
AIX

 

5L

 

Version

 

5.2

Performance

 

Tools

 

Guide

 

and

 

Reference

 

SC23-4859-02

  

���





AIX

 

5L

 

Version

 

5.2

Performance

 

Tools

 

Guide

 

and

 

Reference

 

SC23-4859-02

  

���



Note

 

Before

 

using

 

this

 

information

 

and

 

the

 

product

 

it

 

supports,

 

read

 

the

 

information

 

in

 

“Notices,”

 

on

 

page

 

169.

Third

 

Edition

 

(May

 

2004)

 

This

 

edition

 

applies

 

to

 

AIX

 

5L

 

Version

 

5.2

 

and

 

to

 

all

 

subsequent

 

releases

 

of

 

this

 

product

 

until

 

otherwise

 

indicated

 

in

 

new

 

editions.

 

A

 

reader’s

 

comment

 

form

 

is

 

provided

 

at

 

the

 

back

 

of

 

this

 

publication.

 

If

 

the

 

form

 

has

 

been

 

removed,

 

address

 

comments

 

to

 

Information

 

Development,

 

Department

 

H6DS-905-6C006,

 

11501

 

Burnet

 

Road,

 

Austin,

 

Texas

 

78758-3493.

 

To

 

send

 

comments

 

electronically,

 

use

 

this

 

commercial

 

Internet

 

address:

 

aix6kpub@austin.ibm.com.

 

Any

 

information

 

that

 

you

 

supply

 

may

 

be

 

used

 

without

 

incurring

 

any

 

obligation

 

to

 

you.

 

(c)

 

Copyright

 

AT&T,

 

1984,

 

1985,

 

1986,

 

1987,

 

1988,

 

1989.

 

All

 

rights

 

reserved.

 

This

 

software

 

and

 

documentation

 

is

 

based

 

in

 

part

 

on

 

the

 

Fourth

 

Berkeley

 

Software

 

Distribution

 

under

 

license

 

from

 

The

 

Regents

 

of

 

the

 

University

 

of

 

California.

 

We

 

acknowledge

 

the

 

following

 

institutions

 

for

 

their

 

role

 

in

 

its

 

development:

 

the

 

Electrical

 

Engineering

 

and

 

Computer

 

Sciences

 

Department

 

at

 

the

 

Berkeley

 

Campus.
The

 

Rand

 

MH

 

Message

 

Handling

 

System

 

was

 

developed

 

by

 

the

 

Rand

 

Corporation

 

and

 

the

 

University

 

of

 

California.
Portions

 

of

 

the

 

code

 

and

 

documentation

 

described

 

in

 

this

 

book

 

were

 

derived

 

from

 

code

 

and

 

documentation

 

developed

 

under

 

the

 

auspices

 

of

 

the

 

Regents

 

of

 

the

 

University

 

of

 

California

 

and

 

have

 

been

 

acquired

 

and

 

modified

 

under

 

the

 

provisions

 

that

 

the

 

following

 

copyright

 

notice

 

and

 

permission

 

notice

 

appear:
Copyright

 

Regents

 

of

 

the

 

University

 

of

 

California,

 

1986,

 

1987,

 

1988,

 

1989.

 

All

 

rights

 

reserved.
Redistribution

 

and

 

use

 

in

 

source

 

and

 

binary

 

forms

 

are

 

permitted

 

provided

 

that

 

this

 

notice

 

is

 

preserved

 

and

 

that

 

due

 

credit

 

is

 

given

 

to

 

the

 

University

 

of

 

California

 

at

 

Berkeley.

 

The

 

name

 

of

 

the

 

University

 

may

 

not

 

be

 

used

 

to

 

endorse

 

or

 

promote

 

products

 

derived

 

from

 

this

 

software

 

without

 

specific

 

prior

 

written

 

permission.

 

This

 

software

 

is

 

provided

 

"as

 

is"

 

without

 

express

 

or

 

implied

 

warranty.

 

©

 

Copyright

 

International

 

Business

 

Machines

 

Corporation

 

2002,

 

2004.

 

All

 

rights

 

reserved.

 

US

 

Government

 

Users

 

Restricted

 

Rights

 

–

 

Use,

 

duplication

 

or

 

disclosure

 

restricted

 

by

 

GSA

 

ADP

 

Schedule

 

Contract

 

with

 

IBM

 

Corp.

 



Contents

 

About

 

This

 

Book

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. v

 

Who

 

Should

 

Use

 

This

 

Book

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. v

 

Highlighting

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. v

 

Case-Sensitivity

 

in

 

AIX

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. v

 

ISO

 

9000

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. v

 

Related

 

Publications

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. v

 

Chapter

 

1.

 

Introduction

 

to

 

Performance

 

Tools

 

and

 

APIs

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 1

 

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 3

 

Before

 

You

 

Begin

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 3

 

Xprofiler

 

Installation

 

Information

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 4

 

Starting

 

the

 

Xprofiler

 

GUI

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 6

 

Understanding

 

the

 

Xprofiler

 

Display

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 20

 

Controlling

 

how

 

the

 

Display

 

is

 

Updated

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 25

 

Other

 

Viewing

 

Options

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 25

 

Filtering

 

what

 

You

 

See

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 27

 

Clustering

 

Libraries

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 32

 

Locating

 

Specific

 

Objects

 

in

 

the

 

Function

 

Call

 

Tree

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 35

 

Obtaining

 

Performance

 

Data

 

for

 

Your

 

Application

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 37

 

Saving

 

Screen

 

Images

 

of

 

Profiled

 

Data

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 54

 

Customizing

 

Xprofiler

 

Resources

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 56

 

Chapter

 

3.

 

CPU

 

Utilization

 

Reporting

 

Tool

 

(curt)

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 63

 

Syntax

 

for

 

the

 

curt

 

Command

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 63

 

Measurement

 

and

 

Sampling

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 63

 

Examples

 

of

 

the

 

curt

 

command

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 64

 

Chapter

 

4.

 

Simple

 

Performance

 

Lock

 

Analysis

 

Tool

 

(splat)

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 91

 

splat

 

Command

 

Syntax

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 91

 

Measurement

 

and

 

Sampling

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 92

 

Examples

 

of

 

Generated

 

Reports

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 94

 

Chapter

 

5.

 

Performance

 

Monitor

 

API

 

Programming

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 109

 

Performance

 

Monitor

 

Accuracy

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 109

 

Performance

 

Monitor

 

Context

 

and

 

State

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 110

 

Thread

 

Accumulation

 

and

 

Thread

 

Group

 

Accumulation

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 110

 

Security

 

Considerations

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 111

 

Common

 

Rules

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 111

 

The

 

pm_init

 

API

 

Initialization

 

Routine

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 112

 

The

 

pm_initialize

 

API

 

Initialize

 

Routine

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 112

 

Eight

 

Basic

 

API

 

Calls

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 113

 

Thread

 

Counting-Group

 

Information

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 114

 

Examples

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 114

 

Chapter

 

6.

 

Perfstat

 

API

 

Programming

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 119

 

API

 

Characteristics

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 119

 

Global

 

Interfaces

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 119

 

Component-Specific

 

Interfaces

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 125

 

Change

 

History

 

of

 

the

 

perfstat

 

API

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 139

 

Related

 

Information

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 141

 

Chapter

 

7.

 

Kernel

 

Tuning

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 143

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

iii



Migration

 

and

 

Compatibility

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 143

 

Tunables

 

File

 

Directory

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 144

 

Tunable

 

Parameters

 

Type

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 145

 

Common

 

Syntax

 

for

 

Tuning

 

Commands

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 145

 

Tunable

 

File-Manipulation

 

Commands

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 147

 

Initial

 

setup

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 150

 

Reboot

 

Tuning

 

Procedure

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 151

 

Recovery

 

Procedure

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 151

 

Kernel

 

Tuning

 

Using

 

the

 

SMIT

 

Interface

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 151

 

Kernel

 

Tuning

 

using

 

the

 

Performance

 

Plug-In

 

for

 

Web-based

 

System

 

Manager

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 157

 

Files

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 167

 

Related

 

Information

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 167

 

Appendix.

 

Notices

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 169

 

Trademarks

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 170

 

Index

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 171

  

iv

 

Performance

 

Tools

 

Guide

 

and

 

Reference



About

 

This

 

Book

 

This

 

book

 

provides

 

information

 

on

 

performance

 

tools

 

and

 

application

 

programming

 

interfaces

 

(APIs)

 

for

 

the

 

AIX

 

operating

 

system.

 

The

 

information

 

contained

 

in

 

this

 

book

 

pertains

 

to

 

systems

 

running

 

AIX

 

5.2

 

or

 

later.

 

Any

 

content

 

that

 

is

 

applicable

 

to

 

earlier

 

releases

 

will

 

be

 

noted

 

as

 

such.

 

This

 

edition

 

supports

 

the

 

release

 

of

 

AIX

 

5L

 

Version

 

5.2

 

with

 

the

 

5200-03

 

Recommended

 

Maintenance

 

package.

 

Any

 

specific

 

references

 

to

 

this

 

maintenance

 

package

 

are

 

indicated

 

as

 

AIX

 

5.2

 

with

 

5200-03.

 

Who

 

Should

 

Use

 

This

 

Book

 

This

 

book

 

is

 

intended

 

for

 

network

 

administrators,

 

system

 

administrators,

 

experienced

 

system

 

administrators,

 

system

 

engineers,

 

and

 

application

 

programmers

 

who

 

are

 

concerned

 

with

 

the

 

performance

 

of

 

their

 

system

 

and

 

the

 

applications

 

running

 

on

 

that

 

system.

 

Highlighting

 

The

 

following

 

highlighting

 

conventions

 

are

 

used

 

in

 

this

 

book:

  

Bold

 

Identifies

 

commands,

 

subroutines,

 

keywords,

 

files,

 

structures,

 

directories,

 

and

 

other

 

items

 

whose

 

names

 

are

 

predefined

 

by

 

the

 

system.

 

Also

 

identifies

 

graphical

 

objects

 

such

 

as

 

buttons,

 

labels,

 

and

 

icons

 

that

 

the

 

user

 

selects.

 

Italics

 

Identifies

 

parameters

 

whose

 

actual

 

names

 

or

 

values

 

are

 

to

 

be

 

supplied

 

by

 

the

 

user.

 

Monospace

 

Identifies

 

examples

 

of

 

specific

 

data

 

values,

 

examples

 

of

 

text

 

similar

 

to

 

what

 

you

 

might

 

see

 

displayed,

 

examples

 

of

 

portions

 

of

 

program

 

code

 

similar

 

to

 

what

 

you

 

might

 

write

 

as

 

a

 

programmer,

 

messages

 

from

 

the

 

system,

 

or

 

information

 

you

 

should

 

actually

 

type.

   

Case-Sensitivity

 

in

 

AIX

 

Everything

 

in

 

the

 

AIX

 

operating

 

system

 

is

 

case-sensitive,

 

which

 

means

 

that

 

it

 

distinguishes

 

between

 

uppercase

 

and

 

lowercase

 

letters.

 

For

 

example,

 

you

 

can

 

use

 

the

 

ls

 

command

 

to

 

list

 

files.

 

If

 

you

 

type

 

LS,

 

the

 

system

 

responds

 

that

 

the

 

command

 

is

 

″not

 

found.″

 

Likewise,

 

FILEA,

 

FiLea,

 

and

 

filea

 

are

 

three

 

distinct

 

file

 

names,

 

even

 

if

 

they

 

reside

 

in

 

the

 

same

 

directory.

 

To

 

avoid

 

causing

 

undesirable

 

actions

 

to

 

be

 

performed,

 

always

 

ensure

 

that

 

you

 

use

 

the

 

correct

 

case.

 

ISO

 

9000

 

ISO

 

9000

 

registered

 

quality

 

systems

 

were

 

used

 

in

 

the

 

development

 

and

 

manufacturing

 

of

 

this

 

product.

 

Related

 

Publications

 

The

 

following

 

books

 

contain

 

information

 

about

 

or

 

related

 

to

 

performance

 

monitoring:

 

AIX

 

5L

 

Version

 

5.2

 

Performance

 

Management

 

Guide

 

Performance

 

Toolbox

 

Version

 

2

 

and

 

3

 

for

 

AIX:

 

Guide

 

and

 

Reference

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

v



vi

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Chapter

 

1.

 

Introduction

 

to

 

Performance

 

Tools

 

and

 

APIs

 

The

 

performance

 

of

 

a

 

computer

 

system

 

is

 

based

 

on

 

human

 

expectations

 

and

 

the

 

ability

 

of

 

the

 

computer

 

system

 

to

 

fulfill

 

these

 

expectations.

 

The

 

objective

 

for

 

performance

 

tuning

 

is

 

to

 

make

 

those

 

expectations

 

and

 

their

 

fulfillment

 

match.

 

The

 

path

 

to

 

achieving

 

this

 

objective

 

is

 

a

 

balance

 

between

 

appropriate

 

expectations

 

and

 

optimizing

 

the

 

available

 

system

 

resources.

 

The

 

performance-tuning

 

process

 

demands

 

great

 

skill,

 

knowledge,

 

and

 

experience,

 

and

 

cannot

 

be

 

performed

 

by

 

only

 

analyzing

 

statistics,

 

graphs,

 

and

 

figures.

 

If

 

results

 

are

 

to

 

be

 

achieved,

 

the

 

human

 

aspect

 

of

 

perceived

 

performance

 

must

 

not

 

be

 

neglected.

 

Performance

 

tuning

 

also

 

takes

 

into

 

consideration

 

problem-determination

 

aspects

 

as

 

well

 

as

 

pure

 

performance

 

issues.

 

Expectations

 

can

 

often

 

be

 

classified

 

as

 

either

 

of

 

the

 

following:

  

Throughput

 

expectations

 

A

 

measure

 

of

 

the

 

amount

 

of

 

work

 

performed

 

over

 

a

 

period

 

of

 

time

 

Response

 

time

 

expectations

 

The

 

elapsed

 

time

 

between

 

when

 

a

 

request

 

is

 

submitted

 

and

 

when

 

the

 

response

 

from

 

that

 

request

 

is

 

returned

   

The

 

performance-tuning

 

process

 

can

 

be

 

initiated

 

for

 

a

 

number

 

of

 

reasons:

 

v

   

To

 

achieve

 

optimal

 

performance

 

in

 

a

 

newly

 

installed

 

system

 

v

   

To

 

resolve

 

performance

 

problems

 

resulting

 

from

 

the

 

design

 

(sizing)

 

phase

 

v

   

To

 

resolve

 

performance

 

problems

 

occurring

 

in

 

the

 

run-time

 

(production)

 

phase

Performance

 

tuning

 

on

 

a

 

newly

 

installed

 

system

 

usually

 

involves

 

setting

 

some

 

base

 

parameters

 

for

 

the

 

operating

 

system

 

and

 

applications.

 

Throughout

 

this

 

book,

 

there

 

are

 

sections

 

that

 

describe

 

the

 

characteristics

 

of

 

different

 

system

 

resources

 

and

 

provide

 

guidelines

 

regarding

 

their

 

base

 

tuning

 

parameters,

 

if

 

applicable.

 

Limitations

 

originating

 

from

 

the

 

sizing

 

phase

 

will

 

either

 

limit

 

the

 

possibility

 

of

 

tuning,

 

or

 

incur

 

greater

 

cost

 

to

 

overcome

 

them.

 

The

 

system

 

may

 

not

 

meet

 

the

 

original

 

performance

 

expectations

 

because

 

of

 

unrealistic

 

expectations,

 

physical

 

problems

 

in

 

the

 

computer

 

environment,

 

or

 

human

 

error

 

in

 

the

 

design

 

or

 

implementation

 

of

 

the

 

system.

 

In

 

the

 

worst

 

case,

 

adding

 

or

 

replacing

 

hardware

 

might

 

be

 

necessary.

 

Be

 

particularly

 

careful

 

when

 

sizing

 

a

 

system

 

to

 

allow

 

enough

 

capacity

 

for

 

unexpected

 

system

 

loads.

 

In

 

other

 

words,

 

do

 

not

 

design

 

the

 

system

 

to

 

be

 

100

 

percent

 

busy

 

from

 

the

 

start

 

of

 

the

 

project.

 

When

 

a

 

system

 

in

 

a

 

productive

 

environment

 

still

 

meets

 

the

 

performance

 

expectations

 

for

 

which

 

it

 

was

 

initially

 

designed,

 

but

 

the

 

demands

 

and

 

needs

 

of

 

the

 

utilizing

 

organization

 

have

 

outgrown

 

the

 

system’s

 

basic

 

capacity,

 

performance

 

tuning

 

is

 

performed

 

to

 

delay

 

or

 

even

 

to

 

avoid

 

the

 

cost

 

of

 

adding

 

or

 

replacing

 

hardware.

 

Many

 

performance-related

 

issues

 

can

 

be

 

traced

 

back

 

to

 

operations

 

performed

 

by

 

a

 

person

 

with

 

limited

 

experience

 

and

 

knowledge

 

who

 

unintentionally

 

restricted

 

some

 

vital

 

logical

 

or

 

physical

 

resource

 

of

 

the

 

system.

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

1



2

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

The

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

tool

 

helps

 

you

 

analyze

 

your

 

parallel

 

or

 

serial

 

application’s

 

performance.

 

It

 

uses

 

procedure-profiling

 

information

 

to

 

construct

 

a

 

graphical

 

display

 

of

 

the

 

functions

 

within

 

your

 

application.

 

Xprofiler

 

provides

 

quick

 

access

 

to

 

the

 

profiled

 

data,

 

which

 

lets

 

you

 

identify

 

the

 

functions

 

that

 

are

 

the

 

most

 

CPU-intensive.

 

The

 

graphical

 

user

 

interface

 

(GUI)

 

also

 

lets

 

you

 

manipulate

 

the

 

display

 

in

 

order

 

to

 

focus

 

on

 

the

 

application’s

 

critical

 

areas.

 

The

 

following

 

Xprofiler

 

topics

 

are

 

covered

 

in

 

this

 

chapter:

 

v

   

Before

 

You

 

Begin

 

v

   

Xprofiler

 

installation

 

information

 

v

   

Starting

 

the

 

Xprofiler

 

GUI

 

v

   

Customizing

 

Xprofiler

 

resources

The

 

word

 

function

 

is

 

used

 

frequently

 

throughout

 

this

 

chapter.

 

Consider

 

it

 

to

 

be

 

synonymous

 

with

 

the

 

terms

 

routine,

 

subroutine,

 

and

 

procedure.

 

Before

 

You

 

Begin

 

About

 

Xprofiler

 

Xprofiler

 

lets

 

you

 

profile

 

both

 

serial

 

and

 

parallel

 

applications.

 

Serial

 

applications

 

generate

 

a

 

single

 

profile

 

data

 

file,

 

while

 

a

 

parallel

 

application

 

produces

 

multiple

 

profile

 

data

 

files.

 

You

 

can

 

use

 

Xprofiler

 

to

 

analyze

 

the

 

resulting

 

profiling

 

information.

 

Xprofiler

 

provides

 

a

 

set

 

of

 

resource

 

variables

 

that

 

let

 

you

 

customize

 

some

 

of

 

the

 

features

 

of

 

the

 

Xprofiler

 

window

 

and

 

reports.

 

Requirements

 

and

 

Limitations

 

To

 

use

 

Xprofiler,

 

your

 

application

 

must

 

be

 

compiled

 

with

 

the

 

-pg

 

flag.

 

For

 

more

 

information,

 

see

 

“Compiling

 

Applications

 

to

 

be

 

Profiled”

 

on

 

page

 

4.

 

Like

 

the

 

gprof

 

command,

 

Xprofiler

 

lets

 

you

 

analyze

 

CPU

 

(busy)

 

usage

 

only.

 

It

 

does

 

not

 

provide

 

other

 

kinds

 

of

 

information,

 

such

 

as

 

CPU

 

idle,

 

I/O,

 

or

 

communication

 

information.

 

If

 

you

 

compile

 

your

 

application

 

on

 

one

 

processor,

 

and

 

then

 

analyze

 

it

 

on

 

another,

 

you

 

must

 

first

 

make

 

sure

 

that

 

both

 

processors

 

have

 

similar

 

library

 

configurations,

 

at

 

least

 

for

 

the

 

system

 

libraries

 

used

 

by

 

the

 

application.

 

For

 

example,

 

if

 

you

 

run

 

a

 

High

 

Performance

 

Fortran

 

application

 

on

 

a

 

server,

 

then

 

try

 

to

 

analyze

 

the

 

profiled

 

data

 

on

 

a

 

workstation,

 

the

 

levels

 

of

 

High

 

Performance

 

Fortran

 

run-time

 

libraries

 

must

 

match

 

and

 

must

 

be

 

placed

 

in

 

a

 

location

 

on

 

the

 

workstation

 

that

 

Xprofiler

 

recognizes.

 

Otherwise,

 

Xprofiler

 

produces

 

unpredictable

 

results.

 

Because

 

Xprofiler

 

collects

 

data

 

by

 

sampling,

 

functions

 

that

 

run

 

for

 

a

 

short

 

amount

 

of

 

time

 

may

 

not

 

show

 

any

 

CPU

 

use.

 

Xprofiler

 

does

 

not

 

give

 

you

 

information

 

about

 

the

 

specific

 

threads

 

in

 

a

 

multi-threaded

 

program.

 

Xprofiler

 

presents

 

the

 

data

 

as

 

a

 

summary

 

of

 

the

 

activities

 

of

 

all

 

the

 

threads.

 

Comparing

 

Xprofiler

 

and

 

the

 

gprof

 

Command

 

With

 

Xprofiler,

 

you

 

can

 

produce

 

the

 

same

 

tabular

 

reports

 

that

 

you

 

may

 

be

 

accustomed

 

to

 

seeing

 

with

 

the

 

gprof

 

command.

 

As

 

with

 

gprof,

 

you

 

can

 

generate

 

the

 

Flat

 

Profile,

 

Call

 

Graph

 

Profile,

 

and

 

Function

 

Index

 

reports.

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

3



Unlike

 

gprof,

 

Xprofiler

 

provides

 

a

 

GUI

 

that

 

you

 

can

 

use

 

to

 

profile

 

your

 

application.

 

Xprofiler

 

generates

 

a

 

graphical

 

display

 

of

 

your

 

application’s

 

performance,

 

as

 

opposed

 

to

 

a

 

text-based

 

report.

 

Xprofiler

 

also

 

lets

 

you

 

profile

 

your

 

application

 

at

 

the

 

source

 

statement

 

level.

 

From

 

the

 

Xprofiler

 

GUI,

 

you

 

can

 

use

 

all

 

of

 

the

 

same

 

command

 

line

 

flags

 

as

 

gprof,

 

as

 

well

 

as

 

some

 

additional

 

flags

 

that

 

are

 

unique

 

to

 

Xprofiler.

 

Compiling

 

Applications

 

to

 

be

 

Profiled

 

To

 

use

 

Xprofiler,

 

you

 

must

 

compile

 

and

 

link

 

your

 

application

 

with

 

the

 

-pg

 

flag

 

of

 

the

 

compiler

 

command.

 

This

 

applies

 

regardless

 

of

 

whether

 

you

 

are

 

compiling

 

a

 

serial

 

or

 

parallel

 

application.

 

You

 

can

 

compile

 

and

 

link

 

your

 

application

 

all

 

at

 

once,

 

or

 

perform

 

the

 

compile

 

and

 

link

 

operations

 

separately.

 

The

 

following

 

is

 

an

 

example

 

of

 

how

 

you

 

would

 

compile

 

and

 

link

 

all

 

at

 

once:

 

cc

 

-pg

 

-o

 

foo

 

foo.c

 

The

 

following

 

is

 

an

 

example

 

of

 

how

 

you

 

would

 

first

 

compile

 

your

 

application

 

and

 

then

 

link

 

it.

 

To

 

compile,

 

do

 

the

 

following:

 

cc

 

-pg

 

-c

 

foo.c

 

To

 

link,

 

do

 

the

 

following:

 

cc

 

-pg

 

-o

 

foo

 

foo.o

 

Notice

 

that

 

when

 

you

 

compile

 

and

 

link

 

separately,

 

you

 

must

 

use

 

the

 

-pg

 

flag

 

with

 

both

 

the

 

compile

 

and

 

link

 

commands.

 

The

 

-pg

 

flag

 

compiles

 

and

 

links

 

the

 

application

 

so

 

that

 

when

 

you

 

run

 

it,

 

the

 

CPU

 

usage

 

data

 

is

 

written

 

to

 

one

 

or

 

more

 

output

 

files.

 

For

 

a

 

serial

 

application,

 

this

 

output

 

consists

 

of

 

only

 

one

 

file

 

called

 

gmon.out,

 

by

 

default.

 

For

 

parallel

 

applications,

 

the

 

output

 

is

 

written

 

into

 

multiple

 

files,

 

one

 

for

 

each

 

task

 

that

 

is

 

running

 

in

 

the

 

application.

 

To

 

prevent

 

each

 

output

 

file

 

from

 

overwriting

 

the

 

others,

 

the

 

task

 

ID

 

is

 

appended

 

to

 

each

 

gmon.out

 

file

 

(for

 

example:

 

gmon.out.10).

Note:

  

The

 

-pg

 

flag

 

is

 

not

 

a

 

combination

 

of

 

the

 

-p

 

and

 

the

 

-g

 

compiling

 

flags.

 

To

 

get

 

a

 

complete

 

picture

 

of

 

your

 

parallel

 

application’s

 

performance,

 

you

 

must

 

indicate

 

all

 

of

 

its

 

gmon.out

 

files

 

when

 

you

 

load

 

the

 

application

 

into

 

Xprofiler.

 

When

 

you

 

specify

 

more

 

than

 

one

 

gmon.out

 

file,

 

Xprofiler

 

shows

 

you

 

the

 

sum

 

of

 

the

 

profile

 

information

 

contained

 

in

 

each

 

file.

 

The

 

Xprofiler

 

GUI

 

lets

 

you

 

view

 

included

 

functions.

 

Your

 

application

 

must

 

also

 

be

 

compiled

 

with

 

the

 

-g

 

flag

 

in

 

order

 

for

 

Xprofiler

 

to

 

display

 

the

 

included

 

functions.

 

In

 

addition

 

to

 

the

 

-pg

 

flag,

 

the

 

-g

 

flag

 

is

 

also

 

required

 

for

 

source-statement

 

profiling.

 

Xprofiler

 

Installation

 

Information

 

This

 

section

 

contains

 

Xprofiler

 

system

 

requirements,

 

limitations,

 

and

 

information

 

about

 

installing

 

Xprofiler.

 

It

 

also

 

lists

 

the

 

files

 

and

 

directories

 

that

 

are

 

created

 

by

 

installing

 

Xprofiler.

 

Preinstallation

 

Information

 

The

 

following

 

are

 

hardware

 

and

 

software

 

requirements

 

for

 

Xprofiler:

 

Software

 

requirements:

 

v

   

X-Windows

 

v

   

X11.Dt.lib

 

4.2.1.0

 

or

 

later,

 

if

 

you

 

want

 

to

 

run

 

Xprofiler

 

in

 

the

 

Common

 

Desktop

 

Environment

 

(CDE)

Disk

 

space

 

requirements:

   

4

 

Performance

 

Tools

 

Guide

 

and

 

Reference



v

   

6500

 

512-byte

 

blocks

 

in

 

the

 

/usr

 

directory

Limitations

 

Although

 

it

 

is

 

not

 

required

 

to

 

install

 

Xprofiler

 

on

 

every

 

node,

 

it

 

is

 

advisable

 

to

 

install

 

it

 

on

 

at

 

least

 

one

 

node

 

in

 

each

 

group

 

of

 

nodes

 

that

 

have

 

the

 

same

 

software

 

library

 

levels.

 

If

 

users

 

plan

 

to

 

collect

 

a

 

gmon.out

 

file

 

on

 

one

 

processor

 

and

 

then

 

use

 

Xprofiler

 

to

 

analyze

 

the

 

data

 

on

 

another

 

processor,

 

they

 

should

 

be

 

aware

 

that

 

some

 

shared

 

(system)

 

libraries

 

may

 

not

 

be

 

the

 

same

 

on

 

the

 

two

 

processors.

 

This

 

situation

 

may

 

result

 

in

 

different

 

function-call

 

tree

 

displays

 

for

 

shared

 

libraries.

 

Installing

 

Xprofiler

 

There

 

are

 

two

 

methods

 

to

 

install

 

Xprofiler.

 

One

 

method

 

is

 

by

 

using

 

the

 

installp

 

command.

 

The

 

other

 

is

 

by

 

using

 

SMIT.

 

Using

 

the

 

installp

 

Command

 

To

 

install

 

Xprofiler,

 

type:

 

installp

 

-a

 

-I

 

-X

 

-d

 

device_name

 

xprofiler

 

Using

 

SMIT

 

To

 

install

 

Xprofiler

 

using

 

SMIT,

 

do

 

the

 

following:

 

1.

   

Insert

 

the

 

distribution

 

media

 

in

 

the

 

installation

 

device

 

(unless

 

you

 

are

 

installing

 

over

 

a

 

network).

 

2.

   

Enter

 

the

 

following:

 

smit

 

install_latest

 

This

 

command

 

opens

 

the

 

SMIT

 

panel

 

for

 

installing

 

software.

 

3.

   

Press

 

List.

 

A

 

panel

 

lists

 

the

 

available

 

INPUT

 

devices

 

and

 

directories

 

for

 

software.

 

4.

   

Select

 

the

 

installation

 

device

 

or

 

directory

 

from

 

the

 

list

 

of

 

available

 

INPUT

 

devices.

 

The

 

original

 

SMIT

 

panel

 

indicates

 

your

 

selection.

 

5.

   

Press

 

Do.

 

The

 

SMIT

 

panel

 

displays

 

the

 

default

 

installation

 

parameters.

 

6.

   

Type:

 

xprofiler

 

in

 

the

 

SOFTWARE

 

to

 

install

 

field

 

and

 

press

 

Enter.

 

7.

   

Once

 

the

 

installation

 

is

 

complete,

 

press

 

F10

 

to

 

exit

 

SMIT.

Directories

 

and

 

Files

 

Created

 

by

 

Xprofiler

 

Installing

 

Xprofiler

 

creates

 

the

 

directories

 

and

 

files

 

shown

 

in

 

the

 

following

 

table:

  

Table

 

1.

 

Xprofiler

 

directories

 

and

 

files

 

installed

 

Directory

 

or

 

file

 

Description

 

/usr/lib/nls/msg/En_US/xprofiler.cat

 

/usr/lib/nls/msg/en_US/xprofiler.cat

 

/usr/lib/nls/msg/C/xprofiler.cat

 

Message

 

catalog

 

for

 

Xprofiler

 

/usr/xprofiler/defaults/Xprofiler.ad

 

Defaults

 

file

 

for

 

X-Windows

 

and

 

Motif

 

resource

 

variables

 

/usr/xprofiler/bin/.startup_script

 

Startup

 

script

 

for

 

Xprofiler

 

/usr/xprofiler/bin/xprofiler

 

Xprofiler

 

exec

 

file

   

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

5



Table

 

1.

 

Xprofiler

 

directories

 

and

 

files

 

installed

 

(continued)

 

Directory

 

or

 

file

 

Description

 

/usr/xprofiler/help/en_US/xprofiler.sdl

 

/usr/xprofiler/help/en_US/xprofiler_msg.sdl

 

/usr/xprofiler/help/en_US/graphics

 

Online

 

help

 

/usr/xprofiler/READMES/xprofiler.README

 

Installation

 

readme

 

file

 

/usr/xprofiler/samples

 

Directory

 

containing

 

sample

 

programs

   

The

 

following

 

symbolic

 

link

 

is

 

made

 

during

 

the

 

installation

 

process

 

of

 

Xprofiler:

  

This

 

link:

 

To:

 

/usr/lpp/X11/lib/X11/app-defaults/Xprofiler

 

/usr/xprofiler/defaults/Xprofiler.ad

 

/usr/bin/xprofiler

 

/usr/xprofiler/bin.startup_script

   

Starting

 

the

 

Xprofiler

 

GUI

 

To

 

start

 

Xprofiler,

 

enter

 

the

 

xprofiler

 

command

 

on

 

the

 

command

 

line.

 

You

 

must

 

also

 

specify

 

the

 

binary

 

executable

 

file,

 

one

 

or

 

more

 

profile

 

data

 

files,

 

and

 

optionally,

 

one

 

or

 

more

 

flags,

 

which

 

you

 

can

 

do

 

in

 

one

 

of

 

two

 

ways.

 

You

 

can

 

either

 

specify

 

the

 

files

 

and

 

flags

 

on

 

the

 

command

 

line

 

along

 

with

 

the

 

xprofiler

 

command,

 

or

 

you

 

can

 

enter

 

the

 

xprofiler

 

command

 

alone,

 

then

 

specify

 

the

 

files

 

and

 

flags

 

from

 

within

 

the

 

GUI.

 

You

 

will

 

have

 

more

 

than

 

one

 

gmon.out

 

file

 

if

 

you

 

are

 

profiling

 

a

 

parallel

 

application,

 

because

 

a

 

gmon.out

 

file

 

is

 

created

 

for

 

each

 

task

 

in

 

the

 

application

 

when

 

it

 

is

 

run.

 

If

 

you

 

are

 

running

 

a

 

serial

 

application,

 

there

 

may

 

be

 

times

 

when

 

you

 

want

 

to

 

summarize

 

the

 

profiling

 

results

 

from

 

multiple

 

runs

 

of

 

the

 

application.

 

In

 

these

 

cases,

 

you

 

must

 

specify

 

each

 

of

 

the

 

profile

 

data

 

files

 

you

 

want

 

to

 

profile

 

with

 

Xprofiler.

 

To

 

start

 

Xprofiler

 

and

 

specify

 

the

 

binary

 

executable

 

file,

 

one

 

or

 

more

 

profile

 

data

 

files,

 

and

 

one

 

or

 

more

 

flags,

 

type:

 

xprofiler

 

a.out

 

gmon.out...

 

[flag...]

 

where:

 

a.out

 

is

 

the

 

binary

 

executable

 

file,

 

gmon.out...

 

is

 

the

 

name

 

of

 

your

 

profile

 

data

 

file

 

(or

 

files),

 

and

 

flag...

 

is

 

one

 

or

 

more

 

of

 

the

 

flags

 

listed

 

in

 

the

 

following

 

section

 

on

 

Xprofiler

 

command-line

 

flags.

 

Xprofiler

 

Command-line

 

Flags

 

You

 

can

 

specify

 

the

 

same

 

command-line

 

flags

 

with

 

the

 

xprofiler

 

command

 

that

 

you

 

do

 

with

 

gprof,

 

as

 

well

 

as

 

one

 

additional

 

flag

 

(-disp_max),

 

which

 

is

 

specific

 

to

 

Xprofiler.

 

The

 

command-line

 

flags

 

let

 

you

 

control

 

the

 

way

 

Xprofiler

 

displays

 

the

 

profiled

 

output.

 

You

 

can

 

specify

 

the

 

flags

 

in

 

Table

 

2

 

from

 

the

 

command

 

line

 

or

 

from

 

the

 

Xprofiler

 

GUI

 

(see

 

“Specifying

 

Command

 

Line

 

Options

 

(from

 

the

 

GUI)”

 

on

 

page

 

14

 

for

 

more

 

information).

  

Table

 

2.

 

Xprofiler

 

command-line

 

flags

 

Use

 

this

 

flag:

 

To:

 

For

 

example:

 

-a

 

Add

 

alternative

 

paths

 

to

 

search

 

for

 

source

 

code

 

and

 

library

 

files,

 

or

 

changes

 

the

 

current

 

path

 

search

 

order.

 

When

 

using

 

this

 

flag,

 

you

 

can

 

use

 

the

 

″at″

 

symbol

 

(@)

 

to

 

represent

 

the

 

default

 

file

 

path,

 

in

 

order

 

to

 

specify

 

that

 

other

 

paths

 

be

 

searched

 

before

 

the

 

default

 

path.

 

To

 

set

 

an

 

alternative

 

file

 

search

 

path

 

so

 

that

 

Xprofiler

 

searches

 

pathA,

 

the

 

default

 

path,

 

then

 

pathB,

 

type:

 

xprofiler

 

-a

 

pathA:@:pathB

   

6

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Table

 

2.

 

Xprofiler

 

command-line

 

flags

 

(continued)

 

Use

 

this

 

flag:

 

To:

 

For

 

example:

 

-b

 

Suppress

 

the

 

printing

 

of

 

the

 

field

 

descriptions

 

for

 

the

 

Flat

 

Profile,

 

Call

 

Graph

 

Profile,

 

and

 

Function

 

Index

 

reports

 

when

 

they

 

are

 

written

 

to

 

a

 

file

 

with

 

the

 

Save

 

As

 

option

 

of

 

the

 

File

 

menu.

 

Type:

 

xprofiler

 

-b

 

a.out

 

gmon.out

 

-c

 

Load

 

the

 

specified

 

configuration

 

file.

 

If

 

this

 

flag

 

is

 

used

 

on

 

the

 

command

 

line,

 

the

 

configuration

 

file

 

name

 

specified

 

with

 

it

 

will

 

appear

 

in

 

the

 

Configuration

 

File

 

(-c):

 

text

 

field

 

in

 

Load

 

Files

 

Dialog

 

window

 

and

 

in

 

the

 

Selection

 

field

 

of

 

the

 

Load

 

Configuration

 

File

 

Dialog

 

window.

 

When

 

both

 

the

 

-c

 

and

 

-disp_max

 

flags

 

are

 

specified

 

on

 

the

 

command

 

line,

 

the

 

-disp_max

 

flag

 

is

 

ignored,

 

but

 

the

 

value

 

that

 

was

 

specified

 

with

 

it

 

will

 

appear

 

in

 

the

 

Initial

 

Display

 

(-disp_max):

 

field

 

in

 

the

 

Load

 

Files

 

Dialog

 

window

 

the

 

next

 

time

 

this

 

window

 

is

 

opened.

 

To

 

load

 

the

 

configuration

 

file

 

myfile.cfg,

 

type:

 

xprofiler

 

a.out

 

gmon.out

 

-c

 

myfile.cfg

 

-disp_max

 

Set

 

the

 

number

 

of

 

function

 

boxes

 

that

 

Xprofiler

 

initially

 

displays

 

in

 

the

 

function

 

call

 

tree.

 

The

 

value

 

supplied

 

with

 

this

 

flag

 

can

 

be

 

any

 

integer

 

between

 

0

 

and

 

5000.

 

Xprofiler

 

displays

 

the

 

function

 

boxes

 

for

 

the

 

most

 

CPU-intensive

 

functions

 

through

 

the

 

number

 

you

 

specify.

 

For

 

example,

 

if

 

you

 

specify

 

50,

 

Xprofiler

 

displays

 

the

 

function

 

boxes

 

for

 

the

 

50

 

functions

 

in

 

your

 

program

 

with

 

the

 

highest

 

CPU

 

usage.

 

After

 

this,

 

you

 

can

 

change

 

the

 

number

 

of

 

function

 

boxes

 

that

 

are

 

displayed

 

using

 

the

 

Filter

 

menu

 

options.

 

This

 

flag

 

has

 

no

 

effect

 

on

 

the

 

content

 

of

 

any

 

of

 

the

 

Xprofiler

 

reports.

 

To

 

display

 

the

 

function

 

boxes

 

for

 

the

 

50

 

most

 

CPU-intensive

 

functions

 

in

 

the

 

function

 

call

 

tree,

 

type:

 

xprofiler

 

-disp_max

 

50

 

a.out

 

gmon.out

 

-e

 

Deemphasize

 

the

 

general

 

appearance

 

of

 

the

 

function

 

box

 

for

 

the

 

specified

 

function

 

in

 

the

 

function

 

call

 

tree,

 

and

 

limits

 

the

 

number

 

of

 

entries

 

for

 

this

 

function

 

in

 

the

 

Call

 

Graph

 

Profile

 

report.

 

This

 

also

 

applies

 

to

 

the

 

specified

 

function’s

 

descendants,

 

as

 

long

 

as

 

they

 

have

 

not

 

been

 

called

 

by

 

non-specified

 

functions.

 

In

 

the

 

function

 

call

 

tree,

 

the

 

function

 

box

 

for

 

the

 

specified

 

function

 

is

 

made

 

unavailable.

 

The

 

box

 

size

 

and

 

the

 

content

 

of

 

the

 

label

 

remain

 

the

 

same.

 

This

 

also

 

applies

 

to

 

descendant

 

functions,

 

as

 

long

 

as

 

they

 

have

 

not

 

been

 

called

 

by

 

non-specified

 

functions.

 

In

 

the

 

Call

 

Graph

 

Profile

 

report,

 

an

 

entry

 

for

 

a

 

specified

 

function

 

only

 

appears

 

where

 

it

 

is

 

a

 

child

 

of

 

another

 

function,

 

or

 

as

 

a

 

parent

 

of

 

a

 

function

 

that

 

also

 

has

 

at

 

least

 

one

 

non-specified

 

function

 

as

 

its

 

parent.

 

The

 

information

 

for

 

this

 

entry

 

remains

 

unchanged.

 

Entries

 

for

 

descendants

 

of

 

the

 

specified

 

function

 

do

 

not

 

appear

 

unless

 

they

 

have

 

been

 

called

 

by

 

at

 

least

 

one

 

non-specified

 

function

 

in

 

the

 

program.

 

To

 

deemphasize

 

the

 

appearance

 

of

 

the

 

function

 

boxes

 

for

 

foo

 

and

 

bar

 

and

 

their

 

qualifying

 

descendants

 

in

 

the

 

function

 

call

 

tree,

 

and

 

limit

 

their

 

entries

 

in

 

the

 

Call

 

Graph

 

Profile

 

report,

 

type:

 

xprofiler

 

-e

 

foo

 

-e

 

bar

 

a.out

 

gmon.out

   

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

7



Table

 

2.

 

Xprofiler

 

command-line

 

flags

 

(continued)

 

Use

 

this

 

flag:

 

To:

 

For

 

example:

 

-E

 

Change

 

the

 

general

 

appearance

 

and

 

label

 

information

 

of

 

the

 

function

 

box

 

for

 

the

 

specified

 

function

 

in

 

the

 

function

 

call

 

tree.

 

This

 

flag

 

also

 

limits

 

the

 

number

 

of

 

entries

 

for

 

this

 

function

 

in

 

the

 

Call

 

Graph

 

Profile

 

report,

 

and

 

changes

 

the

 

CPU

 

data

 

associated

 

with

 

them.

 

These

 

results

 

also

 

apply

 

to

 

the

 

specified

 

function’s

 

descendants,

 

as

 

long

 

as

 

they

 

have

 

not

 

been

 

called

 

by

 

non-specified

 

functions

 

in

 

the

 

program.

 

In

 

the

 

function

 

call

 

tree,

 

the

 

function

 

box

 

for

 

the

 

specified

 

function

 

is

 

made

 

unavailable,

 

and

 

the

 

box

 

size

 

and

 

shape

 

also

 

changes

 

so

 

that

 

it

 

appears

 

as

 

a

 

square

 

of

 

the

 

smallest

 

allowable

 

size.

 

In

 

addition,

 

the

 

CPU

 

time

 

shown

 

in

 

the

 

function

 

box

 

label,

 

appears

 

as

 

0.

 

The

 

same

 

applies

 

to

 

function

 

boxes

 

for

 

descendant

 

functions,

 

as

 

long

 

as

 

they

 

have

 

not

 

been

 

called

 

by

 

non-specified

 

functions.

 

This

 

flag

 

also

 

causes

 

the

 

CPU

 

time

 

spent

 

by

 

the

 

specified

 

function

 

to

 

be

 

deducted

 

from

 

the

 

CPU

 

total

 

on

 

the

 

left

 

in

 

the

 

label

 

of

 

the

 

function

 

box

 

for

 

each

 

of

 

the

 

specified

 

function’s

 

ancestors.

 

In

 

the

 

Call

 

Graph

 

Profile

 

report,

 

an

 

entry

 

for

 

the

 

specified

 

function

 

only

 

appears

 

where

 

it

 

is

 

a

 

child

 

of

 

another

 

function,

 

or

 

as

 

a

 

parent

 

of

 

a

 

function

 

that

 

also

 

has

 

at

 

least

 

one

 

non-specified

 

function

 

as

 

its

 

parent.

 

When

 

this

 

is

 

the

 

case,

 

the

 

time

 

in

 

the

 

self

 

and

 

descendants

 

columns

 

for

 

this

 

entry

 

is

 

set

 

to

 

0.

 

In

 

addition,

 

the

 

amount

 

of

 

time

 

that

 

was

 

in

 

the

 

descendants

 

column

 

for

 

the

 

specified

 

function

 

is

 

subtracted

 

from

 

the

 

time

 

listed

 

under

 

the

 

descendants

 

column

 

for

 

the

 

profiled

 

function.

 

As

 

a

 

result,

 

be

 

aware

 

that

 

the

 

value

 

listed

 

in

 

the

 

%

 

time

 

column

 

for

 

most

 

profiled

 

functions

 

in

 

this

 

report

 

will

 

change.

 

To

 

change

 

the

 

display

 

and

 

label

 

information

 

for

 

foo

 

and

 

bar,

 

as

 

well

 

as

 

their

 

qualifying

 

descendants

 

in

 

the

 

function

 

call

 

tree,

 

and

 

limit

 

their

 

entries

 

and

 

data

 

in

 

the

 

Call

 

Graph

 

Profile

 

report,

 

type:

 

xprofiler

 

-E

 

foo

 

-E

 

bar

 

a.out

 

gmon.out

 

-f

 

Deemphasize

 

the

 

general

 

appearance

 

of

 

all

 

function

 

boxes

 

in

 

the

 

function

 

call

 

tree,

 

except

 

for

 

that

 

of

 

the

 

specified

 

function

 

and

 

its

 

descendants.

 

In

 

addition,

 

the

 

number

 

of

 

entries

 

in

 

the

 

Call

 

Graph

 

Profile

 

report

 

for

 

the

 

non-specified

 

functions

 

and

 

non-descendant

 

functions

 

is

 

limited.

 

The

 

-f

 

flag

 

overrides

 

the

 

-e

 

flag.

 

In

 

the

 

function

 

call

 

tree,

 

all

 

function

 

boxes

 

except

 

for

 

that

 

of

 

the

 

specified

 

function

 

and

 

its

 

descendants

 

are

 

made

 

unavailable.

 

The

 

size

 

of

 

these

 

boxes

 

and

 

the

 

content

 

of

 

their

 

labels

 

remain

 

the

 

same.

 

For

 

the

 

specified

 

function

 

and

 

its

 

descendants,

 

the

 

appearance

 

of

 

the

 

function

 

boxes

 

and

 

labels

 

remain

 

the

 

same.

 

In

 

the

 

Call

 

Graph

 

Profile

 

report,

 

an

 

entry

 

for

 

a

 

non-specified

 

or

 

non-descendant

 

function

 

only

 

appears

 

where

 

it

 

is

 

a

 

parent

 

or

 

child

 

of

 

a

 

specified

 

function

 

or

 

one

 

of

 

its

 

descendants.

 

All

 

information

 

for

 

this

 

entry

 

remains

 

the

 

same.

 

To

 

deemphasize

 

the

 

display

 

of

 

function

 

boxes

 

for

 

all

 

functions

 

in

 

the

 

function

 

call

 

tree

 

except

 

for

 

foo,

 

bar,

 

and

 

their

 

descendants,

 

and

 

limit

 

their

 

types

 

of

 

entries

 

in

 

the

 

Call

 

Graph

 

Profile

 

report,

 

type:

 

xprofiler

 

-f

 

foo

 

-f

 

bar

 

a.out

 

gmon.out

   

8

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Table

 

2.

 

Xprofiler

 

command-line

 

flags

 

(continued)

 

Use

 

this

 

flag:

 

To:

 

For

 

example:

 

-F

 

Change

 

the

 

general

 

appearance

 

and

 

label

 

information

 

of

 

all

 

function

 

boxes

 

in

 

the

 

function

 

call

 

tree

 

except

 

for

 

that

 

of

 

the

 

specified

 

function

 

and

 

its

 

descendants.

 

In

 

addition,

 

the

 

number

 

of

 

entries

 

in

 

the

 

Call

 

Graph

 

Profile

 

report

 

for

 

the

 

non-specified

 

and

 

non-descendant

 

functions

 

is

 

limited,

 

and

 

the

 

CPU

 

data

 

associated

 

with

 

them

 

is

 

changed.

 

The

 

-F

 

flag

 

overrides

 

the

 

-E

 

flag.

 

In

 

the

 

function

 

call

 

tree,

 

the

 

function

 

box

 

for

 

the

 

specified

 

function

 

are

 

made

 

unavailable,

 

and

 

its

 

size

 

and

 

shape

 

also

 

changes

 

so

 

that

 

it

 

appears

 

as

 

a

 

square

 

of

 

the

 

smallest

 

allowable

 

size.

 

In

 

addition,

 

the

 

CPU

 

time

 

shown

 

in

 

the

 

function

 

box

 

label,

 

appears

 

as

 

0.

 

In

 

the

 

Call

 

Graph

 

Profile

 

report,

 

an

 

entry

 

for

 

a

 

non-specified

 

or

 

non-descendant

 

function

 

only

 

appears

 

where

 

it

 

is

 

a

 

parent

 

or

 

child

 

of

 

a

 

specified

 

function

 

or

 

one

 

of

 

its

 

descendants.

 

When

 

this

 

is

 

the

 

case,

 

the

 

time

 

in

 

the

 

self

 

and

 

descendants

 

columns

 

for

 

this

 

entry

 

is

 

set

 

to

 

0.

 

As

 

a

 

result,

 

be

 

aware

 

that

 

the

 

value

 

listed

 

in

 

the

 

%

 

time

 

column

 

for

 

most

 

profiled

 

functions

 

in

 

this

 

report

 

will

 

change.

 

To

 

change

 

the

 

display

 

and

 

label

 

information

 

of

 

the

 

function

 

boxes

 

for

 

all

 

functions

 

except

 

the

 

functions

 

foo

 

and

 

bar

 

and

 

their

 

descendants,

 

and

 

limit

 

their

 

types

 

of

 

entries

 

and

 

data

 

in

 

the

 

Call

 

Graph

 

Profile

 

report,

 

type:

 

xprofiler

 

-F

 

foo

 

-F

 

bar

 

a.out

 

gmon.out

   

-h

 

│

 

-?

 

Display

 

the

 

xprofiler

 

command’s

 

usage

 

statement.

 

xprofiler

 

-h

 

Usage:

 

xprofiler

 

[program]

 

[-b]

 

[-h]

 

[-s]

 

[-z]

  

[-a

 

path(s)]

 

[-c

 

file]

 

[-L

 

pathname]

 

[[-e

 

function]...]

  

[[-E

 

function]...]

 

[[-f

 

function]...]

  

[[-F

 

function]...]

 

[-disp_max

 

number_of_functions]

  

[[gmon.out]...]

 

-L

 

Specify

 

an

 

alternative

 

path

 

name

 

for

 

locating

 

shared

 

libraries.

 

If

 

you

 

plan

 

to

 

specify

 

multiple

 

paths,

 

use

 

the

 

Set

 

File

 

Search

 

Path

 

option

 

of

 

the

 

File

 

menu

 

on

 

the

 

Xprofiler

 

GUI.

 

See

 

“Setting

 

the

 

File

 

Search

 

Sequence”

 

on

 

page

 

19

 

for

 

more

 

information.

 

To

 

specify

 

/lib/profiled/libc.a:shr.o

 

as

 

an

 

alternative

 

path

 

name

 

for

 

your

 

shared

 

libraries,

 

type:

 

xprofiler

 

-L

 

/lib/profiled/libc.a:shr.o

 

-s

 

Produce

 

the

 

gmon.sum

 

profile

 

data

 

file

 

(if

 

multiple

 

gmon.out

 

files

 

are

 

specified

 

when

 

Xprofiler

 

is

 

started).

 

The

 

gmon.sum

 

file

 

represents

 

the

 

sum

 

of

 

the

 

profile

 

information

 

in

 

all

 

the

 

specified

 

profile

 

files.

 

Note

 

that

 

if

 

you

 

specify

 

a

 

single

 

gmon.out

 

file,

 

the

 

gmon.sum

 

file

 

contains

 

the

 

same

 

data

 

as

 

the

 

gmon.out

 

file.

 

To

 

write

 

the

 

sum

 

of

 

the

 

data

 

from

 

three

 

profile

 

data

 

files,

 

gmon.out.1,

 

gmon.out.2,

 

and

 

gmon.out.3,

 

into

 

a

 

file

 

called

 

gmon.sum,

 

type:

 

xprofiler

 

-s

 

a.out

 

gmon.out.1

 

gmon.out.2

 

gmon.out.3

 

-z

 

Include

 

functions

 

that

 

have

 

both

 

zero

 

CPU

 

usage

 

and

 

no

 

call

 

counts

 

in

 

the

 

Flat

 

Profile,

 

Call

 

Graph

 

Profile,

 

and

 

Function

 

Index

 

reports.

 

A

 

function

 

will

 

not

 

have

 

a

 

call

 

count

 

if

 

the

 

file

 

that

 

contains

 

its

 

definition

 

was

 

not

 

compiled

 

with

 

the

 

-pg

 

flag,

 

which

 

is

 

common

 

with

 

system

 

library

 

files.

 

To

 

include

 

all

 

functions

 

used

 

by

 

the

 

application

 

that

 

have

 

zero

 

CPU

 

usage

 

and

 

no

 

call

 

counts

 

in

 

the

 

Flat

 

Profile,

 

Call

 

Graph

 

Profile,

 

and

 

Function

 

Index

 

reports,

 

type:

 

xprofiler

 

-z

 

a.out

 

gmon.out

   

After

 

you

 

enter

 

the

 

xprofiler

 

command,

 

the

 

Xprofiler

 

main

 

window

 

appears

 

and

 

displays

 

your

 

application’s

 

data.

   

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

9



Loading

 

Files

 

from

 

the

 

Xprofiler

 

GUI

 

If

 

you

 

enter

 

the

 

xprofiler

 

command

 

on

 

its

 

own,

 

you

 

can

 

then

 

specify

 

an

 

executable

 

file,

 

one

 

or

 

more

 

profile

 

data

 

file,

 

and

 

any

 

flags,

 

from

 

within

 

the

 

Xprofiler

 

GUI.

 

You

 

use

 

the

 

Load

 

File

 

option

 

of

 

the

 

File

 

menu

 

to

 

do

 

this.

 

If

 

you

 

enter

 

the

 

xprofiler

 

-h

 

or

 

xprofiler

 

-?

 

command,

 

Xprofiler

 

displays

 

the

 

usage

 

statement

 

for

 

the

 

command

 

and

 

then

 

exits.

 

When

 

you

 

enter

 

the

 

xprofiler

 

command

 

alone,

 

the

 

Xprofiler

 

main

 

window

 

appears.

 

Because

 

you

 

did

 

not

 

load

 

an

 

executable

 

file

 

or

 

specify

 

a

 

profile

 

data

 

file,

 

the

 

window

 

will

 

be

 

empty,

 

as

 

shown

 

below.

  

From

 

the

 

Xprofiler

 

GUI,

 

select

 

File,

 

then

 

Load

 

File

 

from

 

the

 

menu

 

bar.

 

The

 

Load

 

Files

 

Dialog

 

window

 

will

 

appear,

 

as

 

shown

 

below.

    

Figure

 

1.

 

The

 

Xprofiler

 

main

 

window..

 

The

 

screen

 

capture

 

below

 

is

 

an

 

empty

 

Xprofiler

 

window.

 

All

 

that

 

is

 

visible

 

is

 

a

 

menu

 

bar

 

at

 

the

 

top

 

with

 

dropdowns

 

for

 

File,

 

View,

 

Filter,

 

Report,

 

Utility,

 

and

 

Help.

 

Also,

 

there

 

is

 

a

 

description

 

box

 

at

 

the

 

bottom

 

that

 

contains

 

the

 

following

 

text:

 

Empty

 

display,

 

use

 

″File->Load

 

Files″

 

option

 

to

 

load

 

a

 

valid

 

file

 

set.

  

10

 

Performance

 

Tools

 

Guide

 

and

 

Reference



The

 

Load

 

Files

 

Dialog

 

window

 

lets

 

you

 

specify

 

your

 

application’s

 

executable

 

file

 

and

 

its

 

corresponding

 

profile

 

data

 

(gmon.out)

 

files.

 

When

 

you

 

load

 

a

 

file,

 

you

 

can

 

also

 

specify

 

the

 

various

 

command-line

 

options

 

that

 

let

 

you

 

control

 

the

 

way

 

Xprofiler

 

displays

 

the

 

profiled

 

data.

 

To

 

load

 

the

 

files

 

for

 

the

 

application

 

you

 

want

 

to

 

profile,

 

you

 

must

 

specify

 

the

 

following:

   

Figure

 

2.

 

The

 

Load

 

Files

 

Dialog

 

window.

 

The

 

screen

 

capture

 

below

 

is

 

a

 

Load

 

Files

 

Dialog

 

box

 

that

 

is

 

split

 

into

 

three

 

different

 

sections.

 

There

 

are

 

two

 

boxes,

 

side

 

by

 

side

 

at

 

the

 

top,

 

and

 

one

 

long

 

box

 

at

 

the

 

bottom

 

that

 

are

 

described

 

in

 

more

 

detail

 

in

 

the

 

next

 

three

 

figures.

  

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

11



v

   

the

 

binary

 

executable

 

file

 

v

   

one

 

or

 

more

 

profile

 

data

 

files

Optionally,

 

you

 

can

 

also

 

specify

 

one

 

or

 

more

 

command-line

 

flags.

 

The

 

Binary

 

Executable

 

File

 

You

 

specify

 

the

 

binary

 

executable

 

file

 

from

 

the

 

Binary

 

Executable

 

File:

 

area

 

of

 

the

 

Load

 

Files

 

Dialog

 

window.

   

Use

 

the

 

scroll

 

bars

 

of

 

the

 

Directories

 

and

 

Files

 

selection

 

boxes

 

to

 

locate

 

the

 

executable

 

file

 

you

 

want

 

to

 

load.

 

By

 

default,

 

all

 

of

 

the

 

files

 

in

 

the

 

directory

 

from

 

which

 

you

 

called

 

Xprofiler

 

appear

 

in

 

the

 

Files

 

selection

 

box.

 

To

 

make

 

locating

 

your

 

binary

 

executable

 

files

 

easier,

 

the

 

Binary

 

Executable

 

File:

 

area

 

includes

 

a

 

Filter

 

button.

 

Filtering

 

lets

 

you

 

limit

 

the

 

files

 

that

 

are

 

displayed

 

in

 

the

 

Files

 

selection

 

box

 

to

 

those

 

of

 

a

 

specific

 

directory

 

or

 

of

 

a

 

specific

 

type.

 

For

 

information

 

about

 

filtering,

 

see

 

“Filtering

 

what

 

You

 

See”

 

on

 

page

 

27.

   

Figure

 

3.

 

The

 

Binary

 

Executable

 

File

 

dialog.

 

The

 

screen

 

capture

 

below

 

is

 

the

 

Binary

 

Executable

 

File

 

dialog

 

box

 

of

 

the

 

Load

 

Files

 

Dialog

 

window.

 

There

 

is

 

a

 

Filter

 

box

 

at

 

the

 

top

 

that

 

shows

 

the

 

path

 

of

 

the

 

file

 

to

 

load.

 

Underneath

 

the

 

Filter

 

box,

 

there

 

are

 

two

 

selection

 

boxes,

 

side

 

by

 

side

 

that

 

are

 

labeled

 

Directory

 

and

 

Files.

 

The

 

one

 

on

 

the

 

left

 

is

 

to

 

select

 

the

 

Directory

 

in

 

which

 

to

 

locate

 

the

 

executable

 

file,

 

and

 

the

 

one

 

on

 

the

 

right

 

is

 

a

 

listing

 

of

 

the

 

files

 

that

 

are

 

contained

 

in

 

the

 

directory

 

that

 

is

 

selected

 

in

 

the

 

Directory

 

selection

 

box.

 

There

 

is

 

a

 

Selection

 

box

 

that

 

shows

 

the

 

file

 

selected

 

and

 

at

 

the

 

bottom

 

there

 

is

 

a

 

Filter

 

button.

  

12

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Profile

 

Data

 

Files

 

You

 

specify

 

one

 

or

 

more

 

profile

 

data

 

files

 

from

 

the

 

gmon.out

 

Profile

 

Data

 

File(s)

 

area

 

of

 

the

 

Load

 

Files

 

Dialog

 

window.

   

When

 

you

 

start

 

Xprofiler

 

using

 

the

 

xprofiler

 

command,

 

you

 

are

 

not

 

required

 

to

 

indicate

 

the

 

name

 

of

 

the

 

profile

 

data

 

file.

 

If

 

you

 

do

 

not

 

specify

 

a

 

profile

 

data

 

file,

 

Xprofiler

 

searches

 

your

 

directory

 

for

 

the

 

presence

 

of

 

a

 

file

 

named

 

gmon.out

 

and,

 

if

 

found,

 

places

 

it

 

in

 

the

 

Selection

 

field

 

of

 

the

 

gmon.out

 

Profile

 

Data

 

File(s)

 

area,

 

as

 

the

 

default.

 

Xprofiler

 

then

 

uses

 

this

 

file

 

as

 

input,

 

even

 

if

 

it

 

is

 

not

 

related

 

to

 

the

 

binary

 

executable

 

file

 

you

 

specify.

 

Because

 

this

 

will

 

cause

 

Xprofiler

 

to

 

display

 

incorrect

 

data,

 

it

 

is

 

important

 

that

 

you

 

enter

 

the

 

correct

 

file

 

into

 

this

 

field.

 

If

 

the

 

profile

 

data

 

file

 

you

 

want

 

to

 

use

 

is

 

named

 

something

 

other

 

than

 

what

 

appears

 

in

 

the

 

Selection

 

field,

 

you

 

must

 

replace

 

it

 

with

 

the

 

correct

 

file

 

name.

 

Use

 

the

 

scroll

 

bars

 

of

 

the

 

Directories

 

and

 

Files

 

selection

 

boxes

 

to

 

locate

 

one

 

or

 

more

 

of

 

the

 

profile

 

data

 

(gmon.out)

 

files

 

you

 

want

 

to

 

specify.

 

The

 

file

 

you

 

use

 

does

 

not

 

have

 

to

 

be

 

named

 

gmon.out,

 

and

 

you

 

can

 

specify

 

more

 

than

 

one

 

profile

 

data

 

file.

   

Figure

 

4.

 

The

 

gmon.out

 

Profile

 

Data

 

File

 

area.

 

The

 

screen

 

capture

 

below

 

is

 

the

 

gmon.out

 

Profile

 

Data

 

File(s)

 

dialog

 

box

 

of

 

the

 

Load

 

Files

 

Dialog

 

window.

 

There

 

is

 

a

 

Filter

 

box

 

at

 

the

 

top

 

that

 

shows

 

the

 

path

 

of

 

the

 

file

 

to

 

use

 

as

 

input.

 

Underneath

 

the

 

Filter

 

box,

 

there

 

are

 

two

 

selection

 

boxes,

 

side

 

by

 

side

 

that

 

are

 

labeled

 

Directory

 

and

 

Files.

 

The

 

one

 

on

 

the

 

left

 

is

 

to

 

select

 

the

 

Directory

 

in

 

which

 

to

 

locate

 

the

 

profile

 

file,

 

and

 

the

 

one

 

on

 

the

 

right

 

is

 

a

 

listing

 

of

 

the

 

files

 

that

 

are

 

contained

 

in

 

the

 

directory

 

that

 

is

 

selected

 

in

 

the

 

Directory

 

selection

 

box.

 

There

 

is

 

a

 

Selection

 

box

 

that

 

shows

 

the

 

file

 

selected

 

and

 

at

 

the

 

bottom

 

there

 

is

 

a

 

Filter

 

button.

  

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

13



To

 

make

 

locating

 

your

 

output

 

files

 

easier,

 

the

 

gmon.out

 

Profile

 

Data

 

File(s)

 

area

 

includes

 

a

 

Filter

 

button.

 

Filtering

 

lets

 

you

 

limit

 

the

 

files

 

that

 

are

 

displayed

 

in

 

the

 

Files

 

selection

 

box

 

to

 

those

 

in

 

a

 

specific

 

directory

 

or

 

of

 

a

 

specific

 

type.

 

For

 

information

 

about

 

filtering,

 

see

 

“Filtering

 

what

 

You

 

See”

 

on

 

page

 

27.

 

Specifying

 

Command

 

Line

 

Options

 

(from

 

the

 

GUI)

 

Specify

 

command-line

 

flags

 

from

 

the

 

Command

 

Line

 

Options

 

area

 

of

 

the

 

Load

 

Files

 

Dialog

 

window,

 

which

 

looks

 

similar

 

to

 

the

 

following:

   

You

 

can

 

specify

 

one

 

or

 

more

 

flags

 

as

 

follows:

   

Figure

 

5.

 

The

 

Command

 

Line

 

Options

 

area.

 

The

 

screen

 

capture

 

below

 

is

 

the

 

Command

 

Line

 

Options

 

box

 

of

 

the

 

Load

 

Files

 

Dialog

 

window.

 

There

 

are

 

three

 

check

 

boxes

 

side

 

by

 

side

 

at

 

the

 

top:

 

No

 

description

 

(-b),

 

gmon.sum

 

File

 

(-s),

 

and

 

Show

 

Zero

 

Usage

 

(-z).

 

Below

 

that,

 

there

 

are

 

eight

 

boxes

 

corresponding

 

to

 

the

 

eight

 

Xprofiler

 

GUI

 

command-line

 

flags,

 

Alt

 

File

 

Search

 

Paths

 

(-a),

 

Configuration

 

File

 

(-c),

 

Initial

 

Display

 

(-disp_max),

 

Exclude

 

Functions

 

(-e),

 

Exclude

 

Functions

 

(-E),

 

Include

 

Functions

 

(-f),

 

Include

 

Functions

 

(-F),

 

and

 

Alt

 

Library

 

Path

 

(-L),

 

that

 

are

 

described

 

in

 

great

 

detail

 

below.

 

There

 

is

 

a

 

Choices

 

button

 

next

 

to

 

the

 

Configuration

 

File

 

(-c)

 

box.

  

14

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Table

 

3.

 

Xprofiler

 

GUI

 

command-line

 

flags

 

Use

 

this

 

flag:

 

To:

 

For

 

example:

 

-a

 

(field)

 

Add

 

alternative

 

paths

 

to

 

search

 

for

 

source

 

code

 

and

 

library

 

files,

 

or

 

changes

 

the

 

current

 

path

 

search

 

order.

 

After

 

clicking

 

the

 

OK

 

button,

 

any

 

modifications

 

to

 

this

 

field

 

are

 

also

 

made

 

to

 

the

 

Enter

 

Alt

 

File

 

Search

 

Paths:

 

field

 

of

 

the

 

Alt

 

File

 

Search

 

Path

 

Dialog

 

window.

 

If

 

both

 

the

 

Load

 

Files

 

Dialog

 

window

 

and

 

the

 

Alt

 

File

 

Search

 

Path

 

Dialog

 

window

 

are

 

opened

 

at

 

the

 

same

 

time,

 

when

 

you

 

make

 

path

 

changes

 

in

 

the

 

Alt

 

File

 

Search

 

Path

 

Dialog

 

window

 

and

 

click

 

OK,

 

these

 

changes

 

are

 

also

 

made

 

to

 

the

 

Load

 

Files

 

Dialog

 

window.

 

Also,

 

when

 

both

 

of

 

these

 

windows

 

are

 

open

 

at

 

the

 

same

 

time,

 

clicking

 

the

 

OK

 

or

 

Cancel

 

buttons

 

in

 

the

 

Load

 

Files

 

Dialog

 

window

 

causes

 

both

 

windows

 

to

 

close.

 

If

 

you

 

want

 

to

 

restore

 

the

 

Alt

 

File

 

Search

 

Path(s)

 

(-a):

 

field

 

to

 

the

 

same

 

state

 

as

 

when

 

the

 

Load

 

Files

 

Dialog

 

window

 

was

 

opened,

 

click

 

the

 

Reset

 

button.

 

You

 

can

 

use

 

the

 

“at”

 

symbol

 

(@)

 

with

 

this

 

flag

 

to

 

represent

 

the

 

default

 

file

 

path,

 

in

 

order

 

to

 

specify

 

that

 

other

 

paths

 

be

 

searched

 

before

 

the

 

default

 

path.

 

To

 

set

 

an

 

alternative

 

file

 

search

 

path

 

so

 

that

 

Xprofiler

 

searches

 

pathA,

 

the

 

default

 

path,

 

then

 

pathB,

 

type

 

pathA:@:pathB

 

in

 

the

 

Alt

 

File

 

Search

 

Path(s)

 

(-a)

 

field.

 

-b

 

(button)

 

Suppress

 

the

 

printing

 

of

 

the

 

field

 

descriptions

 

for

 

the

 

Flat

 

Profile,

 

Call

 

Graph

 

Profile,

 

and

 

Function

 

Index

 

reports

 

when

 

they

 

are

 

written

 

to

 

a

 

file

 

with

 

the

 

Save

 

As

 

option

 

of

 

the

 

File

 

menu.

 

To

 

suppress

 

printing

 

of

 

the

 

field

 

descriptions

 

for

 

the

 

Flat

 

Profile,

 

Call

 

Graph

 

Profile,

 

and

 

Function

 

Index

 

reports

 

in

 

the

 

saved

 

file,

 

set

 

the

 

-b

 

button

 

to

 

the

 

pressed-in

 

position.

 

-c

 

(field)

 

Load

 

the

 

specified

 

configuration

 

file.

 

If

 

the

 

-c

 

option

 

was

 

used

 

on

 

the

 

command

 

line,

 

or

 

a

 

configuration

 

file

 

had

 

been

 

previously

 

loaded

 

with

 

the

 

Load

 

Files

 

Dialog

 

window

 

or

 

the

 

Load

 

Configuration

 

File

 

Dialog

 

window,

 

the

 

name

 

of

 

the

 

most

 

recently

 

loaded

 

file

 

will

 

appear

 

in

 

the

 

Configuration

 

File

 

(-c):

 

text

 

field

 

in

 

the

 

Load

 

Files

 

Dialog

 

window,

 

as

 

well

 

as

 

the

 

Selection

 

field

 

of

 

Load

 

Files

 

Dialog

 

window.

 

If

 

the

 

Load

 

Files

 

Dialog

 

window

 

and

 

the

 

Load

 

Files

 

Dialog

 

window

 

are

 

open

 

at

 

the

 

same

 

time,

 

when

 

you

 

specify

 

a

 

configuration

 

file

 

in

 

the

 

Load

 

Configuration

 

File

 

Dialog

 

window

 

and

 

then

 

click

 

the

 

OK

 

button,

 

the

 

name

 

of

 

the

 

specified

 

file

 

also

 

appears

 

in

 

the

 

Load

 

Files

 

Dialog

 

window.

 

Also,

 

when

 

both

 

of

 

these

 

windows

 

are

 

open

 

at

 

the

 

same

 

time,

 

clicking

 

the

 

OK

 

or

 

Cancel

 

button

 

in

 

the

 

Load

 

Files

 

Dialog

 

window

 

causes

 

both

 

windows

 

to

 

close.

 

When

 

entries

 

are

 

made

 

to

 

both

 

the

 

Configuration

 

File

 

(-c):

 

and

 

Initial

 

Display

 

(-disp_max):

 

fields

 

in

 

the

 

Load

 

Files

 

Dialog

 

window,

 

the

 

value

 

in

 

the

 

Initial

 

Display

 

(-disp_max):

 

field

 

is

 

ignored,

 

but

 

is

 

retained

 

the

 

next

 

time

 

this

 

window

 

is

 

opened.

 

If

 

you

 

want

 

to

 

retrieve

 

the

 

file

 

name

 

that

 

was

 

in

 

the

 

Configuration

 

File

 

(-c):

 

field

 

when

 

the

 

Load

 

Files

 

Dialog

 

window

 

was

 

opened,

 

click

 

the

 

Reset

 

button.

 

To

 

load

 

the

 

configuration

 

file

 

myfile.cfg,

 

type

 

myfile.cfg

 

in

 

the

 

Configuration

 

File

 

(-c)

 

field.

   

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

15



Table

 

3.

 

Xprofiler

 

GUI

 

command-line

 

flags

 

(continued)

 

Use

 

this

 

flag:

 

To:

 

For

 

example:

 

-disp_max

 

(field)

 

Set

 

the

 

number

 

of

 

function

 

boxes

 

that

 

Xprofiler

 

initially

 

displays

 

in

 

the

 

function

 

call

 

tree.

 

The

 

value

 

supplied

 

with

 

this

 

flag

 

can

 

be

 

any

 

integer

 

between

 

0

 

and

 

5000.

 

Xprofiler

 

displays

 

the

 

function

 

boxes

 

for

 

the

 

most

 

CPU-intensive

 

functions

 

through

 

the

 

number

 

you

 

specify.

 

For

 

example,

 

if

 

you

 

specify

 

50,

 

Xprofiler

 

displays

 

the

 

function

 

boxes

 

for

 

the

 

50

 

functions

 

in

 

your

 

program

 

with

 

the

 

highest

 

CPU

 

usage.

 

After

 

this,

 

you

 

can

 

change

 

the

 

number

 

of

 

function

 

boxes

 

that

 

are

 

displayed

 

using

 

the

 

Filter

 

menu

 

options.

 

This

 

flag

 

has

 

no

 

effect

 

on

 

the

 

content

 

of

 

any

 

of

 

the

 

Xprofiler

 

reports.

 

To

 

display

 

the

 

function

 

boxes

 

for

 

the

 

50

 

most

 

CPU-intensive

 

functions

 

in

 

the

 

function

 

call

 

tree,

 

type

 

50

 

in

 

the

 

Init

 

Display

 

(-disp_max)

 

field.

 

-e

 

(field)

 

Deemphasize

 

the

 

general

 

appearance

 

of

 

the

 

function

 

box

 

for

 

the

 

specified

 

function

 

in

 

the

 

function

 

call

 

tree,

 

and

 

limits

 

the

 

number

 

of

 

entries

 

for

 

this

 

function

 

in

 

the

 

Call

 

Graph

 

Profile

 

report.

 

This

 

also

 

applies

 

to

 

the

 

specified

 

function’s

 

descendants,

 

as

 

long

 

as

 

they

 

have

 

not

 

been

 

called

 

by

 

non-specified

 

functions.

 

In

 

the

 

function

 

call

 

tree,

 

the

 

function

 

box

 

for

 

the

 

specified

 

function

 

is

 

made

 

unavailable.

 

The

 

box

 

size

 

and

 

the

 

content

 

of

 

the

 

label

 

remain

 

the

 

same.

 

This

 

also

 

applies

 

to

 

descendant

 

functions,

 

as

 

long

 

as

 

they

 

have

 

not

 

been

 

called

 

by

 

non-specified

 

functions.

 

In

 

the

 

Call

 

Graph

 

Profile

 

report,

 

an

 

entry

 

for

 

a

 

specified

 

function

 

only

 

appears

 

where

 

it

 

is

 

a

 

child

 

of

 

another

 

function,

 

or

 

as

 

a

 

parent

 

of

 

a

 

function

 

that

 

also

 

has

 

at

 

least

 

one

 

non-specified

 

function

 

as

 

its

 

parent.

 

The

 

information

 

for

 

this

 

entry

 

remains

 

unchanged.

 

Entries

 

for

 

descendants

 

of

 

the

 

specified

 

function

 

do

 

not

 

appear

 

unless

 

they

 

have

 

been

 

called

 

by

 

at

 

least

 

one

 

non-specified

 

function

 

in

 

the

 

program.

 

To

 

deemphasize

 

the

 

appearance

 

of

 

the

 

function

 

boxes

 

for

 

foo

 

and

 

bar

 

and

 

their

 

qualifying

 

descendants

 

in

 

the

 

function

 

call

 

tree,

 

and

 

limit

 

their

 

entries

 

in

 

the

 

Call

 

Graph

 

Profile

 

report,

 

type

 

foo

 

and

 

bar

 

in

 

the

 

Exclude

 

Routines

 

(-e)

 

field.

 

Multiple

 

functions

 

are

 

separated

 

by

 

a

 

space.

   

16

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Table

 

3.

 

Xprofiler

 

GUI

 

command-line

 

flags

 

(continued)

 

Use

 

this

 

flag:

 

To:

 

For

 

example:

 

-E

 

(field)

 

Change

 

the

 

general

 

appearance

 

and

 

label

 

information

 

of

 

the

 

function

 

box

 

for

 

the

 

specified

 

function

 

in

 

the

 

function

 

call

 

tree.

 

This

 

flag

 

also

 

limits

 

the

 

number

 

of

 

entries

 

for

 

this

 

function

 

in

 

the

 

Call

 

Graph

 

Profile

 

report,

 

and

 

changes

 

the

 

CPU

 

data

 

associated

 

with

 

them.

 

These

 

results

 

also

 

apply

 

to

 

the

 

specified

 

function’s

 

descendants,

 

as

 

long

 

as

 

they

 

have

 

not

 

been

 

called

 

by

 

non-specified

 

functions

 

in

 

the

 

program.

 

In

 

the

 

function

 

call

 

tree,

 

the

 

function

 

box

 

for

 

the

 

specified

 

function

 

appears

 

greyed

 

out,

 

and

 

the

 

box

 

size

 

and

 

shape

 

also

 

changes

 

so

 

that

 

it

 

appears

 

as

 

a

 

square

 

of

 

the

 

smallest

 

allowable

 

size.

 

In

 

addition,

 

the

 

CPU

 

time

 

shown

 

in

 

the

 

function

 

box

 

label,

 

appears

 

as

 

0.

 

The

 

same

 

applies

 

to

 

function

 

boxes

 

for

 

descendant

 

functions,

 

as

 

long

 

as

 

they

 

have

 

not

 

been

 

called

 

by

 

non-specified

 

functions.

 

This

 

flag

 

also

 

causes

 

the

 

CPU

 

time

 

spent

 

by

 

the

 

specified

 

function

 

to

 

be

 

deducted

 

from

 

the

 

CPU

 

total

 

on

 

the

 

left

 

in

 

the

 

label

 

of

 

the

 

function

 

box

 

for

 

each

 

of

 

the

 

specified

 

function’s

 

ancestors.

 

In

 

the

 

Call

 

Graph

 

Profile

 

report,

 

an

 

entry

 

for

 

the

 

specified

 

function

 

only

 

appears

 

where

 

it

 

is

 

a

 

child

 

of

 

another

 

function,

 

or

 

as

 

a

 

parent

 

of

 

a

 

function

 

that

 

also

 

has

 

at

 

least

 

one

 

non-specified

 

function

 

as

 

its

 

parent.

 

When

 

this

 

is

 

the

 

case,

 

the

 

time

 

in

 

the

 

self

 

and

 

descendants

 

columns

 

for

 

this

 

entry

 

is

 

set

 

to

 

0.

 

In

 

addition,

 

the

 

amount

 

of

 

time

 

that

 

was

 

in

 

the

 

descendants

 

column

 

for

 

the

 

specified

 

function

 

is

 

subtracted

 

from

 

the

 

time

 

listed

 

under

 

the

 

descendants

 

column

 

for

 

the

 

profiled

 

function.

 

As

 

a

 

result,

 

be

 

aware

 

that

 

the

 

value

 

listed

 

in

 

the

 

%

 

time

 

column

 

for

 

most

 

profiled

 

functions

 

in

 

this

 

report

 

will

 

change.

 

To

 

change

 

the

 

display

 

and

 

label

 

information

 

for

 

foo

 

and

 

bar

 

and

 

their

 

qualifying

 

descendants

 

in

 

the

 

function

 

call

 

tree,

 

and

 

limit

 

their

 

entries

 

and

 

data

 

in

 

the

 

Call

 

Graph

 

Profile

 

report,

 

type

 

foo

 

bar

 

in

 

the

 

Exclude

 

Routines

 

(-E)

 

field.

 

Multiple

 

functions

 

are

 

separated

 

by

 

a

 

space.

   

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

17



Table

 

3.

 

Xprofiler

 

GUI

 

command-line

 

flags

 

(continued)

 

Use

 

this

 

flag:

 

To:

 

For

 

example:

 

-f

 

(field)

 

Deemphasize

 

the

 

general

 

appearance

 

of

 

all

 

function

 

boxes

 

in

 

the

 

function

 

call

 

tree,

 

except

 

for

 

that

 

of

 

the

 

specified

 

function

 

and

 

its

 

descendants.

 

In

 

addition,

 

the

 

number

 

of

 

entries

 

in

 

the

 

Call

 

Graph

 

Profile

 

report

 

for

 

the

 

non-specified

 

functions

 

and

 

non-descendant

 

functions

 

is

 

limited.

 

The

 

-f

 

flag

 

overrides

 

the

 

-e

 

flag.

 

In

 

the

 

function

 

call

 

tree,

 

all

 

function

 

boxes

 

except

 

for

 

that

 

of

 

the

 

specified

 

function

 

and

 

its

 

descendants

 

are

 

made

 

unavailable.

 

The

 

size

 

of

 

these

 

boxes

 

and

 

the

 

content

 

of

 

their

 

labels

 

remain

 

the

 

same.

 

For

 

the

 

specified

 

function

 

and

 

its

 

descendants,

 

the

 

appearance

 

of

 

the

 

function

 

boxes

 

and

 

labels

 

remain

 

the

 

same.

 

In

 

the

 

Call

 

Graph

 

Profile

 

report,

 

an

 

entry

 

for

 

a

 

non-specified

 

or

 

non-descendant

 

function

 

only

 

appears

 

where

 

it

 

is

 

a

 

parent

 

or

 

child

 

of

 

a

 

specified

 

function

 

or

 

one

 

of

 

its

 

descendants.

 

All

 

information

 

for

 

this

 

entry

 

remains

 

the

 

same.

 

To

 

deemphasize

 

the

 

display

 

of

 

function

 

boxes

 

for

 

all

 

functions

 

in

 

the

 

function

 

call

 

tree

 

except

 

for

 

foo

 

and

 

bar

 

and

 

their

 

descendants,

 

and

 

limit

 

their

 

types

 

of

 

entries

 

in

 

the

 

Call

 

Graph

 

Profile

 

report,

 

type

 

foo

 

bar

 

in

 

the

 

Include

 

Routines

 

(-f)

 

field.

 

Multiple

 

functions

 

are

 

separated

 

by

 

a

 

space.

 

-F

 

(field)

 

Change

 

the

 

general

 

appearance

 

and

 

label

 

information

 

of

 

all

 

function

 

boxes

 

in

 

the

 

function

 

call

 

tree

 

except

 

for

 

that

 

of

 

the

 

specified

 

function

 

and

 

its

 

descendants.

 

In

 

addition,

 

the

 

number

 

of

 

entries

 

in

 

the

 

Call

 

Graph

 

Profile

 

report

 

for

 

the

 

non-specified

 

and

 

non-descendant

 

functions

 

is

 

limited,

 

and

 

the

 

CPU

 

data

 

associated

 

with

 

them

 

is

 

changed.

 

The

 

-F

 

flag

 

overrides

 

the

 

-E

 

flag.

 

In

 

the

 

function

 

call

 

tree,

 

the

 

function

 

box

 

for

 

the

 

specified

 

function

 

is

 

made

 

unavailable,

 

and

 

its

 

size

 

and

 

shape

 

also

 

changes

 

so

 

that

 

it

 

appears

 

as

 

a

 

square

 

of

 

the

 

smallest

 

allowable

 

size.

 

In

 

addition,

 

the

 

CPU

 

time

 

shown

 

in

 

the

 

function

 

box

 

label,

 

appears

 

as

 

0.

 

In

 

the

 

Call

 

Graph

 

Profile

 

report,

 

an

 

entry

 

for

 

a

 

non-specified

 

or

 

non-descendant

 

function

 

only

 

appears

 

where

 

it

 

is

 

a

 

parent

 

or

 

child

 

of

 

a

 

specified

 

function

 

or

 

one

 

of

 

its

 

descendants.

 

When

 

this

 

is

 

the

 

case,

 

the

 

time

 

in

 

the

 

self

 

and

 

descendants

 

columns

 

for

 

this

 

entry

 

is

 

set

 

to

 

0.

 

As

 

a

 

result,

 

be

 

aware

 

that

 

the

 

value

 

listed

 

in

 

the

 

%

 

time

 

column

 

for

 

most

 

profiled

 

functions

 

in

 

this

 

report

 

will

 

change.

 

To

 

change

 

the

 

display

 

and

 

label

 

information

 

of

 

the

 

function

 

boxes

 

for

 

all

 

functions

 

except

 

the

 

functions

 

foo

 

and

 

bar

 

and

 

their

 

descendants,

 

and

 

limit

 

their

 

types

 

of

 

entries

 

and

 

data

 

in

 

the

 

Call

 

Graph

 

Profile

 

report,

 

type

 

foo

 

bar

 

in

 

the

 

Include

 

Routines

 

(-F)

 

field.

 

Multiple

 

functions

 

are

 

separated

 

by

 

a

 

space.

 

-L

 

(field)

 

Set

 

the

 

alternative

 

path

 

name

 

for

 

locating

 

shared

 

objects.

 

If

 

you

 

plan

 

to

 

specify

 

multiple

 

paths,

 

use

 

the

 

Set

 

File

 

Search

 

Path

 

option

 

of

 

the

 

File

 

menu

 

on

 

the

 

Xprofiler

 

GUI.

 

See

 

“Setting

 

the

 

File

 

Search

 

Sequence”

 

on

 

page

 

19

 

for

 

information.

 

To

 

specify

 

/lib/profiled/libc.a:shr.o

 

as

 

an

 

alternative

 

path

 

name

 

for

 

your

 

shared

 

libraries,

 

type

 

/lib/profiled/libc.a:shr.o

 

in

 

this

 

field.

   

18

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Table

 

3.

 

Xprofiler

 

GUI

 

command-line

 

flags

 

(continued)

 

Use

 

this

 

flag:

 

To:

 

For

 

example:

 

-s

 

(button)

 

Produces

 

the

 

gmon.sum

 

profile

 

data

 

file,

 

if

 

multiple

 

gmon.out

 

files

 

are

 

specified

 

when

 

Xprofiler

 

is

 

started.

 

The

 

gmon.sum

 

file

 

represents

 

the

 

sum

 

of

 

the

 

profile

 

information

 

in

 

all

 

the

 

specified

 

profile

 

files.

 

Note

 

that

 

if

 

you

 

specify

 

a

 

single

 

gmon.out

 

file,

 

the

 

gmon.sum

 

file

 

contains

 

the

 

same

 

data

 

as

 

the

 

gmon.out

 

file.

 

To

 

write

 

the

 

sum

 

of

 

the

 

data

 

from

 

three

 

profile

 

data

 

files,

 

gmon.out.1,

 

gmon.out.2,

 

and

 

gmon.out.3,

 

into

 

a

 

file

 

called

 

gmon.sum,

 

set

 

the

 

-s

 

button

 

to

 

the

 

pressed-in

 

position.

 

-z

 

(button)

 

Includes

 

functions

 

that

 

have

 

both

 

zero

 

CPU

 

usage

 

and

 

no

 

call

 

counts

 

in

 

the

 

Flat

 

Profile,

 

Call

 

Graph

 

Profile,

 

and

 

Function

 

Index

 

reports.

 

A

 

function

 

will

 

not

 

have

 

a

 

call

 

count

 

if

 

the

 

file

 

that

 

contains

 

its

 

definition

 

was

 

not

 

compiled

 

with

 

the

 

-pg

 

flag,

 

which

 

is

 

common

 

with

 

system

 

library

 

files.

 

To

 

include

 

all

 

functions

 

used

 

by

 

the

 

application

 

that

 

have

 

zero

 

CPU

 

usage

 

and

 

no

 

call

 

counts

 

in

 

the

 

Flat

 

Profile,

 

Call

 

Graph

 

Profile,

 

and

 

Function

 

Index

 

reports,

 

set

 

the

 

-z

 

button

 

to

 

the

 

pressed-in

 

position.

   

After

 

you

 

have

 

specified

 

the

 

binary

 

executable

 

file,

 

one

 

or

 

more

 

profile

 

data

 

files,

 

and

 

any

 

command-line

 

flags

 

you

 

want

 

to

 

use,

 

click

 

the

 

OK

 

button

 

to

 

save

 

the

 

changes

 

and

 

close

 

the

 

window.

 

Xprofiler

 

loads

 

your

 

application

 

and

 

displays

 

its

 

performance

 

data.

 

Setting

 

the

 

File

 

Search

 

Sequence

 

You

 

can

 

specify

 

where

 

you

 

want

 

Xprofiler

 

to

 

look

 

for

 

your

 

library

 

files

 

and

 

source

 

code

 

files

 

by

 

using

 

the

 

Set

 

File

 

Search

 

Paths

 

option

 

of

 

the

 

File

 

menu.

 

By

 

default,

 

Xprofiler

 

searches

 

the

 

default

 

paths

 

first

 

and

 

then

 

any

 

alternative

 

paths

 

you

 

specify.

 

Default

 

Paths

 

For

 

library

 

files,

 

Xprofiler

 

uses

 

the

 

paths

 

recorded

 

in

 

the

 

specified

 

gmon.out

 

files.

 

If

 

you

 

use

 

the

 

-L

 

flag,

 

the

 

path

 

you

 

specify

 

with

 

it

 

will

 

be

 

used

 

instead

 

of

 

those

 

in

 

the

 

gmon.out

 

files.

 

Note:

  

The

 

-L

 

flag

 

allows

 

only

 

one

 

path

 

to

 

be

 

specified,

 

and

 

you

 

can

 

use

 

this

 

flag

 

only

 

once.

 

For

 

source

 

code

 

files,

 

the

 

paths

 

recorded

 

in

 

the

 

specified

 

a.out

 

file

 

are

 

used.

 

Alternative

 

Paths

 

You

 

specify

 

the

 

alternative

 

paths

 

with

 

the

 

Set

 

File

 

Search

 

Paths

 

option

 

of

 

the

 

File

 

menu.

 

For

 

library

 

files,

 

if

 

everything

 

else

 

failed,

 

the

 

search

 

will

 

be

 

extended

 

to

 

the

 

path

 

(or

 

paths)

 

specified

 

by

 

the

 

LIBPATH

 

environment

 

variable

 

associated

 

with

 

the

 

executable

 

file.

 

To

 

specify

 

alternative

 

paths,

 

do

 

the

 

following:

 

1.

   

Select

 

the

 

File

 

menu,

 

and

 

then

 

the

 

Set

 

File

 

Search

 

Paths

 

option.

 

The

 

Alt

 

File

 

Search

 

Path

 

Dialog

 

window

 

appears.

 

2.

   

Enter

 

the

 

name

 

of

 

the

 

path

 

in

 

the

 

Enter

 

Alt

 

File

 

Search

 

Path(s)

 

text

 

field.

 

You

 

can

 

specify

 

more

 

than

 

one

 

path

 

by

 

separating

 

each

 

path

 

name

 

with

 

a

 

colon

 

(:)

 

or

 

a

 

space.

 

Notes:

  

a.

   

You

 

can

 

use

 

the

 

“at”

 

symbol

 

(@)

 

with

 

this

 

option

 

to

 

represent

 

the

 

default

 

file

 

path,

 

in

 

order

 

to

 

specify

 

that

 

other

 

paths

 

be

 

searched

 

before

 

the

 

default

 

path.

 

For

 

example,

 

to

 

set

 

the

 

alternative

 

file

 

search

 

paths

 

so

 

that

 

Xprofiler

 

searches

 

pathA,

 

the

 

default

 

path,

 

then

 

pathB,

 

type

 

pathA:@:pathB

 

in

 

the

 

Alt

 

File

 

Search

 

Path(s)

 

(-a)

 

field.

 

b.

   

If

 

@

 

is

 

used

 

in

 

the

 

alternative

 

search

 

path,

 

the

 

two

 

buttons

 

in

 

the

 

Alt

 

File

 

Search

 

Path

 

Dialog

 

window

 

will

 

be

 

unavailable,

 

and

 

will

 

have

 

no

 

effect

 

on

 

the

 

search

 

order.

3.

   

Click

 

the

 

OK

 

button.

 

The

 

paths

 

you

 

specified

 

in

 

the

 

text

 

field

 

become

 

the

 

alternative

 

paths.

  

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

19



Changing

 

the

 

Search

 

Sequence

 

You

 

can

 

change

 

the

 

order

 

of

 

the

 

search

 

sequence

 

for

 

library

 

files

 

and

 

source

 

code

 

files

 

using

 

the

 

Set

 

File

 

Search

 

Paths

 

option

 

of

 

the

 

File

 

menu.

 

To

 

change

 

the

 

search

 

sequence:

 

1.

   

Select

 

the

 

File

 

menu,

 

and

 

then

 

the

 

Set

 

File

 

Search

 

Paths

 

option.

 

The

 

Alt

 

File

 

Search

 

Path

 

Dialog

 

window

 

appears.

 

2.

   

To

 

indicate

 

that

 

the

 

file

 

search

 

should

 

use

 

alternative

 

paths

 

first,

 

click

 

the

 

Check

 

alternative

 

path(s)

 

first

 

button.

 

3.

   

Click

 

OK.

 

This

 

changes

 

the

 

search

 

sequence

 

to

 

the

 

following:

 

a.

   

Alternative

 

paths

 

b.

   

Default

 

paths

 

c.

   

Paths

 

specified

 

in

 

LIBPATH

 

(library

 

files

 

only)

To

 

return

 

the

 

search

 

sequence

 

back

 

to

 

its

 

default

 

order,

 

repeat

 

steps

 

1

 

through

 

3,

 

but

 

in

 

step

 

2,

 

click

 

the

 

Check

 

default

 

path(s)

 

first

 

button.

 

When

 

the

 

action

 

is

 

confirmed

 

(by

 

clicking

 

OK),

 

the

 

search

 

sequence

 

will

 

start

 

with

 

the

 

default

 

paths

 

again.

 

If

 

a

 

file

 

is

 

found

 

in

 

one

 

of

 

the

 

alternative

 

paths

 

or

 

a

 

path

 

in

 

LIBPATH,

 

this

 

path

 

now

 

becomes

 

the

 

default

 

path

 

for

 

this

 

file

 

throughout

 

the

 

current

 

Xprofiler

 

session

 

(until

 

you

 

exit

 

this

 

Xprofiler

 

session

 

or

 

load

 

a

 

new

 

set

 

of

 

data).

 

Understanding

 

the

 

Xprofiler

 

Display

 

The

 

primary

 

difference

 

between

 

Xprofiler

 

and

 

the

 

gprof

 

command

 

is

 

that

 

Xprofiler

 

gives

 

you

 

a

 

graphical

 

picture

 

of

 

your

 

application’s

 

CPU

 

consumption

 

in

 

addition

 

to

 

textual

 

data.

 

Xprofiler

 

displays

 

your

 

profiled

 

program

 

in

 

a

 

single

 

main

 

window.

 

It

 

uses

 

several

 

types

 

of

 

graphical

 

images

 

to

 

represent

 

the

 

relevant

 

parts

 

of

 

your

 

program.

 

Functions

 

appear

 

as

 

solid

 

green

 

boxes

 

(called

 

function

 

boxes),

 

and

 

the

 

calls

 

between

 

them

 

appear

 

as

 

blue

 

arrows

 

(called

 

call

 

arcs).

 

The

 

function

 

boxes

 

and

 

call

 

arcs

 

that

 

belong

 

to

 

each

 

library

 

within

 

your

 

application

 

appear

 

within

 

a

 

fenced-in

 

area

 

called

 

a

 

cluster

 

box.

 

Xprofiler

 

Main

 

Window

 

The

 

Xprofiler

 

main

 

window

 

contains

 

a

 

graphical

 

representation

 

of

 

the

 

functions

 

and

 

calls

 

within

 

your

 

application,

 

as

 

well

 

as

 

their

 

interrelationships.

 

The

 

window

 

provides

 

six

 

menus,

 

including

 

one

 

for

 

online

 

help.

 

When

 

an

 

application

 

has

 

been

 

loaded,

 

the

 

Xprofiler

 

main

 

window

 

looks

 

similar

 

to

 

the

 

following:

    

20

 

Performance

 

Tools

 

Guide

 

and

 

Reference



In

 

the

 

main

 

window,

 

Xprofiler

 

displays

 

the

 

function

 

call

 

tree.

 

The

 

function

 

call

 

tree

 

displays

 

the

 

function

 

boxes,

 

call

 

arcs,

 

and

 

cluster

 

boxes

 

that

 

represent

 

the

 

functions

 

within

 

your

 

application.

 

Note:

  

When

 

Xprofiler

 

first

 

opens,

 

by

 

default,

 

the

 

function

 

boxes

 

for

 

your

 

application

 

will

 

be

 

clustered

 

by

 

library.

 

A

 

cluster

 

box

 

appears

 

around

 

each

 

library,

 

and

 

the

 

function

 

boxes

 

and

 

arcs

 

within

 

the

 

cluster

 

box

 

are

 

reduced

 

in

 

size.

 

To

 

see

 

more

 

detail,

 

you

 

must

 

uncluster

 

the

 

functions.

 

To

 

do

 

this,

 

select

 

the

 

File

 

menu

 

and

 

then

 

the

 

Uncluster

 

Functions

 

option.

 

Xprofiler’s

 

Main

 

Menus

 

The

 

Xprofiler

 

menus

 

are

 

as

 

follows:

 

The

 

File

 

menu:

   

The

 

File

 

menu

 

lets

 

you

 

specify

 

the

 

executable

 

(a.out)

 

files

 

and

 

profile

 

data

 

(gmon.out)

 

files

 

that

 

Xprofiler

 

will

 

use.

 

It

 

also

 

lets

 

you

 

control

 

how

 

your

 

files

 

are

 

accessed

 

and

 

saved.

 

The

 

View

 

menu:

   

The

 

View

 

menu

 

lets

 

you

 

focus

 

on

 

specific

 

portions

 

of

 

the

 

function

 

call

 

tree

 

in

 

order

 

to

 

get

 

a

 

better

 

view

 

of

 

the

 

application’s

 

critical

 

areas.

