slot_reset

 

Purpose

 

Activates

 

and

 

deactivates

 

the

 

physical

 

reset

 

signal

 

to

 

the

 

I/O

 

adapter

 

for

 

systems

 

supporting

 

the

 

Enhanced

 

Error

 

Handling

 

(EEH)

 

option.

 

Syntax

 

#include

 

<sys/pdiagex_dds.h>

 

#include

 

<sys/pdiag_def.h>

   

int32

 

pdiag_set_slot_reset(

 

char

 

*device_instance

 

)

 

Description

 

The

 

pdiag_set_slot_reset

 

subroutine

 

resets

 

a

 

single

 

PCI

 

slot

 

by

 

activating

 

and

 

deactivating

 

the

 

slot

 

specific

 

physical

 

reset

 

signal

 

line

 

to

 

the

 

I/O

 

adapter

 

by

 

issuing

 

a

 

Run-Time

 

Abstraction

 

Service

 

(RTAS)

 

call.

 

All

 

required

 

timing

 

parameters

 

will

 

be

 

handled

 

by

 

this

 

subroutine

 

(such

 

as

 

the

 

100

 

millisecond

 

minimum

 

reset

 

signal

 

active

 

time

 

for

 

PCI

 

bus).

 

Parameters

  

Parameter

 

Description

 

device_instance

 

Name

 

of

 

the

 

device

 

under

 

test.

   

Return

 

Value

 

The

 

pdiag_set_slot_reset

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Code

 

Description

 

-2

 

A

 

software

 

error

 

occurred.

 

-1

 

A

 

hardware

 

error

 

occurred.

 

0

 

The

 

operation

 

was

 

successful.

   

Related

 

Information

 

The

 

pdiag_set_eeh_option

 

and

 

pdiag_read_slot_reset

 

subroutines.

 

Data

 

Dictionary

 

This

 

section

 

provides

 

information

 

on

 

the

 

data

 

structures

 

and

 

kernel

 

services

 

used

 

by

 

the

 

Diagnostic

 

Kernel

 

Extension

 

PDIAGEX.

 

v

   

PDIAGEX

 

Data

 

Structures

 

v

   

Kernel

 

Services

 

v

   

Programmed

 

I/O

 

Services

PDIAGEX

 

Data

 

Structures

 

This

 

section

 

describes

 

the

 

data

 

structures

 

used

 

by

 

PDIAGEX.

   

90

 

Understanding

 

the

 

Diagnostic

 

Subsystem



pdiagex_dds_t

 

The

 

pdiagex_dds_t

 

structure

 

defines

 

the

 

device

 

driver

 

structure

 

(dds)

 

for

 

PDIAGEX.

 

The

 

pdiagex_dds_t

 

structure

 

must

 

be

 

initialized

 

with

 

attributes

 

for

 

the

 

resource

 

before

 

calling

 

pdiag_open().

 

The

 

pdiagex_dds_t

 

structure

 

is

 

defined

 

in

 

/usr/include/sys/pdiagex_dds.h

 

and

 

contains

 

the

 

following

 

fields:

 

/*----------------------------------------------------------------------*/

 

/*

  

PDIAGEX_DDS_T

 

/*

    

This

 

structure

 

MUST

 

be

 

filled

 

in

 

by

 

the

 

Calling

 

Application

 

(TU)

 

/*

    

This

 

structure

 

is

 

passed

 

to

 

pdiagex

 

in

 

the

 

pdiag_open()

 

routine

 

/*----------------------------------------------------------------------*/

 

typedef

 

struct

 

{

    

uint32

       

slot_num;

          

/*

 

slot

 

number

 

of

 

adapter

      

/*

 

BUS

 

DATA

  

*/

    

uint32

       

bus_id;

            

/*

 

Identifies

 

the

 

I/O

 

bus

 

that

 

the

 

DMA

                                    

/*

 

channel

 

is

 

to

 

be

 

allocated

 

on.

    

uint32

       

bus_type;

          

/*

 

BUS_MICRO_CHANNEL,

 

BUS_60X

 

or

 

BUS_BID

    

uint32

       

bus_io_addr;

       

/*

 

Base

 

address

 

of

 

Bus

 

I/O

 

area

    

uint32

       

bus_io_length;

     

/*

 

Length

 

(width)

 

of

 

Bus

 

I/O

 

area

    

uint32

       

bus_mem_addr;

      

/*

 

Base

 

address

 

of

 

Shared

 

Bus

 

Memory

 

area

    

uint32

       

bus_mem_length;

    

/*

 

Length

 

(width)

 

of

 

Shared

 

Bus

 

Memory

 

area

      

/*

 

DMA

  

/

    

/*

 

Next

 

three

 

are

 

for

 

BUS_MICRO_CHANNEL

 

devices

 

only

  

*/

    

uint32

       

dma_bus_mem;

       

/*

 

Base

 

address

 

of

 

Bus

 

Memory

 

DMA

 

area

    

uint32

       

dma_bus_length;

    

/*

 

Length

 

(multiple

 

of

 

PAGESIZE)

 

of

 

BUS

                                    

/*

 

Memory

 

DMA

 

area

 

in

 

bytes.

    

uint32

       

dma_lvl;

           

/*

 

Bus

 

arbitration

 

level

      

uint32

       

maxmaster;

         

/*

 

maximum

 

number

 

of

 

concurrent

                                    

/*

 

dma_master

 

calls

    

uint32

       

dma_flags;

         

/*

 

DMA

 

flags

 

as

 

defined

 

in

 

sys/dma.h.

                                    

/*

 

These

 

flags

 

describe

 

what

 

actions

 

to

                                    

/*

 

take

 

(

 

master/slave,

 

initialize

 

the

                                 

/*

 

channel,

 

etc.

 

Not

 

used

 

by

 

60X

 

type

 

devices)

      

/*

 

dma_bus_flags

 

is

 

for

 

BUS_BID

 

devices

 

only

 

*/

    

uint32

       

dma_bus_flags;

     

/*

 

Bus

 

flags

 

specific

 

for

 

DMA

 

operation

      

uint32

       

dma_chan_id;

       

/*

 

For

 

BUS_MICRO_CHANNEL

                                    

/*

 

Dma

 

channel

 

ID

 

is

 

returned

 

as

 

a

 

result

                                    

/*

 

of

 

the

 

DMA

 

initialization.

                                    

/*

 

For

 

BUS_BID

                                    

/*

 

Dma

 

channel

 

ID

 

is

 

the

 

assigned

 

DMA

                                    

/*

 

channel

 

for

 

the

 

device.

                                    

/*

 

For

 

BUS_60X

                                    

/*

 

Dma

 

channel

 

ID

 

is

 

not

 

used

      

/*

 

Interrupt

 

Handler

                            

*/

    

pdiag_addr_t

 

data_ptr;

          

/*

 

Pointer

 

for

 

passing

 

data

 

to

 

interrupt

    

uint32

       

d_count;

           

/*

 

Count

 

of

 

bytes

 

of

 

data

 

for

 

interrupt

    

uint32

       

bus_intr_lvl;

      

/*

 

Interrupt

 

level

    

uint32

       

intr_priority;

     

/*

 

Interrupt

 

priority

    

uint32

       

intr_flags;

        

/*

 

Interrupt

 

flags

 

as

 

defined

 

in

 

intr.h

      

/*

 

Attribute

 

Expansion

 

Area

  

*/

    

pdiag_addr_t

 

attributes;

        

/*

 

Pointer

 

to

 

specific

 

attributes

    

}pdiagex_dds_t;

 

pdiagex_opflags_t

 

The

 

pdiagex_opflags_t

 

structure

 

defines

 

the

 

device

 

operations

 

to

 

be

 

used.

 

The

 

pdiagex_opflags_t

 

structure

 

is

 

defined

 

in

 

/usr/include/sys/pdiagex_dds.h

 

and

 

consists

 

of

 

the

 

following:

   

Chapter

 

3.

 

Diagnostic

 

Components

 

91



/*----------------------------------------------------------------------*/

 

/*

  

PDIAGEX_OPFLAGS_T

 

/*

     

This

 

structure

 

MUST

 

be

 

filled

 

in

 

by

 

the

 

Calling

 

Application

 

(TU)

 

/*

     

This

 

structure

 

is

 

used

 

for

 

Read

 

and

 

Write

 

Operations

 

/*----------------------------------------------------------------------*/

 

typedef

 

struct

 

{

    

uint32

       

memio;

            

/*

 

Type

 

of

 

Memory

 

Operation

                                   

/*PDIAG_MEM_OP,PDIAG_IO_OP,PDIAG_POS_OP

    

uint32

       

count;

            

/*

 

Number

 

of

 

accesses

 

to

 

perform

    

uint32

       

addr_incr_flag;

   

/*

 

Flag

 

that

 

determines

 

whether

 

the

 

data

                                   

/*

 

buffer

 

address

 

and/or

 

the

 

offset

                                   

/*

 

address

 

gets

 

incremented

 

on

 

each

 

of

                                   

/*

 

count

 

accesses.

                                   

/*

 

PDIAG_SING_LOC_ACC

 

or

                                   

/*

 

PDIAG_SING_LOC_HW

   

or

                                   

/*

 

PDIAG_SING_LOC_BUF

  

or

                                   

/*

 

PDIAG_MULT_LOC_ACC

    

uint32

       

intr_level;

       

/*

 

Indicates

 

which

 

environment

 

the

                                   

/*

 

calling

 

application

 

is

 

in.

                                   

/*

 

PROCLEV

 

or

 

INTRKMEM

 

or

 

INTRPMEM

    

struct

 

timestruc_t

 

*times;

     

/*

 

Address

 

of

 

times

 

structure,

 

NULL

 

if

                                   

/*

 

not

 

used.

 

}

 

pdiagex_opflags_t;

 

dma_struct

 

The

 

dma_struct

 

structure

 

defines

 

the

 

DMA

 

structure

 

used

 

by

 

PDIAGEX.

 

The

 

dma_struct

 

structure

 

is

 

defined

 

in

 

/usr/include/sys/pdiagex_sys.h

 

and

 

contains

 

the

 

following

 

fields:

 

typedef

 

struct

 

dmast

 

{

                   

struct

 

dmast

 

*next;

                   

int

   

firsttcw;

  

/*

 

first

 

TCW

 

used

 

(micro

 

channel

 

only)

 

*/

                   

int

   

last_tcw;

  

/*

 

last

  

TCW

 

used

 

(micro

 

channel

 

only)

 

*/

                   

int

   

dma_flags;

 

/*

 

see

 

/usr/include/sys/dma.h

 

*/

                   

uchar

 

*baddr;

    

/*

 

address

 

of

 

the

 

host

 

buffer

 

to

 

DMA

 

to/from

 

*/

                   

uchar

 

*daddr;

    

/*Phys

 

addr

 

in

 

DMAbus_mem,

 

from

                                                        

diag_dma_master()*/

                   

uint

  

count;

     

/*

 

size

 

of

 

the

 

DMA

 

data

 

in

 

bytes

 

*/

                   

struct

 

xmem

 

dp;

  

/*

 

Cross

 

Memory

 

descriptor

 

of

 

baddr

 

*/

                   

char

  

pinned;

    

/*

 

NonZero

 

if

 

DMA

 

buffer

 

was

 

pinned

 

*/

                   

char

  

xmattached;

  

/*

 

NonZero

 

if

 

DMA

 

buffer

 

was

 

CrossMemAttached

 

*/

                   

char

  

in_use;

    

/*

 

TRUE

 

if

 

this

 

linked

 

list

 

member

 

is

 

valid

 

*/

                 

}

 

dma_info_t;

  

Parameter

 

Description

 

next

 

Pointer

 

to

 

the

 

next

 

dma_info_t

 

structure

 

in

 

an

 

’in_use’

 

list.

 

firsttcw

 

(Micro

 

Channel

 

devices

 

Only)

 

first

 

page

 

of

 

pdiagex_dds_t.dma_bus_mem

 

used

 

by

 

an

 

active

 

DMA

 

master/slave

 

operation.

 

last_tcw

 

(Micro

 

Channel

 

devices

 

Only)

 

last

 

page

 

of

 

pdiagex_dds_t.dma_bus_mem

 

used

 

by

 

an

 

active

 

DMA

 

master/slave

 

operation.

 

dma_flags

 

DMA

 

flags

 

as

 

defined

 

in

 

<sys/dma.h>.

 

These

 

flags

 

describe

 

what

 

actions

 

to

 

take

 

(such

 

as,

 

master/slave

 

transfer,

 

initialize

 

the

 

DMA

 

channel,

 

and

 

so

 

on).

 

*baddr

 

Address

 

of

 

memory

 

buffer

 

for

 

transfer.

 

*daddr

 

Address

 

used

 

to

 

program

 

the

 

DMA

 

master.

 

count

 

Size

 

(in

 

bytes)

 

of

 

the

 

DMA

 

transfer.

 

dp

 

Address

 

of

 

cross-memory

 

descriptor.

 

pinned

 

Nonzero

 

if

 

DMA

 

buffer

 

was

 

pinned.

 

xmattached

 

Nonzero

 

if

 

DMA

 

buffer

 

was

 

cross-memory

 

attached.

 

in_use

 

Flag

 

for

 

determining

 

if

 

DMA

 

buffer

 

is

 

valid

 

for

 

transfer.

    

92

 

Understanding

 

the

 

Diagnostic

 

Subsystem



aioo_struct_t

 

The

 

AIOO_STRUCT_T

 

structure

 

defines

 

the

 

allocations,

 

initializations,

 

and

 

outstanding

 

operations

 

for

 

each

 

handle.

 

This

 

provides

 

a

 

mechanism

 

for

 

error-recovery

 

cleanup,

 

cleanup

 

of

 

outstanding

 

operations

 

during

 

a

 

close,

 

and

 

general

 

protection

 

from

 

the

 

application.

 

Common

 

code

 

may

 

also

 

be

 

used

 

for

 

cleanup

 

operations.

 

/*

 

Allocation/Initialization/OutstandingOperations

 

Binary

 

Flags

 

Structure

 

*/

                    

typedef

 

struct

 

{

                      

uint

 

AllocIntrptDataMem

 

:

 

1;

                      

uint

 

AllocDmaAreaMem

    

:

 

1;

                      

uint

 

CopyDDS

            

:

 

1;

                      

uint

 

CopyIntrptEnt

      

:

 

1;

                      

uint

 

PinIntrptFunct

     

:

 

1;

                      

uint

 

PinUIntrptData

     

:

 

1;

                      

uint

 

PinDiagExt

         

:

 

1;

                      

uint

 

InitIntrptChan

     

:

 

1;

                      

uint

 

InitDmaChan

        

:

 

1;

                      

uint

 

XmatUIntrptData

    

:

 

1;

                   

}

 

aioo_struct_t;

  

Parameter

 

Description

 

AllocIntrptDataMem

 

Nonzero

 

if

 

Interrupt

 

data

 

area

 

allocated.

 

AllocDmaAreaMem

 

Nonzero

 

if

 

DMA

 

data

 

area

 

allocated.

 

CopyDDS

 

Nonzero

 

if

 

DDS

 

data

 

was

 

copied

 

to

 

handle.

 

CopyIntrptEnt

 

Nonzero

 

if

 

Intrpt

 

function

 

was

 

in

 

Kernel.

 

PinIntrptFunct

 

Nonzero

 

if

 

Intrpt

 

function

 

was

 

pinned.

 

PinUIntrptData

 

Nonzero

 

if

 

Intrpt

 

data

 

area

 

was

 

pinned.

 

PinDiagExt

 

Nonzero

 

if

 

Pinned

 

PDIAGEX

 

Extension.

 

InitIntrptChan

 

Nonzero

 

if

 

Intrpt

 

channel

 

was

 

initialized.

 

InitDmaChan

 

Nonzero

 

if

 

DMA

 

channel

 

was

 

initialized.

 

XmatUIntrptData

 

Nonzero

 

if

 

Intrpt

 

data

 

area

 

was

 

XMattached.

   

diag_struc_t

 

The

 

diag_struc_t

 

structure

 

defines

 

the

 

complete

 

data

 

structure

 

returned

 

in

 

the

 

handle

 

for

 

the

 

pdiag_open()

 

call.

 

This

 

structure

 

holds

 

all

 

the

 

needed

 

information

 

for

 

all

 

the

 

other

 

PDIAGEX

 

function

 

calls.

 

typedef

 

struct

 

handl

 

{

                    

struct

 

intr

        

intr;

                    

struct

              

handl

 

*next;

                    

int

                 

(*intr_func)();

                    

uchar

               

*intr_data;>

                    

struct

 

xmem

         

udata_dp;

                    

diagex_dds_t

        

dds;

                    

struct

 

timestruc_t

  

itime;

                    

struct

 

timestruc_t

  

ntime;

                    

dma_info_t

          

*dma_info;

                    

aioo_struct_t

       

aioo;

                    

char

                

*scratch_pad;

                    

uint

                

sleep_flag;

                    

uint

                

sleep_word;

                    

uint

                

flag_word;

                    

struct

 

watchdog

 

wdt;

                    

struct

 

d_handle

 

*

 

dhandle;

                    

dma_dio

            

*

 

dio_st;

                    

uint

                   

timeout;

                 

}

 

diag_struc_t;

  

Parameter

 

Description

 

intr

 

Interrupt

 

handler

 

structure

 

as

 

defined

 

in

 

<sys/intr.h>.

 

Needs

 

to

 

be

 

first

 

parameter

 

in

 

diag_struc_t.

 

(*intr_func)()

 

Pointer

 

to

 

user’s

 

interrupt

 

handler.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

93



Parameter

 

Description

 

*intr_data

 

Pointer

 

to

 

interrupt

 

data.

 

udata_dp

 

Address

 

of

 

cross-memory

 

descriptor

 

for

 

interrupt

 

data.

 

dds

 

Structure

 

that

 

contains

 

the

 

device

 

driver

 

structure

 

(dds)

 

information

 

for

 

PDIAGEX.

 

See

 

the

 

diagex_dds

 

structure

 

defined

 

above.

 

itime

 

Time

 

elapsed

 

for

 

interrupts.

 

Updated

 

at

 

interrupts.

 

ntime

 

Time

 

elapsed

 

for

 

read

 

or

 

write

 

operations.

 

Updated

 

at

 

reads

 

or

 

writes.

 

*dma_info

 

Pointer

 

to

 

dma_info_t

 

structure

 

which

 

allows

 

multiple

 

DMA

 

operations.

 

See

 

the

 

dma_info_t

 

structure

 

defined

 

above.

 

aioo

 

Set

 

of

 

flags

 

for

 

Allocations,

 

Initializations,

 

and

 

Outstanding

 

Operations.

 

scratch_pad

 

PIO

 

scratch

 

pad

 

for

 

large

 

transfers.

 

sleep_flag

 

pdiag_dd_watch_for_interrupt()

 

sets

 

this

 

flag

 

to

 

TRUE

 

if

 

it

 

is

 

sleeping

 

and

 

waiting

 

for

 

the

 

application’s

 

interrupt

 

handler

 

to

 

call

 

pdiag_dd_interrupt_notify().

 

This

 

flag

 

is

 

initialized

 

to

 

FALSE

 

and

 

will

 

be

 

set

 

to

 

FALSE

 

after

 

pdiag_dd_watch_for_interrupt()

 

wakes

 

up.

 

>The

 

application’s

 

interrupt

 

handler

 

should

 

use

 

this

 

word

 

to

 

determine

 

whether

 

to

 

’wakeup’

 

pdiag_dd_watch_for_interrupt().

 

This

 

flag

 

should

 

not

 

be

 

modified

 

by

 

the

 

application’s

 

interrupt

 

handler.

 

sleep_word

 

pdiag_dd_watch_for_interrupt()

 

sleeps

 

on

 

this

 

word

 

until

 

the

 

application’s

 

interrupt

 

handler

 

calls

 

pdiag_dd_interrupt_notify()

 

using

 

this

 

word.

 

This

 

word

 

should

 

not

 

be

 

modified

 

by

 

the

 

application’s

 

interrupt

 

handler.

 

flag_word

 

This

 

flag

 

is

 

defined

 

by

 

the

 

application

 

and

 

should

 

be

 

set

 

by

 

the

 

application’s

 

interrupt

 

handler

 

to

 

specify

 

certain

 

interrupt

 

conditions.

 

The

 

application

 

may

 

call

 

pdiag_dd_watch_for_interrupt(),

 

specifying

 

a

 

flag_mask

 

which

 

will

 

be

 

bitwise

 

ANDed

 

with

 

this

 

flag_word.

 

When

 

this

 

AND

 

operation

 

produces

 

a

 

nonzero

 

result

 

and

 

pdiag_dd_watch_for_interrupt()

 

is

 

awake,

 

pdiag_dd_watch_for_interrupt()

 

will

 

return.

 

wdt

 

This

 

is

 

the

 

watchdog

 

timer

 

used

 

by

 

the

 

timeout

 

function.

 

dhandle

 

Structure

 

returned

 

by

 

D_MAP_INIT

 

macro

 

which

 

is

 

called

 

in

 

the

 

pdiag_open()

 

function.

 

This

 

handle

 

is

 

used

 

to

 

issue

 

DMA

 

operations

 

to

 

rspc

 

type

 

systems.

 

dio_st

 

Pointer

 

to

 

a

 

DIO

 

structure

 

used

 

in

 

DMA

 

operations.

 

timeout

 

True

 

if

 

watchdog

 

timer

 

expired.

   

Kernel

 

Services

 

The

 

following

 

is

 

a

 

list

 

of

 

Kernel

 

Services

 

used

 

by

 

PDIAGEX.

  

Kernel

 

Service

 

Description

 

copyin

 

Copies

 

data

 

between

 

user

 

and

 

kernel

 

memory.

 

copyout

 

Copies

 

data

 

from

 

kernel

 

to

 

user

 

memory.

 

curtime

 

Read

 

the

 

current

 

time

 

into

 

timestruc_t

 

structure.

 

d_bflush

 

Flushes

 

the

 

appropriate

 

I/O

 

controller

 

cache

 

(IOCC),

 

identified

 

by

 

the

 

TCE

 

bus

 

address

 

parameter,

 

on

 

memory-inconsistent

 

platforms.

 

d_cflush

 

Flushes

 

the

 

processor

 

data

 

cache

 

and

 

invalidates

 

any

 

prefetched

 

data

 

that

 

may

 

be

 

in

 

the

 

IOCC

 

buffers

 

on

 

memory-inconsistent

 

platforms.

 

d_clear

 

Frees

 

a

 

Direct

 

Memory

 

Access

 

(DMA)

 

channel.

 

Note:

 

This

 

service

 

is

 

not

 

supported

 

in

 

AIX

 

5.2

 

and

 

subsequent

 

releases.

 

d_complete

 

Cleans

 

up

 

after

 

a

 

Direct

 

Memory

 

Access

 

(DMA)

 

transfer.

 

Note:

 

This

 

service

 

is

 

not

 

supported

 

in

 

AIX

 

5.2

 

and

 

subsequent

 

releases.

 

d_init

 

Initializes

 

a

 

Direct

 

Memory

 

Access

 

(DMA)

 

channel.

 

Note:

 

This

 

service

 

is

 

not

 

supported

 

in

 

AIX

 

5.2

 

and

 

subsequent

 

releases.

 

d_mask

 

Disables

 

a

 

Direct

 

Memory

 

Access

 

(DMA)

 

channel.

 

Note:

 

This

 

service

 

is

 

not

 

supported

 

in

 

AIX

 

5.2

 

and

 

subsequent

 

releases.

 

d_master

 

Initializes

 

a

 

block-mode

 

Direct

 

Memory

 

Access

 

(DMA)

 

transfer

 

for

 

a

 

DMA

 

master.

 

Note:

 

This

 

service

 

is

 

not

 

supported

 

in

 

AIX

 

5.2

 

and

 

subsequent

 

releases.

 

d_slave

 

Initializes

 

a

 

block-mode

 

Direct

 

Memory

 

Access

 

(DMA)

 

transfer

 

for

 

a

 

DMA

 

slave.

 

Note:

 

This

 

service

 

is

 

not

 

supported

 

in

 

AIX

 

5.2

 

and

 

subsequent

 

releases.

   

94

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Kernel

 

Service

 

Description

 

d_unmask

 

Enables

 

a

 

Direct

 

Memory

 

Access

 

(DMA)

 

channel.

 

Note:

 

This

 

service

 

is

 

not

 

supported

 

in

 

AIX

 

5.2

 

and

 

subsequent

 

releases.

 

e_sleep

 

Causes

 

process

 

to

 

sleep.

 

e_wakeup

 

Wakes

 

up

 

sleeping

 

process.

 

i_clear

 

Removes

 

an

 

interrupt

 

handler.

 

i_disable

 

Disables

 

interrupt

 

priorities.

 

i_enable

 

Enables

 

interrupt

 

priorities.

 

i_init

 

Defines

 

an

 

interrupt

 

handler.

 

io_att

 

Selects,

 

allocates,

 

and

 

maps

 

a

 

region

 

in

 

the

 

current

 

address

 

space

 

for

 

I/O

 

access.

 

io_det

 

Unmaps

 

and

 

deallocates

 

the

 

region

 

in

 

the

 

current

 

address

 

space

 

at

 

the

 

given

 

address.

 

kmod_entrypt

 

Returns

 

a

 

function

 

pointer

 

to

 

a

 

kernel

 

module’s

 

entry

 

point.

 

pincode

 

Pins

 

the

 

code

 

and

 

data

 

associated

 

with

 

an

 

object

 

file.

 

pinu

 

Pins

 

the

 

specified

 

address

 

range

 

in

 

user

 

or

 

system

 

memory.

 

unpincode

 

Unpins

 

the

 

code

 

and

 

data

 

associated

 

with

 

an

 

object

 

file.

 

unpinu

 

Unpins

 

the

 

specified

 

address

 

range

 

in

 

user

 

or

 

system

 

memory.

 

xmalloc

 

Allocates

 

memory.

 

xmattach

 

Attaches

 

to

 

a

 

user

 

buffer

 

for

 

cross-memory

 

operations.

 

xmdetach

 

Detaches

 

from

 

a

 

user

 

buffer

 

used

 

for

 

cross-memory

 

operations.

 

xmemdma

 

Prepares

 

a

 

page

 

of

 

memory

 

for

 

DMA

 

(used

 

with

 

BUS_60X

 

only).

 

xmemin

 

Copies

 

data

 

to

 

kernel

 

space

 

from

 

a

 

cross-memory

 

attached

 

buffer.

 

xmemout

 

Copies

 

data

 

from

 

kernel

 

space

 

to

 

a

 

cross-memory

 

attached

 

buffer.

 

xmfree

 

Frees

 

allocated

 

memory.

   

Programmed

 

I/O

 

Services

 

The

 

following

 

is

 

a

 

list

 

of

 

Programmed

 

I/O

 

(PIO)

 

macros

 

used

 

by

 

PDIAGEX.

  

Macro

 

Description

 

BUS_GETCX

 

Reads

 

the

 

specified

 

character

 

value

 

from

 

the

 

supplied

 

bus

 

memory,

 

bus

 

I/O,

 

or

 

POS

 

address

 

with

 

built-in

 

exception

 

catching.

 

BUS_GETLX

 

Reads

 

the

 

specified

 

long

 

value

 

from

 

the

 

supplied

 

bus

 

memory,

 

bus

 

I/O,

 

or

 

POS

 

address

 

with

 

built-in

 

exception

 

catching.

 

BUS_GETSX

 

Reads

 

the

 

specified

 

short

 

value

 

from

 

the

 

supplied

 

bus

 

memory,

 

bus

 

I/O,

 

or

 

POS

 

address

 

with

 

built-in

 

exception

 

catching.

 

BUS_PUTCX

 

Writes

 

the

 

specified

 

character

 

value

 

to

 

the

 

supplied

 

bus

 

memory,

 

bus

 

I/O,

 

or

 

POS

 

address

 

with

 

built-in

 

exception

 

catching.

 

BUS_PUTLX

 

Writes

 

the

 

specified

 

long

 

value

 

to

 

the

 

supplied

 

bus

 

memory,

 

bus

 

I/O,

 

or

 

POS

 

address

 

with

 

built-in

 

exception

 

catching.

 

BUS_PUTSX

 

Writes

 

the

 

specified

 

short

 

value

 

to

 

the

 

supplied

 

bus

 

memory,

 

bus

 

I/O,

 

or

 

POS

 

address

 

with

 

built-in

 

exception

 

catching.

   

The

 

following

 

is

 

a

 

list

 

of

 

Programmed

 

I/O

 

(PIO)

 

macros

 

used

 

by

 

the

 

64

 

bit

 

PDIAGEX.

  

Macro

 

Description

 

BUS_GETSTR

 

Reads

 

the

 

specified

 

character

 

value

 

from

 

the

 

supplied

 

bus

 

memory.

 

BUSIO_GETSTR

 

Reads

 

the

 

specified

 

character

 

value

 

from

 

the

 

supplied

 

bus

 

I/O.

 

BUS_GETS

 

Reads

 

the

 

specified

 

short

 

value

 

from

 

the

 

supplied

 

bus

 

memory.

 

BUSIO_GETS

 

Reads

 

the

 

specified

 

short

 

value

 

from

 

the

 

supplied

 

bus

 

I/O.

 

BUS_GETL

 

Reads

 

the

 

specified

 

long

 

(32

 

bits)

 

value

 

from

 

the

 

supplied

 

bus

 

memory.

 

BUSIO_GETL

 

Reads

 

the

 

specified

 

long

 

(32

 

bits)

 

value

 

from

 

the

 

supplied

 

bus

 

I/O.

 

BUS_PUTSTR

 

Writes

 

the

 

specified

 

character

 

value

 

to

 

the

 

supplied

 

bus

 

memory.

 

BUSIO_PUTSTR

 

Writes

 

the

 

specified

 

character

 

value

 

to

 

the

 

supplied

 

bus

 

I/O.

 

BUS_PUTS

 

Writes

 

the

 

specified

 

short

 

value

 

to

 

the

 

supplied

 

bus

 

memory.

 

BUSIO_PUTS

 

Writes

 

the

 

specified

 

short

 

value

 

to

 

the

 

supplied

 

bus

 

I/O.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

95



Macro

 

Description

 

BUS_PUTL

 

Writes

 

the

 

specified

 

long

 

(32

 

bits)

 

value

 

to

 

the

 

supplied

 

bus

 

memory.

 

BUSIO_PUTL

 

Writes

 

the

 

specified

 

long

 

(32

 

bits)

 

value

 

to

 

the

 

supplied

 

bus

 

I/O.

   

Diagnostic

 

Library

 

This

 

section

 

provides

 

information

 

on

 

application

 

programming

 

interfaces

 

to

 

administrative

 

and

 

user

 

applications.

 

The

 

calls

 

described

 

are

 

contained

 

in

 

the

 

/usr/lib/libdiag.a

 

diagnostic

 

library.

 

The

 

following

 

is

 

a

 

list

 

of

 

exported

 

programming

 

interfaces

 

available

 

for

 

user

 

applications:

 

v

   

Diagnostic

 

Event

 

Log

 

Functions

 

–

   

dlog_numMatches

 

–

   

dlog_query

 

–

   

dlog_query_cleanup

v

   

Diagnostic

 

Event

 

Log

 

Data

 

Structures

 

–

   

dl_fru_src

 

–

   

dl_partition

 

–

   

dl_menugoal

 

–

   

dl_srn

 

–

   

dl_srn_src

 

–

   

query_fru

 

–

   

query_log

 

–

   

query_output

 

–

   

query_results

 

This

 

section

 

provides

 

information

 

on

 

application

 

programming

 

interfaces

 

to

 

the

 

Diagnostic

 

Applications.

 

The

 

calls

 

described

 

are

 

contained

 

in

 

the

 

/usr/lib/libdiag.a

 

diagnostic

 

library.

 

The

 

following

 

is

 

a

 

list

 

of

 

all

 

the

 

exported

 

programming

 

interfaces

 

available:

 

v

   

ODM

 

Object

 

Class

 

Functions

 

–

   

diag_add_obj

 

–

   

diag_change_obj

 

–

   

diag_close_class

 

–

   

diag_free_list

 

–

   

diag_get_list

 

–

   

diag_lock

 

–

   

diag_open_class

 

–

   

diag_rm_obj

 

–

   

diag_unlock

 

–

   

init_dgodm

 

–

   

term_dgodm

v

   

Device

 

Configuration

 

–

   

configure_device

 

–

   

diagex_cfg_state

 

–

   

diagex_initial_state

 

–

   

get_device_status

 

–

   

initial_state

  

96

 

Understanding

 

the

 

Diagnostic

 

Subsystem



v

   

FRU

 

Bucket

 

Functions

 

–

   

addfrub

 

–

   

addfrub_src

 

–

   

insert_frub

 

–

   

add_more_frus

v

   

Catalog

 

File

 

Functions

 

–

   

diag_catopen

 

–

   

diag_cat_gets

v

   

Menu

 

Functions

 

–

   

diag_popup

 

–

   

diag_progress

 

–

   

diag_read

 

–

   

diag_resource_screen

 

–

   

diag_task_screen

 

–

   

diag_asl_clear_screen

 

–

   

diag_asl_init

 

–

   

diag_asl_msg

 

–

   

diag_asl_read

 

–

   

diag_asl_quit

 

–

   

diag_display

 

–

   

diag_display_menu

 

–

   

diag_emsg

 

–

   

diag_msg

v

   

Device

 

Attributes,

 

Properties

 

–

   

diag_get_device_flag

 

–

   

diag_get_property

 

–

   

diag_get_sid_lun

 

–

   

diag_load_optical_media

 

–

   

check_optical_media

 

–

   

get_cpu_model

 

–

   

get_dev_desc

 

–

   

get_diag_att

v

   

Diagnostic

 

Event

 

Log

 

Functions

 

–

   

dlog_getTestMode

 

–

   

dlog_close

 

–

   

dlog_find_first

 

–

   

dlog_find_next

 

–

   

dlog_find_sequence

 

–

   

dlog_formatElogResults

 

–

   

dlog_freeEntry

 

–

   

dlog_numMatches

 

–

   

dlog_open

 

–

   

dlog_query

 

–

   

dlog_query_cleanup

 

–

   

dlog_read

   

Chapter

 

3.

 

Diagnostic

 

Components

 

97



–

   

dlog_same_elogId

 

–

   

dlog_setEntryType

 

–

   

dlog_write

 

–

   

save_davars_ela

 

–

   

save_davars_mgoal_ela

v

   

Miscellaneous

 

–

   

copy_text

 

–

   

DA_SETRC_XXXXXX

 

–

   

diag_asl_beep

 

–

   

diag_asl_execute

 

–

   

diag_checkstop_eed

 

–

   

diag_checkstop_event

 

–

   

diag_cluster_support

 

–

   

diag_cpu2proc

 

–

   

diag_exec_source

 

–

   

diag_execute

 

–

   

diag_general_eed

 

–

   

diag_get_cluster_ms

 

–

   

diag_get_cluster_mt

 

–

   

diag_get_fru_serial

 

–

   

dt

 

–

   

error_log_get

 

–

   

file_present

 

–

   

get_DApp

 

–

   

getdainput

 

–

   

getdavar

 

–

   

getELAdates

 

–

   

has_diag_authority

 

–

   

ipl_mode

 

–

   

menugoal

 

–

   

schedule_ela

dlog_numMatches

 

Subroutine

 

Purpose

 

Count

 

the

 

number

 

of

 

diagnostic

 

event

 

log

 

for

 

entries

 

matching

 

an

 

input

 

criteria.

 

Syntax

 

#include

 

<diag/diag_log.h>

 

int

 

dlog_numMatches(query_log

 

*criteria)

 

Description

 

The

 

dlog_numMatches

 

subroutine

 

counts

 

the

 

number

 

of

 

diagnostic

 

event

 

log

 

entries

 

matching

 

an

 

input

 

criteria.

 

Parameters

  

criteria

 

Criteria

 

used

 

to

 

search

 

the

 

diagnostic

 

even

 

t

 

log.

 

Unused

 

fields

 

must

 

be

 

set

 

to

 

0.

   

98

 

Understanding

 

the

 

Diagnostic

 

Subsystem



matches

 

Count

 

of

 

the

 

number

 

of

 

entries

 

matching

 

the

 

input

 

criteria.

   

Return

 

Value

 

The

 

dlog_numMatches

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

0

 

If

 

successful

 

-1

 

The

 

diagnostic

 

event

 

log

 

could

 

not

 

be

 

opened

 

-2

 

An

 

error

 

occurs

 

reading

 

from

 

the

 

diagnostic

 

event

 

log

 

-3

 

The

 

search

 

criteria

 

is

 

invalid

 

-4

 

Memory

 

could

 

not

 

be

 

allocated

 

-5

 

An

 

error

 

occurred

 

due

 

to

 

too

 

many

 

matches.

   

dlog_query

 

Subroutine

 

Purpose

 

Query

 

the

 

diagnostic

 

event

 

log

 

for

 

entries

 

matching

 

an

 

input

 

criteria.

 

Syntax

 

#include

 

<diag/diag_log.h>

 

int

 

dlog_query(query_log

 

*criteria,

 

query_results

 

*results)

 

Description

 

The

 

dlog_query

 

subroutine

 

queries

 

the

 

diagnostic

 

event

 

log

 

for

 

entries

 

matching

 

an

 

input

 

criteria.

 

Parameters

  

criteria

 

Criteria

 

used

 

to

 

search

 

the

 

diagnostic

 

event

 

log.

 

Unused

 

fields

 

must

 

be

 

set

 

to

 

0.

 

results

 

Structure

 

containing

 

a

 

pointer

 

to

 

a

 

list

 

of

 

entries

 

matching

 

the

 

input

 

criteria.Entries

 

are

 

returned

 

sorted

 

by

 

diagnostic

 

event

 

log

 

sequence

 

number

 

(highest

 

first).

   

Return

 

Value

 

The

 

dlog_query

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

0

 

If

 

successful

 

-1

 

The

 

diagnostic

 

event

 

log

 

could

 

not

 

be

 

opened

 

-2

 

An

 

error

 

occurs

 

reading

 

from

 

the

 

diagnostic

 

event

 

log

 

-3

 

The

 

search

 

criteria

 

is

 

invalid

 

-4

 

Memory

 

could

 

not

 

be

 

allocated

   

dlog_query_cleanup

 

Subroutine

 

Purpose

 

Free

 

memory

 

allocated

 

during

 

a

 

diagnostic

 

event

 

log

 

query.

 

Syntax

 

#include

 

<diag/diag_log.h>

 

int

 

dlog_query_cleanup(query_results

 

*results)

 

Description

 

The

 

dlog_query_cleanup

 

subroutine

 

reclaims

 

memory

 

allocated

 

during

 

calls

 

to

 

dlog_query.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

99



Parameters

  

results

 

Structure

 

containing

 

a

 

pointer

 

to

 

a

 

list

 

of

 

entries

 

matching

 

the

 

input

 

criteria.

   

Return

 

Value

 

The

 

dlog_query_cleanup

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

0

 

If

 

successful

 

-1

 

If

 

unsuccessful

   

dl_fru_src

 

Structure

 

The

 

dl_fru_src

 

structure

 

is

 

used

 

with

 

the

 

dl_srn_src.

 

This

 

structure

 

defines

 

a

 

list

 

of

 

FRUs

 

or

 

Procedures

 

needed

 

to

 

resolve

 

the

 

failure.

 

The

 

dl_fru_src

 

structure

 

is

 

defined

 

in

 

diag_log.h,

 

as:

 

typedef

 

struct

 

_log_fru_src

 

{

     

int

  

type;

     

char

 

priority[2];

     

char

 

loc[RPA_LOC_SIZE];

     

char

 

frupn[RPA_FRU_PN_SIZE];

     

char

 

frusn[RPA_FRU_SN_SIZE_NN];

     

char

 

ccin[RPA_CCIN_SIZE_NN];

     

char

 

proc_id[RPA_PROC_SIZE];

     

struct

 

_log_fru_src

 

*nextfru;

 

}

 

dl_fru_src;

  

type

 

FRU

 

type,

 

one

 

of

 

the

 

following:

         

RPA_FRUTYPE_NORMAL

 

-

 

normal

 

Hardware

 

FRU.

         

RPA_FRUTYPE_CODE

 

-

 

code

 

FRU

 

described

 

by

 

procedure

 

id

 

field.

         

RPA_FRUTYPE_C_PROC

 

-

 

configuration

 

procedure

 

required.

         

RPA_FRUTYPE_M_PROC

 

-

 

maintainence

 

procedure

 

required.

         

RPA_FRUTYPE_EXT

 

-

 

external

 

FRU.

         

RPA_FRUTYPE_EXT_CODE

 

-

 

external

 

code

 

FRU

 

described

 

by

 

procedure

 

d

 

field

         

RPA_FRUTYPE_TOOL

 

-

 

a

 

tool

 

required

 

by

 

another

 

FRU

 

in

 

the

 

list.

         

RPA_FRUTYPE_SYMBOL

 

-

 

procedure

 

id

 

for

 

acquiring

 

or

 

working

 

with

 

a

 

FRU.

 

priority

 

FRU

 

Replacement/Procedure

 

Priority,

 

one

 

of

 

the

 

following:

 

H

 

High

 

priority

 

and

 

mandatory

 

call-out.

 

Replacing

 

the

 

FRU,

 

or

 

performing

 

the

 

Procedure

 

is

 

manadatory.

 

Multiple

 

call-outs

 

with

 

″H″

 

priority

 

should

 

be

 

acted

 

on

 

as

 

a

 

group.

 

M

 

Medium

 

priority.

 

Each

 

FRU/Procedure

 

with

 

″M″

 

priority

 

are

 

should

 

be

 

acted

 

on,

 

one

 

at

 

a

 

time,

 

in

 

the

 

order

 

given.

 

A

 

Medium

 

priority

 

group

 

A.

 

Each

 

FRU/Procedure

 

with

 

″A″

 

priority

 

are

 

should

 

be

 

acted

 

on

 

as

 

a

 

group.

 

B

 

Medium

 

priority

 

group

 

B.

 

Each

 

FRU/Procedure

 

with

 

″B″

 

priority

 

are

 

should

 

be

 

acted

 

on

 

as

 

a

 

group.

 

C

 

Medium

 

priority

 

group

 

C.

 

Each

 

FRU/Procedure

 

with

 

″C″

 

priority

 

are

 

should

 

be

 

acted

 

on

 

as

 

a

 

group.

 

L

 

Low

 

priority.

 

Each

 

FRU/Procedure

 

with

 

″L″

 

priority

 

should

 

be

 

acted

 

on

 

only

 

after

 

all

 

other

 

priority

 

call-outs

 

failed

 

to

 

resolve

 

the

 

problem.

 

loc

 

Location

 

code

 

of

 

the

 

FRU

 

frupn

 

FRU

 

Part

 

Number

 

if

 

available

 

frusn

 

FRU

 

Serial

 

Number

 

if

 

available

 

ccin

 

CCIN

 

if

 

available

   

100

 

Understanding

 

the

 

Diagnostic

 

Subsystem



proc_id

 

Procedure

 

Id

 

if

 

available.

 

Mutually

 

exclusive

 

with

 

frupn.

 

next_fru

 

Pointer

 

to

 

next

 

FRU

   

dl_partition

 

Structure

 

The

 

dl_partition

 

structure

 

is

 

contained

 

within

 

the

 

query_output

 

structure.

 

The

 

dl_partition

 

structure

 

is

 

defined

 

in

 

diag_log.h.

 

The

 

dl_partition

 

structure

 

is

 

defined

 

as:

 

typedef

 

struct

 

_log_partition

 

{

    

int

 

version;

    

short

 

callHomeFlg;

    

int

 

strSize;

    

char

 

*name;

    

char

 

*id;

    

char

 

*hostname;

    

char

 

*typeModel;

    

char

 

*sn;

    

char

 

*dev_typeModel;

    

char

 

*dev_sn;

 

}dl_partition;

  

version

 

Reserved

 

for

 

diagnostic

 

use.

 

callHomeFlg

 

Reserved

 

for

 

diagnostic

 

use.

 

strSize

 

Combined

 

length

 

of

 

all

 

the

 

following

 

strings.

 

name

 

Partition

 

name.

 

id

 

Partition

 

id.

 

hostname

 

The

 

hostname

 

of

 

the

 

system

 

taken

 

from

 

uname

 

-n.

 

typeModel

 

Machine

 

type

 

and

 

model.

 

sn

 

Machine

 

serial

 

number.

 

dev_typeModel

 

Failing

 

device’s

 

type

 

and

 

model.

 

dev_sn

 

Failing

 

device’s

 

serial

 

number.

   

dl_menugoal

 

Structure

 

The

 

dl_menugoal

 

structure

 

is

 

contained

 

within

 

the

 

query_output

 

structure.

 

The

 

dl_menugoal

 

structure

 

is

 

defined

 

in

 

diag_log.h.

 

The

 

query_fru

 

structure

 

is

 

defined

 

as:

 

typedef

 

struct

 

_log_menugoal

 

{

    

char

 

*id;

    

char

 

*text;

 

}dl_menugoal;

  

id

 

Six

 

digit

 

menu

 

number.

 

text

 

Translated

 

menugoal

 

text.

   

dl_srn

 

Structure

 

The

 

dl_srn

 

structure

 

is

 

contained

 

within

 

the

 

query_output

 

structure.

 

The

 

dl_srn

 

structure

 

is

 

defined

 

in

 

diag_log.h.

 

The

 

dl_srn

 

structure

 

is

 

defined

 

as:

   

Chapter

 

3.

 

Diagnostic

 

Components

 

101



typedef

 

struct

 

_log_srn

 

{

    

char

 

*name;

    

char

 

*srn;

    

char

 

*errorText;

    

query_fru

 

*frus;

 

}dl_srn;

  

name

 

SRN’s

 

device

 

name.

 

srn

 

The

 

Service

 

Request

 

Number.

 

errorText

 

SRN’s

 

translated

 

description

 

text.

 

frus

 

Pointer

 

to

 

the

 

SRN’s

 

FRU

 

list.

   

dl_srn_src

 

Structure

 

The

 

dl_srn_src

 

structure

 

is

 

contained

 

within

 

the

 

query_output

 

structure,

 

beginning

 

with

 

AIX

 

5.2.0.30

 

and

 

later.

 

The

 

dl_srn_src

 

structure

 

is

 

defined

 

in

 

the

 

diag_log.h

 

header

 

file.

 

The

 

dl_srn_src

 

structure

 

is

 

defined

 

as:

 

typedef

 

struct

 

_log_srn_src

 

{

     

char

 

name[NAME_SIZE];

     

char

 

src[MAX_SRC_SIZE];

     

char

 

*errorText;

     

dl_descText

 

frubDesc;

     

dl_fru_src

 

*frus;

     

char

 

crid[2];

     

unsigned

 

int

 

plid;

     

unsigned

 

int

 

action_flags;

     

unsigned

 

int

 

subsysid;

     

unsigned

 

int

 

event_sev;

     

unsigned

 

int

 

refc2;

     

unsigned

 

int

 

refc3;

     

unsigned

 

int

 

refc4;

     

unsigned

 

int

 

refc5;

     

unsigned

 

int

 

refc6;

     

unsigned

 

int

 

refc7;

     

unsigned

 

int

 

refc8;

     

unsigned

 

int

 

refc9;

 

}

 

dl_srn_src;

  

name

 

Device

 

Name

 

that

 

detected

 

the

 

error.

 

errorText

 

Translated

 

description

 

of

 

the

 

failure.

 

frubDesc

 

Structure

 

containing

 

the

 

source

 

data

 

for

 

the

 

message

 

pointed

 

to

 

by

 

errorText.

 

typedef

 

struct

 

_log_descText

 

{

    

char

    

catName[NAME_SIZE];

    

short

   

set;

    

short

   

msg;

 

}

 

dl_descText;

 

catName

 

The

 

message

 

catalog

 

file

 

name.

 

set

 

The

 

set

 

id

 

of

 

the

 

message.

 

msg

 

The

 

message

 

id

 

of

 

the

 

message.

 

frus

 

Pointer

 

to

 

the

 

SRC’s

 

FRU

 

list.

 

See

 

the

 

description

 

of

 

dl_fru_src.

 

crid

 

Platform

 

error

 

log

 

creator

 

id.

 

plid

 

Platform

 

Log

 

Id.

   

102

 

Understanding

 

the

 

Diagnostic

 

Subsystem



action_flags

 

Reporting

 

action

 

for

 

this

 

failure.

 

This

 

is

 

stored

 

as

 

a

 

hex

 

value.

 

The

 

following

 

macros

 

are

 

defined

 

in

 

diag_log.h

 

to

 

decode

 

action_flags:

       

IS_REPORT_EXTERNALLY(action_flags)

          

Returns

 

1

 

if

 

the

 

failure

 

should

 

be

 

reported

 

to

 

to

 

external

          

programs,

 

like

 

the

 

Service

 

Focal

 

Point.

       

IS_CALL_HOME_REQD(action_flags)

          

Returns

 

1

 

if

 

the

 

failure

 

should

 

be

 

reported

 

automatically

          

to

 

IBM

 

Service.

 

subsysid

 

Platform

 

subsystem

 

identifier

 

value.

 

The

 

values

 

are:

           

0x10-0x1F

 

Processor

 

subsystem

           

0x20-0x2F

 

Memory

 

subsystem

           

0x30-0x3F

 

I/O

 

subsystem

           

0x40-0x4F

 

I/O

 

adapter,

 

device

 

and

 

peripheral

           

0x50-0x5F

 

CEC

 

Hardware

           

0x60-0x6F

 

Power/Cooling

 

subsystem

           

0x70-0x79

 

Other

 

subsystem

           

0x7A-0x7F

 

Surveillance

 

Error

           

0x80-0x8F

 

Platform

 

Error

           

0x90-0x9F

 

Software

           

0xA0-0xAF

 

External

 

environment

           

0xB0-0xFF

 

Reserved

 

event_sev

 

Platform

 

event

 

severity

 

value.

           

0x10

 

Recovered

 

error

           

0x20

 

Predictive

 

error,

 

general

           

0x21

 

Predictive

 

error,

 

degraded

 

performance

           

0x22

 

Predictive

 

error,

 

fault

 

may

 

be

 

corrected

 

after

             

platform

 

re-IPL

           

0x23

 

Predictive

 

error,

 

fault

 

may

 

be

 

corrected

 

after

             

IPL,

 

degraded

 

performance

           

0x24

 

Predictive

 

error,

 

loss

 

of

 

redundancy

           

0x40

 

Unrecovered

 

error,

 

general

           

0x41

 

Unrecovered

 

error,

 

bypassed

 

with

 

degraded

 

performance

           

0x44

 

Unrecovered

 

error,

 

bypassed

 

with

 

loss

 

of

 

redundancy

           

0x45

 

Unrecovered

 

error,

 

bypassed

 

with

 

loss

 

of

 

redundancy

             

and

 

performance

           

0x48

 

Unrecovered

 

error,

 

bypassed

 

with

 

loss

 

of

 

function

           

0x60

 

Error

 

on

 

diagnostic

 

test,

 

general

           

0x61

 

Error

 

on

 

diagnostic

 

test,

 

resource

 

may

 

produce

             

incorrect

 

results

 

refc2

 

-

 

refc9

 

Extended

 

reference

 

code

 

values.

   

query_fru

 

Structure

 

The

 

query_fru

 

structure

 

is

 

contained

 

within

 

the

 

dl_srn

 

structure.

 

The

 

query_fru

 

structure

 

is

 

defined

 

in

 

diag_log.h.

 

The

 

query_fru

 

structure

 

is

 

defined

 

as:

 

typedef

 

struct

 

_log_query_fru

 

{

    

char

 

*name;

    

int

 

locSize;

    

char

 

*locCode;

    

char

 

*partNumber;

    

char

 

*fruDesc;

    

struct

 

_log_query_fru

 

*nextfru;

 

}query_fru;

  

name

 

The

 

name

 

of

 

the

 

Field

 

Replacable

 

Unit.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

103



locSize

 

The

 

size

 

of

 

the

 

location

 

code

 

string.

 

locCode

 

The

 

location

 

code

 

of

 

the

 

FRU

 

(logical

 

or

 

physical).

 

partNumber

 

The

 

FRU’s

 

part

 

number.

 

fruDesc

 

The

 

FRU’s

 

translated

 

description

 

text.

 

nextfru

 

A

 

pointer

 

to

 

the

 

next

 

FRU

 

in

 

the

 

list.

 

If

 

this

 

is

 

the

 

last

 

FRU,

 

then

 

the

 

pointer

 

is

 

NULL.

   

query_log

 

Structure

 

The

 

query_log

 

structure

 

is

 

passed

 

into

 

dlog_query

 

and

 

dlog_numMatches

 

to

 

search

 

the

 

diagnostic

 

event

 

log

 

for

 

entries

 

matching

 

an

 

input

 

criteria.

 

The

 

calling

 

application

 

is

 

responsible

 

for

 

allocating

 

memory

 

for

 

the

 

query_log

 

structure

 

and

 

for

 

inputting

 

valid

 

search

 

criteria

 

into

 

the

 

structure.

 

This

 

structure

 

is

 

defined

 

in

 

diag_log.h.

 

The

 

query_log

 

structure

 

is

 

defined

 

as:

 

typedef

 

struct

 

_log_query_crit

 

{

    

char

 

*pathname;

    

char

 

type;

    

char

 

identifier[5];

    

char

 

*name;

    

unsigned

 

int

 

session;

    

char

 

*location;

    

unsigned

 

int

 

firstSeqNum;

    

unsigned

 

int

 

lastSeqNum;

    

unsigned

 

int

 

el_identifier;

    

unsigned

 

int

 

elSeqFirst;

    

unsigned

 

int

 

elSeqLast;

    

unsigned

 

int

 

numDays;

    

struct

 

tm

 

*startDate;

    

struct

 

tm

 

*endDate;

    

char

 

*srn;

    

char

 

*mgoal;

    

unsigned

 

int

 

maxEntries;

    

char

 

*src;

    

char

 

reserved[100-sizeof(char

 

*))];

 

}query_log;

  

pathname

 

Path

 

of

 

the

 

diagnostic

 

event

 

log

 

to

 

search.

 

The

 

default

 

path

 

is

 

searched

 

if

 

no

 

path

 

is

 

provided.

 

type

 

Specifies

 

entries

 

matching

 

a

 

type

 

of

 

log

 

template.

 

I,

 

S,

 

N,

 

E,

 

and

 

X

 

are

 

the

 

valid

 

values

 

for

 

type.

 

identifier

 

Specifies

 

entries

 

matching

 

a

 

diagnostic

 

event

 

log

 

identifier.

 

name

 

Specifies

 

entries

 

matching

 

a

 

resource

 

name.

 

This

 

field

 

can

 

be

 

fully

 

or

 

partially

 

qualified.

 

For

 

example,

 

when

 

name

 

is

 

ent*,

 

entries

 

logged

 

against

 

devices

 

beginning

 

with

 

ent

 

will

 

be

 

returned.

 

session

 

Specifies

 

entries

 

containing

 

a

 

process

 

id

 

of

 

a

 

diagnostic

 

session.

 

location

 

Specifies

 

entries

 

containing

 

a

 

location

 

code.

 

firstSeqNum

 

Specifies

 

entries

 

with

 

this

 

diagnostic

 

event

 

log

 

sequence

 

number

 

or

 

higher.

 

lastSeqNum

 

Specifies

 

entries

 

with

 

this

 

diagnostic

 

event

 

log

 

sequence

 

number

 

or

 

lower.

 

When

 

searching

 

on

 

a

 

single

 

sequence

 

number

 

use

 

only

 

firstSeqNum.

 

el_identifier

 

Specifies

 

entries

 

with

 

this

 

AIX

 

error

 

log

 

identifier.

 

elSeqFirst

 

Specifies

 

enteries

 

with

 

this

 

AIX

 

error

 

log

 

sequence

 

number

 

or

 

higher.

 

elSeqLast

 

Specifies

 

enteries

 

with

 

this

 

AIX

 

error

 

log

 

sequence

 

number

 

or

 

lower.

 

When

 

searching

 

on

 

a

 

single

 

error

 

log

 

sequence

 

number

 

use

 

elSeqFirst

 

only.

   

104

 

Understanding

 

the

 

Diagnostic

 

Subsystem



numDays

 

Searches

 

the

 

diagnostic

 

event

 

log

 

for

 

entries

 

logged

 

this

 

number

 

of

 

days

 

before

 

endDate,

 

or

 

this

 

number

 

of

 

days

 

after

 

startDate,

 

or

 

this

 

number

 

of

 

days

 

before

 

the

 

current

 

date

 

and

 

time.

 

Valid

 

with

 

either

 

startDate

 

or

 

endDate.

 

startDate

 

Searches

 

the

 

diagnostic

 

event

 

log

 

for

 

entries

 

logged

 

after

 

this

 

date

 

and

 

time.

 

Valid

 

with

 

either

 

numDays

 

or

 

endDate.

 

srn

 

Searches

 

the

 

diagnostic

 

event

 

log

 

for

 

entries

 

matching

 

this

 

Service

 

Request

 

Number.

 

This

 

field

 

can

 

be

 

fully

 

or

 

partially

 

qualified.

 

For

 

example,

 

when

 

srn

 

is

 

651*,

 

entries

 

containing

 

Service

 

Request

 

Number

 

starting

 

with

 

651

 

will

 

be

 

returned.

 

mgoal

 

Searches

 

the

 

diagnostic

 

event

 

log

 

for

 

entries

 

matching

 

this

 

menugoal.

 

This

 

field

 

can

 

be

 

fully

 

or

 

partially

 

qualified.

 

For

 

example,

 

when

 

mgoal

 

is

 

651*,

 

entries

 

containing

 

menugoals

 

with

 

a

 

menu

 

number

 

starting

 

with

 

651

 

will

 

be

 

returned.

 

endDate

 

Searches

 

the

 

diagnostic

 

event

 

log

 

for

 

entries

 

logged

 

before

 

this

 

date

 

and

 

time.

 

Valid

 

with

 

either

 

numDays

 

or

 

startDate.

 

maxEntries

 

Specifies

 

a

 

maximum

 

number

 

of

 

entries

 

to

 

return.

 

Entries

 

with

 

higher

 

diagnostic

 

event

 

log

 

sequence

 

numbers

 

have

 

a

 

higher

 

priority

 

to

 

be

 

returned.

 

If

 

maxEntries

 

is

 

0,

 

then

 

all

 

matching

 

entries

 

are

 

returned.

 

src

 

Begining

 

with

 

AIX

 

5.2.0.30

 

searches

 

the

 

diagnostic

 

event

 

log

 

for

 

entries

 

matching

 

this

 

system

 

reference

 

code

 

(SRC).

 

This

 

field

 

can

 

be

 

fully

 

or

 

partially

 

qualified.

 

For

 

example,

 

when

 

src

 

is

 

BF0*,

 

entries

 

with

 

SRCs

 

beginning

 

with

 

BF0

 

will

 

be

 

returned.

 

reserved

 

Reserved

 

for

 

future

 

use.

   

query_output

 

Structure

 

The

 

query_output

 

structure

 

contains

 

information

 

about

 

individual

 

diagnostic

 

event

 

log

 

entries

 

matching

 

the

 

criteria

 

specified

 

by

 

the

 

query_log

 

structure.

 

These

 

structures

 

are

 

contained

 

within

 

the

 

query_results

 

structure

 

returned

 

by

 

dlog_query.

 

Some

 

entries

 

may

 

not

 

contain

 

information

 

for

 

some

 

of

 

the

 

fields

 

within

 

query_output.

 

The

 

query_output

 

structure

 

is

 

defined

 

in

 

diag_log.h.

 

Beginning

 

with

 

AIX

 

5.2.0.30

 

the

 

query_output

 

structure

 

is:

 

typedef

 

struct

 

_log_query_output

 

{

     

char

 

type;

     

char

 

identifier[5];

     

unsigned

 

int

 

el_identifier;

     

char

 

*timestamp;

     

unsigned

 

int

 

seqNum;

     

unsigned

 

int

 

el_seqNum;

     

unsigned

 

int

 

session;

     

unsigned

 

int

 

testMode;

     

char

 

*name;

     

char

 

*location;

     

dl_srn

 

*srn;

     

dl_menugoal

 

*mgoal;

     

dl_partition

 

*partition;

     

dl_srn_src

 

*srn_src;

       

/*

 

only

 

in

 

AIX

 

5.2.0.30

 

or

 

later

 

*/

     

char

 

reserved[100-(sizeof

 

(dl_srn_src

 

*))];

 

}

 

query_output;

  

type

 

Type

 

of

 

log

 

template

 

used

 

to

 

create

 

the

 

entry.

 

I,

 

S,

 

N,

 

E,

 

and

 

X

 

are

 

the

 

valid

 

values

 

for

 

type.

 

identifier

 

Identifier

 

of

 

the

 

diagnostic

 

event

 

log

 

entry.

 

timestamp

 

Formatted

 

string

 

of

 

the

 

time

 

at

 

which

 

the

 

diagnostic

 

event

 

log

 

entry

 

was

 

logged.

 

seqNum

 

Sequence

 

number

 

for

 

the

 

diagnostic

 

event

 

log

 

entry.

 

el_seqNum

 

AIX

 

error

 

log

 

sequence

 

number.

 

The

 

diagnostic

 

event

 

log

 

entry

 

may

 

not

 

be

 

tied

 

to

 

an

 

AIX

 

error

 

log

 

entry.

 

session

 

Process

 

id

 

of

 

the

 

diagnostic

 

session

 

that

 

created

 

the

 

entry.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

105



testMode

 

Diagnostics

 

test

 

mode.

 

This

 

is

 

stored

 

as

 

a

 

hex

 

value.

 

The

 

following

 

macros

 

are

 

defined

 

in

 

diag_log.h

 

to

 

decode

 

testMode:

 

IS_CONSOLE_MODE(testMode)

 

Returns

 

1

 

when

 

the

 

diagnostic

 

event

 

was

 

in

 

console

 

mode

 

(No-console

 

mode

 

otherwise)

 

IS_ADVANCE_MODE(testMode)

 

Returns

 

1

 

when

 

the

 

diagnostic

 

event

 

was

 

caused

 

while

 

running

 

advanced

 

diagnostics

 

(Customer

 

diagnostics

 

otherwise)

 

IS_NORMAL_BOOT(testMode)

 

Returns

 

1

 

when

 

the

 

diagnostics

 

booted

 

normally

 

(Service

 

Boot

 

otherwise)

 

IS_NETWORK_BOOT(testMode)

 

Returns

 

1

 

when

 

the

 

diagnostics

 

booted

 

from

 

the

 

network

 

IS_ELA_MODE(testMode)

 

Returns

 

1

 

when

 

the

 

diagnostic

 

event

 

performed

 

error

 

log

 

analysis

 

only

 

IS_PD_MODE(testMode)

 

Returns

 

1

 

when

 

the

 

diagnostic

 

event

 

performed

 

Problem

 

Determination

 

(System

 

Verification

 

otherwise)

 

IS_SYSTEM_CHECK(testMode)

 

Returns

 

1

 

when

 

the

 

diagnostic

 

event

 

performed

 

System

 

Checkout

 

(Option

 

Checkout

 

otherwise)

 

IS_LOOP_MODE(testMode)

 

Returns

 

1

 

when

 

the

 

diagnostic

 

event

 

was

 

in

 

loop

 

mode

 

IS_PRETEST_MODE(testMode)

 

Returns

 

1

 

when

 

the

 

diagnostic

 

event

 

performed

 

a

 

pretest

 

IS_MISSING_MODE(testMode)

 

Returns

 

1

 

when

 

the

 

diagnostic

 

event

 

was

 

caused

 

by

 

Missing

 

Options

 

Resolution

 

IS_NEW_MODE(testMode)

 

Returns

 

1

 

when

 

the

 

diagnostic

 

event

 

was

 

caused

 

while

 

testing

 

new

 

devices

 

name

 

Name

 

of

 

the

 

resource

 

the

 

entry

 

was

 

logged

 

against.

 

location

 

Location

 

code

 

for

 

the

 

resource

 

the

 

entry

 

was

 

logged

 

against.

 

srn

 

Pointer

 

to

 

SRN

 

information.

 

The

 

pointer

 

will

 

be

 

NULL

 

when

 

there

 

is

 

not

 

an

 

SRN.

 

mgoal

 

Pointer

 

to

 

menugoal

 

information.

 

The

 

pointer

 

will

 

be

 

NULL

 

when

 

there

 

is

 

not

 

a

 

menugoal.

 

partition

 

Pointer

 

to

 

partition

 

information.

 

The

 

pointer

 

will

 

be

 

NULL

 

when

 

there

 

is

 

no

 

partition

 

information.

 

reserved

 

Reserved

 

for

 

future

 

use.

   

query_results

 

Structure

 

The

 

query_results

 

structure

 

is

 

returned

 

by

 

dlog_query.

 

This

 

structure

 

contains

 

the

 

number

 

of

 

entries

 

matching

 

the

 

search

 

criteria

 

and

 

a

 

pointer

 

to

 

the

 

entries

 

matching

 

the

 

search

 

criteria.

 

The

 

calling

 

application

 

is

 

responsible

 

for

 

allocating

 

memory

 

for

 

the

 

query_results

 

structure.

 

This

 

structure

 

is

 

defined

 

in

 

diag_log.h.

 

The

 

query_results

 

structure

 

is

 

defined

 

as:

 

typedef

 

struct

 

_log_query_results

 

{

    

unsigned

 

int

 

numEntries;

    

query_output

 

**entryArray;

 

}query_results;

  

numEntries

 

Number

 

of

 

entries

 

matching

 

the

 

search

 

criteria.

   

106

 

Understanding

 

the

 

Diagnostic

 

Subsystem



entryArray

 

Pointer

 

to

 

the

 

entries

 

matching

 

the

 

search

 

criteria.

   

diag_add_obj

 

Purpose

 

Adds

 

a

 

new

 

object

 

into

 

an

 

object

 

class.

 

Syntax

 

#include

  

<diag/diagodm.h>

 

#include

  

<sys/cfgodm.h>

 

#include

  

<diag/DiagODM.h>

   

void

 

diag_add_obj

 

(

                      

void

        

*classp,

                      

void

        

*p_obj)

 

Description

 

The

 

diag_add_obj

 

subroutine

 

takes

 

as

 

input

 

the

 

class

 

symbol

 

that

 

identifies

 

the

 

object

 

class

 

to

 

change

 

and

 

a

 

pointer

 

to

 

the

 

data

 

structure

 

that

 

contains

 

the

 

object

 

to

 

be

 

added.

 

Note:

  

init_dgodm

 

must

 

be

 

called

 

before

 

starting

 

this

 

subroutine.

 

Parameters

  

Parameter

 

Description

 

classp

 

A

 

class

 

symbol

 

identifier

 

returned

 

from

 

a

 

diag_open_class

 

subroutine.

 

If

 

the

 

diag_open_class

 

subroutine

 

has

 

not

 

been

 

called,

 

this

 

is

 

the

 

structure

 

name

 

of

 

the

 

class

 

normally

 

defined

 

in

 

either

 

diag/diagodm.h

 

file,

 

diag/DiagODM.h

 

file

 

or

 

sys/cfgodm.h

 

file.

 

p_obj

 

Pointer

 

to

 

an

 

instance

 

of

 

the

 

structure

 

corresponding

 

to

 

the

 

object

 

class

 

referenced

 

by

 

the

 

classp

 

parameter.

   

Return

 

Value

 

Upon

 

successful

 

completion,

 

a

 

value

 

of

 

0

 

is

 

returned.

 

If

 

the

 

subroutine

 

fails,

 

a

 

-1

 

is

 

returned.

 

diag_change_obj

 

Purpose

 

Changes

 

an

 

object

 

in

 

the

 

object

 

class.

 

Syntax

 

#include

     

<diag/diagodm.h>

 

#include

     

<sys/cfgodm.h>

 

#include

     

<diag/DiagODM.h>

   

void

 

diag_change_obj

 

(

                                  

void

         

*classp,

                                  

void

         

*p_obj)

 

Description

 

The

 

diag_change_obj

 

subroutine

 

takes,

 

as

 

input,

 

the

 

class

 

symbol

 

that

 

identifies

 

the

 

object

 

class

 

to

 

add

 

to

 

and

 

a

 

pointer

 

to

 

the

 

data

 

structure

 

that

 

contains

 

the

 

object

 

to

 

be

 

changed.

 

The

 

application

 

must

 

first

 

retrieve

 

the

 

object

 

with

 

a

 

diag_get_list

 

subroutine

 

call,

 

change

 

the

 

data

 

values

 

in

 

the

 

returned

 

structure,

 

and

 

then

 

pass

 

that

 

structure

 

to

 

the

 

diag_change_obj

 

subroutine.

 

Note:

  

init_dgodm

 

must

 

be

 

called

 

before

 

starting

 

this

 

subroutine.

  

Chapter

 

3.

 

Diagnostic

 

Components

 

107



Parameters

  

Parameter

 

Description

 

classp

 

A

 

class

 

symbol

 

identifier

 

returned

 

from

 

a

 

diag_open_class

 

subroutine.

 

If

 

the

 

diag_open_class

 

subroutine

 

has

 

not

 

been

 

called,

 

then

 

this

 

is

 

the

 

structure

 

name

 

of

 

the

 

class

 

normally

 

defined

 

in

 

either

 

the

 

diag/diagodm.h

 

file,

 

diag/DiagODM.h

 

file,

 

or

 

sys/cfgodm.h

 

file.

 

p_obj

 

Pointer

 

to

 

an

 

instance

 

of

 

the

 

structure

 

corresponding

 

to

 

the

 

object

 

class

 

referenced

 

by

 

the

 

classp

 

parameter.

   

Return

 

Value

 

Upon

 

successful

 

completion,

 

a

 

value

 

of

 

0

 

is

 

returned.

 

If

 

the

 

subroutine

 

fails,

 

a

 

-1

 

is

 

returned.

 

diag_close_class

 

Purpose

 

Closes

 

an

 

object

 

class.

 

Syntax

 

#include

     

<diag/diagodm.h>

 

#include

     

<sys/cfgodm.h>

 

#include

     

<diag/DiagODM.h>

   

int

 

diag_close_class

 

(

                                  

void

              

*classp)

 

Description

 

The

 

diag_close_class

 

subroutine

 

can

 

be

 

called

 

to

 

close

 

an

 

object

 

class.

 

Note:

  

init_dgodm

 

must

 

be

 

called

 

before

 

starting

 

this

 

subroutine.

 

Parameters

  

Parameter

 

Description

 

classp

 

A

 

class

 

symbol

 

identifier

 

returned

 

from

 

a

 

diag_open_class

 

subroutine.

 

If

 

the

 

diag_open_class

 

subroutine

 

has

 

not

 

been

 

called,

 

then

 

this

 

is

 

the

 

structure

 

name

 

of

 

the

 

class

 

normally

 

defined

 

in

 

either

 

the

 

diag/diagodm.h

 

file,

 

diag/DiagODM.h

 

file,

 

or

 

sys/cfgodm.h

 

file.

   

Return

 

Value

 

Upon

 

successful

 

completion,

 

a

 

value

 

of

 

0

 

is

 

returned.

 

If

 

the

 

subroutine

 

fails,

 

a

 

-1

 

is

 

returned.

 

diag_free_list

 

Purpose

 

Frees

 

memory

 

previously

 

allocated

 

for

 

a

 

diag_get_list

 

subroutine.

 

Syntax

 

#include

    

<diag/diagodm.h>

 

#include

    

<sys/cfgodm.h>

 

#include

    

<diag/DiagODM.h>

   

int

 

diag_free_list

 

(

                                  

void

             

*p_obj,

                                  

struct

 

listinfo

  

*info)

  

108

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Description

 

The

 

diag_free_list

 

subroutine

 

recursively

 

frees

 

up

 

a

 

tree

 

of

 

memory

 

object

 

lists

 

that

 

were

 

allocated

 

for

 

a

 

diag_get_list

 

subroutine.

 

Parameters

  

Parameter

 

Description

 

p_obj

 

Points

 

to

 

the

 

array

 

of

 

structures

 

returned

 

from

 

the

 

diag_get_list

 

subroutine.

 

info

 

Points

 

to

 

the

 

listinfo

 

structure

 

returned

 

from

 

the

 

diag_get_list

 

subroutine.

   

Return

 

Value

 

Upon

 

successful

 

completion,

 

a

 

value

 

of

 

0

 

is

 

returned.

 

If

 

the

 

subroutine

 

fails,

 

a

 

-1

 

is

 

returned.

 

diag_get_list

 

Purpose

 

Retrieves

 

all

 

objects

 

in

 

an

 

object

 

class

 

that

 

match

 

the

 

specified

 

criteria.

 

Syntax

 

#include

    

<diag/diagodm.h>

 

#include

    

<sys/cfgodm.h>

 

#include

    

<diag/DiagODM.h>

   

void

 

*

 

diag_get_list

 

(

                                 

void

             

*classp,

                                 

char

             

*criteria,

                                 

struct

           

listinfo

 

*info,

                                 

int

              

max_expect,

                                 

int

              

depth)

 

Description

 

The

 

diag_get_list

 

subroutine

 

takes

 

an

 

object

 

class

 

and

 

criteria

 

as

 

input,

 

and

 

returns

 

a

 

list

 

of

 

objects

 

that

 

satisfy

 

the

 

input

 

criteria.

 

The

 

subroutine

 

opens

 

and

 

closes

 

the

 

object

 

class

 

around

 

the

 

get

 

if

 

the

 

object

 

class

 

was

 

not

 

previously

 

opened.

 

If

 

the

 

object

 

class

 

was

 

previously

 

opened,

 

the

 

subroutine

 

leaves

 

the

 

object

 

class

 

open

 

when

 

it

 

returns.

 

Note:

  

init_dgodm

 

must

 

be

 

called

 

before

 

starting

 

this

 

subroutine.

 

Parameters

  

Parameter

 

Description

 

classp

 

Class

 

symbol

 

identifier

 

returned

 

from

 

a

 

diag_open_class

 

subroutine.

 

If

 

the

 

diag_open_class

 

subroutine

 

has

 

not

 

been

 

called,

 

then

 

this

 

is

 

the

 

structure

 

name

 

of

 

the

 

class

 

normally

 

defined

 

in

 

either

 

the

 

diag/diagodm.h

 

file,

 

diag/DiagODM.h

 

file,

 

or

 

sys/cfgodm.h

 

file.

 

criteria

 

String

 

that

 

contains

 

the

 

qualifying

 

criteria

 

for

 

selecting

 

objects.

 

info

 

Structure

 

containing

 

information

 

about

 

the

 

retrieval

 

of

 

the

 

objects.

 

max_expect

 

Expected

 

number

 

of

 

objects

 

to

 

be

 

returned.

 

This

 

is

 

used

 

to

 

control

 

the

 

increments

 

in

 

which

 

storage

 

for

 

structures

 

is

 

allocated,

 

to

 

reduce

 

the

 

realloc

 

subroutine

 

copy

 

overhead.

 

depth

 

Number

 

of

 

levels

 

to

 

recurse

 

for

 

objects

 

with

 

linking

 

descriptors.

   

Return

 

Value

 

Upon

 

successful

 

completion,

 

a

 

pointer

 

to

 

an

 

array

 

of

 

C

 

language

 

structures

 

containing

 

the

 

objects

 

is

 

returned.

 

If

 

no

 

match

 

is

 

found,

 

NULL

 

is

 

returned.

 

If

 

the

 

diag_get_list

 

fails,

 

a

 

value

 

of

 

-1

 

is

 

returned.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

109



diag_lock

 

Purpose

 

Obtain

 

an

 

ODM

 

lock

 

for

 

the

 

specified

 

file

 

Syntax

 

#include

                

<diag/odmi.h>

   

int

 

diag_lock(char

 

*file)

 

Description

 

The

 

diag_lock

 

subroutine

 

calls

 

odm_lock()

 

for

 

a

 

specified

 

file.

 

It

 

waits

 

5

 

seconds

 

if

 

a

 

lock

 

cannot

 

be

 

immediately

 

granted.

 

Parameters

  

Parameter

 

Description

 

file

 

Name

 

of

 

the

 

file

 

to

 

lock

   

Return

 

Value

 

The

 

diag_lock

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Code

 

Description

 

>0

 

If

 

successful

 

0

 

File

 

is

 

already

 

locked

 

-1

 

Error

   

diag_open_class

 

Purpose

 

Opens

 

an

 

object

 

class.

 

Syntax

 

#include

      

<diag/diagodm.h>

 

#include

      

<sys/cfgodm.h>

 

#include

      

<diag/DiagODM.h>

   

void

 

*diag_open_class

 

(

                                 

void

        

*classp)

 

Description

 

The

 

diag_open_class

 

subroutine

 

can

 

be

 

called

 

to

 

open

 

an

 

object

 

class.

 

Note:

  

init_dgodm

 

must

 

be

 

called

 

before

 

starting

 

this

 

subroutine.

 

Parameters

  

Parameter

 

Description

 

classp

 

The

 

structure

 

name

 

of

 

the

 

class

 

normally

 

defined

 

in

 

either

 

the

 

diag/diagodm.h

 

file,

 

diag/DiagODM.h

 

file,

 

or

 

sys/cfgodm.h

 

file.

   

Return

 

Value

 

Upon

 

successful

 

completion,

 

a

 

class

 

symbol

 

identifier

 

for

 

the

 

object

 

class

 

is

 

returned.

 

If

 

the

 

subroutine

 

fails,

 

a

 

-1

 

is

 

returned.

   

110

 

Understanding

 

the

 

Diagnostic

 

Subsystem



diag_rm_obj

 

Purpose

 

Deletes

 

objects

 

from

 

an

 

object

 

class.

 

Syntax

 

#include

  

<diag/diagodm.h>

 

#include

  

<sys/cfgodm.h>

 

#include

  

<diag/DiagODM.h>

   

void

 

diag_rm_obj

 

(

                                 

void

        

*classp,

                                 

char

        

*criteria)

 

Description

 

The

 

diag_rm_obj

 

subroutine

 

deletes

 

objects

 

from

 

an

 

object

 

class.

 

Note:

  

init_dgodm

 

must

 

be

 

called

 

before

 

starting

 

this

 

subroutine.

 

Parameters

  

Parameter

 

Description

 

classp

 

Class

 

symbol

 

identifier

 

returned

 

from

 

a

 

diag_open_class

 

subroutine.

