<|lI!

AIX 5L Version 5.3

General Programming Concepts:

Writing and Debugging Programs

SC23-4896-04

<|lI!

AIX 5L Version 5.3

General Programming Concepts:

Writing and Debugging Programs

SC23-4896-04

Note
FBefore using this information and the product it supports, read the information in|Appendix B, “Notices,” on page 597

Fifth Edition (November 2007)

This edition applies to AIX 5L Version 5.3 and to all subsequent releases of this product until otherwise indicated in
new editions.

A reader's comment form is provided at the back of this publication. If the form has been removed, address
comments to Information Development, Department 04XA-905-6C006, 11501 Burnet Road, Austin, Texas
78758-3493. To send comments electronically, use this commercial Internet address: aix6kpub @austin.ibm.com. Any
information that you supply may be used without incurring any obligation to you.

(C) Copyright Apollo Computer, Inc., 1987. All rights reserved.

(C) Copyright AT&T, 1984, 1989. All rights reserved.

(C) Copyright Sun Microsystems, Inc., 1985, 1986, 1987, 1988. All rights reserved.
(C) Copyright TITN, Inc., 1984, 1989. All rights reserved.

(C) Copyright Regents of the University of California, 1986, 1987. All rights reserved.

© Copyright International Business Machines Corporation 1997, 2007. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book
Highlighting .
Case-Sensitivity in AIX
ISO 9000.

Related Publications.

Chapter 1. Tools and Utilities .
Entering a Program into the System .
Checking a Program . . .
Compiling and Linking a Program .
Subroutines .

Shell Commands .

Related Information .

Chapter 2. Curses L|brary .
Terminology . .

Naming Conventions. .
Structure of a Curses Program .
Return Values .

Initializing Curses .

Windows in the Curses Enwronment
Manipulating Window Data with Curses.
Controlling the Cursor with Curses .
Manipulating Characters with Curses
Understanding Terminals with Curses .
Working with Color . .
Manipulating Video Attributes .
Manipulating Soft Labels .

Curses Compatibility .
List of Additional Curses Subroutmes .

Chapter 3. Debugging Programs .

adb Debug Program Overview.

Getting Started with the adb Debug Program

Controlling Program Execution

Using adb Expressions . .

Customizing the adb Debug Program .

Computing Numbers and Displaying Text. .
Displaying and Manipulating the Source File with the adb Program .
adb Debug Program Reference Information . e
Example adb Program: adbsamp.

Example adb Program: adbsamp2 .

Example adb Program: adbsamp3 .

Example of Directory and i-node Dumps in adb Debuggmg

Example of Data Formatting in adb Debugging .

Example of Tracing Multiple Functions in adb Debuggrng

dbx Symbolic Debug Program Overview . .

Using the dbx Debug Program

Displaying and Manipulating the Source F|Ie wrth the dbx debug Program.

Examining Program Data

Debugging at the Machine Level wrth dbx
Customizing the dbx Debugging Environment .
Developing for the dbx Plug-in Framework .

© Copyright IBM Corp. 1997, 2007

. Xi
. Xi
. Xi
. Xi

WMNON = =

O ~NOO O 01O,

List of dbx Subcommands .
Related Information .

Chapter 4. Error-Logging Overview
Error-Logging Facility .o
Managing Error Logging

Error Notification

Error Logging Tasks .

Error Logging and Alerts

Error Logging Controls .

Related Information

Chapter 5. File Systems and Logical Volumes
File Types. . .

Working With JFS D|rector|es

Working with JFS2 Directories .

Working with JFS i-nodes .

Working with JFS2 i-nodes

Allocating JFS File Space .

Allocating JFS2 File Space

JFS File System Layout

JFS2 File System Layout .

Writing Programs That Access Large Flles
Linking for Programmers

Using File Descriptors

Creating and Removing Files.

Working with File 1/0.

File Status

File Accessibility

Creating New File System Types

Logical Volume Programming

Related Information .

Chapter 6. Floating-Point Exceptions .
Floating-Point Exception Subroutines.
Floating-Point Trap Handler Operation
Related Information . e

Chapter 7. Input and Output Handllng
Low-Level I/O Interfaces

Stream 1/O Interfaces

Terminal 1/O Interfaces .

Asynchronous 1/O Interfaces .

Chapter 8. Storage Protect Keys.
User protect keys . .o
Using protect keys

Regions protected by user keys

System prerequisites for key protection .
Program prerequisites for key protection
Subroutines .

Debugging .

Hardware details .

Sample program

Chapter 9. Large Program Support.

iV AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

. 97
. 100

. 101
. 101
. 102
. 105
. 108
. 116
. 116
. 17

. 119
. 119
. 121
. 123
. 125
. 126
. 128
. 131
. 133
. 134
. 135
. 142
. 144
. 147
. 149
. 155
. 156
. 157
. 160
. 160

. 163
. 163
. 164
171

. 173
. 1783
. 174
. 175
. 176

177
177
. 178
. 179
. 179
. 179
. 180
. 180
. 180
. 181

. 185

Understanding the Large Address-Space Model .
Understanding the Very Large Address-Space Model .

Enabling the Large and Very Large Address-Space Models

Executing Programs with Large Data Areas
Related Information .

Chapter 10. Programming on Multiprocessor Systems .

Identifying Processors

Controlling Processor Use. .
Using Dynamic Processor Deallocatlon .
Dynamic Memory Guarding

Creating Locking Services.

Related Information .

Chapter 11. Multi-Threaded Programming .
Understanding Threads and Processes .
Thread-Safe and Threaded Libraries in AIX
Creating Threads .

Terminating Threads .

Synchronization Overview .

Using Mutexes .

Using Condition Vanables

Using Read-Write Locks

Joining Threads

Scheduling Threads .

Contention Scope and Concurrency Level
Synchronization Scheduling .

One-Time Initializations .

Thread-Specific Data.

Creating Complex Synchromzatron Objects
Signal Management .

Process Duplication and Termmatron
Threads Library Options .
Writing Reentrant and Thread- Safe Code .
Developing Multi-Threaded Programs

Developing Multi-Threaded Programs to Examlne and Modlfy pthread lerary Objects

Developing Multi-Threaded Program Debuggers
Benefits of Threads . . .
Related Information .

Chapter 12. lex and yacc Program Information .
Generating a Lexical Analyzer with the lex Command.
Using the lex Program with the yacc Program .
Extended Regular Expressions in the lex Command .
Passing Code to the Generated lex Program .
Defining lex Substitution Strings.

lex Library.

Actions Taken by the LeX|caI Analyzer

lex Program Start Conditions. . .

Creating a Parser with the yacc Program .

The yacc Grammar File.

Using the yacc Grammar File

yacc Grammar File Declarations

yacc Rules

yacc Actions .

yacc Program Error Handlrng

. 185
. 186
. 186
. 187
. 188

. 189
. 189
. 190
. 190
. 194
. 195
. 197

. 199
. 199
. 204
. 204
. 207
. 214
. 214
. 220
. 225
. 233
. 236
. 239
. 240
. 242
. 244
. 247
. 251
. 254
. 256
. 265
. 270
. 273
. 277
. 282
. 283

. 287
. 287
. 288
. 289
. 292
. 293
. 293
. 294
. 297
. 298
. 299
. 300
. 302
. 304
. 305
. 307

\'}

Parser Operation Generated by the yacc Command .

Using Ambiguous Rules in the yacc Program .

Turning on Debug Mode for a Parser Generated by the yacc Command
Example Program for the lex and yacc Programs

Related Information .

Chapter 13. make Command .

Creating a Description File

Internal Rules for the make Program .

Defining and Using Macros in a Description F|Ie

Creating a Target File with the Make Command .

Using the make Command with Source Code Control System (SCCS) Flles
Using the make Command with Non-Source Code Control System (SCCS) Files
Understanding How the make Command Uses Environment Variables

Using the make Command in Parallel Run Mode

Example of a Description File

Chapter 14. m4 Macro Processor Overview
Using the m4 Macro Processor .

Creating a User-Defined Macro .

Using a Predefined m4 Macro

Additional m4 Macros

Chapter 15. Object Data Manager (ODM)
ODM Object Classes and Objects

ODM Descriptors . .o

ODM Object Searches .

ODM Commands and Subroutlnes

ODM Example Code and Output

Related Information . .o

Chapter 16. Simultaneous Multi-Threading.
Benefitting from Simultaneous Multi-Threading .
Setting the Mode With the smtctl Command .

Hardware Management Console Configuration for Slmultaneous Mult| Threadmg

Micro-Partitioning and Simultaneous Multi-Threading .
Hardware Thread Priorities

Chapter 17. Dynamic logical partitioning
DLPAR-Safe and -Aware Programs

Processor Bindings

Integrating the DLPAR Operat|on mto the Appllcatlon
Actions Taken by DLPAR Scripts . S
Making Kernel Extensions DLPAR-Aware .

Related Information . Coe e

Chapter 18. sed Program Information.
Manipulating Strings with sed

Chapter 19. Shared Libraries and Shared Memory .
Shared Objects and Runtime Linking . ..
Shared Libraries and Lazy Loading

Named Shared Library Areas.

Creating a Shared Library .

Program Address Space Overview.

Understanding Memory Mapping

Vi AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

. 308
. 310
.31
.31
. 315

. 317
. 317
. 320
. 324
. 328
. 328
. 330
. 330
. 331
. 331

. 335
. 335
. 335
. 338
. 343

. 345
. 345
. 349
. 352
. 355
. 356
. 359

. 361
. 361
. 361
. 362
. 362
. 363

. 365
. 365
. 368
. 369
. 370
. 375
. 379

. 381
. 381

. 387
. 387
. 389
. 391
. 393
. 395
. 397

Inter-Process Communication (IPC) Limits . .

Creating a Mapped Data File with the shmat Subroutlne

Creating a Copy-On-Write Mapped Data File with the shmat Subroutlne
Creating a Shared Memory Segment with the shmat Subroutine.

Paging Space Programming Requirements

List of Memory Manipulation Services

List of Memory Mapping Services .

Related Information . .

Chapter 20. System Memory Allocation Using the malloc Subsystem
Working with the Process Heap.

Understanding System Allocation Policy .
User-Defined Malloc Replacement .

Debug Malloc Tool

Malloc Multiheap .

Malloc Buckets .

Malloc Trace.

Malloc Log

Malloc Disclaim.

Malloc Detect

Configuring and Using the Malloc Thread Cache

Chapter 21. AIX Vector Programming .
Vector Extension Overview

Runtime Determination of Vector Capab|I|ty
AIX ABI Extension.

Legacy ABI Compatibility and Interoperablhty
Extended Context . .
Vector Memory Allocation and Allgnment
printf and scanf of Vector Data Types
Threaded Applications .

Compilers . .

Assembler

Debugger .

Core Files.

Chapter 22. Packaging Software for Installation.
Installation Procedure Requirements .

Package Control Information Requirements

Format of a Software Package .

Package Partitioning Requirements .

Software Vital Product Data (SWVPD)

Software Product Packaging Parts.

Package and Fileset Naming Conventions .

Fileset Revision Level Identification

Contents of a Software Package

The Ipp_name Package Information File

The liblpp.a Installation Control Library File

Further Description of Installation Control Files .
Installation Control Files Specifically for Repackaged Products
Installation Files for Supplemental Disk Subsystems .
Format of Distribution Media .

Tape. . .

CD-ROM .

Diskette

The Table of Contents F|Ie

Contents

. 401
. 404
. 405
. 406
. 406
. 407
. 408
. 408

. 411
. 412
. 413
. 421
. 425
. 431
. 432
. 435
. 436
. 437
. 437
. 438

. 441
. 441
. 441
. 442
. 444
. 444
. 445
. 445
. 446
. 446
. 447
. 447
. 448

. 449
. 449
. 450
. 450
. 450
. 450
. 451
. 451
. 453
. 453
. 454
. 464
. 467
. 472
. 475
. 475
. 475
. 475
. 476
. 477

Vii

The installp Processing of Product Packages .

Installation Commands Used During Installation and Update Processmg

Chapter 23. Source Code Control System (SCCS)
Introduction to SCCS. .
SCCS Flag and Parameter Conventlons ..
Creating, Editing, and Updating an SCCS File
Controlling and Tracking SCCS File Changes.
Detecting and Repairing Damaged SCCS Files .

List of Additional SCCS Commands . .
Related Information .

Chapter 24. Subroutines, Example Programs, and Libraries .

128-Bit Long Double Floating-Point Data Type

List of Character Manipulation Subroutines

List of Executable Program Creation Subroutines .

List of Files and Directories Subroutines

List of FORTRAN BLAS Level 1: Vector-Vector Subroutlnes
List of FORTRAN BLAS Level 2: Matrix-Vector Subroutines
List of FORTRAN BLAS Level 3: Matrix-Matrix Subroutines
List of Numerical Manipulation Subroutines

List of Long Long Integer Numerical Manipulation Subroutmes
List of 128-Bit Long Double Numerical Manipulation Subroutines
List of Processes Subroutines

List of Multi-threaded Programming Subroutlnes

List of Programmer’s Workbench Library Subroutines.

List of Security and Auditing Subroutines

List of String Manipulation Subroutines .

Programming Example for Manipulating Characters
Searching and Sorting Example Program .

List of Operating System Libraries .

librs2.a Library . .o

Related Information .

Chapter 25. System Management Interface Tool (SMIT) .
SMIT Screen Types . Ce e
SMIT Object Classes. .

SMIT Aliases and Fast Paths. .

SMIT Information Command Descriptors

SMIT Command Generation and Execution

Adding Tasks to the SMIT Database .

Debugging SMIT Database Extensions .

Creating SMIT Help Information for a New Task
sm_menu_opt (SMIT Menu) Object Class . .
sm_name_hdr (SMIT Selector Header) Object Class .

sm_cmd_opt (SMIT Dialog/Selector Command Option) Object Class .

sm_cmd_hdr (SMIT Dialog Header) ObJect Class .
SMIT Example Program
Related Information .

Chapter 26. System Resource Controller

Subsystem Interaction with the SRC .

SRC Objects. .o

SRC Communication Types .

Programming Subsystem Commumcatlon W|th the SRC
Defining Your Subsystem to the SRC.

Viii AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

. 478
. 484

. 485
. 485
. 486
. 486
. 488
. 489
. 490
. 490

. 491
. 492
. 494
. 495
. 495
. 497
. 497
. 498
. 498
. 499
. 499
. 500
. 502
. 504
. 505
. 507
. 507
. 509
. 512
. 513
. 514

. 515
. 515
. 518
. 521
. 522
. 524
. 526
. 527
. 527
. 528
. 530
. 532
. 536
. 538
. 550

. 551
. 551
. 552
. 556
. 559
. 565

List of Additional SRC Subroutines.

Related Information .

Chapter 27. Trace Facility
The Trace Facility Overview .
Controlling the Trace.
Recording Trace Event Data .
Generating a Trace Report

Extracting trace data from a dump.

Trace Facility Commands .
Start the Trace Facility .
Related Information .

Chapter 28. tty Subsystem .
TTY Subsystem Objectives

Line Discipline Module (Idterm) .
Converter Modules

TTY Drivers . .

Related Information .

Chapter 29. Loader Domains .
Using Loader Domains .

Creating/Deleting Loader Domams.

Chapter 30. Data Management Application Programming Interface (DMAPI)
DMAPI Considerations for the Enhanced Journaled File System. . .

Appendix A. High-Resolution Time Measurements Usmg POWER-based Time Base or POWER

family Real-Time Clock

Appendix B. Notices
Trademarks .

Index

. 566
. 566

. 569
. 569
. 569
. 570
. 571
. 571
. 571
. 574
. 576

. 577
. 577
. 581
. 584
. 585
. 586

. 587
. 587
. 589

. 591
. 592

. 595

. 597
. 598

. 601

Contents

ix

X AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

About This Book

This book provides application developers with complete information about writing applications for the AIX®
operating system. Programmers can use this book to gain knowledge of programming guidelines and
resources. Topics include input and output handling, curses, file systems and directories, lex and yacc,
logical volume programming, shared libraries, large program support, packaging, trace facility, and System
Management Interface Tool (SMIT).

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items whose
names are predefined by the system. Also identifies graphical objects such as buttons, labels, and
icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Monospace Identifies examples of specific data values, examples of text similar to what you might see
displayed, examples of portions of program code similar to what you might write as a programmer,
messages from the system, or information you should actually type.

Case-Sensitivity in AIX

Everything in the AIX operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the Is command to list files. If you type LS, the
system responds that the command is "not found.” Likewise, FILEA, FiLea, and filea are three distinct file
names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,
always ensure that you use the correct case.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Publications

The following books contain information about or related to writing programs:

« |AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts

[AIX 5L Version 5.3 Communications Programming Concepts

[AIX 5L Version 5.3 AlXwindows Programming Guide

» |Operating system and device management

« |Networks and communication management

[AIX 5L Version 5.3 Commands Referenced

[Keyboard Technical Reference|

[AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions Volume 1|
[AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions Volume 2
[Understanding the Diagnostic Subsystem for AlX

© Copyright IBM Corp. 1997, 2007 Xi

Xii AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Chapter 1. Tools and Utilities

This chapter provides an overview of the tools and utilities that you can use to develop C compiled
language programs. Many tools are provided to help you develop C compiled programs. The tools provide
help with the following programming tasks:

+ [‘Entering a Program into the System’|
+ [‘Checking a Program’]

[‘Compiling and Linking a Program’|
[‘Subroutines” on page 2|

[‘Shell Commands” on page 2|

Subroutines and shell commands are provided for use in a C compiled program.

Entering a Program into the System

The system has a line editor calledfor use in entering a program into a file. The system also has the
full-screen editor called |vil which displays one full screen of data at a time and allows interactive editing of
a file.

Checking a Program

Use the following commands to check the format of a program for consistency and accuracy:

Reformats a C language source program into a consistent format that uses indentation levels to show
the structure of the program.

cflow| Generates a diagram of the logic flow of a C language source program.

cxre Generates a list of all external references for each module of a C language source program, including
where the reference is resolved (if it is resolved in the program).

Checks for syntax and data type errors in a C language source program. The lint command might

check these areas of a program more carefully than the C language compiler does, and displays many
messages that point out possible problems.

Compiling and Linking a Program

To convert source code into a program that the system can run, you must process the source file with a
compiler and a linkage editor.

A compiler is a program that reads text from a file and changes the programming language in that file to a
form that the system understands. The linkage editor connects program modules and determines how to
put the finished program into memory. To create this final form of the program, the system does the
following:

1. If a file contains compiler source code, the compiler translates it into object code.
2. If a file contains assembler language, the assembler translates it into object code.

3. The linkage editor links the object files created in the previous step with any other object files specified
in the compiler command.

Other programming languages available for use on the operating system include the C**, FORTRAN,
COBOL, and|Assemblen and other compiler languages.

You can write parts of a program in different languages and have one main routine call and start the
separate routines to execute. You can also use the compiler program to create object code and link the
program.

© Copyright IBM Corp. 1997, 2007 1

Correcting Errors in a Program
You can use the following debugging tools that are provided with the base operating system:

* The dbx symbolic debug program allows you to debug programs written in C language, C**, FORTRAN,
COBOL and Assembler languages. For more information, see [‘dbx Symbolic Debug Program Overview’|

* The adb debug program provides subcommands you can use to examine, debug, and repair executable
binary files and to examine non-ASCII data files. For more information, see [‘adb Debug Program|
[Overview” on page 29

+ [KDB Kernel Debugger and kdb command| can help you determine errors in code running in the kernel.
You can use this debug program to debug device drivers and kernel extensions.

» The trace facility helps isolate system problems by monitoring selected system events. For more
information see [Chapter 27, “Trace Facility,” on page 569 |

When syntax errors or parameter-naming inconsistencies are discovered in a program file, you can use a
text editor or string-searching and string-editing programs to locate and change strings in the file.
String-searching and string-editing programs include the |grep|, M and Jawk|l commands. To make many
changes in one or more program files, you can include the commands in a shell program and then run the
shell program to locate and change the code in the files.

Building and Maintaining a Program

The following facilities help you control program changes and build a program from many source modules.
These facilities can be particularly useful in software development environments in which many source
modules are produced.

. Thecommand builds a program from source modules. Because the make command compiles
only those modules changed since the last build, its use can reduce compilation time when many
source modules must be processed.

» The Source Code Control System (SCCS) allows you to maintain separate versions of a program
without storing separate, complete copies of each version. The use of SCCS can reduce storage
requirements and help in tracking the development of a project that requires keeping many versions of

e programs. For more information, see |[Chapter 23, “Source Code Control System (SCCS),” on page]

485

Subroutines

Subroutines from system libraries handle many complex or repetitive programming situations so that you
can concentrate on unique programming situations. See [Chapter 24, “Subroutines, Example Programs|
land Libraries,” on page 491|for information on using subroutines and for lists of many of the subroutines
available on the system.

Shell Commands

You can include the functions of many of the shell commands in a C language program. Any shell
command used in a program must be available on all systems that use the program.

You can then use the [fork and subroutines in a program to run the command as a process in a part
of the system that is separate from the program. The subroutine also runs a shell command in a
program, and thesubroutine uses shell filters.

2 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Related Information

For further information on this topic, see the following:

[‘Manipulating Strings with sed” on page 381

[‘Generating a Lexical Analyzer with the lex Command” on page 287|
[Chapter 13, “make Command,” on page 317]

[Chapter 24, “Subroutines, Example Programs, and Libraries,” on page 491|

Chapter 1. Tools and Utilities

3

4 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Chapter 2. Curses Library

The curses library provides a set of functions that enable you to manipulate a terminal’s display regardless
of the terminal type. The curses library supports color. However, multibyte characters are not supported. All
references to characters in the curses documentation refer to single-byte characters. Throughout this
documentation, the curses library is referred to as curses.

The basis of curses programming is the window data structure. Using this structure, you can manipulate
data on a terminal’s display. You can instruct curses to treat the entire terminal display as one large

window, or you can create multiple windows on the display. The windows can be different sizes and can
overlap one another. A typical curses application has a single large window and one subwindow within it.

Each window on a terminal’s display has its own window data structure. This structure keeps state
information about the window, such as its size and where it is located on the display. Curses uses the
window data structure to obtain the relevant information it needs to carry out your instructions.

Terminology

When programming with curses, you should be familiar with the following terms:

Term Definition

current character The character that the logical cursor is currently on.

current line The line that the logical cursor is currently on.

curscr A virtual default window provided by curses. The curscr (current screen) is an internal

representation of what currently appears on the terminal’s external display. Do not
modify the curscr.

display A physical display connected to a workstation.

logical cursor The cursor location within each window. The window data structure keeps track of the
location of its logical cursor.

pad A pad is a window that is not restricted by the size of the screen

physical cursor The cursor that appears on a display. The workstation uses this cursor to write to the
display. There is only one physical cursor per display.

screen The window that fills the entire display. The screen is synonymous with the stdscr.

stdscr A virtual default window (standard screen) provided by curses that represents the entire
display.

window A pointer to a C data structure and the graphic representation of that data structure on

the display. A window can be thought of as a two-dimensional array representing how
all or part of the display looks at any point in time.

Naming Conventions

A single curses subroutine can have more than one version. Curses subroutines with multiple versions
follow distinct naming conventions that identify the separate versions. These conventions add a prefix to a
standard curses subroutine and identify what arguments the subroutine requires or what actions take place
when the subroutine is called. The different versions of curses subroutine names use the following
prefixes:

Prefix Description

w Identifies a subroutine that requires a window argument

o] Identifies a subroutine that requires a pad argument

mv Identifies a subroutine that first performs a move to the program-supplied coordinates

If a curses subroutine has multiple versions and does not include one of the preceding prefixes, the curses
default window stdscr (standard screen) is used. The majority of subroutines that use the stdscr are

© Copyright IBM Corp. 1997, 2007 5

macros created in the /usr/include/curses.h file using #define statements. The preprocessor replaces
these statements at compilation time. As a result, these macros do not appear in the compiled assembler
code, a trace, a debug program, or the curses source code.

If a curses subroutine has only a single version, it does not necessarily use stdscr. For example, the
printw subroutine prints a string to the stdscr. The wprintw subroutine prints a string to a specific window
by supplying the window argument. The mvprintw subroutine moves the specified coordinates to the
stdscr and then performs the same function as the printw subroutine. Likewise, the mvwprintw subroutine
moves the specified coordinates to the specified window and then performs the same function as the
wprintw subroutine.

Structure of a Curses Program

In general, a curses program has the following progression:
Start curses.

Check for color support (optional).

Start color (optional).

Create one or more windows.

Manipulate windows.

Destroy one or more windows.

Stop curses.

N o~ =

Some steps are optional, so your program does not have to follow this progression exactly.

Return Values

With a few exceptions, all curses subroutines return either the integer value ERR or the integer value OK.
Subroutines that do not follow this convention are noted appropriately. Subroutines that return pointers
always return a null pointer or an error.

Initializing Curses
Use the following commnads to initialize curses:

Terminates the curses subroutine libraries and their data structures

Initializes the curses subroutine library and its data structures

Returns TRUE if the endwin subroutine has been called without any subsequent calls to the
wrefresh subroutine

Sets up a new terminal

Sets up the TERMINAL structure for use by curses

You must include the curses.h file at the beginning of any program that calls curses subroutines. To do
this, use the following statement:

#include <curses.h>

Before you can call subroutines that manipulate windows or screens, you must call the initscr or newterm
subroutine. These subroutines first save the terminal’s settings and then call the setupterm subroutine to
establish a curses terminal.

If you need to temporarily suspend curses, use a shell escape or subroutine. To resume after a temporary
escape, call the wrefresh or doupdate subroutine. Before exiting a curses program, you must call the
endwin subroutine. The endwin subroutine restores tty modes, moves the cursor to the lower-left corner
of the screen, and resets the terminal into the proper nonvisual mode.

6 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Most interactive, screen-oriented programs require character-at-a-time input without echoing the result to
the screen. To establish your program with character-at-a-time input, call the cbreak and noecho
subroutines after calling the initscr subroutine. When accepting this type of input, programs should also
call the following subroutines:

* nonl subroutine.

* intrflush subroutine with the Window parameter set to the stdscr and the Flag parameter set to
FALSE. The Window parameter is required but ignored. You can use stdscr as the value of the
Window parameter, because stdscr is already created for you.

» keypad subroutine with the Window parameter set to the stdscr and the Flag parameter set to TRUE.

The isendwin subroutine is helpful if, for optimization reasons, you do not want to call the wrefresh
subroutine needlessly. To determine if the endwin subroutine was called without any subsequent calls to
the wrefresh subroutine, use the isendwin subroutine.

Windows in the Curses Environment

A curses program manipulates windows that appear on a terminal’s display. A window can be as large as
the entire display or as small as a single character in length and height.

Note: A pad is a window that is not restricted by the size of the screen. For more information, see

Within a curses program, windows are variables declared as type WINDOW. The WINDOW data type is
defined in the /usr/include/curses.h file as a C data structure. You create a window by allocating a
portion of a machine’s memory for a window structure. This structure describes the characteristics of the
window. When a program changes the window data internally in memory, it must use the wrefresh
subroutine (or equivalent subroutine) to update the external, physical screen to reflect the internal change
in the appropriate window structure.

Default Window Structure

Curses provides a virtual default window structure called stdscr. The stdscr represents, in memory, the
entire terminal display. The stdscr window structure is created automatically when the curses library is
initialized and it describes the display. When the library is initialized, the length and width variables are set
to the length and width of the physical display.

Programs that use the stdscr first manipulate the stdscr. They then call the refresh subroutine to refresh
the external display so that it matches the stdscr window.

In addition to the stdscr, you can define your own windows. These windows are known as user-defined
windows to distinguish them from the stdscr. Like the stdscr, user-defined windows exist in machine
memory as structures. Except for the amount of memory available to a program, there is no limit to the
number of windows you can create. A curses program can manipulate the default window, user-defined
windows, or both.

Current Window Structure

Curses supports another virtual window called curscr (current screen). The curscr window is an internal
representation of what currently appears on the terminal’s external display.

When a program requires the external representation to match the internal representation, it must call a
subroutine, such as thesubroutine, to update the physical display (or the refresh subroutine if
the program is working with the stdscr).

The curscr is reserved for internal use by curses. Do not manipulate the curscr.

Chapter 2. Curses Library 7

Subwindows

Curses also allows you to construct subwindows. Subwindows are rectangular portions within other
windows. A subwindow is also of type WINDOW. The window that contains a subwindow is known as the
subwindow’s parent, and the subwindow is known as the containing window’s child.

Changes to either the parent window or the child window within the area overlapped by the subwindow are
made to both windows. After modifying a subwindow, call the touchline or touchwin subroutine on the
parent window before refreshing it.

touchline Forces a range of lines to be refreshed at the next call to thesubroutine.

touchwin Forces every character in a window’s character array to be refreshed at the next call of the
wrefresh subroutine. The touchwin subroutine does not save optimization information. This
subroutine is useful with overlapping windows.

A refresh called on the parent also refreshes the children. A subwindow can also be a parent window. The
process of layering windows inside of windows is called nesting.

Before you can delete a parent window, you must first delete all of its children using the
subroutine. Curses returns an error if you try to delete a window before first deleting all of its children.

