
The graPHIGS Programming Interface:
Getting Started

SC33-8198-00

���

The graPHIGS Programming Interface:
Getting Started

SC33-8198-00

���

Note
Before using this information and the product it supports, read the information in “Notices,” on page 27.

Second Edition (September 1992)

This edition applies to the AIXwindows Environment/6000 (1.3) AIXwindows/3D feature, Program Number 5601-257,
and to all subsequent releases of this product until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1992, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book . v
Who Should Use This Book . v
Highlighting . v
ISO 9000 . v
Related Publications . v

Chapter 1. Introduction . 1

Chapter 2. Creating Your First graPHIGS API Program 3
Writing, Compiling, and Running the square Program . 3
Examining the square Program . 4

Chapter 3. Adding Simple Interaction to a Program 7
Writing, Compiling, and Running the flex Program . 7
Examining the flex Program . 8

Chapter 4. Creating Your First 3D graPHIGS API Program 11
Writing, Compiling, and Running the using3d Program 11
Examining the using3d Program . 12

Chapter 5. Adding Shading to a Program . 15
Writing, Compiling, and Running the shade Program 15
Examining the shade Program . 16

Chapter 6. Creating a Very Simple Modeller . 19
Writing, Compiling, and Running the model Program 19
Examining the model Program . 21

Chapter 7. Continuing with the graPHIGS API . 25

Appendix. Notices . 27
Trademarks . 28

© Copyright IBM Corp. 1992, 2002 iii

iv The graPHIGS Programming Interface: Getting Started

About This Book

This book guides you through the steps of writing and running your first graPHIGS API program.

Who Should Use This Book
This book is intended for first-time users of the graPHIGS API. It is also a good source of review for
application and system programmers.

Highlighting
The following highlighting conventions are used in this book:

 Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items
whose names are predefined by the system. Also identifies graphical objects such as buttons,
labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.
Monospace Identifies examples of specific data values, examples of text similar to what you might see

displayed, examples of portions of program code similar to what you might write as a
programmer, messages from the system, or information you should actually type.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Publications
The following books contain information on graPHIGS API products:

v The graPHIGS Programming Interface: Customization and Problem Diagnosis

v The graPHIGS Programming Interface: ISO PHIGS Subroutine Reference

v The graPHIGS Programming Interface: ISO PHIGS Quick Reference

v The graPHIGS Programming Interface: Messages and Codes

v The graPHIGS Programming Interface: Quick Reference

v The graPHIGS Programming Interface: Subroutine Reference

v The graPHIGS Programming Interface: Technical Reference

v The graPHIGS Programming Interface: Understanding Concepts

© Copyright IBM Corp. 1992, 2002 v

vi The graPHIGS Programming Interface: Getting Started

Chapter 1. Introduction

Welcome to the IBM Personal graPHIGS Programming Interface, IBM’s implementation of the PHIGS
standard graphics programming interface. This guide takes you through the steps of writing and running
your first graPHIGS API programs for the IBM RS/6000. This guide assumes you are familiar with the C
programming language and with an editor, such as vi. In addition, the graPHIGS API, V2R2.0 or later,
must be installed on your system.

This guide is divided into the following sections:

v Creating Your First graPHIGS API Program

v Adding Simple Interaction to a Program

v Creating Your First 3D graPHIGS API Program

v Adding Shading to a Program

v Creating a Very Simple Modeller

v Continuing with the graPHIGS API

Notes:

1. The example programs listed in this guide are available on the installation media for the
AIXwindows/3D feature of the AIXwindows Environment/6000. The programs are installed in individual
subdirectories under the following directory:
/usr/lpp/graPHIGS/samples/gettingstarted

2. To compile and link all of the samples, enter the following commands on the command line:
cd /usr/lpp/graPHIGS/samples/gettingstarted
make
 You can then change directory (cd) to an individual sample directory and run the sample by entering:
./name
 where name is the name of the sample (such as square).

3. An interactive tutorial is also available for the graPHIGS API under the following directory:
/usr/lpp/graPHIGS/clients/gPtutor

4. A sample debugger is also available for the graPHIGS API under the following directory:
/usr/lpp/graPHIGS/clients/gPdbg
 The sample debugger provides the ability to trace, debug and modify the graPHIGS API calls
interactively. Additionally, it allows you to look at the Structure Store, View Characteristics and
Workstation specific data.
 For details on compiling, linking, and running the debugger, look at the README file in this directory:
/usr/lpp/graPHIGS/clients/gPdbg

© Copyright IBM Corp. 1992, 2002 1

2 The graPHIGS Programming Interface: Getting Started

Chapter 2. Creating Your First graPHIGS API Program

This section covers the following topics:

v Writing, Compiling, and Running the square Program

v Examining the square Program

– Including the afmnc.h File

– Initializing the graPHIGS API

– Creating a Geometry Structure

– Displaying the Structure

– Exiting the Program

Writing, Compiling, and Running the square Program
Your first program is called square, since it puts a red square with a white border on the screen.

1. Enter the following program into a file called square.c (e.g., vi square.c):

 (Ref #1.)
/*
 * COMPONENT_NAME: graPHIGS API Samples
 *
 * ORIGINS: 27
 *
 * (C) COPYRIGHT International Business Machines Corp. 1990
 * All Rights Reserved
 *
 * Licensed Materials - Property of IBM
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
 */
/*---*/
/* graPHIGS Start-Up : our first program */
#include <afmnc.h> /* graPHIGS include file */

 main() {
 int wsid = 1, viewid = 0, strid = 1;
 int n4[1] = {4};
 int status,choice;
 static float pts[8] = {0.5,0.5, 0.5,-0.5, -0.5,-0.5, -0.5,0.5};

 GPOPPH (" ",0); /* open graPHIGS */
 GPOPWS (wsid,"*","X "); /* open a workstation */

 GPOPST(strid); /* open structure */
 GPEF (2); /* set edge on */
 GPIS (2); /* set interior style solid */
 GPICI (2); /* set interior color RED */
 GPECI (1); /* set edge color WHITE */
 GPPG2 (1,n4,2,pts); /* add 2D polygon */
 GPCLST(); /* close structure */

 GPARV (wsid,viewid,strid,1.0); /* link root to view */
 GPUPWS(wsid,2); /* update workstation */
 GPRQCH(wsid,2,&status,&choice); /* wait for mouse hit */
 GPCLPH(); /* close graPHIGS */
}

2. Compile the program using the following command:
cc -o square square.c -lgP

© Copyright IBM Corp. 1992, 2002 3

3. Run the program by entering:
./square
 A window pops onto the screen. Inside the window is a red square with a white border. To exit the
program, place the mouse pointer, or locator input device, inside the graPHIGS API window and press
any mouse button.