   

Figure

 

6.

 

The

 

Xprofiler

 

main

 

window

 

with

 

application

 

loaded.

 

The

 

screen

 

capture

 

below

 

shows

 

one

 

function

 

box

 

displaying

 

a

 

function

 

call

 

tree,

 

with

 

an

 

arc

 

pointing

 

down

 

to

 

another

 

function

 

box

 

displaying

 

a

 

function

 

call

 

tree

 

in

 

the

 

Xprofiler

 

main

 

window.

  

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

21



The

 

Filter

 

menu:

   

The

 

Filter

 

menu

 

lets

 

you

 

add,

 

remove,

 

and

 

change

 

specific

 

parts

 

of

 

the

 

function

 

call

 

tree.

 

By

 

controlling

 

what

 

Xprofiler

 

displays,

 

you

 

can

 

focus

 

on

 

the

 

objects

 

that

 

are

 

most

 

important

 

to

 

you.

 

The

 

Report

 

menu:

   

The

 

Report

 

menu

 

provides

 

several

 

types

 

of

 

profiled

 

data

 

in

 

a

 

textual

 

and

 

tabular

 

format.

 

In

 

addition

 

to

 

presenting

 

the

 

profiled

 

data,

 

the

 

options

 

of

 

the

 

Report

 

menu

 

let

 

you

 

do

 

the

 

following:

 

v

   

Display

 

textual

 

data

 

v

   

Save

 

it

 

to

 

a

 

file

 

v

   

View

 

the

 

corresponding

 

source

 

code

 

v

   

Locate

 

the

 

corresponding

 

function

 

box

 

or

 

call

 

arc

 

in

 

the

 

function

 

call

 

tree

The

 

Utility

 

menu:

   

The

 

Utility

 

menu

 

contains

 

one

 

option,

 

Locate

 

Function

 

By

 

Name,

 

which

 

lets

 

you

 

highlight

 

a

 

particular

 

function

 

in

 

the

 

function

 

call

 

tree.

 

Xprofiler’s

 

Hidden

 

Menus

 

The

 

Function

 

menu:

   

The

 

Function

 

menu

 

lets

 

you

 

perform

 

a

 

number

 

of

 

operations

 

for

 

any

 

of

 

the

 

functions

 

shown

 

in

 

the

 

function

 

call

 

tree.

 

You

 

can

 

access

 

statistical

 

data,

 

look

 

at

 

source

 

code,

 

and

 

control

 

which

 

functions

 

are

 

displayed.

 

The

 

Function

 

menu

 

is

 

not

 

visible

 

from

 

the

 

Xprofiler

 

window.

 

You

 

access

 

it

 

by

 

right-clicking

 

on

 

the

 

function

 

box

 

of

 

the

 

function

 

in

 

which

 

you

 

are

 

interested.

 

By

 

doing

 

this,

 

you

 

open

 

the

 

Function

 

menu,

 

and

 

select

 

this

 

function

 

as

 

well.

 

Then,

 

when

 

you

 

select

 

actions

 

from

 

the

 

Function

 

menu,

 

the

 

actions

 

are

 

applied

 

to

 

this

 

function.

 

The

 

Arc

 

menu:

   

The

 

Arc

 

menu

 

lets

 

you

 

locate

 

the

 

caller

 

and

 

callee

 

functions

 

for

 

a

 

particular

 

call

 

arc.

 

A

 

call

 

arc

 

is

 

the

 

representation

 

of

 

a

 

call

 

between

 

two

 

functions

 

within

 

the

 

function

 

call

 

tree.

 

The

 

Arc

 

menu

 

is

 

not

 

visible

 

from

 

the

 

Xprofiler

 

window.

 

You

 

access

 

it

 

by

 

right-clicking

 

on

 

the

 

call

 

arc

 

in

 

which

 

you

 

are

 

interested.

 

By

 

doing

 

this,

 

you

 

open

 

the

 

Arc

 

menu,

 

and

 

select

 

that

 

call

 

arc

 

as

 

well.

 

Then,

 

when

 

you

 

perform

 

actions

 

with

 

the

 

Arc

 

menu,

 

they

 

are

 

applied

 

to

 

that

 

call

 

arc.

 

The

 

Cluster

 

Node

 

menu:

   

The

 

Cluster

 

Node

 

menu

 

lets

 

you

 

control

 

the

 

way

 

your

 

libraries

 

are

 

displayed

 

by

 

Xprofiler.

 

To

 

access

 

the

 

Cluster

 

Node

 

menu,

 

the

 

function

 

boxes

 

in

 

the

 

function

 

call

 

tree

 

must

 

first

 

be

 

clustered

 

by

 

library.

 

For

 

information

 

about

 

clustering

 

and

 

unclustering

 

the

 

function

 

boxes

 

of

 

your

 

application,

 

see

 

“Clustering

 

Libraries”

 

on

 

page

 

32.

 

When

 

the

 

function

 

call

 

tree

 

is

 

clustered,

 

all

 

the

 

function

 

boxes

 

within

 

each

 

library

 

appear

 

within

 

a

 

cluster

 

box.

 

The

 

Cluster

 

Node

 

menu

 

is

 

not

 

visible

 

from

 

the

 

Xprofiler

 

window.

 

You

 

access

 

it

 

by

 

right-clicking

 

on

 

the

 

edge

 

of

 

the

 

cluster

 

box

 

in

 

which

 

you

 

are

 

interested.

 

By

 

doing

 

this,

 

you

 

open

 

the

 

Cluster

 

Node

 

menu,

 

and

 

select

 

that

 

cluster

 

as

 

well.

 

Then,

 

when

 

you

 

perform

 

actions

 

with

 

the

 

Cluster

 

Node

 

menu,

 

they

 

are

 

applied

 

to

 

the

 

functions

 

within

 

that

 

library

 

cluster.

 

The

 

Display

 

Status

 

Field

 

At

 

the

 

bottom

 

of

 

the

 

Xprofiler

 

window

 

is

 

a

 

single

 

field

 

that

 

provides

 

the

 

following

 

information:

 

v

   

Name

 

of

 

your

 

application

 

v

   

Number

 

of

 

gmon.out

 

files

 

used

 

in

 

this

 

session

 

v

   

Total

 

amount

 

of

 

CPU

 

used

 

by

 

the

 

application

 

v

   

Number

 

of

 

functions

 

and

 

calls

 

in

 

your

 

application,

 

and

 

how

 

many

 

of

 

these

 

are

 

currently

 

displayed

How

 

Functions

 

are

 

Represented

 

Functions

 

are

 

represented

 

by

 

solid

 

green

 

boxes

 

in

 

the

 

function

 

call

 

tree.

 

The

 

size

 

and

 

shape

 

of

 

each

 

function

 

box

 

indicates

 

its

 

CPU

 

usage.

 

The

 

height

 

of

 

each

 

function

 

box

 

represents

 

the

 

amount

 

of

 

CPU

 

time

 

it

 

spent

 

on

 

executing

 

itself.

 

The

 

width

 

of

 

each

 

function

 

box

 

represents

 

the

 

amount

 

of

 

CPU

 

time

 

it

 

spent

 

executing

 

itself,

 

plus

 

its

 

descendant

 

functions.

   

22

 

Performance

 

Tools

 

Guide

 

and

 

Reference



This

 

type

 

of

 

representation

 

is

 

known

 

as

 

summary

 

mode.

 

In

 

summary

 

mode,

 

the

 

size

 

and

 

shape

 

of

 

each

 

function

 

box

 

is

 

determined

 

by

 

the

 

total

 

CPU

 

time

 

of

 

multiple

 

gmon.out

 

files

 

used

 

on

 

that

 

function

 

alone,

 

and

 

the

 

total

 

time

 

used

 

by

 

the

 

function

 

and

 

its

 

descendant

 

functions.

 

A

 

function

 

box

 

that

 

is

 

wide

 

and

 

flat

 

represents

 

a

 

function

 

that

 

uses

 

a

 

relatively

 

small

 

amount

 

of

 

CPU

 

on

 

itself

 

(it

 

spends

 

most

 

of

 

its

 

time

 

on

 

its

 

descendants).

 

The

 

function

 

box

 

for

 

a

 

function

 

that

 

spends

 

most

 

of

 

its

 

time

 

executing

 

only

 

itself

 

will

 

be

 

roughly

 

square-shaped.

 

Functions

 

can

 

also

 

be

 

represented

 

in

 

average

 

mode.

 

In

 

average

 

mode,

 

the

 

size

 

and

 

shape

 

of

 

each

 

function

 

box

 

is

 

determined

 

by

 

the

 

average

 

CPU

 

time

 

used

 

on

 

that

 

function

 

alone,

 

among

 

all

 

loaded

 

gmon.out

 

files,

 

and

 

the

 

standard

 

deviation

 

of

 

CPU

 

time

 

for

 

that

 

function

 

among

 

all

 

loaded

 

gmon.out

 

files.

 

The

 

height

 

of

 

each

 

function

 

node

 

represents

 

the

 

average

 

CPU

 

time,

 

among

 

all

 

the

 

input

 

gmon.out

 

files,

 

used

 

on

 

the

 

function

 

itself.

 

The

 

width

 

of

 

each

 

node

 

represents

 

the

 

standard

 

deviation

 

of

 

CPU

 

time,

 

among

 

the

 

gmon.out

 

files,

 

used

 

on

 

the

 

function

 

itself.

 

The

 

average

 

mode

 

representation

 

is

 

available

 

only

 

when

 

more

 

than

 

one

 

gmon.out

 

file

 

is

 

entered.

 

For

 

more

 

information

 

about

 

summary

 

mode

 

and

 

average

 

mode,

 

see

 

“Controlling

 

the

 

Representation

 

of

 

the

 

Function

 

Call

 

Tree”

 

on

 

page

 

26.

 

Under

 

each

 

function

 

box

 

in

 

the

 

function

 

call

 

tree

 

is

 

a

 

label

 

that

 

contains

 

the

 

name

 

of

 

the

 

function

 

and

 

related

 

CPU

 

usage

 

data.

 

For

 

information

 

about

 

the

 

function

 

box

 

labels,

 

see

 

“Obtaining

 

Basic

 

Data”

 

on

 

page

 

37.

 

The

 

following

 

figure

 

shows

 

the

 

function

 

boxes

 

for

 

two

 

functions,

 

sub1

 

and

 

printf,

 

as

 

they

 

would

 

appear

 

in

 

the

 

Xprofiler

 

display.

    

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

23



Each

 

function

 

box

 

has

 

its

 

own

 

menu.

 

To

 

access

 

it,

 

place

 

your

 

mouse

 

cursor

 

over

 

the

 

function

 

box

 

of

 

the

 

function

 

you

 

are

 

interested

 

in

 

and

 

press

 

the

 

right

 

mouse

 

button.

 

Each

 

function

 

also

 

has

 

an

 

information

 

box

 

that

 

lets

 

you

 

get

 

basic

 

performance

 

numbers

 

quickly.

 

To

 

access

 

the

 

information

 

box,

 

place

 

your

 

mouse

 

cursor

 

over

 

the

 

function

 

box

 

of

 

the

 

function

 

you

 

are

 

interested

 

in

 

and

 

press

 

the

 

left

 

mouse

 

button.

 

How

 

Calls

 

Between

 

Functions

 

are

 

Depicted

 

The

 

calls

 

made

 

between

 

each

 

of

 

the

 

functions

 

in

 

the

 

function

 

call

 

tree

 

are

 

represented

 

by

 

blue

 

arrows

 

extending

 

between

 

their

 

corresponding

 

function

 

boxes.

 

These

 

lines

 

are

 

called

 

call

 

arcs.

 

Each

 

call

 

arc

 

appears

 

as

 

a

 

solid

 

blue

 

line

 

between

 

two

 

functions.

 

The

 

arrowhead

 

indicates

 

the

 

direction

 

of

 

the

 

call;

 

the

 

function

 

represented

 

by

 

the

 

function

 

box

 

it

 

points

 

to

 

is

 

the

 

one

 

that

 

receives

 

the

 

call.

 

The

 

function

 

making

 

the

 

call

 

is

 

known

 

as

 

the

 

caller,

 

while

 

the

 

function

 

receiving

 

the

 

call

 

is

 

known

 

as

 

the

 

callee.

 

Each

 

call

 

arc

 

includes

 

a

 

numeric

 

label

 

that

 

indicates

 

how

 

many

 

calls

 

were

 

exchanged

 

between

 

the

 

two

 

corresponding

 

functions.

 

Each

 

call

 

arc

 

has

 

its

 

own

 

menu

 

that

 

lets

 

you

 

locate

 

the

 

function

 

boxes

 

for

 

its

 

caller

 

and

 

callee

 

functions.

 

To

 

access

 

it,

 

place

 

your

 

mouse

 

cursor

 

over

 

the

 

call

 

arc

 

for

 

the

 

call

 

in

 

which

 

you

 

are

 

interested,

 

and

 

press

 

the

 

right

 

mouse

 

button.

 

Each

 

call

 

arc

 

also

 

has

 

an

 

information

 

box

 

that

 

shows

 

you

 

the

 

number

 

of

 

times

 

the

 

caller

 

function

 

called

 

the

 

callee

 

function.

 

To

 

access

 

the

 

information

 

box,

 

place

 

your

 

mouse

 

cursor

 

over

 

the

 

call

 

arc

 

for

 

the

 

call

 

in

 

which

 

you

 

are

 

interested,

 

and

 

press

 

the

 

left

 

mouse

 

button.

   

Figure

 

7.

 

Function

 

boxes

 

and

 

arcs

 

in

 

the

 

Xprofiler

 

display.

 

The

 

screen

 

capture

 

below

 

shows

 

a

 

large

 

function

 

box

 

for

 

the

 

sub1

 

function

 

at

 

the

 

top

 

and

 

a

 

small

 

function

 

box

 

for

 

the

 

printf

 

function

 

at

 

the

 

bottom.

  

24

 

Performance

 

Tools

 

Guide

 

and

 

Reference



How

 

Library

 

Clusters

 

are

 

Represented

 

Xprofiler

 

lets

 

you

 

collect

 

the

 

function

 

boxes

 

and

 

call

 

arcs

 

that

 

belong

 

to

 

each

 

of

 

your

 

shared

 

libraries

 

into

 

cluster

 

boxes.

 

Because

 

there

 

will

 

be

 

a

 

box

 

around

 

each

 

library,

 

the

 

individual

 

function

 

boxes

 

and

 

call

 

arcs

 

will

 

be

 

difficult

 

to

 

see.

 

If

 

you

 

want

 

to

 

see

 

more

 

detail,

 

you

 

must

 

uncluster

 

the

 

function

 

boxes.

 

To

 

do

 

this,

 

select

 

the

 

Filter

 

menu

 

and

 

then

 

the

 

Uncluster

 

Functions

 

option.

 

When

 

viewing

 

function

 

boxes

 

within

 

a

 

cluster

 

box,

 

note

 

that

 

the

 

size

 

of

 

each

 

function

 

box

 

is

 

relative

 

to

 

those

 

of

 

the

 

other

 

functions

 

within

 

the

 

same

 

library

 

cluster.

 

On

 

the

 

other

 

hand,

 

when

 

all

 

the

 

libraries

 

are

 

unclustered,

 

the

 

size

 

of

 

each

 

function

 

box

 

is

 

relative

 

to

 

all

 

the

 

functions

 

in

 

the

 

application

 

(as

 

shown

 

in

 

the

 

function

 

call

 

tree).

 

Each

 

library

 

cluster

 

has

 

its

 

own

 

menu

 

that

 

lets

 

you

 

manipulate

 

the

 

cluster

 

box.

 

To

 

access

 

it,

 

place

 

your

 

mouse

 

cursor

 

over

 

the

 

edge

 

of

 

the

 

cluster

 

box

 

you

 

are

 

interested

 

in,

 

and

 

press

 

the

 

right

 

mouse

 

button.

 

Each

 

cluster

 

also

 

has

 

an

 

information

 

box

 

that

 

shows

 

you

 

the

 

name

 

of

 

the

 

library

 

and

 

the

 

total

 

CPU

 

usage

 

(in

 

seconds)

 

consumed

 

by

 

the

 

functions

 

within

 

it.

 

To

 

access

 

the

 

information

 

box,

 

place

 

your

 

mouse

 

cursor

 

over

 

the

 

edge

 

of

 

the

 

cluster

 

box

 

you

 

are

 

interested

 

in

 

and

 

press

 

the

 

left

 

mouse

 

button.

 

Controlling

 

how

 

the

 

Display

 

is

 

Updated

 

The

 

Utility

 

menu

 

of

 

the

 

Overview

 

Window

 

lets

 

you

 

choose

 

the

 

mode

 

in

 

which

 

the

 

display

 

is

 

updated.

 

The

 

default

 

is

 

the

 

Immediate

 

Update

 

option,

 

which

 

causes

 

the

 

display

 

to

 

show

 

you

 

the

 

items

 

in

 

the

 

highlight

 

area

 

as

 

you

 

are

 

moving

 

it

 

around.

 

The

 

Delayed

 

Update

 

option,

 

on

 

the

 

other

 

hand,

 

causes

 

the

 

display

 

to

 

be

 

updated

 

only

 

when

 

you

 

have

 

moved

 

the

 

highlight

 

area

 

over

 

the

 

area

 

in

 

which

 

you

 

are

 

interested,

 

and

 

released

 

the

 

mouse

 

button.

 

The

 

Immediate

 

Update

 

option

 

applies

 

only

 

to

 

what

 

you

 

see

 

when

 

you

 

move

 

the

 

highlight

 

area;

 

it

 

has

 

no

 

effect

 

on

 

the

 

resizing

 

of

 

items

 

in

 

highlight

 

area,

 

which

 

is

 

always

 

delayed.

 

Other

 

Viewing

 

Options

 

Xprofiler

 

lets

 

you

 

change

 

the

 

way

 

it

 

displays

 

the

 

function

 

call

 

tree,

 

based

 

on

 

your

 

personal

 

preferences.

 

Controlling

 

the

 

Graphic

 

Style

 

of

 

the

 

Function

 

Call

 

Tree

 

You

 

can

 

choose

 

between

 

two-dimensional

 

and

 

three-dimensional

 

function

 

boxes

 

in

 

the

 

function

 

call

 

tree.

 

The

 

default

 

style

 

is

 

two-dimensional.

 

To

 

change

 

to

 

three-dimensional,

 

select

 

the

 

View

 

menu,

 

and

 

then

 

the

 

3-D

 

Image

 

option.

 

The

 

function

 

boxes

 

in

 

the

 

function

 

call

 

tree

 

now

 

appear

 

in

 

three-dimensional

 

format.

 

Controlling

 

the

 

Orientation

 

of

 

the

 

Function

 

Call

 

Tree

 

You

 

can

 

choose

 

to

 

have

 

Xprofiler

 

display

 

the

 

function

 

call

 

tree

 

in

 

either

 

top-to-bottom

 

or

 

left-to-right

 

format.

 

The

 

default

 

is

 

top-to-bottom.

 

To

 

see

 

the

 

function

 

call

 

tree

 

displayed

 

in

 

left-to-right

 

format,

 

select

 

the

 

View

 

menu,

 

and

 

then

 

the

 

Layout:

 

Left→Right

 

option.

 

The

 

function

 

call

 

tree

 

now

 

displays

 

in

 

left-to-right

 

format,

 

as

 

shown

 

below.

    

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

25



Controlling

 

the

 

Representation

 

of

 

the

 

Function

 

Call

 

Tree

 

You

 

can

 

choose

 

to

 

have

 

Xprofiler

 

represent

 

the

 

function

 

call

 

tree

 

in

 

either

 

summary

 

mode

 

or

 

average

 

mode.

 

When

 

you

 

select

 

the

 

Summary

 

Mode

 

option

 

of

 

the

 

View

 

menu,

 

the

 

size

 

and

 

shape

 

of

 

each

 

function

 

box

 

is

 

determined

 

by

 

the

 

total

 

CPU

 

time

 

of

 

multiple

 

gmon.out

 

files

 

used

 

on

 

that

 

function

 

alone,

 

and

 

the

 

total

 

time

 

used

 

by

 

the

 

function

 

and

 

its

 

descendant

 

functions.

 

The

 

height

 

of

 

each

 

function

 

node

 

represents

 

the

 

total

 

CPU

 

time

 

used

 

on

 

the

 

function

 

itself.

 

The

 

width

 

of

 

each

 

node

 

represents

 

the

 

total

 

CPU

 

time

 

used

 

on

 

the

 

function

 

and

 

its

 

descendant

 

functions.

 

When

 

the

 

display

 

is

 

in

 

summary

 

mode,

 

the

 

Summary

 

Mode

 

option

 

is

 

unavailable

 

and

 

the

 

Average

 

Mode

 

option

 

is

 

activated.

 

When

 

you

 

select

 

the

 

Average

 

Mode

 

option

 

of

 

the

 

View

 

menu,

 

the

 

size

 

and

 

shape

 

of

 

each

 

function

 

box

 

is

 

determined

 

by

 

the

 

average

 

CPU

 

time

 

used

 

on

 

that

 

function

 

alone,

 

among

 

all

 

loaded

 

gmon.out

 

files,

 

and

 

the

 

standard

 

deviation

 

of

 

CPU

 

time

 

for

 

that

 

function

 

among

 

all

 

loaded

 

gmon.out

 

files.

 

The

 

height

 

of

 

each

   

Figure

 

8.

 

Left-to-right

 

format.

 

The

 

screen

 

capture

 

below

 

shows

 

a

 

function

 

call

 

tree

 

with

 

three

 

different

 

function

 

boxes

 

from

 

left

 

to

 

right.

  

26

 

Performance

 

Tools

 

Guide

 

and

 

Reference



function

 

node

 

represents

 

the

 

average

 

CPU

 

time,

 

among

 

all

 

the

 

input

 

gmon.out

 

files,

 

used

 

on

 

the

 

function

 

itself.

 

The

 

width

 

of

 

each

 

node

 

represents

 

the

 

standard

 

deviation

 

of

 

CPU

 

time,

 

among

 

the

 

gmon.out

 

files,

 

used

 

on

 

the

 

function

 

itself.

 

The

 

purpose

 

of

 

average

 

mode

 

is

 

to

 

reveal

 

workload

 

balancing

 

problems

 

when

 

an

 

application

 

is

 

involved

 

with

 

multiple

 

gmon.out

 

files.

 

In

 

general,

 

a

 

function

 

node

 

with

 

large

 

standard

 

deviation

 

has

 

a

 

wide

 

width,

 

and

 

a

 

node

 

with

 

small

 

standard

 

deviation

 

has

 

a

 

slim

 

width.

 

Both

 

summary

 

mode

 

and

 

average

 

mode

 

affect

 

only

 

the

 

appearance

 

of

 

the

 

function

 

call

 

tree

 

and

 

the

 

labels

 

associated

 

with

 

it.

 

All

 

the

 

performance

 

data

 

in

 

Xprofiler

 

reports

 

and

 

code

 

displays

 

are

 

always

 

summary

 

data.

 

If

 

only

 

one

 

gmon.out

 

file

 

is

 

specified,

 

Summary

 

Mode

 

and

 

Average

 

Mode

 

will

 

be

 

unavailable,

 

and

 

the

 

display

 

is

 

always

 

in

 

Summary

 

Mode.

 

Filtering

 

what

 

You

 

See

 

When

 

Xprofiler

 

first

 

opens,

 

the

 

entire

 

function

 

call

 

tree

 

appears

 

in

 

the

 

main

 

window.

 

This

 

includes

 

the

 

function

 

boxes

 

and

 

call

 

arcs

 

that

 

belong

 

to

 

your

 

executable

 

file

 

as

 

well

 

as

 

the

 

shared

 

libraries

 

that

 

it

 

uses.

 

You

 

can

 

simplify

 

what

 

you

 

see

 

in

 

the

 

main

 

window,

 

and

 

there

 

are

 

several

 

ways

 

to

 

do

 

this.

 

Note:

  

Filtering

 

options

 

of

 

the

 

Filter

 

menu

 

let

 

you

 

change

 

the

 

appearance

 

only

 

of

 

the

 

function

 

call

 

tree.

 

The

 

performance

 

data

 

contained

 

in

 

the

 

reports

 

(through

 

the

 

Reports

 

menu)

 

is

 

not

 

affected.

 

Restoring

 

the

 

Status

 

of

 

the

 

Function

 

Call

 

Tree

 

Xprofiler

 

allows

 

you

 

to

 

undo

 

operations

 

that

 

involve

 

adding

 

or

 

removing

 

nodes

 

and

 

arcs

 

from

 

the

 

function

 

call

 

tree.

 

When

 

you

 

undo

 

an

 

operation,

 

you

 

reverse

 

the

 

effect

 

of

 

any

 

operation

 

which

 

adds

 

or

 

removes

 

function

 

boxes

 

or

 

call

 

arcs

 

to

 

the

 

function

 

call

 

tree.

 

When

 

you

 

select

 

the

 

Undo

 

option,

 

the

 

function

 

call

 

tree

 

is

 

returned

 

to

 

its

 

appearance

 

just

 

prior

 

to

 

the

 

performance

 

of

 

the

 

add

 

or

 

remove

 

operation.

 

To

 

undo

 

an

 

operation,

 

select

 

the

 

Filter

 

menu,

 

and

 

then

 

the

 

Undo

 

option.

 

The

 

function

 

call

 

tree

 

is

 

returned

 

to

 

its

 

appearance

 

just

 

prior

 

to

 

the

 

performance

 

of

 

the

 

add

 

or

 

remove

 

operation.

 

Whenever

 

you

 

invoke

 

the

 

Undo

 

option,

 

the

 

function

 

call

 

tree

 

loses

 

its

 

zoom

 

focus

 

and

 

zooms

 

all

 

the

 

way

 

out

 

to

 

reveal

 

the

 

entire

 

function

 

call

 

tree

 

in

 

the

 

main

 

display.

 

When

 

you

 

start

 

Xprofiler,

 

the

 

Undo

 

option

 

is

 

unavailable.

 

It

 

is

 

activated

 

only

 

after

 

an

 

add

 

or

 

remove

 

operation

 

involving

 

the

 

function

 

call

 

tree

 

takes

 

place.

 

After

 

you

 

undo

 

an

 

operation,

 

the

 

option

 

is

 

made

 

unavailable

 

again

 

until

 

the

 

next

 

add

 

or

 

remove

 

operation

 

takes

 

place.

 

The

 

options

 

that

 

activate

 

the

 

Undo

 

option

 

include

 

the

 

following:

 

v

   

In

 

the

 

main

 

File

 

menu:

 

–

   

Load

 

Configuration

v

   

In

 

the

 

main

 

Filter

 

menu:

 

–

   

Show

 

Entire

 

Call

 

Tree

 

–

   

Hide

 

All

 

Library

 

Calls

 

–

   

Add

 

Library

 

Calls

 

–

   

Filter

 

by

 

Function

 

Names

 

–

   

Filter

 

by

 

CPU

 

Time

 

–

   

Filter

 

by

 

Call

 

Counts

v

   

In

 

the

 

Function

 

menu:

 

–

   

Immediate

 

Parents

 

–

   

All

 

Paths

 

To

 

–

   

Immediate

 

Children

 

–

   

All

 

Paths

 

From

 

–

   

All

 

Functions

 

on

 

The

 

Cycle

 

–

   

Show

 

This

 

Function

 

Only

 

–

   

Hide

 

This

 

Function

 

–

   

Hide

 

Descendant

 

Functions

   

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

27



–

   

Hide

 

This

 

&

 

Descendant

 

Functions

If

 

a

 

dialog

 

such

 

as

 

the

 

Load

 

Configuration

 

Dialog

 

or

 

the

 

Filter

 

by

 

CPU

 

Time

 

Dialog

 

is

 

invoked

 

and

 

then

 

canceled

 

immediately,

 

the

 

status

 

of

 

the

 

Undo

 

option

 

is

 

not

 

affected.

 

After

 

the

 

option

 

is

 

available,

 

it

 

stays

 

that

 

way

 

until

 

you

 

invoke

 

it,

 

or

 

a

 

new

 

set

 

of

 

files

 

is

 

loaded

 

into

 

Xprofiler

 

through

 

the

 

Load

 

Files

 

Dialog

 

window.

 

Displaying

 

the

 

Entire

 

Function

 

Call

 

Tree

 

When

 

you

 

first

 

open

 

Xprofiler,

 

by

 

default,

 

all

 

the

 

function

 

boxes

 

and

 

call

 

arcs

 

of

 

your

 

executable

 

and

 

its

 

shared

 

libraries

 

appear

 

in

 

the

 

main

 

window.

 

After

 

that,

 

you

 

may

 

choose

 

to

 

filter

 

out

 

specific

 

items

 

from

 

the

 

window.

 

However,

 

there

 

may

 

be

 

times

 

when

 

you

 

want

 

to

 

see

 

the

 

entire

 

function

 

call

 

tree

 

again,

 

without

 

having

 

to

 

reload

 

your

 

application.

 

To

 

do

 

this,

 

select

 

the

 

Filter

 

menu,

 

and

 

then

 

the

 

Show

 

Entire

 

Call

 

Tree

 

option.

 

Xprofiler

 

erases

 

whatever

 

is

 

currently

 

displayed

 

in

 

the

 

main

 

window

 

and

 

replaces

 

it

 

with

 

the

 

entire

 

function

 

call

 

tree.

 

Excluding

 

and

 

including

 

specific

 

objects

 

There

 

are

 

a

 

number

 

of

 

ways

 

that

 

Xprofiler

 

lets

 

you

 

control

 

the

 

items

 

that

 

display

 

in

 

the

 

main

 

window.

 

You

 

will

 

want

 

to

 

include

 

or

 

exclude

 

certain

 

objects

 

so

 

that

 

you

 

can

 

more

 

easily

 

focus

 

on

 

the

 

things

 

that

 

are

 

of

 

most

 

interest

 

to

 

you.

 

Filtering

 

Shared

 

Library

 

Functions

 

In

 

most

 

cases,

 

your

 

application

 

will

 

call

 

functions

 

that

 

are

 

within

 

shared

 

libraries.

 

By

 

default,

 

these

 

shared

 

libraries

 

display

 

in

 

the

 

Xprofiler

 

window

 

along

 

with

 

your

 

executable

 

file.

 

As

 

a

 

result,

 

the

 

window

 

may

 

get

 

crowded

 

and

 

obscure

 

the

 

items

 

that

 

you

 

most

 

need

 

to

 

see.

 

If

 

this

 

is

 

the

 

case,

 

you

 

can

 

filter

 

the

 

shared

 

libraries

 

from

 

the

 

display.

 

To

 

do

 

this,

 

select

 

the

 

Filter

 

menu,

 

and

 

then

 

the

 

Remove

 

All

 

Library

 

Calls

 

option.

 

The

 

shared

 

library

 

function

 

boxes

 

disappear

 

from

 

the

 

function

 

call

 

tree,

 

leaving

 

only

 

the

 

function

 

boxes

 

of

 

your

 

executable

 

file

 

visible.

 

If

 

you

 

removed

 

the

 

library

 

calls

 

from

 

the

 

display,

 

you

 

may

 

want

 

to

 

restore

 

them.

 

To

 

do

 

this,

 

select

 

the

 

File

 

menu

 

and

 

then

 

the

 

Add

 

Library

 

Calls

 

option.

 

The

 

function

 

boxes

 

again

 

appear

 

with

 

the

 

function

 

call

 

tree.

 

Note,

 

however,

 

that

 

all

 

of

 

the

 

shared

 

library

 

calls

 

that

 

were

 

in

 

the

 

initial

 

function

 

call

 

tree

 

may

 

not

 

be

 

added

 

back.

 

This

 

is

 

because

 

the

 

Add

 

Library

 

Calls

 

option

 

only

 

adds

 

back

 

in

 

the

 

function

 

boxes

 

for

 

the

 

library

 

functions

 

that

 

were

 

called

 

by

 

functions

 

that

 

are

 

currently

 

displayed

 

in

 

the

 

Xprofiler

 

window.

 

To

 

add

 

only

 

specific

 

function

 

boxes

 

back

 

into

 

the

 

display,

 

do

 

the

 

following:

 

1.

   

Select

 

the

 

Filter

 

menu,

 

and

 

then

 

the

 

Filter

 

by

 

Function

 

Names

 

option.

 

The

 

Filter

 

By

 

Function

 

Names

 

dialog

 

window

 

appears.

 

2.

   

From

 

the

 

Filter

 

By

 

Function

 

Names

 

Dialog

 

window,

 

click

 

the

 

add

 

these

 

functions

 

to

 

graph

 

button,

 

and

 

then

 

type

 

the

 

name

 

of

 

the

 

function

 

you

 

want

 

to

 

add

 

in

 

the

 

Enter

 

function

 

name

 

field.

 

If

 

you

 

enter

 

more

 

than

 

one

 

function

 

name,

 

you

 

must

 

separate

 

them

 

with

 

a

 

blank

 

space

 

between

 

each

 

function

 

name

 

string.

 

If

 

there

 

are

 

multiple

 

functions

 

in

 

your

 

program

 

that

 

include

 

the

 

string

 

you

 

enter

 

in

 

their

 

names,

 

the

 

filter

 

applies

 

to

 

each

 

one.

 

For

 

example,

 

if

 

you

 

specified

 

sub

 

and

 

print,

 

and

 

your

 

program

 

also

 

included

 

functions

 

named

 

sub1,

 

psub1,

 

and

 

printf.

 

The

 

sub,

 

sub1,

 

psub1,

 

print,

 

and

 

printf

 

functions

 

would

 

all

 

be

 

added

 

to

 

the

 

graph.

 

3.

   

Click

 

OK.

 

One

 

or

 

more

 

function

 

boxes

 

appears

 

in

 

the

 

Xprofiler

 

display

 

with

 

the

 

function

 

call

 

tree.

Filtering

 

by

 

Function

 

Characteristics

 

The

 

Filter

 

menu

 

of

 

Xprofiler

 

offers

 

the

 

following

 

options

 

that

 

allow

 

you

 

to

 

add

 

or

 

subtract

 

function

 

boxes

 

from

 

the

 

main

 

window,

 

based

 

on

 

specific

 

characteristics:

   

28

 

Performance

 

Tools

 

Guide

 

and

 

Reference



v

   

Filter

 

by

 

Function

 

Names

 

v

   

Filter

 

by

 

CPU

 

Time

 

v

   

Filter

 

by

 

Call

 

Counts

Each

 

option

 

uses

 

a

 

different

 

window

 

to

 

let

 

you

 

specify

 

the

 

criteria

 

by

 

which

 

you

 

want

 

to

 

include

 

or

 

exclude

 

function

 

boxes

 

from

 

the

 

window.

 

To

 

filter

 

by

 

function

 

names,

 

do

 

the

 

following:

 

1.

   

Select

 

the

 

Filter

 

menu

 

and

 

then

 

the

 

Filter

 

by

 

Function

 

Names

 

option.

 

The

 

following

 

Filter

 

By

 

Function

 

Names

 

Dialog

 

window

 

appears:

   

The

 

Filter

 

By

 

Function

 

Names

 

Dialog

 

window

 

includes

 

the

 

following

 

options:

 

v

   

add

 

these

 

functions

 

to

 

graph

 

v

   

remove

 

these

 

functions

 

from

 

the

 

graph

 

v

   

display

 

only

 

these

 

functions

2.

   

From

 

the

 

Filter

 

By

 

Function

 

Names

 

Dialog

 

window,

 

select

 

the

 

option,

 

and

 

then

 

type

 

the

 

name

 

of

 

the

 

function

 

(or

 

functions)

 

to

 

which

 

you

 

want

 

it

 

applied

 

in

 

the

 

Enter

 

function

 

name

 

field.

 

For

 

example,

 

if

 

you

 

want

 

to

 

remove

 

the

 

function

 

box

 

for

 

a

 

function

 

called

 

printf

 

from

 

the

 

main

 

window,

 

click

 

the

 

remove

 

this

 

function

 

from

 

the

 

graph

 

button,

 

and

 

type

 

printf

 

in

 

the

 

Enter

 

function

 

name

 

field.

 

You

 

can

 

enter

 

more

 

than

 

one

 

function

 

name

 

in

 

this

 

field.

 

If

 

there

 

are

 

multiple

 

functions

 

in

 

your

 

program

 

that

 

include

 

the

 

string

 

you

 

enter

 

in

 

their

 

names,

 

the

 

filter

 

will

 

apply

 

to

 

each

 

one.

 

For

 

example,

 

if

 

you

 

specified

 

sub

 

and

 

print,

 

and

 

your

 

program

 

also

 

included

 

functions

 

named

 

sub1,

 

psub1,

 

and

 

printf,

 

the

 

option

 

you

 

chose

 

would

 

be

 

applied

 

to

 

the

 

sub,

 

sub1,

 

psub1,

 

print,

 

and

 

printf

 

functions.

 

3.

   

Click

 

OK.

 

The

 

contents

 

of

 

the

 

function

 

call

 

tree

 

now

 

reflect

 

the

 

filtering

 

options

 

you

 

specified.

To

 

filter

 

by

 

CPU

 

time,

 

do

 

the

 

following:

 

1.

   

Select

 

the

 

Filter

 

menu

 

and

 

then

 

the

 

Filter

 

by

 

CPU

 

Time

 

option.

 

The

 

following

 

Filter

 

By

 

CPU

 

Time

 

Dialog

 

window

 

appears:

   

Figure

 

9.

 

The

 

Filter

 

By

 

Function

 

Names

 

Dialog

 

window.

 

The

 

screen

 

capture

 

below

 

shows

 

the

 

Filter

 

By

 

Function

 

Names

 

Dialog

 

window.

 

There

 

are

 

three

 

check

 

boxes:

 

Add

 

these

 

functions

 

to

 

graph,

 

Remove

 

these

 

functions

 

from

 

graph,

 

and

 

Display

 

only

 

these

 

functions.

 

There

 

is

 

an

 

Enter

 

Function

 

Name

 

box,

 

where

 

regular

 

expressions

 

are

 

supported,

 

and

 

below

 

it

 

there

 

are

 

four

 

buttons:

 

OK,

 

Apply,

 

Cancel,

 

and

 

Help.

  

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

29



The

 

Filter

 

By

 

CPU

 

Time

 

Dialog

 

window

 

includes

 

the

 

following

 

options:

 

v

   

show

 

functions

 

consuming

 

the

 

most

 

CPU

 

time

 

v

   

show

 

functions

 

consuming

 

the

 

least

 

CPU

 

time

2.

   

Select

 

the

 

option

 

you

 

want

 

(show

 

functions

 

consuming

 

the

 

most

 

CPU

 

time

 

is

 

the

 

default).

 

3.

   

Select

 

the

 

number

 

of

 

functions

 

to

 

which

 

you

 

want

 

it

 

applied

 

(1

 

is

 

the

 

default).

 

You

 

can

 

move

 

the

 

slider

 

in

 

the

 

Functions

 

bar

 

until

 

the

 

desired

 

number

 

appears,

 

or

 

you

 

can

 

enter

 

the

 

number

 

in

 

the

 

Slider

 

Value

 

field.

 

The

 

slider

 

and

 

Slider

 

Value

 

field

 

are

 

synchronized

 

so

 

when

 

the

 

slider

 

is

 

updated,

 

the

 

text

 

field

 

value

 

is

 

updated

 

also.

 

If

 

you

 

enter

 

a

 

value

 

in

 

the

 

text

 

field,

 

the

 

slider

 

is

 

updated

 

to

 

that

 

value

 

when

 

you

 

click

 

Apply

 

or

 

OK.

 

For

 

example,

 

to

 

display

 

the

 

function

 

boxes

 

for

 

the

 

10

 

functions

 

in

 

your

 

application

 

that

 

consumed

 

the

 

most

 

CPU,

 

you

 

would

 

select

 

the

 

show

 

functions

 

consuming

 

the

 

most

 

CPU

 

button,

 

and

 

specify

 

10

 

with

 

the

 

slider

 

or

 

enter

 

the

 

value

 

10

 

in

 

the

 

text

 

field.

 

4.

   

Click

 

Apply

 

to

 

show

 

the

 

changes

 

to

 

the

 

function

 

call

 

tree

 

without

 

closing

 

the

 

dialog.

 

Click

 

OK

 

to

 

show

 

the

 

changes

 

and

 

close

 

the

 

dialog.

To

 

filter

 

by

 

call

 

counts,

 

do

 

the

 

following:

 

1.

   

Select

 

the

 

Filter

 

menu

 

and

 

then

 

the

 

Filter

 

by

 

Call

 

Counts

 

option.

 

The

 

Filter

 

By

 

Call

 

Counts

 

Dialog

 

window

 

appears.

    

Figure

 

10.

 

The

 

Filter

 

By

 

CPU

 

Time

 

Dialog

 

window.

 

The

 

screen

 

capture

 

below

 

shows

 

the

 

Filter

 

By

 

CPU

 

Time

 

Dialog

 

window.

 

At

 

the

 

top,

 

the

 

user

 

can

 

select

 

the

 

Number

 

of

 

Functions

 

To

 

Be

 

Displayed

 

by

 

either

 

using

 

the

 

sliding

 

bar

 

to

 

increase

 

the

 

value

 

or

 

type

 

in

 

the

 

number

 

in

 

the

 

Slider

 

Value

 

box.

 

Then,

 

there

 

are

 

two

 

check

 

boxes:

 

Show

 

functions

 

consuming

 

the

 

most

 

CPU

 

time,

 

and

 

Show

 

functions

 

consuming

 

the

 

least

 

CPU

 

time.

 

At

 

the

 

bottom,

 

there

 

are

 

four

 

buttons:

 

OK,

 

Apply,

 

Cancel,

 

and

 

Help.

  

30

 

Performance

 

Tools

 

Guide

 

and

 

Reference



The

 

Filter

 

By

 

Call

 

Counts

 

Dialog

 

window

 

includes

 

the

 

following

 

options:

 

v

   

show

 

arcs

 

with

 

the

 

most

 

call

 

counts

 

v

   

show

 

arcs

 

with

 

the

 

least

 

call

 

counts

2.

   

Select

 

the

 

option

 

you

 

want

 

(show

 

arcs

 

with

 

the

 

most

 

call

 

counts

 

is

 

the

 

default).

 

3.

   

Select

 

the

 

number

 

of

 

call

 

arcs

 

to

 

which

 

you

 

want

 

it

 

applied

 

(1

 

is

 

the

 

default).

 

If

 

you

 

enter

 

a

 

value

 

in

 

the

 

text

 

field,

 

the

 

slider

 

is

 

updated

 

to

 

that

 

value

 

when

 

you

 

click

 

Apply

 

or

 

OK.

 

For

 

example,

 

to

 

display

 

the

 

10

 

call

 

arcs

 

in

 

your

 

application

 

that

 

represented

 

the

 

least

 

number

 

of

 

calls,

 

you

 

would

 

select

 

the

 

show

 

arcs

 

with

 

the

 

least

 

call

 

counts

 

button,

 

and

 

specify

 

10

 

with

 

the

 

slider

 

or

 

enter

 

the

 

value

 

10

 

in

 

the

 

text

 

field.

 

4.

   

Click

 

Apply

 

to

 

show

 

the

 

changes

 

to

 

the

 

function

 

call

 

tree

 

without

 

closing

 

the

 

dialog.

 

Click

 

OK

 

to

 

show

 

the

 

changes

 

and

 

close

 

the

 

dialog.

Including

 

and

 

excluding

 

parent

 

and

 

child

 

functions

 

When

 

tuning

 

the

 

performance

 

of

 

your

 

application,

 

you

 

will

 

want

 

to

 

know

 

which

 

functions

 

consumed

 

the

 

most

 

CPU

 

time,

 

and

 

then

 

you

 

will

 

need

 

to

 

ask

 

several

 

questions

 

in

 

order

 

to

 

understand

 

their

 

behavior:

 

v

   

Where

 

did

 

each

 

function

 

spend

 

most

 

of

 

the

 

CPU

 

time?

 

v

   

What

 

other

 

functions

 

called

 

this

 

function?

 

Were

 

the

 

calls

 

made

 

directly

 

or

 

indirectly?

 

v

   

What

 

other

 

functions

 

did

 

this

 

function

 

call?

 

Were

 

the

 

calls

 

made

 

directly

 

or

 

indirectly?

After

 

you

 

understand

 

how

 

these

 

functions

 

behave,

 

and

 

are

 

able

 

to

 

improve

 

their

 

performance,

 

you

 

can

 

proceed

 

to

 

analyzing

 

the

 

functions

 

that

 

consume

 

less

 

CPU.

 

When

 

your

 

application

 

is

 

large,

 

the

 

function

 

call

 

tree

 

will

 

also

 

be

 

large.

 

As

 

a

 

result,

 

the

 

functions

 

that

 

are

 

the

 

most

 

CPU-intensive

 

may

 

be

 

difficult

 

to

 

see

 

in

 

the

 

function

 

call

 

tree.

 

To

 

avoid

 

this

 

situation,

 

use

 

the

 

Filter

 

by

 

CPU

 

option

 

of

 

the

 

Filter

 

menu,

 

which

 

lets

 

you

 

display

 

only

 

the

 

function

 

boxes

 

for

 

the

 

functions

 

that

 

consume

 

the

 

most

 

CPU

 

time.

 

After

 

you

 

have

 

done

 

this,

 

the

 

Function

 

menu

 

for

 

each

 

function

 

lets

 

you

   

Figure

 

11.

 

The

 

Filter

 

By

 

Call

 

Counts

 

Dialog

 

window.

 

The

 

screen

 

capture

 

below

 

shows

 

the

 

Filter

 

By

 

Call

 

Counts

 

Dialog

 

window.

 

At

 

the

 

top,

 

the

 

user

 

can

 

select

 

the

 

Number

 

of

 

Call

 

Arcs

 

To

 

Be

 

Displayed

 

by

 

either

 

using

 

the

 

sliding

 

bar

 

to

 

increase

 

the

 

value

 

or

 

type

 

in

 

the

 

number

 

in

 

the

 

Slider

 

Value

 

box.

 

Then,

 

there

 

are

 

two

 

check

 

boxes:

 

Show

 

arcs

 

with

 

the

 

most

 

call

 

counts,

 

and

 

Show

 

arcs

 

with

 

the

 

least

 

call

 

counts.

 

At

 

the

 

bottom,

 

there

 

are

 

four

 

buttons:

 

OK,

 

Apply,

 

Cancel,

 

and

 

Help.

  

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

31



add

 

the

 

parent

 

and

 

descendant

 

function

 

boxes

 

to

 

the

 

function

 

call

 

tree.

 

By

 

doing

 

this,

 

you

 

create

 

a

 

smaller,

 

simpler

 

function

 

call

 

tree

 

that

 

displays

 

the

 

function

 

boxes

 

associated

 

with

 

the

 

most

 

CPU-intensive

 

area

 

of

 

the

 

application.

 

A

 

child

 

function

 

is

 

one

 

that

 

is

 

directly

 

called

 

by

 

the

 

function

 

of

 

interest.

 

To

 

see

 

only

 

the

 

function

 

boxes

 

for

 

the

 

function

 

of

 

interest

 

and

 

its

 

child

 

functions,

 

do

 

the

 

following:

 

1.

   

Place

 

your

 

mouse

 

cursor

 

over

 

the

 

function

 

box

 

in

 

which

 

you

 

are

 

interested,

 

and

 

press

 

the

 

right

 

mouse

 

button.

 

The

 

Function

 

menu

 

appears.

 

2.

   

From

 

the

 

Function

 

menu,

 

select

 

the

 

Immediate

 

Children

 

option,

 

and

 

then

 

the

 

Show

 

Child

 

Functions

 

Only

 

option.

 

Xprofiler

 

erases

 

the

 

current

 

display

 

and

 

replaces

 

it

 

with

 

only

 

the

 

function

 

boxes

 

for

 

the

 

function

 

you

 

chose,

 

as

 

well

 

as

 

its

 

child

 

functions.

A

 

parent

 

function

 

is

 

one

 

that

 

directly

 

calls

 

the

 

function

 

of

 

interest.

 

To

 

see

 

only

 

the

 

function

 

box

 

for

 

the

 

function

 

of

 

interest

 

and

 

its

 

parent

 

functions,

 

do

 

the

 

following:

 

1.

   

Place

 

your

 

mouse

 

cursor

 

over

 

the

 

function

 

box

 

in

 

which

 

you

 

are

 

interested,

 

and

 

press

 

the

 

right

 

mouse

 

button.

 

The

 

Function

 

menu

 

appears.

 

2.

   

From

 

the

 

Function

 

menu,

 

select

 

the

 

Immediate

 

Parents

 

option,

 

and

 

then

 

the

 

Show

 

Parent

 

Functions

 

Only

 

option.

 

Xprofiler

 

erases

 

the

 

current

 

display

 

and

 

replaces

 

it

 

with

 

only

 

the

 

function

 

boxes

 

for

 

the

 

function

 

you

 

chose,

 

as

 

well

 

as

 

its

 

parent

 

functions.

You

 

might

 

want

 

to

 

view

 

the

 

function

 

boxes

 

for

 

both

 

the

 

parent

 

and

 

child

 

functions

 

of

 

the

 

function

 

in

 

which

 

you

 

are

 

interested,

 

without

 

erasing

 

the

 

rest

 

of

 

the

 

function

 

call

 

tree.

 

This

 

is

 

especially

 

true

 

if

 

you

 

chose

 

to

 

display

 

the

 

function

 

boxes

 

for

 

two

 

or

 

more

 

of

 

the

 

most

 

CPU-intensive

 

functions

 

with

 

the

 

Filter

 

by

 

CPU

 

option

 

of

 

the

 

Filter

 

menu

 

(you

 

suspect

 

that

 

more

 

than

 

one

 

function

 

is

 

consuming

 

too

 

much

 

CPU).

 

Do

 

the

 

following:

 

1.

   

Place

 

your

 

mouse

 

cursor

 

over

 

the

 

function

 

box

 

in

 

which

 

you

 

are

 

interested,

 

and

 

press

 

the

 

right

 

mouse

 

button.

 

The

 

Function

 

menu

 

appears.

 

2.

   

From

 

the

 

Function

 

menu,

 

select

 

the

 

Immediate

 

Parents

 

option,

 

and

 

then

 

the

 

Add

 

Parent

 

Functions

 

to

 

Tree

 

option.

 

Xprofiler

 

leaves

 

the

 

current

 

display

 

as

 

it

 

is,

 

but

 

adds

 

the

 

parent

 

function

 

boxes.

 

3.

   

Place

 

your

 

mouse

 

cursor

 

over

 

the

 

same

 

function

 

box

 

and

 

press

 

the

 

right

 

mouse

 

button.

 

The

 

Function

 

menu

 

appears.

 

4.

   

From

 

the

 

Function

 

menu,

 

select

 

the

 

Immediate

 

Children

 

option,

 

and

 

then

 

the

 

Add

 

Child

 

Functions

 

to

 

Tree

 

option.

 

Xprofiler

 

leaves

 

the

 

current

 

display

 

as

 

it

 

is,

 

but

 

now

 

adds

 

the

 

child

 

function

 

boxes

 

in

 

addition

 

to

 

the

 

parents.

Clustering

 

Libraries

 

When

 

you

 

first

 

open

 

the

 

Xprofiler

 

window,

 

by

 

default,

 

the

 

function

 

boxes

 

of

 

your

 

executable

 

file,

 

and

 

the

 

libraries

 

associated

 

with

 

it,

 

are

 

clustered.

 

Because

 

Xprofiler

 

shrinks

 

the

 

call

 

tree

 

of

 

each

 

library

 

when

 

it

 

places

 

it

 

in

 

a

 

cluster,

 

you

 

must

 

uncluster

 

the

 

function

 

boxes

 

if

 

you

 

want

 

to

 

look

 

closely

 

at

 

a

 

specific

 

function

 

box

 

label.

 

You

 

can

 

see

 

much

 

more

 

detail

 

for

 

each

 

function,

 

when

 

your

 

display

 

is

 

in

 

the

 

unclustered

 

or

 

expanded

 

state,

 

than

 

when

 

it

 

is

 

in

 

the

 

clustered

 

or

 

collapsed

 

state.

 

Depending

 

on

 

what

 

you

 

want

 

to

 

do,

 

you

 

must

 

cluster

 

or

 

uncluster

 

(collapse

 

or

 

expand)

 

the

 

display.

 

The

 

Xprofiler

 

window

 

can

 

be

 

visually

 

crowded,

 

especially

 

if

 

your

 

application

 

calls

 

functions

 

that

 

are

 

within

 

shared

 

libraries;

 

function

 

boxes

 

representing

 

your

 

executable

 

functions

 

as

 

well

 

as

 

the

 

functions

 

of

 

the

 

shared

 

libraries

 

are

 

displayed.

 

As

 

a

 

result,

 

you

 

may

 

want

 

to

 

organize

 

what

 

you

 

see

 

in

 

the

 

Xprofiler

 

window

   

32

 

Performance

 

Tools

 

Guide

 

and

 

Reference



so

 

you

 

can

 

focus

 

on

 

the

 

areas

 

that

 

are

 

most

 

important

 

to

 

you.

 

You

 

can

 

do

 

this

 

by

 

collecting

 

all

 

the

 

function

 

boxes

 

of

 

each

 

library

 

into

 

a

 

single

 

area,

 

known

 

as

 

a

 

library

 

cluster.

 

The

 

following

 

figure

 

shows

 

the

 

hello_world

 

application

 

with

 

its

 

function

 

boxes

 

unclustered.

    

Clustering

 

Functions

 

If

 

the

 

functions

 

within

 

your

 

application

 

are

 

unclustered,

 

you

 

can

 

use

 

an

 

option

 

of

 

the

 

Filter

 

menu

 

to

 

cluster

 

them.

 

To

 

do

 

this,

 

select

 

the

 

Filter

 

menu

 

and

 

then

 

the

 

Cluster

 

Functions

 

by

 

Library

 

option.

 

The

 

libraries

 

within

 

your

 

application

 

appear

 

within

 

their

 

respective

 

cluster

 

boxes.

 

After

 

you

 

cluster

 

the

 

functions

 

in

 

your

 

application

 

you

 

can

 

further

 

reduce

 

the

 

size

 

(also

 

referred

 

to

 

as

 

collapse)

 

of

 

each

 

cluster

 

box

 

by

 

doing

 

the

 

following:

 

1.

   

Place

 

your

 

mouse

 

cursor

 

over

 

the

 

edge

 

of

 

the

 

cluster

 

box

 

and

 

press

 

the

 

right

 

mouse

 

button.

 

The

 

Cluster

 

Node

 

menu

 

appears.

   

Figure

 

12.

 

The

 

Xprofiler

 

window

 

with

 

function

 

boxes

 

unclustered.

 

The

 

following

 

screen

 

capture

 

shows

 

the

 

hello_world

 

application

 

with

 

the

 

top-to-bottom

 

view

 

of

 

its

 

function

 

boxes

 

unclustered

 

in

 

the

 

Xprofiler

 

main

 

window.

  

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

33



2.

   

Select

 

the

 

Collapse

 

Cluster

 

Node

 

option.

 

The

 

cluster

 

box

 

and

 

its

 

contents

 

now

 

appear

 

as

 

a

 

small

 

solid

 

green

 

box.

 

In

 

the

 

following

 

figure,

 

the

 

/lib/profiled/libc.a:shr.o

 

library

 

is

 

collapsed.

 

To

 

return

 

the

 

cluster

 

box

 

to

 

its

 

original

 

condition

 

(expand

 

it),

 

do

 

the

 

following:

 

1.

   

Place

 

your

 

mouse

 

cursor

 

over

 

the

 

collapsed

 

cluster

 

box

 

and

 

press

 

the

 

right

 

mouse

 

button.

 

The

 

Cluster

 

Node

 

menu

 

appears.

 

2.

   

Select

 

the

 

Expand

 

Cluster

 

Node

 

option.

 

The

 

cluster

 

box

 

and

 

its

 

contents

 

appear

 

again.

Unclustering

 

Functions

 

If

 

the

 

functions

 

within

 

your

 

application

 

are

 

clustered,

 

you

 

can

 

use

 

an

 

option

 

of

 

the

 

Filter

 

menu

 

to

 

uncluster

 

them.

 

To

 

do

 

this,

 

select

 

the

 

Filter

 

menu,

 

and

 

then

 

the

 

Uncluster

 

Functions

 

option.

 

The

 

cluster

 

boxes

 

disappear

 

and

 

the

 

functions

 

boxes

 

of

 

each

 

library

 

expand

 

to

 

fill

 

the

 

Xprofiler

 

window.

 

If

 

your

 

functions

 

have

 

been

 

clustered,

 

you

 

can

 

remove

 

one

 

or

 

more

 

(but

 

not

 

all)

 

cluster

 

boxes.

 

For

 

example,

 

if

 

you

 

want

 

to

 

uncluster

 

only

 

the

 

functions

 

of

 

your

 

executable

 

file,

 

but

 

keep

 

its

 

shared

 

libraries

 

within

 

their

 

cluster

 

boxes,

 

you

 

would

 

do

 

the

 

following:

   

Figure

 

13.

 

The

 

Xprofiler

 

window

 

with

 

one

 

library

 

cluster

 

box

 

collapsed.

 

The

 

following

 

screen

 

capture

 

shows

 

the

 

function

 

call

 

tree

 

of

 

the

 

hello

 

program

 

in

 

the

 

Xprofiler

 

window

 

with

 

one

 

library

 

cluster

 

box

 

collapsed.

  

34

 

Performance

 

Tools

 

Guide

 

and

 

Reference



1.

   

Place

 

your

 

mouse

 

cursor

 

over

 

the

 

edge

 

of

 

the

 

cluster

 

box

 

that

 

contains

 

the

 

executable

 

and

 

press

 

the

 

right

 

mouse

 

button.

 

The

 

Cluster

 

Node

 

menu

 

appears.

 

2.

   

Select

 

the

 

Remove

 

Cluster

 

Box

 

option.

 

The

 

cluster

 

box

 

is

 

removed

 

and

 

the

 

function

 

boxes

 

and

 

call

 

arcs

 

that

 

represent

 

the

 

executable

 

functions,

 

now

 

appear

 

in

 

full

 

detail.

 

The

 

function

 

boxes

 

and

 

call

 

arcs

 

of

 

the

 

shared

 

libraries

 

remain

 

within

 

their

 

cluster

 

boxes,

 

which

 

now

 

appear

 

smaller

 

to

 

make

 

room

 

for

 

the

 

unclustered

 

executable

 

function

 

boxes.

 

The

 

folowing

 

figure

 

shows

 

the

 

hello_world

 

executable

 

file

 

with

 

its

 

cluster

 

box

 

removed.

 

Its

 

shared

 

library

 

remains

 

within

 

its

 

cluster

 

box.

   

Locating

 

Specific

 

Objects

 

in

 

the

 

Function

 

Call

 

Tree

 

If

 

you

 

are

 

interested

 

in

 

one

 

or

 

more

 

specific

 

functions

 

in

 

a

 

complex

 

program,

 

you

 

may

 

need

 

help

 

locating

 

their

 

corresponding

 

function

 

boxes

 

in

 

the

 

function

 

call

 

tree.

 

If

 

you

 

want

 

to

 

locate

 

a

 

single

 

function,

 

and

 

you

 

know

 

its

 

name,

 

you

 

can

 

use

 

the

 

Locate

 

Function

 

By

 

Name

 

option

 

of

 

the

 

Utility

 

menu.

 

To

 

locate

 

a

 

function

 

by

 

name,

 

do

 

the

 

following:

   

Figure

 

14.

 

The

 

Xprofiler

 

window

 

with

 

one

 

library

 

cluster

 

box

 

removed.

 

The

 

following

 

screen

 

capture

 

shows

 

the

 

function

 

call

 

tree

 

of

 

the

 

hello

 

program

 

in

 

the

 

Xprofiler

 

window

 

with

 

one

 

library

 

cluster

 

box

 

removed.

  

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

35



1.

   

Select

 

the

 

Utility

 

menu,

 

and

 

then

 

the

 

Locate

 

Function

 

By

 

Name

 

option.

 

The

 

Search

 

By

 

Function

 

Name

 

Dialog

 

window

 

appears.

 

2.

   

Type

 

the

 

name

 

of

 

the

 

function

 

you

 

want

 

to

 

locate

 

in

 

the

 

Enter

 

Function

 

Name

 

field.

 

The

 

function

 

name

 

you

 

type

 

here

 

must

 

be

 

a

 

continuous

 

string

 

(it

 

cannot

 

include

 

blanks).

 

3.

   

Click

 

OK

 

or

 

Apply.

 

The

 

corresponding

 

function

 

box

 

is

 

highlighted

 

(its

 

color

 

changes

 

to

 

red)

 

in

 

the

 

function

 

call

 

tree

 

and

 

Xprofiler

 

zooms

 

in

 

on

 

its

 

location.

 

To

 

display

 

the

 

function

 

call

 

tree

 

in

 

full

 

detail

 

again,

 

go

 

to

 

the

 

View

 

menu

 

and

 

use

 

the

 

Overview

 

option.

You

 

might

 

want

 

to

 

see

 

only

 

the

 

function

 

boxes

 

for

 

the

 

functions

 

that

 

you

 

are

 

concerned

 

with,

 

in

 

addition

 

to

 

other

 

specific

 

functions

 

that

 

are

 

related

 

to

 

it.

 

For

 

example,

 

if

 

you

 

want

 

to

 

see

 

all

 

the

 

functions

 

that

 

directly

 

called

 

the

 

function

 

in

 

which

 

you

 

are

 

interested,

 

it

 

might

 

not

 

be

 

easy

 

to

 

separate

 

these

 

function

 

boxes

 

when

 

you

 

view

 

the

 

entire

 

call

 

tree.

 

You

 

would

 

want

 

to

 

display

 

them,

 

as

 

well

 

as

 

the

 

function

 

of

 

interest,

 

alone.

 

Each

 

function

 

has

 

its

 

own

 

menu.

 

Through

 

the

 

Function

 

menu,

 

you

 

can

 

choose

 

to

 

see

 

the

 

following

 

for

 

the

 

function

 

you

 

are

 

interested

 

in:

 

v

   

Parent

 

functions

 

(functions

 

that

 

directly

 

call

 

the

 

function

 

of

 

interest)

 

v

   

Child

 

functions

 

(functions

 

that

 

are

 

directly

 

called

 

by

 

the

 

function

 

of

 

interest)

 

v

   

Ancestor

 

functions

 

(functions

 

that

 

can

 

call,

 

directly

 

or

 

indirectly,

 

the

 

function

 

of

 

interest)

 

v

   

Descendant

 

functions

 

(functions

 

that

 

can

 

be

 

called,

 

directly

 

or

 

indirectly,

 

by

 

the

 

function

 

of

 

interest)

 

v

   

Functions

 

that

 

belong

 

to

 

the

 

same

 

cycle

When

 

you

 

use

 

these

 

options,

 

Xprofiler

 

erases

 

the

 

current

 

display

 

and

 

replaces

 

it

 

with

 

only

 

the

 

function

 

boxes

 

for

 

the

 

function

 

of

 

interest

 

and

 

all

 

the

 

functions

 

of

 

the

 

type

 

you

 

specified.

 

Locating

 

and

 

Displaying

 

Parent

 

Functions

 

A

 

parent

 

is

 

any

 

function

 

that

 

directly

 

calls

 

the

 

function

 

in

 

which

 

you

 

are

 

interested.

 

To

 

locate

 

the

 

parent

 

function

 

boxes

 

of

 

the

 

function

 

in

 

which

 

you

 

are

 

interested:

 

1.

   

Click

 

the

 

function

 

box

 

of

 

interest

 

with

 

the

 

right

 

mouse

 

button.

 

The

 

Function

 

menu

 

appears.

 

2.

   

From

 

the

 

Function

 

menu,

 

select

 

Immediate

 

Parents

 

then

 

Show

 

Parent

 

Functions

 

Only.

 

Xprofiler

 

redraws

 

the

 

display

 

to

 

show

 

you

 

only

 

the

 

function

 

boxes

 

for

 

the

 

function

 

of

 

interest

 

and

 

its

 

parent

 

functions.

Locating

 

and

 

Displaying

 

Child

 

Functions

 

A

 

child

 

is

 

any

 

function

 

that

 

is

 

directly

 

called

 

by

 

the

 

function

 

in

 

which

 

you

 

are

 

interested.

 

To

 

locate

 

the

 

child

 

functions

 

boxes

 

for

 

the

 

function

 

in

 

which

 

you

 

are

 

interested:

 

1.

   

Click

 

the

 

function

 

box

 

of

 

interest

 

with

 

the

 

right

 

mouse

 

button.

 

The

 

Function

 

menu

 

appears.

 

2.

   

From

 

the

 

Function

 

menu,

 

select

 

Immediate

 

Children

 

then

 

Show

 

Child

 

Functions

 

Only.

 

Xprofiler

 

redraws

 

the

 

display

 

to

 

show

 

you

 

only

 

the

 

function

 

boxes

 

for

 

the

 

function

 

of

 

interest

 

and

 

its

 

child

 

functions.

Locating

 

and

 

Displaying

 

Ancestor

 

Functions

 

An

 

ancestor

 

is

 

any

 

function

 

that

 

can

 

call,

 

directly

 

or

 

indirectly,

 

the

 

function

 

in

 

which

 

you

 

are

 

interested.

 

To

 

locate

 

the

 

ancestor

 

functions:

 

1.

   

Click

 

the

 

function

 

box

 

of

 

interest

 

with

 

the

 

right

 

mouse

 

button.

 

The

 

Function

 

menu

 

appears.

 

2.

   

From

 

the

 

Function

 

menu,

 

select

 

All

 

Paths

 

To

 

then

 

Show

 

Ancestor

 

Functions

 

Only.

 

Xprofiler

 

redraws

 

the

 

display

 

to

 

show

 

you

 

only

 

the

 

function

 

boxes

 

for

 

the

 

function

 

of

 

interest

 

and

 

its

 

ancestor

 

functions.

  

36

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Locating

 

andDisplaying

 

Descendant

 

Functions

 

A

 

descendant

 

is

 

any

 

function

 

that

 

can

 

be

 

called,

 

directly

 

or

 

indirectly,

 

by

 

the

 

function

 

in

 

which

 

you

 

are

 

interested.

 

To

 

locate

 

the

 

descendant

 

functions

 

(all

 

the

 

functions

 

that

 

the

 

function

 

of

 

interest

 

can

 

reach,

 

directly

 

or

 

indirectly):

 

1.

   

Click

 

the

 

function

 

box

 

of

 

interest

 

with

 

the

 

right

 

mouse

 

button.

 

The

 

Function

 

menu

 

appears.

 

2.

   

From

 

the

 

Function

 

menu,

 

select

 

All

 

Paths

 

From

 

then

 

Show

 

Descendant

 

Functions

 

Only.

 

Xprofiler

 

redraws

 

the

 

display

 

to

 

show

 

you

 

only

 

the

 

function

 

boxes

 

for

 

the

 

function

 

of

 

interest

 

and

 

its

 

descendant

 

functions.

Locating

 

and

 

Displaying

 

Functions

 

on

 

a

 

Cycle

 

To

 

locate

 

the

 

functions

 

that

 

are

 

on

 

the

 

same

 

cycle

 

as

 

the

 

function

 

in

 

which

 

you

 

are

 

interested:

 

1.

   

Click

 

the

 

function

 

box

 

of

 

interest

 

with

 

the

 

right

 

mouse

 

button.

 

The

 

Function

 

menu

 

appears.

 

2.

   

From

 

the

 

Function

 

menu,

 

select

 

All

 

Functions

 

on

 

the

 

Cycle

 

then

 

Show

 

Cycle

 

Functions

 

Only.

 

Xprofiler

 

redraws

 

the

 

display

 

to

 

show

 

you

 

only

 

the

 

function

 

of

 

interest

 

and

 

all

 

the

 

other

 

functions

 

on

 

its

 

cycle.

Obtaining

 

Performance

 

Data

 

for

 

Your

 

Application

 

With

 

Xprofiler,

 

you

 

can

 

get

 

performance

 

data

 

for

 

your

 

application

 

on

 

a

 

number

 

of

 

levels,

 

and

 

in

 

a

 

number

 

of

 

ways.

 

You

 

can

 

easily

 

view

 

data

 

pertaining

 

to

 

a

 

single

 

function,

 

or

 

you

 

can

 

use

 

the

 

reports

 

provided

 

to

 

get

 

information

 

on

 

your

 

application

 

as

 

a

 

whole.

 

Obtaining

 

Basic

 

Data

 

Xprofiler

 

makes

 

it

 

easy

 

to

 

get

 

data

 

on

 

specific

 

items

 

in

 

the

 

function

 

call

 

tree.

 

After

 

you

 

have

 

located

 

the

 

item

 

you

 

are

 

interested

 

in,

 

you

 

can

 

get

 

data

 

a

 

number

 

of

 

ways.

 

If

 

you

 

are

 

having

 

trouble

 

locating

 

a

 

function

 

in

 

the

 

function

 

call

 

tree,

 

see

 

“Locating

 

Specific

 

Objects

 

in

 

the

 

Function

 

Call

 

Tree”

 

on

 

page

 

35.

 

Basic

 

Function

 

Data

 

Below

 

each

 

function

 

box

 

in

 

the

 

function

 

call

 

tree

 

is

 

a

 

label

 

that

 

contains

 

basic

 

performance

 

data,

 

similar

 

to

 

the

 

following:

    

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

37



The

 

label

 

contains

 

the

 

name

 

of

 

the

 

function,

 

its

 

associated

 

cycle,

 

if

 

any,

 

and

 

its

 

index.

 

In

 

the

 

preceding

 

figure,

 

the

 

name

 

of

 

the

 

function

 

is

 

sub1.

 

It

 

is

 

associated

 

with

 

cycle

 

1,

 

and

 

its

 

index

 

is

 

5.

 

Also,

 

depending

 

on

 

whether

 

the

 

function

 

call

 

tree

 

is

 

viewed

 

in

 

summary

 

mode

 

or

 

average

 

mode,

 

the

 

label

 

will

 

contain

 

different

 

information.

 

If

 

the

 

function

 

call

 

tree

 

is

 

viewed

 

in

 

summary

 

mode,

 

the

 

label

 

will

 

contain

 

the

 

following

 

information:

 

v

   

The

 

total

 

amount

 

of

 

CPU

 

time

 

(in

 

seconds)

 

this

 

function

 

spent

 

on

 

itself

 

plus

 

the

 

amount

 

of

 

CPU

 

time

 

it

 

spent

 

on

 

its

 

descendants

 

(the

 

number

 

on

 

the

 

left

 

of

 

the

 

x).

 

v

   

The

 

amount

 

of

 

CPU

 

time

 

(in

 

seconds)

 

this

 

function

 

spent

 

only

 

on

 

itself

 

(the

 

number

 

on

 

the

 

right

 

of

 

the

 

x).

If

 

the

 

function

 

call

 

tree

 

is

 

viewed

 

in

 

average

 

mode,

 

the

 

label

 

will

 

contain

 

the

 

following

 

information:

 

v

   

The

 

average

 

CPU

 

time

 

(in

 

seconds),

 

among

 

all

 

the

 

input

 

gmon.out

 

files,

 

used

 

on

 

the

 

function

 

itself

 

v

   

The

 

standard

 

deviation

 

of

 

CPU

 

time

 

(in

 

seconds),

 

among

 

all

 

the

 

input

 

gmon.out

 

files,

 

used

 

on

 

the

 

function

 

itself

For

 

more

 

information

 

about

 

summary

 

mode

 

and

 

average

 

mode,

 

see

 

“Controlling

 

the

 

Representation

 

of

 

the

 

Function

 

Call

 

Tree”

 

on

 

page

 

26.

 

Because

 

labels

 

are

 

not

 

always

 

visible

 

in

 

the

 

Xprofiler

 

window

 

when

 

it

 

is

 

fully

 

zoomed

 

out,

 

you

 

may

 

need

 

to

 

zoom

 

in

 

on

 

it

 

in

 

order

 

to

 

see

 

the

 

labels.

 

For

 

information

 

about

 

how

 

to

 

do

 

this,

 

see

 

“Information

 

Boxes”

 

on

 

page

 

39.

 

Basic

 

Call

 

Data

 

Call

 

arc

 

labels

 

appear

 

over

 

each

 

call

 

arc.

 

The

 

label

 

indicates

 

the

 

number

 

of

 

calls

 

that

 

were

 

made

 

between

 

the

 

two

 

functions

 

(from

 

caller

 

to

 

callee).

 

For

 

example:

   

Figure

 

15.

 

An

 

example

 

of

 

a

 

function

 

box

 

label.

 

The

 

following

 

screen

 

capture

 

shows

 

the

 

details

 

of

 

a

 

function

 

box

 

and

 

in

 

this

 

example

 

it

 

is

 

of

 

the

 

sub1

 

function.

 

The

 

following

 

information

 

is

 

listed:

 

The

 

function

 

label

 

(sub1),

 

the

 

cycle

 

it

 

is

 

associated

 

with

 

(1),

 

and

 

its

 

index

 

(5).

  

38

 

Performance

 

Tools

 

Guide

 

and

 

Reference



To

 

see

 

a

 

call

 

arc

 

label,

 

you

 

can

 

zoom

 

in

 

on

 

it.

 

For

 

information

 

about

 

how

 

to

 

do

 

this,

 

see

 

“Information

 

Boxes.”

 

Basic

 

Cluster

 

Data

 

Cluster

 

box

 

labels

 

indicate

 

the

 

name

 

of

 

the

 

library

 

that

 

is

 

represented

 

by

 

that

 

cluster.

 

If

 

it

 

is

 

a

 

shared

 

library,

 

the

 

label

 

shows

 

its

 

full

 

path

 

name.

 

Information

 

Boxes

 

For

 

each

 

function

 

box,

 

call

 

arc,

 

and

 

cluster

 

box,

 

a

 

corresponding

 

information

 

box

 

gives

 

you

 

the

 

same

 

basic

 

data

 

that

 

appears

 

on

 

the

 

label.

 

This

 

is

 

useful

 

when

 

the

 

Xprofiler

 

display

 

is

 

fully

 

zoomed

 

out

 

and

 

the

 

labels

 

are

 

not

 

visible.

 

To

 

access

 

the

 

information

 

box,

 

click

 

on

 

the

 

function

 

box,

 

call

 

arc,

 

or

 

cluster

 

box

 

(place

 

the

 

mouse

 

pointer

 

over

 

the

 

edge

 

of

 

the

 

box)

 

with

 

the

 

left

 

mouse

 

button.

 

The

 

information

 

box

 

appears.

 

For

 

a

 

function,

 

the

 

information

 

box

 

contains

 

the

 

following:

 

v

   

The

 

name

 

of

 

the

 

function,

 

its

 

associated

 

cycle,

 

if

 

any,

 

and

 

its

 

index.

 

v

   

The

 

amount

 

of

 

CPU

 

used

 

by

 

this

 

function.

 

There

 

are

 

two

 

values

 

supplied

 

in

 

this

 

field.

 

The

 

first

 

is

 

the

 

amount

 

of

 

CPU

 

time

 

spent

 

on

 

this

 

function

 

plus

 

the

 

time

 

spent

 

on

 

its

 

descendants.

 

The

 

second

 

value

 

represents

 

the

 

amount

 

of

 

CPU

 

time

 

this

 

function

 

spent

 

only

 

on

 

itself.

 

v

   

The

 

number

 

of

 

times

 

this

 

function

 

was

 

called

 

(by

 

itself

 

or

 

any

 

other

 

function

 

in

 

the

 

application).

For

 

a

 

call,

 

the

 

information

 

box

 

contains

 

the

 

following:

 

v

   

The

 

caller

 

and

 

callee

 

functions

 

(their

 

names)

 

and

 

their

 

corresponding

 

indexes

 

v

   

The

 

number

 

of

 

times

 

the

 

caller

 

function

 

called

 

the

 

callee

For

 

a

 

cluster,

 

the

 

information

 

box

 

contains

 

the

 

following:

 

v

   

The

 

name

 

of

 

the

 

library

 

v

   

The

 

total

 

CPU

 

usage

 

(in

 

seconds)

 

consumed

 

by

 

the

 

functions

 

within

 

it

Function

 

Menu

 

Statistics

 

Report

 

Option

 

You

 

can

 

get

 

performance

 

statistics

 

for

 

a

 

single

 

function

 

through

 

the

 

Statistics

 

Report

 

option

 

of

 

the

 

Function

 

menu.

 

This

 

option

 

lets

 

you

 

see

 

data

 

on

 

the

 

CPU

 

usage

 

and

 

call

 

counts

 

of

 

the

 

selected

 

function.

 

If

 

you

 

are

 

using

 

more

 

than

 

one

 

gmon.out

 

file,

 

the

 

Statistics

 

Report

 

option

 

breaks

 

down

 

the

 

statistics

 

for

 

each

 

gmon.out

 

file

 

you

 

use.

   

Figure

 

16.

 

An

 

example

 

of

 

a

 

call

 

arc

 

label.

 

In

 

the

 

screen

 

capture

 

below,

 

there

 

are

 

three

 

arcs

 

pointing

 

to

 

a

 

function

 

box.

 

Each

 

arc

 

has

 

a

 

call

 

arc

 

label

 

that

 

indicates

 

the

 

number

 

of

 

calls

 

that

 

were

 

made

 

between

 

the

 

two

 

functions,

 

and

 

in

 

this

 

example

 

the

 

arc

 

labels

 

are

 

3,

 

4,

 

and

 

4.

  

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

39



When

 

you

 

select

 

the

 

Statistics

 

Report

 

menu

 

option,

 

the

 

Function

 

Level

 

Statistics

 

Report

 

window

 

appears.

   

The

 

Function

 

Level

 

Statistics

 

Report

 

window

 

provides

 

the

 

following

 

information:

 

Function

 

Name

 

The

 

name

 

of

 

the

 

function

 

you

 

selected.

 

Summary

 

Data

 

The

 

total

 

amount

 

of

 

CPU

 

used

 

by

 

this

 

function.

 

If

 

you

 

used

 

multiple

 

gmon.out

 

files,

 

the

 

value

 

shown

 

here

 

represents

 

their

 

sum.

 

The

 

CPU

 

Usage

 

field

 

indicates:

 

v

   

The

 

amount

 

of

 

CPU

 

time

 

used

 

by

 

this

 

function.

 

There

 

are

 

two

 

values

 

supplied

 

in

 

this

 

field.

 

The

 

first

 

is

 

the

 

amount

 

of

 

CPU

 

time

 

spent

 

on

 

this

 

function

 

plus

 

the

 

time

 

spent

 

on

 

its

 

descendants.

 

The

 

second

 

value

 

represents

 

the

 

amount

 

of

 

CPU

 

time

 

this

 

function

 

spent

 

only

 

on

 

itself.

The

 

Call

 

Counts

 

field

 

indicates:

 

v

   

The

 

number

 

of

 

times

 

this

 

function

 

called

 

itself,

 

plus

 

the

 

number

 

of

 

times

 

it

 

was

 

called

 

by

 

other

 

functions.

Statistics

 

Data

 

The

 

CPU

 

usage

 

and

 

calls

 

made

 

to

 

or

 

by

 

this

 

function,

 

broken

 

down

 

for

 

each

 

gmon.out

 

file.

 

The

 

CPU

 

Usage

 

field

 

indicates:

 

v

   

Average

 

The

 

average

 

CPU

 

time

 

used

 

by

 

the

 

data

 

in

 

each

 

gmon.out

 

file.

  

Figure

 

17.

 

The

 

Function

 

Level

 

Statistics

 

Report

 

window.

 

The

 

screen

 

capture

 

below

 

shows

 

the

 

Function

 

Level

 

Statistics

 

Report

 

window

 

and

 

shows

 

the

 

details

 

of

 

the

 

main

 

function.

 

The

 

specifics

 

of

 

a

 

Function

 

Level

 

Statistics

 

Report

 

are

 

detailed

 

below

 

the

 

graphic.

  

40

 

Performance

 

Tools

 

Guide

 

and

 

Reference



v

   

Std

 

Dev

 

Standard

 

deviation.

 

A

 

value

 

that

 

represents

 

the

 

difference

 

in

 

CPU

 

usage

 

samplings,

 

per

 

function,

 

from

 

one

 

gmon.out

 

file

 

to

 

another.

 

The

 

smaller

 

the

 

standard

 

deviation,

 

the

 

more

 

balanced

 

the

 

workload.

v

   

Maximum

 

Of

 

all

 

the

 

gmon.out

 

files,

 

the

 

maximum

 

amount

 

of

 

CPU

 

time

 

used.

 

The

 

corresponding

 

gmon.out

 

file

 

appears

 

to

 

the

 

right.

 

v

   

Minimum

 

Of

 

all

 

the

 

gmon.out

 

files,

 

the

 

minimum

 

amount

 

of

 

CPU

 

time

 

used.

 

The

 

corresponding

 

gmon.out

 

file

 

appears

 

to

 

the

 

right.

 

The

 

Call

 

Counts

 

field

 

indicates:

 

v

   

Average

 

The

 

average

 

number

 

of

 

calls

 

made

 

to

 

this

 

function

 

or

 

by

 

this

 

function,

 

for

 

each

 

gmon.out

 

file.

 

v

   

Std

 

Dev

 

Standard

 

deviation.

 

A

 

value

 

that

 

represents

 

the

 

difference

 

in

 

call

 

count

 

sampling,

 

per

 

function,

 

from

 

one

 

gmon.out

 

file

 

to

 

another.

 

A

 

small

 

standard

 

deviation

 

value

 

in

 

this

 

field

 

means

 

that

 

the

 

function

 

was

 

almost

 

always

 

called

 

the

 

same

 

number

 

of

 

times

 

in

 

each

 

gmon.out

 

file.

 

v

   

Maximum

 

The

 

maximum

 

number

 

of

 

calls

 

made

 

to

 

this

 

function

 

or

 

by

 

this

 

function

 

in

 

a

 

single

 

gmon.out

 

file.

 

The

 

corresponding

 

gmon.out

 

file

 

appears

 

to

 

the

 

right.

 

v

   

Minimum

 

The

 

minimum

 

number

 

of

 

calls

 

made

 

to

 

this

 

function

 

or

 

by

 

this

 

function

 

in

 

a

 

single

 

gmon.out

 

file.

 

The

 

corresponding

 

gmon.out

 

file

 

appears

 

to

 

the

 

right.

Getting

 

Detailed

 

Data

 

from

 

Reports

 

Xprofiler

 

provides

 

performance

 

data

 

in

 

textual

 

and

 

tabular

 

format.

 

This

 

data

 

is

 

provided

 

in

 

various

 

tables

 

called

 

reports.

 

Similar

 

to

 

the

 

gprof

 

command,

 

Xprofiler

 

generates

 

the

 

Flat

 

Profile,

 

Call

 

Graph

 

Profile,

 

and

 

Function

 

Index

 

reports,

 

as

 

well

 

as

 

two

 

additional

 

reports.

 

You

 

can

 

access

 

the

 

Xprofiler

 

reports

 

from

 

the

 

Report

 

menu.

 

The

 

Report

 

menu

 

displays

 

the

 

following

 

reports:

 

v

   

Flat

 

Profile

 

v

   

Call

 

Graph

 

Profile

 

v

   

Function

 

Index

 

v

   

Function

 

Call

 

Summary

 

v

   

Library

 

Statistics

Each

 

report

 

window

 

includes

 

a

 

File

 

menu.

 

Under

 

the

 

File

 

menu

 

is

 

the

 

Save

 

As

 

option,

 

which

 

lets

 

you

 

save

 

the

 

report

 

to

 

a

 

file.

 

For

 

information

 

about

 

using

 

the

 

Save

 

File

 

Dialog

 

window

 

to

 

save

 

a

 

report

 

to

 

a

 

file,

 

see

 

“Saving

 

the

 

Call

 

Graph

 

Profile,

 

Function

 

Index,

 

and

 

Flat

 

Profile

 

reports

 

to

 

a

 

file”

 

on

 

page

 

49.

 

Note:

  

If

 

you

 

select

 

the

 

Save

 

As

 

option

 

from

 

the

 

Flat

 

Profile,

 

Function

 

Index,

 

or

 

Function

 

Call

 

Summary

 

report

 

window,

 

you

 

must

 

either

 

complete

 

the

 

save

 

operation

 

or

 

cancel

 

it

 

before

 

you

 

can

 

select

 

any

 

other

 

option

 

from

 

the

 

menus

 

of

 

these

 

reports.

 

You

 

can,

 

however,

 

use

 

the

 

other

 

Xprofiler

 

menus

 

before

 

completing

 

the

 

save

 

operation

 

or

 

canceling

 

it,

 

with

 

the

 

exception

 

of

 

the

 

Load

 

Files

 

option

 

of

 

the

 

File

 

menu,

 

which

 

remains

 

unavailable.

 

Each

 

of

 

the

 

Xprofiler

 

reports

 

are

 

explained

 

as

 

follows.

   

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

41



Flat

 

Profile

 

Report

 

When

 

you

 

select

 

the

 

Flat

 

Profile

 

menu

 

option,

 

the

 

Flat

 

Profile

 

window

 

appears.

 

The

 

Flat

 

Profile

 

report

 

shows

 

you

 

the

 

total

 

execution

 

times

 

and

 

call

 

counts

 

for

 

each

 

function

 

(including

 

shared

 

library

 

calls)

 

within

 

your

 

application.

 

The

 

entries

 

for

 

the

 

functions

 

that

 

use

 

the

 

greatest

 

percentage

 

of

 

the

 

total

 

CPU

 

usage

 

appear

 

at

 

the

 

top

 

of

 

the

 

list,

 

while

 

the

 

remaining

 

functions

 

appear

 

in

 

descending

 

order,

 

based

 

on

 

the

 

amount

 

of

 

time

 

used.

 

Unless

 

you

 

specified

 

the

 

-z

 

flag,

 

the

 

Flat

 

Profile

 

report

 

does

 

not

 

include

 

functions

 

that

 

have

 

no

 

CPU

 

usage

 

and

 

no

 

call

 

counts.

 

The

 

data

 

presented

 

in

 

the

 

Flat

 

Profile

 

window

 

is

 

the

 

same

 

data

 

that

 

is

 

generated

 

with

 

the

 

gprof

 

command.

 

The

 

Flat

 

Profile

 

report

 

looks

 

similar

 

to

 

the

 

following:

 

Flat

 

Profile

 

window

 

fields:

   

The

 

Flat

 

Profile

 

window

 

contains

 

the

 

following

 

fields:

 

v

   

%time

 

The

 

percentage

 

of

 

the

 

program’s

 

total

 

CPU

 

usage

 

that

 

is

 

consumed

 

by

 

this

 

function.

 

v

   

cumulative

 

seconds

 

A

 

running

 

sum

 

of

 

the

 

number

 

of

 

seconds

 

used

 

by

 

this

 

function

 

and

 

those

 

listed

 

above

 

it.

 

v

   

self

 

seconds

 

The

 

number

 

of

 

seconds

 

used

 

by

 

this

 

function

 

alone.

 

Xprofiler

 

uses

 

the

 

self

 

seconds

 

values

 

to

 

sort

 

the

 

functions

 

of

 

the

 

Flat

 

Profile

 

report.

 

v

   

calls

 

The

 

number

 

of

 

times

 

this

 

function

 

was

 

called

 

(if

 

this

 

function

 

is

 

profiled).

 

Otherwise,

 

it

 

is

 

blank.

   

Figure

 

18.

 

The

 

Flat

 

Profile

 

report.

 

The

 

screen

 

capture

 

below

 

shows

 

an

 

example

 

of

 

a

 

Flat

 

Profile

 

report

 

window.

 

There

 

is

 

a

 

menu

 

bar

 

at

 

the

 

top

 

with

 

the

 

following

 

options:

 

File,

 

Code

 

Display,

 

Utility,

 

and

 

Help.

 

Below

 

the

 

menu

 

bar

 

is

 

a

 

list

 

of

 

statistics

 

that

 

are

 

described

 

below

 

the

 

graphic.

  

42

 

Performance

 

Tools

 

Guide

 

and

 

Reference



v

   

self

 

ms/call

 

The

 

average

 

number

 

of

 

milliseconds

 

spent

 

in

 

this

 

function

 

per

 

call

 

(if

 

this

 

function

 

is

 

profiled).

 

Otherwise,

 

it

 

is

 

blank.

 

v

   

total

 

ms/call

 

The

 

average

 

number

 

of

 

milliseconds

 

spent

 

in

 

this

 

function

 

and

 

its

 

descendants

 

per

 

call

 

(if

 

this

 

function

 

is

 

profiled).

 

Otherwise,

 

it

 

is

 

blank.

 

v

   

name

 

The

 

name

 

of

 

the

 

function.

 

The

 

index

 

appears

 

in

 

brackets

 

([])

 

to

 

the

 

right

 

of

 

the

 

function

 

name.

 

The

 

index

 

serves

 

as

 

the

 

function’s

 

identifier

 

within

 

Xprofiler.

 

It

 

also

 

appears

 

below

 

the

 

corresponding

 

function

 

in

 

the

 

function

 

call

 

tree.

Call

 

Graph

 

Profile

 

Report

 

The

 

Call

 

Graph

 

Profile

 

menu

 

option

 

lets

 

you

 

view

 

the

 

functions

 

of

 

your

 

application,

 

sorted

 

by

 

the

 

percentage

 

of

 

total

 

CPU

 

usage

 

that

 

each

 

function,

 

and

 

its

 

descendants,

 

consumed.

 

When

 

you

 

select

 

this

 

option,

 

the

 

Call

 

Graph

 

Profile

 

window

 

appears.

 

Unless

 

you

 

specified

 

the

 

-z

 

flag,

 

the

 

Call

 

Graph

 

Profile

 

report

 

does

 

not

 

include

 

functions

 

whose

 

CPU

 

usage

 

is

 

0

 

(zero)

 

and

 

have

 

no

 

call

 

counts.

 

The

 

data

 

presented

 

in

 

the

 

Call

 

Graph

 

Profile

 

window

 

is

 

the

 

same

 

data

 

that

 

is

 

generated

 

with

 

the

 

gprof

 

command.

 

The

 

Call

 

Graph

 

Profile

 

report

 

looks

 

similar

 

to

 

the

 

following:

 

Call

 

Graph

 

Profile

 

window

 

fields:

   

The

 

Call

 

Graph

 

Profile

 

window

 

contains

 

the

 

following

 

fields:

 

v

   

index

   

Figure

 

19.

 

The

 

Call

 

Graph

 

Profile

 

report.

 

The

 

screen

 

capture

 

below

 

shows

 

an

 

example

 

of

 

a

 

Flat

 

Profile

 

report

 

window.

 

There

 

is

 

a

 

menu

 

bar

 

at

 

the

 

top

 

with

 

the

 

following

 

options:

 

File,

 

and

 

Help.

 

Below

 

the

 

menu

 

bar

 

is

 

a

 

list

 

of

 

statistics

 

that

 

are

 

described

 

below

 

the

 

graphic.

  

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

43



The

 

index

 

of

 

the

 

function

 

in

 

the

 

Call

 

Graph

 

Profile.

 

Each

 

function

 

in

 

the

 

Call

 

Graph

 

Profile

 

has

 

an

 

associated

 

index

 

number

 

which

 

serves

 

as

 

the

 

function’s

 

identifier.

 

The

 

same

 

index

 

also

 

appears

 

with

 

each

 

function

 

box

 

label

 

in

 

the

 

function

 

call

 

tree,

 

as

 

well

 

as

 

other

 

Xprofiler

 

reports.

 

v

   

%time

 

The

 

percentage

 

of

 

the

 

program’s

 

total

 

CPU

 

usage

 

that

 

was

 

consumed

 

by

 

this

 

function

 

and

 

its

 

descendants.

 

v

   

self

 

The

 

number

 

of

 

seconds

 

this

 

function

 

spends

 

within

 

itself.

 

v

   

descendants

 

The

 

number

 

of

 

seconds

 

spent

 

in

 

the

 

descendants

 

of

 

this

 

function,

 

on

 

behalf

 

of

 

this

 

function.

 

v

   

called/total,

 

called+self,

 

called/total

 

The

 

heading

 

of

 

this

 

column

 

refers

 

to

 

the

 

different

 

kinds

 

of

 

calls

 

that

 

take

 

place

 

within

 

your

 

program.

 

The

 

values

 

in

 

this

 

field

 

correspond

 

to

 

the

 

functions

 

listed

 

in

 

the

 

name,

 

index,

 

parents,

 

children

 

field

 

to

 

its

 

right.

 

Depending

 

on

 

whether

 

the

 

function

 

is

 

a

 

parent,

 

a

 

child,

 

or

 

the

 

function

 

of

 

interest

 

(the

 

function

 

with

 

the

 

index

 

listed

 

in

 

the

 

index

 

field

 

of

 

this

 

row),

 

this

 

value

 

might

 

represent

 

the

 

number

 

of

 

times

 

that:

 

–

   

a

 

parent

 

called

 

the

 

function

 

of

 

interest

 

–

   

the

 

function

 

of

 

interest

 

called

 

itself,

 

recursively

 

–

   

the

 

function

 

of

 

interest

 

called

 

a

 

child

In

 

the

 

following

 

figure,

 

sub2

 

is

 

the

 

function

 

of

 

interest,

 

sub1

 

and

 

main

 

are

 

its

 

parents,

 

and

 

printf

 

and

 

sub1

 

are

 

its

 

children.

  

v

   

called/total

 

For

 

a

 

parent

 

function,

 

the

 

number

 

of

 

calls

 

made

 

to

 

the

 

function

 

of

 

interest,

 

as

 

well

 

as

 

the

 

total

 

number

 

of

 

calls

 

it

 

made

 

to

 

all

 

functions.

 

v

   

called+self

 

The

 

number

 

of

 

times

 

the

 

function

 

of

 

interest

 

called

 

itself,

 

recursively.

 

v

   

name,

 

index,

 

parents,

 

children

 

The

 

layout

 

of

 

the

 

heading

 

of

 

this

 

column

 

indicates

 

the

 

information

 

that

 

is

 

provided.

 

To

 

the

 

left

 

is

 

the

 

name

 

of

 

the

 

function,

 

and

 

to

 

its

 

right

 

is

 

the

 

function’s

 

index

 

number.

 

Appearing

 

above

 

the

 

function

 

are

 

its

 

parents,

 

and

 

below

 

are

 

its

 

children.

   

Figure

 

20.

 

The

 

called/total,

 

call/self,

 

called/total

 

field.

 

The

 

screen

 

capture

 

below

 

is

 

an

 

example

 

of

 

the

 

called/total,

 

call/self,

 

called/total

 

field

 

of

 

the

 

Call

 

Graph

 

Profile

 

report

 

where

 

sub2

 

is

 

the

 

function

 

of

 

interest,

 

sub1

 

and

 

main

 

are

 

its

 

parents,

 

and

 

printf

 

and

 

sub1

 

are

 

its

 

children.

  

44

 

Performance

 

Tools

 

Guide

 

and

 

Reference



v

   

name

 

The

 

name

 

of

 

the

 

function,

 

with

 

an

 

indication

 

of

 

its

 

membership

 

in

 

a

 

cycle,

 

if

 

any.

 

The

 

function

 

of

 

interest

 

appears

 

to

 

the

 

left,

 

while

 

its

 

parent

 

and

 

child

 

functions

 

are

 

indented

 

above

 

and

 

below

 

it.

 

v

   

index

 

The

 

index

 

of

 

the

 

function

 

in

 

the

 

Call

 

Graph

 

Profile.

 

This

 

number

 

corresponds

 

to

 

the

 

index

 

that

 

appears

 

in

 

the

 

index

 

column

 

of

 

the

 

Call

 

Graph

 

Profile

 

and

 

the

 

on

 

the

 

function

 

box

 

labels

 

in

 

the

 

function

 

call

 

tree.

 

v

   

parents

 

The

 

parents

 

of

 

the

 

function.

 

A

 

parent

 

is

 

any

 

function

 

that

 

directly

 

calls

 

the

 

function

 

in

 

which

 

you

 

are

 

interested.

 

If

 

any

 

portion

 

of

 

your

 

application

 

was

 

not

 

compiled

 

with

 

the

 

-pg

 

flag,

 

Xprofiler

 

cannot

 

identify

 

the

 

parents

 

for

 

the

 

functions

 

within

 

those

 

portions.

 

As

 

a

 

result,

 

these

 

parents

 

will

 

be

 

listed

 

as

 

spontaneous

 

in

 

the

 

Call

 

Graph

 

Profile

 

report.

 

v

   

children

 

The

 

children

 

of

 

the

 

function.

 

A

 

child

 

is

 

any

 

function

 

that

 

is

 

directly

 

called

 

by

 

the

 

function

 

in

 

which

 

you

 

are

 

interested.

Function

 

Index

 

Report

 

The

 

Function

 

Index

 

menu

 

option

 

lets

 

you

 

view

 

a

 

list

 

of

 

the

 

function

 

names

 

included

 

in

 

the

 

function

 

call

 

tree.

 

When

 

you

 

select

 

this

 

option,

 

the

 

Function

 

Index

 

window

 

appears

 

and

 

displays

 

the

 

function

 

names

 

in

 

alphabetical

 

order.

 

To

 

the

 

left

 

of

 

each

 

function

 

name

 

is

 

its

 

index,

 

enclosed

 

in

 

brackets

 

([]).

 

The

 

index

 

is

 

the

 

function’s

 

identifier,

 

which

 

is

 

assigned

 

by

 

Xprofiler.

 

An

 

index

 

also

 

appears

 

on

 

the

 

label

 

of

 

each

 

corresponding

 

function

 

box

 

in

 

the

 

function

 

call

 

tree,

 

as

 

well

 

as

 

on

 

other

 

reports.

 

Unless

 

you

 

specified

 

the

 

-z

 

flag,

 

the

 

Function

 

Index

 

report

 

does

 

not

 

include

 

functions

 

that

 

have

 

no

 

CPU

 

usage

 

and

 

no

 

call

 

counts.

 

Like

 

the

 

Flat

 

Profile

 

menu

 

option,

 

the

 

Function

 

Index

 

menu

 

option

 

includes

 

a

 

Code

 

Display

 

menu,

 

so

 

you

 

can

 

view

 

source

 

code

 

or

 

disassembler

 

code.