Pads

A pad is a type of window that is not restricted by the terminal’s display size or associated with a particular
part of the display. Because a pad is usually larger than the physical display, only a portion of a pad is
visible to the user at a given time.

Use pads if you have a large amount of related data that you want to keep all together in one window but
you do not need to display all of the data at one time.

Windows within pads are known as subpads. Subpads are positioned within a pad at coordinates relative
to the parent pad. This placement differs from subwindows, which are positioned using screen coordinates.

Unlike other windows, scrolling or echoing of input does not automatically refresh a pad. Like subwindows,
when changing the image of a subpad, you must call either the touchline or touchwin subroutine on the
parent pad before refreshing the parent.

You can use all the curses subroutines with pads except for the newwin, subwin, wrefresh, and
wnoutrefresh subroutines. These subroutines are replaced with the newpad, subpad, and
pnoutrefresh subroutines.

Manipulating Window Data with Curses

When curses is initialized, the stdscr is provided automatically. You can manipulate the stdscr using the
curses subroutine library or you can create user-defined windows.

Creating Windows
You can create your own window using the subroutine.

Each time you call the newwin subroutine, curses allocates a new window structure in memory. This
structure contains all the information associated with the new window. Curses does not put a limit on the
number of windows you can create. The number of nested subwindows is limited to the amount of memory
available, up to the value of SHRT_MAX as defined in the /usr/include/limits.h file.

You can change windows without regard to the order in which they were created. Updates to the terminal’s
display occur through calls to the wrefresh subroutine.

8 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Subwindows
You must supply coordinates for the subwindow relative to the terminal’s display. The subwindow, created
ﬂ

using the subroutine, must fit within the bounds of the parent window. Otherwise, a null value is
returned.

Pads

Use the following subroutines to create pads:

hewpad Creates a pad data structure.

subpad| Creates and returns a pointer to a subpad within a pad.

The new subpad is positioned relative to its parent.

Removing Windows, Pads, and Subwindows

To remove a window, pad, or subwindow, use the delwin subroutine. Before you can delete a window or
pad, you must have already deleted its children; otherwise, the delwin subroutine returns an error.

Changing the Screen or Window Images

When curses subroutines change the appearance of a window, the internal representation of the window is
updated, while the display remains unchanged until the next call to the wrefresh subroutine. The wrefresh
subroutine uses the information in the window structure to update the display.

Refreshing Windows
Whenever you write output to a window or pad structure, you must refresh the terminal’s display to match
the internal representation. A refresh does the following:

» Compares the contents of the curscr to the contents of the user-defined or stdscr
» Updates the curscr structure to match the user-defined or stdscr
* Redraws the portion of the physical display that changed

Use the following subroutines to refresh windows:

refresh, or wrefresh| Updates the terminal and curscr to reflect changes made to a window.

wnoutrefresh or doupdate] Updates the designated windows and outputs them all at once to the
terminal. These subroutines are useful for faster response when there
are multiple updates.

The refresh and wrefresh subroutines first call the wnoutrefresh| subroutine to copy the window being
refreshed to the current screen. They then call the [doupdate| subroutine to update the display.

If you need to refresh multiple windows at the same time, use one of the two available methods. You can
use a series of calls to the wrefresh subroutine that result in alternating calls to the wnoutrefresh and

doupdate subroutines. You can also call the wnoutrefresh subroutine once for each window and then call
the doupdate subroutine once. With the second method, only one burst of output is sent to the display.

Subroutines Used for Refreshing Pads
The and pnoutrefresh subroutines are similar to the wrefresh and wnoutrefresh subroutines.

The prefresh subroutine updates both the current screen and the physical display, while the
subroutine updates curscr to reflect changes made to a user-defined pad. Because pads instead of
windows are involved, these subroutines require additional parameters to indicate which part of the pad
and screen are involved.

Chapter 2. Curses Library 9

Refreshing Areas that Have Not Changed

During a refresh, only those areas that have changed are redrawn on the display. You can refresh areas of
the display that have not changed using the touchwin and touchline subroutines:

touchlin% Forces a range of lines to be refreshed at the next call to thesubroutine.
touchwin

Forces every character in a window’s character array to be refreshed at the next call of the
wrefresh subroutine. The touchwin subroutine does not save optimization information. This
subroutine is useful with overlapping windows.

Combining the touchwin and wrefresh subroutines is helpful when dealing with subwindows or
overlapping windows. To bring a window forward from behind another window, call the touchwin
subroutine followed by the wrefresh subroutine.

Garbled Displays

If text is sent to the terminal’s display with a noncurses subroutine, such as the echo or printf subroutine,
the external window can become garbled. In this case, the display changes, but the current screen is not
updated to reflect these changes. Problems can arise when a refresh is called on the garbled screen
because after a screen is garbled, there is no difference between the window being refreshed and the
current screen structure. As a result, spaces on the display caused by garbled text are not changed.

A similar problem can also occur when a window is moved. The characters sent to the display with the
noncurses subroutines do not move with the window internally.

If the screen becomes garbled, call the wrefresh subroutine on the curscr to update the display to reflect
the current physical display.

Manipulating Window Content

After a window or subwindow is created, programs often must manipulate them in some way, by using the
following subroutines:

Draws a box in or around a window

Provides more precise control over the overlay and overwrite subroutine

Indicates to curses that a screen line is discarded and should be thrown away before
having anything written over

mvwin| Moves a window or subwindow to a new location
overlay or overwrite| Copies one window on top of another
riEoffIine| Removes a line from the default screen

To use the overlay and overwrite subroutines, the two windows must overlap. The overwrite subroutine
is destructive, whereas the overlay subroutine is not. When text is copied from one window to another
using the overwrite subroutine, blank portions from the copied window overwrite any portions of the
window copied to. The overlay subroutine is nondestructive because it does not copy blank portions from
the copied window.

Similar to the overlay and overwrite subroutines, the copywin subroutine allows you to copy a portion of
one window to another. Unlike overlay and overwrite subroutines, the windows do not have to overlap for
you to use the copywin subroutine.

To remove a line from the stdscr, you can use the ripoffline subroutine. If you pass this subroutine a
positive line argument, the specified number of lines is removed from the top of the stdscr. If you pass the
subroutine a negative line argument, the lines are removed from the bottom of the stdscr.

To discard a specified range of lines before writing anything new, you can use the garbagedlines
subroutine.

10 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Support for Filters

Thesubroutine is provided for curses applications that are filters. This subroutine causes curses to
operate as if the stdscr was only a single line. When running with the filter subroutine, curses does not
use any terminal capabilities that require knowledge of the line that curses is on.

Controlling the Cursor with Curses

The following types of cursors exist in the curses library:

logical cursor The cursor location within each window. A window’s data structure keeps track of the
location of its logical cursor. Each window has a logical cursor.
physical cursor The display cursor. The workstation uses this cursor to write to the display. There is

only one physical cursor per display.

You can only add to or erase characters at the logical cursor in a window. The following subroutines are
provided for controlling the cursor:

Places the beginning coordinates of the window in integer variables y and x
Places the size of the window in integer variables y and x

Returns the current coordinates of the virtual screen cursor

Returns the position of the logical cursor associated with a specified window
Controls physical cursor placement after a call to the wrefresh subroutine
Moves the logical cursor associated with the stdscr

mvcu Moves the physical cursor
setsyx| Sets the virtual screen cursor to the specified coordinate
Emove| Moves the logical cursor associated with a user-defined window

After a call to the refresh or wrefresh subroutine, curses places the physical cursor at the last updated
character position in the window. To leave the physical cursor where it is and not move it after a refresh,
call the leaveok subroutine with the Window parameter set to the desired window and the Flag parameter
set to TRUE.

Manipulating Characters with Curses

You can add characters to a curses window using a keyboard or a curses application. This section
describes how you can add, remove, or change characters that appear in a curses window.

Character Size

Some character sets define multi-column characters that occupy more than one column position when
displayed on the screen.

Writing a character whose width is greater than the width of the destination window produces an error.

Adding Characters to the Screen Image

The curses library provides a number of subroutines that write text changes to a window and mark the
area to be updated at the next call to the subroutine.

waddch Subroutines

The subroutines overwrite the character at the current logical cursor location with a specified
character. After overwriting, the logical cursor is moved one space to the right. If the waddch subroutines
are called at the right margin, these subroutines also add an automatic newline character. Additionally, if

Chapter 2. Curses Library 11

you call one of these subroutines at the bottom of a scrolling region and the scrollok subroutine is
enabled, the region is scrolled up one line. For example, if you added a new line at the bottom line of a
window, the window would scroll up one line.

If the character to add is a tab, newline, or backspace character, curses moves the cursor appropriately in
the window to reflect the addition. Tabs are set at every eighth column. If the character is a newline,
curses first uses the weclrtoeol subroutine to erase the current line from the logical cursor position to the
end of the line before moving the cursor. The waddch subroutine family is made up of the following:

addch macro Adds a character to the stdscr

mvaddch macro Moves a character to the specified location before adding it to the stdscr

mvwaddch macro Moves a character to the specified location before adding it to the user-defined
window

waddch subroutine Adds a character to the user-defined window

By using the winch and waddch subroutine families together, you can copy text and video attributes from
one place to another. Using the winch subroutine family, you can retrieve a character and its video
attributes. You can then use one of the waddch subroutines to add the character and its attributes to
another location. For more information, see [‘winch Subroutines” on page 18]

You can also use the waddch subroutines to add control characters to a window. Control characters are
drawn in the AX notation.

Note: Calling the winch subroutine on a position in the window containing a control character does not
return the character. Instead, it returns one character of the control character representation.

Outputting Single, Noncontrol Characters: When outputting single, noncontrol characters, there can be
significant performance gain to using the wechochar subroutines. These subroutines are functionally
equivalent to a call to the corresponding waddchr subroutine followed by the corresponding wrefresh
subroutine. The wechochar subroutines include the wechochar subroutine, the echochar macro, and the
pechochar subroutine.

Some character sets may contain nonspacing characters. (Nonspacing characters are those, other than
the "\ 0’ character, for which the wewidth subroutine returns a width of zero.) The application may write
nonspacing characters to a window. Every nonspacing character in a window is associated with a spacing
character and modifies the spacing character. Nonspacing characters in a window cannot be addressed
separately. A nonspacing character is implicitly addressed whenever a Curses operation affects the
spacing character with which the nonspacing character is associated.

Nonspacing characters do not support attributes. For interfaces that use wide characters and attributes,
the attributes are ignored if the wide character is a honspacing character. Multi-column characters have a
single set of attributes for all columns. The association of nonspacing characters with spacing characters
can be controlled by the application using the wide character interfaces. The wide character string
functions provide codeset-dependent association.

The typical effects of a nonspacing character associated with a spacing character called ¢, are as follows:

» The nonspacing character may modify the appearance of c. (For instance, there may be nonspacing
characters that add diacritical marks to characters. However, there may also be spacing characters with
built-in diacritical marks.)

* The nonspacing characters may bridge c to the character following c¢. Examples of this usage are the
formation of ligatures and the conversion of characters into compound display forms, words, or
ideograms.

Implementations may limit the number of nonspacing characters that can be associated with a spacing
character, provided any limit is at least 5.

12 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Complex Characters

A complex character is a set of associated characters, which may include a spacing character and may
also include any nonspacing characters associated with it. A spacing complex character is a complex
character that includes one spacing character and any nonspacing characters associated with it. An
example of a code set that has complex characters is ISO/IEC 10646-1:1993.

A complex character can be written to the screen. If the complex character does not include a spacing
character, any nonspacing characters are associated with the spacing complex character that exists at the
specified screen position. When the application reads information back from the screen, it obtains spacing
complex characters.

The cchar_t data type represents a complex character and its rendition. When a cchar_t represents a
nonspacing complex character (that is, when there is no spacing character within the complex character),
then its rendition is not used. When it is written to the screen, it uses the rendition specified by the spacing
character already displayed.

An object of type cchar_t can be initialized using the setchar subroutine, and its contents can be extracted
using the getchar subroutine. The behavior of functions that take a cchar_t value that was not initialized in
this way are obtained from a curses function that has a cchar_t output argument.

Special Characters

Some functions process special characters. In functions that do not move the cursor based on the
information placed in the window, these special characters would only be used within a string in order to
affect the placement of subsequent characters. The cursor movement specified below does not persist in
the visible cursor beyond the end of the operation. In functions that do not move the cursor, these special
characters can be used to affect the placement of subsequent characters and to achieve movement of the
physical cursor.

Backspace Unless the cursor was already in column 0, Backspace moves the cursor one column toward
the start of the current line, and any characters after the Backspace are added or inserted
starting there.

Carriage return Unless the cursor was already in column 0, Carriage return moves the cursor to the start of
the current line. Any characters after the Carriage return are added or inserted starting there.
newline In an add operation, curses adds the background character into successive columns until

reaching the end of the line. Scrolling occurs, and any characters after the newline character
are added, starting at the beginning of the new line.

In an insert operation, newline erases the remainder of the current line with the background
character (effectively a welrtoeol subroutine), and moves the cursor to the start of a new
line. When scrolling is enabled, advancing the cursor to a new line may cause scrolling. Any
characters after the newline character are inserted at the beginning of the new line.

The filter function may inhibit this processing.
Tab Tab characters in text move subsequent characters to the next horizontal tab stop. By
default, tab stops are in columns 0, 8, 16, and so on.

In an insert or add operation, curses inserts or adds, respectively, the background character
into successive columns until reaching the next tab stop. If there are no more tab stops in
the current line, wrapping and scrolling occur.

Control Characters: The curses functions that perform special-character processing conceptually
convert control characters to the (’ A’) character followed by a second character (which is an uppercase
letter if it is alphabetic) and write this string to the window in place of the control character. The functions
that retrieve text from the window will not retrieve the original control character.

Line Graphics: You can use the following variables to add line-drawing characters to the screen with the
waddch subroutine. When defined for the terminal, the variable will have the A_ALTCHARSET bit turned

Chapter 2. Curses Library 13

on. Otherwise, the default character listed in the following table is stored in the variable.

Variable Name Default Character Glyph Description
ACS_ULCORNER + upper left corner
ACS_LLCORNER + lower left corner
ACS_URCORNER + upper right corner
ACS_LRCORNER + lower right corner
ACS_RTEE + right tee
ACS_LTEE + left tee

ACS_BTEE + bottom tee
ACS_TTEE + top tee
ACS_HLINE — horizontal line
ACS_VLINE | vertical line
ACS_PLUS + plus

ACS_S1 - scan line 1
ACS_S9 _ scan line 9
ACS_DIAMOND + diamond
ACS_CKBOARD checkerboard (stipple)
ACS_DEGREE , degree symbol
ACS_PLMINUS # plus/minus
ACS_BULLET o bullet
ACS_LARROW < arrow pointing left
ACS_RARROW > arrow pointing right
ACS_DARROW v arrow pointing down
ACS_UARROW A arrow pointing up
ACS_BOARD # board of squares
ACS_LANTERN # lantern symbol
ACS_BLOCK # solid square block

waddstr Subroutines

The waddstr subroutines add a null-terminated character string to a window, starting with the current
character. If you are adding a single character, use the waddch subroutine. Otherwise, use the waddstr
subroutine. The following are part of the waddstr subroutine family:

addstr macro
mvaddstr macro

subroutine

wmvaddstr macro

winsch Subroutines

Adds a character string to the stdscr
Moves the logical cursor to a specified location before adding a character string to the
stdscr

Adds a character string to a user-defined window

Moves the logical cursor to a specified location before adding a character string to a
user-defined window

The subroutines insert a specified character before the current character in a window. All
characters to the right of the inserted character are moved one space to the right. As a result, the
rightmost character on the line may be lost. The positions of the logical and physical cursors do not
change after the move. The winsch subroutines include the following:

14 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

insch macro Inserts a character in the stdscr

mvinsch macro Moves the logical cursor to a specified location in the stdscr before inserting a
character

mvwinsch macro Moves the logical cursor to a specified location in a user-defined window before
inserting a character

winsch subroutine Inserts a character in a user-defined window

winsertin Subroutines

The winsertln subroutines insert a blank line above the current line in a window. The |insert|n| subroutine
inserts a line in the stdscr. The bottom line of the window is lost. The |winsert|n| subroutine performs the
same action in a user-defined window.

wprintw Subroutines
The subroutines replace a series of characters (starting with the current character) with formatted
output. The format is the same as for the command. The printw family is made up of the following:

mvprintw macro Moves the logical cursor to a specified location in the stdscr before replacing any
characters

mvwprintw macro Moves the logical cursor to a specified location in a user-defined window before
replacing any characters

printw macro Replaces a series of characters in the stdscr

wprintw subroutine Replaces a series of characters in a user-defined window

The wprintw subroutines make calls to the subroutine to replace characters.
unctrl Macro

The unctrl macro returns a printable representation of the specified control character, displayed in the AX
notation. The unctrl macro returns print characters as is.

Enabling Text Scrolling

Use the following subroutines to enable scrolling:

idloki Allows curses to use the hardware insert/delete line feature

scrollok Enables a window to scroll when the cursor is moved off the right edge of the last line of a
window

setscrreg or] Sets a software scrolling region within a window

wsetscrreg

Scrolling occurs when a program or user moves a cursor off a window’s bottom edge. For scrolling to
occur, you must first use the scrollok subroutine to enable scrolling for a window. A window is scrolled if
scrolling is enabled and if any of the following occurs:

* The cursor is moved off the edge of a window.

* A newline character is encountered on the last line.

» A character is inserted in the last position of the last line.

When a window is scrolled, curses will update both the window and the display. However, to get the
physical scrolling effect on the terminal, you must call the idlok subroutine with the Flag parameter set to
TRUE.

If scrolling is disabled, the cursor remains on the bottom line at the location where the character was
entered.

Chapter 2. Curses Library 15

When scrolling is enabled for a window, you can use the setscrreg subroutines to create a software
scrolling region inside the window. You pass the setscrreg subroutines values for the top line and bottom
line of the region. If setscrreg is enabled for the region and scrolling is enabled for the window, any
attempt to move off the specified bottom line causes all the lines in the region to scroll up one line. You
can use the macro to define a scrolling region in the stdscr. Otherwise, you use the
subroutine to define scrolling regions in user-defined windows.

Note: Unlike the idlok subroutine, the setscrreg subroutines have no bearing on the use of the physical
scrolling region capability that the terminal may have.

Deleting Characters

You can delete text by replacing it with blank spaces or by removing characters from a character array and
sliding the rest of the characters on the line one space to the left.

werase Subroutines

The macro copies blank space to every position in the stdscr. The subroutine puts a blank
space at every position in a user-defined window. To delete a single character in a window, use the

wdelch subroutine.

wclear Subroutines
Use the following subroutines to clear the screen:

clear, or wclea Clears the screen and sets a clear flag for the next refresh.
clearo Determines whether curses clears a window on the next call to the refresh or

wrefresh subroutine.

The wclear subroutines are similar to the subroutines. However, in addition to putting a blank
space at every position of a window, the wclear subroutines also call the subroutine. As a result,
the screen is cleared on the next call to the subroutine.

The weclear subroutine family contains the welear subroutine, the clear macro, and the clearok
subroutine. The clear macro puts a blank at every position in the stdscr.

wclrtoeol Subroutines
The macro operates in the stdscr, while the welrtoeol subroutine performs the same action within
a user-defined window.

wclrtobot Subroutines

The macro operates in the stdscr, while the wclrtobot performs the same action in a user-defined
window.

wdelch Subroutines
Use the following subroutines to delete characters from the screen:

delch macro Deletes the current character from the stdscr

mvdelch macro Moves the logical cursor before deleting a character from the stdscr

mvwdelch macro Moves the logical cursor before deleting a character from a user-defined window
wdelch subroutine Deletes the current character in a user-defined window

The subroutines delete the current character and move all the characters to the right of the current
character on the current line one position to the left. The last character in the line is filled with a blank. The
delch subroutine family consists of the following subroutine and macros:

16 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

wdeleteln Subroutines
The |[deleteln| subroutines delete the current line and move all lines below the current line up one line. This
action clears the window’s bottom line.

Getting Characters

Your program can retrieve characters from the keyboard or from the display. The wgetch subroutines
retrieve characters from the keyboard. The winch subroutines retrieve characters from the display.

wgetch Subroutines

The wgetch subroutines read characters from the keyboard attached to the terminal associated with the
window. Before getting a character, these subroutines call the wrefresh subroutines if anything in the
window has changed: for example, if the cursor has moved or text has changed. For more information,
see Subroutine, in AIX 5L Version 5.3 Technical Reference: Base Operating System and
Extensions Volume 2.

The wgetch subroutine family is made up of the following:

getch macro Gets a character from the stdscr

mvgetch macro Moves the cursor before getting a character from the stdscr

mvwgetch macro Moves the cursor before getting a character from a user-defined window
wgetch subroutine Gets a character from a user-defined window

To place a character previously obtained by a call to the wgetch subroutine back in the input queue, use
the ungetch subroutine. The character is retrieved by the next call to the wgetch subroutine.

Terminal Modes: The output of the wgetch subroutines is, in part, determined by the mode of the
terminal. The following list describes the action of the wgetch subroutines in each type of terminal mode:

DELAY mode Stops reading until the system passes text through the program. If CBREAK mode is also set, the
program stops after one character. If CBREAK mode is not set (NOCBREAK mode), the wgetch
subroutine stops reading after the first newline character. If ECHO is set, the character is also
echoed to the window.

HALF-DELAY Stops reading until a character is typed or a specified timeout is reached. If ECHO mode is set,

mode the character is also echoed to the window.

NODELAY mode Returns a value of ERR if there is no input waiting.

Note: When you use the wgetch subroutines, do not set both the NOCBREAK mode and the ECHO
mode at the same time. Setting both modes can cause undesirable results depending on the state
of the tty driver when each character is typed.

Function Keys: Function keys are defined in the curses.h file. Function keys can be returned by the
wgetch subroutine if the keypad is enabled. A terminal may not support all of the function keys. To see if a
terminal supports a particular key, check its terminfo database definition. For a list of function keys, see
[getch, mvgetch, mvwgetch, or wgetch Subroutine] in AIX 5L Version 5.3 Technical Reference: Base
Operating System and Extensions Volume 2.

Getting Function Keys: If your program enables the keyboard with the keypad subroutine, and the user
presses a function key, the token for that function key is returned instead of raw characters. The
lusr/include/curses.h file defines the possible function keys. Each define statement begins with a KEY_
prefix, and the keys are defined as integers beginning with the value 03510.

If a character is received that could be the beginning of a function key (such as an Escape character),
curses sets a timer (a structure of type timeval that is defined in /usr/include/sys/time.h). If the remainder
of the sequence is not received before the timer expires, the character is passed through. Otherwise, the
function key’s value is returned. For this reason, after a user presses the Esc key there is a delay before

Chapter 2. Curses Library 17

the escape is returned to the program. Avoid using the Esc key where possible when you call a
single-character subroutine such as the wgetch subroutine. This timer can be overridden or extended by
the use of the ESCDELAY environment variable.

The ESCDELAY environment variable sets the length of time to wait before timing out and treating the
ESC keystroke as the Escape character rather than combining it with other characters in the buffer to
create a key sequence. The ESCDELAY value is measured in fifths of a millisecond. If the ESCDELAY
variable is 0, the system immediately composes the Escape response without waiting for more information
from the buffer. You may choose any value from 0 to 99,999. The default setting for the ESCDELAY
variable is 500 (1/10th of a second).

To prevent the wgetch subroutine from setting a timer, call the notimeout subroutine. If notimeout is set to
TRUE, curses does not distinguish between function keys and characters when retrieving data.

keyname Subroutine

The keyname subroutine returns a pointer to a character string containing a symbolic name for the Key
argument. The Key argument can be any key returned from the wgetch, getch, mvgetch, or mvwgetch
subroutines.

winch Subroutines

The subroutines retrieve the character at the current position. If any attributes are set for the
position, the attribute values are ORed into the value returned. You can use the winch subroutines to
extract only the character or its attributes. To do this, use the predefined constants A_CHARTEXT and
A_ATTRIBUTES with the logical & (ampersand) operator. These constants are defined in the curses.h
file. The following are the winch subroutines:

inch macro Gets the current character from the stdscr

mvinch macro Moves the logical cursor before calling the inch subroutine on the stdscr

mvwinch macro Moves the logical cursor before calling the winch subroutine in the user-defined window
winch subroutine Gets the current character from a user-defined window

wscanw Subroutines

The subroutines read character data, interpret it according to a conversion specification, and
store the converted results into memory. The wscanw subroutines use the wgetstr subroutines to read
the character data. The following are the wscanw subroutines:

mvscanw macro Moves the logical cursor before scanning the stdscr

mvwscanw macro Moves the logical cursor in the user-defined window before scanning
scanw macro Scans the stdscr

wscanw subroutine Scans a user-defined window

The [vwscanw| subroutine scans a window usini a variable argument list. For information about

manipulating variable argument lists, see the |varargs| macros in AIX 5L Version 5.3 Technical Reference:
Base Operating System and Extensions Volume 2.

Understanding Terminals with Curses

The capabilities of your program are limited, in part, by the capabilities of the terminal on which it runs.
This section provides information about initializing terminals and identifying their capabilities.

Manipulating Multiple Terminals

With curses, you can use one or more terminals for input and output. The terminal subroutines enable you
to establish new terminals, to switch input and output processing, and to retrieve terminal capabilities.

18 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

You can start curses on a single default screen using the initscr subroutine. If your application sends
output to more than one terminal, use the subroutine. Call the newterm subroutine for each
terminal. Also use the newterm subroutine if your application wants an indication of error conditions so
that it can continue to run in a line-oriented mode if the terminal cannot support a screen-oriented
program.

When it completes, a program must call the subroutine for each terminal it used. If you call the
newterm subroutine more than once for the same terminal, the first terminal referred to must be the last
one for which you call the endwin subroutine.

The [set_term| subroutine switches input and output processing between different terminals.

Determining Terminal Capabilities
Curses supplies the following subroutines to help you determine the capabilities of a terminal:

Determines whether a terminal has the insert-character capability
Determines whether a terminal has the insert-line capability
Returns the verbose name of the terminal

The longhame subroutine returns a pointer to a static area containing a verbose description of the current
terminal. This static area is defined only after a call to the initscr or newterm subroutine. If you intend to
use the longname subroutine with multiple terminals, each call to the newterm subroutine overwrites this
area. Calls to the set_term subroutine do not restore the value. Instead, save this area between calls to
the newterm subroutine.

The has_ic subroutine returns TRUE if the terminal has insert and delete character capabilities.

The has_il subroutine returns TRUE if the terminal has insert and delete line capabilities or can simulate
the capabilities using scrolling regions. Use the has_il subroutine to check whether it is appropriate to turn
on physical scrolling using the scrollok or idlok subroutines.

Setting Terminal Input and Output Modes

The subroutines that control input and output determine how your application retrieves and displays data
to users.

Input Modes

Special input characters include the flow-control characters, the interrupt character, the erase character,
and the kill character. The following mutually-exclusive curses modes let the application control the effect
of the input characters:

Cooked Mode
This mode achieves normal line-at-a-time processing with all special characters handled outside
the application, achieving the same effect as canonical-mode input processing. The state of the
ISIG and IXON flags is not changed upon entering this mode by calling nocbreak() and are set
upon entering this mode by calling noraw().

The implementation supports erase and kill characters from any supported locale, regardless of
the width of the character.

cbreak Mode
Characters typed by the user are immediately available to the application and curses does not
perform special processing on either the erase character or the kill character. An application can
select cbreak mode to do its own line editing but to let the abort character be used to abort the
task. This mode achieves the same effect as noncanonical mode, Case B input processing (with
MIN set to 1 and ICRNL cleared). The state of the ISIG and IXON flags is not changed upon
entering this mode.

Chapter 2. Curses Library 19

Half-Delay Mode
The effect is the same as cbreak, except that input functions wait until a character is available or
an interval defined by the application elapses, whichever comes first. This mode achieves the
same effect as noncanonical mode, Case C input processing (with TIME set to the value specified
by the application). The state of the ISIG and IXON flags is not changed upon entering this mode.

Raw Mode
Raw mode gives maximum control to the application over terminal input. The application sees
each character as it is typed. This achieves the same effect as noncanonical mode, Case D input
processing. The ISIG and IXON flags are cleared upon entering this mode.

The terminal interface settings are recorded when the process calls the initscr or newterm subroutines to
initialize curses and restores these settings when the endwin subroutine is called. The initial input mode
for curses operations is unspecified unless the implementation supports enhanced curses compliance, in
which the initial input mode is cbreak mode.

The behavior of the BREAK key depends on other bits in the display driver that are not set by curses.

Delay Mode
The following mutually exclusive delay modes specify how quickly certain curses functions return to the
application when there is no terminal input waiting when the function is called:

No Delay The function fails.

Delay The application waits until the implementation passes text through to the application. If cbreak mode
or Raw Mode is set, this is after one character. Otherwise, this is after the first newline character,
end-of-line character, or end-of-file character.

The effect of No Delay mode on function-key processing is unspecified.