 

If

 

the

 

diag_open_class

 

subroutine

 

has

 

not

 

been

 

called,

 

then

 

this

 

is

 

the

 

structure

 

name

 

of

 

the

 

class

 

normally

 

defined

 

in

 

either

 

diag/diagodm.h

 

file,

 

diag/DiagODM.h

 

file

 

or

 

sys/cfgodm.h

 

file.

 

criteria

 

String

 

containing

 

the

 

qualifying

 

criteria

 

for

 

selecting

 

objects

 

to

 

delete.

   

Return

 

Value

 

Upon

 

successful

 

completion,

 

the

 

number

 

of

 

objects

 

deleted

 

is

 

returned.

 

If

 

the

 

subroutine

 

fails,

 

a

 

-1

 

is

 

returned.

 

diag_unlock

 

Purpose

 

Release

 

an

 

ODM

 

lock

 

Syntax

 

#include

                

<odmi.h>

 

int

 

diag_unlock(int

 

*id)

 

Description

 

The

 

diag_unlock

 

subroutine

 

releases

 

an

 

odm

 

lock.

 

Parameters

  

Parameter

 

Description

 

id

 

Lock

 

id

 

to

 

release

   

Return

 

Value

 

The

 

diag_unlock

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Parameter

 

Description

 

0

 

If

 

successful

 

-1

 

Error

 

occured

 

while

 

trying

 

to

 

unlock

 

a

 

lock

    

Chapter

 

3.

 

Diagnostic

 

Components

 

111



init_dgodm,

 

term_dgodm

 

Purpose

 

Initializes

 

or

 

stops

 

the

 

Object

 

Data

 

Manager.

 

Syntax

 

int

 

init_dgodm

 

(

 

)

   

int

 

term_dgodm

 

(

 

)

 

Description

 

The

 

init_dgodm

 

subroutine

 

issues

 

an

 

odm_initialize

 

call

 

to

 

the

 

Object

 

Data

 

Manager.

 

This

 

should

 

be

 

done

 

at

 

the

 

beginning

 

of

 

the

 

Diagnostic

 

Application

 

(DA).

 

The

 

term_dgodm

 

subroutine

 

issues

 

an

 

odm_terminate

 

call

 

to

 

the

 

Object

 

Data

 

Manager.

 

This

 

should

 

be

 

done

 

at

 

the

 

end

 

of

 

the

 

DA.

 

Parameters

 

Takes

 

no

 

parameters.

 

Return

 

Value

 

A

 

value

 

of

 

0

 

is

 

always

 

returned.

 

configure_device,

 

initial_state

 

Purpose

 

Puts

 

a

 

device

 

and

 

parentage

 

into

 

the

 

available

 

state.

 

Restores

 

a

 

device

 

and

 

parentage

 

to

 

their

 

initial

 

state

 

before

 

configuration.

 

Syntax

 

#include

   

<diag/diagodm.h>

 

#include

   

<sys/cfgodm.h>

 

#include

   

<sys/cfgdb.h>

   

int

  

configure_device

 

(

 

name

 

)

 

char

 

*name;

   

int

  

initial_state

 

(

 

state,

 

name

 

)

 

int

    

state;

 

char

 

*name;

 

Description

 

The

 

configure_device

 

subroutine

 

is

 

used

 

to

 

put

 

a

 

device

 

into

 

the

 

AVAILABLE

 

state

 

(for

 

testing)

 

if

 

the

 

device

 

is

 

presently

 

DEFINED

 

or

 

STOPPED.

 

Also

 

the

 

parentage

 

of

 

the

 

device

 

is

 

checked,

 

and

 

their

 

states

 

also

 

put

 

into

 

AVAILABLE

 

state

 

if

 

necessary.

 

The

 

initial_state

 

subroutine

 

is

 

used

 

to

 

restore

 

the

 

device

 

and

 

parentage

 

back

 

to

 

their

 

initial

 

state

 

(after

 

testing).

 

Parameters

  

Parameter

 

Description

 

name

 

Identifies

 

the

 

device.

 

state

 

Indicates

 

the

 

previous

 

state

 

of

 

the

 

device.

    

112

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Return

 

Value

 

The

 

following

 

values

 

are

 

returned:

  

Return

 

Value

 

Description

 

DEFINED

 

Device

 

was

 

previously

 

in

 

the

 

DEFINED

 

state.

 

AVAILABLE

 

Device

 

is

 

already

 

in

 

the

 

AVAILABLE

 

state.

 

STOPPED

 

Device

 

was

 

previously

 

in

 

the

 

STOPPED

 

state.

 

-1

 

Error

 

configuring

 

the

 

device.

   

diagex_cfg_state

 

Purpose

 

Puts

 

the

 

device

 

under

 

test

 

in

 

the

 

DIAGNOSE

 

state.

 

Syntax

 

#include

     

<diag/diag.h>

   

int

  

diagex_cfg_state

 

(

 

device_name

 

)

 

char

 

*device_name;

 

Description

 

The

 

diagex_cfg_state

 

subroutine

 

unconfigures

 

the

 

device,

 

and

 

its

 

children

 

if

 

necessary,

 

to

 

set

 

the

 

device

 

into

 

the

 

DIAGNOSE

 

state.

 

Original

 

states

 

of

 

all

 

devices

 

changed

 

will

 

be

 

saved.

 

Use

 

diagex_initial_state

 

to

 

put

 

the

 

changed

 

devices

 

back

 

to

 

their

 

original

 

states.

 

The

 

global

 

variable

 

diag_cfg_errno

 

will

 

be

 

set

 

to

 

the

 

return

 

value

 

of

 

the

 

method

 

invoked

 

for

 

the

 

device.

 

Parameters

  

Parameter

 

Description

 

device_name

 

Name

 

of

 

the

 

device

 

under

 

test.

   

Return

 

Value

 

The

 

diagex_cfg_state

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Code

 

Description

 

0

 

Successful

 

return.

 

-1

 

Software

 

error.

 

1

 

Child

 

device

 

cannot

 

be

 

unconfigured.

 

2

 

Device

 

cannot

 

be

 

unconfigured.

 

3

 

Device

 

cannot

 

be

 

put

 

into

 

DIAGNOSE

 

state.

   

diagex_initial_state

 

Purpose

 

Puts

 

the

 

device

 

under

 

test

 

back

 

to

 

its

 

original

 

state.

 

Syntax

 

#include

     

<diag/diag.h>

   

int

  

diagex_initial_state

 

(

 

device_name

 

)

 

char

 

*device_name;

   

Chapter

 

3.

 

Diagnostic

 

Components

 

113



Description

 

The

 

diagex_initial_state

 

subroutine

 

puts

 

the

 

device,

 

and

 

its

 

children

 

if

 

necessary,

 

back

 

to

 

the

 

original

 

state

 

before

 

the

 

diagex_cfg_state

 

routine

 

was

 

called.

 

Parameters

  

Parameter

 

Description

 

device_name

 

Name

 

of

 

the

 

device

 

under

 

test.

   

Return

 

Value

 

The

 

diagex_initial_state

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Code

 

Description

 

0

 

Successful

 

return.

 

-1

 

Software

 

error.

 

4

 

Device

 

cannot

 

be

 

restored

 

to

 

DEFINE

 

state.

 

5

 

Device

 

cannot

 

be

 

restored

 

to

 

AVAILABLE

 

state.

 

6

 

Child

 

device

 

cannot

 

be

 

restored

 

to

 

original

 

state.

   

get_device_status

 

Purpose

 

Returns

 

the

 

device’s

 

current

 

configuration

 

status.

 

Syntax

 

#include

 

<sys/cfgdb.h>

   

int

  

get_device_status

 

(

 

device_name

 

)

 

char

 

*

 

device_name;

 

Description

 

The

 

get_device_status

 

subroutine

 

returns

 

the

 

current

 

device

 

configuration

 

status.

 

The

 

status

 

is

 

obtained

 

by

 

returning

 

the

 

value

 

of

 

the

 

CuDv

 

status

 

field

 

of

 

the

 

device.

 

Note:

  

init_dgodm

 

must

 

be

 

called

 

before

 

starting

 

this

 

subroutine.

 

Parameters

  

Parameter

 

Description

 

device_name

 

Character

 

pointer

 

to

 

the

 

name

 

of

 

the

 

device.

   

Return

 

Value

 

The

 

get_device_status

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

DEFINED

 

Device

 

is

 

in

 

the

 

DEFINED

 

state.

 

AVAILABLE

 

Device

 

is

 

in

 

the

 

AVAILABLE

 

state.

 

STOPPED

 

Device

 

is

 

in

 

the

 

STOPPED

 

state.

 

DIAGNOSE

 

Device

 

is

 

in

 

the

 

DIAGNOSE

 

state.

 

-1

 

System

 

error

 

obtaining

 

device

 

status.

    

114

 

Understanding

 

the

 

Diagnostic

 

Subsystem



addfrub

 

Purpose

 

Concludes

 

a

 

field

 

replaceable

 

unit

 

(FRU)

 

goal.

 

Syntax

 

#include

                

<diag/da.h>

 

int

 

addfrub

 

(

 

fptr

 

)

 

struct

 

fru_bucket

 

*fptr;

 

Description

 

The

 

addfrub

 

subroutine

 

associates

 

a

 

FRU

 

with

 

the

 

device

 

currently

 

being

 

tested.

 

The

 

TMInput

 

object

 

class

 

identifies

 

the

 

device

 

currently

 

being

 

tested.

 

Parameters

  

Parameter

 

Description

 

fptr

 

Pointer

 

to

 

a

 

structure

 

of

 

type

 

fru_bucket,

 

which

 

is

 

defined

 

as

 

follows:

 

struct

 

fru_bucket

  

{

           

char

   

dname[NAMESIZE];

           

short

  

ftype;

           

short

  

sn;

           

short

  

rcode;

           

short

  

rmsg;

           

struct

 

{

                    

int

   

conf;

                    

char

  

fname[NAMESIZE];

                    

char

  

floc[LOCSIZE];

                    

short

 

fmsg;

                    

char

  

fru_flag;

                    

char

  

fru_exempt;

                  

}

 

frus[MAXFRUS];

 

};

 

dname

 

Names

 

the

 

device

 

under

 

test.

 

ftype

 

Indicates

 

the

 

type

 

of

 

FRU

 

Bucket

 

being

 

added

 

to

 

the

 

system.

 

The

 

following

 

values

 

are

 

defined:

 

FRUB1

 

The

 

FRUs

 

include

 

the

 

resource

 

that

 

failed,

 

its

 

parent,

 

and

 

any

 

cables

 

needed

 

to

 

attach

 

the

 

resource

 

to

 

its

 

parent.

 

FRUB2

 

This

 

FRU

 

Bucket

 

is

 

similar

 

to

 

FRU

 

Bucket

 

FRUB1,

 

but

 

does

 

not

 

include

 

the

 

parent

 

resource.

 

sn

 

Source

 

number

 

of

 

the

 

failure.

 

The

 

source

 

number

 

is

 

usually

 

set

 

to

 

the

 

led

 

field

 

of

 

the

 

PdDV

 

object

 

class

 

by

 

the

 

insert_frub

 

subroutine.

 

If

 

the

 

sn

 

set

 

by

 

the

 

insert_frub

 

subroutine

 

is

 

not

 

the

 

desired

 

value,

 

the

 

calling

 

subroutine

 

should

 

set

 

sn

 

to

 

the

 

desired

 

value

 

after

 

the

 

insert_frub

 

subroutine

 

and

 

before

 

the

 

addfrub

 

subroutine.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

115



Parameter

 

Description

 

rcode

 

Reason

 

code

 

associated

 

with

 

the

 

failure.

 

Note:

  

A

 

Service

 

Request

 

Number

 

is

 

formatted

 

as

 

follows:

 

SSS

 

-

 

RRR

 

where

 

SSS

 

is

 

the

 

sn

 

and

 

RRR

 

is

 

the

 

rcode.

 

Some

 

devices

 

may

 

use

 

a

 

different

 

nomenclature

 

for

 

their

 

service

 

request

 

numbers.

 

For

 

this

 

special

 

case,

 

the

 

sn

 

parameter

 

indicates

 

how

 

the

 

rcode

 

value

 

should

 

be

 

formatted.

 

If

 

sn

 

=

 

0,

 

then

 

rcode

 

is

 

interpreted

 

as

 

decimal.

 

If

 

sn

 

=

 

-1,

 

then

 

rcode

 

is

 

interpreted

 

as

 

a

 

4-digit

 

hexadecimal

 

number.

 

If

 

sn

 

=

 

-2,

 

then

 

the

 

object

 

class

 

DAVars

 

is

 

searched

 

for

 

an

 

attribute

 

of

 

Errorcode.

 

This

 

allows

 

the

 

displaying

 

of

 

8

 

digit

 

hex

 

Error

 

Codes.

 

The

 

diagnostic

 

application

 

is

 

responsible

 

for

 

setting

 

up

 

a

 

DAVars

 

object

 

similar

 

to

 

the

 

following:

 

DAVars:

 

dname:

 

<device

 

name

 

under

 

test>

 

vname:

 

Error_code

           

"Error_code

 

is

 

an

 

ascii

 

string"

 

vtype:

 

DIAG_STRING

          

"Literal

 

value"

 

val:

 

<8

 

digit

 

hex

 

character

 

string>

 

See

 

the

 

getdavar/putdavar

 

subroutine

 

for

 

more

 

information.

 

rmsg

 

Message

 

number

 

of

 

the

 

text

 

describing

 

the

 

reason

 

code.

 

The

 

set

 

number

 

of

 

the

 

text

 

is

 

predefined

 

by

 

the

 

PSet

 

field

 

in

 

the

 

Predefined

 

Diagnostic

 

Resources

 

object

 

class.

 

conf

 

Indicates

 

whether

 

an

 

FRU

 

is

 

valid.

 

A

 

value

 

of

 

0

 

indicates

 

an

 

invalid

 

FRU.

 

No

 

other

 

FRUs

 

are

 

displayed

 

once

 

an

 

invalid

 

FRU

 

is

 

found

 

in

 

the

 

FRU

 

bucket.

 

However,

 

if

 

fname

 

contains

 

the

 

string

 

REF-CODE,

 

then

 

the

 

fmsg

 

and

 

conf

 

values

 

are

 

used

 

to

 

make

 

the

 

8-digit

 

ref

 

code.

 

For

 

AIX

 

4.3.2

 

and

 

earlier

 

versions,

 

this

 

field

 

indicates

 

the

 

probability

 

of

 

failure

 

associated

 

with

 

the

 

named

 

FRU.

 

fname

 

Names

 

the

 

FRU.

 

The

 

parameters

 

floc

 

and

 

fmsg

 

must

 

be

 

specified,

 

if

 

fname

 

is

 

not

 

represented

 

in

 

the

 

Customized

 

Devices

 

object

 

class.

 

Otherwise,

 

they

 

should

 

be

 

set

 

to

 

0.

 

floc

 

Location

 

of

 

fname.

 

fmsg

 

Message

 

number

 

of

 

the

 

text

 

describing

 

fname.

 

The

 

set

 

number

 

is

 

predefined

 

by

 

the

 

PSet

 

descriptor

 

in

 

the

 

Predefined

 

Diagnostic

 

Resources

 

object

 

class.

 

fru_flag

 

Flag

 

used

 

by

 

the

 

Diagnostic

 

Applications

 

(DA)

 

in

 

determining

 

which

 

FRU

 

to

 

use

 

in

 

the

 

frus[

 

]

 

structure.

 

The

 

following

 

values

 

are

 

defined:

 

NOT_IN_DB

 

The

 

FRU

 

is

 

not

 

represented

 

in

 

the

 

config

 

database.

 

DA_NAME

 

frus[

 

].fname

 

should

 

be

 

the

 

name

 

of

 

the

 

device

 

being

 

tested.

 

PARENT_NAME

 

frus[

 

].fname

 

should

 

be

 

the

 

name

 

of

 

the

 

parent

 

of

 

the

 

device

 

being

 

tested.

 

CHILD_NAME

 

frus[

 

].fname

 

should

 

be

 

the

 

name

 

of

 

the

 

child

 

of

 

the

 

device

 

being

 

tested.

 

NO_FRU_LOCATION

 

The

 

FRU

 

name

 

will

 

be

 

left

 

blank,

 

and

 

the

 

FRU

 

location

 

code

 

will

 

be

 

set

 

to

 

the

 

location

 

of

 

the

 

device

 

under

 

test

 

(dname).

   

116

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Parameter

 

Description

 

fru_exempt

 

Indicates

 

that

 

the

 

designated

 

FRU

 

will

 

not

 

be

 

absorbed

 

as

 

a

 

result

 

of

 

chip/FRU

 

integration.

 

The

 

following

 

values

 

are

 

defined:

 

EXEMPT

 

FRU

 

cannot

 

be

 

integrated

 

(For

 

example,

 

fuse,

 

cable,

 

displays,

 

etc.)

 

This

 

value

 

should

 

be

 

the

 

most-used

 

value,

 

and

 

should

 

be

 

used

 

in

 

conjunction

 

with

 

the

 

fru_flag

 

field.

 

Examples

 

are:

  

FRU

                  

fru_flag

         

fru_exempt

 

----

                 

--------

         

----------

 

Device

 

being

 

tested

  

DA_NAME

          

EXEMPT

 

Parent

 

of

 

device

     

PARENT_NAME

      

EXEMPT

 

CABLE

                

NOT_IN_DB

        

EXEMPT

 

NONEXEMPT

 

FRU

 

can

 

be

 

integrated

 

(generally,

 

any

 

specific

 

chip

 

set).

   

Note:

  

DAs

 

do

 

not

 

have

 

to

 

return

 

MAXFRU

 

frus.

 

The

 

Diagnostic

 

Controller

 

processes

 

frus[

 

]

 

from

 

0..MAXFRU-1,

 

while

 

conf>0.

 

Return

 

Value

 

Upon

 

successful

 

completion,

 

a

 

value

 

of

 

0

 

is

 

returned.

 

If

 

the

 

addfrub

 

subroutine

 

is

 

unsuccessful,

 

then

 

a

 

value

 

of

 

-1

 

is

 

returned.

 

addfrub_src

 

Purpose

 

Concludes

 

a

 

collection

 

of

 

field

 

replacement

 

units

 

(FRUs)

 

with

 

a

 

platform

 

specific

 

System

 

Reference

 

Code

 

(SRC).

 

Syntax

 

#include

     

<diag/da.h>

   

int

 

addfrub_src

 

(fptr)

 

struct

 

fru_bucket_src

 

*fptr;

 

Description

 

The

 

addfrub_src

 

subroutine

 

associates

 

a

 

collection

 

of

 

FRUs

 

with

 

a

 

failure

 

detected

 

by

 

the

 

device

 

currently

 

being

 

tested.

 

The

 

TMInput

 

object

 

class

 

identifies

 

the

 

device

 

currently

 

being

 

tested.

 

Note:

  

addfrub()

 

should

 

be

 

used

 

when

 

reporting

 

a

 

Service

 

Request

 

Number

 

(SRN).

 

insert_frub()

 

should

 

be

 

called

 

before

 

addfrub()

 

to

 

fill

 

in

 

some

 

of

 

the

 

fru_bucket

 

data.

 

addfrub_src()

 

should

 

be

 

used

 

when

 

reporting

 

an

 

System

 

Reference

 

Code

 

(SRC).

 

Then,

 

entire

 

contents

 

of

 

the

 

fru_bucket_src

 

should

 

be

 

filled

 

in

 

by

 

the

 

caller

 

before

 

calling

 

addfrub_src(),

 

thus

 

there

 

is

 

no

 

corresponding

 

call

 

to

 

insert_frub

 

for

 

fru_bucket_src.

  

Chapter

 

3.

 

Diagnostic

 

Components

 

117



Parameters

  

Parameter

 

Description

 

fptr

 

Pointer

 

to

 

a

 

structure

 

of

 

type

 

fru_bucket_src,

 

which

 

is

 

defined

 

below.

 

The

 

entire

 

structure

 

must

 

be

 

filled

 

out

 

before

 

calling

 

addfrub_src.

 

Any

 

optional

 

or

 

unknown

 

values

 

should

 

be

 

set

 

to

 

NULL

 

(0).

 

struct

 

fru_bucket_src

 

{

                 

char

  

dname[NAMESIZE];

  

/*

 

Resource

 

Name

 

*/

                 

char

  

src[RPA_SRC_SIZE_NN];/*

 

Primary

 

reference

 

code

 

*/

                 

unsigned

 

int

  

refc2;

    

/*

 

Extended

 

reference

 

code

 

-

 

word

 

2

 

*/

                 

unsigned

 

int

  

refc3;

    

/*

 

Extended

 

reference

 

code

 

-

 

word

 

3

 

*/

                 

unsigned

 

int

  

refc4;

    

/*

 

Extended

 

reference

 

code

 

-

 

word

 

4

 

*/

                 

unsigned

 

int

  

refc5;

    

/*

 

Extended

 

reference

 

code

 

-

 

word

 

5

 

*/

                 

unsigned

 

int

  

refc6;

    

/*

 

Extended

 

reference

 

code

 

-

 

word

 

6

 

*/

                 

unsigned

 

int

  

refc7;

    

/*

 

Extended

 

reference

 

code

 

-

 

word

 

7

 

*/

                 

unsigned

 

int

  

refc8;

    

/*

 

Extended

 

reference

 

code

 

-

 

word

 

8

 

*/

                 

unsigned

 

int

  

refc9;

    

/*

 

Extended

 

reference

 

code

 

-

 

word

 

9

 

*/

                 

int

   

rmsg;

     

/*

 

Failure

 

description

 

*/

                 

char

  

crid[2];

  

/*

 

Platform

 

error

 

creator

 

id

 

*/

                 

unsigned

 

int

  

plid;

     

/*

 

Platform

 

Log

 

Id

 

*/

                 

unsigned

 

int

  

subsysid;

 

/*

 

Subsystem

 

Id

 

*/

                 

unsigned

 

int

  

event_sev;/*

 

Event

 

Severity

 

*/

                 

int

   

action_flags;

     

/*

 

Error

 

Action

 

Flags

 

*/

                 

int

   

errlg_seq;

        

/*

 

Error

 

Log

 

Sequence

 

Number

 

*/

                 

frus_src_t

 

*frus;

       

/*

 

Linked

 

list

 

of

 

FRUs

 

for

 

SRC

 

*/

 

};

 

dname

 

Names

 

the

 

device

 

under

 

test.

 

src

 

System

 

Reference

 

Code.

 

The

 

Primary

 

Reference

 

Code

 

is

 

the

 

1st

 

8

 

characters

 

of

 

this

 

32

 

character

 

string.

 

The

 

Primary

 

Reference

 

Code

 

is

 

required,

 

the

 

remainder

 

of

 

the

 

string

 

is

 

optional.

 

refc2

 

Extended

 

reference

 

code

 

word

 

2

 

(required).

 

refc3

 

-

 

refc9

 

Optional

 

additional

 

extended

 

reference

 

code

 

words

 

3

 

-

 

9.

 

Should

 

be

 

0

 

if

 

not

 

present.

 

rmsg

 

Message

 

number

 

of

 

the

 

text

 

describing

 

the

 

failure.

 

The

 

set

 

number

 

of

 

the

 

text

 

is

 

predefined

 

by

 

the

 

PSet

 

field

 

in

 

the

 

predefined

 

Diagnostic

 

Resources

 

object

 

class.

 

crid

 

ASCII

 

character

 

representing

 

the

 

subsystem

 

creating

 

the

 

error

 

log

 

reporting

 

the

 

failure.

 

Use

 

NULL

 

(0)

 

if

 

this

 

failure

 

is

 

not

 

from

 

platform

 

error

 

log

 

analysis.

 

plid

 

Unique

 

identifier

 

for

 

this

 

failure.

 

subsysid

 

Platform

 

Error

 

Log

 

Subsystem

 

ID,

 

otherwise

 

0.

 

event_sev

 

Platform

 

Error

 

Log

 

Severity,

 

otherwise

 

0.

 

action_flags

 

Flags

 

defining

 

reporting

 

action

 

for

 

this

 

failure.

 

The

 

values

 

can

 

be

 

or’ed

 

together.

 

Bit

 

Action

 

RPA_REPORT_EXTERNALLY

 

Report

 

this

 

failure

 

to

 

external

 

programs

 

like

 

the

 

Service

 

Focal

 

Point.

 

RPA_CALL_HOME_REQD

 

Only

 

valid

 

with

 

RPA_REPORT_EXTERNALLY,

 

this

 

failure

 

should

 

be

 

reported

 

automatically

 

to

 

IBM

 

Service.

 

errlg_seq

 

Error

 

log

 

sequence

 

number

 

of

 

originating

 

error.

   

118

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Parameter

 

Description

 

frus

 

Optional

 

linked

 

list

 

of

 

FRUs

 

as

 

described

 

in

 

the

 

following

 

structure.

 

This

 

list

 

is

 

not

 

necessary

 

if

 

the

 

SRC

 

completely

 

describes

 

the

 

failure

 

and

 

resolution

 

actions.

 

typedef

 

struct

 

frus_src

 

{

         

int

   

type;

             

/*

 

RPA

 

FRU

 

type

 

*/

         

char

  

priority;

         

/*

 

RPA

 

FRU/Procedure

 

Priority

 

*/

         

char

  

loc[RPA_LOC_SIZE];/*

 

Physical

 

location

 

code

 

*/

         

char

  

pn[RPA_FRU_PN_SIZE];

      

/*

 

FRU

 

Stocking

 

p/n

 

*/

         

char

  

proc_id[RPA_PROC_SIZE];

   

/*

 

Procedure

 

Id

 

*/

         

char

  

ccin[RPA_CCIN_SIZE_NN];

   

/*

 

CCIN

 

*/

         

char

  

sn[RPA_FRU_SN_SIZE_NN];

   

/*

 

FRU

 

Serial

 

Number*/

         

struct

 

frus_src

 

*next_fru;

 

}

 

frus_src_t;

 

type

 

FRU

 

type.

 

One

 

of

 

the

 

following:

 

RPA_FRUTYPE_NORMAL

 

Normal

 

Hardware

 

FRU.

 

RPA_FRUTYPE_CODE

 

Code

 

FRU

 

described

 

by

 

procedure

 

id

 

field.

 

RPA_FRUTYPE_C_PROC

 

Configuration

 

procedure

 

required.

 

RPA_FRUTYPE_M_PROC

 

Maintainence

 

procedure

 

required.

 

RPA_FRUTYPE_EXT

 

External

 

FRU.

 

RPA_FRUTYPE_EXT_CODE

 

External

 

code

 

FRU

 

described

 

by

 

procedure

 

field.

 

RPA_FRUTYPE_TOOL

 

A

 

tool

 

required

 

by

 

another

 

FRU

 

in

 

the

 

list.

 

RPA_FRUTYPE_SYMBOL

 

Procedure

 

id

 

for

 

acquiring

 

or

 

working

 

with

 

a

 

FRU.

 

priority

 

FRU

 

Replacement/Procedure

 

Priority.

 

One

 

of

 

the

 

following:

 

H

 

High

 

priority

 

and

 

mandatory

 

call-out.

 

Replacing

 

the

 

FRU,

 

or

 

performing

 

the

 

Procedure

 

is

 

mandatory.

 

Multiple

 

call-outs

 

with

 

H

 

priority

 

should

 

be

 

acted

 

on

 

as

 

a

 

group.

 

M

 

Medium

 

priority.

 

Each

 

FRU/Procedure

 

with

 

M

 

priority

 

should

 

be

 

acted

 

on,

 

one

 

at

 

a

 

time,

 

in

 

the

 

order

 

given.

 

A

 

Medium

 

priority

 

group

 

A.

 

Each

 

FRU/Procedure

 

with

 

A

 

priority

 

should

 

be

 

acted

 

on

 

as

 

a

 

group.

 

B

 

Medium

 

priority

 

group

 

B.

 

Each

 

FRU/Procedure

 

with

 

B

 

priority

 

should

 

be

 

acted

 

on

 

as

 

a

 

group.

 

C

 

Medium

 

priority

 

group

 

C.

 

Each

 

FRU/Procedure

 

with

 

C

 

priority

 

should

 

be

 

acted

 

on

 

as

 

a

 

group.

 

L

 

Low

 

priority.

 

Each

 

FRU/Procedure

 

with

 

L

 

priority

 

should

 

be

 

acted

 

on

 

only

 

after

 

all

 

other

 

priority

 

call-outs

 

have

 

failed

 

to

 

resolve

 

the

 

problem.

 

loc

 

Location

 

code

 

pn

 

FRU

 

Stocking

 

Part

 

Number

 

if

 

available,

 

mutually

 

exclusive

 

with

 

proc_id.

 

proc_id

 

Procedure

 

Id

 

if

 

available,

 

mutually

 

exclusive

 

with

 

pn.

 

ccin

 

CCIN,

 

if

 

available

 

and

 

only

 

if

 

pn

 

is

 

available.

 

sn

 

FRU

 

Serial

 

Number,

 

if

 

available,

 

and

 

only

 

if

 

pn

 

is

 

available.

 

next_fru

 

Pointer

 

to

 

the

 

next

 

frus_src

 

structure.

    

Chapter

 

3.

 

Diagnostic

 

Components

 

119



Return

 

Value

  

0

 

Upon

 

successful

 

completion.

 

-1

 

If

 

the

 

addfrub_src

 

subroutine

 

is

 

unsuccessful.

   

insert_frub

 

Purpose

 

Updates

 

FRU

 

Bucket.

 

Syntax

 

#include

    

<diag/tm_input.h>

 

#include

    

<diag/da.h>

   

long

 

insert_frub

 

(

 

tminput,

 

frub

 

)

 

struct

 

tm_input

 

*tminput;

 

struct

 

fru_bucket

 

*frub;

 

Description

 

The

 

insert_frub

 

subroutine

 

gets

 

a

 

device’s

 

FRU

 

name

 

and

 

source

 

number

 

from

 

the

 

Customized

 

Device

 

object

 

class

 

and

 

places

 

them

 

into

 

a

 

structure

 

of

 

type

 

fru_bucket.

 

The

 

calling

 

routine

 

specifies

 

through

 

the

 

fru_flag

 

member

 

of

 

the

 

FRU

 

Bucket

 

structure

 

whether

 

the

 

FRU

 

name

 

is

 

for

 

device

 

x

 

or

 

the

 

FRU

 

parent

 

of

 

x.

 

Parameters

  

Parameter

 

Description

 

tminput

 

Identifies

 

the

 

device

 

x

 

(specifically,

 

tminput.dname).

 

frub

 

Pointer

 

to

 

the

 

FRU

 

Bucket

 

structure

 

to

 

be

 

updated.

   

This

 

function

 

should

 

be

 

called

 

before

 

addfrub.

 

Return

 

Value

 

Upon

 

successful

 

completion,

 

a

 

value

 

of

 

0

 

is

 

returned.

 

Otherwise,

 

a

 

value

 

of

 

-1

 

is

 

returned.

 

add_more_frus

 

Purpose

 

Adds

 

additional

 

FRUs

 

to

 

an

 

FRU

 

bucket

 

previously

 

added

 

by

 

the

 

addfrub()

 

subroutine.

 

Syntax

 

#include

    

<diag/da.h>

   

int

 

add_more_frus(fptr)

 

struct

 

fru_bucket

 

*fptr);

 

Description

 

The

 

add_more_frus

 

subroutine

 

takes

 

an

 

additional

 

set

 

of

 

FRUs

 

and

 

adds

 

them

 

to

 

an

 

existing

 

FRU

 

bucket

 

that

 

was

 

previously

 

added

 

via

 

the

 

addfrub()

 

subroutine.

 

This

 

subroutine

 

can

 

add

 

up

 

to

 

MAXFRUS

 

number

 

of

 

FRUs

 

per

 

invocation,

 

but

 

can

 

be

 

called

 

multiple

 

times.

 

This

 

subroutine

 

is

 

called

 

only

 

after

 

calling

 

addfrub().

 

The

 

input

 

fru_bucket

 

should

 

have

 

the

 

same

 

data

 

as

 

sent

 

to

 

addfrub(),

 

except

 

for

 

the

 

FRUs

 

array.

Note:

  

init_dgodm

 

must

 

be

 

called

 

before

 

starting

 

this

 

subroutine.

  

120

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Parameters

  

Parameter

 

Description

 

fptr

 

Pointer

 

to

 

a

 

structure

 

of

 

type

 

fru_bucket,

 

that

 

is

 

almost

 

identical

 

to

 

the

 

structure

 

used

 

in

 

the

 

call

 

to

 

addfrub().

 

The

 

only

 

difference

 

should

 

be

 

the

 

array

 

of

 

FRUs

 

structure

 

that

 

contains

 

the

 

additional

 

FRUs

 

that

 

should

 

be

 

added

 

to

 

the

 

existing

 

FRU

 

bucket.

 

For

 

more

 

information,

 

refer

 

to

 

the

 

fru_bucket

 

definition

 

in

 

the

 

addfrub()

 

subroutine.

   

Return

 

Value

 

The

 

add_more_frus

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

0

 

On

 

successful

 

completion

 

-1

 

If

 

ODM

 

error

 

-2

 

If

 

addfrub()

 

did

 

not

 

add

 

MAXFRUS

 

number

 

of

 

FRUs

 

(i.e.

 

this

 

function

 

should

 

not

 

have

 

been

 

called)

   

diag_catopen

 

Purpose

 

Opens

 

a

 

diagnostic

 

catalog

 

message

 

file.

 

Syntax

 

#include

     

<diag/diago.h>

   

nl_catd

  

diag_catopen

 

(

 

filename,

 

reserved

 

)

 

char*

 

filename;

 

int

 

reserved;

 

Description

 

The

 

diag_catopen

 

subroutine

 

is

 

used

 

to

 

open

 

a

 

catalog

 

message

 

file.

 

It

 

first

 

searches

 

the

 

normal

 

catalog

 

directory

 

as

 

specified

 

by

 

the

 

$LANG

 

and

 

$NLSPATH

 

environment

 

variables.

 

If

 

the

 

catalog

 

file

 

is

 

not

 

found,

 

the

 

function

 

searches

 

the

 

default

 

catalog

 

directory.

 

Parameters

  

Parameter

 

Description

 

filename

 

Catalog

 

file

 

name

 

to

 

be

 

opened.

   

Return

 

Value

 

The

 

diag_catopen

 

subroutine

 

returns

 

a

 

nl_catd

 

catalog

 

descriptor.

 

diag_cat_gets

 

Purpose

 

Obtains

 

catalog

 

messages

 

from

 

NLSPATH

 

or

 

default

 

diagnostic

 

catalog

 

directory.

 

Syntax

 

#include

     

<diag/diago.h>

   

char

  

*diag_cat_gets

 

(

 

fdes,

 

setid,

 

msgid

 

)

 

nl_catd

 

fdes;

 

unsigned

 

short

 

setid;

 

unsigned

 

short

 

msgid;

   

Chapter

 

3.

 

Diagnostic

 

Components

 

121



Description

 

The

 

diag_cat_gets

 

subroutine

 

is

 

used

 

to

 

get

 

messages

 

from

 

a

 

catalog

 

file.

 

It

 

first

 

searches

 

the

 

normal

 

catalog

 

directory

 

as

 

specified

 

by

 

the

 

$LANG

 

and

 

$NLSPATH

 

environment

 

variables.

 

If

 

the

 

set

 

and

 

message

 

is

 

not

 

found,

 

the

 

function

 

searches

 

the

 

default

 

catalog

 

directory.

 

Parameters

  

Parameter

 

Description

 

fdes

 

Open

 

catalog

 

file

 

descriptor

 

returned

 

from

 

the

 

diag_catopen

 

system

 

call.

 

setid

 

Set

 

ID

 

of

 

the

 

message

 

in

 

the

 

catalog.

 

msgid

 

Message

 

ID

 

of

 

the

 

message

 

in

 

the

 

catalog

 

that

 

serves

 

as

 

the

 

format

 

string.

   

Return

 

Value

 

The

 

diag_cat_gets

 

subroutine

 

returns

 

a

 

character

 

pointer

 

to

 

the

 

message

 

string.

 

diag_popup

 

Purpose

 

Creates

 

a

 

popup

 

window

 

with

 

message

 

text.

 

Syntax

 

#include

 

<diag/diag_screen.h>

   

long

  

diag_popup

 

(

 

char

 

*

 

fmt,

 

[,

 

name,

 

...]

 

)

   

char

 

*

 

fmt;

 

Description

 

The

 

diag_popup

 

subroutine

 

displays

 

a

 

popup

 

window.

 

Parameters

 

The

 

parameters

 

are

 

similar

 

to

 

those

 

of

 

the

 

standard

 

I/O

 

library

 

subroutine

 

printf().

 

There

 

is

 

a

 

2000

 

character

 

limit

 

on

 

the

 

length

 

of

 

the

 

message.

 

Return

 

Value

 

The

 

diag_popup

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

DIAG_CANCEL

 

Cancel

 

key

 

was

 

entered.

 

DIAG_ENTER

 

Enter

 

Function

 

key

 

was

 

entered.

 

DIAG_EXIT

 

Exit

 

Function

 

key

 

was

 

entered.

   

diag_progress

 

Purpose

 

Displays

 

progress

 

messages

 

by

 

the

 

Diagnostic

 

Applications

 

and

 

Diagnostic

 

Tasks.

 

Syntax

 

#include

 

<diag/diag_screen.h>

   

#include

 

<diag/diag.h>

   

void

  

diag_progress

 

(

 

screen_progress

 

)

   

screen_prog_t

 

*screen_progress;

   

122

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Description

 

The

 

diag_progress

 

subroutine

 

displays

 

the

 

progress

 

indicators

 

used

 

by

 

Diagnostic

 

Applications

 

and

 

other

 

Diagnostic

 

Tasks.

 

Parameters

  

Parameter

 

Description

 

screen_prog

 

Screen

 

Progress

 

Information.

 

This

 

structure

 

defines

 

the

 

progress

 

message

 

to

 

be

 

displayed

 

and

 

the

 

percentage

 

complete.

 

int

 

max_value

 

(Used

 

for

 

Web-based

 

System

 

Manager

 

progress

 

bars)

 

Maximum

 

value.

 

int

 

current_value

 

(Used

 

for

 

Web-based

 

System

 

Manager

 

progress

 

bars)

 

Current

 

value.

 

char

 

*

 

progress_msg

 

Progress

 

message

 

to

 

be

 

displayed.

   

diag_read

 

Purpose

 

Reads

 

user

 

input.

 

Syntax

 

#include

 

<diag/diag_screen.h>

   

#include

 

<diag/diag.h>

   

long

  

diag_read

 

(

 

screen_info,

 

wait,

 

buffer

 

)

   

screen_info_t

 

*screen_info;

 

int

  

wait;

 

char

 

*

 

buffer;

 

Description

 

The

 

diag_read

 

subroutine

 

reads

 

the

 

keyboard

 

buffer.

 

Parameters

  

Parameter

 

Description

 

screen_info

 

Screen

 

Information.

 

This

 

structure

 

defines

 

the

 

screen

 

type

 

and

 

screen

 

ID.

 

Only

 

the

 

screen_type

 

is

 

used.

 

short

 

screen_type

 

Screen

 

Type.

 

v

   

INFORMATIVE

 

v

   

TRANSITIONAL

 

v

   

DIALOG

 

v

   

SINGLE_SELECTION

 

v

   

MULTIPLE_SELECTION

 

wait

 

If

 

TRUE,

 

causes

 

this

 

subroutine

 

to

 

wait

 

until

 

the

 

user

 

presses

 

one

 

of

 

the

 

keys

 

allowed

 

by

 

the

 

screen_type.

 

If

 

this

 

parameter

 

is

 

FALSE,

 

then

 

this

 

subroutine

 

does

 

not

 

wait

 

for

 

the

 

user

 

input

 

but

 

processes

 

anything

 

typed

 

ahead

 

just

 

as

 

it

 

would

 

if

 

the

 

parameter

 

were

 

TRUE.

 

buffer

 

Allocated

 

by

 

the

 

application.

 

It

 

is

 

used

 

to

 

return

 

the

 

values

 

entered

 

by

 

the

 

user.

 

The

 

buffer

 

size

 

must

 

not

 

be

 

greater

 

than

 

100

 

bytes.

 

(Currently

 

not

 

implemented).

    

Chapter

 

3.

 

Diagnostic

 

Components

 

123



diag_resource_screen

 

Purpose

 

Displays

 

menus

 

commonly

 

used

 

by

 

Diagnostic

 

Applications

 

(DA).

 

Syntax

 

#include

 

<diag/diag_screen.h>

   

#include

 

<diag/diag.h>

   

long

  

diag_resource_screen

 

(

 

screen_info,

 

screen_data,

 

screen_msg

 

)

   

screen_info_t

 

*screen_info;

 

screen_data_t

 

*screen_data;

 

screen_msg_t

 

screen_msg[];

 

Description

 

The

 

diag_resource_screen

 

subroutine

 

displays

 

menus

 

commonly

 

used

 

by

 

Diagnostic

 

Applications.

 

Parameters

  

Parameter

 

Description

 

screen_info

 

Screen

 

Information.

 

This

 

structure

 

defines

 

the

 

screen

 

type

 

and

 

screen

 

ID.

 

short

 

screen_type

 

Screen

 

Type.

 

v

   

INFORMATIVE

 

v

   

TRANSITIONAL

 

v

   

SINGLE_SELECTION

 

short

 

screen_id

 

Screen

 

Identifier.

 

v

   

TESTING_MENU

 

v

   

ANALYZE_ERROR_LOG

 

v

   

ANALYZE_POST

 

v

   

ANALYZE_FIRMWARE

 

v

   

ANALYZE_CHECKSTOP

 

v

   

ANALYZE_SUBSYS

 

short

 

screen_key

 

Identifies

 

extra

 

function

 

keys

 

for

 

screen.

 

v

   

DIAG_HELP_KEY

 

long

 

item_selected

 

Indicates

 

the

 

selected

 

item

 

in

 

the

 

list,

 

if

 

screen_type

 

is

 

SINGLE_SELECTION.

 

First

 

selectable

 

item

 

in

 

screen_msg

 

would

 

have

 

a

 

1

 

returned,

 

second

 

selectable

 

item

 

would

 

have

 

a

 

2

 

returned,

 

and

 

so

 

on.

   

124

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Parameter

 

Description

 

screen_data

 

Screen

 

Data.

 

This

 

structure

 

contains

 

all

 

data

 

needed

 

to

 

construct

 

the

 

screen.

 

nl_catd

 

fdes

 

Catalog

 

file

 

descriptor.

 

long

 

menu_number

 

Menu

 

number

 

that

 

is

 

displayed,

 

right-justified,

 

as

 

a

 

hex

 

number

 

at

 

the

 

top-right

 

corner

 

of

 

the

 

screen.

 

char

 

*

 

resource_name

 

The

 

name

 

of

 

the

 

resource

 

being

 

tested.

 

(tminput->dname)

 

char

 

*

 

location_code

 

The

 

logical

 

location

 

code

 

of

 

the

 

resource

 

being

 

tested.

 

(tminput->dnameloc)

 

short

 

test_mode

 

The

 

test

 

mode

 

(ADVANCED,

 

NON_ADVANCED)

 

this

 

session

 

is

 

running

 

in.

 

(tminput->advanced)

 

short

 

loop_mode

 

Indicates

 

whether

 

Loop

 

Mode

 

has

 

been

 

selected.

 

(tminput->loopmode)

 

short

 

lcount

 

Total

 

number

 

of

 

passes

 

made.

 

This

 

value

 

is

 

used

 

only

 

when

 

loop_mode

 

is

 

not

 

set

 

to

 

LOOPMODE_NOTLM.

 

short

 

lerrors

 

Total

 

number

 

of

 

errors

 

encountered.

 

This

 

value

 

is

 

used

 

only

 

when

 

loop_mode

 

is

 

not

 

set

 

to

 

LOOPMODE_NOTLM.

 

short

 

msg_count

 

Total

 

number

 

of

 

messages

 

in

 

the

 

screen_msg

 

structure.

 

screen_msg

 

The

 

screen_msg

 

structure

 

contains

 

an

 

array

 

of

 

setid’s

 

and

 

msgid’s

 

used

 

to

 

construct

 

the

 

text

 

(or

 

body)

 

of

 

the

 

screen.

 

This

 

includes

 

all

 

messages

 

except

 

the

 

last

 

line,

 

or

 

INSTRUCTION

 

line.

 

This

 

structure

 

is

 

not

 

required

 

for

 

a

 

TRANSITIONAL

 

screen

 

type,

 

use

 

NULL

 

for

 

the

 

screen_msg

 

argument.

 

short

 

set_num

 

The

 

set

 

number

 

containing

 

the

 

message

 

text.

 

short

 

msg_num

 

The

 

message

 

number

 

containing

 

the

 

message

 

text.

 

char

 

*

 

message

 

Text

 

message

 

to

 

use

 

in

 

place

 

of

 

<

 

set_num,

 

msg_num

 

>.

 

This

 

is

 

useful

 

if

 

string

 

substitution

 

was

 

required

 

in

 

order

 

to

 

build

 

the

 

message

 

text.

 

This

 

text

 

will

 

take

 

precedence

 

over

 

the

 

<

 

set_num,

 

msg_num

 

>

 

if

 

not

 

NULL.

 

short

 

msg_type

 

Flag

 

indicating

 

the

 

type

 

of

 

message

 

to

 

be

 

displayed.

 

v

   

HELP_MSG

 

Only

 

one

 

message

 

of

 

this

 

type

 

allowed.

 

This

 

help

 

message

 

will

 

always

 

be

 

associated

 

with

 

the

 

screen,

 

and

 

not

 

any

 

particular

 

line.

 

v

   

SELECTABLE_MSG

 

v

   

INFO_MSG

   

NOTES:

   

Chapter

 

3.

 

Diagnostic

 

Components

 

125



v

   

This

 

structure

 

must

 

be

 

built

 

exactly

 

for

 

a

 

SINGLE_SELECTION

 

screen

 

type.

 

screen_msg[0..n]

 

MUST

 

have

 

the

 

msg_type

 

set

 

to

 

SELECTABLE_MSG

 

for

 

all

 

selectable

 

messages.

 

v

   

screen_msg[n+1]

 

MUST

 

have

 

the

 

msg_type

 

set

 

to

 

INFO_MSG

 

if

 

you

 

want

 

some

 

kind

 

of

 

information

 

displayed

 

to

 

the

 

user

 

before

 

the

 

INSTRUCTION

 

line.

 

v

   

The

 

help

 

message,

 

if

 

any,

 

should

 

be

 

last.

Return

 

Value

 

The

 

diag_resource_screen

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Code

 

Description

 

DIAG_OK

 

Successful

 

return.

 

DIAG_MALLOCFAILED

 

Memory

 

allocation

 

was

 

unsuccessful.

 

DIAG_ENTER

 

Enter

 

Function

 

key

 

was

 

entered.

 

DIAG_EXIT

 

Exit

 

Function

 

key

 

was

 

entered.

 

DIAG_CANCEL

 

Cancel

 

Function

 

key

 

was

 

entered.

 

DIAG_HELP

 

Help

 

Function

 

key

 

was

 

entered.

 

DIAG_FAIL

 

Invalid

 

data

 

structure,

 

software

 

error

   

diag_task_screen

 

Purpose

 

Displays

 

menus

 

commonly

 

used

 

by

 

Diagnostic

 

Tasks.

 

Syntax

 

#include

 

<diag/diag_screen.h>

   

#include

 

<diag/diag.h>

   

long

  

diag_task_screen

 

(

 

screen_info,

 

screen_task_data,

 

screen_task_msg

 

)

   

screen_info_t

 

*screen_info;

 

screen_task_t

 

*screen_task_data;

 

screen_task_msg_t

 

screen_task_msg[];

 

Description

 

The

 

diag_task_screen

 

subroutine

 

displays

 

menus

 

commonly

 

used

 

by

 

Diagnostic

 

Tasks.

   

126

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Parameters

  

Parameter

 

Description

 

screen_info

 

Screen

 

Information.

 

This

 

structure

 

defines

 

the

 

screen

 

type.

 

short

 

screen_type

 

Screen

 

Type.

 

v

   

INFORMATIVE

 

v

   

TRANSITIONAL

 

v

   

DIALOG

 

v

   

SINGLE_SELECTION

 

v

   

MULTIPLE_SELECTION

 

short

 

screen_id

 

Screen

 

Identifier

 

-

 

Not

 

Used.

 

short

 

screen_key

 

Identifies

 

extra

 

function

 

keys

 

for

 

screen.

 

v

   

DIAG_LIST_KEY

 

v

   

DIAG_HELP_KEY

 

if

 

screen_type

 

is

 

INFORMATIVE

 

long

 

item_selected

 

Indicates

 

the

 

selected

 

item

 

in

 

the

 

list,

 

if

 

screen_type

 

is

 

SINGLE_SELECTION.

 

First

 

selectable

 

item

 

in

 

screen_msg

 

would

 

have

 

a

 

1

 

returned,

 

second

 

selectable

 

item

 

would

 

have

 

a

 

2

 

returned,

 

and

 

so

 

on.

 

For

 

a

 

MULTIPLE_SELECTION

 

screen_type,

 

this

 

field

 

is

 

used

 

to

 

keep

 

track

 

of

 

the

 

current

 

selection

 

for

 

subsequent

 

calls

 

until

 

the

 

COMMIT

 

function

 

key

 

is

 

used.

 

screen_task_data

 

Screen

 

Data.

 

This

 

structure

 

contains

 

all

 

data

 

needed

 

to

 

construct

 

the

 

screen.

 

nl_catd

 

fdes

 

Catalog

 

file

 

descriptor.

 

long

 

menu_number

 

Menu

 

number

 

that

 

is

 

displayed,

 

right-justified,

 

as

 

a

 

hex

 

number

 

at

 

the

 

top-right

 

corner

 

of

 

the

 

screen.

 

short

 

msg_count

 

Total

 

number

 

of

 

messages

 

in

 

the

 

screen_task_msg

 

structure.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

127



Parameter

 

Description

 

screen_task_msg

 

The

 

screen_task_msg

 

structure

 

contains

 

an

 

array

 

of

 

setid’s

 

and

 

msgid’s

 

used

 

to

 

construct

 

the

 

text

 

(or

 

body)

 

of

 

the

 

screen.

 

This

 

includes

 

all

 

except

 

the

 

last

 

line,

 

or

 

Instruction

 

line.

 

short

 

set_num

 

The

 

set

 

number

 

containing

 

the

 

message

 

text.

 

short

 

msg_num

 

The

 

message

 

number

 

containing

 

the

 

message

 

text.

 

char

 

*

 

message

 

Text

 

message

 

to

 

use

 

in

 

place

 

of

 

<

 

set_num,

 

msg_num

 

>.

 

This

 

is

 

useful

 

if

 

string

 

substitution

 

was

 

required

 

in

 

order

 

to

 

build

 

the

 

message

 

text.

 

This

 

text

 

will

 

take

 

precedence

 

over

 

the

 

<

 

set_num,

 

msg_num

 

>

 

if

 

not

 

NULL.

 

short

 

help_set_num

 

The

 

set

 

number

 

containing

 

the

 

message

 

text

 

when

 

the

 

HELP

 

key

 

is

 

pressed.

 

Help

 

message

 

text

 

is

 

line

 

sensitive,

 

and

 

is

 

normally

 

used

 

when

 

the

 

msg_type

 

is

 

set

 

to

 

SELECTABLE_MSG

 

or

 

DIALOG_MSG.

 

short

 

help_msg_num

 

The

 

message

 

number

 

containing

 

the

 

message

 

text

 

when

 

the

 

HELP

 

key

 

is

 

pressed.

 

Help

 

message

 

text

 

is

 

line

 

sensitive,

 

and

 

is

 

normally

 

used

 

when

 

the

 

msg_type

 

is

 

set

 

to

 

SELECTABLE_MSG

 

or

 

DIALOG_MSG.

 

short

 

msg_type

 

Flag

 

indicating

 

if

 

text

 

is

 

help,

 

selectable,

 

dialog,

 

or

 

information.

 

v

   

TITLE_MSG

 

v

   

SELECTABLE_MSG

 

v

   

DIALOG_MSG

 

v

   

INFO_MSG

 

char

 

leading_char

 

A

 

specific

 

character

 

to

 

be

 

displayed

 

before

 

the

 

message

 

text.

 

Note

 

that

 

this

 

is

 

also

 

used

 

as

 

the

 

mechanism

 

to

 

determine

 

which

 

selectable

 

items

 

had

 

been

 

selected

 

on

 

a

 

MULTIPLE_SELECTION

 

screen.

 

long

 

line_num

 

Internal

 

screen

 

line

 

number.

 

char

 

op_type

 

Type

 

of

 

operation

 

allowed

 

on

 

this

 

field

 

char

 

entry_type

 

type

 

of

 

(user)

 

entry

 

allowed

 

in

 

the

 

field

 

char

 

required

 

v

   

DIAG_YES

 

v

   

DIAG_YES_NON_EMPTY

 

v

   

DIAG_EXCEPT_WHEN_EMPTY

 

v

   

DIAG_NO

 

=

 

default

 

v

   

DIAG_YES

 

or

 

DIAG_YES_NON_EMPTY

 

means

 

display

 

required

 

flag

 

char

 

changed

 

DIAG_YES,

 

DIAG_NO

 

=

 

default;

 

field

 

changed

 

from

 

default

 

value

 

char

 

*disp_values

 

disp.

 

text

 

of

 

allowed/default

 

choice(s,

 

separated

 

by

 

″,″)

 

char

 

*data_value

 

MUST

 

point

 

to

 

string

 

(buffer)

 

of

 

size

 

(entry_size

 

+

 

1)

 

if

 

there

 

is

 

ANY

 

way

 

values

 

may

 

be

 

changed

 

(typein/list/ring)

 

long

 

entry_size

 

maximum

 

size

 

of

 

(data_)value

 

that

 

can

 

be

 

entered

 

OR

 

returned

 

(include

 

a

 

″return″

 

of

 

anything

 

from

 

disp_values)

 

long

 

cur_value_index

 

long

 

default_value_index

 

0

 

origin

 

index

 

of

 

default

 

value

   

NOTES:

   

128

 

Understanding

 

the

 

Diagnostic

 

Subsystem



v

   

The

 

screen_task_msg

 

structure

 

must

 

be

 

built

 

exactly

 

for

 

SINGLE_SELECTION,

 

MULTIPLE_SELECTION,

 

and

 

DIALOG

 

screen

 

types.

 

screen_msg[0]

 

MUST

 

have

 

the

 

msg_type

 

set

 

to

 

TITLE_MSG

 

for

 

the

 

TITLE

 

line.

 

v

   

screen_msg[1..n]

 

MUST

 

have

 

the

 

msg_type

 

set

 

to

 

SELECTABLE_MSG

 

or

 

DIALOG_MSG

 

for

 

all

 

selectable/dialog

 

messages.

 

v

    

screen_msg[n+1]

 

MUST

 

have

 

the

 

msg_type

 

set

 

to

 

INFO_MSG

 

if

 

you

 

want

 

some

 

kind

 

of

 

information

 

displayed

 

to

 

the

 

user

 

before

 

the

 

INSTRUCTION

 

line.

Return

 

Value

 

The

 

diag_task_screen

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

DIAG_OK

 

Successful

 

return.

 

DIAG_MALLOCFAILED

 

Memory

 

allocation

 

was

 

unsuccessful.

 

DIAG_ENTER

 

Enter

 

Function

 

key

 

was

 

entered.

 

DIAG_EXIT

 

Exit

 

Function

 

key

 

was

 

entered.

 

DIAG_CANCEL

 

Cancel

 

Function

 

key

 

was

 

entered.

 

DIAG_HELP

 

Help

 

Function

 

key

 

was

 

entered.

 

DIAG_LIST

 

List

 

Function

 

key

 

was

 

entered.

 

DIAG_FAIL

 

Invalid

 

data

 

structure,

 

software

 

error

 

DIAG_COMMIT

 

Commit

 

function

 

key

 

was

 

entered.

   

diag_asl_clear_screen

 

Purpose

 

Clears

 

the

 

screen.

 

Syntax

 

#include

     

<diag/diago.h>

   

long

  

diag_asl_clear_screen

 

(

  

)

 

Description

 

The

 

diag_asl_clear_screen

 

subroutine

 

is

 

used

 

to

 

clear

 

the

 

screen.

 

Parameters

 

Takes

 

no

 

parameters.

 

Return

 

Value

 

The

 

following

 

values

 

are

 

returned:

  

Return

 

Value

 

Description

 

DIAG_ASL_OK

 

Successful

 

return.

 

DIAG_ASL_FAIL

 

Not

 

called

 

following

 

diag_asl_init

 

and

 

before

 

diag_asl_quit.

   

diag_asl_init

 

Purpose

 

Initializes

 

the

 

user

 

interface.

 

Syntax

 

#include

     

<diag/diago.h>

   

long

  

diag_asl_init

 

(

 

name

 

)

 

char

 

*name;

   

Chapter

 

3.

 

Diagnostic

 

Components

 

129



Description

 

The

 

diag_asl_init

 

subroutine

 

is

 

used

 

to

 

initialize

 

the

 

user

 

interface

 

and

 

should

 

be

 

the

 

first

 

call

 

made

 

to

 

the

 

user

 

interface.

 

Parameters

  

Parameter

 

Description

 

name

 

Identifies

 

any

 

options.

 

This

 

field

 

has

 

the

 

following

 

values:

 

DEFAULT

 

Type

 

ahead

 

allowed.

 

NO_TYPE_AHEAD

 

Type

 

ahead

 

not

 

allowed.

   

Return

 

Value

 

The

 

following

 

values

 

are

 

returned:

  

Return

 

Value

 

Description

 

DIAG_ASL_OK

 

Successful

 

return.

 

DIAG_ASL_ERR_NO_SUCH_TERM

 

Specified

 

TERM

 

entry

 

does

 

not

 

exist.

 

DIAG_ASL_ERR_TERMINFO_GET

 

TERMINFO

 

get

 

failed.

 

DIAG_ASL_ERR_NO_TERM

 

TERM

 

entry

 

missing.

 

DIAG_ASL_ERR_INITSCR

 

nitscr()

 

failed.

 

DIAG_ASL_ERR_SCREEN_SIZE

 

Screen/window

 

size

 

less

 

than

 

minimum.

   

diag_asl_msg

 

Purpose

 

Creates

 

a

 

pop-up

 

window

 

with

 

message

 

text.

 

Syntax

 

#include

     

<diag/diago.h>

   

long

  

diag_asl_msg

 

(

 

fmt,

 

[,

  

name,

 

...

 

]

 

)

 

char

 

*fmt;

 

Description

 

The

 

diag_asl_msg

 

subroutine

 

should

 

only

 

be

 

used

 

by

 

service

 

aids

 

to

 

display

 

a

 

pop-up

 

window

 

with

 

informational

 

text.

 

Parameters

 

The

 

parameters

 

are

 

similar

 

to

 

those

 

of

 

the

 

standard

 

I/O

 

library

 

subroutine

 

printf.

 

Return

 

Value

 

The

 

following

 

values

 

are

 

returned:

  

Return

 

Value

 

Description

 

DIAG_ASL_CANCEL

 

Cancel

 

key

 

was

 

pressed.

 

DIAG_ASL_ENTER

 

Enter

 

key

 

was

 

pressed.

 

DIAG_ASL_HELP

 

Help

 

key

 

was

 

pressed.

 

DIAG_ASL_LIST

 

List

 

key

 

was

 

pressed.

 

DIAG_ASL_COMMAND

 

Command

 

key

 

was

 

pressed.

 

DIAG_ASL_COMMIT

 

Commit

 

key

 

was

 

pressed.

    

130

 

Understanding

 

the

 

Diagnostic

 

Subsystem



diag_asl_read

 

Purpose

 

Reads

 

user

 

input.

 

Syntax

 

#include

     

<diag/diago.h>

   

long

  

diag_asl_read

 

(

 

screen_code,

 

wait,

 

buf

 

)

 

ASL_SCREEN_CODE

 

screen_code;

 

int

 

wait;

 

char

 

*buf;

 

Description

 

The

 

diag_asl_read

 

subroutine

 

reads

 

the

 

keyboard

 

buffer.

 

Parameters

  

Parameter

 

Description

 

screen_code

 

Identifies

 

the

 

set

 

of

 

function

 

keys

 

that

 

should

 

be

 

active.

 

wait

 

If

 

True,

 

causes

 

this

 

subroutine

 

to

 

wait

 

until

 

the

 

user

 

presses

 

one

 

of

 

the

 

keys

 

allowed

 

by

 

the

 

screen_type.

 

If

 

this

 

parameter

 

is

 

False,

 

then

 

this

 

subroutine

 

does

 

not

 

wait

 

for

 

the

 

user

 

input

 

but

 

processes

 

anything

 

typed

 

ahead

 

just

 

as

 

it

 

would

 

if

 

the

 

parameter

 

were

 

True.

 

buf

 

Allocated

 

by

 

the

 

application.

 

It

 

is

 

used

 

to

 

return

 

the

 

values

 

entered

 

by

 

the

 

user.

 

If

 

used,

 

this

 

buffer

 

MUST

 

be

 

at

 

least

 

ASL_READ_BUF_SIZE.

 

Normally

 

this

 

value

 

should

 

be

 

set

 

to

 

NULL.

 

When

 

NULL,

 

only

 

the

 

function

 

key

 

pressed

 

is

 

returned.

   

Return

 

Value

 

The

 

diag_asl_read

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

DIAG_ASL_OK

 

Successful

 

return.

 

DIAG_ASL_FAIL

 

Failure

 

reading

 

data.

 

DIAG_ASL_CANCEL

 

Cancel

 

key

 

was

 

entered.

 

DIAG_ASL_ENTER

 

Enter

 

key

 

was

 

entered.

 

DIAG_ASL_EXIT

 

Exit

 

key

 

was

 

entered.

   

diag_asl_quit

 

Purpose

 

Terminates

 

the

 

user

 

interface.

 

Syntax

 

#include

     

<diag/diago.h>

   

long

  

diag_asl_quit

 

(

 

name

 

)

 

char

 

*name;

 

Description

 

The

 

diag_asl_quit

 

subroutine

 

is

 

used

 

to

 

end

 

the

 

user

 

interface

 

and

 

should

 

be

 

the

 

last

 

call

 

made

 

to

 

the

 

user

 

interface.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

131



Parameters

  

Parameter

 

Description

 

name

 

Identifies

 

any

 

options.

 

This

 

field

 

has

 

the

 

following

 

values:

 

DCTRL

 

Used

 

by

 

Diagnostic

 

Controller

 

only.

 

DEFAULT

 

Used

 

by

 

all

 

other

 

applications.

   

Return

 

Value

 

The

 

following

 

value

 

is

 

always

 

returned:

  

Return

 

Value

 

Description

 

0

 

Successful

 

return.

   

diag_display

 

Purpose

 

Displays

 

a

 

menu

 

and

 

reads

 

the

 

user’s

 

response.

 

Syntax

 

#include

     

<diag/diago.h>

   

long

  

diag_display

 

(

 

mnum,

 

fdes,

 

msglist,

 

proctype,

                      

scrtype,

 

menutype,

 

menuinfo

 

)

 

long

 

mnum;

 

nl_catd

 

fdes;

 

struct

 

msglist

 

msglist[

 

];

 

long

 

proctype;

 

long

 

scrtype;

 

ASL_SCR_TYPE

 

*menutype;

 

ASL_SCR_INFO

 

*menuinfo;

 

Description

 

The

 

diag_display

 

subroutine

 

displays

 

a

 

menu

 

that

 

has

 

multiple

 

user

 

selections

 

and

 

reads

 

the

 

user’s

 

response.

 

Parameters

  

Parameter

 

Description

 

mnum

 

Menu

 

number

 

that

 

is

 

displayed,

 

right-justified,

 

as

 

a

 

hex

 

number

 

at

 

the

 

top-right

 

corner

 

of

 

the

 

screen.

 

fdes

 

Open

 

catalog

 

file

 

descriptor

 

returned

 

from

 

the

 

diag_catopen

 

system

 

call.

 

msglist

 

Array

 

of

 

set

 

numbers

 

and

 

message

 

IDs.

 

The

 

msglist

 

parameter

 

must

 

be

 

ended

 

by

 

a

 

Null

 

element.

 

proctype

 

Specifies

 

the

 

type

 

of

 

operation

 

to

 

be

 

performed.

 

This

 

parameter

 

has

 

the

 

following

 

values:

 

DIAG_MSGONLY

 

The

 

specified

 

messages

 

are

 

retrieved

 

from

 

the

 

catalog,

 

but

 

not

 

displayed.

 

The

 

application

 

writer

 

should

 

update

 

the

 

menuinfo

 

parameter

 

and

 

restart

 

the

 

diag_display

 

subroutine

 

with

 

the

 

msglist

 

parameter

 

equal

 

to

 

Null.

 

DIAG_IO

 

The

 

list

 

of

 

messages

 

specified

 

by

 

msglist

 

or,

 

if

 

that

 

is

 

Null,

 

those

 

in

 

the

 

array

 

menuinfo,

 

are

 

displayed

 

in

 

the

 

format

 

specified

 

by

 

the

 

menutype

 

parameter.

 

scrtype

 

Specifies

 

the

 

type

 

of

 

screen

 

to

 

be

 

displayed,

 

where

 

each

 

type

 

determines

 

the

 

format

 

of

 

the

 

output

 

and

 

the

 

active

 

function

 

keys

 

for

 

the

 

user.

 

menutype

 

Defined

 

in

 

the

 

file

 

/usr/include/asl.h.

 

If

 

this

 

parameter

 

is

 

equal

 

to

 

Null,

 

the

 

default

 

version

 

is

 

used.

 

Otherwise,

 

the

 

application’s

 

version

 

is

 

used.

   

132

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Parameter

 

Description

 

menuinfo

 

Defined

 

in

 

the

 

file

 

/usr/include/asl.h.

 

If

 

this

 

field

 

is

 

not

 

equal

 

to

 

Null,

 

it

 

is

 

initialized

 

with

 

the

 

retrieved

 

messages.

   

Return

 

Value

 

The

 

diag_display

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

DIAG_ASL_OK

 

Successful

 

return.

 

DIAG_ASL_ARGS1

 

Both

 

the

 

msglist

 

and

 

menuinfo

 

parameters

 

were

 

Null.

 

DIAG_ASL_ARGS2

 

DIAG_MSGONLY

 

option

 

was

 

specified,

 

but

 

no

 

messages

 

were

 

named.

 

DIAG_MALLOCFAILED

 

Memory

 

allocation

 

was

 

unsuccessful.

 

DIAG_ASL_ENTER

 

Enter

 

Function

 

key

 

was

 

entered.

 

DIAG_ASL_EXIT

 

Exit

 

Function

 

key

 

was

 

entered.

 

DIAG_ASL_CANCEL

 

Cancel

 

Function

 

key

 

was

 

entered.

 

DIAG_ASL_HELP

 

Help

 

Function

 

key

 

was

 

entered.

 

DIAG_ASL_LIST

 

List

 

Function

 

key

 

was

 

entered.

 

DIAG_ASL_COMMIT

 

Commit

 

Function

 

key

 

was

 

entered.

 

DIAG_ASL_PRINT

 

Print

 

Function

 

key

 

was

 

entered.

   

diag_display_menu

 

Purpose

 

Displays

 

menus

 

commonly

 

used

 

by

 

Diagnostic

 

Applications

 

(DA).

 

Syntax

 

#include

 

<diag/diago.h>

   

#include

 

<diag/diag.h>

   

long

  

diag_display_menu

 

(

 

msgid,

 

mnum,

 

substitution,

 

lcount,

 

lerrors

 

)

 

long

  

msgid;

 

long

  

mnum;

 

char

  

*substitution[];

 

int

   

lcount;

 

int

   

lerrors;

 

Description

 

The

 

diag_display_menu

 

subroutine

 

displays

 

commonly

 

used

 

menus.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

133



Parameters

  

Parameter

 

Description

 

msgid

 

Message

 

ID

 

number

 

defined

 

in

 

dcda.msg.

 

Currently,

 

the

 

following

 

message

 

IDs

 

are

 

defined:

 

CUSTOMER_TESTING_MENU

 

ADVANCED_TESTING_MENU

 

LOOPMODE_TESTING_MENU

 

NO_MICROCODE_MENU

 

NO_DIAGMICROCODE_MENU

 

NO_DDFILE_MENU

 

NO_HOT_KEY

 

DEVICE_INITIAL_STATE_FAILURE

 

mnum

 

Menu

 

number

 

that

 

is

 

displayed,

 

right-justified,

 

as

 

a

 

hex

 

number

 

at

 

the

 

top-right

 

corner

 

of

 

the

 

screen.

 

substitution

 

Used

 

to

 

pass

 

in

 

strings

 

to

 

be

 

substituted

 

in

 

the

 

menu.

 

This

 

must

 

be

 

an

 

array

 

of

 

three

 

(3)

 

character

 

pointers.

 

The

 

device

 

descriptive

 

text

 

is

 

the

 

first

 

element.

 

The

 

device

 

name

 

as

 

it

 

comes

 

from

 

TMInput->dname

 

is

 

the

 

second,

 

and

 

the

 

location

 

code

 

is

 

the

 

third.

 

lcount

 

Used

 

to

 

allow

 

the

 

loop-count

 

value

 

to

 

be

 

displayed.

 

This

 

value

 

is

 

used

 

only

 

when

 

mnum

 

is

 

set

 

to

 

LOOPMODE_TESTING_MENU.

 

lerrors

 

Used

 

to

 

allow

 

the

 

number

 

of

 

errors

 

value

 

to

 

be

 

displayed.

 

This

 

value

 

is

 

used

 

only

 

when

 

mnum

 

is

 

set

 

to

 

LOOPMODE_TESTING_MENU.

   

Return

 

Value

 

The

 

diag_display_menu

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

DIAG_ASL_OK

 

Successful

 

return.

 

DIAG_ASL_ARGS1

 

Both

 

the

 

msglist

 

and

 

menuinfo

 

parameters

 

were

 

Null.

 

DIAG_ASL_ARGS2

 

DIAG_MSGONLY

 

option

 

was

 

specified,

 

but

 

no

 

messages

 

were

 

named.

 

DIAG_MALLOCFAILED

 

Memory

 

allocation

 

was

 

unsuccessful.

 

DIAG_ASL_ENTER

 

Enter

 

Function

 

key

 

was

 

entered.

 

DIAG_ASL_EXIT

 

Exit

 

Function

 

key

 

was

 

entered.

 

DIAG_ASL_CANCEL

 

Cancel

 

Function

 

key

 

was

 

entered.

 

DIAG_ASL_HELP

 

Help

 

Function

 

key

 

was

 

entered.

 

DIAG_ASL_LIST

 

List

 

Function

 

key

 

was

 

entered.

 

DIAG_ASL_COMMIT

 

Commit

 

Function

 

key

 

was

 

entered.

 

DIAG_ASL_PRINT

 

Print

 

Function

 

key

 

was

 

entered.

   

diag_emsg

 

Purpose

 

Displays

 

error

 

messages.

Note:

  

Diagnostic

 

Applications

 

(DAs)

 

should

 

not

 

use

 

this

 

subroutine.

  

134

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Syntax

 

#include

    

<diag/diago.h>

   

long

  

diag_emsg

 

(

 

fdes,

 

setid,

 

msgid

 

[,val,...

 

]

 

)

 

nl_catd

 

fdes;

 

unsigned

 

short

 

setid;

 

unsigned

 

short

 

msgid;

 

Description

 

The

 

diag_emsg

 

subroutine

 

displays

 

an

 

error

 

message.

 

Normally

 

used

 

with

 

service

 

aids.

 

Parameters

  

Parameter

 

Description

 

fdes

 

Open

 

catalog

 

file

 

descriptor

 

returned

 

from

 

the

 

diag_catopen

 

system

 

call.

 

setid

 

Set

 

ID

 

of

 

the

 

message

 

in

 

the

 

catalog.

 

msgid

 

Message

 

ID

 

of

 

the

 

message

 

in

 

the

 

catalog

 

that

 

serves

 

as

 

the

 

format

 

string.

 

val

 

Values

 

that

 

are

 

optional

 

and

 

variable

 

in

 

number

 

are

 

inserted

 

in

 

the

 

specified

 

message

 

according

 

to

 

the

 

conventions

 

assumed

 

by

 

the

 

printf()

 

subroutine

 

in

 

the

 

standard

 

I/O

 

library.

 

The

 

format

 

is

 

specified

 

by

 

the

 

message

 

referenced

 

by

 

the

 

catalog

 

set

 

and

 

message

 

ID.

   

Return

 

Value

 

The

 

diag_emsg

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

DIAG_ASL_OK

 

Successful

 

return.

 

DIAG_ASL_CANCEL

 

Cancel

 

key

 

was

 

entered.

 

DIAG_ASL_EXIT

 

Exit

 

key

 

was

 

entered.

   

diag_msg,

 

diag_msg_nw

 

Purpose

 

Displays

 

simple

 

menus.

 

Syntax

 

#include

    

<diag/diago.h>

   

long

  

diag_msg

 

(

 

mnum,

 

fdes,

 

setid,

 

msgid

 

[,

 

val,

 

...

 

]

 

)

 

long

 

mnum;

 

nl_catd

 

fdes;

 

unsigned

 

short

 

setid;

 

unsigned

 

short

 

msgid;

   

long

  

diag_msg_nw

 

(

 

mnum,

 

fdes,

 

setid,

 

msgid

 

[,

 

val,

 

...

 

]

 

)

 

long

 

mnum;

 

nl_catd

 

fdes;

 

unsigned

 

short

 

setid;

 

unsigned

 

short

 

msgid;

 

Description

 

The

 

diag_msg

 

subroutine

 

displays

 

the

 

specified

 

text

 

and

 

obtains

 

the

 

user’s

 

response.

 

The

 

screen

 

is

 

automatically

 

cleared

 

upon

 

completion.

 

The

 

diag_msg_nw

 

subroutine

 

displays

 

the

 

specified

 

text

 

but

 

does

 

not

 

wait

 

for

 

the

 

user

 

to

 

respond.

 

The

 

screen

 

is

 

not

 

automatically

 

cleared.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

135



Parameters

  

Parameter

 

Description

 

mnum

 

Menu

 

number

 

that

 

is

 

displayed,

 

right-justified,

 

as

 

a

 

hex

 

number

 

at

 

the

 

top-right

 

corner

 

of

 

the

 

screen.

 

fdes

 

Open

 

catalog

 

file

 

descriptor

 

returned

 

from

 

the

 

diag_catopen

 

system

 

call.

 

setid

 

Set

 

ID

 

of

 

the

 

message

 

in

 

the

 

catalog.

 

msgid

 

Message

 

ID

 

of

 

the

 

message

 

in

 

the

 

catalog

 

that

 

serves

 

as

 

the

 

format

 

string.

 

val

 

Values

 

that

 

are

 

optional

 

and

 

variable

 

in

 

number

 

are

 

inserted

 

in

 

the

 

specified

 

message

 

according

 

to

 

the

 

conventions

 

assumed

 

by

 

the

 

printf()

 

subroutine

 

in

 

the

 

standard

 

I/O

 

library.

 

The

 

format

 

is

 

specified

 

by

 

the

 

message

 

referenced

 

by

 

the

 

catalog

 

set

 

and

 

message

 

ID.

   

Return

 

Value

 

The

 

diag_msg

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

DIAG_ASL_OK

 

Successful

 

return.

 

DIAG_ASL_CANCEL

 

Cancel

 

key

 

was

 

entered.

 

DIAG_ASL_EXIT

 

Exit

 

key

 

was

 

entered.

   

diag_get_device_flag

 

Purpose

 

Obtain

 

device

 

flag

 

from

 

residual

 

data

 

information.

  

Attention:

  

This

 

diagnostic

 

library

 

function

 

has

 

been

 

removed

 

in

 

AIX

 

5.2

 

but

 

the

 

information

 

has

 

been

 

left

 

in

 

for

 

reference.

 

Syntax

 

#include

    

<diag/diag.h>

 

#include

    

<sys/residual.h>

   

int

  

diag_get_device_flag

 

(

                                  

char

            

*device_name,

                                  

long

            

*Flag)

 

Description

 

The

 

diag_get_device_flagsubroutine

 

searches

 

residual

 

data

 

for

 

an

 

object

 

matching

 

the

 

devicespecified

 

by

 

device_name.

 

The

 

value

 

of

 

the

 

Flags

 

field

 

asdefined

 

in

 

the

 

DEVICE_ID

 

structure

 

for

 

the

 

device

 

is

 

returned

 

inthe

 

Flag

 

argument.

 

Implementation

 

Specifics

 

POWER-based

 

Parameters

  

Parameter

 

Description

 

device_name

 

Pointer

 

to

 

a

 

character

 

string

 

containing

 

the

 

logical

 

name

 

of

 

the

 

device.

 

Flag

 

Pointer

 

to

 

a

 

long

 

integer

 

where

 

the

 

value

 

of

 

the

 

Flag

 

field

 

in

 

the

 

DEVICE_ID

 

structure

 

as

 

defined

 

by

 

sys/residual.h

 

header

 

file

 

will

 

be

 

written.

   

Return

 

Value

 

Upon

 

successful

 

completion,

 

a

 

0

 

isreturned

 

if

 

the

 

device

 

flag

 

information

 

was

 

retrieved

 

successfully.

 

If

 

thediag_get_device_flag

 

fails,

 

a

 

value

 

of

 

-1

 

is

 

returned.

   

136

 

Understanding

 

the

 

Diagnostic

 

Subsystem



diag_get_property

 

Purpose

 

Obtain

 

property

 

value

 

from

 

Common

 

Hardware

 

Reference

 

Platform

 

(CHRP)

 

firmware

 

for

 

a

 

resource.

 

Syntax

 

#include

    

<diag/diag.h>

   

char

  

*diag_get_property

 

(

                                  

char

             

*device_name,

                                  

char

             

*property_name,

                                  

int

              

*property_length)

 

Description

 

The

 

diag_get_property

 

subroutine

 

searches

 

the

 

Open

 

Firmware

 

device

 

tree

 

to

 

obtain

 

the

 

value

 

of

 

a

 

property

 

associated

 

with

 

the

 

specified

 

resource.

 

The

 

resource

 

must

 

be

 

a

 

valid

 

ODM

 

resource

 

name

 

with

 

a

 

corresponding

 

Open

 

Firmware

 

device

 

tree

 

node.

 

If

 

the

 

resource’s

 

corresponding

 

node

 

is

 

not

 

found

 

in

 

the

 

Open

 

Firmware

 

device

 

tree,

 

or

 

if

 

the

 

property

 

value

 

is

 

not

 

found,

 

then

 

a

 

char

 

*NULL

 

is

 

returned.