 

See

 

“Looking

 

at

 

Your

 

Code”

 

on

 

page

 

50

 

for

 

more

 

information.

 

The

 

Function

 

Index

 

report

 

looks

 

similar

 

to

 

the

 

following:

    

Figure

 

21.

 

The

 

name/index/parents/children

 

field.

 

The

 

screen

 

capture

 

below

 

is

 

an

 

example

 

of

 

the

 

name/index/parents/children

 

field

 

of

 

the

 

Call

 

Graph

 

Profile

 

report.

 

To

 

the

 

left

 

is

 

the

 

name

 

of

 

the

 

function,

 

and

 

to

 

its

 

right

 

is

 

the

 

function’s

 

index

 

number.

 

Appearing

 

above

 

the

 

function

 

are

 

its

 

parents,

 

and

 

below

 

are

 

its

 

children.

  

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

45



Function

 

Call

 

Summary

 

Report

 

The

 

Function

 

Call

 

Summary

 

menu

 

option

 

lets

 

you

 

display

 

all

 

the

 

functions

 

in

 

your

 

application

 

that

 

call

 

other

 

functions.

 

They

 

appear

 

as

 

caller-callee

 

pairs

 

(call

 

arcs,

 

in

 

the

 

function

 

call

 

tree),

 

and

 

are

 

sorted

 

by

 

the

 

number

 

of

 

calls

 

in

 

descending

 

order.

 

When

 

you

 

select

 

this

 

option,

 

the

 

Function

 

Call

 

Summary

 

window

 

appears.

 

The

 

Function

 

Call

 

Summary

 

report

 

looks

 

similar

 

to

 

the

 

following:

    

Figure

 

22.

 

The

 

Function

 

Index

 

report.

 

The

 

following

 

screen

 

capture

 

shows

 

the

 

Function

 

Index

 

Report

 

window.

 

There

 

is

 

a

 

menu

 

bar

 

at

 

the

 

top

 

with

 

the

 

following

 

options:

 

File,

 

Code

 

Display,

 

Utility,

 

and

 

Help.

 

Then,

 

there

 

is

 

a

 

list

 

of

 

the

 

function

 

names

 

included

 

in

 

the

 

function

 

call

 

tree,

 

where

 

to

 

the

 

left

 

of

 

each

 

function

 

name

 

is

 

its

 

index,

 

enclosed

 

in

 

brackets.

 

An

 

index

 

also

 

appears

 

on

 

the

 

label

 

of

 

each

 

corresponding

 

function

 

box

 

in

 

the

 

function

 

call

 

tree.

  

46

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Function

 

Call

 

Summary

 

window

 

fields:

   

The

 

Function

 

Call

 

Summary

 

window

 

contains

 

the

 

following

 

fields:

 

v

   

%total

 

The

 

percentage

 

of

 

the

 

total

 

number

 

of

 

calls

 

generated

 

by

 

this

 

caller-callee

 

pair

 

v

   

calls

 

The

 

number

 

of

 

calls

 

attributed

 

to

 

this

 

caller-callee

 

pair

 

v

   

function

 

The

 

name

 

of

 

the

 

caller

 

function

 

and

 

callee

 

function

Library

 

Statistics

 

Report

 

The

 

Library

 

Statistics

 

menu

 

option

 

lets

 

you

 

display

 

the

 

CPU

 

time

 

consumed

 

and

 

call

 

counts

 

of

 

each

 

library

 

within

 

your

 

application.

 

When

 

you

 

select

 

this

 

option,

 

the

 

Library

 

Statistics

 

window

 

appears.

 

The

 

Library

 

Statistics

 

report

 

looks

 

similar

 

to

 

the

 

following:

    

Figure

 

23.

 

The

 

Function

 

Call

 

Summary

 

report.

 

The

 

screen

 

capture

 

below

 

shows

 

an

 

example

 

of

 

the

 

Function

 

Call

 

Summary

 

Report

 

window.

 

There

 

is

 

a

 

menu

 

bar

 

at

 

the

 

top

 

with

 

the

 

following

 

options:

 

File,

 

Utility,

 

and

 

Help.

 

There

 

is

 

a

 

list

 

of

 

all

 

the

 

functions

 

in

 

your

 

application

 

that

 

call

 

other

 

functions

 

and

 

they

 

appear

 

as

 

caller-callee

 

pairs

 

(call

 

arcs,

 

in

 

the

 

function

 

call

 

tree),

 

and

 

are

 

sorted

 

by

 

the

 

number

 

of

 

calls

 

in

 

descending

 

order.

  

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

47



Library

 

Statistics

 

window

 

fields:

   

The

 

Library

 

Statistics

 

window

 

contains

 

the

 

following

 

fields:

 

v

   

total

 

seconds

 

The

 

total

 

CPU

 

usage

 

of

 

the

 

library,

 

in

 

seconds

 

v

   

%total

 

time

 

The

 

percentage

 

of

 

the

 

total

 

CPU

 

usage

 

that

 

was

 

consumed

 

by

 

this

 

library

 

v

   

total

 

calls

 

The

 

total

 

number

 

of

 

calls

 

that

 

this

 

library

 

generated

 

v

   

%total

 

calls

 

The

 

percentage

 

of

 

the

 

total

 

calls

 

that

 

this

 

library

 

generated

 

v

   

%calls

 

out

 

of

 

The

 

percentage

 

of

 

the

 

total

 

number

 

of

 

calls

 

made

 

from

 

this

 

library

 

to

 

other

 

libraries

 

v

   

%calls

 

into

 

The

 

percentage

 

of

 

the

 

total

 

number

 

of

 

calls

 

made

 

from

 

other

 

libraries

 

into

 

this

 

library

 

v

   

%calls

 

within

 

The

 

percentage

 

of

 

the

 

total

 

number

 

of

 

calls

 

made

 

between

 

the

 

functions

 

within

 

this

 

library

 

v

   

load

 

unit

 

The

 

library’s

 

full

 

path

 

name

Saving

 

Reports

 

to

 

a

 

File

 

Xprofiler

 

lets

 

you

 

save

 

any

 

of

 

the

 

reports

 

you

 

generate

 

with

 

the

 

Report

 

menu

 

to

 

a

 

file.

 

You

 

can

 

do

 

this

 

using

 

the

 

File

 

and

 

Report

 

menus

 

of

 

the

 

Xprofiler

 

GUI.

   

Figure

 

24.

 

The

 

Library

 

Statistics

 

report.

 

The

 

following

 

screen

 

capture

 

shows

 

an

 

example

 

of

 

the

 

Library

 

Statistics

 

Report

 

window.

 

There

 

is

 

a

 

menu

 

bar

 

at

 

the

 

top

 

with

 

the

 

following

 

options:

 

File,

 

and

 

Help.

 

There

 

is

 

a

 

list

 

of

 

statistics

 

for

 

each

 

library

 

that

 

is

 

described

 

in

 

greater

 

detail

 

below

 

the

 

graphic.

  

48

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Saving

 

a

 

single

 

report:

   

To

 

save

 

a

 

single

 

report,

 

go

 

to

 

the

 

Report

 

menu

 

on

 

the

 

Xprofiler

 

main

 

window

 

and

 

select

 

the

 

report

 

you

 

want

 

to

 

save.

 

Each

 

report

 

window

 

includes

 

a

 

File

 

menu.

 

Select

 

the

 

File

 

menu

 

and

 

then

 

the

 

Save

 

As

 

option

 

to

 

save

 

the

 

report.

 

A

 

Save

 

dialog

 

window

 

appears,

 

which

 

is

 

named

 

according

 

to

 

the

 

report

 

from

 

which

 

you

 

selected

 

the

 

Save

 

As

 

option.

 

For

 

example,

 

if

 

you

 

chose

 

Save

 

As

 

from

 

the

 

Flat

 

Profile

 

window,

 

the

 

save

 

window

 

is

 

named

 

Save

 

Flat

 

Profile

 

Dialog.

 

Saving

 

the

 

Call

 

Graph

 

Profile,

 

Function

 

Index,

 

and

 

Flat

 

Profile

 

reports

 

to

 

a

 

file:

   

You

 

can

 

save

 

the

 

Call

 

Graph

 

Profile,

 

Function

 

Index,

 

and

 

Flat

 

Profile

 

reports

 

to

 

a

 

single

 

file

 

through

 

the

 

File

 

menu

 

of

 

the

 

Xprofiler

 

main

 

window.

 

The

 

information

 

you

 

generate

 

here

 

is

 

identical

 

to

 

the

 

output

 

of

 

the

 

gprof

 

command.

 

From

 

the

 

File

 

menu,

 

select

 

the

 

Save

 

As

 

option.

 

The

 

Save

 

File

 

Dialog

 

window

 

appears.

 

To

 

save

 

the

 

reports,

 

do

 

the

 

following:

 

1.

   

Specify

 

the

 

file

 

into

 

which

 

the

 

profiled

 

data

 

should

 

be

 

placed.

 

You

 

can

 

specify

 

either

 

an

 

existing

 

file

 

or

 

a

 

new

 

one.

 

To

 

specify

 

an

 

existing

 

file,

 

use

 

the

 

scroll

 

bars

 

of

 

the

 

Directories

 

and

 

Files

 

selection

 

boxes

 

to

 

locate

 

the

 

file.

 

To

 

make

 

locating

 

your

 

files

 

easier,

 

you

 

can

 

also

 

use

 

the

 

Filter

 

button

 

(see

 

“Filtering

 

what

 

You

 

See”

 

on

 

page

 

27

 

for

 

more

 

information).

 

To

 

specify

 

a

 

new

 

file,

 

type

 

its

 

name

 

in

 

the

 

Selection

 

field.

 

2.

   

Click

 

OK.

 

A

 

file

 

that

 

contains

 

the

 

profiled

 

data

 

appears

 

in

 

the

 

directory

 

you

 

specified,

 

under

 

the

 

name

 

you

 

gave

 

it.

Note:

  

After

 

you

 

select

 

the

 

Save

 

As

 

option

 

from

 

the

 

File

 

menu

 

and

 

the

 

Save

 

Profile

 

Reports

 

window

 

opens,

 

you

 

must

 

either

 

complete

 

the

 

save

 

operation

 

or

 

cancel

 

it

 

before

 

you

 

can

 

select

 

any

 

other

 

option

 

from

 

the

 

menus

 

of

 

its

 

parent

 

window.

 

For

 

example,

 

if

 

you

 

select

 

the

 

Save

 

As

 

option

 

from

 

the

 

Flat

 

Profile

 

report

 

and

 

the

 

Save

 

File

 

Dialog

 

window

 

appears,

 

you

 

cannot

 

use

 

any

 

other

 

option

 

of

 

the

 

Flat

 

Profile

 

report

 

window.

 

The

 

File

 

Selection

 

field

 

of

 

the

 

Save

 

File

 

Dialog

 

window

 

follows

 

Motif

 

standards.

 

Saving

 

summarized

 

data

 

from

 

multiple

 

profile

 

data

 

files:

   

If

 

you

 

are

 

profiling

 

a

 

parallel

 

program,

 

you

 

can

 

specify

 

more

 

than

 

one

 

profile

 

data

 

(gmon.out)

 

file

 

when

 

you

 

start

 

Xprofiler.

 

The

 

Save

 

gmon.sum

 

As

 

option

 

of

 

the

 

File

 

menu

 

lets

 

you

 

save

 

a

 

summary

 

of

 

the

 

data

 

in

 

each

 

of

 

these

 

files

 

to

 

a

 

single

 

file.

 

The

 

Xprofiler

 

Save

 

gmon.sum

 

As

 

option

 

produces

 

the

 

same

 

result

 

as

 

the

 

xprofiler

 

-s

 

command

 

and

 

the

 

gprof

 

-s

 

command.

 

If

 

you

 

run

 

Xprofiler

 

later,

 

you

 

can

 

use

 

the

 

file

 

you

 

create

 

here

 

as

 

input

 

with

 

the

 

-s

 

flag.

 

In

 

this

 

way,

 

you

 

can

 

accumulate

 

summary

 

data

 

over

 

several

 

runs

 

of

 

your

 

application.

 

To

 

create

 

a

 

summary

 

file,

 

do

 

the

 

following:

 

1.

   

Select

 

the

 

File

 

menu,

 

and

 

then

 

the

 

Save

 

gmon.sum

 

As

 

option.

 

The

 

Save

 

gmon.sum

 

Dialog

 

window

 

appears.

 

2.

   

Specify

 

the

 

file

 

into

 

which

 

the

 

summarized,

 

profiled

 

data

 

should

 

be

 

placed.

 

By

 

default,

 

Xprofiler

 

puts

 

the

 

data

 

into

 

a

 

file

 

called

 

gmon.sum.

 

To

 

specify

 

a

 

new

 

file,

 

type

 

its

 

name

 

in

 

the

 

selection

 

field.

 

To

 

specify

 

an

 

existing

 

file,

 

use

 

the

 

scroll

 

bars

 

of

 

the

 

Directories

 

and

 

Files

 

selection

 

boxes

 

to

 

locate

 

the

 

file

 

you

 

want.

 

To

 

make

 

locating

 

your

 

files

 

easier,

 

you

 

can

 

also

 

use

 

the

 

Filter

 

button

 

(see

 

“Filtering

 

what

 

You

 

See”

 

on

 

page

 

27

 

for

 

information).

 

3.

   

Click

 

OK.

 

A

 

file

 

that

 

contains

 

the

 

summary

 

data

 

appears

 

in

 

the

 

directory

 

you

 

specified,

 

under

 

the

 

name

 

you

 

specified.

Saving

 

a

 

configuration

 

file:

   

The

 

Save

 

Configuration

 

menu

 

option

 

lets

 

you

 

save

 

the

 

names

 

of

 

the

 

functions

 

that

 

are

 

displayed

 

currently

 

to

 

a

 

file.

 

Later,

 

in

 

the

 

same

 

Xprofiler

 

session

 

or

 

in

 

a

 

different

 

session,

 

you

 

can

 

read

 

this

 

configuration

 

file

 

in

 

using

 

the

 

Load

 

Configuration

 

option.

 

For

 

more

 

information,

 

see

 

“Loading

 

a

 

configuration

 

file”

 

on

 

page

 

50.

 

To

 

save

 

a

 

configuration

 

file,

 

do

 

the

 

following:

   

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

49



1.

   

Select

 

the

 

File

 

menu,

 

and

 

then

 

the

 

Save

 

Configuration

 

option.

 

The

 

Save

 

Configuration

 

File

 

Dialog

 

window

 

opens

 

with

 

the

 

program.cfg

 

file

 

as

 

the

 

default

 

value

 

in

 

the

 

Selection

 

field,

 

where

 

program

 

is

 

the

 

name

 

of

 

the

 

input

 

a.out

 

file.

 

You

 

can

 

use

 

the

 

default

 

file

 

name,

 

enter

 

a

 

file

 

name

 

in

 

the

 

Selection

 

field,

 

or

 

select

 

a

 

file

 

from

 

the

 

file

 

list.

 

2.

   

Specify

 

a

 

file

 

name

 

in

 

the

 

Selection

 

field

 

and

 

click

 

OK.

 

A

 

configuration

 

file

 

is

 

created

 

that

 

contains

 

the

 

name

 

of

 

the

 

program

 

and

 

the

 

names

 

of

 

the

 

functions

 

that

 

are

 

displayed

 

currently.

 

3.

   

Specify

 

an

 

existing

 

file

 

name

 

in

 

the

 

Selection

 

field

 

and

 

click

 

OK.

 

An

 

Overwrite

 

File

 

Dialog

 

window

 

appears

 

so

 

that

 

you

 

can

 

check

 

the

 

file

 

before

 

overwriting

 

it.

 

If

 

you

 

selected

 

the

 

Forced

 

File

 

Overwriting

 

option

 

in

 

the

 

Runtime

 

Options

 

Dialog

 

window,

 

the

 

Overwrite

 

File

 

Dialog

 

window

 

does

 

not

 

open

 

and

 

the

 

specified

 

file

 

is

 

overwritten

 

without

 

warning.

 

Loading

 

a

 

configuration

 

file:

   

The

 

Load

 

Configuration

 

menu

 

option

 

lets

 

you

 

read

 

in

 

a

 

configuration

 

file

 

that

 

you

 

saved.

 

See

 

“Saving

 

a

 

configuration

 

file”

 

on

 

page

 

49

 

for

 

more

 

information.

 

The

 

Load

 

Configuration

 

option

 

automatically

 

reconstructs

 

the

 

function

 

call

 

tree

 

according

 

to

 

the

 

function

 

names

 

recorded

 

in

 

the

 

configuration

 

file.

 

To

 

load

 

a

 

configuration

 

file,

 

do

 

the

 

following:

 

1.

   

Select

 

the

 

File

 

menu,

 

and

 

then

 

the

 

Load

 

Configuration

 

option.

 

The

 

Load

 

Configuration

 

File

 

Dialog

 

window

 

opens.

 

If

 

configuration

 

files

 

were

 

loaded

 

previously

 

during

 

the

 

current

 

Xprofiler

 

session,

 

the

 

name

 

of

 

the

 

file

 

that

 

was

 

most

 

recently

 

loaded

 

will

 

appear

 

in

 

the

 

Selection

 

field

 

of

 

this

 

dialog.

 

You

 

can

 

also

 

load

 

the

 

file

 

with

 

the

 

-c

 

flag.

 

For

 

more

 

information,

 

see

 

“Specifying

 

Command

 

Line

 

Options

 

(from

 

the

 

GUI)”

 

on

 

page

 

14.

 

2.

   

Select

 

a

 

configuration

 

file

 

from

 

the

 

dialog’s

 

Files

 

list

 

or

 

specify

 

a

 

file

 

name

 

in

 

the

 

Selection

 

field

 

and

 

click

 

OK.

 

The

 

function

 

call

 

tree

 

is

 

redrawn

 

to

 

show

 

only

 

those

 

function

 

boxes

 

for

 

functions

 

that

 

are

 

listed

 

in

 

the

 

configuration

 

file

 

and

 

are

 

called

 

within

 

the

 

program

 

that

 

is

 

currently

 

represented

 

in

 

the

 

display.

 

All

 

corresponding

 

call

 

arcs

 

are

 

also

 

drawn.

 

If

 

the

 

a.out

 

name,

 

that

 

is,

 

the

 

program

 

name

 

in

 

the

 

configuration

 

file,

 

is

 

different

 

from

 

the

 

a.out

 

name

 

in

 

the

 

current

 

display,

 

a

 

confirmation

 

dialog

 

asks

 

you

 

whether

 

you

 

still

 

want

 

to

 

load

 

the

 

file.

 

3.

   

If

 

after

 

loading

 

a

 

configuration

 

file,

 

you

 

want

 

to

 

return

 

the

 

function

 

call

 

tree

 

to

 

its

 

previous

 

state,

 

select

 

the

 

Filter

 

menu,

 

and

 

then

 

the

 

Undo

 

option.

Looking

 

at

 

Your

 

Code

 

Xprofiler

 

provides

 

several

 

ways

 

for

 

you

 

to

 

view

 

your

 

code.

 

You

 

can

 

view

 

the

 

source

 

code

 

or

 

the

 

disassembler

 

code

 

for

 

your

 

application,

 

for

 

each

 

function.

 

This

 

also

 

applies

 

to

 

any

 

included

 

function

 

code

 

that

 

your

 

application

 

might

 

use.

 

To

 

view

 

source

 

or

 

included

 

function

 

code,

 

use

 

the

 

Source

 

Code

 

window.

 

To

 

view

 

disassembler

 

code,

 

use

 

the

 

Disassembler

 

Code

 

window.

 

You

 

can

 

access

 

these

 

windows

 

through

 

the

 

Report

 

menu

 

of

 

the

 

Xprofiler

 

GUI

 

or

 

the

 

Function

 

menu

 

of

 

the

 

function

 

you

 

are

 

interested

 

in.

 

Viewing

 

the

 

Source

 

Code

 

Both

 

the

 

Function

 

menu

 

and

 

Report

 

menu

 

allow

 

you

 

to

 

access

 

the

 

Source

 

Code

 

window,

 

from

 

which

 

you

 

can

 

view

 

your

 

code.

 

To

 

access

 

the

 

Source

 

Code

 

window

 

through

 

the

 

Function

 

menu:

 

1.

   

Click

 

the

 

function

 

box

 

you

 

are

 

interested

 

in

 

with

 

the

 

right

 

mouse

 

button.

 

The

 

Function

 

menu

 

appears.

 

2.

   

From

 

the

 

Function

 

menu,

 

select

 

the

 

Show

 

Source

 

Code

 

option.

 

The

 

Source

 

Code

 

window

 

appears.

To

 

access

 

the

 

Source

 

Code

 

window

 

through

 

the

 

Report

 

menu:

 

1.

   

Select

 

the

 

Report

 

menu,

 

and

 

then

 

the

 

Flat

 

Profile

 

option.

 

The

 

Flat

 

Profile

 

window

 

appears.

   

50

 

Performance

 

Tools

 

Guide

 

and

 

Reference



2.

   

From

 

the

 

Flat

 

Profile

 

window,

 

select

 

the

 

function

 

you

 

would

 

like

 

to

 

view

 

by

 

clicking

 

on

 

its

 

entry

 

in

 

the

 

window.

 

The

 

entry

 

is

 

highlighted

 

to

 

show

 

that

 

it

 

is

 

selected.

 

3.

   

Select

 

the

 

Code

 

Display

 

menu,

 

and

 

then

 

the

 

Show

 

Source

 

Code

 

option.

 

The

 

Source

 

Code

 

window

 

appears,

 

containing

 

the

 

source

 

code

 

for

 

the

 

function

 

you

 

selected.

Using

 

the

 

Source

 

Code

 

window:

   

The

 

Source

 

Code

 

window

 

shows

 

you

 

the

 

source

 

code

 

file

 

for

 

the

 

function

 

you

 

specified

 

from

 

the

 

Flat

 

Profile

 

window

 

or

 

the

 

Function

 

menu.

 

The

 

Source

 

Code

 

window

 

looks

 

similar

 

to

 

the

 

following:

 

The

 

Source

 

Code

 

window

 

contains

 

information

 

in

 

the

 

following

 

fields:

 

v

   

line

 

The

 

source

 

code

 

line

 

number.

 

v

   

no.

 

ticks

 

per

 

line

 

Each

 

tick

 

represents

 

.01

 

seconds

 

of

 

CPU

 

time

 

used.

 

The

 

value

 

in

 

this

 

field

 

represents

 

the

 

number

 

of

 

ticks

 

used

 

by

 

the

 

corresponding

 

line

 

of

 

code.

 

For

 

example,

 

if

 

the

 

number

 

3

 

appeared

 

in

 

this

 

field,

 

for

 

a

 

source

 

statement,

 

this

 

source

 

statement

 

would

 

have

 

used

 

.03

 

seconds

 

of

 

CPU

 

time.

 

The

 

CPU

 

usage

 

data

 

only

 

appears

 

in

 

this

 

field

 

if

 

you

 

used

 

the

 

-g

 

flag

 

when

 

you

 

compiled

 

your

 

application.

 

Otherwise,

 

this

 

field

 

is

 

blank.

 

v

   

source

 

code

 

The

 

application’s

 

source

 

code.

The

 

Source

 

Code

 

window

 

contains

 

the

 

following

 

menus:

 

v

   

File

 

The

 

Save

 

As

 

option

 

lets

 

you

 

save

 

the

 

annotated

 

source

 

code

 

to

 

a

 

file.

 

When

 

you

 

select

 

this

 

option,

 

the

 

Save

 

File

 

Dialog

 

window

 

appears.

 

For

 

more

 

information

 

about

 

using

 

the

 

Save

 

File

 

Dialog

 

window,

 

see

 

“Saving

 

the

 

Call

 

Graph

 

Profile,

 

Function

 

Index,

 

and

 

Flat

 

Profile

 

reports

 

to

 

a

 

file”

 

on

 

page

 

49.

   

Figure

 

25.

 

The

 

Source

 

Code

 

window.

 

The

 

following

 

screen

 

capture

 

shows

 

an

 

example

 

of

 

the

 

Source

 

Code

 

window.

 

There

 

is

 

a

 

menu

 

bar

 

at

 

the

 

top

 

with

 

the

 

following

 

options:

 

File,

 

Utility,

 

and

 

Help.

 

The

 

fields

 

of

 

the

 

Source

 

Code

 

window

 

are

 

described

 

in

 

greater

 

detail

 

below

 

the

 

graphic.

  

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

51



To

 

close

 

the

 

Source

 

Code

 

window,

 

select

 

Close.

 

v

   

Utility

 

This

 

menu

 

contains

 

the

 

Show

 

Included

 

Functions

 

option.

For

 

C++

 

users,

 

the

 

Show

 

Included

 

Functions

 

option

 

lets

 

you

 

view

 

the

 

source

 

code

 

of

 

included

 

function

 

files

 

that

 

are

 

included

 

by

 

the

 

application’s

 

source

 

code.

 

If

 

a

 

selected

 

function

 

does

 

not

 

have

 

an

 

included

 

function

 

file

 

associated

 

with

 

it

 

or

 

does

 

not

 

have

 

the

 

function

 

file

 

information

 

available

 

because

 

the

 

-g

 

flag

 

was

 

not

 

used

 

for

 

compiling,

 

the

 

Utility

 

menu

 

will

 

be

 

unavailable.

 

The

 

availability

 

of

 

the

 

Utility

 

menu

 

indicates

 

whether

 

there

 

is

 

any

 

included

 

function-file

 

information

 

associated

 

with

 

the

 

selected

 

function.

 

When

 

you

 

select

 

the

 

Show

 

Included

 

Functions

 

option,

 

the

 

Included

 

Functions

 

Dialog

 

window

 

appears,

 

which

 

lists

 

all

 

of

 

the

 

included

 

function

 

files.

 

Specify

 

a

 

file

 

by

 

either

 

clicking

 

on

 

one

 

of

 

the

 

entries

 

in

 

the

 

list

 

with

 

the

 

left

 

mouse

 

button,

 

or

 

by

 

typing

 

the

 

file

 

name

 

in

 

the

 

Selection

 

field.

 

Then

 

click

 

OK

 

or

 

Apply.

 

After

 

you

 

select

 

a

 

file

 

from

 

the

 

Included

 

Functions

 

Dialog

 

window,

 

the

 

Included

 

Function

 

File

 

window

 

appears,

 

displaying

 

the

 

source

 

code

 

for

 

the

 

file

 

that

 

you

 

specified.

 

Viewing

 

the

 

Disassembler

 

Code

 

Both

 

the

 

Function

 

menu

 

and

 

Report

 

menu

 

allow

 

you

 

to

 

access

 

the

 

Disassembler

 

Code

 

window,

 

from

 

which

 

you

 

can

 

view

 

your

 

code.

 

To

 

access

 

the

 

Disassembler

 

Code

 

window

 

through

 

the

 

Function

 

menu,

 

do

 

the

 

following:

 

1.

   

Click

 

the

 

function

 

you

 

are

 

interested

 

in

 

with

 

the

 

right

 

mouse

 

button.

 

The

 

Function

 

menu

 

appears.

 

2.

   

From

 

the

 

Function

 

menu,

 

select

 

the

 

Show

 

Disassembler

 

Code

 

option.

 

The

 

Disassembler

 

Code

 

window

 

appears.

To

 

access

 

the

 

Disassembler

 

Code

 

window

 

through

 

the

 

Report

 

menu,

 

do

 

the

 

following:

 

1.

   

Select

 

the

 

Report

 

menu,

 

and

 

then

 

the

 

Flat

 

Profile

 

option.

 

The

 

Flat

 

Profile

 

window

 

appears.

 

2.

   

From

 

the

 

Flat

 

Profile

 

window,

 

select

 

the

 

function

 

you

 

want

 

to

 

view

 

by

 

clicking

 

on

 

its

 

entry

 

in

 

the

 

window.

 

The

 

entry

 

is

 

highlighted

 

to

 

show

 

that

 

it

 

is

 

selected.

 

3.

   

Select

 

the

 

Code

 

Display

 

menu,

 

and

 

then

 

the

 

Show

 

Disassembler

 

Code

 

option.

 

The

 

Disassembler

 

Code

 

window

 

appears,

 

and

 

contains

 

the

 

disassembler

 

code

 

for

 

the

 

function

 

you

 

selected.

Using

 

the

 

Disassembler

 

Code

 

window:

   

The

 

Disassembler

 

Code

 

window

 

shows

 

you

 

only

 

the

 

disassembler

 

code

 

for

 

the

 

function

 

you

 

specified

 

from

 

the

 

Flat

 

Profile

 

window.

 

The

 

Disassembler

 

Code

 

window

 

looks

 

similar

 

to

 

the

 

following:

    

52

 

Performance

 

Tools

 

Guide

 

and

 

Reference



The

 

Disassembler

 

Code

 

window

 

contains

 

information

 

in

 

the

 

following

 

fields:

 

v

   

address

 

The

 

address

 

of

 

each

 

instruction

 

in

 

the

 

function

 

you

 

selected

 

(from

 

either

 

the

 

Flat

 

Profile

 

window

 

or

 

the

 

function

 

call

 

tree).

 

v

   

no.

 

ticks

 

per

 

instr.

 

Each

 

tick

 

represents

 

.01

 

seconds

 

of

 

CPU

 

time

 

used.

 

The

 

value

 

in

 

this

 

field

 

represents

 

the

 

number

 

of

 

ticks

 

used

 

by

 

the

 

corresponding

 

instruction.

 

For

 

instance,

 

if

 

the

 

number

 

3

 

appeared

 

in

 

this

 

field,

 

this

 

instruction

 

would

 

have

 

used

 

.03

 

seconds

 

of

 

CPU

 

time.

 

v

   

instruction

 

The

 

execution

 

instruction.

 

v

   

assembler

 

code

 

The

 

execution

 

instruction’s

 

corresponding

 

assembler

 

code.

 

v

   

source

 

code

 

The

 

line

 

in

 

your

 

application’s

 

source

 

code

 

that

 

corresponds

 

to

 

the

 

execution

 

instruction

 

and

 

assembler

 

code.

 

In

 

order

 

for

 

information

 

to

 

appear

 

in

 

this

 

field,

 

you

 

must

 

have

 

compiled

 

your

 

application

 

with

 

the

 

-g

 

flag.

The

 

Search

 

Engine

 

field

 

at

 

the

 

bottom

 

of

 

the

 

Disassembler

 

Code

 

window

 

lets

 

you

 

search

 

for

 

a

 

specific

 

string

 

in

 

your

 

disassembler

 

code.

 

The

 

Disassembler

 

Code

 

window

 

contains

 

one

 

menu:

 

v

   

File

   

Figure

 

26.

 

The

 

Disassembler

 

Code

 

window.

 

The

 

following

 

screen

 

capture

 

shows

 

an

 

example

 

of

 

the

 

Disassembler

 

Code

 

window.

 

There

 

is

 

a

 

menu

 

bar

 

at

 

the

 

top

 

with

 

the

 

following

 

options:

 

File,

 

and

 

Help.

 

There

 

are

 

five

 

fields

 

that

 

are

 

described

 

in

 

greater

 

detail

 

below

 

the

 

graphic.

  

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

53



Select

 

Save

 

As

 

to

 

save

 

the

 

annotated

 

disassembler

 

code

 

to

 

a

 

file.

 

When

 

you

 

select

 

this

 

option,

 

the

 

Save

 

File

 

Dialog

 

window

 

appears.

 

For

 

information

 

on

 

using

 

the

 

Save

 

File

 

Dialog

 

window,

 

see

 

“Saving

 

the

 

Call

 

Graph

 

Profile,

 

Function

 

Index,

 

and

 

Flat

 

Profile

 

reports

 

to

 

a

 

file”

 

on

 

page

 

49.

 

To

 

close

 

the

 

Disassembler

 

Code

 

window,

 

select

 

Close.

Saving

 

Screen

 

Images

 

of

 

Profiled

 

Data

 

The

 

File

 

menu

 

of

 

the

 

Xprofiler

 

GUI

 

includes

 

an

 

option

 

called

 

Screen

 

Dump

 

that

 

lets

 

you

 

capture

 

an

 

image

 

of

 

the

 

Xprofiler

 

main

 

window.

 

This

 

option

 

is

 

useful

 

if

 

you

 

want

 

to

 

save

 

a

 

copy

 

of

 

the

 

graphical

 

display

 

to

 

refer

 

to

 

later.

 

You

 

can

 

either

 

save

 

the

 

image

 

as

 

a

 

file

 

in

 

PostScript

 

format,

 

or

 

send

 

it

 

directly

 

to

 

a

 

printer.

 

To

 

capture

 

a

 

window

 

image,

 

do

 

the

 

following:

 

1.

   

Select

 

File

 

and

 

then

 

Screen

 

Dump.

 

The

 

Screen

 

Dump

 

menu

 

opens.

 

2.

   

From

 

the

 

Screen

 

Dump

 

menu,

 

select

 

Set

 

Option.

 

The

 

Screen

 

Dump

 

Options

 

Dialog

 

window

 

appears.

  

3.

   

Make

 

the

 

appropriate

 

selections

 

in

 

the

 

fields

 

of

 

the

 

Screen

 

Dump

 

Options

 

Dialog

 

window,

 

as

 

follows:

 

v

   

Output

 

To:

   

Figure

 

27.

 

The

 

Screen

 

Dump

 

Options

 

Dialog

 

window.

 

The

 

screen

 

capture

 

below

 

shows

 

an

 

example

 

of

 

the

 

Screen

 

Dump

 

Options

 

Dialog

 

window.

 

Each

 

section

 

of

 

the

 

Screen

 

Dump

 

Options

 

Dialog

 

window

 

is

 

described

 

in

 

greater

 

detail

 

below

 

the

 

graphic.

  

54

 

Performance

 

Tools

 

Guide

 

and

 

Reference



This

 

option

 

lets

 

you

 

specify

 

whether

 

you

 

want

 

to

 

save

 

the

 

captured

 

image

 

as

 

a

 

PostScript

 

file

 

or

 

send

 

it

 

directly

 

to

 

a

 

printer.

 

If

 

you

 

would

 

like

 

to

 

save

 

the

 

image

 

to

 

a

 

file,

 

select

 

the

 

File

 

button.

 

This

 

file,

 

by

 

default,

 

is

 

named

 

Xprofiler.screenDump.ps.0,

 

and

 

is

 

displayed

 

in

 

the

 

Default

 

File

 

Name

 

field

 

of

 

this

 

dialog

 

window.

 

When

 

you

 

select

 

the

 

File

 

button,

 

the

 

text

 

in

 

the

 

Print

 

Command

 

field

 

greys

 

out.

 

To

 

send

 

the

 

image

 

directly

 

to

 

a

 

printer,

 

select

 

the

 

Printer

 

button.

 

The

 

image

 

is

 

sent

 

to

 

the

 

printer

 

you

 

specify

 

in

 

the

 

Print

 

Command

 

field

 

of

 

this

 

dialog

 

window.

 

When

 

you

 

specify

 

the

 

Print

 

option,

 

a

 

file

 

of

 

the

 

image

 

is

 

not

 

saved.

 

Also,

 

selecting

 

this

 

option

 

causes

 

the

 

text

 

in

 

the

 

Default

 

File

 

Name

 

field

 

is

 

made

 

unavailable.

 

v

   

PostScript

 

Output:

 

This

 

option

 

lets

 

you

 

specify

 

whether

 

you

 

want

 

to

 

capture

 

the

 

image

 

in

 

shades

 

of

 

grey

 

or

 

in

 

color.

 

If

 

you

 

want

 

to

 

capture

 

the

 

image

 

in

 

shades

 

of

 

grey,

 

select

 

the

 

GreyShades

 

button.

 

You

 

must

 

also

 

select

 

the

 

number

 

of

 

shades

 

you

 

want

 

the

 

image

 

to

 

include

 

with

 

the

 

Number

 

of

 

Grey

 

Shades

 

option,

 

as

 

discussed

 

below.

 

If

 

you

 

want

 

to

 

capture

 

the

 

image

 

in

 

color,

 

select

 

the

 

Color

 

button.

 

v

   

Number

 

of

 

Grey

 

Shades

 

This

 

option

 

lets

 

you

 

specify

 

the

 

number

 

of

 

grey

 

shades

 

that

 

the

 

captured

 

image

 

will

 

include.

 

Select

 

either

 

the

 

2,

 

4,

 

or

 

16

 

buttons,

 

depending

 

on

 

the

 

number

 

of

 

shades

 

you

 

want

 

to

 

use.

 

Typically,

 

the

 

more

 

shades

 

you

 

use,

 

the

 

longer

 

it

 

will

 

take

 

to

 

print

 

the

 

image.

 

v

   

Delay

 

Before

 

Grab

 

This

 

option

 

lets

 

you

 

specify

 

how

 

much

 

of

 

a

 

delay

 

will

 

occur

 

between

 

activating

 

the

 

capturing

 

mechanism

 

and

 

when

 

the

 

image

 

is

 

actually

 

captured.

 

By

 

default,

 

the

 

delay

 

is

 

set

 

to

 

one

 

second,

 

but

 

you

 

may

 

need

 

time

 

to

 

arrange

 

the

 

window

 

the

 

way

 

you

 

want

 

it.

 

Setting

 

the

 

delay

 

to

 

a

 

longer

 

interval

 

gives

 

you

 

some

 

extra

 

time

 

to

 

do

 

this.

 

You

 

set

 

the

 

delay

 

with

 

the

 

slider

 

bar

 

of

 

this

 

field.

 

The

 

number

 

above

 

the

 

slider

 

indicates

 

the

 

time

 

interval

 

in

 

seconds.

 

You

 

can

 

set

 

the

 

delay

 

to

 

a

 

maximum

 

of

 

thirty

 

seconds.

 

v

   

Enable

 

Landscape

 

(button)

 

This

 

option

 

lets

 

you

 

specify

 

that

 

you

 

want

 

the

 

output

 

to

 

be

 

in

 

landscape

 

format

 

(the

 

default

 

is

 

portrait).

 

To

 

select

 

landscape

 

format,

 

select

 

the

 

Enable

 

Landscape

 

button.

 

v

   

Annotate

 

Output

 

(button)

 

This

 

option

 

lets

 

you

 

specify

 

that

 

you

 

would

 

like

 

information

 

about

 

how

 

the

 

file

 

was

 

created

 

to

 

be

 

included

 

in

 

the

 

PostScript

 

image

 

file.

 

By

 

default,

 

this

 

information

 

is

 

not

 

included.

 

To

 

include

 

this

 

information,

 

select

 

the

 

Annotate

 

Output

 

button.

 

v

   

Default

 

File

 

Name

 

(field)

 

If

 

you

 

chose

 

to

 

put

 

your

 

output

 

in

 

a

 

file,

 

this

 

field

 

lets

 

you

 

specify

 

the

 

file

 

name.

 

The

 

default

 

file

 

name

 

is

 

Xprofiler.screenDump.ps.0.

 

If

 

you

 

want

 

to

 

change

 

to

 

a

 

different

 

file

 

name,

 

type

 

it

 

over

 

the

 

one

 

that

 

appears

 

in

 

this

 

field.

 

If

 

you

 

specify

 

the

 

output

 

file

 

name

 

with

 

an

 

integer

 

suffix

 

(that

 

is,

 

the

 

file

 

name

 

ends

 

with

 

xxx.nn,

 

where

 

nn

 

is

 

a

 

non-negative

 

integer),

 

the

 

suffix

 

automatically

 

increases

 

by

 

one

 

every

 

time

 

a

 

new

 

output

 

file

 

is

 

written

 

in

 

the

 

same

 

Xprofiler

 

session.

 

v

   

Print

 

Command

 

(field)

 

If

 

you

 

chose

 

to

 

send

 

the

 

captured

 

image

 

directly

 

to

 

a

 

printer,

 

this

 

field

 

lets

 

you

 

specify

 

the

 

print

 

command.

 

The

 

default

 

print

 

command

 

is

 

qprt

 

-B

 

ga

 

-c

 

-Pps.

 

If

 

you

 

want

 

to

 

use

 

a

 

different

 

command,

 

type

 

the

 

new

 

command

 

over

 

the

 

one

 

that

 

appears

 

in

 

this

 

field.

4.

   

Click

 

OK.

 

The

 

Screen

 

Dump

 

Options

 

Dialog

 

window

 

closes.

After

 

you

 

have

 

set

 

your

 

screen

 

dump

 

options,

 

you

 

need

 

to

 

select

 

the

 

window,

 

or

 

portion

 

of

 

a

 

window,

 

you

 

want

 

to

 

capture.

 

From

 

the

 

Screen

 

Dump

 

menu,

 

select

 

the

 

Select

 

Target

 

Window

 

option.

 

A

 

cursor

 

that

 

looks

 

like

 

a

 

person’s

 

hand

 

appears

 

after

 

the

 

number

 

of

 

seconds

 

you

 

specified.

 

To

 

cancel

 

the

 

capture,

 

click

 

the

 

right

 

mouse

 

button.

 

The

 

hand-shaped

 

cursor

 

will

 

revert

 

to

 

normal

 

and

 

the

 

operation

 

will

 

be

 

terminated.

   

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

55



To

 

capture

 

the

 

entire

 

Xprofiler

 

window,

 

place

 

the

 

cursor

 

in

 

the

 

window

 

and

 

then

 

click

 

the

 

left

 

mouse

 

button.

 

To

 

capture

 

a

 

portion

 

of

 

the

 

Xprofiler

 

window,

 

do

 

the

 

following:

 

1.

   

Place

 

the

 

cursor

 

in

 

the

 

upper

 

left

 

corner

 

of

 

the

 

area

 

you

 

want

 

to

 

capture.

 

2.

   

Press

 

and

 

hold

 

the

 

middle

 

mouse

 

button

 

and

 

drag

 

the

 

cursor

 

diagonally

 

downward,

 

until

 

the

 

area

 

you

 

want

 

to

 

capture

 

is

 

within

 

the

 

rubberband

 

box.

 

3.

   

Release

 

the

 

middle

 

mouse

 

button

 

to

 

set

 

the

 

location

 

of

 

the

 

rubberband

 

box.

 

4.

   

Press

 

the

 

left

 

mouse

 

button

 

to

 

capture

 

the

 

image.

If

 

you

 

chose

 

to

 

save

 

the

 

image

 

as

 

a

 

file,

 

the

 

file

 

is

 

stored

 

in

 

the

 

directory

 

that

 

you

 

specified.

 

If

 

you

 

chose

 

to

 

print

 

the

 

image,

 

the

 

image

 

is

 

sent

 

to

 

the

 

printer

 

you

 

specified.

 

Customizing

 

Xprofiler

 

Resources

 

You

 

can

 

customize

 

certain

 

features

 

of

 

an

 

X-Window.

 

For

 

example,

 

you

 

can

 

customize

 

its

 

colors,

 

fonts,

 

and

 

orientation.

 

This

 

section

 

lists

 

each

 

of

 

the

 

resource

 

variables

 

you

 

can

 

set

 

for

 

Xprofiler.

 

You

 

can

 

customize

 

resources

 

by

 

assigning

 

a

 

value

 

to

 

a

 

resource

 

name

 

in

 

a

 

standard

 

X-Windows

 

format.

 

Several

 

resource

 

files

 

are

 

searched

 

according

 

to

 

the

 

following

 

X-Windows

 

convention:

 

/usr/lib/X11/$LANG/app-defaults/Xprofiler

 

/usr/lib/X11/app-defaults/Xprofiler

 

$XAPPLRESDIR/Xprofiler

 

$HOME/.Xdefaults

 

Options

 

in

 

the

 

.Xdefaults

 

file

 

take

 

precedence

 

over

 

entries

 

in

 

the

 

preceding

 

files.

 

This

 

allows

 

you

 

to

 

have

 

certain

 

specifications

 

apply

 

to

 

all

 

users

 

in

 

the

 

app-defaults

 

file,

 

as

 

well

 

as

 

user-specific

 

preferences

 

set

 

for

 

each

 

user

 

in

 

their

 

$HOME/.Xdefaults

 

file.

 

You

 

customize

 

a

 

resource

 

by

 

setting

 

a

 

value

 

to

 

a

 

resource

 

variable

 

associated

 

with

 

that

 

feature.

 

You

 

store

 

these

 

resource

 

settings

 

in

 

a

 

file

 

called

 

.Xdefaults

 

in

 

your

 

home

 

directory.

 

You

 

can

 

create

 

this

 

file

 

on

 

a

 

server,

 

and

 

so

 

customize

 

a

 

resource

 

for

 

all

 

users.

 

Individual

 

users

 

may

 

also

 

want

 

to

 

customize

 

resources.

 

The

 

resource

 

settings

 

are

 

essentially

 

your

 

personal

 

preferences

 

for

 

how

 

the

 

X-Windows

 

should

 

look.

 

For

 

example,

 

consider

 

the

 

following

 

resource

 

variables

 

for

 

a

 

hypothetical

 

X-Windows

 

tool:

 

TOOL*MainWindow.foreground:

 

TOOL*MainWindow.background:

 

In

 

this

 

example,

 

suppose

 

the

 

resource

 

variable

 

TOOL*MainWindow.foreground

 

controls

 

the

 

color

 

of

 

text

 

on

 

the

 

tool’s

 

main

 

window.

 

The

 

resource

 

variable

 

TOOL*MainWindow.background

 

controls

 

the

 

background

 

color

 

of

 

this

 

same

 

window.

 

If

 

you

 

wanted

 

the

 

tool’s

 

main

 

window

 

to

 

have

 

red

 

lettering

 

on

 

a

 

white

 

background,

 

you

 

would

 

insert

 

these

 

lines

 

into

 

the

 

.Xdefaults

 

file:

 

TOOL*MainWindow.foreground:

    

red

 

TOOL*MainWindow.background:

    

white

 

Customizable

 

resources

 

and

 

instructions

 

for

 

their

 

use

 

for

 

Xprofiler

 

are

 

defined

 

in

 

/usr/lib/X11/app-
defaults/Xprofiler

 

file,

 

as

 

well

 

as

 

/usr/lpp/ppe.xprofiler/defaults/Xprofiler.ad

 

file.

 

This

 

file

 

contains

 

a

 

set

 

of

 

X-Windows

 

resources

 

for

 

defining

 

graphical

 

user

 

interfaces

 

based

 

on

 

the

 

following

 

criteria:

 

v

   

Window

 

geometry

 

v

   

Window

 

title

 

v

   

Push

 

button

 

and

 

label

 

text

 

v

   

Color

 

maps

 

v

   

Text

 

font

 

(in

 

both

 

textual

 

reports

 

and

 

the

 

graphical

 

display)

  

56

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Xprofiler

 

Resource

 

Variables

 

You

 

can

 

use

 

the

 

following

 

resource

 

variables

 

to

 

control

 

the

 

appearance

 

and

 

behavior

 

of

 

Xprofiler.

 

The

 

values

 

listed

 

in

 

this

 

section

 

are

 

the

 

defaults;

 

you

 

can

 

change

 

these

 

values

 

to

 

suit

 

your

 

preferences.

 

Controlling

 

Fonts

 

To

 

specify

 

the

 

font

 

for

 

the

 

labels

 

that

 

appear

 

with

 

function

 

boxes,

 

call

 

arcs,

 

and

 

cluster

 

boxes:

  

Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

*narc*font

 

fixed

   

To

 

specify

 

the

 

font

 

used

 

in

 

textual

 

reports:

  

Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

Xprofiler*fontList

 

rom10

   

Controlling

 

the

 

Appearance

 

of

 

the

 

Xprofiler

 

Main

 

Window

 

To

 

specify

 

the

 

size

 

of

 

the

 

main

 

window:

  

Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

Xprofiler*mainW.height

 

700

 

Xprofiler*mainW.width

 

900

   

To

 

specify

 

the

 

foreground

 

and

 

background

 

colors

 

of

 

the

 

main

 

window:

  

Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

Xprofiler*foreground

 

black

 

Xprofiler*background

 

light

 

grey

   

To

 

specify

 

the

 

number

 

of

 

function

 

boxes

 

that

 

are

 

displayed

 

when

 

you

 

first

 

open

 

the

 

Xprofiler

 

main

 

window:

  

Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

Xprofiler*InitialDisplayGraph

 

5000

   

You

 

can

 

use

 

the

 

-disp_max

 

flag

 

to

 

override

 

this

 

value.

 

To

 

specify

 

the

 

colors

 

of

 

the

 

function

 

boxes

 

and

 

call

 

arcs

 

of

 

the

 

function

 

call

 

tree:

  

Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

Xprofiler*defaultNodeColor

 

forest

 

green

 

Xprofiler*defaultArcColor

 

royal

 

blue

   

To

 

specify

 

the

 

color

 

in

 

which

 

a

 

specified

 

function

 

box

 

or

 

call

 

arc

 

is

 

highlighted:

  

Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

Xprofiler*HighlightNode

 

red

 

Xprofiler*HighlightArc

 

red

    

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

57



To

 

specify

 

the

 

color

 

in

 

which

 

de-emphasized

 

function

 

boxes

 

appear:

  

Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

Xprofiler*SuppressNode

 

grey

   

Function

 

boxes

 

are

 

deemphasized

 

with

 

the

 

-e,

 

-E,

 

-f,

 

and

 

-F

 

flags.

 

Controlling

 

Variables

 

Related

 

to

 

the

 

File

 

Menu

 

To

 

specify

 

the

 

size

 

of

 

the

 

Load

 

Files

 

Dialog

 

window,

 

use

 

the

 

following:

  

Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

Xprofiler*loadFile.height

 

785

 

Xprofiler*loadFile.width

 

725

   

The

 

Load

 

Files

 

Dialog

 

window

 

is

 

called

 

by

 

the

 

Load

 

Files

 

option

 

of

 

the

 

File

 

menu.

 

To

 

specify

 

whether

 

a

 

confirmation

 

dialog

 

box

 

should

 

appear

 

whenever

 

a

 

file

 

will

 

be

 

overwritten:

  

Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

Xprofiler*OverwriteOK

 

False

   

The

 

value

 

True

 

would

 

be

 

equivalent

 

to

 

selecting

 

the

 

Set

 

Options

 

option

 

from

 

the

 

File

 

menu,

 

and

 

then

 

selecting

 

the

 

Forced

 

File

 

Overwriting

 

option

 

from

 

the

 

Runtime

 

Options

 

Dialog

 

window.

 

To

 

specify

 

the

 

alternative

 

search

 

paths

 

for

 

locating

 

source

 

or

 

library

 

files:

  

Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

Xprofiler*fileSearchPath

 

.

 

(refers

 

to

 

the

 

current

 

working

 

directory)

   

The

 

value

 

you

 

specify

 

for

 

the

 

search

 

path

 

is

 

equivalent

 

to

 

the

 

search

 

path

 

you

 

would

 

designate

 

from

 

the

 

Alt

 

File

 

Search

 

Path

 

Dialog

 

window.

 

To

 

get

 

to

 

this

 

window,

 

choose

 

the

 

Set

 

File

 

Search

 

Paths

 

option

 

from

 

the

 

File

 

menu.

 

To

 

specify

 

the

 

file

 

search

 

sequence

 

(whether

 

the

 

default

 

or

 

alternative

 

path

 

is

 

searched

 

first):

  

Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

Xprofiler*fileSearchDefault

 

True

   

The

 

value

 

True

 

is

 

equivalent

 

to

 

selecting

 

the

 

Set

 

File

 

Search

 

Paths

 

from

 

the

 

File

 

menu,

 

and

 

then

 

the

 

Check

 

default

 

path(s)

 

first

 

option

 

from

 

the

 

Alt

 

File

 

Search

 

Path

 

Dialog

 

window.

 

Controlling

 

variables

 

related

 

to

 

the

 

Screen

 

Dump

 

option:

   

To

 

specify

 

whether

 

a

 

screen

 

dump

 

will

 

be

 

sent

 

to

 

a

 

printer

 

or

 

placed

 

in

 

a

 

file:

  

Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

Xprofiler*PrintToFile

 

True

   

The

 

value

 

True

 

is

 

equivalent

 

to

 

selecting

 

the

 

File

 

button

 

in

 

the

 

Output

 

To

 

field

 

of

 

the

 

Screen

 

Dump

 

Options

 

Dialog

 

window.

 

You

 

access

 

the

 

Screen

 

Dump

 

Options

 

Dialog

 

window

 

by

 

selecting

 

Screen

 

Dump

 

and

 

then

 

Set

 

Option

 

from

 

the

 

File

 

menu.

 

To

 

specify

 

whether

 

the

 

PostScript

 

screen

 

dump

 

will

 

created

 

in

 

color

 

or

 

in

 

shades

 

of

 

grey:

  

Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

Xprofiler*ColorPscript

 

False

   

The

 

value

 

False

 

is

 

equivalent

 

to

 

selecting

 

the

 

GreyShades

 

button

 

in

 

the

 

PostScript

 

Output

 

area

 

of

 

the

   

58

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Screen

 

Dump

 

Options

 

Dialog

 

window.

 

You

 

access

 

the

 

Screen

 

Dump

 

Options

 

Dialog

 

window

 

by

 

selecting

 

Screen

 

Dump

 

and

 

then

 

Set

 

Option

 

from

 

the

 

File

 

menu.

 

To

 

specify

 

the

 

number

 

of

 

grey

 

shades

 

that

 

the

 

PostScript

 

screen

 

dump

 

will

 

include

 

(if

 

you

 

selected

 

GreyShades

 

in

 

the

 

PostScript

 

Output

 

area):

  

Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

Xprofiler*GreyShades

 

16

   

The

 

value

 

16

 

is

 

equivalent

 

to

 

selecting

 

the

 

16

 

button

 

in

 

the

 

Number

 

of

 

Grey

 

Shades

 

field

 

of

 

the

 

Screen

 

Dump

 

Options

 

Dialog

 

window.

 

You

 

access

 

the

 

Screen

 

Dump

 

Options

 

Dialog

 

window

 

by

 

selecting

 

Screen

 

Dump

 

and

 

then

 

Set

 

Option

 

from

 

the

 

File

 

menu.

 

To

 

specify

 

the

 

number

 

of

 

seconds

 

that

 

Xprofiler

 

waits

 

before

 

capturing

 

a

 

screen

 

image:

  

Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

Xprofiler*GrabDelay

 

1

   

The

 

value

 

1

 

is

 

the

 

default

 

for

 

the

 

Delay

 

Before

 

Grab

 

option

 

of

 

the

 

Screen

 

Dump

 

Options

 

Dialog

 

window,

 

but

 

you

 

can

 

specify

 

a

 

longer

 

interval

 

by

 

entering

 

a

 

value

 

here.

 

You

 

access

 

the

 

Screen

 

Dump

 

Options

 

Dialog

 

window

 

by

 

selecting

 

Screen

 

Dump

 

and

 

then

 

Set

 

Option

 

from

 

the

 

File

 

menu.

 

To

 

set

 

the

 

maximum

 

number

 

of

 

seconds

 

that

 

can

 

be

 

specified

 

with

 

the

 

slider

 

of

 

the

 

Delay

 

Before

 

Grab

 

option:

  

Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

Xprofiler*grabDelayScale.maximum

 

30

   

The

 

value

 

30

 

is

 

the

 

maximum

 

for

 

the

 

Delay

 

Before

 

Grab

 

option

 

of

 

the

 

Screen

 

Dump

 

Options

 

Dialog

 

window.

 

This

 

means

 

that

 

users

 

cannot

 

set

 

the

 

slider

 

scale

 

to

 

a

 

value

 

greater

 

than

 

30.

 

You

 

access

 

the

 

Screen

 

Dump

 

Options

 

Dialog

 

window

 

by

 

selecting

 

Screen

 

Dump

 

and

 

then

 

Set

 

Option

 

from

 

the

 

File

 

menu.

 

To

 

specify

 

whether

 

the

 

screen

 

dump

 

is

 

created

 

in

 

landscape

 

or

 

portrait

 

format:

  

Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

Xprofiler*Landscape

 

False

   

The

 

value

 

True

 

is

 

the

 

default

 

for

 

the

 

Enable

 

Landscape

 

option

 

of

 

the

 

Screen

 

Dump

 

Options

 

Dialog

 

window.

 

You

 

access

 

the

 

Screen

 

Dump

 

Options

 

Dialog

 

window

 

by

 

selecting

 

Screen

 

Dump

 

and

 

then

 

Set

 

Option

 

from

 

the

 

File

 

menu.

 

To

 

specify

 

whether

 

you

 

would

 

like

 

information

 

about

 

how

 

the

 

image

 

was

 

created

 

to

 

be

 

added

 

to

 

the

 

PostScript

 

screen

 

dump:

  

Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

Xprofiler*Annotate

 

False

   

The

 

value

 

False

 

is

 

the

 

default

 

for

 

the

 

Annotate

 

Output

 

option

 

of

 

the

 

Screen

 

Dump

 

Options

 

Dialog

 

window.

 

You

 

access

 

the

 

Screen

 

Dump

 

Options

 

Dialog

 

window

 

by

 

selecting

 

Screen

 

Dump

 

and

 

then

 

Set

 

Option

 

from

 

the

 

File

 

menu.

 

To

 

specify

 

the

 

directory

 

that

 

will

 

store

 

the

 

screen

 

dump

 

file

 

(if

 

you

 

selected

 

File

 

in

 

the

 

Output

 

To

 

field):

  

Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

Xprofiler*PrintFileName

 

/tmp/Xprofiler_screenDump.ps.0

    

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

59



The

 

value

 

you

 

specify

 

is

 

equivalent

 

to

 

the

 

file

 

name

 

you

 

would

 

designate

 

in

 

the

 

File

 

Name

 

field

 

of

 

the

 

Screen

 

Dump

 

Dialog

 

window.

 

You

 

access

 

the

 

Screen

 

Dump

 

Options

 

Dialog

 

window

 

by

 

selecting

 

Screen

 

Dump

 

and

 

then

 

Set

 

Option

 

from

 

the

 

File

 

menu.

 

To

 

specify

 

the

 

printer

 

destination

 

of

 

the

 

screen

 

dump

 

(if

 

you

 

selected

 

Printer

 

in

 

the

 

Output

 

To

 

field):

  

Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

Xprofiler*PrintCommand

 

qprt

 

-B

 

ga

 

-c

 

-Pps

   

The

 

value

 

qprt

 

-B

 

ga

 

-c

 

-Pps

 

is

 

the

 

default

 

print

 

command,

 

but

 

you

 

can

 

supply

 

a

 

different

 

one.

 

Controlling

 

Variables

 

Related

 

to

 

the

 

View

 

Menu

 

To

 

specify

 

the

 

size

 

of

 

the

 

Overview

 

window:

  

Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

Xprofiler*overviewMain.height

 

300

 

Xprofiler*overviewMain.width

 

300

   

To

 

specify

 

the

 

color

 

of

 

the

 

highlight

 

area

 

of

 

the

 

Overview

 

window:

  

Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

Xprofiler*overviewGraph*defaultHighlightColor

 

sky

 

blue

   

To

 

specify

 

whether

 

the

 

function

 

call

 

tree

 

is

 

updated

 

as

 

the

 

highlight

 

area

 

is

 

moved

 

(immediate)

 

or

 

only

 

when

 

it

 

is

 

stopped

 

and

 

the

 

mouse

 

button

 

released

 

(delayed):

  

Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

Xprofiler*TrackImmed

 

True

   

The

 

value

 

True

 

is

 

equivalent

 

to

 

selecting

 

the

 

Immediate

 

Update

 

option

 

from

 

the

 

Utility

 

menu

 

of

 

the

 

Overview

 

window.

 

You

 

access

 

the

 

Overview

 

window

 

by

 

selecting

 

the

 

Overview

 

option

 

from

 

the

 

View

 

menu.

 

To

 

specify

 

whether

 

the

 

function

 

boxes

 

in

 

the

 

function

 

call

 

tree

 

appear

 

in

 

two-dimensional

 

or

 

three-dimensional

 

format:

  

Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

Xprofiler*Shape2D

 

True

   

The

 

value

 

True

 

is

 

equivalent

 

to

 

selecting

 

the

 

2-D

 

Image

 

option

 

from

 

the

 

View

 

menu.

 

To

 

specify

 

whether

 

the

 

function

 

call

 

tree

 

appears

 

in

 

top-to-bottom

 

or

 

left-to-right

 

format:

  

Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

Xprofiler*LayoutTopDown

 

True

   

The

 

value

 

True

 

is

 

equivalent

 

to

 

selecting

 

the

 

Layout:

 

Top

 

and

 

Bottom

 

option

 

from

 

the

 

View

 

menu.

 

Controlling

 

Variables

 

Related

 

to

 

the

 

Filter

 

Menu

 

To

 

specify

 

whether

 

the

 

function

 

boxes

 

of

 

the

 

function

 

call

 

tree

 

are

 

clustered

 

or

 

unclustered

 

when

 

the

 

Xprofiler

 

main

 

window

 

is

 

first

 

opened:

   

60

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

Xprofiler*ClusterNode

 

True

   

The

 

value

 

True

 

is

 

equivalent

 

to

 

selecting

 

the

 

Cluster

 

Functions

 

by

 

Library

 

option

 

from

 

the

 

Filter

 

menu.

 

To

 

specify

 

whether

 

the

 

call

 

arcs

 

of

 

the

 

function

 

call

 

tree

 

are

 

collapsed

 

or

 

expanded

 

when

 

the

 

Xprofiler

 

main

 

window

 

is

 

first

 

opened:

  

Use

 

this

 

resource

 

variable:

 

Specify

 

this

 

default,

 

or

 

a

 

value

 

of

 

your

 

choice:

 

Xprofiler*ClusterArc

 

True

   

The

 

value

 

True

 

is

 

equivalent

 

to

 

selecting

 

the

 

Collapse

 

Library

 

Arcs

 

option

 

from

 

the

 

Filter

 

menu.

   

Chapter

 

2.

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)

 

61



62

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Chapter

 

3.

 

CPU

 

Utilization

 

Reporting

 

Tool

 

(curt)

 

The

 

CPU

 

Utilization

 

Reporting

 

Tool

 

(curt)

 

command

 

converts

 

an

 

AIX

 

trace

 

file

 

into

 

a

 

number

 

of

 

statistics

 

related

 

to

 

CPU

 

utilization

 

and

 

either

 

process,

 

thread

 

or

 

pthread

 

activity.

 

These

 

statistics

 

ease

 

the

 

tracking

 

of

 

specific

 

application

 

activity.

 

The

 

curt

 

command

 

works

 

with

 

both

 

uniprocessor

 

and

 

multiprocessor

 

AIX

 

Version

 

4

 

and

 

AIX

 

Version

 

5

 

traces.

 

Syntax

 

for

 

the

 

curt

 

Command

 

The

 

syntax

 

for

 

the

 

curt

 

command

 

is

 

as

 

follows:

 

curt

 

-i

 

inputfile

 

[-o

 

outputfile]

 

[-n

 

gensymsfile]

 

[-m

 

trcnmfile]

 

[-a

 

pidnamefile]

 

[-f

 

timestamp]

 

[-l

 

timestamp]

 

[-ehpstP]

 

Flags

  

-i

 

inputfile

 

Specifies

 

the

 

input

 

AIX

 

trace

 

file

 

to

 

be

 

analyzed.

 

-o

 

outputfile

 

Specifies

 

an

 

output

 

file

 

(default

 

is

 

stdout).

 

-n

 

gensymsfile

 

Specifies

 

a

 

names

 

file

 

produced

 

by

 

gensyms.

 

-m

 

trcnmfile

 

Specifies

 

a

 

names

 

file

 

produced

 

by

 

trcnm.

 

-a

 

pidnamefile

 

Specifies

 

a

 

PID-to-process

 

name

 

mapping

 

file.

 

-f

 

timestamp

 

Starts

 

processing

 

trace

 

at

 

timestamp

 

seconds.

 

-l

 

timestamp

 

Stops

 

processing

 

trace

 

at

 

timestamp

 

seconds.

 

-e

 

Outputs

 

elapsed

 

time

 

information

 

for

 

system

 

calls.

 

-h

 

Displays

 

usage

 

text

 

(this

 

information).

 

-p

 

Outputs

 

detailed

 

process

 

information.

 

-s

 

Outputs

 

information

 

about

 

errors

 

returned

 

by

 

system

 

calls.

 

-t

 

Outputs

 

detailed

 

thread

 

information.

 

-P

 

Outputs

 

detailed

 

pthread

 

information.

   

Parameters

  

gensymsfile

 

The

 

names

 

file

 

as

 

produced

 

by

 

the

 

gensyms

 

command.

 

inputfile

 

The

 

AIX

 

trace

 

file

 

to

 

be

 

processed

 

by

 

the

 

curt

 

command.

 

outputfile

 

The

 

name

 

of

 

the

 

output

 

file

 

created

 

by

 

the

 

curt

 

command.

 

pidnamefile

 

If

 

the

 

trace

 

process

 

name

 

table

 

is

 

not

 

accurate,

 

or

 

if

 

more

 

descriptive

 

names

 

are

 

desired,

 

use

 

the

 

-a

 

flag

 

to

 

specify

 

a

 

PID

 

to

 

process

 

name

 

mapping

 

file.

 

This

 

is

 

a

 

file

 

with

 

lines

 

consisting

 

of

 

a

 

process

 

ID

 

(in

 

decimal)

 

followed

 

by

 

a

 

space,

 

then

 

an

 

ASCII

 

string

 

to

 

use

 

as

 

the

 

name

 

for

 

that

 

process.

 

timestamp

 

The

 

time

 

in

 

seconds

 

at

 

which

 

to

 

start

 

and

 

stop

 

the

 

trace

 

file

 

processing.

 

trcnmfile

 

The

 

names

 

file

 

as

 

produced

 

by

 

the

 

trcnmcommand.

   

Measurement

 

and

 

Sampling

 

A

 

raw,

 

or

 

unformatted,

 

system

 

trace

 

is

 

read

 

by

 

the

 

curt

 

command

 

to

 

produce

 

CPU

 

utilization

 

summaries.

 

The

 

summary

 

information

 

is

 

useful

 

for

 

determining

 

which

 

application,

 

system

 

call,

 

or

 

interrupt

 

handler

 

is

 

using

 

most

 

of

 

the

 

CPU

 

time

 

and

 

is

 

a

 

candidate

 

for

 

optimization

 

to

 

improve

 

system

 

performance.

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

63



The

 

following

 

table

 

lists

 

the

 

minimum

 

trace

 

hooks

 

required

 

for

 

the

 

curt

 

command.

 

Using

 

only

 

these

 

trace

 

hooks

 

will

 

limit

 

the

 

size

 

of

 

the

 

trace

 

file.

 

However,

 

other

 

events

 

on

 

the

 

system

 

may

 

not

 

be

 

captured

 

in

 

this

 

case.

 

This

 

is

 

significant

 

if

 

you

 

intend

 

to

 

analyze

 

the

 

trace

 

in

 

more

 

detail.

  

Hook

 

ID

 

Event

 

Name

 

Event

 

Explanation

 

100

 

HKWD_KERN_FLIH

 

Occurrence

 

of

 

a

 

first

 

level

 

interrupt,

 

such

 

as

 

an

 

I/O

 

interrupt,

 

a

 

data

 

access

 

page

 

fault,

 

or

 

a

 

timer

 

interrupt

 

(scheduler).

 

101

 

HKWD_KERN_SVC

 

A

 

thread

 

has

 

issued

 

a

 

system

 

call.

 

102

 

HKWD_KERN_SLIH

 

Occurrence

 

of

 

a

 

second

 

level

 

interrupt,

 

that

 

is,

 

first

 

level

 

I/O

 

interrupts

 

are

 

being

 

passed

 

on

 

to

 

the

 

second

 

level

 

interrupt

 

handler

 

which

 

then

 

is

 

working

 

directly

 

with

 

the

 

device

 

driver.

 

103

 

HKWD_KERN_SLIHRET

 

Return

 

from

 

a

 

second

 

level

 

interrupt

 

to

 

the

 

caller

 

(usually

 

a

 

first

 

level

 

interrupt

 

handler).

 

104

 

HKWD_KERN_SYSCRET

 

Return

 

from

 

a

 

system

 

call

 

to

 

the

 

caller

 

(usually

 

a

 

thread).

 

106

 

HKWD_KERN_DISPATCH

 

A

 

thread

 

has

 

been

 

dispatched

 

from

 

the

 

run

 

queue

 

to

 

a

 

CPU.

 

10C

 

HKWD_KERN_IDLE

 

The

 

idle

 

process

 

has

 

been

 

dispatched.

 

119

 

HKWD_KERN_PIDSIG

 

A

 

signal

 

has

 

been

 

sent

 

to

 

a

 

process.

 

134

 

HKWD_SYSC_EXECVE

 

An

 

exec

 

supervisor

 

call

 

(SVC)

 

has

 

been

 

issued

 

by

 

a

 

(forked)

 

process.

 

135

 

HKWD_SYSC__EXIT

 

An

 

exit

 

supervisor

 

call

 

(SVC)

 

has

 

been

 

issued

 

by

 

a

 

process.

 

139

 

HKWD_SYSC_FORK

 

A

 

fork

 

SVC

 

has

 

been

 

issued

 

by

 

a

 

process.

 

200

 

HKWD_KERN_RESUME

 

A

 

dispatched

 

thread

 

is

 

being

 

resumed

 

on

 

the

 

CPU.

 

210

 

HKWD_KERN_INITP

 

A

 

kernel

 

process

 

has

 

been

 

created.

 

215

 

HKWD_NFS_DISPATCH

 

An

 

entry

 

or

 

exit

 

NFS

 

operation

 

has

 

been

 

issued

 

by

 

a

 

process.

 

38F

 

HKWD_DR

 

A

 

processor

 

has

 

been

 

added/removed.

 

465

 

HKWD_SYSC_CRTHREAD

 

A

 

thread_create

 

SVC

 

has

 

been

 

issued

 

by

 

a

 

process.

 

605

 

HKWD_PTHREAD_VPSLEEP

 

A

 

pthread

 

vp_sleep

 

operation

 

has

 

been

 

done

 

by

 

a

 

pthread.

 

609

 

HKWD_PTHREAD_GENERAL

 

A

 

general

 

pthread

 

operation

 

has

 

been

 

done

 

by

 

a

 

pthread.

   

Trace

 

hooks

 

119

 

and

 

135

 

are

 

used

 

to

 

report

 

on

 

the

 

time

 

spent

 

in

 

the

 

exit

 

system

 

call.

 

Trace

 

hooks

 

134,

 

139,

 

210,

 

and

 

465

 

are

 

used

 

to

 

keep

 

track

 

of

 

TIDs,

 

PIDs

 

and

 

process

 

names.

 

Trace

 

hooks

 

605

 

and

 

609

 

are

 

used

 

to

 

report

 

on

 

the

 

time

 

spent

 

in

 

the

 

pthreads

 

library.

 

To

 

get

 

the

 

PTHREAD

 

hooks

 

in

 

the

 

trace,

 

you

 

must

 

execute

 

your

 

pthread

 

application

 

using

 

the

 

instrumented

 

libpthreads.a

 

library.

 

Examples

 

of

 

the

 

curt

 

command

 

Preparing

 

the

 

curt

 

command

 

input

 

is

 

a

 

three-stage

 

process.

 

Trace

 

and

 

name

 

files

 

are

 

generated

 

using

 

the

 

following

 

process:

 

1.

   

Build

 

the

 

raw

 

trace.

 

On

 

a

 

4-way

 

machine,

 

this

 

will

 

create

 

files

 

as

 

listed

 

in

 

the

 

example

 

code

 

below.

 

One

 

raw

 

trace

 

file

 

per

 

CPU

 

is

 

produced.

 

The

 

files

 

are

 

named

 

trace.raw-0,

 

trace.raw-1,

 

and

 

so

 

forth

 

for

 

each

 

CPU.

 

An

 

additional

 

file

 

named

 

trace.raw

 

is

 

also

 

generated.

 

This

 

is

 

a

 

master

 

file

 

that

 

has

 

information

 

that

 

ties

 

together

 

the

 

other

 

CPU-specific

 

traces.

 

Note:

  

If

 

you

 

want

 

pthread

 

information

 

in

 

the

 

curt

 

report,

 

you

 

must

 

add

 

the

 

instrumented

 

libpthreads

 

directory

 

to

 

the

 

library

 

path,

 

LIBPATH,

 

when

 

you

 

build

 

the

 

trace.

 

Otherwise,

 

the

 

export

 

LIBPATH

 

statement

 

in

 

the

 

example

 

below

 

is

 

unnecessary.

  

64

 

Performance

 

Tools

 

Guide

 

and

 

Reference



2.

   

Merge

 

the

 

trace

 

files.

 

To

 

merge

 

the

 

individual

 

CPU

 

raw

 

trace

 

files

 

to

 

form

 

one

 

trace

 

file,

 

run

 

the

 

trcrpt

 

command.

 

If

 

you

 

are

 

tracing

 

a

 

uniprocessor

 

machine,

 

this

 

step

 

is

 

not

 

necessary.

 

3.

   

Create

 

the

 

supporting

 

gensymsfile

 

and

 

trcnmfile

 

files

 

by

 

running

 

the

 

gensyms

 

and

 

trcnm

 

commands.

 

Neither

 

the

 

gensymsfile

 

nor

 

the

 

trcnmfile

 

file

 

are

 

necessary

 

for

 

the

 

curt

 

command

 

to

 

run.

 

However,

 

if

 

you

 

provide

 

one

 

or

 

both

 

of

 

these

 

files,

 

or

 

if

 

you

 

use

 

the

 

curt

 

command

 

with

 

the

 

-n

 

option,

 

the

 

curt

 

command

 

outputs

 

names

 

for

 

system

 

calls

 

and

 

interrupt

 

handlers

 

instead

 

of

 

just

 

addresses.

 

The

 

gensyms

 

command

 

output

 

includes

 

more

 

information

 

than

 

the

 

trcnm

 

command

 

output,

 

and

 

so,

 

while

 

the

 

trcnmfile

 

file

 

will

 

contain

 

most

 

of

 

the

 

important

 

address

 

to

 

name

 

mapping

 

data,

 

a

 

gensymsfile

 

file

 

will

 

enable

 

the

 

curt

 

command

 

to

 

output

 

more

 

names,

 

and

 

is

 

the

 

preferred

 

address

 

to

 

name

 

mapping

 

data

 

collection

 

command.

 

The

 

following

 

is

 

an

 

example

 

of

 

how

 

to

 

generate

 

input

 

files

 

for

 

the

 

curt

 

command:

 

#

 

HOOKS="100,101,102,103,104,106,10C,119,134,135,139,200,210,38F,465,605,609"

 

#

 

SIZE="1000000"

 

#

 

export

 

HOOKS

 

SIZE

 

#

 

trace

 

-n

 

-C

 

all

 

-d

 

-j

 

$HOOKS

 

-L

 

$SIZE

 

-T

 

$SIZE

 

-afo

 

trace.raw

 

#

 

export

 

LIBPATH=/usr/ccs/lib/perf:$LIBPATH

 

#

 

trcon

 

;

 

pthread.app

 

;

 

trcstop

 

#

 

unset

 

HOOKS

 

SIZE

 

#

 

ls

 

trace.raw*

 

trace.raw

   

trace.raw-0

  

trace.raw-1

  

trace.raw-2

  

trace.raw-3

 

#

 

trcrpt

 

-C

 

all

 

-r

 

trace.raw

 

>

 

trace.r

 

#

 

rm

 

trace.raw*

 

#

 

ls

 

trace*

 

trace.r

 

#

 

gensyms

 

>

 

gensyms.out

 

#

 

trcnm

 

>

 

trace.nm

 

Overview

 

of

 

Information

 

Generated

 

by

 

the

 

curt

 

Command

 

The

 

following

 

is

 

an

 

overview

 

of

 

the

 

content

 

of

 

the

 

report

 

generated

 

by

 

the

 

curt

 

command:

 

v

   

A

 

report

 

header

 

with

 

the

 

trace

 

file

 

name,

 

the

 

trace

 

size,

 

the

 

date

 

and

 

time

 

the

 

trace

 

was

 

taken.

 

The

 

header

 

also

 

includes

 

the

 

command

 

used

 

when

 

the

 

trace

 

was

 

run.

 

v

   

For

 

each

 

CPU

 

(and

 

a

 

summary

 

of

 

all

 

the

 

CPUs),

 

processing

 

time

 

expressed

 

in

 

milliseconds

 

and

 

as

 

a

 

percentage

 

(idle

 

and

 

non-idle

 

percentages

 

are

 

included)

 

for

 

various

 

CPU

 

usage

 

categories.

 

v

   

For

 

each

 

CPU

 

(and

 

a

 

summary

 

of

 

all

 

the

 

CPUs),

 

processing

 

time

 

expressed

 

in

 

milliseconds

 

and

 

as

 

a

 

percentage

 

for

 

CPU

 

usage

 

in

 

application

 

mode

 

for

 

various

 

application

 

usage

 

categories.

 

v

   

Average

 

thread

 

affinity

 

across

 

all

 

CPUs

 

and

 

for

 

each

 

individual

 

CPU.

 

v

   

The

 

total

 

number

 

of

 

idle

 

and

 

non-idle

 

process

 

dispatches

 

for

 

each

 

individual

 

CPU.

 

v

   

Average

 

pthread

 

affinity

 

across

 

all

 

CPUs

 

and

 

for

 

each

 

individual

 

CPU.

 

v

   

The

 

total

 

number

 

of

 

idle

 

and

 

non-idle

 

pthread

 

dispatches

 

for

 

each

 

individual

 

CPU.

 

v

   

Information

 

on

 

the

 

amount

 

of

 

CPU

 

time

 

spent

 

in

 

application

 

and

 

system

 

call

 

(syscall)

 

mode

 

expressed

 

in

 

milliseconds

 

and

 

as

 

a

 

percentage

 

by

 

thread,

 

process,

 

and

 

process

 

type.

 

Also

 

included

 

are

 

the

 

number

 

of

 

threads

 

per

 

process

 

and

 

per

 

process

 

type.

 

v

   

Information

 

on

 

the

 

amount

 

of

 

CPU

 

time

 

spent

 

executing

 

each

 

kernel

 

process,

 

including

 

the

 

idle

 

process,

 

expressed

 

in

 

milliseconds

 

and

 

as

 

a

 

percentage

 

of

 

the

 

total

 

CPU

 

time.

 

v

   

Information

 

on

 

the

 

amount

 

of

 

CPU

 

time

 

spent

 

executing

 

calls

 

to

 

libpthread,

 

expressed

 

in

 

milliseconds

 

and

 

as

 

percentages

 

of

 

the

 

total

 

time

 

and

 

the

 

total

 

application

 

time.

 

v

   

Information

 

on

 

completed

 

system

 

calls

 

that

 

includes

 

the

 

name

 

and

 

address

 

of

 

the

 

system

 

call,

 

the

 

number

 

of

 

times

 

the

 

system

 

call

 

was

 

executed,

 

and

 

the

 

total

 

CPU

 

time

 

expressed

 

in

 

milliseconds

 

and

 

as

 

a

 

percentage

 

with

 

average,

 

minimum,

 

and

 

maximum

 

time

 

the

 

system

 

call

 

was

 

running.

   

Chapter

 

3.

 

CPU

 

Utilization

 

Reporting

 

Tool

 

(curt)

 

65



v

   

Information

 

on

 

pending

 

system

 

calls,

 

that

 

is,

 

system

 

calls

 

for

 

which

 

the

 

system

 

call

 

return

 

has

 

not

 

occurred

 

at

 

the

 

end

 

of

 

the

 

trace.

 

The

 

information

 

includes

 

the

 

name

 

and

 

address

 

of

 

the

 

system

 

call,

 

the

 

thread

 

or

 

process

 

which

 

made

 

the

 

system

 

call,

 

and

 

the

 

accumulated

 

CPU

 

time

 

the

 

system

 

call

 

was

 

running

 

expressed

 

in

 

milliseconds.

 

v

   

Information

 

on

 

completed

 

pthread

 

calls

 

that

 

includes

 

the

 

name

 

of

 

the

 

pthread

 

call

 

routine,

 

the

 

number

 

of

 

times

 

the

 

pthread

 

call

 

was

 

executed,

 

and

 

the

 

total

 

CPU

 

time

 

expressed

 

in

 

milliseconds

 

and

 

the

 

average,

 

minimum,

 

and

 

maximum

 

time

 

the

 

pthread

 

call

 

was

 

running.

 

v

   

Information

 

on

 

pending

 

pthread

 

calls,

 

that

 

is,

 

pthread

 

calls

 

for

 

which

 

the

 

pthread

 

call

 

return

 

has

 

not

 

occurred

 

at

 

the

 

end

 

of

 

the

 

trace.

 

The

 

information

 

includes

 

the

 

name

 

of

 

the

 

pthread

 

call,

 

the

 

process,

 

the

 

thread

 

and

 

the

 

pthread

 

which

 

made

 

the

 

pthread

 

call,

 

and

 

the

 

accumulated

 

CPU

 

time

 

the

 

pthread

 

call

 

was

 

running

 

expressed

 

in

 

milliseconds.

 

v

   

Information

 

on

 

completed

 

NFS

 

operations

 

that

 

includes

 

the

 

name

 

of

 

the

 

NFS

 

operation,

 

the

 

number

 

of

 

times

 

the

 

NFS

 

operation

 

was

 

executed,

 

and

 

the

 

total

 

CPU

 

time,

 

expressed

 

in

 

milliseconds,

 

and

 

as

 

a

 

percentage

 

with

 

average,

 

minimum,

 

and

 

maximum

 

time

 

the

 

NFS

 

operation

 

call

 

was

 

running.

 

v

   

Information

 

on

 

pending

 

NFS

 

operations,

 

where

 

the

 

NFS

 

operations

 

did

 

not

 

complete

 

before

 

the

 

end

 

of

 

the

 

trace.

 

The

 

information

 

includes

 

the

 

sequence

 

number,

 

the

 

thread

 

or

 

process

 

which

 

made

 

the

 

NFS

 

operation

 

and

 

the

 

accumulated

 

CPU

 

time

 

the

 

NFS

 

operation

 

was

 

running.

 

expressed

 

in

 

milliseconds.

 

v

   

Information

 

on

 

the

 

first

 

level

 

interrupt

 

handlers

 

(FLIHs)

 

that

 

includes

 

the

 

type

 

of

 

interrupt,

 

the

 

number

 

of

 

times

 

the

 

interrupt

 

occurred,

 

and

 

the

 

total

 

CPU

 

time

 

spent

 

handling

 

the

 

interrupt

 

with

 

average,

 

minimum,

 

and

 

maximum

 

time.

 

This

 

information

 

is

 

given

 

for

 

all

 

CPUs

 

and

 

for

 

each

 

individual

 

CPU.

 

If

 

there

 

are

 

any

 

pending

 

FLIHs

 

(FLIHs

 

for

 

which

 

the

 

resume

 

has

 

not

 

occurred

 

at

 

the

 

end

 

of

 

the

 

trace),

 

for

 

each

 

CPU

 

the

 

accumulated

 

time

 

and

 

the

 

pending

 

FLIH

 

type

 

is

 

reported.

 

v

   

Information

 

on

 

the

 

second

 

level

 

interrupt

 

handlers

 

(SLIHs),

 

which

 

includes

 

the

 

interrupt

 

handler

 

name

 

and

 

address,

 

the

 

number

 

of

 

times

 

the

 

interrupt

 

handler

 

was

 

called,

 

and

 

the

 

total

 

CPU

 

time

 

spent

 

handling

 

the

 

interrupt

 

with

 

average,

 

minimum,

 

and

 

maximum

 

time.

 

This

 

information

 

is

 

given

 

for

 

all

 

CPUs

 

and

 

for

 

each

 

individual

 

CPU.

 

If

 

there

 

are

 

any

 

pending

 

SLIHs

 

(SLIHs

 

for

 

which

 

the

 

return

 

has

 

not

 

occurred

 

at

 

the

 

end

 

of

 

the

 

trace),

 

the

 

accumulated

 

time

 

and

 

the

 

pending

 

SLIH

 

name

 

and

 

address

 

is

 

reported

 

for

 

each

 

CPU.

 

To

 

create

 

additional,

 

specialized

 

reports,

 

run

 

the

 

curt

 

command

 

using

 

the

 

following

 

flags:

  

-e

 

Produces

 

reports

 

containing

 

statistics

 

and

 

additional

 

information

 

on

 

the

 

System

 

Calls

 

Summary

 

Report,

 

Pending

 

System

 

Calls

 

Summary

 

Report,

 

the

 

System

 

NFS

 

Calls

 

Summary

 

Report,

 

the

 

Pending

 

NFS

 

Calls

 

Summary,

 

the

 

Pthread

 

Calls

 

Summary,

 

and

 

the

 

Pending

 

Pthread

 

Calls

 

Summary.

 

The

 

additional

 

information

 

pertains

 

to

 

the

 

total,

 

average,

 

maximum,

 

and

 

minimum

 

elapsed

 

times

 

that

 

a

 

system

 

call

 

was

 

running.

 

-s

 

Produces

 

a

 

report

 

containing

 

a

 

list

 

of

 

errors

 

returned

 

by

 

system

 

calls.

 

-t

 

Produces

 

a

 

report

 

containing

 

a

 

detailed

 

report

 

on

 

thread

 

status

 

that

 

includes

 

the

 

amount

 

of

 

CPU

 

time

 

the

 

thread

 

was

 

in

 

application

 

and

 

system

 

call

 

mode,

 

what

 

system

 

calls

 

the

 

thread

 

made,

 

processor

 

affinity,

 

the

 

number

 

of

 

times

 

the

 

thread

 

was

 

dispatched,

 

and

 

to

 

which

 

CPU(s)

 

it

 

was

 

dispatched.

 

The

 

report

 

also

 

includes

 

dispatch

 

wait

 

time

 

and

 

details

 

of

 

interrupts.

 

-p

 

Produces

 

a

 

report

 

containing

 

a

 

detailed

 

report

 

on

 

process

 

status

 

that

 

includes

 

the

 

amount

 

of

 

CPU

 

time

 

the

 

process

 

was

 

in

 

application

 

and

 

system

 

call

 

mode,

 

application

 

time

 

details,

 

threads

 

that

 

were

 

in

 

the

 

process,

 

pthreads

 

that

 

were

 

in

 

the

 

process,

 

pthread

 

calls

 

that

 

the

 

process

 

made

 

and

 

system

 

calls

 

that

 

the

 

process

 

made.

 

-P

 

Produces

 

a

 

report

 

containing

 

a

 

detailed

 

report

 

on

 

pthread

 

status

 

that

 

includes

 

the

 

amount

 

of

 

CPU

 

time

 

the

 

pthread

 

was

 

in

 

application

 

and

 

system

 

call

 

mode,

 

system

 

calls

 

made

 

by

 

the

 

pthread,

 

pthread

 

calls

 

made

 

by

 

the

 

pthread,

 

processor

 

affinity,

 

the

 

number

 

of

 

times

 

the

 

pthread

 

was

 

dispatched

 

and

 

to

 

which

 

CPU(s)

 

it

 

was

 

dispatched,

 

thread

 

affinity,

 

and

 

the

 

number

 

of

 

times

 

the

 

pthread

 

was

 

dispatched

 

and

 

to

 

which

 

kernel

 

thread(s)

 

it

 

was

 

dispatched.

 

The

 

report

 

also

 

includes

 

dispatch

 

wait

 

time

 

and

 

details

 

of

 

interrupts.

   

Default

 

Report

 

Generated

 

by

 

the

 

curt

 

Command

 

This

 

section

 

explains

 

the

 

default

 

report

 

created

 

by

 

the

 

curt

 

command,

 

as

 

follows:

 

#

 

curt

 

-i

 

trace.r

 

-m

 

trace.nm

 

-n

 

gensyms.out

 

-o

 

curt.out

   

66

 

Performance

 

Tools

 

Guide

 

and

 

Reference



The

 

curt

 

command

 

output

 

always

 

includes

 

this

 

default

 

report

 

in

 

its

 

output,

 

even

 

if

 

one

 

of

 

the

 

flags

 

described

 

in

 

the

 

previous

 

section

 

is

 

used.

 

The

 

report

 

is

 

divided

 

into

 

the

 

following

 

sections:

 

v

   

General

 

Information

 

v

   

System

 

Summary

 

v

   

System

 

Application

 

Summary

 

v

   

Processor

 

Summary

 

v

   

Processor

 

Application

 

Summary

 

v

   

Application

 

Summary

 

by

 

TID

 

v

   

Application

 

Summary

 

by

 

PID

 

v

   

Application

 

Summary

 

by

 

Process

 

Type

 

v

   

Kproc

 

Summary

 

v

   

Application

 

Pthread

 

Summary

 

by

 

PID

 

v

   

System

 

Calls

 

Summary

 

v

   

Pending

 

System

 

Calls

 

Summary

 

v

   

System

 

NFS

 

Calls

 

Summary

 

v

   

Pending

 

NFS

 

System

 

Calls

 

Summary

 

v

   

Pthread

 

Calls

 

Summary

 

v

   

Pending

 

Pthread

 

Calls

 

Summary

 

v

   

FLIH

 

Summary

 

v

   

SLIH

 

Summary

General

 

Information

 

The

 

General

 

Information

 

section

 

begins

 

with

 

the

 

time

 

and

 

date

 

when

 

the

 

report

 

was

 

generated.

 

It

 

is

 

followed

 

by

 

the

 

syntax

 

of

 

the

 

curt

 

command

 

line

 

that

 

was

 

used

 

to

 

produce

 

the

 

report.

 

This

 

section

 

also

 

contains

 

some

 

information

 

about

 

the

 

AIX

 

trace

 

file

 

that

 

was

 

processed

 

by

 

the

 

curt

 

command.

 

This

 

information

 

consists

 

of

 

the

 

trace

 

file’s

 

name,

 

size,

 

and

 

its

 

creation

 

date.

 

The

 

command

 

used

 

to

 

invoke

 

the

 

AIX

 

trace

 

facility

 

and

 

gather

 

the

 

trace

 

file

 

is

 

displayed

 

at

 

the

 

end

 

of

 

the

 

report.

 

The

 

following

 

is

 

a

 

sample

 

of

 

the

 

general

 

information

 

section:

 

Run

 

on

 

Fri

 

May

 

25

 

11:08:46

 

2001

 

Command

 

line

 

was:

 

curt

 

-i

 

trace.r

 

-n

 

gensyms.out

 

-o

 

curt.out

 

----

 

AIX

 

trace

 

file

 

name

 

=

 

trace.r

 

AIX

 

trace

 

file

 

size

 

=

 

1632496

 

AIX

 

trace

 

file

 

created

 

=

 

Fri

 

May

 

25

 

11:04:33

 

2001

     

Command

 

used

 

to

 

gather

 

AIX

 

trace

 

was:

 

trace

 

-n

 

-C

 

all

 

-d

 

-j

 

100,101,102,103,104,106,10C,134,139,200,465,605,609

 

-L

 

1000000

 

-T

 

1000000

 

-afo

 

trace.raw

 

System

 

Summary

 

The

 

next

 

section

 

of

 

the

 

default

 

report

 

is

 

the

 

System

 

Summary

 

produced

 

by

 

the

 

curt

 

command.

 

The

 

following

 

is

 

a

 

sample

 

of

 

the

 

System

 

Summary:

                

System

 

Summary

                

--------------

  

processing

       

percent

       

percent

  

total

 

time

    

total

 

time

     

busy

 

time

      

(msec)

  

(incl.

 

idle)

  

(excl.

 

idle)

  

processing

 

category

 

===========

   

===========

   

===========

  

===================

     

4998.65

         

45.94

         

75.21

  

APPLICATION

      

701.99

          

6.45

         

10.56

  

SYSCALL

  

Chapter

 

3.

 

CPU

 

Utilization

 

Reporting

 

Tool

 

(curt)

 

67



48.33

          

0.44

          

0.73

  

KPROC

 

(excluding

 

IDLE

 

and

 

NFS)

      

352.23

          

3.24

          

5.30

  

NFS

      

486.19

          

4.47

          

7.32

  

FLIH

       

49.10

          

0.45

          

0.74

  

SLIH

        

8.83

          

0.08

          

0.13

  

DISPATCH

 

(all

 

procs.

 

incl.

 

IDLE)

        

1.04

          

0.01

          

0.02

  

IDLE

 

DISPATCH

 

(only

 

IDLE

 

proc.)

 

-----------

    

----------

       

-------

     

6646.36

         

61.08

        

100.00

  

CPU(s)

 

busy

 

time

     

4234.76

         

38.92

                

IDLE

 

-----------

    

----------

    

10881.12

                              

TOTAL

   

Avg.

 

Thread

 

Affinity

 

=

        

0.99

 

This

 

portion

 

of

 

the

 

report

 

describes

 

the

 

time

 

spent

 

by

 

the

 

whole

 

system

 

(all

 

CPUs)

 

in

 

various

 

execution

 

modes.

 

The

 

System

 

Summary

 

has

 

the

 

following

 

fields:

  

processing

 

total

 

time

 

Total

 

time

 

in

 

milliseconds

 

for

 

the

 

corresponding

 

processing

 

category.

 

percent

 

total

 

time

 

Time

 

from

 

the

 

first

 

column

 

as

 

a

 

percentage

 

of

 

the

 

sum

 

of

 

total

 

trace

 

elapsed

 

time

 

for

 

all

 

processors.

 

This

 

includes

 

whatever

 

amount

 

of

 

time

 

each

 

processor

 

spent

 

running

 

the

 

IDLE

 

process.

 

percent

 

busy

 

time

 

Time

 

from

 

the

 

first

 

column

 

as

 

a

 

percentage

 

of

 

the

 

sum

 

of

 

total

 

trace

 

elapsed

 

time

 

for

 

all

 

processors

 

without

 

including

 

the

 

time

 

each

 

processor

 

spent

 

executing

 

the

 

IDLE

 

process.

 

Avg.

 

Thread

 

Affinity

 

Probability

 

that

 

a

 

thread

 

was

 

dispatched

 

to

 

the

 

same

 

processor

 

on

 

which

 

it

 

last

 

executed.

   

The

 

possible

 

execution

 

modes

 

or

 

processing

 

categories

 

are

 

interpreted

 

as

 

follows:

  

APPLICATION

 

The

 

sum

 

of

 

times

 

spent

 

by

 

all

 

processors

 

in

 

User

 

(that

 

is,

 

non-privileged)

 

mode.

 

SYSCALL

 

The

 

sum

 

of

 

times

 

spent

 

by

 

all

 

processors

 

doing

 

System

 

Calls.

 

This

 

is

 

the

 

portion

 

of

 

time

 

that

 

a

 

processor

 

spends

 

executing

 

in

 

the

 

kernel

 

code

 

providing

 

services

 

directly

 

requested

 

by

 

a

 

user

 

process.

 

KPROC

 

The

 

sum

 

of

 

times

 

spent

 

by

 

all

 

processors

 

executing

 

kernel

 

processes

 

other

 

than

 

the

 

IDLE

 

process.

 

This

 

is

 

the

 

portion

 

of

 

time

 

that

 

a

 

processor

 

spends

 

executing

 

specially

 

created

 

dispatchable

 

processes

 

that

 

only

 

execute

 

kernel

 

code.

 

NFS

 

The

 

sum

 

of

 

times

 

spent

 

by

 

all

 

processors

 

executing

 

NFS

 

operations.

 

This

 

is

 

the

 

portion

 

of

 

time

 

that

 

a

 

processor

 

spends

 

executing

 

in

 

the

 

kernel

 

code

 

providing

 

NFS

 

services

 

directly

 

requested

 

by

 

a

 

kernel

 

process.

 

FLIH

 

The

 

sum

 

of

 

times

 

spent

 

by

 

all

 

processors

 

executing

 

FLIHs.

 

SLIH

 

The

 

sum

 

of

 

times

 

spent

 

by

 

all

 

processors

 

executing

 

SLIHs.

 

DISPATCH

 

The

 

sum

 

of

 

times

 

spent

 

by

 

all

 

processors

 

executing

 

the

 

AIX

 

dispatch

 

code.

 

This

 

sum

 

includes

 

the

 

time

 

spent

 

dispatching

 

all

 

threads

 

(that

 

is,

 

it

 

includes

 

dispatches

 

of

 

the

 

IDLE

 

process).

 

IDLE

 

DISPATCH

 

The

 

sum

 

of

 

times

 

spent

 

by

 

all

 

processors

 

executing

 

the

 

AIX

 

dispatch

 

code

 

where

 

the

 

process

 

being

 

dispatched

 

was

 

the

 

IDLE

 

process.

 

Because

 

the

 

DISPATCH

 

category

 

includes

 

the

 

IDLE

 

DISPATCH

 

category’s

 

time,

 

the

 

IDLE

 

DISPATCH

 

category’s

 

time

 

is

 

not

 

separately

 

added

 

to

 

calculate

 

either

 

CPU(s)

 

busy

 

time

 

or

 

TOTAL

 

(see

 

below).

 

CPU(s)

 

busy

 

time

 

The

 

sum

 

of

 

times

 

spent

 

by

 

all

 

processors

 

executing

 

in

 

APPLICATION,

 

SYSCALL,

 

KPROC,

 

FLIH,

 

SLIH,

 

and

 

DISPATCH

 

modes.

 

IDLE

 

The

 

sum

 

of

 

times

 

spent

 

by

 

all

 

processors

 

executing

 

the

 

IDLE

 

process.

 

TOTAL

 

The

 

sum

 

of

 

CPU(s)

 

busy

 

time

 

and

 

IDLE.

    

68

 

Performance

 

Tools

 

Guide

 

and

 

Reference



The

 

System

 

Summary

 

example

 

indicates

 

that

 

the

 

CPU

 

is

 

spending

 

most

 

of

 

its

 

time

 

in

 

application

 

mode.

 

There

 

is

 

still

 

4234.76

 

ms

 

of

 

IDLE

 

time

 

so

 

there

 

is

 

enough

 

CPU

 

to

 

run

 

applications.

 

If

 

there

 

is

 

insufficient

 

CPU

 

power,

 

do

 

not

 

expect

 

to

 

see

 

any

 

IDLE

 

time.

 

The

 

Avg.

 

Thread

 

Affinity

 

value

 

is

 

0.99

 

showing

 

good

 

processor

 

affinity;

 

that

 

is,

 

threads

 

returning

 

to

 

the

 

same

 

processor

 

when

 

they

 

are

 

ready

 

to

 

be

 

run

 

again.