Echo Mode Processing

Echo mode determines whether curses echoes typed characters to the screen. The effect of echo mode is
analogous to the effect of the echo flag in the local mode field of the termios structure associated with the
terminal device connected to the window. However, curses always clears the echo flag when invoked, to
inhibit the operating system from performing echoing. The method of echoing characters is not identical to
the operating system’s method of echoing characters, because curses performs additional processing of
terminal input.

If in echo mode, curses performs its own echoing. Any visible input character is stored in the current or
specified window by the input function that the application called, at that window’s cursor position, as
though the addch subroutine was called, with all consequent effects such as cursor movement and
wrapping.

If not in echo mode, any echoing of input must be performed by the application. Applications often perform
their own echoing in a controlled area of the screen, or do not echo at all, so they disable echo mode.

It may not be possible to turn off echo processing for synchronous and network asynchronous terminals
because echo processing is done directly by the terminals. Applications running on such terminals should
be aware that any characters typed will display on the screen at the point where the cursor is positioned.

The following are a part of the echo processing family of subroutines:

cbreak or nocbreak| Puts the terminal into or takes it out of CBREAK mode

Sets the output delay in milliseconds

Controls echoing of typed characters to the screen

Returns ERR if no input was typed after blocking for a specified amount of
time

echo or noecho

halfdelay

20 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

nl or nonl Determines whether curses translates a new line into a carriage return and
line feed on output, and translates a return into a new line on input

raw or nora Places the terminal into or out of mode

Thesubroutine performs a subset of the functions performed by the raw subroutine. In cbreak
mode, characters typed by the user are immediately available to the program, and erase or kill character
processing is not done. Unlike RAW mode, interrupt and flow characters are acted upon. Otherwise, the
tty driver buffers the characters typed until a new line or carriage return is typed.

Note: CBREAK mode disables translation by the tty driver.

The subroutine sets the output delay to the specified number of milliseconds. Do not use
this subroutine excessively because it uses padding characters instead of a processor pause.

Thesubroutine puts the terminal into echo mode. In echo mode, curses writes characters typed by
the user to the terminal at the physical cursor position. Thesubroutine takes the terminal out of
echo mode.

The [n] and subroutines, respectively, control whether curses translates new lines into carriage
returns and line feeds on output, and whether curses translates carriage returns into new lines on input.
Initially, these translations do occur. By disabling these translations, the curses subroutine library has more
control over the line-feed capability, resulting in faster cursor motion.

The subroutine takes the terminal out of cbreak mode.

The subroutine puts the terminal into raw mode. In raw mode, characters typed by the user are
immediately available to the program. Additionally, the interrupt, quit, suspend, and flow-control characters
are passed uninterpreted instead of generating a signal as they do in cbreak mode. The subroutine
takes the terminal out of raw mode.

Using the terminfo and termcap Files

When curses is initialized, it checks the TERM environment variable to identify the terminal type. Then,
curses looks for a definition explaining the capabilities of the terminal. This information is usually kept in a
local directory specified by the TERMINFO environment variable or in the /usr/share/lib/terminfo
directory. All curses programs first check to see if the TERMINFO environment variable is defined. If this
variable is not defined, the /usr/share/lib/terminfo directory is checked.

For example, if the TERM variable is set to vt100 and the TERMINFO variable is set to the
lusr/mark/myterms file, curses checks for the /usr/mark/myterms/v/vt100 file. If this file does not exist,
curses checks the /usr/share/lib/terminfo/v/vt100 file.

Additionally, the LINES and COLUMNS environment variables can be set to override the terminal
description.

Writing Programs That Use the terminfo Subroutines

Use the terminfo subroutines when your program must deal directly with the fterminfo database] For
example, use these subroutines to program function keys. In all other cases, curses subroutines are more
suitable and their use is recommended.

Initializing Terminals: Your program should begin by calling the [setupterm| subroutine. Normally, this
subroutine is called indirectly by a call to the initscr or newterm subroutine. The setupterm subroutine
reads the terminal-dependent variables defined in the terminfo database. The terminfo database includes
boolean, numeric, and string variables. All of these terminfo variables use the values defined for the

Chapter 2. Curses Library 21

specified terminal. After reading the database, the setupterm subroutine initializes the cur_term variable
with the terminal definition. When working with multiple terminals, you can use the set_curterm subroutine
to set the cur_term variable to a specific terminal.

Another subroutine, is similar to the setupterm subroutine. However, it is called after memory
is restored to a previous state. For example, you would call the restartterm subroutine after a call to the
scr_restore subroutine. The restartterm subroutine assumes that the input and output options are the
same as when memory was saved, but that the terminal type and baud rate may differ.

The del_curterm subroutine frees the space containing the capability information for a specified terminal.
Header Files: Include the curses.h and term.h files in your program in the following order:

#include <curses.h>

#include <term.h>

These files contain the definitions for the strings, numbers, and flags in the terminfo database.
Handling Terminal Capabilities: Pass all parameterized strings through the tparm subroutine to

instantiate them. Use the tputs or putp subroutine to print all terminfo strings and the output of the tparm
subroutine.

ut Provides a shortcut to the @l subroutine
tparm Instantiates a string with parameters
tput Applies padding information to the given string and outputs it

Use the following subroutines to obtain and pass terminal capabilities:

tigetflag Returns the value of a specified boolean capability. If the capability is not boolean, a -1 is returned.
tigetnum Returns the value of a specified numeric capability. If the capability is not numeric, a -2 is returned.
tigetstr Returns the value of a specified string capability. If the capability specified is not a string, the

tigetstr subroutine returns the value of (char *) -1.

Exiting the Program: When your program exits, restore the tty modes to their original state. To do this,
call the reset_shell_mode subroutine. If your program uses cursor addressing, it should output the
enter_ca_mode string at startup and the exit_ca_mode string when it exits.

Programs that use shell escapes should call the reset_shell_mode subroutine and output the
exit_ca_mode string before calling the shell. After returning from the shell, the program should output the
enter_ca_mode string and call the reset_prog_mode subroutine. This process differs from standard
curses operations, which call the endwin subroutine on exit.

Low-Level Screen Subroutines
Use the following subroutines for low-level screen manipulations:

ripoffline Strips a single line from the stdscr

scr_dump Dumps the contents of the virtual screen to a specified file

scr_init Initializes the curses data structures from a specified file

scr_restore Restores the virtual screen to the contents of a previously dumped file

termcap Subroutines

If your program uses the termcap file for terminal information, the termecap subroutines are included as a
conversion aid. The parameters are the same for the termcap subroutines. Curses emulates the
subroutines using the terminfo database. The following termcap subroutines are supplied:

22 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Emulates the subroutine.

Returns the boolean entry for a termcap identifier.

Returns the numeric entry for a termcap identifier.

Returns the string entry for a termcap identifier.

Duplicates the subroutine. The output from the tgoto subroutine should be passed to the
tputs subroutine.

Converting termcap Descriptions to terminfo Descriptions
i

The command converts termcap descriptions to terminfo descriptions. The following example
illustrates how the captoinfo command works:

captoinfo /usr/1ib/1libtermcap/termcap.src

This command converts the /usr/lib/libtermcap/termcap.src file to terminfo source. The captoinfo
command writes the output to standard output and preserves comments and other information in the file.

Manipulating TTYs

The following functions save and restore the state of terminal modes:

savetty Saves the state of the tty modes.
resetty| Restores the state of the tty modes to what they were the last time the savetty subroutine was called.

Synchronous and Networked Asynchronous Terminals

Synchronous, networked synchronous (NWA) or non-standard directly connected asynchronous terminals
are often used in a mainframe environment and communicate to the host in block mode. That is, the user
types characters at the terminal, then presses a special key to initiate transmission of the characters to the
host.

Note: Although it may be possible to send arbitrarily sized blocks to the host, it is not possible or
desirable to cause a character to be transmitted with only a single keystroke. Doing so could cause
severe problems to an application that makes use of single-character input.

Output

The curses interface can be used for all operations pertaining to output to the terminal, with the possible
exception that on some terminals, the refresh routine may have to redraw the entire screen contents in
order to perform any update.

If it is additionally necessary to clear the screen before each such operation, the result could be
undesirable.

Input
Because of the nature of operation of synchronous (block-mode) and NWA terminals, it might not be
possible to support all or any of the curses input functions. In particular, note the following points:

» Single-character input might not possible. It may be necessary to press a special key to cause all
characters typed at the terminal to be transmitted to the host.

» It is sometimes not possible to disable echo. Character echo may be performed directly by the terminal.
On terminals that behave in this way, any curses application that performs input should be aware that
any characters typed will appear on the screen at the point where the cursor is positioned. This does
not necessarily correspond to the position of the cursor in the window.

Chapter 2. Curses Library 23

Working with Color

If a terminal supports color, you can use the color manipulation subroutines to include color in your curses
program. Before manipulating colors, test whether a terminal supports color. To do this, you can use either
the has_colors subroutine or the can_change_color subroutine. The can_change_color subroutine also
checks to see if a program can change the terminal’s color definitions. Neither of these subroutines
requires an argument.

can_change_color Checks to see if the terminal supports colors and changing of the color definition

has_colors| Checks that the terminal supports colors

start_color Initializes the eight basic colors and two global variables, COLORS and
COLOR_PAIRS

After you have determined that the terminal supports color, call the start_color subroutine before you call
other color subroutines. It is a good practice to call this subroutine immediately after the initscr subroutine
and after a successful color test. The COLORS global variable defines the maximum number of colors that
the terminal supports. The COLOR_PAIRS global variable defines the maximum number of color pairs that
the terminal supports.

Manipulating Video Attributes

Your program can manipulate a number of video attributes.

Video Attributes, Bit Masks, and Default Colors

Curses enables you to control the following attributes:

A_ALTCHARSET Alternate character set.

A_BLINK Blinking.

A_BOLD Extra bright or bold.

A_DIM Half-bright.

A_NORMAL Normal attributes.

A_REVERSE Reverse video.

A_STANDOUT Terminal’s best highlighting mode.

A_UNDERLINE Underline.

COLOR_PAIR (Number) Displays the color pair represented by Number. You must have already

initialized the color pair using the init_pair subroutine.

These attributes are defined in the curses.h file. You can pass attributes to the wattron, wattroff, and
wattrset subroutines, or you can OR them with the characters passed to the waddch subroutine. The C
logical OR operator is a | (pipe symbol). The following bit masks are also provided:

A_ATTRIBUTES Extracts attributes

A_CHARTEXT Extracts a character

A_COLOR Extracts color-pair field information
A_NORMAL Turns all video attributes off

The following macros are provided for working with color pairs: COLOR_PAIR(Number) and
PAIR_NUMBER(Attribute). The COLOR_PAIR(Number) macro and the A_COLOR mask are used by the
PAIR_NUMBER(Attribute) macro to extract the color-pair number found in the attributes specified by the
Attribute parameter.

If your program uses color, the curses.h file defines a number of macros that identify the following default
colors:

24 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Color Integer Value
COLOR_BLACK 0
COLOR_BLUE 1
COLOR_GREEN 2
COLOR_CYAN 3
COLOR_RED 4
COLOR_MAGENTA 5
COLOR_YELLOW 6
COLOR_WHITE 7

Curses assumes that the default background color for all terminals is 0 (COLOR_BLACK).

Setting Video Attributes

The current window attributes are applied to all characters written into the window with the
subroutines. These attributes remain as a property of the characters. The characters retain these attributes
during terminal operations.

[attroff or wattroff] Turns off attributes
[attron or wattron| Turns on attributes
[attrset or wattrset| Sets the current attributes of a window

|standout, wstandout, standend, or wstandend|
Puts a window into and out of the terminal’s best highlight mode
|vidputs or vidattr| Outputs a string that puts the terminal in a video-attribute mode

The subroutine sets the current attributes of the default screen. The subroutine sets the
current attributes of the user-defined window.

Use the [attron| and [attroff| subroutines to turn on and off the specified attributes in the stdscr without
affecting any other attributes. The |wattron| and |wattroff| subroutines perform the same actions in
user-defined windows.

The subroutine is the same as a call to the attron subroutine with the A_STANDOUT attribute.
It puts the stdscr into the terminal’s best highlight mode. The subroutine is the same as a call
to the wattron(Window, A_STANDOUT) subroutine. It puts the user-defined window into the terminal’s
best highlight mode. The |standend| subroutine is the same as a call to the attrset(0) subroutine. It turns
off all attributes for stdscr. The|wstandend| subroutine is the same as a call to the wattrset(Window, 0)
subroutine. It turns off all attributes for the specified window.

are output through the putc subroutine. The subroutine is the same as the vidputs subroutine
except that characters are output through the subroutine.

Thesubroutine outputs a string that puts the terminal in the specified attribute mode. Characters
vidattr]

Working with Color Pairs

The COLOR_PAIR (Number) macro is defined in the curses.h file so you can manipulate color attributes
as you would any other attributes. You must initialize a color pair with the init_pair subroutine before you
use it. The init_pair subroutine has the following parameters: Pair, Foreground, and Background. The Pair
parameter must be between 1 and COLOR_PAIRS -1. The Foreground and Background parameters must
be between 0 and COLORS -1. For example, to initialize color pair 1 to a foreground of black with a
background of cyan, you would use the following:

init_pair(l, COLOR_BLACK, COLOR CYAN);

You could then set the attributes for the window as follows:
wattrset(win, COLOR PAIR(1));

Chapter 2. Curses Library 25

If you then write the string Let’s add Color to the terminal, the string displays as black characters on a
cyan background.

Extracting Attributes

You can use the results from the call to the winch subroutine to extract attribute information, including the
color-pair number. The following example uses the value returned by a call to the winch subroutine with
the C logical AND operator (&) and the A_ATTRIBUTES bit mask to extract the attributes assigned to the
current position in the window. The results from this operation are used with the PAIR_NUMBER macro to
extract the color-pair number, and the number 1 is printed on the screen.

win = newwin(10, 10, 0, 0);

init_pair(l, COLOR RED, COLOR_YELLOW);

wattrset(win, COLOﬁ_PAIR(l));
waddstr(win, "apple");

number = PAIR_NUMBER((mvwinch(win, 0, 0) & A _ATTRIBUTES));
wprintw(win, "%d\n", number);
wrefresh(win);

Lights and Whistles
The curses library provides the following alarm subroutines to signal the user:

beep Sounds an audible alarm on the terminal
flash Displays a visible alarm on the terminal

Setting Curses Options

All curses options are initially turned off, so it is not necessary to turn them off before calling the [endwin]
subroutine. The following subroutines allow you to set various options with curses:

(2]
(2]
(0]
-

urs

Sets the cursor visibility to invisible, normal, or very visible.

Specifies whether curses can use the hardware insert and delete line features of terminals so
equipped.

Specifies whether an interrupt key (interrupt, quit, or suspend) flushes all output in the tty driver.
This option’s default is inherited from the tty driver.

Specifies whether curses retrieves the information from the terminal’s keypad. If enabled, the user
can press a function key (such as an arrow key) and thesubroutine returns a single value
representing that function key. If disabled, curses will not treat the function keys specially and your
program must interpret the escape sequences. For a list of these function keys, see the
subroutine.

Instructs curses to check for type ahead in an alternative file descriptor.

FL

See the wgetch subroutines and [‘Setting Terminal Input and Output Modes” on page 19| for descriptions of
additional curses options.

Manipulating Soft Labels

Curses provides subroutines for manipulating soft function-key labels. These labels appear at the bottom
of the screen and give applications, such as editors, a more user-friendly look. To use soft labels, you
must call the slk_init subroutine before calling the initscr or newterm subroutines.

Clears soft labels from the screen.

Initializes soft function key labels.

Returns the current label.

Refreshes soft labels. This subroutine is functionally equivalent to the wnoutrefresh

slk_noutrefresh
subroutine.

Refreshes soft labels. This subroutine is functionally equivalent to the refresh
subroutine.

26 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

slk_restore Restores the soft labels to the screen after a call to the slk_clear subroutine.

slk_set Sets a soft label.

slk_touch Updates soft labels on the next call to the slk_noutrefresh subroutine.

To manage soft labels, curses reduces the size of the stdscr by one line. It reserves this line for use by
the soft-label functions. This reservation means that the LINES environment variable is also reduced.
Many terminals support built-in soft labels. If built-in soft labels are supported, curses uses them.
Otherwise, curses simulates the soft-labels with software.

Because many terminals that support soft labels have 8 labels, curses follows the same standard. A label
string is restricted to 8 characters. Curses arranges labels in one of two patterns: 3-2-3 (3 left, 2 center, 3
right) or 4-4 (4 left, 4 right).

To specify a string for a particular label, call the slk_set subroutine. This subroutine also instructs curses
to left-justify, right-justify, or center the string on the label. To obtain a label name before it was justified by
the slk_set subroutine, use the slk_label subroutine. The slk_clear and slk_restore subroutines clear
and restore soft labels respectively. Normally, to update soft labels, your program should call the
slk_noutrefresh subroutine for each label and then use a single call to the slk_refresh subroutine to
perform the actual output. To output all the soft labels on the next call to the slk_noutrefresh subroutine,
use the slk_touch subroutine.

Curses Compatibility

The following compatibility issues need to be considered:
* In AIX 4.3, curses is not compatible with AT&T System V Release 3.2 curses.

» Applications compiled, rebound, or relinked may need source code changes for compatibility with the
AlX Version 4 of curses. The curses library does not have or use AlX extended curses functions.

» Applications requiring multibyte support might still compile and link with extended curses. Use of the
extended curses library is, however, discouraged except for applications that require multibyte support.

List of Additional Curses Subroutines

The following sections describe additional curses subroutines:
+ [‘Manipulating Windows”|

[‘Manipulating Characters’|

+ [‘Manipulating Terminals” on page 28|

+ [‘Manipulating Color” on page 28|

[‘Miscellaneous Utilities” on page 28|

Manipulating Windows
Use the following subroutines to manipulate windows:

scr_dump Writes the current contents of the virtual screen to the specified file
scr_init Uses the contents of a specified file to initialize the curses data structures
scr_restore Sets the virtual screen to the contents of the specified file

Manipulating Characters
Use the following subroutines to manipulate characters:

lechochar, wechochar,| Functionally equivalent to a call to the addch (or waddch) subroutine followed by a call to
|or Eechochad the refresh (or wrefresh) subroutine.

Chapter 2. Curses Library 27

flushin Flushes any type-ahead characters typed by the user but not yet read by the program.
insertln or winsertin| Inserts a blank line in a window.

Returns a pointer to a character string containing a symbolic name for the Key parameter.
Determines whether 8-bit character return for the wgetch subroutine is allowed.

Causes a call to the wgetch subroutine to be a nonblocking call. If no input is ready, the
wgetch subroutine returns ERR.

Scrolls a window up one line.

unctrl Returns the printable representation of a character. Control characters are punctuated with
a M (caret).

Performs the same operation as the wprintw subroutine, but takes a variable list of
arguments.

Performs the same operation as the wscanw subroutine, but takes a variable list of
arguments.

Manipulating Terminals
Use the following subroutines to manipulate terminals:

Identifies the current terminal mode as the in-curses mode

Saves the current terminal mode as the not-in-curses mode

Frees the space pointed to by the oterm variable

Prevents the wgetch subroutine from setting a timer when interpreting an input
escape sequence

Equivalent to a call to the waddch subroutine followed by a call to the prefresh

subroutine.

reset_prog_model Restores the terminal into the in-curses program mode.

reset_shell_mode| Restores the terminal to shell mode (out-of-curses mode). The endwin subroutine
does this automatically.

Sets up a TERMINAL structure for use by curses. This subroutine is similar to the

[setupterm]| subroutine. Call the restartterm subroutine after restoring memory to a
previous state. For example, call this subroutine after a call to the scr_restore
subroutine.

Manipulating Color
Use the following subroutines to manipulate colors:

Returns the composition of a color

Changes a color to the desired composition

Initializes a color pair to the specified foreground and background colors
Returns the foreground and background colors for a specified color-pair number

Miscellaneous Utilities
The following miscellaneous utilities are available:

Queries the current terminal and returns its output speed
erasechar] Returns the erase character chosen by the user
killchar Returns the line-kill character chosen by the user

28 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Chapter 3. Debugging Programs

There are several debug programs available for debugging your programs: the adb, dbx, dex, softdb, and
kernel debug programs. The adb program enables you to debug executable binary files and examine
non-ASCII data files. The dbx program enables source-level debugging of C, C++, and FORTRAN
language programs, as well as assembler-language debugging of executable programs at the machine
level. The (dex) provides an X interface for the dbx debug program, providing windows for viewing the
source, context, and variables of the application program. The softdb debug program works much like the
dex debug program, but softdb is used with AIX Software Development Environment Workbench. The
kernel debug program is used to help determine errors in code running in the kernel.

The following articles provide information on the adb and dbx debug programs:
+ [‘adb Debug Program Overview’|
+ [‘dbx Symbolic Debug Program Overview” on page 61|

adb Debug Program Overview

The adb command provides a general purpose debug program. You can use this command to examine
object and core files and provide a controlled environment for running a program.

While the adb command is running, it takes standard input and writes to standard output. The command
does not recognize the Quit or Interrupt keys. If these keys are used, the adb command waits for a new
command.

Getting Started with the adb Debug Program

This section explains how to start the adb debugging program from a variety of files, use the adb prompt,
use shell commands from within the adb program, and stop the adb program.

Starting adb with a Program File

You can debug any executable C or assembly language program file by entering a command line of the
form:

adb FileName

where FileName is the name of the executable program file to be debugged. The program opens the
file and prepares its text (instructions) and data for subsequent debugging. For example, the command:

adb sample
prepares the program named sample for examination and operation.

Once started, the adb debug program places the cursor on a new line and waits for you to type
commands.

Starting adb with a Nonexistent or Incorrect File

If you start the debug program with the name of a nonexistent or incorrectly formatted file, the adb
program first displays an error message and then waits for commands. For example, if you start the adb
program with the command:

adb sample
and the sample file does not exist, the adb program displays the message:

© Copyright IBM Corp. 1997, 2007 29

sample: no such file or directory.

Starting adb with the Default File

You can start the debug program without a file name. In this case, the adb program searches for the
default a.out file in your current working directory and prepares it for debugging. Thus, the command:

adb

is the same as entering:
adb a.out

The adb program starts with the a.out file and waits for a command. If the a.out file does not exist, the
adb program starts without a file and does not display an error message.

Starting adb with a Core Image File

You can use the debug program to examine the core image files of programs that caused
irrecoverable system errors. Core image files maintain a record of the contents of the CPU registers,
stack, and memory areas of your program at the time of the error. Therefore, core image files provide a
way to determine the cause of an error.

To examine a core image file with its corresponding program, you must give the name of both the core
and the program file. The command line has the form:

adb ProgramFile CoreFile

where ProgramfFile is the file name of the program that caused the error, and CoreFile is the file name of
the core image file generated by the system. The adb program then uses information from both files to
provide responses to your commands.

If you do not give the filename of the core image file, the adb program searches for the default core file,
named core, in your current working directory. If such a file is found, the adb program determines whether
the core file belongs to the ProgramfFile. If so, the adb program uses it. Otherwise, the adb program
discards the core file by giving an appropriate error message.

Note: The adb command cannot be used to examine 64-bit objects and AlX 4.3 core format. adb still
works with pre-AlX 4.3 core format. On AIX 4.3, user can make kernel to generate pre-AlX 4.3 style
core dumps using smitty.

Starting adb with a Data File

The adb program provides a way to look at the contents of the file in a variety of formats and structures.
You can use the [adb| program to examine data files by giving the name of the data file in place of the
program or core file. For example, to examine a data file named outdata, enter:

adb outdata

The adb program opens a file called outdata and lets you examine its contents. This method of examining
files is useful if the file contains non-ASCII data. The adb command may display a warning when you give
the name of a non-ASCII data file in place of a program file. This usually happens when the content of the
data file is similar to a program file. Like core files, data files cannot be executed.

30 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Starting adb with the Write Option

If you open a program or data file with the@flag of the adb command, you can make changes and
corrections to the file. For example, the command:

adb -w sample
opens the program file sample for writing. You can then use adb commands to examine and modify this

file. The -w flag causes the adb program to create a given file if it does not already exist. The option also
lets you write directly to memory after running the given program.

Using a Prompt
After you have started the adb program you can redefine your prompt with the $P subcommand.

To change the [adb:scat]>> prompt to Enter a debug command—->, enter:

$P"Enter a debug command--->"

The quotes are not necessary when redefining the new prompt from the adb command line.

Using Shell Commands from within the adb Program

You can run shell commands without leaving the adb program by using the adb escape command (!)
(exclamation point). The escape command has the form:

! Command

In this format Command is the shell command you want to run. You must provide any required arguments
with the command. The adb program passes this command to the system shell that calls it. When the
command is finished, the shell returns control to the adb program. For example, to display the date, enter
the following command:

| date

The system displays the date and restores control to the adb program.
Exiting the adb Debug Program

You can stop the adb program and return to the system shell by using the $q or $Q subcommands. You
can also stop the adb program by typing the Ctrl-D key sequence. You cannot stop the adb program by
pressing the Interrupt or Quit keys. These keys cause adb to wait for a new command. For more
information, see [‘Stopping a Program with the Interrupt and Quit Keys” on page 35

Controlling Program Execution

This section explains the commands and subcommands necessary to prepare programs for debugging;
execute programs; set, display, and delete breakpoints; continue programs; single-step through a program;
stop programs; and kill programs.

Preparing Programs for Debugging with the adb Program

Compile the program using the cc command to a file such as adbsamp2 by entering the following:

cc adbsamp2.c -0 adbsamp2
To start the debug session, enter:

Chapter 3. Debugging Programs 31

adb adbsamp2

The C language does not generate statement labels for programs. Therefore, you cannot refer to individual
C language statements when using the debug program. To use execution commands effectively, you must
be familiar with the instructions that the C compiler generates and how those instructions relate to
individual C language statements. One useful technique is to create an assembler language listing of your
C program before using the adb program. Then, refer to the listing as you use the debug program. To
create an assembler language listing, use the -S or -qList flag of the ec command.

For example, to create an assembler language listing of the example program, adbsamp2.c, use the
following command:

cc -S adbsamp2.c -0 adbsamp?2

This command creates the adbsamp2.s file, that contains the assembler language listing for the program,
and compiles the program to the executable file, adbsamp?2.

Running a Program

You can execute a program by using the :r or :R subcommand. For more information see, (“Displaying
fand Manipulating the Source File with the adb Program” on page 41). The commands have the form:

[Address][,Count] :r [Arguments]
OR
[Address][,Count] :R [Arguments]

In this format, the Address parameter gives the address at which to start running the program; the Count
parameter is the number of breakpoints to skip before one is taken; and the Arguments parameter
provides the command-line arguments, such as file names and options, to pass to the program.

If you do not supply an Address value, the adb program uses the start of the program. To run the program
from the beginning enter:

r

If you supply a Count value, the adb program ignores all breakpoints until the given number has been
encountered. For example, to skip the first five named breakpoints, use the command:

,5:r

If you provide arguments, separate them by at least one space each. The arguments are passed to the
program in the same way the system shell passes command-line arguments to a program. You can use
the shell redirection symbols.

The :R subcommand passes the command arguments through the shell before starting program operation.
You can use shell pattern-matching characters in the arguments to refer to multiple files or other input
values. The shell expands arguments containing pattern-matching characters before passing them to the
program. This feature is useful if the program expects multiple file names. For example, the following
command passes the argument [a-z]* to the shell where it is expanded to a list of the corresponding file
names before being passed to the program:

:R [a-z]*.s

The :r and :R subcommands remove the contents of all registers and destroy the current stack before
starting the program. This operation halts any previous copy of the program that may be running.

32 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Setting Breakpoints

To set a breakpoint in a program, use the :b subcommand. Breakpoints stop operation when the program
reaches the specified address. Control then returns to the adb debug program. The command has the
form:

[Address] [,Count] :b [Command]

In this format, the Address parameter must be a valid instruction address; the Count parameter is a count
of the number of times you want the breakpoint to be skipped before it causes the program to stop; and
the Command parameter is the adb command you want to execute each time that the instruction is
executed (regardless of whether the breakpoint stops the program). If the specified command sets .
(period) to a value of 0, the breakpoint causes a stop.

Set breakpoints to stop program execution at a specific place in the program, such as the beginning of a
function, so that you can look at the contents of registers and memory. For example, when debugging the
example adbsamp2 program, the following command sets a breakpoint at the start of the function named
f:

f:b

The breakpoint is taken just as control enters the function and before the function’s stack frame is created.

A breakpoint with a count is used within a function that is called several times during the operation of a
program, or within the instructions that correspond to a for or while statement. Such a breakpoint allows
the program to continue to run until the given function or instructions have been executed the specified
number of times. For example, the following command sets a breakpoint for the second time that the f
function is called in the adbsamp2 program:

.f,2 :b
The breakpoint does not stop the function until the second time the function is run.
Displaying Breakpoints

Use the $b subcommand to display the location and count of each currently defined breakpoint. This
command displays a list of the breakpoints by address and any count or commands specified for the
breakpoints. For example, the following sets two breakpoints in the adbsamp2 file and then uses the $b
subcommand to display those breakpoints:

f+4:b

.f+8:b$v

$b

breakpoints

count brkpt command
1 .f+8 $v

1 Lf+4

When the program runs, it stops at the first breakpoint that it finds, such as .f+4. If you use the :c
subcommand to continue execution, the program stops again at the next breakpoint and starts the $v
subcommand. The command and response sequence looks like the following example:

r

adbsamp2:running

breakpoint f+4: st r3,32(rl)

:C

adbsamp2:running

variables

b = 268435456

Chapter 3. Debugging Programs 33

d = 236

e = 268435512

m = 264

breakpoint .f+8 1 r15,32(rl)

Deleting Breakpoints

To use the :d subcommand to delete a breakpoint from a program, enter:
Address :d
In this format, the Address parameter gives the address of the breakpoint to delete.

