
AIX 5L Version 5.3

Assembler Language Reference

SC23-4923-02

���

AIX 5L Version 5.3

Assembler Language Reference

SC23-4923-02

���

Note

Before using this information and the product it supports, read the information in Appendix J, “Notices,” on page 605.

Third Edition (July 2006)

This edition applies to AIX 5L Version 5.3 and to all subsequent releases of this product until otherwise indicated in

new editions.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address

comments to Information Development, Department 04XA-905-6C006, 11501 Burnet Road, Austin, Texas

78758-3493. To send comments electronically, use this commercial Internet address: aix6kpub@austin.ibm.com. Any

information that you supply may be used without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About This Book . xi

Highlighting . xi

Case-Sensitivity in AIX . xi

ISO 9000 . xi

Related Publications . xi

Chapter 1. Assembler Overview . 1

Features of the AIX Assembler . 1

Assembler Installation . 10

Chapter 2. Processing and Storage . 11

POWER family and PowerPC Architecture Overview 11

Branch Processor . 19

Fixed-Point Processor . 21

Floating-Point Processor . 24

Chapter 3. Syntax and Semantics . 27

Character Set . 27

Reserved Words . 28

Line Format . 28

Statements . 29

Symbols . 31

Constants . 35

Operators . 38

Expressions . 39

Chapter 4. Addressing . 47

Absolute Addressing . 47

Absolute Immediate Addressing . 47

Relative Immediate Addressing . 48

Explicit-Based Addressing . 48

Implicit-Based Addressing . 50

Location Counter . 51

Chapter 5. Assembling and Linking a Program . 53

Assembling and Linking a Program . 53

Understanding Assembler Passes . 57

Interpreting an Assembler Listing . 59

Interpreting a Symbol Cross-Reference . 63

Subroutine Linkage Convention . 65

Understanding and Programming the TOC . 82

Running a Program . 87

Chapter 6. Extended Instruction Mnemonics . 89

Extended Mnemonics of Branch Instructions . 89

Extended Mnemonics of Condition Register Logical Instructions 96

Extended Mnemonics of Fixed-Point Arithmetic Instructions 97

Extended Mnemonics of Fixed-Point Compare Instructions 98

Extended Mnemonics of Fixed-Point Load Instructions 99

Extended Mnemonics of Fixed-Point Logical Instructions 100

Extended Mnemonics of Fixed-Point Trap Instructions 100

Extended Mnemonic mtcr for Moving to the Condition Register 102

Extended Mnemonics of Moving from or to Special-Purpose Registers 102

© Copyright IBM Corp. 1997, 2006 iii

Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions 107

Extended Mnemonics of 64-bit Fixed-Point Rotate and Shift Instructions 110

Chapter 7. Migrating Source Programs . 113

Related Information . 113

Functional Differences for POWER family and PowerPC Instructions 114

Differences between POWER family and PowerPC Instructions with the Same Op Code 115

Extended Mnemonics Changes . 116

POWER family Instructions Deleted from PowerPC 119

Added PowerPC Instructions . 120

Instructions Available Only for the PowerPC 601 RISC Microprocessor 121

Migration of Branch Conditional Statements with No Separator after Mnemonic 121

Chapter 8. Instruction Set . 123

abs (Absolute) Instruction . 123

add (Add) or cax (Compute Address) Instruction . 124

addc or a (Add Carrying) Instruction . 126

adde or ae (Add Extended) Instruction . 128

addi (Add Immediate) or cal (Compute Address Lower) Instruction 130

addic or ai (Add Immediate Carrying) Instruction . 131

addic. or ai. (Add Immediate Carrying and Record) Instruction 132

addis or cau (Add Immediate Shifted) Instruction . 133

addme or ame (Add to Minus One Extended) Instruction 135

addze or aze (Add to Zero Extended) Instruction . 137

and (AND) Instruction . 138

andc (AND with Complement) Instruction . 140

andi. or andil. (AND Immediate) Instruction . 141

andis. or andiu. (AND Immediate Shifted) Instruction 142

b (Branch) Instruction . 143

bc (Branch Conditional) Instruction . 144

bcctr or bcc (Branch Conditional to Count Register) Instruction 147

bclr or bcr (Branch Conditional Link Register) Instruction 149

clcs (Cache Line Compute Size) Instruction . 152

clf (Cache Line Flush) Instruction . 153

cli (Cache Line Invalidate) Instruction . 155

cmp (Compare) Instruction . 156

cmpi (Compare Immediate) Instruction . 157

cmpl (Compare Logical) Instruction . 159

cmpli (Compare Logical Immediate) Instruction . 160

cntlzd (Count Leading Zeros Double Word) Instruction 161

cntlzw or cntlz (Count Leading Zeros Word) Instruction 162

crand (Condition Register AND) Instruction . 163

crandc (Condition Register AND with Complement) Instruction 164

creqv (Condition Register Equivalent) Instruction . 165

crnand (Condition Register NAND) Instruction . 166

crnor (Condition Register NOR) Instruction . 167

cror (Condition Register OR) Instruction . 168

crorc (Condition Register OR with Complement) Instruction 169

crxor (Condition Register XOR) Instruction . 170

dcbf (Data Cache Block Flush) Instruction . 171

dcbi (Data Cache Block Invalidate) Instruction . 172

dcbst (Data Cache Block Store) Instruction . 173

dcbt (Data Cache Block Touch) Instruction . 175

dcbtst (Data Cache Block Touch for Store) Instruction 178

dcbz or dclz (Data Cache Block Set to Zero) Instruction 179

dclst (Data Cache Line Store) Instruction . 180

iv Assembler Language Reference

div (Divide) Instruction . 182

divd (Divide Double Word) Instruction . 184

divdu (Divide Double Word Unsigned) Instruction . 185

divs (Divide Short) Instruction . 186

divw (Divide Word) Instruction . 188

divwu (Divide Word Unsigned) Instruction . 190

doz (Difference or Zero) Instruction . 191

dozi (Difference or Zero Immediate) Instruction . 193

eciwx (External Control In Word Indexed) Instruction 194

ecowx (External Control Out Word Indexed) Instruction 195

eieio (Enforce In-Order Execution of I/O) Instruction 196

extsw (Extend Sign Word) Instruction . 197

eqv (Equivalent) Instruction . 198

extsb (Extend Sign Byte) Instruction . 199

extsh or exts (Extend Sign Halfword) Instruction . 200

fabs (Floating Absolute Value) Instruction . 202

fadd or fa (Floating Add) Instruction . 203

fcfid (Floating Convert from Integer Double Word) Instruction 205

fcmpo (Floating Compare Ordered) Instruction . 206

fcmpu (Floating Compare Unordered) Instruction . 207

fctid (Floating Convert to Integer Double Word) Instruction 208

fctidz (Floating Convert to Integer Double Word with Round toward Zero) Instruction 209

fctiw or fcir (Floating Convert to Integer Word) Instruction 210

fctiwz or fcirz (Floating Convert to Integer Word with Round to Zero) Instruction 212

fdiv or fd (Floating Divide) Instruction . 213

fmadd or fma (Floating Multiply-Add) Instruction . 216

fmr (Floating Move Register) Instruction . 218

fmsub or fms (Floating Multiply-Subtract) Instruction 219

fmul or fm (Floating Multiply) Instruction . 221

fnabs (Floating Negative Absolute Value) Instruction 224

fneg (Floating Negate) Instruction . 225

fnmadd or fnma (Floating Negative Multiply-Add) Instruction 226

fnmsub or fnms (Floating Negative Multiply-Subtract) Instruction 228

fres (Floating Reciprocal Estimate Single) Instruction 231

frsp (Floating Round to Single Precision) Instruction 233

frsqrte (Floating Reciprocal Square Root Estimate) Instruction 235

fsel (Floating-Point Select) Instruction . 236

fsqrt (Floating Square Root, Double-Precision) Instruction 237

fsqrts (Floating Square Root Single) Instruction . 239

fsub or fs (Floating Subtract) Instruction . 240

icbi (Instruction Cache Block Invalidate) Instruction . 242

isync or ics (Instruction Synchronize) Instruction . 243

lbz (Load Byte and Zero) Instruction . 245

lbzu (Load Byte and Zero with Update) Instruction . 246

lbzux (Load Byte and Zero with Update Indexed) Instruction 247

lbzx (Load Byte and Zero Indexed) Instruction . 248

ld (Load Double Word) Instruction . 249

ldarx (Store Double Word Reserve Indexed) Instruction 250

ldu (Store Double Word with Update) Instruction . 251

ldux (Store Double Word with Update Indexed) Instruction 252

ldx (Store Double Word Indexed) Instruction . 253

lfd (Load Floating-Point Double) Instruction . 253

lfdu (Load Floating-Point Double with Update) Instruction 254

lfdux (Load Floating-Point Double with Update Indexed) Instruction 255

lfdx (Load Floating-Point Double-Indexed) Instruction 256

lfq (Load Floating-Point Quad) Instruction . 257

Contents v

lfqu (Load Floating-Point Quad with Update) Instruction 258

lfqux (Load Floating-Point Quad with Update Indexed) Instruction 260

lfqx (Load Floating-Point Quad Indexed) Instruction 261

lfs (Load Floating-Point Single) Instruction . 262

lfsu (Load Floating-Point Single with Update) Instruction 263

lfsux (Load Floating-Point Single with Update Indexed) Instruction 264

lfsx (Load Floating-Point Single Indexed) Instruction 265

lha (Load Half Algebraic) Instruction . 266

lhau (Load Half Algebraic with Update) Instruction . 267

lhaux (Load Half Algebraic with Update Indexed) Instruction 268

lhax (Load Half Algebraic Indexed) Instruction . 269

lhbrx (Load Half Byte-Reverse Indexed) Instruction 270

lhz (Load Half and Zero) Instruction . 272

lhzu (Load Half and Zero with Update) Instruction . 273

lhzux (Load Half and Zero with Update Indexed) Instruction 274

lhzx (Load Half and Zero Indexed) Instruction . 275

lmw or lm (Load Multiple Word) Instruction . 276

lq (Load Quad Word) Instruction . 277

lscbx (Load String and Compare Byte Indexed) Instruction 278

lswi or lsi (Load String Word Immediate) Instruction 280

lswx or lsx (Load String Word Indexed) Instruction . 282

lwa (Load Word Algebraic) Instruction . 283

lwarx (Load Word and Reserve Indexed) Instruction 284

lwaux (Load Word Algebraic with Update Indexed) Instruction 286

lwax (Load Word Algebraic Indexed) Instruction . 286

lwbrx or lbrx (Load Word Byte-Reverse Indexed) Instruction 287

lwz or l (Load Word and Zero) Instruction . 288

lwzu or lu (Load Word with Zero Update) Instruction 289

lwzux or lux (Load Word and Zero with Update Indexed) Instruction 291

lwzx or lx (Load Word and Zero Indexed) Instruction 292

maskg (Mask Generate) Instruction . 293

maskir (Mask Insert from Register) Instruction . 294

mcrf (Move Condition Register Field) Instruction . 296

mcrfs (Move to Condition Register from FPSCR) Instruction 296

mcrxr (Move to Condition Register from XER) Instruction 298

mfcr (Move from Condition Register) Instruction . 298

mffs (Move from FPSCR) Instruction . 299

mfmsr (Move from Machine State Register) Instruction 300

mfocrf (Move from One Condition Register Field) Instruction 301

mfspr (Move from Special-Purpose Register) Instruction 303

mfsr (Move from Segment Register) Instruction . 305

mfsri (Move from Segment Register Indirect) Instruction 306

mfsrin (Move from Segment Register Indirect) Instruction 307

mtcrf (Move to Condition Register Fields) Instruction 308

mtfsb0 (Move to FPSCR Bit 0) Instruction . 309

mtfsb1 (Move to FPSCR Bit 1) Instruction . 310

mtfsf (Move to FPSCR Fields) Instruction . 311

mtfsfi (Move to FPSCR Field Immediate) Instruction 313

mtocrf (Move to One Condition Register Field) Instruction 314

mtspr (Move to Special-Purpose Register) Instruction 315

mul (Multiply) Instruction . 317

mulhd (Multiply High Double Word) Instruction . 319

mulhdu (Multiply High Double Word Unsigned) Instruction 320

mulhw (Multiply High Word) Instruction . 321

mulhwu (Multiply High Word Unsigned) Instruction . 322

mulld (Multiply Low Double Word) Instruction . 324

vi Assembler Language Reference

mulli or muli (Multiply Low Immediate) Instruction . 325

mullw or muls (Multiply Low Word) Instruction . 326

nabs (Negative Absolute) Instruction . 328

nand (NAND) Instruction . 330

neg (Negate) Instruction . 331

nor (NOR) Instruction . 333

or (OR) Instruction . 334

orc (OR with Complement) Instruction . 335

ori or oril (OR Immediate) Instruction . 336

oris or oriu (OR Immediate Shifted) Instruction . 337

popcntbd (Population Count Byte Doubleword) Instruction 338

rac (Real Address Compute) Instruction . 339

rfi (Return from Interrupt) Instruction . 341

rfid (Return from Interrupt Double Word) Instruction 341

rfsvc (Return from SVC) Instruction . 342

rldcl (Rotate Left Double Word then Clear Left) Instruction 343

rldicl (Rotate Left Double Word Immediate then Clear Left) Instruction 344

rldcr (Rotate Left Double Word then Clear Right) Instruction 345

rldic (Rotate Left Double Word Immediate then Clear) Instruction 346

rldicl (Rotate Left Double Word Immediate then Clear Left) Instruction 347

rldicr (Rotate Left Double Word Immediate then Clear Right) Instruction 348

rldimi (Rotate Left Double Word Immediate then Mask Insert) Instruction 349

rlmi (Rotate Left Then Mask Insert) Instruction . 350

rlwimi or rlimi (Rotate Left Word Immediate Then Mask Insert) Instruction 352

rlwinm or rlinm (Rotate Left Word Immediate Then AND with Mask) Instruction 354

rlwnm or rlnm (Rotate Left Word Then AND with Mask) Instruction 356

rrib (Rotate Right and Insert Bit) Instruction . 358

sc (System Call) Instruction . 360

scv (System Call Vectored) Instruction . 361

si (Subtract Immediate) Instruction . 362

si. (Subtract Immediate and Record) Instruction . 363

sld (Shift Left Double Word) Instruction . 364

sle (Shift Left Extended) Instruction . 364

sleq (Shift Left Extended with MQ) Instruction . 366

sliq (Shift Left Immediate with MQ) Instruction . 367

slliq (Shift Left Long Immediate with MQ) Instruction 369

sllq (Shift Left Long with MQ) Instruction . 370

slq (Shift Left with MQ) Instruction . 372

slw or sl (Shift Left Word) Instruction . 373

srad (Shift Right Algebraic Double Word) Instruction 375

sradi (Shift Right Algebraic Double Word Immediate) Instruction 376

sraiq (Shift Right Algebraic Immediate with MQ) Instruction 377

sraq (Shift Right Algebraic with MQ) Instruction . 378

sraw or sra (Shift Right Algebraic Word) Instruction 380

srawi or srai (Shift Right Algebraic Word Immediate) Instruction 382

srd (Shift Right Double Word) Instruction . 383

sre (Shift Right Extended) Instruction . 384

srea (Shift Right Extended Algebraic) Instruction . 386

sreq (Shift Right Extended with MQ) Instruction . 387

sriq (Shift Right Immediate with MQ) Instruction . 389

srliq (Shift Right Long Immediate with MQ) Instruction 390

srlq (Shift Right Long with MQ) Instruction . 392

srq (Shift Right with MQ) Instruction . 393

srw or sr (Shift Right Word) Instruction . 395

stb (Store Byte) Instruction . 396

stbu (Store Byte with Update) Instruction . 397

Contents vii

stbux (Store Byte with Update Indexed) Instruction . 398

stbx (Store Byte Indexed) Instruction . 399

std (Store Double Word) Instruction . 400

stdcx. (Store Double Word Conditional Indexed) Instruction 401

stdu (Store Double Word with Update) Instruction . 402

stdux (Store Double Word with Update Indexed) Instruction 403

stdx (Store Double Word Indexed) Instruction . 404

stfd (Store Floating-Point Double) Instruction . 405

stfdu (Store Floating-Point Double with Update) Instruction 406

stfdux (Store Floating-Point Double with Update Indexed) Instruction 407

stfdx (Store Floating-Point Double Indexed) Instruction 408

stfiwx (Store Floating-Point as Integer Word Indexed) 409

stfq (Store Floating-Point Quad) Instruction . 410

stfqu (Store Floating-Point Quad with Update) Instruction 411

stfqux (Store Floating-Point Quad with Update Indexed) Instruction 412

stfqx (Store Floating-Point Quad Indexed) Instruction 413

stfs (Store Floating-Point Single) Instruction . 414

stfsu (Store Floating-Point Single with Update) Instruction 415

stfsux (Store Floating-Point Single with Update Indexed) Instruction 416

stfsx (Store Floating-Point Single Indexed) Instruction 417

sth (Store Half) Instruction . 418

sthbrx (Store Half Byte-Reverse Indexed) Instruction 419

sthu (Store Half with Update) Instruction . 420

sthux (Store Half with Update Indexed) Instruction . 421

sthx (Store Half Indexed) Instruction . 422

stmw or stm (Store Multiple Word) Instruction . 423

stq (Store Quad Word) Instruction . 424

stswi or stsi (Store String Word Immediate) Instruction 425

stswx or stsx (Store String Word Indexed) Instruction 426

stw or st (Store) Instruction . 428

stwbrx or stbrx (Store Word Byte-Reverse Indexed) Instruction 429

stwcx. (Store Word Conditional Indexed) Instruction 430

stwu or stu (Store Word with Update) Instruction . 431

stwux or stux (Store Word with Update Indexed) Instruction 433

stwx or stx (Store Word Indexed) Instruction . 434

subf (Subtract From) Instruction . 435

subfc or sf (Subtract from Carrying) Instruction . 437

subfe or sfe (Subtract from Extended) Instruction . 439

subfic or sfi (Subtract from Immediate Carrying) Instruction 441

subfme or sfme (Subtract from Minus One Extended) Instruction 442

subfze or sfze (Subtract from Zero Extended) Instruction 444

svc (Supervisor Call) Instruction . 446

sync (Synchronize) or dcs (Data Cache Synchronize) Instruction 447

td (Trap Double Word) Instruction . 449

tdi (Trap Double Word Immediate) Instruction . 450

tlbie or tlbi (Translation Look-Aside Buffer Invalidate Entry) Instruction 451

tlbld (Load Data TLB Entry) Instruction . 452

tlbli (Load Instruction TLB Entry) Instruction . 454

tlbsync (Translation Look-Aside Buffer Synchronize) Instruction 455

tw or t (Trap Word) Instruction . 456

twi or ti (Trap Word Immediate) Instruction . 457

xor (XOR) Instruction . 458

xori or xoril (XOR Immediate) Instruction . 459

xoris or xoriu (XOR Immediate Shift) Instruction . 460

Chapter 9. Pseudo-ops . 463

viii Assembler Language Reference

Pseudo-ops Overview . 463

.align Pseudo-op . 466

.bb Pseudo-op . 467

.bc Pseudo-op . 468

.bf Pseudo-op . 468

.bi Pseudo-op . 469

.bs Pseudo-op . 469

.byte Pseudo-op . 470

.comm Pseudo-op . 471

.csect Pseudo-op . 473

.double Pseudo-op . 475

.drop Pseudo-op . 476

.dsect Pseudo-op . 477

.eb Pseudo-op . 479

.ec Pseudo-op . 479

.ef Pseudo-op . 480

.ei Pseudo-op . 480

.es Pseudo-op . 481

.extern Pseudo-op . 481

.file Pseudo-op . 482

.float Pseudo-op . 483

.function Pseudo-op . 483

.globl Pseudo-op . 484

.hash Pseudo-op . 485

.lcomm Pseudo-op . 486

.lglobl Pseudo-op . 487

.line Pseudo-op . 488

.long Pseudo-op . 489

.llong Pseudo-op . 489

.machine Pseudo-op . 490

.org Pseudo-op . 493

.quad Pseudo-op . 493

.ref Pseudo-op . 494

.rename Pseudo-op . 495

.set Pseudo-op . 496

.short Pseudo-op . 497

.source Pseudo-op . 498

.space Pseudo-op . 499

.stabx Pseudo-op . 499

.string Pseudo-op . 500

.tbtag Pseudo-op . 501

.tc Pseudo-op . 503

.toc Pseudo-op . 504

.tocof Pseudo-op . 504

.using Pseudo-op . 505

.vbyte Pseudo-op . 509

.weak Pseudo-op . 510

.xline Pseudo-op . 511

Appendix A. Messages . 513

Appendix B. Instruction Set Sorted by Mnemonic 533

Appendix C. Instruction Set Sorted by Primary and Extended Op Code 547

Appendix D. Instructions Common to POWER family, POWER2, and PowerPC 561

Contents ix

Appendix E. POWER family and POWER2 Instructions 565

Appendix F. PowerPC Instructions . 575

Appendix G. PowerPC 601 RISC Microprocessor Instructions 585

Appendix H. Value Definitions . 595

Bits 0-5 . 595

Bits 6-30 . 595

Bit 31 . 596

Appendix I. Vector Processor . 597

Storage Operands and Alignment . 597

Register Usage Conventions . 597

Runtime Stack . 598

Procedure Calling Sequence . 601

Traceback Tables . 603

Debug Stabstrings . 603

Legacy ABI Compatibility and Interoperability . 604

Appendix J. Notices . 605

Trademarks . 606

Index . 607

x Assembler Language Reference

About This Book

This book is intended for experienced assembler language programmers. Users should be familiar with the

AIX® operating system or UNIX® System V commands, assembler instructions, pseudo-ops, and processor

register usage. This reference discusses features and specific usage for this version of the Assembler

including: installation, operation, syntax, addressing considerations, migration, instructions sets, and

pseudo-ops. Also covered are extended mnemonics for POWER-based architectures and their supported

processors.

Highlighting

The following highlighting conventions are used in this book:

 Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items whose

names are predefined by the system. Also identifies graphical objects such as buttons, labels,

and icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Monospace Identifies examples of specific data values, examples of text similar to what you might see

displayed, examples of portions of program code similar to what you might write as a

programmer, messages from the system, or information you should actually type.

Case-Sensitivity in AIX

Everything in the AIX 5L operating system is case-sensitive, which means that it distinguishes between

uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS, the

system responds that the command is ″not found.″ Likewise, FILEA, FiLea, and filea are three distinct file

names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,

always ensure that you use the correct case.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Publications

The following books contain information about or related to the assembler:

v AIX 5L Version 5.3 Commands Reference Volume 1: a through c

v AIX 5L Version 5.3 Commands Reference Volume 2: d through h

v AIX 5L Version 5.3 Commands Reference Volume 3: i through m

v AIX 5L Version 5.3 Commands Reference Volume 4: n through r

v AIX 5L Version 5.3 Commands Reference Volume 5: s through u

v AIX 5L Version 5.3 Commands Reference Volume 6: v through z

v AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

© Copyright IBM Corp. 1997, 2006 xi

xii Assembler Language Reference

Chapter 1. Assembler Overview

The assembler is a program that operates within the operating system. The assembler takes

machine-language instructions and translates them into machine object code. The following articles

discuss the features of the assembler:

v “Features of the AIX Assembler”

v “Assembler Installation” on page 10

Features of the AIX Assembler

This section describes features of the AIX assembler.

Multiple Hardware Architecture and Implementation Platform Support

The assembler supports the following systems:

v Systems using the first-generation POWER family processors (POWER family architecture)

v Systems using the POWER2 processors (POWER family architecture)

v Systems using the PowerPC 601 RISC Microprocessor, PowerPC 604 RISC Microprocessor, or the

PowerPC A35 RISC Microprocessor (PowerPC architecture)

v Systems using POWER4™ processors

v Systems using POWER5™ processors

v Systems using PPC970 processors

v Systems using POWER5+ processors

v Systems using POWER6 processors

The assembler also supports development of programs for the PowerPC 603 RISC Microprocessor

(PowerPC architecture).

 Attention: The PowerPC 601 RISC Microprocessor implements the PowerPC architecture plus most of

the POWER family instructions that are not included in the PowerPC architecture. This implementation

provides a POWER family-to-PowerPC bridge processor that runs existing POWER family applications

without recompiling and also runs PowerPC applications. Future PowerPC systems might not provide this

bridge. An application should not be coded using a mixture of POWER family and PowerPC

architecture-unique instructions. Doing so can result in an application that will run only on a PowerPC 601

RISC Microprocessor-based system. Such an application will not run on an existing POWER family

machine and is unlikely to run with acceptable performance on future PowerPC machines.

There are several categories of instructions. The following table lists the categories of instructions and

shows which implementations support each instruction category. The ″X″ means the implementation

supports the instruction category.

 Implementations Supporting Each Category of Instructions

Instruction Category POWER

family

POWER2 601 603 604 A35

POWER2-unique

instructions

X

POWER2 and PowerPC

common instructions,

not in POWER family

X X X X X

© Copyright IBM Corp. 1997, 2006 1

POWER family-unique

instructions not

supported by PowerPC

601 RISC

Microprocessor

X X

POWER family-unique

instructions supported

by PowerPC 601 RISC

Microprocessor

X X X

POWER family and

PowerPC common

instructions with same

mnemonics

X X X X X X

POWER family and

PowerPC common

instructions with different

mnemonics

X X X X X X

PowerPC instructions

supported by PowerPC

601 RISC

Microprocessor

X X X

Instructions unique to

PowerPC 601 RISC

Microprocessor

X

PowerPC instructions

not supported by

PowerPC 601 RISC

Microprocessor

X X

PowerPC 32-bit optional

instruction set 1

X X X

PowerPC 32-bit optional

instruction set 2

X X

Instructions unique to

PowerPC 603 RISC

Microprocessor

X

 Implementations Supporting Each Category of Instructions

Instruction

Category

PWR PWR2 601 603 604 A35 970 PWR5 PWR5+ PWR6

POWER2-
unique

instructions

X

POWER2 and

PowerPC

common

instructions,

not in POWER

family

X X X X X X X X X

2 Assembler Language Reference

POWER

family-unique

instructions not

supported by

PowerPC 601

RISC

Microprocessor

X X

POWER

family-unique

instructions

supported by

PowerPC 601

RISC

Microprocessor

X X X

POWER family

and PowerPC

common

instructions

with same

mnemonics

X X X X X X X X X X

POWER family

and PowerPC

common

instructions

with different

mnemonics

X X X X X X X X X X

PowerPC

instructions

supported by

PowerPC 601

RISC

Microprocessor

X X X

Instructions

unique to

PowerPC 601

RISC

Microprocessor

X

PowerPC

instructions not

supported by

PowerPC 601

RISC

Microprocessor

X X

PowerPC

32-bit optional

instruction set

1

X X X X X X X

PowerPC

32-bit optional

instruction set

2

X X X X X X

Instructions

unique to

PowerPC 603

RISC

Microprocessor

X

Chapter 1. Assembler Overview 3

PowerPC

64-bit

instructions

X X X X X

PowerPC

Vector

instructions

X X

PowerPC

Decimal

Floating Point

instructions

X

Instructions

introduced with

POWER5+

X X

The following abbreviations are used in the heading of the previous table:

 601 PowerPC 601 RISC Microprocessor

603 PowerPC 603 RISC Microprocessor

604 PowerPC 604 RISC Microprocessor

Host Machine Independence and Target Environment Indicator Flag

The host machine is the hardware platform on which the assembler runs. The target machine is the

platform on which the object code is run. The assembler can assemble a source program for any target

machine, regardless of the host machine on which the assembler runs.

The target machine can be specified by using either the assembly mode option flag -m of the as

command or the .machine pseudo-op. If neither the -m flag nor the .machine pseudo-op is used, the

default assembly mode is used. If both the -m flag and a .machine pseudo-op are used, the .machine

pseudo-op overrides the -m flag. Multiple .machine pseudo-ops are allowed in a source program. The

value in a later .machine pseudo-op overrides a previous .machine pseudo-op.

The default assembly mode provided by the AIX assembler has the POWER family/PowerPC intersection

as the target environment, but treats all POWER/PowerPC incompatibility errors (including instructions

outside the POWER/PowerPC intersection and invalid form errors) as instructional warnings. The -W and

-w assembler flags control whether these warnings are displayed. In addition to being closen by the

absence of the -m flag of the as command or the .machine pseudo-op, the default assembly mode can

also be explicitly specified with the -m flag of the as command or with the .machine pseudo-op.

To assemble a source program containing platform-unique instructions from more than one platform

without errors or warnings, use one of the following methods:

v Use the .machine pseudo-op in the source program.

v Assemble the program with the assembly mode set to the any mode (with the -m flag of the as

command).

For example, the source code cannot contain both POWER family-unique instructions and PowerPC 601

RISC Microprocessor-unique instructions. This is also true for each of the sub-source programs contained

in a single source program. A sub-source program begins with a .machine pseudo-op and ends before the

next .machine pseudo-op. Since a source program can contain multiple .machine pseudo-ops, it normally

consists of several sub-source programs. For more information, see the .machine pseudo-op.

4 Assembler Language Reference

Mnemonics Cross-Reference

The assembler supports both PowerPC and POWER family mnemonics. The assembler listing has a

cross-reference for both mnemonics. The cross-reference is restricted to instructions that have different

mnemonics in the POWER family and PowerPC architectures, but which share the same op codes,

functions, and operand input formats.

The assembler listing contains a column to display mnemonics cross-reference information. For more

information on the assembler listing, see Interpreting an Assembler Listing.

The mnemonics cross-reference helps the user migrate a source program from one architecture to

another. The -s flag for the as command provides a mnemonics cross-reference in the assembler listing to

assist with migration. If the -s flag is not used, no mnemonics cross-reference is provided.

CPU ID Definition

During the assembly process the assembler determines which instruction set (from a list of several

complete instruction sets defined in the architectures or processor implementations) is the smallest

instruction set containing all the instructions used in the program. The program is given a CPU ID value

indicating this instruction set. Therefore a CPU ID indicates the target environment on which the object

code can be run. The CPU ID value for the program is an assembler output value included in the XCOFF

object file generated by the assembler.

CPU ID can have the following values:

 Value Description

com All instructions used in the program are in the PowerPC and POWER family architecture intersection.

(The com instruction set is the smallest instruction set.)

ppc All instructions used in the program are in the PowerPC architecture, 32-bit mode, but the program

does not satisfy the conditions for CPU ID value com. (The ppc instruction set is a superset of the

com instruction set.)

pwr All instructions used in the program are in the POWER family architecture, POWER family

implementation, but the program does not satisfy the conditions for CPU ID value com. (The pwr

instruction set is a superset of the com instruction set.)

pwr2 All instructions used in the program are in the POWER family architecture, POWER2 implementation,

but the program does not satisfy the conditions for CPU ID values com, ppc, or pwr. (The pwr2

instruction set is a superset of the pwr instruction set.)

any The program contains a mixture of instructions from the valid architectures or implementations, or

contains implementation-unique instructions.The program does not satisfy the conditions for CPU ID

values com, ppc, pwr, or pwr2. (The any instruction set is the largest instruction set.)

The assembler output value CPU ID is not the same thing as the assembly mode. The assembly mode

(determined by the -m flag of the as command and by use of the .machine pseudo-op in the program)

determines which instructions the assembler accepts without errors or warnings. The CPU ID is an output

value indicating which instructions are actually used.

In the output XCOFF file, the CPU ID is stored in the low-order byte of the n_type field in a symbol table

entry with the C_FILE storage class. The following list shows the low-order byte values and corresponding

CPU IDs:

 Low-Order Byte CPU ID

0 Not a defined value. An invalid value or object was assembled prior to definition of the

CPU-ID field.

1 ppc

2 ppc64

3 com

4 pwr

Chapter 1. Assembler Overview 5

Low-Order Byte CPU ID

5 any

18 pwr5

19 970

20 pwr6

21 vec

22 pwr5x

224 pwr2(pwrx)

Source Language Type

For cascade compilers, the assembler records the source-language type. In the XCOFF file, the high-order

byte of the n_type field of a symbol table entry with the C_FILE storage class holds the source language

type information. The following language types are defined:

 High-Order Byte Language

0x00 C

0x01 FORTRAN

0x02 Pascal

0x03 Ada

0x04 PL/I

0x05 Basic

0x06 Lisp

0x07 Cobol

0x08 Modula2

0x09 C++

0x0A RPG

0x0B PL8, PLIX

0x0C Assembler

0x0D-BxFF Reserved

The source language type is indicated by the .source pseudo-op. By default, the source-language type is

″Assembler.″ For more information, see the .source pseudo-op.

Detection Error Conditions

Error number 149 is reported if the source program contains instructions that are not supported in the

intended target environment.

An error is reported if the source program contains invalid instruction forms. This error occurs due to

incompatibilities between the POWER family and PowerPC architectures. Some restrictions that apply in

the PowerPC architecture do not apply in the POWER family architecture. According to the PowerPC

architecture, the following invalid instruction forms are defined:

v If an Rc bit, LK bit, or OE bit is defined as / (slash) but coded as 1, or is defined as 1 but coded as 0,

the form is invalid. Normally, the assembler ensures that these bits contain correct values.

Some fields are defined with more than one / (slash) (for example, ″///″). If they are coded as

nonzero, the form is invalid. If certain input operands are used for these fields, they must be checked.

For this reason, the following instructions are checked:

– For the PowerPC System Call instructions or the POWER family Supervisor Call instructions, if the

POWER family svca mnemonic is used when the assembly mode is PowerPC type, the SV field

must be 0. Otherwise, the instruction form is invalid and error number 165 is reported.

Note: The svc and svcl instructions are not supported in PowerPC target modes. The svcla

instruction is supported only on the PowerPC 601 RISC Microprocessor.

6 Assembler Language Reference

– For the Move to Segment Register Indirect instruction, if the POWER family mtsri mnemonic is used

in PowerPC target modes, the RA field must be 0. Otherwise, the instruction form is invalid and error

number 154 is reported. If the PowerPC mtsrin mnemonic is used in PowerPC target modes, it

requires only two input operands, so no check is needed.

v For all of the Branch Conditional instructions (including Branch Conditional, Branch Conditional to Link

Register, and Branch Conditional to Count Register), bits 0-3 of the BO field are checked. If the bits that

are required to contain 0 contain a nonzero value, error 150 is reported.

The encoding for the BO field is defined in the section ″Branch Processor Instructions″ of PowerPC

architecture. The following list gives brief descriptions of the possible values for this field:

 BO Description

0000y Decrement the Count Register (CTR); then branch if the value of the decremented CTR is

not equal to 0 and the condition is False.

0001y Decrement the CTR; then branch if the value of the decremented CTR is not equal to 0 and

the condition is False.

001zy Branch if the condition is False.

0100y Decrement the CTR; then branch if the value of the decremented CTR is not equal to 0 and

the condition is True.

0101y Decrement the CTR; then branch if the value of the decremented CTR is not equal to 0 and

the condition is True.

011zy Branch if the condition is True.

1z00y Decrement the CTR; then branch if the value of the decremented CTR is not equal to 0.

1z01y Decrement the CTR; then branch if the value of the decremented CTR is not equal to 0.

1z1zz Branch always.

The z bit denotes a bit that must be 0. If the bit is not 0, the instruction form is invalid.

Note: The y bit provides a hint about whether a conditional branch is likely to be taken. The value of

this bit can be either 0 or 1. The default value is 0. The extended mnemonics for Branch

Prediction as defined in PowerPC architecture are used to set this bit to 0 or 1. (See Extended

Mnemonics for Branch Prediction for more information.)

Branch always instructions do not have a y bit in the BO field. Bit 4 of the BO field should contain 0.

Otherwise, the instruction form is invalid.

The third bit of the BO field is specified as the ″decrement and test CTR″ option. For Branch

Conditional to Count Register instructions, the third bit of the BO field must not be 0. Otherwise, the

instruction form is invalid and error 163 is reported.

v For the update form of fixed-point load instructions, the PowerPC architecture requires that the RA field

not be equal to either 0 or the RT field value. Otherwise, the instruction form is invalid and error number

151 is reported.

This restriction applies to the following instructions:

– lbzu

– lbzux

– lhzu

– lhsux

– lhau

– lhaux

– lwzu (lu in POWER family)

– lwzux (lux in POWER family)

v For the update form of fixed-point store instructions and floating-point load and store instructions, the

following instructions require only that the RA field not be equal to 0. Otherwise, the instruction form is

invalid and error number 166 is reported.

– lfsu

Chapter 1. Assembler Overview 7

– lfsux

– lfdu

– lfdux

– stbu

– stbux

– sthu

– sthux

– stwu (stu in POWER family)

– stwux (stux in POWER family)

– stfsu

– stfux

– stfdu

– stfdux

v For multiple register load instructions, the PowerPC architecture requires that the RA field and the RB

field, if present in the instruction format, not be in the range of registers to be loaded. Also, RA=RT=0 is

not allowed. If RA=RT=0, the instruction form is invalid and error 164 is reported. This restriction applies

to the following instructions:

– lmn (lm in POWER family)

– lswi (lsi in POWER family)

– lswx (lsx in POWER family)

Note: For the lswx instruction, the assembler only checks whether RA=RT=0, because the load

register range is determined by the content of the XER register at run time.

v For fixed-point compare instructions, the PowerPC architecture requires that the L field be equal to 0.

Otherwise, the instruction form is invalid and error number 154 is reported. This restriction applies to the

following instructions:

– cmp

– cmpi

– cmpli

– cmpl

Note: If the target mode is com, or ppc, the assembler checks the update form of fixed-point load

instructions, update form of fixed-point store instructions, update form of floating-point load

and store instructions, multiple-register load instructions, and fixed-point compare instructions,

and reports any errors. If the target mode is any, pwr, pwr2, or 601, no check is performed.

Warning Messages

Warning messages are listed when the -w flag is used with the as command. Some warning messages

are related to instructions with the same op code for POWER family and PowerPC:

v Several instructions have the same op code in both POWER family and PowerPC architectures, but

have different functional definitions. The assembler identifies these instructions and reports warning

number 153 when the target mode is com and the -w flag of the as command is used. Because these

mnemonics differ functionally, they are not listed in the mnemonics cross-reference of the assembler

listing generated when the -s flag is used with the as command. The following table lists these

instructions.

 Table 1. Same Op Codes with Different Mnemonics

POWER family PowerPC

dcs sync

8 Assembler Language Reference

Table 1. Same Op Codes with Different Mnemonics (continued)

POWER family PowerPC

ics isync

svca sc

mtsri mtsrin

lsx lswx

v The following instructions have the same mnemonics and op code, but have different functional

definitions in the POWER family and PowerPC architectures. The assembler cannot check for these,

because the differences are not based on the machine the instructions execute on, but rather on what

protection domain the instructions are running in.

– mfsr

– mfmsr

– mfdec

Special-Purpose Register Changes and Special-Purpose Register Field

Handling

TID, MQ, SDR0, RTCU, and RTCL are special-purpose registers (SPRs) defined in the POWER family

architecture. They are not valid in the PowerPC architecture. However, MQ, RTCU, and RTCL are still

available in the PowerPC 601 RISC Microprocessor.

DBATL, DBATU, IBATL, IBATU, TBL, and TBU are SPRs defined in the PowerPC architecture. They are

not supported for the PowerPC 601 RISC Microprocessor. The PowerPC 601 RISC Microprocessor uses

the BATL and BATU SPRs instead.

The assembler provides the extended mnemonics for ″move to or from SPR″ instructions. The extended

mnemonics include all the SPRs defined in the POWER family and PowerPC architectures. An error is

generated if an invalid extended mnemonic is used. The assembler does not support extended mnemonics

for any of the following:

v POWER2-unique SPRs (IMR, DABR, DSAR, TSR, and ILCR)

v PowerPC 601 RISC Microprocessor-unique SPRs (HID0, HID1, HID2, HID5, PID, BATL, and BATU)

v PowerPC 603 RISC Microprocessor-unique SPRs (DMISS, DCMP, HASH1, HASH2, IMISS, ICMP, RPA,

HID0, and IABR)

v PowerPC 604 RISC Microprocessor-unique SPRs (PIE, HID0, IABR, and DABR)

The assembler does not check the SPR field’s encoding value for the mtspr and mfspr instructions,

because the SPR encoding codes could be changed or reused. However, the assembler does check the

SPR field’s value range. If the target mode is pwr, pwr2, or com, the SPR field has a 5-bit length and a

maximum value of 31. Otherwise, the SPR field has a 10-bit length and a maximum value of 1023.

To maintain source-code compatibility of the POWER family and PowerPC architectures, the assembler

assumes that the low-order 5 bits and high-order 5 bits of the SPR number are reversed before they are

used as the input operands to the mfspr or mtspr instruction.

Related Information

Chapter 1, “Assembler Overview,” on page 1.

“Assembler Installation” on page 10.

Chapter 5, “Assembling and Linking a Program,” on page 53.

Chapter 1. Assembler Overview 9

“Pseudo-ops Overview” on page 463.

The as command.

“.machine Pseudo-op” on page 490, “.source Pseudo-op” on page 498.

Assembler Installation

The AIX assembler is installed with the base operating system, along with commands, files, and libraries

for developing software applications.

Related Information

The as command.

“.machine Pseudo-op” on page 490, “.source Pseudo-op” on page 498.

10 Assembler Language Reference

Chapter 2. Processing and Storage

The characteristics of machine architecture and the implementation of processing and storage influence

the processor’s assembler language. The assembler supports the various processors that implement the

POWER family and PowerPC architectures. The assembler can support both the POWER family and

PowerPC architectures because the two architectures share a large number of instructions.

This chapter provides an overview and comparison of the POWER family and PowerPC architectures and

tells how data is stored in main memory and in registers. It also discusses the basic functions for both the

POWER family and PowerPC instruction sets.

All the instructions discussed in this chapter are nonprivileged. Therefore, all the registers discussed in this

chapter are related to nonprivileged instructions. Privileged instructions and their related registers are

defined in the PowerPC architecture.

The following processing and storage articles provide an overview of the system microprocessor and tells

how data is stored both in main memory and in registers. This information provides some of the

conceptual background necessary to understand the function of the system microprocessor’s instruction

set and pseudo-ops.

v “POWER family and PowerPC Architecture Overview”

v “Branch Processor” on page 19

v “Fixed-Point Processor” on page 21

v “Floating-Point Processor” on page 24

v Appendix I, “Vector Processor,” on page 597

POWER family and PowerPC Architecture Overview

A POWER family or PowerPC microprocessor contains the sequencing and processing controls for

instruction fetch, instruction execution, and interrupt action, and implements the instruction set, storage

model, and other facilities defined in the POWER family and PowerPC architectures.

A POWER family or PowerPC microprocessor contains a branch processor, a fixed-point processor, and a

floating-point processor. The microprocessor can execute the following classes of instructions:

v Branch instructions

v Fixed-point instructions

v Floating-point instructions

The following diagram illustrates a logical representation of instruction processing for the PowerPC

microprocessor.

© Copyright IBM Corp. 1997, 2006 11

The following table shows the registers for the PowerPC user instruction set architecture. These registers

are in the CPU that are used for 32-bit applications and are available to the user.

 Register Bits Available

Condition Register (CR) 0-31

Link Register (LR) 0-31

Count Register (CTR) 0-31

General Purpose Registers 00-31 (GPR) 0-31 for each register

Fixed-Point Exception Register (XER) 0-31

Floating-Point Registers 00-31 (FPR) 0-63 for each register

Floating Point Status and Control Register (FPSCR) 0-31

The following table shows the registers of the POWER family user instruction set architecture. These

registers are in the CPU that are used for 32-bit applications and are available to the user.

 Register Bits Available

Condition Register (CR) 0-31

Link Register (LR) 0-31

Figure 1. Logical Processing Model. The process begins at the top with Branch Processing, which branches to either

fixed-point or float-point processing. These processes send and receive data from storage. Storage will also send

more instructions to Branch Processing at the top of the diagram.

12 Assembler Language Reference

Register Bits Available

Count Register (CTR) 0-31

General Purpose Registers 00-31 (GPR) 0-31 for each register

Multiply-Quotient Register (MQ) 0-31

Fixed-Point Exception Register (XER) 0-31

Floating-Point Registers 00-31 (FPR) 0-63 for each register

Floating Point Status and Control Register (FPSCR) 0-31

The processing unit is a word-oriented, fixed-point processor functioning in tandem with a

doubleword-oriented, floating-point processor. The microprocessor uses 32-bit word-aligned instructions. It

provides for byte, halfword, and word operand fetches and stores for fixed point, and word and doubleword

operand fetches and stores for floating point. These fetches and stores can occur between main storage

and a set of 32 general-purpose registers, and between main storage and a set of 32 floating-point

registers.

Instruction Forms

All instructions are four bytes long and are word-aligned. Therefore, when the processor fetches

instructions (for example, branch instructions), the two low-order bits are ignored. Similarly, when the

processor develops an instruction address, the two low-order bits of the address are 0.

Bits 0-5 always specify the op code. Many instructions also have an extended op code (for example,

XO-form instructions). The remaining bits of the instruction contain one or more fields. The alternative

fields for the various instruction forms are shown in the following:

v I Form

 Bits Value

0-5 OPCD

6-29 LI

30 AA

31 LK

v B Form

 Bits Value

0-5 OPCD

6-10 BO

11-15 BI

16-29 BD

30 AA

31 LK

v SC Form

 Bits Value

0-5 OPCD

6-10 ///

11-15 ///

Chapter 2. Processing and Storage 13

Bits Value

16-29 ///

30 XO

31 /

v D Form

 Bits Value

0-5 OPCD

6-10 RT, RS, FRT, FRS, TO, or BF, /, and L

11-15 RA

16-31 D, SI, or UI

v DS Form

 Bits Value

0-5 OPCD

6-10 RT or RS

11-15 RA

16-29 DS

30-31 XO

v X Instruction Format

 Bits Value

0-5 OPCD

6-10 RT, FRT, RS, FRS, TO, BT, or BF, /, and L

11-15 RA, FRA, SR, SPR, or BFA and //

16-20 RB, FRB, SH, NB, or U and /

21-30 XO or EO

31 Rc

– XL Instruction Format

 Bits Value

0-5 OPCD

6-10 RT or RS

11-20 spr or /, FXM and /

21-30 XO or EO

31 Rc

– XFX Instruction Format

 Bits Value

0-5 OPCD

6-10 RT or RS

11-20 spr or /, FXM and /

14 Assembler Language Reference

Bits Value

21-30 XO or EO

31 Rc

– XFL Instruction Format

 Bits Value

0-5 OPCD

6 /

7-14 FLM

15 /

16-20 FRB

21-30 XO or EO

31 Rc

– XO Instruction Format

 Bits Value

0-5 OPCD

6-10 RT

11-15 RA

16-20 RB

21 OE

22-30 XO or EO

31 Rc

v A Form

 Bits Value

0-5 OPCD

6-10 FRT

11-15 FRA

16-20 FRB

21-25 FRC

26-30 XO

31 Rc

v M Form

 Bits Value

0-5 OPCD

6-10 RS

`11-15 RA

16-20 RB or SH

21-25 MB

26-30 ME

Chapter 2. Processing and Storage 15

Bits Value

31 Rc

For some instructions, an instruction field is reserved or must contain a particular value. This is not

indicated in the previous figures, but is shown in the syntax for instructions in which these conditions are

required. If a reserved field does not have all bits set to 0, or if a field that must contain a particular value

does not contain that value, the instruction form is invalid. See “Detection Error Conditions” on page 6 for

more information on invalid instruction forms.

Split-Field Notation

In some cases an instruction field occupies more than one contiguous sequence of bits, or occupies a

contiguous sequence of bits that are used in permuted order. Such a field is called a split field. In the

previous figures and in the syntax for individual instructions, the name of a split field is shown in lowercase

letters, once for each of the contiguous bit sequences. In the description of an instruction with a split field,

and in certain other places where the individual bits of a split field are identified, the name of the field in

lowercase letters represents the concatenation of the sequences from left to right. In all other cases, the

name of the field is capitalized and represents the concatenation of the sequences in some order, which

does not have to be left to right. The order is described for each affected instruction.

Instruction Fields

 AA (30) Specifies an Absolute Address bit:

0 Indicates an immediate field that specifies an address relative to the current instruction

address. For I-form branches, the effective address of the branch target is the sum of the

LI field sign-extended to 64 bits (PowerPC) or 32 bits (POWER family) and the address of

the branch instruction. For B-form branches, the effective address of the branch target is

the sum of the BD field sign-extended to 64 bits (PowerPC) or 32 bits (POWER family) and

the address of the branch instruction.

1 Indicates an immediate field that specifies an absolute address. For I-form branches, the

effective address of the branch target is the LI field sign-extended to 64 bits (PowerPC) or

32 bits (POWER family). For B-form branches, the effective address of the branch target is

the BD field sign-extended to 64 bits (PowerPC) or 32 bits (POWER family).

BA (11:15) Specifies a bit in the Condition Register (CR) to be used as a source.

BB (16:20) Specifies a bit in the CR to be used as a source.

BD (16:29) Specifies a 14-bit signed two’s-complement branch displacement that is concatenated on the right

with 0b00 and sign-extended to 64 bits (PowerPC) or 32 bits (POWER family). This is an immediate

field.

BF (6:8) Specifies one of the CR fields or one of the Floating-Point Status and Control Register (FPSCR)

fields as a target. For POWER family, if i=BF(6:8), then the i field refers to bits i*4 to (i*4)+3 of the

register.

BFA (11:13) Specifies one of the CR fields or one of the FPSCR fields as a source. For POWER family, if

j=BFA(11:13), then the j field refers to bits j*4 to (j*4)+3 of the register.

BI (11:15) Specifies a bit in the CR to be used as the condition of a branch conditional instruction.

16 Assembler Language Reference

BO (6:10) Specifies options for the branch conditional instructions. The possible encodings for the BO field are:

BO Description

0000x Decrement Count Register (CTR). Branch if the decremented CTR value is not equal to 0

and the condition is false.

0001x Decrement CTR. Branch if the decremented CTR value is 0 and the condition is false.

001xx Branch if the condition is false.

0100x Decrement CTR. Branch if the decremented CTR value is not equal to 0 and the condition

is true.

0101x Decrement CTR. Branch if the decremented CTR value is equal to 0 and the condition is

true.

011x Branch if the condition is true.

1x00x Decrement CTR. Branch if the decremented CTR value is not equal to 0.

1x01x Decrement CTR. Branch if bits 32-63 of the CTR are 0 (PowerPC) or branch if the

decremented CTR value is equal to 0 (POWER family).

1x1xx Branch always.

BT (6:10) Specifies a bit in the CR or in the FPSCR as the target for the result of an instruction.

D (16:31) Specifies a 16-bit signed two’s-complement integer that is sign-extended to 64 bits (PowerPC) or 32

bits (POWER family). This is an immediate field.

EO (21:30) Specifies a10-bit extended op code used in X-form instructions.

EO’ (22:30) Specifies a 9-bit extended op code used in XO-form instructions.

FL1 (16:19) Specifies a 4-bit field in the svc (Supervisor Call) instruction.

FL2 (27:29) Specifies a 3-bit field in the svc instruction.

FLM (7:14) Specifies a field mask that specifies the FPSCR fields which are to be updated by the mtfsf

instruction:

Bit Description

7 FPSCR field 0 (bits 00:03)

8 FPSCR field 1 (bits 04:07)

9 FPSCR field 2 (bits 08:11)

10 FPSCR field 3 (bits 12:15)

11 FPSCR field 4 (bits 16:19)

12 FPSCR field 5 (bits 20:23)

13 FPSCR field 6 (bits 24:27)

14 FPSCR field 7 (bits 28:31)

FRA (11:15) Specifies a floating-point register (FPR) as a source of an operation.

FRB (16:20) Specifies an FPR as a source of an operation.

FRC (21:25) Specifies an FPR as a source of an operation.

FRS (6:10) Specifies an FPR as a source of an operation.

FRT (6:10) Specifies an FPR as the target of an operation.

Chapter 2. Processing and Storage 17

FXM (12:19) Specifies a field mask that specifies the CR fields that are to be updated by the mtcrf instruction:

Bit Description

12 CR field 0 (bits 00:03)

13 CR field 1 (bits 04:07)

14 CR field 2 (bits 08:11)

15 CR field 3 (bits 12:15)

16 CR field 4 (bits 16:19)

17 CR field 5 (bits 20:23)

18 CR field 6 (bits 24:27)

19 CR field 7 (bits 28:31)

I (16:19) Specifies the data to be placed into a field in the FPSCR. This is an immediate field.

LEV (20:26) This is an immediate field in the svc instruction that addresses the svc routine by b’1’ || LEV ||

b’00000 if the SA field is equal to 0.

LI (6:29) Specifies a 24-bit signed two’s-complement integer that is concatenated on the right with 0b00 and

sign-extended to 64 bits (PowerPC) or 32 bits (POWER family). This is an immediate field.

LK (31) Link bit:

0 Do not set the Link Register.

1 Set the Link Register. If the instruction is a branch instruction, the address of the instruction

following the branch instruction is placed in the Link Register. If the instruction is an svc

instruction, the address of the instruction following the svc instruction is placed into the Link

Register.

MB (21:25) and

ME (26:30)

(POWER family) Specifies a 32-bit string. This string consists of a substring of ones surrounded by

zeros, or a substring of zeros surrounded by ones. The encoding is:

MB (21:25)

Index to start bit of substring of ones.

ME (26:30)

Index to stop bit of substring of ones.

Let mstart=MB and mstop=ME:

If mstart < mstop + 1 then

 mask(mstart..mstop) = ones

 mask(all other) = zeros

If mstart = mstop + 1 then

 mask(0:31) = ones

If mstart > mstop + 1 then

 mask(mstop+1..mstart-1) = zeros

 mask(all other) = ones

NB (16:20) Specifies the number of bytes to move in an immediate string load or store.

OPCD (0:5) Primary op code field.

OE (21) Enables setting the OV and SO fields in the XER for extended arithmetic.

RA (11:15) Specifies a general-purpose register (GPR) to be used as a source or target.

RB (16:20) Specifies a GPR to be used as a source.

Rc (31) Record bit:

0 Do not set the CR.

1 Set the CR to reflect the result of the operation.

 For fixed-point instructions, CR bits (0:3) are set to reflect the result as a signed quantity.

Whether the result is an unsigned quantity or a bit string can be determined from the EQ

bit.

 For floating-point instructions, CR bits (4:7) are set to reflect Floating-Point Exception,

Floating-Point Enabled Exception, Floating-Point Invalid Operation Exception, and

Floating-Point Overflow Exception.

18 Assembler Language Reference

RS (6:10) Specifies a GPR to be used as a source.

RT (6:10) Specifies a GPR to be used as a target.

SA (30) SVC Absolute:

0 svc routine at address ’1’ || LEV || b’00000’

1 svc routine at address x’1FE0’

SH (16:20) Specifies a shift amount.

SI (16:31) Specifies a 16-bit signed integer. This is an immediate field.

SPR (11:20) Specifies an SPR for the mtspr and mfspr instructions. See the mtspr and mfspr instructions for

information on the SPR encodings.

SR (11:15) Specifies one of the 16 Segment Registers. Bit 11 is ignored.

TO (6:10) Specifies the conditions on which to trap. See Fixed-Point Trap Instructions for more information on

condition encodings.

TO Bit ANDed with Condition

0 Compares less than.

1 Compares greater than.

2 Compares equal.

3 Compares logically less than.

4 Compares logically greater than.

U (16:19) Used as the data to be placed into the FPSCR. This is an immediate field.

UI (16:31) Specifies a 16-bit unsigned integer. This is an immediate field.

XO (21:30,

22:30, 26:30, or

30)

Extended op code field.

Related Information

Chapter 2, “Processing and Storage,” on page 11.

“Branch Processor.”

“Fixed-Point Processor” on page 21.

“Floating-Point Processor” on page 24.

Branch Processor

The branch processor has three 32-bit registers that are related to nonprivileged instructions:

v Condition Register

v Link Register

v Count Register

These registers are 32-bit registers. The PowerPC architecture supports both 32- and 64-bit

implementations.

For both POWER family and PowerPC, the branch processor instructions include the branch instructions,

Condition Register field and logical instructions, and the system call instructions for PowerPC or the

supervisor linkage instructions for POWER family.

Branch Instructions

Use branch instructions to change the sequence of instruction execution.

Chapter 2. Processing and Storage 19

Since all branch instructions are on word boundaries, the processor performing the branch ignores bits 30

and 31 of the generated branch target address. All branch instructions can be used in unprivileged state.

A branch instruction computes the target address in one of four ways:

v Target address is the sum of a constant and the address of the branch instruction itself.

v Target address is the absolute address given as an operand to the instruction.

v Target address is the address found in the Link Register.

v Target address is the address found in the Count Register.

Using the first two of these methods, the target address can be computed sufficiently ahead of the branch

instructions to prefetch instructions along the target path.

Using the third and fourth methods, prefetching instructions along the branch path is also possible

provided the Link Register or the Count Register is loaded sufficiently ahead of the branch instruction.

The branch instructions include Branch Unconditional and Branch Conditional. In the various target forms,

branch instructions generally either branch unconditionally only, branch unconditionally and provide a

return address, branch conditionally only, or branch conditionally and provide a return address. If a branch

instruction has the Link bit set to 1, then the Link Register is altered to store the return address for use by

an invoked subroutine. The return address is the address of the instruction immediately following the

branch instruction.

The assembler supports various extended mnemonics for branch instructions that incorporate the BO field

only or the BO field and a partial BI field into the mnemonics. See “Extended Mnemonics of Branch

Instructions” on page 89 for more information.

System Call Instruction

The PowerPC system call instructions are called supervisor call instructions in POWER family. Both types

of instructions generate an interrupt for the system to perform a service. The system call and supervisor

call instructions are:

v “sc (System Call) Instruction” on page 360 (PowerPC)

v “svc (Supervisor Call) Instruction” on page 446 (POWER family)

For more information about how these instructions are different, see “Functional Differences for POWER

family and PowerPC Instructions” on page 114.

Condition Register Instructions

The condition register instructions copy one CR field to another CR field or perform logical operations on

CR bits. The assembler supports several extended mnemonics for the Condition Register instructions. See

“Extended Mnemonics of Condition Register Logical Instructions” on page 96 for information on extended

mnemonics for condition register instructions.

Related Information

Chapter 2, “Processing and Storage,” on page 11.

“POWER family and PowerPC Architecture Overview” on page 11.

“Fixed-Point Processor” on page 21.

“Floating-Point Processor” on page 24.

Appendix I, “Vector Processor,” on page 597

20 Assembler Language Reference

Fixed-Point Processor

The PowerPC fixed-point processor uses the following registers for nonprivileged instructions.

v Thirty-two 32-bit General-Purpose Registers (GPRs).

v One 32-bit Fixed-Point Exception Register.

The POWER family fixed-point processor uses the following registers for nonprivileged instructions. These

registers are:

v Thirty-two 32-bit GPRs

v One 32-bit Fixed-Point Exception Register

v One 32-bit Multiply-Quotient (MQ) Register

The GPRs are the principal internal storage mechanism in the fixed-point processor.

Fixed-Point Load and Store Instructions

The fixed-point load instructions move information from a location addressed by the effective address (EA)

into one of the GPRs. The load instructions compute the EA when moving data. If the storage access does

not cause an alignment interrupt or a data storage interrupt, the byte, halfword, or word addressed by the

EA is loaded into a target GPR. See “Extended Mnemonics of Fixed-Point Load Instructions” on page 99

for information on extended mnemonics for fixed-point load instructions.

The fixed-point store instructions perform the reverse function. If the storage access does not cause an

alignment interrupt or a data storage interrupt, the contents of a source GPR are stored in the byte,

halfword, or word in storage addressed by the EA.

In user programs, load and store instructions which access unaligned data locations (for example, an

attempt to load a word which is not on a word boundary) will be executed, but may incur a performance

penalty. Either the hardware performs the unaligned operation, or an alignment interrupt occurs and an

operating system alignment interrupt handler is invoked to perform the unaligned operation.

Fixed-Point Load and Store with Update Instructions

Load and store instructions have an ″update″ form, in which the base GPR is updated with the EA in

addition to the regular move of information from or to memory.

For POWER family load instructions, there are four conditions which result in the EA not being saved in

the base GPR:

1. The GPR to be updated is the same as the target GPR. In this case, the updated register contains

data loaded from memory.

2. The GPR to be updated is GPR 0.

3. The storage access causes an alignment interrupt.

4. The storage access causes a data storage interrupt.

For POWER family store instructions, conditions 2, 3, and 4 result in the EA not being saved into the base

GPR.

For PowerPC load and store instructions, conditions 1 and 2 above result in an invalid instruction form.

In user programs, load and store with update instructions which access an unaligned data location will be

performed by either the hardware or the alignment interrupt handler of the underlying operating system. An

alignment interrupt will result in the EA not being in the base GPR.

Chapter 2. Processing and Storage 21

Fixed-Point String Instructions

The Fixed-Point String instructions allow the movement of data from storage to registers or from registers

to storage without concern for alignment. These instructions can be used for a short move between

arbitrary storage locations or to initiate a long move between unaligned storage fields. Load String Indexed

and Store String Indexed instructions of zero length do not alter the target register.

Fixed-Point Address Computation Instructions

There are several address computation instructions in POWER family. These are merged into the

arithmetic instructions for PowerPC.

Fixed-Point Arithmetic Instructions

The fixed-point arithmetic instructions treat the contents of registers as 32-bit signed integers. Several

subtract mnemonics are provided as extended mnemonics of addition mnemonics. See “Extended

Mnemonics of Fixed-Point Arithmetic Instructions” on page 97 for information on these extended

mnemonics.

There are differences between POWER family and PowerPC for all of the fixed-point divide instructions

and for some of the fixed-point multiply instructions. To assemble a program that will run on both

architectures, the milicode routines for division and multiplication should be used. See “Using Milicode

Routines” on page 80 for information on the available milicode routines.

Fixed-Point Compare Instructions

The fixed-point compare instructions algebraically or logically compare the contents of register RA with one

of the following:

v The sign-extended value of the SI field

v The UI field

v The contents of register RB

Algebraic comparison compares two signed integers. Logical comparison compares two unsigned integers.

There are different input operand formats for POWER family and PowerPC, for example, the L operand for

PowerPC. There are also invalid instruction form restrictions for PowerPC. The assembler checks for

invalid instruction forms in PowerPC assembly modes.

Extended mnemonics for fixed-point compare instructions are discussed in “Extended Mnemonics of

Fixed-Point Compare Instructions” on page 98.

Fixed-Point Trap Instructions

Fixed-point trap instructions test for a specified set of conditions. Traps can be defined for events that

should not occur during program execution, such as an index out of range or the use of an invalid

character. If a defined trap condition occurs, the system trap handler is invoked to handle a program

interruption. If the defined trap conditions do not occur, normal program execution continues.

The contents of register RA are compared with the sign-extended SI field or with the contents of register

RB, depending on the particular trap instruction. In 32-bit implementations, only the contents of the

low-order 32 bits of registers RA and RB are used in the comparison.

The comparison results in five conditions that are ANDed with the TO field. If the result is not 0, the system

trap handler is invoked. The five resulting conditions are:

 TO Field Bit ANDed with Condition

0 Less than

1 Greater than

22 Assembler Language Reference

TO Field Bit ANDed with Condition

2 Equal

3 Logically less than

4 Logically greater than

Extended mnemonics for the most useful TO field values are provided, and a standard set of codes is

provided for the most common combinations of trap conditions. See “Extended Mnemonics of Fixed-Point

Trap Instructions” on page 100 for information on these extended mnemonics and codes.

Fixed-Point Logical Instructions

Fixed-point logical instructions perform logical operations in a bit-wise fashion. The extended mnemonics

for the no-op instruction and the OR and NOR instructions are discussed in “Extended Mnemonics of

Fixed-Point Logical Instructions” on page 100.

Fixed-Point Rotate and Shift Instructions

The fixed-point processor performs rotate operations on data from a GPR. These instructions rotate the

contents of a register in one of the following ways:

v The result of the rotation is inserted into the target register under the control of a mask. If the mask bit

is 1, the associated bit of the rotated data is placed in the target register. If the mask bit is 0, the

associated data bit in the target register is unchanged.

v The result of the rotation is ANDed with the mask before being placed into the target register.

The rotate left instructions allow (in concept) right-rotation of the contents of a register. For 32-bit

implementations, an n-bit right-rotation can be performed by a left-rotation of 32-n.

The fixed-point shift instructions logically perform left and right shifts. The result of a shift instruction is

placed in the target register under the control of a generated mask.

Some POWER family shift instructions involve the MQ register. This register is also updated.

Extended mnemonics are provided for extraction, insertion, rotation, shift, clear, and clear left and shift left

operations. See “Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions” on page 107 for

information on these mnemonics.

Fixed-Point Move to or from Special-Purpose Registers Instructions

Several instructions move the contents of one Special-Purpose Register (SPR) into another SPR or into a

General-Purpose Register (GPR). These instructions are supported by a set of extended mnemonics that

have each SPR encoding incorporated into the extended mnemonic. These include both nonprivileged and

privileged instructions.

Note: The SPR field length is 10 bits for PowerPC and 5 bits for POWER family. To maintain

source-code compatibility for POWER family and PowerPC, the low-order 5 bits and high-order 5 bits

of the SPR number must be reversed prior to being used as the input operand to the mfspr

instruction or the mtspr instruction. The numbers defined in the encoding tables for the mfspr and

mtspr instructions have already had their low-order 5 bits and high-order 5 bits reversed. When

using the dbx command to debug a program, remember that the low-order 5 bits and high-order 5

bits of the SPR number are reversed in the output from the dbx command.

There are different sets of SPRs for POWER family and PowerPC. Encodings for the same SPRs are

identical for POWER family and PowerPC except for moving from the DEC (Decrement) SPR.

Chapter 2. Processing and Storage 23

Moving from the DEC SPR is privileged in PowerPC, but nonprivileged in POWER family. One bit in the

SPR field is 1 for privileged operations, but 0 for nonprivileged operations. Thus, the encoding number for

the DEC SPR for the mfdec instruction has different values in PowerPC and POWER family. The DEC

encoding number is 22 for PowerPC and 6 for POWER family. If the mfdec instruction is used, the

assembler determines the DEC encoding based on the current assembly mode. The following list shows

the assembler processing of the mfdec instruction for each assembly mode value:

v If the assembly mode is pwr, pwr2, or 601, the DEC encoding is 6.

v If the assembly mode is ppc, 603, or 604, the DEC encoding is 22.

v If the default assembly mode, which treats POWER family/PowerPC incompatibility errors as

instructional warnings, is used, the DEC encoding is 6. Instructional warning 158 reports that the DEC

SPR encoding 6 is used to generate the object code. The warning can be suppressed with the -W flag.

v If the assembly mode is any, the DEC encoding is 6. If the -w flag is used, a warning message (158)

reports that the DEC SPR encoding 6 is used to generate the object code.

v If the assembly mode is com, an error message reports that the mfdec instruction is not supported. No

object code is generated. In this situation, the mfspr instruction must be used to encode the DEC

number.

For more information on SPR encodings, see “Extended Mnemonics of Moving from or to Special-Purpose

Registers” on page 102.

Related Information

Chapter 2, “Processing and Storage,” on page 11.

“POWER family and PowerPC Architecture Overview” on page 11.

“Branch Processor” on page 19.

“Floating-Point Processor.”

Appendix I, “Vector Processor,” on page 597

Floating-Point Processor

The POWER family and PowerPC floating-point processors have the same register set for nonprivileged

instructions. The registers are:

v Thirty-two 64-bit floating-point registers

v One 32-bit Floating-Point Status and Control Register (FPSCR)

The floating-point processor provides high-performance execution of floating-point operations. Instructions

are provided to perform arithmetic, comparison, and other operations in floating-point registers, and to

move floating-point data between storage and the floating-point registers.

PowerPC and POWER2 also support conversion operations in floating-point registers.

Floating-Point Numbers

A floating-point number consists of a signed exponent and a signed significand, and expresses a quantity

that is the product of the signed fraction and the number 2**exponent. Encodings are provided in the data

format to represent:

v Finite numeric values

v +- Infinity

v Values that are ″Not a Number″ (NaN)

24 Assembler Language Reference

Operations involving infinities produce results obeying traditional mathematical conventions. NaNs have no

mathematical interpretation. Their encoding permits a variable diagnostic information field. They may be

used to indicate uninitialized variables and can be produced by certain invalid operations.

Interpreting the Contents of a Floating-Point Register

There are thirty-two 64-bit floating-point registers, numbered from floating-point register 0-31. All

floating-point instructions provide a 5-bit field that specifies which floating-point registers to use in the

execution of the instruction. Every instruction that interprets the contents of a floating-point register as a

floating-point value uses the double-precision floating-point format for this interpretation.

All floating-point instructions other than loads and stores are performed on operands located in

floating-point registers and place the results in a floating-point register. The Floating-Point Status and

Control Register and the Condition Register maintain status information about the outcome of some

floating-point operations.

Load and store double instructions transfer 64 bits of data without conversion between storage and a

floating-point register in the floating-point processor. Load single instructions convert a stored single

floating-format value to the same value in double floating format and transfer that value into a floating-point

register. Store single instructions do the opposite, converting valid single-precision values in a

floating-point register into a single floating-format value, prior to storage.

Floating-Point Load and Store Instructions

Floating-point load instructions for single and double precision are provided. Double-precision data is

loaded directly into a floating-point register. The processor converts single-precision data to double

precision prior to loading the data into a floating-point register, since the floating-point registers support

only floating-point double-precision operands.

Floating-point store instructions for single and double precision are provided. Single-precision stores

convert floating-point register contents to single precision prior to storage.

POWER2 provides load and store floating-point quad instructions. These are primarily to improve the

performance of arithmetic operations on large volumes of numbers, such as array operations. Data access

is normally a performance bottleneck for these types of operations. These instructions transfer 128 bits of

data, rather than 64 bits, in one load or store operation (that is, one storage reference). The 128 bits of

data is treated as two doubleword operands, not as one quadword operand.

Floating-Point Move Instructions

Floating-point move instructions copy data from one FPR to another, with data modification as described

for each particular instruction. These instructions do not modify the FPSCR.

Floating-Point Arithmetic Instructions

Floating-point arithmetic instructions perform arithmetic operations on floating-point data contained in

floating-point registers.

Floating-Point Multiply-Add Instructions

Floating-point multiply-add instructions combine a multiply operation and an add operation without an

intermediate rounding operation. The fractional part of the intermediate product is 106 bits wide, and all

106 bits are used in the add or subtract portion of the instruction.

Chapter 2. Processing and Storage 25

Floating-Point Compare Instructions

Floating-point compare instructions perform ordered and unordered comparisons of the contents of two

FPRs. The CR field specified by the BF field is set based on the result of the comparison. The comparison

sets one bit of the designated CR field to 1, and sets all other bits to 0. The Floating-Point Condition Code

(FPCC) (bits 16:19) is set in the same manner.

The CR field and the FPCC are interpreted as follows:

 Condition-Register Field and Floating-Point Condition Code Interpretation

Bit Name Description

0 FL (FRA) < (FRB)

1 FG (FRA) > (FRB)

2 FE (FRA) = (FRB)

3 FU (FRA) ? (FRB) (unordered)

Floating-Point Conversion Instructions

Floating-point conversion instructions are only provided for PowerPC and POWER2. These instructions

convert a floating-point operand in an FPR into a 32-bit signed fixed-point integer. The CR1 field and the

FPSCR are altered.

Floating-Point Status and Control Register Instructions

Floating-Point Status and Control Register Instructions manipulate data in the FPSCR.

Related Information

Chapter 2, “Processing and Storage,” on page 11.

“POWER family and PowerPC Architecture Overview” on page 11.

“Branch Processor” on page 19.

“Fixed-Point Processor” on page 21.

Appendix I, “Vector Processor,” on page 597

26 Assembler Language Reference

Chapter 3. Syntax and Semantics

This overview explains the syntax and semantics of assembler language, including the following items:

v “Character Set”

v “Reserved Words” on page 28

v “Line Format” on page 28

v “Statements” on page 29

v “Symbols” on page 31

v “Constants” on page 35

v “Operators” on page 38

v “Expressions” on page 39

Character Set

All letters and numbers are allowed. The assembler discriminates between uppercase and lowercase

letters. To the assembler, the variables Name and name identify distinct symbols.

Some blank spaces are required, while others are optional. The assembler allows you to substitute tabs

for spaces.

The following characters have special meaning in the operating system assembler language:

 , (comma) Operand separator. Commas are allowed in statements only between operands, for

example:

a 3,4,5

(pound sign) Comments. All text following a # to the end of the line is ignored by the assembler. A #

can be the first character in a line, or it can be preceded by any number of characters,

blank spaces, or both. For example:

a 3,4,5 # Puts the sum of GPR4 and GPR5 into GPR3.

: (colon) Defines a label. The : always appears immediately after the last character of the label

name and defines a label equal to the value contained in the location counter at the

time the assembler encounters the label. For example:

add: a 3,4,5 # Puts add equal to the address

 # where the a instruction is found.

; (semicolon) Instruction separator. A semicolon separates two instructions that appear on the same

line. Spaces around the semicolon are optional. A single instruction on one line does

not have to end with a semicolon.

To keep the assembler listing clear and easily understandable, it is suggested that each

line contain only one instruction. For example:

a 3,4,5 # These two lines have

a 4,3,5 # the same effect as...

a 3,4,5; a 4,3,5 # ...this line.

$ (dollar sign) Refers to the current value in the assembler’s current location counter. For example:

dino: .long 1,2,3

size: .long $ - dino

Related Information

“Reserved Words” on page 28

“Line Format” on page 28

© Copyright IBM Corp. 1997, 2006 27

“Statements” on page 29

“Symbols” on page 31

“Constants” on page 35

“Operators” on page 38

“Expressions” on page 39

The atof subroutine.

“.comm Pseudo-op” on page 471, “.csect Pseudo-op” on page 473, “.double Pseudo-op” on page 475,

“.dsect Pseudo-op” on page 477, “.float Pseudo-op” on page 483, “.lcomm Pseudo-op” on page 486, “.tc

Pseudo-op” on page 503, “.toc Pseudo-op” on page 504, “.tocof Pseudo-op” on page 504.

Reserved Words

There are no reserved words in the operating system assembler language. The mnemonics for instructions

and pseudo-ops are not reserved. They can be used in the same way as any other symbols.

There may be restrictions on the names of symbols that are passed to programs written in other

languages.

Related Information

“Character Set” on page 27

“Line Format”

“Statements” on page 29

“Symbols” on page 31

“Constants” on page 35

“Operators” on page 38

“Expressions” on page 39

The atof subroutine.

“.comm Pseudo-op” on page 471, “.csect Pseudo-op” on page 473, “.double Pseudo-op” on page 475,

“.dsect Pseudo-op” on page 477, “.float Pseudo-op” on page 483, “.lcomm Pseudo-op” on page 486, “.tc

Pseudo-op” on page 503, “.toc Pseudo-op” on page 504, “.tocof Pseudo-op” on page 504.

Line Format

The assembler supports a free-line format for source lines, which does not require that items be in a

particular column position.

For all instructions, a separator character (space or tab) is recommended between the mnemonic and

operands of the statement for readability. With the AIX assembler, Branch Conditional instructions need a

separator character (space or tab) between the mnemonic and operands for unambiguous processing by

the assembler. (See “Migration of Branch Conditional Statements with No Separator after Mnemonic” on

page 121 for more information.)

28 Assembler Language Reference

The assembler language puts no limit on the number of characters that can appear on a single input line.

If a code line is longer than one line on a terminal, line wrapping will depend on the editor used. However,

the listing will only display 512 ASCII characters per line.

Blank lines are allowed; the assembler ignores them.

Related Information

“Character Set” on page 27

“Reserved Words” on page 28

“Statements”

“Symbols” on page 31

“Constants” on page 35

“Operators” on page 38

“Expressions” on page 39

The atof subroutine.

The “.comm Pseudo-op” on page 471, “.csect Pseudo-op” on page 473, “.double Pseudo-op” on page 475,

“.dsect Pseudo-op” on page 477, “.float Pseudo-op” on page 483, “.lcomm Pseudo-op” on page 486, “.tc

Pseudo-op” on page 503, “.toc Pseudo-op” on page 504, “.tocof Pseudo-op” on page 504.

Statements

The assembler language has three kinds of statements: instruction statements, pseudo-operation

statements, and null statements. The assembler also uses separator characters, labels, mnemonics,

operands, and comments.

Instruction Statements and Pseudo-Operation Statements

An instruction or pseudo-op statement has the following syntax:

[label:] mnemonic [operand1[,operand2...]] [# comment]

The assembler recognizes the end of a statement when one of the following appears:

v An ASCII new-line character

v A # (pound sign) (comment character)

v A ; (semicolon)

Null Statements

A null statement does not have a mnemonic or any operands. It can contain a label, a comment, or both.

Processing a null statement does not change the value of the location counter.

Null statements are useful primarily for making assembler source code easier for people to read.

A null statement has the following syntax:

[label:] [# comment]

The spaces between the label and the comment are optional.

Chapter 3. Syntax and Semantics 29

If the null statement has a label, the label receives the value of the next statement, even if the next

statement is on a different line. The assembler gives the label the value contained in the current location

counter. For example:

here:

 a 3,4,5

is synonymous with

here: a 3,4,5

Note: Certain pseudo-ops (.csect, .comm, and .lcomm, for example) may prevent a null statement’s

label from receiving the value of the address of the next statement.

Separator Characters

The separator characters are spaces, tabs, and commas. Commas separate operands. Spaces or tabs

separate the other parts of a statement. A tab can be used wherever a space is shown in this book.

The spaces shown in the syntax of an instruction or pseudo-op are required.

Branch Conditional instructions need a separator character (space or tab) between the mnemonic and

operands for unambiguous processing by the assembler. (See “Migration of Branch Conditional

Statements with No Separator after Mnemonic” on page 121 for more information.)

Optionally, you can put one or more spaces after a comma, before a pound sign (#), and after a #.

Labels

The label entry is optional. A line may have zero, one, or more labels. Moreover, a line may have a label

but no other contents.

To define a label, place a symbol before the : (colon). The assembler gives the label the value contained

in the assembler’s current location counter. This value represents a relocatable address. For example:

subtr: sf 3,4,5

The label subtr: receives the value

of the address of the sf instruction.

You can now use subtr in subsequent statements

to refer to this address.

If the label is in a statement with an instruction that causes data alignment, the label receives its value

before the alignment occurs. For example:

Assume that the location counter now

contains the value of 98.

place: .long expr

When the assembler processes this statement, it

sets place to address 98. But the .long is a pseudo-op that

aligns expr on a fullword. Thus, the assembler puts

expr at the next available fullword boundary, which is

address 100. In this case, place is not actually the address

at which expr is stored; referring to place will not put you

at the location of expr.

Mnemonics

The mnemonic field identifies whether a statement is an instruction statement or a pseudo-op statement.

Each mnemonic requires a certain number of operands in a certain format.

For an instruction statement, the mnemonic field contains an abbreviation like ai (Add Immediate) or sf

(Subtract From). This mnemonic describes an operation where the system microprocessor processes a

30 Assembler Language Reference

single machine instruction that is associated with a numerical operation code (op code). All instructions are

4 bytes long. When the assembler encounters an instruction, the assembler increments the location

counter by the required number of bytes.

For a pseudo-op statement, the mnemonic represents an instruction to the assembler program itself. There

is no associated op code, and the mnemonic does not describe an operation to the processor. Some

pseudo-ops increment the location counter; others do not. See the “Pseudo-ops Overview” on page 463

for a list of pseudo-ops that change the location counter.

Operands

The existence and meaning of the operands depends on the mnemonic used. Some mnemonics do not

require any operands. Other mnemonics require one or more operands.

The assembler interprets each operand in context with the operand’s mnemonic. Many operands are

expressions that refer to registers or symbols. For instruction statements, operands can be immediate data

directly assembled into the instruction.

Comments

Comments are optional and are ignored by the assembler. Every line of a comment must be preceded by

a # (pound sign); there is no other way to designate comments.

Related Information

“Character Set” on page 27

“Reserved Words” on page 28

“Line Format” on page 28

“Symbols”

“Constants” on page 35

“Operators” on page 38

“Expressions” on page 39

The atof subroutine.

“.comm Pseudo-op” on page 471, “.csect Pseudo-op” on page 473, “.double Pseudo-op” on page 475,

“.dsect Pseudo-op” on page 477, “.float Pseudo-op” on page 483, “.lcomm Pseudo-op” on page 486, “.tc

Pseudo-op” on page 503, “.toc Pseudo-op” on page 504, “.tocof Pseudo-op” on page 504.

Symbols

A symbol is a single character or combination of characters used as a label or operand.

Constructing Symbols

Symbols may consist of numeric digits, underscores, periods, uppercase or lowercase letters, or any

combination of these. The symbol cannot contain any blanks or special characters, and cannot begin with

a digit. Uppercase and lowercase letters are distinct.

If a symbol must contain blank or special characters because of external references, the .rename

pseudo-op can be used to treat a local name as a synonym or alias for the external reference name.

Chapter 3. Syntax and Semantics 31

From the assembler’s and loader’s perspective, the length of a symbol name is limited only by the amount

of storage you have.

Note: Other routines linked to the assembler language files may have their own constraints on symbol

length.

With the exception of control section (csect) or Table of Contents (TOC) entry names, symbols may be

used to represent storage locations or arbitrary data. The value of a symbol is always a 32-bit quantity.

The following are valid examples of symbol names:

v READER

v XC2345

v result.a

v resultA

v balance_old

v _label9

v .myspot

The following are not valid symbol names:

 7_sum (Begins with a digit.)

#ofcredits (The # makes this a comment.)

aa*1 (Contains *, a special character.)

IN AREA (Contains a blank.)

You can define a symbol by using it in one of two ways:

v As a label for an instruction or pseudo-op

v As the name operand of a .set, .comm, .lcomm, .dsect, .csect, or .rename pseudo-op

Defining a Symbol with a Label

You can define a symbol by using it as a label. For example:

 .using dataval[RW],5

loop:

 bgt cont

 .

 .

 bdz loop

cont: l 3,dataval

 a 4,3,4

 .

 .

.csect dataval[RW]

dataval: .short 10

The assembler gives the value of the location counter at the instruction or pseudo-op’s leftmost byte. In

the example here, the object code for the l instruction contains the location counter value for dataval.

At run time, an address is calculated from the dataval label, the offset, and GPR 5, which needs to contain

the address of csect dataval[RW]. In the example, the l instruction uses the 16 bits of data stored at the

dataval label’s address.

The value referred to by the symbol actually occupies a memory location. A symbol defined by a label is a

relocatable value.

32 Assembler Language Reference

The symbol itself does not exist at run time. However, you can change the value at the address

represented by a symbol at run time if some code changes the contents of the location represented by the

dataval label.

Defining a Symbol with a Pseudo-op

Use a symbol as the name operand of a .set pseudo-op to define the symbol. This pseudo-op has the

format:

.set name,exp

The assembler evaluates the exp operand, then assigns the value and type of the exp operand to the

symbol name. When the assembler encounters that symbol in an instruction, the assembler puts the

symbol’s value into the instruction’s object code.

For example:

 .set number,10

 .

 .

 ai 4,4,number

In the preceding example, the object code for the ai instruction contains the value assigned to number, that

is, 10.

The value of the symbol is assembled directly into the instruction and does not occupy any storage space.

A symbol defined with a .set pseudo-op can have an absolute or relocatable type, depending on the type

of the exp operand. Also, because the symbol occupies no storage, you cannot change the value of the

symbol at run time; reassembling the file will give the symbol a new value.

A symbol also can be defined by using it as the name operand of a .comm, .lcomm, .csect, .dsect, or

.rename pseudo-op. Except in the case of the .dsect pseudo-op, the value assigned to the symbol

describes storage space.

CSECT Entry Names

A symbol can also be defined when used as the qualname operand of the .csect pseudo-op. When used

in this context, the symbol is defined as the name of a csect with the specified storage mapping class.

Once defined, the symbol takes on a storage mapping class that corresponds to the name qualifier.

A qualname operand takes the form of:

symbol[XX]

OR

symbol{XX}

where XX is the storage mapping class.

For more information, see the “.csect Pseudo-op” on page 473.

The Special Symbol TOC

Provisions have been made for the special symbol TOC. In XCOFF format modules, this symbol is

reserved for the TOC anchor, or the first entry in the TOC. The symbol TOC has been predefined in the

assembler so that the symbol TOC can be referred to if its use is required. The .toc pseudo-op creates the

TOC anchor entry. For example, the following data declaration declares a word that contains the address

of the beginning of the TOC:

Chapter 3. Syntax and Semantics 33

.long TOC[TC0]

This symbol is undefined unless a .toc pseudo-op is contained within the assembler file.

For more information, see the “.toc Pseudo-op” on page 504.

TOC Entry Names

A symbol can be defined when used as the Name operand of the .tc pseudo-op. When used in this

manner, the symbol is defined as the name of a TOC entry with a storage mapping class of TC.

The Name operand takes the form of:

symbol[TC]

For more information, see the “.tc Pseudo-op” on page 503.

Using a Symbol before Defining It

It is possible to use a symbol before you define it. Using a symbol and then defining it later in the same

file is called forward referencing. For example, the following is acceptable:

Assume that GPR 6 contains the address of .csect data[RW].

 l 5,ten(6)

 .

 .

 .csect data[RW]

 ten: .long 10

If the symbol is not defined in the file in which it occurs, it may be an external symbol or an undefined

symbol. When the assembler finds undefined symbols, it gives an error message unless the -u flag of the

as command is used to suppress this error message. External symbols may be declared in a statement

using the “.extern Pseudo-op” on page 481.

Declaring an External Symbol

If a local symbol is used that is defined in another module, the .extern pseudo-op is used to declare that

symbol in the local file as an external symbol. Any undefined symbols that do not appear in a statement

with the .extern or .globl pseudo-op will be flagged with an error.

Related Information

“Character Set” on page 27

“Reserved Words” on page 28

“Line Format” on page 28

“Statements” on page 29

“Constants” on page 35

“Operators” on page 38

“Expressions” on page 39

The atof subroutine.

34 Assembler Language Reference

“.comm Pseudo-op” on page 471, “.csect Pseudo-op” on page 473, “.double Pseudo-op” on page 475,

“.dsect Pseudo-op” on page 477, “.float Pseudo-op” on page 483, “.lcomm Pseudo-op” on page 486, “.tc

Pseudo-op” on page 503, “.toc Pseudo-op” on page 504, “.tocof Pseudo-op” on page 504.

Constants

The assembler language provides four kinds of constants:

v Arithmetic constants

v “Character Constants” on page 37

v “Symbolic Constants” on page 37

v “String Constants” on page 37

When the assembler encounters an arithmetic or character constant being used as an instruction’s

operand, the value of that constant is assembled into the instruction. When the assembler encounters a

symbol being used as a constant, the value of the symbol is assembled into the instruction.

Arithmetic Constants

The assembler language provides four kinds of arithmetic constants:

v Decimal

v Octal

v Hexadecimal

v Floating point

In 32-bit mode, the largest signed positive integer number that can be represented is the decimal value

(2**31) - 1. The largest negative value is -(2**31). In 64-bit mode, the largest signed positive integer

number that can be represented is (2**63)-1. The largest negative value is -(2**63). Regardless of the

base (for example, decimal, hexadecimal, or octal), the assembler regards integers as 32-bit constants.

The interpretation of a constant is dependent upon the assembly mode. In 32-bit mode, the AIX assembler

behaves in the same manner as earlier AIX versions: the assembler regards integers as 32-bit constants.

In 64-bit mode, all constants are interpreted as 64-bit values. This may lead to results that differ from

expectations. For example, in 32-bit mode, the hexadecimal value 0xFFFFFFFF is equivalent to the

decimal value of ″-1″. In 64-bit mode, however, the decimal equivalent is 4294967295. To obtain the value

″-1″ the hexadecimal constant 0xFFFF_FFFF_FFFF_FFFF (or the octal equivalent), or the decimal value

-1, should be used.

In both 32-bit and 64-bit mode, the result of integer expressions may be truncated if the size of the target

storage area is too small to contain an expression result. (In this context, truncation refers to the removal

of the excess most-significant bits.)

To improve readability of large constants, especially 64-bit values, the assembler will accept constants

containing the underscore (″_″) character. The underscore may appear anywhere within the number

except the first numeric position. For example, consider the following table:

 Constant Value Valid/Invalid?

1_800_500 Valid

0xFFFFFFFF_00000000 Valid

0b111010_00100_00101_00000000001000_00 Valid (this is the ″ld 4,8(5)″ instruction)

0x_FFFF Invalid

Chapter 3. Syntax and Semantics 35

The third example shows a binary representation of an instruction where the underscore characters are

used to delineate the various fields within the instruction. The last example contains a hexadecimal prefix,

but the character immediately following is not a valid digit; the constant is therefore invalid.

Arithmetic Evaluation

In 32-bit mode, arithmetic evaluation takes place using 32-bit math. For the .llong pseudo-op, which is

used to specify a 64-bit quantity, any evaluation required to initialize the value of the storage area uses

32-bit arithmetic.

For 64-bit mode, arithmetic evaluation uses 64-bit math. No sign extension occurs, even if a number might

be considered negative in a 32-bit context. Negative numbers must be specified using decimal format, or

(for example, in hexadecimal format) by using a full complement of hexadecimal digits (16 of them).

Decimal Constants

Base 10 is the default base for arithmetic constants. If you want to specify a decimal number, type the

number in the appropriate place:

ai 5,4,10

Add the decimal value 10 to the contents

of GPR 4 and put the result in GPR 5.

Do not prefix decimal numbers with a 0. A leading zero indicates that the number is octal.

Octal Constants

To specify that a number is octal, prefix the number with a 0:

ai 5,4,0377

Add the octal value 0377 to the contents

of GPR 4 and put the result in GPR 5.

Hexadecimal Constants

To specify a hexadecimal number, prefix the number with 0X or 0x. You can use either uppercase or

lowercase for the hexadecimal numerals A through F.

ai 5,4,0xF

Add the hexadecimal value 0xF to the

contents of GPR 4 and put the result

in GPR 5.

Binary Constants

To specify a binary number, prefix the number with 0B or Ob.

ori 3,6,0b0010_0001

OR (the decimal value) 33 with the

contents of GPR 6 and put the result

in GPR 3.

Floating-Point Constants

A floating-point constant has the following components in the specified order:

 Integer Part Must be one or more digits.

Decimal Point . (period). Optional if no fractional part follows.

Fraction Part Must be one or more digits. The fraction part is optional.

Exponent Part Optional. Consists of an e or E, possibly followed by a + or -, followed by one or more

digits.

For assembler input, you can omit the fraction part. For example, the following are valid floating-point

constants:

v 0.45

v 1e+5

36 Assembler Language Reference

v 4E-11

v 0.99E6

v 357.22e12

Floating-point constants are allowed only where fcon expressions are found.

There is no bounds checking for the operand.

Note:In AIX 4.3 and later, the assembler uses the strtold subroutine to perform the conversion to

floating point. Check current documentation for restrictions and return values.

Character Constants

To specify an ASCII character constant, prefix the constant with a ’ (single quotation mark). Character

constants can appear anywhere an arithmetic constant is allowed, but you can only specify one character

constant at a time. For example ’A represents the ASCII code for the character A.

Character constants are convenient when you want to use the code for a particular character as a

constant, for example:

cal 3,’X(0)

Loads GPR 3 with the ASCII code for

the character X (that is, 0x58).

After the cal instruction executes, GPR 3 will

contain binary

0x0000 0000 0000 0000 0000 0000 0101 1000.

Symbolic Constants

A symbol can be used as a constant by giving the symbol a value. The value can then be referred to by

the symbol name, instead of by using the value itself.

Using a symbol as a constant is convenient if a value occurs frequently in a program. Define the symbolic

constant once by giving the value a name. To change its value, simply change the definition (not every

reference to it) in the program. The changed file must be reassembled before the new symbol constant is

valid.

A symbolic constant can be defined by using it as a label or by using it in a .set statement.

String Constants

String constants differ from other types of constants in that they can be used only as operands to certain

pseudo-ops, such as the .rename, .byte, or .string pseudo-ops.

The syntax of string constants consists of any number of characters enclosed in ″″ (double quotation

marks):

"any number of characters"

To use a ″ in a string constant, use double quotation marks twice. For example:

"a double quote character is specified like this "" "

Related Information

“Character Set” on page 27

“Reserved Words” on page 28

“Line Format” on page 28

Chapter 3. Syntax and Semantics 37

“Statements” on page 29

“Symbols” on page 31

“Operators”

“Expressions” on page 39

The atof subroutine.

“.comm Pseudo-op” on page 471, “.csect Pseudo-op” on page 473, “.double Pseudo-op” on page 475,

“.dsect Pseudo-op” on page 477, “.float Pseudo-op” on page 483, “.lcomm Pseudo-op” on page 486, “.tc

Pseudo-op” on page 503, “.toc Pseudo-op” on page 504, “.tocof Pseudo-op” on page 504.

Operators

All operators evaluate from left to right except for the unary operators, which evaluate from right to left.

The assembler provides the following unary operators:

 + unary positive

- unary negative

~ one’s complement (unary)

The assembler provides the following binary operators:

 * multiplication

/ division

> right shift

< left shift

| bitwise inclusive or

& bitwise AND

^ bitwise exclusive or

+ addition

- subtraction

Parentheses can be used in expressions to change the order in which the assembler evaluates the

expression. Operations within parentheses are performed before operations outside parentheses. Where

nested parentheses are involved, processing starts with the innermost set of parentheses and proceeds

outward.

Operator Precedence

Operator precedence for 32-bit expressions is shown in the following figure.

 Highest Priority

 | ()

 | unary -, unary +, ~

 | * / < >

 | | ^ &

 | + _

 V

Lowest Priority

38 Assembler Language Reference

In 32-bit mode, all the operators perform 32-bit signed integer operations. In 64-bit mode, all computations

are performed using 64-bit signed integer operations.

The division operator produces an integer result; the remainder has the same sign as the dividend. For

example:

 Operation Result Remainder

8/3 2 2

8/-3 -2 2

(-8)/3 -2 -2

(-8)/(-3) 2 -2

The left shift (<) and right shift (>) operators take an integer bit value for the right-hand operand. For

example:

.set mydata,1

.set newdata,mydata<2

Shifts 1 left 2 bits.

Assigns the result to newdata.

Related Information

“Character Set” on page 27

“Reserved Words” on page 28

“Line Format” on page 28

“Statements” on page 29

“Symbols” on page 31

“Constants” on page 35

“Expressions”

The atof subroutine.

“.comm Pseudo-op” on page 471, “.csect Pseudo-op” on page 473, “.double Pseudo-op” on page 475,

“.dsect Pseudo-op” on page 477, “.float Pseudo-op” on page 483, “.lcomm Pseudo-op” on page 486, “.tc

Pseudo-op” on page 503, “.toc Pseudo-op” on page 504, “.tocof Pseudo-op” on page 504.

Expressions

A term is the smallest element that the assembler parser can recognize when processing an expression.

Each term has a value and a type. An expression is formed by one or more terms. The assembler

evaluates each expression into a single value, and uses that value as an operand. Each expression also

has a type. If an expression is formed by one term, the expression has the same type as the type of the

term. If an expression consists of more than one term, the type is determined by the expression handler

according to certain rules applied to all the types of terms contained in the expression. Expression types

are important because:

v Some pseudo-ops and instructions require expressions with a particular type.

v Only certain operators are allowed in certain types of expressions.

Chapter 3. Syntax and Semantics 39

Object Mode Considerations

One aspect of assembly language expressions is that of the object mode and relocation vs. the size of the

data value being calculated. In 32-bit mode, relocation is applied to 32-bit quantities; expressions resulting

in a requirement for relocation (for example, a reference to an external symbol) can not have their value

stored in any storage area other than a word. For the .llong pseudo-op, it is worthwhile to point out that

expressions used to initialize the contents of a .llong may not require relocation. In 64-bit mode, relocation

is applied to double-word quantities. Thus, expression results that require relocation can not have their

value stored in a location smaller than a double-word.

Arithmetic evaluations of expressions in 32-bit mode is consistent with the behavior found in prior releases

of the assembler. Integer constants are considered to be 32-bit quantities, and the calculations are 32-bit

calculations. In 64-bit mode constants are 64-bit values, and expressions are evaluated using 64-bit

calculations.

Types and Values of Terms

The following is a list of all the types of terms and an abbreviated name for each type:

v Absolute (E_ABS)

v Relocatable (E_REL)

v External relocatable (E_EXT)

v TOC-relative relocatable (E_TREL)

v TOCOF relocatable (E_TOCOF)

Absolute Terms

A term is absolute if its value does not change upon program relocation. In other words, a term is absolute

if its value is independent of any possible code relocation operation.

An absolute term is one of the following items:

v A constant (including all the kinds of constants defined in “Constants” on page 35).

v A symbol set to an absolute expression.

The value of an absolute term is the constant value.

Relocatable Terms

A term is relocatable if its value changes upon program relocation. The value of a relocatable term

depends on the location of the control section containing it. If the control section moves to a different

storage location (for example, a csect is relocated by the binder at bind time), the value of the relocatable

term changes accordingly.

A relocatable term is one of the following items:

v A label defined within a csect that does not have TD or TC as its Storage Mapping Class (SMC)

v A symbol set to a relocatable expression

v A label defined within a dsect

v A dsect name

v A location counter reference (which uses $, the dollar sign)

If it is not used as a displacement for a D-form instruction, the value of a csect label or a location counter

reference is its relocatable address, which is the sum of the containing csect address and the offset

relative to the containing csect. If it is used as a displacement for a D-form instruction, the assembler

implicitly subtracts the containing csect address so that only the the offset is used for the displacement. A

csect address is the offset relative to the beginning of the first csect of the file.

40 Assembler Language Reference

A dsect is a reference control section that allows you to describe the layout of data in a storage area

without actually reserving any storage. A dsect provides a symbolic format that is empty of data. The

assembler does assign location counter values to the labels that are defined in a dsect. The values are the

offsets relative to the beginning of the dsect. The data in a dsect at run time can be referenced

symbolically by using the labels defined in a dsect.

Relocatable terms based on a dsect location counter (either the dsect name or dsect labels) are

meaningful only in the context of a .using statement. Since this is the only way to associate a base

address with a dsect, the addressability of the dsect is established in combination with the storage area.

A relocatable term may be based on any control section, either csect or dsect, in all the contexts except if

it is used as a relocatable address constant. If a csect label is used as an address constant, it represents

a relocatable address, and its value is the offset relative to the csect plus the address of the csect. A dsect

label cannot be used as a relocatable address constant since a dsect is only a data template and has no

address.

If two dsect labels are defined in the same dsect, their difference can be used as an absolute address

constant.

External Relocatable Terms

A term is external relocatable (E_EXT) if it is an external symbol (a symbol not defined, but declared within

the current module, or defined in the current module and globally visible), a csect name, or a TOC entry

name.

This term is relocatable because its value will change if it, or its containing control section, is relocated.

An external relocatable term or expression cannot be used as the operand of a .set pseudo-op.

An external relocatable term is one of the following items:

v A symbol defined with the .comm pseudo-op

v A symbol defined with the .lcomm pseudo-op

v A csect name

v A symbol declared with the .globl pseudo-op

v A TOC entry name

v An undefined symbol declared with the .extern pseudo-op

Except for the undefined symbol, if this term is not used as a displacement for a D-form instruction, its

value is its relocatable address, which is the offset relative to the beginning of the first csect in the file. If it

is used as a displacement for a D-form instruction, the assembler implicitly subtracts the containing csect

address (except for a TOC entry name), usually producing a zero displacement because the csect address

is subtracted from itself. If a TOC entry name is used as a displacement for a D-form instruction, the

assembler implicitly subtracts the address of the TOC anchor, so the offset relative to the TOC anchor is

the displacement.

An undefined symbol cannot be used as a displacement for a D-form instruction. In other cases, its value

is zero.

TOC-Relative Relocatable Terms

A term is TOC-relative relocatable (E_TREL) if it is a label contained within the TOC.

This type of term is relocatable since its value will change if the TOC is relocated.

A TOC-relative relocatable term is one of the following items:

v A label on a .tc pseudo-op

Chapter 3. Syntax and Semantics 41

v A label defined within a csect that has TD or TC as its storage mapping class.

If this term is not used as a displacement for a D-form instruction, its value is its relocatable address,

which is the sum of the offset relative to the TOC and the TOC anchor address. If it is used as a

displacement for a D-form instruction, the assembler implicitly subtracts the TOC anchor address, so the

offset relative to the TOC anchor is the displacement.

TOCOF Relocatable Terms

A term has TOCOF relocatable (E_TOCOF) type if it is the first operand of a .tocof pseudo-op.

This type of term has a value of zero. It cannot be used as a displacement for a D-form instruction. It

cannot participate in any arithmetic operation.

Types and Values of Expressions

Expressions can have all the types that terms can have. An expression with only one term has the same

type as its term. Expressions can also have restricted external relocatable (E_REXT) type, which a term

cannot have because this type requires at least two terms.

Restricted External Relocatable Expressions

An expression has restricted external relocatable (E_REXT) type if it contains two relocatable terms that are

defined in different control sections (terms not meeting the requirements for paired relocatable terms, as

defined in “Expression Type of Combined Expressions” on page 43) and have opposite signs.

The following are examples of combinations of relocatable terms that produce an expression with

restricted external relocatable type:

v <E_EXT> - <E_EXT>

v <E_REL> - <E_REL>

v <E_TREL> - <E_TREL>

v <E_EXT> - <E_REL>

v <E_REL> - <E_EXT>

v <E_EXT> - <E_TREL>

v <E_TREL> - <E_REL>

The value assigned to an expression of this type is based on the results of the assembler arithmetic

evaluation of the values of its terms. When participating in an arithmetic operation, the value of a term is

its relocatable address.

Combination Handling of Expressions

Terms within an expression can be combined with binary operators. Also, a term can begin with one or

more unary operators. The assembler expression handler evaluates and determines the resultant

expression type, value, and relocation table entries.

Expression Value Calculations

The following rules apply when calculating a value:

v If it is participating in an arithmetic operation, the value of an absolute term is its constant value, and

the value of a relocatable term (E_EXT, E_REL, or E_TREL) is its relocatable address.

v If the resultant expression is used as a displacement in a D-form instruction, the assembler implicitly

subtracts the containing csect address from the final result for expressions of type E_EXT or E_REL, or

subtracts the TOC anchor address for expressions of type E_TREL. There is no implicit subtracting for

expressions with E_ABS or E_REXT type.

Object File Relocation Table Entries of Expressions

The assembler applies the following rules when determining the requirements for object file relocation

table entries for an expression.

42 Assembler Language Reference

v When an expression is used in a data definition, TOC entry definition, or a branch target address, it

may require from zero to two relocation table entries (RLDs) depending on the resultant type of the

expression.

– E_ABS requires zero relocation entries.

– E_REL requires one relocation entry, except that a dsect name or a dsect label does not require a

relocation entry.

– E_EXT requires one relocation entry

– E_REXT requires two relocation entries

– E_TREL requires one relocation entry

– E_TOCOF requires one relocation entry

v When an expression is used as a displacement within a D-form instruction operand, only E_TREL and

E_REXT expressions have relocation entries. They each require one relocation entry.

Expression Type of Combined Expressions

The assembler applies the following rules when determining the type of a combined expression.

Combining Expressions with Group 1 Operators: The following operators belong to group #1:

v *, /, >, <, |, &, ^

Operators in group #1 have the following rules:

v <E_ABS> <op1> <E_ABS> ==> E_ABS

v Applying an operator in group #1 to any type of expression other than an absolute expression produces

an error.

Combining Expressions with Group 2 Operators: The following operators belong to group # 2:

v +, -

Operators in group # 2 have the following rules:

v <E_ABS> <op2> <E_ABS> ==> E_ABS

v <E_ABS> <op2> <E_REXT> ==> E_REXT

v <E_REXT> <op2> <E_ABS> ==> E_REXT

v <E_ABS> <op2> <E_TOCOF> ==> an error

v <E_TOCOF> <op2> <E_ABS> ==> an error

v <non E_ABS> <op2> <E_REXT> ==> an error

v <E_REXT> <op2> < non E_ABS> ==> an error

v <E_ABS> - <E_TREL> ==> an error

v Unary + and - are treated the same as the binary operators with absolute value 0 (zero) as the left

term.

v Other situations where one of the terms is not an absolute expression require more complex rules.

The following definitions will be used in later discussion:

 paired relocatable terms Have opposite signs and are defined in the same section. The value represented by

paired relocatable terms is absolute. The result type for paired relocatable terms is

E_ABS. Paired relocatable terms are not required to be contiguous in an expression.

Two relocatable terms cannot be paired if they are not defined in the same section. A

E_TREL term can be paired with another E_TREL term or E_EXT term, but cannot be

paired with a E_REL term (because they will never be in the same section). A E_EXT or

E_REL term can be paired with another E_EXT or E_REL term. A E_REXT term cannot be

paired with any term.

Chapter 3. Syntax and Semantics 43

opposite terms Have opposite signs and point to the same symbol table entry. Any term can have its

opposite term. The value represented by opposite terms is zero. The result type for

opposite terms is almost identical to E_ABS, except that a relocation table entry (RLD)

with a type R_REF is generated when it is used for data definition. Opposite terms are

not required to be contiguous in an expression.

The main difference between opposite terms and paired relocatable terms is that paired relocatable terms

do not have to point to the same table entry, although they must be defined in the same section.

In the following example L1 and -L1 are opposite terms ; and L1 and -L2 are paired relocatable terms.

 .file "f1.s"

 .csect Dummy[PR]

L1: ai 10, 20, 30

L2: ai 11, 21, 30

 br

 .csect A[RW]

 .long L1 - L1

 .long L1 - L2

The following table shows rules for determining the type of complex combined expressions:

 Type Conditions for Expression to have Type Relocation Table Entries

E_ABS All the terms of the expression are paired

relocatable terms, opposite terms, and absolute

terms.

An RLD with type R_REF is generated for each

opposite term.

E_REXT The expression contains two unpaired

relocatable terms with opposite signs in addition

to all the paired relocatable terms, opposite

terms, and absolute terms.

Two RLDs, one with a type of R_POS and one

with a type of R_NEG, are generated for the

unpaired relocatable terms. In addition, an RLD

with a type of R_REF is generated for each

opposite term.

E_REL, E_EXT The expression contains only one unpaired E_REL

or E_RXT term in addition to all the paired

relocatable terms, opposite terms, and absolute

terms.

If the expression is used in a data definition, one

RLD with type R_POS or R_NEG will be

generated. In addition, an RLD with type R_REF

is generated for each opposite term.

E_TREL The expression contains only one unpaired

E_TREL term in addition to all the paired

relocatable terms, opposite terms, and absolute

terms.

If the expression is used as a displacement in a

D-form instruction, one RLD with type R_TOC

will be generated, otherwise one RLD with type

R_POS or R_NEG will be generated. In addition,

an RLD with type R_REF is generated for each

opposite term.

Error If the expression contains more than two

unpaired relocatable terms, or it contains two

unpaired relocatable terms with the same sign,

an error is reported.

The following example illustrates the preceding table:

 .file "f1.s"

 .csect A[PR]

L1: ai 10, 20, 30

L2: ai 10, 20, 30

EL1: l 10, 20(20)

 .extern EL1

 .extern EL2

EL2: l 10, 20(20)

 .csect B[PR]

BL1: l 10, 20(20)

BL2: l 10, 20(20)

44 Assembler Language Reference

ba 16 + EL2 - L2 + L1 # Result is E_REL

 l 10, 16+EL2-L2+L1(20) # No RLD

 .csect C[RW]

BL3: .long BL2 - B[PR] # Result is E_ABS

 .long BL2 - (L1 - L1) # Result is E_REL

 .long 14-(-EL2+BL1) + BL1 - (L2-L1) # Result is E_REL

 .long 14 + EL2 - BL1 - L2 + L1 # Result is E_REL

 .long (B[PR] -A[PR]) + 32 # Result is E_REXT

Related Information

“Character Set” on page 27

“Reserved Words” on page 28

“Line Format” on page 28

“Statements” on page 29

“Symbols” on page 31

“Constants” on page 35

“Operators” on page 38

The atof subroutine.

“.comm Pseudo-op” on page 471, “.csect Pseudo-op” on page 473, “.double Pseudo-op” on page 475,

“.dsect Pseudo-op” on page 477, “.float Pseudo-op” on page 483, “.lcomm Pseudo-op” on page 486, “.tc

Pseudo-op” on page 503, “.toc Pseudo-op” on page 504, “.tocof Pseudo-op” on page 504.

Chapter 3. Syntax and Semantics 45

46 Assembler Language Reference

Chapter 4. Addressing

The addressing articles discuss addressing modes and addressing considerations, including:

v “Absolute Addressing”

v “Absolute Immediate Addressing”

v “Relative Immediate Addressing” on page 48

v “Explicit-Based Addressing” on page 48

v “Implicit-Based Addressing” on page 50

v “Location Counter” on page 51

Absolute Addressing

An absolute address is represented by the contents of a register. This addressing mode is absolute in the

sense that it is not specified relative to the current instruction address.

Both the Branch Conditional to Link Register instructions and the Branch Conditional to Count Register

instructions use an absolute addressing mode. The target address is a specific register, not an input

operand. The target register is the Link Register (LR) for the Branch Conditional to Link Register

instructions. The target register is the Count Register (CR) for the Branch Conditional to Count Register

instructions. These registers must be loaded prior to execution of the branch conditional to register

instruction.

Related Information

“Absolute Immediate Addressing.”

“Relative Immediate Addressing” on page 48.

“Explicit-Based Addressing” on page 48.

“Implicit-Based Addressing” on page 50.

“Location Counter” on page 51.

“Branch Processor” on page 19.

“bcctr or bcc (Branch Conditional to Count Register) Instruction” on page 147, “bclr or bcr (Branch

Conditional Link Register) Instruction” on page 149, “b (Branch) Instruction” on page 143, “bc (Branch

Conditional) Instruction” on page 144.

Absolute Immediate Addressing

An absolute immediate address is designated by immediate data. This addressing mode is absolute in the

sense that it is not specified relative to the current instruction address.

For Branch and Branch Conditional instructions, an absolute immediate addressing mode is used if the

Absolute Address bit (AA bit) is on.

The operand for the immediate data can be an absolute, relocatable, or external expression.

© Copyright IBM Corp. 1997, 2006 47

Related Information

“Absolute Addressing” on page 47.

“Relative Immediate Addressing.”

“Explicit-Based Addressing.”

“Implicit-Based Addressing” on page 50.

“Location Counter” on page 51.

“Branch Processor” on page 19.

“bcctr or bcc (Branch Conditional to Count Register) Instruction” on page 147, “bclr or bcr (Branch

Conditional Link Register) Instruction” on page 149, “b (Branch) Instruction” on page 143, “bc (Branch

Conditional) Instruction” on page 144.

Relative Immediate Addressing

Relative immediate addresses are specified as immediate data within the object code and are calculated

relative to the current instruction location. All the instructions that use relative immediate addressing are

branch instructions. These instructions have immediate data that is the displacement in full words from the

current instruction location. At execution, the immediate data is sign extended, logically shifted to the left

two bits, and added to the address of the branch instruction to calculate the branch target address. The

immediate data must be a relocatable expression or an external expression.

Related Information

“Absolute Addressing” on page 47.

“Absolute Immediate Addressing” on page 47.

“Explicit-Based Addressing.”

“Implicit-Based Addressing” on page 50.

“Location Counter” on page 51.

“Branch Processor” on page 19.

“bcctr or bcc (Branch Conditional to Count Register) Instruction” on page 147, “bclr or bcr (Branch

Conditional Link Register) Instruction” on page 149, “b (Branch) Instruction” on page 143, “bc (Branch

Conditional) Instruction” on page 144.

“.using Pseudo-op” on page 505, “.drop Pseudo-op” on page 476.

Explicit-Based Addressing

Explicit-based addresses are specified as a base register number, RA, and a displacement, D. The base

register holds a base address. At run time, the processor adds the displacement to the contents of the

base register to obtain the effective address. If an instruction does not have an operand form of D(RA),

then the instruction cannot have an explicit-based address. Error 159 is reported if the D(RA) form is used

for these instructions.

48 Assembler Language Reference

A displacement can be an absolute expression, a relocatable expression, a restricted external expression,

or a TOC-relative expression. A displacement can be an external expression only if it is a csect (control

section) name or the name of a common block specified defined by a .comm pseudo-op.

Notes:

1. An externalized label is still relocatable, so an externalized label can also be used as a displacement.

2. When a relocatable expression is used for the displacement, no RLD entry is generated, because only

the offset from the label (that is, the relocatable expression) for the csect is used for the displacement.

Although programmers must use an absolute expression to specify the base register itself, the contents of

the base register can be specified by an absolute, a relocatable, or an external expression. If the base

register holds a relocatable value, the effective address is relocatable. If the base register holds an

absolute value, the effective address is absolute. If the base register holds a value specified by an external

expression, the type of the effective address is absolute if the expression is eventually defined as

absolute, or relocatable if the expression is eventually defined as relocatable.

When using explicit-based addressing, remember that:

v GPR 0 cannot be used as a base register. Specifying 0 tells the assembler not to use a base register at

all.

v Because D occupies a maximum of 16 bits, a displacement must be in the range -2**15 to (2**15)-1.

Therefore, the difference between the base address and the address of the item to which reference is

made must be less than 2**15 bytes.

Note: D and RA are required for the D(RA) form. The form 0(RA) or D(0) may be used, but both the D

and RA operands are required. There are two exceptions:

– When D is an absolute expression,

– When D is a restricted external expression.

If the RA operand is missing in these two cases, D(0) is assumed.

Related Information

“Absolute Addressing” on page 47.

“Absolute Immediate Addressing” on page 47.

“Relative Immediate Addressing” on page 48.

“Implicit-Based Addressing” on page 50.

“Location Counter” on page 51.

“Branch Processor” on page 19.

“bcctr or bcc (Branch Conditional to Count Register) Instruction” on page 147, “bclr or bcr (Branch

Conditional Link Register) Instruction” on page 149, “b (Branch) Instruction” on page 143, “bc (Branch

Conditional) Instruction” on page 144.

“.using Pseudo-op” on page 505, “.drop Pseudo-op” on page 476.

Chapter 4. Addressing 49

Implicit-Based Addressing

An implicit-based address is specified as an operand for an instruction by omitting the RA operand and

writing the .using pseudo-op at some point before the instruction. After assembling the appropriate .using

and .drop pseudo-ops, the assembler can determine which register to use as the base register. At run

time, the processor computes the effective address just as if the base were explicitly specified in the

instruction.

Implicit-based addresses can be relocatable or absolute, depending on the type of expression used to

specify the contents of the RA operand at run time. Usually, the contents of the RA operand are specified

with a relocatable expression, thus making a relocatable implicit-based address. In this case, when the

object module produced by the assembler is relocated, only the contents of the base register RA will

change. The displacement remains the same, so D(RA) still points to the correct address after relocation.

A dsect is a reference control section that allows you to describe the layout of data in a storage area

without actually reserving any storage. An implicit-based address can also be made by specifying the

contents of RA with a dsect name or a a dsect label, thus associating a base with a dummy section. The

value of the RA content is resolved at run time when the dsect is instantiated.

If the contents of the RA operand are specified with an absolute expression, an absolute implicit-based

address is made. In this case, the contents of the RA will not change when the object module is relocated.

The assembler only supports relocatable implicit-based addressing.

Perform the following when using implicit-based addressing:

1. Write a .using statement to tell the assembler that one or more general-purpose registers (GPRs) will

now be used as base registers.

2. In this .using statement, tell the assembler the value each base register will contain at execution. Until

it encounters a .drop pseudo-op, the assembler will use this base register value to process all

instructions that require a based address.

3. Load each base register with the previously specified value.

For implicit-based addressing the RA operand is always omitted, but the D operand remains. The D

operand can be an absolute expression, a TOC-relative expression, a relocatable expression, or a

restricted external expression.

Notes:

1. When the D operand is an absolute expression or a restricted external expression, the assembler

always converts it to D(0) form, so the .using pseudo-op has no effect.

2. The .using and .drop pseudo-ops affect only based addresses.

.toc

T.data: .tc data[tc],data[rw]

.csect data[rw]

 foo: .long 2,3,4,5,6

 bar: .long 777

 .csect text[pr]

 .align 2

 l 10,T.data(2) # Loads the address of

 # csect data[rw] into GPR 10.

 .using data[rw], 10 # Specify displacement.

 l 3,foo # The assembler generates l 3,0(10)

 l 4,foo+4 # The assembler generates l 4,4(10)

 l 5,bar # The assembler generates l 5,20(10)

See the “.using Pseudo-op” on page 505 for more information.

50 Assembler Language Reference

Related Information

“Absolute Addressing” on page 47.

“Absolute Immediate Addressing” on page 47.

“Relative Immediate Addressing” on page 48.

“Explicit-Based Addressing” on page 48.

“Location Counter.”

“Branch Processor” on page 19.

“bcctr or bcc (Branch Conditional to Count Register) Instruction” on page 147, “bclr or bcr (Branch

Conditional Link Register) Instruction” on page 149, “b (Branch) Instruction” on page 143, “bc (Branch

Conditional) Instruction” on page 144.

“.using Pseudo-op” on page 505, “.drop Pseudo-op” on page 476.

Location Counter

Each section of an assembler language program has a location counter used to assign storage addresses

to your program’s statements. As the instructions of a source module are being assembled, the location

counter keeps track of the current location in storage. You can use a $ (dollar sign) as an operand to an

instruction to refer to the current value of the location counter.

Related Information

“Absolute Addressing” on page 47.

“Absolute Immediate Addressing” on page 47.

“Relative Immediate Addressing” on page 48.

“Explicit-Based Addressing” on page 48.

“Implicit-Based Addressing” on page 50.

“Branch Processor” on page 19.

“bcctr or bcc (Branch Conditional to Count Register) Instruction” on page 147, “bclr or bcr (Branch

Conditional Link Register) Instruction” on page 149, “b (Branch) Instruction” on page 143, “bc (Branch

Conditional) Instruction” on page 144.

“.using Pseudo-op” on page 505, “.drop Pseudo-op” on page 476.

Chapter 4. Addressing 51

52 Assembler Language Reference

Chapter 5. Assembling and Linking a Program

This section provides information on the following:

v “Assembling and Linking a Program”

v “Understanding Assembler Passes” on page 57

v “Interpreting an Assembler Listing” on page 59

v “Interpreting a Symbol Cross-Reference” on page 63

v “Subroutine Linkage Convention” on page 65

v “Understanding and Programming the TOC” on page 82

v “Running a Program” on page 87

Assembling and Linking a Program

Assembly language programs can be assembled with the as command or the cc command. The ld

command or the cc command can be used to link assembled programs. This section discusses the

following:

v “Assembling with the as Command”

v “Assembling and Linking with the cc Command” on page 56

Assembling with the as Command

The as command invokes the assembler. The syntax for the as command is as follows:

as [-a Mode] [-oObjectFile] [-n Name] [-u] [-l[ListFile]]

 [-W | -w] [-x[XCrossFile]] [-s [ListFile]] [-m ModeName]

 [-Eoff|on] [-poff|on] [-i] [-v] [File]

The as command reads and assembles the file specified by the File parameter. By convention, this file has

a suffix of .s. If no file is specified, the as command reads and assembles standard input. By default, the

as command stores its output in a file named a.out. The output is stored in the XCOFF file format.

All flags for the as command are optional.

The ld command is used to link object files. See the ld command for more information.

The assembler respects the setting of the OBJECT_MODE environment variable. If neither -a32 or -a64 is

used, the environment is examined for this variable. If the value of the variable is anything other than the

values listed in the following table, an error message is generated and the assembler exits with a non-zero

return code. The implied behavior corresponding to the valid settings are as follows:

 OBJECT_MODE=32 Produce 32-bit object code. The default machine setting is com.

OBJECT_MODE=64 Produce 64-bit object code (XCOFF64 files). The default machine

setting is ppc64.

OBJECT_MODE=32_64 Invalid.

OBJECT_MODE=anything else Invalid.

as Command Flags

The following flags are recognized by the as command:

 -a Mode Specifies the mode in which the as command operates. By default, the as command operates

in 32-bit mode, but the mode can be explicitly set by using the flag -a32 for 32-bit mode

operation or -a64 for 64-bit mode operation.

© Copyright IBM Corp. 1997, 2006 53

-E[off|on] Specifies whether to report errors due to the v2.00 syntax (-Eon), or to ignore them (-Eoff). By

default, v2.00 errors are ignored.

File Specifies the source file. If no file is specified, the source code is taken from standard input.

-i Specifies that branch prediction suffixes are to be encoded. By default, this option is not set.

This option is ignored if the -p option is specified.

-l[ListFile] Produces an assembler listing. If you do not specify a file name, a default name is produced

by replacing the suffix extension of the source file name with a .lst extension. (By convention,

the source file suffix is a .s.) For example:

sourcefile.xyz

produces a default name of:

sourcefile.lst

If the source code is from standard input and the -l flag is used without specifying an

assembler-listing file name, the listing file name is a.lst.

-m ModeName Indicates the assembly mode. This flag has lower priority than the .machine pseudo-op.

If this flag is not used and no .machine pseudo-op is present in the source program, the

default assembly mode is used. The default assembly mode has the POWER family/PowerPC

intersection as the target environment, but treats all POWER family/PowerPC incompatibility

errors (including instructions outside the POWER family/PowerPC intersection and invalid

form errors) as instructional warnings.

If an assembly mode that is not valid is specified and no .machine pseudo-op is present in

the source program, an error is reported and the default assembly mode is used for

instruction validation in pass 1 of the assembler.

If the -m flag is used, the ModeName variable can specify one of the following values:

″″ Explicitly specifies the default assembly mode which has the POWER

family/PowerPC intersection as the target environment, but treats instructions outside

the POWER family/PowerPC intersection and invalid form errors as instructional

warnings. A space is required between -m and the null string argument (two double

quotation marks).

com Specifies the POWER family/PowerPC intersection mode. A source program can

contain only instructions that are common to both POWER family and PowerPC; any

other instruction causes an error. Any instruction with an invalid form causes errors,

terminates the assembly process, and results in no object code being generated.

 Note:Certain POWER family instructions are supported by the PowerPC 601

RISC Microprocessor, but do not conform to the PowerPC architecture. These

instructions cause errors when using the com assembly mode.

any Specifies the indiscriminate mode. The assembler generates object code for any

recognized instruction, regardless of architecture. This mode is used primarily for

operating system development and for testing and debugging purposes.

Note: All POWER family/PowerPC incompatibility errors are ignored when using the

any assembly mode, and no warnings are generated.

54 Assembler Language Reference

-m ModeName

continued

ppc Specifies the PowerPC mode. A source program can contain only PowerPC

instructions. Any other instruction causes an error.

Notes:

1. The PowerPC optional instructions are not implemented in every PowerPC

processor and do not belong to the ppc mode. These instructions generate an

error if they appear in a source program which is assembled using the ppc

assembly mode.

2. Certain instructions conform to the PowerPC architecture, but are not supported

by the PowerPC 601 RISC Microprocessor.

ppc64 Specifies the PowerPC 64-bit mode. A source program can contain 64-bit PowerPC

instructions.

pwr Specifies the POWER family mode. A source program can contain only instructions

for the POWER family implementation of the POWER family architecture.

pwr2(pwrx)

Specifies the POWER2 mode. A source program can contain only instructions for the

POWER2 implementation of the POWER family architecture. pwr2 is the preferred

value. The alternate assembly mode value pwrx means the same thing as pwr2.

Note: The POWER family implementation instruction set is a subset of the

POWER2 implementation instruction set.

pwr5 Specifies the POWER5 mode. A source program can contain only instructions

compatible with the POWER5 processor.

pwr5x Specifies the POWER5+ mode. A source program can contain only instructions

compatible with the POWER5+ processor.

pwr6 Specifies the POWER6 mode. A source program can contain only instructions

compatible with the POWER6 processor.

601 Specifies the PowerPC 601 RISC Microprocessor mode. A source program can

contain only instructions for the PowerPC 601 RISC Microprocessor.

Note: The PowerPC 601 RISC Microprocessor design was completed before the

PowerPC architecture. Therefore, some PowerPC instructions may not be supported

by the PowerPC 601 RISC Microprocessor.

Attention: It is recommended that the 601 assembly mode not be used for

applications that are intended to be portable to future PowerPC systems. The com

or ppc assembly mode should be used for such applications.

The PowerPC 601 RISC Microprocessor implements the PowerPC architecture plus

some POWER family instructions which are not included in the PowerPC

architecture. This allows existing POWER family applications to run with acceptable

performance on PowerPC systems. Future PowerPC systems will not have this

feature. The 601 assembly mode may result in applications that will not run on

existing POWER family systems and that may not have acceptable performance on

future PowerPC systems, because the 601 assembly mode permits the use of all the

instructions provided by the PowerPC 601 RISC Microprocessor.

603 Specifies the PowerPC 603 RISC Microprocessor mode. A source program can

contain only instructions for the PowerPC 603 RISC Microprocessor.

604 Specifies the PowerPC 604 RISC Microprocessor mode. A source program can

contain only instructions for the PowerPC 604 RISC Microprocessor.

970 Specifies the PPC970 mode. A source program can contain only instructions

compatible with the PPC970 processor.

A35 Specifies the A35 mode. A source program can contain only instructions for the A35.

-n Name Specifies the name that appears in the header of the assembler listing. By default, the header

contains the name of the assembler source file.

-o ObjectFile Writes the output of the assembly process to the specified file instead of to the a.out file.

Chapter 5. Assembling and Linking a Program 55

-p[off|on] Specifies whether to use the v2.00 branch prediction (-pon) or pre-v2.00 branch prediction

(-poff). By default, pre-v2.00 branch prediction is used.

-s[ListFile] Indicates whether or not a mnemonics cross-reference for POWER family and PowerPC is

included in the assembler listing. If this flag is omitted, no mnemonics cross-reference is

produced. If this flag is used, the assembler listing will have POWER family mnemonics if the

source contains PowerPC mnemonics, and will have PowerPC mnemonics if the source

contains POWER family mnemonics.

The mnemonics cross-reference is restricted to instructions that have different mnemonics in

POWER family and PowerPC, but that have the same op code, function, and input operand

format.

Because the -s flag is used to change the assembler-listing format, it implies the -l flag. If

both option flags are used and different assembler-listing file names (specified by the ListFile

variable) are given, the listing file name specified by the ListFile variable used with the -l flag

is used. If an assembler-listing file name is not specified with either the -l or -s flag, a default

assembler listing file name is produced by replacing the suffix extension of the source file

name with a .lst extension.

-u Accepts an undefined symbol as an extern so that an error message is not displayed.

Otherwise, undefined symbols are flagged with error messages.

-v Displays the version number of this command.

-W Turns off all warning message reporting, including the instructional warning messages (the

POWER family and PowerPC incompatibility warnings).

-w Turns on warning message reporting, including reporting of instructional warning messages

(the POWER family and PowerPC incompatibility warnings).

Note: When neither -W nor -w is specified, the instructional warnings are reported, but other

warnings are suppressed.

-x[XCrossFile] Produces cross-reference output. If you do not specify a file name, a default name is

produced by replacing the suffix extension of the source file name with an .xref extension. By

convention, the suffix is a .s. For example:

sourcefile.xyz

produces a default name of:

sourcefile.xref

Note: The assembler does not generate an object file when the -x flag is used.

Assembling and Linking with the cc Command

The cc command can be used to assemble and link an assembly source program. The following example

links object files compiled or assembled with the cc command:

cc pgm.o subs1.o subs2.o

When the cc command is used to link object files, the object files should have the suffix of .o as in the

previous example.

When the cc command is used to assemble and link source files, any assembler source files must have

the suffix of .s. The cc command invokes the assembler for any files having this suffix. Option flags for the

as command can be directed to the assembler through the cc command. The syntax is:

-Wa,Option1,Option2,...

The following example invokes the assembler to assemble the source program using the com assembly

mode, and produces an assembler listing and an object file:

cc -c -Wa,-mcom,-l file.s

The cc command invokes the assembler and then continues processing normally. Therefore:

cc -Wa,-l,-oXfile.o file.s

56 Assembler Language Reference

will fail because the object file produced by the assembler is named Xfile.o, but the linkage editor (ld

command) invoked by the cc command searches for file.o.

If no option flag is specified on the command line, the cc command uses the compiler, assembler, and link

options, as well as the necessary support libraries defined in the xlc.cfg configuration file.

Note: Some option flags defined in the assembler and the linkage editor use the same letters. Therefore,

if the xlc.cfg configuration file is used to define the assembler options (asopt) and the link-editor

options (ldopt), duplicate letters should not occur in asopt and ldopt because the cc command is

unable to distinguish the duplicate letters.

For more information on the option flags passed to the cc command, see the cc command.

Related Information

“Understanding Assembler Passes.”

“Interpreting an Assembler Listing” on page 59.

“Interpreting a Symbol Cross-Reference” on page 63.

“Subroutine Linkage Convention” on page 65.

“Understanding and Programming the TOC” on page 82.

“Running a Program” on page 87.

The as command, and the ld command.

Understanding Assembler Passes

When you enter the as command, the assembler makes two passes over the source program.

First Pass

On the first pass, the assembler performs the following tasks:

v Checks to see if the instructions are legal in the current assembly mode.

v Allocates space for instructions and storage areas you request.

v Fills in the values of constants, where possible.

v Builds a symbol table, also called a cross-reference table, and makes an entry in this table for every

symbol it encounters in the label field of a statement.

The assembler reads one line of the source file at a time. If this source statement has a valid symbol in

the label field, the assembler ensures that the symbol has not already been used as a label. If this is the

first time the symbol has been used as a label, the assembler adds the label to the symbol table and

assigns the value of the current location counter to the symbol. If the symbol has already been used as a

label, the assembler returns the error message Redefinition of symbol and reassigns the symbol value.

Next, the assembler examines the instruction’s mnemonic. If the mnemonic is for a machine instruction

that is legal for the current assembly mode, the assembler determines the format of the instruction (for

example, XO format). The assembler then allocates the number of bytes necessary to hold the machine

code for the instruction. The contents of the location counter are incremented by this number of bytes.

When the assembler encounters a comment (preceded by a # (pound sign)) or an end-of-line character,

the assembler starts scanning the next instruction statement. The assembler keeps scanning statements

and building its symbol table until there are no more statements to read.

Chapter 5. Assembling and Linking a Program 57

At the end of the first pass, all the necessary space has been allocated and each symbol defined in the

program has been associated with a location counter value in the symbol table. When there are no more

source statements to read, the second pass starts at the beginning of the program.

Note: If an error is found in the first pass, the assembly process terminates and does not continue to

the second pass. If this occurs, the assembler listing only contains errors and warnings generated

during the first pass of the assembler.

Second Pass

On the second pass, the assembler:

v Examines the operands for symbolic references to storage locations and resolves these symbolic

references using information in the symbol table.

v Ensures that no instructions contain an invalid instruction form.

v Translates source statements into machine code and constants, thus filling the allocated space with

object code.

v Produces a file containing error messages, if any have occurred.

At the beginning of the second pass, the assembler scans each source statement a second time. As the

assembler translates each instruction, it increments the value contained in the location counter.

