<|lI!

AIX 5L Version 5.3

Assembler Language Reference

SC23-4923-02

<|lI!

AIX 5L Version 5.3

Assembler Language Reference

SC23-4923-02

Note
FBefore using this information and the product it supports, read the information in|Appendix J, “Notices,” on page 605,

Third Edition (July 2006)

This edition applies to AIX 5L Version 5.3 and to all subsequent releases of this product until otherwise indicated in
new editions.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address
comments to Information Development, Department 04XA-905-6C006, 11501 Burnet Road, Austin, Texas
78758-3493. To send comments electronically, use this commercial Internet address: aix6kpub @ austin.ibm.com. Any
information that you supply may be used without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2006. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book
Highlighting .
Case-Sensitivity in AIX
ISO 9000.

Related Publications.

Chapter 1. Assembler Overview .
Features of the AIX Assembler .
Assembler Installation .

Chapter 2. Processing and Storage . .

POWER family and PowerPC Architecture Overwew
Branch Processor Ce e e e
Fixed-Point Processor.

Floating-Point Processor .

Chapter 3. Syntax and Semantics.
Character Set .

Reserved Words.

Line Format

Statements .

Symbols .

Constants .

Operators

Expressions

Chapter 4. Addressing .
Absolute Addressing . .
Absolute Immediate Addressmg .
Relative Immediate Addressing
Explicit-Based Addressing
Implicit-Based Addressing
Location Counter

Chapter 5. Assembling and Linking a Program
Assembling and Linking a Program . .o
Understanding Assembler Passes

Interpreting an Assembler Listing .

Interpreting a Symbol Cross-Reference
Subroutine Linkage Convention .
Understanding and Programming the TOC .
Running a Program. Coe e

Chapter 6. Extended Instruction Mnemonics

Extended Mnemonics of Branch Instructions

Extended Mnemonics of Condition Register Logical Instruchons
Extended Mnemonics of Fixed-Point Arithmetic Instructions .
Extended Mnemonics of Fixed-Point Compare Instructions .
Extended Mnemonics of Fixed-Point Load Instructions .

Extended Mnemonics of Fixed-Point Logical Instructions

Extended Mnemonics of Fixed-Point Trap Instructions .
Extended Mnemonic mtcr for Moving to the Condition Register .
Extended Mnemonics of Moving from or to Special-Purpose Registers

© Copyright IBM Corp. 1997, 2006

. Xi
. Xi
. Xi
. Xi
. Xi

.1
.1
.19
.21
. 24

. 27
.27
. 28
. 28
. 29
. 31
. 35
. 38
. 39

. 47
. 47
. 47
. 48
. 48
. 50
. 51

. 53
. 53
. 57
. 59
. 63
. 65
. 82
. 87

. 89

. 89

. 96

. 97

. 98

.. 99
. 100
. 100
. 102
. 102

Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions .
Extended Mnemonics of 64-bit Fixed-Point Rotate and Shift Instructions .

Chapter 7. Migrating Source Programs .
Related Information .
Functional Differences for POWER famlly and PowerPC Instructlons .

Differences between POWER family and PowerPC Instructions with the Same Op Code.

Extended Mnemonics Changes .

POWER family Instructions Deleted from PowerPC

Added PowerPC Instructions . .
Instructions Available Only for the PowerPC 601 RISC Mlcroprocessor . .
Migration of Branch Conditional Statements with No Separator after Mnemonic .

Chapter 8. Instruction Set

abs (Absolute) Instruction .

add (Add) or cax (Compute Address) Instructlon

addc or a (Add Carrying) Instruction .

adde or ae (Add Extended) Instruction .

addi (Add Immediate) or cal (Compute Address Lower) Instruchon
addic or ai (Add Immediate Carrying) Instruction

addic. or ai. (Add Immediate Carrying and Record) Instructlon
addis or cau (Add Immediate Shifted) Instruction

addme or ame (Add to Minus One Extended) Instruction
addze or aze (Add to Zero Extended) Instruction

and (AND) Instruction

andc (AND with Complement) Instructlon

andi. or andil. (AND Immediate) Instruction .
andis. or andiu. (AND Immediate Shifted) Instruction .

b (Branch) Instruction

bc (Branch Conditional) Instruc‘uon

becetr or bee (Branch Conditional to Count Reglster) Instructlon
bclr or ber (Branch Conditional Link Register) Instruction
clcs (Cache Line Compute Size) Instruction

clf (Cache Line Flush) Instruction .

cli (Cache Line Invalidate) Instruction.

cmp (Compare) Instruction .

cmpi (Compare Immediate) Instruchon .

cmpl (Compare Logical) Instruction .

cmpli (Compare Logical Immediate) Instruct|on .

cntlzd (Count Leading Zeros Double Word) Instruction
cntlzw or cntlz (Count Leading Zeros Word) Instruction .
crand (Condition Register AND) Instruction

crandc (Condition Register AND with Complement) Instruc’uon
creqv (Condition Register Equivalent) Instruction

crnand (Condition Register NAND) Instruction

crnor (Condition Register NOR) Instruction.

cror (Condition Register OR) Instruction.

crorc (Condition Register OR with Complement) Instructlon
crxor (Condition Register XOR) Instruction .

dcbf (Data Cache Block Flush) Instruction .

dcbi (Data Cache Block Invalidate) Instruction

dcbst (Data Cache Block Store) Instruction

dcbt (Data Cache Block Touch) Instruction . .
dcbtst (Data Cache Block Touch for Store) Instruction
dcbz or dclz (Data Cache Block Set to Zero) Instruction .
dclst (Data Cache Line Store) Instruction

iV Assembler Language Reference

. 107
. 110

. 113
. 113
. 114
. 115
. 116
. 119
. 120
121
121

. 123
. 123
. 124
. 126
. 128
. 130
. 131
. 132
. 133
. 135
. 137
. 138
. 140
.14
. 142
. 143
. 144
. 147
. 149
. 152
. 153
. 155
. 156
. 157
. 159
. 160
. 161
. 162
. 163
. 164
. 165
. 166
. 167
. 168
. 169
. 170
.17
. 172
. 173
. 175
. 178
. 179
. 180

div (Divide) Instruction . . .

divd (Divide Double Word) Instructlon

divdu (Divide Double Word Unsigned) Instructlon

divs (Divide Short) Instruction . .

divw (Divide Word) Instruction .

divwu (Divide Word Unsigned) Instruchon .

doz (Difference or Zero) Instruction .

dozi (Difference or Zero Immediate) Instructlon .

eciwx (External Control In Word Indexed) Instruction .
ecowx (External Control Out Word Indexed) Instruction .
eieio (Enforce In-Order Execution of I/0O) Instruction
extsw (Extend Sign Word) Instruction.

eqv (Equivalent) Instruction .

extsb (Extend Sign Byte) Instruction .

extsh or exts (Extend Sign Halfword) Instruchon

fabs (Floating Absolute Value) Instruction .

fadd or fa (Floating Add) Instruction

fcfid (Floating Convert from Integer Double Word) Instruchon
fcmpo (Floating Compare Ordered) Instruction

fcmpu (Floating Compare Unordered) Instruction

fctid (Floating Convert to Integer Double Word) Instructlon

fctidz (Floating Convert to Integer Double Word with Round toward Zero) Instructlon .

fctiw or fecir (Floating Convert to Integer Word) Instruction .
fctiwz or fcirz (Floating Convert to Integer Word with Round to Zero) Instructlon .
fdiv or fd (Floating Divide) Instruction. .

fmadd or fma (Floating Multiply-Add) Instruct|on

fmr (Floating Move Register) Instruction. .

fmsub or fms (Floating Multiply-Subtract) Instructlon .

fmul or fm (Floating Multiply) Instruction. .

fnabs (Floating Negative Absolute Value) Instruct|on .

fneg (Floating Negate) Instruction .

fnmadd or fnma (Floating Negative Multlply Add) Instructlon
fnmsub or fnms (Floating Negative Multiply-Subtract) Instruction .
fres (Floating Reciprocal Estimate Single) Instruction .

frsp (Floating Round to Single Precision) Instruction .

frsqrte (Floating Reciprocal Square Root Estimate) Instructlon

fsel (Floating-Point Select) Instruction .

fsqrt (Floating Square Root, Double-Precision) Instructlon .

fsqrts (Floating Square Root Single) Instruction .

fsub or fs (Floating Subtract) Instruction.

icbi (Instruction Cache Block Invalidate) Instructlon

isync or ics (Instruction Synchronize) Instruction.

Ibz (Load Byte and Zero) Instruction .

Ibzu (Load Byte and Zero with Update) Instructlon .
Ibzux (Load Byte and Zero with Update Indexed) Instruction .

Ibzx (Load Byte and Zero Indexed) Instruction

Id (Load Double Word) Instruction . e

Idarx (Store Double Word Reserve Indexed) Instruction .

Idu (Store Double Word with Update) Instruction

Idux (Store Double Word with Update Indexed) Instructlon

ldx (Store Double Word Indexed) Instruction . .

Ifd (Load Floating-Point Double) Instruction

Ifdu (Load Floating-Point Double with Update) Instructlon .
Ifdux (Load Floating-Point Double with Update Indexed) Instruction.
Ifdx (Load Floating-Point Double-Indexed) Instruction . .
Ifg (Load Floating-Point Quad) Instruction .

. 182
. 184
. 185
. 186
. 188
. 190
. 191
. 193
. 194
. 195
. 196
. 197
. 198
. 199
. 200
. 202
. 203
. 205
. 206
. 207
. 208
. 209
. 210
. 212
. 213
. 216
. 218
. 219
. 221
. 224
. 225
. 226
. 228
. 231
. 233
. 235
. 236
. 237
. 239
. 240
. 242
. 243
. 245
. 246
. 247
. 248
. 249
. 250
. 251
. 252
. 253
. 253
. 254
. 255
. 256
. 257

Contents

\'}

Ifqu (Load Floating-Point Quad with Update) Instruction .

Ifqux (Load Floating-Point Quad with Update Indexed) Instructlon
Ifgx (Load Floating-Point Quad Indexed) Instruction .o
Ifs (Load Floating-Point Single) Instruction . .

Ifsu (Load Floating-Point Single with Update) Instruchon .
Ifsux (Load Floating-Point Single with Update Indexed) Instruction .
Ifsx (Load Floating-Point Single Indexed) Instruction .

Iha (Load Half Algebraic) Instruction . .

Ihau (Load Half Algebraic with Update) Instructlon .

Ihaux (Load Half Algebraic with Update Indexed) Instructlon
Ihax (Load Half Algebraic Indexed) Instruction

Ihbrx (Load Half Byte-Reverse Indexed) Instruction

Ihz (Load Half and Zero) Instruction . .

Ihzu (Load Half and Zero with Update) Instruct|on .

Ihzux (Load Half and Zero with Update Indexed) Instructlon
Ihzx (Load Half and Zero Indexed) Instruction

Imw or Im (Load Multiple Word) Instruction.

Ig (Load Quad Word) Instruction

Iscbx (Load String and Compare Byte Indexed) Instruct|on
Iswi or Isi (Load String Word Immediate) Instruction

Iswx or Isx (Load String Word Indexed) Instruction .

Iwa (Load Word Algebraic) Instruction .

Iwarx (Load Word and Reserve Indexed) Instructlon .

Iwaux (Load Word Algebraic with Update Indexed) Instructlon
Iwax (Load Word Algebraic Indexed) Instruction .

Iwbrx or Ibrx (Load Word Byte-Reverse Indexed) Instructlon
Iwz or | (Load Word and Zero) Instruction . .

Iwzu or lu (Load Word with Zero Update) Instructlon .

Iwzux or lux (Load Word and Zero with Update Indexed) Instruchon
Iwzx or Ix (Load Word and Zero Indexed) Instruction .

maskg (Mask Generate) Instruction

maskir (Mask Insert from Register) Instructlon

mcrf (Move Condition Register Field) Instruction.

mcrfs (Move to Condition Register from FPSCR) Instruc’uon
mcrxr (Move to Condition Register from XER) Instruction

mfcr (Move from Condition Register) Instruction .

mffs (Move from FPSCR) Instruction . .
mfmsr (Move from Machine State Register) Instruchon .
mfocrf (Move from One Condition Register Field) Instruction .
mfspr (Move from Special-Purpose Register) Instruction.

mfsr (Move from Segment Register) Instruction . .
mfsri (Move from Segment Register Indirect) Instruction .
mfsrin (Move from Segment Register Indirect) Instruction
mtcrf (Move to Condition Register Fields) Instruction .

mtfsb0 (Move to FPSCR Bit 0) Instruction .

mtfsb1 (Move to FPSCR Bit 1) Instruction .

mtfsf (Move to FPSCR Fields) Instruction . .

mtfsfi (Move to FPSCR Field Immediate) Instructlon . .
mtocrf (Move to One Condition Register Field) Instruction .
mtspr (Move to Special-Purpose Register) Instruction.

mul (Multiply) Instruction

mulhd (Multiply High Double Word) Instructlon .
mulhdu (Multiply High Double Word Unsigned) Instructlon .
mulhw (Multiply High Word) Instruction . ..
mulhwu (Multiply High Word Unsigned) Instruct|on

mulld (Multiply Low Double Word) Instruction .

Vi Assembler Language Reference

. 258
. 260
. 261
. 262
. 263
. 264
. 265
. 266
. 267
. 268
. 269
. 270
. 272
. 273
. 274
. 275
. 276
. 277
. 278
. 280
. 282
. 283
. 284
. 286
. 286
. 287
. 288
. 289
. 291
. 292
. 293
. 294
. 296
. 296
. 298
. 298
. 299
. 300
. 301
. 303
. 305
. 306
. 307
. 308
. 309
. 310
. 31
. 313
. 314
. 315
. 317
. 319
. 320
. 321
. 322
. 324

mulli or muli (Multiply Low Immediate) Instruction .

mullw or muls (Multiply Low Word) Instruction

nabs (Negative Absolute) Instruction .

nand (NAND) Instruction

neg (Negate) Instruction

nor (NOR) Instruction

or (OR) Instruction

orc (OR with Complement) Instructlon

ori or oril (OR Immediate) Instruction .

oris or oriu (OR Immediate Shifted) Instruction .

popcntbd (Population Count Byte Doubleword) Instruct|on .

rac (Real Address Compute) Instruction .

rfi (Return from Interrupt) Instruction .

rfid (Return from Interrupt Double Word) Instructlon

rfsvc (Return from SVC) Instruction

rldcl (Rotate Left Double Word then Clear Left) Instruct|on

ridicl (Rotate Left Double Word Immediate then Clear Left) Instructlon
ridcr (Rotate Left Double Word then Clear Right) Instruction

ridic (Rotate Left Double Word Immediate then Clear) Instruction
ridicl (Rotate Left Double Word Immediate then Clear Left) Instruction
ridicr (Rotate Left Double Word Immediate then Clear Right) Instruction .
ridimi (Rotate Left Double Word Immediate then Mask Insert) Instruction
rimi (Rotate Left Then Mask Insert) Instruction e
riwimi or rlimi (Rotate Left Word Immediate Then Mask Insert) Instruction
riwinm or rlinm (Rotate Left Word Immediate Then AND with Mask) Instruction
riwnm or rinm (Rotate Left Word Then AND with Mask) Instruction .
rrib (Rotate Right and Insert Bit) Instruction

sc (System Call) Instruction

scv (System Call Vectored) Instructlon

si (Subtract Immediate) Instruction. .

si. (Subtract Immediate and Record) Instruction .

sld (Shift Left Double Word) Instruction .

sle (Shift Left Extended) Instruction

sleq (Shift Left Extended with MQ) Instructlon

slig (Shift Left Immediate with MQ) Instruction .

sllig (Shift Left Long Immediate with MQ) Instruction .

sllg (Shift Left Long with MQ) Instruction .

slq (Shift Left with MQ) Instruction .

slw or sl (Shift Left Word) Instruction . .

srad (Shift Right Algebraic Double Word) Instruct|on . .
sradi (Shift Right Algebraic Double Word Immediate) Instruct|on .
sraiq (Shift Right Algebraic Immediate with MQ) Instruction.

sraq (Shift Right Algebraic with MQ) Instruction . .

sraw or sra (Shift Right Algebraic Word) Instruction .
srawi or srai (Shift Right Algebraic Word Immediate) Instruct|on .

srd (Shift Right Double Word) Instruction

sre (Shift Right Extended) Instruction. .

srea (Shift Right Extended Algebraic) Instructlon

sreq (Shift Right Extended with MQ) Instruction .

srig (Shift Right Immediate with MQ) Instruction .

srlig (Shift Right Long Immediate with MQ) Instruction

srlg (Shift Right Long with MQ) Instruction . .

srq (Shift Right with MQ) Instruction .

srw or sr (Shift Right Word) Instruction .

stb (Store Byte) Instruction

stbu (Store Byte with Update) Instruchon

Contents

. 325
. 326
. 328
. 330
. 331
. 333
. 334
. 335
. 336
. 337
. 338
. 339
. 341
. 341
. 342
. 343
. 344
. 345
. 346
. 347
. 348
. 349
. 350
. 352
. 354
. 356
. 358
. 360
. 361
. 362
. 363
. 364
. 364
. 366
. 367
. 369
. 370
. 372
. 373
. 375
. 376
. 377
. 378
. 380
. 382
. 383
. 384
. 386
. 387
. 389
. 390
. 392
. 393
. 395
. 396
. 397

Vii

stbux (Store Byte with Update Indexed) Instruction.
stbx (Store Byte Indexed) Instruction . .

std (Store Double Word) Instruction

stdcx. (Store Double Word Conditional Indexed) Instruchon
stdu (Store Double Word with Update) Instruction .

stdux (Store Double Word with Update Indexed) Instructlon
stdx (Store Double Word Indexed) Instruction. .o
stfd (Store Floating-Point Double) Instruction .

stfdu (Store Floating-Point Double with Update) Instructlon

stfdux (Store Floating-Point Double with Update Indexed) Instruction .

stfdx (Store Floating-Point Double Indexed) Instruction

stfiwx (Store Floating-Point as Integer Word Indexed).

stfq (Store Floating-Point Quad) Instruction

stfqu (Store Floating-Point Quad with Update) Instruct|on

stfqux (Store Floating-Point Quad with Update Indexed) Instruct|on
stfgx (Store Floating-Point Quad Indexed) Instruction . .
stfs (Store Floating-Point Single) Instruction .
stfsu (Store Floating-Point Single with Update) Instruct|on .
stfsux (Store Floating-Point Single with Update Indexed) Instructlon
stfsx (Store Floating-Point Single Indexed) Instruction.

sth (Store Half) Instruction. .

sthbrx (Store Half Byte-Reverse Indexed) Instructlon .

sthu (Store Half with Update) Instruction

sthux (Store Half with Update Indexed) Instructlon

sthx (Store Half Indexed) Instruction .

stmw or stm (Store Multiple Word) Instruct|on

stq (Store Quad Word) Instruction .

stswi or stsi (Store String Word Immediate) Instruct|on

stswx or stsx (Store String Word Indexed) Instruction .

stw or st (Store) Instruction

stwbrx or stbrx (Store Word Byte- Reverse Indexed) Instructlon
stwex. (Store Word Conditional Indexed) Instruction

stwu or stu (Store Word with Update) Instruction

stwux or stux (Store Word with Update Indexed) Instructlon
stwx or stx (Store Word Indexed) Instruction .

subf (Subtract From) Instruction. .

subfc or sf (Subtract from Carrying) Instructlon .

subfe or sfe (Subtract from Extended) Instruction

subfic or sfi (Subtract from Immediate Carrying) Instruchon
subfme or sfme (Subtract from Minus One Extended) Instruction
subfze or sfze (Subtract from Zero Extended) Instruction

svc (Supervisor Call) Instruction.

sync (Synchronize) or dcs (Data Cache Synchronlze) Instructlon
td (Trap Double Word) Instruction .

tdi (Trap Double Word Immediate) Instruct|on

tlbie or tlbi (Translation Look-Aside Buffer Invalidate Entry) Instruct|on

tibld (Load Data TLB Entry) Instruction .

tlbli (Load Instruction TLB Entry) Instruction .
tibsync (Translation Look-Aside Buffer Synchromze) Instructlon .
tw or t (Trap Word) Instruction

twi or ti (Trap Word Immediate) Instruct|on

xor (XOR) Instruction.

xori or xoril (XOR Immediate) Instruction

xoris or xoriu (XOR Immediate Shift) Instruction .

Chapter 9. Pseudo-ops

Viii Assembler Language Reference

. 398
. 399
. 400
. 401
. 402
. 403
. 404
. 405
. 406
. 407
. 408
. 409
. 410
.41
. 412
. 413
. 414
. 415
. 416
. 417
. 418
. 419
. 420
. 421
. 422
. 423
. 424
. 425
. 426
. 428
. 429
. 430
. 431
. 433
. 434
. 435
. 437
. 439
. 441
. 442
. 444
. 446
. 447
. 449
. 450
. 451
. 452
. 454
. 455
. 456
. 457
. 458
. 459
. 460

. 463

Pseudo-ops Overview43
alignPseudo-op .466
.bb Pseudo-op L L . L. oL b
.bcPseudo-op .. .468
bf Pseudo-op .. .468
JbiPseudo-op L . Lo L L L4809
bs Pseudo-op L . L L L. Lo 4e9
.byte Pseudo-op L . L . . L L L 470
.comm Pseudo-op. L., 4
.csectPseudo-op .. .A473
.double Pseudo-op .. .41
drop Pseudo-op47
dsect Pseudo-op L L Lo A
.ebPseudo-op L L L L L L Lo oo 4
.ecPseudo-op L L . L L L L Lo Lo 4r
.ef Pseudo-op480
.eiPseudo-op48
.esPseudo-op L L L Lo Lo e s L4
.extern Pseudo-op. L L L L L L Lo s 4
file Pseudo-opo 482
float Pseudo-op .48
function Pseudo-op .. .A483
.globl Pseudo-op484
.hash Pseudo-op .. .A485
dcomm Pseudo-op .. .A486
dglobl Pseudo-op L 487
Jine Pseudo-op. .488
dong Pseudo-op L 489
dlong Pseudo-opo . .489
.machine Pseudo-op.49
.org Pseudo-op. .49
.quad Pseudo-op .. .4098
ef Pseudo-op L L L L L L L oL s 49
.rename Pseudo-op Lo o 495
setPseudo-op.49
.short Pseudo-op L . L L. Lo 49y
.source Pseudo-op .48
.Sspace Pseudo-op. L L L L oL 499
.stabx Pseudo-op L o o oL oL L4499
.string Pseudo-op5b00
Abtag Pseudo-op L . . L.50
tcPseudoop503
docPseudo-op. L . L . L . L L Lbo4
docof Pseudo-op L . Lbo4
.using Pseudo-op .. .505
.vbyte Pseudo-op .. .b09
weak Pseudo-op510
Xline Pseudo-op L L Lo L oL LB

Appendix A. Messagesb13
Appendix B. Instruction Set Sorted by Mnemonic533
Appendix C. Instruction Set Sorted by Primary and Extended OpCode 547
Appendix D. Instructions Common to POWER family, POWER2, and PowerPC 561

Contents iX

Appendix E. POWER family and POWER2 Instructions .

Appendix F. PowerPC Instructions .

Appendix G. PowerPC 601 RISC Microprocessor Instructions .

Appendix H. Value Definitions.
Bits 0-5.

Bits 6-30 .

Bit 31

Appendix I. Vector Processor .

Storage Operands and Alignment .

Register Usage Conventions .

Runtime Stack . .

Procedure Calling Sequence .

Traceback Tables .

Debug Stabstrings.
Legacy ABI Compatibility and Interoperability .

Appendix J. Notices
Trademarks .

Index

X Assembler Language Reference

. 565

. 575

. 585

. 595
. 595
. 595
. 596

. 597
. 597
. 597
. 598
. 601
. 603
. 603
. 604

. 605
. 606

. 607

About This Book

This book is intended for experienced assembler language programmers. Users should be familiar with the
AIX® operating system or UNIX® System V commands, assembler instructions, pseudo-ops, and processor
register usage. This reference discusses features and specific usage for this version of the Assembler
including: installation, operation, syntax, addressing considerations, migration, instructions sets, and
pseudo-ops. Also covered are extended mnemonics for POWER-based architectures and their supported
processors.

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items whose
names are predefined by the system. Also identifies graphical objects such as buttons, labels,
and icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Monospace Identifies examples of specific data values, examples of text similar to what you might see
displayed, examples of portions of program code similar to what you might write as a
programmer, messages from the system, or information you should actually type.

Case-Sensitivity in AIX

Everything in the AIX 5L operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the Is command to list files. If you type LS, the
system responds that the command is "not found.” Likewise, FILEA, FiLea, and filea are three distinct file
names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,
always ensure that you use the correct case.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Publications

The following books contain information about or related to the assembler:

* |AIX 5L Version 5.3 Commands Reference Volume 1: a through ¢

[AIX 5L Version 5.3 Commands Reference Volume 2: d through h|

[AIX 5L Version 5.3 Commands Reference Volume 3: i through m|

[AIX 5L Version 5.3 Commands Reference Volume 4: n through 1

[AIX 5L Version 5.3 Commands Reference Volume 5: s through u

[AIX 5L Version 5.3 Commands Reference Volume 6: v through z|

[AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

© Copyright IBM Corp. 1997, 2006 Xi

Xii Assembler Language Reference

Chapter 1. Assembler Overview

The assembler is a program that operates within the operating system. The assembler takes
machine-language instructions and translates them into machine object code. The following articles
discuss the features of the assembler:

+ [‘Features of the AIX Assembler’|
+ [‘Assembler Installation” on page 10|

Features of the AIX Assembler

This section describes features of the AIX assembler.

Multiple Hardware Architecture and Implementation Platform Support
The assembler supports the following systems:

» Systems using the first-generation POWER family processors (POWER family architecture)

» Systems using the POWER2 processors (POWER family architecture)

» Systems using the PowerPC 601 RISC Microprocessor, PowerPC 604 RISC Microprocessor, or the
PowerPC A35 RISC Microprocessor (PowerPC architecture)

+ Systems using POWER4™ processors
+ Systems using POWER5" processors
» Systems using PPC970 processors

» Systems using POWER5+ processors
» Systems using POWERG6 processors

The assembler also supports development of programs for the PowerPC 603 RISC Microprocessor
(PowerPC architecture).

Attention: The PowerPC 601 RISC Microprocessor implements the PowerPC architecture plus most of
the POWER family instructions that are not included in the PowerPC architecture. This implementation
provides a POWER family-to-PowerPC bridge processor that runs existing POWER family applications
without recompiling and also runs PowerPC applications. Future PowerPC systems might not provide this
bridge. An application should not be coded using a mixture of POWER family and PowerPC
architecture-unique instructions. Doing so can result in an application that will run only on a PowerPC 601
RISC Microprocessor-based system. Such an application will not run on an existing POWER family
machine and is unlikely to run with acceptable performance on future PowerPC machines.

There are several categories of instructions. The following table lists the categories of instructions and
shows which implementations support each instruction category. The "X" means the implementation
supports the instruction category.

Implementations Supporting Each Category of Instructions

Instruction Category POWER POWER2 601 603 604 A35
family

POWER2-unique X
instructions

POWER2 and PowerPC X X X X X
common instructions,
not in POWER family

© Copyright IBM Corp. 1997, 2006

POWER family-unique
instructions not
supported by PowerPC
601 RISC
Microprocessor

POWER family-unique
instructions supported

by PowerPC 601 RISC
Microprocessor

POWER family and
PowerPC common
instructions with same
mnemonics

POWER family and
PowerPC common
instructions with different
mnemonics

PowerPC instructions
supported by PowerPC
601 RISC
Microprocessor

Instructions unique to
PowerPC 601 RISC
Microprocessor

PowerPC instructions
not supported by
PowerPC 601 RISC
Microprocessor

PowerPC 32-bit optional
instruction set 1

PowerPC 32-bit optional
instruction set 2

Instructions unique to
PowerPC 603 RISC
Microprocessor

Implementations Supporting Each Category of Instructions

Instruction PWR
Category

PWR2

601

603

604

A35

970

PWR5

PWR5+

PWR6

POWER2-
unique
instructions

X

POWER2 and
PowerPC
common
instructions,
not in POWER
family

2 Assembler Language Reference

POWER
family-unique
instructions not
supported by
PowerPC 601
RISC
Microprocessor

POWER
family-unique
instructions
supported by
PowerPC 601
RISC
Microprocessor

POWER family
and PowerPC
common
instructions
with same
mnemonics

X

POWER family
and PowerPC
common
instructions
with different
mnemonics

X

PowerPC
instructions
supported by
PowerPC 601
RISC
Microprocessor

Instructions
unique to
PowerPC 601
RISC
Microprocessor

PowerPC
instructions not
supported by
PowerPC 601
RISC
Microprocessor

PowerPC

32-bit optional
instruction set
1

PowerPC
32-bit optional
instruction set
2

Instructions
unique to
PowerPC 603
RISC
Microprocessor

Chapter 1. Assembler Overview

3

PowerPC X X X X X
64-bit

instructions
PowerPC X X

Vector
instructions

PowerPC X
Decimal
Floating Point
instructions

Instructions X X
introduced with
POWERS5+

The following abbreviations are used in the heading of the previous table:

601 PowerPC 601 RISC Microprocessor
603 PowerPC 603 RISC Microprocessor
604 PowerPC 604 RISC Microprocessor

Host Machine Independence and Target Environment Indicator Flag

The host machine is the hardware platform on which the assembler runs. The target machine is the
platform on which the object code is run. The assembler can assemble a source program for any target
machine, regardless of the host machine on which the assembler runs.

The target machine can be specified by using either the assembly mode option flag -m of the@
command or the pseudo-op. If neither the -m flag nor the .machine pseudo-op is used, the
default assembly mode is used. If both the -m flag and a .machine pseudo-op are used, the .machine
pseudo-op overrides the -m flag. Multiple .machine pseudo-ops are allowed in a source program. The
value in a later .machine pseudo-op overrides a previous .machine pseudo-op.

The default assembly mode provided by the AIX assembler has the POWER family/PowerPC intersection
as the target environment, but treats all POWER/PowerPC incompatibility errors (including instructions
outside the POWER/PowerPC intersection and invalid form errors) as instructional warnings. The -W and
-w assembler flags control whether these warnings are displayed. In addition to being closen by the
absence of the -m flag of the as command or the .machine pseudo-op, the default assembly mode can
also be explicitly specified with the -m flag of the as command or with the .machine pseudo-op.

To assemble a source program containing platform-unique instructions from more than one platform
without errors or warnings, use one of the following methods:

* Use the .machine pseudo-op in the source program.

» Assemble the program with the assembly mode set to the any mode (with the -m flag of the as
command).

For example, the source code cannot contain both POWER family-unique instructions and PowerPC 601
RISC Microprocessor-unique instructions. This is also true for each of the sub-source programs contained
in a single source program. A sub-source program begins with a .machine pseudo-op and ends before the
next .machine pseudo-op. Since a source program can contain multiple .machine pseudo-ops, it normally
consists of several sub-source programs. For more information, see the pseudo-op.

4 Assembler Language Reference

Mnemonics Cross-Reference

The assembler supports both PowerPC and POWER family mnemonics. The assembler listing has a
cross-reference for both mnemonics. The cross-reference is restricted to instructions that have different
mnemonics in the POWER family and PowerPC architectures, but which share the same op codes,
functions, and operand input formats.

The assembler listing contains a column to display mnemonics cross-reference information. For more
information on the assembler listing, see [Interpreting an Assembler Listing}

The mnemonics cross-reference helps the user migrate a source program from one architecture to
another. The -s flag for the@command provides a mnemonics cross-reference in the assembler listing to
assist with migration. If the -s flag is not used, no mnemonics cross-reference is provided.

CPU ID Definition

During the assembly process the assembler determines which instruction set (from a list of several
complete instruction sets defined in the architectures or processor implementations) is the smallest
instruction set containing all the instructions used in the program. The program is given a CPU ID value
indicating this instruction set. Therefore a CPU ID indicates the target environment on which the object
code can be run. The CPU ID value for the program is an assembler output value included in the XCOFF
object file generated by the assembler.

CPU ID can have the following values:

Value Description

com All instructions used in the program are in the PowerPC and POWER family architecture intersection.
(The com instruction set is the smallest instruction set.)

ppc All instructions used in the program are in the PowerPC architecture, 32-bit mode, but the program

does not satisfy the conditions for CPU ID value com. (The ppc instruction set is a superset of the
com instruction set.)

pwr All instructions used in the program are in the POWER family architecture, POWER family
implementation, but the program does not satisfy the conditions for CPU ID value com. (The pwr
instruction set is a superset of the com instruction set.)

pwr2 All instructions used in the program are in the POWER family architecture, POWER2 implementation,
but the program does not satisfy the conditions for CPU ID values com, ppc, or pwr. (The pwr2
instruction set is a superset of the pwr instruction set.)

any The program contains a mixture of instructions from the valid architectures or implementations, or
contains implementation-unique instructions.The program does not satisfy the conditions for CPU ID
values com, ppc, pwr, or pwr2. (The any instruction set is the largest instruction set.)

The assembler output value CPU ID is not the same thing as the assembly mode. The assembly mode
(determined by the -m flag of the as command and by use of the .machine pseudo-op in the program)
determines which instructions the assembler accepts without errors or warnings. The CPU ID is an output
value indicating which instructions are actually used.

In the output XCOFF file, the CPU ID is stored in the low-order byte of the n_type field in a symbol table
entry with the C_FILE storage class. The following list shows the low-order byte values and corresponding
CPU IDs:

Low-Order Byte CPU ID

0 Not a defined value. An invalid value or object was assembled prior to definition of the
CPU-ID field.

ppc

ppc64

com

pwr

A WODN =

Chapter 1. Assembler Overview 5

Low-Order Byte CPUID

5 any

18 pwr5

19 970

20 pwr6é

21 vec

22 pwr5x

224 pwr2(pwrx)

Source Language Type

For cascade compilers, the assembler records the source-language type. In the XCOFF file, the high-order
byte of the n_type field of a symbol table entry with the C_FILE storage class holds the source language
type information. The following language types are defined:

High-Order Byte Language
0x00 C

0x01 FORTRAN
0x02 Pascal
0x03 Ada

0x04 PL/I

0x05 Basic
0x06 Lisp

0x07 Cobol
0x08 Modula2
0x09 C++

0x0A RPG

0x0B PL8, PLIX
0x0C Assembler
0x0D-BxFF Reserved

The source language type is indicated by the pseudo-op. By default, the source-language type is
"Assembler.” For more information, see the .source pseudo-op.

Detection Error Conditions

Error number 149 is reported if the source program contains instructions that are not supported in the
intended target environment.

An error is reported if the source program contains invalid instruction forms. This error occurs due to

incompatibilities between the POWER family and PowerPC architectures. Some restrictions that apply in

the PowerPC architecture do not apply in the POWER family architecture. According to the PowerPC

architecture, the following invalid instruction forms are defined:

» If an Rc bit, LK bit, or OE bit is defined as / (slash) but coded as 1, or is defined as 1 but coded as 0,
the form is invalid. Normally, the assembler ensures that these bits contain correct values.

Some fields are defined with more than one / (slash) (for example, "///"). If they are coded as

nonzero, the form is invalid. If certain input operands are used for these fields, they must be checked.

For this reason, the following instructions are checked:

— For the PowerPC System Call instructions or the POWER family Supervisor Call instructions, if the
POWER family [svcal mnemonic is used when the assembly mode is PowerPC type, the SV field
must be 0. Otherwise, the instruction form is invalid and error number 165 is reported.

Note: The [svc]and [svel|instructions are not supported in PowerPC target modes. The [svcla]
instruction is supported only on the PowerPC 601 RISC Microprocessor.

6 Assembler Language Reference

— For the Move to Segment Register Indirect instruction, if the POWER family mtsri mnemonic is used
in PowerPC target modes, the RA field must be 0. Otherwise, the instruction form is invalid and error
number 154 is reported. If the PowerPC mtsrin mnemonic is used in PowerPC target modes, it
requires only two input operands, so no check is needed.

» For all of the Branch Conditional instructions (including Branch Conditional, Branch Conditional to Link
Register, and Branch Conditional to Count Register), bits 0-3 of the BO field are checked. If the bits that
are required to contain 0 contain a nonzero value, error 150 is reported.

The encoding for the BO field is defined in the section "Branch Processor Instructions” of PowerPC
architecture. The following list gives brief descriptions of the possible values for this field:

BO Description

0000y Decrement the Count Register (CTR); then branch if the value of the decremented CTR is
not equal to 0 and the condition is False.

0001y Decrement the CTR; then branch if the value of the decremented CTR is not equal to 0 and
the condition is False.

001zy Branch if the condition is False.

0100y Decrement the CTR; then branch if the value of the decremented CTR is not equal to 0 and
the condition is True.

0101y Decrement the CTR; then branch if the value of the decremented CTR is not equal to 0 and
the condition is True.

011zy Branch if the condition is True.

1z00y Decrement the CTR; then branch if the value of the decremented CTR is not equal to 0.

1z01y Decrement the CTR; then branch if the value of the decremented CTR is not equal to 0.

1z1zz Branch always.

The z bit denotes a bit that must be 0. If the bit is not 0, the instruction form is invalid.

Note: The y bit provides a hint about whether a conditional branch is likely to be taken. The value of
this bit can be either 0 or 1. The default value is 0. The extended mnemonics for Branch
Prediction as defined in PowerPC architecture are used to set this bit to 0 or 1. (See [Extended
[Mnemonics for Branch Prediction| for more information.)

Branch always instructions do not have a y bit in the BO field. Bit 4 of the BO field should contain 0.
Otherwise, the instruction form is invalid.

The third bit of the BO field is specified as the "decrement and test CTR" option. For Branch
Conditional to Count Register instructions, the third bit of the BO field must not be 0. Otherwise, the
instruction form is invalid and error 163 is reported.

» For the update form of fixed-point load instructions, the PowerPC architecture requires that the RA field
not be equal to either 0 or the RT field value. Otherwise, the instruction form is invalid and error number
151 is reported.

This restriction applies to the following instructions:
— lbzu

— Ibzux

— lhzu

— lhsux

— lhau

— lhaux

— lwzu (lu in POWER family)

— lwzux (lux in POWER family)

» For the update form of fixed-point store instructions and floating-point load and store instructions, the
following instructions require only that the RA field not be equal to 0. Otherwise, the instruction form is
invalid and error number 166 is reported.

— Ifsu

Chapter 1. Assembler Overview 7

— Ifsux

— Ifdu

— Ifdux

— stbu

— stbux

— sthu

— sthux

— stwu (stu in POWER family)
— stwux (stux in POWER family)
— sifsu

— stfux

— stfdu

— stfdux

For multiple register load instructions, the PowerPC architecture requires that the RA field and the RB
field, if present in the instruction format, not be in the range of registers to be loaded. Also, RA=RT=0 is
not allowed. If RA=RT=0, the instruction form is invalid and error 164 is reported. This restriction applies
to the following instructions:

— Imn (Im in POWER family)
— Iswi (Isi in POWER family)
— Iswx (Isx in POWER family)

Note: For the Iswx instruction, the assembler only checks whether RA=RT=0, because the load
register range is determined by the content of the XER register at run time.

For fixed-point compare instructions, the PowerPC architecture requires that the L field be equal to 0.
Otherwise, the instruction form is invalid and error number 154 is reported. This restriction applies to the
following instructions:

- cmp
- cmpi
— cmpli
— cmpl

Note: If the target mode is com, or ppc, the assembler checks the update form of fixed-point load
instructions, update form of fixed-point store instructions, update form of floating-point load
and store instructions, multiple-register load instructions, and fixed-point compare instructions,
and reports any errors. If the target mode is any, pwr, pwr2, or 601, no check is performed.

Warning Messages

Warning messages are listed when the -w flag is used with the as command. Some warning messages
are related to instructions with the same op code for POWER family and PowerPC:

Several instructions have the same op code in both POWER family and PowerPC architectures, but
have different functional definitions. The assembler identifies these instructions and reports warning
number 153 when the target mode is com and the@flag of the as command is used. Because these
mnemonics differ functionally, they are not listed in the mnemonics cross-reference of the assembler
listing generated when the |-s| flag is used with the as command. The following table lists these
instructions.

Table 1. Same Op Codes with Different Mnemonics

POWER family PowerPC

dcs sync

8 Assembler Language Reference

Table 1. Same Op Codes with Different Mnemonics (continued)

POWER family PowerPC
ics isync
svca sc

mtsri mtsrin
Isx Iswx

» The following instructions have the same mnemonics and op code, but have different functional
definitions in the POWER family and PowerPC architectures. The assembler cannot check for these,
because the differences are not based on the machine the instructions execute on, but rather on what
protection domain the instructions are running in.

— mfsr
— mfmsr
— mfdec

Special-Purpose Register Changes and Special-Purpose Register Field
Handling

TID, MQ, SDRO, RTCU, and RTCL are special-purpose registers (SPRs) defined in the POWER family
architecture. They are not valid in the PowerPC architecture. However, MQ, RTCU, and RTCL are still
available in the PowerPC 601 RISC Microprocessor.

DBATL, DBATU, IBATL, IBATU, TBL, and TBU are SPRs defined in the PowerPC architecture. They are
not supported for the PowerPC 601 RISC Microprocessor. The PowerPC 601 RISC Microprocessor uses
the BATL and BATU SPRs instead.

The assembler provides the extended mnemonics for "move to or from SPR” instructions. The extended

mnemonics include all the SPRs defined in the POWER family and PowerPC architectures. An error is

generated if an invalid extended mnemonic is used. The assembler does not support extended mnemonics

for any of the following:

+ POWER2-unique SPRs (IMR, DABR, DSAR, TSR, and ILCR)

* PowerPC 601 RISC Microprocessor-unique SPRs (HIDO, HID1, HID2, HID5, PID, BATL, and BATU)

» PowerPC 603 RISC Microprocessor-unique SPRs (DMISS, DCMP, HASH1, HASH2, IMISS, ICMP, RPA,
HIDO, and IABR)

* PowerPC 604 RISC Microprocessor-unique SPRs (PIE, HIDO, IABR, and DABR)

The assembler does not check the SPR field’s encoding value for the [mtspr| and [mfspn instructions,
because the SPR encoding codes could be changed or reused. However, the assembler does check the
SPR field’s value range. If the target mode is pwr, pwr2, or com, the SPR field has a 5-bit length and a
maximum value of 31. Otherwise, the SPR field has a 10-bit length and a maximum value of 1023.

To maintain source-code compatibility of the POWER family and PowerPC architectures, the assembler
assumes that the low-order 5 bits and high-order 5 bits of the SPR number are reversed before they are
used as the input operands to the mfspr or mtspr instruction.

Related Information
[Chapter 1, “Assembler Overview,” on page 1|

[‘Assembler Installation” on page 10

[Chapter 5, “Assembling and Linking a Program,” on page 53

Chapter 1. Assembler Overview 9

[‘Pseudo-ops Overview” on page 463
The jas| command.

[.machine Pseudo-op” on page 490,|[*.source Pseudo-op” on page 498 |

Assembler Installation

The AIX assembiler is installed with the base operating system, along with commands, files, and libraries
for developing software applications.

Related Information
The command.

[.machine Pseudo-op” on page 490,|[*.source Pseudo-op” on page 498 |

10 Assembler Language Reference

Chapter 2. Processing and Storage

The characteristics of machine architecture and the implementation of processing and storage influence
the processor's assembler language. The assembler supports the various processors that implement the
POWER family and PowerPC architectures. The assembler can support both the POWER family and
PowerPC architectures because the two architectures share a large number of instructions.

This chapter provides an overview and comparison of the POWER family and PowerPC architectures and
tells how data is stored in main memory and in registers. It also discusses the basic functions for both the
POWER family and PowerPC instruction sets.

All the instructions discussed in this chapter are nonprivileged. Therefore, all the registers discussed in this
chapter are related to nonprivileged instructions. Privileged instructions and their related registers are
defined in the PowerPC architecture.

The following processing and storage articles provide an overview of the system microprocessor and tells
how data is stored both in main memory and in registers. This information provides some of the
conceptual background necessary to understand the function of the system microprocessor’s instruction
set and pseudo-ops.

+ [‘POWER family and PowerPC Architecture Overview’]
[‘Branch Processor” on page 19|

[‘Fixed-Point Processor” on page 21|

[‘Floating-Point Processor” on page 24|

« [Appendix |, “Vector Processor,” on page 597|

POWER family and PowerPC Architecture Overview

A POWER family or PowerPC microprocessor contains the sequencing and processing controls for
instruction fetch, instruction execution, and interrupt action, and implements the instruction set, storage
model, and other facilities defined in the POWER family and PowerPC architectures.

A POWER family or PowerPC microprocessor contains a branch processor, a fixed-point processor, and a
floating-point processor. The microprocessor can execute the following classes of instructions:

* Branch instructions
» Fixed-point instructions
* Floating-point instructions

The following diagram illustrates a logical representation of instruction processing for the PowerPC
microprocessor.

© Copyright IBM Corp. 1997, 2006 11

Branch

Processin
> g
Fixed-Point and
Floating-Point
Instructions
Fixed-Point Float-Point
Processing Processing

Data to/from
Storage

Instructions
from Storage

Storage

Figure 1. Logical Processing Model. The process begins at the top with Branch Processing, which branches to either
fixed-point or float-point processing. These processes send and receive data from storage. Storage will also send
more instructions to Branch Processing at the top of the diagram.

The following table shows the registers for the PowerPC user instruction set architecture. These registers
are in the CPU that are used for 32-bit applications and are available to the user.

Register Bits Available
Condition Register (CR) 0-31

Link Register (LR) 0-31

Count Register (CTR) 0-31

General Purpose Registers 00-31 (GPR) 0-31 for each register
Fixed-Point Exception Register (XER) 0-31

Floating-Point Registers 00-31 (FPR) 0-63 for each register
Floating Point Status and Control Register (FPSCR) 0-31

The following table shows the registers of the POWER family user instruction set architecture. These
registers are in the CPU that are used for 32-bit applications and are available to the user.

Register Bits Available
Condition Register (CR) 0-31
Link Register (LR) 0-31

12 Assembler Language Reference

Register

Bits Available

Count Register (CTR)

0-31

General Purpose Registers 00-31 (GPR)

0-31 for each register

Multiply-Quotient Register (MQ)

0-31

Fixed-Point Exception Register (XER)

0-31

Floating-Point Registers 00-31 (FPR)

0-63 for each register

Floating Point Status and Control Register (FPSCR)

0-31

The processing unit is a word-oriented, fixed-point processor functioning in tandem with a

doubleword-oriented, floating-point processor. The microprocessor uses 32-bit word-aligned instructions. It
provides for byte, halfword, and word operand fetches and stores for fixed point, and word and doubleword

operand fetches and stores for floating point. These fetches and stores can occur between main storage
and a set of 32 general-purpose registers, and between main storage and a set of 32 floating-point

registers.

Instruction Forms

All instructions are four bytes long and are word-aligned. Therefore, when the processor fetches
instructions (for example, branch instructions), the two low-order bits are ignored. Similarly, when the
processor develops an instruction address, the two low-order bits of the address are 0.

Bits 0-5 always specify the op code. Many instructions also have an extended op code (for example,
XO-form instructions). The remaining bits of the instruction contain one or more fields. The alternative

fields for the various instruction forms are shown in the following:

* | Form
Bits Value
0-5 OPCD
6-29 LI
30 AA
31 LK
e B Form
Bits Value
0-5 OPCD
6-10 BO
11-15 BI
16-29 BD
30 AA
31 LK
+ SC Form
Bits Value
0-5 OPCD
6-10 Vi
11-15 Vi

Chapter 2. Processing and Storage

13

Bits Value
16-29 Y/
30 X0
31 /
* D Form
Bits Value
0-5 OPCD
6-10 RT, RS, FRT, FRS, TO, or BF, /, and L
11-15 RA
16-31 D, SI, or Ul
* DS Form
Bits Value
0-5 OPCD
6-10 RT or RS
11-15 RA
16-29 DS
30-31 XO
e X Instruction Format
Bits Value

0-5 OPCD
6-10 RT, FRT, RS, FRS, TO, BT, or BF, /, and L
11-15 RA, FRA, SR, SPR, or BFA and //
16-20 RB, FRB, SH, NB, or U and /
21-30 XO or EO
31 Rc

— XL Instruction Format

Bits Value

0-5 OPCD
6-10 RT or RS
11-20 spr or/, FXM and /
21-30 XO or EO
31 Rc

— XFX Instruction Format

Bits Value

0-5 OPCD
6-10 RT or RS
11-20 spr or/, FXM and /

14 Assembler Language Reference

Bits Value
21-30 XO or EO
31 Rc

— XFL Instruction Format

Bits Value
0-5 OPCD
6 /
7-14 FLM
15 /
16-20 FRB
21-30 XO or EO
31 Rc

— XO Instruction Format

Bits Value
0-5 OPCD
6-10 RT
11-15 RA
16-20 RB
21 OE
22-30 XO or EO
31 Rc
« A Form

Bits Value
0-5 OPCD
6-10 FRT
11-15 FRA
16-20 FRB
21-25 FRC
26-30 X0
31 Rc
* M Form

Bits Value
0-5 OPCD
6-10 RS
“11-15 RA
16-20 RB or SH
21-25 MB
26-30 ME

Chapter 2. Processing and Storage

15

Bits Value
31 Rc

For some instructions, an instruction field is reserved or must contain a particular value. This is not
indicated in the previous figures, but is shown in the syntax for instructions in which these conditions are
required. If a reserved field does not have all bits set to 0, or if a field that must contain a particular value
does not contain that value, the instruction form is invalid. See [‘Detection Error Conditions” on page 6| for
more information on invalid instruction forms.

Split-Field Notation

In some cases an instruction field occupies more than one contiguous sequence of bits, or occupies a
contiguous sequence of bits that are used in permuted order. Such a field is called a spilit field. In the
previous figures and in the syntax for individual instructions, the name of a split field is shown in lowercase
letters, once for each of the contiguous bit sequences. In the description of an instruction with a split field,
and in certain other places where the individual bits of a split field are identified, the name of the field in
lowercase letters represents the concatenation of the sequences from left to right. In all other cases, the
name of the field is capitalized and represents the concatenation of the sequences in some order, which
does not have to be left to right. The order is described for each affected instruction.

Instruction Fields
AA (30) Specifies an Absolute Address bit:

0 Indicates an immediate field that specifies an address relative to the current instruction
address. For I-form branches, the effective address of the branch target is the sum of the
LI field sign-extended to 64 bits (PowerPC) or 32 bits (POWER family) and the address of
the branch instruction. For B-form branches, the effective address of the branch target is
the sum of the BD field sign-extended to 64 bits (PowerPC) or 32 bits (POWER family) and
the address of the branch instruction.

1 Indicates an immediate field that specifies an absolute address. For I-form branches, the
effective address of the branch target is the LI field sign-extended to 64 bits (PowerPC) or
32 bits (POWER family). For B-form branches, the effective address of the branch target is
the BD field sign-extended to 64 bits (PowerPC) or 32 bits (POWER family).

BA (11:15) Specifies a bit in the Condition Register (CR) to be used as a source.

BB (16:20) Specifies a bit in the CR to be used as a source.

BD (16:29) Specifies a 14-bit signed two’s-complement branch displacement that is concatenated on the right
with 0b00 and sign-extended to 64 bits (PowerPC) or 32 bits (POWER family). This is an immediate
field.

BF (6:8) Specifies one of the CR fields or one of the Floating-Point Status and Control Register (FPSCR)
fields as a target. For POWER family, if i=BF(6:8), then the i field refers to bits i*4 to (i*4)+3 of the
register.

BFA (11:13) Specifies one of the CR fields or one of the FPSCR fields as a source. For POWER family, if
j=BFA(11:13), then the j field refers to bits j*4 to (j*4)+3 of the register.
Bl (11:15) Specifies a bit in the CR to be used as the condition of a branch conditional instruction.

16 Assembler Language Reference

BO (6:10) Specifies options for the branch conditional instructions. The possible encodings for the BO field are:
BO Description

0000x Decrement Count Register (CTR). Branch if the decremented CTR value is not equal to 0
and the condition is false.

0001x Decrement CTR. Branch if the decremented CTR value is 0 and the condition is false.
001xx Branch if the condition is false.

0100x Decrement CTR. Branch if the decremented CTR value is not equal to 0 and the condition
is true.

0101x Decrement CTR. Branch if the decremented CTR value is equal to 0 and the condition is
true.

011x Branch if the condition is true.
1x00x Decrement CTR. Branch if the decremented CTR value is not equal to 0.

1x01x Decrement CTR. Branch if bits 32-63 of the CTR are 0 (PowerPC) or branch if the
decremented CTR value is equal to 0 (POWER family).

1x1xx Branch always.

BT (6:10) Specifies a bit in the CR or in the FPSCR as the target for the result of an instruction.

D (16:31) Specifies a 16-bit signed two’s-complement integer that is sign-extended to 64 bits (PowerPC) or 32
bits (POWER family). This is an immediate field.

EO (21:30) Specifies a10-bit extended op code used in X-form instructions.

EO’ (22:30) Specifies a 9-bit extended op code used in XO-form instructions.

FL1 (16:19) Specifies a 4-bit field in the@ (Supervisor Call) instruction.

FL2 (27:29) Specifies a 3-bit field in the svc instruction.

FLM (7:14) Specifies a field mask that specifies the FPSCR fields which are to be updated by the
instruction:

Bit Description

7 FPSCR field 0 (bits 00:03)
8 FPSCR field 1 (bits 04:07)
FPSCR field 2 (bits 08:11)
10 FPSCR field 3 (bits 12:15)
11 FPSCR field 4 (bits 16:19)
12 FPSCR field 5 (bits 20:23)
13 FPSCR field 6 (bits 24:27)
14 FPSCR field 7 (bits 28:31)
FRA (11:15) Specifies a floating-point register (FPR) as a source of an operation.
FRB (16:20) Specifies an FPR as a source of an operation.
FRC (21:25) Specifies an FPR as a source of an operation.
FRS (6:10) Specifies an FPR as a source of an operation.
FRT (6:10) Specifies an FPR as the target of an operation.

Chapter 2. Processing and Storage 17

FXM (12:19)

I (16:19)
LEV (20:26)

LI (6:29)

LK (31)

MB (21:25) and
ME (26:30)

NB (16:20)

OPCD (0:5)
OE (21)

RA (11:15)

RB (16:20)

Rc (31)

Specifies a field mask that specifies the CR fields that are to be updated by the instruction:
Bit Description

12 CR field 0 (bits 00:03)

13 CR field 1 (bits 04:07)

14 CR field 2 (bits 08:11)

15 CR field 3 (bits 12:15)

16 CR field 4 (bits 16:19)

17 CR field 5 (bits 20:23)

18 CR field 6 (bits 24:27)

19 CR field 7 (bits 28:31)

Specifies the data to be placed into a field in the FPSCR. This is an immediate field.

This is an immediate field in the [svd]instruction that addresses the svc routine by b1’ 1| LEV Il
b’00000 if the SA field is equal to 0.

Specifies a 24-bit signed two’s-complement integer that is concatenated on the right with 0b00 and
sign-extended to 64 bits (PowerPC) or 32 bits (POWER family). This is an immediate field.

Link bit:

0 Do not set the Link Register.

1 Set the Link Register. If the instruction is a branch instruction, the address of the instruction
following the branch instruction is placed in the Link Register. If the instruction is an
instruction, the address of the instruction following the sve instruction is placed into the Link
Register.

(POWER family) Specifies a 32-bit string. This string consists of a substring of ones surrounded by

zeros, or a substring of zeros surrounded by ones. The encoding is:

MB (21:25)
Index to start bit of substring of ones.

ME (26:30)
Index to stop bit of substring of ones.

Let mstart=MB and mstop=ME:
If mstart < mstop + 1 then

mask(mstart..mstop) = ones

mask(all other) = zeros
If mstart = mstop + 1 then

mask(0:31) = ones
If mstart > mstop + 1 then

mask (mstop+1..mstart-1) = zeros

mask(all other) = ones
Specifies the number of bytes to move in an immediate string load or store.
Primary op code field.
Enables setting the 0V and SO fields in the XER for extended arithmetic.
Specifies a general-purpose register (GPR) to be used as a source or target.
Specifies a GPR to be used as a source.

Record bit:
0 Do not set the CR.
1 Set the CR to reflect the result of the operation.

For fixed-point instructions, CR bits (0:3) are set to reflect the result as a signed quantity.
Whether the result is an unsigned quantity or a bit string can be determined from the EQ
bit.

For floating-point instructions, CR bits (4:7) are set to reflect Floating-Point Exception,
Floating-Point Enabled Exception, Floating-Point Invalid Operation Exception, and
Floating-Point Overflow Exception.

18 Assembler Language Reference

RS (6:10) Specifies a GPR to be used as a source.

RT (6:10) Specifies a GPR to be used as a target.
SA (30) SVC Absolute:
(] [svc] routine at address "1° || LEV || b’00066’
1 svc routine at address x’1FEQ’
SH (16:20) Specifies a shift amount.
SI (16:31) Specifies a 16-bit signed integer. This is an immediate field.

SPR (11:20) Specifies an SPR for the [mtspr| and |mfspr| instructions. See the mtspr and mfspr instructions for
information on the SPR encodings.

SR (11:15) Specifies one of the 16 Segment Registers. Bit 11 is ignored.

TO (6:10) Specifies the conditions on which to trap. See [Fixed-Point Trap Instructions| for more information on
condition encodings.

TO Bit ANDed with Condition

0 Compares less than.
1 Compares greater than.
2 Compares equal.
3 Compares logically less than.
4 Compares logically greater than.
U (16:19) Used as the data to be placed into the FPSCR. This is an immediate field.
Ul (16:31) Specifies a 16-bit unsigned integer. This is an immediate field.
XO (21:30, Extended op code field.
22:30, 26:30, or
30)

Related Information
[Chapter 2, “Processing and Storage,” on page 11

[‘Branch Processor.”|

[‘Fixed-Point Processor” on page 21

[‘Floating-Point Processor” on page 24

Branch Processor

The branch processor has three 32-bit registers that are related to nonprivileged instructions:
+ Condition Register

» Link Register

» Count Register

These registers are 32-bit registers. The PowerPC architecture supports both 32- and 64-bit
implementations.

For both POWER family and PowerPC, the branch processor instructions include the branch instructions,

Condition Register field and logical instructions, and the system call instructions for PowerPC or the
supervisor linkage instructions for POWER family.

Branch Instructions
Use branch instructions to change the sequence of instruction execution.

Chapter 2. Processing and Storage 19

Since all branch instructions are on word boundaries, the processor performing the branch ignores bits 30
and 31 of the generated branch target address. All branch instructions can be used in unprivileged state.

A branch instruction computes the target address in one of four ways:

» Target address is the sum of a constant and the address of the branch instruction itself.
» Target address is the absolute address given as an operand to the instruction.

» Target address is the address found in the Link Register.

» Target address is the address found in the Count Register.

Using the first two of these methods, the target address can be computed sufficiently ahead of the branch
instructions to prefetch instructions along the target path.

Using the third and fourth methods, prefetching instructions along the branch path is also possible
provided the Link Register or the Count Register is loaded sufficiently ahead of the branch instruction.

The branch instructions include Branch Unconditional and Branch Conditional. In the various target forms,
branch instructions generally either branch unconditionally only, branch unconditionally and provide a
return address, branch conditionally only, or branch conditionally and provide a return address. If a branch
instruction has the Link bit set to 1, then the Link Register is altered to store the return address for use by
an invoked subroutine. The return address is the address of the instruction immediately following the
branch instruction.

The assembler supports various extended mnemonics for branch instructions that incorporate the B0 field
only or the BO field and a partial BI field into the mnemonics. See [‘Extended Mnemonics of Branch|
[Instructions” on page 89| for more information.

System Call Instruction

The PowerPC system call instructions are called supervisor call instructions in POWER family. Both types
of instructions generate an interrupt for the system to perform a service. The system call and supervisor
call instructions are:

+ [‘sc (System Call) Instruction” on page 360| (PowerPC)
+ ['svc (Supervisor Call) Instruction” on page 446/ (POWER family)

For more information about how these instructions are different, see [‘Functional Differences for POWER|
ffamily and PowerPC Instructions” on page 114

Condition Register Instructions

The condition register instructions copy one CR field to another CR field or perform logical operations on
CR bits. The assembler supports several extended mnemonics for the Condition Register instructions. See
[‘Extended Mnemonics of Condition Register Logical Instructions” on page 96| for information on extended
mnemonics for condition register instructions.

Related Information
[Chapter 2, “Processing and Storage,” on page 11

[fPOWER family and PowerPC Architecture Overview” on page 11

[‘Fixed-Point Processor” on page 21

[‘Floating-Point Processor” on page 24

[Appendix |, “Vector Processor,” on page 597]

20 Assembler Language Reference

Fixed-Point Processor

The PowerPC fixed-point processor uses the following registers for nonprivileged instructions.
* Thirty-two 32-bit General-Purpose Registers (GPRs).
* One 32-bit Fixed-Point Exception Register.

The POWER family fixed-point processor uses the following registers for nonprivileged instructions. These
registers are:

+ Thirty-two 32-bit GPRs
* One 32-bit Fixed-Point Exception Register
* One 32-bit Multiply-Quotient (MQ) Register

The GPRs are the principal internal storage mechanism in the fixed-point processor.

Fixed-Point Load and Store Instructions

The fixed-point load instructions move information from a location addressed by the effective address (EA)
into one of the GPRs. The load instructions compute the EA when moving data. If the storage access does
not cause an alignment interrupt or a data storage interrupt, the byte, halfword, or word addressed by the
EA is loaded into a target GPR. See [‘Extended Mnemonics of Fixed-Point Load Instructions” on page 99
for information on extended mnemonics for fixed-point load instructions.

The fixed-point store instructions perform the reverse function. If the storage access does not cause an
alignment interrupt or a data storage interrupt, the contents of a source GPR are stored in the byte,
halfword, or word in storage addressed by the EA.

In user programs, load and store instructions which access unaligned data locations (for example, an
attempt to load a word which is not on a word boundary) will be executed, but may incur a performance
penalty. Either the hardware performs the unaligned operation, or an alignment interrupt occurs and an
operating system alignment interrupt handler is invoked to perform the unaligned operation.

Fixed-Point Load and Store with Update Instructions

Load and store instructions have an "update” form, in which the base GPR is updated with the EA in
addition to the regular move of information from or to memory.

For POWER family load instructions, there are four conditions which result in the EA not being saved in
the base GPR:

1. The GPR to be updated is the same as the target GPR. In this case, the updated register contains
data loaded from memory.

2. The GPR to be updated is GPR 0.
3. The storage access causes an alignment interrupt.
4. The storage access causes a data storage interrupt.

For POWER family store instructions, conditions 2, 3, and 4 result in the EA not being saved into the base
GPR.

For PowerPC load and store instructions, conditions 1 and 2 above result in an invalid instruction form.
In user programs, load and store with update instructions which access an unaligned data location will be

performed by either the hardware or the alignment interrupt handler of the underlying operating system. An
alignment interrupt will result in the EA not being in the base GPR.