Examining the square Program
This section describes the purpose of various parts of the program:

Including the afmnc.h File
Every graPHIGS API program written in the C programming language must include the file afmnc.h. This
file contains the entry point definitions for all graPHIGS API functions.
#include <afmnc.h> /* graPHIGS include file */

Initializing the graPHIGS API
The following two lines are what actually initialize the graPHIGS API. The Open graPHIGS (GPOPPH)
subroutine puts the graPHIGS API into the open state, and Open Workstation subroutine opens one
graphics workstation with the specified workstation identifier, wsid.
--
GPOPPH (" ",0); /* open graPHIGS */
GPOPWS (wsid,"*","X "); /* open a workstation */
--

Creating a Geometry Structure
The next section of code creates a geometry structure with the specified structure identifier, strid. The
actual geometry and attributes are placed inside this structure. In this case, polygon edge attributes and
polygon interior attributes are inserted into the structure, followed by a 2D polygon.
--
GPOPST(strid); /* open structure */
GPEF (2); /* set edge on */
GPIS (2); /* set interior style solid */
GPICI (2); /* set interior color RED */
GPECI (1); /* set edge color WHITE */
GPPG2 (1,n4,2,pts); /* add 2D polygon */
GPCLST(); /* close structure */
--

Displaying the Structure
The next two lines of code display the geometry on the screen. The geometry structure you just created
must be associated with a workstation view before it can be displayed. The first line of code associates the
structure (called a root structure) with the default graPHIGS API view 0, specified by the view identifier
viewid. The second line of code tells the workstation to update itself using the Update Workstation
(GPUPWS) subroutine.
--
GPARV (wsid,viewid,strid,1.0); /* link root to view */
GPUPWS(wsid,2); /* update workstation */
--

Exiting the Program
The last two lines of code allow you to exit the program gracefully. The Request Choice (GPRQCH)
subroutine tells the graPHIGS API to wait until a mouse button is pressed. Then, the Close graPHIGS
(GPCLPH) subroutine closes the graPHIGS API and the program exits.

4 The graPHIGS Programming Interface: Getting Started

GPRQCH(wsid,2,&status,&choice); /* wait for mouse hit */
GPCLPH(); /* close graPHIGS */

Chapter 2. Creating Your First graPHIGS API Program 5

6 The graPHIGS Programming Interface: Getting Started

Chapter 3. Adding Simple Interaction to a Program

This section covers the following topics:

v Writing, Compiling, and Running the flex Program

v Examining the flex Program

– Adding Label Elements to the Geometry Structure

– Using an Input Loop

Writing, Compiling, and Running the flex Program
The second program is called flex>, for flexible square. It uses the square program as a base, and adds
some simple user interaction. The size of the red square can now be interactively controlled by using the
mouse pointer.

1. Enter the following program into a file called flex.c

/*
 * COMPONENT_NAME: graPHIGS API Samples
 *
 * ORIGINS: 27
 *
 * (C) COPYRIGHT International Business Machines Corp. 1990
 * All Rights Reserved
 *
 * Licensed Materials - Property of IBM
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
 */
/*--*/
/* graPHIGS Start-Up : adding simple input */
#include [afmnc.h] /* graPHIGS include file */

main() {
 int wsid = 1, viewid = 0, strid = 1;
 int n4[1] = {4};
 int lcview,major,class,minor;
 float matrix[9],lcpos[3];
 static float oldpos[2] = {1.0,1.0};
 static float pts[8] = {1.0,1.0, 1.0,-1.0, -1.0,-1.0,
-1.0,1.0};

 GPOPPH (" ",0); /* open graPHIGS */
 GPOPWS (wsid,"*","X "); /* open a workstation */

 GPOPST(strid); /* open structure */
 GPINLB(1); /* insert label 1 */
 GPINLB(2); /* insert label 2 */
 GPEF (2); /* set edge on */
 GPIS (2); /* set interior style solid */
 GPICI (2); /* set interior color RED */
 GPECI (1); /* set edge color WHITE */
 GPPG2 (1,n4,2,pts); /* add 2D polygon */
 GPCLST(); /* close structure */

 GPARV (wsid,viewid,strid,1.0); /* link root to view */
 GPUPWS(wsid,2); /* update workstation */
 GPCHMO(wsid,2,3,2); /* choice: event mode */
 GPLCMO(wsid,1,2,2); /* locator: sample mode */

 do { /*loop until mouse hit */
 GPSMLC (wsid, 1, &lcview,lcpos); /* get mouse position */

© Copyright IBM Corp. 1992, 2002 7

if (lcpos[0] != oldpos [0] ||
 lcpos[1] != oldpos [1])
 {
 oldpos[0] = lcpos [0] ;
 oldpos[1] = lcpos [1] ;
 GPSC2 (lcpos, matrix); /* calculate scale matrix */
 GPOPST (strid); /* open structure for edit */
 GPDELB (1,2); /* delete between labels */
 GPMLX2 (matrix, 3); /* insert new model matrix */
 GPCLST (); /* close structure */
 GPUPWS (wsid,2): /* update workstation */
 }
 GPAWEV (0.0,&major,&class,&minor); /* check for any events */
 } while (class != 4);
 GPCLPH();
}

2. Compile the program using the following command:
cc -o flex flex.c -lgP

3. Run the program by entering:
./flex
 A window pops onto the screen. Inside the window is a red rectangle with a white border. The size of
the rectangle can be controlled by moving the mouse pointer while it is inside the graPHIGS API
window. To exit the program, position the mouse pointer in the graPHIGS API window and press any
button.