 

Implementation

 

Specifics

 

POWER-based

 

Parameters

  

Parameter

 

Description

 

device_name

 

Pointer

 

to

 

a

 

character

 

string

 

containing

 

the

 

logical

 

name

 

of

 

the

 

device.

 

property_name

 

Pointer

 

to

 

a

 

character

 

string

 

containing

 

the

 

property

 

to

 

find.

 

property_length

 

Contains

 

total

 

number

 

of

 

characters

 

pointed

 

to

 

by

 

the

 

return

 

character

 

value.

   

Return

 

Value

 

Upon

 

successful

 

completion,

 

a

 

character

 

string

 

is

 

returned

 

containing

 

the

 

value

 

(or

 

values)

 

of

 

the

 

property

 

requested.

 

Multiple

 

values

 

may

 

be

 

separated

 

by

 

a

 

NULL

 

value.

 

If

 

the

 

resource

 

is

 

not

 

valid,

 

or

 

the

 

property

 

value

 

is

 

not

 

found,

 

then

 

a

 

char

 

*NULL

 

is

 

returned.

 

diag_get_sid_lun

 

Purpose

 

Returns

 

the

 

SCSI

 

ID

 

and

 

Logical

 

Unit

 

Number

 

(LUN)

 

from

 

a

 

SCSI

 

address.

 

Syntax

 

#include

    

<diag/diag.h>

   

int

  

diag_get_sid_lun

 

(

 

scsiaddr,

 

sid_addr,

 

lun_addr

 

)

 

char

  

*scsiaddr;

 

uchar

 

*sid_addr;

 

uchar

 

*lun_addr;

 

Description

 

The

 

diag_get_sid_lun

 

subroutine

 

returns

 

the

 

SCSI

 

ID

 

and

 

logical

 

unit

 

number

 

associated

 

with

 

a

 

SCSI

 

address

 

for

 

a

 

device.

 

The

 

SCSI

 

address

 

must

 

be

 

in

 

the

 

format

 

used

 

by

 

the

 

connwhere

 

field

 

in

 

CuDv

 

object

 

class.

 

Parameters

  

Parameter

 

Description

 

scsiaddr

 

Pointer

 

to

 

the

 

address

 

of

 

the

 

SCSI

 

device.

 

This

 

is

 

the

 

connwhere

 

field

 

of

 

the

 

device.

 

Format

 

is

 

″x,y″

 

where

 

x

 

is

 

the

 

SCSI

 

ID,

 

and

 

y

 

is

 

the

 

logical

 

unit

 

number.

 

sid_addr

 

Pointer

 

to

 

the

 

SCSI

 

ID

 

of

 

the

 

device.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

137



Parameter

 

Description

 

lun_addr

 

Pointer

 

to

 

the

 

logical

 

unit

 

number

 

of

 

the

 

device.

   

Return

 

Value

 

The

 

diag_get_sid_lun

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

0

 

Successful

 

return.

 

-1

 

Error.

 

Incorrect

 

format

 

for

 

SCSI

 

address.

   

diag_load_optical_media

 

Purpose

 

Loads

 

optical

 

media

 

data

 

and

 

makes

 

it

 

available

 

to

 

the

 

caller.

 

Syntax

 

#include

     

<diag_optical.h>

   

int

 

diag_load_optical_media(device_name,

 

mnt_path)

 

char

 

*

  

device_name

 

char

 

*

  

mnt_path

 

Description

 

The

 

diag_load_optical_media

 

function

 

will

 

take

 

an

 

optical

 

media

 

device

 

name

 

passed

 

by

 

the

 

caller

 

and

 

mount

 

its

 

data

 

over

 

a

 

returned

 

mounted

 

path

 

for

 

the

 

caller

 

to

 

access

 

the

 

data.

 

Parameters

  

Parameter

 

Description

 

device_name

 

This

 

is

 

the

 

name

 

of

 

the

 

optical

 

media

 

drive

 

requested

 

by

 

the

 

caller

 

to

 

be

 

accessed.

 

/dev/cdXX

 

where

 

XX

 

is

 

the

 

number

 

of

 

the

 

optical

 

drive

 

as

 

listed

 

by

 

the

 

ODM.

 

mnt_path

 

This

 

is

 

the

 

mounted

 

path

 

returned

 

to

 

the

 

caller

 

to

 

access

 

the

 

optical

 

media

 

data

 

(for

 

example,

 

/usr/lpp/diagnostics/mnt/cdXX)

 

where

 

XX

 

is

 

the

 

drive

 

number

 

given

 

to

 

the

 

optical

 

drive

 

by

 

the

 

ODM.

   

Return

 

Value

  

-1

 

There

 

was

 

an

 

error

 

mounting

 

the

 

cd.

 

0

 

The

 

mount

 

was

 

successful.

   

check_optical_media

 

Purpose

 

Checks

 

the

 

status

 

of

 

the

 

optical

 

drive.

 

Syntax

 

#include

     

<diag_optical.h>

   

int

 

check_optical_media(device_name)

 

char

 

*

  

device_name

 

Description

 

The

 

check_optical_media

 

function

 

will

 

take

 

an

 

optical

 

media

 

device

 

name

 

passed

 

by

 

the

 

caller

 

and

 

check

 

the

 

status

 

of

 

the

 

drive

 

and

 

unmount

 

it

 

if

 

possible.

   

138

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Parameters

  

Parameter

 

Description

 

device_name

 

This

 

is

 

the

 

name

 

of

 

the

 

optical

 

media

 

drive

 

requested

 

by

 

the

 

caller

 

to

 

be

 

accessed.

 

/dev/cdXX

 

where

 

XX

 

is

 

the

 

number

 

of

 

the

 

optical

 

drive

 

as

 

listed

 

by

 

the

 

ODM.

   

Return

 

Value

  

-1

 

Unable

 

to

 

unmount

 

due

 

to

 

Error.

 

0

 

The

 

optical

 

device

 

chosen

 

was

 

not

 

in

 

use

 

and

 

did

 

not

 

require

 

unmounting.

 

1

 

The

 

optical

 

device

 

chosen

 

was

 

in

 

use

 

and

 

was

 

unmounted

 

successfully.

 

2

 

The

 

optical

 

device

 

chosen

 

was

 

in

 

use

 

and

 

failed

 

to

 

unmount

 

successfully.

   

get_cpu_model

 

Purpose

 

Returns

 

the

 

CPU

 

model

 

number.

 

Syntax

 

#include

     

<diag/modid.h>

   

unsigned

 

int

  

get_cpu_model

 

(

 

model_code

 

)

 

int

 

model_code;

 

Description

 

The

 

get_cpu_model

 

subroutine

 

gets

 

the

 

CPU

 

model

 

number.

 

init_dgodm

 

must

 

be

 

called

 

before

 

starting

 

this

 

subroutine.

 

Implementation

 

Specifics

 

POWER-based

 

Parameters

  

Parameter

 

Description

 

model_code

 

Attribute

 

stored

 

in

 

the

 

CuAt

 

database

 

for

 

the

 

sys0

 

model

 

code.

 

The

 

unsigned

 

integer

 

returned

 

by

 

the

 

function

 

is

 

the

 

raw

 

model

 

code

 

obtained

 

from

 

the

 

IPL

 

control

 

block.

 

Macros

 

are

 

defined

 

in

 

modid.h.

 

These

 

macros

 

can

 

be

 

used

 

to

 

determine

 

the

 

following

 

information:

 

Package

 

Type

 

Tower,

 

Rack,

 

or

 

Desktop.

 

Speed

 

Low,

 

Medium,

 

High,

 

or

 

Turbo

 

Charged.

 

Machine

 

Type

 

Release

 

1,

 

RSC,

 

Release

 

2,

 

or

 

PowerPC.

   

Return

 

Value

 

Upon

 

successful

 

completion,

 

the

 

model

 

code

 

as

 

stored

 

in

 

the

 

iplcb

 

structure

 

is

 

returned.

 

Otherwise,

 

a

 

value

 

of

 

-1

 

is

 

returned.

 

get_dev_desc

 

Purpose

 

Returns

 

the

 

device’s

 

descriptive

 

text.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

139



Syntax

 

char

 

*

  

get_dev_desc

 

(

 

device_name

 

)

 

char

 

*

  

device_name;

 

Description

 

The

 

get_dev_desc

 

subroutine

 

gets

 

the

 

descriptive

 

text

 

associated

 

with

 

the

 

device.

 

This

 

text

 

is

 

stored

 

in

 

the

 

catalog

 

field

 

of

 

the

 

PdDv

 

entry

 

for

 

the

 

device.

 

This

 

is

 

usually

 

found

 

in

 

the

 

/usr/lib/methods/devices.cat

 

file

 

for

 

most

 

devices.

 

Other

 

devices

 

may

 

use

 

different

 

catalogs.

 

Note:

  

init_dgodm

 

must

 

be

 

called

 

before

 

starting

 

this

 

subroutine.

 

Parameters

  

Parameter

 

Description

 

device_name

 

Character

 

pointer

 

to

 

the

 

name

 

of

 

the

 

device.

   

Return

 

Value

 

Upon

 

successful

 

completion,

 

a

 

char

 

pointer

 

to

 

a

 

text

 

string

 

in

 

memory

 

is

 

returned.

 

Otherwise,

 

a

 

value

 

of

 

-1

 

is

 

returned.

 

get_diag_att

 

Purpose

 

Reads

 

an

 

attribute

 

from

 

the

 

predefined

 

database

 

PDiagAtt.

 

Syntax

 

#include

    

<diag/modid.h>

   

int

 

get_diag_att

 

(

 

type,

 

attribute,

 

conversion,

 

byte_count,

 

value

 

)

   

char

 

*type;

 

char

 

*attribute;

 

char

 

conversion;

 

int

  

*byte_count;

 

void

 

*value;

 

Description

 

The

 

get_diag_att

 

subroutine

 

gets

 

attributes

 

from

 

the

 

predefined

 

diagnostic

 

database

 

PDiagAtt.

 

Parameters

 

The

 

arguments

 

are

 

defined

 

as

 

follows:

  

Parameter

 

Description

 

type

 

Device

 

type,

 

which

 

should

 

be

 

Class/SubClass/Type

 

string.

 

This

 

fully

 

qualified

 

string

 

reduces

 

the

 

chance

 

of

 

finding

 

two

 

objects

 

having

 

the

 

same

 

Type

 

value

 

in

 

the

 

PdDv

 

object

 

class.

 

attribute

 

Attribute

 

name

 

to

 

get

 

from

 

the

 

Predefined

 

Attribute

 

Object

 

Class.

   

140

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Parameter

 

Description

 

conversion

 

The

 

data

 

type

 

to

 

which

 

the

 

attribute

 

is

 

to

 

be

 

converted,

 

including

 

the

 

following:

 

`s’

 

=

 

string

 

rep

 

=

 

s

 

`b’

 

=

 

byte

 

sequence

 

rep

 

=

 

s

 

(for

 

example

 

″0x56FFE67″)

 

`l’

 

=

 

long

 

rep

 

=

 

n

 

`i’

 

=

 

int

 

rep

 

=

 

n

 

`h’

 

=

 

short

 

(half)

 

rep

 

=

 

n

 

`f’

 

=

 

float

 

rep

 

=

 

n

 

`c’

 

=

 

char

 

rep

 

=

 

n,

 

or

 

s

 

`a’

 

=

 

address

 

rep

 

=

 

n

 

byte_count

 

Number

 

of

 

bytes

 

(for

 

byte

 

sequence

 

only).

 

value

 

Pointer

 

to

 

where

 

the

 

converted

 

attribute

 

value

 

is

 

returned.

   

Return

 

Value

 

Upon

 

successful

 

completion,

 

a

 

value

 

of

 

0

 

is

 

returned.

 

Otherwise,

 

a

 

value

 

of

 

-1

 

is

 

returned.

 

dlog_getTestMode

 

Purpose

 

Return

 

the

 

value

 

of

 

the

 

dlog_testmode

 

attribute

 

in

 

CDiagAtt

 

for

 

the

 

specified

 

device.

 

Syntax

 

#include

                

<diag/diag_log.h>

 

int

 

dlog_getTestMode(char

 

*name)

 

Description

 

The

 

dlog_getTestMode

 

subroutine

 

gets

 

a

 

CDiagAtt

 

object

 

for

 

the

 

specified

 

device

 

with

 

an

 

attribute

 

of

 

dlog_testmode.

 

The

 

value

 

of

 

the

 

dlog_testmode

 

is

 

returned.

 

Parameters

  

Parameter

 

Description

 

name

 

Character

 

pointer

 

to

 

the

 

name

 

of

 

the

 

device

   

Return

 

Value

 

Upon

 

successful

 

completion,

 

the

 

test

 

mode

 

is

 

returned.

 

Otherwise,

 

-1

 

is

 

returned

 

if

 

the

 

object

 

does

 

not

 

exist.

 

dlog_close

 

Purpose

 

Closes

 

the

 

Diagnostic

 

Event

 

Log

 

opened

 

by

 

dlog_open.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

141



Syntax

 

#include

                

<diag/diag_log.h>

   

int

 

dlog_close(dl_info

 

*info)

 

Description

 

The

 

dlog_close

 

subroutine

 

closes

 

the

 

log

 

file

 

opened

 

with

 

dlog_open.

 

It

 

will

 

also

 

free

 

the

 

memory

 

allocated

 

with

 

dlog_open.

 

Parameters

  

Parameter

 

Description

 

info

 

Pointer

 

to

 

structure

 

of

 

format:

  

typedef

 

struct

 

_log_info

 

{

     

int

 

fd;

                            

/*

 

File

 

descriptor

                   

*/

     

int

 

lockId;

                        

/*

 

ODM

 

Lock

 

id

                       

*/

     

dl_att

 

*dlAtt;

                     

/*

 

Pointer

 

to

 

log

 

attributes

         

*/

     

dl_einfo

 

*dlArray;

                 

/*

 

Pointer

 

to

 

log

 

array

              

*/

 

}

 

dl_info;

   

typedef

 

struct

 

_log_einfo

 

{

     

int

 

version;

                       

/*

 

Entry

 

Version

                     

*/

     

char

 

logType;

                      

/*

 

Log

 

Type

 

-

 

I,S,N,E,X

              

*/

     

unsigned

 

int

 

size;

                 

/*

 

Entry

 

Size

                        

*/

     

unsigned

 

int

 

offset;

               

/*

 

Offset

 

from

 

the

 

file’s

 

beginning

  

*/

 

}

 

dl_einfo;

   

typedef

 

struct

 

_log_att

 

{

     

int

 

version;

                       

/*

 

Version

                           

*/

     

unsigned

 

int

 

numEntries;

           

/*

 

number

 

of

 

log

 

entried

             

*/

     

unsigned

 

int

 

lastIndex;

            

/*

 

index

 

of

 

latest

 

entry

             

*/

     

unsigned

 

int

 

nextSeqNum;

           

/*

 

sequence

 

number

 

of

 

next

 

log

 

entry

 

*/

     

unsigned

 

int

 

maxLogSize;

           

/*

 

maximum

 

size

 

of

 

log

               

*/

     

unsigned

 

int

 

arrayOffset;

          

/*

 

array

 

offset

                      

*/

     

unsigned

 

int

 

wrapCount;

            

/*

 

number

 

of

 

times

 

file

 

has

 

wrapped

  

*/

 

}

 

dl_att;

   

Return

 

Value

 

Upon

 

successful

 

completion,

 

0

 

is

 

returned.

 

Otherwise,

 

a

 

value

 

of

 

-1

 

is

 

returned.

 

dlog_find_first

 

Purpose

 

Finds

 

the

 

first

 

diagnostic

 

log

 

entry

 

that

 

matches

 

the

 

specified

 

criteria.

 

Syntax

 

#include

                

<diag/diag_log.h>

   

int

 

dlog_find_first(dl_info

 

*dlogInfo,char

 

*criteria,dlSearch

 

*filter,dlEntry

 

**results)

 

Description

 

The

 

dlog_find_first

 

subroutine

 

finds

 

the

 

first

 

diagnostic

 

log

 

entry

 

that

 

matches

 

the

 

specified

 

criteria.

 

It

 

also

 

parses

 

the

 

search

 

criteria

 

and

 

uses

 

this

 

to

 

initialize

 

the

 

dlSearch

 

structure

 

for

 

subsequent

 

searches.

 

It

 

allocates

 

memory

 

for

 

the

 

matching

 

entry,

 

and

 

returns

 

the

 

array

 

index

 

of

 

the

 

matching

 

entry.

 

It

 

is

 

the

 

responsibility

 

of

 

the

 

calling

 

application

 

to

 

free

 

the

 

memory

 

allocated

 

for

 

dlEntry.

 

Parameters

  

Parameter

 

Description

 

dlogInfo

 

Pointer

 

to

 

log

 

information

 

in

 

dl_info

   

142

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Parameter

 

Description

 

criteria

 

search

 

criteria

 

consisting

 

of

 

any

 

of

 

the

 

following:

 

-d

  

device_name

 

-n

  

dlog_sequenceNumber

 

-L

  

deviceLocation

 

-t

  

entryType

 

-i

  

dlog_EntryIdentifier

 

-s

  

startTime

 

(format

 

MMddhhmmyy)

 

-e

  

endTime

 

(format

 

MMddhhmmyy)

 

filter

 

parsed

 

search

 

criteria

 

results

 

pointer

 

to

 

entry

 

matching

 

the

 

search

 

criteria

   

Call

 

this

 

function

 

before

 

calling

 

dlog_find_next.

 

Return

 

Value

 

Upon

 

successful

 

completion,

 

a

 

value

 

>=

 

0

 

is

 

returned.

 

Otherwise,

 

a

 

value

 

of

 

-1

 

is

 

returned.

 

dlog_find_next

 

Purpose

 

Finds

 

the

 

first

 

diagnostic

 

log

 

entry

 

that

 

matches

 

the

 

specified

 

criteria.

 

Syntax

 

#include

                

<diag/diag_log.h>

   

int

 

dlog_find_next(dl_info

 

*dlogInfo,int

 

index,dlSearch

 

*filter,dlEntry

 

**results)

 

Description

 

The

 

dlog_find_next

 

subroutine

 

finds

 

the

 

first

 

diagnostic

 

log

 

entry

 

that

 

matches

 

the

 

specified

 

search

 

filter.

 

It

 

allocates

 

memory

 

for

 

the

 

matching

 

entry,

 

and

 

returns

 

the

 

array

 

index

 

of

 

the

 

matching

 

entry.

 

It

 

is

 

the

 

responsibility

 

of

 

the

 

calling

 

application

 

to

 

free

 

the

 

memory

 

allocated

 

for

 

dlEntry.

 

Parameters

  

Parameter

 

Description

 

dlogInfo

 

Pointer

 

to

 

log

 

information

 

in

 

dl_info

 

index

 

Starting

 

index

 

filter

 

Parsed

 

search

 

criteria

 

results

 

Pointer

 

to

 

entry

 

matching

 

the

 

search

 

criteria

   

Call

 

this

 

function

 

after

 

calling

 

dlog_find_first.

 

Return

 

Value

 

Upon

 

successful

 

completion,

 

a

 

value

 

>=

 

0

 

is

 

returned.

 

Otherwise,

 

a

 

value

 

of

 

-1

 

is

 

returned.

 

dlog_find_sequence

 

Purpose

 

Finds

 

the

 

diagnostic

 

log

 

entry

 

that

 

has

 

the

 

specified

 

sequence

 

number.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

143



Syntax

 

#include

                

<diag/diag_log.h>

   

int

 

dlog_find_sequence(dl_info

 

*dlogInfo,uint

 

seq,dlEntry

 

**results)

 

Description

 

The

 

dlog_find_sequence

 

subroutine

 

finds

 

the

 

diagnostic

 

log

 

entry

 

with

 

a

 

specific

 

diagnostic

 

log

 

sequence

 

number.

 

The

 

matching

 

entry

 

will

 

be

 

in

 

results

 

and

 

its

 

index

 

in

 

the

 

log

 

array

 

will

 

be

 

returned.

 

It

 

is

 

the

 

responsibility

 

of

 

the

 

calling

 

application

 

to

 

free

 

the

 

memory

 

allocated

 

for

 

dlEntry.

 

The

 

results

 

variable

 

will

 

be

 

NULL

 

if

 

no

 

match

 

is

 

found.

 

Parameters

  

Parameter

 

Description

 

dlogInfo

 

Pointer

 

to

 

log

 

information

 

in

 

dl_info

 

seq

 

Sequence

 

number

 

results

 

Pointer

 

to

 

entry

 

with

 

the

 

specified

 

sequence

 

number

   

Return

 

Value

 

Upon

 

successful

 

completion,

 

a

 

value

 

>=

 

0

 

is

 

returned.

 

Otherwise,

 

a

 

value

 

of

 

-1

 

is

 

returned

 

and

 

results

 

will

 

be

 

NULL.

 

dlog_formatElogResults

 

Purpose

 

Returns

 

a

 

formatted

 

string

 

of

 

the

 

diagnostic

 

event

 

log

 

information.

 

Syntax

 

#include

                

<diag/diag_log.h>

   

char

 

*dlog_formatElogResults(dlEntry

 

*entry)

 

Description

 

The

 

dlog_formatElogResults

 

subroutine

 

formats

 

a

 

diagnostic

 

log

 

entry

 

for

 

display

 

in

 

the

 

error

 

log

 

with

 

the

 

errpt

 

command.

 

When

 

a

 

SRN

 

is

 

caused

 

by

 

an

 

entry

 

in

 

the

 

error

 

log,

 

the

 

error

 

log

 

is

 

updated

 

with

 

the

 

diagnostic

 

log

 

entry’s

 

sequence

 

number.

 

When

 

the

 

error

 

log

 

is

 

displayed

 

the

 

formatted

 

string

 

returned

 

from

 

this

 

subroutine

 

shows

 

the

 

diagnostic

 

log

 

information.

 

It

 

is

 

up

 

to

 

the

 

calling

 

application

 

to

 

free

 

the

 

memory

 

allocated

 

for

 

the

 

return

 

string.

 

The

 

return

 

string

 

will

 

look

 

like

 

the

 

following:

         

Diagnostic

 

Log

 

sequence

 

number:

 

sequence

 

number

         

Resource

 

tested:

      

resource

 

name

         

Resource

 

Description:

 

resource

 

description

         

Location:

             

resource

 

location

         

SRN:

   

SRN

         

Description:

  

Error

 

Description

         

Possible

 

FRUs:

 

List

 

of

 

possible

 

FRUs

 

Parameters

  

Parameter

 

Description

 

dlogEntry

 

Pointer

 

to

 

diagnostic

 

log

 

entry

   

Return

 

Value

 

Upon

 

successful

 

completion

 

a

 

NON-ZERO

 

pointer

 

is

 

returned.

 

Otherwise,

 

a

 

pointer

 

to

 

NULL

 

is

 

returned.

   

144

 

Understanding

 

the

 

Diagnostic

 

Subsystem



dlog_freeEntry

 

Purpose

 

Frees

 

memory

 

allocated

 

for

 

diagnostic

 

log

 

entry.

 

Syntax

 

#include

                

<diag/diag_log.h>

   

int

 

dlog_freeEntry(int

 

version,

 

void

 

*dlogEntry)

 

Description

 

The

 

dlog_freeEntry

 

subroutine

 

frees

 

all

 

the

 

memory

 

allocated

 

for

 

the

 

specified

 

entry.

 

The

 

version

 

determines

 

which

 

entry

 

structure

 

is

 

being

 

passed.

 

Parameters

  

Parameter

 

Description

 

version

 

Entry

 

version

 

(LATEST_ENTRY_VER

 

is

 

the

 

latest

 

version

 

that

 

corresponds

 

to

 

the

 

dlEntry

 

structure)

 

dlogEntry

 

Pointer

 

to

 

diagnostic

 

log

 

entry

   

Return

 

Value

 

Upon

 

successful

 

completion,

 

a

 

value

 

of

 

0

 

is

 

returned.

 

Otherwise,

 

a

 

value

 

of

 

-1

 

is

 

returned.

 

dlog_open

 

Purpose

 

Read

 

an

 

entry

 

from

 

the

 

Diagnostic

 

Event

 

Log

 

at

 

the

 

specified

 

offset.

 

Syntax

 

#include

                

<diag/diag_log.h>

   

int

 

dlog_open(char

 

*pathname,dl_info

 

**info)

 

Description

 

The

 

dlog_open

 

subroutine

 

opens

 

the

 

specified

 

log

 

file

 

for

 

reading.

 

If

 

the

 

pathname

 

is

 

NULL,

 

then

 

the

 

default

 

diagnostic

 

log

 

file

 

will

 

be

 

used.

 

This

 

subroutine

 

also

 

allocates

 

memory

 

for

 

the

 

dl_info

 

structure

 

and

 

initializes

 

the

 

structure.

 

Parameters

  

Parameter

 

Description

 

pathname

 

Name

 

of

 

log

 

to

 

open

 

(if

 

NULL,

 

the

 

default

 

log

 

is

 

used)

   

Chapter

 

3.

 

Diagnostic

 

Components

 

145



Parameter

 

Description

 

info

 

Pointer

 

to

 

structure

 

of

 

format:

  

typedef

 

struct

 

_log_info

 

{

     

int

 

fd;

                            

/*

 

File

 

descriptor

                   

*/

     

int

 

lockId;

                        

/*

 

ODM

 

Lock

 

id

                       

*/

     

dl_att

 

*dlAtt;

                     

/*

 

Pointer

 

to

 

log

 

attributes

         

*/

     

dl_einfo

 

*dlArray;

                 

/*

 

Pointer

 

to

 

log

 

array

              

*/

 

}

 

dl_info;

   

typedef

 

struct

 

_log_einfo

 

{

     

int

 

version;

                       

/*

 

Entry

 

Version

                     

*/

     

char

 

logType;

                      

/*

 

Log

 

Type

 

-

 

I,S,N,E,X

              

*/

     

unsigned

 

int

 

size;

                 

/*

 

Entry

 

Size

                        

*/

     

unsigned

 

int

 

offset;

               

/*

 

Offset

 

from

 

the

 

file’s

 

beginning

  

*/

 

}

 

dl_einfo;

   

typedef

 

struct

 

_log_att

 

{

     

int

 

version;

                       

/*

 

Version

                           

*/

     

unsigned

 

int

 

numEntries;

           

/*

 

number

 

of

 

log

 

entried

             

*/

     

unsigned

 

int

 

lastIndex;

            

/*

 

index

 

of

 

latest

 

entry

             

*/

     

unsigned

 

int

 

nextSeqNum;

           

/*

 

sequence

 

number

 

of

 

next

 

log

 

entry

 

*/

     

unsigned

 

int

 

maxLogSize;

           

/*

 

maximum

 

size

 

of

 

log

               

*/

     

unsigned

 

int

 

arrayOffset;

          

/*

 

array

 

offset

                      

*/

     

unsigned

 

int

 

wrapCount;

            

/*

 

number

 

of

 

times

 

file

 

has

 

wrapped

  

*/

 

}

 

dl_att;

   

Return

 

Value

 

Upon

 

successful

 

completion,

 

0

 

is

 

returned.

 

Otherwise,

 

a

 

value

 

of

 

-1

 

is

 

returned.

 

dlog_read

 

Purpose

 

Read

 

an

 

entry

 

from

 

the

 

Diagnostic

 

Event

 

Log

 

at

 

the

 

specified

 

offset.

 

Syntax

 

#include

                

<diag/diag_log.h>

   

dlEntry

 

*dlog_read(dl_info

 

*dlogInfo,int

 

index)

 

Description

 

The

 

dlog_read

 

subroutine

 

will

 

read

 

a

 

Diagnostic

 

Event

 

Log

 

entry

 

at

 

the

 

specified

 

offset,

 

which

 

is

 

determined

 

from

 

the

 

index.

 

It

 

will

 

return

 

a

 

pointer

 

to

 

a

 

structure

 

of

 

format:

 

typedef

 

struct

 

_logEntry

 

{

         

char

 

type;

                      

/*

 

Log

 

Type

 

*/

         

char

 

identifier[5];

             

/*

 

Diagnostic

 

Log

 

identifier

 

*/

         

unsigned

 

int

 

el_identifier;

     

/*

 

Error

 

log

 

identifier

 

*/

         

int

 

timestamp;

         

unsigned

 

int

 

seqNum;

            

/*

 

order

 

in

 

which

 

event

 

is

 

logged

 

*/

         

unsigned

 

int

 

el_seqNum;

         

/*

 

Error

 

log

 

sequence

 

number

 

*/

         

unsigned

 

int

    

session;

        

/*

 

Diag

 

Session’s

 

PID

 

*/

         

unsigned

 

int

    

testMode;

       

/*

 

Diagnostics

 

test

 

mode

 

-

 

hex

 

value*/

         

resource_t

 

*res_p;

              

/*

 

Resource

 

information

 

*/

         

int

 

resSize;

                    

/*

 

Size

 

of

 

resource

 

info

 

*/

         

void

 

*errorInfo;

                

/*

 

Error

 

information

 

*/

         

int

 

errorSize;

                  

/*

 

Size

 

of

 

error

 

info

 

*/

 

}

 

dlEntry;

 

typedef

 

struct

 

resource

 

{

     

char

 

name[NAME_SIZE];

     

int

 

locSize;

     

char

 

*location;

                    

/*

 

Logical

 

or

 

Physical

               

*/

  

146

 

Understanding

 

the

 

Diagnostic

 

Subsystem



short

 

set;

     

short

 

msg;

     

char

 

catName[NAME_SIZE];

 

}

 

resource_t;

 

Parameters

  

Parameter

 

Description

 

dlogInfo

 

Pointer

 

to

 

structure

 

of

 

format:

  

typedef

 

struct

 

_log_info

 

{

     

int

 

fd;

                            

/*

 

File

 

descriptor

                   

*/

     

int

 

lockId;

                        

/*

 

ODM

 

Lock

 

id

                       

*/

     

dl_att

 

*dlAtt;

                     

/*

 

Pointer

 

to

 

log

 

attributes

         

*/

     

dl_einfo

 

*dlArray;

                 

/*

 

Pointer

 

to

 

log

 

array

              

*/

 

}

 

dl_info;

   

typedef

 

struct

 

_log_einfo

 

{

     

int

 

version;

                       

/*

 

Entry

 

Version

                     

*/

     

char

 

logType;

                      

/*

 

Log

 

Type

 

-

 

I,S,N,E,X

              

*/

     

unsigned

 

int

 

size;

                 

/*

 

Entry

 

Size

                        

*/

     

unsigned

 

int

 

offset;

               

/*

 

Offset

 

from

 

the

 

file’s

 

beginning

  

*/

 

}

 

dl_einfo;

   

typedef

 

struct

 

_log_att

 

{

     

int

 

version;

                       

/*

 

Version

                           

*/

     

unsigned

 

int

 

numEntries;

           

/*

 

number

 

of

 

log

 

entried

             

*/

     

unsigned

 

int

 

lastIndex;

            

/*

 

index

 

of

 

latest

 

entry

             

*/

     

unsigned

 

int

 

nextSeqNum;

           

/*

 

sequence

 

number

 

of

 

next

 

log

 

entry

 

*/

     

unsigned

 

int

 

maxLogSize;

           

/*

 

maximum

 

size

 

of

 

log

               

*/

     

unsigned

 

int

 

arrayOffset;

          

/*

 

array

 

offset

                      

*/

     

unsigned

 

int

 

wrapCount;

            

/*

 

number

 

of

 

times

 

file

 

has

 

wrapped

  

*/

 

}

 

dl_att;

 

index

 

Index

 

into

 

Diagnostic

 

Event

 

log

 

array

 

for

 

specific

 

entry

   

Return

 

Value

 

Upon

 

successful

 

completion,

 

a

 

pointer

 

to

 

dlEntry

 

is

 

returned.

 

Otherwise,

 

a

 

value

 

of

 

NULL

 

is

 

returned.

 

dlog_same_elogId

 

Purpose

 

Determines

 

if

 

a

 

diagnostic

 

log

 

entry

 

has

 

a

 

specific

 

error

 

log

 

identifier.

 

Syntax

 

#include

                

<diag/diag_log.h>

   

int

 

dlog_same_elogId(dlEntry

 

*dlogEntry,uint

 

el_identifier)

 

Description

 

The

 

dlog_same_elogId

 

subroutine

 

determines

 

if

 

the

 

specified

 

entry

 

has

 

the

 

same

 

error

 

log

 

identifier

 

as

 

the

 

given

 

error

 

log

 

identifier.

 

Parameters

  

Parameter

 

Description

 

dlogEntry

 

Pointer

 

to

 

diagnostic

 

log

 

entry

 

el_identifier

 

Error

 

log

 

identifier

   

Return

 

Value

 

If

 

the

 

entry

 

has

 

the

 

same

 

error

 

log

 

identifier,

 

a

 

value

 

of

 

1

 

is

 

returned.

 

Otherwise,

 

a

 

value

 

of

 

0

 

is

 

returned.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

147



dlog_setEntryType

 

Purpose

 

Returns

 

the

 

entry

 

type

 

for

 

a

 

given

 

diagnostic

 

log

 

identifier.

 

Syntax

 

#include

                

<diag/diag_log.h>

 

int

 

dlog_setEntryType(char

 

*id)

 

Description

 

The

 

dlog_setEntryType

 

subroutine

 

returns

 

an

 

entry

 

type

 

for

 

the

 

specified

 

entry

 

identifier.

 

The

 

following

 

entry

 

types

 

are

 

defined:

  

Entry

 

Type

 

Description

 

INFO

 

Informational

 

Type

 

NTF

 

No

 

Trouble

 

Found

 

ERR

 

Error

 

SRN

 

Srn

 

Callout

 

EXER

 

Exerciser

 

Error

 

SA

 

Service

 

Aid

   

Parameters

  

Parameter

 

Description

 

id

 

entry

 

identifier

   

Return

 

Value

 

Upon

 

successful

 

completion,

 

the

 

entry

 

type

 

is

 

returned.

 

Otherwise,

 

a

 

value

 

of

 

-1

 

is

 

returned.

 

dlog_write

 

Purpose

 

Write

 

a

 

diagnostic

 

event

 

to

 

the

 

Diagnostic

 

Event

 

Log.

 

Syntax

 

#include

                

<diag/diag_log.h>

 

int

 

dlog_write(dlEntry

 

*entry)

 

Description

 

The

 

dlog_write

 

subroutine

 

writes

 

a

 

diagnostic

 

event

 

to

 

the

 

Diagnostic

 

Event

 

Log.

   

148

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Parameters

  

Parameter

 

Description

 

entry

 

Pointer

 

to

 

a

 

structure

 

of

 

type

 

dlEntry,

 

which

 

is

 

defined

 

as

 

follows:

  

typedef

 

struct

 

_logEntry

 

{

         

char

 

type;

                      

/*

 

Log

 

Type

 

*/

         

char

 

identifier[5];

             

/*

 

Diagnostic

 

log

 

identifier

 

*/

         

unsigned

 

int

 

el_identifier;

     

/*

 

Error

 

log

 

identifier

 

*/

         

int

 

timestamp;

         

unsigned

 

int

 

seqNum;

            

/*

 

order

 

in

 

which

 

event

 

is

 

logged

 

*/

         

unsigned

 

int

 

el_seqNum;

         

/*

 

Error

 

log

 

sequence

 

number

 

*/

         

unsigned

 

int

    

session;

        

/*

 

Diag

 

Session’s

 

PID

 

*/

         

unsigned

 

int

 

testMode;

          

/*

 

Diagnostics

 

test

 

mode

 

-

 

hex

 

value*/

         

resource_t

 

*res_p;

              

/*

 

Resource

 

information

 

*/

         

int

 

resSize;

                    

/*

 

Size

 

of

 

resource

 

info

 

*/

         

void

 

*errorInfo;

                

/*

 

Error

 

information

 

*/

         

int

 

errorSize;

                  

/*

 

Size

 

of

 

error

 

info

 

*/

 

}

 

dlEntry;

   

typedef

 

struct

 

resource

 

{

         

char

    

name[NAME_SIZE];

         

int

     

locSize;

         

char

   

*location;

         

short

   

set;

         

short

   

msg;

         

char

    

catName[NAME_SIZE];

 

}resource_t;

   

Return

 

Value

 

The

 

dlog_write

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Code

 

Description

 

0

 

Successful

 

-1

 

Unsuccessful

 

ERROR_FS

 

Indicates

 

the

 

/var

 

filesystem

 

is

 

full

   

save_davars_ela

 

Purpose

 

Formats

 

SRN

 

and

 

create

 

DAVars

 

object

 

with

 

error

 

log

 

information.

 

Syntax

 

#include

 

<diag/diag_log.h>

 

int

 

save_davars_ela(struct

 

fru_bucket

 

*frub,uint

 

el_seq,uint

 

el_id,uint

 

errorCode)

 

Description

 

The

 

save_davars_ela

 

subroutine

 

formats

 

the

 

SRN

 

if

 

the

 

errorCode

 

is

 

0,

 

and

 

create

 

a

 

DAVars

 

object

 

containing

 

the

 

error

 

log

 

information.

 

The

 

format

 

of

 

the

 

DAVars

 

object

 

is:

 

DAVars:

 

dname

 

=

 

ResourceName

 

vname

 

=

 

″ErrorLogSRN_or_ErrorCode″

 

vtype

 

=

 

0

 

vvalue

 

=

 

″ErrorlogIdentifier,ErrorlogSequenceNumber″

 

ivalue

 

=

 

0

 

An

 

example

 

of

 

a

 

DAVars

 

object

 

is:

   

Chapter

 

3.

 

Diagnostic

 

Components

 

149



DAVars:

 

dname

 

=

 

″hdisk0″

 

vname

 

=

 

″ErrorLog689-130″

 

vtype

 

=

 

0

 

vvalue

 

=

 

″1581762B,74″

 

ivalue

 

=

 

0

 

Parameters

  

Parameter

 

Description

 

*frub

 

Pointer

 

to

 

fru

 

bucket

 

el_seq

 

Error

 

log

 

sequence

 

number

 

el_id

 

Error

 

log

 

identifier

 

errorCode

 

Error

 

code

 

(if

 

0,

 

format

 

the

 

SRN)

   

Return

 

Value

 

The

 

subroutine

 

returns

 

a

 

value

 

of

 

0

 

on

 

success;

 

a

 

value

 

of

 

-1

 

on

 

failure.

 

save_davars_mgoal_ela

 

Purpose

 

Create

 

DAVars

 

object

 

with

 

error

 

log

 

information

 

for

 

a

 

menugoal.

 

Syntax

 

#include

 

<diag/diag_log.h>

 

int

 

save_davars_ela(char

 

*dname,uint

 

el_seq,uint

 

el_id,uint

 

menu_num)

 

Description

 

The

 

save_davars_mgoal_ela

 

subroutine

 

creates

 

a

 

DAVars

 

object

 

containing

 

the

 

error

 

log

 

information

 

for

 

a

 

menugoal.

 

The

 

format

 

of

 

the

 

DAVars

 

object

 

is:

 

DAVars:

 

dname

 

=

 

"ResourceName"

 

vname

 

=

 

"ErrorMenuMenugoalNumber"

 

vtype

 

=

 

0

 

vvalue

 

=

 

"ErrorlogIdentifier,ErrorlogSequenceNumber"

 

ivalue

 

=

 

0

 

An

 

example

 

of

 

a

 

DAVars

 

object

 

is:

 

dname

 

=

 

"sysplanar0"

 

vname

 

=

 

"ErrorMenu651202"

 

vtype

 

=

 

0

 

vvalue

 

=

 

"56CDC3C8,22"

 

ivalue

 

=

 

0

 

Parameters

  

Parameter

 

Description

 

*dname

 

String

 

containing

 

the

 

resource

 

name

 

that

 

created

 

the

 

menugoal.

 

el_seq

 

Error

 

log

 

sequence

 

number

 

el_id

 

Error

 

log

 

identifier

 

menu_num

 

Menugoal

 

number

   

Return

 

Value

 

The

 

subroutine

 

returns

 

a

 

value

 

of

 

0

 

on

 

success;

 

a

 

value

 

of

 

-1

 

on

 

failure.

   

150

 

Understanding

 

the

 

Diagnostic

 

Subsystem



copy_text

 

Purpose

 

Format

 

text

 

to

 

fit

 

on

 

line

 

with

 

a

 

length

 

of

 

74

 

Syntax

 

int

 

copy_text(

 

int

 

string_length,

 

char

 

*buffer,

 

char

 

*text

 

)

 

Description

 

The

 

copy_text

 

subroutine

 

will

 

take

 

the

 

text

 

string

 

and

 

add

 

\n

 

so

 

that

 

the

 

string

 

can

 

be

 

displayed

 

without

 

wrapping.

 

Parameters

  

Parameter

 

Description

 

string_length

 

Starting

 

column

 

for

 

the

 

formatted

 

string

 

buffer

 

Formatted

 

string

 

text

 

Unformatted

 

string

   

Return

 

Value

 

A

 

value

 

of

 

0

 

is

 

returned.

 

DA_SETRC_XXXXXX,

 

DA_CHECKRC_XXXXXX,

 

DA_EXIT

 

Purpose

 

Processes

 

Exit

 

Status

 

of

 

Diagnostic

 

Application

 

(DA).

 

Syntax

 

#include

   

<diag/diag_exit.h>

     

#define

 

DA_SETRC_STATUS(VAL)

     

da_exit_code.field.status

 

=

 

(VAL)

 

#define

 

DA_SETRC_USER(VAL)

       

da_exit_code.field.user

 

=

 

(VAL)

 

#define

 

DA_SETRC_ERROR(VAL)

      

da_exit_code.field.error

 

=

 

(VAL)

 

#define

 

DA_SETRC_TESTS(VAL)

      

da_exit_code.field.tests

 

=

 

(VAL)

 

#define

 

DA_SETRC_MORE(VAL)

       

da_exit_code.field.more

 

=

 

(VAL)

 

#define

 

DA_CHECKRC_STATUS()

      

da_exit_code.status

 

#define

 

DA_CHECKRC_USER()

        

da_exit_code.user

 

#define

 

DA_CHECKRC_ERROR()

       

da_exit_code.error

 

#define

 

DA_CHECKRC_TESTS()

       

da_exit_code.tests

 

#define

 

DA_CHECKRC_MORE()

        

da_exit_code.more

 

#define

 

DA_EXIT()

                

exit(*(

 

(char*)

 

&da_exit_code)

 

)

 

)

   

enum

 

diag_enum_status

 

{

        

DA_STATUS_GOOD,

 

/*

 

No

 

hardware

 

problems

 

were

 

found

 

*/

          

DA_STATUS_BAD,

 

/*

 

A

 

hardware

 

problem

 

was

 

found

 

*/

          

};

 

enum

 

diag_enum_user

 

{

        

DA_USER_NOKEY,

 

/*

 

No

 

special

 

function

 

keys

 

were

 

entered

 

*/

          

DA_USER_EXIT,

 

/*

 

The

 

user

 

entered

 

the

 

exit

 

key

 

*/

          

DA_USER_QUIT,

 

/*

 

The

 

user

 

entered

 

the

 

cancel

 

key

 

*/

    

Chapter

 

3.

 

Diagnostic

 

Components

 

151



};

 

enum

 

diag_enum_error

 

{

        

DA_ERROR_NONE,

 

/*

 

No

 

software

 

errors

 

were

 

encountered

 

*/

          

DA_ERROR_OPEN,

 

/*

 

The

 

Device

 

Driver

 

failed

 

to

 

open

 

*/

          

DA_ERROR_OTHER,

 

/*

 

Another

 

software

 

error

 

was

 

encountered

 

*/

          

};

 

enum

 

diag_enum_tests

 

{

        

DA_TEST_NOTEST,

 

/*

 

No

 

diagnostic

 

tests

 

were

 

run

 

*/

          

DA_TEST_FULL,

 

/*

 

The

 

full

 

tests

 

were

 

run

 

*/

          

DA_TEST_SHR,

 

/*

 

The

 

shared

 

tests

 

were

 

run

 

*/

          

DA_TEST_SUB,

 

/*

 

The

 

sub

 

tests

 

were

 

run

 

*/

          

};

 

enum

 

diag_enum_more

 

{

        

DA_MORE_NOCONT,

 

/*

 

The

 

problem

 

has

 

been

 

isolated.

 

*/

          

DA_MORE_CONT,

 

/*

 

The

 

parent

 

or

 

sibling

 

will

 

be

 

tested

 

next

 

*/

          

};

   

typedef

 

struct

 

{

       

unsigned

 

status

 

:

 

1;

 

/*

 

enum

 

diag_enum_status

 

*/

         

unsigned

 

user

   

:

 

2;

 

/*

 

enum

 

diag_enum_user

 

*/

         

unsigned

 

error

  

:

 

2;

 

/*

 

enum

 

diag_enum_error

 

*/

         

unsigned

 

tests

  

:

 

2;

 

/*

 

enum

 

diag_enum_tests

 

*/

         

unsigned

 

more

   

:

 

1;

 

/*

 

enum

 

diag_enum_more

 

*/

          

}

 

da_return_code_t;

 

extern

 

da_returncode_t

 

da_exit_code;

 

Description

 

The

 

DA_EXIT

 

macro

 

is

 

used

 

to

 

exit

 

a

 

DA.

 

To

 

set

 

a

 

value

 

other

 

than

 

the

 

default,

 

the

 

appropriate

 

DA_SETRC_XXXXX

 

macro

 

must

 

be

 

called.

 

To

 

check

 

the

 

current

 

value,

 

use

 

the

 

appropriate

 

DA_CHECKRC_XXXXXX

 

macro.

 

The

 

defaults

 

settings

 

are:

 

DA_STATUS_GOOD

 

DA_USER_NOKEY

 

DA_ERROR_NONE

   

152

 

Understanding

 

the

 

Diagnostic

 

Subsystem



DA_TEST_NOTEST

 

DA_MORE_NOCONT

 

Parameters

 

Takes

 

no

 

parameters.

 

Return

 

Value

 

There

 

is

 

no

 

return

 

code.

 

Structure

 

Deciphering

 

Following

 

is

 

a

 

easy

 

chart

 

to

 

use

 

to

 

deciphered

 

the

 

bit

 

positions:

 

Bit

 

position

   

|128

 

|

 

64

  

32

 

|

 

16

  

8

 

|

 

4

  

2

 

|

 

1

 

|

    

|

        

|

       

|

      

|

 

|

    

|

        

|

       

|

      

|

   

DA_MORE_NOCONT

 

0

 

|

    

|

        

|

       

|

      

|

   

DA_MORE_CONT

   

1

 

|

    

|

        

|

       

|

      

|___________________

 

|

    

|

        

|

       

|

          

DA_TEST_NOTEST

 

0

 

|

    

|

        

|

       

|

          

DA_TEST_FULL

   

1

 

|

    

|

        

|

       

|

          

DA_TEST_SUB

    

2

 

|

    

|

        

|

       

|

          

DA_TEST_SHR

    

3

 

|

    

|

        

|

       

|__________________________

 

|

    

|

        

|

                  

DA_ERROR_NONE

  

0

 

|

    

|

        

|

                  

DA_ERROR_OPEN

  

1

 

|

    

|

        

|

                  

DA_ERROR_OTHER

 

2

 

|

    

|

        

|__________________________________

 

|

    

|

                           

DA_USER_NOKEY

 

0

 

|

    

|

                           

DA_USER_EXIT

  

1

 

|

    

|

                           

DA_USER_QUIT

  

2

 

|

    

|___________________________________________

 

|

                                

DA_STATUS_GOOD

 

0

 

|

                                

DA_STATUS_BAD

  

1

 

|________________________________________________

 

diag_asl_beep

 

Purpose

 

Rings

 

the

 

bell.

 

Syntax

 

#include

     

<diag/diago.h>

   

long

  

diag_asl_beep

 

(

  

)

 

Description

 

The

 

diag_asl_beep

 

subroutine

 

is

 

used

 

to

 

ring

 

the

 

bell.

 

Can

 

be

 

used

 

to

 

indicate

 

that

 

input

 

is

 

not

 

valid.

 

Parameters

 

Takes

 

no

 

parameters.

 

Return

 

Value

 

Upon

 

successful

 

completion,

 

a

 

value

 

of

 

0

 

is

 

returned.

 

diag_asl_execute

 

Purpose

 

Executes

 

an

 

application.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

153



Syntax

 

#include

          

<diag/diago.h>

 

long

  

diag_asl_execute

 

(

 

command,

 

options,

 

exit_status

 

)

 

char

 

*command;

 

char

 

*options;

 

int

  

*exit_status;

 

Description

 

The

 

diag_asl_execute

 

subroutine

 

forks

 

and

 

executes

 

an

 

application

 

while

 

preserving

 

the

 

state

 

of

 

the

 

ASL

 

interface.

 

Parameters

  

Parameter

 

Description

 

command

 

Command

 

or

 

application

 

to

 

run.

 

options

 

Character

 

array,

 

starting

 

with

 

the

 

command,

 

followed

 

by

 

any

 

command

 

arguments,

 

ending

 

with

 

a

 

NULL.

 

exit_status

 

Exit

 

status

 

returned

 

from

 

the

 

command.

   

Return

 

Value

 

The

 

following

 

values

 

are

 

returned:

  

Return

 

Value

 

Description

 

0

 

Successful

 

return.

 

DIAG_ASL_FAIL

 

Error

 

occurred.

   

diag_checkstop_eed

 

Purpose

 

Collect

 

the

 

checkstop

 

Extended

 

Error

 

Data

 

into

 

a

 

file.

 

Syntax

 

char

 

*diag_checkstop_eed

 

(char

 

*dir)

 

Description

 

The

 

diag_checkstop_eed

 

subroutine

 

collects

 

Extended

 

Error

 

Data

 

into

 

a

 

file

 

in

 

the

 

directory

 

given

 

as

 

input.

 

The

 

Extended

 

Error

 

Data

 

file

 

is

 

the

 

output

 

of

 

the

 

snap

 

-C

 

command.

 

Parameters

  

Parameter

 

Description

 

dir

 

Absolute

 

path

 

of

 

the

 

directory

 

to

 

create

 

the

 

EED

 

file,

 

maximum

 

200

 

characters.

   

Return

 

Value

 

The

 

diag_checkstop_eed

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

NULL

 

If

 

error

 

creating

 

the

 

EED

 

file,

 

otherwise,

 

pointer

 

to

 

the

 

absolute

 

EED

 

file

 

name

 

that

 

will

 

be

 

in

 

the

 

form

 

of

 

dir/snapC.pax.Z,

 

where

 

dir

 

is

 

the

 

directory

 

passed

 

as

 

input.

   

diag_checkstop_event

 

Purpose

 

Determines

 

if

 

the

 

diagnostic

 

event

 

was

 

the

 

result

 

of

 

a

 

checkstop.

   

154

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Syntax

 

#include

 

<diag/diag_log.h>

 

int

 

diag_checkstop_event

 

(query_output

 

*entry,

                           

char

 

*cs_file,

                           

unsigned

 

int

 

*cs_file_ts)

 

Description

 

The

 

diag_checkstop_event

 

subroutine

 

will

 

determine

 

if

 

the

 

diagnostic

 

event

 

passed

 

as

 

input

 

was

 

caused

 

by

 

a

 

checkstop.

 

Since

 

multiple

 

errors

 

can

 

be

 

logged

 

following

 

a

 

checkstop,

 

the

 

checkstop

 

scan

 

file

 

name

 

and

 

timestamp

 

are

 

returned

 

to

 

the

 

calling

 

routine

 

for

 

managing

 

multiple

 

reporting

 

of

 

the

 

checkstop

 

event.

 

Parameters

  

Parameter

 

Description

 

entry

 

The

 

diagnostic

 

event

 

extracted

 

from

 

the

 

diagnostic

 

event

 

log.

 

cs_file

 

The

 

checkstop

 

scanout

 

file

 

name.

 

cs_file_ts

 

The

 

checkstop

 

scanout

 

integer

 

timestamp.

   

Return

 

Value

 

The

 

diag_checkstop_event

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

1

 

If

 

the

 

diagnostic

 

event

 

was

 

from

 

a

 

checkstop.

 

0

 

Otherwise

   

diag_cluster_support

 

()

 

Purpose

 

Determines

 

if

 

the

 

current

 

system

 

is

 

part

 

of

 

a

 

clustered

 

environment.

 

Syntax

 

int

 

diag_cluster_support()

 

Description

 

The

 

diag_cluster_support

 

()

 

routine

 

determines

 

if

 

the

 

cluster

 

support

 

software

 

is

 

installed

 

to

 

infer

 

whether

 

this

 

system

 

is

 

part

 

of

 

a

 

clustered

 

environment.

 

Parameters

 

None.

 

Return

 

Value

  

0

 

Cluster

 

support

 

is

 

not

 

installed.

 

1

 

Cluster

 

support

 

is

 

installed.

   

diag_cpu2proc

 

(int

 

n)

 

Purpose

 

Convert

 

logical

 

CPU

 

number

 

to

 

physical

 

processor

 

name.

 

Syntax

 

char

 

*diag_cpu2proc

 

(n)

   

int

 

n;

  

Chapter

 

3.

 

Diagnostic

 

Components

 

155



Description

 

The

 

diag_cpu2proc

 

routine

 

is

 

used

 

to

 

convert

 

a

 

logical

 

CPU

 

number

 

to

 

the

 

physical

 

processor

 

name

 

in

 

ODM

 

CuDv

 

class.

 

Note:

  

init_dgodm

 

must

 

be

 

called

 

before

 

starting

 

this

 

subroutine.

 

Parameters

  

Parameter

 

Description

 

n

 

Integer

 

that

 

is

 

the

 

logical

 

CPU

 

number

   

Return

 

Value

  

NULL

 

If

 

error

 

such

 

as

 

ODM

 

error,

 

or

 

invalid

 

logical

 

CPU

 

number.

 

procn

 

The

 

name

 

of

 

the

 

CuDv

 

object

 

for

 

the

 

physical

 

processor

   

diag_exec_source

 

Purpose

 

Returns

 

an

 

indication

 

of

 

where

 

diagnostics

 

is

 

being

 

run

 

from.

 

Syntax

 

int

 

diag_exec_source

 

(

 

mount_point

 

)

 

char

 

*mount_point;

 

Description

 

The

 

diag_exec_source

 

determines

 

where

 

the

 

diagnostics

 

program

 

is

 

run

 

from.

 

If

 

not

 

from

 

hard

 

file,

 

then

 

mount_point

 

contains

 

the

 

directory

 

where

 

the

 

file

 

system

 

resides

 

(CDRFS).

 

Parameters

  

Parameter

 

Description

 

mount_point

 

Character

 

pointer

 

to

 

directory

 

name

 

where

 

the

 

file

 

system

 

resides.

   

Return

 

Value

 

The

 

diag_exec_source

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

0

 

Running

 

from

 

hardfile.

 

1

 

Running

 

from

 

CD-ROM.

   

diag_execute

 

Purpose

 

Executes

 

an

 

application.

 

Does

 

not

 

depend

 

on

 

ASL

 

initialization.

 

Syntax

 

#include

    

<diag/diago.h>

   

long

  

diag_execute

 

(

 

command,

 

options,

 

exit_status

 

)

 

char

 

*command;

 

char

 

*options;>

 

int

  

*exit_status;

   

156

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Description

 

The

 

diag_asl_execute

 

subroutine

 

forks

 

and

 

executes

 

an

 

application.

 

This

 

subroutine

 

does

 

not

 

depend

 

on

 

ASL

 

initialization,

 

and

 

it

 

does

 

not

 

preserve

 

the

 

state

 

of

 

ASL.

 

Parameters

  

Parameter

 

Description

 

command

 

Command

 

or

 

application

 

to

 

run.

 

options

 

Character

 

array,

 

starting

 

with

 

the

 

command,

 

followed

 

by

 

any

 

command

 

arguments,

 

ending

 

with

 

a

 

NULL.

 

exit_status

 

Exit

 

status

 

returned

 

from

 

the

 

command.

   

Return

 

Value

 

The

 

following

 

values

 

are

 

returned:

  

Return

 

Value

 

Description

 

0

 

Successful

 

return.

 

-1

 

Error

 

occurred.

   

diag_general_eed

 

Purpose

 

Collects

 

the

 

general

 

Extended

 

Error

 

Data

 

into

 

a

 

file.

 

Syntax

 

char

 

*diag_general_eed

 

(char

 

*dir)

 

Description

 

The

 

diag_general_eed

 

subroutine

 

collects

 

Extended

 

Error

 

Data

 

into

 

a

 

file

 

in

 

the

 

directory

 

given

 

as

 

input.

 

The

 

Extended

 

Error

 

Data

 

file

 

is

 

the

 

output

 

of

 

the

 

snap

 

-H

 

command,

 

with

 

the

 

addition

 

of

 

the

 

output

 

from

 

the

 

diagrpt

 

-a

 

and

 

the

 

lsdev

 

-C

 

commands.

 

Additional

 

data

 

can

 

be

 

collected

 

and

 

gathered

 

in

 

the

 

EED

 

by

 

registering

 

a

 

collection

 

application

 

using

 

a

 

PDiagAtt

 

ODM

 

object

 

class

 

attribute

 

extend_gen_eed.

 

For

 

more

 

information,

 

refer

 

to

 

PDiagAtt.

 

Parameters

  

Parameter

 

Description

 

dir

 

Absolute

 

path

 

of

 

the

 

directory

 

to

 

create

 

the

 

EED

 

file,

 

maximum

 

200

 

characters.

   

Return

 

Value

 

The

 

diag_general_eed

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

NULL

 

If

 

error

 

creating

 

the

 

EED

 

file,

 

otherwise,

 

pointer

 

to

 

the

 

absolute

 

EED

 

file

 

name

 

that

 

will

 

be

 

in

 

the

 

form

 

of

 

dir/snapH.pax.Z,

 

where

 

dir

 

is

 

the

 

directory

 

passed

 

as

 

input.

   

diag_get_cluster_ms

 

()

 

Purpose

 

Retrieve

 

the

 

machine

 

serial

 

number

 

of

 

the

 

cluster.

 

Syntax

 

char

 

*diag_get_cluster_ms()

  

Chapter

 

3.

 

Diagnostic

 

Components

 

157



Description

 

The

 

diag_get_cluster_ms

 

()

 

routine

 

retrieves

 

the

 

machine

 

serial

 

number

 

of

 

the

 

cluster

 

by

 

executing

 

the

 

lscmtms

 

cluster

 

software

 

command.

 

The

 

results

 

are

 

parsed

 

and

 

the

 

machine

 

serial

 

number

 

is

 

returned.

 

Return

 

Value

  

NULL

 

The

 

machine

 

serial

 

number

 

is

 

not

 

available.

 

string

 

Value

 

of

 

the

 

machine

 

serial

 

number..

   

diag_get_cluster_mt

 

()

 

Purpose

 

Retrieves

 

the

 

machine

 

type/model

 

of

 

the

 

cluster.

 

Syntax

 

char

 

*diag_get_cluster_mt

 

()

 

Description

 

The

 

diag_get_cluster_mt

 

()

 

routine

 

retrieves

 

the

 

machine

 

type/model

 

of

 

the

 

cluster

 

by

 

executing

 

the

 

lscmtms

 

cluster

 

software

 

command.

 

The

 

results

 

are

 

parsed

 

and

 

the

 

machine

 

type/model

 

is

 

returned.

 

Parameters

 

None.

 

Return

 

Value

  

NULL

 

Machine

 

type/model

 

is

 

not

 

available.

 

string

 

Value

 

of

 

machine

 

type/model..

   

diag_get_fru_serial

 

Purpose

 

Gets

 

the

 

FRU

 

serial

 

number

 

from

 

the

 

given

 

FRU

 

location

 

code.

 

Syntax

 

int

 

diag_get_fru_serial

 

(char

 

*loc,

 

char

 

**fru_serial)

 

Description

 

The

 

diag_get_fru_serial

 

routine

 

attempts

 

to

 

retrieve

 

the

 

FRU

 

(field

 

replaceable

 

unit)

 

serial

 

number

 

for

 

a

 

given

 

physical

 

location

 

code.

Note:

  

The

 

calling

 

routine

 

must

 

initialize

 

and

 

stop

 

the

 

Object

 

Database

 

Manager

 

(ODM).

 

It

 

can

 

use

 

the

 

diagnostic

 

library

 

routines,

 

init_dgodm()

 

and

 

term_dgodm(),

 

respectively.

 

Parameters

  

Parameter

 

Description

 

loc

 

Physical

 

location

 

of

 

the

 

FRU

 

to

 

return

 

it’s

 

FRU

 

serial

 

number.

 

fru_serial

 

Returns

 

the

 

FRU

 

serial

 

number

 

if

 

found,

 

otherwise

 

is

 

set

 

to

 

NULL.

    

158

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Return

 

Value

 

The

 

diag_get_fru_serial

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

-1

 

If

 

there

 

was

 

an

 

error

 

retrieving

 

the

 

FRU

 

serial

 

number.

 

0

 

If

 

the

 

FRU

 

serial

 

number

 

is

 

not

 

found.

 

1

 

If

 

the

 

FRU

 

serial

 

number

 

was

 

found,

 

and

 

fru_serial

 

now

 

points

 

to

 

the

 

FRU

 

serial

 

number.

   

dt

 

Purpose

 

Writes

 

diagnostic

 

trace

 

information

 

to

 

a

 

file.

 

Syntax

 

#include

     

<diag/diag_trace.h>

   

void

 

dt

 

(

 

dt_id,

 

dt_type

 

[,val,

 

...])

 

char

 

*dt_id;

 

int

  

dt_type;

 

Description

 

The

 

dt

 

subroutine

 

allows

 

trace

 

information

 

to

 

be

 

written

 

to

 

a

 

file.

 

If

 

the

 

file

 

/tmp/.DIAG_TRACE

 

exists,

 

trace

 

information

 

is

 

written

 

to

 

a

 

file

 

specified

 

by

 

the

 

dt_id

 

argument.

 

The

 

default

 

is

 

to

 

overwrite

 

existing

 

trace

 

information.

 

To

 

append

 

to

 

the

 

trace

 

file,

 

export

 

DIAG_TRACE=APPEND.

 

Parameters

  

Parameter

 

Description

 

dt_id

 

Used

 

to

 

uniquely

 

identify

 

the

 

trace

 

file.

 

The

 

resulting

 

trace

 

file

 

will

 

be

 

called

 

.dt.’dt_id’

 

in

 

the

 

/tmp

 

directory.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

159



Parameter

 

Description

 

dt_type

 

The

 

type

 

of

 

trace

 

function

 

to

 

perform.

 

DT_TMI

 

Trace

 

initialization

 

for

 

Diagnostic

 

Applications

 

(DA).

 

Information

 

from

 

the

 

TMInput

 

structure

 

will

 

be

 

written

 

to

 

the

 

trace

 

file.

 

DT_BEGIN

 

Trace

 

initialization

 

for

 

Service

 

Aids

 

(SA).

 

DT_DEC

 

Trace

 

an

 

integer

 

variable

 

in

 

decimal.

 

DT_MDEC

 

Trace

 

multiple

 

integer

 

variables

 

in

 

decimal.

 

DT_HEX

 

Trace

 

an

 

integer

 

variable

 

in

 

hexadecimal.

 

DT_MHEX

 

Trace

 

multiple

 

integer

 

variables

 

in

 

hexadecimal.

 

DT_LDEC

 

Trace

 

a

 

long

 

integer

 

variable

 

in

 

decimal.

 

DT_MLDEC

 

Trace

 

multiple

 

long

 

integer

 

variables

 

in

 

decimal.

 

DT_LHEX

 

Trace

 

a

 

long

 

integer

 

variable

 

in

 

hexadecimal.

 

DT_MLHEX

 

Trace

 

multiple

 

long

 

integer

 

variables

 

in

 

hexadecimal.

 

DT_MSTR

 

Trace

 

multiple

 

string

 

variables.

 

DT_MSG

 

Trace

 

a

 

simple

 

message

 

such

 

as

 

″hello.″

 

DT_BUFF

 

Trace

 

a

 

data

 

buffer.

 

DT_SCSI_TUCB

 

Trace

 

SCSI

 

TUCB

 

structure

 

information.

 

DT_SCSI_TUCB_SD

 

Trace

 

SCSI

 

TUCB

 

Sense

 

Data

 

information.

 

DT_END

 

Write

 

″end

 

of

 

trace″

 

identifier

 

to

 

the

 

trace

 

file.

 

val

 

Variable

 

arguments

 

which

 

may

 

include

 

the

 

number

 

of

 

multiple

 

variables

 

to

 

trace,

 

the

 

trace

 

labels,

 

and

 

the

 

information

 

to

 

trace.

   

Return

 

Value

 

There

 

is

 

no

 

return

 

code.

 

error_log_get

 

Purpose

 

Returns

 

error-log

 

entries.

   

160

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Syntax

 

#include

     

<diag/diag.h>

   

int

  

error_log_get

 

(

 

option,

 

criteria,

 

err_data

 

)

 

int

 

option;

 

char

  

*criteria;

 

struct

 

errdata

 

*err_data;

 

Description

 

The

 

error_log_get

 

subroutine

 

allows

 

the

 

Diagnostic

 

Application

 

(DA)

 

to

 

query

 

the

 

error

 

log

 

for

 

entries.

 

Implementation

 

Specifics

 

The

 

NVRAMEL

 

option

 

is

 

only

 

supported

 

on

 

the

 

POWER-based

 

platform:

 

Parameters

  

Parameter

 

Description

 

option

 

Describes

 

the

 

operation

 

to

 

be

 

performed.

 

The

 

following

 

values

 

are

 

defined:

 

INIT

 

Initializes

 

error

 

log

 

retrieve.

 

SUBSEQ

 

Gets

 

next

 

error-log

 

entry.

 

TERMI

 

Ends

 

error

 

log

 

retrieve.

 

NVRAMEL

 

Use

 

the

 

NVRAM

 

error

 

log

 

as

 

the

 

source

 

for

 

the

 

error

 

log

 

retrieve.

 

Only

 

the

 

following

 

members

 

of

 

struct

 

errdata

 

are

 

available

 

when

 

the

 

error

 

log

 

is

 

obtained

 

from

 

NVRAM:

 

v

   

time_stamp

 

v

   

err_id

 

v

   

resource

 

v

   

detail_data_len

 

v

   

detail_data

Note:

 

This

 

option

 

is

 

only

 

supported

 

on

 

the

 

POWER-based

 

platform.

 

INIT_IGNORE_LRA

 

Intializes

 

error

 

log

 

retrieval

 

and

 

does

 

not

 

halt

 

when

 

a

 

REPLACED_FRU

 

entry

 

is

 

reached.

 

Also,

 

REPLACED_FRU

 

entries

 

can

 

be

 

returned

 

in

 

the

 

err_data

 

parameter.

 

SUBSEQ

 

calls

 

following

 

an

 

INIT_IGNORE_LRA

 

also

 

do

 

not

 

halt

 

when

 

a

 

REPLACED_FRU

 

entry

 

is

 

reached.

 

INIT_NEW_ONLY

 

Initializes

 

error

 

log

 

retrieval

 

and

 

returns

 

the

 

first

 

error

 

log

 

entry

 

matching

 

the

 

criteria

 

that

 

has

 

not

 

been

 

previously

 

analyzed

 

by

 

diagnostics.

 

SUBSEQ_NEW_ONLY

 

Gets

 

the

 

next

 

error

 

log

 

entry

 

matching

 

the

 

criteria

 

that

 

has

 

not

 

been

 

previously

 

analyzed

 

by

 

diagnostics.

 

criteria

 

Used

 

with

 

the

 

INIT

 

option

 

to

 

specify

 

which

 

device

 

to

 

obtain

 

the

 

error

 

log

 

data

 

for

 

and

 

how

 

far

 

back

 

to

 

search.

 

This

 

parameter

 

can

 

be

 

set

 

to

 

any

 

valid

 

option

 

used

 

by

 

the

 

errpt

 

command.

 

When

 

used

 

with

 

the

 

NVRAMEL

 

option,

 

this

 

can

 

be

 

either

 

a

 

list

 

of

 

resource

 

names

 

(with

 

the

 

-N

 

switch)

 

or

 

an

 

error

 

ID

 

(with

 

the

 

-j

 

switch),

 

but

 

not

 

both.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

161



Parameter

 

Description

 

struct

 

errdata

 

Data

 

type

 

that

 

contains

 

the

 

following

 

data

 

filled

 

in

 

for

 

use

 

by

 

the

 

DA.

 

struct

 

errdata

 

{

       

unsigned

   

sequence;

       

/*

 

sequence

 

number

 

of

 

entry

  

*/

       

unsigned

   

time_stamp;

     

/*

 

entry

 

time

 

stamp

  

*/

       

unsigned

   

err_id;

         

/*

 

error

 

ID

 

code

  

*/

       

char

       

*machine_id;

    

/*

 

machine

 

ID

  

*/

       

char

       

*node_id;

       

/*

 

node

  

*/

       

char

       

*class;

         

/*

 

H=hardware,

 

S=software

  

*/

       

char

       

*type;

          

/*

 

PERM,TEMP,PERF,PEND,UNKN

  

*/

       

char

       

*resource;

      

/*

 

Configured

 

device

 

name

  

*/

       

char

       

*vpd_data;

      

/*

 

VPD

 

info

  

*/

       

char

       

*conn_where;

    

/*

 

connwhere

 

field

 

of

 

CuDv

  

*/

       

char

       

*location;

      

/*

 

location

 

field

 

of

 

CuDv

  

*/

       

unsigned

 

detail_data_len;

  

/*

 

length

 

of

 

detail

 

data

  

*/

       

char

     

*detail_data;

     

/*

 

detail

 

data

  

*/

   

Return

 

Value

 

Return

 

values

 

are

 

dependent

 

on

 

the

 

option

 

performed:

  

Return

 

Value

 

Description

 

INIT

 

0

 

No

 

error

 

1

 

Error-log

 

entry

 

available

 

-1

 

Error

 

obtaining

 

data

 

SUBSEQ

 

0

 

No

 

more

 

entries

 

available

 

1

 

Error-log

 

entry

 

available

0:

 

TERMI

 

0

 

Terminate

 

successful

 

NVRAMEL

 

0

 

No

 

entries

 

matching

 

criteria

 

1

 

Error-log

 

entry

 

available

 

-1

 

Error

 

accessing

 

NVRAM

 

-2

 

Invalid

 

criteria

0:

 

INIT_IGNORE_LRA

 

0

 

No

 

Error

 

1

 

Error-log

 

entry

 

available

 

-1

 

Error

 

obtaining

 

data

 

INIT_NEW_ONLY

 

0

 

No

 

Error

 

1

 

Error-log

 

entry

 

available

 

and

 

no

 

previously

 

analyzed

 

entries

 

were

 

skipped.

 

2

 

Error-log

 

entry

 

available

 

and

 

at

 

least

 

one

 

previously

 

analyzed

 

entry

 

was

 

skipped.

 

SUBSEQ_NEW_ONLY

 

0

 

No

 

more

 

entries

 

available

 

1

 

Error-log

 

entry

 

available

 

and

 

no

 

previously

 

analyzed

 

entries

 

were

 

skipped.

 

2

 

Error-log

 

entry

 

available

 

and

 

at

 

least

 

one

 

previously

 

analyzed

 

entry

 

was

 

skipped.

    

162

 

Understanding

 

the

 

Diagnostic

 

Subsystem



file_present

 

Purpose

 

Returns

 

status

 

indicating

 

whether

 

the

 

file

 

is

 

present

 

on

 

the

 

file

 

system.

 

Syntax

 

int

  

file_present

 

(

 

filename

 

)

 

char

 

*filename;

 

Description

 

The

 

file_present

 

subroutine

 

determines

 

the

 

presence

 

of

 

a

 

file.

 

Parameters

  

Parameter

 

Description

 

filename

 

Character

 

pointer

 

to

 

full

 

path

 

name

 

of

 

file.

   

Return

 

Value

 

The

 

file_present

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

0

 

File

 

is

 

not

 

present.

 

1

 

File

 

is

 

present.

   

get_DApp

 

Purpose

 

Returns

 

the

 

DApp

 

value

 

associated

 

with

 

device

 

as

 

represented

 

in

 

the

 

PDiagAtt

 

object

 

class.

 

Syntax

 

char

 

*get_DApp

 

(

 

devicename,

 

attribute

 

)

 

char

 

*devicename;

 

char

 

*attribute;

 

Description

 

The

 

get_DApp

 

subroutine

 

returns

 

the

 

DApp

 

value

 

from

 

the

 

PDiagAtt

 

object

 

class

 

associated

 

with

 

the

 

given

 

device

 

and

 

attribute.

 

Search

 

criteria

 

is

 

in

 

the

 

following

 

order:

 

1.

   

DClass

 

and

 

DSClass

 

and

 

DType

 

and

 

attribute

 

2.

   

DClass

 

and

 

DSClass

 

and

 

attribute

 

3.

   

DClass

 

and

 

attribute

 

The

 

calling

 

application

 

is

 

responsible

 

for

 

freeing

 

the

 

storage

 

allocated

 

for

 

the

 

returned

 

value.

 

Parameters

  

Parameter

 

Description

 

devicename

 

Character

 

pointer

 

to

 

customized

 

name

 

of

 

device.

 

attribute

 

Character

 

pointer

 

to

 

attribute

 

associated

 

with

 

device.

   

Return

 

Value

 

The

 

get_DApp

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Parameter

 

Description

 

char

 

*

 

NULL

 

Device

 

and

 

attribute

 

is

 

not

 

found.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

163



Parameter

 

Description

 

char

 

*DApp

 

Pointer

 

to

 

char

 

string

 

containing

 

DApp

 

value.

   

getdainput,

 

clrdainput

 

Purpose

 

Gets

 

and

 

clears

 

the

 

input

 

for

 

the

 

Diagnostic

 

Application

 

(DA).

 

Syntax

 

#include

    

<diag/tm_input.h>

   

int

 

getdainput

 

(

 

tm_input

 

)

 

struct

 

tm_input

 

*tm_input;

   

int

 

clrdainput

 

(

 

)

 

Description

 

The

 

getdainput

 

subroutine

 

gets

 

the

 

input

 

for

 

the

 

DA

 

from

 

the

 

TMInput

 

object

 

class.

 

The

 

clrdainput

 

subroutine

 

clears

 

the

 

TMInput

 

object

 

class.

 

Parameters

  

Parameter

 

Description

 

tm_input

 

Pointer

 

to

 

the

 

structure

 

where

 

the

 

data

 

should

 

be

 

written.

   

Return

 

Value

 

Upon

 

successful

 

completion,

 

a

 

value

 

of

 

0

 

is

 

returned.

 

Otherwise,

 

a

 

value

 

of

 

-1

 

is

 

returned.

 

getdavar,

 

putdavar

 

Purpose

 

Gets

 

and

 

puts

 

persistent

 

variables.

 

Syntax

 

#include

    

<diag/diag.h>

   

int

 

getdavar

 

(

 

dname,

 

vname,

 

vtype,

 

val

 

)

 

char

  

*dname,

 

*vname,

 

*val;

 

unsigned

 

short

 

vtype;

   

int

 

putdavar

 

(

 

dname,

 

vname,

 

vtype,

 

val

 

)

 

char

  

*dname,

 

*vname,

 

*val;

 

unsigned

 

short

 

vtype;

 

Description

 

The

 

getdavar

 

subroutine

 

gets

 

the

 

persistent

 

variable

 

vname

 

from

 

the

 

Diagnostic

 

Application

 

Variables

 

object

 

class.

 

The

 

putdavar

 

subroutine

 

is

 

used

 

to

 

save

 

the

 

specified

 

value.

 

Parameters

  

Parameter

 

Description

 

dname

 

Name

 

of

 

the

 

device

 

with

 

which

 

the

 

variable

 

is

 

associated.

 

vname

 

Name

 

of

 

the

 

variable.

   

164

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Parameter

 

Description

 

vtype

 

Type

 

of

 

the

 

variable.

 

The

 

following

 

values

 

are

 

defined:

 

DIAG_STRING

 

The

 

variable

 

should

 

be

 

treated

 

as

 

a

 

character

 

string.

 

DIAG_INT

 

The

 

variable

 

should

 

be

 

treated

 

as

 

an

 

integer.

 

DIAG_SHORT

 

The

 

variable

 

should

 

be

 

treated

 

as

 

a

 

short.

 

val

 

Location

 

where

 

the

 

variable

 

should

 

be

 

written

 

when

 

the

 

subroutine

 

getdavar

 

is

 

called.

 

Otherwise,

 

val

 

points

 

to

 

the

 

value

 

to

 

be

 

saved.

   

Return

 

Value

 

Upon

 

successful

 

completion,

 

a

 

value

 

of

 

0

 

is

 

returned.

 

Otherwise,

 

a

 

value

 

of

 

-1

 

is

 

returned.

 

getELAdates

 

Purpose

 

Return

 

the

 

start

 

and

 

end

 

timestamp

 

for

 

retrieving

 

error

 

log

 

entries.

 

Syntax

 

char

 

*getELAdates

 

(

 

notRTOmode

 

)

 

int

 

notRTOmode;

 

Description

 

The

 

getELAdates

 

subroutine

 

formats

 

and

 

returns

 

a

 

string

 

containing

 

the

 

start

 

and

 

end

 

timestamp

 

that

 

should

 

be

 

used

 

for

 

error

 

log

 

analysis.

 

The

 

end

 

timestamp

 

is

 

the

 

current

 

date

 

and

 

time.

 

The

 

start

 

timestamp

 

is

 

created

 

using

 

either

 

the

 

value

 

specified

 

by

 

the

 

Customized

 

Diagnostic

 

Attribute

 

for

 

run

 

time

 

options,

 

or

 

the

 

value

 

passed

 

as

 

a

 

parameter.

 

The

 

string

 

returned

 

serves

 

the

 

same

 

purpose

 

as

 

the

 

date

 

parameter

 

of

 

the

 

TMInput

 

object

 

class.

 

Note:

  

init_dgodm

 

must

 

be

 

called

 

before

 

starting

 

this

 

subroutine.

 

Parameters

 

notRTOmode

 

Determines

 

how

 

the

 

run

 

time

 

option

 

value

 

for

 

the

 

number

 

of

 

ELA

 

days

 

is

 

used.

 

If

 

notRTOmode

 

is

 

0,

 

then

 

the

 

number

 

of

 

ELA

 

days

 

specified

 

by

 

the

 

Customized

 

Diagnostic

 

Attribute

 

for

 

run

 

time

 

options

 

is

 

used

 

to

 

create

 

the

 

start

 

timestamp.