Chapter 2. Processing and Storage 21

Fixed-Point String Instructions

The Fixed-Point String instructions allow the movement of data from storage to registers or from registers
to storage without concern for alignment. These instructions can be used for a short move between
arbitrary storage locations or to initiate a long move between unaligned storage fields. Load String Indexed
and Store String Indexed instructions of zero length do not alter the target register.

Fixed-Point Address Computation Instructions

There are several address computation instructions in POWER family. These are merged into the
arithmetic instructions for PowerPC.

Fixed-Point Arithmetic Instructions

The fixed-point arithmetic instructions treat the contents of registers as 32-bit signed integers. Several
subtract mnemonics are provided as extended mnemonics of addition mnemonics. See
[Mnemonics of Fixed-Point Arithmetic Instructions” on page 97| for information on these extended
mnemonics.

There are differences between POWER family and PowerPC for all of the fixed-point divide instructions
and for some of the fixed-point multiply instructions. To assemble a program that will run on both
architectures, the milicode routines for division and multiplication should be used. See
[Routines” on page 80| for information on the available milicode routines.

Fixed-Point Compare Instructions

The fixed-point compare instructions algebraically or logically compare the contents of register RA with one
of the following:

» The sign-extended value of the SI field
» The UI field
* The contents of register RB

Algebraic comparison compares two signed integers. Logical comparison compares two unsigned integers.
There are different input operand formats for POWER family and PowerPC, for example, the L operand for

PowerPC. There are also invalid instruction form restrictions for PowerPC. The assembler checks for
invalid instruction forms in PowerPC assembly modes.

Extended mnemonics for fixed-point compare instructions are discussed in [‘Extended Mnemonics of]
[Fixed-Point Compare Instructions” on page 98

Fixed-Point Trap Instructions

Fixed-point trap instructions test for a specified set of conditions. Traps can be defined for events that
should not occur during program execution, such as an index out of range or the use of an invalid
character. If a defined trap condition occurs, the system trap handler is invoked to handle a program
interruption. If the defined trap conditions do not occur, normal program execution continues.

The contents of register RA are compared with the sign-extended SI field or with the contents of register
RB, depending on the particular trap instruction. In 32-bit implementations, only the contents of the
low-order 32 bits of registers RA and RB are used in the comparison.

The comparison results in five conditions that are ANDed with the TO field. If the result is not 0, the system
trap handler is invoked. The five resulting conditions are:

TO Field Bit ANDed with Condition
0 Less than
1 Greater than

22 Assembler Language Reference

TO Field Bit ANDed with Condition

2 Equal
3 Logically less than
4 Logically greater than

Extended mnemonics for the most useful T0 field values are provided, and a standard set of codes is
provided for the most common combinations of trap conditions. See [‘Extended Mnemonics of Fixed-Point
[Trap Instructions” on page 100| for information on these extended mnemonics and codes.

Fixed-Point Logical Instructions

Fixed-point logical instructions perform logical operations in a bit-wise fashion. The extended mnemonics
for the no-op instruction and the OR and NOR instructions are discussed in [‘Extended Mnemonics of]
[Fixed-Point Logical Instructions” on page 100,

Fixed-Point Rotate and Shift Instructions

The fixed-point processor performs rotate operations on data from a GPR. These instructions rotate the
contents of a register in one of the following ways:

» The result of the rotation is inserted into the target register under the control of a mask. If the mask bit
is 1, the associated bit of the rotated data is placed in the target register. If the mask bit is 0, the
associated data bit in the target register is unchanged.

» The result of the rotation is ANDed with the mask before being placed into the target register.

The rotate left instructions allow (in concept) right-rotation of the contents of a register. For 32-bit
implementations, an n-bit right-rotation can be performed by a left-rotation of 32-n.

The fixed-point shift instructions logically perform left and right shifts. The result of a shift instruction is
placed in the target register under the control of a generated mask.

Some POWER family shift instructions involve the MQ register. This register is also updated.
Extended mnemonics are provided for extraction, insertion, rotation, shift, clear, and clear left and shift left

operations. See [‘Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions” on page 107| for
information on these mnemonics.

Fixed-Point Move to or from Special-Purpose Registers Instructions

Several instructions move the contents of one Special-Purpose Register (SPR) into another SPR or into a
General-Purpose Register (GPR). These instructions are supported by a set of extended mnemonics that
have each SPR encoding incorporated into the extended mnemonic. These include both nonprivileged and
privileged instructions.

Note: The SPR field length is 10 bits for PowerPC and 5 bits for POWER family. To maintain
source-code compatibility for POWER family and PowerPC, the low-order 5 bits and high-order 5 bits
of the SPR number must be reversed prior to being used as the input operand to the
instruction or the instruction. The numbers defined in the encoding tables for the mfspr and
mtspr instructions have already had their low-order 5 bits and high-order 5 bits reversed. When
using thecommand to debug a program, remember that the low-order 5 bits and high-order 5
bits of the SPR number are reversed in the output from the dbx command.

There are different sets of SPRs for POWER family and PowerPC. Encodings for the same SPRs are
identical for POWER family and PowerPC except for moving from the DEC (Decrement) SPR.

Chapter 2. Processing and Storage 23

Moving from the DEC SPR is privileged in PowerPC, but nonprivileged in POWER family. One bit in the
SPR field is 1 for privileged operations, but 0 for nonprivileged operations. Thus, the encoding number for
the DEC SPR for the mfdec instruction has different values in PowerPC and POWER family. The DEC
encoding number is 22 for PowerPC and 6 for POWER family. If the mfdec instruction is used, the
assembler determines the DEC encoding based on the current assembly mode. The following list shows
the assembler processing of the mfdec instruction for each assembly mode value:

* If the assembly mode is pwr, pwr2, or 601, the DEC encoding is 6.
+ If the assembly mode is ppc, 603, or 604, the DEC encoding is 22.

If the default assembly mode, which treats POWER family/PowerPC incompatibility errors as
instructional warnings, is used, the DEC encoding is 6. Instructional warning 158 reports that the DEC
SPR encoding 6 is used to generate the object code. The warning can be suppressed with the -W flag.

» |f the assembly mode is any, the DEC encoding is 6. If the -w flag is used, a warning message (158)
reports that the DEC SPR encoding 6 is used to generate the object code.
 |If the assembly mode is com, an error message reports that the mfdec instruction is not supported. No

object code is generated. In this situation, the mfspr instruction must be used to encode the DEC
number.

For more information on SPR encodings, see [‘Extended Mnemonics of Moving from or to Special-Purpose]
[Registers” on page 102/

Related Information
[Chapter 2, “Processing and Storage,” on page 11

[FPOWER family and PowerPC Architecture Overview” on page 11

[‘Branch Processor” on page 19|

[‘Floating-Point Processor.”|

[Appendix |, “Vector Processor,” on page 597]

Floating-Point Processor

The POWER family and PowerPC floating-point processors have the same register set for nonprivileged
instructions. The registers are:

» Thirty-two 64-bit floating-point registers

* One 32-bit Floating-Point Status and Control Register (FPSCR)

The floating-point processor provides high-performance execution of floating-point operations. Instructions
are provided to perform arithmetic, comparison, and other operations in floating-point registers, and to
move floating-point data between storage and the floating-point registers.

PowerPC and POWER2 also support conversion operations in floating-point registers.
Floating-Point Numbers

A floating-point number consists of a signed exponent and a signed significand, and expresses a quantity
that is the product of the signed fraction and the number 2**exponent. Encodings are provided in the data
format to represent:

* Finite numeric values
e +- Infinity
» Values that are "Not a Number” (NaN)

24 Assembler Language Reference

Operations involving infinities produce results obeying traditional mathematical conventions. NaNs have no
mathematical interpretation. Their encoding permits a variable diagnostic information field. They may be
used to indicate uninitialized variables and can be produced by certain invalid operations.

Interpreting the Contents of a Floating-Point Register

There are thirty-two 64-bit floating-point registers, numbered from floating-point register 0-31. All
floating-point instructions provide a 5-bit field that specifies which floating-point registers to use in the
execution of the instruction. Every instruction that interprets the contents of a floating-point register as a
floating-point value uses the double-precision floating-point format for this interpretation.

All floating-point instructions other than loads and stores are performed on operands located in
floating-point registers and place the results in a floating-point register. The Floating-Point Status and
Control Register and the Condition Register maintain status information about the outcome of some
floating-point operations.

Load and store double instructions transfer 64 bits of data without conversion between storage and a
floating-point register in the floating-point processor. Load single instructions convert a stored single
floating-format value to the same value in double floating format and transfer that value into a floating-point
register. Store single instructions do the opposite, converting valid single-precision values in a
floating-point register into a single floating-format value, prior to storage.

Floating-Point Load and Store Instructions

Floating-point load instructions for single and double precision are provided. Double-precision data is
loaded directly into a floating-point register. The processor converts single-precision data to double
precision prior to loading the data into a floating-point register, since the floating-point registers support
only floating-point double-precision operands.

Floating-point store instructions for single and double precision are provided. Single-precision stores
convert floating-point register contents to single precision prior to storage.

POWER?2 provides load and store floating-point quad instructions. These are primarily to improve the
performance of arithmetic operations on large volumes of numbers, such as array operations. Data access
is normally a performance bottleneck for these types of operations. These instructions transfer 128 bits of

data, rather than 64 bits, in one load or store operation (that is, one storage reference). The 128 bits of
data is treated as two doubleword operands, not as one quadword operand.

Floating-Point Move Instructions

Floating-point move instructions copy data from one FPR to another, with data modification as described
for each particular instruction. These instructions do not modify the FPSCR.

Floating-Point Arithmetic Instructions

Floating-point arithmetic instructions perform arithmetic operations on floating-point data contained in
floating-point registers.

Floating-Point Multiply-Add Instructions

Floating-point multiply-add instructions combine a multiply operation and an add operation without an
intermediate rounding operation. The fractional part of the intermediate product is 106 bits wide, and all
106 bits are used in the add or subtract portion of the instruction.

Chapter 2. Processing and Storage 25

Floating-Point Compare Instructions

Floating-point compare instructions perform ordered and unordered comparisons of the contents of two
FPRs. The CR field specified by the BF field is set based on the result of the comparison. The comparison
sets one bit of the designated CR field to 1, and sets all other bits to 0. The Floating-Point Condition Code

(FPCC) (bits 16:19) is set in the same manner.

The CR field and the FPCC are interpreted as follows:

Condition-Register Field and Floating-Point Condition Code Interpretation
Bit Name Description
0 FL (FRA) < (FRB)
1 FG (FRA) > (FRB)
FE (FRA) = (FRB)
FU (FRA) ? (FRB) (unordered)

Floating-Point Conversion Instructions

Floating-point conversion instructions are only provided for PowerPC and POWER2. These instructions
convert a floating-point operand in an FPR into a 32-bit signed fixed-point integer. The CR1 field and the
FPSCR are altered.

Floating-Point Status and Control Register Instructions

Floating-Point Status and Control Register Instructions manipulate data in the FPSCR.

Related Information
[Chapter 2, “Processing and Storage,” on page 11

[‘POWER family and PowerPC Architecture Overview” on page 11/

[‘Branch Processor” on page 19

[‘Fixed-Point Processor” on page 21

[Appendix I, “Vector Processor,” on page 597

26 Assembler Language Reference

Chapter 3. Syntax and Semantics

This overview explains the syntax and semantics of assembler language, including the following items:
.

+ ['‘Reserved Words” on page 28|

+ [‘Line Format” on page 28|

[‘Statements” on page 29

[‘Symbols” on page 31

[‘Constants” on page 35|

[‘Operators” on page 38|

[‘Expressions” on page 39|

Character Set

All letters and numbers are allowed. The assembler discriminates between uppercase and lowercase
letters. To the assembler, the variables Name and name identify distinct symbols.

Some blank spaces are required, while others are optional. The assembler allows you to substitute tabs
for spaces.

The following characters have special meaning in the operating system assembler language:

, (comma) Operand separator. Commas are allowed in statements only between operands, for
example:
a 3,4,5

(pound sign) Comments. All text following a # to the end of the line is ignored by the assembler. A

can be the first character in a line, or it can be preceded by any number of characters,
blank spaces, or both. For example:

a 3,4,5 # Puts the sum of GPR4 and GPR5 into GPR3.

: (colon) Defines a label. The : always appears immediately after the last character of the label
name and defines a label equal to the value contained in the location counter at the
time the assembler encounters the label. For example:
add: a 3,4,5 # Puts add equal to the address

where the a instruction is found.

; (semicolon) Instruction separator. A semicolon separates two instructions that appear on the same
line. Spaces around the semicolon are optional. A single instruction on one line does
not have to end with a semicolon.

To keep the assembiler listing clear and easily understandable, it is suggested that each
line contain only one instruction. For example:

a 3,4,5 # These two lines have
a 4,3,5 # the same effect as...
a 3,4,5; a 4,3,5 # ...this Tine.
$ (dollar sign) Refers to the current value in the assembler’s current location counter. For example:

dino: .long 1,2,3
size: .long § - dino

Related Information
[‘Reserved Words” on page 28]

[‘Line Format” on page 28|

© Copyright IBM Corp. 1997, 2006 27

[‘Statements” on page 29

[‘Symbols” on page 31|

[‘Constants” on page 35|

[‘Operators” on page 38|

[‘Expressions” on page 39|

The subroutine.

“.comm Pseudo-op” on page 471 |[.csect Pseudo-op” on page 473 ||'.double Pseudo-op” on page 475,
“.dsect Pseudo-op” on page 477" float Pseudo-op” on page 483[[".Icomm Pseudo-op” on page 486 [.td]
Pseudo-op” on page 503,[.toc Pseudo-op” on page 504 [|*.tocof Pseudo-op” on page 504

Reserved Words

There are no reserved words in the operating system assembler language. The mnemonics for instructions
and pseudo-ops are not reserved. They can be used in the same way as any other symbols.

There may be restrictions on the names of symbols that are passed to programs written in other
languages.

Related Information
[‘Character Set” on page 27|

[‘Statements” on page 29

[‘Symbols” on page 31|

[‘Constants” on page 35|

[‘Operators” on page 38|

[‘Expressions” on page 39|

The subroutine.

“.comm Pseudo-op” on page 471 |[.csect Pseudo-op” on page 473 |[|*.double Pseudo-op” on page 475,
“.dsect Pseudo-op” on page 477" float Pseudo-op” on page 483[[".Icomm Pseudo-op” on page 486 [.d]
Pseudo-op” on page 503,[".toc Pseudo-op” on page 504 [|*.tocof Pseudo-op” on page 504

Line Format

The assembler supports a free-line format for source lines, which does not require that items be in a
particular column position.

For all instructions, a separator character (space or tab) is recommended between the mnemonic and
operands of the statement for readability. With the AIX assembler, Branch Conditional instructions need a
separator character (space or tab) between the mnemonic and operands for unambiguous processing by
the assembler. (See [‘Migration of Branch Conditional Statements with No Separator after Mnemonic” on|
for more information.)

28 Assembler Language Reference

The assembler language puts no limit on the number of characters that can appear on a single input line.
If a code line is longer than one line on a terminal, line wrapping will depend on the editor used. However,
the listing will only display 512 ASCII characters per line.

Blank lines are allowed; the assembler ignores them.

Related Information
[‘Character Set” on page 27|

[‘Reserved Words” on page 28|

“‘Statements”

[‘Symbols” on page 31|

[‘Constants” on page 35|

[‘Operators” on page 38|

[‘Expressions” on page 39|

The subroutine.

The [.comm Pseudo-op” on page 471)|[*.csect Pseudo-op” on page 473 |*.double Pseudo-op” on page 475)
“.dsect Pseudo-op” on page 477]|“.float Pseudo-op” on page 483,[[“.lcomm Pseudo-op” on page 486,|".tq]
Pseudo-op” on page 503,|[“.toc Pseudo-op” on page 504 [‘.tocof Pseudo-op” on page 504

Statements

The assembler language has three kinds of statements: instruction statements, pseudo-operation
statements, and null statements. The assembler also uses separator characters, labels, mnemonics,
operands, and comments.

Instruction Statements and Pseudo-Operation Statements
An instruction or pseudo-op statement has the following syntax:

[label] mnemonic [operand1[,operand2...]] [# comment]

The assembler recognizes the end of a statement when one of the following appears:
* An ASCII new-line character

* A # (pound sign) (comment character)

* A (semicolon)

Null Statements

A null statement does not have a mnemonic or any operands. It can contain a label, a comment, or both.
Processing a null statement does not change the value of the location counter.

Null statements are useful primarily for making assembler source code easier for people to read.
A null statement has the following syntax:
[label] [# comment]

The spaces between the label and the comment are optional.

Chapter 3. Syntax and Semantics 29

If the null statement has a label, the label receives the value of the next statement, even if the next
statement is on a different line. The assembler gives the label the value contained in the current location
counter. For example:

here:
a 3,4,5

is synonymous with
here: a 3,4,5

Note: Certain pseudo-ops (.csect, .comm| and|.lcomm| for example) may prevent a null statement’s
label from receiving the value of the address of the next statement.

Separator Characters

The separator characters are spaces, tabs, and commas. Commas separate operands. Spaces or tabs
separate the other parts of a statement. A tab can be used wherever a space is shown in this book.

The spaces shown in the syntax of an instruction or pseudo-op are required.
Branch Conditional instructions need a separator character (space or tab) between the mnemonic and

operands for unambiguous processing by the assembler. (See [‘Migration of Branch Conditionall
[Statements with No Separator after Mnemonic” on page 121|for more information.)

Optionally, you can put one or more spaces after a comma, before a pound sign (#), and after a #.

Labels

The label entry is optional. A line may have zero, one, or more labels. Moreover, a line may have a label
but no other contents.

To define a label, place a symbol before the : (colon). The assembler gives the label the value contained
in the assembler’s current location counter. This value represents a relocatable address. For example:

subtr: sf 3,4,5

The Tabel subtr: receives the value

of the address of the sf instruction.

You can now use subtr in subsequent statements
to refer to this address.

If the label is in a statement with an instruction that causes data alignment, the label receives its value
before the alignment occurs. For example:

Assume that the location counter now

contains the value of 98.

place: .Tong expr

When the assembler processes this statement, it

sets place to address 98. But the .long is a pseudo-op that
aligns expr on a fullword. Thus, the assembler puts

expr at the next available fullword boundary, which is
address 100. In this case, place is not actually the address
at which expr is stored; referring to place will not put you
at the Tocation of expr.

P

Mnemonics

The mnemonic field identifies whether a statement is an instruction statement or a pseudo-op statement.
Each mnemonic requires a certain number of operands in a certain format.

For an instruction statement, the mnemonic field contains an abbreviation Iike (Add Immediate) or@
(Subtract From). This mnemonic describes an operation where the system microprocessor processes a

30 Assembler Language Reference

single machine instruction that is associated with a numerical operation code (op code). All instructions are
4 bytes long. When the assembler encounters an instruction, the assembler increments the location
counter by the required number of bytes.

For a pseudo-op statement, the mnemonic represents an instruction to the assembler program itself. There
is no associated op code, and the mnemonic does not describe an operation to the processor. Some
pseudo-ops increment the location counter; others do not. See the [‘Pseudo-ops Overview” on page 463|
for a list of pseudo-ops that change the location counter.

Operands

The existence and meaning of the operands depends on the mnemonic used. Some mnemonics do not
require any operands. Other mnemonics require one or more operands.

The assembler interprets each operand in context with the operand’s mnemonic. Many operands are
expressions that refer to registers or symbols. For instruction statements, operands can be immediate data
directly assembled into the instruction.

Comments

Comments are optional and are ignored by the assembler. Every line of a comment must be preceded by
a # (pound sign); there is no other way to designate comments.

Related Information
[‘Character Set” on page 27|

[‘Reserved Words” on page 28|

[‘Line Format” on page 28|

[‘Constants” on page 35|

[‘Operators” on page 38|

[‘Expressions” on page 39|

The subroutine.

“.comm Pseudo-op” on page 471 |[.csect Pseudo-op” on page 473 [|'.double Pseudo-op” on page 475,
“.dsect Pseudo-op” on page 477" float Pseudo-op” on page 483,[|“.lcomm Pseudo-op” on page 486 [.d]
Pseudo-op” on page 503,[[‘.toc Pseudo-op” on page 504 [|*.tocof Pseudo-op” on page 504

Symbols
A symbol is a single character or combination of characters used as a label or operand.

Constructing Symbols

Symbols may consist of numeric digits, underscores, periods, uppercase or lowercase letters, or any
combination of these. The symbol cannot contain any blanks or special characters, and cannot begin with
a digit. Uppercase and lowercase letters are distinct.

If a symbol must contain blank or special characters because of external references, the
pseudo-op can be used to treat a local name as a synonym or alias for the external reference name.

Chapter 3. Syntax and Semantics 31

From the assembler’s and loader’s perspective, the length of a symbol name is limited only by the amount
of storage you have.

Note: Other routines linked to the assembler language files may have their own constraints on symbol
length.

With the exception of control section (csect) or Table of Contents (TOC) entry names, symbols may be
used to represent storage locations or arbitrary data. The value of a symbol is always a 32-bit quantity.

The following are valid examples of symbol names:
* READER

* XC2345

* result.a

* resultA

* balance_old

* _label9

e .myspot

The following are not valid symbol names:

7_sum (Begins with a digit.)

#ofcredits (The # makes this a comment.)
aaxl (Contains *, a special character.)
IN AREA (Contains a blank.)

You can define a symbol by using it in one of two ways:
* As a label for an instruction or pseudo-op
+ As the name operand of a|.set| [comm| [.lcomm| [.dsect |.csect] or|.rename| pseudo-op

Defining a Symbol with a Label

You can define a symbol by using it as a label. For example:

.using dataval[RW],5
loop:

bgt cont

bdz Toop
cont: 1 3,dataval

a 4,3,4

.csect dataval[RW]
dataval: .short 10

The assembler gives the value of the location counter at the instruction or pseudo-op’s leftmost byte. In
the example here, the object code for the I instruction contains the location counter value for dataval.

At run time, an address is calculated from the dataval label, the offset, and GPR 5, which needs to contain
the address of csect dataval[RW]. In the example, theminstruction uses the 16 bits of data stored at the
dataval label’s address.

The value referred to by the symbol actually occupies a memory location. A symbol defined by a label is a
relocatable value.

32 Assembler Language Reference

The symbol itself does not exist at run time. However, you can change the value at the address
represented by a symbol at run time if some code changes the contents of the location represented by the
dataval label.

Defining a Symbol with a Pseudo-op

Use a symbol as the name operand of a pseudo-op to define the symbol. This pseudo-op has the
format:

.set name,exp
The assembler evaluates the exp operand, then assigns the value and type of the exp operand to the

symbol name. When the assembler encounters that symbol in an instruction, the assembler puts the
symbol’s value into the instruction’s object code.

For example:
.set number, 10
ai 4,4 ,number

In the preceding example, the object code for the instruction contains the value assigned to number, that
is, 10.

The value of the symbol is assembled directly into the instruction and does not occupy any storage space.
A symbol defined with a .set pseudo-op can have an absolute or relocatable type, depending on the type
of the exp operand. Also, because the symbol occupies no storage, you cannot change the value of the
symbol at run time; reassembling the file will give the symbol a new value.

A symbol also can be defined by using it as the name operand of al.comm)| |.lcomm)| |.csect, |.dsect, or
pseudo-op. Except in the case of the .dsect pseudo-op, the value assigned to the symbol
describes storage space.

CSECT Entry Names
A symbol can also be defined when used as the qualname operand of the pseudo-op. When used

in this context, the symbol is defined as the name of a csect with the specified storage mapping class.
Once defined, the symbol takes on a storage mapping class that corresponds to the name qualifier.

A qualname operand takes the form of:

symbol[XX]

OR

symbol{ XX}

where XX is the storage mapping class.

For more information, see the ['.csect Pseudo-op” on page 473/

The Special Symbol TOC

Provisions have been made for the special symbol TOC. In XCOFF format modules, this symbol is
reserved for the TOC anchor, or the first entry in the TOC. The symbol TOC has been predefined in the
assembler so that the symbol TOC can be referred to if its use is required. The .toc pseudo-op creates the
TOC anchor entry. For example, the following data declaration declares a word that contains the address
of the beginning of the TOC:

Chapter 3. Syntax and Semantics 33

.long TOC[TCO]

This symbol is undefined unless a .toc pseudo-op is contained within the assembler file.

For more information, see the [*.toc Pseudo-op” on page 504.|

TOC Entry Names

A symbol can be defined when used as the Name operand of the .tc pseudo-op. When used in this
manner, the symbol is defined as the name of a TOC entry with a storage mapping class of TC.

The Name operand takes the form of:

symbol[TC]

For more information, see the [.tc Pseudo-op” on page 503

Using a Symbol before Defining It

It is possible to use a symbol before you define it. Using a symbol and then defining it later in the same
file is called forward referencing. For example, the following is acceptable:

Assume that GPR 6 contains the address of .csect data[RW].
1 5,ten(6)

.csect data[RW]
ten: .Tong 10

If the symbol is not defined in the file in which it occurs, it may be an external symbol or an undefined
symbol. When the assembler finds undefined symbols, it gives an error message unless theElflag of the
as command is used to suppress this error message. External symbols may be declared in a statement
using the [*.extern Pseudo-op” on page 481

Declaring an External Symbol

If a local symbol is used that is defined in another module, the .extern pseudo-op is used to declare that
symbol in the local file as an external symbol. Any undefined symbols that do not appear in a statement
with the .extern or pseudo-op will be flagged with an error.

Related Information
[‘Character Set” on page 27|

[‘Reserved Words” on page 28]

[‘Line Format” on page 28|

[‘Statements” on page 29

[‘Constants” on page 35|

[‘Operators” on page 38|

[‘Expressions” on page 39|

The subroutine.

34 Assembler Language Reference

“.comm Pseudo-op” on page 471)|“.csect Pseudo-op” on page 473 |'.double Pseudo-op” on page 475,
“.dsect Pseudo-op” on page 477][".float Pseudo-op” on page 483[|".lcomm Pseudo-op” on page 486 /[.d]
Pseudo-op” on page 503,[[“.toc Pseudo-op” on page 504 [‘.tocof Pseudo-op” on page 504

Constants

The assembler language provides four kinds of constants:
» Arithmetic constants

+ [‘Character Constants” on page 37|

+ ['Symbolic Constants” on page 37|

+ [‘String Constants” on page 37|

When the assembler encounters an arithmetic or character constant being used as an instruction’s
operand, the value of that constant is assembled into the instruction. When the assembler encounters a
symbol being used as a constant, the value of the symbol is assembled into the instruction.

Arithmetic Constants

The assembler language provides four kinds of arithmetic constants:
* Decimal

¢ Octal

* Hexadecimal

* Floating point

In 32-bit mode, the largest signed positive integer number that can be represented is the decimal value
(2**31) - 1. The largest negative value is -(2**31). In 64-bit mode, the largest signed positive integer
number that can be represented is (2**63)-1. The largest negative value is -(2**63). Regardless of the
base (for example, decimal, hexadecimal, or octal), the assembler regards integers as 32-bit constants.

The interpretation of a constant is dependent upon the assembly mode. In 32-bit mode, the AlIX assembler
behaves in the same manner as earlier AIX versions: the assembler regards integers as 32-bit constants.
In 64-bit mode, all constants are interpreted as 64-bit values. This may lead to results that differ from
expectations. For example, in 32-bit mode, the hexadecimal value OXFFFFFFFF is equivalent to the
decimal value of "-1". In 64-bit mode, however, the decimal equivalent is 4294967295. To obtain the value
"-1" the hexadecimal constant OxFFFF_FFFF_FFFF_FFFF (or the octal equivalent), or the decimal value
-1, should be used.

In both 32-bit and 64-bit mode, the result of integer expressions may be truncated if the size of the target
storage area is too small to contain an expression result. (In this context, truncation refers to the removal
of the excess most-significant bits.)

To improve readability of large constants, especially 64-bit values, the assembler will accept constants
containing the underscore ("_") character. The underscore may appear anywhere within the number
except the first numeric position. For example, consider the following table:

Constant Value Valid/Invalid?

1_800_500 Valid

OxFFFFFFFF_00000000 Valid
0b111010_00100_00101_00000000001000_00 Valid (this is the "Id 4,8(5)" instruction)
0x_FFFF Invalid

Chapter 3. Syntax and Semantics 35

The third example shows a binary representation of an instruction where the underscore characters are
used to delineate the various fields within the instruction. The last example contains a hexadecimal prefix,
but the character immediately following is not a valid digit; the constant is therefore invalid.

Arithmetic Evaluation

In 32-bit mode, arithmetic evaluation takes place using 32-bit math. For the .llong pseudo-op, which is
used to specify a 64-bit quantity, any evaluation required to initialize the value of the storage area uses
32-bit arithmetic.

For 64-bit mode, arithmetic evaluation uses 64-bit math. No sign extension occurs, even if a number might
be considered negative in a 32-bit context. Negative numbers must be specified using decimal format, or
(for example, in hexadecimal format) by using a full complement of hexadecimal digits (16 of them).

Decimal Constants

Base 10 is the default base for arithmetic constants. If you want to specify a decimal number, type the
number in the appropriate place:

ai 5,4,10

Add the decimal value 10 to the contents

of GPR 4 and put the result in GPR 5.

Do not prefix decimal numbers with a 0. A leading zero indicates that the number is octal.

Octal Constants

To specify that a number is octal, prefix the number with a 0:
ai 5,4,0377

Add the octal value 0377 to the contents

of GPR 4 and put the result in GPR 5.

Hexadecimal Constants

To specify a hexadecimal number, prefix the number with 0X or 0x. You can use either uppercase or
lowercase for the hexadecimal numerals A through F.

ai 5,4,0xF

Add the hexadecimal value OxF to the

contents of GPR 4 and put the result
in GPR 5.

Binary Constants
To specify a binary number, prefix the number with 0B or 0b.

ori 3,6,0b0010 0001

OR (the decimal value) 33 with the
contents of GPR 6 and put the result
in GPR 3.

Floating-Point Constants
A floating-point constant has the following components in the specified order:

Integer Part Must be one or more digits.

Decimal Point . (period). Optional if no fractional part follows.

Fraction Part Must be one or more digits. The fraction part is optional.

Exponent Part Optional. Consists of an e or E, possibly followed by a + or -, followed by one or more
digits.

For assembler input, you can omit the fraction part. For example, the following are valid floating-point
constants:

* 0.45
* le+h

36 Assembler Language Reference

* 4E-11
* 0.99E6
e 357.22el2

Floating-point constants are allowed only where fcon expressions are found.
There is no bounds checking for the operand.

Note:In AIX 4.3 and later, the assembler uses the strtold subroutine to perform the conversion to
floating point. Check current documentation for restrictions and return values.

Character Constants

To specify an ASCII character constant, prefix the constant with a * (single quotation mark). Character
constants can appear anywhere an arithmetic constant is allowed, but you can only specify one character
constant at a time. For example A represents the ASCII code for the character A.

Character constants are convenient when you want to use the code for a particular character as a
constant, for example:

cal 3,'X(0)

Loads GPR 3 with the ASCII code for

the character X (that is, 0x58).

After the cal instruction executes, GPR 3 will

contain binary
0x0000 0000 0000 0000 0000 00OO 0101 1000.

Symbolic Constants

A symbol can be used as a constant by giving the symbol a value. The value can then be referred to by
the symbol name, instead of by using the value itself.

Using a symbol as a constant is convenient if a value occurs frequently in a program. Define the symbolic
constant once by giving the value a name. To change its value, simply change the definition (not every
reference to it) in the program. The changed file must be reassembled before the new symbol constant is
valid.

A symbolic constant can be defined by using it as a label or by using it in a statement.

String Constants

String constants differ from other types of constants in that they can be used only as operands to certain
pseudo-ops, such as the |.rename} |.byte] or|.string| pseudo-ops.

The syntax of string constants consists of any number of characters enclosed in "” (double quotation
marks):

"any number of characters"

To use a " in a string constant, use double quotation marks twice. For example:

"a double quote character is specified like this

Related Information
[‘Character Set” on page 27|

[‘Reserved Words” on page 28|

[‘Line Format” on page 28|

Chapter 3. Syntax and Semantics 37

[‘Statements” on page 29

[‘Symbols” on page 31|

“Operators”

[‘Expressions” on page 39|

The subroutine.

“.comm Pseudo-op” on page 471|“.csect Pseudo-op” on page 473|'.double Pseudo-op” on page 475,
“.dsect Pseudo-op” on page 477" float Pseudo-op” on page 483[[".lcomm Pseudo-op” on page 486 /| .td]
Pseudo-op” on page 503,|[.toc Pseudo-op” on page 504 [|*.tocof Pseudo-op” on page 504

Operators

All operators evaluate from left to right except for the unary operators, which evaluate from right to left.

The assembler provides the following unary operators:

+ unary positive
- unary negative
~ one’s complement (unary)

The assembler provides the following binary operators:

multiplication
division

right shift

left shift

bitwise inclusive or
bitwise AND
bitwise exclusive or
addition

subtraction

> — AV O~ *

'+

Parentheses can be used in expressions to change the order in which the assembler evaluates the
expression. Operations within parentheses are performed before operations outside parentheses. Where
nested parentheses are involved, processing starts with the innermost set of parentheses and proceeds
outward.

Operator Precedence
Operator precedence for 32-bit expressions is shown in the following figure.

Highest Priority

~

nary -, unary +,

S~ D —

(
unary -
* < >
| ~ &
+

v

Lowest Priority

38 Assembler Language Reference

In 32-bit mode, all the operators perform 32-bit signed integer operations. In 64-bit mode, all computations
are performed using 64-bit signed integer operations.

The division operator produces an integer result; the remainder has the same sign as the dividend. For
example:

Operation Result Remainder
8/3 2 2
8/-3 -2 2
(-8)/3 -2 2
(-8)/(-3) 2 2

The left shift (<) and right shift (>) operators take an integer bit value for the right-hand operand. For
example:

.set mydata,l

.set newdata,mydata<2

Shifts 1 left 2 bits.

Assigns the result to newdata.

Related Information
[‘Character Set” on page 27

[‘Reserved Words” on page 28|

[‘Line Format” on page 28|

[‘Statements” on page 29|

[‘Symbols” on page 31|

[‘Constants” on page 35|

“Expressions”
The subroutine.

“.comm Pseudo-op” on page 471 |[.csect Pseudo-op” on page 473 |'.double Pseudo-op” on page 475,
“.dsect Pseudo-op” on page 477 [|“.float Pseudo-op” on page 483 [[.lcomm Pseudo-op” on page 486,||“.i:|
Pseudo-op” on page 503,[|“.toc Pseudo-op” on page 504.||.tocof Pseudo-op” on page 504

Expressions

A term is the smallest element that the assembler parser can recognize when processing an expression.
Each term has a value and a type. An expression is formed by one or more terms. The assembler
evaluates each expression into a single value, and uses that value as an operand. Each expression also
has a type. If an expression is formed by one term, the expression has the same type as the type of the
term. If an expression consists of more than one term, the type is determined by the expression handler
according to certain rules applied to all the types of terms contained in the expression. Expression types
are important because:

* Some pseudo-ops and instructions require expressions with a particular type.
» Only certain operators are allowed in certain types of expressions.

Chapter 3. Syntax and Semantics 39

Object Mode Considerations

One aspect of assembly language expressions is that of the object mode and relocation vs. the size of the
data value being calculated. In 32-bit mode, relocation is applied to 32-bit quantities; expressions resulting
in a requirement for relocation (for example, a reference to an external symbol) can not have their value
stored in any storage area other than a word. For the .llong pseudo-op, it is worthwhile to point out that
expressions used to initialize the contents of a .llong may not require relocation. In 64-bit mode, relocation
is applied to double-word quantities. Thus, expression results that require relocation can not have their
value stored in a location smaller than a double-word.

Arithmetic evaluations of expressions in 32-bit mode is consistent with the behavior found in prior releases
of the assembler. Integer constants are considered to be 32-bit quantities, and the calculations are 32-bit
calculations. In 64-bit mode constants are 64-bit values, and expressions are evaluated using 64-bit
calculations.

Types and Values of Terms

The following is a list of all the types of terms and an abbreviated name for each type:
+ |Absolute (E_ABS)|

+ [Relocatable (E REL)|

+ [External relocatable (E EXT)|

[TOC-relative relocatable (E TREL)|

+ [TOCOF relocatable (E_TOCOF)|

Absolute Terms
A term is absolute if its value does not change upon program relocation. In other words, a term is absolute
if its value is independent of any possible code relocation operation.

An absolute term is one of the following items:
+ A constant (including all the kinds of constants defined in[‘Constants” on page 35).
* A symbol set to an absolute expression.

The value of an absolute term is the constant value.

Relocatable Terms

A term is relocatable if its value changes upon program relocation. The value of a relocatable term
depends on the location of the control section containing it. If the control section moves to a different
storage location (for example, a csect is relocated by the binder at bind time), the value of the relocatable
term changes accordingly.

A relocatable term is one of the following items:

» A label defined within a csect that does not have TD or TC as its Storage Mapping Class (SMC)
* A symbol set to a relocatable expression

A label defined within a dsect

* A dsect name

» A location counter reference (which uses $, the dollar sign)

If it is not used as a displacement for a D-form instruction, the value of a csect label or a location counter
reference is its relocatable address, which is the sum of the containing csect address and the offset
relative to the containing csect. If it is used as a displacement for a D-form instruction, the assembler
implicitly subtracts the containing csect address so that only the the offset is used for the displacement. A
csect address is the offset relative to the beginning of the first csect of the file.

40 Assembler Language Reference

A dsect is a reference control section that allows you to describe the layout of data in a storage area
without actually reserving any storage. A dsect provides a symbolic format that is empty of data. The
assembler does assign location counter values to the labels that are defined in a dsect. The values are the
offsets relative to the beginning of the dsect. The data in a dsect at run time can be referenced
symbolically by using the labels defined in a dsect.

Relocatable terms based on a dsect location counter (either the dsect name or dsect labels) are
meaningful only in the context of a .using statement. Since this is the only way to associate a base
address with a dsect, the addressability of the dsect is established in combination with the storage area.

A relocatable term may be based on any control section, either csect or dsect, in all the contexts except if
it is used as a relocatable address constant. If a csect label is used as an address constant, it represents
a relocatable address, and its value is the offset relative to the csect plus the address of the csect. A dsect
label cannot be used as a relocatable address constant since a dsect is only a data template and has no
address.

If two dsect labels are defined in the same dsect, their difference can be used as an absolute address
constant.

External Relocatable Terms

A term is external relocatable (E_EXT) if it is an external symbol (a symbol not defined, but declared within
the current module, or defined in the current module and globally visible), a csect name, or a TOC entry
name.

This term is relocatable because its value will change if it, or its containing control section, is relocated.
An external relocatable term or expression cannot be used as the operand of a .set pseudo-op.

An external relocatable term is one of the following items:

* A symbol defined with the .comm pseudo-op

* A symbol defined with the .lcomm pseudo-op

* Acsect name

* A symbol declared with the .globl pseudo-op

+ ATOC entry name

* An undefined symbol declared with the .extern pseudo-op

Except for the undefined symbol, if this term is not used as a displacement for a D-form instruction, its
value is its relocatable address, which is the offset relative to the beginning of the first csect in the file. If it
is used as a displacement for a D-form instruction, the assembler implicitly subtracts the containing csect
address (except for a TOC entry name), usually producing a zero displacement because the csect address
is subtracted from itself. If a TOC entry name is used as a displacement for a D-form instruction, the
assembler implicitly subtracts the address of the TOC anchor, so the offset relative to the TOC anchor is
the displacement.

An undefined symbol cannot be used as a displacement for a D-form instruction. In other cases, its value
is zero.

TOC-Relative Relocatable Terms
A term is TOC-relative relocatable (E_TREL) if it is a label contained within the TOC.

This type of term is relocatable since its value will change if the TOC is relocated.

A TOC-relative relocatable term is one of the following items:
* Alabel on a .tc pseudo-op

Chapter 3. Syntax and Semantics 41

* A label defined within a csect that has TD or TC as its storage mapping class.

If this term is not used as a displacement for a D-form instruction, its value is its relocatable address,
which is the sum of the offset relative to the TOC and the TOC anchor address. If it is used as a
displacement for a D-form instruction, the assembler implicitly subtracts the TOC anchor address, so the
offset relative to the TOC anchor is the displacement.

TOCOF Relocatable Terms
A term has TOCOF relocatable (E_TOCOF) type if it is the first operand of a .tocof pseudo-op.

This type of term has a value of zero. It cannot be used as a displacement for a D-form instruction. It
cannot participate in any arithmetic operation.

Types and Values of Expressions

Expressions can have all the types that terms can have. An expression with only one term has the same
type as its term. Expressions can also have restricted external relocatable (E_REXT) type, which a term
cannot have because this type requires at least two terms.

Restricted External Relocatable Expressions

An expression has restricted external relocatable (E_REXT) type if it contains two relocatable terms that are
defined in different control sections (terms not meeting the requirements for paired relocatable terms, as
defined in [‘Expression Type of Combined Expressions” on page 43) and have opposite signs.

The following are examples of combinations of relocatable terms that produce an expression with
restricted external relocatable type:

e <E_EXT> - <E_EXT>

e <E REL> - <E REL>

e <E_TREL> - <E_TREL>
e <E_EXT> - <E_REL>

* <E_REL> - <E_EXT>

e <E_EXT> - <E_TREL>
e <E_TREL> - <E REL>

The value assigned to an expression of this type is based on the results of the assembler arithmetic
evaluation of the values of its terms. When patrticipating in an arithmetic operation, the value of a term is
its relocatable address.

Combination Handling of Expressions
Terms within an expression can be combined with binary operators. Also, a term can begin with one or

more unary operators. The assembler expression handler evaluates and determines the resultant
expression type, value, and relocation table entries.

Expression Value Calculations

The following rules apply when calculating a value:

« If it is participating in an arithmetic operation, the value of an absolute term is its constant value, and
the value of a relocatable term (E_EXT, E_REL, or E_TREL) is its relocatable address.

* If the resultant expression is used as a displacement in a D-form instruction, the assembler implicitly
subtracts the containing csect address from the final result for expressions of type E_EXT or E_REL, or
subtracts the TOC anchor address for expressions of type E_TREL. There is no implicit subtracting for
expressions with E_ABS or E_REXT type.

Object File Relocation Table Entries of Expressions
The assembler applies the following rules when determining the requirements for object file relocation
table entries for an expression.

42 Assembler Language Reference

* When an expression is used in a data definition, TOC entry definition, or a branch target address, it
may require from zero to two relocation table entries (RLDs) depending on the resultant type of the
expression.

— E_ABS requires zero relocation entries.

E_REL requires one relocation entry, except that a dsect name or a dsect label does not require a
relocation entry.

E_EXT requires one relocation entry
E_REXT requires two relocation entries
E_TREL requires one relocation entry
E_TOCOF requires one relocation entry

* When an expression is used as a displacement within a D-form instruction operand, only E_TREL and
E_REXT expressions have relocation entries. They each require one relocation entry.

Expression Type of Combined Expressions
The assembler applies the following rules when determining the type of a combined expression.

Combining Expressions with Group 1 Operators: The following operators belong to group #1:
° *1/’>7<1I!&5A

Operators in group #1 have the following rules:
e <E_ABS> <opl> <E_ABS> ==> E_ABS

* Applying an operator in group #1 to any type of expression other than an absolute expression produces

an error.

Combining Expressions with Group 2 Operators: The following operators belong to group # 2:
L[] +, -

Operators in group # 2 have the following rules:
e <E ABS> <op2> <E_ABS> ==> E_ABS

* <E ABS> <op2> <E_REXT> ==> E_REXT

e <E REXT> <op2> <E_ABS> ==> E_REXT

* <E_ABS> <op2> <E_TOCOF> ==> an error

* <E TOCOF> <op2> <E_ABS> ==> an error

* <non E_ABS> <op2> <E_REXT> ==> an error

e <E_REXT> <op2> < non E_ABS> ==> an error
* <E_ABS> - <E_TREL> ==> an error

* Unary + and - are treated the same as the binary operators with absolute value 0 (zero) as the left
term.

» Other situations where one of the terms is not an absolute expression require more complex rules.

The following definitions will be used in later discussion:

paired relocatable terms Have opposite signs and are defined in the same section. The value represented by

paired relocatable terms is absolute. The result type for paired relocatable terms is
E_ABS. Paired relocatable terms are not required to be contiguous in an expression.

Two relocatable terms cannot be paired if they are not defined in the same section. A

E_TREL term can be paired with another E_TREL term or E_EXT term, but cannot be

paired with a E_REL term (because they will never be in the same section). A E_EXT or
E_REL term can be paired with another E_EXT or E_REL term. A E_REXT term cannot be

paired with any term.

Chapter 3. Syntax and Semantics

43

opposite terms

Have opposite signs and point to the same symbol table entry. Any term can have its
opposite term. The value represented by opposite terms is zero. The result type for
opposite terms is almost identical to E_ABS, except that a relocation table entry (RLD)
with a type R_REF is generated when it is used for data definition. Opposite terms are
not required to be contiguous in an expression.

The main difference between opposite terms and paired relocatable terms is that paired relocatable terms
do not have to point to the same table entry, although they must be defined in the same section.

In the following example L1 and -L1 are opposite terms ; and L1 and -L2 are paired relocatable terms.

.file "fl.s"
.csect Dummy[PR]

L1:
L2:

ai 10, 20,
ai 11, 21,
br

30
30

.csect A[RW]

.long L1 -
.Tong L1 -

L1
L2

The following table shows rules for determining the type of complex combined expressions:

unpaired relocatable terms, or it contains two
unpaired relocatable terms with the same sign,
an error is reported.

Type Conditions for Expression to have Type Relocation Table Entries

E_ABS All the terms of the expression are paired An RLD with type R_REF is generated for each
relocatable terms, opposite terms, and absolute | opposite term.
terms.

E_REXT The expression contains two unpaired Two RLDs, one with a type of R_POS and one
relocatable terms with opposite signs in addition |with a type of R_NEG, are generated for the
to all the paired relocatable terms, opposite unpaired relocatable terms. In addition, an RLD
terms, and absolute terms. with a type of R_REF is generated for each

opposite term.

E_REL, E_EXT The expression contains only one unpaired E_REL | If the expression is used in a data definition, one
or E_RXT term in addition to all the paired RLD with type R_POS or R_NEG will be
relocatable terms, opposite terms, and absolute | generated. In addition, an RLD with type R_REF
terms. is generated for each opposite term.

E_TREL The expression contains only one unpaired If the expression is used as a displacement in a
E_TREL term in addition to all the paired D-form instruction, one RLD with type R_TOC
relocatable terms, opposite terms, and absolute | will be generated, otherwise one RLD with type
terms. R_POS or R_NEG will be generated. In addition,

an RLD with type R_REF is generated for each
opposite term.

Error If the expression contains more than two

The following example illustrates the preceding table:

file "fl.s"
.csect A[PR]

L1: ai 10, 20, 30
L2: ai 10, 20, 30
EL1: 1 10, 20(20)
.extern EL1
.extern EL2
EL2: 1 10, 20(20)
.csect B[PR]
BL1: 1 10, 20(20)
BL2: 1 10, 20(20)
44 Assembler Language Reference

ba 16 + EL2 - L2 + L1

1 10, 16+EL2-L2+L1(2
.csect C[RW]

BL3: .lTong BL2 - B[PR]
.long BL2 - (L1 - LI)

.long 14-(-EL2+BL1) + BLL - (L2-L1)

.long 14 + EL2 - BL1
.Tong (B[PR] -A[PR])

S

0) No RLD
Result
Result
Result
Result
Result

- L2+ L1
+ 32

S S W S

Related Information

[‘Character Set” on page 27|

[‘Reserved Words” on page 28|

[‘Line Format” on page 28|

[‘Statements” on page 29

[‘Symbols” on page 31|

[‘Constants” on page 35|

[‘Operators” on page 38|

The subroutine.

Result i

is
is
is
is
is

E_REL

E_ABS
E_REL
E_REL
E_REL
E_REXT

“.comm Pseudo-op” on page 471,

[.csect Pseudo-op” on page 473[.double Pseudo-op” on page 475

“.dsect Pseudo-op” on pa

e 477 ||“float Pseudo-op” on page 483,[|“.lcomm Pseudo-op” on page 486 [.d]

Pseudo-op” on page 503,

[“.toc Pseudo-op” on page 504 [|‘.tocof Pseudo-op” on page 504 |

Chapter 3. Syntax and Semantics

45

46 Assembler Language Reference

Chapter 4. Addressing

The addressing articles discuss addressing modes and addressing considerations, including:
+ [‘Absolute Addressing’]

[‘Absolute Immediate Addressing’]

[‘Relative Immediate Addressing” on page 48]

[‘Explicit-Based Addressing” on page 48|

[Implicit-Based Addressing” on page 50|

[‘Location Counter” on page 51|

Absolute Addressing

An absolute address is represented by the contents of a register. This addressing mode is absolute in the
sense that it is not specified relative to the current instruction address.

Both the Branch Conditional to Link Register instructions and the Branch Conditional to Count Register
instructions use an absolute addressing mode. The target address is a specific register, not an input
operand. The target register is the Link Register (LR) for the Branch Conditional to Link Register
instructions. The target register is the Count Register (CR) for the Branch Conditional to Count Register
instructions. These registers must be loaded prior to execution of the branch conditional to register
instruction.

Related Information
[‘Absolute Immediate Addressing.”|

[‘Relative Immediate Addressing” on page 48]

[‘Explicit-Based Addressing” on page 48|

[implicit-Based Addressing” on page 50

[‘Location Counter” on page 51

[‘Branch Processor” on page 19/

“beetr or bee (Branch Conditional to Count Register) Instruction” on page 147 |[‘belr or ber (Branch|
Conditional Link Register) Instruction” on page 149,/['b (Branch) Instruction” on page 143,/['bc (Branch|
Conditional) Instruction” on page 144

Absolute Immediate Addressing

An absolute immediate address is designated by immediate data. This addressing mode is absolute in the
sense that it is not specified relative to the current instruction address.

For Branch and Branch Conditional instructions, an absolute immediate addressing mode is used if the
Absolute Address bit (AA bit) is on.

The operand for the immediate data can be an absolute, relocatable, or external expression.

© Copyright IBM Corp. 1997, 2006 47

Related Information
[‘Absolute Addressing” on page 47|

[‘Relative Immediate Addressing.”|

[‘Explicit-Based Addressing.’|

[lmplicit-Based Addressing” on page 50

[‘Location Counter” on page 51

[‘Branch Processor” on page 19|

“beetr or bee (Branch Conditional to Count Register) Instruction” on page 147 |[‘belr or ber (Branch|
Conditional Link Register) Instruction” on page 149,|['b (Branch) Instruction” on page 143/['bc (Branch|
Conditional) Instruction” on page 144

Relative Immediate Addressing

Relative immediate addresses are specified as immediate data within the object code and are calculated
relative to the current instruction location. All the instructions that use relative immediate addressing are
branch instructions. These instructions have immediate data that is the displacement in full words from the
current instruction location. At execution, the immediate data is sign extended, logically shifted to the left
two bits, and added to the address of the branch instruction to calculate the branch target address. The
immediate data must be a relocatable expression or an external expression.

Related Information
[‘Absolute Addressing” on page 47

[‘Absolute Immediate Addressing” on page 47

[‘Explicit-Based Addressing.’|

[lmplicit-Based Addressing” on page 50

[‘Location Counter” on page 51

[‘Branch Processor” on page 19

“beetr or bee (Branch Conditional to Count Register) Instruction” on page 147 |[‘belr or ber (Branch|
Conditional Link Register) Instruction” on page 149,/['b (Branch) Instruction” on page 143,['bc (Branch|
Conditional) Instruction” on page 144

[.using Pseudo-op” on page 505 |[‘.drop Pseudo-op” on page 476

Explicit-Based Addressing

Explicit-based addresses are specified as a base register number, RA, and a displacement, D. The base
register holds a base address. At run time, the processor adds the displacement to the contents of the
base register to obtain the effective address. If an instruction does not have an operand form of D(RA),
then the instruction cannot have an explicit-based address. Error 159 is reported if the D(RA) form is used
for these instructions.

48 Assembler Language Reference

A displacement can be an absolute expression, a relocatable expression, a restricted external expression,
or a TOC-relative expression. A displacement can be an external expression only if it is a csect (control
section) name or the name of a common block specified defined by a pseudo-op.

Notes:

1. An externalized label is still relocatable, so an externalized label can also be used as a displacement.

2. When a relocatable expression is used for the displacement, no RLD entry is generated, because only
the offset from the label (that is, the relocatable expression) for the csect is used for the displacement.

Although programmers must use an absolute expression to specify the base register itself, the contents of
the base register can be specified by an absolute, a relocatable, or an external expression. If the base
register holds a relocatable value, the effective address is relocatable. If the base register holds an
absolute value, the effective address is absolute. If the base register holds a value specified by an external
expression, the type of the effective address is absolute if the expression is eventually defined as
absolute, or relocatable if the expression is eventually defined as relocatable.

When using explicit-based addressing, remember that:

* GPR 0 cannot be used as a base register. Specifying 0 tells the assembler not to use a base register at
all.

» Because D occupies a maximum of 16 bits, a displacement must be in the range -2**15 to (2**15)-1.
Therefore, the difference between the base address and the address of the item to which reference is
made must be less than 2**15 bytes.

Note: D and RA are required for the D(RA) form. The form 0(RA) or D(0) may be used, but both the D
and RA operands are required. There are two exceptions:

— When D is an absolute expression,
— When D is a restricted external expression.

If the RA operand is missing in these two cases, D(0) is assumed.

Related Information
[‘Absolute Addressing” on page 47

[‘Absolute Immediate Addressing” on page 47

[‘Relative Immediate Addressing” on page 48

[lmplicit-Based Addressing” on page 50,

[‘Location Counter” on page 51

[‘Branch Processor” on page 19,

“beetr or bee (Branch Conditional to Count Register) Instruction” on page 147 |[‘bclr or ber (Branch|
Conditional Link Register) Instruction” on page 149[‘b (Branch) Instruction” on page 143][‘bc (Branch|
Conditional) Instruction” on page 144

[.using Pseudo-op” on page 505,|.drop Pseudo-op” on page 476,

Chapter 4. Addressing 49

Implicit-Based Addressing

An implicit-based address is specified as an operand for an instruction by omitting the RA operand and
writing the pseudo-op at some point before the instruction. After assembling the appropriate .using
and [.drop| pseudo-ops, the assembler can determine which register to use as the base register. At run
time, the processor computes the effective address just as if the base were explicitly specified in the
instruction.

Implicit-based addresses can be relocatable or absolute, depending on the type of expression used to
specify the contents of the RA operand at run time. Usually, the contents of the RA operand are specified
with a relocatable expression, thus making a relocatable implicit-based address. In this case, when the
object module produced by the assembler is relocated, only the contents of the base register RA will
change. The displacement remains the same, so D(RA) still points to the correct address after relocation.

A dsect is a reference control section that allows you to describe the layout of data in a storage area
without actually reserving any storage. An implicit-based address can also be made by specifying the
contents of RA with a dsect name or a a dsect label, thus associating a base with a dummy section. The
value of the RA content is resolved at run time when the dsect is instantiated.

If the contents of the RA operand are specified with an absolute expression, an absolute implicit-based
address is made. In this case, the contents of the RA will not change when the object module is relocated.

The assembler only supports relocatable implicit-based addressing.

Perform the following when using implicit-based addressing:

1. Write a .using statement to tell the assembler that one or more general-purpose registers (GPRs) will
now be used as base registers.

2. In this .using statement, tell the assembler the value each base register will contain at execution. Until
it encounters a .drop pseudo-op, the assembler will use this base register value to process all
instructions that require a based address.

3. Load each base register with the previously specified value.

For implicit-based addressing the RA operand is always omitted, but the D operand remains. The D
operand can be an absolute expression, a TOC-relative expression, a relocatable expression, or a
restricted external expression.

Notes:

1. When the D operand is an absolute expression or a restricted external expression, the assembler
always converts it to D(0) form, so the .using pseudo-op has no effect.

2. The .using and .drop pseudo-ops affect only based addresses.

.toc
T.data: .tc data[tc],data[rw]
.csect data[rw]
foo: .long 2,3,4,5,6
bar: .long 777

.csect text[pr]
.align 2
1 10,T.data(2) # Loads the address of
csect data[rw] into GPR 10.

.using data[rw], 10 # Specify displacement.

1 3,foo # The assembler generates 1 3,0(10)
1 4,foo+4 # The assembler generates 1 4,4(10)
1 5,bar # The assembler generates 1 5,20(10)

See the [*.using Pseudo-op” on page 505| for more information.

50 Assembler Language Reference

Related Information
[‘Absolute Addressing” on page 47|

[‘Absolute Immediate Addressing” on page 47

[‘Relative Immediate Addressing” on page 48

[‘Explicit-Based Addressing” on page 48|

[‘Location Counter.’]

[‘Branch Processor” on page 19)

“beetr or bee (Branch Conditional to Count Register) Instruction” on page 147 |[‘belr or ber (Branch|
Conditional Link Register) Instruction” on page 149,|['b (Branch) Instruction” on page 143/['bc (Branch|
Conditional) Instruction” on page 144

[.using Pseudo-op” on page 505|[*.drop Pseudo-op” on page 476

Location Counter

Each section of an assembler language program has a location counter used to assign storage addresses
to your program’s statements. As the instructions of a source module are being assembled, the location
counter keeps track of the current location in storage. You can use a $ (dollar sign) as an operand to an
instruction to refer to the current value of the location counter.

Related Information
[‘Absolute Addressing” on page 47

[‘Absolute Immediate Addressing” on page 47|

[‘Relative Immediate Addressing” on page 48

[‘Explicit-Based Addressing” on page 48|

[lmplicit-Based Addressing” on page 50

[‘Branch Processor” on page 19/

“beetr or bee (Branch Conditional to Count Register) Instruction” on page 147 |[‘belr or ber (Branch|
Conditional Link Register) Instruction” on page 149,/['b (Branch) Instruction” on page 143,['bc (Branch|
Conditional) Instruction” on page 144

[.using Pseudo-op” on page 505 |[‘.drop Pseudo-op” on page 476

Chapter 4. Addressing 51

52 Assembler Language Reference

Chapter 5. Assembling and Linking a Program

This section provides information on the following:

+ [‘Assembling and Linking a Program’|

[‘Understanding Assembler Passes” on page 57|
[‘Interpreting an Assembler Listing” on page 59|
[‘Interpreting a Symbol Cross-Reference” on page 63|
[‘Subroutine Linkage Convention” on page 65|
[‘Understanding and Programming the TOC” on page 82|
[‘Running a Program” on page 87|

Assembling and Linking a Program

Assembly language programs can be assembled with the as command or the cc command. The Id
command or the cc command can be used to link assembled programs. This section discusses the
following:

+ [‘Assembling with the as Command’]
+ [‘Assembling and Linking with the cc Command” on page 56|

Assembling with the as Command

The Jas| command invokes the assembler. The syntax for the as command is as follows:

as [-a Mode] [-oObjectFile 1 [-n Name 1 [-u] [-1[ListFile]]
[-W | -w] [-x[XCrossFile]l 1 [-s [ListFile] 1 [-m ModeName]
[-Eofflon 1 [-pofflon 1 [-i] [-v] [File]

The as command reads and assembles the file specified by the File parameter. By convention, this file has

a suffix of .s. If no file is specified, the as command reads and assembles standard input. By default, the
as command stores its output in a file named a.out. The output is stored in the [XCOFF{file format.

All flags for the as command are optional.

The [ld| command is used to link object files. See the Id command for more information.

The assembler respects the setting of the OBJECT_MODE environment variable. If neither -a32 or -a64 is
used, the environment is examined for this variable. If the value of the variable is anything other than the

values listed in the following table, an error message is generated and the assembler exits with a non-zero
return code. The implied behavior corresponding to the valid settings are as follows:

OBJECT_MODE=32 Produce 32-bit object code. The default machine setting is com.
OBJECT_MODE=64 Produce 64-bit object code (XCOFF64 files). The default machine
setting is ppc64.

OBJECT_MODE=32_64 Invalid.
OBJECT_MODE=anything else Invalid.

as Command Flags
The following flags are recognized by the as command:

-a Mode Specifies the mode in which the as command operates. By default, the as command operates

in 32-bit mode, but the mode can be explicitly set by using the flag -a32 for 32-bit mode
operation or -a64 for 64-bit mode operation.

© Copyright IBM Corp. 1997, 2006 53

-E[offlon] Specifies whether to report errors due to the v2.00 syntax (-Eon), or to ignore them (-Eoff). By
default, v2.00 errors are ignored.

File Specifies the source file. If no file is specified, the source code is taken from standard input.

-i Specifies that branch prediction suffixes are to be encoded. By default, this option is not set.
This option is ignored if the -p option is specified.

-I[ListFile] Produces an assembler listing. If you do not specify a file name, a default name is produced
by replacing the suffix extension of the source file name with a .Ist extension. (By convention,
the source file suffix is a .s.) For example:

sourcefile.xyz

produces a default name of:
sourcefile.lst

If the source code is from standard input and the -l flag is used without specifying an
assembler-listing file name, the listing file name is a.lst.
-m ModeName Indicates the assembly mode. This flag has lower priority than the .machine pseudo-op.

If this flag is not used and no .machine pseudo-op is present in the source program, the
default assembly mode is used. The default assembly mode has the POWER family/PowerPC
intersection as the target environment, but treats all POWER family/PowerPC incompatibility
errors (including instructions outside the POWER family/PowerPC intersection and invalid
form errors) as instructional warnings.

If an assembly mode that is not valid is specified and no .machine pseudo-op is present in
the source program, an error is reported and the default assembly mode is used for
instruction validation in pass 1 of the assembiler.

If the -m flag is used, the ModeName variable can specify one of the following values:

" Explicitly specifies the default assembly mode which has the POWER
family/PowerPC intersection as the target environment, but treats instructions outside
the POWER family/PowerPC intersection and invalid form errors as instructional
warnings. A space is required between -m and the null string argument (two double
quotation marks).

com Specifies the POWER family/PowerPC intersection mode. A source program can
contain only instructions that are common to both POWER family and PowerPC; any
other instruction causes an error. Any instruction with an invalid form causes errors,
terminates the assembly process, and results in no object code being generated.

Note:Certain POWER family instructions are supported by the PowerPC 601
RISC Microprocessor, but do not conform to the PowerPC architecture. These
instructions cause errors when using the com assembly mode.

any Specifies the indiscriminate mode. The assembler generates object code for any
recognized instruction, regardless of architecture. This mode is used primarily for
operating system development and for testing and debugging purposes.
Note: All POWER family/PowerPC incompatibility errors are ignored when using the
any assembly mode, and no warnings are generated.

54 Assembler Language Reference

-m ModeName

continued ppc Specifies the PowerPC mode. A source program can contain only PowerPC

instructions. Any other instruction causes an error.

Notes:

1. The PowerPC optional instructions are not implemented in every PowerPC
processor and do not belong to the ppc mode. These instructions generate an
error if they appear in a source program which is assembled using the ppc
assembly mode.