Examining the flex Program
This section looks at the program in more detail:

Adding Label Elements to the Geometry Structure
Creating the geometry structure is essentially the same as for the square program. The only additions are
two label elements, added with the Insert Label (GPINLB) subroutine. These labels will allow you to later
insert and delete elements between the two labels.
--
GPOPST(strid); /* open structure */
GPINLB(1); /* insert label 1 */
GPINLB(2); /* insert label 2 */
GPEF (2); /* set edge on */
GPIS (2); /* set interior style solid */
GPICI (2); /* set interior color RED */
GPECI (1); /* set edge color WHITE */
GPPG2 (1,n4,2,pts); /* add 2D polygon */
GPCLST(); /* close structure */
--

Using an Input Loop
This program also adds a loop to handle input. Inside the loop, the Sample Locator (GPSMLC) subroutine
samples the position of the mouse pointer (or locator device). The locator position is returned as x,y,z
coordinates in the variable lcpos. If the new and old locator positions are different, the shape of the square
is modified. This is done by editing the geometry structure containing the square.

The Scale 2D (GPSC2) subroutine is used to create a new 2D scale matrix which is then inserted into the
geometry structure using the Set Modeling Transformation 2D (GPMLX2) subroutine.

Also inside the input loop, the graPHIGS API event queue is checked using the Await Event (GPAWEV)
subroutine. The loop is exited if the value for the returned class is 4 (e.g., the mouse button is pressed).

8 The graPHIGS Programming Interface: Getting Started

--
do { /* loop until mouse hit */
 GPSMLC(wsid,1,&lcview,lcpos); /* get the mouse position */
 if (lcpos[0] != oldpos[0] ||
 lcpos[1] != oldpos[1])
 {
 oldpos[0] = lcpos[0];
 oldpos[1] = lcpos[1];
 GPSC2 (lcpos,matrix); /* calculate scale matrix */
 GPOPST(strid); /* open structure for edit */
 GPDELB(1,2); /* delete between labels */
 GPMLX2 (matrix,3); /* insert new model matrix */
 GPCLST(); /* close structure */
 GPUPWS(wsid,2); /* update workstation */
 }
 GPAWEV(0.0,&major,&class,&minor); /* check for any events */
} while (class != 4);
--

Chapter 3. Adding Simple Interaction to a Program 9

10 The graPHIGS Programming Interface: Getting Started

Chapter 4. Creating Your First 3D graPHIGS API Program

This section covers the following topics:

v Writing, Compiling, and Running the using3d Program

v Examining the using3d Program

– Opening and Reading a File

– Creating the Geometry Structure

– Defining a View

– Using the Input Loop and Setting a New View Orientation

Writing, Compiling, and Running the using3d Program
The next program, using3d, takes you into the realm of 3D. This program reads a wireframe geometry
data file and creates a 3D wireframe model from the file’s contents. A 3D perspective window is also
defined for displaying the geometry.

1. Enter the following program into a file called using3d.c

/*
 * COMPONENT_NAME: graPHIGS API Samples
 *
 * ORIGINS: 27
 *
 * (C) COPYRIGHT International Business Machines Corp. 1990
 * All Rights Reserved
 *
 * Licensed Materials - Property of IBM
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
 */
/*--*/
/* graPHIGS Start-Up : Using 3D */
#include <afmnc.h> /* graPHIGS include file */
#include <stdio.h> /* C standard IO */

main() {
 static float window[4] = {-0.8,0.8,-0.8,0.8};
 static float viewpt[6] = {0.0,1.0,0.0,1.0,0.0,1.0};
 static float prp [3] = {0.0,0.0,2.4};
 static float oldpos[2] = {5.0,5.0};
 FILE *fp;
 int wsid=1, viewid=1, strid=1, np=0;
 int lcview, major, class, minor, md[3000];
 float mata[16], matb[16], matc[16], lcpos[3],
pts[3000][3];

 fp = fopen("USING3D.WF","r");
 while (fscanf(fp,"%d %f %f %f", &md[np],
 &pts[np][0],
 &pts[np][1],
 &pts[np][2]) != -1) {np++;}

 GPOPPH (" ",0); /* open graPHIGS */
 GPOPWS (wsid,"*","X "); /* open a workstation */

 GPOPST(strid); /* open structure */
 GPPLCI(3); /* set polyline color GREEN */
 GPDPL3(np,3,pts,md); /* add 3D disjoint polyline */
 GPCLST(); /* close structure */

© Copyright IBM Corp. 1992, 2002 11

GPVCH (wsid,viewid,2,2,2, 1,0, 2,1, 2);/* activate view */

2. Create a file called USING3D.WF using the following information to define a square:
 2 -0.5 -0.5 0.0
 2 -0.5 0.5 0.0
 2 0.5 0.5 0.0
 2 0.5 -0.5 0.0
 1 -0.5 -0.5 0.0
 This information is found in:
/usr/lpp/graPHIGS/samples/gettingstarted/using3D/USING3D.WF

3. Compile the program using the following command:
cc -o using3d using3d.c -lgP

4. Run the program by entering:
./using3d
 A window pops up on the screen. Inside the window is the green wireframe geometry. The orientation
of the viewer can be changed by moving the mouse pointer inside the graPHIGS API window. To exit
the program, position the mouse pointer in the graPHIGS API window and press any button.

Examining the using3d Program
This section looks at the program in more detail, and describes the functions of various parts of the code.

Opening and Reading a File
The following lines of code open and read the wireframe geometry file. The data is stored in the pts[] and
md[] arrays.

fp = fopen("USING3D.WF","r");
while (fscanf(fp,"%d %f %f %f",
 &md[np],
 &pts[np][0],
 &pts[np][1],
 &pts[np][2]) != -1) {np++;}

Creating the Geometry Structure
The geometry creation code is similar to that of the square and flex programs. This program specifies a
line color attribute, and then inserts a disjoint polyline primitive into the structure.