 

If

 

notRTOmode

 

is

 

greater

 

than

 

0,

 

then

 

the

 

notRTOmode

 

value

 

is

 

used

 

as

 

the

 

number

 

of

 

ELA

 

days

 

when

 

creating

 

the

 

start

 

timestamp.

Return

 

Value

 

The

 

following

 

string

 

is

 

returned:

 

-s

 

MMddhhmmyy

 

-e

 

MMddhhmmyy

 

where:

 

dd

 

is

 

the

 

2-digit

 

value

 

for

 

day

 

hh

 

is

 

the

 

2-digit

 

value

 

for

 

the

 

hour

 

in

 

24-hour

 

format

 

mm

 

is

 

the

 

2-digit

 

value

 

for

 

minutes

 

yy

 

is

 

the

 

2-digit

 

value

 

for

 

year

  

Chapter

 

3.

 

Diagnostic

 

Components

 

165



has_diag_authority

 

Purpose

 

Checks

 

if

 

a

 

user

 

has

 

the

 

proper

 

authority

 

to

 

run

 

diagnostics.

 

Syntax

 

int

 

has_diag_authority

  

chk_shutdown;

 

Description

 

The

 

has_diag_authority

 

subroutine

 

checks

 

if

 

the

 

user

 

is

 

authorized

 

to

 

run

 

diagnostics.

 

Parameters

  

Parameter

 

Description

 

chk_shutdown

 

If

 

TRUE,

 

the

 

subroutine

 

checks

 

to

 

see

 

if

 

the

 

user

 

is

 

authorized

 

to

 

shut

 

down

 

the

 

system.

   

Return

 

Value

  

Return

 

Value

 

Description

 

0

 

User

 

is

 

not

 

authorized

 

to

 

run

 

diagnostics.

 

1

 

User

 

is

 

authorized

 

to

 

run

 

diagnostics.

   

ipl_mode

 

Purpose

 

Returns

 

the

 

state

 

of

 

the

 

diagnostic

 

IPL

 

mode.

 

Syntax

 

#include

    

<diag/diag.h>

   

int

 

ipl_mode

 

(

 

source

 

)

 

int

 

source;

 

Description

 

The

 

ipl_mode

 

subroutine

 

returns

 

the

 

state

 

of

 

the

 

diagnostic

 

IPL

 

mode,

 

and

 

the

 

IPL

 

source.

 

Parameters

  

Parameter

 

Description

 

source

 

Set

 

according

 

to

 

IPL

 

source:

 

If

 

the

 

value

 

of

 

the

 

environment

 

variable

 

DIAG_IPL_SOURCE

 

is

 

NULL

 

or

 

IPL_SOURCE_DISK

 

or

 

IPL_SOURCE_LAN,

 

then

 

the

 

value

 

of

 

source

 

will

 

be

 

set

 

to

 

DIAG_FALSE

 

(0).

 

If

 

the

 

value

 

of

 

the

 

environment

 

variable

 

DIAG_IPL_SOURCE

 

is

 

IPL_SOURCE_CDROM

 

or

 

IPL_SOURCE_TAPE,

 

then

 

the

 

value

 

of

 

source

 

will

 

be

 

set

 

to

 

DIAG_TRUE

 

(1).

   

Return

 

Value

 

The

 

ipl_mode

 

subroutine

 

returns

 

one

 

of

 

the

 

following

 

values:

  

Return

 

Value

 

Description

 

1

 

EXENV_IPL

 

Diagnostics

 

invoked

 

during

 

IPL

 

2

 

EXENV_STD

 

Standalone

 

Diagnostics,

 

Online

 

Service,

 

or

 

Online

 

Maintenance

 

4

 

EXENV_CONC

 

Online

 

Concurrent

 

Diagnostics

    

166

 

Understanding

 

the

 

Diagnostic

 

Subsystem



menugoal

 

Purpose

 

Concludes

 

a

 

Text

 

Goal.

 

Syntax

 

int

 

menugoal

 

(

 

msg

 

)

 

char

 

*msg;

 

Description

 

The

 

menugoal

 

subroutine

 

associates

 

a

 

menu

 

goal

 

with

 

the

 

device

 

being

 

tested.

 

The

 

TMInput

 

object

 

class

 

identifies

 

the

 

device

 

currently

 

being

 

tested.

 

Parameters

  

Parameter

 

Description

 

msg

 

Pointer

 

to

 

a

 

text

 

string

 

that

 

identifies

 

a

 

repair

 

action

 

intended

 

for

 

the

 

customer,

 

not

 

a

 

trained

 

service

 

representative.

 

The

 

msg

 

parameter

 

should

 

contain

 

a

 

six-digit

 

hex

 

number

 

(menu

 

number)

 

at

 

the

 

front

 

of

 

the

 

buffer,

 

followed

 

by

 

a

 

space,

 

and

 

then

 

the

 

title

 

line.

 

Everything

 

after

 

the

 

first

 

carriage

 

return

 

is

 

considered

 

menu

 

text.

   

Return

 

Value

 

Upon

 

successful

 

completion,

 

a

 

value

 

of

 

0

 

is

 

returned.

 

If

 

the

 

menugoal

 

subroutine

 

fails,

 

then

 

a

 

value

 

of

 

-1

 

is

 

returned.

 

schedule_ela

 

Purpose

 

Schedule

 

ELA

 

for

 

a

 

device.

 

Syntax

 

int

 

schedule_ela

 

(

 

device,

 

minutes

 

)

   

char

 

*device;

   

int

 

minutes;

 

Description

 

This

 

routine

 

is

 

used

 

to

 

schedule

 

Error

 

Log

 

Analysis

 

(ELA)

 

for

 

a

 

given

 

device.

 

Typically,

 

this

 

would

 

be

 

used

 

by

 

a

 

Diagnostic

 

Application

 

to

 

schedule

 

ELA

 

when

 

processing

 

indicates

 

that

 

an

 

error

 

log

 

entry

 

is

 

expected

 

and

 

necessary

 

for

 

completing

 

the

 

diagnostic

 

conclusion.

 

The

 

scheduled

 

time

 

is

 

the

 

current

 

time

 

plus

 

the

 

number

 

of

 

minutes

 

given

 

as

 

input.

 

The

 

number

 

of

 

minutes

 

is

 

limited

 

to

 

24

 

hours.

 

The

 

scheduled

 

ELA

 

event,

 

similar

 

to

 

using

 

the

 

diag

 

-c

 

-e

 

-d

 

device

 

command,

 

occurs

 

one

 

time

 

only.

 

Parameters

  

Parameter

 

Description

 

device

 

The

 

device

 

name

 

for

 

which

 

ELA

 

should

 

be

 

run.

 

Example:

 

sysplanar0

 

minutes

 

The

 

number

 

of

 

minutes

 

that

 

is

 

added

 

to

 

the

 

current

 

time

 

to

 

schedule

 

ELA

 

to

 

run.

 

Any

 

value

 

over

 

24

 

hours

 

is

 

truncated

 

to

 

a

 

value

 

less

 

than

 

24

 

hours.

 

Example:

 

24

 

hours

 

and

 

35

 

minutes

 

(1475

 

minutes)

 

is

 

truncated

 

to

 

35

 

minutes.

   

Return

 

Value

 

There

 

is

 

no

 

error

 

return.

 

Always

 

returns

 

0.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

167



Diagnostic

 

Object

 

Classes

 

The

 

Diagnostic

 

Package

 

contains

 

ODM

 

object

 

classes

 

that

 

are

 

used

 

extensively

 

by

 

the

 

Diagnostic

 

components.

 

Some

 

object

 

classes

 

store

 

’predefined’

 

diagnostic

 

information

 

about

 

the

 

system

 

and

 

resources.

 

Other

 

object

 

classes

 

store

 

’customized’

 

information

 

that

 

is

 

built

 

and

 

used

 

during

 

runtime

 

operation

 

of

 

diagnostics.

 

The

 

following

 

is

 

a

 

list

 

of

 

the

 

Diagnostic

 

ODM

 

object

 

classes:

 

v

   

PDiagRes

 

-

 

Predefined

 

Diagnostic

 

Resource

 

Object

 

Class

 

v

   

PDiagAtt

 

-

 

Predefined

 

Diagnostic

 

Attribute

 

Device

 

Object

 

Class

 

v

   

PDiagTask

 

-

 

Predefined

 

Diagnostic

 

Task

 

Object

 

Class

 

v

   

CDiagAtt

 

-

 

Customized

 

Diagnostic

 

Attribute

 

Object

 

Class

 

v

   

TMInput

 

-

 

Test

 

Mode

 

Input

 

Object

 

Class

 

v

   

MenuGoal

 

-

 

Menu

 

Goal

 

Object

 

Class

 

v

   

FRUB

 

-

 

Fru

 

Bucket

 

Object

 

Class

 

v

   

FRUs

 

-

 

Fru

 

Reporting

 

Object

 

Class

 

v

   

DAVars

 

-

 

Diagnostic

 

Application

 

Variables

 

Object

 

Class

 

v

   

PDiagDev

 

-

 

Predefined

 

Diagnostic

 

Devices

 

Object

 

Class

 

v

   

DSMOptions

 

-

 

Diagnostic

 

Supervisor

 

Menu

 

Options

 

Object

 

Class

Predefined

 

Diagnostic

 

Resource

 

Object

 

Class

 

The

 

Predefined

 

Diagnostic

 

Resource

 

object

 

class

 

(PDiagRes)

 

identifies

 

the

 

resources

 

supported

 

by

 

diagnostics

 

and

 

provides

 

additional

 

information

 

needed

 

to

 

test

 

the

 

resource.

 

The

 

PDiagRes

 

object

 

class

 

structure

 

is

 

defined

 

as:

 

class

 

PDiagRes

 

{

                     

char

 

Uniquetype[48];

                     

short

 

Ports;

                     

short

 

PSet;

                     

short

 

PreTest;

                     

char

 

AttUniquetype[48];

                     

short

 

SupTests;

                     

short

 

Menu;

                     

short

 

DNext;

                     

vchar

 

DaName[255];

                     

char

 

PkgBlock[5];

                     

vchar

 

EnclDaName[255];

                     

vchar

 

SysxApp[255];

                     

vchar

 

SupTasks[255];

                     

long

 

FFC;

                     

short

 

Fru;

                     

long

 

TestSuiteId;

                     

long

 

DiagEnvironment;

                     

vchar

 

KernExt[255];

                     

char

 

Version[5];

                     

};

  

Parmeter

 

Description

 

Uniquetype

 

Predefined

 

device

 

″class/subclass/type.″

   

168

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Parmeter

 

Description

 

Ports

 

Indicates

 

if

 

the

 

device

 

will

 

be

 

represented

 

in

 

the

 

Resource

 

Selection

 

menu

 

by

 

its

 

children.

 

The

 

intent

 

is

 

to

 

use

 

device

 

names

 

that

 

are

 

well

 

known

 

to

 

the

 

user

 

(for

 

example,

 

printers

 

rather

 

than

 

serial

 

ports).

 

The

 

values

 

are

 

as

 

follows:

 

DIAG_NO

 

(0)

 

Child

 

devices

 

should

 

not

 

be

 

defined.

 

DIAG_YES

 

(1)

 

Child

 

devices

 

should

 

be

 

defined.

When

 

determining

 

whether

 

a

 

child

 

device

 

should

 

be

 

defined,

 

consider

 

whether

 

the

 

device

 

is

 

self-determining.

 

Will

 

the

 

mkdev

 

command

 

be

 

unsuccessful

 

if

 

the

 

device

 

is

 

not

 

really

 

there?

 

PSet

 

Identifies

 

the

 

message

 

set

 

in

 

either

 

dcda.cat

 

or

 

the

 

diagnostic

 

application

 

catalog

 

file

 

reserved

 

for

 

the

 

device.

 

If

 

the

 

Ports

 

field

 

is

 

not

 

equal

 

to

 

0,

 

the

 

first

 

message

 

in

 

the

 

set

 

describes

 

the

 

adapter

 

port.

 

This

 

adapter

 

text

 

is

 

used

 

in

 

place

 

of

 

the

 

real

 

device

 

text

 

so

 

that

 

the

 

customers

 

are

 

not

 

misled

 

into

 

thinking

 

that

 

they

 

have

 

devices

 

that

 

are

 

not

 

actually

 

present.

 

The

 

additional

 

messages

 

are

 

used

 

for

 

reason-code

 

text,

 

which

 

the

 

DAs

 

name

 

when

 

reporting

 

FRUs.

 

The

 

diagnostic

 

application

 

catalog

 

file

 

should

 

be

 

used

 

by

 

all

 

diagnostic

 

applications

 

integrated

 

into

 

the

 

Diagnostic

 

Package.

 

This

 

capability

 

allows

 

for

 

greater

 

flexibility

 

in

 

installing

 

and

 

maintaining

 

the

 

diagnostic

 

code.

 

To

 

use

 

this

 

catalog

 

file,

 

set

 

bit

 

DIAG_DA_SRN

 

in

 

the

 

Menu

 

field.

 

PreTest

 

Indicates

 

that

 

the

 

device

 

should

 

be

 

tested

 

before

 

the

 

system

 

is

 

brought

 

up.

 

Pretest

 

occurs

 

when

 

the

 

system

 

is

 

initial-program

 

loaded

 

with

 

the

 

key

 

in

 

service

 

position.

 

The

 

keyboard

 

device,

 

native

 

serial

 

ports,

 

and

 

display

 

adapters

 

are

 

normally

 

pretested.

 

AttUniquetype

 

The

 

device

 

class/subclass/type

 

of

 

the

 

child

 

device

 

to

 

define

 

when

 

the

 

Ports

 

field

 

is

 

set.

 

The

 

device

 

named

 

should

 

include

 

a

 

set

 

of

 

device

 

drivers

 

that

 

contain

 

support

 

for

 

diagnostics.

 

SupTests

 

Identifies

 

the

 

types

 

of

 

tests

 

supported

 

by

 

the

 

DA.

 

See

 

Staging

 

the

 

Impact

 

of

 

Diagnostics

 

for

 

more

 

information.

 

More

 

than

 

one

 

of

 

the

 

following

 

types

 

may

 

be

 

specified:

 

SUPTESTS_SHR

 

(0x0001)

 

Shared

 

tests

 

are

 

supported.

 

SUPTESTS_SUB

 

(0x0002)

 

Sub-tests

 

are

 

supported.

 

SUPTESTS_FULL

 

(0x0004)

 

Full-tests

 

are

 

supported.

 

SUPTESTS_MS1

 

(0x0008)

 

An

 

optional

 

procedure

 

that

 

determines

 

why

 

the

 

device

 

was

 

not

 

detected.

 

This

 

procedure

 

is

 

typically

 

specified

 

for

 

devices

 

that

 

have

 

external

 

power

 

supplies.

 

This

 

procedure

 

is

 

associated

 

with

 

the

 

first

 

selection

 

at

 

the

 

Missing

 

Resource

 

menu.

 

SUPTESTS_MS2

 

(0x0010)

 

An

 

optional

 

procedure

 

that

 

performs

 

device-specific

 

actions

 

when

 

a

 

device

 

is

 

removed.

 

For

 

example,

 

the

 

DA

 

might

 

notify

 

a

 

subsystem

 

(LVM)

 

that

 

a

 

physical

 

resource

 

(disk)

 

has

 

been

 

removed.

 

Or

 

the

 

DA

 

might

 

provide

 

warning

 

about

 

deleting

 

a

 

device.

 

If

 

this

 

procedure

 

is

 

not

 

specified,

 

the

 

Diagnostic

 

Controller

 

deletes

 

the

 

device.

 

If

 

it

 

is

 

specified,

 

the

 

DA

 

should

 

delete

 

the

 

device.

 

Devices

 

are

 

deleted

 

by

 

calling

 

the

 

device’s

 

Undefine

 

Method.

 

This

 

procedure

 

is

 

associated

 

with

 

the

 

second

 

selection

 

at

 

the

 

Missing

 

Resource

 

menu.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

169



Parmeter

 

Description

 

Menu

 

Identifies

 

the

 

diagnostic

 

menus

 

in

 

which

 

the

 

device

 

should

 

be

 

included.

 

The

 

values

 

are

 

as

 

follows:

 

DIAG_DTL

 

(0x0001)

 

The

 

Diagnostic

 

Test

 

List

 

menu.

 

DIAG_NOTDLT

 

(0x0002)

 

Indicates

 

that

 

the

 

device

 

should

 

not

 

be

 

allowed

 

to

 

be

 

deleted

 

from

 

the

 

Diagnostic

 

Test

 

List

 

menu;

 

for

 

example,

 

the

 

VME

 

adapters

 

in

 

the

 

external

 

display

 

enclosure.

 

DIAG_DS

 

(0x0004)

 

Indicates

 

that

 

the

 

device

 

should

 

be

 

included

 

in

 

the

 

Diagnostic

 

Selection

 

menu.

 

DIAG_CON

 

(0x0008)

 

Indicates

 

that

 

the

 

device

 

should

 

be

 

put

 

in

 

the

 

Resource

 

Selection

 

menu

 

if

 

no

 

children

 

are

 

attached;

 

otherwise,

 

the

 

child

 

device

 

is

 

put

 

in

 

the

 

menu

 

and

 

the

 

named

 

device

 

is

 

not.

 

DIAG_DA_SRN

 

(0x0010)

 

Indicates

 

that

 

the

 

device’s

 

SRN

 

text

 

resides

 

in

 

the

 

diagnostic

 

applications

 

catalog

 

file.

 

DNext

 

Indicates

 

the

 

resource

 

to

 

be

 

tested

 

next.

 

The

 

values

 

are

 

as

 

follows:

 

DIAG_PAR

 

(0x0001)

 

The

 

parent

 

resource.

 

DIAG_SIB

 

(0x0002)

 

A

 

sibling

 

resource.

 

DaName

 

The

 

name

 

of

 

the

 

DA

 

associated

 

with

 

the

 

device.

 

PkgBlock

 

The

 

block

 

number

 

that

 

includes

 

the

 

DA

 

associated

 

with

 

the

 

device

 

for

 

the

 

Removable

 

Media

 

Diagnostic

 

package.

 

This

 

value

 

should

 

be

 

an

 

″S″

 

if

 

the

 

DA

 

is

 

on

 

a

 

Supplemental

 

Diskette,

 

or

 

a

 

″3S″

 

if

 

the

 

DA

 

is

 

a

 

graphics

 

adapter

 

that

 

can

 

be

 

used

 

as

 

a

 

console

 

device.

 

EnclDaName

 

This

 

field

 

names

 

a

 

DA

 

that

 

provides

 

missing-device

 

analysis

 

for

 

an

 

enclosure

 

that

 

is

 

not

 

explicitly

 

represented

 

in

 

the

 

device

 

configuration,

 

but

 

that

 

needs

 

to

 

be

 

processed

 

before

 

the

 

missing

 

device.

 

Many

 

enclosures

 

have

 

their

 

own

 

problem-determination

 

procedures

 

for

 

checking

 

cabling,

 

power,

 

idiot

 

lights,

 

and

 

so

 

on,

 

and

 

frequently,

 

it

 

is

 

helpful

 

to

 

know

 

if

 

a

 

sibling

 

of

 

the

 

missing

 

device

 

in

 

the

 

same

 

enclosure

 

is

 

available.

 

The

 

specification

 

of

 

a

 

separate

 

DA

 

to

 

missing-device

 

diagnostics

 

for

 

devices

 

not

 

represented

 

(for

 

example,

 

external

 

enclosures

 

or

 

drawers)

 

centralizes

 

this

 

logic

 

in

 

a

 

single

 

command

 

instead

 

of

 

distributing

 

it

 

among

 

each

 

DA

 

supporting

 

a

 

device

 

that

 

can

 

operate

 

in

 

a

 

bridge

 

box

 

or

 

drawer.

 

For

 

most

 

devices,

 

this

 

field

 

is

 

null.

 

The

 

Diagnostic

 

Controller

 

calls

 

the

 

EnclDaName

 

field,

 

if

 

the

 

user

 

indicates

 

that

 

the

 

device

 

has

 

not

 

been

 

moved

 

or

 

turned

 

off.

 

The

 

EnclDaName

 

field

 

is

 

called

 

before

 

DaName.

 

SysxApp

 

Identifies

 

the

 

application

 

to

 

invoke

 

that

 

performs

 

a

 

system

 

exerciser

 

function

 

for

 

this

 

resource.

 

While

 

not

 

currently

 

used,

 

this

 

is

 

a

 

reserved

 

field,

 

and

 

should

 

be

 

left

 

blank.

 

SupTasks

 

Reserved.

 

This

 

field

 

is

 

retained

 

for

 

compatibility

 

and

 

should

 

not

 

be

 

used.

 

For

 

more

 

information,

 

see

 

Predefined

 

Diagnostic

 

Attribute

 

Device.

 

FFC

 

Failing

 

Function

 

Code

 

for

 

the

 

resource.

 

(may

 

be

 

used

 

to

 

override

 

the

 

PdDv

 

led

 

value)

 

Fru

 

Field

 

Replaceable

 

Unit

 

indicator.

 

(may

 

be

 

used

 

to

 

override

 

the

 

PdDv

 

fru

 

value):

 

0

 

No-Fru

 

1

 

Self-FRU

 

2

 

Parent-FRU

 

3

 

Hybrid

 

-

 

Could

 

be

 

integrated

 

or

 

nonintegrated

 

device.

   

170

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Parmeter

 

Description

 

TestSuiteId

 

Bit

 

mask

 

indicating

 

test

 

suite

 

this

 

resource

 

is

 

a

 

member

 

of:

 

Bit

  

Resource

 

1

 

Base

 

system

 

(planars,

 

memory,

 

etc.)

 

2

 

I/O

 

Device

 

(keyboard,

 

mouse,

 

etc.)

 

4

  

Asynchronous

 

Device

 

8

 

Graphics

 

16

 

SCSI

 

Adapters

 

32

 

Storage

 

Device

 

(disks,

 

diskettes,

 

tapes,

 

etc.)

 

64

 

Commo

 

128

  

Multimedia

 

256

  

Miscellaneous

 

Devices

 

DiagEnvironment

 

Bit

 

mask

 

indicating

 

various

 

test

 

mode

 

environments

 

this

 

resource

 

is

 

capable

 

of

 

running

 

in:

 

Bit

  

Environment

 

1

 

Supports

 

Diagnostics

 

in

 

concurrent

 

mode

 

2

 

Supports

 

ELA

 

4

 

LFT

 

Device

 

(should

 

not

 

be

 

run

 

with

 

X)

 

8

 

Group

 

Member,

 

set

 

if

 

this

 

resource

 

is

 

part

 

of

 

a

 

conglomerate

 

group,

 

such

 

as

 

memory,

 

or

 

SIMMS.

 

16

 

Resource

 

supports

 

ELA

 

in

 

concurrent

 

mode

 

only

 

32

 

Resource

 

is

 

not

 

supported

 

under

 

WEBDIAG

 

mode.

 

1024

 

The

 

kernel

 

extensions

 

listed

 

in

 

KernExt

 

are

 

supported

 

on

 

the

 

64-bit

 

kernel.

 

KernExt

 

’,’

 

separated

 

list

 

of

 

kernel

 

extensions

 

to

 

load

 

for

 

this

 

resource.

 

Each

 

kernel

 

extension

 

may

 

be

 

preceded

 

by

 

a

 

platform

 

type

 

to

 

indicate

 

the

 

platform

 

that

 

the

 

kernel

 

extension

 

should

 

be

 

loaded

 

on.

 

For

 

example,

 

chrp:device_kext,

 

pdiagex

 

would

 

indicate

 

to

 

always

 

load

 

pdiagex,

 

and

 

to

 

conditionally

 

load

 

device_kext

 

only

 

on

 

a

 

’chrp’

 

platform.

 

The

 

platform

 

name

 

is

 

derived

 

as

 

the

 

output

 

from

 

the

 

bootinfo

 

-p

 

command.

 

Version

 

Version

 

change

 

number

 

for

 

this

 

resource

 

stanza.

 

This

 

value

 

should

 

be

 

1.0.

   

Note:

  

All

 

values

 

can

 

be

 

found

 

in

 

header

 

files

 

under

 

/usr/include/diag

 

directory.

 

Predefined

 

Diagnostic

 

Attribute

 

Device

 

Object

 

Class

 

The

 

Predefined

 

Diagnostic

 

Attribute

 

Device

 

object

 

class

 

(PDiagAtt)

 

contains

 

device-specific

 

attributes

 

for

 

the

 

DAs,

 

diagnostic

 

controller,

 

and

 

service

 

aids

 

to

 

use.

 

The

 

PDiagAtt

 

object

 

class

 

structure

 

is

 

defined

 

as:

 

class

 

PDiagAtt

 

{

                      

char

 

DClass[16];

                      

char

 

DSClass[16];

                      

char

 

DType[16];

                      

char

 

attribute[16];

                      

vchar

 

value[255];

                      

char

 

rep[8];

                      

vchar

 

DApp[255];

                      

};

   

Chapter

 

3.

 

Diagnostic

 

Components

 

171



Parmeter

 

Description

 

DClass

 

Predefined

 

device

 

class.

 

Devices

 

are

 

uniquely

 

identified

 

by

 

a

 

combination

 

of

 

DClass,

 

DSClass,

 

and

 

DType.

 

DSClass

 

Predefined

 

device

 

sub-class.

 

Devices

 

are

 

uniquely

 

identified

 

by

 

a

 

combination

 

of

 

of

 

DClass,

 

DSClass,

 

and

 

DType.

 

DType

 

Predefined

 

device

 

type.

 

attribute

 

16-byte

 

char

 

field.

 

The

 

attribute

 

value

 

used

 

by

 

service

 

aids

 

to

 

determine

 

test

 

mode

 

for

 

devices

 

is

 

test_mode.

 

Uses

 

value

 

field.

 

value

 

255-byte

 

variable

 

char

 

field.

 

rep

 

8-byte

 

char

 

field.

 

DApp

 

255-byte

 

variable

 

char

 

field.

   

Each

 

field

 

has

 

specific

 

meaning

 

to

 

each

 

application

 

that

 

utilizes

 

the

 

Predefined

 

Diagnostic

 

Attribute

 

Device

 

object

 

class

 

(PDiagAtt).

 

EXAMPLES:

 

v

   

To

 

specify

 

the

 

tasks

 

that

 

are

 

supported

 

by

 

a

 

resource,

 

create

 

a

 

PDiagAtt

 

stanza

 

for

 

the

 

resource,

 

indicating

 

the

 

supported

 

tasks

 

in

 

the

 

value

 

field.

 

PDiagAtt:

         

DClass

 

=

 

"disk"

         

DSClass

 

=

 

"scsi"

         

DType

 

=

 

""

         

attribute

 

=

 

"SupTasks"

         

value

 

=

 

"1,2,7,8,9,10,13,14,16,31,33"

         

rep

 

=

 

"s"

   

PDiagAtt:

         

DClass

 

=

 

"disk"

         

DSClass

 

=

 

"scsi"

         

DType

 

=

 

"355mb"

         

attribute

 

=

 

"SupTasks"

         

value

 

=

 

"1,2,7,8,9,10,13,14,31,33"

         

rep

 

=

 

"s"

 

The

 

search

 

order

 

performed

 

by

 

the

 

Controller

 

when

 

determining

 

the

 

tasks

 

a

 

resource

 

supports

 

is

 

as

 

follows:

 

DClass,

 

DSClass,

 

DType

 

DClass,

 

DSClass

 

DClass

 

In

 

the

 

above

 

example,

 

if

 

the

 

disk

 

type

 

is

 

355mb,

 

a

 

match

 

on

 

the

 

first

 

call

 

to

 

search

 

ODM

 

is

 

made;

 

if

 

not,

 

a

 

match

 

will

 

be

 

made

 

on

 

the

 

second

 

call.

 

Note:

  

The

 

355mb

 

does

 

not

 

have

 

task

 

id

 

16,

 

which

 

is

 

microcode

 

download.

 

v

   

To

 

specify

 

the

 

application

 

for

 

the

 

Diagnostic

 

Controller

 

to

 

execute

 

for

 

a

 

specific

 

resource

 

that

 

supports

 

a

 

task,

 

then

 

a

 

stanza

 

similar

 

to

 

the

 

following

 

is

 

needed.

 

This

 

example

 

tells

 

the

 

Controller

 

to

 

invoke

 

ufd

 

to

 

start

 

a

 

format

 

task

 

on

 

the

 

selected

 

resource

 

that

 

matches

 

the

 

diskette/siofd/fd

 

criteria.

 

PDiagAtt:

         

DClass

 

=

 

"diskette"

         

DSClass

 

=

 

"siofd"

         

DType

 

=

 

"fd"

         

attribute

 

=

 

"format"

         

value

 

=

 

""

         

rep

 

=

 

"s"

         

DApp

 

=

 

"ufd"

 

v

   

The

 

following

 

stanza

 

indicates

 

the

 

current

 

release

 

level

 

of

 

the

 

Diagnostic

 

Controller:

 

PDiagAtt:

         

DType

 

=

 

"Dctrl"

         

attribute

 

=

 

"version"

         

value

 

=

 

"4.3.4"

            

#This

 

is

 

the

 

diagnostic

  

172

 

Understanding

 

the

 

Diagnostic

 

Subsystem



#version

 

level

 

seen

 

on

                                  

#the

 

Operating

                                  

#Instructions

 

Menu.

         

rep

 

=

 

"s"

 

v

   

The

 

NoScreen

 

attribute

 

is

 

used

 

by

 

Display

 

Test

 

Pattern

 

Service

 

Aid

 

to

 

determine

 

when

 

a

 

graphics

 

adapter

 

specific

 

application

 

should

 

be

 

used

 

to

 

display

 

the

 

screens

 

for

 

the

 

service

 

aid.

 

PDiagAtt:

         

DType

 

=

 

"2b101a05"

         

DSClass

 

=

 

"pci"

         

attribute

 

=

 

"NoScreen"

         

value

 

=

 

"/usr/lpp/diagnostics/da/dsage

 

-P"

         

rep

 

=

 

"NotOpen"

         

DClass

 

=

 

"adapter"

         

DApp

 

=

 

"u5081"

 

The

 

service

 

aid

 

that

 

uses

 

this

 

stanza

 

is

 

/usr/lpp/diagnostics/bin/u5081.

 

The

 

command

 

that

 

is

 

built

 

and

 

executed

 

is:

  

/usr/lpp/diagnostics/da/dsage

 

<device

 

name>

 

-P

 

v

   

The

 

platform_task+

 

attribute

 

allows

 

third

 

parties

 

to

 

add

 

tasks

 

to

 

the

 

Task

 

List

 

based

 

on

 

the

 

hardware

 

platform.

 

The

 

DApp

 

field

 

specifies

 

the

 

platform

 

for

 

the

 

tasks

 

in

 

the

 

Task

 

List.

 

The

 

value

 

field

 

of

 

the

 

stanza

 

contains

 

a

 

comma

 

delimited

 

list

 

of

 

the

 

task

 

IDs

 

to

 

be

 

added.

 

PDiagAtt:

         

DType

 

=

 

""

         

DSClass

 

=

 

""

         

attribute

 

=

 

"platform_task+"

         

value

 

=

 

"101,102,110"

         

rep

 

=

 

""

         

DClass

 

=

 

""

         

DApp

 

=

 

"rspc"

 

In

 

the

 

example

 

above,

 

the

 

tasks

 

whose

 

IDs

 

are

 

101,

 

102

 

and

 

110

 

will

 

be

 

included

 

in

 

the

 

task

 

list

 

on

 

an

 

ISA-bus

 

based

 

platform.

 

Multiple

 

PDiagAtt

 

stanzas

 

with

 

the

 

platform_task+

 

attribute

 

are

 

allowed.

Note:

  

The

 

platform

 

value

 

for

 

the

 

DApp

 

field

 

is

 

the

 

string

 

obtained

 

by

 

using

 

the

 

bootinfo

 

-p

 

command.

 

v

   

To

 

register

 

external

 

notification

 

programs

 

with

 

the

 

Diagnostic

 

Controller:

 

1.

   

When

 

the

 

system

 

is

 

managed

 

by

 

a

 

Hardware

 

Management

 

Console.

 

PDiagAtt:

         

DType

 

=

 

<fileset

 

nickname>

         

DSClass

 

=

 

""

         

attribute

 

=

 

"notify_service"

         

value

 

=

 

""

         

rep

 

=

 

"s"

         

DClass

 

=

 

""

         

DApp

 

=

 

<complete

 

path

 

to

 

external

 

notification

 

program>

 

2.

   

When

 

the

 

system

 

is

 

not

 

managed

 

by

 

a

 

Hardware

 

Management

 

Console.

 

PDiagAtt:

         

DType

 

=

 

<fileset

 

nicknanme>

         

DSClass

 

=

 

""

         

attribute

 

=

 

"notify_extern"

         

value

 

=

 

""

         

rep

 

=

 

"s"

         

DClass

 

=

 

""

         

DApp

 

=

 

<complete

 

path

 

to

 

external

 

notification

 

program>

 

where

 

<fileset

 

nickname>

 

is

 

any

 

15

 

character

 

or

 

less

 

string

 

that

 

represents

 

which

 

fileset

 

ships

 

this

 

stanza.

 

For

 

example,

 

fileset

 

devices.chrp.base.diag

 

might

 

use

 

a

 

nickname

 

DevChrBasDiag.

 

The

 

application

 

named

 

in

 

DApp

 

will

 

be

 

executed

 

with

 

a

 

diagnostics

 

event

 

log

 

sequence

 

number,

 

or

 

a

 

list

 

of

 

sequence

 

numbers.

v

   

To

 

register

 

an

 

application

 

to

 

gather

 

additional

 

Extended

 

Error

 

Data

 

for

 

external

 

notification

 

programs:

   

Chapter

 

3.

 

Diagnostic

 

Components

 

173



PDiagAtt:

         

DType

 

=

 

<fileset

 

nicknanme>

         

DSClass

 

=

 

""

         

attribute

 

=

 

"extend_gen_eed"

         

value

 

=

 

""

         

rep

 

=

 

"s"

         

DClass

 

=

 

""

         

DApp

 

=

 

<complete

 

path

 

to

 

the

 

collection

 

application>

 

where

 

<fileset

 

nickname>

 

is

 

any

 

15

 

character

 

or

 

less

 

string

 

that

 

represents

 

which

 

fileset

 

ships

 

this

 

stanza.

 

For

 

example,

 

fileset

 

devices.chrp.base.diag

 

might

 

use

 

a

 

nickname

 

DevChrBasDiag.

 

The

 

application

 

named

 

in

 

DApp

 

will

 

be

 

executed

 

with

 

a

 

directory

 

name

 

as

 

an

 

argument.

 

The

 

application

 

should

 

put

 

the

 

collected

 

data

 

in

 

files

 

in

 

the

 

given

 

directory.

 

If

 

the

 

string

 

in

 

DApp

 

contains

 

-s,

 

then

 

the

 

application

 

will

 

be

 

executed

 

with

 

flags

 

-s

 

<error

 

log

 

sequence

 

number>

 

and

 

-d

 

<directory>.

Predefined

 

Diagnostic

 

Task

 

Object

 

Class

 

The

 

Predefined

 

Diagnostic

 

Task

 

object

 

class

 

(PDiagTask)

 

identifies

 

the

 

tasks

 

supported

 

by

 

diagnostics

 

and

 

provides

 

additional

 

information

 

needed

 

to

 

execute

 

the

 

task.

 

The

 

PDiagTask

 

object

 

class

 

structure

 

is:

 

class

 

PDiagTask

 

{

                      

long

 

TaskId;

                      

long

 

SetId;

                      

long

 

MsgId;

                      

long

 

Multisession;

                      

short

 

Order;

                      

long

 

ResourceFlag;

                      

long

 

DiagEnvironment;

                      

short

 

Builtin;

                      

vchar

 

Action[255];

                      

vchar

 

Catalog[255];

                      

vchar

 

KernExt[255];

                      

short

 

DescriptionSetId;

                      

short

 

DescriptionMsgId;

                      

char

 

PkgBlock[5];

                      

};

  

Parmeter

 

Description

 

TaskId

 

Unique

 

number

 

identifying

 

the

 

task.

 

SetId

 

Catalog

 

set

 

number

 

in

 

either

 

Dctrl.cat

 

for

 

the

 

’built-in’

 

tasks,

 

or

 

in

 

the

 

catalog

 

file

 

specified

 

for

 

this

 

task.

 

The

 

Setid

 

and

 

Msgid

 

are

 

used

 

to

 

display

 

the

 

task

 

description

 

on

 

the

 

Task

 

Selection

 

Menu.

 

MsgId

 

Catalog

 

message

 

number

 

in

 

either

 

Dctrl.cat

 

for

 

the

 

’built-in’

 

tasks,

 

or

 

in

 

the

 

catalog

 

file

 

specified

 

for

 

this

 

task.

 

The

 

Setid

 

and

 

Msgid

 

are

 

used

 

to

 

display

 

the

 

task

 

description

 

on

 

the

 

Task

 

Selection

 

Menu.

 

Multisession

 

Flag

 

indicating

 

whether

 

multiple

 

instances

 

of

 

this

 

task

 

can

 

be

 

run

 

simultaneously.

 

While

 

not

 

currently

 

used,

 

this

 

is

 

a

 

reserved

 

field,

 

and

 

should

 

be

 

left

 

blank.

 

0

 

No

 

1

 

Yes

 

Order

 

Order

 

to

 

display

 

the

 

tasks

 

in

 

the

 

Task

 

Selection

 

Menu.

 

Value

 

of

 

0

 

implies

 

no

 

order

 

required,

 

and

 

the

 

task

 

will

 

be

 

placed

 

at

 

the

 

end.

   

174

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Parmeter

 

Description

 

ResourceFlag

 

Flag

 

indicating

 

whether

 

the

 

Resource

 

Selection

 

menu

 

should

 

be

 

presented

 

after

 

the

 

task

 

has

 

been

 

selected.

 

If

 

a

 

resource

 

is

 

selected,

 

then

 

the

 

task

 

will

 

be

 

called

 

with

 

the

 

resource

 

name

 

as

 

a

 

command-line

 

argument

 

to

 

the

 

task.

 

If

 

this

 

value

 

is

 

0,

 

then

 

the

 

task

 

is

 

invoked

 

directly.

 

Bit

 

Task

 

1

 

Present

 

Resource

 

Selection

 

menu,

 

and

 

pass

 

in

 

selected

 

Resource

 

2

  

Present

 

Resource

 

Section

 

menu,

 

and

 

pass

 

in

 

selected

 

Resources

 

4

 

Present

 

Resource

 

Selection

 

menu,

 

and

 

pass

 

in

 

″ALL″

 

if

 

All

 

is

 

selected.

 

8

 

Rebuild

 

Resource

 

List

 

after

 

executing

 

Task

 

16

  

Search

 

PDiagAtt

 

for

 

DApp

 

associated

 

with

 

Task

 

32

 

Task

 

supports

 

No

 

Console

 

mode

 

64

 

Task

 

should

 

be

 

supported

 

by

 

all

 

resources.

 

DiagEnvironment

 

Bit

 

mask

 

indicating

 

various

 

test

 

mode

 

environments

 

this

 

task

 

is

 

capable

 

of

 

running

 

in.

 

Bit

 

Mode

 

1

 

Service

 

Mode

 

2

 

Hardfile

 

4

 

Multiple

 

Processor

 

Platform

 

Specific

 

8

 

ISA

 

Bus

 

Capability

 

16

 

RS6K

 

and

 

RS6KSMP

 

Platform

 

Specific

 

32

 

Removable

 

Standalone

 

Media

 

64

 

Hidden,

 

do

 

not

 

display

 

in

 

Task

 

Selection

 

List

 

128

  

CHRP

 

Platform

 

256

 

RSPC

 

Platform

 

512

 

Do

 

not

 

display

 

under

 

WEB

 

Diagnostics

 

1024

 

Task

 

and

 

the

 

kernel

 

extensions

 

listed

 

in

 

KernExt

 

are

 

supported

 

on

 

the

 

64-bit

 

kernel.

 

2048

 

The

 

task

 

should

 

be

 

queried

 

with

 

the

 

-S

 

flag

 

to

 

determine

 

if

 

it

 

is

 

supported.

 

Builtin

 

Built-in

 

task

 

(part

 

of

 

the

 

Controller).

 

Action

 

Basename

 

of

 

the

 

program

 

for

 

this

 

task.

 

If

 

no

 

path

 

given,

 

then

 

the

 

default

 

path

 

of

 

/usr/lpp/diagnostics/bin

 

is

 

used.

 

If

 

a

 

complete

 

path

 

is

 

given,

 

then

 

that

 

path

 

is

 

used.

 

Catalog

 

Catalog

 

file

 

for

 

this

 

task.

 

Catalog

 

files

 

containing

 

default

 

message

 

text

 

are

 

assumed

 

to

 

be

 

located

 

in

 

/usr/lpp/diagnostics/catalog/default

 

directory.

 

Translated

 

files

 

are

 

assumed

 

to

 

be

 

in

 

/usr/lib/nls/msg/$LANG

 

directories.

 

KernExt

 

’,’

 

separated

 

list

 

of

 

kernel

 

extensions

 

to

 

load

 

for

 

this

 

task.

 

DescriptionSetId

 

Catalog

 

set

 

number

 

of

 

the

 

help

 

message

 

text

 

in

 

either

 

Dctrl.cat

 

for

 

the

 

’built-in’

 

tasks,

 

or

 

in

 

the

 

catalog

 

file

 

specified

 

for

 

this

 

task.

 

The

 

DescriptionSetId

 

and

 

DescriptionMsgId

 

are

 

used

 

to

 

display

 

the

 

help

 

task

 

description

 

on

 

the

 

Task

 

Selection

 

Menu.

 

DescriptionMsgId

 

Catalog

 

message

 

number

 

of

 

the

 

help

 

message

 

text

 

in

 

either

 

Dctrl.cat

 

for

 

the

 

’built-in’

 

tasks,

 

or

 

in

 

the

 

catalog

 

file

 

specified

 

for

 

this

 

task.

 

The

 

DescriptionSetId

 

and

 

DescriptionMsgId

 

are

 

used

 

to

 

display

 

the

 

help

 

task

 

description

 

on

 

the

 

Task

 

Selection

 

Menu.

 

PkgBlock

 

Block

 

number

 

that

 

includes

 

the

 

task

 

on

 

the

 

Removable

 

Media

 

Diagnostic

 

package.

 

This

 

value

 

should

 

be

 

an

 

″S″

 

if

 

the

 

task

 

is

 

on

 

a

 

Supplemental

 

Media.

    

Chapter

 

3.

 

Diagnostic

 

Components

 

175



Customized

 

Diagnostic

 

Attribute

 

Object

 

Class

 

The

 

Customized

 

Diagnostic

 

Attribute

 

object

 

class

 

(CDiagAtt)

 

contains

 

customized

 

entries

 

for

 

selected

 

devices

 

found

 

in

 

the

 

current

 

configuration,

 

which

 

is

 

supported

 

by

 

diagnostics.

 

The

 

CDiagAtt

 

object

 

class

 

indicates

 

specialized

 

diagnostic

 

attribute

 

status

 

of

 

the

 

device.

 

It

 

is

 

used

 

to

 

maintain

 

diagnostic

 

information

 

about

 

devices

 

found

 

in

 

the

 

current

 

configuration

 

across

 

sessions.

 

The

 

CDiagAtt

 

object

 

class

 

structure

 

is

 

defined

 

as:

 

class

 

CDiagAtt

 

{

                      

char

 

name[16];

                      

char

 

attribute[16];

                      

vchar

 

value[255];

                      

char

 

type[8];

                      

char

 

rep[8];

                      

};

  

Parmeter

 

Description

 

name

 

Resource

 

name

 

as

 

specified

 

in

 

CuDv.

 

attribute

 

16-byte

 

char

 

field.

 

The

 

attribute

 

value

 

used

 

by

 

the

 

Controller

 

to

 

identify

 

persistent

 

state

 

data

 

for

 

the

 

device.

 

Uses

 

value

 

field.

 

value

 

255-byte

 

variable

 

char

 

field.

 

type

 

8-byte

 

char

 

field

 

specifying

 

data

 

type.

 

rep

 

8-byte

 

char

 

field.

   

Examples:

 

v

   

The

 

Diagnostic

 

Controller

 

creates

 

a

 

CDiagAtt

 

entry

 

for

 

each

 

device

 

that

 

is

 

tested

 

periodically

 

by

 

the

 

Diagnostic

 

daemon.

 

The

 

format

 

of

 

the

 

stanza

 

looks

 

like:

 

CDiagAtt:

     

name

 

=

 

"hdisk0"

                 

Resource

 

to

 

test

     

attribute

 

=

 

"p_test_time"

     

Attribute:

 

periodic-test-time

     

value

 

=

 

"0300"

                

Test

 

time

 

(

 

3AM

 

)

     

type

 

=

 

"T"

                    

Data

 

type

 

of

 

’text’

     

rep

 

=

 

"s"

                     

’String’

 

representation

   

CDiagAtt:

     

name

 

=

 

"ent0"

                          

Resource

 

name

     

attribute

 

=

 

"p_test_time"

     

value

 

=

 

"9999"

                          

Not

 

tested

  

indication

         

type

 

=

 

"T"

         

rep

 

=

 

"s"

 

v

   

The

 

Diagnostic

 

Controller

 

creates

 

a

 

CDiagAtt

 

entry

 

for

 

each

 

device

 

that

 

has

 

been

 

deleted

 

from

 

the

 

resource

 

list.

 

The

 

format

 

of

 

the

 

stanza

 

looks

 

like:

 

CDiagAtt:

     

name

 

=

 

"mem0"

                           

Resource

 

name

     

attribute

 

=

 

"not_in_tst_list"

    

Device

 

has

 

been

 

deleted

 

from

     

value

 

=

 

"1"

                           

the

 

Resource

 

List

     

type

 

=

 

"T"

     

rep

 

=

 

"n"

 

Test

 

Mode

 

Input

 

Object

 

Class

 

The

 

input

 

parameters

 

to

 

the

 

Diagnostic

 

Application

 

are

 

stored

 

in

 

the

 

TMInput

 

object

 

class.

 

The

 

subroutine

 

getdainput

 

should

 

be

 

used

 

to

 

retrieve

 

the

 

test

 

mode

 

input

 

data

 

values

 

from

 

this

 

object

 

class.

 

The

 

TMInput

 

object

 

class

 

structure

 

is

 

defined

 

as:

 

class

 

TMInput

 

{

                      

short

 

exenv;

                      

short

 

advanced;

                      

short

 

system;

  

176

 

Understanding

 

the

 

Diagnostic

 

Subsystem



short

 

dmode;

                      

char

 

date[80];

                      

short

 

loopmode;

                      

short

 

lcount;

                      

short

 

lerrors;

                      

short

 

console;

                      

char

 

parent[16];

                      

char

 

parentloc[16];

                      

char

 

dname[16];

                      

char

 

dnameloc[16];

                      

char

 

child1[16];

                      

short

 

state1;

                      

char

 

childloc1[16];

                      

char

 

child2[16];

                      

short

 

state2;

                      

char

 

childloc2[16];

                      

long

 

pid;

                      

short

 

cpuid;

                      

};

  

Parmeter

 

Description

 

exenv

 

The

 

execution

 

environment.

 

Possible

 

values

 

include

 

the

 

following:

 

EXENV_IPL

 

Diagnostics

 

is

 

being

 

run

 

in

 

pre-test

 

mode.

 

Tests

 

should

 

not

 

take

 

longer

 

than

 

one-minute.

 

EXENV_STD

 

Standalone

 

and

 

Online

 

Service

 

diagnostics.

 

The

 

Service

 

IPL

 

was

 

used

 

to

 

load

 

the

 

system.

 

This

 

can

 

be

 

accomplished

 

either

 

by

 

initial

 

program

 

loading

 

from

 

disk

 

or

 

removable

 

media.

 

This

 

mode

 

also

 

applies

 

if

 

the

 

normal

 

IPL

 

was

 

used

 

to

 

load

 

the

 

system

 

and

 

then

 

maintenance

 

mode

 

was

 

entered

 

by

 

issuing

 

the

 

command

 

shutdown

 

-m.

 

EXENV_CONC

 

Online

 

Concurrent

 

diagnostics.

 

The

 

Normal

 

IPL

 

was

 

used

 

to

 

load

 

the

 

system.

 

advanced

 

Derived

 

from

 

the

 

Function

 

Selection

 

menu.

 

Possible

 

values

 

include

 

the

 

following:

 

ADVANCED_TRUE

 

Advanced

 

Diagnostic

 

Routines,

 

which

 

are

 

run

 

by

 

a

 

trained

 

service

 

representative.

 

May

 

prompt

 

for

 

wrap

 

plugs,

 

etc.

 

ADVANCED_FALSE

 

Diagnostic

 

Routines,

 

which

 

are

 

run

 

by

 

the

 

customer.

 

system

 

Derived

 

from

 

the

 

Diagnostic

 

or

 

Resource

 

Selection

 

menu.

 

Possible

 

values

 

include

 

the

 

following;

 

SYSTEM_TRUE

 

System

 

Checkout

 

(All

 

Resources)

 

was

 

chosen.

 

The

 

DAs

 

perform

 

noninteractive

 

tests.

 

SYSTEM_FALSE

 

Option

 

Checkout

 

was

 

chosen.

 

The

 

DAs

 

perform

 

interactive

 

tests.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

177



Parmeter

 

Description

 

dmode

 

The

 

diagnostic

 

mode

 

indicates

 

the

 

type

 

of

 

analysis

 

that

 

should

 

be

 

undertaken.

 

Possible

 

values

 

include

 

the

 

following:

 

DMODE_ELA

 

Error-log

 

analysis.

 

No

 

diagnostic

 

tests

 

are

 

executed.

 

DMODE_MS1

 

This

 

procedure

 

is

 

started

 

because

 

the

 

user

 

indicated

 

that

 

the

 

named

 

device

 

was

 

not

 

removed,

 

moved,

 

or

 

turned

 

off.

 

This

 

procedure

 

should

 

determine

 

why

 

the

 

option

 

was

 

not

 

detected.

 

Generally,

 

this

 

type

 

of

 

analysis

 

involves

 

asking

 

the

 

user

 

to

 

check

 

cables,

 

power

 

supplies,

 

fans,

 

panel

 

lights,

 

and

 

so

 

on.

 

The

 

device

 

is

 

not

 

deleted

 

from

 

the

 

configuration.

 

DMODE_MS2

 

This

 

procedure

 

is

 

started

 

because

 

the

 

user

 

indicated

 

that

 

the

 

named

 

device

 

has

 

been

 

removed

 

from

 

the

 

system

 

and

 

should

 

be

 

removed

 

from

 

the

 

system

 

configuration.

 

This

 

procedure

 

should

 

perform

 

any

 

unique

 

″pseudo″

 

device

 

manipulation,

 

notification,

 

and

 

so

 

on.

 

For

 

example,

 

when

 

a

 

physical

 

disk

 

is

 

removed

 

from

 

the

 

system,

 

the

 

LVM

 

should

 

be

 

notified.

 

The

 

DA

 

is

 

responsible

 

for

 

deleting

 

the

 

device

 

from

 

the

 

configuration.

 

The

 

Device’s

 

Undefine

 

Method

 

is

 

provided

 

for

 

this

 

purpose.

 

DMODE_PD

 

Problem

 

determination,

 

including

 

error-log

 

analysis

 

and

 

diagnostics

 

tests.

 

DMODE_REMIND

 

Diagnostic

 

reminder,

 

which

 

defaults

 

to

 

running

 

once

 

a

 

week,

 

looks

 

for

 

deconfigured

 

resources

 

or

 

other

 

problems

 

that

 

have

 

been

 

previously

 

reported,

 

but

 

have

 

not

 

been

 

fixed.

 

DMODE_REPAIR

 

Repair

 

checkout,

 

which

 

includes

 

only

 

diagnostics

 

tests.

 

The

 

error

 

log

 

is

 

not

 

used

 

because

 

the

 

user

 

is

 

attempting

 

to

 

verify

 

new

 

hardware.

 

date

 

The

 

date

 

from

 

which

 

the

 

error

 

log

 

should

 

be

 

scanned.

 

For

 

the

 

syntax

 

used

 

to

 

describe

 

the

 

data,

 

see

 

the

 

date

 

command.

 

loopmode

 

The

 

maintenance

 

mode

 

and

 

service

 

mode

 

diagnostic

 

package

 

supports

 

loop

 

testing.

 

All

 

or

 

part

 

of

 

the

 

system

 

can

 

be

 

tested

 

multiple

 

times.

 

Possible

 

values

 

include

 

the

 

following:

 

LOOPMODE_NOTLM

 

Not

 

loop

 

mode.

 

The

 

default

 

value

 

for

 

concurrent

 

diagnostics.

 

LOOPMODE_ENTERLM

 

Entering

 

loop

 

mode.

 

The

 

DA

 

can

 

interact

 

with

 

the

 

user

 

to

 

set

 

up

 

a

 

test

 

or

 

to

 

isolate

 

a

 

problem.

 

The

 

next

 

time

 

the

 

DA

 

is

 

executed,

 

it

 

will

 

be

 

in

 

loop

 

mode.

 

LOOPMODE_INLM

 

In

 

loop

 

mode.

 

No

 

user

 

interaction

 

is

 

allowed.

 

The

 

DA

 

polls

 

the

 

keyboard.

 

The

 

tests

 

should

 

be

 

stopped

 

when

 

the

 

user

 

presses

 

Cancel.

 

LOOPMODE_EXITLM

 

The

 

system

 

is

 

restored

 

to

 

its

 

pretest

 

state.

 

The

 

DA

 

guides

 

the

 

user

 

in

 

the

 

restoration

 

of

 

the

 

system

 

to

 

its

 

pretest

 

state.

 

For

 

example,

 

wrap

 

plugs

 

are

 

removed

 

and

 

cables

 

are

 

replugged.

 

No

 

tests

 

are

 

executed.

 

lcount

 

Number

 

of

 

passes

 

in

 

loop

 

mode

 

that

 

have

 

been

 

completed.

 

lerrors

 

Number

 

of

 

errors

 

logged

 

while

 

in

 

loop

 

mode.

 

console

 

Diagnostic

 

Controller

 

queries

 

the

 

database

 

to

 

determine

 

if

 

the

 

default

 

console

 

has

 

been

 

configured.

 

Configuration

 

states

 

include:

 

CONSOLE_TRUE

 

A

 

console

 

is

 

available.

 

CONSOLE_FALSE

 

No

 

console

 

is

 

available,

 

or

 

no

 

console

 

output

 

is

 

desired.

 

The

 

LEDs

 

are

 

used

 

to

 

signal

 

an

 

error

 

(if

 

the

 

platform

 

supports

 

LEDs).

   

178

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Parmeter

 

Description

 

parent

 

Name

 

of

 

the

 

parent

 

of

 

dname.

 

parentloc

 

Location

 

of

 

parent.

 

Format

 

of

 

string

 

is

 

″00-00-00-00″.

 

dname

 

Name

 

of

 

the

 

device

 

to

 

be

 

tested.

 

dnameloc

 

Location

 

of

 

dname.

 

Format

 

of

 

string

 

is

 

″00-00-00-00″.

 

child1

 

Name

 

of

 

the

 

child

 

device

 

that

 

has

 

already

 

been

 

tested.

 

Relevant

 

for

 

Option

 

Checkout

 

only.

 

childloc1

 

Location

 

of

 

child1.

 

Format

 

of

 

string

 

is

 

″00-00-00-00″.

 

state1

 

State

 

associated

 

with

 

child1.

 

The

 

resource

 

states

 

include:

 

STATE_NOTEST

 

The

 

resource

 

has

 

not

 

been

 

tested.

 

STATE_GOOD

 

The

 

resource

 

passed

 

its

 

tests.

 

STATE_BAD

 

The

 

resource

 

failed

 

its

 

tests.

 

child2

 

Name

 

of

 

another

 

child

 

device

 

that

 

has

 

already

 

been

 

tested.

 

Relevant

 

for

 

Option

 

Checkout

 

only.

 

childloc2

 

Location

 

of

 

child2.

 

The

 

format

 

of

 

the

 

string

 

is

 

″00-00-00-00″.

 

state2

 

State

 

associated

 

with

 

child2.

 

The

 

resource

 

states

 

include:

 

STATE_NOTEST

 

The

 

resource

 

has

 

not

 

been

 

tested.

 

STATE_GOOD

 

The

 

resource

 

passed

 

its

 

tests.

 

STATE_BAD

 

The

 

resource

 

failed

 

its

 

tests.

 

pid

 

Process

 

ID

 

of

 

the

 

DA

 

when

 

started

 

from

 

the

 

Controller.

 

cpuid

 

Logical

 

processor

 

number

 

plus

 

one

 

which

 

the

 

DA

 

when

 

started

 

from

 

the

 

Controller

 

should

 

bind

 

itself

 

to.

 

While

 

not

 

currently

 

used,

 

this

 

is

 

a

 

reserved

 

field,

 

and

 

should

 

be

 

left

 

blank.

   

All

 

values

 

can

 

be

 

found

 

in

 

/usr/include/diag/tmdefs.h.

 

Menu

 

Goal

 

Object

 

Class

 

The

 

Menu

 

Goal

 

object

 

class

 

(MenuGoal)

 

is

 

used

 

to

 

store

 

additional

 

text

 

information

 

that

 

the

 

Diagnostic

 

Application

 

wants

 

to

 

pass

 

back

 

to

 

the

 

Diagnostic

 

Controller.

 

This

 

text

 

information

 

is

 

displayed

 

to

 

the

 

user.

 

This

 

information

 

is

 

usually

 

additional

 

information

 

that

 

would

 

be

 

useful

 

to

 

the

 

user

 

concerning

 

the

 

state

 

of

 

the

 

resource.

 

One

 

example

 

would

 

be

 

that

 

the

 

Tape

 

Drive

 

requires

 

cleaning.

 

All

 

applications

 

using

 

the

 

MenuGoal

 

capability

 

must

 

use

 

the

 

menugoal

 

diagnostic

 

library

 

subroutine.

 

The

 

MenuGoal

 

object

 

class

 

structure

 

is

 

defined

 

as:

 

class

 

MenuGoal

 

{

        

char

 

dname[16];

                     

longchar

 

tbuffer1[1000];

                     

longchar

 

tbuffer2[1000];

                     

};

  

Parmeter

 

Description

 

dname

 

Resource

 

name

 

as

 

specified

 

in

 

CuDV

 

tbuffer1

 

Buffer

 

used

 

to

 

store

 

1000

 

bytes

 

of

 

text

 

tbuffer2

 

Buffer

 

used

 

to

 

store

 

1000

 

bytes

 

of

 

text

    

Chapter

 

3.

 

Diagnostic

 

Components

 

179



FRU

 

Bucket

 

Object

 

Class

 

The

 

Fru

 

Bucket

 

Object

 

Class

 

(FRUB)

 

is

 

used

 

to

 

store

 

failing

 

replaceable

 

unit

 

information.

 

This

 

information

 

is

 

specified

 

by

 

the

 

Diagnostic

 

Application

 

and

 

passed

 

back

 

to

 

the

 

Diagnostic

 

Controller

 

after

 

an

 

error

 

has

 

been

 

detected.

 

All

 

applications

 

using

 

the

 

FRU

 

capability

 

must

 

use

 

the

 

addfrub

 

diagnostic

 

library

 

subroutine.

 

The

 

FRUB

 

object

 

class

 

structure

 

is

 

defined

 

as:

 

class

 

FRUB

 

{

                     

char

 

dname[16];

                     

short

 

ftype;

                     

short

 

sn;

                     

short

 

rcode;

                     

short

 

rmsg;

                     

char

 

timestamp[80];

                     

};

  

Parmeter

 

Description

 

dname

 

Names

 

the

 

device

 

under

 

test.

 

ftype

 

Indicates

 

the

 

type

 

of

 

FRU

 

Bucket

 

being

 

added

 

to

 

the

 

system.

 

The

 

following

 

values

 

are

 

defined:

 

FRUB1

 

The

 

FRUs

 

include

 

the

 

resource

 

that

 

failed,

 

its

 

parent,

 

and

 

any

 

cables

 

needed

 

to

 

attach

 

the

 

resource

 

to

 

its

 

parent.

 

FRUB2

 

This

 

FRU

 

Bucket

 

is

 

similar

 

to

 

FRU

 

Bucket

 

FRUB1,

 

but

 

does

 

not

 

include

 

the

 

parent

 

resource.

 

FRUB_ENCLDA

 

This

 

FRU

 

Bucket

 

is

 

used

 

for

 

missing

 

devices

 

in

 

the

 

I/O

 

enclosure(s).

 

sn

 

Source

 

number

 

of

 

the

 

failure.

 

rcode

 

Reason

 

code

 

associated

 

with

 

the

 

failure.

 

Note:

 

A

 

Service

 

Request

 

Number

 

is

 

formatted

 

as

 

follows:

 

SSS

 

-

 

RRR

 

where

 

SSS

 

is

 

the

 

sn

 

and

 

RRR

 

is

 

the

 

rcode.

 

Some

 

devices

 

may

 

use

 

a

 

different

 

nomenclature

 

for

 

their

 

service

 

request

 

numbers.

 

For

 

this

 

special

 

case,

 

the

 

sn

 

parameter

 

indicates

 

how

 

the

 

rcode

 

value

 

should

 

be

 

formatted.

 

If

 

sn

 

=

 

0,

 

then

 

rcode

 

is

 

interpreted

 

as

 

decimal.

 

If

 

sn

 

=

 

-1,

 

then

 

rcode

 

is

 

interpreted

 

as

 

a

 

4-digit

 

hexadecimal

 

number.

 

If

 

sn

 

=

 

-2,

 

then

 

the

 

object

 

class

 

DAVars

 

is

 

searched

 

for

 

an

 

attribute

 

of

 

Error_code.

 

This

 

allows

 

the

 

displaying

 

of

 

eight-digit

 

hex

 

error

 

codes.

 

The

 

diagnostic

 

application

 

is

 

responsible

 

for

 

setting

 

up

 

a

 

DAVars

 

object

 

similar

 

to

 

the

 

following:

 

DAVars:

 

dname:

 

<device

 

name

 

under

 

test>

 

vname:

 

Error_code

           

"Error_code

 

is

 

an

 

ascii

 

string"

 

vtype:

 

DIAG_STRING

          

"Literal

 

value"

 

val:

 

<8

 

digit

 

hex

 

character

 

string>

 

See

 

the

 

getdavar/putdavar

 

subroutine

 

for

 

more

 

information.

 

rmsg

 

Message

 

number

 

of

 

the

 

text

 

describing

 

the

 

reason

 

code.

 

The

 

set

 

number

 

of

 

the

 

text

 

is

 

predefined

 

by

 

the

 

PSet

 

field

 

in

 

the

 

Predefined

 

Diagnostic

 

Resources

 

object

 

class.

 

timestamp

 

Specifies

 

the

 

time

 

the

 

FRU

 

bucket

 

was

 

added.

    

180

 

Understanding

 

the

 

Diagnostic

 

Subsystem



FRU

 

Reporting

 

Object

 

Class

 

The

 

Fru

 

Reporting

 

Object

 

Class

 

(FRUs)

 

is

 

used

 

to

 

store

 

failing

 

replaceable

 

unit

 

information.

 

This

 

information

 

is

 

specified

 

by

 

the

 

Diagnostic

 

Application

 

and

 

passed

 

back

 

to

 

the

 

Diagnostic

 

Controller

 

after

 

an

 

error

 

has

 

been

 

detected.

 

All

 

applications

 

using

 

the

 

FRU

 

capability

 

must

 

use

 

the

 

addfrub

 

diagnostic

 

library

 

subroutine.

 

The

 

FRUs

 

object

 

class

 

structure

 

is

 

defined

 

as:

 

class

 

FRUs

 

{

                     

char

 

dname[16];

                     

char

 

fname[16];

                     

char

 

floc[16];

                     

short

 

ftype;

                     

short

 

fmsg;

                     

short

 

conf;

                     

};

  

Parmeter

 

Description

 

dname

 

Names

 

the

 

device

 

under

 

test.

 

fname

 

Names

 

the

 

FRU.

 

The

 

parameters

 

floc

 

and

 

fmsg

 

must

 

be

 

specified,

 

if

 

fname

 

is

 

not

 

represented

 

in

 

the

 

Customized

 

Devices

 

object

 

class.

 

Otherwise,

 

they

 

should

 

be

 

set

 

to

 

0.

 

floc

 

Location

 

icode

 

for

 

fname.

 

ftype

 

Indicates

 

the

 

type

 

of

 

FRU

 

Bucket

 

being

 

added

 

to

 

the

 

system.

 

The

 

following

 

values

 

are

 

defined:

 

FRUB1

 

The

 

FRUs

 

include

 

the

 

resource

 

that

 

failed,

 

its

 

parent,

 

and

 

any

 

cables

 

needed

 

to

 

attach

 

the

 

resource

 

to

 

its

 

parent.

 

FRUB2

 

This

 

FRU

 

Bucket

 

is

 

similar

 

to

 

FRU

 

Bucket

 

FRUB1,

 

but

 

does

 

not

 

include

 

the

 

parent

 

resource.

 

FRUB_ENCLDA

 

This

 

FRU

 

Bucket

 

is

 

used

 

for

 

missing

 

devices

 

in

 

the

 

I/O

 

enclosure(s).

 

fmsg

 

Message

 

number

 

of

 

the

 

text

 

describing

 

fname.

 

The

 

set

 

number

 

is

 

predefined

 

by

 

the

 

PSet

 

descriptor

 

in

 

the

 

Predefined

 

Diagnostic

 

Resources

 

object

 

class.

 

conf

 

Indicates

 

whether

 

an

 

FRU

 

is

 

valid.

 

A

 

value

 

of

 

0

 

indicates

 

an

 

invalid

 

FRU.

 

No

 

other

 

FRUs

 

are

 

displayed

 

once

 

an

 

invalid

 

FRU

 

is

 

found

 

in

 

the

 

FRU

 

bucket.

 

However,

 

if

 

fname

 

contains

 

the

 

string

 

REF-CODE,

 

then

 

the

 

fmsg

 

and

 

conf

 

values

 

are

 

used

 

to

 

make

 

the

 

8-digit

 

ref

 

code.

 

For

 

AIX

 

4.3.2

 

and

 

earlier

 

versions,

 

this

 

field

 

indicates

 

the

 

probability

 

of

 

failure

 

associated

 

with

 

the

 

named

 

FRU.

   

Diagnostic

 

Application

 

Variables

 

Object

 

Class

 

The

 

Diagnostic

 

Application

 

Variables

 

Object

 

Class

 

(DAVars)

 

is

 

used

 

to

 

store

 

run

 

time

 

information

 

needed

 

by

 

the

 

Diagnostic

 

Application.

 

This

 

object

 

class

 

is

 

used

 

to

 

store

 

state

 

variables

 

to

 

support

 

Loop

 

Testing.

 

All

 

applications

 

using

 

the

 

DAVars

 

capability

 

must

 

use

 

the

 

getdavar/putdavar

 

diagnostic

 

library

 

subroutine.

 

The

 

DAVars

 

object

 

class

 

structure

 

is

 

defined

 

as:

 

class

 

DAVars

 

{

                     

char

 

dname[16];

                     

char

 

vname[30];

                     

short

 

vtype;

                     

char

 

vvalue[30];

                     

long

 

ivalue;

                     

};

   

Chapter

 

3.

 

Diagnostic

 

Components

 

181



Parmeter

 

Description

 

dname

 

Name

 

of

 

the

 

device

 

with

 

which

 

the

 

variable

 

is

 

associated.

 

vname

 

Name

 

of

 

the

 

variable.

 

vtype

 

Type

 

of

 

the

 

variable.

 

The

 

following

 

values

 

are

 

defined:

 

DIAG_STRING

 

The

 

variable

 

should

 

be

 

treated

 

as

 

a

 

character

 

string.

 

DIAG_INT

 

The

 

variable

 

should

 

be

 

treated

 

as

 

an

 

integer.

 

DIAG_SHORT

 

The

 

variable

 

should

 

be

 

treated

 

as

 

a

 

short.

 

vvalue

 

Stores

 

character

 

string

 

variable.

 

ivalue

 

Stores

 

integer

 

or

 

short

 

value

 

of

 

variable.

   

Predefined

 

Diagnostic

 

Devices

 

Object

 

Class

 

The

 

Predefined

 

Diagnostic

 

Devices

 

object

 

class

 

(PDiagDev)

 

identifies

 

the

 

resources

 

supported

 

by

 

AIX

 

4.1

 

diagnostics

 

and

 

provides

 

additional

 

information

 

needed

 

to

 

test

 

the

 

resource.

 

This

 

object

 

class

 

is

 

recognized

 

by

 

the

 

operating

 

system

 

for

 

backlevel

 

compatibility

 

purposes.

 

For

 

development

 

purposes,

 

use

 

PDiagRes

 

instead.

 

The

 

PDiagDev

 

object

 

class

 

structure

 

is

 

defined

 

as:

 

class

 

PDiagDev

 

{

                     

char

 

DType[16];

                     

char

 

DSClass[16];

                     

short

 

Ports;

                     

short

 

PSet;

                     

short

 

PreTest;

                     

char

 

AttDType[16];

                     

char

 

AttSClass[16];

                     

short

 

Conc;

                     

short

 

SupTests;

                     

short

 

Menu;

                     

short

 

DNext;

                     

vchar

 

DaName[255];

                     

char

  

Diskette[5];

                     

vchar

 

EnclDaName[255];

                     

short

 

Sysxflg;

                     

char

 

DClass[16];

                     

};

  

Parmeter

 

Description

 

DType

 

Predefined

 

device

 

type.

 

DSClass

 

Predefined

 

device

 

subclass.

 

DClass

 

Predefined

 

device

 

class.

 

Ports

 

Same

 

definition

 

as

 

PDiagRes->Ports.

 

PSet

 

Same

 

definition

 

as

 

PDiagRes->PSet.

 

PreTest

 

Same

 

definition

 

as

 

PDiagRes->PreTest.

 

AttDType

 

Device

 

predefined

 

type

 

of

 

the

 

child

 

device

 

to

 

define

 

when

 

the

 

Ports

 

field

 

is

 

set.

 

The

 

device

 

named

 

should

 

include

 

a

 

set

 

of

 

device

 

drivers

 

that

 

contain

 

support

 

for

 

diagnostics.

 

AttSClass

 

Device

 

subclass

 

of

 

the

 

child

 

device

 

to

 

define

 

when

 

the

 

Ports

 

field

 

is

 

set.

 

Conc

 

Indicates

 

if

 

the

 

device

 

is

 

supported

 

in

 

multiuser

 

mode.

 

The

 

values

 

are

 

as

 

follows:

 

DIAG_YES

 

The

 

device

 

is

 

supported

 

in

 

multiuser

 

mode.

 

DIAG_NO

 

The

 

device

 

is

 

not

 

supported

 

in

 

multiuser

 

mode.

   

182

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Parmeter

 

Description

 

SupTests

 

Identifies

 

the

 

types

 

of

 

tests

 

supported

 

by

 

the

 

DA.

 

More

 

than

 

one

 

of

 

the

 

following

 

types

 

may

 

be

 

specified:

 

SUPTESTS_SHR

 

(0x0001)

 

Shared

 

tests

 

are

 

supported.

 

SUPTESTS_SUB

 

(0x0002)

 

Sub-tests

 

are

 

supported.

 

SUPTESTS_FULL

 

(0x0004)

 

Full-tests

 

are

 

supported.

 

SUPTESTS_MS1

 

(0x0008)

 

An

 

optional

 

procedure

 

that

 

determines

 

why

 

the

 

device

 

was

 

not

 

detected.

 

This

 

procedure

 

is

 

typically

 

specified

 

for

 

devices

 

that

 

have

 

external

 

power

 

supplies.

 

This

 

procedure

 

is

 

associated

 

with

 

the

 

first

 

selection

 

at

 

the

 

Missing

 

Resource

 

menu.

 

SUPTESTS_MS2

 

(0x0010)

 

An

 

optional

 

procedure

 

that

 

performs

 

device-specific

 

actions

 

when

 

a

 

device

 

is

 

removed.

 

For

 

example,

 

the

 

DA

 

might

 

notify

 

a

 

subsystem

 

(LVM)

 

that

 

a

 

physical

 

resource

 

(disk)

 

has

 

been

 

removed.

 

Or

 

the

 

DA

 

might

 

provide

 

warning

 

about

 

deleting

 

a

 

device.

 

If

 

this

 

procedure

 

is

 

not

 

specified,

 

the

 

Diagnostic

 

Controller

 

deletes

 

the

 

device.

 

If

 

it

 

is

 

specified,

 

the

 

DA

 

should

 

delete

 

the

 

device.

 

Devices

 

are

 

deleted

 

by

 

calling

 

the

 

device’s

 

Undefine

 

Method.

 

This

 

procedure

 

is

 

associated

 

with

 

the

 

second

 

selection

 

at

 

the

 

Missing

 

Resource

 

menu.

 

SUPTESTS_HFT

 

Set

 

if

 

the

 

device

 

is

 

a

 

graphics-related

 

device.

 

SUPTESTS_DIAGEX

 

Set

 

if

 

the

 

device

 

uses

 

DIAGEX,

 

the

 

diagnostic

 

kernel

 

extension.

 

Also

 

used

 

if

 

the

 

DA

 

requires

 

a

 

second

 

kernel

 

extension

 

loaded.

 

The

 

PDiagAtt

 

database

 

is

 

used

 

in

 

this

 

instance.

 

A

 

stanza

 

similar

 

to

 

the

 

following

 

must

 

be

 

used:

  

PDiagAtt:

 

DClass

 

The

 

device

 

Class.

 

DSClass

 

The

 

device

 

SubClass.

 

DType

 

The

 

device

 

Type.

 

attribute

 

Must

 

be

 

diag_kext.

 

value

 

Set

 

to

 

the

 

kernel

 

extension

 

driver

 

name.

 

Must

 

reside

 

in

 

/usr/lib/drivers

 

directory.

Menu

 

Same

 

definition

 

as

 

PDiagRes->Menu.

 

DNext

 

Same

 

definition

 

as

 

PDiagRes->DNext.

 

DaName

 

Same

 

definition

 

as

 

PDiagRes->DaName.

 

Diskette

 

A

 

diskette

 

identification

 

that

 

includes

 

the

 

DA

 

associated

 

with

 

the

 

device

 

for

 

the

 

Standalone

 

Diagnostic

 

package.

 

This

 

value

 

should

 

be

 

an

 

″S″

 

if

 

the

 

DA

 

is

 

on

 

a

 

Supplemental

 

Diskette,

 

or

 

a

 

″3S″

 

if

 

the

 

DA

 

is

 

a

 

graphics

 

adapter

 

that

 

can

 

be

 

used

 

as

 

a

 

console

 

device.

 

EnclDaName

 

Same

 

definition

 

as

 

PDiagRes->EnclDaName.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

183



Parmeter

 

Description

 

SysxFlg

 

Identifies

 

the

 

types

 

of

 

tests

 

supported

 

by

 

the

 

DA

 

while

 

running

 

in

 

the

 

System

 

Exerciser

 

Environment.

 

The

 

System

 

Exerciser

 

Environment

 

is

 

not

 

supported

 

by

 

version

 

4.2

 

of

 

the

 

diagnostic

 

controller.

 

SYSX_NO

 

Set

 

if

 

the

 

DA

 

should

 

not

 

be

 

run

 

by

 

the

 

System

 

Exerciser.

 

SYSX_ALONE

 

Set

 

if

 

the

 

DA

 

cannot

 

be

 

run

 

with

 

others

 

with

 

the

 

same

 

bit

 

also

 

set.

 

This

 

includes

 

the

 

diskette

 

DAs

 

that

 

issue

 

a

 

reset

 

to

 

the

 

adapter,

 

which

 

would

 

cause

 

problems

 

if

 

another

 

diskette

 

DA

 

was

 

running

 

at

 

the

 

same

 

time.

 

Another

 

example

 

would

 

be

 

graphics-related

 

devices

 

such

 

as

 

the

 

keyboard,

 

mouse,

 

tablet,

 

dials,

 

and

 

LPFKeys.

 

SYSX_INTERACTION

 

Set

 

if

 

the

 

DA

 

can

 

be

 

run

 

with

 

media

 

to

 

be

 

tested.

 

This

 

includes

 

the

 

diskette,

 

tape

 

and

 

CD-ROM

 

DAs.

 

SYSX_INTERACTION

 

was

 

formerly

 

SYSX_MEDIA.

 

SYSX_LONG

 

Set

 

if

 

the

 

DA

 

runs

 

for

 

more

 

than

 

a

 

minute

 

or

 

so.

 

This

 

bit

 

can

 

be

 

used

 

to

 

determine

 

how

 

many

 

times

 

to

 

run

 

the

 

other

 

DAs

 

if

 

no

 

long

 

DAs

 

are

 

running.

 

The

 

current

 

loop

 

count

 

for

 

DAs

 

that

 

do

 

not

 

take

 

long

 

to

 

run

 

is

 

25

 

loops.

   

Diagnostic

 

Supervisor

 

Menu

 

Options

 

Object

 

Class

 

The

 

Diagnostic

 

Supervisor

 

Menu

 

Options

 

object

 

class

 

(DSMOptions)

 

contains

 

stanzas

 

describing

 

AIX

 

4.1

 

Diagnostic

 

Service

 

Aids.

 

This

 

object

 

class

 

is

 

recognized

 

by

 

the

 

operating

 

system

 

for

 

backlevel

 

compatibility

 

purposes.

 

For

 

development

 

purposes,

 

use

 

PDiagRes

 

instead.

 

The

 

DSMOptions

 

object

 

class

 

structure

 

is

 

defined

 

as:

 

class

 

DSMOptions

 

{

                     

char

 

msgkey[4];

                     

vchar

 

catalogue[255];

                     

short

 

order;

                     

short

 

setid;

                     

short

 

msgid;

                     

vchar

 

action[255];

                     

char

  

Diskette[5];

                     

};

  

Parmeter

 

Description

 

msgkey

 

Key

 

used

 

by

 

the

 

Service

 

Aid

 

Utility

 

Controller

 

to

 

identify

 

this

 

entry

 

as

 

a

 

Service

 

Aid.

 

Must

 

be

 

set

 

to

 

″USM″

 

for

 

Service

 

Aids.