If a particular symbol appears in the source code, but is not found in the symbol table, then the symbol

was never defined. That is, the assembler did not encounter the symbol in the label field of any of the

statements scanned during the first pass, or the symbol was never the subject of a .comm, .csect,

.lcomm, .sect, or .set pseudo-op.

This could be either a deliberate external reference or a programmer error, such as misspelling a symbol

name. The assembler indicates an error. All external references must appear in a .extern or .globl

statement.

The assembler logs errors such as incorrect data alignment. However, many alignment problems are

indicated by statements that do not halt assembly. The -w flag must be used to display these warning

messages.

After the programmer corrects assembly errors, the program is ready to be linked.

Note: If only warnings are generated in the first pass, the assembly process continues to the second

pass. The assembler listing contains errors and warnings generated during the second pass of the

assembler. Any warnings generated in the first pass do not appear in the assembler listing.

Related Information

“Assembling and Linking a Program” on page 53.

“Interpreting an Assembler Listing” on page 59.

“Interpreting a Symbol Cross-Reference” on page 63.

“Subroutine Linkage Convention” on page 65.

“Understanding and Programming the TOC” on page 82.

“Running a Program” on page 87.

The as command.

58 Assembler Language Reference

Interpreting an Assembler Listing

The -l flag of the as command produces a listing of an assembler language file.

Assume that a programmer wants to display the words ″hello, world.″ The C program would appear as

follows:

 main ()

 {

 printf ("hello, world\n");

 }

Assembling the hello.s file with the following command:

as -l hello.s

produces an output file named hello.lst. The complete assembler listing for hello.lst is as follows:

hello.s V4.0 01/25/1994

File# Line# Mode Name Loc Ctr Object Code Source

0 1 | #############################

0 2 | # C source code

0 3 | #############################

0 4 | # hello()

0 5 | # {

0 6 | # printf("hello,world\n");

0 7 | # }

0 8 | #############################

0 9 | # Compile as follows:

0 10 | # cc -o helloworld hello.s

0 11 | #

0 12 | #############################

0 13 | .file "hello.s"

0 14 | #Static data entry in

0 15 | #T(able)O(f)C(ontents)

0 16 | .toc

0 17 | COM data 00000000 00000040 T.data: .tc data[tc],data[rw]

0 18 | .globl main[ds]

0 19 | #main[ds] contains definitions for

0 20 | #runtime linkage of function main

0 21 | .csect main[ds]

0 22 | COM main 00000000 00000000 .long .main[PR]

0 23 | COM main 00000004 00000050 .long TOC[tc0]

0 24 | COM main 00000008 00000000 .long 0

0 25 | #Function entry in

0 26 | #T(able)O(f)C(ontents)

0 27 | .toc

0 28 | COM .main 00000000 00000034 T.hello: .tc .main[tc],main[ds]

0 29 | .globl .main[PR]

0 30 |

0 31 | #Set routine stack variables

0 32 | #Values are specific to

0 33 | #the current routine and can

0 34 | #vary from routine to routine

0 35 | 00000020 .set argarea, 32

0 36 | 00000018 .set linkarea, 24

0 37 | 00000000 .set locstckarea, 0

0 38 | 00000001 .set ngprs, 1

0 39 | 00000000 .set nfprs, 0

0 40 | 0000003c .set szdsa, 8*nfprs+4*ngprs+linkarea+

 argarea+locstckarea

0 41 |

0 42 | #Main routine

0 43 | .csect .main[PR]

0 44 |

0 45 |

0 46 | #PROLOG: Called Routines

Chapter 5. Assembling and Linking a Program 59

0 47 | # Responsibilities

0 48 | #Get link reg.

0 49 | COM .main 00000000 7c0802a6 mflr 0

0 50 | #Not required to Get/Save CR

0 51 | #because current routine does

0 52 | #not alter it.

0 53 |

0 54 | #Not required to Save FPR’s

0 55 | #14-31 because current routine

0 56 | #does not alter them.

0 57 |

0 58 | #Save GPR 31.

0 59 | COM .main 00000004 bfe1fffc stm 31, -8*nfprs-4*ngprs(1)

0 60 | #Save LR if non-leaf routine.

0 61 | COM .main 00000008 90010008 st 0, 8(1)

0 62 | #Decrement stack ptr and save

0 63 | #back chain.

0 64 | COM .main 0000000c 9421ffc4 stu 1, -szdsa(1)

0 65 |

0 66 |

0 67 | #Program body

0 68 | #Load static data address

0 69 | COM .main 00000010 81c20000 l 14,T.data(2)

0 70 | #Line 3, file hello.c

0 71 | #Load address of data string

0 72 | #from data addr.

0 73 | #This is a parameter to printf()

0 74 | COM .main 00000014 386e0000 cal 3,_helloworld(14)

0 75 | #Call printf function

0 76 | COM .main 00000018 4bffffe9 bl .printf[PR]

0 77 | COM .main 0000001c 4def7b82 cror 15, 15, 15

0 78 |

0 79 |

0 80 | #EPILOG: Return Sequence

0 81 | #Get saved LR.

0 82 | COM .main 00000020 80010044 l 0, szdsa+8(1)

0 83 |

0 84 | #Routine did not save CR.

0 85 | #Restore of CR not necessary.

0 86 |

0 87 | #Restore stack ptr

0 88 | COM .main 00000024 3021003c ai 1, 1, szdsa

0 89 | #Restore GPR 31.

0 90 | COM .main 00000028 bbe1fffc lm 31, -8*nfprs-4*ngprs(1)

0 91 |

0 92 | #Routine did not save FPR’s.

0 93 | #Restore of FPR’s not necessary.

0 94 |

0 95 | #Move return address

0 96 | #to Link Register.

0 97 | COM .main 0000002c 7c0803a6 mtlr0

0 98 | #Return to address

0 99 | #held in Link Register.

0 100 | COM .main 00000030 4e800021 brl

0 101 |

0 102 |

0 103 | #External variables

0 104 | .extern.printf[PR]

0 105 |

0 106 | ##############################

0 107 | #Data

0 108 | ##############################

0 109 | #String data placed in

0 110 | #static csect data[rw]

0 111 | .csect data[rw]

0 112 | .align2

0 113 | _helloworld:

60 Assembler Language Reference

0 114 | COM data 00000000 68656c6c .byte 0x68,0x65,0x6c,0x6c

0 115 | COM data 00000004 6f2c776f .byte 0x6f,0x2c,0x77,0x6f

0 116 | COM data 00000008 726c640a .byte 0x72,0x6c,0x64,0xa,0x0

 | COM data 0000000c 00

The first line of the assembler listing gives two pieces of information:

v Name of the source file (in this case, hello.s)

v Date the listing file was created

The assembler listing contains several columns. The column headings are:

 File# Lists the source file number. Files included with the M4 macro processor (-l option) are

displayed by the number of the file in which the statement was found.

Line# Refers to the line number of the assembler source code.

Mode Indicates the current assembly mode for this instruction.

Name Lists the name of the csect where this line of source code originates.

Loc Ctr Lists the value contained in the assembler’s location counter. The listing shows a location

counter value only for assembler language instructions that generate object code.

Object Code Shows the hexadecimal representation of the object code generated by each line of the

assembler program. Since each instruction is 32 bits, each line in the assembler listing shows a

maximum of 4 bytes. Any remaining bytes in a line of assembler source code are shown on the

following line or lines.

Note: If pass two failed, the assembler listing will not contain object code.

Source Lists the assembler source code for the program. A limit of 100 ASCII characters will be

displayed per line.

If the -s option flag is used on the command line, the assembler listing contains mnemonic cross-reference

information.

If the assembly mode is in the PowerPC category (com, ppc, or 601), one column heading is PowerPC.

This column contains the PowerPC mnemonic for each instance where the POWER family mnemonic is

used in the source program. The any assembly mode does not belong to any category, but is treated as

though in the PowerPC category.

If the assembly mode is in the POWER family category (pwr or pwr2), one column heading is POWER

family. This column contains the POWER family mnemonic for each instance where the PowerPC

mnemonic is used in the source program.

The following assembler listing uses the com assembly mode. The source program uses POWER family

mnemonics. The assembler listing has a PowerPC mnemonic cross-reference.

L_dfmt_1.s V4.0 01/26/1994

File# Line# Mode Name Loc Ctr Object Code PowerPC Source

0 1 |

0 2 | #%% -L

0 3 | machine "com"

0 4 | csect dfmt[PR]

0 5 | using data,5

0 6 | COM dfmt 00000000 8025000c lwz l1,d1 # 8025000c

0 7 | COM dfmt 00000004 b8c50018 lmw lm 6,d0 # b8650018

0 8 | COM dfmt 00000008 b0e50040 sth 7,d8 # b0e50040

0 9 | COM dfmt 0000000c 80230020 lwz l 1,0x20(3) # 80230020

0 10 | COM dfmt 00000010 30220003 addic ai 1,2,3 # 30220003

0 11 | COM dfmt 00000014 0cd78300 twi ti 6,23,-32000 # 0cd78300

0 12 | COM dfmt 00000018 2c070af0 cmpi 0,7,2800 # 2c070af0

0 13 | COM dfmt 0000001c 2c070af0 cmpi 0,0,7,2800 # 2c070af0

0 14 | COM dfmt 00000020 30220003 subic si 1,2,-3 # 30220003

0 15 | COM dfmt 00000024 34220003 subic. si. 1,2,-3 # 34220003

0 16 | COM dfmt 00000028 703e00ff andi. andil.30,1,0xFF # 703e00ff

0 17 | COM dfmt 0000002c 2b9401f4 cmpli 7,20,500 # 2b9401f4

Chapter 5. Assembling and Linking a Program 61

0 18 | COM dfmt 00000030 0c2501a4 twlgti tlgti 5,420 # 0c2501a4

0 19 | COM dfmt 00000034 34220003 addic. ai. 1,2,3 # 34220003

0 20 | COM dfmt 00000038 2c9ff380 cmpi 1,31,-3200 # 2c9ff380

0 21 | COM dfmt 0000003c 281f0c80 cmpli 0,31,3200 # 281f0c80

0 22 | COM dfmt 00000040 8ba5000c lbz 29,d1 # 8ba5000c

0 23 | COM dfmt 00000044 85e5000c lwzu lu 15,d1 # 85e5000c

0 24 | COM dfmt 00000048 1df5fec0 mulli muli 15,21,-320 # 1df5fec0

0 25 | COM dfmt 0000004c 62af0140 ori oril 15,21,320 # 62af0140

0 26 | COM dfmt 00000050 91e5000c stw st 15,d1 # 91e5000c

0 27 | COM dfmt 00000054 bde5000c stmw stm 15,d1 # bde5000c

0 28 | COM dfmt 00000058 95e5000c stwu stu 15,d1 # 95e5000c

0 29 | COM dfmt 0000005c 69ef0960 xori xoril 15,15,2400 # 69ef0960

0 30 | COM dfmt 00000060 6d8c0960 xoris xoriu 12,12,2400 # 6d8c0960

0 31 | COM dfmt 00000064 3a9eff38 addi 20,30,-200 # 3a9eff38

0 32 |

0 33 | .csect also[RW]

0 34 | data:

0 35 | COM also 00000000 00000000 .long 0,0,0

 | 00000004

 | COM also 00000008 00000000

0 36 | COM also 0000000c 00000003 d1:.long 3,4,5 # d1 = 0xC = 12

 | COM also 00000010 00000004

 | COM also 00000014 00000005

0 37 | COM also 00000018 00000068 d0: .long data # d0 = 0x18 = 24

0 38 | COM also 0000001c 00000000 data2: .space 36

 | 00000020

 | COM also 0000003c 000000000

 39 | COM also 00000040 000023e0 d8: .long 9184 # d8 = 0x40 = 64

0 40 | COM also 00000044 ffffffff d9: .long 0xFFFFFFFF # d9 = 0x44

0 41 | #

0 42 | # 0000 00000000 00000000 00000000 00000003

0 43 | # 0010 00000004 00000005 0000000C 00000000

0 44 | # 0020 00000000 00000000 00000000 00000000

0 45 | # 0030 000023E0

The following assembler listing uses the pwr assembly mode. The source program uses PowerPC

mnemonics. The assembler listing has a POWER family mnemonic cross-reference.

 L_dfmt_2.s V4.0 01/26/1994

File# Line# Mode Name Loc Ctr Object Code POWER Source

0 1 | #%% -L

0 2 | .machine "pwr"

0 3 | .csect dfmt[PR]

0 4 | .using data,5

0 5 | PWR dfmt 00000000 8025000c l lwz 1,d1

0 6 | PWR dfmt 00000004 b8650018 lm lmw 3,d0

0 7 | PWR dfmt 00000008 b0e50040 sth 7,d8

0 8 | PWR dfmt 0000000c 80230020 l lwz 1,0x20(3)

0 9 | PWR dfmt 00000010 30220003 ai addic 1,2,3

0 10 | PWR dfmt 00000014 0cd78300 ti twi 6,23,-32000

0 11 | PWR dfmt 00000018 2c070af0 cmpi 0,7,2800

0 12 | PWR dfmt 0000001c 2c070af0 cmpi 0,0,7,2800

0 13 | PWR dfmt 00000020 30220003 si subic 1,2,-3

0 14 | PWR dfmt 00000024 34220003 si. subic. 1,2,-3

0 15 | PWR dfmt 00000028 703e00ff andil. andi. 30,1,0xFF

0 16 | PWR dfmt 0000002c 2b9401f4 cmpli 7,20,500

0 17 | PWR dfmt 00000030 0c2501a4 tlgti twlgti 5,420

0 18 | PWR dfmt 00000034 34220003 ai. addic. 1,2,3

0 19 | PWR dfmt 00000038 2c9ff380 cmpi 1,31,-3200

0 20 | PWR dfmt 0000003c 281f0c80 cmpli 0,31,3200

0 21 | PWR dfmt 00000040 8ba5000c lbz 29,d1

0 22 | PWR dfmt 00000044 85e5000c lu lwzu 15,d1

0 23 | PWR dfmt 00000048 1df5fec0 muli mulli 15,21,-320

0 24 | PWR dfmt 0000004c 62af0140 oril ori 15,21,320

0 25 | PWR dfmt 00000050 91e5000c st stw 15,d1

0 26 | PWR dfmt 00000054 bde5000c stm stmw 15,d1

0 27 | PWR dfmt 00000058 95e5000c stu stwu 15,d1

62 Assembler Language Reference

0 28 | PWR dfmt 0000005c 69ef0960 xoril xori 15,15,2400

0 29 | PWR dfmt 00000060 6d8c0960 xoriu xoris 12,12,2400

0 30 | PWR dfmt 00000064 3a9eff38 addi 20,30,-200

0 31 |

0 32 |

0 33 | .csect also[RW]

0 34 | data:

0 35 | PWR also 00000000 00000000 .long 0,0,0

 | 00000004

 | PWR also 00000008 00000000

0 36 | PWR also 0000000c 00000003 d1: long 3,4,5

 | PWR also 00000010 00000004 # d1 = 0xc = 12

 | PWR also 00000014 00000005

0 37 | PWR also 00000018 00000068 d0: long data # d0 = 0x18 = 24

0 38 | PWR also 0000001c 00000000 data2: space 36

 | 00000020

 | PWR also 0000003c 00000000

0 39 | PWR also 00000040 000023e0 d8: long 9184 # d8 = 0x40 = 64

0 40 | PWR also 00000044 ffffffff d9: long 0xFFFFFFFF # d9 = 0x44

0 41 | #

0 42 | # 0000 00000000 00000000 00000000 00000003

0 43 | # 0010 00000004 00000005 0000000C 00000000

0 44 | # 0020 00000000 00000000 00000000 00000000

0 45 | # 0030 000023E0

Related Information

“Assembling and Linking a Program” on page 53.

“Understanding Assembler Passes” on page 57.

“Interpreting a Symbol Cross-Reference.”

“Subroutine Linkage Convention” on page 65.

“Understanding and Programming the TOC” on page 82.

“Running a Program” on page 87.

The as command.

Interpreting a Symbol Cross-Reference

The following is an example of the symbol cross-reference for the hello.s assembly program:

Symbol File CSECT Line #

.main hello.s -- 22

.main hello.s .main 28 *

.main hello.s -- 29

.main hello.s .main 43 *

.printf hello.s -- 76

.printf hello.s -- 104

T.data hello.s data 17 *

T.data hello.s data 69

T.hello hello.s .main 28 *

TOC hello.s TOC 23

_helloworld hello.s -- 74

_helloworld hello.s data 113 *

argarea hello.s -- 35 *

argarea hello.s -- 40

data hello.s -- 17

data hello.s data 17 *

data hello.s data 111 *

linkarea hello.s -- 36 *

Chapter 5. Assembling and Linking a Program 63

linkarea hello.s -- 40

locstckarea hello.s -- 37 *

locstckarea hello.s -- 40

main hello.s -- 18

main hello.s main 21 *

main hello.s main 28

nfprs hello.s -- 39 *

nfprs hello.s -- 40

nfprs hello.s -- 59

nfprs hello.s -- 90

ngprs hello.s -- 38 *

ngprs hello.s -- 40

ngprs hello.s -- 59

ngprs hello.s -- 90

szdsa hello.s -- 40 *

szdsa hello.s -- 64

szdsa hello.s -- 82

szdsa hello.s -- 88

The first column lists the symbol names that appear in the source program. The second column lists the

source file name in which the symbols are located. The third column lists the csect names in which the

symbols are defined or located.

In the column listing the csect names, a –– (double dash) means one of the following:

v The symbol’s csect has not been defined yet. In the example, the first and third .main (.main[PR]) is

defined through line 42.

v The symbol is an external symbol. In the example, .printf is an external symbol and, therefore, is not

associated with any csect.

v The symbol to be defined is a symbolic constant. When the .set pseudo-op is used to define a symbol,

the symbol is a symbolic constant and does not have a csect associated with it. In the example,

argarea, linkarea, locstckarea, nfprs, ngprs, and szdsa are symbolic constants.

The fourth column lists the line number in which the symbol is located. An * (asterisk) after the line number

indicates that the symbol is defined in this line. If there is no asterisk after the line number, the symbol is

referenced in the line.

Related Information

“Assembling and Linking a Program” on page 53.

“Understanding Assembler Passes” on page 57.

“Interpreting an Assembler Listing” on page 59.

“Subroutine Linkage Convention” on page 65.

“Understanding and Programming the TOC” on page 82.

“Running a Program” on page 87.

Chapter 7, “Migrating Source Programs,” on page 113.

The as command.

64 Assembler Language Reference

Subroutine Linkage Convention

This article discusses the following:

v “Linkage Convention Overview”

v “Calling Routine’s Responsibilities” on page 77

v “Called Routine’s Responsibilities” on page 77

v “Using Milicode Routines” on page 80

Linkage Convention Overview

The subroutine linkage convention describes the machine state at subroutine entry and exit. When

followed, this scheme allows routines compiled separately in the same or different languages to be linked

and executed when called.

The linkage convention allows for parameter passing and return values to be in floating-point registers

(FPRs), general-purpose registers (GPRs), or both.

Object Mode Considerations

The following discussion applies to both 32-bit mode and 64-bit mode with the following notes:

v General purpose registers in 64-bit mode are 64 bits wide (double- word). This implies that space usage

of the stack increases by a factor of two for register storage. Wherever, below, the term word is used,

assume (unless otherwise stated) that the size of the object in question is 1 word in 32-bit mode, and 2

words (a double-word) in 64-bit mode.

v The offsets shown in the runtime stack figure should be doubled for 64-bit mode. In 32-bit mode, the

stack as shown requires 56 bytes:

– 1 word for each of the 6 registers CR, LR, compiler-reserved, linker-reserved, and saved-TOC.

– 8 words for the 8 volatile registers.

This totals 14 words, or 56 bytes. In 64-bit mode, each field is twice as large (a double-word), thus

requiring 28 words, or 112 bytes.

v Floating point registers are saved in the same format in both modes. The storage requirements are the

same.

v Stack pointer alignment requirements remain the same for both modes.

v The GPR save routine listed below illustrates the methodology for saving registers in 32-bit mode. For

64-bit mode, the offsets from GPR1, the stack pointer register, would be twice the values shown.

Additionally, the load instruction used would be ld and the store instuction would be stdu.

Register Usage and Conventions

The PowerPC 32-bit architecture has 32 GPRs and 32 FPRs. Each GPR is 32 bits wide, and each FPR is

64 bits wide. There are also special registers for branching, exception handling, and other purposes. The

General-Purpose Register Convention table shows how GPRs are used.

 Table 2. General-Purpose Register Conventions

Register Status Use

GPR0 volatile In function prologs.

GPR1 dedicated Stack pointer.

GPR2 dedicated Table of Contents (TOC) pointer.

GPR3 volatile First word of a function’s argument list; first word of a scalar function return.

GPR4 volatile Second word of a function’s argument list; second word of a scalar function

return.

GPR5 volatile Third word of a function’s argument list.

Chapter 5. Assembling and Linking a Program 65

Table 2. General-Purpose Register Conventions (continued)

Register Status Use

GPR6 volatile Fourth word of a function’s argument list.

GPR7 volatile Fifth word of a function’s argument list.

GPR8 volatile Sixth word of a function’s argument list.

GPR9 volatile Seventh word of a function’s argument list.

GPR10 volatile Eighth word of a function’s argument list.

GPR11 volatile In calls by pointer and as an environment pointer for languages that require

it (for example, PASCAL).

GPR12 volatile For special exception handling required by certain languages and in glink

code.

GPR13 reserved Reserved under 64-bit environment; not restored across system calls.

GPR14:GPR31 nonvolatile These registers must be preserved across a function call.

The preferred method of using GPRs is to use the volatile registers first. Next, use the nonvolatile registers

in descending order, starting with GPR31 and proceeding down to GPR14. GPR1 and GPR2 must be

dedicated as stack and Table of Contents (TOC) area pointers, respectively. GPR1 and GPR2 must

appear to be saved across a call, and must have the same values at return as when the call was made.

Volatile registers are scratch registers presumed to be destroyed across a call and are, therefore, not

saved by the callee. Volatile registers are also used for specific purposes as shown in the previous table.

Nonvolatile and dedicated registers are required to be saved and restored if altered and, thus, are

guaranteed to retain their values across a function call.

The Floating-Point Register Conventions table shows how the FPRs are used.

 Table 3. Floating-Point Register Conventions

Register Status Use

FPR0 volatile As a scratch register.

FPR1 volatile First floating-point parameter; first 8 bytes of a floating-point scalar return.

FPR2 volatile Second floating-point parameter; second 8 bytes of a floating-point scalar

return.

FPR3 volatile Third floating-point parameter; third 8 bytes of a floating-point scalar return.

FPR4 volatile Fourth floating-point parameter; fourth 8 bytes of a floating-point scalar

return.

FPR5 volatile Fifth floating-point parameter.

FPR6 volatile Sixth floating-point parameter.

FPR7 volatile Seventh floating-point parameter.

FPR8 volatile Eighth floating-point parameter.

FPR9 volatile Ninth floating-point parameter.

FPR10 volatile Tenth floating-point parameter.

FPR11 volatile Eleventh floating-point parameter.

FPR12 volatile Twelfth floating-point parameter.

FPR13 volatile Thirteenth floating-point parameter.

FPR14:FPR31 nonvolatile If modified, must be preserved across a call.

66 Assembler Language Reference

The preferred method of using FPRs is to use the volatile registers first. Next, the nonvolatile registers are

used in descending order, starting with FPR31 and proceeding down to FPR14.

Only scalars are returned in multiple registers. The number of registers required depends on the size and

type of the scalar. For floating-point values, the following results occur:

v A 128-bit floating-point value returns the high-order 64 bits in FPR1 and the low-order 64 bits in FPR2.

v An 8-byte or 16-byte complex value returns the real part in FPR1 and the imaginary part in FPR2.

v A 32-byte complex value returns the real part as a 128-bit floating-point value in FPR1 and FPR2, with

the high-order 64 bits in FPR1 and the low-order 64 bits in FPR2. The imaginary part of a 32-byte

complex value returns the high-order 64 bits in FPR3 and the low-order 64 bits in FPR4.

Special Registers in the PowerPC

The Special-Purpose Register Conventions table shows the PowerPC special purpose registers (SPRs).

These are the only SPRs for which there is a register convention.

 Table 4. Special-Purpose Register Conventions

Register or Register

Field

Status Use

LR volatile Used as a branch target address or holds a return address.

CTR volatile Used for loop count decrement and branching.

XER volatile Fixed-point exception register.

FPSCR volatile Floating-point exception register.

CR0, CR1 volatile Condition-register bits.

CR2, CR3, CR4 nonvolatile Condition-register bits.

CR5, CR6, CR7 volatile Condition-register bits.

Routines that alter CR2, CR3, and CR4 must save and restore at least these fields of the CR. Use of

other CR fields does not require saving or restoring.

Runtime Process Stack

The stack format convention is designed to enhance the efficiency of the following:

v Prolog and epilog function usage

v Parameter passing

v Shared library support

The Runtime Stack figure illustrates the runtime stack. It shows the stack after the sender function calls

the catcher function, but before the catcher function calls another function. This figure is based on the

assumption that the catcher function will call another function. Therefore, the catcher function requires

another link area (as described in the stack layout). PWn refers to the nth word of parameters that are

passed.

Chapter 5. Assembling and Linking a Program 67

Stack Layout: Only one register, referred to as the stack pointer (SP), is used for addressing the stack,

and GPR1 is the dedicated stack pointer register. It grows from numerically higher storage addresses to

numerically lower addresses.

The Runtime Stack figure illustrates what happens when the sender function calls the catcher function,

and how the catcher function requires a stack frame of its own. When a function makes no calls and

requires no local storage of its own, no stack frame is required and the SP is not altered.

Figure 2. Runtime Stack

68 Assembler Language Reference

Notes:

1. To reduce confusion, data being passed from the sender function (the caller) is referred to as

arguments, and the same data being received by the catcher function (the callee) is referred to as

parameters. The output argument area of sender is the same as the input parameter area of catcher.

2. The address value in the stack pointer must be quadword-aligned. (The address value must be a

multiple of 16.)

Stack Areas: For convenience, the stack layout has been divided into eight areas numbered 1 to 8,

starting from the bottom of the diagram (high address) to the top of the diagram (low address). The

sender’s stack pointer is pointing to the top of area 3 when the call to the catcher function is made, which

is also the same SP value that is used by the catcher function on entry to its prolog. The following is a

description of the stack areas, starting from the bottom of the diagram (area 1) and moving up to the top

(area 8):

v Area 1: Sender’s Local Variable Area

Area 1 is the local variable area for the sender function, contains all local variables and temporary

space required by this function.

v Area 2: Sender’s Output Argument Area

Area 2 is the output argument area for the sender function. This area is at least eight words in size and

must be doubleword-aligned. The first eight words are not used by the caller (the sender function)

because their corresponding values are placed directly in the argument registers (GPR3:GPR10). The

storage is reserved so that if the callee (the catcher function) takes the address of any of its

parameters, the values passed in GPR3:GPR10 can be stored in their address locations (PW1:PW8,

respectively). If the sender function is passing more than eight arguments to the catcher function, then

it must reserve space for the excess parameters. The excess parameters must be stored as register

images beyond the eight reserved words starting at offset 56 from the sender function’s SP value.

Note: This area may also be used by language processors and is volatile across calls to other

functions.

v Area 3: Sender’s Link Area

Area 3 is the link area for the sender function. This area consists of six words and is at offset 0 from

the sender function’s SP at the time the call to the catcher function is made. Certain fields in this area

are used by the catcher function as part of its prolog code, those fields are marked in the Runtime

Stack figure and are explained below.

The first word is the back chain, the location where the sender function saved its caller’s SP value prior

to modifying the SP. The second word (at offset 4) is where the catcher function can save the CR if it

modifies any of the nonvolatile CR fields. The third word (offset 8) is where the catcher function can

save the LR if the catcher function makes any calls.

The fourth word is reserved for compilers, and the fifth word is used by binder-generated instructions.

The last word in the link area (offset 20) is where the TOC area register (see “Understanding and

Programming the TOC” on page 82 for description) is saved by the global linkage (glink) interface

routine. This occurs when an out-of-module call is performed, such as when a shared library function is

called.

v Area 4: Catcher’s Floating-Point Registers Save Area

Area 4 is the floating-point register save area for the callee (the catcher function) and is

doubleword-aligned. It represents the space needed to save all the nonvolatile FPRs used by the called

program (the catcher function). The FPRs are saved immediately above the link area (at a lower

address) at a negative displacement from the sender function’s SP. The size of this area varies from

zero to a maximum of 144 bytes, depending on the number of FPRs being saved (maximum number is

18 FPRs * 8 bytes each).

v Area 5: Catcher’s General-Purpose Registers Save Area

Area 5 is the general-purpose register save area for the catcher function and is at least word-aligned. It

represents the space needed by the called program (the catcher function) to save all the nonvolatile

GPRs. The GPRs are saved immediately above the FPR save area (at a lower address) at a negative

Chapter 5. Assembling and Linking a Program 69

displacement from the sender function’s SP. The size of this area varies from zero to a maximum of 76

bytes, depending on the number of GPRs being saved (maximum number is 19 GPRs * 4 bytes each).

Notes:

1. A stackless leaf procedure makes no calls and requires no local variable area, but it may use

nonvolatile GPRs and FPRs.

2. The save area consists of the FPR save area (4) and the GPR save area (5), which have a

combined maximum size of 220 bytes. The stack floor of the currently executing function is located

at 220 bytes less than the value in the SP. The area between the value in the SP and the stack floor

is the maximum save area that a stackless leaf function may use without acquiring its own stack.

Functions may use this area as temporary space which is volatile across calls to other functions.

Execution elements such as interrupt handlers and binder-inserted code, which cannot be seen by

compiled codes as calls, must not use this area.

The system-defined stack floor includes the maximum possible save area. The formula for the size of

the save area is:

18*8

(for FPRs)

 + 19*4

(for GPRs)

 = 220

v Area 6: Catcher’s Local Variable Area

Area 6 is the local variable area for the catcher function and contains local variables and temporary

space required by this function. The catcher function addresses this area using its own SP, which

points to the top of area 8, as a base register.

v Area 7: Catcher’s Output Argument Area

Area 7 is the output argument area for the catcher function and is at least eight words in size and must

be doubleword-aligned. The first eight words are not used by the caller (the catcher function), because

their corresponding values are placed directly in the argument registers (GPR3:GPR10). The storage is

reserved so that if the catcher function’s callee takes the address of any of its parameters, then the

values passed in GPR3:GPR10 can be stored in their address locations. If the catcher function is

passing more than eight arguments to its callee (PW1:PW8, respectively), it must reserve space for the

excess parameters. The excess parameters must be stored as register images beyond the eight

reserved words starting at offset 56 from the catcher function’s SP value.

Note: This area can also be used by language processors and is volatile across calls to other

functions.

v Area 8: Catcher’s Link Area

Area 8 is the link area for the catcher function and contains the same fields as those in the sender

function’s link area (area 3).

Stack-Related System Standard

All language processors and assemblers must maintain the stack-related system standard that the SP

must be atomically updated by a single instruction. This ensures that there is no timing window where an

interrupt that would result in the stack pointer being only partially updated can occur.

Note: The examples of program prologs and epilogs show the most efficient way to update the stack

pointer.

Prologs and Epilogs

Prologs and epilogs may be used for functions, including setting the registers on function entry and

restoring the registers on function exit.

No predetermined code sequences representing function prologs and epilogs are dictated. However,

certain operations must be performed under certain conditions. The following diagram shows the stack

frame layout.

70 Assembler Language Reference

A typical function’s execution stack is:

v Prolog action

v Body of function

v Epilog action

The Prolog Actions and Epilog Actions tables show the conditions and actions required for prologs and

epilogs.

 Table 5. Prolog Actions

If: Then:

Any nonvolatile FPRs (FPR14:FPR31) are used Save them in the FPR save area (area 4 in the previous

figure).

Any nonvolatile GPRs (GPR13:GPR31) are used Save them in the GPR save area (area 5 in the previous

figure).

LR is used for a nonleaf procedure Save the LR at offset eight from the caller function SP.

Figure 3. Stack Frame Layout

Chapter 5. Assembling and Linking a Program 71

Table 5. Prolog Actions (continued)

If: Then:

Any of the nonvolatile condition register (CR) fields are

used.

Save the CR at offset four from the caller function SP.

A new stack frame is required Get a stack frame and decrement the SP by the size of

the frame padded (if necessary) to a multiple of 16 to

acquire a new SP and save caller’s SP at offset 0 from

the new SP.

Note: A leaf function that does not require stack space for local variables and temporaries can save its

caller registers at a negative offset from the caller SP without actually acquiring a stack frame.

 Table 6. Epilog Actions

If: Then:

Any nonvolatile FPRs were saved Restore the FPRs that were used.

Any nonvolatile GPRs were saved Restore the GPRs that were saved.

The LR was altered because a nonleaf procedure was

invoked

Restore LR.

The CR was altered Restore CR.

A new stack was acquired Restore the old SP to the value it had on entry (the

caller’s SP). Return to caller.

While the PowerPC architecture provides both load and store multiple instructions for GPRs, it discourages

their use because their implementation on some machines may not be optimal. In fact, use of the load and

store multiple instructions on some future implementations may be significantly slower than the equivalent

series of single word loads or stores. However, saving many FPRs or GPRs with single load or store

instructions in a function prolog or epilog leads to increased code size. For this reason, the system

environment must provide routines that can be called from a function prolog and epilog that will do the

saving and restoring of the FPRs and GPRs. The interface to these routines, their source code, and some

prolog and epilog code sequences are provided.

As shown in the stack frame layout, the GPR save area is not at a fixed position from either the caller SP

or the callee SP. The FPR save area starts at a fixed position, directly above the SP (lower address) on

entry to that callee, but the position of the GPR save area depends on the number of FPRs saved. Thus, it

is difficult to write a general-purpose GPR-saving function that uses fixed displacements from SP.

If the routine needs to save both GPRs and FPRs, use GPR12 as the pointer for saving and restoring

GPRs. (GPR12 is a volatile register, but does not contain input parameters.) This results in the definition of

multiple-register save and restore routines, each of which saves or restores m FPRs and n GPRs. This is

achieved by executing a bla (Branch and Link Absolute) instruction to specially provided routines

containing multiple entry points (one for each register number), starting from the lowest nonvolatile

register.

Notes:

1. There are no entry points for saving and restoring GPR and FPR numbers greater than 29. It is more

efficient to save a small number of registers in the prolog than it is to call the save and restore

functions.

2. If the LR is not saved or restored in the following code segments, the language processor must

perform the saving and restoring as appropriate.

Language processors must use a proprietary method to conserve the values of nonvolatile registers across

a function call.

72 Assembler Language Reference

Three sets of save and restore routines must be made available by the system environment. These

routines are:

v A pair of routines to save and restore GPRs when FPRs are not being saved and restored.

v A pair of routines to save and restore GPRs when FPRs are being saved and restored.

v A pair of routines to save and restore FPRs.

Saving GPRs Only: For a function that saves and restores n GPRs and no FPRs, the saving can be

done using individual store and load instructions or by calling system-provided routines as shown in the

following example:

Note: The number of registers being saved is n. Sequences such as <32-n> in the following examples

indicate the first register number to be saved and restored. All registers from <32-n> to 31,

inclusive, are saved and restored.

#Following are the prolog/epilog of a function that saves n GPRS #(n>2):

mflr r0 #move LR into GPR0

bla _savegpr0_<32-n> #branch and link to save GPRs

stwu r1,<-frame_size>(r1) #update SP and save caller’s SP

... #frame_size is the size of the

 #stack frame to be required

<save CR if necessary>

...

... #body of function

...

<reload save CR if necessary>

...

<reload caller’s SP into R!> #see note below

ba _restgpr0_<32-n> #restore GPRs and return

Note: The restoring of the calling function SP can be done by either adding the frame_size value to the

current SP whenever frame_size is known, or by reloading it from offset 0 from the current SP. The

first approach is more efficient, but not possible for functions that use the alloca subroutine to

dynamically allocate stack space.

The following example shows a GPR save routine when FPRs are not saved:

_savegpr0_13 stw r13,-76(r1) #save r13

_savegpr0_14 stw r14,-72(r1) #save r14

_savegpr0_15 stw r15,-68(r1) #save r15

_savegpr0_16 stw r16,-64(r1) #save r16

_savegpr0_17 stw r17,-60(r1) #save r17

_savegpr0_18 stw r18,-56(r1) #save r18

_savegpr0_19 stw r19,-52(r1) #save r19

_savegpr0_20 stw r20,-48(r1) #save r20

_savegpr0_21 stw r21,-44(r1) #save r21

_savegpr0_22 stw r22,-40(r1) #save r22

_savegpr0_23 stw r23,-36(r1) #save r23

_savegpr0_24 stw r24,-32(r1) #save r24

_savegpr0_25 stw r25,-28(r1) #save r25

_savegpr0_26 stw r26,-24(r1) #save r26

_savegpr0_27 stw r27,-20(r1) #save r27

_savegpr0_28 stw r28,-16(r1) #save r28

_savegpr0_29 stw r29,-12(r1) #save r29

 stw r30,-8(r1) #save r30

 stw r31,-4(r1) #save r31

 stw r0 , 8(r1) #save LR in

 #caller’s frame

 blr #return

Note: This save routine must not be called when GPR30 or GPR31, or both, are the only registers beings

saved. In these cases, the saving and restoring must be done inline.

The following example shows a GPR restore routine when FPRs are not saved:

Chapter 5. Assembling and Linking a Program 73

_restgpr0_13 lwz r13,-76(r1) #restore r13

_restgpr0_14 lwz r14,-72(r1) #restore r14

_restgpr0_15 lwz r15,-68(r1) #restore r15

_restgpr0_16 lwz r16,-64(r1) #restore r16

_restgpr0_17 lwz r17,-60(r1) #restore r17

_restgpr0_18 lwz r18,-56(r1) #restore r18

_restgpr0_19 lwz r19,-52(r1) #restore r19

_restgpr0_20 lwz r20,-48(r1) #restore r20

_restgpr0_21 lwz r21,-44(r1) #restore r21

_restgpr0_22 lwz r22,-40(r1) #restore r22

_restgpr0_23 lwz r23,-36(r1) #restore r23

_restgpr0_24 lwz r24,-32(r1) #restore r24

_restgpr0_25 lwz r25,-28(r1) #restore r25

_restgpr0_26 lwz r26,-24(r1) #restore r26

_restgpr0_27 lwz r27,-20(r1) #restore r27

_restgpr0_28 lwz r28,-16(r1) #restore r28

_restgpr0_29 lwz r0,8(r1) #get return

 #address from

 #frame

 lwz r29,-12(r1) #restore r29

 mtlr r0 #move return

 #address to LR

 lwz r30,-8(r1) #restore r30

 lwz r31,-4(r1) #restore r31

 blr #return

Note: This restore routine must not be called when GPR30 or GPR31, or both, are the only registers

beings saved. In these cases, the saving and restoring must be done inline.

Saving GPRs and FPRs: For a function that saves and restores n GPRs and m FPRs (n>2 and m>2),

the saving can be done using individual store and load instructions or by calling system-provided routines

as shown in the following example:

#The following example shows the prolog/epilog of a function #which save n GPRs and m FPRs:

mflr r0 #move LR into GPR 0

subi r12,r1,8*m #compute GPR save pointer

bla _savegpr1_<32-n> #branch and link to save GPRs

bla _savefpr_<32-m>

stwu r1,<-frame_size>(r1) #update SP and save caller’s SP

...

<save CR if necessary>

...

... #body of function

...

<reload save CR if necessary>

...

<reload caller’s SP into r1> #see note below on

subi r12,r1,8*m #compute CPR restore pointer

bla _restgpr1_<32-n> #restore GPRs

ba _restfpr_<32-m> #restore FPRs and return

Note: The calling function SP can be restored by either adding the frame_size value to the current SP

whenever the frame_size is known or by reloading it from offset 0 from the current SP. The first

approach is more efficient, but not possible for functions that use the alloca subroutine to

dynamically allocate stack space.

The following example shows a GPR save routine when FPRs are saved:

_savegpr1_13 stw r13,-76(r12) #save r13

_savegpr1_14 stw r14,-72(r12) #save r14

_savegpr1_15 stw r15,-68(r12) #save r15

_savegpr1_16 stw r16,-64(r12) #save r16

_savegpr1_17 stw r17,-60(r12) #save r17

_savegpr1_18 stw r18,-56(r12) #save r18

_savegpr1_19 stw r19,-52(r12) #save r19

_savegpr1_20 stw r20,-48(r12) #save r20

74 Assembler Language Reference

_savegpr1_21 stw r21,-44(r12) #save r21

_savegpr1_22 stw r22,-40(r12) #save r22

_savegpr1_23 stw r23,-36(r12) #save r23

_savegpr1_24 stw r24,-32(r12) #save r24

_savegpr1_25 stw r25,-28(r12) #save r25

_savegpr1_26 stw r26,-24(r12) #save r26

_savegpr1_27 stw r27,-20(r12) #save r27

_savegpr1_28 stw r28,-16(r12) #save r28

_savegpr1_29 stw r29,-12(r12) #save r29

 stw r30,-8(r12) #save r30

 stw r31,-4(r12) #save r31

 blr #return

The following example shows an FPR save routine:

_savefpr_14 stfd f14,-144(r1) #save f14

_savefpr_15 stfd f15,-136(r1) #save f15

_savefpr_16 stfd f16,-128(r1) #save f16

_savefpr_17 stfd f17,-120(r1) #save f17

_savefpr_18 stfd f18,-112(r1) #save f18

_savefpr_19 stfd f19,-104(r1) #save f19

_savefpr_20 stfd f20,-96(r1) #save f20

_savefpr_21 stfd f21,-88(r1) #save f21

_savefpr_22 stfd f22,-80(r1) #save f22

_savefpr_23 stfd f23,-72(r1) #save f23

_savefpr_24 stfd f24,-64(r1) #save f24

_savefpr_25 stfd f25,-56(r1) #save f25

_savefpr_26 stfd f26,-48(r1) #save f26

_savefpr_27 stfd f27,-40(r1) #save f27

_savefpr_28 stfd f28,-32(r1) #save f28

_savefpr_29 stfd f29,-24(r1) #save f29

 stfd f30,-16(r1) #save f30

 stfd f31,-8(r1) #save f31

 stw r0 , 8(r1) #save LR in

 #caller’s frame

 blr #return

The following example shows a GPR restore routine when FPRs are saved:

_restgpr1_13 lwz r13,-76(r12) #restore r13

_restgpr1_14 lwz r14,-72(r12) #restore r14

_restgpr1_15 lwz r15,-68(r12) #restore r15

_restgpr1_16 lwz r16,-64(r12) #restore r16

_restgpr1_17 lwz r17,-60(r12) #restore r17

_restgpr1_18 lwz r18,-56(r12) #restore r18

_restgpr1_19 lwz r19,-52(r12) #restore r19

_restgpr1_20 lwz r20,-48(r12) #restore r20

_restgpr1_21 lwz r21,-44(r12) #restore r21

_restgpr1_22 lwz r22,-40(r12) #restore r22

_restgpr1_23 lwz r23,-36(r12) #restore r23

_restgpr1_24 lwz r24,-32(r12) #restore r24

_restgpr1_25 lwz r25,-28(r12) #restore r25

_restgpr1_26 lwz r26,-24(r12) #restore r26

_restgpr1_27 lwz r27,-20(r12) #restore r27

_restgpr1_28 lwz r28,-16(r12) #restore r28

_restgpr1_29 lwz r29,-12(r12) #restore r29

 lwz r30,-8(r12) #restore r30

 lwz r31,-4(r12) #restore r31

 blr #return

The following example shows an FPR restore routine:

_restfpr_14 lfd r14,-144(r1) #restore r14

_restfpr_15 lfd r15,-136(r1) #restore r15

_restfpr_16 lfd r16,-128(r1) #restore r16

_restfpr_17 lfd r17,-120(r1) #restore r17

_restfpr_18 lfd r18,-112(r1) #restore r18

_restfpr_19 lfd r19,-104(r1) #restore r19

Chapter 5. Assembling and Linking a Program 75

_restfpr_20 lfd r20,-96(r1) #restore r20

_restfpr_21 lfd r21,-88(r1) #restore r21

_restfpr_22 lfd r22,-80(r1) #restore r22

_restfpr_23 lfd r23,-72(r1) #restore r23

_restfpr_24 lfd r24,-64(r1) #restore r24

_restfpr_25 lfd r25,-56(r1) #restore r25

_restfpr_26 lfd r26,-48(r1) #restore r26

_restfpr_27 lfd r27,-40(r1) #restore r27

_restfpr_28 lfd r28,-32(r1) #restore r28

_restfpr_29 lwz r0,8(r1) #get return

 #address from

 #frame

 lfd r29,-24(r1) #restore r29

 mtlr r0 #move return

 #address to LR

 lfd r30,-16(r1) #restore r30

 lfd r31,-8(r1) #restore r31

 blr #return

Saving FPRs Only: For a function that saves and restores m FPRs (m>2), the saving can be done using

individual store and load instructions or by calling system-provided routines as shown in the following

example:

#The following example shows the prolog/epilog of a function #which saves m FPRs and no GPRs:

mflr r0 #move LR into GPR 0

bla _savefpr_<32-m>

stwu r1,<-frame_size>(r1) #update SP and save caller’s SP

...

<save CR if necessary>

...

... #body of function

...

<reload save CR if necessary>

...

<reload caller’s SP into r1> #see note below

ba _restfpr_<32-m> #restore FPRs and return

Notes:

1. There are no entry points for saving and restoring GPR and FPR numbers higher than 29. It is more

efficient to save a small number of registers in the prolog than to call the save and restore functions.

2. The restoring of the calling function SP can be done by either adding the frame_size value to the

current SP whenever frame_size is known, or by reloading it from offset 0 from the current SP. The

first approach is more efficient, but not possible for functions that use the alloca subroutine to

dynamically allocate stack space.

Updating the Stack Pointer: The PowerPC stwu (Store Word with Update) instruction is used for

computing the new SP and saving the back chain. This instruction has a signed 16-bit displacement field

that can represent a maximum signed value of 32,768. A stack frame size greater than 32K bytes requires

two instructions to update the SP, and the update must be done atomically.

The two assembly code examples illustrate how to update the SP in a prolog.

To compute a new SP and save the old SP for stack frames larger than or equal to 32K bytes:

addis r12, r0, (<-frame_size> > 16) & 0XFFFF

 # set r12 to left half of frame size

ori r12, r12 (-frame_size> & 0XFFFF

 # Add right halfword of frame size

stwux r1, r1, r12 # save old SP and compute new SP

To compute a new SP and save the old SP for stack frames smaller than 32K bytes:

stwu r1, <-frame_size>(r1) #update SP and save caller’s SP

76 Assembler Language Reference

Calling Routine’s Responsibilities

When an assembler language program calls another program, the caller should not use the names of the

called program’s commands, functions, or procedures as global assembler language symbols. To avoid

confusion, follow the naming conventions for the language of the called program when you create symbol

names. For example, if you are calling a C language program, be certain you use the naming conventions

for that language.

A called routine has two symbols associated with it: a function descriptor (Name) and an entry point

(.Name). When a call is made to a routine, the compiler branches to the name point directly.

Except for when loading parameters into the proper registers, calls to functions are expanded by compilers

to include an NOP instruction after each branch and link instruction. This extra instruction is modified by

the linkage editor to restore the contents of the TOC register (register 2) on return from an out-of-module

call.

The instruction sequence produced by compilers is:

bl .foo #Branch to foo

cror 31,31,31 #Special NOP 0x4ffffb82

Note: Some compilers produce a cror 15,15,15 (0x4def7b82) instruction. To avoid having to restore

condition register 15 after a call, the linkage editor transforms cror 15,15,15 into cror 31,31,31.

Condition register bit 31 is not preserved across a call and does not have to be restored.

The linkage editor will do one of two things when it sees the bl instruction (in the previous instruction

sequence, on a call to the foo function):

v If the foo function is imported (not in the same executable module), the linkage editor:

– Changes the bl .foo instruction to bl .glink_of_foo (a global linkage routine).

– Inserts the .glink code sequence into the (/usr/lib/glink.o file) module.

– Replaces the NOP cror instruction with an l (load) instruction to restore the TOC register.

The bl .foo instruction sequence is changed to:

bl .glink_of_foo #Branch to global linkage routine for foo

l 2,20(1) #Restore TOC register instruction 0x80410014

v If the foo function is bound in the same executable module as its caller, the linkage editor:

– Changes the bl .glink_of_foo sequence (a global linkage routine) to bl .foo.

– Replaces the restore TOC register instruction with the special NOP cror instruction.

The bl .glink_of_foo instruction sequence is changed to:

bl .foo #Branch to foo

cror 31,31,31 #Special NOP instruction 0x4ffffb82

Note: For any export, the linkage editor inserts the procedure’s descriptor into the module.

Called Routine’s Responsibilities

Prologs and epilogs are used in the called routines. On entry to a routine, the following steps should be

performed:

1. Use some or all of the prolog actions described in the Prolog Actions table.

2. Store the back chain and decrement the stack pointer (SP) by the size of the stack frame.

Note: If a stack overflow occurs, it will be known immediately when the store of the back chain is

completed.

On exit from a procedure, use some or all of the epilog actions described in the Epilog Actions table.

Chapter 5. Assembling and Linking a Program 77

Traceback Tags

Every assembly (compiled) program needs traceback information for the debugger to examine if the

program traps or crashes during execution. This information is in a traceback table at the end of the last

machine instruction in the program and before the program’s constant data.

The traceback table starts with a full word of zeros, X’00000000’, which is not a valid system instruction.

The zeros are followed by 2 words (64 bits) of mandatory information and several words of optional

information, as defined in the /usr/include/sys/debug.h file. Using this traceback information, the

debugger can unwind the CALL chain and search forward from the point where the failure occurred until it

reaches the end of the program (the word of zeros).

In general, the traceback information includes the name of the source language and information about

registers used by the program, such as which general-purpose and floating-point registers were saved.

Example

The following is an example of assembler code called by a C routine:

Call this assembly routine from C routine:

callfile.c:

main()

{

examlinkage();

}

Compile as follows:

cc -o callfile callfile.c examlinkage.s

On entry to a procedure(callee), all or some of the

following steps should be done:

1. Save the link register at offset 8 from the

stack pointer for non-leaf procedures.

2. If any of the CR bits 8-19(CR2,CR3,CR4) is used

then save the CR at displacement 4 of the current

stack pointer.

3. Save all non-volatile FPRs used by this routine.

If more that three non-volatile FPR are saved,

a call to ._savefn can be used to

save them (n is the number of the first FPR to be

saved).

4. Save all non-volatile GPRs used by this routine

in the caller’s GPR SAVE area (negative displacement

from the current stack pointer r1).

5. Store back chain and decrement stack pointer by the

size of the stack frame.

On exit from a procedure (callee), all or some of the

following steps should be done:

1. Restore all GPRs saved.

2. Restore stack pointer to value it had on entry.

3. Restore Link Register if this is a non-leaf

procedure.

4. Restore bits 20-31 of the CR is it was saved.

5. Restore all FPRs saved. If any FPRs were saved then

a call to ._savefn can be used to restore them

(n is the first FPR to be restored).

6. Return to caller.

The following routine calls printf() to print a string.

The routine performs entry steps 1-5 and exit steps 1-6.

The prolog/epilog code is for small stack frame size.

DSA + 8 < 32k

 .file "examlinkage.s"

78 Assembler Language Reference

#Static data entry in T(able)O(f)C(ontents)

 .toc

T.examlinkage.c: .tc examlinkage.c[tc],examlinkage.c[rw]

 .globl examlinkage[ds]

#examlinkage[ds] contains definitions needed for

#runtime linkage of function examlinkage

 .csect examlinkage[ds]

 .long .examlinkage[PR]

 .long TOC[tc0]

 .long 0

#Function entry in T(able)O(f)C(ontents)

 .toc

T.examlinkage: .tc .examlinkage[tc],examlinkage[ds]

#Main routine

 .globl .examlinkage[PR]

 .csect .examlinkage[PR]

Set current routine stack variables

These values are specific to the current routine and

can vary from routine to routine

 .set argarea, 32

 .set linkarea, 24

 .set locstckarea, 0

 .set nfprs, 18

 .set ngprs, 19

 .set szdsa,

8*nfprs+4*ngprs+linkarea+argarea+locstckarea

#PROLOG: Called Routines Responsibilities

 # Get link reg.

 mflr 0

 # Get CR if current routine alters it.

 mfcr 12

 # Save FPRs 14-31.

 bl ._savef14

 cror 31, 31, 31

 # Save GPRs 13-31.

 stm 13, -8*nfprs-4*ngprs(1)

 # Save LR if non-leaf routine.

 st 0, 8(1)

 # Save CR if current routine alters it.

 st 12, 4(1)

 # Decrement stack ptr and save back chain.

 stu 1, -szdsa(1)

################################

#load static data address

#################################

 l 14,T.examlinkage.c(2)

 # Load string address which is an argument to printf.

 cal 3, printing(14)

 # Call to printf routine

 bl .printf[PR]

 cror 31, 31, 31

#EPILOG: Return Sequence

 # Restore stack ptr

 ai 1, 1, szdsa

 # Restore GPRs 13-31.

 lm 13, -8*nfprs-4*ngprs(1)

 # Restore FPRs 14-31.

 bl ._restf14

 cror 31, 31, 31

 # Get saved LR.

 l 0, 8(1)

 # Get saved CR if this routine saved it.

 l 12, 4(1)

 # Move return address to link register.

 mtlr 0

 # Restore CR2, CR3, & CR4 of the CR.

 mtcrf 0x38,12

Chapter 5. Assembling and Linking a Program 79

Return to address held in Link Register.

 brl

 .tbtag 0x0,0xc,0x0,0x0,0x0,0x0,0x0,0x0

 # External variables

 .extern ._savef14

 .extern ._restf14

 .extern .printf[PR]

#################################

Data

#################################

 .csect examlinkage.c[rw]

 .align 2

printing: .byte ’E,’x,’a,’m,’p,’l,’e,’ ,’f,’o,’r,’

 .byte ’P,’R,’I,’N,’T,’I,’N,’G

 .byte 0xa,0x0

Using Milicode Routines

All of the fixed-point divide instructions, and some of the multiply instructions, are different for POWER

family and PowerPC. To allow programs to run on systems based on either architecture, a set of special

routines is provided by the operating system. These are called milicode routines and contain

machine-dependent and performance-critical functions. Milicode routines are located at fixed addresses in

the kernel segment. These routines can be reached by a bla instruction. All milicode routines use the link

register.

Notes:

1. No unnecessary registers are destroyed. Refer to the definition of each milicode routine for register

usage information.

2. Milicode routines do not alter any floating-point register, count register, or general-purpose registers

(GPRs) 10-12. The link register can be saved in a GPR (for example, GPR 10) if the call appears in a

leaf procedure that does not use nonvolatile GPRs.

3. Milicode routines do not make use of a TOC.

The following milicode routines are available:

 __mulh Calculates the high-order 32 bits of the integer product arg1 * arg2.

Input R3 = arg1 (signed integer)

 R4 = arg2 (signed integer)

Output R3 = high-order 32 bits of arg1*arg2

POWER family Register Usage

GPR3, GPR4, MQ

PowerPC Register Usage

GPR3, GPR4

__mull Calculates 64 bits of the integer product arg1 * arg2, returned in two 32-bit registers.

Input R3 = arg1 (signed integer)

 R4 = arg2 (signed integer)

Output R3 = high-order 32 bits of arg1*arg2

 R4 = low-order 32 bits of arg1*arg2

POWER family Register Usage

GPR3, GPR4, MQ

PowerPC Register Usage

GPR0, GPR3, GPR4

80 Assembler Language Reference

__divss Calculates the 32-bit quotient and 32-bit remainder of signed integers arg1/arg2. For division by zero

and overflow, the quotient and remainder are undefined and may vary by implementation.

Input R3 = arg1 (dividend) (signed integer)

 R4 = arg2 (divisor) (signed integer)

Output R3 = quotient of arg1/arg2 (signed integer)

 R4 = remainder of arg1/arg2 (signed integer)

POWER family Register Usage

GPR3, GPR4, MQ

PowerPC Register Usage

GPR0, GPR3, GPR4

__divus Calculated the 32-bit quotient and 32-bit remainder of unsigned integers arg1/arg2. For division by zero

and overflow, the quotient and remainder are undefined and may vary by implementation.

Input R3 = arg1 (dividend) (unsigned integer)

 R4 = arg2 (divisor) (unsigned integer)

Output R3 = quotient of arg1/arg2 (unsigned integer)

 R4 = remainder of arg1/arg2 (unsigned integer)

POWER family Register Usage

GPR0, GPR3, GPR4, MQ, CR0 and CR1 of CR

PowerPC Register Usage

GPR0, GPR3, GPR4

__quoss Calculates the 32-bit quotient of signed integers arg1/arg2. For division by zero and overflow, the

quotient and remainder are undefined and may vary by implementation.

Input R3 = arg1 (dividend) (signed integer)

 R4 = arg2 (divisor) (signed integer)

Output R3 = quotient of arg1/arg2 (signed integer)

POWER family Register Usage

GPR3, GPR4, MQ

PowerPC Register Usage

GPR3, GPR4

__quous Calculates the 32-bit quotient of unsigned integers arg1/arg2. For division by zero and overflow, the

quotient and remainder are undefined and may vary by implementation.

Input R3 = arg1 (dividend) (unsigned integer)

 R4 = arg2 (divisor) (unsigned integer)

Output R3 = quotient of arg1/arg2 (unsigned integer)

POWER family Register Usage

GPR0, GPR3, GPR4, MQ, CR0 and CR1 of CR

PowerPC Register Usage

GPR3, GPR4

The following example uses the mulh milicode routine in an assembler program:

li R3, -900

li R4, 50000

bla .__mulh

...

.extern .__mulh

Chapter 5. Assembling and Linking a Program 81

Related Information

“Assembling and Linking a Program” on page 53.

“Understanding Assembler Passes” on page 57.

“Interpreting an Assembler Listing” on page 59.

“Interpreting a Symbol Cross-Reference” on page 63.

“Understanding and Programming the TOC.”

“Running a Program” on page 87.

“b (Branch) Instruction” on page 143, “cror (Condition Register OR) Instruction” on page 168.

Understanding and Programming the TOC

The Table of Contents (TOC) of an XCOFF file is analogous to the table of contents of a book. The TOC is

used to find objects in an XCOFF file. An XCOFF file is composed of sections that contain different types

of data to be used for specific purposes. Some sections can be further subdivided into subsections or

csects. A csect is the smallest replaceable unit of an XCOFF file. At run time, the TOC can contain the

csect locations (and the locations of labels inside of csects).

The three sections that contain csects are:

 .text Indicates that this csect contains code or read-only data.

.data Indicates that this csect contains read-write data.

.bss Indicates that this csect contains uninitialized mapped data.

The storage class of the csect determines the section in which the csect is grouped.

The TOC is located in the .data section of an XCOFF object file and is composed of TOC entries. Each

TOC entry is a csect with storage mapping class of TC or TD.

A TOC entry with TD storage mapping class contains scalar data which can be directly accessed from the

TOC. This permits some frequently used global symbols to be accessed directly from the TOC rather than

indirectly through an address pointer csect contained within the TOC. To access scalar data in the TOC,

two pieces of information are required:

v The location of the beginning of the TOC (i.e. the TOC anchor).

v The offset from the TOC anchor to the specific TOC entry that contains the data.

A TOC entry with TC storage mapping class contains the addresses of other csects or global symbols.

Each entry can contain one or more addresses of csects or global symbols, but putting only one address

in each TOC entry is recommended.

When a program is assembled, the csects are sorted such that the .text csects are written first, followed

by all .data csects except for the TOC. The TOC is written after all the other .data csects. The TOC

entries are relocated, so that the TOC entries with TC storage mapping class contain the csect addresses

after the sort, rather than the csect addresses in the source program.

When an XCOFF module is loaded, TOC entries with TC storage mapping class are relocated again so

that the TOC entries are filled with the real addresses where the csects will reside in memory. To access a

csect in the module, two pieces of information are required:

v The location of the beginning of the TOC.

82 Assembler Language Reference

v The offset from the beginning of the TOC to the specific TOC entry that points to the csect. If a TOC

entry has more than one address, each address can be calculated by adding (0...(n-1))*4 to the offset,

where n is the position of the csect address defined with the “.tc Pseudo-op” on page 503.

Using the TOC

To use the TOC, you must follow certain conventions:

v General-Purpose Register 2 always contains a pointer to the TOC.

v All references from the .text section of an assembler program to .data or the .bss sections must occur

via the TOC.

The TOC register (General-Purpose Register 2) is set up by the system when a program is invoked. It

must be maintained by any code written. The TOC register provides module context so that any routines in

the module can access data items.

The second of these conventions allows the .text and .data sections to be easily loaded into different

locations in memory. By following this convention, you can assure that the only parts of the module to

need relocating are the TOC entries.

Accessing Data through the TOC Entry with TC Storage Mapping Class

An external data item is accessed by first getting that item’s address out of the TOC, and then using that

address to get the data. In order to do this, proper relocation information must be provided to access the

correct TOC entry. The .toc and .tc pseudo-ops generate the correct information to access a TOC entry.

The following code shows how to access item a using its TOC entry:

 .set RTOC,2

 .csect prog1[pr] #prog1 is a csect

 #containing instrs.

 ...

 l 5,TCA(RTOC) #Now GPR5 contains the

 #address of a[rw].

...

 .toc

TCA: .tc a[tc],a[rw] #1st parameter is TOC entry

 #name, 2nd is contents of

 #TOC entry.

 .extern a[rw] #a[rw] is an external symbol.

This same method is used to access a program’s static internal data, which is data that retains its value

over a call, but which can only be accessed by the procedures in the file where the data items are

declared. Following is the C language data having the static attribute:

static int xyz;

This data is given a name determined by convention. In XCOFF, the name is preceded by an underscore:

 .csect prog1[pr]

 ...

 l 1,STprog1(RTOC) #Load r1 with the address

 #prog1’s static data.

 ...

 .csect _prog1[rw] #prog1’s static data.

 .long 0

 ...

 .toc

STprog1: .tc.prog1[tc],_prog1[rw] #TOC entry with address of

 #prog1’s static data.

Accessing Data through the TOC entry with TD Storage Mapping Class

A scalar data item can be stored into a TOC entry with TD storage mapping class and retrieved directly

from the TOC entry.

Chapter 5. Assembling and Linking a Program 83

Note: TOC entries with TD storage mapping class should be used only for frequently used scalars. If the

TOC grows too big (either because of many entries or because of large entries) the assembler may

report message 1252-171 indicating an out of range displacement.

The following examples show several ways to store and retrieve a scalar data item as a TOC with TD

storage mapping class. Each example includes C source for a main program, assembler source for one

module, instructions for linking and assembling, and output from running the program.

Example Using .csect Pseudo-op with TD Storage Mapping Class

1. The following is the source for the C main program td1.c:

/* This C module named td1.c */

extern long t_data;

extern void mod_s();

main()

{

 mod_s();

 printf("t_data is %d\n", t_data);

}

2. The following is the assembler source for module mod1.s:

 .file "mod1.s"

 .csect .mod_s[PR]

 .globl .mod_s[PR]

 .set RTOC, 2

 l 5, t_data[TD](RTOC) # Now GPR5 contains the

 # t_data value 0x10

 ai 5,5,14

 stu 5, t_data[TD](RTOC)

 br

 .globl t_data[TD]

 .toc

 .csect t_data[TD] # t_data is a global symbol

 # that has value of 0x10

 # using TD csect will put this

 # data into TOC area

 .long 0x10

3. The following commands assemble and compile the source programs into an executable td1:

as -o mod1.o mod1.s

cc -o td1 td1.c mod1.o

4. Running td1 prints the following:

t_data is 30

Example Using .comm Pseudo-op with TD Storage Mapping Class

1. The following is the source for the C main program td2.c:

/* This C module named td2.c */

extern long t_data;

extern void mod_s();

main()

{

 t_data = 1234;

 mod_s();

 printf("t_data is %d\n", t_data);

}

2. The following is the assembler source for module mod2.s:

 .file "mod2.s"

 .csect .mod_s[PR]

 .globl .mod_s[PR]

 .set RTOC, 2

 l 5, t_data[TD](RTOC) # Now GPR5 contains the

 # t_data value

 ai 5,5,14

84 Assembler Language Reference

stu 5, t_data[TD](RTOC)

 br

 .toc

 .comm t_data[TD],4 # t_data is a global symbol

3. The following commands assemble and compile the source programs into an executable td2:

as -o mod2.o mod2.s

cc -o td2 td2.c mod2.o

4. Running td2 prints the following:

t_data is 1248

Example Using an External TD Symbol

1. /* This C module named td3.c */

long t_data;

extern void mod_s();

main()

{

 t_data = 234;

 mod_s();

 printf("t_data is %d\n", t_data);

}

2. The following is the assembler source for module mod3.s:

 .file "mod3.s"

 .csect .mod_s[PR]

 .globl .mod_s[PR]

 .set RTOC, 2

 l 5, t_data[TD](RTOC) # Now GPR5 contains the

 # t_data value

 ai 5,5,14

 stu 5, t_data[TD](RTOC)

 br

 .toc

 .extern t_data[TD] # t_data is a external symbol

3. The following commands assemble and compile the source programs into an executable td3:

./as -o mod3.o mod3.s

cc -o td3 td3.c mod3.o

4. Running td3 prints the following:

t_data is 248

Intermodule Calls Using the TOC

Because the only access from the text to the data section is through the TOC, the TOC provides a feature

that allows intermodule calls to be used. As a result, routines can be linked together without resolving all

the addresses or symbols at link time. In other words, a call can be made to a common utility routine

without actually having that routine linked into the same module as the calling routine. In this way, groups

of routines can be made into modules, and the routines in the different groups can call each other, with the

bind time being delayed until load time. In order to use this feature, certain conventions must be followed

when calling a routine that is in another module.

To call a routine in another module, an interface routine (or global linkage routine) is called that switches

context from the current module to the new module. This context switch is easily performed by saving the

TOC pointer to the current module, loading the TOC pointer of the new module, and then branching to the

new routine in the other module. The other routine then returns to the original routine in the original

module, and the original TOC address is loaded into the TOC register.

To make global linkage as transparent as possible, a call can be made to external routines without

specifying the destination module. During bind time, the binder (linkage editor) determines whether to call

global linkage code, and inserts the proper global linkage routine to perform the intermodule call. Global

Chapter 5. Assembling and Linking a Program 85

linkage is controlled by an import list. An import list contains external symbols that are resolved during run

time, either from the system or from the dynamic load of another object file. See the ld command for

information about import lists.

The following example calls a routine that may go through global linkage:

.csect prog1[PR]

...

.extern prog2[PR] #prog2 is an external symbol.

bl .prog2[PR] #call prog2[PR], binder may insert

 #global linkage code.

cror 31,31,31 #place holder for instruction to

 #restore TOC address.

The following example shows a call through a global linkage routine:

#AIX linkage register conventions:

R2 TOC

R1 stack pointer

R0, R12 work registers, not preserved

LR Link Register, return address.

 .csect .prog1[PR]

 bl .prog2[GL] #Branch to global

 #linkage code.

 l 2,stktoc(1) #Restore TOC address

 .toc

prog2: .tc prog2[TC],prog2[DS] #TOC entry:

 # address of descriptor

 # for out-of-module

 # routine

 .extern prog2[DS]

The following is an example of global linkage code.

 .set stktoc,20

 .csect .prog2[GL]

 .globl .prog2

.prog2: l 12,prog2(2) #Get address of

 #out-of-module

 #descriptor.

 st 2,stktoc(1) #save callers’ toc.

 l 0,0(12) #Get its entry address

 #from descriptor.

 l 2,4(12) #Get its toc from

 #descriptor.

 mtctr 0 #Put into Count Register.

 bctr #Return to entry address

 #in Count Register.

 #Return is directly to

 #original caller.

Related Information

“Assembling and Linking a Program” on page 53.

“Understanding Assembler Passes” on page 57.

“Interpreting an Assembler Listing” on page 59.

“Interpreting a Symbol Cross-Reference” on page 63.

“Subroutine Linkage Convention” on page 65.

“Running a Program” on page 87.

86 Assembler Language Reference

“.csect Pseudo-op” on page 473, “.tbtag Pseudo-op” on page 501, “.tc Pseudo-op” on page 503, “.toc

Pseudo-op” on page 504, “.tocof Pseudo-op” on page 504.

Running a Program

A program is ready to run when it has been assembled and linked without producing any error messages.

To run a program, first ensure that you have operating system permission to execute the file. Then type

the program’s name at the operating system prompt:

$ progname

By default, any program output goes to standard output. To direct output somewhere other than standard

output, use the operating system shell > (more than symbol) operator.

Run-time errors can be diagnosed by invoking the symbolic debugger with the dbx command. This

symbolic debugger works with any code that adheres to XCOFF format conventions. The dbx command

can be used to debug all compiler- and assembler-generated code.

Related Information

“Assembling and Linking a Program” on page 53.

“Understanding Assembler Passes” on page 57.

“Interpreting an Assembler Listing” on page 59.

“Interpreting a Symbol Cross-Reference” on page 63.

“Subroutine Linkage Convention” on page 65.

“Understanding and Programming the TOC” on page 82.

The dbx command.

The as command, dbx command, ld command.

“b (Branch) Instruction” on page 143, “cror (Condition Register OR) Instruction” on page 168.

“.csect Pseudo-op” on page 473, “.tbtag Pseudo-op” on page 501, “.tc Pseudo-op” on page 503, “.toc

Pseudo-op” on page 504, “.tocof Pseudo-op” on page 504.

Chapter 5. Assembling and Linking a Program 87

88 Assembler Language Reference

Chapter 6. Extended Instruction Mnemonics

The assembler supports a set of extended mnemonics and symbols to simplify assembly language

programming. All extended mnemonics should be in the same assembly mode as their base mnemonics.

Although different extended mnemonics are provided for POWER family and PowerPC, the assembler

generates the same object code for the extended mnemonics if the base mnemonics are in the com

assembly mode. The assembly mode for the extended mnemonics are listed in each extended mnemonics

section. The POWER family and PowerPC extended mnemonics are listed separately in the following

sections for migration purposes:

v “Extended Mnemonics of Branch Instructions”

v “Extended Mnemonics of Condition Register Logical Instructions” on page 96

v “Extended Mnemonics of Fixed-Point Arithmetic Instructions” on page 97

v “Extended Mnemonics of Fixed-Point Compare Instructions” on page 98

v “Extended Mnemonics of Fixed-Point Load Instructions” on page 99

v “Extended Mnemonics of Fixed-Point Logical Instructions” on page 100

v “Extended Mnemonics of Fixed-Point Trap Instructions” on page 100

v “Extended Mnemonic mtcr for Moving to the Condition Register” on page 102

v “Extended Mnemonics of Moving from or to Special-Purpose Registers” on page 102

v “Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions” on page 107

Extended Mnemonics of Branch Instructions

The assembler supports extended mnemonics for Branch Conditional, Branch Conditional to Link Register,

and Branch Conditional to Count Register instructions. Since the base mnemonics for all the Branch

Conditional instructions are in the com assembly mode, all of their extended mnemonics are also in the

com assembly mode.

Extended mnemonics are constructed by incorporating the BO and BI input operand into the mnemonics.

Extended mnemonics always omit the BH input operand and assume its value to be 0b00.

Branch Mnemonics That Incorporate Only the BO Operand

The following tables show the instruction format for extended mnemonics that incorporate only the BO

field. The target address is specified by the target_addr operand. The bit in the condition register for

condition comparison is specified by the BI operand. The value of the BI operand can be specified by an

expression. The CR field number should be multiplied by four to get the correct CR bit, since each CR

field has four bits.

Note: Some extended mnemonics have two input operand formats.

 Table 7. POWER family Extended Mnemonics (BO Field Only)

Mnemonics Input Operands Equivalent to

bdz, bdza, bdzl, bdzla target_addr bc, bca, bcl, bcla 18, 0, target_addr

bdn, bdna, bdnl, bdnla target_addr bc, bca, bcl, bcla 16, 0, target_addr

bdzr, bdzrl None bcr, bcrl 18, 0

bdnr, bdnrl None bcr, bcrl 16, 0

bbt, bbta, bbtl, bbtla 1) BI, target_addr bc, bca, bcl, bcla 12, BI, target_addr

2) target_addr 12, 0, target_addr

bbf, bbfa, bbfl, bbfla 1) BI, target_addr bc, bca, bcl, bcla 4, BI, target_addr

2) target_addr 4, 0, target_addr

© Copyright IBM Corp. 1997, 2006 89

Table 7. POWER family Extended Mnemonics (BO Field Only) (continued)

Mnemonics Input Operands Equivalent to

bbtr, bbtc, bbtrl, bbtcl 1) BI bcr, bcc, bcrl, bccl 12, BI

2) None 12, 0

bbfr, bbfc, bbfrl, bbfcl 1) BI bcr, bcc, bcrl, bccl 4, BI

2) None 4, 0

br, bctr, brl, bctrl None bcr, bcc, bcrl, bccl 20, 0

 Table 8. PowerPC Extended Mnemonics (BO Field Only)

Mnemonics Input Operands Equivalent to

bdz, bdza, bdzl, bdzla target_addr bc, bca, bcl, bcla 18, 0, target_addr

bdnz, bdnza, bdnzl, bdnzla target_addr bc, bca, bcl, bcla 16, 0, target_addr

bdzlr, bdzlrl None bclr, bclrl 18, 0

bdnzlr, bdnzlrl None bclr, bclrl 16, 0

bt, bta, btl, btla 1) BI, target_addr bc, bca, bcl, bcla 12, BI, target_addr

2) target_addr 12, 0, target_addr

bf, bfa, bfl, bfla 1) BI, target_addr bc, bca, bcl, bcla 4, BI, target_addr

2) target_addr 4, 0, target_addr

bdzt, bdzta, bdztl, bdztla 1) BI, target_addr bc, bca, bcl, bcla 10, BI, target_addr

2) target_addr 10, 0, target_addr

bdzf, bdzfa, bdzfl, bdzfla 1) BI, target_addr bc, bca, bcl, bcla 2, BI, target_addr

2) target_addr 2, 0, target_addr

bdnzt, bdnzta, bdnztl, bdnztla 1) BI, target_addr bc, bca, bcl, bcla 8, BI, target_addr

2) target_addr 8, 0, target_addr

bdnzf, bdnzfa, bdnzfl, bdnzfla 1) BI, target_addr bc, bca, bcl, bcla 0, BI, target_addr

2) target_addr 0, 0, target_addr

btlr, btctr, btlrl, btctrl 1) BI bclr, bcctr, bclrl, bcctrl 12, BI

2) None 12, 0

bflr, bfctr, bflrl, bfctrl 1) BI bclr, bcctr, bclrl, bcctrl 4, BI

2) None 4, 0

bdztlr, bdztlrl 1) BI bclr, bclrl 10, BI

2) None 10, 0

bdzflr, bdzflrl 1) BI bclr, bclrl 2, BI

2) None 2, 0

bdnztlr, bdnztlrl 1) BI bclr, bclrl 8, BI

2) None 8, 0

bdnzflr, bdnzflrl 1) BI bclr, bclrl 0, BI

2) None 0, 0

blr, bctr, blrl, bctrl None bclr, bcctr, bclrl, bcctrl 20, 0

90 Assembler Language Reference

Extended Branch Mnemonics That Incorporate the BO Field and a

Partial BI Field

When the BO field and a partial BI field are incorporated, the instruction format is one of the following:

v mnemonic BIF, target_addr

v mnemonic target_addr

where the BIF operand specifies the CR field number (0-7) and the target_addr operand specifies the

target address. If CR0 is used, the BIF operand can be omitted.

Based on the bits definition in the CR field, the following set of codes has been defined for the most

common combinations of branch conditions:

 Branch Code Meaning

lt less than *

eq equal to *

gt greater than *

so summary overflow *

le less than or equal to * (not greater than)

ge greater than or equal to * (not less than)

ne not equal to *

ns not summary overflow *

nl not less than

ng not greater than

z zero

nu not unordered (after floating-point comparison)

nz not zero

un unordered (after floating-point comparison)

The assembler supports six encoding values for the BO operand:

v Branch if condition true (BO=12):

 POWER family PowerPC

bxx bxx

bxxa bxxa

bxxl bxxl

bxxla bxxla

bxxr bxxlr

bxxrl bxxlrl

bxxc bxxctr

bxxcl bxxctrl

where xx specifies a BI operand branch code of lt, gt, eq, so, z, or un.

v Branch if condition false (BO=04):

 POWER family PowerPC

bxx bxx

bxxa bxxa

bxxl bxxl

bxxla bxxla

bxxr bxxlr

bxxrl bxxlrl

bxxc bxxctr

bxxcl bxxctrl

where xx specifies a BI operand branch code of ge, le, ne, ns, nl, ng, nz, or nu.

Chapter 6. Extended Instruction Mnemonics 91

v Decrement CTR, then branch if CTR is nonzero and condition is true (BO=08):

– bdnxx

where xx specifies a BI operand branch code of lt, gt, eq, or so (marked by an * (asterisk) in the

Branch Code list).

v Decrement CTR, then branch if CTR is nonzero and condition is false (BO=00):

– bdnxx

where xx specifies a BI operand branch code of le, ge, ne, or ns (marked by an * (asterisk) in the

Branch Code list).

v Decrement CTR, then branch if CTR is zero and condition is true (BO=10):

– bdzxx

where xx specifies a BI operand branch code of lt, gt, eq, or so (marked by an * (asterisk) in the

Branch Code list).

v Decrement CTR, then branch if CTR is zero and condition is false (BO=02):

– bdzxx

where xx specifies a BI operand branch code of le, ge, ne, or ns (marked by an * (asterisk) in the

Branch Code list).

BI Operand of Branch Conditional Instructions for Basic and Extended

Mnemonics

The BI operand specifies a bit (0:31) in the Condition Register for condition comparison. The bit is set by a

compare instruction. The bits in the Condition Register are grouped into eight 4-bit fields. These fields are

named CR field 0 through CR field 7 (CR0...CR7). The bits of each field are interpreted as follows:

 Bit Description

0 Less than; floating-point less than

1 Greater than; floating-point greater than

2 Equal; floating-point equal

3 Summary overflow; floating-point unordered

Normally the symbols shown in the BI Operand Symbols for Basic and Extended Branch Conditional

Mnemonics table are defined for use in BI operands. The assembler supports expressions for the BI

operands. The expression is a combination of values and the following symbols.

 Table 9. BI Operand Symbols for Basic and Extended Branch Conditional Mnemonics

Symbol Value Meaning

lt 0 less than

gt 1 greater than

eq 2 equal

so 3 summary overflow

un 3 unordered (after floating-point comparison)

cr0 0 CR field 0

cr1 1 CR field 1

cr2 2 CR field 2

cr3 3 CR field 3

cr4 4 CR field 4

cr5 5 CR field 5

92 Assembler Language Reference

Table 9. BI Operand Symbols for Basic and Extended Branch Conditional Mnemonics (continued)

Symbol Value Meaning

cr6 6 CR field 6

cr7 7 CR field 7

When using an expression for the BI field in the basic or extended mnemonics with only the BO field

incorporated, the CR field number should be multiplied by 4 to get the correct CR bit, since each CR field

has four bits.

1. To decrement CTR, then branch only if CTR is not zero and condition in CR5 is equal:

bdnzt 4*cr5+eq, target_addr

This is equivalent to:

bc 8, 22, target_addr

2. To decrement CTR, then branch only if CTR is not zero and condition in CR0 is equal:

bdnzt eq, target_addr

This is equivalent to:

bc 8, 2, target_addr

If the BI operand specifies Bit 0 of CR0, the BI operand can be omitted.

3. To decrement CTR, then branch only if CTR is zero:

bdz target_addr

This is equivalent to:

bc 18, 0, target_addr

For extended mnemonics with the BO field and a partial BI field incorporated, the value of the BI operand

indicates the CR field number. Valid values are 0-7. If a value of 0 is used, the BI operand can be omitted.

1. To branch if CR0 reflects a condition of not less than:

bge target_addr

This is equivalent to:

bc 4, 0, target_addr

2. To branch to an absolute target if CR4 indicates greater than, and set the Link register:

bgtla cr4, target_addr

This is equivalent to:

bcla 12, 17, target_addr

The BI operand CR4 is internally expanded to 16 by the assembler. After the gt (greater than) is

incorporated, the result of the BI field is 17.

Extended Mnemonics for Branch Prediction

If the likely outcome (branch or fall through) of a given Branch Conditional instruction is known, the

programmer can include this information in the assembler source program by adding a branch prediction

suffix to the mnemonic of the instruction. The assembler uses the branch prediction information to

determine the value of a bit in the machine instruction. Using a branch prediction suffix may improve the

average performance of a Branch Conditional instruction.

Chapter 6. Extended Instruction Mnemonics 93

The following suffixes can be added to any Branch Conditional mnemonic, either basic or extended:

 + Predict branch to be taken

- Predict branch not to be taken (fall through)

The branch prediction suffix should be placed immediately after the rest of the mnemonic (with no

separator character). A separator character (space or tab) should be used between the branch prediction

suffix and the operands.

If no branch prediction suffix is included in the mnemonic, the assembler uses the following default

assumptions in constructing the machine instruction:

v For relative or absolute branches (bc[l][a]) with negative displacement fields, the branch is predicted to

be taken.

v For relative or absolute branches (bc[l][a]) with nonnegative displacement fields, the branch is

predicted not to be taken (fall through predicted).

v For branches to an address in the LR or CTR (bclr[l]) or (bcctr[l]), the branch is predicted not to be

taken (fall through predicted).

The portion of the machine instruction which is controlled by the branch prediction suffix is the y bit of the

BO field. The y bit is set as follows:

v Specifying no branch prediction suffix, or using the suffix which is the same as the default assumption

causes the y bit to be set to 0.

v Specifying a branch prediction suffix which is the opposite of the default assumption causes the y bit to

be set to 1.

The following examples illustrate use of branch prediction suffixes:

1. Branch if CR0 reflects condition less than. Executing the instruction will usually result in branching.

blt+ target

2. Branch if CR0 reflects condition less than. Target address is in the Link Register. Executing the

instruction will usually result in falling through to the next instruction.

bltlr-

The following is a list of the Branch Prediction instructions that are supported by the AIX assembler:

 bc+ bc- bca+ bca-

 bcctr+ bcctr- bcctrl+ bcctrl-

 bcl+ bcl- bcla+ bcla-

 bclr+ bclr- bclrl+ bclrl-

 bdneq+ bdneq- bdnge+ bdnge-

 bdngt+ bdngt- bdnle+ bdnle-

 bdnlt+ bdnlt- bdnne+ bdnne-

 bdnns+ bdnns- bdnso+ bdnso-

 bdnz+ bdnz- bdnza+ bdnza-

 bdnzf+ bdnzf- bdnzfa+ bdnzfa-

 bdnzfl+ bdnzfl- bdnzfla+ bdnzfla-

 bdnzflr+ bdnzflr- bdnzflrl+ bdnzflrl-

 bdnzl+ bdnzl- bdnzla+ bdnzla-

 bdnzlr+ bdnzlr- bdnzlrl+ bdnzlrl-

 bdnzt+ bdnzt- bdnzta+ bdnzta-

 bdnztl+ bdnztl- bdnztla+ bdnztla-

 bdnztlr+ bdnztlr- bdnztlrl+ bdnztlrl-

 bdz+ bdz- bdza+ bdza-

 bdzeq+ bdzeq- bdzf+ bdzf-

 bdzfa+ bdzfa- bdzfl+ bdzfl-

 bdzfla+ bdzfla- bdzflr+ bdzflr-

 bdzflrl+ bdzflrl- bdzge+ bdzge-

 bdzgt+ bdzgt- bdzl+ bdzl-

 bdzla+ bdzla- bdzle+ bdzle-

94 Assembler Language Reference

bdzlr+ bdzlr- bdzlrl+ bdzlrl-

 bdzlt+ bdzlt- bdzne+ bdzne-

 bdzns+ bdzns- bdzso+ bdzso-

 bdzt+ bdzt- bdzta+ bdzta-

 bdztl+ bdztl- bdztla+ bdztla-

 bdztlr+ bdztlr- bdztlrl+ bdztlrl-

 beq+ beq- beqa+ beqa-

 beqctr+ beqctr- beqctrl+ beqctrl-

 beql+ beql- beqla+ beqla-

 beqlr+ beqlr- beqlrl+ beqlrl-

 bf+ bf- bfa+ bfa-

 bfctr+ bfctr- bfctrl+ bfctrl-

 bfl+ bfl- bfla+ bfla-

 bflr+ bflr- bflrl+ bflrl-

 bge+ bge- bgea+ bgea-

 bgectr+ bgectr- bgectrl+ bgectrl-

 bgel+ bgel- bgela+ bgela-

 bgelr+ bgelr- bgelrl+ bgelrl-

 bgt+ bgt- bgta+ bgta-

 bgtctr+ bgtctr- bgtctrl+ bgtctrl-

 bgtl+ bgtl- bgtla+ bgtla-

 bgtlr+ bgtlr- bgtlrl+ bgtlrl-

 ble+ ble- blea+ blea-

 blectr+ blectr- blectrl+ blectrl-

 blel+ blel- blela+ blela-

 blelr+ blelr- blelrl+ blelrl-

 blt+ blt- blta+ blta-

 bltctr+ bltctr- bltctrl+ bltctrl-

 bltl+ bltl- bltla+ bltla-

 bltlr+ bltlr- bltlrl+ bltlrl-

 bne+ bne- bnea+ bnea-

 bnectr+ bnectr- bnectrl+ bnectrl-

 bnel+ bnel- bnela+ bnela-

 bnelr+ bnelr- bnelrl+ bnelrl-

 bng+ bng- bnga+ bnga-

 bngctr+ bngctr- bngctrl+ bngctrl-

 bngl+ bngl- bngla+ bngla-

 bnglr+ bnglr- bnglrl+ bnglrl-

 bnl+ bnl- bnla+ bnla-

 bnlctr+ bnlctr- bnlctrl+ bnlctrl-

 bnll+ bnll- bnlla+ bnlla-

 bnllr+ bnllr- bnllrl+ bnllrl-

 bns+ bns- bnsa+ bnsa-

 bnsctr+ bnsctr- bnsctrl+ bnsctrl-

 bnsl+ bnsl- bnsla+ bnsla-

 bnslr+ bnslr- bnslrl+ bnslrl-

 bnu+ bnu- bnua+ bnua-

 bnuctr+ bnuctr- bnuctrl+ bnuctrl-

 bnul+ bnul- bnula+ bnula-

 bnulr+ bnulr- bnulrl+ bnulrl-

 bnz+ bnz- bnza+ bnza-

 bnzctr+ bnzctr- bnzctrl+ bnzctrl-

 bnzl+ bnzl- bnzla+ bnzla-

 bnzlr+ bnzlr- bnzlrl+ bnzlrl-

 bso+ bso- bsoa+ bsoa-

 bsoctr+ bsoctr- bsoctrl+ bsoctrl-

 bsol+ bsol- bsola+ bsola-

 bsolr+ bsolr- bsolrl+ bsolrl-

 bt+ bt- bta+ bta-

 btctr+ btctr- btctrl+ btctrl-

 btl+ btl- btla+ btla-

 btlr+ btlr- btlrl+ btlrl-

 bun+ bun- buna+ buna-

 bunctr+ bunctr- bunctrl+ bunctrl-

 bunl+ bunl- bunla+ bunla-

 bunlr+ bunlr- bunlrl+ bunlrl-

 bz+ bz- bza+ bza-

Chapter 6. Extended Instruction Mnemonics 95

bzctr+ bzctr- bzctrl+ bzctrl-

 bzl+ bzl- bzla+ bzla-

 bzlr+ bzlr- bzlrl+ bzlrl-

Related Information

Chapter 6, “Extended Instruction Mnemonics,” on page 89.

“Extended Mnemonics of Condition Register Logical Instructions.”

“Extended Mnemonics of Fixed-Point Arithmetic Instructions” on page 97.

“Extended Mnemonics of Fixed-Point Compare Instructions” on page 98.

“Extended Mnemonics of Fixed-Point Load Instructions” on page 99.

“Extended Mnemonics of Fixed-Point Logical Instructions” on page 100.

“Extended Mnemonics of Fixed-Point Trap Instructions” on page 100.

“Extended Mnemonics of Moving from or to Special-Purpose Registers” on page 102.

“Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions” on page 107.

“bc (Branch Conditional) Instruction” on page 144, “bclr or bcr (Branch Conditional Link Register)

Instruction” on page 149, “bcctr or bcc (Branch Conditional to Count Register) Instruction” on page 147.

Extended Mnemonics of Condition Register Logical Instructions

Extended mnemonics of condition register logical instructions are available in POWER family and

PowerPC. These extended mnemonics are in the com assembly mode. Condition register logical

instructions can be used to perform the following operations on a given condition register bit.

v Set bit to 1.

v Clear bit to 0.

v Copy bit.

v Invert bit.

The extended mnemonics shown in the following table allow these operations to be easily coded.

 Table 10. Condition Register Logical Instruction Extended Mnemonics

Extended Mnemonic Equivalent to Meaning

crset bx creqv bx, bx, bx Condition register set

crclr bx crxor bx, bx, bx Condition register clear

crmove bx, by cror bx, by, by Condition register move

crnot bx, by crnor bx, by, by Condition register NOT

Since the condition register logical instructions perform the operation on the condition register bit, the

assembler supports expressions in all input operands. When using a symbol name to indicate a condition

register (CR) field, the symbol name should be multiplied by four to get the correct CR bit, because each

CR field has four bits.

96 Assembler Language Reference

Examples

1. To clear the SO bit (bit 3) of CR0:

crclr so

This is equivalent to:

crxor 3, 3, 3

2. To clear the EQ bit of CR3:

crclr 4*cr3+eq

This is equivalent to:

crxor 14, 14, 14

3. To invert the EQ bit of CR4 and place the result in the SO bit of CR5:

crnot 4*cr5+so, 4*cr4+eq

This is equivalent to:

crnor 23, 18, 18

Related Information

Chapter 6, “Extended Instruction Mnemonics,” on page 89.

“Extended Mnemonics of Branch Instructions” on page 89.

“Extended Mnemonics of Fixed-Point Arithmetic Instructions.”

“Extended Mnemonics of Fixed-Point Compare Instructions” on page 98.

“Extended Mnemonics of Fixed-Point Load Instructions” on page 99.

“Extended Mnemonics of Fixed-Point Logical Instructions” on page 100.

“Extended Mnemonics of Fixed-Point Trap Instructions” on page 100.

“Extended Mnemonics of Moving from or to Special-Purpose Registers” on page 102.

“Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions” on page 107.

“creqv (Condition Register Equivalent) Instruction” on page 165, “cror (Condition Register OR) Instruction”

on page 168, “crnor (Condition Register NOR) Instruction” on page 167, “crxor (Condition Register XOR)

Instruction” on page 170.

Extended Mnemonics of Fixed-Point Arithmetic Instructions

The following table shows the extended mnemonics for fixed-point arithmetic instructions for POWER

family and PowerPC. Except as noted, these extended mnemonics are for POWER family and PowerPC

and are in the com assembly mode.

 Table 11. Fixed-Point Arithmetic Instruction Extended Mnemonics

Extended Mnemonic Equivalent to Meaning

subi rx, ry, value addi rx, ry, -value Subtract Immediate

subis rx, ry, value addis rx, ry, -value Subtract Immediate Shifted

subic[.] rx, ry, value addic[.] rx, ry, -value Subtract Immediate

subc[o][.] rx, ry, rz subfc[o][.] rx, ry, rz Subtract From Carrying

Chapter 6. Extended Instruction Mnemonics 97

Table 11. Fixed-Point Arithmetic Instruction Extended Mnemonics (continued)

Extended Mnemonic Equivalent to Meaning

si[.] rt, ra, value ai[.] rt, ra, -value Subtract Immediate

sub[o][.] rx, ry, rz subf[o][.] rx, ry, rz Subtract From

Note: The sub[o][.] extended mnemonic is for PowerPC, since its base mnemonic subf[o][.] is for

PowerPC only.

Related Information

Chapter 6, “Extended Instruction Mnemonics,” on page 89.

“Extended Mnemonics of Branch Instructions” on page 89.

“Extended Mnemonics of Condition Register Logical Instructions” on page 96.

“Extended Mnemonics of Fixed-Point Compare Instructions.”

“Extended Mnemonics of Fixed-Point Load Instructions” on page 99.

“Extended Mnemonics of Fixed-Point Logical Instructions” on page 100.

“Extended Mnemonics of Fixed-Point Trap Instructions” on page 100.

“Extended Mnemonics of Moving from or to Special-Purpose Registers” on page 102.

“Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions” on page 107.

“addic or ai (Add Immediate Carrying) Instruction” on page 131, “addic. or ai. (Add Immediate Carrying and

Record) Instruction” on page 132.

Extended Mnemonics of Fixed-Point Compare Instructions

The extended mnemonics for fixed-point compare instructions are shown in the following table. The input

format of operands are different for POWER family and PowerPC. The L field for PowerPC supports 64-bit

implementations. This field must have a value of 0 for 32-bit implementations. Since the POWER family

architecture supports only 32-bit implementations, this field does not exist in POWER family. The

assembler ensures that this bit is set to 0 for POWER family implementations. These extended mnemonics

are in the com assembly mode.

 Table 12. Fixed-Point Compare Instruction Extended Mnemonics

Extended Mnemonic Equivalent to Meaning

cmpdi ra, value cmpi 0, 1, ra, value Compare Word Immediate

cmpwi bf, ra, si cmpi bf, 0, ra, si Compare Word Immediate

cmpd ra, rb cmp 0, 1, ra, rb Compare Word

cmpw bf, ra, rb cmp bf, 0, ra, rb Compare Word

cmpldi rA, value cmpli 0, 1, ra, value Compare Logical Word Immediate

cmplwi bf, ra, ui cmpli bf, 0, ra, ui Compare Logical Word Immediate

cmpld ra, rb cmpl 0, 1, ra, rb Compare Logical Word

cmplw bf, ra, rb cmpl bf, 0, ra, rb Compare Logical Word

98 Assembler Language Reference

Related Information

Chapter 6, “Extended Instruction Mnemonics,” on page 89.

“Extended Mnemonics of Branch Instructions” on page 89.

“Extended Mnemonics of Condition Register Logical Instructions” on page 96.

“Extended Mnemonics of Fixed-Point Arithmetic Instructions” on page 97.

“Extended Mnemonics of Fixed-Point Load Instructions.”

“Extended Mnemonics of Fixed-Point Logical Instructions” on page 100.

“Extended Mnemonics of Fixed-Point Trap Instructions” on page 100.

“Extended Mnemonics of Moving from or to Special-Purpose Registers” on page 102.

“Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions” on page 107.

“cmpi (Compare Immediate) Instruction” on page 157, “cmp (Compare) Instruction” on page 156, “cmpli

(Compare Logical Immediate) Instruction” on page 160, “cmpl (Compare Logical) Instruction” on page 159.

Extended Mnemonics of Fixed-Point Load Instructions

The following table shows the extended mnemonics for fixed-point load instructions for POWER family and

PowerPC. These extended mnemonics are in the com assembly mode.

 Table 13. Fixed-Point Load Instruction Extended Mnemonics

Extended Mnemonic Equivalent to Meaning

li rx, value addi rx, 0, value Load Immediate

la rx, disp(ry) addi rx, ry, disp Load Address

lil rt, value cal rt, value(0) Load Immediate Lower

liu rt, value cau rt, 0, value Load Immediate Upper

lis rx, value addis rx, 0, value Load Immediate Shifted

Related Information

Chapter 6, “Extended Instruction Mnemonics,” on page 89.

“Extended Mnemonics of Branch Instructions” on page 89.

“Extended Mnemonics of Condition Register Logical Instructions” on page 96.

“Extended Mnemonics of Fixed-Point Arithmetic Instructions” on page 97.

“Extended Mnemonics of Fixed-Point Compare Instructions” on page 98.

“Extended Mnemonics of Fixed-Point Logical Instructions” on page 100.

“Extended Mnemonics of Fixed-Point Trap Instructions” on page 100.

“Extended Mnemonics of Moving from or to Special-Purpose Registers” on page 102.

Chapter 6. Extended Instruction Mnemonics 99

“Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions” on page 107.

“addi (Add Immediate) or cal (Compute Address Lower) Instruction” on page 130, “addis or cau (Add

Immediate Shifted) Instruction” on page 133.

Extended Mnemonics of Fixed-Point Logical Instructions

The extended mnemonics for fixed-point logical instructions are shown in the following table. These

POWER family and PowerPC extended mnemonics are in the com assembly mode.

 Table 14. Fixed-Point Logical Instruction Extended Mnemonics

Extended Mnemonic Equivalent to Meaning

nop ori 0, 0, 0 OR Immediate

mr[.] rx,ry or[.] rx, ry, ry OR

not[.] rx,ry nor[.] rx, ry, ry NOR

Related Information

Chapter 6, “Extended Instruction Mnemonics,” on page 89.

“Extended Mnemonics of Branch Instructions” on page 89.

“Extended Mnemonics of Condition Register Logical Instructions” on page 96.

“Extended Mnemonics of Fixed-Point Arithmetic Instructions” on page 97.

“Extended Mnemonics of Fixed-Point Compare Instructions” on page 98.

“Extended Mnemonics of Fixed-Point Load Instructions” on page 99.

“Extended Mnemonics of Fixed-Point Trap Instructions.”

“Extended Mnemonics of Moving from or to Special-Purpose Registers” on page 102.

“Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions” on page 107.

“nor (NOR) Instruction” on page 333, “or (OR) Instruction” on page 334, “ori or oril (OR Immediate)

Instruction” on page 336.

Extended Mnemonics of Fixed-Point Trap Instructions

The extended mnemonics for fixed-point trap instructions incorporate the most useful TO operand values.

A standard set of codes, shown in the following table, has been adopted for the most common

combinations of trap conditions. These extended mnemonics are in the com assembly mode.

 Table 15. Fixed-Point Trap Instruction Codes

Code TO Encoding Meaning

lt 10000 less than

le 10100 less than or equal

ng 10100 not greater than

eq 00100 equal

ge 01100 greater than or equal

100 Assembler Language Reference

Table 15. Fixed-Point Trap Instruction Codes (continued)

Code TO Encoding Meaning

nl 01100 not less than

gt 01000 greater than

ne 11000 not equal

llt 00010 logically less than

lle 00110 logically less than or equal

lng 00110 logically not greater than

lge 00101 logically greater than or equal

lnl 00101 logically not less than

lgt 00001 logically greater than

lne 00011 logically not equal

None 11111 Unconditional

The POWER family extended mnemonics for fixed-point trap instructions have the following format:

v txx or txxi

where xx is one of the codes specified in the preceding table.

The 64-bit PowerPC extended mnemonics for double-word, fixed-point trap instructions have the following

format:

v tdxx or tdxxi

The PowerPC extended mnemonics for fixed-point trap instructions have the following formats:

v twxx or twxxi

where xx is one of the codes specified in the preceding table.

The trap instruction is an unconditional trap:

v trap

Examples

1. To trap if R10 is less than R20:

tlt 10, 20

This is equivalent to:

t 16, 10, 20

2. To trap if R4 is equal to 0x10:

teqi 4, 0x10

This is equivalent to:

ti 0x4, 4, 0x10

3. To trap unconditionally:

trap

This is equivalent to:

tw 31, 0, 0

4. To trap if RX is not equal to RY:

Chapter 6. Extended Instruction Mnemonics 101

twnei RX. RY

This is equivalent to:

twi 24, RX, RY

5. To trap if RX is logically greater than 0x7FF:

twlgti RX, 0x7FF

This is equivalent to:

twi 1, RX, 0x7FF

Related Information

Chapter 6, “Extended Instruction Mnemonics,” on page 89.

“Extended Mnemonics of Branch Instructions” on page 89.

“Extended Mnemonics of Condition Register Logical Instructions” on page 96.

“Extended Mnemonics of Fixed-Point Arithmetic Instructions” on page 97.

“Extended Mnemonics of Fixed-Point Compare Instructions” on page 98.

“Extended Mnemonics of Fixed-Point Load Instructions” on page 99.

“Extended Mnemonics of Fixed-Point Logical Instructions” on page 100.

“Extended Mnemonics of Moving from or to Special-Purpose Registers.”

“Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions” on page 107.

“tw or t (Trap Word) Instruction” on page 456, “twi or ti (Trap Word Immediate) Instruction” on page 457.

Extended Mnemonic mtcr for Moving to the Condition Register

The mtcr (Move to Condition Register) extended mnemonic copies the contents of the low order 32 bits of

a general purpose register (GPR) to the condition register using the same style as the mfcr instruction.

The extended mnemonic mtcr Rx is equivalent to the instruction mtcrf 0xFF,Rx.

This extended mnemonic is in the com assembly mode.

Extended Mnemonics of Moving from or to Special-Purpose Registers

This article discusses the following extended mnemonics:

v “mfspr Extended Mnemonics for POWER family” on page 103

v “mtspr Extended Mnemonics for POWER family” on page 103

v “mfspr Extended Mnemonics for PowerPC” on page 103

v “mtspr Extended Mnemonics for PowerPC” on page 104

v “mfspr Extended Mnemonics for PowerPC 601 RISC Microprocessor” on page 106

v “mtspr Extended Mnemonics for PowerPC 601 RISC Microprocessor” on page 106

102 Assembler Language Reference

mfspr Extended Mnemonics for POWER family

 Table 16. mfspr Extended Mnemonics for POWER family

Extended Mnemonic Equivalent to Privileged SPR Name

mfxer rt mfspr rt,1 no XER

mflr rt mfspr rt,8 no LR

mfctr rt mfspr rt,9 no CTR

mfmq rt mfspr rt,0 no MQ

mfrtcu rt mfspr rt,4 no RTCU

mfrtcl rt mfspr rt,5 no RTCL

mfdec rt mfspr rt,6 no DEC

mftid rt mfspr rt,17 yes TID

mfdsisr rt mfspr rt,18 yes DSISR

mfdar rt mfspr rt,19 yes DAR

mfsdr0 rt mfspr rt,24 yes SDR0

mfsdr1 rt mfspr rt,25 yes SDR1

mfsrr0 rt mfspr rt,26 yes SRR0

mfsrr1 rt mfspr rt,27 yes SRR1

mtspr Extended Mnemonics for POWER family

 Table 17. mtspr Extended Mnemonics for POWER family

Extended Mnemonic Equivalent to Privileged SPR Name

mfxer rs mtspr 1,rs no XER

mflr rs mtspr 8,rs no LR

mtctr rs mtspr 9,rs no CTR

mtmq rs mtspr 0,rs no MQ

mtrtcu rs mtspr 20,rs yes RTCU

mtrtcl rs mtspr 21,rs yes RTCL

mtdec rs mtspr 22,rs yes DEC

mttid rs mtspr 17,rs yes TID

mtdsisr rs mtspr 18,rs yes DSISR

mtdar rs mtspr 19,rs yes DAR

mtsdr0 rs mtspr 24,rs yes SDR0

mtsdr1 rs mtspr 25,rs yes SDR1

mtsrr0 rs mtspr 26,rs yes SRR0

mtsrr1 rs mtspr 27,rs yes SRR1

mfspr Extended Mnemonics for PowerPC

 Table 18. mfspr Extended Mnemonics for PowerPC

Extended Mnemonic Equivalent to Privileged SPR Name

mfxer rt mfspr rt,1 no XER

Chapter 6. Extended Instruction Mnemonics 103

Table 18. mfspr Extended Mnemonics for PowerPC (continued)

Extended Mnemonic Equivalent to Privileged SPR Name

mflr rt mfspr rt,8 no LR

mfctr rt mfspr rt,9 no CTR

mfdsisr rt mfspr rt,18 yes DSISR

mfdar rt mfspr rt,19 yes DAR

mfdec rt mfspr rt,22 yes DEC

mfsdr1 rt mfspr rt,25 yes SDR1

mfsrr0 rt mfspr rt,26 yes SRR0

mfsrr1 rt mfspr rt,27 yes SRR1

mfsprg rt,0 mfspr rt,272 yes SPRG0

mfsprg rt,1 mfspr rt,273 yes SPRG1

mfsprg rt,2 mfspr rt,274 yes SPRG2

mfsprg rt,3 mfspr rt,275 yes SPRG3

mfear rt mfspr rt,282 yes EAR

mfpvr rt mfspr rt,287 yes PVR

mfibatu rt,0 mfspr rt,528 yes IBAT0U

mfibatl rt,1 mfspr rt,529 yes IBAT0L

mfibatu rt,1 mfspr rt,530 yes IBAT1U

mfibatl rt,1 mfspr rt,531 yes IBAT1L

mfibatu rt,2 mfspr rt,532 yes IBAT2U

mfibatl rt,2 mfspr rt,533 yes IBAT2L

mfibatu rt,3 mfspr rt,534 yes IBAT3U

mfibatl rt,3 mfspr rt,535 yes IBAT3L

mfdbatu rt,0 mfspr rt,536 yes DBAT0U

mfdbatl rt,0 mfspr rt,537 yes DBAT0L

mfdbatu rt,1 mfspr rt,538 yes DBAT1U

mfdbatl rt,1 mfspr rt,539 yes DBAT1L

mfdbatu rt,2 mfspr rt,540 yes DBAT2U

mfdbatl rt,2 mfspr rt,541 yes DBAT2L

mfdbatu rt,3 mfspr rt,542 yes DBAT3U

mfdbatl rt,3 mfspr rt,543 yes DBAT3L

Note: The mfdec instruction is a privileged instruction in PowerPC. The encoding for this instruction in

PowerPC differs from that in POWER family. See the “mfspr (Move from Special-Purpose Register)

Instruction” on page 303 for information on this instruction. “Differences between POWER family

and PowerPC Instructions with the Same Op Code” on page 115 provides a summary of the

differences for this instruction for POWER family and PowerPC.

mtspr Extended Mnemonics for PowerPC

 Table 19. mtspr Extended Mnemonics for PowerPC

Extended Mnemonic Equivalent to Privileged SPR Name

mtxer rs mtspr 1,rs no XER

104 Assembler Language Reference

Table 19. mtspr Extended Mnemonics for PowerPC (continued)

Extended Mnemonic Equivalent to Privileged SPR Name

mtlr rs mtspr 8,rs no LR

mtctr rs mtspr 9,rs no CTR

mtdsisr rs mtspr 19,rs yes DSISR

mtdar rs mtspr 19,rs yes DAR

mtdec rs mtspr 22,rs yes DEC

mtsdr1 rs mtspr 25,rs yes SDR1

mtsrr0 rs mtspr 26,rs yes SRR0

mtsrr1 rs mtspr 27,rs yes SRR1

mtsprg 0,rs mtspr 272,rs yes SPRG0

mtsprg 1,rs mtspr 273,rs yes SPRG1

mtsprg 2,rs mtspr 274,rs yes SPRG2

mtsprg 3,rs mtspr 275,rs yes SPRG3

mtear rs mtspr 282,rs yes EAR

mttbl rs (or mttb rs) mtspr 284,rs yes TBL

mttbu rs mtspr 285,rs yes TBU

mtibatu 0,rs mtspr 528,rs yes IBAT0U

mtibatl 0,rs mtspr 529,rs yes IBAT0L

mtibatu 1,rs mtspr 530,rs yes IBAT1U

mtibatl 1,rs mtspr 531,rs yes IBAT1L

mtibatu 2,rs mtspr 532,rs yes IBAT2U

mtibatl 2,rs mtspr 533,rs yes IBAT2L

mtibatu 3,rs mtspr 534,rs yes IBAT3U

mtibatl 3,rs mtspr 535,rs yes IBAT3L

mtdbatu 0,rs mtspr 536,rs yes DBAT0U

mtdbatl 0,rs mtspr 537,rs yes DBAT0L

mtdbatu 1,rs mtspr 538,rs yes DBAT1U

mtdbatl 1,rs mtspr 539,rs yes DBAT1L

mtdbatu 2,rs mtspr 540,rs yes DBAT2U

mtdbatl 2,rs mtspr 541,rs yes DBAT2L

mtdbatu 3,rs mtspr 542,rs yes DBAT3U

mtdbatl 3,rs mtspr 543,rs yes DBAT3L

Note: The mfdec instruction is a privileged instruction in PowerPC. The encoding for this instruction in

PowerPC differs from that in POWER family. See the “mfspr (Move from Special-Purpose Register)

Instruction” on page 303 for information on this instruction. “Differences between POWER family

and PowerPC Instructions with the Same Op Code” on page 115 provides a summary of the

differences for this instruction for POWER family and PowerPC.

Chapter 6. Extended Instruction Mnemonics 105

mfspr Extended Mnemonics for PowerPC 601 RISC Microprocessor

 Table 20. mfspr Extended Mnemonics for PowerPC 601 RISC Microprocessor

Extended Mnemonic Equivalent to Privileged SPR Name

mfmq rt mfspr rt,0 no MQ

mfxer rt mfspr rt,1 no XER

mfrtcu rt mfspr rt,4 no RTCU

mfrtcl rt mfspr rt,5 no RTCL

mfdec rt mfspr rt,6 no DEC

mflr rt mfspr rt,8 no LR

mfctr rt mfspr rt,9 no CTR

mfdsisr rt mfspr rt,18 yes DSISR

mfdar rt mfspr rt,19 yes DAR

mfsdr1 rt mfspr rt,25 yes SDR1

mfsrr0 rt mfspr rt,26 yes SRR0

mfsrr1 rt mfspr rt,27 yes SRR1

mfsprg rt,0 mfspr rt,272 yes SPRG0

mfsprg rt,1 mfspr rt,273 yes SPRG1

mfsprg rt,2 mfspr rt,274 yes SPRG2

mfsprg rt,3 mfspr rt,275 yes SPRG3

mfear rt mfspr rt,282 yes EAR

mfpvr rt mfspr rt,287 yes PVR

mtspr Extended Mnemonics for PowerPC 601 RISC Microprocessor

 Table 21. mtspr Extended Mnemonics for PowerPC 601 RISC Microprocessor

Extended Mnemonic Equivalent to Privileged SPR Name

mtmq rs mtspr 0,rs no MQ

mtxer rs mtspr 1,rs no XER

mtlr rs mtspr 8,rs no LR

mtctr rs mtspr 9,rs no CTR

mtdsisr rs mtspr 18,rs yes DSISR

mtdar rs mtspr 19,rs yes DAR

mtrtcu rs mtspr 20,rs yes RTCU

mtrtcl rs mtspr 21,rs yes RTCL

mtdec rs mtspr 22,rs yes DEC

mtsdr1 rs mtspr 25,rs yes SDR1

mtsrr0 rs mtspr 26,rs yes SRR0

mtsrr1 rs mtspr 27,rs yes SRR1

mtsprg 0,rs mtspr 272,rs yes SPRG0

mtsprg 1,rs mtspr 273,rs yes SPRG1

mtsprg 2,rs mtspr 274,rs yes SPRG2

mtsprg 3,rs mtspr 275,rs yes SPRG3

106 Assembler Language Reference

Table 21. mtspr Extended Mnemonics for PowerPC 601 RISC Microprocessor (continued)

Extended Mnemonic Equivalent to Privileged SPR Name

mtear rs mtspr 282,rs yes EAR

Related Information

Chapter 6, “Extended Instruction Mnemonics,” on page 89.

“Extended Mnemonics of Branch Instructions” on page 89.

“Extended Mnemonics of Condition Register Logical Instructions” on page 96.

“Extended Mnemonics of Fixed-Point Arithmetic Instructions” on page 97.

“Extended Mnemonics of Fixed-Point Compare Instructions” on page 98.

“Extended Mnemonics of Fixed-Point Load Instructions” on page 99.

“Extended Mnemonics of Fixed-Point Logical Instructions” on page 100.

“Extended Mnemonics of Fixed-Point Trap Instructions” on page 100.

“Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions.”

“mfspr (Move from Special-Purpose Register) Instruction” on page 303, “mtspr (Move to Special-Purpose

Register) Instruction” on page 315.

Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift

Instructions

A set of extended mnemonics are provided for extract, insert, rotate, shift, clear, and clear left and shift left

operations. This article discusses the following:

v “Alternative Input Format”

v “32-bit Rotate and Shift Extended Mnemonics for POWER family and PowerPC” on page 108

Alternative Input Format

The alternative input format is applied to the following POWER family and PowerPC instructions.

 POWER family PowerPC

rlimi[.] rlwimi[.]

rlinm[.] rlwinm[.]

rlnm[.] rlwnm[.]

rlmi[.] Not applicable

Five operands are normally required for these instructions. These operands are:

RA, RS, SH, MB, ME

MB indicates the first bit with a value of 1 in the mask, and ME indicates the last bit with a value of 1 in

the mask. The assembler supports the following operand format.

RA, RS, SH, BM

Chapter 6. Extended Instruction Mnemonics 107

BM is the mask itself. The assembler generates the MB and ME operands from the BM operand for the

instructions. The assembler checks the BM operand first. If an invalid BM is entered, error 78 is reported.

A valid mask is defined as a single series (one or more) of bits with a value of 1 surrounded by zero or

more bits with a value of z0. A mask of all bits with a value of 0 may not be specified.

Examples of Valid 32-bit Masks

The following shows examples of valid 32-bit masks.

 0 15 31

 | | |

MB = 0 ME = 31 11111111111111111111111111111111

MB = 0 ME = 0 10000000000000000000000000000000

MB = 0 ME = 22 11111111111111111111110000000000

MB = 12 ME = 25 00000000000111111111111110000000

MB = 22 ME = 31 00000000000000000000011111111111

MB = 29 ME = 6 11111110000000000000000000000111

Examples of 32-bit Masks That Are Not Valid

The following shows examples of 32-bit masks that are not valid.

0 15 31

| | |

00000000000000000000000000000000

01010101010101010101010101010101

00000000000011110000011000000000

11111100000111111111111111000000

32-bit Rotate and Shift Extended Mnemonics for POWER family and

PowerPC

The extended mnemonics for the rotate and shift instructions are in the POWER family and PowerPC

intersection area (com assembly mode). A set of rotate and shift extended mnemonics provide for the

following operations:

 Extract Selects a field of n bits starting at bit position b in the source

register. This field is right- or left-justified in the target register. All

other bits of the target register are cleared to 0.

Insert Selects a left- or right-justified field of n bits in the source register.

This field is inserted starting at bit position b of the target register.

Other bits of the target register are unchanged. No extended

mnemonic is provided for insertion of a left-justified field when

operating on doublewords, since such an insertion requires more

than one instruction.

Rotate Rotates the contents of a register right or left n bits without

masking.

Shift Shifts the contents of a register right or left n bits. Vacated bits are

cleared to 0 (logical shift).

Clear Clears the leftmost or rightmost n bits of a register to 0.

Clear left and shift left Clears the leftmost b bits of a register, then shifts the register by n

bits. This operation can be used to scale a known nonnegative

array index by the width of an element.

The rotate and shift extended mnemonics are shown in the following table. The N operand specifies the

number of bits to be extracted, inserted, rotated, or shifted. Because expressions are introduced when the

extended mnemonics are mapped to the base mnemonics, certain restrictions are imposed to prevent the

result of the expression from causing an overflow in the SH, MB, or ME operand.

108 Assembler Language Reference

To maintain compatibility with previous versions of AIX, n is not restricted to a value of 0. If n is 0, the

assembler treats 32-n as a value of 0.

 Table 22. 32-bit Rotate and Shift Extended Mnemonics for PowerPC

Operation Extended Mnemonic Equivalent to Restrictions

Extract and left justify

immediate

extlwi RA, RS, n, b rlwinm RA, RS, b, 0, n-1 32 > n > 0

Extract and right justify

immediate

extrwi RA, RS, n, b rlwinm RA, RS, b+n, 32-n,

31

32 > n > 0 & b+n =< 32

Insert from left immediate inslwi RA, RS, n, b rlwinm RA, RS, 32-b, b,

(b+n)-1

b+n <=32 & 32>n > 0 & 32

> b >= 0

Insert from right immediate insrwi RA, RS, n, b rlwinm RA, RS, 32-(b+n),

b, (b+n)-1

b+n <= 32 & 32>n > 0

Rotate left immediate rotlwi RA, RS, n rlwinm RA, RS, n, 0, 31 32 > n >= 0

Rotate right immediate rotrwi RA, RS, n rlwinm RA, RS, 32-n, 0, 31 32 > n >= 0

Rotate left rotlw RA, RS, b rlwinm RA, RS, RB, 0, 31 None

Shift left immediate slwi RA, RS, n rlwinm RA, RS, n, 0, 31-n 32 > n >= 0

Shift right immediate srwi RA, RS, n rlwinm RA, RS, 32-n, n, 31 32 > n >= 0

Clear left immediate clrlwi RA, RS, n rlwinm RA, RS, 0, n, 31 32 > n >= 0

Clear right immediate clrrwi RA, RS, n rlwinm RA, RS, 0, 0, 31-n 32 > n >= 0

Clear left and shift left

immediate

clrslwi RA, RS, b, n rlwinm RA, RS, b-n, 31-n b-n >= 0 & 32 > n >= 0 &

32 > b>= 0

Notes:

1. In POWER family, the mnemonic slwi[.] is sli[.]. The mnemonic srwi[.] is sri[.].

2. All of these extended mnemonics can be coded with a final . (period) to cause the Rc bit to be set in

the underlying instruction.

Examples

1. To extract the sign bit (bit 31) of register RY and place the result right-justified into register RX:

extrwi RX, RY, 1, 0

This is equivalent to:

rlwinm RX, RY, 1, 31, 31

2. To insert the bit extracted in Example 1 into the sign bit (bit 31) of register RX:

insrwi RZ, RX, 1, 0

This is equivalent to:

rlwimi RZ, RX, 31, 0, 0

3. To shift the contents of register RX left 8 bits and clear the high-order 32 bits:

slwi RX, RX, 8

This is equivalent to:

rlwinm RX, RX, 8, 0, 23

4. To clear the high-order 16 bits of the low-order 32 bits of register RY and place the result in register

RX, and clear the high-order 32 bits of register RX:

clrlwi RX, RY, 16

This is equivalent to:

Chapter 6. Extended Instruction Mnemonics 109

rlwinm RX, RY, 0, 16, 31

Related Information

Chapter 6, “Extended Instruction Mnemonics,” on page 89.

“Extended Mnemonics of Branch Instructions” on page 89.

“Extended Mnemonics of Condition Register Logical Instructions” on page 96.

“Extended Mnemonics of Fixed-Point Arithmetic Instructions” on page 97.

“Extended Mnemonics of Fixed-Point Compare Instructions” on page 98.

“Extended Mnemonics of Fixed-Point Load Instructions” on page 99.

“Extended Mnemonics of Fixed-Point Logical Instructions” on page 100.

“Extended Mnemonics of Fixed-Point Trap Instructions” on page 100.

“Extended Mnemonics of Moving from or to Special-Purpose Registers” on page 102.

“addic or ai (Add Immediate Carrying) Instruction” on page 131, “addic. or ai. (Add Immediate Carrying and

Record) Instruction” on page 132, “bc (Branch Conditional) Instruction” on page 144, “bclr or bcr (Branch

Conditional Link Register) Instruction” on page 149, “bcctr or bcc (Branch Conditional to Count Register)

Instruction” on page 147, “addi (Add Immediate) or cal (Compute Address Lower) Instruction” on page 130,

“addis or cau (Add Immediate Shifted) Instruction” on page 133, “cmpi (Compare Immediate) Instruction”

on page 157, “cmp (Compare) Instruction” on page 156, “cmpli (Compare Logical Immediate) Instruction”

on page 160, “cmpl (Compare Logical) Instruction” on page 159, “creqv (Condition Register Equivalent)

Instruction” on page 165, “cror (Condition Register OR) Instruction” on page 168, “crnor (Condition

Register NOR) Instruction” on page 167, “crxor (Condition Register XOR) Instruction” on page 170, “mfspr

(Move from Special-Purpose Register) Instruction” on page 303, “mtspr (Move to Special-Purpose

Register) Instruction” on page 315, “nor (NOR) Instruction” on page 333, “or (OR) Instruction” on page

334, “rlwinm or rlinm (Rotate Left Word Immediate Then AND with Mask) Instruction” on page 354, “tw or t

(Trap Word) Instruction” on page 456, “twi or ti (Trap Word Immediate) Instruction” on page 457.

Extended Mnemonics of 64-bit Fixed-Point Rotate and Shift

Instructions

A set of extended mnemonics are provided for extract, insert, rotate, shift, clear, and clear left and shift left

operations. This article discusses the following:

v “Alternative Input Format” on page 107

v “32-bit Rotate and Shift Extended Mnemonics for POWER family and PowerPC” on page 108

Alternative Input Format

The alternative input format is applied to the following POWER family and PowerPC instructions.

 POWER family PowerPC

rlimi[.] rlwimi[.]

rlinm[.] rlwinm[.]

rlnm[.] rlwnm[.]

rlmi[.] Not applicable

Five operands are normally required for these instructions. These operands are:

110 Assembler Language Reference

RA, RS, SH, MB, ME

MB indicates the first bit with a value of 1 in the mask, and ME indicates the last bit with a value of 1 in

the mask. The assembler supports the following operand format.

RA, RS, SH, BM

BM is the mask itself. The assembler generates the MB and ME operands from the BM operand for the

instructions. The assembler checks the BM operand first. If an invalid BM is entered, error 78 is reported.

A valid mask is defined as a single series (one or more) of bits with a value of 1 surrounded by zero or

more bits with a value of z0. A mask of all bits with a value of 0 may not be specified.

64-bit Rotate and Shift Extended Mnemonics for POWER family and

PowerPC

The extended mnemonics for the rotate and shift instructions are in the POWER family and PowerPC

intersection area (com assembly mode). A set of rotate and shift extended mnemonics provide for the

following operations:

 Extract Selects a field of n bits starting at bit position b in the source

register. This field is right- or left-justified in the target register. All

other bits of the target register are cleared to 0.

Insert Selects a left- or right-justified field of n bits in the source register.

This field is inserted starting at bit position b of the target register.

Other bits of the target register are unchanged. No extended

mnemonic is provided for insertion of a left-justified field when

operating on doublewords, since such an insertion requires more

than one instruction.

Rotate Rotates the contents of a register right or left n bits without

masking.

Shift Shifts the contents of a register right or left n bits. Vacated bits are

cleared to 0 (logical shift).

Clear Clears the leftmost or rightmost n bits of a register to 0.

Clear left and shift left Clears the leftmost b bits of a register, then shifts the register by n

bits. This operation can be used to scale a known nonnegative

array index by the width of an element.

The rotate and shift extended mnemonics are shown in the following table. The N operand specifies the

number of bits to be extracted, inserted, rotated, or shifted. Because expressions are introduced when the

extended mnemonics are mapped to the base mnemonics, certain restrictions are imposed to prevent the

result of the expression from causing an overflow in the SH, MB, or ME operand.

To maintain compatibility with previous versions of AIX, n is not restricted to a value of 0. If n is 0, the

assembler treats 32-n as a value of 0.

 Table 23. 63-bit Rotate and Shift Extended Mnemonics for PowerPC

Operation Extended Mnemonic Equivalent to Restrictions

Extract double word and

right justify immediate

extrdi RA, RS, n, b rldicl RA, RS, b + n, 64 - n n > 0

Rotate double word left

immediate

rotldi RA, RS, n rldicl RA, RS, n, 0 None

Rotate double word right

immediate

rotrdi RA, RS, n rldicl RA, RS, 64 - n, 0 None

Rotate double word right

immediate

srdi RA, RS, n rldicl RA, RS, 64 - n, n n < 64

Chapter 6. Extended Instruction Mnemonics 111

Table 23. 63-bit Rotate and Shift Extended Mnemonics for PowerPC (continued)

Operation Extended Mnemonic Equivalent to Restrictions

Clear left double word

immediate

clrldi RA, RS, n rldicl RA, RS, 0, n n < 64

Extract double word and left

justify immediate

extldi RA, RS, n, b rldicr RA, RS, b, n - 1 None

Shift left double word

immediate

sldi RA, RS, n rldicr RA, RS, n, 63 - n None

Clear right double word

immediate

clrrdi RA, RS, n rldicr RA, RS, 0, 63 - n None

Clear left double word and

shift left immediate

clrlsldi RA, RS, b, n rldic RA, RS, n, b - n None

Insert double word from

right immediate

insrdi RA, RS, n, b rldimi RA, RS, 64 - (b + n),

b

None

Rotate double word left rotld RA, RS, RB rldcl RA, RS, RB, 0 None

Note: All of these extended mnemonics can be coded with a final . (period) to cause the Rc bit to be set

in the underlying instruction.

Related Information

Chapter 6, “Extended Instruction Mnemonics,” on page 89.

“Extended Mnemonics of Branch Instructions” on page 89.

“Extended Mnemonics of Condition Register Logical Instructions” on page 96.

“Extended Mnemonics of Fixed-Point Arithmetic Instructions” on page 97.

“Extended Mnemonics of Fixed-Point Compare Instructions” on page 98.

“Extended Mnemonics of Fixed-Point Load Instructions” on page 99.

“Extended Mnemonics of Fixed-Point Logical Instructions” on page 100.

“Extended Mnemonics of Fixed-Point Trap Instructions” on page 100.

“Extended Mnemonics of Moving from or to Special-Purpose Registers” on page 102.

“addic or ai (Add Immediate Carrying) Instruction” on page 131, “addic. or ai. (Add Immediate Carrying and

Record) Instruction” on page 132, “bc (Branch Conditional) Instruction” on page 144, “bclr or bcr (Branch

Conditional Link Register) Instruction” on page 149, “bcctr or bcc (Branch Conditional to Count Register)

Instruction” on page 147, “addi (Add Immediate) or cal (Compute Address Lower) Instruction” on page 130,

“addis or cau (Add Immediate Shifted) Instruction” on page 133, “cmpi (Compare Immediate) Instruction”

on page 157, “cmp (Compare) Instruction” on page 156, “cmpli (Compare Logical Immediate) Instruction”

on page 160, “cmpl (Compare Logical) Instruction” on page 159, “creqv (Condition Register Equivalent)

Instruction” on page 165, “cror (Condition Register OR) Instruction” on page 168, “crnor (Condition

Register NOR) Instruction” on page 167, “crxor (Condition Register XOR) Instruction” on page 170, “mfspr

(Move from Special-Purpose Register) Instruction” on page 303, “mtspr (Move to Special-Purpose

Register) Instruction” on page 315, “nor (NOR) Instruction” on page 333, “or (OR) Instruction” on page

334, “rlwinm or rlinm (Rotate Left Word Immediate Then AND with Mask) Instruction” on page 354, “tw or t

(Trap Word) Instruction” on page 456, “twi or ti (Trap Word Immediate) Instruction” on page 457.

112 Assembler Language Reference

Chapter 7. Migrating Source Programs

The assembler issues errors and warnings if a source program contains instructions that are not in the

current assembly mode. Source compatibility of POWER family programs is maintained on PowerPC

platforms. All POWER family user instructions are emulated in PowerPC by the operating system. Because

the emulation of instructions is much slower than the execution of hardware-supported instructions, for

performance reasons it may be desirable to modify the source program to use hardware-supported

instructions.

The ″invalid instruction form″ problem occurs when restrictions are required in PowerPC but not required

in POWER family. The assembler checks for invalid instruction form errors, but it cannot check the lswx

instruction for these errors. The lswx instruction requires that the registers specified by the second and

third operands (RA and RB) are not in the range of registers to be loaded. Since this is determined by the

content of the Fixed-Point Exception Register (XER) at run time, the assembler cannot perform an invalid

instruction form check for the lswx instruction. At run time, some of these errors may cause a silence

failure, while others may cause an interruption. It may be desirable to eliminate these errors. See

“Detection Error Conditions” on page 6 for more information on invalid instruction forms.

If the mfspr and mtspr instructions are used, check for proper coding of the special-purpose register

(SPR) operand. The assembler requires that the low-order five bits and the high-order five bits of the SPR

operand be reversed before they are used as the input operand. POWER family and PowerPC have

different sets of SPR operands for nonprivileged instructions. Check for the proper encoding of these

operands. Five POWER family SPRs (TID, SDR0, MQ, RTCU, and RTCL) are dropped from PowerPC, but

the MQ, RTCU, and RTCL instructions are emulated in PowerPC. While these instructions can still be

used, there is some performance degradation due to the emulation. (You can sometimes use the

read_real_time and time_base_to_time routines instead of code accessing the real time clock or time

base SPRs.)

More information on migrating source programs can be found in the following:

v “Functional Differences for POWER family and PowerPC Instructions” on page 114

v “Differences between POWER family and PowerPC Instructions with the Same Op Code” on page 115

v “Extended Mnemonics Changes” on page 116

v “POWER family Instructions Deleted from PowerPC” on page 119

v “Added PowerPC Instructions” on page 120

v “Instructions Available Only for the PowerPC 601 RISC Microprocessor” on page 121

v “Migration of Branch Conditional Statements with No Separator after Mnemonic” on page 121

Related Information

Chapter 6, “Extended Instruction Mnemonics,” on page 89.

“Functional Differences for POWER family and PowerPC Instructions” on page 114.

“Differences between POWER family and PowerPC Instructions with the Same Op Code” on page 115.

“Extended Mnemonics Changes” on page 116.

“POWER family Instructions Deleted from PowerPC” on page 119.

“Added PowerPC Instructions” on page 120.

“Instructions Available Only for the PowerPC 601 RISC Microprocessor” on page 121.

© Copyright IBM Corp. 1997, 2006 113

Functional Differences for POWER family and PowerPC Instructions

The following table lists the POWER family and PowerPC instructions that share the same op code on

POWER family and PowerPC platforms, but differ in their functional definition. Use caution when using

these instructions in com assembly mode.

 Table 24. POWER family and PowerPC Instructions with Functional Differences

POWER family PowerPC Description

dcs sync The sync instruction causes more pervasive synchronization in

PowerPC than the dcs instruction does in POWER family.

ics isync The isync instruction causes more pervasive synchronization in

PowerPC than the ics instruction does in POWER family.

svca sc In POWER family, information from MSR is saved into CTR. In

PowerPC, this information is saved into SRR1. PowerPC only

supports one vector. POWER family allows instruction fetching to

continue at any of 128 locations. POWER family saves the

low-order 16 bits of the instruction in CTR. PowerPC does not save

the low-order 16 bits of the instruction.

mtsri mtsrin POWER family uses the RA field to compute the segment register

number and, in some cases, the effective address (EA) is stored.

PowerPC has no RA field, and the EA is not stored.

lsx lswx POWER family does not alter the target register RT if the string

length is 0. PowerPC leaves the contents of the target register RT

undefined if the string length is 0.

mfsr mfsr This is a nonprivileged instruction in POWER family. It is a

privileged instruction in PowerPC.

mfmsr mfmsr This is a nonprivileged instruction in POWER family. It is a

privileged instruction in PowerPC.

mfdec mfdec The mfdec instruction is nonprivileged in POWER family, but

becomes a privileged instruction in PowerPC. As a result, the DEC

encoding number for the mfdec instruction is different for POWER

family and PowerPC.

mffs mffs POWER family sets the high-order 32 bits of the result to 0xFFFF

FFFF. In PowerPC, the high-order 32 bits of the result are

undefined.