 

System

 

Application

 

Summary

 

The

 

next

 

part

 

of

 

the

 

default

 

report

 

is

 

the

 

System

 

Application

 

Summary

 

produced

 

by

 

the

 

curt

 

command.

 

The

 

following

 

is

 

a

 

sample

 

of

 

the

 

System

 

Application

 

Summary:

                      

System

 

Application

 

Summary

                      

--------------------------

  

processing

       

percent

      

percent

  

total

 

time

    

total

 

time

  

application

      

(msec)

  

(incl.

 

idle)

        

time

   

processing

 

category

 

===========

   

===========

  

===========

  

===================

        

3.95

         

0.42

          

0.07

  

PTHREAD

        

4.69

         

0.49

          

0.09

  

PDISPATCH

        

0.13

         

0.01

          

0.00

  

PIDLE

     

5356.99

       

563.18

         

99.84

  

OTHER

 

-----------

    

----------

      

-------

     

5365.77

       

564.11

        

100.00

  

APPLICATION

   

Avg.

 

Pthread

 

Affinity

 

=

        

0.84

 

This

 

portion

 

of

 

the

 

report

 

describes

 

the

 

time

 

spent

 

by

 

the

 

system

 

as

 

a

 

whole

 

(all

 

CPUs)

 

in

 

various

 

execution

 

modes.

 

The

 

System

 

Application

 

Summary

 

has

 

the

 

following

 

fields:

  

processing

 

total

 

time

 

Total

 

time

 

in

 

milliseconds

 

for

 

the

 

corresponding

 

processing

 

category.

 

percent

 

total

 

time

 

Time

 

from

 

the

 

first

 

column

 

as

 

a

 

percentage

 

of

 

the

 

sum

 

of

 

total

 

trace

 

elapsed

 

time

 

for

 

all

 

processors.

 

This

 

includes

 

whatever

 

amount

 

of

 

time

 

each

 

processor

 

spent

 

running

 

the

 

IDLE

 

process.

 

percent

 

application

 

time

 

Time

 

from

 

the

 

first

 

column

 

as

 

a

 

percentage

 

of

 

the

 

sum

 

of

 

total

 

trace

 

elapsed

 

application

 

time

 

for

 

all

 

processors

 

Avg.

 

Pthread

 

Affinity

 

Probability

 

that

 

a

 

pthread

 

was

 

dispatched

 

on

 

the

 

same

 

kernel

 

thread

 

on

 

which

 

it

 

last

 

executed.

   

The

 

possible

 

execution

 

modes

 

or

 

processing

 

categories

 

are

 

interpreted

 

as

 

follows:

  

PTHREAD

 

The

 

sum

 

of

 

times

 

spent

 

by

 

all

 

pthreads

 

on

 

all

 

processors

 

in

 

traced

 

pthread

 

library

 

calls.

 

PDISPATCH

 

The

 

sum

 

of

 

times

 

spent

 

by

 

all

 

pthreads

 

on

 

all

 

processors

 

executing

 

the

 

libpthreads

 

dispatch

 

code.

 

PIDLE

 

The

 

sum

 

of

 

times

 

spent

 

by

 

all

 

kernel

 

threads

 

on

 

all

 

processors

 

executing

 

the

 

libpthreads

 

vp_sleep

 

code.

 

OTHER

 

The

 

sum

 

of

 

times

 

spent

 

by

 

all

 

pthreads

 

on

 

all

 

processors

 

in

 

non-traced

 

user

 

mode.

 

APPLICATION

 

The

 

sum

 

of

 

times

 

spent

 

by

 

all

 

processors

 

in

 

User

 

(that

 

is,

 

non-privileged)

 

mode.

   

Processor

 

Summary

 

and

 

Processor

 

Application

 

Summary

 

This

 

part

 

of

 

the

 

curt

 

command

 

output

 

follows

 

the

 

System

 

Summary

 

and

 

System

 

Application

 

Summary

 

and

 

is

 

essentially

 

the

 

same

 

information

 

but

 

presented

 

on

 

a

 

processor-by-processor

 

basis.

 

The

 

same

 

description

 

that

 

was

 

given

 

for

 

the

 

System

 

Summary

 

and

 

System

 

Application

 

Summary

 

applies

 

here,

 

except

 

that

 

this

 

report

 

covers

 

each

 

processor

 

rather

 

than

 

the

 

whole

 

system.

 

Below

 

is

 

a

 

sample

 

of

 

this

 

output:

   

Chapter

 

3.

 

CPU

 

Utilization

 

Reporting

 

Tool

 

(curt)

 

69



Processor

 

Summary

  

processor

 

number

 

0

              

---------------------------------------

  

processing

       

percent

       

percent

  

total

 

time

    

total

 

time

     

busy

 

time

      

(msec)

  

(incl.

 

idle)

  

(excl.

 

idle)

  

processing

 

category

 

===========

   

===========

   

===========

  

===================

       

45.07

          

0.88

          

5.16

  

APPLICATION

      

591.39

         

11.58

         

67.71

  

SYSCALL

       

47.83

          

0.94

          

5.48

  

KPROC

 

(excluding

 

IDLE

 

and

 

NFS)

        

0.00

          

0.00

          

0.00

  

NFS

      

173.78

          

3.40

         

19.90

  

FLIH

        

9.27

          

0.18

          

1.06

  

SLIH

        

6.07

          

0.12

          

0.70

  

DISPATCH

 

(all

 

procs.

 

incl.

 

IDLE)

        

1.04

          

0.02

          

0.12

  

IDLE

 

DISPATCH

 

(only

 

IDLE

 

proc.)

 

-----------

    

----------

       

-------

      

873.42

         

17.10

        

100.00

  

CPU(s)

 

busy

 

time

     

4232.92

         

82.90

                

IDLE

 

-----------

    

----------

     

5106.34

                              

TOTAL

   

Avg.

 

Thread

 

Affinity

 

=

        

0.98

   

Total

 

number

 

of

 

process

 

dispatches

  

=

 

1620

 

Total

 

number

 

of

 

idle

 

dispatches

 

=

 

782

                 

Processor

 

Application

 

Summary

  

processor

 

0

               

------------------------------------------

  

processing

       

percent

       

percent

  

total

 

time

    

total

 

time

   

application

      

(msec)

  

(incl.

 

idle)

         

time

   

processing

 

category

 

===========

   

===========

   

===========

  

===================

        

1.66

          

0.04

          

0.06

  

PTHREAD

        

2.61

          

0.05

          

0.10

  

PDISPATCH

        

0.00

          

0.00

          

0.00

  

PIDLE

     

2685.12

         

56.67

         

99.84

  

OTHER

 

-----------

    

----------

       

-------

     

2689.39

         

56.76

        

100.00

  

APPLICATION

   

Avg.

 

Pthread

 

Affinity

 

=

        

0.78

   

Total

 

number

 

of

 

pthread

 

dispatches

  

=

 

104

 

Total

 

number

 

of

 

pthread

 

idle

 

dispatches

  

=

 

0

                  

Processor

 

Summary

  

processor

 

number

 

1

                

---------------------------------------

  

processing

       

percent

       

percent

  

total

 

time

    

total

 

time

     

busy

 

time

      

(msec)

  

(incl.

 

idle)

  

(excl.

 

idle)

  

processing

 

category

 

===========

   

===========

   

===========

  

===================

     

4985.81

         

97.70

         

97.70

  

APPLICATION

        

0.09

          

0.00

          

0.00

  

SYSCALL

        

0.00

          

0.00

          

0.00

  

KPROC

 

(excluding

 

IDLE

 

and

 

NFS)

        

0.00

          

0.00

          

0.00

  

NFS

      

103.86

          

2.04

          

2.04

  

FLIH

       

12.54

          

0.25

          

0.25

  

SLIH

        

0.97

          

0.02

          

0.02

  

DISPATCH

 

(all

 

procs.

 

incl.

 

IDLE)

        

0.00

          

0.00

          

0.00

  

IDLE

 

DISPATCH

 

(only

 

IDLE

 

proc.)

 

-----------

    

----------

       

-------

     

5103.26

        

100.00

        

100.00

  

CPU(s)

 

busy

 

time

        

0.00

          

0.00

                

IDLE

 

-----------

    

----------

     

5103.26

                              

TOTAL

   

Avg.

 

Thread

 

Affinity

 

=

        

0.99

   

Total

 

number

 

of

 

process

 

dispatches

  

=

 

516

 

Total

 

number

 

of

 

idle

 

dispatches

 

=

 

0

  

70

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Processor

 

Application

 

Summary

  

processor

 

1

               

------------------------------------------

  

processing

       

percent

       

percent

  

total

 

time

    

total

 

time

   

application

      

(msec)

  

(incl.

 

idle)

         

time

   

processing

 

category

 

===========

   

===========

   

===========

  

===================

        

2.29

          

0.05

          

0.09

  

PTHREAD

        

2.09

          

0.04

          

0.08

  

PDISPATCH

        

0.13

          

0.00

          

0.00

  

PIDLE

     

2671.86

         

56.40

         

99.83

  

OTHER

 

-----------

    

----------

       

-------

     

2676.38

         

56.49

        

100.00

  

APPLICATION

   

Avg.

 

Pthread

 

Affinity

 

=

        

0.83

   

Total

 

number

 

of

 

pthread

 

dispatches

  

=

 

91

 

Total

 

number

 

of

 

pthread

 

idle

 

dispatches

  

=

 

5

       

The

 

following

 

terms

 

are

 

referred

 

to

 

in

 

the

 

example

 

above:

 

Total

 

number

 

of

 

process

 

dispatches

 

The

 

number

 

of

 

times

 

AIX

 

dispatched

 

any

 

non-IDLE

 

process

 

on

 

the

 

processor.

 

Total

 

number

 

of

 

idle

 

dispatches

 

The

 

number

 

of

 

IDLE

 

process

 

dispatches.

 

Total

 

number

 

of

 

pthread

 

dispatches

 

The

 

number

 

of

 

times

 

the

 

libpthreads

 

dispatcher

 

was

 

executed

 

on

 

the

 

processor.

 

Total

 

number

 

of

 

pthread

 

idle

 

dispatches

 

The

 

number

 

of

 

vp_sleep

 

calls.

Application

 

Summary

 

by

 

Thread

 

ID

 

(Tid)

 

The

 

Application

 

Summary,

 

by

 

Tid,

 

shows

 

an

 

output

 

of

 

all

 

the

 

threads

 

that

 

were

 

running

 

on

 

the

 

system

 

during

 

the

 

time

 

of

 

trace

 

collection

 

and

 

their

 

CPU

 

consumption.

 

The

 

thread

 

that

 

consumed

 

the

 

most

 

CPU

 

time

 

during

 

the

 

time

 

of

 

the

 

trace

 

collection

 

is

 

at

 

the

 

top

 

of

 

the

 

list.

           

Application

 

Summary

 

(by

 

Tid)

           

----------------------------

   

--

 

processing

 

total

 

(msec)

 

--

   

--

 

percent

 

of

 

total

 

processing

 

time

 

--

  

combined

  

application

  

syscall

  

combined

  

application

      

syscall

  

name

 

(Pid

  

Tid)

  

========

  

===========

  

=======

  

========

  

===========

      

=======

  

===================

 

4986.2355

    

4986.2355

   

0.0000

   

24.4214

      

24.4214

       

0.0000

  

cpu(18418

  

32437)

 

4985.8051

    

4985.8051

   

0.0000

   

24.4193

      

24.4193

       

0.0000

  

cpu(19128

  

33557)

 

4982.0331

    

4982.0331

   

0.0000

   

24.4009

      

24.4009

       

0.0000

  

cpu(18894

  

28671)

   

83.8436

       

2.5062

  

81.3374

    

0.4106

       

0.0123

       

0.3984

  

disp+work(20390

  

28397)

   

72.5809

       

2.7269

  

69.8540

    

0.3555

       

0.0134

       

0.3421

  

disp+work(18584

  

32777)

   

69.8023

       

2.5351

  

67.2672

    

0.3419

       

0.0124

       

0.3295

  

disp+work(19916

  

33033)

   

63.6399

       

2.5032

  

61.1368

    

0.3117

       

0.0123

       

0.2994

  

disp+work(17580

  

30199)

   

63.5906

       

2.2187

  

61.3719

    

0.3115

       

0.0109

       

0.3006

  

disp+work(20154

  

34321)

   

62.1134

       

3.3125

  

58.8009

    

0.3042

       

0.0162

       

0.2880

  

disp+work(21424

  

31493)

   

60.0789

       

2.0590

  

58.0199

    

0.2943

       

0.0101

       

0.2842

  

disp+work(21992

  

32539)

    

...(lines

 

omitted)...

 

The

 

output

 

is

 

divided

 

into

 

two

 

main

 

sections:

 

v

   

The

 

total

 

processing

 

time

 

of

 

the

 

thread

 

in

 

milliseconds

 

(processing

 

total

 

(msec))

 

v

   

The

 

CPU

 

time

 

that

 

the

 

thread

 

has

 

consumed,

 

expressed

 

as

 

a

 

percentage

 

of

 

the

 

total

 

CPU

 

time

 

(percent

 

of

 

total

 

processing

 

time)

  

Chapter

 

3.

 

CPU

 

Utilization

 

Reporting

 

Tool

 

(curt)

 

71



The

 

Application

 

Summary

 

(by

 

Tid)

 

has

 

the

 

following

 

fields:

  

name

 

(Pid

 

Tid)

 

The

 

name

 

of

 

the

 

process

 

associated

 

with

 

the

 

thread,

 

its

 

process

 

id,

 

and

 

its

 

thread

 

id.

   

processing

 

total

 

(msec)

  

combined

 

The

 

total

 

amount

 

of

 

CPU

 

time,

 

expressed

 

in

 

milliseconds,

 

that

 

the

 

thread

 

was

 

running

 

in

 

either

 

application

 

mode

 

or

 

system

 

call

 

mode.

 

application

 

The

 

amount

 

of

 

CPU

 

time,

 

expressed

 

in

 

milliseconds,

 

that

 

the

 

thread

 

spent

 

in

 

application

 

mode.

 

syscall

 

The

 

amount

 

of

 

CPU

 

time,

 

expressed

 

in

 

milliseconds,

 

that

 

the

 

thread

 

spent

 

in

 

system

 

call

 

mode.

   

percent

 

of

 

total

 

processing

 

time

  

combined

 

The

 

amount

 

of

 

CPU

 

time

 

that

 

the

 

thread

 

was

 

running,

 

expressed

 

as

 

percentage

 

of

 

the

 

total

 

processing

 

time.

 

application

 

The

 

amount

 

of

 

CPU

 

time

 

that

 

the

 

thread

 

the

 

thread

 

spent

 

in

 

application

 

mode,

 

expressed

 

as

 

percentage

 

of

 

the

 

total

 

processing

 

time.

 

syscall

 

The

 

amount

 

of

 

CPU

 

time

 

that

 

the

 

thread

 

spent

 

in

 

system

 

call

 

mode,

 

expressed

 

as

 

percentage

 

of

 

the

 

total

 

processing

 

time.

   

In

 

the

 

example

 

above,

 

we

 

can

 

investigate

 

why

 

the

 

system

 

is

 

spending

 

so

 

much

 

time

 

in

 

application

 

mode

 

by

 

looking

 

at

 

the

 

Application

 

Summary

 

(by

 

Tid),

 

where

 

we

 

can

 

see

 

the

 

top

 

three

 

processes

 

of

 

the

 

report

 

are

 

named

 

cpu,

 

a

 

test

 

program

 

that

 

uses

 

a

 

great

 

deal

 

of

 

CPU

 

time.

 

The

 

report

 

shows

 

again

 

that

 

the

 

CPU

 

spent

 

most

 

of

 

its

 

time

 

in

 

application

 

mode

 

running

 

the

 

cpu

 

process.

 

Therefore

 

the

 

cpu

 

process

 

is

 

a

 

candidate

 

to

 

be

 

optimized

 

to

 

improve

 

system

 

performance.

 

Application

 

Summary

 

by

 

Process

 

ID

 

(Pid)

 

The

 

Application

 

Summary,

 

by

 

Pid,

 

has

 

the

 

same

 

content

 

as

 

the

 

Application

 

Summary,

 

by

 

Tid,

 

except

 

that

 

the

 

threads

 

that

 

belong

 

to

 

each

 

process

 

are

 

consolidated

 

and

 

the

 

process

 

that

 

consumed

 

the

 

most

 

CPU

 

time

 

during

 

the

 

monitoring

 

period

 

is

 

at

 

the

 

beginning

 

of

 

the

 

list.

 

The

 

name

 

(PID)

 

(Thread

 

Count)

 

column

 

shows

 

the

 

process

 

name,

 

its

 

process

 

ID,

 

and

 

the

 

number

 

of

 

threads

 

that

 

belong

 

to

 

this

 

process

 

and

 

that

 

have

 

been

 

accumulated

 

for

 

this

 

line

 

of

 

data.

                            

Application

 

Summary

 

(by

 

Pid)

                            

----------------------------

    

--

 

processing

 

total

 

(msec)

 

--

   

--

 

percent

 

of

 

total

 

processing

 

time

 

--

   

combined

  

application

  

syscall

  

combined

  

application

  

syscall

  

name

 

(Pid)(Thread

 

Count)

   

========

  

===========

  

=======

  

========

  

===========

  

=======

  

===================

  

4986.2355

    

4986.2355

   

0.0000

   

24.4214

      

24.4214

   

0.0000

  

cpu(18418)(1)

  

4985.8051

    

4985.8051

   

0.0000

   

24.4193

      

24.4193

   

0.0000

  

cpu(19128)(1)

  

4982.0331

    

4982.0331

   

0.0000

   

24.4009

      

24.4009

   

0.0000

  

cpu(18894)(1)

    

83.8436

       

2.5062

  

81.3374

    

0.4106

       

0.0123

   

0.3984

  

disp+work(20390)(1)

    

72.5809

       

2.7269

  

69.8540

    

0.3555

       

0.0134

   

0.3421

  

disp+work(18584)(1)

    

69.8023

       

2.5351

  

67.2672

    

0.3419

       

0.0124

   

0.3295

  

disp+work(19916)(1)

    

63.6399

       

2.5032

  

61.1368

    

0.3117

       

0.0123

   

0.2994

  

disp+work(17580)(1)

    

63.5906

       

2.2187

  

61.3719

    

0.3115

       

0.0109

   

0.3006

  

disp+work(20154)(1)

    

62.1134

       

3.3125

  

58.8009

    

0.3042

       

0.0162

   

0.2880

  

disp+work(21424)(1)

    

60.0789

       

2.0590

  

58.0199

    

0.2943

       

0.0101

   

0.2842

  

disp+work(21992)(1)

    

...(lines

 

omitted)...

 

Application

 

Summary

 

(by

 

process

 

type)

 

The

 

Application

 

Summary

 

(by

 

process

 

type)

 

consolidates

 

all

 

processes

 

of

 

the

 

same

 

name

 

and

 

sorts

 

them

 

in

 

descending

 

order

 

of

 

combined

 

processing

 

time.

   

72

 

Performance

 

Tools

 

Guide

 

and

 

Reference



The

 

name

 

(thread

 

count)

 

column

 

shows

 

the

 

name

 

of

 

the

 

process,

 

and

 

the

 

number

 

of

 

threads

 

that

 

belong

 

to

 

this

 

process

 

name

 

(type)

 

and

 

were

 

running

 

on

 

the

 

system

 

during

 

the

 

monitoring

 

period.

                     

Application

 

Summary

 

(by

 

process

 

type)

                 

-----------------------------------------------

     

--

 

processing

 

total

 

(msec)

 

--

    

--

 

percent

 

of

 

total

 

processing

 

time

 

--

    

combined

  

application

   

syscall

  

combined

  

application

  

syscall

  

name

 

(thread

 

count)

    

========

  

===========

   

=======

  

========

  

===========

  

=======

  

==================

  

14954.0738

   

14954.0738

    

0.0000

   

73.2416

      

73.2416

   

0.0000

  

cpu(3)

    

573.9466

      

21.2609

  

552.6857

    

2.8111

       

0.1041

   

2.7069

  

disp+work(9)

     

20.9568

       

5.5820

   

15.3748

    

0.1026

       

0.0273

   

0.0753

  

trcstop(1)

     

10.6151

       

2.4241

    

8.1909

    

0.0520

       

0.0119

   

0.0401

  

i4llmd(1)

      

8.7146

       

5.3062

    

3.4084

    

0.0427

       

0.0260

   

0.0167

  

dtgreet(1)

      

7.6063

       

1.4893

    

6.1171

    

0.0373

       

0.0073

   

0.0300

  

sleep(1)

    

...(lines

 

omitted)...

 

Kproc

 

Summary

 

by

 

Thread

 

ID

 

(Tid)

 

The

 

Kproc

 

Summary,

 

by

 

Tid,

 

shows

 

an

 

output

 

of

 

all

 

the

 

kernel

 

process

 

threads

 

that

 

were

 

running

 

on

 

the

 

system

 

during

 

the

 

time

 

of

 

trace

 

collection

 

and

 

their

 

CPU

 

consumption.

 

The

 

thread

 

that

 

consumed

 

the

 

most

 

CPU

 

time

 

during

 

the

 

time

 

of

 

the

 

trace

 

collection

 

is

 

at

 

the

 

beginning

 

of

 

the

 

list.

                      

Kproc

 

Summary

  

(by

 

Tid)

                      

-----------------------

     

--

 

processing

 

total

 

(msec)

 

--

          

--

   

percent

 

of

 

total

  

time

   

--

    

combined

       

kernel

    

operation

     

combined

       

kernel

    

operation

  

name

 

(Pid

 

Tid

 

Type)

    

========

       

======

  

===========

     

========

       

======

  

===========

  

===================

   

1930.9312

    

1930.9312

       

0.0000

      

13.6525

      

13.6525

       

0.0000

  

wait(8196

  

8197

 

W)

      

2.1674

       

2.1674

       

0.0000

       

0.0153

       

0.0153

       

0.0000

  

.WSMRefreshServe(0

  

3

 

-)

      

1.9034

       

1.9034

       

1.8020

       

0.0135

       

0.0135

       

0.0128

  

nfsd(36882

  

49177

 

N)

       

...(lines

 

omitted)...

                                  

Kproc

 

Types

                                

-----------

  

Type

 

Function

                       

Operation

  

====

 

============================

   

==========================

   

W

   

idle

 

thread

                    

-

   

N

   

NFS

 

daemon

                     

NFS

 

Remote

 

Procedure

 

Calls

   

The

 

Kproc

 

Summary

 

has

 

the

 

following

 

fields:

  

name

 

(Pid

 

Tid

 

Type)

 

The

 

name

 

of

 

the

 

kernel

 

process

 

associated

 

with

 

the

 

thread,

 

its

 

process

 

ID,

 

its

 

thread

 

ID,

 

and

 

its

 

type.

 

The

 

kproc

 

type

 

is

 

defined

 

in

 

the

 

Kproc

 

Types

 

listing

 

following

 

the

 

Kproc

 

Summary.

   

processing

 

total

 

(msec)

  

combined

 

The

 

total

 

amount

 

of

 

CPU

 

time,

 

expressed

 

in

 

milliseconds,

 

that

 

the

 

thread

 

was

 

running

 

in

 

either

 

operation

 

or

 

kernel

 

mode.

 

kernel

 

The

 

amount

 

of

 

CPU

 

time,

 

expressed

 

in

 

milliseconds,

 

that

 

the

 

thread

 

spent

 

in

 

unidentified

 

kernel

 

mode.

 

operation

 

The

 

amount

 

of

 

CPU

 

time,

 

expressed

 

in

 

milliseconds,

 

that

 

the

 

thread

 

spent

 

in

 

traced

 

operations.

   

percent

 

of

 

total

 

time

  

combined

 

The

 

amount

 

of

 

CPU

 

time

 

that

 

the

 

thread

 

was

 

running,

 

expressed

 

as

 

percentage

 

of

 

the

 

total

 

processing

 

time.

   

Chapter

 

3.

 

CPU

 

Utilization

 

Reporting

 

Tool

 

(curt)

 

73



kernel

 

The

 

amount

 

of

 

CPU

 

time

 

that

 

the

 

thread

 

spent

 

in

 

unidentified

 

kernel

 

mode,

 

expressed

 

as

 

percentage

 

of

 

the

 

total

 

processing

 

time.

 

operation

 

The

 

amount

 

of

 

CPU

 

time

 

that

 

the

 

thread

 

spent

 

in

 

traced

 

operations,

 

expressed

 

as

 

percentage

 

of

 

the

 

total

 

processing

 

time.

   

Kproc

 

Types

  

Type

 

A

 

single

 

letter

 

to

 

be

 

used

 

as

 

an

 

index

 

into

 

this

 

listing.

 

Function

 

A

 

description

 

of

 

the

 

nominal

 

function

 

of

 

this

 

type

 

of

 

kernel

 

process.

 

Operation

 

A

 

description

 

of

 

the

 

traced

 

operations

 

for

 

this

 

type

 

of

 

kernel

 

process.

   

Application

 

Pthread

 

Summary

 

by

 

process

 

ID

 

(Pid)

 

The

 

Application

 

Pthread

 

Summary,

 

by

 

PID,

 

shows

 

an

 

output

 

of

 

all

 

the

 

multi-threaded

 

processes

 

that

 

were

 

running

 

on

 

the

 

system

 

during

 

trace

 

collection

 

and

 

their

 

CPU

 

consumption,

 

and

 

that

 

have

 

spent

 

time

 

making

 

pthread

 

calls.

 

The

 

process

 

that

 

consumed

 

the

 

most

 

CPU

 

time

 

during

 

the

 

trace

 

collection

 

is

 

at

 

the

 

beginning

 

of

 

the

 

list.

                     

Application

 

Pthread

 

Summary

 

(by

 

Pid)

                     

------------------------------------

    

--

 

processing

 

total

 

(msec)

 

--

     

--

 

percent

 

of

 

total

 

application

 

time

 

--

 

application

       

other

     

pthread

  

application

       

other

      

pthread

   

name

 

(Pid)(Pthread

 

Count)

 

===========

  

==========

  

==========

  

===========

  

==========

   

==========

   

=========================

   

1277.6602

   

1274.9354

      

2.7249

    

23.8113

       

23.7605

       

0.0508

   

./pth(245964)(52)

    

802.6445

    

801.4162

      

1.2283

    

14.9586

       

14.9357

       

0.0229

   

./pth32(245962)(12)

      

...(lines

 

omitted)...

 

The

 

output

 

is

 

divided

 

into

 

two

 

main

 

sections:

 

v

   

The

 

total

 

processing

 

time

 

of

 

the

 

process

 

in

 

milliseconds

 

(processing

 

total

 

(msec))

 

v

   

The

 

CPU

 

time

 

that

 

the

 

process

 

has

 

consumed,

 

expressed

 

as

 

a

 

percentage

 

of

 

the

 

total

 

application

 

time

The

 

Application

 

Pthread

 

Summary

 

has

 

the

 

following

 

fields:

  

name

 

(Pid)

 

(Pthread

 

Count)

 

The

 

name

 

of

 

the

 

process

 

associated

 

with

 

the

 

process

 

ID,

 

and

 

the

 

number

 

of

 

pthreads

 

of

 

this

 

process.

   

processing

 

total

 

(msec)

  

application

 

The

 

total

 

amount

 

of

 

CPU

 

time,

 

expressed

 

in

 

milliseconds,

 

that

 

the

 

process

 

was

 

running

 

in

 

user

 

mode.

 

pthread

 

The

 

amount

 

of

 

CPU

 

time,

 

expressed

 

in

 

milliseconds,

 

that

 

the

 

process

 

spent

 

in

 

traced

 

call

 

to

 

the

 

pthreads

 

library.

 

other

 

The

 

amount

 

of

 

CPU

 

time,

 

expressed

 

in

 

milliseconds,

 

that

 

the

 

process

 

spent

 

in

 

non

 

traced

 

user

 

mode.

   

percent

 

of

 

total

 

application

 

time

  

application

 

The

 

amount

 

of

 

CPU

 

time

 

that

 

the

 

process

 

was

 

running

 

in

 

user

 

mode,

 

expressed

 

as

 

percentage

 

of

 

the

 

total

 

application

 

time.

 

pthread

 

The

 

amount

 

of

 

CPU

 

time

 

that

 

the

 

process

 

spent

 

in

 

calls

 

to

 

the

 

pthreads

 

library,

 

expressed

 

as

 

percentage

 

of

 

the

 

total

 

application

 

time.

   

74

 

Performance

 

Tools

 

Guide

 

and

 

Reference



other

 

The

 

amount

 

of

 

CPU

 

time

 

that

 

the

 

process

 

spent

 

in

 

non

 

traced

 

user

 

mode,

 

expressed

 

as

 

percentage

 

of

 

the

 

total

 

application

 

time.

   

System

 

Calls

 

Summary

 

The

 

System

 

Calls

 

Summary

 

provides

 

a

 

list

 

of

 

all

 

the

 

system

 

calls

 

that

 

have

 

completed

 

execution

 

on

 

the

 

system

 

during

 

the

 

monitoring

 

period.

 

The

 

list

 

is

 

sorted

 

by

 

the

 

total

 

CPU

 

time

 

in

 

milliseconds

 

consumed

 

by

 

each

 

type

 

of

 

system

 

call.

                               

System

 

Calls

 

Summary

                               

--------------------

      

Count

   

Total

 

Time

   

%

 

sys

  

Avg

 

Time

  

Min

 

Time

  

Max

 

Time

  

SVC

 

(Address)

                  

(msec)

    

time

    

(msec)

    

(msec)

    

(msec)

   

========

  

===========

  

======

  

========

  

========

  

========

  

================

        

605

     

355.4475

   

1.74%

    

0.5875

    

0.0482

    

4.5626

  

kwrite(4259c4)

        

733

     

196.3752

   

0.96%

    

0.2679

    

0.0042

    

2.9948

  

kread(4259e8)

          

3

       

9.2217

   

0.05%

    

3.0739

    

2.8888

    

3.3418

  

execve(1c95d8)

         

38

       

7.6013

   

0.04%

    

0.2000

    

0.0051

    

1.6137

  

__loadx(1c9608)

       

1244

       

4.4574

   

0.02%

    

0.0036

    

0.0010

    

0.0143

  

lseek(425a60)

         

45

       

4.3917

   

0.02%

    

0.0976

    

0.0248

    

0.1810

  

access(507860)

         

63

       

3.3929

   

0.02%

    

0.0539

    

0.0294

    

0.0719

  

_select(4e0ee4)

          

2

       

2.6761

   

0.01%

    

1.3380

    

1.3338

    

1.3423

  

kfork(1c95c8)

        

207

       

2.3958

   

0.01%

    

0.0116

    

0.0030

    

0.1135

  

_poll(4e0ecc)

        

228

       

1.1583

   

0.01%

    

0.0051

    

0.0011

    

0.2436

  

kioctl(4e07ac)

          

9

       

0.8136

   

0.00%

    

0.0904

    

0.0842

    

0.0988

  

.smtcheckinit(1b245a8)

          

5

       

0.5437

   

0.00%

    

0.1087

    

0.0696

    

0.1777

  

open(4e08d8)

         

15

       

0.3553

   

0.00%

    

0.0237

    

0.0120

    

0.0322

  

.smtcheckinit(1b245cc)

          

2

       

0.2692

   

0.00%

    

0.1346

    

0.1339

    

0.1353

  

statx(4e0950)

         

33

       

0.2350

   

0.00%

    

0.0071

    

0.0009

    

0.0210

  

_sigaction(1cada4)

          

1

       

0.1999

   

0.00%

    

0.1999

    

0.1999

    

0.1999

  

kwaitpid(1cab64)

        

102

       

0.1954

   

0.00%

    

0.0019

    

0.0013

    

0.0178

  

klseek(425a48)

    

...(lines

 

omitted)...

 

The

 

System

 

Calls

 

Summary

 

has

 

the

 

following

 

fields:

  

Count

 

The

 

number

 

of

 

times

 

that

 

a

 

system

 

call

 

of

 

a

 

certain

 

type

 

(see

 

SVC

 

(Address))

 

has

 

been

 

called

 

during

 

the

 

monitoring

 

period.

 

Total

 

Time

 

(msec)

 

The

 

total

 

CPU

 

time

 

that

 

the

 

system

 

spent

 

processing

 

these

 

system

 

calls,

 

expressed

 

in

 

milliseconds.

 

%

 

sys

 

time

 

The

 

total

 

CPU

 

time

 

that

 

the

 

system

 

spent

 

processing

 

these

 

system

 

calls,

 

expressed

 

as

 

a

 

percentage

 

of

 

the

 

total

 

processing

 

time.

 

Avg

 

Time

 

(msec)

 

The

 

average

 

CPU

 

time

 

that

 

the

 

system

 

spent

 

processing

 

one

 

system

 

call

 

of

 

this

 

type,

 

expressed

 

in

 

milliseconds.

 

Min

 

Time

 

(msec)

 

The

 

minimum

 

CPU

 

time

 

that

 

the

 

system

 

needed

 

to

 

process

 

one

 

system

 

call

 

of

 

this

 

type,

 

expressed

 

in

 

milliseconds.

 

Max

 

Time

 

(msec)

 

The

 

maximum

 

CPU

 

time

 

that

 

the

 

system

 

needed

 

to

 

process

 

one

 

system

 

call

 

of

 

this

 

type,

 

expressed

 

in

 

milliseconds.

 

SVC

 

(Address)

 

The

 

name

 

of

 

the

 

system

 

call

 

and

 

its

 

kernel

 

address.

   

Pending

 

System

 

Calls

 

Summary

 

The

 

Pending

 

System

 

Calls

 

Summary

 

provides

 

a

 

list

 

of

 

all

 

the

 

system

 

calls

 

that

 

have

 

been

 

executed

 

on

 

the

 

system

 

during

 

the

 

monitoring

 

period

 

but

 

have

 

not

 

completed.

 

The

 

list

 

is

 

sorted

 

by

 

Tid.

                      

Pending

 

System

 

Calls

 

Summary

                      

----------------------------

 

Accumulated

   

SVC

 

(Address)

               

Procname

 

(Pid

  

Tid)

 

Time

 

(msec)

 

============

  

=========================

  

==========================

       

0.0656

  

_select(4e0ee4)

            

sendmail(7844

 

5001)

       

0.0452

  

_select(4e0ee4)

            

syslogd(7514

 

8591)

  

Chapter

 

3.

 

CPU

 

Utilization

 

Reporting

 

Tool

 

(curt)

 

75



0.0712

  

_select(4e0ee4)

            

snmpd(5426

 

9293)

       

0.0156

  

kioctl(4e07ac)

             

trcstop(47210

 

18379)

       

0.0274

  

kwaitpid(1cab64)

           

ksh(20276

 

44359)

       

0.0567

  

kread4259e8)

               

ksh(23342

 

50873)

    

...(lines

 

omitted)...

 

The

 

Pending

 

System

 

Calls

 

Summary

 

has

 

the

 

following

 

fields:

  

Accumulated

 

Time

 

(msec)

 

The

 

accumulated

 

CPU

 

time

 

that

 

the

 

system

 

spent

 

processing

 

the

 

pending

 

system

 

call,

 

expressed

 

in

 

milliseconds.

 

SVC

 

(Address)

 

The

 

name

 

of

 

the

 

system

 

call

 

and

 

its

 

kernel

 

address.

 

Procname

 

(Pid

 

Tid)

 

The

 

name

 

of

 

the

 

process

 

associated

 

with

 

the

 

thread

 

that

 

made

 

the

 

system

 

call,

 

its

 

process

 

ID,

 

and

 

the

 

thread

 

ID.

   

System

 

NFS

 

Calls

 

Summary

 

The

 

System

 

NFS

 

Calls

 

Summary

 

provides

 

a

 

list

 

of

 

all

 

the

 

system

 

NFS

 

calls

 

that

 

have

 

completed

 

execution

 

on

 

the

 

system

 

during

 

the

 

monitoring

 

period.

 

The

 

list

 

is

 

divided

 

by

 

NFS

 

versions,

 

and

 

each

 

list

 

is

 

sorted

 

by

 

the

 

total

 

CPU

 

time,

 

in

 

milliseconds,

 

consumed

 

by

 

each

 

type

 

of

 

system

 

NFS

 

call.

                      

System

 

NFS

 

Calls

 

Summary

                      

------------------------

    

Count

   

Total

 

Time

  

Avg

 

Time

  

Min

 

Time

  

Max

 

Time

  

%

 

Tot

  

%

 

Tot

  

Opcode

                

(msec)

    

(msec)

    

(msec)

    

(msec)

   

Time

  

Count

 

========

  

===========

  

========

  

========

  

========

  

=====

  

=====

  

=============

      

253

      

48.4115

    

0.1913

    

0.0952

    

1.0097

  

98.91

  

98.83

  

RFS2_READLINK

        

2

       

0.3959

    

0.1980

    

0.1750

    

0.2209

   

0.81

   

0.78

  

RFS2_LOOKUP

        

1

       

0.1373

    

0.1373

    

0.1373

    

0.1373

   

0.28

   

0.39

  

RFS2_NULL

 

--------

  

-----------

  

--------

  

--------

  

--------

  

-----

  

-----

  

-------------

      

256

      

48.9448

    

0.1912

                                    

NFS

 

V2

 

TOTAL

       

3015

    

4086.9121

    

1.3555

    

0.1035

   

31.6976

  

40.45

  

17.12

  

RFS3_READ

      

145

    

2296.3158

   

15.8367

    

1.1177

   

42.9125

  

22.73

   

0.82

  

RFS3_WRITE

    

10525

    

2263.3336

    

0.2150

    

0.0547

    

2.9737

  

22.40

  

59.77

  

RFS3_LOOKUP

      

373

     

777.2854

    

2.0839

    

0.2839

   

17.5724

   

7.69

   

2.12

  

RFS3_READDIRPLUS

     

2058

     

385.9510

    

0.1875

    

0.0875

    

1.1993

   

3.82

  

11.69

  

RFS3_GETATTR

      

942

     

178.6442

    

0.1896

    

0.0554

    

1.2320

   

1.77

   

5.35

  

RFS3_ACCESS

      

515

      

97.0297

    

0.1884

    

0.0659

    

0.9774

   

0.96

   

2.92

  

RFS3_READLINK

       

25

      

11.3046

    

0.4522

    

0.2364

    

0.9712

   

0.11

   

0.14

  

RFS3_READDIR

        

3

       

2.8648

    

0.9549

    

0.8939

    

0.9936

   

0.03

   

0.02

  

RFS3_CREATE

        

3

       

2.8590

    

0.9530

    

0.5831

    

1.4095

   

0.03

   

0.02

  

RFS3_COMMIT

        

2

       

1.1824

    

0.5912

    

0.2796

    

0.9028

   

0.01

   

0.01

  

RFS3_FSSTAT

        

1

       

0.2773

    

0.2773

    

0.2773

    

0.2773

   

0.00

   

0.01

  

RFS3_SETATTR

        

1

       

0.2366

    

0.2366

    

0.2366

    

0.2366

   

0.00

   

0.01

  

RFS3_PATHCONF

        

1

       

0.1804

    

0.1804

    

0.1804

    

0.1804

   

0.00

   

0.01

  

RFS3_NULL

 

--------

  

-----------

  

--------

  

--------

  

--------

  

-----

  

-----

  

-------------

    

17609

   

10104.3769

    

0.5738

                                    

NFS

 

V3

 

TOTAL

   

The

 

System

 

NFS

 

Calls

 

Summary

 

has

 

the

 

following

 

fields:

  

Count

 

The

 

number

 

of

 

times

 

that

 

a

 

certain

 

type

 

of

 

system

 

NFS

 

call

 

(see

 

Opcode)

 

has

 

been

 

called

 

during

 

the

 

monitoring

 

period.

 

Total

 

Time

 

(msec)

 

The

 

total

 

CPU

 

time

 

that

 

the

 

system

 

spent

 

processing

 

system

 

NFS

 

calls

 

of

 

this

 

type,

 

expressed

 

in

 

milliseconds.

 

Avg

 

Time

 

(msec)

 

The

 

average

 

CPU

 

time

 

that

 

the

 

system

 

spent

 

processing

 

one

 

system

 

NFS

 

call

 

of

 

this

 

type,

 

expressed

 

in

 

milliseconds.

 

Min

 

Time

 

(msec)

 

The

 

minimum

 

CPU

 

time

 

that

 

the

 

system

 

needed

 

to

 

process

 

one

 

system

 

NFS

 

call

 

of

 

this

 

type,

 

expressed

 

in

 

milliseconds.

   

76

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Max

 

Time

 

(msec)

 

The

 

maximum

 

CPU

 

time

 

that

 

the

 

system

 

needed

 

to

 

process

 

one

 

system

 

NFS

 

call

 

of

 

this

 

type,

 

expressed

 

in

 

milliseconds

 

%

 

Tot

 

Time

 

The

 

total

 

CPU

 

time

 

that

 

the

 

system

 

spent

 

processing

 

the

 

system

 

NFS

 

calls

 

of

 

this

 

type,

 

expressed

 

as

 

a

 

percentage

 

of

 

the

 

total

 

processing

 

time.

 

%

 

Tot

 

Count

 

The

 

number

 

of

 

times

 

that

 

a

 

system

 

NFS

 

call

 

of

 

a

 

certain

 

type

 

was

 

made,

 

expressed

 

as

 

a

 

percentage

 

of

 

the

 

total

 

count.

 

Opcode

 

The

 

name

 

of

 

the

 

system

 

NFS

 

call.

   

Pending

 

NFS

 

Calls

 

Summary

 

The

 

Pending

 

NFS

 

Calls

 

Summary

 

provides

 

a

 

list

 

of

 

all

 

the

 

system

 

NFS

 

calls

 

that

 

have

 

executed

 

on

 

the

 

system

 

during

 

the

 

monitoring

 

period

 

but

 

have

 

not

 

completed.

 

The

 

list

 

is

 

sorted

 

by

 

the

 

Tid.

 

Pending

 

NFS

 

Calls

 

Summary

 

-------------------------

 

Accumulated

   

Sequence

 

Number

  

Procname

 

(Pid

  

Tid)

 

Time

 

(msec)

 

============

  

===============

  

==========================

       

0.0831

  

1038711932

        

nfsd(1007854

 

331969)

       

0.0833

  

1038897247

        

nfsd(1007854

 

352459)

       

0.0317

  

1038788652

        

nfsd(1007854

 

413931)

   

..(lines

 

omitted)...

 

The

 

Pending

 

System

 

NFS

 

Calls

 

Summary

 

has

 

the

 

following

 

fields:

  

Accumulated

 

Time

 

(msec)

 

The

 

accumulated

 

CPU

 

time

 

that

 

the

 

system

 

spent

 

processing

 

the

 

pending

 

system

 

NFS

 

call,

 

expressed

 

in

 

milliseconds.

 

Sequence

 

Number

 

The

 

sequence

 

number

 

represents

 

the

 

transaction

 

identifier

 

(XID)

 

of

 

an

 

NFS

 

operation.

 

It

 

is

 

used

 

to

 

uniquely

 

identify

 

an

 

operation

 

and

 

is

 

used

 

in

 

the

 

RPC

 

call/reply

 

messages.

 

This

 

number

 

is

 

provided

 

instead

 

of

 

the

 

operation

 

name

 

because

 

the

 

name

 

of

 

the

 

operation

 

is

 

unknown

 

until

 

it

 

completes.

 

Procname

 

(Pid

 

Tid)

 

The

 

name

 

of

 

the

 

process

 

associated

 

with

 

the

 

thread

 

that

 

made

 

the

 

system

 

NFS

 

call,

 

its

 

process

 

ID,

 

and

 

the

 

thread

 

ID.

   

Pthread

 

Calls

 

Summary

 

The

 

Pthread

 

Calls

 

Summary

 

provides

 

a

 

list

 

of

 

all

 

the

 

pthread

 

calls

 

that

 

have

 

completed

 

execution

 

on

 

the

 

system

 

during

 

the

 

monitoring

 

period.

 

The

 

list

 

is

 

sorted

 

by

 

the

 

total

 

CPU

 

time,

 

in

 

milliseconds,

 

consumed

 

by

 

each

 

type

 

of

 

pthread

 

call.

                        

Pthread

 

Calls

 

Summary

                      

--------------------

    

Count

   

Total

 

Time

   

%

 

sys

  

Avg

 

Time

  

Min

 

Time

  

Max

 

Time

  

Pthread

 

Routine

                

(msec)

    

time

    

(msec)

    

(msec)

    

(msec)

 

========

  

===========

  

======

  

========

  

========

  

========

  

================

       

62

       

3.6226

   

0.04%

    

0.0584

    

0.0318

    

0.1833

  

pthread_create

       

10

       

0.1798

   

0.00%

    

0.0180

    

0.0119

    

0.0341

  

pthread_cancel

        

8

       

0.0725

   

0.00%

    

0.0091

    

0.0064

    

0.0205

  

pthread_join

        

1

       

0.0553

   

0.00%

    

0.0553

    

0.0553

    

0.0553

  

pthread_detach

        

1

       

0.0229

   

0.00%

    

0.0229

    

0.0229

    

0.0229

  

pthread_kill

 

The

 

Pthread

 

Calls

 

Summary

 

report

 

has

 

the

 

following

 

fields:

  

Count

 

The

 

number

 

of

 

times

 

that

 

a

 

pthread

 

call

 

of

 

a

 

certain

 

type

 

has

 

been

 

called

 

during

 

the

 

monitoring

 

period.

 

Total

 

Time

 

(msec)

 

The

 

total

 

CPU

 

time

 

that

 

the

 

system

 

spent

 

processing

 

all

 

pthread

 

calls

 

of

 

this

 

type,

 

expressed

 

in

 

milliseconds.

   

Chapter

 

3.

 

CPU

 

Utilization

 

Reporting

 

Tool

 

(curt)

 

77



%

 

sys

 

time

 

The

 

total

 

CPU

 

time

 

that

 

the

 

system

 

spent

 

processing

 

all

 

calls

 

of

 

this

 

type,

 

expressed

 

as

 

a

 

percentage

 

of

 

the

 

total

 

processing

 

time.

 

Avg

 

Time

 

(msec)

 

The

 

average

 

CPU

 

time

 

that

 

the

 

system

 

spent

 

processing

 

one

 

pthread

 

call

 

of

 

this

 

type,

 

expressed

 

in

 

milliseconds.

 

Min

 

Time

 

(msec)

 

The

 

minimum

 

CPU

 

time

 

the

 

system

 

used

 

to

 

process

 

one

 

pthread

 

call

 

of

 

this

 

type,

 

expressed

 

in

 

milliseconds.

 

Pthread

 

routine

 

The

 

name

 

of

 

the

 

routine

 

in

 

the

 

pthread

 

library.

   

Pending

 

Pthread

 

Calls

 

Summary

 

The

 

Pending

 

Pthread

 

Calls

 

Summary

 

provides

 

a

 

list

 

of

 

all

 

the

 

pthread

 

calls

 

that

 

have

 

been

 

executed

 

on

 

the

 

system

 

during

 

the

 

monitoring

 

period

 

but

 

have

 

not

 

completed.

 

The

 

list

 

is

 

sorted

 

by

 

Pid-Ptid.

             

Pending

 

Pthread

 

Calls

 

Summary

             

-----------------------------

 

Accumulated

   

Pthread

 

Routine

  

Procname

 

(Pid

  

Tid

  

Ptid)

 

Time

 

(msec)

 

============

  

===============

  

==========================

    

1990.9400

  

pthread_join

     

./pth32(245962

 

1007759

 

1)

   

The

 

Pending

 

Pthread

 

System

 

Calls

 

Summary

 

has

 

the

 

following

 

fields:

  

Accumulated

 

Time

 

(msec)

 

The

 

accumulated

 

CPU

 

time

 

that

 

the

 

system

 

spent

 

processing

 

the

 

pending

 

pthread

 

call,

 

expressed

 

in

 

milliseconds.

 

Pthread

 

Routine

 

The

 

name

 

of

 

the

 

pthread

 

routine

 

of

 

the

 

libpthreads

 

library.

 

Procname

 

(Pid

 

Tid

 

Ptid)

 

The

 

name

 

of

 

the

 

process

 

associated

 

with

 

the

 

thread

 

and

 

the

 

pthread

 

which

 

made

 

the

 

pthread

 

call,

 

its

 

process

 

ID,

 

the

 

thread

 

ID

 

and

 

the

 

pthread

 

ID.

   

FLIH

 

Summary

 

The

 

FLIH

 

(First

 

Level

 

Interrupt

 

Handler)

 

Summary

 

lists

 

all

 

first

 

level

 

interrupt

 

handlers

 

that

 

were

 

called

 

during

 

the

 

monitoring

 

period.

 

The

 

Global

 

FLIH

 

Summary

 

lists

 

the

 

total

 

of

 

first

 

level

 

interrupts

 

on

 

the

 

system,

 

while

 

the

 

Per

 

CPU

 

FLIH

 

Summary

 

lists

 

the

 

first

 

level

 

interrupts

 

per

 

CPU.

                                 

Global

 

Flih

 

Summary

                                 

-------------------

         

Count

  

Total

 

Time

    

Avg

 

Time

    

Min

 

Time

    

Max

 

Time

  

Flih

 

Type

                    

(msec)

      

(msec)

      

(msec)

      

(msec)

        

======

 

===========

 

===========

 

===========

 

===========

  

=========

          

2183

    

203.5524

      

0.0932

      

0.0041

      

0.4576

   

31(DECR_INTR)

           

946

    

102.4195

      

0.1083

      

0.0063

      

0.6590

    

3(DATA_ACC_PG_FLT)

            

12

      

1.6720

      

0.1393

      

0.0828

      

0.3366

   

32(QUEUED_INTR)

          

1058

    

183.6655

      

0.1736

      

0.0039

      

0.7001

    

5(IO_INTR)

                                    

Per

 

CPU

 

Flih

 

Summary

                                

--------------------

  

CPU

 

Number

 

0:

         

Count

  

Total

 

Time

    

Avg

 

Time

    

Min

 

Time

    

Max

 

Time

  

Flih

 

Type

                    

(msec)

      

(msec)

      

(msec)

      

(msec)

        

======

 

===========

 

===========

 

===========

 

===========

  

=========

           

635

     

39.8413

      

0.0627

      

0.0041

      

0.4576

   

31(DECR_INTR)

           

936

    

101.4960

      

0.1084

      

0.0063

      

0.6590

    

3(DATA_ACC_PG_FLT)

             

9

      

1.3946

      

0.1550

      

0.0851

      

0.3366

   

32(QUEUED_INTR)

           

266

     

33.4247

      

0.1257

      

0.0039

      

0.4319

    

5(IO_INTR)

    

CPU

 

Number

 

1:

         

Count

  

Total

 

Time

    

Avg

 

Time

    

Min

 

Time

    

Max

 

Time

  

Flih

 

Type

                    

(msec)

      

(msec)

      

(msec)

      

(msec)

  

78

 

Performance

 

Tools

 

Guide

 

and

 

Reference



======

 

===========

 

===========

 

===========

 

===========

  

=========

             

4

      

0.2405

      

0.0601

      

0.0517

      

0.0735

    

3(DATA_ACC_PG_FLT)

           

258

     

49.2098

      

0.1907

      

0.0060

      

0.5076

    

5(IO_INTR)

           

515

     

55.3714

      

0.1075

      

0.0080

      

0.3696

   

31(DECR_INTR)

                        

Pending

 

Flih

 

Summary

                      

--------------------

  

Accumulated

 

Time

 

(msec)

    

Flih

 

Type

  

========================

   

================

                    

0.0123

    

5(IO_INTR)

    

...(lines

 

omitted)...

 

The

 

FLIH

 

Summary

 

report

 

has

 

the

 

following

 

fields:

  

Count

 

The

 

number

 

of

 

times

 

that

 

a

 

first

 

level

 

interrupt

 

of

 

a

 

certain

 

type

 

(see

 

Flih

 

Type)

 

occurred

 

during

 

the

 

monitoring

 

period.

 

Total

 

Time

 

(msec)

 

The

 

total

 

CPU

 

time

 

that

 

the

 

system

 

spent

 

processing

 

these

 

first

 

level

 

interrupts,

 

expressed

 

in

 

milliseconds.

 

Avg

 

Time

 

(msec)

 

The

 

average

 

CPU

 

time

 

that

 

the

 

system

 

spent

 

processing

 

one

 

first

 

level

 

interrupt

 

of

 

this

 

type,

 

expressed

 

in

 

milliseconds.

 

Min

 

Time

 

(msec)

 

The

 

minimum

 

CPU

 

time

 

that

 

the

 

system

 

needed

 

to

 

process

 

one

 

first

 

level

 

interrupt

 

of

 

this

 

type,

 

expressed

 

in

 

milliseconds.

 

Max

 

Time

 

(msec)

 

The

 

maximum

 

CPU

 

time

 

that

 

the

 

system

 

needed

 

to

 

process

 

one

 

first

 

level

 

interrupt

 

of

 

this

 

type,

 

expressed

 

in

 

milliseconds.

 

Flih

 

Type

 

The

 

number

 

and

 

name

 

of

 

the

 

first

 

level

 

interrupt.

 

Accumulated

 

Time

 

(msec)

 

The

 

accumulated

 

CPU

 

time

 

that

 

the

 

system

 

spent

 

processing

 

the

 

pending

 

first

 

level

 

interrupt,

 

expressed

 

in

 

milliseconds.

   

FLIH

 

types

 

in

 

the

 

example

 

The

 

following

 

are

 

FLIH

 

types

 

that

 

were

 

depicted

 

in

 

the

 

above

 

example:

  

DATA_ACC_PG_FLT

 

Data

 

access

 

page

 

fault

 

QUEUED_INTR

 

Queued

 

interrupt

 

DECR_INTR

 

Decrementer

 

interrupt

 

IO_INTR

 

I/O

 

interrupt

   

SLIH

 

Summary

 

The

 

Second

 

level

 

interrupt

 

handler

 

(SLIH)

 

Summary

 

lists

 

all

 

second

 

level

 

interrupt

 

handlers

 

that

 

were

 

called

 

during

 

the

 

monitoring

 

period.

 

The

 

Global

 

Slih

 

Summary

 

lists

 

the

 

total

 

of

 

second

 

level

 

interrupts

 

on

 

the

 

system,

 

while

 

the

 

Per

 

CPU

 

Slih

 

Summary

 

lists

 

the

 

second

 

level

 

interrupts

 

per

 

CPU.

                                

Global

 

Slih

 

Summary

                                

-------------------

         

Count

  

Total

 

Time

    

Avg

 

Time

    

Min

 

Time

    

Max

 

Time

 

Slih

 

Name(Address)

                    

(msec)

      

(msec)

      

(msec)

      

(msec)

        

======

 

===========

 

===========

 

===========

 

===========

 

=================

            

43

      

7.0434

      

0.1638

      

0.0284

      

0.3763

 

s_scsiddpin(1a99104)

          

1015

     

42.0601

      

0.0414

      

0.0096

      

0.0913

 

ssapin(1990490)

                                   

Per

 

CPU

 

Slih

 

Summary

                               

--------------------

  

CPU

 

Number

 

0:

         

Count

  

Total

 

Time

    

Avg

 

Time

    

Min

 

Time

    

Max

 

Time

 

Slih

 

Name(Address)

  

Chapter

 

3.

 

CPU

 

Utilization

 

Reporting

 

Tool

 

(curt)

 

79



(msec)

      

(msec)

      

(msec)

      

(msec)

        

======

 

===========

 

===========

 

===========

 

===========

 

=================

             

8

      

1.3500

      

0.1688

      

0.0289

      

0.3087

 

s_scsiddpin(1a99104)

           

258

      

7.9232

      

0.0307

      

0.0096

      

0.0733

 

ssapin(1990490)

  

CPU

 

Number

 

1:

         

Count

  

Total

 

Time

    

Avg

 

Time

    

Min

 

Time

    

Max

 

Time

 

Slih

 

Name(Address)

                    

(msec)

      

(msec)

      

(msec)

      

(msec)

        

======

 

===========

 

===========

 

===========

 

===========

 

=================

            

10

      

1.2685

      

0.1268

      

0.0579

      

0.2818

 

s_scsiddpin(1a99104)

           

248

     

11.2759

      

0.0455

      

0.0138

      

0.0641

 

ssapin(1990490)

    

...(lines

 

omitted)...

 

The

 

SLIH

 

Summary

 

report

 

has

 

the

 

following

 

fields:

  

Count

 

The

 

number

 

of

 

times

 

that

 

each

 

second

 

level

 

interrupt

 

handler

 

was

 

called

 

during

 

the

 

monitoring

 

period.

 

Total

 

Time

 

(msec)

 

The

 

total

 

CPU

 

time

 

that

 

the

 

system

 

spent

 

processing

 

these

 

second

 

level

 

interrupts,

 

expressed

 

in

 

milliseconds.

 

Avg

 

Time

 

(msec)

 

The

 

average

 

CPU

 

time

 

that

 

the

 

system

 

spent

 

processing

 

one

 

second

 

level

 

interrupt

 

of

 

this

 

type,

 

expressed

 

in

 

milliseconds.

 

Min

 

Time

 

(msec)

 

The

 

minimum

 

CPU

 

time

 

that

 

the

 

system

 

needed

 

to

 

process

 

one

 

second

 

level

 

interrupt

 

of

 

this

 

type,

 

expressed

 

in

 

milliseconds.

 

Max

 

Time

 

(msec)

 

The

 

maximum

 

CPU

 

time

 

that

 

the

 

system

 

needed

 

to

 

process

 

one

 

second

 

level

 

interrupt

 

of

 

this

 

type,

 

expressed

 

in

 

milliseconds.

 

Slih

 

Name

 

(Address)

 

The

 

module

 

name

 

and

 

kernel

 

address

 

of

 

the

 

second

 

level

 

interrupt.

   

Reports

 

Generated

 

with

 

the

 

-e

 

Flag

 

The

 

report

 

generated

 

with

 

the

 

-e

 

flag

 

includes

 

the

 

data

 

shown

 

in

 

the

 

default

 

report,

 

and

 

also

 

includes

 

additional

 

information

 

in

 

the

 

System

 

Calls

 

Summary,

 

the

 

Pending

 

System

 

Calls

 

Summary,

 

the

 

System

 

NFS

 

Calls

 

Summary,

 

the

 

Pending

 

NFS

 

Calls

 

Summary,

 

the

 

Pthread

 

Calls

 

Summary

 

and

 

the

 

Pending

 

Pthread

 

Calls

 

Summary.

 

The

 

additional

 

information

 

in

 

the

 

System

 

Calls

 

Summary,

 

System

 

NFS

 

Calls

 

Summary,

 

and

 

the

 

Pthread

 

Calls

 

Summary

 

includes

 

the

 

total,

 

average,

 

maximum,

 

and

 

minimum

 

elapsed

 

time

 

that

 

a

 

call

 

was

 

running.

 

The

 

additional

 

information

 

in

 

the

 

Pending

 

System

 

Calls

 

Summary,

 

Pending

 

NFS

 

Calls

 

Summary,

 

and

 

the

 

Pending

 

Pthread

 

Calls

 

Summary

 

is

 

the

 

accumulated

 

elapsed

 

time

 

for

 

the

 

pending

 

calls.

 

This

 

additional

 

information

 

is

 

present

 

in

 

all

 

the

 

system

 

call,

 

NFS

 

call,

 

and

 

pthread

 

call

 

reports:

 

globally,

 

in

 

the

 

process

 

detailed

 

report

 

(-p),

 

the

 

thread

 

detailed

 

report

 

(-t),

 

and

 

the

 

pthread

 

detailed

 

report

 

(-P).

 

The

 

following

 

is

 

an

 

example

 

of

 

the

 

additional

 

information

 

reported

 

by

 

using

 

the

 

-e

 

flag:

 

#

 

curt

 

-e

 

-i

 

trace.r

 

-m

 

trace.nm

 

-n

 

gensyms.out

 

-o

 

curt.out

 

#

 

cat

 

curt.out

    

...(lines

 

omitted)...

                                      

System

 

Calls

 

Summary

                                    

--------------------

  

Count

  

Total

   

%

 

sys

    

Avg

    

Min

    

Max

       

Tot

       

Avg

       

Min

      

Max

       

SVC

 

(Address)

          

Time

    

time

   

Time

   

Time

   

Time

     

ETime

     

ETime

     

ETime

    

ETime

        

(msec)

         

(msec)

 

(msec)

 

(msec)

    

(msec)

    

(msec)

    

(msec)

   

(msec)

  

=====

 

========

 

=====

 

======

 

======

 

======

 

==========

 

=========

 

=========

 

=========

 

======================

    

605

 

355.4475

 

1.74%

 

0.5875

 

0.0482

 

4.5626

 

31172.7658

   

51.5252

    

0.0482

  

422.2323

 

kwrite(4259c4)

    

733

 

196.3752

 

0.96%

 

0.2679

 

0.0042

 

2.9948

 

12967.9407

   

17.6916

    

0.0042

  

265.1204

 

kread(4259e8)

      

3

   

9.2217

 

0.05%

 

3.0739

 

2.8888

 

3.3418

    

57.2051

   

19.0684

    

4.5475

   

40.0557

 

execve(1c95d8)

     

38

   

7.6013

 

0.04%

 

0.2000

 

0.0051

 

1.6137

    

12.5002

    

0.3290

    

0.0051

    

3.3120

 

__loadx(1c9608)

   

1244

   

4.4574

 

0.02%

 

0.0036

 

0.0010

 

0.0143

     

4.4574

    

0.0036

    

0.0010

    

0.0143

 

lseek(425a60)

     

45

   

4.3917

 

0.02%

 

0.0976

 

0.0248

 

0.1810

     

4.6636

    

0.1036

    

0.0248

    

0.3037

 

access(507860)

     

63

   

3.3929

 

0.02%

 

0.0539

 

0.0294

 

0.0719

  

5006.0887

   

79.4617

    

0.0294

  

100.4802

 

_select(4e0ee4)

      

2

   

2.6761

 

0.01%

 

1.3380

 

1.3338

 

1.3423

    

45.5026

   

22.7513

    

7.5745

   

37.9281

 

kfork(1c95c8)

    

207

   

2.3958

 

0.01%

 

0.0116

 

0.0030

 

0.1135

  

4494.9249

   

21.7146

    

0.0030

  

499.1363

 

_poll(4e0ecc)

    

228

   

1.1583

 

0.01%

 

0.0051

 

0.0011

 

0.2436

     

1.1583

    

0.0051

    

0.0011

    

0.2436

 

kioctl(4e07ac)

      

9

   

0.8136

 

0.00%

 

0.0904

 

0.0842

 

0.0988

  

4498.7472

  

499.8608

  

499.8052

  

499.8898

 

.smtcheckinit(1b245a8)

      

5

   

0.5437

 

0.00%

 

0.1087

 

0.0696

 

0.1777

     

0.5437

    

0.1087

    

0.0696

    

0.1777

 

open(4e08d8)

  

80

 

Performance

 

Tools

 

Guide

 

and

 

Reference



15

   

0.3553

 

0.00%

 

0.0237

 

0.0120

 

0.0322

     

0.3553

    

0.0237

    

0.0120

    

0.0322

 

.smtcheckinit(1b245cc)

      

2

   

0.2692

 

0.00%

 

0.1346

 

0.1339

 

0.1353

     

0.2692

    

0.1346

    

0.1339

    

0.1353

 

statx(4e0950)

     

33

   

0.2350

 

0.00%

 

0.0071

 

0.0009

 

0.0210

     

0.2350

    

0.0071

    

0.0009

    

0.0210

 

_sigaction(1cada4)

      

1

   

0.1999

 

0.00%

 

0.1999

 

0.1999

 

0.1999

  

5019.0588

 

5019.0588

 

5019.0588

 

5019.0588

 

kwaitpid(1cab64)

    

102

   

0.1954

 

0.00%

 

0.0019

 

0.0013

 

0.0178

     

0.5427

    

0.0053

    

0.0013

    

0.3650

 

klseek(425a48)

    

...(lines

 

omitted)...

                              

Pending

 

System

 

Calls

 

Summary

                          

----------------------------

 

Accumulated

   

Accumulated

   

SVC

 

(Address)

              

Procname

 

(Pid

  

Tid)

 

Time

 

(msec)

   

ETime

 

(msec)

 

============

  

============

  

=========================

  

=========================

       

0.0855

       

93.6498

  

kread(4259e8)

              

oracle(143984

 

48841)

    

...(lines

 

omitted)...

                              

System

 

NFS

 

Calls

 

Summary

                          

------------------------

    

Count

   

Total

 

Time

  

Avg

 

Time

  

Min

 

Time

  

Max

 

Time

  

%

 

Tot

  

Total

 

ETime

  

Avg

 

ETime

  

Min

 

ETime

  

Max

 

ETime

  

%

 

Tot

  

%

 

Tot

  

Opcode

              

(msec)

    

(msec)

    

(msec)

    

(msec)

     

Time

     

(msec)

     

(msec)

     

(msec)

     

(msec)

     

ETime

  

Count

 

========

  

===========

  

========

  

========

  

========

  

=====

  

===========

  

=========

  

=========

  

=========

  

=====

  

=====

  

=============

     

6647

     

456.1029

    

0.0686

    

0.0376

    

0.6267

  

15.83

    

9267.7256

     

1.3943

     

0.0376

   

304.9501

  

14.63

  

27.88

  

RFS3_LOOKUP

     

2694

     

147.1680

    

0.0546

    

0.0348

    

0.5517

   

5.11

    

1474.4267

     

0.5473

     

0.0348

    

25.9402

   

2.33

  

11.30

  

RFS3_GETATTR

     

1702

      

85.8328

    

0.0504

    

0.0339

    

0.5793

   

2.98

     

146.4281

     

0.0860

     

0.0339

     

5.7539

   

0.23

   

7.14

  

RFS3_READLINK

     

1552

      

78.1015

    

0.0503

    

0.0367

    

0.5513

   

2.71

     

153.5844

     

0.0990

     

0.0367

     

7.5125

   

0.24

   

6.51

  

RFS3_ACCESS

      

235

      

33.3158

    

0.1418

    

0.0890

    

0.3312

   

1.16

    

1579.4557

     

6.7211

     

0.0890

    

56.0876

   

2.49

   

0.99

  

RFS3_SETATTR

   

...(line

 

omitted)...

                         

Pending

 

NFS

 

Calls

 

Summary

                     

-------------------------

 

Accumulated

   

Accumulated

   

Sequence

 

Number

  

Procname

 

(Pid

  

Tid)

 

Time

 

(msec)

   

ETime

 

(msec)

 

============

  

============

  

===============

  

==========================

       

0.0831

       

15.1581

  

1038711932

        

nfsd(1007854

 

331969)

       

0.0833

       

13.8889

  

1038897247

        

nfsd(1007854

 

352459)

   

...(line

 

omitted)...

                          

Pthread

 

Calls

 

Summary

                      

--------------------

 

Count

   

Total

 

Time

   

%

 

sys

  

Avg

 

Time

  

Min

 

Time

  

Max

 

Time

  

Tot

 

ETime

  

Avg

 

ETime

  

Min

 

ETime

  

Max

 

ETime

  

Pthread

 

Routine

            

(msec)

    

time

    

(msec)

    

(msec)

    

(msec)

     

(msec)

     

(msec)

     

(msec)

     

(msec)

 

====

   

===========

  

======

  

========

  

========

  

========

   

========

  

=========

  

=========

  

=========

  

================

   

72

       

2.0126

   

0.01%

    

0.0280

    

0.0173

    

0.1222

    

13.7738

     

0.1913

     

0.0975

     

0.6147

  

pthread_create

    

2

       

0.6948

   

0.00%

    

0.3474

    

0.0740

    

0.6208

    

92.3033

    

46.1517

     

9.9445

    

82.3588

  

pthread_kill

   

12

       

0.3087

   

0.00%

    

0.0257

    

0.0058

    

0.0779

    

25.0506

     

2.0876

     

0.0168

    

10.0605

  

pthread_cancel

   

22

       

0.0613

   

0.00%

    

0.0028

    

0.0017

    

0.0104

  

2329.0179

   

105.8644

     

0.0044

  

1908.3402

  

pthread_join

    

2

       

0.0128

   

0.00%

    

0.0064

    

0.0062

    

0.0065

     

0.1528

     

0.0764

     

0.0637

     

0.0891

  

pthread_detach

                          

Pending

 

Pthread

 

Calls

 

Summary

                      

-----------------------------

 

Accumulated

   

Accumulated

   

Pthread

 

Routine

  

Procname

 

(pid

  

tid

  

ptid)

 

Time

 

(msec)

   

ETime

 

(msec)

 

============

  

============

  

===============

  

=========================

      

3.3102

     

4946.5433

   

pthread_join

     

./pth32(282718

 

700515

 

1)

      

0.0025

      

544.4914

   

pthread_join

     

./pth(282720

   

-

    

1)

     

The

 

system

 

call,

 

NFS

 

call,

 

and

 

pthread

 

call

 

reports

 

in

 

the

 

preceding

 

example

 

have

 

the

 

following

 

fields

 

in

 

addition

 

to

 

the

 

default

 

System

 

Calls

 

Summary,

 

System

 

NFS

 

Calls

 

Summary,

 

and

 

Pthread

 

Calls

 

Summary

 

:

  

Tot

 

ETime

 

(msec)

 

The

 

total

 

amount

 

of

 

time

 

from

 

when

 

each

 

instance

 

of

 

the

 

call

 

was

 

started

 

until

 

it

 

completed.

 

This

 

time

 

will

 

include

 

any

 

time

 

spent

 

servicing

 

interrupts,

 

running

 

other

 

processes,

 

and

 

so

 

forth.

 

Avg

 

ETime

 

(msec)

 

The

 

average

 

amount

 

of

 

time

 

from

 

when

 

the

 

call

 

was

 

started

 

until

 

it

 

completed.

 

This

 

time

 

will

 

include

 

any

 

time

 

spent

 

servicing

 

interrupts,

 

running

 

other

 

processes,

 

and

 

so

 

forth.

 

Min

 

ETime

 

(msec)

 

The

 

minimum

 

amount

 

of

 

time

 

from

 

when

 

the

 

call

 

was

 

started

 

until

 

it

 

completed.

 

This

 

time

 

will

 

include

 

any

 

time

 

spent

 

servicing

 

interrupts,

 

running

 

other

 

processes,

 

and

 

so

 

forth.

   

Chapter

 

3.

 

CPU

 

Utilization

 

Reporting

 

Tool

 

(curt)

 

81



Max

 

ETime

 

(msec)

 

The

 

maximum

 

amount

 

of

 

time

 

from

 

when

 

the

 

call

 

was

 

started

 

until

 

it

 

completed.

 

This

 

time

 

will

 

include

 

any

 

time

 

spent

 

servicing

 

interrupts,

 

running

 

other

 

processes,

 

and

 

so

 

forth.

 

Accumulated

 

ETime

 

(msec)

 

The

 

total

 

amount

 

of

 

time

 

from

 

when

 

the

 

pending

 

call

 

was

 

started

 

until

 

the

 

end

 

of

 

the

 

trace.

 

This

 

time

 

will

 

include

 

any

 

time

 

spent

 

servicing

 

interrupts,

 

running

 

other

 

processes,

 

and

 

so

 

forth.

   

The

 

preceding

 

example

 

report

 

shows

 

that

 

the

 

maximum

 

elapsed

 

time

 

for

 

the

 

kwrite

 

system

 

call

 

was

 

422.2323

 

msec,

 

but

 

the

 

maximum

 

CPU

 

time

 

was

 

4.5626

 

msec.

 

If

 

this

 

amount

 

of

 

overhead

 

time

 

is

 

unusual

 

for

 

the

 

device

 

being

 

written

 

to,

 

further

 

analysis

 

is

 

needed.

 

Reports

 

Generated

 

with

 

the

 

-s

 

Flag

 

The

 

report

 

generated

 

with

 

the

 

-s

 

flag

 

includes

 

the

 

data

 

shown

 

in

 

the

 

default

 

report,

 

and

 

also

 

includes

 

data

 

on

 

errors

 

returned

 

by

 

system

 

calls

 

as

 

shown

 

by

 

the

 

following:

 

#

 

curt

 

-s

 

-i

 

trace.r

 

-m

 

trace.nm

 

-n

 

gensyms.out

 

-o

 

curt.out

 

#

 

cat

 

curt.out

   

...(lines

 

omitted)...

                         

Errors

 

Returned

 

by

 

System

 

Calls

                       

------------------------------

   

Errors

 

(errno

 

:

 

count

 

:

 

description)

 

returned

 

for

 

System

 

Call:

 

kioctl(4e07ac)

    

25

 

:

       

15

 

:

 

"Not

 

a

 

typewriter"

 

Errors

 

(errno

 

:

 

count

 

:

 

description)

 

returned

 

for

 

System

 

Call:

 

execve(1c95d8)

     

2

 

:

        

2

 

:

 

"No

 

such

 

file

 

or

 

directory"

   

...(lines

 

omitted)...

 

If

 

a

 

large

 

number

 

of

 

errors

 

of

 

a

 

specific

 

type

 

or

 

on

 

a

 

specific

 

system

 

call

 

point

 

to

 

a

 

system

 

or

 

application

 

problem,

 

other

 

debug

 

measures

 

can

 

be

 

used

 

to

 

determine

 

and

 

fix

 

the

 

problem.

 

Reports

 

Generated

 

with

 

the

 

-t

 

Flag

 

The

 

report

 

generated

 

with

 

the

 

-t

 

flag

 

includes

 

the

 

data

 

shown

 

in

 

the

 

default

 

report,

 

and

 

also

 

includes

 

a

 

detailed

 

report

 

on

 

thread

 

status

 

that

 

includes

 

the

 

amount

 

of

 

time

 

the

 

thread

 

was

 

in

 

application

 

and

 

system

 

call

 

mode,

 

what

 

system

 

calls

 

the

 

thread

 

made,

 

processor

 

affinity,

 

the

 

number

 

of

 

times

 

the

 

thread

 

was

 

dispatched,

 

and

 

to

 

which

 

CPU(s)

 

it

 

was

 

dispatched.

 

The

 

report

 

also

 

includes

 

dispatch

 

wait

 

time

 

and

 

details

 

of

 

interrupts:

 

...(lines

 

omitted)...

 

--------------------------------------------------------------------------------

 

Report

 

for

 

Thread

 

Id:

 

48841

 

(hex

 

bec9)

 

Pid:

 

143984

 

(hex

 

23270)

 

Process

 

Name:

 

oracle

 

---------------------

  

Total

 

Application

 

Time

 

(ms):

  

70.324465

  

Total

 

System

 

Call

 

Time

 

(ms):

  

53.014910

                                  

Thread

 

System

 

Call

 

Data

    

Count

   

Total

 

Time

     

Avg

 

Time

     

Min

 

Time

     

Max

 

Time

     

SVC

 

(Address)

                

(msec)

       

(msec)

       

(msec)

       

(msec)

 

========

  

===========

  

===========

  

===========

  

===========

  

================

       

69

      

34.0819

       

0.4939

       

0.1666

       

1.2762

  

kwrite(169ff8)

       

77

      

12.0026

       

0.1559

       

0.0474

       

0.2889

  

kread(16a01c)

      

510

       

4.9743

       

0.0098

       

0.0029

       

0.0467

  

times(f1e14)

       

73

       

1.2045

       

0.0165

       

0.0105

       

0.0306

  

select(1d1704)

       

68

       

0.6000

       

0.0088

       

0.0023

       

0.0445

  

lseek(16a094)

       

12

       

0.1516

       

0.0126

       

0.0071

       

0.0241

  

getrusage(f1be0)

     

No

 

Errors

 

Returned

 

by

 

System

 

Calls

                        

Pending

 

System

 

Calls

 

Summary

                      

----------------------------

 

Accumulated

   

SVC

 

(Address)

 

Time

 

(msec)

  

82

 

Performance

 

Tools

 

Guide

 

and

 

Reference



============

  

==========================

       

0.1420

  

kread(16a01c)

    

processor

 

affinity:

  

0.583333

   

Dispatch

 

Histogram

 

for

 

thread

 

(CPUid

 

:

 

times_dispatched).

     

CPU

 

0

 

:

 

23

     

CPU

 

1

 

:

 

23

     

CPU

 

2

 

:

 

9

     

CPU

 

3

 

:

 

9

     

CPU

 

4

 

:

 

8

     

CPU

 

5

 

:

 

14

     

CPU

 

6

 

:

 

17

     

CPU

 

7

 

:

 

19

     

CPU

 

8

 

:

 

1

     

CPU

 

9

 

:

 

4

     

CPU

 

10

 

:

 

1

     

CPU

 

11

 

:

 

4

    

total

 

number

 

of

 

dispatches:

  

131

  

total

 

number

 

of

 

redispatches

 

due

 

to

 

interupts

 

being

 

disabled:

  

1

  

avg.

 

dispatch

 

wait

 

time

 

(ms):

  

8.273515

         

Data

 

on

 

Interrupts

 

that

 

Occurred

 

while

 

Thread

 

was

 

Running

            

Type

 

of

 

Interrupt

       

Count

    

===============================

 

============================

     

Data

 

Access

 

Page

 

Faults

 

(DSI):

 

115

    

Instr.

 

Fetch

 

Page

 

Faults

 

(ISI):

 

0

           

Align.

 

Error

 

Interrupts:

 

0

          

IO

 

(external)

 

Interrupts:

 

0

          

Program

 

Check

 

Interrupts:

 

0

         

FP

 

Unavailable

 

Interrupts:

 

0

           

FP

 

Imprecise

 

Interrupts:

 

0

                

RunMode

 

Interrupts:

 

0

            

Decrementer

 

Interrupts:

 

18

    

Queued

 

(Soft

 

level)

 

Interrupts:

 

15

   

...(lines

 

omitted)...

 

If

 

the

 

thread

 

belongs

 

to

 

an

 

NFS

 

kernel

 

process,

 

the

 

report

 

will

 

include

 

information

 

on

 

NFS

 

operations

 

instead

 

of

 

System

 

calls:

 

Report

 

for

 

Thread

 

Id:

 

1966273

 

(hex

 

1e00c1)

 

Pid:

 

1007854

 

(hex

 

f60ee)

 

Process

 

Name:

 

nfsd

 

---------------------

       

Total

 

Kernel

 

Time

 

(ms):

     

3.198998

    

Total

 

Operation

 

Time

 

(ms):

    

28.839927

 

Total

 

Hypervisor

 

Call

 

Time

 

(ms):

  

0.000000

                                 

Thread

 

NFS

 

Call

 

Summary

                             

-----------------------

    

Count

   

Total

 

Time

  

Avg

 

Time

  

Min

 

Time

  

Max

 

Time

  

%

 

Tot

  

Total

 

ETime

  

Avg

 

ETime

  

Min

 

ETime

  

Max

 

ETime

  

%

 

Tot

  

%

 

Tot

  

Opcode

                

(msec)

    

(msec)

    

(msec)

    

(msec)

   

Time

       

(msec)

     

(msec)

     

(msec)

     

(msec)

  

ETime

  

Count

 

========

  

===========

  

========

  

========

  

========

  

=====

  

===========

  

=========

  

=========

  

=========

  

=====

  

=====

  

=============

       

28

      

12.2661

    

0.4381

    

0.3815

    

0.4841

  

42.73

      

32.0893

     

1.1460

     

0.4391

    

16.6283

  

11.46

  

11.52

  

RFS3_READDIRPLUS

       

63

       

3.8953

    

0.0618

    

0.0405

    

0.1288

  

13.57

      

23.1031

     

0.3667

     

0.0405

     

7.0886

   

8.25

  

25.93

  

RFS3_LOOKUP

       

49

       

3.2795

    

0.0669

    

0.0527

    

0.0960

  

11.42

     

103.8431

     

2.1192

     

0.0534

    

35.3617

  

37.09

  

20.16

  

RFS3_READ

       

18

       

2.8464

    

0.1581

    

0.1099

    

0.2264

   

9.91

       

7.9129

     

0.4396

     

0.1258

     

4.3503

   

2.83

   

7.41

  

RFS3_WRITE

       

29

       

1.3331

    

0.0460

    

0.0348

    

0.0620

   

4.64

       

1.4953

     

0.0516

     

0.0348

     

0.0940

   

0.53

  

11.93

  

RFS3_GETATTR

        

5

       

1.2763

    

0.2553

    

0.2374

    

0.3036

   

4.45

      

45.0798

     

9.0160

     

0.9015

    

21.7257

  

16.10

   

2.06

  

RFS3_REMOVE

        

8

       

1.1001

    

0.1375

    

0.1180

    

0.1719

   

3.83

      

53.6532

     

6.7067

     

1.4293

    

19.9199

  

19.17

   

3.29

  

RFS3_COMMIT

       

20

       

0.9262

    

0.0463

    

0.0367

    

0.0507

   

3.23

       

1.2060

     

0.0603

     

0.0367

     

0.1314

   

0.43

   

8.23

  

RFS3_READLINK

       

15

       

0.6798

    

0.0453

    

0.0386

    

0.0519

   

2.37

       

0.8015

     

0.0534

     

0.0386

     

0.0788

   

0.29

   

6.17

  

RFS3_ACCESS

        

2

       

0.4033

    

0.2017

    

0.1982

    

0.2051

   

1.40

       

0.5355

     

0.2677

     

0.2677

     

0.2677

   

0.19

   

0.82

  

RFS3_READDIR

        

1

       

0.3015

    

0.3015

    

0.3015

    

0.3015

   

1.05

       

6.2614

     

6.2614

     

6.2614

     

6.2614

   

2.24

   

0.41

  

RFS3_CREATE

        

2

       

0.2531

    

0.1265

    

0.1000

    

0.1531

   

0.88

       

3.7756

     

1.8878

     

0.1000

     

3.6756

   

1.35

   

0.82

  

RFS3_SETATTR

        

2

       

0.0853

    

0.0426

    

0.0413

    

0.0440

   

0.30

       

0.1333

     

0.0667

     

0.0532

     

0.0802

   

0.05

   

0.82

  

RFS3_FSINFO

        

1

       

0.0634

    

0.0634

    

0.0634

    

0.0634

   

0.22

       

0.0634

     

0.0634

     

0.0634

     

0.0634

   

0.02

   

0.41

  

RFS3_FSSTAT

 

--------

  

-----------

  

--------

  

--------

  

--------

  

-----

  

-----------

  

---------

  

---------

  

---------

  

-----

  

-----

  

-------------

      

243

      

28.7094

    

0.1181

                                

279.9534

     

1.1521

                                      

NFS

 

V3

 

TOTAL

                          

Pending

 

NFS

 

Calls

 

Summary

                      

-------------------------

  

Chapter

 

3.

 

CPU

 

Utilization

 

Reporting

 

Tool

 

(curt)

 

83



Accumulated

   

Accumulated

   

Sequence

 

Number

 

Time

 

(msec)

   

ETime

 

(msec)

 

============

  

============

  

===============

       

0.1305

     

182.6903

   

1038932778

   

The

 

information

 

in

 

the

 

threads

 

summary

 

includes

 

the

 

following:

  

Thread

 

ID

 

The

 

Thread

 

ID

 

of

 

the

 

thread.

 

Process

 

ID

 

The

 

Process

 

ID

 

that

 

the

 

thread

 

belongs

 

to.

 

Process

 

Name

 

The

 

process

 

name,

 

if

 

known,

 

that

 

the

 

thread

 

belongs

 

to.

 

Total

 

Application

 

Time

 

(ms)

 

The

 

amount

 

of

 

time,

 

expressed

 

in

 

milliseconds,

 

that

 

the

 

thread

 

spent

 

in

 

application

 

mode.

 

Total

 

System

 

Call

 

Time

 

(ms)

 

The

 

amount

 

of

 

time,

 

expressed

 

in

 

milliseconds,

 

that

 

the

 

thread

 

spent

 

in

 

system

 

call

 

mode.

 

Thread

 

System

 

Call

 

Summary

 

A

 

system

 

call

 

summary

 

for

 

the

 

thread;

 

this

 

has

 

the

 

same

 

fields

 

as

 

the

 

global

 

System

 

Call

 

Summary.

 

It

 

also

 

includes

 

elapsed

 

time

 

if

 

the

 

-e

 

flag

 

is

 

specified

 

and

 

error

 

information

 

if

 

the

 

-s

 

flag

 

is

 

specified.

 

Pending

 

System

 

Calls

 

Summary

 

If

 

the

 

thread

 

was

 

executing

 

a

 

system

 

call

 

at

 

the

 

end

 

of

 

the

 

trace,

 

a

 

pending

 

system

 

call

 

summary

 

will

 

be

 

printed.

 

This

 

has

 

the

 

Accumulated

 

Time

 

and

 

Supervisor

 

Call

 

(SVC

 

Address)

 

fields.

 

It

 

also

 

includes

 

elapsed

 

time

 

if

 

the

 

-e

 

flag

 

is

 

specified.

 

Thread

 

NFS

 

Calls

 

Summary

 

An

 

NFS

 

call

 

summary

 

for

 

the

 

thread.

 

This

 

has

 

the

 

same

 

fields

 

as

 

the

 

global

 

System

 

NFS

 

Call

 

Summary.

 

It

 

also

 

includes

 

elapsed

 

time

 

if

 

the

 

-e

 

flag

 

is

 

specified.

 

Pending

 

NFS

 

Calls

 

Summary

 

If

 

the

 

thread

 

was

 

executing

 

an

 

NFS

 

call

 

at

 

the

 

end

 

of

 

the

 

trace,

 

a

 

pending

 

NFS

 

call

 

summary

 

will

 

be

 

printed.

 

This

 

has

 

the

 

Accumulated

 

Time

 

and

 

Sequence

 

Number

 

fields.

 

It

 

also

 

includes

 

elapsed

 

time

 

if

 

the

 

-e

 

flag

 

is

 

specified.

 

processor

 

affinity

 

The

 

process

 

affinity,

 

which

 

is

 

the

 

probability

 

that,

 

for

 

any

 

dispatch

 

of

 

the

 

thread,

 

the

 

thread

 

was

 

dispatched

 

to

 

the

 

same

 

processor

 

on

 

which

 

it

 

last

 

executed.

 

Dispatch

 

Histogram

 

for

 

thread

 

Shows

 

the

 

number

 

of

 

times

 

the

 

thread

 

was

 

dispatched

 

to

 

each

 

CPU

 

in

 

the

 

system.

 

total

 

number

 

of

 

dispatches

 

The

 

total

 

number

 

of

 

times

 

the

 

thread

 

was

 

dispatched

 

(not

 

including

 

redispatches).

 

total

 

number

 

of

 

redispatches

 

due

 

to

 

interrupts

 

being

 

disabled

 

The

 

number

 

of

 

redispatches

 

due

 

to

 

interrupts

 

being

 

disabled,

 

which

 

is

 

when

 

the

 

dispatch

 

code

 

is

 

forced

 

to

 

dispatch

 

the

 

same

 

thread

 

that

 

is

 

currently

 

running

 

on

 

that

 

particular

 

CPU

 

because

 

the

 

thread

 

had

 

disabled

 

some

 

interrupts.

 

This

 

total

 

is

 

only

 

reported

 

if

 

the

 

value

 

is

 

non-zero.

 

avg.

 

dispatch

 

wait

 

time

 

(ms)

 

The

 

average

 

dispatch

 

wait

 

time

 

is

 

the

 

average

 

elapsed

 

time

 

for

 

the

 

thread

 

from

 

being

 

undispatched

 

and

 

its

 

next

 

dispatch.

 

Data

 

on

 

Interrupts

 

that

 

occurred

 

while

 

Thread

 

was

 

Running

 

Count

 

of

 

how

 

many

 

times

 

each

 

type

 

of

 

FLIH

 

occurred

 

while

 

this

 

thread

 

was

 

executing.

   

Reports

 

Generated

 

with

 

the

 

-p

 

Flag

 

The

 

report

 

generated

 

with

 

the

 

-p

 

flag

 

includes

 

the

 

data

 

shown

 

in

 

the

 

default

 

report

 

and

 

also

 

includes

 

a

 

detailed

 

report

 

for

 

each

 

process

 

that

 

includes

 

the

 

Process

 

ID

 

and

 

name,

 

a

 

count

 

and

 

list

 

of

 

the

 

thread

 

IDs,

 

and

 

the

 

count

 

and

 

list

 

of

 

the

 

pthread

 

IDs

 

belonging

 

to

 

the

 

process.

 

The

 

total

 

application

 

time,

 

the

 

system

 

call

 

time,

 

and

 

the

 

application

 

time

 

details

 

for

 

all

 

the

 

threads

 

of

 

the

 

process

 

are

 

given.

 

Lastly,

 

it

 

includes

 

summary

 

reports

 

of

 

all

 

the

 

completed

 

and

 

pending

 

system

 

calls,

 

and

 

pthread

 

calls

 

for

 

the

 

threads

 

of

 

the

 

process.

 

The

 

following

 

example

 

shows

 

the

 

report

 

generated

 

for

 

the

 

router

 

process

 

(PID

 

129190):

 

Process

 

Details

 

for

 

Pid:

 

129190

       

Process

 

Name:

 

router

    

84

 

Performance

 

Tools

 

Guide

 

and

 

Reference



7

 

Tids

 

for

 

this

 

Pid:

 

245889

 

245631

 

244599

 

82843

 

78701

 

75347

 

28941

     

9

 

Ptids

 

for

 

this

 

Pid:

  

2057

 

1800

 

1543

 

1286

 

1029

 

772

 

515

 

258

 

1

   

Total

 

Application

 

Time

 

(ms):

  

124.023749

 

Total

 

System

 

Call

 

Time

 

(ms):

  

8.948695

   

Application

 

time

 

details:

      

Total

 

Pthread

 

Call

 

Time

 

(ms):

  

1.228271

      

Total

 

Pthread

 

Dispatch

 

Time

 

(ms):

  

2.760476

      

Total

 

Pthread

 

Idle

 

Dispatch

 

Time

 

(ms):

  

0.110307

      

Total

 

Other

 

Time

 

(ms):

  

798.545446

      

Total

 

number

 

of

 

pthread

 

dispatches:

  

53

      

Total

 

number

 

of

 

pthread

 

idle

 

dispatches:

  

3

                                

Process

 

System

 

Call

 

Summary

      

Count

   

Total

 

Time

  

%

 

sys

  

Avg

 

Time

  

Min

 

Time

  

Max

 

Time

  

SVC

 

(Address)

               

(msec)

     

time

    

(msec)

    

(msec)

    

(msec)

   

========

  

===========

  

======

  

========

 

========

  

========

  

================

        

93

       

3.6829

   

0.05%

    

0.0396

    

0.0060

    

0.3077

  

kread(19731c)

        

23

       

2.2395

   

0.03%

    

0.0974

    

0.0090

    

0.4537

  

kwrite(1972f8)

        

30

       

0.8885

   

0.01%

    

0.0296

    

0.0073

    

0.0460

  

select(208c5c)

         

1

       

0.5933

   

0.01%

    

0.5933

    

0.5933

    

0.5933

  

fsync(1972a4)

       

106

       

0.4902

   

0.01%

    

0.0046

    

0.0035

    

0.0105

  

klseek(19737c)

        

13

       

0.3285

   

0.00%

    

0.0253

    

0.0130

    

0.0387

  

semctl(2089e0)

         

6

       

0.2513

   

0.00%

    

0.0419

    

0.0238

    

0.0650

  

semop(2089c8)

         

3

       

0.1223

   

0.00%

    

0.0408

    

0.0127

    

0.0730

  

statx(2086d4)

         

1

       

0.0793

   

0.00%

    

0.0793

    

0.0793

    

0.0793

  

send(11e1ec)

         

9

       

0.0679

   

0.00%

    

0.0075

    

0.0053

    

0.0147

  

fstatx(2086c8)

         

4

       

0.0524

   

0.00%

    

0.0131

    

0.0023

    

0.0348

  

kfcntl(22aa14)

         

5

       

0.0448

   

0.00%

    

0.0090

    

0.0086

    

0.0096

  

yield(11dbec)

         

3

       

0.0444

   

0.00%

    

0.0148

    

0.0049

    

0.0219

  

recv(11e1b0)

         

1

       

0.0355

   

0.00%

    

0.0355

    

0.0355

    

0.0355

  

open(208674)

         

1

       

0.0281

   

0.00%

    

0.0281

    

0.0281

    

0.0281

  

close(19728c)

                        

Pending

 

System

 

Calls

 

Summary

                      

----------------------------

 

Accumulated

    

SVC

 

(Address)

                  

Tid

 

Time

 

(msec)

 

============

  

=========================

  

================

       

0.0452

   

select(208c5c)

             

245889

       

0.0425

   

select(208c5c)

             

78701

       

0.0285

   

select(208c5c)

             

82843

       

0.0284

   

select(208c5c)

             

245631

       

0.0274

   

select(208c5c)

             

244599

       

0.0179

   

select(208c5c)

             

75347

    

...(omitted

 

lines)...

                        

Pthread

 

Calls

 

Summary

    

Count

   

Total

 

Time

   

%

 

sys

  

Avg

 

Time

  

Min

 

Time

  

Max

 

Time

  

Pthread

 

Routine

                

(msec)

    

time

    

(msec)

    

(msec)

    

(msec)

 

========

  

===========

  

======

  

========

  

========

  

========

  

================

       

19

       

0.0477

   

0.00%

    

0.0025

    

0.0017

    

0.0104

  

pthread_join

        

1

       

0.0065

   

0.00%

    

0.0065

    

0.0065

    

0.0065

  

pthread_detach

        

1

       

0.6208

   

0.00%

    

0.6208

    

0.6208

    

0.6208

  

pthread_kill

        

6

       

0.1261

   

0.00%

    

0.0210

    

0.0077

    

0.0779

  

pthread_cancel

       

21

       

0.7080

   

0.01%

    

0.0337

    

0.0226

    

0.1222

  

pthread_create

                        

Pending

 

Pthread

 

Calls

 

Summary

                      

-----------------------------

 

Accumulated

   

Pthread

 

Routine

     

Tid

                

Ptid

 

Time

 

(msec)

 

============

  

===============

  

================

  

================

      

3.3102

   

pthread_join

        

78701

               

1

   

Chapter

 

3.

 

CPU

 

Utilization

 

Reporting

 

Tool

 

(curt)

 

85



If

 

the

 

process

 

is

 

an

 

NFS

 

kernel

 

process,

 

the

 

report

 

will

 

include

 

information

 

on

 

NFS

 

operations

 

instead

 

of

 

System

 

and

 

Pthread

 

calls:

 

Process

 

Details

 

for

 

Pid:

 

1007854

     

Process

 

Name:

 

nfsd

     

252

 

Tids

 

for

 

this

 

Pid:

 

2089213

 

2085115

 

2081017

 

2076919

 

2072821

 

2068723

     

2040037

 

2035939

 

2031841

 

2027743

 

2023645

 

2019547

     

2015449

 

2011351

 

2007253

 

2003155

 

1999057

 

1994959

 

...(lines

 

omitted)...

     

454909

 

434421

 

413931

 

397359

 

364797

 

352459

     

340185

 

331969

 

315411

 

303283

 

299237

 

266405

      

Total

 

Kernel

 

Time

 

(ms):

  

380.237018

  

Total

 

Operation

 

Time

 

(ms):

  

2891.971209

                                 

Process

 

NFS

 

Calls

 

Summary

                             

-------------------------

    

Count

   

Total

 

Time

  

Avg

 

Time

  

Min

 

Time

  

Max

 

Time

  

%

 

Tot

  

Total

 

ETime

  

Avg

 

ETime

  

Min

 

ETime

  

Max

 

ETime

  

%

 

Tot

  

%

 

Tot

  

Opcode

                

(msec)

    

(msec)

    

(msec)

    

(msec)

   

Time

       

(msec)

     

(msec)

     

(msec)

     

(msec)

  

ETime

  

Count

 

========

  

===========

  

========

  

========

  

========

  

=====

  

===========

  

=========

  

=========

  

=========

  

=====

  

=====

  

=============

     

2254

    

1018.3621

    

0.4518

    

0.3639

    

0.9966

  

35.34

    

1800.5708

     

0.7988

     

0.4204

    

16.6283

   

2.84

   

9.45

  

RFS3_READDIRPLUS

     

6647

     

456.1029

    

0.0686

    

0.0376

    

0.6267

  

15.83

    

9267.7256

     

1.3943

     

0.0376

   

304.9501

  

14.63

  

27.88

  

RFS3_LOOKUP

     

1993

     

321.4973

    

0.1613

    

0.0781

    

0.6428

  

11.16

    

3006.1774

     

1.5084

     

0.0781

   

121.8822

   

4.75

   

8.36

  

RFS3_WRITE

     

4409

     

314.3122

    

0.0713

    

0.0425

    

0.6139

  

10.91

   

14052.7567

     

3.1873

     

0.0425

   

313.2698

  

22.19

  

18.49

  

RFS3_READ

     

1001

     

177.9891

    

0.1778

    

0.0903

    

8.7271

   

6.18

   

23187.1693

    

23.1640

     

0.7657

   

298.0521

  

36.61

   

4.20

  

RFS3_COMMIT

     

2694

     

147.1680

    

0.0546

    

0.0348

    

0.5517

   

5.11

    

1474.4267

     

0.5473

     

0.0348

    

25.9402

   

2.33

  

11.30

  

RFS3_GETATTR

      

495

     

102.0142

    

0.2061

    

0.1837

    

0.7000

   

3.54

     

185.8549

     

0.3755

     

0.1895

     

6.1340

   

0.29

   

2.08

  

RFS3_READDIR

     

1702

      

85.8328

    

0.0504

    

0.0339

    

0.5793

   

2.98

     

146.4281

     

0.0860

     

0.0339

     

5.7539

   

0.23

   

7.14

  

RFS3_READLINK

     

1552

      

78.1015

    

0.0503

    

0.0367

    

0.5513

   

2.71

     

153.5844

     

0.0990

     

0.0367

     

7.5125

   

0.24

   

6.51

  

RFS3_ACCESS

      

186

      

64.4498

    

0.3465

    

0.2194

    

0.7895

   

2.24

    

4201.0235

    

22.5861

     

1.0235

   

117.5351

   

6.63

   

0.78

  

RFS3_CREATE

      

208

      

56.8876

    

0.2735

    

0.1928

    

0.7351

   

1.97

    

4245.4378

    

20.4108

     

0.9015

   

181.0121

   

6.70

   

0.87

  

RFS3_REMOVE

      

235

      

33.3158

    

0.1418

    

0.0890

    

0.3312

   

1.16

    

1579.4557

     

6.7211

     

0.0890

    

56.0876

   

2.49

   

0.99

  

RFS3_SETATTR

      

190

      

13.3856

    

0.0705

    

0.0473

    

0.5495

   

0.46

      

19.3971

     

0.1021

     

0.0473

     

0.6827

   

0.03

   

0.80

  

RFS3_FSSTAT

      

275

      

12.4504

    

0.0453

    

0.0343

    

0.0561

   

0.43

      

16.6542

     

0.0606

     

0.0343

     

0.2357

   

0.03

   

1.15

  

RFS3_FSINFO

   

IT

 

--------

  

-----------

  

--------

  

--------

  

--------

  

-----

  

-----------

  

---------

  

---------

  

---------

  

-----

  

-----

  

-------------

    

23841

    

2881.8692

    

0.1209

                              

63336.6621

     

2.6566

                                      

NFS

 

V3

 

TOTAL

                          

Pending

 

NFS

 

Calls

 

Summary

                      

-------------------------

 

Accumulated

   

Accumulated

   

Sequence

 

Number

     

Tid

 

Time

 

(msec)

   

ETime

 

(msec)

 

============

  

============

  

===============

  

================

       

0.1812

      

48.1456

   

1039026977

       

2089213

       

0.0188

      

14.8878

   

1038285324

       

2085115

       

0.0484

       

2.7123

   

1039220089

       

2081017

       

0.1070

      

49.5471

   

1039103658

       

2072821

       

0.0953

      

58.8009

   

1038453491

       

2035939

       

0.0533

      

62.9266

   

1039037391

       

2031841

       

0.1195

      

14.6817

   

1038686320

       

2019547

       

0.2063

      

37.1826

   

1039164331

       

2015449

       

0.0140

       

6.0718

   

1039260848

       

2011351

 

...(lines

 

omitted)...