2. Certain instructions conform to the PowerPC architecture, but are not supported
by the PowerPC 601 RISC Microprocessor.

ppc64 Specifies the PowerPC 64-bit mode. A source program can contain 64-bit PowerPC
instructions.

pwr Specifies the POWER family mode. A source program can contain only instructions
for the POWER family implementation of the POWER family architecture.

pwr2(pwrx)
Specifies the POWER2 mode. A source program can contain only instructions for the
POWER?2 implementation of the POWER family architecture. pwr2 is the preferred
value. The alternate assembly mode value pwrx means the same thing as pwr2.
Note: The POWER family implementation instruction set is a subset of the
POWER2 implementation instruction set.

pwr5 Specifies the POWERS mode. A source program can contain only instructions
compatible with the POWERS processor.

pwrbsx Specifies the POWER5+ mode. A source program can contain only instructions
compatible with the POWERS5+ processor.

pwré Specifies the POWER6 mode. A source program can contain only instructions
compatible with the POWERS6 processor.

601 Specifies the PowerPC 601 RISC Microprocessor mode. A source program can
contain only instructions for the PowerPC 601 RISC Microprocessor.
Note: The PowerPC 601 RISC Microprocessor design was completed before the
PowerPC architecture. Therefore, some PowerPC instructions may not be supported
by the PowerPC 601 RISC Microprocessor.

Attention: It is recommended that the 601 assembly mode not be used for
applications that are intended to be portable to future PowerPC systems. The com
or ppc assembly mode should be used for such applications.

The PowerPC 601 RISC Microprocessor implements the PowerPC architecture plus
some POWER family instructions which are not included in the PowerPC
architecture. This allows existing POWER family applications to run with acceptable
performance on PowerPC systems. Future PowerPC systems will not have this
feature. The 601 assembly mode may result in applications that will not run on
existing POWER family systems and that may not have acceptable performance on
future PowerPC systems, because the 601 assembly mode permits the use of all the
instructions provided by the PowerPC 601 RISC Microprocessor.

603 Specifies the PowerPC 603 RISC Microprocessor mode. A source program can
contain only instructions for the PowerPC 603 RISC Microprocessor.

604 Specifies the PowerPC 604 RISC Microprocessor mode. A source program can
contain only instructions for the PowerPC 604 RISC Microprocessor.

970 Specifies the PPC970 mode. A source program can contain only instructions
compatible with the PPC970 processor.

A35 Specifies the A35 mode. A source program can contain only instructions for the A35.

-n Name Specifies the name that appears in the header of the assembler listing. By default, the header
contains the name of the assembler source file.
-0 ObjectFile Writes the output of the assembly process to the specified file instead of to the a.out file.

Chapter 5. Assembling and Linking a Program 55

-ploffion] Specifies whether to use the v2.00 branch prediction (-pon) or pre-v2.00 branch prediction
(-poff). By default, pre-v2.00 branch prediction is used.

-s[ListFile] Indicates whether or not a mnemonics cross-reference for POWER family and PowerPC is
included in the assembler listing. If this flag is omitted, no mnemonics cross-reference is
produced. If this flag is used, the assembler listing will have POWER family mnemonics if the
source contains PowerPC mnemonics, and will have PowerPC mnemonics if the source
contains POWER family mnemonics.

The mnemonics cross-reference is restricted to instructions that have different mnemonics in
POWER family and PowerPC, but that have the same op code, function, and input operand
format.

Because the -s flag is used to change the assembler-listing format, it implies the -l flag. If
both option flags are used and different assembler-listing file names (specified by the ListFile
variable) are given, the listing file name specified by the ListFile variable used with the -l flag
is used. If an assembler-listing file name is not specified with either the -l or -s flag, a default
assembler listing file name is produced by replacing the suffix extension of the source file
name with a .Ist extension.

-u Accepts an undefined symbol as an extern so that an error message is not displayed.
Otherwise, undefined symbols are flagged with error messages.

-V Displays the version number of this command.

-W Turns off all warning message reporting, including the instructional warning messages (the
POWER family and PowerPC incompatibility warnings).

-w Turns on warning message reporting, including reporting of instructional warning messages

(the POWER family and PowerPC incompatibility warnings).
Note: When neither -W nor -w is specified, the instructional warnings are reported, but other
warnings are suppressed.

-X[XCrosskFile] Produces cross-reference output. If you do not specify a file name, a default name is
produced by replacing the suffix extension of the source file name with an .xref extension. By
convention, the suffix is a .s. For example:

sourcefile.xyz

produces a default name of:
sourcefile.xref

Note: The assembler does not generate an object file when the -x flag is used.

Assembling and Linking with the cc Command

The cc command can be used to assemble and link an assembly source program. The following example
links object files compiled or assembled with the ec command:

cc pgm.o subsl.o subs2.o

When the cc command is used to link object files, the object files should have the suffix of .0 as in the
previous example.

When the cc command is used to assemble and link source files, any assembler source files must have
the suffix of .s. The cc command invokes the assembler for any files having this suffix. Option flags for the
command can be directed to the assembler through the cc command. The syntax is:

-Wa,0Optionl,OptionZ,...

The following example invokes the assembler to assemble the source program using the com assembly
mode, and produces an assembiler listing and an object file:

cc -c -Wa,-mcom,-1 file.s

The cec command invokes the assembler and then continues processing normally. Therefore:
cc -Wa,-1,-oXfile.o file.s

56 Assembler Language Reference

will fail because the object file produced by the assembler is named Xfile.o, but the linkage editor
command) invoked by the cc command searches for file.o.

If no option flag is specified on the command line, the cc command uses the compiler, assembler, and link
options, as well as the necessary support libraries defined in the xlec.cfg configuration file.

Note: Some option flags defined in the assembler and the linkage editor use the same letters. Therefore,
if the xlc.cfg configuration file is used to define the assembler options (asopt) and the link-editor
options (Idopt), duplicate letters should not occur in asopt and Idopt because the cc command is
unable to distinguish the duplicate letters.

For more information on the option flags passed to the cc command, see the cc command.

Related Information
[‘Understanding Assembler Passes.”|

[‘Interpreting an Assembler Listing” on page 59|

[‘Interpreting a Symbol Cross-Reference” on page 63

[‘Subroutine Linkage Convention” on page 65,

[‘Understanding and Programming the TOC” on page 82|

[‘Running a Program” on page 87|

The [as| command, and the [Idjcommand.

Understanding Assembler Passes

When you enter the as command, the assembler makes two passes over the source program.

First Pass

On the first pass, the assembler performs the following tasks:

» Checks to see if the instructions are legal in the current assembly mode.
» Allocates space for instructions and storage areas you request.

» Fills in the values of constants, where possible.

» Builds a symbol table, also called a cross-reference table, and makes an entry in this table for every
symbol it encounters in the label field of a statement.

The assembler reads one line of the source file at a time. If this source statement has a valid symbol in
the label field, the assembler ensures that the symbol has not already been used as a label. If this is the
first time the symbol has been used as a label, the assembler adds the label to the symbol table and
assigns the value of the current location counter to the symbol. If the symbol has already been used as a
label, the assembler returns the error message Redefinition of symbol and reassigns the symbol value.

Next, the assembler examines the instruction’s mnemonic. If the mnemonic is for a machine instruction
that is legal for the current assembly mode, the assembler determines the format of the instruction (for
example, XO format). The assembler then allocates the number of bytes necessary to hold the machine
code for the instruction. The contents of the location counter are incremented by this number of bytes.

When the assembler encounters a comment (preceded by a # (pound sign)) or an end-of-line character,
the assembler starts scanning the next instruction statement. The assembler keeps scanning statements
and building its symbol table until there are no more statements to read.

Chapter 5. Assembling and Linking a Program 57

At the end of the first pass, all the necessary space has been allocated and each symbol defined in the
program has been associated with a location counter value in the symbol table. When there are no more
source statements to read, the second pass starts at the beginning of the program.

Note: If an error is found in the first pass, the assembly process terminates and does not continue to
the second pass. If this occurs, the assembler listing only contains errors and warnings generated
during the first pass of the assembler.

Second Pass
On the second pass, the assembler:

» Examines the operands for symbolic references to storage locations and resolves these symbolic
references using information in the symbol table.

¢ Ensures that no instructions contain an invalid instruction form.

» Translates source statements into machine code and constants, thus filling the allocated space with
object code.

* Produces a file containing error messages, if any have occurred.

At the beginning of the second pass, the assembler scans each source statement a second time. As the
assembler translates each instruction, it increments the value contained in the location counter.

If a particular symbol appears in the source code, but is not found in the symbol table, then the symbol
was never defined. That is, the assembler did not encounter the symbol in the label field of any of the
statements scanned during the first pass, or the symbol was never the subject of a .comm, .csect,
Jcomm, .sect, or .set pseudo-op.

This could be either a deliberate external reference or a programmer error, such as misspelling a symbol
name. The assembler indicates an error. All external references must appear in a .extern or .globl
statement.

The assembler logs errors such as incorrect data alignment. However, many alignment problems are
indicated by statements that do not halt assembly. The -w flag must be used to display these warning
messages.

After the programmer corrects assembly errors, the program is ready to be linked.
Note: If only warnings are generated in the first pass, the assembly process continues to the second

pass. The assembiler listing contains errors and warnings generated during the second pass of the
assembler. Any warnings generated in the first pass do not appear in the assembler listing.

Related Information
[‘Assembling and Linking a Program” on page 53,

[‘Interpreting an Assembler Listing” on page 59|

[‘Interpreting a Symbol Cross-Reference” on page 63

[‘Subroutine Linkage Convention” on page 65,

[‘Understanding and Programming the TOC” on page 82|

[‘Running a Program” on page 87|

The [as| command.

58 Assembler Language Reference

Interpreting an Assembler Listing

TheE|fIag of the as command produces a listing of an assembler language file.

Assume that a programmer wants to display the words "hello, world.” The C program would appear as
follows:

main ()

printf ("hello, world\n");
1

Assembling the hello.s file with the following command:
as -1 hello.s

produces an output file named hello.Ist. The complete assembler listing for hello.lst is as follows:

hello.s V4.0 01/25/1994

File# Line# Mode Name Loc Ctr Object Code Source

0 1 igddaddsddsddsddsdddddadsddsdd

0 2 # C source code

0 3 tazdaddsddsddsdasdddddddddsdd

0 4 # hello()

0 5 # |

0 6 # printf("hello,world\n");

0 7 # 0}

0 8 igddaddsddsddsddsddddsddddadd

0 9 # Compile as follows:

0 10 # cc -0 helloworld hello.s

0 11 #

0 12 tazda s s dssdsddsddsddsdd

0 13 .file "hello.s"

0 14 #Static data entry in

0 15 #T(able)0(f)C(ontents)

0 16 .toc

0 17 COM data 00000000 00000040 T.data: .tc data[tc],data[rw]

0 18 .glob1 main[ds]

0 19 #main[ds] contains definitions for

0 20 #runtime Tinkage of function main

0 21 .csect main[ds]

0 22 COM main 00000000 00000000 .Tong .main[PR]

0 23 COM main 00000004 00000050 .long TOC[tcO]

0 24 COM main 00000008 00000000 .long 0

0 25 #Function entry in

0 26 #T(able)0(f)C(ontents)

0 27 .toc

0 28 COM .main 00000000 00000034 T.hello: .tc .main[tc],main[ds]

0 29 .globl .main[PR]

0 30

0 31 #Set routine stack variables

0 32 #Values are specific to

0 33 #the current routine and can

0 34 #vary from routine to routine

0 35 00000020 .set argarea, 32

0 36 00000018 .set Tinkarea, 24

0 37 00000000 .set Tocstckarea, 0

0 38 00000001 .set ngprs, 1

0 39 00000000 .set nfprs, 0

0 40 0000003c .set szdsa, 8*nfprs+d+ngprs+linkarea+
argareatlocstckarea

0 41

0 42 #Main routine

0 43 .csect .main[PR]

0 44

0 45

0 46 #PROLOG: Called Routines

Chapter 5. Assembling and Linking a Program

107
108
109
110
111
112
113

[cNoNoNoNoNoNoNoloNoNoNoNoloNoNoNololoNoNoNoloNoNoNoNoloNoNoNoNoNoNoNoNooNoNoNoNoNoNoNoNoNoRoNoNoNoNoRoNoNoNoNoNoNoNoNoNo o NoNoNoNo ol
[0}
[}

CoM

CoMm

CoM

CcoMm

coMm

CoMm

coMm
CoM

COM

CcoMm

CcoMm

CcoMm

CoMm

.main

.main

.main

.main

.main

.main

.main
.main

.main

.main

.main

.main

.main

00000000

00000004

00000008

0000000c

00000010

00000014

00000018
0000001c

00000020

00000024

00000028

0000002c

00000030

60 Assembler Language Reference

7c0802a6

bfelfffc

90010008

9421ffc4

81c20000

386e0000

4bffffe9
4def7b82

80010044

3021003c

bbelfffc

7c0803a6

4e800021

Responsibilities
#Get link reg.

mflr 0
#Not required to Get/Save CR
#because current routine does
#not alter it.

#Not required to Save FPR's
#14-31 because current routine
#does not alter them.

#Save GPR 31.
stm 31, -8*nfprs-4xngprs(1)
#Save LR if non-leaf routine.
st 0, 8(1)
#Decrement stack ptr and save
#back chain.
stu 1, -szdsa(l)

#Program body
#Load static data address
1 14,T.data(2)
#Line 3, file hello.c
#Load address of data string
#from data addr.
#This is a parameter to printf()
cal 3,_helloworld(14)
#Call printf function
b1 .printf[PR]
cror 15, 15, 15

#EPILOG: Return Sequence
#Get saved LR.
1 0, szdsa+8(1)

#Routine did not save CR.
#Restore of CR not necessary.

#Restore stack ptr
ai 1, 1, szdsa
#Restore GPR 31.
Tm 31, -8#nfprs-4xngprs(1)

#Routine did not save FPR's.
#Restore of FPR's not necessary.

#Move return address

#to Link Register.
mt1r0

#Return to address

#held in Link Register.
brl

#External variables
.extern.printf[PR]

idgdddssdddsaddsadddaaddaadddad
#Data

idgdddgddddsdddsadddaaddaadddad
#String data placed in
#static csect data[rw]

.csect data[rw]

.align2
_helloworld:

0 114 | CcOM data 00000000 68656c6¢ .byte 0x68,0x65,0x6c,0x6C

0 115 COM data 00000004 6f2c776f .byte 0x6f,0x2c,0x77,0x6f

0 116 COM data 00000008 726c640a .byte 0x72,0x6c,0x64,0xa,0x0
COM data 0000000c 00

The first line of the assembler listing gives two pieces of information:
* Name of the source file (in this case, hello.s)
» Date the listing file was created

The assembler listing contains several columns. The column headings are:

File# Lists the source file number. Files included with the M4 macro processor (-l option) are
displayed by the number of the file in which the statement was found.

Line# Refers to the line number of the assembler source code.

Mode Indicates the current assembly mode for this instruction.

Name Lists the name of the csect where this line of source code originates.

Loc Ctr Lists the value contained in the assembler’s location counter. The listing shows a location
counter value only for assembler language instructions that generate object code.

Object Code Shows the hexadecimal representation of the object code generated by each line of the

assembler program. Since each instruction is 32 bits, each line in the assembler listing shows a
maximum of 4 bytes. Any remaining bytes in a line of assembler source code are shown on the
following line or lines.
Note: If pass two failed, the assembler listing will not contain object code.

Source Lists the assembler source code for the program. A limit of 100 ASCII characters will be
displayed per line.

If the -s option flag is used on the command line, the assembler listing contains mnemonic cross-reference
information.

If the assembly mode is in the PowerPC category (com, ppc, or 601), one column heading is PowerPC.
This column contains the PowerPC mnemonic for each instance where the POWER family mnemonic is
used in the source program. The any assembly mode does not belong to any category, but is treated as
though in the PowerPC category.

If the assembly mode is in the POWER family category (pwr or pwr2), one column heading is POWER
family. This column contains the POWER family mnemonic for each instance where the PowerPC
mnemonic is used in the source program.

The following assembler listing uses the com assembly mode. The source program uses POWER family
mnemonics. The assembler listing has a PowerPC mnemonic cross-reference.

L dfmt_1.s V4.0 01/26/1994

File# Line# Mode Name Loc Ctr Object Code PowerPC Source

0 1

0 2 #%% -L

0 3 machine "com"

0 4 csect dfmt[PR]

0 5 using data,b

0 6 COM dfmt 00000000 8025000c Twz 11,d1 # 8025000c
0 7 COM dfmt 00000004 b8c50018 Tmw m 6,d0 # b8650018
0 8 COM dfmt 00000008 b0e50040 sth 7,d8 # b0e50040
0 9 COM dfmt 0000000c 80230020 Twz 1 1,0x20(3) # 80230020
0 10 COM dfmt 00000010 30220003 addic ai 1,2,3 # 30220003
0 11 COM dfmt 00000014 0cd78300 twi ti 6,23,-32000 # 0cd78300
0 12 COM dfmt 00000018 2c070afo cmpi 0,7,2800 # 2c070af0
0 13 COM dfmt 0000001c 2c070af@ cmpi 0,0,7,2800 # 2c070afo
0 14 COM dfmt 00000020 30220003 subic si 1,2,-3 # 30220003
0 15 COM dfmt 00000024 34220003 subic. si. 1,2,-3 # 34220003
0 16 COM dfmt 00000028 703e00ff andi. andil.30,1,0xFF # 703e00ff
0 17 COM dfmt 0000002c 2bh9401f4 cmpli 7,20,500 # 2b9401f4

Chapter 5. Assembling and Linking a Program 61

0 18 COM dfmt 00000030 0c2501a4 twlgti tlgti 5,420 # 0c2501a4
0 19 COM dfmt 00000034 34220003 addic. ai. 1,2,3 # 34220003
0 20 COM dfmt 00000038 2c9ff380 cmpi 1,31,-3200 # 2c9ff380
0 21 COM dfmt 0000003c 281f0c80 cmpli 0,31,3200 # 281f0c80
0 22 COM dfmt 00000040 8ba5000c bz 29,dl # 8ba5000c
0 23 COM dfmt 00000044 85e5000c Twzu Tu 15,d1 # 85e5000c
0 24 COM dfmt 00000048 1df5fecOd mulli muli 15,21,-320 # 1df5fecO
0 25 COM dfmt 0000004c 62af0140 ori oril 15,21,320 # 62af0140
0 26 COM dfmt 00000050 91e5000c stw st 15,d1 # 91e5000c
0 27 COM dfmt 00000054 hde5000c stmw stm 15,d1 # bde5000c
0 28 COM dfmt 00000058 95e5000c stwu stu 15,d1 # 95e5000c
0 29 COM dfmt 0000005c 69ef0960 xori xoril 15,15,2400 # 69ef0960
0 30 COM dfmt 00000060 6d8c0960 xoris xoriu 12,12,2400 # 6d8c0960
0 31 COM dfmt 00000064 3a9eff38 addi 20,30,-200 # 3a9eff38
0 32
0 33 .csect also[RW]
0 34 data:
0 35 COM also 00000000 00000000 .Tong 0,0,0
00000004 e

COM also 00000008 00000000
0 36 COM also 0000000c 00000003 dl:.Tong 3,4,5 # dl = OxC = 12

COM also 00000010 00000004

COM also 00000014 00000005
0 37 COM also 00000018 00000068 do: .Tong data # dO = 0x18 = 24
0 38 COM also 0000001c 00000000 data2: .space 36

00000020 e
COM also 0000003c 000000000
39 COM also 00000040 000023e0 ds: .long 9184 # d8 = 0x40 = 64

0 40 COM also 00000044 ffffffff d9: .long OxFFFFFFFF # d9 = 0x44
0 41 #
0 42 # 0000 00000000 00000000 0OOOOOOO 00000003
0 43 # 0010 00000004 00000005 00O00OC 00000000
0 44 # 0020 00000000 00000000 0OOOO0O0 0000000
0 45 # 0030 000023E0

The following assembler listing uses the pwr assembly mode. The source program uses PowerPC
mnemonics. The assembler listing has a POWER family mnemonic cross-reference.

L_dfmt_2.s V4.0 01/26/1994
File# Line# Mode Name Loc Ctr Object Code POWER Source
0 1 #%% -L
0 2 .machine "pwr"
0 3 .csect dfmt[PR]
0 4 .using data,5
0 5 PWR dfmt 00000000 8025000c 1 Twz 1,d1
0 6 PWR dfmt 00000004 b8650018 m Tmw 3,d0
0 7 PWR dfmt 00000008 b0e50040 sth 7,d8
0 8 PWR dfmt 0000000c 80230020 1 Twz 1,0x20(3)
0 9 PWR dfmt 00000010 30220003 ai addic 1,2,3
0 10 PWR dfmt 00000014 0cd78300 ti twi 6,23,-32000
0 11 PWR dfmt 00000018 2c070afo cmpi 0,7,2800
0 12 PWR dfmt 0000001c 2c070af0O cmpi 0,0,7,2800
0 13 PWR dfmt 00000020 30220003 si subic 1,2,-3
0 14 PWR dfmt 00000024 34220003 si. subic. 1,2,-3
0 15 PWR dfmt 00000028 703e00ff andil. andi. 30,1,0xFF
0 16 PWR dfmt 0000002c 2b9401f4 cmpli 7,20,500
0 17 PWR dfmt 00000030 0c2501a4 tlgti twlgti 5,420
0 18 PWR dfmt 00000034 34220003 ai. addic. 1,2,3
0 19 PWR dfmt 00000038 2c9ff380 cmpi 1,31,-3200
0 20 PWR dfmt 0000003c 281f0c80 cmpli 0,31,3200
0 21 PWR dfmt 00000040 8ba5000c 1bz 29,d1
0 22 PWR dfmt 00000044 85e5000c Tu Twzu 15,d1
0 23 PWR dfmt 00000048 1df5fecO muli mulli 15,21,-320
0 24 PWR dfmt 0000004c 62af0140 oril ori 15,21,320
0 25 PWR dfmt 00000050 91e5000c st stw 15,d1
0 26 PWR dfmt 00000054 bde5000c stm stmw 15,d1
0 27 PWR dfmt 00000058 95e5000c stu stwu 15,d1

62 Assembler Language Reference

[cNoNoNoNoNoNoNo)

[N o]
w
~

[cNoNoNoNoNoNo)
~
S

PWR
PWR
PWR

PWR

PWR
PWR
PWR
PWR
PWR
PWR

PWR
PWR
PWR

dfmt
dfmt
dfmt

also

also
also
also
also
also
also

also
also
also

0000005¢
00000060
00000064

00000000
00000004
00000008
0000000c
00000010
00000014
00000018
0000001c
00000020
0000003c
00000040
00000044

Related Information

69ef0960
6d8c0960
3a9eff38

00000000
00000000
00000003
00000004
00000005
00000068
00000000
00000000
0000230
FEFFFFEF

[‘Assembling and Linking a Program” on page 53|

[‘Understanding Assembler Passes” on page 57

[‘Interpreting a Symbol Cross-Reference.”|

[‘Subroutine Linkage Convention” on page 65

xoril
xoriu

data:

dl:

do:
data2:

xori
Xoris
addi

15,15,2400
12,12,2400
20,30,-200

.csect also[RW]

.long

long

long
space 36

d8: Tong
d9: Tong

#

0,0,0

5

3,4,
dl = Oxc

data

9184
OXFFFFFFFF

0000 00000000 00000000
0010 00000004 00000005
0020 00000000 00000000
0030 000023E0

[‘{Understanding and Programming the TOC” on page 82

[‘Running a Program” on page 87|

The las command

=12

d0 = 0x18 = 24
d8 = 0x40 = 64
d9 = 0x44

00000000 00000003
0000000C 00000000
00000000 00000000

Interpreting a Symbol Cross-Reference

The following is an example of the symbol cross-reference for the hello.s assembly program:

Symbo1
.main

.main

.main

.main
.printf
.printf
T.data
T.data
T.hello

TOC
_heTToworld
_helloworld
argarea
argarea
data

data

data
linkarea

File

hello.
hello.
hello.
hello.
hello.
hello.
hello.
hello.
hello.
hello.
hello.
hello.
hello.
hello.
hello.
hello.
hello.
hello.

nm un unu unuunnonnunnononnnonoononn

CSECT

.main

.main

data
data
.main
T0C
data

data
data

Line #
22
28 =*
29
43 *
76
104
17 =
69
28 *
23
74
113 =
35 x
40
17
17 =
111 =
36 *

Chapter 5. Assembling and Linking a Program

63

linkarea hello.s -- 40
locstckarea hello.s -- 37 =*
locstckarea hello.s -- 40
main hello.s -- 18
main hello.s main 21 =*
main hello.s main 28
nfprs hello.s -- 39 x
nfprs hello.s -- 40
nfprs hello.s -- 59
nfprs hello.s -- 90
ngprs hello.s -- 38 *
ngprs hello.s -- 40
ngprs hello.s -- 59
ngprs hello.s -- 90
szdsa hello.s -- 40 *
szdsa hello.s -- 64
szdsa hello.s -- 82
szdsa hello.s -- 88

The first column lists the symbol names that appear in the source program. The second column lists the
source file name in which the symbols are located. The third column lists the csect names in which the
symbols are defined or located.

In the column listing the csect names, a — (double dash) means one of the following:

» The symbol’s csect has not been defined yet. In the example, the first and third .main (.main[PR]) is
defined through line 42.

* The symbol is an external symbol. In the example, .printf is an external symbol and, therefore, is not
associated with any csect.

* The symbol to be defined is a symbolic constant. When the .set pseudo-op is used to define a symbol,
the symbol is a symbolic constant and does not have a csect associated with it. In the example,
argarea, linkarea, Tocstckarea, nfprs, ngprs, and szdsa are symbolic constants.

The fourth column lists the line number in which the symbol is located. An * (asterisk) after the line number
indicates that the symbol is defined in this line. If there is no asterisk after the line number, the symbol is
referenced in the line.

Related Information
[‘Assembling and Linking a Program” on page 53|

[‘Understanding Assembler Passes” on page 57

[‘Interpreting an Assembler Listing” on page 59.|

[‘Subroutine Linkage Convention” on page 65,

[‘Understanding and Programming the TOC” on page 82

[‘Running a Program” on page 87|

[Chapter 7, “Migrating Source Programs,” on page 113

The [as| command.

64 Assembler Language Reference

Subroutine Linkage Convention

This article discusses the following:

+ [‘Linkage Convention Overview’|

+ [‘Calling Routine’s Responsibilities” on page 77|
+ [‘Called Routine’s Responsibilities” on page 77|
+ [‘Using Milicode Routines” on page 80|

Linkage Convention Overview

The subroutine linkage convention describes the machine state at subroutine entry and exit. When
followed, this scheme allows routines compiled separately in the same or different languages to be linked
and executed when called.

The linkage convention allows for parameter passing and return values to be in floating-point registers
(FPRs), general-purpose registers (GPRs), or both.

Object Mode Considerations
The following discussion applies to both 32-bit mode and 64-bit mode with the following notes:

» General purpose registers in 64-bit mode are 64 bits wide (double- word). This implies that space usage
of the stack increases by a factor of two for register storage. Wherever, below, the term word is used,
assume (unless otherwise stated) that the size of the object in question is 1 word in 32-bit mode, and 2
words (a double-word) in 64-bit mode.

» The offsets shown in the runtime stack figure should be doubled for 64-bit mode. In 32-bit mode, the
stack as shown requires 56 bytes:

— 1 word for each of the 6 registers CR, LR, compiler-reserved, linker-reserved, and saved-TOC.
— 8 words for the 8 volatile registers.

This totals 14 words, or 56 bytes. In 64-bit mode, each field is twice as large (a double-word), thus
requiring 28 words, or 112 bytes.

» Floating point registers are saved in the same format in both modes. The storage requirements are the
same.

» Stack pointer alignment requirements remain the same for both modes.

* The GPR save routine listed below illustrates the methodology for saving registers in 32-bit mode. For
64-bit mode, the offsets from GPR1, the stack pointer register, would be twice the values shown.
Additionally, the load instruction used would be 1d and the store instuction would be stdu.

Register Usage and Conventions

The PowerPC 32-bit architecture has 32 GPRs and 32 FPRs. Each GPR is 32 bits wide, and each FPR is
64 bits wide. There are also special registers for branching, exception handling, and other purposes. The
General-Purpose Register Convention table shows how GPRs are used.

Table 2. General-Purpose Register Conventions

Register Status Use

GPRO volatile In function prologs.

GPR1 dedicated Stack pointer.

GPR2 dedicated Table of Contents (TOC) pointer.

GPR3 volatile First word of a function’s argument list; first word of a scalar function return.

GPR4 volatile Second word of a function’s argument list; second word of a scalar function
return.

GPR5 volatile Third word of a function’s argument list.

Chapter 5. Assembling and Linking a Program 65

Table 2. General-Purpose Register Conventions (continued)

Register Status Use

GPR6 volatile Fourth word of a function’s argument list.

GPR7 volatile Fifth word of a function’s argument list.

GPR8 volatile Sixth word of a function’s argument list.

GPR9 volatile Seventh word of a function’s argument list.

GPR10 volatile Eighth word of a function’s argument list.

GPR11 volatile In calls by pointer and as an environment pointer for languages that require
it (for example, PASCAL).

GPR12 volatile For special exception handling required by certain languages and in glink
code.

GPR13 reserved Reserved under 64-bit environment; not restored across system calls.

GPR14:GPR31 | nonvolatile These registers must be preserved across a function call.

The preferred method of using GPRs is to use the volatile registers first. Next, use the nonvolatile registers
in descending order, starting with GPR31 and proceeding down to GPR14. GPR1 and GPR2 must be
dedicated as stack and Table of Contents (TOC) area pointers, respectively. GPR1 and GPR2 must
appear to be saved across a call, and must have the same values at return as when the call was made.

Volatile registers are scratch registers presumed to be destroyed across a call and are, therefore, not
saved by the callee. Volatile registers are also used for specific purposes as shown in the previous table.
Nonvolatile and dedicated registers are required to be saved and restored if altered and, thus, are
guaranteed to retain their values across a function call.

The Floating-Point Register Conventions table shows how the FPRs are used.

Table 3. Floating-Point Register Conventions

Register Status Use

FPRO volatile As a scratch register.

FPR1 volatile First floating-point parameter; first 8 bytes of a floating-point scalar return.

FPR2 volatile Second floating-point parameter; second 8 bytes of a floating-point scalar
return.

FPR3 volatile Third floating-point parameter; third 8 bytes of a floating-point scalar return.

FPR4 volatile Fourth floating-point parameter; fourth 8 bytes of a floating-point scalar
return.

FPR5 volatile Fifth floating-point parameter.

FPR6 volatile Sixth floating-point parameter.

FPR7 volatile Seventh floating-point parameter.

FPR8 volatile Eighth floating-point parameter.

FPR9 volatile Ninth floating-point parameter.

FPR10 volatile Tenth floating-point parameter.

FPR11 volatile Eleventh floating-point parameter.

FPR12 volatile Twelfth floating-point parameter.

FPR13 volatile Thirteenth floating-point parameter.

FPR14:FPR31 | nonvolatile If modified, must be preserved across a call.

66 Assembler Language Reference

The preferred method of using FPRs is to use the volatile registers first. Next, the nonvolatile registers are
used in descending order, starting with FPR31 and proceeding down to FPR14.

Only scalars are returned in multiple registers. The number of registers required depends on the size and
type of the scalar. For floating-point values, the following results occur:

» A 128-bit floating-point value returns the high-order 64 bits in FPR1 and the low-order 64 bits in FPR2.
* An 8-byte or 16-byte complex value returns the real part in FPR1 and the imaginary part in FPR2.

* A 32-byte complex value returns the real part as a 128-bit floating-point value in FPR1 and FPR2, with

the high-order 64 bits in FPR1 and the low-order 64 bits in FPR2. The imaginary part of a 32-byte
complex value returns the high-order 64 bits in FPR3 and the low-order 64 bits in FPR4.

Special Registers in the PowerPC
The Special-Purpose Register Conventions table shows the PowerPC special purpose registers (SPRs).
These are the only SPRs for which there is a register convention.

Table 4. Special-Purpose Register Conventions

Register or Register |Status Use

Field

LR volatile Used as a branch target address or holds a return address.
CTR volatile Used for loop count decrement and branching.

XER volatile Fixed-point exception register.

FPSCR volatile Floating-point exception register.

CRO, CR1 volatile Condition-register bits.

CR2, CR3, CR4 nonvolatile Condition-register bits.

CR5, CR6, CR7 volatile Condition-register bits.

Routines that alter CR2, CR3, and CR4 must save and restore at least these fields of the CR. Use of
other CR fields does not require saving or restoring.

Runtime Process Stack
The stack format convention is designed to enhance the efficiency of the following:

* Prolog and epilog function usage
» Parameter passing
» Shared library support

The Runtime Stack figure illustrates the runtime stack. It shows the stack after the sender function calls
the catcher function, but before the catcher function calls another function. This figure is based on the
assumption that the catcher function will call another function. Therefore, the catcher function requires
another link area (as described in the stack layout). PWn refers to the nth word of parameters that are
passed.

Chapter 5. Assembling and Linking a Program 67

LOW ADDRESS

__y» (| Backchain to sender
SP after
4 Saved CR ik N
prolog of catcher 8 Saved LR Lin Zrea 8
12 Used by compilers (catcher)
16 Used by binders
20 Saved TOC
24 PW1 Arguments set by catcher
Space for PW1:PW8 —» (parameters used (7
is always reserved PWx by catcher's callee)
catcher's local Local stack area 6
variables
1 Possible alignment padding
-8*%m FPRs - 4*n GPRs ——>» [~~~ "~~~ T - ooo
First GPR to save catcher saves
m of sender's GPRs here 5
GPR31 always last (19 words maximum) o
-8*m FPRs ——» First FPR to save catcher saves
m of sender's FPRs here 4
FPR31 always last (19 words maximum)
— Back chain to caller of
sender's SP before 0 sender
call to catcher 4 | Saved CR (set by catcher) e
8 | Saved LR (set by catcher) Link area (sender) 3
12 Used by compilers
16 Used by binders
20 Saved TOC
24 PWI Argument set by sender TN
Space for PW1:PW8 — (parameters used by catcher) 2
is always reserved PWx
sender's local 1
variables ‘
HIGH ADDRESS

Figure 2. Runtime Stack

Stack Layout: Only one register, referred to as the stack pointer (SP), is used for addressing the stack,
and GPR1 is the dedicated stack pointer register. It grows from numerically higher storage addresses to
numerically lower addresses.

The Runtime Stack figure illustrates what happens when the sender function calls the catcher function,

and how the catcher function requires a stack frame of its own. When a function makes no calls and
requires no local storage of its own, no stack frame is required and the SP is not altered.

68 Assembler Language Reference

Notes:

1.

To reduce confusion, data being passed from the sender function (the caller) is referred to as
arguments, and the same data being received by the catcher function (the callee) is referred to as
parameters. The output argument area of sender is the same as the input parameter area of catcher.

The address value in the stack pointer must be quadword-aligned. (The address value must be a
multiple of 16.)

Stack Areas: For convenience, the stack layout has been divided into eight areas numbered 1 to 8,
starting from the bottom of the diagram (high address) to the top of the diagram (low address). The
sender’s stack pointer is pointing to the top of area 3 when the call to the catcher function is made, which
is also the same SP value that is used by the catcher function on entry to its prolog. The following is a
description of the stack areas, starting from the bottom of the diagram (area 1) and moving up to the top
(area 8):

Area 1: Sender’s Local Variable Area

Area 1 is the local variable area for the sender function, contains all local variables and temporary
space required by this function.

Area 2: Sender’s Output Argument Area

Area 2 is the output argument area for the sender function. This area is at least eight words in size and
must be doubleword-aligned. The first eight words are not used by the caller (the sender function)
because their corresponding values are placed directly in the argument registers (GPR3:GPR10). The
storage is reserved so that if the callee (the catcher function) takes the address of any of its
parameters, the values passed in GPR3:GPR10 can be stored in their address locations (PW1:PW8,
respectively). If the sender function is passing more than eight arguments to the catcher function, then
it must reserve space for the excess parameters. The excess parameters must be stored as register
images beyond the eight reserved words starting at offset 56 from the sender function’s SP value.

Note: This area may also be used by language processors and is volatile across calls to other
functions.

Area 3: Sender’s Link Area

Area 3 is the link area for the sender function. This area consists of six words and is at offset 0 from
the sender function’s SP at the time the call to the catcher function is made. Certain fields in this area
are used by the catcher function as part of its prolog code, those fields are marked in the Runtime
Stack figure and are explained below.

The first word is the back chain, the location where the sender function saved its caller's SP value prior
to modifying the SP. The second word (at offset 4) is where the catcher function can save the CR if it
modifies any of the nonvolatile CR fields. The third word (offset 8) is where the catcher function can
save the LR if the catcher function makes any calls.

The fourth word is reserved for compilers, and the fifth word is used by binder-generated instructions.
The last word in the link area (offset 20) is where the TOC area register (see [‘Understanding and|
[Programming the TOC” on page 82| for description) is saved by the global linkage (glink) interface
routine. This occurs when an out-of-module call is performed, such as when a shared library function is
called.

Area 4: Catcher’s Floating-Point Registers Save Area

Area 4 is the floating-point register save area for the callee (the catcher function) and is
doubleword-aligned. It represents the space needed to save all the nonvolatile FPRs used by the called
program (the catcher function). The FPRs are saved immediately above the link area (at a lower
address) at a negative displacement from the sender function’s SP. The size of this area varies from
zero to a maximum of 144 bytes, depending on the number of FPRs being saved (maximum number is
18 FPRs * 8 bytes each).

Area 5: Catcher’s General-Purpose Registers Save Area

Area 5 is the general-purpose register save area for the catcher function and is at least word-aligned. It
represents the space needed by the called program (the catcher function) to save all the nonvolatile
GPRs. The GPRs are saved immediately above the FPR save area (at a lower address) at a negative

Chapter 5. Assembling and Linking a Program 69

displacement from the sender function’s SP. The size of this area varies from zero to a maximum of 76
bytes, depending on the number of GPRs being saved (maximum number is 19 GPRs * 4 bytes each).

Notes:

1. A stackless leaf procedure makes no calls and requires no local variable area, but it may use
nonvolatile GPRs and FPRs.

2. The save area consists of the FPR save area (4) and the GPR save area (5), which have a
combined maximum size of 220 bytes. The stack floor of the currently executing function is located
at 220 bytes less than the value in the SP. The area between the value in the SP and the stack floor
is the maximum save area that a stackless leaf function may use without acquiring its own stack.
Functions may use this area as temporary space which is volatile across calls to other functions.
Execution elements such as interrupt handlers and binder-inserted code, which cannot be seen by
compiled codes as calls, must not use this area.

The system-defined stack floor includes the maximum possible save area. The formula for the size of
the save area is:
18+8
(for FPRs)
+ 19%4
(for GPRs)
= 220
* Area 6: Catcher’s Local Variable Area

Area 6 is the local variable area for the catcher function and contains local variables and temporary
space required by this function. The catcher function addresses this area using its own SP, which
points to the top of area 8, as a base register.

* Area 7: Catcher’s Output Argument Area

Area 7 is the output argument area for the catcher function and is at least eight words in size and must
be doubleword-aligned. The first eight words are not used by the caller (the catcher function), because
their corresponding values are placed directly in the argument registers (GPR3:GPR10). The storage is
reserved so that if the catcher function’s callee takes the address of any of its parameters, then the
values passed in GPR3:GPR10 can be stored in their address locations. If the catcher function is
passing more than eight arguments to its callee (PW1:PW8, respectively), it must reserve space for the
excess parameters. The excess parameters must be stored as register images beyond the eight
reserved words starting at offset 56 from the catcher function’s SP value.

Note: This area can also be used by language processors and is volatile across calls to other
functions.

¢ Area 8: Catcher’s Link Area

Area 8 is the link area for the catcher function and contains the same fields as those in the sender
function’s link area (area 3).

Stack-Related System Standard

All language processors and assemblers must maintain the stack-related system standard that the SP
must be atomically updated by a single instruction. This ensures that there is no timing window where an
interrupt that would result in the stack pointer being only partially updated can occur.

Note: The examples of program prologs and epilogs show the most efficient way to update the stack
pointer.

Prologs and Epilogs
Prologs and epilogs may be used for functions, including setting the registers on function entry and
restoring the registers on function exit.

No predetermined code sequences representing function prologs and epilogs are dictated. However,
certain operations must be performed under certain conditions. The following diagram shows the stack
frame layout.

70 Assembler Language Reference

LOW ADDRESS

Callee SP after prolog code —| Caller's SP saved here

Used by language processors

Used by binders

TOC save area

Callee Argument arca — PW1
PW2

P.V'\}x

Local Variables

GPR save area —»
GPR20 saved here
GPR30 saved here
GPR31 saved here

FPR save area —>»
FPR29 saved here
FPR30 saved here
FPR31 saved here

SP on entry to callee prolog— |
(Caller SP)

CR saved here

LR saved here (return address)

HIGH ADDRESS

Figure 3. Stack Frame Layout

A typical function’s execution stack is:
» Prolog action

* Body of function

* Epilog action

The Prolog Actions and Epilog Actions tables show the conditions and actions required for prologs and

epilogs.

Table 5. Prolog Actions

If:

Then:

Any nonvolatile FPRs (FPR14:FPR31) are used

Save them in the FPR save area (area 4 in the previous
figure).

Any nonvolatile GPRs (GPR13:GPR31) are used

Save them in the GPR save area (area 5 in the previous
figure).

LR is used for a nonleaf procedure

Save the LR at offset eight from the caller function SP.

Chapter 5. Assembling and Linking a Program 71

Table 5. Prolog Actions (continued)

If:

Then:

Any of the nonvolatile condition register (CR) fields are
used.

Save the CR at offset four from the caller function SP.

A new stack frame is required

Get a stack frame and decrement the SP by the size of
the frame padded (if necessary) to a multiple of 16 to
acquire a new SP and save caller's SP at offset 0 from
the new SP.

Note: A leaf function that does not require stack space for local variables and temporaries can save its
caller registers at a negative offset from the caller SP without actually acquiring a stack frame.

Table 6. Epilog Actions

If:

Then:

Any nonvolatile FPRs were saved

Restore the FPRs that were used.

Any nonvolatile GPRs were saved

Restore the GPRs that were saved.

The LR was altered because a nonleaf procedure was Restore LR.
invoked
The CR was altered Restore CR.

A new stack was acquired Restore the old SP to the value it had on entry (the

caller's SP). Return to caller.

While the PowerPC architecture provides both load and store multiple instructions for GPRs, it discourages
their use because their implementation on some machines may not be optimal. In fact, use of the load and
store multiple instructions on some future implementations may be significantly slower than the equivalent
series of single word loads or stores. However, saving many FPRs or GPRs with single load or store
instructions in a function prolog or epilog leads to increased code size. For this reason, the system
environment must provide routines that can be called from a function prolog and epilog that will do the
saving and restoring of the FPRs and GPRs. The interface to these routines, their source code, and some
prolog and epilog code sequences are provided.

As shown in the stack frame layout, the GPR save area is not at a fixed position from either the caller SP
or the callee SP. The FPR save area starts at a fixed position, directly above the SP (lower address) on
entry to that callee, but the position of the GPR save area depends on the number of FPRs saved. Thus, it
is difficult to write a general-purpose GPR-saving function that uses fixed displacements from SP.

If the routine needs to save both GPRs and FPRs, use GPR12 as the pointer for saving and restoring
GPRs. (GPR12 is a volatile register, but does not contain input parameters.) This results in the definition of
multiple-register save and restore routines, each of which saves or restores m FPRs and n GPRs. This is
achieved by executing a (Branch and Link Absolute) instruction to specially provided routines
containing multiple entry points (one for each register number), starting from the lowest nonvolatile
register.

Notes:

1. There are no entry points for saving and restoring GPR and FPR numbers greater than 29. It is more
efficient to save a small number of registers in the prolog than it is to call the save and restore
functions.

2. If the LR is not saved or restored in the following code segments, the language processor must
perform the saving and restoring as appropriate.

Language processors must use a proprietary method to conserve the values of nonvolatile registers across
a function call.

72 Assembler Language Reference

Three sets of save and restore routines must be made available by the system environment. These
routines are:

» A pair of routines to save and restore GPRs when FPRs are not being saved and restored.
* A pair of routines to save and restore GPRs when FPRs are being saved and restored.
» A pair of routines to save and restore FPRs.

Saving GPRs Only: For a function that saves and restores n GPRs and no FPRs, the saving can be
done using individual store and load instructions or by calling system-provided routines as shown in the
following example:

Note: The number of registers being saved is n. Sequences such as <32-n> in the following examples
indicate the first register number to be saved and restored. All registers from <32-n> to 31,
inclusive, are saved and restored.

#Following are the prolog/epilog of a function that saves n GPRS #(n>2):

mflr ro #move LR into GPRO
bla _savegpr0_<32-n> #branch and link to save GPRs
stwu rl,<-frame_size>(rl) #update SP and save caller's SP

#frame_size is the size of the
#stack frame to be required
<save CR if necessary>

#body of function
<reload save CR if necessary>

<reload caller's SP into R!> #see note below
ba _restgpr0_<32-n> #restore GPRs and return

Note: The restoring of the calling function SP can be done by either adding the frame_size value to the
current SP whenever frame_size is known, or by reloading it from offset 0 from the current SP. The
first approach is more efficient, but not possible for functions that use the [alloca] subroutine to
dynamically allocate stack space.

The following example shows a GPR save routine when FPRs are not saved:

_savegpr0_13 stw r13,-76(rl) #save rl13
_savegpr0_14 stw rl4,-72(rl) #save rl4
_savegpr0_15 stw r15,-68(rl) #save rlb
_savegpr0_16 stw rl6,-64(rl) #save rlb6
_savegpr0_17 stw rl7,-60(rl) #save rl17
_savegpr0_18 stw r18,-56(rl) #save rl18
_savegpr0_19 stw r19,-52(rl1) #save rl9
_savegpr0_20 stw r20,-48(rl) #save r20
_savegpr0_21 stw r21,-44(rl1) #save r2l
_savegpr0_22 Stw r22,-40(rl) #save r22
_savegpr0_23 stw r23,-36(rl) #save r23
_savegpr0_24 stw r24,-32(rl) #save r24
_savegpr0_25 stw r25,-28(rl) #save r25
_savegpr0_26 stw r26,-24(rl1) #save r26
_savegpr0_27 stw r27,-20(rl) #save r27
_savegpr0_28 stw r28,-16(rl) #save r28
_savegpr0_29 stw r29,-12(rl) #save r29
stw r30,-8(rl1) #save r30
stw r31,-4(rl) #save r3l
stw ro , 8(rl) #save LR 1in
#caller's frame
blr #return

Note: This save routine must not be called when GPR30 or GPR31, or both, are the only registers beings
saved. In these cases, the saving and restoring must be done inline.

The following example shows a GPR restore routine when FPRs are not saved:

Chapter 5. Assembling and Linking a Program 73

_restgpr0_13 Twz r13,-76(rl) #restore rl13
_restgpro_14 Twz ri4,-72(rl) #restore rl4
_restgpr0_15 Twz r15,-68(rl) #restore rl15
_restgpr0_16 Twz rl6,-64(rl) #restore rl6
_restgpr0_17 Twz r17,-60(rl) #restore rl17
_restgpr0_18 Twz r18,-56(rl) #restore rl18
_restgpr0_19 Twz r19,-52(rl1) #restore rl19
_restgpr0_20 Twz r20,-48(rl1) #restore r20
_restgpr0_21 Twz r21,-44(rl) #restore r2l
_restgpr0_22 Twz r22,-40(rl) #restore r22
_restgpr0_23 Twz r23,-36(rl1) #restore r23
_restgpr0_24 Twz r24,-32(rl) #restore r24
_restgpr0_25 Twz r25,-28(rl1) #restore r25
_restgpr0_26 Twz r26,-24(rl1) #restore r26
_restgpr0_27 Twz r27,-20(rl) #restore r27
_restgpr0_28 Twz r28,-16(rl) #restore r28
_restgpr0_29 Twz r0,8(rl) #get return
#address from
#frame
Twz r29,-12(rl) #restore r29
mtlr ro #move return
#address to LR
Twz r30,-8(rl) #restore r30
Twz r31,-4(rl1) #restore r31
blr #return

Note: This restore routine must not be called when GPR30 or GPR31, or both, are the only registers
beings saved. In these cases, the saving and restoring must be done inline.

Saving GPRs and FPRs: For a function that saves and restores n GPRs and m FPRs (n>2 and m>2),
the saving can be done using individual store and load instructions or by calling system-provided routines
as shown in the following example:

#The following example shows the prolog/epilog of a function #which save n GPRs and m FPRs:

mflr ro #move LR into GPR 0

subi rl2,rl,8*m #compute GPR save pointer

bla _savegprl_<32-n> #branch and Tink to save GPRs
bla savefpr_<32-m>

stwu ?1,<-frame_size>(rl) #update SP and save caller's SP
;;éve CR if necessary>

#body of function
;;é1oad save CR if necessary>

<reload caller's SP into rl1> #see note below on

subi rl2,rl,8*m #compute CPR restore pointer
bla _restgprl_<32-n> #restore GPRs
ba _restfpr_<32-m> #restore FPRs and return

Note: The calling function SP can be restored by either adding the frame_size value to the current SP
whenever the frame_size is known or by reloading it from offset 0 from the current SP. The first
approach is more efficient, but not possible for functions that use the subroutine to
dynamically allocate stack space.

The following example shows a GPR save routine when FPRs are saved:

_savegprl_13 stw r13,-76(rl12) #save rl3
_savegprl_14 stw r14,-72(rl12) #save rl4
_savegprl_15 stw r15,-68(r12) #save rl5
_savegprl_16 stw rl6,-64(r12) #save rl6
_savegprl 17 stw r17,-60(r12) #save rl17
_savegprl_18 stw r18,-56(rl12) #save rl8
_savegprl 19 stw r19,-52(r12) #save rl19
_savegprl_20 stw r20,-48(r12) #save r20

74 Assembler Language Reference

_savegprl_21
_savegprl 22
_savegprl 23
_savegprl_24
_savegprl 25
_savegprl_26
_savegprl_27
_savegprl_28
_savegprl_29

stw
stw
stw
stw
stw
stw
stw
stw
stw
stw
stw
blr

r21,-44(r12)
r22,-40(r12)
r23,-36(rl2)
r24,-32(r12)
r25,-28(r12)
r26,-24(r12)
r27,-20(r12)
r28,-16(r12)
r29,-12(r12)
r30,-8(r12)

r3l,-4(r12)

#save
#save
#save
#save
#save
#save
#save
#save
#save
#save
#save

r2l
r22
r23
r24
r25
r26
r27
r28
r29
r30
r31

#return

The following example shows an FPR save routine:

_savefpr_14
_savefpr_15
_savefpr_16
_savefpr_17
_savefpr_18
_savefpr_19
_savefpr_20
_savefpr_21
_savefpr_22
_savefpr_23
_savefpr_24
_savefpr_25
_savefpr_26
_savefpr_27
_savefpr_28
_savefpr_29

stfd
stfd
stfd
stfd
stfd
stfd
stfd
stfd
stfd
stfd
stfd
stfd
stfd
stfd
stfd
stfd
stfd
stfd
stw

blr

f14,-144(r1)
f15,-136(r1)
f16,-128(r1)
f17,-120(r1)
f18,-112(r1)
£19,-104(r1)
£20,-96(rl)
f21,-88(rl1)
f22,-80(r1)
f23,-72(rl)
f24,-64(r1)
f25,-56(rl)
£26,-48(rl)
f27,-40(r1)
£28,-32(r1)
29,-24(r1)
£30,-16(r1)
31,-8(r1)

ro , 8(rl)

#save
#save
#save
#save
#save
#save
#save
#save
#save
#save
#save
#save
#save
#save
#save
#save
#save
#save
#save

#caller's frame

f14
f15
f16
f17
f18
f19
20
f21
f22
f23
f24
f25
26
f27
f28
29
£30
31
LR

#return

in

The following example shows a GPR restore routine when FPRs are saved:

_restgprl_13
_restgprl_14
_restgprl_15
_restgprl_16
_restgprl_17
_restgprl_18
_restgprl 19
_restgprl_20
_restgprl 21
_restgprl_22
_restgprl_23
_restgprl 24
_restgprl_25
_restgprl 26
_restgprl_27
_restgprl 28
_restgprl_29

Twz
Twz
Twz
Twz
Twz
Twz
Twz
Twz
Twz
Twz
Twz
Twz
Twz
Twz
Twz
Twz
Twz
Twz
Twz
blr

r13,-76(r12)
r14,-72(r12)
r15,-68(r12)
rl6,-64(r12)
r17,-60(r12)
r18,-56(r12)
r19,-52(r12)
r20,-48(r12)
r2l,-44(rl2)
r22,-40(r12)
r23,-36(rl2)
r24,-32(rl2)
r25,-28(r12)
r26,-24(r12)
r27,-20(r12)
r28,-16(rl2)
r29,-12(r12)
r30,-8(r12)

r31,-4(r12)

#restore
#restore
#restore
#restore
#restore
#restore
#restore
#restore
#restore
#restore
#restore
#restore
#restore
#restore
#restore
#restore
#restore
#restore
#restore
#return

The following example shows an FPR restore routine:

_restfpr_14
_restfpr_15
_restfpr_16
_restfpr_17
_restfpr_18
_restfpr_19

1fd
1fd
1fd
1fd
1fd
1fd

r14,-144(rl1)
r15,-136(rl)
rl6,-128(rl)
rl7,-120(rl1)
r18,-112(rl)
r19,-104(rl1)

#restore
#restore
#restore
#restore
#restore
#restore

rl3
rl4
rl5
rlé
rl7
r18
rl9
r20
r2l
r22
r23
r24
r25
r26
r27
r28
r29
r30
r3l

rl4
rl5
rl6
rl7
rl8
r19

Chapter 5. Assembling and Linking a Program

75

_restfpr_20 1fd r20,-96(r1) #restore r20

_restfpr_21 1fd r21,-88(rl1) #restore r2l
_restfpr_22 1fd r22,-80(rl) #restore r22
_restfpr_23 1fd r23,-72(rl1) #restore r23
_restfpr_24 1fd r24,-64(rl) #restore r24
_restfpr_25 1fd r25,-56(rl1) #restore r25
_restfpr_26 1fd r26,-48(rl1) #restore r26
_restfpr_27 1fd r27,-40(r1) #restore r27
_restfpr_28 1fd r28,-32(rl) #restore r28
_restfpr_29 Twz r0,8(rl) #get return
#address from
#frame
1fd r29,-24(r1) #restore r29
mtlr ro #move return
#address to LR
1fd r30,-16(rl1) #restore r30
1fd r31,-8(rl1) #restore r31
blr #return

Saving FPRs Only: For a function that saves and restores m FPRs (m>2), the saving can be done using
individual store and load instructions or by calling system-provided routines as shown in the following
example:

#The following example shows the prolog/epilog of a function #which saves m FPRs and no GPRs:

mflr ro #move LR into GPR 0
bla _savefpr_<32-m>
stwu rl,<-frame_size>(rl) #update SP and save caller's SP

<save CR if necessary>
#body of function
<reload save CR if necessary>

<reload caller's SP into rl1> #see note below

ba _restfpr_<32-m> #restore FPRs and return
Notes:

1. There are no entry points for saving and restoring GPR and FPR numbers higher than 29. It is more
efficient to save a small number of registers in the prolog than to call the save and restore functions.

2. The restoring of the calling function SP can be done by either adding the frame_size value to the
current SP whenever frame_size is known, or by reloading it from offset 0 from the current SP. The
first approach is more efficient, but not possible for functions that use the subroutine to
dynamically allocate stack space.

Updating the Stack Pointer: The PowerPC @ (Store Word with Update) instruction is used for
computing the new SP and saving the back chain. This instruction has a signed 16-bit displacement field
that can represent a maximum signed value of 32,768. A stack frame size greater than 32K bytes requires
two instructions to update the SP, and the update must be done atomically.

The two assembly code examples illustrate how to update the SP in a prolog.
To compute a new SP and save the old SP for stack frames larger than or equal to 32K bytes:

addis rl2, r0, (<-frame_size> > 16) & OXFFFF
set rl12 to left half of frame size

ori r12, r12 (-frame_size> & OXFFFF
Add right halfword of frame size
stwux rl, rl, rl2 # save old SP and compute new SP

To compute a new SP and save the old SP for stack frames smaller than 32K bytes:
stwu rl, <-frame_size>(rl) #update SP and save caller's SP

76 Assembler Language Reference

Calling Routine’s Responsibilities

When an assembler language program calls another program, the caller should not use the names of the
called program’s commands, functions, or procedures as global assembler language symbols. To avoid
confusion, follow the naming conventions for the language of the called program when you create symbol
names. For example, if you are calling a C language program, be certain you use the naming conventions
for that language.

A called routine has two symbols associated with it: a function descriptor (Name) and an entry point
(.Name). When a call is made to a routine, the compiler branches to the name point directly.

Except for when loading parameters into the proper registers, calls to functions are expanded by compilers
to include an NOP instruction after each branch and link instruction. This extra instruction is modified by
the linkage editor to restore the contents of the TOC register (register 2) on return from an out-of-module
call.

The instruction sequence produced by compilers is:

b1 .foo #Branch to foo
cror 31,31,31 #Special NOP Ox4ffffb82

Note: Some compilers produce a cror 15,15,15 (0x4def7b82) instruction. To avoid having to restore
condition register 15 after a call, the linkage editor transforms cror 15,15,15 into cror 31,31,31.
Condition register bit 31 is not preserved across a call and does not have to be restored.

The linkage editor will do one of two things when it sees the instruction (in the previous instruction
sequence, on a call to the foo function):

 If the foo function is imported (not in the same executable module), the linkage editor:
— Changes the bl .foo instruction to bl .glink_of_foo (a global linkage routine).
— Inserts the .glink code sequence into the (/usr/lib/glink.o file) module.
— Replaces the NOP instruction with an |I| (load) instruction to restore the TOC register.

The bl .foo instruction sequence is changed to:

b1 .glink_of_foo #Branch to global linkage routine for foo
12,20(1) #Restore TOC register instruction 0x80410014

» If the foo function is bound in the same executable module as its caller, the linkage editor:
— Changes the bl .glink_of_foo sequence (a global linkage routine) to bl .foo.
— Replaces the restore TOC register instruction with the special NOP cror instruction.

The |b| .glink_of_foo| instruction sequence is changed to:

b1 .foo #Branch to foo
cror 31,31,31 #Special NOP instruction Ox4ffffbh82

Note: For any export, the linkage editor inserts the procedure’s descriptor into the module.

Called Routine’s Responsibilities

Prologs and epilogs are used in the called routines. On entry to a routine, the following steps should be
performed:

1. Use some or all of the prolog actions described in the |Prolog Actions] table.
2. Store the back chain and decrement the stack pointer (SP) by the size of the stack frame.

Note: If a stack overflow occurs, it will be known immediately when the store of the back chain is
completed.

On exit from a procedure, use some or all of the epilog actions described in the |Epilog Actions| table.

Chapter 5. Assembling and Linking a Program 77

Traceback Tags

Every assembly (compiled) program needs traceback information for the debugger to examine if the
program traps or crashes during execution. This information is in a traceback table at the end of the last
machine instruction in the program and before the program’s constant data.

The traceback table starts with a full word of zeros, X’00000000’, which is not a valid system instruction.
The zeros are followed by 2 words (64 bits) of mandatory information and several words of optional
information, as defined in the /usr/include/sys/debug.h file. Using this traceback information, the
debugger can unwind the CALL chain and search forward from the point where the failure occurred until it
reaches the end of the program (the word of zeros).

In general, the traceback information includes the name of the source language and information about
registers used by the program, such as which general-purpose and floating-point registers were saved.

Example
The following is an example of assembler code called by a C routine:

Call this assembly routine from C routine:
callfile.c:
main()

examlinkage();

Compile as follows:
cc -o callfile callfile.c examlinkage.s

#

#

#

#

#

#

#

#

#
liiididdddaddsdtsdaddsadaddsddsRtadtsdsdsdsdddaRdgdtdRiaRadiad
On entry to a procedure(callee), all or some of the
following steps should be done:

1. Save the link register at offset 8 from the

stack pointer for non-leaf procedures.

2. If any of the CR bits 8-19(CR2,CR3,CR4) is used
then save the CR at displacement 4 of the current
stack pointer.

3. Save all non-volatile FPRs used by this routine.
If more that three non-volatile FPR are saved,
a call to ._savefn can be used to

save them (n is the number of the first FPR to be
saved).

4, Save all non-volatile GPRs used by this routine
in the caller's GPR SAVE area (negative displacement
from the current stack pointer rl).

5. Store back chain and decrement stack pointer by the
size of the stack frame.

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

On exit from a procedure (callee), all or some of the
following steps should be done:
1. Restore all GPRs saved.
2. Restore stack pointer to value it had on entry.
3. Restore Link Register if this is a non-leaf
procedure.
4. Restore bits 20-31 of the CR is it was saved.
5. Restore all FPRs saved. If any FPRs were saved then
a call to ._savefn can be used to restore them
(n is the first FPR to be restored).
6. Return to caller.
ifgstdssdddssddsssdtasddtsaddssdddasddtsddsddtsddtssadssadiasii
The following routine calls printf() to print a string.
The routine performs entry steps 1-5 and exit steps 1-6.
The prolog/epilog code is for small stack frame size.
DSA + 8 < 32k
ifgdddssdddsaddsssddssddtaaddssdddsddsddisdddaddtasadtaadissii
.file "examlinkage.s"

78 Assembler Language Reference

#Static data entry in T(able)O(f)C(ontents)
.toc
T.examlinkage.c: .tc examlinkage.c[tc],examlinkage.c[rw]
.glob1 examlinkage[ds]
#examlinkage[ds] contains definitions needed for
#runtime Tinkage of function examlinkage
.csect examlinkage[ds]
.Tong .examlinkage[PR]
.long TOC[tcO]

.long 0
#Function entry in T(able)0(f)C(ontents)
.toc
T.examlinkage: .tc .examlinkage[tc],examlinkage[ds]

#Main routine
.glob1 .examlinkage[PR]
.csect .examlinkage[PR]

Set current routine stack variables
These values are specific to the current routine and
can vary from routine to routine

.set argarea, 32

.set lTinkarea, 24

.set locstckarea, 0

.set nfprs, 18

.set ngprs, 19

.set szdsa,
8*nfprs+d+ngprs+linkareatargareatlocstckarea
#PROLOG: Called Routines Responsibilities

Get Tink reg.

mflr 0

Get CR if current routine alters it.

mfcr 12

Save FPRs 14-31.

b1 ._savefl4

cror 31, 31, 31

Save GPRs 13-31.

stm 13, -8xnfprs-4*ngprs(1)

Save LR if non-Teaf routine.

st 0, 8(1)

Save CR if current routine alters it.

st 12, 4(1)

Decrement stack ptr and save back chain.
stu 1, -szdsa(1)

lgddaddsddsddsdtsdsddsddaddaddaid
#load static data address
ligdaddsddaddsddaddsddadaddadaidd
1 14,T.examlinkage.c(2)
Load string address which is an argument to printf.
cal 3, printing(14)
Call to printf routine
b1 .printf[PR]
cror 31, 31, 31
#EPILOG: Return Sequence
Restore stack ptr

ai 1, 1, szdsa

Restore GPRs 13-31.