See “Features of the AIX Assembler” on page 1 for more information on the PowerPC-specific features of

the assembler.

Related Information

Chapter 7, “Migrating Source Programs,” on page 113.

“Differences between POWER family and PowerPC Instructions with the Same Op Code” on page 115.

“Extended Mnemonics Changes” on page 116.

“POWER family Instructions Deleted from PowerPC” on page 119.

“Added PowerPC Instructions” on page 120.

“Instructions Available Only for the PowerPC 601 RISC Microprocessor” on page 121.

114 Assembler Language Reference

Differences between POWER family and PowerPC Instructions with the

Same Op Code

This section discusses the following:

v “Instructions with the Same Op Code, Mnemonic, and Function”

v “Instructions with the Same Op Code and Function”

v “mfdec Instructions” on page 116

Instructions with the Same Op Code, Mnemonic, and Function

The following instructions are available in POWER family and PowerPC. These instructions share the

same op code and mnemonic, and have the same function in POWER family and PowerPC, but use

different input operand formats.

v cmp

v cmpi

v cmpli

v cmpl

The input operand format for POWER family is:

BF, RA, SI | RB | UI

The input operand format for PowerPC is:

BF, L, RA, SI | RB | UI

The assembler handles these as the same instructions in POWER family and PowerPC, but with different

input operand formats. The L operand is one bit. For POWER family, the assembler presets this bit to 0.

For 32-bit PowerPC platforms, this bit must be set to 0, or an invalid instruction form results.

Instructions with the Same Op Code and Function

The instructions listed in the following table are available in POWER family and PowerPC. These

instructions share the same op code and function, but have different mnemonics and input operand

formats. The assembler still places them in the POWER family/PowerPC intersection area, because the

same binary code is generated. If the -s option is used, no cross-reference is given, because it is

necessary to change the source code when migrating from POWER family to PowerPC, or vice versa.

 Table 25. Instructions with Same Op Code and Function

POWER family PowerPC

cal addi

mtsri mtsrin

svca sc

cau addis

Notes:

1. lil is an extended mnemonic of cal, and li is an extended mnemonic of addi. Since the op code,

function, and input operand format are the same, the assembler provides a cross-reference for lil and

li.

2. liu is an extended mnemonic of cau, and lis is an extended mnemonic of addis. Since the input

operand format is different, the assembler does not provide a cross-reference for liu and lis.

Chapter 7. Migrating Source Programs 115

3. The immediate value for the cau instruction is a 16-bit unsigned integer, while the immediate value for

the addis instruction is a 16-bit signed integer. The assembler performs a (0, 65535) value range

check for the UI field and a (-32768, 32767) value range check for the SI field.

To maintain source compatibility of the cau and addis instructions, the assembler expands the value

range check to (-65536, 65535) for the addis instruction. The sign bit is ignored and the assembler

ensures only that the immediate value fits in 16 bits. This expansion does not affect the behavior of a

32-bit implementation.

For a 64-bit implementation, if bit 32 is set, it is propagated through the upper 32 bits of the 64-bit

general-purpose register (GPR). Therefore, if an immediate value within the range (32768, 65535) or

(-65536, -32767) is used for the addis instruction in a 32-bit mode, this immediate value may not be

directly ported to a 64-bit mode.

mfdec Instructions

Moving from the DEC (decrement) special purpose register is privileged in PowerPC, but nonprivileged in

POWER family. One bit in the instruction field that specifies the register is 1 for privileged operations, but 0

for nonprivileged operations. As a result, the encoding number for the DEC SPR for the mfdec instruction

has different values in PowerPC and POWER family. The DEC encoding number is 22 for PowerPC and 6

for POWER family. If the mfdec instruction is used, the assembler determines the DEC encoding based

on the current assembly mode. The following list shows the assembler processing of the mfdec instruction

for each assembly mode value:

v If the assembly mode is pwr, pwr2, or 601, the DEC encoding is 6.

v If the assembly mode is ppc, 603, or 604, the DEC encoding is 22.

v If the default assembly mode, which treats POWER family/PowerPC incompatibility errors as

instructional warnings, is used, the DEC encoding is 6. Instructional warning 158 reports that the DEC

SPR encoding 6 is used to generate the object code. The warning can be suppressed with the -W flag.

v If the assembly mode is any, the DEC encoding is 6. If the -w flag is used, a warning message (158)

reports that the DEC SPR encoding 6 is used to generate the object code.

v If the assembly mode is com, an error message reports that the mfdec instruction is not supported. No

object code is generated. In this situation, the mfspr instruction must be used to encode the DEC

number.

Related Information

Chapter 7, “Migrating Source Programs,” on page 113.

“Functional Differences for POWER family and PowerPC Instructions” on page 114.

“Extended Mnemonics Changes.”

“POWER family Instructions Deleted from PowerPC” on page 119.

“Added PowerPC Instructions” on page 120.

“Instructions Available Only for the PowerPC 601 RISC Microprocessor” on page 121.

Extended Mnemonics Changes

The following lists show the added extended mnemonics for POWER family and PowerPC. The assembler

places all POWER family and PowerPC extended mnemonics in the POWER family/PowerPC intersection

area if their basic mnemonics are in this area. Extended mnemonics are separated for POWER family and

PowerPC only for migration purposes. See Chapter 6, “Extended Instruction Mnemonics,” on page 89 for

more information.

116 Assembler Language Reference

Extended Mnemonics in com Mode

The following PowerPC extended mnemonics for branch conditional instructions have been added:

v bdzt

v bdzta

v bdztl

v bdztla

v bdzf

v bdzfa

v bdzfl

v bdzfla

v bdnzt

v bdnzta

v bdnztl

v bdnztla

v bdnzf

v bdnzfa

v bdnzfl

v bdnzfla

v bdztlr

v bdztlrl

v bdzflr

v bdzflrl

v bdnztlr

v bdnztlrl

v bdnzflr

v bdnzflrl

v bun

v buna

v bunl

v bunla

v bunlr

v bunlrl

v bunctr

v bunctrl

v bnu

v bnua

v bnul

v bnula

v bnulr

v bnulrl

v bnuctr

v bnuctrl

The following PowerPC extended mnemonics for condition register logical instructions have been added:

v crset

Chapter 7. Migrating Source Programs 117

v crclr

v crmove

v crnot

The following PowerPC extended mnemonics for fixed-point load instructions have been added:

v li

v lis

v la

The following PowerPC extended mnemonics for fixed-point arithmetic instructions have been added:

v subi

v subis

v subc

The following PowerPC extended mnemonics for fixed-point compare instructions have been added:

v cmpwi

v cmpw

v cmplwi

v cmplw

The following PowerPC extended mnemonics for fixed-point trap instructions have been added:

v trap

v twlng

v twlngi

v twlnl

v twlnli

v twng

v twngi

v twnl

v twnli

The following PowerPC extended mnemonics for fixed-point logical instructions have been added:

v nop

v mr[.]

v not[.]

The following PowerPC extended mnemonics for fixed-point rotate and shift instructions have been added:

v extlwi[.]

v extrwi[.]

v inslwi[.]

v insrwi[.]

v rotlw[.]

v rotlwi[.]

v rotrwi[.]

v clrlwi[.]

v clrrwi[.]

v clrlslwi[.]

118 Assembler Language Reference

Extended Mnemonics in ppc Mode

The following PowerPC extended mnemonic for fixed-point arithmetic instructions has been added for ppc

mode:

v sub

Related Information

Chapter 7, “Migrating Source Programs,” on page 113.

“Functional Differences for POWER family and PowerPC Instructions” on page 114.

“Differences between POWER family and PowerPC Instructions with the Same Op Code” on page 115.

“POWER family Instructions Deleted from PowerPC.”

“Added PowerPC Instructions” on page 120.

“Instructions Available Only for the PowerPC 601 RISC Microprocessor” on page 121.

Chapter 6, “Extended Instruction Mnemonics,” on page 89.

POWER family Instructions Deleted from PowerPC

The following table lists the POWER family instructions that have been deleted from PowerPC, yet are still

supported by the PowerPC 601 RISC Microprocessor. AIX provides services to emulate most of these

instructions if an attempt to execute one of them is made on a processor that does not include the

instruction, such as PowerPC 603 RISC Microprocessor or PowerPC 604 RISC Microprocessor, but no

emulation services are provided for the mtrtcl, mtrtcu, or svcla instructions. Using the code to emulate an

instruction is much slower than executing an instruction.

 Table 26. POWER family Instructions Deleted from PowerPC, Supported byPowerPC 601 RISC Microprocessor

abs[o][.] clcs div[o][.] divs[o][.]

doz[o][.] dozi lscbx[.] maskg[.]

maskir[.] mfmq mfrtcl mfrtcu

mtmq mtrtcl mtrtcu mul[o][.]

nabs[o][.] rlmi[.] rrib[.] sle[.]

sleq[.] sliq[.] slliq[.] sllq[.]

slq[.] sraiq[.] sraq[.] sre[.]

srea[.] sreq[.] sriq[.] srliq[.]

srlq[.] srq[.] svcla

Note: Extended mnemonics are not included in the previous table, except for extended mnemonics for the

mfspr and mtspr instructions.

The following table lists the POWER family instructions that have been deleted from PowerPC and that are

not supported by the PowerPC 601 RISC Microprocessor. AIX does not provide services to emulate most

of these instructions. However, emulation services are provided for the clf, dclst, and dclz instructions.

Also, the cli instruction is emulated, but only when it is executed in privileged mode.

 Table 27. POWER family Instructions Deleted from PowerPC, Not Supported by PowerPC 601 RISC Microprocessor

clf cli dclst dclz

mfsdr0 mfsri mftid mtsdr0

Chapter 7. Migrating Source Programs 119

Table 27. POWER family Instructions Deleted from PowerPC, Not Supported by PowerPC 601 RISC

Microprocessor (continued)

mttid rac[.] rfsvc svc

svcl tlbi

Related Information

Chapter 7, “Migrating Source Programs,” on page 113.

“Functional Differences for POWER family and PowerPC Instructions” on page 114.

“Differences between POWER family and PowerPC Instructions with the Same Op Code” on page 115.

“Extended Mnemonics Changes” on page 116.

“Added PowerPC Instructions.”

“Instructions Available Only for the PowerPC 601 RISC Microprocessor” on page 121.

Added PowerPC Instructions

The following table lists instructions that have been added to PowerPC, but are not in POWER family.

These instructions are supported by the PowerPC 601 RISC Microprocessor.

 Table 28. Added PowerPC Instructions, Supported by PowerPC 601 RISC Microprocessor

dcbf dcbi dcbst dcbt

dcbtst dcbz divw[o][.] divwu[o][.]

eieio extsb[.] fadds[.] fdivs[.]

fmadds[.] fmsubs[.] fmuls[.] fnmadds[.]

fnmsubs[.] fsubs[.] icbi lwarx

mfear mfpvr mfsprg mfsrin

mtear mtsprg mulhw[.] mulhwu[.]

stwcx. subf[o][.]

Note: Extended mnemonics are not included in the previous table, except for extended mnemonics for the

mfspr and mtspr instructions.

The following table lists instructions that have been added to PowerPC, but are not in POWER family.

These instructions are not supported by the PowerPC 601 RISC Microprocessor.

 Table 29. PowerPC Instructions, Not Supported by PowerPC 601 RISC Microprocessor

mfdbatl mfdbatu mtdbatl mtdbatu

mttb mttbu mftb mftbu

mfibatl mfibatu mtibatl mtibatu

Related Information

Chapter 7, “Migrating Source Programs,” on page 113.

“Functional Differences for POWER family and PowerPC Instructions” on page 114.

120 Assembler Language Reference

“Differences between POWER family and PowerPC Instructions with the Same Op Code” on page 115.

“Extended Mnemonics Changes” on page 116.

“POWER family Instructions Deleted from PowerPC” on page 119.

“Instructions Available Only for the PowerPC 601 RISC Microprocessor.”

Instructions Available Only for the PowerPC 601 RISC Microprocessor

The following table lists PowerPC optional instructions that are implemented in the PowerPC 601 RISC

Microprocessor:

 Table 30. PowerPC 601 RISC Microprocessor-Unique Instructions

eciwx ecowx mfbatl mfbatu

mtbatl mtbatu tlbie

Note: Extended mnemonics, with the exception of mfspr and mtspr extended mnemonics, are not

provided.

Related Information

Chapter 7, “Migrating Source Programs,” on page 113.

“Functional Differences for POWER family and PowerPC Instructions” on page 114.

“Differences between POWER family and PowerPC Instructions with the Same Op Code” on page 115.

“Extended Mnemonics Changes” on page 116.

“POWER family Instructions Deleted from PowerPC” on page 119.

“Added PowerPC Instructions” on page 120.

Migration of Branch Conditional Statements with No Separator after

Mnemonic

The AIX assembler may parse some statements different from the previous version of the assembler. This

different parsing is only a possibility for statements that meet all the following conditions:

v The statement does not have a separator character (space or tab) between the mnemonic and the

operands.

v The first character of the first operand is a plus sign (+) or a minus sign (-).

v The mnemonic represents a Branch Conditional instruction.

If an assembler program has statements that meet all the conditions above, and the minus sign, or a plus

sign in the same location, is intended to be part of the operands, not part of the mnemonic, the source

program must be modified. This is especially important for minus signs, because moving a minus sign can

significantly change the meaning of a statement.

The possibility of different parsing occurs in AIX because the assembler was modified to support branch

prediction extended mnemonics which use the plus sign and minus sign as part of the mnemonic. In

previous versions of the assembler, letters and period (.) were the only possible characters in mnemonics.

For information, see “Extended Mnemonics for Branch Prediction” on page 93.

Chapter 7. Migrating Source Programs 121

Examples

1. The following statement is parsed by the AIX assembler so that the minus sign is part of the mnemonic

(but previous versions of the assembler parsed the minus sign as part of the operands) and must be

modified if the minus sign is intended to be part of the operands:

 bnea- 16 # Separator after the - , but none before

 # Now: bnea- is a Branch Prediction Mnemonic

 # and 16 is operand.

 # Previously: bnea was mnemonic

 # and -16 was operand.

2. The following are several sample statements which the AIX assembler parses the same as previous

assemblers (the minus sign will be interpreted as part of the operands):

 bnea -16 # Separator in source program - Good practice

 bnea-16 # No separators before or after minus sign

 bnea - 16 # Separators before and after the minus sign

Related Information

“Features of the AIX Assembler” on page 1.

“Extended Mnemonics for Branch Prediction” on page 93.

122 Assembler Language Reference

Chapter 8. Instruction Set

This chapter contains reference articles for the operating system assembler instruction set. The following

appendixes also provide information on the operating system assembler instruction set:

v Appendix B. Instruction Set Sorted by Mnemonic

v Appendix C. Instruction Set Sorted by Primary and Extended Op Code

v Appendix D. Instructions Common to POWER family, POWER2, and PowerPC

v Appendix E. POWER family and POWER2 Instructions

v Appendix F. PowerPC Instructions

v Appendix G. PowerPC 601 RISC Microprocessor Instructions

v Appendix I, “Vector Processor,” on page 597

abs (Absolute) Instruction

Purpose

Takes the absolute value of the contents of a general-purpose register and places the result in another

general-purpose register.

Note: The abs instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 ///

21 OE

22-30 360

31 Rc

 POWER family

abs RT, RA

abs. RT, RA

abso RT, RA

abso. RT, RA

Description

The abs instruction places the absolute value of the contents of general-purpose register (GPR) RA into

the target GPR RT.

If GPR RA contains the most negative number (’8000 0000’), the result of the instruction is the most

negative number, and the instruction will set the Overflow bit in the Fixed-Point Exception Register to 1 if

the OE bit is set to 1.

The abs instruction has four syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

© Copyright IBM Corp. 1997, 2006 123

Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

abs 0 None 0 None

abs. 0 None 1 LT,GT,EQ,SO

abso 1 SO,OV 0 None

abso. 1 SO,OV 1 LT,GT,EQ,SO

The four syntax forms of the abs instruction always affect the Carry bit (CA) in the Fixed-Point Exception

Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the instruction affects the Summary

Overflow (SO) and Overflow (OV) bits in the Fixed-Point Exception Register. If the syntax form sets the

Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To

(EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RT Specifies the target general-purpose register where result of operation is stored.

RA Specifies the source general-purpose register for operation.

Examples

1. The following code takes the absolute value of the contents of GPR 4 and stores the result in GPR 6:

Assume GPR 4 contains 0x7000 3000.

abs 6,4

GPR 6 now contains 0x7000 3000.

2. The following code takes the absolute value of the contents of GPR 4, stores the result in GPR 6, and

sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xFFFF FFFF.

abs. 6,4

GPR 6 now contains 0x0000 0001.

3. The following code takes the absolute value of the contents of GPR 4, stores the result in GPR 6, and

sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register to reflect the result

of the operation:

Assume GPR 4 contains 0xB004 3000.

abso 6,4

GPR 6 now contains 0x4FFB D000.

4. The following code takes the absolute value of the contents of GPR 4, stores the result in GPR 6, and

sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register and Condition

Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x8000 0000.

abso. 6,4

GPR 6 now contains 0x8000 0000.

Related Information

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

add (Add) or cax (Compute Address) Instruction

Purpose

Adds the contents of two general-purpose registers.

124 Assembler Language Reference

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21 OE

22-30 266

31 Rc

 PowerPC

add RT, RA, RB

add. RT, RA, RB

addo RT, RA, RB

addo. RT, RA, RB

 POWER family

cax RT, RA, RB

cax. RT, RA, RB

caxo RT, RA, RB

caxo. RT, RA, RB

Description

The add and cax instructions place the sum of the contents of general-purpose register (GPR) RA and

GPR RB into the target GPR RT.

The add and cax instructions have four syntax forms. Each syntax form has a different effect on Condition

Register Field 0 and the Fixed-Point Exception Register.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

add 0 None 0 None

add. 0 None 1 LT,GT,EQ,SO

addo 1 SO,OV 0 None

addo. 1 SO,OV 1 LT,GT,EQ,SO

cax 0 None 0 None

cax. 0 None 1 LT,GT,EQ,SO

caxo 1 SO,OV 0 None

caxo. 1 SO,OV 1 LT,GT,EQ,SO

The four syntax forms of the add instruction and the four syntax forms of the cax instruction never affect

the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Overflow Exception

(OE) bit to 1, the instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the Fixed-Point

Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than

(LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition

Register Field 0.

Chapter 8. Instruction Set 125

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

1. The following code adds the address or contents in GPR 6 to the address or contents in GPR 3 and

stores the result in GPR 4:

Assume GPR 6 contains 0x0004 0000.

Assume GPR 3 contains 0x0000 4000.

add 4,6,3

GPR 4 now contains 0x0004 4000.

2. The following code adds the address or contents in GPR 6 to the address or contents in GPR 3, stores

the result in GPR 4, and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 6 contains 0x8000 7000.

Assume GPR 3 contains 0x7000 8000.

 add. 4,6,3

GPR 4 now contains 0xF000 F000.

3. The following code adds the address or contents in GPR 6 to the address or contents in GPR 3, stores

the result in GPR 4, and sets the Summary Overflow, Overflow, and Carry bits in the Fixed-Point

Exception Register to reflect the result of the operation:

Assume GPR 6 contains 0xEFFF FFFF.

Assume GPR 3 contains 0x8000 0000.

addo 4,6,3

GPR 4 now contains 0x6FFF FFFF.

4. The following code adds the address or contents in GPR 6 to the address or contents in GPR 3, stores

the result in GPR 4, and sets the Summary Overflow, Overflow, and Carry bits in the Fixed-Point

Exception Register and Condition Register Field 0 to reflect the result of the operation:

Assume GPR 6 contains 0xEFFF FFFF.

Assume GPR 3 contains 0xEFFF FFFF.

addo. 4,6,3

GPR 4 now contains 0xDFFF FFFE.

Related Information

Fixed-Point Processor .

Fixed-Point Address Computation Instructions .

addc or a (Add Carrying) Instruction

Purpose

Adds the contents of two general-purpose registers and places the result in a general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

126 Assembler Language Reference

Bits Value

21 OE

22-30 10

31 Rc

 PowerPC

addc RT, RA, RB

addc. RT, RA, RB

addco RT, RA, RB

addco. RT, RA, RB

 a RT, RA, RB

a. RT, RA, RB

ao RT, RA, RB

ao. RT, RA, RB

Description

The addc and a instructions place the sum of the contents of general-purpose register (GPR) RA and

GPR RB into the target GPR RT.

The addc instruction has four syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

The a instruction has four syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

addc 0 CA 0 None

addc. 0 CA 1 LT,GT,EQ,SO

addco 1 SO,OV,CA 0 None

addco. 1 SO,OV,CA 1 LT,GT,EQ,SO

a 0 CA 0 None

a. 0 CA 1 LT,GT,EQ,SO

ao 1 SO,OV,CA 0 None

ao. 1 SO,OV,CA 1 LT,GT,EQ,SO

The four syntax forms of the addc instruction and the four syntax forms of the a instruction always affect

the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Overflow Exception

(OE) bit to 1, the instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the Fixed-Point

Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than

(LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition

Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for operation.

Chapter 8. Instruction Set 127

RB Specifies source general-purpose register for operation.

Examples

1. The following code adds the contents of GPR 4 to the contents of GPR 10 and stores the result in

GPR 6:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 10 contains 0x8000 7000.

addc 6,4,10

GPR 6 now contains 0x1000 A000.

2. The following code adds the contents of GPR 4 to the contents of GPR 10, stores the result in GPR 6,

and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x7000 3000.

Assume GPR 10 contains 0xFFFF FFFF.

addc. 6,4,10

GPR 6 now contains 0x7000 2FFF.

3. The following code adds the contents of GPR 4 to the contents of GPR 10, stores the result in GPR 6,

and sets the Summary Overflow, Overflow, and Carry bits in the Fixed-Point Exception Register to

reflect the result of the operation:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 10 contains 0x7B41 92C0.

addco 6,4,10

GPR 6 now contains 0x0B41 C2C0.

4. The following code adds the contents of GPR 4 to the contents of GPR 10, stores the result in GPR 6,

and sets the Summary Overflow, Overflow, and Carry bits in the Fixed-Point Exception Register and

Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x8000 0000.

Assume GPR 10 contains 0x8000 7000.

addco. 6,4,10

GPR 6 now contains 0x0000 7000.

Related Information

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

adde or ae (Add Extended) Instruction

Purpose

Adds the contents of two general-purpose registers to the value of the Carry bit in the Fixed-Point

Exception Register and places the result in a general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21 OE

22-30 138

128 Assembler Language Reference

Bits Value

31 Rc

 PowerPC

adde RT, RA, RB

adde. RT, RA, RB

addeo RT, RA, RB

addeo. RT, RA, RB

 POWER family

ae RT, RA, RB

ae. RT, RA, RB

aeo RT, RA, RB

aeo. RT, RA, RB

Description

The adde and ae instructions place the sum of the contents of general-purpose register (GPR) RA, GPR

RB, and the Carry bit into the target GPR RT.

The adde instruction has four syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

The ae instruction has four syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

adde 0 CA 0 None

adde. 0 CA 1 LT,GT,EQ,SO

addeo 1 SO,OV,CA 0 None

addeo. 1 SO,OV,CA 1 LT,GT,EQ,SO

ae 0 CA 0 None

ae. 0 CA 1 LT,GT,EQ,SO

aeo 1 SO,OV,CA 0 None

aeo. 1 SO,OV,CA 1 LT,GT,EQ,SO

The four syntax forms of the adde instruction and the four syntax forms of the ae instruction always affect

the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Overflow Exception

(OE) bit to 1, the instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the Fixed-Point

Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than

(LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition

Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Chapter 8. Instruction Set 129

Examples

1. The following code adds the contents of GPR 4, the contents of GPR 10, and the Fixed-Point

Exception Register Carry bit and stores the result in GPR 6:

Assume GPR 4 contains 0x1000 0400.

Assume GPR 10 contains 0x1000 0400.

Assume the Carry bit is one.

adde 6,4,10

GPR 6 now contains 0x2000 0801.

2. The following code adds the contents of GPR 4, the contents of GPR 10, and the Fixed-Point

Exception Register Carry bit; stores the result in GPR 6; and sets Condition Register Field 0 to reflect

the result of the operation:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 10 contains 0x7B41 92C0.

Assume the Carry bit is zero.

adde. 6,4,10

GPR 6 now contains 0x0B41 C2C0.

3. The following code adds the contents of GPR 4, the contents of GPR 10, and the Fixed-Point

Exception Register Carry bit; stores the result in GPR 6; and sets the Summary Overflow, Overflow,

and Carry bits in the Fixed-Point Exception Register to reflect the result of the operation:

Assume GPR 4 contains 0x1000 0400.

Assume GPR 10 contains 0xEFFF FFFF.

Assume the Carry bit is one.

addeo 6,4,10

GPR 6 now contains 0x0000 0400.

4. The following code adds the contents of GPR 4, the contents of GPR 10, and the Fixed-Point

Exception Register Carry bit; stores the result in GPR 6; and sets the Summary Overflow, Overflow,

and Carry bits in the Fixed-Point Exception Register and Condition Register Field 0 to reflect the result

of the operation:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 10 contains 0x8000 7000.

Assume the Carry bit is zero.

addeo. 6,4,10

GPR 6 now contains 0x1000 A000.

Related Information

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

addi (Add Immediate) or cal (Compute Address Lower) Instruction

Purpose

Calculates an address from an offset and a base address and places the result in a general-purpose

register.

Syntax

 Bits Value

0-5 14

6-10 RT

11-15 RA

16-31 SI/D

130 Assembler Language Reference

PowerPC

addi RT, RA, SI

 POWER family

cal RT, D(RA)

See Extended Mnemonics of Fixed-Point Arithmetic Instructions and Extended Mnemonics of Fixed-Point

Load Instructions for more information.

Description

The addi and cal instructions place the sum of the contents of general-purpose register (GPR) RA and the

16-bit two’s complement integer SI or D, sign-extended to 32 bits, into the target GPR RT. If GPR RA is

GPR 0, then SI or D is stored into the target GPR RT.

The addi and cal instructions have one syntax form and do not affect Condition Register Field 0 or the

Fixed-Point Exception Register.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for operation.

D Specifies 16-bit two’s complement integer sign extended to 32 bits.

SI Specifies 16-bit signed integer for operation.

Examples

The following code calculates an address or contents with an offset of 0xFFFF 8FF0 from the contents of

GPR 5 and stores the result in GPR 4:

Assume GPR 5 contains 0x0000 0900.

addi 4,0xFFFF8FF0(5)

GPR 4 now contains 0xFFFF 98F0.

Related Information

Fixed-Point Processor .

Fixed-Point Address Computation Instructions .

addic or ai (Add Immediate Carrying) Instruction

Purpose

Adds the contents of a general-purpose register and a 16-bit signed integer, places the result in a

general-purpose register, and effects the Carry bit of the Fixed-Point Exception Register.

Syntax

 Bits Value

0-5 12

6-10 RT

11-15 RA

16-31 SI

Chapter 8. Instruction Set 131

PowerPC

addic RT, RA, SI

 POWER family

ai RT, RA, SI

See Extended Mnemonics of Fixed-Point Arithmetic Instructions for more information.

Description

The addic and ai instructions place the sum of the contents of general-purpose register (GPR) RA and a

16-bit signed integer, SI, into target GPR RT.

The 16-bit integer provided as immediate data is sign-extended to 32 bits prior to carrying out the addition

operation.

The addic and ai instructions have one syntax form and can set the Carry bit of the Fixed-Point Exception

Register; these instructions never affect Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for operation.

SI Specifies 16-bit signed integer for operation.

Examples

The following code adds 0xFFFF FFFF to the contents of GPR 4, stores the result in GPR 6, and sets the

Carry bit to reflect the result of the operation:

Assume GPR 4 contains 0x0000 2346.

addic 6,4,0xFFFFFFFF

GPR 6 now contains 0x0000 2345.

Related Information

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

addic. or ai. (Add Immediate Carrying and Record) Instruction

Purpose

Performs an addition with carry of the contents of a general-purpose register and an immediate value.

Syntax

 Bits Value

0-5 13

6-10 RT

11-15 RA

16-31 SI

132 Assembler Language Reference

PowerPC

addic. RT, RA, SI

 POWER family

ai. RT, RA, SI

See Extended Mnemonics of Fixed-Point Arithmetic Instructions for more information.

Description

The addic. and ai. instructions place the sum of the contents of general-purpose register (GPR) RA and a

16-bit signed integer, SI, into the target GPR RT.

The 16-bit integer SI provided as immediate data is sign-extended to 32 bits prior to carrying out the

addition operation.

The addic. and ai. instructions have one syntax form and can set the Carry Bit of the Fixed-Point

Exception Register. These instructions also affect Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for operation.

SI Specifies 16-bit signed integer for operation.

Examples

The following code adds a 16-bit signed integer to the contents of GPR 4, stores the result in GPR 6, and

sets the Fixed-Point Exception Register Carry bit and Condition Register Field 0 to reflect the result of the

operation:

Assume GPR 4 contains 0xEFFF FFFF.

addic. 6,4,0x1000

GPR 6 now contains 0xF000 0FFF.

Related Information

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

addis or cau (Add Immediate Shifted) Instruction

Purpose

Calculates an address from a concatenated offset and a base address and loads the result in a

general-purpose register.

Syntax

 Bits Value

0-5 15

6-10 RT

11-15 RA

Chapter 8. Instruction Set 133

Bits Value

16-31 SI/UI

 PowerPC

addis RT, RA, SI

 POWER family

cau RT, RA, UI

See Extended Mnemonics of Fixed-Point Arithmetic Instructions and Extended Mnemonics of Fixed-Point

Load Instructions for more information.

Description

The addis and cau instructions place the sum of the contents of general-purpose register (GPR) RA and

the concatenation of a 16-bit unsigned integer, SI or UI, and x’0000’ into the target GPR RT. If GPR RA is

GPR 0, then the sum of the concatenation of 0, SI or UI, and x’0000’ is stored into the target GPR RT.

The addis and cau instructions have one syntax form and do not affect Condition Register Field 0 or the

Fixed-Point Exception Register.

Note: The immediate value for the cau instruction is a 16-bit unsigned integer, whereas the

immediate value for the addis instruction is a 16-bit signed integer. This difference is a result of

extending the architecture to 64 bits.

The assembler does a 0 to 65535 value-range check for the UI field, and a -32768 to 32767 value-range

check for the SI field.

To keep the source compatibility of the addis and cau instructions, the assembler expands the

value-range check for the addis instruction to -65536 to 65535. The sign bit is ignored and the assembler

only ensures that the immediate value fits into 16 bits. This expansion does not affect the behavior of a

32-bit implementation or 32-bit mode in a 64-bit implementation.

The addis instruction has different semantics in 32-bit mode than it does in 64-bit mode. If bit 32 is set, it

propagates through the upper 32 bits of the 64-bit general-purpose register. Use caution when using the

addis instruction to construct an unsigned integer. The addis instruction with an unsigned integer in 32-bit

may not be directly ported to 64-bit mode. The code sequence needed to construct an unsigned integer in

64-bit mode is significantly different from that needed in 32-bit mode.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies first source general-purpose register for operation.

UI Specifies 16-bit unsigned integer for operation.

SI Specifies

16-bit signed integer for operation.

Examples

The following code adds an offset of 0x0011 0000 to the address or contents contained in GPR 6 and

loads the result into GPR 7:

Assume GPR 6 contains 0x0000 4000.

addis 7,6,0x0011

GPR 7 now contains 0x0011 4000.

134 Assembler Language Reference

Related Information

Fixed-Point Processor .

Fixed-Point Address Computation Instructions .

addme or ame (Add to Minus One Extended) Instruction

Purpose

Adds the contents of a general-purpose register, the Carry bit in the Fixed-Point Exception Register, and -1

and places the result in a general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 ///

21 OE

22-30 234

31 Rc

 PowerPC

addme RT, RA

addme. RT, RA

addmeo RT, RA

addmeo. RT, RA

 POWER family

ame RT, RA

ame. RT, RA

ameo RT, RA

ameo. RT, RA

Description

The addme and ame instructions place the sum of the contents of general-purpose register (GPR) RA, the

Carry bit of the Fixed-Point Exception Register, and -1 (0xFFFF FFFF) into the target GPR RT.

The addme instruction has four syntax forms. Each syntax form has a different effect on Condition

Register Field 0 and the Fixed-Point Exception Register.

The ame instruction has four syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

addme 0 CA 0 None

addme. 0 CA 1 LT,GT,EQ,SO

Chapter 8. Instruction Set 135

addmeo 1 SO,OV,CA 0 None

addmeo. 1 SO,OV,CA 1 LT,GT,EQ,SO

ame 0 CA 0 None

ame. 0 CA 1 LT,GT,EQ,SO

ameo 1 SO,OV,CA 0 None

ameo. 1 SO,OV,CA 1 LT,GT,EQ,SO

The four syntax forms of the addme instruction and the four syntax forms of the ame instruction always

affect the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Overflow

Exception (OE) bit to 1, the instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the

Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the

Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in

Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for operation.

Examples

1. The following code adds the contents of GPR 4, the Carry bit in the Fixed-Point Exception Register,

and -1 and stores the result in GPR 6:

Assume GPR 4 contains 0x9000 3000.

Assume the Carry bit is zero.

addme 6,4

GPR 6 now contains 0x9000 2FFF.

2. The following code adds the contents of GPR 4, the Carry bit in the Fixed-Point Exception Register,

and -1; stores the result in GPR 6; and sets Condition Register Field 0 to reflect the result of the

operation:

Assume GPR 4 contains 0xB000 42FF.

Assume the Carry bit is zero.

addme. 6,4

GPR 6 now contains 0xB000 42FE.

3. The following code adds the contents of GPR 4, the Carry bit in the Fixed-Point Exception Register,

and -1; stores the result in GPR 6; and sets the Summary Overflow, Overflow, and Carry bits in the

Fixed-Point Exception Register to reflect the result of the operation:

Assume GPR 4 contains 0x8000 0000.

Assume the Carry bit is zero.

addmeo 6,4

GPR 6 now contains 0x7FFF FFFF.

4. The following code adds the contents of GPR 4, the Carry bit in the Fixed-Point Exception Register,

and -1; stores the result in GPR 6; and sets the Summary Overflow, Overflow, and Carry bits in the

Fixed-Point Exception Register and Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x8000 0000.

Assume the Carry bit is one.

addmeo. 6,4

GPR 6 now contains 0x8000 000.

Related Information

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

136 Assembler Language Reference

addze or aze (Add to Zero Extended) Instruction

Purpose

Adds the contents of a general-purpose register, zero, and the value of the Carry bit in the FIxed-Point

Exception Register and places the result in a general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 ///

21 OE

22-30 202

31 Rc

 PowerPC

addze RT, RA

addze. RT, RA

addzeo RT, RA

addzeo. RT, RA

 POWER family

aze RT, RA

aze. RT, RA

azeo RT, RA

azeo. RT, RA

Description

The addze and aze instructions add the contents of general-purpose register (GPR) RA, the Carry bit, and

0x0000 0000 and place the result into the target GPR RT.

The addze instruction has four syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

The aze instruction has four syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

addze 0 CA 0 None

addze. 0 CA 1 LT,GT,EQ,SO

addzeo 1 SO,OV,CA 0 None

addzeo. 1 SO,OV,CA 1 LT,GT,EQ,SO

aze 0 CA 0 None

aze. 0 CA 1 LT,GT,EQ,SO

Chapter 8. Instruction Set 137

azeo 1 SO,OV,CA 0 None

azeo. 1 SO,OV,CA 1 LT,GT,EQ,SO

The four syntax forms of the addze instruction and the four syntax forms of the aze instruction always

affect the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Overflow

Exception (OE) bit to 1, the instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the

Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the

Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in

Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for operation.

Examples

1. The following code adds the contents of GPR 4, 0, and the Carry bit and stores the result in GPR 6:

Assume GPR 4 contains 0x7B41 92C0.

Assume the Carry bit is zero.

addze 6,4

GPR 6 now contains 0x7B41 92C0.

2. The following code adds the contents of GPR 4, 0, and the Carry bit, stores the result in GPR 6, and

sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xEFFF FFFF.

Assume the Carry bit is one.

addze. 6,4

GPR 6 now contains 0xF000 0000.

3. The following code adds the contents of GPR 4, 0, and the Carry bit; stores the result in GPR 6; and

sets the Summary Overflow, Overflow, and Carry bits in the Fixed-Point Exception Register to reflect

the result of the operation:

Assume GPR 4 contains 0x9000 3000.

Assume the Carry bit is one.

addzeo 6,4

GPR 6 now contains 0x9000 3001.

4. The following code adds the contents of GPR 4, 0, and the Carry bit; stores the result in GPR 6; and

sets the Summary Overflow, Overflow, and Carry bits in the Fixed-Point Exception Register and

Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xEFFF FFFF.

Assume the Carry bit is zero.

adzeo. 6,4

GPR 6 now contains 0xEFFF FFFF.

Related Information

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

and (AND) Instruction

Purpose

Logically ANDs the contents of two general-purpose registers and places the result in a general-purpose

register.

138 Assembler Language Reference

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 28

31 Rc

 and RA, RS, RB

and. RA, RS, RB

Description

The and instruction logically ANDs the contents of general-purpose register (GPR) RS with the contents of

GPR RB and places the result into the target GPR RA.

The and instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

and None None 0 None

and. None None 1 LT,GT,EQ,SO

The two syntax forms of the and instruction never affect the Fixed-Point Exception Register. If the syntax

form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,

Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

1. The following code logically ANDs the contents of GPR 4 with the contents of GPR 7 and stores the

result in GPR 6:

Assume GPR 4 contains 0xFFF2 5730.

Assume GPR 7 contains 0x7B41 92C0.

and 6,4,7

GPR 6 now contains 0x7B40 1200.

2. The following code logically ANDs the contents of GPR 4 with the contents of GPR 7, stores the result

in GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xFFF2 5730.

Assume GPR 7 contains 0xFFFF EFFF.

and. 6,4,7

GPR 6 now contains 0xFFF2 4730.

Chapter 8. Instruction Set 139

Related Information

Fixed-Point Processor .

Fixed-Point Logical Instructions .

andc (AND with Complement) Instruction

Purpose

Logically ANDs the contents of a general-purpose register with the complement of the contents of a

general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 60

31 Rc

 andc RA, RS, RB

andc. RA, RS, RB

Description

The andc instruction logically ANDs the contents of general-purpose register (GPR) RS with the

complement of the contents of GPR RB and places the result into GPR RA.

The andc instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

andc None None 0 None

andc. None None 1 LT,GT,EQ,SO

The two syntax forms of the andc instruction never affect the Fixed-Point Exception Register. If the syntax

form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,

Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

140 Assembler Language Reference

Examples

1. The following code logically ANDs the contents of GPR 4 with the complement of the contents of GPR

5 and stores the result in GPR 6:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 5 contains 0xFFFF FFFF.

The complement of 0xFFFF FFFF becomes 0x0000 0000.

andc 6,4,5

GPR 6 now contains 0x0000 0000.

2. The following code logically ANDs the contents of GPR 4 with the complement of the contents of GPR

5, stores the result in GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xB004 3000.

Assume GPR 5 contains 0x7676 7676.

The complement of 0x7676 7676 is 0x8989 8989.

andc. 6,4,5

GPR 6 now contains 0x8000 0000.

Related Information

Fixed-Point Processor .

Fixed-Point Logical Instructions .

andi. or andil. (AND Immediate) Instruction

Purpose

Logically ANDs the contents of a general-purpose register with an immediate value.

Syntax

 Bits Value

0-5 28

6-10 RS

11-15 RA

16-31 UI

 PowerPC

andi. RA, RS, UI

 POWER family

andil. RA, RS, UI

Description

The andi. and andil. instructions logically AND the contents of general-purpose register (GPR) RS with the

concatenation of x’0000’ and a 16-bit unsigned integer, UI, and place the result in GPR RA.

The andi. and andil. instructions have one syntax form and never affect the Fixed-Point Exception

Register. The andi. and andil. instructions copies the Summary Overflow (SO) bit from the Fixed-Point

Exception Register into Condition Register Field 0 and sets one of the Less Than (LT), Greater Than (GT),

or Equal To (EQ) bits of Condition Register Field 0.

Chapter 8. Instruction Set 141

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

UI Specifies 16-bit unsigned integer for operation.

Examples

The following code logically ANDs the contents of GPR 4 with 0x0000 5730, stores the result in GPR 6,

and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x7B41 92C0.

andi. 6,4,0x5730

GPR 6 now contains 0x0000 1200.

CRF 0 now contains 0x4.

Related Information

Fixed-Point Processor .

Fixed-Point Logical Instructions .

andis. or andiu. (AND Immediate Shifted) Instruction

Purpose

Logically ANDs the most significant 16 bits of the contents of a general-purpose register with a 16-bit

unsigned integer and stores the result in a general-purpose register.

Syntax

 Bits Value

0-5 29

6-10 RS

11-15 RA

16-31 UI

 PowerPC

andis. RA, RS, UI

 POWER family

andiu. RA, RS, UI

Description

The andis. and andiu. instructions logically AND the contents of general-purpose register (GPR) RS with

the concatenation of a 16-bit unsigned integer, UI, and x’0000’ and then place the result into the target

GPR RA.

The andis. and andiu. instructions have one syntax form and never affect the Fixed-Point Exception

Register. The andis. and andiu. instructions set the Less Than (LT) zero, Greater Than (GT) zero, Equal

To (EQ) zero, or Summary Overflow (SO) bit in Condition Register Field 0.

142 Assembler Language Reference

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

UI Specifies 16-bit unsigned integer for operation.

Examples

The following code logically ANDs the contents of GPR 4 with 0x5730 0000, stores the result in GPR 6,

and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x7B41 92C0.

andis. 6,4,0x5730

GPR 6 now contains 0x5300 0000.

Related Information

Fixed-Point Processor .

Fixed-Point Logical Instructions .

b (Branch) Instruction

Purpose

Branches to a specified target address.

Syntax

 Bits Value

0-5 18

6-29 LL

30 AA

31 LK

 b target_address

ba target_address

bl target_address

bla target_address

Description

The b instruction branches to an instruction specified by the branch target address. The branch target

address is computed one of two ways.

Consider the following when using the b instruction:

v If the Absolute Address bit (AA) is 0, the branch target address is computed by concatenating the 24-bit

LI field. This field is calculated by subtracting the address of the instruction from the target address and

dividing the result by 4 and b’00’. The result is then sign-extended to 32 bits and added to the address

of this branch instruction.

v If the AA bit is 1, then the branch target address is the LI field concatenated with b’00’ sign-extended to

32 bits. The LI field is the low-order 26 bits of the target address divided by four.

Chapter 8. Instruction Set 143

The b instruction has four syntax forms. Each syntax form has a different effect on the Link bit and Link

Register.

 Syntax Form Absolute Address

Bit (AA)

Fixed-Point

Exception Register

Link Bit (LK) Condition Register

Field 0

b 0 None 0 None

ba 1 None 0 None

bl 0 None 1 None

bla 1 None 1 None

The four syntax forms of the b instruction never affect the Fixed-Point Exception Register or Condition

Register Field 0. The syntax forms set the AA bit and the Link bit (LK) and determine which method of

calculating the branch target address is used. If the Link bit (LK) is set to 1, then the effective address of

the instruction is placed in the Link Register.

Parameters

 target_address Specifies the target address.

Examples

1. The following code transfers the execution of the program to there:

here: b there

 cror 31,31,31

The execution of the program continues at there.

there:

2. The following code transfers the execution of the program to here and sets the Link Register:

 bl here

return: cror 31,31,31

The Link Register now contains the address of return.

The execution of the program continues at here.

here:

Related Information

Branch Processor .

Branch Instructions .

bc (Branch Conditional) Instruction

Purpose

Conditionally branches to a specified target address.

Syntax

 Bits Value

0-5 16

6-10 BO

11-15 BI

16-29 BD

144 Assembler Language Reference

Bits Value

30 AA

31 LK

 bc “BO” on page 146, “BI” on page 146, “target_address” on page 146

bca “BO” on page 146, “BI” on page 146, “target_address” on page 146

bcl “BO” on page 146, “BI” on page 146, “target_address” on page 146

bcla “BO” on page 146, “BI” on page 146, “target_address” on page 146

See “Extended Mnemonics of Branch Instructions” on page 89 for more information.

Description

The bc instruction branches to an instruction specified by the branch target address. The branch target

address is computed one of two ways:

v If the Absolute Address bit (AA) is 0, then the branch target address is computed by concatenating the

14-bit Branch Displacement (BD) and b’00’, sign-extending this to 32 bits, and adding the result to the

address of this branch instruction.

v If the AA is 1, then the branch target address is BD concatenated with b’00’ sign-extended to 32 bits.

The bc instruction has four syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

 Syntax Form Absolute Address

Bit (AA)

Fixed-Point

Exception Register

Link Bit (LK) Condition Register

Field 0

bc 0 None 0 None

bca 1 None 0 None

bcl 0 None 1 None

bcla 1 None 1 None

The four syntax forms of the bc instruction never affect the Fixed-Point Exception Register or Condition

Register Field 0. The syntax forms set the AA bit and the Link bit (LK) and determine which method of

calculating the branch target address is used. If the Link Bit (LK) is set to 1, then the effective address of

the instruction is placed in the Link Register.

The Branch Option field (BO) is used to combine different types of branches into a single instruction.

Extended mnemonics are provided to set the Branch Option field automatically.

The encoding for the BO field is defined in PowerPC architecture. The following list gives brief descriptions

of the possible values for this field using pre-V2.00 encoding:

 Table 31. BO Field Values Using pre-V2.00 Encoding

BO Description

0000y Decrement the CTR; then branch if the decremented CTR is not 0 and the condition is False.

0001y Decrement the CTR; then branch if the decremented CTR is 0 and the condition is False.

001zy Branch if the condition is False.

0100y Decrement the CTR; then branch if bits the decremented CTR is not 0 and the condition is True.

0101y Decrement the CTR; then branch if the decremented CTR is 0 and the condition is True.

011zy Branch if the condition is True.

1z00y Decrement the CTR; then branch if the decremented CTR is not 0.

1z01y Decrement the CTR; then branch if the decremented CTR is 0.

1z1zz Branch always.

Chapter 8. Instruction Set 145

In the PowerPC architecture, the bits are as follows:

v The z bit denotes a bit that must be 0. If the bit is not 0, the instruction form is invalid.

v The y bit provides a hint about whether a conditional branch is likely to be taken. The value of this bit

can be either 0 or 1. The default value is 0.

In the POWER family architecture, the z and y bits can be either 0 or 1.

The encoding for the BO field using V2.00 encoding is briefly described below:

 Table 32. BO Field Values Using V2.00 Encoding

BO Description

0000z Decrement the CTR; then branch if the decremented CTR is not 0 and the condition is False.

0001z Decrement the CTR; then branch if the decremented CTR is 0 and the condition is False.

001at Branch if the condition is False.

0100z Decrement the CTR; then branch if bits the decremented CTR is not 0 and the condition is True.

0101z Decrement the CTR; then branch if the decremented CTR is 0 and the condition is True.

011at Branch if the condition is True.

1a00t Decrement the CTR; then branch if the decremented CTR is not 0.

1a01t Decrement the CTR; then branch if the decremented CTR is 0.

1z1zz Branch always.

The a and t bits of the BO field can be used by software to provide a hint about whether a branch is likely

to be taken, as shown below:

 at Hint

00 No hint is given.

01 Reserved

01 The branch is very likely not to be taken.

11 The branch is very likely to be taken.

Parameters

 target_address Specifies the target address. For absolute branches such as bca and bcla, the target

address can be immediate data containable in 16 bits.

BI Specifies bit in Condition Register for condition comparison.

BO Specifies Branch Option field used in instruction.

Examples

The following code branches to a target address dependent on the value in the Count Register:

addi 8,0,3

Loads GPR 8 with 0x3.

mtctr 8

The Count Register (CTR) equals 0x3.

addic. 9,8,0x1

Adds one to GPR 8 and places the result in GPR 9.

The Condition Register records a comparison against zero

with the result.

bc 0xC,0,there

Branch is taken if condition is true. 0 indicates that

the 0 bit in the Condition Register is checked to

determine if it is set (the LT bit is on). If it is set,

the branch is taken.

bcl 0x8,2,there

146 Assembler Language Reference

CTR is decremented by one, becomming 2.

The branch is taken if CTR is not equal to 0 and CTR bit 2

is set (the EQ bit is on).

The Link Register contains address of next instruction.

Related Information

Chapter 1, “Assembler Overview,” on page 1.

“Branch Processor” on page 19.

“Branch Instructions” on page 19.

bcctr or bcc (Branch Conditional to Count Register) Instruction

Purpose

Conditionally branches to the address contained within the Count Register.

Syntax

 Bits Value

0-5 19

6-10 BO

11-15 BI

16-18 ///

19-20 BH

21-30 528

31 LK

 PowerPC

bcctr “BO” on page 149, “BI” on page 149, “BH” on page 149

bcctrl “BO” on page 149, “BI” on page 149, “BH” on page 149

 POWER family

bcc “BO” on page 149, “BI” on page 149, “BH” on page 149

bccl “BO” on page 149, “BI” on page 149, “BH” on page 149

See “Extended Mnemonics of Branch Instructions” on page 89 for more information.

Description

The bcctr and bcc instructions conditionally branch to an instruction specified by the branch target

address contained within the Count Register. The branch target address is the concatenation of Count

Register bits 0-29 and b’00’.

The bcctr and bcc instructions have two syntax forms. Each syntax form has a different effect on the Link

bit and Link Register.

 Syntax Form Absolute Address

Bit (AA)

Fixed-Point

Exception Register

Link Bit (LK) Condition Register

Field 0

bcctr None None 0 None

Chapter 8. Instruction Set 147

bcctrl None None 1 None

bcc None None 0 None

bccl None None 1 None

The two syntax forms of the bcctr and bcc instructions never affect the Fixed-Point Exception Register or

Condition Register Field 0. If the Link bit is 1, then the effective address of the instruction following the

branch instruction is placed into the Link Register.

The Branch Option field (BO) is used to combine different types of branches into a single instruction.

Extended mnemonics are provided to set the Branch Option field automatically.

The encoding for the BO field is defined in PowerPC architecture. The following list gives brief descriptions

of the possible values for this field using pre-V2.00 encoding:

 BO Description

0000y Decrement the CTR; then branch if the decremented CTR is not 0 and the condition is False.

0001y Decrement the CTR; then branch if the decremented CTR is 0 and the condition is False.

001zy Branch if the condition is False.

0100y Decrement the CTR; then branch if bits the decremented CTR is not 0 and the condition is True.

0101y Decrement the CTR; then branch if the decremented CTR is 0 and the condition is True.

011zy Branch if the condition is True.

1z00y Decrement the CTR; then branch if the decremented CTR is not 0.

1z01y Decrement the CTR; then branch if the decremented CTR is 0.

1z1zz Branch always.

In the PowerPC architecture, the bits are as follows:

v The z bit denotes a bit that must be 0. If the bit is not 0, the instruction form is invalid.

v The y bit provides a hint about whether a conditional branch is likely to be taken. The value of this bit

can be either 0 or 1. The default value is 0.

In the POWER family Architecture, the z and y bits can be either 0 or 1.

The encoding for the BO field using V2.00 encoding is briefly described below:

 Table 33. BO Field Values Using V2.00 Encoding

BO Description

0000z Decrement the CTR; then branch if the decremented CTR is not 0 and the condition is False.

0001z Decrement the CTR; then branch if the decremented CTR is 0 and the condition is False.

001at Branch if the condition is False.

0100z Decrement the CTR; then branch if bits the decremented CTR is not 0 and the condition is True.

0101z Decrement the CTR; then branch if the decremented CTR is 0 and the condition is True.

011at Branch if the condition is True.

1a00t Decrement the CTR; then branch if the decremented CTR is not 0.

1a01t Decrement the CTR; then branch if the decremented CTR is 0.

1z1zz Branch always.

The a and t bits of the BO field can be used by software to provide a hint about whether a branch is likely

to be taken, as shown below:

 at Hint

00 No hint is given.

01 Reserved

01 The branch is very likely not to be taken.

148 Assembler Language Reference

at Hint

11 The branch is very likely to be taken.

The Branch Hint field (BH) is used to provide a hint about the use of the instruction, as shown below:

 BH Hint

00 The instruction is not a subroutine return; the target address is likely to be the same as the target

address used the preceding time the branch was taken.

01 Reserved

10 Reserved

11 The target address is not predictable.

Parameters

 BO Specifies Branch Option field.

BI Specifies bit in Condition Register for condition comparison.

BIF Specifies the Condition Register field that specifies the Condition Register bit (LT, GT, EQ, or SO) to be used

for condition comparison.

BH Provides a hint about the use of the instruction.

Examples

The following code branches from a specific address, dependent on a bit in the Condition Register, to the

address contained in the Count Register, and no branch hints are given:

bcctr 0x4,0,0

cror 31,31,31

Branch occurs if LT bit in the Condition Register is 0.

The branch will be to the address contained in

the Count Register.

bcctrl 0xC,1,0

return: cror 31,31,31

Branch occurs if GT bit in the Condition Register is 1.

The branch will be to the address contained in

the Count Register.

The Link register now contains the address of return.

Related Information

Chapter 1, “Assembler Overview,” on page 1.

“Branch Processor” on page 19.

“Branch Instructions” on page 19.

bclr or bcr (Branch Conditional Link Register) Instruction

Purpose

Conditionally branches to an address contained in the Link Register.

Syntax

 Bits Value

0-5 19

6-10 BO

Chapter 8. Instruction Set 149

Bits Value

11-15 BI

16-18 ///

19-20 BH

21-30 16

31 LK

 PowerPC

bclr “BO” on page 151, “BI” on page 151, “BH” on page 151

bclrl “BO” on page 151, “BI” on page 151, “BH” on page 151

 POWER family

bcr “BO” on page 151, “BI” on page 151, “BH” on page 151

bcrl “BO” on page 151, “BI” on page 151, “BH” on page 151

See “Extended Mnemonics of Branch Instructions” on page 89 for more information.

Description

The bclr and bcr instructions branch to an instruction specified by the branch target address. The branch

target address is the concatenation of bits 0-29 of the Link Register and b’00’.

The bclr and bcr instructions have two syntax forms. Each syntax form has a different effect on the Link

bit and Link Register.

 Syntax Form Absolute Address

Bit (AA)

Fixed-Point

Exception Register

Link Bit (LK) Condition Register

Field 0

bclr None None 0 None

bclrl None None 1 None

bcr None None 0 None

bcrl None None 1 None

The two syntax forms of the bclr and bcr instruction never affect the Fixed-Point Exception Register or

Condition Register Field 0. If the Link bit (LK) is 1, then the effective address of the instruction that follows

the branch instruction is placed into the Link Register.

The Branch Option field (BO) is used to combine different types of branches into a single instruction.

Extended mnemonics are provided to set the Branch Option field automatically.

The encoding for the BO field is defined in PowerPC architecture. The following list gives brief descriptions

of the possible values for this field:

 BO Description

0000y Decrement the CTR; then branch if the decremented CTR is not 0 and the condition is False.

0001y Decrement the CTR; then branch if the decremented CTR is 0 and the condition is False.

001zy Branch if the condition is False.

0100y Decrement the CTR; then branch if bits the decremented CTR is not 0 and the condition is True.

0101y Decrement the CTR; then branch if the decremented CTR is 0 and the condition is True.

011zy Branch if the condition is True.

1z00y Decrement the CTR; then branch if the decremented CTR is not 0.

150 Assembler Language Reference

BO Description

1z01y Decrement the CTR; then branch if the decremented CTR is 0.

1z1zz Branch always.

In the PowerPC architecture, the bits are as follows:

v The z bit denotes a bit that must be 0. If the bit is not 0, the instruction form is invalid.

v The y bit provides a hint about whether a conditional branch is likely to be taken. The value of this bit

can be either 0 or 1. The default value is 0.

In the POWER family Architecture, the z and y bits can be either 0 or 1.

The encoding for the BO field using V2.00 encoding is briefly described below:

 Table 34. BO Field Values Using V2.00 Encoding

BO Description

0000z Decrement the CTR; then branch if the decremented CTR is not 0 and the condition is False.

0001z Decrement the CTR; then branch if the decremented CTR is 0 and the condition is False.

001at Branch if the condition is False.

0100z Decrement the CTR; then branch if bits the decremented CTR is not 0 and the condition is True.

0101z Decrement the CTR; then branch if the decremented CTR is 0 and the condition is True.

011at Branch if the condition is True.

1a00t Decrement the CTR; then branch if the decremented CTR is not 0.

1a01t Decrement the CTR; then branch if the decremented CTR is 0.

1z1zz Branch always.

The a and t bits of the BO field can be used by software to provide a hint about whether a branch is likely

to be taken, as shown below:

 at Hint

00 No hint is given.

01 Reserved

01 The branch is very likely not to be taken.

11 The branch is very likely to be taken.

The Branch Hint field (BH) is used to provide a hint about the use of the instruction, as shown below:

 BH Hint

00 The instruction is not a subroutine return; the target address is likely to be the same as the target

address used the preceding time the branch was taken.

01 Reserved

10 Reserved

11 The target address is not predictable.

Parameters

 BO Specifies Branch Option field.

BI Specifies bit in Condition Register for condition comparison.

BH Provides a hint about the use of the instruction.

Chapter 8. Instruction Set 151

Examples

The following code branches to the calculated branch target address dependent on bit 0 of the Condition

Register, and no branch hint is given:

bclr 0x0,0,0

The Count Register is decremented.

A branch occurs if the LT bit is set to zero in the

Condition Register and if the Count Register

does not equal zero.

If the conditions are met, the instruction branches to

the concatenation of bits 0-29 of the Link Register and b’00’.

Related Information

Chapter 1, “Assembler Overview,” on page 1.

“Branch Processor” on page 19.

“Branch Instructions” on page 19.

clcs (Cache Line Compute Size) Instruction

Purpose

Places a specified cache line size in a general-purpose register.

Note: The clcs instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 ///

21-30 531

31 Rc

 POWER family

clcs RT, RA

Description

The clcs instruction places the cache line size specified by RA into the target general-purpose register

(GPR) RT. The value of RA determines the cache line size returned in GPR RT.

 Value of RA Cache Line Size Returned in RT

00xxx Undefined

010xx Undefined

01100 Instruction Cache Line Size

01101 Data Cache Line Size

01110 Minimum Cache Line Size

152 Assembler Language Reference

01111 Maximum Cache Line Size

1xxxx Undefined

Note: The value in GPR RT must lie between 64 and 4096, inclusive, or results will be undefined.

The clcs instruction has only one syntax form and does not affect the Fixed-Point Exception Register. If

the Record (Rc) bit is set to 1, the Condition Register Field 0 is undefined.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies cache line size requested.

Examples

The following code loads the maximum cache line size into GPR 4:

Assume that 0xf is the cache

line size requested

.

 clcs 4,0xf

GPR 4 now contains the maximum Cache Line size.

Related Information

The clf (Cache Line Flush) instruction, cli (Cache Line Invalidate) instruction, dcbf (Data Cache Block

Flush) instruction, dcbi (Data Cache Block Invalidate) instruction, dcbst (Data Cache Block Store)

instruction, dcbt (Data Cache Block Touch) instruction, dcbtst (Data Cache Block Touch for Store)

instruction, dcbz or dclz (Data Cache Block Set to Zero) instruction, dclst (Data Cache Line Store)

instruction, icbi (Instruction Cache Block Invalidate) instruction, sync (Synchronize) or dcs (Data Cache

Synchronize) instruction.

Processing and Storage: Overview.

clf (Cache Line Flush) Instruction

Purpose

Writes a line of modified data from the data cache to main memory, or invalidates cached instructions or

unmodified data.

Note: The clf instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 ///

11-15 RA

16-20 RB

21-30 118

31 Rc

Chapter 8. Instruction Set 153

POWER family

clf RA, RB

Description

The clf instruction calculates an effective address (EA) by adding the contents of general-purpose register

(GPR) RA to the contents of GPR RB. If the RA field is 0, EA is the sum of the contents of RB and 0. If

the RA field is not 0 and if the instruction does not cause a data storage interrupt, the result of the

operation is placed back into GPR RA.

Consider the following when using the clf instruction:

v If the Data Relocate (DR) bit of the Machine State Register (MSR) is set to 0, the effective address is

treated as a real address.

v If the MSR DR bit is set to 1, the effective address is treated as a virtual address. The MSR Instruction

Relocate bit (IR) is ignored in this case.

v If a line containing the byte addressed by the EA is in the data cache and has been modified, writing

the line to main memory is begun. If a line containing the byte addressed by EA is in one of the caches,

the line is not valid.

v When MSR (DR) = 1, if the virtual address has no translation, a Data Storage interrupt occurs, setting

the first bit of the Data Storage Interrupt Segment register to 1.

v A machine check interrupt occurs when the virtual address translates to an invalid real address and the

line exists in the data cache.

v Address translation treats the instruction as a load to the byte addressed, ignoring protection and data

locking. If this instruction causes a Translation Look-Aside buffer (TLB) miss, the reference bit is set.

v If the EA specifies an I/O address, the instruction is treated as a no-op, but the EA is placed in GPR

RA.

The clf instruction has one syntax form and does not effect the Fixed-Point Exception register. If the

Record (Rc) bit is set to 1, Condition Register Field 0 is undefined.

Parameters

 RA Specifies the source general-purpose register for EA calculation and, if RA is not GPR 0, the target

general-purpose register for operation.

RB Specifies the source general-purpose register for EA calculation.

Examples

The processor is not required to keep instruction storage consistent with data storage. The following code

executes storage synchronization instructions prior to executing an modified instruction:

Assume that instruction A is assigned to storage location

ox0033 0020.

Assume that the storage location to which A is assigned

contains 0x0000 0000.

Assume that GPR 3 contains 0x0000 0020.

Assume that GPR 4 contains 0x0033 0020.

Assume that GPR 5 contains 0x5000 0020.

st R5,R4,R3 # Store branch instruction in memory

clf R4,R3 # Flush A from cache to main memory

dcs # Ensure clf is complete

ics # Discard prefetched instructions

b 0x0033 0020 # Go execute the new instructions

After the store, but prior to the execution of the clf, dcs, and ics instructions, the copy of A in the cache

contains the branch instruction. However, it is possible that the copy of A in main memory still contains 0.

154 Assembler Language Reference

The clf instruction copies the new instruction back to main memory and invalidates the cache line

containing location A in both the instruction and data caches. The sequence of the dcs instruction followed

by the ics instruction ensures that the new instruction is in main memory and that the copies of the

location in the data and instruction caches are invalid before fetching the next instruction.

Related Information

The clcs (Cache Line Compute Size) instruction, cli (Cache Line Invalidate) instruction, dcbf (Data Cache

Block Flush) instruction, dcbi (Data Cache Block Invalidate) instruction, dcbst (Data Cache Block Store)

instruction, dcbt (Data Cache Block Touch) instruction, dcbtst (Data Cache Block Touch for Store)

instruction, dcbz or dclz (Data Cache Block Set to Zero) instruction, dclst (Data Cache Line Store)

instruction, icbi (Instruction Cache Block Invalidate) instruction, sync (Synchronize) or dcs (Data Cache

Synchronize) instruction.

Processing and Storage: Overview.

cli (Cache Line Invalidate) Instruction

Purpose

Invalidates a line containing the byte addressed in either the data or instruction cache, causing subsequent

references to retrieve the line again from main memory.

Note: The cli instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 ///

11-15 RA

16-20 RB

21-30 502

31 Rc

 POWER family

cli RA, RB

Description

The cli instruction invalidates a line containing the byte addressed in either the data or instruction cache. If

RA is not 0, the cli instruction calculates an effective address (EA) by adding the contents of

general-purpose register (GPR) RA to the contents of GPR RB. If RA is not GPR 0 or the instruction does

not cause a Data Storage interrupt, the result of the calculation is placed back into GPR RA.

Consider the following when using the cli instruction:

v If the Data Relocate (DR) bit of the Machine State Register (MSR) is 0, the effective address is treated

as a real address.

v If the MSR DR bit is 1, the effective address is treated as a virtual address. The MSR Relocate (IR) bit

is ignored in this case.

v If a line containing the byte addressed by the EA is in the data or instruction cache, the line is made

unusable so the next reference to the line is taken from main memory.

Chapter 8. Instruction Set 155

v When MSR (DR) =1, if the virtual address has no translation, a Data Storage interrupt occurs, setting

the first bit of the Data Storage Interrupt Segment Register to 1.

v Address translation treats the cli instruction as a store to the byte addressed, ignoring protection and

data locking. If this instruction causes a Translation Look-Aside buffer (TLB) miss, the reference bit is

set.

v If the EA specifies an I/O address, the instruction is treated as a no-op, but the EA is still placed in RA.

The cli instruction has only one syntax form and does not effect the Fixed-Point Exception Register. If the

Record (Rc) bit is set to 1, the Condition Register Field 0 is undefined.

Parameters

 RA Specifies the source general-purpose register for EA calculation and possibly the target general-purpose

register (when RA is not GPR 0) for operation.

RB Specifies the source general-purpose register for EA calculation.

Security

The cli instruction is privileged.

Related Information

The clcs (Cache Line Compute Size) instruction, clf (Cache Line Flush) instruction, dcbf (Data Cache

Block Flush) instruction, dcbi (Data Cache Block Invalidate) instruction, dcbst (Data Cache Block Store)

instruction, dcbt (Data Cache Block Touch) instruction, dcbtst (Data Cache Block Touch for Store)

instruction, dcbz or dclz (Data Cache Block Set to Zero) instruction, dclst (Data Cache Line Store)

instruction, icbi (Instruction Cache Block Invalidate) instruction, sync (Synchronize) or dcs (Data Cache

Synchronize) instruction.

Processing and Storage: Overview.

cmp (Compare) Instruction

Purpose

Compares the contents of two general-purpose registers algebraically.

Syntax

 Bits Value

0-5 31

6-8 BF

9 /

10 L

11-15 RA

16-20 RB

21-30 0

31 /

 cmp BF, L, RA, RB

156 Assembler Language Reference

See Extended Mnemonics of Fixed-Point Compare Instructions for more information.

Description

The cmp instruction compares the contents of general-purpose register (GPR) RA with the contents of

GPR RB as signed integers and sets one of the bits in Condition Register Field BF.

BF can be Condition Register Field 0-7; programmers can specify which Condition Register Field will

indicate the result of the operation.

The bits of Condition Register Field BF are interpreted as follows:

 Bit Name Description

0 LT (RA) < SI

1 GT (RA) > SI

2 EQ (RA) = SI

3 SO SO,OV

The cmp instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Condition Register Field 0 is unaffected unless it is specified as BF by the programmer.

Parameters

 BF Specifies Condition Register Field 0-7 which indicates result of compare.

L Must be set to 0 for the 32-bit subset architecture.

RA Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

The following code compares the contents of GPR 4 and GPR 6 as signed integers and sets Condition

Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xFFFF FFE7.

Assume GPR 5 contains 0x0000 0011.

Assume 0 is Condition Register Field 0.

cmp 0,4,6

The LT bit of Condition Register Field 0 is set.

Related Information

The cmpi (Compare Immediate) instruction, cmpl (Compare Logical) instruction, cmpli (Compare Logical

Immediate) instruction.

Fixed-Point Processor .

cmpi (Compare Immediate) Instruction

Purpose

Compares the contents of a general-purpose register and a given value algebraically.

Chapter 8. Instruction Set 157

Syntax

 Bits Value

0-5 11

6-8 BF

9 /

10 L

11-15 RA

16-31 SI

 cmpi BF, L, RA, SI

See Extended Mnemonics of Fixed-Point Compare Instructions for more information.

Description

The cmpi instruction compares the contents of general-purpose register (GPR) RA and a 16- bit signed

integer, SI, as signed integers and sets one of the bits in Condition Register Field BF.

BF can be Condition Register Field 0-7; programmers can specify which Condition Register Field will

indicate the result of the operation.

The bits of Condition Register Field BF are interpreted as follows:

 Bit Name Description

0 LT (RA) < SI

1 GT (RA) > SI

2 EQ (RA) = SI

3 SO SO,OV

The cmpi instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Condition Register Field 0 is unaffected unless it is specified as BF by the programmer.

Parameters

 BF Specifies Condition Register Field 0-7 which indicates result of compare.

L Must be set to 0 for the 32-bit subset architecture.

RA Specifies first source general-purpose register for operation.

SI Specifies 16-bit signed integer for operation.

Examples

The following code compares the contents of GPR 4 and the signed integer 0x11 and sets Condition

Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xFFFF FFE7.

cmpi 0,4,0x11

The LT bit of Condition Register Field 0 is set.

158 Assembler Language Reference

Related Information

The cmp (Compare) instruction, cmpl (Compare Logical) instruction, cmpli (Compare Logical Immediate)

instruction.

Fixed-Point Processor .

cmpl (Compare Logical) Instruction

Purpose

Compares the contents of two general-purpose registers logically.

Syntax

 Bits Value

0-5 31

6-8 BF

9 /

10 L

11-15 RA

16-20 RB

21-30 32

31 /

 cmpl BF, L, RA, RB

See Extended Mnemonics of Fixed-Point Compare Instructions for more information.

Description

The cmpl instruction compares the contents of general-purpose register (GPR) RA with the contents of

GPR RB as unsigned integers and sets one of the bits in Condition Register Field BF.

BF can be Condition Register Field 0-7; programmers can specify which Condition Register Field will

indicate the result of the operation.

The bits of Condition Register Field BF are interpreted as follows:

 Bit Name Description

0 LT (RA) < SI

1 GT (RA) > SI

2 EQ (RA) = SI

3 SO SO,OV

The cmpl instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Condition Register Field 0 is unaffected unless it is specified as BF by the programmer.

Chapter 8. Instruction Set 159

Parameters

 BF Specifies Condition Register Field 0-7 which indicates result of compare.

L Must be set to 0 for the 32-bit subset architecture.

RA Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

The following code compares the contents of GPR 4 and GPR 5 as unsigned integers and sets Condition

Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xFFFF 0000.

Assume GPR 5 contains 0x7FFF 0000.

Assume 0 is Condition Register Field 0.

cmpl 0,4,5

The GT bit of Condition Register Field 0 is set.

Related Information

The cmp (Compare) instruction, cmpi (Compare Immediate) instruction, cmpli (Compare Logical

Immediate) instruction.

Fixed-Point Processor .

cmpli (Compare Logical Immediate) Instruction

Purpose

Compares the contents of a general-purpose register and a given value logically.

Syntax

 Bits Value

0-5 10

6-8 BF

9 /

10 L

11-15 RA

16-31 UI

 cmpli BF, L, RA, UI

See Extended Mnemonics of Fixed-Point Compare Instructions for more information.

Description

The cmpli instruction compares the contents of general-purpose register (GPR) RA with the concatenation

of x`0000’ and a 16-bit unsigned integer, UI, as unsigned integers and sets one of the bits in the Condition

Register Field BF.

BF can be Condition Register Field 0-7; programmers can specify which Condition Register Field will

indicate the result of the operation.

160 Assembler Language Reference

The bits of Condition Register Field BF are interpreted as follows:

 Bit Name Description

0 LT (RA) < SI

1 GT (RA) > SI

2 EQ (RA) = SI

3 SO SO,OV

The cmpli instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Condition Register Field 0 is unaffected unless it is specified as BF by the programmer.

Parameters

 BF Specifies Condition Register Field 0-7 that indicates result of compare.

L Must be set to 0 for the 32-bit subset architecture.

RA Specifies source general-purpose register for operation.

UI Specifies 16-bit unsigned integer for operation.

Examples

The following code compares the contents of GPR 4 and the unsigned integer 0xff and sets Condition

Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x0000 00ff.

cmpli 0,4,0xff

The EQ bit of Condition Register Field 0 is set.

Related Information

The cmp (Compare) instruction, cmpi (Compare Immediate) instruction, cmpl (Compare Logical)

instruction.

Fixed-Point Processor .

cntlzd (Count Leading Zeros Double Word) Instruction

Purpose

Count the number of consecutive zero bits in the contents of a general purpose register, beginning with

the high-order bit.

This instruction should only be used on 64-bit PowerPC processors running a 64-bit application.

Syntax

 Bits Value

0-5 31

6-10 S

11-15 A

16-20 00000

21-30 58

31 Rc

Chapter 8. Instruction Set 161

PowerPC64

cntlzd rA, rS (Rc=0)

cntlzd. rA, rS(Rc=1)

Description

A count of the number of consecutive zero bits, starting at bit 0 (the high-order bit) of register GPR RS is

placed into GPR RA. This number ranges from 0 to 64, inclusive.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

Other registers altered:

Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Note: If Rc = 1, then LT is cleard in the CR0 field.

Parameters

 RA Specifies the target general purpose register for the results of the instruction.

RS Specifies the source general purpose register containing the double-word to examine.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

cntlzw or cntlz (Count Leading Zeros Word) Instruction

Purpose

Places the number of leading zeros from a source general-purpose register in a general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 ///

21-30 26

31 Rc

 PowerPC

cntlzw RA, RS

cntlzw. RA, RS

162 Assembler Language Reference

POWER family

cntlz RA, RS

cntlz. RA, RS

Description

The cntlzw and cntlz instructions count the number (between 0 and 32 inclusive) of consecutive zero bits

starting at bit 0 of general-purpose register (GPR) RS and store the result in the target GPR RA.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

cntlzw None None 0 None

cntlzw. None None 1 LT,GT,EQ,SO

cntlz None None 0 None

cntlz. None None 1 LT,GT,EQ,SO

The two syntax forms of the cntlzw instruction and the two syntax forms of the cntlz instruction never

affect the Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction

affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow

(SO) bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

Examples

The following code counts the number of leading zeros in the value contained in GPR 3 and places the

result back in GPR 3:

Assume GPR 3 contains 0x0061 9920.

cntlzw 3,3

GPR 3 now holds 0x0000 0009.

Related Information

Fixed-Point Processor .

Fixed-Point Logical Instructions .

crand (Condition Register AND) Instruction

Purpose

Places the result of ANDing two Condition Register bits in a Condition Register bit.

Syntax

 Bits Value

0-5 19

6-10 BT

11-15 BA

Chapter 8. Instruction Set 163

Bits Value

16-20 BB

21-30 257

31 /

 crand BT, BA, BB

Description

The crand instruction logically ANDs the Condition Register bit specified by BA and the Condition Register

bit specified by BB and places the result in the target Condition Register bit specified by BT.

The crand instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

 BT Specifies target Condition Register bit where result of operation is stored.

BA Specifies source Condition Register bit for operation.

BB Specifies source Condition Register bit for operation.

Examples

The following code logically ANDs Condition Register bits 0 and 5 and stores the result in Condition

Register bit 31:

Assume Condition Register bit 0 is 1.

Assume Condition Register bit 5 is 0.

crand 31,0,5

Condition Register bit 31 is now 0.

Related Information

Branch Processor .

Condition Register Instructions .

crandc (Condition Register AND with Complement) Instruction

Purpose

Places the result of ANDing one Condition Register bit and the complement of a Condition Register bit in a

Condition Register bit.

Syntax

 Bits Value

0-5 19

6-10 BT

11-15 BA

16-20 BB

21-30 129

31 /

164 Assembler Language Reference

crandc BT, BA, BB

Description

The crandc instruction logically ANDs the Condition Register bit specified in BA and the complement of

the Condition Register bit specified by BB and places the result in the target Condition Register bit

specified by BT.

The crandc instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

 BT Specifies target Condition Register bit where result of operation is stored.

BA Specifies source Condition Register bit for operation.

BB Specifies source Condition Register bit for operation.

Examples

The following code logically ANDs Condition Register bit 0 and the complement of Condition Register bit 5

and puts the result in bit 31:

Assume Condition Register bit 0 is 1.

Assume Condition Register bit 5 is 0.

crandc 31,0,5

Condition Register bit 31 is now 1.

Related Information

Branch Processor .

Condition Register Instructions .

creqv (Condition Register Equivalent) Instruction

Purpose

Places the complemented result of XORing two Condition Register bits in a Condition Register bit.

Syntax

 Bits Value

0-5 19

6-10 BT

11-15 BA

16-20 BB

21-30 289

31 /

 creqv BT, BA, BB

See Extended Mnemonics of Condition Register Logical Instructions for more information.

Chapter 8. Instruction Set 165

Description

The creqv instruction logically XORs the Condition Register bit specified in BA and the Condition Register

bit specified by BB and places the complemented result in the target Condition Register bit specified by

BT.

The creqv instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

 BT Specifies target Condition Register bit where result of operation is stored.

BA Specifies source Condition Register bit for operation.

BB Specifies source Condition Register bit for operation.

Examples

The following code places the complemented result of XORing Condition Register bits 8 and 4 into

Condition Register bit 4:

Assume Condition Register bit 8 is 1.

Assume Condition Register bit 4 is 0.

creqv 4,8,4

Condition Register bit 4 is now 0.

Related Information

Branch Processor .

Condition Register Instructions .

crnand (Condition Register NAND) Instruction

Purpose

Places the complemented result of ANDing two Condition Register bits in a Condition Register bit.

Syntax

 Bits Value

0-5 19

6-10 BT

11-15 BA

16-20 BB

21-30 225

31 /

 crnand BT, BA, BB

Description

The crnand instruction logically ANDs the Condition Register bit specified by BA and the Condition

Register bit specified by BB and places the complemented result in the target Condition Register bit

specified by BT.

The crnand instruction has one syntax form and does not affect the Fixed-Point Exception Register.

166 Assembler Language Reference

Parameters

 BT Specifies target Condition Register bit where result of operation is stored.

BA Specifies source Condition Register bit for operation.

BB Specifies source Condition Register bit for operation.

Examples

The following code logically ANDs Condition Register bits 8 and 4 and places the complemented result

into Condition Register bit 4:

Assume Condition Register bit 8 is 1.

Assume Condition Register bit 4 is 0.

crnand 4,8,4

Condition Register bit 4 is now 1.

Related Information

Branch Processor .

Condition Register Instructions .

crnor (Condition Register NOR) Instruction

Purpose

Places the complemented result of ORing two Condition Register bits in a Condition Register bit.

Syntax

 Bits Value

0-5 19

6-10 BT

11-15 BA

16-20 BB

21-30 33

31 /

 crnor BT, BA, BB

See Extended Mnemonics of Condition Register Logical Instructions for more information.

Description

The crnor instruction logically ORs the Condition Register bit specified in BA and the Condition Register

bit specified by BB and places the complemented result in the target Condition Register bit specified by

BT.

The crnor instruction has one syntax form and does not affect the Fixed Point Exception Register.

Parameters

 BT Specifies target Condition Register bit where result of operation is stored.

BA Specifies source Condition Register bit for operation.

Chapter 8. Instruction Set 167

BB Specifies source Condition Register bit for operation.

Examples

The following code logically ORs Condition Register bits 8 and 4 and stores the complemented result into

Condition Register bit 4:

Assume Condition Register bit 8 is 1.

Assume Condition Register bit 4 is 0.

crnor 4,8,4

Condition Register bit 4 is now 0.

Related Information

Branch Processor .

Condition Register Instructions .

cror (Condition Register OR) Instruction

Purpose

Places the result of ORing two Condition Register bits in a Condition Register bit.

Syntax

 Bits Value

0-5 19

6-10 BT

11-15 BA

16-20 BB

21-30 449

31 /

 cror BT, BA, BB

See Extended Mnemonics of Condition Register Logical Instructions for more information.

Description

The cror instruction logically ORs the Condition Register bit specified by BA and the Condition Register bit

specified by BB and places the result in the target Condition Register bit specified by BT.

The cror instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

 BT Specifies target Condition Register bit where result of operation is stored.

BA Specifies source Condition Register bit for operation.

BB Specifies source Condition Register bit for operation.

Examples

The following code places the result of ORing Condition Register bits 8 and 4 into Condition Register bit 4:

168 Assembler Language Reference

Assume Condition Register bit 8 is 1.

Assume Condition Register bit 4 is 0.

cror 4,8,4

Condition Register bit 4 is now 1.

Related Information

Branch Processor .

Condition Register Instructions .

crorc (Condition Register OR with Complement) Instruction

Purpose

Places the result of ORing a Condition Register bit and the complement of a Condition Register bit in a

Condition Register bit.

Syntax

 Bits Value

0-5 19

6-10 BT

11-15 BA

16-20 BB

21-30 417

31 /

 crorc BT, BA, BB

Description

The crorc instruction logically ORs the Condition Register bit specified by BA and the complement of the

Condition Register bit specified by BB and places the result in the target Condition Register bit specified

by BT.

The crorc instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

 BT Specifies target Condition Register bit where result of operation is stored.

BA Specifies source Condition Register bit for operation.

BB Specifies source Condition Register bit for operation.

Examples

The following code places the result of ORing Condition Register bit 8 and the complement of Condition

Register bit 4 into Condition Register bit 4:

Assume Condition Register bit 8 is 1.

Assume Condition Register bit 4 is 0.

crorc 4,8,4

Condition Register bit 4 is now 1.

Chapter 8. Instruction Set 169

Related Information

Branch Processor .

Condition Register Instructions .

crxor (Condition Register XOR) Instruction

Purpose

Places the result of XORing two Condition Register bits in a Condition Register bit.

Syntax

 Bits Value

0-5 19

6-10 BT

11-15 BA

16-20 BB

21-30 193

31 /

 crxor BT, BA, BB

See Extended Mnemonics of Condition Register Logical Instructions for more information.

Description

The crxor instruction logically XORs the Condition Register bit specified by BA and the Condition Register

bit specified by BB and places the result in the target Condition Register bit specified by BT.

The crxor instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

 BT Specifies target Condition Register bit where result of operation is stored.

BA Specifies source Condition Register bit for operation.

BB Specifies source Condition Register bit for operation.

Examples

The following code places the result of XORing Condition Register bits 8 and 4 into Condition Register bit

4:

Assume Condition Register bit 8 is 1.

Assume Condition Register bit 4 is 1.

crxor 4,8,4

Condition Register bit 4 is now 0.

Related Information

Branch Processor .

Condition Register Instructions .

170 Assembler Language Reference

dcbf (Data Cache Block Flush) Instruction

Purpose

Copies modified cache blocks to main storage and invalidates the copy in the data cache.

Note: The dcbf instruction is supported only in the PowerPC architecture.

Syntax

 Bits Value

0-5 31

6-10 ///

11-15 RA

16-20 RB

21-30 86

31 /

 PowerPC

dcbf RA, RB

Description

The dcbf instruction calculates an effective address (EA) by adding the contents of general-purpose

register (GPR) RA to the contents of GPR RB. If the RA field is 0, EA is the sum of the contents of RB

and 0. If the cache block containing the target storage locations is in the data cache, it is copied back to

main storage, provided it is different than the main storage copy.

Consider the following when using the dcbf instruction:

v If a block containing the byte addressed by the EA is in the data cache and has been modified, the

block is copied to main memory. If a block containing the byte addressed by EA is in one of the caches,

the block is made not valid.

v If the EA specifies a direct store segment address, the instruction is treated as a no-op.

The dcbf instruction has one syntax form and does not effect the Fixed-Point Exception Register.

Parameters

 RA Specifies the source general-purpose register for operation.

RB Specifies the source general-purpose register for operation.

Examples

The software manages the coherency of storage shared by the processor and another system component,

such as an I/O device that does not participate in the storage coherency protocol. The following code

flushes the shared storage from the data cache prior to allowing another system component access to the

storage:

Assume that the variable A is assigned to storage location

0x0000 4540.

Assume that the storage location to which A is assigned

contains 0.

Assume that GPR 3 contains 0x0000 0040.

Chapter 8. Instruction Set 171

Assume that GPR 4 contains 0x0000 4500.

Assume that GPR 5 contains -1.

st R5,R4,R3 # Store 0xFFFF FFFF to A

dcbf R4,R3 # Flush A from cache to main memory

sync # Ensure dcbf is complete. Start I/O

 # operation

After the store, but prior to the execution of the dcbf and sync instructions, the copy of A in the cache

contains a -1. However, it is possible that the copy of A in main memory still contains 0. After the sync

instruction completes, the location to which A is assigned in main memory contains -1 and the processor

data cache no longer contains a copy of location A.

Related Information

The clcs (Cache Line Compute Size) instruction, clf (Cache Line Flush) instruction, cli (Cache Line

Invalidate) instruction, dcbi (Data Cache Block Invalidate) instruction, dcbst (Data Cache Block Store)

instruction, dcbt (Data Cache Block Touch) instruction, dcbtst (Data Cache Block Touch for Store)

instruction, dcbz or dclz (Data Cache Block Set to Zero) instruction, dclst (Data Cache Line Store)

instruction, icbi (Instruction Cache Block Invalidate) instruction, sync (Synchronize) or dcs (Data Cache

Synchronize) instruction.

dcbi (Data Cache Block Invalidate) Instruction

Purpose

Invalidates a block containing the byte addressed in the data cache, causing subsequent references to

retrieve the block again from main memory.

Note: The dcbi instruction is supported only in the PowerPC architecture.

Syntax

 Bits Value

0-5 31

6-10 ///

11-15 RA

16-20 RB

21-30 470

31 /

 PowerPC

dcbi RA, RB

Description

If the contents of general-purpose register (GPR) RA is not 0, the dcbi instruction computes an effective

address (EA) by adding the contents of GPR RA to the contents of GPR RB. Otherwise, the EA is the

content of GPR RB.

If the cache block containing the addressed byte is in the data cache, the block is made invalid.

Subsequent references to a byte in the block cause a reference to main memory.

The dcbi instruction is treated as a store to the addressed cache block with respect to protection.

172 Assembler Language Reference

The dcbi instruction has only one syntax form and does not effect the Fixed-Point Exception register.

Parameters

 RA Specifies the source general-purpose register for EA computation.

RB Specifies the source general-purpose register for EA computation.

Security

The dcbi instruction is privileged.

Related Information

The clcs (Cache Line Compute Size) instruction, clf (Cache Line Flush) instruction, cli (Cache Line

Invalidate) instruction, dcbf (Data Cache Block Flush) instruction, dcbst (Data Cache Block Store)

instruction, dcbt (Data Cache Block Touch) instruction, dcbtst (Data Cache Block Touch for Store)

instruction, dcbz or dclz (Data Cache Block Set to Zero) instruction, dclst (Data Cache Line Store)

instruction, icbi (Instruction Cache Block Invalidate) instruction, sync (Synchronize) or dcs (Data Cache

Synchronize) instruction.

Processing and Storage

dcbst (Data Cache Block Store) Instruction

Purpose

Allows a program to copy the contents of a modified block to main memory.

Note: The dcbst instruction is supported only in the PowerPC architecture.

Syntax

 Bits Value

0-5 31

6-10 ///

11-15 RA

16-20 RB

21-30 54

31 /

 PowerPC

dcbst RA, RB

Description

The dcbst instruction causes any modified copy of the block to be copied to main memory. If RA is not 0,

the dcbst instruction computes an effective address (EA) by adding the contents of general-purpose

register (GPR) RA to the contents of GPR RB. Otherwise, the EA is the contents of RB. If the cache block

containing the addressed byte is in the data cache and is modified, the block is copied to main memory.

Chapter 8. Instruction Set 173

The dcbst instruction may be used to ensure that the copy of a location in main memory contains the

most recent updates. This may be important when sharing memory with an I/O device that does not

participate in the coherence protocol. In addition, the dcbst instruction can ensure that updates are

immediately copied to a graphics frame buffer.

Treat the dcbst instruction as a load from the addressed byte with respect to address translation and

protection.

The dcbst instruction has one syntax form and does not effect the Fixed-Point Exception register.

Parameters

 RA Specifies the source general-purpose register for EA computation.

RB Specifies the source general-purpose register for EA computation.

Examples

1. The following code shares memory with an I/O device that does not participate in the coherence

protocol:

Assume that location A is memory that is shared with the

I/O device.

Assume that GPR 2 contains a control value indicating that

and I/O operation should start.

Assume that GPR 3 contains the new value to be placed in

location A.

Assume that GPR 4 contains the address of location A.

Assume that GPR 5 contains the address of a control register

in the I/O device.

st 3,0,4 # Update location A.

dcbst 0,4 # Copy new content of location A and

 # other bytes in cache block to main

 # memory.

sync # Ensure the dcbst instruction has

 # completed.

st 2,0,5 # Signal I/O device that location A has

 # been update.

2. The following code copies to a graphics frame buffer, ensuring that new values are displayed without

delay:

Assume that target memory is a graphics frame buffer.

Assume that GPR 2, 3, and 4 contain new values to be displayed.

Assume that GPR 5 contains the address minus 4 of where the

first value is to be stored.

Assume that the 3 target locations are known to be in a single

cache block.

addi 6,5,4 # Compute address of first memory

 # location.

stwu 2,4(5) # Store value and update address ptr.

stwu 3,4(5) # Store value and update address ptr.

stwu 4,4(5) # Store value and update address ptr.

dcbst 0,6 # Copy new content of cache block to

 # frame buffer. New values are displayed.

Related Information

The clcs (Cache Line Compute Size) instruction, clf (Cache Line Flush) instruction, cli (Cache Line

Invalidate) instruction, dcbf (Data Cache Block Flush) instruction, dcbi (Data Cache Block Invalidate)

instruction, dcbt (Data Cache Block Touch) instruction, dcbtst (Data Cache Block Touch for Store)

instruction, dcbz or dclz (Data Cache Block Set to Zero) instruction, dclst (Data Cache Line Store)

instruction, icbi (Instruction Cache Block Invalidate) instruction, sync (Synchronize) or dcs (Data Cache

Synchronize) instruction.

174 Assembler Language Reference

Processing and Storage: Overview.

dcbt (Data Cache Block Touch) Instruction

Purpose

Allows a program to request a cache block fetch before it is actually needed by the program.

Note: The dcbt instruction is supported only in the POWER5 architecture.

Syntax

 Bits Value

0-5 31

6 /

7-10 TH

11-15 RA

16-20 RB

21-30 278

31 /

 POWER5

dcbt “RA” on page 177, “RB” on page 177, “TH” on page 177

Description

The dcbt instruction may improve performance by anticipating a load from the addressed byte. The block

containing the byte addressed by the effective address (EA) is fetched into the data cache before the

block is needed by the program. The program can later perform loads from the block and may not

experience the added delay caused by fetching the block into the cache. Executing the dcbt instruction

does not invoke the system error handler.

If general-purpose register (GPR) RA is not 0, the effective address (EA) is the sum of the content of GPR

RA and the content of GPR RB. Otherwise, the EA is the content of GPR RB.

Consider the following when using the dcbt instruction:

v If the EA specifies a direct store segment address, the instruction is treated as a no-op.

v The access is treated as a load from the addressed cache block with respect to protection. If protection

does not permit access to the addressed byte, the dcbt instruction performs no operations.

Note: If a program needs to store to the data cache block, use the dcbtst (Data Cache Block Touch for

Store) instruction.

The Touch Hint field (TH) is used to provide a hint that the program will probably load soon from the

storage locations specified by the EA and the TH field. The hint is ignored for locations that are

caching-inhibited or guarded. The encodings of the TH field are as follows:

 TH Description

0000 The program will probably soon load from the byte addressed by EA.

0001 The program will probably soon load from the data stream consisting of the block containing the

byte addressed by EA and an unlimited number of sequentially following blocks (that is, the

blocks containing the bytes addressed by EA + n * block_size, where n = 0, 1, 2...).

Chapter 8. Instruction Set 175

TH Description

0011 The program will probably soon load from the data stream consisting of the block containing the

byte addressed by EA and an unlimited number of sequentially preceding blocks (that is, the

blocks containing the bytes addressed by EA - n * block_size, where n = 0, 1, 2...).

1000 The dcbt instruction provides a hint that describes certain attributes of a data stream, and

optionally indicates that the program will probably soon load from the stream. The EA is

interpreted as described in Table 35.

1010 The dcbt instruction provides a hint that describes certain attributes of a data stream, or

indicates that the program will probably soon load from data streams that have been described

using dcbt instructions in which TH[0] = 1 or probably no longer load from such data streams.

The EA is interpreted as described in Table 36.

The dcbt instruction serves as both a basic and extended mnemonic. The dcbt mnemonic with three

operands is the basic form, and the dcbt with two operands is the extended form. In the extended form,

the TH field is omitted and assumed to be 0b0000.

 Table 35. EA Encoding when TH=0b1000

Bit(s) Name Description

0-56 EA_TRUNC High-order 57 bits of the effective address of the first unit of the data

stream.

57 D Direction

0 Subsequent units are the sequentially following units.

1 Subsequent units are the sequentially preceding units.

58 UG

0 No information is provided by the UG field.

1 The number of units in the data stream is unlimited, the

program’s need for each block of the stream is not likely to be

transient, and the program will probably soon load from the

stream.

59 Reserved Reserved

60–63 ID Stream ID to use for this stream.

 Table 36. EA Encoding when TH=0b1010

Bit(s) Name Description

0-31 Reserved Reserved

32 GO

0 No information is provided by the GO field

1 The program will probably soon load from all nascent data

streams that have been completely described, and will probably

no longer load from all other data streams.

33-34 S Stop

00 No information is provided by the S field.

01 Reserved

10 The program will probably no longer load from the stream

associated with the Stream ID (all other fields of the EA are

ignored except for the ID field).

11 The program will probably no longer load from the data streams

associated with all stream IDs (all other fields of the EA are

ignored).

35-46 Reserved Reserved

176 Assembler Language Reference

Table 36. EA Encoding when TH=0b1010 (continued)

Bit(s) Name Description

47-56 UNIT_CNT Number of units in the data stream.

57 T

0 No information is provided by the T field.

1 The program’s need for each block of the data stream is likely to

be transient (that is, the time interval during which the program

accesses the block is likely to be short).

58 U

0 No information is provided by the U field.

1 The number of units in the data stream is unlimited (and the

UNIT_CNT field is ignored).

59 Reserved Reserved

60-63 ID Stream ID to use for this stream.

The dcbt instruction has one syntax form and does not affect the Condition Register field 0 or the

Fixed-Point Exception register.

Parameters

 RA Specifies source general-purpose register for EA computation.

RB Specifies source general-purpose register for EA computation.

TH Indicates when a sequence of data cache blocks might be needed.

Examples

The following code sums the content of a one-dimensional vector:

Assume that GPR 4 contains the address of the first element

of the sum.

Assume 49 elements are to be summed.

Assume the data cache block size is 32 bytes.

Assume the elements are word aligned and the address

are multiples of 4.

 dcbt 0,4 # Issue hint to fetch first

 # cache block.

 addi 5,4,32 # Compute address of second

 # cache block.

 addi 8,0,6 # Set outer loop count.

 addi 7,0,8 # Set inner loop counter.

 dcbt 0,5 # Issue hint to fetch second

 # cache block.

 lwz 3,4,0 # Set sum = element number 1.

bigloop:

 addi 8,8,-1 # Decrement outer loop count

 # and set CR field 0.

 mtspr CTR,7 # Set counter (CTR) for

 # inner loop.

 addi 5,5,32 # Computer address for next

 # touch.

lttlloop:

 lwzu 6,4,4 # Fetch element.

 add 3,3,6 # Add to sum.

 bc 16,0,lttlloop # Decrement CTR and branch

 # if result is not equal to 0.

 dcbt 0,5 # Issue hint to fetch next

 # cache block.

Chapter 8. Instruction Set 177

bc 4,3,bigloop # Branch if outer loop CTR is

 # not equal to 0.

 end # Summation complete.

Related Information

The clcs (Cache Line Compute Size) instruction, clf (Cache Line Flush) instruction, cli (Cache Line

Invalidate) instruction, dcbf (Data Cache Block Flush) instruction, dcbi (Data Cache Block Invalidate)

instruction, dcbst (Data Cache Block Store) instruction, dcbtst (Data Cache Block Touch for Store)

instruction, dcbz or dclz (Data Cache Block Set to Zero) instruction, dclst (Data Cache Line Store)

instruction, icbi (Instruction Cache Block Invalidate) instruction, sync (Synchronize) or dcs (Data Cache

Synchronize) instruction.

Processing and Storage

dcbtst (Data Cache Block Touch for Store) Instruction

Purpose

Allows a program to request a cache block fetch before it is actually needed by the program.

Note: The dcbtst instruction is supported only in the PowerPC architecture.

Syntax

 Bits Value

0-5 31

6-10 ///

11-15 RA

16-20 RB

21-30 246

31 /

 PowerPC

dcbtst RA, RB

Description

The dcbtst instruction improves performance by anticipating a store to the addressed byte. The block

containing the byte addressed by the effective address (EA) is fetched into the data cache before the

block is needed by the program. The program can later perform stores to the block and may not

experience the added delay caused by fetching the block into the cache. Executing the dcbtst instruction

does not invoke the system error handler.

The dcbtst instruction calculates an effective address (EA) by adding the contents of general-purpose

register (GPR) RA to the contents of GPR RB. If the RA field is 0, EA is the sum of the contents of RB

and 0.

Consider the following when using the dcbtst instruction:

v If the EA specifies a direct store segment address, the instruction is treated as a no-op.

v The access is treated as a load from the addressed cache block with respect to protection. If protection

does not permit access to the addressed byte, the dcbtst instruction performs no operations.

178 Assembler Language Reference

v If a program does not need to store to the data cache block, use the dcbt (Data Cache Block Touch)

instruction.

The dcbtst instruction has one syntax form and does not affect Condition Register field 0 or the

Fixed-Point Exception register.

Parameters

 RA Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Related Information

The clcs (Cache Line Compute Size) instruction, clf (Cache Line Flush) instruction, cli (Cache Line

Invalidate) instruction, dcbf (Data Cache Block Flush) instruction, dcbi (Data Cache Block Invalidate)

instruction, dcbst (Data Cache Block Store) instruction, dcbt (Data Cache Block Touch) instruction, dcbz

or dclz (Data Cache Block Set to Zero) instruction, dclst (Data Cache Line Store) instruction, icbi

(Instruction Cache Block Invalidate) instruction, sync (Synchronize) or dcs (Data Cache Synchronize)

instruction.

Processing and Storage

dcbz or dclz (Data Cache Block Set to Zero) Instruction

Purpose

The PowerPC instruction, dcbz, sets all bytes of a cache block to 0.

The POWER family instruction, dclz,sets all bytes of a cache line to 0.

Syntax

 Bits Value

0-5 31

6-10 ///

11-15 RA

16-20 RB

21-30 1014

31 /

 PowerPC

dcbz RA, RB

 POWER family

dclz RA, RB

Description

The dcbz and dclz instructions work with data cache blocks and data cache lines respectively. If RA is not

0, the dcbz and dclz instructions compute an effective address (EA) by adding the contents of

general-purpose register (GPR) RA to the contents of GPR RB. If GPR RA is 0, the EA is the contents of

GPR RB.

Chapter 8. Instruction Set 179

If the cache block or line containing the addressed byte is in the data cache, all bytes in the block or line

are set to 0. Otherwise, the block or line is established in the data cache without reference to storage and

all bytes of the block or line are set to 0.

For the POWER family instruction dclz, if GPR RA is not 0, the EA replaces the content of GPR RA.

The dcbz and dclz instructions are treated as a store to the addressed cache block or line with respect to

protection.

The dcbz and dclz instructions have one syntax form and do not effect the Fixed-Point Exception

Register. If bit 31 is set to 1, the instruction form is invalid.

Parameters

 PowerPC

RA Specifies the source register for EA computation.

RB Specifies the source register for EA computation.

 POWER family

RA Specifies the source register for EA computation and the target register for EA update.

RB Specifies the source register for EA computation.

Security

The dclz instruction is privileged.

Related Information

The clcs (Cache Line Compute Size) instruction, clf (Cache Line Flush) instruction, cli (Cache Line

Invalidate) instruction, dcbf (Data Cache Block Flush) instruction, dcbi (Data Cache Block Invalidate)

instruction, dcbst (Data Cache Block Store) instruction, dcbt (Data Cache Block Touch) instruction, dcbtst

(Data Cache Block Touch for Store) instruction, dclst (Data Cache Line Store) instruction, icbi (Instruction

Cache Block Invalidate) instruction, sync (Synchronize) or dcs (Data Cache Synchronize) instruction.

Fixed-Point Processor .

dclst (Data Cache Line Store) Instruction

Purpose

Stores a line of modified data in the data cache into main memory.

Note: The dclst instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 ///

11-15 RA

16-20 RB

21-30 630

31 Rc

180 Assembler Language Reference

POWER family

dclst RA, RB

Description

The dclst instruction adds the contents of general-purpose register (GPR) RA to the contents of GPR RB.

It then stores the sum in RA as the effective address (EA) if RA is not 0 and the instruction does not

cause a Data Storage interrupt.

If RA is 0, the effective address (EA) is the sum of the contents of GPR RB and 0.

Consider the following when using the dclst instruction:

v If the line containing the byte addressed by the EA is in the data cache and has been modified, the

dclst instruction writes the line to main memory.

v If data address translation is enabled (that is, the Machine State Register (MSR) Data Relocate (DR) bit

is 1) and the virtual address has no translation, a Data Storage interrupt occurs with bit 1 of the Data

Storage Interrupt Segment Register set to 1.

v If data address translation is enabled (MSR DR bit is 1), the virtual address translates to an unusable

real address, the line exists in the data cache, and a Machine Check interrupt occurs.

v If data address translation is disabled (MSR DR bit is 0) the address specifies an unusable real

address, the line exists in the data cache, and a Machine Check interrupt occurs.

v If the EA specifies an I/O address, the instruction is treated as a no-op, but the effective address is

placed into GPR RA.

v Address translation treats the dclst instruction as a load to the byte addressed, ignoring protection and

data locking. If this instruction causes a Translation Look-Aside Buffer (TLB) miss, the reference bit is

set.

The dclst instruction has one syntax form and does not effect the Fixed-Point Exception register. If the

Record (Rc) bit is set to 1, Condition Register Field 0 is undefined.

Parameters

 RA Specifies the source and target general-purpose register where result of operation is stored.

RB Specifies the source general-purpose register for EA calculation.

Examples

The following code stores the sum of the contents of GPR 4 and GPR 6 in GPR 6 as the effective

address:

Assume that GPR 4 contains 0x0000 3000.

Assume that GPR 6 is the target register and that it

contains 0x0000 0000.

dclst 6,4

GPR 6 now contains 0x0000 3000.

Related Information

The clcs (Cache Line Compute Size) instruction, clf (Cache Line Flush) instruction, cli (Cache Line

Invalidate) instruction, dcbf (Data Cache Block Flush) instruction, dcbi (Data Cache Block Invalidate)

instruction, dcbst (Data Cache Block Store) instruction, dcbt (Data Cache Block Touch) instruction, dcbtst

(Data Cache Block Touch for Store) instruction, dcbz or dclz (Data Cache Block Set to Zero) instruction,

icbi (Instruction Cache Block Invalidate) instruction, sync (Synchronize) or dcs (Data Cache Synchronize)

instruction.

Chapter 8. Instruction Set 181

Processing and Storage

div (Divide) Instruction

Purpose

Divides the contents of a general-purpose register concatenated with the MQ Register by the contents of a

general-purpose register and stores the result in a general-purpose register.

Note: The div instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21 OE

22-30 331

31 Rc

 POWER family

div RT, RA, RB

div. RT, RA, RB

divo RT, RA, RB

divo. RT, RA, RB

Description

The div instruction concatenates the contents of general-purpose register (GPR) RA and the contents of

Multiply Quotient (MQ) Register, divides the result by the contents of GPR RB, and stores the result in the

target GPR RT. The remainder has the same sign as the dividend, except that a zero quotient or a zero

remainder is always positive. The results obey the equation:

dividend = (divisor x quotient) + remainder

where a dividend is the original (RA) || (MQ), divisor is the original (RB), quotient is the final (RT), and

remainder is the final (MQ).

For the case of -2**31 P -1, the MQ Register is set to 0 and -2**31 is placed in GPR RT. For all other

overflows, the contents of MQ, the target GPR RT, and the Condition Register Field 0 (if the Record Bit

(Rc) is 1) are undefined.

The div instruction has four syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

div 0 None 0 None

div. 0 None 1 LT,GT,EQ,SO

divo 1 SO,OV 0 None

182 Assembler Language Reference

divo. 1 SO,OV 1 LT,GT,EQ,SO

The four syntax forms of the div instruction never affect the Carry bit (CA) in the Fixed-Point Exception

Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the instruction affects the Summary

Overflow (SO) and Overflow (OV) bits in the Fixed-Point Exception Register. If the syntax form sets the

Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To

(EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

1. The following code divides the contents of GPR 4, concatenated with the MQ Register, by the contents

of GPR 6 and stores the result in GPR 4:

Assume the MQ Register contains 0x0000 0001.

Assume GPR 4 contains 0x0000 0000.

Assume GPR 6 contains 0x0000 0002.

div 4,4,6

GPR 4 now contains 0x0000 0000.

The MQ Register now contains 0x0000 0001.

2. The following code divides the contents of GPR 4, concatenated with the MQ Register, by the contents

of GPR 6, stores the result in GPR 4, and sets Condition Register Field 0 to reflect the result of the

operation:

Assume the MQ Register contains 0x0000 0002.

Assume GPR 4 contains 0x0000 0000.

Assume GPR 6 contains 0x0000 0002.

div. 4,4,6

GPR 4 now contains 0x0000 0001.

MQ Register contains 0x0000 0000.

3. The following code divides the contents of GPR 4, concatenated with the MQ Register, by the contents

of GPR 6, places the result in GPR 4, and sets the Summary Overflow and Overflow bits in the

Fixed-Point Exception Register to reflect the result of the operation:

Assume GPR 4 contains 0x0000 0001.

Assume GPR 6 contains 0x0000 0000.

Assume the MQ Register contains 0x0000 0000.

divo 4,4,6

GPR 4 now contains an undefined quantity.

The MQ Register is undefined.

4. The following code divides the contents of GPR 4, concatenated with the MQ Register, by the contents

of GPR 6, places the result in GPR 4, and sets the Summary Overflow and Overflow bits in the

Fixed-Point Exception Register and Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x-1.

Assume GPR 6 contains 0x2.

Assume the MQ Register contains 0xFFFFFFFF.

divo. 4,4,6

GPR 4 now contains 0x0000 0000.

The MQ Register contains 0x-1.

Related Information

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

Chapter 8. Instruction Set 183

divd (Divide Double Word) Instruction

Purpose

Divide the contents of a general purpose register by the contents of a general purpose register, storing the

result into a general purpose register.

This instruction should only be used on 64-bit PowerPC® processors running a 64-bit application.

Syntax

 Bits Value

0-5 31

6-10 D

11-15 A

16-20 B

21 OE

22-30 489

31 Rc

 PowerPC64

divd RT, RA, RB (OE=0 Rc=0)

divd. RT, RA, RB (OE=0 Rc=1)

divdo RT, RA, RB (OE=1 Rc=0)

divdo. RT, RA, RB (OE=1 Rc=1)

Description

The 64-bit dividend is the contents of RA. The 64-bit divisor is the contents of RB. The 64- bit quotient is

placed into RT. The remainder is not supplied as a result.

Both the operands and the quotient are interpreted as signed integers. The quotient is the unique signed

integer that satisfies the equation-dividend = (quotient * divisor) + r, where 0 <= r < |divisor| if the dividend

is non-negative, and -|divisor| < r <=0 if the dividend is negative.

If an attempt is made to perform the divisions 0x8000_0000_0000_0000 / -1 or / 0, the contents of RT are

undefined, as are the contents of the LT, GT, and EQ bits of the condition register 0 field (if the record bit

(Rc) = 1 (the divd. or divdo. instructions)). In this case, if overflow enable (OE) = 1 then the overflow bit

(OV) is set.

The 64-bit signed remainder of dividing (RA) by (RB) can be computed as follows, except in the case that

(RA) = -2**63 and (RB) = -1:

 divd RT,RA,RB # RT = quotient

mulld RT,RT,RB # RT = quotient * divisor

subf RT,RT,RA # RT = remainder

Parameters

 RT Specifies target general-purpose register for the result of the computation.

RA Specifies source general-purpose register for the dividend.

184 Assembler Language Reference

RB Specifies source general-purpose register for the divisor.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

divdu (Divide Double Word Unsigned) Instruction

Purpose

Divide the contents of a general purpose register by the contents of a general purpose register, storing the

result into a general purpose register.

Syntax

 Bits Value

0-5 31

6-10 D

11-15 A

16-20 B

21 OE

22-30 457

31 Rc

 PowerPC

divdu RT, RA, RB (OE=0 Rc=0)

divdu. RT, RA, RB (OE=0 Rc=1)

divduo RT, RA, RB (OE=1 Rc=0)

divduo. RT, RA, RB (OE=1 Rc=1)

Description

The 64-bit dividend is the contents of RA. The 64-bit divisor is the contents of RB. The 64- bit quotient is

placed into RT. The remainder is not supplied as a result.

Both the operands and the quotient are interpreted as unsigned integers, except that if the record bit (Rc)

is set to 1 the first three bits of th condition register 0 (CR0) field are set by signed comparison of the

result to zero. The quotient is the unique unsigned integer that satisfies the equation: dividend = (quotient

* divisor) + r, where 0 <= r < divisor.

If an attempt is made to perform the division (anything) / 0 the contents of RT are undefined, as are the

contents of the LT, GT, and EQ bits of the CR0 field (if Rc = 1). In this case, if the overflow enable bit (OE)

= 1 then the overflow bit (OV) is set.

The 64-bit unsigned remainder of dividing (RA) by (RB) can be computed as follows:

 divdu RT,RA,RB # RT = quotient

mulld RT,RT,RB # RT = quotient * divisor

subf RT,RT,RA # RT = remainder

Chapter 8. Instruction Set 185

Other registers altered:

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

v XER: Affected: SO, OV (if OE = 1)

Note: The setting of the affected bits in the XER is mode-independent, and reflects overflow of the

64-bit result.

Parameters

 RT Specifies target general-purpose register for the result of the computation.

RA Specifies source general-purpose register for the dividend.

RB Specifies source general-purpose register for the divisor.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

divs (Divide Short) Instruction

Purpose

Divides the contents of a general-purpose register by the contents of a general-purpose register and

stores the result in a general-purpose register.

Note: The divs instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21

22-30 363

31 Rc

 POWER family

divs RT, RA, RB

divs. RT, RA, RB

divso RT, RA, RB

divso. RT, RA, RB

Description

The divs instruction divides the contents of general-purpose register (GPR) RA by the contents of GPR

RB and stores the result in the target GPR RT. The remainder has the same sign as the dividend, except

that a zero quotient or a zero remainder is always positive. The results obey the equation:

dividend = (divisor x quotient) + remainder

186 Assembler Language Reference

where a dividend is the original (RA), divisor is the original (RB), quotient is the final (RT), and

remainder is the final (MQ).

For the case of -2**31 P -1, the MQ Register is set to 0 and -2**31 is placed in GPR RT. For all other

overflows, the contents of MQ, the target GPR RT and the Condition Register Field 0 (if the Record Bit

(Rc) is 1) are undefined.

The divs instruction has four syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

divs 0 None 0 None

divs. 0 None 1 LT,GT,EQ,SO

divso 1 SO,OV 0 None

divso. 1 SO,OV 1 LT,GT,EQ,SO

The four syntax forms of the divs instruction never affect the Carry bit (CA) in the Fixed-Point Exception

Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the instruction affects the Summary

Overflow (SO) and Overflow (OV) bits in the Fixed-Point Exception Register. If the syntax form sets the

Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To

(EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

1. The following code divides the contents of GPR 4 by the contents of GPR 6 and stores the result in

GPR 4:

Assume GPR 4 contains 0x0000 0001.

Assume GPR 6 contains 0x0000 0002.

divs 4,4,6

GPR 4 now contains 0x0.

The MQ Register now contains 0x1.

2. The following code divides the contents of GPR 4 by the contents of GPR 6, stores the result in GPR

4 and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x0000 0002.

Assume GPR 6 contains 0x0000 0002.

divs. 4,4,6

GPR 4 now contains 0x0000 0001.

The MQ Register now contains 0x0000 0000.

3. The following code divides the contents of GPR 4 by the contents of GPR 6, stores the result in GPR

4, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register to reflect

the result of the operation:

Assume GPR 4 contains 0x0000 0001.

Assume GPR 6 contains 0x0000 0000.

divso 4,4,6

GPR 4 now contains an undefined quantity.

Chapter 8. Instruction Set 187

4. The following code divides the contents of GPR 4 by the contents of GPR 6, stores the result in GPR

4, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register and

Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x-1.

Assume GPR 6 contains 0x0000 00002.

Assume the MQ Register contains 0x0000 0000.

divso. 4,4,6

GPR 4 now contains 0x0000 0000.

The MQ register contains 0x-1.

Related Information

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

divw (Divide Word) Instruction

Purpose

Divides the contents of a general-purpose register by the contents of another general-purpose register and

stores the result in a third general-purpose register.

Note: The divw instruction is supported only in the PowerPC architecture.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21 OE

22-30 491

31 Rc

 PowerPC

divw RT, RA, RB

divw. RT, RA, RB

divwo RT, RA, RB

divwo. RT, RA, RB

Description

The divw instruction divides the contents of general-purpose register (GPR) RA by the contents of GPR

RB, and stores the result in the target GPR RT. The dividend, divisor, and quotient are interpreted as

signed integers.

For the case of -2**31 / -1, and all other cases that cause overflow, the content of GPR RT is undefined.

The divw instruction has four syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

188 Assembler Language Reference

Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

divw 0 None 0 None

divw. 0 None 1 LT,GT,EQ,SO

divwo 1 SO, OV 0 None

divwo. 1 SO, OV 1 LT,GT,EQ,SO

The four syntax forms of the divw instruction never affect the Carry bit (CA) in the Fixed-Point Exception

Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the instruction affects the Summary

Overflow (SO) and Overflow (OV) bits in the Fixed-Point Exception Register. If the syntax form sets the

Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To

(EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for dividend.

RB Specifies source general-purpose register for divisor.

Examples

1. The following code divides the contents of GPR 4 by the contents of GPR 6 and stores the result in

GPR 4:

Assume GPR 4 contains 0x0000 0000.

Assume GPR 6 contains 0x0000 0002.

divw 4,4,6

GPR 4 now contains 0x0000 0000.

2. The following code divides the contents of GPR 4 by the contents of GPR 6, stores the result in GPR

4 and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x0000 0002.

Assume GPR 6 contains 0x0000 0002.

divw. 4,4,6

GPR 4 now contains 0x0000 0001.

3. The following code divides the contents of GPR 4 by the contents of GPR 6, places the result in GPR

4, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register to reflect

the result of the operation:

Assume GPR 4 contains 0x0000 0001.

Assume GPR 6 contains 0x0000 0000.

divwo 4,4,6

GPR 4 now contains an undefined quantity.

4. The following code divides the contents of GPR 4 by the contents of GPR 6, places the result in GPR

4, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register and

Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x8000 0000.

Assume GPR 6 contains 0xFFFF FFFF.

divwo. 4,4,6

GPR 4 now contains undefined quantity.

Related Information

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

Chapter 8. Instruction Set 189

divwu (Divide Word Unsigned) Instruction

Purpose

Divides the contents of a general-purpose register by the contents of another general-purpose register and

stores the result in a third general-purpose register.

Note: The divwu instruction is supported only in the PowerPC architecture.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21 OE

22-30 459

31 Rc

 PowerPC

divwu RT, RA, RB

divwu. RT, RA, RB

divwuo RT, RA, RB

divwuo. RT, RA, RB

Description

The divwu instruction divides the contents of general-purpose register (GPR) RA by the contents of GPR

RB, and stores the result in the target GPR RT. The dividend, divisor, and quotient are interpreted as

unsigned integers.

For the case of division by 0, the content of GPR RT is undefined.

Note: Although the operation treats the result as an unsigned integer, if Rc is 1, the Less Than (LT)

zero, Greater Than (GT) zero, and Equal To (EQ) zero bits of Condition Register Field 0 are set as if

the result were interpreted as a signed integer.

The divwu instruction has four syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

divwu 0 None 0 None

divwu. 0 None 1 LT,GT,EQ,SO

divwuo 1 SO, OV, 0 None

divwuo. 1 SO, OV 1 LT,GT,EQ,SO

The four syntax forms of the divwu instruction never affect the Carry bit (CA) in the Fixed-Point Exception

Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the instruction affects the Summary

190 Assembler Language Reference

Overflow (SO) and Overflow (OV) bits in the Fixed-Point Exception Register. If the syntax form sets the

Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To

(EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Examples

1. The following code divides the contents of GPR 4 by the contents of GPR 6 and stores the result in

GPR 4:

Assume GPR 4 contains 0x0000 0000.

Assume GPR 6 contains 0x0000 0002.

divwu 4,4,6

GPR 4 now contains 0x0000 0000.

2. The following code divides the contents of GPR 4 by the contents of GPR 6, stores the result in GPR

4 and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x0000 0002.

Assume GPR 6 contains 0x0000 0002.

divwu. 4,4,6

GPR 4 now contains 0x0000 0001.

3. The following code divides the contents of GPR 4 by the contents of GPR 6, places the result in GPR

4, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register to reflect

the result of the operation:

Assume GPR 4 contains 0x0000 0001.

Assume GPR 6 contains 0x0000 0000.

divwuo 4,4,6

GPR 4 now contains an undefined quantity.

4. The following code divides the contents of GPR 4 by the contents of GPR 6, places the result in GPR

4, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register and

Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x8000 0000.

Assume GPR 6 contains 0x0000 0002.

divwuo. 4,4,6

GPR 4 now contains 0x4000 0000.

Related Information

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

doz (Difference or Zero) Instruction

Purpose

Computes the difference between the contents of two general-purpose registers and stores the result or

the value zero in a general-purpose register.

Note: The doz instruction is supported only in the POWER family architecture.

Chapter 8. Instruction Set 191

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21 OE

22-30 264

31 Rc

 POWER family

doz RT, RA, RB

doz. RT, RA, RB

dozo RT, RA, RB

dozo. RT, RA, RB

Description

The doz instruction adds the complement of the contents of general-purpose register (GPR) RA, 1, and

the contents of GPR RB, and stores the result in the target GPR RT.

If the value in GPR RA is algebraically greater than the value in GPR RB, then GPR RT is set to 0.

The doz instruction has four syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

doz 0 None 0 None

doz. 0 None 1 LT,GT,EQ,SO

dozo 1 SO,OV 0 None

dozo. 1 SO,OV 1 LT,GT,EQ,SO

The four syntax forms of the doz instruction never affect the Carry bit (CA) in the Fixed-Point Exception

Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the instruction affects the Summary

Overflow (SO) and Overflow (OV) bits in the Fixed-Point Exception Register; the Overflow (OV) bit can

only be set on positive overflows. If the syntax form sets the Record (Rc) bit to 1, the instruction effects

the Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in

Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

192 Assembler Language Reference

Examples

1. The following code determines the difference between the contents of GPR 4 and GPR 6 and stores

the result in GPR 4:

Assume GPR 4 holds 0x0000 0001.

Assume GPR 6 holds 0x0000 0002.

doz 4,4,6

GPR 4 now holds 0x0000 0001.

2. The following code determines the difference between the contents of GPR 4 and GPR 6, stores the

result in GPR 4, and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 holds 0x0000 0001.

Assume GPR 6 holds 0x0000 0000.

doz. 4,4,6

GPR 4 now holds 0x0000 0000.

3. The following code determines the difference between the contents of GPR 4 and GPR 6, stores the

result in GPR 4, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception

Register to reflect the result of the operation:

Assume GPR 4 holds 0x0000 0002.

Assume GPR 6 holds 0x0000 0008.

dozo 4,4,6

GPR 4 now holds 0x0000 0006.

4. The following code determines the difference between the contents of GPR 4 and GPR 6, stores the

result in GPR 4, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception

Register and Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 holds 0xEFFF FFFF.

Assume GPR 6 holds 0x0000 0000.

dozo. 4,4,6

GPR 4 now holds 0x1000 0001.

Related Information

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

dozi (Difference or Zero Immediate) Instruction

Purpose

Computes the difference between the contents of a general-purpose register and a signed 16-bit integer

and stores the result or the value zero in a general-purpose register.

Note: The dozi instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 09

6-10 RT

11-15 RA

16-31 SI

 POWER family

dozi RT, RA, SI

Chapter 8. Instruction Set 193

Description

The dozi instruction adds the complement of the contents of general-purpose register (GPR) RA, the

16-bit signed integer SI, and 1 and stores the result in the target GPR RT.

If the value in GPR RA is algebraically greater than the 16-bit signed value in the SI field, then GPR RT is

set to 0.

The dozi instruction has one syntax form and does not effect Condition Register Field 0 or the Fixed-Point

Exception Register.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for operation.

SI Specifies signed 16-bit integer for operation.

Examples

The following code determines the difference between GPR 4 and 0x0 and stores the result in GPR 4:

Assume GPR 4 holds 0x0000 0001.

dozi 4,4,0x0

GPR 4 now holds 0x0000 0000.

Related Information

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

eciwx (External Control In Word Indexed) Instruction

Purpose

Translates the effective address (EA) to a real address, sends the real address to a controller, and loads

the word returned by the controller into a register.

Note: The eciwx instruction is defined only in the PowerPC architecture and is an optional instruction. It is

supported on the PowerPC 601 RISC Microprocessor, PowerPC 603 RISC Microprocessor, and

PowerPC 604 RISC Microprocessor.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 310

31 /

 eciwx RT, RA, RB

194 Assembler Language Reference

Description

The eciwx instruction translates EA to a real address, sends the real address to a controller, and places

the word returned by the controller in general-purpose register RT. If RA = 0, the EA is the content of RB,

otherwise EA is the sum of the content of RA plus the content of RB.

If EAR(E) = 1, a load request for the real address corresponding to EA is sent to the controller identified

by EAR(RID), bypassing the cache. The word returned by the controller is placed in RT.

Notes:

1. EA must be a multiple of 4 (a word-aligned address); otherwise, the result is boundedly undefined.

2. The operation is treated as a load to the addressed byte with respect to protection.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Related Information

“ecowx (External Control Out Word Indexed) Instruction.”

Chapter 2, “Processing and Storage,” on page 11.

ecowx (External Control Out Word Indexed) Instruction

Purpose

Translates the effective address (EA) to a real address and sends the real address and the contents of a

register to a controller.

Note: The ecowx instruction is defined only in the PowerPC architecture and is an optional

instruction. It is supported on the PowerPC 601 RISC Microprocessor, PowerPC 603 RISC

Microprocessor, and PowerPC 604 RISC Microprocessor.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 438

31 /

 ecowx RS, RA, RB

Description

The ecowx instruction translates EA to a real address and sends the real address and the content of

general-purpose register RS to a controller. If RA = 0, the EA is the content of RB, otherwise EA is the

sum of the content of RA plus the content of RB.

Chapter 8. Instruction Set 195

If EAR(E) = 1, a store request for the real address corresponding to EA is sent to the controller identified

by EAR(RID), bypassing the cache. The content of RS is sent with the store request.

Notes:

1. EA must be a multiple of 4 (a word-aligned address); otherwise, the result is boundedly

undefined.

2. The operation is treated as a store to the addressed byte with respect to protection.

Parameters

 RS Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Related Information

The eciwx (External Control In Word Indexed) instruction.

Processing and Storage

eieio (Enforce In-Order Execution of I/O) Instruction

Purpose

Ensures that cache-inhibited storage accesses are performed in main memory in the order specified by the

program.

Note: The eieio instruction is supported only in the PowerPC architecture.

Syntax

 Bits Value

0-5 31

6-10 ///

11-15 ///

16-20 ///

21-30 854

31 /

PowerPC

eieio

Description

The eieio instruction provides an ordering function that ensures that all load and store instructions initiated

prior to the eieio instruction complete in main memory before any loads or stores subsequent to the eieio

instruction access memory. If the eieio instruction is omitted from a program, and the memory locations

are unique, the accesses to main storage may be performed in any order.

196 Assembler Language Reference

Note: The eieio instruction is appropriate for cases where the only requirement is to control the order

of storage references as seen by I/O devices. However, the sync (Synchronize) instruction provides

an ordering function for all instructions.

The eieio instruction has one syntax form and does not affect Condition Register Field 0 or the

Fixed-Point Exception Register.

Examples

The following code ensures that, if the memory locations are in cache-inhibited storage, the load from

location AA and the store to location BB are completed in main storage before the content of location CC is

fetched or the content of location DD is updated:

lwz r4,AA(r1)

stw r4,BB(r1)

eieio

lwz r5,CC(r1)

stw r5,DD(r1)

Note: If the memory locations of AA, BB, CC, and DD are not in cache-inhibited memory, the eieio

instruction has no effect on the order that instructions access memory.

Related Information

The sync (Synchronize) or dcs (Data Cache Synchronize) instruction.

Processing and Storage

extsw (Extend Sign Word) Instruction

Purpose

Copy the low-order 32 bits of a general purpose register into another general purpose register, and sign

extend the fullword to a double-word in size (64 bits).

Syntax

 Bits Value

0-5 31

6-10 S

11-15 A

16-20 00000

21-30 986

31 Rc

 PowerPC

extsw RA, RS (Rc=0)

extsw. RA, RS(Rc=1)

Description

The contents of the low-order 32 bits of general purpose register (GPR) RS are placed into the low-order

32 bits of GPR RA. Bit 32 of GPR RS is used to fill the high-order 32 bits of GPR RA.

Other registers altered:

Chapter 8. Instruction Set 197

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

v XER:

Affected: CA

Parameters

 RA Specifies the target general purpose register for the result of the operation.

RS Specifies the source general purpose register for the operand of instruction.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

eqv (Equivalent) Instruction

Purpose

Logically XORs the contents of two general-purpose registers and places the complemented result in a

general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 284

31 Rc

 eqv RA, RS, RB

eqv. RA, RS, RB

Description

The eqv instruction logically XORs the contents of general-purpose register (GPR) RS with the contents of

GPR RB and stores the complemented result in the target GPR RA.

The eqv instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

eqv None None 0 None

eqv. None None 1 LT,GT,EQ,SO

198 Assembler Language Reference

The two syntax forms of the eqv instruction never affect the Fixed-Point Exception Register. If the syntax

form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,

Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

1. The following code logically XORs the contents of GPR 4 and GPR 6 and stores the complemented

result in GPR 4:

Assume GPR 4 holds 0xFFF2 5730.

Assume GPR 6 holds 0x7B41 92C0.

eqv 4,4,6

GPR 4 now holds 0x7B4C 3A0F.

2. The following code XORs the contents of GPR 4 and GPR 6, stores the complemented result in GPR

4, and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 holds 0x0000 00FD.

Assume GPR 6 holds 0x7B41 92C0.

eqv. 4,4,6

GPR 4 now holds 0x84BE 6DC2.

Related Information

Fixed-Point Processor .

Fixed-Point Logical Instructions .

extsb (Extend Sign Byte) Instruction

Purpose

Extends the sign of the low-order byte.

Note: The extsb instruction is supported only in the PowerPC architecture.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 ///

21-30 954

31 Rc

 PowerPC

extsb RA, RS

extsb. RA, RS

Chapter 8. Instruction Set 199

Description

The extsb instruction places bits 24-31 of general-purpose register (GPR) RS into bits 24-31 of GPR RA

and copies bit 24 of register RS in bits 0-23 of register RA.

The extsb instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater

Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register of containing the byte to be extended.

Examples

1. The following code extends the sign of the least significant byte contained in GPR 4 and places the

result in GPR 6:

Assume GPR 6 holds 0x5A5A 5A5A.

extsb 4,6

GPR 6 now holds 0x0000 005A.

2. The following code extends the sign of the least significant byte contained in GPR 4 and sets

Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 holds 0xA5A5 A5A5.

extsb. 4,4

GPR 4 now holds 0xFFFF FFA5.

Related Information

Fixed-Point Processor .

Fixed-Point Logical Instructions .

extsh or exts (Extend Sign Halfword) Instruction

Purpose

Extends the lower 16-bit contents of a general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 ///

21 OE

22-30 922

31 Rc

200 Assembler Language Reference

PowerPC

extsh RA, RS

extsh. RA, RS

 POWER family

exts RA, RS

exts. RA, RS

Description

The extsh and exts instructions place bits 16-31 of general-purpose register (GPR) RS into bits 16-31 of

GPR RA and copy bit 16 of GPR RS in bits 0-15 of GPR RA.

The extsh and exts instructions each have two syntax forms. Each syntax form has a different effect on

Condition Register Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

extsh None None 0 None

extsh. None None 1 LT,GT,EQ,SO

exts None None 0 None

exts. None None 1 LT,GT,EQ,SO

The two syntax forms of the extsh instruction, and the two syntax forms of the extsh instruction, never

affect the Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction

affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow

(SO) bits in Condition Register Field 0.

Parameters

 RA Specifies general-purpose register receives extended integer.

RS Specifies source general-purpose register for operation.

Examples

1. The following code places bits 16-31 of GPR 6 into bits 16-31 of GPR 4 and copies bit 16 of GPR 6

into bits 0-15 of GPR 4:

Assume GPR 6 holds 0x0000 FFFF.

extsh 4,6

GPR 6 now holds 0xFFFF FFFF.

2. The following code places bits 16-31 of GPR 6 into bits 16-31 of GPR 4, copies bit 16 of GPR 6 into

bits 0-15 of GPR 4, and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 holds 0x0000 2FFF.

extsh. 6,4

GPR 6 now holds 0x0000 2FFF.

Related Information

Fixed-Point Processor .

Fixed-Point Logical Instructions .

Chapter 8. Instruction Set 201

fabs (Floating Absolute Value) Instruction

Purpose

Stores the absolute value of the contents of a floating-point register in another floating-point register.

Syntax

 Bits Value

0-5 63

6-10 FRT

11-15 ///

16-20 FRB

21-30 264

31 Rc

 fabs FRT, FRB

fabs. FRT, FRB

Description

The fabs instruction sets bit 0 of floating-point register (FPR) FRB to 0 and places the result into FPR

FRT.

The fabs instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 1.

 Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

fabs None 0 None

fabs. None 1 FX,FEX,VX,OX

The two syntax forms of the fabs instruction never affect the Floating-Point Status and Control Register. If

the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception Summary

(FX), Floating-Point Enabled Exception Summary (FEX), Floating-Point Invalid Operation Exception

Summary (VX), and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

 FRT Specifies target floating-point register for operation.

FRB Specifies source floating-point register for operation.

Examples

1. The following code sets bit 0 of FPR 4 to zero and place sthe result in FPR 6:

Assume FPR 4 holds 0xC053 4000 0000 0000.

fabs 6,4

GPR 6 now holds 0x4053 4000 0000 0000.

2. The following code sets bit 0 of FPR 25 to zero, places the result in FPR 6, and sets Condition

Register Field 1 to reflect the result of the operation:

202 Assembler Language Reference

Assume FPR 25 holds 0xFFFF FFFF FFFF FFFF.

fabs. 6,25

GPR 6 now holds 0x7FFF FFFF FFFF FFFF.

Related Information

Floating-Point Processor .

Floating-Point Move Instructions .

Interpreting the Contents of a Floating-Point Register .

fadd or fa (Floating Add) Instruction

Purpose

Adds two floating-point operands and places the result in a floating-point register.