GPOPST(strid); /* open structure */
GPPLCI(3); /* set polyline color GREEN */
GPDPL3(np,3,pts,md); /* add 3D disjoint polyline */
GPCLST(); /* close structure */

Defining a View
This is the first program which does not use the default graPHIGS API view 0. Instead, this program uses
the Set View Characteristics (GPVCH) subroutine to activate the view specified by the view identifier,
viewid. It also uses the Set View Mapping 3D (GPVMP3) subroutine to specify the set of parameters which
define the view, such as:

v window size

v viewport

v projection type (parallel/perspective)

v view plane

12 The graPHIGS Programming Interface: Getting Started

v near clipping plane

v far clipping plane.

Finally, the Set View Input Priority (GPVIP) subroutine ensures that input comes from the default view 0.

GPVCH (wsid,viewid,2,2,2, 1,0, 2,1, 2);/* activate view */
GPVMP3(wsid,viewid,window,viewpt, /* set view mapping */
 2,prp, 0.0, 1.6,-1.6); /* perspective */
GPVIP (wsid,0,viewid,1);/* set view input priority 0>1 */

Using the Input Loop and Setting a New View Orientation
The last section of code is essentially the same as that of the flex program. The only difference is the
animation of the model. This program sets the new view orientation into the view matrix using the Set
View Matrix 3D (GPVMT3) subroutine.

do { /* loop until mouse hit */
 GPSMLC(wsid,1,&lcview,lcpos); /* get the mouse position */
 if (lcview == 0 &&
 (lcpos[0] != oldpos[0] ||
 lcpos[1] != oldpos[1]))
 {
 oldpos[0] = lcpos[0];
 oldpos[1] = lcpos[1];
 GPROTX(lcpos[0]*3.14,mata); /* calculate X rot matrix */
 GPROTY(lcpos[1]*3.14,matb); /* calculate Y rot matrix */
 GPCMT3(mata,matb,matc); /* multiply matrices */
 GPVMT3(wsid,viewid,matc); /* set view matrix, move view */
 GPUPWS(wsid,2); /* update workstation */
 }
 GPAWEV(0.0,&major,&class,&minor); /* check for any events */
} while (class != 4);

Chapter 4. Creating Your First 3D graPHIGS API Program 13

14 The graPHIGS Programming Interface: Getting Started

Chapter 5. Adding Shading to a Program

This section covers the following topics:

v Writing, Compiling, and Running the shade Program

v Examining the shade Program

– Checking for Shading Support

– Creating the Geometry Structure

– Defining Light Sources

– Setting Viewing Parameters

– Using the Input Loop and Setting a New Model Orientation

Writing, Compiling, and Running the shade Program
The shade program introduces you to the areas of shading, lighting, and hidden surface removal. A
shaded version of the geometry used in the using3d program is read and displayed in a 3D window.

1. Enter the following program into a file called shade.c
--
/*
 * COMPONENT_NAME: graPHIGS API Samples
 *
 * ORIGINS: 27
 *
 * (C) COPYRIGHT International Business Machines Corp. 1990
 * All Rights Reserved
 *
 * Licensed Materials - Property of IBM
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
 */
/*--*/
/* graPHIGS Start-Up : shading and lighting */
#include <afmnc.h> /* graPHIGS include file */
#include <stdio.h> /* C standard IO */

main() {
 static float window[4] = {-0.8,0.8,-0.8,0.8};
 static float viewpt[6] = {0.0,1.0,0.0,1.0,0.0,1.0};
 static float prp [3] = {0.0,0.0,2.4};
 static float oldpos[2] = {5.0,5.0};
 static float ltdir [3] = {0.1,0.1,-1.0};
 static int inll [2] = {1,2};
 FILE *fp;
 int wsid=1, viewid=1, strid=1, nvert=0, pdata=1, n2=2;
 int endflag, lcview, major, class, minor;
 float mata[16], matb[16], matc[16], lcpos[3],
pts[10][6];
 struct {int mode; float r,g,b;} ltcol = {2,1.0,1.0,1.0};

 GPOPPH (" ",0); /* open graPHIGS */
 GPOPWS (wsid,"*","X "); /* open a workstation */

 if (shadingQ(wsid) == 0) { /* is shading supported? */
 printf("No shading support, exiting program.\n");
 GPCLPH (); /* close graPHIGS */
 exit(1);
 }

 fp = fopen("USING3D.SH","r");

© Copyright IBM Corp. 1992, 2002 15

GPOPST(strid); /* open structure */
 GPINLB(1); /* insert label 1 */
 GPINLB(2); /* insert label 2 */
--

2. Create a file called USING3D.SH containing the following information, which defines a square:
 0 0.0 -0.5 -0.5 1.0 0.0 0.0
 0 0.0 -0.5 0.5 1.0 0.0 0.0
 0 0.0 0.5 0.5 1.0 0.0 0.0
 1 0.0 0.5 -0.5 1.0 0.0 0.0
 0 0.0 -0.5 -0.5 1.0 0.0 0.0
 0 0.0 0.5 -0.5 1.0 0.0 0.0
 0 0.0 0.5 0.5 1.0 0.0 0.0
 1 0.0 -0.5 0.5 1.0 0.0 0.0
 -1 0.0 0.0 0.0 0.0 0.0 0.0
 This information is found in:
/usr/lpp/graPHIGS/samples/gettingstarted/shade/USING3D.SH

3. Compile the program using the following command:
cc -o shade shade.c -lgP
 This program introduces a new concept, the graPHIGS API PROFILE. The PROFILE is an external file
which is read by the graPHIGS API every time a program is executed. The PROFILE is used to alter
certain graPHIGS API default values and to override parameters sent to graPHIGS API control
functions. The instructions below set up a direct-color color table instead of the default color table.

4. Enter the following into a file called PROFILE:
* graPHIGS Start-Up - PROFILE for shade.c sample
*
AFMMNICK PROCOPT=((DIRCOLOR))

5. Run the program by entering:
./shade
 A window pops onto the screen. Inside the window is the shaded 3D geometry. The orientation of the
viewer can be changed by moving the mouse pointer while it is inside the graPHIGS API window. To
exit the program, position the mouse pointer in the graPHIGS API window and press any button.