Tm 13, -8#nfprs-4+ngprs(1)
Restore FPRs 14-31.

b1 ._restfl4

cror 31, 31, 31
Get saved LR.

1 0, 8(1)

Get saved CR if this routine saved it.
1 12, 4(1)

Move return address to Tink register.
mtir 0

Restore CR2, CR3, & CR4 of the CR.
mtcrf 0x38,12

Chapter 5. Assembling and Linking a Program

79

Return to address held in Link Register.

brl
.tbtag 0x0,0xc,0x0,0x0,0x0,0x0,0x0,0x0
External variables

.extern ._savefl4
.extern ._restfl4
.extern .printf[PR]
idgsdddsddddddddsddddsaddasddsaadd
Data
s ddddddsddddsdddssdddssddasdd
.csect examlinkage.c[rw]
.align 2
printing: .byte 'E,'x,'a,'m,'p,'l,'e," ,'f,'0,'r,’
.byte '"P,'R,'I,'N,'T,'I,'N, "G
.byte 0Oxa,0x0

Using Milicode Routines

All of the fixed-point divide instructions, and some of the multiply instructions, are different for POWER
family and PowerPC. To allow programs to run on systems based on either architecture, a set of special
routines is provided by the operating system. These are called milicode routines and contain
machine-dependent and performance-critical functions. Milicode routines are located at fixed addresses in
the kernel segment. These routines can be reached by a instruction. All milicode routines use the link
register.

Notes:

1. No unnecessary registers are destroyed. Refer to the definition of each milicode routine for register
usage information.

2. Milicode routines do not alter any floating-point register, count register, or general-purpose registers
(GPRs) 10-12. The link register can be saved in a GPR (for example, GPR 10) if the call appears in a
leaf procedure that does not use nonvolatile GPRs.

3. Milicode routines do not make use of a TOC.

The following milicode routines are available:

__mulh Calculates the high-order 32 bits of the integer product arg? * arg2.
Input R3 = arg1 (signed integer)
R4 = arg2 (signed integer)
Output R3 = high-order 32 bits of arg1*arg2

POWER family Register Usage
GPR3, GPR4, MQ

PowerPC Register Usage
GPRS3, GPR4

__mull Calculates 64 bits of the integer product arg? * arg2, returned in two 32-bit registers.
Input R3 = arg? (signed integer)
R4 = arg2 (signed integer)
Output R3 = high-order 32 bits of arg1*arg2
R4 = low-order 32 bits of arg1*arg2

POWER family Register Usage
GPRS3, GPR4, MQ

PowerPC Register Usage
GPRO, GPR3, GPR4

80 Assembler Language Reference

__divss

__divus

__quoss

__quous

Calculates the 32-bit quotient and 32-bit remainder of signed integers arg1/arg2. For division by zero
and overflow, the quotient and remainder are undefined and may vary by implementation.

Input R3 = arg1 (dividend) (signed integer)
R4 = arg2 (divisor) (signed integer)

Output R3 = quotient of arg1/arg2 (signed integer)
R4 = remainder of arg1/arg2 (signed integer)

POWER family Register Usage
GPRS3, GPR4, MQ

PowerPC Register Usage
GPRO, GPR3, GPR4

Calculated the 32-bit quotient and 32-bit remainder of unsigned integers arg1/arg2. For division by zero

and overflow, the quotient and remainder are undefined and may vary by implementation.
Input R3 = arg1 (dividend) (unsigned integer)

R4 = arg2 (divisor) (unsigned integer)
Output R3 = quotient of arg1/arg2 (unsigned integer)

R4 = remainder of arg1/arg2 (unsigned integer)

POWER family Register Usage
GPRO, GPR3, GPR4, MQ, CR0 and CR1 of CR

PowerPC Register Usage
GPRO, GPR3, GPR4

Calculates the 32-bit quotient of signed integers arg1/arg2. For division by zero and overflow, the
quotient and remainder are undefined and may vary by implementation.

Input R3 = arg? (dividend) (signed integer)
R4 = arg2 (divisor) (signed integer)
Output R3 = quotient of arg1/arg2 (signed integer)

POWER family Register Usage
GPR3, GPR4, MQ

PowerPC Register Usage

GPR3, GPR4
Calculates the 32-bit quotient of unsigned integers arg1/arg2. For division by zero and overflow, the
quotient and remainder are undefined and may vary by implementation.

Input R3 = arg? (dividend) (unsigned integer)
R4 = arg2 (divisor) (unsigned integer)
Output R3 = quotient of arg1/arg2 (unsigned integer)

POWER family Register Usage
GPRO, GPR3, GPR4, MQ, CR0 and CR1 of CR

PowerPC Register Usage
GPR3, GPR4

The following example uses the mulh milicode routine in an assembler program:

1i R3, -900
11 R4, 50000
bla ._mulh

.extern .__mulh

Chapter 5. Assembling and Linking a Program

81

Related Information
[‘Assembling and Linking a Program” on page 53

[‘Understanding Assembler Passes” on page 57

[‘Interpreting an Assembler Listing” on page 59|

[‘Interpreting a Symbol Cross-Reference” on page 63

[‘Understanding and Programming the TOC."|

[‘Running a Program” on page 87|

[0 (Branch) Instruction” on page 143 |[‘cror (Condition Register OR) Instruction” on page 168

Understanding and Programming the TOC

The Table of Contents (TOC) of an [XCOFFH|file is analogous to the table of contents of a book. The TOC is
used to find objects in an XCOFF file. An XCOFF file is composed of sections that contain different types
of data to be used for specific purposes. Some sections can be further subdivided into subsections or
csects. A csect is the smallest replaceable unit of an XCOFF file. At run time, the TOC can contain the
csect locations (and the locations of labels inside of csects).

The three sections that contain csects are:

text Indicates that this csect contains code or read-only data.
.data Indicates that this csect contains read-write data.
.bss Indicates that this csect contains uninitialized mapped data.

The storage class of the csect determines the section in which the csect is grouped.

The TOC is located in the .data section of an XCOFF object file and is composed of TOC entries. Each
TOC entry is a csect with storage mapping class of TC or TD.

A TOC entry with TD storage mapping class contains scalar data which can be directly accessed from the
TOC. This permits some frequently used global symbols to be accessed directly from the TOC rather than
indirectly through an address pointer csect contained within the TOC. To access scalar data in the TOC,
two pieces of information are required:

* The location of the beginning of the TOC (i.e. the TOC anchor).
» The offset from the TOC anchor to the specific TOC entry that contains the data.

A TOC entry with TC storage mapping class contains the addresses of other csects or global symbols.
Each entry can contain one or more addresses of csects or global symbols, but putting only one address
in each TOC entry is recommended.

When a program is assembled, the csects are sorted such that the .text csects are written first, followed
by all .data csects except for the TOC. The TOC is written after all the other .data csects. The TOC
entries are relocated, so that the TOC entries with TC storage mapping class contain the csect addresses
after the sort, rather than the csect addresses in the source program.

When an XCOFF module is loaded, TOC entries with TC storage mapping class are relocated again so
that the TOC entries are filled with the real addresses where the csects will reside in memory. To access a
csect in the module, two pieces of information are required:

* The location of the beginning of the TOC.

82 Assembler Language Reference

» The offset from the beginning of the TOC to the specific TOC entry that points to the csect. If a TOC
entry has more than one address, each address can be calculated by adding (0...(n-1))*4 to the offset,
where n is the position of the csect address defined with the [*.tc Pseudo-op” on page 503

Using the TOC

To use the TOC, you must follow certain conventions:
» General-Purpose Register 2 always contains a pointer to the TOC.

» All references from the .text section of an assembler program to .data or the .bss sections must occur
via the TOC.

The TOC register (General-Purpose Register 2) is set up by the system when a program is invoked. It
must be maintained by any code written. The TOC register provides module context so that any routines in
the module can access data items.

The second of these conventions allows the .text and .data sections to be easily loaded into different
locations in memory. By following this convention, you can assure that the only parts of the module to
need relocating are the TOC entries.

Accessing Data through the TOC Entry with TC Storage Mapping Class

An external data item is accessed by first getting that item’s address out of the TOC, and then using that
address to get the data. In order to do this, proper relocation information must be provided to access the
correct TOC entry. The .toc and .tc pseudo-ops generate the correct information to access a TOC entry.
The following code shows how to access item a using its TOC entry:

.set RTOC,2

.csect progl[pr] #progl is a csect
#containing instrs.

1 5,TCA(RTOC) #Now GPR5 contains the
#address of a[rw].

.toc

TCA: .tc aftc],a[rw] #1st parameter is TOC entry

#name, 2nd is contents of
#T0C entry.

.extern a[rw] #a[rw] is an external symbol.

This same method is used to access a program’s static internal data, which is data that retains its value
over a call, but which can only be accessed by the procedures in the file where the data items are
declared. Following is the C language data having the static attribute:

static int xyz;

This data is given a name determined by convention. In XCOFF, the name is preceded by an underscore:
.csect progl[pr]

1 1,STprogl(RTOC) #Load rl1 with the address
#progl's static data.
.csect _progl[rw] #progl's static data.
.Tong 0
.toc
STprogl: .tc.progl[tc], progl[rw] #T0OC entry with address of

#progl's static data.

Accessing Data through the TOC entry with TD Storage Mapping Class

A scalar data item can be stored into a TOC entry with TD storage mapping class and retrieved directly
from the TOC entry.

Chapter 5. Assembling and Linking a Program 83

Note: TOC entries with TD storage mapping class should be used only for frequently used scalars. If the
TOC grows too big (either because of many entries or because of large entries) the assembler may
report message 1252-171 indicating an out of range displacement.

The following examples show several ways to store and retrieve a scalar data item as a TOC with TD
storage mapping class. Each example includes C source for a main program, assembler source for one
module, instructions for linking and assembling, and output from running the program.

Example Using .csect Pseudo-op with TD Storage Mapping Class
1. The following is the source for the C main program tdl.c:

/* This C module named tdl.c */
extern long t_data;
extern void mod_s();
main()
{
mod_s();
printf("t_data is %d\n", t_data);
}

2. The following is the assembler source for module modl.s:

.file "modl.s"

.csect .mod_s[PR]

.glob1 .mod_s[PR]

.set RTOC, 2

1 5, t_data[TD](RTOC) # Now GPR5 contains the

t_data value 0x10

ai 5,5,14

stu 5, t_data[TD] (RTOC)

br

.glob1l t data[TD]

.toc

.csect t_data[TD] # t_data is a global symbol
that has value of 0x10
using TD csect will put this
data into TOC area

.Tong 0x10

3. The following commands assemble and compile the source programs into an executable td1:
as -0 modl.o modl.s
cc -0 tdl tdl.c modl.o

4. Running td1 prints the following:
t_data is 30

Example Using .comm Pseudo-op with TD Storage Mapping Class
1. The following is the source for the C main program td2.c:

/* This C module named td2.c */

extern long t_data;

extern void mod_s();

main()

{
t _data =
mod_s();
printf("t _data is %d\n", t_data);

1234;

}
2. The following is the assembler source for module mod2.s:

.file "mod2.s"

.csect .mod_s[PR]

.glob1 .mod_s[PR]

.set RTOC, 2

1 5, t_data[TD](RTOC) # Now GPR5 contains the
t_data value

ai 5,5,14

84 Assembler Language Reference

stu 5, t_data[TD] (RTOC)

br

.toc

.comm t_data[TD],4 # t_data is a global symbol

3. The following commands assemble and compile the source programs into an executable td2:

as -0 mod2.0 mod2.s
cc -0 td2 td2.c mod2.0

4. Running td2 prints the following:
t_data is 1248

Example Using an External TD Symbol
/* This C module named td3.c x/
long t_data;
extern void mod_s();
main()

_ = 234;
mod_s();
("

printf("t_data is %d\n", t_data);

}
2. The following is the assembler source for module mod3.s:

.file "mod3.s"

.csect .mod_s[PR]

.glob1 .mod_s[PR]

.set RTOC, 2

1 5, t_data[TD](RTOC) # Now GPR5 contains the
t_data value

ai 5,5,14

stu 5, t_data[TD] (RTOC)

br

.toc

.extern t_data[TD] # t_data is a external symbol

3. The following commands assemble and compile the source programs into an executable td3:

./as -0 mod3.o mod3.s
cc -0 td3 td3.c mod3.o

4. Running td3 prints the following:
t data is 248

Intermodule Calls Using the TOC

Because the only access from the text to the data section is through the TOC, the TOC provides a feature
that allows intermodule calls to be used. As a result, routines can be linked together without resolving all
the addresses or symbols at link time. In other words, a call can be made to a common utility routine
without actually having that routine linked into the same module as the calling routine. In this way, groups
of routines can be made into modules, and the routines in the different groups can call each other, with the
bind time being delayed until load time. In order to use this feature, certain conventions must be followed
when calling a routine that is in another module.

To call a routine in another module, an interface routine (or global linkage routine) is called that switches
context from the current module to the new module. This context switch is easily performed by saving the
TOC pointer to the current module, loading the TOC pointer of the new module, and then branching to the
new routine in the other module. The other routine then returns to the original routine in the original
module, and the original TOC address is loaded into the TOC register.

To make global linkage as transparent as possible, a call can be made to external routines without

specifying the destination module. During bind time, the binder (linkage editor) determines whether to call
global linkage code, and inserts the proper global linkage routine to perform the intermodule call. Global

Chapter 5. Assembling and Linking a Program 85

linkage is controlled by an import list. An import list contains external symbols that are resolved during run
time, either from the system or from the dynamic load of another object file. See the command for
information about import lists.

The following example calls a routine that may go through global linkage:
.csect progl[PR]

.extern prog2[PR] #prog2 is an external symbol.

b1 .prog2[PR] #call prog2[PR], binder may insert
#global linkage code.

cror 31,31,31 #place holder for instruction to

#restore TOC address.

The following example shows a call through a global linkage routine:
#AIX linkage register conventions:

R2 TOC
R1 stack pointer
RO, R12 work registers, not preserved
LR Link Register, return address.
.csect .progl[PR]
b1 .prog2[GL] #Branch to global
#1inkage code.
1 2,stktoc(1) #Restore TOC address
.toc
prog2: .tc prog2[TC],prog2[DS] #TOC entry:

address of descriptor
for out-of-module

routine
.extern prog2[DS]
##
The following is an example of global Tinkage code.
.set stktoc,20
.csect .prog2[GL]
.globl .prog2
.prog2: 1 12,prog2(2) #Get address of
#out-of-module
#descriptor.
st 2,stktoc(1) #save callers' toc.
1 0,0(12) #Get its entry address
#from descriptor.
1 2,4(12) #Get its toc from
#descriptor.
mtctr 0 #Put into Count Register.
bctr #Return to entry address

#in Count Register.
#Return is directly to
#original caller.

Related Information
[‘Assembling and Linking a Program” on page 53|

[‘Understanding Assembler Passes” on page 57|

[‘Interpreting an Assembler Listing” on page 59

[‘Interpreting a Symbol Cross-Reference” on page 63,

[‘Subroutine Linkage Convention” on page 65.

[‘Running a Program” on page 87

86 Assembler Language Reference

“.csect Pseudo-op” on page 473 |[“.tbtag Pseudo-op” on page 501 |[“.tc Pseudo-op” on page 503 ||“.tod
Pseudo-op” on page 504,|[“.tocof Pseudo-op” on page 504.

Running a Program

A program is ready to run when it has been assembled and linked without producing any error messages.

To run a program, first ensure that you have operating system permission to execute the file. Then type
the program’s name at the operating system prompt:

$ progname

By default, any program output goes to standard output. To direct output somewhere other than standard
output, use the operating system shell > (more than symbol) operator.

Run-time errors can be diagnosed by invoking the symbolic debugger with the command. This
symbolic debugger works with any code that adheres to XCOFF format conventions. The dbx command
can be used to debug all compiler- and assembler-generated code.

Related Information
[‘Assembling and Linking a Program” on page 53

[‘Understanding Assembler Passes” on page 57|

[‘Interpreting an Assembler Listing” on page 59

[‘Interpreting a Symbol Cross-Reference” on page 63,

[‘Subroutine Linkage Convention” on page 65,

[‘Understanding and Programming the TOC” on page 82

The command.
The jas| command, command, |ldj command.

[0 (Branch) Instruction” on page 143 |[‘cror (Condition Register OR) Instruction” on page 168

“.csect Pseudo-op” on page 473 |“.tbtag Pseudo-op” on page 501 [“.tc Pseudo-op” on page 503 “.tod
Pseudo-op” on page 504[‘.tocof Pseudo-op” on page 504 .|

Chapter 5. Assembling and Linking a Program

87

88 Assembler Language Reference

Chapter 6. Extended Instruction Mnemonics

The assembler supports a set of extended mnemonics and symbols to simplify assembly language
programming. All extended mnemonics should be in the same assembly mode as their base mnemonics.
Although different extended mnemonics are provided for POWER family and PowerPC, the assembler
generates the same object code for the extended mnemonics if the base mnemonics are in the com
assembly mode. The assembly mode for the extended mnemonics are listed in each extended mnemonics
section. The POWER family and PowerPC extended mnemonics are listed separately in the following
sections for migration purposes:

+ ['‘Extended Mnemonics of Branch Instructions]

[‘Extended Mnemonics of Condition Register Logical Instructions” on page 96|
[‘Extended Mnemonics of Fixed-Point Arithmetic Instructions” on page 97|

[‘Extended Mnemonics of Fixed-Point Compare Instructions” on page 98|

[‘Extended Mnemonics of Fixed-Point Load Instructions” on page 99

[‘Extended Mnemonics of Fixed-Point Logical Instructions” on page 100|

[‘Extended Mnemonics of Fixed-Point Trap Instructions” on page 100

[‘Extended Mnemonic mtcr for Moving to the Condition Register” on page 102
[‘Extended Mnemonics of Moving from or to Special-Purpose Registers” on page 102|
[‘Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions” on page 107|

Extended Mnemonics of Branch Instructions

The assembler supports extended mnemonics for Branch Conditional, Branch Conditional to Link Register,
and Branch Conditional to Count Register instructions. Since the base mnemonics for all the Branch
Conditional instructions are in the com assembly mode, all of their extended mnemonics are also in the
com assembly mode.

Extended mnemonics are constructed by incorporating the BO and B/ input operand into the mnemonics.
Extended mnemonics always omit the BH input operand and assume its value to be 0b0O.

Branch Mnemonics That Incorporate Only the BO Operand

The following tables show the instruction format for extended mnemonics that incorporate only the BO
field. The target address is specified by the target_addr operand. The bit in the condition register for
condition comparison is specified by the Bl operand. The value of the Bl operand can be specified by an
expression. The CR field number should be multiplied by four to get the correct CR bit, since each CR
field has four bits.

Note: Some extended mnemonics have two input operand formats.

Table 7. POWER family Extended Mnemonics (BO Field Only)

Mnemonics

Input Operands

Equivalent to

bdz, bdza, bdzl, bdzla

target_addr

bec, bea, bel, bela

18, 0, target_addr

bdn, bdna, bdnl, bdnla

target_addr

bc, bea, bcl, bela

16, 0, target_addr

bdzr, bdzrl

None

ber, berl

18,0

bdnr, bdnrl

None

ber, berl

16, 0

bbt, bbta, bbtl, bbtla

1) BI, target_addr

bec, bea, bel, bela

12, BI, target_addr

2) target_addr

12, 0, target_addr

bbf, bbfa, bbfl, bbfla

bc, bea, bel, bela

4, BI, target_addr

)
1) B, target_addr
2) target_addr

4, 0, target_addr

© Copyright IBM Corp. 1997, 2006

89

Table 7. POWER family Extended Mnemonics (BO Field Only) (continued)

Mnemonics Input Operands Equivalent to

bbtr, bbtc, bbtrl, bbtcl 1) Bl ber, bec, berl, becel 12, B/
2) None 12,0

bbfr, bbfc, bbfrl, bbfcl 1) Bl ber, bee, berl, becel 4, BI
2) None 4,0

br, betr, brl, betrl None ber, bece, berl, becel 20,0

Table 8. PowerPC Extended Mnemonics (BO Field Only)

Mnemonics

Input Operands

Equivalent to

bdz, bdza, bdzl, bdzla

target_addr

be, bca, bel, bela 18, 0, farget_addr

bdnz, bdnza, bdnzl, bdnzla

target_addr

be, bea, bcel, bela 16, 0, target_addr

bdzlr, bdzirl

None

belr, belrl 18, 0

bdnzlr, bdnzirl

None

bclr, belrl 16, 0

bt, bta, btl, btla

BI, target_addr

be, beca, bel, bela 12, Bl, target_addr

2) target_addr

12, 0, target_addr

bf, bfa, bfl, bfla

1) B, target_addr

be, beca, bel, bela 4, B, target_addr

2) target_addr

4, 0, target_addr

bdzt, bdzta, bdztl, bdztla

1) BI, target_addr

be, bea, bel, bela 10, B/, target_addr

2) target_addr

10, 0, farget_addr

bdzf, bdzfa, bdzfl, bdzfla

1) BI, target_addr

be, bea, bcel, bela 2, Bl, target_addr

2) target_addr

2, 0, target_addr

bdnzt, bdnzta, bdnztl, bdnztla

1) BI, target_addr

be, bea, bcel, bela 8, Bl, target_addr

2) target_addr

8, 0, target_addr

bdnzf, bdnzfa, bdnzfl, bdnzfla

1) BI, target_addr

be, bea, bcel, bela 0, Bl, target_addr

target adadr

0, 0, target_addr

btlr, btctr, btirl, btctrl

1

bclr, bectr, belrl, beetrl 12, B/

1)
)
)
)
)
)
)
)
)
)
)
2)
) B
)
) B
)
) B
)
) B
)
) B
)
) B
2)

2) None 12,0
bflr, bfctr, bflrl, bfctrl 1 belr, bectr, belrl, becetrl 4, B/
2) None 4,0
bdztir, bdztirl 1 belr, belrl 10, B/
2) None 10,0
bdzflr, bdzfirl 1 belr, belrl 2, B/
2) None 2,0
bdnztlr, bdnztirl 1 belr, belrl 8, B/
2) None 8,0
bdnzflr, bdnzfirl 1 belr, belrl 0, B/
None 0,0
bir, betr, birl, betrl None belr, bectr, belrl, beetrl 20, 0

90 Assembler Language Reference

Extended Branch Mnemonics That Incorporate the BO Field and a
Partial Bl Field

When the BO field and a partial Bl field are incorporated, the instruction format is one of the following:

* mnemonic BIF, target_addr
* mnemonic target_addr

where the BIF operand specifies the CR field number (0-7) and the target_addr operand specifies the
target address. If CRO is used, the BIF operand can be omitted.

Based on the bits definition in the CR field, the following set of codes has been defined for the most
common combinations of branch conditions:

Branch Code Meaning

It less than *

eq equal to *

gt greater than *

so summary overflow *

le less than or equal to * (not greater than)
ge greater than or equal to * (not less than)
ne not equal to *

ns not summary overflow *

nl not less than

ng not greater than

z zero

nu not unordered (after floating-point comparison)
nz not zero

un unordered (after floating-point comparison)

The assembler supports six encoding values for the BO operand:
» Branch if condition true (BO=12):

POWER family PowerPC
bxx bxx

bxxa bxxa

bxxi bxxi
bxxla bxxla
bxxr bxxir
bxxrl bxxirl
bxxc bxxctr
bxxcl bxxctrl

where xx specifies a Bl operand branch code of 1t, gt, eq, so, z, or un.
» Branch if condition false (BO=04):

POWER family PowerPC
bxx bxx

bxxa bxxa

bxxi bxxl
bxxla bxxla
bxxr bxxir
bxxrl bxxirl
bxxc bxxctr
bxxcl bxxctrl

where xx specifies a Bl operand branch code of ge, Te, ne, ns, nl, ng, nz, or nu.

Chapter 6. Extended Instruction Mnemonics

91

» Decrement CTR, then branch if CTR is nonzero and condition is true (BO=08):
— bdnxx
where xx specifies a Bl operand branch code of 1t, gt, eq, or so (marked by an * (asterisk) in the
[Branch Code list).
« Decrement CTR, then branch if CTR is nonzero and condition is false (BO=00):
— bdnxx

where xx specifies a Bl operand branch code of Te, ge, ne, or ns (marked by an * (asterisk) in the
[Branch Code list).

» Decrement CTR, then branch if CTR is zero and condition is true (BO=10):
— bdzxx

where xx specifies a Bl operand branch code of 1t, gt, eq, or so (marked by an * (asterisk) in the
[Branch Code list).

* Decrement CTR, then branch if CTR is zero and condition is false (BO=02):
— bdzxx

where xx specifies a Bl operand branch code of 1e, ge, ne, or ns (marked by an * (asterisk) in the
[Branch Code list).

Bl Operand of Branch Conditional Instructions for Basic and Extended
Mnemonics

The Bl operand specifies a bit (0:31) in the Condition Register for condition comparison. The bit is set by a
compare instruction. The bits in the Condition Register are grouped into eight 4-bit fields. These fields are
named CR field 0 through CR field 7 (CRO...CR7). The bits of each field are interpreted as follows:

Bit Description

0 Less than; floating-point less than

1 Greater than; floating-point greater than

2 Equal; floating-point equal

3 Summary overflow; floating-point unordered

Normally the symbols shown in the Bl Operand Symbols for Basic and Extended Branch Conditional
Mnemonics table are defined for use in Bl operands. The assembler supports expressions for the Bl
operands. The expression is a combination of values and the following symbols.

Table 9. Bl Operand Symbols for Basic and Extended Branch Conditional Mnemonics

Symbol Value Meaning

It 0 less than

gt 1 greater than

eq 2 equal

SO 3 summary overflow
un 3 unordered (after floating-point comparison)
cr0 0 CR field 0

cr 1 CR field 1

cr2 2 CR field 2

cr3 3 CR field 3

cr4 4 CR field 4

crb 5 CR field 5

92 Assembler Language Reference

Table 9. Bl Operand Symbols for Basic and Extended Branch Conditional Mnemonics (continued)

Symbol Value Meaning
cré 6 CR field 6
cr7 7 CR field 7

When using an expression for the Bl field in the basic or extended mnemonics with only the BO field
incorporated, the CR field number should be multiplied by 4 to get the correct CR bit, since each CR field
has four bits.

1. To decrement CTR, then branch only if CTR is not zero and condition in CR5 is equal:
bdnzt 4xcrb+eq, target_addr

This is equivalent to:
bc 8, 22, target_addr

2. To decrement CTR, then branch only if CTR is not zero and condition in CRO is equal:
bdnzt eq, target addr

This is equivalent to:
bc 8, 2, target_addr

If the Bl operand specifies Bit 0 of CRO, the B/ operand can be omitted.
3. To decrement CTR, then branch only if CTR is zero:
bdz target_addr

This is equivalent to:
bc 18, 0, target_addr

For extended mnemonics with the BO field and a partial Bl field incorporated, the value of the Bl operand
indicates the CR field number. Valid values are 0-7. If a value of 0 is used, the Bl operand can be omitted.

1. To branch if CRO reflects a condition of not less than:
bge target_addr

This is equivalent to:
bc 4, 0, target_addr

2. To branch to an absolute target if CR4 indicates greater than, and set the Link register:
bgtla cr4, target_addr

This is equivalent to:
bcla 12, 17, target_addr

The Bl operand CR4 is internally expanded to 16 by the assembler. After the gt (greater than) is
incorporated, the result of the Bl field is 17.

Extended Mnemonics for Branch Prediction

If the likely outcome (branch or fall through) of a given Branch Conditional instruction is known, the
programmer can include this information in the assembler source program by adding a branch prediction
suffix to the mnemonic of the instruction. The assembler uses the branch prediction information to
determine the value of a bit in the machine instruction. Using a branch prediction suffix may improve the
average performance of a Branch Conditional instruction.

Chapter 6. Extended Instruction Mnemonics 93

The following suffixes can be added to any Branch Conditional mnemonic, either basic or extended:

+ Predict branch to be taken
- Predict branch not to be taken (fall through)

The branch prediction suffix should be placed immediately after the rest of the mnemonic (with no
separator character). A separator character (space or tab) should be used between the branch prediction
suffix and the operands.

If no branch prediction suffix is included in the mnemonic, the assembler uses the following default
assumptions in constructing the machine instruction:

» For relative or absolute branches (be[l][a]) with negative displacement fields, the branch is predicted to
be taken.

* For relative or absolute branches (befl][a]) with nonnegative displacement fields, the branch is
predicted not to be taken (fall through predicted).

» For branches to an address in the LR or CTR (bclr[l]) or (bcctr[l]), the branch is predicted not to be
taken (fall through predicted).

The portion of the machine instruction which is controlled by the branch prediction suffix is the y bit of the
BO field. The y bit is set as follows:

» Specifying no branch prediction suffix, or using the suffix which is the same as the default assumption
causes the y bit to be set to 0.

» Specifying a branch prediction suffix which is the opposite of the default assumption causes the y bit to
be set to 1.

The following examples illustrate use of branch prediction suffixes:
1. Branch if CRO reflects condition less than. Executing the instruction will usually result in branching.
b1t+ target

2. Branch if CRO reflects condition less than. Target address is in the Link Register. Executing the
instruction will usually result in falling through to the next instruction.

b1tlr-

The following is a list of the Branch Prediction instructions that are supported by the AIX assembler:

bc+ bc- bca+ bca-
bcctr+ bcctr- bcctrl+ bcctrl-
bcl+ bcl- bcla+ bcla-
bclr+ bclr- bclrl+ bclrl-
bdneqg+ bdneq- bdnge+ bdnge-
bdngt+ bdngt- bdnle+ bdnle-
bdnlt+ bdn1t- bdnne+ bdnne-
bdnns+ bdnns- bdnso+ bdnso-
bdnz+ bdnz- bdnza+ bdnza-
bdnzf+ bdnzf- bdnzfa+ bdnzfa-
bdnzfl+ bdnzf1- bdnzfla+ bdnzfla-
bdnzflr+ bdnzflr- bdnzflrl+ bdnzflrl-
bdnz1+ bdnz1- bdnzla+ bdnzla-
bdnzlr+ bdnzlr- bdnzlrl+ bdnzlrl-
bdnzt+ bdnzt- bdnzta+ bdnzta-
bdnzt1+ bdnzt1- bdnztla+ bdnztla-
bdnztlr+ bdnztlr- bdnztlrl+ bdnztlrl-
bdz+ bdz- bdza+ bdza-
bdzeq+ bdzeq- bdzf+ bdzf-
bdzfa+ bdzfa- bdzf1+ bdzf1-
bdzfla+ bdzfla- bdzflr+ bdzflr-
bdzflrl+ bdzflrl- bdzge+ bdzge-
bdzgt+ bdzgt- bdz1+ bdz1-
bdzla+ bdzla- bdzle+ bdzle-

94 Assembler Language Reference

bdz1r+
bdz1t+
bdzns+
bdzt+
bdzt1+
bdztlr+
beqg+
beqctr+
beql+
beqlr+
bf+
bfctr+
bfl+
bflr+
bge+
bgectr+
bgel+
bgelr+
bgt+
bgtctr+
bgt1+
bgtlr+
ble+
blectr+
blel+
blelr+
bT1t+
bltctr+
b1t1+
b1tTr+
bne+
bnectr+
bnel+
bnelr+
bng+
bngctr+
bng1+
bnglr+
bnl+
bnlctr+
bn11+
bnTlr+
bns+
bnsctr+
bns1+
bns1r+
bnu+
bnuctr+
bnul+
bnulr+
bnz+
bnzctr+
bnz1+
bnzlr+
bso+
bsoctr+
bsol+
bsolr+
bt+
btctr+
bt1+
btlr+
bun+
bunctr+
bunl+
bunlr+
bz+

bdzlr-
bdz1t-
bdzns-
bdzt-
bdzt1-
bdztlr-
beq-
beqctr-
beql-
beqlr-
bf-
bfctr-
bfl-
bflr-
bge-
bgectr-
bgel-
bgelr-
bgt-
bgtctr-
bgtl-
bgtlir-
ble-
blectr-
blel-
blelr-
b1t-
bltctr-
b1t1-
b1tlr-
bne-
bnectr-
bnel-
bnelr-
bng-
bngctr-
bng1-
bnglr-
bnl-
bnlctr-
bnl1-
bn1lr-
bns-
bnsctr-
bns1-
bnslr-
bnu-
bnuctr-
bnul-
bnulr-
bnz-
bnzctr-
bnzl-
bnzlr-
bso-
bsoctr-
bsol-
bsolr-
bt-
btctr-
btl-
btlr-
bun-
bunctr-
bunl-
bunlr-
bz-

bdz1rl+
bdzne+
bdzso+
bdzta+
bdztla+
bdztlrl+
bega+
beqctrl+
beqla+
beqlrl+
bfa+
bfctrl+
bfla+
bflrl+
bgea+
bgectrl+
bgela+
bgelrl+
bgta+
bgtctrl+
bgtla+
bgtlrl+
blea+
blectrl+
blela+
blelrl+
blta+
bltctrl+
bT1tTa+
b1tlrl+
bnea+
bnectrl+
bnela+
bnelrl+
bnga+
bngctrl+
bngla+
bnglrl+
bnla+
bnlctrl+
bnlla+
bn1lrl+
bnsa+
bnsctrl+
bnsTa+
bnslrl+
bnua+
bnuctrl+
bnula+
bnulrl+
bnza+
bnzctrl+
bnzla+
bnzlrl+
bsoa+
bsoctrl+
bsola+
bsolrl+
bta+
btctrl+
btla+
btlrl+
buna+
bunctril+
bunla+
bunlrl+
bza+

bdzlrl-
bdzne-
bdzso-
bdzta-
bdztla-
bdztlrl-
bega-
beqctrl-
beqla-
beqlrl-
bfa-
bfctrl-
bfla-
bflrl-
bgea-
bgectrl-
bgela-
bgelrl-
bgta-
bgtctrl-
bgtla-
bgtlrl-
blea-
blectrl-
blela-
blelrl-
blta-
bltctrl-
b1tla-
b1tlrl-
bnea-
bnectrl-
bnela-
bnelrl-
bnga-
bngctrl-
bngla-
bnglrl-
bnla-
bnlctrl-
bnlla-
bnTlrl-
bnsa-
bnsctrl-
bnsla-
bnslrl-
bnua-
bnuctrl-
bnula-
bnulrl-
bnza-
bnzctrl-
bnzla-
bnzlrl-
bsoa-
bsoctrl-
bsola-
bsolrl-
bta-
btctrl-
btla-
btlrl-
buna-
bunctrl-
bunla-
bunlrl-
bza-

Chapter 6. Extended Instruction Mnemonics

95

bzctr+ bzctr- bzctrl+ bzctrl-
bz1+ bz1- bzla+ bzla-
bzlr+ bzlr- bz1rl+ bzlrl-

Related Information
[Chapter 6, “Extended Instruction Mnemonics,” on page 89

[‘Extended Mnemonics of Condition Register Logical Instructions.’]

[‘Extended Mnemonics of Fixed-Point Arithmetic Instructions” on page 97

[‘Extended Mnemonics of Fixed-Point Compare Instructions” on page 98

[‘Extended Mnemonics of Fixed-Point Load Instructions” on page 99

[‘Extended Mnemonics of Fixed-Point Logical Instructions” on page 100

[‘Extended Mnemonics of Fixed-Point Trap Instructions” on page 100

[‘Extended Mnemonics of Moving from or to Special-Purpose Registers” on page 102

[‘Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions” on page 107 |

“bc (Branch Conditional) Instruction” on page 144 [‘bclr or ber (Branch Conditional Link Register)|
Instruction” on page 149,|[‘bcctr or bee (Branch Conditional to Count Register) Instruction” on page 147

Extended Mnemonics of Condition Register Logical Instructions

Extended mnemonics of condition register logical instructions are available in POWER family and
PowerPC. These extended mnemonics are in the com assembly mode. Condition register logical
instructions can be used to perform the following operations on a given condition register bit.

» Set bit to 1.

* Clear bit to 0.
» Copy bit.

* Invert bit.

The extended mnemonics shown in the following table allow these operations to be easily coded.

Table 10. Condition Register Logical Instruction Extended Mnemonics

Extended Mnemonic |Equivalent to Meaning

crset bx creqv bx, bx, bx Condition register set
crclr bx crxor bx, bx, bx Condition register clear
crmove bx, by cror bx, by, by Condition register move
crnot bx, by crnor bx, by, by Condition register NOT

Since the condition register logical instructions perform the operation on the condition register bit, the
assembler supports expressions in all input operands. When using a symbol name to indicate a condition
register (CR) field, the symbol name should be multiplied by four to get the correct CR bit, because each
CR field has four bits.

96 Assembler Language Reference

Examples

1. To clear the SO bit (bit 3) of CRO:
crclr SO

This is equivalent to:
crxor 3, 3, 3

2. To clear the EQ bit of CR3:
crclr d*cr3teq

This is equivalent to:
crxor 14, 14, 14

3. To invert the EQ bit of CR4 and place the result in the SO bit of CR5:
crnot 4xcrb+so, 4xcri+teq

This is equivalent to:
crnor 23, 18, 18

Related Information
[Chapter 6, “Extended Instruction Mnemonics,” on page 89.|

[‘Extended Mnemonics of Branch Instructions” on page 89

[‘Extended Mnemonics of Fixed-Point Arithmetic Instructions.’]

[‘Extended Mnemonics of Fixed-Point Compare Instructions” on page 98|

[‘Extended Mnemonics of Fixed-Point Load Instructions” on page 99

[‘Extended Mnemonics of Fixed-Point Logical Instructions” on page 100 |

[‘Extended Mnemonics of Fixed-Point Trap Instructions” on page 100

[‘Extended Mnemonics of Moving from or to Special-Purpose Registers” on page 102.|

[‘Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions” on page 107

“creqv (Condition Register Equivalent) Instruction” on page 165 |[‘cror (Condition Register OR) Instruction’|
on page 168 [‘crnor (Condition Register NOR) Instruction” on page 167 |[‘crxor (Condition Register XOR)|
Instruction” on page 170

Extended Mnemonics of Fixed-Point Arithmetic Instructions

The following table shows the extended mnemonics for fixed-point arithmetic instructions for POWER
family and PowerPC. Except as noted, these extended mnemonics are for POWER family and PowerPC
and are in the com assembly mode.

Table 11. Fixed-Point Arithmetic Instruction Extended Mnemonics

Extended Mnemonic Equivalent to Meaning

subi rx, ry, value addi rx, ry, -value Subtract Inmediate

subis rx, ry, value addis rx, ry, -value Subtract Immediate Shifted
subicl.] rx, ry, value addicl.] rx, ry, -value Subtract Immediate
subc[o][.] rx, ry, rz subfc[o][.] rx, ry, rz Subtract From Carrying

Chapter 6. Extended Instruction Mnemonics 97

Table 11. Fixed-Point Arithmetic Instruction Extended Mnemonics (continued)

Extended Mnemonic Equivalent to Meaning
si[.] rt, ra, value ai[.] rt, ra, -value Subtract Immediate
sublo][.] rx, ry, rz subf[o][.] rx, ry, rz Subtract From

Note: The sub|o][.] extended mnemonic is for PowerPC, since its base mnemonic subf|o][.] is for
PowerPC only.

Related Information
[Chapter 6, “Extended Instruction Mnemonics,” on page 89

[‘Extended Mnemonics of Branch Instructions” on page 89

[‘Extended Mnemonics of Condition Register Logical Instructions” on page 96.

[‘Extended Mnemonics of Fixed-Point Compare Instructions.’]

[‘Extended Mnemonics of Fixed-Point Load Instructions” on page 99

[‘Extended Mnemonics of Fixed-Point Logical Instructions” on page 100

[‘Extended Mnemonics of Fixed-Point Trap Instructions” on page 100

[‘Extended Mnemonics of Moving from or to Special-Purpose Registers” on page 102

[‘Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions” on page 107 |

“addic or ai (Add Immediate Carrying) Instruction” on page 131 [[‘addic. or ai. (Add Immediate Carrying and|
Record) Instruction” on page 132,

Extended Mnemonics of Fixed-Point Compare Instructions

The extended mnemonics for fixed-point compare instructions are shown in the following table. The input
format of operands are different for POWER family and PowerPC. The L field for PowerPC supports 64-bit
implementations. This field must have a value of 0 for 32-bit implementations. Since the POWER family
architecture supports only 32-bit implementations, this field does not exist in POWER family. The
assembler ensures that this bit is set to 0 for POWER family implementations. These extended mnemonics
are in the com assembly mode.

Table 12. Fixed-Point Compare Instruction Extended Mnemonics

Extended Mnemonic Equivalent to Meaning

cmpdi ra, value cmpi 0, 1, ra, value Compare Word Immediate

cmpwi bf, ra, si cmpi bf, 0, ra, si Compare Word Immediate

cmpd ra, rb cmp 0,1, ra, rb Compare Word

cmpw bf, ra, rb cmp bf, 0, ra, rb Compare Word

cmpldi rA, value cmpli 0, 1, ra, value Compare Logical Word Immediate
cmplwi bf, ra, ui cmpli bf, 0, ra, ui Compare Logical Word Immediate
cmpld ra, rb cmpl 0,1, ra, rb Compare Logical Word

cmplw bf, ra, rb cmpl bf, 0, ra, rb Compare Logical Word

98 Assembler Language Reference

Related Information
[Chapter 6, “Extended Instruction Mnemonics,” on page 89|

[‘Extended Mnemonics of Branch Instructions” on page 89

[‘Extended Mnemonics of Condition Register Logical Instructions” on page 96

[‘Extended Mnemonics of Fixed-Point Arithmetic Instructions” on page 97

[‘Extended Mnemonics of Fixed-Point Load Instructions.’]

[‘Extended Mnemonics of Fixed-Point Logical Instructions” on page 100

[‘Extended Mnemonics of Fixed-Point Trap Instructions” on page 100

[‘Extended Mnemonics of Moving from or to Special-Purpose Registers” on page 102.|

[‘Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions” on page 107

“cmpi (Compare Immediate) Instruction” on page 157 |[‘cmp (Compare) Instruction” on page 156,/[‘cmpli
(Compare Logical Immediate) Instruction” on page 160][‘cmpl (Compare Logical) Instruction” on page 159

Extended Mnemonics of Fixed-Point Load Instructions

The following table shows the extended mnemonics for fixed-point load instructions for POWER family and
PowerPC. These extended mnemonics are in the com assembly mode.

Table 13. Fixed-Point Load Instruction Extended Mnemonics

Extended Mnemonic Equivalent to Meaning

li rx, value addi rx, 0, value Load Immediate

la rx, disp(ry) addi rx, ry, disp Load Address

lil rt, value cal rt, value(0) Load Immediate Lower
liu rt, value cau rt, 0, value Load Immediate Upper
lis rx, value addis rx, 0, value Load Immediate Shifted

Related Information
[Chapter 6, “Extended Instruction Mnemonics,” on page 89

[‘Extended Mnemonics of Branch Instructions” on page 89

[‘Extended Mnemonics of Condition Register Logical Instructions” on page 96.|

[‘Extended Mnemonics of Fixed-Point Arithmetic Instructions” on page 97

[‘Extended Mnemonics of Fixed-Point Compare Instructions” on page 98

[‘Extended Mnemonics of Fixed-Point Logical Instructions” on page 100

[‘Extended Mnemonics of Fixed-Point Trap Instructions” on page 100

[‘Extended Mnemonics of Moving from or to Special-Purpose Registers” on page 102

Chapter 6. Extended Instruction Mnemonics 99

[‘Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions” on page 107 |

“addi (Add Immediate) or cal (Compute Address Lower) Instruction” on page 130 ,|[‘addis or cau (Add|
Immediate Shifted) Instruction” on page 133

Extended Mnemonics of Fixed-Point Logical Instructions

The extended mnemonics for fixed-point logical instructions are shown in the following table. These
POWER family and PowerPC extended mnemonics are in the com assembly mode.

Table 14. Fixed-Point Logical Instruction Extended Mnemonics

Extended Mnemonic |Equivalent to Meaning

nop ori0,0,0 OR Immediate
mr[.] rx,ry or[.] rx, ry, ry OR

not[.] rx,ry nor[.] rx, ry, ry NOR

Related Information
[Chapter 6, “Extended Instruction Mnemonics,” on page 89

[‘Extended Mnemonics of Branch Instructions” on page 89

[‘Extended Mnemonics of Condition Register Logical Instructions” on page 96

[‘Extended Mnemonics of Fixed-Point Arithmetic Instructions” on page 97|

[‘Extended Mnemonics of Fixed-Point Compare Instructions” on page 98|

[‘Extended Mnemonics of Fixed-Point Load Instructions” on page 99

[‘Extended Mnemonics of Fixed-Point Trap Instructions.”|

[‘Extended Mnemonics of Moving from or to Special-Purpose Registers” on page 102

[‘Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions” on page 107 |

“nor (NOR) Instruction” on page 333 |[‘or (OR) Instruction” on page 334 |[‘ori or oril (OR Immediate)|
Instruction” on page 336.|

Extended Mnemonics of Fixed-Point Trap Instructions

The extended mnemonics for fixed-point trap instructions incorporate the most useful TO operand values.
A standard set of codes, shown in the following table, has been adopted for the most common
combinations of trap conditions. These extended mnemonics are in the com assembly mode.

Table 15. Fixed-Point Trap Instruction Codes

Code TO Encoding Meaning

It 10000 less than

le 10100 less than or equal
ng 10100 not greater than

eq 00100 equal

ge 01100 greater than or equal

100 Assembler Language Reference

Table 15. Fixed-Point Trap Instruction Codes (continued)

Code TO Encoding Meaning

nl 01100 not less than

gt 01000 greater than

ne 11000 not equal

11t 00010 logically less than

lle 00110 logically less than or equal
Ing 00110 logically not greater than
lge 00101 logically greater than or equal
Inl 00101 logically not less than

gt 00001 logically greater than

Ine 00011 logically not equal

None 11111 Unconditional

The POWER family extended mnemonics for fixed-point trap instructions have the following format:

e txx or txxi

where xx is one of the codes specified in the preceding table.

The 64-bit PowerPC extended mnemonics for double-word, fixed-point trap instructions have the following

format:
e tdxx or tdxxi

The PowerPC extended mnemonics for fixed-point trap instructions have the following formats:

* twxx or twxxi

where xx is one of the codes specified in the preceding table.

The trap instruction is an unconditional trap:
* trap

Examples

1. To trap if R10 is less than R20:
tit 10, 20

This is equivalent to:
t 16, 10, 20
2. To trap if R4 is equal to 0x10:

teqi 4, 0x10

This is equivalent to:
ti Ox4, 4, 0x10

3. To trap unconditionally:
trap

This is equivalent to:
tw 31, 0, 0
4. To trap if RX is not equal to RY:

Chapter 6. Extended Instruction Mnemonics

101

twnei RX. RY

This is equivalent to:
twi 24, RX, RY

5. To trap if RXis logically greater than Ox7FF:
twlgti RX, OX7FF

This is equivalent to:
twi 1, RX, Ox7FF

Related Information
[Chapter 6, “Extended Instruction Mnemonics,” on page 89

[‘Extended Mnemonics of Branch Instructions” on page 89

[‘Extended Mnemonics of Condition Register Logical Instructions” on page 96.

[‘Extended Mnemonics of Fixed-Point Arithmetic Instructions” on page 97

[‘Extended Mnemonics of Fixed-Point Compare Instructions” on page 98|

[‘Extended Mnemonics of Fixed-Point Load Instructions” on page 99

[‘Extended Mnemonics of Fixed-Point Logical Instructions” on page 100

[‘Extended Mnemonics of Moving from or to Special-Purpose Registers.’]

[‘Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions” on page 107 |

[tw or t (Trap Word) Instruction” on page 456 |[‘twi or ti (Trap Word Immediate) Instruction” on page 457 |

Extended Mnemonic mtcr for Moving to the Condition Register

The mtcr (Move to Condition Register) extended mnemonic copies the contents of the low order 32 bits of
a general purpose register (GPR) to the condition register using the same style as the mfcr instruction.

The extended mnemonic mtcr Rx is equivalent to the instruction mterf 0xFF,Rx.

This extended mnemonic is in the com assembly mode.

Extended Mnemonics of Moving from or to Special-Purpose Registers

This article discusses the following extended mnemonics:

* [‘mfspr Extended Mnemonics for POWER family” on page 103

* ['mtspr Extended Mnemonics for POWER family” on page 103|

* [‘mfspr Extended Mnemonics for PowerPC” on page 103]

* [‘mtspr Extended Mnemonics for PowerPC” on page 104

+ ['mfspr Extended Mnemonics for PowerPC 601 RISC Microprocessor” on page 106|
+ ['mtspr Extended Mnemonics for PowerPC 601 RISC Microprocessor” on page 106|

102 Assembler Language Reference

mfspr Extended Mnemonics for POWER family

Table 16. mfspr Extended Mnemonics for POWER family

Extended Mnemonic |Equivalent to Privileged SPR Name
mfxer rt mfspr rt,1 no XER
mflr rt mfspr rt,8 no LR
mfctr rt mfspr r,9 no CTR
mfmq rt mfspr 1,0 no MQ
mfrtcu rt mfspr rt,4 no RTCU
mfrtcl rt mfspr rt,5 no RTCL
mfdec rt mfspr rt,6 no DEC
mftid rt mfspr rt,17 yes TID
mfdsisr rt mfspr r,18 yes DSISR
mfdar rt mfspr rt,19 yes DAR
mfsdr0 rt mfspr rt,24 yes SDRO
mfsdrl rt mfspr r,25 yes SDR1
mfsrr0 rt mfspr rt,26 yes SRRO
mfsrrl rt mfspr r1,27 yes SRR1
mtspr Extended Mnemonics for POWER family

Table 17. mtspr Extended Mnemonics for POWER family

Extended Mnemonic | Equivalent to Privileged SPR Name
mfxer rs mtspr 1,rs no XER
mflr rs mtspr 8,rs no LR
mtctr rs mtspr 9,rs no CTR
mtmq rs mtspr 0,rs no MQ
mtrtcu rs mtspr 20,rs yes RTCU
mtrtcl rs mtspr 21,rs yes RTCL
mtdec rs mtspr 22,rs yes DEC
mttid rs mtspr 17,rs yes TID
mtdsisr rs mtspr 18,rs yes DSISR
mtdar rs mtspr 19,rs yes DAR
mtsdr0 rs mtspr 24,rs yes SDRO
mtsdr1 rs mtspr 25,rs yes SDR1
mtsrr0 rs mtspr 26,rs yes SRRO
mtsrri rs mtspr 27,rs yes SRR1
mfspr Extended Mnemonics for PowerPC

Table 18. mfspr Extended Mnemonics for PowerPC

Extended Mnemonic Equivalent to Privileged SPR Name
mfxer rt mfspr rt,1 no XER

Chapter 6. Extended Instruction Mnemonics

103

Table 18. mfspr Extended Mnemonics for PowerPC (continued)

Extended Mnemonic Equivalent to Privileged SPR Name
mfir rt mfspr rt,8 no LR
mfctr rt mfspr 1,9 no CTR
mfdsisr rt mfspr rt,18 yes DSISR
mfdar rt mfspr rt,19 yes DAR
mfdec rt mfspr rt,22 yes DEC
mfsdr1 rt mfspr rt,25 yes SDR1
mfsrr0 rt mfspr rt,26 yes SRRO
mfsrr1 rt mfspr rt,27 yes SRR1
mfsprg r,0 mfspr rt,272 yes SPRGO
mfsprg ri,1 mfspr rt,273 yes SPRG1
mfsprg r,2 mfspr r1,274 yes SPRG2
mfsprg r1,3 mfspr rt,275 yes SPRG3
mfear rt mfspr r,282 yes EAR
mfpvr rt mfspr rt,287 yes PVR
mfibatu 1,0 mfspr rt,528 yes IBATOU
mfibatl rt,1 mfspr r,529 yes IBATOL
mfibatu rt,1 mfspr r,530 yes IBAT1U
mfibatl ri,1 mfspr r,531 yes IBAT1L
mfibatu rt,2 mfspr r,532 yes IBAT2U
mfibatl rf,2 mfspr rt,533 yes IBAT2L
mfibatu rt,3 mfspr 1,534 yes IBAT3U
mfibatl rt,3 mfspr r,535 yes IBAT3L
mfdbatu r,0 mfspr 1,536 yes DBATOU
mfdbatl rt,0 mfspr r,537 yes DBATOL
mfdbatu ri,1 mfspr 1,538 yes DBAT1U
mfdbatl rt,1 mfspr rt,539 yes DBAT1L
mfdbatu rt,2 mfspr 1,540 yes DBAT2U
mfdbatl rt,2 mfspr rt,541 yes DBAT2L
mfdbatu rt,3 mfspr rt,542 yes DBAT3U
mfdbatl rt,3 mfspr r,543 yes DBAT3L

Note: The mfdec instruction is a privileged instruction in PowerPC. The encoding for this instruction in
PowerPC differs from that in POWER family. See the [‘mfspr (Move from Special-Purpose Register)|
Instruction” on page 303 for information on this instruction. [‘Differences between POWER family]
and PowerPC Instructions with the Same Op Code” on page 115| provides a summary of the
differences for this instruction for POWER family and PowerPC.

mtspr Extended Mnemonics for PowerPC

Table 19. mtspr Extended Mnemonics for PowerPC

Extended Mnemonic Equivalent to Privileged SPR Name

mtxer rs mtspr 1,rs no XER

104 Assembler Language Reference

Table 19. mtspr Extended Mnemonics for PowerPC (continued)

Extended Mnemonic Equivalent to Privileged SPR Name
mtlr rs mtspr 8,rs no LR
mtctr rs mtspr 9,rs no CTR
mtdsisr rs mtspr 19,rs yes DSISR
mtdar rs mtspr 19,rs yes DAR
mtdec rs mtspr 22,rs yes DEC
mtsdri rs mtspr 25,rs yes SDR1
mtsrr0 rs mtspr 26,rs yes SRRO
mtsrr1 rs mtspr 27,rs yes SRR1
mtsprg 0,rs mtspr 272,rs yes SPRGO
mtsprg 1,rs mtspr 273,rs yes SPRG1
mtsprg 2,rs mtspr 274,rs yes SPRG2
mtsprg 3,rs mtspr 275,rs yes SPRG3
mtear rs mtspr 282,rs yes EAR
mttbl rs (or mttb rs) mtspr 284,rs yes TBL
mttbu rs mtspr 285,rs yes TBU
mtibatu 0,rs mtspr 528,rs yes IBATOU
mtibatl 0,rs mtspr 529,rs yes IBATOL
mtibatu 1,rs mtspr 530,rs yes IBAT1U
mtibatl 1,rs mtspr 531,rs yes IBAT1L
mtibatu 2,rs mtspr 532,rs yes IBAT2U
mtibatl 2,rs mtspr 533,rs yes IBAT2L
mtibatu 3,rs mtspr 534,rs yes IBAT3U
mtibatl 3,rs mtspr 535,rs yes IBAT3L
mtdbatu 0,rs mtspr 536,rs yes DBATOU
mtdbatl 0,rs mtspr 537,rs yes DBATOL
mtdbatu 1,rs mtspr 538,rs yes DBAT1U
mtdbatl 1,rs mtspr 539,rs yes DBATIL
mtdbatu 2,rs mtspr 540,rs yes DBAT2U
mtdbatl 2,rs mtspr 541,rs yes DBAT2L
mtdbatu 3,rs mtspr 542,rs yes DBAT3U
mtdbatl 3,rs mtspr 543,rs yes DBAT3L

Note: The mfdec instruction is a privileged instruction in PowerPC. The encoding for this instruction in

PowerPC differs from that in POWER family. See the [‘mfspr (Move from Special-Purpose Register)|

Instruction” on page 303| for information on this instruction. [‘Differences between POWER family|

differences for this instruction for POWER family and PowerPC.

Chapter 6. Extended Instruction Mnemonics

and PowerPC Instructions with the Same Op Code” on page 115|provides a summary of the

105

mfspr Extended Mnemonics for PowerPC 601 RISC Microprocessor

Table 20. mfspr Extended Mnemonics for PowerPC 601 RISC Microprocessor

Extended Mnemonic Equivalent to Privileged SPR Name
mfmq rt mfspr rt,0 no MQ
mfxer rt mfspr rt,1 no XER
mfrtcu rt mfspr rt,4 no RTCU
mfrtel rt mfspr rt,5 no RTCL
mfdec rt mfspr rt,6 no DEC
mflr rt mfspr rt,8 no LR
mfctr rt mfspr rt,9 no CTR
mfdsisr rt mfspr rt,18 yes DSISR
mfdar rt mfspr rt,19 yes DAR
mfsdri rt mfspr rt,25 yes SDR1
mfsrr0 rt mfspr rt,26 yes SRRO
mfsrrl rt mfspr rt,27 yes SRR1
mfsprg r1,0 mfspr rt,272 yes SPRGO
mfsprg rt,1 mfspr 1,273 yes SPRG1
mfsprg ri,2 mfspr rt,274 yes SPRG2
mfsprg r,3 mfspr rt,275 yes SPRG3
mfear rt mfspr rt,282 yes EAR
mfpvr rt mfspr rt,287 yes PVR

mtspr Extended Mnemonics for PowerPC 601 RISC Microprocessor

Table 21. mtspr Extended Mnemonics for PowerPC 601 RISC Microprocessor

Extended Mnemonic Equivalent to Privileged SPR Name
mtmq rs mtspr 0,rs no MQ
mtxer rs mtspr 1,rs no XER
mtlr rs mtspr 8,rs no LR
mtctr rs mtspr 9,rs no CTR
mtdsisr rs mtspr 18,rs yes DSISR
mtdar rs mtspr 19,rs yes DAR
mtrtcu rs mtspr 20,rs yes RTCU
mtrtcl rs mtspr 21,rs yes RTCL
mtdec rs mtspr 22,rs yes DEC
mtsdr1 rs mtspr 25,rs yes SDR1
mtsrr0 rs mtspr 26,rs yes SRRO
mtsrri rs mtspr 27,rs yes SRR1
mtsprg 0,rs mtspr 272,rs yes SPRGO
mtsprg 1,rs mtspr 273,rs yes SPRG1
mtsprg 2,rs mtspr 274,rs yes SPRG2
mtsprg 3,rs mtspr 275,rs yes SPRG3

106 Assembler Language Reference

Table 21. mtspr Extended Mnemonics for PowerPC 601 RISC Microprocessor (continued)

Extended Mnemonic Equivalent to Privileged SPR Name

mtear rs mtspr 282,rs yes EAR

Related Information
[Chapter 6, “Extended Instruction Mnemonics,” on page 89|

[‘Extended Mnemonics of Branch Instructions” on page 89.|

[‘Extended Mnemonics of Condition Register Logical Instructions” on page 96

[‘Extended Mnemonics of Fixed-Point Arithmetic Instructions” on page 97

[‘Extended Mnemonics of Fixed-Point Compare Instructions” on page 98|

[‘Extended Mnemonics of Fixed-Point Load Instructions” on page 99

[‘Extended Mnemonics of Fixed-Point Logical Instructions” on page 100

[‘Extended Mnemonics of Fixed-Point Trap Instructions” on page 100

[‘Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions.’|

“mfspr (Move from Special-Purpose Register) Instruction” on page 303 |[‘mtspr (Move to Special-Purpose]
Register) Instruction” on page 315,

Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift
Instructions

A set of extended mnemonics are provided for extract, insert, rotate, shift, clear, and clear left and shift left
operations. This article discusses the following:

+ [‘Alternative Input Format’]
« ['32-bit Rotate and Shift Extended Mnemonics for POWER family and PowerPC” on page 108|

Alternative Input Format
The alternative input format is applied to the following POWER family and PowerPC instructions.

POWER family PowerPC
rlimi[.] rlwimil.]
rlinm[.] rlwinm[.]
rinm[.] rlwnm[.]

rimil.] Not applicable

Five operands are normally required for these instructions. These operands are:
RA, RS, SH, MB, ME

MB indicates the first bit with a value of 1 in the mask, and ME indicates the last bit with a value of 1 in
the mask. The assembler supports the following operand format.

RA, RS, SH, BM

Chapter 6. Extended Instruction Mnemonics 107

BM is the mask itself. The assembler generates the MB and ME operands from the BM operand for the
instructions. The assembler checks the BM operand first. If an invalid BM is entered, error 78 is reported.

A valid mask is defined as a single series (one or more) of bits with a value of 1 surrounded by zero or
more bits with a value of z0. A mask of all bits with a value of 0 may not be specified.

Examples of Valid 32-bit Masks
The following shows examples of valid 32-bit masks.

0 15 31

| | |
MB = 0 ME = 31 11111111111111111111111111111111
MB = 0 ME = 0 10000000000000000000000000000000
MB =0 ME = 22 11111111111111111111110000000000
MB = 12 ME = 25 00000000000111111111111110000000
MB = 22 ME = 31 00000000000000000000011111111111
MB = 29 ME = 6 11111110000000000000000000000111

Examples of 32-bit Masks That Are Not Valid
The following shows examples of 32-bit masks that are not valid.

0 15 31

| | |
00000000000000000000000000000000
01010101010101010101010101010101
00000000000011110000011000000000
11111100000111111111111111000000

32-bit Rotate and Shift Extended Mnemonics for POWER family and

PowerPC

The extended mnemonics for the rotate and shift instructions are in the POWER family and PowerPC
intersection area (com assembly mode). A set of rotate and shift extended mnemonics provide for the

following operations:

Extract

Insert

Rotate
Shift

Clear
Clear left and shift left

Selects a field of n bits starting at bit position b in the source
register. This field is right- or left-justified in the target register. All
other bits of the target register are cleared to 0.

Selects a left- or right-justified field of n bits in the source register.
This field is inserted starting at bit position b of the target register.
Other bits of the target register are unchanged. No extended
mnemonic is provided for insertion of a left-justified field when
operating on doublewords, since such an insertion requires more
than one instruction.

Rotates the contents of a register right or left n bits without
masking.

Shifts the contents of a register right or left n bits. Vacated bits are
cleared to 0 (logical shift).

Clears the leftmost or rightmost n bits of a register to 0.

Clears the leftmost b bits of a register, then shifts the register by n
bits. This operation can be used to scale a known nonnegative
array index by the width of an element.

The rotate and shift extended mnemonics are shown in the following table. The N operand specifies the
number of bits to be extracted, inserted, rotated, or shifted. Because expressions are introduced when the
extended mnemonics are mapped to the base mnemonics, certain restrictions are imposed to prevent the
result of the expression from causing an overflow in the SH, MB, or ME operand.

108 Assembler Language Reference

To maintain compatibility with previous versions of AIX, n is not restricted to a value of 0. If nis 0, the
assembler treats 32-n as a value of 0.