Syntax

 Bits Value

0-5 63

6-10 FRT

11-15 FRA

16-20 FRB

21-25 ///

26-30 21

31 Rc

 PowerPC

fadd FRT, FRA, FRB

fadd. FRT, FRA, FRB

 POWER family

fa FRT, FRA, FRB

fa. FRT, FRA, FRB

 Bits Value

0-5 59

6-10 FRT

11-15 FRA

16-20 FRB

21-25 ///

26-30 21

31 Rc

 PowerPC

fadds FRT, FRA, FRB

fadds. FRT, FRA, FRB

Chapter 8. Instruction Set 203

Description

The fadd and fa instructions add the 64-bit, double-precision floating-point operand in floating-point

register (FPR) FRA to the 64-bit, double-precision floating-point operand in FPR FRB.

The fadds instruction adds the 32-bit single-precision floating-point operand in FPR FRA to the 32-bit

single-precision floating-point operand in FPR FRB.

The result is rounded under control of the Floating-Point Rounding Control Field RN of the Floating-Point

Status and Control Register and is placed in FPR FRT.

Addition of two floating-point numbers is based on exponent comparison and addition of the two

significands. The exponents of the two operands are compared, and the significand accompanying the

smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two

exponents are equal. The two significands are then added algebraically to form the intermediate sum. All

53 bits in the significand as well as all three guard bits (G, R and X) enter into the computation.

The Floating-Point Result Field of the Floating-Point Status and Control Register is set to the class and

sign of the result except for Invalid Operation exceptions when the Floating-Point Invalid Operation

Exception Enable (VE) bit of the Floating-Point Status and Control Register is set to 1.

The fadd, fadds, and fa instructions each have two syntax forms. Each syntax form has a different effect

on Condition Register Field 1.

 Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

fadd C,FL,FG,FE,FU,FR,FI,OX,UX,

XX,VXSNAN,VXISI

0 None

fadd. C,FL,FG,FE,FU,FR,FI,OX,UX,

XX,VXSNAN,VXISI

1 FX,FEX,VX,OX

fadds C,FL,FG,FE,FU,FR,FI,OX,UX,

XX,VXSNAN,VXISI

0 None

fadds. C,FL,FG,FE,FU,FR,FI,OX,UX,

XX,VXSNAN,VXISI

1 FX,FEX,VX,OX

fa C,FL,FG,FE,FU,FR,FI,OX,UX,

XX,VXSNAN,VXISI

0 None

fa. C,FL,FG,FE,FU,FR,FI,OX,UX,

XX,VXSNAN,VXISI

1 FX,FEX,VX,OX

All syntax forms of the fadd, fadds, and fa instructions always affect the Floating-Point Status and Control

Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point

Exception Summary (FX), Floating-Point Enabled Exception Summary (FEX), Floating-Point Invalid

Operation Exception Summary (VX), and Floating-Point Overflow Exception (OX) bits in Condition Register

Field 1.

Parameters

 FRT Specifies target floating-point register for operation.

FRA Specifies source floating-point register for operation.

FRB Specifies source floating-point register for operation.

Examples

1. The following code adds the contents of FPR 4 and FPR 5, places the result in FPR 6, and sets the

Floating-Point Status and Control Register to reflect the result of the operation:

204 Assembler Language Reference

Assume FPR 4 contains 0xC053 4000 0000 0000.

Assume FPR 5 contains 0x400C 0000 0000 0000.

fadd 6,4,5

FPR 6 now contains 0xC052 6000 0000 0000.

2. The following code adds the contents of FPR 4 and FPR 25, places the result in FPR 6, and sets

Condition Register Field 1 and the Floating-Point Status and Control Register to reflect the result of the

operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.

Assume FPR 25 contains 0xFFFF FFFF FFFF FFFF.

fadd. 6,4,25

GPR 6 now contains 0xFFFF FFFF FFFF FFFF.

Related Information

Floating-Point Processor .

Floating-Point Arithmetic Instructions .

Interpreting the Contents of a Floating-Point Register .

fcfid (Floating Convert from Integer Double Word) Instruction

Purpose

Convert the fixed-point contents of a floating-point register to a double-precision floating-point number.

Syntax

 Bits Value

0-5 63

6-10 D

11-15 00000

16-20 B

21-30 846

31 Rc

 PowerPC

fcfid FRT, FRB (Rc=0)

fcfid. FRT, FRB (Rc=1)

Description

The 64-bit signed fixed-point operand in floating-point register (FPR) FRB is converted to an infinitely

precise floating-point integer. The result of the conversion is rounded to double-precision using the

rounding mode specified by FPSCR[RN] and placed into FPR FRT.

FPSCR[FPRF] is set to the class and sign of the result. FPSCR[FR] is set if the result is incremented

when rounded. FPSCR[FI] is set if the result is inexact.

The fcfid instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 1.

 Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

Chapter 8. Instruction Set 205

fcfid FPRF,FR,FI,FX,XX 0 None

fcfid. FPRF,FR,FI,FX,XX 1 FX,FEX,VX,OX

Parameters

 FRT Specifies the target floating-point register for the operation.

FRB Specifies the source floating-point register for the operation.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

fcmpo (Floating Compare Ordered) Instruction

Purpose

Compares the contents of two floating-point registers.

Syntax

 Bits Value

0-5 63

6-8 BF

9-10 //

11-15 FRA

16-20 FRB

21-30 32

31 /

 fcmpo BF, FRA, FRB

Description

The fcmpo instruction compares the 64-bit, double-precision floating-point operand in floating-point

register (FPR) FRA to the 64-bit, double-precision floating-point operand in FPR FRB. The Floating-Point

Condition Code Field (FPCC) of the Floating-Point Status and Control Register (FPSCR) is set to reflect

the value of the operand FPR FRA with respect to operand FPR FRB. The value BF determines which

field in the condition register receives the four FPCC bits.

Consider the following when using the fcmpo instruction:

v If one of the operands is either a Quiet NaN (QNaN) or a Signaling NaN (SNaN), the Floating-Point

Condition Code is set to reflect unordered (FU).

v If one of the operands is a SNaN, then the Floating-Point Invalid Operation Exception bit VXSNAN of

the Floating-Point Status and Control Register is set. Also:

– If Invalid Operation is disabled (that is, the Floating-Point Invalid Operation Exception Enable bit of

the Floating-Point Status and Control Register is 0), then the Floating-Point Invalid Operation

Exception bit VXVC is set (signaling an an invalid compare).

206 Assembler Language Reference

– If one of the operands is a QNaN, then the Floating-Point Invalid Operation Exception bit VXVC is

set.

The fcmpo instruction has one syntax form and always affects the FT, FG, FE, FU, VXSNAN, and VXVC

bits in the Floating-Point Status and Control Register.

Parameters

 BF Specifies field in the condition register that receives the four FPCC bits.

FRA Specifies source floating-point register.

FRB Specifies source floating-point register.

Examples

The following code compares the contents of FPR 4 and FPR 6 and sets Condition Register Field 1 and

the Floating-Point Status and Control Register to reflect the result of the operation:

Assume CR = 0 and FPSCR = 0.

Assume FPR 5 contains 0xC053 4000 0000 0000.

Assume FPR 4 contains 0x400C 0000 0000 0000.

fcmpo 6,4,5

CR now contains 0x0000 0040.

FPSCR now contains 0x0000 4000.

Related Information

Floating-Point Processor .

Floating-Point Compare Instructions .

fcmpu (Floating Compare Unordered) Instruction

Purpose

Compares the contents of two floating-point registers.

Syntax

 Bits Value

0-5 63

6-8 BF

9-10 //

11-15 FRA

16-20 FRB

21-30 0

31 /

 fcmpu BF, FRA, FRB

Description

The fcmpu instruction compares the 64-bit double precision floating-point operand in floating-point register

(FPR) FRA to the 64-bit double precision floating-point operand in FPR FRB. The Floating-Point Condition

Chapter 8. Instruction Set 207

Code Field (FPCC) of the Floating-Point Status and Control Register (FPSCR) is set to reflect the value of

the operand FRA with respect to operand FRB. The value BF determines which field in the condition

register receives the four FPCC bits.

Consider the following when using the fcmpu instruction:

v If one of the operands is either a Quiet NaN or a Signaling NaN, the Floating-Point Condition Code is

set to reflect unordered (FU).

v If one of the operands is a Signaling NaN, then the Floating-Point Invalid Operation Exception bit

VXSNAN of the Floating-Point Status and Control Register is set.

The fcmpu instruction has one syntax form and always affects the FT, FG, FE, FU, and VXSNAN bits in

the FPSCR.

Parameters

 BF Specifies a field in the condition register that receives the four FPCC bits.

FRA Specifies source floating-point register.

FRB Specifies source floating-point register.

Examples

The following code compares the contents of FPR 5 and FPR 4:

Assume FPR 5 holds 0xC053 4000 0000 0000.

Assume FPR 4 holds 0x400C 0000 0000 0000.

Assume CR = 0 and FPSCR = 0.

fcmpu 6,4,5

CR now contains 0x0000 0040.

FPSCR now contains 0x0000 4000.

Related Information

Floating-Point Processor .

Floating-Point Compare Instructions .

fctid (Floating Convert to Integer Double Word) Instruction

Purpose

Convert the contents of a floating-point register to a 64-bit signed fixed-point integer, placing the results

into another floating-point register.

Syntax

 Bits Value

0-5 63

6-10 D

11-15 00000

16-20 B

21-30 814

31 Rc

208 Assembler Language Reference

PowerPC

fctid FRT, FRB (Rc=0)

fctid. FRT, FRB (Rc=1)

Description

The floating-point operand in floating-point register (FPR) FRB is converted to a 64-bit signed fixed-point

integer, using the rounding mode specified by FPSCR[RN], and placed into FPR FRT.

If the operand in FRB is greater than 2**63 - 1, then FPR FRT is set to 0x7FFF_FFFF_FFFF_FFFF. If the

operand in FRB is less than 2**63 , then FPR FRT is set to 0x8000_0000_0000_0000.

Except for enabled invalid operation exceptions, FPSCR[FPRF] is undefined. FPSCR[FR] is set if the

result is incremented when rounded. FPSCR[FI] is set if the result is inexact.

The fctid instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 1.

 Syntax

Form

Floating-Point Status and Control Register Record Bit

(Rc)

Condition Register Field

1

fctid FPRF(undefined),FR,FI,FX,XX,VXSNAN,VXCVI 0 None

fctid. FPRF(undefined),FR,FI,FX,XX,VXSNAN,VXCVI 1 FX,FEX,VX,OX

Parameters

 FRT Specifies the target floating-point register for the operation.

FRB Specifies the source floating-point register for the operation.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

fctidz (Floating Convert to Integer Double Word with Round toward

Zero) Instruction

Purpose

Convert the contents of a floating-point register to a 64-bit signed fixed-point integer using the

round-toward-zero rounding mode. Place the results into another floating-point register.

Syntax

 Bits Value

0-5 63

6-10 D

11-15 00000

16-20 B

21-30 815

31 Rc

Chapter 8. Instruction Set 209

PowerPC

fctidz FRT, FRB (Rc=0)

fctidz. FRT, FRB (Rc=1)

Description

The floating-point operand in floating-point register (FRP) FRB is converted to a 64-bit signed fixed-point

integer, using the rounding mode round toward zero, and placed into FPR FRT.

If the operand in FPR FRB is greater than 2**63 - 1, then FPR FRT is set to 0x7FFF_FFFF_FFFF_FFFF.

If the operand in frB is less than 2**63 , then FPR FRT is set to 0x8000_0000_0000_0000.

Except for enabled invalid operation exceptions, FPSCR[FPRF] is undefined. FPSCR[FR] is set if the

result is incremented when rounded. FPSCR[FI] is set if the result is inexact.

The fctidz instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 1.

 Syntax

Form

Floating-Point Status and Control Register Record Bit

(Rc)

Condition Register Field

1

fctidz FPRF(undefined),FR,FI,FX,XX,VXSNAN,VXCVI 0 None

fctidz. FPRF(undefined),FR,FI,FX,XX,VXSNAN,VXCVI 1 FX,FEX,VX,OX

Parameters

 FRT Specifies the target floating-point register for the operation.

FRB Specifies the source floating-point register for the operation.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

fctiw or fcir (Floating Convert to Integer Word) Instruction

Purpose

Converts a floating-point operand to a 32-bit signed integer.

Syntax

 Bits Value

0-5 63

6-10 FRT

11-15 ///

16-20 FRB

21-30 14

31 Rc

210 Assembler Language Reference

PowerPC

fctiw FRT, FRB

fctiw. FRT, FRB

 POWER2

fcir FRT, FRB

fcir. FRT, FRB

Description

The fctiw and fcir instructions convert the floating-point operand in floating-point register (FPR) FRB to a

32-bit signed, fixed-point integer, using the rounding mode specified by Floating-Point Status and Control

Register (FPSCR) RN. The result is placed in bits 32-63 of FPR FRT. Bits 0-31 of FPR FRT are

undefined.

If the operand in FPR FRB is greater than 231 - 1, then the bits 32-63 of FPR FRT are set to 0x7FFF

FFFF. If the operand in FPR FRB is less than -231, then the bits 32-63 of FPR FRT are set to 0x8000

0000.

The fctiw and fcir instruction each have two syntax forms. Each syntax form has a different effect on

Condition Register Field 1.

 Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

fctiw C,FL,FG,FE,FU,FR,FI,FX,XX,VXCVI, VXSNAN 0 None

fctiw. C,FL,FG,FE,FU,FR,FI,FX,XX,VXCVI, VXSNAN 1 FX,FEX,VX,OX

fcir C,FL,FG,FE,FU,FR,FI,FX,XX,VXCVI, VXSNAN 0 None

fcir. C,FL,FG,FE,FU,FR,FI,FX,XX,VXCVI, VXSNAN 1 FX,FEX,VX,OX

The syntax forms of the fctiw and fcir instructions always affect the FPSCR. If the syntax form sets the

Record (Rc) bit to 1, the instruction affects the Floating-Point Exception (FX), Floating-Point Enabled

Exception (FEX), Floating-Point Invalid Operation Exception (VX), and Floating-Point Overflow Exception

(OX) bits in Condition Register Field 1. FPSCR(C,FI,FG,FE,FU) are undefined.

Parameters

 FRT Specifies the floating-point register where the integer result is placed.

FRB Specifies the source floating-point register for the floating-point operand.

Examples

The following code converts a floating-point value into an integer for use as an index in an array of

floating-point values:

Assume GPR 4 contains the address of the first element of

the array.

Assume GPR 1 contains the stack pointer.

Assume a doubleword TEMP variable is allocated on the stack

for use by the conversion routine.

Assume FPR 6 contains the floating-point value for conversion

into an index.

fctiw 5,6 # Convert floating-point value

 # to integer.

stfd 5,TEMP(1) # Store to temp location.

Chapter 8. Instruction Set 211

lwz 3,TEMP+4(1) # Get the integer part of the

 # doubleword.

lfd 5,0(3) # Get the selected array element.

FPR 5 now contains the selected array element.

Related Information

Floating-Point Processor .

Floating-Point Arithmetic Instructions .

Interpreting the Contents of a Floating-Point Register .

fctiwz or fcirz (Floating Convert to Integer Word with Round to Zero)

Instruction

Purpose

Converts a floating-point operand to a 32-bit signed integer, rounding the result towards 0.

Syntax

 Bits Value

0-5 63

6-10 FRT

11-15 ///

16-20 FRB

21-30 15

31 Rc

 PowerPC

fctiwz FRT, FRB

fctiwz. FRT, FRB

 POWER2

fcirz FRT, FRB

fcirz. FRT, FRB

Description

The fctiwz and fcirz instructions convert the floating-point operand in floating-point register (FPR) FRB to

a 32-bit, signed, fixed-point integer, rounding the operand toward 0. The result is placed in bits 32-63 of

FPR FRT. Bits 0-31 of FPR FRT are undefined.

If the operand in FPR FRB is greater than 231 - 1, then the bits 32-63 of FPR FRT are set to 0x7FFF

FFFF. If the operand in FPR FRB is less than -231, then the bits 32-63 of FPR FRT are set to 0x8000

0000.

The fctiwz and fcirz instructions each have two syntax forms. Each syntax form has a different effect on

Condition Register Field 1.

 Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

212 Assembler Language Reference

fctiwz C,FL,FG,FE,FU,FR,FI,FX,XX,VXCVI, VXSNAN 0 None

fctiwz. C,FL,FG,FE,FU,FR,FI,FX,XX,VXCVI, VXSNAN 1 FX,FEX,VX,OX

fcirz C,FL,FG,FE,FU,FR,FI,FX,XX,VXCVI, VXSNAN 0 None

fcirz. C,FL,FG,FE,FU,FR,FI,FX,XX,VXCVI, VXSNAN 1 FX,FEX,VX,OX

The syntax forms of the fctiwz and fcirz instructions always affect the Floating-Point Status and Control

Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point

Exception (FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX),

and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1. FPSCR(C,FI,FG,FE,FU) are

undefined.

Parameters

 FRT Specifies the floating-point register where the integer result is placed.

FRB Specifies the source floating-point register for the floating-point operand.

Examples

The following code adds a floating-point value to an array element selected based on a second

floating-point value. If value2 is greater than or equal to n, but less than n+1, add value1 to the nth

element of the array:

Assume GPR 4 contains the address of the first element of

the array.

Assume GPR 1 contains the stack pointer.

Assume a doubleword TEMP variable is allocated on the stack

for use by the conversion routine.

Assume FPR 6 contains value2.

Assume FPR 4 contains value1.

fctiwz 5,6 # Convert value2 to integer.

stfd 5,TEMP(1) # Store to temp location.

lwz 3,TEMP+4(1) # Get the integer part of the

 # doubleword.

lfdx 5,3,4 # Get the selected array element.

fadd 5,5,4 # Add value1 to array element.

stfd 5,3,4 # Save the new value of the

 # array element.

Related Information

Floating-Point Processor .

Floating-Point Arithmetic Instructions .

Interpreting the Contents of a Floating-Point Register .

fdiv or fd (Floating Divide) Instruction

Purpose

Divides one floating-point operand by another.

Syntax

 Bits Value

0-5 63

Chapter 8. Instruction Set 213

Bits Value

6-10 FRT

11-15 FRA

16-20 FRB

21-25 ///

26-30 18

31 Rc

 PowerPC

fdiv FRT, FRA, FRB

fdiv. FRT, FRA, FRB

 POWER family

fd FRT, FRA, FRB

fd. FRT, FRA, FRB

 Bits Value

0-5 59

6-10 FRT

11-15 FRA

16-20 FRB

21-25 ///

26-30 18

31 Rc

 PowerPC

fdivs FRT, FRA, FRB

fdivs. FRT, FRA, FRB

Description

The fdiv and fd instructions divide the 64-bit, double-precision floating-point operand in floating-point

register (FPR) FRA by the 64-bit, double-precision floating-point operand in FPR FRB. No remainder is

preserved.

The fdivs instruction divides the 32-bit single-precision floating-point operand in FPR FRA by the 32-bit

single-precision floating-point operand in FPR FRB. No remainder is preserved.

The result is rounded under control of the Floating-Point Rounding Control Field RN of the Floating-Point

Status and Control Register (FPSCR), and is placed in the target FPR FRT.

The floating-point division operation is based on exponent subtraction and division of the two significands.

Note: If an operand is a denormalized number, then it is prenormalized before the operation is

begun.

The Floating-Point Result Flags Field of the Floating-Point Status and Control Register is set to the class

and sign of the result, except for Invalid Operation Exceptions, when the Floating-Point Invalid Operation

Exception Enable bit is 1.

214 Assembler Language Reference

The fdiv, fdivs, and fd instructions each have two syntax forms. Each syntax form has a different effect

on Condition Register Field 1.

 Syntax Form Floating-Point Status and Control Register Record Bit

(Rc)

Condition Register Field

1

fdiv C,FL,FG,FE,FU,FR,FI,OX,UX,

ZX,XX,VXSNAN,VXIDI,VXZDZ

0 None

fdiv. C,FL,FG,FE,FU,FR,FI,OX,UX,

ZX,XX,VXSNAN,VXIDI,VXZDZ

1 FX,FEX,VX,OX

fdivs C,FL,FG,FE,FU,FR,FI,OX,UX,

ZX,XX,VXSNAN,VXIDI,VXZDZ

0 None

fdivs. C,FL,FG,FE,FU,FR,FI,OX,UX,

ZX,XX,VXSNAN,VXIDI,VXZDZ

1 FX,FEX,VX,OX

fd C,FL,FG,FE,FU,FR,FI,OX,UX,

ZX,XX,VXSNAN,VXIDI,VXZDZ

0 None

fd. C,FL,FG,FE,FU,FR,FI,OX,UX,

ZX,XX,VXSNAN,VXIDI,VXZDZ

1 FX,FEX,VX,OX

All syntax forms of the fdiv, fdivs, and fd instructions always affect the Floating-Point Status and Control

Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point

Exception (FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX),

and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

 FRT Specifies target floating-point register for operation.

FRA Specifies source floating-point register containing the dividend.

FRB Specifies source floating-point register containing the divisor.

Examples

1. The following code divides the contents of FPR 4 by the contents of FPR 5, places the result in FPR 6,

and sets the Floating-Point Status and Control Register to reflect the result of the operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.

Assume FPR 5 contains 0x400C 0000 0000 0000.

Assume FPSCR = 0.

fdiv 6,4,5

FPR 6 now contains 0xC036 0000 0000 0000.

FPSCR now contains 0x0000 8000.

2. The following code divides the contents of FPR 4 by the contents of FPR 5, places the result in FPR 6,

and sets Condition Register Field 1 and the Floating-Point Status and Control Register to reflect the

result of the operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.

Assume FPR 5 contains 0x400C 0000 0000 0000.

Assume FPSCR = 0.

fdiv. 6,4,5

FPR 6 now contains 0xC036 0000 0000 0000.

FPSCR now contains 0x0000 8000.

CR contains 0x0000 0000.

Related Information

Floating-Point Processor .

Floating-Point Arithmetic Instructions .

Chapter 8. Instruction Set 215

Interpreting the Contents of a Floating-Point Register .

fmadd or fma (Floating Multiply-Add) Instruction

Purpose

Adds one floating-point operand to the result of multiplying two floating-point operands without an

intermediate rounding operation.

Syntax

 Bits Value

0-5 63

6-10 FRT

11-15 FRA

16-20 FRB

21-25 FRC

26-30 29

31 Rc

 PowerPC

fmadd FRT, FRA, FRC, FRB

fmadd. FRT, FRA, FRC, FRB

 POWER family

fma FRT, FRA, FRC, FRB

fma. FRT, FRA, FRC, FRB

 Bits Value

0-5 59

6-10 FRT

11-15 FRA

16-20 FRB

21-25 FRC

26-30 29

31 Rc

 PowerPC

fmadds FRT, FRA, FRC, FRB

fmadds. FRT, FRA, FRC, FRB

Description

The fmadd and fma instructions multiply the 64-bit, double-precision floating-point operand in floating-point

register (FPR) FRA by the 64-bit, double-precision floating-point operand in FPR FRC, and then add the

result of this operation to the 64-bit, double-precision floating-point operand in FPR FRB.

216 Assembler Language Reference

The fmadds instruction multiplies the 32-bit, single-precision floating-point operand in FPR FRA by the

32-bit, single-precision floating-point operand in FPR FRC and adds the result of this operation to the

32-bit, single-precision floating-point operand in FPR FRB.

The result is rounded under control of the Floating-Point Rounding Control Field RN of the Floating-Point

Status and Control Register and is placed in the target FPR FRT.

Note: If an operand is a denormalized number, then it is prenormalized before the operation is

begun.

The Floating-Point Result Flags Field of the Floating-Point Status and Control Register is set to the class

and sign of the result, except for Invalid Operation Exceptions, when the Floating-Point Invalid Operation

Exception Enable bit is 1.

The fmadd, fmadds, and fm instructions each have two syntax forms. Each syntax form has a different

effect on Condition Register Field 1.

 Syntax Form Floating-Point Status and Control Register Record Bit

(Rc)

Condition Register Field

1

fmadd C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 0 None

fmadd. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 1 FX,FEX,VX,OX

fmadds C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 0 None

fmadds. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 1 FX,FEX,VX,OX

fma C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 0 None

fma. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 1 FX,FEX,VX,OX

All syntax forms of the fmadd, fmadds, and fm instructions always affect the Floating-Point Status and

Control Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point

Exception (FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX),

and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

 FRT Specifies target floating-point register for operation.

FRA Specifies source floating-point register containing a multiplier.

FRB Specifies source floating-point register containing the addend.

FRC Specifies source floating-point register containing a multiplier.

Examples

1. The following code multiplies the contents of FPR 4 and FPR 5, adds the contents of FPR 7, places

the result in FPR 6, and sets the Floating-Point Status and Control Register to reflect the result of the

operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.

Assume FPR 5 contains 0x400C 0000 0000 0000.

Assume FPR 7 contains 0x3DE2 6AB4 B33C 110A.

Assume FPSCR = 0.

fmadd 6,4,5,7

FPR 6 now contains 0xC070 D7FF FFFF F6CB.

FPSCR now contains 0x8206 8000.

2. The following code multiplies the contents of FPR 4 and FPR 5, adds the contents of FPR 7, places

the result in FPR 6, and sets the Floating-Point Status and Control Register and Condition Register

Field 1 to reflect the result of the operation:

Chapter 8. Instruction Set 217

Assume FPR 4 contains 0xC053 4000 0000 0000.

Assume FPR 5 contains 0x400C 0000 0000 0000.

Assume FPR 7 contains 0x3DE2 6AB4 B33C 110A.

Assume FPSCR = 0 and CR = 0.

fmadd. 6,4,5,7

FPR 6 now contains 0xC070 D7FF FFFF F6CB.

FPSCR now contains 0x8206 8000.

CR now contains 0x0800 0000.

Related Information

Floating-Point Processor .

Interpreting the Contents of a Floating-Point Register .

fmr (Floating Move Register) Instruction

Purpose

Copies the contents of one floating-point register into another floating-point register.

Syntax

 Bits Value

0-5 63

6-10 FRT

11-15 ///

16-20 FRB

21-30 72

31 Rc

 fmr FRT, FRB

fmr. FRT, FRB

Description

The fmr instruction places the contents of floating-point register (FPR) FRB into the target FPR FRT.

The fmr instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 1.

 Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

fmr None 0 None

fmr. None 1 FX,FEX,VX,OX

The two syntax forms of the fmr instruction never affect the Floating-Point Status and Control Register. If

the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception (FX),

Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX), and

Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

 FRT Specifies target floating-point register for operation.

218 Assembler Language Reference

FRB Specifies source floating-point register for operation.

Examples

1. The following code copies the contents of FPR 4 into FPR 6 and sets the Floating-Point Status and

Control Register to reflect the result of the operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.

Assume FPSCR = 0.

fmr 6,4

FPR 6 now contains 0xC053 4000 0000 0000.

FPSCR now contains 0x0000 0000.

2. The following code copies the contents of FPR 25 into FPR 6 and sets the Floating-Point Status and

Control Register and Condition Register Field 1 to reflect the result of the operation:

Assume FPR 25 contains 0xFFFF FFFF FFFF FFFF.

Assume FPSCR = 0 and CR = 0.

fmr. 6,25

FPR 6 now contains 0xFFFF FFFF FFFF FFFF.

FPSCR now contains 0x0000 0000.

CR now contains 0x0000 0000.

Related Information

Floating-Point Processor .

Interpreting the Contents of a Floating-Point Register .

Floating-Point Move Instructions .

fmsub or fms (Floating Multiply-Subtract) Instruction

Purpose

Subtracts one floating-point operand from the result of multiplying two floating-point operands without an

intermediate rounding operation.

Syntax

 Bits Value

0-5 63

6-10 FRT

11-15 FRA

16-20 FRB

21-25 FRC

26-30 28

31 Rc

 PowerPC

fmsub FRT, FRA, FRC, FRB

fmsub. FRT, FRA, FRC, FRB

 POWER family

fms FRT, FRA, FRC, FRB

fms. FRT, FRA, FRC, FRB

Chapter 8. Instruction Set 219

Bits Value

0-5 59

6-10 FRT

11-15 FRA

16-20 FRB

21-25 FRC

26-30 28

31 Rc

 PowerPC

fmsubs FRT, FRA, FRC, FRB

fmsubs. FRT, FRA, FRC, FRB

Description

The fmsub and fms instructions multiply the 64-bit, double-precision floating-point operand in floating-point

register (FPR) FRA by the 64-bit, double-precision floating-point operand in FPR FRC and subtract the

64-bit, double-precision floating-point operand in FPR FRB from the result of the multiplication.

The fmsubs instruction multiplies the 32-bit, single-precision floating-point operand in FPR FRA by the

32-bit, single-precision floating-point operand in FPR FRC and subtracts the 32-bit, single-precision

floating-point operand in FPR FRB from the result of the multiplication.

The result is rounded under control of the Floating-Point Rounding Control Field RN of the Floating-Point

Status and Control Register and is placed in the target FPR FRT.

Note: If an operand is a denormalized number, then it is prenormalized before the operation is

begun.

The Floating-Point Result Flags Field of the Floating-Point Status and Control Register is set to the class

and sign of the result, except for Invalid Operation Exceptions, when the Floating-Point Invalid Operation

Exception Enable bit is 1.

The fmsub, fmsubs, and fms instructions each have two syntax forms. Each syntax form has a different

effect on Condition Register Field 1.

 Syntax Form Floating-Point Status and Control Register Record Bit

(Rc)

Condition Register Field

1

fmsub C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXSI,VXIMZ 0 None

fmsub. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXSI,VXIMZ 1 FX,FEX,VX,OX

fmsubs C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXSI,VXIMZ 0 None

fmsubs. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXSI,VXIMZ 1 FX,FEX,VX,OX

fms C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXSI,VXIMZ 0 None

fms. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXSI,VXIMZ 1 FX,FEX,VX,OX

All syntax forms of the fmsub, fmsubs, and fms instructions always affect the Floating-Point Status and

Control Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point

220 Assembler Language Reference

Exception (FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX),

and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

 FRT Specifies target floating-point register for operation.

FRA Specifies source floating-point register containing a multiplier.

FRB Specifies source floating-point register containing the quantity to be subtracted.

FRC Specifies source floating-point register containing a multiplier.

Examples

1. The following code multiplies the contents of FPR 4 and FPR 5, subtracts the contents of FPR 7 from

the product of the multiplication, places the result in FPR 6, and sets the Floating-Point Status and

Control Register to reflect the result of the operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.

Assume FPR 5 contains 0x400C 0000 0000 0000.

Assume FPR 7 contains 0x3DE2 6AB4 B33c 110A.

Assume FPSCR = 0.

fmsub 6,4,5,7

FPR 6 now contains 0xC070 D800 0000 0935.

FPSCR now contains 0x8202 8000.

2. The following code multiplies the contents of FPR 4 and FPR 5, subtracts the contents of FPR 7 from

the product of the multiplication, places the result in FPR 6, and sets the Floating-Point Status and

Control Register and Condition Register Field 1 to reflect the result of the operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.

Assume FPR 5 contains 0x400C 0000 0000 0000.

Assume FPR 7 contains 0x3DE2 6AB4 B33c 110A.

Assume FPSCR = 0 and CR = 0.

fmsub. 6,4,5,7

FPR 6 now contains 0xC070 D800 0000 0935.

FPSCR now contains 0x8202 8000.

CR now contains 0x0800 0000.

Related Information

Floating-Point Processor .

Interpreting the Contents of a Floating-Point Register .

fmul or fm (Floating Multiply) Instruction

Purpose

Multiplies two floating-point operands.

Syntax

 Bits Value

0-5 63

6-10 FRT

11-15 FRA

16-20 ///

21-25 FRC

26-30 25

Chapter 8. Instruction Set 221

Bits Value

31 Rc

 PowerPC

fmul FRT, FRA, FRC

fmul. FRT, FRA, FRC

 POWER family

fm FRT, FRA, FRC

fm. FRT, FRA, FRC

 Bits Value

0-5 59

6-10 FRT

11-15 FRA

16-20 ///

21-25 FRC

26-30 25

31 Rc

 PowerPC

fmuls FRT, FRA, FRC

fmuls. FRT, FRA, FRC

Description

The fmul and fm instructions multiply the 64-bit, double-precision floating-point operand in floating-point

register (FPR) FRA by the 64-bit, double-precision floating-point operand in FPR FRC.

The fmuls instruction multiplies the 32-bit, single-precision floating-point operand in FPR FRA by the

32-bit, single-precision floating-point operand in FPR FRC.

The result is rounded under control of the Floating-Point Rounding Control Field RN of the Floating-Point

Status and Control Register and is placed in the target FPR FRT.

Multiplication of two floating-point numbers is based on exponent addition and multiplication of the two

significands.

Note: If an operand is a denormalized number, then it is prenormalized before the operation is

begun.

The Floating-Point Result Flags Field of the Floating-Point Status and Control Register is set to the class

and sign of the result, except for Invalid Operation Exceptions, when the Floating-Point Invalid Operation

Exception Enable bit is 1.

The fmul, fmuls, and fm instructions each have two syntax forms. Each syntax form has a different effect

on Condition Register Field 1.

 Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

222 Assembler Language Reference

fmul C,FL,FG,FE,FU,FR,FI,OX,UX,

XX,VXSNAN,VXIMZ

0 None

fmul. C,FL,FG,FE,FU,FR,FI,OX,UX,

XX,VXSNAN,VXIMZ

1 FX,FEX,VX,OX

fmuls C,FL,FG,FE,FU,FR,FI,OX,UX,

XX,VXSNAN,VXIMZ

0 None

fmuls. C,FL,FG,FE,FU,FR,FI,OX,UX,

XX,VXSNAN,VXIMZ

1 FX,FEX,VX,OX

fm C,FL,FG,FE,FU,FR,FI,OX,UX,

XX,VXSNAN,VXIMZ

0 None

fm. C,FL,FG,FE,FU,FR,FI,OX,UX,

XX,VXSNAN,VXIMZ

1 FX,FEX,VX,OX

All syntax forms of the fmul, fmuls, and fm instructions always affect the Floating-Point Status and

Control Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point

Exception (FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX),

and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

 FRT Specifies target floating-point register for operation.

FRA Specifies source floating-point register for operation.

FRC Specifies source floating-point register for operation.

Examples

1. The following code multiplies the contents of FPR 4 and FPR 5, places the result in FPR 6, and sets

the Floating-Point Status and Control Register to reflect the result of the operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.

Assume FPR 5 contains 0x400C 0000 0000 0000.

Assume FPSCR = 0.

fmul 6,4,5

FPR 6 now contains 0xC070 D800 0000 0000.

FPSCR now contains 0x0000 8000.

2. The following code multiplies the contents of FPR 4 and FPR 25, places the result in FPR 6, and sets

Condition Register Field 1 and the Floating-Point Status and Control Register to reflect the result of the

operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.

Assume FPR 25 contains 0xFFFF FFFF FFFF FFFF.

Assume FPSCR = 0 and CR = 0.

fmul. 6,4,25

FPR 6 now contains 0xFFFF FFFF FFFF FFFF.

FPSCR now contains 0x0001 1000.

CR now contains 0x0000 0000.

Related Information

Floating-Point Processor .

Floating-Point Arithmetic Instructions .

Interpreting the Contents of a Floating-Point Register .

Chapter 8. Instruction Set 223

fnabs (Floating Negative Absolute Value) Instruction

Purpose

Negates the absolute contents of a floating-point register and places the result in another floating-point

register.

Syntax

 Bits Value

0-5 63

6-10 FRT

11-15 ///

16-20 FRB

21-30 136

31 /

 fnabs FRT, FRB

fnabs. FRT, FRB

Description

The fnabs instruction places the negative absolute of the contents of floating-point register (FPR) FRB

with bit 0 set to 1 into the target FPR FRT.

The fnabs instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 1.

 Syntax

Form

Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

fnabs None 0 None

fnabs. None 1 FX,FEX,VX,OX

The two syntax forms of the fnabs instruction never affect the Floating-Point Status and Control Register.

If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception (FX),

Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX), and

Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

 FRT Specifies target floating-point register for operation.

FRB Specifies source floating-point register for operation.

Examples

1. The following code negates the absolute contents of FPR 5 and places the result into FPR 6:

Assume FPR 5 contains 0x400C 0000 0000 0000.

fnabs 6,5

FPR 6 now contains 0xC00C 0000 0000 0000.

2. The following code negates the absolute contents of FPR 4, places the result into FPR 6, and sets

Condition Register Field 1 to reflect the result of the operation:

224 Assembler Language Reference

Assume FPR 4 contains 0xC053 4000 0000 0000.

Assume CR = 0.

fnabs. 6,4

FPR 6 now contains 0xC053 4000 0000 0000.

CR now contains 0x0.

Related Information

Floating-Point Processor .

Floating-Point Move Instructions .

Interpreting the Contents of a Floating-Point Register .

fneg (Floating Negate) Instruction

Purpose

Negates the contents of a floating-point register and places the result into another floating-point register.

Syntax

 Bits Value

0-5 63

6-10 FRT

11-15 ///

16-20 FRB

21-30 40

31 Rc

 fneg FRT, FRB

fneg. FRT, FRB

Description

The fneg instruction places the negated contents of floating-point register FRB into the target FPR FRT.

The fneg instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 1.

 Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

fneg None 0 None

fneg. None 1 FX,FEX,VX,OX

The two syntax forms of the fneg instruction never affect the Floating-Point Status and Control Register. If

the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception (FX),

Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX), and

Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

 FRT Specifies target floating-point register for operation.

Chapter 8. Instruction Set 225

FRB Specifies source floating-point register for operation.

Examples

1. The following code negates the contents of FPR 5 and places the result into FPR 6:

Assume FPR 5 contains 0x400C 0000 0000 0000.

fneg 6,5

FPR 6 now contains 0xC00C 0000 0000 0000.

2. The following code negates the contents of FPR 4, places the result into FPR 6, and sets Condition

Register Field 1 to reflect the result of the operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.

fneg. 6,4

FPR 6 now contains 0x4053 4000 0000 0000.

CR now contains 0x0000 0000.

Related Information

Floating-Point Processor .

Floating-Point Move Instructions .

Interpreting the Contents of a Floating-Point Register .

fnmadd or fnma (Floating Negative Multiply-Add) Instruction

Purpose

Multiplies two floating-point operands, adds the result to one floating-point operand, and places the

negative of the result in a floating-point register.

Syntax

 Bits Value

0-5 63

6-10 FRT

11-15 FRA

16-20 FRB

21-25 FRC

26-30 31

31 Rc

 PowerPC

fnmadd FRT, FRA, FRC, FRB

fnmadd. FRT, FRA, FRC, FRB

 POWER family

fnma FRT, FRA, FRC, FRB

fnma. FRT, FRA, FRC, FRB

 Bits Value

0-5 59

226 Assembler Language Reference

Bits Value

6-10 FRT

11-15 FRA

16-20 FRB

21-25 FRC

26-30 31

31 Rc

 PowerPC

fnmadds FRT, FRA, FRC, FRB

fnmadds. FRT, FRA, FRC, FRB

Description

The fnmadd and fnma instructions multiply the 64-bit, double-precision floating-point operand in

floating-point register (FPR) FRA by the 64,bit, double-precision floating-point operand in FPR FRC, and

add the 64-bit, double-precision floating-point operand in FPR FRB to the result of the multiplication.

The fnmadds instruction multiplies the 32-bit, single-precision floating-point operand in FPR FRA by the

32-bit, single-precision floating-point operand in FPR FRC, and adds the 32-bit, single-precision

floating-point operand in FPR FRB to the result of the multiplication.

The result of the addition is rounded under control of the Floating-Point Rounding Control Field RN of the

Floating-Point Status and Control Register.

Note: If an operand is a denormalized number, then it is prenormalized before the operation is

begun.

The fnmadd and fnma instructions are identical to the fmadd and fma (Floating Multiply- Add Single)

instructions with the final result negated, but with the following exceptions:

v Quiet NaNs (QNaNs) propagate with no effect on their ″sign″ bit.

v QNaNs that are generated as the result of a disabled Invalid Operation Exception have a ″sign″ bit of 0.

v Signaling NaNs (SNaNs) that are converted to QNaNs as the result of a disabled Invalid Operation

Exception have no effect on their ″sign″ bit.

The Floating-Point Result Flags Field of the Floating-Point Status and Control Register is set to the class

and sign of the result, except for Invalid Operation Exceptions, when the Floating-Point Invalid Operation

Exception Enable bit is 1.

The fnmadd, fnmadds, and fnma instructions each have two syntax forms. Each syntax form has a

different effect on Condition Register Field 1.

 Syntax Form Floating-Point Status and Control Register Record Bit

(Rc)

Condition Register Field

1

fnmadd C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 0 None

fnmadd. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 1 FX,FEX,VX,OX

fnmadds C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 0 None

fnmadds. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 1 FX,FEX,VX,OX

fnma C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 0 None

fnma. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 1 FX,FEX,VX,OX

Chapter 8. Instruction Set 227

All syntax forms of the fnmadd, fnmadds, and fnma instructions always affect the Floating-Point Status

and Control Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the

Floating-Point Exception (FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation

Exception (VX), and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Note: Rounding occurs before the result of the addition is negated. Depending on RN, an inexact

value may result.

Parameters

 FRT Specifies target floating-point register for operation.

FRA Specifies source floating-point register for operation.

FRB Specifies source floating-point register for operation.

FRC Specifies source floating-point register for operation.

Examples

1. The following code multiplies the contents of FPR 4 and FPR 5, adds the result to the contents of FPR

7, stores the negated result in FPR 6, and sets the Floating-Point Status and Control Register to reflect

the result of the operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.

Assume FPR 5 contains 0x400C 0000 0000 0000.

Assume FPR 7 contains 0x3DE2 6AB4 B33c 110A.

Assume FPSCR = 0.

fnmadd 6,4,5,7

FPR 6 now contains 0x4070 D7FF FFFF F6CB.

FPSCR now contains 0x8206 4000.

2. The following code multiplies the contents of FPR 4 and FPR 5, adds the result to the contents of FPR

7, stores the negated result in FPR 6, and sets the Floating-Point Status and Control Register and

Condition Register Field 1 to reflect the result of the operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.

Assume FPR 5 contains 0x400C 0000 0000 0000.

Assume FPR 7 contains 0x3DE2 6AB4 B33c 110A.

Assume FPSCR = 0 and CR = 0.

fnmadd. 6,4,5,7

FPR 6 now contains 0x4070 D7FF FFFF F6CB.

FPSCR now contains 0x8206 4000.

CR now contains 0x0800 0000.

Related Information

Floating-Point Processor .

Interpreting the Contents of a Floating-Point Register .

fnmsub or fnms (Floating Negative Multiply-Subtract) Instruction

Purpose

Multiplies two floating-point operands, subtracts one floating-point operand from the result, and places the

negative of the result in a floating-point register.

228 Assembler Language Reference

Syntax

 Bits Value

0-5 63

6-10 FRT

11-15 FRA

16-20 FRB

21-25 FRC

26-30 30

31 Rc

 PowerPC

fnmsub FRT, FRA, FRC, FRB

fnmsub. FRT, FRA, FRC, FRB

 POWER family

fnms FRT, FRA, FRC, FRB

fnms. FRT, FRA, FRC, FRB

 Bits Value

0-5 59

6-10 FRT

11-15 FRA

16-20 FRB

21-25 FRC

26-30

30 Rc

 PowerPC

fnmsubs FRT, FRA, FRC, FRB

fnmsubs. FRT, FRA, FRC, FRB

Description

The fnms and fnmsub instructions multiply the 64-bit, double-precision floating-point operand in

floating-point register (FPR) FRA by the 64,-bit double-precision floating-point operand in FPR FRC,

subtract the 64-bit, double-precision floating-point operand in FPR FRB from the result of the multiplication,

and place the negated result in the target FPR FRT.

The fnmsubs instruction multiplies the 32-bit, single-precision floating-point operand in FPR FRA by the

32-bit, single-precision floating-point operand in FPR FRC, subtracts the 32-bit, single-precision

floating-point operand in FPR FRB from the result of the multiplication, and places the negated result in

the target FPR FRT.

The subtraction result is rounded under control of the Floating-Point Rounding Control Field RN of the

Floating-Point Status and Control Register.

Chapter 8. Instruction Set 229

Note: If an operand is a denormalized number, then it is prenormalized before the operation is

begun.

The fnms and fnmsub instructions are identical to the fmsub and fms (Floating Multiply-Subtract Single)

instructions with the final result negated, but with the following exceptions:

v Quiet NaNs (QNaNs) propagate with no effect on their ″sign″ bit.

v QNaNs that are generated as the result of a disabled Invalid Operation Exception have a ″sign″ bit of

zero.

v Signaling NaNs (SNaNs) that are converted to QNaNs as the result of a disabled Invalid Operation

Exception have no effect on their ″sign″ bit.

The Floating-Point Result Flags Field of the Floating-Point Status and Control Register is set to the class

and sign of the result, except for Invalid Operation Exceptions, when the Floating-Point Invalid Operation

Exception Enable bit is 1.

The fnmsub, fnmsubs, and fnms instructions each have two syntax forms. Each syntax form has a

different effect on Condition Register Field 1.

 Syntax Form Floating-Point Status and Control Register Record Bit

(Rc)

Condition Register Field

1

fnmsub C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 0 None

fnmsub. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 1 FX,FEX,VX,OX

fnmsubs C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 0 None

fnmsubs. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 1 FX,FEX,VX,OX

fnms C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 0 None

fnms. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 1 FX,FEX,VX,OX

All syntax forms of the fnmsub, fnmsubs, and fnms instructions always affect the Floating-Point Status

and Control Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the

Floating-Point Exception (FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation

Exception (VX), and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Note: Rounding occurs before the result of the addition is negated. Depending on RN, an inexact

value may result.

Parameters

 FRT Specifies target floating-point register for operation.

FRA Specifies first source floating-point register for operation.

FRB Specifies second source floating-point register for operation.

FRC Specifies third source floating-point register for operation.

Examples

1. The following code multiplies the contents of FPR 4 and FPR 5, subtracts the contents of FPR 7 from

the result, stores the negated result in FPR 6, and sets the Floating-Point Status and Control Register

and Condition Register Field 1 to reflect the result of the operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.

Assume FPR 5 contains 0x400C 0000 0000 0000.

Assume FPR 7 contains 0x3DE2 6AB4 B33c 110A.

230 Assembler Language Reference

Assume FPSCR = 0.

fnmsub 6,4,5,7

FPR 6 now contains 0x4070 D800 0000 0935.

FPSCR now contains 0x8202 4000.

2. The following code multiplies the contents of FPR 4 and FPR 5, subtracts the contents of FPR 7 from

the result, stores the negated result in FPR 6, and sets the Floating-Point Status and Control Register

and Condition Register Field 1 to reflect the result of the operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.

Assume FPR 5 contains 0x400C 0000 0000 0000.

Assume FPR 7 contains 0x3DE2 6AB4 B33c 110A.

Assume FPSCR = 0 and CR = 0.

fnmsub. 6,4,5,7

FPR 6 now contains 0x4070 D800 0000 0935.

FPSCR now contains 0x8202 4000.

CR now contains 0x0800 0000.

Related Information

Floating-Point Processor .

Interpreting the Contents of a Floating-Point Register .

fres (Floating Reciprocal Estimate Single) Instruction

Purpose

Calculates a single-precision estimate of the reciprocal of a floating-point operand.

Note: The fres instruction is defined only in the PowerPC architecture and is an optional instruction.

It is supported on the PowerPC 603 RISC Microprocessor, and PowerPC 604 RISC Microprocessor,

but not supported on the PowerPC 601 RISC Microprocessor.

Syntax

 Bits Value

0-5 59

6-10 FRT

11-15 ///

16-20 FRB

21-25 ///

26-30 24

31 Rc

 PowerPC

fres FRT, FRB

fres. FRT, FRB

Description

The fres instruction calculates a single-precision estimate of the reciprocal of the 64-bit, double-precision

floating-point operand in floating-point register (FPR) FRB and places the result in FPR FRT.

Chapter 8. Instruction Set 231

The estimate placed into register FRT is correct to a precision of one part in 256 of the reciprocal of FRB.

The value placed into FRT may vary between implementations, and between different executions on the

same implementation.

The following table summarizes special conditions:

 Special Conditions

Operand Result Exception

Negative Infinity Negative 0 None

Negative 0 Negative Infinity1 ZX

Positive 0 Positive Infinity1 ZX

Positive Infinity Positive 0 None

SNaN QNaN2 VXSNAN

QNaN QNaN None

1No result if FPSCRZE = 1.

2No result if FPSCRVE = 1.

FPSCRFPRF is set to the class and sign of the result, except for Invalid Operation Exceptions when

FPSCRVE = 1 and Zero Divide Exceptions when FPSCRZE = 1.

The fres instruction has two syntax forms. Both syntax forms always affect the FPSCR register. Each

syntax form has a different effect on Condition Register Field 1.

 Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

fres C,FL,FG,FE,FU,FR,FI,FX,OX, UX,ZX,VXSNAN 0 None

fres. C,FL,FG,FE,FU,FR,FI,FX,OX, UX,ZX,VXSNAN 1 FX,FEX,VX,OX

The fres. syntax form sets the Record (Rc) bit to 1; and the instruction affects the Floating-Point Exception

(FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX), and

Floating-Point Overflow Exception (OX) bits in Condition Register Field 1 (CR1). The fres syntax form sets

the Record (Rc) bit to 0 and does not affect Condition Register Field 1 (CR1).

Parameters

 FRT Specifies target floating-point register for operation.

FRB Specifies source floating-point register for operation.

Related Information

Floating-Point Processor .

Floating-Point Arithmetic Instructions .

Interpreting the Contents of a Floating-Point Register .

232 Assembler Language Reference

frsp (Floating Round to Single Precision) Instruction

Purpose

Rounds a 64-bit, double precision floating-point operand to single precision and places the result in a

floating-point register.

Syntax

 Bits Value

0-5 63

6-10 FRT

11-15 ///

16-20 FRB

21-30 12

31 Rc

 frsp FRT, FRB

frsp. FRT, FRB

Description

The frsp instruction rounds the 64-bit, double-precision floating-point operand in floating-point register

(FPR) FRB to single precision, using the rounding mode specified by the Floating Rounding Control field of

the Floating-Point Status and Control Register, and places the result in the target FPR FRT.

The Floating-Point Result Flags Field of the Floating-Point Status and Control Register is set to the class

and sign of the result, except for Invalid Operation (SNaN), when Floating-Point Status and Control

Register Floating-Point Invalid Operation Exception Enable bit is 1.

The frsp instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 1.

 Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

frsp C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN 0 None

frsp. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN 1 FX,FEX,VX,OX

The two syntax forms of the frsp instruction always affect the Floating-Point Status and Control Register. If

the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception (FX),

Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX), and

Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Notes:

1. The frsp instruction uses the target register of a previous floating-point arithmetic operation as its

source register (FRB). The frsp instruction is said to be dependent on the preceding floating-point

arithmetic operation when it uses this register for source.

2. Less than two nondependent floating-point arithmetic operations occur between the frsp

instruction and the operation on which it is dependent.

3. The magnitude of the double-precision result of the arithmetic operation is less than 2**128

before rounding.

Chapter 8. Instruction Set 233

4. The magnitude of the double-precision result after rounding is exactly 2**128.

Error Result

If the error occurs, the magnitude of the result placed in the target register FRT is 2**128:

X’47F0000000000000’ or X’C7F0000000000000’

This is not a valid single-precision value. The settings of the Floating-Point Status and Control Register

and the Condition Register will be the same as if the result does not overflow.

Avoiding Errors

If the above error will cause significant problems in an application, either of the following two methods can

be used to avoid the error.

1. Place two nondependent floating-point operations between a floating-point arithmetic operation and the

dependent frsp instruction. The target registers for these nondependent floating-point operations

should not be the same register that the frsp instruction uses as source register FRB.

2. Insert two frsp operations when the frsp instruction may be dependent on an arithmetic operation that

precedes it by less than three floating-point instructions.

Either solution will degrade performance by an amount dependent on the particular application.

Parameters

 FRT Specifies target floating-point register for operation.

FRB Specifies source floating-point register for operation.

Examples

1. The following code rounds the contents of FPR 4 to single precision, places the result in a FPR 6, and

sets the Floating-Point Status and Control Register to reflect the result of the operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.

Assume FPSCR = 0.

frsp 6,4

FPR 6 now contains 0xC053 4000 0000 0000.

FPSCR now contains 0x0000 8000.

2. The following code rounds the contents of FPR 4 to single precision, places the result in a FPR 6, and

sets the Floating-Point Status and Control Register and Condition Register Field 1 to reflect the result

of the operation:

Assume CR contains 0x0000 0000.

Assume FPR 4 contains 0xFFFF FFFF FFFF FFFF.

Assume FPSCR = 0.

frsp. 6,4

FPR 6 now contains 0xFFFF FFFF E000 0000.

FPSCR now contains 0x0001 1000.

CR now contains 0x0000 0000.

Related Information

Floating-Point Processor .

Interpreting the Contents of a Floating-Point Register .

Floating-Point Arithmetic Instructions .

234 Assembler Language Reference

frsqrte (Floating Reciprocal Square Root Estimate) Instruction

Purpose

Calculates a double-precision estimated value of the reciprocal of the square root of a floating-point

operand.

Note: The frsqrte instruction is defined only in the PowerPC architecture and is an optional

instruction. It is supported on the PowerPC 603 RISC Microprocessor and the PowerPC 604 RISC

Microprocessor, but not supported on the PowerPC 601 RISC Microprocessor.

Syntax

 Bits Value

0-5 63

6-10 FRT

11-15 ///

16-20 FRB

21-25 ///

26-30 26

31 Rc

 PowerPC

frsqrte FRT, FRB

frsqrte. FRT, FRB

Description

The frsqrte instruction computes a double-precision estimate of the reciprocal of the square root of the

64-bit, double-precision floating-point operand in floating-point register (FPR) FRB and places the result in

FPR FRT.

The estimate placed into register FRT is correct to a precision of one part in 32 of the reciprocal of the

square root of FRB. The value placed in FRT may vary between implementations and between different

executions on the same implementation.

The following table summarizes special conditions:

 Special Conditions

Operand Result Exception

Negative Infinity QNaN1 VXSQRT

Less Than 0 QNaN1 VXSQRT

Negative 0 Negative Infinity2 ZX

Positive 0 Positive Infinity2 ZX

Positive Infinity Positive 0 None

SNaN QNaN1 VXSNAN

QNaN QNaN None

1No result if FPSCRVE = 1.

Chapter 8. Instruction Set 235

2No result if FPSCRZE = 1.

FPSCRFPRF is set to the class and sign of the result, except for Invalid Operation Exceptions when

FPSCRVE = 1 and Zero Divide Exceptions when FPSCRZE = 1.

The frsqrte instruction has two syntax forms. Both syntax forms always affect the FPSCR. Each syntax

form has a different effect on Condition Register Field 1.

 Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

frsqrte C,FL,FG,FE,FU,FR,FI,FX,ZX, VXSNAN,VXSQRT 0 None

frsqrte. C,FL,FG,FE,FU,FR,FI,FX,ZX, VXSNAN,VXSQRT 1 FX,FEX,VX,OX

The frstrte. syntax form sets the Record (Rc) bit to 1; and the instruction affects the Floating-Point

Exception (FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX),

and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1 (CR1). The frstrte syntax

form sets the Record (Rc) bit to 0; and the instruction does not affect Condition Register Field 1 (CR1).

Parameters

 FRT Specifies target floating-point register for operation.

FRB Specifies source floating-point register for operation.

Related Information

Floating-Point Processor .

Floating-Point Arithmetic Instructions .

Interpreting the Contents of a Floating-Point Register .

fsel (Floating-Point Select) Instruction

Purpose

Puts either of two floating-point operands into the target register based on the results of comparing

another floating-point operand with zero.

Note: The fsel instruction is defined only in the PowerPC architecture and is an optional instruction.

It is supported on the PowerPC 603 RISC Microprocessor and the PowerPC 604 RISC

Microprocessor, but not supported on the PowerPC 601 RISC Microprocessor.

Syntax

 Bits Value

0-5 63

6-10 FRT

11-15 FRA

16-20 FRB

21-25 FRC

26-30 23

31 Rc

236 Assembler Language Reference

PowerPC

fsel FRT, FRA, FRC, FRB

fsel. FRT, FRA, FRC, FRB

Description

The double-precision floating-point operand in floating-point register (FPR) FRA is compared with the value

zero. If the value in FRA is greater than or equal to zero, floating point register FRT is set to the contents

of floating-point register FRC. If the value in FRA is less than zero or is a NaN, floating point register FRT

is set to the contents of floating-point register FRB.The comparison ignores the sign of zero; both +0 and

-0 are equal to zero.

The fesl instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 1.

 Syntax Form FPSCR bits Record Bit (Rc) Condition Register Field 1

fsel None 0 None

fsel. None 1 FX, FEX, VX, OX

The two syntax forms of the fsel instruction never affect the Floating-Point Status and Control Register

fields. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception

(FX), Floating-Point Enabled Exception (FEX), Floating Invalid Operation Exception (VX), and

Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

 FRT Specifies target floating-point register for operation.

FRA Specifies floating-point register with value to be compared with zero.

FRB Specifies source floating-point register containing the value to be used if FRA is less than zero or is a NaN.

FRC Specifies source floating-point register containing the value to be used if FRA is greater than or equal to zero.

Related Information

Floating-Point Processor .

Interpreting the Contents of a Floating-Point Register .

fsqrt (Floating Square Root, Double-Precision) Instruction

Purpose

Calculate the square root of the contents of a floating- point register, placing the result in a floating-point

register.

Syntax

 Bits Value

0-5 63

6-10 D

11-15 00000

16-20 B

Chapter 8. Instruction Set 237

Bits Value

21-25 00000

26-30 22

31 Rc

 PowerPC

fsqrt FRT, FRB (Rc=0)

fsqrt. FRT, FRB (Rc=1)

Description

The square root of the operand in floating-point register (FPR) FRB is placed into register FPR FRT.

If the most-significant bit of the resultant significand is not a one the result is normalized. The result is

rounded to the target precision under control of the floating-point rounding control field RN of the FPSCR

and placed into register FPR FRT.

Operation with various special values of the operand is summarized below.

 Operand Result Exception

- infinity QNaN* VXSQRT

< 0 QNaN* VXSQRT

- 0 - 0 None

+ infinity + infinity None

SNaN QNaN* VXSNAN

QNaN QNaN None

Notes: * No result if FPSCR[VE] = 1

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when

FPSCR[VE] = 1.

The fsqrt instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 1.

 Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

fsqrt FPRF,FR,FI,FX,XX,VXSNAN,VXSQRT 0 None

fsqrt. FPRF,FR,FI,FX,XX,VXSNAN,VXSQRT 1 FX,FEX,VX,OX

Parameters

 FRT Specifies the target floating-point register for the operation.

FRB Specifies the source floating-point register for the operation.

Implementation

This instruction is optionally defined for PowerPC implementations. Using it on an implementation that

does not support this instruction will cause the system illegal instruction error handler to be invoked.

This instruction is an optional instruction of the PowerPC architecture and may not be implemented in all

machines.

238 Assembler Language Reference

fsqrts (Floating Square Root Single) Instruction

Purpose

Calculate the single-precision square root of the contents of a floating- point register, placing the result in a

floating-point register.

Syntax

 Bits Value

0-5 59

6-10 D

11-15 00000

16-20 B

21-25 00000

26-30 22

31 Rc

 PowerPC

fsqrts FRT, FRB (Rc=0)

fsqrts. FRT, FRB (Rc=1)

Description

The square root of the floating-point operand in floating-point register (FPR) FRB is placed into register

FPR FRT.

If the most-significant bit of the resultant significand is not a one the result is normalized. The result is

rounded to the target precision under control of the floating-point rounding control field RN of the FPSCR

and placed into register FPR FRT.

Operation with various special values of the operand is summarized below.

 Operand Result Exception

- infinity QNaN* VXSQRT

< 0 QNaN* VXSQRT

- 0 - 0 None

+ infinity + infinity None

SNaN QNaN* VXSNAN

QNaN QNaN None

Notes: * No result if FPSCR[VE] = 1

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when

FPSCR[VE] = 1.

The fsqrts instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 1.

 Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

fsqrts FPRF,FR,FI,FX,XX,VXSNAN,VXSQRT 0 None

Chapter 8. Instruction Set 239

fsqrts. FPRF,FR,FI,FX,XX,VXSNAN,VXSQRT 1 FX,FEX,VX,OX

Parameters

 FRT Specifies the target floating-point register for the operation.

FRB Specifies the source floating-point register for the operation.

Implementation

This instruction is optionally defined for PowerPC implementations. Using it on an implementation that

does not support this instruction will cause the system illegal instruction error handler to be invoked.

This instruction is an optional instruction of the PowerPC architecture and may not be implemented in all

machines.

fsub or fs (Floating Subtract) Instruction

Purpose

Subtracts one floating-point operand from another and places the result in a floating-point register.

Syntax

 Bits Value

0-5 63

6-10 FRT

11-15 FRA

16-20 FRB

21-25 ///

26-30 20

31 Rc

 PowerPC

fsub FRT, FRA, FRB

fsub. FRT, FRA, FRB

 PowerPC

fs FRT, FRA, FRB

fs. FRT, FRA, FRB

 Bits Value

0-5 59

6-10 FRT

11-15 FRA

16-20 FRB

21-25 ///

26-30 20

240 Assembler Language Reference

Bits Value

31 Rc

 PowerPC

fsubs FRT, FRA, FRB

fsubs. FRT, FRA, FRB

Description

The fsub and fs instructions subtract the 64-bit, double-precision floating-point operand in floating-point

register (FPR) FRB from the 64-bit, double-precision floating-point operand in FPR FRA.

The fsubs instruction subtracts the 32-bit single-precision floating-point operand in FPR FRB from the

32-bit single-precision floating-point operand in FPR FRA.

The result is rounded under control of the Floating-Point Rounding Control Field RN of the Floating-Point

Status and Control Register and is placed in the target FPR FRT.

The execution of the fsub instruction is identical to that of fadd, except that the contents of FPR FRB

participate in the operation with bit 0 inverted.

The execution of the fs instruction is identical to that of fa, except that the contents of FPR FRB

participate in the operation with bit 0 inverted.

The Floating-Point Result Flags Field of the Floating-Point Status and Control Register is set to the class

and sign of the result, except for Invalid Operation Exceptions, when the Floating-Point Invalid Operation

Exception Enable bit is 1.

The fsub, fsubs, and fs instructions each have two syntax forms. Each syntax form has a different effect

on Condition Register Field 1.

 Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

fsub C,FL,FG,FE,FU,FR,FI,OX,UX,

XX,VXSNAN,VXISI

0 None

fsub. C,FL,FG,FE,FU,FR,FI,OX,UX,

XX,VXSNAN,VXISI

1 FX,FEX,VX,OX

fsubs C,FL,FG,FE,FU,FR,FI,OX,UX,

XX,VXSNAN,VXISI

0 None

fsubs. C,FL,FG,FE,FU,FR,FI,OX,UX,

XX,VXSNAN,VXISI

1 FX,FEX,VX,OX

fs C,FL,FG,FE,FU,FR,FI,OX,UX,

XX,VXSNAN,VXISI

0 None

fs. C,FL,FG,FE,FU,FR,FI,OX,UX,

XX,VXSNAN,VXISI

1 FX,FEX,VX,OX

All syntax forms of the fsub, fsubs, and fs instructions always affect the Floating-Point Status and Control

Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point

Exception (FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX),

and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Chapter 8. Instruction Set 241

Parameters

 FRT Specifies target floating-point register for operation.

FRA Specifies source floating-point register for operation.

FRB Specifies source floating-point register for operation.

Examples

1. The following code subtracts the contents of FPR 5 from the contents of FPR 4, places the result in

FPR 6, and sets the Floating-Point Status and Control Register to reflect the result of the operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.

Assume FPR 5 contains 0x400C 0000 0000 0000.

Assume FPSCR = 0.

fsub 6,4,5

FPR 6 now contains 0xC054 2000 0000 0000.

FPSCR now contains 0x0000 8000.

2. The following code subtracts the contents of FPR 5 from the contents of FPR 4, places the result in

FPR 6, and sets the Floating-Point Status and Control Register and Condition Register Field 1 to

reflect the result of the operation:

Assume FPR 4 contains 0xC053 4000 0000 0000.

Assume FPR 5 contains 0x400C 0000 0000 0000.

Assume FPSCR = 0 and CR = 0.

fsub. 6,5,4

FPR 6 now contains 0x4054 2000 0000 0000.

FPSCR now contains 0x0000 4000.

CR now contains 0x0000 0000.

Related Information

Floating-Point Processor .

Floating-Point Arithmetic Instructions .

Interpreting the Contents of a Floating-Point Register .

icbi (Instruction Cache Block Invalidate) Instruction

Purpose

Invalidates a block containing the byte addressed in the instruction cache, causing subsequent references

to retrieve the block from main memory.

Note: The icbi instruction is supported only in the PowerPC architecture.

Syntax

 Bits Value

0-5 31

6-10 ///

11-15 RA

16-20 RB

21-30 982

31 /

242 Assembler Language Reference

PowerPC

icbi RA, RB

Description

The icbi instruction invalidates a block containing the byte addressed in the instruction cache. If RA is not

0, the icbi instruction calculates an effective address (EA) by adding the contents of general-purpose

register (GPR) RA to the contents of GPR RB.

Consider the following when using the icbi instruction:

v If the Data Relocate (DR) bit of the Machine State Register (MSR) is 0, the effective address is treated

as a real address.

v If the MSR DR bit is 1, the effective address is treated as a virtual address. The MSR Relocate (IR) bit

is ignored in this case.

v If a block containing the byte addressed by the EA is in the instruction cache, the block is made

unusable so the next reference to the block is taken from main memory.

The icbi instruction has one syntax form and does not affect Condition Register Field 0 or the Fixed-Point

Exception Register.

Parameters

 RA Specifies source general-purpose register for the EA calculation.

RB Specifies source general-purpose register for the EA calculation.

Examples

The following code ensures that modified instructions are available for execution:

Assume GPR 3 contains a modified instruction.

Assume GPR 4 contains the address of the memory location

where the modified instruction will be stored.

stw 3,0(4) # Store the modified instruction.

dcbf 0,4 # Copy the modified instruction to

 # main memory.

sync # Ensure update is in main memory.

icbi 0,4 # Invalidate block with old instruction.

isync # Discard prefetched instructions.

b newcode # Go execute the new code.

Related Information

The clcs (Cache Line Compute Size) instruction, clf (Cache Line Flush) instruction, cli (Cache Line

Invalidate) instruction, dcbf (Data Cache Block Flush) instruction, dcbi (Data Cache Block Invalidate)

instruction, dcbst (Data Cache Block Store) instruction, dcbt (Data Cache Block Touch) instruction, dcbtst

(Data Cache Block Touch for Store) instruction, dcbz or dclz (Data Cache Block Set to Zero) instruction,

dclst (Data Cache Line Store) instruction, sync (Synchronize) or dcs (Data Cache Synchronize)

instruction.

Processing and Storage

isync or ics (Instruction Synchronize) Instruction

Purpose

Refetches any instructions that might have been fetched prior to this instruction.

Chapter 8. Instruction Set 243

Syntax

 Bits Value

0-5 19

6-10 ///

11-15 ///

16-20 ///

21-30 150

31 /

PowerPC

isync

POWER family

ics

Description

The isync and ics instructions cause the processor to refetch any instructions that might have been

fetched prior to the isync or ics instruction.

The PowerPC instruction isync causes the processor to wait for all previous instructions to complete.

Then any instructions already fetched are discarded and instruction processing continues in the

environment established by the previous instructions.

The POWER family instruction ics causes the processor to wait for any previous dcs instructions to

complete. Then any instructions already fetched are discarded and instruction processing continues under

the conditions established by the content of the Machine State Register.

The isync and ics instructions have one syntax form and do not affect Condition Register Field 0 or the

Fixed-Point Exception Register.

Examples

The following code refetches instructions before continuing:

Assume GPR 5 holds name.

Assume GPR 3 holds 0x0.

name: dcbf 3,5

isync

Related Information

The clcs (Cache Line Compute Size) instruction, clf (Cache Line Flush) instruction, cli (Cache Line

Invalidate) instruction, dcbf (Data Cache Block Flush) instruction, dcbi (Data Cache Block Invalidate)

instruction, dcbst (Data Cache Block Store) instruction, dcbt (Data Cache Block Touch) instruction, dcbtst

(Data Cache Block Touch for Store) instruction, dcbz or dclz (Data Cache Line Set to Zero) instruction,

dclst (Data Cache Line Store) instruction, icbi (Instruction Cache Block Invalidate) instruction, sync

(Synchronize) or dcs (Data Cache Synchronize) instruction.

Processing and Storage

Functional Differences for POWER family and PowerPC Instructions .

244 Assembler Language Reference

lbz (Load Byte and Zero) Instruction

Purpose

Loads a byte of data from a specified location in memory into a general-purpose register and sets the

remaining 24 bits to 0.

Syntax

 Bits Value

0-5 34

6-10 RT

11-15 RA

16-31 D

 lbz RT, D(RA)

Description

The lbz instruction loads a byte in storage addressed by the effective address (EA) into bits 24-31 of the

target general-purpose register (GPR) RT and sets bits 0-23 of GPR RT to 0.

If RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s complement

integer sign-extended to 32 bits. If RA is 0, then the EA is D.

The lbz instruction has one syntax form and does not affect the Fixed-Point Exception Register or

Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

D 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation.

Examples

The following code loads a byte of data from a specified location in memory into GPR 6 and sets the

remaining 24 bits to 0:

.csect data[rw]

storage: .byte ’a

Assume GPR 5 contains the address of csect data[rw].

.csect text[pr]

lbz 6,storage(5)

GPR 6 now contains 0x0000 0061.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

Chapter 8. Instruction Set 245

lbzu (Load Byte and Zero with Update) Instruction

Purpose

Loads a byte of data from a specified location in memory into a general-purpose register, sets the

remaining 24 bits to 0, and possibly places the address in a second general-purpose register.

Syntax

 Bits Value

0-5 35

6-10 RT

11-15 RA

16-31 D

 lbzu RT, D(RA)

Description

The lbzu instruction loads a byte in storage addressed by the effective address (EA) into bits 24-31 of the

target general-purpose register (GPR) RT and sets bits 0-23 of GPR RT to 0.

If RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit signed two’s complement

integer sign extended to 32 bits. If RA is 0, then the EA is D.

If RA does not equal RT and RA does not equal 0, and the storage access does not cause an Alignment

interrupt or a Data Storage interrupt, then the EA is stored in GPR RA.

The lbzu instruction has one syntax form and does not affect the Fixed-Point Exception Register or

Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

D 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation and possible address update.

Examples

The following code loads a byte of data from a specified location in memory into GPR 6, sets the

remaining 24 bits to 0, and places the address in GPR 5:

.csect data[rw]

storage: .byte 0x61

Assume GPR 5 contains the address of csect data[rw].

.csect text[pr]

lbzu 6,storage(5)

GPR 6 now contains 0x0000 0061.

GPR 5 now contains the storage address.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

246 Assembler Language Reference

lbzux (Load Byte and Zero with Update Indexed) Instruction

Purpose

Loads a byte of data from a specified location in memory into a general-purpose register, setting the

remaining 24 bits to 0, and places the address in the a second general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 119

31 /

 lbzux RT, RA, RB

Description

The lbzux instruction loads a byte in storage addressed by the effective address (EA) into bits 24-31 of

the target general-purpose register (GPR) RT and sets bits 0-23 of GPR RT to 0.

If RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If RA is 0, then the EA is the

contents of RB.

If RA does not equal RT and RA does not equal 0, and the storage access does not cause an Alignment

interrupt or a Data Storage interrupt, then the EA is stored in GPR RA.

The lbzux instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for EA calculation and possible address update.

RB Specifies source general-purpose register for EA calculation.

Examples

The following code loads the value located at storage into GPR 6 and loads the address of storage into

GPR 5:

storage: .byte 0x40

 .

 .

Assume GPR 5 contains 0x0000 0000.

Assume GPR 4 is the storage address.

lbzux 6,5,4

GPR 6 now contains 0x0000 0040.

GPR 5 now contains the storage address.

Chapter 8. Instruction Set 247

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

lbzx (Load Byte and Zero Indexed) Instruction

Purpose

Loads a byte of data from a specified location in memory into a general-purpose register and sets the

remaining 24 bits to 0.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 87

31 /

 lbzx RT, RA, RB

Description

The lbzx instruction loads a byte in storage addressed by the effective address (EA) into bits 24-31 of the

target general-purpose register (GPR) RT and sets bits 0-23 of GPR RT to 0.

If RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If RA is 0, then the EA is D.

The lbzx instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Examples

The following code loads the value located at storage into GPR 6:

storage: .byte 0x61

 .

 .

Assume GPR 5 contains 0x0000 0000.

Assume GPR 4 is the storage address.

lbzx 6,5,4

GPR 6 now contains 0x0000 0061.

248 Assembler Language Reference

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

ld (Load Double Word) Instruction

Purpose

Load a double-word of data into the specified general purpose register.

This instruction should only be used on 64-bit PowerPC processors running a 64-bit application.

Syntax

 Bits Value

0-5 58

6-10 D

11-15 A

16-29 ds

30-31 00

 PowerPC64

ld RT, D(RA)

Description

The ld instruction loads a double-word in storage from a specified location in memory addressed by the

effective address (EA) into the target general-purpose register (GPR) RT.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s

complement integer, fullword-aligned, sign-extended to 64 bits. If GPR RA is 0, then the EA is D.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

D Specifies a 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation.

Examples

The following code loads a double-word from memory into GPR 4:

.extern mydata[RW]

.csect foodata[rw]

.local foodata[rw]

storage: .llong mydata # address of mydata

.csect text[PR]

 # Assume GPR 5 contains address of csect foodata[RW].

ld 4,storage(5) # GPR 5 now contains the address of mydata.

Chapter 8. Instruction Set 249

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

ldarx (Store Double Word Reserve Indexed) Instruction

Purpose

This instruction should only be used on 64-bit PowerPC processors running a 64-bit application.

Syntax

 Bits Value

0-5 31

6-10 D

11-15 A

16-20 B

21-30 84

31 0

 PowerPC64

ldarx rD, rA, rB

Description

This instruction creates a reservation for use by a Store Double Word Conditional Indexed (stdcx.)

instruction. An address computed from the EA is associated with the reservation, and replaces any

address previously associated with the reservation. EA must be a multiple of eight. If it is not, either the

system alignment exception handler is invoked or the results are boundedly undefined.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

Parameters

 rD Specifies source general-purpose register of stored data.

rA Specifies source general-purpose register for EA calculation.

rB Specifies source general-purpose register for EA calculation.

250 Assembler Language Reference

Examples

Related Information

ldu (Store Double Word with Update) Instruction

Purpose

Load a double-word of data into the specified general purpose register, updating the address base.

This instruction should only be used on 64-bit PowerPC processors running a 64-bit application.

Syntax

 Bits Value

0-5 58

6-10 D

11-15 A

16-29 ds

30-31 01

 PowerPC64

ldu RT, D(RA)

Description

The ldu instruction loads a double-word in storage from a specified location in memory addressed by the

effective address (EA) into the target general-purpose register (GPR) RT.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s

complement integer, fullword-aligned, sign-extended to 64 bits.

If RA = 0 or RA = RT, the instruction form is invalid.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

D Specifies a 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation.

Examples

The following code loads the first of 4 double-words from memory into GPR 4, incrementing GPR 5 to

point to the next double-word in memory:

.csect foodata[rw]

storage: .llong 5,6,7,12 # Successive double-words.

.csect text[PR]

 # Assume GPR 5 contains address of csect foodata[RW].

ldu 4,storage(5) # GPR 4 now contains the first double-word of

 # foodata; GRP 5 points to the second double-word.

Chapter 8. Instruction Set 251

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions

ldux (Store Double Word with Update Indexed) Instruction

Purpose

Load a double-word of data from a specified memory location into a general purpose register. Update the

address base.

Syntax

 Bits Value

0-5 31

6-10 D

11-15 A

16-20 B

21-30 53

31 0

 PowerPC

ldux RT, RA, RB

Description

The effective address (EA) is calculated from the sum of general purpose register (GPR) RA and RB. A

double-word of data is read from the memory location referenced by the EA and placed into GPR RT;

GRP RA is updated with the EA.

If rA = 0 or rA = rD, the instruction form is invalid.

Parameters

 RT Specifies source general-purpose register of stored data.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

252 Assembler Language Reference

ldx (Store Double Word Indexed) Instruction

Purpose

Load a double-word from a specified memory location into a general purpose register.

Syntax

 Bits Value

0-5 31

6-10 D

11-15 A

16-20 B

21-30 21

31 0

 PowerPC

ldx RT, RA, RB

Description

The ldx instruction loads a double-word from the specified memory location referenced by the effective

address (EA) into the general-purpose register (GPR) RT.

If GRP RA is not 0, the EA is the sum of the contents of GRP RA and B; otherwise, the EA is equal to the

contents of RB.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

lfd (Load Floating-Point Double) Instruction

Purpose

Loads a doubleword of data from a specified location in memory into a floating-point register.

Syntax

 Bits Value

0-5 50

6-10 FRT

11-15 RA

Chapter 8. Instruction Set 253

Bits Value

16-31 D

 lfd FRT, D(RA)

Description

The lfd instruction loads a doubleword in storage from a specified location in memory addressed by the

effective address (EA) into the target floating-point register (FPR) FRT.

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and D, a

16-bit, signed two’s complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

The lfd instruction has one syntax form and does not affect the Floating-Point Status and Control Register

or Condition Register Field 0.

Parameters

 FRT Specifies target general-purpose register where result of the operation is stored.

D 16-bit, signed two’s complement integer sign-extended to 32 bits for the EA calculation.

RA Specifies source general-purpose register for the EA calculation.

Examples

The following code loads a doubleword from memory into FPR 6:

.csect data[rw]

storage: .double 0x1

Assume GPR 5 contains the address of csect data[rw].

.csect text[pr]

lfd 6,storage(5)

FPR 6 now contains 0x3FF0 0000 0000 0000.

Related Information

Floating-Point Processor .

Floating-Point Load and Store Instructions .

lfdu (Load Floating-Point Double with Update) Instruction

Purpose

Loads a doubleword of data from a specified location in memory into a floating-point register and possibly

places the specified address in a general-purpose register.

Syntax

 Bits Value

0-5 51

6-10 FRT

11-15 RA

16-31 D

254 Assembler Language Reference

lfdu FRT, D(RA)

Description

The lfdu instruction loads a doubleword in storage from a specified location in memory addressed by the

effective address (EA) into the target floating-point register (FPR) FRT.

If RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s complement

integer sign-extended to 32 bits. If RA is 0, then the effective address (EA) is D.

If RA does not equal 0, and the storage access does not cause an Alignment interrupt or a Data Storage

interrupt, then the effective address is stored in GPR RA.

The lfdu instruction has one syntax form and does not affect the Floating-Point Status and Control

Register or Condition Register Field 0.

Parameters

 FRT Specifies target general-purpose register where result of operation is stored.

D Specifies a 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation and possible address update.

Examples

The following code loads a doubleword from memory into FPR 6 and stores the address in GPR 5:

.csect data[rw]

storage: .double 0x1

Assume GPR 5 contains the address of csect data[rw].

.csect text[pr]

lfdu 6,storage(5)

FPR 6 now contains 0x3FF0 0000 0000 0000.

GPR 5 now contains the storage address.

Related Information

Floating-Point Processor .

Floating-Point Load and Store Instructions .

lfdux (Load Floating-Point Double with Update Indexed) Instruction

Purpose

Loads a doubleword of data from a specified location in memory into a floating-point register and possibly

places the specified address in a general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 FRT

11-15 RA

16-20 RB

21-30 631

Chapter 8. Instruction Set 255

Bits Value

31 /

 lfdux FRT, RA, RB

Description

The lfdux instruction loads a doubleword in storage from a specified location in memory addressed by the

effective address (EA) into the target floating-point register (FPR) FRT.

If RA is not 0, the EA is the sum of the contents of general-purpose register (GPR) RA and GPR RB. If RA

is 0, then the EA is the contents of RB.

If RA does not equal 0, and the storage access does not cause an Alignment interrupt or a Data Storage

interrupt, then the EA is stored in GPR RA.

The lfdux instruction has one syntax form and does not affect the Floating-Point Status and Control

Register.

Parameters

 FRT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Examples

The following code loads a doubleword from memory into FPR 6 and stores the address in GPR 5:

.csect data[rw]

storage: .double 0x1

Assume GPR 5 contains the address of csect data[rw].

Assume GPR 4 contains the displacement of storage relative

to .csect data[rw].

.csect text[pr]

lfdux 6,5,4

FPR 6 now contains 0x3FF0 0000 0000 0000.

GPR 5 now contains the storage address.

Related Information

Floating-Point Processor .

Floating-Point Load and Store Instructions .

lfdx (Load Floating-Point Double-Indexed) Instruction

Purpose

Loads a doubleword of data from a specified location in memory into a floating-point register.

Syntax

 Bits Value

0-5 31

256 Assembler Language Reference

Bits Value

6-10 FRT

11-15 RA

16-20 RB

21-30 599

31 /

 lfdx FRT, RA, RB

Description

The lfdx instruction loads a doubleword in storage from a specified location in memory addressed by the

effective address (EA) into the target floating-point register (FPR) FRT.

If RA is not 0, the EA is the sum of the contents of general-purpose register (GPR) RA and GPR RB. If RA

is 0, then the EA is the contents of GPR RB.

The lfdx instruction has one syntax form and does not affect the Floating-Point Status and Control

Register or Condition Register Field 0.

Parameters

 FRT Specifies target floating-point register where data is stored.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Examples

The following code loads a doubleword from memory into FPR 6:

storage: .double 0x1

 .

 .

Assume GPR 4 contains the storage address.

lfdx 6,0,4

FPR 6 now contains 0x3FF0 0000 0000 0000.

Related Information

Floating-Point Processor .

Floating-Point Load and Store Instructions .

lfq (Load Floating-Point Quad) Instruction

Purpose

Loads two double-precision values into floating-point registers.

Note: The lfq instruction is supported only in the POWER2 implementation of the POWER family

architecture.

Chapter 8. Instruction Set 257

Syntax

 Bits Value

0-5 56

6-10 FRT

11-15 RA

16-29 DS

30-31 00

 POWER2

lfq FRT, DS(RA)

Description

The lfq instruction loads the two doublewords from the location in memory specified by the effective

address (EA) into two floating-point registers (FPR).

DS is sign-extended to 30 bits and concatenated on the right with b’00’ to form the offset value. If

general-purpose register (GPR) RA is 0, the offset value is the EA. If GPR RA is not 0, the offset value is

added to GPR RA to generate the EA. The doubleword at the EA is loaded into FPR FRT. If FRT is 31,

the doubleword at EA+8 is loaded into FPR 0; otherwise, it is loaded into FRT+1.

The lfq instruction has one syntax form and does not affect the Floating-Point Status and Control Register

or Condition Register Field 0.

Parameters

 FRT Specifies the first of two target floating-point registers.

DS Specifies a 14-bit field used as an immediate value for the EA calculation.

RA Specifies one source general-purpose register for the EA calculation.

Examples

The following code copies two double-precision floating-point values from one place in memory to a

second place in memory:

Assume GPR 3 contains the address of the first source

floating-point value.

Assume GPR 4 contains the address of the target location.

lfq 7,0(3) # Load first two values into FPRs 7 and

 # 8.

stfq 7,0(4) # Store the two doublewords at the new

 # location.

Related Information

Floating-Point Processor .

Floating-Point Load and Store Instructions .

lfqu (Load Floating-Point Quad with Update) Instruction

Purpose

Loads two double-precision values into floating-point registers and updates the address base.

258 Assembler Language Reference

Note: The lfqu instruction is supported only in the POWER2 implementation of the POWER family

architecture.

Syntax

 Bits Value

0-5 57

6-10 FRT

11-15 RA

16-29 DS

30-31 00

 POWER2

lfqu FRT, DS(RA)

Description

The lfqu instruction loads the two doublewords from the location in memory specified by the effective

address (EA) into two floating-point registers (FPR).

DS is sign-extended to 30 bits and concatenated on the right with b’00’ to form the offset value. If

general-purpose register GPR RA is 0, the offset value is the EA. If GPR RA is not 0, the offset value is

added to GPR RA to generate the EA. The doubleword at the EA is loaded into FPR FRT. If FRT is 31,

the doubleword at EA+8 is loaded into FPR 0; otherwise, it is loaded into FRT+1.

If GPR RA is not 0, the EA is placed into GPR RA.

The lfqu instruction has one syntax form and does not affect the Floating-Point Status and Control

Register or Condition Register Field 0.

Parameters

 FRT Specifies the first of two target floating-point register.

DS Specifies a 14-bit field used as an immediate value for the EA calculation.

RA Specifies one source general-purpose register for EA calculation and the target register for the EA update.

Examples

The following code calculates the sum of six double-precision floating-point values that are located in

consecutive doublewords in memory:

Assume GPR 3 contains the address of the first

floating-point value.

Assume GPR 4 contains the address of the target location.

lfq 7,0(3) # Load first two values into FPRs 7 and

 # 8.

lfqu 9,16(3) # Load next two values into FPRs 9 and 10

 # and update base address in GPR 3.

fadd 6,7,8 # Add first two values.

lfq 7,16(3) # Load next two values into FPRs 7 and 8.

fadd 6,6,9 # Add third value.

fadd 6,6,10 # Add fourth value.

fadd 6,6,7 # Add fifth value.

fadd 6,6,8 # Add sixth value.

stfqx 7,0,4 # Store the two doublewords at the new

 # location.

Chapter 8. Instruction Set 259

Related Information

Floating-Point Processor .

Floating-Point Load and Store Instructions .

lfqux (Load Floating-Point Quad with Update Indexed) Instruction

Purpose

Loads two double-precision values into floating-point registers and updates the address base.

Note: The lfqux instruction is supported only in the POWER2 implementation of the POWER family

architecture.

Syntax

 Bits Value

0-5 31

6-10 FRT

11-15 RA

16-20 RB

21-30 823

31 Rc

 POWER2

lfqux FRT, RA, RB

Description

The lfqux instruction loads the two doublewords from the location in memory specified by the effective

address (EA) into two floating-point registers (FPR).

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB.

If GPR RA is 0, the EA is the contents of GPR RB. The doubleword at the EA is loaded into FPR FRT. If

FRT is 31, the doubleword at EA+8 is loaded into FPR 0; otherwise, it is loaded into FRT+1.

If GPR RA is not 0, the EA is placed into GPR RA.

The lfqux instruction has one syntax form and does not affect the Floating-Point Status and Control

Register or Condition Register Field 0.

Parameters

 FRT Specifies the first of two target floating-point registers.

RA Specifies the first source general-purpose register for the EA calculation and the target register for the EA

update.

RB Specifies the second source general-purpose register for the EA calculation.

Examples

The following code calculates the sum of three double-precision, floating-point, two-dimensional

coordinates:

260 Assembler Language Reference

Assume the two-dimensional coordinates are contained

in a linked list with elements of the form:

list_element:

.double # Floating-point value of X.

.double # Floating-point value of Y.

.next_elem # Offset to next element;

from X(n) to X(n+1).

Assume GPR 3 contains the address of the first list element.

Assume GPR 4 contains the address where the resultant sums

will be stored.

lfq 7,0(3) # Get first pair of X_Y values.

lwz 5,16(3) # Get the offset to second element.

lfqux 9,3,5 # Get second pair of X_Y values.

lwz 5,16(3) # Get the offset to third element.

fadd 7,7,9 # Add first two X values.

fadd 8,8,10 # Add first two Y values.

lfqux 9,3,5 # Get third pair of X_Y values.

fadd 7,7,9 # Add third X value to sum.

fadd 8,8,10 # Add third Y value to sum.

stfq 7,0,4 # Store the two doubleword results.

Related Information

Floating-Point Processor .

Floating-Point Load and Store Instructions .

lfqx (Load Floating-Point Quad Indexed) Instruction

Purpose

Loads two double-precision values into floating-point registers.

Note: The lfqx instruction is supported only in the POWER2 implementation of the POWER family

architecture.

Syntax

 Bits Value

0-5 31

6-10 FRT

11-15 RA

16-20 RB

21-30 791

31 Rc

 POWER2

lfqx FRT, RA, RB

Description

The lfqx instruction loads the two doublewords from the location in memory specified by the effective

address (EA) into two floating-point registers (FPR).

Chapter 8. Instruction Set 261

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB.

If GPR RA is 0, the EA is the contents of GPR RB. The doubleword at the EA is loaded into FPR FRT. If

FRT is 31, the doubleword at EA+8 is loaded into FPR 0; otherwise, it is loaded into FRT+1.

The lfqx instruction has one syntax form and does not affect the Floating-Point Status and Control

Register or Condition Register Field 0.

Parameters

 FRT Specifies the first of two target floating-point registers.

RA Specifies one source general-purpose register for the EA calculation.

RB Specifies the second source general-purpose register for the EA calculation.

Examples

The following code calculates the sum of two double-precision, floating-point values that are located in

consecutive doublewords in memory:

Assume GPR 3 contains the address of the first floating-point

value.

Assume GPR 4 contains the address of the target location.

lfqx 7,0,3 # Load values into FPRs 7 and 8.

fadd 7,7,8 # Add the two values.

stfdx 7,0,4 # Store the doubleword result.

Related Information

Floating-Point Processor .

Floating-Point Load and Store Instructions .

lfs (Load Floating-Point Single) Instruction

Purpose

Loads a floating-point, single-precision number that has been converted to a floating-point,

double-precision number into a floating-point register.

Syntax

 Bits Value

0-5 48

6-10 FRT

11-15 RA

16-31 D

 lfs FRT, D(RA)

Description

The lfs instruction converts a floating-point, single-precision word in storage addressed by the effective

address (EA) to a floating-point, double-precision word and loads the result into floating-point register

(FPR) FRT.

262 Assembler Language Reference

If RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s complement

integer sign-extended to 32 bits. If RA is 0, then the EA is D.

The lfs instruction has one syntax form and does not affect the Floating-Point Status and Control Register

or Condition Register Field 0.

Parameters

 FRT Specifies target floating-point register where data is stored.

D 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation.

Examples

The following code loads the single-precision contents of storage into FPR 6:

.csect data[rw]

storage: .float 0x1

Assume GPR 5 contains the address csect data[rw].

.csect text[pr]

lfs 6,storage(5)

FPR 6 now contains 0x3FF0 0000 0000 0000.

Related Information

Floating-Point Processor .

Floating-Point Load and Store Instructions .

lfsu (Load Floating-Point Single with Update) Instruction

Purpose

Loads a floating-point, single-precision number that has been converted to a floating-point,

double-precision number into a floating-point register and possibly places the effective address in a

general-purpose register.

Syntax

 Bits Value

0-5 49

6-10 FRT

11-15 RA

16-31 D

 lfsu FRT, D(RA)

Description

The lfsu instruction converts a floating-point, single-precision word in storage addressed by the effective

address (EA) to floating-point, double-precision word and loads the result into floating-point register (FPR)

FRT.

If RA is not 0, the EA is the sum of the contents of general-purpose register (GPR) RA and D, a 16-bit

signed two’s complement integer sign extended to 32 bits. If RA is 0, then the EA is D.

Chapter 8. Instruction Set 263

If RA does not equal 0 and the storage access does not cause an Alignment interrupt or a Data Storage

interrupt, then the EA is stored in GPR RA.

The lfsu instruction has one syntax form and does not affect the Floating-Point Status and Control

Register or Condition Register Field 0.

Parameters

 FRT Specifies target floating-point register where data is stored.

D 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation and possible address update.

Examples

The following code loads the single-precision contents of storage, which is converted to double precision,

into FPR 6 and stores the effective address in GPR 5:

.csect data[rw]

storage: .float 0x1

.csect text[pr]

Assume GPR 5 contains the storage address.

lfsu 6,0(5)

FPR 6 now contains 0x3FF0 0000 0000 0000.

GPR 5 now contains the storage address.

Related Information

Floating-Point Processor .

Floating-Point Load and Store Instructions .

lfsux (Load Floating-Point Single with Update Indexed) Instruction

Purpose

Loads a floating-point, single-precision number that has been converted to a floating-point,

double-precision number into a floating-point register and possibly places the effective address in a

general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 FRT

11-15 RA

16-20 RB

21-30 567

31 /

 lfsux FRT, RA, RB

264 Assembler Language Reference

Description

The lfsux instruction converts a floating-point, single-precision word in storage addressed by the effective

address (EA) to floating-point, double-precision word and loads the result into floating-point register (FPR)

FRT.

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB.

If RA is 0, then the EA is the contents of GPR RB.

If GPR RA does not equal 0 and the storage access does not cause an Alignment interrupt or a Data

Storage interrupt, then the EA is stored in GPR RA.

The lfsux instruction has one syntax form and does not affect the Floating-Point Status Control Register.

Parameters

 FRT Specifies target floating-point register where data is stored.

RA Specifies source general-purpose register for EA calculation and possible address update.

RB Specifies source general-purpose register for EA calculation.

Examples

The following code loads the single-precision contents of storage into FPR 6 and stores the effective

address in GPR 5:

.csect data[rw]

storage: .float 0x1

Assume GPR 4 contains the address of csect data[rw].

Assume GPR 5 contains the displacement of storage

relative to .csect data[rw].

.csect text[pr]

lfsux 6,5,4

FPR 6 now contains 0x3FF0 0000 0000 0000.

GPR 5 now contains the storage address.

Related Information

Floating-Point Processor .

Floating-Point Load and Store Instructions .

lfsx (Load Floating-Point Single Indexed) Instruction

Purpose

Loads a floating-point, single-precision number that has been converted to a floating-point,

double-precision number into a floating-point register.

Syntax

 Bits Value

0-5 31

6-10 FRT

11-15 RA

16-20 RB

21-30 535

Chapter 8. Instruction Set 265

Bits Value

31 /

 lfsx FRT, RA, RB

Description

The lfsx instruction converts a floating-point, single-precision word in storage addressed by the effective

address (EA) to floating-point, double-precision word and loads the result into floating-point register (FPR)

FRT.

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB.

If RA is 0, then the EA is the contents of GPR RB.

The lfsx instruction has one syntax form and does not affect the Floating-Point Status and Control

Register.

Parameters

 FRT Specifies target floating-point register where data is stored.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Examples

The following code loads the single-precision contents of storage into FPR 6:

storage: .float 0x1.

Assume GPR 4 contains the address of storage.

lfsx 6,0,4

FPR 6 now contains 0x3FF0 0000 0000 0000.

Related Information

Floating-Point Processor .

Floating-Point Load and Store Instructions .

lha (Load Half Algebraic) Instruction

Purpose

Loads a halfword of data from a specified location in memory into a general-purpose register and copies

bit 0 of the halfword into the remaining 16 bits of the general-purpose register.

Syntax

 Bits Value

0-5 42

6-10 RT

11-15 RA

16-31 D

266 Assembler Language Reference

lha RT, D(RA)

Description

The lha instruction loads a halfword of data from a specified location in memory, addressed by the

effective address (EA), into bits 16-31 of the target general-purpose register (GPR) RT and copies bit 0 of

the halfword into bits 0-15 of GPR RT.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit signed two’s

complement integer sign extended to 32 bits. If GPR RA is 0, then the EA is D.

The lha instruction has one syntax form and does not affect the Fixed-Point Exception Register or

Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

D 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation.

Examples

The following code loads a halfword of data into bits 16-31 of GPR 6 and copies bit 0 of the halfword into

bits 0-15 of GPR 6:

.csect data[rw]

storage: .short 0xffff

Assume GPR 5 contains the address of csect data[rw].

.csect text[pr]

lha 6,storage(5)

GPR 6 now contains 0xffff ffff.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

lhau (Load Half Algebraic with Update) Instruction

Purpose

Loads a halfword of data from a specified location in memory into a general-purpose register, copies bit 0

of the halfword into the remaining 16 bits of the general-purpose register, and possibly places the address

in another general-purpose register.

Syntax

 Bits Value

0-5 43

6-10 RT

11-15 RA

16-31 D

 lhau RT, D(RA)

Chapter 8. Instruction Set 267

Description

The lhau instruction loads a halfword of data from a specified location in memory, addressed by the

effective address (EA), into bits 16-31 of the target general-purpose register (GPR) RT and copies bit 0 of

the halfword into bits 0-15 of GPR RT.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s

complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

If RA does not equal RT and RA does not equal 0, and the storage access does not cause an Alignment

interrupt or a Data Storage interrupt, then the EA is placed into GPR RA.

The lhau instruction has one syntax form and does not affect the Fixed-Point Exception Register or

Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

D 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation and possible address update.

Examples

The following code loads a halfword of data into bits 16-31 of GPR 6, copies bit 0 of the halfword into bits

0-15 of GPR 6, and stores the effective address in GPR 5:

.csect data[rw]

storage: .short 0xffff

Assume GPR 5 contains the address of csect data[rw].

.csect text[pr]

lhau 6,storage(5)

GPR 6 now contains 0xffff ffff.

GPR 5 now contains the address of storage.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

lhaux (Load Half Algebraic with Update Indexed) Instruction

Purpose

Loads a halfword of data from a specified location in memory into a general-purpose register, copies bit 0

of the halfword into the remaining 16 bits of the general-purpose register, and possibly places the address

in another general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

268 Assembler Language Reference

Bits Value

16-20 RB

21-30 375

31 /

 lhaux RT, RA, RB

Description

The lhaux instruction loads a halfword of data from a specified location in memory addressed by the

effective address (EA) into bits 16-31 of the target general-purpose register (GPR) RT and copies bit 0 of

the halfword into bits 0-15 of GPR RT.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the

EA is the contents of GPR RB.

If RA does not equal RT and RA does not equal 0, and the storage access does not cause an Alignment

interrupt or a Data Storage interrupt, then the EA is placed into GPR RA.

The lhaux instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies first source general-purpose register for EA calculation and possible address update.

RB Specifies second source general-purpose register for EA calculation.

Examples

The following code loads a halfword of data into bits 16-31 of GPR 6, copies bit 0 of the halfword into bits

0-15 of GPR 6, and stores the effective address in GPR 5:

.csect data[rw]

storage: .short 0xffff

Assume GPR 5 contains the address of csect data[rw].

Assume GPR 4 contains the displacement of storage relative

to data[rw].

.csect text[pr]

lhaux 6,5,4

GPR 6 now contains 0xffff ffff.

GPR 5 now contains the storage address.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

lhax (Load Half Algebraic Indexed) Instruction

Purpose

Loads a halfword of data from a specified location in memory into a general-purpose register and copies

bit 0 of the halfword into the remaining 16 bits of the general-purpose register.

Chapter 8. Instruction Set 269

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 343

31 /

 lhax RT, RA, RB

Description

The lhax instruction loads a halfword of data from a specified location in memory, addressed by the

effective address (EA), into bits 16-31 of the target general-purpose register (GPR) RT and copies bit 0 of

the halfword into bits 0-15 of GPR RT.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the

EA is the contents of GPR RB.

The lhax instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Examples

The following code loads a halfword of data into bits 16-31 of GPR 6 and copies bit 0 of the halfword into

bits 0-15 of GPR 6:

.csect data[rw]

.short 0x1

Assume GPR 5 contains the address of csect data[rw].

Assume GPR 4 contains the displacement of the halfword

relative to data[rw].

.csect text[pr]

lhax 6,5,4

GPR 6 now contains 0x0000 0001.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

lhbrx (Load Half Byte-Reverse Indexed) Instruction

Purpose

Loads a byte-reversed halfword of data from a specified location in memory into a general-purpose

register and sets the remaining 16 bits of the general-purpose register to zero.

270 Assembler Language Reference

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 790

31 /

 lhbrx RT, RA, RB

Description

The lhbrx instruction loads bits 00-07 and bits 08-15 of the halfword in storage addressed by the effective

address (EA) into bits 24-31 and bits 16-23 of general-purpose register (GPR) RT, and sets bits 00-15 of

GPR RT to 0.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the

EA is the contents of GPR RB.

The lhbrx instruction has one syntax form and does not affect the Fixed-Point Exception Register or

Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Examples

The following code loads bits 00-07 and bits 08-15 of the halfword in storage into bits 24-31 and bits 16-23

of GPR 6, and sets bits 00-15 of GPR 6 to 0:

.csect data[rw]

.short 0x7654

Assume GPR 4 contains the address of csect data[rw].

Assume GPR 5 contains the displacement relative

to data[rw].

.csect text[pr]

lhbrx 6,5,4

GPR 6 now contains 0x0000 5476.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

Chapter 8. Instruction Set 271

lhz (Load Half and Zero) Instruction

Purpose

Loads a halfword of data from a specified location in memory into a general-purpose register and sets the

remaining 16 bits to 0.

Syntax

 Bits Value

0-5 40

6-10 RT

11-15 RA

16-31 D

 lhz RT, D(RA)

Description

The lhz instruction loads a halfword of data from a specified location in memory, addressed by the

effective address (EA), into bits 16-31 of the target general-purpose register (GPR) RT and sets bits 0-15

of GPR RT to 0.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s

complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

The lhz instruction has one syntax form and does not affect the Fixed-Point Exception Register or

Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

D 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation.

Examples

The following code loads a halfword of data into bits 16-31 of GPR 6 and sets bits 0-15 of GPR 6 to 0:

.csect data[rw]

storage: .short 0xffff

Assume GPR 4 holds the address of csect data[rw].

.csect text[pr]

lhz 6,storage(4)

GPR 6 now holds 0x0000 ffff.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

272 Assembler Language Reference

lhzu (Load Half and Zero with Update) Instruction

Purpose

Loads a halfword of data from a specified location in memory into a general-purpose register, sets the

remaining 16 bits of the general-purpose register to 0, and possibly places the address in another

general-purpose register.

Syntax

 Bits Value

0-5 41

6-10 RT

11-15 RA

16-31 D

 lhzu RT, D(RA)

Description

The lhzu instruction loads a halfword of data from a specified location in memory, addressed by the

effective address (EA), into bits 16-31 of the target general-purpose register (GPR) RT and sets bits 0-15

of GPR RT to 0.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s

complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

If RA does not equal RT and RA does not equal 0, and the storage access does not cause an Alignment

interrupt or a Data Storage interrupt, then the EA is placed into GPR RA.

The lhzu instruction has one syntax form and does not affect the Fixed-Point Exception Register or

Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

D 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation and possible address update.

Examples

The following code loads a halfword of data into bits 16-31 of GPR 6, sets bits 0-15 of GPR 6 to 0, and

stores the effective address in GPR 4:

.csect data[rw]

.short 0xffff

Assume GPR 4 contains the address of csect data[rw].

.csect text[pr]

lhzu 6,0(4)

GPR 6 now contains 0x0000 ffff.

Chapter 8. Instruction Set 273

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

lhzux (Load Half and Zero with Update Indexed) Instruction

Purpose

Loads a halfword of data from a specified location in memory into a general-purpose register, sets the

remaining 16 bits of the general-purpose register to 0, and possibly places the address in another

general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 331

31 /

 lhzux RT, RA, RB

Description

The lhzux instruction loads a halfword of data from a specified location in memory, addressed by the

effective address (EA), into bits 16-31 of the target general-purpose register (GPR) RT and sets bits 0-15

of GPR RT to 0.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the

EA is the contents of GPR RB.

If RA does not equal RT and RA does not equal 0, and the storage access does not cause an Alignment

interrupt or a Data Storage interrupt, then the EA is placed into GPR RA.

The lhzux instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for EA calculation and possible address update.

RB Specifies source general-purpose register for EA calculation.

Examples

The following code loads a halfword of data into bits 16-31 of GPR 6, sets bits 0-15 of GPR 6 to 0, and

stores the effective address in GPR 5:

.csect data[rw]

storage: .short 0xffff

Assume GPR 5 contains the address of csect data[rw].

274 Assembler Language Reference

Assume GPR 4 contains the displacement of storage

relative to data[rw].

.csect text[pr]

lhzux 6,5,4

GPR 6 now contains 0x0000 ffff.

GPR 5 now contains the storage address.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

lhzx (Load Half and Zero Indexed) Instruction

Purpose

Loads a halfword of data from a specified location in memory into a general-purpose register and sets the

remaining 16 bits of the general-purpose register to 0.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 279

31 /

 lhzx RT, RA, RB

Description

The lhzx instruction loads a halfword of data from a specified location in memory, addressed by the

effective address (EA), into bits 16-31 of the target general-purpose register (GPR) RT and sets bits 0-15

of GPR RT to 0.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the

EA is the contents of GPR RB.

The lhzx instruction has one syntax form and does not affect the Fixed-Point Exception Register or

Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Examples

The following code loads a halfword of data into bits 16-31 of GPR 6 and sets bits 0-15 of GPR 6 to 0:

Chapter 8. Instruction Set 275

.csect data[rw]

.short 0xffff

.csect text[pr]

Assume GPR 5 contains the address of csect data[rw].

Assume 0xffff is the halfword located at displacement 0.

Assume GPR 4 contains 0x0000 0000.

lhzx 6,5,4

GPR 6 now contains 0x0000 ffff.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

lmw or lm (Load Multiple Word) Instruction

Purpose

Loads consecutive words at a specified location into more than one general-purpose register.

Syntax

 Bits Value

0-5 46

6-10 RT

11-15 RA

16-31 D

 PowerPC

lmw RT, D(RA)

 POWER family

lm RT, D(RA)

Description

The lmw and lm instructions load N consecutive words starting at the calculated effective address (EA)

into a number of general-purpose registers (GPR), starting at GPR RT and filling all GPRs through GPR

31. N is equal to 32-RT field, the total number of consecutive words that are placed in consecutive

registers.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D. If GPR RA is 0, then the EA is

D.

Consider the following when using the PowerPC instruction lmw:

v If GPR RA or GPR RB is in the range of registers to be loaded or RT = RA = 0, the results are

boundedly undefined.

v The EA must be a multiple of 4. If it is not, the system alignment error handler may be invoked or the

results may be boundedly undefined.

For the POWER family instruction lm, if GPR RA is not equal to 0 and GPR RA is in the range to be

loaded, then GPR RA is not written to. The data that would have normally been written into RA is

discarded and the operation continues normally.

276 Assembler Language Reference

The lmw and lm instructions have one syntax and do not affect the Fixed-Point Exception Register or

Condition Register Field 0.

Note: The lmw and lm instructions are interruptible due to a data storage interrupt. When such an

interrupt occurs, the instruction should be restarted from the beginning.

Parameters

 RT Specifies starting target general-purpose register for operation.

D Specifies a 16-bit signed two’s complement integer sign extended to 32 bits for EA calculation

RA Specifies source general-purpose register for EA calculation.

Examples

The following code loads data into GPR 29 and GPR 31:

.csect data[rw]

.long 0x8971

.long -1

.long 0x7ffe c100

Assume GPR 30 contains the address of csect data[rw].

.csect text[pr]

lmw 29,0(30)

GPR 29 now contains 0x0000 8971.

GPR 30 now contains the address of csect data[rw].

GPR 31 now contains 0x7ffe c100.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

lq (Load Quad Word) Instruction

Purpose

Load a quad-word of data into the specified general purpose register.

Note: This instruction should only be used on 64-bit PowerPC processors running a 64-bit application.

Syntax

 Bits Value

0-5 56

6-10 RT

11-15 RA

16-27 DQ

28-31 PT

 PowerPC 64

lq “RT” on page 278, “DQ” on page 278(“RA” on page 278), “PT” on page 278

Chapter 8. Instruction Set 277

Description

The lq instruction loads a quad word in storage from a specified location in memory addressed by the

effective address (EA) into the target general-purpose registers (GPRs) RT and RT+1.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and DQ, a 12-bit, signed two’s

complement integer, which is concatenated on the right by 0b0000 and sign extended to 64 bits. If GPR

RA is 0, then the EA is DQ.

Parameters

 RT Specifies target general-purpose register where result of operation is stored. If RT is odd, the instruction form is

invalid.

DQ Specifies a 12-bit, signed two’s complement integer, concatenated on the right with 0b0000, and sign-extended

to 64 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation.

PT Specifies a 4-bit unsigned immediate value.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

Related Information

“Fixed-Point Processor” on page 21.

“Fixed-Point Load and Store Instructions” on page 21.

lscbx (Load String and Compare Byte Indexed) Instruction

Purpose

Loads consecutive bytes in storage into consecutive registers.

Note: The lscbx instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 277

31 Rc

 POWER family

lscbx RT, RA, RB

lscbx. RT, RA, RB

278 Assembler Language Reference

Description

The lscbx instruction loads N consecutive bytes addressed by effective address (EA) into general-purpose

register (GPR) RT, starting with the leftmost byte in register RT, through RT + NR - 1, and wrapping

around back through GPR 0, if required, until either a byte match is found with XER16-23 or N bytes have

been loaded. If a byte match is found, then that byte is also loaded.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and the address stored in GPR RB. If

RA is 0, then EA is the contents of GPR RB.

Consider the following when using the lscbx instruction:

v XER(16-23) contains the byte to be compared.

v XER(25-31) contains the byte count before the instruction is invoked and the number of bytes loaded

after the instruction has completed.

v If XER(25-31) = 0, GPR RT is not altered.

v N is XER(25-31), which is the number of bytes to load.

v NR is ceiling(N/4), which is the total number of registers required to contain the consecutive bytes.

Bytes are always loaded left to right in the register. In the case when a match was found before N bytes

were loaded, the contents of the rightmost bytes not loaded from that register and the contents of all

succeeding registers up to and including register RT + NR - 1 are undefined. Also, no reference is made

to storage after the matched byte is found. In the case when a match was not found, the contents of the

rightmost bytes not loaded from register RT + NR - 1 are undefined.

If GPR RA is not 0 and GPRs RA and RB are in the range to be loaded, then GPRs RA and RB are not

written to. The data that would have been written into them is discarded, and the operation continues

normally. If the byte in XER(16-23) compares with any of the 4 bytes that would have been loaded into

GPR RA or RB, but are being discarded for restartability, the EQ bit in the Condition Register and the

count returned in XER(25-31) are undefined. The Multiply Quotient (MQ) Register is not affected by this

operation.

The lscbx instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

lscbx None XER(25-31) = # of

bytes loaded

0 None

lscbx. None XER(25-31) = # of

bytes loaded

1 LT,GT,EQ,SO

The two syntax forms of the lscbx instruction place the number of bytes loaded into Fixed-Point Exception

Register (XER) bits 25-31. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less

Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in

Condition Register Field 0. If Rc = 1 and XER(25-31) = 0, then Condition Register Field 0 is undefined. If

Rc = 1 and XER(25-31) <> 0, then Condition Register Field 0 is set as follows:

LT, GT, EQ, SO = b’00’||match||XER(SO)

Note: This instruction can be interrupted by a Data Storage interrupt. When such an interrupt occurs,

the instruction is restarted from the beginning.

Chapter 8. Instruction Set 279

Parameters

 RT Specifies the starting target general-purpose register.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Examples

1. The following code loads consecutive bytes into GPRs 6, 7, and 8:

.csect data[rw]

string: "Hello, world"

Assume XER16-23 = ’a.

Assume XER25-31 = 9.

Assume GPR 5 contains the address of csect data[rw].

Assume GPR 4 contains the displacement of string relative

to csect data[rw].

.csect text[pr]

lscbx 6,5,4

GPR 6 now contains 0x4865 6c6c.

GPR 7 now contains 0x6f2c 2077.

GPR 8 now contains 0x6fXX XXXX.

2. The following code loads consecutive bytes into GPRs 6, 7, and 8:

Assume XER16-23 = ’e.

Assume XER25-31 = 9.

Assume GPR 5 contains the address of csect data[rw].

Assume GPR 4 contains the displacement of string relative

to csect data[rw].

.csect text[pr]

lscbx. 6,5,4

GPR 6 now contains 0x4865 XXXX.

GPR 7 now contains 0xXXXX XXXX.

GPR 8 now contains 0xXXXX XXXX.

XER25-31 = 2.

CRF 0 now contains 0x2.

Related Information

Fixed-Point Processor .

Fixed-Point String Instructions .

lswi or lsi (Load String Word Immediate) Instruction

Purpose

Loads consecutive bytes in storage from a specified location in memory into consecutive general-purpose

registers.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 NB

21-30 597

280 Assembler Language Reference

Bits Value

31 /

 PowerPC

lswi RT, RA, NB

 POWER family

lsi RT, RA, NB

Description

The lswi and lsi instructions load N consecutive bytes in storage addressed by the effective address (EA)

into general-purpose register GPR RT, starting with the leftmost byte, through GPR RT+NR-1, and

wrapping around back through GPR 0, if required.

If GPR RA is not 0, the EA is the contents of GPR RA. If GPR RA is 0, then the EA is 0.

Consider the following when using the lswi and lsi instructions:

v NB is the byte count.

v RT is the starting general-purpose register.

v N is NB, which is the number of bytes to load. If NB is 0, then N is 32.

v NR is ceiling(N/4), which is the number of general-purpose registers to receive data.

For the PowerPC instruction lswi, if GPR RA is in the range of registers to be loaded or RT = RA = 0, the

instruction form is invalid.

Consider the following when using the POWER family instruction lsi:

v If GPR RT + NR - 1 is only partially filled on the left, the rightmost bytes of that general-purpose register

are set to 0.

v If GPR RA is in the range to be loaded, and if GPR RA is not equal to 0, then GPR RA is not written

into by this instruction. The data that would have been written into it is discarded, and the operation

continues normally.

The lswi and lsi instructions have one syntax form which does not affect the Fixed-Point Exception

Register or Condition Register Field 0.

Note: The lswi and lsi instructions can be interrupted by a Data Storage interrupt. When such an

interrupt occurs, the instruction is restarted from the beginning.

Parameters

 RT Specifies starting general-purpose register of stored data.

RA Specifies general-purpose register for EA calculation.

NB Specifies byte count.

Examples

The following code loads the bytes contained in a location in memory addressed by GPR 7 into GPR 6:

Chapter 8. Instruction Set 281

.csect data[rw]

.string "Hello, World"

Assume GPR 7 contains the address of csect data[rw].

.csect text[pr]

lswi 6,7,0x6

GPR 6 now contains 0x4865 6c6c.

Related Information

Fixed-Point Processor .

Fixed-Point String Instructions .

lswx or lsx (Load String Word Indexed) Instruction

Purpose

Loads consecutive bytes in storage from a specified location in memory into consecutive general-purpose

registers.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 533

31 /

 PowerPC

lswx RT, RA, RB

 POWER family

lsx RT, RA, RB

Description

The lswx and lsx instructions load N consecutive bytes in storage addressed by the effective address

(EA) into general-purpose register (GPR) RT, starting with the leftmost byte, through GPR RT + NR - 1,

and wrapping around back through GPR 0 if required.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and the address stored in GPR RB. If

GPR RA is 0, then EA is the contents of GPR RB.

Consider the following when using the lswx and lsx instructions:

v XER(25-31) contain the byte count.

v RT is the starting general-purpose register.

v N is XER(25-31), which is the number of bytes to load.

v NR is ceiling(N/4), which is the number of registers to receive data.

v If XER(25-31) = 0, general-purpose register RT is not altered.

282 Assembler Language Reference

For the PowerPC instruction lswx, if RA or RB is in the range of registers to be loaded or RT = RA = 0,

the results are boundedly undefined.

Consider the following when using the POWER family instruction lsx:

v If GPR RT + NR - 1 is only partially filled on the left, the rightmost bytes of that general-purpose register

are set to 0.

v If GPRs RA and RB are in the range to be loaded, and if GPR RA is not equal to 0, then GPR RA and

RB are not written into by this instruction. The data that would have been written into them is discarded,

and the operation continues normally.

The lswx and lsx instructions have one syntax form which does not affect the Fixed-Point Exception

Register or Condition Register Field 0.

Note: The lswx and lsx instructions can be interrupted by a Data Storage interrupt. When such an

interrupt occurs, the instruction is restarted from the beginning.

Parameters

 RT Specifies starting general-purpose register of stored data.

RA Specifies general-purpose register for EA calculation.

RB Specifies general-purpose register for EA calculation.

Examples

The following code loads the bytes contained in a location in memory addressed by GPR 5 into GPR 6:

Assume XER25-31 = 4.

csect data[rw]

storage: .string "Hello, world"

Assume GPR 4 contains the displacement of storage

relative to data[rw].

Assume GPR 5 contains the address of csect data[rw].

.csect text[pr]

lswx 6,5,4

GPR 6 now contains 0x4865 6c6c.

Related Information

Fixed-Point Processor .

Fixed-Point String Instructions .

Functional Differences for POWER family and PowerPC Instructions .

lwa (Load Word Algebraic) Instruction

Purpose

Load a fullword of data from storage into the low-order 32 bits of the specified general purpose register.

Sign extend the data into the high-order 32 bits of the register.

Syntax

 Bits Value

0-5 58

6-10 D

Chapter 8. Instruction Set 283

Bits Value

11-15 A

16-29 ds

30-31 10

 POWER family

lwa RT, D (RA)

Description

The fullword in storage located at the effective address (EA) is loaded into the low-order 32 bits of the

target general purpose register (GRP) RT. The value is then sign-extended to fill the high-order 32 bits of

the register.

If GRP RA is not 0, the EA is the sum of the contents of GRP RA and B; otherwise, the EA is equal to the

contents of RB.

Parameters

 RT Specifies target general-purpose register where result of the operation is stored.

D Specifies a 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

lwarx (Load Word and Reserve Indexed) Instruction

Purpose

Used in conjunction with a subsequent stwcx. instruction to emulate a read-modify-write operation on a

specified memory location.

Note: The lwarx instruction is supported only in the PowerPC architecture.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 20

31 /

 PowerPC

lwarx RT, RA, RB

284 Assembler Language Reference

Description

The lwarx and stwcx. instructions are primitive, or simple, instructions used to perform a read-modify-write

operation to storage. If the store is performed, the use of the lwarx and stwcx. instructions ensures that

no other processor or mechanism has modified the target memory location between the time the lwarx

instruction is executed and the time the stwcx. instruction completes.

If general-purpose register (GPR) RA = 0, the effective address (EA) is the content of GPR RB. Otherwise,

the EA is the sum of the content of GPR RA plus the content of GPR RB.

The lwarx instruction loads the word from the location in storage specified by the EA into the target GPR

RT. In addition, a reservation on the memory location is created for use by a subsequent stwcx.

instruction.

The lwarx instruction has one syntax form and does not affect the Fixed-Point Exception Register. If the

EA is not a multiple of 4, the results are boundedly undefined.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Examples

1. The following code performs a ″Fetch and Store″ by atomically loading and replacing a word in

storage:

Assume that GPR 4 contains the new value to be stored.

Assume that GPR 3 contains the address of the word

to be loaded and replaced.

loop: lwarx r5,0,r3 # Load and reserve

 stwcx. r4,0,r3 # Store new value if still

 # reserved

 bne- loop # Loop if lost reservation

The new value is now in storage.

The old value is returned to GPR 4.

2. The following code performs a ″Compare and Swap″ by atomically comparing a value in a register with

a word in storage:

Assume that GPR 5 contains the new value to be stored after

a successful match.

Assume that GPR 3 contains the address of the word

to be tested.

Assume that GPR 4 contains the value to be compared against

the value in memory.

loop: lwarx r6,0,r3 # Load and reserve

 cmpw r4,r6 # Are the first two operands

 # equal?

 bne- exit # Skip if not equal

 stwcx. r5,0,r3 # Store new value if still

 # reserved

 bne- loop # Loop if lost reservation

exit: mr r4,r6 # Return value from storage

The old value is returned to GPR 4.

If a match was made, storage contains the new value.

If the value in the register equals the word in storage, the value from a second register is stored in the

word in storage. If they are unequal, the word from storage is loaded into the first register and the EQ

bit of the Condition Register field 0 is set to indicate the result of the comparison.

Chapter 8. Instruction Set 285

Related Information

The stwcx. (Store Word Conditional Indexed) instruction.

Processing and Storage

lwaux (Load Word Algebraic with Update Indexed) Instruction

Purpose

Load a fullword of data from storage into the low-order 32b its of the specified general purpose register.

Sign extend the data into the high-order 32 bits of the register. Update the address base.

Syntax

 Bits Value

0-5 31

6-10 D

11-15 A

16-20 B

21-30 373

31 0

 POWER family

lwaux RT, RA, RB

Description

The fullword in storage located at the effective address (EA) is loaded into the low-order 32 bits of the

target general puspose register (GRP). The value is then sign-extended to fill the high-order 32 bits of the

register. The EA is the sum of the contents of GRP RA and GRP RB.

If RA = 0 or RA = RT, the instruction form is invalid.

Parameters

 RT Specifies target general-purpose register where result of the operation is stored.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

lwax (Load Word Algebraic Indexed) Instruction

Purpose

Load a fullword of data from storage into the low-order 32 bits of the specified general purpose register.

Sign extend the data into the high-order 32 bits of the register.

286 Assembler Language Reference

Syntax

 Bits Value

0-5 31

6-10 D

11-15 A

16-20 B

21-30 341

31 0

 POWER family

lwax RT, RA, RB

Description

The fullword in storage located at the effective address (EA) is loaded into the low-order 32 bits of the

target general puspose register (GRP). The value is then sign-extended to fill the high-order 32 bits of the

register.

If GRP RA is not 0, the EA is the sum of the contents of GRP RA and B; otherwise, the EA is equal to the

contents of RB.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

lwbrx or lbrx (Load Word Byte-Reverse Indexed) Instruction

Purpose

Loads a byte-reversed word of data from a specified location in memory into a general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 534

31 /

Chapter 8. Instruction Set 287

PowerPC

lwbrx RT, RA, RB

 POWER family

lbrx RT, RA, RB

Description

The lwbrx and lbrx instructions load a byte-reversed word in storage from a specified location in memory

addressed by the effective address (EA) into the target general-purpose register (GPR) RT.

Consider the following when using the lwbrx and lbrx instructions:

v Bits 00-07 of the word in storage addressed by EA are placed into bits 24-31 of GPR RT.

v Bits 08-15 of the word in storage addressed by EA are placed into bits 16-23 of GPR RT.

v Bits 16-23 of the word in storage addressed by EA are placed into bits 08-15 of GPR RT.

v Bits 24-31 of the word in storage addressed by EA are placed into bits 00-07 of GPR RT.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the

EA is the contents of GPR RB.

The lwbrx and lbrx instructions have one syntax form and do not affect the Fixed-Point Exception

Register or Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Examples

The following code loads a byte-reversed word from memory into GPR 6:

storage: .long 0x0000 ffff

 .

 .

Assume GPR 4 contains 0x0000 0000.

Assume GPR 5 contains address of storage.

lwbrx 6,4,5

GPR 6 now contains 0xffff 0000.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

lwz or l (Load Word and Zero) Instruction

Purpose

Loads a word of data from a specified location in memory into a general-purpose register.

288 Assembler Language Reference

Syntax

 Bits Value

0-5 32

6-10 RT

11-15 RA

16-31 D

 PowerPC

lwz RT, D(RA)

 POWER family

l RT, D(RA)

Description

The lwz and l instructions load a word in storage from a specified location in memory addressed by the

effective address (EA) into the target general-purpose register (GPR) RT.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s

complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

The lwz and l instructions have one syntax form and do not affect the Fixed-Point Exception Register or

Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

D Specifies a 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation.

Examples

The following code loads a word from memory into GPR 6:

.csect data[rw]

Assume GPR 5 contains address of csect data[rw].

storage: .long 0x4

.csect text[pr]

lwz 6,storage(5)

GPR 6 now contains 0x0000 0004.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

lwzu or lu (Load Word with Zero Update) Instruction

Purpose

Loads a word of data from a specified location in memory into a general-purpose register and possibly

places the effective address in a second general-purpose register.

Chapter 8. Instruction Set 289

Syntax

 Bits Value

0-5 33

6-10 RT

11-15 RA

16-31 D

 PowerPC

lwzu RT, D(RA)

 POWER family

lu RT, D(RA)

Description

The lwzu and lu instructions load a word in storage from a specified location in memory addressed by the

effective address (EA) into the target general-purpose register (GPR) RT.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s

complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

If RA does not equal RT and RA does not equal 0, and the storage access does not cause an Alignment

interrupt or a Data Storage interrupt, then the EA is placed into GPR RA.

The lwzu and lu instructions have one syntax form and do not affect the Fixed-Point Exception Register or

Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

D Specifies a 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation and possible address update.

Examples

The following code loads a word from memory into GPR 6 and places the effective address in GPR 4:

.csect data[rw]

storage: .long 0xffdd 75ce

.csect text[pr]

Assume GPR 4 contains address of csect data[rw].

lwzu 6,storage(4)

GPR 6 now contains 0xffdd 75ce.

GPR 4 now contains the storage address.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

290 Assembler Language Reference

lwzux or lux (Load Word and Zero with Update Indexed) Instruction

Purpose

Loads a word of data from a specified location in memory into a general-purpose register and possibly

places the effective address in a second general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 55

31 /

 PowerPC

lwzux RT, RA, RB

 POWER family

lux RT, RA, RB

Description

The lwzux and lux instructions load a word of data from a specified location in memory, addressed by the

effective address (EA), into the target general-purpose register (GPR) RT.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the

EA is the contents of GPR RB.

If GPR RA does not equal RT and RA does not equal 0, and the storage access does not cause an

Alignment interrupt or a Data Storage interrupt, then the EA is placed into GPR RA.

The lwzux and lux instructions have one syntax form and do not affect the Fixed-Point Exception Register

or Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for EA calculation and possible address update.

RB Specifies source general-purpose register for EA calculation.

Examples

The following code loads a word from memory into GPR 6 and places the effective address in GPR 5:

.csect data[rw]

storage: .long 0xffdd 75ce

Assume GPR 5 contains the address of csect data[rw].

Assume GPR 4 contains the displacement of storage

relative to csect data[rw].

Chapter 8. Instruction Set 291

.csect text[pr]

lwzux 6,5,4

GPR 6 now contains 0xffdd 75ce.

GPR 5 now contains the storage address.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

lwzx or lx (Load Word and Zero Indexed) Instruction

Purpose

Loads a word of data from a specified location in memory into a general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 23

31 /

 PowerPC

lwzx RT, RA, RB

 POWER family

lx RT, RA, RB

Description

The lwzx and lx instructions load a word of data from a specified location in memory, addressed by the

effective address (EA), into the target general-purpose register (GPR) RT.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the

EA is the contents of GPR RB.

The lwzx and lx instructions have one syntax form and do not affect the Fixed-Point Exception Register or

Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Examples

The following code loads a word from memory into GPR 6:

292 Assembler Language Reference

.csect data[rw]

.long 0xffdd 75ce

Assume GPR 4 contains the displacement relative to

csect data[rw].

Assume GPR 5 contains the address of csect data[rw].

.csect text[pr]

lwzx 6,5,4

GPR 6 now contains 0xffdd 75ce.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

maskg (Mask Generate) Instruction

Purpose

Generates a mask of ones and zeros and loads it into a general-purpose register.

Note: The maskg instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 29

31 Rc

 POWER family

maskg RA, RS, RB

maskg. RA, RS, RB

Description

The maskg instruction generates a mask from a starting point defined by bits 27-31 of general-purpose

register (GPR) RS to an end point defined by bits 27-31 of GPR RB and stores the mask in GPR RA.

Consider the following when using the maskg instruction:

v If the starting point bit is less than the end point bit + 1, then the bits between and including the starting

point and the end point are set to ones. All other bits are set to 0.

v If the starting point bit is the same as the end point bit + 1, then all 32 bits are set to ones.

v If the starting point bit is greater than the end point bit + 1, then all of the bits between and including the

end point bit + 1 and the starting point bit - 1 are set to zeros. All other bits are set to ones.

The maskg instruction has two syntax forms. Each syntax form has a different effect on Condition

Register Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

Chapter 8. Instruction Set 293

maskg None None 0 None

maskg. None None 1 LT,GT,EQ,SO

The two syntax forms of the maskg instruction never affect the Fixed-Point Exception Register. If the

syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than

(GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for start of mask.

RB Specifies source general-purpose register for end of mask.

Examples

1. The following code generates a mask of 5 ones and stores the result in GPR 6:

Assume GPR 4 contains 0x0000 0014.

Assume GPR 5 contains 0x0000 0010.

maskg 6,5,4

GPR 6 now contains 0x0000 F800.

2. The following code generates a mask of 6 zeros with the remaining bits set to one, stores the result in

GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x0000 0010.

Assume GPR 5 contains 0x0000 0017.

Assume CR = 0.

maskg. 6,5,4

GPR 6 now contains 0xFFFF 81FF.

CR now contains 0x8000 0000.

Related Information

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

maskir (Mask Insert from Register) Instruction

Purpose

Inserts the contents of one general-purpose register into another general-purpose register under control of

a bit mask.

Note: The maskir instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 541

31 Rc

294 Assembler Language Reference

POWER family

maskir RA, RS, RB

maskir. RA, RS, RB

Description

The maskir stores the contents of general-purpose register (GPR) RS in GPR RA under control of the bit

mask in GPR RB.

The value for each bit in the target GPR RA is determined as follows:

v If the corresponding bit in the mask GPR RB is 1, then the bit in the target GPR RA is given the value

of the corresponding bit in the source GPR RS.

v If the corresponding bit in the mask GPR RB is 0, then the bit in the target GPR RA is unchanged.

The maskir instruction has two syntax forms. Each syntax form has a different effect on Condition

Register Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

maskir None None 0 None

maskir. None None 1 LT, GT, EQ, SO

The two syntax forms of the maskir instruction never affect the Fixed-Point Exception Register. If the

syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than

(GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for bit mask.

Examples

1. The following code inserts the contents of GPR 5 into GPR 6 under control of the bit mask in GPR 4:

Assume GPR 6 (RA) target contains 0xAAAAAAAA.

Assume GPR 4 (RB) mask contains 0x000F0F00.

Assume GPR 5 (RS) source contains 0x55555555.

maskir 6,5,4

GPR 6 (RA) target now contains 0xAAA5A5AA.

1. The following code inserts the contents of GPR 5 into GPR 6 under control of the bit mask in GPR 4

and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 6 (RA) target contains 0xAAAAAAAA.

Assume GPR 4 (RB) mask contains 0x0A050F00.

Assume GPR 5 (RS) source contains 0x55555555.

maskir. 6,5,4

GPR 6 (RA) target now contains 0xA0AFA5AA.

Related Information

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

Chapter 8. Instruction Set 295

mcrf (Move Condition Register Field) Instruction

Purpose

Copies the contents of one condition register field into another.

Syntax

 Bits Value

0-5 19

6-8 BF

9-10 //

11-13 BFA

14-15 //

16-20 ///

21-30 0

31 /

 mcrf BF, BFA

Description

The mcrf instruction copies the contents of the condition register field specified by BFA into the condition

register field specified by BF. All other fields remain unaffected.

The mcrf instruction has one syntax form and does not affect Condition Register Field 0 or the Fixed-Point

Exception Register.

Parameters

 BF Specifies target condition register field for operation.

BFA Specifies source condition register field for operation.

Examples

The following code copies the contents of Condition Register Field 3 into Condition Register Field 2:

Assume Condition Register Field 3 holds b’0110’.

mcrf 2,3

Condition Register Field 2 now holds b’0110’.

Related Information

Branch Processor .

mcrfs (Move to Condition Register from FPSCR) Instruction

Purpose

Copies the bits from one field of the Floating-Point Status and Control Register into the Condition Register.