   

The

 

information

 

in

 

the

 

process

 

detailed

 

report

 

includes

 

the

 

following:

  

Total

 

Application

 

Time

 

(ms)

 

The

 

amount

 

of

 

time,

 

expressed

 

in

 

milliseconds,

 

that

 

the

 

process

 

spent

 

in

 

application

 

mode.

 

Total

 

System

 

Call

 

Time

 

(ms)

 

The

 

amount

 

of

 

time,

 

expressed

 

in

 

milliseconds,

 

that

 

the

 

process

 

spent

 

in

 

system

 

call

 

mode.

   

The

 

information

 

in

 

the

 

application

 

time

 

details

 

report

 

includes

 

the

 

following:

  

Total

 

Pthread

 

Call

 

Time

 

The

 

amount

 

of

 

time,

 

expressed

 

in

 

milliseconds,

 

that

 

the

 

process

 

spent

 

in

 

traced

 

pthread

 

library

 

calls.

 

Total

 

Pthread

 

Dispatch

 

Time

 

The

 

amount

 

of

 

time,

 

expressed

 

in

 

milliseconds,

 

that

 

the

 

process

 

spent

 

in

 

libpthreads

 

dispatch

 

code.

 

Total

 

Pthread

 

Idle

 

Dispatch

 

Time

 

The

 

amount

 

of

 

time,

 

expressed

 

in

 

milliseconds,

 

that

 

the

 

process

 

spent

 

in

 

libpthreads

 

vp_sleep

 

code.

   

86

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Total

 

Other

 

Time

 

The

 

amount

 

of

 

time,

 

expressed

 

in

 

milliseconds,

 

that

 

the

 

process

 

spent

 

in

 

non-traced

 

user

 

mode

 

code.

 

Total

 

number

 

of

 

pthread

 

dispatches

 

The

 

total

 

number

 

of

 

times

 

a

 

pthread

 

belonging

 

to

 

the

 

process

 

was

 

dispatched

 

by

 

the

 

libpthreads

 

dispatcher.

 

Total

 

number

 

of

 

pthread

 

idle

 

dispatches

 

The

 

total

 

number

 

of

 

times

 

a

 

thread

 

belonging

 

to

 

the

 

process

 

was

 

in

 

the

 

libpthreads

 

vp_sleep

 

code.

   

The

 

summary

 

information

 

in

 

the

 

report

 

includes

 

the

 

following:

  

Process

 

System

 

Call

 

Data

 

A

 

system

 

call

 

summary

 

for

 

the

 

process;

 

this

 

has

 

the

 

same

 

fields

 

as

 

the

 

global

 

System

 

Call

 

Summary.

 

It

 

also

 

includes

 

elapsed

 

time

 

information

 

if

 

the

 

-e

 

flag

 

is

 

specified

 

and

 

error

 

information

 

if

 

the

 

-s

 

flag

 

is

 

specified.

 

Pending

 

System

 

Calls

 

Summary

 

If

 

the

 

process

 

was

 

executing

 

a

 

system

 

call

 

at

 

the

 

end

 

of

 

the

 

trace,

 

a

 

pending

 

system

 

call

 

summary

 

will

 

be

 

printed.

 

This

 

has

 

the

 

Accumulated

 

Time

 

and

 

Supervisor

 

Call

 

(SVC

 

Address)

 

fields.

 

It

 

also

 

includes

 

elapsed

 

time

 

information

 

if

 

the

 

-e

 

flag

 

is

 

specified.

 

Process

 

NFS

 

Calls

 

Summary

 

An

 

NFS

 

call

 

summary

 

for

 

the

 

process.

 

This

 

has

 

the

 

same

 

fields

 

as

 

the

 

global

 

System

 

NFS

 

Call

 

Summary.

 

It

 

also

 

includes

 

elapsed

 

time

 

information

 

if

 

the

 

-e

 

flag

 

is

 

specified.

 

Pending

 

NFS

 

Calls

 

Summary

 

If

 

the

 

process

 

was

 

executing

 

an

 

NFS

 

call

 

at

 

the

 

end

 

of

 

the

 

trace,

 

a

 

pending

 

NFS

 

call

 

summary

 

will

 

be

 

printed.

 

This

 

has

 

the

 

Accumulated

 

Time

 

and

 

Sequence

 

Number

 

fields.

 

It

 

also

 

includes

 

elapsed

 

time

 

information

 

if

 

the

 

-e

 

flag

 

is

 

specified.

 

Pthread

 

Calls

 

Summary

 

A

 

summary

 

of

 

the

 

pthread

 

calls

 

for

 

the

 

process.

 

This

 

has

 

the

 

same

 

fields

 

as

 

the

 

global

 

pthread

 

Calls

 

Summary.

 

It

 

also

 

includes

 

elapsed

 

time

 

information

 

if

 

the

 

-e

 

flag

 

is

 

specified.

 

Pending

 

Pthread

 

Calls

 

Summary

 

If

 

the

 

process

 

was

 

executing

 

pthread

 

library

 

calls

 

at

 

the

 

end

 

of

 

the

 

trace,

 

a

 

pending

 

pthread

 

call

 

summary

 

will

 

be

 

printed.

 

This

 

has

 

the

 

Accumulated

 

Time

 

and

 

Pthread

 

Routine

 

fields.

 

It

 

also

 

includes

 

elapsed

 

time

 

information

 

if

 

the

 

-e

 

flag

 

is

 

specified.

   

Reports

 

Generated

 

with

 

the

 

-P

 

Flag

 

The

 

report

 

generated

 

with

 

the

 

-P

 

flag

 

includes

 

the

 

data

 

shown

 

in

 

the

 

default

 

report

 

and

 

also

 

includes

 

a

 

detailed

 

report

 

on

 

pthread

 

status

 

that

 

includes

 

the

 

following:

 

v

   

The

 

amount

 

of

 

time

 

the

 

pthread

 

was

 

in

 

application

 

and

 

system

 

call

 

mode

 

v

   

The

 

application

 

time

 

details

 

v

   

The

 

system

 

calls

 

and

 

pthread

 

calls

 

that

 

the

 

pthread

 

made

 

v

   

The

 

system

 

calls

 

and

 

pthread

 

calls

 

that

 

were

 

pending

 

at

 

the

 

end

 

of

 

the

 

trace

 

v

   

The

 

processor

 

affinity

 

v

   

The

 

number

 

of

 

times

 

the

 

pthread

 

was

 

dispatched

 

v

   

To

 

which

 

CPU(s)

 

the

 

thread

 

was

 

dispatched

 

v

   

The

 

thread

 

affinity

 

v

   

The

 

number

 

of

 

times

 

that

 

the

 

pthread

 

was

 

dispatched

 

v

   

To

 

which

 

kernel

 

thread(s)

 

the

 

pthread

 

was

 

dispatched

The

 

report

 

also

 

includes

 

dispatch

 

wait

 

time

 

and

 

details

 

of

 

interrupts.

 

The

 

following

 

is

 

an

 

example

 

of

 

a

 

report

 

generated

 

with

 

the

 

-P

 

flag:

 

Report

 

for

 

Pthread

 

Id:

 

1

 

(hex

 

1)

 

Pid:

 

245962

 

(hex

 

3c0ca)

 

Process

 

Name:

 

./pth32

 

---------------------

  

Total

 

Application

 

Time

 

(ms):

  

3.919091

  

Total

 

System

 

Call

 

Time

 

(ms):

  

8.303156

    

Application

 

time

 

details:

      

Total

 

Pthread

 

Call

 

Time

 

(ms):

  

1.139372

      

Total

 

Pthread

 

Dispatch

 

Time

 

(ms):

  

0.115822

  

Chapter

 

3.

 

CPU

 

Utilization

 

Reporting

 

Tool

 

(curt)

 

87



Total

 

Pthread

 

Idle

 

Dispatch

 

Time

 

(ms):

  

0.036630

      

Total

 

Other

 

Time

 

(ms):

  

2.627266

                               

Phread

 

System

 

Call

 

Data

    

Count

   

Total

 

Time

  

Avg

 

Time

  

Min

 

Time

  

Max

 

Time

     

SVC

 

(Address)

                

(msec)

    

(msec)

    

(msec)

    

(msec)

 

========

  

===========

  

========

  

========

  

========

  

================

        

1

       

3.3898

    

3.3898

    

3.3898

    

3.3898

  

_exit(409e50)

       

61

       

0.8138

    

0.0133

    

0.0089

    

0.0254

  

kread(5ffd78)

       

11

       

0.4616

    

0.0420

    

0.0262

    

0.0835

  

thread_create(407360)

       

22

       

0.2570

    

0.0117

    

0.0062

    

0.0373

  

mprotect(6d5bd8)

       

12

       

0.2126

    

0.0177

    

0.0100

    

0.0324

  

thread_setstate(40a660)

      

115

       

0.1875

    

0.0016

    

0.0012

    

0.0037

  

klseek(5ffe38)

       

12

       

0.1061

    

0.0088

    

0.0032

    

0.0134

  

sbrk(6d4f90)

       

23

       

0.0803

    

0.0035

    

0.0018

    

0.0072

  

trcgent(4078d8)

   

...(lines

 

omitted)...

                        

Pending

 

System

 

Calls

 

Summary

                      

----------------------------

 

Accumulated

   

SVC

 

(Address)

 

Time

 

(msec)

 

============

  

==========================

       

0.0141

  

thread_tsleep(40a4f8)

                          

Pthread

 

Calls

 

Summary

    

Count

   

Total

 

Time

   

%

 

sys

  

Avg

 

Time

  

Min

 

Time

  

Max

 

Time

  

Pthread

 

Routine

                

(msec)

    

time

    

(msec)

    

(msec)

    

(msec)

 

========

  

===========

  

======

  

========

  

========

  

========

  

================

       

11

       

0.9545

   

0.01%

    

0.0868

    

0.0457

    

0.1833

  

pthread_create

        

8

       

0.0725

   

0.00%

    

0.0091

    

0.0064

    

0.0205

  

pthread_join

        

1

       

0.0553

   

0.00%

    

0.0553

    

0.0553

    

0.0553

  

pthread_detach

        

1

       

0.0341

   

0.00%

    

0.0341

    

0.0341

    

0.0341

  

pthread_cancel

        

1

       

0.0229

   

0.00%

    

0.0229

    

0.0229

    

0.0229

  

pthread_kill

                        

Pending

 

Pthread

 

Calls

 

Summary

                      

-----------------------------

 

Accumulated

   

Pthread

 

Routine

 

Time

 

(msec)

 

============

  

===============

      

0.0025

   

pthread_join

      

processor

 

affinity:

  

0.600000

   

Processor

 

Dispatch

 

Histogram

 

for

 

pthread

 

(CPUid

 

:

 

times_dispatched):

     

CPU

 

0

 

:

 

4

     

CPU

 

1

 

:

 

1

    

total

 

number

 

of

 

dispatches

  

:

  

5

  

avg.

 

dispatch

 

wait

 

time

 

(ms):

  

798.449725

    

Thread

 

affinity:

  

0.333333

   

Thread

 

Dispatch

 

Histogram

 

for

 

pthread

 

(thread

 

id

 

:

  

number

 

dispatches):

     

Thread

 

id

 

688279

 

:

 

1

     

Thread

 

id

 

856237

 

:

 

1

     

Thread

 

id

 

1007759

 

:

 

1

    

total

 

number

 

of

 

pthread

 

dispatches:

  

3

  

avg.

 

dispatch

 

wait

 

time

 

(ms):

  

1330.749542

         

Data

 

on

 

Interrupts

 

that

 

Occurred

 

while

 

Phread

 

was

 

Running

            

Type

 

of

 

Interrupt

       

Count

    

===============================

 

============================

     

Data

 

Access

 

Page

 

Faults

 

(DSI):

 

452

  

88

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Instr.

 

Fetch

 

Page

 

Faults

 

(ISI):

 

0

           

Align.

 

Error

 

Interrupts:

 

0

          

IO

 

(external)

 

Interrupts:

 

0

          

Program

 

Check

 

Interrupts:

 

0

         

FP

 

Unavailable

 

Interrupts:

 

0

           

FP

 

Imprecise

 

Interrupts:

 

0

                

RunMode

 

Interrupts:

 

0

            

Decrementer

 

Interrupts:

 

2

    

Queued

 

(Soft

 

level)

 

Interrupts:

 

0

 

The

 

information

 

in

 

the

 

pthreads

 

summary

 

report

 

includes

 

the

 

following:

  

Pthread

 

ID

 

The

 

Pthread

 

ID

 

of

 

the

 

thread.

 

Process

 

ID

 

The

 

Process

 

ID

 

that

 

the

 

pthread

 

belongs

 

to.

 

Process

 

Name

 

The

 

process

 

name,

 

if

 

known,

 

that

 

the

 

pthread

 

belongs

 

to.

 

Total

 

Application

 

Time

 

(ms)

 

The

 

amount

 

of

 

time,

 

expressed

 

in

 

milliseconds,

 

that

 

the

 

pthread

 

spent

 

in

 

application

 

mode.

 

Total

 

System

 

Call

 

Time

 

(ms)

 

The

 

amount

 

of

 

time,

 

expressed

 

in

 

milliseconds,

 

that

 

the

 

pthread

 

spent

 

in

 

system

 

call

 

mode.

   

The

 

information

 

in

 

the

 

application

 

time

 

details

 

report

 

includes

 

the

 

following:

  

Total

 

Pthread

 

Call

 

Time

 

The

 

amount

 

of

 

time,

 

expressed

 

in

 

milliseconds,

 

that

 

the

 

pthread

 

spent

 

in

 

traced

 

pthread

 

library

 

calls.

 

Total

 

Pthread

 

Dispatch

 

Time

 

The

 

amount

 

of

 

time,

 

expressed

 

in

 

milliseconds,

 

that

 

the

 

pthread

 

spent

 

in

 

libpthreads

 

dispatch

 

code.

 

Total

 

Pthread

 

Idle

 

Dispatch

 

Time

 

The

 

amount

 

of

 

time,

 

expressed

 

in

 

milliseconds,

 

that

 

the

 

pthread

 

spent

 

in

 

libpthreads

 

vp_sleep

 

code.

 

Total

 

Other

 

Time

 

The

 

amount

 

of

 

time,

 

expressed

 

in

 

milliseconds,

 

that

 

the

 

pthread

 

spent

 

in

 

non-traced

 

user

 

mode

 

code.

 

Total

 

number

 

of

 

pthread

 

dispatches

 

The

 

total

 

number

 

of

 

times

 

a

 

pthread

 

belonging

 

to

 

the

 

process

 

was

 

dispatched

 

by

 

the

 

libpthreads

 

dispatcher.

 

Total

 

number

 

of

 

pthread

 

idle

 

dispatches

 

The

 

total

 

number

 

of

 

times

 

a

 

thread

 

belonging

 

to

 

the

 

process

 

was

 

in

 

the

 

libpthreads

 

vp_sleep

 

code.

   

The

 

summary

 

information

 

in

 

the

 

report

 

includes

 

the

 

following:

  

Pthread

 

System

 

Call

 

Data

 

A

 

system

 

call

 

summary

 

for

 

the

 

pthread;

 

this

 

has

 

the

 

same

 

fields

 

as

 

the

 

global

 

System

 

Call

 

Summary.

 

It

 

also

 

includes

 

elapsed

 

time

 

information

 

if

 

the

 

-e

 

flag

 

is

 

specified

 

and

 

error

 

information

 

if

 

the

 

-s

 

flag

 

is

 

specified.

 

Pending

 

System

 

Calls

 

Summary

 

If

 

the

 

pthread

 

was

 

executing

 

a

 

system

 

call

 

at

 

the

 

end

 

of

 

the

 

trace,

 

a

 

pending

 

system

 

call

 

summary

 

will

 

be

 

printed.

 

This

 

has

 

the

 

Accumulated

 

Time

 

and

 

Supervisor

 

Call

 

(SVC

 

Address)

 

fields.

 

It

 

also

 

includes

 

elapsed

 

time

 

information

 

if

 

the

 

-e

 

flag

 

is

 

specified.

 

Pthread

 

Calls

 

Summary

 

A

 

summary

 

of

 

the

 

pthread

 

library

 

calls

 

for

 

the

 

pthread.

 

This

 

has

 

the

 

same

 

fields

 

as

 

the

 

global

 

pthread

 

Calls

 

Summary.

 

It

 

also

 

includes

 

elapsed

 

time

 

information

 

if

 

the

 

-e

 

flag

 

is

 

specified.

 

Pending

 

Pthread

 

Calls

 

Summary

 

If

 

the

 

pthread

 

was

 

executing

 

a

 

pthread

 

library

 

call

 

at

 

the

 

end

 

of

 

the

 

trace,

 

a

 

pending

 

pthread

 

call

 

summary

 

will

 

be

 

printed.

 

This

 

has

 

the

 

Accumulated

 

Time

 

and

 

Pthread

 

Routine

 

fields.

 

It

 

also

 

includes

 

elapsed

 

time

 

information

 

if

 

the

 

-e

 

flag

 

is

 

specified.

    

Chapter

 

3.

 

CPU

 

Utilization

 

Reporting

 

Tool

 

(curt)

 

89



The

 

pthreads

 

summary

 

report

 

also

 

includes

 

the

 

following

 

information:

  

processor

 

affinity

 

Probability

 

that

 

for

 

any

 

dispatch

 

of

 

the

 

pthread,

 

the

 

pthread

 

was

 

dispatched

 

to

 

the

 

same

 

processor

 

on

 

which

 

it

 

last

 

executed.

 

Processor

 

Dispatch

 

Histogram

 

for

 

pthread

 

The

 

number

 

of

 

times

 

that

 

the

 

pthread

 

was

 

dispatched

 

to

 

each

 

CPU

 

in

 

the

 

system.

 

avg.

 

dispatch

 

wait

 

time

 

The

 

average

 

elapsed

 

time

 

for

 

the

 

pthread

 

from

 

being

 

undispatched

 

and

 

its

 

next

 

dispatch.

 

Thread

 

affinity

 

The

 

probability

 

that

 

for

 

any

 

dispatch

 

of

 

the

 

pthread,

 

the

 

pthread

 

was

 

dispatched

 

to

 

the

 

same

 

kernel

 

thread

 

on

 

which

 

it

 

last

 

executed

 

Thread

 

Dispatch

 

Histogram

 

for

 

pthread

 

The

 

number

 

of

 

times

 

that

 

the

 

pthread

 

was

 

dispatched

 

to

 

each

 

kernel

 

thread

 

in

 

the

 

process.

 

total

 

number

 

of

 

pthread

 

dispatches

 

The

 

total

 

number

 

of

 

times

 

the

 

pthread

 

was

 

dispatched

 

by

 

the

 

libpthreads

 

dispatcher.

 

Data

 

on

 

Interrupts

 

that

 

occurred

 

while

 

Pthread

 

was

 

Running

 

The

 

number

 

of

 

times

 

each

 

type

 

of

 

FLIH

 

occurred

 

while

 

the

 

pthread

 

was

 

executing.

   

90

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Chapter

 

4.

 

Simple

 

Performance

 

Lock

 

Analysis

 

Tool

 

(splat)

 

The

 

Simple

 

Performance

 

Lock

 

Analysis

 

Tool

 

(splat)

 

is

 

a

 

software

 

tool

 

that

 

generates

 

reports

 

on

 

the

 

use

 

of

 

synchronization

 

locks.

 

These

 

include

 

the

 

simple

 

and

 

complex

 

locks

 

provided

 

by

 

the

 

AIX

 

kernel,

 

as

 

well

 

as

 

user-level

 

mutexes,

 

read

 

and

 

write

 

locks,

 

and

 

condition

 

variables

 

provided

 

by

 

the

 

PThread

 

library.

 

The

 

splat

 

tool

 

is

 

not

 

currently

 

equipped

 

to

 

analyze

 

the

 

behavior

 

of

 

the

 

Virtual

 

Memory

 

Manager

 

(VMM)

 

and

 

PMAP

 

locks

 

used

 

in

 

the

 

AIX

 

kernel.

 

splat

 

Command

 

Syntax

 

The

 

syntax

 

for

 

the

 

splat

 

command

 

is

 

as

 

follows:

 

splat

 

[-i

 

file]

 

[-n

 

file]

 

[-o

 

file]

 

[-d

 

[bfta]]

 

[-l

 

address][-c

 

class]

 

[-s

 

[acelmsS]]

 

[-C#]

 

[-S#]

 

[-t

 

start]

 

[-T

 

stop]

 

splat

 

-h

 

[topic]

 

splat

 

-j

 

Flags

  

-i

 

inputfile

 

Specifies

 

the

 

AIX

 

trace

 

log

 

file

 

input.

 

-n

 

namefile

 

Specifies

 

the

 

file

 

containing

 

output

 

of

 

gennames

 

or

 

gensyms

 

command.

 

-o

 

outputfile

 

Specifies

 

an

 

output

 

file

 

(default

 

is

 

stdout).

 

-d

 

detail

 

Specifies

 

the

 

level

 

of

 

detail

 

of

 

the

 

report.

 

-c

 

class

 

Specifies

 

class

 

of

 

locks

 

to

 

be

 

reported.

 

-l

 

address

 

Specifies

 

the

 

address

 

for

 

which

 

activity

 

on

 

the

 

lock

 

will

 

be

 

reported.

 

-s

 

criteria

 

Specifies

 

the

 

sort

 

order

 

of

 

the

 

lock,

 

function,

 

and

 

thread.

 

-C

 

CPUs

 

Specifies

 

the

 

number

 

of

 

processors

 

on

 

the

 

MP

 

system

 

that

 

the

 

trace

 

was

 

drawn

 

from.

 

The

 

default

 

is

 

1.

 

This

 

value

 

is

 

overridden

 

if

 

more

 

processors

 

are

 

observed

 

to

 

be

 

reported

 

in

 

the

 

trace.

 

-S

 

count

 

Specifies

 

the

 

number

 

of

 

items

 

to

 

report

 

on

 

for

 

each

 

section.

 

The

 

default

 

is

 

10.

 

This

 

gives

 

the

 

number

 

of

 

locks

 

to

 

report

 

in

 

the

 

Lock

 

Summary

 

and

 

Lock

 

Detail

 

reports,

 

as

 

well

 

as

 

the

 

number

 

of

 

functions

 

to

 

report

 

in

 

the

 

Function

 

Detail

 

and

 

threads

 

to

 

report

 

in

 

the

 

Thread

 

detail

 

(the

 

-s

 

option

 

specifies

 

how

 

the

 

most

 

significant

 

locks,

 

threads,

 

and

 

functions

 

are

 

selected).

 

-t

 

starttime

 

Overrides

 

the

 

start

 

time

 

from

 

the

 

first

 

event

 

recorded

 

in

 

the

 

trace.

 

This

 

flag

 

forces

 

the

 

analysis

 

to

 

begin

 

an

 

event

 

that

 

occurs

 

starttime

 

seconds

 

after

 

the

 

first

 

event

 

in

 

the

 

trace.

 

-T

 

stoptime

 

Overrides

 

the

 

stop

 

time

 

from

 

the

 

last

 

event

 

recorded

 

in

 

the

 

trace.

 

This

 

flag

 

forces

 

the

 

analysis

 

to

 

end

 

with

 

an

 

event

 

that

 

occurs

 

stoptime

 

seconds

 

after

 

the

 

first

 

event

 

in

 

the

 

trace.

 

-j

 

Prints

 

the

 

list

 

of

 

IDs

 

of

 

the

 

trace

 

hooks

 

used

 

by

 

the

 

splat

 

command.

 

-h

 

topic

 

Prints

 

a

 

help

 

message

 

on

 

usage

 

or

 

a

 

specific

 

topic.

   

Parameters

  

inputfile

 

The

 

AIX

 

trace

 

log

 

file

 

input.

 

This

 

file

 

can

 

be

 

a

 

merge

 

trace

 

file

 

generated

 

using

 

the

 

trcrpt

 

-r

 

command.

 

namefile

 

File

 

containing

 

output

 

of

 

the

 

gennames

 

or

 

gensyms

 

command.

 

outputfile

 

File

 

to

 

write

 

reports

 

to.

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

91



detail

 

The

 

detail

 

level

 

of

 

the

 

report,

 

it

 

can

 

be

 

one

 

of

 

the

 

following:

 

basic

 

Lock

 

summary

 

plus

 

lock

 

detail

 

(the

 

default)

 

function

 

Basic

 

plus

 

function

 

detail

 

thread

 

Basic

 

plus

 

thread

 

detail

 

all

 

Basic

 

plus

 

function

 

plus

 

thread

 

detail

 

class

 

Activity

 

classes,

 

which

 

is

 

a

 

decimal

 

value

 

found

 

in

 

the

 

/usr/include/sys/lockname.h

 

file.

 

address

 

The

 

address

 

to

 

be

 

reported,

 

given

 

in

 

hexadecimal.

 

criteria

 

Order

 

the

 

lock,

 

function,

 

and

 

thread

 

reports

 

by

 

the

 

following

 

criteria:

 

a

 

Acquisitions

 

c

 

Percent

 

processor

 

time

 

held

 

e

 

Percent

 

elapsed

 

time

 

held

 

l

 

Lock

 

address,

 

function

 

address,

 

or

 

thread

 

ID

 

m

 

Miss

 

rate

 

s

 

Spin

 

count

 

S

 

Percent

 

processor

 

spin

 

hold

 

time

 

(the

 

default)

 

CPUs

 

The

 

number

 

of

 

processors

 

on

 

the

 

MP

 

system

 

that

 

the

 

trace

 

was

 

drawn

 

from.

 

The

 

default

 

is

 

1.

 

This

 

value

 

is

 

overridden

 

if

 

more

 

processors

 

are

 

observed

 

to

 

be

 

reported

 

in

 

the

 

trace.

 

count

 

The

 

number

 

of

 

locks

 

to

 

report

 

in

 

the

 

Lock

 

Summary

 

and

 

Lock

 

Detail

 

reports,

 

as

 

well

 

as

 

the

 

number

 

of

 

functions

 

to

 

report

 

in

 

the

 

Function

 

Detail

 

and

 

threads

 

to

 

report

 

in

 

the

 

Thread

 

detail.

 

(The

 

-s

 

option

 

specifies

 

how

 

the

 

most

 

significant

 

locks,

 

threads,

 

and

 

functions

 

are

 

selected).

 

starttime

 

The

 

number

 

of

 

seconds

 

after

 

the

 

first

 

event

 

recorded

 

in

 

the

 

trace

 

that

 

the

 

reporting

 

starts.

 

stoptime

 

The

 

number

 

of

 

seconds

 

after

 

the

 

first

 

event

 

recorded

 

in

 

the

 

trace

 

that

 

the

 

reporting

 

stops.

 

topic

 

Help

 

topics,

 

which

 

are:

 

all

 

overview

 

input

 

names

 

reports

 

sorting

   

Measurement

 

and

 

Sampling

 

The

 

splat

 

tool

 

takes

 

as

 

input

 

an

 

AIX

 

trace

 

log

 

file

 

or

 

(for

 

an

 

SMP

 

trace)

 

a

 

set

 

of

 

log

 

files,

 

and

 

preferably

 

a

 

names

 

file

 

produced

 

by

 

the

 

gennames

 

or

 

gensyms

 

command.

 

The

 

procedure

 

for

 

generating

 

these

 

files

 

is

 

shown

 

in

 

the

 

trace

 

section.

 

When

 

you

 

run

 

trace,

 

you

 

will

 

usually

 

use

 

the

 

flag

 

-J

 

splat

 

to

 

capture

 

the

 

events

 

analyzed

 

by

 

splat

 

(or

 

without

 

the

 

-J

 

flag,

 

to

 

capture

 

all

 

events).

 

The

 

significant

 

trace

 

hooks

 

are

 

shown

 

in

 

the

 

following

 

table:

  

Hook

 

ID

 

Event

 

name

 

Event

 

explanation

 

106

 

HKWD_KERN_DISPATCH

 

The

 

thread

 

is

 

dispatched

 

from

 

the

 

run

 

queue

 

to

 

a

 

processor.

 

10C

 

HKWD_KERN_IDLE

 

The

 

idle

 

process

 

is

 

been

 

dispatched.

 

10E

 

HKWD_KERN_RELOCK

 

One

 

thread

 

is

 

suspended

 

while

 

another

 

is

 

dispatched;

 

the

 

ownership

 

of

 

a

 

RunQ

 

lock

 

is

 

transferred

 

from

 

the

 

first

 

to

 

the

 

second.

   

92

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Hook

 

ID

 

Event

 

name

 

Event

 

explanation

 

112

 

HKWD_KERN_LOCK

 

The

 

thread

 

attempts

 

to

 

secure

 

a

 

kernel

 

lock;

 

the

 

sub-hook

 

shows

 

what

 

happened.

 

113

 

HKWD_KERN_UNLOCK

 

A

 

kernel

 

lock

 

is

 

released.

 

134

 

HKWD_SYSC_EXECVE

 

An

 

exec

 

supervisor

 

call

 

(SVC)

 

has

 

been

 

issued

 

by

 

a

 

(forked)

 

process.

 

139

 

HKWD_SYSC_FORK

 

A

 

fork

 

SVC

 

has

 

been

 

issued

 

by

 

a

 

process.

 

465

 

HKWD_SYSC_CRTHREAD

 

A

 

thread_create

 

SVC

 

has

 

been

 

issued

 

by

 

a

 

process.

 

46D

 

HKWD_KERN_WAITLOCK

 

The

 

thread

 

is

 

enqueued

 

to

 

wait

 

on

 

a

 

kernel

 

lock.

 

606

 

HKWD_PTHREAD_COND

 

Operations

 

on

 

a

 

Condition

 

Variable.

 

607

 

HKWD_PTHREAD_MUTEX

 

Operations

 

on

 

a

 

Mutex.

 

608

 

HKWD_PTHREAD_RWLOCK

 

Operations

 

on

 

a

 

Read/Write

 

Lock.

 

609

 

HKWD_PTHREAD_GENERAL

 

Operations

 

on

 

a

 

PThread.

   

Execution,

 

Trace,

 

and

 

Analysis

 

Intervals

 

In

 

some

 

cases,

 

you

 

can

 

use

 

the

 

trace

 

tool

 

to

 

capture

 

the

 

entire

 

execution

 

of

 

a

 

workload,

 

while

 

in

 

other

 

cases

 

you

 

will

 

capture

 

only

 

an

 

interval

 

of

 

the

 

execution.

 

The

 

execution

 

interval

 

is

 

the

 

entire

 

time

 

that

 

a

 

workload

 

runs.

 

This

 

interval

 

is

 

arbitrarily

 

long

 

for

 

server

 

workloads

 

that

 

run

 

continuously.

 

The

 

trace

 

interval

 

is

 

the

 

time

 

actually

 

captured

 

in

 

the

 

trace

 

log

 

file

 

by

 

trace.

 

The

 

length

 

of

 

this

 

trace

 

interval

 

is

 

limited

 

by

 

how

 

large

 

a

 

trace

 

log

 

file

 

will

 

fit

 

on

 

the

 

file

 

system.

 

In

 

contrast,

 

the

 

analysis

 

interval

 

is

 

the

 

portion

 

of

 

the

 

trace

 

interval

 

that

 

is

 

analyzed

 

by

 

the

 

splat

 

command.

 

The

 

-t

 

and

 

-T

 

flags

 

indicate

 

to

 

the

 

splat

 

command

 

to

 

start

 

and

 

finish

 

analysis

 

some

 

number

 

of

 

seconds

 

after

 

the

 

first

 

event

 

in

 

the

 

trace.

 

By

 

default,

 

the

 

splat

 

command

 

analyzes

 

the

 

entire

 

trace,

 

so

 

this

 

analysis

 

interval

 

is

 

the

 

same

 

as

 

the

 

trace

 

interval.

Note:

  

As

 

an

 

optimization,

 

the

 

splat

 

command

 

stops

 

reading

 

the

 

trace

 

when

 

it

 

finishes

 

its

 

analysis,

 

so

 

it

 

indicates

 

that

 

the

 

trace

 

and

 

analysis

 

intervals

 

end

 

at

 

the

 

same

 

time

 

even

 

if

 

they

 

do

 

not.

 

To

 

most

 

accurately

 

estimate

 

the

 

effect

 

of

 

lock

 

activity

 

on

 

the

 

computation,

 

you

 

will

 

usually

 

want

 

to

 

capture

 

the

 

longest

 

trace

 

interval

 

that

 

you

 

can,

 

and

 

analyze

 

that

 

entire

 

interval

 

with

 

the

 

splat

 

command.

 

The

 

-t

 

and

 

-T

 

flags

 

are

 

usually

 

used

 

for

 

debugging

 

purposes

 

to

 

study

 

the

 

behavior

 

of

 

the

 

splat

 

command

 

across

 

a

 

few

 

events

 

in

 

the

 

trace.

 

As

 

a

 

rule,

 

either

 

use

 

large

 

buffers

 

when

 

collecting

 

a

 

trace,

 

or

 

limit

 

the

 

captured

 

events

 

to

 

the

 

ones

 

you

 

need

 

to

 

run

 

the

 

splat

 

command.

 

Trace

 

Discontinuities

 

The

 

splat

 

command

 

uses

 

the

 

events

 

in

 

the

 

trace

 

to

 

reconstruct

 

the

 

activities

 

of

 

threads

 

and

 

locks

 

in

 

the

 

original

 

system.

 

If

 

part

 

of

 

the

 

trace

 

is

 

missing,

 

it

 

is

 

because

 

one

 

of

 

the

 

following

 

situations

 

exists:

 

v

   

Tracing

 

was

 

stopped

 

at

 

one

 

point

 

and

 

restarted

 

at

 

a

 

later

 

point.

 

v

   

One

 

processor

 

fills

 

its

 

trace

 

buffer

 

and

 

stops

 

tracing,

 

while

 

other

 

processors

 

continue

 

tracing.

 

v

   

Event

 

records

 

in

 

the

 

trace

 

buffer

 

were

 

overwritten

 

before

 

they

 

could

 

be

 

copied

 

into

 

the

 

trace

 

log

 

file.

In

 

any

 

of

 

the

 

above

 

cases,

 

the

 

splat

 

command

 

will

 

not

 

be

 

able

 

to

 

correctly

 

analyze

 

all

 

the

 

events

 

across

 

the

 

trace

 

interval.

 

The

 

policy

 

of

 

splat

 

is

 

to

 

finish

 

its

 

analysis

 

at

 

the

 

first

 

point

 

of

 

discontinuity

 

in

 

the

 

trace,

 

issue

 

a

 

warning

 

message,

 

and

 

generate

 

its

 

report.

 

In

 

the

 

first

 

two

 

cases,

 

the

 

message

 

is

 

as

 

follows:

      

TRACE

 

OFF

 

record

 

read

 

at

 

0.567201

 

seconds.

 

One

 

or

 

more

 

of

 

the

 

CPUs

 

has

      

stopped

 

tracing.

 

You

 

may

 

want

 

to

 

generate

 

a

 

longer

 

trace

 

using

 

larger

      

buffers

 

and

 

re-run

 

splat.

   

Chapter

 

4.

 

Simple

 

Performance

 

Lock

 

Analysis

 

Tool

 

(splat)

 

93



In

 

the

 

third

 

case,

 

the

 

message

 

is

 

as

 

follows:

      

TRACEBUFFER

 

WRAPAROUND

 

record

 

read

 

at

 

0.567201

 

seconds.

 

The

 

input

 

trace

      

has

 

some

 

records

 

missing;

 

splat

 

finishes

 

analyzing

 

at

 

this

 

point.

 

You

      

may

 

want

 

to

 

re-generate

 

the

 

trace

 

using

 

larger

 

buffers

 

and

 

re-run

 

splat.

 

Some

 

versions

 

of

 

the

 

AIX

 

kernel

 

or

 

PThread

 

library

 

may

 

be

 

incompletely

 

instrumented,

 

so

 

the

 

traces

 

will

 

be

 

missing

 

events.

 

The

 

splat

 

command

 

may

 

not

 

provide

 

correct

 

results

 

in

 

this

 

case.

 

Address-to-Name

 

Resolution

 

in

 

the

 

splat

 

Command

 

The

 

lock

 

instrumentation

 

in

 

the

 

kernel

 

and

 

PThread

 

library

 

is

 

what

 

captures

 

the

 

information

 

for

 

each

 

lock

 

event.

 

Data

 

addresses

 

are

 

used

 

to

 

identify

 

locks;

 

instruction

 

addresses

 

are

 

used

 

to

 

identify

 

the

 

point

 

of

 

execution.

 

These

 

addresses

 

are

 

captured

 

in

 

the

 

event

 

records

 

in

 

the

 

trace,

 

and

 

used

 

by

 

the

 

splatcommand

 

to

 

identify

 

the

 

locks

 

and

 

the

 

functions

 

that

 

operate

 

on

 

them.

 

However,

 

these

 

addresses

 

are

 

not

 

of

 

much

 

use

 

to

 

the

 

programmer,

 

who

 

would

 

rather

 

know

 

the

 

names

 

of

 

the

 

lock

 

and

 

function

 

declarations

 

so

 

that

 

they

 

can

 

be

 

located

 

in

 

the

 

program

 

source

 

files.

 

The

 

conversion

 

of

 

names

 

to

 

addresses

 

is

 

determined

 

by

 

the

 

compiler

 

and

 

loader,

 

and

 

can

 

be

 

captured

 

in

 

a

 

file

 

using

 

the

 

gennames

 

or

 

gensyms

 

command.

 

The

 

gennames

 

or

 

gensyms

 

command

 

also

 

captures

 

the

 

contents

 

of

 

the

 

/usr/include/sys/lockname.h

 

file,

 

which

 

declares

 

classes

 

of

 

kernel

 

locks.

 

This

 

gennames

 

or

 

gensyms

 

output

 

file

 

is

 

passed

 

to

 

the

 

splat

 

command

 

with

 

the

 

-n

 

flag.

 

When

 

splat

 

reports

 

on

 

a

 

kernel

 

lock,

 

it

 

provides

 

the

 

best

 

identification

 

that

 

it

 

can.

 

Kernel

 

locks

 

that

 

are

 

declared

 

are

 

resolved

 

by

 

name.

 

Locks

 

that

 

are

 

created

 

dynamically

 

are

 

identified

 

by

 

class

 

if

 

their

 

class

 

name

 

is

 

given

 

when

 

they

 

are

 

created.

 

The

 

libpthreads.a

 

instrumentation

 

is

 

not

 

equipped

 

to

 

capture

 

names

 

or

 

classes

 

of

 

PThread

 

synchronizers,

 

so

 

they

 

are

 

always

 

identified

 

by

 

address

 

only.

 

Examples

 

of

 

Generated

 

Reports

 

The

 

report

 

generated

 

by

 

the

 

splat

 

command

 

consists

 

of

 

an

 

execution

 

summary,

 

a

 

gross

 

lock

 

summary,

 

and

 

a

 

per-lock

 

summary,

 

followed

 

by

 

a

 

list

 

of

 

lock

 

detail

 

reports

 

that

 

optionally

 

includes

 

a

 

function

 

detail

 

or

 

a

 

thread

 

detail

 

report.

 

Execution

 

Summary

 

The

 

following

 

example

 

shows

 

a

 

sample

 

of

 

the

 

Execution

 

summary.

 

This

 

report

 

is

 

generated

 

by

 

default

 

when

 

using

 

the

 

splat

 

command.

 

*****************************************************************************************

 

splat

 

Cmd:

 

splat

 

-sa

 

-da

 

-S100

 

-i

 

trace.cooked

 

-n

 

gennames

 

-o

 

splat.out

   

Trace

 

Cmd:

   

trace

 

-C

 

all

 

-aj

 

600,603,605,606,607,608,609

 

-T

 

20000000

 

-L

 

200000000

 

-o

 

CONDVAR.raw

 

Trace

 

Host:

  

darkwing

 

(0054451E4C00)

 

AIX

 

5.2

 

Trace

 

Date:

  

Thu

 

Sep

 

27

 

11:26:16

 

2002

     

Elapsed

 

Real

 

Time:

        

0.098167

 

Number

 

of

 

CPUs

 

Traced:

    

1

            

(Observed):0

 

Cumulative

 

CPU

 

Time:

      

0.098167

                                                            

start

                    

stop

                                             

--------------------

    

--------------------

 

trace

 

interval

     

(absolute

 

tics)

                    

967436752

               

969072535

                    

(relative

 

tics)

                            

0

                 

1635783

                    

(absolute

 

secs)

                    

58.057947

               

58.156114

                    

(relative

 

secs)

                     

0.000000

                

0.098167

 

analysis

 

interval

  

(absolute

 

tics)

                    

967436752

               

969072535

                    

(trace-relative

 

tics)

                      

0

                 

1635783

  

94

 

Performance

 

Tools

 

Guide

 

and

 

Reference



(self-relative

 

tics)

                       

0

                 

1635783

                    

(absolute

 

secs)

                    

58.057947

               

58.156114

                    

(trace-relative

 

secs)

               

0.000000

                

0.098167

                    

(self-relative

 

secs)

                

0.000000

                

0.098167

 

**************************************************************************************

 

The

 

execution

 

summary

 

consists

 

of

 

the

 

following

 

elements:

 

v

   

The

 

splat

 

version

 

and

 

build

 

information,

 

disclaimer,

 

and

 

copyright

 

notice.

 

v

   

The

 

command

 

used

 

to

 

run

 

splat.

 

v

   

The

 

trace

 

command

 

used

 

to

 

collect

 

the

 

trace.

 

v

   

The

 

host

 

on

 

which

 

the

 

trace

 

was

 

taken.

 

v

   

The

 

date

 

that

 

the

 

trace

 

was

 

taken.

 

v

   

The

 

real-time

 

duration

 

of

 

the

 

trace,

 

expressed

 

in

 

seconds.

 

v

   

The

 

maximum

 

number

 

of

 

processors

 

that

 

were

 

observed

 

in

 

the

 

trace

 

(the

 

number

 

specified

 

in

 

the

 

trace

 

conditions

 

information,

 

and

 

the

 

number

 

specified

 

on

 

the

 

splat

 

command

 

line).

 

v

   

The

 

cumulative

 

processor

 

time,

 

equal

 

to

 

the

 

duration

 

of

 

the

 

trace

 

in

 

seconds

 

times

 

the

 

number

 

of

 

processors

 

that

 

represents

 

the

 

total

 

number

 

of

 

seconds

 

of

 

processor

 

time

 

consumed.

 

v

   

A

 

table

 

containing

 

the

 

start

 

and

 

stop

 

times

 

of

 

the

 

trace

 

interval,

 

measured

 

in

 

tics

 

and

 

seconds,

 

as

 

absolute

 

timestamps,

 

from

 

the

 

trace

 

records,

 

as

 

well

 

as

 

relative

 

to

 

the

 

first

 

event

 

in

 

the

 

trace

 

v

   

The

 

start

 

and

 

stop

 

times

 

of

 

the

 

analysis

 

interval,

 

measured

 

in

 

tics

 

and

 

seconds,

 

as

 

absolute

 

timestamps,

 

as

 

well

 

as

 

relative

 

to

 

the

 

beginning

 

of

 

the

 

trace

 

interval

 

and

 

the

 

beginning

 

of

 

the

 

analysis

 

interval.

Gross

 

Lock

 

Summary

 

The

 

following

 

example

 

shows

 

a

 

sample

 

of

 

the

 

gross

 

lock

 

summary

 

report.

 

This

 

report

 

is

 

generated

 

by

 

default

 

when

 

using

 

the

 

splat

 

command.

 

***************************************************************************************

                             

Unique

       

Acquisitions

     

Acq.

 

or

 

Passes

   

Total

 

System

                      

Total

  

Addresses

     

(or

 

Passes)

         

per

 

Second

   

Time

                  

---------

  

---------

    

------------

     

--------------

   

------------

 

AIX

 

(all)

 

Locks:

       

523

        

523

         

1323045

         

72175.7768

       

0.003986

             

RunQ:

        

2

          

2

          

487178

         

26576.9121

       

0.000000

           

Simple:

      

480

        

480

          

824898

         

45000.4754

       

0.003986

          

Complex:

       

41

         

41

           

10969

           

598.3894

       

0.000000

  

PThread

 

CondVar:

        

7

          

6

          

160623

          

8762.4305

       

0.000000

            

Mutex:

      

128

        

116

         

1927771

        

105165.2585

      

10.280745

 

*

           

RWLock:

        

0

          

0

               

0

             

0.0000

       

0.000000

    

(

 

spin

 

time

 

goal

 

)

 

***************************************************************************************

 

The

 

gross

 

lock

 

summary

 

report

 

table

 

consists

 

of

 

the

 

following

 

columns:

  

Total

 

The

 

number

 

of

 

AIX

 

Kernel

 

locks,

 

followed

 

by

 

the

 

number

 

of

 

each

 

type

 

of

 

AIX

 

Kernel

 

lock;

 

RunQ,

 

Simple,

 

and

 

Complex.

 

Under

 

some

 

conditions,

 

this

 

will

 

be

 

larger

 

than

 

the

 

sum

 

of

 

the

 

numbers

 

of

 

RunQ,

 

Simple,

 

and

 

Complex

 

locks

 

because

 

we

 

may

 

not

 

observe

 

enough

 

activity

 

on

 

a

 

lock

 

to

 

differentiate

 

its

 

type.

 

This

 

is

 

followed

 

by

 

the

 

number

 

of

 

PThread

 

condition-variables,

 

the

 

number

 

of

 

PThread

 

Mutexes,

 

and

 

the

 

number

 

of

 

PThread

 

Read/Write.

 

Unique

 

Addresses

 

The

 

number

 

of

 

unique

 

addresses

 

observed

 

for

 

each

 

synchronizer

 

type.

 

Under

 

some

 

conditions,

 

a

 

lock

 

will

 

be

 

destroyed

 

and

 

re-created

 

at

 

the

 

same

 

address;

 

splat

 

produces

 

a

 

separate

 

lock

 

detail

 

report

 

for

 

each

 

instance

 

because

 

the

 

usage

 

may

 

be

 

different.

 

Acquisitions

 

(or

 

Passes)

 

For

 

locks,

 

the

 

total

 

number

 

of

 

times

 

acquired

 

during

 

the

 

analysis

 

interval;

 

for

 

PThread

 

condition-variables,

 

the

 

total

 

number

 

of

 

times

 

the

 

condition

 

passed

 

during

 

the

 

analysis

 

interval.

   

Chapter

 

4.

 

Simple

 

Performance

 

Lock

 

Analysis

 

Tool

 

(splat)

 

95



Acq.

 

or

 

Passes

 

(per

 

Second)

 

Acquisitions

 

or

 

passes

 

per

 

second,

 

which

 

is

 

the

 

total

 

number

 

of

 

acquisitions

 

or

 

passes

 

divided

 

by

 

the

 

elapsed

 

real

 

time

 

of

 

the

 

trace.

 

%

 

Total

 

System

 

spin

 

Time

 

The

 

cumulative

 

time

 

spent

 

spinning

 

on

 

each

 

synchronizer

 

type,

 

divided

 

by

 

the

 

cumulative

 

processor

 

time,

 

times

 

100

 

percent.

 

The

 

general

 

goal

 

is

 

to

 

spin

 

for

 

less

 

than

 

10

 

percent

 

of

 

the

 

processor

 

time;

 

a

 

message

 

to

 

this

 

effect

 

is

 

printed

 

at

 

the

 

bottom

 

of

 

the

 

table.

 

If

 

any

 

of

 

the

 

entries

 

in

 

this

 

column

 

exceed

 

10

 

percent,

 

they

 

are

 

marked

 

with

 

an

 

asterisk

 

(*).

   

Per-lock

 

Summary

 

The

 

following

 

example

 

shows

 

a

 

sample

 

of

 

the

 

per-lock

 

summary

 

report.

 

This

 

report

 

is

 

generated

 

by

 

default

 

when

 

using

 

the

 

splat

 

command.

 

*********************************************************************************************************

 

100

 

max

 

entries,

 

Summary

 

sorted

 

by

 

Acquisitions:

                           

T

 

Acqui-

                         

y

 

sitions

                           

Locks

 

or

      

Percent

 

Holdtime

 

Lock

 

Names,

             

p

 

or

                                 

Passes

    

Real

     

Real

     

Comb

 

Class,

 

or

 

Address

       

e

 

Passes

 

Spins

 

Wait

 

%Miss

   

%Total

   

/

 

CSec

    

CPU

      

Elapse

   

Spin

 

**********************

  

*

 

******

 

*****

 

****

 

*****

   

******

  

*********

  

*******

  

******

   

*******

 

PROC_INT_CLASS.0003

     

Q

 

486490

 

0

     

0

    

0.0000

  

36.7705

 

26539.380

  

5.3532

  

100.000

   

0.0000

 

THREAD_LOCK_CLASS.0012

  

S

 

323277

 

0

     

0

    

0.0000

  

24.4343

 

17635.658

  

6.8216

    

6.8216

  

0.0000

 

THREAD_LOCK_CLASS.0118

  

S

 

323094

 

0

     

0

    

0.0000

  

24.4205

 

17625.674

  

6.7887

    

6.7887

  

0.0000

 

ELIST_CLASS.003C

        

S

 

80453

  

0

     

0

    

0.0000

  

6.0809

   

4388.934

  

1.0564

    

1.0564

  

0.0000

 

ELIST_CLASS.0044

        

S

 

80419

  

0

     

0

    

0.0000

  

6.0783

   

4387.080

  

1.1299

    

1.1299

  

0.0000

 

tod_lock

                

C

 

10229

  

0

     

0

    

0.0000

  

0.7731

    

558.020

  

0.2212

    

0.2212

  

0.0000

 

LDATA_CONTROL_LOCK.0000

 

S

 

1833

   

0

     

0

    

0.0000

  

0.1385

     

99.995

  

0.0204

    

0.0204

  

0.0000

 

U_TIMER_CLASS.0014

      

S

 

1514

   

0

     

0

    

0.0000

  

0.1144

     

82.593

  

0.0536

    

0.0536

  

0.0000

   

(

 

...

 

lines

 

omitted

 

...

 

)

   

000000002FF22B70

        

L

 

368838

 

0

    

N/A

   

0.0000

  

100.000

    

9622.964

 

99.9865

  

99.9865

  

0.0000

 

00000000F00C3D74

        

M

 

160625

 

0

     

0

    

0.0000

   

14.2831

   

8762.540

 

99.7702

  

99.7702

  

0.0000

 

00000000200017E8

        

M

 

160625

 

175

   

0

    

0.1088

   

14.2831

   

8762.540

 

42.9371

  

42.9371

  

0.1487

 

0000000020001820

        

V

 

160623

 

0

    

624

   

0.0000

  

100.000

    

1271.728

  

N/A

       

N/A

     

N/A

 

00000000F00C3750

        

M

     

37

 

0

     

0

    

0.0000

    

0.0033

      

2.018

  

0.0037

   

0.0037

  

0.0000

 

00000000F00C3800

        

M

     

30

 

0

     

0

    

0.0000

    

0.0027

      

1.637

  

0.0698

   

0.0698

  

0.0000

    

(

 

...

 

lines

 

omitted

 

...

 

)

 

************************************************************************************************

 

The

 

first

 

line

 

indicates

 

the

 

maximum

 

number

 

of

 

locks

 

to

 

report

 

(100

 

in

 

this

 

case,

 

but

 

we

 

show

 

only

 

14

 

of

 

the

 

entries

 

here)

 

as

 

specified

 

by

 

the

 

-S

 

100

 

flag.

 

The

 

report

 

also

 

indicates

 

that

 

the

 

entries

 

are

 

sorted

 

by

 

the

 

total

 

number

 

of

 

acquisitions

 

or

 

passes,

 

as

 

specified

 

by

 

the

 

-sa

 

flag.

 

The

 

various

 

Kernel

 

locks

 

and

 

PThread

 

synchronizers

 

are

 

treated

 

as

 

two

 

separate

 

lists

 

in

 

this

 

report,

 

so

 

the

 

report

 

would

 

produce

 

the

 

top

 

100

 

Kernel

 

locks

 

sorted

 

by

 

acquisitions,

 

followed

 

by

 

the

 

top

 

100

 

PThread

 

synchronizers

 

sorted

 

by

 

acquisitions

 

or

 

passes.

 

The

 

per-lock

 

summary

 

table

 

consists

 

of

 

the

 

following

 

columns:

  

Lock

 

Names,

 

Class,

 

or

 

Address

 

The

 

name,

 

class,

 

or

 

address

 

of

 

the

 

lock,

 

depending

 

on

 

whether

 

the

 

splat

 

command

 

could

 

map

 

the

 

address

 

from

 

a

 

name

 

file.

   

96

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Type

 

The

 

type

 

of

 

the

 

lock,

 

identified

 

by

 

one

 

of

 

the

 

following

 

letters:

 

Q

 

A

 

RunQ

 

lock

 

S

 

A

 

simple

 

kernel

 

lock

 

C

 

A

 

complex

 

kernel

 

lock

 

M

 

A

 

PThread

 

mutex

 

V

 

A

 

PThread

 

condition-variable

 

L

 

A

 

PThread

 

read/write

 

lock

 

Acquisitions

 

or

 

Passes

 

The

 

number

 

of

 

times

 

that

 

the

 

lock

 

was

 

acquired

 

or

 

the

 

condition

 

passed,

 

during

 

the

 

analysis

 

interval.

 

Spins

 

The

 

number

 

of

 

times

 

that

 

the

 

lock

 

(or

 

condition-variable)

 

was

 

spun

 

on

 

during

 

the

 

analysis

 

interval.

 

Wait

 

The

 

number

 

of

 

times

 

that

 

a

 

thread

 

was

 

driven

 

into

 

a

 

wait

 

state

 

for

 

that

 

lock

 

or

 

condition-variable

 

during

 

the

 

analysis

 

interval.

 

%Miss

 

The

 

percentage

 

of

 

access

 

attempts

 

that

 

resulted

 

in

 

a

 

spin

 

as

 

opposed

 

to

 

a

 

successful

 

acquisition

 

or

 

pass.

 

%Total

 

The

 

percentage

 

of

 

all

 

acquisitions

 

that

 

were

 

made

 

to

 

this

 

lock,

 

out

 

of

 

all

 

acquisitions

 

to

 

all

 

locks

 

of

 

this

 

type.

 

All

 

AIX

 

locks

 

(RunQ,

 

simple,

 

and

 

complex)

 

are

 

treated

 

as

 

being

 

the

 

same

 

type

 

for

 

this

 

calculation.

 

The

 

PThread

 

synchronizers

 

mutex,

 

condition-variable,

 

and

 

read/write

 

lock

 

are

 

all

 

distinct

 

types.

 

Locks

 

or

 

Passes

 

/

 

CSec

 

The

 

number

 

of

 

times

 

that

 

the

 

lock

 

(or

 

condition-variable)

 

was

 

acquired

 

(or

 

passed)

 

divided

 

by

 

the

 

cumulative

 

processor

 

time.

 

This

 

is

 

a

 

measure

 

of

 

the

 

acquisition

 

frequency

 

of

 

the

 

lock.

 

Percent

 

Holdtime

 

Real

 

CPU

 

The

 

percentage

 

of

 

the

 

cumulative

 

processor

 

time

 

that

 

the

 

lock

 

was

 

held

 

by

 

any

 

thread

 

at

 

all,

 

whether

 

running

 

or

 

suspended.

 

Note

 

that

 

this

 

definition

 

is

 

not

 

applicable

 

to

 

condition-variables

 

because

 

they

 

are

 

not

 

held.

 

Real

 

Elapse

 

The

 

percentage

 

of

 

the

 

elapsed

 

real

 

time

 

that

 

the

 

lock

 

was

 

held

 

by

 

any

 

thread

 

at

 

all,

 

whether

 

running

 

or

 

suspended.

 

Note

 

that

 

this

 

definition

 

is

 

not

 

applicable

 

to

 

condition-variables

 

because

 

they

 

are

 

not

 

held.

 

Comb

 

Spin

 

The

 

percentage

 

of

 

the

 

cumulative

 

processor

 

time

 

that

 

executing

 

threads

 

spent

 

spinning

 

on

 

the

 

lock.

 

The

 

PThreads

 

library

 

uses

 

waiting

 

for

 

condition-variables,

 

so

 

there

 

is

 

no

 

time

 

actually

 

spent

 

spinning.

   

AIX

 

Kernel

 

Lock

 

Details

 

By

 

default,

 

the

 

splat

 

command

 

prints

 

a

 

lock

 

detail

 

report

 

for

 

each

 

entry

 

in

 

the

 

summary

 

report.

 

The

 

AIX

 

Kernel

 

locks

 

can

 

be

 

either

 

simple

 

or

 

complex.

 

The

 

RunQ

 

lock

 

is

 

a

 

special

 

case

 

of

 

the

 

simple

 

lock,

 

although

 

its

 

pattern

 

of

 

usage

 

will

 

differ

 

markedly

 

from

 

other

 

lock

 

types.

 

The

 

splat

 

command

 

distinguishes

 

it

 

from

 

the

 

other

 

simple

 

locks

 

to

 

ease

 

its

 

analysis.

 

Simple

 

and

 

RunQ

 

Lock

 

Details

 

In

 

an

 

AIX

 

SIMPLE

 

lock

 

report,

 

the

 

first

 

line

 

starts

 

with

 

either

 

[AIX

 

SIMPLE

 

Lock]

 

or

 

[AIX

 

RunQ

 

lock].

 

If

 

the

 

gennames

 

or

 

gensyms

 

output

 

file

 

allows,

 

the

 

ADDRESS

 

is

 

also

 

converted

 

into

 

a

 

lock

 

NAME

 

and

 

CLASS,

 

and

 

the

 

containing

 

kernel

 

extension

 

(KEX)

 

is

 

identified

 

as

 

well.

 

The

 

CLASS

 

is

 

printed

 

with

 

an

 

eight

 

hex-digit

 

extension

 

indicating

 

how

 

many

 

locks

 

of

 

this

 

class

 

were

 

allocated

 

prior

 

to

 

it.

   

[AIX

 

SIMPLE

 

Lock]

                 

CLASS:

      

PROC_INT_CLASS.00000004

 

ADDRESS:

 

000000000200786C

 

======================================================================================

          

|

                             

|

                  

|

 

Percent

 

Held

 

(

 

26.235284s

 

)

 

Acqui-

   

|

  

Miss

  

Spin

   

Wait

   

Busy

   

|

    

Secs

 

Held

     

|

  

Real

  

Real

    

Comb

  

Real

 

sitions

  

|

  

Rate

  

Count

  

Count

  

Count

  

|CPU

      

Elapsed

  

|

  

CPU

  

Elapsed

  

Spin

  

Wait

  

Chapter

 

4.

 

Simple

 

Performance

 

Lock

 

Analysis

 

Tool

 

(splat)

 

97



12945

    

|

  

0.438

 

57

     

0

      

12

     

|0.022852

 

0.032960

 

|

  

0.04

   

0.13

   

0.00

   

0.00

 

--------------------------------------------------------------------------------------

 

%Enabled

    

0.00

 

(

       

0)|SpinQ

   

Min

   

Max

   

Avg

  

|

 

WaitQ

    

Min

   

Max

   

Avg

 

%Disabled

 

100.00

 

(

   

12945)|Depth

   

0

     

1

     

0

    

|

 

Depth

   

0

     

0

     

0

 

--------------------------------------------------------------------------------------

                         

Lock

 

Activity

 

w/Interrupts

 

Enabled

 

(mSecs)

     

SIMPLE

   

Count

         

Minimum

        

Maximum

        

Average

          

Total

   

+++++++

  

++++++

  

++++++++++++++

 

++++++++++++++

 

++++++++++++++

 

++++++++++++++

   

LOCK

       

0

        

0.000000

       

0.000000

       

0.000000

       

0.000000

   

SPIN

       

0

        

0.000000

       

0.000000

       

0.000000

       

0.000000

   

UNDISP

     

0

        

0.000000

       

0.000000

       

0.000000

       

0.000000

   

WAIT

       

0

        

0.000000

       

0.000000

       

0.000000

       

0.000000

   

PREEMPT

  

141

        

0.000629

       

0.011158

       

0.003492

       

0.492409

                           

Lock

 

Activity

 

w/Interrupts

 

Disabled

 

(mSecs)

     

SIMPLE

   

Count

         

Minimum

        

Maximum

        

Average

          

Total

   

+++++++

  

++++++

  

++++++++++++++

 

++++++++++++++

 

++++++++++++++

 

++++++++++++++

   

LOCK

     

8027

        

0.000597

       

0.022486

       

0.002847

      

22.852000

   

SPIN

       

45

        

0.001376

       

0.008960

       

0.004738

       

0.213212

   

UNDISP

      

0

        

0.000000

       

0.000000

       

0.000000

       

0.000000

   

WAIT

        

0

        

0.000000

       

0.000000

       

0.000000

       

0.000000

   

PREEMPT

  

4918

        

0.000811

       

0.009728

       

0.001955

       

9.615807

                   

Acqui-

  

Miss

  

Spin

   

Wait

   

Busy

    

Percent

 

Held

 

of

 

Total

 

Time

 

Function

 

Name

  

sitions

  

Rate

  

Count

  

Count

  

Count

    

CPU

   

Elapse

  

Spin

   

Wait

   

Return

 

Address

   

Start

 

Address

    

Offset

 

^^^^^^^^^^^^

 

^^^^^^^^

  

^^^^^^

 

^^^^^^

 

^^^^^^

 

^^^^^^

  

^^^^^^

 

^^^^^^

 

^^^^^^

 

^^^^^^

  

^^^^^^^^^^^^^^^^

 

^^^^^^^^^^^^^^^^

 

^^^^^^^^

    

.dispatch

    

3177

    

0.63

   

20

      

0

      

0

     

0.00

    

0.02

   

0.00

   

0.00

  

0000000000039CF4

 

0000000000000000

 

00039CF4

    

.dispatch

    

6053

    

0.31

   

19

      

0

      

0

     

0.03

    

0.07

   

0.00

   

0.00

  

00000000000398E4

 

0000000000000000

 

000398E4

    

.setrq

       

3160

    

0.19

    

6

      

0

      

0

     

0.01

    

0.02

   

0.00

   

0.00

  

0000000000038E60

 

0000000000000000

 

00038E60

    

.steal_threads

  

1

    

0.00

    

0

      

0

      

0

     

0.00

    

0.00

   

0.00

   

0.00

  

0000000000066A68

 

0000000000000000

 

00066A68

    

.steal_threads

  

6

    

0.00

    

0

      

0

      

0

     

0.00

    

0.00

   

0.00

   

0.00

  

0000000000066CE0

 

0000000000000000

 

00066CE0

    

.dispatch

     

535

    

2.19

   

12

      

0

     

12

     

0.01

    

0.02

   

0.00

   

0.00

  

0000000000039D88

 

0000000000000000

 

00039D88

    

.dispatch

       

2

    

0.00

    

0

      

0

      

0

     

0.00

    

0.00

   

0.00

   

0.00

  

0000000000039D14

 

0000000000000000

 

00039D14

    

.prio_requeue

   

7

    

0.00

    

0

      

0

      

0

     

0.00

    

0.00

   

0.00

   

0.00

  

000000000003B2A4

 

0000000000000000

 

0003B2A4

    

.setnewrq

       

4

    

0.00

    

0

      

0

      

0

     

0.00

    

0.00

   

0.00

   

0.00

  

0000000000038980

 

0000000000000000

 

00038980

              

Acqui-

    

Miss

   

Spin

   

Wait

   

Busy

    

Percent

 

Held

 

of

 

Total

 

Time

             

Process

  

ThreadID

  

sitions

   

Rate

   

Count

  

Count

  

Count

    

CPU

   

Elapse

  

Spin

   

Wait

  

ProcessID

  

Name

  

~~~~~~~~

  

~~~~~~~~

  

~~~~~~

 

~~~~~~

 

~~~~~~

 

~~~~~~

  

~~~~~~

 

~~~~~~

 

~~~~~~

 

~~~~~~

 

~~~~~~~~~

  

~~~~~~~~~~~~~

    

775

     

11548

      

0.34

     

39

    

0

      

0

      

0.06

   

0.10

   

0.00

   

0.00

     

774

     

wait

  

35619

         

3

     

25.00

      

1

    

0

      

0

      

0.00

   

0.00

   

0.00

   

0.00

   

18392

     

sleep

  

31339

        

21

      

4.55

      

1

    

0

      

0

      

0.00

   

0.00

   

0.00

   

0.00

    

7364

     

java

  

35621

         

2

      

0.00

      

0

    

0

      

0

      

0.00

   

0.00

   

0.00

   

0.00

   

18394

     

locktrace

   

(...

 

lines

 

omitted

 

...)

 

The

 

SIMPLE

 

lock

 

report

 

fields

 

are

 

as

 

follows:

  

Acquisitions

 

The

 

number

 

of

 

times

 

that

 

the

 

lock

 

was

 

acquired

 

in

 

the

 

analysis

 

interval

 

(this

 

includes

 

successful

 

simple_lock_try

 

calls).

 

Miss

 

Rate

 

The

 

percentage

 

of

 

attempts

 

that

 

failed

 

to

 

acquire

 

the

 

lock.

 

Spin

 

Count

 

The

 

number

 

of

 

unsuccessful

 

attempts

 

to

 

acquire

 

the

 

lock.

 

Wait

 

Count

 

The

 

number

 

of

 

times

 

that

 

a

 

thread

 

was

 

forced

 

into

 

a

 

suspended

 

wait

 

state,

 

waiting

 

for

 

the

 

lock

 

to

 

come

 

available.

 

Busy

 

Count

 

The

 

number

 

of

 

simple_lock_try

 

calls

 

that

 

returned

 

busy.

 

Seconds

 

Held

 

This

 

field

 

contains

 

the

 

following

 

sub-fields:

 

CPU

 

The

 

total

 

number

 

of

 

processor

 

seconds

 

that

 

the

 

lock

 

was

 

held

 

by

 

an

 

executing

 

thread.

 

Elapsed

 

The

 

total

 

number

 

of

 

elapsed

 

seconds

 

that

 

the

 

lock

 

was

 

held

 

by

 

any

 

thread,

 

whether

 

running

 

or

 

suspended.

   

98

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Percent

 

Held

 

This

 

field

 

contains

 

the

 

following

 

sub-fields:

 

Real

 

CPU

 

The

 

percentage

 

of

 

the

 

cumulative

 

processor

 

time

 

that

 

the

 

lock

 

was

 

held

 

by

 

an

 

executing

 

thread.

 

Real

 

Elapsed

  

The

 

percentage

 

of

 

the

 

elapsed

 

real

 

time

 

that

 

the

 

lock

 

was

 

held

 

by

 

any

 

thread

 

at

 

all,

 

either

 

running

 

or

 

suspended.

 

Comb(ined)

 

Spin

  

The

 

percentage

 

of

 

the

 

cumulative

 

processor

 

time

 

that

 

running

 

threads

 

spent

 

spinning

 

while

 

trying

 

to

 

acquire

 

this

 

lock.

 

Real

 

Wait

 

The

 

percentage

 

of

 

elapsed

 

real

 

time

 

that

 

any

 

thread

 

was

 

waiting

 

to

 

acquire

 

this

 

lock.

 

If

 

two

 

or

 

more

 

threads

 

are

 

waiting

 

simultaneously,

 

this

 

wait

 

time

 

will

 

only

 

be

 

charged

 

once.

 

To

 

determine

 

how

 

many

 

threads

 

were

 

waiting

 

simultaneously,

 

look

 

at

 

the

 

WaitQ

 

Depth

 

statistics.

 

%Enabled

 

The

 

percentage

 

of

 

acquisitions

 

of

 

this

 

lock

 

that

 

occurred

 

while

 

interrupts

 

were

 

enabled.

 

In

 

parentheses

 

is

 

the

 

total

 

number

 

of

 

acquisitions

 

made

 

while

 

interrupts

 

were

 

enabled.

 

%Disabled

 

The

 

percentage

 

of

 

acquisitions

 

of

 

this

 

lock

 

that

 

occurred

 

while

 

interrupts

 

were

 

disabled.

 

In

 

parentheses

 

is

 

the

 

total

 

number

 

of

 

acquisitions

 

made

 

while

 

interrupts

 

were

 

disabled.

 

SpinQ

 

The

 

minimum,

 

maximum,

 

and

 

average

 

number

 

of

 

threads

 

spinning

 

on

 

the

 

lock,

 

whether

 

executing

 

or

 

suspended,

 

across

 

the

 

analysis

 

interval.

 

WaitQ

 

The

 

minimum,

 

maximum,

 

and

 

average

 

number

 

of

 

threads

 

waiting

 

on

 

the

 

lock,

 

across

 

the

 

analysis

 

interval.

   

The

 

Lock

 

Activity

 

with

 

Interrupts

 

Enabled

 

(milliseconds)

 

and

 

Lock

 

Activity

 

with

 

Interrupts

 

Disabled

 

(milliseconds)

 

sections

 

contain

 

information

 

on

 

the

 

time

 

that

 

each

 

lock

 

state

 

is

 

used

 

by

 

the

 

locks.

 

The

 

states

 

that

 

a

 

thread

 

can

 

be

 

in

 

(with

 

respect

 

to

 

a

 

given

 

simple

 

or

 

complex

 

lock)

 

are

 

as

 

follows:

  

(no

 

lock

 

reference)

 

The

 

thread

 

is

 

running,

 

does

 

not

 

hold

 

this

 

lock,

 

and

 

is

 

not

 

attempting

 

to

 

acquire

 

this

 

lock.

 

LOCK

 

The

 

thread

 

has

 

successfully

 

acquired

 

the

 

lock

 

and

 

is

 

currently

 

executing.

 

SPIN

 

The

 

thread

 

is

 

executing

 

and

 

unsuccessfully

 

attempting

 

to

 

acquire

 

the

 

lock.

 

UNDISP

 

The

 

thread

 

has

 

become

 

undispatched

 

while

 

unsuccessfully

 

attempting

 

to

 

acquire

 

the

 

lock.

 

WAIT

 

The

 

thread

 

has

 

been

 

suspended

 

until

 

the

 

lock

 

comes

 

available.

 

It

 

does

 

not

 

necessarily

 

acquire

 

the

 

lock

 

at

 

that

 

time,

 

but

 

instead

 

returns

 

to

 

a

 

SPIN

 

state.

 

PREEMPT

 

The

 

thread

 

is

 

holding

 

this

 

lock

 

and

 

has

 

become

 

undispatched.

   

The

 

Lock

 

Activity

 

sections

 

of

 

the

 

report

 

measure

 

the

 

intervals

 

of

 

time

 

(in

 

milliseconds)

 

that

 

each

 

thread

 

spends

 

in

 

each

 

of

 

the

 

states

 

for

 

this

 

lock.

 

The

 

columns

 

report

 

the

 

number

 

of

 

times

 

that

 

a

 

thread

 

entered

 

the

 

given

 

state,

 

followed

 

by

 

the

 

maximum,

 

minimum,

 

and

 

average

 

time

 

that

 

a

 

thread

 

spent

 

in

 

the

 

state

 

once

 

entered,

 

followed

 

by

 

the

 

total

 

time

 

that

 

all

 

threads

 

spent

 

in

 

that

 

state.

 

These

 

sections

 

distinguish

 

whether

 

interrupts

 

were

 

enabled

 

or

 

disabled

 

at

 

the

 

time

 

that

 

the

 

thread

 

was

 

in

 

the

 

given

 

state.

 

A

 

thread

 

can

 

acquire

 

a

 

lock

 

prior

 

to

 

the

 

beginning

 

of

 

the

 

analysis

 

interval

 

and

 

release

 

the

 

lock

 

during

 

the

 

analysis

 

interval.

 

When

 

the

 

splat

 

command

 

observes

 

the

 

lock

 

being

 

released,

 

it

 

recognizes

 

that

 

the

 

lock

 

had

 

been

 

held

 

during

 

the

 

analysis

 

interval

 

up

 

to

 

that

 

point

 

and

 

counts

 

the

 

time

 

as

 

part

 

of

 

the

 

state-machine

 

statistics.

 

For

 

this

 

reason,

 

the

 

state-machine

 

statistics

 

can

 

report

 

that

 

the

 

number

 

of

 

times

 

that

 

the

 

lock

 

state

 

was

 

entered

 

may

 

actually

 

be

 

larger

 

than

 

the

 

number

 

of

 

acquisitions

 

of

 

the

 

lock

 

that

 

were

 

observed

 

in

 

the

 

analysis

 

interval.

 

RunQ

 

locks

 

are

 

used

 

to

 

protect

 

resources

 

in

 

the

 

thread

 

management

 

logic.

 

These

 

locks

 

are

 

acquired

 

a

 

large

 

number

 

of

 

times

 

and

 

are

 

only

 

held

 

briefly

 

each

 

time.

 

A

 

thread

 

need

 

not

 

be

 

executing

 

to

 

acquire

 

or

   

Chapter

 

4.

 

Simple

 

Performance

 

Lock

 

Analysis

 

Tool

 

(splat)

 

99



release

 

a

 

RunQ

 

lock.

 

Further,

 

a

 

thread

 

may

 

spin

 

on

 

a

 

RunQ

 

lock,

 

but

 

it

 

will

 

not

 

go

 

into

 

an

 

UNDISP

 

or

 

WAIT

 

state

 

on

 

the

 

lock.

 

You

 

will

 

see

 

a

 

dramatic

 

difference

 

between

 

the

 

statistics

 

for

 

RunQ

 

versus

 

other

 

simple

 

locks.

 

Function

 

Detail

 

The

 

function

 

detail

 

report

 

is

 

obtained

 

by

 

using

 

the

 

-df

 

or

 

-da

 

options

 

of

 

splat.

 

The

 

columns

 

are

 

defined

 

as

 

follows:

  

Function

 

Name

 

The

 

name

 

of

 

the

 

function

 

that

 

acquired

 

or

 

attempted

 

to

 

acquire

 

this

 

lock,

 

if

 

it

 

could

 

be

 

resolved.

 

Acquisitions

 

The

 

number

 

of

 

times

 

that

 

the

 

function

 

was

 

able

 

to

 

acquire

 

this

 

lock.

 

For

 

complex

 

lock

 

and

 

read/write,

 

there

 

is

 

a

 

distinction

 

between

 

acquisition

 

for

 

writing,

 

Acquisition

 

Write,

 

and

 

for

 

reading,

 

Acquisition

 

Read.

 

Miss

 

Rate

 

The

 

percentage

 

of

 

acquisition

 

attempts

 

that

 

failed.

 

Spin

 

Count

 

The

 

number

 

of

 

unsuccessful

 

attempts

 

by

 

the

 

function

 

to

 

acquire

 

this

 

lock.

 

For

 

complex

 

lock

 

and

 

read/write

 

there

 

is

 

a

 

distinction

 

between

 

spin

 

count

 

for

 

writing,

 

Spin

 

Count

 

Write,

 

and

 

for

 

reading,

 

Spin

 

Count

 

Read.

 

Wait

 

Count

 

The

 

number

 

of

 

times

 

that

 

any

 

thread

 

was

 

forced

 

to

 

wait

 

on

 

the

 

lock,

 

using

 

a

 

call

 

to

 

this

 

function

 

to

 

acquire

 

the

 

lock.

 

For

 

complex

 

lock

 

and

 

read/write

 

there

 

is

 

a

 

distinction

 

between

 

wait

 

count

 

for

 

writing,

 

Wait

 

Count

 

Write

 

and

 

for

 

reading,

 

Wait

 

Count

 

Read.

 

Busy

 

Count

 

The

 

number

 

of

 

times

 

simple_lock_try

 

calls

 

returned

 

busy.

 

Percent

 

Held

 

of

 

Total

 

Time

 

Contains

 

the

 

following

 

sub-fields:

 

CPU

 

Percentage

 

of

 

the

 

cumulative

 

processor

 

time

 

that

 

the

 

lock

 

was

 

held

 

by

 

an

 

executing

 

thread

 

that

 

had

 

acquired

 

the

 

lock

 

through

 

a

 

call

 

to

 

this

 

function.

 

Elapse(d)

 

The

 

percentage

 

of

 

the

 

elapsed

 

real

 

time

 

that

 

the

 

lock

 

was

 

held

 

by

 

any

 

thread

 

at

 

all,

 

whether

 

running

 

or

 

suspended,

 

that

 

had

 

acquired

 

the

 

lock

 

through

 

a

 

call

 

to

 

this

 

function.

 

Spin

 

The

 

percentage

 

of

 

cumulative

 

processor

 

time

 

that

 

executing

 

threads

 

spent

 

spinning

 

on

 

the

 

lock

 

while

 

trying

 

to

 

acquire

 

the

 

lock

 

through

 

a

 

call

 

to

 

this

 

function.

 

Wait

 

The

 

percentage

 

of

 

elapsed

 

real

 

time

 

that

 

executing

 

threads

 

spent

 

waiting

 

for

 

the

 

lock

 

while

 

trying

 

to

 

acquire

 

the

 

lock

 

through

 

a

 

call

 

to

 

this

 

function.

 

Return

 

Address

 

The

 

return

 

address

 

to

 

this

 

calling

 

function,

 

in

 

hexadecimal.

 

Start

 

Address

 

The

 

start

 

address

 

to

 

this

 

calling

 

function,

 

in

 

hexadecimal.

 

Offset

 

The

 

offset

 

from

 

the

 

function

 

start

 

address

 

to

 

the

 

return

 

address,

 

in

 

hexadecimal.

   

The

 

functions

 

are

 

ordered

 

by

 

the

 

same

 

sorting

 

criterion

 

as

 

the

 

locks,

 

controlled

 

by

 

the

 

-s

 

option

 

of

 

splat.

 

Further,

 

the

 

number

 

of

 

functions

 

listed

 

is

 

controlled

 

by

 

the

 

-S

 

parameter.

 

The

 

default

 

is

 

the

 

top

 

ten

 

functions.

 

Thread

 

Detail

 

The

 

Thread

 

Detail

 

report

 

is

 

obtained

 

by

 

using

 

the

 

-dt

 

or

 

-da

 

options

 

of

 

splat.

 

At

 

any

 

point

 

in

 

time,

 

a

 

single

 

thread

 

is

 

either

 

running

 

or

 

it

 

is

 

not.

 

When

 

a

 

single

 

thread

 

runs,

 

it

 

only

 

runs

 

on

 

one

 

processor.

 

Some

 

of

 

the

 

composite

 

statistics

 

are

 

measured

 

relative

 

to

 

the

 

cumulative

 

processor

 

time

 

when

 

they

 

measure

 

activities

 

that

 

can

 

happen

 

simultaneously

 

on

 

more

 

than

 

one

 

processor,

 

and

 

the

 

magnitude

 

of

 

the

 

measurements

 

can

 

be

 

proportional

 

to

 

the

 

number

 

of

 

processors

 

in

 

the

 

system.

 

In

 

contrast,

 

the

 

thread

 

statistics

 

are

 

generally

 

measured

 

relative

 

to

 

the

 

elapsed

 

real

 

time,

 

which

 

is

 

the

 

amount

 

of

 

time

 

that

 

a

 

single

 

processor

 

spends

 

processing

 

and

 

the

 

amount

 

of

 

time

 

that

 

a

 

single

 

thread

 

spends

 

in

 

an

 

executing

 

or

 

suspended

 

state.

   

100

 

Performance

 

Tools

 

Guide

 

and

 

Reference



The

 

Thread

 

Detail

 

report

 

columns

 

are

 

defined

 

as

 

follows:

  

ThreadID

 

The

 

thread

 

identifier.

 

Acquisitions

 

The

 

number

 

of

 

times

 

that

 

this

 

thread

 

acquired

 

the

 

lock.

 

Miss

 

Rate

 

The

 

percentage

 

of

 

acquisition

 

attempts

 

by

 

the

 

thread

 

that

 

failed

 

to

 

secure

 

the

 

lock.

 

Spin

 

Count

 

The

 

number

 

of

 

unsuccessful

 

attempts

 

by

 

this

 

thread

 

to

 

secure

 

the

 

lock.

 

Wait

 

Count

 

The

 

number

 

of

 

times

 

that

 

this

 

thread

 

was

 

forced

 

to

 

wait

 

until

 

the

 

lock

 

came

 

available.

 

Busy

 

Count

 

The

 

number

 

of

 

simple_lock_try()

 

calls

 

that

 

returned

 

busy.

 

Percent

 

Held

 

of

 

Total

 

Time

 

Consists

 

of

 

the

 

following

 

sub-fields:

 

CPU

 

The

 

percentage

 

of

 

the

 

elapsed

 

real

 

time

 

that

 

this

 

thread

 

executed

 

while

 

holding

 

the

 

lock.

 

Elapse(d)

 

The

 

percentage

 

of

 

the

 

elapsed

 

real

 

time

 

that

 

this

 

thread

 

held

 

the

 

lock

 

while

 

running

 

or

 

suspended.

 

Spin

 

The

 

percentage

 

of

 

elapsed

 

real

 

time

 

that

 

this

 

thread

 

executed

 

while

 

spinning

 

on

 

the

 

lock.

 

Wait

 

The

 

percentage

 

of

 

elapsed

 

real

 

time

 

that

 

this

 

thread

 

spent

 

waiting

 

on

 

the

 

lock.

 

Process

 

ID

 

The

 

Process

 

identifier

 

(only

 

for

 

simple

 

and

 

complex

 

lock

 

report).

 

Process

 

Name

 

Name

 

of

 

the

 

process

 

using

 

the

 

lock

 

(only

 

for

 

simple

 

and

 

complex

 

lock

 

report).

   

Complex-Lock

 

Report

 

AIX

 

Complex

 

lock

 

supports

 

recursive

 

locking,

 

where

 

a

 

thread

 

can

 

acquire

 

the

 

lock

 

more

 

than

 

once

 

before

 

releasing

 

it,

 

as

 

well

 

as

 

differentiating

 

between

 

write-locking,

 

which

 

is

 

exclusive,

 

from

 

read-locking,

 

which

 

is

 

not

 

exclusive.

 

This

 

report

 

begins

 

with

 

[AIX

 

COMPLEX

 

Lock].

 

Most

 

of

 

the

 

entries

 

are

 

identical

 

to

 

the

 

simple

 

lock

 

report,

 

while

 

some

 

of

 

them

 

are

 

differentiated

 

by

 

read/write/upgrade.

 

For

 

example,

 

the

 

SpinQ

 

and

 

WaitQ

 

statistics

 

include

 

the

 

minimum,

 

maximum,

 

and

 

average

 

number

 

of

 

threads

 

spinning

 

or

 

waiting

 

on

 

the

 

lock.

 

They

 

also

 

include

 

the

 

minimum,

 

maximum,

 

and

 

average

 

number

 

of

 

threads

 

attempting

 

to

 

acquire

 

the

 

lock

 

for

 

reading

 

versus

 

writing.

 

Because

 

an

 

arbitrary

 

number

 

of

 

threads

 

can

 

hold

 

the

 

lock

 

for

 

reading,

 

the

 

report

 

includes

 

the

 

minimum,

 

maximum,

 

and

 

average

 

number

 

of

 

readers

 

in

 

the

 

LockQ

 

that

 

holds

 

the

 

lock.

 

A

 

thread

 

may

 

hold

 

a

 

lock

 

for

 

writing;

 

this

 

is

 

exclusive

 

and

 

prevents

 

any

 

other

 

thread

 

from

 

securing

 

the

 

lock

 

for

 

reading

 

or

 

for

 

writing.

 

The

 

thread

 

downgrades

 

the

 

lock

 

by

 

simultaneously

 

releasing

 

it

 

for

 

writing

 

and

 

acquiring

 

it

 

for

 

reading;

 

this

 

allows

 

other

 

threads

 

to

 

also

 

acquire

 

the

 

lock

 

for

 

reading.

 

The

 

reverse

 

of

 

this

 

operation

 

is

 

an

 

upgrade;

 

if

 

the

 

thread

 

holds

 

the

 

lock

 

for

 

reading

 

and

 

no

 

other

 

thread

 

holds

 

it

 

as

 

well,

 

the

 

thread

 

simultaneously

 

releases

 

the

 

lock

 

for

 

reading

 

and

 

acquires

 

it

 

for

 

writing.

 

The

 

upgrade

 

operation

 

may

 

require

 

that

 

the

 

thread

 

wait

 

until

 

other

 

threads

 

release

 

their

 

read-locks.

 

The

 

downgrade

 

operation

 

does

 

not.

 

A

 

thread

 

may

 

acquire

 

the

 

lock

 

to

 

some

 

recursive

 

depth;

 

it

 

must

 

release

 

the

 

lock

 

the

 

same

 

number

 

of

 

times

 

to

 

free

 

it.

 

This

 

is

 

useful

 

in

 

library

 

code

 

where

 

a

 

lock

 

must

 

be

 

secured

 

at

 

each

 

entry-point

 

to

 

the

 

library;

 

a

 

thread

 

will

 

secure

 

the

 

lock

 

once

 

as

 

it

 

enters

 

the

 

library,

 

and

 

internal

 

calls

 

to

 

the

 

library

 

entry-points

 

simply

 

re-secure

 

the

 

lock,

 

and

 

release

 

it

 

when

 

returning

 

from

 

the

 

call.

 

The

 

minimum,

 

maximum,

 

and

 

average

 

recursion

 

depths

 

of

 

any

 

thread

 

holding

 

this

 

lock

 

are

 

reported

 

in

 

the

 

table.

 

A

 

thread

 

holding

 

a

 

recursive

 

write-lock

 

is

 

not

 

allowed

 

to

 

downgrade

 

it

 

because

 

the

 

downgrade

 

is

 

intended

 

to

 

apply

 

to

 

only

 

the

 

last

 

write-acquisition

 

of

 

the

 

lock,

 

and

 

the

 

prior

 

acquisitions

 

had

 

a

 

real

 

reason

 

to

 

keep

 

the

 

acquisition

 

exclusive.

 

Instead,

 

the

 

lock

 

is

 

marked

 

as

 

being

 

in

 

the

 

downgraded

 

state,

 

which

 

is

 

erased

 

when

 

the

 

this

 

latest

 

acquisition

 

is

 

released

 

or

 

upgraded.

 

A

 

thread

 

holding

 

a

 

recursive

 

read-lock

 

can

 

only

 

upgrade

 

the

 

latest

 

acquisition

 

of

 

the

 

lock,

 

in

 

which

 

case

 

the

 

lock

 

is

 

marked

 

as

 

being

 

upgraded.

 

The

 

thread

   

Chapter

 

4.

 

Simple

 

Performance

 

Lock

 

Analysis

 

Tool

 

(splat)

 

101



will

 

have

 

to

 

wait

 

until

 

the

 

lock

 

is

 

released

 

by

 

any

 

other

 

threads

 

holding

 

it

 

for

 

reading.

 

The

 

minimum,

 

maximum,

 

and

 

average

 

recursion-depths

 

of

 

any

 

thread

 

holding

 

this

 

lock

 

in

 

an

 

upgraded

 

or

 

downgraded

 

state

 

are

 

reported

 

in

 

the

 

table.

 

The

 

Lock

 

Activity

 

report

 

also

 

breaks

 

down

 

the

 

time

 

based

 

on

 

what

 

task

 

the

 

lock

 

is

 

being

 

secured

 

for

 

(reading,

 

writing,

 

or

 

upgrading).

 

No

 

time

 

is

 

reported

 

to

 

perform

 

a

 

downgrade

 

because

 

this

 

is

 

performed

 

without

 

any

 

contention.

 

The

 

upgrade

 

state

 

is

 

only

 

reported

 

for

 

the

 

case

 

where

 

a

 

recursive

 

read-lock

 

is

 

upgraded.

 

Otherwise,

 

the

 

thread

 

activity

 

is

 

measured

 

as

 

releasing

 

a

 

read-lock

 

and

 

acquiring

 

a

 

write-lock.

 

The

 

function

 

and

 

thread

 

details

 

also

 

break

 

down

 

the

 

acquisition,

 

spin,

 

and

 

wait

 

counts

 

by

 

whether

 

the

 

lock

 

is

 

to

 

be

 

acquired

 

for

 

reading

 

or

 

writing.

 

PThread

 

Synchronizer

 

Reports

 

By

 

default,

 

the

 

splat

 

command

 

prints

 

a

 

detailed

 

report

 

for

 

each

 

PThread

 

entry

 

in

 

the

 

summary

 

report.

 

The

 

PThread

 

synchronizers

 

are

 

of

 

the

 

following

 

types:

 

mutex,

 

read/write

 

lock,

 

and

 

condition-variable.

 

The

 

mutex

 

and

 

read/write

 

lock

 

are

 

related

 

to

 

the

 

AIX

 

complex

 

lock.

 

You

 

can

 

view

 

the

 

similarities

 

in

 

the

 

lock

 

detail

 

reports.

 

The

 

condition-variable

 

differs

 

significantly

 

from

 

a

 

lock,

 

and

 

this

 

is

 

reflected

 

in

 

the

 

report

 

details.

 

The

 

PThread

 

library

 

instrumentation

 

does

 

not

 

provide

 

names

 

or

 

classes

 

of

 

synchronizers,

 

so

 

the

 

addresses

 

are

 

the

 

only

 

way

 

we

 

have

 

to

 

identify

 

them.

 

Under

 

certain

 

conditions,

 

the

 

instrumentation

 

can

 

capture

 

the

 

return

 

addresses

 

of

 

the

 

function

 

call

 

stack,

 

and

 

these

 

addresses

 

are

 

used

 

with

 

the

 

gennames

 

or

 

gensyms

 

output

 

to

 

identify

 

the

 

call

 

chains

 

when

 

these

 

synchronizers

 

are

 

created.

 

The

 

creation

 

and

 

deletion

 

times

 

of

 

the

 

synchronizer

 

can

 

sometimes

 

be

 

determined

 

as

 

well,

 

along

 

with

 

the

 

ID

 

of

 

the

 

PThread

 

that

 

created

 

them.

 

Mutex

 

Reports

 

The

 

PThread

 

mutex

 

is

 

similar

 

to

 

an

 

AIX

 

simple

 

lock

 

in

 

that

 

only

 

one

 

thread

 

can

 

acquire

 

the

 

lock,

 

and

 

is

 

like

 

an

 

AIX

 

complex

 

lock

 

in

 

that

 

it

 

can

 

be

 

held

 

recursively.

 

[PThread

 

MUTEX]

    

ADDRESS:

     

00000000F0154CD0

 

Parent

 

Thread:

  

0000000000000001

     

creation

 

time:

     

26.232305

 

Pid:

 

18396

       

Process

 

Name:

 

trcstop

 

Creation

 

call-chain

 

==================================================================

 

00000000D268606C

        

.pthread_mutex_lock

 

00000000D268EB88

        

.pthread_once

 

00000000D01FE588

        

.__libs_init

 

00000000D01EB2FC

        

._libc_inline_callbacks

 

00000000D01EB280

        

._libc_declare_data_functions

 

00000000D269F960

        

._pth_init_libc

 

00000000D268A2B4

        

.pthread_init

 

00000000D01EAC08

        

.__modinit

 

000000001000014C

        

.__start

 

======================================================================================

          

|

                             

|

                  

|

 

Percent

 

Held

 

(

 

26.235284s

 

)

 

Acqui-

   

|

  

Miss

  

Spin

   

Wait

   

Busy

   

|

    

Secs

 

Held

     

|

  

Real

  

Real

    

Comb

  

Real

 

sitions

  

|

  

Rate

  

Count

  

Count

  

Count

  

|CPU

      

Elapsed

  

|

  

CPU

  

Elapsed

  

Spin

  

Wait

 

1

        

|

  

0.000

 

0

      

0

      

0

      

|0.000006

 

0.000006

 

|

  

0.00

   

0.00

   

0.00

  

0.00

 

--------------------------------------------------------------------------------------

 

Depth

     

Min

   

Max

   

Avg

 

SpinQ

     

0

     

0

     

0

 

WaitQ

     

0

     

0

     

0

 

Recursion

 

0

     

1

     

0

                

Acqui-

     

Miss

  

Spin

   

Wait

   

Busy

        

Percent

 

Held

 

of

 

Total

 

Time

  

PThreadID

   

sitions

    

Rate

  

Count

  

Count

  

Count

     

CPU

     

Elapse

    

Spin

     

Wait

  

~~~~~~~~~~

  

~~~~~~~~

  

~~~~~~

 

~~~~~~

 

~~~~~~

 

~~~~~~

   

~~~~~~

   

~~~~~~

   

~~~~~~

   

~~~~~~

          

1

         

1

    

0.00

      

0

      

0

      

0

     

0.00

     

0.00

     

0.00

     

0.00

                       

Acqui-

   

Miss

  

Spin

   

Wait

   

Busy

    

Percent

 

Held

 

of

 

Total

 

Time

 

Function

 

Name

      

sitions

   

Rate

  

Count

  

Count

  

Count

    

CPU

   

Elapse

  

Spin

   

Wait

   

Return

 

Address

   

Start

 

Address

    

Offset

 

^^^^^^^^^^^^^^^^^^

 

^^^^^^^^

 

^^^^^^

 

^^^^^^

 

^^^^^^

 

^^^^^^

  

^^^^^^

 

^^^^^^

 

^^^^^^

 

^^^^^^

  

^^^^^^^^^^^^^^^^

 

^^^^^^^^^^^^^^^^

 

^^^^^^^^

    

.pthread_once

        

0

    

0.00

    

0

      

0

      

0

     

99.99

  

99.99

   

0.00

   

0.00

  

00000000D268EC98

 

00000000D2684180

 

0000AB18

    

.pthread_once

        

1

    

0.00

    

0

      

0

      

0

      

0.01

   

0.01

   

0.00

   

0.00

  

00000000D268EB88

 

00000000D2684180

 

0000AA08

  

102

 

Performance

 

Tools

 

Guide

 

and

 

Reference



In

 

addition

 

to

 

the

 

common

 

header

 

information

 

and

 

the

 

[PThread

 

MUTEX]

 

identifier,

 

this

 

report

 

lists

 

the

 

following

 

lock

 

details:

  

Parent

 

Thread

 

Pthread

 

id

 

of

 

the

 

parent

 

pthread.

 

creation

 

time

 

Elapsed

 

time

 

in

 

seconds

 

after

 

the

 

first

 

event

 

recorded

 

in

 

trace

 

(if

 

available).

 

deletion

 

time

 

Elapsed

 

time

 

in

 

seconds

 

after

 

the

 

first

 

event

 

recorded

 

in

 

trace

 

(if

 

available).

 

PID

 

Process

 

identifier.

 

Process

 

Name

 

Name

 

of

 

the

 

process

 

using

 

the

 

lock.

 

Call-chain

 

Stack

 

of

 

called

 

methods

 

(if

 

available).

 

Acquisitions

 

The

 

number

 

of

 

times

 

that

 

the

 

lock

 

was

 

acquired

 

in

 

the

 

analysis

 

interval.

 

Miss

 

Rate

 

The

 

percentage

 

of

 

attempts

 

that

 

failed

 

to

 

acquire

 

the

 

lock.

 

Spin

 

Count

 

The

 

number

 

of

 

unsuccessful

 

attempts

 

to

 

acquire

 

the

 

lock.

 

Wait

 

Count

 

The

 

number

 

of

 

times

 

that

 

a

 

thread

 

was

 

forced

 

into

 

a

 

suspended

 

wait

 

state

 

waiting

 

for

 

the

 

lock

 

to

 

come

 

available.

 

Busy

 

Count

 

The

 

number

 

of

 

trylock

 

calls

 

that

 

returned

 

busy.

 

Seconds

 

Held

 

This

 

field

 

contains

 

the

 

following

 

sub-fields:

 

CPU

 

The

 

total

 

number

 

of

 

processor

 

seconds

 

that

 

the

 

lock

 

was

 

held

 

by

 

an

 

executing

 

thread.

 

Elapse(d)

 

The

 

total

 

number

 

of

 

elapsed

 

seconds

 

that

 

the

 

lock

 

was

 

held,

 

whether

 

the

 

thread

 

was

 

running

 

or

 

suspended.

 

Percent

 

Held

 

This

 

field

 

contains

 

the

 

following

 

sub-fields:

 

Real

 

CPU

 

The

 

percentage

 

of

 

the

 

cumulative

 

processor

 

time

 

that

 

the

 

lock

 

was

 

held

 

by

 

an

 

executing

 

thread.

 

Real

 

Elapsed

  

The

 

percentage

 

of

 

the

 

elapsed

 

real

 

time

 

that

 

the

 

lock

 

was

 

held

 

by

 

any

 

thread,

 

either

 

running

 

or

 

suspended.