For example, when debugging the example adbsamp2 program, entering the following command deletes
the breakpoint at the start of the f function:

.fud
Continuing Program Execution

To use the :¢c subcommand to continue the execution of a program after it has been stopped by a
breakpoint enter:

[Address] [,Count] :c [Signal]

In this format, the Address parameter gives the address of the instruction at which to continue operation;
the Count parameter gives the number of breakpoints to ignore; and the Signal parameter is the number of
the signal to send to the program.

If you do not supply an Address parameter, the program starts at the next instruction after the breakpoint.
If you supply a Count parameter, the adb debug program ignores the first Count breakpoints.

If the program is stopped using the Interrupt or Quit key, this signal is automatically passed to the program
upon restarting. To prevent this signal from being passed, enter the command in the form:

[Address] [,Count] :c 0
The command argument 0 prevents a signal from being sent to the subprocess.
Single-Stepping a Program

Use the :s subcommand to run a program in single steps or one instruction at a time. This command
issues an instruction and returns control to the adb debug program. The command has the form:

[Aaddress]| [,Count] :s [Signal]

In this format, the Address parameter gives the address of the instruction you want to execute, and the
Count parameter is the number of times you want to repeat the command. If there is no current
subprocess, the ObjectFile parameter is run as a subprocess. In this case, no signal can be sent and the
remainder of the line is treated as arguments to the subprocess. If you do not supply a value for the
Address parameter, the adb program uses the current address. If you supply the Count parameter, the
adb program continues to issue each successive instruction until the Count parameter instructions have
been run. Breakpoints are ignored while single-stepping. For example, the following command issues the
first five instructions in the main function:

.main,5:s

34 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Stopping a Program with the Interrupt and Quit Keys

Use either the Interrupt or Quit key to stop running a program at any time. Pressing either of these keys
stops the current program and returns control to the adb program. These keys are useful with programs
that have infinite loops or other program errors.

When you press the Interrupt or Quit key to stop a program, the adb program automatically saves the
signal. If you start the program again using the :¢ command, the adb program automatically passes the
signal to the program. This feature is useful when testing a program that uses these signals as part of its
processing. To continue running the program without sending signals, use the command:

:c 0
The command argument 0 (zero) prevents a signal from being sent to the program.
Stopping a Program

To stop a program you are debugging, use the :k subcommand. This command stops the process created
for the program and returns control to the adb debug program. The command clears the current contents
of the system unit registers and stack and begins the program again. The following example shows the
use of the :k subcommand to clear the current process from the adb program:

:k

560: killed

Using adb Expressions

This section describes the use of adb expressions.

Using Integers in Expressions

When creating an expression, you can use integers in three forms: decimal, octal, and hexadecimal.
Decimal integers must begin with a non-zero decimal digit. Octal numbers must begin with a 0 (zero) and
have octal digits only (0-7). Hexadecimal numbers must begin with the prefix Ox and can contain decimal
digits and the letters a through f (in both uppercase and lowercase). The following are examples of valid
numbers:

Decimal Octal Hexadecimal
34 042 0x22
4090 07772 oxffa

Using Symbols in Expressions

Symbols are the names of global variables and functions defined within the program being debugged.
Symbols are equal to the address of the given variable or function. They are stored in the program symbol
table and are available if the symbol table has not been stripped from the program file.

In expressions, you can spell the symbol exactly as it is in the source program or as it has been stored in
the symbol table. Symbols in the symbol table are no more than 8 characters long.

When you use the ? subcommand, the adb program uses the symbols found in the symbol table of the
program file to create symbolic addresses. Thus, the ? subcommand sometimes gives a function name
when displaying data. This does not happen if the ? subcommand is used for text (instructions) and the /
command is used for data.

Local variables can only be addressed if the C language source program is compiled with the -g flag.

Chapter 3. Debugging Programs 35

If the C language source program is not compiled using the -g flag the local variable cannot be addressed.
The following command displays the value of the local variable b in a function sample:

.sample.b / x - value of local variable.
.sample.b = x - Address of local variable.

Using Operators in Expressions

You can combine integers, symbols, variables, and register names with the following operators:

Unary Operators:

~ (tilde) Bitwise complementation
- (dash) Integer negation
* (asterisk) Returns contents of location

Binary Operators:

+ (plus) Addition

- (minus) Subtraction

* (asterisk) Multiplication

% (percent) Integer division

& (ampersand) Bitwise conjunction

] (right bracket) Bitwise disjunction

A (caret) Modulo

(number sign) Round up to the next multiple

The adb debug program uses 32-bit arithmetic. Values that exceed 2,147,483,647 (decimal) are displayed
as negative values. The following example shows the results of assigning two different values to the
variable n, and then displaying the value in both decimal and hexadecimal:
2147483647>n<
n=D
2147483647<
n=X
JEFEffff
2147483648>n<
n=D
-2147483648<
n=X
80000000

Unary operators have higher precedence than binary operators. All binary operators have the same
precedence and are evaluated in order from left to right. Thus, the adb program evaluates the following
binary expressions as shown:
2+3+4=d

10
4+2+3=d

18

You can change the precedence of the operations in an expression by using parentheses. The following
example shows how the previous expression is changed by using parentheses:

4+(2*3)=d
10

The unary operator, * (asterisk), treats the given address as a pointer into the data segment. An
expression using this operator is equal to the value pointed to by that pointer. For example, the
expression:

*0x1234

36 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

is equal to the value at the data address 0x1234, whereas the example:
0x1234

is equal to 0x1234.

Customizing the adb Debug Program

This section describes how you can customize the adb debug program.
Combining Commands on a Single Line

You can give more than one command on a line by separating the commands with a ; (semicolon). The
commands are performed one at a time, starting at the left. Changes to the current address and format
carry over to the next command. If an error occurs, the remaining commands are ignored. For example,
the following sequence displays both the adb variables and then the active subroutines at one point in the
adbsamp2 program:

$v;$c
variables

b = 10000000
d = ec

e = 10000038
m = 108

t = 2f8.

f(0,0) .main+26.
main(0,0,0) start+fa

Creating adb Scripts

You can direct the adb debug program to read commands from a text file instead of from the keyboard by
redirecting the standard input file when you start the adb program. To redirect standard input, use the
input redirection symbol, < (less than), and supply a file name. For example, use the following command
to read commands from the file script:

adb sample <script

The file must contain valid adb subcommands. Use the adb program script files when the same set of
commands can be used for several different object files. Scripts can display the contents of core files after
a program error. The following example shows a file containing commands that display information about a
program error. When that file is used as input to the adb program using the following command to debug
the adbsamp?2 file, the specified output is produced.

120%w
40953s.

b,10/8xna
$ adb adbsamp2 <script

Chapter 3. Debugging Programs 37

adbsamp2: running

breakpoint .f: b .f+24
======= 3db Variables =======

variables

TBD

TBD

TBD

TBD

10000000

ec

10000038

+ 3 0O QT ON— O

]
N
—
oo

======= Address Map =======
[0]? map .adbsamp2.

bl = 10000000 el = 100002f8 fl1 =0
b2 = 200002f8 e2 = 200003e4 f2 = 2f8
[0]/ map .-.
bl =0 el =0 fl =0
b2 = 0 e2 =0 f2 =0
======= (Stack Backtrace =======,
f(0,0) .main+26.
main(0,0,0) start+fa
======= (C External Variables =======Full word.

errno: 0.

environ: 3fffebbc.
NLinit: 10000238.
main: 100001ea.
exit: 1000028c.
fcnt: 0

.Toop .count: 1.

f: 100001b4.

NLgetfile: 10000280.

write: 100002e0.

NLinit. .X: 10000238 .
NLgetfile. .X: 10000280 .
cleanup: 100002bc.

exit: 100002c8 .

exit . .X: 1000028c . .
cleanup . .X: 100002bc

======= Registers =======
mq 20003a24 .errno+3634
cs 100000 gt
ics 1000004
pc 100001b4 .f
rl5 10000210 .main+26
rl4 20000388 .main
r13 200003ec .Toop .count
r12 3fffe3do
rll1 3fffeddc
rlo 0
r9 20004bcc
r8 200041d8 .errno+3de8
r7 0
r6 200030bc .errnot+2ccc
r5 1
r4 200003ec .loop .count
r3 14240
r2 1
rl 3fffe678
r0 20000380 .f.
f: b .f+24
======= Data Segment =======
10000000: 103 5313 3800 0 0 2f8 0 ec

10000010: 0 10 1600 38 06 0 0 1f0
10000020: 0 O 0 O 1000 O 2000 2f8

38 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

10000030: 0 0 0 O 4 6000 O 6000

10000040: 6el0 61d0 9430 ab67 6730 6820 c82e 8
10000050: 8df0 94 cdOe 60 6520 a424 a432 c84e
10000060: 8 8df0 77 cdOe 64 6270 8df0 86
10000070: cdOe 60 6520 a424 a432 6470 8df0 6a
10000080: cdOe 64 c82e 19 8df0 78 cdbe 60
10000090: 6520 a424 a432 c84e 19 8dfO 5b cdle
100000a0: 64 cd2e 5c 7022 d408 64 911 c82e
100000b0: 2e 8df0 63 cdbe 60 6520 a424 ad32
100000cO: c84e 2e 8df0 46 cdOe 64 15 6280
100000d0: 8df0 60 cdOe 68 c82e 3f 8df0 4e
100000e0: cdOe 60 6520 a424 a432 c84e 3f 8dfO
100000f0: 31 cdbe 64 c820 14 8df0 2b cdOe
10000100

Setting Output Width

Use the $w subcommand to set the maximum width (in characters) of each line of output created by the
adb program. The command has the form:

Width$w

In this format, the Width parameter is an integer that specifies the width in characters of the display. You
can give any width convenient for your display device. When the adb program is first invoked, the default
width is 80 characters.

This command can be used when redirecting output to a line printer or special output device. For example,
the following command sets the display width to 120 characters, a common maximum width for line
printers:

120%w
Setting the Maximum Offset

The adb debug program normally displays memory and file addresses as the sum of a symbol and an
offset. This format helps to associate the instructions and data on the display with a particular function or
variable. When the adb program starts up, it sets the maximum offset to 255, so that symbolic addresses
are assigned only to instructions or data that occur less than 256 bytes from the start of the function or
variable. Instructions or data beyond that point are given numeric addresses.

In many programs, the size of a function or variable is actually larger than 255 bytes. For this reason the
adb program lets you change the maximum offset to accommodate larger programs. You can change the
maximum offset by using the $s subcommand.

The subcommand has the form:

Offset$s

In this format, the Offset parameter is an integer that specifies the new offset. For example, the following
command increases the maximum possible offset to 4095:

40953s
All instructions and data that are less than 4096 bytes away are given symbolic addresses. You can

disable all symbolic addressing by setting the maximum offset to zero. All addresses are given numeric
values instead.

Chapter 3. Debugging Programs 39

Setting Default Input Format

To alter the default format for numbers used in commands, use the $d or $o (octal) subcommands. The
default format tells the adb debug program how to interpret numbers that do not begin with 0 (octal) or 0x
(hexadecimal), and how to display numbers when no specific format is given. Use these commands to
work with a combination of decimal, octal, and hexadecimal numbers.

The $0 subcommand sets the radix to 8 and thus sets the default format for numbers used in commands
to octal. After you enter that subcommand, the adb program displays all numbers in octal format except
those specified in some other format.

The format for the $d subcommand is the Radix$d command, where the Radix parameter is the new value
of the radix. If the Radix parameter is not specified, the $d subcommand sets the radix to a default value
of 16. When you first start the adb program, the default format is hexadecimal. If you change the default
format, you can restore it as necessary by entering the $d subcommand by itself:

$d

To set the default format to decimal, use the following command:
0Oxa$d

Changing the Disassembly Mode

Use the $i and $n subcommands to force the adb debug program to disassemble instructions using the
specified instruction set and mnemonics. The $i subcommand specifies the instruction set to be used for
disassembly. The $n subcommand specifies the mnemonics to be used in disassembly.

If no value is entered, these commands display the current settings.

The $i subcommand accepts the following values:

com Specifies the instruction set for the common intersection mode of the PowerPC and POWER family.

pwr Specifies the instruction set and mnemonics for the POWER™ implementation of the POWER architecture.

pwrx Specifies the instruction set and mnemonics for the POWER2 implementation of the POWER family.

ppc Specifies the instruction set and mnemonics for the PowerPC.

601 Specifies the instruction set and mnemonics for the PowerPC 601 RISC Microprocessor.

603 Specifies the instruction set and mnemonics for the PowerPC 603 RISC Microprocessor.

604 Specifies the instruction set and mnemonics for the PowerPC 604 RISC Microprocessor.

ANY Specifies any valid instruction. For instruction sets that overlap, the mnemonics will default to PowerPC
mnemonics.

The $n subcommand accepts the following values:

pwr Specifies the instruction set and mnemonics for the POWER implementation of the POWER architecture.
ppc Specifies the mnemonics for the PowerPC architecture.

Computing Numbers and Displaying Text

You can perform arithmetic calculations while in the adb debug program by using the = (equal sign)
subcommand. This command directs the adb program to display the value of an expression in a specified
format. The command converts numbers in one base to another, double-checks the arithmetic performed
by a program, and displays complex addresses in simpler form. For example, the following command
displays the hexadecimal number 0x2a as the decimal number 42:

0x2a=d
42

40 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Similarly, the following command displays 0x2a as the ASCII character * (asterisk):
0x2a=c

Expressions in a command can have any combination of symbols and operators. For example, the
following command computes a value using the contents of the r0 and r1 registers and the adb variable b.

<r0-12*<rl+<b+5=X
8faB86f95

You can also compute the value of external symbols to check the hexadecimal value of an external symbol
address, by entering:

main+5=X
2000038d

The = (equal sign) subcommand can also display literal strings. Use this feature in the adb program
scripts to display comments about the script as it performs its commands. For example, the following
subcommand creates three lines of spaces and then prints the message C Stack Backtrace:

=3n"C Stack Backtrace"

Displaying and Manipulating the Source File with the adb Program
This section describes how to use the adb program to display and manipulate the source file.
Displaying Instructions and Data

The adb program provides several subcommands for displaying the instructions and data of a given
program and the data of a given data file. The subcommands and their formats are:

Display address Address [, Count] = Format
Display instruction Address [, Count] ? Format
Display value of variable Address [, Count]| Format

In this format, the symbols and variables have the following meaning:

Address Gives the location of the instruction or data item.
Count Gives the number of items to be displayed.
Format Defines how to display the items.

= Displays the address of an item.

? Displays the instructions in a text segment.

/ Displays the value of variables.

Forming Addresses

In the adb program addresses are 32-bit values that indicate a specific memory address. They can,
however, be represented in the following forms:

Absolute address The 32-bit value is represented by an 8-digit hexadecimal number, or its equivalent in
one of the other number-base systems.
Symbol name The location of a symbol defined in the program can be represented by the name of

that symbol in the program.

Chapter 3. Debugging Programs 41

Entry points The entry point to a routine is represented by the name of the routine preceded by a .
(period). For example, to refer to the address of the start of the main routine, use the
following notation:

.main

Displacements Other points in the program can be referred to by using displacements from entry
points in the program. For example, the following notation references the instruction
that is 4 bytes past the entry point for the symbol main:

.main+4

Displaying an Address

Use the = (equal sign) subcommand to display an address in a given format. This command displays
instruction and data addresses in a simpler form and can display the results of arithmetic expressions. For
example, entering:

main=an

displays the address of the symbol main:
10000370:

The following example shows a command that displays (in decimal) the sum of the internal variable b and
the hexadecimal value 0x2000, together with its output:

<b+0x2000=D
268443648

If a count is given, the same value is repeated that number of times. The following example shows a
command that displays the value of main twice and the output that it produces:

main,2=x
370 370

If no address is given, the current address is used. After running the above command once (setting the
current address to main), the following command repeats that function:

,2=X
370 370

If you do not specify a format, the adb debug program uses the last format that was used with this
command. For example, in the following sequence of commands, both main and one are displayed in
hexadecimal:
main=x

370

one=
33c

Displaying the C Stack Backtrace

To trace the path of all active functions, use the $¢ subcommand. This subcommand lists the names of all
functions that have been called and have not yet returned control. It also lists the address from which each
function was called and the arguments passed to each function. For example, the following command
sequence sets a breakpoint at the function address .f+2 in the adbsamp2 program. The breakpoint calls
the $¢ subcommand. The program is started, runs to the breakpoint, and then displays a backtrace of the
called C language functions:

.f+2:b$c

r

adbsamp2:running

42 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

.T(0,0) .main+26
.main(0,0,0) start+fa
breakpoint f+2: tgte r2,r2

By default, the $¢ subcommand displays all calls. To display fewer calls, supply a count of the number of
calls to display. For example, the following command displays only one of the active functions at the
preceding breakpoint:

,1%¢c
.T(0,0) .main+26

Choosing Data Formats

A format is a letter or character that defines how data is to be displayed. The following are the most
commonly used formats:

Letter Format

The current symbolic address

One byte in octal (displays data associated with instructions, or the high or low byte of a register)
One byte as a character (char variables)

Halfword in decimal (short variables)

Fullword in decimal (long variables)

Machine instructions in mnemonic format

A new line

Halfword in octal (short variables)

Fullword in octal (long variables)

A blank space

A null-terminated character string (null-terminated arrays of char variables)
A horizontal tab

Halfword as an unsigned integer (short variables)

Halfword in hexadecimal (short variables)

Fullword in hexadecimal (long variables)

XX c~+n 0055 Togao6ooTo

For example, the following commands produce the indicated output when using the adbsamp example
program:

Command Response

main=0 1560
main=0 4000001560
main=d 880
main=D 536871792
main=x 370
main=X 20000370
main=u 880

A format can be used by itself or combined with other formats to present a combination of data in different
forms. You can combine the a, n, r, and t formats with other formats to make the display more readable.

Changing the Memory Map

You can change the values of a memory map by using the ?m and /m subcommands. See, (“adb Debug
[Program Reference Information” on page 48). These commands assign specified values to the
corresponding map entries. The commands have the form:

[,count] ?m bl el f1
[,count] /m bl el f2

Chapter 3. Debugging Programs 43

The following example shows the results of these commands on the memory map displayed with the $m
subcommand in the previous example:

,07m 10000100 10000470 0
/m 100 100 100
$m
[0] : ?7map : "adbsamp3’
bl = 0x10000100, el = 10000470, f1 =0

b2 = 0x20000600, e2 = 0x2002c8a4, f2 = 0x600
[1] : ?map : 'shr.o' in library '/usr/ccs/1ib/libc.a’
bl = 0xd00d6200, el = 0xd01397bf, f1 = 0xd0Odefbc
b2 = 0x20000600, e2 = 0x2002beb8, f2 = 0x4a36¢
[-] : /map : '~
bl = 100, el = 100, fl = 100
b2 =0, e2 =0, f2 =0

To change the data segment values, add an * (asterisk) after the / or ?.

,07*m 20000270 20000374 270
/*m 200 200 200
$m
[0] : ?map : 'adbsamp3'
bl = 0x10000100, el = 10000470, f1 =0

b2 = 0x20000270, €2 = 0x20000374, f2 = 0x270
[1] : ?map : ‘'shr.o' in Tibrary '/usr/ccs/lib/libc.a’
bl = 0xd00d6200, el = 0xd01397bf, f1 = Oxd0Odefbc
b2 = 0x20000600, €2 = 0x2002beb8, f2 = 0x4a36¢
[-] : /map : *'-'
bl = 100, el = 100, fl = 100
b2 = 0, e2 =0, f2 =0

Patching Binary Files

You can make corrections or changes to any file, including executable binary files, by starting the adb
gram with the@flag and by using the w and W (“adb Debug Program Reference Information” on page|
48

) subcommands.

Locating Values in a File

Locate specific values in a file by using the I and L subcommands. See (“adb Debug Program Reference]
[Information” on page 48). The subcommands have the form:

?1 Value
OR
/1 Value

The search starts at the current address and looks for the expression indicated by Value. The |
subcommand searches for 2-byte values. The L subcommand searches for 4-byte values.

The ?1 subcommand starts the search at the current address and continues until the first match or the end
of the file. If the value is found, the current address is set to that value’s address. For example, the
following command searches for the first occurrence of the f symbol in the adbsamp? file:

?21 .f.
write+a?2

44 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

The value is found at .write+a2 and the current address is set to that address.

Writing to a File

Write to a file by using the w and W subcommands. See (“adb Debug Program Reference Information” on|
page 48). The subcommands have the form:

[Address] ?w Value

In this format, the Address parameter is the address of the value you want to change, and the Value
parameter is the new value. The w subcommand writes 2-byte values. The W subcommand writes 4-byte
values. For example, the following commands change the word "This” to "The":

?1 .Th.
W .The.

The W subcommand changes all four characters.

Making Changes to Memory

Make changes to memory whenever a program has run. If you have used an :r subcommand with a
breakpoint to start program operation, subsequent w subcommands cause the adb program to write to the
program in memory rather than to the file. This command is used to make changes to a program’s data as
it runs, such as temporarily changing the value of program flags or variables.

Using adb Variables

The adb debug program automatically creates a set of its own variables when it starts. These variables
are set to the addresses and sizes of various parts of the program file as defined in the following table:

Variable Content

Last value printed

Last displacement part of an instruction source
Previous value of the 1 variable
Count on the last $< or $<< command
Base address of the data segment
Size of the data segment

Entry address of the program

"Magic” number

Size of the stack segment

Size of the text segment

~ 0300 ON=O

The adb debug program reads the program file to find the values for these variables. If the file does not
seem to be a program file, then the adb program leaves the values undefined.

To display the values that the adb debug program assigns to these variables, use the $v subcommand.
For more information, see (‘adb Debug Program Reference Information” on page 48). This subcommand
lists the variable names followed by their values in the current format. The subcommand displays any
variable whose value is not O (zero). If a variable also has a non-zero segment value, the variable’s value
is displayed as an address. Otherwise, it is displayed as a number. The following example shows the use
of this command to display the variable values for the sample program adbsamp:

$v

Variables

0 = undefined
1 = undefined

Chapter 3. Debugging Programs 45

= undefined
= undefined
= 10000000

130

= 10000038

= 108

= 298

+ 3 o o T o N
1}

Specify the current value of an adb variable in an expression by preceding the variable name with < (less
than sign). The following example displays the current value of the b base variable:

<b=X

10000000

Create your own variables or change the value of an existing variable by assigning a value to a variable
name with > (greater than sign). The assignment has the form:

Expression > VariableName

where the Expression parameter is the value to be assigned to the variable and the VariableName
parameter is the variable to receive the value. The VariableName parameter must be a single letter. For
example, the assignment:

0x2000>b

assigns the hexadecimal value 0x2000 to the b variable. Display the contents of b again to show that the
assignment occurred:

<h=X
2000

Finding the Current Address

The adb program has two special variables that keep track of the last address used in a command and
the last address typed with a command. The . (period) variable, also called the current address, contains
the last address used in a command. The ” (double quotation mark) variable contains the last address
typed with a command. The . and " variables usually contain the same address except when implied
commands, such as the newline and ~ (caret) characters, are used. These characters automatically
increase and decrease the . variable but leave the) (right parenthesis) variable unchanged.

Both the . and the " variables can be used in any expression. The < (less than sign) is not required. For
example, the following commands display these variables at the start of debugging with the adbsamp
(‘Example adb Program: adbsamp” on page 52) program:

0.
0

Displaying External Variables

Use the $e (“adb Debug Program Reference Information” on page 48) subcommand to display the values
of all external variables in the adb program. External variables are the variables in your program that have
global scope or have been defined outside of any function, and include variables defined in library routines
used by your program, as well as all external variables of shared libraries.

46 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

The $e subcommand is useful to get a list of the names for all available variables or a summary of their
values. The command displays one name on each line with the variable’s value (if any) on the same line.
If the Count parameter is specified, only the external variables associated with that file are printed.

The following example illustrates the setting of a breakpoint in the adbsamp2 (‘Example adb Program|
[adbsamp?2” on page 53) sample program that calls the $e subcommand, and the output that results when
the program runs (be sure to delete any previous breakpoints that you may have set):

.f+2:b,0%e

ir

adbsamp2: running

_errno: 0

_environ: 3fffe6bc
__NLinit: 10000238
_main: 10000lea

_exit: 1000028c

_fent: 0

_loop_count: 1

_f: 100001b4
_NLgetfile: 10000280
_write: 100002e0
__NLinit__X: 10000238
NLgetfile X: 10000280
__cleanup: 100002bc

_ exit: 100002c8
_exit__X: 1000028c
__cleanup__X: 100002bc
breakpoint .f+2: st r2,1c(rl)

Displaying the Address Maps

The adb program prepares a set of maps for the text and data segments in your program and uses these
maps to access items that you request for display. Use the $m subcommand to display the contents of the
address maps. For more information, see (‘adb Debug Program Reference Information” on page 48). The
subcommand displays the maps for all segments in the program and uses information taken from either
the program and core files or directly from memory.

The $m subcommand displays information similar to the following:

$m
[0] : ?map : 'adbsamp3’
bl = 0x10000200, el = 0x10001839, f1 = 0x10000200
b2 = 0x2002c604, e2 = 0x2002c8a4, f2 = 0x600
[1] : ?map : 'shr.o' in library 'lib/libc.a'
bl = 0xd00d6200, el = 0xd013976f, f1 = O0xdoOdefbc
b2 = 0x20000600, e2 = 0x2002bch8, f2 = 0x4a36¢
[-]1 : /map : -t
bl = 0x0000000, el = 0x00000000, fl1 = Ox00000000
b2 = 0x0000000, e2 = 0x00000000, f2 = 0x00000000

The display defines address-mapping parameters for the text (b1, el, and f1) and data (b2, e2, and 2)
segments for the two files being used by the adb debug program. This example shows values for the
adbsamp3 sample program only. The second set of map values are for the core file being used. Since
none was in use, the example shows the file name as - (dash).

The value displayed inside the square brackets can be used as the Count parameter in the ?e and ?m
subcommands.

Chapter 3. Debugging Programs 47

adb Debug Program Reference Information

The adb debug program uses addresses, expressions, operators, subcommands, and variables to
organize and manipulate data.

adb Debug Program Addresses

The address in a file associated with a written address is determined by a mapping associated with that
file. Each mapping is represented by two triples (B1, E1, F1) and (B2, E2, F2). The FileAddress parameter
that corresponds to a written Address parameter is calculated as follows:

B1<=Address<E1=>FileAddress=Address+F1-B1

OR

B2<=Address<E2=>FileAddress=Address+F2-B2

If the requested Address parameter is neither between BT and E7 nor between B2 and E2, the Address
parameter is not valid. In some cases, such as programs with separated | and D space, the two segments
for a file may overlap. If a ? (question mark) or / (slash) subcommand is followed by an * (asterisk), only
the second triple is used.

The initial setting of both mappings is suitable for normal a.out and core files. If either file is not of the
kind expected, the B7 parameter for that file is set to a value of 0, the E71 parameter is set to the

maximum file size, and the F1 parameter is set to a value of 0. In this way, the whole file can be examined
with no address translation.

adb Debug Program Expressions

The following expressions are supported by the adb debug program:

. (period) Specifies the last address used by a subcommand. The last address is also known
as the current address.

+ (plus) Increases the value of . (period) by the current increment.

A (caret) Decreases the value of . (period) by the current increment.

" (double quotes) Specifies the last address typed by a command.

Integer Specifies an octal number if this parameter begins with 0o, a hexadecimal number

if preceded by Ox or #, or a decimal number if preceded by 0t. Otherwise, this
expression specifies a number interpreted in the current radix. Initially, the radix is

16.

“Cccc’ Specifies the ASCII value of up to 4 characters. A\ (backslash) can be used to
escape an’ (apostrophe).

< Name Reads the current value of the Name parameter. The Name parameter is either a

variable name or a register name. Thecommand maintains a number of
variables named by single letters or digits. If the Name parameter is a register
name, the value of the register is obtained from the system header in the CoreFile
parameter. Use the $r subcommand to see the valid register names.

Symbol Specifies a sequence of uppercase or lowercase letters, underscores, or digits,
though the sequence cannot start with a digit. The value of the Symbol parameter
is taken from the symbol table in the ObjectFile parameter. An initial _ (underscore)
is prefixed to the Symbol parameter, if needed.

.Symbol Specifies the entry point of the function named by the Symbol parameter.

Routine.Name Specifies the address of the Name parameter in the specified C language routine.
Both the Routine and Name parameters are Symbol parameters. If the Name
parameter is omitted, the value is the address of the most recently activated C
stack frame corresponding to the Routine parameter.