296 Assembler Language Reference

Syntax

 Bits Value

0-5 63

6-8 BF

9-10 //

11-13 BFA

14-15 //

16-20 ///

21-30 64

31 /

 mcrfs BF, BFA

Description

The mcrfs instruction copies four bits of the Floating-Point Status and Control Register (FPSCR) specified

by BFA into Condition Register Field BF. All other Condition Register bits are unchanged.

If the field specified by BFA contains reserved or undefined bits, then bits of zero value are supplied for

the copy.

The mcrfs instruction has one syntax form and can set the bits of the Floating-Point Status and Control

Register.

 BFA FPSCR bits set

0 FX,OX

1 UX, ZX, XX, VXSNAN

2 VXISI, VXIDI, VXZDZ, VXIMZ

3 VXVC

Parameters

 BF Specifies target condition register field where result of operation is stored.

BFA Specifies one of the FPSCR fields (0-7).

Examples

The following code copies bits from Floating-Point Status and Control Register Field 4 into Condition

Register Field 3:

Assume FPSCR 4 contains b’0111’.

mcrfs 3,4

Condition Register Field 3 contains b’0111’.

Related Information

Branch Processor .

Interpreting the Contents of a Floating-Point Register .

Chapter 8. Instruction Set 297

mcrxr (Move to Condition Register from XER) Instruction

Purpose

Copies the Summary Overflow bit, Overflow bit, Carry bit, and bit 3 from the Fixed-Point Exception

Register into a specified field of the Condition Register.

Syntax

 Bits Value

0-5 31

6-8 BF

9-10 //

11-15 ///

16-20 ///

21-30 512

31 /

 mcrxr BF

Description

The mcrxr copies the contents of Fixed-Point Exception Register Field 0 bits 0-3 into Condition Register

Field BF and resets Fixed-Point Exception Register Field 0 to 0.

The mcrxr instruction has one syntax form and resets Fixed-Point Exception Register bits 0-3 to 0.

Parameters

 BF Specifies target condition register field where result of operation is stored.

Examples

The following code copies the Summary Overflow bit, Overflow bit, Carry bit, and bit 3 from the

Fixed-Point Exception Register into field 4 of the Condition Register.

Assume bits 0-3 of the Fixed-Point Exception

Register are set to b’1110’.

mcrxr 4

Condition Register Field 4 now holds b’1110’.

Related Information

Branch Processor .

Fixed-Point Move to or from Special-Purpose Registers Instructions .

mfcr (Move from Condition Register) Instruction

Purpose

Copies the contents of the Condition Register into a general-purpose register.

298 Assembler Language Reference

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 ///

16-20 ///

21-30 19

31 Rc

 mfcr RT

Description

The mfcr instruction copies the contents of the Condition Register into target general-purpose register

(GPR) RT.

The mfcr instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

Examples

The following code copies the Condition Register into GPR 6:

Assume the Condition Register contains 0x4055 F605.

mfcr 6

GPR 6 now contains 0x4055 F605.

Related Information

Branch Processor .

Fixed-Point Move to or from Special-Purpose Registers Instructions .

mffs (Move from FPSCR) Instruction

Purpose

Loads the contents of the Floating-Point Status and Control Register into a floating-point register and fills

the upper 32 bits with ones.

Syntax

 Bits Value

0-5 63

6-10 FRT

11-15 ///

16-20 ///

21-30 583

Chapter 8. Instruction Set 299

Bits Value

31 Rc

 mffs FRT

mffs. FRT

Description

The mffs instruction places the contents of the Floating-Point Status and Control Register into bits 32-63

of floating-point register (FPR) FRT. The bits 0-31 of floating-point register FRT are undefined.

The mffs instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 1.

 Syntax Form FPSCR bits Record Bit (Rc) Condition Register Field 1

mffs None 0 None

mffs. None 1 FX, FEX, VX, OX

The two syntax forms of the mffs instruction never affect the Floating-Point Status and Control Register

fields. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception

(FX), Floating-Point Enabled Exception (FEX), Floating Invalid Operation Exception (VX), and

Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

 FRT Specifies target floating-point register where result of operation is stored.

Examples

The following code loads the contents of the Floating-Point Status and Control Register into FPR 14, and

fills the upper 32 bits of that register with ones:

Assume FPSCR contains 0x0000 0000.

mffs 14

FPR 14 now contains 0xFFFF FFFF 0000 0000.

Related Information

Floating-Point Processor .

Interpreting the Contents of a Floating-Point Register .

Functional Differences for POWER family and PowerPC Instructions .

mfmsr (Move from Machine State Register) Instruction

Purpose

Copies the contents of the Machine State Register into a general-purpose register.

300 Assembler Language Reference

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 ///

16-20 ///

21-30 83

31 /

 mfmsr RT

Description

The mfmsr instruction copies the contents of the Machine State Register into the target general-purpose

register (GPR) RT.

The mfmsr instruction has one syntax form and does not affect the Fixed-Point Exception Register or

Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

Examples

The following code copies the contents of the Machine State Register into GPR 4:

mfmsr 4

GPR 4 now holds a copy of the bit

settings of the Machine State Register.

Security

The mfmsr instruction is privileged only in the PowerPC architecture.

Related Information

Branch Processor .

Floating-Point Processor .

Fixed-Point Move to or from Special-Purpose Registers Instructions .

Functional Differences for POWER family and PowerPC Instructions .

mfocrf (Move from One Condition Register Field) Instruction

Purpose

Copies the contents of one Condition Register field into a general-purpose register.

Chapter 8. Instruction Set 301

Syntax

 Bits Value

0-5 31

6-10 RT

11 1

12-19 FXM

20 ///

21-30 19

31 ///

 mfocrf “RT”, “FXM”

Description

The mfocrf instruction copies the contents of one Condition Register field specified by the field mask FXM

into the target general-purpose register (GPR) RT.

Field mask FXM is defined as follows:

 Bit Description

12 CR 00-03 is copied into GPR RS 00-03.

13 CR 04-07 is copied into GPR RS 04-07.

14 CR 08-11 is copied into GPR RS 08-11.

15 CR 12-15 is copied into GPR RS 12-15.

16 CR 16-19 is copied into GPR RS 16-19.

17 CR 20-23 is copied into GPR RS 20-23.

18 CR 24-27 is copied into GPR RS 24-27.

19 CR 28-31 is copied into GPR RS 28-31.

The mfocrf instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

FXM Specifies field mask. Only one bit may be specified.

Examples

The following code copies the Condition Register field 3 into GPR 6:

Assume the Condition Register contains 0x4055 F605.

Field 3 (0x10 = b’0001 0000’)

mfocrf 6, 0x10

GPR 6 now contains 0x0005 0000.

Related Information

“Branch Processor” on page 19.

“Fixed-Point Move to or from Special-Purpose Registers Instructions” on page 23.

302 Assembler Language Reference

mfspr (Move from Special-Purpose Register) Instruction

Purpose

Copies the contents of a special-purpose register into a general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RT

11-20 spr

21-30 339

31 Rc

 mfspr RT, SPR

Note: The special-purpose register is a split field.

See Extended Mnemonics of Moving from or to Special-Purpose Registers for more information.

Description

The mfspr instruction copies the contents of the special-purpose register SPR into target general-purpose

register (GPR) RT.

The special-purpose register identifier SPR can have any of the values specified in the following table. The

order of the two 5-bit halves of the SPR number is reversed.

 SPR Values

Decimal spr5:9 spr0:4 Register Name Privileged

1 00000 00001 XER No

8 00000 01000 LR No

9 00000 01001 CTR No

18 00000 10010 DSISR Yes

19 00000 10011 DAR Yes

22 00000 10110 DEC2 Yes

25 00000 11001 SDR1 Yes

26 00000 11010 SRR0 Yes

27 00000 11011 SRR1 Yes

272 01000 10000 SPRG0 Yes

273 01000 10001 SPRG1 Yes

274 01000 10010 SPRG2 Yes

275 01000 10011 SPRG3 Yes

282 01000 11010 EAR Yes

284 01000 11100 TBL Yes

Chapter 8. Instruction Set 303

285 01000 11101 TBU Yes

528 10000 10000 IBAT0U Yes

529 10000 10001 IBAT0L Yes

530 10000 10010 IBAT1U Yes

531 10000 10011 IBAT1L Yes

532 10000 10100 IBAT2U Yes

533 10000 10101 IBAT2L Yes

534 10000 10110 IBAT3U Yes

535 10000 10111 IBAT3L Yes

536 10000 11000 DBAT0U Yes

537 10000 11001 DBAT0L Yes

538 10000 11010 DBAT1U Yes

539 10000 11011 DBAT1L Yes

540 10000 11100 DBAT2U Yes

541 10000 11101 DBAT2L Yes

542 10000 11110 DBAT3U Yes

543 10000 11111 DBAT3L Yes

0 00000 00000 MQ1 No

4 00000 00100 RTCU1 No

5 00000 00101 RTCL1 No

6 00000 00110 DEC2 No

1Supported only in the POWER family architecture.

2In the PowerPC architecture moving from the DEC register is privileged and the SPR value is 22. In the

POWER family architecture moving from the DEC register is not privileged and the SPR value is 6. For

more information, see Fixed-Point Move to or from Special-Purpose Registers Instructions .

If the SPR field contains any value other than those listed in the SPR Values table, the instruction form is

invalid.

The mfspr instruction has one syntax form and does not affect the Fixed-Point Exception Register or

Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

SPR Specifies source special-purpose register for operation.

Examples

The following code copies the contents of the Fixed-Point Exception Register into GPR 6:

mfspr 6,1

GPR 6 now contains the bit settings of the Fixed

Point Exception Register.

304 Assembler Language Reference

Related Information

Fixed-Point Processor .

Fixed-Point Move to or from Special-Purpose Registers Instructions .

mfsr (Move from Segment Register) Instruction

Purpose

Copies the contents of a segment register into a general-purpose register.

Syntax

 Bits Value

0-5 31

6-8 RT

11 /

12-14 SR

16-20 ///

21-30 595

31 /

 mfsr RT, SR

Description

The mfsr instruction copies the contents of segment register (SR) into target general-purpose register

(GPR) RT.

The mfsr instruction has one syntax form and does not effect the Fixed-Point Exception Register. If the

Record (Rc) bit is set to 1, Condition Register Field 0 is undefined.

Parameters

 RT Specifies the target general-purpose register where the result of the operation is stored.

SR Specifies the source segment register for the operation.

Examples

The following code copies the contents of Segment Register 7 into GPR 6:

Assume that the source Segment Register is SR 7.

Assume that GPR 6 is the target register.

mfsr 6,7

GPR 6 now holds a copy of the contents of Segment Register 7.

Security

The mfsr instruction is privileged only in the PowerPC architecture.

Related Information

The mfsri (Move from Segment Register Indirect) instruction, mtsr (Move to Segment Register)

instruction, mtsrin or mtsri (Move to Segment Register Indirect) instruction.

Chapter 8. Instruction Set 305

Processing and Storage

Functional Differences for POWER family and PowerPC Instructions .

mfsri (Move from Segment Register Indirect) Instruction

Purpose

Copies the contents of a calculated segment register into a general-purpose register.

Note: The mfsri instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 627

31 Rc

 POWER family

mfsri RS, RA, RB

Description

The mfsri instruction copies the contents of segment register (SR), specified by bits 0-3 of the calculated

contents of the general-purpose register (GPR) RA, into GPR RS. If RA is not 0, the specifying bits in

GPR RA are calculated by adding the original contents of RA to GPR RB and placing the sum in RA. If

RA = RS, the sum is not placed in RA.

The mfsri instruction has one syntax form and does not affect the Fixed-Point Exception Register. If the

Record (Rc) bit is set to 1, Condition Register Field 0 is undefined.

Parameters

 RS Specifies the target general-purpose register for operation.

RA Specifies the source general-purpose register for SR calculation.

RB Specifies the source general-purpose register for SR calculation.

Examples

The following code copies the contents of the segment register specified by the first 4 bits of the sum of

the contents of GPR 4 and GPR 5 into GPR 6:

Assume that GPR 4 contains 0x9000 3000.

Assume that GPR 5 contains 0x1000 0000.

Assume that GPR 6 is the target register.

mfsri 6,5,4

GPR 6 now contains the contents of Segment Register 10.

306 Assembler Language Reference

Related Information

The mfsrin (Move from Segment Register Indirect) instruction, mtsr (Move to Segment Register)

instruction, mtsrin or mtsri (Move to Segment Register Indirect) instruction.

Processing and Storage

mfsrin (Move from Segment Register Indirect) Instruction

Purpose

Copies the contents of the specified segment register into a general-purpose register.

Note: The mfsrin instruction is supported only in the PowerPC architecture.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 ///

16-20 RB

21-30 659

31 /

 PowerPC

mfsrin RT, RB

Description

The mfsrin instruction copies the contents of segment register (SR), specified by bits 0-3 of the

general-purpose register (GPR) RB, into GPR RT.

The mfsrin instruction has one syntax form and does not affect the Fixed-Point Exception Register. If the

Record (Rc) bit is set to 1, the Condition Register Field 0 is undefined.

Parameters

 RT Specifies the target general-purpose register for operation.

RB Specifies the source general-purpose register for SR calculation.

Security

The mfsrin instruction is privileged.

Related Information

The mfsr (Move from Segment Register) instruction, mfsri (Move from Segment Register Indirect)

instruction, mtsr (Move to Segment Register) instruction, mtsrin or mtsri (Move to Segment Register

Indirect) instruction.

Processing and Storage

Chapter 8. Instruction Set 307

mtcrf (Move to Condition Register Fields) Instruction

Purpose

Copies the contents of a general-purpose register into the condition register under control of a field mask.

Syntax

 Bits Value

0-5 31

6-10 RS

11 /

12-19 FXM

20 /

21-30 144

31 Rc

 mtcrf FXM, RS

See Extended Mnemonics of Condition Register Logical Instructions for more information.

Description

The mtcrf instruction copies the contents of source general-purpose register (GPR) RS into the condition

register under the control of field mask FXM.

Field mask FXM is defined as follows:

 Bit Description

12 CR 00-03 is updated with the contents of GPR RS 00-03.

13 CR 04-07 is updated with the contents of GPR RS 04-07.

14 CR 08-11 is updated with the contents of GPR RS 08-11.

15 CR 12-15 is updated with the contents of GPR RS 12-15.

16 CR 16-19 is updated with the contents of GPR RS 16-19.

17 CR 20-23 is updated with the contents of GPR RS 20-23.

18 CR 24-27 is updated with the contents of GPR RS 24-27.

19 CR 28-31 is updated with the contents of GPR RS 28-31.

The mtcrf instruction has one syntax form and does not affect the Fixed-Point Exception Register.

The preferred form of the mtcrf instruction has only one bit set in the FXM field.

Parameters

 FXM Specifies field mask.

RS Specifies source general-purpose register for operation.

Examples

The following code copies bits 00-03 of GPR 5 into Condition Register Field 0:

308 Assembler Language Reference

Assume GPR 5 contains 0x7542 FFEE.

Use the mask for Condition Register

Field 0 (0x80 = b’1000 0000’).

mtcrf 0x80,5

Condition Register Field 0 now contains b’0111’.

Related Information

Fixed-Point Processor .

Branch Processor .

Fixed-Point Move to or from Special-Purpose Registers Instructions .

mtfsb0 (Move to FPSCR Bit 0) Instruction

Purpose

Sets a specified Floating-Point Status and Control Register bit to 0.

Syntax

 Bits Value

0-5 63

6-10 BT

11-15 ///

16-20 ///

21-30 70

31 Rc

 mtfsb0 BT

mtfsb0. BT

Description

The mtfsb0 instruction sets the Floating-Point Status and Control Register bit specified by BT to 0.

The mtfsb0 instruction has two syntax forms. Each syntax form has a different effect on Condition

Register Field 0.

 Syntax Form Fixed-Point Exception Register Record Bit (Rc) Condition Register Field 1

mtfsb0 None 0 None

mtfsb0. None 1 FX, FEX, VX, OX

The two syntax forms of the mtfsb0 instruction never affect the Fixed-Point Exception Register. If the

syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception (FX),

Floating-Point Enabled Exception (FEX), Floating Invalid Operation Exception (VX), and Floating-Point

Overflow Exception (OX) bits in Condition Register Field 1.

Note: Bits 1-2 cannot be explicitly set or reset.

Chapter 8. Instruction Set 309

Parameters

 BT Specifies Floating-Point Status and Control Register bit set by operation.

Examples

1. The following code sets the Floating-Point Status and Control Register Floating-Point Overflow

Exception Bit (bit 3) to 0:

mtfsb0 3

Now bit 3 of the Floating-Point Status and Control

Register is 0.

2. The following code sets the Floating-Point Status and Control Register Floating-Point Overflow

Exception Bit (bit 3) to 0 and sets Condition Register Field 1 to reflect the result of the operation:

mtfsb0. 3

Now bit 3 of the Floating-Point Status and Control

Register is 0.

Related Information

Floating-Point Processor .

Interpreting the Contents of a Floating-Point Register .

mtfsb1 (Move to FPSCR Bit 1) Instruction

Purpose

Sets a specified Floating-Point Status and Control Register bit to 1.

Syntax

 Bits Value

0-5 63

6-10 BT

11-15 ///

16-20 ///

21-30 38

31 Rc

 mtfsb1 BT

mtfsb1. BT

Description

The mtfsb1 instruction sets the Floating-Point Status and Control Register (FPSCR) bit specified by BT to

1.

The mtfsb1 instruction has two syntax forms. Each syntax form has a different effect on Condition

Register Field 0.

 Syntax Form FPSCR Bits Record Bit (Rc) Condition Register Field 1

mtfsb1 None 0 None

310 Assembler Language Reference

mtfsb1. None 1 FX, FEX, VX, OX

The two syntax forms of the mtfsb1 instruction never affect the Fixed-Point Exception Register. If the

syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception (FX),

Floating-Point Enabled Exception (FEX), Floating Invalid Operation Exception (VX), and Floating-Point

Overflow Exception (OX) bits in Condition Register Field 1.

Note: Bits 1-2 cannot be explicitly set or reset.

Parameters

 BT Specifies that the FPSCR bit is set to 1 by instruction.

Examples

1. The following code sets the Floating-Point Status and Control Register bit 4 to 1:

mtfsb1 4

Now bit 4 of the Floating-Point Status and Control

Register is set to 1.

2. The following code sets the Floating-Point Status and Control Register Overflow Exception Bit (bit 3) to

1 and sets Condition Register Field 1 to reflect the result of the operation:

mtfsb1. 3

Now bit 3 of the Floating-Point Status and Control

Register is set to 1.

Related Information

Floating-Point Processor .

Interpreting the Contents of a Floating-Point Register .

mtfsf (Move to FPSCR Fields) Instruction

Purpose

Copies the contents of a floating-point register into the Floating-Point Status and Control Register under

the control of a field mask.

Syntax

 Bits Value

0-5 63

6 /

7-14 FLM

15 /

16-20 FRB

21-30 771

31 Rc

 mtfsf FLM, FRB

mtfsf. FLM, FRB

Chapter 8. Instruction Set 311

See Extended Mnemonics of Condition Register Logical Instructions for more information.

Description

The mtfsf instruction copies bits 32-63 of the contents of the floating-point register (FPR) FRB into the

Floating-Point Status and Control Register under the control of the field mask specified by FLM.

The field mask FLM is defined as follows:

Bit Description

7 FPSCR 00-03 is updated with the contents of FRB 32-35.

8 FPSCR 04-07 is updated with the contents of FRB 36-39.

9 FPSCR 08-11 is updated with the contents of FRB 40-43.

10 FPSCR 12-15 is updated with the contents of FRB 44-47.

11 FPSCR 16-19 is updated with the contents of FRB 48-51.

12 FPSCR 20-23 is updated with the contents of FRB 52-55.

13 FPSCR 24-27 is updated with the contents of FRB 56-59.

14 FPSCR 28-31 is updated with the contents of FRB 60-63.

The mtfsf instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 1.

 Syntax Form FPSCR Bits Record Bit (Rc) Condition Register Field 1

mtfsf None 0 None

mtfsf. None 1 FX, FEX, VX, OX

The two syntax forms of the mtfsf instruction never affect the Fixed-Point Exception Register. If the syntax

form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception (FX), Floating-Point

Enabled Exception (FEX), Floating Invalid Operation Exception (VX), and Floating-Point Overflow

Exception (OX) bits in Condition Register Field 1.

Note: When specifying FPSCR 0-3, some bits cannot be explicitly set or reset.

Parameters

 FLM Specifies field mask.

FRB Specifies source floating-point register for operation.

Examples

1. The following code copies the contents of floating-point register 5 bits 32-35 into Floating-Point Status

and Control Register Field 0:

Assume bits 32-63 of FPR 5

contain 0x3000 3000.

mtfsf 0x80,5

Floating-Point Status and Control Register

Field 0 is set to b’0001’.

2. The following code copies the contents of floating-point register 5 bits 32-43 into Floating-Point Status

and Control Register Fields 0-2 and sets Condition Register Field 1 to reflect the result of the

operation:

312 Assembler Language Reference

Assume bits 32-63 of FPR 5

contains 0x2320 0000.

mtfsf. 0xE0,5

Floating-Point Status and Control Register Fields 0-2

now contain b’0010 0011 0010’.

Condition Register Field 1 now contains 0x2.

Related Information

Floating-Point Processor .

Interpreting the Contents of a Floating-Point Register .

mtfsfi (Move to FPSCR Field Immediate) Instruction

Purpose

Copies an immediate value into a specified Floating-Point Status and Control Register field.

Syntax

 Bits Value

0-5 63

6-8 BF

9-10 //

11-15 ///

16-19 U

20 /

21-30 134

31 Rc

 mtfsfi BF, I

mtfsfi. BF, I

Description

The mtfsfi instruction copies the immediate value specified by the I parameter into the Floating-Point

Status and Control Register field specified by BF. None of the other fields of the Floating-Point Status and

Control Register are affected.

The mtfsfi instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 1.

 Syntax Form FPSCR Bits Record Bit (Rc) Condition Register Field 1

mtfsfi None 0 None

mtfsfi. None 1 FX, FEX, VX, OX

The two syntax forms of the mtfsfi instruction never affect the Floating-Point Status and Control Register

fields. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception

(FX), Floating-Point Enabled Exception (FEX), Floating Invalid Operation Exception (VX), and

Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Chapter 8. Instruction Set 313

Note: When specifying FPSCR 0-3, some bits cannot be explicitly set or reset.

Parameters

 BF Specifies target Floating-Point Status and Control Register field for operation.

I Specifies source immediate value for operation.

Examples

1. The following code sets Floating-Point Status and Control Register Field 6 to b’0100’:

mtfsfi 6,4

Floating-Point Status and Control Register Field 6

is now b’0100’.

2. The following code sets Floating-Point Status and Control Register field 0 to b’0100’ and sets

Condition Register Field 1 to reflect the result of the operation:

mtfsfi. 0,1

Floating-Point Status and Control Register Field 0

is now b’0001’.

Condition Register Field 1 now contains 0x1.

Related Information

Floating-Point Processor .

Interpreting the Contents of a Floating-Point Register .

mtocrf (Move to One Condition Register Field) Instruction

Purpose

Copies the contents of a general-purpose register into one condition register field under control of a field

mask.

Syntax

 Bits Value

0-5 31

6-10 RT

11 /

12-19 FXM

20 /

21-30 144

31 /

 mtocrf “FXM” on page 315, “RS” on page 315

See “Extended Mnemonics of Condition Register Logical Instructions” on page 96 for more information.

Description

The mtocrf instruction copies the contents of source general-purpose register (GPR) RS into the condition

register under the control of field mask FXM.

314 Assembler Language Reference

Field mask FXM is defined as follows:

 Bit Description

12 CR 00-03 is updated with the contents of GPR RS 00-03.

13 CR 04-07 is updated with the contents of GPR RS 04-07.

14 CR 08-11 is updated with the contents of GPR RS 08-11.

15 CR 12-15 is updated with the contents of GPR RS 12-15.

16 CR 16-19 is updated with the contents of GPR RS 16-19.

17 CR 20-23 is updated with the contents of GPR RS 20-23.

18 CR 24-27 is updated with the contents of GPR RS 24-27.

19 CR 28-31 is updated with the contents of GPR RS 28-31.

The mtocrf instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

 FXM Specifies field mask.

RS Specifies source general-purpose register for operation.

Examples

The following code copies bits 00-03 of GPR 5 into Condition Register Field 0:

Assume GPR 5 contains 0x7542 FFEE.

Use the mask for Condition Register

Field 0 (0x80 = b’1000 0000’).

mtocrf 0x80,5

Condition Register Field 0 now contains b’0111’.

Related Information

“Fixed-Point Processor” on page 21.

“Branch Processor” on page 19.

“Fixed-Point Move to or from Special-Purpose Registers Instructions” on page 23.

mtspr (Move to Special-Purpose Register) Instruction

Purpose

Copies the contents of a general-purpose register into a special-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RS

11-20 spr

21-30 467

31 Rc

Chapter 8. Instruction Set 315

mtspr SPR, RS

Note: The special-purpose register is a split field.

See Extended Mnemonics of Moving from or to Special-Purpose Registers for more information.

Description

The mtspr instruction copies the contents of the source general-purpose register RS into the target

special-purpose register SPR.

The special-purpose register identifier SPR can have any of the values specified in the following table. The

order of the two 5-bit halves of the SPR number is reversed.

 SPR Values

Decimal spr5:9 spr0:4 Register Name Privileged

1 00000 00001 XER No

8 00000 01000 LR No

9 00000 01001 CTR No

18 00000 10010 DSISR Yes

19 00000 10011 DAR Yes

22 00000 10110 DEC Yes1

25 00000 11001 SDR1 Yes

26 00000 11010 SRR0 Yes

27 00000 11011 SRR1 Yes

272 01000 10000 SPRG0 Yes

273 01000 10001 SPRG1 Yes

274 01000 10010 SPRG2 Yes

275 01000 10011 SPRG3 Yes

282 01000 11010 EAR Yes

284 01000 11100 TBL Yes

285 01000 11101 TBU Yes

528 10000 10000 IBAT0U Yes

529 10000 10001 IBAT0L Yes

530 10000 10010 IBAT1U Yes

531 10000 10011 IBAT1L Yes

532 10000 10100 IBAT2U Yes

533 10000 10101 IBAT2L Yes

534 10000 10110 IBAT3U Yes

535 10000 10111 IBAT3L Yes

536 10000 11000 DBAT0U Yes

537 10000 11001 DBAT0L Yes

538 10000 11010 DBAT1U Yes

539 10000 11011 DBAT1L Yes

316 Assembler Language Reference

540 10000 11100 DBAT2U Yes

541 10000 11101 DBAT2L Yes

542 10000 11110 DBAT3U Yes

543 10000 11111 DBAT3L Yes

0 00000 00000 MQ2 No

20 00000 10100 RTCU2 Yes

21 00000 10101 RTCL2 Yes

1. Moving to the DEC register is privileged in the PowerPC architecture and in the POWER family

architecture. However, moving from the DEC register is privileged only in the PowerPC architecture.

2. 2Supported only in the POWER family architecture.

If the SPR field contains any value other than those listed in the SPR Values table, the instruction form is

invalid.

The mtspr instruction has one syntax form and does not affect the Fixed-Point Exception Register or

Condition Register Field 0.

Parameters

 SPR Specifies target special-purpose register for operation.

RS Specifies source general-purpose register for operation.

Examples

The following code copies the contents of GPR 5 into the Link Register:

Assume GPR 5 holds 0x1000 00FF.

mtspr 8,5

The Link Register now holds 0x1000 00FF.

Related Information

Fixed-Point Processor .

Fixed-Point Move to or from Special-Purpose Registers Instructions .

mul (Multiply) Instruction

Purpose

Multiplies the contents of two general-purpose registers and stores the result in a third general-purpose

register.

Note: The mul instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

Chapter 8. Instruction Set 317

Bits Value

21 OE

22-30 107

31 Rc

 POWER family

mul RT, RA, RB

mul. RT, RA, RB

mulo RT, RA, RB

mulo. RT, RA, RB

Description

The mul instruction multiplies the contents of general-purpose register (GPR) RA and GPR RB, and stores

bits 0-31 of the result in the target GPR RT and bits 32-63 of the result in the MQ Register.

The mul instruction has four syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

mul 0 None 0 None

mul. 0 None 1 LT,GT,EQ,SO

mulo 1 SO,OV 0 None

mulo. 1 SO,OV 1 LT,GT,EQ,SO

The four syntax forms of the mul instruction never affect the Carry bit (CA) in the Fixed-Point Exception

Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the instruction sets the Summary

Overflow (SO) and Overflow (OV) bits in the Fixed-Point Exception Register to 1 if the product is greater

than 32 bits. If the syntax form sets the Record (Rc) bit to 1, then the Less Than (LT) zero, Greater Than

(GT) zero and Equal To (EQ) zero bits in Condition Register Field 0 reflect the result in the low-order 32

bits of the MQ Register.

Parameters

 RT Specifies target general-purpose register where the result of operation is stored.

RA Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

1. The following code multiplies the contents of GPR 4 by the contents of GPR 10 and stores the result in

GPR 6 and the MQ Register:

Assume GPR 4 contains 0x0000 0003.

Assume GPR 10 contains 0x0000 0002.

mul 6,4,10

MQ Register now contains 0x0000 0006.

GPR 6 now contains 0x0000 0000.

2. The following code multiplies the contents of GPR 4 by the contents of GPR 10, stores the result in

GPR 6 and the MQ Register, and sets Condition Register Field 0 to reflect the result of the operation:

318 Assembler Language Reference

Assume GPR 4 contains 0x0000 4500.

Assume GPR 10 contains 0x8000 7000.

mul. 6,4,10

MQ Register now contains 0x1E30 0000.

GPR 6 now contains 0xFFFF DD80.

Condition Register Field 0 now contains 0x4.

3. The following code multiplies the contents of GPR 4 by the contents of GPR 10, stores the result in

GPR 6 and the MQ Register, and sets the Summary Overflow and Overflow bits in the Fixed-Point

Exception Register to reflect the result of the operation:

Assume GPR 4 contains 0x0000 4500.

Assume GPR 10 contains 0x8000 7000.

Assume XER = 0.

mulo 6,4,10

MQ Register now contains 0x1E30 0000.

GPR 6 now contains 0xFFFF DD80.

XER now contains 0xc000 0000.

4. The following code multiplies the contents of GPR 4 by the contents of GPR 10, stores the result in

GPR 6 and the MQ Register, and sets the Summary Overflow, Overflow, and Carry bits in the

Fixed-Point Exception Register and Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x0000 4500.

Assume GPR 10 contains 0x8000 7000.

Assume XER = 0.

mulo. 6,4,10

MQ Register now contains 0x1E30 0000.

GPR 6 now contains 0xFFFF DD80.

Condition Register Field 0 now contains 0x5.

XER now contains 0xc000 0000.

Related Information

The mulhw (Multiply High Word) instruction, mulhwu (Multiply High Word Unsigned) instruction, mulli or

muli (Multiply Low Immediate) instruction, mullw or muls (Multiply Low Word) instruction.

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

Using Milicode Routines .

mulhd (Multiply High Double Word) Instruction

Purpose

Multiply two 64-bit values together. Place the high-order 64 bits of the result into a register.

Syntax

 Bits Value

0-5 31

6-10 D

11-15 A

16-20 B

21 0

22-30 73

31 Rc

Chapter 8. Instruction Set 319

POWER family

mulhd RT, RA, RB (Rc=0)

mulhd. RT, RA, RB (Rc=1)

Description

The 64-bit operands are the contents of general purpose registers (GPR) RA and RB. The high-order 64

bits of the 128-bit product of the operands are placed into RT.

Both the operands and the product are interpreted as signed integers.

This instruction may execute faster on some implementations if RB contains the operand having the

smaller absolute value.

Parameters

 RT Specifies target general-purpose register for the result of the computation.

RA Specifies source general-purpose register for an operand.

RB Specifies source general-purpose register for an operand.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

mulhdu (Multiply High Double Word Unsigned) Instruction

Purpose

Multiply 2 unsigned 64-bit values together. Place the high-order 64 bits of the result into a register.

Syntax

 Bits Value

0-5 31

6-10 D

11-15 A

16-20 B

21 0

22-30 9

31 Rc

 POWER family

mulhdu RT, RA, RB (Rc=0)

mulhdu. RT, RA, RB (Rc=1)

Description

Both the operands and the product are interpreted as unsigned integers, except that if Rc = 1 (the mulhw.

instruction) the first three bits of the condition register 0 field are set by signed comparison of the result to

zero.

320 Assembler Language Reference

The 64-bit operands are the contents of RA and RB. The low-order 64 bits of the 128-bit product of the

operands are placed into RT.

Other registers altered:

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Note: The setting of CR0 bits LT, GT, and EQ is mode-dependent, and reflects overflow of the 64-bit

result.

This instruction may execute faster on some implementations if RB contains the operand having the

smaller absolute value.

Parameters

 RT Specifies target general-purpose register for the result of the computation.

RA Specifies source general-purpose register for the multiplicand.

RB Specifies source general-purpose register for the multiplier.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

mulhw (Multiply High Word) Instruction

Purpose

Computes the most significant 32 bits of the 64-bit product of two 32-bit integers.

Note: The mulhw instruction is supported only in the PowerPC architecture.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21 /

22-30 75

31 Rc

 PowerPC

mulhw RT, RA, RB

mulhw. RT, RA, RB

Description

The mulhw instruction multiplies the contents of general-purpose register (GPR) RA and GPR RB and

places the most significant 32 bits of the 64-bit product in the target GPR RT. Both the operands and the

product are interpreted as signed integers.

Chapter 8. Instruction Set 321

The mulhw instruction has two syntax forms. Each syntax form has a different effect on Condition

Register Field 0.

 Syntax Form Record Bit (Rc) Condition Register Field 0

mulhw 0 None

mulhw. 1 LT,GT,EQ,SO

If the syntax form sets the Record (Rc) bit to 1, then the Less Than (LT) zero, Greater Than (GT) zero and

Equal To (EQ) zero bits in Condition Register Field 0 reflect the result placed in GPR RT, and the

Summary Overflow (SO) bit is copied from the XER to the SO bit in Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where the result of operation is stored.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Examples

1. The following code multiplies the contents of GPR 4 by the contents of GPR 10 and stores the result in

GPR 6:

Assume GPR 4 contains 0x0000 0003.

Assume GPR 10 contains 0x0000 0002.

mulhw 6,4,10

GPR 6 now contains 0x0000 0000.

2. The following code multiplies the contents of GPR 4 by the contents of GPR 10, stores the result in

GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x0000 4500.

Assume GPR 10 contains 0x8000 7000.

Assume XER(SO) = 0.

mulhw. 6,4,10

GPR 6 now contains 0xFFFF DD80.

Condition Register Field 0 now contains 0x4.

Related Information

The mul (Multiply) instruction, mulhwu (Multiply High Word Unsigned) instruction, mulli or muli (Multiply

Low Immediate) instruction, mullw or muls (Multiply Low Word) instruction.

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

mulhwu (Multiply High Word Unsigned) Instruction

Purpose

Computes the most significant 32 bits of the 64-bit product of two unsigned 32-bit integers.

Note: The mulhwu instruction is supported only in the PowerPC architecture.

322 Assembler Language Reference

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21 /

22-30 11

31 Rc

 PowerPC

mulhwu RT, RA, RB

mulhwu. RT, RA, RB

Description

The mulhwu instruction multiplies the contents of general-purpose register (GPR) RA and GPR RB and

places the most significant 32 bits of the 64-bit product in the target GPR RT. Both the operands and the

product are interpreted as unsigned integers.

Note: Although the operation treats the result as an unsigned integer, the setting of the Condition

Register Field 0 for the Less Than (LT) zero, Greater Than (GT) zero, and Equal To (EQ) zero bits

are interpreted as signed integers.

The mulhwu instruction has two syntax forms. Each syntax form has a different effect on Condition

Register Field 0.

 Syntax Form Record Bit (Rc) Condition Register Field 0

mulhwu 0 None

mulhwu. 1 LT,GT,EQ,SO

If the syntax form sets the Record (Rc) bit to 1, then the Less Than (LT) zero, Greater Than (GT) zero and

Equal To (EQ) zero bits in Condition Register Field 0 reflect the result placed in GPR RT, and the

Summary Overflow (SO) bit is copied from the XER to the SO bit in Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Examples

1. The following code multiplies the contents of GPR 4 by the contents of GPR 10 and stores the result in

GPR 6:

Assume GPR 4 contains 0x0000 0003.

Assume GPR 10 contains 0x0000 0002.

mulhwu 6,4,10

GPR 6 now contains 0x0000 0000.

Chapter 8. Instruction Set 323

2. The following code multiplies the contents of GPR 4 by the contents of GPR 10, stores the result in

GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x0000 4500.

Assume GPR 10 contains 0x8000 7000.

Assume XER(SO) = 0.

mulhwu. 6,4,10

GPR 6 now contains 0x0000 2280.

Condition Register Field 0 now contains 0x4.

Related Information

The mul (Multiply) instruction, mulhw (Multiply High Word) instruction, mulli or muli (Multiply Low

Immediate) instruction, mullw or muls (Multiply Low Word) instruction.

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

mulld (Multiply Low Double Word) Instruction

Purpose

Multiply 2 64-bit values together. Place the low-order 64 bits of the result into a register.

Syntax

 Bits Value

0-5 31

6-10 D

11-15 A

16-20 B

21 OE

22-30 233

31 Rc

 POWER family

mulld RT, RA, RB (OE=0 Rc=0)

mulld. RT, RA, RB (OE=0 Rc=1)

mulldo RT, RA, RB (OE=1 Rc=0)

mulldo. RT, RA, RB (OE=1 Rc=1)

Description

The 64-bit operands are the contents of general purpose registers (GPR) RA and RB. The low-order 64

bits of the 128-bit product of the operands are placed into RT.

Both the operands and the product are interpreted as signed integers. The low-order 64 bits of the product

are independent of whether the operands are regarded as signed or unsigned 64-bit integers. If OE = 1

(the mulldo and mulldo. instructions), then OV is set if the product cannot be represented in 64 bits.

This instruction may execute faster on some implementations if RB contains the operand having the

smaller absolute value.

Other registers altered:

324 Assembler Language Reference

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Note: CR0 field may not reflect the infinitely precise result if overflow occurs (see XER below).

v XER:

Affected: SO, OV (if OE = 1)

Note: The setting of the affected bits in the XER is mode-independent, and reflects overflow of the

64-bit result.

Parameters

 RT Specifies target general-purpose register for the rsult of the computation.

RA Specifies source general-purpose register for an operand.

RB Specifies source general-purpose register for an operand.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

mulli or muli (Multiply Low Immediate) Instruction

Purpose

Multiplies the contents of a general-purpose register by a 16-bit signed integer and stores the result in

another general-purpose register.

Syntax

 Bits Value

0-5 07

6-10 RT

11-15 RA

16-31 SI

 PowerPC

mulli RT, RA, SI

 POWER family

muli RT, RA, SI

Description

The mulli and muli instructions sign extend the SI field to 32 bits and then multiply the extended value by

the contents of general-purpose register (GPR) RA. The least significant 32 bits of the 64-bit product are

placed in the target GPR RT.

The mulli and muli instructions have one syntax form and do not affect Condition Register Field 0 or the

Fixed-Point Exception Register.

Chapter 8. Instruction Set 325

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for operation.

SI Specifies 16-bit signed integer for operation.

Examples

The following code multiplies the contents of GPR 4 by 10 and places the result in GPR 6:

Assume GPR 4 holds 0x0000 3000.

mulli 6,4,10

GPR 6 now holds 0x0001 E000.

Related Information

The mul (Multiply) instruction, mulhw (Multiply High Word) instruction, mulhwu (Multiply High Word

Unsigned) instruction, mullw or muls (Multiply Low Word) instruction.

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

mullw or muls (Multiply Low Word) Instruction

Purpose

Computes the least significant 32 bits of the 64-bit product of two 32-bit integers.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21 OE

22-30 235

31 Rc

 PowerPC

mullw RT, RA, RB

mullw. RT, RA, RB

mullwo RT, RA, RB

mullwo. RT, RA, RB

 POWER family

muls RT, RA, RB

muls. RT, RA, RB

mulso RT, RA, RB

mulso. RT, RA, RB

326 Assembler Language Reference

Description

The mullw and muls instructions multiply the contents of general-purpose register (GPR) RA by the

contents of GPR RB, and place the least significant 32 bits of the result in the target GPR RT.

The mullw instruction has four syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

The muls instruction has four syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

mullw 0 None 0 None

mullw. 0 None 1 LT,GT,EQ

mullwo 1 SO,OV 0 None

mullwo. 1 SO,OV 1 LT,GT,EQ

muls 0 None 0 None

muls. 0 None 1 LT,GT,EQ

mulso 1 SO,OV 0 None

mulso. 1 SO,OV 1 LT,GT,EQ

The four syntax forms of the mullw instruction, and the four syntax forms of the muls instruction, never

affect the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Overflow

Exception (OE) bit to 1, the instruction sets the Summary Overflow (SO) and Overflow (OV) bits in the

Fixed-Point Exception Register to 1 if the result is too large to be represented in 32 bits. If the syntax form

sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,

Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

1. The following code multiplies the contents of GPR 4 by the contents of GPR 10 and stores the result in

GPR 6:

Assume GPR 4 holds 0x0000 3000.

Assume GPR 10 holds 0x0000 7000.

mullw 6,4,10

GPR 6 now holds 0x1500 0000.

2. The following code multiplies the contents of GPR 4 by the contents of GPR 10, stores the result in

GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 holds 0x0000 4500.

Assume GPR 10 holds 0x0000 7000.

Assume XER(SO) = 0.

mullw. 6,4,10

GPR 6 now holds 0x1E30 0000.

Condition Register Field 0 now contains 0x4.

Chapter 8. Instruction Set 327

3. The following code multiplies the contents of GPR 4 by the contents of GPR 10, stores the result in

GPR 6, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register to

reflect the result of the operation:

Assume GPR 4 holds 0x0000 4500.

Assume GPR 10 holds 0x0007 0000.

Assume XER = 0.

mullwo 6,4,10

GPR 6 now holds 0xE300 0000.

XER now contains 0xc000 0000

4. The following code multiplies the contents of GPR 4 by the contents of GPR 10, stores the result in

GPR 6, and sets the Summary Overflow, Overflow, and Carry bits in the Fixed-Point Exception

Register and Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 holds 0x0000 4500.

Assume GPR 10 holds 0x7FFF FFFF.

Assume XER = 0.

mullwo. 6,4,10

GPR 6 now holds 0xFFFF BB00.

XER now contains 0xc000 0000

Condition Register Field 0 now contains 0x9.

Related Information

The mul (Multiply) instruction, mulhw (Multiply High Word) instruction, mulhwu (Multiply High Word

Unsigned) instruction, mulli or muli (Multiply Low Immediate) instruction.

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

nabs (Negative Absolute) Instruction

Purpose

Negates the absolute value of the contents of a general-purpose register and stores the result in another

general-purpose register.

Note: The nabs instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 ///

21 OE

22-30 488

31 Rc

 POWER family

nabs RT, RA

nabs. RT, RA

nabso RT, RA

nabso. RT, RA

328 Assembler Language Reference

Description

The nabs instruction places the negative absolute value of the contents of general-purpose register (GPR)

RA into the target GPR RT.

The nabs instruction has four syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

nabs 0 None 0 None

nabs. 0 None 1 LT,GT,EQ,SO

nabso 1 SO,OV 0 None

nabso. 1 SO,OV 1 LT,GT,EQ,SO

The four syntax forms of the nabs instruction never affect the Carry bit (CA) in the Fixed-Point Exception

Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the Summary Overflow (SO) bit is

unchanged and the Overflow (OV) bit is set to zero. If the syntax form sets the Record (Rc) bit to 1, the

instruction affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary

Overflow (SO) bits in Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for operation.

Examples

1. The following code takes the negative absolute value of the contents of GPR 4 and stores the result in

GPR 6:

Assume GPR 4 contains 0x0000 3000.

nabs 6,4

GPR 6 now contains 0xFFFF D000.

2. The following code takes the negative absolute value of the contents of GPR 4, stores the result in

GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xFFFF FFFF.

nabs. 6,4

GPR 6 now contains 0xFFFF FFFF.

3. The following code takes the negative absolute value of the contents of GPR 4, stores the result in

GPR 6, and sets the Overflow bit in the Fixed-Point Exception Register to 0:

Assume GPR 4 contains 0x0000 0001.

nabso 6,4

GPR 6 now contains 0xFFFF FFFF.

4. The following code takes the negative absolute value of the contents of GPR 4, stores the result in

GPR 6, sets Condition Register Field 0 to reflect the result of the operation, and sets the Overflow bit

in the Fixed-Point Exception Register to 0:

Assume GPR 4 contains 0x8000 0000.

nabso 6,4

GPR 6 now contains 0x8000 0000.

Chapter 8. Instruction Set 329

Related Information

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

nand (NAND) Instruction

Purpose

Logically complements the result of ANDing the contents of two general-purpose registers and stores the

result in another general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 476

31 Rc

 nand RA, RS, RB

nand. RA, RS, RB

Description

The nand instruction logically ANDs the contents of general-purpose register (GPR) RS with the contents

of GPR RB and stores the complement of the result in the target GPR RA.

The nand instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

nand None None 0 None

nand. None None 1 LT,GT,EQ,SO

The two syntax forms of the nand instruction never affect the Fixed-Point Exception Register. If the syntax

form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,

Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

330 Assembler Language Reference

Examples

1. The following code complements the result of ANDing the contents of GPR 4 and GPR 7 and stores

the result in GPR 6:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 7 contains 0x789A 789B.

nand 6,4,7

GPR 6 now contains 0xEFFF CFFF.

2. The following code complements the result of ANDing the contents of GPR 4 and GPR 7, stores the

result in GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xB004 3000.

Assume GPR 7 contains 0x789A 789B.

nand. 6,4,7

GPR 6 now contains 0xCFFF CFFF.

Related Information

Fixed-Point Processor .

Fixed-Point Logical Instructions .

neg (Negate) Instruction

Purpose

Changes the arithmetic sign of the contents of a general-purpose register and places the result in another

general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 ///

21 OE

22-30 104

31 Rc

 neg RT, RA

neg. RT, RA

nego RT, RA

nego. RT, RA

Description

The neg instruction adds 1 to the one’s complement of the contents of a general-purpose register (GPR)

RA and stores the result in GPR RT.

If GPR RA contains the most negative number (that is, 0x8000 0000), the result of the instruction is the

most negative number and signals the Overflow bit in the Fixed-Point Exception Register if OE is 1.

The neg instruction has four syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

Chapter 8. Instruction Set 331

Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

neg 0 None 0 None

neg. 0 None 1 LT,GT,EQ,SO

nego 1 SO,OV 0 None

nego. 1 SO,OV 1 LT,GT,EQ,SO

The four syntax forms of the neg instruction never affect the Carry bit (CA) in the Fixed-Point Exception

Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the instruction affects the Summary

Overflow (SO) and Overflow (OV) bits in the Fixed-Point Exception Register. If the syntax form sets the

Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To

(EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for operation.

Examples

1. The following code negates the contents of GPR 4 and stores the result in GPR 6:

Assume GPR 4 contains 0x9000 3000.

neg 6,4

GPR 6 now contains 0x6FFF D000.

2. The following code negates the contents of GPR 4, stores the result in GPR 6, and sets Condition

Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x789A 789B.

neg. 6,4

GPR 6 now contains 0x8765 8765.

3. The following code negates the contents of GPR 4, stores the result in GPR 6, and sets the

Fixed-Point Exception Register Summary Overflow and Overflow bits to reflect the result of the

operation:

Assume GPR 4 contains 0x9000 3000.

nego 6,4

GPR 6 now contains 0x6FFF D000.

4. The following code negates the contents of GPR 4, stores the result in GPR 6, and sets Condition

Register Field 0 and the Fixed-Point Exception Register Summary Overflow and Overflow bits to reflect

the result of the operation:

Assume GPR 4 contains 0x8000 0000.

nego. 6,4

GPR 6 now contains 0x8000 0000.

Related Information

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

332 Assembler Language Reference

nor (NOR) Instruction

Purpose

Logically complements the result of ORing the contents of two general-purpose registers and stores the

result in another general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 124

31 Rc

 nor RA, RS, RB

nor. RA, RS, RB

See Extended Mnemonics of Fixed-Point Logical Instructions for more information.

Description

The nor instruction logically ORs the contents of general-purpose register (GPR) RS with the contents of

GPR RB and stores the complemented result in GPR RA.

The nor instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

nor None None 0 None

nor. None None 1 LT,GT,EQ,SO

The two syntax forms of the nor instruction never affect the Fixed-Point Exception Register. If the syntax

form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,

Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

1. The following code NORs the contents of GPR 4 and GPR 7 and stores the result in GPR 6:

Chapter 8. Instruction Set 333

Assume GPR 4 contains 0x9000 3000.

Assume GPR 6 contains 0x789A 789B.

nor 6,4,7

GPR 7 now contains 0x0765 8764.

2. The following code NORs the contents of GPR 4 and GPR 7, stores the result in GPR 6, and sets

Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xB004 3000.

Assume GPR 7 contains 0x789A 789B.

nor. 6,4,7

GPR 6 now contains 0x0761 8764.

Related Information

Fixed-Point Processor .

Fixed-Point Logical Instructions .

or (OR) Instruction

Purpose

Logically ORs the contents of two general-purpose registers and stores the result in another

general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 444

31 Rc

 or RA, RS, RB

or. RA, RS, RB

See Extended Mnemonics of Fixed-Point Logical Instructions for more information.

Description

The or instruction logically ORs the contents of general-purpose register (GPR) RS with the contents of

GPR RB and stores the result in GPR RA.

The or instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

or None None 0 None

or. None None 1 LT,GT,EQ,SO

334 Assembler Language Reference

The two syntax forms of the or instruction never affect the Fixed-Point Exception Register. If the syntax

form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,

Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

1. The following code logically ORs the contents of GPR 4 and GPR 7 and stores the result in GPR 6:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 7 contains 0x789A 789B.

or 6,4,7

GPR 6 now contains 0xF89A 789B.

2. The following code logically ORs the contents of GPR 4 and GPR 7, loads the result in GPR 6, and

sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xB004 3000.

Assume GPR 7 contains 0x789A 789B.

or. 6,4,7

GPR 6 now contains 0xF89E 789B.

Related Information

Fixed-Point Processor .

Fixed-Point Logical Instructions .

orc (OR with Complement) Instruction

Purpose

Logically ORs the contents of a general-purpose register with the complement of the contents of another

general-purpose register and stores the result in a third general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 412

31 Rc

 orc RA, RS, RB

orc. RA, RS, RB

Chapter 8. Instruction Set 335

Description

The orc instruction logically ORs the contents of general-purpose register (GPR) RS with the complement

of the contents of GPR RB and stores the result in GPR RA.

The orc instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

orc None None 0 None

orc. None None 1 LT,GT,EQ,SO

The two syntax forms of the orc instruction never affect the Fixed-Point Exception Register. If the syntax

form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,

Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

1. The following code logically ORs the contents of GPR 4 with the complement of the contents of GPR 7

and stores the result in GPR 6:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 7 contains 0x789A 789B, whose

complement is 0x8765 8764.

orc 6,4,7

GPR 6 now contains 0x9765 B764.

2. The following code logically ORs the contents of GPR 4 with the complement of the contents GPR 7,

stores the result in GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xB004 3000.

Assume GPR 7 contains 0x789A 789B, whose

complement is 0x8765 8764.

orc. 6,4,7

GPR 6 now contains 0xB765 B764.

Related Information

Fixed-Point Processor .

Fixed-Point Logical Instructions .

ori or oril (OR Immediate) Instruction

Purpose

Logically ORs the lower 16 bits of the contents of a general-purpose register with a 16-bit unsigned integer

and stores the result in another general-purpose register.

336 Assembler Language Reference

Syntax

 Bits Value

0-5 24

6-10 RS

11-15 RA

16-31 UI

 PowerPC

ori RA, RS, UI

 POWER family

oril RA, RS, UI

See Extended Mnemonics of Fixed-Point Logical Instructions for more information.

Description

The ori and oril instructions logically OR the contents of general-purpose register (GPR) RS with the

concatenation of x’0000’ and a 16-bit unsigned integer, UI, and place the result in GPR RA.

The ori and oril instructions have one syntax form and do not affect Condition Register Field 0 or the

Fixed-Point Exception Register.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

UI Specifies a16-bit unsigned integer for operation.

Examples

The following code ORs the lower 16 bits of the contents of GPR 4 with 0x0079 and stores the result in

GPR 6:

Assume GPR 4 contains 0x9000 3000.

ori 6,4,0x0079

GPR 6 now contains 0x9000 3079.

Related Information

Fixed-Point Processor .

Fixed-Point Logical Instructions .

oris or oriu (OR Immediate Shifted) Instruction

Purpose

Logically ORs the upper 16 bits of the contents of a general-purpose register with a 16-bit unsigned

integer and stores the result in another general-purpose register.

Chapter 8. Instruction Set 337

Syntax

 Bits Value

0-5 25

6-10 RS

11-15 RA

16-31 UI

 PowerPC

oris RA, RS, UI

 POWER family

oriu RA, RS, UI

Description

The oris and oriu instructions logically OR the contents of general-purpose register (GPR) RS with the

concatenation of a 16-bit unsigned integer, UI, and x’0000’ and store the result in GPR RA.

The oris and oriu instructions have one syntax form and do not affect Condition Register Field 0 or the

Fixed-Point Exception Register.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

UI Specifies a16-bit unsigned integer for operation.

Examples

The following code ORs the upper 16 bits of the contents of GPR 4 with 0x0079 and stores the result in

GPR 6:

Assume GPR 4 contains 0x9000 3000.

oris 6,4,0x0079

GPR 6 now contains 0x9079 3000.

Related Information

Fixed-Point Processor .

Fixed-Point Logical Instructions .

popcntbd (Population Count Byte Doubleword) Instruction

Purpose

Allows a program to count the number of one bits in a doubleword.

Note: The popcntbd instruction is supported for POWER5 architecture only.

338 Assembler Language Reference

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 ///

21–30 122

31 /

POWER5

 popcntbd “RS”, “RA”

Description

The popcntbd instruction counts the number of one bits in each byte of register RS and places the count

in to the corresponding byte of register RA. The number ranges from 0 to 8, inclusive.

The popcntbd instruction has one syntax form and does not affect any Special Registers.

Parameters

 RS Specifies source general-purpose register.

RA Specifies destination general-purpose register.

Related Information

“cntlzw or cntlz (Count Leading Zeros Word) Instruction” on page 162.

rac (Real Address Compute) Instruction

Purpose

Translates an effective address into a real address and stores the result in a general-purpose register.

Note: The rac instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 818

31 Rc

Chapter 8. Instruction Set 339

POWER family

rac RT, RA, RB

rac. RT, RA, RB

Description

The rac instruction computes an effective address (EA) from the sum of the contents of general-purpose

register (GPR) RA and the contents of GPR RB, and expands the EA into a virtual address.

If RA is not 0 and if RA is not RT, then the rac instruction stores the EA in GPR RA, translates the result

into a real address, and stores the real address in GPR RT.

Consider the following when using the rac instruction:

v If GPR RA is 0, then EA is the sum of the contents of GPR RB and 0.

v EA is expanded into its virtual address and translated into a real address, regardless of whether data

translation is enabled.

v If the translation is successful, the EQ bit in the condition register is set and the real address is placed

in GPR RT.

v If the translation is unsuccessful, the EQ bit is set to 0, and 0 is placed in GPR RT.

v If the effective address specifies an I/O address, the EQ bit is set to 0, and 0 is placed in GPR RT.

v The reference bit is set if the real address is not in the Translation Look-Aside buffer (TLB).

The rac instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

rac None None 0 None

rac None None 1 EQ,SO

The two syntax forms of the rac instruction do not affect the Fixed-Point Exception Register. If the syntax

form sets the Record (Rc) bit to 1, the instruction effects the Equal (EQ) and Summary Overflow (SO) bit

in Condition Register Field 0.

Note: The hardware may first search the Translation Look-Aside buffer for the address. If this fails,

the Page Frame table must be searched. In this case, it is not necessary to load a Translation

Look-Aside buffer entry.

Parameters

 RT Specifies the target general-purpose register where result of operation is stored.

RA Specifies the source general-purpose register for EA calculation.

RB Specifies the source general-purpose register for EA calculation.

Security

The rac instruction instruction is privileged.

Related Information

Processing and Storage

340 Assembler Language Reference

rfi (Return from Interrupt) Instruction

Purpose

Reinitializes the Machine State Register and continues processing after an interrupt.

Syntax

 Bits Value

0-5 19

6-10 ///

11-15 ///

16-20 ///

21-30 50

31 /

rfi

Description

The rfi instruction places bits 16-31 of Save Restore Register1 (SRR1) into bits 16-31 of the Machine

State Register (MSR), and then begins fetching and processing instructions at the address contained

inSave Restore Register0 (SRR0), using the new MSR value.

If the Link bit (LK) is set to 1, the contents of the Link Register are undefined.

The rfi instruction has one syntax form and does not affect Condition Register Field 0 or the Fixed-Point

Exception Register.

Security

The rfi instruction is privileged and synchronizing.

Related Information

Branch Processor .

rfid (Return from Interrupt Double Word) Instruction

Purpose

Reinitializes the Machine State Register and continues processing after an interrupt.

Syntax

 Bits Value

0-5 19

6-10 00000

11-15 00000

16-20 00000

21-30 18

31 0

Chapter 8. Instruction Set 341

rfid

Description

Bits 0, 48-55, 57-59, and 62-63 from the Save Restore Register 1 (SRR1) are placed into the

corresponding bits of the Machine State Register (MSR). If the new MSR value does not enable any

pending exceptions, then the next instruction is fetched under control of the new MSR value. If the SF bit

in the MSR is 1, the address found in bits 0-61 of SRR0 (fullword aligned address) becomes the next

instruction address. If the SF bit is zero, then bits 32-61 of SRR0, concatenated with zeros to create a

word-aligned adderss, are placed in the low-order 32-bits of SRR0. The high-order 32 bits are cleared. If

the new MSR value enables one or more pending exceptions, the exception associated with the highest

priority pending exception is generated; in this case the value placed into SRR0 by the exception

processing mechanism is the address of the instruction that would have been executed next had the

exception not occurred.

Other registers altered:

v MSR

Security

The rfid instruction is privileged and synchronizing.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation causes an

illegal instruction type program exception.

rfsvc (Return from SVC) Instruction

Purpose

Reinitializes the Machine State Register and starts processing after a supervisor call (svc).

Note: The rfsvc instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 19

6-10 ///

11-15 ///

16-20 ///

21-30 82

31 LK

POWER family

rfsvc

342 Assembler Language Reference

Description

The rfsvc instruction reinitializes the Machine State Register (MSR) and starts processing after a

supervisor call. This instruction places bits 16-31 of the Count Register into bits 16-31 of the Machine

State Register (MSR), and then begins fetching and processing instructions at the address contained in

the Link Register, using the new MSR value.

If the Link bit (LK) is set to 1, then the contents of the Link Register are undefined.

The rfsvc instruction has one syntax form and does not affect Condition Register Field 0 or the

Fixed-Point Exception Register.

Security

The rfsvc instruction is privileged and synchronizing.

Related Information

The svc (Supervisor Call) instruction.

Branch Processor .

System Call Instructions .

rldcl (Rotate Left Double Word then Clear Left) Instruction

Purpose

Rotate the contents of a general purpose register left by the number of bits specified by the contents of

another general purpose register. Generate a mask that is ANDed with the result of the shift operation.

Store the result of this operation in another general purpose register.

Syntax

 Bits Value

0-5 30

6-10 S

11-15 A

16-20 B

21-26 mb

27-30 8

31 Rc

 POWER family

rldcl RA, RS, RB, MB (Rc=0)

rldcl. RA, RS, RB, MB (Rc=1)

Description

The contents of general purpose register (GPR) RS are rotated left the number of bits specified by the

operand in the low-order six bits of RB. A mask is generated having 1 bits from bit MB through bit 63 and

0 bits elsewhere. The rotated data is ANDed with the generated mask and the result is placed into RA.

Note that the rldcl instruction can be used to extract and rotate bit fields using the methods shown below:

Chapter 8. Instruction Set 343

v To extract an n-bit field, that starts at variable bit position b in register RS, right-justified into RA

(clearing the remaining 64 - n bits of RA), set the low-order six bits of RB to b + n and MB = 64 - n.

v To rotate the contents of a register left by variable n bits, set the low-order six bits of RB to n and MB =

0, and to shift the contents of a register right, set the low-order six bits of RB to(64 - n), and MB = 0.

Other registers altered:

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Parameters

 RA Specifies the target general purpose register for the result of the instruction.

RS Specifies the source general purpose register containing the operand.

RB Specifies the source general purpose register containing the shift value.

MB Specifies the begin value (bit number) of the mask for the operation.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

rldicl (Rotate Left Double Word Immediate then Clear Left) Instruction

Purpose

This instruction should only be used on 64-bit PowerPC processors running a 64-bit application.

Syntax

 Bits Value

0-5 30

6-10 S

11-15 A

16-20 sh

21-26 mb

27-29 0

30 sh

31 Rc

 PowerPC64

rldicl rA, rS, rB, MB (Rc=0)

rldicl. rA, rS, rB, MB (Rc=1)

Description

The contents of rS are rotated left the number of bits specified by operand SH. A mask is generated

having 1 bits from bit MB through bit 63 and 0 bits elsewhere. The rotated data is ANDed with the

generated mask and the result is placed into rA.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

344 Assembler Language Reference

Note that rldicl can be used to extract, rotate, shift, and clear bit fields using the methods shown below:

To extract an n-bit field, that starts at bit position b in rS, right-justified into rA (clearing the remaining 64 -

n bits of rA), set SH = b + n and MB = 64 - n.

To rotate the contents of a register left by n bits, set SH = n and MB = 0; to rotate the contents of a

register right by n bits, set SH = (64 - n), and MB = 0.

To shift the contents of a register right by n bits, set SH = 64 - n and MB = n.

To clear the high-order n bits of a register, set SH = 0 and MB = n.

Other registers altered:

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Parameters

 rA ***DESCRIPTION***

rS ***DESCRIPTION***

rB ***DESCRIPTION***

MB ***DESCRIPTION***

Examples

Related Information

rldcr (Rotate Left Double Word then Clear Right) Instruction

Purpose

Rotate the contents of a general purpose register left by the number of bits specified by the contents of

another general purpose register. Generate a mask that is ANDed with the result of the shift operation.

Store the result of this operation in another general purpose register.

Syntax

 Bits Value

0-5 30

6-10 S

11-15 A

16-20 B

21-26 me

27-30 9

31 Rc

 POWER family

rldcr RA, RS, RB, ME (Rc=0)

rldcr. RA, RS, RB, ME (Rc=1)

Chapter 8. Instruction Set 345

Description

The contents of general purpose register (GPR) RS are rotated left the number of bits specified by the

low-order six bits of RB. A mask is generated having 1 bits from bit 0 through bit ME and 0 bits elsewhere.

The rotated data is ANDed with the generated mask and the result is placed into RA.

Note that rldcr can be used to extract and rotate bit fields using the methods shown below:

v To extract an n-bit field, that starts at variable bit position b in register RS, left-justified into RA (clearing

the remaining 64 - n bits of RA), set the low-order six bits of RB to b and ME = n - 1.

v To rotate the contents of a register left by variable n bits, set the low-order six bits of RB to n and ME =

63, and to shift the contents of a register right, set the low-order six bits of RB to(64 - n), and ME = 63.

Other registers altered:

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Parameters

RS SH Specifies shift value for operation. MB Specifies begin value of mask for operation. ME BM

Specifies value of 32-bit mask

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

RB Specifies the source general purpose register containing the shift value.

ME Specifies end value of mask for operation.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

rldic (Rotate Left Double Word Immediate then Clear) Instruction

Purpose

The contents of a general purpose register are rotated left a specified number of bits, then masked with a

bit-field to clear some number of low-order and high-order bits. The result is placed in another general

purpose register.

Syntax

 Bits Value

0-5 30

6-10 S

11-15 A

16-20 sh

21-26 mb

27-29 2

30 sh

31 Rc

346 Assembler Language Reference

POWER family

rldicl RA, RS, SH, MB (Rc=0)

rldicl. RA, RS, SH, MB (Rc=1)

Description

The contents of general purpose register (GPR) RS are rotated left the number of bits specified by

operand SH. A mask is generated having 1 bits from bit MB through bit 63 - SH and 0 bits elsewhere. The

rotated data is ANDed with the generated mask and the result is placed into GPR RA.

Note that rldic can be used to clear and shift bit fields using the methods shown below:

v To clear the high-order b bits of the contents of a register and then shift the result left by n bits, set SH

= n and MB = b - n.

v To clear the high-order n bits of a register, set SH = 0 and MB = n.

Other registers altered:

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Parameters

 RA Specifies the target general purpose register for the result of the instruction.

RS Specifies the source general purpose register containing the operand.

SH Specifies the (immediate) shift value for the operation.

MB Specifies the begin value of the bit-mask for the operation.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

rldicl (Rotate Left Double Word Immediate then Clear Left) Instruction

Purpose

Rotate the contents of a general purpose register left by a specified number of bits, clearing a specified

number of high-order bits. The result is placed in another general purpose register.

Syntax

 Bits Value

0-5 30

6-10 S

11-15 A

16-20 sh

21-26 mb

27-29 0

30 sh

31 Rc

Chapter 8. Instruction Set 347

POWER family

rldicl RA, RS, SH, MB (Rc=0)

rldicl. RA, RS, SH, MB (Rc=1)

Description

The contents of general purpose register RS are rotated left the number of bits specified by operand SH. A

mask is generated containing 1 bits from bit MB through bit 63 and 0 bits elsewhere. The rotated data is

ANDed with the generated mask and the result is placed into GPR RA.

Note that rldicl can be used to extract, rotate, shift, and clear bit fields using the methods shown below:

v To extract an n-bit field, which starts at bit position b in RS, right-justified into GPR RA (clearing the

remaining 64 - n bits of GPR RA), set SH = b + n and MB = 64 - n.

v To rotate the contents of a register left by n bits, set SH = n and MB = 0; to rotate the contents of a

register right by n bits, set SH = (64 - n), and MB = 0.

v To shift the contents of a register right by n bits, set SH = 64 - n and MB = n.

v To clear the high-order n bits of a register, set SH = 0 and MB = n.

Other registers altered:

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Parameters

 RA Specifies the target general purpose register for the result of the instruction.

RS Specifies the source general purpose register containing the operand.

SH Specifies the (immediate) shift value for the operation.

MB Specifies the begin value (bit number) of the mask for the operation.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

rldicr (Rotate Left Double Word Immediate then Clear Right)

Instruction

Purpose

Rotate the contents of a general purpose register left by the number of bits specified by an immediate

value. Clear a specified number of low-order bits. Place the results in another general purpose register.

Syntax

 Bits Value

0-5 30

6-10 S

11-15 A

16-20 sh

21-26 me

348 Assembler Language Reference

Bits Value

27-29 1

30 sh

31 Rc

 POWER family

rldicr RA, RS, SH, MB (Rc=0)

rldicr. RA, RS, SH, MB (Rc=1)

Description

The contents of general purpose register (GPR) RS are rotated left the number of bits specified by

operand SH. A mask is generated having 1 bits from bit 0 through bit ME and 0 bits elsewhere. The

rotated data is ANDed with the generated mask and the result is placed into GPR RA.

Note that rldicr can be used to extract, rotate, shift, and clear bit fields using the methods shown below:

v To extract an n-bit field, that starts at bit position b in GPR RS, left-justified into GPR RA (clearing the

remaining 64 - n bits of GPR RA), set SH = b and ME = n - 1.

v To rotate the contents of a register left (right) by n bits, set SH = n (64 - n) and ME = 63.

v To shift the contents of a register left by n bits, by setting SH = n and ME = 63 - n.

v To clear the low-order n bits of a register, by setting SH = 0 and ME = 63 - n.

Other registers altered:

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Parameters

 RA Specifies the target general purpose register for the result of the instruction.

RS Specifies the source general purpose register containing the operand.

SH Specifies the (immediate) shift value for the operation.

ME Specifies the end value (bit number) of the mask for the operation.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

rldimi (Rotate Left Double Word Immediate then Mask Insert)

Instruction

Purpose

The contents of a general purpose register are rotated left a specified number of bits. A generated mask is

used to insert a specified bit-field into the corresponding bit-field of another general purpose register.

Syntax

 Bits Value

0-5 30

Chapter 8. Instruction Set 349

Bits Value

6-10 S

11-15 A

16-20 sh

2126 mb

27-29 3

30 sh

31 Rc

 POWER family

rldimi RA, RS, SH, MB (Rc=0)

rldimi. RA, RS, SH, MB (Rc=1)

Description

The contents of general purpose register (GPR) RS are rotated left the number of bits specified by

operand SH. A mask is generated having 1 bits from bit MB through bit 63 - SH and 0 bits elsewhere. The

rotated data is inserted into RA under control of the generated mask.

Note that rldimi can be used to insert an n-bit field, that is right-justified in RS, into RA starting at bit

position b, by setting SH = 64 - (b + n) and MB = b.

Other registers altered:

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Parameters

 RA Specifies the target general purpose register for the result of the instruction.

RS Specifies the source general purpose register containing the operand.

SH Specifies the (immediate) shift value for the operation.

MB Specifies the begin value of the bit-mask for the operation.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

rlmi (Rotate Left Then Mask Insert) Instruction

Purpose

Rotates the contents of a general-purpose register to the left by the number of bits specified in another

general-purpose register and stores the result in a third general-purpose register under the control of a

generated mask.

Note: The rlmi instruction is supported only in the POWER family architecture.

350 Assembler Language Reference

Syntax

 Bits Value

0-5 22

6-10 RS

11-15 RA

16-20 RB

21-25 MB

26-30 ME

31 Rc

 POWER family

rlmi RA, RS, RB, MB, ME

rlmi. RA, RS, RB, MB, ME

rlmi RA, RS, RB, BM

rlmi. RA, RS, RB, BM

See Extended Mnemonics of Fixed-Point Rotate and Shift Instructions for more information.

Description

The rlmi instruction rotates the contents of the source general-purpose register (GPR) RS to the left by

the number of bits specified by bits 27-31 of GPR RB and then stores the rotated data in GPR RA under

control of a 32-bit generated mask defined by the values in Mask Begin (MB) and Mask End (ME).

Consider the following when using the rlmi instruction:

v If a mask bit is 1, the instruction places the associated bit of rotated data in GPR RA; if a mask bit is 0,

the GPR RA bit remains unchanged.

v If the MB value is less than the ME value + 1, then the mask bits between and including the starting

point and the end point are set to ones. All other bits are set to zeros.

v If the MB value is the same as the ME value + 1, then all 32 mask bits are set to ones.

v If the MB value is greater than the ME value + 1, then all of the mask bits between and including the

ME value +1 and the MB value -1 are set to zeros. All other bits are set to ones.

The parameter BM can also be used to specify the mask for this instruction. The assembler will generate

the MB and ME parameters from BM.

The rlmi instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

rlmi None None 0 None

rlmi. None None 1 LT,GT,EQ,SO

The two syntax forms of the rlmi instruction never affect the Fixed-Point Exception Register. If the syntax

form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,

Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Chapter 8. Instruction Set 351

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

RB Specifies general-purpose register that contains number of bits for rotation of data.

MB Specifies begin value of mask for operation.

ME Specifies end value of mask for operation.

BM Specifies value of 32-bit mask.

Examples

1. The following code rotates the contents of GPR 4 by the value contained in bits 27-31 in GPR 5 and

stores the masked result in GPR 6:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 5 contains 0x0000 0002.

Assume GPR 6 contains 0xFFFF FFFF.

rlmi 6,4,5,0,0x1D

GPR 6 now contains 0x4000 C003.

Under the same conditions

rlmi 6,4,5,0xFFFFFFFC

will produce the same result.

2. The following code rotates the contents of GPR 4 by the value contained in bits 27-31 in GPR 5,

stores the masked result in GPR 6, and sets Condition Register Field 0 to reflect the result of the

operation:

Assume GPR 4 contains 0xB004 3000.

Assume GPR 5 contains 0x0000 0002.

GPR 6 is the target register and contains 0xFFFF FFFF.

rlmi. 6,4,5,0,0x1D

GPR 6 now contains 0xC010 C003.

CRF 0 now contains 0x8.

Under the same conditions

rlmi. 6,4,5,0xFFFFFFFC

will produce the same result.

Related Information

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

rlwimi or rlimi (Rotate Left Word Immediate Then Mask Insert)

Instruction

Purpose

Rotates the contents of a general-purpose register to the left by a specified number of bits and stores the

result in another general-purpose register under the control of a generated mask.

Syntax

 Bits Value

0-5 20

6-10 RS

11-15 RA

16-20 SH

352 Assembler Language Reference

Bits Value

21-25 ME

26-30 MB

31 Rc

 PowerPC

rlwimi RA, RS, SH, MB, ME

rlwimi. RA, RS, SH, MB, ME

rlwimi RA, RS, SH, BM

rlwimi. RA, RS, SH, BM

 POWER family

rlimi RA, RS, SH, MB, ME

rlimi. RA, RS, SH, MB, ME

rlimi RA, RS, SH, BM

rlimi. RA, RS, SH, BM

See Extended Mnemonics of Fixed-Point Rotate and Shift Instructions for more information.

Description

The rlwimi and rlimi instructions rotate left the contents of the source general-purpose register (GPR) RS

by the number of bits by the SH parameter and then store the rotated data in GPR RA under control of a

32-bit generated mask defined by the values in Mask Begin (MB) and Mask End (ME). If a mask bit is 1,

the instructions place the associated bit of rotated data in GPR RA; if a mask bit is 0, the GPR RA bit

remains unchanged.

Consider the following when using the rlwimi and rlimi instructions:

v If the MB value is less than the ME value + 1, then the mask bits between and including the starting

point and the end point are set to ones. All other bits are set to zeros.

v If the MB value is the same as the ME value + 1, then all 32 mask bits are set to ones.

v If the MB value is greater than the ME value + 1, then all of the mask bits between and including the

ME value +1 and the MB value -1 are set to zeros. All other bits are set to ones.

The BM parameter can also be used to specify the mask for these instructions. The assembler will

generate the MB and ME parameters from the BM value.

The rlwimi and rlimi instructions each have two syntax forms. Each syntax form has a different effect on

Condition Register Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

rlwimi None None 0 None

rlwimi. None None 1 LT,GT,EQ,SO

rlimi None None 0 None

rlimi. None None 1 LT,GT,EQ,SO

The syntax forms of the rlwimi and rlimi instructions never affect the Fixed-Point Exception Register. If

the syntax form sets the Record (Rc) bit to 1, the instructions affect the Less Than (LT) zero, Greater Than

(GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Chapter 8. Instruction Set 353

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

SH Specifies shift value for operation.

MB Specifies begin value of mask for operation.

ME Specifies end value of mask for operation.

BM Specifies value of 32-bit mask.

Examples

1. The following code rotates the contents of GPR 4 to the left by 2 bits and stores the masked result in

GPR 6:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 6 contains 0x0000 0003.

rlwimi 6,4,2,0,0x1D

GPR 6 now contains 0x4000 C003.

Under the same conditions

rlwimi 6,4,2,0xFFFFFFFC

will produce the same result.

2. The following code rotates the contents of GPR 4 to the left by 2 bits, stores the masked result in GPR

6, and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x789A 789B.

Assume GPR 6 contains 0x3000 0003.

rlwimi. 6,4,2,0,0x1A

GPR 6 now contains 0xE269 E263.

CRF 0 now contains 0x8.

Under the same conditions

rlwimi. 6,4,2,0xFFFFFFE0

will produce the same result.

Related Information

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

rlwinm or rlinm (Rotate Left Word Immediate Then AND with Mask)

Instruction

Purpose

Logically ANDs a generated mask with the result of rotating left by a specified number of bits in the

contents of a general-purpose register.

Syntax

 Bits Value

0-5 21

6-10 RS

11-15 RA

16-20 SH

21-25 MB

26-30 ME

354 Assembler Language Reference

Bits Value

31 Rc

 PowerPC

rlwinm RA, RS, SH, MB, ME

rlwinm. RA, RS, SH, MB, ME

rlwinm RA, RS, SH, BM

rlwinm. RA, RS, SH, BM

 POWER family

rlinm RA, RS, SH, MB, ME

rlinm. RA, RS, SH, MB, ME

rlinm RA, RS, SH, BM

rlinm. RA, RS, SH, BM

See Extended Mnemonics of Fixed-Point Rotate and Shift Instructions for more information.

Description

The rlwinm and rlinm instructions rotate left the contents of the source general-purpose register (GPR)

RS by the number of bits specified by the SH parameter, logically AND the rotated data with a 32-bit

generated mask defined by the values in Mask Begin (MB) and Mask End (ME), and store the result in

GPR RA.

Consider the following when using the rlwinm and rlinm instructions:

v If the MB value is less than the ME value + 1, then the mask bits between and including the starting

point and the end point are set to ones. All other bits are set to zeros.

v If the MB value is the same as the ME value + 1, then all 32 mask bits are set to ones.

v If the MB value is greater than the ME value + 1, then all of the mask bits between and including the

ME value +1 and the MB value -1 are set to zeros. All other bits are set to ones.

The BM parameter can also be used to specify the mask for these instructions. The assembler will

generate the MB and ME parameters from the BM value.

The rlwinm and rlinm instructions each have two syntax forms. Each syntax form has a different effect on

Condition Register Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

rlwinm None None 0 None

rlwinm. None None 1 LT,GT,EQ,SO

rlinm None None 0 None

rlinm. None None 1 LT,GT,EQ,SO

The syntax forms of the rlwinm and rlinm instructions never affect the Fixed-Point Exception Register. If

the syntax form sets the Record (Rc) bit to 1, the instructions affect the Less Than (LT) zero, Greater Than

(GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

Chapter 8. Instruction Set 355

RS Specifies source general-purpose register for operation.

SH Specifies shift value for operation.

MB Specifies begin value of mask for operation.

ME Specifies end value of mask for operation.

BM Specifies value of 32-bit mask.

Examples

1. The following code rotates the contents of GPR 4 to the left by 2 bits and logically ANDs the result with

a mask of 29 ones:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 6 contains 0xFFFF FFFF.

rlwinm 6,4,2,0,0x1D

GPR 6 now contains 0x4000 C000.

Under the same conditions

rlwinm 6,4,2,0xFFFFFFFC

will produce the same result.

2. The following code rotates the contents of GPR 4 to the left by 2 bits, logically ANDs the result with a

mask of 29 ones, and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xB004 3000.

Assume GPR 6 contains 0xFFFF FFFF.

rlwinm. 6,4,2,0,0x1D

GPR 6 now contains 0xC010 C000.

CRF 0 now contains 0x8.

Under the same conditions

rlwinm. 6,4,2,0xFFFFFFFC

will produce the same result.

Related Information

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

rlwnm or rlnm (Rotate Left Word Then AND with Mask) Instruction

Purpose

Rotates the contents of a general-purpose register to the left by the number of bits specified in another

general-purpose register, logically ANDs the rotated data with the generated mask, and stores the result in

a third general-purpose register.

Syntax

 Bits Value

0-5 23

6-10 RS

11-15 RA

16-20 RB

21-25 MB

26-30 ME

31 Rc

356 Assembler Language Reference

PowerPC

rlwnm RA, RS, RB, MB, ME

rlwnm. RA, RS, RB, MB, ME

rlwnm RA, RS, SH, BM

rlwnm. RA, RS, SH, BM

 POWER family

rlnm RA, RS, RB, MB, ME

rlnm. RA, RS, RB, MB, ME

rlnm RA, RS, SH, BM

rlnm. RA, RS, SH, BM

See Extended Mnemonics of Fixed-Point Rotate and Shift Instructions for more information.

Description

The rlwnm and rlnm instructions rotate the contents of the source general-purpose register (GPR) RS to

the left by the number of bits specified by bits 27-31 of GPR RB, logically AND the rotated data with a

32-bit generated mask defined by the values in Mask Begin (MB) and Mask End (ME), and store the result

in GPR RA.

Consider the following when using the rlwnm and rlnm instructions:

v If the MB value is less than the ME value + 1, then the mask bits between and including the starting

point and the end point are set to ones. All other bits are set to zeros.

v If the MB value is the same as the ME value + 1, then all 32 mask bits are set to ones.

v If the MB value is greater than the ME value + 1, then all of the mask bits between and including the

ME value +1 and the MB value - 1 are set to zeros. All other bits are set to ones.

The BM parameter can also be used to specify the mask for these instructions. The assembler will

generate the MB and ME parameters from the BM value.

The rlwnm and rlnm instructions each have two syntax forms. Each syntax form has a different effect on

Condition Register Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

rlwnm None None 0 None

rlwnm. None None 1 LT,GT,EQ,SO

rlnm None None 0 None

rlnm. None None 1 LT,GT,EQ,SO

The syntax forms of the rlwnm and rlnm instructions never affect the Fixed-Point Exception Register. If

the syntax form sets the Record (Rc) bit to 1, the instructions affect the Less Than (LT) zero, Greater Than

(GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

RB Specifies general-purpose register that contains number of bits for rotation of data.

MB Specifies begin value of mask for operation.

ME Specifies end value of mask for operation.

Chapter 8. Instruction Set 357

SH Specifies shift value for operation.

BM Specifies value of 32-bit mask.

Examples

1. The following code rotates the contents of GPR 4 to the left by 2 bits, logically ANDs the result with a

mask of 29 ones, and stores the result in GPR 6:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 5 contains 0x0000 0002.

Assume GPR 6 contains 0xFFFF FFFF.

rlwnm 6,4,5,0,0x1D

GPR 6 now contains 0x4000 C000.

Under the same conditions

rlwnm 6,4,5,0xFFFFFFFC

will produce the same result.

2. The following code rotates GPR 4 to the left by 2 bits, logically ANDs the result with a mask of 29

ones, stores the result in GPR 6, and sets Condition Register Field 0 to reflect the result of the

operation:

Assume GPR 4 contains 0xB004 3000.

Assume GPR 5 contains 0x0000 0002.

Assume GPR 6 contains 0xFFFF FFFF.

rlwnm. 6,4,5,0,0x1D

GPR 6 now contains 0xC010 C000.

CRF 0 now contains 0x8.

Under the same conditions

rlwnm. 6,4,5,0xFFFFFFFC

will produce the same result.

Related Information

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

rrib (Rotate Right and Insert Bit) Instruction

Purpose

Rotates bit 0 in a general-purpose register to the right by the number of bits specified by another

general-purpose register and stores the rotated bit in a third general-purpose register.

Note: The rrib instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 537

31 Rc

358 Assembler Language Reference

POWER family

rrib RA, RS, RB

rrib. RA, RS, RB

Description

The rrib instruction rotates bit 0 of the source general-purpose register (GPR) RS to the right by the

number of bits specified by bits 27-31 of GPR RB and then stores the rotated bit in GPR RA.

The rrib instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

rrib None None 0 None

rrib. None None 1 LT,GT,EQ,SO

The two syntax forms of the rrib instruction never affect the Fixed-Point Exception Register. If the syntax

form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,

Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

RB Specifies general-purpose register that contains the number of bits for rotation of data.

Examples

1. The following code rotates bit 0 of GPR 5 to the right by 4 bits and stores its value in GPR 4:

Assume GPR 5 contains 0x0000 0000.

Assume GPR 6 contains 0x0000 0004.

Assume GPR 4 contains 0xFFFF FFFF.

rrib 4,5,6

GPR 4 now contains 0xF7FF FFFF.

2. The following code rotates bit 0 of GPR 5 to the right by 4 bits, stores its value in GPR 4, and sets

Condition Register Field 0 to reflect the result of the operation:

Assume GPR 5 contains 0xB004 3000.

Assume GPR 6 contains 0x0000 0004.

Assume GPR 4 contains 0x0000 0000.

rrib. 4,5,6

GPR 4 now contains 0x0800 0000.

Related Information

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

Chapter 8. Instruction Set 359

sc (System Call) Instruction

Purpose

Calls the system to provide a service.

Note: The sc instruction is supported only in the PowerPC architecture.

Syntax

 Bits Value

0-5 17

6-10 ///

11-15 ///

16-19 ///

20-26 LEV

27-29 ///

30 1

31 /

PowerPC

 sc “LEV”

Description

The sc instruction causes a system call interrupt. The effective address (EA) of the instruction following

the sc instruction is placed into the Save Restore Register 0 (SRR0). Bits 0, 5-9, and 16-31 of the

Machine State Register (MSR) are placed into the corresponding bits of Save Restore Register 1 (SRR1).

Bits 1-4 and 10-15 of SRR1 are set to undefined values.

The sc instruction serves as both a basic and an extended mnemonic. In the extended form, the LEV field

is omitted and assumed to be 0.

The sc instruction has one syntax form. The syntax form does not affect the Machine State Register.

Note: The sc instruction has the same op code as the “svc (Supervisor Call) Instruction” on page 446.

Parameters

 LEV Must be 0 or 1.

Related Information

“svc (Supervisor Call) Instruction” on page 446.

“Branch Processor” on page 19

“System Call Instruction” on page 20

“Functional Differences for POWER family and PowerPC Instructions” on page 114

360 Assembler Language Reference

scv (System Call Vectored) Instruction

Purpose

Calls the system to provide a service.

Note: The scv instruction is supported only in the PowerPC architecture.

Syntax

 Bits Value

0-5 17

6-10 ///

11-15 ///

16-19 ///

20-26 LEV

27-29 ///

30 0

31 1

PowerPC

 scv “LEV”

Description

The scv instruction causes a system call interrupt. The effective address (EA) of the instruction following

the scv instruction is placed into the Link Register. Bits 0-32, 37-41, and 48-63 of the Machine State

Register (MSR) are placed into the corresponding bits of Count Register. Bits 33-36 and 42-47 of the

Count Register are set to undefined values.

The scv instruction has one syntax form. The syntax form does not affect the Machine State Register.

Note: The scv instruction has the same op code as the “svc (Supervisor Call) Instruction” on page 446.

Parameters

 LEV Must be 0 or 1.

Related Information

“svc (Supervisor Call) Instruction” on page 446.

“Branch Processor” on page 19.

“System Call Instruction” on page 20.

“Functional Differences for POWER family and PowerPC Instructions” on page 114.

Chapter 8. Instruction Set 361

si (Subtract Immediate) Instruction

Purpose

Subtracts the value of a signed integer from the contents of a general-purpose register and places the

result in a general-purpose register.

Syntax

 Bits Value

0-5 12

6-10 RT

11-15 RA

16-31 SI

 si RT, RA, SINT

Description

The si instruction subtracts the 16-bit signed integer specified by the SINT parameter from the contents of

general-purpose register (GPR) RA and stores the result in the target GPR RT. This instruction has the

same effect as the ai instruction used with a negative SINT value. The assembler negates SINT and

places this value (SI) in the machine instruction:

ai RT,RA,-SINT

The si instruction has one syntax form and can set the Carry Bit of the Fixed-Point Exception Register; it

never affects Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register for operation.

RA Specifies source general-purpose register for operation.

SINT Specifies 16-bit signed integer for operation.

SI Specifies the negative of the SINT value.

Examples

The following code subtracts 0xFFFF F800 from the contents of GPR 4, stores the result in GPR 6, and

sets the Carry bit in the Fixed-Point Exception Register to reflect the result of the operation:

Assume GPR 4 contains 0x0000 0000

si 6,4,0xFFFFF800

GPR 6 now contains 0x0000 0800

This instruction has the same effect as

ai 6,4,-0xFFFFF800.

Related Information

The addic or ai (Add Immediate Carrying) instruction.

Branch Processor .

Fixed-Point Arithmetic Instructions .

362 Assembler Language Reference

si. (Subtract Immediate and Record) Instruction

Purpose

Subtracts the value of a signed integer from the contents of a general-purpose register and places the

result in a second general-purpose register.

Syntax

 Bits Value

0-5 13

6-10 RT

11-15 RA

16-31 SI

 si. RT, RA, SINT

Description

The si. instruction subtracts the 16-bit signed integer specified by the SINT parameter from the contents of

general-purpose register (GPR) RA and stores the result into the target GPR RT. This instruction has the

same effect as the ai. instruction used with a negative SINT. The assembler negates SINT and places this

value (SI) in the machine instruction:

ai. RT,RA,-SINT

The si. instruction has one syntax form and can set the Carry Bit of the Fixed-Point Exception Register.

This instruction also affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, or

Summary Overflow (SO) bit in Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register for operation.

RA Specifies source general-purpose register for operation.

SINT Specifies 16-bit signed integer for operation.

SI Specifies the negative of the SINT value.

Examples

The following code subtracts 0xFFFF F800 from the contents of GPR 4, stores the result in GPR 6, and

sets the Carry bit in the Fixed-Point Exception Register and Condition Register Field 0 to reflect the result

of the operation:

Assume GPR 4 contains 0xEFFF FFFF.

si. 6,4,0xFFFFF800

GPR 6 now contains 0xF000 07FF.

This instruction has the same effect as

ai. 6,4,-0xFFFFF800.

Related Information

The addic. or ai. (Add Immediate Carrying and Record) instruction.

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

Chapter 8. Instruction Set 363

sld (Shift Left Double Word) Instruction

Purpose

Shift the contents of a general purpose register left by the number of bits specified by the contents of

another general purpose register.

Syntax

 Bits Value

0-5 31

6-10 S

11-15 A

16-20 B

21-30 27

31 Rc

 POWER family

sld RA, RS, RB (OE=0 Rc=0)

sld. RA, RS, RB (OE=0 Rc=1)

Description

The contents of general purpose register (GPR) RS are shifted left the number of bits specified by the

low-order seven bits of GPR RB. Bits shifted out of position 0 are lost. Zeros are supplied to the vacated

positions on the right. The result is placed into GPR RA. Shift amounts from 64 to 127 give a zero result.

Other registers altered:

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Parameters

 RA Specifies target general-purpose register for the result of the operation.

RS Specifies source general-purpose register containing the operand for thr shift operation.

RB The low-order seven bits specify the distance to shift the operand.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

sle (Shift Left Extended) Instruction

Purpose

Shifts the contents of a general-purpose register to the left by a specified number of bits, puts a copy of

the rotated data in the MQ Register, and places the result in another general-purpose register.

Note: The sle instruction is supported only in the POWER family architecture.

364 Assembler Language Reference

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 153

31 Rc

 POWER family

sle RA, RS, RB

sle. RA, RS, RB

Description

The sle instruction rotates the contents of the source general-purpose register (GPR) RS to the left by N

bits, where N is the shift amount specified in bits 27-31 of GPR RB. The instruction also stores the rotated

word in the MQ Register and the logical AND of the rotated word and the generated mask in GPR RA.

The mask consists of 32 minus N ones followed by N zeros.

The sle instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

sle None None 0 None

sle. None None 1 LT,GT,EQ,SO

The two syntax forms of the sle instruction never affect the Fixed-Point Exception Register. If the syntax

form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,

Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

1. The following code rotates the contents of GPR 4 to the left by 4 bits, places a copy of the rotated

data in the MQ Register, and places the result of ANDing the rotated data with a mask into GPR 6:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 5 contains 0x0000 0004.

sle 6,4,5

GPR 6 now contains 0x0003 0000.

The MQ Register now contains 0x0003 0009.

2. The following code rotates the contents of GPR 4 to the left by 4 bits, places a copy of the rotated

data in the MQ Register, places the result of ANDing the rotated data with a mask into GPR 6, and

sets Condition Register Field 0 to reflect the result of the operation:

Chapter 8. Instruction Set 365

Assume GPR 4 contains 0xB004 3000.

Assume GPR 5 contains 0x0000 0004.

sle. 6,4,5

GPR 6 now contains 0x0043 0000.

The MQ Register now contains 0x0043 000B.

Condition Register Field 0 now contains 0x4.

Related Information

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

sleq (Shift Left Extended with MQ) Instruction

Purpose

Rotates the contents of a general-purpose register to the left by a specified number of bits, merges the

result with the contents of the MQ Register under control of a mask, and places the rotated word in the

MQ Register and the masked result in another general-purpose register.

Note: The sleq instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 217

31 Rc

 POWER family

sleq RA, RS, RB

sleq. RA, RS, RB

Description

The sleq instruction rotates the contents of the source general-purpose register (GPR) RS left N bits,

where N is the shift amount specified in bits 27-31 of GPR RB. The instruction merges the rotated word

with the contents of the MQ Register under control of a mask, and stores the rotated word in the MQ

Register and merged word in GPR RA. The mask consists of 32 minus N ones followed by N zeros.

The sleq instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

sleq None None 0 None

sleq. None None 1 LT,GT,EQ,SO

366 Assembler Language Reference

The two syntax forms of the sleq instruction never affect the Fixed-Point Exception Register. If the syntax

form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,

Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

1. The following code rotates the contents of GPR 4 to the left by 4 bits, merges the rotated data with the

contents of the MQ Register under a generated mask, and places the rotated word in the MQ Register

and the result in GPR 6 :

Assume GPR 4 contains 0x9000 3000.

Assume GPR 5 contains 0x0000 0004.

Assume the MQ Register contains 0xFFFF FFFF.

sleq 6,4,5

GPR 6 now contains 0x0003 000F.

The MQ Register now contains 0x0003 0009.

2. The following code rotates the contents of GPR 4 to the left by 4 bits, merges the rotated data with the

contents of the MQ Register under a generated mask, places the rotated word in the MQ Register and

the result in GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xB004 3000.

Assume GPR 5 contains 0x0000 0004.

Assume the MQ Register contains 0xFFFF FFFF.

sleq. 6,4,5

GPR 6 now contains 0x0043 000F.

The MQ Register now contains 0x0043 000B.

Condition Register Field 0 now contains 0x4.

Related Information

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

sliq (Shift Left Immediate with MQ) Instruction

Purpose

Shifts the contents of a general-purpose register to the left by a specified number of bits in an immediate

value, and places the rotated contents in the MQ Register and the result in another general-purpose

register.

Note: The sliq instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 SH

Chapter 8. Instruction Set 367

Bits Value

21-30 184

31 Rc

 POWER family

sliq RA, RS, SH

sliq. RA, RS, SH

Description

The sliq instruction rotates the contents of the source general-purpose register (GPR) RS to the left by N

bits, where N is the shift amount specified by SH. The instruction stores the rotated word in the MQ

Register and the logical AND of the rotated word and places the generated mask in GPR RA. The mask

consists of 32 minus N ones followed by N zeros.

The sliq instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

sliq None None 0 None

sliq. None None 1 LT,GT,EQ,SO

The two syntax forms of the sliq instruction never affect the Fixed-Point Exception Register. If the syntax

form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,

Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

SH Specifies immediate value for shift amount.

Examples

1. The following code rotates the contents of GPR 4 to the left by 20 bits, ANDs the rotated data with a

generated mask, and places the rotated word into the MQ Register and the result in GPR 6:

Assume GPR 4 contains 0x1234 5678.

sliq 6,4,0x14

GPR 6 now contains 0x6780 0000.

MQ Register now contains 0x6781 2345.

2. The following code rotates the contents of GPR 4 to the left by 16 bits, ANDs the rotated data with a

generated mask, places the rotated word into the MQ Register and the result in GPR 6, and sets

Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x1234 5678.

sliq. 6,4,0x10

GPR 6 now contains 0x5678 0000.

The MQ Register now contains 0x5678 1234.

Condition Register Field 0 now contains 0x4.

368 Assembler Language Reference

Related Information

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

slliq (Shift Left Long Immediate with MQ) Instruction

Purpose

Rotates the contents of a general-purpose register to the left by a specified number of bits in an immediate

value, merges the result with the contents of the MQ Register under control of a mask, and places the

rotated word in the MQ Register and the masked result in another general-purpose register.

Note: The slliq instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 SH

21-30 248

31 Rc

 POWER family

slliq RA, RS, SH

slliq. RA, RS, SH

Description

The slliq instruction rotates the contents of the source general-purpose register (GPR) RS to the left by N

bits, where N is the shift amount specified in SH, merges the result with the contents of the MQ Register,

and stores the rotated word in the MQ Register and the final result in GPR RA. The mask consists of 32

minus N ones followed by N zeros.

The slliq instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

slliq None None 0 None

slliq. None None 1 LT,GT,EQ,SO

The two syntax forms of the slliq instruction never affect the Fixed-Point Exception Register. If the syntax

form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,

Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

Chapter 8. Instruction Set 369

RS Specifies source general-purpose register for operation.

SH Specifies immediate value for shift amount.

Examples

1. The following code rotates the contents of GPR 4 to the left by 3 bits, merges the rotated data with the

contents of the MQ Register under a generated mask, and places the rotated word in the MQ Register

and the result in GPR 6:

Assume GPR 4 contains 0x9000 3000.

Assume the MQ Register contains 0xFFFF FFFF.

slliq 6,4,0x3

GPR 6 now contains 0x8001 8007.

The MQ Register now contains 0x8001 8004.

2. The following code rotates the contents of GPR 4 to the left by 4 bits, merges the rotated data with the

contents of the MQ Register under a generated mask, places the rotated word in the MQ Register and

the result in GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xB004 3000.

Assume the MQ Register contains 0xFFFF FFFF.

slliq. 6,4,0x4

GPR 6 now contains 0x0043 000F.

The MQ Register contains 0x0043 000B.

Condition Register Field 0 now contains 0x4.

Related Information

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

sllq (Shift Left Long with MQ) Instruction

Purpose

Rotates the contents of a general-purpose register to the left by the number of bits specified in a

general-purpose register, merges either the rotated data or a word of zeros with the contents of the MQ

Register, and places the result in a third general-purpose register.

Note: The sliq instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 216

31 Rc

 POWER family

sllq RA, RS, RB

sllq. RA, RS, RB

370 Assembler Language Reference

Description

The sllq instruction rotates the contents of the source general-purpose register (GPR) RS to the left by N

bits, where N is the shift amount specified in bits 27-31 of GPR RB. The merge depends on the value of

bit 26 in GPR RB.

Consider the following when using the sllq instruction:

v If bit 26 of GPR RB is 0, then a mask of N zeros followed by 32 minus N ones is generated. The

rotated word is then merged with the contents of the MQ Register under the control of this generated

mask.

v If bit 26 of GPR RB is 1, then a mask of N ones followed by 32 minus N zeros is generated. A word of

zeros is then merged with the contents of the MQ Register under the control of this generated mask.

The resulting merged word is stored in GPR RA. The MQ Register is not altered.

The sllq instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

sllq None None 0 None

sllq. None None 1 LT,GT,EQ,SO

The two syntax forms of the sllq instruction never affect the Fixed-Point Exception Register. If the syntax

form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,

Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

1. The following code rotates the contents of GPR 4 to the left by 4 bits, merges a word of zeros with the

contents of the MQ Register under a mask, and places the merged result in GPR 6:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 5 contains 0x0000 0024.

Assume MQ Register contains 0xABCD EFAB.

sllq 6,4,5

GPR 6 now contains 0xABCD EFA0.

The MQ Register remains unchanged.

2. The following code rotates the contents of GPR 4 to the left by 4 bits, merges the rotated data with the

contents of the MQ Register under a mask, places the merged result in GPR 6, and sets Condition

Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xB004 3000.

Assume GPR 5 contains 0x0000 0004.

Assume MQ Register contains 0xFFFF FFFF.

sllq. 6,4,5

GPR 6 now contains 0x0043 000F.

The MQ Register remains unchanged.

Condition Register Field 0 now contains 0x4.

Chapter 8. Instruction Set 371

Related Information

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

slq (Shift Left with MQ) Instruction

Purpose

Rotates the contents of a general-purpose register to the left by the number of bits specified in a

general-purpose register, places the rotated word in the MQ Register, and places the logical AND of the

rotated word and a generated mask in a third general-purpose register.

Note: The slq instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 152

31 Rc

 POWER family

slq RA, RS, RB

slq. RA, RS, RB

Description

The slq instruction rotates the contents of the source general-purpose register (GPR) RS to the left by N

bits, where N is the shift amount specified in bits 27-31 of GPR RB, and stores the rotated word in the MQ

Register. The mask depends on bit 26 of GPR RB.

Consider the following when using the slq instruction:

v If bit 26 of GPR RB is 0, then a mask of 32 minus N ones followed by N zeros is generated.

v If bit 26 of GPR RB is 1, then a mask of all zeros is generated.

This instruction then stores the logical AND of the rotated word and the generated mask in GPR RA.

The slq instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

slq None None 0 None

slq. None None 1 LT,GT,EQ,SO

372 Assembler Language Reference

The two syntax forms of the slq instruction never affect the Fixed-Point Exception Register. If the syntax

form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,

Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

1. The following code rotates the contents of GPR 4 to the left by 4 bits, places the rotated word in the

MQ Register, and places logical AND of the rotated word and the generated mask in GPR 6:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 5 contains 0x0000 0024.

slq 6,4,5

GPR 6 now contains 0x0000 0000.

The MQ Register now contains 0x0003 0009.

2. The following code rotates the contents of GPR 4 to the left by 4 bits, places the rotated word in the

MQ Register, places logical AND of the rotated word and the generated mask in GPR 6, and sets

Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xB004 3000.

Assume GPR 5 contains 0x0000 0004.

slq. 6,4,5

GPR 6 now contains 0x0043 0000.

The MQ Register now contains 0x0043 000B.

Condition Register Field 0 now contains 0x4.

Related Information

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

slw or sl (Shift Left Word) Instruction

Purpose

Rotates the contents of a general-purpose register to the left by a specified number of bits and places the

masked result in another general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 24

31 Rc

 PowerPC

slw RA, RS, RB

Chapter 8. Instruction Set 373

PowerPC

slw. RA, RS, RB

 POWER family

sl RA, RS, RB

sl. RA, RS, RB

Description

The slw and sl instructions rotate the contents of the source general-purpose register (GPR) RS to the left

N bits, where N is the shift amount specified in bits 27-31 of GPR RB, and store the logical AND of the

rotated word and the generated mask in GPR RA.

Consider the following when using the slw and sl instructions:

v If bit 26 of GPR RB is 0, then a mask of 32-N ones followed by N zeros is generated.

v If bit 26 of GPR RB is 1, then a mask of all zeros is generated.

The slw and sl instructions each have two syntax forms. Each syntax form has a different effect on

Condition Register Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

slw None None 0 None

slw. None None 1 LT,GT,EQ,SO

sl None None 0 None

sl. None None 1 LT,GT,EQ,SO

The two syntax forms of the slw instruction, and the two syntax forms of the sl instruction, never affect the

Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, these instructions affect

the Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in

Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

1. The following code rotates the contents of GPR 4 to the left by 15 bits and stores the result of ANDing

the rotated data with a generated mask in GPR 6:

Assume GPR 5 contains 0x0000 002F.

Assume GPR 4 contains 0xFFFF FFFF.

slw 6,4,5

GPR 6 now contains 0x0000 0000.

2. The following code rotates the contents of GPR 4 to the left by 5 bits, stores the result of ANDing the

rotated data with a generated mask in GPR 6, and sets Condition Register Field 0 to reflect the result

of the operation:

374 Assembler Language Reference

Assume GPR 4 contains 0xB004 3000.

Assume GPR 5 contains 0x0000 0005.

slw. 6,4,5

GPR 6 now contains 0x0086 0000.

Condition Register Field 0 now contains 0x4.

Related Information

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

srad (Shift Right Algebraic Double Word) Instruction

Purpose

Algebraically shift the contents of a general purpose register right by the number of bits specified by the

contents of another general purpose register. Place the result of the operation in another general purpose

register.

Syntax

 Bits Value

0-5 31

6-10 S

11-15 A

16-20 B

21-30 794

31 Rc

 POWER family

srad RA, RS, RB (Rc=0)

srad. RA, RS, RB (Rc=1)

Description

The contents of general purpose register (GPR) RS are shifted right the number of bits specified by the

low-order seven bits of GPR RB. Bits shifted out of position 63 are lost. Bit 0 of GPR RS is replicated to fill

the vacated positions on the left. The result is placed into GRP RA. XER[CA] is set if GPR RS is negative

and any 1 bits are shifted out of position 63; otherwise XER[CA] is cleared. A shift amount of zero causes

GRP RA to be set equal to GPR RS, and XER[CA] to be cleared. Shift amounts from 64 to 127 give a

result of 64 sign bits in GRP RA, and cause XER[CA] to receive the sign bit of GPR RS.

Note that the srad instruction, followed by addze, can by used to divide quickly by 2**n. The setting of the

CA bit, by srad, is independent of mode.

Other registers altered:

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

v XER:

Affected: CA

Chapter 8. Instruction Set 375

Parameters

 RA Specifies target general-purpose register for the result of the operation.

RS Specifies source general-purpose register containing the operand for thr shift operation.

RB Specifies the distance to shift the operand.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

sradi (Shift Right Algebraic Double Word Immediate) Instruction

Purpose

Algebraically shift the contents of a general purpose register right by the number of bits specified by the

immediate value. Place the result of the operation in another general purpose register.

Syntax

 Bits Value

0-5 31

6-10 S

11-15 A

16-20 sh

21-29 413

30 sh

31 Rc

 POWER family

sradi RA, RS, SH (Rc=0)

sradi. RA, RS, SH (Rc=1)

Description

The contents of general purpose register (GPR) RS are shifted right SH bits. Bits shifted out of position 63

are lost. Bit 0 of GPR RS is replicated to fill the vacated positions on the left. The result is placed into

GPR RA. XER[CA] is set if GPR RS is negative and any 1 bits are shifted out of position 63; otherwise

XER[CA] is cleared. A shift amount of zero causes GPR RA to be set equal to GPR RS, and XER[CA] to

be cleared.

Note that the sradi instruction, followed by addze, can by used to divide quickly by 2**n. The setting of the

CA bit, by sradi, is independent of mode.

Other registers altered:

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

v XER:

Affected: CA

376 Assembler Language Reference

Parameters

 RA Specifies target general-purpose register for the result of the operation.

RS Specifies source general-purpose register containing the operand for the shift operation.

SH Specifies shift value for operation.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

sraiq (Shift Right Algebraic Immediate with MQ) Instruction

Purpose

Rotates the contents of a general-purpose register to the left by a specified number of bits, merges the

rotated data with a word of 32 sign bits from that general-purpose register under control of a generated

mask, and places the rotated word in the MQ Register and the merged result in another general-purpose

register.

Note: The sraiq instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 SH

21-30 952

31 Rc

 POWER family

sraiq RA, RS, SH

sraiq. RA, RS, SH

Description

The sraiq instruction rotates the contents of the source general-purpose register (GPR) RS to the left by

32 minus N bits, where N is the shift amount specified by SH, merges the rotated data with a word of 32

sign bits from GPR RS under control of a generated mask, and stores the rotated word in the MQ Register

and the merged result in GPR RA. A word of 32 sign bits is generated by taking the sign bit of a GPR and

repeating it 32 times to make a full word. This word can be either 0x0000 0000 or 0xFFFF FFFF

depending on the value of the GPR. The mask consists of N zeros followed by 32 minus N ones.

This instruction then ANDs the rotated data with the complement of the generated mask, ORs the 32-bit

result together, and ANDs the bit result with bit 0 of GPR RS to produce the Carry bit (CA).

The sraiq instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0.

Chapter 8. Instruction Set 377

Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

sraiq None CA 0 None

sraiq. None CA 1 LT,GT,EQ,SO

The two syntax forms of the sraiq instruction always affect the Carry bit (CA) in the Fixed-Point Exception

Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero,

Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field

0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

SH Specifies immediate value for shift amount.

Examples

1. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the result with 32 sign

bits under control of a generated mask, stores the result in GPR 6, and sets the Carry bit in the

Fixed-Point Exception Register to reflect the result of the operation:

Assume GPR 4 contains 0x9000 3000.

sraiq 6,4,0x4

GPR 6 now contains 0xF900 0300.

MQ now contains 0x0900 0300.

2. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the result with 32 sign

bits under control of a generated mask, stores the result in GPR 6, and sets the Carry bit in the

Fixed-Point Exception Register and Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xB004 3000.

sraiq. 6,4,0x4

GPR 6 now contains 0xFB00 4300.

MQ now contains 0x0B00 4300.

Condition Register Field 0 now contains 0x8.

Related Information

The addze or aze (Add to Zero Extended) instruction.

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

sraq (Shift Right Algebraic with MQ) Instruction

Purpose

Rotates a general-purpose register a specified number of bits to the left, merges the result with a word of

32 sign bits from that general-purpose register under control of a generated mask, and places the rotated

word in the MQ Register and the merged result in another general-purpose register.

Note: The sraq instruction is supported only in the POWER family architecture.

378 Assembler Language Reference

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 920

31 Rc

 POWER family

sraq RA, RS, RB

sraq. RA, RS, RB

Description

The sraq instruction rotates the contents of the source general-purpose register (GPR) RS to the left by

32 minus N bits, where N is the shift amount specified in bits 27-31 of GPR RB. The instruction then

merges the rotated data with a word of 32 sign bits from GPR RS under control of a generated mask and

stores the merged word in GPR RA. The rotated word is stored in the MQ Register. The mask depends on

the value of bit 26 in GPR RB.

Consider the following when using the sraq instruction:

v If bit 26 of GPR RB is 0, then a mask of N zeros followed by 32 minus N ones is generated.

v If bit 26 of GPR RB is 1, then a mask of all zeros is generated.

A word of 32 sign bits is generated by taking the sign bit of a GPR and repeating it 32 times to make a full

word. This word can be either 0x0000 0000 or 0xFFFF FFFF depending on the value of the GPR.

This instruction then ANDs the rotated data with the complement of the generated mask, ORs the 32-bit

result together, and ANDs the bit result with bit 0 of GPR RS to produce the Carry bit (CA).

The sraq instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

sraq None CA 0 None

sraq. None CA 1 LT,GT,EQ,SO

The two syntax forms of the sraq instruction always affect the Carry bit (CA) in the Fixed-Point Exception

Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero,

Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field

0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Chapter 8. Instruction Set 379

Examples

1. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the result with 32 sign

bits under control of a generated mask, places the result in GPR 6 and the rotated word in the MQ

Register, and sets the Carry bit in the Fixed-Point Exception Register to reflect the result of the

operation:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 7 contains 0x0000 0024.

sraq 6,4,7

GPR 6 now contains 0xFFFF FFFF.

The MQ Register now contains 0x0900 0300.

2. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the result with 32 sign

bits under control of a generated mask, places the result in GPR 6 and the rotated word in the MQ

Register, and sets the Carry bit in the Fixed-Point Exception Register and Condition Register Field 0 to

reflect the result of the operation:

Assume GPR 4 contains 0xB004 3000.

Assume GPR 7 contains 0x0000 0004.

sraq. 6,4,7

GPR 6 now contains 0xFB00 4300.

The MQ Register now contains 0x0B00 4300.

Condition Register Field 0 now contains 0x4.

Related Information

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

sraw or sra (Shift Right Algebraic Word) Instruction

Purpose

Rotates the contents of a general-purpose register to the left by a specified number of bits, merges the

rotated data with a word of 32 sign bits from that register under control of a generated mask, and places

the result in another general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 792

31 Rc

 PowerPC

sraw RA, RS, RB

sraw. RA, RS, RB

 POWER family

sra RA, RS, RB

sra. RA, RS, RB

380 Assembler Language Reference

Description

The sraw and sra instructions rotate the contents of the source general-purpose register (GPR) RS to the

left by 32 minus N bits, where N is the shift amount specified in bits 27-31 of GPR RB, and merge the

rotated word with a word of 32 sign bits from GPR RS under control of a generated mask. A word of 32

sign bits is generated by taking the sign bit of a GPR and repeating it 32 times to make a full word. This

word can be either 0x0000 0000 or 0xFFFF FFFF depending on the value of the GPR.

The mask depends on the value of bit 26 in GPR RB.

Consider the following when using the sraw and sra instructions:

v If bit 26 of GPR RB is zero, then a mask of N zeros followed by 32 minus N ones is generated.

v If bit 26 of GPR RB is one, then a mask of all zeros is generated.

The merged word is placed in GPR RA. The sraw and sra instructions then AND the rotated data with the

complement of the generated mask, OR the 32-bit result together, and AND the bit result with bit 0 of GPR

RS to produce the Carry bit (CA).

The sraw and sra instructions each have two syntax forms. Each syntax form has a different effect on

Condition Register Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

sraw None CA 0 None

sraw. None CA 1 LT,GT,EQ,SO

sra None CA 0 None

sra. None CA 1 LT,GT,EQ,SO

The two syntax forms of the sraw instruction, and the two syntax forms of the sra instruction, always

affect the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit

to 1, the instructions affect the Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and

Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

1. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the result with 32 sign

bits under control of a generated mask, stores the result in GPR 6, and sets the Carry bit in the

Fixed-Point Exception Register to reflect the result of the operation:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 5 contains 0x0000 0024.

sraw 6,4,5

GPR 6 now contains 0xFFFF FFFF.

2. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the result with 32 sign

bits under control of a generated mask, stores the result in GPR 6, and sets the Carry bit in the

Fixed-Point Exception Register and Condition Register Field 0 to reflect the result of the operation:

Chapter 8. Instruction Set 381

Assume GPR 4 contains 0xB004 3000.

Assume GPR 5 contains 0x0000 0004.

sraw. 6,4,5

GPR 6 now contains 0xFB00 4300.

Condition Register Field 0 now contains 0x8.

Related Information

The addze or aze (Add to Zero Extended) instruction.

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

srawi or srai (Shift Right Algebraic Word Immediate) Instruction

Purpose

Rotates the contents of a general-purpose register a specified number of bits to the left, merges the

rotated data with a word of 32 sign bits from that register under control of a generated mask, and places

the result in another general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 SH

21-30 824

31 Rc

 PowerPC

srawi RA, RS, SH

srawi. RA, RS, SH

 POWER family

srai RA, RS, SH

srai. RA, RS, SH

Description

The srawi and srai instructions rotate the contents of the source general-purpose register (GPR) RS to

the left by 32 minus N bits, where N is the shift amount specified by SH, merge the rotated data with a

word of 32 sign bits from GPR RS under control of a generated mask, and store the merged result in GPR

RA. A word of 32 sign bits is generated by taking the sign bit of a GPR and repeating it 32 times to make

a full word. This word can be either 0x0000 0000 or 0xFFFF FFFF depending on the value of the GPR.

The mask consists of N zeros followed by 32 minus N ones.

The srawi and srai instructions then AND the rotated data with the complement of the generated mask,

OR the 32-bit result together, and AND the bit result with bit 0 of GPR RS to produce the Carry bit (CA).

382 Assembler Language Reference

The srawi and srai instructions each have two syntax forms. Each syntax form has a different effect on

Condition Register Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

srawi None CA 0 None

srawi. None CA 1 LT,GT,EQ,SO

srai None CA 0 None

srai. None CA 1 LT,GT,EQ,SO

The two syntax forms of the srawi instruction, and the two syntax forms of the srai instruction, always

affect the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit

to 1, the instructions affect the Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and

Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

SH Specifies immediate value for shift amount.

Examples

1. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the result with 32 sign

bits under control of a generated mask, stores the result in GPR 6, and sets the Carry bit in the

Fixed-Point Exception Register to reflect the result of the operation:

Assume GPR 4 contains 0x9000 3000.

srawi 6,4,0x4

GPR 6 now contains 0xF900 0300.

2. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the result with 32 sign

bits under control of a generated mask, places the result in GPR 6, and sets the Carry bit in the

Fixed-Point Exception Register and Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xB004 3000.

srawi. 6,4,0x4

GPR 6 now contains 0xFB00 4300.

Condition Register Field 0 now contains 0x8.

Related Information

The addze or aze (Add to Zero Extended) instruction.

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

srd (Shift Right Double Word) Instruction

Purpose

Shift the contents of a general purpose register right by the number of bits specified by the contents of

another general purpose register.

Chapter 8. Instruction Set 383

Syntax

 Bits Value

0-5 31

6-10 S

11-15 A

16-20 B

21-30 539

31 Rc

 POWER family

srd RA, RS, RB (Rc=0)

srd. RA, RS, RB (Rc=1)

Description

The contents of general purpose register (GPR) RS are shifted right the number of bits specified by the

low-order seven bits of GPR RB. Bits shifted out of position 63 are lost. Zeros are supplied to the vacated

positions on the left. The result is placed into GRP RA. Shift amounts from 64 to 127 give a zero result.

Other registers altered:

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Parameters

 RA Specifies target general-purpose register for the result of the operation.

RS Specifies source general-purpose register containing the operand for thr shift operation.

RB The low-order seven bits specify the distance to shift the operand.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

sre (Shift Right Extended) Instruction

Purpose

Shifts the contents of a general-purpose register to the right by a specified number of bits and places a

copy of the rotated data in the MQ Register and the result in a general-purpose register.

Note: The sre instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

384 Assembler Language Reference

Bits Value

16-20 RB

21-30 665

31 Rc

 POWER family

sre RA, RS, RB

sre. RA, RS, RB

Description

The sre instruction rotates the contents of the source general-purpose register (GPR) RS to the left by 32

minus N bits, where N is the shift amount specified in bits 27-31 of GPR RB, and stores the rotated word

in the MQ Register and the logical AND of the rotated word and a generated mask in GPR RA. The mask

consists of N zeros followed by 32 minus N ones.

The sre instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

sre None None 0 None

sre. None None 1 LT,GT,EQ,SO

The two syntax forms of the sre instruction never affect the Fixed-Point Exception Register. If the syntax

form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,

Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

1. The following code rotates the contents of GPR 4 to the left by 20 bits, places a copy of the rotated

data in the MQ Register, and places the result of ANDing the rotated data with a mask into GPR 6:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 5 contains 0x0000 000C.

sre 6,4,5

GPR 6 now contains 0x0009 0003.

The MQ Register now contains 0x0009 0003.

2. The following code rotates the contents of GPR 4 to the left by 17 bits, places a copy of the rotated

data in the MQ Register, places the result of ANDing the rotated data with a mask into GPR 6, and

sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xB004 3000.

Assume GPR 5 contains 0x0000 000F.

sre. 6,4,5

GPR 6 now contains 0x0001 6008.

The MQ Register now contains 0x6001 6008.

Condition Register Field 0 now contains 0x4.

Chapter 8. Instruction Set 385

Related Information

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

srea (Shift Right Extended Algebraic) Instruction

Purpose

Rotates the contents of a general-purpose register to the left by a specified number of bits, places a copy

of the rotated data in the MQ Register, merges the rotated word and a word of 32 sign bits from the

general-purpose register under control of a mask, and places the result in another general-purpose

register.

Note: The srea instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 921

31 Rc

 POWER family

srea RA, RS, RB

srea. RA, RS, RB

Description

The srea instruction rotates the contents of the source general-purpose register (GPR) RS to the left by 32

minus N bits, where N is the shift amount specified in bits 27-31 of GPR RB, stores the rotated word in the

MQ Register, and merges the rotated word and a word of 32 sign bits from GPR RS under control of a

generated mask. A word of 32 sign bits is generated by taking the sign bit of a general-purpose register

and repeating it 32 times to make a full word. This word can be either 0x0000 0000 or 0xFFFF FFFF

depending on the value of the general-purpose register. The mask consists of N zeros followed by 32

minus N ones. The merged word is stored in GPR RA.

This instruction then ANDs the rotated data with the complement of the generated mask, ORs together the

32-bit result, and ANDs the bit result with bit 0 of GPR RS to produce the Carry bit (CA).

The srea instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

srea None CA 0 None

srea None CA 1 LT,GT,EQ,SO

386 Assembler Language Reference

The two syntax forms of the srea instruction always affect the Carry bit (CA) in the Fixed-Point Exception

Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero,

Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field

0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

1. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the result with 32 sign

bits under control of a generated mask, places the rotated word in the MQ Register and the result in

GPR 6, and sets the Carry bit in the Fixed-Point Exception Register to reflect the result of the

operation:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 7 contains 0x0000 0004.

srea 6,4,7

GPR 6 now contains 0xF900 0300.

The MQ Register now contains 0x0900 0300.

2. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the result with 32 sign

bits under control of a generated mask, places the rotated word in the MQ Register and the result in

GPR 6, and sets the Carry bit in the Fixed-Point Exception Register and Condition Register Field 0 to

reflect the result of the operation:

Assume GPR 4 contains 0xB004 3000.

Assume GPR 7 contains 0x0000 0004.

srea. 6,4,7

GPR 6 now contains 0xFB00 4300.

The MQ Register now contains 0x0B00 4300.

Condition Register Field 0 now contains 0x8.

Related Information

The addze or aze (Add to Zero Extended) instruction.

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

sreq (Shift Right Extended with MQ) Instruction

Purpose

Rotates the contents of a general-purpose register to the left by a specified number of bits, merges the

result with the contents of the MQ Register under control of a generated mask, and places the rotated

word in the MQ Register and the merged result in another general-purpose register.

Note: The sreq instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 RS

Chapter 8. Instruction Set 387

Bits Value

11-15 RA

16-20 RB

21-30 729

31 Rc

 POWER family

sreq RA, RS, RB

sreq. RA, RS, RB

Description

The sreq instruction rotates the contents of the source general-purpose register (GPR) RS to the left by

32 minus N bits, where N is the shift amount specified in bits 27-31 of GPR RB, merges the rotated word

with the contents of the MQ Register under a generated mask, and stores the rotated word in the MQ

Register and the merged word in GPR RA. The mask consists of N zeros followed by 32 minus N ones.

The sreq instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

sreq None None 0 None

sreq. None None 1 LT,GT,EQ,SO

The two syntax forms of the sreq instruction never affect the Fixed-Point Exception Register. If the syntax

form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,

Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

1. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the rotated data with

the contents of the MQ Register under a generated mask, and places the rotated word in the MQ

Register and the result in GPR 6:

Assume GPR 4 contains 0x9000 300F.

Assume GPR 7 contains 0x0000 0004.

Assume the MQ Register contains 0xEFFF FFFF.

sreq 6,4,7

GPR 6 now contains 0xE900 0300.

The MQ Register now contains 0xF900 0300.

2. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the rotated data with

the contents of the MQ Register under a generated mask, places the rotated word in the MQ Register

and the result in GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xB00 300F.

Assume GPR 18 contains 0x0000 0004.

Assume the MQ Register contains 0xEFFF FFFF

388 Assembler Language Reference

sreq. 6,4,18

GPR 6 now contains 0xEB00 0300.

The MQ Register now contains 0xFB00 0300.

Condition Register Field 0 now contains 0x8.

Related Information

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

sriq (Shift Right Immediate with MQ) Instruction

Purpose

Shifts the contents of a general-purpose register to the right by a specified number of bits and places the

rotated contents in the MQ Register and the result in another general-purpose register.

Note: The sriq instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 SH

21-30 696

31 Rc

 POWER family

sriq RA, RS, SH

sriq. RA, RS, SH

Description

The sriq instruction rotates the contents of the source general-purpose register (GPR) RS to the left 32

minus N bits, where N is the shift amount specified by SH, and stores the rotated word in the MQ

Register, and the logical AND of the rotated word and the generated mask in GPR RA. The mask consists

of N zeros followed by 32 minus N ones.

The sriq instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

sriq None None 0 None

sriq. None None 1 LT,GT,EQ,SO

The two syntax forms of the sriq instruction never affect the Fixed-Point Exception Register. If the syntax

form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,

Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Chapter 8. Instruction Set 389

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

SH Specifies value for shift amount.

Examples

1. The following code rotates the contents of GPR 4 to the left by 20 bits, ANDs the rotated data with a

generated mask, and places the rotated word into the MQ Register and the result in GPR 6:

Assume GPR 4 contains 0x9000 300F.

sriq 6,4,0xC

GPR 6 now contains 0x0009 0003.

The MQ Register now contains 0x00F9 0003.

2. The following code rotates the contents of GPR 4 to the left by 12 bits, ANDs the rotated data with a

generated mask, places the rotated word into the MQ Register and the result in GPR 6, and sets

Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xB000 300F.

sriq. 6,4,0x14

GPR 6 now contains 0x0000 0B00.

The MQ Register now contains 0x0300 FB00.

Condition Register Field 0 now contains 0x4.

Related Information

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

srliq (Shift Right Long Immediate with MQ) Instruction

Purpose

Rotates the contents of a general-purpose register to the left by a specified number of bits, merges the

result with the contents of the MQ Register under control of a generated mask, and places the result in

another general-purpose register.

Note: The srliq instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 SH

21-30 760

31 Rc

 POWER family

srliq RA, RS, SH

srliq. RA, RS, SH

390 Assembler Language Reference

Description

The srliq instruction rotates the contents of the source general-purpose register (GPR) RS to the left by

32 minus N bits, where N is the shift amount specified by SH, merges the result with the contents of the

MQ Register under control of a generated mask, and stores the rotated word in the MQ Register and the

merged result in GPR RA. The mask consists of N zeros followed by 32 minus N ones.

The srliq instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

srliq None None 0 None

srliq. None None 1 LT,GT,EQ,SO

The two syntax forms of the srliq instruction never affect the Fixed-Point Exception Register. If the syntax

form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,

Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

SH Specifies value for shift amount.

Examples

1. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the rotated data with

the contents of the MQ Register under a generated mask, and places the rotated word in the MQ

Register and the result in GPR 6:

Assume GPR 4 contains 0x9000 300F.

Assume the MQ Register contains 0x1111 1111.

srliq 6,4,0x4

GPR 6 now contains 0x1900 0300.

The MQ Register now contains 0xF900 0300.

2. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the rotated data with

the contents of the MQ Register under a generated mask, places the rotated word in the MQ Register

and the result in GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xB004 3000

Assume the MQ Register contains 0xFFFF FFFF.

srliq. 6,4,0x4

GPR 6 now contains 0xFB00 4300.

The MQ Register contains 0x0B00 4300.

Condition Register Field 0 now contains 0x8.

Related Information

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

Chapter 8. Instruction Set 391

srlq (Shift Right Long with MQ) Instruction

Purpose

Rotates the contents of a general-purpose register to the left by a specified number of bits, merges either

the rotated data or a word of zeros with the contents of the MQ Register under control of a generated

mask, and places the result in a general-purpose register.

Note: The srlq instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 728

31 Rc

 POWER family

srlq RA, RS, RB

srlq. RA, RS, RB

Description

The srlq instruction rotates the contents of the source general-purpose register (GPR) RS to the left 32

minus N bits, where N is the shift amount specified in bits 27-31 of GPR RB. The merge depends on the

value of bit 26 in GPR RB.

Consider the following when using the srlq instruction:

v If bit 26 of GPR RB is 0, then a mask of N zeros followed by 32 minus N ones is generated. The

rotated word is then merged with the contents of the MQ Register under control of this generated mask.

v If bit 26 of GPR RB is 1, then a mask of N ones followed by 32 minus N zeros is generated. A word of

zeros is then merged with the contents of the MQ Register under control of this generated mask.

The merged word is stored in GPR RA. The MQ Register is not altered.

The srlq instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

srlq None None 0 None

srlq. None None 1 LT,GT,EQ,SO

The two syntax forms of the srlq instruction never affect the Fixed-Point Exception Register. If the syntax

form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,

Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

392 Assembler Language Reference

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

1. The following code rotates the contents of GPR 4 to the left by 28 bits, merges a word of zeros with

the contents of the MQ Register under a mask, and places the merged result in GPR 6:

Assume GPR 4 contains 0x9000 300F.

Assume GPR 8 contains 0x0000 0024.

Assume the MQ Register contains 0xFFFF FFFF.

srlq 6,4,8

GPR 6 now contains 0x0FFF FFFF.

The MQ Register remains unchanged.

2. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the rotated data with

the contents of the MQ Register under a mask, places the merged result in GPR 6, and sets Condition

Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xB004 3000.

Assume GPR 8 contains 0x00000 0004.

Assume the MQ Register contains 0xFFFF FFFF.

srlq. 6,4,8

GPR 6 now holds 0xFB00 4300.

The MQ Register remains unchanged.

Condition Register Field 0 now contains 0x8.

Related Information

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

srq (Shift Right with MQ) Instruction

Purpose

Rotates the contents of a general-purpose register to the left by a specified number of bits, places the

rotated word in the MQ Register, and places the logical AND of the rotated word and a generated mask in

a general-purpose register.

Note: The srq instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 664

31 Rc

Chapter 8. Instruction Set 393

POWER family

srq RA, RS, RB

srq. RA, RS, RB

Description

The srq instruction rotates the contents of the source general-purpose register (GPR) RS to the left by 32

minus N bits, where N is the shift amount specified in bits 27-31 of GPR RB, and stores the rotated word

in the MQ Register. The mask depends on bit 26 of GPR RB.

Consider the following when using the srq instruction:

v If bit 26 of GPR RB is 0, then a mask of N zeros followed by 32 minus N ones is generated.

v If bit 26 of GPR RB is 1, then a mask of all zeros is generated.

This instruction then stores the logical AND of the rotated word and the generated mask in GPR RA.

The srq instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

srq None None 0 None

srq. None None 1 LT,GT,EQ,SO

The two syntax forms of the srq instruction never affect the Fixed-Point Exception Register. If the syntax

form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,

Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

1. The following code rotates the contents of GPR 4 to the left by 28 bits, places the rotated word in the

MQ Register, and places logical AND of the rotated word and the generated mask in GPR 6:

Assume GPR 4 holds 0x9000 300F.

Assume GPR 25 holds 0x0000 00024.

srq 6,4,25

GPR 6 now holds 0x0000 0000.

The MQ Register now holds 0xF900 0300.

2. The following code rotates the contents of GPR 4 to the left by 28 bits, places the rotated word in the

MQ Register, places logical AND of the rotated word and the generated mask in GPR 6, and sets

Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 holds 0xB000 300F.

Assume GPR 25 holds 0x0000 0004.

srq. 6,4,8

GPR 6 now holds 0x0B00 0300.

The MQ Register now holds 0xFB00 0300.

Condition Register Field 0 now contains 0x4.

394 Assembler Language Reference

Related Information

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

srw or sr (Shift Right Word) Instruction

Purpose

Rotates the contents of a general-purpose register to the left by a specified number of bits and places the

masked result in a general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 536

31 Rc

 PowerPC

srw RA, RS, RB

srw. RA, RS, RB

 POWER family

sr RA, RS, RB

sr. RA, RS, RB

Description

The srw and sr instructions rotate the contents of the source general-purpose register (GPR) RS to the

left by 32 minus N bits, where N is the shift amount specified in bits 27-31 of GPR RB, and store the

logical AND of the rotated word and the generated mask in GPR RA.

Consider the following when using the srw and sr instructions:

v If bit 26 of GPR RB is 0, then a mask of N zeros followed by 32 - N ones is generated.

v If bit 26 of GPR RB is 1, then a mask of all zeros is generated.

The srw and sr instruction each have two syntax forms. Each syntax form has a different effect on

Condition Register Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

srw None None 0 None

srw. None None 1 LT,GT,EQ,SO

sr None None 0 None

sr. None None 1 LT,GT,EQ,SO

Chapter 8. Instruction Set 395

The two syntax forms of the sr instruction, and the two syntax forms of the srw instruction, never affect

the Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, these instructions

affect the Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO)

bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

1. The following code rotates the contents of GPR 4 to the left by 28 bits and stores the result of ANDing

the rotated data with a generated mask in GPR 6:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 5 contains 0x0000 0024.

srw 6,4,5

GPR 6 now contains 0x0000 0000.