 

Comb(ined)

 

Spin

 

The

 

percentage

 

of

 

the

 

cumulative

 

processor

 

time

 

that

 

running

 

threads

 

spent

 

spinning

 

while

 

trying

 

to

 

acquire

 

this

 

lock.

 

Real

 

Wait

 

The

 

percentage

 

of

 

elapsed

 

real

 

time

 

that

 

any

 

thread

 

was

 

waiting

 

to

 

acquire

 

this

 

lock.

 

If

 

two

 

or

 

more

 

threads

 

are

 

waiting

 

simultaneously,

 

this

 

wait

 

time

 

will

 

only

 

be

 

charged

 

once.

 

To

 

learn

 

how

 

many

 

threads

 

were

 

waiting

 

simultaneously,

 

look

 

at

 

the

 

WaitQ

 

Depth

 

statistics.

 

Depth

 

This

 

field

 

contains

 

the

 

following

 

sub-fields:

 

SpinQ

 

The

 

minimum,

 

maximum,

 

and

 

average

 

number

 

of

 

threads

 

spinning

 

on

 

the

 

lock,

 

whether

 

executing

 

or

 

suspended,

 

across

 

the

 

analysis

 

interval.

 

WaitQ

 

The

 

minimum,

 

maximum,

 

and

 

average

 

number

 

of

 

threads

 

waiting

 

on

 

the

 

lock,

 

across

 

the

 

analysis

 

interval.

 

Recursion

 

The

 

minimum,

 

maximum,

 

and

 

average

 

recursion

 

depth

 

to

 

which

 

each

 

thread

 

held

 

the

 

lock.

   

Mutex

 

Pthread

 

Detail

 

If

 

the

 

-dt

 

or

 

-da

 

options

 

are

 

used,

 

the

 

splat

 

command

 

reports

 

the

 

pthread

 

detail

 

as

 

described

 

below:

  

PThreadID

 

The

 

PThread

 

identifier.

   

Chapter

 

4.

 

Simple

 

Performance

 

Lock

 

Analysis

 

Tool

 

(splat)

 

103



Acquisitions

 

The

 

number

 

of

 

times

 

that

 

this

 

pthread

 

acquired

 

the

 

mutex.

 

Miss

 

Rate

 

The

 

percentage

 

of

 

acquisition

 

attempts

 

by

 

the

 

pthread

 

that

 

failed

 

to

 

secure

 

the

 

mutex.

 

Spin

 

Count

 

The

 

number

 

of

 

unsuccessful

 

attempts

 

by

 

this

 

pthread

 

to

 

secure

 

the

 

mutex.

 

Wait

 

Count

 

The

 

number

 

of

 

times

 

that

 

this

 

pthread

 

was

 

forced

 

to

 

wait

 

until

 

the

 

mutex

 

came

 

available.

 

Busy

 

Count

 

The

 

number

 

of

 

trylock

 

calls

 

that

 

returned

 

busy.

 

Percent

 

Held

 

of

 

Total

 

Time

 

This

 

field

 

contains

 

the

 

following

 

sub-fields:

 

CPU

 

The

 

percentage

 

of

 

the

 

elapsed

 

real

 

time

 

that

 

this

 

pthread

 

executed

 

while

 

holding

 

the

 

mutex.

 

Elapse(d)

 

The

 

percentage

 

of

 

the

 

elapsed

 

real

 

time

 

that

 

this

 

pthread

 

held

 

the

 

mutex

 

while

 

running

 

or

 

suspended.

 

Spin

 

The

 

percentage

 

of

 

elapsed

 

real

 

time

 

that

 

this

 

pthread

 

executed

 

while

 

spinning

 

on

 

the

 

mutex.

 

Wait

 

The

 

percentage

 

of

 

elapsed

 

real

 

time

 

that

 

this

 

pthread

 

spent

 

waiting

 

on

 

the

 

mutex.

   

Mutex

 

Function

 

Detail

 

If

 

the

 

-df

 

or

 

-da

 

options

 

are

 

used,

 

the

 

splat

 

command

 

reports

 

the

 

function

 

detail

 

as

 

described

 

below:

  

PThreadID

 

The

 

PThread

 

identifier.

 

Acquisitions

 

The

 

number

 

of

 

times

 

that

 

this

 

function

 

acquired

 

the

 

mutex.

 

Miss

 

Rate

 

The

 

percentage

 

of

 

acquisition

 

attempts

 

by

 

the

 

function

 

that

 

failed

 

to

 

secure

 

the

 

mutex.

 

Spin

 

Count

 

The

 

number

 

of

 

unsuccessful

 

attempts

 

by

 

this

 

function

 

to

 

secure

 

the

 

mutex.

 

Wait

 

Count

 

The

 

number

 

of

 

times

 

that

 

this

 

function

 

was

 

forced

 

to

 

wait

 

until

 

the

 

mutex

 

came

 

available.

 

Busy

 

Count

 

The

 

number

 

of

 

trylock

 

calls

 

that

 

returned

 

busy.

 

Percent

 

Held

 

of

 

Total

 

Time

 

This

 

field

 

contains

 

the

 

following

 

sub-fields:

 

CPU

 

The

 

percentage

 

of

 

the

 

elapsed

 

real

 

time

 

that

 

this

 

function

 

executed

 

while

 

holding

 

the

 

mutex.

 

Elapse(d)

 

The

 

percentage

 

of

 

the

 

elapsed

 

real

 

time

 

that

 

this

 

function

 

held

 

the

 

mutex

 

while

 

running

 

or

 

suspended.

 

Spin

 

The

 

percentage

 

of

 

elapsed

 

real

 

time

 

that

 

this

 

function

 

executed

 

while

 

spinning

 

on

 

the

 

mutex.

 

Wait

 

The

 

percentage

 

of

 

elapsed

 

real

 

time

 

that

 

this

 

function

 

spent

 

waiting

 

for

 

the

 

mutex.

 

Return

 

Address

 

The

 

return

 

address

 

to

 

this

 

calling

 

function,

 

in

 

hexadecimal.

 

Start

 

Address

 

The

 

start

 

address

 

to

 

this

 

calling

 

function,

 

in

 

hexadecimal.

 

Offset

 

The

 

offset

 

from

 

the

 

function

 

start

 

address

 

to

 

the

 

return

 

address,

 

in

 

hexadecimal.

   

Read/Write

 

Lock

 

Reports

 

The

 

PThread

 

read/write

 

lock

 

is

 

similar

 

to

 

an

 

AIX

 

complex

 

lock

 

in

 

that

 

it

 

can

 

be

 

acquired

 

for

 

reading

 

or

 

writing;

 

writing

 

is

 

exclusive

 

in

 

that

 

a

 

single

 

thread

 

can

 

only

 

acquire

 

the

 

lock

 

for

 

writing,

 

and

 

no

 

other

 

thread

 

can

 

hold

 

the

 

lock

 

for

 

reading

 

or

 

writing

 

at

 

that

 

point.

 

Reading

 

is

 

not

 

exclusive,

 

so

 

more

 

than

 

one

 

thread

 

can

 

hold

 

the

 

lock

 

for

 

reading.

 

Reading

 

is

 

recursive

 

in

 

that

 

a

 

single

 

thread

 

can

 

hold

 

multiple

 

read-acquisitions

 

on

 

the

 

lock.

 

Writing

 

is

 

not

 

recursive.

     

[PThread

 

RWLock]

    

ADDRESS:

    

000000002FF228E0

  

104

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Parent

 

Thread:

  

0000000000000001

     

creation

 

time:

     

5.236585

          

deletion

 

time:

  

6.090511

 

Pid:

 

7362

        

Process

 

Name:

 

/home/testrwlock

 

Creation

 

call-chain

 

==================================================================

 

0000000010000458

        

.main

 

00000000100001DC

        

.__start

 

=============================================================================

          

|

                     

|

                  

|

 

Percent

 

Held

 

(

 

26.235284s

 

)

 

Acqui-

   

|

  

Miss

  

Spin

   

Wait

  

|

    

Secs

 

Held

     

|

  

Real

  

Real

    

Comb

  

Real

 

sitions

  

|

  

Rate

  

Count

  

Count

 

|CPU

      

Elapsed

  

|

  

CPU

  

Elapsed

  

Spin

  

Wait

 

1150

     

|40.568

   

785

    

0

    

|21.037942

 

12.0346

 

|80.19

   

99.22

  

30.45

 

46.29

 

--------------------------------------------------------------------------------------

                 

Readers

             

Writers

                     

Total

 

Depth

     

Min

   

Max

   

Avg

       

Min

   

Max

   

Avg

            

Min

   

Max

   

Avg

 

LockQ

     

0

     

2

     

0

         

0

     

1

     

0

              

0

     

2

     

0

 

SpinQ

     

0

     

768

   

601

       

0

     

15

    

11

             

0

     

782

   

612

 

WaitQ

     

0

     

769

   

166

       

0

     

15

    

3

              

0

     

783

   

169

                

Acquisitions

   

Miss

   

Spin

   

Count

  

Wait

   

Count

  

Busy

    

Percent

 

Held

 

of

 

Total

 

Time

 

PthreadID

    

Write

  

Read

    

Rate

   

Write

  

Read

   

Write

  

Read

   

Count

    

CPU

   

Elapse

  

Spin

   

Wait

  

~~~~~~~~~~

  

~~~~~~

 

~~~~~~

  

~~~~~~

 

~~~~~~

 

~~~~~~

 

~~~~~~

 

~~~~~~

 

~~~~~~

  

~~~~~~

 

~~~~~~

 

~~~~~~

 

~~~~~~

         

772

       

0

    

207

   

78.70

      

0

    

765

      

0

    

796

      

0

   

11.58

  

15.13

 

29.69

  

23.21

         

515

     

765

      

0

    

1.80

     

14

      

0

     

14

      

0

      

0

   

80.10

  

80.19

 

49.76

  

23.08

         

258

       

0

    

178

    

3.26

      

0

      

6

      

0

      

5

      

0

   

12.56

  

17.10

 

10.00

  

20.02

                        

Acquisitions

   

Miss

  

Spin

   

Count

  

Wait

   

Count

  

Busy

   

Percent

 

Held

 

of

 

Total

 

Time

 

Function

 

Name

    

Write

  

Read

    

Rate

  

Write

  

Read

   

Write

  

Read

   

Count

  

CPU

   

Elapse

  

Spin

   

Wait

    

Return

 

Address

   

Start

 

Address

    

Offset

  

^^^^^^^^^^^^^^^^^^^^

 

^^^^^^

 

^^^^^^

  

^^^^^^

 

^^^^^^

 

^^^^^^

 

^^^^^^

 

^^^^^^

 

^^^^^^

 

^^^^^^

 

^^^^^^

 

^^^^^^

 

^^^^^^

  

^^^^^^^^^^^^^^^^

 

^^^^^^^^^^^^^^^^

 

^^^^^^^^

   

._pthread_body

  

765

    

385

   

40.57

   

14

    

771

      

0

      

0

      

0

   

1.55

    

3.10

   

1.63

   

0.00

  

00000000D268944C

 

00000000D2684180

 

000052CC

 

In

 

addition

 

to

 

the

 

common

 

header

 

information

 

and

 

the

 

[PThread

 

RWLock]

 

identifier,

 

this

 

report

 

lists

 

the

 

following

 

lock

 

details:

  

Parent

 

Thread

 

Pthread

 

id

 

of

 

the

 

parent

 

pthread.

 

creation

 

time

 

Elapsed

 

time

 

in

 

seconds

 

after

 

the

 

first

 

event

 

recorded

 

in

 

trace

 

(if

 

available).

 

deletion

 

time

 

Elapsed

 

time

 

in

 

seconds

 

after

 

the

 

first

 

event

 

recorded

 

in

 

trace

 

(if

 

available).

 

PID

 

Process

 

identifier.

 

Process

 

Name

 

Name

 

of

 

the

 

process

 

using

 

the

 

lock.

 

Call-chain

 

Stack

 

of

 

called

 

methods

 

(if

 

available).

 

Acquisitions

 

The

 

number

 

of

 

times

 

that

 

the

 

lock

 

was

 

acquired

 

in

 

the

 

analysis

 

interval.

 

Miss

 

Rate

 

The

 

percentage

 

of

 

attempts

 

that

 

failed

 

to

 

acquire

 

the

 

lock.

 

Spin

 

Count

 

The

 

number

 

of

 

unsuccessful

 

attempts

 

to

 

acquire

 

the

 

lock.

 

Wait

 

Count

 

The

 

current

 

PThread

 

implementation

 

does

 

not

 

force

 

pthreads

 

to

 

wait

 

for

 

read/write

 

locks.

 

This

 

reports

 

the

 

number

 

of

 

times

 

a

 

thread,

 

spinning

 

on

 

this

 

lock,

 

is

 

undispatched.

 

Seconds

 

Held

 

This

 

field

 

contains

 

the

 

following

 

sub-fields:

 

CPU

 

The

 

total

 

number

 

of

 

processor

 

seconds

 

that

 

the

 

lock

 

was

 

held

 

by

 

an

 

executing

 

pthread.

 

If

 

the

 

lock

 

is

 

held

 

multiple

 

times

 

by

 

the

 

same

 

pthread,

 

only

 

one

 

hold

 

interval

 

is

 

counted.

 

Elapse(d)

 

The

 

total

 

number

 

of

 

elapsed

 

seconds

 

that

 

the

 

lock

 

was

 

held

 

by

 

any

 

pthread,

 

whether

 

the

 

pthread

 

was

 

running

 

or

 

suspended.

   

Chapter

 

4.

 

Simple

 

Performance

 

Lock

 

Analysis

 

Tool

 

(splat)

 

105



Percent

 

Held

 

This

 

field

 

contains

 

the

 

following

 

sub-fields:

 

Real

 

CPU

 

The

 

percentage

 

of

 

the

 

cumulative

 

processor

 

time

 

that

 

the

 

lock

 

was

 

held

 

by

 

any

 

executing

 

pthread.

 

Real

 

Elapsed

 

The

 

percentage

 

of

 

the

 

elapsed

 

real

 

time

 

that

 

the

 

lock

 

was

 

held

 

by

 

any

 

pthread,

 

either

 

running

 

or

 

suspended.

 

Comb(ined)

 

Spin

 

The

 

percentage

 

of

 

the

 

cumulative

 

processor

 

time

 

that

 

running

 

pthreads

 

spent

 

spinning

 

while

 

trying

 

to

 

acquire

 

this

 

lock.

 

Real

 

Wait

 

The

 

percentage

 

of

 

elapsed

 

real

 

time

 

that

 

any

 

pthread

 

was

 

waiting

 

to

 

acquire

 

this

 

lock.

 

If

 

two

 

or

 

more

 

threads

 

are

 

waiting

 

simultaneously,

 

this

 

wait

 

time

 

will

 

only

 

be

 

charged

 

once.

 

To

 

learn

 

how

 

many

 

pthreads

 

were

 

waiting

 

simultaneously,

 

look

 

at

 

the

 

WaitQ

 

Depth

 

statistics.

 

Depth

 

This

 

field

 

contains

 

the

 

following

 

sub-fields:

 

LockQ

 

The

 

minimum,

 

maximum,

 

and

 

average

 

number

 

of

 

pthreads

 

holding

 

the

 

lock,

 

whether

 

executing

 

or

 

suspended,

 

across

 

the

 

analysis

 

interval.

 

This

 

is

 

broken

 

down

 

by

 

read-acquisitions,

 

write-acquisitions,

 

and

 

total

 

acquisitions.

 

SpinQ

 

The

 

minimum,

 

maximum,

 

and

 

average

 

number

 

of

 

pthreads

 

spinning

 

on

 

the

 

lock,

 

whether

 

executing

 

or

 

suspended,

 

across

 

the

 

analysis

 

interval.

 

This

 

is

 

broken

 

down

 

by

 

read-acquisitions,

 

write-acquisitions,

 

and

 

total

 

acquisitions.

 

WaitQ

 

The

 

minimum,

 

maximum,

 

and

 

average

 

number

 

of

 

pthreads

 

in

 

a

 

timed-wait

 

state

 

for

 

the

 

lock,

 

across

 

the

 

analysis

 

interval.

 

This

 

is

 

broken

 

down

 

by

 

read-acquisitions,

 

write-acquisitions,

 

and

 

and

 

total

 

acquisitions.

   

Note:

  

The

 

pthread

 

and

 

function

 

details

 

for

 

read/write

 

locks

 

are

 

similar

 

to

 

the

 

mutex

 

detail

 

reports,

 

except

 

that

 

they

 

break

 

down

 

the

 

acquisition,

 

spin,

 

and

 

wait

 

counts

 

by

 

whether

 

the

 

lock

 

is

 

to

 

be

 

acquired

 

for

 

reading

 

or

 

writing.

 

Condition-Variable

 

Report

 

The

 

PThread

 

condition-variable

 

is

 

a

 

synchronizer,

 

but

 

not

 

a

 

lock.

 

A

 

PThread

 

is

 

suspended

 

until

 

a

 

signal

 

indicates

 

that

 

the

 

condition

 

now

 

holds.

 

[PThread

 

CondVar]

    

ADDRESS:

   

0000000020000A18

 

Parent

 

Thread:

  

0000000000000001

     

creation

 

time:

     

0.216301

 

Pid:

 

7360

        

Process

 

Name:

 

/home/splat/test/condition

 

Creation

 

call-chain

 

========================================================

 

00000000D26A0EE8

        

.pthread_cond_timedwait

 

0000000010000510

        

.main

 

00000000100001DC

        

.__start

 

=========================================================================

          

|

                    

|

 

Spin

 

/

 

Wait

 

Time

 

(

 

26.235284s

 

)

          

|

 

Fail

  

Spin

   

Wait

  

|

  

Comb

    

Comb

  

Passes

  

|

 

Rate

  

Count

  

Count

 

|

  

Spin

    

Wait

  

1

       

|50.000

   

1

      

0

   

|

 

26.02

    

0.00

 

-------------------------------------------------------------------------

 

Depth

     

Min

   

Max

   

Avg

 

SpinQ

     

0

     

1

     

1

 

WaitQ

     

0

     

0

     

0

                        

Fail

   

Spin

   

Wait

    

%

 

Total

 

Time

  

PThreadID

   

Passes

    

Rate

   

Count

  

Count

   

Spin

     

Wait

  

~~~~~~~~~

  

~~~~~~~~

  

~~~~~~

  

~~~~~~

 

~~~~~~

  

~~~~~~

  

~~~~~~

          

1

         

1

  

50.0000

     

1

      

0

  

99.1755

  

0.0000

                                      

Fail

   

Spin

   

Wait

    

%

 

Total

 

Time

  

106

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Function

 

Name

   

Passes

     

Rate

   

Count

  

Count

  

Spin

     

Wait

    

Return

 

Address

   

Start

 

Address

    

Offset

 

^^^^^^^^^^^^^^^

 

^^^^^^^^

  

^^^^^^

  

^^^^^^

 

^^^^^^

 

^^^^^^

   

^^^^^^

  

^^^^^^^^^^^^^^^^

 

^^^^^^^^^^^^^^^^

 

^^^^^^^^

   

.__start

       

1

        

50.0000

     

1

     

0

    

99.1755

 

0.0000

  

00000000100001DC

 

0000000010000000

 

000001DC

   

In

 

addition

 

to

 

the

 

common

 

header

 

information

 

and

 

the

 

[PThread

 

CondVar]

 

identifier,

 

this

 

report

 

lists

 

the

 

following

 

details:

  

Passes

 

The

 

number

 

of

 

times

 

that

 

the

 

condition

 

was

 

signaled

 

to

 

hold

 

during

 

the

 

analysis

 

interval.

 

Fail

 

Rate

 

The

 

percentage

 

of

 

times

 

that

 

the

 

condition

 

was

 

tested

 

and

 

was

 

not

 

found

 

to

 

be

 

true.

 

Spin

 

Count

 

The

 

number

 

of

 

times

 

that

 

the

 

condition

 

was

 

tested

 

and

 

was

 

not

 

found

 

to

 

be

 

true.

 

Wait

 

Count

 

The

 

number

 

of

 

times

 

that

 

a

 

pthread

 

was

 

forced

 

into

 

a

 

suspended

 

wait

 

state

 

waiting

 

for

 

the

 

condition

 

to

 

be

 

signaled.

 

Spin

 

/

 

Wait

 

Time

 

This

 

field

 

contains

 

the

 

following

 

sub-fields:

 

Comb

 

Spin

 

The

 

total

 

number

 

of

 

processor

 

seconds

 

that

 

pthreads

 

spun

 

while

 

waiting

 

for

 

the

 

condition.

 

Comb

 

Wait

 

The

 

total

 

number

 

of

 

elapsed

 

seconds

 

that

 

pthreads

 

spent

 

in

 

a

 

wait

 

state

 

for

 

the

 

condition.

 

Depth

 

This

 

field

 

contains

 

the

 

following

 

sub-fields:

 

SpinQ

 

The

 

minimum,

 

maximum,

 

and

 

average

 

number

 

of

 

pthreads

 

spinning

 

while

 

waiting

 

for

 

the

 

condition,

 

across

 

the

 

analysis

 

interval.

 

WaitQ

  

The

 

minimum,

 

maximum,

 

and

 

average

 

number

 

of

 

pthreads

 

waiting

 

for

 

the

 

condition,

 

across

 

the

 

analysis

 

interval.

   

Condition-Variable

 

Pthread

 

Detail

 

If

 

the

 

-dt

 

or

 

-da

 

options

 

are

 

used,

 

the

 

splat

 

command

 

reports

 

the

 

pthread

 

detail

 

as

 

described

 

below:

  

PThreadID

 

The

 

PThread

 

identifier.

 

Passes

 

The

 

number

 

of

 

times

 

that

 

this

 

pthread

 

was

 

notified

 

that

 

the

 

condition

 

passed.

 

Fail

 

Rate

 

The

 

percentage

 

of

 

times

 

that

 

the

 

pthread

 

checked

 

the

 

condition

 

and

 

did

 

not

 

find

 

it

 

to

 

be

 

true.

 

Spin

 

Count

 

The

 

number

 

of

 

times

 

that

 

the

 

pthread

 

checked

 

the

 

condition

 

and

 

did

 

not

 

find

 

it

 

to

 

be

 

true.

 

Wait

 

Count

 

The

 

number

 

of

 

times

 

that

 

this

 

pthread

 

was

 

forced

 

to

 

wait

 

until

 

the

 

condition

 

became

 

true.

 

Percent

 

Total

 

Time

 

This

 

field

 

contains

 

the

 

following

 

sub-fields:

 

Spin

 

The

 

percentage

 

of

 

elapsed

 

real

 

time

 

that

 

this

 

pthread

 

spun

 

while

 

testing

 

the

 

condition.

 

Wait

 

The

 

percentage

 

of

 

elapsed

 

real

 

time

 

that

 

this

 

pthread

 

spent

 

waiting

 

for

 

the

 

condition

 

to

 

hold.

   

Condition-Variable

 

Function

 

Detail

 

If

 

the

 

-df

 

or

 

-da

 

options

 

are

 

used,

 

the

 

splat

 

command

 

reports

 

the

 

function

 

detail

 

as

 

described

 

below:

  

Function

 

Name

 

The

 

name

 

of

 

the

 

function

 

that

 

passed

 

or

 

attempted

 

to

 

pass

 

this

 

condition.

 

Passes

 

The

 

number

 

of

 

times

 

that

 

this

 

function

 

was

 

notified

 

that

 

the

 

condition

 

passed.

 

Fail

 

Rate

 

The

 

percentage

 

of

 

times

 

that

 

the

 

function

 

checked

 

the

 

condition

 

and

 

did

 

not

 

find

 

it

 

to

 

be

 

true.

 

Spin

 

Count

 

The

 

number

 

of

 

times

 

that

 

the

 

function

 

checked

 

the

 

condition

 

and

 

did

 

not

 

find

 

it

 

to

 

be

 

true.

   

Chapter

 

4.

 

Simple

 

Performance

 

Lock

 

Analysis

 

Tool

 

(splat)

 

107



Wait

 

Count

 

The

 

number

 

of

 

times

 

that

 

this

 

function

 

was

 

forced

 

to

 

wait

 

until

 

the

 

condition

 

became

 

true.

 

Percent

 

Total

 

Time

 

This

 

field

 

contains

 

the

 

following

 

sub-fields:

 

Spin

 

The

 

percentage

 

of

 

elapsed

 

real

 

time

 

that

 

this

 

function

 

spun

 

while

 

testing

 

the

 

condition.

 

Wait

 

The

 

percentage

 

of

 

elapsed

 

real

 

time

 

that

 

this

 

function

 

spent

 

waiting

 

for

 

the

 

condition

 

to

 

hold.

 

Return

 

Address

 

The

 

return

 

address

 

to

 

this

 

calling

 

function,

 

in

 

hexadecimal.

 

Start

 

Address

 

The

 

start

 

address

 

to

 

this

 

calling

 

function,

 

in

 

hexadecimal.

 

Offset

 

The

 

offset

 

from

 

the

 

function

 

start

 

address

 

to

 

the

 

return

 

address,

 

in

 

hexadecimal.

   

108

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Chapter

 

5.

 

Performance

 

Monitor

 

API

 

Programming

 

The

 

libpmapi

 

library

 

contains

 

a

 

set

 

of

 

application

 

programming

 

interfaces

 

(APIs)

 

that

 

are

 

designed

 

to

 

provide

 

access

 

to

 

some

 

of

 

the

 

counting

 

facilities

 

of

 

the

 

Performance

 

Monitor

 

feature

 

included

 

in

 

selected

 

IBM

 

microprocessors.

 

Those

 

APIs

 

include

 

the

 

following:

 

v

   

A

 

set

 

of

 

system-level

 

APIs

 

to

 

allow

 

counting

 

of

 

the

 

activity

 

of

 

a

 

whole

 

machine

 

or

 

of

 

a

 

set

 

of

 

processes

 

with

 

a

 

common

 

ancestor.

 

v

   

A

 

set

 

of

 

first

 

party

 

kernel-thread-level

 

APIs

 

to

 

allow

 

threads

 

running

 

in

 

1:1

 

mode

 

to

 

count

 

their

 

own

 

activity.

 

v

   

A

 

set

 

of

 

third

 

party

 

kernel-thread-level

 

APIs

 

to

 

allow

 

a

 

debug

 

program

 

to

 

count

 

the

 

activity

 

of

 

target

 

threads

 

running

 

in

 

1:1

 

mode.

Note:

  

The

 

APIs

 

and

 

the

 

events

 

available

 

on

 

each

 

of

 

the

 

supported

 

processors

 

have

 

been

 

completely

 

separated

 

by

 

design.

 

The

 

events

 

available,

 

their

 

descriptions,

 

and

 

their

 

current

 

testing

 

status

 

(which

 

are

 

different

 

on

 

each

 

processor)

 

are

 

in

 

separately

 

installable

 

tables,

 

and

 

are

 

not

 

described

 

here

 

because

 

none

 

of

 

the

 

API

 

calls

 

depend

 

on

 

the

 

availability

 

or

 

status

 

of

 

any

 

of

 

the

 

events.

 

The

 

status

 

of

 

an

 

event,

 

as

 

returned

 

by

 

the

 

pm_initialize

 

API

 

initialization

 

routine,

 

can

 

be

 

verified,

 

unverified,

 

caveat,

 

broken,

 

group-only,

 

thresholdable,

 

or

 

shared

 

(see

 

“Performance

 

Monitor

 

Accuracy”

 

about

 

testing

 

status

 

and

 

event

 

accuracy).

 

An

 

event

 

filter

 

(which

 

is

 

any

 

combination

 

of

 

the

 

status

 

bits)

 

must

 

be

 

passed

 

to

 

the

 

pm_initialize

 

routine

 

to

 

force

 

the

 

return

 

of

 

events

 

with

 

status

 

matching

 

the

 

filter.

 

If

 

no

 

filter

 

is

 

passed

 

to

 

the

 

pm_initialize

 

routine,

 

no

 

events

 

will

 

be

 

returned.

 

The

 

following

 

topics

 

discuss

 

programming

 

the

 

Performance

 

Monitor

 

API:

 

v

   

“Performance

 

Monitor

 

Accuracy”

 

v

   

“Performance

 

Monitor

 

Context

 

and

 

State”

 

on

 

page

 

110

 

v

   

“Thread

 

Accumulation

 

and

 

Thread

 

Group

 

Accumulation”

 

on

 

page

 

110

 

v

   

“Security

 

Considerations”

 

on

 

page

 

111

 

v

   

“Common

 

Rules”

 

on

 

page

 

111

 

v

   

“Eight

 

Basic

 

API

 

Calls”

 

on

 

page

 

113

 

v

   

“Thread

 

Counting-Group

 

Information”

 

on

 

page

 

114

 

v

   

“Examples”

 

on

 

page

 

114

Performance

 

Monitor

 

Accuracy

 

Only

 

events

 

marked

 

verified

 

have

 

gone

 

through

 

full

 

verification.

 

Events

 

marked

 

caveat

 

have

 

been

 

verified

 

within

 

the

 

limitations

 

documented

 

in

 

the

 

event

 

description

 

returned

 

by

 

the

 

pm_initialize

 

routine.

 

Events

 

marked

 

unverified

 

have

 

undefined

 

accuracy.

 

Use

 

caution

 

with

 

unverified

 

events.

 

The

 

Performance

 

Monitor

 

API

 

is

 

essentially

 

providing

 

a

 

service

 

to

 

read

 

hardware

 

registers

 

that

 

may

 

not

 

have

 

any

 

meaningful

 

content.

 

Users

 

may

 

experiment

 

with

 

unverified

 

event

 

counters

 

and

 

determine

 

for

 

themselves

 

if

 

they

 

can

 

be

 

used

 

for

 

specific

 

tuning

 

situations.

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

109



Performance

 

Monitor

 

Context

 

and

 

State

 

To

 

provide

 

Performance

 

Monitor

 

data

 

access

 

at

 

various

 

levels,

 

the

 

AIX

 

operating

 

system

 

supports

 

optional

 

performance

 

monitoring

 

contexts.

 

These

 

contexts

 

are

 

an

 

extension

 

to

 

the

 

regular

 

processor

 

and

 

thread

 

contexts

 

and

 

include

 

one

 

64-bit

 

counter

 

per

 

hardware

 

counter

 

and

 

a

 

set

 

of

 

control

 

words.

 

The

 

control

 

words

 

define

 

which

 

events

 

are

 

counted

 

and

 

when

 

counting

 

is

 

on

 

or

 

off.

 

System-Level

 

Context

 

and

 

Accumulation

 

For

 

the

 

system-level

 

APIs,

 

optional

 

Performance

 

Monitor

 

contexts

 

can

 

be

 

associated

 

with

 

each

 

of

 

the

 

processors.

 

When

 

installed,

 

the

 

Performance

 

Monitor

 

kernel

 

extension

 

automatically

 

handles

 

32-bit

 

Performance

 

Monitor

 

hardware

 

counter

 

overflows.

 

It

 

also

 

maintains

 

per-processor

 

sets

 

of

 

64-bit

 

accumulation

 

counters

 

(one

 

per

 

32-bit

 

hardware

 

Performance

 

Monitor

 

counter).

 

Thread

 

Context

 

Optional

 

Performance

 

Monitor

 

contexts

 

can

 

also

 

be

 

associated

 

with

 

each

 

kernel

 

thread.

 

The

 

AIX

 

operating

 

system

 

and

 

the

 

Performance

 

Monitor

 

kernel

 

extension

 

automatically

 

maintain

 

sets

 

of

 

64-bit

 

counters

 

for

 

each

 

of

 

these

 

contexts.

 

Thread

 

Counting-Group

 

and

 

Process

 

Context

 

The

 

concept

 

of

 

thread

 

counting-group

 

is

 

optionally

 

supported

 

by

 

the

 

thread-level

 

APIs.

 

All

 

the

 

threads

 

within

 

a

 

group,

 

in

 

addition

 

to

 

their

 

own

 

Performance

 

Monitor

 

context,

 

share

 

a

 

group

 

accumulation

 

context.

 

A

 

thread

 

group

 

is

 

defined

 

as

 

all

 

the

 

threads

 

created

 

by

 

a

 

common

 

ancestor

 

thread.

 

By

 

definition,

 

all

 

the

 

threads

 

in

 

a

 

thread

 

group

 

count

 

the

 

same

 

set

 

of

 

events,

 

and,

 

with

 

one

 

exception

 

described

 

below,

 

the

 

group

 

must

 

be

 

created

 

before

 

any

 

of

 

the

 

descendant

 

threads

 

are

 

created.

 

This

 

restriction

 

is

 

due

 

to

 

the

 

fact

 

that,

 

after

 

descendant

 

threads

 

are

 

created,

 

it

 

is

 

impossible

 

to

 

determine

 

a

 

list

 

of

 

threads

 

with

 

a

 

common

 

ancestor.

 

One

 

special

 

case

 

of

 

a

 

group

 

is

 

the

 

collection

 

of

 

all

 

the

 

threads

 

belonging

 

to

 

a

 

process.

 

Such

 

a

 

group

 

can

 

be

 

created

 

at

 

any

 

time

 

regardless

 

of

 

when

 

the

 

descendant

 

threads

 

are

 

created,

 

because

 

a

 

list

 

of

 

threads

 

belonging

 

to

 

a

 

process

 

can

 

be

 

generated.

 

Multiple

 

groups

 

can

 

coexist

 

within

 

a

 

process,

 

but

 

each

 

thread

 

can

 

be

 

a

 

member

 

of

 

only

 

one

 

Performance

 

Monitor

 

counting-group.

 

Because

 

all

 

the

 

threads

 

within

 

a

 

group

 

must

 

be

 

counting

 

the

 

same

 

events,

 

a

 

process

 

group

 

creation

 

will

 

fail

 

if

 

any

 

thread

 

within

 

the

 

process

 

already

 

has

 

a

 

context.

 

Performance

 

Monitor

 

State

 

Inheritance

 

The

 

PM

 

state

 

is

 

defined

 

as

 

the

 

combination

 

of

 

the

 

Performance

 

Monitor

 

programmation

 

(the

 

events

 

being

 

counted),

 

the

 

counting

 

state

 

(on

 

or

 

off),

 

and

 

the

 

optional

 

thread

 

group

 

membership.

 

A

 

counting

 

state

 

is

 

associated

 

with

 

each

 

group.

 

When

 

the

 

group

 

is

 

created,

 

its

 

counting

 

state

 

is

 

inherited

 

from

 

the

 

initial

 

thread

 

in

 

the

 

group.

 

For

 

thread

 

members

 

of

 

a

 

group,

 

the

 

effective

 

counting

 

state

 

is

 

the

 

result

 

of

 

AND-ing

 

their

 

own

 

counting

 

state

 

with

 

the

 

group

 

counting

 

state.

 

This

 

provides

 

a

 

way

 

to

 

effectively

 

control

 

the

 

counting

 

state

 

for

 

all

 

threads

 

in

 

a

 

group.

 

Simply

 

manipulating

 

the

 

group-counting

 

state

 

will

 

affect

 

the

 

effective

 

counting

 

state

 

of

 

all

 

the

 

threads

 

in

 

the

 

group.

 

Threads

 

inherit

 

their

 

complete

 

Performance

 

Monitor

 

state

 

from

 

their

 

parents

 

when

 

the

 

thread

 

is

 

created.

 

A

 

thread

 

Performance

 

Monitor

 

context

 

data

 

(the

 

value

 

of

 

the

 

64-bit

 

counters)

 

is

 

not

 

inherited,

 

that

 

is,

 

newly

 

created

 

threads

 

start

 

with

 

counters

 

set

 

to

 

zero.

 

Thread

 

Accumulation

 

and

 

Thread

 

Group

 

Accumulation

 

When

 

a

 

thread

 

gets

 

suspended

 

(or

 

redispatched),

 

its

 

64-bit

 

accumulation

 

counters

 

are

 

updated.

 

If

 

the

 

thread

 

is

 

member

 

of

 

a

 

group,

 

the

 

group

 

accumulation

 

counters

 

are

 

updated

 

at

 

the

 

same

 

time.

 

Similarly,

 

when

 

a

 

thread

 

stops

 

counting

 

or

 

reads

 

its

 

Performance

 

Monitor

 

data,

 

its

 

64

 

bit

 

accumulation

 

counters

 

are

 

also

 

updated

 

by

 

adding

 

the

 

current

 

value

 

of

 

the

 

Performance

 

Monitor

 

hardware

 

counters

 

to

 

them.

 

Again,

 

if

 

the

 

thread

 

is

 

a

 

member

 

of

 

a

 

group,

 

the

 

group

 

accumulation

 

counters

 

are

 

also

 

updated,

 

regardless

 

of

 

whether

 

the

 

counter

 

read

 

or

 

stop

 

was

 

for

 

the

 

thread

 

or

 

for

 

the

 

thread

 

group.

   

110

 

Performance

 

Tools

 

Guide

 

and

 

Reference



The

 

group-level

 

accumulation

 

data

 

is

 

kept

 

consistent

 

with

 

the

 

individual

 

Performance

 

Monitor

 

data

 

for

 

the

 

thread

 

members

 

of

 

the

 

group,

 

whenever

 

possible.

 

When

 

a

 

thread

 

voluntarily

 

leaves

 

a

 

group,

 

that

 

is,

 

deletes

 

its

 

Performance

 

Monitor

 

context,

 

its

 

accumulated

 

data

 

is

 

automatically

 

subtracted

 

from

 

the

 

group-level

 

accumulated

 

data.

 

Similarly,

 

when

 

a

 

thread

 

member

 

in

 

a

 

group

 

resets

 

its

 

own

 

data,

 

the

 

data

 

in

 

question

 

is

 

subtracted

 

from

 

the

 

group

 

level

 

accumulated

 

data.

 

When

 

a

 

thread

 

dies,

 

no

 

action

 

is

 

taken

 

on

 

the

 

group-accumulated

 

data.

 

The

 

only

 

situation

 

where

 

the

 

group-level

 

accumulation

 

is

 

not

 

consistent

 

with

 

the

 

sum

 

of

 

the

 

data

 

for

 

each

 

of

 

its

 

members

 

is

 

when

 

the

 

group-level

 

accumulated

 

data

 

has

 

been

 

reset,

 

and

 

the

 

group

 

has

 

more

 

than

 

one

 

member.

 

This

 

situation

 

is

 

detected

 

and

 

marked

 

by

 

a

 

bit

 

returned

 

when

 

the

 

group

 

data

 

is

 

read.

 

Security

 

Considerations

 

The

 

system-level

 

APIs

 

calls

 

are

 

only

 

available

 

from

 

the

 

root

 

user

 

except

 

when

 

the

 

process

 

tree

 

option

 

is

 

used.

 

In

 

that

 

case,

 

a

 

locking

 

mechanism

 

prevents

 

calls

 

being

 

made

 

from

 

more

 

than

 

one

 

process.

 

This

 

mechanism

 

ensures

 

ownership

 

of

 

the

 

API

 

and

 

exclusive

 

access

 

by

 

one

 

process

 

from

 

the

 

time

 

that

 

the

 

system-level

 

contexts

 

are

 

created

 

until

 

they

 

are

 

deleted.

 

Enabling

 

the

 

process

 

tree

 

option

 

results

 

in

 

counting

 

for

 

only

 

the

 

calling

 

process

 

and

 

its

 

descendants;

 

the

 

default

 

is

 

to

 

count

 

all

 

activities

 

on

 

each

 

processor.

 

Because

 

the

 

system-level

 

APIs

 

would

 

report

 

bogus

 

data

 

if

 

thread

 

contexts

 

where

 

in

 

use,

 

system-level

 

API

 

calls

 

are

 

not

 

allowed

 

at

 

the

 

same

 

time

 

as

 

thread-level

 

API

 

calls.

 

The

 

allocation

 

of

 

the

 

first

 

thread

 

context

 

will

 

take

 

the

 

system-level

 

API

 

lock,

 

which

 

will

 

not

 

be

 

released

 

until

 

the

 

last

 

context

 

has

 

been

 

deallocated.

 

When

 

using

 

first

 

party

 

calls,

 

a

 

thread

 

is

 

only

 

allowed

 

to

 

modify

 

its

 

own

 

Performance

 

Monitor

 

context.

 

The

 

only

 

exception

 

to

 

this

 

rule

 

is

 

when

 

making

 

group

 

level

 

calls,

 

which

 

obviously

 

affect

 

the

 

group

 

context,

 

but

 

can

 

also

 

affect

 

other

 

threads’

 

context.

 

Deleting

 

a

 

group

 

deletes

 

all

 

the

 

contexts

 

associated

 

with

 

the

 

group,

 

that

 

is,

 

the

 

caller

 

context,

 

the

 

group

 

context,

 

and

 

all

 

the

 

contexts

 

belonging

 

to

 

all

 

the

 

threads

 

in

 

the

 

group.

 

Access

 

to

 

a

 

Performance

 

Monitor

 

context

 

not

 

belonging

 

to

 

the

 

calling

 

thread

 

or

 

its

 

group

 

is

 

available

 

only

 

from

 

the

 

target

 

process’s

 

debugger

 

program.

 

The

 

third

 

party

 

API

 

calls

 

only

 

succeed

 

when

 

the

 

target

 

process

 

is

 

being

 

ptraced

 

by

 

the

 

API

 

caller,

 

that

 

is,

 

the

 

caller

 

is

 

already

 

attached

 

to

 

the

 

target

 

process,

 

and

 

the

 

target

 

process

 

is

 

stopped.

 

The

 

fact

 

that

 

the

 

debugger

 

program

 

must

 

already

 

have

 

been

 

attached

 

to

 

the

 

debugged

 

thread

 

before

 

any

 

third

 

party

 

call

 

to

 

the

 

API

 

can

 

be

 

made,

 

ensures

 

that

 

the

 

security

 

level

 

of

 

the

 

API

 

will

 

be

 

the

 

same

 

as

 

the

 

one

 

used

 

between

 

debugger

 

programs

 

and

 

process

 

being

 

debugged.

 

Common

 

Rules

 

The

 

following

 

rules

 

are

 

common

 

to

 

the

 

Performance

 

Monitor

 

APIs:

 

v

   

The

 

pm_initialize

 

routine

 

must

 

be

 

called

 

before

 

any

 

other

 

API

 

call

 

can

 

be

 

made,

 

and

 

only

 

events

 

returned

 

by

 

a

 

given

 

pm_initialize

 

call

 

with

 

its

 

associated

 

filter

 

setting

 

can

 

be

 

used

 

in

 

subsequent

 

pm_set_program

 

calls.

 

v

   

PM

 

contexts

 

cannot

 

be

 

reprogrammed

 

or

 

reused

 

at

 

any

 

time.

 

This

 

means

 

that

 

none

 

of

 

the

 

APIs

 

support

 

more

 

than

 

one

 

call

 

to

 

a

 

pm_set_program

 

interface

 

without

 

a

 

call

 

to

 

a

 

pm_delete_program

 

interface.

 

This

 

also

 

means

 

that

 

when

 

creating

 

a

 

process

 

group,

 

none

 

of

 

the

 

threads

 

in

 

the

 

process

 

is

 

allowed

 

to

 

already

 

have

 

a

 

context.

 

v

   

All

 

the

 

API

 

calls

 

return

 

0

 

when

 

successful

 

or

 

a

 

positive

 

error

 

code

 

(which

 

can

 

be

 

decoded

 

using

 

pm_error)

 

otherwise.

  

Chapter

 

5.

 

Performance

 

Monitor

 

API

 

Programming

 

111



The

 

pm_init

 

API

 

Initialization

 

Routine

 

The

 

pm_init

 

routine

 

returns

 

(in

 

a

 

structure

 

of

 

type

 

pm_info_t

 

pointed

 

to

 

by

 

its

 

second

 

parameter)

 

the

 

processor

 

name,

 

the

 

number

 

of

 

counters

 

available,

 

the

 

list

 

of

 

available

 

events

 

for

 

each

 

counter,

 

and

 

the

 

threshold

 

multipliers

 

supported.

 

Some

 

processor

 

support

 

two

 

threshold

 

multipliers,

 

others

 

none,

 

meaning

 

that

 

thresholding

 

is

 

not

 

supported

 

at

 

all.

 

You

 

can

 

not

 

use

 

the

 

pm_init

 

routine

 

with

 

processors

 

newer

 

than

 

POWER4.

 

You

 

must

 

use

 

the

 

pm_initialize

 

routine

 

for

 

newer

 

processors.

 

For

 

each

 

event

 

returned,

 

in

 

addition

 

to

 

the

 

testing

 

status,

 

the

 

pm_init

 

routine

 

also

 

returns

 

the

 

identifier

 

to

 

be

 

used

 

in

 

subsequent

 

API

 

calls,

 

a

 

short

 

name,

 

and

 

a

 

long

 

name.

 

The

 

short

 

name

 

is

 

a

 

mnemonic

 

name

 

in

 

the

 

form

 

PM_MNEMONIC.

 

Events

 

that

 

are

 

the

 

same

 

on

 

different

 

processors

 

will

 

have

 

the

 

same

 

mnemonic

 

name.

 

For

 

instance,

 

PM_CYC

 

and

 

PM_INST_CMPL

 

are

 

respectively

 

the

 

number

 

of

 

processor

 

cycles

 

and

 

instruction

 

completed

 

and

 

should

 

exist

 

on

 

all

 

processors.

 

For

 

each

 

event

 

returned,

 

a

 

thresholdable

 

flag

 

is

 

also

 

returned.

 

This

 

flag

 

indicates

 

whether

 

an

 

event

 

can

 

be

 

used

 

with

 

a

 

threshold.

 

If

 

so,

 

then

 

specifying

 

a

 

threshold

 

defers

 

counting

 

until

 

a

 

number

 

of

 

cycles

 

equal

 

to

 

the

 

threshold

 

multiplied

 

by

 

the

 

processor’s

 

selected

 

threshold

 

multiplier

 

has

 

been

 

exceeded.

 

Beginning

 

with

 

AIX

 

level

 

5.1.0.15,

 

the

 

Performance

 

Monitoring

 

API

 

enables

 

the

 

specification

 

of

 

event

 

groups

 

instead

 

of

 

individual

 

events.

 

Event

 

groups

 

are

 

predefined

 

sets

 

of

 

events.

 

Rather

 

than

 

each

 

event

 

being

 

individually

 

specified,

 

a

 

single

 

group

 

ID

 

is

 

specified.

 

The

 

interface

 

to

 

the

 

pm_init

 

routine

 

has

 

been

 

enhanced

 

to

 

return

 

the

 

list

 

of

 

supported

 

event

 

groups

 

in

 

a

 

structure

 

of

 

type

 

pm_groups_info_t

 

pointed

 

to

 

by

 

a

 

new

 

optional

 

third

 

parameter.

 

To

 

preserve

 

binary

 

compatibility,

 

the

 

third

 

parameter

 

must

 

be

 

explicitly

 

announced

 

by

 

OR-ing

 

the

 

PM_GET_GROUPS

 

bitflag

 

into

 

the

 

filter.

 

Some

 

events

 

on

 

some

 

platforms

 

can

 

only

 

be

 

used

 

from

 

within

 

a

 

group.

 

This

 

is

 

indicated

 

in

 

the

 

threshold

 

flag

 

associated

 

with

 

each

 

event

 

returned.

 

The

 

following

 

convention

 

is

 

used:

  

y

 

A

 

thresholdable

 

event

 

g

 

An

 

event

 

that

 

can

 

only

 

be

 

used

 

in

 

a

 

group

 

G

 

A

 

thresholdable

 

event

 

that

 

can

 

only

 

be

 

used

 

in

 

a

 

group

 

n

 

A

 

non-thresholdable

 

event

 

that

 

is

 

usable

 

individually

   

On

 

some

 

platforms,

 

use

 

of

 

event

 

groups

 

is

 

required

 

because

 

all

 

the

 

events

 

are

 

marked

 

g

 

or

 

G.

 

Each

 

of

 

the

 

event

 

groups

 

that

 

are

 

returned

 

includes

 

a

 

short

 

name,

 

a

 

long

 

name,

 

and

 

a

 

description

 

similar

 

to

 

those

 

associated

 

with

 

events,

 

as

 

well

 

as

 

a

 

group

 

identifier

 

to

 

be

 

used

 

in

 

subsequent

 

API

 

calls

 

and

 

the

 

events

 

contained

 

in

 

the

 

group

 

(in

 

the

 

form

 

of

 

an

 

array

 

of

 

event

 

identifiers).

 

The

 

testing

 

status

 

of

 

a

 

group

 

is

 

defined

 

as

 

the

 

lowest

 

common

 

denominator

 

among

 

the

 

testing

 

status

 

of

 

the

 

events

 

that

 

it

 

includes.

 

If

 

at

 

least

 

one

 

event

 

has

 

a

 

testing

 

status

 

of

 

caveat,

 

the

 

group

 

testing

 

status

 

is

 

at

 

best

 

caveat,

 

and

 

if

 

at

 

least

 

one

 

event

 

has

 

a

 

status

 

of

 

unverified,

 

then

 

the

 

group

 

status

 

is

 

unverified.

 

This

 

is

 

not

 

returned

 

as

 

a

 

group

 

characteristic,

 

but

 

it

 

is

 

taken

 

into

 

account

 

by

 

the

 

filter.

 

Like

 

events,

 

only

 

groups

 

with

 

status

 

matching

 

the

 

filter

 

are

 

returned.

 

The

 

pm_initialize

 

API

 

Initialize

 

Routine

 

The

 

pm_initialize

 

routine

 

returns

 

(in

 

a

 

structure

 

of

 

type

 

pm_info2_tdefined

 

by

 

its

 

second

 

parameter)

 

the

 

processor

 

name,

 

its

 

characteristics,

 

the

 

number

 

of

 

counters

 

available

 

and

 

the

 

list

 

of

 

available

 

events

 

for

 

each

 

counter.

 

For

 

each

 

event

 

a

 

status

 

is

 

returned,

 

indicating

 

the

 

event

 

status:

 

validated,

 

unvalidated,

 

or

 

validated

 

with

 

caveat.

 

The

 

status

 

also

 

indicates

 

if

 

the

 

event

 

can

 

be

 

used

 

in

 

a

 

group

 

or

 

not,

 

if

 

it

 

is

 

a

 

thresholdable

 

event

 

and

 

if

 

it

 

is

 

a

 

shared

 

event.

 

Some

 

events

 

on

 

some

 

platforms

 

can

 

be

 

used

 

only

 

within

 

a

 

group.

 

In

 

the

 

case

 

where

 

an

 

event

 

group

 

is

 

specified

 

instead

 

of

 

individual

 

events,

 

the

 

events

 

are

 

defined

 

as

 

grouped

 

only

 

events.

   

112

 

Performance

 

Tools

 

Guide

 

and

 

Reference



For

 

each

 

returned

 

event

 

,

 

a

 

thresholdable

 

state

 

is

 

also

 

returned.

 

It

 

indicates

 

whether

 

an

 

event

 

can

 

be

 

used

 

with

 

a

 

threshold.

 

If

 

so,

 

specifying

 

a

 

threshold

 

defers

 

counting

 

until

 

it

 

exceeds

 

a

 

number

 

of

 

cycles

 

equal

 

to

 

the

 

threshold

 

multiplied

 

by

 

the

 

selected

 

processor

 

threshold

 

multiplier.

 

Some

 

processors

 

support

 

two

 

hardware

 

threads

 

per

 

physical

 

processing

 

unit.

 

Each

 

thread

 

implements

 

a

 

set

 

of

 

counters,

 

but

 

some

 

events

 

defined

 

for

 

those

 

processors

 

are

 

shared

 

events.

 

A

 

shared

 

event,

 

is

 

controlled

 

by

 

a

 

signal

 

not

 

specific

 

to

 

a

 

particular

 

thread’s

 

activity

 

and

 

sent

 

simultaneously

 

to

 

both

 

sets

 

of

 

hardware

 

counters,

 

one

 

for

 

each

 

thread.

 

Those

 

events

 

are

 

marked

 

by

 

the

 

shared

 

status.

 

For

 

each

 

returned

 

event,

 

in

 

addition

 

to

 

the

 

testing

 

status,

 

the

 

pm_initialize

 

routine

 

returns

 

the

 

identifier

 

to

 

be

 

used

 

in

 

subsequent

 

API

 

calls,

 

as

 

a

 

short

 

name

 

and

 

a

 

long

 

name.

 

The

 

short

 

name

 

is

 

a

 

mnemonic

 

name

 

in

 

the

 

form

 

PM_MNEMONIC.

 

The

 

same

 

events

 

on

 

different

 

processors

 

will

 

have

 

the

 

same

 

mnemonic

 

name.

 

For

 

instance,

 

PM_CYC

 

and

 

PM_INST_CMPL

 

are

 

respectively

 

the

 

number

 

of

 

processor

 

cycles

 

and

 

the

 

number

 

of

 

completed

 

instructions,

 

and

 

should

 

exist

 

on

 

all

 

processors.

 

The

 

Performance

 

Monitoring

 

API

 

allows

 

the

 

specification

 

of

 

event

 

groups

 

instead

 

of

 

individual

 

events.

 

Event

 

groups

 

are

 

predefined

 

sets

 

of

 

events.

 

Rather

 

than

 

to

 

specify

 

individually

 

each

 

event,

 

a

 

single

 

group

 

ID

 

can

 

be

 

specified.

 

The

 

interface

 

to

 

the

 

pm_initialize

 

routine

 

returns

 

the

 

list

 

of

 

supported

 

event

 

groups

 

in

 

a

 

structure

 

of

 

type

 

pm_groups_info_t

 

whose

 

address

 

is

 

returned

 

in

 

the

 

third

 

parameter.

 

On

 

some

 

platforms,

 

the

 

use

 

of

 

event

 

groups

 

is

 

required

 

because

 

all

 

events

 

are

 

marked

 

as

 

group-only.

 

Each

 

event

 

group

 

that

 

is

 

returned

 

includes

 

a

 

short

 

name,

 

a

 

long

 

name,

 

and

 

a

 

description

 

similar

 

to

 

those

 

associated

 

with

 

events,

 

as

 

well

 

as

 

a

 

group

 

identifier

 

to

 

be

 

used

 

in

 

subsequent

 

API

 

calls

 

and

 

the

 

events

 

contained

 

in

 

the

 

group

 

(in

 

the

 

form

 

of

 

an

 

array

 

of

 

event

 

identifiers).

 

The

 

testing

 

status

 

of

 

a

 

group

 

is

 

defined

 

as

 

the

 

lowest

 

common

 

denominator

 

among

 

the

 

testing

 

status

 

of

 

the

 

events

 

that

 

it

 

includes.

 

If

 

the

 

testing

 

status

 

of

 

at

 

least

 

one

 

event

 

is

 

caveat,

 

then

 

the

 

group

 

testing

 

status

 

is

 

at

 

best

 

caveat,

 

and

 

if

 

the

 

status

 

of

 

at

 

least

 

one

 

event

 

is

 

unverified,

 

then

 

the

 

group

 

status

 

is

 

unverified.

 

This

 

is

 

not

 

returned

 

as

 

a

 

group

 

characteristic,

 

but

 

it

 

is

 

taken

 

into

 

account

 

by

 

the

 

filter.

 

Like

 

events,

 

only

 

groups

 

whose

 

status

 

match

 

the

 

filter

 

are

 

returned.

 

If

 

the

 

proctype

 

parameter

 

is

 

not

 

set

 

to

 

PM_CURRENT,

 

the

 

Performance

 

Monitor

 

APIs

 

library

 

is

 

not

 

initialized

 

and

 

the

 

subroutine

 

only

 

returns

 

information

 

about

 

the

 

specified

 

processor

 

in

 

its

 

parameters,

 

pm_info2_t

 

and

 

pm_groups_info_t,

 

taking

 

into

 

account

 

the

 

filter.

 

If

 

the

 

proctype

 

parameter

 

is

 

set

 

to

 

PM_CURRENT,

 

in

 

addition

 

to

 

returning

 

the

 

information

 

described,

 

the

 

Performance

 

Monitor

 

APIs

 

library

 

is

 

initialized

 

and

 

ready

 

to

 

accept

 

other

 

calls.

 

Eight

 

Basic

 

API

 

Calls

 

Each

 

of

 

the

 

eight

 

sections

 

below

 

describes

 

a

 

system-wide

 

API

 

call

 

that

 

has

 

variations

 

for

 

first-party

 

kernel

 

thread

 

or

 

group

 

counting,

 

and

 

third-party

 

kernel

 

thread

 

or

 

group

 

counting.

 

Variations

 

are

 

indicated

 

by

 

suffixes

 

to

 

the

 

function

 

call

 

names,

 

such

 

as

 

pm_set_program,

 

pm_set_program_mythread,

 

and

 

pm_set_program_group.

 

pm_set_program

 

Sets

 

the

 

counting

 

configuration.

 

Use

 

this

 

call

 

to

 

specify

 

the

 

events

 

(as

 

a

 

list

 

of

 

event

 

identifiers,

 

one

 

per

 

counter,

 

or

 

as

 

a

 

single

 

event-group

 

identifier)

 

to

 

be

 

counted,

 

and

 

a

 

mode

 

in

 

which

 

to

 

count.

 

The

 

list

 

of

 

events

 

to

 

choose

 

from

 

is

 

returned

 

by

 

the

 

pm_init

 

routine.

 

If

 

the

 

list

 

includes

 

a

 

thresholdable

 

event,

 

you

 

can

 

also

 

use

 

this

 

call

 

to

 

specify

 

a

 

threshold,

 

and

 

a

 

threshold

 

multiplier.

  

The

 

mode

 

in

 

which

 

to

 

count

 

can

 

include

 

user-mode

 

and

 

kernel-mode

 

counting,

 

and

 

whether

 

to

 

start

 

counting

 

immediately.

 

For

 

the

 

system-wide

 

API

 

call,

 

the

 

mode

 

also

 

includes

 

whether

 

to

 

turn

 

counting

 

on

 

only

 

for

 

a

 

process

 

and

 

its

 

descendants

 

or

 

for

 

the

 

whole

 

system.

 

For

 

counting

 

group

 

API

 

calls,

 

the

 

mode

 

includes

 

the

 

type

 

of

 

counting

 

group

 

to

 

create,

 

that

 

is,

 

a

 

group

 

containing

 

the

 

initial

 

thread

 

and

 

its

 

future

 

descendants,

 

or

 

a

 

process-level

 

group,

 

which

 

includes

 

all

 

the

 

threads

 

in

 

a

 

process.

   

Chapter

 

5.

 

Performance

 

Monitor

 

API

 

Programming

 

113



pm_get_program

 

Retrieves

 

the

 

current

 

Performance

 

Monitor

 

settings.

 

This

 

includes

 

mode

 

information

 

and

 

the

 

list

 

of

 

events

 

(or

 

the

 

event

 

group)

 

being

 

counted.

 

If

 

the

 

list

 

includes

 

a

 

thresholdable

 

event,

 

this

 

call

 

also

 

returns

 

a

 

threshold

 

and

 

the

 

multiplier

 

used.

 

pm_delete_program

 

Deletes

 

the

 

Performance

 

Monitor

 

configuration.

 

Use

 

this

 

call

 

to

 

undo

 

pm_set_program.

 

pm_start

 

Starts

 

Performance

 

Monitor

 

counting.

 

pm_stop

 

Stops

 

Performance

 

Monitor

 

counting.

 

pm_get_data

 

Returns

 

Performance

 

Monitor

 

counting

 

data.

 

The

 

data

 

is

 

a

 

set

 

of

 

64-bit

 

values,

 

one

 

per

 

hardware

 

counter.

 

For

 

the

 

counting

 

group

 

API

 

calls,

 

the

 

group

 

information

 

is

 

also

 

returned.

 

(See

 

“Thread

 

Counting-Group

 

Information.”)

  

The

 

pm_get_data_cpu

 

interface

 

returns

 

the

 

Performance

 

Monitor

 

counting

 

data

 

for

 

a

 

single

 

processor.

 

pm_get_tdata

 

Same

 

as

 

pm_get_data,

 

but

 

includes

 

a

 

timestamp

 

that

 

indicates

 

the

 

last

 

time

 

that

 

the

 

hardware

 

Performance

 

Monitoring

 

counters

 

were

 

read.

 

This

 

is

 

a

 

timebase

 

value

 

that

 

can

 

be

 

converted

 

to

 

time

 

by

 

using

 

time_base_to_time.

  

The

 

pm_get_tdata_cpu

 

interface

 

returns

 

the

 

Performance

 

Monitor

 

counting

 

data

 

for

 

a

 

single

 

processor

 

accompanied

 

with

 

a

 

timestamp.

 

pm_reset_data

 

Resets

 

Performance

 

Monitor

 

counting

 

data.

 

All

 

values

 

are

 

set

 

to

 

0.

Thread

 

Counting-Group

 

Information

 

The

 

following

 

information

 

is

 

associated

 

with

 

each

 

thread

 

counting-group:

 

member

 

count

 

The

 

number

 

of

 

threads

 

that

 

are

 

members

 

of

 

the

 

group.

 

This

 

includes

 

deceased

 

threads

 

that

 

were

 

members

 

of

 

the

 

group

 

when

 

running.

  

If

 

the

 

consistency

 

flag

 

is

 

on,

 

the

 

count

 

will

 

be

 

the

 

number

 

of

 

threads

 

that

 

have

 

contributed

 

to

 

the

 

group-level

 

data.

 

process

 

flag

 

Indicates

 

that

 

the

 

group

 

includes

 

all

 

the

 

threads

 

in

 

the

 

process.

 

consistency

 

flag

 

Indicates

 

that

 

the

 

group

 

PM

 

data

 

is

 

consistent

 

with

 

the

 

sum

 

of

 

the

 

individual

 

PM

 

data

 

for

 

the

 

thread

 

members.

This

 

information

 

is

 

returned

 

by

 

the

 

pm_get_data_mygroup

 

and

 

pm_get_data_group

 

interfaces

 

in

 

a

 

pm_groupinfo_t

 

structure.

 

Examples

 

The

 

following

 

are

 

examples

 

of

 

using

 

Performance

 

Monitor

 

APIs

 

in

 

pseudo-code.

 

Functional

 

sample

 

code

 

is

 

available

 

in

 

the

 

/usr/samples/pmapi

 

directory.

 

Simple

 

Single-Threaded

 

Program:

   

114

 

Performance

 

Tools

 

Guide

 

and

 

Reference



#

 

include

 

<pmapi.h>

 

main()

 

{

        

pm_info_t

 

pminfo;

        

pm_prog_t

 

prog;

        

pm_data_t

 

data;

        

int

 

filter

 

=

 

PM_VERIFIED;

 

/*

 

use

 

only

 

verified

 

events

 

*/

          

pm_init(filter,

 

&pminfo)

          

prog.mode.w

       

=

 

0;

  

/*

 

start

 

with

 

clean

 

mode

 

*/

        

prog.mode.b.user

  

=

 

1;

  

/*

 

count

 

only

 

user

 

mode

 

*/

          

for

 

(i

 

=

 

0;

 

i

 

<

 

pminfo.maxpmcs;

 

i++)

                 

prog.events[i]

 

=

 

COUNT_NOTHING;

          

prog.events[0]

    

=

 

1;

  

/*

 

count

 

event

 

1

 

in

 

first

 

counter

 

*/

        

prog.events[1]

    

=

 

2;

  

/*

 

count

 

event

 

2

 

in

 

second

 

counter

 

*/

          

pm_program_mythread(&prog);

        

pm_start_mythread();

   

(1)

    

...

 

usefull

 

work

 

....

          

pm_stop_mythread();

        

pm_get_data_mythread(&data);

          

...

 

print

 

results

 

...

 

}

 

Initialization

 

Example

 

Using

 

an

 

Event

 

Group:

 

#

 

include

 

<pmapi.h>

 

main()

 

{

        

pm_info2_t

        

pminfo;

        

pm_prog_t

        

prog;

        

pm_groups_info_t

 

pmginfo;

          

int

 

filter

 

=

 

PM_VERIFIED;

  

/*

 

get

 

list

 

of

 

verified

 

events

 

*/

          

pm_initialize(filter,

 

&pminfo,

 

&pmginfo,

 

PM_CURRENT

 

)

          

prog.mode.w

           

=

 

0;

  

/*

 

start

 

with

 

clean

 

mode

 

*/

        

prog.mode.b.user

      

=

 

1;

  

/*

 

count

 

only

 

user

 

mode

 

*/

        

prog.mode.b.is_group

  

=

 

1;

  

/*

 

specify

 

event

 

group

 

*/

          

for

 

(i

 

=

 

0;

 

i

 

<

 

pminfo.maxpmcs;

 

i++)

                 

prog.events[i]

 

=

 

COUNT_NOTHING;

          

prog.events[0]

    

=

 

1;

  

/*

 

count

 

events

 

in

 

group

 

1

 

*/

        

.....

 

}

 

Get

 

Information

 

about

 

an

 

event

 

group

 

processor

 

Example

 

:

 

#

 

include

 

<pmapi.h>

 

main()

 

{

        

pm_events2_t

 

*evp;

          

int

 

rc,counter,

 

event;

        

pm_info2_t

       

pminfo;

        

pm_prog_t

        

prog;

        

pm_groups_info_t

 

pmginfo;

        

int

 

filter

 

=

 

PM_VERIFIED;

  

/*

 

get

 

list

 

of

 

verified

 

events

 

*/

      

Chapter

 

5.

 

Performance

 

Monitor

 

API

 

Programming

 

115



if

 

((rc

 

=

 

pm_initialize(filter,

 

&pminfo,

 

&pmginfo,

 

PM_POWER4)

 

!=

 

0)

 

{

            

pm_error("pm_initialize",

 

rc);

            

exit(-1);

        

}

          

printf

 

("Group

 

#%d:

 

%s\n",

 

i,

 

pmginfo.event_groups[i].short_name);

        

printf

 

("Group

 

name:

 

%s\n",

 

pmginfo.event_groups[i].long_name);

        

printf

 

("Group

 

description:

 

%s\n",

 

pmginfo.event_groups[i].long_name);

        

printf

 

("Group

 

members:\n");

        

for

 

(counter

 

=

 

0;

 

counter

 

<

 

pminfo.maxpmcs;

 

counter++)

 

{

                

printf("Counter

 

%2d,

 

",

 

counter+1);

              

/*

 

get

 

the

 

event

 

id

 

from

 

the

 

list

 

*/

              

event

 

=

 

pmginfo.event_groups[i].events[counter];

              

if

 

((event

 

==

 

COUNT_NOTHING)

 

||

 

(pminfo.maxevents[counter]

 

==

 

0))

                 

printf("event

 

%2d:

 

No

 

event\n",

 

event);

              

else

 

{

                 

/*

 

find

 

pointer

 

to

 

the

 

event

 

*/

                 

for

 

(j

 

=

 

0;

 

j

 

<

 

pminfo.maxevents[counter];

 

j++)

 

{

                    

evp

 

=

 

pminfo.list_events[counter]+j;

                    

if

 

(event

 

==

 

evp->event_id)

 

{

                       

break;

                    

}

                 

}

                 

printf("event

 

%2d:

 

%s",

 

event,

 

evp->short_name);

                 

printf("

 

:

 

%s\n",

 

evp->long_name);

              

}

        

}

 

/*

 

for

 

(counter

 

=

 

0;

 

...

 

*/

        

.....

 

Debugger

 

Program

 

Example

 

for

 

Initialization

 

Program:

 

The

 

following

 

illustrates

 

how

 

to

 

look

 

at

 

the

 

Performance

 

Monitor

 

data

 

while

 

the

 

program

 

is

 

executing:

 

from

 

a

 

debugger

 

at

 

breakpoint

 

(1)

          

pm_init(filter);

 

(2)

    

pm_get_program_thread(pid,

 

tid,

 

&prog);

        

...

 

display

 

PM

 

programmation

 

...

   

(3)

    

pm_get_data_thread(pid,

 

tid);

        

...

 

display

 

PM

 

data

 

...

          

pm_delete_program_thread(pid,

 

tid);

        

prog.events[0]

 

=

 

2;

 

/*

 

change

 

counter

 

1

 

to

 

count

 

event

 

number

 

2

 

*/

        

pm_set_program_thread(pid,

 

tid,

 

&prog);

   

continue

 

program

 

The

 

preceding

 

scenario

 

would

 

also

 

work

 

if

 

the

 

program

 

being

 

executed

 

under

 

the

 

debugger

 

did

 

not

 

have

 

any

 

embedded

 

Performance

 

Monitor

 

API

 

calls.

 

The

 

only

 

difference

 

would

 

be

 

that

 

the

 

calls

 

at

 

(2)

 

and

 

(3)

 

would

 

fail,

 

and

 

that

 

when

 

the

 

program

 

continues,

 

it

 

will

 

be

 

counting

 

only

 

event

 

number

 

2

 

in

 

counter

 

1,

 

and

 

nothing

 

in

 

other

 

counters.

 

Simple

 

Multi-Threaded

 

Example:

 

The

 

following

 

is

 

a

 

simple

 

multi-threaded

 

example

 

with

 

independent

 

threads

 

counting

 

the

 

same

 

set

 

of

 

events.

 

#

 

include

 

<pmapi.h>

 

pm_data_t

 

data2;

   

void

 

*

 

doit(void

 

*)

 

{

    

116

 

Performance

 

Tools

 

Guide

 

and

 

Reference



(1)

    

pm_start_mythread();

          

...

 

usefull

 

work

 

....

          

pm_stop_mythread();

        

pm_get_data_mythread(&data2);

 

}

   

main()

 

{

        

pthread_t

 

threadid;

        

pthread_attr_t

 

attr;

        

pthread_addr_t

 

status;

          

...

 

same

 

initialization

 

as

 

in

 

previous

 

example

 

...

          

pm_program_mythread(&prog);

          

/*

 

setup

 

1:1

 

mode,

 

M:N

 

not

 

supported

 

by

 

APIs

 

*/

        

pthread_attr_init(&attr);

        

pthread_attr_setscope(&attr,

 

PTHREAD_SCOPE_SYSTEM);

        

pthread_create(&threadid,

 

&attr,

 

doit,

 

NULL);

   

(2)

    

pm_start_mythread();

          

...

 

usefull

 

work

 

....

          

pm_stop_mythread();

        

pm_get_data_mythread(&data);

          

...

 

print

 

main

 

thread

 

results

 

(data

 

)...

          

pthread_join(threadid,

 

&status);

          

...

 

print

 

auxiliary

 

thread

 

results

 

(data2)

 

...

 

}

 

In

 

the

 

preceding

 

example,

 

counting

 

starts

 

at

 

(1)

 

and

 

(2)

 

for

 

the

 

main

 

and

 

auxiliary

 

threads

 

respectively

 

because

 

the

 

initial

 

counting

 

state

 

was

 

off

 

and

 

it

 

was

 

inherited

 

by

 

the

 

auxiliary

 

thread

 

from

 

its

 

creator.

 

Simple

 

Thread

 

Counting-Group

 

Example:

 

The

 

following

 

example

 

has

 

two

 

threads

 

in

 

a

 

counting-group.

 

The

 

body

 

of

 

the

 

auxiliary

 

thread’s

 

initialization

 

routine

 

is

 

the

 

same

 

as

 

in

 

the

 

previous

 

example.

 

main()

 

{

         

...

 

same

 

initialization

 

as

 

in

 

previous

 

example

 

...

           

pm_program_mygroup(&prog);

 

/*

 

create

 

counting

 

group

 

*/

 

(1)

     

pm_start_mygroup()

           

pthread_create(&threadid,

 

&attr,

 

doit,

 

NULL)

   

(2)

     

pm_start_mythread();

           

...

 

usefull

 

work

 

....

           

pm_stop_mythread();

         

pm_get_data_mythread(&data)

             

...

 

print

 

main

 

thread

 

results

 

...

           

pthread_join(threadid,

 

&status);

    

Chapter

 

5.

 

Performance

 

Monitor

 

API

 

Programming

 

117



...

 

print

 

auxiliary

 

thread

 

results

 

...

           

pm_get_data_mygroup(&data)

             

...

 

print

 

group

 

results

 

...

 

}

 

In

 

the

 

preceding

 

example,

 

the

 

call

 

in

 

(2)

 

is

 

necessary

 

because

 

the

 

call

 

in

 

(1)

 

only

 

turns

 

on

 

counting

 

for

 

the

 

group,

 

not

 

the

 

individual

 

threads

 

in

 

it.

 

At

 

the

 

end,

 

the

 

group

 

results

 

are

 

the

 

sum

 

of

 

both

 

threads

 

results.

 

Thread

 

Counting

 

Example

 

with

 

Reset:

 

The

 

following

 

example

 

with

 

a

 

reset

 

call

 

illustrates

 

the

 

impact

 

on

 

the

 

group

 

data.

 

The

 

body

 

of

 

the

 

auxiliary

 

thread

 

is

 

the

 

same

 

as

 

before,

 

except

 

for

 

the

 

pm_start_mythread

 

call,

 

which

 

is

 

not

 

necessary

 

in

 

this

 

case.

 

main()

 

{

         

...

 

same

 

initialization

 

as

 

in

 

previous

 

example...

           

prog.mode.b.count

  

=

 

1;

  

/*

 

start

 

counting

 

immediately

 

*/

         

pm_program_mygroup(&prog);

           

pthread_create(&threadid,

 

pthread_attr_default,

 

doit,

 

NULL)

           

...

 

usefull

 

work

 

....

           

pm_stop_mythread()

         

pm_reset_data_mythread()

           

pthread_join(threadid,

 

&status);

           

...print

 

auxiliary

 

thread

 

results...

           

pm_get_data_mygroup(&data)

             

...print

 

group

 

results...

 

}

 

In

 

the

 

preceding

 

example,

 

the

 

main

 

thread

 

and

 

the

 

group

 

counting

 

state

 

are

 

both

 

on

 

before

 

the

 

auxiliary

 

thread

 

is

 

created,

 

so

 

the

 

auxiliary

 

thread

 

will

 

inherit

 

that

 

state

 

and

 

start

 

counting

 

immediately.

 

At

 

the

 

end,

 

data1

 

is

 

equal

 

to

 

data

 

because

 

the

 

pm_reset_data_mythread

 

automatically

 

subtracted

 

the

 

main

 

thread

 

data

 

from

 

the

 

group

 

data

 

to

 

keep

 

it

 

consistent.

 

In

 

fact,

 

the

 

group

 

data

 

remains

 

equal

 

to

 

the

 

sum

 

of

 

the

 

auxiliary

 

and

 

the

 

main

 

thread

 

data,

 

but

 

in

 

this

 

case,

 

the

 

main

 

thread

 

data

 

is

 

null.

   

118

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Chapter

 

6.

 

Perfstat

 

API

 

Programming

 

The

 

perfstat

 

application

 

programming

 

interface

 

(API)

 

is

 

a

 

collection

 

of

 

C

 

programming

 

language

 

subroutines

 

that

 

execute

 

in

 

user

 

space

 

and

 

uses

 

the

 

perfstat

 

kernel

 

extension

 

to

 

extract

 

various

 

AIX

 

performance

 

metrics.

 

System

 

component

 

information

 

is

 

also

 

retrieved

 

from

 

the

 

Object

 

Data

 

Manager

 

(ODM)

 

and

 

returned

 

with

 

the

 

performance

 

metrics.

 

The

 

perfstat

 

API

 

is

 

both

 

a

 

32-bit

 

and

 

a

 

64-bit

 

API,

 

is

 

thread–safe,

 

and

 

does

 

not

 

require

 

root

 

authority.

 

The

 

API

 

supports

 

extensions

 

so

 

binary

 

compatibility

 

is

 

maintained

 

across

 

all

 

releases

 

of

 

AIX.

 

This

 

is

 

accomplished

 

by

 

using

 

one

 

of

 

the

 

parameters

 

in

 

all

 

the

 

API

 

calls

 

to

 

specify

 

the

 

size

 

of

 

the

 

data

 

structure

 

to

 

be

 

returned.

 

This

 

allows

 

the

 

library

 

to

 

easily

 

determine

 

which

 

version

 

is

 

in

 

use,

 

as

 

long

 

as

 

the

 

structures

 

are

 

only

 

growing,

 

which

 

is

 

guaranteed.

 

This

 

releases

 

the

 

user

 

from

 

version

 

dependencies.

 

For

 

the

 

list

 

of

 

extensions

 

made

 

in

 

earlier

 

versions

 

of

 

AIX,

 

see

 

the

 

Change

 

History

 

section.

 

The

 

perfstat

 

API

 

subroutines

 

reside

 

in

 

the

 

libperfstat.a

 

library

 

and

 

are

 

part

 

of

 

the

 

bos.perf.libperfstat

 

fileset,

 

which

 

is

 

installable

 

from

 

the

 

AIX

 

base

 

installation

 

media

 

and

 

requires

 

that

 

the

 

bos.perf.perfstat

 

fileset

 

is

 

installed.

 

The

 

latter

 

contains

 

the

 

kernel

 

extension

 

and

 

is

 

automatically

 

installed

 

with

 

AIX.

 

The

 

/usr/include/libperfstat.h

 

file

 

contains

 

the

 

interface

 

declarations

 

and

 

type

 

definitions

 

of

 

the

 

data

 

structures

 

to

 

use

 

when

 

calling

 

the

 

interfaces.

 

This

 

include

 

file

 

is

 

also

 

part

 

of

 

the

 

bos.perf.libperfstat

 

fileset.

 

Sample

 

source

 

code

 

is

 

provided

 

with

 

bos.perf.libperfstat

 

and

 

resides

 

in

 

the

 

/usr/samples/libperfstat

 

directory.

 

Detailed

 

information

 

for

 

the

 

individual

 

interfaces

 

and

 

the

 

data

 

structures

 

used

 

can

 

be

 

found

 

in

 

the

 

libperfstat.h

 

file

 

in

 

the

 

AIX

 

5L

 

Version

 

5.2

 

Files

 

Reference.

 

API

 

Characteristics

 

Two

 

types

 

of

 

APIs

 

are

 

available.

 

Global

 

types

 

return

 

global

 

metrics

 

related

 

to

 

a

 

set

 

of

 

components,

 

while

 

individual

 

types

 

return

 

metrics

 

related

 

to

 

individual

 

components.

 

Both

 

types

 

of

 

interfaces

 

have

 

similar

 

signatures,

 

but

 

slightly

 

different

 

behavior.

 

All

 

the

 

interfaces

 

return

 

raw

 

data;

 

that

 

is,

 

values

 

of

 

running

 

counters.

 

Multiple

 

calls

 

must

 

be

 

made

 

at

 

regular

 

intervals

 

to

 

calculate

 

rates.

 

Several

 

interfaces

 

return

 

data

 

retrieved

 

from

 

the

 

ODM

 

(object

 

data

 

manager)

 

database.

 

This

 

information

 

is

 

automatically

 

cached

 

into

 

a

 

dictionary

 

that

 

is

 

assumed

 

to

 

be

 

″frozen″

 

after

 

it

 

is

 

loaded.

 

The

 

perfstat_reset

 

subroutine

 

must

 

be

 

called

 

to

 

clear

 

the

 

dictionary

 

whenever

 

the

 

machine

 

configuration

 

has

 

changed.

 

Most

 

types

 

returned

 

are

 

unsigned

 

long

 

long;

 

that

 

is,

 

unsigned

 

64-bit

 

data.

 

This

 

provides

 

complete

 

kernel

 

independence.

 

Some

 

kernel

 

internal

 

metrics

 

are

 

in

 

fact

 

32-bit

 

wide

 

in

 

the

 

32-bit

 

kernel,

 

and

 

64-bit

 

wide

 

in

 

the

 

64-bit

 

kernel.

 

The

 

corresponding

 

libperfstat

 

APIs

 

data

 

type

 

is

 

always

 

unsigned

 

64-bit.

 

All

 

of

 

the

 

examples

 

presented

 

in

 

this

 

chapter

 

can

 

be

 

compiled

 

in

 

AIX

 

5.2

 

and

 

later

 

using

 

the

 

cc

 

command

 

with

 

-lperfstat.

 

Global

 

Interfaces

 

Global

 

interfaces

 

report

 

metrics

 

related

 

to

 

a

 

set

 

of

 

components

 

on

 

a

 

system

 

(such

 

as

 

processors,

 

disks,

 

or

 

memory).

 

All

 

of

 

the

 

following

 

AIX

 

5.2

 

interfaces

 

use

 

the

 

naming

 

convention

 

perfstat_subsystem_total,

 

and

 

use

 

a

 

common

 

signature:

  

perfstat_cpu_total

 

Retrieves

 

global

 

CPU

 

usage

 

metrics

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

119



perfstat_memory_total

 

Retrieves

 

global

 

memory

 

usage

 

metrics

 

perfstat_disk_total

 

Retrieves

 

global

 

disk

 

usage

 

metrics

 

perfstat_netinterface_total

 

Retrieves

 

global

 

network

 

interfaces

 

metrics

   

The

 

common

 

signature

 

used

 

by

 

all

 

of

 

the

 

global

 

interfaces

 

is

 

as

 

follows:

 

int

 

perfstat_subsystem_total(perfstat_id_t

 

*name,

                              

perfstat_subsystem_total_t

 

*userbuff,

                              

int

 

sizeof_struct,

                              

int

 

desired_number);

   

The

 

usage

 

of

 

the

 

parameters

 

for

 

all

 

of

 

the

 

interfaces

 

is

 

as

 

follows:

  

perfstat_id_t

 

*name

 

Reserved

 

for

 

future

 

use,

 

should

 

be

 

NULL

 

perfstat_subsystem_total_t

 

*userbuff

 

A

 

pointer

 

to

 

a

 

memory

 

area

 

with

 

enough

 

space

 

for

 

the

 

returned

 

structure

 

int

 

sizeof_struct

 

Should

 

be

 

set

 

to

 

sizeof(perfstat_subsystem_t)

 

int

 

desired_number

 

Reserved

 

for

 

future

 

use,

 

must

 

be

 

set

 

to

 

0

 

or

 

1

   

The

 

return

 

value

 

will

 

be

 

-1

 

in

 

case

 

of

 

errors.

 

Otherwise,

 

the

 

number

 

of

 

structures

 

copied

 

is

 

returned.

 

This

 

is

 

always

 

1.

 

An

 

exception

 

to

 

this

 

scheme

 

is:

 

when

 

name=NULL,

 

userbuff=NULL

 

and

 

desired_number=0,

 

the

 

total

 

number

 

of

 

structures

 

available

 

is

 

returned.

 

This

 

is

 

always

 

1.

 

The

 

following

 

sections

 

provide

 

examples

 

of

 

the

 

type

 

of

 

data

 

returned

 

and

 

code

 

using

 

each

 

of

 

the

 

interfaces.

 

perfstat_cpu_total

 

Interface

 

The

 

perfstat_cpu_total

 

function

 

returns

 

a

 

perfstat_cpu_total_t

 

structure,

 

which

 

is

 

defined

 

in

 

the

 

libperfstat.h

 

file.

 

Selected

 

fields

 

from

 

the

 

perfstat_cpu_total_t

 

structure

 

include:

  

processorHz

 

Processor

 

speed

 

in

 

Hertz

 

(from

 

ODM)

 

description

 

Processor

 

type

 

(from

 

ODM)

 

ncpus

 

Current

 

number

 

of

 

active

 

CPUs

 

ncpus_cfg

 

Number

 

of

 

configured

 

CPUs;

 

that

 

is,

 

the

 

maximum

 

number

 

of

 

processors

 

that

 

this

 

copy

 

of

 

AIX

 

can

 

handle

 

simultaneously

 

ncpus_high

 

Maximum

 

number

 

of

 

active

 

CPUs;

 

that

 

is,

 

the

 

maximum

 

number

 

of

 

active

 

processors

 

since

 

the

 

last

 

reboot

 

user

 

Total

 

number

 

of

 

clock

 

ticks

 

spent

 

in

 

user

 

mode

 

sys

 

Total

 

number

 

of

 

clock

 

ticks

 

spent

 

in

 

system

 

(kernel)

 

mode

 

idle

 

Total

 

number

 

of

 

clock

 

ticks

 

spent

 

idle

 

with

 

no

 

I/O

 

pending

 

wait

 

Total

 

number

 

of

 

clock

 

ticks

 

spent

 

idle

 

with

 

I/O

 

pending

   

Several

 

other

 

processor-related

 

counters

 

(such

 

as

 

number

 

of

 

system

 

calls,

 

number

 

of

 

reads,

 

write,

 

forks,

 

execs,

 

and

 

load

 

average)

 

are

 

also

 

returned.

 

For

 

a

 

complete

 

list,

 

see

 

the

 

perfstat_cpu_total_t

 

section

 

of

 

the

 

libperfstat.h

 

header

 

file

 

in

 

AIX

 

5L

 

Version

 

5.2

 

Files

 

Reference.

 

The

 

following

 

code

 

shows

 

an

 

example

 

of

 

how

 

perfstat_cpu_total

 

is

 

used:

 

#include

 

<stdio.h>

 

#include

 

<sys/time.h>

 

#include

 

<libperfstat.h>

   

unsigned

 

long

 

long

 

last_tot,

 

last_user,

 

last_sys,

 

last_idle,

 

last_wait;

  

120

 

Performance

 

Tools

 

Guide

 

and

 

Reference



int

 

main(int

 

argc,

 

char

 

*argv[])

 

{

    

perfstat_cpu_total_t

 

cpu_total_buffer;

    

unsigned

 

long

 

long

 

cur_tot;

    

unsigned

 

long

 

long

 

delt_tot,

 

delt_user,

 

delt_sys,

 

delt_idle,

 

delt_wait;

      

/*

 

get

 

initial

 

set

 

of

 

data

 

*/

    

perfstat_cpu_total(NULL,

 

&cpu_total_buffer,

 

sizeof(perfstat_cpu_total_t),

 

1);

      

/*

 

print

 

general

 

processor

 

information

 

*/

    

printf("Processors:

 

(%d:%d)

 

%s

 

running

 

at

 

%llu

 

MHz\n",

           

cpu_total_buffer.ncpus,

 

cpu_total_buffer.ncpus_cfg,

           

cpu_total_buffer.description,

 

cpu_total_buffer.processorHZ/1000000);

      

/*

 

save

 

values

 

for

 

delta

 

calculations

 

*/

    

last_tot

 

=

 

cpu_total_buffer.user

 

+

 

cpu_total_buffer.sys

  

+

               

cpu_total_buffer.idle

 

+

 

cpu_total_buffer.wait;

      

last_user

  

=

 

cpu_total_buffer.user;

    

last_sys

   

=

 

cpu_total_buffer.sys;

    

last_idle

  

=

 

cpu_total_buffer.idle;

    

last_wait

  

=

 

cpu_total_buffer.wait;

      

printf("\n

 

User

    

Sys

   

Idle

   

Wait

  

Total

  

Rate\n");

      

while(1

 

==

 

1)

 

{

       

sleep(1);

         

/*

 

get

 

new

 

values

 

after

 

one

 

second

 

*/

       

perfstat_cpu_total(NULL,

 

&cpu_total_buffer,

 

sizeof(perfstat_cpu_total_t),

 

1);

           

/*

 

calculate

 

current

 

total

 

number

 

of

 

ticks

 

*/

       

cur_tot

 

=

 

cpu_total_buffer.user

 

+

 

cpu_total_buffer.sys

  

+

                 

cpu_total_buffer.idle

 

+

 

cpu_total_buffer.wait;

         

delt_user

 

=

 

cpu_total_buffer.user

 

-

 

last_user;

       

delt_sys

  

=

 

cpu_total_buffer.sys

  

-

 

last_sys;

       

delt_idle

 

=

 

cpu_total_buffer.idle

 

-

 

last_idle;

       

delt_wait

 

=

 

cpu_total_buffer.wait

 

-

 

last_wait;

       

delt_tot

  

=

 

cur_tot

 

-

 

last_tot;

         

/*

 

print

 

percentages,

 

total

 

delta

 

ticks

 

and

 

tick

 

rate

 

per

 

cpu

 

per

 

sec

 

*/

       

printf("%#5.1f

  

%#5.1f

  

%#5.1f

  

%#5.1f

  

%-5llu

  

%llu\n",

              

100.0

 

*

 

(double)

 

delt_user

 

/

 

(double)

 

delt_tot,

              

100.0

 

*

 

(double)

 

delt_sys

  

/

 

(double)

 

delt_tot,

              

100.0

 

*

 

(double)

 

delt_idle

 

/

 

(double)

 

delt_tot,

              

100.0

 

*

 

(double)

 

delt_wait

 

/

 

(double)

 

delt_tot,

              

delt_tot,

 

delt_tot/cpu_total_buffer.ncpus);

         

/*

 

save

 

current

 

value

 

for

 

next

 

time

 

*/

       

last_tot

  

=

 

cur_tot;

       

last_user

 

=

 

cpu_total_buffer.user;

       

last_sys

  

=

 

cpu_total_buffer.sys;

       

last_idle

 

=

 

cpu_total_buffer.idle;

       

last_wait

 

=

 

cpu_total_buffer.wait;

    

}

 

}

   

The

 

preceding

 

program

 

produces

 

(on

 

a

 

single

 

PowerPc

 

604e

 

microprocessor-based

 

machine)

 

output

 

similar

 

to

 

the

 

following:

 

Processors:

 

(1:1)

 

PowerPC_604e

 

running

 

at

 

375

 

MHz

    

User

    

Sys

   

Idle

   

Wait

  

Total

  

Rate

  

Chapter

 

6.

 

Perfstat

 

API

 

Programming

 

121



19.0

   

31.0

    

1.0

   

49.0

  

100

    

100

  

20.8

   

34.7

    

0.0

   

44.6

  

101

    

101

  

35.0

   

30.0

    

0.0

   

35.0

  

100

    

100

  

12.0

   

20.0

    

0.0

   

68.0

  

100

    

100

  

19.0

   

33.0

    

0.0

   

48.0

  

100

    

100

  

29.0

   

43.0

   

11.0

   

17.0

  

100

    

100

  

23.0

   

30.0

   

25.0

   

22.0

  

100

    

100

  

24.0

   

25.0

   

15.0

   

36.0

  

100

    

100

  

26.0

   

27.0

   

25.0

   

22.0

  

100

    

100

  

20.0

   

32.0

   

37.0

   

11.0

  

100

    

100

  

16.0

   

22.0

   

49.0

   

13.0

  

100

    

100

  

16.0

   

33.0

   

18.0

   

33.0

  

100

    

100

   

perfstat_memory_total

 

Interface

 

The

 

perfstat_memory_total

 

function

 

returns

 

a

 

perfstat_memory_total_t

 

structure,

 

which

 

is

 

defined

 

in

 

the

 

libperfstat.h

 

file.

 

Selected

 

fields

 

from

 

the

 

perfstat_memory_total_t

 

structure

 

include:

  

virt_total

 

Amount

 

of

 

virtual

 

memory

 

(in

 

units

 

of

 

4

 

KB

 

pages)

 

real_total

 

Amount

 

of

 

real

 

memory

 

(in

 

units

 

of

 

4

 

KB

 

pages)

 

real_free

 

Amount

 

of

 

free

 

real

 

memory

 

(in

 

units

 

of

 

4

 

KB

 

pages)

 

real_pinned

 

Amount

 

of

 

pinned

 

memory

 

(in

 

units

 

of

 

4

 

KB

 

pages)

 

pgins

 

Number

 

of

 

pages

 

paged

 

in

 

pgouts

 

Number

 

of

 

pages

 

paged

 

out

 

pgsp_total

 

Total

 

amount

 

of

 

paging

 

space

 

(in

 

units

 

of

 

4

 

KB

 

pages)

 

pgsp_free

 

Amount

 

of

 

free

 

paging

 

space

 

(in

 

units

 

of

 

4

 

KB

 

pages)

 

pgsp_rsvd

 

Amount

 

of

 

reserved

 

paging

 

space

 

(in

 

units

 

of

 

4

 

KB

 

pages)

   

Several

 

other

 

memory-related

 

metrics

 

(such

 

as

 

amount

 

of

 

paging

 

space

 

paged

 

in

 

and

 

out,

 

and

 

amount

 

of

 

system

 

memory)

 

are

 

also

 

returned.

 

For

 

a

 

complete

 

list,

 

see

 

the

 

perfstat_memory_total_t

 

section

 

of

 

the

 

libperfstat.h

 

header

 

file

 

in

 

AIX

 

5L

 

Version

 

5.2

 

Files

 

Reference.

 

The

 

following

 

code

 

shows

 

an

 

example

 

of

 

how

 

perfstat_memory_total

 

is

 

used:

 

#include

 

<stdio.h>

 

#include

 

<libperfstat.h>

   

int

 

main(int

 

argc,

 

char*

 

argv[])

 

{

     

perfstat_memory_total_t

 

minfo;

       

perfstat_memory_total(NULL,

 

&minfo,

 

sizeof(perfstat_memory_total_t),

 

1);

       

printf("Memory

 

statistics\n");

     

printf("-----------------\n");

     

printf("real

 

memory

 

size

                 

:

 

%llu

 

MB\n",

            

minfo.real_total*4096/1024/1024);

     

printf("reserved

 

paging

 

space

            

:

 

%llu

 

MB\n",minfo.pgsp_rsvd);

     

printf("virtual

 

memory

 

size

              

:

 

%llu

 

MB\n",

            

minfo.virt_total*4096/1024/1024);

     

printf("number

 

of

 

free

 

pages

             

:

 

%llu\n",minfo.real_free);

     

printf("number

 

of

 

pinned

 

pages

           

:

 

%llu\n",minfo.real_pinned);

     

printf("number

 

of

 

pages

 

in

 

file

 

cache

    

:

 

%llu\n",minfo.numperm);

     

printf("total

 

paging

 

space

 

pages

         

:

 

%llu\n",minfo.pgsp_total);

     

printf("free

 

paging

 

space

 

pages

          

:

 

%llu\n",

 

minfo.pgsp_free);

     

printf("used

 

paging

 

space

                

:

 

%3.2f%%\n",

         

(float)(minfo.pgsp_total-minfo.pgsp_free)*100.0/

         

(float)minfo.pgsp_total);

     

printf("number

 

of

 

paging

 

space

 

page

 

ins

  

:

 

%llu\n",minfo.pgspins);

     

printf("number

 

of

 

paging

 

space

 

page

 

outs

 

:

 

%llu\n",minfo.pgspouts);

  

122

 

Performance

 

Tools

 

Guide

 

and

 

Reference



printf("number

 

of

 

page

 

ins

               

:

 

%llu\n",minfo.pgins);

     

printf("number

 

of

 

page

 

outs

              

:

 

%llu\n",minfo.pgouts);

 

}

   

The

 

preceding

 

program

 

produces

 

output

 

similar

 

to

 

the

 

following:

 

Memory

 

statistics

 

-----------------

 

real

 

memory

 

size

                 

:

 

256

 

MB

 

reserved

 

paging

 

space

            

:

 

512

 

MB

 

virtual

 

memory

 

size

              

:

 

768

 

MB

 

number

 

of

 

free

 

pages

             

:

 

32304

 

number

 

of

 

pinned

 

pages

           

:

 

6546

 

number

 

of

 

pages

 

in

 

file

 

cache

    

:

 

12881

 

total

 

paging

 

space

 

pages

         

:

 

131072

 

free

 

paging

 

space

 

pages

          

:

 

129932

 

used

 

paging

 

space

                

:

 

0.87%

 

number

 

of

 

paging

 

space

 

page

 

ins

  

:

 

0

 

number

 

of

 

paging

 

space

 

page

 

outs

 

:

 

0

 

number

 

of

 

page

 

ins

               

:

 

20574

 

number

 

of

 

page

 

outs

              

:

 

92508

   

perfstat_disk_total

 

Interface

 

The

 

perfstat_disk_total

 

function

 

returns

 

a

 

perfstat_disk_total_t

 

structure,

 

which

 

is

 

defined

 

in

 

the

 

libperfstat.h

 

file.

 

Selected

 

fields

 

from

 

the

 

perfstat_disk_total_t

 

structure

 

include:

  

number

 

Number

 

of

 

disks

 

size

 

Total

 

disk

 

size

 

(in

 

MB)

 

free

 

Total

 

free

 

disk

 

space

 

(in

 

MB)

 

xfers

 

Total

 

transfers

 

to

 

and

 

from

 

disk

 

(in

 

KB)

   

Several

 

other

 

disk-related

 

metrics,

 

such

 

as

 

number

 

of

 

blocks

 

read

 

from

 

and

 

written

 

to

 

disk,

 

are

 

also

 

returned.

 

For

 

a

 

complete

 

list,

 

see

 

the

 

perfstat_disk_total_t

 

section

 

in

 

the

 

libperfstat.h

 

header

 

file

 

in

 

AIX

 

5L

 

Version

 

5.2

 

Files

 

Reference.

 

The

 

following

 

code

 

shows

 

an

 

example

 

of

 

how

 

perfstat_disk_total

 

is

 

used:

 

#include

 

<stdio.h>

 

#include

 

<libperfstat.h>

   

int

 

main(int

 

argc,

 

char*

 

argv[])

 

{

     

perfstat_disk_total_t

 

dinfo;

       

perfstat_disk_total(NULL,

 

&dinfo,

 

sizeof(perfstat_disk_total_t),

 

1);

       

printf("Total

 

disk

 

statistics\n");

     

printf("---------------------\n");

     

printf("number

 

of

  

disks

         

:

 

%d\n",

   

dinfo.number);

     

printf("total

 

disk

 

space

         

:

 

%llu\n",

 

dinfo.size);

     

printf("total

 

free

 

space

         

:

 

%llu\n",

 

dinfo.free);

     

printf("number

 

of

 

transfers

      

:

 

%llu\n",

 

dinfo.xfers);

     

printf("number

 

of

 

blocks

 

written

 

:

 

%llu\n",

 

dinfo.wblks);

     

printf("number

 

of

 

blocks

 

read

    

:

 

%llu\n",

 

dinfo.rblks);

 

}

   

This

 

program

 

produces

 

output

 

similar

 

to

 

the

 

following:

 

Total

 

disk

 

statistics

 

---------------------

 

number

 

of

  

disks

         

:

 

3

 

total

 

disk

 

space

         

:

 

4296

  

Chapter

 

6.