48 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

(Expression) Specifies the value of the expression.

adb Debug Program Operators

Integers, symbols, variables, and register names can be combined with the following operators:

Unary Operators

*Expression Returns contents of the location addressed by the Expression parameter in the CoreFile
parameter.

@ Expression Returns contents of the location addressed by the Expression parameter in the
ObjectFile parameter.

-Expression Performs integer negation.

~Expression Performs bit-wise complement.

#Expression Performs logical negation.

Binary Operators

Expression1+Expression2 Performs integer addition.

Expression1-Expression2 Performs integer subtraction.

Expression1* Expression2 Performs integer multiplication.

Expression1%Expression2 Performs integer division.

Expression1&Expression2 Performs bit-wise conjunction.

Expression1l Expression2 Performs bit-wise disjunction.

Expression1#Expression2 Rounds up the Expression1 parameter to the next multiple of

the Expression2 parameter.

Binary operators are left-associative and are less binding than unary operators.
adb Debug Program Subcommands
You can display the contents of a text or data segment with the ? (question mark) or the / (slash)

subcommand. The = (equal sign) subcommand displays a given address in the specified format. The ?
and / subcommands can be followed by an * (asterisk).

?Format Displays the contents of the ObjectFile parameter starting at the Address parameter. The value of .
(period) increases by the sum of the increment for each format letter.

/Format Displays the contents of the CoreFile parameter starting at the Address parameter. The value of .
(period) increases by the sum of the increment for each format letter.

=Format Displays the value of the Address parameter. The i and s format letters are not meaningful for this
command.

The Format parameter consists of one or more characters that specify print style. Each format character
may be preceded by a decimal integer that is a repeat count for the format character. While stepping
through a format, the . (period) increments by the amount given for each format letter. If no format is
given, the last format is used.

The available format letters are as follows:

a Prints the value of . (period) in symbolic form. Symbols are checked to ensure that they have
an appropriate type.

b Prints the addressed byte in the current radix, unsigned.

c Prints the addressed character.

Chapter 3. Debugging Programs 49

o Q

- =

i Number

T OO0 >

q
Q

r
s Number
S Number

—

N S < X X cCcc

newline
[?2MValue Mask

[?Nw Value...

[,Count[?/lm B1 E1
F1[2/]

>Name

Prints the addressed character using the following escape conventions:

» Prints control characters as ~ (tilde) followed by the corresponding printing character.

» Prints nonprintable characters as ~ (tilde) <Number>, where Number specifies the
hexadecimal value of the character. The ~ character prints as ~ ~ (tilde tilde).

Prints in decimal.

Prints long decimal.

Prints the 32-bit value as a floating-point number.

Prints double floating point.

Prints as instructions. Number is the number of bytes occupied by the instruction.

Prints a new line.

Prints 2 bytes in octal.

Prints 4 bytes in octal.

Prints the addressed value in symbolic form using the same rules for symbol lookup as the a

format letter.

Prints 2 bytes in the current radix, unsigned.

Prints 4 unsigned bytes in the current radix.

Prints a space.

Prints the addressed character until a zero character is reached.

Prints a string using the ~ (tilde) escape convention. The Number variable specifies the

length of the string including its zero terminator.

Tabs to the next appropriate tab stop when preceded by an integer. For example, the 8t

format command moves to the next 8-space tab stop.

Prints as an unsigned decimal number.

Prints a long unsigned decimal.

Prints 2 bytes in hexadecimal.

Prints 4 bytes in hexadecimal.

Prints 4 bytes in date format.

Local or global data symbol.

Local or global text symbol.

Local or global absolute symbol.

Prints the enclosed string.

Decreases the . (period) by the current increment. Nothing prints.

Increases the . (period) by a value of 1. Nothing prints.

Decreases the . (period) decrements by a value of 1. Nothing prints.

Repeats the previous command incremented with a Count of 1.

Words starting at the . (period) are masked with the Mask value and compared with the
Value parameter until a match is found. If L is used, the match is for 4 bytes at a time instead
of 2 bytes. If no match is found, then . (period) is unchanged; otherwise, . (period) is set to
the matched location. If the Mask parameter is omitted, a value of -1 is used.

Writes the 2-byte Value parameter into the addressed location. If the command is W, write 4
bytes. If the command is V, write 1 byte. Alignment restrictions may apply when using the w
or W command.

Records new values for the B1, E1, and F1 parameters. If less than three expressions are
given, the remaining map parameters are left unchanged. If the ? (question mark) or / (slash)
is followed by an * (asterisk), the second segment (B2, E2, F2) of the mapping is changed. If
the list is terminated by ? or /, the file (ObjectFile or CoreFile, respectively) is used for
subsequent requests. (For example, the /m? command causes / to refer to the ObjectFile)
file. If the Count parameter is specified, the adb command changes the maps associated with
that file or library only. The $m command shows the count that corresponds to a particular
file. If the Count parameter is not specified, a default value of 0 is used.

Assigns a . (period) to the variable or register specified by the Name parameter.

Calls a shell to read the line following ! (exclamation mark).

50 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

$Modifier

Miscellaneous commands. The available values for Modifier are:

<File

<<File

>File

f

Reads commands from the specified file and returns to standard input. If a count is
given as 0, the command will be ignored. The value of the count is placed in the
adb 9 variable before the first command in the File parameter is executed.

Reads commands from the specified file and returns to standard input. The <<File
command can be used in a file without causing the file to be closed. If a count is
given as 0, the command is ignored. The value of the count is placed in the adb 9
variable before the first command in File is executed. The adb 9 variable is saved
during the execution of the <<File command and restored when <<File completes.
There is a limit to the number of <<File commands that can be open at once.

Sends output to the specified file. If the File parameter is omitted, output returns to
standard output. The File parameter is created if it does not exist.

Prints all breakpoints and their associated counts and commands.

Stacks back trace. If the Address parameter is given, it is taken as the address of
the current frame (instead of using the frame pointer register). If the format letter C
is used, the names and values of all automatic and static variables are printed for
each active function. If the Count parameter is given, only the number of frames
specified by the Count parameter are printed.

Sets the current radix to the Address value or a value of 16 if no address is
specified.

Prints the names and values of external variables. If a count is specified, only the
external variables associated with that file are printed.

Prints the floating-point registers in hexadecimal.

i instruction set

m

Selects the instruction set to be used for disassembly.

Changes the default directory as specified by the -l flag to the Name parameter
value.

Prints the address map.

n mnem_set

v

w

P Name

Selects the mnemonics to be used for disassembly.
Sets the current radix to a value of 8.
Exits the adb command.

Prints the general registers and the instruction addressed by iar and sets the .
(period) to iar. The Number$r parameter prints the register specified by the Number
variable. The Number,Count$r parameter prints registers Number+Count-
1,...,Number.

Sets the limit for symbol matches to the Address value. The default is a value of
255.

Prints all non-zero variables in octal.

Sets the output page width for the Address parameter. The default is 80.
Uses the Name value as a prompt string.

Prints the process ID, the signal that caused stoppage or termination, and the
registers of $r.

Chapter 3. Debugging Programs 51

:Modifier Manages a subprocess. Available modifiers are:

bCommand

Sets the breakpoint at the Address parameter. The breakpoint runs the Count
parameter -1 times before causing a stop. Each time the breakpoint is encountered,
the specified command runs. If this command sets . (period) to a value of 0, the

breakpoint causes a stop.

cSignal Continues the subprocess with the specified signal. If the Address parameter is
given, the subprocess is continued at this address. If no signal is specified, the
signal that caused the subprocess to stop is sent. Breakpoint skipping is the same

as for the r modifier.

d Deletes the breakpoint at the Address parameter.
k Stops the current subprocess, if one is running.
r Runs the ObjectFile parameter as a subprocess. If the Address parameter is given

explicitly, the program is entered at this point. Otherwise, the program is entered at
its standard entry point. The Count parameter specifies how many breakpoints are to
be ignored before stopping. Arguments to the subprocess can be supplied on the
same line as the command. An argument starting with < or > establishes standard
input or output for the command. On entry to the subprocess, all signals are turned

on.

sSignal Continues the subprocess in single steps up to the number specified in the Count
parameter. If there is no current subprocess, the ObjectFile parameter is run as a
subprocess. In this case no signal can be sent. The remainder of the line is treated

as arguments to the subprocess.

adb Debug Program Variables

The adb command provides a number of variables. When the adb program is started, the following
variables are set from the system header in the specified core file. If the CoreFile parameter does not

appear to be a core file, these values are set from the ObjectFile parameter:

Last value printed

Last displacement part of an instruction source
Previous value of the 1 variable

Count on the last $< or $<< subcommand
Base address of the data segment

Size of the data segment

Entry address of the program

"Magic” number

Size of the stack segment

Size of the text segment

- nmn 3 0T ODMN-=O

Example adb Program: adbsamp

The following sample program is used in this example:

/* Program Listing for adbsamp.c */
char strl[] = "This is a character string";
int one = 1;

int number = 456;

long Tnum = 1234;

float fpt = 1.25;

char str2[] = "This is the second character string";
main()

{

52 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

one = 2;
printf("First String = %s\n",strl);
printf("one = %d\n",one);
printf("Number = %d\n",1num);
printf("Floating point Number = %g\n",fpt);
printf("Second String = %s\n",str2);

1

Compile the program using the cc command to the adbsamp file as follows:
cc -g adbsamp.c -o adbsamp

To start the debug session, enter:
adb adbsamp

Example adb Program: adbsamp?2

The following sample program is used in this example:

/*program listing for adbsamp2.cx/

int fcnt,loop_count;
f(a,b)
int a,b;
{
a = atb;
fent++;

return(a);

main()
{
loop_count = 03
while(Toop_count <= 100)
{
Toop_count = f(loop_count,1);
printf("%s%d\n","Loop count is: ", loop_count);
printf("%s%d\n","fcnt count is: ",fcnt);
}
}

Compile the program using the cc command to the adbsamp2 file with the following command:
cc -g adbsamp2.c -o adbsamp?2

To start the debug session, enter:
adb adbsamp2

Example adb Program: adbsamp3

The following sample program adbsamp3.c contains an infinite recursion of subfunction calls. If you run
this program to completion, it causes a memory fault error and quits.

int fent,gent,hent;

h(x,y)

int x,y;

{
int hi;
register int hr;
hi = x+1;
hr = x-y+1;
hcnt++;
hj:
f(hr,hi);

9(p,q)

int p,q;

Chapter 3. Debugging Programs 53

int gi;
register int gr;
gi = q-p;
gr = q-p+l;
gent++;
9j:

} h(gr,gi);

f(a,b)

int a,b;

{
int fi;
register int fr;
fi = at+t2xb;
fr = atb;
fent++;
fj:
g(fr,fi);

main()

{
}

f(1,1);
Compile the program using the cc command to create the adbsamp3 file with the following command:
cc -g adbsamp3.c -o adbsamp3

To start the debug session, enter:
adb adbsamp3

Example of Directory and i-node Dumps in adb Debugging

This example shows how to create adb scripts to display the contents of a directory and the i-node map of
a file system. In the example, the directory is named dir and contains a variety of files. The file system is
associated with the /dev/hd3 device file (/ftmp), which has the necessary permissions to be read by the
user.

To display a directory, create an appropriate script. A directory normally contains one or more entries. Each
entry consists of an unsigned i-node number (i-number) and a 14-character file name. You can display this
information by including a command in your script file. The adb debug program expects the object file to
be an xcoff format file. This is not the case with a directory. The adb program indicates that the directory,
because it is not an xcoff format file, has a text length of 0. Use the m command to indicate to the adb
program that this directory has a text length of greater than 0. Therefore, display entries in your adb
session by entering:

,07m 360 0

For example, the following command displays the first 20 entries separating the i-node number and file
name with a tab:

0,20?utl4cn

You can change the second number, 20, to specify the number of entries in the directory. If you place the
following command at the beginning of the script, the adb program displays the strings as headings for
each column of numbers:

="inumber"8t"Name"

54 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Once you have created the script file, redirect it as input when you start the adb program with the name of

your directory. For example, the following command starts the adb program on the geo directory using
command input from the ddump script file:

adb geo - <ddump

The minus sign (-) prevents the adb program from opening a core file. The adb program reads the

commands from the script file.

To display the i-node table of a file system, create a new script and then start the adb program with the
file name of the device associated with the file system. The i-node table of a file system has a complex
structure. Each entry contains:

* A word value for status flags

* A byte value for number links

» 2-byte values for the user and group IDs

* A byte and word value for the size

» 8-word values for the location on disk of the file’s blocks
» 2-word values for the creation and modification dates

The following is an example directory dump output:

inumber Name

0: 26

.estate
adbsamp
adbsamp.c
calc.lex
calc.yacc
cbtest
.profile
.profile.bak
adbsamp2.c
adbsamp2
adbsamp.s
adbsamp2.s
forktstl.c
forktst2.c
forktst3.c
1pp&usl.name
adbsamp3.c
sample
adbsamp3
msgqtst.c
newsig.c

The i-node table starts at the address 02000. You can display the first entry by putting the following
command in your script file:

02000,-1?0n3bnbrdn8un2Y2na

The command specifies several new-line characters for the output display to make it easier to read.

To use the script file with the i-node table of the /dev/hd3 file, enter the following command:
adb /dev/hd3 - <script

Each entry in the display has the form:

Chapter 3. Debugging Programs

55

02000: 073145
0163 0164 0141
0162 10356
28770 8236 25956 27766 25455 8236 25956 25206
1976 Feb 5 08:34:56 1975 Dec 28 10:55:15

Example of Data Formatting in adb Debugging

To display the current address after each machine instruction, enter:
main , 5 ? ia

This produces output such as the following when used with the example program adbsamp:

.main:

.main: mflr 0

.main+4: st r@, 0x8(rl)
.main+8: stu rs, (r1)
.main+c: 19 1 r4, O0x1
.main+10: oril r3, r4, 0x0
.main+l14:

To make it clearer that the current address does not belong to the instruction that appears on the same
line, add the new-line format character (n) to the command:

.main , 5 ? ian

In addition, you can put a number before a formatting character to indicate the number of times to repeat
that format.

To print a listing of instructions and include addresses after every fourth instruction, use the following
command:

.main,3?4ian

This instruction produces the following output when used with the example program adbsamp:

.main:
mflr 0
st r0, 0x8(rl)
stu rl, -56(rl)
1i1 rd4, 0Ox1

.main+10:
oril r3, r4, 0x0
b1 .f
1 r0, 0x40(rl)
ai rl, rl, 0x38

.main+20:
mtir ro
br
Invalid opcode
Invalid opcode

.main+30:
Be careful where you put the number.

The following command, though similar to the previous command, does not produce the same output:
main,3?idan

.main:
.main: mflr 0
.main+4: .main+4: .main+4: .main+4:

56 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

st r0, 0x8(rl)

.main+8: .main+8: .main+8: .main+8:
stu rl, (r1)
.main+c: .main+c: .main+c: .main+c:

You can combine format requests to provide elaborate displays. For example, entering the following
command displays instruction mnemonics followed by their hexadecimal equivalent:

.main,-1?i"xn

In this example, the display starts at the address main. The negative count (-1) causes an indefinite call of
the command, so that the display continues until an error condition (such as end-of-file) occurs. In the
format, i displays the mnemonic instruction at that location, the ~ (caret) moves the current address back
to the beginning of the instruction, and x re-displays the instruction as a hexadecimal number. Finally, n
sends a newline character to the terminal. The output is similar to the following, only longer:

.main:
.main: mflr 0
7c0802a6
st r0, 0x8(rl)
9001008
st r1, -56(rl)
9421ffc8
1i1 r4, 0Ox1
38800001
oril r3, r4, 0x0
60830000
b1 - .f
4bffff71
1 r0, 0x40(rl)
80010040
ai rl, rl, 0x38
30210038
mtlr r0
7c0803a6

The following example shows how to combine formats in the ? or / subcommand to display different types
of values when stored together in the same program. It uses the adbsamp program. For the commands to
have variables with which to work, you must first set a breakpoint to stop the program, and then run the
program until it finds the breakpoint. Use the :b command to set a breakpoint:

.main+4:b

Use the $b command to show that the breakpoint is set:
$b

breakpoints
count bkpt command
1 .main+4

Run the program until it finds the breakpoint by entering:
r

adbsamp: running

breakpoint .main+4: st r0, 0x8(rl)

You can now display conditions of the program when it stopped. To display the value of each individual
variable, give its name and corresponding format in a / (slash) command. For example, the following
command displays the contents of strl as a string:

strl/s
strl:
strl: This is a character string

The following command displays the contents of number as a decimal integer:

Chapter 3. Debugging Programs 57

number/D
number:
number: 456

You can choose to view a variable in a variety of formats. For example, you can display the long variable
Inum as a 4-byte decimal, octal, and hexadecimal number by entering the commands:
Tnum/D

Tnum:
Tnum: 1234

Tnum/0
Tnum:
Tnum: 2322

Tnum/X
Tnum:
Tnum: 4d2

You can also examine variables in other formats. For example, the following command displays some
variables as eight hexadecimal values on a line and continues for five lines:

strl,5/8x

strl:

strl: 5468 6973 2069 7320 6120 6368 6172 6163
7465 7220 7374 7269 6e67 O 0O O 0

number: 0 1c8 0 0 0 4d2 0 0
3fa0 0 0 0 5468 6973 2069 7320
7468 6520 7365 636f 6e64 2063 6861 7261

Since the data contains a combination of numeric and string values, display each value as both a number
and a character to see where the actual strings are located. You can do this with one command:
strl,5/4x4™8Cn
strl:
strl: 5468 6973 2069 7320 This is

6120 6368 6172 6163 a charac

7465 7220 7374 7269 ter stri

6e67 0 0 0 ngre~e™e™~e~e™e

0 1c8 0 0 ~EVEVAY<C8>"EMENE™0

In this case, the command displays four values in hexadecimal, then displays the same values as eight
ASCII characters. The » (caret) is used four times just before displaying the characters to set the current
address back to the starting address for that line.

To make the display easier to read, you can insert a tab between the values and characters and give an
address for each line:

strl,5/4x4"8t8Cna

strl:

strl: 5468 6973 2069 7320 This is

strl+8: 6120 6368 6172 6163 a charac

strl+10: 7465 7220 7374 7269 ter stri

str1+18: 6e67 0 0 1 ng~eve~e~e~e™~A
number:

number: 0 1c8 0 0 ~MEVEVA™Y<Cc8>VEVEME™ME
fpt:

Example of Tracing Multiple Functions in adb Debugging

Note: The example program used in this section, adbsamp3, contains an infinite recursion of subfunction
calls. If you run this program to completion, it causes a memory fault error and quits.

58 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

The following example shows how to execute a program under adb control and carry out the basic

debugging operations described in the following sections.

The source program for this example is stored in a file named adbsamp3.c. Compile this program to an

executable file named adbsamp3 using the cc command:
cc adbsamp3.c -o adbsamp3

Starting the adb Program

To start the session and open the program file, use the following command (no core file is used):

adb adbsamp3

Setting Breakpoints
First, set breakpoints at the beginning of each function using the :b subcommand:

.f:b
.g:b
.h:b

Displaying a Set of Instructions
Next, display the first five instructions in the f function:

.f,5%ia

.fe

.fe mflr r0

f+4: st r0, 0x8(rl)
.f+8: stu rl, -64(rl)
.f+c: st r3, 0x58(rl)
.f+10: st r4, 0x5c(rl)
f+14:

Display five instructions in function g without their addresses:

.g,57i

.g: mflr ro
st r0, 0x8(rl)
stu rl, -64(rl)
st r3, 0x58(rl)
st r4, 0x5c(rl)

Starting the adsamp3 Program

Start the program by entering the following command:
r

adbsamp3: running

breakpoint .f: mflr r0

The adb program runs the sample program until it reaches the first breakpoint where it stops.

Removing a Breakpoint

Since running the program to this point causes no errors, you can remove the first breakpoint:

.f:d

Continuing the Program

Use the :c subcommand to continue the program:
:C

adbsamp3: running

breakpoint .g: mflr r0

Chapter 3. Debugging Programs

59

The adb program restarts the adbsamp3 program at the next instruction. The program operation
continues until the next breakpoint, where it stops.

Tracing the Path of Execution
Trace the path of execution by entering:

$c

.g(0,0) .f+2a

.f(1,1) .main+e
.main(0,0,0) start+fa

The $c subcommand displays a report that shows the three active functions: main, f and g.

Displaying a Variable Value
Display the contents of the fcnt integer variable by entering the command:

fcnt/D
fcnt:
fent: 1

Skipping Breakpoints

Next, continue running the program and skip the first 10 breakpoints by entering:

,10:c
adbsamp3: running
breakpoint .g: mflr r0

The adb program starts the adbsamp3 program and displays the running message again. It does not stop
the program until exactly 10 breakpoints have been encountered. To ensure that these breakpoints have
been skipped, display the backtrace again:

$c

.g(0,0) .f+2a
.f(2,11) .h+28
.h(10,f) .g+2a
.g(11,20) .f+2a
.f(2,f) .h+28
.h(e,d) .g+2a
.g(f,1c) .f+2a
.f(2,d) .h+28
.h(c,b) .g+2a
.g(d,18) .f+2a
.f(2,b) .h+28
.h(a,9) .g+2a
.g(b,14) .f+2a
.f(2,9) .h+28
.h(8,7) .g+2a
.g(9,10) .f+2a
.f(2,7) .h+28
.h(6,5) .g+2a
.g(7,c) .f+2ae
.f(2,5) .h+28
.h(4,3) .g+2a
.g(5,8) .f+2a
.f(2,3) .h+28
.h(2,1) .g+2a
.g(2,3) .f+2a
.f(1,1) .main+e
.main(0,0,0) start+fa

60 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

dbx Symbolic Debug Program Overview

The dbx symbolic debug program allows you to debug an application program at two levels: the
source-level and the assembler language-level. Source level debugging allows you to debug your C, C++,
or FORTRAN language program. Assembler language level debugging allows you to debug executable
programs at the machine level. The commands used for machine level debugging are similar to those
used for source-level debugging.

Using the dbx debug program, you can step through the application program you want to debug one line
at a time or set breakpoints in the object program that will stop the debug program. You can also search
through and display portions of the source files for an application program.

The following sections contain information on how to perform a variety of tasks with the dbx debug
program:

+ [‘Using the dbx Debug Program’|

+ [‘Displaying and Manipulating the Source File with the dbx debug Program” on page 65|
* [‘Examining Program Data” on page 70|

[‘Debugging at the Machine Level with dbx” on page 76|

[‘Customizing the dbx Debugging Environment” on page 79

[‘Developing for the dbx Plug-in Framework” on page 81|

Using the dbx Debug Program
This section contains information on how to use the dbx debug program.

Starting the dbx Debug Program

The dbx program can be started with a variety of flags. The three most common ways to start a debug
session with the dbx program are:

« Running the [dbx] command on a specified object file
* Using theEfIag to run the dbx command on a program that ends abnormally
* Using theflag to run the dbx command on a process that is already in progress

When the dbx command is started, it checks for a .dbxinit (‘Using the .dbxinit File” on page 80) file in the
user’s current directory and in the user's $HOME directory. If a .dbxinit file exists, its subcommands run at
the beginning of the debug session. If a .dbxinit file exists in both the home and current directories, then
both are read in that order. Because the current directory .dbxinit file is read last, its subcommands can
supercede those in the home directory.

If no object file is specified, then the dbx program asks for the name of the object file to be examined. The
default is a.out. If the core file exists in the current directory or a CoreFile parameter is specified, then the
dbx program reports the location where the program faulted. Variables, registers, and memory held in the
core image may be examined until execution of the object file begins. At that point the dbx debug program
prompts for commands.

Debugging a Core Image With Missing Dependent Modules

Beginning with AIX 5.3, the dbx program has the ability to examine a core image even if one or more
dependent modules are inaccessible. During initialization, notification messages are displayed for each
missing dependent module.

Chapter 3. Debugging Programs 61

In normal operation, the dbx program relies on the information contained in the dependent modules’
symbol tables and text sections. Because some of that information is missing, a dbx session with missing
dependent modules has the following limitations:

» All attempts by the user to read the contents of memory residing in the text sections of the missing
dependent modules result in an error message. The error message is like the error that occurs when
data cannot be accessed because it does not reside in the core file.

* The user cannot obtain information concerning any symbols that would have been read from the symbol
tables of the missing dependent modules. The behavior of the dbx program is similar to the case where
a dependent module’s symbol table was stripped.

« Stack frames corresponding to routines within the missing dependent modules are displayed simply as:
-0

In addition, the instruction address within the unknown routine and the name of the corresponding
missing dependent module are displayed.

The user always has the option of directing the dbx program to accessible dependent modules using the
-p flag. For more information, see the . command in the AIX 5L Version 5.3 Commands Reference,
Volume 2

Debugging a Core Image With Mismatched Dependent Modules

Beginning with AIX 5.3, the dbx program detects if any dependent modules referenced in the core file are
different than at core file creation. During initialization, notification messages are displayed for each
mismatched dependent module.

The user should be aware that any information displayed by the dbx program that is based on the
contents of a mismatched dependent module might be unreliable. In an effort to alert the user to
information that should not be trusted, the dbx program sends notification messages whenever
questionable information is displayed.

To disable this function and force the dbx program to treat mismatched dependent modules as missing
dependent modules, the user can export the DBX_MISMATCH_MODULE environment variable with a
value of DISCARD. With this variable exported, the dbx program still notifies the user of the mismatch, but
proceeds as if mismatched dependent modules were inaccessible.

The user always has the option of directing the dbx program to matching dependent modules using the -p

flag. For more information, see the command in the AIX 5L Version 5.3 Commands Reference,
Volume 2

Running Shell Commands from dbx

You can run shell commands without exiting from the debug program using the@ subcommand.

If sh is entered without any commands specified, the shell is entered for use until it is exited, at which time
control returns to the dbx program.

Command Line Editing in dbx

The dbx command provides command line editing features similar to those provided by Korn Shell. vi
mode provides vi-like editing features, while emacs mode gives you controls similar to emacs.

You can turn these features on by using dbx subcommand |set -0 or set edit. So, to turn on vi-style
command line editing, you would type the subcommand set edit vi or set -o vi.

You can also use the EDITOR environment variable to set the editing mode.

62 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

The dbx command saves commands entered to history file .dbxhistory. If the DBXHISTFILE environment
variable is not set, then the history file used is $HOME/.dbxhistory.

By default, the dbx command saves the text of the last 128 commands entered. The DBXHISTSIZE
environment variable can be used to increase this limit.

Using Program Control

The dbx debug program allows you to set breakpoints (stopping places) in the program. After entering the
dbx program you can specify which lines or addresses are to be breakpoints and then run the program
you want to debug with the dbx program. The program halts and reports when it reaches a breakpoint.
You can then use dbx commands to examine the state of your program.

An alternative to setting breakpoints is to run your program one line or instruction at a time, a procedure
known as single-stepping.

Setting and Deleting Breakpoints

Use the subcommand to set breakpoints in the dbx program. The stop subcommand halts the
application program when certain conditions are fulfilled:

» The Variable is changed when the Variable parameter is specified.

» The Condition is true when the if Condition flag is used.

* The Procedure is called when the in Procedure flag is used.

* The SourceLine line number is reached when the at SourceLine flag is used.

Note: The SourceLine variable can be specified as an integer or as a file name string followed by
a : (colon) and an integer.

After any of these commands, the dbx program responds with a message reporting the event ID
associated with your breakpoint along with an interpretation of your command. You can associate dbx
subcommands to the specified event ID by using the subcommand. These associated dbx
subcommands are issued when the breakpoint, tracepoint, or watchpoint corresponding to this event is hit.
Use the subcommand to delete the associated dbx subcommands from the specified event ID.

Running a Program

The@subcommand starts your program. It tells the dbx program to begin running the object file,
reading any arguments just as if they were typed on the shell command line. Thesubcommand has
the same form as run; the difference is that if no arguments are passed, the argument list from the
previous execution is used. After your program begins, it continues until one of the following events
occurs:

* The program reaches a breakpoint.

» A signal occurs that is not ignored, such as INTERRUPT or QUIT.

* A multiprocess event occurs while multiprocess debugging is enabled.
+ The program performs a [load] [unload] or [loadbind| subroutine.

Note: The dbx program ignores this condition if the $ignoreload debug variable is set. This is the
default. For more information see the subcommand.

* The program completes.

In each case, the dbx debug program receives control and displays a message explaining why the
program stopped.

Chapter 3. Debugging Programs 63

There are several ways to continue the program once it stops:

con Continues the program from where it stopped.

detach Continues the program from where it stopped, exiting the debug program. This is useful after you have
patched the program and want to continue without the debug program.

Continues execution until a return to Procedure is encountered, or until the current procedure returns if
Procedure is not specified.

ski Continues execution until the end of the program or until Number + 1 breakpoints execute.

step) Runs one or a specified Number of source lines.

next Runs up to the next source line, or runs a specified Number of source lines.

A common method of debugging is to step through your program one line at a time. The step and next
subcommands serve that purpose. The distinction between these two commands is apparent only when
the next source line to be run involves a call to a subprogram. In this case, the step subcommand stops in
the subprogram; the next subcommand runs until the subprogram has finished and then stops at the next
instruction after the call.

The $stepignore debug variable can be used to modify the behavior of the step subcommand. See the
command in AIX 5L Version 5.3 Commands Reference, Volume 2 for more information.