Table 22. 32-bit Rotate and Shift Extended Mnemonics for PowerPC

Operation

Extended Mnemonic

Equivalent to

Restrictions

Extract and left justify
immediate

extlwi RA, RS, n, b

rlwinm RA, RS, b, 0, n-1

32>n>0

Extract and right justify
immediate

extrwi RA, RS, n, b

rlwinm RA, RS, b+n, 32-n,
31

32>n>0& b+tn=< 32

Insert from left immediate

inslwi RA, RS, n, b

riwinm RA, RS, 32-b, b,
(b+n)-1

b+n <=32 & 32>n> 0 & 32
>b>=0

Insert from right immediate

insrwi RA, RS, n, b

rlwinm RA, RS, 32-(b+n),
b, (b+n)-1

b+n<=32 & 32>n> 0

Rotate left immediate rotlwi RA, RS, n rlwinm RA, RS, n, 0, 31 32>n>=0
Rotate right immediate rotrwi RA, RS, n rlwinm RA, RS, 32-n,0,31 |32>n>=0
Rotate left rotlw RA, RS, b rlwinm RA, RS, RB, 0, 31 |None

Shift left immediate slwi RA, RS, n rlwinm RA, RS, n,0,31-n |32>n>=0
Shift right immediate srwi RA, RS, n rlwinm RA, RS, 32-n,n,31 |32>n>=0
Clear left immediate cirlwi RA, RS, n riwinm RA, RS, 0, n, 31 32>n>=0
Clear right immediate clrrwi RA, RS, n rlwinm RA, RS, 0,0,31-n (32>n>=0

Clear left and shift left
immediate

clrslwi RA, RS, b, n

riwinm RA, RS, b-n, 31-n

b-n>=0&32>n>=08&
32>b>=0

Notes:

1. In POWER family, the mnemonic slwi[.] is sli[.]. The mnemonic srwil.] is sri[.].

2. All of these extended mnemonics can be coded with a final . (period) to cause the Rc bit to be set in
the underlying instruction.

Examples

1. To extract the sign bit (bit 31) of register RY and place the result right-justified into register RX:

extrwi

This is equivalent to:
riwinm

RX, RY, 1, 0

RX, RY, 1, 31, 31

2. To insert the bit extracted in Example 1 into the sign bit (bit 31) of register RX:

insrwi

This is equivalent to:

rlwimi

RZ, RX, 1, 0

RZ, RX, 31, 0, 0

3. To shift the contents of register RX left 8 bits and clear the high-order 32 bits:

slwi RX, RX, 8

This is equivalent to:
riwinm

RX, RX, 8, 0, 23

4. To clear the high-order 16 bits of the low-order 32 bits of register RY and place the result in register
RX, and clear the high-order 32 bits of register RX:

clrlwi RX, RY, 16

This is equivalent to:

Chapter 6. Extended Instruction Mnemonics 109

rlwinm RX, RY, 0, 16, 31

Related Information
[Chapter 6, “Extended Instruction Mnemonics,” on page 89|

[‘Extended Mnemonics of Branch Instructions” on page 89|

[‘Extended Mnemonics of Condition Register Logical Instructions” on page 96

[‘Extended Mnemonics of Fixed-Point Arithmetic Instructions” on page 97|

[‘Extended Mnemonics of Fixed-Point Compare Instructions” on page 98|

[‘Extended Mnemonics of Fixed-Point Load Instructions” on page 99.|

[‘Extended Mnemonics of Fixed-Point Logical Instructions” on page 100

[‘Extended Mnemonics of Fixed-Point Trap Instructions” on page 100

[‘Extended Mnemonics of Moving from or to Special-Purpose Registers” on page 102

“addic or ai (Add Immediate Carrying) Instruction” on page 131 |[‘addic. or ai. (Add Immediate Carrying and|
Record) Instruction” on page 132]|oc (Branch Conditional) Instruction” on page 144][‘bclr or ber (Branch|
Conditional Link Register) Instruction” on page 149 [[‘bcctr or bec (Branch Conditional to Count Register)|
Instruction” on page 147 [[‘addi (Add Immediate) or cal (Compute Address Lower) Instruction” on page 130
“addis or cau (Add Immediate Shifted) Instruction” on page 133,|[‘cmpi (Compare Immediate) Instruction’]
on page 157]['cmp (Compare) Instruction” on page 156 [[‘cmpli (Compare Logical Immediate) Instruction’|
on page 160,)[‘cmpl (Compare Logical) Instruction” on page 159,/[‘creqv (Condition Register Equivalent)|
Instruction” on page 165 [[‘cror (Condition Register OR) Instruction” on page 168 [|‘crnor (Condition|
Register NOR) Instruction” on page 167 |[‘crxor (Condition Register XOR) Instruction” on page 170 |[‘mfspn
(Move from Special-Purpose Register) Instruction” on page 303,[['mtspr (Move to Special-Purpose]|
Register) Instruction” on page 315 /['nor (NOR) Instruction” on page 333 [[‘or (OR) Instruction” on page)

334 |‘rlwinm or rlinm (Rotate Left Word Immediate Then AND with Mask) Instruction” on page 354 [[w or {
(Trap Word) Instruction” on page 456 |[twi or ti (Trap Word Immediate) Instruction” on page 457 |

Extended Mnemonics of 64-bit Fixed-Point Rotate and Shift
Instructions

A set of extended mnemonics are provided for extract, insert, rotate, shift, clear, and clear left and shift left
operations. This article discusses the following:

+ [‘Alternative Input Format” on page 107|

+ [‘32-bit Rotate and Shift Extended Mnemonics for POWER family and PowerPC” on page 108

Alternative Input Format
The alternative input format is applied to the following POWER family and PowerPC instructions.

POWER family PowerPC
rlimi[.] rlwimil.]
rlinm[.] rlwinm[.]
rinm[.] rlwnm[.]

rimil.] Not applicable

Five operands are normally required for these instructions. These operands are:

110 Assembler Language Reference

RA, RS, SH, MB, ME

MB indicates the first bit with a value of 1 in the mask, and ME indicates the last bit with a value of 1 in
the mask. The assembler supports the following operand format.

RA, RS, SH, BM

BM is the mask itself. The assembler generates the MB and ME operands from the BM operand for the
instructions. The assembler checks the BM operand first. If an invalid BM is entered, error 78 is reported.

A valid mask is defined as a single series (one or more) of bits with a value of 1 surrounded by zero or
more bits with a value of z0. A mask of all bits with a value of 0 may not be specified.

64-bit Rotate and Shift Extended Mnemonics for POWER family and
PowerPC

The extended mnemonics for the rotate and shift instructions are in the POWER family and PowerPC
intersection area (com assembly mode). A set of rotate and shift extended mnemonics provide for the
following operations:

Extract Selects a field of n bits starting at bit position b in the source
register. This field is right- or left-justified in the target register. All
other bits of the target register are cleared to 0.

Insert Selects a left- or right-justified field of n bits in the source register.
This field is inserted starting at bit position b of the target register.
Other bits of the target register are unchanged. No extended
mnemonic is provided for insertion of a left-justified field when
operating on doublewords, since such an insertion requires more
than one instruction.

Rotate Rotates the contents of a register right or left n bits without
masking.

Shift Shifts the contents of a register right or left n bits. Vacated bits are
cleared to 0 (logical shift).

Clear Clears the leftmost or rightmost n bits of a register to 0.

Clear left and shift left Clears the leftmost b bits of a register, then shifts the register by n

bits. This operation can be used to scale a known nonnegative
array index by the width of an element.

The rotate and shift extended mnemonics are shown in the following table. The N operand specifies the
number of bits to be extracted, inserted, rotated, or shifted. Because expressions are introduced when the
extended mnemonics are mapped to the base mnemonics, certain restrictions are imposed to prevent the
result of the expression from causing an overflow in the SH, MB, or ME operand.

To maintain compatibility with previous versions of AlIX, n is not restricted to a value of 0. If nis 0, the
assembler treats 32-n as a value of 0.

Table 23. 63-bit Rotate and Shift Extended Mnemonics for PowerPC

Operation Extended Mnemonic Equivalent to Restrictions
Extract double word and extrdi RA, RS, n, b ridicl RA, RS, b+n,64 -n |n>0

right justify immediate

Rotate double word left rotldi RA, RS, n ridicl RA, RS, n, 0 None
immediate

Rotate double word right rotrdi RA, RS, n ridicl RA, RS, 64 - n, 0 None
immediate

Rotate double word right srdi RA, RS, n ridicl RA, RS, 64 - n, n n< 64
immediate

Chapter 6. Extended Instruction Mnemonics 111

Table 23. 63-bit Rotate and Shift Extended Mnemonics for PowerPC (continued)

Operation Extended Mnemonic Equivalent to Restrictions
Clear left double word clrldi RA, RS, n ridicl RA, RS, 0, n n< 64
immediate

Extract double word and left | extldi RA, RS, n, b ridicr RA, RS, b, n - 1 None
justify immediate

Shift left double word sldi RA, RS, n ridicr RA, RS, n, 63 - n None
immediate

Clear right double word clrrdi RA, RS, n ridicr RA, RS, 0,63 - n None
immediate

Clear left double word and | clrisldi RA, RS, b, n ridic RA, RS, n, b -n None
shift left immediate

Insert double word from insrdi RA, RS, n, b rldimi RA, RS, 64 - (b + n), | None
right immediate b

Rotate double word left rotld RA, RS, RB ridcl RA, RS, RB, 0 None

Note: All of these extended mnemonics can be coded with a final . (period) to cause the Rc bit to be set
in the underlying instruction.

Related Information
[Chapter 6, “Extended Instruction Mnemonics,” on page 89|

[‘Extended Mnemonics of Branch Instructions” on page 89|

[‘Extended Mnemonics of Condition Register Logical Instructions” on page 96

[‘Extended Mnemonics of Fixed-Point Arithmetic Instructions” on page 97

[‘Extended Mnemonics of Fixed-Point Compare Instructions” on page 98|

[‘Extended Mnemonics of Fixed-Point Load Instructions” on page 99

[‘Extended Mnemonics of Fixed-Point Logical Instructions” on page 100.|

[‘Extended Mnemonics of Fixed-Point Trap Instructions” on page 100

[‘Extended Mnemonics of Moving from or to Special-Purpose Registers” on page 102

“addic or ai (Add Immediate Carrying) Instruction” on page 131 |[‘addic. or ai. (Add Immediate Carrying and|
Record) Instruction” on page 132]|oc (Branch Conditional) Instruction” on page 144][‘bclr or ber (Branch|
Conditional Link Register) Instruction” on page 149 [[‘bcctr or bee (Branch Conditional to Count Register)|
Instruction” on page 147 [[‘addi (Add Immediate) or cal (Compute Address Lower) Instruction” on page 130
“addis or cau (Add Immediate Shifted) Instruction” on page 133,|[‘cmpi (Compare Immediate) Instruction’]
on page 157]['cmp (Compare) Instruction” on page 156 |[‘cmpli (Compare Logical Immediate) Instruction’|
on page 160,)[‘cmpl (Compare Logical) Instruction” on page 159,/[‘creqv (Condition Register Equivalent)|
Instruction” on page 165 [[‘cror (Condition Register OR) Instruction” on page 168 [|‘crnor (Condition|
Register NOR) Instruction” on page 167 [[‘crxor (Condition Register XOR) Instruction” on page 170 |[‘mfspn
(Move from Special-Purpose Register) Instruction” on page 303,[['mtspr (Move to Special-Purpose|
Register) Instruction” on page 315 [['nor (NOR) Instruction” on page 333 [[‘'or (OR) Instruction” on pagel

334 |‘rlwinm or rlinm (Rotate Left Word Immediate Then AND with Mask) Instruction” on page 354 [[tw or {
(Trap Word) Instruction” on page 456 |[twi or ti (Trap Word Immediate) Instruction” on page 457 |

112 Assembler Language Reference

Chapter 7. Migrating Source Programs

The assembler issues errors and warnings if a source program contains instructions that are not in the
current assembly mode. Source compatibility of POWER family programs is maintained on PowerPC
platforms. All POWER family user instructions are emulated in PowerPC by the operating system. Because
the emulation of instructions is much slower than the execution of hardware-supported instructions, for
performance reasons it may be desirable to modify the source program to use hardware-supported
instructions.

The "invalid instruction form” problem occurs when restrictions are required in PowerPC but not required
in POWER family. The assembler checks for invalid instruction form errors, but it cannot check the(@
instruction for these errors. The Iswx instruction requires that the registers specified by the second and
third operands (RA and RB) are not in the range of registers to be loaded. Since this is determined by the
content of the Fixed-Point Exception Register (XER) at run time, the assembler cannot perform an invalid
instruction form check for the Iswx instruction. At run time, some of these errors may cause a silence
failure, while others may cause an interruption. It may be desirable to eliminate these errors. See
[‘Detection Error Conditions” on page 6|for more information on invalid instruction forms.

If the mfspr and mtspr instructions are used, check for proper coding of the special-purpose register
(SPR) operand. The assembler requires that the low-order five bits and the high-order five bits of the SPR
operand be reversed before they are used as the input operand. POWER family and PowerPC have
different sets of SPR operands for nonprivileged instructions. Check for the proper encoding of these
operands. Five POWER family SPRs (TID, SDRO, MQ, RTCU, and RTCL) are dropped from PowerPC, but
the MQ, RTCU, and RTCL instructions are emulated in PowerPC. While these instructions can still be
used, there is some performance degradation due to the emulation. (You can sometimes use the
[read_real_time and time_base_to_time| routines instead of code accessing the real time clock or time
base SPRs.)

More information on migrating source programs can be found in the following:

+ [‘Functional Differences for POWER family and PowerPC Instructions” on page 114|

+ [‘Differences between POWER family and PowerPC Instructions with the Same Op Code” on page 115|
[‘Extended Mnemonics Changes” on page 116]

[‘POWER family Instructions Deleted from PowerPC” on page 119

[‘Added PowerPC Instructions” on page 120|

[‘Instructions Available Only for the PowerPC 601 RISC Microprocessor” on page 121|

+ [‘Migration of Branch Conditional Statements with No Separator after Mnemonic” on page 121|

Related Information

[Chapter 6, “Extended Instruction Mnemonics,” on page 89

[‘Functional Differences for POWER family and PowerPC Instructions” on page 114.|

[‘Differences between POWER family and PowerPC Instructions with the Same Op Code” on page 115/

[‘Extended Mnemonics Changes” on page 116

[FPOWER family Instructions Deleted from PowerPC” on page 119

[‘Added PowerPC Instructions” on page 120

[‘Instructions Available Only for the PowerPC 601 RISC Microprocessor” on page 121

© Copyright IBM Corp. 1997, 2006 113

Functional Differences for POWER family and PowerPC Instructions

The following table lists the POWER family and PowerPC instructions that share the same op code on
POWER family and PowerPC platforms, but differ in their functional definition. Use caution when using

these instructions in com assembly mode.

Table 24. POWER family and PowerPC Instructions with Functional Differences

POWER family

PowerPC

Description

dcs

sync

The sync instruction causes more pervasive synchronization in
PowerPC than the dcs instruction does in POWER family.

ics

isync

The isync instruction causes more pervasive synchronization in
PowerPC than the ics instruction does in POWER family.

svca

SC

In POWER family, information from MSR is saved into CTR. In
PowerPC, this information is saved into SRR1. PowerPC only
supports one vector. POWER family allows instruction fetching to
continue at any of 128 locations. POWER family saves the
low-order 16 bits of the instruction in CTR. PowerPC does not save
the low-order 16 bits of the instruction.

mtsri

mtsrin

POWER family uses the RA field to compute the segment register
number and, in some cases, the effective address (EA) is stored.
PowerPC has no RA field, and the EA is not stored.

Isx

Iswx

POWER family does not alter the target register RT if the string
length is 0. PowerPC leaves the contents of the target register RT
undefined if the string length is 0.

mfsr

mfsr

This is a nonprivileged instruction in POWER family. It is a
privileged instruction in PowerPC.

mfmsr

mfmsr

This is a nonprivileged instruction in POWER family. It is a
privileged instruction in PowerPC.

mfdec

mfdec

The mfdec instruction is nonprivileged in POWER family, but
becomes a privileged instruction in PowerPC. As a result, the DEC
encoding number for the mfdec instruction is different for POWER
family and PowerPC.

mffs

mffs

POWER family sets the high-order 32 bits of the result to 0xFFFF
FFFF. In PowerPC, the high-order 32 bits of the result are
undefined.

See [‘Features of the AIX Assembler” on page 1| for more information on the PowerPC-specific features of

the assembler.

Related Information

[Chapter 7, “Migrating Source Programs,” on page 113/

[‘Differences between POWER family and PowerPC Instructions with the Same Op Code” on page 115/

[‘Extended Mnemonics Changes” on page 116

[(POWER family Instructions Deleted from PowerPC” on page 119

[‘Added PowerPC Instructions” on page 120

[‘Instructions Available Only for the PowerPC 601 RISC Microprocessor” on page 121

114 Assembler Language Reference

Differences between POWER family and PowerPC Instructions with the
Same Op Code

This section discusses the following:

+ [‘Instructions with the Same Op Code, Mnemonic, and Function’|

+ [‘Instructions with the Same Op Code and Function’|
+ [‘mfdec Instructions” on page 116|

Instructions with the Same Op Code, Mnemonic, and Function

The following instructions are available in POWER family and PowerPC. These instructions share the
same op code and mnemonic, and have the same function in POWER family and PowerPC, but use
different input operand formats.

e cmp
* cmpi
* cmpli
* cmpl

The input operand format for POWER family is:
BF, RA, SI1 RBI UI

The input operand format for PowerPC is:

BF, L, RA, S/l RB1 Ul

The assembler handles these as the same instructions in POWER family and PowerPC, but with different
input operand formats. The L operand is one bit. For POWER family, the assembler presets this bit to 0.
For 32-bit PowerPC platforms, this bit must be set to 0, or an invalid instruction form results.

Instructions with the Same Op Code and Function

The instructions listed in the following table are available in POWER family and PowerPC. These
instructions share the same op code and function, but have different mnemonics and input operand
formats. The assembler still places them in the POWER family/PowerPC intersection area, because the
same binary code is generated. If the -s option is used, no cross-reference is given, because it is
necessary to change the source code when migrating from POWER family to PowerPC, or vice versa.

Table 25. Instructions with Same Op Code and Function

POWER family PowerPC

cal addi

mtsri mtsrin

svca sc

cau addis

Notes:

1. lil is an extended mnemonic of cal, and li is an extended mnemonic of addi. Since the op code,

function, and input operand format are the same, the assembler provides a cross-reference for lil and
li.

2. liu is an extended mnemonic of cau, and lis is an extended mnemonic of addis. Since the input
operand format is different, the assembler does not provide a cross-reference for liu and lis.

Chapter 7. Migrating Source Programs 115

3. The immediate value for the cau instruction is a 16-bit unsigned integer, while the immediate value for
the addis instruction is a 16-bit signed integer. The assembler performs a (0, 65535) value range
check for the UI field and a (-32768, 32767) value range check for the SI field.

To maintain source compatibility of the cau and addis instructions, the assembler expands the value
range check to (-65536, 65535) for the addis instruction. The sign bit is ignored and the assembler
ensures only that the immediate value fits in 16 bits. This expansion does not affect the behavior of a
32-bit implementation.

For a 64-bit implementation, if bit 32 is set, it is propagated through the upper 32 bits of the 64-bit
general-purpose register (GPR). Therefore, if an immediate value within the range (32768, 65535) or
(-65536, -32767) is used for the addis instruction in a 32-bit mode, this immediate value may not be
directly ported to a 64-bit mode.

mfdec Instructions

Moving from the DEC (decrement) special purpose register is privileged in PowerPC, but nonprivileged in
POWER family. One bit in the instruction field that specifies the register is 1 for privileged operations, but 0
for nonprivileged operations. As a result, the encoding number for the DEC SPR for the mfdec instruction
has different values in PowerPC and POWER family. The DEC encoding number is 22 for PowerPC and 6
for POWER family. If the mfdec instruction is used, the assembler determines the DEC encoding based
on the current assembly mode. The following list shows the assembler processing of the mfdec instruction
for each assembly mode value:

 |If the assembly mode is pwr, pwr2, or 601, the DEC encoding is 6.
 |If the assembly mode is ppc, 603, or 604, the DEC encoding is 22.

If the default assembly mode, which treats POWER family/PowerPC incompatibility errors as
instructional warnings, is used, the DEC encoding is 6. Instructional warning 158 reports that the DEC
SPR encoding 6 is used to generate the object code. The warning can be suppressed with the -W flag.

 |If the assembly mode is any, the DEC encoding is 6. If the -w flag is used, a warning message (158)
reports that the DEC SPR encoding 6 is used to generate the object code.

+ |If the assembly mode is com, an error message reports that the mfdec instruction is not supported. No
object code is generated. In this situation, the mfspr instruction must be used to encode the DEC
number.

Related Information
[Chapter 7, “Migrating Source Programs,” on page 113

[‘Functional Differences for POWER family and PowerPC Instructions” on page 114.|

[‘Extended Mnemonics Changes.’|

[‘POWER family Instructions Deleted from PowerPC” on page 119,

[‘Added PowerPC Instructions” on page 120

[‘Instructions Available Only for the PowerPC 601 RISC Microprocessor” on page 121

Extended Mnemonics Changes

The following lists show the added extended mnemonics for POWER family and PowerPC. The assembler
places all POWER family and PowerPC extended mnemonics in the POWER family/PowerPC intersection
area if their basic mnemonics are in this area. Extended mnemonics are separated for POWER family and
PowerPC only for migration purposes. See [Chapter 6, “Extended Instruction Mnemonics,” on page 89| for
more information.

116 Assembler Language Reference

Extended Mnemonics in com Mode
The following PowerPC extended mnemonics for branch conditional instructions have been added:
* bdzt

* bdzta
* bdztl

* bdztla
* bdzf

* bdzfa
* bdzfl

* bdzfla
* bdnzt
* bdnzta
* bdnztl
* bdnztla
* bdnzf
* bdnzfa
* bdnzfl
* bdnzfla
* bdztlr
* bdztirl
* bdzflr
* bdzfirl
* bdnztir
* bdnztirl
* bdnzfir
* bdnzfirl
* bun

* buna

* bunl

* bunla
* bunir
* bunlrl
* bunctr
* bunctrl
* bnu

* bnua

* bnul

* bnula
* bnuir
* bnulrl
* bnuctr
* bnuctrl

The following PowerPC extended mnemonics for condition register logical instructions have been added:
» crset

Chapter 7. Migrating Source Programs 117

e crclr
* crmove
e crnot

The following PowerPC extended mnemonics for fixed-point load instructions have been added:

The following PowerPC extended mnemonics for fixed-point arithmetic instructions have been added:
* subi

* subis

* subc

The following PowerPC extended mnemonics for fixed-point compare instructions have been added:
* cmpwi

* cmpw

o cmplwi

* cmplw

The following PowerPC extended mnemonics for fixed-point trap instructions have been added:
* trap

* twing

e twingi

e twinl

e twinli

* twng

* twngi

e twnl

e twnli

The following PowerPC extended mnemonics for fixed-point logical instructions have been added:
* nop

* mrf.]

* notl.]

The following PowerPC extended mnemonics for fixed-point rotate and shift instructions have been added:
o extlwil.]
o extrwil.]
* inslwil.]
e insrwil.]
e rotiw[.]
e rotlwil.]
e rotrwil.]
o clrlwil.]
e clrrwil.]
* clrislwil.]

118 Assembler Language Reference

Extended Mnemonics in ppc Mode

The following PowerPC extended mnemonic for fixed-point arithmetic instructions has been added for ppc
mode:

* sub

Related Information
[Chapter 7, “Migrating Source Programs,” on page 113

[‘Functional Differences for POWER family and PowerPC Instructions” on page 114.|

[‘Differences between POWER family and PowerPC Instructions with the Same Op Code” on page 115

[(POWER family Instructions Deleted from PowerPC."|

[‘Added PowerPC Instructions” on page 120

[‘Instructions Available Only for the PowerPC 601 RISC Microprocessor” on page 121

[Chapter 6, “Extended Instruction Mnemonics,” on page 89

POWER family Instructions Deleted from PowerPC

The following table lists the POWER family instructions that have been deleted from PowerPC, yet are still
supported by the PowerPC 601 RISC Microprocessor. AlX provides services to emulate most of these
instructions if an attempt to execute one of them is made on a processor that does not include the
instruction, such as PowerPC 603 RISC Microprocessor or PowerPC 604 RISC Microprocessor, but no
emulation services are provided for the mtrtcl, mtrtcu, or svcla instructions. Using the code to emulate an
instruction is much slower than executing an instruction.

Table 26. POWER family Instructions Deleted from PowerPC, Supported byPowerPC 601 RISC Microprocessor

abs[o][.] cles div[o][.] divs[o][.]
doz[o][.] dozi Iscbx[.] maskg[.]
maskir[.] mfmq mfrtcl mfrtcu
mtmq mtrtcl mtrtcu mul[o][.]
nabs[o][.] rimi[.] rrib[.] sle[.]
sleq[.] sliq[.] sllig[.] sliq[.]
slq[.] sraiq[.] sraq[.] sre[.]
srea[.] sreq[.] sriq[.] srliq[.]
sriq[.] srq[.] svcla

Note: Extended mnemonics are not included in the previous table, except for extended mnemonics for the
mfspr and mtspr instructions.

The following table lists the POWER family instructions that have been deleted from PowerPC and that are
not supported by the PowerPC 601 RISC Microprocessor. AIX does not provide services to emulate most
of these instructions. However, emulation services are provided for the clf, dclst, and dclz instructions.
Also, the cli instruction is emulated, but only when it is executed in privileged mode.

Table 27. POWER family Instructions Deleted from PowerPC, Not Supported by PowerPC 601 RISC Microprocessor

clf cli dclst dclz
mftid mtsdr0

mfsdr0 mfsri

Chapter 7. Migrating Source Programs 119

Table 27. POWER family Instructions Deleted from PowerPC, Not Supported by PowerPC 601 RISC

Microprocessor (continued)

mttid

racl.]

rfsve

SvC

svcl

tibi

Related Information

[Chapter 7, “Migrating Source Programs,” on page 113

[‘Functional Differences for POWER family and PowerPC Instructions” on page 114

[‘Differences between POWER family and PowerPC Instructions with the Same Op Code” on page 115/

[‘Extended Mnemonics Changes” on page 116

[‘Added PowerPC Instructions.’|

[‘Instructions Available Only for the PowerPC 601 RISC Microprocessor” on page 121

Added PowerPC Instructions

The following table lists instructions that have been added to PowerPC, but are not in POWER family.

These instructions are supported by the PowerPC 601 RISC Microprocessor.

Table 28. Added PowerPC Instructions, Supported by PowerPC 601 RISC Microprocessor

dcbf dcbi dcbst dcbt
dcbtst dcbz divw[o][.] divwu[o][.]
eieio extsb[.] faddsl.] fdivs|.]
fmaddsl.] fmsubsl|.] fmuls[.] fnmadds].]
fnmsubs|.] fsubs|.] icbi lwarx
mfear mfpvr mfsprg mfsrin
mtear mtsprg mulhwl.] mulhwul.]
stwex. subflo][.]

Note: Extended mnemonics are not included in the previous table, except for extended mnemonics for the

mfspr and mtspr instructions.

The following table lists instructions that have been added to PowerPC, but are not in POWER family.
These instructions are not supported by the PowerPC 601 RISC Microprocessor.

Table 29. PowerPC Instructions, Not Supported by PowerPC 601 RISC Microprocessor

mfdbatl mfdbatu mtdbatl mtdbatu
mttb mttbu mftb mftbu
mfibatl mfibatu mtibatl mtibatu

Related Information

[Chapter 7, “Migrating Source Programs,” on page 113

[‘Functional Differences for POWER family and PowerPC Instructions” on page 114.|

120 Assembler Language Reference

[‘Differences between POWER family and PowerPC Instructions with the Same Op Code” on page 115/

[‘Extended Mnemonics Changes” on page 116

[fPOWER family Instructions Deleted from PowerPC” on page 119,

[‘Instructions Available Only for the PowerPC 601 RISC Microprocessor.’]

Instructions Available Only for the PowerPC 601 RISC Microprocessor

The following table lists PowerPC optional instructions that are implemented in the PowerPC 601 RISC
Microprocessor:

Table 30. PowerPC 601 RISC Microprocessor-Unique Instructions

eciwx ecowx mfbatl mfbatu

mtbatl mtbatu tibie

Note: Extended mnemonics, with the exception of mfspr and mtspr extended mnemonics, are not
provided.

Related Information
[Chapter 7, “Migrating Source Programs,” on page 113

[‘Functional Differences for POWER family and PowerPC Instructions” on page 114.|

[‘Differences between POWER family and PowerPC Instructions with the Same Op Code” on page 115

[‘Extended Mnemonics Changes” on page 116.]

[‘POWER family Instructions Deleted from PowerPC” on page 119,

[‘Added PowerPC Instructions” on page 120

Migration of Branch Conditional Statements with No Separator after
Mnemonic

The AIX assembler may parse some statements different from the previous version of the assembler. This
different parsing is only a possibility for statements that meet all the following conditions:

* The statement does not have a separator character (space or tab) between the mnemonic and the
operands.

» The first character of the first operand is a plus sign (+) or a minus sign (-).
* The mnemonic represents a Branch Conditional instruction.

If an assembler program has statements that meet all the conditions above, and the minus sign, or a plus
sign in the same location, is intended to be part of the operands, not part of the mnemonic, the source
program must be modified. This is especially important for minus signs, because moving a minus sign can
significantly change the meaning of a statement.

The possibility of different parsing occurs in AIX because the assembler was modified to support branch
prediction extended mnemonics which use the plus sign and minus sign as part of the mnemonic. In
previous versions of the assembler, letters and period (.) were the only possible characters in mnemonics.
For information, see [‘Extended Mnemonics for Branch Prediction” on page 93,

Chapter 7. Migrating Source Programs 121

Examples

1. The following statement is parsed by the AIX assembler so that the minus sign is part of the mnemonic
(but previous versions of the assembler parsed the minus sign as part of the operands) and must be
modified if the minus sign is intended to be part of the operands:

bnea- 16 # Separator after the - , but none before
Now: bnea- is a Branch Prediction Mnemonic
and 16 is operand.
Previously: bnea was mnemonic
and -16 was operand.

2. The following are several sample statements which the AIX assembler parses the same as previous
assemblers (the minus sign will be interpreted as part of the operands):

bnea -16 # Separator in source program - Good practice

bnea-16 # No separators before or after minus sign
bnea - 16 # Separators before and after the minus sign

Related Information
[‘Features of the AIX Assembler” on page 1)

[‘Extended Mnemonics for Branch Prediction” on page 93|

122 Assembler Language Reference

Chapter 8. Instruction Set

This chapter contains reference articles for the operating system assembler instruction set. The following
appendixes also provide information on the operating system assembler instruction set:

+ |Appendix B. Instruction Set Sorted by Mnemonid|

+ [Appendix C. Instruction Set Sorted by Primary and Extended Op Code]

+ [Appendix D. Instructions Common to POWER family, POWER?2, and PowerPC]
+ |Appendix E. POWER family and POWER? Instructions]

* |Appendix F. PowerPC Instructions|

+ [Appendix G. PowerPC 601 RISC Microprocessor Instructions|

« |Appendix |, “Vector Processor,” on page 597

abs (Absolute) Instruction

Purpose

Takes the absolute value of the contents of a general-purpose register and places the result in another
general-purpose register.

Note: The abs instruction is supported only in the POWER family architecture.

Syntax

Bits |Yalue|
0-5 31
6-10 RT
11-15 RA
16-20 "
21 OE
22-30 360
31 Rc
POWER family
abs RT]|
abs. RT]
abso RT]
abso. RT|
Description

The abs instruction places the absolute value of the contents of general-purpose register (GPR) RA into
the target GPR RT.

If GPR RA contains the most negative number (8000 0000’), the result of the instruction is the most
negative number, and the instruction will set the Overflow bit in the Fixed-Point Exception Register to 1 if
the OE bit is set to 1.

The abs instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

© Copyright IBM Corp. 1997, 2006 123

Syntax Form Overflow Exception |Fixed-Point Record Bit (Rc) Condition Register
(OE) Exception Register Field 0

abs 0 None 0 None

abs. 0 None 1 LT,GT,EQ,SO

abso 1 SO,0V 0 None

abso. 1 SO,0V 1 LT,GT,EQ,SO

The four syntax forms of the abs instruction always affect the Carry bit (CA) in the Fixed-Point Exception
Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the instruction affects the Summary
Overflow (SO) and Overflow (OV) bits in the Fixed-Point Exception Register. If the syntax form sets the
Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To
(EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RT Specifies the target general-purpose register where result of operation is stored.
RA Specifies the source general-purpose register for operation.

Examples

1. The following code takes the absolute value of the contents of GPR 4 and stores the result in GPR 6:

Assume GPR 4 contains 0x7000 3000.
abs 6,4
GPR 6 now contains 0x7000 3000.

2. The following code takes the absolute value of the contents of GPR 4, stores the result in GPR 6, and
sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains OxFFFF FFFF.
abs. 6,4
GPR 6 now contains 0x0000 0001.

3. The following code takes the absolute value of the contents of GPR 4, stores the result in GPR 6, and
sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register to reflect the result
of the operation:

Assume GPR 4 contains 0xB004 3000.
abso 6,4
GPR 6 now contains Ox4FFB DOOO.

4. The following code takes the absolute value of the contents of GPR 4, stores the result in GPR 6, and
sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register and Condition
Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x8000 0000.

abso. 6,4
GPR 6 now contains 0x8000 0000.

Related Information
[Fixed-Point Processor .

[Fixed-Point Arithmetic Instructions| .

add (Add) or cax (Compute Address) Instruction

Purpose
Adds the contents of two general-purpose registers.

124 Assembler Language Reference

Syntax

Bits |Yalue|

0-5 31

6-10 AT

11-15 RA
16-20 RB
21 OE
22-30 266
31 Rc

PowerPC
add

add.
addo
addo.

E
E
E
E

POWER family
cax

cax.

caxo

caxo.

HHEE

Description

The add and cax instructions place the sum of the contents of general-purpose register (GPR) RA and
GPR RB into the target GPR RT.

The add and cax instructions have four syntax forms. Each syntax form has a different effect on Condition
Register Field 0 and the Fixed-Point Exception Register.

Syntax Form Overflow Exception |Fixed-Point Record Bit (Rc) Condition Register
(OE) Exception Register Field 0

add 0 None 0 None

add. 0 None 1 LT,GT,EQ,SO

addo 1 SO,0V 0 None

addo. 1 SO,0V 1 LT,GT,EQ,SO

cax 0 None 0 None

cax. 0 None 1 LT,GT,EQ,SO

caxo 1 SO,0V 0 None

caxo. 1 SO,0V 1 LT,GT,EQ,SO

The four syntax forms of the add instruction and the four syntax forms of the cax instruction never affect
the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Overflow Exception
(OE) bit to 1, the instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the Fixed-Point
Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than
(LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition
Register Field 0.

Chapter 8. Instruction Set 125

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples

1. The following code adds the address or contents in GPR 6 to the address or contents in GPR 3 and
stores the result in GPR 4:

Assume GPR 6 contains 0x0004 0000.
Assume GPR 3 contains 0x0000 4000.
add 4,6,3

GPR 4 now contains 0x0004 4000.

2. The following code adds the address or contents in GPR 6 to the address or contents in GPR 3, stores
the result in GPR 4, and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 6 contains 0x8000 7000.

Assume GPR 3 contains 0x7000 8000.
add. 4,6,3
GPR 4 now contains OxFOO0 FOOO.

3. The following code adds the address or contents in GPR 6 to the address or contents in GPR 3, stores
the result in GPR 4, and sets the Summary Overflow, Overflow, and Carry bits in the Fixed-Point
Exception Register to reflect the result of the operation:

Assume GPR 6 contains OXEFFF FFFF.
Assume GPR 3 contains 0x8000 0000.
addo 4,6,3

GPR 4 now contains Ox6FFF FFFF.

4. The following code adds the address or contents in GPR 6 to the address or contents in GPR 3, stores
the result in GPR 4, and sets the Summary Overflow, Overflow, and Carry bits in the Fixed-Point
Exception Register and Condition Register Field O to reflect the result of the operation:

Assume GPR 6 contains OXEFFF FFFF.
Assume GPR 3 contains OXEFFF FFFF.

addo. 4,6,3
GPR 4 now contains OxDFFF FFFE.

Related Information
[Fixed-Point Processor .

[Fixed-Point Address Computation Instructions| .

addc or a (Add Carrying) Instruction

Purpose
Adds the contents of two general-purpose registers and places the result in a general-purpose register.
Syntax
Bits |Yalue|
0-5 31
6-10 RT
11-15 RA
16-20 RB

126 Assembler Language Reference

Bits |Yalue|

21 OE

22-30 10
31 Rc

PowerPC
addc
addc.
addco
addco.

HHEE

ao

ao. RT]

HEEE

Description
The addc and a instructions place the sum of the contents of general-purpose register (GPR) RA and
GPR RB into the target GPR RT.

The addc instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

The a instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

Syntax Form Overflow Exception |Fixed-Point Record Bit (Rc) Condition Register
(OE) Exception Register Field 0

addc 0 CA 0 None

addc. 0 CA 1 LT,GT,EQ,SO
addco 1 SO,0V,CA 0 None

addco. 1 SO,0V,CA 1 LT,GT,EQ,SO

a 0 CA 0 None

a. 0 CA 1 LT,GT,EQ,SO

ao 1 SO,0V,CA 0 None

ao. 1 SO,0V,CA 1 LT,GT,EQ,SO

The four syntax forms of the addc instruction and the four syntax forms of the a instruction always affect
the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Overflow Exception
(OE) bit to 1, the instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the Fixed-Point
Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than
(LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition
Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.

Chapter 8. Instruction Set 127

RB

Specifies source general-purpose register for operation.

Examples

1.

The following code adds the contents of GPR 4 to the contents of GPR 10 and stores the result in
GPR 6:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 10 contains 0x8000 7000.

addc 6,4,10
GPR 6 now contains 0x1000 A0OO.

The following code adds the contents of GPR 4 to the contents of GPR 10, stores the result in GPR 6,
and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x7000 3000.

Assume GPR 10 contains OxFFFF FFFF.

addc. 6,4,10

GPR 6 now contains 0x7000 2FFF.

The following code adds the contents of GPR 4 to the contents of GPR 10, stores the result in GPR 6,
and sets the Summary Overflow, Overflow, and Carry bits in the Fixed-Point Exception Register to
reflect the result of the operation:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 10 contains 0x7B41 92C0.

addco 6,4,10

GPR 6 now contains 0x0B41 C2CO.

The following code adds the contents of GPR 4 to the contents of GPR 10, stores the result in GPR 6,
and sets the Summary Overflow, Overflow, and Carry bits in the Fixed-Point Exception Register and
Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x8000 0000.

Assume GPR 10 contains 0x8000 7000.

addco. 6,4,10
GPR 6 now contains 0x0000 7000.

Related Information

[Fixed-Point Processor .

[Fixed-Point Arithmetic Instructions| .

adde or ae (Add Extended) Instruction

Purpose

Adds the contents of two general-purpose registers to the value of the Carry bit in the Fixed-Point
Exception Register and places the result in a general-purpose register.

Syntax
Bits [Value|

0-5 31

6-10 RT

11-15 RA

16-20 RB

21 OE

22-30 138

128 Assembler Language Reference

Bits |Yalue|

31 Rc
PowerPC

adde | |RB
adde. | |RB
addeo | |RB
addeo. | |RB
POWER family

ae RT} |RA [R5
ae. RT RB
aeo RT RB
aeo. RT| [RAL [RB
Description

The adde and ae instructions place the sum of the contents of general-purpose register (GPR) RA, GPR
RB, and the Carry bit into the target GPR RT.

The adde instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

The ae instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field O and the Fixed-Point Exception Register.

Syntax Form Overflow Exception |Fixed-Point Record Bit (Rc) Condition Register
(OE) Exception Register Field 0

adde 0 CA 0 None

adde. 0 CA 1 LT,GT,EQ,SO
addeo 1 SO,0V,CA 0 None

addeo. 1 SO,0V,CA 1 LT,GT,EQ,SO

ae 0 CA 0 None

ae. 0 CA 1 LT,GT,EQ,SO

aeo 1 SO,0V,CA 0 None

aeo. 1 SO,0V,CA 1 LT,GT,EQ,SO

The four syntax forms of the adde instruction and the four syntax forms of the ae instruction always affect
the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Overflow Exception
(OE) bit to 1, the instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the Fixed-Point
Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than
(LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition
Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Chapter 8. Instruction Set 129

Examples

1.

The following code adds the contents of GPR 4, the contents of GPR 10, and the Fixed-Point
Exception Register Carry bit and stores the result in GPR 6:

Assume GPR 4 contains 0x1000 0400.

Assume GPR 10 contains 0x1000 0400.

Assume the Carry bit is one.

adde 6,4,10

GPR 6 now contains 0x2000 0801.

The following code adds the contents of GPR 4, the contents of GPR 10, and the Fixed-Point
Exception Register Carry bit; stores the result in GPR 6; and sets Condition Register Field 0 to reflect
the result of the operation:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 10 contains 0x7B41 92C0.

Assume the Carry bit is zero.

adde. 6,4,10

GPR 6 now contains 0x0B41 C2CO.

The following code adds the contents of GPR 4, the contents of GPR 10, and the Fixed-Point
Exception Register Carry bit; stores the result in GPR 6; and sets the Summary Overflow, Overflow,
and Carry bits in the Fixed-Point Exception Register to reflect the result of the operation:

Assume GPR 4 contains 0x1000 0400.

Assume GPR 10 contains OxEFFF FFFF.

Assume the Carry bit is one.

addeo 6,4,10

GPR 6 now contains 0x0000 0400.

The following code adds the contents of GPR 4, the contents of GPR 10, and the Fixed-Point
Exception Register Carry bit; stores the result in GPR 6; and sets the Summary Overflow, Overflow,
and Carry bits in the Fixed-Point Exception Register and Condition Register Field 0 to reflect the result
of the operation:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 10 contains 0x8000 7000.

Assume the Carry bit is zero.

addeo. 6,4,10
GPR 6 now contains 0x1000 AGOO.

Related Information

[Fixed-Point Processor] .

[Fixed-Point Arithmetic Instructions| .

addi (Add Immediate) or cal (Compute Address Lower) Instruction

Purpose
Calculates an address from an offset and a base address and places the result in a general-purpose
register.
Syntax
Bits |Yalue|
0-5 14
6-10 RT
11-15 RA
16-31 SI/D

130 Assembler Language Reference

PowerPC

addi [R1[RA

POWER family

cal @@l@

See [Extended Mnemonics of Fixed-Point Arithmetic Instructions| and [Extended Mnemonics of Fixed-Point|
[Load Instructions| for more information.

Description

The addi and cal instructions place the sum of the contents of general-purpose register (GPR) RA and the
16-bit two’s complement integer S/ or D, sign-extended to 32 bits, into the target GPR RT. If GPR RA is
GPR 0, then Sl or D is stored into the target GPR RT.

The addi and cal instructions have one syntax form and do not affect Condition Register Field O or the
Fixed-Point Exception Register.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.

D Specifies 16-bit two’s complement integer sign extended to 32 bits.

S Specifies 16-bit signed integer for operation.

Examples

The following code calculates an address or contents with an offset of OXFFFF 8FF0 from the contents of
GPR 5 and stores the result in GPR 4:

Assume GPR 5 contains 0x0000 0900.
addi 4,0xFFFF8FFO(5)
GPR 4 now contains OxFFFF 98F0.

Related Information
[Fixed-Point Processor .

[Fixed-Point Address Computation Instructions| .

addic or ai (Add Immediate Carrying) Instruction

Purpose

Adds the contents of a general-purpose register and a 16-bit signed integer, places the result in a
general-purpose register, and effects the Carry bit of the Fixed-Point Exception Register.

Syntax
Bits [Value|
0-5 12
6-10 Bl
11-15 RA
16-31 Sl

Chapter 8. Instruction Set 131

PowerPC

addic [RT}[RA [S]

POWER family

ai 57 [EA [S]

See [Extended Mnemonics of Fixed-Point Arithmetic Instructions| for more information.

Description

The addic and ai instructions place the sum of the contents of general-purpose register (GPR) RA and a
16-bit signed integer, SI, into target GPR RT.

The 16-bit integer provided as immediate data is sign-extended to 32 bits prior to carrying out the addition
operation.

The addic and ai instructions have one syntax form and can set the Carry bit of the Fixed-Point Exception
Register; these instructions never affect Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.
Si Specifies 16-bit signed integer for operation.

Examples

The following code adds OxFFFF FFFF to the contents of GPR 4, stores the result in GPR 6, and sets the
Carry bit to reflect the result of the operation:

Assume GPR 4 contains 0x0000 2346.
addic 6,4,0xFFFFFFFF
GPR 6 now contains 0x0000 2345.

Related Information
[Fixed-Point Processor .

[Fixed-Point Arithmetic Instructions| .

addic. or ai. (Add Immediate Carrying and Record) Instruction

Purpose
Performs an addition with carry of the contents of a general-purpose register and an immediate value.
Syntax
Bits [Value|
0-5 13
6-10 RT
11-15 RA
16-31 SI

132 Assembler Language Reference

PowerPC

addic. [RT}

POWER family

ai. 57} [BA [S]

See [Extended Mnemonics of Fixed-Point Arithmetic Instructions| for more information.

Description

The addic. and ai. instructions place the sum of the contents of general-purpose register (GPR) RA and a
16-bit signed integer, S/, into the target GPR RT.

The 16-bit integer S/ provided as immediate data is sign-extended to 32 bits prior to carrying out the
addition operation.

The addic. and ai. instructions have one syntax form and can set the Carry Bit of the Fixed-Point
Exception Register. These instructions also affect Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.
S Specifies 16-bit signed integer for operation.

Examples

The following code adds a 16-bit signed integer to the contents of GPR 4, stores the result in GPR 6, and
sets the Fixed-Point Exception Register Carry bit and Condition Register Field 0 to reflect the result of the
operation:

Assume GPR 4 contains OXEFFF FFFF.
addic. 6,4,0x1000
GPR 6 now contains OxFOO0 OFFF.

Related Information
[Fixed-Point Processor] .

[Fixed-Point Arithmetic Instructions| .

addis or cau (Add Immediate Shifted) Instruction

Purpose

Calculates an address from a concatenated offset and a base address and loads the result in a
general-purpose register.

Syntax
Bits |Yalue|
0-5 15
6-10 AT
11-15 RA

Chapter 8. Instruction Set 133

Bits |Yalue|

16-31 Si/uUl

PowerPC

addis [T} [RA [S]

POWER family

cau E1EA U]

See [Extended Mnemonics of Fixed-Point Arithmetic Instructions| and [Extended Mnemonics of Fixed-Point
[Load Instructions| for more information.

Description

The addis and cau instructions place the sum of the contents of general-purpose register (GPR) RA and
the concatenation of a 16-bit unsigned integer, S/ or Ul, and x’0000’ into the target GPR RT. If GPR RA is
GPR 0, then the sum of the concatenation of 0, S/ or Ul, and x’0000’ is stored into the target GPR RT.

The addis and cau instructions have one syntax form and do not affect Condition Register Field O or the
Fixed-Point Exception Register.

Note: The immediate value for the cau instruction is a 16-bit unsigned integer, whereas the
immediate value for the addis instruction is a 16-bit signed integer. This difference is a result of
extending the architecture to 64 bits.

The assembler does a 0 to 65535 value-range check for the Ul field, and a -32768 to 32767 value-range
check for the Sl field.

To keep the source compatibility of the addis and cau instructions, the assembler expands the
value-range check for the addis instruction to -65536 to 65535. The sign bit is ignored and the assembler
only ensures that the immediate value fits into 16 bits. This expansion does not affect the behavior of a
32-bit implementation or 32-bit mode in a 64-bit implementation.

The addis instruction has different semantics in 32-bit mode than it does in 64-bit mode. If bit 32 is set, it
propagates through the upper 32 bits of the 64-bit general-purpose register. Use caution when using the
addis instruction to construct an unsigned integer. The addis instruction with an unsigned integer in 32-bit
may not be directly ported to 64-bit mode. The code sequence needed to construct an unsigned integer in
64-bit mode is significantly different from that needed in 32-bit mode.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies first source general-purpose register for operation.

ul Specifies 16-bit unsigned integer for operation.

Si Specifies

16-bit signed integer for operation.

Examples

The following code adds an offset of 0x0011 0000 to the address or contents contained in GPR 6 and
loads the result into GPR 7:

Assume GPR 6 contains 0x0000 4000.
addis 7,6,0x0011
GPR 7 now contains 0x0011 4000.

134 Assembler Language Reference

Related Information

[Fixed-Point Processor| .

[Fixed-Point Address Computation Instructions| .

addme or ame (Add to Minus One Extended) Instruction

Purpose

Adds the contents of a general-purpose register, the Carry bit in the Fixed-Point Exception Register, and -1
and places the result in a general-purpose register.

Syntax

Bits

|Yalue|

0-5

31

6-10

RT

11-15

RA

16-20

1

21

OE

22-30

234

31

Rc

PowerPC
addme
addme.
addmeo
addmeo.

POWER family

ame
ame.
ameo
ameo.

Description

The addme and ame instructions place the sum of the contents of general-purpose register (GPR) RA, the
Carry bit of the Fixed-Point Exception Register, and -1 (OxFFFF FFFF) into the target GPR RT.

The addme instruction has four syntax forms. Each syntax form has a different effect on Condition
Register Field 0 and the Fixed-Point Exception Register.

The ame instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

Syntax Form

Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc)

Condition Register
Field 0

addme

0

CA

None

addme.

0

CA

LT,GT,EQ,SO

Chapter 8. Instruction Set 135

addmeo 1 SO,0V,CA 0 None
addmeo. 1 SO,0V,CA 1 LT,GT,EQ,SO
ame 0 CA 0 None
ame. 0 CA 1 LT,GT,EQ,SO
ameo 1 SO,0V,CA 0 None
ameo. 1 SO,0V,CA 1 LT,GT,EQ,SO

The four syntax forms of the addme instruction and the four syntax forms of the ame instruction always
affect the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Overflow
Exception (OE) bit to 1, the instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the
Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in
Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.

Examples

1. The following code adds the contents of GPR 4, the Carry bit in the Fixed-Point Exception Register,
and -1 and stores the result in GPR 6:

Assume GPR 4 contains 0x9000 3000.
Assume the Carry bit is zero.
addme 6,4
GPR 6 now contains 0x9000 2FFF.

2. The following code adds the contents of GPR 4, the Carry bit in the Fixed-Point Exception Register,
and -1; stores the result in GPR 6; and sets Condition Register Field 0 to reflect the result of the
operation:

Assume GPR 4 contains 0xBO0O 42FF.
Assume the Carry bit is zero.
addme. 6,4

GPR 6 now contains 0xBOOO 42FE.

3. The following code adds the contents of GPR 4, the Carry bit in the Fixed-Point Exception Register,
and -1; stores the result in GPR 6; and sets the Summary Overflow, Overflow, and Carry bits in the
Fixed-Point Exception Register to reflect the result of the operation:

Assume GPR 4 contains 0x8000 0000.
Assume the Carry bit is zero.
addmeo 6,4

GPR 6 now contains Ox7FFF FFFF.

4. The following code adds the contents of GPR 4, the Carry bit in the Fixed-Point Exception Register,
and -1; stores the result in GPR 6; and sets the Summary Overflow, Overflow, and Carry bits in the
Fixed-Point Exception Register and Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0x8000 0000.

Assume the Carry bit is one.

addmeo. 6,4
GPR 6 now contains 0x8000 000.

Related Information
[Fixed-Point Processor] .

[Fixed-Point Arithmetic Instructions .

136 Assembler Language Reference

addze or aze (Add to Zero Extended) Instruction

Purpose

Adds the contents of a general-purpose register, zero, and the value of the Carry bit in the Fixed-Point

Exception Register and places the result in a general-purpose register.

Syntax

Bits

|Yalue|

0-5

31

6-10

RT

11-15

RA

16-20

"

21

OE

22-30

202

31

Rc

PowerPC
addze
addze.
addzeo
addzeo.

POWER family
aze

aze.

azeo

azeo.

Description

The addze and aze instructions add the contents of general-purpose register (GPR) RA, the Carry bit, and

0x0000 0000 and place the result into the target GPR RT.

The addze instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

The aze instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

Syntax Form Overflow Exception |Fixed-Point Record Bit (Rc) Condition Register
(OE) Exception Register Field 0

addze 0 CA 0 None

addze. 0 CA 1 LT,GT,EQ,SO
addzeo 1 SO,0V,CA 0 None

addzeo. 1 SO,0V,CA 1 LT,GT,EQ,SO

aze 0 CA 0 None

aze. 0 CA 1 LT,GT,EQ,SO

Chapter 8. Instruction Set

137

azeo 1 SO,0V,CA 0 None

azeo. 1 SO,0V,CA 1 LT,GT,EQ,SO

The four syntax forms of the addze instruction and the four syntax forms of the aze instruction always
affect the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Overflow
Exception (OE) bit to 1, the instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the
Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in
Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.

Examples

1. The following code adds the contents of GPR 4, 0, and the Carry bit and stores the result in GPR 6:

Assume GPR 4 contains 0x7B41 92C0.
Assume the Carry bit is zero.
addze 6,4

GPR 6 now contains 0x7B41 92C0.

2. The following code adds the contents of GPR 4, 0, and the Carry bit, stores the result in GPR 6, and
sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains OXEFFF FFFF.

Assume the Carry bit is one.
addze. 6,4
GPR 6 now contains OxFOO0 0000.

3. The following code adds the contents of GPR 4, 0, and the Carry bit; stores the result in GPR 6; and
sets the Summary Overflow, Overflow, and Carry bits in the Fixed-Point Exception Register to reflect
the result of the operation:

Assume GPR 4 contains 0x9000 3000.
Assume the Carry bit is one.
addzeo 6,4

GPR 6 now contains 0x9000 3001.

4. The following code adds the contents of GPR 4, 0, and the Carry bit; stores the result in GPR 6; and
sets the Summary Overflow, Overflow, and Carry bits in the Fixed-Point Exception Register and
Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OXEFFF FFFF.
Assume the Carry bit is zero.

adzeo. 6,4
GPR 6 now contains OXEFFF FFFF.

Related Information
[Fixed-Point Processor] .

[Fixed-Point Arithmetic Instructions| .

and (AND) Instruction

Purpose

Logically ANDs the contents of two general-purpose registers and places the result in a general-purpose
register.

138 Assembler Language Reference

Syntax

Bits |Yalue|

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 28

31 Rc

and RA RS, (RB

and. RAL |RS, [RB

Description

The and instruction logically ANDs the contents of general-purpose register (GPR) RS with the contents of
GPR RB and places the result into the target GPR RA.

The and instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception |Fixed-Point Record Bit (Rc) Condition Register
(OE) Exception Register Field 0

and None None 0 None

and. None None 1 LT,GT,EQ,SO

The two syntax forms of the and instruction never affect the Fixed-Point Exception Register. If the syntax
form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,
Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples

1. The following code logically ANDs the contents of GPR 4 with the contents of GPR 7 and stores the
result in GPR 6:

Assume GPR 4 contains OxFFF2 5730.
Assume GPR 7 contains 0x7B41 92C0.
and 6,4,7

GPR 6 now contains 0x7B40 1200.

2. The following code logically ANDs the contents of GPR 4 with the contents of GPR 7, stores the result
in GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains OxFFF2 5730.
Assume GPR 7 contains OxFFFF EFFF.
and. 6,4,7
GPR 6 now contains OxFFF2 4730.

Chapter 8. Instruction Set 139

Related Information
[Fixed-Point Processor .

[Fixed-Point Logical Instructions| .

andc (AND with Complement) Instruction

Purpose

Logically ANDs the contents of a general-purpose register with the complement of the contents of a
general-purpose register.

Syntax

Bits |Yalue|
0-5 31
6-10 RS
11-15 RA
16-20 RB
21-30 60
31 Rc
andc RA IRS, [RB
andc. RAL|RS, [RB
Description

The andc instruction logically ANDs the contents of general-purpose register (GPR) RS with the
complement of the contents of GPR RB and places the result into GPR RA.

The andc instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception |Fixed-Point Record Bit (Rc) Condition Register
(OE) Exception Register Field 0

andc None None 0 None

andc. None None 1 LT,GT,EQ,SO

The two syntax forms of the andc instruction never affect the Fixed-Point Exception Register. If the syntax
form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,
Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters
RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

140 Assembler Language Reference

Examples

1. The following code logically ANDs the contents of GPR 4 with the complement of the contents of GPR
5 and stores the result in GPR 6:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 5 contains OxFFFF FFFF.

The complement of OXFFFF FFFF becomes 0x0000 0000.
andc 6,4,5

GPR 6 now contains 0x0000 0000.

2. The following code logically ANDs the contents of GPR 4 with the complement of the contents of GPR
5, stores the result in GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xB004 3000.

Assume GPR 5 contains 0x7676 7676.

The complement of 0x7676 7676 is 0x8989 8989.
andc. 6,4,5

GPR 6 now contains 0x8000 0000.

Related Information
[Fixed-Point Processor] .

[Fixed-Point Logical Instructions| .

andi. or andil. (AND Immediate) Instruction

Purpose
Logically ANDs the contents of a general-purpose register with an immediate value.

Syntax

Bits |Yalue|

0-5 28
6-10 RS
11-15 RA
16-31 ul

PowerPC

andi. [RA [RS [U]

POWER family

andil. [rRA [RS [U]

Description

The andi. and andil. instructions logically AND the contents of general-purpose register (GPR) RS with the
concatenation of xX’'0000’ and a 16-bit unsigned integer, Ul, and place the result in GPR RA.

The andi. and andil. instructions have one syntax form and never affect the Fixed-Point Exception
Register. The andi. and andil. instructions copies the Summary Overflow (SO) bit from the Fixed-Point
Exception Register into Condition Register Field 0 and sets one of the Less Than (LT), Greater Than (GT),
or Equal To (EQ) bits of Condition Register Field 0.

Chapter 8. Instruction Set 141

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
ul Specifies 16-bit unsigned integer for operation.

Examples
The following code logically ANDs the contents of GPR 4 with 0x0000 5730, stores the result in GPR 6,
and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x7B41 92C0.
andi. 6,4,0x5730

GPR 6 now contains 0x0000 1200.

CRF 0 now contains 0x4.

Related Information
[Fixed-Point Processor .

[Fixed-Point Logical Instructions|.

andis. or andiu. (AND Immediate Shifted) Instruction

Purpose

Logically ANDs the most significant 16 bits of the contents of a general-purpose register with a 16-bit
unsigned integer and stores the result in a general-purpose register.

Syntax
Bits |Yalue|
0-5 29
6-10 RS
11-15 RA
16-31 ul
PowerPC

andis. @ @

POWER family

andiu. [rA [R3 [U]

Description

The andis. and andiu. instructions logically AND the contents of general-purpose register (GPR) RS with
the concatenation of a 16-bit unsigned integer, Ul, and x’0000’ and then place the result into the target
GPR RA.

The andis. and andiu. instructions have one syntax form and never affect the Fixed-Point Exception

Register. The andis. and andiu. instructions set the Less Than (LT) zero, Greater Than (GT) zero, Equal
To (EQ) zero, or Summary Overflow (SO) bit in Condition Register Field 0.

142 Assembler Language Reference

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
ul Specifies 16-bit unsigned integer for operation.

Examples

The following code logically ANDs the contents of GPR 4 with 0x5730 0000, stores the result in GPR 6,
and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x7B41 92C0.
andis. 6,4,0x5730
GPR 6 now contains 0x5300 0000.

Related Information
[Fixed-Point Processor] .

[Fixed-Point Logical Instructions| .

b (Branch) Instruction

Purpose
Branches to a specified target address.
Syntax

Bits |Va|ug|
0-5 18
6-29 LL
30 AA
31 LK
b target_address
ba target_address
bl target_address
bla target_address
Description

The b instruction branches to an instruction specified by the branch target address. The branch target
address is computed one of two ways.

Consider the following when using the b instruction:

 |If the Absolute Address bit (AA) is 0, the branch target address is computed by concatenating the 24-bit
L/ field. This field is calculated by subtracting the address of the instruction from the target address and
dividing the result by 4 and b’00’. The result is then sign-extended to 32 bits and added to the address
of this branch instruction.

« If the AA bit is 1, then the branch target address is the L/ field concatenated with b’00’ sign-extended to
32 bits. The L/ field is the low-order 26 bits of the target address divided by four.

Chapter 8. Instruction Set 143

The b instruction has four syntax forms. Each syntax form has a different effect on the Link bit and Link

Register.

Syntax Form Absolute Address Fixed-Point Link Bit (LK) Condition Register
Bit (AA) Exception Register Field 0

b 0 None 0 None

ba 1 None 0 None

bl 0 None 1 None

bla 1 None 1 None

The four syntax forms of the b instruction never affect the Fixed-Point Exception Register or Condition
Register Field 0. The syntax forms set the AA bit and the Link bit (LK) and determine which method of
calculating the branch target address is used. If the Link bit (LK) is set to 1, then the effective address of
the instruction is placed in the Link Register.

Parameters

target_address

Examples

Specifies the target address.

1. The following code transfers the execution of the program to there:

here: b there

cror 31,31,31
The execution of the program continues at there.

there:

2. The following code transfers the execution of the program to here and sets the Link Register:

b1 here

return: cror 31,31,31

The Link Register now contains the address of return.
The execution of the program continues at here.

here:

Related Information

[Branch Processor|.

[Branch Instructions| .

bc (Branch Conditional) Instruction

Purpose
Conditionally branches to a specified target address.
Syntax
Bits Value
0-5 16
6-10 BO
11-15 Bl
16-29 BD

144 Assembler Language Reference

Bits Value
30 AA
31 LK
bc ‘BO” on page 146, |"Bl” on page 146, |“target_address” on page 146
bca ‘BO” on page 146 |"Bl” on page 146, |“target_address” on page 146
bel “BO” on page 146, |"Bl” on page 146 “target_address” on page 146
bcla “BO” on page 146,|“Bl” on page 146, |“target _address” on page 146

See [‘Extended Mnemonics of Branch Instructions” on page 89| for more information.

Description

The bec instruction branches to an instruction specified by the branch target address. The branch target
address is computed one of two ways:

 |f the Absolute Address bit (AA) is 0, then the branch target address is computed by concatenating the
14-bit Branch Displacement (BD) and b’00’, sign-extending this to 32 bits, and adding the result to the
address of this branch instruction.

» If the AAis 1, then the branch target address is BD concatenated with b’00’ sign-extended to 32 bits.

The be instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

Syntax Form Absolute Address Fixed-Point Link Bit (LK) Condition Register
Bit (AA) Exception Register Field 0

bc 0 None 0 None

bca 1 None 0 None

bel 0 None 1 None

bcla 1 None 1 None

The four syntax forms of the be instruction never affect the Fixed-Point Exception Register or Condition
Register Field 0. The syntax forms set the AA bit and the Link bit (LK) and determine which method of
calculating the branch target address is used. If the Link Bit (LK) is set to 1, then the effective address of
the instruction is placed in the Link Register.