 

catalogue

 

Catalog

 

name

 

from

 

which

 

to

 

extract

 

the

 

message

 

for

 

the

 

Service

 

Aid

 

title

 

and

 

description.

 

order

 

Order

 

in

 

which

 

the

 

messages

 

should

 

be

 

appended

 

to

 

build

 

the

 

menu.

 

The

 

following

 

values

 

are

 

defined:

 

0

 

Used

 

by

 

Third

 

Party

 

Service

 

Aids.

 

This

 

causes

 

the

 

service

 

aid

 

to

 

be

 

appended

 

to

 

the

 

end

 

of

 

the

 

menu.

 

99

 

Only

 

display

 

this

 

service

 

aid

 

if

 

not

 

running

 

in

 

an

 

8MB

 

system.

 

setid

 

Set

 

number

 

of

 

the

 

message.

 

msgid

 

Message

 

ID

 

of

 

the

 

message.

 

action

 

Command

 

to

 

start,

 

if

 

the

 

user

 

selects

 

the

 

specified

 

option.

 

Diskette

 

Indicates

 

that

 

the

 

Service

 

Aid

 

is

 

on

 

a

 

Supplemental

 

Diskette,

 

and

 

what

 

actions

 

to

 

take

 

before

 

processing

 

the

 

Service

 

Aid.

 

The

 

following

 

values

 

are

 

defined:

 

S

 

Supplemental

 

Diskette.

 

100X

 

Indicates

 

that

 

all

 

diskettes

 

should

 

be

 

read

 

in

 

and

 

processed

 

before

 

starting

 

this

 

service

 

aid.

 

200X

 

Indicates

 

that

 

this

 

service

 

aid

 

is

 

only

 

supported

 

in

 

Service

 

Mode

 

from

 

hardfile.

    

184

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Diagnostic

 

Header

 

Files

 

Several

 

files

 

are

 

shipped

 

to

 

the

 

/usr/include/diag

 

directory

 

for

 

use

 

with

 

compiling

 

diagnostic

 

code.

 

All

 

variables

 

used

 

by

 

this

 

guide

 

should

 

be

 

found

 

in

 

one

 

of

 

the

 

diagnostic

 

header

 

files.

 

Diagnostic

 

User

 

Interface

 

The

 

following

 

sections

 

describe

 

how

 

Diagnostic

 

Applications

 

and

 

Diagnostic

 

Tasks

 

should

 

use

 

the

 

interfaces

 

provided

 

in

 

the

 

Diagnostic

 

Library

 

to

 

display

 

the

 

different

 

screen

 

types.

 

The

 

Diagnostic

 

Subsystem

 

supports

 

various

 

display

 

environments.

 

The

 

menu

 

interfaces

 

are

 

designed

 

to

 

be

 

display

 

environment

 

independent,

 

with

 

the

 

library

 

routine(s)

 

building

 

the

 

correct

 

menu

 

structures

 

depending

 

on

 

the

 

display

 

environment.

 

Screen

 

Types

 

The

 

Diagnostic

 

Subsystem

 

uses

 

six

 

different

 

screen

 

types,

 

displayed

 

by

 

four

 

different

 

functions:

  

Screen

 

Type

 

Diagnostic

 

Applications

 

Diagnostic

 

Tasks

 

INFORMATIVE

 

diag_resource_screen

 

diag_task_screen

 

SINGLE

 

SELECTION

 

diag_resource_screen

 

diag_task_screen

 

MULTIPLE

 

SELECTION

 

n/a

 

diag_task_screen

 

DIALOG

 

SELECTION

 

n/a

 

diag_task_screen

 

TRANSITIONAL

 

diag_resource_screen

 

diag_progress

 

diag_task_screen

 

diag_progress

 

POPUP

 

diag_popup

 

diag_popup

   

Screen

 

Size

 

Assumptions

 

In

 

order

 

for

 

Diagnostics

 

to

 

run

 

in

 

a

 

window,

 

a

 

minimum

 

screen

 

dimension

 

of

 

24

 

lines

 

by

 

80

 

columns

 

is

 

required.

 

INSTRUCTION

 

LINE

 

The

 

INSTRUCTION

 

LINE

 

will

 

be

 

added

 

automatically

 

depending

 

on

 

the

 

screen

 

type.

 

The

 

following

 

table

 

illustrates

 

the

 

messages

 

used

 

for

 

the

 

INSTRUCTION

 

LINE.

  

Screen

 

Type

 

INSTRUCTION

 

LINE

 

INFORMATIVE

 

Use

 

Enter

 

to

 

continue.

 

SINGLE

 

SELECTION

 

Make

 

selection,

 

use

 

Enter

 

to

 

continue.

 

MULTIPLE

 

SELECTION

 

Make

 

selection(s),

 

use

 

Commit

 

to

 

continue.

 

DIALOG

 

SELECTION

 

Enter

 

selection(s),

 

use

 

Commit

 

to

 

continue.

 

TRANSITIONAL

 

Please

 

stand

 

by.

 

POPUP

 

n/a

   

Diagnostic

 

Applications

 

Diagnostic

 

Applications

 

should

 

use

 

one

 

of

 

the

 

following

 

screen

 

types:

 

v

   

INFORMATIVE

 

v

   

SINGLE

 

SELECTION

 

v

   

TRANSITIONAL

   

Chapter

 

3.

 

Diagnostic

 

Components

 

185



v

   

POPUP

 

The

 

following

 

template

 

shows

 

a

 

sample

 

screen

 

that

 

is

 

used

 

when

 

running

 

diagnostics

 

on

 

a

 

resource.

 

The

 

DA

 

would

 

use

 

the

 

diag_resource_screen

 

library

 

function

 

to

 

display

 

this

 

screen.

 

The

 

Title

 

line

 

is

 

split

 

between

 

lines

 

1

 

and

 

2.

 

The

 

ACTION,

 

TEST

 

MODE,

 

and

 

the

 

menu

 

number

 

go

 

on

 

the

 

first

 

line.

 

ACTION

 

is

 

defined

 

as

 

one

 

of

 

the

 

following:

 

v

   

TESTING

 

v

   

ANALYZING

 

ERROR

 

LOG

 

v

   

ANALYZING

 

POST

 

RESULTS

 

v

   

ANALYZING

 

FIRMWARE

 

STATUS

 

v

   

ANALYZING

 

SUBSYSTEM

 

STATUS

 

v

   

ANALYZING

 

CHECKSTOP

 

STATUS

 

If

 

the

 

ACTION

 

is

 

TESTING,

 

the

 

TEST

 

MODE

 

will

 

be

 

displayed

 

on

 

the

 

first

 

line.

 

TEST

 

MODE

 

is

 

defined

 

as:

 

v

   

ADVANCED

 

MODE

 

v

   

LOOP

 

MODE

 

(Advanced

 

Mode

 

is

 

always

 

assumed

 

if

 

Looping.)

 

The

 

TEST

 

MODE

 

field

 

will

 

be

 

blank

 

if

 

running

 

non-advanced

 

mode

 

diagnostics.

 

The

 

Menu

 

Number

 

represented

 

by

 

xxxxxx,

 

goes

 

on

 

the

 

first

 

line.

 

The

 

Resource

 

Name

 

and

 

Location

 

Code

 

go

 

on

 

the

 

second

 

line.

              

1

         

2

         

3

         

4

         

5

         

6

         

7

    

01234567890123456789012345678901234567890123456789012345678901234567890123456789

    

--------------------------------------------------------------------------------

  

1

 

ACTION

          

{TEST

 

MODE}

                                               

xxxxxx

  

2

 

Resource

 

Name

   

Location

 

Code

  

3

  

4

 

+

  

5

 

|

  

6

 

|

  

7

 

|

  

8

 

|

  

9

 

|

 

10

 

|

 

11

 

|

 

12

 

BODY

 

OF

 

MENU

 

13

 

|

 

14

 

|

 

15

 

|

 

16

 

|

 

17

 

|

 

18

 

|

 

19

 

|

 

20

 

|

 

21

 

+

 

22

                     

___________________________________________

 

23

 

Function

 

Key

 

Area

  

|

 

Progress

 

Indicator

 

Area

                  

|

 

24

 

Function

 

Key

 

Area

  

|

                                          

|

    

--------------------------------------------------------------------------------

 

The

 

BODY

 

of

 

the

 

menu

 

can

 

assume

 

multiple

 

personalities

 

depending

 

on

 

the

 

screen

 

type.

 

It

 

includes

 

all

 

text

 

of

 

the

 

menu,

 

including

 

the

 

INSTRUCTION

 

line.

 

The

 

BODY

 

does

 

not

 

include

 

the

 

TITLE.

 

INFORMATIVE

 

Screen

 

Type

 

For

 

an

 

INFORMATIVE

 

screen,

 

the

 

body

 

consists

 

of

 

information

 

describing

 

the

 

test

 

and

 

what

 

it

 

does.

 

In

 

the

 

following

 

example,

 

lines

 

4

 

through

 

12

 

consist

 

of

 

the

 

information

 

about

 

the

 

test.

 

Line

 

14

 

is

 

the

 

INSTRUCTION

 

LINE,

 

and

 

is

 

added

 

automatically

 

by

 

the

 

diag_resource_screen

 

function.

   

186

 

Understanding

 

the

 

Diagnostic

 

Subsystem



1

         

2

         

3

         

4

         

5

         

6

         

7

    

01234567890123456789012345678901234567890123456789012345678901234567890123456789

    

--------------------------------------------------------------------------------

  

1

 

TESTING

         

ADVANCED

 

MODE

                                             

935045

  

2

 

fd0

             

00-00-0D-00

  

3

  

4

 

Diskette

 

Change/Write

 

Protect

 

Test

  

5

  

6

 

REMOVE.........the

 

diskette,

 

if

 

any,

 

from

 

the

 

diskette

 

drive

 

(fd0).

  

7

 

INSERT.........the

 

High

 

Capacity

 

(4M

 

byte)

 

Diagnostic

 

Test

  

8

                

Diskette

 

or

 

an

 

equivalent,

 

formatted,

  

9

                

scratch

 

diskette

 

into

 

the

 

diskette

 

drive

 

(fd0).

 

10

 

11

 

NOTE:

  

The

 

diskette

 

must

 

be

 

write

 

protected

 

(the

 

write

 

protect

 

12

        

tab

 

should

 

not

 

cover

 

the

 

hole).

 

13

 

14

 

Use

 

Enter

 

to

 

continue.

 

15

 

16

 

17

 

18

 

19

 

20

 

21

 

22

 

23

 

24

 

F3=Cancel

           

F10=Exit

            

Enter

    

--------------------------------------------------------------------------------

 

SINGLE

 

SELECTION

 

Screen

 

Type

 

For

 

a

 

SINGLE

 

SELECTION

 

screen,

 

the

 

body

 

consists

 

of

 

results

 

from

 

a

 

previous

 

test

 

that

 

had

 

run,

 

and

 

asking

 

the

 

user

 

if

 

the

 

results

 

are

 

accurate.

 

The

 

User

 

selects

 

a

 

response,

 

normally

 

YES

 

or

 

NO,

 

from

 

a

 

given

 

list.

 

In

 

the

 

following

 

example,

 

lines

 

4

 

through

 

9

 

consist

 

of

 

the

 

information

 

about

 

the

 

test.

 

Lines

 

13

 

and

 

14

 

consist

 

of

 

the

 

SELECTION

 

lines.

 

Line

 

11

 

is

 

the

 

INSTRUCTION

 

LINE,

 

and

 

is

 

added

 

automatically

 

by

 

the

 

diag_resource_screen

 

function.

              

1

         

2

         

3

         

4

         

5

         

6

         

7

    

01234567890123456789012345678901234567890123456789012345678901234567890123456789

    

--------------------------------------------------------------------------------

  

1

 

TESTING

          

ADVANCED

 

MODE

                                            

935025

  

2

 

fd0

              

00-00-0D-00

  

3

  

4

 

Diskette

 

Select

 

and

 

Deselect

 

Test

  

5

  

6

 

OBSERVE........the

 

in-use

 

light

 

on

 

the

 

diskette

 

drive

 

(fd0).

  

7

  

8

 

Was

 

the

 

in-use

 

light

 

on

 

for

 

approximately

 

5

 

seconds

 

and

  

9

 

then

 

did

 

it

 

turn

 

off?

 

10

 

11

 

Make

 

selection,

 

use

 

Enter

 

to

 

continue.

 

12

 

13

   

YES

 

14

   

NO

 

15

 

16

 

17

 

18

 

19

 

20

 

21

 

22

 

23

 

24

 

F3=Cancel

           

F10=Exit

            

Enter

    

--------------------------------------------------------------------------------

   

Chapter

 

3.

 

Diagnostic

 

Components

 

187



TRANSITIONAL

 

Screen

 

Type

 

For

 

a

 

TRANSITIONAL

 

screen,

 

the

 

body

 

usually

 

consists

 

of

 

a

 

single

 

INSTRUCTION

 

line

 

of

   

Please

 

stand

 

by.

 

This

 

indicates

 

that

 

the

 

test

 

is

 

currently

 

processing

 

some

 

data.

 

It

 

is

 

also

 

used

 

to

 

indicate

 

that

 

looping

 

is

 

in

 

progress,

 

and

 

shows

 

the

 

number

 

of

 

passes

 

made

 

plus

 

the

 

total

 

number

 

of

 

errors

 

encountered.

 

User

 

may

 

press

 

Cancel

 

to

 

stop

 

the

 

test.

 

The

 

following

 

example

 

shows

 

a

 

looping

 

menu.

 

Line

 

10

 

is

 

the

 

INSTRUCTION

 

LINE,

 

and

 

is

 

added

 

automatically

 

by

 

the

 

diag_resource_screen

 

function.

 

See

 

also

 

Diagnostic

 

Progress

 

Indicators.

              

1

         

2

         

3

         

4

         

5

         

6

         

7

    

01234567890123456789012345678901234567890123456789012345678901234567890123456789

    

--------------------------------------------------------------------------------

  

1

 

TESTING

          

LOOP

 

MODE

                                                

935025

  

2

 

fd0

              

00-00-0D-00

  

3

  

4

  

5

  

6

   

1

  

passes

 

completed.

  

7

   

5

  

errors

 

logged.

  

8

  

9

 

10

 

Please

 

stand

 

by.

 

11

 

12

 

13

 

14

 

15

 

16

 

17

 

18

 

19

 

20

 

21

 

22

 

23

 

24

 

F3=Cancel

           

F10=Exit

    

--------------------------------------------------------------------------------

 

POPUP

 

Screen

 

Type

 

For

 

a

 

POPUP

 

screen,

 

the

 

application

 

code

 

should

 

use

 

the

 

diag_popup

 

library

 

function

 

call.

 

Diagnostic

 

Tasks

 

Diagnostic

 

Tasks

 

are

 

free

 

to

 

use

 

any

 

of

 

the

 

six

 

supported

 

screen

 

types:

 

v

   

INFORMATIVE

 

v

   

SINGLE

 

SELECTION

 

v

   

MULTIPLE

 

SELECTION

 

v

   

DIALOG

 

SELECTION

 

v

   

TRANSITIONAL

 

v

   

POPUP

 

The

 

following

 

template

 

shows

 

a

 

sample

 

screen

 

that

 

is

 

used

 

when

 

running

 

a

 

task.

 

The

 

Task

 

would

 

use

 

the

 

diag_task_screen

 

library

 

function

 

to

 

display

 

this

 

screen.

 

The

 

Title

 

line

 

is

 

split

 

between

 

lines

 

1

 

and

 

2.

 

Most

 

all

 

Task

 

titles

 

should

 

fit

 

on

 

the

 

first

 

line,

 

but

 

the

 

second

 

line

 

may

 

be

 

used

 

for

 

clarity

 

or

 

for

 

translation

 

reasons.

 

The

 

TITLE

 

text

 

should

 

be

 

all

 

capitalized.

              

1

         

2

         

3

         

4

         

5

         

6

         

7

    

01234567890123456789012345678901234567890123456789012345678901234567890123456789

    

--------------------------------------------------------------------------------

  

1

 

TASK

 

TITLE

 

LINE

 

1

                                                         

8xxxxx

  

2

 

TASK

 

TITLE

 

LINE

 

2

  

3

  

188

 

Understanding

 

the

 

Diagnostic

 

Subsystem



4

 

+

  

5

 

|

  

6

 

|

  

7

 

|

  

8

 

|

  

9

 

|

 

10

 

|

 

11

 

|

 

12

 

BODY

 

OF

 

MENU

 

13

 

|

 

14

 

|

 

15

 

|

 

16

 

|

 

17

 

|

 

18

 

|

 

19

 

|

 

20

 

|

 

21

 

+

 

22

 

23

 

Function

 

Key

 

Area

 

24

 

Function

 

Key

 

Area

    

--------------------------------------------------------------------------------

 

The

 

BODY

 

of

 

the

 

menu

 

can

 

assume

 

multiple

 

personalities

 

depending

 

on

 

the

 

screen

 

type.

 

It

 

includes

 

all

 

text

 

of

 

the

 

menu,

 

including

 

the

 

INSTRUCTION

 

line.

 

The

 

BODY

 

does

 

not

 

include

 

the

 

TITLE.

 

INFORMATIVE

 

Screen

 

Type

 

For

 

an

 

INFORMATIVE

 

screen,

 

the

 

body

 

consists

 

of

 

information

 

describing

 

the

 

task

 

and

 

what

 

it

 

does.

 

In

 

the

 

following

 

example,

 

lines

 

3

 

through

 

15

 

consist

 

of

 

the

 

information

 

about

 

the

 

task.

 

Line

 

17

 

is

 

the

 

INSTRUCTION

 

LINE,

 

and

 

Line

 

24

 

consists

 

of

 

the

 

function

 

keys

 

available

 

for

 

this

 

screen

 

type.

 

Both

 

lines

 

are

 

added

 

automatically

 

by

 

the

 

diag_task_screen

 

function.

Note:

  

If

 

the

 

TITLE

 

line

 

consists

 

of

 

only

 

one

 

line,

 

the

 

text

 

of

 

the

 

BODY

 

will

 

be

 

adjusted

 

up

 

one

 

line.

             

1

         

2

         

3

         

4

         

5

         

6

         

7

    

01234567890123456789012345678901234567890123456789012345678901234567890123456789

    

--------------------------------------------------------------------------------

  

1

 

PERIODIC

 

DIAGNOSTICS

 

SERVICE

 

AID

                                          

802150

  

2

  

3

 

This

 

service

 

aid

 

is

 

used

 

to

 

periodically

 

test

 

hardware

 

resources

 

and

  

4

 

monitor

 

hardware

 

errors

 

in

 

the

 

error

 

log.

  

5

  

6

 

A

 

hardware

 

resource

 

can

 

be

 

chosen

 

to

 

be

 

tested

 

once

 

a

 

day,

 

at

 

a

 

user

  

7

 

specified

 

time

 

of

 

day.

 

If

 

the

 

resource

 

cannot

 

be

 

tested

 

because

 

it

 

is

  

8

 

busy,

 

error

 

log

 

analysis

 

will

 

be

 

performed.

  

9

 

Hardware

 

errors

 

logged

 

against

 

a

 

resource

 

can

 

also

 

be

 

monitored

 

by

 

enabling

 

10

 

Automatic

 

Error

 

Log

 

Analysis.

 

This

 

will

 

allow

 

error

 

log

 

analysis

 

to

 

be

 

11

 

performed

 

every

 

time

 

a

 

hardware

 

error

 

is

 

put

 

into

 

the

 

error

 

log.

 

12

 

13

 

If

 

a

 

problem

 

is

 

detected,

 

a

 

message

 

will

 

be

 

posted

 

to

 

the

 

system

 

console

 

14

 

and

 

a

 

mail

 

message

 

sent

 

to

 

user(s)

 

belonging

 

to

 

system

 

group

 

with

 

information

 

15

 

about

 

the

 

failure

 

such

 

as

 

Service

 

Request

 

Number.

 

16

 

17

 

Use

 

Enter

 

to

 

continue.

 

18

 

19

 

20

 

21

 

22

 

23

 

24

 

[F1=Help]

        

F3=Cancel

              

F10=Exit

                

Enter

    

--------------------------------------------------------------------------------

   

Chapter

 

3.

 

Diagnostic

 

Components

 

189



SINGLE

 

SELECTION

 

Screen

 

Type

 

For

 

a

 

SINGLE

 

SELECTION

 

screen,

 

the

 

body

 

consists

 

of

 

individual

 

selectable

 

items

 

and

 

possibly

 

a

 

short

 

description.

 

In

 

the

 

following

 

example,

 

lines

 

5

 

through

 

21

 

consist

 

of

 

the

 

selectable

 

items.

 

This

 

example

 

illustrates

 

six

 

(6)

 

selectable

 

menu

 

items.

 

The

 

indentions

 

for

 

the

 

selectable

 

item

 

descriptions

 

must

 

be

 

added

 

when

 

the

 

message

 

is

 

built.

 

Line

 

3

 

is

 

the

 

INSTRUCTION

 

LINE,

 

and

 

is

 

added

 

automatically

 

by

 

the

 

diag_task_screen

 

function.

 

Any

 

information

 

about

 

the

 

selections

 

may

 

be

 

added

 

to

 

the

 

screen,

 

and

 

would

 

appear

 

after

 

the

 

TITLE

 

line[1]

 

and

 

before

 

the

 

INSTRUCTION

 

line[3].

              

1

         

2

         

3

         

4

         

5

         

6

         

7

    

01234567890123456789012345678901234567890123456789012345678901234567890123456789

    

--------------------------------------------------------------------------------

  

1

 

PERIODIC

 

DIAGNOSTICS

 

SERVICE

 

AID

                                          

802151

  

2

  

3

 

Make

 

selection,

 

use

 

Enter

 

to

 

continue.

  

4

  

5

   

Add

 

a

 

resource

 

to

 

the

 

periodic

 

test

 

list

  

6

     

This

 

selection

 

allows

 

a

 

resource

 

to

 

be

 

periodically

 

tested.

  

7

   

Delete

 

a

 

resource

 

from

 

the

 

periodic

 

test

 

list

  

8

     

This

 

selection

 

removes

 

a

 

resource

 

from

 

the

 

list

 

of

 

periodically

  

9

     

tested

 

resources.

 

10

   

Modify

 

the

 

time

 

to

 

test

 

a

 

resource

 

11

     

This

 

selection

 

allows

 

the

 

time

 

of

 

day

 

to

 

test

 

a

 

resource

 

to

 

be

 

12

     

changed.

 

13

   

Display

 

the

 

periodic

 

test

 

list

 

14

     

This

 

selection

 

displays

 

all

 

resources

 

being

 

tested

 

periodically

 

15

     

by

 

diagnostics.

 

16

   

Modify

 

the

 

error

 

notification

 

mailing

 

list

 

17

     

This

 

selection

 

allows

 

the

 

mailing

 

list

 

for

 

error

 

notification

 

18

     

to

 

be

 

modified.

 

19

   

Disable

 

Automatic

 

Error

 

Log

 

Analysis

 

20

     

Automatic

 

Error

 

Log

 

Analysis

 

is

 

currently

 

enabled.

 

21

     

This

 

selection

 

stops

 

the

 

Automatic

 

Error

 

Log

 

Analysis.

 

22

 

23

 

24

 

F1=Help

                

F10=Exit

                

F3=Previous

 

Menu

    

--------------------------------------------------------------------------------

 

23

 

F1=Help

                

F4=List

             

F10=Exit

          

Enter

 

24

 

F3=Previous

 

Menu

    

--------------------------------------------------------------------------------

 

MULTIPLE

 

SELECTION

 

Screen

 

Type

 

For

 

a

 

MULTIPLE

 

SELECTION

 

screen,

 

the

 

body

 

consists

 

of

 

individual

 

selectable

 

items

 

and

 

possibly

 

a

 

short

 

description.

 

In

 

the

 

following

 

example,

 

lines

 

10

 

through

 

12

 

consist

 

of

 

the

 

selectable

 

items.

 

Line

 

8

 

is

 

the

 

INSTRUCTION

 

LINE,

 

and

 

is

 

added

 

automatically

 

by

 

the

 

diag_task_screen

 

function.

 

Any

 

information

 

about

 

the

 

selections

 

may

 

be

 

added

 

to

 

the

 

screen,

 

and

 

would

 

appear

 

after

 

the

 

TITLE

 

line[1]

 

and

 

before

 

the

 

INSTRUCTION

 

line[8].

 

HELP

 

text

 

may

 

be

 

displayed

 

any

 

time

 

the

 

cursor

 

is

 

on

 

line

 

10,

 

11,

 

or

 

12

 

in

 

the

 

following

 

example.

 

Each

 

selectable

 

line

 

may

 

have

 

associated

 

HELP

 

text.

              

1

         

2

         

3

         

4

         

5

         

6

         

7

    

01234567890123456789012345678901234567890123456789012345678901234567890123456789

    

--------------------------------------------------------------------------------

  

1

 

DELETE

 

RESOURCES

 

FROM

 

THE

 

PERIODIC

 

DIAGNOSTICS

 

TEST

 

LIST

                  

802155

  

2

  

3

 

The

 

following

 

resources

 

are

 

currently

 

being

 

tested

 

periodically.

  

4

 

Test

 

time

 

is

 

shown

 

inside

 

the

 

brackets

 

in

 

24

 

hour

 

format.

  

5

 

Once

 

deleted,

 

a

 

resource

 

cannot

 

be

 

tested

 

until

 

it

 

is

 

added

 

back

 

to

 

the

  

6

 

test

 

list.

  

7

  

8

 

Make

 

selection(s),

 

use

 

Commit

 

to

 

continue.

  

190

 

Understanding

 

the

 

Diagnostic

 

Subsystem



9

 

10

   

ioplanar0

        

[04:00]

          

I/O

 

Planar

 

11

   

hdisk0

           

[03:00]

          

1.0

 

GB

 

SCSI

 

Disk

 

Drive

 

12

   

hdisk1

           

[03:00]

          

2.0

 

GB

 

SCSI

 

Disk

 

Drive

 

13

 

14

 

15

 

16

 

17

 

18

 

19

 

20

 

21

 

22

 

23

 

F1=Help

                

F2=Refresh

              

F3=Cancel

              

F4=List

 

24

 

F5=Reset

               

F7=Commit

               

F10=Exit

    

--------------------------------------------------------------------------------

 

DIALOG

 

SELECTION

 

Screen

 

Type

 

For

 

a

 

DIALOG

 

SELECTION

 

screen,

 

the

 

body

 

consists

 

of

 

individual

 

items

 

with

 

a

 

bracketed

 

area

 

to

 

the

 

right.

 

This

 

bracketed

 

area

 

allows

 

data

 

selections

 

to

 

be

 

set

 

for

 

each

 

individual

 

item.

 

In

 

the

 

following

 

example,

 

lines

 

10

 

and

 

11

 

consist

 

of

 

the

 

items.

 

Line

 

7

 

is

 

the

 

INSTRUCTION

 

LINE,

 

and

 

is

 

added

 

automatically

 

by

 

the

 

diag_task_screen

 

function.

 

HELP

 

text

 

may

 

be

 

displayed

 

any

 

time

 

the

 

cursor

 

is

 

on

 

line

 

10

 

or

 

11

 

in

 

the

 

following

 

example.

 

Each

 

dialog

 

line

 

may

 

have

 

associated

 

HELP

 

text.

              

1

         

2

         

3

         

4

         

5

         

6

         

7

    

01234567890123456789012345678901234567890123456789012345678901234567890123456789

    

--------------------------------------------------------------------------------

  

1

 

PERIODIC

 

DIAGNOSTICS

 

SERVICE

 

AID

                                          

802157

  

2

  

3

 

ent0

             

00-00-0E

         

Integrated

 

Ethernet

 

Adapter

  

4

  

5

 

Set

 

the

 

time

 

when

 

the

 

resource

 

should

 

be

 

tested.

  

6

  

7

 

Enter

 

selection(s),

 

use

 

Commit

 

to

 

continue.

  

8

  

9

 

10

   

*

 

HOUR

 

(00-23)

 

.................................

         

[00]

               

+#

 

11

   

*

 

MINUTES

 

(00-59)

 

..............................

         

[00]

               

+#

 

12

 

13

 

14

 

15

 

16

 

17

 

18

 

19

 

20

 

21

 

22

 

23

 

F1=Help

                

F2=Refresh

              

F3=Cancel

              

F4=List

 

24

 

F5=Reset

               

F7=Commit

               

F10=Exit

    

--------------------------------------------------------------------------------

 

TRANSITIONAL

 

Screen

 

Type

 

For

 

a

 

TRANSITIONAL

 

screen,

 

the

 

body

 

consists

 

of

 

a

 

single

 

INSTRUCTION

 

line

 

of

   

Please

 

stand

 

by.

 

This

 

indicates

 

that

 

the

 

task

 

is

 

currently

 

processing

 

some

 

data.

 

Users

 

may

 

press

 

Cancel

 

to

 

stop

 

the

 

task.

 

The

 

following

 

example

 

shows

 

a

 

task

 

in

 

progress

 

menu.

 

Line

 

6

 

consists

 

of

 

the

 

INSTRUCTION

 

LINE,

 

and

 

is

 

automatically

 

added

 

by

 

the

 

diag_task_screen

 

function.

 

See

 

also

 

Diagnostic

 

Progress

 

Indicators.

              

1

         

2

         

3

         

4

         

5

         

6

         

7

    

01234567890123456789012345678901234567890123456789012345678901234567890123456789

    

--------------------------------------------------------------------------------

  

1

 

HARDWARE

 

ERROR

 

REPORT

           

802905

  

Chapter

 

3.

 

Diagnostic

 

Components

 

191



2

  

3

  

4

 

Reading

 

current

 

error

 

log.

  

5

  

6

 

Please

 

stand

 

by.

  

7

  

8

  

9

 

10

 

11

 

12

 

13

 

14

 

15

 

16

 

17

 

18

 

19

 

20

 

21

 

22

 

23

 

24

 

F3=Cancel

           

F10=Exit

    

--------------------------------------------------------------------------------

 

POPUP

 

SCREEN

 

TYPE

 

For

 

a

 

POPUP

 

screen,

 

the

 

body

 

consists

 

normally

 

of

 

help

 

text.

 

It

 

is

 

used

 

to

 

help

 

the

 

user

 

understand

 

the

 

current

 

screen,

 

or

 

menu

 

selection.

 

In

 

the

 

following

 

example,

 

the

 

popup

 

appears

 

in

 

a

 

windowed

 

box

 

near

 

the

 

bottom

 

of

 

the

 

screen.

 

No

 

INSTRUCTION

 

line

 

is

 

used.

 

This

 

screen

 

is

 

added

 

by

 

the

 

diag_popup

 

function.

 

If

 

the

 

F1=Help

 

key

 

is

 

selected,

 

but

 

there

 

is

 

no

 

associated

 

Help

 

text

 

associated

 

with

 

the

 

current

 

selection,

 

then

 

this

 

key

 

is

 

returned

 

to

 

the

 

calling

 

application.

              

1

         

2

         

3

         

4

         

5

         

6

         

7

    

01234567890123456789012345678901234567890123456789012345678901234567890123456789

    

--------------------------------------------------------------------------------

  

1

 

FUNCTION

 

SELECTION

                                                        

801002

  

2

  

3

  

4

 

Move

 

cursor

 

to

 

selection,

 

then

 

press

 

Enter.

  

5

  

6

  

Diagnostic

 

Routines

  

7

     

This

 

selection

 

will

 

test

 

the

 

machine

 

hardware.

 

Wrap

 

plugs

 

and

  

8

     

other

 

advanced

 

functions

 

will

 

not

 

be

 

used.

  

9

  

Advanced

 

Dl

 

______________________________________________________

 

10

     

This

 

sel|

                                                      

|

 

11

     

other

 

ad|

                                                      

|

 

12

   

Task

 

Selec|

 

Select

 

this

 

choice

 

when

 

you

 

want

 

to

 

run

              

|c.)

 

13

     

This

 

sel|

 

Diagnostics

 

on

 

a

 

resource

 

(device).

                  

|.

 

14

     

Once

 

a

 

t|

                                                      

|g

 

15

     

all

 

reso|

                                                      

|

 

16

   

Resource

 

S|

                                                      

|

 

17

     

This

 

sel|

                                                      

|pported

 

18

     

by

 

these|

                                                      

|ll

 

19

     

be

 

prese|

                                                      

|).

 

20

             

|

                                                      

|

 

21

             

|

                                                      

|

 

22

             

|

                                                      

|

 

23

             

|

 

F3=Cancel

        

F10=Exit

         

Enter

              

|

 

24

 

F1=Help

     

|______________________________________________________|

    

--------------------------------------------------------------------------------

   

192

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Diagnostic

 

Progress

 

Indicators

 

Diagnostic

 

Progress

 

Indicators

 

are

 

used

 

to

 

inform

 

the

 

user

 

what

 

is

 

going

 

on.

 

The

 

Progress

 

Indicators

 

appear

 

as

 

a

 

popup

 

box

 

at

 

the

 

bottom

 

of

 

the

 

screen

 

during

 

a

 

Diagnostic

 

Application

 

TRANSITIONAL

 

screen

 

or

 

a

 

Diagnostic

 

Task

 

TRANSITIONAL

 

screen

 

display.

 

The

 

Progress

 

Indicators

 

may

 

be

 

turned

 

off

 

by

 

using

 

the

 

Run

 

Time

 

Options

 

Task.

 

This

 

selection

 

sets

 

the

 

diagnostic

 

environment

 

variable

 

DIAG_NO_PROGRESS

 

appropriately.

              

1

         

2

         

3

         

4

         

5

         

6

         

7

    

01234567890123456789012345678901234567890123456789012345678901234567890123456789

    

--------------------------------------------------------------------------------

  

1

 

DISPLAY/CHANGE

 

DIAGNOSTIC

 

RUN

 

TIME

 

OPTIONS

                                

801009

  

2

  

3

 

Select

 

values

 

for

 

the

 

options

 

below.

  

4

 

When

 

finished,

 

use

 

’Commit’

 

to

 

continue.

  

5

 

Display

 

Diagnostic

 

Mode

 

Selection

 

Menus

                         

[On]

        

+

  

6

 

Include

 

Advanced

 

Diagnostics

                                    

[Off]

       

+

  

7

 

Include

 

Error

 

Log

 

Analysis

                                      

[Off]

       

+

  

8

 

Display

 

Progress

 

Indicators

                                     

[On]

        

+

  

9

 

10

 

11

 

12

 

13

 

14

 

15

 

16

 

17

 

18

 

19

 

20

 

21

 

22

 

23

 

F1=Help

             

F2=Refresh

          

F3=Cancel

           

F4=List

 

24

 

F5=Reset

            

F7=Commit

           

F10=Exit

    

--------------------------------------------------------------------------------

 

The

 

following

 

example

 

shows

 

a

 

Diagnostic

 

Application

 

screen

 

that

 

is

 

displaying

 

a

 

Progress

 

indicator

 

with

 

the

 

type

 

of

 

test

 

unit

 

being

 

run.

              

1

         

2

         

3

         

4

         

5

         

6

         

7

    

01234567890123456789012345678901234567890123456789012345678901234567890123456789

    

--------------------------------------------------------------------------------

  

1

 

TESTING

         

LOOP

 

MODE

                                                 

935025

  

2

 

fd0

             

00-00-0D-00

  

3

  

4

  

5

  

6

   

1

  

passes

 

completed.

  

7

   

5

  

errors

 

logged.

  

8

  

9

 

10

 

Please

 

stand

 

by.

 

11

 

12

 

13

 

14

 

15

 

16

 

17

 

18

 

19

 

22

                

--------------------------------------------------

 

23

                

|

 

Register

 

Test

                                  

|

 

24

 

F3=Cancel

      

--------------------------------------------------

    

--------------------------------------------------------------------------------

   

Chapter

 

3.

 

Diagnostic

 

Components

 

193



These

 

Progress

 

Indicator

 

messages

 

must

 

be

 

kept

 

short,

 

one

 

line,

 

and

 

under

 

30

 

characters.

 

Note

 

that

 

the

 

function

 

key

 

F10=Exit

 

is

 

overwritten

 

by

 

the

 

Progress

 

Indicator.

 

The

 

diag_progress

 

library

 

function

 

call

 

is

 

used

 

for

 

this

 

Progress

 

Indicator.

 

Diagnostic

 

Menu

 

Examples

 

Diagnostic

 

Operating

 

Instructions

 

Menu

 

DIAGNOSTIC

 

OPERATING

 

INSTRUCTIONS

  

VERSION

 

X.X.X

                          

801001

     

LICENSED

 

MATERIAL

 

and

 

LICENSED

 

INTERNAL

 

CODE

 

-

 

PROPERTY

 

OF

 

IBM

 

(C)

 

COPYRIGHTS

 

BY

 

IBM

 

AND

 

BY

 

OTHERS

 

YYYY,

 

YYYY.

 

ALL

 

RIGHTS

 

RESERVED.

   

These

 

programs

 

contain

 

diagnostics,

 

service

 

aids,

 

and

 

tasks

 

for

 

the

 

system.

  

These

 

procedures

 

should

 

be

 

used

 

whenever

 

problems

 

with

 

the

 

system

 

occur

 

which

 

have

 

not

 

been

 

corrected

 

by

 

any

 

software

 

application

 

procedures

 

available.

   

In

 

general,

 

the

 

procedures

 

will

 

run

 

automatically.

  

However,

 

sometimes

 

you

 

will

 

be

 

required

 

to

 

select

 

options,

 

inform

 

the

 

system

 

when

 

to

 

continue,

 

and

 

do

 

simple

 

tasks.

   

Several

 

keys

 

are

 

used

 

to

 

control

 

the

 

procedures:

 

-

 

The

 

Enter

 

key

 

continues

 

the

 

procedure

 

or

 

performs

 

an

 

action.

 

-

 

The

 

Backspace

 

key

 

allows

 

keying

 

errors

 

to

 

be

 

corrected.

 

-

 

The

 

cursor

 

keys

 

are

 

used

 

to

 

select

 

an

 

option.

   

Press

 

the

 

F3

 

key

 

to

 

exit

 

or

 

press

 

Enter

 

to

 

continue.

 

Note:

  

The

 

version

 

number

 

may

 

vary

 

depending

 

on

 

the

 

version

 

of

 

diagnostics

 

installed

 

or

 

the

 

version

 

the

 

standalone

 

diagnostics

 

used.

 

Function

 

Selection

 

Menu

 

FUNCTION

 

SELECTION

                                                        

801002

     

Move

 

cursor

 

to

 

selection,

 

then

 

press

 

Enter.

     

Diagnostic

 

Routines

     

This

 

selection

 

will

 

test

 

the

 

machine

 

hardware.

 

Wrap

 

plugs

 

and

     

other

 

advanced

 

functions

 

will

 

not

 

be

 

used.

   

Advanced

 

Diagnostics

 

Routines

     

This

 

selection

 

will

 

test

 

the

 

machine

 

hardware.

 

Wrap

 

plugs

 

and

     

other

 

advanced

 

functions

 

will

 

be

 

used.

   

Task

 

Selection(Diagnostics,

 

Advanced

 

Diagnostics,

 

Service

 

Aids,

 

etc.)

     

This

 

selection

 

will

 

list

 

the

 

tasks

 

supported

 

by

 

these

 

procedures.

     

Once

 

a

 

task

 

is

 

selected,

 

a

 

resource

 

menu

 

may

 

be

 

presented

 

showing

     

all

 

resources

 

supported

 

by

 

the

 

task.

   

Resource

 

Selection

     

This

 

selection

 

will

 

list

 

the

 

resources

 

in

 

the

 

system

 

that

 

are

 

supported

     

by

 

these

 

procedures.

 

Once

 

a

 

resource

 

is

 

selected,

 

a

 

task

 

menu

 

will

     

be

 

presented

 

showing

 

all

 

tasks

 

that

 

can

 

be

 

run

 

on

 

the

 

resource(s).

         

F1=Help

             

F10=Exit

            

F3=Previous

 

Menu

   

194

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Define

 

Terminal

 

Menu

   

DEFINE

 

TERMINAL

   

The

 

terminal

 

is

 

not

 

properly

 

initialized.

 

The

 

following

 

are

 

some

 

of

 

the

 

terminal

 

types

 

that

 

are

 

supported.

    

ibm3101

          

tvi912

          

vt330

  

ibm3151

          

tvi925

          

vt340

  

ibm3161

          

tvi920

          

wyse30

  

ibm3162

          

tvi950

          

wyse50

  

ibm3163

          

vs100

           

wyse60

  

ibm3164

          

vt100

           

wyse100

  

ibmpc

            

vt320

           

wyse350

  

lft

              

sun

   

NOTE:

  

If

 

you

 

are

 

using

 

a

 

Graphics

 

Display,

 

such

 

as

 

a

        

5081

 

or

 

6091

 

display,

 

enter

 

’lft’

 

as

 

the

        

terminal

 

type.

          

If

 

the

 

next

 

screen

 

is

 

unreadable,

 

press

 

<CTRL>

 

C.

   

Please

 

enter

 

a

 

terminal

 

type,

 

or

 

press

 

Enter

 

to

 

return.

   

Missing

 

Resource

 

Selection

 

Menu

 

MISSING

 

RESOURCE

                                                          

801020

     

The

 

list

 

below

 

shows

 

all

 

the

 

missing

 

resources.

 

Make

 

a

 

selection,

 

then

 

press

 

Enter

 

to

 

process

 

missing

 

options

 

resolutions.

 

To

 

list

 

all

 

siblings

 

of

 

a

 

resource,

 

use

 

’List’.

         

fda0

             

00-00-0D

         

Standard

 

I/O

 

Diskette

 

Adapter

     

fd0

                       

F1=Help

             

F4=List

             

F10=Exit

            

Enter

 

F3=Previous

 

Menu

 

Missing

 

Resource

 

Menu

 

MISSING

 

RESOURCE

                                                          

801020

   

The

 

following

 

resource

 

was

 

detected

 

previously,

 

but

 

is

 

not

 

detected

 

now:

   

-

 

fda0

             

00-00-0D

        

Standard

 

I/O

 

Diskette

 

Adapter

   

Has

 

the

 

resource

 

been

 

removed

 

from

 

the

 

system,

 

moved

 

to

 

another

 

location

 

or

 

address,

 

or

 

turned

 

off?

     

The

 

resource

 

has

 

NOT

 

been

 

removed

 

from

 

the

 

system,

 

moved

 

to

     

another

 

location

 

or

 

address,

 

or

 

turned

 

off.

     

This

 

selection

 

will

 

determine

 

why

 

the

 

resource

 

was

 

not

 

detected.

  

Chapter

 

3.

 

Diagnostic

 

Components

 

195



The

 

resource

 

has

 

been

 

removed

 

from

 

the

 

system

 

and

 

should

 

be

     

removed

 

from

 

the

 

system

 

configuration.

   

The

 

resource

 

has

 

been

 

moved

 

to

 

another

 

location

 

and

 

should

 

be

     

removed

 

from

 

the

 

system

 

configuration.

   

The

 

resource

 

has

 

been

 

turned

 

off

 

and

 

should

 

be

 

removed

 

from

     

the

 

system

 

configuration.

   

The

 

resource

 

has

 

been

 

turned

 

off

 

but

 

should

 

remain

 

in

 

the

     

system

 

configuration.

       

F3=Cancel

           

F10=Exit

 

New

 

Resource

 

Menu

 

NEW

 

RESOURCE

                                                              

801030

   

The

 

following

 

new

 

resource(s)

 

were

 

detected.

 

Some

 

resources

 

may

 

require

 

software

 

installation

 

or

 

supplemental

 

media

 

processing

 

to

 

appear

 

on

 

the

 

list.

   

Select

 

an

 

option

 

from

 

the

 

bottom

 

of

 

the

 

list,

 

then

 

press

 

Enter.

     

-

 

rmt0

             

00-04-00-4,0

    

4.0

 

GB

 

4mm

 

Tape

 

Drive

     

1.

 

Continue.

 

The

 

list

 

contains

 

all

 

resources

 

that

 

should

 

appear.

   

2.

 

A

 

resource

 

that

 

should

 

appear

 

on

 

the

 

list

 

is

 

missing.

                       

F3=Cancel

           

F10=Exit

 

Diagnostic

 

Mode

 

Selection

 

Menu

 

DIAGNOSTIC

 

MODE

 

SELECTION

                                                 

801003

   

Move

 

cursor

 

to

 

selection,

 

then

 

press

 

Enter.

     

System

 

Verification

     

This

 

selection

 

will

 

test

 

the

 

system,

 

but

 

will

 

not

 

analyze

 

the

 

error

     

log.

  

Use

 

this

 

option

 

to

 

verify

 

that

 

the

 

machine

 

is

 

functioning

     

correctly

 

after

 

completing

 

a

 

repair

 

or

 

an

 

upgrade.

   

Problem

 

Determination

     

This

 

selection

 

tests

 

the

 

system

 

and

 

analyzes

 

the

 

error

 

log

     

if

 

one

 

is

 

available.

  

Use

 

this

 

option

 

when

 

a

 

problem

 

is

     

suspected

 

on

 

the

 

machine.

                       

F1=Help

             

F10=Exit

            

F3=Previous

 

Menu

   

196

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Resource

 

Selection

 

Menu

 

RESOURCE

 

SELECTION

 

LIST

                                                   

801006

   

From

 

the

 

list

 

below,

 

select

 

any

 

number

 

of

 

resources

 

by

 

moving

 

the

 

cursor

 

to

 

the

 

resource

 

and

 

pressing

 

’Enter’.

 

To

 

cancel

 

the

 

selection,

 

press

 

’Enter’

 

again.

 

To

 

list

 

the

 

supported

 

tasks

 

for

 

the

 

resource

 

highlighted,

 

press

 

’List’.

   

Once

 

all

 

selections

 

have

 

been

 

made,

 

press

 

’Commit’.

 

To

 

exit

 

without

 

selecting

 

a

 

resource,

 

press

 

the

 

’Exit’

 

key.

     

[TOP]

   

All

 

Resources

       

This

 

selection

 

will

 

select

 

all

 

the

 

resources

 

currently

 

displayed.

   

sysplanar0

       

00-00

            

CPU

 

Planar

   

proc0

            

00-00

            

Processor

  

*slc0

             

00-00

            

Serial

 

Optical

 

Link

 

Chip

   

otp0

             

00-AB

            

Serial

 

Optical

 

Channel

 

Converter

  

+op0

              

00-AB-1B

         

Serial

 

Optical

 

Link

 

Port

   

op1

              

00-AB-2B

         

Serial

 

Optical

 

Link

 

Port

 

[MORE...30]

   

F1=Help

             

F4=List

             

F7=Commit

           

F10=Exit

 

F3=Previous

 

Menu

 

v

    

The

 

+

 

by

 

op0

 

indicates

 

that

 

it

 

has

 

been

 

selected.

 

v

    

The

 

*

 

by

 

slc0

 

indicates

 

that

 

it

 

has

 

been

 

selected

 

and

 

run.

 

v

    

Each

 

resource

 

is

 

listed

 

with

 

the

 

parent

 

followed

 

by

 

the

 

children.

 

v

    

Each

 

resource

 

provides

 

the

 

following

 

information:

 

–

    

Device

 

logical

 

name

 

–

    

Device

 

logical

 

location

 

code

 

–

    

Device

 

descriptive

 

text

Resource

 

Selection

 

Menu

 

-

 

Display

 

Common

 

Tasks

 

RESOURCE

 

SELECTION

 

LIST

                                                   

801006

   

From

 

the

 

list

 

below,

 

select

 

any

 

number

 

of

 

resources

 

by

 

moving

 

the

 

cursor

 

to

 

the

 

resource

 

and

 

pressing

 

’Enter’.

 

To

 

cancel

 

the

 

selection,

 

press

 

’Enter’

 

again.

 

To

 

list

 

the

 

supported

 

tasks

 

for

 

the

 

resource

 

highlighted,

 

press

 

’List’.

   

Once

 

all

 

selections

 

have

 

been

 

made,

 

press

 

’Commit’.

 

To

 

exit

 

with--------------------------------------------------------

             

|

                                                      

|

             

|

                                                      

|

 

[MORE...12]

 

|

 

[TOP]

                                                

|

   

sio0

      

|

 

The

 

following

 

tasks

 

are

 

supported

 

by

 

the

 

resource:

   

|

   

siokta0

   

|

                                                      

|

 

+

 

kbd0

      

|

 

(A

 

’*’

 

in

 

front

 

of

 

a

 

task

 

indicates

                  

|

   

sioma0

    

|

 

that

 

it

 

has

 

been

 

selected:

                           

|

 

+

 

mouse0

    

|

    

Run

 

Diagnostics

                                   

|

   

ppa0

      

|

    

Display

 

or

 

Change

 

Diagnostic

 

Run

 

Time

 

Options

     

|er

   

lp0

       

|

    

Display

 

Configuration

 

and

 

Resource

 

List

           

|

   

sa0

       

|

    

Display

 

Hardware

 

Vital

 

Product

 

Data

               

|

 

[MORE...16]

 

|

 

[MORE...5]

                                           

|

             

|

                                                      

|

 

F1=Help

     

|

 

F3=Cancel

        

F10=Exit

         

Enter

              

|

 

F3=Previous

 

--------------------------------------------------------

 

Use

 

the

 

F4=List

 

key

 

to

 

display

 

the

 

common

 

tasks

 

supported

 

by

 

the

 

selected

 

resources.

   

Chapter

 

3.

 

Diagnostic

 

Components

 

197



Test

 

Method

 

Menu

 

TEST

 

METHOD

 

SELECTION

                                                   

801004

    

Move

 

cursor

 

to

 

selection,

 

then

 

press

 

Enter.

      

Run

 

Test

 

Once

    

Run

 

Test

 

Multiple

 

Times

      

This

 

selection

 

should

 

be

 

used

 

when

 

a

 

problem

 

occurs

 

intermittently.

      

This

 

selection

 

will

 

continue

 

testing

 

until

 

’Cancel’

 

is

 

pressed.

  

NOTE:

  

After

 

’Cancel’

 

is

 

pressed,

 

it

 

may

 

take

 

some

 

time

 

before

         

the

 

testing

 

stops.

  

The

 

tests

 

goes

 

through

 

a

 

final

 

phase

         

to

 

return

 

the

 

resources

 

to

 

their

 

original

 

state.

                            

F3=Cancel

          

F10=Exit

 

No

 

Trouble

 

Found

 

Menu

 

TESTING

 

COMPLETE

 

on

 

Wed

 

Jan

  

7

 

14:01:22

 

CST

 

1998

                          

801010

   

No

 

trouble

 

was

 

found.

   

The

 

resources

 

tested

 

were:

   

-

 

proc0

            

00-00

           

Processor

   

Use

 

Enter

 

to

 

continue.

                             

F3=Cancel

           

F10=Exit

            

Enter

 

Problem

 

Report

 

Menu

 

A

 

PROBLEM

 

WAS

 

DETECTED

 

ON

 

Wed

 

Jan

  

7

 

13:45:57

 

CST

 

1998

                    

801014

   

The

 

Service

 

Request

 

Number(s)/Probable

 

Cause

 

or

 

Cause(s):

     

816-185:

  

I/O

 

Planar

 

-

 

key

 

lock

 

failed.

    

65%

  

OP

 

Panel

                            

Operator

 

panel

    

30%

  

Keylock

                             

Operator

 

panel

 

key

 

lock

     

5%

  

ioplanar0

         

00-00

             

I/O

 

Planar

      

198

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Use

 

Enter

 

to

 

continue.

                         

F3=Cancel

           

F10=Exit

            

Enter

 

Additional

 

Resources

 

Menu

 

ADDITIONAL

 

RESOURCES

 

ARE

 

REQUIRED

 

FOR

 

TESTING

                             

801011

   

No

 

trouble

 

was

 

found.

  

However,

 

the

 

resource

 

was

 

not

 

tested

 

because

 

the

 

device

 

driver

 

indicated

 

that

 

the

 

resource

 

was

 

in

 

use.

   

The

 

resource

 

needed

 

is

 

-

 

hdisk0

           

00-04-00-1,0

    

670

 

MB

 

SCSI

 

Disk

 

Drive

   

To

 

test

 

this

 

resource,

 

you

 

can:

   

Free

 

this

 

resource

 

and

 

continue

 

testing.

   

Shut

 

down

 

the

 

system

 

and

 

run

 

in

 

maintenance

 

mode.

   

Run

 

Diagnostics

 

from

 

the

 

Diagnostic

 

Standalone

 

package.

   

Move

 

cursor

 

to

 

selection,

 

then

 

press

 

Enter.

     

Testing

 

should

 

stop.

   

The

 

resource

 

is

 

now

 

free

 

and

 

testing

 

can

 

continue.

             

F3=Cancel

           

F10=Exit

 

Task

 

Selection

 

List

 

Menu

 

TASKS

 

SELECTION

 

LIST

                                                      

801004

     

From

 

the

 

list

 

below,

 

select

 

a

 

task

 

by

 

moving

 

the

 

cursor

 

to

 

the

 

task

 

and

 

pressing

 

’Enter’.

 

To

 

list

 

the

 

resources

 

for

 

the

 

task

 

highlighted,

 

press

 

’List’.

   

[TOP]

   

Run

 

Diagnostics

   

Display

 

or

 

Change

 

Diagnostic

 

Run

 

Time

 

Options

   

Display

 

Service

 

Hints

   

Display

 

Previous

 

Diagnostic

 

Results

   

Display

 

Hardware

 

Error

 

Report

   

Display

 

Software

 

Product

 

Data

   

Display

 

Configuration

 

and

 

Resource

 

List

   

Display

 

Hardware

 

Vital

 

Product

 

Data

   

Display

 

Resource

 

Attributes

   

Change

 

Hardware

 

Vital

 

Product

 

Data

   

Format

 

Media

   

Certify

 

Media

  

Chapter

 

3.

 

Diagnostic

 

Components

 

199



[MORE...21]

   

F1=Help

             

F4=List

             

F10=Exit

            

Enter

 

F3=Previous

 

Menu

 

Task

 

Selection

 

List

 

Menu

 

-

 

Display

 

Supported

 

Resources

 

TASKS

 

SELECTION

 

LIST

                                                      

801004

     

From

 

the

 

list

 

below,

 

select

 

a

 

task

 

by

 

moving

 

the

 

cursor

 

to

 

the

 

task

 

and

 

pressing

 

’Enter’.

 

To

 

list

 

the

 

resources

 

for

 

the

 

task

 

highlighted,

 

press

 

’List’.

   

[TOP]

   

Run

 

Diagno--------------------------------------------------------

   

Display

 

or|

                                                      

|

   

Display

 

Se|

                                                      

|

   

Display

 

Pr|

 

[TOP]

                                                

|

   

Display

 

Ha|

 

The

 

following

 

resources

 

support

 

the

 

current

 

task:

    

|

   

Display

 

So|

 

(A

 

’*’

 

in

 

front

 

of

 

a

 

resource

 

indicates

 

that

 

it

      

|

   

Display

 

Co|

 

has

 

been

 

selected)

                                   

|

   

Display

 

Ha|

    

sysplanar0

                                        

|

   

Display

 

Re|

    

proc0

                                             

|

   

Change

 

Har|

    

slc0

                                              

|

   

Format

 

Med|

    

otp0

                                              

|

   

Certify

 

Me|

    

op0

                                               

|

 

[MORE...21]

 

|

 

[MORE...31]

                                          

|

             

|

                                                      

|

 

F1=Help

     

|

 

F3=Cancel

        

F10=Exit

         

Enter

              

|

 

F3=Previous

 

--------------------------------------------------------

 

Use

 

the

 

F4=List

 

key

 

to

 

display

 

all

 

the

 

resources

 

supported

 

by

 

the

 

selected

 

Task.

 

Run

 

Time

 

Options

 

Menu

 

DISPLAY/CHANGE

 

DIAGNOSTIC

 

RUN

 

TIME

 

OPTIONS

                                

801009

   

Select

 

values

 

for

 

the

 

options

 

below.

 

When

 

finished,

 

use

 

’Commit’

 

to

 

continue.

   

Display

 

Diagnostic

 

Mode

 

Selection

 

Menus

                         

[On]

        

+

   

Include

 

Advanced

 

Diagnostics

                                    

[Off]

       

+

   

Include

 

Error

 

Log

 

Analysis

                                      

[Off]

       

+

   

Number

 

of

 

days

 

used

 

to

 

search

 

error

 

log

                         

[7]

         

+

   

Save

 

changes

 

to

 

the

 

database?

                                   

[NO]

        

+

                           

F1=Help

             

F2=Refresh

          

F3=Cancel

           

F4=List

 

F5=Reset

            

F7=Commit

           

F10=Exit

   

200

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Chapter

 

4.

 

Diagnostic

 

Features

 

This

 

chapter

 

contains

 

information

 

on

 

the

 

various

 

features

 

that

 

the

 

Diagnostic

 

Subsystem

 

environment

 

provides.

 

v

   

Missing

 

Options

 

Resolution

 

v

   

Error

 

Log

 

Analysis

 

v

   

Periodic

 

Diagnostic

 

Testing

 

v

   

Automatic

 

Error

 

Log

 

Analysis(DIAGELA)

 

v

   

Loop

 

Testing

Missing

 

Options

 

Resolution

 

This

 

section

 

describes

 

the

 

Missing

 

Options

 

Resolution

 

Procedure

 

performed

 

by

 

Diagnostics

 

when

 

a

 

change

 

in

 

the

 

system

 

configuration

 

has

 

been

 

detected.

 

This

 

procedure

 

can

 

be

 

run

 

to

 

clean

 

up

 

the

 

system

 

configuration

 

database,

 

or

 

to

 

determine

 

why

 

previously

 

detected

 

resources

 

are

 

no

 

longer

 

found

 

by

 

the

 

operating

 

system.

 

Each

 

time

 

the

 

system

 

boots

 

from

 

an

 

installed

 

hardfile,

 

the

 

device

 

configuration

 

database

 

(CuDv)

 

that

 

is

 

stored

 

on

 

the

 

hardfile

 

from

 

the

 

previous

 

IPL

 

is

 

compared

 

against

 

the

 

resources

 

detected

 

on

 

the

 

current

 

IPL.

 

Detectable

 

resources

 

that

 

were

 

found

 

on

 

the

 

previous

 

IPL

 

but

 

not

 

the

 

current

 

IPL

 

are

 

marked

 

as

 

MISSING.

 

Devices

 

that

 

were

 

found

 

on

 

the

 

current

 

IPL,

 

but

 

not

 

present

 

in

 

the

 

previous

 

IPL

 

are

 

marked

 

as

 

NEW.

 

The

 

customized

 

device

 

entry

 

CuDv

 

chgstatus

 

field

 

is

 

set

 

to

 

the

 

changed

 

status

 

for

 

each

 

resource.

 

These

 

changed

 

status

 

values

 

can

 

be

 

found

 

in

 

/usr/include/sys/cfgdb.h

 

file.

 

When

 

booting

 

a

 

system

 

in

 

normal

 

mode,

 

a

 

message

 

is

 

written

 

to

 

the

 

console

 

if

 

any

 

devices

 

have

 

been

 

detected

 

as

 

MISSING.

 

This

 

message

 

states:

         

A

 

device

 

that

 

was

 

previously

 

detected

 

could

 

not

 

be

 

found.

           

Run

 

diag

 

-a

 

to

 

update

 

the

 

system

 

configuration.

 

The

 

diag

 

-a

 

command

 

can

 

then

 

be

 

run

 

to

 

process

 

the

 

missing

 

options

 

resolution

 

procedure.

 

When

 

booting

 

a

 

system

 

in

 

online

 

service

 

mode,

 

the

 

missing

 

options

 

resolution

 

procedure

 

is

 

run

 

automatically

 

if

 

any

 

missing

 

devices

 

were

 

detected.

 

The

 

following

 

sections

 

describe

 

how

 

the

 

Diagnostic

 

Controller

 

presents

 

information

 

to

 

the

 

Diagnostic

 

Applications

 

that

 

get

 

invoked

 

during

 

Missing

 

Options.

 

Online

 

Concurrent

 

Diagnostics

 

Missing

 

Options

 

Resolution

 

procedure

 

can

 

be

 

run

 

in

 

online

 

concurrent

 

mode

 

by

 

using

 

the

 

following

 

command:

 

%

 

diag

 

-a

 

//

 

Runs

 

in

 

Customer

 

Mode

 

OR

 

%

 

diag

 

-a

 

-A

 

//

 

Runs

 

in

 

Advanced

 

Mode

 

The

 

first

 

screen

 

seen

 

by

 

the

 

user

 

is

 

the

 

MISSING

 

RESOURCE

 

Menu,

 

801020.

 

The

 

following

 

TMInput

 

is

 

an

 

example

 

of

 

the

 

input

 

given

 

to

 

the

 

Diagnostic

 

Application

 

when

 

running

 

the

 

diag

 

-a

 

command.

  

©

 

Copyright

 

IBM

 

Corp.

 

1997,

 

2004

 

201



TMInput:

         

exenv

 

=

 

4

               

//

 

Concurrent

 

Environment

         

advanced

 

=

 

0

            

//

 

Customer

 

Mode

         

system

 

=

 

0

              

//

 

Option

 

Checkout

         

dmode

 

=

 

4

               

//

 

System

 

Verification

         

date

 

=

 

"-s

 

START

 

-e

 

NOW"//

 

START

 

=

 

NOW

 

-

 

24

 

hours.

         

loopmode

 

=

 

1

            

//

 

Not

 

in

 

Loop

 

Mode

         

lcount

 

=

 

0

         

lerrors

 

=

 

0

         

console

 

=

 

1

             

//

 

Console

 

Available

         

parent

 

=

 

"parent0"

      

//

 

Parent

 

of

 

resource

 

to

 

test

         

parentloc

 

=

 

"AB-CD"

     

//

 

Parent’s

 

Location

 

Code

         

dname

 

=

 

"resource0"

     

//

 

Name

 

of

 

resource

 

to

 

test

         

dnameloc

 

=

 

"AB-CD"

      

//

 

Resource’s

 

Location

 

Code

         

child1

 

=

 

"child0"

       

//

 

Missing

 

Child

 

of

 

Resource

         

state1

 

=

 

3

              

//

 

State

 

of

 

Child

 

is

 

MISSING

         

childloc1

 

=

 

"AB-CD"

     

//

 

Child’s

 

Location

 

Code

         

child2

 

=

 

""

         

state2

 

=

 

0

         

childloc2

 

=

 

""

 

The

 

following

 

TMInput

 

is

 

an

 

example

 

of

 

the

 

input

 

given

 

to

 

the

 

Diagnostic

 

Application

 

when

 

running

 

the

 

diag

 

-a

 

-A

 

command.

 

TMInput:

         

exenv

 

=

 

4

               

//

 

Concurrent

 

Environment

         

advanced

 

=

 

1

            

//

 

Advanced

 

Mode

         

system

 

=

 

0

              

//

 

Option

 

Checkout

         

dmode

 

=

 

4

               

//

 

System

 

Verification

         

date

 

=

 

"-s

 

START

 

-e

 

NOW"//

 

START

 

=

 

NOW

 

-

 

24

 

hours.

         

loopmode

 

=

 

1

            

//

 

Not

 

in

 

Loop

 

Mode

         

lcount

 

=

 

0

         

lerrors

 

=

 

0

         

console

 

=

 

1

             

//

 

Console

 

Available

         

parent

 

=

 

"parent0"

      

//

 

Parent

 

of

 

resource

 

to

 

test

         

parentloc

 

=

 

"AB-CD"

     

//

 

Parent’s

 

Location

 

Code

         

dname

 

=

 

"resource0"

     

//

 

Name

 

of

 

resource

 

to

 

test

         

dnameloc

 

=

 

"AB-CD"

      

//

 

Resource’s

 

Location

 

Code

         

child1

 

=

 

"child0"

       

//

 

Missing

 

Child

 

of

 

Resource

         

state1

 

=

 

3

              

//

 

State

 

of

 

Child

 

is

 

MISSING

         

childloc1

 

=

 

"AB-CD"

     

//

 

Child’s

 

Location

 

Code

         

child2

 

=

 

""

         

state2

 

=

 

0

         

childloc2

 

=

 

""

 

Online

 

Service

 

Diagnostics

 

Missing

 

Options

 

Resolution

 

procedure

 

is

 

run

 

automatically

 

in

 

online

 

service

 

mode

 

when

 

Diagnostics

 

or

 

Advanced

 

Diagnostics

 

selection

 

is

 

made

 

from

 

the

 

FUNCTION

 

SELECTION

 

Menu.

 

When

 

booting

 

a

 

system

 

in

 

online

 

service

 

mode,

 

the

 

OPERATING

 

INSTRUCTIONS

 

Menu

 

and

 

the

 

FUNCTION

 

SELECTION

 

Menu

 

are

 

displayed

 

in

 

phase

 

1

 

by

 

the

 

service

 

mode

 

boot

 

script.

 

Once

 

a

 

selection

 

is

 

made,

 

the

 

selection

 

is

 

stored

 

in

 

/etc/lpp/diagnostics/data/fastdiag

 

file,

 

and

 

phase

 

2

 

of

 

the

 

boot

 

process

 

commences.

 

The

 

Diagnostic

 

Application

 

that

 

gets

 

called

 

due

 

to

 

a

 

missing

 

child

 

resource,

 

after

 

selecting

 

Diagnostic

 

Routines

 

from

 

the

 

FUNCTION

 

SELECTION

 

menu,

 

gets

 

a

 

TMInput

 

shown

 

below:

 

TMInput:

         

exenv

 

=

 

2

               

//

 

Standalone

 

Environment

         

advanced

 

=

 

0

            

//

 

Customer

 

Mode

         

system

 

=

 

0

              

//

 

Option

 

Checkout

         

dmode

 

=

 

4

               

//

 

System

 

Verification

         

date

 

=

 

"-s

 

START

 

-e

 

NOW"//

 

START

 

=

 

NOW

 

-

 

24

 

hours.

         

loopmode

 

=

 

1

            

//

 

Not

 

in

 

Loop

 

Mode

         

lcount

 

=

 

0

  

202

 

Understanding

 

the

 

Diagnostic

 

Subsystem



lerrors

 

=

 

0

         

console

 

=

 

1

             

//

 

Console

 

Available

         

parent

 

=

 

"parent0"

      

//

 

Parent

 

of

 

resource

 

to

 

test

         

parentloc

 

=

 

"AB-CD"

     

//

 

Parent’s

 

Location

 

Code

         

dname

 

=

 

"resource0"

     

//

 

Name

 

of

 

resource

 

to

 

test

         

dnameloc

 

=

 

"AB-CD"

      

//

 

Resource’s

 

Location

 

Code

         

child1

 

=

 

"child0"

       

//

 

Missing

 

Child

 

of

 

Resource

         

state1

 

=

 

3

              

//

 

State

 

of

 

Child

 

is

 

MISSING

         

childloc1

 

=

 

"AB-CD"

     

//

 

Child’s

 

Location

 

Code

         

child2

 

=

 

""

         

state2

 

=

 

0

         

childloc2

 

=

 

""

 

The

 

Diagnostic

 

Application

 

that

 

gets

 

called

 

due

 

to

 

a

 

missing

 

child

 

resource,

 

after

 

selecting

 

Advanced

 

Diagnostic

 

Routines

 

from

 

the

 

FUNCTION

 

SELECTION

 

menu,

 

gets

 

a

 

TMInput

 

shown

 

below:

 

TMInput:

         

exenv

 

=

 

2

               

//

 

Standalone

 

Environment

         

advanced

 

=

 

1

            

//

 

Advanced

 

Mode

         

system

 

=

 

0

              

//

 

Option

 

Checkout

         

dmode

 

=

 

4

               

//

 

System

 

Verification

         

date

 

=

 

"-s

 

START

 

-e

 

NOW"//

 

START

 

=

 

NOW

 

-

 

24

 

hours.

         

loopmode

 

=

 

1

            

//

 

Not

 

in

 

Loop

 

Mode

         

lcount

 

=

 

0

         

lerrors

 

=

 

0

         

console

 

=

 

1

             

//

 

Console

 

Available

         

parent

 

=

 

"parent0"

      

//

 

Parent

 

of

 

resource

 

to

 

test

         

parentloc

 

=

 

"AB-CD"

     

//

 

Parent’s

 

Location

 

Code

         

dname

 

=

 

"resource0"

     

//

 

Name

 

of

 

resource

 

to

 

test

         

dnameloc

 

=

 

"AB-CD"

      

//

 

Resource’s

 

Location

 

Code

         

child1

 

=

 

"child0"

       

//

 

Missing

 

Child

 

of

 

Resource

         

state1

 

=

 

3

              

//

 

State

 

of

 

Child

 

is

 

MISSING

         

childloc1

 

=

 

"AB-CD"

     

//

 

Child’s

 

Location

 

Code

         

child2

 

=

 

""

         

state2

 

=

 

0

         

childloc2

 

=

 

""

 

Standalone

 

Diagnostics

 

(POWER-based

 

only)

 

Missing

 

Options

 

Resolution

 

procedure

 

is

 

not

 

run

 

during

 

Standalone

 

Diagnostics.

 

The

 

reason

 

for

 

this

 

is

 

that

 

there

 

is

 

no

 

previous

 

configuration

 

database

 

for

 

the

 

Diagnostic

 

Controller

 

to

 

compare

 

against

 

with

 

the

 

new

 

devices

 

detected

 

at

 

boot

 

time.

 

Therefore,

 

only

 

the

 

NEW

 

RESOURCES

 

menu

 

is

 

seen

 

during

 

Standalone

 

Diagnostics.

 

This

 

menu

 

presents

 

a

 

list

 

of

 

all

 

the

 

resources

 

found

 

in

 

the

 

system

 

at

 

the

 

time

 

the

 

Standalone

 

Diagnostics

 

were

 

booted.

 

The

 

user

 

is

 

given

 

a

 

list

 

of

 

choices

 

to

 

make

 

during

 

this

 

time.

 

If

 

the

 

system

 

contains

 

ISA

 

adapters,

 

then

 

these

 

adapters

 

will

 

not

 

appear

 

in

 

the

 

list.

 

ISA

 

adapters

 

are

 

not

 

detectable,

 

therefore

 

an

 

option

 

is

 

presented

 

to

 

the

 

user

 

to

 

help

 

in

 

the

 

configuration

 

of

 

these

 

adapters.

 

Missing

 

Options

 

Procedure

 

Steps

 

The

 

following

 

describes

 

the

 

steps

 

performed

 

by

 

the

 

Diagnostic

 

Controller

 

when

 

running

 

the

 

Missing

 

Options

 

Procedure.

 

1.

   

The

 

Diagnostic

 

Controller

 

keeps

 

a

 

sorted

 

list

 

of

 

all

 

resources

 

found

 

in

 

the

 

system

 

as

 

represented

 

by

 

the

 

Customized

 

Device

 

object

 

class.

 

This

 

list

 

is

 

walked

 

finding

 

all

 

resources

 

that

 

are

 

tagged

 

as

 

MISSING.

 

2.

   

Present

 

the

 

Missing

 

Device

 

menu

 

for

 

all

 

MISSING

 

devices.

 

This

 

menu

 

lists

 

each

 

missing

 

device

 

with

 

any

 

children

 

devices

 

indented

 

a

 

few

 

spaces.

 

Missing

 

Options

 

Resolution

 

Procedure

 

can

 

only

 

be

 

performed

 

on

 

the

 

missing

 

devices

 

that

 

do

 

not

 

have

 

a

 

parent

 

also

 

missing.

 

See

 

MISSING

 

RESOURCE

 

Menu

 

for

 

an

 

example

 

of

 

this

 

menu.

   

Chapter

 

4.

 

Diagnostic

 

Features

 

203



3.

   

After

 

selection

 

of

 

a

 

device,

 

present

 

the

 

Missing

 

Device

 

Resolution

 

menu.

 

The

 

menu

 

asks

 

the

 

user

 

if

 

the

 

device

 

was

 

moved,

 

removed,

 

or

 

turned

 

off.

 

The

 

following

 

selections

 

may

 

be

 

chosen:

 

a.

   

The

 

resource

 

has

 

NOT

 

been

 

removed

 

from

 

the

 

system,

 

moved

 

to

 

another

 

location

 

or

 

address,

 

or

 

turned

 

off.

 

This

 

selection

 

will

 

determine

 

why

 

the

 

resource

 

was

 

not

 

detected.

 

1)

   

Test

 

the

 

path

 

to

 

the

 

missing

 

device.

 

2)

   

If

 

a

 

device

 

in

 

the

 

path

 

is

 

defective,

 

then

 

skip

 

to

 

the

 

next

 

″missing″

 

device

 

in

 

the

 

list

 

that

 

is

 

not

 

dependent

 

on

 

the

 

one

 

just

 

named.

 

Note

 

that

 

the

 

defective

 

device

 

in

 

the

 

path

 

has

 

been

 

added

 

to

 

the

 

FRU

 

Bucket

 

object

 

class

 

by

 

the

 

Diagnostic

 

Application

 

(DA).

 

3)

   

Return

 

to

 

the

 

step

 

where

 

the

 

missing

 

device

 

menu

 

was

 

presented.

 

4)

   

If

 

an

 

EnclDAName

 

DA

 

is

 

named,

 

call

 

it.

 

5)

   

If

 

a

 

problem

 

was

 

detected,

 

skip

 

to

 

the

 

next

 

missing

 

device

 

in

 

the

 

list

 

that

 

has

 

a

 

different

 

parent,

 

and

 

return

 

to

 

the

 

step

 

where

 

the

 

Missing

 

Device

 

menu

 

was

 

presented.

 

6)

   

If

 

a

 

missing

 

device

 

procedure

 

was

 

specified

 

(suptests

 

&

 

SUPTESTS_MS1),

 

then

 

call

 

it.

 

Note

 

that

 

the

 

DA

 

should

 

conclude

 

that

 

there

 

is

 

a

 

problem.

 

7)

   

Skip

 

to

 

the

 

next

 

missing

 

device

 

in

 

the

 

list

 

that

 

is

 

not

 

dependent

 

on

 

the

 

current

 

missing

 

device.

 

8)

   

Return

 

to

 

the

 

step

 

where

 

the

 

Missing

 

Device

 

menu

 

was

 

presented.

 

9)

   

If

 

a

 

missing

 

device

 

procedure

 

was

 

not

 

specified,

 

then

 

add

 

the

 

device

 

to

 

the

 

FRU

 

Bucket

 

object

 

class

 

by

 

the

 

addfrub

 

subroutine.

 

The

 

default

 

information

 

is

 

obtained

 

from

 

the

 

Predefined

 

Device

 

object

 

class.

b.

   

The

 

resource

 

has

 

been

 

removed

 

from

 

the

 

system

 

and

 

should

 

be

 

removed

 

from

 

the

 

system

 

configuration.

 

1)

   

If

 

the

 

DA

 

for

 

the

 

missing

 

device

 

supports

 

the

 

Missing

 

Device

 

Procedure

 

2

 

(suptests==SUPTESTS_MS2),

 

then

 

call

 

the

 

DA.

 

The

 

Diagnostic

 

Controller

 

does

 

not

 

automatically

 

delete

 

the

 

device

 

from

 

the

 

system

 

configuration.

 

2)

   

Otherwise,

 

flag

 

the

 

device

 

to

 

be

 

deleted.

c.

   

The

 

resource

 

has

 

been

 

moved

 

to

 

another

 

location

 

and

 

should

 

be

 

removed

 

from

 

the

 

system

 

configuration.

 

1)

   

Display

 

a

 

list

 

of

 

the

 

new

 

devices

 

that

 

are

 

of

 

the

 

same

 

type

 

so

 

that

 

the

 

user

 

can

 

identify

 

where

 

the

 

missing

 

device

 

was

 

moved.

 

This

 

list

 

should

 

contain

 

a

 

default

 

selection

 

for

 

″Not

 

Listed″

 

in

 

the

 

event

 

that

 

the

 

device

 

was

 

not

 

detected

 

in

 

its

 

new

 

location,

 

in

 

which

 

case

 

a

 

default

 

service

 

request

 

number

 

(SRN)

 

should

 

be

 

generated.

 

2)

   

Assuming

 

the

 

user

 

identified

 

a

 

new

 

location:

 

a)

   

If

 

the

 

missing

 

device

 

has

 

children

 

which

 

are

 

non-detectable:

 

v

   

Present

 

a

 

menu

 

to

 

the

 

user

 

asking

 

if

 

the

 

children

 

should

 

be

 

reconfigured

 

to

 

the

 

new

 

device.

 

The

 

menu

 

should

 

contain

 

a

 

single

 

selection

 

for

 

all

 

of

 

the

 

devices

 

and

 

additional

 

selections

 

for

 

the

 

individual

 

devices.

 

v

   

When

 

a

 

device

 

is

 

chosen,

 

the

 

parent

 

field

 

needs

 

to

 

be

 

changed

 

and

 

the

 

device

 

configured.

 

The

 

mkdev

 

command

 

is

 

used

 

to

 

configure

 

the

 

device.

b)

   

Delete

 

the

 

missing

 

device

 

and

 

any

 

children

 

that

 

have

 

not

 

been

 

reconfigured.

d.

   

The

 

resource

 

has

 

been

 

turned

 

off

 

and

 

should

 

be

 

removed

 

from

 

the

 

system

 

configuration.

 

1)

   

Flag

 

the

 

device

 

to

 

be

 

removed

 

from

 

the

 

configuration

 

database.

e.

   

The

 

resource

 

has

 

been

 

turned

 

off

 

but

 

should

 

remain

 

in

 

the

 

system

 

configuration.

 

1)

   

Do

 

nothing.

4.

   

Once

 

all

 

the

 

missing

 

devices

 

have

 

been

 

processed

 

through

 

one

 

of

 

the

 

selections

 

above,

 

then

 

perform

 

the

 

following:

 

a.

   

Report

 

any

 

problems

 

found.

 

b.

   

Delete

 

the

 

devices

 

that

 

were

 

previously

 

flagged

 

to

 

be

 

deleted.

   

204

 

Understanding

 

the

 

Diagnostic

 

Subsystem



c.

   

If

 

a

 

new

 

resource

 

has

 

been

 

added,

 

then

 

display

 

a

 

list

 

of

 

the

 

new

 

devices.

 

Ask

 

the

 

user

 

if

 

the

 

list

 

is

 

correct.

 

1)

   

If

 

Yes,

 

then

 

exit.

 

2)

   

If

 

No,

 

display

 

predefined

 

SRN

 

indicating

 

some

 

new

 

devices

 

were

 

not

 

detected.

 

Exit.

Error

 

Log

 

Analysis

 

Error

 

log

 

analysis

 

does

 

not

 

test

 

the

 

resource.