 

Perfstat

 

API

 

Programming

 

123



total

 

free

 

space

         

:

 

2912

 

number

 

of

 

transfers

      

:

 

77759

 

number

 

of

 

blocks

 

written

 

:

 

738016

 

number

 

of

 

blocks

 

read

    

:

 

363120

 

perfstat_netinterface_total

 

Interface

 

The

 

perfstat_netinterface_total

 

function

 

returns

 

a

 

perfstat_netinterface_total_t

 

structure,

 

which

 

is

 

defined

 

in

 

the

 

libperfstat.h

 

file.

 

Selected

 

fields

 

from

 

the

 

perfstat_netinterface_total_t

 

structure

 

include:

  

number

 

Number

 

of

 

network

 

interfaces

 

ipackets

 

Total

 

number

 

of

 

input

 

packets

 

received

 

on

 

all

 

network

 

interfaces

 

opackets

 

Total

 

number

 

of

 

output

 

packets

 

sent

 

on

 

all

 

network

 

interfaces

 

ierror

 

Total

 

number

 

of

 

input

 

errors

 

on

 

all

 

network

 

interfaces

 

oerror

 

Total

 

number

 

of

 

output

 

errors

 

on

 

all

 

network

 

interfaces

   

Several

 

other

 

network

 

interface

 

related

 

metrics

 

(such

 

as

 

number

 

of

 

bytes

 

sent

 

and

 

received).

 

For

 

a

 

complete

 

list,

 

see

 

the

 

perfstat_netinterface_total_t

 

section

 

in

 

the

 

libperfstat.h

 

header

 

file

 

in

 

AIX

 

5L

 

Version

 

5.2

 

Files

 

Reference.

  

The

 

following

 

code

 

shows

 

an

 

example

 

of

 

how

 

perfstat_netinterface_total

 

is

 

used:

 

#include

 

<stdio.h>

 

#include

 

<libperfstat.h>

   

int

 

main(int

 

argc,

 

char*

 

argv[])

 

{

     

perfstat_netinterface_total_t

 

ninfo;

       

perfstat_netinterface_total(NULL,

 

&ninfo,

 

sizeof(perfstat_netinterface_total_t),

 

1);

       

printf("Network

 

interfaces

 

statistics\n");

     

printf("-----------------------------\n");

     

printf("number

 

of

 

interfaces

 

:

 

%d\n",

   

ninfo.number);

     

printf("\ninput

 

statistics:\n");

     

printf("number

 

of

 

packets

    

:

 

%llu\n",

 

ninfo.ipackets);

     

printf("number

 

of

 

errors

     

:

 

%llu\n",

 

ninfo.ierrors);

     

printf("number

 

of

 

bytes

      

:

 

%llu\n",

 

ninfo.ibytes);

     

printf("\noutput

 

statistics:\n");

     

printf("number

 

of

 

packets

    

:

 

%llu\n",

 

ninfo.opackets);

     

printf("number

 

of

 

bytes

      

:

 

%llu\n",

 

ninfo.obytes);

     

printf("number

 

of

 

errors

     

:

 

%llu\n",

 

ninfo.oerrors);

 

}

   

The

 

program

 

above

 

produces

 

output

 

similar

 

to

 

this:

 

Network

 

interfaces

 

statistics

 

-----------------------------

 

number

 

of

 

interfaces

 

:

 

2

   

input

 

statistics:

 

number

 

of

 

packets

    

:

 

306688

 

number

 

of

 

errors

     

:

 

0

 

number

 

of

 

bytes

      

:

 

24852688

   

output

 

statistics:

 

number

 

of

 

packets

    

:

 

63005

 

number

 

of

 

bytes

      

:

 

11518591

 

number

 

of

 

errors

     

:

 

0

    

124

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Component-Specific

 

Interfaces

 

Component-specific

 

interfaces

 

report

 

metrics

 

related

 

to

 

individual

 

components

 

on

 

a

 

system

 

(such

 

as

 

a

 

processor,

 

disk,

 

network

 

interface,

 

or

 

paging

 

space).

 

All

 

of

 

the

 

following

 

AIX

 

interfaces

 

use

 

the

 

naming

 

convention

 

perfstat_subsystem,

 

and

 

use

 

a

 

common

 

signature:

  

perfstat_cpu

 

Retrieves

 

individual

 

CPU

 

usage

 

metrics

 

perfstat_disk

 

Retrieves

 

individual

 

disk

 

usage

 

metrics

 

perfstat_diskpath

 

Retrieves

 

individual

 

disk

 

path

 

metrics

 

perfstat_diskadapter

 

Retrieves

 

individual

 

disk

 

adapter

 

metrics

 

perfstat_netinterface

 

Retrieves

 

individual

 

network

 

interfaces

 

metrics

 

perfstat_protocol

 

Retrieves

 

individual

 

network

 

protocol

 

related

 

metrics

 

perfstat_netbuffer

 

Retrieves

 

individual

 

network

 

buffer

 

allocation

 

metrics

 

perfstat_pagingspace

 

Retrieves

 

individual

 

paging

 

space

 

metrics

   

The

 

common

 

signature

 

used

 

by

 

all

 

the

 

component

 

interfaces

 

is

 

as

 

follows:

 

int

 

perfstat_subsystem(perfstat_id

 

*name,

                        

perfstat_subsystem_t

 

*

 

userbuff,

                        

int

 

sizeof_struct,

                        

int

 

desired_number);

   

The

 

usage

 

of

 

the

 

parameters

 

for

 

all

 

of

 

the

 

interfaces

 

is

 

as

 

follows:

  

perfstat_id_t

 

*name

 

The

 

name

 

of

 

the

 

first

 

component

 

(for

 

example

 

hdisk2

 

for

 

perfstat_disk())

 

for

 

which

 

statistics

 

are

 

desired.

 

A

 

structure

 

containing

 

a

 

char

 

*

 

field

 

is

 

used

 

instead

 

of

 

directly

 

passing

 

a

 

char

 

*

 

argument

 

to

 

the

 

function

 

to

 

avoid

 

allocation

 

errors

 

and

 

to

 

prevent

 

the

 

user

 

from

 

giving

 

a

 

constant

 

string

 

as

 

parameter.

 

To

 

start

 

from

 

the

 

first

 

component

 

of

 

a

 

subsystem,

 

set

 

the

 

char*

 

field

 

of

 

the

 

name

 

parameter

 

to

 

″″

 

(empty

 

string).

 

You

 

can

 

also

 

use

 

the

 

macros

 

such

 

as

 

FIRST_SUBSYSTEM

 

(for

 

example,

 

FIRST_CPU)

 

defined

 

in

 

the

 

libperfstat.h

 

file.

 

perfstat_subsystem_total_t

 

*userbuff

 

A

 

pointer

 

to

 

a

 

memory

 

area

 

with

 

enough

 

space

 

for

 

the

 

returned

 

structure(s).

 

int

 

sizeof_struct

 

Should

 

be

 

set

 

to

 

sizeof(perfstat_subsystem_t).

 

int

 

desired_number

 

The

 

number

 

of

 

structures

 

of

 

type

 

perfstat_subsystem_t

 

to

 

return

 

in

 

userbuff.

   

The

 

return

 

value

 

will

 

be

 

-1

 

in

 

case

 

of

 

error.

 

Otherwise,

 

the

 

number

 

of

 

structures

 

copied

 

is

 

returned.

 

The

 

field

 

name

 

is

 

either

 

set

 

to

 

NULL

 

or

 

to

 

the

 

name

 

of

 

the

 

next

 

structure

 

available.

 

An

 

exception

 

to

 

this

 

scheme

 

is

 

when

 

name=NULL,

 

userbuff=NULL

 

and

 

desired_number=0,

 

the

 

total

 

number

 

of

 

structures

 

available

 

is

 

returned.

 

To

 

retrieve

 

all

 

structures

 

of

 

a

 

given

 

type,

 

either

 

ask

 

first

 

for

 

their

 

number,

 

allocate

 

enough

 

memory

 

to

 

hold

 

them

 

all

 

at

 

once,

 

then

 

call

 

the

 

appropriate

 

API

 

to

 

retrieve

 

them

 

all

 

in

 

one

 

call.

 

Otherwise,

 

allocate

 

a

 

fixed

 

set

 

of

 

structures

 

and

 

repeatedly

 

call

 

the

 

API

 

to

 

get

 

the

 

next

 

such

 

number

 

of

 

structures,

 

each

 

time

 

passing

 

the

 

name

 

returned

 

by

 

the

 

previous

 

call.

 

Start

 

the

 

process

 

with

 

the

 

name

 

set

 

to

 

″″

 

or

 

FIRST_SUBSYSTEM,

 

and

 

repeat

 

the

 

process

 

until

 

the

 

name

 

returned

 

is

 

equal

 

to

 

″″.

 

Minimizing

 

the

 

number

 

of

 

API

 

calls,

 

and

 

therefore

 

the

 

number

 

of

 

system

 

calls,

 

will

 

always

 

lead

 

to

 

more

 

efficient

 

code,

 

so

 

the

 

two-call

 

approach

 

should

 

be

 

preferred.

 

Some

 

of

 

the

 

examples

 

shown

 

in

 

the

 

following

   

Chapter

 

6.

 

Perfstat

 

API

 

Programming

 

125



sections

 

illustrate

 

the

 

API

 

usage

 

using

 

the

 

two-call

 

approach.

 

Because

 

the

 

two-call

 

approach

 

can

 

lead

 

to

 

a

 

lot

 

of

 

memory

 

being

 

allocated,

 

the

 

multiple-call

 

approach

 

must

 

sometimes

 

be

 

used

 

and

 

is

 

illustrated

 

in

 

the

 

following

 

examples.

 

The

 

following

 

sections

 

provide

 

examples

 

of

 

the

 

type

 

of

 

data

 

returned

 

and

 

code

 

using

 

each

 

of

 

the

 

interfaces.

 

perfstat_cpu

 

interface

 

The

 

perfstat_cpu

 

function

 

returns

 

a

 

set

 

of

 

structures

 

of

 

type

 

perfstat_cpu_t,

 

which

 

is

 

defined

 

in

 

the

 

libperfstat.h

 

file.

 

Selected

 

fields

 

from

 

the

 

perfstat_cpu_t

 

structure

 

include:

  

name

 

Logical

 

CPU

 

name

 

(cpu0,

 

cpu1,

 

...)

 

user

 

Number

 

of

 

clock

 

ticks

 

spent

 

in

 

user

 

mode

 

sys

 

Number

 

of

 

clock

 

ticks

 

spent

 

in

 

system

 

(kernel)

 

mode

 

idle

 

Number

 

of

 

clock

 

ticks

 

spent

 

idle

 

with

 

no

 

I/O

 

pending

 

wait

 

Number

 

of

 

clock

 

ticks

 

spent

 

idle

 

with

 

I/O

 

pending

 

syscall

 

Number

 

of

 

system

 

call

 

executed

   

Several

 

other

 

CPU

 

related

 

metrics

 

(such

 

as

 

number

 

of

 

forks,

 

read,

 

write,

 

and

 

execs)

 

are

 

also

 

returned.

 

For

 

a

 

complete

 

list,

 

see

 

the

 

perfstat_cpu_t

 

section

 

in

 

the

 

libperfstat.h

 

header

 

file

 

in

 

AIX

 

5L

 

Version

 

5.2

 

Files

 

Reference.

 

The

 

following

 

code

 

shows

 

an

 

example

 

of

 

how

 

perfstat_cpu

 

is

 

used:

 

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

#include

 

<libperfstat.h>

   

int

 

main(int

 

argc,

 

char

 

*argv[])

 

{

    

int

 

i,

 

retcode,

 

cputotal;

    

perfstat_id_t

 

firstcpu;

    

perfstat_cpu_t

 

*statp;

      

/*

 

check

 

how

 

many

 

perfstat_cpu_t

 

structures

 

are

 

available

 

*/

    

cputotal

 

=

  

perfstat_cpu(NULL,

 

NULL,

 

sizeof(perfstat_cpu_t),

 

0);

      

printf("number

 

of

 

perfstat_cpu_t

 

available

 

:

 

%d\n",

 

cputotal);

      

/*

 

allocate

 

enough

 

memory

 

for

 

all

 

the

 

structures

 

*/

    

statp

 

=

 

calloc(cputotal,sizeof(perfstat_cpu_t));

      

/*

 

set

 

name

 

to

 

first

 

cpu

 

*/

    

strcpy(firstcpu.name,

 

FIRST_CPU);

      

/*

 

ask

 

to

 

get

 

all

 

the

 

structures

 

available

 

in

 

one

 

call

 

*/

    

retcode

 

=

 

perfstat_cpu(&firstcpu,

 

statp,

 

sizeof(perfstat_cpu_t),

 

cputotal);

      

/*

 

return

 

code

 

is

 

number

 

of

 

structures

 

returned

 

*/

    

printf("number

 

of

 

perfstat_cpu_t

 

returned

  

:

 

%d\n",

 

retcode);

      

for

 

(i

 

=

 

0;

 

i

 

<

 

retcode;

 

i++)

 

{

       

printf("\nStatistics

 

for

 

CPU

 

:

 

%s\n",

 

statp[i].name);

       

printf("------------------\n");

       

printf("CPU

 

user

 

time

 

(raw

 

ticks)

  

:

 

%llu\n",

 

statp[i].user);

       

printf("CPU

 

sys

  

time

 

(raw

 

ticks)

  

:

 

%llu\n",

 

statp[i].sys);

       

printf("CPU

 

idle

 

time

 

(raw

 

ticks)

  

:

 

%llu\n",

 

statp[i].idle);

       

printf("CPU

 

wait

 

time

 

(raw

 

ticks)

  

:

 

%llu\n",

 

statp[i].wait);

       

printf("number

 

of

 

syscalls

         

:

 

%llu\n",

 

statp[i].syscall);

       

printf("number

 

of

 

readings

         

:

 

%llu\n",

 

statp[i].sysread);

       

printf("number

 

of

 

writings

         

:

 

%llu\n",

 

statp[i].syswrite);

       

printf("number

 

of

 

forks

            

:

 

%llu\n",

 

statp[i].sysfork);

  

126

 

Performance

 

Tools

 

Guide

 

and

 

Reference



printf("number

 

of

 

execs

            

:

 

%llu\n",

 

statp[i].sysexec);

       

printf("number

 

of

 

char

 

read

        

:

 

%llu\n",

 

statp[i].readch);

       

printf("number

 

of

 

char

 

written

     

:

 

%llu\n",

 

statp[i].writech);

       

}

 

}

   

On

 

a

 

single

 

processor

 

machine,

 

the

 

preceding

 

program

 

produces

 

output

 

similar

 

to

 

the

 

following:

 

number

 

of

 

perfstat_cpu_t

 

available

 

:

 

1

 

number

 

of

 

perfstat_cpu_t

 

returned

  

:

 

1

   

Statistics

 

for

 

CPU

 

:

 

cpu0

 

------------------

 

CPU

 

user

 

time

 

(raw

 

ticks)

  

:

 

1336297

 

CPU

 

sys

  

time

 

(raw

 

ticks)

  

:

 

111958

 

CPU

 

idle

 

time

 

(raw

 

ticks)

  

:

 

57069585

 

CPU

 

wait

 

time

 

(raw

 

ticks)

  

:

 

19545

 

number

 

of

 

syscalls

         

:

 

4734311

 

number

 

of

 

readings

         

:

 

562121

 

number

 

of

 

writings

         

:

 

323367

 

number

 

of

 

forks

            

:

 

6839

 

number

 

of

 

execs

            

:

 

7257

 

number

 

of

 

char

 

read

        

:

 

753568874

 

number

 

of

 

char

 

written

     

:

 

132494990

   

In

 

an

 

environment

 

where

 

dynamic

 

logical

 

partitioning

 

is

 

used,

 

the

 

number

 

of

 

perfstat_cpu_t

 

structures

 

available

 

will

 

always

 

be

 

equal

 

to

 

the

 

ncpus_high

 

field

 

in

 

the

 

perfstat_cpu_total_t.

 

This

 

number

 

represents

 

the

 

highest

 

index

 

of

 

any

 

active

 

processor

 

since

 

the

 

last

 

reboot.

 

Kernel

 

data

 

structures

 

holding

 

performance

 

metrics

 

for

 

processors

 

are

 

not

 

deallocated

 

when

 

processors

 

are

 

turned

 

offline

 

or

 

moved

 

to

 

a

 

different

 

partition.

 

They

 

simply

 

stop

 

being

 

updated.

 

The

 

ncpus

 

field

 

of

 

the

 

perfstat_cpu_total_t

 

structure

 

always

 

represents

 

the

 

number

 

of

 

active

 

processors,

 

but

 

the

 

perfstat_cpu

 

interface

 

will

 

always

 

return

 

ncpus_high

 

structures.

 

Applications

 

can

 

detect

 

offline

 

or

 

moved

 

processors

 

by

 

checking

 

clock-tick

 

increments.

 

If

 

the

 

sum

 

of

 

the

 

user,

 

sys,

 

idle

 

and

 

wait

 

fields

 

is

 

identical

 

for

 

a

 

given

 

processor

 

between

 

two

 

perfstat_cpu

 

calls,

 

that

 

processor

 

has

 

been

 

offline

 

for

 

the

 

complete

 

interval.

 

If

 

the

 

sum

 

multiplied

 

by

 

10

 

ms

 

(the

 

value

 

of

 

a

 

clock

 

tick)

 

does

 

not

 

match

 

the

 

time

 

interval,

 

the

 

processor

 

has

 

not

 

been

 

online

 

for

 

the

 

complete

 

interval.

 

perfstat_disk

 

Interface

 

The

 

perfstat_disk

 

function

 

returns

 

a

 

set

 

of

 

structures

 

of

 

type

 

perfstat_disk_t,

 

which

 

is

 

defined

 

in

 

the

 

libperfstat.h

 

file.

 

Selected

 

fields

 

from

 

the

 

perfstat_disk_t

 

structure

 

include:

  

name

 

Disk

 

name

 

(from

 

ODM)

 

description

 

Disk

 

description

 

(from

 

ODM)

 

vgname

 

Volume

 

group

 

name

 

(from

 

ODM)

 

size

 

Disk

 

size

 

(in

 

MB)

 

free

 

Free

 

space

 

(in

 

MB)

 

xfers

 

Transfers

 

to/from

 

disk

 

(in

 

KB)

   

Several

 

other

 

disk

 

related

 

metrics

 

(such

 

as

 

number

 

of

 

blocks

 

read

 

from

 

and

 

written

 

to

 

disk,

 

and

 

adapter

 

names)

 

are

 

also

 

returned.

 

For

 

a

 

complete

 

list,

 

see

 

the

 

perfstat_disk_t

 

section

 

in

 

the

 

libperfstat.h

 

header

 

file

 

in

 

AIX

 

5L

 

Version

 

5.2

 

Files

 

Reference.

 

The

 

following

 

code

 

shows

 

an

 

example

 

of

 

how

 

perfstat_disk

 

is

 

used:

 

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

#include

 

<libperfstat.h>

  

Chapter

 

6.

 

Perfstat

 

API

 

Programming

 

127



int

 

main(int

 

argc,

 

char*

 

argv[])

 

{

     

int

 

i,

 

ret,

 

tot;

     

perfstat_disk_t

 

*statp;

     

perfstat_id_t

 

first;

       

/*

 

check

 

how

 

many

 

perfstat_disk_t

 

structures

 

are

 

available

 

*/

     

tot

 

=

  

perfstat_disk(NULL,

 

NULL,

 

sizeof(perfstat_disk_t),

 

0);

       

/*

 

allocate

 

enough

 

memory

 

for

 

all

 

the

 

structures

 

*/

     

statp

 

=

 

calloc(tot,

 

sizeof(perfstat_disk_t));

       

/*

 

set

 

name

 

to

 

first

 

interface

 

*/

     

strcpy(first.name,

 

FIRST_DISK);

       

/*

 

ask

 

to

 

get

 

all

 

the

 

structures

 

available

 

in

 

one

 

call

 

*/

     

/*

 

return

 

code

 

is

 

number

 

of

 

structures

 

returned

 

*/

     

ret

 

=

 

perfstat_disk(&first,

 

statp,

                         

sizeof(perfstat_disk_t),

 

tot);

           

/*

 

print

 

statistics

 

for

 

each

 

of

 

the

 

disks

 

*/

     

for

 

(i

 

=

 

0;

 

i

 

<

 

ret;

 

i++)

 

{

         

printf("\nStatistics

 

for

 

disk

 

:

 

%s\n",

 

statp[i].name);

         

printf("-------------------\n");

         

printf("description

              

:

 

%s\n",

 

statp[i].description);

         

printf("volume

 

group

 

name

        

:

 

%s\n",

 

statp[i].vgname);

         

printf("adapter

 

name

             

:

 

%s\n",

 

statp[i].adapter);

         

printf("size

                     

:

 

%llu

 

MB\n",

 

statp[i].size);

         

printf("free

 

space

               

:

 

%llu

 

MB\n",

 

statp[i].free);

         

printf("number

 

of

 

blocks

 

read

    

:

 

%llu

 

blocks

 

of

 

%llu

 

bytes\n",

 

statp[i].rblks,

 

statp[i].bsize);

         

printf("number

 

of

 

blocks

 

written

 

:

 

%llu

 

blocks

 

of

 

%llu

 

bytes\n",

 

statp[i].wblks,

 

statp[i].bsize);

         

}

      

}

   

The

 

preceding

 

program

 

produces

 

output

 

similar

 

to

 

the

 

following:

 

Statistics

 

for

 

disk

 

:

 

hdisk1

 

-------------------

 

description

              

:

 

16

 

Bit

 

SCSI

 

Disk

 

Drive

 

volume

 

group

 

name

        

:

 

rootvg

 

adapter

 

name

             

:

 

scsi0

 

size

                     

:

 

4296

 

MB

 

free

 

space

               

:

 

2912

 

MB

 

number

 

of

 

blocks

 

read

    

:

 

403946

 

blocks

 

of

 

512

 

bytes

 

number

 

of

 

blocks

 

written

 

:

 

768176

 

blocks

 

of

 

512

 

bytes

   

Statistics

 

for

 

disk

 

:

 

hdisk0

 

-------------------

 

description

              

:

 

16

 

Bit

 

SCSI

 

Disk

 

Drive

 

volume

 

group

 

name

        

:

 

None

 

adapter

 

name

             

:

 

scsi0

 

size

                     

:

 

0

 

MB

 

free

 

space

               

:

 

0

 

MB

 

number

 

of

 

blocks

 

read

    

:

 

0

 

blocks

 

of

 

512

 

bytes

 

number

 

of

 

blocks

 

written

 

:

 

0

 

blocks

 

of

 

512

 

bytes

   

Statistics

 

for

 

disk

 

:

 

cd0

 

-------------------

 

description

              

:

 

SCSI

 

Multimedia

 

CD-ROM

 

Drive

 

volume

 

group

 

name

        

:

 

not

 

available

 

adapter

 

name

             

:

 

scsi0

 

size

                     

:

 

0

 

MB

  

128

 

Performance

 

Tools

 

Guide

 

and

 

Reference



free

 

space

               

:

 

0

 

MB

 

number

 

of

 

blocks

 

read

    

:

 

3128

 

blocks

 

of

 

2048

 

bytes

 

number

 

of

 

blocks

 

written

 

:

 

0

 

blocks

 

of

 

2048

 

bytes

   

perfstat_diskpath

 

Interface

 

The

 

perfstat_diskpath

 

function

 

returns

 

a

 

set

 

of

 

structures

 

of

 

type

 

perfstat_diskpath_t,

 

which

 

is

 

defined

 

in

 

the

 

libperfstat.h

 

file.

 

Selected

 

fields

 

from

 

the

 

perfstat_diskadapter_t

 

structure

 

include:

  

name

 

Path

 

name

 

(<disk_name>_Path<path_id>)

 

xfers

 

Total

 

transfers

 

via

 

this

 

path

 

(in

 

KB)

 

adapter

 

Name

 

of

 

the

 

adapter

 

linked

 

to

 

the

 

path

   

Several

 

other

 

disk

 

path-related

 

metrics

 

(such

 

as

 

the

 

number

 

of

 

blocks

 

read

 

from

 

and

 

written

 

via

 

the

 

path)

 

are

 

also

 

returned.

 

For

 

a

 

complete

 

list,

 

see

 

the

 

perfstat_diskpath_t

 

section

 

in

 

the

 

libperfstat.h

 

header

 

file

 

in

 

AIX

 

5L

 

Version

 

5.2

 

Files

 

Reference.

 

The

 

following

 

code

 

shows

 

an

 

example

 

of

 

how

 

perfstat_diskpath

 

is

 

used:

 

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

#include

 

<libperfstat.h>

   

int

 

main(int

 

argc,

 

char*

 

argv[])

 

{

    

int

 

i,

 

ret,

 

tot;

    

perfstat_diskpath_t

 

*statp;

    

perfstat_disk_t

 

dstat;

    

perfstat_id_t

 

first;

    

char

 

*substring;

      

/*

 

check

 

how

 

many

 

perfstat_diskpath_t

 

structures

 

are

 

available

 

*/

    

tot

 

=

 

perfstat_diskpath(NULL,

 

NULL,

 

sizeof(perfstat_diskadapter_t),

 

0);

      

/*

 

allocate

 

enough

 

memory

 

for

 

all

 

the

 

structures

 

*/

    

statp

 

=

 

calloc(tot,

 

sizeof(perfstat_diskpath_t));

      

/*

 

set

 

name

 

to

 

first

 

interface

 

*/

    

strcpy(first.name,

 

FIRST_DISKPATH);

      

/*

 

ask

 

to

 

get

 

all

 

the

 

structures

 

available

 

in

 

one

 

call

 

*/

    

/*

 

return

 

code

 

is

 

number

 

of

 

structures

 

returned

 

*/

    

ret

 

=

 

perfstat_diskpath(&first,

 

statp,

 

sizeof(perfstat_diskpath_t),

 

tot);

      

/*

 

print

 

statistics

 

for

 

each

 

of

 

the

 

disk

 

paths

 

*/

    

for

 

(i

 

=

 

0;

 

i

 

<

 

ret;

 

i++)

 

{

        

printf("\nStatistics

 

for

 

disk

 

path

 

:

 

%s\n",

 

statp[i].name);

        

printf("----------------------\n");

        

printf("number

 

of

 

blocks

 

read

     

:

 

%llu\n",

 

statp[i].rblks);

        

printf("number

 

of

 

blocks

 

written

  

:

 

%llu\n",

 

statp[i].wblks);

        

printf("adapter

 

name

              

:

 

%s\n",

 

statp[i].adapter);

        

}

             

/*

 

retrieve

 

paths

 

for

 

last

 

disk

 

if

 

any

 

*/

    

if

 

(ret

 

>

 

0)

 

{

        

/*

 

extract

 

the

 

disk

 

name

 

from

 

the

 

last

 

disk

 

path

 

name

 

*/

        

substring

 

=

 

strstr(statp[ret

 

-

 

1].name,

 

"_Path");

        

if

 

(substring

 

==

 

NULL)

 

{

           

return

 

(-1);

        

}

        

substring[0]

 

=

 

’\0’;

         

/*

 

set

 

name

 

to

 

the

 

disk

 

name

 

*/

       

strcpy(first.name,

 

statp[ret-1]);

    

Chapter

 

6.

 

Perfstat

 

API

 

Programming

 

129



/*

 

retrieve

 

info

 

about

 

disk

 

*/

       

ret

 

=

 

perfstat_disk(&first,

 

&dstat,

 

sizeof(perfstat_disk_t),1);

       

printf("\nPaths

 

for

 

disk

 

path

 

:

 

%s

 

(%d)\n",

 

dstat.name,

 

dstat.paths_count);

       

printf("----------------------\n");

           

/*

 

retrieve

 

all

 

paths

 

for

 

this

 

disk

 

*/

       

ret

 

=

 

perfstat_diskpath(&first,

 

statp,

 

sizeof(perfstat_diskpath_t),

 

dstat.paths_count);

             

/*

 

print

 

statistics

 

for

 

each

 

of

 

the

 

paths

 

*/

       

for

 

(i

 

=

 

0;

 

i

 

<

 

ret;

 

i++)

 

{

           

printf("\nStatistics

 

for

 

disk

 

path

 

:

 

%s\n",

 

statp[i].name);

           

printf("----------------------\n");

           

printf("number

 

of

 

blocks

 

read

     

:

 

%llu\n",

 

statp[i].rblks);

           

printf("number

 

of

 

blocks

 

written

  

:

 

%llu\n",

 

statp[i].wblks);

           

printf("adapter

 

name

              

:

 

%s\n",

 

statp[i].adapter);

           

}

      

}

 

}

   

The

 

preceding

 

program

 

produces

 

output

 

similar

 

to

 

the

 

following:

 

Statistics

 

for

 

disk

 

path

  

:

 

hdisk1_Path0

 

----------------------

 

number

 

of

 

blocks

 

read

     

:

 

253612

 

number

 

of

 

blocks

 

written

  

:

 

537132

 

adapter

 

name

              

:

 

scsi0

   

Statistics

 

for

 

disk

 

path

  

:

 

hdisk2_Path0

 

----------------------

 

number

 

of

 

blocks

 

read

     

:

 

0

 

number

 

of

 

blocks

 

written

  

:

 

0

 

adapter

 

name

              

:

 

scsi0

   

Statistics

 

for

 

disk

 

path

  

:

 

hdisk2_Path1

 

----------------------

 

number

 

of

 

blocks

 

read

     

:

 

26457

 

number

 

of

 

blocks

 

written

  

:

 

43658

 

adapter

 

name

              

:

 

scsi2

   

Paths

 

for

 

disk

 

:

 

hdisk2

 

(2)

 

==============

   

Statistics

 

for

 

disk

 

path

  

:

 

hdisk2_Path0

 

----------------------

 

number

 

of

 

blocks

 

read

     

:

 

0

 

number

 

of

 

blocks

 

written

  

:

 

0

 

adapter

 

name

              

:

 

scsi0

   

Statistics

 

for

 

disk

 

path

  

:

 

hdisk2_Path1

 

----------------------

 

number

 

of

 

blocks

 

read

     

:

 

26457

 

number

 

of

 

blocks

 

written

  

:

 

43658

 

adapter

 

name

              

:

 

scsi2

 

perfstat_diskadapter

 

Interface

 

The

 

perfstat_diskadapter

 

function

 

returns

 

a

 

set

 

of

 

structures

 

of

 

type

 

perfstat_diskadapter_t,

 

which

 

is

 

defined

 

in

 

the

 

libperfstat.h

 

file.

 

Selected

 

fields

 

from

 

the

 

perfstat_diskadapter_t

 

structure

 

include:

  

name

 

Adapter

 

name

 

(from

 

ODM)

 

description

 

Adapter

 

description

 

(from

 

ODM)

   

130

 

Performance

 

Tools

 

Guide

 

and

 

Reference



size

 

Total

 

disk

 

size

 

connected

 

to

 

this

 

adapter

 

(in

 

MB)

 

free

 

Total

 

free

 

space

 

on

 

disks

 

connected

 

to

 

this

 

adapter

 

(in

 

MB)

 

xfers

 

Total

 

transfers

 

to/from

 

this

 

adapter

 

(in

 

KB)

   

Several

 

other

 

disk

 

adapter

 

related

 

metrics

 

(such

 

as

 

the

 

number

 

of

 

blocks

 

read

 

from

 

and

 

written

 

to

 

the

 

adapter)

 

are

 

also

 

returned.

 

For

 

a

 

complete

 

list,

 

see

 

the

 

perfstat_diskadapter_t

 

section

 

in

 

the

 

libperfstat.h

 

header

 

file

 

in

 

AIX

 

5L

 

Version

 

5.2

 

Files

 

Reference.

 

The

 

following

 

code

 

shows

 

an

 

example

 

of

 

how

 

perfstat_diskadapter

 

is

 

used:

 

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

#include

 

<libperfstat.h>

   

int

 

main(int

 

argc,

 

char*

 

argv[])

 

{

    

int

 

i,

 

ret,

 

tot;

    

perfstat_diskadapter_t

 

*statp;

    

perfstat_id_t

 

first;

      

/*

 

check

 

how

 

many

 

perfstat_diskadapter_t

 

structures

 

are

 

available

 

*/

    

tot

 

=

 

perfstat_diskadapter(NULL,

 

NULL,

 

sizeof(perfstat_diskadapter_t),

 

0);

      

/*

 

allocate

 

enough

 

memory

 

for

 

all

 

the

 

structures

 

*/

    

statp

 

=

 

calloc(tot,

 

sizeof(perfstat_diskadapter_t));

      

/*

 

set

 

name

 

to

 

first

 

interface

 

*/

    

strcpy(first.name,

 

FIRST_DISK);

      

/*

 

ask

 

to

 

get

 

all

 

the

 

structures

 

available

 

in

 

one

 

call

 

*/

    

/*

 

return

 

code

 

is

 

number

 

of

 

structures

 

returned

 

*/

    

ret

 

=

 

perfstat_diskadapter(&first,

 

statp,

 

sizeof(perfstat_diskadapter_t),

 

tot);

      

/*

 

print

 

statistics

 

for

 

each

 

of

 

the

 

disk

 

adapters

 

*/

    

for

 

(i

 

=

 

0;

 

i

 

<

 

ret;

 

i++)

 

{

        

printf("\nStatistics

 

for

 

adapter

 

:

 

%s\n",

 

statp[i].name);

        

printf("----------------------\n");

        

printf("description

               

:

 

%s\n",

 

statp[i].description);

        

printf("number

 

of

 

disks

 

connected

 

:

 

%d\n",

 

statp[i].number);

        

printf("total

 

disk

 

size

           

:

 

%llu

 

MB\n",

 

statp[i].size);

        

printf("total

 

disk

 

free

 

space

     

:

 

%llu

 

MB\n",

 

statp[i].free);

        

printf("number

 

of

 

blocks

 

read

     

:

 

%llu\n",

 

statp[i].rblks);

        

printf("number

 

of

 

blocks

 

written

  

:

 

%llu\n",

 

statp[i].wblks);

        

}

    

}

   

}

   

The

 

preceding

 

program

 

produces

 

output

 

similar

 

to

 

the

 

following:

 

Statistics

 

for

 

adapter

 

:

 

scsi0

 

----------------------

 

description

               

:

 

Wide/Fast-20

 

SCSI

 

I/O

 

Controller

 

number

 

of

 

disks

 

connected

 

:

 

3

 

total

 

disk

 

size

           

:

 

4296

 

MB

 

total

 

disk

 

free

 

space

     

:

 

2912

 

MB

 

number

 

of

 

blocks

 

read

     

:

 

411284

 

number

 

of

 

blocks

 

written

  

:

 

768256

   

perfstat_netinterface

 

Interface

 

The

 

perfstat_netinterface

 

function

 

returns

 

a

 

set

 

of

 

structures

 

of

 

type

 

perfstat_netinterface_t,

 

which

 

is

 

defined

 

in

 

the

 

libperfstat.h

 

file.

 

Selected

 

fields

 

from

 

the

 

perfstat_netinterface_t

 

structure

 

include:

  

name

 

Interface

 

name

 

(from

 

ODM)

   

Chapter

 

6.

 

Perfstat

 

API

 

Programming

 

131



description

 

Interface

 

description

 

(from

 

ODM)

 

ipackets

 

Total

 

number

 

of

 

input

 

packets

 

received

 

on

 

this

 

network

 

interface

 

opackets

 

Total

 

number

 

of

 

output

 

packets

 

sent

 

on

 

this

 

network

 

interface

 

ierror

 

Total

 

number

 

of

 

input

 

errors

 

on

 

this

 

network

 

interface

 

oerror

 

Total

 

number

 

of

 

output

 

errors

 

on

 

this

 

network

 

interface

   

Several

 

other

 

network

 

interface

 

related

 

metrics

 

(such

 

as

 

number

 

of

 

bytes

 

sent

 

and

 

received,

 

type,

 

and

 

bitrate)

 

are

 

also

 

returned.

 

For

 

a

 

complete

 

list,

 

see

 

the

 

perfstat_netinterface_t

 

section

 

in

 

the

 

libperfstat.h

 

header

 

file

 

in

 

AIX

 

5L

 

Version

 

5.2

 

Files

 

Reference.

 

The

 

following

 

code

 

shows

 

an

 

example

 

of

 

how

 

perfstat_netinterfaceis

 

used:

 

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

#include

 

<libperfstat.h>

 

#include

 

<net/if_types.h>

   

char

 

*

 

decode(uchar

 

type)

 

{

       

switch(type)

 

{

       

case

 

IFT_LOOP:

         

return("loopback");

       

case

 

IFT_ISO88025:

         

return("token-ring");

       

case

 

IFT_ETHER:

         

return("ethernet");

     

}

       

return("other");

 

}

   

int

 

main(int

 

argc,

 

char*

 

argv[])

 

{

    

int

 

i,

 

ret,

 

tot;

    

perfstat_netinterface_t

 

*statp;

    

perfstat_id_t

 

first;

      

/*

 

check

 

how

 

many

 

perfstat_netinterface_t

 

structures

 

are

 

available

 

*/

    

tot

 

=

 

perfstat_netinterface(NULL,

 

NULL,

 

sizeof(perfstat_netinterface_t),

 

0);

      

/*

 

allocate

 

enough

 

memory

 

for

 

all

 

the

 

structures

 

*/

    

statp

 

=

 

calloc(tot,

 

sizeof(perfstat_netinterface_t));

      

/*

 

set

 

name

 

to

 

first

 

interface

 

*/

    

strcpy(first.name,

 

FIRST_NETINTERFACE);

      

/*

 

ask

 

to

 

get

 

all

 

the

 

structures

 

available

 

in

 

one

 

call

 

*/

    

/*

 

return

 

code

 

is

 

number

 

of

 

structures

 

returned

 

*/

    

ret

 

=

 

perfstat_netinterface(&first,

 

statp,

 

sizeof(perfstat_netinterface_t),

 

tot);

      

/*

 

print

 

statistics

 

for

 

each

 

of

 

the

 

interfaces

 

*/

    

for

 

(i

 

=

 

0;

 

i

 

<

 

ret;

 

i++)

 

{

        

printf("\nStatistics

 

for

 

interface

 

:

 

%s\n",

 

statp[i].name);

        

printf("------------------------\n");

        

printf("type

 

:

 

%s\n",

 

decode(statp[i].type));

        

printf("\ninput

 

statistics:\n");

        

printf("number

 

of

 

packets

 

:

 

%llu\n",

 

statp[i].ipackets);

        

printf("number

 

of

 

errors

  

:

 

%llu\n",

 

statp[i].ierrors);

        

printf("number

 

of

 

bytes

   

:

 

%llu\n",

 

statp[i].ibytes);

        

printf("\noutput

 

statistics:\n");

        

printf("number

 

of

 

packets

 

:

 

%llu\n",

 

statp[i].opackets);

  

132

 

Performance

 

Tools

 

Guide

 

and

 

Reference



printf("number

 

of

 

bytes

   

:

 

%llu\n",

 

statp[i].obytes);

        

printf("number

 

of

 

errors

  

:

 

%llu\n",

 

statp[i].oerrors);

        

}

 

}

   

The

 

preceding

 

program

 

produces

 

output

 

similar

 

to

 

the

 

following:

 

Statistics

 

for

 

interface

 

:

 

tr0

 

------------------------

 

type

 

:

 

token-ring

   

input

 

statistics:

 

number

 

of

 

packets

 

:

 

306352

 

number

 

of

 

errors

  

:

 

0

 

number

 

of

 

bytes

   

:

 

24831776

   

output

 

statistics:

 

number

 

of

 

packets

 

:

 

62669

 

number

 

of

 

bytes

   

:

 

11497679

 

number

 

of

 

errors

  

:

 

0

   

Statistics

 

for

 

interface

 

:

 

lo0

 

------------------------

 

type

 

:

 

loopback

   

input

 

statistics:

 

number

 

of

 

packets

 

:

 

336

 

number

 

of

 

errors

  

:

 

0

 

number

 

of

 

bytes

   

:

 

20912

   

output

 

statistics:

 

number

 

of

 

packets

 

:

 

336

 

number

 

of

 

bytes

   

:

 

20912

 

number

 

of

 

errors

  

:

 

0

 

perfstat_protocol

 

Interface

 

The

 

perfstat_protocol

 

function

 

returns

 

a

 

set

 

of

 

structures

 

of

 

type

 

perfstat_protocol_t,

 

which

 

consists

 

of

 

a

 

set

 

of

 

unions

 

to

 

accommodate

 

the

 

different

 

sets

 

of

 

fields

 

needed

 

for

 

each

 

protocol,

 

as

 

defined

 

in

 

the

 

libperfstat.h

 

file.

 

Selected

 

fields

 

from

 

the

 

perfstat_protocol_t

 

structure

 

include:

  

name

 

protocol

 

name:

 

ip,

 

ip6,

 

icmp,

 

icmp6,

 

udp,

 

tcp,

 

rpc,

 

nfs,

 

nfsv2

 

or

 

nfsv3.

 

ipackets

 

Number

 

of

 

input

 

packets

 

received

 

using

 

this

 

protocol.

 

This

 

field

 

exists

 

only

 

for

 

protocols

 

ip,

 

ipv6,

 

udp,

 

and

 

tcp.

 

opackets

 

Number

 

of

 

output

 

packets

 

sent

 

using

 

this

 

protocol.

 

This

 

field

 

exists

 

only

 

for

 

protocols

 

ip,

 

ipv6,

 

udp,

 

and

 

tcp.

 

received

 

Number

 

of

 

packets

 

received

 

using

 

this

 

protocol.

 

This

 

field

 

exists

 

only

 

for

 

protocols

 

icmp

 

and

 

icmpv6.

 

calls

 

Number

 

of

 

calls

 

made

 

to

 

this

 

protocol.

 

This

 

field

 

exists

 

only

 

for

 

protocols

 

rpc,

 

nfs,

 

nfsv2,

 

and

 

nfsv3.

   

Many

 

other

 

network

 

protocol

 

related

 

metrics

 

are

 

also

 

returned.

 

The

 

complete

 

set

 

of

 

metrics

 

printed

 

by

 

nfsstat

 

is

 

returned

 

for

 

instance.

 

For

 

a

 

complete

 

list,

 

see

 

the

 

perfstat_protocol_t

 

section

 

in

 

the

 

libperfstat.h

 

header

 

file

 

in

 

AIX

 

5L

 

Version

 

5.2

 

Files

 

Reference.

 

The

 

following

 

code

 

shows

 

an

 

example

 

of

 

how

 

perfstat_protocol

 

is

 

used:

 

#include

 

<stdio.h>

 

#include

 

<string.h>

 

#include

 

<libperfstat.h>

   

int

 

main(int

 

argc,

 

char*

 

argv[])

 

{

     

int

 

ret,

 

tot,

 

retrieved

 

=

 

0;

     

perfstat_protocol_t

 

pinfo;

  

Chapter

 

6.

 

Perfstat

 

API

 

Programming

 

133



perfstat_id_t

 

protid;

       

/*

 

check

 

how

 

many

 

perfstat_protocol_t

 

structures

 

are

 

available

 

*/

     

tot

 

=

 

perfstat_protocol(NULL,

 

NULL,

 

sizeof(perfstat_protocol_t),

 

0);

       

printf("number

 

of

 

protocol

 

usage

 

structures

 

available

 

:

 

%d\n",

 

tot);

       

/*

 

set

 

name

 

to

 

first

 

protocol

 

*/

     

strcpy(protid.name,

 

FIRST_PROTOCOL);

       

/*

 

retrieve

 

first

 

protocol

 

usage

 

information

 

*/

     

ret

 

=

 

perfstat_protocol(&protid,

 

&pinfo,

 

sizeof(perfstat_protocol_t),

 

1);

     

retrieved

 

+=

 

ret;

       

do

 

{

        

printf("\nStatistics

 

for

 

protocol

 

:

 

%s\n",

 

pinfo.name);

        

printf("-----------------------\n");

          

if

 

(!strcmp(pinfo.name,"ip"))

 

{

            

printf("number

 

of

 

input

 

packets

  

:

 

%llu\n",

 

pinfo.ip.ipackets);

            

printf("number

 

of

 

input

 

errors

   

:

 

%llu\n",

 

pinfo.ip.ierrors);

            

printf("number

 

of

 

output

 

packets

 

:

 

%llu\n",

 

pinfo.ip.opackets);

            

printf("number

 

of

 

output

 

errors

  

:

 

%llu\n",

 

pinfo.ip.oerrors);

        

}

 

else

 

if

 

(!strcmp(pinfo.name,"ipv6"))

 

{

            

printf("number

 

of

 

input

 

packets

  

:

 

%llu\n",

 

pinfo.ipv6.ipackets);

            

printf("number

 

of

 

input

 

errors

   

:

 

%llu\n",

 

pinfo.ipv6.ierrors);

            

printf("number

 

of

 

output

 

packets

 

:

 

%llu\n",

 

pinfo.ipv6.opackets);

            

printf("number

 

of

 

output

 

errors

  

:

 

%llu\n",

 

pinfo.ipv6.oerrors);

        

}

 

else

 

if

 

(!strcmp(pinfo.name,"icmp"))

 

{

            

printf("number

 

of

 

packets

 

received

 

:

 

%llu\n",

 

pinfo.icmp.received);

            

printf("number

 

of

 

packets

 

sent

     

:

 

%llu\n",

 

pinfo.icmp.sent);

            

printf("number

 

of

 

errors

           

:

 

%llu\n",

 

pinfo.icmp.errors);

        

}

 

else

 

if

 

(!strcmp(pinfo.name,"icmpv6"))

 

{

            

printf("number

 

of

 

packets

 

received

 

:

 

%llu\n",

 

pinfo.icmpv6.received);

            

printf("number

 

of

 

packets

 

sent

     

:

 

%llu\n",

 

pinfo.icmpv6.sent);

            

printf("number

 

of

 

errors

           

:

 

%llu\n",

 

pinfo.icmpv6.errors);

        

}

 

else

 

if

 

(!strcmp(pinfo.name,"udp"))

 

{

            

printf("number

 

of

 

input

 

packets

  

:

 

%llu\n",

 

pinfo.udp.ipackets);

            

printf("number

 

of

 

input

 

errors

   

:

 

%llu\n",

 

pinfo.udp.ierrors);

            

printf("number

 

of

 

output

 

packets

 

:

 

%llu\n",

 

pinfo.udp.opackets);

        

}

 

else

 

if

 

(!strcmp(pinfo.name,"tcp"))

 

{

            

printf("number

 

of

 

input

 

packets

  

:

 

%llu\n",

 

pinfo.tcp.ipackets);

            

printf("number

 

of

 

input

 

errors

   

:

 

%llu\n",

 

pinfo.tcp.ierrors);

            

printf("number

 

of

 

output

 

packets

 

:

 

%llu\n",

 

pinfo.tcp.opackets);

        

}

 

else

 

if

 

(!strcmp(pinfo.name,"rpc"))

 

{

            

printf("client

 

statistics:\n");

            

printf("number

 

of

 

connection-oriented

 

RPC

 

requests

  

:

 

%llu\n",

                   

pinfo.rpc.client.stream.calls);

            

printf("number

 

of

 

rejected

 

connection-oriented

 

RPCs

 

:

 

%llu\n",

                   

pinfo.rpc.client.stream.badcalls);

            

printf("number

 

of

 

connectionless

 

RPC

 

requests

       

:

 

%llu\n",

                   

pinfo.rpc.client.dgram.calls);

            

printf("number

 

of

 

rejected

 

connectionless

 

RPCs

      

:

 

%llu\n",

                   

pinfo.rpc.client.dgram.badcalls);

            

printf("\nserver

 

statistics:\n");

            

printf("number

 

of

 

connection-oriented

 

RPC

 

requests

  

:

 

%llu\n",

                   

pinfo.rpc.server.stream.calls);

            

printf("number

 

of

 

rejected

 

connection-oriented

 

RPCs

 

:

 

%llu\n",

                   

pinfo.rpc.server.stream.badcalls);

            

printf("number

 

of

 

connectionless

 

RPC

 

requests

       

:

 

%llu\n",

                   

pinfo.rpc.server.dgram.calls);

            

printf("number

 

of

 

rejected

 

connectionless

 

RPCs

      

:

 

%llu\n",

                   

pinfo.rpc.server.dgram.badcalls);

        

}

 

else

 

if

 

(!strcmp(pinfo.name,"nfs"))

 

{

            

printf("total

 

number

 

of

 

NFS

 

client

 

requests

        

:

 

%llu\n",

                   

pinfo.nfs.client.calls);

            

printf("total

 

number

 

of

 

NFS

 

client

 

failed

 

calls

    

:

 

%llu\n",

  

134

 

Performance

 

Tools

 

Guide

 

and

 

Reference



pinfo.nfs.client.badcalls);

            

printf("total

 

number

 

of

 

NFS

 

server

 

requests

        

:

 

%llu\n",

                   

pinfo.nfs.server.calls);

            

printf("total

 

number

 

of

 

NFS

 

server

 

failed

 

calls

    

:

 

%llu\n",

                   

pinfo.nfs.server.badcalls);

            

printf("total

 

number

 

of

 

NFS

 

version

 

2

 

server

 

calls

 

:

 

%llu\n",

                   

pinfo.nfs.server.public_v2);

            

printf("total

 

number

 

of

 

NFS

 

version

 

3

 

server

 

calls

 

:

 

%llu\n",

                   

pinfo.nfs.server.public_v3);

        

}

 

else

 

if

 

(!strcmp(pinfo.name,"nfsv2"))

 

{

            

printf("number

 

of

 

NFS

 

V2

 

client

 

requests

 

:

 

%llu\n",

                   

pinfo.nfsv2.client.calls);

            

printf("number

 

of

 

NFS

 

V2

 

server

 

requests

 

:

 

%llu\n",

                   

pinfo.nfsv2.server.calls);

        

}

 

else

 

if

 

(!strcmp(pinfo.name,"nfsv3"))

 

{

            

printf("number

 

of

 

NFS

 

V3

 

client

 

requests

 

:

 

%llu\n",

                   

pinfo.nfsv3.client.calls);

            

printf("number

 

of

 

NFS

 

V3

 

server

 

requests

 

:

 

%llu\n",

                   

pinfo.nfsv3.server.calls);

        

}

          

/*

 

make

 

sure

 

we

 

stop

 

after

 

the

 

last

 

protocol

 

*/

        

if

 

(ret

 

=

 

strcmp(protid.name,

 

""))

 

{

            

printf("\nnext

 

protocol

 

name

 

:

 

%s\n",

 

protid.name);

              

/*

 

retrieve

 

information

 

for

 

next

 

protocol

 

*/

            

ret

 

=

 

perfstat_protocol(&protid,

 

&pinfo,

 

sizeof(perfstat_protocol_t),

 

1);

            

retrieved

 

+=

 

ret;

        

}

     

}

 

while

 

(ret

 

==

 

1);

      

printf("\nnumber

 

of

 

protocol

 

usage

 

structures

 

retrieved

 

:

 

%d\n",

 

retrieved);

 

}

 

The

 

preceding

 

program

 

produces

 

output

 

similar

 

to

 

the

 

following:

 

number

 

of

 

protocol

 

usage

 

structures

 

available

 

:

 

10

   

Statistics

 

for

 

protocol

 

:

 

ip

 

-----------------------

 

number

 

of

 

input

 

packets

  

:

 

142839

 

number

 

of

 

input

 

errors

   

:

 

54665

 

number

 

of

 

output

 

packets

 

:

 

63974

 

number

 

of

 

output

 

errors

  

:

 

55878

   

next

 

protocol

 

name

 

:

 

ipv6

   

Statistics

 

for

 

protocol

 

:

 

ipv6

 

-----------------------

 

number

 

of

 

input

 

packets

  

:

 

0

 

number

 

of

 

input

 

errors

   

:

 

0

 

number

 

of

 

output

 

packets

 

:

 

0

 

number

 

of

 

output

 

errors

  

:

 

0

   

next

 

protocol

 

name

 

:

 

icmp

   

Statistics

 

for

 

protocol

 

:

 

icmp

 

-----------------------

 

number

 

of

 

packets

 

received

 

:

 

35

 

number

 

of

 

packets

 

sent

     

:

 

1217

 

number

 

of

 

errors

           

:

 

0

   

next

 

protocol

 

name

 

:

 

icmpv6

   

Statistics

 

for

 

protocol

 

:

 

icmpv6

 

-----------------------

 

number

 

of

 

packets

 

received

 

:

 

0

  

Chapter

 

6.

 

Perfstat

 

API

 

Programming

 

135



number

 

of

 

packets

 

sent

     

:

 

0

 

number

 

of

 

errors

           

:

 

0

   

next

 

protocol

 

name

 

:

 

udp

   

Statistics

 

for

 

protocol

 

:

 

udp

 

-----------------------

 

number

 

of

 

input

 

packets

  

:

 

4316

 

number

 

of

 

input

 

errors

   

:

 

0

 

number

 

of

 

output

 

packets

 

:

 

308

   

next

 

protocol

 

name

 

:

 

tcp

   

Statistics

 

for

 

protocol

 

:

 

tcp

 

-----------------------

 

number

 

of

 

input

 

packets

  

:

 

82604

 

number

 

of

 

input

 

errors

   

:

 

0

 

number

 

of

 

output

 

packets

 

:

 

62250

   

next

 

protocol

 

name

 

:

 

rpc

   

Statistics

 

for

 

protocol

 

:

 

rpc

 

-----------------------

 

client

 

statistics:

 

number

 

of

 

connection-oriented

 

RPC

 

requests

  

:

 

375

 

number

 

of

 

rejected

 

connection-oriented

 

RPCs

 

:

 

0

 

number

 

of

 

connectionless

 

RPC

 

requests

       

:

 

20

 

number

 

of

 

rejected

 

connectionless

 

RPCs

      

:

 

0

   

server

 

statistics:

 

number

 

of

 

connection-oriented

 

RPC

 

requests

  

:

 

32

 

number

 

of

 

rejected

 

connection-oriented

 

RPCs

 

:

 

0

 

number

 

of

 

connectionless

 

RPC

 

requests

       

:

 

0

 

number

 

of

 

rejected

 

connectionless

 

RPCs

      

:

 

0

   

next

 

protocol

 

name

 

:

 

nfs

   

Statistics

 

for

 

protocol

 

:

 

nfs

 

-----------------------

 

total

 

number

 

of

 

NFS

 

client

 

requests

        

:

 

375

 

total

 

number

 

of

 

NFS

 

client

 

failed

 

calls

    

:

 

0

 

total

 

number

 

of

 

NFS

 

server

 

requests

        

:

 

32

 

total

 

number

 

of

 

NFS

 

server

 

failed

 

calls

    

:

 

0

 

total

 

number

 

of

 

NFS

 

version

 

2

 

server

 

calls

 

:

 

0

 

total

 

number

 

of

 

NFS

 

version

 

3

 

server

 

calls

 

:

 

0

   

next

 

protocol

 

name

 

:

 

nfsv2

   

Statistics

 

for

 

protocol

 

:

 

nfsv2

 

-----------------------

 

number

 

of

 

NFS

 

V2

 

client

 

requests

 

:

 

0

 

number

 

of

 

NFS

 

V2

 

server

 

requests

 

:

 

0

   

next

 

protocol

 

name

 

:

 

nfsv3

   

Statistics

 

for

 

protocol

 

:

 

nfsv3

 

-----------------------

 

number

 

of

 

NFS

 

V3

 

client

 

requests

 

:

 

375

 

number

 

of

 

NFS

 

V3

 

server

 

requests

 

:

 

32

   

number

 

of

 

protocol

 

usage

 

structures

 

retrieved

 

:

 

10

   

perfstat_netbuffer

 

Interface

 

The

 

perfstat_netbuffer

 

function

 

returns

 

a

 

set

 

of

 

structures

 

of

 

type

 

perfstat_netbuffer_t,

 

which

 

is

 

defined

 

in

 

the

 

libperfstat.h

 

file.

 

Selected

 

fields

 

from

 

the

 

perfstat_netbuffer_t

 

structure

 

include:

   

136

 

Performance

 

Tools

 

Guide

 

and

 

Reference



size

 

Size

 

of

 

the

 

allocation

 

(string

 

expressing

 

size

 

in

 

bytes)

 

inuse

 

Current

 

allocation

 

of

 

this

 

size

 

failed

 

Failed

 

allocation

 

of

 

this

 

size

 

free

 

Free

 

list

 

for

 

this

 

size

   

Several

 

other

 

allocation

 

related

 

metrics

 

(such

 

as

 

high-water

 

mark

 

and

 

freed)

 

are

 

also

 

returned.

 

For

 

a

 

complete

 

list,

 

see

 

the

 

perfstat_netbuffer_t

 

section

 

in

 

the

 

libperfstat.h

 

header

 

file

 

in

 

AIX

 

5L

 

Version

 

5.2

 

Files

 

Reference.

 

The

 

following

 

code

 

shows

 

an

 

example

 

of

 

how

 

perfstat_netbuffer

 

is

 

used:

 

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

#include

 

<libperfstat.h>

   

int

 

main(int

 

argc,

 

char*

 

argv[])

 

{

    

int

 

i,

 

ret,

 

tot;

    

perfstat_netbuffer_t

 

*statp;

    

perfstat_id_t

 

first;

      

/*

 

check

 

how

 

many

 

perfstat_netbuffer_t

 

structures

 

are

 

available

 

*/

    

tot

 

=

 

perfstat_netbuffer(NULL,

 

NULL,

 

sizeof(perfstat_netbuffer_t),

 

0);

      

/*

 

allocate

 

enough

 

memory

 

for

 

all

 

the

 

structures

 

*/

    

statp

 

=

 

calloc(tot,

 

sizeof(perfstat_netbuffer_t));

      

/*

 

set

 

name

 

to

 

first

 

interface

 

*/

    

strcpy(first.name,

 

FIRST_NETBUFFER);

      

/*

 

ask

 

to

 

get

 

all

 

the

 

structures

 

available

 

in

 

one

 

call

 

*/

    

/*

 

return

 

code

 

is

 

number

 

of

 

structures

 

returned

 

*/

    

ret

 

=

 

perfstat_netbuffer(&first,

 

statp,

                           

sizeof(perfstat_netbuffer_t),

 

tot);

      

/*

 

print

 

info

 

in

 

netstat

 

-m

 

format

 

*/

    

printf("%-12s

 

%10s

 

%9s

 

%6s

 

%9s

 

%7s

 

%7s

 

%7s\n",

           

"By

 

size",

 

"inuse",

 

"calls",

 

"failed",

           

"delayed",

 

"free",

 

"hiwat",

 

"freed");

    

for

 

(i

 

=

 

0;

 

i

 

<

 

ret;

 

i++)

 

{

        

printf("%-12s

 

%10llu

 

%9llu

 

%6llu

 

%9llu

 

%7llu

 

%7llu

 

%7llu\n",

            

statp[i].name,

            

statp[i].inuse,

            

statp[i].calls,

            

statp[i].delayed,

            

statp[i].free,

            

statp[i].failed,

            

statp[i].highwatermark,

            

statp[i].freed);

        

}

 

}

   

The

 

preceding

 

program

 

produces

 

output

 

similar

 

to

 

the

 

following:

 

By

 

size

           

inuse

     

calls

 

failed

   

delayed

    

free

   

hiwat

   

freed

 

32

                  

199

      

4798

      

0

        

57

       

0

     

826

       

0

 

64

                   

96

      

8121

      

0

        

32

       

0

     

413

       

0

 

128

                 

110

     

50156

      

0

       

146

       

0

     

206

       

2

 

256

                 

279

  

20313587

      

0

       

361

       

0

     

496

       

0

 

512

                 

156

      

5298

      

0

        

12

       

0

      

51

       

0

 

1024

                 

38

      

1038

      

0

         

6

       

0

     

129

       

0

 

2048

                  

1

      

6946

      

0

       

129

       

0

     

129

    

1024

 

4096

                 

67

    

276102

      

0

       

132

       

0

     

155

       

0

  

Chapter

 

6.

 

Perfstat

 

API

 

Programming

 

137



8192

                  

4

       

123

      

0

         

4

       

0

      

12

       

0

 

16384

                 

1

         

1

      

0

        

15

       

0

      

31

       

0

 

65536

                 

1

         

1

      

0

         

0

       

0

     

512

       

0

   

perfstat_pagingspace

 

Interface

 

The

 

perfstat_pagingspace

 

function

 

returns

 

a

 

set

 

of

 

structures

 

of

 

type

 

perfstat_pagingspace_t,

 

which

 

is

 

defined

 

in

 

the

 

libperfstat.h

 

file.

 

Selected

 

fields

 

from

 

the

 

perfstat_pagingspace_t

 

structure

 

include:

  

mb_size

 

Size

 

of

 

the

 

paging

 

space

 

in

 

MB

 

lp_size

 

Size

 

of

 

the

 

paging

 

space

 

in

 

logical

 

partitions

 

mb_used

 

Portion

 

of

 

the

 

paging

 

space

 

used

 

in

 

MB

   

Several

 

other

 

paging

 

space

 

related

 

metrics

 

(such

 

as

 

name,

 

type,

 

and

 

active)

 

are

 

also

 

returned.

 

For

 

a

 

complete

 

list,

 

see

 

the

 

perfstat_pagingspace_t

 

section

 

in

 

the

 

libperfstat.h

 

header

 

file

 

in

 

AIX

 

5L

 

Version

 

5.2

 

Files

 

Reference.

 

The

 

following

 

code

 

shows

 

an

 

example

 

of

 

how

 

perfstat_pagingspace

 

is

 

used:

 

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

#include

 

<libperfstat.h>

   

int

 

main(int

 

argc,

 

char

 

agrv[])

 

{

     

int

 

i,

 

ret,

 

tot;

     

perfstat_id_t

 

first;

     

perfstat_pagingspace_t

 

*pinfo;

       

tot

 

=

 

perfstat_pagingspace(NULL,

 

NULL,

 

sizeof(perfstat_pagingspace_t),

 

0);

       

pinfo

 

=

 

calloc(tot,sizeof(perfstat_pagingspace_t));

       

strcpy(first.name,

 

FIRST_PAGINGSPACE);

       

ret

 

=

 

perfstat_pagingspace(&first,

 

pinfo,

 

sizeof(perfstat_pagingspace_t),

 

tot);

     

for

 

(i

 

=

 

0;

 

i

 

<

 

ret;

 

i++)

 

{

         

printf("\nStatistics

 

for

 

paging

 

space

 

:

 

%s\n",

 

pinfo[i].name);

         

printf("---------------------------\n");

         

printf("type

         

:

 

%s\n",

                

pinfo[i].type

 

==

 

LV_PAGING

 

?

 

"logical

 

volume"

 

:

 

"NFS

 

file");

         

if

 

(pinfo[i].type

 

==

 

LV_PAGING)

 

{

          

printf("volume

 

group

 

:

 

%s\n",

 

pinfo[i].lv_paging.vgname);

         

}

         

else

 

{

          

printf("hostname

 

:

 

%s\n",

 

pinfo[i].nfs_paging.hostname);

          

printf("filename

 

:

 

%s\n",

 

pinfo[i].nfs_paging.filename);

         

}

         

printf("size

 

(in

 

LP)

 

:

 

%llu\n",

 

pinfo[i].lp_size);

         

printf("size

 

(in

 

MB)

 

:

 

%llu\n",

 

pinfo[i].mb_size);

         

printf("used

 

(in

 

MB)

 

:

 

%llu\n",

 

pinfo[i].mb_used);

     

}

 

}

   

The

 

preceding

 

program

 

produces

 

output

 

similar

 

to

 

the

 

following:

 

Statistics

 

for

 

paging

 

space

 

:

 

hd6

 

---------------------------

 

type

         

:

 

logical

 

volume

 

volume

 

group

 

:

 

rootvg

 

size

 

(in

 

LP)

 

:

 

64

 

size

 

(in

 

MB)

 

:

 

512

 

used

 

(in

 

MB)

 

:

 

4

  

138

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Change

 

History

 

of

 

the

 

perfstat

 

API

 

The

 

following

 

changes

 

and

 

additions

 

have

 

been

 

made

 

to

 

the

 

perfstat

 

APIs:

 

Interface

 

Changes

 

Beginning

 

with:

 

v

   

bos.perf.libperfstat

 

4.3.3.4

 

v

   

bos.perf.libperfstat

 

5.1.0.50

 

v

   

bos.perf.libperfstat

 

5.2.0.10

the

 

rblks

 

and

 

wblks

 

fields

 

of

 

libperfstat

 

are

 

represented

 

by

 

blocks

 

of

 

512

 

bytes

 

in

 

the

 

perfstat_disk_total_t,

 

perfstat_diskadapter_t

 

and

 

perfstat_diskpath_t

 

structures,

 

regardless

 

of

 

the

 

actual

 

block

 

size

 

used

 

by

 

the

 

device

 

for

 

which

 

metrics

 

are

 

being

 

retrieved.

 

Interface

 

Additions

 

The

 

following

 

interfaces

 

were

 

added

 

in

 

the

 

bos.perf.libperfstat

 

5.2.0

 

fileset

 

:

 

v

   

perfstat_netbuffer

 

v

   

perfstat_protocol

 

v

   

perfstat_pagingspace

 

v

   

perfstat_diskadapter

 

v

   

perfstat_reset

The

 

perfstat_diskpath

 

interface

 

was

 

added

 

in

 

the

 

bos.perf.libperfstat

 

5.2.0.10

 

fileset.

 

Field

 

Additions

 

The

 

following

 

additions

 

have

 

been

 

made

 

to

 

the

 

specified

 

fileset

 

levels:

 

The

 

bos.perf.libperfstat

 

5.1.0.15

 

fileset

 

The

 

following

 

fields

 

were

 

added

 

to

 

perfstat_cpu_total_t:

     

u_longlong_t

 

bread

     

u_longlong_t

 

bwrite

     

u_longlong_t

 

lread

     

u_longlong_t

 

lwrite

     

u_longlong_t

 

phread

     

u_longlong_t

 

phwrite

 

Support

 

for

 

C++

 

was

 

added

 

in

 

this

 

fileset

 

level.

 

Note

 

that

 

the

 

version

 

of

 

libperfstat

 

for

 

AIX

 

4.3

 

is

 

synchronized

 

with

 

this

 

level.

 

No

 

binary

 

or

 

source

 

compatibility

 

is

 

provided

 

between

 

the

 

4.3.3.4

 

version

 

and

 

any

 

5.1

 

version

 

prior

 

to

 

5.1.0.15.

 

The

 

bos.perf.libperfstat

 

5.1.0.25

 

fileset

 

The

 

following

 

fields

 

were

 

added

 

to

 

perfstat_cpu_t:

     

u_longlong_t

 

bread

     

u_longlong_t

 

bwrite

     

u_longlong_t

 

lread

     

u_longlong_t

 

lwrite

     

u_longlong_t

 

phread

     

u_longlong_t

 

phwrite

 

The

 

bos.perf.libperfstat

 

5.2.0

 

fileset

 

The

 

following

 

fields

 

were

 

added

 

to

 

perfstat_cpu_t:

   

Chapter

 

6.

 

Perfstat

 

API

 

Programming

 

139



u_longlong_t

 

iget

     

u_longlong_t

 

namei

     

u_longlong_t

 

dirblk

     

u_longlong_t

 

msg

     

u_longlong_t

 

sema

   

The

 

name

 

field

 

which

 

returns

 

the

 

logical

 

processor

 

name

 

is

 

now

 

of

 

the

 

form

 

cpu0,

 

cpu1,

 

...

 

instead

 

of

 

proc0,

 

proc1,

 

...

 

as

 

it

 

was

 

in

 

previous

 

releases.

 

The

 

following

 

fields

 

were

 

added

 

to

 

perfstat_cpu_total_t:

     

u_longlong_t

 

runocc

     

u_longlong_t

 

swpocc

     

u_longlong_t

 

iget

     

u_longlong_t

 

namei

     

u_longlong_t

 

dirblk

     

u_longlong_t

 

msg

     

u_longlong_t

 

sema

     

u_longlong_t

 

rcvint

     

u_longlong_t

 

xmtint

     

u_longlong_t

 

mdmint

     

u_longlong_t

 

tty_rawinch

     

u_longlong_t

 

tty_caninch

     

u_longlong_t

 

tty_rawoutch

     

u_longlong_t

 

ksched

     

u_longlong_t

 

koverf

     

u_longlong_t

 

kexit

     

u_longlong_t

 

rbread

     

u_longlong_t

 

rcread

     

u_longlong_t

 

rbwrt

     

u_longlong_t

 

rcwrt

     

u_longlong_t

 

traps

     

int

 

ncpus_high

   

The

 

following

 

field

 

was

 

added

 

to

 

perfstat_disk_t:

        

char

 

adapter[IDENTIFIER_LENGTH]

 

The

 

following

 

field

 

was

 

added

 

to

 

perfstat_netinterface_t:

        

u_longlong_t

 

bitrate

 

The

 

following

 

fields

 

were

 

added

 

to

 

perfstat_memory_total_t:

      

u_longlong_t

 

real_system

      

u_longlong_t

 

real_user

      

u_longlong_t

 

real_process

 

The

 

following

 

defines

 

were

 

added

 

to

 

libperfstat.h:

     

#define

 

FIRST_CPU

          

""

     

#define

 

FIRST_DISK

         

""

     

#define

 

FIRST_DISKADAPTER

  

""

     

#define

 

FIRST_NETINTERFACE

 

""

     

#define

 

FIRST_PAGINGSPACE

  

""

     

#define

 

FIRST_PROTOCOL

     

""

     

#define

 

FIRST_ALLOC

        

""

   

The

 

bos.perf.libperfstat

 

5.2.0.10

 

fileset

 

The

 

following

 

field

 

was

 

added

 

to

 

perfstat_disk_t:

     

uint

 

paths_count

 

The

 

following

 

define

 

was

 

added

 

to

 

libperfstat.h:

   

140

 

Performance

 

Tools

 

Guide

 

and

 

Reference



#define

 

FIRST_DISKPATH

  

""

 

Related

 

Information

 

The

 

libperfstat.h

 

file.

   

Chapter

 

6.

 

Perfstat

 

API

 

Programming

 

141



142

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Chapter

 

7.

 

Kernel

 

Tuning

 

Beginning

 

with

 

AIX

 

5.2,

 

you

 

can

 

make

 

permanent

 

kernel-tuning

 

changes

 

without

 

having

 

to

 

edit

 

any

 

rc

 

files.

 

This

 

is

 

achieved

 

by

 

centralizing

 

the

 

reboot

 

values

 

for

 

all

 

tunable

 

parameters

 

in

 

the

 

/etc/tunables/nextboot

 

stanza

 

file.

 

When

 

a

 

system

 

is

 

rebooted,

 

the

 

values

 

in

 

the

 

/etc/tunables/nextboot

 

file

 

are

 

automatically

 

applied.

 

The

 

following

 

commands

 

are

 

used

 

to

 

manipulate

 

the

 

nextboot

 

file

 

and

 

other

 

files

 

containing

 

a

 

set

 

of

 

tunable

 

parameter

 

values:

 

v

   

The

 

tunchange

 

command

 

is

 

used

 

to

 

change

 

values

 

in

 

a

 

stanza

 

file.

 

v

   

The

 

tunsave

 

command

 

is

 

used

 

to

 

save

 

values

 

to

 

a

 

stanza

 

file.

 

v

   

The

 

tunrestore

 

is

 

used

 

to

 

apply

 

a

 

file;

 

that

 

is,

 

to

 

change

 

all

 

tunables

 

parameter

 

values

 

to

 

those

 

listed

 

in

 

a

 

file.

 

v

   

The

 

tuncheck

 

command

 

must

 

be

 

used

 

to

 

validate

 

a

 

file

 

created

 

manually.

 

v

   

The

 

tundefault

 

is

 

available

 

to

 

reset

 

tunable

 

parameters

 

to

 

their

 

default

 

values.

The

 

preceding

 

commands

 

work

 

on

 

both

 

current

 

and

 

reboot

 

values.

 

All

 

five

 

tuning

 

commands

 

(no,

 

nfso,

 

vmo,

 

ioo,

 

and

 

schedo)

 

use

 

a

 

common

 

syntax

 

and

 

are

 

available

 

to

 

directly

 

manipulate

 

the

 

tunable

 

parameter

 

values.

 

Available

 

options

 

include

 

making

 

permanent

 

changes

 

and

 

displaying

 

detailed

 

help

 

on

 

each

 

of

 

the

 

parameters

 

that

 

the

 

command

 

manages.

 

SMIT

 

panels

 

and

 

Web-based

 

System

 

Manager

 

plug-ins

 

are

 

also

 

available

 

to

 

manipulate

 

current

 

and

 

reboot

 

values

 

for

 

all

 

tuning

 

parameters,

 

as

 

well

 

as

 

the

 

files

 

in

 

the

 

/etc/tunables

 

directory.

 

The

 

following

 

topics

 

are

 

covered

 

in

 

this

 

chapter:

 

v

   

“Migration

 

and

 

Compatibility”

 

v

   

“Tunables

 

File

 

Directory”

 

on

 

page

 

144

 

v

   

“Tunable

 

Parameters

 

Type”

 

on

 

page

 

145

 

v

   

“Common

 

Syntax

 

for

 

Tuning

 

Commands”

 

on

 

page

 

145

 

v

   

“Tunable

 

File-Manipulation

 

Commands”

 

on

 

page

 

147

 

v

   

“Initial

 

setup”

 

on

 

page

 

150

 

v

   

“Reboot

 

Tuning

 

Procedure”

 

on

 

page

 

151

 

v

   

“Recovery

 

Procedure”

 

on

 

page

 

151

 

v

   

“Kernel

 

Tuning

 

Using

 

the

 

SMIT

 

Interface”

 

on

 

page

 

151

 

v

   

“Kernel

 

Tuning

 

using

 

the

 

Performance

 

Plug-In

 

for

 

Web-based

 

System

 

Manager”

 

on

 

page

 

157

 

v

   

“Files”

 

on

 

page

 

167

 

v

   

“Related

 

Information”

 

on

 

page

 

167

Migration

 

and

 

Compatibility

 

When

 

machines

 

are

 

migrated

 

to

 

AIX

 

5.2

 

from

 

a

 

previous

 

release

 

of

 

AIX,

 

the

 

tuning

 

commands

 

are

 

automatically

 

set

 

to

 

run

 

in

 

compatibility

 

mode.

 

Most

 

of

 

the

 

information

 

in

 

this

 

section

 

does

 

not

 

apply

 

to

 

compatibility

 

mode.

 

For

 

more

 

information,

 

see

 

Performance

 

tuning

 

enhancements

 

for

 

AIX

 

5.2

 

in

 

the

 

AIX

 

5L

 

Version

 

5.2

 

Performance

 

Management

 

Guide.

 

When

 

a

 

machine

 

is

 

initially

 

installed

 

with

 

AIX

 

5.2,

 

it

 

is

 

automatically

 

set

 

to

 

run

 

in

 

AIX

 

5.2

 

tuning

 

mode,

 

which

 

is

 

described

 

in

 

this

 

chapter.

 

The

 

tuning

 

mode

 

is

 

controlled

 

by

 

the

 

sys0

 

attribute

 

called

 

pre520tune,

 

which

 

can

 

be

 

set

 

to

 

enable

 

to

 

run

 

in

 

compatibility

 

mode

 

and

 

disable

 

to

 

run

 

in

 

AIX

 

5.2

 

mode.

 

To

 

retrieve

 

the

 

current

 

setting

 

of

 

the

 

pre520tune

 

attribute,

 

run

 

the

 

following

 

command:

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

143



lsattr

 

-E

 

-l

 

sys0

 

To

 

change

 

the

 

current

 

setting

 

of

 

the

 

pre520tune

 

attribute,

 

run

 

the

 

following

 

command:

 

chdev

 

-l

 

sys0

 

-a

 

pre520tune=enable

 

OR

 

use

 

SMIT

 

or

 

Web-based

 

System

 

Manager.

 

Tunables

 

File

 

Directory

 

Information

 

about

 

tunable

 

parameter

 

values

 

is

 

located

 

in

 

the

 

/etc/tunables

 

directory.

 

Except

 

for

 

a

 

log

 

file

 

created

 

during

 

each

 

reboot,

 

this

 

directory

 

only

 

contains

 

ASCII

 

stanza

 

files

 

with

 

sets

 

of

 

tunable

 

parameters.

 

These

 

files

 

contain

 

parameter=value

 

pairs

 

specifying

 

tunable

 

parameter

 

changes,

 

classified

 

in

 

five

 

stanzas

 

corresponding

 

to

 

the

 

five

 

tuning

 

commands

 

:

 

schedo,

 

vmo,

 

ioo,

 

no,

 

and

 

nfso.

 

Additional

 

information

 

about

 

the

 

level

 

of

 

AIX,

 

when

 

the

 

file

 

was

 

created,

 

and

 

a

 

user-provided

 

description

 

of

 

file

 

usage

 

is

 

stored

 

in

 

a

 

special

 

stanza

 

in

 

the

 

file.

 

For

 

detailed

 

information

 

on

 

the

 

file’s

 

format,

 

see

 

the

 

tunables

 

file.

 

The

 

main

 

file

 

in

 

the

 

tunables

 

directory

 

is

 

called

 

nextboot.

 

It

 

contains

 

all

 

the

 

tunable

 

parameter

 

values

 

to

 

be

 

applied

 

at

 

the

 

next

 

reboot.

 

The

 

lastboot

 

file

 

in

 

the

 

tunables

 

directory

 

contains

 

all

 

the

 

tunable

 

values

 

that

 

were

 

set

 

at

 

the

 

last

 

machine

 

reboot,

 

a

 

timestamp

 

for

 

the

 

last

 

reboot,

 

and

 

checksum

 

information

 

about

 

the

 

matching

 

lastboot.log

 

file,

 

which

 

is

 

used

 

to

 

log

 

any

 

changes

 

made,

 

or

 

any

 

error

 

messages

 

encountered,

 

during

 

the

 

last

 

rebooting.

 

The

 

lastboot

 

and

 

lastboot.log

 

files

 

are

 

set

 

to

 

be

 

read-only

 

and

 

are

 

owned

 

by

 

the

 

root

 

user,

 

as

 

are

 

the

 

directory

 

and

 

all

 

of

 

the

 

other

 

files.

 

Users

 

can

 

create

 

as

 

many

 

/etc/tunables

 

files

 

as

 

needed,

 

but

 

only

 

the

 

nextboot

 

file

 

is

 

ever

 

automatically

 

applied.

 

Manually

 

created

 

files

 

must

 

be

 

validated

 

using

 

the

 

tuncheck

 

command.

 

Parameters

 

and

 

stanzas

 

can

 

be

 

missing

 

from

 

a

 

file.

 

Only

 

tunable

 

parameters

 

present

 

in

 

the

 

file

 

will

 

be

 

changed

 

when

 

the

 

file

 

is

 

applied

 

with

 

the

 

tunrestore

 

command.

 

Missing

 

tunables

 

will

 

simply

 

be

 

left

 

at

 

their

 

current

 

or

 

default

 

values.

 

To

 

force

 

resetting

 

of

 

a

 

tunable

 

to

 

its

 

default

 

value

 

with

 

tunrestore

 

(presumably

 

to

 

force

 

other

 

tunables

 

to

 

known

 

values,

 

otherwise

 

tundefault,

 

which

 

sets

 

all

 

parameters

 

to

 

their

 

default

 

value,

 

could

 

have

 

been

 

used),

 

DEFAULT

 

can

 

be

 

specified.

 

Specifying

 

DEFAULT

 

for

 

a

 

tunable

 

in

 

the

 

nextboot

 

file

 

is

 

the

 

same

 

as

 

not

 

having

 

it

 

listed

 

in

 

the

 

file

 

at

 

all

 

because

 

the

 

reboot

 

tuning

 

procedure

 

enforces

 

default

 

values

 

for

 

missing

 

parameters.

 

This

 

will

 

guarantee

 

to

 

have

 

all

 

tunables

 

parameters

 

set

 

to

 

the

 

values

 

specified

 

in

 

the

 

nextboot

 

file

 

after

 

each

 

reboot.

 

Tunable

 

files

 

can

 

have

 

a

 

special

 

stanza

 

named

 

info

 

containing

 

the

 

parameters

 

AIX_level,

 

Kernel_type

 

and

 

Last_validation.

 

Those

 

parameters

 

are

 

automatically

 

set

 

to

 

the

 

level

 

of

 

AIX

 

and

 

to

 

the

 

type

 

of

 

kernel

 

(UP,

 

MP,

 

or

 

MP64)

 

running

 

when

 

the

 

tuncheck

 

or

 

tunsave

 

is

 

run

 

on

 

the

 

file.

 

Both

 

commands

 

automatically

 

update

 

those

 

fields.

 

However,

 

the

 

tuncheck

 

command

 

will

 

only

 

update

 

if

 

no

 

error

 

was

 

detected.

 

The

 

lastboot

 

file

 

always

 

contains

 

values

 

for

 

every

 

tunable

 

parameters.

 

Tunables

 

set

 

to

 

their

 

default

 

value

 

will

 

be

 

marked

 

with

 

the

 

comment

 

DEFAULT

 

VALUE.

 

The

 

Logfile_checksum

 

parameter

 

only

 

exists

 

in

 

that

 

file

 

and

 

is

 

set

 

by

 

the

 

tuning

 

reboot

 

process

 

(which

 

also

 

sets

 

the

 

rest

 

of

 

the

 

info

 

stanza)

 

after

 

closing

 

the

 

log

 

file.

 

Tunable

 

files

 

can

 

be

 

created

 

and

 

modified

 

using

 

one

 

of

 

the

 

following

 

options:

 

v

   

Using

 

SMIT

 

or

 

Web-based

 

System

 

Manager,

 

to

 

modify

 

the

 

next

 

reboot

 

value

 

for

 

tunable

 

parameters,

 

or

 

to

 

ask

 

to

 

save

 

all

 

current

 

values

 

for

 

next

 

boot,

 

or

 

to

 

ask

 

to

 

use

 

an

 

existing

 

tunable

 

file

 

at

 

the

 

next

 

reboot.

 

All

 

those

 

actions

 

will

 

update

 

the

 

/etc/tunables/nextboot

 

file.

 

A

 

new

 

file

 

in

 

the

 

/etc/tunables

 

directory

 

can

 

also

 

be

 

created

 

to

 

save

 

all

 

current

 

or

 

all

 

nextboot

 

values.

 

v

   

Using

 

the

 

tuning

 

commands

 

(ioo,

 

vmo,

 

schedo,

 

no

 

or

 

nfso)

 

with

 

the

 

-p

 

or

 

-r

 

options,

 

which

 

will

 

update

 

the

 

/etc/tunables/nexboot

 

file.

   

144

 

Performance

 

Tools

 

Guide

 

and

 

Reference



v

   

A

 

new

 

file

 

can

 

also

 

be

 

created

 

directly

 

with

 

an

 

editor

 

or

 

copied

 

from

 

another

 

machine.

 

Running

 

tuncheck

 

[-r

 

|

 

-p]

 

-f

 

must

 

then

 

be

 

done

 

on

 

that

 

file.

 

v

   

Using

 

the

 

tunsave

 

command

 

to

 

create

 

or

 

overwrite

 

files

 

in

 

the

 

/etc/tunables

 

directory

 

v

   

Using

 

the

 

tunrestore

 

-r

 

command

 

to

 

update

 

the

 

nextboot

 

file.

Tunable

 

Parameters

 

Type

 

All

 

the

 

tunable

 

parameters

 

manipulated

 

by

 

the

 

tuning

 

commands

 

(no,

 

nfso,

 

vmo,

 

ioo,

 

and

 

schedo)

 

have

 

been

 

classified

 

into

 

the

 

following

 

categories:

 

v

   

Dynamic:

 

if

 

the

 

parameter

 

can

 

be

 

changed

 

at

 

any

 

time

 

v

   

Static:

 

if

 

the

 

parameter

 

can

 

never

 

be

 

changed

 

v

   

Reboot:

 

if

 

the

 

parameter

 

can

 

only

 

be

 

changed

 

during

 

reboot

 

v

   

Bosboot:

 

if

 

the

 

parameter

 

can

 

only

 

be

 

changed

 

by

 

running

 

bosboot

 

and

 

rebooting

 

the

 

machine

 

v

   

Mount:

 

if

 

changes

 

to

 

the

 

parameter

 

are

 

only

 

effective

 

for

 

future

 

file

 

systems

 

or

 

directory

 

mounts

 

v

   

Incremental:

 

if

 

the

 

parameter

 

can

 

only

 

be

 

incremented,

 

except

 

at

 

boot

 

time

 

v

   

Connect:

 

if

 

changes

 

to

 

the

 

parameter

 

are

 

only

 

effective

 

for

 

future

 

socket

 

connections

The

 

manual

 

page

 

for

 

each

 

of

 

the

 

five

 

tuning

 

commands

 

contains

 

the

 

complete

 

list

 

of

 

all

 

the

 

parameter

 

manipulated

 

by

 

each

 

of

 

the

 

commands

 

and

 

for

 

each

 

parameter,

 

its

 

type,

 

range,

 

default

 

value,

 

and

 

any

 

dependencies

 

on

 

other

 

parameters.

 

For

 

parameters

 

of

 

type

 

Bosboot,

 

whenever

 

a

 

change

 

is

 

performed,

 

the

 

tuning

 

commands

 

automatically

 

prompt

 

the

 

user

 

to

 

ask

 

if

 

they

 

want

 

to

 

execute

 

the

 

bosboot

 

command.

 

For

 

parameters

 

of

 

type

 

Connect,

 

the

 

tuning

 

commands

 

automatically

 

restart

 

the

 

inetd

 

daemon.

 

Common

 

Syntax

 

for

 

Tuning

 

Commands

 

The

 

no,

 

nfso,

 

vmo,

 

ioo,

 

and

 

schedo

 

tuning

 

commands

 

all

 

support

 

the

 

following

 

syntax:

 

command

 

[-p|-r]

 

{-o

 

tunable[=newvalue]}

 

command

 

[-p|-r]

 

{-d

 

tunable}

 

command

 

[-p|-r]

 

-D

 

command

 

[-p|-r]

 

-a

 

command

 

-h

 

[tunable]

 

command

 

-L

 

[tunable]

 

command

 

-x

 

[tunable]

    

-a

 

Displays

 

current,

 

reboot

 

(when

 

used

 

in

 

conjunction

 

with

 

-r)

 

or

 

permanent

 

(when

 

used

 

in

 

conjunction

 

with

 

-p)

 

value

 

for

 

all

 

tunable

 

parameters,

 

one

 

per

 

line

 

in

 

pairs

 

tunable

 

=

 

value.

 

For

 

the

 

permanent

 

options,

 

a

 

value

 

is

 

displayed

 

for

 

a

 

parameter

 

only

 

if

 

its

 

reboot

 

and

 

current

 

values

 

are

 

equal.

 

Otherwise,

 

NONE

 

is

 

displayed

 

as

 

the

 

value.

 

If

 

a

 

tunable

 

is

 

not

 

supported

 

by

 

the

 

running

 

kernel

 

or

 

the

 

current

 

platform,

 

″n/a″

 

is

 

displayed

 

as

 

the

 

value.

 

-d

 

tunable

 

Resets

 

tunable

 

to

 

default

 

value.

 

If

 

a

 

tunable

 

needs

 

to

 

be

 

changed

 

(that

 

is,

 

it

 

is

 

currently

 

not

 

set

 

to

 

its

 

default

 

value)

 

and

 

is

 

of

 

type

 

Bosboot

 

or

 

Reboot,

 

or

 

if

 

it

 

is

 

of

 

type

 

Incremental

 

and

 

has

 

been

 

changed

 

from

 

its

 

default

 

value,

 

and

 

-r

 

is

 

not

 

used

 

in

 

combination,

 

it

 

is

 

not

 

changed,

 

but

 

a

 

message

 

displays

 

instead.

 

-D

 

Resets

 

all

 

tunables

 

to

 

their

 

default

 

value.

 

If

 

tunables

 

needing

 

to

 

be

 

changed

 

are

 

of

 

type

 

Bosboot

 

or

 

Reboot,

 

or

 

are

 

of

 

type

 

Incremental

 

and

 

have

 

been

 

changed

 

from

 

their

 

default

 

value,

 

and

 

-r

 

is

 

not

 

used

 

in

 

combination,

 

they

 

are

 

not

 

changed,

 

but

 

a

 

message

 

displays

 

instead.

 

-h

 

[tunable]

 

Displays

 

help

 

about

 

tunable

 

parameter.

 

Otherwise,

 

displays

 

the

 

command

 

usage

 

statement.

   

Chapter

 

7.

 

Kernel

 

Tuning

 

145



-o

 

tunable[=newvalue]

 

Displays

 

the

 

value

 

or

 

sets

 

tunable

 

to

 

newvalue.

 

If

 

a

 

tunable

 

needs

 

to

 

be

 

changed

 

(the

 

specified

 

value

 

is

 

different

 

than

 

current

 

value),

 

and

 

is

 

of

 

type

 

Bosboot

 

or

 

Reboot,

 

or

 

if

 

it

 

is

 

of

 

type

 

Incremental

 

and

 

its

 

current

 

value

 

is

 

bigger

 

than

 

the

 

specified

 

value,

 

and

 

-r

 

is

 

not

 

used

 

in

 

combination,

 

it

 

is

 

not

 

changed,

 

but

 

a

 

message

 

displays

 

instead.

 

When

 

-r

 

is

 

used

 

in

 

combination

 

without

 

a

 

new

 

value,

 

the

 

nextboot

 

value

 

for

 

tunable

 

is

 

displayed.

 

When

 

-p

 

is

 

used

 

in

 

combination

 

without

 

a

 

new

 

value,

 

a

 

value

 

is

 

displayed

 

only

 

if

 

the

 

current

 

and

 

next

 

boot

 

values

 

for

 

tunable

 

are

 

the

 

same.

 

Otherwise,

 

NONE

 

is

 

displayed

 

as

 

the

 

value.

 

If

 

a

 

tunable

 

is

 

not

 

supported

 

by

 

the

 

running

 

kernel

 

or

 

the

 

current

 

platform,

 

″n/a″

 

is

 

displayed

 

as

 

the

 

value.

 

-p

 

When

 

used

 

in

 

combination

 

with

 

-o,

 

-d

 

or

 

-D,

 

makes

 

changes

 

apply

 

to

 

both

 

current

 

and

 

reboot

 

values;

 

that

 

is,

 

turns

 

on

 

the

 

updating

 

of

 

the

 

/etc/tunables/nextboot

 

file

 

in

 

addition

 

to

 

the

 

updating

 

of

 

the

 

current

 

value.

 

This

 

flag

 

cannot

 

be

 

used

 

on

 

Reboot

 

and

 

Bosboot

 

type

 

parameters

 

because

 

their

 

current

 

value

 

cannot

 

be

 

changed.

 

When

 

used

 

with

 

-a

 

or

 

-o

 

flag

 

without

 

specifying

 

a

 

new

 

value,

 

values

 

are

 

displayed

 

only

 

if

 

the

 

current

 

and

 

next

 

boot

 

values

 

for

 

a

 

parameter

 

are

 

the

 

same.

 

Otherwise,

 

NONE

 

is

 

displayed

 

as

 

the

 

value.

 

-r

 

When

 

used

 

in

 

combination

 

with

 

-o,

 

-d

 

or

 

-D

 

flags,

 

makes

 

changes

 

apply

 

to

 

reboot

 

values

 

only;

 

that

 

is,

 

turns

 

on

 

the

 

updating

 

of

 

the

 

/etc/tunables/nextboot

 

file.

 

If

 

any

 

parameter

 

of

 

type

 

Bosboot

 

is

 

changed,

 

the

 

user

 

will

 

be

 

prompted

 

to

 

run

 

bosboot.

 

When

 

used

 

with

 

-a

 

or

 

-o

 

without

 

specifying

 

a

 

new

 

value,

 

next

 

boot

 

values

 

for

 

tunables

 

are

 

displayed

 

instead

 

of

 

current

 

values.

 

-x

 

[tunable]

 

Lists

 

the

 

characteristics

 

of

 

one

 

or

 

all

 

tunables,

 

one

 

per

 

line,

 

using

 

the

 

following

 

format:

 

tunable,current,default,reboot,

 

min,max,unit,type,{dtunable

 

}

 

where:

      

current

 

=

 

current

 

value

      

default

 

=

 

default

 

value

      

reboot

 

=

 

reboot

 

value

      

min

 

=

 

minimal

 

value

      

max

 

=

 

maximum

 

value

      

unit

 

=

 

tunable

 

unit

 

of

 

measure

      

type

 

=

 

parameter

 

type:

 

D(for

 

Dynamic),S(for

 

Static),

             

R(for

 

Reboot),B(for

 

Bosboot),M(for

 

Mount),

             

I(for

 

Incremental)

 

and

 

C

 

(for

 

Connect)

      

dtunable

 

=

 

space

 

separated

 

list

 

of

 

dependent

 

tunable

 

parameters

   

146

 

Performance

 

Tools

 

Guide

 

and

 

Reference



-L

 

[tunable]

 

Lists

 

the

 

characteristics

 

of

 

one

 

or

 

all

 

tunables,

 

one

 

per

 

line,

 

using

 

the

 

following

 

format:

 

NAME

                      

CUR

    

DEF

    

BOOT

   

MIN

    

MAX

    

UNIT

           

TYPE

      

DEPENDENCIES

 

--------------------------------------------------------------------------------

 

memory_frames

             

128K

   

128K

                        

4KB

 

pages

         

S

 

--------------------------------------------------------------------------------

 

maxfree

                   

128

    

128

    

128

    

16

     

200K

   

4KB

 

pages

         

D

      

minfree

      

memory_frames

 

--------------------------------------------------------------------------------

 

where:

      

CUR

  

=

 

current

 

value

      

DEF

  

=

 

default

 

value

      

BOOT

 

=

 

reboot

 

value

      

MIN

  

=

 

minimal

 

value

      

MAX

  

=

 

maximum

 

value

      

UNIT

 

=

 

tunable

 

unit

 

of

 

measure

      

TYPE

 

=

 

parameter

 

type:

 

D

 

(for

 

Dynamic),S

 

(for

 

Static),

                             

R

 

(for

 

Reboot),B

 

(for

 

Bosboot),

                             

M

 

(for

 

Mount),

 

I

 

(for

 

Incremental)

                              

and

 

C

 

(for

 

Connect)

      

DEPENDENCIES

 

=

 

list

 

of

 

dependent

 

tunable

 

parameters,

 

one

 

per

 

line

   

Any

 

change

 

(with

 

-o,

 

-d

 

or

 

-D

 

flags)

 

to

 

a

 

parameter

 

of

 

type

 

Mount

 

will

 

result

 

in

 

a

 

message

 

displays

 

to

 

warn

 

the

 

user

 

that

 

the

 

change

 

is

 

only

 

effective

 

for

 

future

 

mountings.

 

Any

 

change

 

(with

 

-o,

 

-d

 

or

 

-D

 

flags)

 

to

 

a

 

parameter

 

of

 

type

 

Connect

 

will

 

result

 

in

 

the

 

inetd

 

daemon

 

being

 

restarted,

 

and

 

a

 

message

 

will

 

display

 

to

 

warn

 

the

 

user

 

that

 

the

 

change

 

is

 

only

 

effective

 

for

 

socket

 

connections.

 

Any

 

attempt

 

to

 

change

 

(with

 

-o,

 

-d

 

or

 

-D

 

flags

 

)

 

a

 

parameter

 

of

 

type

 

Bosboot

 

or

 

Reboot

 

without

 

-r,

 

will

 

result

 

in

 

an

 

error

 

message.

 

Any

 

attempt

 

to

 

change

 

(with

 

-o,

 

-d

 

or

 

-D

 

flags

 

but

 

without

 

-r)

 

the

 

current

 

value

 

of

 

a

 

parameter

 

of

 

type

 

Incremental

 

with

 

a

 

new

 

value

 

smaller

 

than

 

the

 

current

 

value,

 

will

 

result

 

in

 

an

 

error

 

message.

 

Tunable

 

File-Manipulation

 

Commands

 

The

 

following

 

commands

 

normally

 

manipulate

 

files

 

in

 

the

 

/etc/tunables

 

directory,

 

but

 

the

 

files

 

can

 

be

 

located

 

anywhere.

 

Therefore,

 

as

 

long

 

as

 

the

 

file

 

name

 

does

 

not

 

contain

 

a

 

forward

 

slash

 

(/),

 

all

 

the

 

file

 

names

 

specified

 

are

 

expanded

 

to

 

/etc/tunables/filename.

 

To

 

guarantee

 

the

 

consistency

 

of

 

their

 

content,

 

all

 

the

 

files

 

are

 

locked

 

before

 

any

 

updates

 

are

 

made.

 

The

 

commands

 

tunsave,

 

tuncheck

 

(only

 

if

 

successful),

 

and

 

tundefault

 

-r

 

all

 

update

 

the

 

info

 

stanza.

 

tunchange

 

Command

 

The

 

tunchange

 

command

 

is

 

used

 

to

 

update

 

one

 

or

 

more

 

tunable

 

stanzas

 

in

 

a

 

file.

 

Its

 

syntax

 

is

 

as

 

follows:

 

tunchange

 

-f

 

filename

 

(

 

-t

 

stanza

 

(

 

{-o

 

parameter[=value]}

 

|

 

-D

 

)

 

|

 

-m

 

filename2

 

)

 

where

 

stanza

 

is

 

schedo,

 

vmo,

 

ioo,

 

no,

 

or

 

nfso.

 

The

 

following

 

is

 

an

 

example

 

of

 

how

 

to

 

update

 

the

 

pacefork

 

parameter

 

in

 

the

 

/etc/tunables/mytunabledirectory:

 

tunchange

 

-f

 

mytunable

 

-t

 

schedo

 

-o

 

pacefork=10

   

Chapter

 

7.

 

Kernel

 

Tuning

 

147



The

 

following

 

is

 

an

 

example

 

of

 

how

 

to

 

unconditionally

 

update

 

the

 

pacefork

 

parameter

 

in

 

the

 

/etc/tunables/nextboot

 

directory.

 

This

 

should

 

be

 

done

 

with

 

caution

 

because

 

no

 

warning

 

will

 

be

 

printed

 

if

 

a

 

parameter

 

of

 

type

 

bosboot

 

was

 

changed.