Examining the shade Program
This section describes the purpose of various sets of instructions in the shade program.

Checking for Shading Support
After opening the graPHIGS API and a graPHIGS API workstation, the program checks to see if the
workstation supports shading. This check has been separated into a utility function called shadingQ
(shading query). This utility function uses the graPHIGS API Inquire Light Source Facilities (GPQLSF)
subroutine to check for shading support. If shading is supported, a value of 1 is returned. Otherwise a
value of 0 is returned.

if (shadingQ(wsid) == 0) { /* is shading supported? */
 printf("No shading support, exiting program.\n");
 GPCLPH (); /* close graPHIGS */
 exit(1);
}

/* utility function to check for shading support */
int shadingQ(wsid)
{
 int status,conlen,errind,maxe,totnum,ltype,maxa,npred;
 char wstype[10],connid[255]

 GPQRCT(wsid,255,&status,&conlen,connid,wstype);

16 The graPHIGS Programming Interface: Getting Started

GPQLSF(wstype,1,0,&errind,&maxe,&totnum,;<ype,&maxa,&n
pred);
 if (maxe == 0) return 0;
 return 1;
}

Creating the Geometry Structure
This program uses several new subroutines in the geometry structure creation code:

 GPICD Set Interior Color Direct - Used in the program to set the color of the model. Allows you to
pass in an array containing the red, green and blue color values defining the interior color of
the geometry.

GPICD Set Interior Color Direct - Used in the program to set the color of the model. Allows you to
pass in an array containing the red, green and blue color values defining the interior color of
the geometry

GPSCD Set Specular Color Direct - Used to specify the specular color of the model.
GPLMO Set Lighting Mode - Used to activate lighting.
GPLSS Set Light Source State - Used to activate lighting.
GPHID Set HLHSR (Hidden Line and Hidden Surface Removal) - Used to activate hidden surface

removal.
GPPGD3 Polygon with Data 3D - Used to create the actual geometry. Allows you to define 3D

polygons with vertex normal vectors to simulate the curvature of the polygon.

fp = fopen("USING3D.SH","r");
GPOPST(strid); /* open structure */
GPINLB(1); /* insert label 1: */
GPINLB(2); /* insert label 2 */
GPICD (<col.r); /* set interior color WHITE */
GPSCD (<col.r); /* set specular color WHITE */
GPSPR (0.3,0.4,0.4,9.0,1.0); /* set surface properties */
GPLMO (3); /* set lighting to gouraud */
GPIS (2); /* set interior style solid */
GPHID (1); /* activate hidden surface removal */
GPPGC (2); /* set polygon culling on */
GPLSS (2,inll,0,inll); /* activate 2 light sources */
do { /* loop to read X29 shade file */
 fscanf(fp,"d %f %f %f %f %f %f",&endflag,
 &pts[nvert][0],
 &pts[nvert][1],
 &pts[nvert][2],
 &pts[nvert][3],
 &pts[nvert][4],
 &pts[nvert][5]);
 nvert++;
 if (endflag == 1) {
 GPPGD3(0,&pdata,0,1,&nvert,1,6,pts); /* create polygon */
 nvert=0;
 }
} while (endflag != -1);
GPCLST(); /* close structure */

Defining Light Sources
The following two lines of code define the light sources. The two Set Light Source Representation
(GPLSR) subroutines below define one ambient light source and one directional light source.

GPLSR(wsid,1,1,<col,0); /* define light source 1 */
GPLSR(wsid,2,2,<col,ltdir); /* define light source 2 */

Chapter 5. Adding Shading to a Program 17

Setting Viewing Parameters
The only remaining new subroutine is Set Extended View Representation (GPXVR). This subroutine allows
you to set viewing parameters individually and is sometimes used in place of the Set View Mapping 3D
(GPVMP3) subroutine. This program uses GPXVR to activate hidden surface removal for the view
specified by the view identifier viewid.

GPXVR (wsid,viewid,10,&n2); /* activate hidden surface */

Using the Input Loop and Setting a New Model Orientation
The last section of code is essentially the same as that of the using3d program. The only difference is
that the using3d program sets a new view orientation while the shade program sets a new model
orientation. This program sets the new model orientation (transformation matrix) into the open structure
using the Set Modeling Transformation 3D (GPMLX3) subroutine.
--
 do { /* loop until mouse hit */
 GPSMLC(wsid,1,&lcview,lcpos); /* get the mouse position */
 if (lcview == 0 &&
 (lcpos[0] != oldpos[0] ||
 lcpos[1] != oldpos[1]))
 {
 oldpos[0] = lcpos[0];
 oldpos[1] = lcpos[1];
 GPROTX(lcpos[0]*3.14,mata); /* calculate X rot matrix */
 GPROTY(lcpos[1]*3.14,matb); /* calculate Y rot matrix */
 GPCMT3(mata,matb,matc); /* multiply matrices */
 GPOPST(strid); /* open structure for edit */
 GPDELB(1,2); /* delete between labels */
 GPMLX3(matc,3); /* insert new model matrix */
 GPCLST(); /* close structure */
 GPUPWS(wsid,2); /* update workstation */
 }
 GPAWEV(0.0,&major,&class,&minor); /* check for any events */
 } while (class != 4);
--

18 The graPHIGS Programming Interface: Getting Started

Chapter 6. Creating a Very Simple Modeller

This section covers the following topics:

v Writing, Compiling, and Running the model Program″

v Examining the model Program

– Initializing the graPHIGS API

– Using Structure Hierarchy

– Creating Menus and Adding Pick Identifiers

– Picking Menu Items

– Using the Whole Window

– Using the Input Loop

Writing, Compiling, and Running the model Program
The model program allows you to build a 2D model using squares and triangles. Using the menu, you
may add squares and triangles, delete all squares or all triangles, or exit the program.

Like the using3d program, this program requires a graPHIGS API PROFILE.