2. The following code rotates the contents of GPR 4 to the left by 28 bits, stores the result of ANDing the

rotated data with a generated mask in GPR 6, and sets Condition Register Field 0 to reflect the result

of the operation:

Assume GPR 4 contains 0xB004 3001.

Assume GPR 5 contains 0x0000 0004.

srw. 6,4,5

GPR 6 now contains 0x0B00 4300.

Condition Register Field 0 now contains 0x4.

Related Information

The addze or aze (Add to Zero Extended) instruction.

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

stb (Store Byte) Instruction

Purpose

Stores a byte of data from a general-purpose register into a specified location in memory.

Syntax

 Bits Value

0-5 38

6-10 RS

11-15 RA

16-31 D

 stb RS, D(RA)

396 Assembler Language Reference

Description

The stb instruction stores bits 24-31 of general-purpose register (GPR) RS into a byte of storage

addressed by the effective address (EA).

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit signed two’s

complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

The stb instruction has one syntax form and does not affect the Fixed-Point Exception Register or

Condition Register Field 0.

Parameters

 RS Specifies source general-purpose register of stored data.

D Specifies a 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation.

Examples

The following code stores bits 24-31 of GPR 6 into a location in memory:

.csect data[rw]

buffer: .long 0

Assume GPR 4 contains address of csect data[rw].

Assume GPR 6 contains 0x0000 0060.

.csect text[pr]

stb 6,buffer(4)

0x60 is now stored at the address of buffer.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

stbu (Store Byte with Update) Instruction

Purpose

Stores a byte of data from a general-purpose register into a specified location in memory and possibly

places the address in another general-purpose register.

Syntax

 Bits Value

0-5 39

6-10 RS

11-15 RA

16-31 D

 stbu RS, D(RA)

Description

The stbu instruction stores bits 24-31 of the source general-purpose register (GPR) RS into the byte in

storage addressed by the effective address (EA).

Chapter 8. Instruction Set 397

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit signed two’s

complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

If RA does not equal 0 and the storage access does not cause an Alignment Interrupt, then the EA is

stored in GPR RA.

The stbu instruction has one syntax form and does not affect the Fixed-Point Exception Register or

Condition Register Field 0.

Parameters

 RS Specifies source general-purpose register of stored data.

D Specifies a 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation and possible address update.

Examples

The following code stores bits 24-31 of GPR 6 into a location in memory and places the address in GPR

16:

.csect data[rw]

buffer: .long 0

Assume GPR 6 contains 0x0000 0060.

Assume GPR 16 contains the address of csect data[rw].

.csect text[pr]

stbu 6,buffer(16)

GPR 16 now contains the address of buffer.

0x60 is stored at the address of buffer.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

stbux (Store Byte with Update Indexed) Instruction

Purpose

Stores a byte of data from a general-purpose register into a specified location in memory and possibly

places the address in another general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 247

31 /

 stbux RS, RA, RB

398 Assembler Language Reference

Description

The stbux instruction stores bits 24-31 of the source general-purpose register (GPR) RS into the byte in

storage addressed by the effective address (EA).

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and the contents of GPR RB. If RA is 0,

then the EA is the contents of GPR RB.

If GPR RA does not equal 0 and the storage access does not cause an Alignment Interrupt, then the EA is

stored in GPR RA.

The stbux instruction exists only in one syntax form and does not affect the Fixed-Point Exception

Register or Condition Register Field 0.

Parameters

 RS Specifies source general-purpose register of stored data.

RA Specifies source general-purpose register for EA calculation and possible address update.

RB Specifies source general-purpose register for EA calculation.

Examples

The following code stores the contents of GPR 6 into a location in memory and places the address in GPR

4:

.csect data[rw]

buffer: .long 0

Assume GPR 6 contains 0x0000 0060.

Assume GPR 4 conteains 0x0000 0000.

Assume GPR 19 contains the address of buffer.

.csect text[pr]

stbux 6,4,19

Buffer now contains 0x60.

GPR 4 contains the address of buffer.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

stbx (Store Byte Indexed) Instruction

Purpose

Stores a byte from a general-purpose register into a specified location in memory.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 215

31 /

Chapter 8. Instruction Set 399

stbx RS, RA, RB

Description

The stbx instruction stores bits 24-31 from general-purpose register (GPR) RS into a byte of storage

addressed by the effective address (EA). The contents of GPR RS are unchanged.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and the contents of GPR RB. If GPR

RA is 0, then the EA is the contents of GPR RB.

The stbx instruction has one syntax form and does not affect the Fixed-Point Exception Register or

Condition Register Field 0.

Parameters

 RS Specifies source general-purpose register of stored data.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Examples

The following code stores bits 24-31 of GPR 6 into a location in memory:

.csect data[rw]

buffer: .long 0

Assume GPR 4 contains the address of buffer.

Assume GPR 6 contains 0x4865 6C6F.

.csect text[pr]

stbx 6,0,4

buffer now contains 0x6F.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

std (Store Double Word) Instruction

Purpose

Store a double-word of data from a general purpose register into a specified memory location.

Syntax

 Bits Value

0-5 62

6-10 S

11-15 A

16-29 ds

30-31 00

 POWER family

std RS, D(RA)

400 Assembler Language Reference

Description

The std instruction stores a double-word in storage from the source general-purpose register (GPR) RS

into the specified location in memory referenced by the effective address (EA).

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s

complement integer, fullword-aligned, sign-extended to 64 bits. If GPR RA is 0, then the EA is D.

Parameters

 RS Specifies the source general-purpose register containing data.

D Specifies a 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

stdcx. (Store Double Word Conditional Indexed) Instruction

Purpose

Conditionally store the contents of a general purpose register into a storage location, based upon an

existing reservation.

Syntax

 Bits Value

0-5 31

6-10 S

11-15 A

16-20 B

21-30 214

31 1

 POWER family

stdcx. RS, RA, RB

Description

If a reservation exists, and the memory address specified by the stdcx. instruction is the same as that

specified by the load and reserve instruction that established the reservation, the contents of RS are

stored into the double-word in memory addressed by the effective address (EA); the reservation is cleared.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s

complement integer, fullword-aligned, sign-extended to 64 bits. If GPR RA is 0, then the EA is D.

If a reservation exists, but the memory address specified by the stdcx. instruction is not the same as that

specified by the load and reserve instruction that established the reservation, the reservation is cleared,

and it is undefined whether the contents of RS are stored into the double word in memory addressed by

the EA.

Chapter 8. Instruction Set 401

If no reservation exists, the instruction completes without altering memory.

If the store is performed successfully, bits 0-2 of Condition Register Field 0 are set to 0b001, otherwise,

they are set to 0b000. The SO bit of the XER is copied to to bit 4 of Condition Register Field 0.

The EA must be a multiple of eight. If it is not, either the system alignment exception handler is invoked or

the results are boundedly undefined.

Note that, when used correctly, the load and reserve and store conditional instructions can provide an

atomic update function for a single aligned word (load word and reserve and store word conditional) or

double word (load double word and reserve and store double word conditional) of memory.

In general, correct use requires that load word and reserve be paired with store word conditional, and load

double word and reserve with store double word conditional, with the same memory address specified by

both instructions of the pair. The only exception is that an unpaired store word conditional or store double

word conditional instruction to any (scratch) EA can be used to clear any reservation held by the

processor.

A reservation is cleared if any of the following events occurs:

v The processor holding the reservation executes another load and reserve instruction; this clears the first

reservation and establishes a new one.

v The processor holding the reservation executes a store conditional instruction to any address.

v Another processor executes any store instruction to the address associated with the reservation

v Any mechanism, other than the processor holding the reservation, stores to the address associated with

the reservation.

Parameters

 RS Specifies source general-purpose register of stored data.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

stdu (Store Double Word with Update) Instruction

Purpose

Store a double-word of data from a general purpose register into a specified memory location. Update the

address base.

This instruction should only be used on 64-bit PowerPC processors running a 64-bit application.

Syntax

 Bits Value

0-5 62

6-10 S

11-15 A

16-29 ds

402 Assembler Language Reference

Bits Value

30-31 01

 PowerPC64

stdu RS, D (RA)

Description

The stdu instruction stores a double-word in storage from the source general-purpose register (GPR) RS

into the specified location in memory referenced by the effective address (EA).

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s

complement integer, fullword-aligned, sign-extended to 64 bits. GRP RA is updated with the EA.

If GPR RA = 0, the instruction form is invalid.

Parameters

 RS Specifies the source general-purpose register containing data.

D Specifies a 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

stdux (Store Double Word with Update Indexed) Instruction

Purpose

Store a double-word of data from a general purpose register into a specified memory location. Update the

address base.

Syntax

 Bits Value

0-5 31

6-10 S

11-15 A

16-20 B

21-30 181

31 0

Chapter 8. Instruction Set 403

POWER family

stdux RS, RA, RB

Description

The stdux instruction stores a double-word in storage from the source general-purpose register (GPR) RS

into the location in storage specified by the effective address (EA).

The EA is the sum of the contents of GPR RA and RB. GRP RA is updated with the EA.

If rA = 0, the instruction form is invalid.

Parameters

 RS Specifies the source general-purpose register containing data.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

stdx (Store Double Word Indexed) Instruction

Purpose

Store a double-word of data from a general purpose register into a specified memory location.

Syntax

 Bits Value

0-5 31

6-10 S

11-15 A

16-20 B

21-30 149

31 0

 POWER family

stdx RS, RA, RB

Description

The stdx instruction stores a double-word in storage from the source general-purpose register (GPR) RS

into the location in storage specified by the effective address (EA).

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and RB. If GPR RA is 0, then the EA is

RB.

404 Assembler Language Reference

Parameters

 RS Specifies the source general-purpose register containing data.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

stfd (Store Floating-Point Double) Instruction

Purpose

Stores a doubleword of data in a specified location in memory.

Syntax

 Bits Value

0-5 54

6-10 FRS

11-15 RA

16-31 D

 stfd FRS, D(RA)

Description

The stfd instruction stores the contents of floating-point register (FPR) FRS into the doubleword storage

addressed by the effective address (EA).

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and D. The

sum is a 16-bit signed two’s complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is

D.

The stfd instruction has one syntax form and does not affect the Floating-Point Status and Control

Register or Condition Register Field 0.

Parameters

 FRS Specifies source floating-point register of stored data.

D Specifies a16-bit signed two’s complement integer sign-extended to 32 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation.

Examples

The following code stores the contents of FPR 6 into a location in memory:

.csect data[rw]

buffer: .long 0,0

Assume FPR 6 contains 0x4865 6C6C 6F20 776F.

Chapter 8. Instruction Set 405

Assume GPR 4 contains the address of csect data[rw].

.csect text[pr]

stfd 6,buffer(4)

buffer now contains 0x4865 6C6C 6F20 776F.

Related Reading

Floating-Point Processor .

Floating-Point Load and Store Instructions .

stfdu (Store Floating-Point Double with Update) Instruction

Purpose

Stores a doubleword of data in a specified location in memory and in some cases places the address in a

general-purpose register.

Syntax

 Bits Value

0-5 55

6-10 FRS

11-15 RA

16-31 D

 stfdu FRS, D(RA)

Description

The stfdu instruction stores the contents of floating-point register (FPR) FRS into the doubleword storage

addressed by the effective address (EA).

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and D. The

sum is a 16-bit signed two’s complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is

D.

If GPR RA does not equal 0 and the storage access does not cause Alignment Interrupt or a Data Storage

Interrupt, then the EA is stored in GPR RA.

The stfdu instruction has one syntax form and does not affect the Floating-Point Status and Control

Register or Condition Register Field 0.

Parameters

 FRS Specifies source floating-point register of stored data.

D Specifies a 16-bit signed two’s complement integer sign-extended to 32 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation and possible address update.

Examples

The following code stores the doubleword contents of FPR 6 into a location in memory and stores the

address in GPR 4:

406 Assembler Language Reference

.csect data[rw]

buffer: .long 0,0

Assume FPR 6 contains 0x4865 6C6C 6F20 776F.

GPR 4 contains the address of csect data[rw].

.csect text[pr]

stfdu 6,buffer(4)

buffer now contains 0x4865 6C6C 6F20 776F.

GPR 4 now contains the address of buffer.

Related Information

Floating-Point Processor .

Floating-Point Load and Store Instructions .

stfdux (Store Floating-Point Double with Update Indexed) Instruction

Purpose

Stores a doubleword of data in a specified location in memory and in some cases places the address in a

general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 FRS

11-15 RA

16-20 RB

21-30 759

31 /

 stfdux FRS, RA, RB

Description

The stfdux instruction stores the contents of floating-point register (FPR) FRS into the doubleword storage

addressed by the effective address (EA).

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPRs RA and RB. If

GPR RA is 0, then the EA is the contents of GPR RB.

If GPR RA does not equal 0 and the storage access does not cause Alignment Interrupt or a Data Storage

Interrupt, then the EA is stored in GPR RA.

The stfdux instruction has one syntax form and does not affect the Floating-Point Status and Control

Register or Condition Register Field 0.

Parameters

 FRS Specifies source floating-point register of stored data.

RA Specifies source general-purpose register for EA calculation and possible address update.

RB Specifies source general-purpose register for EA calculation.

Chapter 8. Instruction Set 407

Examples

The following code stores the contents of FPR 6 into a location in memory and stores the address in GPR

4:

.csect data[rw]

buffer: .long 0,0,0,0

Assume FPR 6 contains 0x9000 3000 9000 3000.

Assume GPR 4 contains 0x0000 0008.

Assume GPR 5 contains the address of buffer.

.csect text[pr]

stfdux 6,4,5

buffer+8 now contains 0x9000 3000 9000 3000.

GPR 4 now contains the address of buffer+8.

Related Information

Floating-Point Processor .

Floating-Point Load and Store Instructions .

stfdx (Store Floating-Point Double Indexed) Instruction

Purpose

Stores a doubleword of data in a specified location in memory.

Syntax

 Bits Value

0-5 31

6-10 FRS

11-15 RA

16-20 RB

21-30 727

31 /

 stfdx FRS, RA, RB

Description

The stfdx instruction stores the contents of floating-point register (FPR) FRS into the doubleword storage

addressed by the effective address (EA).

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPRs RA and RB. If

GPR RA is 0, then the EA is the contents of GPR RB.

The stfdx instruction has one syntax form and does not affect the Floating-Point Status and Control

Register or Condition Register Field 0.

Parameters

 FRS Specifies source floating-point register of stored data.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

408 Assembler Language Reference

Examples

The following code stores the contents of FPR 6 into a location in memory addressed by GPR 5 and GPR

4:

.csect data[rw]

buffer: .long 0,0,0,0

Assume FPR 6 contains 0x4865 6C6C 6F20 776F.

Assume GPR 4 contains 0x0000 0008.

Assume GPR 5 contains the address of buffer.

.csect text[pr]

stfdx 6,4,5

0x4865 6C6C 6F20 776F is now stored at the

address buffer+8.

Related Information

Floating-Point Processor .

Floating-Point Load and Store Instructions .

stfiwx (Store Floating-Point as Integer Word Indexed)

Purpose

Stores the low-order 32 bits from a specified floating point register in a specified word location in memory.

Note: The stfiwx instruction is defined only in the PowerPC architecture and is an optional

instruction. It is supported on the PowerPC 603 RISC Microprocessor and the PowerPC 604 RISC

Microprocessor, but not on the PowerPC 601 RISC Microprocessor.

Syntax

 Bits Value

0-5 31

6-10 FRS

11-15 RA

16-20 RB

21-30 983

31 /

 stfiwx FRS, RA, RB

Description

The stfifx instruction stores the contents of the low-order 32 bits of floating-point register (FPR)

FRS,without conversion, into the word storage addressed by the effective address (EA).

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPRs RA and RB. If

GPR RA is 0, then the EA is the contents of GPR RB.

The stfiwx instruction has one syntax form and does not affect the Floating-Point Status and Control

Register or Condition Register Field 0.

If the contents of register FRS was produced, either directly or indirectly by a Load Floating Point Single

Instruction, a single-precision arithmetic instruction, or the frsp (Floating Round to Single Precision)

Chapter 8. Instruction Set 409

instruction, then the value stored is undefined. (The contents of FRS is produced directly by such an

instruction if FRS is the target register of such an instruction. The contents of register FRS is produced

indirectly by such an instruction if FRS is the final target register of a sequence of one or more Floating

Point Move Instructions, and the input of the sequence was produced directly by such an instruction.)

Parameters

 FRS Specifies source floating-point register of stored data.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Examples

The following code stores the contents of FPR 6 into a location in memory addressed by GPR 5 and GPR

4:

.csect data[rw]

buffer: .long 0,0,0,0

Assume FPR 6 contains 0x4865 6C6C 6F20 776F.

Assume GPR 4 contains 0x0000 0008.

Assume GPR 5 contains the address of buffer.

.csect text[pr]

stfiwx 6,4,5

6F20 776F is now stored at the

address buffer+8.

Related Information

Floating-Point Processor .

Floating-Point Load and Store Instructions .

stfq (Store Floating-Point Quad) Instruction

Purpose

Stores in memory two double-precision values at two consecutive doubleword locations.

Note: The stfq instruction is supported only in the POWER2 implementation of the POWER family

architecture.

Syntax

 Bits Value

0-5 60

6-10 FRS

11-15 RA

16-29 DS

30-31 00

 POWER2

stfq FRS, DS(RA)

410 Assembler Language Reference

Description

The stfq instruction stores in memory the contents of two consecutive floating-point registers (FPR) at the

location specified by the effective address (EA).

DS is sign-extended to 30 bits and concatenated on the right with b’00’ to form the offset value. If

general-purpose register (GPR) RA is 0, the offset value is the EA. If GPR RA is not 0, the offset value is

added to GPR RA to generate the EA. The contents of FPR FRS is stored into the doubleword of storage

at the EA. If FPR FRS is 31, then the contents of FPR 0 is stored into the doubleword at EA+8; otherwise,

the contents of FRS+1 are stored into the doubleword at EA+8.

The stfq instruction has one syntax form and does not affect the Floating-Point Status and Control

Register or Condition Register Field 0.

Parameters

 FRS Specifies the first of two floating-point registers that contain the values to be stored.

DS Specifies a 14-bit field used as an immediate value for the EA calculation.

RA Specifies one source general-purpose register for the EA calculation.

Related Information

The lfqux (Load Floating-Point Quad with Update Indexed) instruction.

Floating-Point Processor .

Floating-Point Load and Store Instructions .

stfqu (Store Floating-Point Quad with Update) Instruction

Purpose

Stores in memory two double-precision values at two consecutive doubleword locations and updates the

address base.

Note: The stfqu instruction is supported only in the POWER2 implementation of the POWER family

architecture.

Syntax

 Bits Value

0-5 61

6-10 FRS

11-15 RA

16-29 DS

30-31 01

 POWER2

stfqu FRS, DS(RA)

Chapter 8. Instruction Set 411

Description

The stfqu instruction stores in memory the contents of two consecutive floating-point registers (FPR) at

the location specified by the effective address (EA).

DS is sign-extended to 30 bits and concatenated on the right with b’00’ to form the offset value. If

general-purpose register (GPR) RA is 0, the offset value is the EA. If GPR RA is not 0, the offset value is

added to GPR RA to generate the EA. The contents of FPR FRS is stored into the doubleword of storage

at the EA. If FPR FRS is 31, then the contents of FPR 0 is stored into the doubleword at EA+8; otherwise,

the contents of FRS+1 is stored into the doubleword at EA+8.

If GPR RA is not 0, the EA is placed into GPR RA.

The stfqu instruction has one syntax form and does not affect the Floating-Point Status and Control

Register or Condition Register Field 0.

Parameters

 FRS Specifies the first of two floating-point registers that contain the values to be stored.

DS Specifies a 14-bit field used as an immediate value for the EA calculation.

RA Specifies one source general-purpose register for the EA calculation and the target register for the EA update.

Related Information

The lfqux (Load Floating-Point Quad with Update Indexed) instruction.

Floating-Point Processor .

Floating-Point Load and Store Instructions .

stfqux (Store Floating-Point Quad with Update Indexed) Instruction

Purpose

Stores in memory two double-precision values at two consecutive doubleword locations and updates the

address base.

Note: The stfqux instruction is supported only in the POWER2 implementation of the POWER family

architecture.

Syntax

 Bits Value

0-5 31

6-10 FRS

11-15 RA

16-20 RB

21-30 951

31 Rc

 POWER2

stfqux FRS, RA, RB

412 Assembler Language Reference

Description

The stfqux instruction stores in memory the contents of two consecutive floating-point registers (FPR) at

the location specified by the effective address (EA).

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB.

If GPR RA is 0, the EA is the contents of GPR RB. The contents of FPR FRS is stored into the

doubleword of storage at the EA. If FPR FRS is 31, then the contents of FPR 0 is stored into the

doubleword at EA+8; otherwise, the contents of FRS+1 is stored into the doubleword at EA+8.

If GPR RA is not 0, the EA is placed into GPR RA.

The stfqux instruction has one syntax form and does not affect the Floating-Point Status and Control

Register or Condition Register Field 0.

Parameters

 FRS Specifies the first of two floating-point registers that contain the values to be stored.

RA Specifies the first source general-purpose register for the EA calculation and the target register for the EA

update.

RB Specifies the second source general-purpose register for the EA calculation.

Related Information

The lfqux (Load Floating-Point Quad with Update Indexed) instruction.

Floating-Point Processor .

Floating-Point Load and Store Instructions .

stfqx (Store Floating-Point Quad Indexed) Instruction

Purpose

Stores in memory two double-precision values at two consecutive doubleword locations.

Note: The stfqx instruction is supported only in the POWER2 implementation of the POWER family

architecture.

Syntax

 Bits Value

0-5 31

6-10 FRS

11-15 RA

16-20 RB

21-30 919

31 Rc

 POWER2

stfqx FRS, RA, RB

Chapter 8. Instruction Set 413

Description

The stfqx instruction stores in memory the contents of floating-point register (FPR) FRS at the location

specified by the effective address (EA).

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB.

If GPR RA is 0, the EA is the contents of GPR RB. The contents of FPR FRS is stored into the

doubleword of storage at the EA. If FPR FRS is 31, then the contents of FPR 0 is stored into the

doubleword at EA+8; otherwise, the contents of FRS+1 is stored into the doubleword at EA+8.

The stfqx instruction has one syntax form and does not affect the Floating-Point Status and Control

Register or Condition Register Field 0.

Parameters

 FRS Specifies the first of two floating-point registers that contain the values to be stored.

RA Specifies one source general-purpose register for the EA calculation.

RB Specifies the second source general-purpose register for the EA calculation.

Related Information

The lfqux (Load Floating-Point Quad with Update Indexed) instruction.

Floating-Point Processor .

Floating-Point Load and Store Instructions .

stfs (Store Floating-Point Single) Instruction

Purpose

Stores a word of data from a floating-point register into a specified location in memory.

Syntax

 Bits Value

0-5 52

6-10 FRS

11-15 RA

16-31 D

 stfs FRS, D(RA)

Description

The stfs instruction converts the contents of floating-point register (FPR) FRS to single-precision and

stores the result into the word of storage addressed by the effective address (EA).

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and D, a

16-bit signed two’s complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

The stfs instruction has one syntax form and does not affect the Floating-Point Status and Control

Register or Condition Register Field 0.

414 Assembler Language Reference

Parameters

 FRS Specifies floating-point register of stored data.

D Specifies a 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation.

Examples

The following code stores the single-precision contents of FPR 6 into a location in memory:

.csect data[rw]

buffer: .long 0

Assume FPR 6 contains 0x4865 6C6C 6F20 776F.

Assume GPR 4 contains the address of csect data[rw].

.csect text[pr]

stfs 6,buffer(4)

buffer now contains 0x432B 6363.

Related Information

Floating-Point Processor .

Floating-Point Load and Store Instructions .

stfsu (Store Floating-Point Single with Update) Instruction

Purpose

Stores a word of data from a floating-point register into a specified location in memory and possibly places

the address in a general-purpose register.

Syntax

 Bits Value

0-5 53

6-10 FRS

11-15 RA

16-31 D

 stfsu FRS, D(RA)

Description

The stfsu instruction converts the contents of floating-point register (FPR) FRS to single-precision and

stores the result into the word of storage addressed by the effective address (EA).

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and D, a

16-bit signed two’s complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

If GPR RA does not equal 0 and the storage access does not cause Alignment Interrupt or Data Storage

Interrupt, then the EA is stored in GPR RA.

The stfsu instruction has one syntax form and does not affect the Floating-Point Status and Control

Register or Condition Register Field 0.

Chapter 8. Instruction Set 415

Parameters

 FRS Specifies floating-point register of stored data.

D Specifies a 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation and possible address update.

Examples

The following code stores the single-precision contents of FPR 6 into a location in memory and stores the

address in GPR 4:

.csect data[rw]

buffer: .long 0

Assume FPR 6 contains 0x4865 6C6C 6F20 776F.

Assume GPR 4 contains the address of csect data[rw].

.csect text[pr]

stfsu 6,buffer(4)

GPR 4 now contains the address of buffer.

buffer now contains 0x432B 6363.

Related Information

Floating-Point Processor .

Floating-Point Load and Store Instructions .

stfsux (Store Floating-Point Single with Update Indexed) Instruction

Purpose

Stores a word of data from a floating-point register into a specified location in memory and possibly places

the address in a general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 FRS

11-15 RA

16-20 RB

21-30 695

31 /

 stfsux FRS, RA, RB

Description

The stfsux instruction converts the contents of floating-point register (FPR) FRS to single-precision and

stores the result into the word of storage addressed by the effective address (EA).

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB.

If GPR RA is 0, then the EA is the contents of GPR RB.

If GPR RA does not equal 0 and the storage access does not cause Alignment Interrupt or Data Storage

Interrupt, then the EA is stored in GPR RA.

416 Assembler Language Reference

The stfsux instruction has one syntax form and does not affect the Floating-Point Status and Control

Register or Condition Register Field 0.

Parameters

 FRS Specifies floating-point register of stored data.

RA Specifies source general-purpose register for EA calculation and possible address update.

RB Specifies source general-purpose register for EA calculation.

Examples

The following code stores the single-precision contents of FPR 6 into a location in memory and stores the

address in GPR 5:

.csect data[rw]

buffer: .long 0,0,0,0

Assume GPR 4 contains 0x0000 0008.

Assume GPR 5 contains the address of buffer.

Assume FPR 6 contains 0x4865 6C6C 6F20 776F.

.csect text[pr]

stfsux 6,5,4

GPR 5 now contains the address of buffer+8.

buffer+8 contains 0x432B 6363.

Related Information

Floating-Point Processor .

Floating-Point Load and Store Instructions .

stfsx (Store Floating-Point Single Indexed) Instruction

Purpose

Stores a word of data from a floating-point register into a specified location in memory.

Syntax

 Bits Value

0-5 31

6-10 FRS

11-15 RA

16-20 RB

21-30 663

31 /

 stfsx FRS, RA, RB

Description

The stfsx instruction converts the contents of floating-point register (FPR) FRS to single-precision and

stores the result into the word of storage addressed by the effective address (EA).

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB.

If GPR RA is 0, then the EA is the contents of GPR RB.

Chapter 8. Instruction Set 417

The stfsx instruction has one syntax form and does not affect the Floating-Point Status and Control

Register or Condition Register Field 0.

Parameters

 FRS Specifies source floating-point register of stored data.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Examples

The following code stores the single-precision contents of FPR 6 into a location in memory:

.csect data[rw]

buffer: .long 0

Assume FPR 6 contains 0x4865 6C6C 6F20 776F.

Assume GPR 4 contains the address of buffer.

.csect text[pr]

stfsx 6,0,4

buffer now contains 0x432B 6363.

Related Information

Floating-Point Processor .

Floating-Point Load and Store Instructions .

sth (Store Half) Instruction

Purpose

Stores a halfword of data from a general-purpose register into a specified location in memory.

Syntax

 Bits Value

0-5 44

6-10 RS

11-15 RA

16-31 D

 sth RS, D(RA)

Description

The sth instruction stores bits 16-31 of general-purpose register (GPR) RS into the halfword of storage

addressed by the effective address (EA).

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit signed two’s

complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

The sth instruction has one syntax form and does not affect the Fixed-Point Exception Register or

Condition Register Field 0.

418 Assembler Language Reference

Parameters

 RS Specifies source general-purpose register of stored data.

D Specifies a16-bit signed two’s complement integer sign-extended to 32 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation.

Examples

The following code stores bits 16-31 of GPR 6 into a location in memory:

.csect data[rw]

buffer: .long 0

Assume GPR 4 contains the address of csect data[rw].

Assume GPR 6 contains 0x9000 3000.

.csect text[pr]

sth 6,buffer(4)

buffer now contains 0x3000.

Related Information

Floating-Point Processor .

Floating-Point Load and Store Instructions .

sthbrx (Store Half Byte-Reverse Indexed) Instruction

Purpose

Stores a halfword of data from a general-purpose register into a specified location in memory with the two

bytes reversed.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 918

31 /

 sthbrx RS, RA, RB

Description

The sthbrx instruction stores bits 16-31 of general-purpose register (GPR) RS into the halfword of storage

addressed by the effective address (EA).

Consider the following when using the sthbrx instruction:

v Bits 24-31 of GPR RS are stored into bits 00-07 of the halfword in storage addressed by EA.

v Bits 16-23 of GPR RS are stored into bits 08-15 of the word in storage addressed by EA.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the

EA is the contents of GPR RB.

Chapter 8. Instruction Set 419

The sthbrx instruction has one syntax form and does not affect the Fixed-Point Exception Register or

Condition Register Field 0.

Parameters

 RS Specifies source general-purpose register of stored data.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Examples

The following code stores the halfword contents of GPR 6 with the bytes reversed into a location in

memory:

.csect data[rw]

buffer: .long 0

Assume GPR 6 contains 0x9000 3456.

Assume GPR 4 contains the address of buffer.

.csect text[pr]

sthbrx 6,0,4

buffer now contains 0x5634.

Related Information

Floating-Point Processor .

Floating-Point Load and Store Instructions .

sthu (Store Half with Update) Instruction

Purpose

Stores a halfword of data from a general-purpose register into a specified location in memory and possibly

places the address in another general-purpose register.

Syntax

 Bits Value

0-5 45

6-10 RS

11-15 RA

16-31 D

 sthu RS, D(RA)

Description

The sthu instruction stores bits 16-31 of general-purpose register (GPR) RS into the halfword of storage

addressed by the effective address (EA).

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit signed two’s

complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

If GPR RA does not equal 0 and the storage access does not cause an Alignment Interrupt or a Data

Storage Interrupt, then the EA is placed into GPR RA.

420 Assembler Language Reference

The sthu instruction has one syntax form and does not affect the Fixed-Point Exception Register or

Condition Register Field 0.

Parameters

 RS Specifies source general-purpose register of stored data.

D Specifies a16-bit signed two’s complement integer sign-extended to 32 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation and possible address update.

Examples

The following code stores the halfword contents of GPR 6 into a memory location and stores the address

in GPR 4:

.csect data[rw]

buffer: .long 0

Assume GPR 6 contains 0x9000 3456.

Assume GPR 4 contains the address of csect data[rw].

.csect text[pr]

sthu 6,buffer(4)

buffer now contains 0x3456

GPR 4 contains the address of buffer.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

sthux (Store Half with Update Indexed) Instruction

Purpose

Stores a halfword of data from a general-purpose register into a specified location in memory and possibly

places the address in another general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 439

31 /

 sthux RS, RA, RB

Description

The sthux instruction stores bits 16-31 of general-purpose register (GPR) RS into the halfword of storage

addressed by the effective address (EA).

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the

EA is the contents of GPR RB.

Chapter 8. Instruction Set 421

If GPR RA does not equal 0 and the storage access does not cause an Alignment Interrupt or a Data

Storage Interrupt, then the EA is placed into register GPR RA.

The sthux instruction has one syntax form and does not affect the Fixed-Point Exception Register or

Condition Register Field 0.

Parameters

 RS Specifies source general-purpose register of stored data.

RA Specifies source general-purpose register for EA calculation and possible address update.

RB Specifies source general-purpose register for EA calculation.

Examples

The following code stores the halfword contents of GPR 6 into a memory location and stores the address

in GPR 4:

.csect data[rw]

buffer: .long 0,0,0,0

Assume GPR 6 contains 0x9000 3456.

Assume GPR 4 contains 0x0000 0007.

Assume GPR 5 contains the address of buffer.

.csect text[pr]

sthux 6,4,5

buffer+0x07 contains 0x3456.

GPR 4 contains the address of buffer+0x07.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

sthx (Store Half Indexed) Instruction

Purpose

Stores a halfword of data from a general-purpose register into a specified location in memory.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 407

31 /

 sthx RS, RA, RB

Description

The sthx instruction stores bits 16-31 of general-purpose register (GPR) RS into the halfword of storage

addressed by the effective address (EA).

422 Assembler Language Reference

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the

EA is the contents of GPR RB.

The sthx instruction has one syntax form and does not affect the Fixed-Point Exception Register or

Condition Register Field 0.

Parameters

 RS Specifies source general-purpose register of stored data.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Examples

The following code stores halfword contents of GPR 6 into a location in memory:

.csect data[rw]

buffer: .long 0

Assume GPR 6 contains 0x9000 3456.

Assume GPR 5 contains the address of buffer.

.csect text[pr]

sthx 6,0,5

buffer now contains 0x3456.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

stmw or stm (Store Multiple Word) Instruction

Purpose

Stores the contents of consecutive registers into a specified memory location.

Syntax

 Bits Value

0-5 47

6-10 RT

11-15 RA

16-31 D

 PowerPC

stmw RS, D(RA)

 POWER family

stm RS, D(RA)

Description

The stmw and stm instructions store N consecutive words from general-purpose register (GPR) RS

through GPR 31. Storage starts at the effective address (EA). N is a register number equal to 32 minus

RS.

Chapter 8. Instruction Set 423

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D. The sum is a 16-bit signed two’s

complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

The stmw instruction has one syntax form. If the EA is not a multiple of 4, the results are boundedly

undefined.

The stm instruction has one syntax form and does not affect the Fixed-Point Exception Register or

Condition Register Field 0.

Parameters

 RS Specifies source general-purpose register of stored data.

D Specifies a 16-bit signed two’s complement integer sign-extended to 32 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation.

Examples

The following code stores the contents of GPR 29 through GPR 31 into a location in memory:

.csect data[rw]

buffer: .long 0,0,0

Assume GPR 29 contains 0x1000 2200.

Assume GPR 30 contains 0x1000 3300.

Assume GPR 31 contains 0x1000 4400.

.csect text[pr]

stmw 29,buffer(4)

Three consecutive words in storage beginning at the address

of buffer are now 0x1000 2200 1000 3300 1000 4400.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

stq (Store Quad Word) Instruction

Purpose

Store a quad-word of data from a general purpose register into a specified memory location.

Syntax

 Bits Value

0-5 62

6-10 RS

11-15 RA

16-29 DS

30-31 2

 PowerPC 64

stq “RS” on page 425, “DS” on page 425(“RA” on page 425)

424 Assembler Language Reference

Description

The stq instruction stores a quad-word in storage from the source general-purpose registers (GPR) RS

and RS+1 into the specified location in memory referenced by the effective address (EA).

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and DS, a 14-bit, signed two’s

complement integer, which is concatenated on the right by 0b00 and sign extended to 64-bits. If GPR RA

is 0, then the EA is DS.

Parameters

 RS Specifies the source general-purpose register containing data. If RS is odd, the instruction form is invalid.

DS Specifies a 14-bit, signed two’s complement integer which is concatenated on the right with 0b00 and

sign-extended to 64 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

Related Information

“Fixed-Point Processor” on page 21.

“Fixed-Point Load and Store Instructions” on page 21.

stswi or stsi (Store String Word Immediate) Instruction

Purpose

Stores consecutive bytes from consecutive registers into a specified location in memory.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 NB

21-30 725

31 /

 PowerPC

stswi RS, RA, NB

 POWER family

stsi RS, RA, NB

Description

The stswi and stsi instructions store N consecutive bytes starting with the leftmost byte in

general-purpose register (GPR) RS at the effective address (EA) from GPR RS through GPR RS + NR - 1.

Chapter 8. Instruction Set 425

If GPR RA is not 0, the EA is the contents of GPR RA. If RA is 0, then the EA is 0.

Consider the following when using the stswi and stsi instructions:

v NB is the byte count.

v RS is the starting register.

v N is NB, which is the number of bytes to store. If NB is 0, then N is 32.

v NR is ceiling(N/4), which is the number of registers to store data from.

For the POWER family instruction stsi, the contents of the MQ Register are undefined.

The stswi and stsi instructions have one syntax form and do not affect the Fixed-Point Exception Register

or Condition Register Field 0.

Parameters

 RS Specifies source general-purpose register of stored data.

RA Specifies source general-purpose register for EA calculation.

NB Specifies byte count for EA calculation.

Examples

The following code stores the bytes contained in GPR 6 to GPR 8 into a location in memory:

.csect data[rw]

buffer: .long 0,0,0

Assume GPR 4 contains the address of buffer.

Assume GPR 6 contains 0x4865 6C6C.

Assume GPR 7 contains 0x6F20 776F.

Assume GPR 8 contains 0x726C 6421.

.csect text[pr]

stswi 6,4,12

buffer now contains 0x4865 6C6C 6F20 776F 726C 6421.

Related Information

Fixed-Point Processor .

Fixed-Point String Instructions .

stswx or stsx (Store String Word Indexed) Instruction

Purpose

Stores consecutive bytes from consecutive registers into a specified location in memory.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 661

31 /

426 Assembler Language Reference

PowerPC

stswx RS, RA, RB

 POWER family

stsx RS, RA, RB

Description

The stswx and stsx instructions store N consecutive bytes starting with the leftmost byte in register RS at

the effective address (EA) from general-purpose register (GPR) RS through GPR RS + NR - 1.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and the contents of GPR RB. If GPR

RA is 0, then EA is the contents of GPR RB.

Consider the following when using the stswx and stsx instructions:

v XER25-31 contain the byte count.

v RS is the starting register.

v N is XER25-31, which is the number of bytes to store.

v NR is ceiling(N/4), which is the number of registers to store data from.

For the POWER family instruction stsx, the contents of the MQ Register are undefined.

The stswx and stsx instructions have one syntax form and do not affect the Fixed-Point Exception

Register or Condition Register Field 0.

Parameters

 RS Specifies source general-purpose register of stored data.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Examples

The following code stores the bytes contained in GPR 6 to GPR 7 into the specified bytes of a location in

memory:

.csect data[rw]

buffer: .long 0,0,0

Assume GPR 5 contains 0x0000 0007.

Assume GPR 4 contains the address of buffer.

Assume GPR 6 contains 0x4865 6C6C.

Assume GPR 7 contains 0x6F20 776F.

The Fixed-Point Exception Register bits 25-31 contain 6.

.csect text[pr]

stswx 6,4,5

buffer+0x7 now contains 0x4865 6C6C 6F20.

Related Information

Fixed-Point Processor .

Fixed-Point String Instructions .

Chapter 8. Instruction Set 427

stw or st (Store) Instruction

Purpose

Stores a word of data from a general-purpose register into a specified location in memory.

Syntax

 Bits Value

0-5 36

6-10 RS

11-15 RA

16-31 D

 PowerPC

stw RS, D(RA)

 POWER family

st RS, D(RA)

Description

The stw and st instructions store a word from general-purpose register (GPR) RS into a word of storage

addressed by the effective address (EA).

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit signed two’s

complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

The stw and st instructions have one syntax form and do not affect the Fixed-Point Exception Register or

Condition Register Field 0.

Parameters

 RS Specifies source general-purpose register of stored data.

D Specifies a16-bit signed two’s complement integer sign-extended to 32 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation.

Examples

The following code stores the contents of GPR 6 into a location in memory:

.csect data[rw]

buffer: .long 0,0

Assume GPR 6 contains 0x9000 3000.

Assume GPR 5 contains the address of buffer.

.csect text[pr]

stw 6,4(5)

0x9000 3000 is now stored at the address buffer+4.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

428 Assembler Language Reference

stwbrx or stbrx (Store Word Byte-Reverse Indexed) Instruction

Purpose

Stores a byte-reversed word of data from a general-purpose register into a specified location in memory.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 662

31 /

 PowerPC

stwbrx RS, RA, RB

 POWER family

stbrx RS, RA, RB

Description

The stwbrx and stbrx instructions store a byte-reversed word from general-purpose register (GPR) RS

into a word of storage addressed by the effective address (EA).

Consider the following when using the stwbrx and stbrx instructions:

v Bits 24-31 of GPR RS are stored into bits 00-07 of the word in storage addressed by EA.

v Bits 16-23 of GPR RS are stored into bits 08-15 of the word in storage addressed by EA.

v Bits 08-15 of GPR RS are stored into bits 16-23 of the word in storage addressed by EA.

v Bits 00-07 of GPR RS are stored into bits 24-31 of the word in storage addressed by EA.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the

EA is the contents of GPR RB.

The stwbrx and stbrx instructions have one syntax form and do not affect the Fixed-Point Exception

Register or Condition Register Field 0.

Parameters

 RS Specifies source general-purpose register of stored data.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Examples

The following code stores a byte-reverse word from GPR 6 into a location in memory:

.csect data[rw]

buffer: .long 0

Assume GPR 4 contains the address of buffer.

Chapter 8. Instruction Set 429

Assume GPR 9 contains 0x0000 0000.

Assume GPR 6 contains 0x1234 5678.

.csect text[pr]

stwbrx 6,4,9

0x7856 3412 is now stored at the address of buffer.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

stwcx. (Store Word Conditional Indexed) Instruction

Purpose

Used in conjunction with a preceding lwarx instruction to emulate a read-modify-write operation on a

specified memory location.

Note: The stwcx. instruction is supported only in the PowerPC architecture.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 150

31 1

 PowerPC

stwcx. RS, RA, RB

Description

The stwcx. and lwarx instructions are primitive, or simple, instructions used to perform a read-modify-write

operation to storage. If the store is performed, the use of the stwcx. and lwarx instructions ensures that

no other processor or mechanism has modified the target memory location between the time the lwarx

instruction is executed and the time the stwcx. instruction completes.

Consider the following when using the stwcx. instruction:

v If general-purpose register (GPR) RA is 0, the effective address (EA) is the content of GPR RB,

otherwise EA is the sum of the content of GPR RA plus the content of GPR RB.

v If the reservation created by a lwarx instruction exists, the content of GPR RS is stored into the word in

storage and addressed by EA and the reservation is cleared. Otherwise, the storage is not altered.

v If the store is performed, bits 0-2 of Condition Register Field 0 are set to 0b001, otherwise, they are set

to 0b000. The SO bit of the XER is copied to to bit 4 of Condition Register Field 0.

The stwcx instruction has one syntax form and does not affect the Fixed-Point Exception Register. If the

EA is not a multiple of 4, the results are boundedly undefined.

430 Assembler Language Reference

Parameters

 RS Specifies source general-purpose register of stored data.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Examples

1. The following code performs a ″Fetch and Store″ by atomically loading and replacing a word in

storage:

Assume that GPR 4 contains the new value to be stored.

Assume that GPR 3 contains the address of the word

to be loaded and replaced.

loop: lwarx r5,0,r3 # Load and reserve

 stwcx. r4,0,r3 # Store new value if still

 # reserved

 bne- loop # Loop if lost reservation

The new value is now in storage.

The old value is returned to GPR 4.

2. The following code performs a ″Compare and Swap″ by atomically comparing a value in a register with

a word in storage:

Assume that GPR 5 contains the new value to be stored after

a successful match.

Assume that GPR 3 contains the address of the word

to be tested.

Assume that GPR 4 contains the value to be compared against

the value in memory.

loop: lwarxr 6,0,r3 # Load and reserve

 cmpw r4,r6 # Are the first two operands

 # equal?

 bne- exit # Skip if not equal

 stwcx. r5,0,r3 # Store new value if still

 # reserved

 bne- loop # Loop if lost reservation

exit: mrr 4,r6 # Return value from storage

The old value is returned to GPR 4.

If a match was made, storage contains the new value.

If the value in the register equals the word in storage, the value from a second register is stored in the

word in storage. If they are unequal, the word from storage is loaded into the first register and the EQ

bit of the Condition Register Field 0 is set to indicate the result of the comparison.

Related Information

The lwarx (Load Word and Reserve Indexed) instruction.

Processing and Storage

stwu or stu (Store Word with Update) Instruction

Purpose

Stores a word of data from a general-purpose register into a specified location in memory and possibly

places the address in another general-purpose register.

Chapter 8. Instruction Set 431

Syntax

 Bits Value

0-5 37

6-10 RS

11-15 RA

16-31 D

 PowerPC

stwu RS, D(RA)

 POWER family

stu RS, D(RA)

Description

The stwu and stu instructions store the contents of general-purpose register (GPR) RS into the word of

storage addressed by the effective address (EA).

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit signed two’s

complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

If GPR RA is not 0 and the storage access does not cause an Alignment Interrupt or a Data Storage

Interrupt, then EA is placed into GPR RA.

The stwu and stu instructions have one syntax form and do not affect the Fixed-Point Exception Register

or Condition Register Field 0.

Parameters

 RS Specifies general-purpose register of stored data.

D Specifies16-bit signed two’s complement integer sign-extended to 32 bits for EA calculation.

RA Specifies source general-purpose register for EA calculation and possible address update.

Examples

The following code stores the contents of GPR 6 into a location in memory:

.csect data[rw]

buffer: .long 0

Assume GPR 4 contains the address of csect data[rw].

Assume GPR 6 contains 0x9000 3000.

.csect text[pr]

stwu 6,buffer(4)

buffer now contains 0x9000 3000.

GPR 4 contains the address of buffer.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

432 Assembler Language Reference

stwux or stux (Store Word with Update Indexed) Instruction

Purpose

Stores a word of data from a general-purpose register into a specified location in memory and possibly

places the address in another general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

212-30 183

31 /

 PowerPC

stwux RS, RA, RB

 POWER family

stux RS, RA, RB

Description

The stwux and stux instructions store the contents of general-purpose register (GPR) RS into the word of

storage addressed by the effective address (EA).

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the

EA is the contents of GPR RB.

If GPR RA is not 0 and the storage access does not cause an Alignment Interrupt or a Data Storage

Interrupt, then the EA is placed into GPR RA.

The stwux and stux instructions have one syntax form and do not affect the Fixed-Point Exception

Register or Condition Register Field 0.

Parameters

 RS Specifies source general-purpose register of stored data.

RA Specifies source general-purpose register for EA calculation and possible address update.

RB Specifies source general-purpose register for EA calculation.

Examples

The following code stores the contents of GPR 6 into a location in memory:

.csect data[rw]

buffer: .long 0,0

Assume GPR 4 contains 0x0000 0004.

Assume GPR 23 contains the address of buffer.

Assume GPR 6 contains 0x9000 3000.

Chapter 8. Instruction Set 433

.csect text[pr]

stwux 6,4,23

buffer+4 now contains 0x9000 3000.

GPR 4 now contains the address of buffer+4.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

stwx or stx (Store Word Indexed) Instruction

Purpose

Stores a word of data from a general-purpose register into a specified location in memory.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 151

31 /

 PowerPC

stwx RS, RA, RB

 POWER family

stx RS, RA, RB

Description

The stwx and stx instructions store the contents of general-purpose register (GPR) RS into the word of

storage addressed by the effective address (EA).

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the

EA is the contents of GPR RB.

The stwx and stx instructions have one syntax form and do not affect the Fixed-Point Exception Register

or Condition Register Field 0.

Parameters

 RS Specifies source general-purpose register of stored data.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Examples

The following code stores the contents of GPR 6 into a location in memory:

434 Assembler Language Reference

.csect data[pr]

buffer: .long 0

Assume GPR 4 contains the address of buffer.

Assume GPR 6 contains 0x4865 6C6C.

.csect text[pr]

stwx 6,0,4

Buffer now contains 0x4865 6C6C.

Related Information

Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

subf (Subtract From) Instruction

Purpose

Subtracts the contents of two general-purpose registers and places the result in a third general-purpose

register.

Note: The subf instruction is supported only in the PowerPC architecture.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21 OE

22-30 40

31 Rc

 PowerPC

subf RT, RA, RB

subf. RT, RA, RB

subfo RT, RA, RB

subfo. RT, RA, RB

See Extended Mnemonics of Fixed-Point Arithmetic Instructions for more information.

Description

The subf instruction adds the ones complement of the contents of general-purpose register (GPR) RA and

1 to the contents of GPR RB and stores the result in the target GPR RT.

The subf instruction has four syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

subf 0 None 0 None

Chapter 8. Instruction Set 435

subf. 0 None 1 LT,GT,EQ,SO

subfo 1 SO,OV,CA 0 None

subfo. 1 SO,OV,CA 1 LT,GT,EQ,SO

The four syntax forms of the subf instruction never affect the Carry bit (CA) in the Fixed-Point Exception

Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the instruction affects the Summary

Overflow (SO) and Overflow (OV) bits in the Fixed-Point Exception Register. If the syntax form sets the

Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To

(EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for EA calculation.

RB Specifies source general-purpose register for EA calculation.

Examples

1. The following code subtracts the contents of GPR 4 from the contents of GPR 10, and stores the result

in GPR 6:

Assume GPR 4 contains 0x8000 7000.

Assume GPR 10 contains 0x9000 3000.

subf 6,4,10

GPR 6 now contains 0x0FFF C000.

2. The following code subtracts the contents of GPR 4 from the contents of GPR 10, stores the result in

GPR 6, and sets Condition Register Field 0:

Assume GPR 4 contains 0x0000 4500.

Assume GPR 10 contains 0x8000 7000.

subf. 6,4,10

GPR 6 now contains 0x8000 2B00.

3. The following code subtracts the contents of GPR 4 from the contents of GPR 10, stores the result in

GPR 6, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register to

reflect the result of the operation:

Assume GPR 4 contains 0x8000 0000.

Assume GPR 10 contains 0x0000 4500.

subfo 6,4,10

GPR 6 now contains 0x8000 4500.

4. The following code subtracts the contents of GPR 4 from the contents of GPR 10, stores the result in

GPR 6, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register and

Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x8000 0000.

Assume GPR 10 contains 0x0000 7000.

subfo. 6,4,10

GPR 6 now contains 0x8000 7000.

Related Information

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

436 Assembler Language Reference

subfc or sf (Subtract from Carrying) Instruction

Purpose

Subtracts the contents of a general-purpose register from the contents of another general-purpose register

and places the result in a third general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21 OE

22-30 8

31 Rc

 PowerPC

subfc RT, RA, RB

subfc. RT, RA, RB

subfco RT, RA, RB

subfco. RT, RA, RB

 POWER family

sf RT, RA, RB

sf. RT, RA, RB

sfo RT, RA, RB

sfo. RT, RA, RB

See Extended Mnemonics of Fixed-Point Arithmetic Instructions for more information.

Description

The subfc and sf instructions add the ones complement of the contents of general-purpose register (GPR)

RA and 1 to the contents of GPR RB and stores the result in the target GPR RT.

The subfc instruction has four syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

The sf instruction has four syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

subfc 0 CA 0 None

subfc. 0 CA 1 LT,GT,EQ,SO

subfco 1 SO,OV,CA 0 None

subfco. 1 SO,OV,CA 1 LT,GT,EQ,SO

sf 0 CA 0 None

Chapter 8. Instruction Set 437

sf. 0 CA 1 LT,GT,EQ,SO

sfo 1 SO,OV,CA 0 None

sfo. 1 SO,OV,CA 1 LT,GT,EQ,SO

The four syntax forms of the subfc instruction, and the four syntax forms of the sf instruction, always

affect the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Overflow

Exception (OE) bit to 1, the instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the

Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the

Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in

Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

1. The following code subtracts the contents of GPR 4 from the contents of GPR 10, stores the result in

GPR 6, and sets the Carry bit to reflect the result of the operation:

Assume GPR 4 contains 0x8000 7000.

Assume GPR 10 contains 0x9000 3000.

subfc 6,4,10

GPR 6 now contains 0x0FFF C000.

2. The following code subtracts the contents of GPR 4 from the contents of GPR 10, stores the result in

GPR 6, and sets Condition Register Field 0 and the Carry bit to reflect the result of the operation:

Assume GPR 4 contains 0x0000 4500.

Assume GPR 10 contains 0x8000 7000.

subfc. 6,4,10

GPR 6 now contains 0x8000 2B00.

3. The following code subtracts the contents of GPR 4 from the contents of GPR 10, stores the result in

GPR 6, and sets the Summary Overflow, Overflow, and Carry bits in the Fixed-Point Exception

Register to reflect the result of the operation:

Assume GPR 4 contains 0x8000 0000.

Assume GPR 10 contains 0x0000 4500.

subfco 6,4,10

GPR 6 now contains 0x8000 4500.

4. The following code subtracts the contents of GPR 4 from the contents of GPR 10, stores the result in

GPR 6, and sets the Summary Overflow, Overflow, and Carry bits in the Fixed-Point Exception

Register and Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x8000 0000.

Assume GPR 10 contains 0x0000 7000.

subfco. 6,4,10

GPR 6 now contains 0x8000 7000.

Related Information

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

438 Assembler Language Reference

subfe or sfe (Subtract from Extended) Instruction

Purpose

Adds the one’s complement of the contents of a general-purpose register to the sum of another

general-purpose register and then adds the value of the Fixed-Point Exception Register Carry bit and

stores the result in a third general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21 OE

22-30 136

31 Rc

 PowerPC

subfe RT, RA, RB

subfe. RT, RA, RB

subfeo RT, RA, RB

subfeo. RT, RA, RB

 POWER family

sfe RT, RA, RB

sfe. RT, RA, RB

sfeo RT, RA, RB

sfeo. RT, RA, RB

Description

The subfe and sfe instructions add the value of the Fixed-Point Exception Register Carry bit, the contents

of general-purpose register (GPR) RB, and the one’s complement of the contents of GPR RA and store

the result in the target GPR RT.

The subfe instruction has four syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

The sfe instruction has four syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

subfe 0 CA 0 None

subfe. 0 CA 1 LT,GT,EQ,SO

subfeo 1 SO,OV,CA 0 None

subfeo. 1 SO,OV,CA 1 LT,GT,EQ,SO

sfe 0 CA 0 None

Chapter 8. Instruction Set 439

sfe. 0 CA 1 LT,GT,EQ,SO

sfeo 1 SO,OV,CA 0 None

sfeo. 1 SO,OV,CA 1 LT,GT,EQ,SO

The four syntax forms of the subfe instruction, and the four syntax forms of the sfe instruction, always

affect the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Overflow

Exception (OE) bit to 1, the instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the

Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the

Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in

Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

1. The following code adds the one’s complement of the contents of GPR 4, the contents of GPR 10, and

the value of the Fixed-Point Exception Register Carry bit and stores the result in GPR 6:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 10 contains 0x8000 7000.

Assume the Carry bit is one.

subfe 6,4,10

GPR 6 now contains 0xF000 4000.

2. The following code adds the one’s complement of the contents of GPR 4, the contents of GPR 10, and

the value of the Fixed-Point Exception Register Carry bit, stores the result in GPR 6, and sets

Condition Register field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x0000 4500.

Assume GPR 10 contains 0x8000 7000.

Assume the Carry bit is zero.

subfe. 6,4,10

GPR 6 now contains 0x8000 2AFF.

3. The following code adds the one’s complement of the contents of GPR 4, the contents of GPR 10, and

the value of the Fixed-Point Exception Register Carry bit, stores the result in GPR 6, and sets the

Summary Overflow, Overflow, and Carry bits in the Fixed-Point Exception Register to reflect the result

of the operation:

Assume GPR 4 contains 0x8000 0000.

Assume GPR 10 contains 0xEFFF FFFF.

Assume the Carry bit is one.

subfeo 6,4,10

GPR 6 now contains 0x6FFF FFFF.

4. The following code adds the one’s complement of the contents of GPR 4, the contents of GPR 10, and

the value of the Fixed-Point Exception Register Carry bit, stores the result in GPR 6, and sets the

Summary Overflow, Overflow, and Carry bits in the Fixed-Point Exception Register and Condition

Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0x8000 0000.

Assume GPR 10 contains 0xEFFF FFFF.

Assume the Carry bit is zero.

subfeo. 6,4,10

GPR 6 now contains 0x6FFF FFFE.

440 Assembler Language Reference

Related Information

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

subfic or sfi (Subtract from Immediate Carrying) Instruction

Purpose

Subtracts the contents of a general-purpose register from a 16-bit signed integer and places the result in

another general-purpose register.

Syntax

 Bits Value

0-5 08

6-10 RT

11-15 RA

16-31 SI

 PowerPC

subfic RT, RA, SI

 POWER family

sfi RT, RA, SI

Description

The subfic and sfi instructions add the one’s complement of the contents of general-purpose register

(GPR) RA, 1, and a 16-bit signed integer SI. The result is placed in the target GPR RT.

Note: When SI is -1, the subfic and sfi instructions place the one’s complement of the contents of

GPR RA in GPR RT.

The subfic and sfi instructions have one syntax form and do not affect Condition Register Field 0. These

instructions always affect the Carry bit in the Fixed-Point Exception Register.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for operation.

SI Specifies 16-bit signed integer for operation.

Examples

The following code subtracts the contents of GPR 4 from the signed integer 0x0000 7000 and stores the

result in GPR 6:

Assume GPR 4 holds 0x9000 3000.

subfic 6,4,0x00007000

GPR 6 now holds 0x7000 4000.

Chapter 8. Instruction Set 441

Related Information

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

subfme or sfme (Subtract from Minus One Extended) Instruction

Purpose

Adds the one’s complement of a general-purpose register to -1 with carry.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 ///

21 OE

22-30 232

31 Rc

 PowerPC

subfme RT, RA

subfme. RT, RA

subfmeo RT, RA

subfmeo. RT, RA

 POWER family

sfme RT, RA

sfme. RT, RA

sfmeo RT, RA

sfmeo. RT, RA

Description

The subfme and sfme instructions add the one’s complement of the contents of general-purpose

register(GPR) RA, the Carry Bit of the Fixed-Point Exception Register, and x’FFFFFFFF’ and place the

result in the target GPR RT.

The subfme instruction has four syntax forms. Each syntax form has a different effect on Condition

Register Field 0 and the Fixed-Point Exception Register.

The sfme instruction has four syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

subfme 0 CA 0 None

subfme. 0 CA 1 LT,GT,EQ,SO

442 Assembler Language Reference

subfmeo 1 SO,OV,CA 0 None

subfmeo. 1 SO,OV,CA 1 LT,GT,EQ,SO

sfme 0 CA 0 None

sfme. 0 CA 1 LT,GT,EQ,SO

sfmeo 1 SO,OV,CA 0 None

sfmeo. 1 SO,OV,CA 1 LT,GT,EQ,SO

The four syntax forms of the subfme instruction, and the four syntax forms of the sfme instruction, always

affect the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Overflow

Exception (OE) bit to 1, the instruction effects the Summary Overflow (SO) and Overflow (OV) bits in the

Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the

Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in

Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for operation.

Examples

1. The following code adds the one’s complement of the contents of GPR 4, the Carry bit of the

Fixed-Point Exception Register, and x’FFFFFFFF’ and stores the result in GPR 6:

Assume GPR 4 contains 0x9000 3000.

Assume the Carry bit is set to one.

subfme 6,4

GPR 6 now contains 0x6FFF CFFF.

2. The following code adds the one’s complement of the contents of GPR 4, the Carry bit of the

Fixed-Point Exception Register, and x’FFFFFFFF’, stores the result in GPR 6, and sets Condition

Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xB004 3000.

Assume the Carry bit is set to zero.

subfme. 6,4

GPR 6 now contains 0x4FFB CFFE.

3. The following code adds the one’s complement of the contents of GPR 4, the Carry bit of the

Fixed-Point Exception Register, and x’FFFFFFFF’, stores the result in GPR 6, and sets the Fixed-Point

Exception Register to reflect the result of the operation:

Assume GPR 4 contains 0xEFFF FFFF.

Assume the Carry bit is set to one.

subfmeo 6,4

GPR 6 now contains 0x1000 0000.

4. The following code adds the one’s complement of the contents of GPR 4, the Carry bit of the

Fixed-Point Exception Register, and x’FFFFFFFF’, stores the result in GPR 6, and sets Condition

Register Field 0 and the Fixed-Point Exception Register to reflect the result of the operation:

Assume GPR 4 contains 0xEFFF FFFF.

Assume the Carry bit is set to zero.

subfmeo. 6,4

GPR 6 now contains 0x0FFF FFFF.

Related Information

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

Chapter 8. Instruction Set 443

subfze or sfze (Subtract from Zero Extended) Instruction

Purpose

Adds the one’s complement of the contents of a general-purpose register, the Carry bit in the Fixed-Point

Exception Register, and 0 and places the result in a second general-purpose register.

Syntax

 Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 ///

21 OE

22-30 200

31 Rc

 PowerPC

subfze RT, RA

subfze. RT, RA

subfzeo RT, RA

subfzeo. RT, RA

 POWER family

sfze RT, RA

sfze. RT, RA

sfzeo RT, RA

sfzeo. RT, RA

Description

The subfze and sfze instructions add the one’s complement of the contents of general-purpose register

(GPR) RA, the Carry bit of the Fixed-Point Exception Register, and x’00000000’ and store the result in the

target GPR RT.

The subfze instruction has four syntax forms. Each syntax form has a different effect on Condition

Register Field 0 and the Fixed-Point Exception Register.

The sfze instruction has four syntax forms. Each syntax form has a different effect on Condition Register

Field 0 and the Fixed-Point Exception Register.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

subfze 0 CA 0 None

subfze. 0 CA 1 LT,GT,EQ,SO

subfzeo 1 SO,OV,CA 0 None

subfzeo. 1 SO,OV,CA 1 LT,GT,EQ,SO

sfze 0 CA 0 None

sfze. 0 CA 1 LT,GT,EQ,SO

444 Assembler Language Reference

sfzeo 1 SO,OV,CA 0 None

sfzeo. 1 SO,OV,CA 1 LT,GT,EQ,SO

The four syntax forms of the subfze instruction, and the four syntax forms of the sfze instruction, always

affect the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Overflow

Exception (OE) bit to 1, the instruction effects the Summary Overflow (SO) and Overflow (OV) bits in the

Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the

Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in

Condition Register Field 0.

Parameters

 RT Specifies target general-purpose register where result of operation is stored.

RA Specifies source general-purpose register for operation.

Examples

1. The following code adds the one’s complement of the contents of GPR 4, the Carry bit, and zero and

stores the result in GPR 6:

Assume GPR 4 contains 0x9000 3000.

Assume the Carry bit is set to one.

subfze 6,4

GPR 6 now contains 0x6FFF D000.

2. The following code adds the one’s complement of the contents of GPR 4, the Carry bit, and zero,

stores the result in GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xB004 3000.

Assume the Carry bit is set to one.

subfze. 6,4

GPR 6 now contains 0x4FFB D000.

3. The following code adds the one’s complement of the contents of GPR 4, the Carry bit, and zero,

stores the result in GPR 6, and sets the Fixed-Point Exception Register to reflect the result of the

operation:

Assume GPR 4 contains 0xEFFF FFFF.

Assume the Carry bit is set to zero.

subfzeo 6,4

GPR 6 now contains 0x1000 0000.

4. The following code adds the one’s complement of the contents of GPR 4, the Carry bit, and zero,

stores the result in GPR 6, and sets Condition Register Field 0 and the Fixed-Point Exception Register

to reflect the result of the operation:

Assume GPR 4 contains 0x70FB 6500.

Assume the Carry bit is set to zero.

subfzeo 6,4

GPR 6 now contains 0x8F04 9AFF.

Related Information

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

Chapter 8. Instruction Set 445

svc (Supervisor Call) Instruction

Purpose

Generates a supervisor call interrupt.

Note: The svc instruction is supported only in the POWER family architecture.

Syntax

 Bits Value

0-5 17

6-10 ///

11-15 ///

16-19 FLI

20-26 LEV

27-29 FL2

30 SA

31 LK

 POWER family

svc LEV, FL1, FL2

svcl LEV, FL1, FL2

 Bits Value

0-5 17

6-10 ///

11-15 ///

16-29 SV

30 SA

31 LK

 svca SV

svcla SV

Description

The svc instruction generates a supervisor call interrupt and places bits 16-31 of the svc instruction into

bits 0-15 of the Count Register (CR) and bits 16-31 of the Machine State Register (MSR) into bits 16-31 of

the CR.

Consider the following when using the svc instruction:

v If the SVC Absolute bit (SA) is set to 0, the instruction fetch and execution continues at one of the 128

offsets, b’1’|| LEV ||b’00000’, to the base effective address (EA) indicated by the setting of the IP bit of

the MSR. FL1 and FL2 fields could be used for passing data to the SVC routine but are ignored by

hardware.

v If the SVC Absolute bit (SA) is set to 1, then instruction fetch and execution continues at the offset,

x’1FE0’, to the base EA indicated by the setting of the IP bit of the MSR.

446 Assembler Language Reference

v If the Link bit (LK) is set to 1, the EA of the instruction following the svc instruction is placed in the Link

Register.

Notes:

1. To ensure correct operation, an svc instruction must be preceded by an unconditional branch

or a CR instruction. If a useful instruction cannot be scheduled as specified, use a no-op

version of the cror instruction with the following syntax:

cror BT,BA,BB No-op when BT = BA = BB

2. The svc instruction has the same op code as the sc (System Call) instruction.

The svc instruction has four syntax forms. Each syntax form affects the MSR.

 Syntax Form Link Bit (LK) SVC Absolute Bit (SA) Machine State Register Bits

svc 0 0 EE,PR,FE set to zero

svcl 1 0 EE,PR,FE set to zero

svca 0 1 EE,PR,FE set to zero

svcla 1 1 EE,PR,FE set to zero

The four syntax forms of the svc instruction never affect the FP, ME, AL, IP, IR, or DR bits of the MSR.

The EE, PR, and FE bits of the MSR are always set to 0. The Fixed-Point Exception Register and

Condition Register Field 0 are unaffected by the svc instruction.

Parameters

 LEV Specifies execution address.

FL1 Specifies field for optional data passing to SVC routine.

FL2 Specifies field for optional data passing to SVC routine.

SV Specifies field for optional data passing to SVC routine.

Related Information

The cror (Condition Register OR) instruction, sc (System Call) instruction.

Branch Processor .

System Call Instructions .

Functional Differences for POWER family and PowerPC Instructions .

sync (Synchronize) or dcs (Data Cache Synchronize) Instruction

Purpose

The PowerPC instruction, sync, ensures that all previous instructions have completed before the next

instruction is initiated.

The POWER family instruction, dcs, causes the processor to wait until all data cache lines have been

written.

Chapter 8. Instruction Set 447

Syntax

 Bits Value

0-5 31

6-9 ///

10 L

11-15 ///

16-20 ///

21-30 598

31 /

 PowerPC

sync “L”

 POWER family

dcs

Description

The PowerPC instruction, sync, provides an ordering function that ensures that all instructions initiated

prior to the sync instruction complete, and that no subsequent instructions initiate until after the sync

instruction completes. When the sync instruction completes, all storage accesses initiated prior to the

sync instruction are complete.

The L field is used to specify a heavyweight sync (L = 0) or a lightweight sync (L = 1).

Note: The sync instruction takes a significant amount of time to complete. The eieio (Enforce In-order

Execution of I/O) instruction is more appropriate for cases where the only requirement is to control

the order of storage references to I/O devices.

The POWER family instruction, dcs, causes the processor to wait until all data cache lines being written or

scheduled for writing to main memory have finished writing.

The dcs and sync instructions have one syntax form and do not affect the Fixed-Point Exception Register.

If the Record (Rc) bit is set to 1, the instruction form is invalid.

Parameters

 L Specifies heavyweight or a lightweight sync.

Examples

The following code makes the processor wait until the result of the dcbf instruction is written into main

memory:

Assume that GPR 4 holds 0x0000 3000.

dcbf 1,4

sync

Wait for memory to be updated.

448 Assembler Language Reference

Related Information

“eieio (Enforce In-Order Execution of I/O) Instruction” on page 196.

Chapter 2, “Processing and Storage,” on page 11.

td (Trap Double Word) Instruction

Purpose

Generate a program interrupt when a specific condition is true.

This instruction should only be used on 64-bit PowerPC processors running a 64-bit application.

Syntax

 Bits Value

0-5 31

6-10 TO

11-15 A

16-20 B

21-30 68

31 0

 PowerPC64

td TO, RA, RB

Description

The contents of general-purpose register (GPR) RA are compared with the contents of GPR RB. If any bit

in the TO field is set and its corresponding condition is met by the result of the comparison, then a

trap-type program interrupt is generated.

The TO bit conditions are defined as follows:

 TO bit ANDed with Condition

0 Compares Less Than.

1 Compares Greater Than.

2 Compares Equal.

3 Compares Logically Less Than.

4 Compares Logically Greater Than.

Parameters

 TO Specifies TO bits that are ANDed with compare results.

RA Specifies source general-purpose register for compare.

RB Specifies source general-purpose register for compare.

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

Chapter 8. Instruction Set 449

Examples

The following code generates a program interrupt:

Assume GPR 3 holds 0x0000_0000_0000_0001.

Assume GPR 4 holds 0x0000_0000_0000_0000.

td 0x2,3,4 # A trap type Program Interrupt occurs.

Related Information

Branch Processor .

Fixed-Point Trap Instructions

tdi (Trap Double Word Immediate) Instruction

Purpose

Generate a program interrupt when a specific condition is true.

This instruction should only be used on 64-bit PowerPC processors running a 64-bit application.

Syntax

 Bits Value

0-5 02

6-10 TO

11-15 A

16-31 SIMM

 PowerPC64

tdi TO, RA, SIMM

Description

The contents of general-purpose register RA are compared with the sign-extended value of the SIMM field.

If any bit in the TO field is set and its corresponding condition is met by the result of the comparison, then

the system trap handler is invoked.

The TO bit conditions are defined as follows:

 TO bit ANDed with Condition

0 Compares Less Than.

1 Compares Greater Than.

2 Compares Equal.

3 Compares Logically Less Than.

4 Compares Logically Greater Than.

Parameters

 TO Specifies TO bits that are ANDed with compare results.

RA Specifies source general-purpose register for compare.

SIMM 16-bit two’s-complement value which will be sign-extended for comparison.

450 Assembler Language Reference

Implementation

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause

the system illegal instruction error handler to be invoked.

Related Information

Branch Processor .

Fixed-Point Trap Instructions

tlbie or tlbi (Translation Look-Aside Buffer Invalidate Entry) Instruction

Purpose

Makes a translation look-aside buffer entry invalid for subsequent address translations.

Notes:

1. The tlbie instruction is optional for the PowerPC architecture. It is supported on PowerPC 601 RISC

Microprocessor, PowerPC 603 RISC Microprocessor and PowerPC 604 RISC Microprocessor.

2. tlbi is a POWER family instruction.

Syntax

 Bits Value

0-5 31

6-9 ///

10 L

11-15 ///

16-20 RB

21-30 306

31 /

 PowerPC

tlbie “RB” on page 452, “L” on page 452

 POWER family

tlbi “RA” on page 452, “RB” on page 452

Description

The PowerPC instruction tlbie searches the Translation Look-Aside Buffer (TLB) for an entry

corresponding to the effective address (EA). The search is done regardless of the setting of Machine State

Register (MSR) Instruction Relocate bit or the MSR Data Relocate bit. The search uses a portion of the

EA including the least significant bits, and ignores the content of the Segment Registers. Entries that

satisfy the search criteria are made invalid so will not be used to translate subsequent storage accesses.

The POWER family instruction tlbi expands the EA to its virtual address and invalidates any information in

the TLB for the virtual address, regardless of the setting of MSR Instruction Relocate bit or the MSR Data

Relocate bit. The EA is placed into the general-purpose register (GPR) RA.

Consider the following when using the POWER family instruction tlbi:

Chapter 8. Instruction Set 451

v If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, EA is

the sum of the contents of GPR RB and 0.

v If GPR RA is not 0, EA is placed into GPR RA.

v If EA specifies an I/O address, the instruction is treated as a no-op, but if GPR RA is not 0, EA is

placed into GPR RA.

The L field is used to specify a 4 KB page size (L = 0) or a large page size (L = 1).

The tlbie and tlbi instructions have one syntax form and do not affect the Fixed-Point Exception Register.

If the Record bit (Rc) is set to 1, the instruction form is invalid.

Parameters

The following parameter pertains to the PowerPC instruction, tlbie, only:

 RB Specifies the source general-purpose register containing the EA for the search.

L Specifies the page size.

The following parameters pertain to the POWER family instruction, tlbi, only:

 RA Specifies the source general-purpose register for EA calculation and, if RA is not GPR 0, the target

general-purpose register for operation.

RB Specifies source general-purpose register for EA calculation.

Security

The tlbie and tlbi instructions are privileged.

Related Information

Chapter 2, “Processing and Storage,” on page 11.

tlbld (Load Data TLB Entry) Instruction

Purpose

Loads the data Translation Look-Aside Buffer (TLB) entry to assist a TLB reload function performed in

software on the PowerPC 603 RISC Microprocessor.

Notes:

1. The tlbld instruction is supported only on the PowerPC 603 RISC Microprocessor. It is not part of the

PowerPC architecture and not part of the POWER family architecture.

2. TLB reload is usually done by the hardware, but on the PowerPC 603 RISC Microprocessor this is

done by software.

3. When AIX is installed on a system using the PowerPC 603 RISC Microprocessor, software to perform

the TLB reload function is provided as part of the operating system. You are likely to need to use this

instruction only if you are writing software for the PowerPC 603 RISC Microprocessor intended to

operate without AIX.

Syntax

 Bits Value

0-5 31

6-10 ///

452 Assembler Language Reference

Bits Value

11-15 ///

16-20 RB

21-30 978

31 /

 PowerPC 603 RISC Microprocessor

tlbld RB

Description

For better understanding, the following information is presented:

v Information about a typical TLB reload function that would call the tlbld instruction.

v An explanation of what the tlbld instruction does.

Typical TLB Reload Function

In the processing of the address translation, the Effective Address (EA) is first translated into a Virtual

Address (VA). The part of the Virtual Address is used to select the TLB entry. If an entry is not found in the

TLB, a miss is detected. When a miss is detected, the EA is loaded into the data TLB Miss Address

(DMISS) register. The first word of the target Page Table Entry is loaded into the data TLB Miss Compare

(DCMP) register. A routine is invoked to compare the content of DCMP with all the entries in the primary

Page Table Entry Group (PTEG) pointed to by the HASH1 register and all the entries in the secondary

PTEG pointed to by the HASH2 register. When there is a match, the tlbld instruction is invoked.

tlbld Instruction Function

The tlbld instruction loads the data Translation Look-Aside Buffer (TLB) entry selected by the content of

register RB in the following way:

v The content of the data TLB Miss Compare (DCMP) register is loaded into the higher word of the data

TLB entry.

v The contents of the RPA register and the data TLB Miss Address (DMISS) register are merged and

loaded into the lower word of the data TLB entry.

The tlbld instruction has one syntax form and does not affect the Fixed-Point Exception Register. If the

Record bit (Rc) is set to 1, the instruction form is invalid.

Parameters

 RB Specifies the source general-purpose register for EA.

Security

The tlbld instruction is privileged.

Related Information

“tlbli (Load Instruction TLB Entry) Instruction” on page 454.

PowerPC 603 RISC Microprocessor User’s Manual.

Chapter 8. Instruction Set 453

tlbli (Load Instruction TLB Entry) Instruction

Purpose

Loads the instruction Translation Look-Aside Buffer (TLB) entry to assist a TLB reload function performed

in software on the PowerPC 603 RISC Microprocessor.

Notes:

1. The tlbli instruction is supported only on the PowerPC 603 RISC Microprocessor. It is not part of the

PowerPC architecture and not part of the POWER family architecture.

2. TLB reload is usually done by the hardware, but on the PowerPC 603 RISC Microprocessor this is

done by software.

3. When AIX is installed on a system using the PowerPC 603 RISC Microprocessor, software to perform

the TLB reload function is provided as part of the operating system. You are likely to need to use this

instruction only if you are writing software for the PowerPC 603 RISC Microprocessor intended to

operate without AIX.

Syntax

 Bits Value

0-5 31

6-10 ///

11-15 ///

16-20 RB

21-30 1010

31 /

 PowerPC 603 RISC Microprocessor

tlbli RB

Description

For better understanding, the following information is presented:

v Information about a typical TLB reload function that would call the tlbli instruction.

v An explanation of what the tlbli instruction does.

Typical TLB Reload Function

In the processing of the address translation, the Effective Address (EA) is first translated into a Virtual

Address (VA). The part of the Virtual Address is used to select the TLB entry. If an entry is not found in the

TLB, a miss is detected. When a miss is detected, the EA is loaded into the instruction TLB Miss Address

(IMISS) register. The first word of the target Page Table Entry is loaded into the instruction TLB Miss

Compare (ICMP) register. A routine is invoked to compare the content of ICMP with all the entries in the

primary Page Table Entry Group (PTEG) pointed to by the HASH1 register and with all the entries in the

secondary PTEG pointed to by the HASH2 register. When there is a match, the tlbli instruction is invoked.

tlbli Instruction Function

The tlbli instruction loads the instruction Translation Look-Aside Buffer (TLB) entry selected by the content

of register RB in the following way:

v The content of the instruction TLB Miss Compare (DCMP) register is loaded into the higher word of the

instruction TLB entry.

v The contents of the RPA register and the instruction TLB Miss Address (IMISS) register are merged and

loaded into the lower word of the instruction TLB entry.

454 Assembler Language Reference

The tlbli instruction has one syntax form and does not affect the Fixed-Point Exception Register. If the

Record bit (Rc) is set to 1, the instruction form is invalid.

Parameters

 RB Specifies the source general-purpose register for EA.

Security

The tlbli instruction is privileged.

Related Information

“tlbld (Load Data TLB Entry) Instruction” on page 452.

PowerPC 603 RISC Microprocessor User’s Manual.

tlbsync (Translation Look-Aside Buffer Synchronize) Instruction

Purpose

Ensures that a tlbie and tlbia instruction executed by one processor has completed on all other

processors.

Note: The tlbsync instruction is defined only in the PowerPC architecture and is an optional

instruction. It is supported on the PowerPC 603 RISC Microprocessor and on the PowerPC 604

RISC Microprocessor, but not on the PowerPC 601 RISC Microprocessor.

Syntax

 Bits Value

0-5 31

6-10 ///

11-15 ///

16-20 ///

21-30 566

31 /

PowerPC

tlbsync

Description

The tlbsync instruction does not complete until all previous tlbie and tlbia instructions executed by the

processor executing the tlbsync instruction have been received and completed by all other processors.

The tlbsync instruction has one syntax form and does not affect the Fixed-Point Exception Register. If the

Record bit (Rc) is set to 1, the instruction form is invalid.

Security

The tlbsync instruction is privileged.

Chapter 8. Instruction Set 455

Related Information

Processing and Storage

tw or t (Trap Word) Instruction

Purpose

Generates a program interrupt when a specified condition is true.

Syntax

 Bits Value

0-5 31

6-10 TO

11-15 RA

16-20 RB

21-30 4

31 /

 PowerPC

tw TO, RA, RB

 POWER family

t TO, RA, RB

See Extended Mnemonics of Fixed-Point Trap Instructions for more information.

Description

The tw and t instructions compare the contents of general-purpose register (GPR) RA with the contents of

GPR RB, AND the compared results with TO, and generate a trap-type Program Interrupt if the result is

not 0.

The TO bit conditions are defined as follows.

 TO bit ANDed with Condition

0 Compares Less Than.

1 Compares Greater Than.

2 Compares Equal.

3 Compares Logically Less Than.

4 Compares Logically Greater Than.

The tw and t instructions have one syntax form and do not affect the Fixed-Point Exception Register or

Condition Register Field 0.

Parameters

 TO Specifies TO bits that are ANDed with compare results.

RA Specifies source general-purpose register for compare.

RB Specifies source general-purpose register for compare.

456 Assembler Language Reference

Examples

The following code generates a Program Interrupt:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 7 contains 0x789A 789B.

tw 0x10,4,7

A trap type Program Interrupt occurs.

Related Information

Branch Processor .

Fixed-Point Trap Instructions .

twi or ti (Trap Word Immediate) Instruction

Purpose

Generates a program interrupt when a specified condition is true.

Syntax

 Bits Value

0-5 03

6-10 TO

11-15 RA

16-31 SI

 PowerPC

twi TO, RA, SI

 POWER family

ti TO, RA, SI

See Extended Mnemonics of Fixed-Point Trap Instructions for more information.

Description

The twi and ti instructions compare the contents of general-purpose register (GPR) RA with the sign

extended SI field, AND the compared results with TO, and generate a trap-type program interrupt if the

result is not 0.

The TO bit conditions are defined as follows.

 TO bit ANDed with Condition

0 Compares Less Than.

1 Compares Greater Than.

2 Compares Equal.

3 Compares Logically Less Than.

4 Compares Logically Greater Than.

The twi and ti instructions have one syntax form and do not affect the Fixed-Point Exception Register or

Condition Register Field 0.

Chapter 8. Instruction Set 457

Parameters

 TO Specifies TO bits that are ANDed with compare results.

RA Specifies source general-purpose register for compare.

SI Specifies sign-extended value for compare.

Examples

The following code generates a Program Interrupt:

Assume GPR 4 holds 0x0000 0010.

twi 0x4,4,0x10

A trap type Program Interrupt occurs.

Related Information

Branch Processor .

Fixed-Point Trap Instructions .

xor (XOR) Instruction

Purpose

XORs the contents of two general-purpose registers and places the result in another general-purpose

register.

Syntax

 Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 316

31 Rc

 xor RA, RS, RB

xor. RA, RS, RB

Description

The xor instruction XORs the contents of general-purpose register (GPR) RS with the contents of GPR RB

and stores the result in GPR RA.

The xor instruction has two syntax forms. Each syntax form has a different effect on Condition Register

Field 0.

 Syntax Form Overflow Exception

(OE)

Fixed-Point

Exception Register

Record Bit (Rc) Condition Register

Field 0

xor None None 0 None

xor. None None 1 LT,GT,EQ,SO

458 Assembler Language Reference

The two syntax forms of the xor instruction never affect the Fixed-Point Exception Register. If the syntax

form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,

Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

RB Specifies source general-purpose register for operation.

Examples

1. The following code XORs the contents of GPR 4 and GPR 7 and stores the result in GPR 6:

Assume GPR 4 contains 0x9000 3000.

Assume GPR 7 contains 0x789A 789B.

xor 6,4,7

GPR 6 now contains 0xE89A 489B.

2. The following code XORs the contents of GPR 4 and GPR 7, stores the result in GPR 6, and sets

Condition Register Field 0 to reflect the result of the operation:

Assume GPR 4 contains 0xB004 3000.

Assume GPR 7 contains 0x789A 789B.

xor. 6,4,7

GPR 6 now contains 0xC89E 489B.

Related Information

Fixed-Point Processor .

Fixed-Point Logical Instructions .

xori or xoril (XOR Immediate) Instruction

Purpose

XORs the lower 16 bits of a general-purpose register with a 16-bit unsigned integer and places the result

in another general-purpose register.

Syntax

 Bits Value

0-5 26

6-10 RS

11-15 RA

16-31 UI

 PowerPC

xori RA, RS, UI

 POWER family

xoril RA, RS, UI

Chapter 8. Instruction Set 459

Description

The xori and xoril instructions XOR the contents of general-purpose register (GPR) RS with the

concatenation of x’0000’ and a 16-bit unsigned integer UI and store the result in GPR RA.

The xori and xoril instructions have only one syntax form and do not affect the Fixed-Point Exception

Register or Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

UI Specifies 16-bit unsigned integer for operation.

Examples

The following code XORs GPR 4 with 0x0000 5730 and places the result in GPR 6:

Assume GPR 4 contains 0x7B41 92C0.

xori 6,4,0x5730

GPR 6 now contains 0x7B41 C5F0.

Related Information

Fixed-Point Processor .

Fixed-Point Logical Instructions .

xoris or xoriu (XOR Immediate Shift) Instruction

Purpose

XORs the upper 16 bits of a general-purpose register with a 16-bit unsigned integer and places the result

in another general-purpose register.

Syntax

 Bits Value

0-5 27

6-10 RS

11-15 RA

16-31 UI

 PowerPC

xoris RA, RS, UI

 POWER family

xoriu RA, RS, UI

Description

The xoris and xoriu instructions XOR the contents of general-purpose register (GPR) RS with the

concatenation of a 16-bit unsigned integer UI and 0x’0000’ and store the result in GPR RA.

460 Assembler Language Reference

The xoris and xoriu instructions have only one syntax form and do not affect the Fixed-Point Exception

Register or Condition Register Field 0.

Parameters

 RA Specifies target general-purpose register where result of operation is stored.

RS Specifies source general-purpose register for operation.

UI Specifies 16-bit unsigned integer for operation.

Example

The following code XORs GPR 4 with 0x0079 0000 and stores the result in GPR 6:

Assume GPR 4 holds 0x9000 3000.

xoris 6,4,0x0079

GPR 6 now holds 0x9079 3000.

Related Information

Fixed-Point Processor .

Fixed-Point Logical Instructions .

Chapter 8. Instruction Set 461

462 Assembler Language Reference

Chapter 9. Pseudo-ops

This chapter provides an overview of assembler pseudo-ops and reference information for all pseudo-ops.

Pseudo-ops Overview

A pseudo-operation, commonly called a pseudo-op, is an instruction to the assembler that does not

generate any machine code. The assembler resolves pseudo-ops during assembly, unlike machine

instructions, which are resolved only at runtime. Pseudo-ops are sometimes called assembler instructions,

assembler operators, or assembler directives.

In general, pseudo-ops give the assembler information about data alignment, block and segment definition,

and base register assignment. The assembler also supports pseudo-ops that give the assembler

information about floating point constants and symbolic debugger information (dbx).

While they do not generate machine code, the following pseudo-ops can change the contents of the

assembler’s location counter:

v .align

v .byte

v .comm

v .csect

v .double

v .dsect

v .float

v .lcomm

v .long

v .org

v .short

v .space

v .string

v .vbyte

Pseudo-ops Grouped by Function

Pseudo-ops can be related according to functionality into the following groups:

v “Data Alignment” on page 464

v “Data Definition” on page 464

v “Storage Definition” on page 464

v “Addressing” on page 464

v “Assembler Section Definition” on page 464

v “External Symbol Definition” on page 464

v “Static Symbol Definition” on page 465

v “Support for Calling Conventions” on page 465

v “Miscellaneous” on page 465

v “Symbol Table Entries for Debuggers” on page 465

v “Target Environment Indication” on page 465

© Copyright IBM Corp. 1997, 2006 463

Data Alignment

The following pseudo-op is used in the data or text section of a program:

v .align

Data Definition

The following pseudo-ops are used for data definition:

v .byte

v .double

v .float

v .long

v .short

v .string

v .vbyte

In most instances, use these pseudo-ops to create data areas to be used by a program, as shown by this

example.

 .csect data[rw]

greeting: .long ’H,’O,’W,’D,’Y

 .

 .

 .csect text[pr]

 # Assume GPR 5 contains the address of

 # csect data[rw].

 lm 11, greeting(5)

Storage Definition

The following pseudo-ops define or map storage:

v .dsect

v .space

Addressing

The following pseudo-ops assign or dismiss a register as a base register:

v .drop

v .using

Assembler Section Definition

The following pseudo-ops define the sections of an assembly language program:

v .comm

v .csect

v .lcomm

v .tc

v .toc

External Symbol Definition

The following pseudo-ops define a variable as a global variable or an external variable (variables defined

in external modules):

v .extern

464 Assembler Language Reference

v .globl

v .weak

Static Symbol Definition

The following pseudo-op defines a static symbol:

v .lglobl

Support for Calling Conventions

The following pseudo-op defines a debug traceback tag for performing tracebacks when debugging

programs:

v .tbtag

Miscellaneous

The following pseudo-ops perform miscellaneous functions:

 .hash Provides type-checking information.

.org Sets the value of the current location counter.

.ref

 Creates a special type entry in the relocation table.

.rename Creates a synonym or alias for an illegal or undesirable name.

.set Assigns a value and type to a symbol.

.source

 Identifies the source language type.

.tocof Defines a symbol as the table of contents (TOC) of another module.

.xline Provides file and line number information.

Symbol Table Entries for Debuggers

The following pseudo-ops provide additional information which is required by the symbolic debugger (dbx):

v .bb

v .bc

v .bf

v .bi

v .bs

v .eb

v .ec

v .ef

v .ei

v .es

v .file

v .function

v .line

v .stabx

v .xline

Target Environment Indication

The following pseudo-op defines the intended target environment:

v .machine

Chapter 9. Pseudo-ops 465

Notational Conventions

White space is required unless otherwise specified. A space may optionally occur after a comma. White

space may consist of one or more white spaces.

Some pseudo-ops may not use labels. However, with the exception of the .csect pseudo-op, you can put

a label in front of a pseudo-op statement just as you would for a machine instruction statement.

The following notational conventions are used to describe pseudo-ops:

 Name Any valid label.

Register A general-purpose register. Register is an expression that evaluates to an integer

between 0 and 31, inclusive.

Number An expression that evaluates to an integer.

Expression Unless otherwise noted, the Expression variable signifies a relocatable constant or

absolute expression.

FloatingConstant A floating-point constant.

StringConstant A string constant.

[] Brackets enclose optional operands except in the “.csect Pseudo-op” on page 473

and “.tc Pseudo-op” on page 503, which require brackets in syntax.

.align Pseudo-op

Purpose

Advances the current location counter until a boundary specified by the Number parameter is reached.

Syntax

 .align “Number”

Description

The .align pseudo-op is normally used in a control section (csect) that contains data.

If the Number parameter evaluates to 0, alignment occurs on a byte boundary. If the Number parameter

evaluates to 1, alignment occurs on a halfword boundary. If the Number parameter evaluates to 2,

alignment occurs on a word boundary. If the Number parameter evaluates to 3, alignment occurs on a

doubleword boundary.

If the location counter is not aligned as specified by the Number parameter, the assembler advances the

current location counter until the number of low-order bits specified by the Number parameter are filled

with the value 0 (zero).

If the .align pseudo-op is used within a .csect pseudo-op of type PR or GL which indicates a section

containing instructions, alignment occurs by padding with nop (no-operation) instructions. In this case, the

no-operation instruction is equivalent to a branch to the following instruction. If the align amount is less

than a fullword, the padding consists of zeros.

Parameters

 Number Specifies an absolute expression that evaluates to an integer value from 0 to 12, inclusive. The value

indicates the log base 2 of the desired alignment. For example, an alignment of 8 (a doubleword) would

be represented by an integer value of 3; an alignment of 4096 (one page) would be represented by an

integer value of 12.

466 Assembler Language Reference

Examples

The following example demonstrates the use of the .align pseudo-op:

 .csect progdata[RW]

 .byte 1

 # Location counter now at odd number

 .align 1

 # Location counter is now at the next

 # halfword boundary.

 .byte 3,4

 .

 .

 .

 .align 2 # Insure that the label cont

 # and the .long pseudo-op are

 # aligned on a full word

 # boundary.

 cont: .long 5004381

Related Information

“Pseudo-ops Overview” on page 463.

“.byte Pseudo-op” on page 470, “.comm Pseudo-op” on page 471, “.csect Pseudo-op” on page 473,

“.double Pseudo-op” on page 475, “.float Pseudo-op” on page 483, “.long Pseudo-op” on page 489, “.short

Pseudo-op” on page 497.

.bb Pseudo-op

Purpose

Identifies the beginning of an inner block and provides information specific to the beginning of an inner

block.

Syntax

 .bb “Number”

Description

The .bb pseudo-op provides symbol table information necessary when using the symbolic debugger.

The .bb pseudo-op has no other effect on assembly and is customarily inserted by a compiler.

Parameters

 Number Specifies the line number in the original source file on which the inner block begins.

Examples

The following example demonstrates the use of the .bb pseudo-op:

.bb 5

Chapter 9. Pseudo-ops 467

Related Information

“Pseudo-ops Overview” on page 463.

“.eb Pseudo-op” on page 479.

.bc Pseudo-op

Purpose

Identifies the beginning of a common block and provides information specific to the beginning of a

common block.

Syntax

 .bc StringConstant

Description

The .bc pseudo-op provides symbol table information necessary when using the symbolic debugger.

The .bc pseudo-op has no other effect on assembly and is customarily inserted by a compiler.

Parameters

 StringConstant Represents the symbol name of the common block as defined in the original source file.

Examples

The following example demonstrates the use of the .bc pseudo-op:

.bc "commonblock"

Related Information

Pseudo-ops Overview.

The .ec pseudo-op.

.bf Pseudo-op

Purpose

Identifies the beginning of a function and provides information specific to the beginning of a function.

Syntax

 .bf Number

Description

The .bf pseudo-op provides symbol table information necessary when using the symbolic debugger.

The .bf pseudo-op has no other effect on assembly and is customarily inserted by a compiler.

Note: The .function pseudo-op must be used if the .bf pseudo-op is used.

468 Assembler Language Reference

Parameters

 Number Represents the absolute line number in the original source file on which the function begins.

Examples

The following example demonstrates the use of the .bf pseudo-op:

.bf 5

Related Information

Pseudo-ops Overview.

The .ef pseudo-op, .function pseudo-op.

.bi Pseudo-op

Purpose

Identifies the beginning of an included file and provides information specific to the beginning of an included

file.

Syntax

 .bi StringConstant

Description

The .bi pseudo-op provides symbol table information necessary when using the symbolic debugger.

The .bi pseudo-op has no other effect on assembly and is customarily inserted by a compiler.

The .bi pseudo-op should be used with the .line pseudo-op.

Parameters

 StringConstant Represents the name of the original source file.

Examples

The following example demonstrates the use of the .bi pseudo-op:

.bi "file.s"

Related Information

Pseudo-ops Overview.

The .ei pseudo-op, .line pseudo-op.

.bs Pseudo-op

Purpose

Identifies the beginning of a static block and provides information specific to the beginning of a static

block.

Chapter 9. Pseudo-ops 469

Syntax

 .bs Name

Description

The .bs pseudo-op provides symbol table information necessary when using the symbolic debugger.

The .bs pseudo-op has no other effect on assembly and is customarily inserted by a compiler.

Parameters

 Name Represents the symbol name of the static block as defined in the original source file.

Examples

The following example demonstrates the use of the .bs pseudo-op:

.lcomm cgdat, 0x2b4

.csect .text[PR]

.bs cgdat

.stabx "ONE:1=Ci2,0,4;",0x254,133,0

.stabx "TWO:S2=G5TWO1:3=Cc5,0,5;,0,40;;",0x258,133,8

.es

Related Information

Pseudo-ops Overview.

The .comm pseudo-op, .es pseudo-op, .lcomm pseudo-op.

.byte Pseudo-op

Purpose

Assembles specified values represented by the Expression parameter into consecutive bytes.

Syntax

.byte Expression[,Expression...]

Description

The .byte pseudo-op changes an expression or a string of expressions into consecutive bytes of data.

ASCII character constants (for example, ’X) and string constants (for example, Hello, world) can also be

assembled using the .byte pseudo-op. Each letter will be assembled into consecutive bytes. However, an

expression cannot contain externally defined symbols. Also, an expression value longer than one byte will

be truncated on the left.

Parameters

 Expression Specifies a value that is assembled into consecutive bytes.

Examples

The following example demonstrates the use of the .byte pseudo-op:

470 Assembler Language Reference

.set olddata,0xCC

 .csect data[rw]

mine: .byte 0x3F,0x7+0xA,olddata,0xFF

Load GPR 3 with the address of csect data[rw].

 .csect text[pr]

 l 3,mine(4)

GPR 3 now holds 0x3F11 CCFF.

Character constants can be represented in

several ways:

 .csect data[rw]

 .byte "Hello, world"

 .byte ’H,’e,’l,’l,’o,’,,’ ,’w,’o,’r,’l,’d

Both of the .byte statements will produce

0x4865 6C6C 6F2C 2077 6F72 6C64.

Related Information

Pseudo-ops Overview.

The .string pseudo-op, .vbyte pseudo-op.

.comm Pseudo-op

Purpose

Defines an uninitialized block of storage called a common block, which can be common to more than one

module.

Syntax

 .comm Qualname, Expression[, Number]

where QualName = Name[[StorageMappingClass]]

Note: Name is required. StorageMappingClass is optional and enclosed within brackets if specified.

RW is the assumed default ifStorageMappingClass is omitted.

Description

The .comm pseudo-op defines a block of storage specified by the Qualname parameter. The the block

size is specified in bytes by the Expression parameter.

Note: By convention, use of the TD storage mapping class is restricted to common blocks no more

than four (4) bytes long.

The valid values for StorageMappingClass are RW, TD, UC, and BS. These values are explained in the

article on the .csect pseudo-op. If any other value is used for StorageMappingClass, the default value RW

is used and a warning message is reported if the -w flag is in effect.

If TD is used for the storage mapping class, a block of zeroes, the length specified by the Expression

parameter, will be written into the TOC area as an initialized csect in the .data section. If RW, UC, or BS is

used as the storage mapping class, the block is not initialized in the current module and has symbol type

CM (Common). At load time, the space for CM control sections with RW, UC, or BC storage mapping

classes is created in the .bss section at the end of the .data section.

Several modules can share the same common block. If any of those modules have an external Control

Section (csect) with the same name and the csect with the same name has a storage mapping class other

Chapter 9. Pseudo-ops 471

than BS or UC, then the common block is initialized and becomes that other Control Section. If the

common block has TD as its storage mapping class, the csect will be in the TOC area. This is

accomplished at bind time.

If more than one uninitialized common block with the same Qualname is found at bind time, space is

reserved for the largest one.

A common block can be aligned by using the Number parameter, which is specified as the log base 2 of

the alignment desired.

Parameters

 Qualname Specifies the name and storage mapping class of the common block. If the StorageMappingClass

part of the parameter is omitted, the default value RW is used. Valid StorageMappingClass

values for a common block are RW, TD, UC and BS.

Expression Specifies the absolute expression that gives the length of the specified common block in bytes.

Number Specifies the optional alignment of the specified common block. This is specified as the log base

2 of the alignment desired. For example, an alignment of 8 (or doubleword) would be 3 and an

alignment of 2048 would be 11. This is similar to the argument for the .align pseudo-op.

Examples

1. The following example demonstrates the use of the .comm pseudo-op:

 .comm proc,5120

proc is an uninitialized common block of

storage 5120 bytes long which is

globally visible.

Assembler SourceFile A contains:

 .comm st,1024

Assembler SourceFile B contains:

 .globl st[RW]

 .csect st[RW]

 .long 1

 .long 2

Using st in the above two programs refers to

Control Section st in Assembler SourceFile B.

2. This example shows how two different modules access the same data:

a. Source code for C module td2.c:

/* This C module named td2.c */

extern long t_data;

extern void mod_s();

main()

{

 t_data = 1234;

 mod_s();

 printf("t_data is %d\n", t_data);

}

b. Source for assembler module mod2.s:

 .file "mod2.s"

 .csect .mod_s[PR]

 .globl .mod_s[PR]

 .set RTOC, 2

 l 5, t_data[TD](RTOC) # Now GPR5 contains the

 # t_data value

 ai 5,5,14

 stu 5, t_data[TD](RTOC)

472 Assembler Language Reference

br

 .toc

 .comm t_data[TD],4 # t_data is a global symbol

c. Instructions for making executable td2 from the C and assembler source:

as -o mod2.o mod2.s

cc -o td2 td2.c mod2.o

d. Running td2 will cause the following to be printed:

t_data is 1248

Related Information

Pseudo-ops Overview.

The .align pseudo-op, .csect pseudo-op, .globl pseudo-op, .lcomm pseudo-op, .long pseudo-op.

.csect Pseudo-op

Purpose

Groups code or data into a control section (csect) and gives that csect a name, a storage mapping class,

and an alignment.

Syntax

 .csect QualName[, Number]

where QualName = [Name][[StorageMappingClass]]

Note: The boldfaced brackets containing StorageMappingClass are part of the syntax and do not

specify an optional parameter.

Description

The following information discusses using the .csect pseudo-op:

v A csect QualName parameter takes the form:

symbol[XX]

OR

symbol{XX}

where either the [] (square brackets) or { } (curly brackets) surround a two- or three-character storage

mapping class identifier. Both types of brackets produce the same results.

The QualName parameter can be omitted. If it is omitted, the csect is unnamed and the [PR]

StorageMappingClass is used. If a QualName is used, the Name parameter is optional and the

StorageMappingClass is required. If no Name is specified, the csect is unnamed.

Each control section has a storage mapping class associated with it that is specified in the qualification

part of QualName. The storage mapping class determines the object data section, specifically the .text,

.data, or .bss section, in which the control section is grouped. The .text section contains read-only

data. The .data and .bss sections contain read/write data.

The storage mapping class also indicates what kind of data should be contained within the control

section. Many of the storage mapping classes listed have specific implementation and convention

details. In general, instructions can be contained within csects of storage mapping class PR. Modifiable

data can be contained within csects of storage mapping class RW.

A csect is associated with one of the following storage mapping classes. Storage mapping class

identifiers are not case-sensitive. The storage mapping class identifiers are listed in groups for the .text,

Chapter 9. Pseudo-ops 473

.data, and .bss object data sections.

 .text Section Storage Mapping Classes

PR Program Code. Identifies the sections that provide executable instructions for the module.

RO Read-Only Data. Identifies the sections that contain constants that are not modified during execution.

DB Debug Table. Identifies a class of sections that have the same characteristics as read-only data.

GL Glue Code. Identifies a section that has the same characteristics as Program Code. This type of

section has code to interface with a routine in another module. Part of the interface code requirement

is to maintain TOC addressability across the call.

XO Extended Operation. Identifies a section of code that has no dependency on the TOC (no references

through the TOC). It is intended to reside at a fixed address in memory so that it can be the target of

a branch to an absolute address.

Note: This storage mapping class should not be used in assembler source programs.

SV Supervisor Call. Identifies a section of code that is to be treated as a supervisor call.

TB Traceback Table. Identifies a section that contains data associated with a traceback table.

TI Traceback Index. Identifies a section that contains data associated with a traceback index.

 .data Section Storage Mapping Classes

TC0 TOC Anchor used only by the predefined TOC symbol. Identifies the special symbol TOC. Used only

for the TOC anchor.

TC TOC Entry. Generally indicates a csect that contains addresses of other csects or global symbols. If

it contains only one address, the csect is usually four bytes long.

TD TOC Entry. Identifies a csect that contains scalar data that can be directly accessed from

the TOC. For frequently used global symbols, this is an alternative to indirect access

through an address pointer csect within the TOC. By convention, TD sections should not be

longer than four bytes. Contains initialized data that can be modified during program

execution.

UA Unknown Type. Identifies a section that contains data of an unknown storage mapping class.

RW Read/Write Data. Identifies a section that contains data that is known to require change during

execution.

DS Descriptor. Identifies a function descriptor. This information is used to describe function pointers in

languages such as C and FORTRAN.

 .bss Section Storage Mapping Classes

BS BSS class. Identifies a section that contains uninitialized read/write data.

UC Unnamed FORTRAN Common. Identifies a section that contains read/write data.

A csect is one of the following symbol types:

ER External Reference

SD CSECT Section Definition

LD Entry Point - Label Definition

CM Common (BSS)

v All of the control sections with the same QualName value are grouped together, and a section can be

continued with a .csect statement having the same QualName. Different csects can have the same

name and different storage mapping classes. Therefore, the storage mapping class identifier must be

used when referring to a csect name as an operand of other pseudo-ops or instructions.

However, for a given name, only one csect can be externalized. If two or more csects with the same

name are externalized, a run error may occur, since the linkage editor treats the csects as duplicate

symbol definitions and selects only one of them to use.

v A control section is relocated as a body.

v Control sections with no specified name (Name) are identified with their storage mapping class, and

there can be an unnamed control section of each storage mapping class. They are specified with a

QualName that only has a storage mapping class (for instance, .csect [RW] has a QualName of [RW]).

474 Assembler Language Reference

v If no .csect pseudo-op is specified before any instructions appear, then an unnamed Program Code

([PR]) control section is assumed.

v A csect with the BS or UC storage mapping class will have a csect type of CM (Common), which

reserves spaces but has no initialized data. All other control sections defined with the .csect pseudo-op

are of type SD (Section Definition). The .comm or .lcomm pseudo-ops can also be used to define

control sections of type CM. No external label can be defined in a control section of type CM.

v Do not label .csect statements. The .csect may be referred to by its QualName, and labels may be

placed on individual elements of the .csect.

Parameters

 Number Specifies an absolute expression that evaluates to an integer value from 0 to 31, inclusive. This value

indicates the log base 2 of the desired alignment. For example, an alignment of 8 (a doubleword)

would be represented by an integer value of 3; an alignment of 2048 would be represented by an

integer value of 11. This is similar to the usage of the Number parameter for the .align pseudo-op.

Alignment occurs at the beginning of the csect. Elements of the csect are not individually aligned.

The Number parameter is optional. If it is not specified, the default value is 2.

QualName Specifies a Name and StorageMappingClass for the control section. If Name is not given, the csect is

identified with its StorageMappingClass. If neither the Name nor the StorageMappingClass are given,

the csect is unnamed and has a storage mapping class of [PR]. If the Name is specified, the

StorageMappingClass must also be specified.

Examples

The following example defines three csects:

A csect of name proga with Program Code Storage Mapping Class.

.csect proga[PR]

lh 30,0x64(5)

A csect of name pdata_ with Read-Only Storage Mapping Class.

.csect pdata_[RO]

l1: .long 0x7782

l2: .byte ’a,’b,’c,’d,’e

.csect [RW],3 # An unnamed csect with Read/Write

 # Storage Mapping Class and doubleword

 # alignment.

.float -5

Related Information

Pseudo-ops Overview.

The .comm pseudo-op, .globl pseudo-op, .lcomm pseudo-op, .align pseudo-op.

.double Pseudo-op

Purpose

Stores a double floating-point constant at the next fullword location.

Syntax

 .double FloatingConstant

Chapter 9. Pseudo-ops 475

Parameters

 FloatingConstant Specifies a floating-point constant to be assembled.

Examples

The following example demonstrates the use of the .double pseudo-op:

.double 3.4

.double -77

.double 134E12

.double 5e300

.double 0.45

Related Information

Pseudo-ops Overview.

The .float pseudo-op.

.drop Pseudo-op

Purpose

Stops using a specified register as a base register.

Syntax

 .drop Number

Description

The .drop pseudo-op stops a program from using the register specified by the Number parameter as a

base register in operations. The .drop pseudo-op does not have to precede the .using pseudo-op when

changing the base address, and the .drop pseudo-op does not have to appear at the end of a program.

Parameters

 Number Specifies an expression that evaluates to an integer from 0 to 31 inclusive.

Examples

The following example demonstrates the use of the .drop pseudo-op:

.using _subrA,5

 # Register 5 can now be used for addressing

 # with displacements calculated

 # relative to _subrA.

 # .using does not load GPR 5 with the address

 # of _subrA. The program must contain the

 # appropriate code to ensure this at runtime.

 .

 .

 .

.drop 5

 # Stop using Register 5.

.using _subrB,5

 # Now the assembler calculates

 # displacements relative to _subrB

476 Assembler Language Reference

Related Information

Pseudo-ops Overview.

The .using pseudo-op.

.dsect Pseudo-op

Purpose

Identifies the beginning or the continuation of a dummy control section.

Syntax

 .dsect Name

Description

The .dsect pseudo-op identifies the beginning or the continuation of a dummy control section. Actual data

declared in a dummy control section is ignored; only the location counter is incremented. All labels in a

dummy section are considered to be offsets relative to the beginning of the dummy section. A dsect that

has the same name as a previous dsect is a continuation of that dummy control section.

The .dsect pseudo-op can declare a data template that can then be used to map out a block of storage.

The .using pseudo-op is involved in doing this.

Parameters

 Name Specifies a dummy control section.

Examples

1. The following example demonstrates the use of the .dsect pseudo-op:

 .dsect datal

d1: .long 0

 # 1 Fullwordd2: .short 0,0,0,0,0,0,0,0,0,0 # 10 Halfwords

d3: .byte 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 # 15 bytes

 .align 3 #Align to a double word.

d4: .space 64 #Space 64 bytes

.csect main[PR]

.using datal,7

l 5,d2

This will actually load

the contents of the

effective address calculated

by adding the offset d2 to

that in GPR 7 into GPR 5.

2. The following example contains several source programs which together show the use of .dsect and

.using pseudo-ops in implicit-based addressing.

a. Source program foo_pm.s:

Chapter 9. Pseudo-ops 477

.csect foo_data[RW]

 .long 0xaa

 .short 10

 .short 20

 .globl .foo_pm[PR]

 .csect .foo_pm[PR]

 .extern l1

 .using TOC[TC0], 2

 l 7, T.foo_data

 b l1

 br

 .toc

T.foo_data: .tc foo_data[TC], foo_data[RW]

b. Source program bar_pm.s:

 .csect bar_data[RW]

 .long 0xbb

 .short 30

 .short 40

 .globl .bar_pm[PR]

 .csect .bar_pm[PR]

 .extern l1

 .using TOC[TC0], 2

 l 7, T.bar_data

 b l1

 br

 .toc

T.bar_data: .tc bar_data[TC], bar_data[RW]

c. Source program c1_s:

 .dsect data1

d1: .long 0

d2: .short 0

d3: .short 0

 .globl .c1[PR]

 .csect .c1[PR]

 .globl l1

l1: .using data1, 7

 l 5, d1

 stu 5, t_data[TD](2)

 br # this br is necessary.

 # without it, prog hangs

 .toc

 .comm t_data[TD],4

d. Source for main program mm.c:

extern long t_data;

main()

{

 int sw;

 sw = 2;

 if (sw == 2) {

 foo_pm();

 printf ("when sw is 2, t_data is 0x%x\n", t_data);

 }

 sw = 1;

 if (sw == 1) {

 bar_pm();

 printf ("when sw is 1, t_data is 0x%x\n", t_data);

 }

}

e. Instructions for creating the executable file from the source:

as -o foo_pm.o foo_pm.s

as -o bar_pm.o bar_pm.s

as -o c1.o c1.s

cc -o mm mm.c foo_pm.o bar_pm.o c1.o

478 Assembler Language Reference

f. The following is printed if mm is executed:

when sw is 2, t_data is 0xaa

when sw is 1, t_data is 0xbb

Related Information

Pseudo-ops Overview.

The .csect pseudo-op, .using pseudo-op.

.eb Pseudo-op

Purpose

Identifies the end of an inner block and provides additional information specific to the end of an inner

block.

Syntax

 .eb Number

Description

The .eb pseudo-op identifies the end of an inner block and provides symbol table information necessary

when using the symbolic debugger.

The .eb pseudo-op has no other effect on assembly and is customarily inserted by a compiler.

Parameters

 Number Specifies a line number in the original source file on which the inner block ends.

Examples

The following example demonstrates the use of the .eb pseudo-op:

.eb 10

Related Information

Pseudo-ops Overview.

The .bb pseudo-op.

.ec Pseudo-op

Purpose

Identifies the end of a common block and provides additional information specific to the end of a common

block.

Syntax

.ec

Chapter 9. Pseudo-ops 479

Description

The .ec pseudo-op identifies the end of a common block and provides symbol table information necessary

when using the symbolic debugger.

The .ec pseudo-op has no other effect on assembly and is customarily inserted by a compiler.

Examples

The following example demonstrates the use of the .ec pseudo-op:

 .bc "commonblock"

 .ec

Related Information

Pseudo-ops Overview.

The .bc pseudo-op.

.ef Pseudo-op

Purpose

Identifies the end of a function and provides additional information specific to the end of a function.

Syntax

 .ef Number

Description

The .ef pseudo-op identifies the end of a function and provides symbol table information necessary when

using the symbolic debugger.

The .ef pseudo-op has no other effect on assembly and is customarily inserted by a compiler.

Parameters

 Number Specifies a line number in the original source file on which the function ends.

Examples

The following example demonstrates the use of the .ef pseudo-op:

.ef 10

Related Information

Pseudo-ops Overview.

The .bf pseudo-op.

.ei Pseudo-op

Purpose

Identifies the end of an included file and provides additional information specific to the end of an included

file.

480 Assembler Language Reference

Syntax

.ei

Description

The .ei pseudo-op identifies the end of an included file and provides symbol table information necessary

when using the symbolic debugger.

The .ei pseudo-op has no other effect on assembly and is customarily inserted by a compiler.

Examples

The following example demonstrates the use of the .ei pseudo-op:

.ei "file.s"

Related Information

Pseudo-ops Overview.

The .bi pseudo-op.

.es Pseudo-op

Purpose

Identifies the end of a static block and provides additional information specific to the end of a static block.

Syntax

.es

Description

The .es pseudo-op identifies the end of a static block and provides symbol table information necessary

when using the symbolic debugger.

The .es pseudo-op has no other effect on assembly and is customarily inserted by a compiler.

Examples

The following example demonstrates the use of the .es pseudo-op:

.lcomm cgdat, 0x2b4

.csect .text[PR]

.bs cgdat

.stabx "ONE:1=Ci2,0,4;",0x254,133,0

.stabx "TWO:S2=G5TWO1:3=Cc5,0,5;,0,40;;",0x258,133,8

.es

Related Information

Pseudo-ops Overview.

The .bs pseudo-op.

.extern Pseudo-op

Purpose

Identifies a symbol defined in another source module.

Chapter 9. Pseudo-ops 481

Syntax

 .extern Name

Description

The .extern instruction identifies the Name value as a symbol defined in another source module, and

Name becomes an external symbol. Any external symbols used in the current assembly that are not

defined in the current assembly must be declared with an .extern statement. A locally defined symbol that

appears in an .extern statement is equivalent to using that symbol in a .globl statement. A symbol not

locally defined that appears in a .globl statement is equivalent to using that symbol in an .extern

statement. An undefined symbol is flagged as an error unless the -u flag of the as command is used.

Parameters

 Name Specifies an operand that is an external symbol and that can be a Qualname. (A Qualname parameter

specifies the Name and StorageMappingClass values for the control section.)

Examples

The following example demonstrates the use of the .extern pseudo-op:

 .extern proga[PR]

 .toc

T.proga: .tc proga[TC],proga[PR]

Related Information

Pseudo-ops Overview.

The .csect pseudo-op, .globl pseudo-op.

.file Pseudo-op

Purpose

Identifies a source file name.

Syntax

 .file StringConstant

Description

The .file pseudo-op provides symbol table information necessary for the use of the symbolic debugger and

linkage editor. The .file pseudo-op also provides the intended target environment and source language

type for the use of the link editor.

For cascade compilers, the .file pseudo-op has no other effect on assembly and is customarily inserted by

the compiler.

It is recommended that the .file pseudo-op be placed at the beginning of the source code for assembly

language programs. If the .file pseudo-op is omitted from the source code, the assembler processes the

program as if the .file pseudo-op were the first statement. The assembler does this by creating an entry in

the symbol table with the source program name as the file name. If the source is standard input, the file

name will be noname. The assembler listing will not have this inserted entry.

482 Assembler Language Reference

Parameters

 StringConstant Specifies the file name of the original source file.

Examples

1. To use a source file named main.c, enter:

.file "main.c"

2. To use a source file named asml.s, enter:

.file "asml.s"

Related Information

Pseudo-ops Overview.

The .function pseudo-op.

.float Pseudo-op

Purpose

Stores a floating-point constant at the next fullword location.

Syntax

 .float FloatingConstant

Description

The .float stores a floating-point constant at the next fullword location. Fullword alignment occurs if

necessary.

Parameters

 FloatingConstant Specifies a floating-point constant to be assembled.

Examples

The following example demonstrates the use of the .float pseudo-op:

.float 3.4

.float -77

.float 134E-12

Related Information

Pseudo-ops Overview.

The .double pseudo-op.

.function Pseudo-op

Purpose

Identifies a function and provides additional information specific to the function.

Chapter 9. Pseudo-ops 483

Syntax

 .function Name, Expression1, Expression2, Expression3,[Expression4]

Description

The .function pseudo-op identifies a function and provides symbol table information necessary for the use

of the symbolic debugger.

The .function pseudo-op has no other effect on assembly and is customarily inserted by a compiler.

Parameters

 Name Represents the function Name and should be defined as a symbol or control section (csect)

Qualname in the current assembly. (A Qualname specifies a Name and StorageMappingClass

for the control section.)

Expression1 Represents the top of the function.

Expression2 Represents the storage mapping class of the function.

Expression3 Represents the type of the function.

The third and fourth parameters to the .function pseudo-op serve only as place holders. These

parameters are retained for downward compatibility with previous systems (RT, System V).

 Expression4 Represents the size of the function (in bytes). This parameter must be an absolute expression.

This parameter is optional.

Note: If the Expression4 parameter is omitted, the function size is set to the size of the

csect to which the function belongs. A csect size is equal to the function size only if the

csect contains one function and the beginning and end of the csect are the same as the

beginning and end of the function.

Examples

The following example illustrates the use of the .function pseudo-op:

.globl .hello[pr]

.csect .hello[pr]

.function .hello[pr],L.1B,16,044,0x86

L.1B:

Related Information

Pseudo-ops Overview.

The .bf pseudo-op, .ef pseudo-op, .file pseudo-op.

.globl Pseudo-op

Purpose

Makes a symbol globally visible to the linker.

Syntax

 .globl Name

484 Assembler Language Reference

Description

The .globl pseudo-op makes the symbol Name globally visible to the linker and available to any file that is

linked to the file in which the .globl pseudo-op occurs.

v If the .globl pseudo-op is not used for a symbol, then that symbol is, unless otherwise effected, only

visible within the current assembly and not to other modules that may later be linked to the current

assembly. Alternately, the .extern or .weak pseudo-op can be used to effect visibility.

v If Name is defined in the current assembly, its type and value arise from that definition, not the .globl

definition.

v The binder maps all common segments with the same name into the same memory. If the name is

declared .globl and defined in one of the segments, this has the same effect as declaring the common

symbols to be .globl in all segments. In this way, common memory can be initialized.

Parameters

 Name Represents any label or symbol that is defined locally and requires external visibility. This parameter can be

a Qualname. (A Qualname specifies a Name and StorageMappingClass for the control section.)

Examples

The following example illustrates the use of the .globl pseudo-op:

 .globl main

main:

 .csect data[rw]

 .globl data[rw]

Related Information

Pseudo-ops Overview.

The .comm pseudo-op, .extern pseudo-op, and the .weak pseudo-op.

.hash Pseudo-op

Purpose

Associates a hash value with an external symbol.

Syntax

 .hash Name, StringConstant

Description

The hash string value contains type-checking information. It is used by the link-editor and program loader

to detect variable mismatches and argument interface errors prior to the execution of a program.

Hash string values are usually generated by compilers of strongly typed languages. The hash value for a

symbol can only be set once in an assembly. See Type-Check Section in the XCOFF Object (a.out) File

Format for more information on type encoding and checking.

Parameters

 Name Represents a symbol. Because this should be an external symbol, Name should appear

in an .extern or .global statement.

Chapter 9. Pseudo-ops 485

StringConstant Represents a type-checking hash string value. This parameter consists of characters that

represent a hexadecimal hash code and must be in the set [0-9A-F] or [0-9a-f].

A hash string comprises the following three fields:

v Language Identifier is a 2-byte field representing each language. The first byte is 0x00.

The second byte contains predefined language codes that are the same as those listed

in the .source pseudo-op.

v General Hash is a 4-byte field representing the most general form by which a data

symbol or function can be described. It is the greatest common denominator among

languages supported by AIX. A universal hash can be used for this field.

v Language Hash is a 4-byte field containing a more detailed, language-specified

representation of data symbol or function.

Note: A hash string must have a length of 10 bytes. Otherwise, a warning message

is reported when the -w flag is used. Since each character is represented by two

ASCII codes, the 10-byte hash character string is represented by a string of 20

hexadecimal digits.

Examples

The following example illustrates the use of the .hash pseudo-op:

 .extern b[pr]

 .extern a[pr]

 .extern e[pr]

 .hash b[pr],"0000A9375C1F51C2DCF0"

 .hash a[pr],"ff0a2cc12365de30" # warning may report

 .hash e[pr],"00002020202051C2DCF0"

Related Information

Pseudo-ops Overview.

Type-Check Section in XCOFF Object (a.out) File Format.

The .extern pseudo-op, .globl pseudo-op.

.lcomm Pseudo-op

Purpose

Defines a local uninitialized block of storage.

Syntax

 .lcomm Name1, Expression[, Name2]

Description

The .lcomm pseudo-op defines a local uninitialized block of storage called a local common (LC) section.

At run time, this storage block will be reserved when the LC section is allocated at the end of the .data

section. This storage block is for uninitialized data.

Use the .lcomm pseudo-op with local uninitialized data, which is data that will probably not be accessed

outside the local assembly.

486 Assembler Language Reference

The symbol Name1 is a label at the top of the local uninitialized block of storage. The location counter for

this LC section is incremented by the Expression parameter. A specific LC section can be specified by the

Name2 parameter. Otherwise an unnamed section is used.

Parameters

 Name1 Represents a relocatable symbol. The symbol Name1 is a label at the top of the local

uninitialized block of storage. Name1 does not appear in the symbol table unless it is the operand

of a .globl statement.

Expression Represents an absolute expression that is defined in the first pass of the assembler. The

Expression parameter also increments the location counter for the LC section.

Name2 Represents a control section (csect) name that has storage mapping class BS and storage type

CM. The Name2 parameter allows the programmer to specify the BS csect for the allocated

storage. If a specific LC section is not specified by the Name2 parameter, an unnamed section is

used.

Examples

1. To set up 5KB of storage and refer to it as buffer:

.lcomm buffer,5120

 # Can refer to this 5K

 # of storage as "buffer".

2. To set up a label with the name proga:

.lcomm b3,4,proga

 # b3 will be a label in a csect of class BS

 # and type CM with name "proga".

Related Information

Pseudo-ops Overview.

The .comm pseudo-op.

.lglobl Pseudo-op

Purpose

Provides a means to keep the information of a static name in the symbol table.

Syntax

 .lglobl Name

Description

A static label or static function name defined within a control section (csect) must be kept in the symbol

table so that the static label or static function name can be referenced. This symbol has a class of ″hidden

external″ and differs from a global symbol. The .lglobl pseudo-op gives the symbol specified by the Name

parameter have a symbol type of LD and a class of C_HIDEXT.

Note: The .lglobl pseudo-op does not have to apply to any csect name. The assembler automatically

generates the symbol table entry for any csect name with a class of C_HIDEXT unless there is an

explicit .globl pseudo-op applied to the csect name. If an explicit .globl pseudo-op applies to the

csect name, the symbol table entry class for the csect is C_EXT.

Chapter 9. Pseudo-ops 487

Parameters

 Name Specifies a static label or static function name that needs to be kept in the symbol table.

Examples

The following example demonstrates the use of the .lglobl pseudo-op:

 .toc

 .file "test.s"

 .lglobl .foo

 .csect foo[DS]

foo:

 .long .foo,TOC[tc0],0

 .csect [PR]

.foo:

 .stabx "foo:F-1",.foo,142,0

 .function .foo,.foo,16,044,L..end_foo-.foo

 .

 .

 .

>

Related Information

Pseudo-ops Overview.

The .function pseudo-op, .globl pseudo-op.

.line Pseudo-op

Purpose

Identifies a line number and provides additional information specific to the line number.

Syntax

 .line Number

Description

The .line pseudo-op identifies a line number and is used with the .bi pseudo-op to provide a symbol table

and other information necessary for use of the symbolic debugger.

This pseudo-op is customarily inserted by a compiler and has no other effect on assembly.

Parameters

 Number Represents a line number of the original source file.

Examples

The following example illustrates the use of the .line pseudo-op:

.globl .hello[pr]

.csect .hello[pr]

.align 1

.function .hello[pr],L.1B,16,044

488 Assembler Language Reference

.stabx "hello:f-1",0,142,0

.bf 2

.line 1

.line 2

Related Information

Pseudo-ops Overview.

The .bi pseudo-op, .bf pseudo-op, .function pseudo-op.

.long Pseudo-op

Purpose

Assembles expressions into consecutive fullwords.

Syntax

 .long Expression[,Expression,...]

Description

The .long pseudo-op assembles expressions into consecutive fullwords. Fullword alignment occurs as

necessary.

Parameters

 Expression Represents any expression to be assembled into fullwords.

Examples

The following example illustrates the use of the .long pseudo-op:

.long 24,3,fooble-333,0

Related Information

Pseudo-ops Overview.

The .byte pseudo-op, .short pseudo-op, .vbyte pseudo-op.

.llong Pseudo-op

Purpose

Assembles expressions into consecutive double-words.

Syntax

 .llong Expression[,Expression,...]

Description

The .llong pseudo-op assembles expressions into consecutive double-words. In 32-bit mode, alignment

occurs on fullword boundaries as necessary. In 64-bit mode, alignment occurs on double-word boundaries

as necessary.

Chapter 9. Pseudo-ops 489

Parameters

 Expression Represents any expression to be assembled into fullwords/double-words.

Examples

The following example illustrates the use of the .llong pseudo-op:

.extern fooble

.llong 24,3,fooble-333,0

which fills 4 double-words, or 32 bytes, of storage.

Related Information

Pseudo-ops Overview.

The .byte pseudo-op, .short pseudo-op, .vbyte pseudo-op, .long pseudo-op.

.machine Pseudo-op

Purpose

Defines the intended target environment.

Syntax

 .machine StringConstant

Description

The .machine pseudo-op selects the correct instruction mnemonics set for the target machine. It provides

symbol table information necessary for the use of the linkage editor. The .machine pseudo-op overrides

the setting of the as command’s -m flag, which can also be used to specify the instruction mnemonics set

for the target machine.

The .machine pseudo-op can occur in the source program more than once. The value specified by a

.machine pseudo-op overrides any value specified by an earlier .machine pseudo-op. It is not necessary

to place the first .machine pseudo-op at the beginning of a source program. If no .machine pseudo-op

occurs at the beginning of a source program and the -m flag is not used with the as command, the default

assembly mode is used. The default assembly mode is overridden by the first .machine pseudo-op.

If a .machine pseudo-op specifies a value that is not valid, an error is reported. As a result, the last valid

value specified by the default mode value, the -m flag, or a previous .machine pseudo-op is used for the

remainder of the instruction validation in the assembler pass one.

490 Assembler Language Reference

Parameters

 StringConstant Specifies the assembly mode. This parameter is not case-sensitive, and can be any of

the values which can be specified with the -m flag on the command line. Possible values,

enclosed in quotation marks, are:

Null string (″″) or nothing

Specifies the default assembly mode. A source program can contain only

instructions that are common to both POWER family and PowerPC. Any other

instruction causes an error.

push Saves the current assembly mode in the assembly mode pushdown stack.

pop Removes a previously saved value from the assembly mode pushdown stack

and restore the assembly mode to this saved value.

Note: The intended use of push and pop is inside of include files which alter

the current assembly mode. .machine ″push″ should be used in the included file,

before it changes the current assembly mode with another .machine. Similarly,

.machine ″pop″ should be used at the end of the included file, to restore the

input assembly mode.

Attempting to hold more than 100 values in the assembly mode pushdown stack

will result in an assembly error. The pseudo-ops .machine ″push″ and .machine

″pop″ are used in pairs.

ppc Specifies the PowerPC common architecture, 32-bit mode. A source program

can contain only PowerPC common architecture, 32-bit instructions. Any other

instruction causes an error.

ppc64 Specifies the PowerPC 64-bit mode. A source program can contain only

PowerPC 64-bit instructions. Any other instruction causes an error.

com Specifies the POWER family and PowerPC architecture intersection mode. A

source program can contain only instructions that are common to both POWER

family and PowerPC. Any other instruction causes an error.

pwr Specifies the POWER family architecture, POWER family implementation mode.

A source program can contain only instructions for the POWER family

implementation of the POWER family architecture. Any other instruction causes

an error.

pwr2 POWER family architecture, POWER2 implementation. A source program can

contain only instructions for the POWER2 implementation of the POWER family

architecture. Any other instruction causes an error. (pwr2 is the preferred value,

but the alternate value pwrx can also be used.)

pwr5 For AIX 5.3 and later, POWER family architecture, POWER5 implementation. A

source program can contain only instructions for the POWER5 implementation of

the POWER family architecture. Any other instruction causes an error.

pwr5x Specifies the POWER5+ mode. A source program can contain only instructions

compatible with the POWER5+ processor.

pwr6 Specifies the POWER6 mode. A source program can contain only instructions

compatible with the POWER6 processor.

Chapter 9. Pseudo-ops 491

any Any nonspecific POWER family/PowerPC architecture or implementation mode.

This includes mixtures of instructions from any of the valid architectures or

implementations.

601 Specifies the PowerPC architecture, PowerPC 601 RISC Microprocessor mode.

A source program can contain only instructions for the PowerPC architecture,

PowerPC 601 RISC Microprocessor. Any other instruction causes an error.

Attention: It is recommended that the 601 assembly mode not be used for

applications that are intended to be portable to future PowerPC systems. The

com or ppc assembly mode should be used for such applications.

The PowerPC 601 RISC Microprocessor implements the PowerPC architecture,

plus some POWER family instructions which are not included in the PowerPC

architecture. This allows existing POWER family applications to run with

acceptable performance on PowerPC systems. Future PowerPC systems will not

have this feature. The 601 assembly mode may result in applications that will not

run on existing POWER family systems and that may not have acceptable

performance on future PowerPC systems, because the 601 assembly mode

permits the use of all the instructions provided by the PowerPC 601 RISC

Microprocessor.

603 Specifies the PowerPC architecture, PowerPC 603 RISC Microprocessor mode.

A source program can contain only instructions for the PowerPC architecture,

PowerPC 603 RISC Microprocessor. Any other instruction causes an error.

604 Specifies the PowerPC architecture, PowerPC 604 RISC Microprocessor mode.

A source program can contain only instructions for the PowerPC architecture,

PowerPC 604 RISC Microprocessor. Any other instruction causes an error.

970 Specifies the PPC970 mode. A source program can contain only instructions

compatible with the PPC970 processor.

A35 Specifies the A35 mode. A source program can contain only instructions for the

A35. Any other instruction causes an error.

Note: See “as Command Flags” on page 53 for more information on assembly mode values.

Examples

1. To set the target environment to POWER family architecture, POWER family implementation:

.machine "pwr"

2. To set the target environment to any non-specific POWER family/PowerPC architecture or

implementation mode:

.machine "any"

3. To explicitly select the default assembly mode:

.machine ""

4. The following example of assembler output for a fragment of code shows the usage of .machine

″push″ and .machine ″pop″:

 push1.s V4.1 04/15/94

File# Line# Mode Name Loc Ctr Object Code Source

0 1 | .machine "pwr2"

0 2 | .csect longname1[PR]

0 3 | PWR2 longna 00000000 0000000a .long 10

0 4 | PWR2 longna 00000004 329e000a ai 20,30,10

0 5 | PWR2 longna 00000008 81540014 l 10, 20(20)

0 6 | .machine "push"

0 7 | .machine "ppc"

0 8 | .csect a2[PR]

492 Assembler Language Reference

0 9 | PPC a2 00000000 7d4c42e6 mftb 10

0 10 | .machine "pop"

0 11 | PWR2 a2 00000004 329e000a ai 20,30,10

0 12 |

Related Information

“Host Machine Independence and Target Environment Indicator Flag” on page 4.