The Branch Option field (BO) is used to combine different types of branches into a single instruction.
Extended mnemonics are provided to set the Branch Option field automatically.

The encoding for the BO field is defined in PowerPC architecture. The following list gives brief descriptions
of the possible values for this field using pre-V2.00 encoding:

Table 31. BO Field Values Using pre-V2.00 Encoding

BO Description

0000y Decrement the CTR; then branch if the decremented CTR is not 0 and the condition is False.
0001y Decrement the CTR; then branch if the decremented CTR is 0 and the condition is False.
001zy Branch if the condition is False.

0100y Decrement the CTR; then branch if bits the decremented CTR is not 0 and the condition is True.
0101y Decrement the CTR; then branch if the decremented CTR is 0 and the condition is True.
0llzy Branch if the condition is True.

1200y Decrement the CTR; then branch if the decremented CTR is not 0.

1z01y Decrement the CTR; then branch if the decremented CTR is 0.

1z1zz Branch always.

Chapter 8. Instruction Set 145

In the PowerPC architecture, the bits are as follows:
¢ The z bit denotes a bit that must be 0. If the bit is not 0, the instruction form is invalid.

* The y bit provides a hint about whether a conditional branch is likely to be taken. The value of this bit
can be either 0 or 1. The default value is 0.

In the POWER family architecture, the z and y bits can be either 0 or 1.

The encoding for the BO field using V2.00 encoding is briefly described below:
Table 32. BO Field Values Using V2.00 Encoding

BO Description

0000z Decrement the CTR; then branch if the decremented CTR is not 0 and the condition is False.
0001z Decrement the CTR; then branch if the decremented CTR is 0 and the condition is False.
00lat Branch if the condition is False.

0100z Decrement the CTR; then branch if bits the decremented CTR is not 0 and the condition is True.
0101z Decrement the CTR; then branch if the decremented CTR is 0 and the condition is True.

01llat Branch if the condition is True.

1a00t Decrement the CTR; then branch if the decremented CTR is not 0.

1a01t Decrement the CTR; then branch if the decremented CTR is 0.

1z1zz Branch always.

The a and t bits of the BO field can be used by software to provide a hint about whether a branch is likely
to be taken, as shown below:

at Hint

00 No hint is given.

01 Reserved

01 The branch is very likely not to be taken.

11 The branch is very likely to be taken.

Parameters

target_address Specifies the target address. For absolute branches such as bea and bcla, the target
address can be immediate data containable in 16 bits.

Bi Specifies bit in Condition Register for condition comparison.

BO Specifies Branch Option field used in instruction.

Examples

The following code branches to a target address dependent on the value in the Count Register:

addi 8,0,3

Loads GPR 8 with 0x3.

mtctr 8

The Count Register (CTR) equals 0x3.

addic. 9,8,0x1

Adds one to GPR 8 and places the result in GPR 9.

The Condition Register records a comparison against zero
with the result.

bc 0xC,0,there

Branch is taken if condition is true. 0 indicates that
the 0 bit in the Condition Register is checked to

determine if it is set (the LT bit is on). If it is set,
the branch is taken.

bcl 0x8,2,there

146 Assembler Language Reference

CTR is decremented by one, becomming 2.
The branch is taken if CTR is not equal to 0 and CTR bit 2
is set (the EQ bit is on).
The Link Register contains address of next instruction.

Related Information

[Chapter 1, “Assembler Overview,” on page 1)

[‘Branch Processor” on page 19/

[‘Branch Instructions” on page 19

becetr or bee (Branch Conditional to Count Register) Instruction

Purpose
Conditionally branches to the address contained within the Count Register.
Syntax
Bits
0-5 19
6-10 BO
11-15 BI
16-18 1
19-20 BH
21-30 528
31 LK
PowerPC
bcctr ‘BO” on page 144 |'BI” on page 149 |'BH” on page 149
bectrl ‘BO” on page 149 |"Bl” on page 149 |'BH” on page 149
POWER family
bcc “BO” on page 149,|"Bl” on page 149, |"BH” on page 149
becl “BO” on page 149,|“Bl” on page 149 |"BH” on page 149

See [‘Extended Mnemonics of Branch Instructions” on page 89| for more information.

Description

The becetr and bee instructions conditionally branch to an instruction specified by the branch target
address contained within the Count Register. The branch target address is the concatenation of Count

Register bits 0-29 and b’00’.

The becetr and bece instructions have two syntax forms. Each syntax form has a different effect on the Link

bit and Link Register.

Syntax Form Absolute Address Fixed-Point Link Bit (LK) Condition Register
Bit (AA) Exception Register Field 0
bcctr None None 0 None

Chapter 8. Instruction Set 147

bcctrl None None None
bcec None None None
beccl None None None

The two syntax forms of the beetr and bece instructions never affect the Fixed-Point Exception Register or

Condition Register Field 0. If the Link bit is 1, then the effective address of the instruction following the
branch instruction is placed into the Link Register.

The Branch Option field (BO) is used to combine different types of branches into a single instruction.
Extended mnemonics are provided to set the Branch Option field automatically.

The encoding for the BO field is defined in PowerPC architecture. The following list gives brief descriptions
of the possible values for this field using pre-V2.00 encoding:

BO Description

0000y Decrement the CTR; then branch if the decremented CTR is not 0 and the condition is False.
0001y Decrement the CTR; then branch if the decremented CTR is 0 and the condition is False.

001zy Branch if the condition is False.

0100y Decrement the CTR; then branch if bits the decremented CTR is not 0 and the condition is True.
0101y Decrement the CTR; then branch if the decremented CTR is 0 and the condition is True.

011lzy Branch if the condition is True.

1z00y Decrement the CTR; then branch if the decremented CTR is not 0.

1z01y Decrement the CTR; then branch if the decremented CTR is 0.

1z1zz Branch always.

In the PowerPC architecture, the bits are as follows:
e The z bit denotes a bit that must be 0. If the bit is not 0, the instruction form is invalid.

* The y bit provides a hint about whether a conditional branch is likely to be taken. The value of this bit
can be either 0 or 1. The default value is 0.

In the POWER family Architecture, the z and y bits can be either 0 or 1.

The encoding for the BO field using V2.00 encoding is briefly described below:

Table 33. BO Field Values Using V2.00 Encoding

BO Description

0000z Decrement the CTR; then branch if the decremented CTR is not 0 and the condition is False.
0001z Decrement the CTR; then branch if the decremented CTR is 0 and the condition is False.

00lat Branch if the condition is False.

0100z Decrement the CTR; then branch if bits the decremented CTR is not 0 and the condition is True.
0101z Decrement the CTR; then branch if the decremented CTR is 0 and the condition is True.

0llat Branch if the condition is True.

1a00t Decrement the CTR; then branch if the decremented CTR is not 0.

1a01t Decrement the CTR; then branch if the decremented CTR is 0.

1z1zz Branch always.

The a and t bits of the BO field can be used by software to provide a hint about whether a branch is likely
to be taken, as shown below:

at Hint

00 No hint is given.

01 Reserved

01 The branch is very likely not to be taken.

148 Assembler Language Reference

at Hint
11 The branch is very likely to be taken.

The Branch Hint field (BH) is used to provide a hint about the use of the instruction, as shown below:

BH Hint

00 The instruction is not a subroutine return; the target address is likely to be the same as the target
address used the preceding time the branch was taken.

01 Reserved

10 Reserved

11 The target address is not predictable.

Parameters

BO Specifies Branch Option field.
BI Specifies bit in Condition Register for condition comparison.

BIF Specifies the Condition Register field that specifies the Condition Register bit (LT, GT, EQ, or SO) to be used

for condition comparison.
BH Provides a hint about the use of the instruction.

Examples

The following code branches from a specific address, dependent on a bit in the Condition Register, to the

address contained in the Count Register, and no branch hints are given:

bcctr 0x4,0,0

cror 31,31,31

Branch occurs if LT bit in the Condition Register is 0.
The branch will be to the address contained in

the Count Register.

bcctrl 0xC,1,0

return: cror 31,31,31

Branch occurs if GT bit in the Condition Register is 1.
The branch will be to the address contained in

the Count Register.

The Link register now contains the address of return.

Related Information
[Chapter 1, “Assembler Overview,” on page 1.

[‘Branch Processor” on page 19,

[‘Branch Instructions” on page 19

belr or ber (Branch Conditional Link Register) Instruction

Purpose
Conditionally branches to an address contained in the Link Register.
Syntax
Bits Value
0-5 19
6-10 BO

Chapter 8. Instruction Set

149

Bits Value
11-15 BI
16-18 “
19-20 BH
21-30 16
31 LK
PowerPC
belr “BO” on page 151} |“Bl” on page 151} |"BH” on page 151
belrl “BO” on page 151}, |"Bl” on page 151}, |"BH” on page 151
POWER family
ber ‘BO” on page 151}|'BI” on page 151 |'BH” on page 151
berl “BO” on page 151} |"Bl” on page 151 |"BH” on page 151

See [‘Extended Mnemonics of Branch Instructions” on page 89| for more information.

Description

The belr and ber instructions branch to an instruction specified by the branch target address. The branch
target address is the concatenation of bits 0-29 of the Link Register and b’00’.

The bclr and ber instructions have two syntax forms. Each syntax form has a different effect on the Link
bit and Link Register.

Syntax Form Absolute Address Fixed-Point Link Bit (LK) Condition Register
Bit (AA) Exception Register Field O

belr None None 0 None

belrl None None 1 None

ber None None 0 None

berl None None 1 None

The two syntax forms of the belr and ber instruction never affect the Fixed-Point Exception Register or
Condition Register Field 0. If the Link bit (LK) is 1, then the effective address of the instruction that follows
the branch instruction is placed into the Link Register.

The Branch Option field (BO) is used to combine different types of branches into a single instruction.
Extended mnemonics are provided to set the Branch Option field automatically.

The encoding for the BO field is defined in PowerPC architecture. The following list gives brief descriptions
of the possible values for this field:

BO Description

0000y Decrement the CTR; then branch if the decremented CTR is not 0 and the condition is False.
0001y Decrement the CTR; then branch if the decremented CTR is 0 and the condition is False.

001zy Branch if the condition is False.

0100y Decrement the CTR; then branch if bits the decremented CTR is not 0 and the condition is True.
0101y Decrement the CTR; then branch if the decremented CTR is 0 and the condition is True.

011zy Branch if the condition is True.

1200y Decrement the CTR; then branch if the decremented CTR is not 0.

150 Assembler Language Reference

BO Description
1z01y Decrement the CTR; then branch if the decremented CTR is 0.
1z1zz Branch always.

In the PowerPC architecture, the bits are as follows:
¢ The z bit denotes a bit that must be 0. If the bit is not 0, the instruction form is invalid.

» The y bit provides a hint about whether a conditional branch is likely to be taken. The value of this bit
can be either 0 or 1. The default value is 0.

In the POWER family Architecture, the z and y bits can be either 0 or 1.

The encoding for the BO field using V2.00 encoding is briefly described below:
Table 34. BO Field Values Using V2.00 Encoding

BO Description

0000z Decrement the CTR; then branch if the decremented CTR is not 0 and the condition is False.
0001z Decrement the CTR; then branch if the decremented CTR is 0 and the condition is False.

00lat Branch if the condition is False.

0100z Decrement the CTR; then branch if bits the decremented CTR is not 0 and the condition is True.
0101z Decrement the CTR; then branch if the decremented CTR is 0 and the condition is True.

01llat Branch if the condition is True.

1a00t Decrement the CTR; then branch if the decremented CTR is not 0.

1a0lt Decrement the CTR; then branch if the decremented CTR is O.

1z1zz Branch always.

The a and t bits of the BO field can be used by software to provide a hint about whether a branch is likely
to be taken, as shown below:

at Hint

00 No hint is given.

01 Reserved

01 The branch is very likely not to be taken.
11 The branch is very likely to be taken.

The Branch Hint field (BH) is used to provide a hint about the use of the instruction, as shown below:

BH Hint

00 The instruction is not a subroutine return; the target address is likely to be the same as the target
address used the preceding time the branch was taken.

01 Reserved

10 Reserved

11 The target address is not predictable.

Parameters

BO Specifies Branch Option field.

Bl Specifies bit in Condition Register for condition comparison.

BH Provides a hint about the use of the instruction.

Chapter 8. Instruction Set 151

Examples

The following code branches to the calculated branch target address dependent on bit O of the Condition
Register, and no branch hint is given:

bclr 0x0,0,0

The Count Register is decremented.

A branch occurs if the LT bit is set to zero in the

Condition Register and if the Count Register

does not equal zero.

If the conditions are met, the instruction branches to

the concatenation of bits 0-29 of the Link Register and b'00'.

Related Information
[Chapter 1, “Assembler Overview,” on page 1/

[‘Branch Processor” on page 19|

[‘Branch Instructions” on page 19

clcs (Cache Line Compute Size) Instruction

Purpose
Places a specified cache line size in a general-purpose register.

Note: The clcs instruction is supported only in the POWER family architecture.

Syntax
Bits |Yalue|
0-5 31
6-10 RT
11-15 RA
16-20 I
21-30 531
31 Rc
POWER family

clecs @ @

Description

The cles instruction places the cache line size specified by RA into the target general-purpose register
(GPR) RT. The value of RA determines the cache line size returned in GPR RT.

Value of RA Cache Line Size Returned in RT
00xxx Undefined

010xx Undefined

01100 Instruction Cache Line Size

01101 Data Cache Line Size

01110 Minimum Cache Line Size

152 Assembler Language Reference

01111 Maximum Cache Line Size

1TXXXX Undefined

Note: The value in GPR RT must lie between 64 and 4096, inclusive, or results will be undefined.

The cles instruction has only one syntax form and does not affect the Fixed-Point Exception Register. If
the Record (Rc) bit is set to 1, the Condition Register Field 0 is undefined.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies cache line size requested.

Examples

The following code loads the maximum cache line size into GPR 4:
Assume that Oxf is the cache
line size requested

clcs 4,0xf
GPR 4 now contains the maximum Cache Line size.

Related Information

The@ (Cache Line Flush) instruction, @ (Cache Line Invalidate) instruction, [dcbfl (Data Cache Block
Flush) instruction, (Data Cache Block Invalidate) instruction, |dcbst] (Data Cache Block Store)
instruction, |dcbt (Data Cache Block Touch) instruction, [dcbtst| (Data Cache Block Touch for Store)

instruction, |[dcbz or dclz (Data Cache Block Set to Zero) instruction, dclsﬂ (Data Cache Line Store)
instruction, (Instruction Cache Block Invalidate) instruction, |sinc‘ (Synchronize) or des (Data Cache

Synchronize) instruction.

[Processing and Storage: Overview|

clf (Cache Line Flush) Instruction

Purpose

Writes a line of modified data from the data cache to main memory, or invalidates cached instructions or
unmodified data.

Note: The clf instruction is supported only in the POWER family architecture.

Syntax
Bits alue

0-5 31

6-10 i

11-15 RA

16-20 RB

21-30 118

31 Rc

Chapter 8. Instruction Set 153

POWER family

clf [RA

Description

The clf instruction calculates an effective address (EA) by adding the contents of general-purpose register
(GPR) RA to the contents of GPR RB. If the RA field is 0, EA is the sum of the contents of RB and 0. If
the RA field is not 0 and if the instruction does not cause a data storage interrupt, the result of the
operation is placed back into GPR RA.

Consider the following when using the clf instruction:

 If the Data Relocate (DR) bit of the Machine State Register (MSR) is set to 0, the effective address is
treated as a real address.

» |If the MSR DR bit is set to 1, the effective address is treated as a virtual address. The MSR Instruction
Relocate bit (IR) is ignored in this case.

» If a line containing the byte addressed by the EA is in the data cache and has been modified, writing
the line to main memory is begun. If a line containing the byte addressed by EA is in one of the caches,
the line is not valid.

* When MSR (DR) = 1, if the virtual address has no translation, a Data Storage interrupt occurs, setting
the first bit of the Data Storage Interrupt Segment register to 1.

* A machine check interrupt occurs when the virtual address translates to an invalid real address and the
line exists in the data cache.

» Address translation treats the instruction as a load to the byte addressed, ignoring protection and data
locking. If this instruction causes a Translation Look-Aside buffer (TLB) miss, the reference bit is set.

If the EA specifies an I/O address, the instruction is treated as a no-op, but the EA is placed in GPR
RA.

The clf instruction has one syntax form and does not effect the Fixed-Point Exception register. If the
Record (Rc) bit is set to 1, Condition Register Field 0 is undefined.

Parameters

RA Specifies the source general-purpose register for EA calculation and, if RA is not GPR 0, the target
general-purpose register for operation.
RB Specifies the source general-purpose register for EA calculation.

Examples

The processor is not required to keep instruction storage consistent with data storage. The following code
executes storage synchronization instructions prior to executing an modified instruction:

Assume that instruction A is assigned to storage location
0x0033 0020.

Assume that the storage location to which A is assigned
contains 0x0000 0000.

Assume that GPR 3 contains 0x0000 0020.

Assume that GPR 4 contains 0x0033 0020.

Assume that GPR 5 contains 0x5000 0020.

st R5,R4,R3 # Store branch instruction in memory
clf R4,R3 # Flush A from cache to main memory
dcs # Ensure c1f is complete

ics # Discard prefetched instructions

b 0x0033 0020 # Go execute the new instructions

SR SR R S SR SR

After the store, but prior to the execution of the clf, dcs, and ics instructions, the copy of A in the cache
contains the branch instruction. However, it is possible that the copy of A in main memory still contains 0.

154 Assembler Language Reference

The clf instruction copies the new instruction back to main memory and invalidates the cache line
containing location A in both the instruction and data caches. The sequence of the des instruction followed
by the ics instruction ensures that the new instruction is in main memory and that the copies of the
location in the data and instruction caches are invalid before fetching the next instruction.

Related Information

The [clcs| (Cache Line Com ute Size) instruction, [cli] (Cache Line Invalidate) instruction, (Data Cache
Block Flush) instruction, |[dcbi (Data Cache Block Invalidate) instruction, [dcbst| (Data Cache Block Store)
instruction, [dcbt| (Data Cache Block Touch) instruction, |dcbtst] (Data Cache Block Touch for Store)
instruction, |dcbz or dclz (Data Cache Block Set to Zero) instruction, dclsﬂ (Data Cache Line Store)
instruction, |icbi| (Instruction Cache Block Invalidate) instruction, @ (Synchronize) or des (Data Cache
Synchronize) instruction.

[Processing and Storage: Overview|

cli (Cache Line Invalidate) Instruction

Purpose

Invalidates a line containing the byte addressed in either the data or instruction cache, causing subsequent
references to retrieve the line again from main memory.

Note: The cli instruction is supported only in the POWER family architecture.

Syntax
Bits [Value|
0-5 31
6-10 i
11-15 RA
16-20 RB
21-30 502
31 Rc
POWER family

cli [A [RB

Description

The cli instruction invalidates a line containing the byte addressed in either the data or instruction cache. If
RA is not 0, the cli instruction calculates an effective address (EA) by adding the contents of
general-purpose register (GPR) RA to the contents of GPR RB. If RA is not GPR 0 or the instruction does
not cause a Data Storage interrupt, the result of the calculation is placed back into GPR RA.

Consider the following when using the cli instruction:

 |f the Data Relocate (DR) bit of the Machine State Register (MSR) is 0, the effective address is treated
as a real address.

» If the MSR DR bit is 1, the effective address is treated as a virtual address. The MSR Relocate (IR) bit
is ignored in this case.

« If a line containing the byte addressed by the EA is in the data or instruction cache, the line is made
unusable so the next reference to the line is taken from main memory.

Chapter 8. Instruction Set 155

*« When MSR (DR) =1, if the virtual address has no translation, a Data Storage interrupt occurs, setting
the first bit of the Data Storage Interrupt Segment Register to 1.

» Address translation treats the cli instruction as a store to the byte addressed, ignoring protection and
data locking. If this instruction causes a Translation Look-Aside buffer (TLB) miss, the reference bit is
set.

+ If the EA specifies an I/O address, the instruction is treated as a no-op, but the EA is still placed in RA.

The cli instruction has only one syntax form and does not effect the Fixed-Point Exception Register. If the
Record (Rc) bit is set to 1, the Condition Register Field 0 is undefined.

Parameters

RA Specifies the source general-purpose register for EA calculation and possibly the target general-purpose
register (when RA is not GPR 0) for operation.
RB Specifies the source general-purpose register for EA calculation.

Security
The cli instruction is privileged.

Related Information

The [clcs] (Cache Line Compute Size) instruction, [cH] (Cache Line Flush) instruction, (Data Cache
Block Flush) instruction, |dcbi| (Data Cache Block Invalidate) instruction, (Data Cache Block Store)
instruction, [dcbt| (Data Cache Block Touch) instruction, |[dcbtst| (Data Cache Block Touch for Store)

instruction, |dcbz or dclz (Data Cache Block Set to Zero) instruction, dclsﬂ (Data Cache Line Store)
instruction, (Instruction Cache Block Invalidate) instruction, |sinc‘ (Synchronize) or des (Data Cache

Synchronize) instruction.

[Processing and Storage: Overview}

cmp (Compare) Instruction

Purpose
Compares the contents of two general-purpose registers algebraically.
Syntax
Bits [Value|
0-5 31
6-8 BF
9 /
10 L
11-15 RA
16-20 RB
21-30 0
31 /

cmp EAL[FAFE

156 Assembler Language Reference

See [Extended Mnemonics of Fixed-Point Compare Instructions| for more information.

Description

The emp instruction compares the contents of general-purpose register (GPR) RA with the contents of
GPR RB as signed integers and sets one of the bits in Condition Register Field BF.

BF can be Condition Register Field 0-7; programmers can specify which Condition Register Field will
indicate the result of the operation.

The bits of Condition Register Field BF are interpreted as follows:

Bit Name Description
0 LT (RA) < SI

1 GT (RA) > SI

2 EQ (RA) = SI

3 SO SO,0V

The emp instruction has one syntax form and does not affect the Fixed-Point Exception Register.
Condition Register Field 0 is unaffected unless it is specified as BF by the programmer.

Parameters

BF Specifies Condition Register Field 0-7 which indicates result of compare.
L Must be set to 0 for the 32-bit subset architecture.

RA Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

The following code compares the contents of GPR 4 and GPR 6 as signed integers and sets Condition
Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxFFFF FFE7.

Assume GPR 5 contains 0x0000 0011.

Assume O is Condition Register Field 0.

cmp 0,4,6

The LT bit of Condition Register Field 0 is set.

Related Information

The [cmpi| (Compare Immediate) instruction, empl| (Compare Logical) instruction, (Compare Logical

Immediate) instruction.

[Fixed-Point Processor|.

cmpi (Compare Immediate) Instruction

Purpose
Compares the contents of a general-purpose register and a given value algebraically.

Chapter 8. Instruction Set

157

Bits [Value]
0-5 11
6-8 BF
9 /
10 L
11-15 RA
16-31 Sl

cmpi EAL[FAS]

See [Extended Mnemonics of Fixed-Point Compare Instructions| for more information.

Description

The empi instruction compares the contents of general-purpose register (GPR) RA and a 16- bit signed
integer, Sl, as signed integers and sets one of the bits in Condition Register Field BF.

BF can be Condition Register Field 0-7; programmers can specify which Condition Register Field will
indicate the result of the operation.

The bits of Condition Register Field BF are interpreted as follows:

Bit Name Description

0 LT (RA) < SI

1 GT (RA) > SI
EQ (RA) = SI
SO SO,0V

The empi instruction has one syntax form and does not affect the Fixed-Point Exception Register.
Condition Register Field 0 is unaffected unless it is specified as BF by the programmer.

Parameters

BF Specifies Condition Register Field 0-7 which indicates result of compare.
L Must be set to 0 for the 32-bit subset architecture.

RA Specifies first source general-purpose register for operation.

SI Specifies 16-bit signed integer for operation.

Examples
The following code compares the contents of GPR 4 and the signed integer 0x11 and sets Condition
Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxFFFF FFE7.
cmpi 0,4,0x11
The LT bit of Condition Register Field 0 is set.

158 Assembler Language Reference

Related Information

The (Compare) instruction, (Compare Logical) instruction, (Compare Logical Immediate)

instruction.

[Fixed-Point Processor .

cmpl (Compare Logical) Instruction

Purpose
Compares the contents of two general-purpose registers logically.
Syntax
Bits |Yalue|
0-5 31
6-8 BF
9 /
10 L
11-15 RA
16-20 RB
21-30 32
31 /
cmpl EALFAFE

See [Extended Mnemonics of Fixed-Point Compare Instructions| for more information.

Description

The empl instruction compares the contents of general-purpose register (GPR) RA with the contents of
GPR RB as unsigned integers and sets one of the bits in Condition Register Field BF.

BF can be Condition Register Field 0-7; programmers can specify which Condition Register Field will

indicate the result of the operation.

The bits of Condition Register Field BF are interpreted as follows:

Bit Name Description
0 LT (RA) < SI

1 GT (RA) > SI

2 EQ (RA) = SI

3 SO SO,0V

The empl instruction has one syntax form and does not affect the Fixed-Point Exception Register.
Condition Register Field 0 is unaffected unless it is specified as BF by the programmer.

Chapter 8. Instruction Set 159

Parameters

BF Specifies Condition Register Field 0-7 which indicates result of compare.
L Must be set to 0 for the 32-bit subset architecture.

RA Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

The following code compares the contents of GPR 4 and GPR 5 as unsigned integers and sets Condition
Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains OxFFFF 0000.

Assume GPR 5 contains Ox7FFF 0000.

Assume O is Condition Register Field 0.

cmpl 0,4,5

The GT bit of Condition Register Field 0 is set.

Related Information
The (Compare) instruction, (Compare Immediate) instruction, (Compare Logical

Immediate) instruction.

[Fixed-Point Processor .

cmpli (Compare Logical Inmediate) Instruction

Purpose
Compares the contents of a general-purpose register and a given value logically.
Syntax
Bits [Value]
0-5 10
6-8 BF
9 /
10 L
11-15 RA
16-31 ul

cmpli EADEAT

See [Extended Mnemonics of Fixed-Point Compare Instructions| for more information.

Description

The empli instruction compares the contents of general-purpose register (GPR) RA with the concatenation
of x’ 0000’ and a 16-bit unsigned integer, Ul, as unsigned integers and sets one of the bits in the Condition
Register Field BF.

BF can be Condition Register Field 0-7; programmers can specify which Condition Register Field will
indicate the result of the operation.

160 Assembler Language Reference

The bits of Condition Register Field BF are interpreted as follows:

Bit Name Description
0 LT (RA) < SI

1 GT (RA) > SI

2 EQ (RA) = SI

3 SO SO,0V

The empli instruction has one syntax form and does not affect the Fixed-Point Exception Register.
Condition Register Field 0 is unaffected unless it is specified as BF by the programmer.

Parameters

BF Specifies Condition Register Field 0-7 that indicates result of compare.
L Must be set to 0 for the 32-bit subset architecture.

RA Specifies source general-purpose register for operation.

ul Specifies 16-bit unsigned integer for operation.

Examples
The following code compares the contents of GPR 4 and the unsigned integer Oxff and sets Condition
Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x0000 00ff.
cmpli 0,4,0xff
The EQ bit of Condition Register Field 0 is set.

Related Information
The (Compare) instruction, (Compare Immediate) instruction, (Compare Logical)

instruction.

[Fixed-Point Processor|.

cntlzd (Count Leading Zeros Double Word) Instruction

Purpose

Count the number of consecutive zero bits in the contents of a general purpose register, beginning with
the high-order bit.

This instruction should only be used on 64-bit PowerPC processors running a 64-bit application.

Syntax
Bits [value|
0-5 31
6-10 S
11-15 A
16-20 00000
21-30 58
31 Rc

Chapter 8. Instruction Set 161

PowerPC64
cntlzd rAl [r§ (Re=0)
cntlzd. Al [rS(Re=1)

Description

A count of the number of consecutive zero bits, starting at bit O (the high-order bit) of register GPR RS is
placed into GPR RA. This number ranges from 0 to 64, inclusive.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

Other registers altered:

Condition Register (CRO field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Note: If Rc = 1, then LT is cleard in the CRO field.

Parameters

RA Specifies the target general purpose register for the results of the instruction.
RS Specifies the source general purpose register containing the double-word to examine.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

cntlzw or cntlz (Count Leading Zeros Word) Instruction

Purpose
Places the number of leading zeros from a source general-purpose register in a general-purpose register.
Syntax
Bits |Yalue|
0-5 31
6-10 RS
11-15 RA
16-20 11/
21-30 26
31 Rc
PowerPC
cntlzw RS
cntlzw. [RAL (RS

162 Assembler Language Reference

POWER family
cntlz [RAL|RS
cntlz. [RAL (RS

Description

The cntlzw and cntlz instructions count the number (between 0 and 32 inclusive) of consecutive zero bits
starting at bit 0 of general-purpose register (GPR) RS and store the result in the target GPR RA.

Syntax Form Overflow Exception |Fixed-Point Record Bit (Rc) Condition Register
(OE) Exception Register Field 0

cntlzw None None 0 None

cntlzw. None None 1 LT,GT,EQ,SO

cntlz None None 0 None

cntlz. None None 1 LT,GT,EQ,SO

The two syntax forms of the cntlzw instruction and the two syntax forms of the cntlz instruction never
affect the Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction
affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow
(SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.

Examples

The following code counts the number of leading zeros in the value contained in GPR 3 and places the
result back in GPR 3:

Assume GPR 3 contains 0x0061 9920.
cntlzw 3,3
GPR 3 now holds 0x0000 0009.

Related Information
[Fixed-Point Processor .

[Fixed-Point Logical Instructions| .

crand (Condition Register AND) Instruction

Purpose
Places the result of ANDing two Condition Register bits in a Condition Register bit.
Syntax

Bits |Yalue|
0-5 19
6-10 BT
11-15 BA

Chapter 8. Instruction Set 163

Bits [Value|
16-20 BB
21-30 257
31 /

crand

Description

The crand instruction logically ANDs the Condition Register bit specified by BA and the Condition Register
bit specified by BB and places the result in the target Condition Register bit specified by BT.

The crand instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

BT Specifies target Condition Register bit where result of operation is stored.
BA Specifies source Condition Register bit for operation.
BB Specifies source Condition Register bit for operation.

Examples

The following code logically ANDs Condition Register bits 0 and 5 and stores the result in Condition
Register bit 31:

Assume Condition Register bit 0 is 1.
Assume Condition Register bit 5 is 0.
crand 31,0,5

Condition Register bit 31 is now 0.

Related Information
[Branch Processor.

[Condition Register Instructions| .

crandc (Condition Register AND with Complement) Instruction

Purpose

Places the result of ANDing one Condition Register bit and the complement of a Condition Register bit in a
Condition Register bit.

Syntax
Bits [Value|
0-5 19
6-10 BT
11-15 BA
16-20 BB
21-30 129
31 /

164 Assembler Language Reference

crandc

Description

The crandc instruction logically ANDs the Condition Register bit specified in BA and the complement of
the Condition Register bit specified by BB and places the result in the target Condition Register bit
specified by BT.

The crandc instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

BT Specifies target Condition Register bit where result of operation is stored.
BA Specifies source Condition Register bit for operation.
BB Specifies source Condition Register bit for operation.

Examples

The following code logically ANDs Condition Register bit 0 and the complement of Condition Register bit 5
and puts the result in bit 31:

Assume Condition Register bit 0 is 1.
Assume Condition Register bit 5 is 0.
crandc 31,0,5

Condition Register bit 31 is now 1.

Related Information
[Branch Processor].

[Condition Register Instructions) .

creqv (Condition Register Equivalent) Instruction

Purpose
Places the complemented result of XORing two Condition Register bits in a Condition Register bit.
Syntax
Bits [Value|
0-5 19
6-10 BT
11-15 BA
16-20 BB
21-30 289
31 /

creqv

See [Extended Mnemonics of Condition Register Logical Instructions| for more information.

Chapter 8. Instruction Set 165

Description

The creqv instruction logically XORs the Condition Register bit specified in BA and the Condition Register
bit specified by BB and places the complemented result in the target Condition Register bit specified by
BT.

The creqv instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

BT Specifies target Condition Register bit where result of operation is stored.
BA Specifies source Condition Register bit for operation.
BB Specifies source Condition Register bit for operation.

Examples

The following code places the complemented result of XORing Condition Register bits 8 and 4 into
Condition Register bit 4:

Assume Condition Register bit 8 is 1.
Assume Condition Register bit 4 is 0.
creqv 4,8,4

Condition Register bit 4 is now 0.

Related Information
[Branch Processor].

[Condition Register Instructions] .

crnand (Condition Register NAND) Instruction

Purpose
Places the complemented result of ANDing two Condition Register bits in a Condition Register bit.
Syntax
Bits [Value|
0-5 19
6-10 BT
11-15 BA
16-20 BB
21-30 225
31 /

crnand

Description

The crnand instruction logically ANDs the Condition Register bit specified by BA and the Condition
Register bit specified by BB and places the complemented result in the target Condition Register bit
specified by BT.

The crnand instruction has one syntax form and does not affect the Fixed-Point Exception Register.

166 Assembler Language Reference

Parameters

BT Specifies target Condition Register bit where result of operation is stored.
BA Specifies source Condition Register bit for operation.
BB Specifies source Condition Register bit for operation.

Examples

The following code logically ANDs Condition Register bits 8 and 4 and places the complemented result
into Condition Register bit 4:

Assume Condition Register bit 8 is 1.
Assume Condition Register bit 4 is 0.
crnand 4,8,4

Condition Register bit 4 is now 1.

Related Information
[Branch Processor].

[Condition Register Instructions .

crnor (Condition Register NOR) Instruction

Purpose
Places the complemented result of ORing two Condition Register bits in a Condition Register bit.
Syntax
Bits [Value|
0-5 19
6-10 BT
11-15 BA
16-20 BB
21-30 33
31 /

emor

See [Extended Mnemonics of Condition Register Logical Instructions| for more information.

Description

The crnor instruction logically ORs the Condition Register bit specified in BA and the Condition Register
bit specified by BB and places the complemented result in the target Condition Register bit specified by
BT.

The crnor instruction has one syntax form and does not affect the Fixed Point Exception Register.

Parameters

BT Specifies target Condition Register bit where result of operation is stored.
BA Specifies source Condition Register bit for operation.

Chapter 8. Instruction Set 167

BB Specifies source Condition Register bit for operation.

Examples

The following code logically ORs Condition Register bits 8 and 4 and stores the complemented result into
Condition Register bit 4:

Assume Condition Register bit 8 is 1.
Assume Condition Register bit 4 is 0.
crnor 4,8,4

Condition Register bit 4 is now 0.

Related Information
[Branch Processor].

[Condition Register Instructions] .

cror (Condition Register OR) Instruction

Purpose
Places the result of ORing two Condition Register bits in a Condition Register bit.
Syntax
Bits [Value|
0-5 19
6-10 BT
11-15 BA
16-20 BB
21-30 449
31 /

cror

See [Extended Mnemonics of Condition Register Logical Instructions| for more information.

Description

The cror instruction logically ORs the Condition Register bit specified by BA and the Condition Register bit
specified by BB and places the result in the target Condition Register bit specified by BT.

The cror instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

BT Specifies target Condition Register bit where result of operation is stored.
BA Specifies source Condition Register bit for operation.
BB Specifies source Condition Register bit for operation.

Examples
The following code places the result of ORing Condition Register bits 8 and 4 into Condition Register bit 4:

168 Assembler Language Reference

Assume Condition Register bit 8 is 1.
Assume Condition Register bit 4 is 0.
cror 4,8,4

Condition Register bit 4 is now 1.

Related Information
[Branch Processor].

[Condition Register Instructions] .

crorc (Condition Register OR with Complement) Instruction

Purpose

Places the result of ORing a Condition Register bit and the complement of a Condition Register bit in a
Condition Register bit.

Syntax
Bits [Value|
0-5 19
6-10 BT
11-15 BA
16-20 BB
21-30 417
31 /

crorc

Description

The crorc instruction logically ORs the Condition Register bit specified by BA and the complement of the
Condition Register bit specified by BB and places the result in the target Condition Register bit specified
by BT.

The crorc instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

BT Specifies target Condition Register bit where result of operation is stored.
BA Specifies source Condition Register bit for operation.
BB Specifies source Condition Register bit for operation.

Examples
The following code places the result of ORing Condition Register bit 8 and the complement of Condition
Register bit 4 into Condition Register bit 4:

Assume Condition Register bit 8 is 1.
Assume Condition Register bit 4 is 0.
crorc 4,8,4

Condition Register bit 4 is now 1.

Chapter 8. Instruction Set 169

Related Information
[Branch Processor] .

[Condition Register Instructions] .

crxor (Condition Register XOR) Instruction

Purpose
Places the result of XORing two Condition Register bits in a Condition Register bit.
Syntax
Bits [Value]
0-5 19
6-10 BT
11-15 BA
16-20 BB
21-30 193
31 /

crxor

See [Extended Mnemonics of Condition Register Logical Instructions| for more information.

Description

The crxor instruction logically XORs the Condition Register bit specified by BA and the Condition Register
bit specified by BB and places the result in the target Condition Register bit specified by BT.

The crxor instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

BT Specifies target Condition Register bit where result of operation is stored.
BA Specifies source Condition Register bit for operation.
BB Specifies source Condition Register bit for operation.

Examples

The following code places the result of XORing Condition Register bits 8 and 4 into Condition Register bit
4:

Assume Condition Register bit 8 is 1.
Assume Condition Register bit 4 is 1.
crxor 4,8,4

Condition Register bit 4 is now 0.

Related Information
[Branch Processor|.

[Condition Register Instructions] .

170 Assembler Language Reference

dcbf (Data Cache Block Flush) Instruction

Purpose
Copies modified cache blocks to main storage and invalidates the copy in the data cache.

Note: The dcbf instruction is supported only in the PowerPC architecture.

Syntax
Bits |Yalue|
0-5 31
6-10 Vi
11-15 RA
16-20 RB
21-30 86
31 /
PowerPC

debf RA

Description

The dcbf instruction calculates an effective address (EA) by adding the contents of general-purpose
register (GPR) RA to the contents of GPR RB. If the RA field is 0, EA is the sum of the contents of RB
and 0. If the cache block containing the target storage locations is in the data cache, it is copied back to
main storage, provided it is different than the main storage copy.

Consider the following when using the debf instruction:

» If a block containing the byte addressed by the EA is in the data cache and has been modified, the
block is copied to main memory. If a block containing the byte addressed by EA is in one of the caches,
the block is made not valid.

 |If the EA specifies a direct store segment address, the instruction is treated as a no-op.

The dcbf instruction has one syntax form and does not effect the Fixed-Point Exception Register.

Parameters

RA Specifies the source general-purpose register for operation.
RB Specifies the source general-purpose register for operation.

Examples

The software manages the coherency of storage shared by the processor and another system component,
such as an /O device that does not participate in the storage coherency protocol. The following code
flushes the shared storage from the data cache prior to allowing another system component access to the
storage:

Assume that the variable A is assigned to storage location

0x0000 4540.

Assume that the storage location to which A is assigned

contains 0.
Assume that GPR 3 contains 0x0000 0040.

Chapter 8. Instruction Set 171

Assume that GPR 4 contains 0x0000 4500.
Assume that GPR 5 contains -1.

st R5,R4,R3 # Store OxFFFF FFFF to A

dcbf R4,R3 # Flush A from cache to main memory

sync # Ensure dcbf is complete. Start I1/0
operation

After the store, but prior to the execution of the dcbf and@ instructions, the copy of A in the cache
contains a -1. However, it is possible that the copy of A in main memory still contains 0. After the sync
instruction completes, the location to which A is assigned in main memory contains -1 and the processor
data cache no longer contains a copy of location A.

Related Information

The@ (Cache Line Compute Size) instruction, @ (Cache Line Flush) instruction, @ (Cache Line
Invalidate) instruction, (Data Cache Block Invalidate) instruction, [dcbst| (Data Cache Block Store)
instruction, [dcbt| (Data Cache Block Touch) instruction, (Data Cache Block Touch for Store)
instruction, |[dcbz or dclz (Data Cache Block Set to Zero) instruction, dclsﬂ (Data Cache Line Store)
instruction, (Instruction Cache Block Invalidate) instruction, |§E (Synchronize) or des (Data Cache
Synchronize) instruction.

dcbi (Data Cache Block Invalidate) Instruction

Purpose

Invalidates a block containing the byte addressed in the data cache, causing subsequent references to
retrieve the block again from main memory.

Note: The dcbi instruction is supported only in the PowerPC architecture.

Syntax
Bits |Yalue|
0-5 31
6-10 Vi
11-15 RA
16-20 RB
21-30 470
31 /
PowerPC

dcbi [RA

Description

If the contents of general-purpose register (GPR) RA is not 0, the dcbi instruction computes an effective
address (EA) by adding the contents of GPR RA to the contents of GPR RB. Otherwise, the EA is the
content of GPR RB.

If the cache block containing the addressed byte is in the data cache, the block is made invalid.
Subsequent references to a byte in the block cause a reference to main memory.

The dcbi instruction is treated as a store to the addressed cache block with respect to protection.

172 Assembler Language Reference

The dcbi instruction has only one syntax form and does not effect the Fixed-Point Exception register.

Parameters

RA Specifies the source general-purpose register for EA computation.
RB Specifies the source general-purpose register for EA computation.

Security
The dcbi instruction is privileged.

Related Information

The@ (Cache Line Compute Size) instruction, @ (Cache Line Flush) instruction, @ (Cache Line
Invalidate) instruction, (Data Cache Block Flush) instruction, |[dcbst| (Data Cache Block Store)
(Data Cache Block Touch) instruction, [dcbtst (Data Cache Block Touch for Store)

instruction, |[dcb

instruction, [dcbz or dclz (Data Cache Block Set to Zero) instruction, dcls!l (Data Cache Line Store)
instruction, |icbi| (Instruction Cache Block Invalidate) instruction, |sync‘ (Synchronize) or des (Data Cache

Synchronize) instruction.

[Processing and Storage]

dcbst (Data Cache Block Store) Instruction

Purpose
Allows a program to copy the contents of a modified block to main memory.

Note: The dcbst instruction is supported only in the PowerPC architecture.

Syntax
Bits |Yalue|
0-5 31
6-10 Vi
11-15 RA
16-20 RB
21-30 54
31 /
PowerPC

dcbst [RA

Description

The dcbst instruction causes any modified copy of the block to be copied to main memory. If RA is not 0,

the dcbst instruction computes an effective address (EA) by adding the contents of general-purpose

register (GPR) RA to the contents of GPR RB. Otherwise, the EA is the contents of RB. If the cache block
containing the addressed byte is in the data cache and is modified, the block is copied to main memory.

Chapter 8. Instruction Set

173

The dcbst instruction may be used to ensure that the copy of a location in main memory contains the
most recent updates. This may be important when sharing memory with an I/O device that does not
participate in the coherence protocol. In addition, the dcbst instruction can ensure that updates are
immediately copied to a graphics frame buffer.

Treat the dcbst instruction as a load from the addressed byte with respect to address translation and
protection.

The dcbst instruction has one syntax form and does not effect the Fixed-Point Exception register.

Parameters

RA Specifies the source general-purpose register for EA computation.
RB Specifies the source general-purpose register for EA computation.

Examples

1. The following code shares memory with an I/O device that does not participate in the coherence
protocol:

Assume that Tocation A is memory that is shared with the

I/0 device.

Assume that GPR 2 contains a control value indicating that
and I/0 operation should start.

Assume that GPR 3 contains the new value to be placed in
location A.

Assume that GPR 4 contains the address of location A.

Assume that GPR 5 contains the address of a control register
in the I/0 device.
st 3,0,4

dchst 0,4

e = = H e e 3 I

H=

Update Tocation A.

Copy new content of location A and
other bytes in cache block to main
memory .

Ensure the dcbst instruction has
completed.

Signal I/0 device that location A has
been update.

2. The following code copies to a graphics frame buffer, ensuring that new values are displayed without
delay:
Assume that target memory is a graphics frame buffer.
Assume that GPR 2, 3, and 4 contain new values to be displayed.

#

Assume that GPR 5 contains the address minus 4 of where the
first value is to be stored.
#
#

sync

H e I H= = R W

st 2,0,5

Assume that the 3 target Tocations are known to be in a single
cache block.

addi 6,5,4 # Compute address of first memory

location.
stwu 2,4(5) # Store value and update address ptr.
stwu 3,4(5) # Store value and update address ptr.
stwu 4,4(5) # Store value and update address ptr.
dcbst 0,6 # Copy new content of cache block to

frame buffer. New values are displayed.

Related Information

The@ (Cache Line Compute Size) instruction, @ (Cache Line Flush) instruction, @ (Cache Line
Invalidate) instruction, |dcbf| (Data Cache Block Flush) instruction, (Data Cache Block Invalidate)
instruction, [dcbt| (Data Cache Block Touch) instruction, (Data Cache Block Touch for Store)
instruction, |dcbz or dclz (Data Cache Block Set to Zero) instruction, dclsﬂ (Data Cache Line Store)
instruction, (Instruction Cache Block Invalidate) instruction, @ (Synchronize) or des (Data Cache
Synchronize) instruction.

174 Assembler Language Reference

[Processing and Storage: Overview}

dcbt (Data Cache Block Touch) Instruction

Purpose
Allows a program to request a cache block fetch before it is actually needed by the program.

Note: The dcbt instruction is supported only in the POWERS5 architecture.

Syntax
Bits |Yalue|
0-5 31
6 /
7-10 TH
11-15 RA
16-20 RB
21-30 278
31 /
POWERS5
dcbt [‘RA” on page 177, |“RB” on page 177 [“TH” on page 177
Description

The dcbt instruction may improve performance by anticipating a load from the addressed byte. The block
containing the byte addressed by the effective address (EA) is fetched into the data cache before the
block is needed by the program. The program can later perform loads from the block and may not
experience the added delay caused by fetching the block into the cache. Executing the debt instruction
does not invoke the system error handler.

If general-purpose register (GPR) RA is not 0, the effective address (EA) is the sum of the content of GPR
RA and the content of GPR RB. Otherwise, the EA is the content of GPR RB.

Consider the following when using the dcbt instruction:
» |If the EA specifies a direct store segment address, the instruction is treated as a no-op.

» The access is treated as a load from the addressed cache block with respect to protection. If protection
does not permit access to the addressed byte, the dcbt instruction performs no operations.

Note: If a program needs to store to the data cache block, use the [dcbtst (Data Cache Block Touch for
Store) instruction.

The Touch Hint field (TH) is used to provide a hint that the program will probably load soon from the
storage locations specified by the EA and the TH field. The hint is ignored for locations that are
caching-inhibited or guarded. The encodings of the TH field are as follows:

TH Description
0000 The program will probably soon load from the byte addressed by EA.
0001 The program will probably soon load from the data stream consisting of the block containing the

byte addressed by EA and an unlimited number of sequentially following blocks (that is, the
blocks containing the bytes addressed by EA + n * block_size, where n =0, 1, 2...).

Chapter 8. Instruction Set 175

TH
0011

1000

1010

Description

The program will probably soon load from the data stream consisting of the block containing the
byte addressed by EA and an unlimited number of sequentially preceding blocks (that is, the
blocks containing the bytes addressed by EA - n * block_size, where n =0, 1, 2...).

The dcbt instruction provides a hint that describes certain attributes of a data stream, and
optionally indicates that the program will probably soon load from the stream. The EA is
interpreted as described in

The dcbt instruction provides a hint that describes certain attributes of a data stream, or
indicates that the program will probably soon load from data streams that have been described
using dcbt instructions in which TH[O] = 1 or probably no longer load from such data streams.

The EA is interpreted as described in

The dcbt instruction serves as both a basic and extended mnemonic. The debt mnemonic with three
operands is the basic form, and the dcbt with two operands is the extended form. In the extended form,
the TH field is omitted and assumed to be 0b0000.

Table 35. EA Encoding when TH=0b1000

Bit(s) Name Description

0-56 EA_TRUNC High-order 57 bits of the effective address of the first unit of the data
stream.

57 D Direction
0 Subsequent units are the sequentially following units.
1 Subsequent units are the sequentially preceding units.

58 UG 0 No information is provided by the UG field.

1 The number of units in the data stream is unlimited, the
program’s need for each block of the stream is not likely to be
transient, and the program will probably soon load from the
stream.

59 Reserved Reserved
60-63 ID Stream ID to use for this stream.

Table 36. EA Encoding when TH=0b1010

Bit(s) Name Description
0-31 Reserved Reserved
32 Go 0 No information is provided by the GO field

1 The program will probably soon load from all nascent data
streams that have been completely described, and will probably
no longer load from all other data streams.

33-34 S Stop

00 No information is provided by the S field.

o1 Reserved

10 The program will probably no longer load from the stream
associated with the Stream ID (all other fields of the EA are
ignored except for the ID field).

1 The program will probably no longer load from the data streams
associated with all stream IDs (all other fields of the EA are
ignored).

35-46 Reserved Reserved

176 Assembler Language Reference

Table 36. EA Encoding when TH=0b1010 (continued)

accesses the block is likely to be short).

Bit(s) Name Description
47-56 UNIT_CNT Number of units in the data stream.
57 T 0 No information is provided by the T field.
1 The program’s need for each block of the data stream is likely to

be transient (that is, the time interval during which the program

58 u

0 No information is provided by the U field.
1 The number of units in the data stream is unlimited (and the
UNIT_CNT field is ignored).
59 Reserved Reserved
60-63 ID Stream ID to use for this stream.

The dcbt instruction has one syntax form and does not affect the Condition Register field 0 or the
Fixed-Point Exception register.

Parameters

RA Specifies source general-purpose register for EA computation.
RB Specifies source general-purpose register for EA computation.
TH Indicates when a sequence of data cache blocks might be needed.

Examples
The following code sums the content of a one-dimensional vector:

Assume that GPR 4 contains the address of the first element
of the sum.

Assume 49 elements are to be summed.

Assume the data cache block size is 32 bytes.

Assume the elements are word aligned and the address

are multiples of 4.

dcbt 0,4 # Issue hint to fetch first
cache block.

addi 5,4,32 # Compute address of second
cache block.

addi 8,0,6 # Set outer loop count.

addi 7,0,8 # Set inner loop counter.

dcht 0,5 # Issue hint to fetch second
cache block.

Twz 3,4,0 # Set sum = element number 1.

bigloop:

addi 8,8,-1 # Decrement outer Toop count
and set CR field 0.

mtspr CTR,7 # Set counter (CTR) for
inner loop.

addi 5,5,32 # Computer address for next
touch.

1tt11oop:

Twzu 6,4,4 # Fetch element.

add 3,3,6 # Add to sum.

bc 16,0,1ttT1o0p # Decrement CTR and branch
if result is not equal to 0.

dcbt 0,5 # Issue hint to fetch next
cache block.

Chapter 8. Instruction Set

177

bc 4,3,bigloop # Branch if outer loop CTR is
not equal to 0.
end # Summation complete.

Related Information

The@ (Cache Line Compute Size) instruction, @ (Cache Line Flush) instruction, @ (Cache Line
Invalidate) instruction, |dcbf| (Data Cache Block Flush) instruction, (Data Cache Block Invalidate)
instruction, [dcbst| (Data Cache Block Store) instruction, |dcbtsﬂ (Data Cache Block Touch for Store)
instruction, |[debz or dclz (Data Cache Block Set to Zero) instruction, dclsﬂ (Data Cache Line Store)
instruction, |icbi| (Instruction Cache Block Invalidate) instruction, @ (Synchronize) or des (Data Cache
Synchronize) instruction.

[Processing and Storage]

dcbtst (Data Cache Block Touch for Store) Instruction

Purpose
Allows a program to request a cache block fetch before it is actually needed by the program.

Note: The dcbtst instruction is supported only in the PowerPC architecture.

Syntax

Bits [Value|
0-5 31
6-10 1
11-15 RA
16-20 RB
21-30 246
31 /
PowerPC
dcbtst [RA [RB
Description

The dcbtst instruction improves performance by anticipating a store to the addressed byte. The block
containing the byte addressed by the effective address (EA) is fetched into the data cache before the
block is needed by the program. The program can later perform stores to the block and may not
experience the added delay caused by fetching the block into the cache. Executing the dcbtst instruction
does not invoke the system error handler.

The dcbtst instruction calculates an effective address (EA) by adding the contents of general-purpose
register (GPR) RA to the contents of GPR RB. If the RA field is 0, EA is the sum of the contents of RB
and 0.

Consider the following when using the debtst instruction:
» If the EA specifies a direct store segment address, the instruction is treated as a no-op.

» The access is treated as a load from the addressed cache block with respect to protection. If protection
does not permit access to the addressed byte, the dcbtst instruction performs no operations.

178 Assembler Language Reference

« If a program does not need to store to the data cache block, use the [dcbi] (Data Cache Block Touch)
instruction.

The dcbtst instruction has one syntax form and does not affect Condition Register field 0 or the
Fixed-Point Exception register.

Parameters

RA Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Related Information

The@ (Cache Line Compute Size) instruction, @ (Cache Line Flush) instruction, @ (Cache Line
Invalidate) instruction, |dcbf| (Data Cache Block Flush) instruction, (Data Cache Block Invalidate
instruction, |dcbst| (Data Cache Block Store) instruction, |[dcbt| (Data Cache Block Touch) instruction,
or dclz (Data Cache Block Set to Zero) instruction, [declst] (Data Cache Line Store) instruction,
(Instruction Cache Block Invalidate) instruction, (Synchronize) or des (Data Cache Synchronize)
instruction.

[Processing and Storage]

dcbz or dclz (Data Cache Block Set to Zero) Instruction

Purpose
The PowerPC instruction, dcbz, sets all bytes of a cache block to 0.

The POWER family instruction, dclz,sets all bytes of a cache line to 0.

Syntax
Bits |Yalue|
0-5 31
6-10 Vi
11-15 RA
16-20 RB
21-30 1014
31 /
PowerPC

dcbz [RA

POWER family

delz [RA

Description

The debz and dclz instructions work with data cache blocks and data cache lines respectively. If RA is not
0, the debz and dclz instructions compute an effective address (EA) by adding the contents of
general-purpose register (GPR) RA to the contents of GPR RB. If GPR RA is 0, the EA is the contents of
GPR RB.

Chapter 8. Instruction Set 179

If the cache block or line containing the addressed byte is in the data cache, all bytes in the block or line
are set to 0. Otherwise, the block or line is established in the data cache without reference to storage and
all bytes of the block or line are set to 0.

For the POWER family instruction dclz, if GPR RA is not 0, the EA replaces the content of GPR RA.

The dcbz and dclz instructions are treated as a store to the addressed cache block or line with respect to
protection.

The dcbz and dclz instructions have one syntax form and do not effect the Fixed-Point Exception
Register. If bit 31 is set to 1, the instruction form is invalid.

Parameters

PowerPC

RA Specifies the source register for EA computation.

RB Specifies the source register for EA computation.

POWER family

RA Specifies the source register for EA computation and the target register for EA update.
RB Specifies the source register for EA computation.

Security

The dclz instruction is privileged.

Related Information

The@ (Cache Line Compute Size) instruction, @ (Cache Line Flush) instruction, @ (Cache Line
Invalidate) instruction, |dcbff (Data Cache Block Flush) instruction, (Data Cache Block Invalidate
instruction, |dcbst] (Data Cache Block Store) instruction, (Data Cache Block Touch) instruction, [dcbtst]
(Data Cache Block Touch for Store) instruction, (Data Cache Line Store) instruction, |Lb'| (Instruction
Cache Block Invalidate) instruction, @ (Synchronize) or des (Data Cache Synchronize) instruction.

[Fixed-Point Processor .

dcist (Data Cache Line Store) Instruction

Purpose
Stores a line of modified data in the data cache into main memory.

Note: The dclst instruction is supported only in the POWER family architecture.

Syntax
Bits [Value|

0-5 31

6-10 1

11-15 RA

16-20 RB

21-30 630

31 Rc

180 Assembler Language Reference

POWER family

dclst [RA

Description

The dclst instruction adds the contents of general-purpose register (GPR) RA to the contents of GPR RB.
It then stores the sum in RA as the effective address (EA) if RA is not 0 and the instruction does not
cause a Data Storage interrupt.

If RA is 0, the effective address (EA) is the sum of the contents of GPR RB and 0.

Consider the following when using the dclst instruction:

« If the line containing the byte addressed by the EA is in the data cache and has been modified, the
dclst instruction writes the line to main memory.

» |If data address translation is enabled (that is, the Machine State Register (MSR) Data Relocate (DR) bit
is 1) and the virtual address has no translation, a Data Storage interrupt occurs with bit 1 of the Data
Storage Interrupt Segment Register set to 1.

+ |If data address translation is enabled (MSR DR bit is 1), the virtual address translates to an unusable
real address, the line exists in the data cache, and a Machine Check interrupt occurs.

 |If data address translation is disabled (MSR DR bit is 0) the address specifies an unusable real
address, the line exists in the data cache, and a Machine Check interrupt occurs.

» If the EA specifies an I/0 address, the instruction is treated as a no-op, but the effective address is
placed into GPR RA.

» Address translation treats the dclst instruction as a load to the byte addressed, ignoring protection and
data locking. If this instruction causes a Translation Look-Aside Buffer (TLB) miss, the reference bit is
set.

The dclst instruction has one syntax form and does not effect the Fixed-Point Exception register. If the
Record (Rc) bit is set to 1, Condition Register Field 0 is undefined.

Parameters

RA Specifies the source and target general-purpose register where result of operation is stored.
RB Specifies the source general-purpose register for EA calculation.

Examples

The following code stores the sum of the contents of GPR 4 and GPR 6 in GPR 6 as the effective
address:

Assume that GPR 4 contains 0x0000 3000.

Assume that GPR 6 is the target register and that it

contains 0x0000 0000.

dclst 6,4
GPR 6 now contains 0x0000 3000.

Related Information

The@ (Cache Line Compute Size) instruction, @ (Cache Line Flush) instruction, @ (Cache Line
Invalidate) instruction, |dcbff (Data Cache Block Flush) instruction, (Data Cache Block Invalidate
instruction, [dcbst]| (Data Cache Block Store) instruction, (Data Cache Block Touch) instruction, [dcbtst

Data Cache Block Touch for Store) instruction, ch (Data Cache Block Set to Zero) instruction,
h

(Instruction Cache Block Invalidate) instruction, (Synchronize) or des (Data Cache Synchronize)
instruction.

Chapter 8. Instruction Set 181

[Processing and Storage]

div (Divide) Instruction

Purpose

Divides the contents of a general-purpose register concatenated with the MQ Register by the contents of a

general-purpose register and stores the result in a general-purpose register.

Note: The div instruction is supported only in the POWER family architecture.

Syntax

Bits [Value|
0-5 31
6-10 RT
11-15 RA
16-20 RB
21 OE
22-30 331
31 Rc
POWER family
div | |RB
div. | |RB
divo | |RB
divo. RB
Description

The div instruction concatenates the contents of general-purpose register (GPR) RA and the contents of

Multiply Quotient (MQ) Register, divides the result by the contents of GPR RB, and stores the result in the
target GPR RT. The remainder has the same sign as the dividend, except that a zero quotient or a zero
remainder is always positive. The results obey the equation:

dividend = (divisor x quotient) + remainder

where a dividend is the original (RA) Il (MQ), divisor is the original (RB), quotient is the final (RT), and
remainder is the final (MQ).

For the case of -2x*31 P -1, the MQ Register is set to 0 and -2**31 is placed in GPR RT. For all other
overflows, the contents of MQ, the target GPR RT, and the Condition Register Field 0 (if the Record Bit
(Rc) is 1) are undefined.

The div instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

Syntax Form

Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc)

Condition Register
Field 0

div 0 None 0 None
div. 0 None 1 LT,GT,EQ,SO
divo 1 SO,0V 0 None

182 Assembler Language Reference

divo. 1 SO,0V | 1 LT,GT,EQ,SO

The four syntax forms of the div instruction never affect the Carry bit (CA) in the Fixed-Point Exception
Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the instruction affects the Summary
Overflow (SO) and Overflow (OV) bits in the Fixed-Point Exception Register. If the syntax form sets the
Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To
(EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples

1. The following code divides the contents of GPR 4, concatenated with the MQ Register, by the contents
of GPR 6 and stores the result in GPR 4:

Assume the MQ Register contains 0x0000 0001.
Assume GPR 4 contains 0x0000 0000.

Assume GPR 6 contains 0x0000 0002.

div 4,4,6

GPR 4 now contains 0x0000 0000.

The MQ Register now contains 0x0000 0001.

2. The following code divides the contents of GPR 4, concatenated with the MQ Register, by the contents
of GPR 6, stores the result in GPR 4, and sets Condition Register Field 0 to reflect the result of the
operation:

Assume the MQ Register contains 0x0000 0002.
Assume GPR 4 contains 0x0000 0000.

Assume GPR 6 contains 0x0000 0002.

div. 4,4,6

GPR 4 now contains 0x0000 0001.

MQ Register contains 0x0000 0000.

3. The following code divides the contents of GPR 4, concatenated with the MQ Register, by the contents
of GPR 6, places the result in GPR 4, and sets the Summary Overflow and Overflow bits in the
Fixed-Point Exception Register to reflect the result of the operation:

Assume GPR 4 contains 0x0000 0001.

Assume GPR 6 contains 0x0000 0000.

Assume the MQ Register contains 0x0000 0000.
divo 4,4,6

GPR 4 now contains an undefined quantity.

The MQ Register is undefined.

4. The following code divides the contents of GPR 4, concatenated with the MQ Register, by the contents
of GPR 6, places the result in GPR 4, and sets the Summary Overflow and Overflow bits in the
Fixed-Point Exception Register and Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x-1.

Assume GPR 6 contains 0x2.

Assume the MQ Register contains OxFFFFFFFF.
divo. 4,4,6

GPR 4 now contains 0x0000 0000.

The MQ Register contains 0x-1.

Related Information
[Fixed-Point Processor] .

[Fixed-Point Arithmetic Instructions .

Chapter 8. Instruction Set 183

divd (Divide Double Word) Instruction

Purpose

Divide the contents of a general purpose register by the contents of a general purpose register, storing the
result into a general purpose register.

This instruction should only be used on 64-bit PowerPC® processors running a 64-bit application.

Syntax

Bits |Yalue|
0-5 31
6-10 D
11-15 A
16-20 B
21 OE
22-30 489
31 Rc
PowerPC64
divd L |RB (OE=0 Rc=0)
divd. | [RH (OE=0 Rc=1)
divdo L |RB (OE=1 Rc=0)
divdo. | |RE (OE=1 Rc=1)
Description

The 64-bit dividend is the contents of RA. The 64-bit divisor is the contents of RB. The 64- bit quotient is
placed into RT. The remainder is not supplied as a result.

Both the operands and the quotient are interpreted as signed integers. The quotient is the unique signed
integer that satisfies the equation-dividend = (quotient * divisor) + r, where 0 <= r < Idivisor! if the dividend
is non-negative, and -ldivisorl < r <=0 if the dividend is negative.