1. Enter the following program into a file called model.c:

/*
 * COMPONENT_NAME: graPHIGS API Samples
 *
 * ORIGINS: 27
 *
 * (C) COPYRIGHT International Business Machines Corp. 1990
 * All Rights Reserved
 *
 * Licensed Materials - Property of IBM
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
 */
/*--*/
/* graPHIGS Start-Up : a simple modeller */
#include <afmnc.h> /* graPHIGS include file */

main() {
 static float window1[4] = {0.0,70.0,0.0,100.0};
 static float viewpt1[4] = {0.3,1.0,0.0,1.0};
 static float window2[4] = {0.0,9.0,0.0,30.0};
 static float viewpt2[4] = {0.0,0.3,0.0,1.0};
 static float geopts[8] = {0.0,0.0, 5.0,0.0, 5.0,5.0,
0.0,5.0};
 static float boxpts[8] = {0.0,0.0, 9.0,0.0, 9.0,1.0,
0.0,1.0};
 static float boxoff[2] = {0.0,1.0};
 static float txtpos[2] = {4.5,0.5};
 static char *menus[9] = {"Exit",
 "",
 "Remove squares",
 "Add squares",
 "",
 "Remove triangles",
 "Add triangles"};
 float lcpos[2],mat[9],dydx;
 int wsid=1, ssid=1, ncid=1, viewid1=1,viewid2=2;
 int mode=1, topstrid=1, tristrid=2, sqstrid=3, menustrid=4;
 int depth,lcview,i,n,major,class,minor;

© Copyright IBM Corp. 1992, 2002 19

struct {int strid, pkid, elnum;} pickpath;

 GPOPPH (" ",0); /* open graPHIGS */
 GPCNC (ncid,1,0,0); /* connect to graPHIGS nucleus */
 GPCRSS (ssid,ncid,1,0); /* create structure store */
 GPSSS (ssid); /* select structure store */
 GPCRWS (wsid,ncid,1,"*","X ",0); /*create workstation */
 GPASSW (wsid,ssid); /* link structure store to ws */

 n=1;
 GPOPST(topstrid); /* open geometry structure */
 GPEF (2); /* set edge on */
 GPIS (2); /* set interior style solid */
 GPECI (7); /* set edge color WHITE */
 GPICI (2); /* set interior color RED */
 GPEXST(tristrid); /* execute triangle structure */
 GPICI (4); /* set interior color RED */
 GPEXST(sqstrid); /* execute square structure */
 GPCLST(); /* close geometry structure */

 GPTRL2(boxoff,mat); /* calculate translation matrix */
 GPOPST(menustrid); /* open menu structure */
 GPEF (2); GPIS (2); GPECI (7); GPICI (4); /* interior */
 GPTXCI(7); GPTXAL(3,4); GPTXPR(3); GPCHH (0.6);/* edge attr */
 n=1;GPADCN(1,&n); /* add class to set, for picking */
 n=4;
 for (i=0;i<7;i++) {
 GPPKID(i); /* insert pick id */
 GPPG2 (1,&n,2,boxpts);/* insert menu item, polygon */
 GPTX2(txtpos,strlen(menus[i]),menus[i]); /* text */
 GPMLX2(mat,2); /* translate to next menu item */
 }
 GPCLST(); /* close menu structure */

 wholescreen(wsid,&dydx); /* use whole screen, set WSX */
 window1[3] *= dydx; /* change window and viewport defs */
 window2[3] *= dydx; /* to match screen aspect ratio */
 viewpt1[3] *= dydx; */
 viewpt2[3] *= dydx;
 GPARV (wsid,viewid1,topstrid,1.0; /* link root to view */
 GPARV (wsid,viewid2,menustrid,1.0; /* link root to view */
 GPVMP2(wsid,viewid1,window1,viewpt1);/* set view mapping */
 GPVMP2(wsid,viewid2,window2,viewpt2);/* set view mapping */
 GPVCH (wsid,viewid1,2,2,2, 1,0, 2,1, 2);/* activate view */
 GPVCH (wsid,viewid2,2,2,2, 1,0, 1,1, 2);/* activate view */
 GPVIP (wsid,0,viewid1,2); /* set view input priority 0>1 */

 n=1;
 GPPKF (wsid,1,1,&n,0,&n); /* set pick filter, same class */
 GPPKMO(wsid,1,3,2); /* pick: event mode */
 GPLCMO(wsid,1,3,2); /* locator: sample mode */
 GPUPWS(wsid,2); /* update workstation */

 while (mode != 0) { /* loop to look for events */
 GPAWEV(100.0&major,&class,&minor); /* wait for event */
 if (class == 5 & minor == 1) { /* pick event? */
 GPGTPK(1,&depth,&pickpath); /* get pick information */
 if (pickpath.pkid == 6) mode = 1;/* square mode */
 if (pickpath.pkid == 3) mode = 2;/* triangle mode */
 if (pickpath.pkid == 0) mode = 0;/* exit */
 if (pickpath.pkid == 5) GPEST(tristrid); /* erase tris */
 if (pickpath.pkid == 2) GPEST(sqstrid); /* erase squares */
 }
 if (class == 1 & minor == 1) {
 GPGTLC(&lcview,lcpos); /* get mouse position */
 if (lcview == viewid1) { /* open proper structure*/
 if (mode == 1) { GPOPST(tristrid); n=3;}

20 The graPHIGS Programming Interface: Getting Started

if (mode == 2) { GPOPST(sqstrid); n=4;}
 GPTRL2(lcpos,mat); /* calculate translation matrix */
 GPMLX2(mat,3); /* insert model transform */
 GPPG2(1,&n,2,geopts); /* insert square/triangle */
 GPCLIST(); /* close structure */
 }
 }
 GPUPWS(wsid,2); /* update structure */
 }
 GPCLPH(); /* close graPHIGS */
}

wholescreen(WSID,dydx)
 int wsid;
 float *dydx;
{
 float dcsize[3] ;
 int status, units, rsize[3] ;
 static float window[6] = {0.0,1.0,0.0,1.0,0.0,1.0};
 static float viewpt[6] = {0.0,1.0,0.0,1.0,0.0,1.0};

 GPQADS(wsid,&status,&units,dcsize,rsize) ;
 *dydx = window[3] = dcsize[1]/dcsize[0];
 viewpt[1] = dcsize[0];
 viewpt[3] = dcsize[1];
 viewpt[5] = dcsize[2];
 GPWSX3(wsid,window,viewpt) ;
}

2. Compile the program using the following command:
cc -o model model.c -lgP

3. Enter the following into a file called PROFILE:
* graPHIGS Start-Up - PROFILE for model.c sample
*
AFMMDFT DEFNUC=(0,)

4. Run the program by entering:
./model
 A window pops onto the screen. Inside the window is a blue menu on the left, and a blank drawing
area on the right. By clicking button 1 on the mouse while the mouse pointer is inside the drawing
area, you may add triangles and squares to the model. By selecting a menu item, you may change
between square and triangle mode, erase squares and triangles, or exit the program.