There is no event number associated with these stops because there is no permanent event associated
with stopping a program.

If your program has multiple threads, they all run normally during the cont, next, nexti, and step
subcommands. These commands act on the running thread (the thread which stopped execution by hitting
a breakpoint), so even if another thread runs the code which is being stepped, the cont, next, nexti, or
step operation continues until the running thread has also executed that code.

If you want these subcommands to execute the running thread only, you can set the dbx debug program
variable $hold_next; this causes the dbx debug program to hold all other user threads during cont, next,
nexti, and step subcommands.

Note: If you use this feature, remember that a held thread will not be able to release any locks which
it has acquired; another thread which requires one of these locks could deadlock your program.

Separating dbx Output from Program Output

Use the screen subcommand for debugging programs that are screen-oriented, such as text editors or
graphics programs. This subcommand opens an Xwindow for dbx command interaction. The program

continues to operate in the window in which it originated. If is not used, dbx program output is
intermixed with the screen-oriented program output.

Tracing Execution

The subcommand tells the dbx program to print information about the state of the program being
debugged while that program is running. The trace subcommand can slow a program considerably,
depending on how much work the dbx program has to do. There are five forms of program tracing:

* You can single-step the program, printing out each source line that is executed. The debug
variable can be used to modify the behavior of the trace subcommand. See the [sef subcommand for
more information.

* You can restrict the printing of source lines to when the specified procedure is active. You can also
specify an optional condition to control when trace information is produced.

* You can display a message each time a procedure is called or returned.
* You can print the specified source line when the program reaches that line.

64 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

* You can print the value of an expression when the program reaches the specified source line.

Deleting trace events is the same as deleting stop events. When the trace subcommand is executed, the
event ID associated is displayed along with the internal representation of the event.

Displaying and Manipulating the Source File with the dbx debug
Program

You can use the dbx debug program to search through and display portions of the source files for a
program.

You do not need a current source listing for the search. The dbx debug program keeps track of the current
file, current procedure, and current line. If a core file exists, the current line and current file are set initially
to the line and file containing the source statement where the process ended. This is only true if the
process stopped in a location compiled for debugging.

Changing the Source Directory Path

By default, the dbx debug program searches for the source file of the program being debugged in the
following directories:

» Directory where the source file was located when it was compiled. This directory is searched only if the
compiler placed the source path in the object.

» Current directory.
» Directory where the program is currently located.

You can change the list of directories to be searched by using theE| option on the dbx invocation line or
issuing the|ﬁé|subcommand within the dbx program. For example, if you moved the source file to a new
location since compilation time, you might want to use one of these commands to specify the old location,
the new location, and some temporary location.

Displaying the Current File
Thesubcommand allows you to list source lines.
The $ (dollar sign) and @ (at sign) symbols represent SourceLineExpression and are useful with the list,

[stopl and [trace| subcommands. The $ symbol represents the next line to be run. The @ symbol
represents the next line to be listed.

The subcommand changes the next line number to be listed.
Changing the Current File or Procedure

Use the @ and subcommands to change the current file, current procedure, and current line within
the dbx program without having to run any part of your program.

Search through the current file for text that matches regular expressions. If a match is found, the current
line is set to the line containing the matching text. The syntax of the search subcommand is:

| RegularExpression [/] Searches forward|in the current source file for the given expression.
? RegularExpression [?] Searches backward|in the current source file for the given expression.

If you repeat the search without arguments, thecommand searches again for the previous regular
expression. The search wraps around the end or beginning of the file.

Chapter 3. Debugging Programs 65

You can also invoke an external text editor for your source file using the subcommand. You can
override the default editor (vi) by setting the EDITOR environment variable to your desired editor before
starting the dbx program.

The dbx program resumes control of the process when the editing session is completed.

Debugging Programs Involving Multiple Threads

Programs involving multiple user threads call the subroutine [pthread_createl When a process calls this
subroutine, the operating system creates a new thread of execution within the process. When debugging a
multi-threaded program, it is necessary to work with individual threads instead of with processes. The dbx
program only works with user threads: in the dbx documentation, the word thread is usually used alone to
mean user thread. The dbx program assigns a unique thread number to each thread in the process being
debugged, and also supports the concept of a running and current thread:

Running thread The user thread that was responsible for stopping the program by hitting a breakpoint.
Subcommands that single-step the program work with the running thread.
Current thread The user thread that you are examining. Subcommands that display information work in

the context of the current thread.

By default, the running thread and current thread are the same. You can select a different current thread
by using the thread subcommand. When the thread subcommand displays threads, the current thread line
is preceded by a >. If the running thread is not the same as the current thread, its line is preceded by a *.

Identifying Thread-Related Objects

Threads use mutexes and condition variables to synchronize access to resources. Threads, mutexes, and
condition variables are created with attribute objects that define how they behave. The dbx program
automatically creates several variables that identify these various thread-related objects. For each object
class, dbx maintains a numbered list and creates an associated variable for each object in the list. These
variable names begin with a $ (dollar sign), followed by a letter indicating the object class (a, ¢, m, or t),
followed by a number indicating the object’s position in the class list. The letters and their associated
object classes are as follows:

* a for attributes

» ¢ for condition variables
* m for mutexes

» t for threads.

For example, $t2 corresponds to the second thread in the dbx thread list. In this case, 2 is the object’s
thread number, which is unrelated to the kernel thread identifier (tid). You can list the objects in each class
using the following dbx subcommands: attribute, condition, mutex, and thread. For example, you can
simply use the thread subcommand to list all threads.

The dbx program automatically defines and maintains the variable $running_thread, which identifies the
thread that was running when a breakpoint was hit.

Breakpoints and Threads

If your program has multiple user threads, simply setting a breakpoint on a source line will not guarantee
that a particular thread will hit the breakpoint, because several threads can execute the same code. If any
thread hits the breakpoint, all the threads of the process will stop.

If you want to specify which thread is to hit the breakpoint, you can use the stop or stopi subcommands
to set a conditional breakpoint. The following aliases set the necessary conditions automatically:

66 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

» bfth (Function, ThreadNumber)
* blth (LineNumber, ThreadNumber)

These aliases stop the thread at the specified function or source line number, respectively. ThreadNumber
is the number part of the symbolic thread name as reported by thesubcommand (for example, 2 is
the ThreadNumber for the thread name $t2).

For example, the following subcommand stops thread $t1 at function funcl:
(dbx) bfth (funcl, 1)

and the following subcommand stops thread $t2 at source line 103:
(dbx) b1th (103, 2)

If no particular thread was specified with the breakpoint, any thread that runs the code where the
breakpoint is set could become the running thread.

Debugging system-scope threads
dbx provides additional support for debugging system scope threads.

Each user thread should have exactly one kernel thread mapped to it. For more details on contention
scope of a thread, refer to [Chapter 11, “Multi-Threaded Programming,” on page 199,

Creating thread-level events: To set source/instruction level breakpoints for a thread, use the
tstop/tstopi subcommands. These subcommands are similar to stop/stopi subcommands, which set
breakpoints for the process. When a thread-level and a process-level breakpoint are hit at the same time,
both the breakpoints are processed and the thread-level breakpoint is reported.

To set a source or instruction level trace for a thread, use the ttrace/ttracei subcommands. These
subcommands are similar to trace/tracei subcommands, which enable tracing for the process.

To set a thread-level watchpoint stop, use the tstophwp subcommand. To set a thread-level watchpoint
trace, use the ttracehwp subcommand. These are similar to the stophwp/tracehwp subcommands, which
enable watchpoints for the process. When a process-level watchpoint exists, a thread having no
thread-level watchpoint watches the process watchpoint location. A thread having a thread-level watchpoint
watches the thread watchpoint location.

When the thread terminates, the events associated with it are deleted.

Displaying and manipulating thread-level events: To view the thread-level events, use the status
subcommand. To delete thread-level events, use the delete subcommand. Like process-level events, you
can enable and disable thread-level events using the enable/disable subcommands.

Running a thread: To continue the running thread to the next source line or instruction, use the
tnext/tnexti subcommand. You can use the number parameter to specify the number of times these
subcommands are to repeat. These subcommands are similar to the next/nexti subcommands, which
continue the process up to the next source line or instruction.

To make the running thread issue a source line or machine instruction from the current stopping point, use
the tstep/tstepi subcommand. You can use the number parameter to specify the number of times these
subcommands are to repeat. These subcommands are similar to the step/stepi subcommands, which
make the process issue a source line or machine instruction.

To skip the thread-level breakpoints for the running thread, use the tskip subcommand. You can use the
count parameter to specify the number of thread-level breakpoints to be skipped. The execution can cease
when any thread hits a breakpoint or watchpoint. Though the execution started by tskip command can
cease because of an event for another thread, the tskip count specified for the previous thread is still

Chapter 3. Debugging Programs 67

active and the number of thread-level breakpoints specified by the tskip count are ignored for that thread
when the process continues. To view the remaining skip-count for the threads, use the status
subcommand. To delete the remaining skip-count for the threads, use the delete subcommand. When the
thread terminates, the tskip count associated with it is deleted.

Thread-Related Subcommands
The dbx debug program has the following subcommands that enable you to work with individual attribute
objects, condition variables, mutexes, and threads:

Displays information about all attribute objects, or attribute objects specified by attribute number.
Displays information about all condition variables, condition variables that have waiting threads,
condition variables that have no waiting threads, or condition variables specified by condition
number.

Displays information about all mutexes, locked or unlocked mutexes, or mutexes specified by
mutex number.

Displays information about threads, selects the current thread, and holds and releases threads.
Sets a thread-level hardware watchpoint stop.

Sets a thread-level hardware watchpoint trace.

Sets a source-level breakpoint stop for a thread.

Sets an instruction-level breakpoint stop for a thread.

Sets a source-level trace for a thread.

Sets an instruction-level trace for a thread.

Runs a thread up to the next source line.

Runs a thread up to the next machine instruction.

Runs a thread one source line.

Runs a thread one machine instruction.

Skips breakpoints for a thread.

A number of subcommands that do not deal with threads directly are also affected when used to debug a
multi-threaded program:

print If passed a symbolic object name reported by the thread, mutex, condition, or
attribute subcommands, displays status information about the object. For example,
to display the third mutex and the first thread:

(dbx) print $m3, $t1

If a single thread hits a breakpoint, all other threads are stopped as well, and the
process timer is halted. This means that the breakpoint does not affect the global
behavior of the process. These normal breakpoints are global, meaning that they
can stop any thread.

If you want to specify which thread will hit the breakpoint, you must use a condition
as shown in the following example, which ensures that only thread $t5 can hit the
breakpoint set on function f1:

(dbx) stopi at &f1 if ($running_thread == 5)

This syntax also works with the stop subcommand. Another way to specify these
conditions is to use the bfth and blth aliases, as explained in the section
"Breakpoints and Threads” (‘Breakpoints and Threads” on page 66)).

All threads resume execution during the step, next, and nexti subcommands. If
you want to step the running thread only, set the $hold_next dbx debug program
variable; this holds all threads except the running thread during these
subcommands.

The stepi subcommand issues the specified number of machine instructions in the
running thread only. Other threads in the process being debugged will not run
during the stepi subcommand.

68 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

trace, tracei A specific user thread can be traced by specifying a condition with the trace and
tracei subcommands as shown in the following example, which traces changes
made to varl by thread $t1:

(dbx) trace varl if ($running_thread == 1)

If a multi-threaded program does not protect its variables with mutexes, the dbx debug program behavior
might be affected by the resulting race conditions. For example, suppose that your program contains the
following lines:

59 var = 5;

60 printf("var=%d\n”, var);

If you want to verify that the variable is being initialized correctly, you could type:
stop at 60 if var==h

The dbx debug program puts a breakpoint at line 60, but if access to the variable is not controlled by a
mutex, another thread could update the variable before the breakpoint is hit. This means that the dbx
debug program would not see the value of five and would continue execution.

Debugging Programs Involving Multiple Processes

Programs involving multiple processes call the andsubroutines. When a program forks, the
operating system creates another process that has the same image as the original. The original process is
called the parent process, the created process is called the child process.

When a process performs an exec subroutine, a new program takes over the original process. Under
normal circumstances, the debug program debugs only the parent process. However, the dbx program
can follow the execution and debug the new processes when you issue the subcommand. The
subcommand enables multiprocess debugging.

When multiprocess debugging is enabled and a fork occurs, the parent and child processes are halted. A
separate virtual terminal Xwindow is opened for a new version of the dbx program to control running of
the child process:

(dbx) multproc on

(dbx) multproc

multi-process debugging is enabled
(dbx) run

When the fork occurs, execution is stopped in the parent, and the dbx program displays the state of the
program:
application forked, child pid = 422, process stopped, awaiting input

stopped due to fork with multiprocessing enabled in fork at 0x1000025a (fork+Oxe)
(dbx)

Another virtual terminal Xwindow is then opened to debug the child process:

debugging child, pid=422, process stopped, awaiting input

stopped due to fork with multiprocessing enabled in fork at 0x10000250
10000250 (fork+0x4))80010010 1 r0,0x10(rl)

(dbx)

At this point, two distinct debugging sessions are running. The debugging session for the child process
retains all the breakpoints from the parent process, but only the parent process can be rerun.

Chapter 3. Debugging Programs 69

When a program performs an exec subroutine in multiprocess debugging mode, the program overwrites
itself, and the original symbol information becomes obsolete. All breakpoints are deleted when the exec
subroutine runs; the new program is stopped and identified for the debugging to be meaningful. The dbx
program attaches itself to the new program image, makes a subroutine to determine the name of the new
program, reports the name, and then prompts for input. The prompt is similar to the following:

(dbx) multproc

Multi-process debugging is enabled

(dbx) run

Attaching to program from exec . .

Determining program name . . .

Successfully attached to /home/user/execprog . . .

Reading symbolic information . . .
(dbx)

If a multi-threaded program forks, the new child process will have only one thread. The process should call
the exec subroutine. Otherwise, the original symbol information is retained, and thread-related
subcommands (such as thread) display the objects of the parent process, which are obsolete. If an exec
subroutine is called, the original symbol information is reinitialized, and the thread-related subcommands
display the objects in the new child process.

It is possible to follow the child process of a fork without a new Xwindow being opened by using the child
flag of the multproc subcommand. When a forked process is created, dbx follows the child process. The
parent flag of the multproc subcommand causes dbx to stop when a program forks, but then follows the
parent. Both the child and parent flags follow an execed process. These flags are very useful for
debugging programs when Xwindows is not running.

Examining Program Data
This section explains how to examine, test, and modify program data.

Handling Signals

The dbx debug program can either trap or ignore signals before they are sent to your program. Each time
your program is to receive a signal, the dbx program is notified. If the signal is to be ignored, it is passed
to your program; otherwise, the dbx program stops the program and notifies you that a signal has been
trapped. The dbx program cannot ignore the SIGTRAP signal if it comes from a process outside of the
debug process. In a multi-threaded program, a signal can be sent to a particular thread via the
pthread_kill subroutine. By default, the dbx program stops and notifies you that a signal has been
trapped. If you request a signal be passed on to your program using the ignore subcommand, the dbx
program ignores the signal and passes it on to the thread. Use the Icatch| and |ignorg| subcommands to
change the default handling.

In the following example, a program uses SIGGRANT and SIGREQUEST to handle allocation of
resources. In order for the dbx program to continue each time one of these signals is received, enter:
(dbx) ignore GRANT

(dbx) ignore SIGREQUEST

(dbx) ignore

CONT CLD ALARM KILL GRANT REQUEST

The dbx debug program can block signals to your program if you set the $sigblock variable. By default,
signals received through the dbx program are sent to the source program or the object file specified by
the dbx ObjectFile parameter. If the $sigblock variable is set using the subcommand, signals received
by the dbx program are not passed to the source program. If you want a signal to be sent to the program,
use the cont subcommand and supply the signal as an operand.

70 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

You can use this feature to interrupt execution of a program running under the dbx debug program.
Program status can be examined before continuing execution as usual. If the $sigblock variable is not
set, interrupting execution causes a SIGINT signal to be sent to the program. This causes execution, when
continued, to branch to a signal handler if one exists.

The following example program illustrates how execution using the dbx debug program changes when the
$sigblock variable is set:

#include <signal.h>

#include <stdio.h>

void inthand() {
printf("\nSIGINT received\n");
exit(0);

1

main()

{
signal (SIGINT, inthand);

while (1) {
printf(".");
fflush(stdout);
sleep(1);

}

The following sample session with the dbx program uses the preceding program as the source file. In the
first run of the program, the $sigblock variable is not set. During rerun, the $sigblock variable is set.
Comments are placed between angle brackets to the right:

dbx version 3.1.

Type 'help' for help.

reading symbolic information ...

(dbx) run

......... ~C <User pressed Ctrl1-C here!>
interrupt in sleep at 0xd00186bc

0xd00180bc (sTeep+0x40) 80410014 1 r2,0x14(rl1)
(dbx) cont

SIGINT received

execution completed
(dbx) set $sigblock
(dbx) rerun

[Tooper]

.............. ~C <User pressed Ctr1-C here!>
interrupt in sleep at 0xd00180bc

0xd00180bc (sTeep+0x40) 80410014 1 r2,0x14(rl)
(dbx) cont

...."°C <Program did not receive signal, execution continued>

interrupt in sleep at 0xd00180bc
0xd00180bc (sTeep+0x40) 80410014 1 r2,0x14(rl)
(dbx) cont 2 <End program with a signal 2>

SIGINT received
execution completed

(dbx)
Calling Procedures

You can call your program procedures from the dbx program to test different arguments. You can also call
diagnostic routines that format data to aid in debugging. Use the subcommand or the
subcommand to call a procedure.

Chapter 3. Debugging Programs 71

Displaying a Stack Trace

To list the procedure calls preceding a program halt, use the command.

In the following example, the executable object file, hello, consists of two source files and three
procedures, including the standard procedure main. The program stopped at a breakpoint in procedure
sub2.

(dbx) run

[1] stopped in sub2 at Tine 4 in file "hellosub.c"

(dbx) where

sub2(s = "hello", n = 52), line 4 in "hellosub.c"

sub(s = "hello", a = -1, k = delete), Tine 31 in "hello.c"

main(), Tine 19 in "hello.c"

The stack trace shows the calls in reverse order. Starting at the bottom, the following events occurred:
1. Shell called main.

2. main called sub procedure at line 19 with values s = "hello”, a = -1, and k = delete.

3. sub called sub2 procedure at line 31 with values s = "hel10” and n = 52.

4. The program stopped in sub2 procedure at line 4.

A portion of the stack trace from frame number 0 to frame number 1 can be displayed using where 0 1.

(dbx) run

[1] stopped in sub2 at Tine 4 in file "hellosub.c"

(dbx) where 0 1

sub2(s = "hello", n = 52), Tine 4 in "hellosub.c"

sub(s = "hello", a = -1, k = delete), Tine 31 in "hello.c"

Note: Set the debug program variable $noargs to turn off the display of arguments passed to
procedures. Set the debug program variable $stack_details to display the frame number and the
register set for each active function or procedure.

You can also display portions of the stack with the |up} |[down| and [frame| subcommands.

Displaying and Modifying Variables

To display an expression, use the subcommand. To print the names and values of variables, use the
dump| subcommand. If the given procedure is a period, then all active variables are printed. If the
PATTERN parameter is specified, then instead of displaying only the specified symbol, all the symbols that
match the PATTERN are printed. To modify the value of a variable, use the subcommand.

In the following example, a C program has an automatic integer variable x with value 7, and s and n
parameters in the sub2 procedure:

(dbx) print x, n

7 52

(dbx) assign x = 3*x

(dbx) print x

21

(dbx) dump

sub2(s = "hello", n = 52)

x = 21

Displaying Thread-Related Information

To display information on user threads, mutexes, conditions, and attribute objects, use the
[condition] and [attribute] subcommands. You can also use the [prinf] subcommand on these objects. In the
following example, the running thread is thread 1. The user sets the current thread to be thread 2, lists the
threads, prints information on thread 1, and finally prints information on several thread-related objects.

72 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

(dbx) thread current 2
(dbx) thread
thread state-k wchan state-u k-tid mode held scope function

*$t1 run running 12755 u no pro main

>$t2 run running 12501 k no sys thread_l

(dbx) print $t1

(thread_id = 0x1, state = run, state_u = 0x0, tid = 0x31d3, mode = 0x1, held = 0x0, priority = 0x3c,

policy = other, scount = 0x1, cursig = 0x5, attributes = 0x200050f8)

(dbx) print $al,$cl,$m2

(attr_id = 0x1, type = 0x1, state = Ox1, stacksize = O0x0, detachedstate = 0x0, process_shared = 0x0,
contentionscope = 0x0, priority = 0x0, sched = 0x0, inherit = 0x0, protocol = 0x0, prio_ceiling = 0x0)
(cv_id = 0x1, lock = 0x0, semaphore_queue = 0x200032a0, attributes = 0x20003628)

(mutex_id = 0x2, islock = 0x0, owner = (nil), flags = 0x1, attributes = 0x200035c8)

Scoping of Names

Names resolve first using the static scope of the current function. The dynamic scope is used if the name
is not defined in the first scope. If static and dynamic searches do not yield a result, an arbitrary symbol is
chosen and the message using QualifiedName is printed. You can override the name resolution procedure
by qualifying an identifier with a block name (such as Module.Variable). Source files are treated as
modules named by the file name without the suffix. For example, the x variable, which is declared in the
sub procedure inside the hello.c file, has the fully qualified name hello.sub.x. The program itself has a
period for a name.

The [which| and [whereis| subcommands can be helpful in determining which symbol is found when multiple
symbols with the same name exist.

Using Operators and Modifiers in Expressions

The dbx program can display a wide range of expressions. Specify expressions with a common subset of
C and Pascal syntax, with some FORTRAN extensions.

* (asterisk) or ~ (caret) Denotes indirection or pointer dereferencing.
[1 (brackets) or () (parentheses) Denotes subscript array expressions.
. (period) Use this field reference operator with pointers

and structures. This makes the C operator ->
(arrow) unnecessary, although it is allowed.
& (ampersand) Gets the address of a variable.
.. (two periods) Separates the upper and lower bounds when
specifying a subsection of an array. For
example: n[1..4].

The following types of operations are valid in expressions:

Algebraic =, -, */(floating division), div (integral division), mod, exp (exponentiation)
Bitwise -, |, bitand, xor, ~, <<, >>

Logical or, and, not, I, &&

Comparison <, >, <=, >=, <>0rl=, =or ==

Other sizeof

Logical and comparison expressions are allowed as conditions in stop and trace subcommands.

Checking of Expression Types

The dbx debug program checks expression types. You can override the expression type by using a
renaming or casting operator. There are three forms of type renaming:

Chapter 3. Debugging Programs 73

* Typename (Expression)
» Expression\ Typename
* (Typename) Expression

Note: When you cast to or from a structure, union, or class, the casting is left-justified. However,
when casting from a class to a base class, C++ syntax rules are followed.

For example, to rename the x variable where x is an integer with a value of 97, enter:

(dbx) print char (x), x \ char, (char) x, x,

a' 'a' 'a' 97

The following examples show how you can use the (Typename) Expression form of type renaming:
print (float) i
print ((struct qq *) void_pointer)->first_element

The following restrictions apply to C-style typecasting for the dbx debug program:
* The Fortran types (integer*1, integer*2, integer*4, logical*1, logical*2, logical*4, and so on) are not
supported as cast operators.

» If an active variable has the same name as one of the base types or user-defined types, the type
cannot be used as a cast operator for C-style typecasting.

The subcommand prints the declaration of an identifier, which you can then qualify with block
names.

Use the $$ TagName construct to print the declaration of an enumeration, structure, or union tag (or the
equivalent in Pascal).

The type of thesubcommand expression must match the variable type you assigned. If the types
do not match, an error message is displayed. Change the expression type using a type renaming. Disable
type checking by setting a special dbx debug program $unsafeassign variable.

Folding Variables to Lowercase and Uppercase

By default, the dbx program folds symbols based on the current language. If the current language is C,
C++, or undefined, the symbols are not folded. If the current language is Fortran or Pascal, the symbols
are folded to lowercase. The current language is undefined if the program is in a section of code that has
not been compiled with the debug flag. You can override default handling with the subcommand.

Using the case subcommand without arguments displays the current case mode.

The Fortran and Pascal compilers convert all program symbols to lowercase; the C compiler does not.
However, some Fortran compilers might not always generate lowercase symbols. For example, given a
procedure named proc1 inside a module named mod2, the XLF Fortran compiler generates the

__mod2_MOD_proc1 symbol, which is mixed case. In such situations, you must change the case in the
dbx program to mixed case.

Changing Print Output with Special Debug Program Variables

Use the ubcommand to set the following special dbx debug program variables to get different results
print

from the subcommand:

$hexints Prints integer expressions in hexadecimal.

$hexchars Prints character expressions in hexadecimal.

$hexstrings Prints the address of the character string, not the string itself.

74 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

$octints Prints integer expressions in octal.
$expandunions Prints fields within a union.
$pretty Displays complex C and C++ types in pretty format.

Set and unset the debug program variables to get the desired results. For example:

(dbx) whatis x; whatis i; whatis s
int x;
char i;
char =*s;
(dbx) print x, i, s
375 'c¢' "hello"
(dbx) set $hexstrings; set $hexints; set $hexchars
(dbx) print x, i, s
0x177 0x63 0x3fffed60
(dbx) unset $hexchars; set $octints
(dbx) print x, i
0567 'c'
(dbx) whatis p
struct info p;
(dbx) whatis struct info
struct info {
int x;
double position[3];
unsigned char c;
struct vector force;
}s
(dbx) whatis struct vector
struct vector {
int a;
int b;
int c;
}s
(dbx) print p
(x = 4, position = (1.3262493258532527e-315, 0.0, 0.0), c = '\0', force = (a =0, b =9, c =1))
(dbx) set $pretty="on"
(dbx) print p
{
X =14
position[0]
position[1]
position[2]
c="\o'

262493258532527e-315

non o
NN
[<> I <> JYEN]

}
(dbx) set $pretty="verbose"

(dbx) print p

x =14

position[0] = 1.3262493258532527e-315
position[1] = 0.0

position[2] = 0.0

c="\0'

force.a = 0

force.b =

force.c = 1

Chapter 3. Debugging Programs 75

Debugging at the Machine Level with dbx

You can use the dbx debug program to examine programs at the assembly language level. You can
display and modify memory addresses, display assembler instructions, single-step instructions, set
breakpoints and trace events at memory addresses, and display the registers.

In the commands and examples that follow, an address is an expression that evaluates to a memory
address. The most common forms of addresses are integers and expressions that take the address of an
identifier with the & (ampersand) operator. You can also specify an address as an expression enclosed in
parentheses in machine-level commands. Addresses can be composed of other addresses and the
operators + (plus), - (minus), and indirection (unary *).

The following sections contain more information on debugging at the machine level with the dbx program.
+ [‘Using Machine Registers’]

+ [‘Examining Memory Addresses” on page 77|

+ [‘Running a Program at the Machine Level” on page 78]

+ [‘Displaying Assembly Instructions” on page 79|

Using Machine Registers

Use the subcommand to see the values of the machine registers. Registers are divided into
three groups: general-purpose, floating-point, and system-control.

General-purpose registers
General-purpose registers are denoted by $rNumber, where Number represents the number of the
register.

Note: The register value may be set to a hexadecimal value of 0xdeadbeef. This is an initialization
value assigned to all general-purpose registers at process initialization.

Floating-point registers

Floating-point registers are denoted by $frNumber, where Number represents the number of the register.
Floating-point registers are not displayed by default. Unset the $noflregs debug program variable to
enable the floating-point register display (unset $noflregs).

Floating-point registers are denoted by $frNumber, where Number represents the register number.
Floating-point registers are not displayed by default. You can unset the $noflregs debug program variable
to enable the floating-point register display (unset $noflregs). You can also reference floating-point
registers by type when using these registers with the print and assign subcommands. $frNumber
defaults to the double type. $frNumbeH references the floating-point registers as type _Decimal32.
$frNumbeD references the floating-point registers as type _Decimal64. The following are examples of the
different types of floating-point registers:

(dbx) print $fro

1.10000002

(dbx) print $froh

1.100001

(dbx) print $frod

1.10000062

76 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

(dbx) assign $fr0 = 9.876

(dbx) assign $froh = 9.876df

(dbx) assign $fr0d = 9.876dd

Vector Registors

Vector registers are denoted by $vrNumber, where Number represents the number of the register. Vector
registers are not displayed by default, and are only present on processors supporting a Vector Processing
Unit.

You can unset the $novregs debug program variable to enable the vector register display with unset
$novregs. You can also reference vector registers by type when using them with the print and assign
subcommands. $vrNumber defaults to a vector type of int. $vrNumberf references the vector as type float.
$vrNumbers references the vector as type short. $vrNumberc references the vector as type char.