If an attempt is made to perform the divisions 0x8000_0000_0000_0000 / -1 or / 0, the contents of RT are
undefined, as are the contents of the LT, GT, and EQ bits of the condition register 0 field (if the record bit
(Rc) = 1 (the divd. or divdo. instructions)). In this case, if overflow enable (OE) = 1 then the overflow bit
(QV) is set.

The 64-bit signed remainder of dividing (RA) by (RB) can be computed as follows, except in the case that
(RA) = -2**63 and (RB) = -1:

divd RT,RA,RB # RT = quotient

mulld RT,RT,RB # RT = quotient * divisor

subf RT,RT,RA # RT = remainder

Parameters

RT Specifies target general-purpose register for the result of the computation.
RA Specifies source general-purpose register for the dividend.

184 Assembler Language Reference

RB Specifies source general-purpose register for the divisor.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

divdu (Divide Double Word Unsigned) Instruction

Purpose

Divide the contents of a general purpose register by the contents of a general purpose register, storing the
result into a general purpose register.

Syntax

Bits |Yalue|
0-5 31
6-10 D
11-15 A
16-20 B
21 OE
22-30 457
31 Rc
PowerPC
divdu L |RB (OE=0 Rc=0)
divdu. | [RB (OE=0 Rc=1)
divduo | [RB (OE=1 Rc=0)
divduo. ,[RB (OE=1 Rc=1)
Description

The 64-bit dividend is the contents of RA. The 64-bit divisor is the contents of RB. The 64- bit quotient is
placed into RT. The remainder is not supplied as a result.

Both the operands and the quotient are interpreted as unsigned integers, except that if the record bit (Rc)
is set to 1 the first three bits of th condition register 0 (CRO) field are set by signed comparison of the
result to zero. The quotient is the unique unsigned integer that satisfies the equation: dividend = (quotient
* divisor) + r, where 0 <= r < divisor.

If an attempt is made to perform the division (anything) / 0 the contents of RT are undefined, as are the
contents of the LT, GT, and EQ bits of the CRO field (if Rc = 1). In this case, if the overflow enable bit (OE)
= 1 then the overflow bit (OV) is set.

The 64-bit unsigned remainder of dividing (RA) by (RB) can be computed as follows:

divdu RT,RA,RB # RT = quotient
mulld RT,RT,RB # RT = quotient * divisor
subf RT,RT,RA # RT = remainder

Chapter 8. Instruction Set 185

Other registers altered:

» Condition Register (CRO field):
Affected: LT, GT, EQ, SO (if Rc = 1)

* XER: Affected: SO, OV (if OE = 1)

Note: The setting of the affected bits in the XER is mode-independent, and reflects overflow of the
64-bit result.

Parameters

RT Specifies target general-purpose register for the result of the computation.
RA Specifies source general-purpose register for the dividend.
RB Specifies source general-purpose register for the divisor.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

divs (Divide Short) Instruction

Purpose

Divides the contents of a general-purpose register by the contents of a general-purpose register and
stores the result in a general-purpose register.

Note: The divs instruction is supported only in the POWER family architecture.

Syntax

Bits |Yalue|

6-10 RT

11-15 RA

16-20 RB

21

22-30 363

31 Rc

POWER family
divs

divs.

divso

divso.

i
i
E
E

Description

The divs instruction divides the contents of general-purpose register (GPR) RA by the contents of GPR
RB and stores the result in the target GPR RT. The remainder has the same sign as the dividend, except
that a zero quotient or a zero remainder is always positive. The results obey the equation:

dividend = (divisor x quotient) + remainder

186 Assembler Language Reference

where a dividend is the original (RA), divisor is the original (RB), quotient is the final (RT), and
remainder is the final (MQ).

For the case of -2+*31 P -1, the MQ Register is set to 0 and -2**31 is placed in GPR RT. For all other
overflows, the contents of MQ, the target GPR RT and the Condition Register Field 0 (if the Record Bit
(Rc) is 1) are undefined.

The divs instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

Syntax Form Overflow Exception |Fixed-Point Record Bit (Rc) Condition Register
(OE) Exception Register Field 0

divs 0 None 0 None

divs. 0 None 1 LT,GT,EQ,SO

divso 1 SO,0V 0 None

divso. 1 SO,0V 1 LT,GT,EQ,SO

The four syntax forms of the divs instruction never affect the Carry bit (CA) in the Fixed-Point Exception
Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the instruction affects the Summary
Overflow (SO) and Overflow (OV) bits in the Fixed-Point Exception Register. If the syntax form sets the
Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To
(EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples

1. The following code divides the contents of GPR 4 by the contents of GPR 6 and stores the result in
GPR 4:

Assume GPR 4 contains 0x0000 0001.
Assume GPR 6 contains 0x0000 0002.
divs 4,4,6

GPR 4 now contains 0x0.

The MQ Register now contains Ox1.

2. The following code divides the contents of GPR 4 by the contents of GPR 6, stores the result in GPR
4 and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x0000 0002.

Assume GPR 6 contains 0x0000 0002.

divs. 4,4,6

GPR 4 now contains 0x0000 0001.

The MQ Register now contains 0x0000 0000.

3. The following code divides the contents of GPR 4 by the contents of GPR 6, stores the result in GPR
4, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register to reflect
the result of the operation:

Assume GPR 4 contains 0x0000 0001.

Assume GPR 6 contains 0x0000 0000.

divso 4,4,6

GPR 4 now contains an undefined quantity.

Chapter 8. Instruction Set 187

4. The following code divides the contents of GPR 4 by the contents of GPR 6, stores the result in GPR
4, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register and

Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x-1.
Assume GPR 6 contains 0x0000 00002.
Assume the MQ Register contains 0x0000 0000.

divso. 4,4,6

GPR 4 now contains 0x0000 0000.
The MQ register contains Ox-1.

Related Information

[Fixed-Point Processor .

[Fixed-Point Arithmetic Instructions| .

divw (Divide Word) Instruction

Purpose

Divides the contents of a general-purpose register by the contents of another general-purpose register and

stores the result in a third general-purpose register.

Note: The divw instruction is supported only in the PowerPC architecture.

Syntax

Bits |Yalue|
0-5 31
6-10 RT
11-15 RA
16-20 RB
21 OE
22-30 491
31 Rc
PowerPC
divw | |RB
divw. | |RB
divwo RB
divwo. RB
Description

The divw instruction divides the contents of general-purpose register (GPR) RA by the contents of GPR
RB, and stores the result in the target GPR RT. The dividend, divisor, and quotient are interpreted as

signed integers.

For the case of -2**31 / -1, and all other cases that cause overflow, the content of GPR RT is undefined.

The divw instruction has four syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

188 Assembler Language Reference

Syntax Form Overflow Exception |Fixed-Point Record Bit (Rc) Condition Register
(OE) Exception Register Field 0

divw 0 None 0 None

divw. 0 None 1 LT,GT,EQ,SO

divwo 1 SO, OV 0 None

divwo. 1 SO, oV 1 LT,GT,EQ,SO

The four syntax forms of the divw instruction never affect the Carry bit (CA) in the Fixed-Point Exception
Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the instruction affects the Summary
Overflow (SO) and Overflow (OV) bits in the Fixed-Point Exception Register. If the syntax form sets the
Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To
(EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for dividend.
RB Specifies source general-purpose register for divisor.

Examples

1. The following code divides the contents of GPR 4 by the contents of GPR 6 and stores the result in
GPR 4:

Assume GPR 4 contains 0x0000 0000.
Assume GPR 6 contains 0x0000 0002.
divw 4,4,6

GPR 4 now contains 0x0000 0000.

2. The following code divides the contents of GPR 4 by the contents of GPR 6, stores the result in GPR
4 and sets Condition Register Field O to reflect the result of the operation:

Assume GPR 4 contains 0x0000 0002.
Assume GPR 6 contains 0x0000 0002.
divw. 4,4,6
GPR 4 now contains 0x0000 0001.

3. The following code divides the contents of GPR 4 by the contents of GPR 6, places the result in GPR
4, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register to reflect
the result of the operation:

Assume GPR 4 contains 0x0000 0001.

Assume GPR 6 contains 0x0000 0000.

divwo 4,4,6

GPR 4 now contains an undefined quantity.

4. The following code divides the contents of GPR 4 by the contents of GPR 6, places the result in GPR
4, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register and
Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x8000 0000.

Assume GPR 6 contains OxFFFF FFFF.
divwo. 4,4,6

GPR 4 now contains undefined quantity.

Related Information
[Fixed-Point Processor .

[Fixed-Point Arithmetic Instructions| .

Chapter 8. Instruction Set 189

divwu (Divide Word Unsigned) Instruction

Purpose

Divides the contents of a general-purpose register by the contents of another general-purpose register and
stores the result in a third general-purpose register.

Note: The divwu instruction is supported only in the PowerPC architecture.

Syntax

Bits |Yalue|
0-5 31
6-10 RT
11-15 RA
16-20 RB
21 OE
22-30 459
31 Rc
PowerPC
divwu L |RB
divwu. L |RB
divwuo GE
divwuo. GE
Description

The divwu instruction divides the contents of general-purpose register (GPR) RA by the contents of GPR
RB, and stores the result in the target GPR RT. The dividend, divisor, and quotient are interpreted as
unsigned integers.

For the case of division by 0, the content of GPR RT is undefined.
Note: Although the operation treats the result as an unsigned integer, if Rc is 1, the Less Than (LT)
zero, Greater Than (GT) zero, and Equal To (EQ) zero bits of Condition Register Field O are set as if

the result were interpreted as a signed integer.

The divwu instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

Syntax Form Overflow Exception |Fixed-Point Record Bit (Rc) Condition Register
(OE) Exception Register Field 0

divwu 0 None 0 None

divwu. 0 None 1 LT,GT,EQ,SO

divwuo 1 SO, OV, 0 None

divwuo. 1 SO, OV 1 LT,GT,EQ,SO

The four syntax forms of the divwu instruction never affect the Carry bit (CA) in the Fixed-Point Exception
Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the instruction affects the Summary

190 Assembler Language Reference

Overflow (SO) and Overflow (OV) bits in the Fixed-Point Exception Register. If the syntax form sets the
Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To
(EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Examples

1. The following code divides the contents of GPR 4 by the contents of GPR 6 and stores the result in
GPR 4:

Assume GPR 4 contains 0x0000 0000.
Assume GPR 6 contains 0x0000 0002.
divwu 4,4,6

GPR 4 now contains 0x0000 0000.

2. The following code divides the contents of GPR 4 by the contents of GPR 6, stores the result in GPR
4 and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0x0000 0002.

Assume GPR 6 contains 0x0000 0002.
divwu. 4,4,6
GPR 4 now contains 0x0000 0001.

3. The following code divides the contents of GPR 4 by the contents of GPR 6, places the result in GPR
4, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register to reflect
the result of the operation:

Assume GPR 4 contains 0x0000 0001.

Assume GPR 6 contains 0x0000 0000.

divwuo 4,4,6

GPR 4 now contains an undefined quantity.

4. The following code divides the contents of GPR 4 by the contents of GPR 6, places the result in GPR
4, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register and
Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x8000 0000.
Assume GPR 6 contains 0x0000 0002.

divwuo. 4,4,6
GPR 4 now contains 0x4000 0000.

Related Information
[Fixed-Point Processor .

[Fixed-Point Arithmetic Instructions .

doz (Difference or Zero) Instruction

Purpose

Computes the difference between the contents of two general-purpose registers and stores the result or
the value zero in a general-purpose register.

Note: The doz instruction is supported only in the POWER family architecture.

Chapter 8. Instruction Set 191

Syntax

Bits |Yalue|
0-5 31
6-10 RT
11-15 RA
16-20 RB
21 OE
22-30 264
31 Rc
POWER family
doz L |RB
doz. GE
dozo L [RB
dozo. L [RB
Description

The doz instruction adds the complement of the contents of general-purpose register (GPR) RA, 1, and
the contents of GPR RB, and stores the result in the target GPR RT.

If the value in GPR RA is algebraically greater than the value in GPR RB, then GPR RT is set to 0.

The doz instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

Syntax Form

Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc)

Condition Register
Field 0

doz 0 None 0 None
doz. 0 None 1 LT,GT,EQ,SO
dozo 1 SO,0V 0 None
dozo. 1 SO,0V 1 LT,GT,EQ,SO

The four syntax forms of the doz instruction never affect the Carry bit (CA) in the Fixed-Point Exception
Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the instruction affects the Summary
Overflow (SO) and Overflow (OV) bits in the Fixed-Point Exception Register; the Overflow (OV) bit can
only be set on positive overflows. If the syntax form sets the Record (Rc) bit to 1, the instruction effects

the Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in

Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

192

Assembler Language Reference

Examples

1. The following code determines the difference between the contents of GPR 4 and GPR 6 and stores
the result in GPR 4:

Assume GPR 4 holds 0x0000 0001.
Assume GPR 6 holds 0x0000 0002.
doz 4,4,6

GPR 4 now holds 0x0000 0001.

2. The following code determines the difference between the contents of GPR 4 and GPR 6, stores the
result in GPR 4, and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 holds 0x0000 0001.

Assume GPR 6 holds 0x0000 0000.
doz. 4,4,6
GPR 4 now holds 0x0000 0000.

3. The following code determines the difference between the contents of GPR 4 and GPR 6, stores the
result in GPR 4, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception
Register to reflect the result of the operation:

Assume GPR 4 holds 0x0000 0002.
Assume GPR 6 holds 0x0000 0008.
dozo 4,4,6

GPR 4 now holds 0x0000 0006.

4. The following code determines the difference between the contents of GPR 4 and GPR 6, stores the
result in GPR 4, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception
Register and Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 holds OXEFFF FFFF.
Assume GPR 6 holds 0x0000 0000.

dozo. 4,4,6
GPR 4 now holds 0x1000 0001.

Related Information
[Fixed-Point Processor] .

[Fixed-Point Arithmetic Instructions| .

dozi (Difference or Zero Immediate) Instruction

Purpose

Computes the difference between the contents of a general-purpose register and a signed 16-bit integer
and stores the result or the value zero in a general-purpose register.

Note: The dozi instruction is supported only in the POWER family architecture.

Syntax
Bits [Value|
0-5 09
6-10 RT
11-15 RA
16-31 Sl
POWER family
dozi [RT}[RA

Chapter 8. Instruction Set 193

Description

The dozi instruction adds the complement of the contents of general-purpose register (GPR) RA, the
16-bit signed integer S/, and 1 and stores the result in the target GPR RT.

If the value in GPR RA is algebraically greater than the 16-bit signed value in the S/ field, then GPR RT is
set to 0.

The dozi instruction has one syntax form and does not effect Condition Register Field 0 or the Fixed-Point
Exception Register.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.
Si Specifies signed 16-bit integer for operation.

Examples

The following code determines the difference between GPR 4 and 0x0 and stores the result in GPR 4:

Assume GPR 4 holds 0x0000 0001.
dozi 4,4,0x0
GPR 4 now holds 0x0000 0000.

Related Information
[Fixed-Point Processor] .

[Fixed-Point Arithmetic Instructions| .

eciwx (External Control In Word Indexed) Instruction

Purpose

Translates the effective address (EA) to a real address, sends the real address to a controller, and loads
the word returned by the controller into a register.

Note: The eciwx instruction is defined only in the PowerPC architecture and is an optional instruction. It is
supported on the PowerPC 601 RISC Microprocessor, PowerPC 603 RISC Microprocessor, and
PowerPC 604 RISC Microprocessor.

Syntax
Bits Value
0-5 31
6-10 RT
11-15 RA
16-20 RB
21-30 310
31 /

eciwx [RT}[RA [RB

194 Assembler Language Reference

Description

The eciwx instruction translates EA to a real address, sends the real address to a controller, and places
the word returned by the controller in general-purpose register RT. If RA = 0, the EA is the content of RB,
otherwise EA is the sum of the content of RA plus the content of RB.

If EAR(E) = 1, a load request for the real address corresponding to EA is sent to the controller identified
by EAR(RID), bypassing the cache. The word returned by the controller is placed in RT.

Notes:

1. EA must be a multiple of 4 (a word-aligned address); otherwise, the result is boundedly undefined.
2. The operation is treated as a load to the addressed byte with respect to protection.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Related Information
“ecowx (External Control Out Word Indexed) Instruction.’|

[Chapter 2, “Processing and Storage,” on page 11

ecowx (External Control Out Word Indexed) Instruction

Purpose

Translates the effective address (EA) to a real address and sends the real address and the contents of a
register to a controller.

Note: The ecowx instruction is defined only in the PowerPC architecture and is an optional
instruction. It is supported on the PowerPC 601 RISC Microprocessor, PowerPC 603 RISC
Microprocessor, and PowerPC 604 RISC Microprocessor.

Syntax
Bits [Value|
0-5 31
6-10 RS
11-15 RA
16-20 RB
21-30 438
31 /

ecowx 73, [FA 78

Description

The ecowx instruction translates EA to a real address and sends the real address and the content of
general-purpose register RS to a controller. If RA = 0, the EA is the content of RB, otherwise EA is the
sum of the content of RA plus the content of RB.

Chapter 8. Instruction Set 195

If EAR(E) = 1, a store request for the real address corresponding to EA is sent to the controller identified
by EAR(RID), bypassing the cache. The content of RS is sent with the store request.

Notes:
1. EA must be a multiple of 4 (a word-aligned address); otherwise, the result is boundedly
undefined.

2. The operation is treated as a store to the addressed byte with respect to protection.

Parameters

RS Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Related Information
The [eciwx] (External Control In Word Indexed) instruction.

[Processing and Storage]

eieio (Enforce In-Order Execution of 1/0) Instruction

Purpose

Ensures that cache-inhibited storage accesses are performed in main memory in the order specified by the
program.

Note: The eieio instruction is supported only in the PowerPC architecture.

Syntax

Bits |Yalue|
0-5 31
6-10 1/
11-15 I
16-20 1/
21-30 854
31 /
PowerPC
eieio
Description

The eieio instruction provides an ordering function that ensures that all load and store instructions initiated
prior to the eieio instruction complete in main memory before any loads or stores subsequent to the eieio
instruction access memory. If the eieio instruction is omitted from a program, and the memory locations
are unique, the accesses to main storage may be performed in any order.

196 Assembler Language Reference

Note: The eieio instruction is appropriate for cases where the only requirement is to control the order
of storage references as seen by 1/O devices. However, the (Synchronize) instruction provides
an ordering function for all instructions.

The eieio instruction has one syntax form and does not affect Condition Register Field 0 or the
Fixed-Point Exception Register.

Examples

The following code ensures that, if the memory locations are in cache-inhibited storage, the load from
location AA and the store to location BB are completed in main storage before the content of location CC is
fetched or the content of location DD is updated:

Twz r4,AA(rl)

stw r4,BB(rl)

eieio

Twz r5,CC(rl1)

stw r5,DD(rl)

Note: If the memory locations of AA, BB, CC, and DD are not in cache-inhibited memory, the eieio
instruction has no effect on the order that instructions access memory.

Related Information
The@ (Synchronize) or des (Data Cache Synchronize) instruction.

[Processing and Storage]

extsw (Extend Sign Word) Instruction

Purpose

Copy the low-order 32 bits of a general purpose register into another general purpose register, and sign
extend the fullword to a double-word in size (64 bits).

Syntax

Bits |Yalue|
0-5 31
6-10 S
11-15 A
16-20 00000
21-30 986
31 Rc
PowerPC
extsw [RAL |RY (Rc=0)
extsw. [RA| [RS(Re=1)
Description

The contents of the low-order 32 bits of general purpose register (GPR) RS are placed into the low-order
32 bits of GPR RA. Bit 32 of GPR RS is used to fill the high-order 32 bits of GPR RA.

Other registers altered:

Chapter 8. Instruction Set 197

» Condition Register (CRO field):
Affected: LT, GT, EQ, SO (if Rc = 1)
+ XER:
Affected: CA

Parameters

RA Specifies the target general purpose register for the result of the operation.
RS Specifies the source general purpose register for the operand of instruction.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

eqv (Equivalent) Instruction

Purpose

Logically XORs the contents of two general-purpose registers and places the complemented result in a
general-purpose register.

Syntax

Bits |Yalue|
0-5 31
6-10 RS
11-15 RA
16-20 RB
21-30 284
31 Rc
v BRE
eqv. [RA| |RS| |RB
Description

The eqv instruction logically XORs the contents of general-purpose register (GPR) RS with the contents of
GPR RB and stores the complemented result in the target GPR RA.

The eqv instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception |Fixed-Point Record Bit (Rc) Condition Register
(OE) Exception Register Field 0

eqv None None 0 None

eqv. None None 1 LT,GT,EQ,SO

198 Assembler Language Reference

The two syntax forms of the eqv instruction never affect the Fixed-Point Exception Register. If the syntax
form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,
Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples

1. The following code logically XORs the contents of GPR 4 and GPR 6 and stores the complemented
result in GPR 4:
Assume GPR 4 holds OxFFF2 5730.
Assume GPR 6 holds 0x7B41 92C0.
eqv 4,4,6
GPR 4 now holds 0x7B4C 3AOF.
2. The following code XORs the contents of GPR 4 and GPR 6, stores the complemented result in GPR
4, and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 holds 0x0000 OOFD.
Assume GPR 6 holds 0x7B41 92C0.
eqv. 4,4,6
GPR 4 now holds Ox84BE 6DC2.

Related Information
[Fixed-Point Processor .

[Fixed-Point Logical Instructions| .

extsb (Extend Sign Byte) Instruction

Purpose
Extends the sign of the low-order byte.

Note: The extsb instruction is supported only in the PowerPC architecture.

Syntax

Bits [Value|
0-5 31
6-10 RS
11-15 RA
16-20 I
21-30 954
31 Rc
PowerPC
extsb [RAL (RS
extsb. [RAL (RS

Chapter 8. Instruction Set 199

Description

The extsb instruction places bits 24-31 of general-purpose register (GPR) RS into bits 24-31 of GPR RA
and copies bit 24 of register RS in bits 0-23 of register RA.

The extsb instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field O and the Fixed-Point Exception Register.

If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater
Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register of containing the byte to be extended.

Examples
1. The following code extends the sign of the least significant byte contained in GPR 4 and places the
result in GPR 6:

Assume GPR 6 holds Ox5A5A 5A5A.
extsbh 4,6
GPR 6 now holds 0x0000 005A.
2. The following code extends the sign of the least significant byte contained in GPR 4 and sets
Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 holds OxA5A5 A5A5.
extsh. 4,4
GPR 4 now holds OxFFFF FFA5.

Related Information
[Fixed-Point Processor .

[Fixed-Point Logical Instructions|.

extsh or exts (Extend Sign Halfword) Instruction

Purpose
Extends the lower 16-bit contents of a general-purpose register.
Syntax
Bits [Value|
0-5 31
6-10 RS
11-15 RA
16-20 1
21 OE
22-30 922
31 Rc

200 Assembler Language Reference

PowerPC

extsh [RAL|RS
extsh. [RAL (RS
POWER family

exts [RAL (RS
exts. RAL|RS

Description

The extsh and exts instructions place bits 16-31 of general-purpose register (GPR) RS into bits 16-31 of
GPR RA and copy bit 16 of GPR RS in bits 0-15 of GPR RA.

The extsh and exts instructions each have two syntax forms. Each syntax form has a different effect on
Condition Register Field 0.

Syntax Form Overflow Exception |Fixed-Point Record Bit (Rc) Condition Register
(OE) Exception Register Field 0

extsh None None 0 None

extsh. None None 1 LT,GT,EQ,SO

exts None None 0 None

exts. None None 1 LT,GT,EQ,SO

The two syntax forms of the extsh instruction, and the two syntax forms of the extsh instruction, never
affect the Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction
affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow
(SO) bits in Condition Register Field 0.

Parameters

RA Specifies general-purpose register receives extended integer.
RS Specifies source general-purpose register for operation.

Examples
1. The following code places bits 16-31 of GPR 6 into bits 16-31 of GPR 4 and copies bit 16 of GPR 6
into bits 0-15 of GPR 4:

Assume GPR 6 holds 0x0000 FFFF.
extsh 4,6
GPR 6 now holds OxFFFF FFFF.

2. The following code places bits 16-31 of GPR 6 into bits 16-31 of GPR 4, copies bit 16 of GPR 6 into
bits 0-15 of GPR 4, and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 holds 0x0000 2FFF.
extsh. 6,4
GPR 6 now holds 0x0000 2FFF.

Related Information
[Fixed-Point Processor .

[Fixed-Point Logical Instructions] .

Chapter 8. Instruction Set 201

fabs (Floating Absolute Value) Instruction

Purpose
Stores the absolute value of the contents of a floating-point register in another floating-point register.
Syntax
Bits [Value|
0-5 63
6-10 FRT
11-15 "
16-20 FRB
21-30 264
31 Rc
fabs FRT} [FRB
fabs. FRT} [FRB
Description

The fabs instruction sets bit 0 of floating-point register (FPR) FRB to 0 and places the result into FPR
FRT.

The fabs instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 1.

Syntax Form | Floating-Point Status and Control Register Record Bit (Rc) |Condition Register Field 1
fabs None 0 None

fabs. None 1 FX,FEX,VX,0X

The two syntax forms of the fabs instruction never affect the Floating-Point Status and Control Register. If
the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception Summary
(FX), Floating-Point Enabled Exception Summary (FEX), Floating-Point Invalid Operation Exception
Summary (VX), and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

FRT Specifies target floating-point register for operation.
FRB Specifies source floating-point register for operation.

Examples

1. The following code sets bit 0 of FPR 4 to zero and place sthe result in FPR 6:

Assume FPR 4 holds 0xC053 4000 0000 0000.
fabs 6,4
GPR 6 now holds 0x4053 4000 0000 0000.

2. The following code sets bit 0 of FPR 25 to zero, places the result in FPR 6, and sets Condition
Register Field 1 to reflect the result of the operation:

202 Assembler Language Reference

Assume FPR 25 holds OxFFFF FFFF FFFF FFFF.

fabs. 6,25

GPR 6 now holds Ox7FFF FFFF FFFF FFFF.

Related Information

[Floating-Point Processor] .

[Floating-Point Move Instructions .

[Interpreting the Contents of a Floating-Point Register] .

fadd or fa (Floating Add) Instruction

Purpose
Adds two floating-point operands and places the result in a floating-point register.
Syntax
Bits [Value|
0-5 63
6-10 FRT
11-15 FRA
16-20 FRB
21-25 n
26-30 21
31 Rc
PowerPC
fadd FRT| |FRA |FRB
fadd. FRT||FRAl |FRB
POWER family
fa FRT} |FRA| |FRB
fa. FRT} |[FRA, |FRB
Bits Value
0-5 59
6-10 FRT
11-15 FRA
16-20 FRB
21-25 n
26-30 21
31 Rc
PowerPC
fadds FRT} |FRA| |FRB
fadds. FRT| |FRA| |FRB

Chapter 8. Instruction Set

203

Description

The fadd and fa instructions add the 64-bit, double-precision floating-point operand in floating-point
register (FPR) FRA to the 64-bit, double-precision floating-point operand in FPR FRB.

The fadds instruction adds the 32-bit single-precision floating-point operand in FPR FRA to the 32-bit
single-precision floating-point operand in FPR FRB.

The result is rounded under control of the Floating-Point Rounding Control Field RN of the Floating-Point
Status and Control Register and is placed in FPR FRT.

Addition of two floating-point numbers is based on exponent comparison and addition of the two
significands. The exponents of the two operands are compared, and the significand accompanying the
smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two
exponents are equal. The two significands are then added algebraically to form the intermediate sum. All
53 bits in the significand as well as all three guard bits (G, R and X) enter into the computation.

The Floating-Point Result Field of the Floating-Point Status and Control Register is set to the class and
sign of the result except for Invalid Operation exceptions when the Floating-Point Invalid Operation
Exception Enable (VE) bit of the Floating-Point Status and Control Register is set to 1.

The fadd, fadds, and fa instructions each have two syntax forms. Each syntax form has a different effect
on Condition Register Field 1.

Syntax Form | Floating-Point Status and Control Register Record Bit (Rc) |Condition Register Field 1

fadd C,FL,FG,FE,FU,FR,FI,OX,UX, 0 None
XX, VXSNAN,VXISI

fadd. C,FL,FG,FE,FU,FR,FI,OX,UX, 1 FX,FEX,VX,0X
XX,VXSNAN,VXISI

fadds C,FL,FG,FE,FU,FR,FI,OX,UX, 0 None
XX,VXSNAN,VXISI

fadds. C,FL,FG,FE,FU,FR,FI,OX,UX, 1 FX,FEX,VX,0X
XX,VXSNAN,VXISI

fa C,FL,FG,FE,FU,FR,FI,OX,UX, 0 None
XX, VXSNAN,VXISI

fa. C,FL,FG,FE,FU,FR,FI,OX,UX, 1 FX,FEX,VX,0X
XX,VXSNAN,VXISI

All syntax forms of the fadd, fadds, and fa instructions always affect the Floating-Point Status and Control
Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point
Exception Summary (FX), Floating-Point Enabled Exception Summary (FEX), Floating-Point Invalid
Operation Exception Summary (VX), and Floating-Point Overflow Exception (OX) bits in Condition Register
Field 1.

Parameters

FRT Specifies target floating-point register for operation.
FRA Specifies source floating-point register for operation.
FRB Specifies source floating-point register for operation.

Examples

1. The following code adds the contents of FPR 4 and FPR 5, places the result in FPR 6, and sets the
Floating-Point Status and Control Register to reflect the result of the operation:

204 Assembler Language Reference

Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 5 contains 0x400C 0000 0000 0000.
fadd 6,4,5

FPR 6 now contains 0xC052 6000 0000 0000.

2. The following code adds the contents of FPR 4 and FPR 25, places the result in FPR 6, and sets
Condition Register Field 1 and the Floating-Point Status and Control Register to reflect the result of the
operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 25 contains OxFFFF FFFF FFFF FFFF.

fadd. 6,4,25
GPR 6 now contains OxFFFF FFFF FFFF FFFF.

Related Information
[Floating-Point Processor] .

[Floating-Point Arithmetic Instructions| .

[Interpreting the Contents of a Floating-Point Register] .

fcfid (Floating Convert from Integer Double Word) Instruction

Purpose
Convert the fixed-point contents of a floating-point register to a double-precision floating-point number.
Syntax
Bits [Value|
0-5 63
6-10 D
11-15 00000
16-20 B
21-30 846
31 Rc
PowerPC
fcfid FRT, [FRB (Rc=0)
fcfid. FRT} [FRA (Rc=1)
Description

The 64-bit signed fixed-point operand in floating-point register (FPR) FRB is converted to an infinitely
precise floating-point integer. The result of the conversion is rounded to double-precision using the
rounding mode specified by FPSCR[RN] and placed into FPR FRT.

FPSCR[FPRF] is set to the class and sign of the result. FPSCR[FR] is set if the result is incremented
when rounded. FPSCR[FI] is set if the result is inexact.

The fefid instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 1.

Syntax Form | Floating-Point Status and Control Register Record Bit (Rc) |Condition Register Field 1 |

Chapter 8. Instruction Set 205

fefid FPRF,FR,FILFX,XX 0 None

fefid. FPRF,FR,FI,FX,XX 1 FX,FEX,VX,0X

Parameters

FRT Specifies the target floating-point register for the operation.
FRB Specifies the source floating-point register for the operation.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

fcmpo (Floating Compare Ordered) Instruction

Purpose
Compares the contents of two floating-point registers.
Syntax

Bits [Value|
0-5 63
6-8 BF
9-10 1
11-15 FRA
16-20 FRB
21-30 32
31 /
fempo
Description

The fempo instruction compares the 64-bit, double-precision floating-point operand in floating-point
register (FPR) FRA to the 64-bit, double-precision floating-point operand in FPR FRB. The Floating-Point
Condition Code Field (FPCC) of the Floating-Point Status and Control Register (FPSCR) is set to reflect
the value of the operand FPR FRA with respect to operand FPR FRB. The value BF determines which
field in the condition register receives the four FPCC bits.

Consider the following when using the fempo instruction:

» If one of the operands is either a Quiet NaN (QNaN) or a Signaling NaN (SNaN), the Floating-Point
Condition Code is set to reflect unordered (FU).

+ If one of the operands is a SNaN, then the Floating-Point Invalid Operation Exception bit VXSNAN of
the Floating-Point Status and Control Register is set. Also:

— If Invalid Operation is disabled (that is, the Floating-Point Invalid Operation Exception Enable bit of
the Floating-Point Status and Control Register is 0), then the Floating-Point Invalid Operation
Exception bit VXVC is set (signaling an an invalid compare).

206 Assembler Language Reference

— If one of the operands is a QNaN, then the Floating-Point Invalid Operation Exception bit VXVC is
set.

The fempo instruction has one syntax form and always affects the FT, FG, FE, FU, VXSNAN, and VXVC
bits in the Floating-Point Status and Control Register.

Parameters

BF Specifies field in the condition register that receives the four FPCC bits.
FRA Specifies source floating-point register.
FRB Specifies source floating-point register.

Examples

The following code compares the contents of FPR 4 and FPR 6 and sets Condition Register Field 1 and
the Floating-Point Status and Control Register to reflect the result of the operation:

Assume CR = 0 and FPSCR = 0.

Assume FPR 5 contains 0xC053 4000 0000 0000.

Assume FPR 4 contains 0x400C 0000 0000 0000.

fcmpo 6,4,5

CR now contains 0x0000 0040.

FPSCR now contains 0x0000 4000.

Related Information
[Floating-Point Processor] .

[Floating-Point Compare Instructions] .

fcmpu (Floating Compare Unordered) Instruction

Purpose
Compares the contents of two floating-point registers.

Syntax

Bits

|Yalue|

63

6-8

BF

9-10

I

11-15

FRA

16-20

FRB

21-30

31

fcmpu

Description

The fempu instruction compares the 64-bit double precision floating-point operand in floating-point register
(FPR) FRA to the 64-bit double precision floating-point operand in FPR FRB. The Floating-Point Condition

Chapter 8. Instruction Set 207

Code Field (FPCC) of the Floating-Point Status and Control Register (FPSCR) is set to reflect the value of
the operand FRA with respect to operand FRB. The value BF determines which field in the condition
register receives the four FPCC bits.

Consider the following when using the fempu instruction:
» If one of the operands is either a Quiet NaN or a Signaling NaN, the Floating-Point Condition Code is
set to reflect unordered (FU).

» If one of the operands is a Signaling NaN, then the Floating-Point Invalid Operation Exception bit
VXSNAN of the Floating-Point Status and Control Register is set.

The fempu instruction has one syntax form and always affects the FT, FG, FE, FU, and VXSNAN bits in
the FPSCR.

Parameters

BF Specifies a field in the condition register that receives the four FPCC bits.
FRA Specifies source floating-point register.
FRB Specifies source floating-point register.

Examples

The following code compares the contents of FPR 5 and FPR 4:

Assume FPR 5 holds 0xC053 4000 0000 0000.
Assume FPR 4 holds 0x400C 0000 0000 0000.
Assume CR = 0 and FPSCR = 0.

fcmpu 6,4,5

CR now contains 0x0000 0040.

FPSCR now contains 0x0000 4000.

Related Information
[Floating-Point Processor] .

[Floating-Point Compare Instructions] .

fctid (Floating Convert to Integer Double Word) Instruction

Purpose

Convert the contents of a floating-point register to a 64-bit signed fixed-point integer, placing the results
into another floating-point register.

Syntax
Bits [Value|
0-5 63
6-10 D
11-15 00000
16-20 B
21-30 814
31 Rc

208 Assembler Language Reference

PowerPC

fctid FRT, [FRB (Rc=0)
fetid. FRT,|FRH (Rc=1)
Description

The floating-point operand in floating-point register (FPR) FRB is converted to a 64-bit signed fixed-point
integer, using the rounding mode specified by FPSCR[RN], and placed into FPR FRT.

If the operand in FRB is greater than 2**63 - 1, then FPR FRT is set to Ox7FFF_FFFF_FFFF_FFFF. If the
operand in FRB is less than 2**63 , then FPR FRT is set to 0x8000_0000_0000_0000.

Except for enabled invalid operation exceptions, FPSCR[FPRF] is undefined. FPSCR[FR] is set if the
result is incremented when rounded. FPSCRIFI] is set if the result is inexact.

The fctid instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 1.

Syntax Floating-Point Status and Control Register Record Bit | Condition Register Field
Form (Rc) 1

fetid FPRF(undefined),FR,FI,FX,XX,VXSNAN,VXCVI 0 None

fetid. FPRF(undefined),FR,FI,FX,XX,VXSNAN,VXCVI 1 FX,FEX,VX,0X
Parameters

FRT Specifies the target floating-point register for the operation.
FRB Specifies the source floating-point register for the operation.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

fctidz (Floating Convert to Integer Double Word with Round toward
Zero) Instruction

Purpose

Convert the contents of a floating-point register to a 64-bit signed fixed-point integer using the
round-toward-zero rounding mode. Place the results into another floating-point register.

Syntax
Bits [Value|
0-5 63
6-10 D
11-15 00000
16-20 B
21-30 815
31 Rc

Chapter 8. Instruction Set 209

PowerPC

fctidz FRT, [FRE (Rc=0)
ftidz. FRT,|FRE (Rc=1)
Description

The floating-point operand in floating-point register (FRP) FRB is converted to a 64-bit signed fixed-point
integer, using the rounding mode round toward zero, and placed into FPR FRT.

If the operand in FPR FRB is greater than 2**63 - 1, then FPR FRT is set to Ox7FFF_FFFF_FFFF_FFFF.
If the operand in frB is less than 2**63 , then FPR FRT is set to 0x8000_0000_0000_0000.

Except for enabled invalid operation exceptions, FPSCR[FPRF] is undefined. FPSCR[FR] is set if the
result is incremented when rounded. FPSCRIFI] is set if the result is inexact.

The fctidz instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 1.

Syntax Floating-Point Status and Control Register Record Bit | Condition Register Field
Form (Rc) 1

fctidz FPRF(undefined),FR,FI,FX,XX,VXSNAN,VXCVI 0 None

fctidz. FPRF(undefined),FR,FI,FX,XX,VXSNAN,VXCVI 1 FX,FEX,VX,0X
Parameters

FRT Specifies the target floating-point register for the operation.
FRB Specifies the source floating-point register for the operation.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

fctiw or fcir (Floating Convert to Integer Word) Instruction

Purpose
Converts a floating-point operand to a 32-bit signed integer.
Syntax
Bits [Value|
0-5 63
6-10 FRT
11-15 1
16-20 FRB
21-30 14
31 Rc

210 Assembler Language Reference

PowerPC

fetiw FRT||FRB
fetiw. FRT}|FRB
POWER2

fcir FRT||FRB
fcir. FRT||FRB
Description

The fetiw and feir instructions convert the floating-point operand in floating-point register (FPR) FRB to a
32-bit signed, fixed-point integer, using the rounding mode specified by Floating-Point Status and Control
Register (FPSCR) RN. The result is placed in bits 32-63 of FPR FRT. Bits 0-31 of FPR FRT are
undefined.

If the operand in FPR FRB is greater than 231 - 1, then the bits 32-63 of FPR FRT are set to Ox7FFF
FFFF. If the operand in FPR FRB is less than -231, then the bits 32-63 of FPR FRT are set to 0x8000
0000.

The fctiw and fcir instruction each have two syntax forms. Each syntax form has a different effect on
Condition Register Field 1.

Syntax Form | Floating-Point Status and Control Register Record Bit (Rc) |Condition Register Field 1
fctiw C,FL,FG,FE,FU,FR,FI,FX,XX,VXCVI, VXSNAN 0 None

fctiw. C,FL,FG,FE,FU,FR,FI,FX,XX,VXCVI, VXSNAN 1 FX,FEX,VX,0X

feir C,FL,FG,FE,FU,FR,FI,FX,XX,VXCVI, VXSNAN 0 None

feir. C,FL,FG,FE,FU,FR,FI,FX,XX,VXCVI, VXSNAN 1 FX,FEX,VX,0X

The syntax forms of the fctiw and fcir instructions always affect the FPSCR. If the syntax form sets the
Record (Rc) bit to 1, the instruction affects the Floating-Point Exception (FX), Floating-Point Enabled
Exception (FEX), Floating-Point Invalid Operation Exception (VX), and Floating-Point Overflow Exception
(OX) bits in Condition Register Field 1. FPSCR(C,FI,FG,FE,FU) are undefined.

Parameters

FRT Specifies the floating-point register where the integer result is placed.
FRB Specifies the source floating-point register for the floating-point operand.

Examples

The following code converts a floating-point value into an integer for use as an index in an array of
floating-point values:

Assume GPR 4 contains the address of the first element of

the array.

Assume GPR 1 contains the stack pointer.

Assume a doubleword TEMP variable is allocated on the stack

for use by the conversion routine.

Assume FPR 6 contains the floating-point value for conversion
into an index.

f

ctiw 5,6 # Convert floating-point value
to integer.
stfd 5,TEMP(1) # Store to temp location.

Chapter 8. Instruction Set 211

Twz 3,TEMP+4(1) # Get the integer part of the

doubleword.
1fd 5,0(3) # Get the selected array element.
FPR 5 now contains the selected array element.

Related Information
[Floating-Point Processor] .

[Floating-Point Arithmetic Instructions] .

[Interpreting the Contents of a Floating-Point Register] .

fctiwz or fcirz (Floating Convert to Integer Word with Round to Zero)
Instruction

Purpose
Converts a floating-point operand to a 32-bit signed integer, rounding the result towards 0.

Syntax

Bits |Yalue|

6-10 FRT

11-15 1

16-20 FRB

21-30 15

31 Rc

PowerPC
fctiwz FRT| [FRB
fctiwz. FRT| [FRB

POWER2
fecirz FRT}|\FRB
fcirz. FRTY|\FRB

Description

The fetiwz and feirz instructions convert the floating-point operand in floating-point register (FPR) FRB to
a 32-bit, signed, fixed-point integer, rounding the operand toward 0. The result is placed in bits 32-63 of
FPR FRT. Bits 0-31 of FPR FRT are undefined.

If the operand in FPR FRB is greater than 231 - 1, then the bits 32-63 of FPR FRT are set to Ox7FFF
FFFF. If the operand in FPR FRB is less than -231, then the bits 32-63 of FPR FRT are set to 0x8000
0000.

The fctiwz and fcirz instructions each have two syntax forms. Each syntax form has a different effect on
Condition Register Field 1.

Syntax Form | Floating-Point Status and Control Register Record Bit (Rc) |Condition Register Field 1

212 Assembler Language Reference

fctiwz C,FL,FG,FE,FU,FR,FI,LFX,XX,VXCVI, VXSNAN |0 None
fctiwz. C,FL,FG,FE,FU,FR,FI,FX,XX,VXCVI, VXSNAN |1 FX,FEX,VX,0X
fecirz C,FL,FG,FE,FU,FR,FI,LFX,XX,VXCVI, VXSNAN |0 None
fcirz. C,FL,FG,FE,FU,FR,FI,LFX,XX,VXCVI, VXSNAN |1 FX,FEX,VX,0X

The syntax forms of the fctiwz and fcirz instructions always affect the Floating-Point Status and Control
Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point
Exception (FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX),
and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1. FPSCR(C,FI,FG,FE,FU) are
undefined.

Parameters

FRT Specifies the floating-point register where the integer result is placed.
FRB Specifies the source floating-point register for the floating-point operand.

Examples

The following code adds a floating-point value to an array element selected based on a second
floating-point value. If value2 is greater than or equal to n, but less than n+1, add value1 to the nth
element of the array:

Assume GPR 4 contains the address of the first element of
the array.

Assume GPR 1 contains the stack pointer.

Assume a doubleword TEMP variable is allocated on the stack
for use by the conversion routine.

Assume FPR 6 contains value2.

Assume FPR 4 contains valuel.

S S H I I H R

fctiwz 5,6 # Convert value2 to integer.
stfd 5,TEMP(1) # Store to temp location.
Twz 3,TEMP+4(1) # Get the integer part of the

doubleword.
1fdx 5,3,4 # Get the selected array element.
fadd 5,5,4 # Add valuel to array element.
stfd 5,3,4 # Save the new value of the

#

array element.

Related Information
[Floating-Point Processor] .

[Floating-Point Arithmetic Instructions| .

[Interpreting the Contents of a Floating-Point Register .

fdiv or fd (Floating Divide) Instruction

Purpose
Divides one floating-point operand by another.
Syntax
Bits |Yalue|
0-5 63

Chapter 8. Instruction Set 213

Bits [Value|
6-10 FRT
11-15 FRA
16-20 FRB
21-25 "
26-30 18
31 Rc
PowerPC
fdiv FRT| |FRA, |FRB
fdiv. FRT} |FRA, |FRB
POWER family
fd FRT} |FRA, |FRB
fd. FRT} |FRA, |FRB

Bits Value
0-5 59
6-10 FRT
11-15 FRA
16-20 FRB
21-25 "
26-30 18
31 Rc
PowerPC
fdivs FRT} |FRA, |FRB
fdivs. FRT} |FRA, |FRB
Description

The fdiv and fd instructions divide the 64-bit, double-precision floating-point operand in floating-point
register (FPR) FRA by the 64-bit, double-precision floating-point operand in FPR FRB. No remainder is
preserved.

The fdivs instruction divides the 32-bit single-precision floating-point operand in FPR FRA by the 32-bit
single-precision floating-point operand in FPR FRB. No remainder is preserved.

The result is rounded under control of the Floating-Point Rounding Control Field RN of the Floating-Point
Status and Control Register (FPSCR), and is placed in the target FPR FRT.

The floating-point division operation is based on exponent subtraction and division of the two significands.

Note: If an operand is a denormalized number, then it is prenormalized before the operation is
begun.

The Floating-Point Result Flags Field of the Floating-Point Status and Control Register is set to the class
and sign of the result, except for Invalid Operation Exceptions, when the Floating-Point Invalid Operation
Exception Enable bit is 1.

214 Assembler Language Reference

The fdiv, fdivs, and fd instructions each have two syntax forms. Each syntax form has a different effect
on Condition Register Field 1.

Syntax Form Floating-Point Status and Control Register Record Bit | Condition Register Field
(Rc) 1

fdiv C,FL,FG,FE,FU,FR,FI,OX,UX, 0 None
ZX,XX,VXSNAN,VXIDI,VXZDZ

fdiv. C,FL,FG,FE,FU,FR,FI,OX,UX, 1 FX,FEX,VX,0X
ZX, XX,VXSNAN,VXIDI,VXZDZ

fdivs C,FL,FG,FE,FU,FR,FI,OX,UX, 0 None
ZX, XX,VXSNAN,VXIDI,VXZDZ

fdivs. C,FL,FG,FE,FU,FR,FI,OX,UX, 1 FX,FEX,VX,0X
ZX, XX,VXSNAN,VXIDI,VXZDZ

fd C,FL,FG,FE,FU,FR,FI,OX,UX, 0 None
ZX,XX,VXSNAN,VXIDI,VXZDZ

fd. C,FL,FG,FE,FU,FR,FI,OX,UX, 1 FX,FEX,VX,0X
ZX, XX,VXSNAN,VXIDI,VXZDZ

All syntax forms of the fdiv, fdivs, and fd instructions always affect the Floating-Point Status and Control
Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point
Exception (FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX),
and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

FRT Specifies target floating-point register for operation.
FRA Specifies source floating-point register containing the dividend.
FRB Specifies source floating-point register containing the divisor.

Examples

1. The following code divides the contents of FPR 4 by the contents of FPR 5, places the result in FPR 6,
and sets the Floating-Point Status and Control Register to reflect the result of the operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 5 contains 0x400C 0000 0000 0000.
Assume FPSCR = 0.

fdiv 6,4,5

FPR 6 now contains 0xC036 0000 0000 0000.

FPSCR now contains 0x0000 8000.

2. The following code divides the contents of FPR 4 by the contents of FPR 5, places the result in FPR 6,
and sets Condition Register Field 1 and the Floating-Point Status and Control Register to reflect the
result of the operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 5 contains 0x400C 0000 0000 0000.
Assume FPSCR = 0.

fdiv. 6,4,5

FPR 6 now contains 0xC036 0000 0000 0000.

FPSCR now contains 0x0000 8000.
CR contains 0x0000 0000.

Related Information
[Floating-Point Processor] .

[Floating-Point Arithmetic Instructions| .

Chapter 8. Instruction Set 215

[Interpreting the Contents of a Floating-Point Register] .

fmadd or fma (Floating Multiply-Add) Instruction

Purpose

Adds one floating-point operand to the result of multiplying two floating-point operands without an
intermediate rounding operation.

Syntax
Bits [Value|

0-5 63
6-10 FRT
11-15 FRA
16-20 FRB
21-25 FRC
26-30 29
31 Rc
PowerPC

fmadd FRT} |FRA, [FRG |[FRB

fmadd. FRT| |FRA, [FRG, [FRB

POWER family

fma FRT} |FRA, |[FRG, |[FRB

fma. FRT} |FRA, |[FRG, |[FRB

Bits Value

0-5 59
6-10 FRT
11-15 FRA
16-20 FRB
21-25 FRC
26-30 29
31 Rc
PowerPC
fmadds FRT| |FRA,|FRC, |FRB
fmadds. FRT}|FRA,|FRG, |FRB

Description

The fmadd and fma instructions multiply the 64-bit, double-precision floating-point operand in floating-point
register (FPR) FRA by the 64-bit, double-precision floating-point operand in FPR FRC, and then add the
result of this operation to the 64-bit, double-precision floating-point operand in FPR FRB.

216 Assembler Language Reference

The fmadds instruction multiplies the 32-bit, single-precision floating-point operand in FPR FRA by the
32-bit, single-precision floating-point operand in FPR FRC and adds the result of this operation to the
32-bit, single-precision floating-point operand in FPR FRB.

The result is rounded under control of the Floating-Point Rounding Control Field RN of the Floating-Point
Status and Control Register and is placed in the target FPR FRT.

Note: If an operand is a denormalized number, then it is prenormalized before the operation is
begun.

The Floating-Point Result Flags Field of the Floating-Point Status and Control Register is set to the class
and sign of the result, except for Invalid Operation Exceptions, when the Floating-Point Invalid Operation
Exception Enable bit is 1.

The fmadd, fmadds, and fm instructions each have two syntax forms. Each syntax form has a different
effect on Condition Register Field 1.

Syntax Form Floating-Point Status and Control Register Record Bit | Condition Register Field
(Rc) 1

fmadd C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ |0 None

fmadd. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ |1 FX,FEX,VX,0X

fmadds C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ |0 None

fmadds. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ |1 FX,FEX,VX,0X

fma C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ |0 None

fma. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ |1 FX,FEX,VX,0X

All syntax forms of the fmadd, fmadds, and fm instructions always affect the Floating-Point Status and
Control Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point
Exception (FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX),
and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

FRT Specifies target floating-point register for operation.

FRA Specifies source floating-point register containing a multiplier.
FRB Specifies source floating-point register containing the addend.
FRC Specifies source floating-point register containing a multiplier.

Examples

1. The following code multiplies the contents of FPR 4 and FPR 5, adds the contents of FPR 7, places
the result in FPR 6, and sets the Floating-Point Status and Control Register to reflect the result of the
operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 5 contains 0x400C 0000 0000 0000.
Assume FPR 7 contains Ox3DE2 6AB4 B33C 110A.
Assume FPSCR = 0.

fmadd 6,4,5,7

FPR 6 now contains 0xCO70 D7FF FFFF F6CB.

FPSCR now contains 0x8206 8000.

2. The following code multiplies the contents of FPR 4 and FPR 5, adds the contents of FPR 7, places
the result in FPR 6, and sets the Floating-Point Status and Control Register and Condition Register
Field 1 to reflect the result of the operation:

Chapter 8. Instruction Set 217

Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 5 contains 0x400C 0000 0000 0000.
Assume FPR 7 contains Ox3DE2 6AB4 B33C 110A.
Assume FPSCR = 0 and CR = 0.

fmadd. 6,4,5,7

FPR 6 now contains 0xCO70 D7FF FFFF F6CB.

FPSCR now contains 0x8206 8000.

CR now contains 0x0800 0000.

Related Information
[Floating-Point Processor] .

[Interpreting the Contents of a Floating-Point Register] .

fmr (Floating Move Register) Instruction

Purpose
Copies the contents of one floating-point register into another floating-point register.
Syntax
Bits [Value|
0-5 63
6-10 FRT
11-15 "
16-20 FRB
21-30 72
31 Rc
fmr FRT} [FRB
fmr. FRT} [FRB
Description

The fmr instruction places the contents of floating-point register (FPR) FRB into the target FPR FRT.

The fmr instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 1.

Syntax Form | Floating-Point Status and Control Register Record Bit (Rc) |Condition Register Field 1

fmr None 0 None

fmr. None 1 FX,FEX,VX,0X

The two syntax forms of the fmr instruction never affect the Floating-Point Status and Control Register. If
the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception (FX),
Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX), and
Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

FRT Specifies target floating-point register for operation.

218 Assembler Language Reference

FRB Specifies source floating-point register for operation.

Examples

1.

The following code copies the contents of FPR 4 into FPR 6 and sets the Floating-Point Status and
Control Register to reflect the result of the operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPSCR = 0.

fmr 6,4

FPR 6 now contains 0xC053 4000 0000 0000.

FPSCR now contains 0x0000 0000.

The following code copies the contents of FPR 25 into FPR 6 and sets the Floating-Point Status and
Control Register and Condition Register Field 1 to reflect the result of the operation:

Assume FPR 25 contains OxFFFF FFFF FFFF FFFF.
Assume FPSCR = 0 and CR = 0.

fmr. 6,25

FPR 6 now contains OxFFFF FFFF FFFF FFFF.

FPSCR now contains 0x0000 0000.

CR now contains 0x0000 0000.

Related Information

[Floating-Point Processor] .

[Interpreting the Contents of a Floating-Point Register .

[Floating-Point Move Instructions| .

fmsub or fms (Floating Multiply-Subtract) Instruction

Purpose

Subtracts one floating-point operand from the result of multiplying two floating-point operands without an
intermediate rounding operation.

Syntax

Bits |Yalue|
0-5 63
6-10 FRT
11-15 FRA
16-20 FRB
21-25 FRC
26-30 28
31 Rc
PowerPC
fmsub FRT||FRAL |FRG, |FRB
fmsub. FRT||FRAl |FRG, |FRB
POWER family
fms FRT| |FRAL|FRQ |FRB
fms. FRT| |FRAL|FRQ |FRB

Chapter 8. Instruction Set 219

Bits Value
0-5 59
6-10 FRT
11-15 FRA
16-20 FRB
21-25 FRC
26-30 28
31 Rc
PowerPC
fmsubs FRT| |FRA,|[FRQG, |FRB
fmsubs. FRT| |FRA,|[FRG, |[FRB
Description

The fmsub and fms instructions multiply the 64-bit, double-precision floating-point operand in floating-point
register (FPR) FRA by the 64-bit, double-precision floating-point operand in FPR FRC and subtract the
64-bit, double-precision floating-point operand in FPR FRB from the result of the multiplication.

The fmsubs instruction multiplies the 32-bit, single-precision floating-point operand in FPR FRA by the
32-bit, single-precision floating-point operand in FPR FRC and subtracts the 32-bit, single-precision
floating-point operand in FPR FRB from the result of the multiplication.

The result is rounded under control of the Floating-Point Rounding Control Field RN of the Floating-Point
Status and Control Register and is placed in the target FPR FRT.

Note: If an operand is a denormalized number, then it is prenormalized before the operation is
begun.

The Floating-Point Result Flags Field of the Floating-Point Status and Control Register is set to the class
and sign of the result, except for Invalid Operation Exceptions, when the Floating-Point Invalid Operation
Exception Enable bit is 1.

The fmsub, fmsubs, and fms instructions each have two syntax forms. Each syntax form has a different
effect on Condition Register Field 1.

Syntax Form | Floating-Point Status and Control Register Record Bit | Condition Register Field
(Rc) 1

fmsub C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXSILVXIMZ |0 None

fmsub. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXSI,VXIMZ |1 FX,FEX,VX,0X

fmsubs C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXSILVXIMZ |0 None

fmsubs. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXSI,VXIMZ |1 FX,FEX,VX,0X

fms C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXSLVXIMZ |0 None

fms. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXSI,VXIMZ |1 FX,FEX,VX,0X

All syntax forms of the fmsub, fmsubs, and fms instructions always affect the Floating-Point Status and
Control Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point

220 Assembler Language Reference

Exception (FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX),
and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

FRT Specifies target floating-point register for operation.

FRA Specifies source floating-point register containing a multiplier.

FRB Specifies source floating-point register containing the quantity to be subtracted.
FRC Specifies source floating-point register containing a multiplier.

Examples

1.

The following code multiplies the contents of FPR 4 and FPR 5, subtracts the contents of FPR 7 from
the product of the multiplication, places the result in FPR 6, and sets the Floating-Point Status and
Control Register to reflect the result of the operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 5 contains 0x400C 0000 0000 0000.
Assume FPR 7 contains Ox3DE2 6AB4 B33c 110A.
Assume FPSCR = 0.

fmsub 6,4,5,7

FPR 6 now contains 0xC070 D800 0000 0935.

FPSCR now contains 0x8202 8000.

The following code multiplies the contents of FPR 4 and FPR 5, subtracts the contents of FPR 7 from
the product of the multiplication, places the result in FPR 6, and sets the Floating-Point Status and
Control Register and Condition Register Field 1 to reflect the result of the operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 5 contains 0x400C 0000 0000 0000.
Assume FPR 7 contains Ox3DE2 6AB4 B33c 110A.
Assume FPSCR = 0 and CR = 0.

fmsub. 6,4,5,7

FPR 6 now contains 0xC070 D800 0000 0935.

FPSCR now contains 0x8202 8000.

CR now contains 0x0800 0000.

Related Information

[Floating-Point Processor] .

[Interpreting the Contents of a Floating-Point Register] .

fmul or fm (Floating Multiply) Instruction

Purpose
Multiplies two floating-point operands.
Syntax
Bits [Value|
0-5 63
6-10 FRT
11-15 FRA
16-20 "
21-25 FRC
26-30 25

Chapter 8. Instruction Set 221

Bits |Yalue|

31 Rc

PowerPC
fmul FRT| |FRAL |FR(G
fmul. FRT| |FRAL |FRQG

POWER family
fm FRT} |FRA, |FRG
fm. FRT}|FRA,|FRG

Bits Value

6-10 FRT
11-15 FRA
16-20 n
21-25 FRC
26-30 25
31 Rc

PowerPC
fmuls FRT||FRAL|FRQ
fmuls. FRT||FRAL|FRQ

Description

The fmul and fm instructions multiply the 64-bit, double-precision floating-point operand in floating-point
register (FPR) FRA by the 64-bit, double-precision floating-point operand in FPR FRC.

The fmuls instruction multiplies the 32-bit, single-precision floating-point operand in FPR FRA by the
32-bit, single-precision floating-point operand in FPR FRC.

The result is rounded under control of the Floating-Point Rounding Control Field RN of the Floating-Point
Status and Control Register and is placed in the target FPR FRT.

Multiplication of two floating-point numbers is based on exponent addition and multiplication of the two
significands.

Note: If an operand is a denormalized number, then it is prenormalized before the operation is
begun.

The Floating-Point Result Flags Field of the Floating-Point Status and Control Register is set to the class
and sign of the result, except for Invalid Operation Exceptions, when the Floating-Point Invalid Operation
Exception Enable bit is 1.

The fmul, fmuls, and fm instructions each have two syntax forms. Each syntax form has a different effect
on Condition Register Field 1.

Syntax Form | Floating-Point Status and Control Register Record Bit (Rc) |Condition Register Field 1

222 Assembler Language Reference

fmul C,FL,FG,FE,FU,FR,FI,OX,UX, 0 None
XX,VXSNAN,VXIMZ

fmul. C,FL,FG,FE,FU,FR,FI,OX,UX, 1 FX,FEX,VX,0X
XX,VXSNAN,VXIMZ

fmuls C,FL,FG,FE,FU,FR,FI,OX,UX, 0 None
XX,VXSNAN,VXIMZ

fmuls. C,FL,FG,FE,FU,FR,FI,OX,UX, 1 FX,FEX,VX,0X
XX,VXSNAN,VXIMZ

fm C,FL,FG,FE,FU,FR,FI,OX,UX, 0 None
XX,VXSNAN,VXIMZ

fm. C,FL,FG,FE,FU,FR,FI,OX,UX, 1 FX,FEX,VX,0X
XX,VXSNAN,VXIMZ

All syntax forms of the fmul, fmuls, and fm instructions always affect the Floating-Point Status and
Control Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point
Exception (FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX),
and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

FRT Specifies target floating-point register for operation.
FRA Specifies source floating-point register for operation.
FRC Specifies source floating-point register for operation.

Examples

1. The following code multiplies the contents of FPR 4 and FPR 5, places the result in FPR 6, and sets
the Floating-Point Status and Control Register to reflect the result of the operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 5 contains 0x400C 0000 0000 0000.
Assume FPSCR = 0.

fmul 6,4,5

FPR 6 now contains 0xC070 D800 0000 0000.

FPSCR now contains 0x0000 8000.

2. The following code multiplies the contents of FPR 4 and FPR 25, places the result in FPR 6, and sets
Condition Register Field 1 and the Floating-Point Status and Control Register to reflect the result of the
operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 25 contains OxFFFF FFFF FFFF FFFF.
Assume FPSCR = 0 and CR = 0.

fmul. 6,4,25

FPR 6 now contains OxFFFF FFFF FFFF FFFF.

FPSCR now contains 0x0001 1000.
CR now contains 0x0000 0000.

Related Information
[Floating-Point Processor] .

[Floating-Point Arithmetic Instructions| .

[Interpreting the Contents of a Floating-Point Register] .

Chapter 8. Instruction Set 223

fnabs (Floating Negative Absolute Value) Instruction

Purpose

Negates the absolute contents of a floating-point register and places the result in another floating-point
register.

Syntax

Bits |Yalue|
0-5 63
6-10 FRT
11-15 "
16-20 FRB
21-30 136
31 /
fnabs FRT| |FRB
fnabs. FRT} |FRB
Description

The fnabs instruction places the negative absolute of the contents of floating-point register (FPR) FRB
with bit O set to 1 into the target FPR FRT.

The fnabs instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 1.

Syntax Floating-Point Status and Control Register Record Bit (Rc) | Condition Register Field 1
Form

fnabs None 0 None

fnabs. None 1 FX,FEX,VX,0X

The two syntax forms of the fnabs instruction never affect the Floating-Point Status and Control Register.
If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception (FX),
Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX), and
Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

FRT Specifies target floating-point register for operation.
FRB Specifies source floating-point register for operation.

Examples

1. The following code negates the absolute contents of FPR 5 and places the result into FPR 6:

Assume FPR 5 contains 0x400C 0000 0000 0000.
fnabs 6,5
FPR 6 now contains 0xCOOC 0000 0000 0000.

2. The following code negates the absolute contents of FPR 4, places the result into FPR 6, and sets
Condition Register Field 1 to reflect the result of the operation:

224 Assembler Language Reference

Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume CR = 0.
fnabs. 6,4

FPR 6 now contains 0xC053 4000 0000 0000.
CR now contains 0x0.

Related Information
[Floating-Point Processor] .

[Floating-Point Move Instructions| .