Examining the model Program
This section looks at the program in more detail, describing the purpose of various sets of instructions.

Initializing the graPHIGS API
The graPHIGS API has an architecture (high-level design) very similar to that of the X Window System**.
With the X Window System, an application (called a client) is linked to XLIB which can send and receive
the X protocol (data stream) to and from an X server. Analogous to the X concepts of XLIB and an X
server are the graPHIGS API concepts of a shell and nucleus respectively. In the graPHIGS API, any
shell/nucleus combination can communicate in one of the following two ways:

1. The application is linked with the graPHIGS API shell which then communicates with a graPHIGS API
nucleus running as a separate process either on the same node (machine) or on another node but on
the same network. When using this communication method, the nucleus is called a remote nucleus
and can be shared by multiple graPHIGS API applications.

2. The application is linked with the graPHIGS API shell which is linked directly to the graPHIGS API
nucleus so that the application and the graPHIGS API run as a single process. When using this
communication method, the nucleus is called a private nucleus.

Chapter 6. Creating a Very Simple Modeller 21

In order to take advantage of the architecture of the graPHIGS API, the following graPHIGS API
subroutines must be used to initialize the graPHIGS API and create a workstation. (This program uses a
private nucleus.)

GPOPPH (" ",0); /* open graPHIGS */
GPCNC (ncid,1,0,0); /* connect to graPHIGS nucleus */
GPCRSS (ssid,ncid,1,0); /* create structure store */
GPSSS (ssid); /* select structure store */
GPCRWS (wsid, ncid,1,"*","X ",0); /* create workstation */
GPASSW (wsid,ssid); /* link structure store to ws */

Using Structure Hierarchy
Another new concept is the use of structure hierarchy. The following code is used to create the main
geometry structure. Inside this structure, you execute two sub-structures; one to contain the squares, and
one to contain the triangles. The capability to arrange structures into a hierarchy is very useful when you
wish to:

v Separate your data into logical groups (e.g., menus vs. geometry)

v Mimic the hierarchy of a real world object (e.g., links in a robot)

v Instance the same geometry multiple times (e.g., wheels on a car).

GPOPST(topstrid); /* open geometry structure */
GPEF (2); /* set edge on */
GPIS (2); /* set interior style solid */
GPECI (7); /* set edge color WHITE */
GPICI (2); /* set interior color RED */
GPEXST(tristrid); /* execute triangle structure */
GPICI (4); /* set interior color RED */
GPEXST(sqstrid); /* execute square structure */
GPCLST(); /* close geometry structure */

Creating Menus and Adding Pick Identifiers
The next section of code creates a simple graPHIGS API menu. It defines a list of menu items (text with
background 2D polygons) using a separate graPHIGS API stucture. With each menu item, you also add a
pick identifier which is returned by the graPHIGS API whenever the corresponding menu item is picked.
Prior to defining the menu items, the Add Class Name to Set (GPADCN) subroutine must be used to make
the menu items pickable.

GPTRL2(boxoff,mat); /* calculate translation matrix */
GPOPST(menustrid); /* open menu structure */
GPEF (2); GPIS (2); GPECI (7); GPICI (4); /* interior */
GPTXCI(7); GPTXAL(3,4); GPTXPR(3); GPCHH (0.6);/* edge attr */
n=1;GPADCN(1,&n); /* add class to set, for picking */
n=4;
for (i=0;i<7;i++) {
 GPPKID(i); /* insert pick id */
 GPPG2 (1,&n,2,boxpts); /* insert menu item, polygon */
 GPTX2(txtpos,strlen(menus[i]),menus[i]); /* text
*/
 GPMLX2(mat,2); /* translate to next menu item */
}
GPCLST(); /* close menu structure */

Picking Menu Items
In order to be able to pick the menu items just created, you must first activate a pick device by using the
Set Pick Mode (GPPKMO) subroutine. You must also set a pick filter to match the class name added to
the menu structure by using the Set Pick Filter (GPPKF) subroutine.

22 The graPHIGS Programming Interface: Getting Started

n=1;
GPPKF (wsid,1,1,&n,0,;&n); /* set pick filter, same class */
GPPKMO(wsid,1,3,2); /* pick: event mode */
GPLCMO(wsid,1,3,2); /* locator: sample mode */
GPUPWS(wsid,2); /* update workstation */

Using the Whole Window
In the previous programs (square, flex, using3d and shade), only a single view has been used. This
program defines two views; one for the geometry, and one for the menu.

Also, you may have noticed in the previous programs that the X window on the IBM RS/6000 was not
completely used. By default, the graPHIGS API uses a square display surface within a rectangular X
window. This program includes a wholescreen utility function to instruct the graPHIGS API to use the
entire X window. However, the aspect ratio is now no longer guaranteed to be 1:1. In order for geometry to
appear undistorted, you must insure that the aspect ratio for the view’s window and viewport values match
that of the X window. The wholescreen utility function returns the X window aspect ratio which is then
used to modify the view’s window and viewport values.
--
 wholescreen(wsid,&dydx); /* use whole screen, set WSX */
 window1[3] *= dydx; /* change window and viewport defs */
 window2[3] *= dydx; /* to match screen aspect ratio */
 viewpt1[3] *= dydx;
 viewpt2[3] *= dydx;
 GPARV (wsid,viewid1,topstrid,1.0); /* link root to view */
 GPARV (wsid,viewid2,menustrid,1.0); /* link root to view */
 GPVMP2(wsid,viewid1,window1,viewpt1); /* set view mapping */
 GPVMP2(wsid,viewid2,window2,viewpt2); /* set view mapping */
 GPVCH (wsid,viewid1,2,2,2, 1,0, 2,1, 2); /* activate view */
 GPVCH (wsid,viewid2,2,2,2, 1,0, 1,1, 2); /* activate view */
 GPVIP (wsid,0,viewid1,2); /* set view input priority 0>1 */
.
.
.
/* utility to use whole screen */
wholescreen(wsid,dydx)
 int wsid;
 float *dydx;
{
 float dcsize[3] ;
 int status, units, rsize[3] ;
 static float window[6] = {0.0,1.0,0.0,1.0,0.0,1.0};
 static float viewpt[6] = {0.0,1.0,0.0,1.0,0.0,1.0};