“Pseudo-ops Overview” on page 463.

“Assembling with the as Command” on page 53.

.org Pseudo-op

Purpose

Sets the value of the current location counter.

Syntax

 .org Expression

Description

The .org pseudo-op sets the value of the current location counter to Expression. This pseudo-op can also

decrement a location counter. The assembler is control section (csect) oriented; therefore, absolute

expressions or expressions that cause the location counter to go outside of the current csect are not

allowed.

Parameters

 Expression Represents the value of the current location counter.

Examples

The following example illustrates the use of the .org pseudo-op:

Assume assembler location counter is 0x114.

.org $+100

#Skip 100 decimal byte (0x64 bytes).

.

.

Assembler location counter is now 0x178.

Related Information

Pseudo-ops Overview.

The .space pseudo-op.

.quad Pseudo-op

Purpose

Stores a quad floating-point constant at the next fullword location. Alignment requirements for floating-point

data are consistent between 32-bit and 64-bit modes.

Chapter 9. Pseudo-ops 493

Syntax

 .quad FloatingConstant

Examples

The following example demonstrates the use of the .quad pseudo-op:

.quad 3.4

.quad -77

.quad 134E12

.quad 5e300

.quad 0.45

The above declarations would reserve 16 bytes of storage each.

Related Information

Pseudo-ops Overview.

The .float pseudo-op , .double pseudo-op .

.ref Pseudo-op

Purpose

Creates a R_REF type entry in the relocation table for one or more symbols.

Syntax

.ref Name[,Name...]

Description

The .ref pseudo-op supports the creation of multiple RLD entries in the same location. This psuedo-op is

used in the output of some compilers to ensure the linkage editor does not discard routines that are used

but not referenced explicitly in the text or data sections.

For example, in C++, constructors and destructors are used to construct and destroy class objects.

Constructors and destructors are sometimes called only from the run-time environment without any explicit

reference in the text section.

The following rules apply to the placement of a .ref pseudo-op in the source program:

v The .ref pseudo-op cannot be included in a dsect or csect with a storage mapping class of BS or UC.

v The .ref pseudo-op cannot be included in common sections or local common sections.

The following rules apply to the operands of the .ref pseudo-op (the Name parameter):

v The symbol must be defined in the current source module.

v External symbols can be used if they are defined by .extern or .globl.

v Within the current source module, the symbol can be a csect name (meaning a Qualname) or a label

defined in the csect.

v The following symbols cannot be used for the .ref operand:

– pseudo-op .dsect names

– labels defined within a dsect

– a csect name with a storage mapping class of BS or UC

– labels defined within a csect with a storage mapping class of BS or UC

494 Assembler Language Reference

– a pseudo-op .set Name operand which represents a non-relocatable expression type

Parameters

 Name Specifies a symbol for which a R_REF type entry in the relocation table should be created.

Examples

The following example demonstrates the use of the .ref pseudo-op:

 .csect a1[pr]

C1: l 10, 20(20)

 .long 0xff

 .csect a2[pr]

 .set r10,10

 .extern C4

C2: .long 10

C3: .long 20

 .ref C1,C2,C3

 .ref C4

Related Information

Pseudo-ops Overview.

The discussion of opposite terms concepts in Combination Handling of Expressions . (This discusses

another way to generate a R_REF type entry in the relocation table.)

.rename Pseudo-op

Purpose

Creates a synonym or alias for an illegal or undesirable name.

Syntax

 .rename Name, StringConstant

Description

The restrictions on the characters that can be used for symbols within an assembler source file are

defined in “Constructing Symbols” on page 31. The symbol cannot contain any blanks or special

characters, and cannot begin with a digit.

For any external symbol that must contain special characters, the .rename pseudo-op provides a way to

do so.

The .rename pseudo-op changes the Name parameter to the StringConstant value for all external

references at the end of assembly. Internal references to the local assembly are made to Name. The

externally visible Name is StringConstant. The .rename pseudo-op is useful in referencing symbol names

that are otherwise illegal in the assembler syntax.

Parameters

 Name Represents a symbol. To be externally visible, the Name parameter must appear in an

.extern or .globl statement.

StringConstant Represents the value to which the Name parameter is changed at end of assembly.

Chapter 9. Pseudo-ops 495

Examples

The following example illustrates the use of the .rename pseudo-op:

 .csect mst_sect[RW]

 .globl mst_sect[RW]

OK_chars:

 .globl OK_chars

 .long OK_chars

 .rename OK_chars,"$_SPECIAL_$_char"

 .rename mst_sect[RW],"MST_sect_renamed"

Related Information

“Pseudo-ops Overview” on page 463.

“Constructing Symbols” on page 31.

“.extern Pseudo-op” on page 481, “.globl Pseudo-op” on page 484.

.set Pseudo-op

Purpose

Sets a symbol equal to an expression in both type and value.

Syntax

 .set Name, Expression

Description

The .set pseudo-op sets the Name symbol equal to the Expression value in type and in value. Using the

.set pseudo-op may help to avoid errors with a frequently used expression. Equate the expression to a

symbol, then refer to the symbol rather than the expression. To change the value of the expression, only

change it within the .set statement. However, reassembling the program is necessary since .set

assignments occur only at assembly time.

The Expression parameter is evaluated when the assembler encounters the .set pseudo-op. This

evaluation is done using the rules in Combination Handling of Expressions ; and the type and value of the

evaluation result are stored internally. If evaluating the Expression, results in an invalid type, all

instructions which use the symbol Name will have an error.

The stored type and value for symbol Name, not the original expression definition, are used when Name is

used in other instructions.

Parameters

 Name Represents a symbol that may be used before its definition in a .set statement; forward

references are allowed within a module.

Expression Defines the type and the value of the symbol Name. The symbols referenced in the expression

must be defined; forward references are not allowed. The symbols cannot be undefined external

expressions.The symbols do not have to be within the control section where the .set pseudo-op

appears.The Expression parameter can also refer to a register number, but not to the contents of

the register at run time.

496 Assembler Language Reference

Examples

1. The following example illustrates the use of the .set pseudo-op:

.set ap,14 # Assembler assigns value 14

 # to the symbol ap -- ap

 # is absolute.

 .

 .

lil ap,2

 # Assembler substitutes value 14

 # for the symbol.

 # Note that ap is a register

 # number in context

 # as lil’s operand.

2. The following example will result in an assembly error because of an invalid type:

 .csect a1[PR]

 L1: l 20,30(10)

 .csect a2[rw]

 .long 0x20

 L2: .long 0x30

 .set r1, L2 - L1 # r1 has type of E_REXT

 # r1 has value of 8

 .long r1 + 10

 .long L2 - r1 # Error will be reported.

 # L2 is E_REL

 # r1 is E_REXT

 # E_REL - E_REXT ==> Invalid type

Related Information

Pseudo-ops Overview.

Expressions .

.short Pseudo-op

Purpose

Assembles expressions into consecutive halfwords.

Syntax

 .short Expression[,Expression,...]

Description

The .short pseudo-op assembles Expressions into consecutive halfwords. Halfword alignment occurs as

necessary.

Parameters

 Expression Represents expressions that the instruction assembles into halfwords. The Expression parameter

cannot refer to the contents of any register. If the Expression value is longer than a halfword, it is

truncated on the left.

Chapter 9. Pseudo-ops 497

Examples

The following example illustrates the use of the .short pseudo-op:

.short 1,0x4444,fooble-333,0

Related Information

Pseudo-ops Overview.

The .byte pseudo-op, .long pseudo-op, .vbyte pseudo-op.

.source Pseudo-op

Purpose

Identifies the source language type.

Syntax

 .source StringConstant

Description

The .source pseudo-op identifies the source language type and provides symbol table information

necessary for the linkage editor. For cascade compilers, the symbol table information is passed from the

compiler to the assembler to indicate the high-level source language type. The default source language

type is ″Assembler.″

Parameters

 StringConstant Specifies a valid program language name. This parameter is not case-sensitive. If the

specified value is not valid, the language ID will be reset to ″Assembler.″ The following

values are defined:

0x00 C

0x01 FORTRAN

0x02 Pascal

0x03 Ada

0x04 PL/1

0x05 BASIC

0x06 LISP

0x07 COBOL

0x08 Modula2

0x09 C++

0x0a RPG

0x0b PL8, PLIX

0x0c Assembler

498 Assembler Language Reference

Examples

To set the source language type to C++:

.source "C++"

Related Information

Pseudo-ops Overview.

Source Language Type .

.space Pseudo-op

Purpose

Skips a specified number of bytes in the output file and fills them with binary zeros.

Syntax

 .space Number

Description

The .space skips a number of bytes, specified by Number, in the output file and fills them with binary

zeros. The .space pseudo-op may be used to reserve a chunk of storage in a control section (csect).

Parameters

 Number Represents an absolute expression that specifies the number of bytes to skip.

Examples

The following example illustrates the use of the .space pseudo-op:

.csect data[rw]

.space 444

 .

 .

foo: # foo currently located at offset 0x1BC within

 # csect data[rw].

Related Information

Pseudo-ops Overview.

.stabx Pseudo-op

Purpose

Provides additional information required by the debugger.

Syntax

 .stabx StringConstant, Expression1, Expression2, Expression3

Chapter 9. Pseudo-ops 499

Description

The .stabx pseudo-op provides additional information required by the debugger. The assembler places the

StringConstant argument, which provides required stabstring information for the debugger, in the .debug

section.

The .stabx pseudo-op is customarily inserted by a compiler.

Parameters

 StringConstant Provides required Stabstring information to the debugger.

Expression1 Represents the symbol value of the character string. This value is storage mapping class

dependent. For example, if the storage mapping class is C_LSYM, the value is the offset

related to the stack frame. If the storage mapping class is C_FUN, the value is the offset

within the containing control section (csect).

Expression2 Represents the storage class of the character string.

Expression3 Represents the symbol type of the character string.

Examples

The following example illustrates the use of the .stabx pseudo-op:

.stabx "INTEGER:t2=-1",0,140,4

Related Information

Pseudo-ops Overview.

Debug Section in the XCOFF Object (a.out) File Format.

The .function pseudo-op.

.string Pseudo-op

Purpose

Assembles character values into consecutive bytes and terminates the string with a null character.

Syntax

 .string StringConstant

Description

The .string pseudo-op assembles the character values represented by StringConstant into consecutive

bytes and terminates the string with a null character.

Parameters

 StringConstant Represents a string of character values assembled into consecutive bytes.

Examples

The following example illustrates the use of the .string pseudo-op:

mine: .string "Hello, world!"

This produces

0x48656C6C6F2C20776F726C642100.

500 Assembler Language Reference

Related Information

Pseudo-ops Overview.

The .byte pseudo-op, .vbyte pseudo-op.

.tbtag Pseudo-op

Purpose

Defines a debug traceback tag, preceded by a word of zeros, that can perform tracebacks for debugging

programs.

Syntax

.tbtag Expression1, Expression2, Expression3, Expression4, Expression5, Expression6, Expression7,

Expression8,[Expression9, Expression10, Expression11, Expression12, Expression13, Expression14,

Expression15, Expression16]

Description

The .tbtag pseudo-op defines a traceback tag by assembling Expressions into consecutive bytes, words,

and halfwords, depending on field requirements. An instruction can contain either 8 expressions

(Expression1 through Expression8) or 16 expressions (Expression1 through Expression16). Anything else

is a syntax error. A compiler customarily inserts the traceback information into a program at the end of the

machine instructions, adding a string of zeros to signal the start of the information.

Parameters

 Expression1 version /*Traceback format version */

Byte

Expression2 lang /*Language values */

Byte

 TB_C 0

 TB_FORTRAN 1

 TB_PASCAL 2

 TB_ADA 3

 TB_PL1 4

 TB_BASIC 5

 TB_LISP 6

 TB_COBOL 7

 TB_MODULA2 8

 TB_CPLUSPLUS 9

 TB_RPG 10

 TB_PL8 11

 TB_ASM 12

Expression3 /*Traceback control bits */

Byte

 globallink Bit 7. Set if routine is global linkage.

 is_eprol Bit 6. Set if out-of-town epilog/prologue.

 has_tboff Bit 5. Set if offset from start of proc stored.

 int_proc Bit 4. Set if routine is internal.

 has_ctl Bit 3. Set if routine involves controlled storage.

 tocless Bit 2. Set if routine contains no TOC.

 fp_present Bit 1. Set if routine performs FP operations.

 log_abort Bit 0. Set if routine involves controlled storage.

Expression4 /*Traceback control bits (continued) */

Chapter 9. Pseudo-ops 501

Byte

 int_hndl Bit 7. Set if routine is interrupt handler.

 name_present Bit 6. Set if name is present in proc table.

 uses_alloca Bit 5. Set if alloca used to allocate storage.

 cl_dis_inv Bits 4, 3, 2. On-condition directives

 WALK_ONCOND 0 Walk stack; don’t restore state

 DISCARD_ONCOND 1 Walk the stack and discard.

 INVOKE_ONCOND 1 Invoke specific system routine

 saves_cr Bit 1. Set if procedure saves condition register.

 saves_lr Bit 0. Set if procedure saves link register.

Expression5 /*Traceback control bits (continued) */

Byte

 stores_bc Bit 7. Set if procedure stores the backchain.

 spare2 Bit 6. Spare bit.

 fpr_saved Bits 5, 4, 3, 2, 1, 0. Number of FPRs saved, max 32.

Expression6 /*Traceback control bits (continued) */

Byte

 spare3 Bits 7, 6. Spare bits.

 gpr_saved Bits 5, 4, 3, 2, 1, 0. Number of GPRs saved, max 32.

Expression7 fixedparms /*Traceback control bits (continued) */

Byte

Expression8

Byte

 floatparms Bits 7, 6, 5, 4, 3, 2,1. Number of floating point parameters.

 parmsonstk Bit 0. Set if all parameters placed on stack.

Expression9 parminfo /*Order and type coding of parameters */

Word

 ’0’ Fixed parameter.

 ’10’ Single-precision float parameter.

 ’11’ Double-precision float parameter.

Expression10 tb_offset /*Offset from start of code to tb table */

Word

Expression11 hand_mask /*What interrupts are handled */

Word

Expression12 ctl_info /*Number of CTL anchors */

Word

Expression13 ctl_info_disp /*Displacements of each anchor into stack*/

Word

Expression14 name_len /*Length of procedure name */

Halfword

Expression15 name /*Name */

Byte

Expression16 alloca_reg /*Register for alloca automatic storage*/

Byte

Examples

The following example illustrates the use of the .tbtag pseudo-op:

 .tbtag 1,0,0xff,0,0,16,0,0

Related Information

“Pseudo-ops Overview” on page 463.

“Traceback Tags” on page 78.

502 Assembler Language Reference

“.byte Pseudo-op” on page 470.

.tc Pseudo-op

Purpose

Assembles expressions into a Table of Contents (TOC) entry.

Syntax

 .tc [Name][TC], Expression[,Expression,...]

Note: The boldface brackets containing TC are part of the syntax and do not specify optional parameters.

Description

The .tc pseudo-op assembles Expressions into a TOC entry, which contains the address of a routine, the

address of a function descriptor, or the address of an external variable. A .tc statement can only appear

inside the scope of a .toc pseudo-op. A TOC entry can be relocated as a body. TOC entry statements can

have local labels, which will be relative to the beginning of the entire TOC as declared by the first .toc

statement. Addresses contained in the TOC entry can be accessed using these local labels and the TOC

Register GPR 2.

TOC entries that contain only one address are subject to being combined by the binder. This can occur if

the TOC entries have the same name and reference the same control section (csect) (symbol). Be careful

when coding TOC entries that reference nonzero offsets within a csect. To prevent unintended combining

of TOC entries, unique names should be assigned to TOC entries that reference different offsets within a

csect.

Parameters

 Name Specifies name of the TOC entry created. The StorageMappingClass is TC for TOC entires.

Name[TC] can be used to refer to the TOC entry where appropriate.

Expression Specifies symbol or expression which goes into TOC entry.

Examples

The following example illustrates the use of the .tc pseudo-op:

.toc

Create three TOC entries, the first

with the name proga, the second

with the name progb, and the last

unnamed.

T.proga: .tc proga[TC],progr[RW],dataA

T.progb: .tc progb[TC],proga[PR],progb[PR]

T.progax: .tc proga[TC],dataB

 .tc [TC],dataB

 .csect proga[PR]

A .csect should precede any statements following a

.toc/.tc section which do not belong in the TOC.

 l 5,T.proga(2) # The address of progr[RW]

 # is loaded into GPR 5.

 l 5,T.progax(2) # The address of progr[RW]

 # is loaded into GPR 5.

 l 5,T.progb+4(2) # The address of progb[PR]

 # is loaded into GPR 5.

Chapter 9. Pseudo-ops 503

Related Information

“Pseudo-ops Overview” on page 463.

“.csect Pseudo-op” on page 473, “.toc Pseudo-op,” “.tocof Pseudo-op.”

.toc Pseudo-op

Purpose

Defines the table of contents of a module.

Syntax

.toc

Description

The .toc pseudo-op defines the table of contents (TOC) anchor of a module. Entries in the TOC section

can be declared with .tc pseudo-op within the scope of the .toc pseudo-op. The .toc pseudo-op has scope

similar to that of a .csect pseudo-op. The TOC can be continued throughout the assembly wherever a .toc

appears.

Examples

The following example illustrates the use of the .toc pseudo-op:

.toc

Create two TOC entries. The first entry, named proga,

is of type TC and contains the address of proga[RW] and dataA.

The second entry, named progb, is of type TC and contains

the address of progb[PR] and progc[PR].

T.proga: .tc proga[TC],proga[RW],dataA

T.progb: .tc progb[TC],progb[PR],progc[PR]

.csect proga[RW]

A .csect should precede any statements following a .toc/.tc

section which do not belong in the TOC.

.long TOC[tc0]

The address of the TOC for this module is placed in a fullword.

Related Information

The .tc pseudo-op, .tocof pseudo-op.

.tocof Pseudo-op

Purpose

Allows for the definition of a local symbol as the table of contents of an external symbol so that the local

symbol can be used in expressions.

Syntax

 .tocof Name1, Name2

504 Assembler Language Reference

Description

The .tocof pseudo-op makes the Name2 value globally visible to the linker and marks the Name1 symbol

as the table of contents (TOC) of another module that contains the symbol Name2. As a result, a local

symbol can be defined as the TOC of an external symbol so that the local symbol can be used in

expressions or to refer to the TOC of another module, usually in a .tc statement. This pseudo-op

generates a Relocation Dictionary entry (RLD) that causes this data to be initialized to the address of the

TOC external symbols. The .tocof pseudo-op can be used for intermodule calls that require the caller to

first load up the address of the called module’s TOC before transferring control.

Parameters

 Name1 Specifies a local symbol that acts as the TOC of a module that contains the Name2 value. The Name1

symbol should appear in .tc statements.

Name2 Specifies an external symbol that exists within a module that contains a TOC.

Examples

The following example illustrates the use of the .tocof pseudo-op:

tocbeg: .toc

apb: .tc [tc],pb,tpb

This is an unnamed TOC entry

that contains two addresses:

the address of pb and

the address of the TOC

containing pb.

.tocof tpb,pb

.set always,0x14

.csect [PR]

.using tocbeg,rtoc

l 14,apb

Load R14 with the address

of pb.

l rtoc,apb+4

Load the TOC register with the

address pb’s TOC.

mtspr lr,14

Move to Link Register.

bcr always,0

Branch Conditional Register branch

address is contained in the Link

register.

Related Information

“Pseudo-ops Overview” on page 463.

“Understanding and Programming the TOC” on page 82.

“.tc Pseudo-op” on page 503, “.toc Pseudo-op” on page 504.

.using Pseudo-op

Purpose

Allows the user to specify a base address and assign a base register number.

Syntax

 .using Expression, Register

Chapter 9. Pseudo-ops 505

Description

The .using pseudo-op specifies an expression as a base address, and assigns a base register, assuming

that the Register parameter contains the program address of Expression at run time. Symbol names do

not have to be previously defined.

Note: The .using pseudo-op does not load the base register; the programmer should ensure that the

base address is loaded into the base register before using the implicit address reference.

The .using pseudo-op only affects instructions with an implicit-based address. It can be issued on the

control section (csect) name and all labels in the csects. It can also be used on the dsect name and all the

labels in the dsects. Other types of external symbols are not allowed (.extern).

Using Range

The range of a .using pseudo-op (using range) is -32768 or 32767 bytes, beginning at the base address

specified in the .using pseudo-op. The assembler converts each implicit address reference (or

expression), which lies within the using range, to an explicit-based address form. Errors are reported for

references outside the using range.

Two using ranges overlap when the base address of one .using pseudo-op lies within the ranges of

another .using pseudo-op. When using range overlap happens, the assembler converts the implicit

address reference by choosing the smallest signed offset from the base address as the displacement. The

corresponding base register is used in the explicit address form. This applies only to implicit addresses

that appear after the second .using pseudo-op.

In the next example, the using range of base2 and data[PR] overlap. The second l instruction is after the

second .using pseudo-op. Because the offset from data[PR] to d12 is greater than the offset from base2 to

d12, base2 is still chosen.

 .csect data[PR]

 .long 0x1

dl: .long 0x2

base2: .long 0x3

 .long 0x4

 .long 0x4

 .long 0x5

d12: .long 0x6

 l 12, data_block.T(2) # Load addr. of data[PR] into r12

 ca1 14, base2(12) # Load addr. of base2 into r14

 .using base2, 14

 l 4, d12 # Convert to 1 4, 0xc(14)

 .using data[PR], 12

 l 4, d12 # Converts to 1 4, 0xc(14)

 # because base2 is still chosen

 .toc

data_block.T: tc data_block[tc], data[PR]

There is an internal using table that is used by the assembler to track the .using pseudo-op. Each entry of

the using table points to the csect that contains the expression or label specified by the Expression

parameter of the .using pseudo-op. The using table is only updated by the .using pseudo-ops. The

location of the .using pseudo-ops in the source program influences the result of the conversion of an

implicit-based address. The next two examples illustrate this conversion.

Example 1:

 .using label1,4

 .using label2,5

 .csect data[RW]

label1: .long label1

 .long label2

506 Assembler Language Reference

.long 8

label1_a: .long 16

 .long 20

label2: .long label2

 .long 28

 .long 32

label2_a: .long 36

 .long 40

 .csect sub1[pr]

 1 6,label1_a # base address label2 is

 # chosen, so convert to:

 # 1 6, -8(5)

 1 6,label2_a # base address label2 is

 # chosen, so convert to:

 # 1 6, 0xc(5)

Example 2:

 .csect data[RW]

label1: .long label1

 .long label2

 .long 12

label1_a: .long 16

 .long 20

label2: .long label2

 .long 28

 .csect sub2[pr]

 .using label1,4

 1 6,label1_a # base address label1 is

 # chosen, so convert to:

 # 1 6, 0xc(4)

 .using label2,5

 1 6,label1_a # base address label2 is

 # chosen, so convert to:

 # 1 6, -8(5)

Two using ranges coincide when the same base address is specified in two different .using pseudo-ops,

while the base register used is different. The assembler uses the lower numbered register as the base

register when converting to explicit-based address form, because the using table is searched from the

lowest numbered register to the highest numbered register. The next example shows this case:

 .csect data[PR]

 .long 0x1

dl: .long 0x2

base2; .long 0x3

 .long 0x4

 .long 0x5

dl2: .long 0x6

 1 12, data_block.T(2) # Load addr. of data[PR] into r12

 1 14, data_block.T(2) # Load addr. of data[PR] into r14

 .using data[PR], 12

 1 4, dl2 # Convert to: 1 4, 0x14(12)

 .using data[PR], 14

 1 4, dl2 # Convert to: 1 4, 0x14(12)

 .toc

data_block.T: .tc data_block[tc], data[PR]

Using Domain

The domain of a .using pseudo-op (the using domain) begins where the .using pseudo-op appears in a

csect and continue to the end of the source module except when:

v A subsequent .drop pseudo-op specifies the same base register assigned by the preceding .using

pseudo-op.

v A subsequent .using pseudo-op specifies the same base register assigned by the preceding .using

pseudo-op.

Chapter 9. Pseudo-ops 507

These two exceptions provide a way to use a new base address. The next two examples illustrate these

exceptions:

Example 1:

 .csect data[PR]

 .long 0x1

dl: .long 0x2

base2; .long 0x3

 .long 0x4

 .long 0x5

dl2: .long 0x6

 1 12, data_block.T(2) # Load addr. of data[PR] into r12

 ca1 14, base2(12) # Load addr. of base2 into r14

 .using base2, 14

 1 4, dl2 # Convert to: 1 4, 0xc(14)

 # base address base2 is used

 1 14, data_block.T(2) # Load addr. of data[PR] into r14

 .using data[PR], 14

 1 4, dl2 # Convert to: 1 4, 0x14(14)

 .toc

data_block.T: .tc data_block[tc], data[PR]

Example 2:

 .csect data[PR]

 .long 0x1

dl: .long 0x2

base2; .long 0x3

 .long 0x4

 .long 0x5

dl2: .long 0x6

 1 12, data_block.T(2) # Load addr. of data[PR] into r12

 ca1 14, base2(12) # Load addr. of base2 into r14

 .using base2, 14

 1 4, dl2 # Convert to: 1 4, 0xc(14)

 .drop 14

 .using data[PR], 12

 1 4, dl2 # Convert to: 1 4, 0x14(12)

 .toc

data_block.T: .tc data_block[tc], data[PR]

Note: The assembler does not convert the implicit address references that are outside the Using Domain.

So, if these implicit address references appear before any .using pseudo-op that defines a base

address of the current csect, or after the .drop pseudo-ops drop all the base addresses of the

current csect, an error is reported.

The next example shows the error conditions:

 .csect data[PR]

 .long 0x1

dl: .long 0x2

base2; .long 0x3

 .long 0x4

 .long 0x5

dl2: .long 0x6

 1 4, dl2 # Error is reported here

 1 12, data_block.T(2) # Load addr. of data[PR] into r12

 1 14, data_block.T(2) # Load addr. of data[PR] into r14

 .using data[PR], 12

 1 4, dl2

 1 4, 0x14(12)

 .drop 12

 1 4, dl2 # Error is reported here

 .using data[PR], 14

 1 4, dl2

508 Assembler Language Reference

1 4, 0x14(14)

 .toc

data_block.T: .tc data_block[tc], data[PR]

 .csect data1[PR]

dl3: .long 0x7

 .using data[PR], 5

 1 5, dl3 # Error is reported

 # here, dl3 is in csect

 # data1[PR] and

 # Using table has no entry of

 # csect data1[PR]

 l 5, dl2 # No error, because dl2 is in

 # data [PR]

Parameters

 Register Represents the register number for expressions. It must be absolute and must evaluate to an

integer from 0 to 31 inclusive.

Expression Specifies a label or an expression involving a label that represents the displacement or relative

offset into the program. The Expression parameter can be an external symbol if the symbol is a

csect or Table of Contents (TOC) entry defined within the assembly.

Examples

The following example demonstrates the use of the .using pseudo-op:

.csect data[rw]

.long 0x0, 0x0

d1: .long 0x25

A read/write csect contains the label d1.

.csect text[pr]

.using data[rw], 12

l 4,d1

This will actually load the contents of

the effective address, calculated by

adding the address d1 to the address in

GPR 12, into GPR 4

Related Information

“Pseudo-ops Overview” on page 463.

“Implicit-Based Addressing” on page 50.

“.csect Pseudo-op” on page 473, “.drop Pseudo-op” on page 476.

.vbyte Pseudo-op

Purpose

Assembles the value represented by an expression into consecutive bytes.

Syntax

 .vbyte Number, Expression

Description

The .vbyte pseudo-op assembles the value represented by the Expression parameter into a specified

number of consecutive bytes.

Chapter 9. Pseudo-ops 509

Parameters

 Number Specifies a number of consecutive bytes. The Number value must range between 1 and 4.

Expression Specifies a value that is assembled into consecutive bytes. The Expression parameter cannot

contain externally defined symbols. If the Expression value is longer than the specified number of

bytes, it will be truncated on the left.

Examples

The following example illustrates the use of the .vbyte pseudo-op:

.csect data[RW]

mine: .vbyte 3,0x37CCFF

This pseudo-op also accepts character constants.

.vbyte 1,’c

Load GPR 4 with address of .csect data[RW].

.csect text[PR]

l 3,mine(4)

GPR 3 now holds 0x37CCFF.

Related Information

Pseudo-ops Overview.

The .byte pseudo-op.

.weak Pseudo-op

Purpose

Makes a symbol with weak binding globally visible to the linker.

Syntax

.weak Name

Description

The .weak pseudo-op makes the symbol Name globally visible to the linker and available to any file that is

linked to the file in which either the .globl or .weak pseudo-op occurs. However, the symbol has weak

binding semantics.

v If the .weak pseudo-op is not used for a symbol, then that symbol is, unless otherwise effected, only

visible within the current assembly and not to other modules that may later be linked to the current

assembly.

v If Name is defined in the current assembly, its type and value arise from that definition, not the .weak

definition.

v Once .weak has been seen for a symbol, latter occurances of .globl and .extern will not affect it for

that file.

v The binder ignores duplicate definitions for symbols with the same name that are weak. If the name is

declared .globl in one object file of module, and .weak in another, the global definition is used and the

weak ones are ignored. If no global definition (such as the C_EXT storage class) exists, the first weak

definition is used, according to link order as described by the ld reference page.

510 Assembler Language Reference

Parameters

 Name Represents any label or symbol that is defined locally and requires

external visibility with weak storage class. This parameter can be a

Qualname. (A Qualname specifies a Name and

StorageMappingClass for the control section.)

Examples

The following example illustrates the use of the .weak pseudo-op:

.weak foo[RW]

.csect data[RW]

Related Information

v Pseudo-ops Overview

v The .globl and .extern pseudo-ops.

v The ld command.

.xline Pseudo-op

Purpose

Represents a line number.

Syntax

 .xline Number1, StringConstant[, Number2]

Description

The .xline pseudo-op provides additional file and line number information to the assembler. The Number2

parameter can be used to generate .bi and .ei type entries for use by symbolic debuggers. This

pseudo-op is customarily inserted by the M4 macro processor.

Parameters

 Number1 Represents the line number of the original source file.

StringConstant Represents the file name of the original source file.

Number2 Represents the C_BINCL and C_EINCL classes, which indicate the beginning and ending

of an included file, respectively.

Examples

The following example illustrates the use of the .xline pseudo-op:

.xline 1,"hello.c",108

.xline 2,"hello.c"

Related Information

Pseudo-ops Overview.

Chapter 9. Pseudo-ops 511

512 Assembler Language Reference

Appendix A. Messages

The messages in this appendix are error messages or warning messages. Each message contains three

sections:

v Message number and message text

v Cause of the message

v Action to be taken

For some messages that are used for file headings, the Action section is omitted.

 1252-001 <name> is defined already.

Cause The user has previously used name in a definition-type statement and is trying to

define it again, which is not allowed. There are three instances where this message

is displayed:

v A label name has been defined previously in the source code.

v A .set pseudo-op name has been defined previously in the source code.

v A .lcomm or .comm pseudo-op name has been previously defined in the source

code.

Action Correct the name-redefined error.

1252-002 There is nesting overflow. Do not specify more than 100 .function, .bb, or .bi pseudo-ops

without specifying the matching .ef, .eb, or .ei pseudo-ops.

Cause This syntax error message will only be displayed if debugger pseudo-ops are used.

The .function, .bb, and .bi pseudo-ops generate pointers that are saved on a stack

with a limiting size of 100 pointers. If more than 100 .function and .bb pseudo-ops

have been encountered without encountering the matching .ef and .eb pseudo-ops,

this syntax error message is displayed.

Action Rewrite the code to avoid this nesting.

Note: Debugger pseudo-ops are normally generated by compilers, rather than being

inserted in the source code by the programmer.

1252-003 The .set operand is not defined or is a forward reference.

Cause The .set pseudo-op has the following syntax:

 .set name,expr

 The expr parameter can be an integer, a predefined name (specified by a label, or

by a .lcomm or .comm pseudo-op) or an algebraic combination of an integer and a

name. This syntax error message appears when the expr parameter is not defined.

Action Verify that all elements of the expr parameter are defined before the .set statement.

© Copyright IBM Corp. 1997, 2006 513

1252-004 The .globl symbol is not valid. Check that the .globl name is a relocatable expression.

Cause The .globl name must be a relocatable expression. This syntax error message is

displayed when the Name parameter of the .globl pseudo-op is not a relocatable

expression.

 Relocation refers to an entity that represents a memory location whose address or

location can and will be changed to reflect run-time locations. Entities and symbol

names that are defined as relocatable or nonrelocatable are described in

“Expressions” on page 39.

 Relocatable expressions include label names, .lcomm, .comm names, and .csect

names.

 The following are the nonrelocatable items and nonrelocatable expressions:

v .dsect names

v labels contained within a .dsect

v labels contained within a csect with a storage class of BS or UC

v .set names

v absolute expression (constant or integer)

v tocrelative (.tc label or name)

v tocofrelative (.tocof label or name)

v unknown (undefined in Pass 2 of the assembler)

Action Ensure that the Name parameter of the .globl pseudo-op is a relocatable

expression. If not defined, the name is assumed to be external.

1252-005 The storage class is not valid. Specify a supported storage class for the csect name.

Cause This syntax error message is displayed when the storage mapping class value used

to specify the Qualname in the .csect pseudo-op is not one of the predefined

values.

Action See the .csect pseudo-op for the list of predefined storage mapping classes. Correct

the program error and assemble and link the program again.

1252-006 The ERRTOK in the ICSECT ERRTOK is not known. Depending upon where you acquired

this product, contact either your service representative or your approved supplier.

Cause This is an internal error message.

Action Contact your service representative or your approved supplier to report the problem.

1252-007 The alignment must be an absolute expression.

Cause This syntax error message is caused by an incorrect operand (the optional alignment

parameter) to the .csect pseudo-op. This alignment parameter must be either an

absolute expression (an integer) or resolve algebraically into an absolute expression.

Action Correct the alignment parameter, then assemble and link the program again.

1252-008 The .tocof name1 is not valid. Check that the name1 has not been defined previously.

Cause The Name1 parameter of the .tocof pseudo-op has been defined elsewhere in the

current module.

Action:

Ensure that the name1 symbol is defined only in the .tocof pseudo-op.

1252-009 A Begin or End block or .function pseudo-op is missing. Make sure that there is a matching

.eb statement for each .bb statement and that there is a matching .ef statement for each .bf

statement.

Cause If there is not a matching .eb pseudo-op for each .bb pseudo-op or if there is not a

matching .ef pseudo-op for each .bf pseudo-op, this error message is displayed.

Action Verify that there is a matching .eb pseudo-op for every .bb pseudo-op, and verify

that there is a matching .ef pseudo-op for every .bf pseudo-op.

514 Assembler Language Reference

1252-010 The .tocof Name2 is not valid. Make sure that name2 is an external symbol.

Cause The Name2 parameter for the .tocof pseudo-op has not been properly defined.

Action Ensure that the Name2 parameter is externally defined (it must appear in an .extern

or .globl pseudo-op) and ensure that it is not defined locally in this source module.

Note: If the Name2 parameter is defined locally and is externalized using a .extern

pseudo-op, this message is also displayed.

1252-011 A .space parameter is undefined.

Cause The Number parameter to the .space pseudo-op must be a positive absolute

expression. This message indicates that the Number parameter contains an

undefined element (such as a label or name for a .lcomm, .comm, or .csect

pseudo-op that will be defined later).

Action Verify that the Number parameter is an absolute expression, integer expression, or

an algebraic expression that resolves into an absolute expression.

1252-012 The .space size must be an absolute expression.

Cause The Number parameter to the .space pseudo-op must be a positive absolute

expression. This message indicates that the Number parameter contains a

nonabsolute element (such as a label or name for a .lcomm, .comm, or .csect

pseudo-op).

Action Verify that the Number parameter specifies an absolute expression, or an integer or

algebraic expression that resolves into an absolute expression.

1252-013 The .space size must be a positive absolute expression.

Cause The Number parameter to the .space pseudo-op must be a positive absolute

expression. This message indicates that the Number parameter resolves to a

negative absolute expression.

Action Verify that the Number parameter is a positive absolute expression.

1252-014 The .rename Name symbol must be defined in the source code.

Cause The Name parameter to the .rename pseudo-op must be defined somewhere in the

source code. This message indicates that the Name parameter has not been

defined.

Action Verify that the Name parameter is defined somewhere in the source code.

1252-015 A pseudo-op parameter is not defined.

Cause This is a syntax error message displayed for the .line, .xline, .bf, .ef, .bb, and .eb

pseudo-ops. These expressions have an expression operand that must resolve.

Action Change the source code so that the expression resolves or is defined.

1252-016 The specified opcode or pseudo-op is not valid. Use supported instructions or pseudo-ops

only.

Cause The first element (after any label) on the source line is not recognized as an

instruction or pseudo-op.

Action Use only supported instructions or pseudo-ops.

1252-017 The ERRTOK in the args parameter is not valid. Depending upon where you acquired this

product, contact either your service representative or your approved supplier.

Cause This is an internal error message.

Action Contact your service representative or your approved supplier to report the problem.

1252-018 Use a .tc inside a .toc scope only. Precede the .tc statements with a .toc statement.

Cause A .tc pseudo-op is only valid after a .toc pseudo-op and prior to a .csect pseudo-op.

Otherwise, this message is displayed.

Action Ensure that a .toc pseudo-op precedes the .tc pseudo-ops. Any other pseudo-ops

should be preceded by a .csect pseudo-op. The .tc pseudo-ops do not have to be

followed by a .csect pseudo-op, if they are the last pseudo-ops in a source file.

Appendix A. Messages 515

1252-019 Do not specify externally defined symbols as .byte or .vbyte expression parameters.

Cause If the Expression parameter of the .byte or .vbyte pseudo-op contains externally

defined symbols (the symbols appear in a .extern or .globl pseudo-op), this

message is displayed.

Action Verify that the Expression parameter of the .byte or .vbyte pseudo-op does not

contain externally defined symbols.

1252-020 Do not specify externally defined symbols as .short Expression parameters.

Cause If the Expression parameter of the .short pseudo-op contains externally defined

symbols (the symbols appear in an .extern or .globl pseudo-op), this message is

displayed.

Action Verify that the Expression parameter of the .short pseudo-op does not contain

externally defined symbols.

1252-021 The expression must be absolute.

Cause The Expression parameter of the .vbyte pseudo-op is not an absolute expression.

Action Ensure that the expression is an absolute expression.

1252-022 The first parameter must resolve into an absolute expression from 1 through 4.

Cause The first parameter of the .vbyte pseudo-op must be an absolute expression ranging

from 1 to 4.

Action Verify that the first parameter of the .vbyte pseudo-op resolves to an absolute

expression from 1 to 4.

1252-023 The symbol <name> is not defined.

Cause An undefined symbol is used in the source program.

Action A symbol can be defined as a label, or as the Name parameter of a .csect, .comm,

.lcomm, .dsect, .set, .extern, or .globl pseudo-op. The -u flag of the as command

suppresses this message.

1252-024 The .stab string must contain a : character.

Cause The first parameter of the .stabx pseudo-op is a string constant. It must contain a :

(colon). Otherwise, this message is displayed.

Action Verify that the first parameter of the .stabx pseudo-op contains a : (colon).

1252-025 The register, base register, or mask parameter is not valid. The register number is limited to

the number of registers on your machine.

Cause The register number used as the operand of an instruction or pseudo-op is not an

absolute value, or the value is out of range of the architecture.

Action An absolute expression should be used to specify this value. For PowerPC and

POWER family, valid values are in the range of 0-31.

1252-026 Cannot create a temporary file. Check the /tmp directory permissions.

Cause This message indicates a permission problem in the /tmp filesystem.

Action Check the permissions on the /tmp directory.

1252-027 Warning: Aligning with zeroes: The .short pseudo-op is not on the halfword boundary.

Cause This warning indicates that a .short pseudo-op is not on the halfword boundary. The

assembler places zeros into the current location until the statement is aligned to a

halfword boundary.

Action If the user wants to control the alignment, using a .align pseudo-op with the Number

parameter set to 1 prior to the .short pseudo-op will perform the same function. A

.byte pseudo-op with an Expression parameter set to 0 prior to the .short

pseudo-op will perform the same function that the assembler does internally.

516 Assembler Language Reference

1252-028 Cannot reopen the intermediate result file in the /tmp directory. Make sure that the size of the

/tmp file system is sufficient to store the file, and check that the file system is not damaged.

Cause This message indicates that a system problem occurred while closing the

intermediate file and then opening the file again.

Action The intermediate file normally resides in the /tmp filesystem. Check the /tmp

filesystem space to see if it is large enough to contain the intermediate file.

1252-029 There is not enough memory available now. Cannot allocate the text and data sections. Try

again later or use local problem reporting procedures.

Cause This is a memory-management problem. It is reported when the malloc function is

called while allocating the text and data section. There is either not enough main

memory, or memory pointers are being corrupted.

Action Try again later. If the problem continues to occur, check the applications load for the

memory or talk to the system administrator.

1252-030 Cannot create the file <filename>. Check path name and permissions.

Cause This message indicates that the assembler is unable to create the output file (object

file). An object file is created in the specified location if the -o flag of the as

command is used. If the -o flag is not used, an object file with the default name of

a.out is created in the current directory. If there are permission problems for the

directory or the path name is invalid, this message is displayed.

Action Check the path name and permissions.

1252-031 There is not enough memory available now. Cannot allocate the ESD section. Try again later

or use local problem reporting procedures.

Cause This is a memory-management problem. It is reported when the malloc function is

called while allocating the ESD section. There is either not enough main memory, or

memory pointers are being corrupted.

Action Try again later. If the problem continues to occur, check the applications load for the

memory or talk to the system administrator.

1252-032 There is not enough memory available now. Cannot allocate the RLD section. Try again later

or use local problem reporting procedures.

Cause This is a memory-management problem. It is reported when the malloc function is

called while allocating the RLD section. There is either not enough main memory, or

memory pointers are being corrupted.

Action Try again later. If the problem continues to occur, check the applications load for the

memory or talk to the system administrator.

1252-033 There is not enough memory available now. Cannot allocate the string section. Try again later

or use local problem reporting procedures.

Cause This is a memory-management problem. It is reported when the malloc function is

called while allocating the string section. There is either not enough main memory, or

memory pointers are being corrupted.

Action Try again later. If the problem continues occur, check applications load for the

memory or talk to the system administrator.

1252-034 There is not enough memory available now. Cannot allocate the line number section. Try

again later or use local problem reporting procedures.

Cause This is a memory-management problem. It is reported when the malloc function is

called while allocating the line number section. There is either not enough main

memory, or memory pointers are being corrupted.

Action Try again later. If the problem continues to occur, check the applications load for the

memory or talk to the system administrator.

1252-035

through

1252-037

Obsolete messages.

Appendix A. Messages 517

1252-038 Cannot open file <filename>. Check path name and permissions.

Cause The specified source file is not found or has no read permission; the listfile or the

xcrossfile has no write permission; or the specified path does not exist.

Action Check the path name and read/write permissions.

1252-039 Not used currently.

1252-040 The specified expression is not valid. Make sure that all symbols are defined. Check the rules

on symbols used in an arithmetic expression concerning relocation.

Cause The indicated expression does not resolve into an absolute expression, relocatable

expression, external expression, toc relative expression, tocof symbol, or restricted

external expression.

Action Verify that all symbols are defined. Also, there are some rules concerning relocation

on which symbols can be used in an arithmetic expression. See “Expressions” on

page 39 for more information.

1252-041 Cannot divide the value by 0 during any arithmetic divisions.

Cause During an arithmetic division, the divisor is zero.

Action Ensure that the value is not divided by zero.

1252-042 The internal arithmetic operator is not known. Depending upon where you acquired this

product, contact either your service representative or your approved supplier.

Cause This is an internal error message.

Action Contact your service representative or your approved supplier to report the problem.

1252-043 The relocatable assembler expression is not valid. Check that the expressions can be

combined.

Cause This message is displayed when some invalid arithmetic combinations of the

expressions are used.

Action Ensure that the correct arithmetic combination is used. See “Expressions” on page

39 for the specific rules of the valid arithmetic combinations for expressions.

1252-044 The specified source character <char> does not have meaning in the command context used.

Cause A source character has no meaning in the context in which it is used. For

example,.long 3@1 , the @ is not an arithmetic operator or an integer digit, and has

no meaning in this context.

Action Ensure that all characters are valid and have meaning in the context in which they

are used.

1252-045 Cannot open the list file <filename>. Check the quality of the file system.

Cause This occurs during pass two of the assembler, and indicates a possible filesystem

problem or a closing problem with the original listing file.

Action Check the file system according to the file path name.

1252-046 Not used currently.

1252-047 There is a nesting underflow. Check for missing .function, .bi, or .bb pseudo-ops.

Cause This syntax error message is displayed only if debugger pseudo-ops are used. The

.function, .bb, and .bi pseudo-ops generate pointers that are saved on a stack with

a limiting size of 100 pointers. The .ef, .eb, and .ei pseudo-ops then remove these

pointers from the stack. If the number of .ef, .eb, and .ei pseudo-ops encountered is

greater than the number of pointers on the stack, this message is displayed.

Action Rewrite the code to avoid this problem.

1252-048 Found a symbol type that is not valid when building external symbols. Depending upon where

you acquired this product, contact either your service representative or your approved

supplier.

Cause This is an internal error message.

Action Contact your service representative or your approved supplier to report the problem.

518 Assembler Language Reference

1252-049 There is not enough memory to contain all the hash strings. Depending upon where you

acquired this product, contact either your service representative or your approved supplier.

Cause This is an internal error message.

Action Contact your service representative or your approved supplier to report the problem.

1252-050 There is not enough memory available now. Cannot allocate the debug section. Try again

later or use local problem reporting procedures.

Cause This is a memory-management problem. It is reported when the malloc function is

called while allocating the debug section. There is either not enough main memory,

or memory pointers are being corrupted.

Action Try again later. If the problem continues to occur, check the applications load for the

memory or talk to the system administrator.

1252-051 There is an sclass type of Number=<number> that is not valid. Depending upon where you

acquired this product, contact either your service representative or your approved supplier.

Cause This is an internal error message.

Action Contact your service representative or your approved supplier to report the problem.

1252-052 The specified .align parameter must be an absolute value from 0 to 12.

Cause The Number parameter of the .align pseudo-op is not an absolute value, or the

value is not in the range 0-12.

Action Verify that the Number parameter resolves into an absolute expression ranging from

0 to 12.

1252-053 Change the value of the .org parameter until it is contained in the current csect.

Cause The value of the parameter for the .org pseudo-op causes the location counter to go

outside of the current csect.

Action Ensure that the value of the first parameter meets the following criteria:

 Must be a positive value (includes 0).

 Must result in an address that is contained in the current csect.

 Must be an external (E_EXT) or relocatable (E_REL) expression.

2363-054 The register parameter in .using must be absolute and must represent a register on the

current machine.

Cause The second parameter of the .using pseudo-op does not represent an absolute

value, or the value is out of the valid register number range.

Action Ensure that the value is absolute and is within the range of 0-31 for PowerPC and

POWER family.

1252-055 There is a base address in .using that is not valid. The base address must be a relocatable

expression.

Cause The first parameter of the .using pseudo-op is not a relocatable expression.

Action Ensure that the first parameter is relocatable. The first parameter can be a

TOC-relative label, a label/name that is relocatable (relocatable=REL), or an external

symbol that is defined within the current assembly source as a csect name/TOC

entry.

1252-056 Specify a .using argument that references only the beginning of the TOC section. The

argument cannot reference locations contained within the TOC section.

Cause The first parameter of the .using pseudo-op is a TOC-relative expression, but it

does not point to the beginning of the TOC.

Action Verify that the first parameter describes the beginning of the TOC if it is

TOC-relative.

Appendix A. Messages 519

1252-057 The external expression is not valid. The symbol cannot be external. If the symbol is external,

the symbol must be defined within the assembly using a .toc or a .csect entry.

Cause An external expression other than a csect name or a TOC entry is used for the first

parameter of the .using pseudo-op.

Action Ensure that the symbol is either not external (not specified by an .extern pseudo-op)

or is defined within the assembly source using a TOC entry or csect entry.

1252-058 Warning: The label <name> is aligned with csect <csectname>.

Cause If the label is in the same line of the .csect pseudo-op. this warning is reported

when the -w flag of the as command is used. This message indicates that a label

may not be aligned as intended. If the label should point to the top of the csect, it

should be contained within the csect, in the first line next to the .csect pseudo-op.

Action Evaluate the intent of the label.

1252-059 The register in .drop must be an absolute value that is a valid register number.

Cause The parameter of the .drop pseudo-op is not an absolute value, or the value is not

in the range of valid register numbers.

Action Use an absolute value to indicate a valid register. For PowerPC and POWER family,

valid register numbers are in the range of 0-31.

1252-060 The register in .drop is not in use. Delete this line or insert a .using line previous to this

.drop line.

Cause This message indicates that the register represented by the parameter of the .drop

pseudo-op was never used in a previous .using statement.

Action Either delete the .drop pseudo-op or insert the .using pseudo-op that should have

been used prior to this .drop pseudo-op.

1252-061 A statement within .toc scope is not valid. Use the .tc pseudo-op to define entries within .toc

scope.

Cause If a statement other than a .tc pseudo-op is used within the .toc scope, this

message is displayed.

Action Place a .tc pseudo-op only inside the .toc scope.

1252-062 The alignment must be a value from 0 to 31.

Cause The optional second parameter (Number) of the .csect parameter defines alignment

for the top of the current csect. Alignment must be in the range 0-31. Otherwise, this

message is displayed.

Action Ensure that the second parameter is in the valid range.

1252-063 Obsolete message.

1252-064 The .comm size must be an absolute expression.

Cause The second parameter of the .comm pseudo-op must be an absolute expression.

Otherwise, this message is displayed.

Action Ensure that the second parameter is an absolute expression.

1252-065 Not used currently.

1252-066 There is not enough memory available now. Cannot allocate the typchk section. Try again

later or use local problem reporting procedures.

Cause This is a memory-management problem. It is reported when the malloc function is

called while allocating the debug section. There is either not enough main memory,

or memory pointers are being corrupted.

Action Try again later. If the problem continues to occur, check the applications load for the

memory or talk to the system administrator.

1252-067 The specified common storage class is not valid. Depending upon where you acquired this

product, contact either your service representative or your approved supplier.

Cause This is an internal error message.

Action Contact your service representative or your approved supplier to report the problem.

520 Assembler Language Reference

1252-068 The .hash string is set for symbol name already. Check that this is the only .hash statement

associated with the symbol name.

Cause The Name parameter of the .hash pseudo-op has already been assigned a string

value in a previous .hash statement.

Action Ensure that the Name parameter is unique for each .hash pseudo-op.

1252-069 The character <char> in the hash string is not valid. The characters in the string must be in

the set [0-9A-Fa-f].

Cause The characters in the hash string value (the second parameter of the .hash

pseudo-op) are required to be in the set [0-9A-Fa-f]. The characters represent a

hexadecimal hash code. Otherwise, this message is displayed.

Action Ensure that the characters specified by the StringConstant parameter are contained

within this set.

1252-070 The specified symbol or symbol type for the hash value is not valid.

Cause If the Name parameter for the .hash pseudo-op is not a defined external symbol,

this message is displayed.

 Notes:

1. This message can be suppressed by using the -u flag of the as command.

2. A defined internal symbol (for example, a local label) can also cause this

message to be displayed.

Action Use the -u flag of the as command, or use the .extern or .globl pseudo-op to define

the Name parameter as an external symbol.

1252-071

and

1252-072

Not used currently.

1252-073 There is not enough memory available now. Cannot allocate a segment in memory. Try again

later or use local problem reporting procedures.

Cause This indicates a malloc, realloc, or calloc problem. The following problems can

generate this type of error:

v Not enough main memory to allocate

v Corruption in memory pointers

v Corruption in the filesystem

Action Check the file systems and memory status.

1252-074 The pseudo-op is not within the text section. The .function, .bf, and .ef pseudo-ops must be

contained within a csect with one of the following storage classes: RO, PR, XO, SV, DB, GL,

TI, or TB.

Cause If the .function, .bf and .ef pseudo-ops are not within a csect with a storage

mapping class of RO, PR, XO, SV, DB, GL, TI, or TB, this syntax error message is

displayed.

Action Ensure that the .function, .bf, and .ef pseudo-ops are within the scope of a text

csect.

1252-075 The specified number of parameters is not valid.

Cause This is a syntax error message. The number of parameters specified with the

instruction is incorrect.

Action Verify that the correct number of parameters are specified for this instruction.

1252-076 The .line pseudo-op must be contained within a text or data .csect.

Cause This is a syntax error message. The .line pseudo-op must be within a text or data

section. If the .line pseudo-op is contained in a .dsect pseudo-op, or in a .csect

pseudo-op with a storage mapping class of BS or UC, this error is displayed.

Action Verify that the .line pseudo-op is not contained within the scope of a .dsect; or in a

.csect pseudo-op with a storage mapping class of BS or UC.

Appendix A. Messages 521

1252-077 The file table is full. Do not include more than 99 files in any single assembly source file.

Cause The .xline pseudo-op indicates a filename along with the number. These

pseudo-ops are generated with the -l option of the m4 command. A maximum of 99

files may be included with this option. If more than 99 files are included, this

message is displayed.

Action Ensure that the m4 command has not included more than 99 files in any single

assembly source file.

1252-078 The bit mask parameter starting at <positionnumber> is not valid.

Cause This is a syntax error message. In rotate left instructions, there are two input

operand formats: rlxx RA,RS,SH,MB,ME, or rlxx RA,RS,SH,BM. This message is

displayed only if the second format is used. The BM parameter specifies the mask

for this instruction. It must be constructed by certain rules. Otherwise, this message

is displayed. See “Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift

Instructions” on page 107 for information on constructing the BM parameter.

Action Correct the bit mask value.

1252-079 Found a type that is not valid when counting the RLDs. Depending upon where you acquired

this product, contact either your service representative or your approved supplier.

Cause This is an internal error message.

Action Contact your service representative or your approved supplier to report the problem.

1252-080 The specified branch target must be on a full word boundary.

Cause This is a syntax error message. Branch instructions have a target or location to

which the program logic should jump. These target addresses must be on a fullword

boundary.

Action Ensure that the branch target is on a fullword address (an address that ends in 0, 4,

8, or c). The assembler listing indicates location counter addresses. This is useful

when trying to track down this type of problem.

1252-081 The instruction is not aligned properly. The instruction requires machine-specific alignment.

Cause On PowerPC and POWER family, the alignment must be fullword. If this message is

displayed, it is probable that an instruction or pseudo-op prior to the current

instruction has modified the location counter to result in an address that does not fall

on a fullword.

Action Ensure that the instruction is on a fullword address.

1252-082 Use more parameters for the instruction.

Cause Each instruction expects a set number of arguments to be passed to it. If too few

arguments are used, this error is displayed.

Action Check the instruction definition to find out how many arguments are needed for this

instruction.

1252-083 Use fewer parameters for the instruction.

Cause Each instruction expects a set number of arguments to be passed to it. If too many

arguments are used, this error is displayed.

Action Check the instruction definition to find out how many arguments are needed for this

instruction.

1252-084

and

1252-085

Obsolete messages.

1252-086 The target of the branch instruction must be a relocatable or external expression.

Cause An absolute expression target is used where a relocatable or external expression is

acceptable for a branch instruction.

Action Replace the current branch instruction with an absolute branch instruction, or

replace the absolute expression target with a relocatable target.

522 Assembler Language Reference

1252-087 The target of the branch instruction must be a relocatable or external expression.

Cause This is a syntax error message. The target of the branch instruction must be either

relocatable or external.

Action Ensure that the target of this branch instruction is either relocatable or external.

 Relocatable expressions include label names, .lcomm names, .comm names, and

.csect names.

 Relocation refers to an entity that represents a memory location whose address or

location can and will be changed to reflect run-time locations. Entities and symbol

names that are defined as relocatable or non-relocatable are described in

“Expressions” on page 39.

1252-088 The branch address is out of range. The target address cannot exceed the ability of the

instruction to represent the bit size of the branch address value.

Cause This is a syntax error message. Branch instructions limit the target address sizes to

26 bits, 16 bits, and other instruction-specific sizes. When the target address value

cannot be represented in the instruction-specific limiting space, this message is

displayed.

Action Ensure that the target address value does not exceed the instruction’s ability to

represent the target address (bit size).

1252-089

through

1252-098

Obsolete messages.

1252-099 The specified displacement is not valid. The instruction displacement must be relocatable,

absolute, or external.

Cause This is a syntax error message. The instruction displacement must be either

relocatable; absolute; external which has the XTY_SD or STY_CM symbol type (a

csect or common block name); or possibly TOC-relative (but not a negative

TOC-relative), depending on the machine platform.

Action Verify that the displacement is valid for this instruction.

1252-100 Either the displacement value or the contents of the specified general purpose register, or

both, do not yield a valid address.

Cause Indicates an invalid d(r) operand. Either d or r is missing.

Action Verify that the base/displacement operand is formed correctly. Correct the

programming error, then assemble and link the program again.

Note: If d or r does not need to be specified, 0 should be put in the place.

1252-101

and

1252-102

Obsolete messages.

1252-103 The specified instruction is not supported by this machine.

Cause This is an internal error message.

Action Contact your service representative or your approved supplier to report the problem.

1252-104 The <parm #> parameter must be absolute.

Cause The indicated parameter must be absolute (nonrelocatable, nonexternal).

Action Refer to the specific instruction article for the instruction syntax.

1252-105 Obsolete message.

1252-106 Not currently used.

Appendix A. Messages 523

1252-107 The parameter <parm #> must be within range for the specific instruction.

Cause This error occurs in the following situations:

v The parameter value does not lie within the lower and upper bounds.

v The parameter value for the SPR encoding is undefined.

v The parameter value for the rotate and shift instructions is beyond the limitation.

Action See the specific instruction article for the instruction definition. See “Extended

Mnemonics of Moving from or to Special-Purpose Registers” on page 102 for the list

of SPR encodings. In general, if the assembly mode is com, pwr, or pwr2, the SPR

range is 0 to 31. Otherwise, the SPR range is 0 to 1023. See “Extended Mnemonics

of 32-bit Fixed-Point Rotate and Shift Instructions” on page 107 for information on

restrictions. Change the source code, then assemble and link the program again.

1252-108 Warning: The alignment for label <name> is not valid. The label requires machine-specific

alignment.

Cause Indicates that a label is not aligned properly to be the subject of a branch. In other

words, the label is not aligned to a fullword address (an address ending in 0, 4, 8, or

c).

Action To control the alignment, a .align pseudo-op prior to the label will perform the

alignment function. Also, a .byte pseudo-op with a parameter of 0 or a .short

pseudo-op with a parameter of 0 prior to the label will shift the alignment of the

label.

1252-109 Warning: Aligning with zeros: The .long pseudo-op is not on fullword boundary.

Cause Indicates that a .long pseudo-op exists that is not aligned properly on a fullword

internal address (an address that ends in 0, 4, 8, or c). The assembler generates

zeros to properly align the statement.

Action To control the alignment, a .align pseudo-op with a parameter of 2 prior to the .long

pseudo-op will perform the alignment. Also, a .byte pseudo-op with a parameter of 0

or a .short pseudo-op with a parameter of 0 prior to the .long pseudo-op will

perform the alignment.

1252-110 Warning: Aligning with zeros in program csect.

Cause If the .align pseudo-op is used within a .csect of type [PR] or [GL], and the .align

pseudo-op is not on a fullword address (for PowerPC and POWER family, all

instructions are four bytes long and are fullword aligned), the assembler performs

alignment by padding zeros, and this warning message is displayed. It is also

displayed when a fullword alignment occurs in other pseudo-op statements.

Action Look for a reason why the alignment is not on a fullword. This could indicate a

possible pseudo-op or instruction in the wrong place.

1252-111 Warning: Csect alignment has changed. To change alignment, check previous .csect

statements.

Cause The beginning of the csect is aligned according to a default value (2, fullword) or the

Number parameter. This warning indicates that the alignment that was in effect when

the csect was created has been changed later in the source code.

 The csect alignment change can be caused by any of the following:

v The Number parameter of the .csect pseudo-op specifies a value greater than

previous .csect pseudo-ops that have the same Qualname.

v The Number parameter of a .align pseudo-op specifies a value greater than the

current csect alignment.

v A .double pseudo-op is used, which causes the alignment to increase to 3. If the

current csect alignment is less than 3, this warning is reported.

Action This message may or may not indicate a problem, depending on the user’s intent.

Evaluate whether a problem has occurred or not.

524 Assembler Language Reference

1252-112 Warning: The <inst. format> instruction is not supported by this machine.

Cause This is an internal error message.

Action Contact your service representative or your approved supplier to report the problem

1252-113

and

1252-114

Obsolete messages.

1252-115 The sort failed with status <number>. Check the condition of the system sort command or

use local problem reporting procedures.

Cause When the -x flag of the as command is used from the command line, the system

sort routine is called. If this call is not successful, this message is displayed. Either

the sort utility is not available, or a system problem has occurred.

Action Check the condition of the system sort command, check the system itself (using the

fsck command), or use local problem reporting procedures.

1252-116 There is a system error from <name>. Check the condition of the system sort command or

use local problem reporting procedures.

Cause name has the sort command. When the -x flag of the as command is used from the

command line, the system sort routine is called. The assembler forks a process to

call the sort utility. If this fork fails to exec the sort routine, this message is displayed.

Either the sort utility is not available, or a system problem has occurred.

Action Check the condition of the system sort command, check the system itself (using the

fsck command), or use local problem reporting procedures.

1252-117 ″Assembler:″

Cause This line defines a header to the standard error output to indicate that it is an

assembly program.

1252-118 ″line <number>″

Cause number contains the line number on which an error or warning resides. When

assembling a source program, this message is displayed prior to the error/warning

message on the screen. This message is also printed prior to the error/warning

message in the assembler listing file.

1252-119 ″.xref″

Cause This message defines the default suffix extension for the file name of the symbol

cross-reference file.

1252-120 ″.lst″

Cause This message defines the default suffix extension for the file name of the assembler

listing file.

1252-121 ″SYMBOL FILE CSECT LINENO″

Cause This line defines the heading of the symbol cross-reference file.

1252-122

to

1252-123

Define several formats used in the assembler listing file.

1252-124 Obsolete, replaced by 1252-179.

1252-125

to

1252-132

Define the spaces or formats for the assembler listing file.

1252-133

to

1252-134

Define formats for output numbers and names.

1252-135 Defines 8 spaces that are used in the listing file.

1252-136 Defines a format used in the listing file.

1252-137

to

1252-140

Formats for output of a number.

Appendix A. Messages 525

1252-141 There is an error in the collect pointer. Use local problem reporting procedures.

Cause This is an internal error message.

Action Contact your service representative or your approved supplier to report the problem.

1252-142 Syntax error

Cause If an error occurred in the assembly processing and the error is not defined in the

message catalog, this generic error message is used. This message covers both

pseudo-ops and instructions. Therefore, a usage statement would be useless.

Action Determine intent and source line construction, then consult the specific instruction

article to correct the source line.

1252-143 The .function Size must be an absolute expression.

Cause The Size parameter of the .function pseudo-op represents the size of the function.

It must be an absolute expression.

Action Change the Size parameter, then assemble and link the program again.

1252-144 Warning: Any initialized data in <name> csect of BS or UC storage class is ignored but

required to establish length.

Cause Indicates that the statements in the csect with a storage mapping class of BS or UC

are used to calculate length of the csect and are not used to initialize data.

Action None.

1252-145

and

1252-146

Obsolete, replaced by 1252-180 and 1252-181.

1252-147 Invalid .machine assembly mode operand: <name>

Cause The .machine pseudo-op is used in a source program to indicate the assembly

mode value. This message indicates that an undefined value was used.

Action See the “.machine Pseudo-op” on page 490 for a list of the defined assembly mode

values.

1252-148 Invalid .source language identifier operand: <name>

Cause The .source pseudo-op indicates the source language type (C, FORTRAN, etc.).

This message indicates that an invalid source language type was used.

Action See the .source pseudo-op for a list of the defined language types.

1252-149 Instruction <name1> is not implemented in the current assembly mode <name2>.

Cause Instructions that are not in the POWER family/PowerPC intersection area are

implemented only in certain assembly modes. This message indicates that the

instruction in the source program is not supported in the indicated assembly mode.

Action Use a different assembly mode or a different instruction.

1252-150 The first operand value of value is not valid for PowerPC. A BO field of 6, 7 14, 15, or greater

than 20 is not valid.

Cause In branch conditional instructions, the first operand is the BO field. If the input value is

outside of the required values, this message is displayed.

Action See the “Features of the AIX Assembler” on page 1 for the BO field encoding

information to find the correct value of the input operand.

1252-151 This instruction form is not valid for PowerPC. The register used in operand two must not be

zero and must not be the same as the register used in operand one.

Cause In the update form of fixed-point load instructions, PowerPC requires that the RA

operand not be equal to zero and that it not be equal to RT. If these requirements

are violated, this message is displayed.

Action See the “Features of the AIX Assembler” on page 1 for a list of these instructions,

and refer to the instruction articles for the syntax and restrictions of these

instructions. Change the source code, then assemble and link the program again.

526 Assembler Language Reference

1252-152 Internal error related to the source program domain. Depending upon where you acquired this

product, contact your service representative or your approved supplier.

Cause This is an internal error message.

Action Contact your service representative or your approved supplier to report the problem.

1252-153 Warning: Instruction <name> functions differently between PowerPC and POWER™.

Cause This warning message is not displayed unless the -w flag of the as command is

used in the command line. Some instructions have the same op code in PowerPC

and POWER, but are functionally different. This message provides a warning if the

assembly mode is com and these instructions are used.

Action See “Functional Differences for POWER family and PowerPC Instructions” on page

114 for information on instructions that have the same op code but are functionally

different in POWER and PowerPC.

1252-154 The second operand is not valid. For 32-bit implementation, the second operand must have a

value of zero.

Cause In the fixed-point compare instructions, the value in the L field must be zero for

32-bit implementation. Also, if the mtsri instruction is used in one of the PowerPC

assembly modes, the RA operand must contain zero. Otherwise, this message is

displayed.

Action Put the correct value in the second operand, then assemble and link the program

again.

1252-155 Displacement must be divisible by 4.

Cause If an instruction has the DS form, its 16-bit signed displacement value must be

divisible by 4. Otherwise, this message is displayed.

Action Change the displacement value, then assemble and link the program again.

1252-156 The sum of argument 3 and 4 must be less than 33.

Cause When some extended mnemonics for word rotate and shift instructions are

converted to the base instruction, the values of the third and fourth operands are

added to calculate the SH field, MB field, or ME field. Since these fields are 5 bits in

length, the sum of the third and fourth operands must not be greater than 32.

Action See “Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions” on

page 107 for information on converting the extended mnemonic to the base

instruction. Change the value of the input operands accordingly, then assemble and

link the program again.

1252-157 The value of operand 3 must be greater than or equal to the value of operand 4.

Cause When some extended mnemonics for word rotate and shift instructions are

converted to the base instruction, the value of the fourth operand is subtracted from

the value of the third operand to get the ME or MB field. The result must be positive.

Otherwise, this message is displayed.

Action See “Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions” on

page 107 for information on converting the extended mnemonic to the base

instruction. Change the value of the input operands accordingly, then assemble and

link the program again.

1252-158 Warning: Special-purpose register number 6 is used to designate the DEC register when the

assembly mode is name.

Cause This warning is displayed when the mfdec instruction is used and the assembly

mode is any. The DEC encoding for the mfdec instruction is 22 for PowerPC and 6

for POWER. When the assembly mode is any, the POWER encoding number is

used to generate the object code, and this message is displayed to indicate this.

Action None.

Appendix A. Messages 527

1252-159 The d(r) format is not valid for operand <value>.

Cause Indicates an assembly programming error. The d(r) format is used in the place that a

register number or an immediate value is required.

Action Correct the programming error, then assemble and link the program again.

1252-160 Warning: A hash code value should be 10 bytes long.

Cause When the .hash pseudo-op is used, the second parameter, StringConstant, gives

the actual hash code value. This value should contain a 2-byte language ID, a

4-byte general hash, and a 4-byte language hash. The hash code value should be

10 bytes long. If the value length is not 10 bytes and the -w flag of the as command

is used, this warning is displayed.

Action Use the correct hash code value.

1252-161 A system problem occurred while processing file <filename>.

Cause A problem with system I/O developed dynamically. This message is produced by the

assembler to indicate an fwrite, putc, or fclose error. The I/O problem could be

caused by corruption of the filesystem or not enough space in the file systems.

Action Check the proper file system according to the path name reported.

1252-162 Invalid -m flag assembly mode operand: <name>.

Cause When an invalid assembly mode is entered on the command line using -m flag of

the as command, this message is displayed.

Action See the Chapter 5, “Assembling and Linking a Program,” on page 53 for the defined

assembly modes.

1252-163 The first operand’s value <value> is not valid for PowerPC. The third bit of the BO field must

be one for the Branch Conditional to Count Register instruction.

Cause If the third bit of the BO operand is zero for the “bcctr or bcc (Branch Conditional to

Count Register) Instruction” on page 147, the instruction form is invalid and this

message is displayed.

Action Change the third bit to one, then assemble and link the program again.

1252-164 This instruction form is not valid for PowerPC. RA, and RB if present in the instruction,

cannot be in the range of registers to be loaded. Also, RA=RT=0 is not allowed.

Cause In multiple register load instructions, PowerPC requires that the RA operand, and the

RB operand if present in the instruction format, not be in the range of registers to be

loaded. Also RA=RT=0 is not allowed. Otherwise, this message is displayed.

Action Check the register number of the RA, RB, or RT operand to ensure that this

requirement is met.

1252-165 The value of the first operand must be zero for PowerPC.

Cause If the POWER svca instruction is used in one of the PowerPC assembly modes, the

first operand is the SV operand. This operand must be zero. Otherwise, this

message is displayed.

Action Put zero into the first operand, or use the PowerPC sc instruction, which does not

require an operand.

1252-166 This instruction form is not valid for PowerPC. The register used in operand two must not be

zero.

Cause For the update form of fixed-point store instructions and floating-point load and store

instructions, PowerPC requires that the RA operand not be equal to zero. Otherwise,

this message is displayed.

Action Check the register number specified by the RA operand, then assemble and link the

source code again.

528 Assembler Language Reference

1252-167 Specify a name with the -<flagname> flag.

Cause The -n and -o flags of the as command require a filename as a parameter. The -m

flag of the as command requires a mode name as a parameter. If the required name

is missing, this error message is displayed. This message replaces message

1252-035.

Action Provide a filename with the -n and -o flags of the as command, and provide a mode

name with the -m flag of the as command.

1252-168 -<name> is not a recognized flag.

Cause An undefined flag was used on the command line. This message replaces message

1252-036.

Action Make a correction and run the command again.

1252-169 Only one input file is allowed.

Cause More than one input source file was specified on the command line. This message

replaces message 1252-037

Action Specify only one input source file at a time.

1252-170 The Assembler command has the following syntax: as -l[ListFile] -s[ListFile] -n Name -o

ObjectFile [-w|-W] -x[XCrossFile] -u -m ModeName [InputFile]

Cause This message displays the usage of the as command.

Action None.

1252-171 The displacement must be greater than or equal to <value1> and less than or equal to

<value2>.

Cause For 16-bit displacements, the limits are 32767 and -32768. If the displacement is out

of range, this message is displayed. This message replaces message 1252-106.

Action See the specific instruction articles for displacement requirements.

1252-172 The .extern symbol is not valid. Check that the .extern Name is a relocatable expression.

Cause The Name parameter of the .extern pseudo-op must specify a relocatable

expression. This message is displayed if the Name parameter of the .extern

pseudo-op does not specify a relocatable expression. For information on relocatable

and nonrelocatable expressions, see message 1252-004 .

Action Ensure that the Name parameter of the .extern pseudo-op is a relocatable

expression.

1252-173 Warning: The immediate value for instruction <name> is <value>. It may not be portable to a

64-bit machine if this value is to be treated as an unsigned value.

Cause This warning is reported only for the addis instruction (or the lis extended

mnemonic of the addis instruction). The immediate value field of these instructions

is defined as a signed integer, which should have a valid value range of -32768 to

32767. To maintain compatibility with the cau instruction, however, this range is

expanded to -65536 to 65535. This should cause no problems in a 32-bit mode,

because there is nowhere for sign extension to go. However, this will cause a

problem on a 64-bit machine, because sign extension propagates across the upper

32 bits of the register.

Action Use caution when using the addis instruction to construct an unsigned integer. The

addis instruction has different semantics on a 32-bit implementation (or in 32-bit

mode on a 64-bit implementation) than it does in 64-bit mode. The addis instruction

with an unsigned integer in 32-bit mode cannot be directly ported to a 64-bit mode.

The code sequence to construct an unsigned integer in 64-bit mode is significantly

different from that needed in 32-bit mode.

Appendix A. Messages 529

1252-174 Too many .machine ″push″ instructions without corresponding .machine ″pop″ instructions.

Cause The maximum size of the assembly stack has been exceeded. More than 100

entries have been added to the stack with .machine ″push″ but not removed with

.machine ″pop″.

Action Change the source program to eliminate the assembly stack overflow condition.

1252-175 A .machine ″pop″ is seen without a matching .machine ″push″.

Cause Pseudo-op .machine ″pop″ attempted to remove an entry from the assembly stack,

but the stack is empty. The source program may be missing a .machine ″push″.

Action Correct the source program.

1252-176 The .ref pseudo-op cannot appear in section <name>.

Cause A .ref pseudo-op appears in a dsect or a csect with a storage mapping class of BS

or UC, which is not permitted.

Action Change the source program.

1252-177 The operand of the .ref <name> is not a relocatable symbol.

Cause .ref pseudo-op operand name is one of the following items: a dsect name or label, a

csect name or label with a storage mapping class of BS or UC, a .set operand

which represents an item that is not relocatable, or a constant value.

Action Correct the source program.

1252-178 The maximum number of sections or symbols that an expression can refer to has been

exceeded.

Cause An expression refers to more than 50 control sections (csects or dsects).

Action Correct the source program.

1252-179 File# Line# Mode Name Loc Ctr Object Code Source

Cause This line defines the heading of the assembler listing file without the mnemonics

cross reference of POWER and PowerPC.

1252-180 File# Line# Mode Name Loc Ctr Object Code PowerPC Source

Cause This is one of the headings of the assembler listing file with the mnemonics

cross-reference of POWER and PowerPC. The assembler listing column labeled

PowerPC contains PowerPC mnemonics for statements where the source program

uses POWER mnemonics. This message is used for assembly modes of the

PowerPC category (including com, ppc, 601, and any).

1252-181 File# Line# Mode Name Loc Ctr Object Code POWER Source

Cause This is one of the headings of the assembler listing file with the mnemonics

cross-reference of POWER and PowerPC. The assembler listing column labeled

POWER contains POWER mnemonics for statements where the source program

uses PowerPC mnemonics. This message is used for assembly modes of the

POWER category (including pwr and pwr2).

1252-182 Storage mapping class <name> is not valid for .comm pseudo-op. RW is used as the storage

mapping class for the object code.

Cause The storage mapping class of the .comm pseudo-op is some value other than the

valid values (TD, RW, BS, and UC). The assembler reports this as a warning and

uses RW as the storage mapping class.

Action Change the source program.

1252-183 TD csect only allowed inside ″.toc″ scope.

Cause A csect with storage mapping class TD has been used without first using the .toc

pseudo-op.

Action Use the .toc pseudo-op before this instruction.

530 Assembler Language Reference

1252-184 TOC anchor must be defined to use a TOC-relative reference to <name>. Include a .toc

pseudo-op in the source.

Cause A TOC-relative reference is being used, but the TOC anchor is not defined. This can

happen if an external TD symbol is defined and used as a displacement in a D-form

instruction, but there is no .toc pseudo-op in the source program.

Action Use the .toc pseudo-op in the program.

1252-185 Warning: Operand is missing from pseudo-op.

Cause An operand required for pseudo-ops .byte, .vbyte, .short, .long, or .llong is

missing.

Action Provide an initial value for the data storage area created by these pseudo-ops.

1252-186 Warning: The maximum length of a stabstring is <number> characters. Extra characters have

been discarded.

Cause A stabstring is limited in length; the specified stabstring is greater than the maximum

lenght of a single string.

Action Split the string into 2 or more strings, continuing the information from one stabstring

to the next.

1252-187 Warning: The alignment of the current csect is less than the alignment specified with the

.align pseudo-op.

Cause The alignment of the csect is not as strict as the alignment required by the use of a

.align pseudo-op within that csect.

Action The .align pseudo-op specifies alignment of an item within the csect; the alignment

speicified for the csect should be equal to or greater than this value. For example, if

the csect requires word alignment, and a .llong within the csect requires double-word

alignment, there is a potential for the .llong value to ultimately (after linking) be only

word-aligned. This may not be what is intended by the user.

1252-188 Zero is used in the L operand for the <instruction> instruction.

Cause Some compare instructions allowed the L operand to be optional in 32-bit mode. In

64-bit mode, the operand is not optional.

Action All 4 operands should be specified for the instruction, or, alternatively, use an

extended mnemonic.

1252-189 Invalid value for environment variable OBJECT_MODE. Set the OBJECT_MODE environment

variable to 32 or 64 or use the -a32 or -a64 option.

Cause The value of the OBJECT_MODE environment variable is not recognized by the

assembler.

Action Set the OBJECT_MODE environment variable to either 32 or 64, or use the -a32 or

-a64 command line option. Any other value for the environment variable has no

meaning to the assembler.

1252-190 Invalid reference to label <name>: .function pseudo-op must refer to a csect.

Cause The .function pseudo-op referred to a local label.

Action The reference <name> should be the name (label) of a csect.

1252-191 Only <name> should be used for relocatable expressions.

Cause The expression used to initialize <name> contains references to externally defined

symbols (i.e. the symbols appear in .extern pseudo-op).

Action Verify that no externally defined symbols are contained within the expression

operands for <name>. Relocation in 32-bit mode can only be applied to 32-bit

quantities; in 64-bit mode relocation can only be applied to 64-bit quantities.

Appendix A. Messages 531

1252-192 Assembly mode is not specified. Set the OBJECT_MODE environment variable to 32 or 64 or

use the -a32 or -a64 option.

Cause The environment variable contains the value 32_64.

Action Set the OBJECT_MODE environment variable to either 32 or 64, or use the -a32 or

-a64 command line option.

1252-193 Values specified with the .set psuedo-op are treated as 32-bit signed numbers. Unexpected

results may occur when these values are used in a .llong expression.

Cause In 32-bit mode, an expression that results from the use of .set has been used to set

the initial value of a .llong.

Action For initializing .llong’s when in 32-bit mode, values are treated as 64-bit. If a .set

symbol whose most significant bit is set is used as part of the initialization, the value

may not be interpreted in a manner intended by the user. For example, the value

0xFFFF_0000 may have been intended to be a positive 64-bit quantity, but is a

negative 32-bit number which would be sign extended to become

0xFFFF_FFFF_FFFF_0000.

1252-194 Warning: The immediate value for instruction <instruction> is <number>. It may not be

portable to a 64-bit machine if this value is to be treated as an unsigned value.

Cause This is a alternate version of message 173; see above for more information.

532 Assembler Language Reference

Appendix B. Instruction Set Sorted by Mnemonic

In the Instruction Set Sorted by Mnemonic table the Implementation column contains the following

information:

 Implementation Description

com Supported by POWER family, POWER2, and PowerPC implementations.

POWER family Supported only by POWER family and POWER2 implementations.

POWER2 Supported only by POWER2 implementations.

PowerPC Supported only by PowerPC architecture.

PPC opt. Defined only in PowerPC architecture and is an optional instruction.

603 only Supported only on the PowerPC 603 RISC Microprocessor

 Instruction Set Sorted by Mnemonic

Mnemonic Instruction Implementation Format Primary Op

Code

Extended Op

Code

a[o][.] Add Carrying POWER family XO 31 10

abs[o][.] Absolute POWER family XO 31 360

add[o][.] Add PowerPC XO 31 266

addc[o][.] Add Carrying PowerPC XO 31 10

adde[o][.] Add Extended PowerPC XO 31 138

addi Add Immediate PowerPC D 14

addic Add Immediate

Carrying

PowerPC D 12

addic. Add Immediate

Carrying and

Record

PowerPC D 13

addis Add Immediate

Shifted

PowerPC D 15

addme[o][.] Add to Minus One

Extended

PowerPC XO 31 234

addze[o][.] Add to Zero

Extended

PowerPC XO 31 202

ae[o][.] Add Extended POWER family XO 31 138

ai Add Immediate POWER family D 12

ai. Add Immediate

and Record

POWER family D 13

ame[o][.] Add to Minus One

Extended

POWER family XO 31 234

and[.] AND com X 31 28

andc[.] AND with

Complement

com X 31 60

andi. AND Immediate PowerPC D 28

andil. AND Immediate

Lower

POWER family D 28

andis. AND Immediate

Shifted

PowerPC D 29

© Copyright IBM Corp. 1997, 2006 533

andiu. AND Immediate

Upper

POWER family D 29

aze[o][.] Add to Zero

Extended

POWER family XO 31 202

b[l][a] Branch com I 18

bc[l][a] Branch

Conditional

com B 16

bcc[l] Branch

Conditional to

Count Register

POWER family XL 19 528

bcctr[l] Branch

Conditional to

Count Register

PowerPC XL 19 528

bclr[l] Branch

Conditional Link

Register

PowerPC XL 19 16

bcr[l] Branch

Conditional

Register

POWER family XL 19 16

cal Compute Address

Lower

POWER family D 14

cau Compute Address

Upper

POWER family D 15

cax[o][.] Compute Address POWER family XO 31 266

clcs Cache Line

Compute Size

POWER family X 31 531

clf Cache Line Flush POWER family X 31 118

cli Cache Line

Invalidate

POWER family X 31 502

cmp Compare com X 31 0

cmpi Compare

Immediate

com D 11

cmpl Compare Logical com X 31 32

cmpli Compare Logical

Immediate

com D 10

cntlz[.] Count Leading

Zeros

POWER family X 31 26

cntlzw[.] Count Leading

Zeros Word

PowerPC X 31 26

crand Condition

Register AND

com XL 19 257

crandc Condition

Register AND with

Complement

com XL 19 129

creqv Condition

Register

Equivalent

com XL 19 289

crnand Condition

Register NAND

com XL 19 225

534 Assembler Language Reference

crnor Condition

Register NOR

com XL 19 33

cror Condition

Register OR

com XL 19 449

crorc Condition

Register OR with

Complement

com XL 19 417

crxor Condition

Register XOR

com XL 19 193

dcbf Data Cache Block

Flush

PowerPC X 31 86

dcbi Data Cache Block

Invalidate

PowerPC X 31 470

dcbst Data Cache Block

Store

PowerPC X 31 54

dcbt Data Cache Block

Touch

PowerPC X 31 278

dcbtst Data Cache Block

Touch for Store

PowerPC X 31 246

dcbz Data Cache Block

Set to Zero

PowerPC X 31 1014

dclst Data Cache Line

Store

POWER family X 31 630

dclz Data Cache Line

Set to Zero

POWER family X 31 1014

dcs Data Cache

Synchronize

POWER family X 31 598

div[o][.] Divide POWER family XO 31 331

divs[o][.] Divide Short POWER family XO 31 363

divw[o][.] Divide Word PowerPC XO 31 491

divwu[o][.] Divide Word

Unsigned

PowerPC XO 31 459

doz[o][.] Difference or Zero POWER family XO 31 264

dozi Difference or Zero

Immediate

POWER family D 09

eciwx External Control

in Word Indexed

PPC opt. X 31 310

ecowx External Control

out Word Indexed

PPC opt. X 31 438

eieio Enforce In-order

Execution of I/O

PowerPC X 31 854

eqv[.] Equivalent com X 31 284

exts[.] Extend Sign POWER family X 31 922

extsb[.] Extend Sign Byte PowerPC X 31 954

extsh[.] Extend Sign

Halfword

PowerPC XO 31 922

fa[.] Floating Add POWER family A 63 21

Appendix B. Instruction Set Sorted by Mnemonic 535

fabs[.] Floating Absolute

Value

com X 63 264

fadd[.] Floating Add PowerPC A 63 21

fadds[.] Floating Add

Single

PowerPC A 59 21

fcir[.] Floating Convert

to Integer Word

POWER family X 63 14

fcirz[.] Floating Convert

to Integer Word

with Round to

Zero

POWER family X 63 15

fcmpo Floating Compare

Ordered

com X 63 32

fcmpu Floating Compare

Unordered

com XL 63 0

fctiw[.] Floating Convert

to Integer Word

PowerPC X 63 14

fctiwz[.] Floating Convert

to Integer Word

with Round to

Zero

PowerPC XL 63 15

fd[.] Floating Divide POWER family A 63 18

fdiv[.] Floating Divide PowerPC A 63 18

fdivs[.] Floating Divide

Single

PowerPC A 59 18

fm[.] Floating Multiply POWER family A 63 25

fma[.] Floating

Multiply-Add

POWER family A 63 29

fmadd[.] Floating

Multiply-Add

PowerPC A 63 29

fmadds[.] Floating

Multiply-Add

Single

PowerPC A 59 29

fmr[.] Floating Move

Register

com X 63 72

fms[.] Floating

Multiply-Subtract

POWER family A 63 28

fmsub[.] Floating

Multiply-Subtract

PowerPC A 63 28

fmsubs[.] Floating

Multiply-Subtract

Single

PowerPC A 59 28

fmul[.] Floating Multiply PowerPC A 63 25

fmuls[.] Floating Multiply

Single

PowerPC A 59 25

fnabs[.] Floating Negative

Absolute Value

com X 63 136

fneg[.] Floating Negate com X 63 40

536 Assembler Language Reference

fnma[.] Floating Negative

Multiply-Add

POWER family A 63 31

fnmadd[.] Floating Negative

Multiply-Add

PowerPC A 63 31

fnmadds[.] Floating Negative

Multiply-Add

Single

PowerPC A 59 31

fnms[.] Floating Negative

Multiply-Subtract

POWER family A 63 30

fnmsub[.] Floating Negative

Multiply-Subtract

PowerPC A 63 30

fnmsubs[.] Floating Negative

Multiply-Subtract

Single

PowerPC A 59 30

fres[.] Floating

Reciprocal

Estimate Single

PPC opt. A 59 24

frsp[.] Floating Round to

Single Precision

com X 63 12

frsqrte[.] Floating

Reciprocal

Square Root

Estimate

PPC opt. A 63 26

fs[.] Floating Subtract POWER family A 63 20

fsel[.] Floating-Point

Select

PPC opt. A 63 23

fsqrt[.] Floating Square

Root

POWER2 A 63 22

fsub[.] Floating Subtract PowerPC A 63 20

fsubs[.] Floating Subtract

Single

PowerPC A 59 20

icbi Instruction Cache

Block Invalidate

PowerPC X 31 982

ics Instruction Cache

Synchronize

POWER family X 19 150

isync Instruction

Synchronize

PowerPC X 19 150

l Load POWER family D 32

lbrx Load

Byte-Reversed

Indexed

POWER family X 31 534

lbz Load Byte and

Zero

com D 34

lbzu Load Byte and

Zero with Update

com D 35

lbzux Load Byte and

Zero with Update

Indexed

com X 31 119

lbzx Load Byte and

Zero Indexed

com X 31 87

Appendix B. Instruction Set Sorted by Mnemonic 537

lfd Load

Floating-Point

Double

com D 50

lfdu Load

Floating-Point

Double with

Update

com D 51

lfdux Load

Floating-Point

Double with

Update Indexed

com X 31 631

lfdx Load

Floating-Point

Double Indexed

com X 31 599

lfq Load

Floating-Point

Quad

POWER2 D 56

lfqu Load

Floating-Point

Quad with Update

POWER2 D 57

lfqux Load

Floating-Point

Quad with Update

Indexed

POWER2 X 31 823

lfqx Load

Floating-Point

Quad Indexed

POWER2 X 31 791

lfs Load

Floating-Point

Single

com D 48

lfsu Load

Floating-Point

Single with

Update

com D 49

lfsux Load

Floating-Point

Single with

Update Indexed

com X 31 567

lfsx Load

Floating-Point

Single Indexed

com X 31 535

lha Load Half

Algebraic

com D 42

lhau Load Half

Algebraic with

Update

com D 43

lhaux Load Half

Algebraic with

Update Indexed

com X 31 375

lhax Load Half

Algebraic Indexed

com X 31 343

538 Assembler Language Reference

lhbrx Load Half

Byte-Reversed

Indexed

com X 31 790

lhz Load Half and

Zero

com D 40

lhzu Load Half and

Zero with Update

com D 41

lhzux Load Half and

Zero with Update

Indexed

com X 31 331

lhzx Load Half and

Zero Indexed

com X 31 279

lm Load Multiple POWER family D 46

lmw Load Multiple

Word

PowerPC D 46

lscbx Load String and

Compare Byte

Indexed

POWER family X 31 277

lsi Load String

Immediate

POWER family X 31 597

lswi Load String Word

Immediate

PowerPC X 31 597

lswx Load String Word

Indexed

PowerPC X 31 533

lsx Load String

Indexed

POWER family X 31 533

lu Load with Update POWER family D 33

lux Load with Update

Indexed

POWER family X 31 55

lwarx Load Word and

Reserve Indexed

PowerPC X 31 20

lwbrx Load Word

Byte-Reversed

Indexed

PowerPC X 31 534

lwz Load Word and

Zero

PowerPC D 32

lwzu Load Word with

Zero Update

PowerPC D 33

lwzux Load Word and

Zero with Update

Indexed

PowerPC X 31 55

lwzx Load Word and

Zero Indexed

PowerPC X 31 23

lx Load Indexed POWER family X 31 23

maskg[.] Mask Generate POWER family X 31 29

maskir[.] Mask Insert from

Register

POWER family X 31 541

mcrf Move Condition

Register Field

com XL 19 0

Appendix B. Instruction Set Sorted by Mnemonic 539

mcrfs Move to Condition

Register from

FPSCR

com X 63 64

mcrxr Move to Condition

Register from

XER

com X 31 512

mfcr Move from

Condition

Register

com X 31 19

mffs[.] Move from

FPSCR

com X 63 583

mfmsr Move from

Machine State

Register

com X 31 83

mfspr Move from

Special-Purpose

Register

com X 31 339

mfsr Move from

Segment Register

com X 31 595

mfsri Move from

Segment Register

Indirect

POWER family X 31 627

mfsrin Move from

Segment Register

Indirect

PowerPC X 31 659

mtcrf Move to Condition

Register Fields

com XFX 31 144

mtfsb0[.] Move to FPSCR

Bit 0

com X 63 70

mtfsb1[.] Move to FPSCR

Bit 1

com X 63 38

mtfsf[.] Move to FPSCR

Fields

com XFL 63 711

mtfsfi[.] Move to FPSCR

Field Immediate

com X 63 134

mtmsr Move to Machine

State Register

com X 31 146

mtspr Move to

Special-Purpose

Register

com X 31 467

mtsr Move to Segment

Register

com X 31 210

mtsri Move to Segment

Register Indirect

POWER family X 31 242

mtsrin Move to Segment

Register Indirect

PowerPC X 31 242

mul[o][.] Multiply POWER family XO 31 107

mulhw[.] Multiply High

Word

PowerPC XO 31 75

mulhwu[.] Multiply High

Word Unsigned

PowerPC XO 31 11

540 Assembler Language Reference

muli Multiply

Immediate

POWER family D 07

mulli Multiply Low

Immediate

PowerPC D 07

mullw[o][.] Multiply Low

Word

PowerPC XO 31 235

muls[o][.] Multiply Short POWER family XO 31 235

nabs[o][.] Negative Absolute POWER family XO 31 488

nand[.] NAND com X 31 476

neg[o][.] Negate com XO 31 104

nor[.] NOR com X 31 124

or[.] OR com X 31 444

orc[.] OR with

Complement

com X 31 412

ori OR Immediate PowerPC D 24

oril OR Immediate

Lower

POWER family D 24

oris OR Immediate

Shifted

PowerPC D 25

oriu OR Immediate

Upper

POWER family D 25

rac[.] Real Address

Compute

POWER family X 31 818

rfi Return from

Interrupt

com X 19 50

rfsvc Return from SVC POWER family X 19 82

rlimi[.] Rotate Left

Immediate then

Mask Insert

POWER family M 20

rlinm[.] Rotate Left

Immediate then

AND with Mask

POWER family M 21

rlmi[.] Rotate Left then

Mask Insert

POWER family M 22

rlnm[.] Rotate Left then

AND with Mask

POWER family M 23

rlwimi[.] Rotate Left Word

Immediate then

Mask Insert

PowerPC M 20

rlwinm[.] Rotate Left Word

Immediate then

AND with Mask

PowerPC M 21

rlwnm[.] Rotate Left Word

then AND with

Mask

PowerPC M 23

rrib[.] Rotate Right and

Insert Bit

POWER family X 31 537

sc System Call PowerPC SC 17

Appendix B. Instruction Set Sorted by Mnemonic 541

sf[o][.] Subtract from POWER family XO 31 08

sfe[o][.] Subtract from

Extended

POWER family XO 31 136

sfi Subtract from

Immediate

POWER family D 08

sfme[o][.] Subtract from

Minus One

Extended

POWER family XO 31 232

sfze[o][.] Subtract from

Zero Extended

POWER family XO 31 200

si Subtract

Immediate

com D 12

si. Subtract

Immediate and

Record

com D 13

sl[.] Shift Left POWER family X 31 24

sle[.] Shift Left

Extended

POWER family X 31 153

sleq[.] Shift Left

Extended with

MQ

POWER family X 31 217

sliq[.] Shift Left

Immediate with

MQ

POWER family X 31 184

slliq[.] Shift Left Long

Immediate with

MQ

POWER family X 31 248

sllq[.] Shift Left Long

with MQ

POWER family X 31 216

slq[.] Shift Left with MQ POWER family X 31 152

slw[.] Shift Left Word PowerPC X 31 24

sr[.] Shift Right POWER family X 31 536

sra[.] Shift Right

Algebraic

POWER family X 31 792

srai[.] Shift Right

Algebraic

Immediate

POWER family X 31 824

sraiq[.] Shift Right

Algebraic.,

Immediate with

MQ

POWER family X 31 952

sraq[.] Shift Right

Algebraic with MQ

POWER family X 31 920

sraw[.] Shift Right

Algebraic Word

PowerPC X 31 792

srawi[.] Shift Right

Algebraic Word

Immediate

PowerPC X 31 824

sre[.] Shift Right

Extended

POWER family X 31 665

542 Assembler Language Reference

srea[.] Shift Right

Extended

Algebraic

POWER family X 31 921

sreq[.] Shift Right

Extended with

MQ

POWER family X 31 729

sriq[.] Shift Right

Immediate with

MQ

POWER family X 31 696

srliq[.] Shift Right Long

Immediate with

MQ

POWER family X 31 760

srlq[.] Shift Right Long

with MQ

POWER family X 31 728

srq[.] Shift RIght with

MQ

POWER family X 31 664

srw[.] Shift Right Word PowerPC X 31 536

st Store POWER family D 36

stb Store Byte com D 38

stbrx Store

Byte-Reversed

Indexed

POWER family X 31 662

stbu Store Byte with

Update

com D 39

stbux Store Byte with

Update Indexed

com X 31 247

stbx Store Byte

Indexed

com X 31 215

stfd Store

Floating-Point

Double

com D 54

stfdu Store

Floating-Point

Double with

Update

com D 55

stfdux Store

Floating-Point

Double with

Update Indexed

com X 31 759

stfdx Store

Floating-Point

Double Indexed

com X 31 727

stfiwx Store

Floating-Point as

Integer Word

Indexed

PPC opt. X 31 983

stfq Store

Floating-Point

Quad

POWER2 DS 60

stfqu Store

Floating-Point

Quad with Update

POWER2 DS 61

Appendix B. Instruction Set Sorted by Mnemonic 543

stfqux Store

Floating-Point

Quad with Update

Indexed

POWER2 X 31 951

stfqx Store

Floating-Point

Quad Indexed

POWER2 X 31 919

stfs Store

Floating-Point

Single

com D 52

stfsu Store

Floating-Point

Single with

Update

com D 53

stfsux Store

Floating-Point

Single with

Update Indexed

com X 31 695

stfsx Store

Floating-Point

Single Indexed

com X 31 663

sth Store Half com D 44

sthbrx Store Half

Byte-Reverse

Indexed

com X 31 918

sthu Store Half with

Update

com D 45

sthux Store Half with

Update Indexed

com X 31 439

sthx Store Half

Indexed

com X 31 407

stm Store Multiple POWER family D 47

stmw Store Multiple

Word

PowerPC D 47

stsi Store String

Immediate

POWER family X 31 725

stswi Store String Word

Immediate

PowerPC X 31 725

stswx Store String Word

Indexed

PowerPC X 31 661

stsx Store String

Indexed

POWER family X 31 661

stu Store with Update POWER family D 37

stux Store with Update

Indexed

POWER family X 31 183

stw Store PowerPC D 36

stwbrx Store Word

Byte-Reversed

Indexed

PowerPC X 31 662

544 Assembler Language Reference

stwcx. Store Word

Conditional

Indexed

PowerPC X 31 150

stwu Store Word with

Update

PowerPC D 37

stwux Store Word with

Update Indexed

PowerPC X 31 183

stwx Store Word

Indexed

PowerPC X 31 151

stx Store Indexed POWER family X 31 151

subf[o][.] Subtract from PowerPC XO 31 40

subfc[o][.] Subtract from

Carrying

PowerPC XO 31 08

subfe[o][.] Subtract from

Extended

PowerPC XO 31 136

subfic Subtract from

Immediate

Carrying

PowerPC D 08

subfme[o][.] Subtract from

Minus One

Extended

PowerPC XO 31 232

subfze[o][.] Subtract from

Zero Extended

PowerPC XO 31 200

svc[l][a] Supervisor Call POWER family SC 17

sync Synchronize PowerPC X 31 598

t Trap POWER family X 31 04

ti Trap Immediate POWER family D 03

tlbi Translation

Look-aside Buffer

Invalidate Entry

POWER family X 31 306

tlbie Translation

Look-aside Buffer

Invalidate Entry

PPC opt. X 31 306

tlbld Load Data TLB

Entry

603 only X 31 978

tlbli Load Instruction

TLB Entry

603 only X 31 1010

tlbsync Translation

Look-aside Buffer

Synchronize

PPC opt. X 31 566

tw Trap Word PowerPC X 31 04

twi Trap Word

Immediate

PowerPC D 03

xor[.] XOR com X 31 316

xori XOR Immediate PowerPC D 26

xoril XOR Immediate

Lower

POWER family D 26

xoris XOR Immediate

Shift

PowerPC D 27

Appendix B. Instruction Set Sorted by Mnemonic 545

xoriu XOR Immediate

Upper

POWER family D 27

546 Assembler Language Reference

Appendix C. Instruction Set Sorted by Primary and Extended

Op Code

The Instruction Set Sorted by Primary and Extended Op Code table lists the instruction set, sorted first by

primary op code and then by extended op code. The table column Implementation contains the following

information:

 Implementation Description

com Supported by POWER family, POWER2, and PowerPC implementations.

POWER family Supported only by POWER family and POWER2 implementations.

POWER2 Supported only by POWER2 implementations.

PowerPC Supported only by PowerPC architecture.

PPC opt. Defined only in PowerPC architecture and is an optional instruction.

603 only Supported only on the PowerPC 603 RISC Microprocessor

 Instruction Set Sorted by Primary and Extended Op Code

Mnemonic Instruction Implementation Format Primary Op

Code

Extended Op

Code

ti Trap Immediate POWER family D 03

twi Trap Word

Immediate

PowerPC D 03

muli Multiply

Immediate

POWER family D 07

mulli Multiply Low

Immediate

PowerPC D 07

sfi Subtract from

Immediate

POWER family D 08

subfic Subtract from

Immediate

Carrying

PowerPC D 08

dozi Difference or Zero

Immediate

POWER family D 09

cmpli Compare Logical

Immediate

com D 10

cmpi Compare

Immediate

com D 11

addic Add Immediate

Carrying

PowerPC D 12

ai Add Immediate POWER family D 12

si Subtract

Immediate

com D 12

addic. Add Immediate

Carrying and

Record

PowerPC D 13

si. Subtract

Immediate and

Record

com D 13

ai. Add Immediate

and Record

POWER family D 13

addi Add Immediate PowerPC D 14

© Copyright IBM Corp. 1997, 2006 547

cal Compute Address

Lower

POWER family D 14

addis Add Immediate

Shifted

PowerPC D 15

cau Compute Address

Upper

POWER family D 15

bc[l][a] Branch

Conditional

com B 16

sc System Call PowerPC SC 17

svc[l][a] Supervisor Call POWER family SC 17

b[l][a] Branch com I 18

mcrf Move Condition

Register Field

com XL 19 0

bclr[l] Branch

Conditional Link

Register

PowerPC XL 19 16

bcr[l] Branch

Conditional

Register

POWER family XL 19 16

crnor Condition

Register NOR

com XL 19 33

rfi Return from

Interrupt

com X 19 50

rfsvc Return from SVC POWER family X 19 82

crandc Condition

Register AND with

Complement

com XL 19 129

ics Instruction Cache

Synchronize

POWER family X 19 150

isync Instruction

Synchronize

PowerPC X 19 150

crxor Condition

Register XOR

com XL 19 193

crnand Condition

Register NAND

com XL 19 225

crand Condition

Register AND

com XL 19 257

creqv Condition

Register

Equivalent

com XL 19 289

crorc Condition

Register OR with

Complement

com XL 19 417

cror Condition

Register OR

com XL 19 449

bcc[l] Branch

Conditional to

Count Register

POWER family XL 19 528

548 Assembler Language Reference

bcctr[l] Branch

Conditional to

Count Register

PowerPC XL 19 528

rlimi[.] Rotate Left

Immediate then

Mask Insert

POWER family M 20

rlwimi[.] Rotate Left Word

Immediate then

Mask Insert

PowerPC M 20

rlinm[.] Rotate Left

Immediate then

AND with Mask

POWER family M 21

rlwinm[.] Rotate Left Word

Immediate then

AND with Mask

PowerPC M 21

rlmi[.] Rotate Left then

Mask Insert

POWER family M 22

rlnm[.] Rotate Left then

AND with Mask

POWER family M 23

rlwnm[.] Rotate Left Word

then AND with

Mask

PowerPC M 23

ori OR Immediate PowerPC D 24

oril OR Immediate

Lower

POWER family D 24

oris OR Immediate

Shifted

PowerPC D 25

oriu OR Immediate

Upper

POWER family D 25

xori XOR Immediate PowerPC D 26

xoril XOR Immediate

Lower

POWER family D 26

xoris XOR Immediate

Shift

PowerPC D 27

xoriu XOR Immediate

Upper

POWER family D 27

andi. AND Immediate PowerPC D 28

andil. AND Immediate

Lower

POWER family D 28

andis. AND Immediate

Shifted

PowerPC D 29

andiu. AND Immediate

Upper

POWER family D 29

cmp Compare com X 31 0

t Trap POWER family X 31 04

tw Trap Word PowerPC X 31 04

sf[o][.] Subtract from POWER family XO 31 08

subfc[o][.] Subtract from

Carrying

PowerPC XO 31 08

Appendix C. Instruction Set Sorted by Primary and Extended Op Code 549

a[o][.] Add Carrying POWER family XO 31 10

addc[o][.] Add Carrying PowerPC XO 31 10

mulhwu[.] Multiply High

Word Unsigned

PowerPC XO 31 11

mfcr Move from

Condition

Register

com X 31 19

lwarx Load Word and

Reserve Indexed

PowerPC X 31 20

lwzx Load Word and

Zero Indexed

PowerPC X 31 23

lx Load Indexed POWER family X 31 23

sl[.] Shift Left POWER family X 31 24

slw[.] Shift Left Word PowerPC X 31 24

cntlz[.] Count Leading

Zeros

POWER family X 31 26

cntlzw[.] Count Leading

Zeros Word

PowerPC X 31 26

and[.] AND com X 31 28

maskg[.] Mask Generate POWER family X 31 29

cmpl Compare Logical com X 31 32

subf[o][.] Subtract from PowerPC XO 31 40

dcbst Data Cache Block

Store

PowerPC X 31 54

lux Load with Update

Indexed

POWER family X 31 55

lwzux Load Word and

Zero with Update

Indexed

PowerPC X 31 55

andc[.] AND with

Complement

com X 31 60

mulhw[.] Multiply High

Word

PowerPC XO 31 75

mfmsr Move from

Machine State

Register

com X 31 83

dcbf Data Cache Block

Flush

PowerPC X 31 86

lbzx Load Byte and

Zero Indexed

com X 31 87

neg[o][.] Negate com XO 31 104

mul[o][.] Multiply POWER family XO 31 107

clf Cache Line Flush POWER family X 31 118

lbzux Load Byte and

Zero with Update

Indexed

com X 31 119

nor[.] NOR com X 31 124

550 Assembler Language Reference

sfe[o][.] Subtract from

Extended

POWER family XO 31 136

subfe[o][.] Subtract from

Extended

PowerPC XO 31 136

adde[o][.] Add Extended PowerPC XO 31 138

ae[o][.] Add Extended POWER family XO 31 138

mtcrf Move to Condition

Register Fields

com XFX 31 144

mtmsr Move to Machine

State Register

com X 31 146

stwcx. Store Word

Conditional

Indexed

PowerPC X 31 150

stwx Store Word

Indexed

PowerPC X 31 151

stx Store Indexed POWER family X 31 151

slq[.] Shift Left with MQ POWER family X 31 152

sle[.] Shift Left

Extended

POWER family X 31 153

stux Store with Update

Indexed

POWER family X 31 183

stwux Store Word with

Update Indexed

PowerPC X 31 183

sliq[.] Shift Left

Immediate with

MQ

POWER family X 31 184

sfze[o][.] Subtract from

Zero Extended

POWER family XO 31 200

subfze[o][.] Subtract from

Zero Extended

PowerPC XO 31 200

addze[o][.] Add to Zero

Extended

PowerPC XO 31 202

aze[o][.] Add to Zero

Extended

POWER family XO 31 202

mtsr Move to Segment

Register

com X 31 210

stbu Store Byte with

Update

com D 39

stbx Store Byte

Indexed

com X 31 215

sllq[.] Shift Left Long

with MQ

POWER family X 31 216

sleq[.] Shift Left

Extended with

MQ

POWER family X 31 217

sfme[o][.] Subtract from

Minus One

Extended

POWER family XO 31 232

Appendix C. Instruction Set Sorted by Primary and Extended Op Code 551

subfme[o][.] Subtract from

Minus One

Extended

PowerPC XO 31 232

addme[o][.] Add to Minus One

Extended

PowerPC XO 31 234

ame[o][.] Add to Minus One

Extended

POWER family XO 31 234

mullw[o][.] Multiply Low

Word

PowerPC XO 31 235

muls[o][.] Multiply Short POWER family XO 31 235

mtsri Move to Segment

Register Indirect

POWER family X 31 242

mtsrin Move to Segment

Register Indirect

PowerPC X 31 242

dcbtst Data Cache Block

Touch for Store

PowerPC X 31 246

stbux Store Byte with

Update Indexed

com X 31 247

slliq[.] Shift Left Long

Immediate with

MQ

POWER family X 31 248

doz[o][.] Difference or Zero POWER family XO 31 264

add[o][.] Add PowerPC XO 31 266

cax[o][.] Compute Address POWER family XO 31 266

lscbx Load String and

Compare Byte

Indexed

POWER family X 31 277

dcbt Data Cache Block

Touch

PowerPC X 31 278

lhzx Load Half and

Zero Indexed

com X 31 279

eqv[.] Equivalent com X 31 284

tlbi Translation

Look-aside Buffer

Invalidate Entry

POWER family X 31 306

tlbie Translation

Look-aside Buffer

Invalidate Entry

PPC opt. X 31 306

eciwx External Control

in Word Indexed

PPC opt. X 31 310

xor[.] XOR com X 31 316

div[o][.] Divide POWER family XO 31 331

lhzux Load Half and

Zero with Update

Indexed

com X 31 331

mfspr Move from

Special-Purpose

Register

com X 31 339

552 Assembler Language Reference

lhax Load Half

Algebraic Indexed

com X 31 343

abs[o][.] Absolute POWER family XO 31 360

divs[o][.] Divide Short POWER family XO 31 363

lhaux Load Half

Algebraic with

Update Indexed

com X 31 375

sthx Store Half

Indexed

com X 31 407

orc[.] OR with

Complement

com X 31 412

ecowx External Control

out Word Indexed

PPC opt. X 31 438

sthux Store Half with

Update Indexed

com X 31 439

or[.] OR com X 31 444

divwu[o][.] Divide Word

Unsigned

PowerPC XO 31 459

mtspr Move to

Special-Purpose

Register

com X 31 467

dcbi Data Cache Block

Invalidate

PowerPC X 31 470

nand[.] NAND com X 31 476

nabs[o][.] Negative Absolute POWER family XO 31 488

divw[o][.] Divide Word PowerPC XO 31 491

cli Cache Line

Invalidate

POWER family X 31 502

mcrxr Move to Condition

Register from

XER

com X 31 512

clcs Cache Line

Compute Size

POWER family X 31 531

lswx Load String Word

Indexed

PowerPC X 31 533

lsx Load String

Indexed

POWER family X 31 533

lbrx Load

Byte-Reversed

Indexed

POWER family X 31 534

lwbrx Load Word

Byte-Reversed

Indexed

PowerPC X 31 534

lfsx Load

Floating-Point

Single Indexed

com X 31 535

sr[.] Shift Right POWER family X 31 536

srw[.] Shift Right Word PowerPC X 31 536

Appendix C. Instruction Set Sorted by Primary and Extended Op Code 553

rrib[.] Rotate Right and

Insert Bit

POWER family X 31 537

maskir[.] Mask Insert from

Register

POWER family X 31 541

tlbsync Translation

Look-aside Buffer

Synchronize

PPC opt. X 31 566

lfsux Load

Floating-Point

Single with

Update Indexed

com X 31 567

mfsr Move from

Segment Register

com X 31 595

lsi Load String

Immediate

POWER family X 31 597

lswi Load String Word

Immediate

PowerPC X 31 597

dcs Data Cache

Synchronize

POWER family X 31 598

sync Synchronize PowerPC X 31 598

lfdx Load

Floating-Point

Double Indexed

com X 31 599

mfsri Move from

Segment Register

Indirect

POWER family X 31 627

dclst Data Cache Line

Store

POWER family X 31 630

lfdux Load

Floating-Point

Double with

Update Indexed

com X 31 631

mfsrin Move from

Segment Register

Indirect

PowerPC X 31 659

stswx Store String Word

Indexed

PowerPC X 31 661

stsx Store String

Indexed

POWER family X 31 661

stbrx Store

Byte-Reversed

Indexed

POWER family X 31 662

stwbrx Store Word

Byte-Reversed

Indexed

PowerPC X 31 662

stfsx Store

Floating-Point

Single Indexed

com X 31 663

srq[.] Shift RIght with

MQ

POWER family X 31 664

554 Assembler Language Reference

sre[.] Shift Right

Extended

POWER family X 31 665

stfsux Store

Floating-Point

Single with

Update Indexed

com X 31 695

sriq[.] Shift Right

Immediate with

MQ

POWER family X 31 696

stsi Store String

Immediate

POWER family X 31 725

stswi Store String Word

Immediate

PowerPC X 31 725

stfdx Store

Floating-Point

Double Indexed

com X 31 727

srlq[.] Shift Right Long

with MQ

POWER family X 31 728

sreq[.] Shift Right

Extended with

MQ

POWER family X 31 729

stfdux Store

Floating-Point

Double with

Update Indexed

com X 31 759

srliq[.] Shift Right Long

Immediate with

MQ

POWER family X 31 760

lhbrx Load Half

Byte-Reversed

Indexed

com X 31 790

lfqx Load

Floating-Point

Quad Indexed

POWER2 X 31 791

sra[.] Shift Right

Algebraic

POWER family X 31 792

sraw[.] Shift Right

Algebraic Word

PowerPC X 31 792

rac[.] Real Address

Compute

POWER family X 31 818

lfqux Load

Floating-Point

Quad with Update

Indexed

POWER2 X 31 823

srai[.] Shift Right

Algebraic

Immediate

POWER family X 31 824

srawi[.] Shift Right

Algebraic Word

Immediate

PowerPC X 31 824

eieio Enforce In-order

Execution of I/O

PowerPC X 31 854

Appendix C. Instruction Set Sorted by Primary and Extended Op Code 555

sthbrx Store Half

Byte-Reverse

Indexed

com X 31 918

stfqx Store

Floating-Point

Quad Indexed

POWER2 X 31 919

sraq[.] Shift Right

Algebraic with MQ

POWER family X 31 920

srea[.] Shift Right

Extended

Algebraic

POWER family X 31 921

exts[.] Extend Sign POWER family X 31 922

extsh[.] Extend Sign

Halfword

PowerPC XO 31 922

stfqux Store

Floating-Point

Quad with Update

Indexed

POWER2 X 31 951

sraiq[.] Shift Right

Algebraic

Immediate with

MQ

POWER family X 31 952

extsb[.] Extend Sign Byte PowerPC X 31 954

tlbld Load Data TLB

Entry

603 only X 31 978

icbi Instruction Cache

Block Invalidate

PowerPC X 31 982

stfiwx Store

Floating-Point as

Integer Word

Indexed

PPC opt. X 31 983

tlbli Load Instruction

TLB Entry

603 only X 31 1010

dcbz Data Cache Block

Set to Zero

PowerPC X 31 1014

dclz Data Cache Line

Set to Zero

POWER family X 31 1014

l Load POWER family D 32

lwz Load Word and

Zero

PowerPC D 32

lu Load with Update POWER family D 33

lwzu Load Word with

Zero Update

PowerPC D 33

lbz Load Byte and

Zero

com D 34

lbzu Load Byte and

Zero with Update

com D 35

st Store POWER family D 36

stw Store PowerPC D 36

stu Store with Update POWER family D 37

556 Assembler Language Reference

stwu Store Word with

Update

PowerPC D 37

stb Store Byte com D 38

lhz Load Half and

Zero

com D 40

lhzu Load Half and

Zero with Update

com D 41

lha Load Half

Algebraic

com D 42

lhau Load Half

Algebraic with

Update

com D 43

sth Store Half com D 44

sthu Store Half with

Update

com D 45

lm Load Multiple POWER family D 46

lmw Load Multiple

Word

PowerPC D 46

stm Store Multiple POWER family D 47

stmw Store Multiple

Word

PowerPC D 47

lfs Load

Floating-Point

Single

com D 48

lfsu Load

Floating-Point

Single with

Update

com D 49

lfd Load

Floating-Point

Double

com D 50

lfdu Load

Floating-Point

Double with

Update

com D 51

stfs Store

Floating-Point

Single

com D 52

stfsu Store

Floating-Point

Single with

Update

com D 53

stfd Store

Floating-Point

Double

com D 54

stfdu Store

Floating-Point

Double with

Update

com D 55

Appendix C. Instruction Set Sorted by Primary and Extended Op Code 557

lfq Load

Floating-Point

Quad

POWER2 D 56

lfqu Load

Floating-Point

Quad with Update

POWER2 D 57

fdivs[.] Floating Divide

Single

PowerPC A 59 18

fsubs[.] Floating Subtract

Single

PowerPC A 59 20

fadds[.] Floating Add

Single

PowerPC A 59 21

fres[.] Floating

Reciprocal

Estimate Single

PPC opt. A 59 24

fmuls[.] Floating Multiply

Single

PowerPC A 59 25

fmsubs[.] Floating

Multiply-Subtract

Single

PowerPC A 59 28

fmadds[.] Floating

Multiply-Add

Single

PowerPC A 59 29

fnmsubs[.] Floating Negative

Multiply-Subtract

Single

PowerPC A 59 30

fnmadds[.] Floating Negative

Multiply-Add

Single

PowerPC A 59 31

stfq Store

Floating-Point

Quad

POWER2 DS 60

stfqu Store

Floating-Point

Quad with Update

POWER2 DS 61

fcmpu Floating Compare

Unordered

com XL 63 0

frsp[.] Floating Round to

Single Precision

com X 63 12

fcir[.] Floating Convert

to Integer Word

POWER family X 63 14

fctiw[.] Floating Convert

to Integer Word

PowerPC X 63 14

fcirz[.] Floating Convert

to Integer Word

with Round to

Zero

POWER family X 63 15

fctiwz[.] Floating Convert

to Integer Word

with Round to

Zero

PowerPC XL 63 15

fd[.] Floating Divide POWER family A 63 18

558 Assembler Language Reference

fdiv[.] Floating Divide PowerPC A 63 18

fs[.] Floating Subtract POWER family A 63 20

fsub[.] Floating Subtract PowerPC A 63 20

fa[.] Floating Add POWER family A 63 21

fadd[.] Floating Add PowerPC A 63 21

fsqrt[.] Floating Square

Root

POWER2 A 63 22

fsel[.] Floating-Point

Select

PPC opt. A 63 23

fm[.] Floating Multiply POWER family A 63 25

fmul[.] Floating Multiply PowerPC A 63 25

frsqrte[.] Floating

Reciprocal

Square Root

Estimate

PPC opt. A 63 26

fms[.] Floating

Multiply-Subtract

POWER family A 63 28

fmsub[.] Floating

Multiply-Subtract

PowerPC A 63 28

fma[.] Floating

Multiply-Add

POWER family A 63 29

fmadd[.] Floating

Multiply-Add

PowerPC A 63 29

fnms[.] Floating Negative

Multiply-Subtract

POWER family A 63 30

fnmsub[.] Floating Negative

Multiply-Subtract

PowerPC A 63 30

fnma[.] Floating Negative

Multiply-Add

POWER family A 63 31

fnmadd[.] Floating Negative

Multiply-Add

PowerPC A 63 31

fcmpo Floating Compare

Ordered

com X 63 32

mtfsb1[.] Move to FPSCR

Bit 1

com X 63 38

fneg[.] Floating Negate com X 63 40

mcrfs Move to Condition

Register from

FPSCR

com X 63 64

mtfsb0[.] Move to FPSCR

Bit 0

com X 63 70

fmr[.] Floating Move

Register

com X 63 72

mtfsfi[.] Move to FPSCR

Field Immediate

com X 63 134

fnabs[.] Floating Negative

Absolute Value

com X 63 136

Appendix C. Instruction Set Sorted by Primary and Extended Op Code 559

fabs[.] Floating Absolute

Value

com X 63 264

mffs[.] Move from

FPSCR

com X 63 583

mtfsf[.] Move to FPSCR

Fields

com XFL 63 711

560 Assembler Language Reference

Appendix D. Instructions Common to POWER family,

POWER2, and PowerPC

 Instructions Common to POWER family, POWER2, and PowerPC

Mnemonic Instruction Format Primary Op Code Extended Op Code

and[.] AND X 31 28

andc[.] AND with

Complement

X 31 60

b[l][a] Branch I 18

bc[l][a] Branch Conditional B 16

cmp Compare X 31 0

cmpi Compare Immediate D 11

cmpl Compare Logical X 31 32

cmpli Compare Logical

Immediate

D 10

crand Condition Register

AND

XL 19 257

crandc Condition Register

AND with

Complement

XL 19 129

creqv Condition Register

Equivalent

XL 19 289

crnand Condition Register

NAND

XL 19 225

crnor Condition Register

NOR

XL 19 33

cror Condition Register

OR

XL 19 449

crorc Condition Register

OR with Complement

XL 19 417

crxor Condition Register

XOR

XL 19 193

eciwx External Control in

Word Indexed

X 31 310

ecowx External Control out

Word Indexed

X 31 438

eqv[.] Equivalent X 31 284

fabs[.] Floating Absolute

Value

X 63 264

fcmpo Floating Compare

Ordered

X 63 32

fcmpu Floating Compare

Unordered

XL 63 0

fmr[.] Floating Move

Register

X 63 72

fnabs[.] Floating Negative

Absolute Value

X 63 136

© Copyright IBM Corp. 1997, 2006 561

fneg[.] Floating Negate X 63 40

frsp[.] Floating Round to

Single Precision

X 63 12

lbz Load Byte and Zero D 34

lbzu Load Byte and Zero

with Update

D 35

lbzux Load Byte and Zero

with Update Indexed

X 31 119

lbzx Load Byte and Zero

Indexed

X 31 87

lfd Load Floating-Point

Double

D 50

lfdu Load Floating-Point

Double with Update

D 51

lfdux Load Floating-Point

Double with Update

Indexed

X 31 631

lfdx Load Floating-Point

Double Indexed

X 31 599

lfs Load Floating-Point

Single

D 48

lfsu Load Floating-Point

Single with Update

D 49

lfsux Load Floating-Point

Single with Update

Indexed

X 31 567

lfsx Load Floating-Point

Single Indexed

X 31 535

lha Load Half Algebraic D 42

lhau Load Half Algebraic

with Update

D 43

lhaux Load Half Algebraic

with Update Indexed

X 31 375

lhax Load Half Algebraic

Indexed

X 31 343

lhbrx Load Half

Byte-Reversed

Indexed

X 31 790

lhz Load Half and Zero D 40

lhzu Load Half and Zero

with Update

D 41

lhzux Load Half and Zero

with Update Indexed

X 31 331

lhzx Load Half and Zero

Indexed

X 31 279

mcrf Move Condition

Register Field

XL 19 0

mcrfs Move to Condition

Register from FPSCR

X 63 64

562 Assembler Language Reference

mcrxr Move to Condition

Register from XER

X 31 512

mfcr Move from Condition

Register

X 31 19

mffs[.] Move from FPSCR X 63 583

mfmsr Move from Machine

State Register

X 31 83

mfspr Move from

Special-Purpose

Register

X 31 339

mfsr Move from Segment

Register

X 31 595

mtcrf Move to Condition

Register Fields

XFX 31 144

mtfsb0[.] Move to FPSCR Bit 0 X 63 70

mtfsb1[.] Move to FPSCR Bit 1 X 63 38

mtfsf[.] Move to FPSCR

Fields

XFL 63 711

mtfsfi[.] Move to FPSCR Field

Immediate

X 63 134

mtmsr Move to Machine

State Register

X 31 146

mtspr Move to

Special-Purpose

Register

X 31 467

mtsr Move to Segment

Register

X 31 210

nand[.] NAND X 31 476

neg[o][.] Negate XO 31 104

nor[.] NOR X 31 124

or[.] OR X 31 444

orc[.] OR with Complement X 31 412

rfi Return from Interrupt X 19 50

si Subtract Immediate D 12

si. Subtract Immediate

and Record

D 13

stb Store Byte D 38

stbu Store Byte with

Update

D 39

stbux Store Byte with

Update Indexed

X 31 247

stbx Store Byte Indexed X 31 215

stfd Store Floating-Point

Double

D 54

stfdu Store Floating-Point

Double with Update

D 55

Appendix D. Instructions Common to POWER family, POWER2, and PowerPC 563

stfdux Store Floating-Point

Double with Update

Indexed

X 31 759

stfdx Store Floating-Point

Double Indexed

X 31 727

stfs Store Floating-Point

Single

D 52

stfsu Store Floating-Point

Single with Update

D 53

stfsux Store Floating-Point

Single with Update

Indexed

X 31 695

stfsx Store Floating-Point

Single Indexed

X 31 663

sth Store Half D 44

sthbrx Store Half

Byte-Reverse Indexed

X 31 918

sthu Store Half with

Update

D 45

sthux Store Half with

Update Indexed

X 31 439

sthx Store Half Indexed X 31 407

xor[.] XOR X 31 316

564 Assembler Language Reference

Appendix E. POWER family and POWER2 Instructions

In the following POWER family and POWER2 Instructions table, Instructions that are supported only in

POWER2 implementations are indicated by ″POWER2″ in the POWER2 Only column:

 POWER family and POWER2 Instructions

Mnemonic Instruction POWER2 Only Format Primary Op

Code

Extended Op

Code

a[o][.] Add Carrying XO 31 10

abs[o][.] Absolute XO 31 360

ae[o][.] Add Extended XO 31 138

ai Add Immediate D 12

ai. Add Immediate

and Record

D 13

ame[o][.] Add to Minus One

Extended

XO 31 234

and[.] AND X 31 28

andc[.] AND with

Complement

X 31 60

andil. AND Immediate

Lower

D 28

andiu. AND Immediate

Upper

D 29

aze[o][.] Add to Zero

Extended

XO 31 202

b[l][a] Branch I 18

bc[l][a] Branch

Conditional

B 16

bcc[l] Branch

Conditional to

Count Register

XL 19 528

bcr[l] Branch

Conditional

Register

XL 19 16

cal Compute Address

Lower

D 14

cau Compute Address

Upper

D 15

cax[o][.] Compute Address XO 31 266

clcs Cache Line

Compute Size

X 31 531

clf Cache Line Flush X 31 118

cli Cache Line

Invalidate

X 31 502

cmp Compare X 31 0

cmpi Compare

Immediate

D 11

cmpl Compare Logical X 31 32

© Copyright IBM Corp. 1997, 2006 565

cmpli Compare Logical

Immediate

D 10

cntlz[.] Count Leading

Zeros

X 31 26

crand Condition

Register AND

XL 19 257

crandc Condition

Register AND with

Complement

XL 19 129

creqv Condition

Register

Equivalent

XL 19 289

crnand Condition

Register NAND

XL 19 225

crnor Condition

Register NOR

XL 19 33

cror Condition

Register OR

XL 19 449

crorc Condition

Register OR with

Complement

XL 19 417

crxor Condition

Register XOR

XL 19 193

dclst Data Cache Line

Store

X 31 630

dclz Data Cache Line

Set to Zero

X 31 1014

dcs Data Cache

Synchronize

X 31 598

div[o][.] Divide XO 31 331

divs[o][.] Divide Short XO 31 363

doz[o][.] Difference or Zero XO 31 264

dozi Difference or Zero

Immediate

D 09

eciwx External Control

in Word Indexed

X 31 310

ecowx External Control

out Word Indexed

X 31 438

eqv[.] Equivalent X 31 284

exts[.] Extend Sign X 31 922

fa[.] Floating Add A 63 21

fabs[.] Floating Absolute

Value

X 63 264

fcir[.] Floating Convert

to Integer Word

X 63 14

fcirz[.] Floating Convert

to Integer Word

with Round to

Zero

X 63 15

566 Assembler Language Reference

fcmpo Floating Compare

Ordered

X 63 32

fcmpu Floating Compare

Unordered

XL 63 0

fd[.] Floating Divide A 63 18

fm[.] Floating Multiply A 63 25

fma[.] Floating

Multiply-Add

A 63 29

fmr[.] Floating Move

Register

X 63 72

fms[.] Floating

Multiply-Subtract

A 63 28

fnabs[.] Floating Negative

Absolute Value

X 63 136

fneg[.] Floating Negate X 63 40

fnma[.] Floating Negative

Multiply-Add

A 63 31

fnms[.] Floating Negative

Multiply-Subtract

A 63 30

frsp[.] Floating Round to

Single Precision

X 63 12

fs[.] Floating Subtract A 63 20

fsqrt[.] Floating Square

Root

POWER2 A 63 22

ics Instruction Cache

Synchronize

X 19 150

l Load D 32

lbrx Load

Byte-Reversed

Indexed

X 31 534

lbz Load Byte and

Zero

D 34

lbzu Load Byte and

Zero with Update

D 35

lbzux Load Byte and

Zero with Update

Indexed

X 31 119

lbzx Load Byte and

Zero Indexed

X 31 87

lfd Load

Floating-Point

Double

D 50

lfdu Load

Floating-Point

Double with

Update

D 51

lfdux Load

Floating-Point

Double with

Update Indexed

X 31 631

Appendix E. POWER family and POWER2 Instructions 567

lfdx Load

Floating-Point

Double Indexed

X 31 599

lfq Load

Floating-Point

Quad

POWER2 D 56

lfqu Load

Floating-Point

Quad with Update

POWER2 D 57

lfqux Load

Floating-Point

Quad with Update

Indexed

POWER2 X 31 823

lfqx Load

Floating-Point

Quad Indexed

POWER2 X 31 791

lfs Load

Floating-Point

Single

D 48

lfsu Load

Floating-Point

Single with

Update

D 49

lfsux Load

Floating-Point

Single with

Update Indexed

X 31 567

lfsx Load

Floating-Point

Single Indexed

X 31 535

lha Load Half

Algebraic

D 42

lhau Load Half

Algebraic with

Update

D 43

lhaux Load Half

Algebraic with

Update Indexed

X 31 375

lhax Load Half

Algebraic Indexed

X 31 343

lhbrx Load Half

Byte-Reversed

Indexed

X 31 790

lhz Load Half and

Zero

D 40

lhzu Load Half and

Zero with Update

D 41

lhzux Load Half and

Zero with Update

Indexed

X 31 331

lhzx Load Half and

Zero Indexed

X 31 279

568 Assembler Language Reference

lm Load Multiple D 46

lscbx Load String and

Compare Byte

Indexed

X 31 277

lsi Load String

Immediate

X 31 597

lsx Load String

Indexed

X 31 533

lu Load with Update D 33

lux Load with Update

Indexed

X 31 55

lx Load Indexed X 31 23

maskg[.] Mask Generate X 31 29

maskir[.] Mask Insert from

Register

X 31 541

mcrf Move Condition

Register Field

XL 19 0

mcrfs Move to Condition

Register from

FPSCR

X 63 64

mcrxr Move to Condition

Register from

XER

X 31 512

mfcr Move from

Condition

Register

X 31 19

mffs[.] Move from

FPSCR

X 63 583

mfmsr Move from

Machine State

Register

X 31 83

mfspr Move from

Special-Purpose

Register

X 31 339

mfsr Move from

Segment Register

X 31 595

mfsri Move from

Segment Register

Indirect

X 31 627

mtcrf Move to Condition

Register Fields

XFX 31 144

mtfsb0[.] Move to FPSCR

Bit 0

X 63 70

mtfsb1[.] Move to FPSCR

Bit 1

X 63 38

mtfsf[.] Move to FPSCR

Fields

XFL 63 711

mtfsfi[.] Move to FPSCR

Field Immediate

X 63 134

Appendix E. POWER family and POWER2 Instructions 569

mtmsr Move to Machine

State Register

X 31 146

mtspr Move to

Special-Purpose

Register

X 31 467

mtsr Move to Segment

Register

X 31 210

mtsri Move to Segment

Register Indirect

X 31 242

mul[o][.] Multiply XO 31 107

muli Multiply

Immediate

D 07

muls[o][.] Multiply Short XO 31 235

nabs[o][.] Negative Absolute XO 31 488

nand[.] NAND X 31 476

neg[o][.] Negate XO 31 104

nor[.] NOR X 31 124

or[.] OR X 31 444

orc[.] OR with

Complement

X 31 412

oril OR Immediate

Lower

D 24

oriu OR Immediate

Upper

D 25

rac[.] Real Address

Compute

X 31 818

rfi Return from

Interrupt

X 19 50

rfsvc Return from SVC X 19 82

rlimi[.] Rotate Left

Immediate then

Mask Insert

M 20

rlinm[.] Rotate Left

Immediate then

AND with Mask

M 21

rlmi[.] Rotate Left then

Mask Insert

M 22

rlnm[.] Rotate Left then

AND with Mask

M 23

rrib[.] Rotate Right and

Insert Bit

X 31 537

sf[o][.] Subtract from XO 31 08

sfe[o][.] Subtract from

Extended

XO 31 136

sfi Subtract from

Immediate

D 08

570 Assembler Language Reference

sfme[o][.] Subtract from

Minus One

Extended

XO 31 232

sfze[o][.] Subtract from

Zero Extended

XO 31 200

si Subtract

Immediate

D 12

si. Subtract

Immediate and

Record

D 13

sl[.] Shift Left X 31 24

sle[.] Shift Left

Extended

X 31 153

sleq[.] Shift Left

Extended with

MQ

X 31 217

sliq[.] Shift Left

Immediate with

MQ

X 31 184

slliq[.] Shift Left Long

Immediate with

MQ

X 31 248

sllq[.] Shift Left Long

with MQ

X 31 216

slq[.] Shift Left with MQ X 31 152

sr[.] Shift Right X 31 536

sra[.] Shift Right

Algebraic

X 31 792

srai[.] Shift Right

Algebraic

Immediate

X 31 824

sraiq[.] Shift Right

Algebraic

Immediate with

MQ

X 31 952

sraq[.] Shift Right

Algebraic with MQ

X 31 920

sre[.] Shift Right

Extended

X 31 665

srea[.] Shift Right

Extended

Algebraic

X 31 921

sreq[.] Shift Right

Extended with

MQ

X 31 729

sriq[.] Shift Right

Immediate with

MQ

X 31 696

srliq[.] Shift Right Long

Immediate with

MQ

X 31 760

Appendix E. POWER family and POWER2 Instructions 571

srlq[.] Shift Right Long

with MQ

X 31 728

srq[.] Shift RIght with

MQ

X 31 664

st Store D 36

stb Store Byte D 38

stbrx Store

Byte-Reversed

Indexed

X 31 662

stbu Store Byte with

Update

D 39

stbux Store Byte with

Update Indexed

X 31 247

stbx Store Byte

Indexed

X 31 215

stfd Store

Floating-Point

Double

D 54

stfdu Store

Floating-Point

Double with

Update

D 55

stfdux Store

Floating-Point

Double with

Update Indexed

X 31 759

stfdx Store

Floating-Point

Double Indexed

X 31 727

stfq Store

Floating-Point

Quad

POWER2 DS 60

stfqu Store

Floating-Point

Quad with Update

POWER2 DS 61

stfqux Store

Floating-Point

Quad with Update

Indexed

POWER2 X 31 951

stfqx Store

Floating-Point

Quad Indexed

POWER2 X 31 919

stfs Store

Floating-Point

Single

D 52

stfsu Store

Floating-Point

Single with

Update

D 53

572 Assembler Language Reference

stfsux Store

Floating-Point

Single with

Update Indexed

X 31 695

stfsx Store

Floating-Point

Single Indexed

X 31 663

sth Store Half D 44

sthbrx Store Half

Byte-Reverse

Indexed

X 31 918

sthu Store Half with

Update

D 45

sthux Store Half with

Update Indexed

X 31 439

sthx Store Half

Indexed

X 31 407

stm Store Multiple D 47

stsi Store String

Immediate

X 31 725

stsx Store String

Indexed

X 31 661

stu Store with Update D 37

stux Store with Update

Indexed

X 31 183

stx Store Indexed X 31 151

svc[l][a] Supervisor Call SC 17

t Trap X 31 04

ti Trap Immediate D 03

tlbi Translation

Look-aside Buffer

Invalidate Entry

X 31 306

xor[.] XOR X 31 316

xoril XOR Immediate

Lower

D 26

xoriu XOR Immediate

Upper

D 27

Appendix E. POWER family and POWER2 Instructions 573

574 Assembler Language Reference

Appendix F. PowerPC Instructions

 Table 37. PowerPC Instructions

Mnemonic Instruction Format Primary Op Code Extended Op Code

add[o][.] Add XO 31 266

addc[o][.] Add Carrying XO 31 10

adde[o][.] Add Extended XO 31 138

addi Add Immediate D 14

addic Add Immediate

Carrying

D 12

addic. Add Immediate

Carrying and Record

D 13

addis Add Immediate

Shifted

D 15

addme[o][.] Add to Minus One

Extended

XO 31 234

addze[o][.] Add to Zero Extended XO 31 202

and[.] AND X 31 28

andc[.] AND with

Complement

X 31 60

andi. AND Immediate D 28

andis. AND Immediate

Shifted

D 29

b[l][a] Branch I 18

bc[l][a] Branch Conditional B 16

bcctr[l] Branch Conditional to

Count Register

XL 19 528

bclr[l] Branch Conditional

Link Register

XL 19 16

cmp Compare X 31 0

cmpi Compare Immediate D 11

cmpl Compare Logical X 31 32

cmpli Compare Logical

Immediate

D 10

cntlzd Count Leading Zeros

Doubleword

X 31 58

cntlzw[.] Count Leading Zeros

Word

X 31 26

crand Condition Register

AND

XL 19 257

crandc Condition Register

AND with

Complement

XL 19 129

creqv Condition Register

Equivalent

XL 19 289

crnand Condition Register

NAND

XL 19 225

© Copyright IBM Corp. 1997, 2006 575

Table 37. PowerPC Instructions (continued)

Mnemonic Instruction Format Primary Op Code Extended Op Code

crnor Condition Register

NOR

XL 19 33

cror Condition Register

OR

XL 19 449

crorc Condition Register

OR with Complement

XL 19 417

crxor Condition Register

XOR

XL 19 193

dcbf Data Cache Block

Flush

X 31 86

dcbi Data Cache Block

Invalidate

X 31 470

dcbst Data Cache Block

Store

X 31 54

dcbt Data Cache Block

Touch

X 31 278

dcbtst Data Cache Block

Touch for Store

X 31 246

dcbz Data Cache Block Set

to Zero

X 31 1014

divd Divide Doubleword XO 31 489

divdu Divide Doubleword

Unsigned

XO 31 457

divw[o][.] Divide Word XO 31 491

divwu[o][.] Divide Word

Unsigned

XO 31 459

eciwx External Control in

Word Indexed (opt.)