 

tunchange

 

-f

 

nextboot

 

-t

 

schedo

 

-o

 

pacefork=10

 

The

 

following

 

is

 

an

 

example

 

of

 

how

 

to

 

clear

 

the

 

schedo

 

stanza

 

in

 

the

 

nextboot

 

file.

 

tunchange

 

-f

 

nextboot

 

-t

 

schedo

 

-D

 

The

 

following

 

is

 

an

 

example

 

of

 

how

 

to

 

merge

 

the

 

/home/admin/schedo_conf

 

file

 

with

 

the

 

current

 

nextboot

 

file.

 

If

 

the

 

file

 

to

 

merge

 

contains

 

multiple

 

entries

 

for

 

a

 

parameter,

 

only

 

the

 

first

 

entry

 

will

 

be

 

applied.

 

If

 

both

 

files

 

contain

 

an

 

entry

 

for

 

the

 

same

 

tunable,

 

the

 

entry

 

from

 

the

 

file

 

to

 

merge

 

will

 

replace

 

the

 

current

 

nextboot

 

file’s

 

value.

 

tunchange

 

-f

 

nextboot

 

-m

 

/home/admin/schedo_conf

 

The

 

tunchange

 

command

 

is

 

called

 

by

 

the

 

tuning

 

commands

 

to

 

implement

 

the

 

-p

 

and

 

-r

 

flags

 

using

 

-f

 

nextboot.

 

tuncheck

 

Command

 

The

 

tuncheck

 

command

 

is

 

used

 

to

 

validate

 

a

 

file.

 

Its

 

syntax

 

is

 

as

 

follows:

 

tuncheck

 

[-r|-p]

 

-f

 

filename

 

The

 

following

 

is

 

an

 

example

 

of

 

how

 

to

 

validate

 

the

 

/etc/tunables/mytunable

 

file

 

for

 

usage

 

on

 

current

 

values.

 

tuncheck

 

-f

 

mytunable

 

The

 

following

 

is

 

an

 

example

 

of

 

how

 

to

 

validate

 

the

 

/etc/tunables/nextboot

 

file

 

or

 

my_nextboot

 

file

 

for

 

usage

 

during

 

reboot.

 

Note

 

that

 

the

 

-r

 

flag

 

is

 

the

 

only

 

valid

 

option

 

when

 

the

 

file

 

to

 

check

 

is

 

the

 

nextboot

 

file.

 

tuncheck

 

-r

 

-f

 

nextboot

   

tuncheck

 

-r

 

-f

 

/home/bill/my_nextboot

 

All

 

parameters

 

in

 

the

 

nextboot

 

or

 

my_nextboot

 

file

 

are

 

checked

 

for

 

range,

 

and

 

dependencies,

 

and

 

if

 

a

 

problem

 

is

 

detected,

 

a

 

message

 

similar

 

to:

 

″Parameter

 

X

 

is

 

out

 

of

 

range″

 

or

 

″Dependency

 

problem

 

between

 

parameter

 

A

 

and

 

B″

 

is

 

issued.

 

The

 

-r

 

and

 

-p

 

options

 

control

 

the

 

values

 

used

 

in

 

dependency

 

checking

 

for

 

parameters

 

not

 

listed

 

in

 

the

 

file

 

and

 

the

 

handling

 

of

 

proposed

 

changes

 

to

 

parameters

 

of

 

type

 

Incremental,

 

Bosboot,

 

and

 

Reboot.

 

Except

 

when

 

used

 

with

 

the

 

-r

 

option,

 

checking

 

is

 

performed

 

on

 

parameter

 

of

 

type

 

Incremental

 

to

 

make

 

sure

 

the

 

value

 

in

 

the

 

file

 

is

 

not

 

less

 

than

 

the

 

current

 

value.

 

If

 

one

 

or

 

more

 

parameters

 

of

 

type

 

Bosboot

 

are

 

listed

 

in

 

the

 

file

 

with

 

a

 

different

 

value

 

than

 

its

 

current

 

value,

 

the

 

user

 

will

 

either

 

be

 

prompted

 

to

 

run

 

bosboot

 

(when

 

-r

 

is

 

used)

 

or

 

an

 

error

 

message

 

will

 

display.

 

Parameters

 

having

 

dependencies

 

are

 

checked

 

for

 

compatible

 

values.

 

When

 

one

 

or

 

more

 

parameters

 

in

 

a

 

set

 

of

 

interdependent

 

parameters

 

is

 

not

 

listed

 

in

 

the

 

file

 

being

 

checked,

 

their

 

values

 

are

 

assumed

 

to

 

either

 

be

 

set

 

at

 

their

 

current

 

value

 

(when

 

the

 

tuncheck

 

command

 

is

 

called

 

without

 

-p

 

or

 

-r),

 

or

 

their

 

default

 

value.

 

This

 

is

 

because

 

when

 

called

 

without

 

-r,

 

the

 

file

 

is

 

validated

 

to

 

be

 

applicable

 

on

 

the

 

current

 

values,

 

while

 

with

 

-r,

 

it

 

is

 

validated

 

to

 

be

 

used

 

during

 

reboot

 

when

 

parameters

 

not

 

listed

 

in

 

the

 

file

 

will

 

be

 

left

 

at

 

their

 

default

 

value.

 

Calling

 

this

 

command

 

with

 

-p

 

is

 

the

 

same

 

as

 

calling

 

it

 

twice;

 

once

 

with

 

no

 

argument,

 

and

 

once

 

with

 

the

 

-r

 

flag.

 

This

 

checks

 

whether

 

a

 

file

 

can

 

be

 

used

 

both

 

immediately,

 

and

 

at

 

reboot

 

time.

 

Note:

  

Users

 

creating

 

a

 

file

 

with

 

an

 

editor,

 

or

 

copying

 

a

 

file

 

from

 

another

 

machine,

 

must

 

run

 

the

 

tuncheck

 

command

 

to

 

validate

 

their

 

file.

  

148

 

Performance

 

Tools

 

Guide

 

and

 

Reference



tunrestore

 

Command

 

The

 

tunrestore

 

command

 

is

 

used

 

to

 

restore

 

all

 

the

 

parameters

 

from

 

a

 

file.

 

Its

 

syntax

 

is

 

as

 

follows:

 

tunrestore

 

-R

 

|

 

[-r]

 

-f

 

filename

 

For

 

example,

 

the

 

following

 

will

 

change

 

the

 

current

 

values

 

for

 

all

 

tunable

 

parameters

 

present

 

in

 

the

 

file

 

if

 

ranges,

 

dependencies,

 

and

 

incremental

 

parameter

 

rules

 

are

 

all

 

satisfied.

 

tunrestore

 

-f

 

mytunable

   

tunrestore

 

-f

 

/etc/tunables/mytunable

 

In

 

case

 

of

 

problems,

 

only

 

the

 

changes

 

possible

 

will

 

be

 

made.

 

For

 

example,

 

the

 

following

 

will

 

change

 

the

 

reboot

 

values

 

for

 

all

 

tunable

 

parameters

 

present

 

in

 

the

 

file

 

if

 

ranges

 

and

 

dependencies

 

rules

 

are

 

all

 

satisfied.

 

In

 

other

 

words,

 

they

 

will

 

be

 

copied

 

to

 

the

 

/etc/tunables/nextboot

 

file.

 

tunrestore

 

-r

 

-f

 

mytunable

 

If

 

changes

 

to

 

parameters

 

of

 

type

 

Bosboot

 

are

 

detected,

 

the

 

user

 

will

 

be

 

prompted

 

to

 

run

 

the

 

bosboot

 

command.

 

The

 

following

 

command

 

can

 

only

 

be

 

called

 

from

 

the

 

/etc/inittab

 

file

 

and

 

changes

 

tunable

 

parameters

 

to

 

values

 

from

 

the

 

/etc/tunables/nextboot

 

file.

 

tunrestore

 

-R

 

Any

 

problem

 

found

 

or

 

change

 

made

 

is

 

logged

 

in

 

the

 

/etc/tunables/lastboot.log

 

file.

 

A

 

new

 

/etc/tunables/lastboot

 

file

 

is

 

always

 

created

 

with

 

the

 

list

 

of

 

current

 

values

 

for

 

all

 

parameters.

 

If

 

filename

 

does

 

not

 

exist,

 

an

 

error

 

message

 

displays.

 

If

 

the

 

nextboot

 

file

 

does

 

not

 

exist,

 

an

 

error

 

message

 

displays

 

if

 

-r

 

was

 

used.

 

If

 

-R

 

was

 

used,

 

all

 

the

 

tuning

 

parameters

 

of

 

a

 

type

 

other

 

than

 

Bosboot

 

will

 

be

 

set

 

to

 

their

 

default

 

value,

 

and

 

a

 

nextboot

 

file

 

containing

 

only

 

an

 

info

 

stanza

 

will

 

be

 

created.

 

A

 

warning

 

will

 

also

 

be

 

logged

 

in

 

the

 

lastboot.log

 

file.

 

Except

 

when

 

-r

 

is

 

used,

 

parameters

 

requiring

 

a

 

call

 

to

 

bosboot

 

and

 

a

 

reboot

 

are

 

not

 

changed,

 

but

 

an

 

error

 

message

 

is

 

displayed

 

to

 

indicate

 

they

 

could

 

not

 

be

 

changed.

 

When

 

-r

 

is

 

used,

 

if

 

any

 

parameter

 

of

 

type

 

Bosboot

 

needs

 

to

 

be

 

changed,

 

the

 

user

 

will

 

be

 

prompted

 

to

 

run

 

bosboot.

 

Parameters

 

missing

 

from

 

the

 

file

 

are

 

simply

 

left

 

unchanged,

 

except

 

when

 

-R

 

is

 

used,

 

in

 

which

 

case

 

missing

 

parameters

 

are

 

set

 

to

 

their

 

default

 

values.

 

If

 

the

 

file

 

contains

 

multiple

 

entries

 

for

 

a

 

parameter,

 

only

 

the

 

first

 

entry

 

will

 

be

 

applied,

 

and

 

a

 

warning

 

will

 

be

 

displayed

 

or

 

logged

 

(if

 

called

 

with

 

-R).

 

tunsave

 

Command

 

The

 

tunsave

 

command

 

is

 

used

 

to

 

save

 

current

 

tunable

 

parameter

 

values

 

into

 

a

 

file.

 

Its

 

syntax

 

is

 

as

 

follows:

 

tunsave

 

[-a|-A]

 

-f|-F

 

filename

 

For

 

example,

 

the

 

following

 

saves

 

all

 

of

 

the

 

current

 

tunable

 

parameter

 

values

 

that

 

are

 

different

 

from

 

their

 

default

 

into

 

the

 

/etc/tunables/mytunable

 

file.

 

tunsave

 

-f

 

mytunable

 

If

 

the

 

file

 

already

 

exists,

 

an

 

error

 

message

 

is

 

printed

 

instead.

 

The

 

-F

 

flag

 

must

 

be

 

used

 

to

 

overwrite

 

an

 

existing

 

file.

 

For

 

example,

 

the

 

following

 

saves

 

all

 

of

 

the

 

current

 

tunable

 

parameter

 

values

 

different

 

from

 

their

 

default

 

into

 

the

 

/etc/tunables/nextboot

 

file.

 

tunsave

 

-f

 

nextboot

   

Chapter

 

7.

 

Kernel

 

Tuning

 

149



If

 

necessary,

 

the

 

tunsave

 

command

 

will

 

prompt

 

the

 

user

 

to

 

run

 

bosboot.

 

For

 

example,

 

the

 

following

 

saves

 

all

 

of

 

the

 

current

 

tunable

 

parametes

 

values

 

(including

 

parameters

 

for

 

which

 

default

 

is

 

their

 

value)

 

into

 

the

 

mytunable

 

file.

 

tunsave

 

-A

 

-f

 

mytunable

 

This

 

allows

 

you

 

to

 

save

 

the

 

current

 

setting.

 

This

 

setting

 

can

 

be

 

reproduced

 

at

 

a

 

later

 

time,

 

even

 

if

 

the

 

default

 

values

 

have

 

changed

 

(default

 

values

 

can

 

change

 

when

 

the

 

file

 

is

 

used

 

on

 

another

 

machine

 

or

 

when

 

running

 

another

 

version

 

of

 

AIX).

 

For

 

example,

 

the

 

following

 

saves

 

all

 

current

 

tunable

 

parameter

 

values

 

into

 

the

 

/etc/tunables/mytunable

 

file

 

or

 

the

 

mytunable

 

file

 

in

 

the

 

current

 

directory.

 

tunsave

 

-a

 

-f

 

mytunable

   

tunsave

 

-a

 

-f

 

./mytunable

 

For

 

the

 

parameters

 

that

 

are

 

set

 

to

 

default

 

values,

 

a

 

line

 

using

 

the

 

keyword

 

DEFAULT

 

will

 

be

 

put

 

in

 

the

 

file.

 

This

 

essentially

 

saves

 

only

 

the

 

current

 

changed

 

values,

 

while

 

forcing

 

all

 

the

 

other

 

parameters

 

to

 

their

 

default

 

values.

 

This

 

allows

 

you

 

to

 

return

 

to

 

a

 

known

 

setup

 

later

 

using

 

the

 

tunrestore

 

command.

 

tundefault

 

Command

 

The

 

tundefault

 

command

 

is

 

used

 

to

 

force

 

all

 

tuning

 

parameters

 

to

 

be

 

reset

 

to

 

their

 

default

 

value.

 

The

 

-p

 

flag

 

makes

 

changes

 

permanent,

 

while

 

the

 

-r

 

flag

 

defers

 

changes

 

until

 

the

 

next

 

reboot.

 

The

 

command

 

syntax

 

is

 

as

 

follows:

 

tundefault

 

[-p|-r]

 

For

 

example,

 

the

 

following

 

example

 

resets

 

all

 

tunable

 

parameters

 

to

 

their

 

default

 

value,

 

except

 

the

 

parameters

 

of

 

type

 

Bosboot

 

and

 

Reboot,

 

and

 

parameters

 

of

 

type

 

Incremental

 

set

 

at

 

values

 

bigger

 

than

 

their

 

default

 

value.

  

tundefault

 

Error

 

messages

 

will

 

be

 

displayed

 

for

 

any

 

parameter

 

change

 

that

 

is

 

not

 

permitted.

 

For

 

example,

 

the

 

following

 

example

 

resets

 

all

 

the

 

tunable

 

parameters

 

to

 

their

 

default

 

value.

 

It

 

also

 

updates

 

the

 

/etc/tunables/nextboot

 

file,

 

and

 

if

 

necessary,

 

offers

 

to

 

run

 

bosboot,

 

and

 

displays

 

a

 

message

 

warning

 

that

 

rebooting

 

is

 

needed

 

for

 

all

 

the

 

changes

 

to

 

be

 

effective.

 

tundefault

 

-p

 

This

 

command

 

permanently

 

resets

 

all

 

tunable

 

parameters

 

to

 

their

 

default

 

values,

 

returning

 

the

 

system

 

to

 

a

 

consistent

 

state

 

and

 

making

 

sure

 

the

 

state

 

is

 

preserved

 

after

 

the

 

next

 

reboot.

 

For

 

example,

 

the

 

following

 

example

 

clears

 

all

 

the

 

command

 

stanzas

 

in

 

the

 

/etc/tunables/nextboot

 

file,

 

and

 

proposes

 

bosboot

 

if

 

necessary.

 

tundefault

 

-r

 

Initial

 

setup

 

Installing

 

the

 

bos.perf.tune

 

fileset

 

automatically

 

creates

 

an

 

initial

 

/etc/tunables/nextboot

 

file

 

and

 

adds

 

the

 

following

 

line

 

at

 

the

 

beginning

 

of

 

the

 

/etc/inittab

 

file:

 

tunable:23456789:wait:/usr/bin/tunrestore

 

-R

 

>

 

/dev/console

 

2>&1

 

This

 

entry

 

sets

 

the

 

reboot

 

value

 

of

 

all

 

tunable

 

parameters

 

to

 

their

 

default.

 

For

 

more

 

information

 

about

 

migration

 

from

 

a

 

previous

 

version

 

of

 

AIX

 

and

 

the

 

compatibility

 

mode

 

automatically

 

setup

 

in

 

case

 

of

 

migration,

 

read

 

″Introduction

 

to

 

AIX

 

5.2

 

Tunable

 

Parameter

 

Settings″

 

in

 

the

 

AIX

 

5L

 

Version

 

5.2

 

Performance

 

Management

 

Guide.

   

150

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Reboot

 

Tuning

 

Procedure

 

Parameters

 

of

 

type

 

Bosboot

 

are

 

set

 

by

 

the

 

bosboot

 

command,

 

which

 

retrieves

 

their

 

values

 

from

 

the

 

nextboot

 

file

 

when

 

creating

 

a

 

new

 

boot

 

image.

 

Parameters

 

of

 

type

 

Reboot

 

are

 

set

 

during

 

the

 

reboot

 

process

 

by

 

the

 

appropriate

 

configuration

 

methods,

 

which

 

also

 

retrieve

 

the

 

necessary

 

values

 

from

 

the

 

nextboot

 

file.

 

In

 

both

 

cases,

 

if

 

there

 

is

 

no

 

nextboot

 

file,

 

the

 

parameters

 

will

 

be

 

set

 

to

 

their

 

default

 

values.

 

All

 

other

 

parameters

 

are

 

set

 

using

 

the

 

following

 

process:

 

1.

   

When

 

tunrestore

 

-R

 

is

 

called,

 

any

 

tunable

 

changed

 

from

 

its

 

default

 

value

 

is

 

logged

 

in

 

the

 

lastboot.log

 

file.

 

The

 

parameters

 

of

 

type

 

Reboot

 

and

 

Bosboot

 

present

 

in

 

the

 

nextboot

 

file,

 

and

 

which

 

should

 

already

 

have

 

been

 

changed

 

by

 

the

 

time

 

tunrestore

 

-R

 

is

 

called,

 

will

 

be

 

checked

 

against

 

the

 

value

 

in

 

the

 

file,

 

and

 

any

 

difference

 

will

 

also

 

be

 

logged.

 

2.

   

The

 

lastboot

 

file

 

will

 

record

 

all

 

the

 

tunable

 

parameter

 

settings,

 

including

 

default

 

values,

 

which

 

will

 

be

 

flagged

 

using

 

#

 

DEFAULT

 

VALUE,

 

and

 

the

 

AIX_level,

 

Kernel_type,

 

Last_validation,

 

and

 

Logfile_checksum

 

fields

 

will

 

be

 

set

 

appropriately.

 

3.

   

If

 

there

 

is

 

no

 

/etc/tunables/nextboot

 

file,

 

all

 

tunable

 

parameters,

 

except

 

those

 

of

 

type

 

Bosboot,

 

will

 

be

 

set

 

to

 

their

 

default

 

value,

 

a

 

nextboot

 

file

 

with

 

only

 

an

 

info

 

stanza

 

will

 

be

 

created,

 

and

 

the

 

following

 

warning:

 

″cannot

 

access

 

the

 

/etc/tunables/nextboot

 

file″

 

will

 

be

 

printed

 

in

 

the

 

log

 

file.

 

The

 

lastboot

 

file

 

will

 

be

 

created

 

as

 

described

 

in

 

step

 

2.

 

4.

   

If

 

the

 

desired

 

value

 

for

 

a

 

parameter

 

is

 

found

 

to

 

be

 

out

 

of

 

range,

 

the

 

parameter

 

will

 

be

 

left

 

to

 

its

 

default

 

value,

 

and

 

a

 

message

 

similar

 

to

 

the

 

following:

 

″Parameter

 

A

 

could

 

not

 

be

 

set

 

to

 

X,

 

which

 

is

 

out

 

of

 

range,

 

and

 

was

 

left

 

to

 

its

 

current

 

value

 

(Y)

 

instead″

 

will

 

be

 

printed

 

in

 

the

 

log

 

file.

 

Similarly,

 

if

 

a

 

set

 

of

 

interdependent

 

parameters

 

have

 

values

 

incompatible

 

with

 

each

 

other,

 

they

 

will

 

all

 

be

 

left

 

at

 

their

 

default

 

values

 

and

 

a

 

message

 

similar

 

to

 

the

 

following:

 

″Dependent

 

parameter

 

A,

 

B

 

and

 

C

 

could

 

not

 

be

 

set

 

to

 

X,

 

Y

 

and

 

Z

 

because

 

those

 

values

 

are

 

incompatible

 

with

 

each

 

other.

 

Instead,

 

they

 

were

 

left

 

to

 

their

 

current

 

values

 

(T,

 

U

 

and

 

V)″

 

will

 

be

 

printed

 

in

 

the

 

log

 

file.

 

All

 

of

 

these

 

error

 

conditions

 

could

 

exist

 

if

 

a

 

user

 

modified

 

the

 

/etc/tunables/nextboot

 

file

 

with

 

an

 

editor

 

or

 

copied

 

it

 

from

 

another

 

machine,

 

possibly

 

running

 

a

 

different

 

version

 

of

 

AIX

 

with

 

different

 

valid

 

ranges,

 

and

 

did

 

not

 

run

 

tuncheck

 

-r

 

-f

 

on

 

the

 

file.

 

Alternatively,

 

tuncheck

 

-r

 

-f

 

prompted

 

the

 

user

 

to

 

run

 

bosboot,

 

but

 

this

 

was

 

not

 

done.

Recovery

 

Procedure

 

If

 

the

 

machine

 

becomes

 

unstable

 

with

 

a

 

given

 

nextboot

 

file,

 

users

 

should

 

put

 

the

 

system

 

into

 

maintenance

 

mode,

 

make

 

sure

 

the

 

sys0

 

pre520tune

 

attribute

 

is

 

set

 

to

 

disable,

 

delete

 

the

 

nextboot

 

file,

 

run

 

the

 

bosboot

 

command

 

and

 

reboot.

 

This

 

action

 

will

 

guarantee

 

that

 

all

 

tunables

 

are

 

set

 

to

 

their

 

default

 

value.

 

Kernel

 

Tuning

 

Using

 

the

 

SMIT

 

Interface

 

To

 

start

 

the

 

SMIT

 

panels

 

that

 

manage

 

AIX

 

kernel

 

tuning

 

parameters,

 

use

 

the

 

SMIT

 

fast

 

path

 

smitty

 

tuning.

 

The

 

following

 

is

 

a

 

view

 

of

 

the

 

tuning

 

panel:

     

Tuning

 

Kernel

 

Parameters

     

Save/Restore

 

All

 

Kernel

 

&

 

Network

 

Parameters

   

Tuning

 

Scheduler

 

and

 

Memory

 

Load

 

Control

 

Parameters

   

Tuning

 

Virtual

 

Memory

 

Manager

 

Parameters

   

Tuning

 

Network

 

Parameters

   

Tuning

 

NFS

 

Parameters

   

Tuning

 

I/O

 

Parameters

    

Select

 

Save/Restore

 

All

 

Kernel

 

&

 

Network

 

Parameters

 

to

 

manipulate

 

all

 

tuning

 

parameter

 

values

 

at

 

the

 

same

 

time.

 

To

 

individually

 

change

 

tuning

 

parameters

 

managed

 

by

 

one

 

of

 

the

 

tuning

 

commands,

 

select

 

any

 

of

 

the

 

other

 

lines.

   

Chapter

 

7.

 

Kernel

 

Tuning

 

151



Global

 

Manipulation

 

of

 

Tuning

 

Parameters

 

The

 

main

 

panel

 

to

 

manipulate

 

all

 

tunable

 

parameters

 

by

 

sets

 

looks

 

similar

 

to

 

the

 

following:

        

Save/Restore

 

All

 

Kernel

 

Tuning

 

Parameters

     

View

 

Last

 

Boot

 

Parameters

   

View

 

Last

 

Boot

 

Log

 

File

     

Save

 

All

 

Current

 

Parameters

 

for

 

Next

 

Boot

   

Save

 

All

 

Current

 

Parameters

   

Restore

 

All

 

Current

 

Parameters

 

from

 

Last

 

Boot

 

Values

   

Restore

 

All

 

Current

 

Parameters

 

from

 

Saved

 

Values

   

Reset

 

All

 

Current

 

Parameters

 

To

 

Default

 

Value

     

Save

 

All

 

Next

 

Boot

 

Parameters

   

Restore

 

All

 

Next

 

Boot

 

Parameters

 

from

 

Last

 

Boot

 

Values

   

Restore

 

All

 

Next

 

Boot

 

Parameters

 

from

 

Saved

 

Values

   

Reset

 

All

 

Next

 

Boot

 

Parameters

 

To

 

Default

 

Value

   

Each

 

of

 

the

 

options

 

in

 

this

 

panel

 

are

 

explained

 

in

 

the

 

following

 

sections.

  

1.

   

View

 

Last

 

Boot

 

Parameters

 

All

 

last

 

boot

 

parameters

 

are

 

listed

 

stanza

 

by

 

stanza,

 

retrieved

 

from

 

the

 

/etc/tunables/lastboot

 

file.

  

2.

   

View

 

Last

 

Boot

 

Log

 

File

 

Displays

 

the

 

content

 

of

 

the

 

file

 

/etc/tunables/lastboot.log.

  

3.

   

Save

 

All

 

Current

 

Parameters

 

for

 

Next

 

Boot

      

Save

 

All

 

Current

 

Kernel

 

Tuning

 

Parameters

 

for

 

Next

 

Boot

     

ARE

 

YOU

 

SURE

 

?

   

After

 

selecting

 

yes

 

and

 

pressing

 

ENTER,

 

all

 

the

 

current

 

tuning

 

parameter

 

values

 

are

 

saved

 

in

 

the

 

/etc/tunables/nextboot

 

file.

 

Bosboot

 

will

 

be

 

offered

 

if

 

necessary.

  

4.

   

Save

 

All

 

Current

 

Parameters

      

Save

 

All

 

Current

 

Kernel

 

Tuning

 

Parameters

     

File

 

name

                                     

[]

   

Description

                                   

[]

   

Type

 

or

 

select

 

values

 

for

 

the

 

two

 

entry

 

fields:

 

v

   

File

 

name:

 

F4

 

will

 

show

 

the

 

list

 

of

 

existing

 

files.

 

This

 

is

 

the

 

list

 

of

 

all

 

files

 

in

 

the

 

/etc/tunables

 

directory

 

except

 

the

 

files

 

nextboot,

 

lastboot

 

and

 

lastboot.log

 

which

 

all

 

have

 

special

 

purposes.

 

File

 

names

 

entered

 

cannot

 

be

 

any

 

of

 

the

 

above

 

three

 

reserved

 

names.

 

v

   

Description:

 

This

 

field

 

will

 

be

 

written

 

in

 

the

 

info

 

stanza

 

of

 

the

 

selected

 

file.

After

 

pressing

 

ENTER,

 

all

 

of

 

the

 

current

 

tuning

 

parameter

 

values

 

will

 

be

 

saved

 

in

 

the

 

selected

 

stanza

 

file

 

of

 

the

 

/etc/tunables

 

directory.

  

5.

   

Restore

 

All

 

Current

 

Parameters

 

from

 

Last

 

Boot

 

Values

      

Restore

 

All

 

Current

 

Parameters

 

from

 

Last

 

Boot

 

Values

     

ARE

 

YOU

 

SURE

 

?

     

152

 

Performance

 

Tools

 

Guide

 

and

 

Reference



After

 

selecting

 

yes

 

and

 

pressing

 

ENTER,

 

all

 

the

 

tuning

 

parameters

 

will

 

be

 

set

 

to

 

values

 

from

 

the

 

/etc/tunables/lastboot

 

file.

 

Error

 

messages

 

will

 

be

 

displayed

 

if

 

any

 

parameter

 

of

 

type

 

Bosboot

 

or

 

Reboot

 

would

 

need

 

to

 

be

 

changed,

 

which

 

can

 

only

 

be

 

done

 

when

 

changing

 

reboot

 

values.

  

6.

   

Restore

 

All

 

Current

 

Parameters

 

from

 

Saved

 

Values

      

Restore

 

Saved

 

Kernel

 

Tuning

 

Parameters

   

Move

 

cursor

 

to

 

desired

 

item

 

and

 

press

 

Enter.

     

mytunablefile

    

Description

 

field

 

of

 

mytunable

 

file

   

tun1

             

Description

 

field

 

of

 

lastweek

 

file

   

A

 

select

 

menu

 

shows

 

existing

 

files

 

in

 

the

 

/etc/tunables

 

directory,

 

except

 

the

 

files

 

nextboot,

 

lastboot

 

and

 

lastboot.log

 

which

 

all

 

have

 

special

 

purposes.

 

After

 

pressing

 

ENTER,

 

the

 

parameters

 

present

 

in

 

the

 

selected

 

file

 

in

 

the

 

/etc/tunables

 

directory

 

will

 

be

 

set

 

to

 

the

 

value

 

listed

 

if

 

possible.

 

Error

 

messages

 

will

 

be

 

displayed

 

if

 

any

 

parameter

 

of

 

type

 

Bosboot

 

or

 

Reboot

 

would

 

need

 

to

 

be

 

changed,

 

which

 

can’t

 

be

 

done

 

on

 

the

 

current

 

values.

 

Error

 

messages

 

will

 

also

 

be

 

displayed

 

for

 

any

 

parameter

 

of

 

type

 

Incremental

 

when

 

the

 

value

 

in

 

the

 

file

 

is

 

smaller

 

than

 

the

 

current

 

value,

 

and

 

for

 

out

 

of

 

range

 

and

 

incompatible

 

values

 

present

 

in

 

the

 

file.

 

All

 

possible

 

changes

 

will

 

be

 

made.

  

7.

   

Reset

 

All

 

Current

 

Parameters

 

To

 

Default

 

Value

      

Reset

 

All

 

Current

 

Kernel

 

Tuning

 

Parameters

 

To

 

Default

 

Value

     

ARE

 

YOU

 

SURE

 

?

   

After

 

pressing

 

ENTER,

 

each

 

tunable

 

parameter

 

will

 

be

 

reset

 

to

 

its

 

default

 

value.

 

Parameters

 

of

 

type

 

Bosboot

 

and

 

Reboot,

 

are

 

never

 

changed,

 

but

 

error

 

messages

 

are

 

displayed

 

if

 

they

 

should

 

have

 

been

 

changed

 

to

 

get

 

back

 

to

 

their

 

default

 

values.

  

8.

   

Save

 

All

 

Next

 

Boot

 

Parameters

      

Save

 

All

 

Next

 

Boot

 

Kernel

 

Tuning

 

Parameters

     

File

 

name

                                     

[]

   

Type

 

or

 

a

 

select

 

values

 

for

 

the

 

entry

 

field.

 

Pressing

 

F4

 

displays

 

a

 

list

 

of

 

existing

 

files.

 

This

 

is

 

the

 

list

 

of

 

all

 

files

 

in

 

the

 

/etc/tunables

 

directory

 

except

 

the

 

files

 

nextboot,

 

lastboot

 

and

 

lastboot.log

 

which

 

all

 

have

 

special

 

purposes.

 

File

 

names

 

entered

 

cannot

 

be

 

any

 

of

 

those

 

three

 

reserved

 

names.

 

After

 

pressing

 

ENTER,

 

the

 

nextboot

 

file,

 

is

 

copied

 

to

 

the

 

specified

 

/etc/tunables

 

file

 

if

 

it

 

can

 

be

 

successfully

 

tunchecked.

  

9.

   

Restore

 

All

 

Next

 

Boot

 

Parameters

 

from

 

Last

 

Boot

 

Values

      

Restore

 

All

 

Next

 

Boot

 

Kernel

 

Tuning

 

Parameters

 

from

 

Last

 

Boot

 

Values

     

ARE

 

YOU

 

SURE

 

?

   

After

 

selecting

 

yes

 

and

 

pressing

 

ENTER,

 

all

 

values

 

from

 

the

 

lastboot

 

file

 

will

 

be

 

copied

 

to

 

the

 

nextboot

 

file.

 

If

 

necessary,

 

the

 

user

 

will

 

be

 

prompted

 

to

 

run

 

bosboot,

 

and

 

warned

 

that

 

for

 

all

 

the

 

changes

 

to

 

be

 

effective,

 

the

 

machine

 

must

 

be

 

rebooted.

 

10.

   

Restore

 

All

 

Next

 

Boot

 

Parameters

 

from

 

Saved

 

Values

   

Chapter

 

7.

 

Kernel

 

Tuning

 

153



Restore

 

All

 

Next

 

Boot

 

Kernel

 

Tuning

 

Parameters

 

from

 

Saved

 

Values

   

Move

 

cursor

 

to

 

desired

 

item

 

and

 

press

 

Enter.

     

mytunablefile

    

Description

 

field

 

of

 

mytunablefile

 

file

   

tun1

             

Description

 

field

 

of

 

tun1

 

file

   

A

 

select

 

menu

 

shows

 

existing

 

files

 

in

 

the

 

/etc/tunables

 

directory,

 

except

 

the

 

files

 

nextboot,

 

lastboot

 

and

 

lastboot.log

 

which

 

all

 

have

 

special

 

purposes.

 

After

 

selecting

 

a

 

file

 

and

 

pressing

 

ENTER,

 

all

 

values

 

from

 

the

 

selected

 

file

 

will

 

be

 

copied

 

to

 

the

 

nextboot

 

file,

 

if

 

the

 

file

 

was

 

successfully

 

tunchecked

 

first.

 

If

 

necessary,

 

the

 

user

 

will

 

be

 

prompted

 

to

 

run

 

bosboot,

 

and

 

warned

 

that

 

for

 

all

 

the

 

changes

 

to

 

be

 

effective,

 

rebooting

 

the

 

machine

 

is

 

necessary.

 

11.

   

Reset

 

All

 

Next

 

Boot

 

Parameters

 

To

 

Default

 

Value

      

Reset

 

All

 

Next

 

Boot

 

Kernel

 

Tuning

 

Parameters

 

To

 

Default

 

Value

   

ARE

 

YOU

 

SURE

 

?

   

After

 

hitting

 

ENTER,

 

the

 

/etc/tunables/nextboot

 

file

 

will

 

be

 

cleared.

 

If

 

necessary

 

bosboot

 

will

 

be

 

proposed

 

and

 

a

 

message

 

indicating

 

that

 

a

 

reboot

 

is

 

needed

 

will

 

be

 

displayed.

Changing

 

individual

 

parameters

 

managed

 

by

 

a

 

tuning

 

command

 

All

 

the

 

panels

 

for

 

all

 

five

 

commands

 

behave

 

the

 

same

 

way.

 

In

 

the

 

following

 

sections,

 

we

 

will

 

use

 

the

 

example

 

of

 

the

 

Scheduler

 

and

 

Memory

 

Load

 

Control

 

(i.e.

 

schedo)

 

panels

 

to

 

explain

 

the

 

behavior.

 

Here

 

is

 

the

 

main

 

panel

 

to

 

manipulate

 

parameters

 

managed

 

by

 

the

 

schedo

 

command:

      

Tuning

 

Scheduler

 

and

 

Memory

 

Load

 

Control

 

Parameters

     

List

 

All

 

Characteristics

 

of

 

Current

 

Parameters

   

Change

 

/

 

Show

 

Current

 

Parameters

   

Change

 

/

 

Show

 

Parameters

 

for

 

next

 

boot

   

Save

 

Current

 

Parameters

 

for

 

Next

 

Boot

   

Reset

 

Current

 

Parameters

 

to

 

Default

 

value

   

Reset

 

Next

 

Boot

 

Parameters

 

To

 

Default

 

Value

   

Interaction

 

between

 

parameter

 

types

 

and

 

the

 

different

 

SMIT

 

sub-panels

 

The

 

following

 

table

 

shows

 

the

 

interaction

 

between

 

parameter

 

types

 

and

 

the

 

different

 

SMIT

 

sub-panels:

  

Sub-panel

 

name

 

Action

 

List

 

All

 

Characteristics

 

of

 

Current

 

Parameters

 

Lists

 

current,

 

default,

 

reboot,

 

limit

 

values,

 

unit,

 

type

 

and

 

dependencies.

 

This

 

is

 

the

 

output

 

of

 

a

 

tuning

 

command

 

called

 

with

 

the

 

-L

 

option.

 

Change

 

/

 

Show

 

Current

 

Parameters

 

Displays

 

and

 

changes

 

current

 

parameter

 

value,

 

except

 

for

 

parameter

 

of

 

type

 

Static,

 

Bosboot

 

and

 

Reboot

 

which

 

are

 

displayed

 

without

 

surrounding

 

square

 

brackets

 

to

 

indicate

 

that

 

they

 

cannot

 

be

 

changed.

 

Change

 

/

 

Show

 

Parameters

 

for

 

Next

 

Boot

 

Displays

 

values

 

from

 

and

 

rewrite

 

updated

 

values

 

to

 

the

 

nextboot

 

file.

 

If

 

necessary,

 

bosboot

 

will

 

be

 

proposed.

 

Only

 

parameters

 

of

 

type

 

Static

 

cannot

 

be

 

changed

 

(no

 

brackets

 

around

 

their

 

value).

 

Save

 

Current

 

Parameters

 

for

 

Next

 

Boot

 

Writes

 

current

 

parameters

 

in

 

the

 

nextboot

 

file,

 

bosboot

 

will

 

be

 

proposed

 

if

 

any

 

parameter

 

of

 

type

 

Bosboot

 

was

 

changed.

   

154

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Reset

 

Current

 

Parameters

 

to

 

Default

 

value

 

Resets

 

current

 

parameters

 

to

 

default

 

values,

 

except

 

those

 

which

 

need

 

a

 

bosboot

 

plus

 

reboot

 

or

 

a

 

reboot

 

(bosboot

 

and

 

reboot

 

type).

 

Reset

 

Next

 

Boot

 

Parameters

 

to

 

Default

 

value

 

Clears

 

values

 

in

 

the

 

nextboot

 

file,

 

and

 

propose

 

bosboot

 

if

 

any

 

parameter

 

of

 

type

 

Bosboot

 

was

 

different

 

from

 

its

 

default

 

value.

   

Each

 

of

 

the

 

sub-panels

 

behavior

 

is

 

explained

 

in

 

the

 

following

 

sections

 

using

 

examples

 

of

 

the

 

scheduler

 

and

 

memory

 

load

 

control

 

sub-panels:

 

1.

   

List

 

All

 

Characteristics

 

of

 

Tuning

 

Parameters

 

The

 

output

 

of

 

schedo

 

-L

 

is

 

displayed.

 

2.

   

Change/Show

 

Current

 

Scheduler

 

and

 

Memory

 

Load

 

Control

 

Parameters

 

Change

 

/

 

Show

 

Current

 

Scheduler

 

and

 

Memory

 

Load

 

Control

 

Parameters

                                      

[Entry

 

Field]

       

affinity_lim

                          

[7]

   

idle_migration_barrier

                

[4]

   

fixed_pri_global

                      

[0]

   

maxspin

                               

[1]

   

pacefork

                              

[10]

   

sched_D

                               

[16]

   

sched_R

                               

[16]

   

timeslice

                             

[1]

   

%usDelta

                              

[100]

   

v_exempt_secs

                         

[2]

   

v_min_process

                         

[2]

   

v_repage_hi

                           

[2]

   

v_repage_proc

                         

[6]

   

v_sec_wait

                            

[4]

   

This

 

panel

 

is

 

initialized

 

with

 

the

 

current

 

schedo

 

values

 

(output

 

from

 

the

 

schedo

 

-a

 

command).

 

Any

 

parameter

 

of

 

type

 

Bosboot,

 

Reboot

 

or

 

Static

 

is

 

displayed

 

with

 

no

 

surrounding

 

square

 

bracket

 

indicating

 

that

 

it

 

cannot

 

be

 

changed.

 

From

 

the

 

F4

 

list,

 

type

 

or

 

select

 

values

 

for

 

the

 

entry

 

fields

 

corresponding

 

to

 

parameters

 

to

 

be

 

changed.

 

Clearing

 

a

 

value

 

results

 

in

 

resetting

 

the

 

parameter

 

to

 

its

 

default

 

value.

 

The

 

F4

 

list

 

also

 

shows

 

minimum,

 

maximum,

 

and

 

default

 

values,

 

the

 

unit

 

of

 

the

 

parameter

 

and

 

its

 

type.

 

Selecting

 

F1

 

displays

 

the

 

help

 

associated

 

with

 

the

 

selected

 

parameter.

 

The

 

text

 

displayed

 

will

 

be

 

identical

 

to

 

what

 

is

 

displayed

 

by

 

the

 

tuning

 

commands

 

when

 

called

 

with

 

the

 

-h

 

option.

 

Press

 

ENTER

 

after

 

making

 

all

 

the

 

desired

 

changes.

 

Doing

 

so

 

will

 

launch

 

the

 

schedo

 

command

 

to

 

make

 

the

 

changes.

 

Any

 

error

 

message

 

generated

 

by

 

the

 

command,

 

for

 

values

 

out

 

of

 

range,

 

incompatible

 

values,

 

or

 

lower

 

values

 

for

 

parameter

 

of

 

type

 

Incremental,

 

will

 

be

 

displayed

 

to

 

the

 

user.

 

3.

   

The

 

following

 

is

 

an

 

example

 

of

 

the

 

Change

 

/

 

Show

 

Scheduler

 

and

 

Memory

 

Load

 

Control

 

Parameters

 

for

 

next

 

boot

 

panel.

   

Chapter

 

7.

 

Kernel

 

Tuning

 

155



Change

 

/

 

Show

 

Scheduler

 

and

 

Memory

 

Load

 

Control

 

Parameters

 

for

 

next

 

boot

                                      

[Entry

 

Field]

     

affinity_lim

                          

[7]

   

idle_migration_barrier

                

[4]

   

fixed_pri_global

                      

[0]

   

maxpin

                                

[1]

   

pacefork

                              

[10]

   

sched_D

                               

[16]

   

sched_R

                               

[16]

   

timeslice

                             

[1]

   

%usDelta

                              

[100]

   

v_exempt_secs

                         

[2]

   

v_min_process

                         

[2]

   

v_repage_hi

                           

[2]

   

v_repage_proc

                         

[6]

   

v_sec_wait

                            

[4]

   

This

 

panel

 

is

 

similar

 

to

 

the

 

previous

 

panel,

 

in

 

that,

 

any

 

parameter

 

value

 

can

 

be

 

changed

 

except

 

for

 

parameters

 

of

 

type

 

Static.

 

It

 

is

 

initialized

 

with

 

the

 

values

 

listed

 

in

 

the

 

/etc/tunables/nextboot

 

file,

 

completed

 

with

 

default

 

values

 

for

 

the

 

parameter

 

not

 

listed

 

in

 

the

 

file.

 

Type

 

or

 

select

 

(from

 

the

 

F4

 

list)

 

values

 

for

 

the

 

entry

 

field

 

corresponding

 

to

 

the

 

parameters

 

to

 

be

 

changed.

 

Clearing

 

a

 

value

 

results

 

in

 

resetting

 

the

 

parameter

 

to

 

its

 

default

 

value.

 

The

 

F4

 

list

 

also

 

shows

 

minimum,

 

maximum,

 

and

 

default

 

values,

 

the

 

unit

 

of

 

the

 

parameter

 

and

 

its

 

type.

 

Pressing

 

F1

 

displays

 

the

 

help

 

associated

 

with

 

the

 

selected

 

parameter.

 

The

 

text

 

displayed

 

will

 

be

 

identical

 

to

 

what

 

is

 

displayed

 

by

 

the

 

tuning

 

commands

 

when

 

called

 

with

 

the

 

-h

 

option.

 

Press

 

ENTER

 

after

 

making

 

all

 

desired

 

changes.

 

Doing

 

so

 

will

 

result

 

in

 

the/etc/tunables/nextboot

 

file

 

being

 

updated

 

with

 

the

 

values

 

modified

 

in

 

the

 

panel,

 

except

 

for

 

out

 

of

 

range,

 

and

 

incompatible

 

values

 

for

 

which

 

an

 

error

 

message

 

will

 

be

 

displayed

 

instead.

 

If

 

necessary,

 

the

 

user

 

will

 

be

 

prompted

 

to

 

run

 

bosboot.

 

4.

   

The

 

following

 

is

 

an

 

example

 

of

 

the

 

Save

 

Current

 

Scheduler

 

and

 

Memory

 

Load

 

Control

 

Parameters

 

for

 

Next

 

Boot

 

panel.

      

Save

 

Current

 

Scheduler

 

and

 

Memory

 

Load

 

Control

 

Parameters

 

for

 

Next

 

Boot

   

ARE

 

YOU

 

SURE

 

?

   

After

 

pressing

 

ENTER

 

on

 

this

 

panel,

 

all

 

the

 

current

 

schedo

 

parameter

 

values

 

will

 

be

 

saved

 

in

 

the

 

/etc/tunables/nextboot

 

file

 

.

 

If

 

any

 

parameter

 

of

 

type

 

Bosboot

 

needs

 

to

 

be

 

changed,

 

the

 

user

 

will

 

be

 

prompted

 

to

 

run

 

bosboot.

 

5.

   

The

 

following

 

is

 

an

 

example

 

of

 

the

 

Reset

 

Current

 

Scheduler

 

and

 

Memory

 

Load

 

Control

 

Parameters

 

to

 

Default

 

Values

      

Reset

 

Current

 

Scheduler

 

and

 

Memory

 

Load

 

Control

 

Parameters

 

to

 

Default

 

Value

     

ARE

 

YOU

 

SURE

 

?

   

After

 

selecting

 

yes

 

and

 

pressing

 

ENTER

 

on

 

this

 

panel,

 

all

 

the

 

tuning

 

parameters

 

managed

 

by

 

the

 

schedo

 

command

 

will

 

be

 

reset

 

to

 

their

 

default

 

value.

 

If

 

any

 

parameter

 

of

 

type

 

Incremental,

 

Bosboot

 

or

 

Reboot

 

should

 

have

 

been

 

changed,

 

and

 

error

 

message

 

will

 

be

 

displayed

 

instead.

 

6.

   

The

 

following

 

is

 

an

 

example

 

of

 

the

 

Reset

 

Scheduler

 

and

 

Memory

 

Load

 

Control

 

Next

 

Boot

 

Parameters

 

To

 

Default

 

Values

   

156

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Reset

 

Next

 

Boot

 

Parameters

 

To

 

Default

 

Value

     

ARE

 

YOU

 

SURE

 

?

   

After

 

pressing

 

ENTER,

 

the

 

schedo

 

stanza

 

in

 

the

 

/etc/tunables/nextboot

 

file

 

will

 

be

 

cleared.

 

This

 

will

 

defer

 

changes

 

until

 

next

 

reboot.

 

If

 

necessary,

 

bosboot

 

will

 

be

 

proposed.

Kernel

 

Tuning

 

using

 

the

 

Performance

 

Plug-In

 

for

 

Web-based

 

System

 

Manager

 

AIX

 

kernel

 

tuning

 

parameters

 

can

 

be

 

managed

 

using

 

the

 

Web-based

 

System

 

Manager

 

System

 

Tuning

 

Plug-in,

 

which

 

is

 

a

 

sub-plugin

 

of

 

the

 

Web-based

 

System

 

Manager

 

Performance

 

plug-in.

 

The

 

Performance

 

Plug-in

 

is

 

available

 

from

 

the

 

Web-based

 

System

 

Manager

 

main

 

console

 

which

 

looks

 

similar

 

to

 

the

 

following:

   

The

 

Performance

 

plug-in

 

is

 

organized

 

into

 

the

 

following

 

sub-plugins:

 

v

   

Performance

 

Monitoring

 

plug-in

 

v

   

System

 

Tuning

 

plug-in

  

Figure

 

28.

 

Performance

 

Plug-in

 

shown

 

in

 

Web-based

 

System

 

Manager

 

main

 

console

  

Chapter

 

7.

 

Kernel

 

Tuning

 

157



The

 

Performance

 

Monitoring

 

sub-plugin

 

gives

 

access

 

to

 

a

 

variety

 

of

 

performance-monitoring

 

and

 

report-generation

 

tools.

 

The

 

System

 

Tuning

 

sub-plugin

 

consists

 

of

 

CPU,

 

Memory,

 

Disk

 

I/O,

 

and

 

Network

 

I/O

 

sub-plugins,

 

which

 

present

 

tuning

 

tables

 

from

 

which

 

AIX

 

tuning

 

parameters

 

can

 

be

 

visualized

 

and

 

changed.

 

The

 

Navigation

 

Area

 

for

 

the

 

System

 

Tuning

 

plug-in

 

contains

 

three

 

levels

 

of

 

sub-plugins

 

as

 

seen

 

in

 

the

 

following:

 

These

 

intermediate

 

levels

 

represent

 

tuning

 

resources.

 

They

 

are

 

further

 

split

 

into

 

sub-plugins

 

but

 

have

 

no

 

specific

 

actions

 

associated

 

with

 

them

 

and

 

only

 

exist

 

to

 

group

 

access

 

to

 

tunable

 

parameters

 

in

 

a

 

logical

 

way.

 

Actions

 

on

 

tunable

 

parameters

 

can

 

be

 

applied

 

at

 

the

 

following

 

levels:

 

System-Tuning

 

level

 

Global

 

actions

 

applicable

 

to

 

all

 

tunable

 

parameters

 

are

 

provided

 

at

 

this

 

level.

 

Leaf

 

Levels

 

Leaves

 

are

 

represented

 

by

 

a

 

folder

 

icon

 

(see

 

navigation

 

area

 

in

 

Figure

 

29).

 

When

 

selecting

 

a

 

leaf,

 

a

 

tuning

 

table

 

is

 

displayed

 

in

 

the

 

content

 

area.

 

A

 

table

 

represents

 

a

 

logical

 

group

 

of

 

tunable

 

parameters,

 

all

 

managed

 

by

 

one

 

of

 

the

 

tunable

 

commands

 

(schedo,

 

vmo,

 

ioo,

 

no,

 

and

 

nfso).

 

Specific

 

actions

 

provided

 

at

 

this

 

level

 

apply

 

only

 

to

 

the

 

tunable

 

parameters

 

displayed

 

in

 

the

 

current

 

table.

The

 

CPU/All

 

Processes

 

sub-plugin

 

is

 

a

 

link

 

to

 

the

 

All

 

Processes

 

sub-plugin

 

of

 

the

 

Processes

 

application.

 

Its

 

purpose

 

is

 

not

 

to

 

manipulate

 

tuning

 

parameters

 

and

 

will

 

not

 

be

 

discussed.

   

Figure

 

29.

 

System

 

Tuning

 

plug-in

 

Performance

 

window

  

158

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Global

 

Actions

 

on

 

Tunable

 

Parameters

 

Only

 

the

 

Web-based

 

System

 

Manager

 

Tuning

 

menu

 

has

 

specific

 

actions

 

associated

 

with

 

it.

 

The

 

specific

 

actions

 

available

 

at

 

this

 

level

 

are

 

global,

 

in

 

that

 

they

 

apply

 

to

 

all

 

the

 

performance

 

tunable

 

parameters.

 

1.

   

View

 

Last

 

Boot

 

Parameters

 

This

 

action

 

displays

 

the

 

/etc/tunables/lastboot

 

file

 

in

 

an

 

open

 

working

 

dialog.

 

2.

   

View

 

Last

 

Boot

 

Log

 

File
This

 

action

 

displays

 

the

 

/etc/tunables/lastboot.log

 

file

 

in

 

an

 

open

 

working

 

dialog.

 

3.

   

Save

 

All

 

Current

 

Parameters

 

for

 

Next

 

Boot

 

The

 

Save

 

All

 

Current

 

Parameters

 

warning

 

dialog

 

is

 

opened.

    

Figure

 

30.

 

Web-based

 

System

 

Manager

 

Tuning

 

menu

  

Chapter

 

7.

 

Kernel

 

Tuning

 

159



After

 

clicking

 

Yes,

 

all

 

the

 

current

 

tuning

 

parameter

 

values

 

will

 

be

 

saved

 

in

 

the

 

/etc/tunables/nextboot

 

file.

 

Bosboot

 

will

 

be

 

offered

 

if

 

necessary.

 

4.

   

Save

 

All

 

Current

 

Parameters

 

The

 

Save

 

All

 

Current

 

Parameters

 

dialog

 

with

 

a

 

Filename

 

field

 

and

 

a

 

Description

 

field

 

is

 

opened.

   

The

 

Filename

 

editable

 

combobox,

 

lists

 

all

 

the

 

tunable

 

files

 

present

 

in

 

the

 

/etc/tunables

 

directory,

 

except

 

the

 

nextboot,

 

lastboot

 

and

 

lastboot.log

 

files,

 

which

 

all

 

have

 

special

 

purposes.

 

If

 

no

 

file

 

is

 

present,

 

the

 

combobox

 

list

 

is

 

empty.

 

The

 

user

 

can

 

choose

 

an

 

existing

 

file,

 

or

 

create

 

a

 

new

 

file

 

by

 

entering

 

a

 

new

 

name.

 

File

 

names

 

entered

 

cannot

 

be

 

any

 

of

 

the

 

three

 

reserved

 

names.

 

The

 

Description

 

field

 

will

 

be

 

written

 

in

 

the

 

info

 

stanza

 

of

 

the

 

selected

 

file.

 

After

 

clicking

 

OK,

 

all

 

the

 

current

 

tuning

 

parameter

 

values

 

will

 

be

 

saved

 

in

 

the

 

selected

 

file

 

in

 

the

 

/etc/tunables

 

directory.

 

5.

   

Save

 

All

 

Next

 

Boot

 

Parameters

    

Figure

 

31.

 

Save

 

All

 

Current

 

Parameters

 

for

 

next

 

boot

 

dialog

  

Figure

 

32.

 

Save

 

All

 

Current

 

Parameters

 

to

 

file

 

dialog

  

160

 

Performance

 

Tools

 

Guide

 

and

 

Reference



This

 

action

 

opens

 

an

 

editable

 

combobox

 

which

 

lists

 

all

 

the

 

tunable

 

files

 

present

 

in

 

the

 

/etc/tunables

 

directory,

 

except

 

the

 

nextboot,

 

lastboot

 

and

 

lastboot.log

 

files,

 

which

 

all

 

have

 

special

 

purposes.

 

If

 

no

 

file

 

is

 

present,

 

the

 

combobox

 

list

 

is

 

empty.

 

The

 

user

 

can

 

choose

 

an

 

existing

 

file,

 

or

 

create

 

a

 

new

 

file

 

by

 

entering

 

a

 

new

 

name.

 

File

 

names

 

entered

 

cannot

 

be

 

any

 

of

 

the

 

three

 

reserved

 

names.

 

After

 

clicking

 

OK,

 

the

 

nextboot

 

file,

 

is

 

copied

 

to

 

the

 

specified

 

/etc/tunables

 

file

 

it

 

it

 

can

 

be

 

successfully

 

checked

 

using

 

the

 

tuncheck

 

command.

 

6.

   

Restore

 

All

 

Current

 

Parameters
This

 

action

 

opens

 

an

 

editable

 

combobox

 

showing

 

the

 

list

 

of

 

all

 

existing

 

files

 

in

 

the

 

/etc/tunables

 

directory,

 

except

 

the

 

files

 

nextboot,

 

and

 

lastboot.log

 

which

 

have

 

special

 

purposes.

  

The

 

user

 

selects

 

the

 

file

 

to

 

use

 

for

 

restoring

 

the

 

current

 

values

 

of

 

tuning

 

parameters.

 

The

 

lastboot

 

file

 

is

 

proposed

 

as

 

the

 

default

 

(first

 

element

 

of

 

the

 

combo

 

list).

 

Files

 

can

 

have

 

a

 

description

 

which

 

is

 

displayed

 

after

 

the

 

name

 

in

 

the

 

combobox

 

items,

 

separated

 

from

 

the

 

file

 

name

 

by

 

a

 

dash

 

character.

 

After

 

clicking

 

OK,

 

the

 

parameters

 

present

 

in

 

the

 

selected

 

file

 

in

 

the

 

/etc/tunables

 

directory

 

will

 

be

 

set

 

to

 

the

 

value

 

listed

 

if

 

possible.

 

Error

 

messages

 

will

 

be

 

displayed

 

if

 

any

 

parameter

 

of

 

type

 

Bosboot

 

or

 

Reboot

 

would

 

need

 

to

 

be

 

changed,

 

which

 

cannot

 

be

 

done

 

on

 

the

 

current

 

values.

 

Error

 

messages

 

will

 

also

 

be

 

displayed

 

for

 

any

 

parameter

 

of

 

type

 

Incremental

 

when

 

the

 

value

 

in

 

the

 

file

 

is

 

smaller

 

than

 

the

 

current

 

value,

 

and

 

for

 

out

 

of

 

range

 

and

 

incompatible

 

values

 

present

 

in

 

the

 

file.

 

All

 

possible

 

changes

 

will

 

be

 

made.

 

7.

   

Restore

 

All

 

Next

 

Boot

 

Parameters
A

 

combobox

 

is

 

opened

 

to

 

display

 

the

 

list

 

of

 

all

 

existing

 

files

 

in

 

the

 

/etc/tunables

 

directory,

 

except

 

the

 

files

 

nextboot,

 

and

 

lastboot.log

 

which

 

have

 

special

 

purposes.

    

Figure

 

33.

 

Save

 

All

 

Next

 

Boot

 

Parameters

 

to

 

file

 

dialog

  

Figure

 

34.

 

Restore

 

All

 

Current

 

Parameters

 

dialog

  

Chapter

 

7.

 

Kernel

 

Tuning

 

161



The

 

user

 

selects

 

the

 

file

 

to

 

use

 

for

 

restoring

 

the

 

nextboot

 

values

 

of

 

tuning

 

parameters.

 

The

 

lastboot

 

file

 

is

 

proposed

 

as

 

the

 

default

 

(first

 

element

 

of

 

the

 

combo

 

list).

 

Files

 

can

 

have

 

a

 

description

 

which

 

is

 

displayed

 

after

 

the

 

name

 

in

 

the

 

combobox

 

items,

 

separated

 

from

 

the

 

file

 

name

 

by

 

a

 

dash

 

character.

 

After

 

clicking

 

OK,

 

all

 

values

 

from

 

the

 

selected

 

file

 

will

 

be

 

copied

 

to

 

the

 

/etc/tunables/nextboot

 

file.

 

Incompatible

 

dependent

 

parameter

 

values

 

or

 

out

 

of

 

range

 

values

 

will

 

not

 

be

 

copied

 

to

 

the

 

file

 

(this

 

could

 

happen

 

if

 

the

 

file

 

selected

 

was

 

not

 

previously

 

tunchecked).

 

Error

 

messages

 

will

 

be

 

displayed

 

instead.

 

If

 

necessary,

 

the

 

user

 

will

 

be

 

prompted

 

to

 

run

 

bosboot,

 

and

 

warned

 

that

 

for

 

all

 

the

 

changes

 

to

 

be

 

effective,

 

rebooting

 

the

 

machine

 

is

 

necessary.

 

8.

   

Reset

 

All

 

Current

 

Parameters

 

to

 

Default

 

Values

 

A

 

warning

 

dialog

 

is

 

opened

 

and

 

after

 

clicking

 

Yes,

 

a

 

working

 

dialog

 

is

 

displayed.

 

Each

 

tunable

 

parameter

 

is

 

reset

 

to

 

its

 

default

 

value.

 

Parameters

 

of

 

type

 

Incremental,

 

Bosboot

 

and

 

Reboot,

 

are

 

never

 

changed,

 

but

 

error

 

messages

 

are

 

displayed

 

if

 

they

 

should

 

have

 

been

 

changed

 

to

 

revert

 

to

 

default

 

values.

 

9.

   

Reset

 

All

 

Next

 

Boot

 

Parameters

 

to

 

Default

 

Values

 

A

 

warning

 

dialog

 

is

 

opened

 

and

 

after

 

clicking

 

Yes,

 

an

 

interactive

 

working

 

dialog

 

is

 

displayed

 

and

 

the

 

/etc/tunables/nextboot

 

file

 

is

 

cleared.

 

If

 

necessary

 

bosboot

 

will

 

be

 

proposed

 

and

 

a

 

message

 

indicating

 

that

 

a

 

reboot

 

is

 

needed

 

will

 

be

 

displayed.

Using

 

Tuning

 

Tables

 

to

 

Change

 

Individual

 

Parameter

 

Values

 

Each

 

tuning

 

table

 

in

 

the

 

content

 

area

 

has

 

the

 

same

 

structure.

 

It

 

allows

 

all

 

the

 

characteristics

 

of

 

the

 

tunable

 

parameters

 

to

 

be

 

viewed

 

at

 

a

 

glance.

 

The

 

table

 

has

 

two

 

editable

 

columns,

 

Current

 

Value

 

and

 

Next

 

Boot

 

Value.

 

Each

 

cell

 

in

 

these

 

two

 

columns

 

is

 

an

 

editable

 

combobox,

 

with

 

only

 

one

 

predefined

 

value

 

of

 

Default,

 

for

 

the

 

capture

 

of

 

new

 

value

 

for

 

a

 

parameter.

 

Data

 

entered

 

in

 

these

 

columns

 

is

 

validated

 

when

 

pressing

 

ENTER.

    

Figure

 

35.

 

Restore

 

All

 

Next

 

Boot

 

Parameters

 

dialog

  

162

 

Performance

 

Tools

 

Guide

 

and

 

Reference



The

 

parameters

 

are

 

grouped

 

as

 

they

 

are

 

in

 

the

 

SMIT

 

panels

 

with

 

two

 

small

 

exceptions.

 

First,

 

the

 

Network

 

related

 

parameters

 

are

 

all

 

presented

 

in

 

one

 

SMIT

 

panel,

 

but

 

subdivided

 

in

 

six

 

sections.

 

The

 

Web-based

 

System

 

Manager

 

interface

 

uses

 

six

 

separate

 

tables

 

instead.

 

Lastly,

 

the

 

parameters

 

managed

 

by

 

the

 

schedo

 

command

 

are

 

available

 

from

 

two

 

sub-plugins:

 

CPU/scheduling

 

and

 

memory/scheduling.

 

Actions

 

allowed

 

vary

 

according

 

to

 

parameter

 

types:

 

v

   

Static

 

parameters

 

do

 

not

 

have

 

an

 

editable

 

cell.

 

v

   

New

 

values

 

for

 

Dynamic

 

parameters

 

can

 

be

 

applied

 

now

 

or

 

saved

 

for

 

next

 

boot.

 

v

   

New

 

values

 

for

 

Reboot

 

parameters

 

can

 

only

 

be

 

saved

 

for

 

next

 

boot.

 

v

   

New

 

values

 

for

 

Bosboot

 

parameters

 

can

 

only

 

be

 

saved

 

for

 

next

 

boot,

 

and

 

users

 

are

 

prompted

 

to

 

run

 

bosboot.

 

v

   

New

 

values

 

for

 

Mount

 

parameters

 

can

 

be

 

applied

 

now

 

or

 

saved

 

for

 

next

 

boot,

 

but

 

when

 

applied

 

immediately,

 

a

 

warning

 

will

 

be

 

displayed

 

to

 

tell

 

the

 

user

 

that

 

changes

 

will

 

only

 

be

 

effective

 

for

 

future

 

file

 

systems

 

or

 

directory

 

mountings.

 

v

    

New

 

values

 

for

 

Incremental

 

parameters

 

can

 

be

 

applied

 

now

 

or

 

saved

 

for

 

next

 

boot.

 

If

 

applied

 

now,

 

they

 

will

 

only

 

be

 

accepted

 

if

 

the

 

new

 

value

 

is

 

bigger

 

than

 

the

 

current

 

value.

The

 

following

 

section

 

explains

 

in

 

detail

 

the

 

behavior

 

of

 

the

 

tables.

   

Figure

 

36.

 

Memory

 

VMM

 

window

  

Chapter

 

7.

 

Kernel

 

Tuning

 

163



Tunable

 

Tables

 

Actions

 

The

 

actions

 

available

 

for

 

each

 

tunable

 

table

 

are

 

Save

 

Changes,

 

Save

 

Current

 

Parameters

 

for

 

Next

 

Boot,

 

Reset

 

Parameters

 

to

 

System

 

Default,

 

Parameter

 

Details,

 

and

 

Monitor.

 

The

 

Monitor

 

action

 

enables

 

related

 

monitoring

 

tools

 

to

 

start

 

from

 

each

 

of

 

the

 

plug-ins

 

and

 

is

 

not

 

discussed

 

in

 

this

 

section.

  

1.

   

Save

 

Changes

 

This

 

option

 

opens

 

a

 

dialog

 

allowing

 

the

 

saving

 

of

 

new

 

values

 

for

 

the

 

parameters

 

listed

 

in

 

the

 

Current

 

Value

 

and

 

Next

 

Boot

 

Value

 

columns

 

of

 

the

 

table.

 

The

 

two

 

options

 

are

 

checked

 

by

 

default.

 

They

 

are:

   

Figure

 

37.

 

Tables

 

Menus

 

window

  

164

 

Performance

 

Tools

 

Guide

 

and

 

Reference



v

   

Selecting

 

Update

 

and

 

apply

 

current

 

values

 

and

 

clicking

 

OK,

 

launches

 

the

 

tuning

 

command

 

corresponding

 

to

 

the

 

parameters

 

shown

 

in

 

the

 

table

 

to

 

make

 

all

 

the

 

desired

 

changes.

 

Selecting

 

Default

 

in

 

the

 

combobox

 

as

 

the

 

new

 

value

 

resets

 

the

 

parameter

 

to

 

its

 

default

 

value.

 

If

 

a

 

parameter

 

of

 

type

 

Incremental

 

has

 

a

 

new

 

value

 

smaller

 

than

 

its

 

current

 

value,

 

an

 

error

 

message

 

will

 

be

 

displayed.

 

If

 

incompatible

 

dependent

 

parameter

 

values

 

or

 

out

 

of

 

range

 

values

 

have

 

been

 

entered,

 

an

 

error

 

message

 

will

 

also

 

be

 

displayed.

 

All

 

the

 

acceptable

 

changes

 

will

 

be

 

made.

 

v

   

Selecting

 

Update

 

next

 

boot

 

values

 

and

 

clicking

 

OK,

 

writes

 

the

 

desired

 

changes

 

to

 

the

 

/etc/tunables/nextboot

 

file.

 

If

 

necessary,

 

the

 

user

 

will

 

be

 

prompted

 

to

 

run

 

bosboot.

 

If

 

incompatible

 

dependent

 

parameter

 

values

 

or

 

out

 

of

 

range

 

values

 

have

 

been

 

entered,

 

an

 

error

 

message

 

will

 

be

 

displayed,

 

and

 

those

 

parameter

 

values

 

will

 

not

 

be

 

copied

 

to

 

the

 

nextboot

 

file.

 

v

   

Selecting

 

both

 

options

 

makes

 

all

 

the

 

desired

 

changes

 

now

 

and

 

for

 

the

 

next

 

reboot.

2.

   

Save

 

Current

 

Parameters

 

for

 

Next

 

Boot
A

 

warning

 

dialog

 

is

 

opened.

   

After

 

clicking

 

Yes,

 

all

 

the

 

current

 

parameter

 

values

 

listed

 

in

 

the

 

table

 

will

 

be

 

saved

 

in

 

the

 

/etc/tunables/nextboot

 

file.

 

If

 

any

 

parameter

 

of

 

type

 

Bosboot

 

needs

 

to

 

be

 

changed,

 

the

 

user

 

will

 

be

 

prompted

 

to

 

run

 

bosboot.

  

Figure

 

38.

 

Save

 

Changes

 

dialog

  

Figure

 

39.

 

Save

 

All

 

Current

 

Parameters

 

to

 

file

 

dialog

  

Chapter

 

7.

 

Kernel

 

Tuning

 

165



3.

   

Reset

 

Parameters

 

to

 

System

 

Default

 

This

 

dialog

 

allows

 

resetting

 

of

 

current

 

or

 

next

 

boot

 

values

 

for

 

all

 

the

 

parameters

 

listed

 

in

 

the

 

table

 

to

 

their

 

default

 

value.

 

Two

 

options

 

are

 

available:

 

v

   

Selecting

 

Reset

 

current

 

parameters

 

to

 

system

 

default

 

and

 

clicking

 

OK,

 

will

 

reset

 

all

 

the

 

tuning

 

parameters

 

listed

 

in

 

the

 

table

 

to

 

their

 

default

 

value.

 

If

 

any

 

parameter

 

of

 

type

 

Incremental,

 

Bosboot

 

or

 

Reboot

 

should

 

have

 

been

 

changed,

 

an

 

error

 

message

 

will

 

be

 

displayed

 

and

 

the

 

parameter

 

will

 

not

 

be

 

changed.

 

v

   

Selecting

 

Reset

 

next

 

boot

 

parameters

 

to

 

system

 

default

 

and

 

clicking

 

OK

 

deletes

 

the

 

parameter

 

listed

 

in

 

the

 

table

 

from

 

the

 

/etc/tunables/nextboot

 

file.

 

This

 

action

 

will

 

defer

 

changes

 

until

 

next

 

reboot.

 

If

 

necessary,

 

bosboot

 

will

 

be

 

proposed.

Parameter

 

Details

 

Clicking

 

on

 

Parameter

 

Details

 

in

 

the

 

toolbar

 

or

 

selecting

 

the

 

equivalent

 

menu

 

item,

 

followed

 

by

 

a

 

click

 

on

 

a

 

parameter

 

in

 

the

 

table

 

will

 

display

 

the

 

help

 

information

 

available

 

in

 

a

 

help

 

dialog..

   

Figure

 

40.

 

Reset

 

All

 

Parameters

 

to

 

System

 

Defaults

 

dialog

  

166

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Files

  

/etc/tunables/lastboot

 

Contains

 

tuning

 

parameter

 

stanzas

 

from

 

the

 

last

 

boot.

 

/etc/tunables/lastboot.log

 

Contains

 

logging

 

information

 

from

 

the

 

last

 

boot.

 

/etc/tunables/nextboot

 

Contains

 

tuning

 

parameter

 

stanzas

 

for

 

the

 

next

 

system

 

boot.

   

Related

 

Information

 

The

 

bosboot,

 

ioo,

 

nfso,

 

no,

 

schedo,

 

tunsave,

 

tunrestore,

 

tuncheck,

 

tundefault,

 

and

 

vmo

 

commands.

 

The

 

tunables

 

file.

   

Figure

 

41.

 

Help

 

dialog

  

Chapter

 

7.

 

Kernel

 

Tuning

 

167



168

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Appendix.

 

Notices

 

This

 

information

 

was

 

developed

 

for

 

products

 

and

 

services

 

offered

 

in

 

the

 

U.S.A.

 

IBM

 

may

 

not

 

offer

 

the

 

products,

 

services,

 

or

 

features

 

discussed

 

in

 

this

 

document

 

in

 

other

 

countries.

 

Consult

 

your

 

local

 

IBM

 

representative

 

for

 

information

 

on

 

the

 

products

 

and

 

services

 

currently

 

available

 

in

 

your

 

area.

 

Any

 

reference

 

to

 

an

 

IBM

 

product,

 

program,

 

or

 

service

 

is

 

not

 

intended

 

to

 

state

 

or

 

imply

 

that

 

only

 

that

 

IBM

 

product,

 

program,

 

or

 

service

 

may

 

be

 

used.

 

Any

 

functionally

 

equivalent

 

product,

 

program,

 

or

 

service

 

that

 

does

 

not

 

infringe

 

any

 

IBM

 

intellectual

 

property

 

right

 

may

 

be

 

used

 

instead.

 

However,

 

it

 

is

 

the

 

user’s

 

responsibility

 

to

 

evaluate

 

and

 

verify

 

the

 

operation

 

of

 

any

 

non-IBM

 

product,

 

program,

 

or

 

service.

 

IBM

 

may

 

have

 

patents

 

or

 

pending

 

patent

 

applications

 

covering

 

subject

 

matter

 

described

 

in

 

this

 

document.

 

The

 

furnishing

 

of

 

this

 

document

 

does

 

not

 

give

 

you

 

any

 

license

 

to

 

these

 

patents.

 

You

 

can

 

send

 

license

 

inquiries,

 

in

 

writing,

 

to:

 

IBM

 

Director

 

of

 

Licensing

 

IBM

 

Corporation

 

North

 

Castle

 

Drive

 

Armonk,

 

NY

 

10504-1785

 

U.S.A.

 

The

 

following

 

paragraph

 

does

 

not

 

apply

 

to

 

the

 

United

 

Kingdom

 

or

 

any

 

other

 

country

 

where

 

such

 

provisions

 

are

 

inconsistent

 

with

 

local

 

law:

 

INTERNATIONAL

 

BUSINESS

 

MACHINES

 

CORPORATION

 

PROVIDES

 

THIS

 

PUBLICATION

 

"AS

 

IS"

 

WITHOUT

 

WARRANTY

 

OF

 

ANY

 

KIND,

 

EITHER

 

EXPRESS

 

OR

 

IMPLIED,

 

INCLUDING,

 

BUT

 

NOT

 

LIMITED

 

TO,

 

THE

 

IMPLIED

 

WARRANTIES

 

OF

 

NON-INFRINGEMENT,

 

MERCHANTABILITY

 

OR

 

FITNESS

 

FOR

 

A

 

PARTICULAR

 

PURPOSE.

 

Some

 

states

 

do

 

not

 

allow

 

disclaimer

 

of

 

express

 

or

 

implied

 

warranties

 

in

 

certain

 

transactions,

 

therefore,

 

this

 

statement

 

may

 

not

 

apply

 

to

 

you.

 

This

 

information

 

could

 

include

 

technical

 

inaccuracies

 

or

 

typographical

 

errors.

 

Changes

 

are

 

periodically

 

made

 

to

 

the

 

information

 

herein;

 

these

 

changes

 

will

 

be

 

incorporated

 

in

 

new

 

editions

 

of

 

the

 

publication.

 

IBM

 

may

 

make

 

improvements

 

and/or

 

changes

 

in

 

the

 

product(s)

 

and/or

 

the

 

program(s)

 

described

 

in

 

this

 

publication

 

at

 

any

 

time

 

without

 

notice.

 

Licensees

 

of

 

this

 

program

 

who

 

wish

 

to

 

have

 

information

 

about

 

it

 

for

 

the

 

purpose

 

of

 

enabling:

 

(i)

 

the

 

exchange

 

of

 

information

 

between

 

independently

 

created

 

programs

 

and

 

other

 

programs

 

(including

 

this

 

one)

 

and

 

(ii)

 

the

 

mutual

 

use

 

of

 

the

 

information

 

which

 

has

 

been

 

exchanged,

 

should

 

contact:

 

IBM

 

Corporation

 

Dept.

 

LRAS/Bldg.

 

003

 

11400

 

Burnet

 

Road

 

Austin,

 

TX

 

78758-3498

 

U.S.A.

 

Such

 

information

 

may

 

be

 

available,

 

subject

 

to

 

appropriate

 

terms

 

and

 

conditions,

 

including

 

in

 

some

 

cases,

 

payment

 

of

 

a

 

fee.

 

The

 

licensed

 

program

 

described

 

in

 

this

 

document

 

and

 

all

 

licensed

 

material

 

available

 

for

 

it

 

are

 

provided

 

by

 

IBM

 

under

 

terms

 

of

 

the

 

IBM

 

Customer

 

Agreement,

 

IBM

 

International

 

Program

 

License

 

Agreement

 

or

 

any

 

equivalent

 

agreement

 

between

 

us.

 

For

 

license

 

inquiries

 

regarding

 

double-byte

 

(DBCS)

 

information,

 

contact

 

the

 

IBM

 

Intellectual

 

Property

 

Department

 

in

 

your

 

country

 

or

 

send

 

inquiries,

 

in

 

writing,

 

to:

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

169



IBM

 

World

 

Trade

 

Asia

 

Corporation

 

Licensing

 

2-31

 

Roppongi

 

3-chome,

 

Minato-ku

 

Tokyo

 

106,

 

Japan

 

IBM

 

may

 

use

 

or

 

distribute

 

any

 

of

 

the

 

information

 

you

 

supply

 

in

 

any

 

way

 

it

 

believes

 

appropriate

 

without

 

incurring

 

any

 

obligation

 

to

 

you.

 

Information

 

concerning

 

non-IBM

 

products

 

was

 

obtained

 

from

 

the

 

suppliers

 

of

 

those

 

products,

 

their

 

published

 

announcements

 

or

 

other

 

publicly

 

available

 

sources.

 

IBM

 

has

 

not

 

tested

 

those

 

products

 

and

 

cannot

 

confirm

 

the

 

accuracy

 

of

 

performance,

 

compatibility

 

or

 

any

 

other

 

claims

 

related

 

to

 

non-IBM

 

products.

 

Questions

 

on

 

the

 

capabilities

 

of

 

non-IBM

 

products

 

should

 

be

 

addressed

 

to

 

the

 

suppliers

 

of

 

those

 

products.

 

Any

 

references

 

in

 

this

 

information

 

to

 

non-IBM

 

Web

 

sites

 

are

 

provided

 

for

 

convenience

 

only

 

and

 

do

 

not

 

in

 

any

 

manner

 

serve

 

as

 

an

 

endorsement

 

of

 

those

 

Web

 

sites.

 

The

 

materials

 

at

 

those

 

Web

 

sites

 

are

 

not

 

part

 

of

 

the

 

materials

 

for

 

this

 

IBM

 

product

 

and

 

use

 

of

 

those

 

Web

 

sites

 

is

 

at

 

your

 

own

 

risk.

 

This

 

information

 

contains

 

examples

 

of

 

data

 

and

 

reports

 

used

 

in

 

daily

 

business

 

operations.

 

To

 

illustrate

 

them

 

as

 

completely

 

as

 

possible,

 

the

 

examples

 

include

 

the

 

names

 

of

 

individuals,

 

companies,

 

brands,

 

and

 

products.

 

All

 

of

 

these

 

names

 

are

 

fictitious

 

and

 

any

 

similarity

 

to

 

the

 

names

 

and

 

addresses

 

used

 

by

 

an

 

actual

 

business

 

enterprise

 

is

 

entirely

 

coincidental.

 

Trademarks

 

The

 

following

 

terms

 

are

 

trademarks

 

of

 

International

 

Business

 

Machines

 

Corporation

 

in

 

the

 

United

 

States,

 

other

 

countries,

 

or

 

both:

    

AIX

    

AIX

 

5L

    

IBM

Microsoft,

 

Windows

 

3.1,

 

Windows

 

95,

 

Windows

 

98,

 

Windows

 

NT,

 

Windows

 

2000,

 

and

 

Windows

 

for

 

Workgroups

 

are

 

all

 

registered

 

trademarks

 

of

 

the

 

Microsoft

 

Corporation

 

in

 

the

 

United

 

States

 

and

 

other

 

countries.

 

UNIX

 

is

 

a

 

registered

 

trademark

 

of

 

The

 

Open

 

Group

 

in

 

the

 

United

 

States

 

and

 

other

 

countries.

 

Other

 

company,

 

product,

 

or

 

service

 

names

 

may

 

be

 

trademarks

 

or

 

service

 

marks

 

of

 

others.

   

170

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Index

 

A
a.out

 

file

 

6

 

about

 

this

 

book

 

v

 

API

 

calls
basic

pm_delete_program

 

113

 

pm_get_data

 

113

 

pm_get_program

 

113

 

pm_get_tdata

 

113

 

pm_reset_data

 

113

 

pm_set_program

 

113

 

pm_start

 

113

 

pm_stop

 

113

 

applications
compiling

 

for

 

Xprofiler

 

4

 

B
binary

 

executable
specifying

 

from

 

Xprofiler

 

GUI

 

12

 

C
Call

 

Graph

 

Profile

 

report

 

43

 

calls

 

between

 

functions,

 

how

 

depicted

 

24

 

clustering

 

functions

 

33

 

clusters,

 

library

 

25

 

code
disassembler

viewing

 

52

 

source
viewing

 

50

 

command-line

 

flags
specifying

 

from

 

Xprofiler

 

GUI

 

14

 

Xprofiler

 

6

 

configuraiton

 

files
saving

 

49

 

configuration

 

files
loading

 

50

 

controlling

 

how

 

the

 

display

 

is

 

updated

 

25

 

CPU

 

Utilization

 

Reporting

 

Tool
see

 

curt

 

63

 

curt

 

63

 

Application

 

Pthread

 

Summary

 

(by

 

PID)

 

Report

 

74

 

Application

 

Summary

 

(by

 

process

 

type)

 

Report

 

72

 

Application

 

Summary

 

by

 

Process

 

ID

 

(PID)

 

Report

 

72

 

Application

 

Summary

 

by

 

Thread

 

ID

 

(Tid)

 

Report

 

71

 

default

 

reports

 

66

 

Event

 

Explanation

 

63

 

Event

 

Name

 

63

 

examples

 

64

 

FILH

 

Summary

 

Report

 

78

 

flags

 

63

 

FLIH

 

types

 

79

 

General

 

Information

 

67

 

Global

 

SLIH

 

Summary

 

Report

 

79

 

curt

 

(continued)
Hook

 

ID

 

63

 

Kproc

 

Summary

 

(by

 

Tid)

 

Report

 

73

 

measurement

 

and

 

sampling

 

63

 

parameters
gensymsfile

 

63

 

inputfile

 

63

 

outputfile

 

63

 

pidnamefile

 

63

 

timestamp

 

63

 

trcnmfile

 

63

 

Pending

 

Pthread

 

Calls

 

Summary

 

Report

 

78

 

Pending

 

System

 

Calls

 

Summary

 

Report

 

75

 

Processor

 

Summary

 

Report

 

69

 

Pthread

 

Calls

 

Summary

 

Report

 

77

 

report

 

overview

 

65

 

sample

 

report
-e

 

flag

 

80

 

-p

 

flag

 

84

 

-P

 

flag

 

87

 

-s

 

flag

 

82

 

-t

 

flag

 

82

 

syntax

 

63

 

System

 

Calls

 

Summary

 

Report

 

75

 

System

 

Summary

 

Report

 

67

 

customizable

 

resources
Xprofiler

 

56

 

D
data

basic

 

37

 

detailed

 

41

 

getting

 

from

 

reports

 

41

 

performance

 

37

 

disassembler

 

code
viewing

 

52

 

disk

 

space

 

requirements

 

4

 

display
Xprofiler

 

20

 

E
examples

performance

 

monitor

 

APIs

 

114

 

F
features

X-Windows
customizing

 

56

 

file
binary

 

executable
specifying

 

from

 

Xprofiler

 

GUI

 

12

 

profile

 

data
specifying

 

from

 

Xprofiler

 

GUI

 

13

  

©

 

Copyright

 

IBM

 

Corp.

 

2002,

 

2004

 

171



files
loading

 

from

 

Xprofiler

 

GUI

 

10

 

filtering,

 

function

 

call

 

tree

 

27

 

finding

 

objects

 

in

 

call

 

tree

 

35

 

flags
specifying

 

from

 

Xprofiler

 

GUI

 

14

 

Xprofiler

 

6

 

Flat

 

Profile

 

report

 

42

 

function

 

call

 

tree
clustering

 

32

 

controlling

 

graphic

 

style

 

25

 

controlling

 

orientation

 

of

 

25

 

controlling

 

representation

 

of

 

26

 

displaying

 

28

 

excluding

 

specific

 

objects

 

28

 

filtering

 

27

 

including

 

specific

 

objects

 

28

 

restoring

 

27

 

Function

 

Index

 

report

 

45

 

functions,

 

how

 

depicted

 

22

 

G
gennames

 

utility

 

94

 

Global

 

Actions

 

on

 

Tunable

 

Parameters

 

159

 

gmon.out

 

file

 

6

 

gprof
and

 

Xprofiler

 

3

 

I
info

 

stanza

 

144

 

installp

 

5

 

introduction

 

1

 

iso

 

9000

 

v

 

K
kernel

 

tuning

 

143

 

attributes
pre520tune

 

143

 

commands

 

143

 

flags

 

145

 

tunchange

 

147

 

tuncheck

 

148

 

tundefault

 

150

 

tunrestore

 

149

 

tunsave

 

149

 

commands

 

syntax

 

145

 

file

 

manipulation

 

commands

 

147

 

initial

 

setup

 

150

 

introduction

 

143,

 

157

 

migration

 

and

 

compatibility

 

143

 

reboot

 

tuning

 

procedures

 

151

 

recovery

 

procedure

 

151

 

SMIT

 

interface

 

151

 

tunable

 

parameters

 

143

 

tunables

 

file

 

directory

 

144

 

tunables

 

parameters
type

 

145

 

Web-based

 

System

 

Manager

 

157

 

L
lastboot

 

144

 

lastboot.log

 

144

 

libpmapi

 

library

 

109

 

library

 

clusters

 

25

 

Library

 

Statistics

 

report

 

47

 

limitations
Xprofiler

 

3

 

locating

 

objects

 

in

 

call

 

tree

 

35

 

N
nextboot

 

144

 

O
objects,

 

locating

 

in

 

call

 

tree

 

35

 

P
parameter

 

details

 

166

 

performance

 

data,

 

getting

 

37

 

performance

 

monitor

 

API
accuracy

 

109

 

common

 

rules

 

111

 

context

 

and

 

state

 

110

 

state

 

inheritance

 

110

 

system

 

level

 

context

 

110

 

thread

 

context

 

110

 

thread

 

counting-group

 

and

 

process

 

context

 

110

 

programming

 

109

 

security

 

considerations

 

111

 

thread

 

accumulation

 

110

 

thread

 

group

 

accumulation

 

110

 

performance

 

monitor

 

plug-in

 

157

 

perfstat

 

119

 

characteristics

 

119

 

component-specific

 

interfaces

 

125

 

global

 

interfaces

 

119

 

perfstat_cpu

 

interface

 

126

 

perfstat_cpu_total

 

Interface

 

120

 

perfstat_disk

 

interface

 

127

 

perfstat_disk_total

 

Interface

 

123

 

perfstat_diskadapter

 

interface

 

130

 

perfstat_diskpath

 

interface

 

129

 

perfstat_memory_total

 

Interface

 

122

 

perfstat_netbuffer

 

interface

 

136

 

perfstat_netinterface

 

interface

 

131

 

perfstat_netinterface_total

 

Interface

 

124

 

perfstat_pagingspace

 

interface

 

138

 

perfstat_protocol

 

interface

 

133

 

perfstat

 

API

 

programming
see

 

perfstat

 

119

 

Plug-In

 

for

 

Web-based

 

System

 

Manager

 

System

 

Tuning

 

157

 

pm_delete_program

 

111

 

pm_error

 

111

 

pm_groups_info_t

 

112

 

pm_info_t

 

112

 

pm_init

 

API

 

initialization

 

112

   

172

 

Performance

 

Tools

 

Guide

 

and

 

Reference



pm_initialize

 

111

 

pm_initialize

 

API

 

initialization

 

112

 

pm_set_program

 

111

 

profile

 

data

 

files
specifying

 

from

 

Xprofiler

 

GUI

 

13

 

profiled

 

data
saving

 

screen

 

images

 

of

 

54

 

programs
compiling

 

for

 

Xprofiler

 

4

 

R
reboot

 

procedure

 

151

 

recovery

 

procedure

 

151

 

related

 

publications

 

v

 

release

 

specific

 

features

 

139

 

reports
Call

 

Graph

 

Profile

 

43

 

Flat

 

Profile

 

42

 

Function

 

Index

 

45

 

getting

 

data

 

from

 

41

 

Library

 

Statistics

 

47

 

saving

 

to

 

a

 

file

 

48

 

requirements
Xprofiler

 

3

 

resource

 

settings
Xprofiler

 

56

 

resource

 

variables
Xprofiler

 

57

 

resources
Xprofiler

customizing

 

56

 

resources,

 

customizable
Xprofiler

 

56

 

S
screen

 

images
saving

 

54

 

search

 

file

 

sequence
setting

 

19

 

settings,

 

resource
Xprofiler

 

56

 

simple

 

performance

 

lock

 

analysis

 

tool

 

(splat)
see

 

splat

 

91

 

SMIT

 

Interface

 

151

 

software

 

requirements

 

4

 

source

 

code
viewing

 

50

 

splat

 

91

 

address-to-name

 

resolution

 

94

 

AIX

 

kernel

 

lock

 

details

 

97

 

command

 

syntax

 

91

 

flags

 

91

 

condition-variable

 

report

 

106

 

event

 

explanation

 

92

 

event

 

name

 

92

 

execution,

 

trace,

 

and

 

analysis

 

intervals

 

93

 

hook

 

ID

 

92

 

measurement

 

and

 

sampling

 

92

 

mutex

 

function

 

detail

 

104

 

splat

 

(continued)
mutex

 

pthread

 

detail

 

103

 

mutex

 

reports

 

102

 

parameters

 

91

 

PThread

 

synchronizer

 

reports

 

102

 

read/write

 

lock

 

reports

 

104

 

reports

 

94

 

execution

 

summary

 

94

 

gross

 

lock

 

summary

 

95

 

per-lock

 

summary

 

96

 

simple

 

and

 

runQ

 

lock

 

details

 

97

 

trace

 

discontinuities

 

93

 

T
text

 

highlighting

 

v

 

thread

 

counting-group

 

information

 

114

 

consistency

 

flag

 

114

 

member

 

count

 

114

 

process

 

flag

 

114

 

tunable

 

parameters
global

 

actions

 

159

 

tunables

 

144

 

tuncheck

 

144

 

tundefault

 

144

 

tuning

 

tables
actions

 

164

 

using

 

162

 

tunrestore

 

144

 

tunsave

 

144

 

U
unclustering

 

functions

 

34

 

V
variables,

 

resource
Xprofiler

 

57

 

W
who

 

should

 

use

 

this

 

book

 

v

 

X
X-Windows

features
customizing

 

56

 

X-Windows

 

Performance

 

Profiler

 

(Xprofiler)
see

 

Xprofiler

 

3

 

Xprofiler

 

3

 

about

 

3

 

and

 

gprof

 

3

 

before

 

you

 

begin

 

3

 

binary

 

executable

 

file
specifying

 

12

 

command-line

 

flags

 

6

 

specifying

 

from

 

GUI

 

14

 

compiling

 

applications

 

for

 

4

   

Index

 

173



Xprofiler

 

(continued)
controlling

 

fonts

 

57

 

customizable

 

resources

 

56

 

display

 

20

 

file

 

menu
controlling

 

variables

 

58

 

files

 

and

 

directories

 

created

 

5

 

filter

 

menu
controlling

 

variables

 

60

 

hidden

 

menus

 

22

 

how

 

installation

 

alters

 

system

 

5

 

installing

 

5

 

using

 

SMIT

 

5

 

limitations

 

3,

 

5

 

loading

 

files

 

from

 

GUI

 

10

 

main

 

menus

 

21

 

main

 

window

 

20,

 

57

 

profile

 

data

 

files
specifying

 

13

 

requirements

 

3

 

resource

 

settings

 

56

 

resource

 

variables

 

57

 

resources
customizing

 

56

 

screen

 

dump
controlling

 

variables

 

58

 

setting

 

search

 

file

 

sequence

 

19

 

starting

 

6

 

view

 

menu
controlling

 

variables

 

60

 

Xprofiler

 

installation

 

information

 

4

 

Xprofiler

 

preinstallation

 

information

 

4

  

174

 

Performance

 

Tools

 

Guide

 

and

 

Reference



Readers’

 

Comments

 

—

 

We’d

 

Like

 

to

 

Hear

 

from

 

You

 

AIX

 

5L

 

Version

 

5.2

 

Performance

 

Tools

 

Guide

 

and

 

Reference

  

Publication

 

No.

 

SC23-4859-02

  

Overall,

 

how

 

satisfied

 

are

 

you

 

with

 

the

 

information

 

in

 

this

 

book?

   

Very

 

Satisfied Satisfied Neutral Dissatisfied Very

 

Dissatisfied

 

Overall

 

satisfaction h h h h h

  

How

 

satisfied

 

are

 

you

 

that

 

the

 

information

 

in

 

this

 

book

 

is:

   

Very

 

Satisfied Satisfied Neutral Dissatisfied Very

 

Dissatisfied

 

Accurate h h h h h

 

Complete h h h h h

 

Easy

 

to

 

find h h h h h

 

Easy

 

to

 

understand h h h h h

 

Well

 

organized h h h h h

 

Applicable

 

to

 

your

 

tasks h h h h h

  

Please

 

tell

 

us

 

how

 

we

 

can

 

improve

 

this

 

book:

  

Thank

 

you

 

for

 

your

 

responses.

 

May

 

we

 

contact

 

you?

   

h

 

Yes

   

h

 

No

 

When

 

you

 

send

 

comments

 

to

 

IBM,

 

you

 

grant

 

IBM

 

a

 

nonexclusive

 

right

 

to

 

use

 

or

 

distribute

 

your

 

comments

 

in

 

any

 

way

 

it

 

believes

 

appropriate

 

without

 

incurring

 

any

 

obligation

 

to

 

you.

  

Name

 

Address

 

Company

 

or

 

Organization

 

Phone

 

No.



Readers’

 

Comments

 

—

 

We’d

 

Like

 

to

 

Hear

 

from

 

You

 

SC23-4859-02

SC23-4859-02

���

 

Cut

 

or

 

Fold
Along

 

Line

Cut

 

or

 

Fold
Along

 

Line

Fold

 

and

 

Tape

 

Please

 

do

 

not

 

staple

 

Fold

 

and

 

Tape

Fold

 

and

 

Tape

 

Please

 

do

 

not

 

staple

 

Fold

 

and

 

Tape

NO

 

POSTAGE
NECESSARY
IF

 

MAILED

 

IN

 

THE
UNITED

 

STATES

BUSINESS

 

REPLY

 

MAIL

 

FIRST-CLASS

 

MAIL

 

PERMIT

 

NO.

 

40

 

ARMONK,

 

NEW

 

YORK

 

POSTAGE

 

WILL

 

BE

 

PAID

 

BY

 

ADDRESSEE

IBM

 

Corporation

 

Information

 

Development

 

Department

 

H6DS-905-6C006

 

11501

 

Burnet

 

Road

 

Austin,

 

TX

  

78758-3493

 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_





���

  

Printed

 

in

 

U.S.A.

     

SC23-4859-02

               

 


	Contents
	About This Book
	Who Should Use This Book
	Highlighting
	Case-Sensitivity in AIX
	ISO 9000
	Related Publications

	Chapter 1. Introduction to Performance Tools and APIs
	Chapter 2. X-Windows Performance Profiler (Xprofiler)
	Before You Begin
	About Xprofiler
	Requirements and Limitations
	Comparing Xprofiler and the gprof Command
	Compiling Applications to be Profiled

	Xprofiler Installation Information
	Preinstallation Information
	Installing Xprofiler
	Directories and Files Created by Xprofiler

	Starting the Xprofiler GUI
	Xprofiler Command-line Flags
	Loading Files from the Xprofiler GUI
	Setting the File Search Sequence

	Understanding the Xprofiler Display
	Xprofiler Main Window

	Controlling how the Display is Updated
	Other Viewing Options
	Controlling the Graphic Style of the Function Call Tree
	Controlling the Orientation of the Function Call Tree
	Controlling the Representation of the Function Call Tree

	Filtering what You See
	Restoring the Status of the Function Call Tree
	Displaying the Entire Function Call Tree
	Excluding and including specific objects

	Clustering Libraries
	Clustering Functions
	Unclustering Functions

	Locating Specific Objects in the Function Call Tree
	Locating and Displaying Parent Functions
	Locating and Displaying Child Functions
	Locating and Displaying Ancestor Functions
	Locating andDisplaying Descendant Functions
	Locating and Displaying Functions on a Cycle

	Obtaining Performance Data for Your Application
	Obtaining Basic Data
	Getting Detailed Data from Reports
	Looking at Your Code

	Saving Screen Images of Profiled Data
	Customizing Xprofiler Resources
	Xprofiler Resource Variables


	Chapter 3. CPU Utilization Reporting Tool (curt)
	Syntax for the curt Command
	Flags
	Parameters

	Measurement and Sampling
	Examples of the curt command
	Overview of Information Generated by the curt Command
	Default Report Generated by the curt Command


	Chapter 4. Simple Performance Lock Analysis Tool (splat)
	splat Command Syntax
	Flags
	Parameters

	Measurement and Sampling
	Execution, Trace, and Analysis Intervals
	Trace Discontinuities
	Address-to-Name Resolution in the splat Command

	Examples of Generated Reports
	Execution Summary
	Gross Lock Summary
	Per-lock Summary
	AIX Kernel Lock Details
	PThread Synchronizer Reports


	Chapter 5. Performance Monitor API Programming
	Performance Monitor Accuracy
	Performance Monitor Context and State
	System-Level Context and Accumulation
	Thread Context
	Thread Counting-Group and Process Context
	Performance Monitor State Inheritance

	Thread Accumulation and Thread Group Accumulation
	Security Considerations
	Common Rules
	The pm_init API Initialization Routine
	The pm_initialize API Initialize Routine
	Eight Basic API Calls
	Thread Counting-Group Information
	Examples

	Chapter 6. Perfstat API Programming
	API Characteristics
	Global Interfaces
	perfstat_cpu_total Interface
	perfstat_memory_total Interface
	perfstat_disk_total Interface
	perfstat_netinterface_total Interface

	Component-Specific Interfaces
	perfstat_cpu interface
	perfstat_disk Interface
	perfstat_diskpath Interface
	perfstat_diskadapter Interface
	perfstat_netinterface Interface
	perfstat_protocol Interface
	perfstat_netbuffer Interface
	perfstat_pagingspace Interface

	Change History of the perfstat API
	Interface Changes
	Interface Additions
	Field Additions

	Related Information

	Chapter 7. Kernel Tuning
	Migration and Compatibility
	Tunables File Directory
	Tunable Parameters Type
	Common Syntax for Tuning Commands
	Tunable File-Manipulation Commands
	tunchange Command
	tuncheck Command
	tunrestore Command
	tunsave Command
	tundefault Command

	Initial setup
	Reboot Tuning Procedure
	Recovery Procedure
	Kernel Tuning Using the SMIT Interface
	Global Manipulation of Tuning Parameters
	Changing individual parameters managed by a tuning command
	Interaction between parameter types and the different SMIT sub-panels

	Kernel Tuning using the Performance Plug-In for Web-based System Manager
	Global Actions on Tunable Parameters
	Using Tuning Tables to Change Individual Parameter Values
	Tunable Tables Actions
	Parameter Details

	Files
	Related Information

	Appendix. Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