[Interpreting the Contents of a Floating-Point Register] .

fneg (Floating Negate) Instruction

Purpose
Negates the contents of a floating-point register and places the result into another floating-point register.
Syntax
Bits [Value|
0-5 63
6-10 FRT
11-15 "
16-20 FRB
21-30 40
31 Rc
fneg FRT} [FRB
fneg. FRT} [FRB
Description

The fneg instruction places the negated contents of floating-point register FRB into the target FPR FRT.

The fneg instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 1.

Syntax Form | Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1
fneg None 0 None

fneg. None 1 FX,FEX,VX,0X

The two syntax forms of the fneg instruction never affect the Floating-Point Status and Control Register. If
the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception (FX),
Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX), and
Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

FRT Specifies target floating-point register for operation.

Chapter 8. Instruction Set 225

FRB Specifies source floating-point register for operation.

Examples

1. The following code negates the contents of FPR 5 and places the result into FPR 6:

Assume FPR 5 contains 0x400C 0000 0000 0000.
fneg 6,5
FPR 6 now contains 0xCOOC 0000 0000 0000.
2. The following code negates the contents of FPR 4, places the result into FPR 6, and sets Condition
Register Field 1 to reflect the result of the operation:
Assume FPR 4 contains 0xC053 4000 0000 0000.
fneg. 6,4
FPR 6 now contains 0x4053 4000 0000 0000.
CR now contains 0x0000 0000.

Related Information
[Floating-Point Processor] .

[Floating-Point Move Instructions] .

[Interpreting the Contents of a Floating-Point Register .

fnmadd or fnma (Floating Negative Multiply-Add) Instruction

Purpose

Multiplies two floating-point operands, adds the result to one floating-point operand, and places the
negative of the result in a floating-point register.

Syntax
Bits |Yalue|
0-5 63
6-10 FRT
11-15 FRA
16-20 FRB
21-25 FRC
26-30 31
31 Rc
PowerPC
fnmadd FRT| |FRAL|FRQ |FRB
fnmadd. FRT| |FRAL|FRQ |FRB
POWER family
fnma FRT||FRA, |FRG, |FRB
fnma. FRT||FRAL |FRG, |FRB
Bits Value
0-5 59

226 Assembler Language Reference

Bits Value
6-10 FRT
11-15 FRA
16-20 FRB
21-25 FRC
26-30 31
31 Rc
PowerPC
fnmadds FRT, [FRA [FRQ [FRB
fnmadds. FRT} |FRA [FRG |[FRB
Description

The fnmadd and fnma instructions multiply the 64-bit, double-precision floating-point operand in
floating-point register (FPR) FRA by the 64,bit, double-precision floating-point operand in FPR FRC, and
add the 64-bit, double-precision floating-point operand in FPR FRB to the result of the multiplication.

The fnmadds instruction multiplies the 32-bit, single-precision floating-point operand in FPR FRA by the
32-bit, single-precision floating-point operand in FPR FRC, and adds the 32-bit, single-precision
floating-point operand in FPR FRB to the result of the multiplication.

The result of the addition is rounded under control of the Floating-Point Rounding Control Field RN of the
Floating-Point Status and Control Register.

Note: If an operand is a denormalized number, then it is prenormalized before the operation is
begun.

The fnmadd and fnma instructions are identical to the fmadd and fma (Floating Multiply- Add Single)
instructions with the final result negated, but with the following exceptions:

* Quiet NaNs (QNaNs) propagate with no effect on their "sign” bit.
* QNaNs that are generated as the result of a disabled Invalid Operation Exception have a "sign” bit of 0.

» Signaling NaNs (SNaNs) that are converted to QNaNs as the result of a disabled Invalid Operation
Exception have no effect on their "sign” bit.

The Floating-Point Result Flags Field of the Floating-Point Status and Control Register is set to the class
and sign of the result, except for Invalid Operation Exceptions, when the Floating-Point Invalid Operation
Exception Enable bit is 1.

The fnmadd, fnmadds, and fnma instructions each have two syntax forms. Each syntax form has a
different effect on Condition Register Field 1.

Syntax Form Floating-Point Status and Control Register Record Bit | Condition Register Field
(Re) 1

fnmadd C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ |0 None

fnmadd. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ |1 FX,FEX,VX,0X

fnmadds C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ |0 None

fnmadds. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ |1 FX,FEX,VX,0X

fnma C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ |0 None

fnma. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ |1 FX,FEX,VX,0X

Chapter 8. Instruction Set 227

All syntax forms of the fnmadd, fnmadds, and fnma instructions always affect the Floating-Point Status
and Control Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Floating-Point Exception (FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation
Exception (VX), and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Note: Rounding occurs before the result of the addition is negated. Depending on RN, an inexact
value may result.

Parameters

FRT Specifies target floating-point register for operation.

FRA Specifies source floating-point register for operation.
FRB Specifies source floating-point register for operation.
FRC Specifies source floating-point register for operation.

Examples

1. The following code multiplies the contents of FPR 4 and FPR 5, adds the result to the contents of FPR
7, stores the negated result in FPR 6, and sets the Floating-Point Status and Control Register to reflect
the result of the operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 5 contains 0x400C 0000 0000 0000.
Assume FPR 7 contains Ox3DE2 6AB4 B33c 110A.
Assume FPSCR = 0.

fnmadd 6,4,5,7

FPR 6 now contains 0x4070 D7FF FFFF F6CB.

FPSCR now contains 0x8206 4000.

2. The following code multiplies the contents of FPR 4 and FPR 5, adds the result to the contents of FPR
7, stores the negated result in FPR 6, and sets the Floating-Point Status and Control Register and
Condition Register Field 1 to reflect the result of the operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 5 contains 0x400C 0000 0000 0000.
Assume FPR 7 contains Ox3DE2 6AB4 B33c 110A.
Assume FPSCR = 0 and CR = 0.

frmadd. 6,4,5,7

FPR 6 now contains 0x4070 D7FF FFFF F6CB.

FPSCR now contains 0x8206 4000.

CR now contains 0x0800 0000.

Related Information
[Floating-Point Processor] .

[Interpreting the Contents of a Floating-Point Register] .

fnmsub or fnms (Floating Negative Multiply-Subtract) Instruction
Purpose

Multiplies two floating-point operands, subtracts one floating-point operand from the result, and places the
negative of the result in a floating-point register.

228 Assembler Language Reference

Syntax

Bits [Value]
0-5 63
6-10 FRT
11-15 FRA
16-20 FRB
21-25 FRC
26-30 30
31 Rc
PowerPC
fnmsub FRT} [FRA [FRG, [FRB
fnmsub. FRT}|FRA, |FRG, [FRB
POWER family
fnms FRT| [FRA [FRG, [FRB
fnms. FRT}|FRA [FRG, [FRB

Bits [Value|
0-5 59
6-10 FRT
11-15 FRA
16-20 FRB
21-25 FRC
26-30
30 Rc
PowerPC
fnmsubs FRT} [FRA [FRC, [FRB
fnmsubs. FRT}|FRA, |FRG, [FRB
Description

The fnms and fnmsub instructions multiply the 64-bit, double-precision floating-point operand in
floating-point register (FPR) FRA by the 64,-bit double-precision floating-point operand in FPR FRC,
subtract the 64-bit, double-precision floating-point operand in FPR FRB from the result of the multiplication,
and place the negated result in the target FPR FRT.

The famsubs instruction multiplies the 32-bit, single-precision floating-point operand in FPR FRA by the
32-bit, single-precision floating-point operand in FPR FRC, subtracts the 32-bit, single-precision
floating-point operand in FPR FRB from the result of the multiplication, and places the negated result in
the target FPR FRT.

The subtraction result is rounded under control of the Floating-Point Rounding Control Field RN of the
Floating-Point Status and Control Register.

Chapter 8. Instruction Set 229

Note: If an operand is a denormalized number, then it is prenormalized before the operation is
begun.

The fnms and fnmsub instructions are identical to the fmsub and fms (Floating Multiply-Subtract Single)

instructions with the final result negated, but with the following exceptions:

» Quiet NaNs (QNaNs) propagate with no effect on their "sign” bit.

* QNaNs that are generated as the result of a disabled Invalid Operation Exception have a "sign” bit of
zero.

+ Signaling NaNs (SNaNs) that are converted to QNaNs as the result of a disabled Invalid Operation
Exception have no effect on their "sign” bit.

The Floating-Point Result Flags Field of the Floating-Point Status and Control Register is set to the class
and sign of the result, except for Invalid Operation Exceptions, when the Floating-Point Invalid Operation
Exception Enable bit is 1.

The fnmsub, fnmsubs, and fnms instructions each have two syntax forms. Each syntax form has a
different effect on Condition Register Field 1.

Syntax Form | Floating-Point Status and Control Register Record Bit | Condition Register Field
(Rc) 1

fnmsub C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ |0 None

fnmsub. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ |1 FX,FEX,VX,0X

fnmsubs C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ |0 None

fnmsubs. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ |1 FX,FEX,VX,0X

fnms C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ |0 None

fnms. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ |1 FX,FEX,VX,0X

All syntax forms of the fnmsub, fnmsubs, and fnms instructions always affect the Floating-Point Status
and Control Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Floating-Point Exception (FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation
Exception (VX), and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Note: Rounding occurs before the result of the addition is negated. Depending on RN, an inexact
value may result.

Parameters

FRT Specifies target floating-point register for operation.

FRA Specifies first source floating-point register for operation.
FRB Specifies second source floating-point register for operation.
FRC Specifies third source floating-point register for operation.

Examples

1. The following code multiplies the contents of FPR 4 and FPR 5, subtracts the contents of FPR 7 from
the result, stores the negated result in FPR 6, and sets the Floating-Point Status and Control Register
and Condition Register Field 1 to reflect the result of the operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.

Assume FPR 5 contains 0x400C 0000 0000 0000.
Assume FPR 7 contains Ox3DE2 6AB4 B33c 110A.

230 Assembler Language Reference

Assume FPSCR = 0.
fnmsub 6,4,5,7

FPR 6 now contains 0x4070 D800 0000 0935.
FPSCR now contains 0x8202 4000.

2. The following code multiplies the contents of FPR 4 and FPR 5, subtracts the contents of FPR 7 from
the result, stores the negated result in FPR 6, and sets the Floating-Point Status and Control Register

and Condition Register Field 1 to reflect the result of the operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 5 contains 0x400C 0000 0000 0000.
Assume FPR 7 contains Ox3DE2 6AB4 B33c 110A.
Assume FPSCR = 0 and CR = 0.

fnmsub. 6,4,5,7

FPR 6 now contains 0x4070 D800 0000 0935.
FPSCR now contains 0x8202 4000.
CR now contains 0x0800 0000.

Related Information

[Floating-Point Processor] .

[Interpreting the Contents of a Floating-Point Register] .

fres (Floating Reciprocal Estimate Single) Instruction

Purpose

Calculates a single-precision estimate of the reciprocal of a floating-point operand.

Note: The fres instruction is defined only in the PowerPC architecture and is an optional instruction.
It is supported on the PowerPC 603 RISC Microprocessor, and PowerPC 604 RISC Microprocessor,

but not supported on the PowerPC 601 RISC Microprocessor.

Syntax

Bits

|Yalue|

0-5

59

6-10

FRT

11-15

1

16-20

FRB

21-25

1

26-30

24

31

Rc

PowerPC
fres
fres.

FRT

FRB

FRT

FRB

Description

The fres instruction calculates a single-precision estimate of the reciprocal of the 64-bit, double-precision
floating-point operand in floating-point register (FPR) FRB and places the result in FPR FRT.

Chapter 8. Instruction Set 231

The estimate placed into register FRT is correct to a precision of one part in 256 of the reciprocal of FRB.
The value placed into FRT may vary between implementations, and between different executions on the
same implementation.

The following table summarizes special conditions:

Special Conditions

Operand Result Exception
Negative Infinity Negative 0 None
Negative 0 Negative Infinity’ ZX
Positive 0 Positive Infinity’ ZX
Positive Infinity Positive 0 None
SNaN QNaN? VXSNAN
QNaN QNaN None

1No result if FPSCRZE = 1.
2No result if FPSCRVE = 1.

FPSCRFPREF is set to the class and sign of the result, except for Invalid Operation Exceptions when
FPSCRVE = 1 and Zero Divide Exceptions when FPSCRZE = 1.

The fres instruction has two syntax forms. Both syntax forms always affect the FPSCR register. Each
syntax form has a different effect on Condition Register Field 1.

Syntax Form | Floating-Point Status and Control Register Record Bit (Rc) |Condition Register Field 1
fres C,FL,FG,FE,FU,FR,FI,FX,0X, UX,ZX,VXSNAN 0 None
fres. C,FL,FG,FE,FU,FR,FI,FX,0X, UX,ZX,VXSNAN 1 FX,FEX,VX,0X

The fres. syntax form sets the Record (Rc) bit to 1; and the instruction affects the Floating-Point Exception
(FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX), and
Floating-Point Overflow Exception (OX) bits in Condition Register Field 1 (CR1). The fres syntax form sets
the Record (Rc) bit to 0 and does not affect Condition Register Field 1 (CR1).

Parameters

FRT Specifies target floating-point register for operation.
FRB Specifies source floating-point register for operation.

Related Information
[Floating-Point Processor] .

[Floating-Point Arithmetic Instructions| .

[Interpreting the Contents of a Floating-Point Register] .

232 Assembler Language Reference

frsp (Floating Round to Single Precision) Instruction

Purpose

Rounds a 64-bit, double precision floating-point operand to single precision and places the result in a
floating-point register.

Syntax

Bits |Yalue|
0-5 63
6-10 FRT
11-15 "
16-20 FRB
21-30 12
31 Rc
frsp FRT} [FRB
frsp. FRT}|FRB
Description

The frsp instruction rounds the 64-bit, double-precision floating-point operand in floating-point register
(FPR) FRB to single precision, using the rounding mode specified by the Floating Rounding Control field of
the Floating-Point Status and Control Register, and places the result in the target FPR FRT.

The Floating-Point Result Flags Field of the Floating-Point Status and Control Register is set to the class
and sign of the result, except for Invalid Operation (SNaN), when Floating-Point Status and Control
Register Floating-Point Invalid Operation Exception Enable bit is 1.

The frsp instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 1.

Syntax Form | Floating-Point Status and Control Register Record Bit (Rc) |Condition Register Field 1
frsp C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN 0 None
frsp. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN 1 FX,FEX,VX,0X

The two syntax forms of the frsp instruction always affect the Floating-Point Status and Control Register. If
the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception (FX),
Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX), and
Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Notes:

1. The frsp instruction uses the target register of a previous floating-point arithmetic operation as its
source register (FRB). The frsp instruction is said to be dependent on the preceding floating-point
arithmetic operation when it uses this register for source.

2. Less than two nondependent floating-point arithmetic operations occur between the frsp
instruction and the operation on which it is dependent.

3. The magnitude of the double-precision result of the arithmetic operation is less than 2**128
before rounding.

Chapter 8. Instruction Set 233

4. The magnitude of the double-precision result after rounding is exactly 2**128.

Error Result
If the error occurs, the magnitude of the result placed in the target register FRT is 2**128:

X'47F0000000000000' or X'C7FO000000000000"

This is not a valid single-precision value. The settings of the Floating-Point Status and Control Register
and the Condition Register will be the same as if the result does not overflow.

Avoiding Errors
If the above error will cause significant problems in an application, either of the following two methods can
be used to avoid the error.

1. Place two nondependent floating-point operations between a floating-point arithmetic operation and the
dependent frsp instruction. The target registers for these nondependent floating-point operations
should not be the same register that the frsp instruction uses as source register FRB.

2. Insert two frsp operations when the frsp instruction may be dependent on an arithmetic operation that
precedes it by less than three floating-point instructions.

Either solution will degrade performance by an amount dependent on the particular application.

Parameters

FRT Specifies target floating-point register for operation.
FRB Specifies source floating-point register for operation.

Examples

1. The following code rounds the contents of FPR 4 to single precision, places the result in a FPR 6, and
sets the Floating-Point Status and Control Register to reflect the result of the operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPSCR = 0.

frsp 6,4

FPR 6 now contains 0xC053 4000 0000 0000.

FPSCR now contains 0x0000 8000.

2. The following code rounds the contents of FPR 4 to single precision, places the result in a FPR 6, and
sets the Floating-Point Status and Control Register and Condition Register Field 1 to reflect the result
of the operation:

Assume CR contains 0x0000 0000.

Assume FPR 4 contains OxFFFF FFFF FFFF FFFF.
Assume FPSCR = 0.

frsp. 6,4

FPR 6 now contains OxFFFF FFFF EOQ0O 0000.

FPSCR now contains 0x0001 1000.
CR now contains 0x0000 0000.

Related Information
[Floating-Point Processor] .

[Interpreting the Contents of a Floating-Point Register .

[Floating-Point Arithmetic Instructions| .

234 Assembler Language Reference

frsqrte (Floating Reciprocal Square Root Estimate) Instruction

Purpose

Calculates a double-precision estimated value of the reciprocal of the square root of a floating-point

operand.

Note: The frsqrte instruction is defined only in the PowerPC architecture and is an optional
instruction. It is supported on the PowerPC 603 RISC Microprocessor and the PowerPC 604 RISC

Microprocessor, but not supported on the PowerPC 601 RISC Microprocessor.

Syntax

Bits
0-5 63
6-10 FRT
11-15 "
16-20 FRB
21-25 "
26-30 26
31 Rc
PowerPC
frsqrte FRT} [FRB
frsqrte. FRT} |FRB
Description

The frsqrte instruction computes a double-precision estimate of the reciprocal of the square root of the
64-bit, double-precision floating-point operand in floating-point register (FPR) FRB and places the result in

FPR FRT.

The estimate placed into register FRT is correct to a precision of one part in 32 of the reciprocal of the

square root of FRB. The value placed in FRT may vary between implementations and between different

executions on the same implementation.

The following table summarizes special conditions:

Special Conditions

Operand Result Exception
Negative Infinity QNaN' VXSQRT
Less Than 0 QNaN' VXSQRT
Negative 0 Negative Infinity? ZX
Positive 0 Positive Infinity? ZX
Positive Infinity Positive 0 None
SNaN QNaN' VXSNAN
QNaN QNaN None

1No result if FPFSCRVE = 1.

Chapter 8. Instruction Set

235

2No result if FPSCRZE = 1.

FPSCRFPREF is set to the class and sign of the result, except for Invalid Operation Exceptions when
FPSCRVE = 1 and Zero Divide Exceptions when FPSCRZE = 1.

The frsqrte instruction has two syntax forms. Both syntax forms always affect the FPSCR. Each syntax
form has a different effect on Condition Register Field 1.

Syntax Form | Floating-Point Status and Control Register Record Bit (Rc) |Condition Register Field 1

frsqrte C,FL,FG,FE,FU,FR,FI,FX,ZX, VXSNAN,VXSQRT |0 None

frsqrte. C,FL,FG,FE,FU,FR,FI,FX,ZX, VXSNAN,VXSQRT |1 FX,FEX,VX,0X

The frstrte. syntax form sets the Record (Rc) bit to 1; and the instruction affects the Floating-Point
Exception (FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX),
and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1 (CR1). The frstrte syntax
form sets the Record (Rc) bit to 0; and the instruction does not affect Condition Register Field 1 (CR1).

Parameters

FRT Specifies target floating-point register for operation.
FRB Specifies source floating-point register for operation.

Related Information
[Floating-Point Processor] .

[Floating-Point Arithmetic Instructions| .

[Interpreting the Contents of a Floating-Point Register] .

fsel (Floating-Point Select) Instruction

Purpose

Puts either of two floating-point operands into the target register based on the results of comparing
another floating-point operand with zero.

Note: The fsel instruction is defined only in the PowerPC architecture and is an optional instruction.
It is supported on the PowerPC 603 RISC Microprocessor and the PowerPC 604 RISC
Microprocessor, but not supported on the PowerPC 601 RISC Microprocessor.

Syntax
Bits [Value]

0-5 63

6-10 FRT

11-15 FRA

16-20 FRB

21-25 FRC

26-30 23

31 Rc

236 Assembler Language Reference

PowerPC

fsel FRT} |FRA, [FRG |[FRB
fsel. FRT} |FRA, [FRG |[FRB
Description

The double-precision floating-point operand in floating-point register (FPR) FRA is compared with the value
zero. If the value in FRA is greater than or equal to zero, floating point register FRT is set to the contents
of floating-point register FRC. If the value in FRA is less than zero or is a NaN, floating point register FRT
is set to the contents of floating-point register FRB.The comparison ignores the sign of zero; both +0 and
-0 are equal to zero.

The fesl instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 1.

Syntax Form FPSCR bits Record Bit (Rc) Condition Register Field 1
fsel None 0 None
fsel. None 1 FX, FEX, VX, OX

The two syntax forms of the fsel instruction never affect the Floating-Point Status and Control Register
fields. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception
(FX), Floating-Point Enabled Exception (FEX), Floating Invalid Operation Exception (VX), and
Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

FRT Specifies target floating-point register for operation.

FRA Specifies floating-point register with value to be compared with zero.

FRB Specifies source floating-point register containing the value to be used if FRA is less than zero or is a NaN.
FRC Specifies source floating-point register containing the value to be used if FRA is greater than or equal to zero.

Related Information
[Floating-Point Processor] .

[Interpreting the Contents of a Floating-Point Register] .

fsqrt (Floating Square Root, Double-Precision) Instruction

Purpose

Calculate the square root of the contents of a floating- point register, placing the result in a floating-point
register.

Syntax
Bits [Value|
0-5 63
6-10 D
11-15 00000
16-20 B

Chapter 8. Instruction Set 237

Bits |Yalue|

21-25 00000

26-30 22

31 Rc

PowerPC
fsqrt FRT| |FRB (Rc=0)
fsqrt. FRT| |FRB (Rc=1)

Description
The square root of the operand in floating-point register (FPR) FRB is placed into register FPR FRT.

If the most-significant bit of the resultant significand is not a one the result is normalized. The result is
rounded to the target precision under control of the floating-point rounding control field RN of the FPSCR
and placed into register FPR FRT.

Operation with various special values of the operand is summarized below.

Operand Result Exception
- infinity QNaN* VXSQRT
<0 QNaN* VXSQRT
-0 -0 None

+ infinity + infinity None
SNaN QNaN* VXSNAN
QNaN QNaN None

Notes: * No result if FPSCR[VE] = 1

FPSCRI[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when
FPSCR[VE] = 1.

The fsqrt instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 1.

Syntax Form | Floating-Point Status and Control Register Record Bit (Rc) |Condition Register Field 1
fsqrt FPRF,FR,FI,FX,XX,VXSNAN,VXSQRT 0 None

fsqrt. FPRF,FR,FLLFX,XX,VXSNAN,VXSQRT 1 FX,FEX,VX,0X
Parameters

FRT Specifies the target floating-point register for the operation.
FRB Specifies the source floating-point register for the operation.

Implementation

This instruction is optionally defined for PowerPC implementations. Using it on an implementation that
does not support this instruction will cause the system illegal instruction error handler to be invoked.

This instruction is an optional instruction of the PowerPC architecture and may not be implemented in all
machines.

238 Assembler Language Reference

fsqrts (Floating Square Root Single) Instruction

Purpose

Calculate the single-precision square root of the contents of a floating- point register, placing the result in a
floating-point register.

Syntax

Bits |Yalue|
0-5 59
6-10 D
11-15 00000
16-20 B
21-25 00000
26-30 22
31 Rc
PowerPC
fsqrts FRT} |FRB (Rc=0)
fsqrts. FRT} |FRB (Rc=1)
Description

The square root of the floating-point operand in floating-point register (FPR) FRB is placed into register
FPR FRT.

If the most-significant bit of the resultant significand is not a one the result is normalized. The result is
rounded to the target precision under control of the floating-point rounding control field RN of the FPSCR
and placed into register FPR FRT.

Operation with various special values of the operand is summarized below.

Operand Result Exception
- infinity QNaN* VXSQRT
<0 QNaN* VXSQRT
-0 -0 None

+ infinity + infinity None
SNaN QNaN* VXSNAN
QNaN QNaN None

Notes: * No result if FPSCR[VE] = 1

FPSCRI[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when
FPSCR[VE] = 1.

The fsqrts instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 1.

Syntax Form | Floating-Point Status and Control Register Record Bit (Rc) |Condition Register Field 1
fsqrts FPRF,FR,FI,LFX,XX,VXSNAN,VXSQRT 0 None

Chapter 8. Instruction Set 239

|fsqrts. | FPRF,FR,FLLFX,XX,VXSNAN,VXSQRT 1 FX,FEX,VX,0X

Parameters

FRT Specifies the target floating-point register for the operation.
FRB Specifies the source floating-point register for the operation.

Implementation

This instruction is optionally defined for PowerPC implementations. Using it on an implementation that
does not support this instruction will cause the system illegal instruction error handler to be invoked.

This instruction is an optional instruction of the PowerPC architecture and may not be implemented in all
machines.

fsub or fs (Floating Subtract) Instruction

Purpose
Subtracts one floating-point operand from another and places the result in a floating-point register.
Syntax
Bits [Value|
0-5 63
6-10 FRT
11-15 FRA
16-20 FRB
21-25 n
26-30 20
31 Rc
PowerPC
fsub FRT} |FRA, |FRB
fsub. FRT} |FRA, |FRB
PowerPC
fs FRT} |FRA, |FRB
fs. FRT| |FRAl |FRB
Bits Value
0-5 59
6-10 FRT
11-15 FRA
16-20 FRB
21-25 n
26-30 20

240 Assembler Language Reference

Bits Value

31 Rc
PowerPC

fsubs FRT, [FRA [FRB

fsubs. FRT| |[FRA, |FRB

Description

The fsub and fs instructions subtract the 64-bit, double-precision floating-point operand in floating-point
register (FPR) FRB from the 64-bit, double-precision floating-point operand in FPR FRA.

The fsubs instruction subtracts the 32-bit single-precision floating-point operand in FPR FRB from the
32-bit single-precision floating-point operand in FPR FRA.

The result is rounded under control of the Floating-Point Rounding Control Field RN of the Floating-Point
Status and Control Register and is placed in the target FPR FRT.

The execution of the fsub instruction is identical to that of fadd, except that the contents of FPR FRB
participate in the operation with bit 0 inverted.

The execution of the fs instruction is identical to that of fa, except that the contents of FPR FRB
participate in the operation with bit 0 inverted.

The Floating-Point Result Flags Field of the Floating-Point Status and Control Register is set to the class
and sign of the result, except for Invalid Operation Exceptions, when the Floating-Point Invalid Operation
Exception Enable bit is 1.

The fsub, fsubs, and fs instructions each have two syntax forms. Each syntax form has a different effect
on Condition Register Field 1.

Syntax Form | Floating-Point Status and Control Register Record Bit (Rc) |Condition Register Field 1

fsub C,FL,FG,FE,FU,FR,FI,OX,UX, 0 None
XX,VXSNAN,VXISI

fsub. C,FL,FG,FE,FU,FR,FI,OX,UX, 1 FX,FEX,VX,0X
XX,VXSNAN,VXISI

fsubs C,FL,FG,FE,FU,FR,FI,OX,UX, 0 None
XX,VXSNAN,VXISI

fsubs. C,FL,FG,FE,FU,FR,FI,OX,UX, 1 FX,FEX,VX,0X
XX, VXSNAN,VXISI

fs C,FL,FG,FE,FU,FR,FI,OX,UX, 0 None
XX,VXSNAN,VXISI

fs. C,FL,FG,FE,FU,FR,FI,OX,UX, 1 FX,FEX,VX,0X
XX,VXSNAN,VXISI

All syntax forms of the fsub, fsubs, and fs instructions always affect the Floating-Point Status and Control
Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point
Exception (FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX),
and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Chapter 8. Instruction Set 241

Parameters

FRT Specifies target floating-point register for operation.
FRA Specifies source floating-point register for operation.
FRB Specifies source floating-point register for operation.

Examples

1. The following code subtracts the contents of FPR 5 from the contents of FPR 4, places the result in
FPR 6, and sets the Floating-Point Status and Control Register to reflect the result of the operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 5 contains 0x400C 0000 0000 0000.
Assume FPSCR = 0.

fsub 6,4,5

FPR 6 now contains 0xC054 2000 0000 0000.

FPSCR now contains 0x0000 8000.

2. The following code subtracts the contents of FPR 5 from the contents of FPR 4, places the result in
FPR 6, and sets the Floating-Point Status and Control Register and Condition Register Field 1 to
reflect the result of the operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 5 contains 0x400C 0000 0000 0000.
Assume FPSCR = 0 and CR = 0.

fsub. 6,5,4

FPR 6 now contains 0x4054 2000 0000 0000.

FPSCR now contains 0x0000 4000.
CR now contains 0x0000 0000.

Related Information
[Floating-Point Processor] .

[Floating-Point Arithmetic Instructions| .

[Interpreting the Contents of a Floating-Point Register] .

icbi (Instruction Cache Block Invalidate) Instruction

Purpose

Invalidates a block containing the byte addressed in the instruction cache, causing subsequent references
to retrieve the block from main memory.

Note: The icbi instruction is supported only in the PowerPC architecture.

Syntax
Bits [Value|
0-5 31
6-10 n
11-15 RA
16-20 RB
21-30 982
31 /

242 Assembler Language Reference

PowerPC

icbi

Description

The icbi instruction invalidates a block containing the byte addressed in the instruction cache. If RA is not
0, the icbi instruction calculates an effective address (EA) by adding the contents of general-purpose
register (GPR) RA to the contents of GPR RB.

Consider the following when using the icbi instruction:

 |f the Data Relocate (DR) bit of the Machine State Register (MSR) is 0, the effective address is treated
as a real address.

» |f the MSR DR bit is 1, the effective address is treated as a virtual address. The MSR Relocate (IR) bit
is ignored in this case.

 If a block containing the byte addressed by the EA is in the instruction cache, the block is made
unusable so the next reference to the block is taken from main memory.

The icbi instruction has one syntax form and does not affect Condition Register Field 0 or the Fixed-Point
Exception Register.

Parameters

RA Specifies source general-purpose register for the EA calculation.
RB Specifies source general-purpose register for the EA calculation.

Examples
The following code ensures that modified instructions are available for execution:

Assume GPR 3 contains a modified instruction.
Assume GPR 4 contains the address of the memory location
where the modified instruction will be stored.

stw 3,0(4) # Store the modified instruction.
dcbf 0,4 # Copy the modified instruction to
main memory.
sync # Ensure update is in main memory.
icbi 0,4 # Invalidate block with old instruction.
isync # Discard prefetched instructions.
b newcode # Go execute the new code.

Related Information

The@ (Cache Line Compute Size) instruction, @ (Cache Line Flush) instruction, @ (Cache Line
Invalidate) instruction, |dcbff (Data Cache Block Flush) instruction, (Data Cache Block Invalidate
instruction, [dcbst]| (Data Cache Block Store) instruction, (Data Cache Block Touch) instruction,
Data Cache Block Touch for Store) instruction, @ or dclz (Data Cache Block Set to Zero) instruction,
(Data Cache Line Store) instruction, @ (Synchronize) or des (Data Cache Synchronize)
instruction.

[Processing and Storage]

isync or ics (Instruction Synchronize) Instruction

Purpose
Refetches any instructions that might have been fetched prior to this instruction.

Chapter 8. Instruction Set 243

Syntax

Bits

|Yalue|

0-5

19

6-10

1

11-15

"

16-20

1

21-30

150

31

PowerPC
isync

POWER family
ics

Description

The isync and ics instructions cause the processor to refetch any instructions that might have been

fetched prior to the isync or ics instruction.

The PowerPC instruction isync causes the processor to wait for all previous instructions to complete.

Then any instructions already fetched are discarded and instruction processing continues in the
environment established by the previous instructions.

The POWER family instruction ics causes the processor to wait for any previous decs instructions to
complete. Then any instructions already fetched are discarded and instruction processing continues under

the conditions established by the content of the Machine State Register.

The isync and ics instructions have one syntax form and do not affect Condition Register Field O or the

Fixed-Point Exception Register.

Examples

The following code refetches instructions before continuing:

Assume GPR 5 holds name.
Assume GPR 3 holds 0x0.
name: dcbhf 3,5

isync

Related Information

The@ (Cache Line Compute Size) instruction, @ (Cache Line Flush) instruction, @ (Cache Line

Invalidate) instruction, |dcbf| (Data Cache Block Flush) instruction, (Data Cache Block Invalidat
instruction, |dcbst| (Data Cache Block Store) instruction, (Data Cache Block Touch) instruction,

Data Cache Block Touch for Store) instruction, or dclz (Data Cache Line Set to Zero) instruction,
dclst| (Data Cache Line Store) instruction, (Instruction Cache Block Invalidate) instruction,

(Synchronize) or des (Data Cache Synchronize) instruction.

[Processing and Storage]

[Functional Differences for POWER family and PowerPC Instructions| .

244 Assembler Language Reference

Ibz (Load Byte and Zero) Instruction

Purpose

Loads a byte of data from a specified location in memory into a general-purpose register and sets the
remaining 24 bits to 0.

Syntax
Bits [Value|
0-5 34
6-10 RT
11-15 RA
16-31 D

Ibz F1 O [EA

Description

The Ibz instruction loads a byte in storage addressed by the effective address (EA) into bits 24-31 of the
target general-purpose register (GPR) RT and sets bits 0-23 of GPR RT to 0.

If RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s complement
integer sign-extended to 32 bits. If RA is 0, then the EAis D.

The Ibz instruction has one syntax form and does not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
D 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation.

Examples

The following code loads a byte of data from a specified location in memory into GPR 6 and sets the
remaining 24 bits to O:

.csect data[rw]

storage: .byte 'a

Assume GPR 5 contains the address of csect data[rw].
.csect text[pr]

1bz 6,storage(5)

GPR 6 now contains 0x0000 0061.

Related Information
[Fixed-Point Processor .

[Fixed-Point Load and Store Instructions|.

Chapter 8. Instruction Set 245

Ibzu (Load Byte and Zero with Update) Instruction

Purpose

Loads a byte of data from a specified location in memory into a general-purpose register, sets the
remaining 24 bits to 0, and possibly places the address in a second general-purpose register.

Syntax
Bits [Value|
0-5 35
6-10 RT
11-15 RA
16-31 D

Ibzu @@l@

Description

The Ibzu instruction loads a byte in storage addressed by the effective address (EA) into bits 24-31 of the
target general-purpose register (GPR) RT and sets bits 0-23 of GPR RT to 0.

If RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit signed two’s complement
integer sign extended to 32 bits. If RA is 0, then the EAis D.

If RA does not equal RT and RA does not equal 0, and the storage access does not cause an Alignment
interrupt or a Data Storage interrupt, then the EA is stored in GPR RA.

The Ibzu instruction has one syntax form and does not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
D 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation and possible address update.

Examples

The following code loads a byte of data from a specified location in memory into GPR 6, sets the
remaining 24 bits to 0, and places the address in GPR 5:

.csect data[rw]

storage: .byte 0x61

Assume GPR 5 contains the address of csect data[rw].
.csect text[pr]

1bzu 6,storage(5)

GPR 6 now contains 0x0000 0061.

GPR 5 now contains the storage address.

Related Information
[Fixed-Point Processor .

[Fixed-Point Load and Store with Update Instructions] .

246 Assembler Language Reference

Ibzux (Load Byte and Zero with Update Indexed) Instruction

Purpose

Loads a byte of data from a specified location in memory into a general-purpose register, setting the
remaining 24 bits to 0, and places the address in the a second general-purpose register.

Syntax
Bits [Value|
0-5 31
6-10 RT
11-15 RA
16-20 RB
21-30 119
31 /

Ibzux @

Description

The Ibzux instruction loads a byte in storage addressed by the effective address (EA) into bits 24-31 of
the target general-purpose register (GPR) RT and sets bits 0-23 of GPR RT to 0.

If RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If RA is 0, then the EA is the
contents of RB.

If RA does not equal RT and RA does not equal 0, and the storage access does not cause an Alignment
interrupt or a Data Storage interrupt, then the EA is stored in GPR RA.

The Ibzux instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for EA calculation and possible address update.
RB Specifies source general-purpose register for EA calculation.

Examples

The following code loads the value located at storage into GPR 6 and loads the address of storage into
GPR 5:

storage: .byte 0x40

Assume GPR 5 contains 0x0000 0000.

Assume GPR 4 is the storage address.
1bzux 6,5,4

GPR 6 now contains 0x0000 0040.

GPR 5 now contains the storage address.

Chapter 8. Instruction Set 247

Related Information
[Fixed-Point Processor .

[Fixed-Point Load and Store with Update Instructions| .

Ibzx (Load Byte and Zero Indexed) Instruction

Purpose

Loads a byte of data from a specified location in memory into a general-purpose register and sets the
remaining 24 bits to 0.

Syntax
Bits [Value|
0-5 31
6-10 Bl
11-15 RA
16-20 RB
21-30 87
31 /

Ibzx @@

Description

The Ibzx instruction loads a byte in storage addressed by the effective address (EA) into bits 24-31 of the
target general-purpose register (GPR) RT and sets bits 0-23 of GPR RT to 0.

If RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If RA is 0, then the EA is D.

The Ibzx instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Examples

The following code loads the value located at storage into GPR 6:
storage: .byte 0x61

Assume GPR 5 contains 0x0000 0000.
Assume GPR 4 is the storage address.
1bzx 6,5,4

GPR 6 now contains 0x0000 0061.

248 Assembler Language Reference

Related Information
[Fixed-Point Processor .

[Fixed-Point Load and Store Instructions] .

Id (Load Double Word) Instruction

Purpose
Load a double-word of data into the specified general purpose register.

This instruction should only be used on 64-bit PowerPC processors running a 64-bit application.

Syntax
Bits |Yalue|

0-5 58

6-10 D

11-15 A

16-29 ds

30-31 00

PowerPC64

Id [RT} [RA)

Description

The Id instruction loads a double-word in storage from a specified location in memory addressed by the
effective address (EA) into the target general-purpose register (GPR) RT.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s
complement integer, fullword-aligned, sign-extended to 64 bits. If GPR RA is 0, then the EA is D.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
D Specifies a 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation.

Examples

The following code loads a double-word from memory into GPR 4:

.extern mydata[RW]
.csect foodata[rw]
.local foodata[rw]
storage: .1long mydata # address of mydata

.csect text[PR]

Assume GPR 5 contains address of csect foodata[RW].
1d 4,storage(5) # GPR 5 now contains the address of mydata.

Chapter 8. Instruction Set 249

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

Related Information
[Fixed-Point Processor .

[Fixed-Point Load and Store Instructions|.

Idarx (Store Double Word Reserve Indexed) Instruction

Purpose
This instruction should only be used on 64-bit PowerPC processors running a 64-bit application.
Syntax
Bits |Yalue|
0-5 31
6-10 D
11-15 A
16-20 B
21-30 84
31 0
PowerPC64

Idarx

Description

This instruction creates a reservation for use by a Store Double Word Conditional Indexed (stdcx.)
instruction. An address computed from the EA is associated with the reservation, and replaces any
address previously associated with the reservation. EA must be a multiple of eight. If it is not, either the
system alignment exception handler is invoked or the results are boundedly undefined.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

Parameters

rD Specifies source general-purpose register of stored data.

rA Specifies source general-purpose register for EA calculation.
B Specifies source general-purpose register for EA calculation.

250 Assembler Language Reference

Examples

Related Information

Idu (Store Double Word with Update) Instruction

Purpose
Load a double-word of data into the specified general purpose register, updating the address base.

This instruction should only be used on 64-bit PowerPC processors running a 64-bit application.

Syntax
Bits |Yalue|
0-5 58
6-10 D
11-15 A
16-29 ds
30-31 01
PowerPC64

ldu BT

Description

The Idu instruction loads a double-word in storage from a specified location in memory addressed by the
effective address (EA) into the target general-purpose register (GPR) RT.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s
complement integer, fullword-aligned, sign-extended to 64 bits.

If RA =0 or RA = RT, the instruction form is invalid.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
D Specifies a 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation.

Examples
The following code loads the first of 4 double-words from memory into GPR 4, incrementing GPR 5 to
point to the next double-word in memory:

.csect foodata[rw]
storage: .1long 5,6,7,12 # Successive double-words.

.csect text[PR]

Assume GPR 5 contains address of csect foodata[RW].
1du 4,storage(5) # GPR 4 now contains the first double-word of

foodata; GRP 5 points to the second double-word.

Chapter 8. Instruction Set 251

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

Related Information
[Fixed-Point Processor .

[Fixed-Point Load and Store with Update Instructions|

Idux (Store Double Word with Update Indexed) Instruction

Purpose

Load a double-word of data from a specified memory location into a general purpose register. Update the
address base.

Syntax
Bits |Yalue|
0-5 31
6-10 D
11-15 A
16-20 B
21-30 53
31 0
PowerPC

Idux [R1[RA

Description

The effective address (EA) is calculated from the sum of general purpose register (GPR) RA and RB. A
double-word of data is read from the memory location referenced by the EA and placed into GPR RT;
GRP RA is updated with the EA.

If rA =0 or rA = rD, the instruction form is invalid.

Parameters

RT Specifies source general-purpose register of stored data.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

252 Assembler Language Reference

Idx (Store Double Word Indexed) Instruction

Purpose
Load a double-word from a specified memory location into a general purpose register.
Syntax
Bits [Value|
0-5 31
6-10 D
11-15 A
16-20 B
21-30 21
31 0
PowerPC

ax 77 A

Description

The Idx instruction loads a double-word from the specified memory location referenced by the effective
address (EA) into the general-purpose register (GPR) RT.

If GRP RA is not 0, the EA is the sum of the contents of GRP RA and B; otherwise, the EA is equal to the
contents of RB.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

Ifd (Load Floating-Point Double) Instruction

Purpose
Loads a doubleword of data from a specified location in memory into a floating-point register.
Syntax
Bits |Yalue|
0-5 50
6-10 FRT
11-15 RA

Chapter 8. Instruction Set 253

Bits |Yalue|

16-31 D

Ifd [FR7} [[RA

Description

The Ifd instruction loads a doubleword in storage from a specified location in memory addressed by the
effective address (EA) into the target floating-point register (FPR) FRT.

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and D, a
16-bit, signed two’s complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

The Ifd instruction has one syntax form and does not affect the Floating-Point Status and Control Register
or Condition Register Field 0.

Parameters

FRT Specifies target general-purpose register where result of the operation is stored.
D 16-bit, signed two’s complement integer sign-extended to 32 bits for the EA calculation.
RA Specifies source general-purpose register for the EA calculation.

Examples

The following code loads a doubleword from memory into FPR 6:

.csect data[rw]

storage: .double 0x1

Assume GPR 5 contains the address of csect data[rw].
.csect text[pr]

1fd 6,storage(5)

FPR 6 now contains Ox3FFO 0000 0000 0000.

Related Information
[Floating-Point Processor] .

[Floating-Point Load and Store Instructions] .

Ifdu (Load Floating-Point Double with Update) Instruction

Purpose

Loads a doubleword of data from a specified location in memory into a floating-point register and possibly
places the specified address in a general-purpose register.

Syntax
Bits [Value]
0-5 51
6-10 FRT
11-15 RA
16-31 D

254 Assembler Language Reference

Ifdu O [rA

Description

The Ifdu instruction loads a doubleword in storage from a specified location in memory addressed by the
effective address (EA) into the target floating-point register (FPR) FRT.

If RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s complement
integer sign-extended to 32 bits. If RA is 0, then the effective address (EA) is D.

If RA does not equal 0, and the storage access does not cause an Alignment interrupt or a Data Storage
interrupt, then the effective address is stored in GPR RA.

The Ifdu instruction has one syntax form and does not affect the Floating-Point Status and Control
Register or Condition Register Field 0.

Parameters

FRT Specifies target general-purpose register where result of operation is stored.
D Specifies a 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation and possible address update.

Examples

The following code loads a doubleword from memory into FPR 6 and stores the address in GPR 5:

.csect data[rw]

storage: .double 0x1

Assume GPR 5 contains the address of csect data[rw].
.csect text[pr]

1fdu 6,storage(5)

FPR 6 now contains Ox3FFO 0000 0000 0000.

GPR 5 now contains the storage address.

Related Information
[Floating-Point Processor] .

[Floating-Point Load and Store Instructions] .

Ifdux (Load Floating-Point Double with Update Indexed) Instruction

Purpose

Loads a doubleword of data from a specified location in memory into a floating-point register and possibly
places the specified address in a general-purpose register.

Syntax
Bits [Value|
0-5 31
6-10 FRT
11-15 RA
16-20 RB
21-30 631

Chapter 8. Instruction Set 255

Bits |Yalue|

31 /

ux [P [FA [

Description

The Ifdux instruction loads a doubleword in storage from a specified location in memory addressed by the
effective address (EA) into the target floating-point register (FPR) FRT.

If RA is not 0, the EA is the sum of the contents of general-purpose register (GPR) RA and GPR RB. If RA
is 0, then the EA is the contents of RB.

If RA does not equal 0, and the storage access does not cause an Alignment interrupt or a Data Storage
interrupt, then the EA is stored in GPR RA.

The Ifdux instruction has one syntax form and does not affect the Floating-Point Status and Control
Register.

Parameters

FRT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Examples
The following code loads a doubleword from memory into FPR 6 and stores the address in GPR 5:

.csect data[rw]

storage: .double 0x1

Assume GPR 5 contains the address of csect data[rw].

Assume GPR 4 contains the displacement of storage relative
to .csect data[rw].

.csect text[pr]

1fdux 6,5,4

FPR 6 now contains Ox3FFO 0000 0000 0000.

GPR 5 now contains the storage address.

Related Information
[Floating-Point Processor] .

[Floating-Point Load and Store Instructions] .

Ifdx (Load Floating-Point Double-Indexed) Instruction

Purpose
Loads a doubleword of data from a specified location in memory into a floating-point register.
Syntax
Bits |Yalue|
0-5 31

256 Assembler Language Reference

Bits |Yalue|
6-10 FRT
11-15 RA
16-20 RB
21-30 599
31 /
ex [FF7 [FA I8

Description

The Ifdx instruction loads a doubleword in storage from a specified location in memory addressed by the

effective address (EA) into the target floating-point register (FPR) FRT.

If RA is not 0, the EA is the sum of the contents of general-purpose register (GPR) RA and GPR RB. If RA

is 0, then the EA is the contents of GPR RB.

The Ifdx instruction has one syntax form and does not affect the Floating-Point Status and Control

Register or Condition Register Field 0.

Parameters

FRT Specifies target floating-point register where data is stored.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Examples

The following code loads a doubleword from memory into FPR 6:

storage: .double 0x1

Assume GPR 4 contains the storage address.
1fdx 6,0,4
FPR 6 now contains Ox3FFO 0000 0000 0000.

Related Information
[Floating-Point Processor] .

[Floating-Point Load and Store Instructions] .

Ifq (Load Floating-Point Quad) Instruction

Purpose
Loads two double-precision values into floating-point registers.

Note: The Ifq instruction is supported only in the POWER2 implementation of the POWER family

architecture.

Chapter 8. Instruction Set

257

Syntax

Bits [Value]
0-5 56
6-10 FRT
11-15 RA
16-29 DS
30-31 00

POWER2

Ifq BE ()

Description

The Ifq instruction loads the two doublewords from the location in memory specified by the effective
address (EA) into two floating-point registers (FPR).

DS is sign-extended to 30 bits and concatenated on the right with b’00’ to form the offset value. If
general-purpose register (GPR) RA is 0, the offset value is the EA. If GPR RA is not 0, the offset value is
added to GPR RA to generate the EA. The doubleword at the EA is loaded into FPR FRT. If FRT is 31,
the doubleword at EA+8 is loaded into FPR 0; otherwise, it is loaded into FRT+1.

The Ifq instruction has one syntax form and does not affect the Floating-Point Status and Control Register
or Condition Register Field 0.

Parameters

FRT Specifies the first of two target floating-point registers.
DS Specifies a 14-bit field used as an immediate value for the EA calculation.
RA Specifies one source general-purpose register for the EA calculation.

Examples
The following code copies two double-precision floating-point values from one place in memory to a
second place in memory:

Assume GPR 3 contains the address of the first source
floating-point value.
Assume GPR 4 contains the address of the target location.

1fq 7,0(3) # Load first two values into FPRs 7 and
8.

stfq 7,0(4) # Store the two doublewords at the new
Tocation.

Related Information
[Floating-Point Processor] .

[Floating-Point Load and Store Instructions] .

Ifqu (Load Floating-Point Quad with Update) Instruction

Purpose
Loads two double-precision values into floating-point registers and updates the address base.

258 Assembler Language Reference

Note: The Ifqu instruction is supported only in the POWER2 implementation of the POWER family
architecture.

Syntax
Bits |Yalue|
0-5 57
6-10 FRT
11-15 RA
16-29 DS
30-31 00
POWER2

Ifqu 3[FA

Description

The Ifqu instruction loads the two doublewords from the location in memory specified by the effective
address (EA) into two floating-point registers (FPR).

DS is sign-extended to 30 bits and concatenated on the right with b’00’ to form the offset value. If
general-purpose register GPR RA is 0, the offset value is the EA. If GPR RA is not 0, the offset value is
added to GPR RA to generate the EA. The doubleword at the EA is loaded into FPR FRT. If FRT is 31,
the doubleword at EA+8 is loaded into FPR 0; otherwise, it is loaded into FRT+1.

If GPR RA is not 0, the EA is placed into GPR RA.

The Ifqu instruction has one syntax form and does not affect the Floating-Point Status and Control
Register or Condition Register Field 0.

Parameters

FRT Specifies the first of two target floating-point register.
DS Specifies a 14-bit field used as an immediate value for the EA calculation.
RA Specifies one source general-purpose register for EA calculation and the target register for the EA update.

Examples
The following code calculates the sum of six double-precision floating-point values that are located in
consecutive doublewords in memory:

Assume GPR 3 contains the address of the first
floating-point value.
Assume GPR 4 contains the address of the target location.

1fq 7,0(3) # Load first two values into FPRs 7 and
8.

1fqu 9,16(3) # Load next two values into FPRs 9 and 10
and update base address in GPR 3.

fadd 6,7,8 # Add first two values.

1fq 7,16(3) # Load next two values into FPRs 7 and 8.

fadd 6,6,9 # Add third value.

fadd 6,6,10 # Add fourth value.

fadd 6,6,7 # Add fifth value.

fadd 6,6,8 # Add sixth value.

stfgx 7,0,4 # Store the two doublewords at the new
Tocation.

Chapter 8. Instruction Set 259

Related Information
[Floating-Point Processor] .

[Floating-Point Load and Store Instructions] .

Ifqux (Load Floating-Point Quad with Update Indexed) Instruction

Purpose
Loads two double-precision values into floating-point registers and updates the address base.

Note: The Ifqux instruction is supported only in the POWER2 implementation of the POWER family
architecture.

Syntax
Bits |Yalue|
0-5 31
6-10 FRT
11-15 RA
16-20 RB
21-30 823
31 Rc
POWER2

Ifqux [r4

Description

The Ifqux instruction loads the two doublewords from the location in memory specified by the effective
address (EA) into two floating-point registers (FPR).

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB.
If GPR RA is 0, the EA is the contents of GPR RB. The doubleword at the EA is loaded into FPR FRT. If
FRT is 31, the doubleword at EA+8 is loaded into FPR 0; otherwise, it is loaded into FRT+1.

If GPR RA is not 0, the EA is placed into GPR RA.

The Ifqux instruction has one syntax form and does not affect the Floating-Point Status and Control
Register or Condition Register Field 0.

Parameters

FRT Specifies the first of two target floating-point registers.

RA Specifies the first source general-purpose register for the EA calculation and the target register for the EA
update.
RB Specifies the second source general-purpose register for the EA calculation.

Examples

The following code calculates the sum of three double-precision, floating-point, two-dimensional
coordinates:

260 Assembler Language Reference

Assume the two-dimensional coordinates are contained
in a linked list with elements of the form:
list_element:
.double # Floating-point value of X.
.double # Floating-point value of Y.
.next_elem # Offset to next element;

from X(n) to X(n+l).

Assume GPR 3 contains the address of the first Tist element.
Assume GPR 4 contains the address where the resultant sums
will be stored.

#
#
#
#
#
#
#
#
#
#

H=

1fq 7,0(3) # Get first pair of X_Y values.

Twz 5,16(3) # Get the offset to second element.
1fqux 9,3,5 # Get second pair of X_Y values.
Twz 5,16(3) # Get the offset to third element.
fadd 7,7,9 # Add first two X values.

fadd 8,8,10 # Add first two Y values.

Tfqux 9,3,5 # Get third pair of X_Y values.
fadd 7,7,9 # Add third X value to sum.

fadd 8,8,10 # Add third Y value to sum.

stfq 7,0,4 # Store the two doubleword results.

Related Information
[Floating-Point Processor] .

[Floating-Point Load and Store Instructions] .

Ifqx (Load Floating-Point Quad Indexed) Instruction

Purpose
Loads two double-precision values into floating-point registers.

Note: The Ifqx instruction is supported only in the POWER2 implementation of the POWER family
architecture.

Syntax

Bits |Yalue|
0-5 31
6-10 FRT
11-15 RA
16-20 RB
21-30 791
31 Rc
POWER2
Ifax FRT} [RA [RS
Description

The Ifgx instruction loads the two doublewords from the location in memory specified by the effective
address (EA) into two floating-point registers (FPR).

Chapter 8. Instruction Set 261

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB.
If GPR RA is 0, the EA is the contents of GPR RB. The doubleword at the EA is loaded into FPR FRT. If
FRT is 31, the doubleword at EA+8 is loaded into FPR 0; otherwise, it is loaded into FRT+1.

The Ifqx instruction has one syntax form and does not affect the Floating-Point Status and Control
Register or Condition Register Field 0.

Parameters

FRT Specifies the first of two target floating-point registers.
RA Specifies one source general-purpose register for the EA calculation.
RB Specifies the second source general-purpose register for the EA calculation.

Examples

The following code calculates the sum of two double-precision, floating-point values that are located in
consecutive doublewords in memory:

Assume GPR 3 contains the address of the first floating-point

value.

Assume GPR 4 contains the address of the target Tocation.
1fgx 7,0,3 # Load values into FPRs 7 and 8.
fadd 7,7,8 # Add the two values.

stfdx 7,0,4 # Store the doubleword result.

Related Information
[Floating-Point Processor] .

[Floating-Point Load and Store Instructions] .

Ifs (Load Floating-Point Single) Instruction

Purpose

Loads a floating-point, single-precision number that has been converted to a floating-point,
double-precision number into a floating-point register.

Syntax
Bits [Value|
0-5 48
6-10 FRT
11-15 RA
16-31 D

Ifs FRT [[RA

Description

The Ifs instruction converts a floating-point, single-precision word in storage addressed by the effective
address (EA) to a floating-point, double-precision word and loads the result into floating-point register
(FPR) FRT.

262 Assembler Language Reference

If RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s complement
integer sign-extended to 32 bits. If RA is 0, then the EAis D.

The Ifs instruction has one syntax form and does not affect the Floating-Point Status and Control Register
or Condition Register Field 0.

Parameters

FRT Specifies target floating-point register where data is stored.
D 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation.

Examples
The following code loads the single-precision contents of storage into FPR 6:

.csect data[rw]

storage: .float Oxl

Assume GPR 5 contains the address csect data[rw].
.csect text[pr]

1fs 6,storage(5)

FPR 6 now contains Ox3FFO 0000 0000 0000.

Related Information
[Floating-Point Processor] .

[Floating-Point Load and Store Instructions] .

Ifsu (Load Floating-Point Single with Update) Instruction

Purpose

Loads a floating-point, single-precision number that has been converted to a floating-point,
double-precision number into a floating-point register and possibly places the effective address in a
general-purpose register.

Syntax
Bits [Value]
0-5 49
6-10 FRT
11-15 RA
16-31 D

Ifsu FRT [0 [RA)

Description

The Ifsu instruction converts a floating-point, single-precision word in storage addressed by the effective
address (EA) to floating-point, double-precision word and loads the result into floating-point register (FPR)
FRT.

If RA is not 0, the EA is the sum of the contents of general-purpose register (GPR) RA and D, a 16-bit
signed two’s complement integer sign extended to 32 bits. If RA is 0, then the EA is D.

Chapter 8. Instruction Set 263

If RA does not equal 0 and the storage access does not cause an Alignment interrupt or a Data Storage
interrupt, then the EA is stored in GPR RA.

The Ifsu instruction has one syntax form and does not affect the Floating-Point Status and Control
Register or Condition Register Field 0.

Parameters

FRT Specifies target floating-point register where data is stored.
D 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation and possible address update.

Examples

The following code loads the single-precision contents of storage, which is converted to double precision,
into FPR 6 and stores the effective address in GPR 5:

.csect data[rw]

storage: .float Oxl

.csect text[pr]

Assume GPR 5 contains the storage address.
1fsu 6,0(5)

FPR 6 now contains Ox3FFO 0000 0000 0000.
GPR 5 now contains the storage address.

Related Information
[Floating-Point Processor] .

[Floating-Point Load and Store Instructions .

Ifsux (Load Floating-Point Single with Update Indexed) Instruction

Purpose

Loads a floating-point, single-precision number that has been converted to a floating-point,
double-precision number into a floating-point register and possibly places the effective address in a
general-purpose register.

Syntax
Bits [Value|
0-5 31
6-10 FRT
11-15 RA
16-20 RB
21-30 567
31 /
Ifsux FRT} [RA [RB

264 Assembler Language Reference

Description

The Ifsux instruction converts a floating-point, single-precision word in storage addressed by the effective
address (EA) to floating-point, double-precision word and loads the result into floating-point register (FPR)

FRT.

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB.

If RA is 0, then the EA is the contents of GPR RB.

If GPR RA does not equal 0 and the storage access does not cause an Alignment interrupt or a Data

Storage interrupt, then the EA is stored in GPR RA.

The Ifsux instruction has one syntax form and does not affect the Floating-Point Status Control Register.

Parameters

FRT Specifies target floating-point register where data is stored.
RA Specifies source general-purpose register for EA calculation and possible address update.
RB Specifies source general-purpose register for EA calculation.

Examples

The following code loads the single-precision contents of storage into FPR 6 and stores the effective
address in GPR 5:

.csect data[rw]

storage: .float Oxl

Assume GPR 4 contains the address of csect data[rw].
Assume GPR 5 contains the displacement of storage

relative to .csect data[rw].

.csect text[pr]

1fsux 6,5,4

FPR 6 now contains Ox3FFO 0000 0000 0000.

GPR 5 now contains the storage address.

Related Information
[Floating-Point Processor] .

[Floating-Point Load and Store Instructions] .

Ifsx (Load Floating-Point Single Indexed) Instruction

Purpose

Loads a floating-point, single-precision number that has been converted to a floating-point,
double-precision number into a floating-point register.

Syntax
Bits [Value|
0-5 31
6-10 FRT
11-15 RA
16-20 RB
21-30 535

Chapter 8. Instruction Set

265

Bits |Yalue|

31 /

fox [F7 A B

Description

The Ifsx instruction converts a floating-point, single-precision word in storage addressed by the effective
address (EA) to floating-point, double-precision word and loads the result into floating-point register (FPR)
FRT.

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB.
If RA is 0, then the EA is the contents of GPR RB.

The Ifsx instruction has one syntax form and does not affect the Floating-Point Status and Control
Register.

Parameters

FRT Specifies target floating-point register where data is stored.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Examples

The following code loads the single-precision contents of storage into FPR 6:

storage: .float Ox1.

Assume GPR 4 contains the address of storage.
1fsx 6,0,4

FPR 6 now contains Ox3FFO 0000 0000 0000.

Related Information
[Floating-Point Processor] .

[Floating-Point Load and Store Instructions] .

lha (Load Half Algebraic) Instruction

Purpose

Loads a halfword of data from a specified location in memory into a general-purpose register and copies
bit 0 of the halfword into the remaining 16 bits of the general-purpose register.

Syntax
Bits [Value|
0-5 42
6-10 RT
11-15 RA
16-31 D

266 Assembler Language Reference

Iha F1D[EA

Description

The Iha instruction loads a halfword of data from a specified location in memory, addressed by the
effective address (EA), into bits 16-31 of the target general-purpose register (GPR) RT and copies bit 0 of
the halfword into bits 0-15 of GPR RT.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit signed two’s
complement integer sign extended to 32 bits. If GPR RA is 0, then the EA is D.

The Iha instruction has one syntax form and does not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
D 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation.

Examples

The following code loads a halfword of data into bits 16-31 of GPR 6 and copies bit 0 of the halfword into
bits 0-15 of GPR 6:

.csect data[rw]

storage: .short Oxffff

Assume GPR 5 contains the address of csect data[rw].
.csect text[pr]

Tha 6,storage(5)

GPR 6 now contains Oxffff ffff.

Related Information
[Fixed-Point Processor|.

[Fixed-Point Load and Store Instructions] .

Ihau (Load Half Algebraic with Update) Instruction

Purpose

Loads a halfword of data from a specified location in memory into a general-purpose register, copies bit 0
of the halfword into the remaining 16 bits of the general-purpose register, and possibly places the address
in another general-purpose register.

Syntax
Bits |Yalue|
0-5 43
6-10 BT
11-15 RA
16-31 D

lhau @ @l@

Chapter 8. Instruction Set 267

Description

The Ihau instruction loads a halfword of data from a specified location in memory, addressed by the
effective address (EA), into bits 16-31 of the target general-purpose register (GPR) RT and copies bit O of
the halfword into bits 0-15 of GPR RT.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s
complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

If RA does not equal RT and RA does not equal 0, and the storage access does not cause an Alignment
interrupt or a Data Storage interrupt, then the EA is placed into GPR RA.

The Ihau instruction has one syntax form and does not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
D 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation and possible address update.

Examples

The following code loads a halfword of data into bits 16-31 of GPR 6, copies bit 0 of the halfword into bits
0-15 of GPR 6, and stores the effective address in GPR 5:

.csect data[rw]

storage: .short Oxffff

Assume GPR 5 contains the address of csect data[rw].
.csect text[pr]

Thau 6,storage(5)

GPR 6 now contains Oxffff ffff.

GPR 5 now contains the address of storage.

Related Information
[Fixed-Point Processor .

[Fixed-Point Load and Store with Update Instructions|.

lhaux (Load Half Algebraic with Update Indexed) Instruction

Purpose

Loads a halfword of data from a specified location in memory into a general-purpose register, copies bit 0
of the halfword into the remaining 16 bits of the general-purpose register, and possibly places the address
in another general-purpose register.

Syntax
Bits |Yalue|
0-5 31
6-10 RT
11-15 RA

268 Assembler Language Reference

Bits [Value|
16-20 RB
21-30 375
31 /

lhaux @@

Description

The Ihaux instruction loads a halfword of data from a specified location in memory addressed by the
effective address (EA) into bits 16-31 of the target general-purpose register (GPR) RT and copies bit O of
the halfword into bits 0-15 of GPR RT.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the
EA is the contents of GPR RB.

If RA does not equal RT and RA does not equal 0, and the storage access does not cause an Alignment
interrupt or a Data Storage interrupt, then the EA is placed into GPR RA.

The Ihaux instruction has one s