Following are examples of the different types of vector registers:

(dbx) print $vr20

((1066192077, 1074161254, 1078355558, 1082340147))

(dbx) print $vr20f

((1.10000002, 2.0999999, 3.0999999, 4.0999999))

(dbx) print $vr20s

((16268, 52429, 16390, 26214, 16454, 26214, 16515, 13107))

(dbx) assign $vr20f[3] = 9.876

(dbx) print $vr20f ((1.10000002, 2.0999999, 3.0999999, 9.8760004))

System-control registers
Supported system-control registers are denoted by:

* The Instruction Address register, $iar or $pc
» The Condition Status register, $cr

» The Multiplier Quotient register, $mq

» The Machine State register, $msr

« The Link register, $link

* The Count register, $ctr

» The Fixed Point Exception register, $xer

« The Transaction ID register, $tid

» The Floating-Point Status register, $fpscr

Examining Memory Addresses

Use the following command format to print the contents of memory starting at the first address and
continuing up to the second address, or until the number of items specified by the Count variable are
displayed. The Mode specifies how memory is to print.

Address, Address | [Mode][> File]
Address | [Counf][Mode] [> File]

Chapter 3. Debugging Programs 77

If the Mode variable is omitted, the previous mode specified is reused. The initial mode is X. The following
modes are supported:

b Prints a byte in octal.

c Prints a byte as a character.

D Prints a long word in decimal.

d Prints a short word in decimal.

Df Prints a double-precision decimal float number.
DDf Prints a quad-precision decimal float number.

f Prints a single-precision floating-point number.

g Prints a double-precision floating-point number.
Hf Prints a single-precision decimal float number.
h Prints a byte in hexadecimal.

i Prints the machine instruction.

lid Prints an 8-byte signed decimal number.

llo Prints an 8-byte unsigned octal number.

llu Prints an 8-byte unsigned decimal number.

lIx Prints an 8-byte unsigned hexadecimal number.

o Prints a long word in octal.

o Prints a short word in octal.

q Prints an extended-precision floating-point number.
s Prints a string of characters terminated by a null byte.
X Prints a long word in hexadecimal.

X Prints a short word in hexadecimal.

In the following example, expressions in parentheses can be used as an address:

(dbx) print &x

0x3fffed60

(dbx) &x/X

3fffed60: 31323300

(dbx) &x,&x+12/x

3fffed460: 3132 3300 7879 7aba 5958 5756 003d 0032

(dbx) ($pc)/2i

100002cc (sub) 7c0802a6 mflr rod

100002d0 (sub + 0x4) bfclfff8 stm r30,-8(rl1)

Running a Program at the Machine Level

The commands for debugging your program at the machine-level are similar to those at the symbolic level.
Thesubcommand stops the machine when the address is reached, the condition is true, or the
variable is changed. Thesubcommands are similar to the symbolic trace commands. The
subcommand executes either one or the specified Number of machine instructions.

If you performed another stepi subcommand at this point, you would stop at address 0x10000618,
identified as the entry point of procedure printf. If you do not intend to stop at this address, you could
use the return subcommand to continue execution at the next instruction in sub at address 0x100002e0.
At this point, the nexti subcommand will automatically continue execution to 0x10000428.

If your program has multiple threads, the symbolic thread name of the running thread is displayed when
the program stops. For example:

stopped in sub at 0x100002d4 ($t4)
10000424 (sub+0x4) 480001f5 bl 0x10000618 (printf)

78 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Debugging fdpr Reordered Executables

You can debug programs that have been reordered with fdpr (feedback directed program restructuring,
part of Performance Toolbox for AIX) at the instruction level. If optimization options -R0 or -R2 are used,
additional information is provided enabling dbx to map most reordered instruction addresses to the
corresponding addresses in the original executable as follows:

OXRRRRRRRR = fdpr[OxYYYYYYYY]

In this example, 0xRRRRRRRR is the reordered address and 0xYYYYYYYY is the original address. In addition,
dbx uses the traceback entries in the original instruction area to find associated procedure names for the
stopped in message, the func subcommand, and the traceback.

(dbx) stepi

stopped in proc_d at 0x1000061c = fdpr[0x10000278]

0x1000061c (?2?) 9421ffcO stwu rl,-64(rl)
(dbx)

In the preceding example, dbx indicates the program is stopped in the proc_d subroutine at address
0x1000061c in the reordered text section originally located at address 0x10000278. For more information
about fdpr, see the command.

Displaying Assembly Instructions

The listi subcommand for the dbx command displays a specified set of instructions from the source file. In
the default mode, the dbx program lists the instructions for the architecture on which it is running. You can
override the default mode with the $instructionset and $mnemonics variables of the set subcommand
for the dbx command.

For more information on displaying instructions or disassembling instructions, see the listi subcommand
for the dbx command. For more information on overriding the default mode, see the $instructionset and
$mnemonics variables of the set subcommand for the dbx command.

Customizing the dbx Debugging Environment

You can customize the debugging environment by creating subcommand aliases and by specifying options
in the .dbxinit file. You can read dbx subcommands from a file using the -c¢ flag. The following sections
contain more information about customization options:

+ [‘Defining a New dbx Prompt’]

+ [‘Creating dbx Subcommand Aliases” on page 80|
+ [‘Using the .dbxinit File” on page 80|

+ [‘Debugging Spinlocks” on page 81|

Defining a New dbx Prompt

The dbx prompt is normally the name used to start the dbx program. If you specified /usr/ucb/dbx a.out
on the command line, then the prompt is /usr/ucb/dbx.

You can change the prompt with the subcommand, or by specifying a different prompt in the
prompt line of the .dbxinit file. Changing the prompt in the .dbxinit file causes your prompt to be used
instead of the default each time you initialize the dbx program.

For example, to initialize the dbx program with the debug prompt debug—>, enter the following line in your
.dbxinit file:

prompt "debug-->"

Chapter 3. Debugging Programs 79

Creating dbx Subcommand Aliases

You can build your own commands from the dbx primitive subcommand set. The following commands
allow you to build a user alias from the arguments specified. All commands in the replacement string for
the alias must be dbx primitive subcommands. You can then use your aliases in place of the dbx
primitives.

The subcommand with no arguments displays the current aliases in effect; with one argument the
command displays the replacement string associated with that alias.

alias [AliasName[CommandName] |
alias AliasName "CommandString”
alias AliasName (Parameter1, Parameter2, . . .) "CommandString"

The first two forms of the alias subcommand are used to substitute the replacement string for the alias
each time it is used. The third form of aliasing is a limited macro facility. Each parameter specified in the
alias subcommand is substituted in the replacement string.

The following aliases and associated subcommand names are defaults:

attr attribute
bfth stop (in given thread at specified function)
blth stop (in given thread at specified source line)
c cont
cv condition
delete
edit
help
status
list
map
u mutex
next
print
quit
run
step
stop
where
th thread
X registers

""9-0)".0'0333_'_'3'09.

You can remove an alias with the [unalias| command.
Using the .dbxinit File

Each time you begin a debugging session, the dbx program searches for special initialization files named
.dbxinit, which contain lists of dbx subcommands to execute. These subcommands are executed before
the dbx program begins to read subcommands from standard input. When the dbx command is started, it
checks for a .dbxinit file in the user’s current directory and in the user's $SHOME directory. If a .dbxinit file
exists, its subcommands run at the beginning of the debug session. If a .dbxinit file exists in both the
home and current directories, then both are read in that order. Because the current directory .dbxinit file is
read last, its subcommands can supercede those in the home directory.

80 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Normally, the .dbxinit file containssubcommands, but it can contain any valid dbx subcommands.
For example:

$ cat .dbxinit

alias si "stop in"

prompt "dbg-->"

$ dbx a.out

dbx version 3.1

Type 'help' for help.

reading symbolic information . . .
dbg--> alias

si stop in

t where . . .

dbg-->

Reading dbx Subcommands from a File

The -c invocation option and .dbxinit file provide mechanisms for executing dbx subcommands before
reading from standard input. When the -c¢ option is specified, the dbx program does not search for a
.dbxinit file. Use the subcommand to read dbx subcommands from a file once the debugging
session has begun.

After executing the list of commands in the emdfile file, the dbx program displays a prompt and waits for
input.

You can also use the -¢ option to specify a list of subcommands to be executed when initially starting the
dbx program.

Debugging Spinlocks

You can use the dbx program to debug spinlocks. To do so, set the AIXTHREAD_SPINLOCKS
environment variable to ON.

Developing for the dbx Plug-in Framework

dbx provides a plug-in framework for developers who want to add new dbx subcommands and event
handlers. Any dbx user can create a plug-in that enhances dbx with application or library specific
commands to aid in debugging.

Notes:

1. Care should be taken not to confuse dbx callback routines and plug-in interface routines.

2. dbx callback routines are the set of services offered by dbx to the plug-in. The plug-in is given
access to these routines through a set of function pointers.

3. plug-in interface routines are the set of methods dbx requires to be implemented by the plug-in.
[‘File Format” on page 82|
[‘Naming” on page 82|

[‘Location” on page 82

[‘Loading” on page 82|

[‘Unloading” on page 83|

[Version Control” on page 83|
[‘Header File” on page 83|

[‘Plug-in Interface” on page 83
[‘dbx callback routines” on page 85|
[‘Example” on page 96|

Chapter 3. Debugging Programs 81

File Format
Each plug-in must be a shared object file.

Naming
To correctly redirect subcommand input, dbx requires each plug-in to have a unique name.

The file name of the plug-in communicates this unique name to dbx. Upon initialization, dbx searches a
set of predefined and user-specified directories for files whose base name matches the regular expression:

~ibdbx_.+\.so$

The following table shows examples of file names that are valid and not valid for dbx plug-ins. The
corresponding unique name is shown for all valid examples:

File Name Valid Unique Name
libdbx_sample.so Yes sample
libdbx_xyz.so Yes Xyz
libdbx_my_app.so Yes my_app
libdbx.so No

libdbx_.so No

libdbx_sample.so.plugin No

plugin_libdbx_sample.so No

Location

dbx allows the user to specify a list of directories to search using the DBX_PLUGIN_PATH environment
variable. Each directory in the list should be separated by a colon. In the following example, the colon
separates two directories.

$ export dbx PLUGIN_PATH=$HOME/dbx_pTlugins:/mnt/share/dbx_plugins

Upon initialization, dbx searches for plug-ins. dbx also searches the directory of the executable file (if
known). This directory is searched after the user-defined directories are searched.

Note: When you use dbx to attach to a process, the full path to the executable file cannot be determined.

Loading
A plug-in can be loaded in one of the following ways:

* A plug-in can be automatically loaded and initialized by placing it in a directory that is searched by dbx
(as described in [‘Location’). This occurs at dbx initialization time.

+ A plug-in can be manually loaded and initialized by specifying its location to the |pluginload| dbx
subcommand. This can occur at any time during the dbx session.

After a successful automatic or manual plug-in load, a message similar to the following is displayed:

(dbx) pluginload /home/user/dbx_plugins/1ibdbx_sample.so
plug-in "/home/user/dbx_plugins/Tibdbx_sample.so" Toaded

Any plug-in whose unique name is identical to that of a currently active plug-in is discarded and a warning
message similar to the following is displayed.

82 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

(dbx) pluginload /mnt/share/dbx_plugins/1ibdbx_sample.so

could not Toad plug-in
"/mnt/share/dbx_plugins/1ibdbx_sample.so":
plug-in "/home/user/dbx_plugins/1ibdbx_sample.so" already loaded.

Unloading
Any plug-in, regardless of how it was loaded, can be manually unloaded by specifying its name to the
dbx subcommand. After a plug-in is successfully unloaded, a message similar to the

following is displayed.

(dbx) pluginunload sample
plug-in "/home/user/dbx_plugins/Tibdbx_sample.so" unloaded.

Version Control

If changes are made to the plug-in framework that would otherwise break backward compatibility with
existing plug-ins, a new version identifier will be created. This is true of any significant changes or
additions to the Plug-in Interface or Plug-in dbx callback routine.

To minimize the need for frequent plug-in version changes, some Plug-in dbx callback routines require
an additional parameter that represents the size of the buffer. This practice is used for buffer parameters
that are based on system structures whose size is not controlled by dbx. This allows the size of the
system structures to change without requiring updates to the plug-in version.

Currently, the only version identifier is DBX_PLUGIN_VERSION_1.

Header File

dbx Plug-in developers can find function prototypes, data structure definitions and macro definitions in the
following header file:

/usr/include/sys/dbx_plugin.h

Plug-in Interface
Refer to the dbx_plugin.h header file for prototypes and definitions for the Plug-in Interface routines.

Each plug-in must implement and export all of the following routines:
* int dbx_plugin_version(void)
For more information on this routine, see [‘int dbx_plugin_version(void)’|

e int dbx_plugin_session_init(dbx _plugin_session_t session, constdbx plugin_ service t
*servicep)

For more information on this routine, see[“int dbx_plugin_session_init(dbx_plugin_session_t session|
[constdbx_plugin_service_t *servicep)” on page 84|

* void dbx_plugin_session_command(dbx_plugin_session_t session, int argc, char *const argv[])

For more information on this routine, see [‘void dbx_plugin_session_command(dbx_plugin_session_{
[session, int argc, char *const argv[])” on page 84|

* void dbx_plugin_session_event(dbx_plugin_session_t session, int event,
dbx_plugin_event_info_t xevent_ infop)
For more information on this routine, see [‘void dbx_plugin_session_event(dbx_plugin_session_{
[session, int event, dbx_plugin_event_info_t *event_infop)” on page 84|

int dbx_plugin_version(void)
This routine should return the dbx Plug-in version identifier corresponding to the version to which the
plug-in conforms. Currently, the only version identifier is DBX_PLUGIN_VERSION 1.

Chapter 3. Debugging Programs 83

int dbx_plugin_session_init(dbx_plugin_session_t session,
constdbx_plugin_service_t *servicep)

This routine should perform any initialization needed for the plug-in to function properly before returning
control back to dbx. This includes setting up any aliases for plug-in subcommands, if desired.

This routine should create a plug-in session that associates the given session identifier with the application
program or core file. To identify the process or core file, the session identifier is used by dbx in Plug-in
Interface calls and by the plug-in for plugin dbx callback routine requests. This routine also accepts the
callback routine structure that contains pointers to the [‘dbx callback routines” on page 85|

This routine should return zero for successful initialization. If initialization is not successful, dbx unloads
and discards the plug-in.

void dbx_plugin_session_command(dbx_plugin_session_t session, int argc, char
*const argv(])

This routine should accept input from the dbx user in the form of arguments provided to the plugin
subcommand. The syntax of the plugin subcommand is as follows:

plugin Name [arg@ argl arg? ... argn]

This allows the dbx user to provide any input to any single plug-in. The plug-in has full control over what it
accepts as input.

The plugin subcommand passes the command specified by the arg* parameters to the plug-in specified
by the Name parameter. (For example, the plug-in name could be 1ibdbx_Name.so) Using this routine, dbx
passes arg0 through argn to the plug-in. argv/0] corresponds to arg0, argv[1]to arg1, and so on.

In most circumstances, arg0 would represent the name of a subcommand defined by the plug-in and arg1
through argn would represent additional flags or arguments. However, this is not a requirement.

Developers are encouraged to implement a help subcommand which displays usage information for the
plug-in.

void dbx_plugin_session_event(dbx_plugin_session_t session, int event,
dbx_plugin_event_info_t *event_infop)

In response to application program events, this routine should perform any internal processing required by
the plug-in. The routine is invoked once by dbx upon the occurrence of each event. The following table
describes the event types for which a plug-in is notified:

ID (event) Assomatgd Data Cause
(event_infop)
DBX_PLUGIN_EVENT_RESTART None The dbx user executed
the run subcommand.
DBX_PLUGIN_EVENT _EXIT Exit code The application program
ended through the exit
routine.
DBX_PLUGIN_EVENT _TERM Terminating signal The application program
number terminated because of an
unhandled signal.
DBX_PLUGIN_EVENT _LOAD dbx_plugin_modinfo_t A module was loaded into
structure of loaded the application program.
module
DBX_PLUGIN_EVENT _UNLOAD dbx_plugin_modinfo_t A module was unloaded
structure of unloaded from the application
module program.

84 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

ID (event) Assomatt_ad Data Cause

(event_infop)
DBX_PLUGIN_EVENT_BP None The application program
has stopped because of a
user or internal dbx
breakpoint or data
watchpoint.

DBX_PLUGIN_EVENT_SIGNAL Signal number The application program
stopped because of a
signal delivery.

DBX_PLUGIN_EVENT_SWTHRD Handle of current pthread | The dbx user executed
the thread
current<handle>
subcommand resulting in
a change in the current
pthread.

The DBX_PLUGIN_EVENT_BP and DBX_PLUGIN_EVENT_SIGNAL events imply that the application
program was started but has stopped. These events are meant to signify that any cached data that the
plug-in possesses might no longer be valid. Upon notification of these events, it is more efficient for
plug-ins to simply invalidate any cached data rather than refreshing the data. A complete refresh of cached
data should only occur when the data is needed. This is especially relevant because some signals might
be ignored by dbx and some breakpoints might be internal breakpoints. If the user has no opportunity to
run subcommands before the application program starts again, repeatedly refreshing data wastes
resources.

void dbx_plugin_session_destroy(dbx_plugin_session_t session)

This routine should perform any final cleanup and memory management tasks required by the plug-in.

dbx callback routines

The following are the dbx callback routines provided for each plug-in through the
dbx_plugin_session_init routine.

* [‘session” on page 86|

+ [‘process” on page 86|

[tds” on page 86|

[‘modules” on page 87|

+ [‘regions” on page 88|

[threads” on page 89|

[‘pthreads” on page 90|
[‘get_thread_context” on page 90|
[‘set_thread_context” on page 91|
[‘get_pthread_context” on page 92|
+ [‘set_pthread_context” on page 92|
[‘read_memory” on page 93|
[‘write_memory” on page 93|
[locate_symbol” on page 94|
[‘what_function” on page 94|

+ [‘print” on page 95|

[alias” on page 95|

Chapter 3. Debugging Programs 85

session

The dbx session callback routine allows you to get characteristics of the dbx session. dbx fills in the
flagsp parameter.

typedef int (*dbx_plugin_session_service_t)(dbx_plugin_session_t session,
dbx_plugin_session_flags_t *flagsp).

The dbx session callback routine parameters are:

Parameter Description
session Session identifier.
flagsp Session characteristics in any combination of:

* DBX_PLUGIN_SESSION_64BIT

If set, the session represents a 64-bit application program. Otherwise, the session
represents a 32-bit application program.

» DBX_PLUGIN_SESSION_CORE

If set, the session represents a core file. Otherwise, the session represents a live
process.

The dbx session callback routine return codes are:

» DBX_PLUGIN_SUCCESS

* DBX_PLUGIN_BAD_SESSION session is not valid
+ DBX_PLUGIN_BAD_POINTER flagsp is NULL

process

The dbx process callback routine allows you to get information on the process being debugged. dbx
populates the infop parameter.
typedef int (*dbx_plugin_process_service_t)(dbx_plugin_session_t session,

dbx _plugin_procinfo_t *infop,

size_t procinfo_size)

The dbx process callback routine parameters are:

Parameter Description
session Session identifier
infop Allocated dbx_plugin_procinfo_t structure

procinfo_size Size of dbx_plugin_procinfo_t structure

The dbx process callback routine return codes are:

« DBX_PLUGIN_SUCCESS

« DBX_PLUGIN_BAD_SESSION session is not valid

« DBX_PLUGIN_BAD_POINTER infop is NULL

* DBX_PLUGIN_BAD_ARG procinfo_size is not valid

« DBX_PLUGIN_UNAVAILABLE process not active or info not in core

fds

The dbx fds callback routine allows you to get information on file descriptors for the process. You can
either:

« Call iteratively to get information separately on each file descriptor. Or,

» Call once to get the total number of file descriptors and call once again to get information on all file
descriptors simultaneously.

86 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

If the plug-in passes a non-NULL infop buffer, dbx populates the buffer with the number of entries
requested in *countp, starting with the file descriptor referenced by “indexp.

If the plug-in passes a *countp that is greater than the number of remaining entries, dbx retrieves all
remaining entries. dbx updates countp to reflect the actual number of entries retrieved and indexp to
reflect the next module index. If the last file descriptor was retrieved, indexp is set to -1. If the plug-in
passes a NULL infop buffer, indexp and countp are still updated — just as if infop were non-NULL.
typedef int (*dbx_plugin_fds_service_t) (dbx_plugin_session_t session,

dbx_plugin_fdinfo_t =infop,

size_t fdinfo_size,

unsigned int *indexp,

unsigned int *countp)

The dbx fds callback routine parameters are:

Parameter Description

session Session identifier

infop Allocated array of dbx_plugin_fdinfo_t structures or NULL

fdinfo_size Size of a single dbx_plugin_fdinfo_t structure

indexp Starting/next file descriptor (where zero corresponds to the first file descriptor)
countp number of file descriptors

The dbx fds callback routine return codes are:

» DBX_PLUGIN_SUCCESS

+ DBX_PLUGIN_BAD_SESSION session is not valid

« DBX_PLUGIN_BAD_POINTER indexp is NULL or countp is NULL
 DBX_PLUGIN_BAD_ARG fdinfo_size is not valid or * countp ==

* DBX_PLUGIN_UNAVAILABLE process not active or info not in core

modules

The dbx modules callback routine allows you to get information on loaded modules for the process. You
can either:

» Call iteratively to get information separately on each module. Or,

» Call once to get the total number of modules and call once again to get information on all modules
simultaneously.

If the plug-in passes a non-NULL infop buffer, dbx populates the buffer with the number of entries
requested in *countp, starting with the module referenced by *indexp.

If the plug-in passes a *countp that is greater than the number of remaining entries, dbx retrieves all
remaining entries. dbx updates countp to reflect the actual number of entries retrieved and updates indexp
to reflect the next module index. If the last module was retrieved, indexp is set to -1. If the plug-in passes
a NULL infop buffer, indexp and countp are still updated — just as if infop were not NULL.

Note: This routine allocates memory to hold the file name and member character strings. The caller must
free this memory when it is no longer needed.
typedef int (*dbx_plugin_modules_service_t)(dbx _plugin_session_t session,
dbx_plugin_modinfo_t *infop,
size_t modinfo_size,
unsigned int *indexp,
unsigned int *countp)

The dbx modules callback routine parameters are:

Chapter 3. Debugging Programs 87

Parameter Description

session Session identifier

infop Allocated array of dbx_plugin_modinfo_t structures or NULL
modinfo_size Size of a single dbx_plugin_modinfo_t structure

indexp Starting/next module (where zero corresponds to the first module)

countp Number of modules

The dbx modules callback routine return codes are:

+ DBX_PLUGIN_SUCCESS

* DBX_PLUGIN_BAD_SESSION session is not valid

* DBX_PLUGIN_BAD_POINTER indexp is NULL or countp is NULL
+ DBX_PLUGIN_BAD_ARG modinfo_size is not valid or *countp ==

regions
The dbx regions callback routine allows you to get information on memory regions for the process.

Retrieved regions can include:

* Main thread stack region (DBX_PLUGIN_REGION_STACK)

» User data region (DBX_PLUGIN_REGION_DATA)

* Process private data region (DBX_PLUGIN_REGION_SDATA)
* Memory mapped region (DBX_PLUGIN_REGION_MMAP)

» Shared memory region (DBX_PLUGIN_REGION_SHM)

You can either:
» Call iteratively to get information separately on one region. Or,

» Call once to get the total number of regions and call once again to get information on all regions
simultaneously.

If the plug-in passes a non-NULL infop buffer, dbx populates the buffer with the number of entries
requested in *countp, starting with the region referenced by *indexp.

If the plug-in passes a *countp that is greater than the number of remaining entries, dbx retrieves all
remaining entries. dbx updates counip to reflect the actual number of entries retrieved and indexp to
reflect the next region index.

If the last region was retrieved, indexp is set to -1. If the plug-in passes a NULL infop buffer, indexp and
countp are still updated — just as if infop were non-NULL.

Note: Currently, this routine is only implemented for sessions representing core files. Sufficient information
is not available to dbx for sessions representing live processes. Calls for such sessions return
DBX_PLUGIN_UNAVAILABLE.

typedef int (*dbx_plugin_regions_service_t)(dbx_plugin_session_t session,
dbx_plugin_reginfo_t *infop,
size_t reginfo_size,
unsigned int *indexp,
unsigned int *countp)

The dbx regions callback routine parameters are:
Parameter Description

session Session identifier

88 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

infop Allocated array of dbx_plugin_region_t structures or NULL
reginfo_size Size of a single dbx_plugin_reginfo_t structure
indexp Starting/next region (where zero corresponds to the first region)

countp Number of regions

The dbx regions callback routine return codes are:

+ DBX_PLUGIN_SUCCESS

« DBX_PLUGIN_BAD_SESSION session is not valid

* DBX_PLUGIN_BAD_POINTER indexp is NULL or countp is NULL

» DBX_PLUGIN_BAD_ARG reginfo_size is not valid or *countp ==

+ DBX_PLUGIN_UNAVAILABLE session represents a live processes and regions not accessible

threads
The dbx threads callback routine allows you to get information on the kernel threads in the process.

You can either:
» Call iteratively to get information separately on one thread. Or,

» Call once to get the total number of threads and call once again to get information on all threads
simultaneously.

If the plug-in passes a non-NULL infop buffer, dbx populates the buffer with the number of entries
requested in *countp, starting with the thread referenced by *indexp.

If the plug-in passes a *countp that is greater than or equal to the number of remaining entries, dbx
retrieves all remaining entries and updates countp to reflect the actual number of entries retrieved.

If the last entry was retrieved, and countp is less than its passed value, indexp is set to -1. Otherwise,
indexp is updated to reflect the thread id for the next request.

Note: If the value of countp passed is equal to the number of available entries, countp remains the same,
but indexp is not set to -1.

If the plug-in passes a NULL infop buffer, indexp and countp are updated — just as if infop were
non-NULL.

typedef int (*dbx_plugin_threads_service_t) (dbx_plugin_session_t session,
dbx _plugin_thrdinfo_t *infop,
size_t thrdinfo_size,
tid64_t *indexp,
unsigned int *countp)

The dbx threads callback routine parameters are:

Parameter Description

session Session identifier

infop Allocated array of dbx_plugin_thrdinfo_t structures or NULL

thrdinfo_size Size of a single dbx_plugin_thrdinfo_t structure

indexp Starting/next thread id (where, on input, zero corresponds to the first thread)
countp Number of threads

The dbx threads callback routine return codes are:
- DBX_PLUGIN_SUCCESS

Chapter 3. Debugging Programs 89

« DBX_PLUGIN_BAD_SESSION session is not valid

« DBX_PLUGIN_BAD_POINTER indexp is NULL or countp is NULL

+ DBX_PLUGIN_BAD_ID *indexp is not a valid id

» DBX_PLUGIN_BAD_ARG thrdinfo_size is not valid or *countp ==

« DBX_PLUGIN_UNAVAILABLE process not active or entries not in core

pthreads

The dbx pthreads callback routine allows you to get information on pthreads in the process, including any
kernel thread associations.

You can either:
» Call iteratively to get information separately on one pthread. Or,

+ Call once to get the total number of pthreads and call once again to get information on all pthreads
simultaneously.

If the plug-in passes a non-NULL infop buffer, dbx populates the buffer with the number of entries
requested in *countp, starting with the pthread referenced by *indexp.

If the plug-in passes a *countp that is greater than the number of remaining entries, dbx retrieves all
remaining entries. dbx updates countp to reflect the actual number of entries retrieved and indexp to
reflect the pthread handle for the next request.

If the last entry was retrieved, indexp is set to -1. If the plug-in passes a NULL infop buffer, indexp and
countp are still updated — just as if infop were non-NULL.

If the first pthread is requested and countp is updated to zero, the process is not pthreaded.

typedef int (*dbx_plugin_pthreads_service t)(dbx _plugin_session_t session,
dbx_plugin_pthinfo_t *infop,
size_t pthrdinfo_size,
pthdb_pthread t =*indexp,
unsigned int *countp)

The dbx pthreads callback routine parameters are:

Parameter Description
session Session identifier
infop Allocated array of dbx_plugin_pthinfo_t structures or NULL

pthrdinfo_size Size of a single dbx_plugin_pthrdinfo_t structure

indexp Starting/next pthread handle (where, on input, zero corresponds to the first pthread and
DBX_PLUGIN_PTHREAD_CURRENT corresponds to the current pthread in dbx)

countp Number of pthreads

The dbx pthreads callback routine return codes are:

+ DBX_PLUGIN_SUCCESS

* DBX_PLUGIN_BAD_SESSION session is not valid
 DBX_PLUGIN_BAD_POINTER indexp is NULL or countp is NULL

* DBX_PLUGIN_BAD_ARG pthrdinfo_size is not valid or *countp == 0

get_thread_context

The dbx get_thread_context callback routine allows you to read a kernel thread’s general purpose,
special purpose, and floating point registers. dbx populates the contextp parameter.

90 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

typedef int (*dbx_plugin reg service_t)(dbx_plugin_session_t session,
uint64_t reg_flags,
uint64_t id,
dbx_plugin_context_t =*contextp,
size_t context_size)

The dbx get_thread_context callback routine parameters are:

Parameter Description

session Session identifier

reg_flags Logical OR of at least one of DBX_PLUGIN_REG_GPRS, DBX_PLUGIN_REG_SPRS,
DBX_PLUGIN_REG_FPRS, DBX_PLUGIN_REG_EXT

id Kernel thread tid (tid64_t)

contextp Allocated dbx_plugin_context_t structure

context_size Size of dbx_plugin_context_t structure. If the DBX_PLUGIN_REG_EXT register flag is
used, then the size of the dbx_plugin_extctx_t structure should be used. The
dbx_plugin_extctx_t structure is an extended version of dbx_plugin_context_t structure.