 

Instead

 

this

 

method

 

searches

 

the

 

operating

 

system

 

error

 

log

 

for

 

an

 

entry

 

(or

 

entries)

 

related

 

to

 

the

 

resource.

 

If

 

an

 

entry

 

is

 

found,

 

then

 

an

 

analysis

 

is

 

performed

 

on

 

the

 

error

 

that

 

was

 

logged,

 

and

 

a

 

determination

 

is

 

made

 

by

 

the

 

Diagnostic

 

Application

 

as

 

to

 

whether

 

the

 

resource

 

should

 

be

 

called

 

out

 

as

 

being

 

bad.

 

Error

 

log

 

analysis

 

is

 

performed

 

via

 

different

 

methods

 

with

 

the

 

Diagnostic

 

Subsystem.

 

One

 

method

 

is

 

that

 

error

 

log

 

analysis

 

is

 

performed

 

automatically

 

whenever

 

a

 

permanent

 

hardware

 

error

 

is

 

logged

 

to

 

the

 

operating

 

system

 

error

 

log.

 

This

 

method

 

is

 

called

 

Automatic

 

Error

 

Log

 

Analysis

 

(DIAGELA).

 

A

 

second

 

method

 

can

 

be

 

set

 

up

 

to

 

run

 

diagnostics

 

automatically

 

at

 

a

 

pre-set

 

time

 

of

 

the

 

day.

 

This

 

method

 

is

 

referred

 

to

 

as

 

Periodic

 

Diagnostics.

 

A

 

third

 

method

 

can

 

be

 

run

 

directly

 

from

 

the

 

command

 

line

 

by

 

using

 

the

 

-e

 

flag

 

with

 

the

 

diag

 

command.

 

A

 

fourth

 

method

 

is

 

invoked

 

automatically

 

whenever

 

diagnostics

 

is

 

ran

 

in

 

Problem

 

Determination

 

Mode

 

after

 

first

 

starting

 

diagnostics.

 

This

 

method

 

is

 

described

 

below.

 

Running

 

Problem

 

Determination

 

Mode

 

in

 

Diagnostics

 

If

 

Problem

 

Determination

 

mode

 

is

 

selected

 

upon

 

entering

 

diagnostics

 

the

 

first

 

time,

 

the

 

Diagnostic

 

Controller

 

searches

 

the

 

operating

 

system

 

error

 

log

 

for

 

any

 

Permanent

 

Hardware

 

errors.

 

If

 

any

 

errors

 

were

 

logged

 

within

 

the

 

last

 

24

 

hours,

 

the

 

appropriate

 

Diagnostic

 

Application

 

is

 

called

 

to

 

analyze

 

the

 

error

 

log.

 

If

 

an

 

problem

 

is

 

suspected

 

due

 

to

 

an

 

error

 

logged,

 

a

 

Problem

 

Report

 

screen

 

will

 

be

 

presented

 

to

 

the

 

user.

 

If

 

no

 

problem

 

is

 

found,

 

then

 

the

 

Resource

 

Selection

 

menu

 

is

 

displayed.

 

Periodic

 

Diagnostics

 

Periodic

 

testing

 

of

 

the

 

disk

 

drives

 

and

 

battery

 

are

 

enabled

 

by

 

default.

 

The

 

disk

 

diagnostics

 

perform

 

disk

 

error

 

log

 

analysis

 

on

 

all

 

disks.

 

The

 

battery

 

test

 

checks

 

the

 

real

 

time

 

clock

 

and

 

NV-RAM

 

battery.

 

Periodic

 

diagnostics

 

are

 

performed

 

in

 

different

 

ways,

 

depending

 

on

 

the

 

diagnostic

 

version.

 

Use

 

the

 

Periodic

 

Diagnostics

 

task

 

to

 

change

 

the

 

test

 

times

 

or

 

to

 

add

 

other

 

resources

 

to

 

the

 

list.

 

Processors

 

that

 

are

 

dynamically

 

removed

 

from

 

the

 

system

 

will

 

also

 

be

 

removed

 

from

 

the

 

periodic

 

test

 

list.

 

Processors

 

that

 

are

 

dynamically

 

added

 

are

 

automatically

 

added

 

to

 

the

 

periodic

 

test

 

list.

 

AIX

 

Version

 

3

 

Periodic

 

testing

 

of

 

the

 

disk

 

drives

 

and

 

battery

 

are

 

performed

 

by

 

a

 

root

 

crontab

 

entry.

 

One

 

entry

 

in

 

the

 

root

 

crontab

 

table

 

runs

 

disk

 

diagnostics

 

at

 

3:01

 

a.m.

 

each

 

day.

 

Another

 

entry

 

tests

 

the

 

battery

 

at

 

4:01

 

a.m.

 

each

 

day.

 

These

 

tests

 

can

 

be

 

disabled

 

by

 

editing

 

the

 

root

 

crontab

 

file.

 

The

 

disk

 

entry

 

is

 

/etc/lpp/diagnostics/bin/run_ela

 

while

 

the

 

battery

 

entry

 

is

 

/etc/lpp/diagnostics/bin/test_batt.

 

Problems

 

are

 

reported

 

by

 

a

 

message

 

to

 

the

 

system

 

console

 

and

 

logged

 

in

 

the

 

error

 

log.

 

Diagnostics

 

must

 

be

 

run

 

for

 

a

 

SRN

 

to

 

be

 

reported.

 

Running

 

diagnostics

 

in

 

this

 

mode

 

is

 

similar

 

to

 

using

 

thediag

 

-c

 

-e

 

-d

 

″device″

 

command.

   

Chapter

 

4.

 

Diagnostic

 

Features

 

205



AIX

 

Version

 

4

 

Periodic

 

testing

 

is

 

controlled

 

by

 

the

 

Periodic

 

Diagnostic

 

Service

 

Aid.

 

The

 

Periodic

 

Diagnostic

 

Service

 

Aid

 

allows

 

error

 

log

 

analysis

 

to

 

be

 

run

 

on

 

a

 

hardware

 

resource

 

once

 

a

 

day.

 

The

 

battery

 

and

 

all

 

disk

 

drives

 

are

 

enabled

 

to

 

run.

 

Error

 

log

 

analysis

 

is

 

performed

 

on

 

all

 

the

 

disk

 

drives

 

at

 

3:00

 

a.m.

 

each

 

day.

 

Other

 

devices

 

as

 

necessary

 

can

 

be

 

added

 

into

 

the

 

Periodic

 

Diagnostic

 

Device

 

list

 

to

 

run

 

at

 

various

 

other

 

times,

 

if

 

desired.

 

Problems

 

are

 

reported

 

by

 

a

 

message

 

to

 

the

 

system

 

console

 

and

 

a

 

mail

 

message

 

to

 

all

 

users

 

of

 

the

 

system

 

group.

 

The

 

message

 

contains

 

the

 

SRN.

 

Running

 

diagnostics

 

in

 

this

 

mode

 

for

 

planar

 

and

 

memory

 

tests

 

is

 

similar

 

to

 

using

 

the

 

diag

 

-c

 

-d

 

″device″

 

command.

 

All

 

other

 

devices

 

are

 

invoked

 

with

 

the

 

’-e’

 

flag

 

appended.

 

Technical

 

Description

 

The

 

Diagnostic

 

daemon

 

diagd

 

executes

 

once

 

the

 

bos.diag

 

diagnostic

 

package

 

is

 

installed.

 

The

 

diagd

 

looks

 

for

 

customized

 

entries

 

in

 

CDiagAtt

 

odm

 

database

 

to

 

determine

 

which

 

devices

 

to

 

run

 

at

 

which

 

times.

 

(For

 

AIX

 

4.1,

 

the

 

database

 

is

 

CDiagDev.)

 

The

 

database

 

is

 

built

 

when

 

diagnostics

 

are

 

run

 

or

 

the

 

Periodic

 

Diagnostic

 

Service

 

Aid

 

is

 

run

 

to

 

change

 

run

 

times

 

for

 

devices.

 

If

 

the

 

database

 

has

 

no

 

entries

 

(for

 

example,

 

when

 

diagnostics

 

have

 

never

 

been

 

run),

 

then

 

default

 

times

 

are

 

given

 

to

 

the

 

ioplanar

 

battery

 

test

 

and

 

disk

 

drives.

 

The

 

following

 

is

 

an

 

example

 

of

 

CDiagAtt

 

entries.

 

CDiagAtt->attribute

 

=

 

p_test_time

 

CDiagAtt->value

 

=

 

9999

 

Do

 

not

 

test

         

=

 

0400

 

Test

 

at

 

4AM

 

The

 

diagd

 

sets

 

a

 

timer

 

to

 

wake

 

up

 

at

 

the

 

next

 

scheduled

 

time

 

to

 

run.

 

Once

 

diagd

 

wakes

 

up,

 

the

 

script

 

/usr/lpp/diagnostics/bin/diagela

 

is

 

executed

 

with

 

the

 

-t

 

flag.

 

diagela

 

checks

 

the

 

PDiagAtt->test_mode

 

bit

 

for

 

the

 

device

 

to

 

determine

 

whether

 

that

 

device

 

should

 

be

 

tested

 

in

 

this

 

mode.

 

If

 

the

 

bit

 

is

 

not

 

set,

 

diagela

 

does

 

not

 

test

 

the

 

device.

 

If

 

the

 

bit

 

is

 

set,

 

diagnostics

 

are

 

run

 

on

 

the

 

device

 

with

 

the

 

-e

 

(ELA)

 

flag

 

set.

 

Automatic

 

Error

 

Log

 

Analysis

 

(DIAGELA)

 

Automatic

 

Error

 

Log

 

Analysis

 

(diagela)

 

provides

 

the

 

capability

 

to

 

do

 

error

 

log

 

analysis

 

whenever

 

a

 

permanent

 

hardware

 

error

 

is

 

logged.

 

Whenever

 

a

 

permanent

 

hardware

 

resource

 

error

 

is

 

logged

 

and

 

the

 

diagela

 

program

 

is

 

enabled,

 

the

 

diagela

 

program

 

is

 

invoked.

 

Automatic

 

Error

 

Log

 

Analysis

 

is

 

enabled

 

by

 

default

 

on

 

all

 

platforms.

 

The

 

diagela

 

program

 

determines

 

whether

 

the

 

error

 

should

 

be

 

analyzed

 

by

 

the

 

diagnostics.

 

If

 

the

 

error

 

should

 

be

 

analyzed,

 

a

 

diagnostic

 

application

 

will

 

be

 

invoked

 

and

 

the

 

error

 

will

 

be

 

analyzed.

 

No

 

testing

 

is

 

done.

 

If

 

the

 

diagnostics

 

determines

 

that

 

the

 

error

 

requires

 

a

 

service

 

action,

 

it

 

sends

 

a

 

message

 

to

 

your

 

console

 

and

 

to

 

all

 

system

 

groups.

 

The

 

message

 

contains

 

the

 

SRN,

 

or

 

a

 

corrective

 

action.

 

Running

 

diagnostics

 

in

 

this

 

mode

 

is

 

similar

 

to

 

using

 

the

 

diag

 

-c

 

-e

 

-d

 

device

 

command.

 

Notification

 

can

 

also

 

be

 

customized

 

by

 

adding

 

a

 

stanza

 

to

 

the

 

PDiagAtt

 

object

 

class.

 

The

 

following

 

example

 

illustrates

 

how

 

a

 

customer’s

 

program

 

can

 

be

 

invoked

 

in

 

place

 

of

 

the

 

normal

 

mail

 

message:

 

PDiagAtt:

   

DClass

 

=

 

""

 

DSClass

 

=

 

""

 

DType

 

=

 

""

 

attribute

 

=

 

"diag_notify"

 

value

 

=

 

"/usr/bin/customer_notify_program

 

$1

 

$2

 

$3

 

$4

 

$5

 

$6"

 

DApp

 

=

 

""

   

206

 

Understanding

 

the

 

Diagnostic

 

Subsystem



If

 

DClass,

 

DSClass,

 

and

 

DType

 

are

 

blank,

 

then

 

the

 

customer_notify_program

 

will

 

apply

 

for

 

ALL

 

devices.

 

Filling

 

in

 

the

 

DClass,

 

DSClass,

 

and

 

DType

 

with

 

specifics

 

will

 

cause

 

the

 

customer_notify_program

 

to

 

be

 

invoked

 

only

 

for

 

that

 

device

 

type.

 

Once

 

the

 

above

 

stanza

 

is

 

added

 

to

 

the

 

ODM

 

data

 

base,

 

problems

 

will

 

be

 

displayed

 

on

 

the

 

system

 

console

 

and

 

the

 

program

 

specified

 

in

 

the

 

value

 

field

 

of

 

the

 

diag_notify

 

pre-defined

 

attribute

 

will

 

be

 

invoked.

 

The

 

following

 

keywords

 

will

 

be

 

expanded

 

automatically

 

as

 

arguments

 

to

 

the

 

notify

 

program:

  

$1

 

the

 

keyword

 

diag_notify

 

$2

 

the

 

resource

 

name

 

that

 

reported

 

the

 

problem

 

$3

 

the

 

Service

 

Request

 

Number

 

$4

 

the

 

device

 

type

 

$5

 

the

 

error

 

label

 

from

 

the

 

error

 

log

 

entry

 

$6

 

the

 

process

 

id

 

of

 

the

 

diagnostic

 

session

 

reporting

 

the

 

problem

   

In

 

the

 

case

 

where

 

no

 

diagnostic

 

program

 

is

 

found

 

to

 

analyze

 

the

 

error

 

log

 

entry,

 

or

 

analysis

 

is

 

done

 

but

 

no

 

error

 

was

 

reported,

 

a

 

separate

 

program

 

can

 

be

 

specified

 

to

 

be

 

invoked.

 

This

 

is

 

accomplished

 

by

 

adding

 

a

 

stanza

 

to

 

the

 

PDiagAtt

 

object

 

class

 

with

 

an

 

attribute

 

=

 

diag_analyze.

 

The

 

following

 

example

 

illustrates

 

how

 

a

 

customer’s

 

program

 

can

 

be

 

invoked

 

for

 

this

 

condition:

 

PDiagAtt:

         

DClass

 

=

 

""

         

DSClass

 

=

 

""

         

DType

 

=

 

""

         

attribute

 

=

 

"diag_analyze"

         

value

 

=

 

"/usr/bin/customer_analyzer_program

 

$1

 

$2

 

$3

 

$4

 

$5"

         

rep

 

=

 

"s"

         

DApp

 

=

 

""

 

If

 

DClass,

 

DSClass,

 

and

 

DType

 

are

 

blank,

 

then

 

the

 

customer_analyzer_program

 

will

 

apply

 

for

 

ALL

 

devices.

 

Filling

 

in

 

the

 

DClass,

 

DSClass,

 

and

 

DType

 

with

 

specifics

 

will

 

cause

 

the

 

customer_analyzer_program

 

to

 

be

 

invoked

 

only

 

for

 

that

 

device

 

type.

 

Once

 

the

 

above

 

stanza

 

is

 

added

 

to

 

the

 

ODM

 

data

 

base,

 

the

 

program

 

specified

 

will

 

be

 

invoked

 

if

 

there

 

is

 

no

 

diagnostic

 

program

 

specified

 

for

 

the

 

error,

 

or

 

if

 

analysis

 

was

 

done,

 

but

 

no

 

error

 

found.

 

The

 

following

 

keywords

 

will

 

be

 

expanded

 

automatically

 

as

 

arguments

 

to

 

the

 

analyzer

 

program:

  

$1

 

the

 

keyword

 

diag_analyze

 

$2

 

the

 

resource

 

name

 

that

 

reported

 

the

 

problem

 

$3

 

the

 

error

 

label

 

from

 

the

 

error

 

log

 

entry

 

if

 

invoked

 

for

 

ELA,

 

or

 

the

 

keyword

 

PERIODIC

 

if

 

invoked

 

for

 

Periodic

 

Diagnostics,

 

or

 

the

 

keyword

 

REMINDER

 

if

 

invoked

 

for

 

providing

 

a

 

Diagnostic

 

Reminder

 

$4

 

the

 

device

 

type

 

$5

 

the

 

keyword:

 

no_trouble_found,

 

if

 

analyzer

 

was

 

run,

 

but

 

no

 

trouble

 

was

 

found;

 

or

 

no_analyzer,

 

if

 

analyzer

 

not

 

available.

   

To

 

activate

 

the

 

Automatic

 

Error

 

Log

 

Analysis

 

feature,

 

log

 

in

 

as

 

root

 

and

 

type

 

the

 

following

 

command:

 

/usr/lpp/diagnostics/bin/diagela

 

ENABLE

 

To

 

disable

 

the

 

Automatic

 

Error

 

Log

 

Analysis

 

feature,

 

log

 

in

 

as

 

root

 

and

 

type

 

the

 

following

 

command:

 

/usr/lpp/diagnostics/bin/diagela

 

DISABLE

 

Diagela

 

can

 

also

 

be

 

enabled

 

and

 

disabled

 

using

 

the

 

Periodic

 

Diagnostic

 

Service

 

Aid.

   

Chapter

 

4.

 

Diagnostic

 

Features

 

207



Loop

 

Testing

 

Loop

 

testing

 

is

 

the

 

testing

 

of

 

a

 

resource

 

or

 

resources

 

multiple

 

times

 

under

 

program

 

control.

 

The

 

looping

 

is

 

controlled

 

by

 

the

 

Diagnostic

 

Controller.

 

Loop

 

testing

 

is

 

only

 

supported

 

when

 

running

 

in

 

maintenance

 

mode

 

or

 

service

 

mode,

 

and

 

Advanced

 

Diagnostic

 

Routines

 

have

 

been

 

chosen.

 

The

 

user

 

indicates

 

that

 

loop

 

testing

 

is

 

desired

 

at

 

the

 

Test

 

Method

 

menu.

 

The

 

rule

 

associated

 

with

 

loop

 

testing

 

is

 

that

 

user

 

interaction

 

is

 

only

 

allowed

 

on

 

the

 

first

 

and

 

last

 

pass.

 

The

 

diagnostic

 

applications

 

get

 

notification

 

that

 

loop

 

mode

 

has

 

been

 

invoked

 

by

 

obtaining

 

the

 

value

 

of

 

loopmode

 

in

 

the

 

TMInput

 

object

 

class.

 

The

 

following

 

actions

 

should

 

be

 

taken

 

by

 

the

 

DA

 

when

 

loopmode

 

has

 

the

 

following

 

values:

 

LOOPMODE_ENTERLM

 

The

 

Diagnostic

 

Application

 

should

 

perform

 

any

 

tests

 

as

 

usual,

 

plus

 

perform

 

Error

 

Log

 

Analysis

 

if

 

running

 

in

 

Problem

 

Determination

 

mode.

 

LOOPMODE_INLM

 

The

 

Diagnostic

 

Application

 

should

 

perform

 

any

 

tests

 

as

 

usual,

 

and

 

not

 

Error

 

Log

 

Analysis.

 

LOOPMODE_EXITLM

 

The

 

Diagnostic

 

Application

 

should

 

not

 

perform

 

any

 

tests,

 

nor

 

perform

 

Error

 

Log

 

Analysis.

 

Instead

 

cleanup

 

procedures

 

should

 

be

 

invoked

 

to

 

remove

 

wrap

 

plugs,

 

etc,

 

before

 

exiting.

  

208

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Chapter

 

5.

 

Diagnostic

 

Packaging

 

This

 

chapter

 

contains

 

information

 

on

 

the

 

various

 

components

 

that

 

make

 

up

 

the

 

Diagnostic

 

Subsystem

 

environment.

 

v

   

Hardfile

 

Packaging

 

v

   

CDROM

 

Packaging

 

v

   

Diagnostic

 

Supplemental

 

Media

Hardfile

 

Packaging

 

This

 

chapter

 

contains

 

information

 

on

 

how

 

the

 

various

 

diagnostic

 

files

 

are

 

packaged.

 

These

 

packages

 

are

 

used

 

by

 

the

 

install

 

process

 

to

 

load

 

diagnostics

 

on

 

the

 

hardfile.

 

Software

 

Packages

 

and

 

Filesets

 

Diagnostics

 

is

 

packaged

 

into

 

separate

 

software

 

packages

 

and

 

filesets.

 

The

 

base

 

diagnostics

 

support

 

is

 

contained

 

in

 

package

 

bos.diag.

 

The

 

individual

 

device

 

support

 

is

 

packaged

 

in

 

separate

 

devices.[type].[deviceid]

 

packages.

 

The

 

bos.diag

 

package

 

is

 

split

 

into

 

three

 

distinct

 

filesets:

  

Fileset

 

Description

 

bos.diag.rte

 

Contains

 

the

 

Controller

 

and

 

other

 

base

 

diagnostic

 

code.

 

bos.diag.util

 

Contains

 

the

 

Service

 

Aids

 

and

 

Tasks.

 

bos.diag.com

 

Contains

 

the

 

diagnostic

 

libraries,

 

kernel

 

extensions,

 

and

 

development

 

header

 

files.

   

The

 

devices.[type].[deviceid]

 

packages

 

are

 

split

 

into

 

various

 

distinct

 

filesets.

 

type

 

usually

 

signifies

 

a

 

bus

 

type,

 

or

 

device

 

class

 

of

 

devices.

 

deviceid

 

usually

 

signifies

 

a

 

unique

 

identifier

 

for

 

the

 

device.

 

For

 

example:

  

Identifier

 

Descrption

 

devices.mca.8d77.rte

 

Contains

 

the

 

device

 

driver

 

and

 

configuration

 

methods

 

for

 

the

 

Micro

 

Channel

 

8-bit

 

SCSI

 

I/O

 

Controller.

 

devices.mca.8d77.diag

 

Contains

 

the

 

Diagnostic

 

Application

 

and

 

default

 

catalog

 

file

 

for

 

the

 

device.

   

These

 

packages/filesets

 

are

 

normally

 

installed

 

to

 

a

 

hardfile

 

with

 

the

 

installp

 

command.

 

Directory

 

Structure

 

Organization

 

The

 

following

 

shows

 

the

 

directory

 

structures

 

used

 

by

 

the

 

Diagnostic

 

Subsystem.

 

New

 

files

 

created

 

for

 

diagnostic

 

purposes

 

should

 

follow

 

the

 

same

 

convention.

 

v

   

/etc/lpp/diagnostics/data

 

-

 

Contains

 

files

 

that

 

are

 

created

 

(Read/Write)

 

by

 

the

 

diagnostics

 

programs.

 

Examples

 

are

 

the

 

diagnostic

 

report

 

files

 

created

 

by

 

the

 

Diagnostic

 

Controller.

 

v

   

/usr/lpp/diagnostics/bin

 

-

 

Contains

 

the

 

Diagnostic

 

Controller,

 

and

 

Service

 

Aids/Tasks.

 

v

   

/usr/lpp/diagnostics/da

 

-

 

Contains

 

the

 

Diagnostic

 

Applications.

 

v

   

/usr/lpp/diagnostics/catalog

 

-

 

Contains

 

the

 

default

 

(English)

 

catalog

 

files

 

used

 

by

 

all

 

Diagnostic

 

programs.

 

v

   

/usr/lpp/diagnostics/slih

 

-

 

Contains

 

the

 

Second

 

Level

 

Interrupt

 

Handlers

 

used

 

by

 

the

 

Test

 

Units.

 

v

   

/usr/lpp/diagnostics/lib

 

-

 

Contains

 

the

 

loadable

 

Test

 

Unit

 

Libraries.

Note:

  

The

 

translated

 

diagnostic

 

catalog

 

files

 

are

 

in

 

/usr/lib/nls/msg/[LANG]

 

directories.

 

©

 

Copyright

 

IBM

 

Corp.

 

1997,

 

2004

 

209



CDROM

 

Packaging

 

(POWER-based

 

only)

 

The

 

Standalone

 

Diagnostic

 

CDROM

 

contains

 

all

 

programs

 

and

 

applications

 

necessary

 

to

 

run

 

Diagnostics.

 

This

 

includes

 

the

 

latest

 

version

 

of

 

the

 

operating

 

system,

 

device

 

drivers,

 

device

 

configuration

 

methods,

 

diagnostic

 

applications,

 

and

 

ODM

 

stanzas.

 

Device

 

support

 

that

 

is

 

not

 

on

 

the

 

Diagnostic

 

CDROM

 

must

 

be

 

supported

 

by

 

Diagnostic

 

Supplemental

 

Media.

 

Starting

 

with

 

AIX

 

4.1,

 

the

 

Rock

 

Ridge-based

 

CDROM

 

File

 

System

 

was

 

used

 

for

 

the

 

Diagnostic

 

CDROM.

 

The

 

Rock

 

Ridge

 

CDROM

 

File

 

System

 

supports

 

directory

 

levels

 

deeper

 

than

 

8,

 

mixed-case

 

file

 

names

 

and

 

a

 

file

 

structure

 

similar

 

to

 

operating

 

system

 

file

 

systems.

 

Diagnostic

 

Supplemental

 

Media

 

A

 

Diagnostic

 

Supplemental

 

Media

 

contains

 

all

 

the

 

necessary

 

diagnostic

 

programs

 

and

 

files

 

required

 

to

 

test

 

a

 

particular

 

resource

 

when

 

used

 

with

 

the

 

Standalone

 

Diagnostic

 

CDROM.

 

The

 

supplemental

 

is

 

normally

 

released

 

and

 

shipped

 

with

 

the

 

resource

 

as

 

indicated

 

on

 

the

 

diskette

 

label.

 

The

 

Process

 

Supplemental

 

Media

 

task

 

processes

 

the

 

diagnostic

 

supplemental

 

media.

 

The

 

following

 

topics

 

describe

 

the

 

Diagnostic

 

Supplemental

 

Media

 

and

 

the

 

contents

 

in

 

more

 

detail.

 

v

   

Diagnostic

 

Supplemental

 

Diskette

 

Contents

 

v

   

Example

 

ODM

 

Stanzas

 

v

   

Example

 

diagstartS

 

Script

 

File

 

v

   

Example

 

diagstart3S

 

Script

 

File

 

v

   

Diagnostic

 

Supplemental

 

Diskette

 

Labels

Diagnostic

 

Supplemental

 

Diskette

 

Contents

 

A

 

Diagnostic

 

Supplemental

 

Diskette

 

must

 

contain

 

all

 

files

 

required

 

to

 

configure

 

and

 

test

 

a

 

device.

 

Three

 

special

 

files,

 

diagstartS,

 

diagS.dep,

 

and

 

diagcleanupS,

 

are

 

required

 

by

 

the

 

Standalone

 

Diagnostic

 

Package

 

to

 

maintain

 

the

 

software

 

on

 

the

 

diskette.

 

The

 

diskette

 

must

 

be

 

written

 

in

 

cpio

 

format.

 

Use

 

the

 

C36

 

block

 

option

 

on

 

the

 

cpio

 

command

 

to

 

create

 

the

 

diskette.

 

The

 

following

 

list

 

describes

 

each

 

required

 

file:

  

File

 

Description

 

etc/diagstartS

 

Shell

 

script

 

(with

 

execute

 

permission)

 

to

 

add

 

the

 

object

 

class

 

stanzas

 

to

 

the

 

database,

 

configure

 

the

 

devices,

 

and

 

so

 

on.

 

See

 

the

 

example

 

diagstartS

 

shell

 

script

 

file.

 

This

 

file

 

must

 

be

 

the

 

first

 

file

 

on

 

diskette.

 

etc/diagS.dep

 

Dependency

 

file.

 

This

 

file

 

is

 

a

 

list

 

of

 

all

 

files

 

on

 

the

 

diskette.

 

Each

 

file

 

must

 

be

 

listed

 

with

 

its

 

full

 

path

 

name.

 

etc/diagcleanupS

 

Cleanup

 

script

 

file.

 

This

 

script

 

should

 

perform

 

any

 

cleanup

 

necessary

 

after

 

the

 

supplemental

 

has

 

been

 

processed

 

and

 

run;

 

for

 

example,

 

restoring

 

the

 

ODM

 

database

 

to

 

its

 

original

 

condition

 

if

 

the

 

supplemental

 

changed

 

some

 

of

 

the

 

original

 

values.

 

etc/stanzas/device

 

.add

 

Stanza

 

file

 

for

 

the

 

device.

 

The

 

stanzas

 

must

 

include

 

the

 

PdDv,

 

PdCn,

 

PdAt,

 

and

 

PDiagRes

 

information

 

required

 

for

 

the

 

device.

 

Note:

 

Use

 

PDiagRes

 

if

 

the

 

device

 

is

 

only

 

supported

 

on

 

AIX

 

4.2

 

and

 

later.

 

If

 

the

 

supplemental

 

can

 

be

 

used

 

on

 

a

 

pre-AIX

 

4.2

 

system,

 

then

 

PDiagDev

 

must

 

be

 

used.

 

usr/lib/drivers/devicedd

 

Device

 

driver

 

for

 

the

 

device.

 

The

 

devicedd

 

variable

 

should

 

be

 

the

 

name

 

of

 

the

 

device

 

driver.

   

210

 

Understanding

 

the

 

Diagnostic

 

Subsystem



File

 

Description

 

usr/lib/methods/devicecfgmethod

 

and

 

usr/lib/methods/deviceunconfigmethod

 

Methods

 

necessary

 

to

 

define,

 

configure,

 

undefine,

 

and

 

unconfigure

 

the

 

device.

 

The

 

names

 

must

 

be

 

the

 

same

 

referenced

 

by

 

the

 

PdDv

 

method

 

objects.

 

Do

 

not

 

include

 

any

 

methods

 

that

 

are

 

already

 

part

 

of

 

the

 

operating

 

system.

 

Include

 

only

 

the

 

unique

 

methods

 

used

 

by

 

this

 

device.

 

usr/lib/methods/devicedesc.cat

 

Device

 

description

 

catalog

 

file

 

devicedesc.cat

 

should

 

be

 

the

 

name

 

of

 

the

 

catalog

 

file

 

referenced

 

by

 

the

 

PdDv

 

catalog

 

object.

 

The

 

device

 

description

 

file

 

should

 

contain

 

the

 

description

 

of

 

the

 

device

 

shown

 

when

 

using

 

the

 

lsdev

 

or

 

lscfg

 

command.

 

usr/lpp/diagnostics/da/ddevice

 

Diagnostic

 

Application

 

(DA)

 

for

 

the

 

device.

 

The

 

ddevice

 

variable

 

should

 

be

 

the

 

name

 

of

 

the

 

DA,

 

which

 

is

 

the

 

same

 

name

 

referenced

 

by

 

the

 

PDiagRes

 

DaName

 

object.

 

usr/lpp/diagnostics/catalog/default/ddevice.cat

 

DA

 

message

 

catalog

 

for

 

the

 

device.

 

The

 

DA

 

menus

 

are

 

included

 

in

 

this

 

file.

 

This

 

message

 

catalog

 

file

 

also

 

contains

 

FRU

 

information.

 

The

 

set

 

number

 

used

 

must

 

be

 

the

 

same

 

number

 

referenced

 

by

 

the

 

PDiagRes

 

PSet

 

object.

 

Note:

 

If

 

the

 

supplemental

 

diskette

 

being

 

developed

 

is

 

for

 

a

 

graphics

 

adapter

 

that

 

can

 

be

 

used

 

as

 

a

 

console

 

device,

 

then

 

the

 

suffix

 

3S

 

should

 

be

 

used

 

instead

 

of

 

S.

 

For

 

example,

 

the

 

file

 

etc/diagstartS

 

should

 

be

 

etc/diagstart3S,

 

etc/diagS.dep

 

should

 

be

 

etc/diag3S.dep,

 

and

 

etc/diagcleanupS

 

should

 

be

 

etc/diagcleanup3S.

 

usr/lpp/diagnostics/slih/device_slih

 

Second

 

Level

 

Interrupt

 

Handler

 

for

 

the

 

device.

 

usr/lpp/diagnostics/lib/lib_device

 

Device

 

Test

 

Unit

 

loadable

 

library.

   

Example

 

ODM

 

Stanzas

 

PdDv:

               

type

 

=

 

xyz

               

subclass

 

=

 

mca

               

class

 

=

 

adapter

               

catalog

 

=

 

xyz.cat

               

setno

 

=

 

1

               

msgno

 

=

 

1

               

Define

 

=

 

/usr/lib/methods/definexyz

               

Configure

 

=

 

/usr/lib/methods/cfgxyz

               

Undefine

 

=

 

/usr/lib/methods/udefinexyz

               

Unconfigure

 

=

 

/usr/lib/methods/ucfgxyz

               

led

 

=

 

0x902

               

fru

 

=

 

1

                         

1

 

if

 

device

 

is

 

FRU

                                               

2

 

if

 

parent

 

is

 

FRU

 

PDiagRes:

               

Uniquetype

 

=

 

adapter/mca/xyz

               

PSet

 

=

 

1

               

DaName

 

=

 

dxyz

               

PkgBlock

 

=

 

S

               

Menu

 

=

 

21

               

DNext

 

=

 

1

               

SupTests

 

=

 

7

 

For

 

a

 

description

 

of

 

all

 

fields

 

in

 

PDiagRes,

 

refer

 

to

 

Predefined

 

Diagnostic

 

Resource

 

Object

 

Class.

 

/usr/lib/methods/xyz.cat:

   

Chapter

 

5.

 

Diagnostic

 

Packaging

 

211



1

 

1

     

XYZ

 

adapter

 

/usr/lpp/diagnostics/catalog/default/dxyz.cat:

         

1

 

1

     

Description

 

of

 

FRU1

         

1

 

2

      

Description

 

of

 

FRU2

         

2

 

1

      

DA

 

menus,

 

etc

 

Example

 

diagstartS

 

Script

 

File

 

#

 

DIAG

 

S

 

#

 

Do

 

not

 

erase

 

top

 

line.

 

Chkdskt

 

searches

 

for

 

the

 

string

 

DIAG

 

S

 

#

 

#

 

COMPONENT_NAME:

 

DIAGBOOT

 

-

 

DIAGNOSTIC

 

SUPPLEMENTAL

 

DISKETTE

 

#

 

#

 

FUNCTIONS:

 

Diagnostic

 

Diskette

 

Supplemental

 

Script

 

File

 

#

 

#

 

ORIGINS:

 

27

 

#

 

#

 

(C)

 

COPYRIGHT

 

International

 

Business

 

Machines

 

Corp.

 

1991

 

#

 

All

 

Rights

 

Reserved

 

#

 

Licensed

 

Materials

 

-

 

Property

 

of

 

IBM

 

#

 

#

 

US

 

Government

 

Users

 

Restricted

 

Rights

 

-

 

Use,

 

duplication

 

or

 

#

 

disclosure

 

restricted

 

by

 

GSA

 

ADP

 

Schedule

 

Contract

 

with

 

IBM

 

#

 

Corp.

 

#

 

configure=0

 

#

 

See

 

if

 

there

 

is

 

a

 

need

 

to

 

add

 

stanzas

 

to

 

data

 

base.

 

#

 

This

 

is

 

done

 

by

 

searching

 

the

 

/etc/addfile

 

for

 

your

 

stanza

 

file

 

#

 

name.

 

If

 

not

 

found,

 

add

 

stanzas

 

and

 

call

 

/etc/cfgmgr

 

to

 

#

 

configure

 

the

 

resources

 

that

 

are

 

needed

 

to

 

be

 

tested.

 

cd

 

/etc/stanzas

 

set

 

`echo

 

*`

 

ADD=`echo

 

$1`

 

#

 

Warning:

 

If

 

your

 

stanza

 

is

 

already

 

in

 

PDiagDev,

 

DO

 

NOT

 

ADD

 

another.

 

for

 

i

 

in

 

`/bin/cat

 

/etc/addfile`

 

do

         

if

 

[

 

$i

 

=

 

$ADD

 

]

         

then

                 

configure=1

                 

break

         

fi

 

done

 

#

 

Check

 

the

 

PDiagDev

 

for

 

a

 

DType/DSClass

 

equal

 

to

 

your

 

stanza

 

#

 

before

 

adding

  

in

 

the

 

new

 

one.

 

If

 

not

 

found,

 

add

 

stanzas

 

and

 

#

 

call

 

/etc/cfgmgr

 

to

 

configure

 

the

 

resources

 

that

 

are

 

needed

 

to

 

#

 

be

 

tested.

 

if

 

[

 

$configure

 

=

 

0

 

]

 

then

         

#

 

Check

 

the

 

PDiagDev

 

for

 

a

 

DType/DSClass

 

equal

 

to

 

your

         

#

 

stanza

 

before

 

adding

  

in

 

the

 

new

 

one.

         

#

 

If

 

not

 

found,

 

add

 

stanzas

 

and

 

call

 

/etc/cfgmgr

 

to

         

#

 

configure

 

the

 

resources

 

that

 

are

 

needed

 

to

 

be

 

tested.

         

X=`odmget

 

-q"DType=DeviceType

 

and

 

DSClass=SubClass"

 

PDiagDev`

 

if

 

[

 

"X$X"

 

!=

 

X

 

]

 

then

         

#

 

save

 

the

 

data

 

and

 

read

 

it

 

in

 

later

 

with

 

the

 

diagcleanup

 

script.

         

odmget

 

-q"DType=DeviceType

 

and

 

DSClass=SubClass"

 

PDiagDev

 

>

 

/tmp/mysave

         

odmdelete

 

-q"DType=DeviceType

 

and

 

DSClass=SubClass"

 

-o

 

PDiagDev

 

fi

         

for

 

i

 

in

 

*.add

         

do

                 

odmadd

 

$i

                        

>>$F1

 

2>&1

                 

echo

 

$i

 

>>

 

/etc/addfile

  

212

 

Understanding

 

the

 

Diagnostic

 

Subsystem



rm

 

$i

                            

>>$F1

 

2>&1

         

done

         

/etc/cfgmgr

     

-t

 

-d

                    

>>$F1

 

2>&1

 

else

         

for

 

i

 

in

 

*.add

         

do

                 

rm

 

$i

                            

>>$F1

 

2>&1

         

done

 

fi

 

exit

 

0

 

Example

 

diagstart3S

 

Script

 

File

 

#

 

DIAG

 

3S

 

#

 

Do

 

not

 

erase

 

top

 

line.

 

Chkdskt

 

searches

 

for

 

the

 

string

 

DIAG

 

3S

 

#

 

#

 

COMPONENT_NAME:

 

DIAGBOOT

 

-

 

DIAGNOSTIC

 

GRAPHIC

 

SUPPLEMENTAL

 

#

 

DISKETTE

 

#

 

#

 

FUNCTIONS:

 

Diagnostic

 

Diskette

 

Supplemental

 

Script

 

File

 

#

 

#

 

ORIGINS:

 

27

 

#

 

#

 

(C)

 

COPYRIGHT

 

International

 

Business

 

Machines

 

Corp.

 

1994

 

#

 

All

 

Rights

 

Reserved

 

#

 

Licensed

 

Materials

 

-

 

Property

 

of

 

IBM

 

#

 

#

 

US

 

Government

 

Users

 

Restricted

 

Rights

 

-

 

Use,

 

duplication

 

or

 

#

 

disclosure

 

restricted

 

by

 

GSA

 

ADP

 

Schedule

 

Contract

 

with

 

IBM

 

#

 

Corp.

 

#

 

configure=0

 

#

 

See

 

if

 

there

 

is

 

a

 

need

 

to

 

add

 

stanzas

 

to

 

data

 

base.

 

#

 

This

 

is

 

done

 

by

 

searching

 

the

 

/etc/addfile

 

for

 

your

 

stanza

 

file

 

#

 

name.

 

If

 

not

 

found,

 

add

 

stanzas

 

and

 

call

 

/etc/cfgmgr

 

to

 

#

 

configure

 

the

 

resources

 

that

 

are

 

needed

 

to

 

be

 

tested.

 

cd

 

/etc/stanzas

 

set

 

`echo

 

*`

 

ADD=`echo

 

$1`

 

#

 

Warning:

 

If

 

your

 

stanza

 

is

 

already

 

in

 

PDiagDev,

 

DO

 

NOT

 

ADD

 

another

 

one

 

in

 

again.

 

for

 

i

 

in

 

`/bin/cat

 

/etc/addfile`

 

do

         

if

 

[

 

$i

 

=

 

$ADD

 

]

         

then

                 

configure=1

                 

break

         

fi

 

done

 

#

 

Check

 

the

 

PDiagDev

 

for

 

a

 

DType/DSClass

 

equal

 

to

 

your

 

stanza

 

#

 

before

 

adding

  

in

 

the

 

new

 

one.

 

If

 

not

 

found,

 

add

 

stanzas

 

and

 

#

 

call

 

/etc/cfgmgr

 

to

 

configure

 

the

 

resources

 

that

 

are

 

needed

 

to

 

#

 

be

 

tested.

 

if

 

[

 

$configure

 

=

 

0

 

]

 

then

         

#

 

Check

 

the

 

PDiagDev

 

for

 

a

 

DType/DSClass

 

equal

 

to

 

your

 

stanza

         

#

 

before

 

adding

  

in

 

the

 

new

 

one.

 

If

 

not

 

found,

 

add

 

stanzas

 

and

         

#

 

call

 

/etc/cfgmgr

 

to

 

configure

 

the

 

resources

 

that

 

are

 

needed

 

to

         

#

 

be

 

tested.

         

X=`odmget

 

-q"DType=DeviceType

 

and

 

DSClass=SubClass"

 

PDiagDev`

 

if

 

[

 

"X$X"

 

!=

 

X

 

]

 

then

         

#

 

save

 

the

 

data

 

and

 

read

 

it

 

in

 

later

 

with

 

the

 

diagcleanup

 

script.

         

odmget

 

-q"DType=DeviceType

 

and

 

DSClass=SubClass"

 

PDiagDev

 

>

 

/tmp/mysave

         

odmdelete

 

-q"DType=DeviceType

 

and

 

DSClass=SubClass"

 

-o

 

PDiagDev

   

Chapter

 

5.

 

Diagnostic

 

Packaging

 

213



fi

         

for

 

i

 

in

 

*.add

         

do

                 

odmadd

 

$i

                         

>>$F1

 

2>&1

                 

echo

 

$i

 

>>

 

/etc/addfile

                 

rm

 

$i

                             

>>$F1

 

2>&1

         

done

         

/etc/cfgmgr

      

-t

 

-d

                    

>>$F1

 

2>&1

 

else

         

for

 

i

 

in

 

*.add

         

do

                 

rm

 

$i

                             

>>$F1

 

2>&1

         

done

 

fi

   

echo

 

>

 

/tmp/3S

           

#

 

flag

 

that

 

indicates

 

diskette

 

read.

 

exit

 

0

 

Diagnostic

 

Supplemental

 

Diskette

 

Label

 

Each

 

Diagnostic

 

Supplemental

 

Diskette

 

must

 

have

 

a

 

label.

 

The

 

label

 

should

 

state

 

the

 

lowest

 

version

 

of

 

the

 

operating

 

system

 

that

 

the

 

diskette

 

supports.

 

For

 

instance,

 

if

 

the

 

supplemental

 

diskette

 

was

 

initially

 

built

 

on

 

AIX

 

4.1,

 

then

 

the

 

version

 

of

 

the

 

diskette

 

should

 

say

 

4.1.

   

214

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Chapter

 

6.

 

Diagnostic

 

Debugging

 

Hints

 

This

 

section

 

has

 

hints

 

on

 

how

 

to

 

debug

 

applications

 

in

 

a

 

Diagnostic

 

environment.

 

The

 

following

 

areas

 

are

 

covered:

 

v

   

Debugging

 

Hints

 

for

 

Diagnostic

 

Applications

 

v

   

Debugging

 

Hints

 

for

 

Diagnostic

 

Kernel

 

Extension

 

v

   

Diagnostic

 

Patch

 

Diskette

 

Procedure

Debugging

 

Hints

 

for

 

Diagnostic

 

Applications

 

The

 

Diagnostic

 

Controller

 

uses

 

the

 

process

 

ID

 

(PID)

 

of

 

the

 

DA

 

to

 

determine

 

which

 

TMInput

 

object

 

class

 

entry

 

to

 

use

 

for

 

the

 

DA

 

during

 

execution.

 

To

 

debug

 

the

 

DA,

 

run

 

the

 

following:

 

export

 

DIAG_DEBUG=1

 

v

   

Run

 

diagnostics

 

as

 

usual

 

against

 

your

 

resource

 

once.

 

odmget

 

TMInput

 

>

 

/tmp/tminput.add

 

#

 

save

 

off

 

contents

 

of

 

TMInput.

 

v

   

Edit

 

the

 

/tmp/tminput.add

 

file

 

and

 

set

 

the

 

pid

 

field

 

to

 

0.

 

odmdelete

 

-o

 

TMInput

      

#

 

delete

 

what

 

is

 

currently

 

in

 

TMInput.

 

odmadd

 

/tmp/tminput.add

           

#

 

add

 

new

 

contents

 

of

 

TMInput.

 

v

   

Execute

 

the

 

code

 

debugger

 

against

 

the

 

DA.

 

If

 

the

 

Diagnostic

 

Application

 

uses

 

a

 

kernel

 

extension

 

or

 

Second

 

Level

 

Interrupt

 

Handler,

 

you

 

may

 

have

 

to

 

perform

 

the

 

following

 

before

 

trying

 

to

 

load

 

and

 

debug

 

the

 

DA.

 

v

   

Load

 

the

 

kernel

 

extension.

 

This

 

can

 

be

 

done

 

by

 

running

 

diagnostics

 

once

 

on

 

the

 

device,

 

and

 

then

 

exiting.

 

The

 

Controller

 

will

 

normally

 

load

 

any

 

kernel

 

extensions

 

needed

 

by

 

the

 

DA.

 

When

 

exiting

 

Diagnostics,

 

the

 

Controller

 

does

 

not

 

unload

 

the

 

extensions,

 

so

 

it

 

should

 

still

 

be

 

loaded

 

during

 

the

 

debugging,

 

v

   

Export

 

the

 

diagnostic

 

environment

 

variable

 

DIAGX_SLIH_DIR

 

to

 

/usr/lpp/diagnostics/slih.

Debugging

 

Hints

 

for

 

Diagnostic

 

Kernel

 

Extension

 

v

   

Starting

 

Trace

 

for

 

Diagnostic

 

Kernel

 

Extension

 

v

   

Running

 

Trace

 

for

 

Diagnostic

 

Kernel

 

Extension

 

in

 

the

 

Background

 

v

   

Finding

 

the

 

Right

 

Address

 

v

   

Looking

 

at

 

an

 

Illegal

 

Trap

Starting

 

Trace

 

for

 

Diagnostic

 

Kernel

 

Extension

 

The

 

Diagnostic

 

Controller

 

loads

 

the

 

Kernel

 

Extensions

 

for

 

each

 

device

 

that

 

requires

 

it.

 

This

 

is

 

specified

 

by

 

the

 

PDiagRes->KernExt

 

ODM

 

stanza

 

for

 

the

 

device.

 

If

 

using

 

DIAGEX

 

or

 

PDIAGEX,

 

there

 

is

 

a

 

trace

 

hook

 

built

 

in

 

for

 

debugging

 

purposes.

 

To

 

use

 

this

 

trace

 

hook,

 

you

 

first

 

must

 

make

 

sure

 

that

 

the

 

trace

 

command

 

is

 

installed.

 

This

 

command

 

is

 

part

 

of

 

the

 

bos.sysmgt.trace

 

fileset.

 

To

 

run

 

trace,

 

perform

 

the

 

following:

 

trace

 

-j

 

355

            

//

 

Invoke

 

trace

 

>

 

trcon

                 

//

 

Start

 

trace

 

>

 

!diag

 

-d

 

"device_name"//

 

Run

 

diagnostics

 

against

 

the

 

device

 

>

 

trcoff

                

//

 

Stop

 

trace

 

>

 

quit

                  

//

 

Quit

 

To

 

generate

 

a

 

trace

 

file,

 

perform

 

the

 

following:

  

©

 

Copyright

 

IBM

 

Corp.

 

1997,

 

2004

 

215



trcrpt

 

-o

 

/tmp/diagex.trc

 

This

 

trace

 

file

 

will

 

contain

 

all

 

the

 

steps

 

performed

 

by

 

the

 

diagnostic

 

kernel

 

extension.

 

To

 

understand

 

the

 

tags,

 

you

 

must

 

use

 

the

 

source

 

code.

 

Running

 

Trace

 

for

 

Diagnostic

 

Kernel

 

Extension

 

in

 

the

 

Background

 

The

 

Diagnostic

 

Controller

 

loads

 

the

 

Kernel

 

Extensions

 

for

 

each

 

device

 

that

 

requires

 

it.

 

This

 

is

 

specified

 

by

 

the

 

PDiagRes->KernExt

 

ODM

 

stanza

 

for

 

the

 

device.

 

If

 

you

 

are

 

using

 

DIAGEX

 

or

 

PDIAGEX,

 

there

 

is

 

a

 

trace

 

hook

 

built

 

in

 

for

 

debugging

 

purposes.

 

To

 

use

 

this

 

trace

 

hook,

 

first

 

make

 

sure

 

that

 

the

 

trace

 

command

 

is

 

installed.

 

This

 

command

 

is

 

part

 

of

 

the

 

bos.sysmgt.trace

 

fileset.

 

To

 

run

 

trace

 

in

 

the

 

background,

 

enter:

 

trace

 

-a

 

-j

 

355

 

-L

 

<

 

length

 

of

 

file

 

>

 

-o

 

<

 

filename

 

>

 

The

 

-L

 

flag

 

overrides

 

the

 

default

 

trace

 

log

 

file

 

size

 

of

 

1

 

MB

 

with

 

the

 

value

 

stated.

 

Specifying

 

a

 

file

 

size

 

of

 

zero

 

sets

 

the

 

trace

 

log

 

file

 

size

 

to

 

the

 

default

 

size.

 

The

 

-o

 

flag

 

outputs

 

trace

 

data

 

to

 

a

 

specific

 

trace

 

log

 

file.

 

To

 

generate

 

a

 

trace

 

file,

 

enter:

 

trcrpt

 

<

 

filename

 

>

 

<

 

output

 

filename

 

>

 

This

 

trace

 

file

 

will

 

contain

 

all

 

the

 

steps

 

performed

 

by

 

the

 

diagnostic

 

kernel

 

extension.

 

To

 

understand

 

the

 

tags,

 

you

 

must

 

use

 

the

 

source

 

code.

Note:

  

You

 

can

 

only

 

have

 

one

 

trace

 

running

 

at

 

a

 

time.

 

To

 

stop

 

a

 

trace,

 

enter:

 

trcstop

 

Finding

 

the

 

Right

 

Address

 

Note:

  

The

 

following

 

examples

 

are

 

based

 

on

 

a

 

particular

 

debugger.

 

The

 

concepts

 

shown

 

can

 

be

 

applied

 

using

 

the

 

debugger

 

available

 

to

 

you.

 

While

 

in

 

the

 

Kernel

 

Debugger,

 

there

 

is

 

a

 

structure

 

that

 

can

 

be

 

searched

 

that

 

gives

 

the

 

address

 

of

 

the

 

trace

 

buffer

 

and

 

first

 

device

 

handle.

 

For

 

DIAGEX,

 

this

 

structure

 

is

 

diag_cntl.

 

For

 

PDIAGEX,

 

it

 

is

 

pdiag_cntl.

 

Use

 

the

 

map

 

command

 

to

 

get

 

the

 

address

 

of

 

the

 

structure.

 

For

 

instance,

 

for

 

PDIAGEX:

 

1.

   

>0>

 

map

 

pdiag_cntl

 

pdiag_cntl:0x0123F220,

 

type:CSECT

 

Definition

 

2.

   

Use

 

that

 

address

 

and

 

display

 

100

 

words:

 

>0>

 

d

 

123F220

 

100

 

0123F220

   

FFFFFFFF

 

FFFFFFFF

 

05C8A400

 

00000764

   

|...............d|

 

0123F230

   

64677874

 

72616365

 

544F5021

 

21212100

   

|dgxtraceTOP!!!!.|

 

0123F240

   

72775F61

 

00000004

 

00000000

 

00000000

   

|rw_a............|

 

0123F250

   

67697042

 

00000018

 

00000004

 

2FF3B270

   

|gipB......../..p|

 

0123F260

   

67697064

 

000000C0

 

00000000

 

3D7FF018

   

|gipd........=...|

 

0123F270

   

67697045

 

00000000

 

3D7FF018

 

00000000

   

|gipE....=.......|

 

0123F280

   

72775F62

 

00000001

 

00000001

 

00000001

   

|rw_b............|

 

0123F290

   

72775F45

 

00000000

 

00000000

 

00000000

   

|rw_E............|

 

0123F2A0

   

52656445

 

00000000

 

20001111

 

00000000

   

|RedE....

 

.......|

 

0123F2B0

   

57727442

 

05C8A200

 

00000004

 

00000014

   

|WrtB............|

 

0123F2C0

   

5772742B

 

14000000

 

00000001

 

00000001

   

|Wrt+............|

 

0123F2D0

   

5772742B

 

00000001

 

0000007B

 

00000000

   

|Wrt+.......{....|

 

0123F2E0

   

72775F42

 

05C8A200

 

00000001

 

00000001

   

|rw_B............|

  

216

 

Understanding

 

the

 

Diagnostic

 

Subsystem



0123F2F0

   

72775F2B

 

00000004

 

00000014

 

00000001

   

|rw_+............|

 

0123F300

   

72775F2B

 

0000007B

 

14000000

 

00000001

   

|rw_+...{........|

 

0123F310

   

66685F42

 

05C8A200

 

05C8A200

 

00000000

   

|fh_B............|

 

v

   

The

 

first

 

and

 

second

 

words,

 

FFFFFFFF,

 

are

 

locks.

 

Ignore

 

them.

 

v

   

The

 

third

 

word

 

(in

 

bold)

 

is

 

a

 

pointer

 

to

 

the

 

linked

 

list

 

of

 

device

 

handles.

 

v

   

The

 

fourth

 

word

 

is

 

the

 

start

 

of

 

the

 

internal

 

trace

 

table.

 

v

   

dgxtraceTOP!

 

defines

 

the

 

TOP

 

of

 

the

 

trace

 

table.

 

v

   

dgxtraceBOT!

 

defines

 

the

 

end

 

of

 

the

 

trace

 

table.

3.

   

The

 

current

 

pointer

 

can

 

be

 

found

 

by

 

searching

 

from

 

this

 

point

 

for

 

dgxtraceCUR!:

 

>0>

 

find

 

dgxtraceCUR

 

123F220

 

01240FC0

   

64677874

 

72616365

 

43555221

 

21212121

   

|dgxtraceCUR!!!!!|

 

Work

 

backwards

 

from

 

this

 

point

 

to

 

see

 

exactly

 

what

 

events

 

have

 

taken

 

place

 

to

 

this

 

point.

 

4.

   

As

 

far

 

as

 

the

 

device

 

handles

 

are

 

concerned,

 

display

 

100

 

words

 

to

 

see

 

the

 

data

 

associated

 

with

 

the

 

device

 

at

 

that

 

address

 

(the

 

third

 

word

 

from

 

2.b

 

above):

 

>0>

 

d

 

05C8A400

 

100

 

05C8A400

   

00000000

 

012438B8

 

00040040

 

0000000D

   

|.....$8....@....|

 

05C8A410

   

00000003

 

000000C0

 

0000002C

 

00000000

   

|...........,....|

 

05C8A420

   

011759FC

 

05F1D000

 

00000000

 

60054335

   

|..Y.........`.C5|

 

05C8A430

   

00000000

 

00000000

 

00000070

 

000000C0

   

70

 

is

 

slot#,

 

C0

 

is

 

bus

 

id#

 

05C8A440

   

00000004

 

007FF800

 

00000100

 

00000000

    

4

 

is

 

bus

 

type

 

7ff800

 

is

 

io

 

05C8A450

   

00000100

 

00000000

 

00000000

 

00000000

       

address

 

of

 

the

 

bus

 

The

 

8th

 

word

 

is

 

a

 

pointer

 

to

 

the

 

next

 

device

 

in

 

the

 

linked

 

list.

 

In

 

this

 

case

 

the

 

8th

 

word

 

is

 

00000000,

 

indicating

 

this

 

is

 

the

 

only

 

device.

Looking

 

at

 

an

 

Illegal

 

Trap

 

In

 

some

 

instances,

 

an

 

Illegal

 

Trap

 

Instruction

 

may

 

occur

 

if

 

some

 

application

 

unloads

 

their

 

SLIH

 

or

 

kernel

 

extension,

 

without

 

having

 

previously

 

unpinned

 

its

 

memory.

 

This

 

can

 

also

 

happen

 

if

 

the

 

Diagnostic

 

Kernel

 

Extension

 

close

 

routine

 

is

 

not

 

called

 

on

 

exit.

 

If

 

this

 

happens

 

when

 

the

 

debugger

 

is

 

enabled,

 

a

 

screen

 

similar

 

to

 

the

 

following

 

may

 

appear.

 

The

 

appearance

 

of

 

ff_free

 

in

 

the

 

dump

 

is

 

the

 

indicator

 

that

 

an

 

application

 

did

 

not

 

unpin

 

some

 

code

 

before

 

unloading.

 

The

 

address

 

passed

 

to

 

ff_free

 

is

 

in

 

(r29)

 

or

 

r30.

 

Use

 

the

 

(s)creen

 

command

 

to

 

trace

 

back

 

until

 

you

 

see

 

a

 

familiar

 

function

 

name.

 

In

 

the

 

following

 

example,

 

the

 

SLIH

 

mps_interrupt

 

was

 

indicated.

 

1.

   

Trap

 

Occurs:

 

GPR0

  

00000000

 

2FF3B188

 

00192DF0

 

00000016

 

007FFFFF

 

C0000000

 

00009030

 

2FF3B400

 

GPR8

  

00000000

 

00000000

 

00000000

 

00000010

 

0014032C

 

DEADBEEF

 

DEADBEEF

 

DEADBEEF

 

GPR16

 

DEADBEEF

 

DEADBEEF

 

200004B0

 

DEADBEEF

 

DEADBEEF

 

DEADBEEF

 

2FF3B2C0

 

00000000

 

GPR24

 

00000000

 

00161BF8

 

C0000420

 

03762428

 

0015FF40

 

01A1C5A0

 

01A1C5A8

 

0015FF40

   

MSR

 

00029030

  

CR

   

44224828

  

LR

   

0014032C

  

CTR

   

000908A8

  

MQ

   

00000000

 

XER

 

00000000

  

SRR0

 

00140334

  

SRR1

 

00029030

  

DSISR

 

40000000

  

DAR

  

00000000

   

IAR

 

00140334

  

(ORG+00140334)

  

ORG=00000000

   

Mode:

 

VIRTUAL

 

00140330

   

5400D97E

 

0C800000

 

387F0000

 

4BECADC5

   

|T..~....8...K...|

                     

|

    

tweqi

   

r0,0x0

 

00140340

   

81810058

 

30210050

 

7D8803A6

 

BBA1FFF4

   

|...X0!.P}.......|

                       

|

 

00140330

   

5400D97E

 

0C800000

 

387F0000

 

4BECADC5

   

|T..~....8...K...|

 

00140340

   

81810058

 

30210050

 

7D8803A6

 

BBA1FFF4

   

|...X0!.P}.......|

 

00140350

   

4E800020

 

00000000

 

00002041

 

80030100

   

|N..

 

......

 

A....|

 

00140360

   

00000000

 

00000174

 

00076666

 

5F667265

   

|.......t..ff_fre|

 

00140370

   

65000000

 

80E20328

 

BF81FFF0

 

7C0802A6

   

|e......(....|...|

 

00140380

   

2C070000

 

90010008

 

9421FFB0

 

3B830000

   

|,........!..;...|

 

00140390

   

41820050

 

80E201E8

 

38640000

 

83810040

   

|A..P....8d.....@|

  

Chapter

 

6.

 

Diagnostic

 

Debugging

 

Hints

 

217



Illegal

 

Trap

 

Instruction

 

Interrupt

 

in

 

Kernel

   

>0>

 

2.

   

Use

 

(s)creen

 

to

 

display

 

contents

 

of

 

R29:

 

>0>

 

s

 

1A1C5a0

 

100

 

GPR0

  

00000000

 

2FF3B188

 

00192DF0

 

00000016

 

007FFFFF

 

C0000000

 

00009030

 

2FF3B400

 

GPR8

  

00000000

 

00000000

 

00000000

 

00000010

 

0014032C

 

DEADBEEF

 

DEADBEEF

 

DEADBEEF

 

GPR16

 

DEADBEEF

 

DEADBEEF

 

200004B0

 

DEADBEEF

 

DEADBEEF

 

DEADBEEF

 

2FF3B2C0

 

00000000

 

GPR24

 

00000000

 

00161BF8

 

C0000420

 

03762428

 

0015FF40

 

01A1C5A0

 

01A1C5A8

 

0015FF40

   

MSR

 

00029030

  

CR

   

44224828

  

LR

   

0014032C

  

CTR

   

000908A8

  

MQ

   

00000000

 

XER

 

00000000

  

SRR0

 

00140334

  

SRR1

 

00029030

  

DSISR

 

40000000

  

DAR

  

00000000

   

IAR

 

00140334

  

(ORG+00140334)

  

ORG=00000000

   

Mode:

 

VIRTUAL

 

00140330

   

5400D97E

 

0C800000

 

387F0000

 

4BECADC5

   

|T..~....8...K...|

                     

|

    

tweqi

   

r0,0x0

 

00140340

   

81810058

 

30210050

 

7D8803A6

 

BBA1FFF4

   

|...X0!.P}.......|

              

|

 

01A1C5A0

   

01A29850

 

0000A518

 

01DF0004

 

325E9F94

   

|...P........2^..|

 

01A1C5B0

   

00000000

 

00000000

 

00481007

 

010B0001

   

|.........H......|

 

01A1C5C0

   

00000BF0

 

0000010C

 

00000000

 

000000E4

   

|................|

 

01A1C5D0

   

00000000

 

00000000

 

000000F0

 

00020001

   

|................|

 

01A1C5E0

   

00020002

 

00040003

 

00020003

 

314C0000

   

|............1L..|

 

01A1C5F0

   

00000000

 

00000000

 

00000000

 

00000000

   

|................|

 

01A1C600

   

00000000

 

2E746578

 

74000000

 

00000000

   

|.....text.......|

 

3.

   

Press

 

enter

 

until

 

you

 

find

 

a

 

function

 

name:

 

>0>

 

enter

 

several

 

times

 

GPR0

  

00000000

 

2FF3B188

 

00192DF0

 

00000016

 

007FFFFF

 

C0000000

 

00009030

 

2FF3B400

 

GPR8

  

00000000

 

00000000

 

00000000

 

00000010

 

0014032C

 

DEADBEEF

 

DEADBEEF

 

DEADBEEF

 

GPR16

 

DEADBEEF

 

DEADBEEF

 

200004B0

 

DEADBEEF

 

DEADBEEF

 

DEADBEEF

 

2FF3B2C0

 

00000000

 

GPR24

 

00000000

 

00161BF8

 

C0000420

 

03762428

 

0015FF40

 

01A1C5A0

 

01A1C5A8

 

0015FF40

   

MSR

 

00029030

  

CR

   

44224828

  

LR

   

0014032C

  

CTR

   

000908A8

  

MQ

   

00000000

 

XER

 

00000000

  

SRR0

 

00140334

  

SRR1

 

00029030

  

DSISR

 

40000000

  

DAR

  

00000000

   

IAR

 

00140334

  

(ORG+00140334)

  

ORG=00000000

   

Mode:

 

VIRTUAL

 

00140330

   

5400D97E

 

0C800000

 

387F0000

 

4BECADC5

   

|T..~....8...K...|

                     

|

    

tweqi

   

r0,0x0

 

00140340

   

81810058

 

30210050

 

7D8803A6

 

BBA1FFF4

   

|...X0!.P}.......|

              

|

 

01A1CDF0

   

41820010

 

306300CC

 

48000479

 

80410014

   

|A...0c..H..y.A..|

 

01A1CE00

   

38600000

 

4800000C

 

3860FFFF

 

48000004

   

|8`..H...8`..H...|

 

01A1CE10

   

80010088

 

7C0803A6

 

30210080

 

BBC1FFF8

   

|....|...0!......|

 

01A1CE20

   

4E800020

 

00000000

 

00002041

 

80020201

   

|N..

 

......

 

A....|

 

01A1CE30

   

00000000

 

00000780

 

000D6D70

 

735F696E

   

|..........mps_in|

 

01A1CE40

   

74657272

 

75707400

 

00000000

 

BDA1FFB4

   

|terrupt.........|

 

01A1CE50

   

80A20004

 

39C30000

 

80650060

 

7C0802A6

   

|....9....e.`|...|

 

Diagnostic

 

Patch

 

Diskette

 

Procedure

 

Patch

 

diskettes

 

can

 

be

 

made

 

to

 

help

 

in

 

the

 

debug

 

of

 

problems

 

that

 

occur

 

when

 

running

 

diagnostics

 

from

 

the

 

Diagnostic

 

CDROM.

 

Three

 

types

 

of

 

diskettes

 

can

 

be

 

used:

 

v

   

Diagnostic

 

Configuration

 

Diskette

 

v

   

Diagnostic

 

Patch

 

Diskette

 

v

   

Diagnostic

 

Debug

 

Diskette

 

The

 

Diagnostic

 

Patch

 

Diskette

 

purpose

 

is

 

to

 

allow

 

file

 

replacement

 

from

 

diskette,

 

overriding

 

the

 

file(s)

 

on

 

the

 

CDROM.

 

All

 

diskettes

 

are

 

in

 

backup/restore

 

format.

 

The

 

Diagnostic

 

Debug

 

diskette

 

can

 

be

 

combined

 

with

 

the

 

other

 

two

 

to

 

allow

 

command

 

line

 

debugging

 

as

 

well

 

as

 

file

 

replacement.

   

218

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Diagnostic

 

Configuration

 

Diskette

 

The

 

Diagnostic

 

Configuration

 

diskette

 

has

 

two

 

main

 

purposes.

 

The

 

first

 

purpose

 

of

 

the

 

Diagnostic

 

Configuration

 

diskette

 

is

 

to

 

allow

 

the

 

refresh

 

rate

 

of

 

the

 

graphics

 

adapter

 

to

 

be

 

set

 

to

 

a

 

different

 

value

 

than

 

the

 

default.

 

The

 

default

 

value

 

is

 

60Hz.

 

If

 

the

 

graphics

 

display’s

 

refresh

 

rate

 

is

 

77

 

Hz,

 

then

 

set

 

the

 

refresh

 

rate

 

to

 

77.

 

The

 

second

 

purpose

 

of

 

the

 

Diagnostic

 

Configuration

 

diskette

 

is

 

to

 

allow

 

a

 

terminal

 

attached

 

to

 

any

 

RS232

 

or

 

RS422

 

adapter

 

to

 

be

 

selected

 

as

 

a

 

console

 

device.

 

The

 

default

 

device

 

is

 

a

 

RS232

 

tty

 

attached

 

to

 

the

 

first

 

standard

 

serial

 

port(S1).

 

Each

 

of

 

these

 

can

 

be

 

accomplished

 

by

 

using

 

the

 

Create

 

Customized

 

Configuration

 

Diskette

 

Task.

 

A

 

valid

 

Diagnostic

 

Configuration

 

Diskette

 

contains

 

the

 

following

 

files:

 

v

    

./.signature

 

v

    

./CONSDEF

 

v

    

./REFRESH

 

The

 

.signature

 

file

 

contains

 

a

 

single

 

line

 

describing

 

the

 

diskette

 

purpose.

 

For

 

this

 

diskette,

 

the

 

description

 

should

 

be

 

/etc/diagconf.

 

Diagnostic

 

Patch

 

Diskette

 

The

 

Diagnostic

 

Patch

 

diskette

 

is

 

used

 

to

 

patch

 

failing

 

applications

 

until

 

a

 

new

 

release

 

of

 

the

 

Diagnostic

 

CDROM

 

is

 

available.

 

This

 

diskette

 

may

 

also

 

be

 

used

 

in

 

development

 

to

 

help

 

in

 

the

 

debug

 

of

 

why

 

a

 

particular

 

application

 

is

 

failing.

 

A

 

valid

 

Diagnostic

 

Patch

 

Diskette

 

contains

 

the

 

following

 

files:

 

v

    

./.signature

 

v

    

./etc/diagpatch

 

v

    

./etc/[applications]

 

The

 

.signature

 

file

 

contains

 

a

 

single

 

line

 

describing

 

the

 

diskette

 

purpose.

 

For

 

this

 

diskette,

 

the

 

description

 

should

 

be

 

/etc/diagpatch.

 

The

 

/etc/diagpatch

 

file

 

is

 

a

 

Korn

 

shell

 

script

 

file

 

that

 

is

 

used

 

to

 

remove

 

the

 

application

 

first

 

from

 

the

 

RAM

 

file

 

system,

 

then

 

links

 

the

 

new

 

application

 

to

 

the

 

old

 

one.

 

The

 

/etc/diag

 

patch

 

file

 

must

 

be

 

executable.

 

Following

 

is

 

an

 

example:

 

#!/bin/ksh

 

####

 

begin

 

diagpatch

   

#

 

Files

 

to

 

be

 

replaced

 

on

 

the

 

RAM

 

file

 

system

 

must

 

first

 

be

 

removed,

 

#

 

then

 

linked

 

from

 

/etc

 

to

 

/usr/lpp/....[or

 

correct

 

location]

   

###

 

Replacing

 

a

 

diagnostic

 

application

 

rm

 

/usr/lpp/diagnostics/da/dxspa

 

ln

 

-s

 

/etc/dxspa

 

/usr/lpp/diagnostics/da/dxspa

 

Diagnostic

 

Debug

 

Diskette

 

A

 

valid

 

Diagnostic

 

Debug

 

Diskette

 

contains

 

the

 

following

 

files:

 

v

    

./.signature

 

v

    

./etc/NOKEYPOS

 

The

 

.signature

 

file

 

contains

 

a

 

single

 

line

 

describing

 

the

 

diskette

 

purpose.

 

For

 

this

 

diskette,

 

the

 

description

 

could

 

be

 

either

 

/etc/diagpatch

 

or

 

/etc/diagconf.

 

The

 

script

 

file

 

does

 

not

 

need

 

to

 

be

 

present

 

if

 

files

 

are

 

not

 

being

 

replaced.

   

Chapter

 

6.

 

Diagnostic

 

Debugging

 

Hints

 

219



The

 

/etc/NOKEYPOS

 

file

 

is

 

a

 

zero

 

length

 

file.

 

Note:

  

This

 

function

 

can

 

be

 

combined

 

with

 

either

 

the

 

Patch

 

or

 

Configuration

 

diskette

 

by

 

simply

 

adding

 

the

 

/etc/NOKEYPOS

 

file

 

to

 

either

 

diskette.

  

220

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Chapter

 

7.

 

Code

 

Examples

 

This

 

chapter

 

contains

 

various

 

sample

 

’C’

 

programming

 

code

 

for

 

both

 

the

 

Application

 

Test

 

Unit

 

and

 

Diagnostic

 

Application

 

code.

 

These

 

samples

 

are

 

meant

 

for

 

review

 

to

 

understand

 

the

 

concepts

 

and

 

library

 

routines

 

used.

 

None

 

of

 

these

 

will

 

compile

 

clean.

 

They

 

are

 

included

 

here

 

as

 

reference

 

only.

 

v

   

Example

 

{DEVICE}_ERR_DETAIL.H:

 

TU

 

Specific

 

Outputs

 

v

   

Example

 

{DEVICE}_INPUT_PARAMS.H:

 

TU

 

Specific

 

Inputs

 

v

   

Example

 

TU

 

Local

 

Header

 

File

 

v

   

Example

 

TU

 

exectu

 

Function

 

v

   

Example

 

TU

 

Open/Close

 

Device

 

Interface

 

v

   

Example

 

TU

 

Makefiles

 

v

   

Example

 

C

 

Source

 

File

 

for

 

TU

 

Interrupt

 

Handler

 

v

   

Example

 

TU

 

Interrupt

 

Handler

 

Makefile

 

v

   

Example

 

Diagnostic

 

Application

 

v

   

Example

 

Diagnostic

 

Application

 

Message

 

File

Example

 

{DEVICE}_ERR_DETAIL.H:

 

TU

 

Specific

 

Outputs

 

/*

  

*

   

COMPONENT_NAME:

 

TU_DEVICE

  

*

  

*

   

FUNCTIONS:

 

SAMPLE

 

Header

 

file

 

for

 

TU

 

Error

 

Detail

 

(OUTPUT)

  

*

  

*/

   

#ifndef

 

_h_device_err_detail

 

#define

 

_h_device_err_detail

   

/*

  

*

 

ERROR_DETAILS

 

structure

 

and

 

related

 

definitions

 

follow.

  

*

  

*

 

These

 

structures

 

are

 

used

 

to

 

provide

 

detailed

 

error

 

information

  

*

 

for

 

some

 

of

 

the

 

errors

 

that

 

are

 

detected

 

by

 

the

 

test

 

units.

  

*

 

Whether

 

the

 

detailed

 

error

 

is

 

available

 

for

 

a

 

particular

 

TU

 

and

 

error

  

*

 

code

 

is

 

documented

 

in

 

the

 

TU

 

Component

 

Interface

 

Specification,

 

and

  

*

 

the

 

actual

 

source

 

files

 

where

 

that

 

error

 

code

 

is

 

defined.

  

*/

   

/********************************************************/

 

/*

 

The

 

following

 

structures

 

are

 

examples.

 

Modify

        

*/

 

/*

 

as

 

needed.

                                           

*/

 

/********************************************************/

   

typedef

 

struct

 

{

       

unsigned

 

long

 

int

 

error_code;

       

unsigned

 

long

 

int

 

crc_expected;

       

unsigned

 

long

 

int

 

crc_actual;

 

}

 

CRC_ERROR_DETAILS;

   

typedef

 

struct

 

{

       

unsigned

 

long

 

int

 

error_code;

       

unsigned

 

long

 

int

 

miscompare_address;

       

unsigned

 

long

 

int

 

expected_data;

       

unsigned

 

long

 

int

 

actual_data;

     

}

 

DMA_ERROR_DETAILS;

   

typedef

 

union

 

{

       

unsigned

 

long

 

int

         

error_code;

       

CRC_ERROR_DETAILS

         

crc_test;

 

©

 

Copyright

 

IBM

 

Corp.

 

1997,

 

2004

 

221



DMA_ERROR_DETAILS

         

dma_test;

 

}

 

ERROR_DETAILS;

   

/*

 

The

 

following

 

is

 

required

 

by

 

<diag/tucb.h>

 

file

 

*/

 

#define

 

OUTPUT_DATA

 

ERROR_DETAILS

    

#endif

 

Example

 

{DEVICE}_INPUT_PARAMS.H:

 

TU

 

Specific

 

Inputs

 

/*

  

*

   

COMPONENT_NAME:

 

TU_DEVICE

  

*

  

*

   

FUNCTIONS:

 

SAMPLE

 

TU

 

Input

 

Parameters

 

Header

 

File

  

*

  

*/

   

#ifndef

 

_h_device_input_params

 

#define

 

_h_device_input_params

   

/*

  

*

 

INPUT_DATA

 

structure

 

and

 

related

 

definitions

 

follow.

  

*

  

*

 

These

 

structures

 

are

 

used

 

to

 

provide

 

detailed

 

input

 

data

 

information

  

*

 

for

 

some

 

of

 

the

 

test

 

units.

 

This

 

data

 

is

 

only

 

used

 

in

 

manufacturing

  

*

 

or

 

other

 

special

 

case

 

test

 

areas.

  

*/

   

/********************************************************/

 

/*

 

The

 

following

 

structures

 

are

 

examples.

 

Modify

        

*/

 

/*

 

as

 

needed.

                                           

*/

 

/********************************************************/

   

typedef

 

struct

 

{

       

unsigned

 

long

 

int

         

mfg_mode;

 

}

 

TU_SPECIFIC_INPUT;

   

/*

 

The

 

following

 

is

 

required

 

by

 

the

 

<diag/tucb.h>

 

header

 

*/

 

#define

 

INPUT_DATA

 

TU_SPECIFIC_INPUT

   

#endif

 

Example

 

TU

 

Local

 

Header

 

File

 

/*

  

*

   

COMPONENT_NAME:

 

TU_DEVICE

  

*

  

*

   

FUNCTIONS:

 

TU

 

Header

 

file

  

*/

   

#ifndef

 

_h_tu

 

#define

 

_h_tu

   

#include

 

<diag/tucb.h>

 

#include

 

<sys/pdiagex_dds.h>

   

#define

 

TU_SUCCESS

 

0

 

#define

 

TU_DEVICE_BUSY

  

1

 

#define

 

TU_CHILD_BUSY

   

2

 

#define

 

TU_SOFTWARE_ERROR

 

3

 

#define

 

TU_INVALID_PARAM

  

4

 

#define

 

TU_INCORRECT_STATE

 

5

   

#define

 

TU_OPEN

   

0x01

        

etc,

 

etc

 

#define

 

TU_CLOSE

  

0xEFFF

  

222

 

Understanding

 

the

 

Diagnostic

 

Subsystem



typedef

 

struct

 

{

       

int

 

adapter_diagnose_state;

       

pdiagex_dds_t

 

dds;

       

pdiag_info_handle_t

 

pdiagex_handle;

 

}

 

TU_GLOBAL_DATA;

   

#endif

 

Example

 

TU

 

exectu

 

Function

 

/*

  

*

 

COMPONENT_NAME:

 

(TU_DEVICE)

 

Device

 

Adapter

 

Test

 

Units

  

*

  

*

 

FUNCTIONS:

 

exectu

  

*/

     

/*

   

FILE

 

NAME:

 

device_exectu.c

                                           

*/

 

/*

   

FUNCTION:

  

Device

 

Adapter

 

Application

 

Test

 

Units.

                    

*/

 

/*

                                                                        

*/

 

/*

    

This

 

source

 

file

 

contains

 

source

 

code

 

for

 

the

 

Device

 

adapter’s

      

*/

 

/*

    

Application

 

Test

 

Units

 

to

 

aid

 

in

 

various

 

testing

 

environments

       

*/

 

/*

    

of

 

the

 

device

   

adapter.

 

These

 

test

 

units

 

provide

 

a

 

basic

 

inter-

    

*/

 

/*

    

face

 

between

 

the

 

diagnostic

 

application

 

program

 

and

 

functions

       

*/

 

/*

    

written

 

in

 

the

 

diagnostic

 

extension

 

(pdiagex)

 

which

 

provide

 

direct

  

*/

 

/*

    

access

 

to

 

the

 

device

 

without

 

the

 

need

 

for

 

a

 

device

 

driver.