X 31 310

ecowx External Control out

Word Indexed (opt.)

X 31 438

eieio Enforce In-order

Execution of I/O

X 31 854

eqv[.] Equivalent X 31 284

extsb[.] Extend Sign Byte X 31 954

extsh[.] Extend Sign Halfword XO 31 922

extsw Extend Sign Word X 31 986

fabs[.] Floating Absolute

Value

X 63 264

fadd[.] Floating Add A 63 21

fadds[.] Floating Add Single A 59 21

fcfid Floating Convert from

Integer Doubleword

X 63 846

fcmpo Floating Compare

Ordered

X 63 32

fcmpu Floating Compare

Unordered

XL 63 0

576 Assembler Language Reference

Table 37. PowerPC Instructions (continued)

Mnemonic Instruction Format Primary Op Code Extended Op Code

fctid Floating Convert to

Integer Doubleword

X 63 814

fctidz Floating Convert to

Integer Doubleword

with Round Toward

Zero

X 63 815

fctiw[.] Floating Convert to

Integer Word

X 63 14

fctiwz[.] Floating Convert to

Integer Word with

Round to Zero

XL 63 15

fdiv[.] Floating Divide A 63 18

fdivs[.] Floating Divide Single A 59 18

fmadd[.] Floating Multiply-Add A 63 29

fmadds[.] Floating Multiply-Add

Single

A 59 29

fmr[.] Floating Move

Register

X 63 72

fmsub[.] Floating

Multiply-Subtract

A 63 28

fmsubs[.] Floating

Multiply-Subtract

Single

A 59 28

fmul[.] Floating Multiply A 63 25

fmuls[.] Floating Multiply

Single

A 59 25

fnabs[.] Floating Negative

Absolute Value

X 63 136

fneg[.] Floating Negate X 63 40

fnmadd[.] Floating Negative

Multiply-Add

A 63 31

fnmadds[.] Floating Negative

Multiply-Add Single

A 59 31

fnmsub[.] Floating Negative

Multiply-Subtract

A 63 30

fnmsubs[.] Floating Negative

Multiply-Subtract

Single

A 59 30

fres[.] Floating Reciprocal

Estimate Single

(optional)

A 59 24

frsp[.] Floating Round to

Single Precision

X 63 12

frsqrte[.] Floating Reciprocal

Square Root Estimate

(optional)

A 63 26

fsel[.] Floating-Point Select

(optional)

A 63 23

Appendix F. PowerPC Instructions 577

Table 37. PowerPC Instructions (continued)

Mnemonic Instruction Format Primary Op Code Extended Op Code

fsub[.] Floating Subtract A 63 20

fsubs[.] Floating Subtract

Single

A 59 20

icbi Instruction Cache

Block Invalidate

X 31 982

isync Instruction

Synchronize

X 19 150

lbz Load Byte and Zero D 34

lbzu Load Byte and Zero

with Update

D 35

lbzux Load Byte and Zero

with Update Indexed

X 31 119

lbzx Load Byte and Zero

Indexed

X 31 87

ld Load Doubleword DS 58 0

ldarx Load Doubleword and

Reserve Indexed

X 31 84

ldu Load Doubleword with

Update

DS 58 1

ldux Load Doubleword with

Update Indexed

X 31 53

ldx Load Doubleword

Indexed

X 31 21

lfd Load Floating-Point

Double

D 50

lfdu Load Floating-Point

Double with Update

D 51

lfdux Load Floating-Point

Double with Update

Indexed

X 31 631

lfdx Load Floating-Point

Double Indexed

X 31 599

lfs Load Floating-Point

Single

D 48

lfsu Load Floating-Point

Single with Update

D 49

lfsux Load Floating-Point

Single with Update

Indexed

X 31 567

lfsx Load Floating-Point

Single Indexed

X 31 535

lha Load Half Algebraic D 42

lhau Load Half Algebraic

with Update

D 43

lhaux Load Half Algebraic

with Update Indexed

X 31 375

578 Assembler Language Reference

Table 37. PowerPC Instructions (continued)

Mnemonic Instruction Format Primary Op Code Extended Op Code

lhax Load Half Algebraic

Indexed

X 31 343

lhbrx Load Half

Byte-Reversed

Indexed

X 31 790

lhz Load Half and Zero D 40

lhzu Load Half and Zero

with Update

D 41

lhzux Load Half and Zero

with Update Indexed

X 31 331

lhzx Load Half and Zero

Indexed

X 31 279

lmw Load Multiple Word D 46

lswi Load String Word

Immediate

X 31 597

lswx Load String Word

Indexed

X 31 533

lwa Load Word Algebraic DS 58 2

lwarx Load Word and

Reserve Indexed

X 31 20

lwaux Load Word Algebraic

with Update Indexed

X 31 373

lwax Load Word Algebraic

Indexed

X 31 341

lwbrx Load Word

Byte-Reversed

Indexed

X 31 534

lwz Load Word and Zero D 32

lwzu Load Word with Zero

Update

D 33

lwzux Load Word and Zero

with Update Indexed

X 31 55

lwzx Load Word and Zero

Indexed

X 31 23

mcrf Move Condition

Register Field

XL 19 0

mcrfs Move to Condition

Register from FPSCR

X 63 64

mcrxr Move to Condition

Register from XER

X 31 512

mfcr Move from Condition

Register

X 31 19

mffs[.] Move from FPSCR X 63 583

mfmsr Move from Machine

State Register

X 31 83

Appendix F. PowerPC Instructions 579

Table 37. PowerPC Instructions (continued)

Mnemonic Instruction Format Primary Op Code Extended Op Code

mfspr Move from

Special-Purpose

Register

X 31 339

mfsr Move from Segment

Register

X 31 595

mfsrin Move from Segment

Register Indirect

X 31 659

mtcrf Move to Condition

Register Fields

XFX 31 144

mtfsb0[.] Move to FPSCR Bit 0 X 63 70

mtfsb1[.] Move to FPSCR Bit 1 X 63 38

mtfsf[.] Move to FPSCR

Fields

XFL 63 711

mtfsfi[.] Move to FPSCR Field

Immediate

X 63 134

mtmsr Move to Machine

State Register

X 31 146

mtspr Move to

Special-Purpose

Register

X 31 467

mtsr Move to Segment

Register

X 31 210

mtsrin Move to Segment

Register Indirect

X 31 242

mulhd Multiply High

Doubleword

XO 31 73

mulhdu Multiply High

Doubleword Unsigned

XO 31 9

mulhw[.] Multiply High Word XO 31 75

mulhwu[.] Multiply High Word

Unsigned

XO 31 11

mulld Multiply Low

Doubleword

XO 31 233

mulli Multiply Low

Immediate

D 07

mullw[o][.] Multiply Low Word XO 31 235

nand[.] NAND X 31 476

neg[o][.] Negate XO 31 104

nor[.] NOR X 31 124

or[.] OR X 31 444

orc[.] OR with Complement X 31 412

ori OR Immediate D 24

oris OR Immediate Shifted D 25

rfi Return from Interrupt X 19 50

580 Assembler Language Reference

Table 37. PowerPC Instructions (continued)

Mnemonic Instruction Format Primary Op Code Extended Op Code

rldcl Rotate Left

Doubleword then

Clear Left

MDS 30 8

rldcr Rotate Left

Doubleword then

Clear Right

MDS 30 9

rldic Rotate Left

Doubleword

Immediate then Clear

MD 30 2

rldicl Rotate Left

Doubleword

Immediate then Clear

Left

MD 30 0

rldicr Rotate Left

Doubleword

Immediate then Clear

Right

MD 30 1

rldimi Rotate Left

Doubleword

Immediate then Mask

Insert

MD 30 3

rlwimi[.] Rotate Left Word

Immediate then Mask

Insert

M 20

rlwinm[.] Rotate Left Word

Immediate then AND

with Mask

M 21

rlwnm[.] Rotate Left Word then

AND with Mask

M 23

sc System Call SC 17

si Subtract Immediate D 12

si. Subtract Immediate

and Record

D 13

slbia SLB Invalidate All X 31 498

slbie SLB Invalidate Entry X 31 434

sld Shift Left Doubleword X 31 27

slw[.] Shift Left Word X 31 24

srad Shift Right Algebraic

Doubleword

X 31 794

sradi Shift Right Algebraic

Doubleword

Immediate

XS 31 413

srd Shift Right

Doubleword

X 31 539

sraw[.] Shift Right Algebraic

Word

X 31 792

srawi[.] Shift Right Algebraic

Word Immediate

X 31 824

Appendix F. PowerPC Instructions 581

Table 37. PowerPC Instructions (continued)

Mnemonic Instruction Format Primary Op Code Extended Op Code

srw[.] Shift Right Word X 31 536

stb Store Byte D 38

stbu Store Byte with

Update

D 39

stbux Store Byte with

Update Indexed

X 31 247

stbx Store Byte Indexed X 31 215

std Store Doubleword DS 62 0

stdcx Store Doubleword

Conditional Indexed

X 31 214

stdu Store Doubleword

with Update

DS 62 1

stdux Store Doubleword

with Update Indexed

X 31 181

stdx Store Doubleword

Indexed

X 31 149

stfd Store Floating-Point

Double

D 54

stfdu Store Floating-Point

Double with Update

D 55

stfdux Store Floating-Point

Double with Update

Indexed

X 31 759

stfdx Store Floating-Point

Double Indexed

X 31 727

stfiwx Store Floating-Point

as Integer Word

Indexed (optional)

X 31 983

stfs Store Floating-Point

Single

D 52

stfsu Store Floating-Point

Single with Update

D 53

stfsux Store Floating-Point

Single with Update

Indexed

X 31 695

stfsx Store Floating-Point

Single Indexed

X 31 663

sth Store Half D 44

sthbrx Store Half

Byte-Reverse Indexed

X 31 918

sthu Store Half with

Update

D 45

sthux Store Half with

Update Indexed

X 31 439

sthx Store Half Indexed X 31 407

stmw Store Multiple Word D 47

582 Assembler Language Reference

Table 37. PowerPC Instructions (continued)

Mnemonic Instruction Format Primary Op Code Extended Op Code

stswi Store String Word

Immediate

X 31 725

stswx Store String Word

Indexed

X 31 661

stw Store D 36

stwbrx Store Word

Byte-Reversed

Indexed

X 31 662

stwcx. Store Word

Conditional Indexed

X 31 150

stwu Store Word with

Update

D 37

stwux Store Word with

Update Indexed

X 31 183

stwx Store Word Indexed X 31 151

subf[o][.] Subtract from XO 31 40

subfc[o][.] Subtract from

Carrying

XO 31 08

subfe[o][.] Subtract from

Extended

XO 31 136

subfic Subtract from

Immediate Carrying

D 08

subfme[o][.] Subtract from Minus

One Extended

XO 31 232

subfze[o][.] Subtract from Zero

Extended

XO 31 200

sync Synchronize X 31 598

td Trap Doubleword X 31 68

tdi Trap Doubleword

Immediate

D 2

tlbie Translation

Look-aside Buffer

Invalidate Entry

(optional)

X 31 306

tlbsync Translation

Look-aside Buffer

Synchronize (optional)

X 31 566

tw Trap Word X 31 04

twi Trap Word Immediate D 03

xor[.] XOR X 31 316

xori XOR Immediate D 26

xoris XOR Immediate Shift D 27

Appendix F. PowerPC Instructions 583

584 Assembler Language Reference

Appendix G. PowerPC 601 RISC Microprocessor Instructions

 PowerPC 601 RISC Microprocessor Instructions

Mnemonic Instruction Format Primary Op Code Extended Op Code

a[o][.] Add Carrying XO 31 10

abs[o][.] Absolute XO 31 360

add[o][.] Add XO 31 266

addc[o][.] Add Carrying XO 31 10

adde[o][.] Add Extended XO 31 138

addi Add Immediate D 14

addic Add Immediate

Carrying

D 12

addic. Add Immediate

Carrying and Record

D 13

addis Add Immediate

Shifted

D 15

addme[o][.] Add to Minus One

Extended

XO 31 234

addze[o][.] Add to Zero Extended XO 31 202

ae[o][.] Add Extended XO 31 138

ai Add Immediate D 12

ai. Add Immediate and

Record

D 13

ame[o][.] Add to Minus One

Extended

XO 31 234

and[.] AND X 31 28

andc[.] AND with

Complement

X 31 60

andi. AND Immediate D 28

andil. AND Immediate

Lower

D 28

andis. AND Immediate

Shifted

D 29

andiu. AND Immediate

Upper

D 29

aze[o][.] Add to Zero Extended XO 31 202

b[l][a] Branch I 18

bc[l][a] Branch Conditional B 16

bcc[l] Branch Conditional to

Count Register

XL 19 528

bcctr[l] Branch Conditional to

Count Register

XL 19 528

bclr[l] Branch Conditional

Link Register

XL 19 16

bcr[l] Branch Conditional

Register

XL 19 16

© Copyright IBM Corp. 1997, 2006 585

cal Compute Address

Lower

D 14

cau Compute Address

Upper

D 15

cax[o][.] Compute Address XO 31 266

clcs Cache Line Compute

Size

X 31 531

cmp Compare X 31 0

cmpi Compare Immediate D 11

cmpl Compare Logical X 31 32

cmpli Compare Logical

Immediate

D 10

cntlz[.] Count Leading Zeros X 31 26

cntlzw[.] Count Leading Zeros

Word

X 31 26

crand Condition Register

AND

XL 19 257

crandc Condition Register

AND with

Complement

XL 19 129

creqv Condition Register

Equivalent

XL 19 289

crnand Condition Register

NAND

XL 19 225

crnor Condition Register

NOR

XL 19 33

cror Condition Register

OR

XL 19 449

crorc Condition Register

OR with Complement

XL 19 417

crxor Condition Register

XOR

XL 19 193

dcbf Data Cache Block

Flush

X 31 86

dcbi Data Cache Block

Invalidate

X 31 470

dcbst Data Cache Block

Store

X 31 54

dcbt Data Cache Block

Touch

X 31 278

dcbtst Data Cache Block

Touch for Store

X 31 246

dcbz Data Cache Block Set

to Zero

X 31 1014

dcs Data Cache

Synchronize

X 31 598

div[o][.] Divide XO 31 331

divs[o][.] Divide Short XO 31 363

586 Assembler Language Reference

divw[o][.] Divide Word XO 31 491

divwu[o][.] Divide Word

Unsigned

XO 31 459

doz[o][.] Difference or Zero XO 31 264

dozi Difference or Zero

Immediate

D 09

eciwx External Control in

Word Indexed

X 31 310

ecowx External Control out

Word Indexed

X 31 438

eieio Enforce In-order

Execution of I/O

X 31 854

eqv[.] Equivalent X 31 284

exts[.] Extend Sign X 31 922

extsb[.] Extend Sign Byte X 31 954

extsh[.] Extend Sign Halfword XO 31 922

fa[.] Floating Add A 63 21

fabs[.] Floating Absolute

Value

X 63 264

fadd[.] Floating Add A 63 21

fadds[.] Floating Add Single A 59 21

fcir[.] Floating Convert to

Integer Word

X 63 14

fcirz[.] Floating Convert to

Integer Word with

Round to Zero

X 63 15

fcmpo Floating Compare

Ordered

X 63 32

fcmpu Floating Compare

Unordered

XL 63 0

fctiw[.] Floating Convert to

Integer Word

X 63 14

fctiwz[.] Floating Convert to

Integer Word with

Round to Zero

XL 63 15

fd[.] Floating Divide A 63 18

fdiv[.] Floating Divide A 63 18

fdivs[.] Floating Divide Single A 59 18

fm[.] Floating Multiply A 63 25

fma[.] Floating Multiply-Add A 63 29

fmadd[.] Floating Multiply-Add A 63 29

fmadds[.] Floating Multiply-Add

Single

A 59 29

fmr[.] Floating Move

Register

X 63 72

fms[.] Floating

Multiply-Subtract

A 63 28

Appendix G. PowerPC 601 RISC Microprocessor Instructions 587

fmsub[.] Floating

Multiply-Subtract

A 63 28

fmsubs[.] Floating

Multiply-Subtract

Single

A 59 28

fmul[.] Floating Multiply A 63 25

fmuls[.] Floating Multiply

Single

A 59 25

fnabs[.] Floating Negative

Absolute Value

X 63 136

fneg[.] Floating Negate X 63 40

fnma[.] Floating Negative

Multiply-Add

A 63 31

fnmadd[.] Floating Negative

Multiply-Add

A 63 31

fnmadds[.] Floating Negative

Multiply-Add Single

A 59 31

fnms[.] Floating Negative

Multiply-Subtract

A 63 30

fnmsub[.] Floating Negative

Multiply-Subtract

A 63 30

fnmsubs[.] Floating Negative

Multiply-Subtract

Single

A 59 30

frsp[.] Floating Round to

Single Precision

X 63 12

fs[.] Floating Subtract A 63 20

fsub[.] Floating Subtract A 63 20

fsubs[.] Floating Subtract

Single

A 59 20

icbi Instruction Cache

Block Invalidate

X 31 982

ics Instruction Cache

Synchronize

X 19 150

isync Instruction

Synchronize

X 19 150

l Load D 32

lbrx Load Byte-Reversed

Indexed

X 31 534

lbz Load Byte and Zero D 34

lbzu Load Byte and Zero

with Update

D 35

lbzux Load Byte and Zero

with Update Indexed

X 31 119

lbzx Load Byte and Zero

Indexed

X 31 87

lfd Load Floating-Point

Double

D 50

588 Assembler Language Reference

lfdu Load Floating-Point

Double with Update

D 51

lfdux Load Floating-Point

Double with Update

Indexed

X 31 631

lfdx Load Floating-Point

Double Indexed

X 31 599

lfs Load Floating-Point

Single

D 48

lfsu Load Floating-Point

Single with Update

D 49

lfsux Load Floating-Point

Single with Update

Indexed

X 31 567

lfsx Load Floating-Point

Single Indexed

X 31 535

lha Load Half Algebraic D 42

lhau Load Half Algebraic

with Update

D 43

lhaux Load Half Algebraic

with Update Indexed

X 31 375

lhax Load Half Algebraic

Indexed

X 31 343

lhbrx Load Half

Byte-Reversed

Indexed

X 31 790

lhz Load Half and Zero D 40

lhzu Load Half and Zero

with Update

D 41

lhzux Load Half and Zero

with Update Indexed

X 31 331

lhzx Load Half and Zero

Indexed

X 31 279

lm Load Multiple D 46

lmw Load Multiple Word D 46

lscbx Load String and

Compare Byte

Indexed

X 31 277

lsi Load String

Immediate

X 31 597

lswi Load String Word

Immediate

X 31 597

lswx Load String Word

Indexed

X 31 533

lsx Load String Indexed X 31 533

lu Load with Update D 33

lux Load with Update

Indexed

X 31 55

Appendix G. PowerPC 601 RISC Microprocessor Instructions 589

lwarx Load Word and

Reserve Indexed

X 31 20

lwbrx Load Word

Byte-Reversed

Indexed

X 31 534

lwz Load Word and Zero D 32

lwzu Load Word with Zero

Update

D 33

lwzux Load Word and Zero

with Update Indexed

X 31 55

lwzx Load Word and Zero

Indexed

X 31 23

lx Load Indexed X 31 23

maskg[.] Mask Generate X 31 29

maskir[.] Mask Insert from

Register

X 31 541

mcrf Move Condition

Register Field

XL 19 0

mcrfs Move to Condition

Register from FPSCR

X 63 64

mcrxr Move to Condition

Register from XER

X 31 512

mfcr Move from Condition

Register

X 31 19

mffs[.] Move from FPSCR X 63 583

mfmsr Move from Machine

State Register

X 31 83

mfspr Move from

Special-Purpose

Register

X 31 339

mfsr Move from Segment

Register

X 31 595

mfsrin Move from Segment

Register Indirect

X 31 659

mtcrf Move to Condition

Register Fields

XFX 31 144

mtfsb0[.] Move to FPSCR Bit 0 X 63 70

mtfsb1[.] Move to FPSCR Bit 1 X 63 38

mtfsf[.] Move to FPSCR

Fields

XFL 63 711

mtfsfi[.] Move to FPSCR Field

Immediate

X 63 134

mtmsr Move to Machine

State Register

X 31 146

mtspr Move to

Special-Purpose

Register

X 31 467

mtsr Move to Segment

Register

X 31 210

590 Assembler Language Reference

mtsri Move to Segment

Register Indirect

X 31 242

mtsrin Move to Segment

Register Indirect

X 31 242

mul[o][.] Multiply XO 31 107

mulhw[.] Multiply High Word XO 31 75

mulhwu[.] Multiply High Word

Unsigned

XO 31 11

muli Multiply Immediate D 07

mulli Multiply Low

Immediate

D 07

mullw[o][.] Multiply Low Word XO 31 235

muls[o][.] Multiply Short XO 31 235

nabs[o][.] Negative Absolute XO 31 488

nand[.] NAND X 31 476

neg[o][.] Negate XO 31 104

nor[.] NOR X 31 124

or[.] OR X 31 444

orc[.] OR with Complement X 31 412

ori OR Immediate D 24

oril OR Immediate Lower D 24

oris OR Immediate Shifted D 25

oriu OR Immediate Upper D 25

rfi Return from Interrupt X 19 50

rlimi[.] Rotate Left Immediate

then Mask Insert

M 20

rlinm[.] Rotate Left Immediate

then AND with Mask

M 21

rlmi[.] Rotate Left then Mask

Insert

M 22

rlnm[.] Rotate Left then AND

with Mask

M 23

rlwimi[.] Rotate Left Word

Immediate then Mask

Insert

M 20

rlwinm[.] Rotate Left Word

Immediate then AND

with Mask

M 21

rlwnm[.] Rotate Left Word then

AND with Mask

M 23

rrib[.] Rotate Right and

Insert Bit

X 31 537

sc System Call SC 17

sf[o][.] Subtract from XO 31 08

sfe[o][.] Subtract from

Extended

XO 31 136

Appendix G. PowerPC 601 RISC Microprocessor Instructions 591

sfi Subtract from

Immediate

D 08

sfme[o][.] Subtract from Minus

One Extended

XO 31 232

sfze[o][.] Subtract from Zero

Extended

XO 31 200

si Subtract Immediate D 12

si. Subtract Immediate

and Record

D 13

sl[.] Shift Left X 31 24

sle[.] Shift Left Extended X 31 153

sleq[.] Shift Left Extended

with MQ

X 31 217

sliq[.] Shift Left Immediate

with MQ

X 31 184

slliq[.] Shift Left Long

Immediate with MQ

X 31 248

sllq[.] Shift Left Long with

MQ

X 31 216

slq[.] Shift Left with MQ X 31 152

slw[.] Shift Left Word X 31 24

sr[.] Shift Right X 31 536

sra[.] Shift Right Algebraic X 31 792

srai[.] Shift Right Algebraic

Immediate

X 31 824

sraiq[.] Shift Right Algebraic

Immediate with MQ

X 31 952

sraq[.] Shift Right Algebraic

with MQ

X 31 920

sraw[.] Shift Right Algebraic

Word

X 31 792

srawi[.] Shift Right Algebraic

Word Immediate

X 31 824

sre[.] Shift Right Extended X 31 665

srea[.] Shift Right Extended

Algebraic

X 31 921

sreq[.] Shift Right Extended

with MQ

X 31 729

sriq[.] Shift Right Immediate

with MQ

X 31 696

srliq[.] Shift Right Long

Immediate with MQ

X 31 760

srlq[.] Shift Right Long with

MQ

X 31 728

srq[.] Shift RIght with MQ X 31 664

srw[.] Shift Right Word X 31 536

st Store D 36

592 Assembler Language Reference

stb Store Byte D 38

stbrx Store Byte-Reversed

Indexed

X 31 662

stbu Store Byte with

Update

D 39

stbux Store Byte with

Update Indexed

X 31 247

stbx Store Byte Indexed X 31 215

stfd Store Floating-Point

Double

D 54

stfdu Store Floating-Point

Double with Update

D 55

stfdux Store Floating-Point

Double with Update

Indexed

X 31 759

stfdx Store Floating-Point

Double Indexed

X 31 727

stfs Store Floating-Point

Single

D 52

stfsu Store Floating-Point

Single with Update

D 53

stfsux Store Floating-Point

Single with Update

Indexed

X 31 695

stfsx Store Floating-Point

Single Indexed

X 31 663

sth Store Half D 44

sthbrx Store Half

Byte-Reverse Indexed

X 31 918

sthu Store Half with

Update

D 45

sthux Store Half with

Update Indexed

X 31 439

sthx Store Half Indexed X 31 407

stm Store Multiple D 47

stmw Store Multiple Word D 47

stsi Store String

Immediate

X 31 725

stswi Store String Word

Immediate

X 31 725

stswx Store String Word

Indexed

X 31 661

stsx Store String Indexed X 31 661

stu Store with Update D 37

stux Store with Update

Indexed

X 31 183

stw Store D 36

Appendix G. PowerPC 601 RISC Microprocessor Instructions 593

stwbrx Store Word

Byte-Reversed

Indexed

X 31 662

stwcx. Store Word

Conditional Indexed

X 31 150

stwu Store Word with

Update

D 37

stwux Store Word with

Update Indexed

X 31 183

stwx Store Word Indexed X 31 151

stx Store Indexed X 31 151

subf[o][.] Subtract from XO 31 40

subfc[o][.] Subtract from

Carrying

XO 31 08

subfe[o][.] Subtract from

Extended

XO 31 136

subfic Subtract from

Immediate Carrying

D 08

subfme[o][.] Subtract from Minus

One Extended

XO 31 232

subfze[o][.] Subtract from Zero

Extended

XO 31 200

sync Synchronize X 31 598

t Trap X 31 04

ti Trap Immediate D 03

tlbie Translation

Look-aside Buffer

Invalidate Entry

X 31 306

tw Trap Word X 31 04

twi Trap Word Immediate D 03

xor[.] XOR X 31 316

xori XOR Immediate D 26

xoril XOR Immediate

Lower

D 26

xoris XOR Immediate Shift D 27

xoriu XOR Immediate

Upper

D 27

594 Assembler Language Reference

Appendix H. Value Definitions

Bits 0-5

These bits represent the opcode portion of the machine instruction.

Bits 6-30

These bits contain fields defined according to the values below. Note that many instructions also contain

extended opcodes, which occupy some portion of the bits in this range. Refer to specific instructions to

understand the format utilized.

 Value Definition

/, //, /// Reserved/unused; nominally zero (0).

A Pseudonym for RA in some diagrams.

AA Absolute address bit.

v 0 - The immediate field represents an address relative to the current instruction address..

v 1 - The immediate field represents an absolute address.

B Pseudonym for RB in some diagrams.

BA Specifies source condition register bit for operation.

BB Specifies source condition register bit for operation.

BD Specifies a 14-bit value used as the branch displacement.

BF Specifies condition register field 0-7 which indicates the result of a compare.

BFA Specifies source condition register field for operation.

BI Specifies bit in condition register for condition comparison.

BO Specifies branch option field used in instruction.

BT Specifies target condition register bit where result of operation is stored.

D Specifies 16-bit two’s-complement integer sign extended to 32 bits.

DS Specifies a 14-bit field used as an immediate value for the calculation of an effective address (EA).

FL1 Specifies field for optional data passing the SVC routine.

FL2 Specifies field for optional data passing the SVC routine.

FLM Specifies field mask.

FRA Specifies source floating-point register for operation.

FRB Specifies source floating-point register for operation.

FRC Specifies source floating-point register for operation.

FRS Specifies source floating-point register of stored data.

FRT Specifies target floating-point register for operation.

FXM Specifies field mask.

I Specifies source immediate value for operation.

L Must be set to 0 for the 32-bit subset architecture.

LEV Specifies the execution address.

LI Immediate field specifying a 24-bit signed two’s complement integer that is concatenated on the

right with 0b00 and sign-extended to 64 bits (32 bits in 32-bit implementations).

LK If LK=1, the effective address of the instruction following the branch instruction is place into the link

register.

© Copyright IBM Corp. 1997, 2006 595

Value Definition

MB Specifies the begin value (bit number) of the mask for the operation.

ME Specifies the end value (bit number) of the mask for the operation.

NB Specifies the byte count for the operation.

OE Specifies that the overflow bits in the Fixed-Point Exception register are affected if the operation

results in overflow

RA Specifies the source general-purpose register for the operation.

RB Specifies the source general-purpose register for the operation.

RS Specifies the source general-purpose register for the operation.

RT Specifies the target general-purpose register where the operation is stored.

S Pseudonym for RS in some diagrams.

SA Documented in the svc instruction.

SH Specifies the (immediate) shift value for the operation.

SI Specifies the 16-bit signed integer for the operation.

SIMM 16-bit two’s-complement value which will be sign-extended for comparison.

SPR Specifies the source special purpose register for the operation.

SR Specifies the source segment register for the operation.

ST Specifies the target segment register for the operation.

TO Specifies TO bits that are ANDed with compare results.

U Specifies source immediate value for operation.

UI Specifies 16-bit unsigned integer for operation.

Bit 31

Bit 31 is the record bit.

 Value Definition

0 Does not update the condition register.

1 Updates the condition register to reflect the result of the operation.

596 Assembler Language Reference

Appendix I. Vector Processor

This appendix provides an overview of the vector processor, as well as AIX ABI extensions and linkage

conventions in support of the vector processor.

For more information on the vector processor and vector processor instructions, see the AltiVec

Technology Programming Environments Manual.

Storage Operands and Alignment

All vector data types are 16 bytes in size, and must be aligned on a 16-byte (quadword) boundary.

Aggregates containing vector types must follow normal conventions of aligning the aggregate to the

requirement of its largest member. If an aggregate containing a vector type is packed, then there is no

guarantee of 16-byte alignment of the vector type.

 Table 38. Data Types

Contents New C/C++ Type

16 unsigned char vector unsigned char

16 signed char vector signed char

16 unsigned char vector bool char

8 unsigned short vector unsigned short

8 signed short vector signed short

8 unsigned short vector bool short

4 unsigned int vector unsigned int

4 signed int vector signed int

4 unsigned int vector bool int

4 float vector float

Register Usage Conventions

The PowerPC Vector Extension architecture adds 32 vector registers (VRs). Each VR is 128 bits wide.

There is also a 32-bit special purpose register (VRSAVE), and a 32-bit vector status and control register

(VSCR). The VR conventions table shows how VRs are used:

 Table 39. VR Conventions

Register Status Use

VR0 Volatile Scratch register.

VR1 Volatile Scratch register.

VR2 Volatile First vector argument. First vector of function return value.

VR3 Volatile Second vector argument, scratch.

VR4 Volatile Third vector argument, scratch.

VR5 Volatile Fourth vector argument, scratch.

VR6 Volatile Fifth vector argument, scratch.

VR7 Volatile Sixth vector argument, scratch.

VR8 Volatile Seventh vector argument, scratch.

VR9 Volatile Eighth vector argument, scratch.

© Copyright IBM Corp. 1997, 2006 597

http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/FBFA164F824370F987256D6A006F424D
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/FBFA164F824370F987256D6A006F424D

Table 39. VR Conventions (continued)

Register Status Use

VR10 Volatile Ninth vector argument, scratch.

VR11 Volatile Tenth vector argument, scratch.

VR12 Volatile Eleventh vector argument, scratch.

VR13 Volatile Twelfth vector argument, scratch.

VR14:19 Volatile Scratch.

VR20:31 Reserved (default

mode) Non-Volatile

(extended ABI

mode)

When the default vector enabled mode is used, these registers are reserved, and

must not be used. In the extended ABI Vector enabled mode, these registers are

non-volatile and their values are preserved across function calls.

VRSAVE Reserved In the AIX ABI, VRSAVE is not used. An ABI-compliant program must not use or

alter VRSAVE.

VSCR Volatile Vector status and control register. Contains saturation status bit and non-Java

mode control bit.

The AltiVec Programming Interface Specification defines the VRSAVE register to be used as a bitmask of

vector registers in use. AIX requires that an application never modify the VRSAVE register.

Runtime Stack

The runtime stack begins quadword aligned for both 32-bit and 64-bit processes. The conventions that are

discussed in the four following paragraphs are defined for stack save areas for VRs, as well as

conventions for vector parameters passed on the stack.

VRSAVE is not recognized by the AIX ABI, and should not be used or altered by ABI-compliant programs.

The VRSAVE runtime stack save location remains reserved for compatibility with legacy compiler linkage

convention.

The alignment padding space will be either 0, 4, 8, or 12 bytes as necessary to align the vector save area

to a quadword boundary. Before use, any non-volatile VR must be saved in its VR save area on the stack,

beginning with VR31, continuing down to VR20. Local variables of vector data type that need to be saved

to memory are saved to the same stack frame region used for local variables of other types, but on a

16-byte boundary.

The stack floor remains at 220 bytes for 32-bit mode and 288 bytes for 64-bit mode. In the event that a

function needs to save non-volatile general purpose resgisters (GPRs), floating-point registers (FPRs), and

VRs totaling more than the respective mode’s floor size, the function must first atomically update the stack

pointer prior to saving the non-volatile VRs.

Any vector variables within the local variable region must be aligned to a 16-byte boundary.

The 32-bit runtime stack looks like the following (pre-prolog):

 Table 40. Example of a 32-bit Runtime Stack

Sp -> Back chain

FPR31 (if needed)

...

-nFPRs*8 ...

GPR31 (if needed)

598 Assembler Language Reference

Table 40. Example of a 32-bit Runtime Stack (continued)

...

-nGPRs*4 ...

VRSAVE

Alignment padding (to 16-byte boundary)

VR31 (if needed)

-nVRs*16 ...

-220(max) ...

Local variables

NF+24 Parameter List Area

NF+20 Saved TOC

NF+16 Reserved (binder)

NF+12 Reserved (compiler)

NF+8 Saved LR

NF+4 Saved CR

NF -> Sp (after NF-newframe allocated)

The 64-bit runtime stack looks like the following (pre-prolog):

 Table 41. Example of a 64-bit Runtime Stack

Sp -> Back chain

FPR31 (if needed)

...

-nFPRs*8 ...

GPR31 (if needed)

...

-nGPRs*8 ...

VRSAVE

Alignment padding (to 16-byte boundary)

VR31 (if needed)

-nVRs*16 ...

-288(max) ...

Local variables

NF+48 Parameter List Area

NF+40 Saved TOC

NF+32 Reserved (binder)

NF+24 Reserved (compiler)

NF+16 Saved LR

NF+8 Saved CR

NF -> Sp (after NF-newframe allocated)

Appendix I. Vector Processor 599

Vector Register Save and Restore Procedures

The vector save and restore functions listed below are provided by the system (libc) as an aid to language

compilers.

On entry, r0 must contain the 16-byte aligned address just above the vector save area. r0 is left

unchanged, but r12 is modified.

_savev20:

addi r12, r0,

-192

stvx v20, r12, r0 # save v20

_savev21:

addi r12, r0, -176

stvx v21, r12, r0 # save v21

_savev22:

addi r12, r0, -160

stvx v22, r12, r0 # save v22

_savev23:

addi r12, r0, -144

stvx v23, r12, r0 # save v23

_savev24:

addi r12, r0, -128

stvx v24, r12, r0 # save v24

_savev25:

addi r12, r0, -112

stvx v25, r12, r0 # save v25

_savev26:

addi r12, r0, -96

stvx v26, r12, r0 # save v26

_savev27:

addi r12, r0, -80

stvx v27, r12, r0 # save v27

_savev28:

addi r12, r0, -64

stvx v28, r12, r0 # save v28

_savev29:

addi r12, r0, -48

stvx v29, r12, r0 # save v29

_savev30:

addi r12, r0, -32

stvx v30, r12, r0 # save v30

_savev31:

addi r12, r0, -16

stvx v31, r12, r0 # save v31

br

_restv20:

addi r12, r0, -192

lvx v20, r12, r0 # restore v20

_restv21:

addi r12, r0, -176

lvx v21, r12, r0 # restore v21

_restv22:

addi r12, r0, -160

lvx v22, r12, r0 # restore v22

_restv23:

addi r12, r0, -144

600 Assembler Language Reference

lvx v23, r12, r0 # restore v23

_restv24:

addi r12, r0, -128

lvx v24, r12, r0 # restore v24

_restv25:

addi r12, r0, -112

lvx v25, r12, r0 # restore v25

_restv26:

addi r12, r0, -96

lvx v26, r12, r0 # restore v26

_restv27:

addi r12, r0, -80

lvx v27, r12, r0 # restore v27

_restv28:

addi r12, r0, -64

lvx v28, r12, r0 # restore v28

_restv29:

addi r12, r0, -48

lvx v29, r12, r0 # restore v29

_restv30:

addi r12, r0, -32

lvx v30, r12, r0 # restore v30

_restv31:

addi r12, r0, -16

lvx v31, r12, r0 # restore v31

br

Procedure Calling Sequence

The following sections describe the procedure calling conventions with respect to argument passing and

return values.

Argument Passing

The first twelve vector parameters to a function are placed in registers VR2 through VR13. Unnecessary

vector parameter registers contain undefined values upon entry to the function.Non-variable length

argument list vector parameters are not shadowed in GPRs. Any additional vector parameters (13th and

beyond) are passed through memory on the program stack, 16-byte aligned, in their appropriate mapped

location within the parameter region corresponding to their position in the parameter list.

For variable length argument lists, va_list continues to be a pointer to the memory location of the next

parameter. When va_arg() accesses a vector type, va_list must first be aligned to a 16-byte boundary.

The receiver and consumer of a variable length argument list is responsible for performing this alignment

prior to retrieving the vector type parameter.

A non-packed structure or union passed by value that has a vector member anywhere within it will be

aligned to a 16-byte boundary on the stack.

A function that takes a variable length argument list has all parameters mapped in the argument area

ordered and aligned according to their type. The first eight words (32-bit) or doublewords (64-bit) of a

variable length argument list are shadowed in GPRs r3 through r10. This includes vector parameters. The

tables below illustrate variable length argument list parameters:

 Table 42. 32-bit Variable Length Argument List Parameters (post-prolog)

OldSp -> Back chain (bc)

Appendix I. Vector Processor 601

Table 42. 32-bit Variable Length Argument List Parameters (post-prolog) (continued)

-nFPRs*8 ...

-nGPRs*4 ...

-220(max) VRSAVE

Local variables

SP+56 ...

SP+52 PW7 Vector Parm 2b, shadow in GPR10

SP+48 PW6 Vector Parm 2a, shadow in GPR9

SP+44 PW5 Vector Parm 1d, shadow in GPR8

SP+40 PW4 Vector Parm 1c, shadow in GPR7

SP+36 PW3 Vector Parm 1b, shadow in GPR6

SP+32 PW2 Vector Parm 1a, shadow in GPR5

SP+28 PW1

SP+24 PW0

SP+20 Saved TOC

SP+16 Reserved (binder)

SP+12 Reserved (compiler)

SP+8 Saved LR

SP+4 Saved CR

SP -> OldSP

 Table 43. 64-bit variable length argument list parameters (post-prolog)

OldSp -> Back chain (bc)

-nFPRs*8 ...

-nGPRs*8 ...

-288(max) VRSAVE

Local variables

SP+112 ...

SP+104 PW7 Vector Parm 4c, 4d, shadow in GPR10

SP+96 PW6 Vector Parm 4a, 4b, shadow in GPR9

SP+88 PW5 Vector Parm 3c, 3d, shadow in GPR8

SP+80 PW4 Vector Parm 3a, 3b, shadow in GPR7

SP+72 PW3 Vector Parm 2c, 2d, shadow in GPR6

SP+64 PW2 Vector Parm 2a, 2b, shadow in GPR5

SP+56 PW1 Vector Parm 1c, 1d, shadow in GPR4

SP+48 PW0 Vector Parm 1a, 1b, shadow in GPR3

SP+40 Saved TOC

SP+32 Reserved (binder)

SP+24 Reserved (compiler)

SP+16 Saved LR

SP+8 Saved CR

SP -> OldSP

602 Assembler Language Reference

Function Return Values

Functions that have a return value declared as a vector data type place the return value in VR2. Any

function that returns a vector type or has vector parameters requires a function prototype. This avoids the

compiler needing to shadow the VRs in GPRs for the general case.

Traceback Tables

The traceback table information is extended to provide the information necessary to determine the

presence of vector state in the stack frame for a function. One of the unused bits from the spare3 field is

claimed to indicate that the traceback table contains vector information. So the following changes are

made to the mandatory traceback table information:

 unsigned spare3:1; /* Spare bit */

unsigned has_vec:1; /* Set if optional vector info is present */

If the has_vec field is set, then the optional parminfo field is present as well as the following optional

extended information. The new optional vector information, if present, would follow the other defined

optional fields and would be after the alloca_reg optional information.

 unsigned vr_saved:6; /* Number of non-volatile vector registers saved */

/* first register saved is assumed to be */

/* 32 - vr_saved */

unsigned saves_vrsave:1; /* Set if vrsave is saved on the stack */

unsigned has_varargs:1; /* Set if the function has a variable length argument list */

unsigned vectorparms:7; /* number of vector parameters if not variable */

/* argument list. Otherwise the mandatory field*/

/* parmsonstk field must be set */

unsigned vec_present:1; /* Set if routine performs vector instructions */

unsigned char vecparminfo[4]; /* bitmask array for each vector parm in */

/* order as found in the original parminfo, */

/* describes the type of vector: */

/* b ’00 = vector char */

/* b ’01 = vector short */

/* b ’10 = vector int */

/* b ’11 = vector float */

If vectorparms is non-zero, then the parminfo field is interpreted as:

/* b ’00’ = fixed parameter */

/* b ’01’ = vector parameter */

/* b ’10’ = single-precision float parameter */

/* b ’11’ = double-precision float parameter */

Debug Stabstrings

New stabstring codes are defined to specify the location of objects in VRs. A code of ″X″ describes a

parameter passed by value in the specified vector register. A code of ″x″ describes a local variable

residing in the specified VR. The existing storage classes of C_LSYM (local variable on stack), C_PSYM

(parameter on stack) are used for vector data types in memory where the corresponding stabstrings use

arrays of existing fundamental types to represent the data. The existing storage classes of C_RPSYM

(parameter in register), and C_RSYM (variable in register) are used in conjunction with the new stabstring

codes ’X’ and ’x’ respectively to represent vector data types in vector registers.

Appendix I. Vector Processor 603

Legacy ABI Compatibility and Interoperability

Due to the nature of interfaces such as setjmp(), longjmp(), sigsetjmp(), siglongjmp(), _setjmp(),

_longjmp(), getcontext(), setcontext(), makecontext(), and swapcontext(), which must save and restore

non-volatile machine state, there is risk introduced when considering dependencies between legacy and

vector extended ABI modules. To complicate matters, the setjmp family of functions in libc reside in a

static member of libc, which means every existing AIX binary has a statically bound copy of the setjmp

and others that existed with the version of AIX it was linked against. Furthermore, existing AIX binaries

have jmpbufs and ucontext data structure definitions that are insufficient to house any additional

non-volatile vector register state.

Any cases where previous versions of modules and new modules interleave calls, or call-backs, where a

previous version of a module could perform a longjmp() or setcontext() bypassing normal linkage

convention of a vector extended module, there is risk of compromising non-volatile VR state.

For this reason, while the AIX ABI defines non-volatile VRs, the default compilation mode when using

vectors (AltiVec) in AIX compilers will be to not use any of the non-volatile VRs. This results in a default

compilation environment that safely allows exploitation of vectors (AltiVec) while introducing no risk with

respect to interoperability with previous-version binaries.

For applications where interoperability and module dependence is completely known, an additional

compilation option can be enabled that allows the use of non-volatile VRs. This mode should only be used

when all dependent previous-version modules and behaviors are fully known and understood as either

having no dependence on functions such as setjmp(), sigsetjmp(), _setjmp(), or getcontext(), or

ensuring that all module transitions are performed through normal subroutine linkage convention, and that

no call-backs to an upstream previous-version module are used.

This approach allows for a completely safe mode of exploitation of vectors (AltiVec), which is the default

mode, while also allowing for explicit tuning and further optimization with use of non-volatile registers in

cases where the risks are known. It also provides a flexible ABI and architecture for the future.

The default AltiVec compilation environment predefines __VEC__, as described in the AltiVec

Programming Interface Manual.

When the option to use non-volatile VRs is enabled, the compilation environment must also predefine

__EXTABI__. This should also be defined when you are compiling or recompiling non-vector enabled

modules that will interact with vector-enabled modules that are enabled to utilize non-volatile VRs.

604 Assembler Language Reference

Appendix J. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that only

that IBM product, program, or service may be used. Any functionally equivalent product, program, or

service that does not infringe any IBM intellectual property right may be used instead. However, it is the

user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.
IBM may have patents or pending patent applications covering subject matter described in this document.

The furnishing of this document does not give you any license to these patents. You can send license

inquiries, in writing, to:
IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:
IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer

of express or implied warranties in certain transactions, therefore, this statement may not apply to you.
This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication. IBM

may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this one)

and (ii) the mutual use of the information which has been exchanged, should contact:
IBM Corporation
Dept. LRAS/Bldg. 905
11501 Burnet Road
Austin, TX 78758-3498
U.S.A.
Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.
The licensed program described in this document and all licensed material available for it are provided by

IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any

equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

© Copyright IBM Corp. 1997, 2006 605

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs in

any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. You may copy, modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application programs conforming to

IBM’s application programming interfaces.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

 AIX

 AIX 5L

 IBM

 POWER

 POWER4

 POWER5

 POWER Architecture

 PowerPC

 PowerPC 601

 PowerPC 603

 PowerPC Architecture

 RS/6000

UNIX is a registered trademark of The Open Group in the United States and other countries.

Portions of Chapter 8 are used with the permission of Motorola, Inc.

Other company, product, or service names may be the trademarks or service marks of others.

606 Assembler Language Reference

Index

Special characters
.align pseudo-op 466

.bb pseudo-op 467

.bc pseudo-op 468

.bf pseudo-op 468

.bi pseudo-op 469

.bs pseudo-op 469

.byte pseudo-op 470

.comm pseudo-op 471

.csect pseudo-op 473

.double pseudo-op 475

.drop pseudo-op 476

.dsect pseudo-op 477

.eb pseudo-op 479

.ec pseudo-op 479

.ef pseudo-op 480

.ei pseudo-op 480

.es pseudo-op 481

.extern pseudo-op 481

.file pseudo-op 482

.float pseudo-op 483

.function pseudo-op 483

.globl pseudo-op 484

.hash pseudo-op 485

.lcomm pseudo-op 486

.lglobl pseudo-op 487

.line pseudo-op 488

.llong pseudo-op 489

.long pseudo-op 489

.machine pseudo-op 490

.org pseudo-op 493

.quad pseudo-op 493

.rename pseudo-op 495

.set pseudo-op 496

.short pseudo-op 497

.source pseudo-op 498

.space pseudo-op 499

.stabx pseudo-op 499

.string pseudo-op 500

.tbtag pseudo-op 501

.tc pseudo-op 503

.toc pseudo-op 504

.tocof pseudo-op 504

.using pseudo-op 505

.vbyte pseudo-op 509

.weak pseudo-op 510

.xline pseudo-op 511

Numerics
32-bit applications

POWER family 12

PowerPC 12

32-bit fixed-point rotate and shift instructions
extended mnemonics 107

64-bit fixed-point rotate and shift instructions
extended mnemonics 110

A
a (Add) instruction 126

abs (Absolute) instruction 123

accessing data through the TOC 83

add (Add) instruction 124

addc (Add Carrying) instruction 126

adde (Add Extended) instruction 128

addi (Add Immediate) instruction 130

addic (Add Immediate Carrying) instruction 131

addic. (Add Immediate Carrying and Record)

instruction 132

addis (Add Immediate Shifted) instruction 133

addme (Add to Minus One Extended) instruction 135

address location
making a translation look-aside buffer for

using tlbi (Translation Look-Aside Buffer Invalidate

Entry) instruction 451

using tlbie (Translation Look-Aside Buffer

Invalidate Entry) instruction 451

addresses
adding two general-purpose registers

using add (Add) instruction 124

using cax (Compute Address) instruction 124

calculating from an offset less than 32KB
using addi (Add Immediate) instruction 130

using cal (Compute Address Lower)

instruction 130

calculating from an offset more than 32KB
using addis (Add Immediate Shifted)

instruction 133

using cau (Compute Address Upper)

instruction 133

addressing
absolute 47

absolute immediate 47

explicit-based 48

implicit-based 50

location counter 51

pseudo-ops 464

relative immediate 48

addze (Add to Zero Extended) instruction 137

ae (Add Extended) instruction 128

ai (Add Immediate) instruction 131

ai. (Add Immediate and Record) instruction 132

alias
creating for an illegal name in syntax

using .rename pseudo-op 495

ame (Add to Minus One Extended) instruction 135

and (AND) instruction 138

andc (AND with Complement) instruction 140

andi. (AND Immediate) instruction 141

andil. (AND Immediate Lower) instruction 141

andis. (AND Immediate Shifted) instruction 142

andiu. (AND Immediate Upper) instruction 142

Appendix H: Value Definitions 595

architecture
multiple hardware support 1

© Copyright IBM Corp. 1997, 2006 607

architecture (continued)
POWER and PowerPC 11

as command 53

flags 53

assembler
features 1

interpreting a listing 59

passes 57

assembling
program 53

with the cc command 56

aze (Add to Zero Extended) instruction 137

B
b (Branch) instruction 143

base address
specifying

using .using pseudo-op 505

base register
assigning a number for

using .using pseudo-op 505

stop using specified register as
using .drop pseudo-op 476

bbf[l][a] extended mnemonic 90

bbfc[l] extended mnemonic 90

bbfr[l] extended mnemonic 90

bbt[l][a] extended mnemonic 90

bbtc[l] extended mnemonic 90

bbtr[l] extended mnemonic 90

bc (Branch Conditional) instruction 144

bcc (Branch Conditional to Count Register)

instruction 147

bcctr (Branch Conditional to Count Register)

instruction 147

bclr (Branch Conditional Register) instruction 149

bcr (Branch Conditional Register) instruction 149

bctr[l] extended mnemonic 90, 91

bdn[l][a] extended mnemonic 90

bdnr[l] extended mnemonic 90

bdnz[l][a] extended mnemonic 90

bdnzf[l][a] extended mnemonic 91

bdnzflr[l] extended mnemonic 91

bdnzt[l][a] extended mnemonic 91

bdnztlr[l] extended mnemonic 91

bdz[l][a] extended mnemonic 90

bdzf[l][a] extended mnemonic 91

bdzflr[l] extended mnemonic 91

bdzlr[l] extended mnemonic 90

bdzr[l] extended mnemonic 90

bdzt[l][a] extended mnemonic 91

bdztlr[l] extended mnemonic 91

bf[l][a] extended mnemonic 90

bfctr[l] extended mnemonic 91

bflr[l] extended mnemonic 91

bl (Branch and Link) instruction 143

blr[l] extended mnemonic 91

br[l] extended mnemonic 90

branch instructions
extended mnemonics of 89

branch prediction
extended mnemonics for 93

bt[l][a] extended mnemonic 90

btctr[l] extended mnemonic 91

btlr[l] extended mnemonic 91

C
caches

using clcs (Cache Line Compute Size)

instruction 152

using clf (Cache Line Flush) instruction 153

using cli (Cache Line Invalidate) instruction 155

using dcbf (Data Cache Block Flush)

instruction 171

using dcbi (Data Cache Block Invalidate)

instruction 172

using dcbst (Data Cache Block Store)

instruction 173

using dcbt (Data Cache Block Touch)

instruction 175

using dcbtst (Data Cache Block Touch for Store)

instruction 178

using dcbz (Data Cache Block Set to Zero)

instruction 179

using dclst (Data Cache Line Store) instruction 180

using dclz (Data Cache Line Set to Zero)

instruction 179

using dcs (Data Cache Synchronize) instruction 447

using icbi (Instruction Cache Block Invalidate)

instruction 242

using ics (Instruction Cache Synchronize)

instruction 243

cal (Compute Address Lower) instruction 130

called routines 77

calling conventions
support for

pseudo-ops 465

calling routines 77

cau (Compute Address Upper) instruction 133

cax (Compute Address) instruction 124

cc command
assembling and linking with 56

character set 27

character values
assembling into consecutive bytes

using .string pseudo-op 500

clcs (Cache Line Compute Size) instruction 152

clf (Cache Line Flush) instruction 153

cli (Cache Line Invalidate) instruction 155

clrldi extended mnemonic 112

clrlsldi extended mnemonic 112

clrlwi extended mnemonic 109

clrrdi extended mnemonic 112

clrrwi extended mnemonic 109

clrslwi extended mnemonic 109

cmp (Compare) instruction 156

cmpi (Compare Immediate) instruction 157

cmpl (Compare Logical) instruction 159

cmpli (Compare Logical Immediate) instruction 160

cmplw extended mnemonic 98

608 Assembler Language Reference

cmplwi extended mnemonic 98

cmpw extended mnemonic 98

cmpwi extended mnemonic 98

cntlz (Count Leading Zeros) instruction 162

cntlzd (Count Leading Zeros Double Word)

Instruction 161

cntlzw (Count Leading Zeros Word) instruction 162

common blocks
defining

using .comm pseudo-op 471

identifying the beginning of
using .bc pseudo-op 468

identifying the end of
using .ec pseudo-op 479

Condition Register 167

copying bit 3 from the Fixed-Point Exception Register

into
using mcrxr (Move to Condition Register from

XER) instruction 298

copying general-purpose register contents into
using mtcrf (Move to Condition Register Fields)

instruction 308

copying Summary Overflow bit from the Fixed-Point

Exception Register into
using mcrxr (Move to Condition Register from

XER) instruction 298

copying the Carry bit from the Fixed-Point Exception

Register into
using mcrxr (Move to Condition Register from

XER) instruction 298

copying the Overflow bit from the Fixed-Point

Exception Register into
using mcrxr (Move to Condition Register from

XER) instruction 298

Condition Register bit 163

placing ANDing and the complement in a Condition

Register bit
using crandc (Condition Register AND with

Complement) instruction 164

placing complemented result of ANDing two

Condition Register bits in
using crnand (Condition Register NAND)

instruction 166

placing complemented result of XORing two

Condition Register bits in
using creqv (Condition Register Equivalent)

instruction 165

placing result of ORing and complement of Condition

Register bit in
using crorc (Condition Register OR with

Complement) instruction 169

placing result of ORing two Condition Register bits in
using cror (Condition Register OR)

instruction 168

placing result of XORing two Condition Register bits

in
using crxor (Condition Register XOR)

instruction 170

Condition Register field
copying the contents from one into another

using mcrf (Move Condition Register Field)

Instruction 296

condition register logical instructions
extended mnemonics 96

constants 35

control sections
giving a storage class to

using .csect pseudo-op 473

giving an alignment to
using .csect pseudo-op 473

grouping code into
using .csect pseudo-op 473

grouping data into
using .csect pseudo-op 473

naming
using .csect pseudo-op 473

count number of one bits in doubleword 338

Count Register
branching conditionally to address in

using bcc (Branch Conditional to Count Register)

instruction 147

using bcctr (Branch Conditional to Count Register)

instruction 147

CPU ID
determination 5

crand (Condition Register AND) instruction 163

crandc (Condition Register AND with Complement)

instruction 164

crclr extended mnemonic 96

creqv (Condition Register Equivalent) instruction 165

crmove extended mnemonic 96

crnand (Condition Register NAND) instruction 166

crnor (Condition Register) instruction 167

crnot extended mnemonic 96

cror (Condition Register OR) instruction 168

crorc (Condition Register OR with Complement)

instruction 169

cross-reference
interpreting a symbol 63

mnemonics 5

crset extended mnemonic 96

crxor (Condition Register XOR) instruction 170

D
data

accessing through the TOC 83

data alignment
pseudo-ops 464

data definition
pseudo-ops 464

dcbf (Data Cache Block Flush) instruction 171

dcbi (Data Cache Block Invalidate) instruction 172

dcbst (Data Cache Block Store) instruction 173

dcbt (Data Cache Block Touch) instruction 175

dcbtst (Data Cache Block Touch for Store)

instruction 178

dcbz (Data Cache Block Set to Zero) instruction 179

dclst (Data Cache Line Store) instruction 180

Index 609

dclz (Data Cache Line Set to Zero) instruction 179

dcs (Data Cache Synchronize) instruction 447

debug traceback tags
defining

using .tbtag pseudo-op 501

debuggers
providing information to

using .stabx pseudo-op 499

symbol table entries
pseudo-ops 465

defining
table of contents

using .tocof pseudo-op 504

div (Divide) instruction 182

divd (Divide Double Word) Instruction 184

divdu (Divide Double Word Unsigned) Instruction 185

divs (Divide Short) instruction 186

divw (Divide Word) instruction 188

divwu (Divide Word Unsigned) instruction 190

double floating-point constant
storing at the next fullword location

using .double pseudo-op 475

double-precision floating-point
adding 64-bit operand to result of multiplying two

operands
using fma (Floating Multiply-Add) instruction 216,

236

using fmadd (Floating Multiply-Add)

instruction 216, 236

adding two 64-bit operands
using fa (Floating Add) instruction 203

using fadd (Floating Add Double) instruction 203

dividing 64-bit operands
using fd (Floating Divide) instruction 213

using fdiv (Floating Divide Double)

instruction 213

multiplying two 64-bit operands
using fm (Floating Multiply) instruction 221

using fmul (Floating Multiply Double)

instruction 221

multiplying two 64-bit operands and adding to 64-bit

operand
using fnma (Floating Negative Multiply-Add)

instruction 226

using fnmadd (Floating Negative Multiply-Add

Double) instruction 226

multiplying two 64-bit operands and subtracting 64-bit

operand
using fnms (Floating Negative Multiply-Subtract)

instruction 228

using fnmsub (Floating Negative Multiply-Subtract

Double) instruction 228

rounding 64-bit operand to single precision
using frsp (Floating Round to Single Precision)

instruction 233

subtracting 64-bit operand from result of multiplying

two 64-bit operands
using fms (Floating Multiply-Subtract)

instruction 219

using fmsub (Floating Multiply-Subtract Double)

instruction 219

double-precision floating-point (continued)
subtracting 64-bit operands

using fs (Floating Subtract) instruction 240

using fsub (Floating Subtract Double)

instruction 240

doz (Difference or Zero) instruction 191

dozi (Difference or Zero Immediate) instruction 193

dummy control sections
identifying the beginning of

using .dsect pseudo-op 477

identifying the continuation of
using .dsect pseudo-op 477

E
eciwx (External Control In Word Indexed)

instruction 194

ecowx (External Control Out Word Indexed)

instruction 195

eieio (Enforce In-Order Execution of I/O)

instruction 196

epilogs 70

actions 71

eqv (Equivalent) instruction 198

error
messages 513

error conditions
detection 6

expressions 39

assembling into a TOC entry
using .tc pseudo-op 503

assembling into consecutive bytes 470

assembling into consecutive double-words
using .llong pseudo-op 489

assembling into consecutive fullwords
using .long pseudo-op 489

assembling into consecutive halfwords
using .short pseudo-op 497

assembling the value into consecutive bytes
using .vbyte pseudo-op 509

facilitating the use of local symbols in
using .tocof pseudo-op 504

setting a symbol equal in type and value to
using .set pseudo-op 496

extended mnemonics
for branch prediction 93

of 32-bit fixed-point rotate and shift instructions 107

of 64-bit fixed-point rotate and shift instructions 110

of branch instructions 89

of condition register logical instructions 96

of fixed-point arithmetic instructions 97

of fixed-point compare instructions 98

of fixed-point load instructions 99

of fixed-point logical instructions 100

of fixed-point trap instructions 100

of moving from or to special-purpose registers 102

external symbol definitions
pseudo-ops 464

extldi extended mnemonic 112

extlwi extended mnemonic 109

extrdi extended mnemonic 112

610 Assembler Language Reference

extrwi extended mnemonic 109

exts (Extend Sign) instruction 200

extsb (Extend Sign Byte) instruction 199

extsh (Extend Sign Halfword) instruction 200

extsw (Extend Sign Word) Instruction 197

F
fa (Floating Add) instruction 203

fabs (Floating Absolute Value) instruction 202

fadd (Floating Add Double) instruction 203

fadds (Floating Add Single) instruction 203

fcfid (Floating Convert from Integer Double Word)

Instruction 205

fcir (Floating Convert Double to Integer with Round)

instruction 210

fcirz (Floating Convert Double to Integer with Round to

Zero) instruction 212

fcmpo (Floating Compare Ordered) instruction 206

fcmpu (Floating Compare Unordered) instruction 207

fctid (Floating Convert to Integer Double Word)

Instruction 208

fctidz (Floating Convert to Integer Double Word with

Round toward Zero) Instruction 209

fctiw (Floating Convert to Integer Word) instruction 210

fctiwz (Floating Convert to Integer Word with Round to

Zero) instruction 212

fd (Floating Divide) instruction 213

fdiv (Floating Divide Double) instruction 213

fdivs (Floating Divide Single) instruction 213

fixed-point arithmetic instructions
extended mnemonics 97

fixed-point compare instructions
extended mnemonics 98

fixed-point load instructions 99

fixed-point logical instructions
extended mnemonics 100

fixed-point trap instructions 100

floating-point constants
storing at the next fullword location

using .float pseudo-op 483

floating-point numbers 24

floating-point registers
calculating a square root

using fsqrt (Floating Square Root)

instruction 231, 235

comparing contents of two
using fcmpo (Floating Compare Ordered)

instruction 206

using fcmpu (Floating Compare Unordered)

instruction 207

converting 64-bit double-precision floating-point

operand
using fcir (Floating Convert to Integer with Round)

instruction 210

using fcirz (Floating Convert Double to Integer

with Round to Zero) instruction 212

using fctiw (Floating Convert to Integer Word)

instruction 210

using fctiwz (Floating Convert to Integer Word

with Round to Zero) instruction 212

floating-point registers (continued)
converting contents to single precision

stfsx (Store Floating-Point Single Indexed)

instruction 417

using stfs (Store Floating-Point Single)

instruction 414

using stfsu (Store Floating-Point Single with

Update) instruction 415

using stfsux (Store Floating-Point Single with

Update Indexed) instruction 416

copying contents into Floating-Point Status and

Control Register
using mtfsf (Move to FPSCR Fields)

instruction 311

interpreting the contents of 25

loading converted double-precision floating-point

number into
using lfs (Load Floating-Point Single)

instruction 262

using lfsu (Load Floating-Point Single with

Update) instruction 263

using lfsux (Load Floating-Point Single with

Update Indexed) instruction 264

loading doubleword of data from memory into
using lfd (Load Floating-Point Double)

instruction 253

using lfdu (Load Floating-Point Double with

Update) instruction 254

using lfdux (Load Floating-Point Double with

Update Indexed) instruction 255

using lfdx (Load Floating-Point Double Indexed)

instruction 256

loading quadword of data from memory into
using lfq (Load Floating-Point Quad)

instruction 257

using lfqu (Load Floating-Point Quad with Update)

instruction 258

using lfqux (Load Floating-Point Quad with Update

Indexed) instruction 260

using lfqx (Load Floating-Point Quad Indexed)

instruction 261

moving contents of to another
using fmr (Floating Move Register)

instruction 218

negating absolute contents of
using fnabs (Floating Negative Absolute Value)

instruction 224

negating contents of
using fneg (Floating Negate) instruction 225

storing absolute value of contents into another
using fabs (Floating Absolute Value)

instruction 202

storing contents into doubleword storage
using stfd (Store Floating-Point Double)

instruction 405

using stfdu (Store Floating-Point Double with

Update) instruction 406

using stfdux (Store Floating-Point Double with

Update Indexed) instruction 407

using stfdx (Store Floating-Point Double Indexed)

instruction 408

Index 611

floating-point registers (continued)
storing contents into quadword storage

using stfq (Store Floating-Point Quad)

instruction 410

using stfqu (Store Floating-Point Quad with

Update) instruction 411

using stfqux (Store Floating-Point Quad with

Update Indexed) instruction 412

using stfqx (Store Floating-Point Quad Indexed)

instruction 413

storing contents into word storage
using stfiwx (Store Floating-Point as Integer word

Indexed) instruction 409

Floating-Point Status and Control Register
copying an immediate value into a field of

using mtfsfi (Move to FPSCR Field Immediate)

instruction 313

copying the floating-point register contents into
using mtfsf (Move to FPSCR Fields)

instruction 311

filling the upper 32 bits after loading
using mffs (Move from FPSCR) instruction 299

loading contents into a floating-point register
using mffs (Move from FPSCR) instruction 299

setting a specified bit to 1
using mtfsb1 (Move to FPSCR Bit 1)

instruction 310

setting a specified bit to zero
using mtfsb0 (Move to FPSCR Bit 0)

instruction 309

Floating-Point Status and Control Register field
copying the bits into the Condition Register

using mcrfs (Move to Condition Register from

FPSCR) instruction 296

fm (Floating Multiply) instruction 221

fma (Floating Multiply-Add) instruction 216

fmadd (Floating Multiply-Add Double) instruction 216

fmadds (Floating Multiply-Add Single) instruction 216

fmr (Floating Move Register) instruction 218

fms (Floating Multiply-Subtract) instruction 219

fmsub (Floating Multiply-Subtract Double)

instruction 219

fmsubs (Floating Multiply-Subtract Single)

instruction 219

fmul (Floating Multiply) instruction 221

fnabs (Floating Negative Absolute Value)

instruction 224

fneg (Floating Negate) instruction 225

fnma (Floating Negative Multiply-Add) instruction 226

fnmadd (Floating Negative Multiply-Add Double)

instruction 226

fnmadds (Floating Negative Multiply-Add Single)

instruction 226

fnms (Floating Negative Multiply-Subtract)

instruction 228

fnmsub (Floating Negative Multiply-Subtract Double)

instruction 228

fnmsubs (Floating Negative Multiply-Subtract Single)

instruction 228

fres (Floating Reciprocal Estimate Single)

instruction 231

frsp (Floating Round to Single Precision)

instruction 233

frsqrte (Floating Reciprocal Square Root Estimate)

instruction 235

fs (Floating Subtract) instruction 240

fsel (Floating-Point Select) instruction 236

fsqrt (Floating Square Root, Double-Precision)

Instruction 237

fsqrts (Floating Square Root Single) Instruction 239

fsub (Floating Subtract Double) instruction 240

fsubs (Floating Subtract Single) instruction 240

functions
identifying

using .function pseudo-op 483

identifying the beginning of
using .bf pseudo-op 468

identifying the end of
using .ef pseudo-op 480

G
general-purpose registers

adding complement from -1 with carry
using sfme (Subtract from Minus One Extended)

instruction 442

using subfme (Subtract from Minus One

Extended) instruction 442

adding contents to the value of the Carry bit
using adde (Add Extended) instruction 128

using ae (Add Extended) instruction 128

adding contents with 16-bit signed integer
using addic (Add Immediate Carrying)

instruction 131

using ai (Add Immediate) instruction 131

adding contents with Carry bit and -1
using addme (Add to Minus One Extended)

instruction 135

using ame (Add to Minus One Extended)

instruction 135

adding immediate value to contents of
using addic. (Add Immediate Carrying and

Record) instruction 132

using ai. (Add Immediate and Record)

instruction 132

adding the complement of the contents with the

Carry bit
using sfze (Subtract from Zero Extended)

instruction 444

using subfze (Subtract from Zero Extended)

instruction 444

adding the contents of
using addc (Add Carrying) instruction 126

adding zero and the value of the Carry bit to the

contents of
using addze (Add to Zero Extended)

instruction 137

using aze (Add to Zero Extended)

instruction 137

612 Assembler Language Reference

general-purpose registers (continued)
ANDing a generated mask with the rotated contents

of
using rlinm (Rotated Left Immediate Then AND

with Mask) instruction 354

using rlnm (Rotate Left Then AND with Mask)

instruction 356

using rlwinm (Rotated Left Word Immediate Then

AND with Mask) instruction 354

using rlwnm (Rotate Left Word Then AND with

Mask) instruction 356

ANDing an immediate value with
using andi. (AND Immediate) instruction 141

using andil. (AND Immediate Lower)

instruction 141

ANDing contents with the complement of another
using andc (AND with Complement)

instruction 140

ANDing logically the contents of
using and (AND) instruction 138

ANDing most significant 16 bits with a 16-bit

unsigned integer
using andis. (AND Immediate Shifted)

instruction 142

using andiu. (AND Immediate Upper)

instruction 142

changing the arithmetic sign of the contents of
using neg (Negate) instruction 331

comparing contents algebraically
using cmp (Compare) instruction 156

comparing contents logically
using cmpl (Compare Logical) instruction 159

comparing contents with unsigned integer logically
using cmpli (Compare Logical Immediate)

instruction 160

comparing contents with value algebraically
using cmpi (Compare Immediate) instruction 157

computing difference between contents and signed

16-bit integer
using dozi (Difference or Zero Immediate)

instruction 193

computing difference between contents of two
using doz (Difference or Zero) instruction 191

copying bit 0 of halfword into remaining 16 bits
using lha (Load Half Algebraic) instruction 266

copying bit 0 of halfword into remaining 16 bits of
using lhau (Load Half Algebraic with Update)

instruction 267

using lhaux (Load Half Algebraic with Update

Indexed) instruction 268

using lhax (Load Half Algebraic Indexed)

instruction 269

copying Condition Register contents into
using mfcr (Move from Condition Register)

instruction 298

using mfocrf (Move from One Condition Register

Field) instruction 301

using mtocrf (Move to One Condition Register

Field) instruction 314

general-purpose registers (continued)
copying contents into a special-purpose register

using mtspr (Move to Special-Purpose Register)

instruction 315

copying contents into the Condition Register
using mtcrf (Move to Condition Register Fields)

instruction 308

copying special-purpose register contents into
using mfspr (Move from Special-Purpose

Register) instruction 303

copying the Machine State Register contents into
using mfmsr (Move from Machine State Register)

instruction 300

dividing by contents of
using div (Divide) instruction 182

using divs (Divide Short) instruction 186

generating mask of ones and zeros for loading into
using maskg (Mask Generate) instruction 293

inserting contents of one into another under bit-mask

control
maskir (Mask Insert from Register)

instruction 294

loading consecutive bytes from memory into

consecutive
using lsi (Load String Immediate) instruction 280

using lswi (Load String Word Immediate)

instruction 280

using lswx (Load String Word Indexed)

instruction 282

using lsx (Load String Indexed) instruction 282

loading consecutive bytes into
using lscbx (Load String and Compare Byte

Indexed) instruction 278

loading consecutive words into several
using lm (Load Multiple) instruction 276

using lmw (Load Multiple Word) instruction 276

loading word of data from memory into
using lu (Load with Update) instruction 289

using lwzu (Load Word with Zero Update)

instruction 289

loading word of data into
using lux (Load with Update Indexed)

instruction 291

using lwzux (Load Word and Zero with Update

Indexed) instruction 291

using lwzx (Load Word and Zero Indexed)

instruction 292

using lx (Load Indexed) instruction 292

logically complementing the result of ANDing the

contents of two
using nand (NAND) instruction 330

logically complementing the result of ORing the

contents of two
using nor (NOR) instruction 333

logically ORing the content of two
using or (OR) instruction 334

logically ORing the contents with the complement of

the contents of
using orc (OR with Complement) instruction 335

Index 613

general-purpose registers (continued)
merging a word of zeros with the MQ Register

contents
using srlq (Shift Right Long with MQ)

instruction 392

merging rotated contents with a word of 32 sign bits
using sra (Shift Right Algebraic) instruction 380

using srai (Shift Right Algebraic Immediate)

instruction 382

using sraiq (Shift Right Algebraic Immediate with

MQ) instruction 377

using sraq (Shift Right Algebraic with MQ)

instruction 378

using sraw (Shift Right Algebraic Word)

instruction 380

using srawi (Shift Right Algebraic Word

Immediate) instruction 382

merging rotated contents with the MQ Register

contents
using sreq (Shift Right Extended with MQ)

instruction 387

using srliq (Shift Right Long Immediate with MQ)

instruction 390

using srlq (Shift Right Long with MQ)

instruction 392

merging the rotated contents results with the MQ

Register contents
using slliq (Shift Left Long Immediate with MQ)

instruction 369

merging with masked MQ Register contents
using sleq (Shift Left Extended with MQ)

instruction 366

multiplying a word
using mulhw (Multiply High Word) instruction 321

using mulhwu (Multiply High Word Unsigned)

instruction 322

multiplying the contents by a 16-bit signed integer
using muli (Multiply Immediate) instruction 325

using mulli (Multiply Low Immediate)

instruction 325

multiplying the contents of two
using mul (Multiply) instruction 317

multiplying the contents of two general-purpose

registers into
using mullw (Multiply Low Word) instruction 326

using muls (Multiply Short) instruction 326

negating the absolute value of
using nabs (Negative Absolute) instruction 328

ORing the lower 16 bits of the contents with a 16-bit

unsigned integer
using ori (OR Immediate) instruction 336

using oril (OR Immediate Lower) instruction 336

ORing the upper 16 bits of the contents with a 16-bit

unsigned integer
using oris (OR Immediate Shifted)

instruction 337

using oriu (OR Immediate Upper) instruction 337

placing a copy of rotated contents in the MQ

Register
using srea (Shift Right Extended Algebraic)

instruction 386

general-purpose registers (continued)
placing a copy of rotated data in the MQ register

using sle (Shift Left Extended) instruction 364

placing number of leading zeros in
using cntlz (Count Leading Zeros)

instruction 162

using cntlzw (Count Leading Zeros Word)

instruction 162

placing rotated contents in the MQ Register
using sliq (Shift Left Immediate with MQ)

instruction 367

using slq (Shift Left with MQ) instruction 372

using sriq (Shift Right Immediate with MQ)

instruction 389

placing the absolute value of the contents in
using abs (Absolute) instruction 123

placing the logical AND of the rotated contents in
using srq (Shift Right with MQ) instruction 393

placing the rotated contents in the MQ register
using srq (Shift Right with MQ) instruction 393

rotating contents left
using rlmi (Rotate Left Then Mask Insert)

instruction 350

using sl (Shift Left) instruction 373

using sle (Shift Left Extended) instruction 364

using sliq (Shift Left Immediate with MQ)

instruction 367

using slliq (Shift Left Long Immediate with MQ)

instruction 369

using sr (Shift Right) instruction 395

using sra (Shift Right Algebraic) instruction 380

using sraq (Shift Right Algebraic with MQ)

instruction 378

using srea (Shift Right Extended Algebraic)

instruction 386

using sreq (Shift Right Extended with MQ)

instruction 387

using sriq (Shift Right Immediate with MQ)

instruction 389

setting remaining 16 bits to 0 after loading
using lhz (Load Half and Zero) instruction 272

setting remaining 16 bits to zero after loading
using lhzu (Load Half and Zero with Update)

instruction 273

using lhzx (Load Half and Zero Indexed)

instruction 275

setting remaining 16 bits to zero in
using lhbrx (Load Half Byte-Reverse Indexed)

instruction 270

using lhzux (Load Half and Zero with Update

Indexed) instruction 274

storing a byte into memory with the address in
using stbu (Store Byte with Update)

instruction 397

storing a byte of data into memory
using stb (Store Byte) instruction 396

using stbux (Store Byte with Update Indexed)

instruction 398

using stbx (Store Byte Indexed) instruction 399

614 Assembler Language Reference

general-purpose registers (continued)
storing a byte-reversed word of data into memory

using stbrx (Store Byte Reverse Indexed)

instruction 429

using stwbrx (Store Word Byte Reverse Indexed)

instruction 429

storing a halfword of data into memory
using sth (Store Half) instruction 418

using sthu (Store Half with Update)

instruction 420

using sthux (Store Half with Update Indexed)

instruction 421

using sthx (Store Half Indexed) instruction 422

storing a word of data into memory
using st (Store) instruction 428

using stu (Store with Update) instruction 431

using stux (Store with Update Indexed)

instruction 433

using stw (Store Word) instruction 428

using stwcx (Store Word Conditional Indexed)

instruction 430

using stwu (Store Word with Update)

instruction 431

using stwux (Store Word with Update Indexed)

instruction 433

using stwx (Store Word Indexed) instruction 434

using stx (Store Indexed) instruction 434

storing consecutive bytes from consecutive registers

into memory
using stsi (Store String Immediate)

instruction 425

using stswi (Store String Word Immediate)

instruction 425

using stswx (Store String Word Indexed)

instruction 426

using stsx (Store String Indexed) instruction 426

storing contents of consecutive registers into memory
using stm (Store Multiple) instruction 423

using stmw (Store Multiple Word) instruction 423

storing halfword of data with 2 bytes reversed into

memory
using sthbrx (Store Half Byte-Reverse Indexed)

instruction 419

subtracting contents of one from another
using sf (Subtract From) instruction 437

using subfc (Subtract from Carrying)

instruction 437

subtracting from
using subf (Subtract From) instruction 435

subtracting the contents from a 16-bit signed integer
using sfi (Subtract from Immediate)

instruction 441

using subfic (Subtract from Immediate Carrying)

instruction 441

subtracting the contents from the sum of
using sfe (Subtract from Extended) 439

using subfe (Subtract from Extended) 439

subtracting the value of a signed integer from the

contents of
using si (Subtract Immediate) instruction 362

general-purpose registers (continued)
subtracting the value of a signed integer from the

contents of (continued)
using si. (Subtract Immediate and Record)

instruction 363

translate effective address into real address and

store in
using rac (Real Address Compute)

instruction 339

using a (Add) instruction 126

using divw (Divide Word) instruction 188

using divwu (Divide Word Unsigned) instruction 190

using extsb (Extend Sign Byte) instruction 199

using lfq (Load Floating-Point Quad) instruction 257

using lfqu (Load Floating-Point Quad with Update)

instruction 258

using lfqux (Load Floating-Point Quad with Update

Indexed) instruction 260

using lfqx (Load Floating-Point Quad Indexed)

instruction 261

using lwarx (Load Word and Reserve Indexed)

instruction 284

using rlimi (Rotate Left Immediate Then Mask Insert)

instruction 352

using rlnm (Rotate Left Then AND with Mask)

instruction 356

using rlwimi (Rotate Left Word Immediate Then Mask

Insert) instruction 352

using rlwnm (Rotate Left Word Then AND with Mask)

instruction 356

using rrib (Rotate Right and Insert Bit)

instruction 358

using sllq (Shift Left Long with MQ) instruction 370

using slq (Shift Left with MQ) instruction 372

using slw (Shift Left Word) instruction 373

using srai (Shift Right Algebraic Immediate)

instruction 382

using sraiq (Shift Right Algebraic Immediate with

MQ) instruction 377

using sraw (Shift Right Algebraic Word)

instruction 380

using srawi (Shift Right Algebraic Word Immediate)

instruction 382

using sre (Shift Right Extended) instruction 384

using srliq (Shift Right Long Immediate with MQ)

instruction 390

using srlq (Shift Right Long with MQ)

instruction 392

using srq (Shift Right with MQ) instruction 393

using srw (Shift Right Word) instruction 395

using stfq (Store Floating-Point Quad)

instruction 410

using stfqu (Store Floating-Point Quad with Update)

instruction 411

using stfqux (Store Floating-Point Quad with Update

Indexed) instruction 412

using stfqx (Store Floating-Point Quad Indexed)

instruction 413

XORing contents of
using eqv (Equivalent) instruction 198

Index 615

general-purpose registers (continued)
XORing the contents and 16-bit unsigned integer

using xori (XOR Immediate) instruction 459

using xoril (XOR Immediate Lower)

instruction 459

XORing the contents of two
using xor (XOR) instruction 458

XORing the upper 16 bits with a 16-bit unsigned

integer
using xoris (XOR Immediate Shift)

instruction 460

using xoriu (XOR Immediate Upper)

instruction 460

H
hash values

associating with external symbol
using .hash pseudo-op 485

host machine independence 4

I
icbi (Instruction Cache Block Invalidate) instruction 242

ics (Instruction Cache Synchronize) instruction 243

implementation
multiple platform support 1

included files
identifying the beginning of

using .bi pseudo-op 469

identifying the end of
using .ei pseudo-op 480

inner blocks
identifying the beginning of

using .bb pseudo-op 467

identifying the end of
using .eb pseudo-op 479

inslwi extended mnemonic 109

insrdi extended mnemonic 112

insrwi extended mnemonic 109

installing the assembler 10

instruction fields 16

instruction forms 13

instructions
branch 19

common to POWER and PowerPC 561

condition register 20

fixed-point
address computation 22

arithmetic 22

compare 22

load and store 21

load and store with update 21

logical 23

move to or from special-purpose registers 23

rotate and shift 23

string 22

trap 22

floating-point
arithmetic 25

compare 26

instructions (continued)
floating-point (continued)

conversion 26

load and store 25

move 25

multiply-add 25

status and control register 26

PowerPC 575

PowerPC 601 RISC Microprocessor 585

sorted by mnemonic 533

sorted by primary and extended op code 547

system call 20

intermodule calls using the TOC 85

interrupts
generating when a condition is true

using t (Trap) instruction 456

using ti (Trap Immediate) instruction 457

using tw (Trap Word) instruction 456

using twi (Trap Word Immediate) instruction 457

supervisor call
generating an interrupt 446

system call
generating an interrupt 360

system call vectored
generating an interrupt 361

isync (Instruction Synchronize) instruction 243

L
l (Load) instruction 288

la extended mnemonic 99

lbrx (Load Byte-Reverse Indexed) instruction 287

lbz (Load Byte and Zero) instruction 245

lbzux (Load Byte and Zero with Update Indexed)

instruction 247

lbzx (Load Byte and Zero Indexed) instruction 248

ld (Load Double Word) instruction 249

ldarx (Store Double Word Reserve Indexed)

Instruction 250

ldu (Store Double Word with Update) Instruction 251

ldux (Store Double Word with Update Indexed)

Instruction 252

ldx (Store Double Word Indexed) Instruction 253

leading zeros
placing in a general-purpose register

using cntlz (Count Leading Zeros)

instruction 162

using cntlzw (Count Leading Zeros Word)

instruction 162

lfd (Load Floating-Point Double) instruction 253

lfdu (Load Floating-Point Double with Update)

instruction 254

lfdux (Load Floating-Point Double with Update Indexed)

instruction 255

lfdx (Load Floating-Point Double Indexed)

instruction 256

lfq (Load Floating-Point Quad) instruction 257

lfqu (Load Floating-Point Quad with Update)

instruction 258

lfqux (Load Floating-Point Quad with Update Indexed)

instruction 260

616 Assembler Language Reference

lfqx (Load Floating-Point Quad Indexed)

instruction 261

lfs (Loading Floating-Point Single) instruction 262

lfsu (Load Floating-Point Single with Update)

instruction 263

lfsux (Load Floating-Point Single with Update Indexed)

instruction 264

lfsx (Load Floating-Point Single Indexed)

instruction 265

lha (Load Half Algebraic) instruction 266

lhau (Load Half Algebraic with Update) instruction 267

lhaux (Load Half Algebraic with Update Indexed)

instruction 268

lhax (Load Half Algebraic Indexed) instruction 269

lhbrx (Load Half Byte-Reverse Indexed) instruction 270

lhz (Load Half and Zero) instruction 272

lhzu (Load Half and Zero with Update) instruction 273

lhzux (Load Half and Zero with Update Indexed)

instruction 274

lhzx (Load Half and Zero Indexed) instruction 275

li extended mnemonic 99

lil extended mnemonic 99

line format 28

line numbers
identifying

using .line pseudo-op 488

lines
representing the number of

using .xline pseudo-op 511

Link Register
branching conditionally to address in

using bclr (Branch Conditional Register)

instruction 149

using bcr (Branch Conditional Register)

instruction 149

linkage
subroutine linkage convention 65

linker
making a symbol globally visible to the

using .globl pseudo-op 484

linking 53

with the cc command 56

lis extended mnemonic 99

listing
interpreting an assembler 59

liu extended mnemonic 99

lm (Load Multiple) instruction 276

lmw (Load Multiple Word) instruction 276

local common section
defining a

using .lcomm pseudo-op 486

local symbol
facilitating use in expressions

using .tocof pseudo-op 504

location counter 51

advancing until a specified boundary is reached
using .align pseudo-op 466

setting the value of the current
using .org pseudo-op 493

logical processing
model 11

lq (Load Quad Word) instruction 277

lscbx (Load String and Compare Byte Indexed)

instruction 278

lsi (Load String Immediate) instruction 280

lswi (Load String Word Immediate) instruction 280

lswx (Load String Word Indexed) instruction 282

lsx (Load String Indexed) instruction 282

lu (Load with Update) instruction 289

lux (Load with Update Indexed) instruction 291

lwa (Load Word Algebraic) Instruction 283

lwarx (Load Word and Reserve Indexed)

instruction 284

lwaux (Load Word Algebraic with Update Indexed)

Instruction 286

lwax (Load Word Algebraic Indexed) Instruction 286

lwbrx (Load Word Byte-Reverse Indexed)

instruction 287

lwz (Load Word and Zero) instruction 288

lwzu (Load Word with Zero Update) instruction 289

lwzux (Load Word and Zero with Update Indexed)

instruction 291

lwzx (Load Word and Zero Indexed) instruction 292

lx (Load Indexed) instruction 292

M
Machine State Register

after a supervisor call and reinitialize
using rfsvc (Return from SVC) instruction 342

continue processing and reinitialize
using rfi (Return from Interrupt) instruction 341

copying the contents into a general-purpose register
using mfmsr (Move from Machine State Register)

instruction 300

main memory
ensuring storage access in

using eieio (Enforce In-Order Execution of I/O)

instruction 196

maskg (Mask Generate) instruction 293

maskir (Mask Insert from Register) instruction 294

masks
generating instance of ones and zeros

using maskg (Mask Generate) instruction 293

mcrf (Move Condition Register Field) instruction 296

mcrfs (Move to Condition Register from FPSCR)

instruction 296

mcrxr (Move to Condition Register from XER)

instruction 298

memory
loading a byte of data from

using lbzu (Load Byte and Zero with Update)

instruction 246

loading byte of data from
using lbz (Load Byte and Zero) instruction 245

using lbzux (Load Byte and Zero with Update

Indexed) instruction 247

loading byte of data into
using lbzx (Load Byte and Zero Indexed)

instruction 248

Index 617

memory (continued)
loading byte-reversed halfword of data from

using lhbrx (Load Half Byte-Reverse Indexed)

instruction 270

loading byte-reversed word of data from
using lbrx (Load Byte-Reverse Indexed)

instruction 287

using lwbrx (Load Word Byte-Reverse Indexed)

instruction 287

loading consecutive bytes from
using lsi (Load String Immediate) instruction 280

using lswi (Load String Word Immediate)

instruction 280

using lswx (Load String Word Indexed)

instruction 282

using lsx (Load String Indexed) instruction 282

loading doubleword of data from
using lfd (Load Floating-Point Double)

instruction 253

using lfdu (Load Floating-Point Double with

Update) instruction 254

using lfdux (Load Floating-Point Double with

Update Indexed) instruction 255

using lfdx (Load Floating-Point Double Indexed)

instruction 256

loading halfword of data from
using lha (Load Half Algebraic) instruction 266

using lhau (Load Half Algebraic with Update)

instruction 267

using lhaux (Load Half Algebraic with Update

Indexed) instruction 268

using lhax (Load Half Algebraic Indexed)

instruction 269

using lhz (Load Half and Zero) instruction 272

using lhzu (Load Half and Zero with Update)

instruction 273

using lhzux (Load Half and Zero with Update

Indexed) instruction 274

using lhzx (Load Half and Zero Indexed)

instruction 275

loading quadword of data from
using lfq (Load Floating-Point Quad)

instruction 257

using lfqu (Load Floating-Point Quad with Update)

instruction 258

using lfqux (Load Floating-Point Quad with Update

Indexed) instruction 260

using lfqx (Load Floating-Point Quad Indexed)

instruction 261

loading single-precision floating-point number from
using lfsu (Load Floating-Point Single with

Update) instruction 263

using lfsx (Load Floating-Point Single Indexed)

instruction 265

loading single-precision floating-point number into
using lfs (Load Floating-Point Single)

instruction 262

using lfsux (Load Floating-Point Single with

Update Indexed) instruction 264

loading word of data from 288

using lu (Load with Update) instruction 289

memory (continued)
loading word of data from (continued)

using lux (Load with Update Indexed)

instruction 291

using lwzu (Load Word with Zero Update)

instruction 289

using lwzux (Load Word and Zero with Update

Indexed) instruction 291

using lwzx (Load Word and Zero Indexed)

instruction 292

using lx (Load Indexed) instruction 292

setting remaining 24 bits after loading into
using lbzx (Load Byte and Zero Indexed)

instruction 248

setting remaining 24 bits to 0 after loading from
using lbz (Load Byte and Zero) instruction 245

using lbzux (Load Byte and Zero with Update

Indexed) instruction 247

setting remaining 24 bits to 0 after loading into
using lbzu (Load Byte and Zero with Update)

instruction 246

storing a quadword of data into
using stfq (Store Floating-Point Quad)

instruction 410

using stfqu (Store Floating-Point Quad with

Update) instruction 411

using stfqux (Store Floating-Point Quad with

Update Indexed) instruction 412

using stfqx (Store Floating-Point Quad Indexed)

instruction 413

using dcbf (Data Cache Block Flush)

instruction 171

messages
error 513

warning 513

mfcr (Move from Condition Register) instruction 298

mfctr extended mnemonic 106

mfdar extended mnemonic 106

mfdec extended mnemonic 106

mfdsisr extended mnemonic 106

mfear extended mnemonic 106

mffs (Move from FPSCR) instruction 299

mflr extended mnemonic 106

mfmq extended mnemonic 106

mfmsr (Move from Machine State Register)

instruction 300

mfocrf (Move from One Condition Register Field)

instruction 301

mfpvr extended mnemonic 106

mfrtcl extended mnemonic 106

mfrtcu extended mnemonic 106

mfsdr1 extended mnemonic 106

mfspr (Move from Special-Purpose Register)

instruction 303

mfsprg extended mnemonic 106

mfsr (Move from Segment Register) instruction 305

mfsri (Move from Segment Register Indirect)

instruction 306

mfsrin (Move from Segment Register Indirect)

instruction 307

mfsrr0 extended mnemonic 106

618 Assembler Language Reference

mfsrr1 extended mnemonic 106

mfxer extended mnemonic 106

milicode routines 80

mnemonic
instructions sorted by 533

mnemonics cross-reference 5

moving from or to special-purpose registers
extended mnemonics 102

mr (Move Register) instruction 334

mr[.] extended mnemonic 100

mtcrf (Move to Condition Register Fields)

instruction 308

mtctr extended mnemonic 107

mtdar extended mnemonic 107

mtdec extended mnemonic 107

mtdsisr extended mnemonic 107

mtear extended mnemonic 107

mtfsb0 (Move to FPSCR Bit 0) instruction 309

mtfsb1 (Move to FPSCR Bit 1) instruction 310

mtfsf (Move to FPSCR Fields) instruction 311

mtfsfi (Move to FPSCR Field Immediate)

instruction 313

mtlr extended mnemonic 107

mtmq extended mnemonic 107

mtocrf (Move to One Condition Register Field)

instruction 314

mtrtcl extended mnemonic 107

mtrtcu extended mnemonic 107

mtsdr1 extended mnemonic 107

mtspr (Move to Special-Purpose Register)

instruction 315

mtsprg extended mnemonic 107

mtsrr0 extended mnemonic 107

mtsrr1 extended mnemonic 107

mtxer extended mnemonic 107

mul (Multiply) instruction 317

mulhd (Multiply High Double Word) Instruction 319

mulhdu (Multiply High Double Word Unsigned)

Instruction 320

mulhw (Multiply High Word) instruction 321

mulhwu (Multiply High Word Unsigned) instruction 322

muli (Multiply Immediate) instruction 325

mulld (Multiply Low Double Word) Instruction 324

mulldo (Multiply Low Double Word) Instruction 324

mulli (Multiply Low Immediate) instruction 325

mullw (Multiply Low Word) instruction 326

muls (Multiply Short) instruction 326

N
nabs (Negative Absolute) instruction 328

name
creating a synonym or alias for an illegal name

using .rename pseudo-op 495

nand (NAND) instruction 330

neg (Negate) instruction 331

nop extended mnemonic 100

nor (NOR) instruction 333

not[.] extended mnemonic 100

notational conventions
pseudo-ops 466

O
op code

instructions sorted by primary and extended 547

operators 38

or (OR) instruction 334

orc (OR with Complement) instruction 335

ori (OR Immediate) instruction 336

oril (OR Immediate Lower) instruction 336

oris (OR Immediate Shifted) instruction 337

oriu (OR Immediate Upper) instruction 337

output file
skipping a specified number of bytes in

using .space pseudo-op 499

P
passes

assembler 57

popcntbd (Population Count Byte Doubleword) 338

POWER and POWER2
instructions 565

POWER and PowerPC
architecture 11

common instructions 561

POWER and PowerPC instructions
extended mnemonics changes 116

functional differences for 114

PowerPC instructions 120

with same op code 115

PowerPC
instructions 575

PowerPC 601 RISC Microprocessor
instructions 585

PowerPC instructions
added 120

process
runtime process stack 67

program
running a 87

programs
generating interrupt

using t (Trap) instruction 456

using ti (Trap Immediate) instruction 457

using tw (Trap Word) instruction 456

using twi (Trap Word Immediate) instruction 457

prologs 70

actions 71

pseudo-ops 463, 464, 466, 467, 468, 469, 470, 471,

473, 475, 476, 477, 479, 480, 481, 482, 483, 484,

485, 486, 487, 488, 489, 490, 493, 494, 495, 496,

497, 498, 499, 500, 501, 503, 504, 505, 509, 510, 511

addressing 464

calling conventions
support for 465

data alignment 464

functional groups 463

miscellaneous 465

support for calling conventions 465

symbol table entries for debuggers 465

Index 619

Q
quad floating-point constant

storing at the next fullword location
using .quad pseudo-op 493

R
rac (Real Address Compute) instruction 339

real address
translating effective address to

using eciwx (External Control In Word Indexed)

instruction 194

using ecowx (External Control Out Word Indexed)

instruction 195

reciprocal, floating single estimate 231

reciprocal, floating square root estimate 235

ref pseudo-op 494

registers
special-purpose

changes and field handling 9

extended mnemonics 102

usage and conventions 65

reserved words 28

rfi (Return from Interrupt) instruction 341

rfid (Return from Interrupt Double Word)

Instruction 341

rfsvc (Return from SVC) instruction 342

rldcl (Rotate Left Double Word then Clear Left)

Instruction 343

rldcr (Rotate Left Double Word then Clear Right)

Instruction 345

rldic (Rotate Left Double Word Immediate then Clear)

Instruction 346

rldicl (Rotate Left Double Word Immediate then Clear

Left) Instruction 344, 347

rldicr (Rotate Left Double Word Immediate then Clear

Right) Instruction 348

rldimi (Rotate Left Double Word Immediate then Mask

Insert) Instruction 349

rlimi (Rotate Left Immediate Then Mask Insert)

instruction 352

rlinm (Rotate Left Immediate Then AND with Mask)

instruction 354

rlmi (Rotate Left Then Mask Insert) instruction 350

rlnm (Rotate Left Then AND with Mask) instruction 356

rlwimi (Rotate Left Word Immediate Then Mask Insert)

instruction 352

rlwinm (Rotate Left Word Immediate Then AND with

Mask) instruction 354

rlwnm (Rotate Left Word Then AND with Mask)

instruction 356

rotld extended mnemonic 112

rotldi extended mnemonic 112

rotlw extended mnemonic 109

rotlwi extended mnemonic 109

rotrdi extended mnemonic 112

rotrwi extended mnemonic 109

rrib (Rotate Right and Insert Bit) instruction 358

running a program 87

S
sc (System Call) instruction 360

scv (System Call Vectored) instruction 361

section definition
pseudo-ops 464

Segment Register
copying to general-purpose registers

using mfsr (Move from Segment Register)

instruction 305

using mfsri (Move from Segment Register Indirect)

instruction 306

using mfsrin (Move from Segment Register

Indirect) instruction 307

selecting operand with fsel instruction 236

sf (Subtract from) instruction 437

sfe (Subtract from Extended) instruction 439

sfi (Subtract from Immediate) instruction 441

sfme (Subtract from Minus One Extended)

instruction 442

sfze (Subtract from Zero Extended) instruction 444

si (Subtract Immediate) instruction 362

si. (Subtract Immediate and Record) instruction 363

si[.] extended mnemonic 97

signed integers
extending 16-bit to 32 bits

using exts (Extend Sign) instruction 200

using extsh (Extend Sign Halfword)

instruction 200

single-precision floating-point
adding 32-bit operand to result of multiplying two

operands
using fmadds (Floating Multiply-Add Single)

instruction 216, 236

adding two 32-bit operands
using fadds (Floating Add Single) instruction 203

dividing 32-bit operands
using fdivs (Floating Divide Single)

instruction 213

multiplying two 32-bit operands
using fmuls (Floating Multiply Single)

instruction 221

multiplying two 32-bit operands and adding to 32-bit

operand
using fnmadds (Floating Negative Multiply-Add

Single) instruction 226

multiplying two 32-bit operands and subtracting 32-bit

operand
using fnmsubs (Floating Negative

Multiply-Subtract Single) instruction 228

subtracting 32-bit operand from result of multiplying

two 32-bit operands
using fmsubs (Floating Multiply-Subtract Single)

instruction 219

subtracting 32-bit operands
using fsubs (Floating Subtract Single)

instruction 240

sl (Shift Left) instruction 373

sld (Shift Left Double Word) Instruction 364

sldi extended mnemonic 112

sle (Shift Left Extended) instruction 364

sleq (Shift Left Extended with MQ) instruction 366

620 Assembler Language Reference

sliq (Shift Left Immediate with MQ) instruction 367

slliq (Shift Left Long Immediate with MQ)

instruction 369

sllq (Shift Left Long with MQ) instruction 370

slq (Shift Left with MQ) instruction 372

slw (Shift Left Word) instruction 373

slwi extended mnemonic 109

source files
identifying file names

using .file pseudo-op 482

source language type 6

identifying
using .source pseudo-op 498

source module
identifying a symbol defined in another

using .extern pseudo-op 481

special-purpose registers
changes and field handling 9

copying general-purpose register contents into
using mtspr (Move to Special-Purpose Register)

instruction 315

copying the contents into a general-purpose register
using mfspr (Move from Special-Purpose

Register) instruction 303

extended mnemonics 102

split-field notation 16

square root, reciprocal floating estimate 235

sr (Shift Right) instruction 395

sra (Shift Right Algebraic) instruction 380

srad (Shift Right Algebraic Double Word)

Instruction 375

sradi (Shift Right Algebraic Double Word Immediate)

Instruction 376

srai (Shift Right Algebraic Immediate) instruction 382

sraiq (Shift Right Algebraic Immediate with MQ)

instruction 377

sraq (Shift Right Algebraic with MQ) instruction 378

sraw (Shift Right Algebraic Word) instruction 380

srawi (Shift Right Algebraic Word Immediate)

instruction 382

srd (Shift Right Double Word) Instruction 383

srdi extended mnemonic 112

sre (Shift Right Extended) instruction 384

srea (Shift Right Extended Algebraic) instruction 386

sreq (Shift Right Extended with MQ) instruction 387

sriq (Shift Right Immediate with MQ) instruction 389

srliq (Shift Right Long Immediate with MQ)

instruction 390

srlq (Shift Right Long with MQ) instruction 392

srq (Shift Right with MQ) instruction 393

srw (Shift Right Word) instruction 395

srwi extended mnemonic 109

st (Store) instruction 428

stack
runtime process 67

stack-related system standards 70

statements 29

static blocks
identifying the beginning of

using .bs pseudo-op 469

static blocks (continued)
identifying the end of

using .es pseudo-op 481

static name
keeping information in the symbol table

using .lglobl pseudo-op 487

stb (Store Byte) instruction 396

stbrx (Store Byte-Reverse Indexed) instruction 429

stbu (Store Byte with Update) instruction 397

stbux (Store Byte with Update Indexed) instruction 398

stbx (Store Byte Indexed) instruction 399

std (Store Double Word) Instruction 400

stdcx. (Store Double Word Conditional Indexed)

Instruction 401

stdu (Store Double Word with Update) Instruction 402

stdux (Store Double Word with Update Indexed)

Instruction 403

stdx (Store Double Word Indexed) Instruction 404

stfd (Store Floating-Point Double) instruction 405

stfdu (Store Floating-Point Double with Update)

instruction 406

stfdux (Store Floating-Point Double with Update

Indexed) instruction 407

stfdx (Store Floating-Point Double Indexed)

instruction 408

stfiwx (Store Floating-Point as Integer Word Indexed)

instruction 409

stfq (Store Floating-Point Quad) instruction 410

stfqu (Store Floating-Point Quad with Update)

instruction 411

stfqux (Store Floating-Point Quad with Update Indexed)

instruction 412

stfqx (Store Floating-Point Quad Indexed)

instruction 413

stfs (Store Floating-Point Single) instruction 414

stfsu (Store Floating-Point Single with Update)

instruction 415

stfsux (Store Floating-Point Single with Update Indexed)

instruction 416

stfsx (Store Floating-Point Single Indexed)

instruction 417

sth (Store Half) instruction 418

sthbrx (Store Half Byte-Reverse Indexed)

instruction 419

sthu (Store Half with Update) instruction 420

sthux (Store Half with Update Indexed) instruction 421

sthx (Store Half Indexed) instruction 422

stm (Store Multiple) instruction 423

stmw (Store Multiple Word) instruction 423

storage
synchronize

using sync (Synchronize) instruction 447

storage definition
pseudo-ops 464

storage mapping classes 473

store
quad word 424

stq (Store Quad Word) instruction 424

stsi (Store String Immediate) instruction 425

stswi (Store String Word Immediate) instruction 425

stswx (Store String Word Indexed) instruction 426

Index 621

stsx (Store String Indexed) instruction 426

stu (Store with Update) instruction 431

stux (Store with Update Indexed) instruction 433

stw (Store Word) instruction 428

stwbrx (Store Word Byte-Reverse Indexed)

instruction 429

stwcx. (Store Word Conditional Indexed)

instruction 430

stwu (Store Word with Update) instruction 431

stwux (Store Word with Update Indexed)

instruction 433

stwx (Store Word Indexed) instruction 434

stx (Store Indexed) instruction 434

sub[o][.] extended mnemonic 97

subc[o][.] extended mnemonic 97

subf (Subtract From) instruction 435

subfc (Subtract from Carrying) instruction 437

subfe (Subtract from Extended) instruction 439

subfic (Subtract from Immediate Carrying)

instruction 441

subfme (Subtract from Minus One Extended)

instruction 442

subfze (Subtract from Zero Extended) instruction 444

subi extended mnemonic 97

subic[.] extended mnemonic 97

subis extended mnemonic 97

subroutine
linkage convention 65

svc (Supervisor Call) instruction 446

symbol table
entries for debuggers

pseudo-ops 465

keeping information of a static name in the
using .lglobl pseudo-op 487

symbols
associating a hash value with external

using .hash pseudo-op 485

constructing 31

interpreting a cross-reference 63

making globally visible to linker
using .globl pseudo-op 484

setting equal to an expression in type and value
using .set pseudo-op 496

sync (Synchronize) instruction 447

synchronize
using isync (Instruction Synchronize) instruction 243

syntax and semantics
character set 27

comments 31

constants 35

constructing symbols 31

expressions 39

instruction statements 29

labels 30

line format 28

mnemonics 30

null statements 29

operands 31

operators 38

pseudo-operation statements 29

reserved words 28

syntax and semantics (continued)
separator character 30

statements 29

T
t (Trap) instruction 456

table of contents
defining

using .toc pseudo-op 504

tags
traceback 78

target addresses
branching conditionally to

using bc (Branch Conditional) instruction 144

branching to
using b (Branch) instruction 143

target environment
defining

using .machine pseudo-op 490

indicator flag 4

td (Trap Double Word) Instruction 449

tdi (Trap Double Word Immediate) Instruction 450

ti (Trap Immediate) instruction 457

tlbi (Translation Look-Aside Buffer Invalidate Entry)

instruction 451

tlbie (Translation Look-Aside Buffer Invalidate Entry)

instruction 451

tlbld (Load Data TLB Entry) instruction 452

tlbli (Load Instruction TLB Entry) instruction 454

tlbsync (Translation Look-Aside Buffer Synchronize)

Instruction 455

TOC
accessing data through 83

intermodule calls using 85

programming the 82

understanding the 82

traceback tags 78

tw (Trap Word) instruction 456

twi (Trap Word Immediate) instruction 457

U
user register set

POWER family 12

PowerPC 12

using .weak pseudo-op 510

V
Vector Processor 597

debug stabstrings 603

legacy ABI
compatibility 604

interoperability 604

procedure calling sequence 601

argument passing 601

function return values 603

register usage conventions 597

run-time stack 598

storage operands and alignment 597

622 Assembler Language Reference

Vector Processor (continued)
traceback tables 603

vector register
save and restore 600

W
warning messages 8, 513

X
xor (XOR) instruction 458

xori (XOR) Immediate) instruction 459

xoril (XOR) Immediate Lower) instruction 459

xoris (XOR Immediate Shift) instruction 460

xoriu (XOR Immediate Upper) instruction 460

Index 623

624 Assembler Language Reference

Readers’ Comments — We’d Like to Hear from You

AIX 5L Version 5.3

Assembler Language Reference

 Publication No. SC23-4923-02

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send your comments via e-mail to: aix6koub@austin.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SC23-4923-02

SC23-4923-02

���

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Information Development

Department 04XA-905-6C006

11501 Burnet Road

Austin, TX 78758-3493

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

���

Printed in U.S.A.

SC23-4923-02

	Contents
	About This Book
	Highlighting
	Case-Sensitivity in AIX
	ISO 9000
	Related Publications

	Chapter 1. Assembler Overview
	Features of the AIX Assembler
	Multiple Hardware Architecture and Implementation Platform Support
	Host Machine Independence and Target Environment Indicator Flag
	Mnemonics Cross-Reference
	CPU ID Definition
	Source Language Type
	Detection Error Conditions
	Warning Messages
	Special-Purpose Register Changes and Special-Purpose Register Field Handling
	Related Information

	Assembler Installation
	Related Information

	Chapter 2. Processing and Storage
	POWER family and PowerPC Architecture Overview
	Instruction Forms
	Related Information

	Branch Processor
	Branch Instructions
	System Call Instruction
	Condition Register Instructions
	Related Information

	Fixed-Point Processor
	Fixed-Point Load and Store Instructions
	Fixed-Point Load and Store with Update Instructions
	Fixed-Point String Instructions
	Fixed-Point Address Computation Instructions
	Fixed-Point Arithmetic Instructions
	Fixed-Point Compare Instructions
	Fixed-Point Trap Instructions
	Fixed-Point Logical Instructions
	Fixed-Point Rotate and Shift Instructions
	Fixed-Point Move to or from Special-Purpose Registers Instructions
	Related Information

	Floating-Point Processor
	Floating-Point Numbers
	Interpreting the Contents of a Floating-Point Register
	Floating-Point Load and Store Instructions
	Floating-Point Move Instructions
	Floating-Point Arithmetic Instructions
	Floating-Point Multiply-Add Instructions
	Floating-Point Compare Instructions
	Floating-Point Conversion Instructions
	Floating-Point Status and Control Register Instructions
	Related Information

	Chapter 3. Syntax and Semantics
	Character Set
	Related Information

	Reserved Words
	Related Information

	Line Format
	Related Information

	Statements
	Instruction Statements and Pseudo-Operation Statements
	Null Statements
	Separator Characters
	Labels
	Mnemonics
	Operands
	Comments
	Related Information

	Symbols
	Constructing Symbols
	Defining a Symbol with a Label
	Defining a Symbol with a Pseudo-op
	CSECT Entry Names
	The Special Symbol TOC
	TOC Entry Names
	Using a Symbol before Defining It
	Declaring an External Symbol
	Related Information

	Constants
	Arithmetic Constants
	Character Constants
	Symbolic Constants
	String Constants
	Related Information

	Operators
	Operator Precedence
	Related Information

	Expressions
	Object Mode Considerations
	Types and Values of Terms
	Types and Values of Expressions
	Combination Handling of Expressions
	Related Information

	Chapter 4. Addressing
	Absolute Addressing
	Related Information

	Absolute Immediate Addressing
	Related Information

	Relative Immediate Addressing
	Related Information

	Explicit-Based Addressing
	Related Information

	Implicit-Based Addressing
	Related Information

	Location Counter
	Related Information

	Chapter 5. Assembling and Linking a Program
	Assembling and Linking a Program
	Assembling with the as Command
	Assembling and Linking with the cc Command
	Related Information

	Understanding Assembler Passes
	First Pass
	Second Pass
	Related Information

	Interpreting an Assembler Listing
	Related Information

	Interpreting a Symbol Cross-Reference
	Related Information

	Subroutine Linkage Convention
	Linkage Convention Overview
	Calling Routine's Responsibilities
	Called Routine's Responsibilities
	Traceback Tags
	Example
	Using Milicode Routines
	Related Information

	Understanding and Programming the TOC
	Using the TOC
	Accessing Data through the TOC Entry with TC Storage Mapping Class
	Accessing Data through the TOC entry with TD Storage Mapping Class
	Intermodule Calls Using the TOC
	Related Information

	Running a Program
	Related Information

	Chapter 6. Extended Instruction Mnemonics
	Extended Mnemonics of Branch Instructions
	Branch Mnemonics That Incorporate Only the BO Operand
	Extended Branch Mnemonics That Incorporate the BO Field and a Partial BI Field
	BI Operand of Branch Conditional Instructions for Basic and Extended Mnemonics
	Extended Mnemonics for Branch Prediction
	Related Information

	Extended Mnemonics of Condition Register Logical Instructions
	Examples
	Related Information

	Extended Mnemonics of Fixed-Point Arithmetic Instructions
	Related Information

	Extended Mnemonics of Fixed-Point Compare Instructions
	Related Information

	Extended Mnemonics of Fixed-Point Load Instructions
	Related Information

	Extended Mnemonics of Fixed-Point Logical Instructions
	Related Information

	Extended Mnemonics of Fixed-Point Trap Instructions
	Examples
	Related Information

	Extended Mnemonic mtcr for Moving to the Condition Register
	Extended Mnemonics of Moving from or to Special-Purpose Registers
	mfspr Extended Mnemonics for POWER family
	mtspr Extended Mnemonics for POWER family
	mfspr Extended Mnemonics for PowerPC
	mtspr Extended Mnemonics for PowerPC
	mfspr Extended Mnemonics for PowerPC 601 RISC Microprocessor
	mtspr Extended Mnemonics for PowerPC 601 RISC Microprocessor
	Related Information

	Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions
	Alternative Input Format
	32-bit Rotate and Shift Extended Mnemonics for POWER family and PowerPC
	Examples
	Related Information

	Extended Mnemonics of 64-bit Fixed-Point Rotate and Shift Instructions
	Alternative Input Format
	64-bit Rotate and Shift Extended Mnemonics for POWER family and PowerPC
	Related Information

	Chapter 7. Migrating Source Programs
	Related Information
	Functional Differences for POWER family and PowerPC Instructions
	Related Information

	Differences between POWER family and PowerPC Instructions with the Same Op Code
	Instructions with the Same Op Code, Mnemonic, and Function
	Instructions with the Same Op Code and Function
	mfdec Instructions
	Related Information

	Extended Mnemonics Changes
	Extended Mnemonics in com Mode
	Extended Mnemonics in ppc Mode
	Related Information

	POWER family Instructions Deleted from PowerPC
	Related Information

	Added PowerPC Instructions
	Related Information

	Instructions Available Only for the PowerPC 601 RISC Microprocessor
	Related Information

	Migration of Branch Conditional Statements with No Separator after Mnemonic
	Examples
	Related Information

	Chapter 8. Instruction Set
	abs (Absolute) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	add (Add) or cax (Compute Address) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	addc or a (Add Carrying) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	adde or ae (Add Extended) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	addi (Add Immediate) or cal (Compute Address Lower) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	addic or ai (Add Immediate Carrying) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	addic. or ai. (Add Immediate Carrying and Record) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	addis or cau (Add Immediate Shifted) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	addme or ame (Add to Minus One Extended) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	addze or aze (Add to Zero Extended) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	and (AND) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	andc (AND with Complement) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	andi. or andil. (AND Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	andis. or andiu. (AND Immediate Shifted) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	b (Branch) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	bc (Branch Conditional) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	bcctr or bcc (Branch Conditional to Count Register) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	bclr or bcr (Branch Conditional Link Register) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	clcs (Cache Line Compute Size) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	clf (Cache Line Flush) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	cli (Cache Line Invalidate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Security
	Related Information

	cmp (Compare) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	cmpi (Compare Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	cmpl (Compare Logical) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	cmpli (Compare Logical Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	cntlzd (Count Leading Zeros Double Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	cntlzw or cntlz (Count Leading Zeros Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	crand (Condition Register AND) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	crandc (Condition Register AND with Complement) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	creqv (Condition Register Equivalent) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	crnand (Condition Register NAND) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	crnor (Condition Register NOR) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	cror (Condition Register OR) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	crorc (Condition Register OR with Complement) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	crxor (Condition Register XOR) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	dcbf (Data Cache Block Flush) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	dcbi (Data Cache Block Invalidate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Security
	Related Information

	dcbst (Data Cache Block Store) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	dcbt (Data Cache Block Touch) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	dcbtst (Data Cache Block Touch for Store) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	dcbz or dclz (Data Cache Block Set to Zero) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Security
	Related Information

	dclst (Data Cache Line Store) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	div (Divide) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	divd (Divide Double Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	divdu (Divide Double Word Unsigned) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	divs (Divide Short) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	divw (Divide Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	divwu (Divide Word Unsigned) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	doz (Difference or Zero) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	dozi (Difference or Zero Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	eciwx (External Control In Word Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	ecowx (External Control Out Word Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	eieio (Enforce In-Order Execution of I/O) Instruction
	Purpose
	Syntax
	Description
	Examples
	Related Information

	extsw (Extend Sign Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	eqv (Equivalent) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	extsb (Extend Sign Byte) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	extsh or exts (Extend Sign Halfword) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fabs (Floating Absolute Value) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fadd or fa (Floating Add) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fcfid (Floating Convert from Integer Double Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	fcmpo (Floating Compare Ordered) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fcmpu (Floating Compare Unordered) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fctid (Floating Convert to Integer Double Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	fctidz (Floating Convert to Integer Double Word with Round toward Zero) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	fctiw or fcir (Floating Convert to Integer Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fctiwz or fcirz (Floating Convert to Integer Word with Round to Zero) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fdiv or fd (Floating Divide) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fmadd or fma (Floating Multiply-Add) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fmr (Floating Move Register) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fmsub or fms (Floating Multiply-Subtract) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fmul or fm (Floating Multiply) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fnabs (Floating Negative Absolute Value) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fneg (Floating Negate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fnmadd or fnma (Floating Negative Multiply-Add) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fnmsub or fnms (Floating Negative Multiply-Subtract) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fres (Floating Reciprocal Estimate Single) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	frsp (Floating Round to Single Precision) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	frsqrte (Floating Reciprocal Square Root Estimate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	fsel (Floating-Point Select) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	fsqrt (Floating Square Root, Double-Precision) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	fsqrts (Floating Square Root Single) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	fsub or fs (Floating Subtract) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	icbi (Instruction Cache Block Invalidate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	isync or ics (Instruction Synchronize) Instruction
	Purpose
	Syntax
	Description
	Examples
	Related Information

	lbz (Load Byte and Zero) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lbzu (Load Byte and Zero with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lbzux (Load Byte and Zero with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lbzx (Load Byte and Zero Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	ld (Load Double Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Implementation
	Related Information

	ldarx (Store Double Word Reserve Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	ldu (Store Double Word with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Implementation
	Related Information

	ldux (Store Double Word with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	ldx (Store Double Word Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	lfd (Load Floating-Point Double) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lfdu (Load Floating-Point Double with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lfdux (Load Floating-Point Double with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lfdx (Load Floating-Point Double-Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lfq (Load Floating-Point Quad) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lfqu (Load Floating-Point Quad with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lfqux (Load Floating-Point Quad with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lfqx (Load Floating-Point Quad Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lfs (Load Floating-Point Single) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lfsu (Load Floating-Point Single with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lfsux (Load Floating-Point Single with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lfsx (Load Floating-Point Single Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lha (Load Half Algebraic) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lhau (Load Half Algebraic with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lhaux (Load Half Algebraic with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lhax (Load Half Algebraic Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lhbrx (Load Half Byte-Reverse Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lhz (Load Half and Zero) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lhzu (Load Half and Zero with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lhzux (Load Half and Zero with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lhzx (Load Half and Zero Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lmw or lm (Load Multiple Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lq (Load Quad Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation
	Related Information

	lscbx (Load String and Compare Byte Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lswi or lsi (Load String Word Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lswx or lsx (Load String Word Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lwa (Load Word Algebraic) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	lwarx (Load Word and Reserve Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lwaux (Load Word Algebraic with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	lwax (Load Word Algebraic Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	lwbrx or lbrx (Load Word Byte-Reverse Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lwz or l (Load Word and Zero) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lwzu or lu (Load Word with Zero Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lwzux or lux (Load Word and Zero with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lwzx or lx (Load Word and Zero Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	maskg (Mask Generate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	maskir (Mask Insert from Register) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mcrf (Move Condition Register Field) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mcrfs (Move to Condition Register from FPSCR) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mcrxr (Move to Condition Register from XER) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mfcr (Move from Condition Register) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mffs (Move from FPSCR) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mfmsr (Move from Machine State Register) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Security
	Related Information

	mfocrf (Move from One Condition Register Field) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mfspr (Move from Special-Purpose Register) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mfsr (Move from Segment Register) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Security
	Related Information

	mfsri (Move from Segment Register Indirect) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mfsrin (Move from Segment Register Indirect) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Security
	Related Information

	mtcrf (Move to Condition Register Fields) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mtfsb0 (Move to FPSCR Bit 0) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mtfsb1 (Move to FPSCR Bit 1) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mtfsf (Move to FPSCR Fields) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mtfsfi (Move to FPSCR Field Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mtocrf (Move to One Condition Register Field) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mtspr (Move to Special-Purpose Register) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mul (Multiply) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mulhd (Multiply High Double Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	mulhdu (Multiply High Double Word Unsigned) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	mulhw (Multiply High Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mulhwu (Multiply High Word Unsigned) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mulld (Multiply Low Double Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	mulli or muli (Multiply Low Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mullw or muls (Multiply Low Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	nabs (Negative Absolute) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	nand (NAND) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	neg (Negate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	nor (NOR) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	or (OR) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	orc (OR with Complement) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	ori or oril (OR Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	oris or oriu (OR Immediate Shifted) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	popcntbd (Population Count Byte Doubleword) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	rac (Real Address Compute) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Security
	Related Information

	rfi (Return from Interrupt) Instruction
	Purpose
	Syntax
	Description
	Security
	Related Information

	rfid (Return from Interrupt Double Word) Instruction
	Purpose
	Syntax
	Description
	Security
	Implementation

	rfsvc (Return from SVC) Instruction
	Purpose
	Syntax
	Description
	Security
	Related Information

	rldcl (Rotate Left Double Word then Clear Left) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	rldicl (Rotate Left Double Word Immediate then Clear Left) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rldcr (Rotate Left Double Word then Clear Right) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	rldic (Rotate Left Double Word Immediate then Clear) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	rldicl (Rotate Left Double Word Immediate then Clear Left) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	rldicr (Rotate Left Double Word Immediate then Clear Right) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	rldimi (Rotate Left Double Word Immediate then Mask Insert) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	rlmi (Rotate Left Then Mask Insert) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rlwimi or rlimi (Rotate Left Word Immediate Then Mask Insert) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rlwinm or rlinm (Rotate Left Word Immediate Then AND with Mask) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rlwnm or rlnm (Rotate Left Word Then AND with Mask) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rrib (Rotate Right and Insert Bit) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sc (System Call) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	scv (System Call Vectored) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	si (Subtract Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	si. (Subtract Immediate and Record) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sld (Shift Left Double Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	sle (Shift Left Extended) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sleq (Shift Left Extended with MQ) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sliq (Shift Left Immediate with MQ) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	slliq (Shift Left Long Immediate with MQ) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sllq (Shift Left Long with MQ) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	slq (Shift Left with MQ) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	slw or sl (Shift Left Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	srad (Shift Right Algebraic Double Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	sradi (Shift Right Algebraic Double Word Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	sraiq (Shift Right Algebraic Immediate with MQ) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sraq (Shift Right Algebraic with MQ) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sraw or sra (Shift Right Algebraic Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	srawi or srai (Shift Right Algebraic Word Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	srd (Shift Right Double Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	sre (Shift Right Extended) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	srea (Shift Right Extended Algebraic) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sreq (Shift Right Extended with MQ) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sriq (Shift Right Immediate with MQ) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	srliq (Shift Right Long Immediate with MQ) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	srlq (Shift Right Long with MQ) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	srq (Shift Right with MQ) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	srw or sr (Shift Right Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stb (Store Byte) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stbu (Store Byte with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stbux (Store Byte with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stbx (Store Byte Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	std (Store Double Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	stdcx. (Store Double Word Conditional Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	stdu (Store Double Word with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation
	Related Information

	stdux (Store Double Word with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	stdx (Store Double Word Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	stfd (Store Floating-Point Double) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Reading

	stfdu (Store Floating-Point Double with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stfdux (Store Floating-Point Double with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stfdx (Store Floating-Point Double Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stfiwx (Store Floating-Point as Integer Word Indexed)
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stfq (Store Floating-Point Quad) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	stfqu (Store Floating-Point Quad with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	stfqux (Store Floating-Point Quad with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	stfqx (Store Floating-Point Quad Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	stfs (Store Floating-Point Single) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stfsu (Store Floating-Point Single with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stfsux (Store Floating-Point Single with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stfsx (Store Floating-Point Single Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sth (Store Half) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sthbrx (Store Half Byte-Reverse Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sthu (Store Half with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sthux (Store Half with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sthx (Store Half Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stmw or stm (Store Multiple Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stq (Store Quad Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation
	Related Information

	stswi or stsi (Store String Word Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stswx or stsx (Store String Word Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stw or st (Store) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stwbrx or stbrx (Store Word Byte-Reverse Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stwcx. (Store Word Conditional Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stwu or stu (Store Word with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stwux or stux (Store Word with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stwx or stx (Store Word Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	subf (Subtract From) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	subfc or sf (Subtract from Carrying) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	subfe or sfe (Subtract from Extended) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	subfic or sfi (Subtract from Immediate Carrying) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	subfme or sfme (Subtract from Minus One Extended) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	subfze or sfze (Subtract from Zero Extended) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	svc (Supervisor Call) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	sync (Synchronize) or dcs (Data Cache Synchronize) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	td (Trap Double Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation
	Examples
	Related Information

	tdi (Trap Double Word Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation
	Related Information

	tlbie or tlbi (Translation Look-Aside Buffer Invalidate Entry) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Security
	Related Information

	tlbld (Load Data TLB Entry) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Security
	Related Information

	tlbli (Load Instruction TLB Entry) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Security
	Related Information

	tlbsync (Translation Look-Aside Buffer Synchronize) Instruction
	Purpose
	Syntax
	Description
	Security
	Related Information

	tw or t (Trap Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	twi or ti (Trap Word Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	xor (XOR) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	xori or xoril (XOR Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	xoris or xoriu (XOR Immediate Shift) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Example
	Related Information

	Chapter 9. Pseudo-ops
	Pseudo-ops Overview
	Pseudo-ops Grouped by Function
	Notational Conventions

	.align Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.bb Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.bc Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.bf Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.bi Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.bs Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.byte Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.comm Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.csect Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.double Pseudo-op
	Purpose
	Syntax
	Parameters
	Examples
	Related Information

	.drop Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.dsect Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.eb Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.ec Pseudo-op
	Purpose
	Syntax
	Description
	Examples
	Related Information

	.ef Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.ei Pseudo-op
	Purpose
	Syntax
	Description
	Examples
	Related Information

	.es Pseudo-op
	Purpose
	Syntax
	Description
	Examples
	Related Information

	.extern Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.file Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.float Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.function Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.globl Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.hash Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.lcomm Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.lglobl Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.line Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.long Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.llong Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.machine Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.org Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.quad Pseudo-op
	Purpose
	Syntax
	Examples
	Related Information

	.ref Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.rename Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.set Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.short Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.source Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.space Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.stabx Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.string Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.tbtag Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.tc Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.toc Pseudo-op
	Purpose
	Syntax
	Description
	Examples
	Related Information

	.tocof Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.using Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.vbyte Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.weak Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.xline Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	Appendix A. Messages
	Appendix B. Instruction Set Sorted by Mnemonic
	Appendix C. Instruction Set Sorted by Primary and Extended Op Code
	Appendix D. Instructions Common to POWER family, POWER2, and PowerPC
	Appendix E. POWER family and POWER2 Instructions
	Appendix F. PowerPC Instructions
	Appendix G. PowerPC 601 RISC Microprocessor Instructions
	Appendix H. Value Definitions
	Bits 0-5
	Bits 6-30
	Bit 31

	Appendix I. Vector Processor
	Storage Operands and Alignment
	Register Usage Conventions
	Runtime Stack
	Vector Register Save and Restore Procedures

	Procedure Calling Sequence
	Argument Passing
	Function Return Values

	Traceback Tables
	Debug Stabstrings
	Legacy ABI Compatibility and Interoperability

	Appendix J. Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