 GPQADS(wsid,&status,&units,dcsize,rsize) ;
 *dydx = window[3] = dcsize[1]/dcsize[0];
 viewpt[1] = dcsize[0] ;
 viewpt[3] = dcsize[1] ;
 viewpt[5] = dcsize[2] ;
 GPWSX3(wsid,window,viewpt) ;
}
--

Using the Input Loop
The last section of code contains the input loop. The Await Event (GPAWEV) subroutine instructs the
graPHIGS API to wait for an event to occur (PICK or LOCATOR). If a pick event occurs, the pick
information is retrieved using the Get Pick (GPGTPK) subroutine. The program uses the returned pick
identifier value to determine which menu item was picked and take the appropriate action. If a locator
event occurs, the program adds a square or triangle to the appropriate structure depending on the current
mode.

Chapter 6. Creating a Very Simple Modeller 23

--
 while (mode != 0) { /* loop to look for events */
 GPAWEV(100.0,&major,&class,&minor); /* wait for event */
 if (class == 5 && minor == 1) { /* pick event? */
 GPGTPK(1,&depth,&pickpath); /* get pick information */
 if (pickpath.pkid == 6) mode = 1; /* square mode */
 if (pickpath.pkid == 3) mode = 2; /* triangle mode */
 if (pickpath.pkid == 0) mode = 0; /* exit */
 if (pickpath.pkid == 5) GPEST(tristrid); /* erase tris */
 if (pickpath.pkid == 2) GPEST(sqstrid); /* erase squares */
 }
 if (class == 1 && minor == 1) {
 GPGTLC(&lcview,lcpos); /* get mouse position */
 if (lcview == viewid1) { /* open proper structure*/
 if (mode == 1) { GPOPST(tristrid); n=3;}
 if (mode == 2) { GPOPST(sqstrid); n=4;}
 GPTRL2(lcpos,mat); /* calculate translation matrix */
 GPMLX2(mat,3); /* insert model transform */
 GPPG2(1,&n,2,geopts); /* insert square/triangle */
 GPCLST(); /* close structure */
 }
 }
 GPUPWS(wsid,2); /* update structure */
 }
--

24 The graPHIGS Programming Interface: Getting Started

Chapter 7. Continuing with the graPHIGS API

With five simple sample programs, you have been introduced to many of the fundamental concepts behind
the graPHIGS API. For further information on these graPHIGS API concepts, read the appropriate sections
in the following manuals:

v The graPHIGS Programming Interface: Understanding Concepts

v The graPHIGS Programming Interface: Writing Applications

v The graPHIGS Programming Interface: Technical Reference

v The graPHIGS Programming Interface: Subroutine Reference

v The graPHIGS Programming Interface: Quick Reference

© Copyright IBM Corp. 1992, 2002 25

26 The graPHIGS Programming Interface: Getting Started

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Dept. LRAS/Bldg. 003
11400 Burnet Road
Austin, TX 78758-3498
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

© Copyright IBM Corp. 1992, 2002 27

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:
(c) (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. (c)
Copyright IBM Corp. _enter the year or years_. All rights reserved.

Trademarks
The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

 AIX

 AIXwindows

 IBM

 RS/6000

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be the trademarks or service marks of others.

28 The graPHIGS Programming Interface: Getting Started

Readers’ Comments — We’d Like to Hear from You

The graPHIGS Programming Interface: Getting Started

 Publication No. SC33-8198-00

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

 Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SC33-8198-00

SC33-8198-00

���
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Information Development
Department H6DS-905-6C006
11501 Burnet Road
Austin, TX 78758-3493

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

���

Printed in U.S.A.

SC33-8198-00

	Contents
	About This Book
	Who Should Use This Book
	Highlighting
	ISO 9000
	Related Publications

	Chapter 1. Introduction
	Chapter 2. Creating Your First graPHIGS API Program
	Writing, Compiling, and Running the square Program
	Examining the square Program
	Including the afmnc.h File
	Initializing the graPHIGS API
	Creating a Geometry Structure
	Displaying the Structure
	Exiting the Program

	Chapter 3. Adding Simple Interaction to a Program
	Writing, Compiling, and Running the flex Program
	Examining the flex Program
	Adding Label Elements to the Geometry Structure
	Using an Input Loop

	Chapter 4. Creating Your First 3D graPHIGS API Program
	Writing, Compiling, and Running the using3d Program
	Examining the using3d Program
	Opening and Reading a File
	Creating the Geometry Structure
	Defining a View
	Using the Input Loop and Setting a New View Orientation

	Chapter 5. Adding Shading to a Program
	Writing, Compiling, and Running the shade Program
	Examining the shade Program
	Checking for Shading Support
	Creating the Geometry Structure
	Defining Light Sources
	Setting Viewing Parameters
	Using the Input Loop and Setting a New Model Orientation

	Chapter 6. Creating a Very Simple Modeller
	Writing, Compiling, and Running the model Program
	Examining the model Program
	Initializing the graPHIGS API
	Using Structure Hierarchy
	Creating Menus and Adding Pick Identifiers
	Picking Menu Items
	Using the Whole Window
	Using the Input Loop

	Chapter 7. Continuing with the graPHIGS API
	Appendix. Notices
	Trademarks

	Readers’ Comments — We'd Like to Hear from You