          

*/

 

/*

                                                                        

*/

 

/*

                                                                        

*/

 

/*

   

EXTERNAL

 

PROCEDURES

 

CALLED:

                                          

*/

 

/*

                                                                        

*/

   

/*

 

INCLUDED

 

FILES

 

*/

 

#include

 

<sys/types.h>

 

#include

 

<stdio.h>

 

#include

 

<errno.h>

   

#include

 

"device_input_params.h"

 

#include

 

"device_err_detail.h"

 

#include

 

"tu.h"

 

#include

 

<diag/tucb.h>

   

/*-

 

global

 

variables

 

-*/

 

TU_GLOBAL_DATA

 

*tu_data;

   

/*-

 

extern

 

functions

 

-*/

 

extern

 

void

 

Do_INIT_TUS(TU_TYPE

 

*,

 

TU_GLOBAL_DATA

 

*,

 

TU_RETURN_TYPE

 

*tu_rc);

 

extern

 

void

 

Do_TERM_TUS(TU_TYPE

 

*,

 

TU_GLOBAL_DATA

 

*,

 

TU_RETURN_TYPE

 

*tu_rc);

   

/*

  

*

 

NAME:

 

exectu

  

*

  

*

 

FUNCTION:

  

Execute

 

a

 

specific

 

Resource

 

Test

 

Unit.

  

*

  

*

 

EXECUTION

 

ENVIRONMENT:

  

*

      

This

 

routine

 

is

 

called

 

as

 

a

 

subroutine

 

of

 

a

 

diagnostic

 

application.

  

*

  

*

 

NOTES:

  

This

 

routine

 

is

 

used

 

as

 

the

 

interface

 

between

 

an

 

application

  

*

         

and

 

the

 

test

 

units

 

for

 

a

 

Resource.

  

*

  

*/

   

ulong

 

exectu(TU_TYPE

 

*dev_tucb,

 

TU_INFO_HANDLE

 

*tu_handle,

 

TU_RETURN_TYPE

 

*tu_rc)

 

{

         

int

 

loopcount;

         

int

 

mfg_flag=0;

  

Chapter

 

7.

 

Code

 

Examples

 

223



/*

 

Set

 

the

 

tu_handle

 

pointing

 

to

 

the

 

global

 

tu

 

structure

 

data

 

*/

         

/*

 

if

 

the

 

first

 

time

 

in.

 

Also

 

initialize

 

elements.

            

*/

         

if

 

(

 

*tu_handle

 

==

 

(TU_INFO_HANDLE

 

*)NULL

 

)

 

{

                 

tu_data

 

=

 

(TU_GLOBAL_DATA

 

*)calloc(1,sizeof(TU_GLOBAL_DATA));

                 

*tu_handle

 

=

 

(TU_INFO_HANDLE

 

*)tu_data;

         

}

           

/*

 

number

 

of

 

times

 

to

 

repeat

 

a

 

command

 

*/

         

loopcount

 

=

 

dev_tucb->parms.loop;

           

/*---------------------------------------*/

         

/*

 

assure

 

adapter

 

is

 

proper

 

state

        

*/

         

/*

 

before

 

attempting

 

test

 

unit

           

*/

         

/*---------------------------------------*/

         

if

 

((dev_tucb->parms.tu

 

!=

 

1)

 

&&

      

/*

 

for

 

tus

 

other

 

than

 

init

 

tu

 

*/

             

(tu.adapter_diagnose_state

 

!=

 

1)){

 

/*

 

test

 

for

 

NOT

 

Diag

 

state

 

*/

                 

tu_rc->major_rc

 

=

 

TU_INCORRECT_STATE;

                 

if

 

(

 

dev_tucb->parms.msg_file

 

!=

 

(FILE

 

*)NULL)

                         

fprintf(

 

dev_tucb->parms.msg_file,

 

"TU

 

is

 

not

 

1,

 

and

                            

not

 

in

 

correct

 

state.

 

status

 

=

 

%d\n",

 

tu_rc->major_rc);

                 

return(tu_rc->major_rc);

       

/*

 

must

 

be

 

in

 

diagnose

 

state

 

*/

         

}

         

else

 

if

 

((dev_tucb->parms.tu

 

==

 

1)

 

&&

  

/*-

 

for

 

tu

 

1

 

only

           

-*/

                                                

/*-

 

test

 

for

 

Diagnose

 

state

 

-*/

                     

(tu.adapter_diagnose_state

 

==

 

1))

 

{

                 

tu_rc->major_rc

 

=

 

TU_SUCCESS;

                 

if

 

(

 

dev_tucb->parms.msg_file

 

!=

 

(FILE

 

*)NULL)

                         

fprintf(

 

dev_tucb->parms.msg_file,

 

"TU

 

is

 

1,

 

and

 

is

 

in

                               

correct

 

state.

 

status

 

=

 

%d\n",

 

tu_rc->major_rc);

                 

return(tu_rc->major_rc);

      

/*-

 

already

 

in

 

diagnose

 

state

 

-*/

         

}

           

switch

 

(dev_tucb->parms.tu)

 

{

                   

/*--------------------------------------*/

                 

/*-

 

INITIALIZE

 

Test

 

Unit

  

#1

           

-*/

                 

/*--------------------------------------*/

         

case

 

TU_OPEN:

                 

{

                         

(void)

 

Do_INIT_TUS(dev_tucb,

 

tu_data,

 

tu_rc);

                         

if

 

(tu_rc->major_rc

 

==

 

TU_SUCCESS)

                                 

/*-

 

flag

 

Diagnose

 

state

 

-*/

                                 

tu.adapter_diagnose_state

 

=

 

1;

                         

if

 

(

 

dev_tucb->parms.msg_file

 

!=

 

(FILE

 

*)NULL)

                                 

fprintf(

 

dev_tucb->parms.msg_file,

                                    

"TU

 

is

 

1

 

status

 

=

 

%d\n",

 

tu_rc->major_rc);

                         

break;

                   

}

                   

/*--------------------------------------*/

                 

/*-

 

Other

 

Test

 

Units

                   

-*/

                 

/*--------------------------------------*/

                   

/*--------------------------------------*/

                 

/*-

 

TERMINATE

 

Test

 

Unit

  

#EFFF

         

-*/

                 

/*--------------------------------------*/

         

case

 

TU_CLOSE:

                 

{

                         

(void)

 

Do_TERM_TUS(dev_tucb,

 

tu_data,

 

tu_rc);

                         

if

 

(tu_rc->major_rc

 

==

 

TU_SUCCESS)

                                 

/*-

 

reset

 

Diagnose

 

state

 

-*/

                                 

tu.adapter_diagnose_state

 

=

 

0;

                         

if

 

(

 

dev_tucb->parms.msg_file

 

!=

 

(FILE

 

*)NULL)

                                 

fprintf(

 

dev_tucb->parms.msg_file,

                                    

"TU

 

is

 

2

 

status

 

=

 

%d\n",

 

tu_rc->major_rc);

  

224

 

Understanding

 

the

 

Diagnostic

 

Subsystem



break;

                 

}

                   

/*---------------------------------------*/

                 

/*

 

Unknown

 

tu

 

number

                     

*/

                 

/*---------------------------------------*/

         

default:

                 

tu.rc.major_rc

 

=

 

TU_INVALID_PARAM;

           

}

  

/*

 

end

 

of

 

switch

 

on

 

tu

 

number

 

*/

           

/*

 

If

 

the

 

OUTPUT_DATA

 

is

 

wanted

 

by

 

the

 

calling

 

application,

 

*/

         

/*

 

then

 

the

 

tucb->data_log

 

should

 

not

 

be

 

NULL.

 

If

 

so,

 

then

  

*/

         

/*

 

this

 

structure

 

may

 

be

 

used.

                              

*/

           

if

 

(

 

dev_tucb->parms.data_log

 

)

                 

dev_tucb->parms.data_log->error_code

 

=

 

TU_FAILED;

           

/*

 

If

 

the

 

INPUT_DATA

 

is

 

specified

 

by

 

the

 

calling

 

application,

 

*/

         

/*

 

then

 

the

 

tucb->tu_data

 

should

 

not

 

be

 

NULL.

 

If

 

so,

 

then

     

*/

         

/*

 

get

 

specific

 

input

 

data

 

from

 

this

 

structure

                

*/

           

if

 

(

 

dev_tucb->parms.tu_data

 

)

                 

mfg_flag

 

=

 

dev_tucb->parms.tu_data->mfg_mode;

           

return

 

(tu_rc->major_rc);

   

}

   

/*

 

end

 

of

 

exectu()-------------------------------------------------------*/

 

Example

 

TU

 

Open/Close

 

Device

 

Interface

 

/*

  

*

 

COMPONENT_NAME:

 

(TU_DEVICE)

 

Resource

 

Interface

 

Access

 

Code

  

*

  

*

 

FUNCTIONS:

 

Do_INIT_TUS

  

*

            

Do_TERM_TUS

  

*/

     

/*

   

FILE

 

NAME:

 

device_interface.c

                                        

*/

 

/*

   

FUNCTION:

  

Device

 

Adapter

 

Application

 

Interface

 

Code

                 

*/

 

/*

                                                                        

*/

 

/*

    

This

 

source

 

file

 

contains

 

source

 

code

 

for

 

the

 

Device

 

adapter’s

      

*/

 

/*

    

Application

 

Test

 

Units

 

to

 

aid

 

in

 

various

 

testing

 

environments

       

*/

 

/*

    

of

 

the

 

device

   

adapter.

 

These

 

test

 

units

 

provide

 

a

 

basic

 

inter-

    

*/

 

/*

    

face

 

between

 

the

 

diagnostic

 

application

 

program

 

and

 

functions

       

*/

 

/*

    

written

 

in

 

the

 

diagnostic

 

extension

 

(pdiagex)

 

which

 

provide

 

direct

  

*/

 

/*

    

access

 

to

 

the

 

device

 

without

 

the

 

need

 

for

 

a

 

device

 

driver.

          

*/

 

/*

                                                                        

*/

 

/*

                                                                        

*/

   

/*

 

INCLUDED

 

FILES

 

*/

 

#include

 

<sys/types.h>

 

#include

 

<stdio.h>

 

#include

 

<errno.h>

 

#include

 

<sys/intr.h>

 

#include

 

<sys/dma.h>

   

#include

 

"device_err_detail.h"

 

#include

 

"tu.h"

 

#include

 

<diag/tucb.h>

 

#include

 

<sys/pdiagex_dds.h>

   

/*****************************************/

 

/*-

 

INITIALIZE

 

Test

 

Unit

  

#1

            

-*/

 

/*****************************************/

 

void

  

Chapter

 

7.

 

Code

 

Examples

 

225



Do_INIT_TUS(TU_TYPE

 

*dev_tucb,

 

TU_GLOBAL_DATA

 

*tu_data,

 

TU_RETURN_TYPE

 

*tu_rc)

 

{

         

int

     

rc;

         

void

    

*ih_handle;

           

/*

 

Set

 

initial

 

tu

 

success

 

status

 

*/

         

tu_rc->major_rc

 

=

 

TU_SUCCESS;

           

/*-

 

unconfigure

 

device/children

 

and

 

place

 

device

 

in

 

diagnose

 

state

 

-*/

         

rc

 

=

 

pdiag_diagnose_state(dev_tucb->resource_name);

         

if

 

(rc

 

!=

 

0)

 

{

           

/*-

 

test

 

unit

 

failed

 

to

 

complete

 

normally

 

-*/

                 

tu_rc->major_rc

 

=

 

TU_DEVICE_BUSY;

                 

tu_rc->minor_rc

 

=

 

rc;

                 

return;

         

}

           

tu_data->adapter_diagnose_state

 

=

 

1;

           

/*

 

Get

 

all

 

the

 

device

 

attributes

 

for

 

the

 

dds

 

structure

 

*/

         

rc

 

=

 

get_dds(

 

dev_tucb,

 

tu_data

 

);

         

if

 

(rc

 

!=

 

0)

 

{

           

/*-

 

test

 

unit

 

failed

 

to

 

complete

 

normally

 

-*/

                 

tu_rc->major_rc

 

=

 

TU_SOFTWARE_ERROR;

                 

tu_rc->minor_rc

 

=

 

rc;

                 

return;

         

}

          

/************************************************************

         

*

 

Call

 

pdiag_open

         

*

 

This

 

also

 

loads

 

the

 

interrupt

 

handler

         

************************************************************/

         

/*

 

Open

 

the

 

device

 

for

 

testing

 

via

 

PDIAGEX

 

*/

         

rc

 

=

 

pdiag_open(

 

dev_tucb->resource_name,

 

&tu_data->dds,

 

"device_intr",

           

&tu_data->pdiagex_handle);

         

if

 

(rc

 

!=

 

0)

 

{

           

/*-

 

test

 

unit

 

failed

 

to

 

complete

 

normally

 

-*/

                 

if

 

(

 

dev_tucb->parms.msg_file

 

!=

 

(FILE

 

*)NULL)

                         

fprintf(

 

dev_tucb->parms.msg_file,

                                  

"pdiagex

 

open

 

rc

 

=

 

%d\n",

 

rc);

                 

tu_rc->major_rc

 

=

 

TU_DEVICE_BUSY;

                 

tu_rc->minor_rc

 

=

 

rc;

                 

return;

         

}

           

return;

                 

/*-

 

normal

 

completion

 

-*/

 

}

   

/*****************************************/

 

/*-

 

TERMINATE

 

Test

 

Unit

  

#EFFF

          

-*/

 

/*****************************************/

 

void

 

Do_TERM_TUS(TU_TYPE

 

*dev_tucb,

 

TU_GLOBAL_DATA

 

*tu_data,

 

TU_RETURN_TYPE

 

*tu_rc)

 

{

         

int

 

rc;

           

tu_rc->major_rc

 

=

 

TU_SUCCESS;

           

/*

 

Close/terminate

 

device

 

from

 

PDIAGEX

     

*/

         

/*

 

This

 

also

 

unloads

 

the

 

interrupt

 

handler

 

*/

         

rc

 

=

 

pdiag_close(tu_data->pdiagex_handle);

         

if

 

(

 

rc

 

!=

 

0

 

)

 

{

                 

if

 

(

 

dev_tucb->parms.msg_file

 

!=

 

(FILE

 

*)NULL)

                         

fprintf(

 

dev_tucb->parms.msg_file,

                                          

"pdiagex

 

close

 

rc

 

=

 

%d\n",

 

rc);

                 

tu_rc->major_rc

 

=

 

TU_SOFTWARE_ERROR;

                 

tu_rc->minor_rc

 

=

 

rc;

         

}

           

/*-

 

reconfigure

 

device/children

 

to

 

their

 

original

 

state

 

-*/

  

226

 

Understanding

 

the

 

Diagnostic

 

Subsystem



rc

 

=

 

pdiag_restore_state(dev_tucb->resource_name);

         

if

 

(rc

 

!=

 

0)

 

{

          

/*-

 

test

 

unit

 

failed

 

to

 

complete

 

normally

 

-*/

                 

tu_rc->major_rc

 

=

 

TU_SOFTWARE_ERROR;

                 

tu_rc->minor_rc

 

=

 

rc;

         

}

           

return;

                 

/*-

 

normal

 

completion

 

-*/

 

}

   

/*****************************************/

 

/*-

 

Get

 

the

 

device

 

attributes

           

-*/

 

/*****************************************/

 

int

 

get_dds(

 

TU_TYPE

 

*dev_tucb,

 

TU_GLOBAL_DATA

 

*tu_data

 

)

 

{

         

int

     

rc;

         

char

    

type;

         

char

    

*parent_name;

           

/*

 

Open/Initialize

 

Configuration

 

Services

 

*/

         

if

 

((rc

 

=

 

pdiag_cs_open())

 

!=

 

0

 

)

                 

return

 

(rc);

           

/********************************************************/

         

/*

 

Initialize

 

the

 

DDS

 

structure

 

with

 

all

 

pertinent

 

data

 

*/

         

/********************************************************/

           

/*

 

Get

 

the

 

parent

 

name

 

*/

         

rc

 

=

 

pdiag_cs_get_attr(dev_tucb->resource_name,

 

"parent_name",

                                         

&parent_name,

 

&type

 

);

           

/*

 

Bus

 

ID

 

for

 

the

 

parent

 

resource

 

*/

         

rc

 

=

 

getatt(&tu_data->dds.bus_id,’l’,parent_name,"bus_id",NULL);

         

pdiag_cs_free_attr

 

(

 

parent_name

 

);

           

/*

 

Slot

 

number

 

*/

         

rc=getatt(&tu_data->dds.slot_num,’i’,dev_tucb->resource_name,

                   

"connwhere",

 

NULL);

           

/*

 

Bus

 

Interrupt

 

Level

 

*/

         

rc=getatt(&tu_data->dds.bus_intr_lvl,’i’,dev_tucb->resource_name,

                   

"busintr",

 

NULL);

           

/*

 

assign

 

bus_io_addr

 

*/

         

rc=getatt(&tu_data->dds.bus_io_addr,’l’,dev_tucb->resource_name,

                   

"busio",NULL);

           

/*

 

assign

 

bus_io_length

 

*/

         

rc=getatt(&tu_data->dds.bus_io_length,’l’,dev_tucb->resource_name,

                   

"bus_io_length",NULL);

           

/*

 

assign

 

bus_mem_addr

 

*/

         

rc=getatt(&tu_data->dds.bus_mem_addr,’l’,dev_tucb->resource_name,

                  

"bus_mem_addr",NULL);

           

/*

 

assign

 

bus_mem_length

 

*/

         

rc=getatt(&tu_data->dds.bus_mem_length,’l’,dev_tucb->resource_name,

                  

"bus_mem_length",NULL);

           

tu_data->dds.intr_priority

 

=

 

INTCLASS2;

         

tu_data->dds.intr_flags

 

=

 

NULL;

               

/*

 

not

 

used

 

by

 

PCI

 

*/

         

tu_data->dds.dma_lvl

 

=

 

NULL;

                  

/*

 

not

 

used

 

by

 

PCI

 

*/

         

tu_data->dds.dma_bus_mem

 

=

 

NULL;

         

tu_data->dds.dma_bus_length

 

=

 

NULL;

         

tu_data->dds.dma_flags

 

=

 

DMA_MASTER;

         

tu_data->dds.bus_type

 

=

 

BUS_BID;

    

Chapter

 

7.

 

Code

 

Examples

 

227



tu_data->dds.data_ptr

 

=

 

(uchar

 

*)NULL;

           

tu_data->dds.maxmaster

 

=

 

32;

           

/*

 

Close

 

Configuration

 

Services

 

*/

         

pdiag_cs_close();

         

return

 

(rc);

 

}

 

/**************************************************************************

  

*

 

NAME:

 

getatt

  

*

  

*

 

FUNCTION:

 

Obtains

 

attribute

 

from

 

the

 

configuration

 

services

  

*

      

database,

 

or

 

change

 

list.

  

*

  

*

 

EXECUTION

 

ENVIRONMENT:

  

*

  

*

 

NOTES:

  

*

  

*

 

int

  

*

   

getatt(dest_addr,dest_type,lname,att_name,newatt

 

)

  

*

  

*

      

dest_addr

 

=

 

pointer

 

to

 

the

 

destination

 

field.

  

*

      

dest_type

 

=

 

The

 

data

 

type

 

which

 

the

 

attribute

 

is

 

to

 

be

 

converted

 

to

  

*

                    

’s’

 

=

 

string

              

rep=s

  

*

                    

’b’

 

=

 

byte

 

sequence

       

rep=s,

  

e.g.

 

"0x56FFE67.."

  

*

                    

’l’

 

=

 

long

                

rep=n

  

*

                    

’i’

 

=

 

int

                 

rep=n

  

*

                    

’h’

 

=

 

short

 

(half)

        

rep=n

  

*

                    

’c’

 

=

 

char

                

rep=n,or

 

s

  

*

                    

’a’

 

=

 

address

             

rep=n

  

*

      

lname

     

=

 

Device

 

logical

 

name.

 

(

 

or

 

parent’s

 

logical

 

name

 

)

  

*

      

att_name

  

=

 

attribute

 

name

 

to

 

retrieve

  

*

      

newatt

    

=

 

New

 

attributes

 

to

 

be

 

scanned

 

before

 

reading

 

database

  

*

  

*

  

*

 

RETURNS:

  

*

       

0

 

=

 

Successful

  

*

      

<0

 

=

 

Successful

 

(for

 

byte

 

sequence

 

only,

 

=

 

-ve

 

no.

 

of

 

bytes)

  

*

      

>0

 

=

 

errno

 

(

 

E_NOATTR

 

=

 

attribute

 

not

 

found

 

)

  

*

 

**************************************************************************/

 

int

 

getatt(dest_addr,

 

dest_type,

 

lname,

 

att_name,

 

newatt)

 

void

            

*dest_addr;

     

/*

 

Address

 

of

 

destination

                   

*/

 

char

            

dest_type;

      

/*

 

Destination

 

type

                         

*/

 

char

            

*lname;

         

/*

 

device

 

logical

 

name

                      

*/

 

char

            

*att_name;

      

/*

 

attribute

 

name

                           

*/

 

struct

  

attr

    

*newatt;

        

/*

 

List

 

of

 

new

 

attributes

                   

*/

 

{

   

struct

  

attr

    

*att_changed();

   

struct

  

attr

    

*att_ptr;

   

int

             

convert_seq();

   

int

             

rc;

   

char

            

*val_ptr;

   

char

            

rep;

   

char

            

*value;

     

/*

 

Note:

 

We

 

need

 

an

 

entry

 

from

 

customized,

 

or

 

predefined

 

even

 

if

 

*/

   

/*

 

an

 

entry

 

from

 

newatt

 

is

 

going

 

to

 

be

 

used

 

because

 

there

 

is

 

no

  

*/

   

/*

 

representation

 

(rep)

 

in

 

newatt

                                

*/

     

/*

 

SEARCH

 

FOR

 

ENTRY

 

*/

   

rc

 

=

 

pdiag_cs_get_attr(lname,

 

att_name,

 

&value,

 

&rep

 

);

     

/*

 

CONVERT

 

THE

 

DATA

 

TYPE

 

TO

 

THE

 

DESTINATION

 

TYPE

 

*/

   

rc

 

=

 

convert_att(dest_addr,

 

dest_type,

 

value,

 

rep

 

);

     

/*

 

Free

 

up

 

what

 

the

 

pdiag_cs_get_addr

 

allocated

 

*/

  

228

 

Understanding

 

the

 

Diagnostic

 

Subsystem



pdiag_cs_free_attr(

 

&value

 

);

     

return(rc);

 

}

     

/*************************************************************************

  

*

 

NAME:

 

convert_att

  

*

  

*

 

FUNCTION:

 

This

 

routine

 

converts

 

attributes

 

into

 

different

 

data

 

types

  

*

  

*

 

EXECUTION

 

ENVIRONMENT:

  

*

  

*

      

Generally

 

this

 

routine

 

is

 

called

 

by

 

getatt(),

 

but

 

it

 

is

 

available

  

*

      

to

 

other

 

procedures

 

which

 

need

 

to

 

convert

 

data

 

which

 

may

 

not

 

also

  

*

      

be

 

represented

 

in

 

the

 

database.

  

*

      

No

 

global

 

variable

 

are

 

used,

 

so

 

this

 

may

 

be

 

dynamically

 

linked.

  

*

  

*

 

RETURNS:

  

*

  

*

       

0

 

=

 

Successful

  

*

      

<0

 

=

 

Successful

 

(for

 

byte

 

sequence

 

only,

 

=

 

-ve

 

no.

 

of

 

bytes)

  

*

      

>0

 

=

 

errno

 

**************************************************************************/

 

int

 

convert_att(dest_addr,

 

dest_type,

 

val_ptr,

 

rep

 

)

 

void

    

*dest_addr;

             

/*

 

Address

 

of

 

destination

                   

*/

 

char

    

dest_type;

              

/*

 

Destination

 

type

                         

*/

 

char

    

*val_ptr;

               

/*

 

Address

 

of

 

source

                        

*/

 

char

    

rep;

                    

/*

 

Representation

 

of

 

source

 

(’s’,

 

or

 

’n’)

   

*/

 

{

     

if(

 

rep

 

==

 

’s’

 

)

 

{

         

switch(

 

dest_type

 

)

 

{

                 

case

 

’s’:

                         

strcpy(

 

(char

 

*)dest_addr,

 

val_ptr

 

);

                         

break;

                 

case

 

’c’:

                         

*(char

 

*)dest_addr

 

=

 

*val_ptr;

                         

break;

                 

case

 

’b’:

                         

return

 

(

 

convert_seq(

 

val_ptr,

 

(char

 

*)dest_addr

 

)

 

);

                 

case

 

’i’:

                         

*(int

 

*)dest_addr

 

=

                             

(int)strtoul(

 

val_ptr,

 

(char

 

**)NULL,

 

0);

                         

break;

                 

default:

                             

return

 

1;

         

}

   

}

 

else

 

if(

 

rep

 

==

 

’n’

 

)

 

{

         

switch(

 

dest_type

 

)

 

{

                 

case

 

’l’:

                         

*(long

 

*)dest_addr

 

=

                             

strtoul(

 

val_ptr,

 

(char

 

**)NULL,

 

0);

                         

break;

                 

case

 

’i’:

                         

*(int

 

*)dest_addr

 

=

                             

(int)strtoul(

 

val_ptr,

 

(char

 

**)NULL,

 

0);

                         

break;

                 

case

 

’h’:

                         

*(short

 

*)dest_addr

 

=

                             

(short)strtoul(

 

val_ptr,

 

(char

 

**)NULL,

 

0);

                         

break;

                 

case

 

’c’:

                         

*(char

 

*)dest_addr

 

=

                             

(char)strtoul(

 

val_ptr,

 

(char

 

**)NULL,

 

0);

                         

break;

                 

case

 

’a’:

  

Chapter

 

7.

 

Code

 

Examples

 

229



*(void

 

**)dest_addr

 

=

                             

(void

 

*)strtoul(

 

val_ptr,

 

(char

 

**)NULL,

 

0);

                         

break;

                 

default:

                             

return

 

1;

         

}

   

}

 

else

 

{

         

return

 

1;

   

}

   

return

 

0;

 

}

     

/**************************************************************************

  

*

 

NAME:

 

convert_seq

  

*

  

*

 

FUNCTION:

 

Converts

 

a

 

hex-style

 

string

 

to

 

a

 

sequence

 

of

 

bytes

  

*

  

*

 

EXECUTION

 

ENVIRONMENT:

  

*

  

*

      

This

 

routine

 

uses

 

no

 

global

 

variables

  

*

  

*

 

NOTES:

  

*

  

*

      

The

 

string

 

to

 

be

 

converted

 

is

 

of

 

the

 

form

  

*

      

"0xFFAAEE5A567456724650789789ABDEF678"

  

(for

 

example)

  

*

      

This

 

would

 

put

 

the

 

code

 

FF

 

into

 

the

 

first

 

byte,

 

AA

 

into

 

the

 

second,

  

*

      

etc.

  

*

  

*

 

RETURNS:

 

No

 

of

 

bytes,

 

or

 

-3

 

if

 

error.

  

*

 

***************************************************************************/

   

int

 

convert_seq(

 

source,

 

dest

 

)

 

char

 

*source;

 

uchar

 

*dest;

 

{

   

char

    

byte_val[5];

    

/*

 

e.g.

 

"0x5F\0"

        

*/

   

int

     

byte_count

 

=

 

0;

     

uchar

   

tmp_val;

   

char

    

*end_ptr;

     

strcpy(

 

byte_val,

 

"0x00"

 

);

     

if(

 

*source

 

==

 

’\0’

 

)

 

{

   

/*

 

Accept

 

empty

 

string

 

as

 

legal

 

*/

                 

return

 

0;

   

}

     

if(

 

*source++

 

!=

 

’0’

 

)

 

{

         

return

 

1;

   

}

     

if(

 

tolower(*source++)

 

!=

 

’x’

 

)

 

{

         

return

 

1;

   

}

     

while(

 

(

 

byte_val[2]

 

=

 

*source

 

)

 

&&

 

(

 

byte_val[3]

 

=

 

*(source+1)

 

)

 

)

 

{

         

source

 

+=

 

2;

           

/*

 

be

 

careful

 

not

 

to

 

store

 

illegal

 

bytes

 

in

 

case

 

the

          

*

 

destination

 

is

 

of

 

exact

 

size,

 

and

 

the

 

source

 

has

          

*

 

trailing

 

blanks

          

*/

           

tmp_val

 

=

 

(uchar)

 

strtoul(

 

byte_val,

 

&end_ptr,

 

0

 

);

         

if(

 

end_ptr

 

!=

 

&byte_val[4]

 

)

 

{

  

230

 

Understanding

 

the

 

Diagnostic

 

Subsystem



break;

         

}

           

*dest++

 

=

 

tmp_val;

         

byte_count++;

   

}

     

return

 

-byte_count;

 

}

 

Example

 

TU

 

Makefiles

 

#

 

#

   

COMPONENT_NAME:

 

(TU_DEVICE)

 

#

 

#

   

FUNCTIONS:

 

EXAMPLE

 

TU

 

LIBRARY

 

MAKEFILE

 

#

 

#

 

VPATH

           

=

 

${MAKETOP}/bos/kernext/exp

 

#

 

The

 

following

 

three

 

lines

 

are

 

for

 

building

 

a

 

#

 

Second

 

Level

 

Interrupt

 

Handler.

 

SUBDIRS

         

=

 

slih

 

EXPINC_SUBDIRS

  

=

 

slih

 

EXPLIB_SUBDIRS

  

=

 

slih

 

PROGRAMS

         

=

 

libtu_device

 

#

 

Flag

 

to

 

the

 

linker

 

that

 

exectu

 

is

 

the

 

main

 

entry

 

point.

 

libtu_device_LDFLAGS

         

+=

 

-e

 

exectu

 

#

 

If

 

using

 

PDIAGEX,

 

the

 

diagnostic

 

kernel

 

extension

 

libtu_device_IMPORTS

 

=

 

-bI:pdiagex.exp

 

#

 

LIBS

             

=

 

-ldiag

 

-lpdiag

 

#

 

Install

 

list

 

and

 

directory.

 

ILIST

            

=

 

${PROGRAMS}

 

IDIR

             

=

 

/usr/lpp/diagnostics/lib/

 

OFILES

           

=

 

device_exectu.o

 

device_interface.o

 

.include

 

<${RULES_MK}>

   

#

 

#Using

 

command

 

line

 

make:

 

#

 

libtu_device:

 

device_exectu.o

 

device_interface.o

         

ld

 

-o

 

tu

 

/lib/crt0.o

 

device_exectu.o

 

device_interface.o

 

-lpdiag

 

-lc

 

-e

 

exectu

 

device_exectu.o:

 

device_exectu.c

         

cc

 

-c

 

-I.

 

device_exectu.c

 

device_interface.o:

 

device_interface.c

         

cc

 

-c

 

-I.

 

device_interface.c

 

Example

 

C

 

Source

 

File

 

for

 

TU

 

Interrupt

 

Handler

 

/*

  

*

   

COMPONENT_NAME:

 

tu_device

  

*

  

*

   

FUNCTIONS:

 

device_interrupt

  

*/

   

/***

 

header

 

files

 

***/

 

#include

 

<sys/adspace.h>

 

#include

 

<sys/ioacc.h>

 

#include

 

<sys/types.h>

 

#include

 

<sys/sleep.h>

 

#include

 

<sys/watchdog.h>

 

#include

 

<sys/trcmacros.h>

   

#include

 

<sys/pdiagex_dds.h>

   

/******************************************************************************

  

Chapter

 

7.

 

Code

 

Examples

 

231



*

 

*

 

NAME:

  

device_interrupt

 

*

 

*

 

FUNCTION:

  

Interrupt

 

handler

 

for

 

the

 

.......

 

adapter.

 

*

 

*

 

INPUT

 

PARAMETERS:

     

handle

 

=

 

handle

 

returned

 

from

 

pdiagex_open

 

*

                       

data

   

=

 

data

 

passed

 

to

 

handler

 

during

 

*

                                        

initialization.

 

*

 

*

 

EXECUTION

 

ENVIRONMENT:

  

Interrupt

 

*

 

*

 

RETURN

 

VALUE

 

DESCRIPTION:

 

none.

 

*

 

*

 

EXTERNAL

 

PROCEDURES

 

CALLED:

 

pdiag_dd_read,

 

pdiag_dd_write

 

*

 

******************************************************************************/

 

int

 

device_interrupt(pdiag_info_handle_t

 

handle,

 

char

 

*data_area,

                         

int

 

*interrupt_flag,

 

int

 

sleep_flag,

 

int

 

*sleep_word)

 

{

         

ushort

  

readdata,

 

rc;

         

int

     

interrupt_mask;

         

int

     

offset;

         

ulong

   

writedata;

         

pdiagex_opflags_t

 

flags={

 

PDIAG_MEM_OP,

                                   

1,

                                   

PDIAG_SING_LOC_ACC,

                                   

INTRKMEM,

                                   

NULL

 

};

           

/******************************************

         

*

 

Get

 

value

 

of

 

interrupt

 

status

 

register

         

******************************************/

           

rc

 

=

 

pdiag_dd_read(handle,

 

IOSHORT16,

 

offset,

                                

(void

 

*)&readdata,

 

&flags);

           

*interrupt_flag

 

=

 

0;

           

/***********************************************************

         

*

  

An

 

Interrupt

 

for

 

this

 

resource

 

has

 

occurred,

 

process

 

it.

         

***********************************************************/

         

rc

 

=

 

pdiag_dd_write(handle,

 

IOSHORT16,

 

offset,

 

(void

 

*)&writedata,

                             

&flags);

           

/************************************************************

          

*

 

Set

 

a

 

value

 

to

 

the

 

watchdog

 

function

 

that

 

indicates

 

that

          

*

 

this

 

is

 

the

 

interrupt

 

expected

          

************************************************************/

         

*interrupt_flag

 

|=

 

interrupt_mask;

           

/*********************************************

         

*

  

Wake

 

up

 

sleeping

 

application

 

IF

 

necessary

         

**********************************************/

         

if

 

(sleep_flag)

 

{

                 

pdiag_dd_interrupt_notify(

 

sleep_word

 

);

         

}

           

return

 

(0);

   

}

 

/*

 

end

 

device_intr

 

*/

   

232

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Example

 

TU

 

Interrupt

 

Handler

 

Makefile

 

#

   

COMPONENT_NAME:

 

tu_device

 

#

 

#

   

FUNCTIONS:

 

none

 

#

 

#

 

#-----------------------------------------------------------------------#

 

#

                                                                       

#

 

#

       

Make

 

file

 

for

 

the

 

...................

                           

#

 

#

                                                                       

#

 

#-----------------------------------------------------------------------#

     

#

 

@(#)17

 

1.1

  

src/idd/en_US/aixprggd/diagunsd/TU_64bit_port.htm,

 

iddiagunsd,

 

#

 

idd500

 

5/23/00

 

13:54:31

 

#

   

.include

 

<${MAKETOP}bos/kernext/Kernext.mk>

     

TU_VPATH

   

=

 

${MAKETOP}/bos/diag/tu/tu_dir

 

VPATH

      

=

 

${MAKETOP}bos/kernel/exp:${MAKETOP}bos/kernext/exp:$TU_VPATH

   

#

 

32-bit

 

version

 

of

 

load

 

object

 

#

 

KERNEL_EXT

      

=

 

your_intr

   

#

 

64-bit

 

version

 

of

 

load

 

object

 

#

 

KERNEL_EXT64

    

=

 

your_intr64

   

IDIR

            

=

 

/usr/lpp/diagnostics/slih/

   

#

 

install

 

list

 

containing

 

32-bit

 

and

 

64-bit

 

version

 

#

 

ILIST

           

=

 

your_intr

 

your_intr64

   

OPT_LEVEL

       

=

    

-qlist

 

-qsource

   

#

 

entry

 

point,

 

import

 

and

 

export

 

files

 

for

 

32-bit

 

version

 

#

 

your_intr_DEPENDS

        

=

 

your_intr.exp

 

your_intr_ENTRYPOINT

     

=

 

your_interrupt

 

your_intr_IMPORTS

        

=

 

-bI:pdiagex.exp

 

your_intr_EXPORTS

        

=

 

-bE:your_intr.exp

   

#

 

entry

 

point,

 

import

 

and

 

export

 

files

 

for

 

64-bit

 

version

 

#

 

(common

 

with

 

32-bit

 

version)

 

your_intr64_DEPENDS

      

=

 

your_intr.exp

 

your_intr64_ENTRYPOINT

   

=

 

your_interrupt

 

your_intr64_IMPORTS

      

=

 

-bI:pdiagex.exp

 

\

                                  

pdiagex64.exp

 

your_intr64_EXPORTS

      

=

 

-bE:your_intr.exp

   

#

 

object

 

list

 

definition

 

for

 

32-bit

 

version

 

#

 

your_intr_OFILES

     

=

  

your_intr.o

   

#

 

object

 

list

 

definition

 

for

 

64-bit

 

version

 

(common

 

objects

 

#

 

across

 

32-bit

 

and

 

64-bit

 

versions),

 

with

 

64-bit

 

objects

 

#

 

renamed

 

to

 

.64o

  

Chapter

 

7.

 

Code

 

Examples

 

233



#

 

your_intr64_OFILES

   

=

  

your_intr.64o

   

INCFLAGS

   

=

 

-I${MAKETOP}/bos/diag/tu/tu_dir

 

\

              

-I${MAKETOP}bos/usr/include

 

LIBS

       

=

 

${KERNEXT_LIBS}

     

.include

 

<${RULES_MK}>

 

Note:

  

Replace

 

the

 

environment

 

variables

 

and

 

file

 

names

 

with

 

your

 

own

 

names

 

to

 

customize

 

this

 

example

 

for

 

your

 

own

 

use.

 

Example

 

Diagnostic

 

Application

   

/*

 

*

       

COMPONENT_NAME

 

:

 

DAXYZ

 

-

 

diagnostic

 

application

 

for

 

resource

 

xyz

 

*

 

*

       

FUNCTIONS

 

:

     

main

                         

tu_test

                         

clean_up

                         

stand_by_screen

                         

loop_stand_by_screen

                         

check_rc

                         

ela

                         

check_microcode

 

*/

 

#include

 

<stdio.h>

 

#include

 

<locale.h>

 

#include

 

<cf.h>

 

#include

 

<fcntl.h>

 

#include

 

<errno.h>

 

#include

 

<sys/types.h>

 

#include

 

<sys/ldr.h>

 

/*

 

...

 

etc

 

(any

 

necessary

 

system

 

header

 

files)*/

 

#include

 

<diag/da.h>

 

#include

 

<diag/diago.h>

 

#include

 

<diag/diag.h>

 

#include

 

<diag/tm_input.h>

 

#include

 

<diag/tmdefs.h>

 

#include

 

<diag/diag_exit.h>

 

#include

 

"dxyz_msg.h"

 

#include

 

"dxyz.h"

 

/************************************************/

 

/*

 

If

 

the

 

application

 

wants

 

detailed

 

error

 

data

 

*/

 

/*

 

then

 

include

 

the

 

header

 

file

 

containing

 

the

  

*/

 

/*

 

structures

 

for

 

the

 

error

 

or

 

output

 

data,

 

else*/

 

/*

 

do

 

not

 

include.

 

This

 

header

 

file

 

is

 

normally

 

*/

 

/*

 

dropped

 

with

 

the

 

test

 

unit

 

code.

             

*/

 

/************************************************/

 

#include

 

"device_err_detail.h"

     

/************************************************/

 

/*

 

If

 

the

 

application

 

uses

 

special

 

input

 

data

   

*/

 

/*

 

then

 

include

 

the

 

header

 

file

 

which

 

must

 

be

   

*/

 

/*

 

common

 

between

 

the

 

DA

 

and

 

TU,

 

else

           

*/

 

/*

 

do

 

not

 

include.

 

Manufacturing

 

and

 

HTX

 

use

    

*/

 

/*

 

only.

  

This

 

header

 

file

 

is

 

normally

          

*/

 

/*

 

dropped

 

with

 

the

 

test

 

unit

 

code.

             

*/

 

/************************************************/

 

#include

 

"device_input_params.h"

    

234

 

Understanding

 

the

 

Diagnostic

 

Subsystem



/************************************************/

 

/*

 

Include

 

the

 

tucb

 

header

 

file.

                

*/

 

/************************************************/

 

#include

 

<diag/tucb.h>

   

/*

 

TU

 

operation

 

defines

 

*/

 

#define

 

TU_OPEN

   

1

 

#define

 

TU_CLOSE

  

0xEFFF

 

/*

 

OTHERS

 

AS

 

REQUIRED

 

*/

 

int

 

reg_tu_seq[6]

 

=

 

{

         

TU_OPEN,

         

18,

         

19,

         

3,

         

4,

         

TU_CLOSE

          

/*Problem

 

determination

 

sequence*/

 

};

     

int

 

sys_tu_seq[8]

 

=

 

{

         

TU_OPEN,

         

18,

         

19,

         

3,

         

4,

         

8,

         

17,

         

TU_CLOSE

          

/*System

 

checkout

 

sequence*/

 

};

 

/*fru_bucket

 

is

 

a

 

structure

 

that

 

holds

 

information

 

for

 

the

 

diagnostic

   

program

 

to

 

return

 

to

 

the

 

diagnostic

 

controller

 

when

 

a

 

failure

 

is

   

found

 

that

 

needs

 

to

 

be

 

reported.

  

(FRU

 

means

 

Field

 

Replaceable

 

Unit).

 

*/

     

struct

 

fru_bucket

 

frub[]

 

=

 

{

         

{"",

 

FRUB1,

 

0x849,

 

0x210,

 

R_XYZ_ADAPTER,

                 

{

                         

{87,"","",0,DA_NAME,NONEXEMPT},

                         

{13,"DRAM

 

Sip","00-00-00",F_XYZ_DRAM,NOT_IN_DB,EXEMPT},

                 

},

         

},

         

{"",

 

FRUB1,

 

0x849,

 

0,

 

R_ELA,

                 

{

                         

{90,"","",0,DA_NAME,NONEXEMPT},

                         

{10,"","",0,PARENT_NAME,

 

NONEXEMPT},

                 

},

         

},

         

{"",

 

FRUB1,

 

0x849,

 

0x160,

 

R_V35_CABLE,

                 

{

                         

{95,"V35

 

Cable",

 

"",CABLEFRU,0,0},

                         

{5,"","",0,DA_NAME,NONEXEMPT},

                 

},

         

},

 

};

   

struct

 

msglist

 

plug_37[]

 

=

 

{

                                  

{Q_PLUG_37_PIN,Q_PLUG_37_PIN_TITLE},

                                  

{Q_PLUG_37_PIN,Q_PLUG_37_PIN_YES},

  

Chapter

 

7.

 

Code

 

Examples

 

235



{Q_PLUG_37_PIN,Q_PLUG_37_PIN_NO},

                                  

{Q_PLUG_37_PIN,Q_PLUG_37_PIN_ACTION},

                                  

NULL

 

};

     

/*

 

The

 

above

 

messages

 

are

 

stored

 

in

 

the

 

DA

 

message

 

file

 

-

 

dxyz.msg.

    

The

 

following

 

screen

 

will

 

be

 

displayed

 

by

 

making

 

an

 

ASL

    

call

 

during

 

the

 

execution

 

of

 

this

 

DA.

 

The

 

complete

 

DA

 

will

 

have

    

more

 

menus

 

displayed

 

during

 

different

 

instances.

 

*/

 

TESTING XYZ ADAPTER xyz0 IN ADVANCED MODE                                   xxx001

The following test requires a 37-pin wrap plug, Part Number xxxxxxx.  

Do you have this wrap plug?
Move cursor to selection, then press Enter.  

YES
NO

F3=Cancel           F10=Exit

     

#define

 

IS_CONSOLE

 

((int)(tm_input.console

 

==

 

CONSOLE_TRUE))

 

/*

 

include

 

your

 

own

 

macros

 

here

 

*/

   

static

 

ASL_SCR_INFO

 

q_plug_37[DIAG_NUM_ENTRIES(plug_37)];

 

/*

 

include

 

additional

 

msglist

 

here

 

*/

 

static

 

ASL_SCR_TYPE

 

menutype

 

=

 

DM_TYPE_DEFAULTS;

   

/*

 

static

 

variables

 

*/

   

struct

 

tm_input

 

tm_input;

 

struct

 

errdata

  

err_data;

 

struct

 

stat

     

*tmpbuf;

 

int

             

envflag;

 

char

            

*slot;

 

char

            

*libpath

 

=

 

NULL;

 

nl_catd

         

fdes;

 

short

           

state;

 

int

             

diskette_based;

 

int

             

fd;

 

int

             

rc;

 

int

             

i;

 

int

             

val;

 

int

 

(*tu_entry)();

 

FILE

 

*fd;

 

TU_TYPE

  

dev_tucb;

 

TU_TYPE

  

*dev_tucb_ptr;

 

TU_INFO_HANDLE

 

*tu_handle

 

=

 

(TU_INFO_HANDLE

 

*)NULL;

 

TU_RETURN_TYPE

 

tu_rc;

   

void

 

tu_test(int);

 

/*

 

external

 

functions

 

*/

 

extern

          

getdainput();

 

extern

          

addfrub();

 

unsigned

  

int

   

dtoh();

    

236

 

Understanding

 

the

 

Diagnostic

 

Subsystem



main()

 

{

         

/*variables

 

declaration

 

*/

         

DA_SETRC_STATUS(DA_STATUS_GOOD);

         

DA_SETRC_ERROR(DA_ERROR_NONE);

         

DA_SETRC_USER(DA_USER_NOKEY);

         

DA_SETRC_TESTS(DA_TEST_FULL);

         

DA_SETRC_MORE(DA_MORE_NOCONT);

           

/*initialize

 

locale

 

environment*/

         

setlocale(LC_ALL,

 

"");

           

/*initialize

 

the

 

Configuration

 

database*/

         

init_dgodm();

           

/*

 

get

 

input

 

environment

 

*/

         

if

 

(getdainput(&tm_input)!=

 

0)

 

{

                 

DA_SETRC_ERROR(DA_ERROR_OTHER);

                 

clean_up();

         

}

           

/*if

 

using

 

console

 

-

 

initialize

 

ASL

 

and

 

open

 

message

 

catalog*/

         

if

 

(IS_CONSOLE)

 

{

                 

diag_asl_init("DEFAULT");

                 

fdes=diag_catopen(MF_XYZ,0);

         

}

           

/*display

 

initial

 

screen

 

depending

 

on

 

loopmode*/

         

if(tm_input.loopmode==LOOPMODE_NOTLM)

 

{

                 

stand_by_screen();

         

}

         

else

                 

loop_stand_by_screen();

           

/*verify

 

existence

 

of

 

any

 

microcode

 

needed

 

to

 

run*/

         

check_microcode();

           

/*

 

TU

 

initialization*/

         

dev_tucb_ptr

 

=

 

&dev_tucb;

         

dev_tucb_ptr->resource_name

 

=

 

tm_input.dname;

           

/*

 

If

 

detailed

 

output

 

data

 

is

 

not

 

desired,

 

then

 

set

 

to

 

NULL

 

*/

         

dev_tucb_ptr->parms.data_log

 

=

 

(void

 

*)NULL;

         

dev_tucb_ptr->parms.data_log_length

 

=

 

(long)0;

           

/*

 

Else

 

If

 

detailed

 

output

 

data

 

is

 

expected,

 

then

 

malloc

 

some

 

space

 

*/

         

dev_tucb_ptr->parms.data_log

 

=

                                

(OUTPUT_DATA*)malloc(sizeof(OUTPUT_DATA));

           

/*

 

This

 

particular

 

test

 

wants

 

to

 

use

 

the

 

crc_test

 

structure

 

*/

         

/*

 

See

 

{device}_err_detail.h

 

file

 

for

 

details

                 

*/

         

dev_tucb_ptr->parms.data_log_length

 

=

 

(long)sizeof(

                                 

dev_tucb_ptr->parms.data_log->crc_test);

           

/*

 

If

 

specific

 

input

 

data

 

is

 

not

 

used,

 

then

 

set

 

to

 

NULL

 

*/

         

dev_tucb_ptr->parms.tu_data

 

=

 

(void

 

*)NULL;

         

dev_tucb_ptr->parms.tu_data_length

 

=

 

(long)0;

           

/*

 

Else

 

If

 

specific

 

input

 

data

 

is

 

used,

 

then

 

malloc

 

some

 

space

 

*/

         

dev_tucb_ptr->parms.tu_data

 

=

 

(INPUT_DATA

 

*)malloc(sizeof(INPUT_DATA));

         

dev_tucb_ptr->parms.tu_data_length

 

=

 

(long)sizeof(

                                         

dev_tucb_ptr->parms.tu_data);

           

/*

 

and

 

set

 

whatever

 

input

 

parameters

 

required

 

*/

         

dev_tucb_ptr->parms.tu_data->mfg_mode

 

=

 

5;

           

/*

 

If

 

not

 

using

 

a

 

file

 

for

 

debug

 

messages,

 

set

 

to

 

NULL

 

*/

  

Chapter

 

7.

 

Code

 

Examples

 

237



/*

 

Use

 

the

 

environment

 

variable

 

DIAG_DEBUG

             

*/

         

if(

 

(char

 

*)getenv("DA_DEBUG")

 

==

 

(char

 

*)NULL)

                 

dev_tucb_ptr->parms.msg_file

 

=

 

(FILE

 

*)NULL;

           

/*

 

Else

 

open

 

a

 

file

 

and

 

set

 

FILE

 

*

                     

*/

         

else

 

{

                 

fd

 

=

 

(FILE

 

*)fopen("/tmp/debug.file",

 

"w");

                 

dev_tucb_ptr->parms.msg_file

 

=

 

fd;

         

}

         

/*--------------------------------------*/

         

/*-

 

Load

 

the

 

Test

 

Unit

 

Library

         

-*/

         

/*--------------------------------------*/

         

/*

 

The

 

path

 

for

 

the

 

test

 

unit

 

library

 

will

 

be

        

*/

         

/*

 

in

 

/usr/lpp/diagnostics/lib

 

directory.

            

*/

         

if(

 

(libpath

 

=

 

(char

 

*)getenv("DIAGNOSTICS_TU_LIB"))

 

!=

 

NULL

 

)

                 

tu_entry

 

=

  

load("libtu_device",

 

L_LIBPATH_EXEC,

 

libpath);

         

else

                 

tu_entry

 

=

  

load("/usr/lpp/diagnostics/lib/libtu_device",

                                 

L_LIBPATH_EXEC,

 

(char

 

*)NULL);

           

if

 

(tm_input.dmode!=DMODE_ELA)

 

{

                

if(tm_input.system==SYSTEM_TRUE)

 

{

                   

/*

 

System

 

Checkout*/

                        

if

 

(tm_input.loopmode==LOOPMODE_NOTLM)

                                

stand_by_screen();

                        

else

                                

loop_stand_by_screen();

                          

/*

 

Execute

 

system

 

checkout

 

sequence*/

                        

for(i=0;i<10;

 

++i)

                                

tu_test(sys_tu_seq[i]);

                

}

                

/*

 

Diagnostic

 

Routines

 

*/

                

else

 

if

 

(tm_input.loopmode==LOOPMODE_NOTLM)

 

{

                        

stand_by_screen();

                        

if

 

(IS_CONSOLE)

 

{

                                

/*Execute

 

problem

 

determination

 

sequence

 

*/

                                

for

 

(i=0;

 

i<9;

 

++i)

                                             

/*Problem

 

Determination

 

*/

                                             

tu_test(reg_tu_seq[i]);

                        

/*

 

After

 

running

 

"regular"

 

TUs,

 

see

 

if

 

Advanced

 

Diag

 

is

 

invoked

 

*/

                                 

if(tm_input.advanced==ADVANCED_TRUE)

 

{

                                       

/*

 

Ask

 

user

 

if

 

a

 

particular

 

wrap

 

plug

                                          

is

 

available

 

*/

                                       

rc=diag_diplay(0x00,fdes,plug_37,DIAG_IO,

                        

ASL_DIAG_LIST_CANCEL_EXIT_SC,&menutype,q_plug_37);

                                      

check_rc(rc);

                                      

if

 

(rc==DIAG_ASL_COMMIT)

                                        

switch

 

(DIAG_ITEM_SELECTED(menutype))

 

{

                                        

case

 

1:

 

/*

 

Answer

 

is

 

YES

 

*/

                                                

slot

 

=

 

tm_input.dnameloc;

                                                

rc=diag_msg(0x902000,fdes,

                                                      

PLUG_37_PIN,

                                                      

PLUG_37_PIN_TITLE,slot);

                                                

check_rc(rc);

                                                

stand_by_screen();

                                                

tu_test(10);

                                                

rc=diag_msg(0x902001,fdes,

                                                      

UNPLUG_37_PIN,

                                                      

UNPLUG_37_PIN_TITLE,slot);

                                                

check_rc(rc);

                                                

break;

                                        

case

 

2:

 

/*

 

Answer

 

is

 

NO

 

*/

                                                

break;

  

238

 

Understanding

 

the

 

Diagnostic

 

Subsystem



default:

                                                

DA_SETRC_ERROR(DA_ERROR_OTHER);

                                                

clean_up();

                                                

break;

                                        

}

 

/*

 

end

 

switch

 

*/

                                  

}/*

 

end

 

Advanced

 

Tests*/

                                  

stand_by_screen();

                                  

/*

 

execute

 

remaining

 

tests

 

in

 

problem

 

determination,

 

if

 

any

 

*/

                                  

tu_test(17);

                          

}

                          

else

 

{

       

/*Console

 

false

 

-

 

execute

 

System

 

Checkout

                                         

sequence

 

*/

                                  

for

 

(i=0;

 

i<10;

 

++i)

                                        

tu_test(sys_tu_seq[i]);

                          

}

                  

}

 

/*

 

end

 

problem

 

determination

 

-

 

diagnostic

 

routines

 

*/

                  

else

                  

{/*

 

Must

 

be

 

loop

 

mode

 

*/

                          

switch

 

(tm_input.loopmode)

 

{

                          

case

 

LOOPMODE_ENTERLM:

                                  

loop_stand_by_screen();

                                  

val

 

=

 

0;

                                  

putdavar(tm_input.dname,

 

"vname",

                                           

DIAG_INT,

 

&val);

                                  

/*

 

Do

 

what

 

is

 

necessary

 

-

 

enter

 

loop

 

mode

 

*/

                                  

ela();

                                  

break;

                          

case

 

LOOPMODE_INLM:

                                  

loop_stand_by_screen();

                                  

getdavar(tm_input.dname,

 

"vname",

                                           

DIAG_INT,

 

&val);

                                  

/*

 

Do

 

what

 

is

 

necessary

 

-

 

IN

 

loop

 

mode

 

*/

                                  

break;

                          

case

 

LOOPMODE_EXITLM:

                                  

getdavar(tm_input.dname,

 

"vname",

                                           

DIAG_INT,

 

&val);

                                  

/*

 

Do

 

what

 

is

 

necessary

 

-

 

EXIT

 

loop

 

mode.

                                        

For

 

example,put

 

of

 

menus

 

to

 

restore

                                        

machine’s

 

original

 

state.

 

*/

                                  

break;

                          

default:

                                  

DA_SETRC_ERROR(DA_ERROR_OTHER);

                                  

clean_up();

                                  

break;

                          

}

 

/*

 

end

 

switch

 

-

 

loop

 

mode

 

*/

                  

}

 

/*

 

end

 

if-else

 

-

 

loop

 

mode

 

*/

          

}

 

/*

 

end

 

if

 

!

 

ELA

 

*/

          

/*

 

Performing

 

Error

 

Log

 

Analysis

 

*/

          

if

 

(((tm_input.dmode==DMODE_PD)

 

||

 

(tm_input.dmode==DMODE_ELA))

                  

&&

 

(tm_input.loopmode==LOOPMODE_NOTLM))

                          

ela();

          

DA_SETRC_ERROR(DA_ERROR_NONE);

          

DA_SETRC_TESTS(DA_TEST_FULL);

          

clean_up();

 

}

 

/*end

 

main

 

*/

   

/*

 

*

       

NAME

 

:

 

tu_test

 

*

 

*

       

FUNCTION

 

:

 

Executes

 

test

 

units

 

and

 

reports

 

FRUs

 

to

 

the

 

controller

 

*

                  

if

 

a

 

failure

 

is

 

found.

  

Chapter

 

7.

 

Code

 

Examples

 

239



*

 

*

       

EXECUTION

 

ENVIRONMENT

 

:

 

*

 

*

       

Called

 

by

 

the

 

main

 

program

 

to

 

execute

 

test

 

units.

 

*

       

Call

 

external

 

routine

 

exectu

 

to

 

actually

 

execute

 

the

 

test

 

units.

 

*

       

Call

 

external

 

routine

 

diag_asl_read

 

to

 

get

 

user’s

 

input

 

to

 

screen

 

*

         

e.g.

 

Cancel

 

or

 

Exit.

 

*

       

Call

 

external

 

routines

 

insert_frub

 

and

 

addfrub

 

when

 

a

 

failure

 

*

         

is

 

found.

 

*

       

Call

 

clean_up

 

after

 

a

 

fru

 

is

 

reported

 

to

 

the

 

controller.

 

*

 

*

       

RETURNS

 

:

 

NONE

 

*

 

*/

 

void

 

tu_test(int

 

tunum)

 

{

         

ulong

    

major_rc;

                 

/*return

 

code

 

from

 

test

 

unit

 

*/

         

dev_tucb_ptr->parms.tu

 

=

 

tunum;

         

dev_tucb_ptr->parms.loop

 

=

 

1;

      

/*

 

command

 

loop

 

*/

         

major_rc

 

=

 

tu_entry(dev_tucb_ptr,

 

&tu_handle,

 

&tu_rc);

         

if

 

(

 

fd

 

!=

 

(FILE

 

*)

 

NULL)

                 

fprintf(

 

fd,"(DA)TU_OPEN

 

-

 

major_rc

 

=

 

%d\n",

 

tu_rc.major_rc);

      

if

 

(IS_CONSOLE)

 

{

                 

rc

 

=

 

diag_asl_read(ASL_DIAG_KEYS_ENTER_SC,FALSE,NULL);

                 

check_rc(rc);

         

}

           

if

 

(major_rc

 

!=0

 

)

 

{

                

switch

 

(tunum)

 

{

                

case

 

1:

                        

if

 

(major_rc

 

<

 

0x00)

 

{

                                

rc

 

=

 

insert_frub(&tm_input,&frub[2]);

                                

if

 

(rc

 

!=

 

0)

 

{

                                        

DA_SETRC_STATUS(DA_STATUS_BAD);

                                        

DA_SETRC_ERROR(DA_ERROR_OTHER);

                                        

clean_up();

                                

}

                                

strncpy

 

(frub[2].dname,

                                

tm_input.dname,sizeof(frub[0].dname));

                                

addfrub(&frub[2]);

                        

}

                        

break;

                

case

 

3:

                

case

 

9:

                

case

 

10:

                                        

/*etc*/

                

case

 

16:

                        

break;

                

default

 

:

                        

DA_SETRC_ERROR(DA_ERROR_OTHER);

                        

clean_up();

                        

break;

                

}

 

/*

 

end

 

switch*/

                  

DA_SETRC_STATUS(DA_STATUS_BAD);

                

DA_SETRC_MORE(DA_MORE_NOCONT);

                

DA_SETRC_TESTS(DA_TEST_FULL);

                

clean_up();

        

}

 

/*

 

end

 

-

 

if*/

 

}

 

/*

 

end

 

tu_test

 

*/

   

/*

 

clean_up

 

*/

   

clean_up()

 

{

  

240

 

Understanding

 

the

 

Diagnostic

 

Subsystem



if

 

(fd>0)

                

close

 

(fd);

         

/*--------------------------------------*/

         

/*-

 

UnLoad

 

the

 

Test

 

Unit

 

Library

       

-*/

         

/*--------------------------------------*/

         

rc

 

=

 

unload((void

 

*)tu_entry);

  

/*

 

Restore

 

machine

 

to

 

original

 

state,

 

if

 

you

 

need

 

to

 

switch

 

back

            

microcode,

 

do

 

it

 

here.

 

*/

              

if

 

(IS_CONSOLE)

 

{

                 

diag_asl_quit();

         

/*

 

close

 

ASL

 

*/

                 

catclose(fdes);

         

}

           

term_dgodm();

                    

/*

 

close

 

ODM

 

*/

         

DA_EXIT();

 

}

 

/*

 

end

 

clean_up*/

   

/*stand_by_screen*/

     

int

 

stand_by_screen()

 

{

         

char

    

*text_array[3];

         

text_array[0]

 

=

 

diag_cat_gets(fdes,

 

DESC,

 

MSG1

 

);

         

text_array[1]

 

=

 

tm_input.dname;

         

text_array[2]

 

=

 

tm_input.dnameloc;

           

if

 

(IS_CONSOLE)

 

{

                 

switch

 

(tm_input.advanced)

 

{

                 

case

 

ADVANCED_TRUE:

                         

rc

 

=

 

diag_display_menu(ADVANCED_TESTING_MENU,0x902002,

                                 

text_array,0,0);

                         

break;

                 

case

 

ADVANCED_FALSE:

                         

rc

 

=

 

diag_display_menu(CUSTOMER_TESTING_MENU,0x902003,

                                 

text_array,0,0);

                         

break;

                 

default:

                         

break;/*not

 

really

 

necessary*/

                 

}

                 

check_rc(rc);

         

}

 

}

 

/*end

 

stand_by_screen

 

*/

     

/*

   

loop_stand_by_screen

 

*/

     

int

 

loop_stand_by_screen()

 

{

         

char

    

*text_array[3];

         

text_array[0]

 

=

 

diag_cat_gets(fdes,

 

DESC,

 

MSG1

 

);

         

text_array[1]

 

=

 

tm_input.dname;

         

text_array[2]

 

=

 

tm_input.dnameloc;

           

if

 

(IS_CONSOLE)

 

{

                 

rc

 

=

 

diag_display_menu(LOOPMODE_TESTING_MENU,0x902004,

                                 

text_array,

 

tm_input.lcount,tm_input.lerrors);

                 

check_rc(rc);

         

}

 

}

 

/*end

 

loop_stand_by_screen

 

*/

   

/*

  

check_rc

   

*/

    

Chapter

 

7.

 

Code

 

Examples

 

241



int

 

check_rc(rc)

         

int

   

rc;

                         

/*

 

user’s

 

input

 

*/

 

{

         

if

 

(rc

 

==

 

DIAG_ASL_CANCEL)

  

{

                 

/*force

 

microcode

 

swap

 

-

 

if

 

applies

 

*/

                 

tm_input.loopmode

 

=

 

LOOPMODE_EXITLM;

                 

DA_SETRC_USER(DA_USER_QUIT);

                 

DA_SETRC_TESTS(DA_TEST_FULL);

                 

clean_up();

         

}

         

if

 

(rc

 

==

 

DIAG_ASL_EXIT)

  

{

                 

DA_SETRC_USER(DA_USER_EXIT);

                 

DA_SETRC_TESTS(DA_TEST_FULL);

                 

clean_up();

         

}

         

return

 

(rc);

 

}

 

/*

 

end

 

check_rc

 

*/

   

/*

    

ela

      

*/

   

int

 

ela()

 

{

         

char

       

crit[255];

         

sprintf(crit,

 

"-N

 

%s

  

%s",

 

tm_input.dname,tm_input.date);

         

rc

 

=

 

error_log_get

 

(INIT,crit,&err_data);

         

while

 

(rc

 

!=0)

 

{

                 

if

 

(rc

 

==

 

-1)

 

{

                         

DA_SETRC_STATUS(DA_STATUS_GOOD);

                         

DA_SETRC_ERROR(DA_ERROR_OTHER);

                         

clean_up();

                 

}

                 

else

 

if

 

(rc>0)

 

{

                         

if((err_data.err_id

 

==

 

0x0000000)

 

||

 

(err_data.err_id

 

==

 

0x000000))

 

{

                                 

rc

 

=

 

insert_frub(&tm_input,&frub[1]);

                                 

if

 

(rc

 

!=0)

 

{

                                         

DA_SETRC_STATUS(DA_STATUS_GOOD);

                                         

DA_SETRC_ERROR(DA_ERROR_OTHER);

                                         

DA_SETRC_TESTS(DA_TEST_FULL);

                                         

clean_up();

                                 

}

                                 

strncpy

 

(frub[1].dname,tm_input.dname,

                                          

sizeof(frub[1].dname));

                                 

addfrub

 

(&frub[1]);

                                 

DA_SETRC_STATUS(DA_STATUS_BAD);

                                 

clean_up();

                         

}

 

/*

 

end

 

if

 

*/

                         

rc

 

=

 

error_log_get

 

(SUBSEQ,crit,&err_data);

                 

}

                 

rc

 

=

 

error_log_get

 

(TERMI,crit,&err_data);

                 

if

 

(rc

 

==

 

-1)

 

{

                         

DA_SETRC_STATUS(DA_STATUS_GOOD);

                         

DA_SETRC_ERROR(DA_ERROR_OTHER);

                         

clean_up();

                

}

         

}

 

}

 

/*

 

check_microcode

 

*/

 

int

 

check_microcode()

 

{

         

char

             

mpath[255];

         

char

             

*no_rcm_msg;

         

char

             

*no_diag_msg;

           

/*

 

Check

 

if

 

the

 

functional

 

microcode

 

file

 

xxxx.xxx

 

is

 

present.

  

242

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Check

 

only

 

if

 

diagnostics

 

is

 

run

 

off

 

hard

 

disk

 

*/

            

envflag

 

=

 

ipl_mode(&diskette_based);

            

if

 

(diskette_based

 

==

 

DIAG_FALSE)

 

{

                  

if

 

(0

 

>

 

(rc

 

=

 

findmcode("funcmcode",mpath,VERSIONING,

 

NULL)))

 

{

                           

sprintf(no_rcm_msg,catgets(fdes,NO_RCM,NO_RCM_TITLE,

                           

NULL));

                           

menugoal(no_rcm_msg);

                        

}

         

}

         

/*

 

Check

 

if

 

all

 

the

 

diagnostic

 

microcode

 

files

 

are

 

present.

 

*/

            

if

 

(0

 

>

 

(rc

 

=

 

findmcode("diagmcode",

 

mpath,

 

VERSIONING,

 

NULL)))

 

{

                     

sprintf(no_diag_msg,catgets(fdes,MENU_SET,NO_

                     

DIAGMICROCODE_MENU,NULL));

                     

menugoal(no_diag_msg);

                     

clean_up();

                 

}

 

}

 

Example

 

Diagnostic

 

Application

 

Message

 

File

 

$

 

$

   

COMPONENT_NAME:

 

DAXYZ

 

$

 

$

   

FUNCTIONS:

 

dxyz.msg

 

-

 

message

 

file

 

for

 

screen

 

display

 

when

 

diagnostic

 

$

                         

application

 

dxyz

 

is

 

invoked.

 

$

 

$

   

Compilation:

 

Use

 

AIX

 

command

 

mkcatdefs

 

to

 

create

 

header

 

file

 

containing

 

$

                

symbols

 

for

 

use

 

in

 

C

 

source

 

code.

 

$

 

GENERAL

 

NOTES

 

FOR

 

TRANSLATION

 

PURPOSES

 

$

 

$

 

Do

 

not

 

translate

 

%c,

 

%d,

 

%s,

 

%x,

 

%07X,

 

or

 

\t

 

in

 

any

 

messages.

  

They

 

$

   

are

 

used

 

for

 

word

 

or

 

number

 

substitution

 

and

 

are

 

noted

 

in

 

the

 

$

   

comments

 

for

 

the

 

individual

 

messages.

  

The

 

1$,

 

2$,

 

3$,

 

etc,

 

$

   

within

 

the

 

substitutions

 

are

 

used

 

to

 

denote

 

the

 

order

 

of

 

the

 

$

   

substitutions.

 

$

 

$

 

These

 

comments

 

concern

 

the

 

TITLE

 

LINES

 

at

 

the

 

top

 

the

 

diagnostic

 

screen.

 

$

   

The

 

title

 

must

 

be

 

in

 

all

 

capital

 

letters.

 

The

 

first

 

line

 

$

   

of

 

the

 

title

 

cannot

 

be

 

longer

 

than

 

65

 

characters

 

starting

 

from

 

$

   

column

 

1.

  

If

 

the

 

line

 

is

 

greater

 

than

 

65,

 

it

 

may

 

be

 

continued

 

on

 

$

   

the

 

next

 

line.

  

Leave

 

line

 

spacing

 

as

 

shown:

  

one

 

blank

 

line

 

after

 

$

   

the

 

last

 

title

 

line.

  

For

 

example:

 

$

 

$

 

*****

 

$

 

TESTING

 

PORT

 

12

 

OF

 

THE

 

16-PORT

 

ASYNCHRONOUS

 

ADAPTER

 

IN

 

PLANAR

 

SLOT

 

2

 

$

 

IN

 

ADVANCED

 

MODE

 

$

 

$

 

Please

 

stand

 

by.

 

$

 

*****

 

$

 

$

 

These

 

comments

 

concern

 

the

 

user

 

ACTIONS

 

in

 

all

 

caps.

 

$

   

If

 

translations

 

require

 

the

 

creation

 

of

 

new

 

lines,

 

begin

 

the

 

$

   

new

 

lines

 

in

 

the

 

column

 

immediately

 

following

 

the

 

row

 

of

 

periods.

 

$

   

For

 

example:

 

$

 

$

 

*****

 

$

 

ACTION.........one

 

line

 

of

 

English

 

might

 

require

 

several

 

when

 

translated,

 

so

 

$

                

begin

 

the

 

next

 

line

 

at

 

the

 

same

 

point

 

of

 

the

 

previous

 

line.

 

$

 

ACTION.........the

 

next

 

action

 

follows

 

with

 

no

 

blank

 

line

 

preceding

 

it.

 

$

 

*****

 

$

 

$

 

The

 

location

 

of

 

a

 

resource

 

is

 

in

 

the

 

form

 

of

 

xx-xx-xx

 

where

 

x

 

is

 

an

 

$

   

alpha-numeric

 

character.

  

The

 

location

 

is

 

not

 

translatable.

  

It

 

is

 

$

   

an

 

alpha-numeric

 

descriptor

 

of

 

where

 

the

 

resource

 

can

 

be

 

found.

 

$

 

$

 

END

 

OF

 

GENERAL

 

NOTES

   

Chapter

 

7.

 

Code

 

Examples

 

243



$set

 

DESC

 

$quote

 

"

 

$

 

MSG1

 

"XYZ

 

ADAPTER"

 

$

 

$

 

Leave

 

line

 

spacing

 

as

 

shown.

  

See

 

general

 

notes

 

on

 

length

 

of

 

title

 

line.

 

$set

 

SRNS

 

$

 

---------------------------------------------------------------

 

$

 

Reason

 

code

 

set

 

used

 

by

 

device

 

type

 

"XYZ"

 

R_XYZ_ADAPTER

 

"An

 

error

 

was

 

found

 

on

 

the

 

adapter."

 

R_V35_CABLE

 

"An

 

error

 

was

 

found

 

with

 

the

 

XYZ

 

interface

 

adapter

 

cable."

 

R_ELA

 

"Error

 

log

 

analysis

 

indicates

 

a

 

hardware

 

error."

 

R_DD

 

"Adapter

 

hardware

 

has

 

caused

 

a

 

software

 

failure."

 

F_XYZ_DRAM

 

"DRAM

 

SIPs

 

on

 

the

 

adapter

 

card"

 

$

 

DRAM

 

stands

 

for

 

Dynamic

 

Random

 

Access

 

Memory.

  

SIP

 

stands

 

for

 

$

 

Single

 

In-line

 

Package.

 

CABLEFRU

 

"Cable

 

Part

 

Number

 

xxxxxxxx"

 

$set

 

Q_PLUG_37_PIN

   

Q_PLUG_37_PIN_TITLE

 

"TESTING

 

XYZ

 

ADAPTER

 

IN

 

ADVANCED

 

MODE\n\n\

 

The

 

following

 

test

 

requires

 

a

 

37

 

pin

 

wrap

 

plug,

 

Part

 

Number

 

xxxxxxx.\n\n\

 

Do

 

you

 

have

 

this

 

wrap

 

plug

 

?"

 

$

 

$

 

Check

 

for

 

appropriate

 

part

 

number

 

in

 

translating

 

country.

 

$

 

Leave

 

line

 

spacing

 

as

 

shown.

  

See

 

general

 

notes

 

on

 

length

 

of

 

title

 

line.

   

Q_PLUG_37_PIN_YES

 

"YES"

 

$

 

This

 

option

 

is

 

shown

 

when

 

a

 

YES

 

answer

 

is

 

possible.

   

Q_PLUG_37_PIN_NO

 

"NO"

 

$

 

This

 

option

 

is

 

shown

 

when

 

a

 

NO

 

answer

 

is

 

possible.

 

Q_PLUG_37_PIN_ACTION

 

"Move

 

cursor

 

to

 

selection,

 

then

 

press

 

Enter."

 

$

 

This

 

message

 

is

 

shown

 

when

 

a

 

multiple

 

selection

 

list

 

is

 

presented.

 

$set

 

PLUG_37_PIN

 

$

 

PLUG_37_PIN_TITLE

 

"TESTING

 

XYZ

 

ADAPTER

 

IN

 

ADVANCED

 

MODE\n\n\

 

REMOVE.........the

 

cable,

 

if

 

attached,

 

from

 

the

 

adapter

 

in\n\

                

location

 

%1$s.\n\

 

PLUG...........the

 

wrap

 

plug

 

(Part

 

Number

 

xxxxxxx)

 

into\n\

                

the

 

adapter.\n\n\

 

When

 

finished,

 

press

 

Enter."

 

$

 

$

 

%1$s

 

is

 

the

 

location

 

of

 

the

 

adapter

 

as

 

described

 

in

 

the

 

general

 

notes.

 

$

 

See

 

general

 

notes

 

on

 

how

 

to

 

expand

 

ACTION

 

lines

 

if

 

necessary.

 

$

 

Check

 

for

 

appropriate

 

part

 

number

 

in

 

translating

 

country.

 

$

 

Leave

 

line

 

spacing

 

as

 

shown.

  

See

 

general

 

notes

 

on

 

length

 

of

 

title

 

line.

 

$set

 

UNPLUG_37_PIN

 

$

 

UNPLUG_37_PIN_TITLE

 

"TESTING

 

XYZ

 

ADAPTER

 

IN

 

ADVANCED

 

MODE\n\n\

 

UNPLUG.........the

 

wrap

 

plug

 

from

 

the

 

adapter.\n\

 

PLUG...........the

 

interface

 

cable,

 

if

 

it

 

was

 

removed,\n\

                

into

 

the

 

adapter.\n\n\

 

When

 

finished,

 

press

 

Enter."

 

$

 

$

 

This

 

line

 

instructs

 

the

 

user

 

to

 

restore

 

things

 

to

 

the

 

original

 

state

 

$

 

after

 

testing

 

is

 

done.

 

$

 

See

 

general

 

notes

 

on

 

how

 

to

 

expand

 

ACTION

 

lines

 

if

 

necessary.

 

$

 

Leave

 

line

 

spacing

 

as

 

shown.

  

See

 

general

 

notes

 

on

 

length

 

of

 

title

 

line.

 

$set

 

NO_RCM

 

$

 

NO_RCM_TITLE

 

"902XXX

 

\

 

XYZ

 

OPERATIONAL

 

MICROCODE

 

IS

 

MISSING\n\n\

 

The

 

XYZ

 

operational

 

microcode

 

is

 

either\n\

 

missing

 

or

 

not

 

accessible.\n\n\

  

244

 

Understanding

 

the

 

Diagnostic

 

Subsystem



This

 

microcode

 

is

 

necessary

 

in

 

order

 

to

 

use

 

the

 

XYZ

 

adapter

 

card\n\

 

in

 

normal

 

system

 

operations."

 

$

 

$

 

Leave

 

line

 

spacing

 

as

 

shown.

  

See

 

general

 

notes

 

on

 

length

 

of

 

title.

 

$

 

Do

 

not

 

translate

 

the

 

number

 

902XXX

 

at

 

the

 

beginning

 

of

 

the

 

message.

 

$

 

Leave

 

it

 

exactly

 

as

 

shown.

  

Chapter

 

7.

 

Code

 

Examples

 

245



246

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Chapter

 

8.

 

Diagnostic

 

Task

 

Matrix

 

Legend:

 

Y

 

=

 

supported,

 

N

 

=

 

not

 

supported

  

Table

 

1.

 

Diagnostic

 

Tasks

 

Platform

 

Environment

 

Task

 

Description

 

ID#

 

rs6ksmp

 

rs6k

 

rspc

 

chrp

 

Online

 

CDROM

 

NIM

 

(PCI/ISA)

 

Conc

 

Serv

 

Run

 

Diagnostics

 

1

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Run

 

Error

 

Log

 

Analysis

 

33

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

N

 

N

 

Run

 

Exercisers

 

59

 

N

 

N

 

N

 

Y

 

N

 

Y

 

N

 

Display

 

or

 

Change

 

Diagnostic

 

Run

 

Time

 

Options

 

2

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

7135

 

RAIDiant

 

Array

 

Service

 

Aids

 

38

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Shell

 

Prompt

 

27

 

Y

 

Y

 

Y

 

Y

 

N

 

Y

 

N

 

Add

 

Resource

 

to

 

Resource

 

List

 

13

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Add

 

or

 

Delete

 

Drawer

 

Configuration

 

23

 

Y

 

Y

 

N

 

N

 

Y

 

Y

 

N

 

Analyze

 

Adapter

 

Internal

 

Log

 

55

 

N

 

N

 

Y

 

Y

 

Y

 

Y

 

N

 

Backup

 

and

 

Restore

 

Media

 

19

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Certify

 

Media

 

10

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Change

 

Hardware

 

Vital

 

Product

 

Data

 

8

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Configure

 

Dials

 

&

 

LPFkeys

 

22

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Configure

 

ISA

 

Adapter

 

26

 

N

 

N

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Configure

 

Reboot

 

Policy

 

47

 

N

 

N

 

N

 

Y

 

Y

 

Y

 

Y

 

Y

 

Configure

 

Remote

 

Maintenance

 

Policy

 

48

 

N

 

N

 

N

 

Y

 

Y

 

Y

 

Y

 

Y

 

Configure

 

Ring

 

Indicate

 

Power

 

On

 

Policy

 

45

 

N

 

N

 

N

 

Y

 

Y

 

Y

 

Y

 

Y

 

Configure

 

Ring

 

Indicate

 

Power-On

 

36

 

N

 

N

 

Y

 

N

 

Y

 

Y

 

Y

 

Y

 

Configure

 

Service

 

Processor

 

37

 

N

 

N

 

Y

 

N

 

Y

 

Y

 

Y

 

Y

 

Configure

 

Surveillance

 

Policy

 

46

 

N

 

N

 

N

 

Y

 

Y

 

Y

 

Y

 

Y

 

Create

 

Customized

 

Configuration

 

Diskette

 

24

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

N

 

Y

 

Delete

 

Resource

 

from

 

Resource

 

List

 

14

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Disk

 

Maintenance

 

20

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Display

 

Checkstop

 

Analysis

 

Results

 

54

 

Y

 

N

 

N

 

N

 

Y

 

Y

 

N

 

Display

 

Configuration

 

and

 

Resource

 

List

 

35

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

  

©

 

Copyright

 

IBM

 

Corp.

 

1997,

 

2004

 

247



Table

 

1.

 

Diagnostic

 

Tasks

 

(continued)

 

Platform

 

Environment

 

Task

 

Description

 

ID#

 

rs6ksmp

 

rs6k

 

rspc

 

chrp

 

Online

 

CDROM

 

NIM

 

(PCI/ISA)

 

Conc

 

Serv

 

Display

 

Firmware

 

Device

 

Node

 

Information

 

42

 

N

 

N

 

N

 

Y

 

Y

 

Y

 

Y

 

Y

 

Display

 

Hardware

 

Error

 

Report

 

5

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

N

 

Y

 

Display

 

Hardware

 

Vital

 

Product

 

Data

 

7

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Display

 

Machine

 

Check

 

Error

 

Log

 

41

 

N

 

N

 

Y

 

N

 

N

 

N

 

Y

 

Display

 

Microcode

 

Level

 

60

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Display

 

Multipath

 

I/O

 

Device

 

Configuration

 

63

 

N

 

N

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Display

 

Previous

 

Diagnostic

 

Results

 

4

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

N

 

Display

 

Resource

 

Attributes

 

7

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Display

 

Service

 

Hints

 

3

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Display

 

Software

 

Product

 

Data

 

6

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

N

 

Display

 

System

 

Environmental

 

Sensors

 

51

 

N

 

N

 

N

 

Y

 

Y

 

Y

 

Y

 

Y

 

Display

 

Test

 

Patterns

 

11

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Display

 

USB

 

Devices

 

b

 

Y

 

Y

 

Y

 

Y

 

Display

 

or

 

Change

 

BUMP

 

Configuration

 

29

 

Y

 

N

 

N

 

N

 

Y

 

Y

 

Y

 

Y

 

Display

 

or

 

Change

 

Bootlist

 

17,

 

43

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Display

 

or

 

Change

 

Electronic

 

Mode

 

Switch

 

30

 

Y

 

N

 

N

 

N

 

Y

 

Y

 

Y

 

Display

 

or

 

Change

 

Multiprocessor

 

Configuration

 

28

 

Y

 

N

 

N

 

N

 

Y

 

Y

 

Y

 

Download

 

Microcode

 

16

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Escon

 

Bit

 

Error

 

Rate

 

Service

 

Aid

 

n/a

 

Y

 

Y

 

N

 

N

 

Y

 

Y

 

N

 

Fibre

 

Channel

 

RAID

 

Service

 

Aids

 

58

 

N

 

N

 

Y

 

Y

 

Y

 

Y

 

Y

 

Flash

 

SK-NET

 

FDDI

 

Firmware

 

56

 

N

 

N

 

Y

 

Y

 

Y

 

Y

 

Y

 

Format

 

Media

 

9

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Generic

 

Microcode

 

Download

 

32

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Identify

 

and/or

 

Remove

 

Resource

 

61

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Local

 

Area

 

Network

 

Analyzer

 

12

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Log

 

Repair

 

Action

 

62

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

N

 

PCI

 

RAID

 

Physical

 

Disk

 

Identify

 

53

 

N

 

N

 

Y

 

Y

 

Y

 

Y

 

Y

 

Periodic

 

Diagnostics

 

18

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

N

   

248

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Table

 

1.

 

Diagnostic

 

Tasks

 

(continued)

 

Platform

 

Environment

 

Task

 

Description

 

ID#

 

rs6ksmp

 

rs6k

 

rspc

 

chrp

 

Online

 

CDROM

 

NIM

 

(PCI/ISA)

 

Conc

 

Serv

 

Process

 

Supplemental

 

Media

 

31

 

Y

 

Y

 

Y

 

Y

 

N

 

N

 

Y

 

SCSD

 

Tape

 

Drive

 

Service

 

Aid

 

40

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

SCSI

 

Bus

 

Analyzer

 

15

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

SCSI

 

Device

 

Identification

 

and

 

Removal

 

39

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

SSA

 

Service

 

Aid

 

n/a

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Save

 

or

 

Restore

 

Hardware

 

Management

 

Policies

 

49

 

N

 

N

 

N

 

Y

 

Y

 

Y

 

N

 

Save

 

or

 

Restore

 

Service

 

Processor

 

Configuration

 

57

 

N

 

N

 

Y

 

N

 

Y

 

Y

 

N

 

Service

 

Aids

 

for

 

use

 

with

 

Ethernet

 

34

 

Y

 

Y

 

N

 

N

 

Y

 

Y

 

Y

 

Spare

 

Sector

 

Availability

 

44

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

System

 

Fault

 

Indicator

 

65

 

Y

 

Y

 

Y

 

Y

 

System

 

Modify

 

Indidicator

 

64

 

Y

 

Y

 

Y

 

Y

 

Update

 

Disk

 

Based

 

Diagnostics

 

25

 

Y

 

Y

 

Y

 

Y

 

Y

 

Y

 

N

 

Update

 

Syskonnect

 

PCI

 

FDDI

 

Adapter

 

(48110040)

 

Flash

 

56

 

Y

 

Y

 

Y

 

Y

 

Update

 

System

 

Flash

 

52

 

N

 

N

 

Y

 

N

 

Y

 

Y

 

N

 

Update

 

System

 

or

 

Service

 

Processor

 

Flash

 

50

 

N

 

N

 

N

 

Y

 

Y

 

Y

 

N

    

Chapter

 

8.

 

Diagnostic

 

Task

 

Matrix

 

249



250

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Appendix.

 

Notices

 

This

 

information

 

was

 

developed

 

for

 

products

 

and

 

services

 

offered

 

in

 

the

 

U.S.A.

 

IBM

 

may

 

not

 

offer

 

the

 

products,

 

services,

 

or

 

features

 

discussed

 

in

 

this

 

document

 

in

 

other

 

countries.

 

Consult

 

your

 

local

 

IBM

 

representative

 

for

 

information

 

on

 

the

 

products

 

and

 

services

 

currently

 

available

 

in

 

your

 

area.

 

Any

 

reference

 

to

 

an

 

IBM

 

product,

 

program,

 

or

 

service

 

is

 

not

 

intended

 

to

 

state

 

or

 

imply

 

that

 

only

 

that

 

IBM

 

product,

 

program,

 

or

 

service

 

may

 

be

 

used.

 

Any

 

functionally

 

equivalent

 

product,

 

program,

 

or

 

service

 

that

 

does

 

not

 

infringe

 

any

 

IBM

 

intellectual

 

property

 

right

 

may

 

be

 

used

 

instead.

 

However,

 

it

 

is

 

the

 

user’s

 

responsibility

 

to

 

evaluate

 

and

 

verify

 

the

 

operation

 

of

 

any

 

non-IBM

 

product,

 

program,

 

or

 

service.

 

IBM

 

may

 

have

 

patents

 

or

 

pending

 

patent

 

applications

 

covering

 

subject

 

matter

 

described

 

in

 

this

 

document.

 

The

 

furnishing

 

of

 

this

 

document

 

does

 

not

 

give

 

you

 

any

 

license

 

to

 

these

 

patents.

 

You

 

can

 

send

 

license

 

inquiries,

 

in

 

writing,

 

to:

 

IBM

 

Director

 

of

 

Licensing

 

IBM

 

Corporation

 

North

 

Castle

 

Drive

 

Armonk,

 

NY

 

10504-1785

 

U.S.A.

 

The

 

following

 

paragraph

 

does

 

not

 

apply

 

to

 

the

 

United

 

Kingdom

 

or

 

any

 

other

 

country

 

where

 

such

 

provisions

 

are

 

inconsistent

 

with

 

local

 

law:

 

INTERNATIONAL

 

BUSINESS

 

MACHINES

 

CORPORATION

 

PROVIDES

 

THIS

 

PUBLICATION

 

"AS

 

IS"

 

WITHOUT

 

WARRANTY

 

OF

 

ANY

 

KIND,

 

EITHER

 

EXPRESS

 

OR

 

IMPLIED,

 

INCLUDING,

 

BUT

 

NOT

 

LIMITED

 

TO,

 

THE

 

IMPLIED

 

WARRANTIES

 

OF

 

NON-INFRINGEMENT,

 

MERCHANTABILITY

 

OR

 

FITNESS

 

FOR

 

A

 

PARTICULAR

 

PURPOSE.

 

Some

 

states

 

do

 

not

 

allow

 

disclaimer

 

of

 

express

 

or

 

implied

 

warranties

 

in

 

certain

 

transactions,

 

therefore,

 

this

 

statement

 

may

 

not

 

apply

 

to

 

you.

 

This

 

information

 

could

 

include

 

technical

 

inaccuracies

 

or

 

typographical

 

errors.

 

Changes

 

are

 

periodically

 

made

 

to

 

the

 

information

 

herein;

 

these

 

changes

 

will

 

be

 

incorporated

 

in

 

new

 

editions

 

of

 

the

 

publication.

 

IBM

 

may

 

make

 

improvements

 

and/or

 

changes

 

in

 

the

 

product(s)

 

and/or

 

the

 

program(s)

 

described

 

in

 

this

 

publication

 

at

 

any

 

time

 

without

 

notice.

 

Licensees

 

of

 

this

 

program

 

who

 

wish

 

to

 

have

 

information

 

about

 

it

 

for

 

the

 

purpose

 

of

 

enabling:

 

(i)

 

the

 

exchange

 

of

 

information

 

between

 

independently

 

created

 

programs

 

and

 

other

 

programs

 

(including

 

this

 

one)

 

and

 

(ii)

 

the

 

mutual

 

use

 

of

 

the

 

information

 

which

 

has

 

been

 

exchanged,

 

should

 

contact:

 

IBM

 

Corporation

 

Dept.

 

LRAS/Bldg.

 

003

 

11400

 

Burnet

 

Road

 

Austin,

 

TX

 

78758-3498

 

U.S.A.

 

Such

 

information

 

may

 

be

 

available,

 

subject

 

to

 

appropriate

 

terms

 

and

 

conditions,

 

including

 

in

 

some

 

cases,

 

payment

 

of

 

a

 

fee.

 

The

 

licensed

 

program

 

described

 

in

 

this

 

document

 

and

 

all

 

licensed

 

material

 

available

 

for

 

it

 

are

 

provided

 

by

 

IBM

 

under

 

terms

 

of

 

the

 

IBM

 

Customer

 

Agreement,

 

IBM

 

International

 

Program

 

License

 

Agreement

 

or

 

any

 

equivalent

 

agreement

 

between

 

us.

 

For

 

license

 

inquiries

 

regarding

 

double-byte

 

(DBCS)

 

information,

 

contact

 

the

 

IBM

 

Intellectual

 

Property

 

Department

 

in

 

your

 

country

 

or

 

send

 

inquiries,

 

in

 

writing,

 

to:

  

©

 

Copyright

 

IBM

 

Corp.

 

1997,

 

2004

 

251



IBM

 

World

 

Trade

 

Asia

 

Corporation

 

Licensing

 

2-31

 

Roppongi

 

3-chome,

 

Minato-ku

 

Tokyo

 

106,

 

Japan

 

IBM

 

may

 

use

 

or

 

distribute

 

any

 

of

 

the

 

information

 

you

 

supply

 

in

 

any

 

way

 

it

 

believes

 

appropriate

 

without

 

incurring

 

any

 

obligation

 

to

 

you.

 

Information

 

concerning

 

non-IBM

 

products

 

was

 

obtained

 

from

 

the

 

suppliers

 

of

 

those

 

products,

 

their

 

published

 

announcements

 

or

 

other

 

publicly

 

available

 

sources.

 

IBM

 

has

 

not

 

tested

 

those

 

products

 

and

 

cannot

 

confirm

 

the

 

accuracy

 

of

 

performance,

 

compatibility

 

or

 

any

 

other

 

claims

 

related

 

to

 

non-IBM

 

products.

 

Questions

 

on

 

the

 

capabilities

 

of

 

non-IBM

 

products

 

should

 

be

 

addressed

 

to

 

the

 

suppliers

 

of

 

those

 

products.

 

Any

 

references

 

in

 

this

 

information

 

to

 

non-IBM

 

Web

 

sites

 

are

 

provided

 

for

 

convenience

 

only

 

and

 

do

 

not

 

in

 

any

 

manner

 

serve

 

as

 

an

 

endorsement

 

of

 

those

 

Web

 

sites.

 

The

 

materials

 

at

 

those

 

Web

 

sites

 

are

 

not

 

part

 

of

 

the

 

materials

 

for

 

this

 

IBM

 

product

 

and

 

use

 

of

 

those

 

Web

 

sites

 

is

 

at

 

your

 

own

 

risk.

 

This

 

information

 

contains

 

examples

 

of

 

data

 

and

 

reports

 

used

 

in

 

daily

 

business

 

operations.

 

To

 

illustrate

 

them

 

as

 

completely

 

as

 

possible,

 

the

 

examples

 

include

 

the

 

names

 

of

 

individuals,

 

companies,

 

brands,

 

and

 

products.

 

All

 

of

 

these

 

names

 

are

 

fictitious

 

and

 

any

 

similarity

 

to

 

the

 

names

 

and

 

addresses

 

used

 

by

 

an

 

actual

 

business

 

enterprise

 

is

 

entirely

 

coincidental.

 

COPYRIGHT

 

LICENSE:

 

This

 

information

 

contains

 

sample

 

application

 

programs

 

in

 

source

 

language,

 

which

 

illustrates

 

programming

 

techniques

 

on

 

various

 

operating

 

platforms.

 

You

 

may

 

copy,

 

modify,

 

and

 

distribute

 

these

 

sample

 

programs

 

in

 

any

 

form

 

without

 

payment

 

to

 

IBM,

 

for

 

the

 

purposes

 

of

 

developing,

 

using,

 

marketing

 

or

 

distributing

 

application

 

programs

 

conforming

 

to

 

the

 

application

 

programming

 

interface

 

for

 

the

 

operating

 

platform

 

for

 

which

 

the

 

sample

 

programs

 

are

 

written.

 

These

 

examples

 

have

 

not

 

been

 

thoroughly

 

tested

 

under

 

all

 

conditions.

 

IBM,

 

therefore,

 

cannot

 

guarantee

 

or

 

imply

 

reliability,

 

serviceability,

 

or

 

function

 

of

 

these

 

programs.

 

You

 

may

 

copy,

 

modify,

 

and

 

distribute

 

these

 

sample

 

programs

 

in

 

any

 

form

 

without

 

payment

 

to

 

IBM

 

for

 

the

 

purposes

 

of

 

developing,

 

using,

 

marketing,

 

or

 

distributing

 

application

 

programs

 

conforming

 

to

 

IBM’s

 

application

 

programming

 

interfaces.

 

Each

 

copy

 

or

 

any

 

portion

 

of

 

these

 

sample

 

programs

 

or

 

any

 

derivative

 

work,

 

must

 

include

 

a

 

copyright

 

notice

 

as

 

follows:

 

(c)

 

(your

 

company

 

name)

 

(year).

 

Portions

 

of

 

this

 

code

 

are

 

derived

 

from

 

IBM

 

Corp.

 

Sample

 

Programs.

 

(c)

 

Copyright

 

IBM

 

Corp.

 

_enter

 

the

 

year

 

or

 

years_.

 

All

 

rights

 

reserved.

 

Any

 

performance

 

data

 

contained

 

herein

 

was

 

determined

 

in

 

a

 

controlled

 

environment.

 

Therefore,

 

the

 

results

 

obtained

 

in

 

other

 

operating

 

environments

 

may

 

vary

 

significantly.

 

Some

 

measurements

 

may

 

have

 

been

 

made

 

on

 

development-level

 

systems

 

and

 

there

 

is

 

no

 

guarantee

 

that

 

these

 

measurements

 

will

 

be

 

the

 

same

 

on

 

generally

 

available

 

systems.

 

Furthermore,

 

some

 

measurement

 

may

 

have

 

been

 

estimated

 

through

 

extrapolation.

 

Actual

 

results

 

may

 

vary.

 

Users

 

of

 

this

 

document

 

should

 

verify

 

the

 

applicable

 

data

 

for

 

their

 

specific

 

environment.

 

Trademarks

 

The

 

following

 

terms

 

are

 

trademarks

 

of

 

International

 

Business

 

Machines

 

Corporation

 

in

 

the

 

United

 

States,

 

other

 

countries,

 

or

 

both:

    

IBM

    

AIX

    

Micro

 

Channel

    

PowerPC

    

RS/6000

  

252

 

Understanding

 

the

 

Diagnostic

 

Subsystem



UNIX

 

is

 

a

 

registered

 

trademark

 

of

 

The

 

Open

 

Group

 

in

 

the

 

United

 

States

 

and

 

other

 

countries.

 

Other

 

company,

 

product,

 

or

 

service

 

names

 

may

 

be

 

the

 

trademarks

 

or

 

service

 

marks

 

of

 

others.

   

Appendix.

 

Notices

 

253



254

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Index

 

Special

 

characters
/etc/lpp/diagnostics/data

 

13

 

Numerics
64-bit

 

kernel

 

78

 

64-bit

 

porting

 

62

 

7135

 

RAIDiant

 

Array

 

46

 

A
activate

 

the

 

physical

 

reset

 

signal

 

90

 

adapter
SysKonnect

 

SK-NET

 

FDDI

 

40

 

add

 

drawer

 

configuration

 

25

 

add

 

fru

 

117

 

add

 

objects

 

to

 

object

 

class

 

107

 

add

 

resourse

 

25

 

add_more_frus

 

120

 

addfrub

 

115,

 

120

 

addfrub_src

 

117

 

additional

 

resources

 

menu

 

199

 

aioo_struct_t

 

93

 

alter

 

disk

 

sector

 

33

 

alter

 

vital

 

product

 

data

 

26

 

analysis
diagnostic

 

controller

 

13

 

error

 

log

 

205

 

analyze

 

adapter

 

internal

 

log

 

26

 

APARS

 

45

 

application

 

test

 

unit

 

3

 

application

 

test

 

units

 

46

 

Application

 

Test

 

Units

 

1

 

application,

 

execute

 

153

 

associate

 

a

 

FRU

 

with

 

the

 

device

 

115

 

async

 

terminal

 

8

 

attribute
resource_alias

 

16

 

automatic

 

error

 

log

 

analysis

 

206

 

AVAILABLE

 

state

 

16

 

B
backup

 

and

 

restore

 

media

 

26

 

bell

 

153

 

bootlist
change

 

or

 

display

 

34

 

BUMP

 

configuration
display

 

or

 

change

 

34

 

C
C

 

language

 

data

 

model

 

62

 

C

 

source

 

file

 

for

 

TU

 

interrupt

 

handler

 

231

 

call

 

in/call

 

out

 

31

 

CDiagAtt

 

176

 

CDiagAtt

 

object

 

141

 

CEREADME

 

36

 

certify
diskette

 

26

 

hardfile

 

26

 

certify

 

media

 

26

 

change

 

bootlist

 

34

 

change

 

BUMP

 

configuration

 

34

 

change

 

diagnostic

 

run

 

time

 

options

 

35

 

change

 

electronic

 

mode

 

switch

 

35

 

change

 

hardeware

 

vital

 

product

 

data

 

26

 

change

 

multiprocessor

 

configuration

 

36

 

change

 

NVRAM

 

29,

 

30

 

change

 

NVRAM

 

settings

 

31

 

change

 

object

 

class

 

107

 

check_optical_media

 

138

 

checkstop

 

analysis

 

results

 

33

 

CHPR,

 

property

 

value

 

137

 

CHRP
configure

 

reboot

 

policy

 

27

 

configure

 

remote

 

maintenance

 

policy

 

28

 

configure

 

ring

 

indicate

 

power

 

on

 

30

 

configure

 

surveillance

 

policy

 

31

 

display

 

firmware

 

device

 

node

 

information

 

33

 

save

 

or

 

restore

 

hardware

 

management

 

policies

 

42

 

update

 

system

 

or

 

service

 

processor

 

flash

 

45

 

clean

 

up

 

the

 

system

 

configuration

 

database

 

201

 

clear

 

diagnostic

 

application

 

input

 

164

 

clear

 

screen

 

129

 

clients
dataless

 

10

 

diskless

 

10

 

close

 

an

 

object

 

class

 

108

 

close

 

configuration

 

services

 

70

 

close

 

diagnostic

 

event

 

log

 

141

 

close

 

log

 

file

 

142

 

clrdainput

 

164

 

code

 

examples

 

221

 

commands
diag

 

1,

 

5

 

diagnostic

 

system

 

1

 

diagrpt

 

1,

 

5

 

lscfg

 

5

 

shutdown

 

8

 

concurrent

 

mode

 

diagnostics

 

7

 

configuration
modem

 

30

 

configuration

 

diskette

 

32

 

configuration

 

services
close

 

70

 

initialize

 

70

 

open

 

70

 

pdiag_cs_free_attr

 

72

 

configuration

 

services

 

device

 

attributes

 

57

 

configuration,

 

device

 

15

 

configure
dials

 

26

 

ISA

 

adapters

 

27

  

©

 

Copyright

 

IBM

 

Corp.

 

1997,

 

2004

 

255



configure

 

(continued)
LPFKeys

 

26

 

configure

 

ISA

 

adapter

 

27

 

configure

 

reboot

 

policy

 

27

 

configure

 

remote

 

maintenance

 

policy

 

28

 

configure

 

service

 

processor

 

30

 

configure

 

surveillance

 

policy
CHRP

 

31

 

configure_device

 

112

 

console

 

configuration

 

diskette

 

8

 

copy
disk

 

to

 

disk

 

32

 

copy_text

 

151,

 

155

 

CPU

 

model

 

number,

 

return

 

139

 

create

 

a

 

popup

 

window

 

122

 

create

 

customized

 

configuration

 

diskette

 

32

 

create

 

pop-up

 

window

 

130

 

creating

 

a

 

task

 

22

 

CuDV

 

object

 

class

 

11

 

customize

 

device

 

11

 

Customized

 

Device

 

object

 

class

 

120

 

customized

 

diagnostic

 

attribute

 

176

 

cyclic

 

redundancy

 

checks

 

of

 

Loadable

 

ROS

 

4

 

D
DA

 

14

 

DA_CHECKRC_XXXXXX

 

151

 

DA_EXIT

 

151

 

DA_SETRC_XXXXXX

 

151

 

dataless

 

clients

 

10

 

DAVars

 

17

 

deactivate

 

the

 

physical

 

reset

 

signal

 

90

 

debugging

 

hints

 

215

 

define

 

terminal

 

menu

 

195

 

DEFINED

 

state

 

16

 

defined

 

system

 

resource

 

11

 

definition

 

of

 

exectu

 

59

 

delete

 

drawer

 

configuration

 

25

 

delete

 

objects

 

111

 

delete

 

resource

 

from

 

resource

 

list

 

32

 

detach

 

user

 

space

 

DMA

 

buffer

 

85

 

determine

 

file

 

presence

 

163

 

determining

 

the

 

test

 

level

 

15

 

device

 

configuration

 

15,

 

66

 

device

 

configuration

 

services

 

65

 

device

 

driver
diagnostic

 

15

 

PDiagex

 

3

 

device

 

error

 

log

 

analysis

 

167

 

device

 

flag

 

136

 

device,

 

current

 

configuration

 

114

 

device’s

 

descriptive

 

text,

 

return

 

139

 

diag

 

command

 

5

 

diag_add_obj

 

107

 

diag_asl_beep

 

153

 

diag_asl_clear_screen

 

129

 

diag_asl_execute

 

153

 

diag_asl_init

 

129

 

diag_asl_msg

 

130

 

diag_asl_quit

 

131

 

diag_asl_read

 

131

 

diag_cat_gets

 

121

 

diag_catopen

 

121

 

diag_change_obj

 

107

 

diag_checkstop_eed

 

154

 

diag_checkstop_event

 

154

 

diag_close_class

 

108

 

diag_display

 

132

 

diag_display_menu

 

133

 

diag_emsg

 

134

 

diag_exec_source

 

156

 

diag_execute

 

156

 

diag_free_list

 

108

 

diag_general_eed

 

157

 

diag_get_cluster_ms

 

()

 

157

 

diag_get_cluster_mt

 

()

 

158

 

diag_get_device_flag

 

136

 

diag_get_fru_serial

 

158

 

diag_get_list

 

109

 

diag_get_property

 

137

 

diag_get_sid_lun

 

137

 

diag_load_optical_media

 

138

 

diag_lock

 

110

 

diag_msg

 

135

 

diag_msg_nw

 

135

 

diag_open_class

 

110

 

diag_popup

 

122

 

diag_progress

 

122

 

diag_read

 

123

 

diag_resource_screen

 

124

 

diag_rm_obj

 

111

 

diag_struc_t

 

93

 

diag_task_screen

 

126

 

diag_unlock

 

111

 

diagela

 

206

 

diagex_cfg_state

 

113

 

diagex_initial_state

 

113

 

diagnose

 

state

 

113

 

diagnostic
kernel

 

extension

 

16

 

diagnostic

 

application

 

185,

 

234

 

completion

 

status

 

18

 

control

 

flow

 

19

 

INFORMATIVE

 

Screen

 

Type

 

186

 

POPUP

 

Screen

 

Type

 

188

 

SINGLE

 

SELECTION

 

Screen

 

Type

 

187

 

TRANSITIONAL

 

Screen

 

Type

 

188

 

Diagnostic

 

Application
clear

 

input

 

164

 

exit

 

status

 

151

 

get

 

input

 

164

 

diagnostic

 

application

 

massage

 

file

 

243

 

diagnostic

 

application

 

menus

 

124

 

diagnostic

 

application

 

variables

 

17

 

Diagnostic

 

Application

 

Variables

 

164

 

diagnostic

 

applications

 

14

 

Diagnostic

 

Applications

 

1,

 

122

 

display

 

menus

 

133

 

Diagnostic

 

Applications

 

(DAs)
code

 

checklist

 

21

 

diagnostic

 

catalog

 

121

   

256

 

Understanding

 

the

 

Diagnostic

 

Subsystem



diagnostic

 

commands

 

5

 

diag

 

5

 

diagrpt

 

5

 

diagnostic

 

configuration

 

diskette

 

219

 

diagnostic

 

controller

 

11

 

analysis
/etc/lpp/diagnostics/data

 

13

 

return

 

status

 

14

 

starting

 

13

 

Diagnostic

 

Controller

 

1

 

diagnostic

 

controller

 

generated

 

SRNs

 

20

 

diagnostic

 

database
PDiagAtt

 

140

 

diagnostic

 

debug

 

diskette

 

219

 

diagnostic

 

event

 

log

 

6,

 

144,

 

145,

 

146,

 

148

 

Diagnostic

 

Event

 

Log

 

Data

 

Structures
dl_fru_src

 

100

 

dl_srn_src

 

102

 

diagnostic

 

event

 

log,

 

close

 

141

 

diagnostic

 

kernel

 

extension

 

65

 

Diagnostic

 

Library

 

96

 

copy_text

 

151,

 

155

 

diag_lock

 

110

 

diag_popup

 

122

 

diag_read

 

123

 

diag_resource_screen

 

124

 

diag_task_screen

 

126

 

diag_unlock

 

111

 

diagex_cfg_state

 

113

 

dl_menugoal

 

101

 

dl_partition

 

101

 

dl_srn

 

101

 

dlog_getTestMode

 

141

 

dlog_numMatches

 

98

 

dlog_query

 

99

 

dlog_query_cleanup

 

99

 

getELAdates

 

165

 

query_fru

 

103

 

query_log

 

104

 

query_output

 

105

 

query_results

 

106

 

schedule_ela

 

167

 

diagnostic

 

library

 

functions

 

15

 

diagnostic

 

log

 

entry

 

143,

 

147

 

memory

 

145

 

diagnostic

 

log

 

entry,

 

find

 

142

 

diagnostic

 

log

 

identifier
entry

 

type

 

148

 

diagnostic

 

menu

 

examples

 

194

 

diagnostic

 

mode

 

selection

 

menu

 

196

 

diagnostic

 

object

 

classes

 

168

 

diagnostic

 

operating

 

instructions

 

menu

 

194

 

diagnostic

 

package

 

utility

 

service

 

aid

 

32

 

diagnostic

 

patch

 

diskette

 

218,

 

219

 

diagnostic

 

programs
writing

 

18

 

diagnostic

 

progress

 

indicators

 

193

 

diagnostic

 

results

 

36

 

diagnostic

 

run

 

time

 

options

 

35

 

diagnostic

 

subroutines
pdiag_read_slot_reset

 

17

 

diagnostic

 

subroutines

 

(continued)
pdiag_set_eeh_option

 

17

 

pdiag_set_slot_reset

 

17

 

diagnostic

 

supplemental

 

diskette

 

contents

 

210

 

diagnostic

 

supplemental

 

media

 

210

 

diagnostic

 

system
commands

 

1

 

overview

 

1

 

strategy

 

1

 

diagnostic

 

system

 

structure

 

1

 

diagnostic

 

task

 

matrix

 

247

 

diagnostic

 

task

 

menus
display

 

126

 

diagnostic

 

tasks

 

188

 

DIALOG

 

SELECTION

 

Screen

 

Type

 

191

 

INFORMATIVE

 

Screen

 

Type

 

189

 

MULTIPLE

 

SELECTION

 

Screen

 

Type

 

190

 

POPUP

 

Screen

 

Type

 

192

 

SINGLE

 

SELECTION

 

Screen

 

Type

 

190

 

TRANSITIONAL

 

Screen

 

Type

 

191

 

diagnostic

 

trace

 

159

 

diagnostic

 

user

 

interface

 

185

 

diagnostics
concurrent

 

mode

 

7

 

hardware

 

7

 

maintenance

 

mode

 

8

 

NIM

 

7,

 

10

 

online

 

7

 

online

 

concurrent

 

201

 

online

 

service

 

202

 

service

 

mode

 

8

 

standalone

 

7,

 

8

 

supplemental

 

media

 

7

 

diagnostics

 

controller
resource

 

selection

 

1

 

task

 

selection

 

1

 

diagnostics

 

dpplication

 

interface
pdiag_read_slot_reset

 

17

 

pdiag_set_eeh_option

 

17

 

pdiag_set_slot_reset

 

17

 

Diagnostics

 

Library
add_more_frus

 

120

 

addfrub

 

115

 

addfrub_src

 

117

 

check_optical_media

 

138

 

clrdainput

 

164

 

configure_device

 

112

 

DA_CHECKRC_XXXXXX

 

151

 

DA_EXIT

 

151

 

DA_SETRC_XXXXXX

 

151

 

diag_add_obj

 

107

 

diag_asl_beep

 

153

 

diag_asl_clear_screen

 

129

 

diag_asl_execute

 

153

 

diag_asl_init

 

129

 

diag_asl_msg

 

130

 

diag_asl_quit

 

131

 

diag_asl_read

 

131

 

diag_cat_gets

 

121

 

diag_catopen

 

121

 

diag_change_obj

 

107

   

Index

 

257



Diagnostics

 

Library

 

(continued)
diag_checkstop_eed

 

154

 

diag_checkstop_event

 

154

 

diag_close_class

 

108

 

diag_display

 

132

 

diag_display_menu

 

133

 

diag_emsg

 

134

 

diag_exec_source

 

156

 

diag_execute

 

156

 

diag_free_list

 

108

 

diag_general_eed

 

157

 

diag_get_cluster_ms

 

()

 

157

 

diag_get_cluster_mt

 

()

 

158

 

diag_get_device_flag

 

136

 

diag_get_fru_serial

 

158

 

diag_get_list

 

109

 

diag_get_property

 

137

 

diag_get_sid_lun

 

137

 

diag_load_optical_media

 

138

 

diag_msg

 

135

 

diag_msg_nw

 

135

 

diag_open_class

 

110

 

diag_progress

 

122

 

diag_rm_obj

 

111

 

diagex_initial_state

 

113

 

dlog_close

 

141

 

dlog_find_first

 

142

 

dlog_find_next

 

143

 

dlog_find_sequence

 

143

 

dlog_formatElogResults

 

144

 

dlog_freeEntry

 

145

 

dlog_open

 

145

 

dlog_read

 

146

 

dlog_same_elogId

 

147

 

dlog_setEntryType

 

148

 

dlog_write

 

148

 

dt

 

159

 

error_log_get

 

160

 

file_present

 

163

 

get_cpu_model

 

139

 

get_DApp

 

163

 

get_dev_desc

 

139

 

get_device_status

 

114

 

get_diag_att

 

140

 

getdainput

 

164

 

getdavar

 

164

 

has_diag_authority

 

166

 

init_dgodm

 

112

 

initial_state

 

112

 

insert_frub

 

120

 

int

 

diag_cluster_support

 

()

 

155

 

ipl_mode

 

166

 

menugoal

 

167

 

putdavar

 

164

 

save_davars_ela

 

149

 

save_davars_mgoal_ela

 

150

 

term_dgodm

 

112

 

diagnostics

 

operating

 

environment

 

7

 

diagnostics

 

strategy

 

3

 

diagnostics,

 

authority

 

166

 

diagrpt

 

command

 

5

 

diagstart3S

 

script

 

file

 

example

 

213

 

diagstartS

 

script

 

file

 

example

 

212

 

DIALOG

 

SELECTION

 

Screen

 

Type

 

191

 

dials

 

26

 

directory

 

structure

 

209

 

disable

 

a

 

DMA

 

operation

 

86

 

disable

 

Enhanced

 

Error

 

Handling

 

89

 

disable

 

surveillance

 

30

 

disgnostic

 

driver
AVAILABLE

 

state

 

16

 

DEFINED

 

state

 

16

 

disk
alter

 

sector

 

33

 

display

 

sector

 

33

 

disk

 

maintenance

 

(SCSI

 

disks)

 

32

 

disk

 

to

 

disk

 

copy

 

32

 

diskette
certify

 

26

 

customized

 

configuration

 

32

 

diagnostic

 

configuration

 

219

 

diagnostic

 

debug

 

219

 

diagnostic

 

patch

 

218,

 

219

 

diskette

 

contents
diagnostic

 

supplemental

 

210

 

diskless

 

clients

 

10

 

display

 

checkstop

 

analysis

 

results

 

33

 

display

 

configuration

 

and

 

resource

 

list

 

33

 

display

 

diagnostic

 

application

 

menus

 

124

 

display

 

diagnostic

 

conclusions

 

5

 

display

 

diagnostic

 

task

 

menus

 

126

 

display

 

disk

 

sector

 

33

 

display

 

error

 

message

 

134

 

display

 

firmware

 

device

 

node

 

information

 

(CHRP)

 

33

 

display

 

hardware

 

error

 

report

 

33

 

display

 

hardware

 

vital

 

product

 

data

 

34

 

display

 

machine

 

check

 

error

 

log

 

(standalone

 

diagnostics)

 

34

 

display

 

menus

 

133

 

display

 

microcode

 

level

 

34

 

display

 

NVRAM

 

settings

 

31

 

display

 

or

 

change

 

bootlist

 

34

 

display

 

or

 

change

 

BUMP

 

configuration

 

34

 

display

 

or

 

change

 

diagnostic

 

run

 

time

 

options

 

35

 

display

 

or

 

change

 

electronic

 

mode

 

switch

 

35

 

display

 

or

 

change

 

multiprocessor

 

configuration

 

36

 

display

 

previous

 

diagnostic

 

results

 

36

 

display

 

progress

 

messages

 

122

 

display

 

requirements

 

for

 

test

 

units

 

65

 

display

 

resource

 

attributes

 

36

 

display

 

service

 

hints

 

36

 

display

 

simple

 

menus

 

135

 

display

 

software

 

product

 

data

 

36

 

display

 

system

 

environmental

 

sensors

 

(CHRP)

 

37

 

display

 

test

 

patterns

 

38

 

display

 

vital

 

product

 

data

 

26

 

disruptive

 

test

 

4

 

dl_fru_src

 

100

 

dl_menugoal

 

101

 

dl_partition

 

101

 

dl_srn

 

101

 

dl_srn_src

 

102

   

258

 

Understanding

 

the

 

Diagnostic

 

Subsystem



dlog_close

 

141

 

dlog_find_first

 

142

 

dlog_find_next

 

143

 

dlog_find_sequence

 

143

 

dlog_formatElogResults

 

144

 

dlog_freeEntry

 

145

 

dlog_getTestMode

 

141

 

dlog_numMatches

 

98

 

dlog_open

 

145

 

dlog_query

 

99

 

dlog_query_cleanup

 

99

 

dlog_read

 

146

 

dlog_same_elogId

 

147

 

dlog_setEntryType

 

148

 

dlog_write

 

148

 

DMA
disable

 

operation

 

86

 

enable

 

operation

 

86

 

dma_struct

 

92

 

DMAbuffer
unpin

 

and

 

detach

 

user

 

space

 

85

 

download

 

microcode

 

39

 

drawer

 

configuration

 

25

 

dt

 

159

 

E
EEH

 

17

 

electronic

 

mode

 

switch
display

 

or

 

change

 

35

 

enable

 

a

 

DMA

 

operation

 

86

 

enable

 

Enhanced

 

Error

 

Handling

 

89

 

enable

 

surveillance

 

30

 

endstamp

 

165

 

enhanced

 

error

 

handling

 

17,

 

65

 

Enhanced

 

Error

 

Handling
disable

 

89

 

enable

 

89

 

entry

 

type
diagnostic

 

log

 

identifier

 

148

 

error

 

log
machine

 

check

 

34

 

error

 

log

 

analysis

 

16,

 

205

 

automatic

 

206

 

error

 

log

 

analysis

 

foa

 

a

 

device

 

167

 

error

 

log

 

entries

 

160

 

error

 

log

 

identifier

 

147

 

error

 

log

 

information
DAVars

 

object

 

149,

 

150

 

SRN

 

149,

 

150

 

error

 

message,

 

display

 

134

 

error

 

rate
ESCON

 

bit

 

39

 

error_log_get

 

160

 

error-log

 

analysis

 

4

 

ESCON

 

bit

 

error

 

rate

 

39

 

ethernet

 

44

 

example
additional

 

resources

 

menu

 

199

 

C

 

source

 

file

 

for

 

TU

 

interrupt

 

handler

 

231

 

code

 

221

 

example

 

(continued)
define

 

terminal

 

menu

 

195

 

diagnostic

 

application

 

234

 

diagnostic

 

application

 

massage

 

file

 

243

 

diagnostic

 

menu

 

194

 

diagnostic

 

mode

 

selection

 

menu

 

196

 

diagnostic

 

operating

 

instructions

 

menu

 

194

 

function

 

selection

 

menu

 

194

 

missing

 

resource

 

menu

 

195

 

missing

 

resource

 

selection

 

menu

 

195

 

new

 

resource

 

menu

 

196

 

no

 

trouble

 

found

 

menu

 

198

 

problem

 

report

 

menu

 

198

 

resource

 

selection

 

menu

 

197

 

resource

 

selection

 

menu

 

–

 

display

 

common

 

tasks

 

197

 

run

 

time

 

options

 

menu

 

200

 

task

 

selection

 

list

 

menu

 

199

 

task

 

selection

 

list

 

menu

 

-

 

display

 

supported

 

resources

 

200

 

test

 

method

 

menu

 

198

 

TU

 

close

 

device

 

interface

 

225

 

TU

 

error

 

detail

 

221

 

TU

 

exectu

 

function

 

223

 

TU

 

input

 

parameters

 

222

 

TU

 

interrupt

 

handler

 

makefile

 

233

 

TU

 

local

 

header

 

file

 

222

 

TU

 

makefiles

 

231

 

TU

 

open

 

device

 

interface

 

225

 

exectu

 

3,

 

52,

 

59

 

execute

 

an

 

application

 

153,

 

156

 

exit

 

DA

 

152

 

exit

 

status

 

151

 

F
fastpath

 

with

 

known

 

resource

 

23

 

fastpath

 

with

 

unknown

 

resource

 

23

 

fibre

 

channel

 

RAID

 

39

 

field

 

replaceable

 

unit

 

115

 

field

 

replaceable

 

units

 

17

 

file_present

 

163

 

find

 

diagnostic

 

log

 

entry

 

142,

 

143

 

find

 

first

 

diagnostics

 

log

 

entry

 

143

 

firmware

 

device

 

node

 

information

 

(CHRP)

 

33

 

first

 

diagnostics

 

log

 

entry

 

143

 

flag

 

bit

 

mask
interrupt

 

56

 

Flash

 

SK-NET

 

FDDI

 

Firmware

 

40

 

fork

 

an

 

application

 

154,

 

157

 

format

 

media

 

40

 

format

 

text

 

151,

 

155

 

free

 

kernel

 

extension

 

resources

 

73

 

free

 

memory

 

108,

 

145

 

FRU

 

115

 

FRU

 

bucket

 

180

 

FRU

 

Bucket

 

Functions
add_more_frus

 

120

 

addfrub_src

 

117

 

FRU,

 

update

 

120

 

FRUs

 

17

   

Index

 

259



function

 

selection

 

menu

 

194

 

G
generate

 

a

 

list

 

of

 

supported

 

resources

 

11

 

genucode

 

40

 

get

 

diagnostic

 

application

 

input

 

164

 

get

 

persistent

 

variables

 

164

 

get_cpu_model

 

139

 

get_DApp

 

163

 

get_dev_desc

 

139

 

get_device_status

 

114

 

get_diag_att

 

140

 

getdainput

 

164

 

getdavar

 

17,

 

164

 

getELAdates

 

165

 

H
hardfile

certify

 

26

 

hardware

 

error

 

report

 

33

 

hardware

 

management

 

policies

 

42

 

hardware

 

problem

 

determination

 

5

 

hardware

 

vital

 

product

 

data

 

26,

 

34

 

hardware

 

VPD

 

26

 

has_diag_authority

 

166

 

high-function

 

terminals

 

9

 

hot

 

plug

 

task

 

40

 

I
I/O

 

Devices
PCI

 

configuration

 

space

 

60

 

identify
ISA

 

adapters

 

27

 

illegal

 

trap

 

217

 

INFORMATIVE

 

Screen

 

Type

 

186,

 

189

 

init_dgodm

 

112

 

initial_state

 

112

 

initialize

 

object

 

data

 

manager

 

112

 

initialize

 

the

 

configuration

 

services

 

70

 

initialize

 

user

 

interface

 

129

 

input

 

invalid

 

153

 

input

 

structure
TU_TYPE

 

52

 

insert_frub

 

120

 

int

 

diag_cluster_support

 

()

 

155

 

internal

 

log

 

26

 

interrupt

 

flag

 

bit

 

mask

 

56

 

interrupt

 

handler

 

call

 

interface

 

54

 

interrupt

 

handlers

 

57

 

interrupt

 

handling
test

 

units

 

54

 

invalid

 

input

 

153

 

IPL

 

mode,

 

state

 

166

 

ipl_mode

 

166

 

ISA

 

adapters

 

27

 

isolation

 

strategy

 

4

 

issue

 

a

 

run-time

 

abstraction

 

service

 

88

 

K
kernel

 

extension
diagnostic

 

16

 

known

 

resource

 

23

 

L
libc.a.min

 

18

 

library

 

functions

 

15

 

library

 

restrictions

 

18

 

loading

 

PDIAGEX

 

66

 

local

 

area

 

network

 

analyzer

 

41

 

logical

 

unit

 

umber

 

(LUN)

 

137

 

long

 

version,

 

diagnostic

 

event

 

log

 

6

 

loop

 

testing

 

208

 

LPFKeys

 

26

 

lscfg

 

5

 

LUN

 

137

 

M
machine

 

check

 

error

 

log

 

34

 

maintenance
SCSI

 

disks

 

32

 

maintenance

 

mode

 

diagnostics

 

8

 

makefile

 

62

 

media
optical

check

 

138

 

load

 

138

 

menu
function

 

selection

 

23

 

Resource

 

Selection

 

11

 

menu

 

example
additional

 

resources

 

selection

 

199

 

define

 

terminal

 

195

 

diagnostic

 

194

 

diagnostic

 

mode

 

selection

 

196

 

diagnostic

 

operating

 

instructions

 

194

 

function

 

selection

 

194

 

missing

 

resource

 

195

 

missing

 

resource

 

selection

 

195

 

new

 

resource

 

196

 

no

 

trouble

 

found

 

selection

 

198

 

problem

 

report

 

selection

 

198

 

resource

 

selection

 

selection

 

197

 

resource

 

selection

 

selection

 

–

 

display

 

common

 

tasks

 

197

 

run

 

time

 

options

 

200

 

task

 

selection

 

list

 

199

 

task

 

selection

 

list

 

-

 

display

 

supported

 

resources

 

200

 

test

 

method

 

selection

 

198

 

menu

 

goal

 

object

 

179

 

menu,

 

simple

 

135

 

menugoal

 

167

 

message

 

file

 

121

 

message

 

handling

 

58

 

microcode

 

39

 

microcode

 

download

 

for

 

test

 

units

 

65

 

microcode

 

level

 

34

   

260

 

Understanding

 

the

 

Diagnostic

 

Subsystem



missing

 

options

 

resolution

 

201

 

missing

 

resource

 

menu

 

195

 

missing

 

resource

 

selection

 

menu

 

195

 

modem

 

configuration

 

30

 

modem

 

configurations

 

28

 

monitor

 

the

 

system

 

for

 

hang

 

conditions

 

31

 

multiple

 

resources

 

analysis

 

16

 

MULTIPLE

 

SELECTION

 

Screen

 

Type

 

190

 

multiprocessor

 

configuration

 

36

 

N
new

 

resource

 

menu

 

196

 

NIM

 

clients
diagnostics

 

7

 

NIM

 

diagnostics

 

10

 

no

 

trouble

 

found

 

menu

 

198

 

nondistruptive

 

test

 

4

 

O
object

 

class
CuDv

 

11

 

Customized

 

Device

 

120

 

DAVars

 

17

 

Diagnostic

 

Application

 

Variables

 

164

 

PDiagAtt

 

163

 

PDiagRes

 

11

 

PDiagTask

 

22

 

TMInput

 

16,

 

115,

 

164,

 

167

 

object

 

class,

 

open

 

110

 

object

 

class,

 

retrieve

 

109

 

object

 

data

 

manager
initialize

 

112

 

stop

 

112

 

objects

 

class,

 

delete

 

111

 

obtain

 

device

 

flag

 

136

 

ODM

 

lock

 

110

 

ODM

 

stanzas

 

example

 

211

 

on

 

board

 

self

 

test

 

4

 

online

 

concurrent

 

diagnostics

 

201

 

online

 

diagnostics

 

7

 

concurrent

 

mode

 

7

 

maintenance

 

mode

 

7

 

service

 

mode

 

7

 

online

 

service

 

diagnostics

 

202

 

online

 

service

 

mode

 

25

 

open

 

an

 

object

 

class

 

110

 

open

 

diagnostic

 

catalog

 

message

 

file

 

121

 

open

 

the

 

configuration

 

services

 

70

 

operating

 

environment,

 

diagnostics

 

7

 

option

 

checkout

 

4

 

output

 

structure
TU_RETURN_TYPE

 

53

 

overview,

 

diagnostic

 

system

 

1

 

P
PCI

 

configuration

 

register

 

74

 

PCI

 

configuration

 

space

 

60

 

PCI

 

RAID

 

adapter
internal

 

log

 

26

 

PCI

 

RAID

 

physical

 

disk

 

identify

 

41

 

pdiag_close

 

73

 

pdiag_cs_*

 

57

 

pdiag_cs_close

 

70

 

pdiag_cs_free_attr

 

72

 

pdiag_cs_get_attr

 

71

 

pdiag_cs_open

 

70

 

pdiag_dd_dma_complete

 

85

 

pdiag_dd_dma_enable

 

86

 

pdiag_dd_dma_setup

 

83

 

pdiag_dd_interrupt_notify

 

77

 

pdiag_dd_read

 

80

 

pdiag_dd_read_64

 

80

 

pdiag_dd_watch_for_interrupt

 

76

 

pdiag_dd_write

 

78

 

pdiag_dd_write_64

 

78

 

pdiag_diagnose_multifunc_state

 

68

 

pdiag_diagnose_state

 

67

 

pdiag_open

 

72

 

pdiag_pcicfg_read

 

74

 

pdiag_pcicfg_write

 

75

 

pdiag_read_slot_reset

 

88

 

pdiag_restore_multifunc_state

 

69

 

pdiag_restore_state

 

69

 

pdiag_set_slot_reset

 

90

 

pdiag_shared_slot

 

87

 

PDiagAtt

 

140,

 

171

 

PDiagAtt

 

object

 

class

 

163

 

PDiagex

 

3

 

PDIAGEX

 

65,

 

76,

 

90

 

loading

 

66

 

pdiagex_opflags_t

 

91

 

PDiagRes

 

168

 

PDiagRes

 

object

 

class

 

11

 

PDiagTask

 

174

 

perform

 

write

 

operations

 

on

 

a

 

resource

 

78

 

performing

 

a

 

specific

 

function

 

on

 

a

 

resource

 

22

 

performing

 

a

 

task

 

23

 

periodic

 

diagnostics

 

205

 

Periodic

 

Diagnostics

 

41

 

persistent

 

variables

 

17,

 

164

 

pin

 

and

 

cross-memory

 

attach

 

the

 

user

 

buffer

 

83

 

pop-up

 

window,

 

create

 

130

 

POPUP

 

Screen

 

Type

 

188,

 

192

 

popup

 

window
create

 

122

 

portability

 

49

 

portable

 

diagnostic

 

kernel

 

extension

 

76

 

predefined

 

diagnostic

 

attribute

 

device

 

171

 

predefined

 

diagnostic

 

resource

 

object

 

class

 

168

 

predefined

 

diagnostic

 

task

 

174

 

Predefined

 

Diagnostic

 

Task

 

object

 

class

 

22

 

prepare

 

resource

 

for

 

testing

 

72

 

problem

 

report

 

11

 

problem

 

report

 

menu

 

198

 

process

 

supplemental

 

media

 

41

 

progress

 

messages,

 

display
Diagnostic

 

Applications

 

122

 

Diagnostic

 

Tasks

 

122

   

Index

 

261



prompt
shell

 

25

 

property

 

value

 

137

 

put

 

device

 

in

 

original

 

state

 

113

 

put

 

persistent

 

variables

 

164

 

putdavar

 

17,

 

164

 

Q
query

 

the

 

state

 

of

 

the

 

physical

 

reset

 

signal

 

88

 

query_fru

 

103

 

query_log

 

104

 

query_output

 

105

 

query_results

 

106

 

R
read

 

keyboard

 

buffer

 

123

 

read

 

PCI

 

configuration

 

register

 

74

 

read

 

user

 

input

 

131

 

reads

 

user’s

 

response

 

132

 

reason

 

codes
guidelines

 

20

 

reboot

 

policy
change

 

27

 

display

 

27

 

recover
system

 

crash

 

27

 

release

 

ODM

 

lock

 

111

 

remote

 

maintenance

 

policy

 

28

 

remote

 

power

 

on

 

30

 

remove
dials

 

26

 

LPFKeys

 

26

 

required

 

changes
SLIH

 

64

 

reset

 

a

 

PCI

 

slot

 

90

 

resource

 

attributes

 

36

 

resource

 

list
add

 

25

 

delete

 

resource

 

32

 

resource

 

not

 

found

 

201

 

resource

 

selection

 

menu

 

197

 

Resource

 

Selection

 

menu

 

11

 

resource

 

selection

 

menu

 

–

 

display

 

common

 

tasks

 

197

 

resource_alias

 

attribute

 

16

 

restore

 

a

 

device

 

112

 

restore

 

hardware

 

management

 

policies

 

42

 

restore

 

resource

 

and

 

children

 

69

 

restore

 

service

 

processor

 

configuration

 

(RSPC)

 

43

 

retrieve

 

objects

 

109

 

return

 

CPU

 

model

 

number

 

139

 

return

 

device’s

 

descriptive

 

text

 

139

 

return

 

end

 

endstamp

 

165

 

return

 

error

 

log

 

entries

 

160

 

return

 

resource

 

attribute

 

information

 

71

 

return

 

SCSI

 

ID

 

137

 

return

 

start

 

endstamp

 

165

 

ring

 

bell

 

153

 

ring

 

indicate

 

power

 

on
CHRP

 

30

 

ring

 

indicate

 

power

 

on

 

(continued)
RSPC

 

29

 

RSPC
configure

 

ring

 

indicate

 

power

 

on

 

29

 

configure

 

service

 

processor

 

30

 

save

 

or

 

restore

 

service

 

processor

 

configuration

 

43

 

update

 

system

 

flash

 

45

 

RTAS

 

88

 

run

 

diagnostics

 

42,

 

166

 

run

 

error

 

log

 

analysis

 

42

 

run

 

time

 

options

 

menu

 

200

 

running

 

problem

 

determination

 

205

 

running

 

trace

 

216

 

S
save

 

or

 

restore

 

hardware

 

management

 

policies

 

(CHRP)

 

42

 

save

 

or

 

restore

 

service

 

processor

 

configuration

 

(RSPC)

 

43

 

save_davars_ela

 

149

 

save_davars_mgoal_ela

 

150

 

schedule

 

ELA

 

for

 

a

 

device

 

167

 

schedule_ela

 

167

 

screen

 

type
DIALOG

 

SELECTION

 

191

 

INFORMATIVE

 

186,

 

189

 

MULTIPLE

 

SELECTION

 

190

 

POPUP

 

188,

 

192

 

SINGLE

 

SELECTION

 

187,

 

190

 

TRANSITIONAL

 

188,

 

191

 

screen,

 

clear

 

129

 

SCSD

 

tape

 

drive

 

43

 

SCSI

 

address

 

137

 

SCSI

 

bus

 

analyzer

 

43

 

SCSI

 

disks
maintenance

 

32

 

second

 

level

 

interrupt

 

handler
conversion

 

tips

 

63

 

second-level

 

interrupt

 

handlers

 

67

 

service

 

aid
7135

 

RAIDiant

 

Array

 

46

 

analyze

 

adapter

 

internal

 

log

 

26

 

backup

 

and

 

restore

 

media

 

26

 

call

 

in/call

 

out

 

31

 

change

 

hardeware

 

vital

 

product

 

data

 

26

 

configure

 

dials

 

and

 

LPFKeys

 

26

 

configure

 

ISA

 

adapter

 

27

 

configure

 

reboot

 

policy

 

(CHRP)

 

27

 

configure

 

remote

 

maintenance

 

policy

 

(CHRP)

 

28

 

configure

 

ring

 

indicate

 

power

 

on

 

30

 

configure

 

ring

 

indicate

 

power

 

on

 

(RSPC)

 

29

 

configure

 

service

 

processor

 

(RSPC)

 

30

 

configure

 

surveillance

 

policy

 

(CHRP)

 

31

 

delete

 

resource

 

from

 

resource

 

list

 

32

 

diagnostic

 

package

 

utility

 

32

 

disk

 

to

 

disk

 

copy

 

32

 

display

 

checkstop

 

analysis

 

results

 

33

 

display

 

configuration

 

and

 

resource

 

list

 

33

 

display

 

firmware

 

device

 

node

 

information

 

(CHRP)

 

33

   

262

 

Understanding

 

the

 

Diagnostic

 

Subsystem



service

 

aid

 

(continued)
display

 

hardware

 

error

 

report

 

33

 

display

 

hardware

 

vital

 

product

 

data

 

34

 

display

 

microcode

 

level

 

34

 

display

 

or

 

change

 

bootlist

 

34

 

display

 

or

 

change

 

BUMP

 

configuration

 

34

 

display

 

or

 

change

 

diagnostic

 

run

 

time

 

options

 

35

 

display

 

or

 

change

 

electronic

 

mode

 

switch

 

35

 

display

 

or

 

change

 

multiprocessor

 

configuration

 

36

 

display

 

previous

 

diagnostic

 

results

 

36

 

display

 

resource

 

attributes

 

36

 

display

 

software

 

product

 

data

 

36

 

display

 

system

 

environmental

 

sensors

 

(CHRP)

 

37

 

display

 

test

 

patterns

 

38

 

display/alter

 

Sector

 

33

 

download

 

microcode

 

39

 

ESCON

 

bit

 

error

 

rate

 

39

 

ethernet

 

44

 

Fibre

 

Channel

 

RAID

 

39

 

flash

 

SK-NET

 

FDDI

 

firmware

 

40

 

format

 

media

 

40

 

generic

 

microcode

 

download

 

40

 

hardware

 

vital

 

product

 

data

 

34

 

hot

 

plug

 

task

 

40

 

machine

 

check

 

error

 

log

 

34

 

modem

 

configuration

 

30

 

Periodic

 

Diagnostics

 

41

 

save

 

or

 

restore

 

hardware

 

management

 

policies

 

(CHRP)

 

42

 

SCSD

 

tape

 

drive

 

43

 

SCSI

 

bus

 

analyzer

 

43

 

shell

 

prompt

 

25

 

spare

 

sector

 

availability

 

45

 

SSA

 

45

 

update

 

disk

 

based

 

diagnostics

 

45

 

update

 

system

 

or

 

service

 

processor

 

flash

 

(CHRP)

 

45

 

service

 

aids

 

22

 

display

 

service

 

hints

 

36

 

service

 

hints

 

36

 

service

 

mode

 

diagnostics

 

8

 

service

 

processor
configure

 

(RSPC)

 

30

 

configure

 

ring

 

indicate

 

power

 

on

 

29

 

modem

 

configuration

 

30

 

surveillance

 

30

 

service

 

processor

 

configuration

 

(RSPC)

 

43

 

service

 

processor

 

flash

 

45

 

service

 

request

 

numbers

 

19

 

sevice

 

aid
surveillance

 

setup

 

30

 

shell

 

prompt

 

25

 

short

 

version,

 

diagnostic

 

event

 

log

 

6

 

signal

 

handling

 

59

 

simple

 

menus,

 

display.

 

135

 

simultaneous

 

execution

 

of

 

test

 

units

 

51

 

SINGLE

 

SELECTION

 

Screen

 

Type

 

187,

 

190

 

site

 

specific

 

call

 

in/out

 

setup

 

31

 

SLIH

 

67

 

SLIH

 

conversion

 

tips

 

63

 

SMIT

 

25

 

software

 

filesets

 

209

 

software

 

packages

 

209

 

software

 

product

 

data

 

36

 

source

 

numbers

 

20

 

spare

 

sector

 

availability

 

45

 

specifying

 

a

 

text

 

conclusion

 

18

 

SRN

 

19,

 

149,

 

150

 

reason

 

codes

 

20

 

SSA

 

service

 

aids

 

45

 

staging

 

diagnostics
full

 

test

 

3

 

shared

 

3

 

subtest

 

3

 

standalone

 

diagnostics

 

8

 

async

 

terminal

 

8

 

NIM

 

clients

 

10

 

unsupported

 

tasks

 

8

 

standalone

 

diagnostics

 

(POWER-based

 

only)

 

203

 

standlone

 

diagnostics
console

 

configuration

 

diskette

 

8

 

starting

 

diagnostic

 

controller

 

13

 

starting

 

trace

 

215

 

state

 

of

 

IPL

 

mode

 

166

 

status

 

18

 

stop

 

the

 

operating

 

system

 

8

 

stops

 

object

 

data

 

manager

 

112

 

strategy,

 

diagnostics

 

3

 

structure,

 

diagnostic

 

system

 

1

 

subroutine
pdiag_close

 

73

 

pdiag_cs_close

 

70

 

pdiag_cs_free_attr

 

72

 

pdiag_cs_get_attr

 

71

 

pdiag_cs_open

 

70

 

pdiag_diagnose_state

 

67

 

pdiag_open

 

72

 

pdiag_restore_state

 

69

 

subroutines
getdavar

 

17

 

putdavar

 

17

 

supplemental

 

media

 

7

 

supported

 

tasks

 

23

 

surveillance

 

policy

 

31

 

surveillance

 

setup

 

30

 

SysKonnect

 

SK-NET

 

FDDI

 

adapter

 

40

 

system

 

checkout

 

4

 

system

 

crash
recover

 

27

 

system

 

environmental

 

sensors

 

37

 

system

 

flash

 

45

 

system

 

resource,

 

defined

 

11

 

T
task

 

lists

 

23

 

task

 

matrix

 

247

 

task

 

selection

 

list

 

menu

 

199

 

task

 

selection

 

list

 

menu

 

-

 

display

 

supported

 

resources

 

200

 

tasks

 

22

 

term_dgodm

 

112

   

Index

 

263



terminates

 

user

 

interface

 

131

 

test

 

level

 

15

 

test

 

method

 

menu

 

198

 

test

 

mode

 

input

 

176

 

Test

 

Mode

 

Input

 

16

 

test

 

patterns

 

38

 

test

 

scenarios

 

22

 

test

 

unit
64-bit

 

porting

 

62

 

programming

 

interface

 

57

 

test

 

unit

 

call

 

interface

 

52

 

test

 

unit

 

code
general

 

structure

 

50

 

test

 

unit

 

code

 

device

 

open

 

and

 

close

 

48

 

test

 

unit

 

control

 

block

 

52

 

test

 

unit

 

definition

 

47

 

test

 

unit

 

numbering

 

48

 

test

 

units
display

 

requirements

 

65

 

in-service

 

50

 

interrupt

 

handling

 

54

 

microcode

 

download

 

65

 

out-of-service

 

50

 

simultaneous

 

execution

 

51

 

testing

 

parents

 

4

 

testing

 

siblings

 

4

 

text

 

goal

 

167

 

third

 

party

 

vendors
source

 

numbers

 

20

 

TMInput

 

115

 

TMInput

 

object

 

class

 

164

 

trace
running

 

216

 

starting

 

215

 

trace

 

information

 

159

 

TRANSITIONAL

 

Screen

 

Type

 

188,

 

191

 

TU

 

close

 

device

 

interfice

 

225

 

TU

 

error

 

detail

 

221

 

TU

 

exectu

 

function

 

223

 

TU

 

input

 

parameters

 

222

 

TU

 

interrupt

 

handler

 

makefile

 

233

 

TU

 

local

 

header

 

file

 

222

 

TU

 

makefiles

 

231

 

TU

 

open

 

device

 

interfice

 

225

 

TU

 

specific

 

inputs

 

222

 

TU

 

specific

 

outputs

 

221

 

TU_RETURN_TYPE

 

output

 

structure

 

53

 

TU_TYPE

 

input

 

structure

 

52

 

TUUB

 

52

 

U
unknown

 

resource

 

23

 

unpin

 

the

 

user

 

space

 

DMA

 

buffer

 

85

 

unsupported

 

tasks

 

8

 

update

 

disk

 

based

 

diagnostics

 

45

 

update

 

FRU

 

Bucket

 

120

 

update

 

system

 

flash

 

(RSPC)

 

45

 

update

 

system

 

or

 

service

 

processor

 

flash

 

(CHRP)

 

45

 

user

 

interface
diagnostic

 

185

 

user

 

interface,

 

initialize

 

129

 

uspchrp

 

-b

 

28

 

uspchrp

 

-m

 

29

 

uspchrp

 

-r

 

30

 

V
vital

 

product

 

data

 

34

 

VPD

 

26

 

W
write

 

PCI

 

configuration

 

register

 

75

 

writing

 

diagnostic

 

programs

 

18

  

264

 

Understanding

 

the

 

Diagnostic

 

Subsystem



Readers’

 

Comments

 

—

 

We’d

 

Like

 

to

 

Hear

 

from

 

You

 

AIX

 

5L

 

Version

 

5.2

 

Understanding

 

the

 

Diagnostic

 

Subsystem

 

for

 

AIX

  

Publication

 

No.

 

SC23-4873-02

  

Overall,

 

how

 

satisfied

 

are

 

you

 

with

 

the

 

information

 

in

 

this

 

book?

   

Very

 

Satisfied Satisfied Neutral Dissatisfied Very

 

Dissatisfied

 

Overall

 

satisfaction h h h h h

  

How

 

satisfied

 

are

 

you

 

that

 

the

 

information

 

in

 

this

 

book

 

is:

   

Very

 

Satisfied Satisfied Neutral Dissatisfied Very

 

Dissatisfied

 

Accurate h h h h h

 

Complete h h h h h

 

Easy

 

to

 

find h h h h h

 

Easy

 

to

 

understand h h h h h

 

Well

 

organized h h h h h

 

Applicable

 

to

 

your

 

tasks h h h h h

  

Please

 

tell

 

us

 

how

 

we

 

can

 

improve

 

this

 

book:

  

Thank

 

you

 

for

 

your

 

responses.

 

May

 

we

 

contact

 

you?

   

h

 

Yes

   

h

 

No

 

When

 

you

 

send

 

comments

 

to

 

IBM,

 

you

 

grant

 

IBM

 

a

 

nonexclusive

 

right

 

to

 

use

 

or

 

distribute

 

your

 

comments

 

in

 

any

 

way

 

it

 

believes

 

appropriate

 

without

 

incurring

 

any

 

obligation

 

to

 

you.

  

Name

 

Address

 

Company

 

or

 

Organization

 

Phone

 

No.



Readers’

 

Comments

 

—

 

We’d

 

Like

 

to

 

Hear

 

from

 

You

 

SC23-4873-02

SC23-4873-02

���

 

Cut

 

or

 

Fold
Along

 

Line

Cut

 

or

 

Fold
Along

 

Line

Fold

 

and

 

Tape

 

Please

 

do

 

not

 

staple

 

Fold

 

and

 

Tape

Fold

 

and

 

Tape

 

Please

 

do

 

not

 

staple

 

Fold

 

and

 

Tape

NO

 

POSTAGE
NECESSARY
IF

 

MAILED

 

IN

 

THE
UNITED

 

STATES

BUSINESS

 

REPLY

 

MAIL

 

FIRST-CLASS

 

MAIL

 

PERMIT

 

NO.

 

40

 

ARMONK,

 

NEW

 

YORK

 

POSTAGE

 

WILL

 

BE

 

PAID

 

BY

 

ADDRESSEE

IBM

 

Corporation

 

Information

 

Development

 

Department

 

H6DS-905-6C006

 

11501

 

Burnet

 

Road

 

Austin,

 

TX

  

78758-3493

 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_





���

  

Printed

 

in

 

U.S.A.

     

SC23-4873-02

               

 


	Contents
	About This Book
	Who Should Use This Book
	Highlighting
	Case-Sensitivity in AIX
	ISO 9000
	Related Publications

	Chapter 1. Introduction
	Structure of Diagnostics
	Strategy for Diagnostics
	Staging the Impact of Diagnostics
	Option Checkout
	System Checkout

	Diagnostic Commands
	diag Command
	diagrpt Command


	Chapter 2. Operating Environments
	Online Diagnostics
	Concurrent Mode
	Service Mode
	Maintenance Mode

	Standalone Diagnostics (POWER-based only)
	Tasks not Supported in Standalone Diagnostics
	Console Configuration Diskette

	NIM Diagnostics

	Chapter 3. Diagnostic Components
	Diagnostic Controller
	Control Flow of the Diagnostic Controller
	Return Status

	Diagnostic Applications
	Device Configuration
	Determining the Level of Tests to Execute
	Drivers Used for Diagnostic Purposes
	Acquiring a Greater Share of the Resource
	Error Log Analysis
	Enhanced Error Handling (EEH) Option
	Persistent Variables
	Field Replaceable Units (FRUs)
	Specifying a Text Conclusion
	Library Restrictions for Diagnostic Programs
	Guidelines for Writing Diagnostic Programs using C++
	Completion Status for Diagnostic Applications
	Control Flow of a Diagnostic Application
	SRN Architecture
	Diagnostic Controller Generated SRNs
	Source Numbers
	Diagnostic Application Code Checklist
	Other test scenarios include:

	Tasks and Service Aids
	Creating a Task
	Performing a Task
	Task List
	Add or Delete Drawer Configuration
	Add Resource to Resource List
	Shell Prompt
	Analyze Adapter Internal Log (Device Specific)
	Backup and Restore Media
	Certify Media
	Change Hardware Vital Product Data
	Configure Dials and LPFKeys
	Configure ISA Adapter
	Configure Reboot Policy (CHRP)
	Configure Remote Maintenance Policy (CHRP)
	Configure Ring Indicate Power On (RSPC)
	Configure Ring Indicate Power On Policy (CHRP)
	Configure Service Processor (RSPC)
	Surveillance Setup
	Modem Configuration
	Call In/Out Setup
	Site Specific Call In/Out Setup
	Configure Surveillance Policy (CHRP)
	Create Customized Configuration Diskette
	Delete Resource from Resource List
	Disk Maintenance (SCSI Disks)
	Display Checkstop Analysis Results
	Display Configuration and Resource List
	Display Firmware Device Node Information (CHRP)
	Display Hardware Error Report
	Display Hardware Vital Product Data
	Display Machine Check Error Log
	Display Microcode Level
	Display or Change Bootlist
	Display or Change BUMP Configuration
	Display or Change Diagnostic Run Time Options
	Display or Change Electronic Mode Switch
	Display or Change Multiprocessor Configuration (Multiprocessor Service)
	Display Previous Diagnostic Results
	Display Resource Attributes
	Display Service Hints
	Display Software Product Data
	Display System Environmental Sensors (CHRP)
	Display Test Patterns
	Display USB Devices
	Download Microcode
	ESCON Bit Error Rate
	Fibre Channel RAID (Device Specific)
	Flash SK-NET FDDI Firmware
	Format Media
	Generic Microcode Download
	Hot Plug Task
	Local Area Network Analyzer
	PCI RAID Physical Disk Identify
	Periodic Diagnostics
	Process Supplemental Media
	Run Diagnostics
	Automatic Error Log Analysis and Notification
	Run Error Log Analysis
	Save or Restore Hardware Management Policies (CHRP)
	Save or Restore Service Processor Configuration (RSPC)
	SCSD Tape Drive Service Aid
	SCSI Bus Analyzer
	Service Aids for use with Ethernet
	Spare Sector Availability
	SSA Service Aids
	Update Disk Based Diagnostics
	Update System Flash (RSPC)
	Update System or Service Processor Flash (CHRP)
	7135 RAIDiant Array Service Aid

	Application Test Units
	Test Unit Definition
	Hardware Functional Coverage
	Test Unit Numbering
	Test Unit Code Device Open and Close
	Portability
	In-Service versus Out-of-Service Test Units
	Recommended General Structure of Test Unit Code
	Designing for Multitasking Environments
	Persistent Data and the TU_INFO_HANDLE
	Test Unit Call Interface
	Definition of TU_TYPE Input Structure
	Definition of TU_RETURN_TYPE Output Structure
	Return Codes
	major_rc
	minor_rc
	Interrupt Handler Call Interface
	Syntax
	Parameters
	Interrupt Handling in Test Units
	Using the Interrupt Flag Bit Mask
	Example
	Programming Interfaces for TUs and Interrupt Handlers
	Configuration Services Device Attributes
	Message Handling
	Signal Handling
	Definition of exectu()
	Purpose
	Syntax
	Description
	Parameters
	Return Value
	PCI Configuration Space for I/O Devices

	Test Unit 64-bit Porting Guide
	C Language Data Model
	Makefile
	Makefile Source
	SLIH Conversion Tips
	SLIH Conversion Required Changes
	Related Information
	Microcode Download/Display Requirements for Test Units
	Enhanced Error Handling Option

	Diagnostic Kernel Extension
	Overview
	Device Configuration
	Loading PDIAGEX
	Second-Level Interrupt Handlers
	Programming Interfaces for libpdiag.a
	pdiag_diagnose_state
	pdiag_diagnose_multifunc_state
	pdiag_restore_state
	pdiag_restore_multifunc_state
	pdiag_cs_open
	pdiag_cs_close
	pdiag_cs_get_attr
	pdiag_cs_free_attr
	pdiag_open
	pdiag_close
	pdiag_pcicfg_read
	pdiag_pcicfg_write
	Programming Interfaces for PDIAGEX
	pdiag_dd_watch_for_interrupt
	pdiag_dd_interrupt_notify
	pdiag_dd_write, pdiag_dd_write_64
	pdiag_dd_read, pdiag_dd_read_64
	pdiag_dd_dma_setup
	pdiag_dd_dma_complete
	pdiag_dd_dma_enable
	pdiag_shared_slot
	pdiag_read_slot_reset
	pdiag_set_eeh_option
	pdiag_set_slot_reset
	Data Dictionary
	PDIAGEX Data Structures
	pdiagex_dds_t
	pdiagex_opflags_t
	dma_struct
	aioo_struct_t
	diag_struc_t
	Kernel Services
	Programmed I/O Services

	Diagnostic Library
	dlog_numMatches Subroutine
	dlog_query Subroutine
	dlog_query_cleanup Subroutine
	dl_fru_src Structure
	dl_partition Structure
	dl_menugoal Structure
	dl_srn Structure
	dl_srn_src Structure
	query_fru Structure
	query_log Structure
	query_output Structure
	query_results Structure
	diag_add_obj
	diag_change_obj
	diag_close_class
	diag_free_list
	diag_get_list
	diag_lock
	diag_open_class
	diag_rm_obj
	diag_unlock
	init_dgodm, term_dgodm
	configure_device, initial_state
	diagex_cfg_state
	diagex_initial_state
	get_device_status
	addfrub
	addfrub_src
	insert_frub
	add_more_frus
	diag_catopen
	diag_cat_gets
	diag_popup
	diag_progress
	diag_read
	diag_resource_screen
	diag_task_screen
	diag_asl_clear_screen
	diag_asl_init
	diag_asl_msg
	diag_asl_read
	diag_asl_quit
	diag_display
	diag_display_menu
	diag_emsg
	diag_msg, diag_msg_nw
	diag_get_device_flag
	diag_get_property
	diag_get_sid_lun
	diag_load_optical_media
	check_optical_media
	get_cpu_model
	get_dev_desc
	get_diag_att
	dlog_getTestMode
	dlog_close
	dlog_find_first
	dlog_find_next
	dlog_find_sequence
	dlog_formatElogResults
	dlog_freeEntry
	dlog_open
	dlog_read
	dlog_same_elogId
	dlog_setEntryType
	dlog_write
	save_davars_ela
	save_davars_mgoal_ela
	copy_text
	DA_SETRC_XXXXXX, DA_CHECKRC_XXXXXX, DA_EXIT
	diag_asl_beep
	diag_asl_execute
	diag_checkstop_eed
	diag_checkstop_event
	diag_cluster_support ()
	diag_cpu2proc (int n)
	diag_exec_source
	diag_execute
	diag_general_eed
	diag_get_cluster_ms ()
	diag_get_cluster_mt ()
	diag_get_fru_serial
	dt
	error_log_get
	file_present
	get_DApp
	getdainput, clrdainput
	getdavar, putdavar
	getELAdates
	has_diag_authority
	ipl_mode
	menugoal
	schedule_ela

	Diagnostic Object Classes
	Predefined Diagnostic Resource Object Class
	Predefined Diagnostic Attribute Device Object Class
	Predefined Diagnostic Task Object Class
	Customized Diagnostic Attribute Object Class
	Test Mode Input Object Class
	Menu Goal Object Class
	FRU Bucket Object Class
	FRU Reporting Object Class
	Diagnostic Application Variables Object Class
	Predefined Diagnostic Devices Object Class
	Diagnostic Supervisor Menu Options Object Class

	Diagnostic Header Files
	Diagnostic User Interface
	Diagnostic Applications
	Diagnostic Tasks

	Diagnostic Menu Examples
	Diagnostic Operating Instructions Menu
	Function Selection Menu
	Define Terminal Menu
	Missing Resource Selection Menu
	Missing Resource Menu
	New Resource Menu
	Diagnostic Mode Selection Menu
	Resource Selection Menu
	Resource Selection Menu - Display Common Tasks
	Test Method Menu
	No Trouble Found Menu
	Problem Report Menu
	Additional Resources Menu
	Task Selection List Menu
	Task Selection List Menu - Display Supported Resources
	Run Time Options Menu


	Chapter 4. Diagnostic Features
	Missing Options Resolution
	Online Concurrent Diagnostics
	Online Service Diagnostics
	Standalone Diagnostics (POWER-based only)
	Missing Options Procedure Steps

	Error Log Analysis
	Running Problem Determination Mode in Diagnostics

	Periodic Diagnostics
	AIX Version 3
	AIX Version 4
	Technical Description

	Automatic Error Log Analysis (DIAGELA)
	Loop Testing

	Chapter 5. Diagnostic Packaging
	Hardfile Packaging
	Software Packages and Filesets
	Directory Structure Organization

	CDROM Packaging (POWER-based only)
	Diagnostic Supplemental Media
	Diagnostic Supplemental Diskette Contents
	Example ODM Stanzas
	Example diagstartS Script File
	Example diagstart3S Script File
	Diagnostic Supplemental Diskette Label


	Chapter 6. Diagnostic Debugging Hints
	Debugging Hints for Diagnostic Applications
	Debugging Hints for Diagnostic Kernel Extension
	Starting Trace for Diagnostic Kernel Extension
	Running Trace for Diagnostic Kernel Extension in the Background
	Finding the Right Address
	Looking at an Illegal Trap

	Diagnostic Patch Diskette Procedure
	Diagnostic Configuration Diskette
	Diagnostic Patch Diskette
	Diagnostic Debug Diskette


	Chapter 7. Code Examples
	Example {DEVICE}_ERR_DETAIL.H: TU Specific Outputs
	Example {DEVICE}_INPUT_PARAMS.H: TU Specific Inputs
	Example TU Local Header File
	Example TU exectu Function
	Example TU Open/Close Device Interface
	Example TU Makefiles
	Example C Source File for TU Interrupt Handler
	Example TU Interrupt Handler Makefile
	Example Diagnostic Application
	Example Diagnostic Application Message File

	Chapter 8. Diagnostic Task Matrix
	Appendix. Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