The dbx get_thread_context callback routine return codes are:

+ DBX_PLUGIN_SUCCESS.

« DBX_PLUGIN_BAD_SESSION session is not valid.

+ DBX_PLUGIN_BAD_ID id is not valid.

« DBX_PLUGIN_BAD_ARG reg_flags is not valid or context_size is not valid.
« DBX_PLUGIN_BAD_POINTER contextp is NULL

+ DBX_PLUGIN_UNAVAILABLE process is not active or thread is in kernel mode and registers are not
accessible.

set_thread_context

The dbx set_thread_context callback routine allows you to write to a kernel thread’s general purpose,
special purpose and floating point registers.
typedef int (*dbx_plugin_reg_service_t) (dbx_plugin_session_t session,
uint64_t reg_flags,
uint6d_t id,
dbx_pTugin_context_t =*contextp,
size_t context_size)

The dbx set_thread_context callback routine parameters are:

Parameter Description

session Session identifier

reg_flags Logical OR of at least one of DBX_PLUGIN_REG_GPRS, DBX_PLUGIN_REG_SPRS,
DBX_PLUGIN_REG_FPRS, DBX_PLUGIN_REG_EXT

id Kernel thread tid (tid64_t)

contextp Allocated dbx_plugin_context_t structure

context_size Size of dbx_plugin_context_t structure. If the DBX_PLUGIN_REG_EXT register flag is
used, then the size of the dbx_plugin_extctx_t structure should be used. The
dbx_plugin_extctx_t structure is an extended version of dbx_plugin_context_t structure.

The dbx set_thread_context callback routine return codes are:
« DBX_PLUGIN_SUCCESS
« DBX_PLUGIN_BAD_SESSION session is not valid

Chapter 3. Debugging Programs

91

+ DBX_PLUGIN_BAD_ID id is not valid
« DBX_PLUGIN_BAD_ARG reg_flags is not valid or context_size is not valid
+ DBX_PLUGIN_BAD_POINTER contextp is NULL

» DBX_PLUGIN_UNAVAILABLE process is not active or thread is in kernel mode and registers are not
accessible

get_pthread_context
The dbx get_pthread_context callback routine allows you to read a pthread’s general purpose, special
purpose and floating point registers. dbx populates the contextp parameter.
typedef int (*dbx_plugin_reg service_t)(dbx_plugin_session_t session,
uint64_t reg_flags,
uint6s t id,
dbx_plugin_context_t =contextp,
size t context_size)

The dbx get_pthread_context callback routine parameters are:

Parameter Description

session Session identifier

reg_flags logical OR of at least one of DBX_PLUGIN_REG_GPRS, DBX_PLUGIN_REG_SPRS,
DBX_PLUGIN_REG_FPRS, DBX_PLUGIN_REG_EXT

id pthread handle (pthdb_pthread_t)

contextp Allocated dbx_plugin_context_t structure

context_size size of dbx_plugin_context_t structure. If the DBX_PLUGIN_REG_EXT register flag is
used, then the size of the dbx_plugin_extctx_t structure should be used. The
dbx_plugin_extctx_t structure is an extended version of dbx_plugin_context_t structure.

The dbx get_pthread_context callback routine return codes are:

+ DBX_PLUGIN_SUCCESS

 DBX_PLUGIN_BAD_SESSION session is not valid

+ DBX_PLUGIN_BAD_ID id is not valid.

+ DBX_PLUGIN_BAD_ARG reg_flags is not valid or context_size is not valid
« DBX_PLUGIN_BAD_POINTER contextp is NULL

« DBX_PLUGIN_UNAVAILABLE process is not active or thread is in kernel mode and registers are not
accessible

set_pthread_context

The dbx set_pthread_context callback routine allows you to write to a pthread’s general purpose, special
purpose and floating point registers.

typedef int (*dbx_plugin reg service t)(dbx_plugin_session_t session,
uint64_t reg_flags,
uint64_t id,
dbx_plugin_context_t =*contextp,
size_t context_size)

The dbx set_pthread_context callback routine parameters are:

Parameter Description

session Session identifier

reg_flags Logical OR of at least one of DBX_PLUGIN_REG_GPRS, DBX_PLUGIN_REG_SPRS,
DBX_PLUGIN_REG_FPRS, DBX_PLUGIN_REG_EXT

92 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

id Pthread handle (pthdb_pthread_t)

contextp Allocated dbx_plugin_context_t structure

context_size Size of dbx_plugin_context_t structure. If the DBX_PLUGIN_REG_EXT register flag is

used, then the size of the dbx_plugin_extctx_t structure should be used. The

dbx_plugin_extctx_t structure is an extended version of dbx_plugin_context_t structure.

The dbx set_pthread_context callback routine return codes are:

+ DBX_PLUGIN_SUCCESS

* DBX_PLUGIN_BAD_SESSION session is not valid

+ DBX_PLUGIN_BAD_ID idis not valid

+ DBX_PLUGIN_BAD_ARG reg_flags is not valid or context_size is not valid
» DBX_PLUGIN_BAD_POINTER contextp is NULL

+ DBX_PLUGIN_UNAVAILABLE process is not active or kernel thread associated with pthread is in kernel

mode and registers are not accessible

read_memory

The dbx read_memory callback routine allows you to read from the process’s address space. dbx

populates the buffer parameter.

typedef int (*dbx_plugin _mem service_ t)(dbx_plugin_session_t session,
uint64_t addr,
void *buffer,
size_t len)

The dbx read_memory callback routine parameters are:

Parameter Description

session Session identifier

addr Address to read from

buffer Allocated buffer to hold memory contents
len Number of bytes to read

The dbx read_memory callback routine return codes are:
+ DBX_PLUGIN_SUCCESS

+ DBX_PLUGIN_BAD_SESSION session is not valid

« DBX_PLUGIN_BAD_POINTER buffer is NULL

» DBX_PLUGIN_UNAVAILABLE unable to read from addr

write_memory
The dbx write_memory callback routine allows you to write to the process’s address space.

typedef int (*dbx_plugin_mem_service_t) (dbx_plugin_session_t session,
uint64_t addr,
void *buffer,
size_t len)

The dbx write_memory callback routine parameters are:

Parameter Description

session Session identifier

addr Address to write to

buffer Allocated and initialized buffer

Chapter 3. Debugging Programs

93

len Number of bytes to write

The dbx write_memory callback routine return codes are:
+ DBX_PLUGIN_SUCCESS

* DBX_PLUGIN_BAD_SESSION session is not valid

* DBX_PLUGIN_BAD_POINTER buffer is NULL

+ DBX_PLUGIN_UNAVAILABLE unable to write to addr

locate_symbol
The dbx locate_symbol callback routine allows you to convert symbol names to addresses.

The plug-in must initialize the name and mod fields of each entry in the symbols parameter array. The
name field specifies the name of the symbol to be located. The mod field specifies the module index of the
module in which the lookup should occur. A mod field initialized to -1 denotes that all modules should be
searched.

dbx populates the addr field. Any unknown symbols have an address of zero. If the symbol is located and
all modules searched, dbx updates the mod field with the actual module index of the symbol.

typedef int (*dbx_plugin_sym service_t) (dbx_plugin_session_t session,
dbx_plugin_sym t *symbols,
size_t syminfo_size,
unsigned int count)
The dbx locate_symbol callback routine parameters are:
Parameter Description
session Session identifier
symbols Allocated array of dbx_plugin_sym_t structures with the name and mod fields initialized
syminfo_size Size of dbx_plugin_sym_t structure

count Number of symbols to locate

The dbx locate_symbol callback routine return codes are:
+ DBX_PLUGIN_SUCCESS

« DBX_PLUGIN_BAD_SESSION session is not valid

« DBX_PLUGIN_BAD_ARG syminfo_size is not valid

+ DBX_PLUGIN_BAD_POINTER symbols is NULL

what_function
The dbx what_function callback routine allows you to convert text addresses to symbols.

The plug-in must initialize the addr field of each entry in the symbols parameter array. The addr field
specifies an instruction address within the function to be identified.

dbx populates the name field. Any unknown text address has a name of NULL. dbx populates the mod
field with the actual module index of the text address.

typedef int (*dbx_plugin_sym service_t) (dbx_plugin_session_t session,
dbx_plugin_sym t *symbols,
size_t syminfo_size,
unsigned int count)

The dbx what_function callback routine parameters are:

Parameter Description

94 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

session Session identifier

symbols Allocated array of dbx_plugin_sym_t structures with the addr field(s) initialized with text
address(es)

syminfo_size Size of dbx_plugin_sym_t structure

count Number of addresses to convert

The dbx what_function callback routine return codes are:
» DBX_PLUGIN_SUCCESS
 DBX_PLUGIN_BAD_SESSION session is not valid

« DBX_PLUGIN_BAD_ARG syminfo_size is not valid

* DBX_PLUGIN_BAD_POINTER symbols is NULL

print
The dbx print callback routine allows you to display informational output or error output.

typedef int (*dbx_plugin_print_service_ t) (dbx_plugin_session_t session,
int print_mode,
char *message)

The dbx print callback routine parameters are:

Parameter Description

session session identifier

print_mode Either DBX_PLUGIN_PRINT_MODE_OUT or DBX_PLUGIN_PRINT_MODE_ERR
message Character string for dbx to display

The dbx print callback routine return codes are:

+ DBX_PLUGIN_SUCCESS

+ DBX_PLUGIN_BAD_SESSION session is not valid
+ DBX_PLUGIN_BAD_ARG print_mode is not valid
 DBX_PLUGIN_BAD_POINTER message is NULL

alias
The dbx alias callback routine allows you to create an alias for a plug-in subcommand.

The syntax of the [plugin] dbx subcommand requires the dbx user to type a prefix of plugin Name for each
plug-in subcommand invocation. To provide a way to shorten such invocations, dbx allows plug-ins to
create new aliases.

The alias and expansion parameters should provide a description of the new alias. The syntax is the same
as the syntax defined for the alias dbx subcommand.

The following are example invocations of the dbx alias callback routine:
alias("intprt", "plugin xyz interpret");
alias("intprt2(addr, count, format)", "addr / count format; plugin xyz interpret addr");

Note: If you try to create an alias that has the same name as an existing alias, the request is denied and
a warning message is displayed. Plug-in developers are encouraged to carry out alias creation in a
way that allows users to correct alias conflicts. One way to accomplish this is by reading alias
definitions from a configuration file that is packaged with the plug-in.

Chapter 3. Debugging Programs 95

typedef int (*dbx_plugin_alias_service_t)(dbx_plugin_session_t session,
const char *alias,
const char *expansion)

The dbx alias callback routine parameters are:

Parameter Description

session Session identifier
alias Character string representing the alias name and optional parameter
expansion Character string representing the alias expansion

The dbx alias callback routine return codes are:

+ DBX_PLUGIN_SUCCESS

* DBX_PLUGIN_BAD_SESSION session is not valid

* DBX_PLUGIN_BAD_ARG alias is not valid

+ DBX_PLUGIN_BAD_POINTER alias is NULL or expansion is NULL

* DBX_PLUGIN_UNAVAILABLE an alias with an identical name already exists

Example

The following example defines a help subcommand and a hello subcommand.
example.c:

#include <sys/dbx_plugin.h>

dbx_plugin_session_t sid;
dbx_plugin_service_t dbx;

static void usage(void);
static void hello_cmd(void);

int
dbx_plugin_version(void) {

return dbx_PLUGIN_VERSION_1;
1

int dbx_plugin_session_init(dbx_plugin_session_t session,
const dbx_plugin_service_t *servicep) {
/* record session identifier =/
sid= session;

/* record dbx service */
memcpy (&dbx, servicep, sizeof(dbx_plugin_service t));

(*(dbx.alias)) (sid, "hello", "plugin example hello");
return 0;

}

void
dbx_plugin_session_command(dbx_plugin_session_t session,
int argc,
char *const argv[]) {
if (argc == 0 || (argc == 1 && strcmp(argv[0], "help") == 0)) {

usage();
return;

if (argc == 1 && strcmp(argv[0], "hello") == 0) {
hello_cmd();

96 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

return;

1
(*(dbx.print)) (sid,dbx_PLUGIN PRINT MODE_ERR,
"unrecognized command\n");

}

void
dbx_plugin_session_event(dbx_plugin_session_t session,
int event,
dbx_plugin_event_info_t xevent_infop) {
/* ignore event notifications =*/
}
void

dbx_pTlugin_session_destroy(dbx_plugin_session_t session){
/* no clean up to perform */
1

static
void
usage(void) {
(*(dbx.print)) (sid,dbx_PLUGIN_PRINT_MODE_OUT,
"Subcommands for Plug-in \"example\":\n\n" \
" help - displays this output\n" \
" hello - displays a greeting\n" \
||\n||) ;
1

static
void
hello_cmd(void) {
(*(dbx.print)) (sid,dbx_PLUGIN_PRINT_MODE_OUT,
"Hello dbx World!\n");

}

example.exp:

dbx_plugin_version
dbx_plugin_session_init
dbx_pTlugin_session_command
dbx_plugin_session_event
dbx_plugin_session_destroy

To compile the example plug-in, you type:
cc -0 Tibdbx_example.so example.c -bM:Sre -bE:example.exp -bnoentry

List of dbx Subcommands

The commands and subcommands for the dbx debug program are located in the AIX 5L Version 5.3
Commands Reference.

The dbx debug program provides subcommands for performing the following task categories:
+ [‘Setting and Deleting Breakpoints” on page 98|

+ [‘Running Your Program” on page 98]

[‘Tracing Program Execution” on page 98|

[‘Ending Program Execution” on page 98]

[‘Displaying the Source File” on page 98|

« [‘Printing and Modifying Variables, Expressions, and Types” on page 99|

[Thread Debugging” on page 99|

Chapter 3. Debugging Programs 97

[‘Multiprocess Debugging” on page 99|

+ [‘Procedure Calling” on page 99

[‘Signal Handling” on page 99|

[‘Machine-Level Debugging” on page 99|

+ [‘Debugging Environment Control” on page 100|

Setting and Deleting Breakpoints

Removes all stops at a given source line.

Removes all breakpoints at an address.

Removes the traces and stops corresponding to the specified numbers.
Displays the currently active trace and stop subcommands.

Stops execution of the application program.

Running Your Program

Continues running the program from the current breakpoint until the program finishes or another
breakpoint is encountered.
detach Exits the debug program, but continues running the application.
down Moves a function down the stack.
oto Causes the specified source line to be the next line run.
otoi Changes program counter addresses.
nex Runs the application program up to the next source line.
nexti Runs the application program up to the next source instruction.
rerun Begins running an application.
return Continues running the application program until a return to the specified procedure is reached.
run Begins running an application.

Continues execution from the current stopping point.
Runs one source line.

Runs one source instruction.

Move a function up the stack.

Prints tracing information.
Turns on tracing.
Displays a list of all active procedures and functions.

Ending Program Execution

Quits the dbx debug program.

Displaying the Source File

Invokes an editor on the specified file.

Changes the current source file to the specified file.

Changes the current function to the specified function or procedure.
Displays lines of the current source file.

Lists instructions from the application.

Changes the next line to be displayed.

Searches forward in the current source file for a pattern.

98 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

?(Search)

Searches backward in the current source file for a pattern.
Sets the list of directories to be searched when looking for a file.

Printing and Modifying Variables, Expressions, and Types

ssign
cas
dump
print
se
unset
whatis|
whereis
which

Assigns a value to a variable.

Changes the way in which dbx interprets symbols.

Displays the names and values of variables in the specified procedure.

Prints the value of an expression or runs a procedure and prints the return code.

Assigns a value to a nonprogram variable.

Deletes a nonprogram variable.

Displays the declaration of application program components.

Displays the full qualifications of all the symbols whose names match the specified identifier.
Displays the full qualification of the specified identifier.

Thread Debugging

Displays information about all or selected attributes objects.
Displays information about all or selected condition variables.
Displays information about all or selected mutexes.
Displays and controls threads.

Sets a thread-level hardware watchpoint stop.

Sets a thread-level hardware watchpoint trace.

Sets a source-level breakpoint stop for a thread.

Sets an instruction-level breakpoint stop for a thread.

Sets a source-level trace for a thread.

Sets an instruction-level trace for a thread.

Runs a thread up to the next source line.

Runs a thread up to the next machine instruction.

Runs a thread one source line.

Runs a thread one machine instruction.

Skips breakpoints for a thread.

Multiprocess Debugging

Enables or disables multiprocess debugging.

Procedure Calling

call
prin

Runs the object code associated with the named procedure or function.
Prints the value of an expression or runs a procedure and prints the return code.

Signal Handling

catch
ignor

Starts trapping a signal before that signal is sent to the application program.
Stops trapping a signal before that signal is sent to the application program.

Machine-Level Debugging

Displays the contents of memory.

Chapter 3. Debugging Programs

99

Changes program counter addresses.
Displays address maps and loader information for the application program.
Runs the application program up to the next machine instruction.

Displays the values of all general-purpose registers, system-control registers,
floating-point registers, and the current instruction register.

stepi Runs one source instruction.
stopi Sets a stop at a specified location.
rac Turns on tracing.

Debugging Environment Control

Displays and assigns aliases for dbx subcommands.
Displays help information for dbx subcommands or topics.
Changes the dbx prompt to the specified string.

Opens an Xwindow for dbx command output.

Passes a command to the shell for execution.

Reads dbx commands from a file.

Removes an alias.

Related Information
The command.

100 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Chapter 4. Error-Logging Overview

The error-logging process begins when an operating system module detects an error. The error-detecting
segment of code then sends error information to either the and errlast kernel service or to the
subroutine. This error information is then written to the /dev/error special file. This process then
adds a time stamp to the collected data. The daemon constantly checks the /dev/error file for
new entries, and when new data is written, the daemon conducts a series of operations.

Before an entry is written to the error log, the errdemon daemon compares the label sent by the kernel or
application code to the contents of the Error Record Template Repository. If the label matches an item in
the repository, the daemon collects additional data from other parts of the system.

To create an entry in the error log, the errdemon daemon retrieves the appropriate template from the
repository, the resource name of the unit that detected the error, and detail data. Also, if the error signifies
a hardware-related problem and hardware vital product data (VPD) exists, the daemon retrieves the VPD
from the Object Data Manager. When you access the error log, either through SMIT or with the
command, the error log is formatted according to the error template in the error template repository and
presented in either a summary or detailed report. Entries can also be retrieved using the services provided
in liberrlog, ferrlog_open| [errlog_close} [errlog_find_first], errlog_find_next, errlog_find_sequence,
lerrlog_set_direction| and [errlog_write| errlog_write provides a limited update capability.

Most entries in the error log are attributable to hardware and software problems, but informational
messages can also be logged.

The command uses the error log to diagnose hardware problems. To correctly diagnose new system
problems, the system deletes hardware-related entries older than 90 days from the error log. The system
deletes software-related entries 30 days after they are logged.

You should be familiar with the following terms:

error ID A 32-bit CRC hexadecimal code used to identify a particular failure. Each
error record template has a unique error ID.

error label The mnemonic name for an error ID.

error log The file that stores instances of errors and failures encountered by the
system.

error log entry A record in the system error log that describes a hardware failure, a

software failure, or an operator message. An error log entry contains
captured failure data.

error record template A description of information displayed when the error log is formatted for a
report, including information on the type and class of the error, probable
causes, and recommended actions. Collectively, the templates comprise the
Error Record Template Repository.

Error-Logging Facility

The error-logging facility records hardware and software failures in the error log for information purposes
or for fault detection and corrective action.

Refer to the following to use the error-logging facility:
+ [Chapter 4, “Error-Logging Overview’|

+ [‘Managing Error Logging” on page 102

* [‘Error Logging Tasks” on page 108|

+ [‘Error Logging and Alerts” on page 116}

© Copyright IBM Corp. 1997, 2007 101

+ [‘Error Logging Controls” on page 116|

In AIX Version 4 some of the error log commands are delivered in an optionally installable package called
bos.sysmgt.serv_aid. The base system (bos.rte) includes the following services for logging errors to the
error log file:

* errlog subroutines

» errsave and errlast kernel service

* error device driver (/dev/error)

* error daemon

* errstop command

The commands required for licensed program installation (errinstall and errupdate) are also included in

bos.rte. For information on transferring your system’s error log file to a system that has the Software
Service Aids package installed, see [Transferring Your Error Log to Another System.”|

Managing Error Logging

Error logging is automatically started by the re.boot script during system initialization and is automatically
stopped by the shutdown script during system shutdown. The error log analysis performed by the diag
command analyzes hardware error entries. The default length of time that hardware error entries remain in
the error log is 90 days. If you remove hardware error entries less than 90 days old, you can limit the
effectiveness of this error log analysis.

Transferring Your Error Log to Another System

The errclear, errdead, errlogger, errmsg, and errpt commands are part of the optionally installable
Software Service Aids package (bos.sysmgt.serv_aid). You need the Software Service Aids package to
generate reports from the error log or to delete entries from the error log. You can install the Software
Service Aids package on your system, or you can transfer your system’s error log file to a system that has
the Software Service Aids package installed.

Determine the path to your system’s error log file by running the following command:

/usr/1ib/errdemon -1

You can transfer the file to another system in a number of ways. You can:
» Copy the file to a remotely mounted file system using the cp command
» Copy the file across the network connection using the rep, ftp, or tftp commands

» Copy the file to removable media using the tar or backup command and restore the file onto another
system.

You can format reports for an error log copied to your system from another system by using the -i flag of
the errpt command. The -i flag allows you to specify the path name of an error log file other than the
default. Likewise, you can delete entries from an error log file copied to your system from another system
by using the -i flag of the errclear command.

Configuring Error Logging

You can customize the name and location of the error log file and the size of the internal error buffer to
suit your needs. You can also control the logging of duplicate errors.

Listing the Current Settings

To list the current settings, run /usr/lib/errdemon -l. The values for the error log file name, error log file
size, and buffer size that are currently stored in the error-log configuration database display on your
screen.

102 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Customizing the Log File Location

To change the file name used for error logging, run the /usr/lib/errdemon -i FileName command. The
specified file name is saved in the error log configuration database, and the error daemon is immediately
restarted.

Customizing the Log File Size
To change the maximum size of the error log file, type:
/usr/lib/errdemon -s LogSize

The specified size limit for the log file is saved in the error-log configuration database, and the error
daemon is immediately restarted. If the size limit for the log file is smaller than the size of the log file
currently in use, the current log file is renamed by appending .old to the file name, and a new log file is
created with the specified size limit. The amount of space specified is reserved for the error log file and is
not available for use by other files. Therefore, be careful not to make the log excessively large. But, if you
make the log too small, important information may be overwritten prematurely. When the log file size limit
is reached, the file wraps, that is, the oldest entries are overwritten by new entries.

Customizing the Buffer Size
To change the size of the error log device driver’s internal buffer, type:

/usr/1ib/errdemon -B BufferSize

The specified buffer size is saved in the error-log configuration database, and if it is larger than the buffer
size currently in use, the in-memory buffer is immediately increased. If it is smaller than the buffer size
currently in use, the new size is put into effect the next time that the error daemon is started after the
system is rebooted. The buffer cannot be made smaller than the hard-coded default of 8 KB. The size you
specify is rounded up to the next integral multiple of the memory page size (4 KBs). The memory used for
the error log device driver's in-memory buffer is not available for use by other processes (the buffer is
pinned).

Be careful not to impact your system’s performance by making the buffer excessively large. But, if you
make the buffer too small, the buffer may become full if error entries are arriving faster than they are being
read from the buffer and put into the log file. When the buffer is full, new entries are discarded until space
becomes available in the buffer. When this situation occurs, an error log entry is created to inform you of
the problem, and you can correct the problem by enlarging the buffer.

Customizing Duplicate Error Handling

By default, starting with AIX 5.1, the error daemon eliminates duplicate errors by looking at each error that
is logged. An error is a duplicate if it is identical to the previous error, and if it occurs within the
approximate time interval specified with /usr/lib/errdemon -t time-interval. The default time value is
10000, or 10 seconds. The value is in milliseconds.

The -m maxdups flag controls how many duplicates can accumulate before a duplicate entry is logged.
The default value is 1000. If an error, followed by 1000 occurrences of the same error, is logged, a
duplicate error is logged at that point rather than waiting for the time interval to expire or for a unique error
to occur.

For example, if a device handler starts logging many identical errors rapidly, most will not appear in the
log. Rather, the first occurrence will be logged. Subsequent occurrences will not be logged immediately,
but are only counted. When the time interval expires, the maxdups value is reached, or when another
error is logged, an alternate form of the error is logged, giving the times of the first and last duplicate and
the number of duplicates.

Note: The time interval refers to the time since the last error, not the time since the first occurrence of this
error, that is, it is reset each time an error is logged. Also, to be a duplicate, an error must exactly

Chapter 4. Error-Logging Overview 103

match the previous error. If, for example, anything about the detail data is different from the
previous error, then that error is considered unique and logged as a separate error.

Removing Error Log Entries

Entries are removed from the error log when the root user runs the errclear command, when the errclear
command is automatically invoked by a daily cron job, or when the error log file wraps as a result of
reaching its maximum size. When the error log file reaches the maximum size specified in the error-log
configuration database, the oldest entries are overwritten by the newest entries.

Automatic Removal
A crontab file provided with the system deletes hardware errors older than 90 days and other errors older
than 30 days. To display the crontab entries for your system, type:

crontab -1 Command

To change these entries, type:
crontab -e Command

errclear Command

The errclear command can be used to selectively remove entries from the error log. The selection criteria
you may specify include the error ID number, sequence number, error label, resource name, resource
class, error class, and error type. You must also specify the age of entries to be removed. The entries that
match the selection criteria you specified, and are older than the number of days you specified, will be
removed.

Enabling and Disabling Logging for an Event

You can disable logging or reporting of a particular event by modifying the Log or the Report field of the
error template for the event. You can use the errupdate command to change the current settings for an
event.

Showing Events for Which Logging is Disabled
To list all events for which logging is currently disabled, type:

errpt -t -F Log=0
Events for which logging is disabled are not saved in the error log file.

Showing Events for Which Reporting is Disabled
To list all events for which reporting is currently disabled, type:

errpt -t -F Report=0

Events for which reporting is disabled are saved in the error log file when they occur, but they are not
displayed by the errpt command.

Changing the Current Setting for an Event
To change the current settings for an event, you can use the errupdate command The necessary input to
the errupdate command can be in a file or from standard input.

The following example uses standard input. To disable the reporting of the ERRLOG_OFF event (error ID
192ACO071), type the following to run the errupdate command:

errupdate <Enter>

=192AC071: <Enter>

Report=False <Enter>

<Ctrl-D>

<Ctrl-D>

104 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Logging Maintenance Activities

The errlogger command allows the system administrator to record messages in the error log. Whenever
you perform a maintenance activity, such as clearing entries from the error log, replacing hardware, or
applying a software fix, it is a good idea to record this activity in the system error log.

The ras_logger command provides a way to log any error from the command line. It can be used to test
newly created error templates and provides a way to log an error from a shell script.

Redirecting syslog Messages to Error Log

Some applications use syslog for logging errors and other events. To list error log messages and syslog
messages in a single report, redirect the syslog messages to the error log. You can do this by specifying
errlog as the destination in the syslog configuration file (/etc/syslog.conf). See the syslogd daemon for
more information.

Directing Error Log Messages to syslog
You can log error log events in the syslog file by using the logger command with the concurrent error
notification capabilities of error log. For example, to log system messages (syslog), add an errnotify object
with the following contents:
errnotify:

en_name = "syslogl"

en_persistenceflg = 1

en_method = "logger Msg from Error Log: “errpt -1 §1 | grep -v 'ERROR_ID TIMESTAMP'™"

For example, create a file called /tmp/syslog.add with these contents. Then run the odmadd
/tmp/syslog.add command (you must be logged in as root user).

For more information about concurrent error notification, see [‘Error Notification.”]

Error Notification

The Error Notification object class specifies the conditions and actions to be taken when errors are
recorded in the system error log. The user specifies these conditions and actions in an Error Notification
object.

Each time an error is logged, the error notification daemon determines if the error log entry matches the
selection criteria of any of the Error Notification objects. If matches exist, the daemon runs the
programmed action, also called a notify method, for each matched object.

The Error Notification object class is located in the /etc/objrepos/errnotify file. Error Notification objects
are added to the object class by using Object Data Manager (ODM) commands. Only processes running
with the root user authority can add objects to the Error Notification object class. Error Notification objects
contain the following descriptors:

en_alertflg Identifies whether the error can be alerted. This descriptor is provided for use by
alert agents associated with network management applications using the SNA Alert
Architecture. The valid alert descriptor values are:

TRUE can be alerted
FALSE cannot be alerted

Chapter 4. Error-Logging Overview 105

en_class

en_crcid

en_dup

en_err64

en_label

en_method

en_name

Identifies the class of the error log entries to match. The valid en_class descriptor
values are:

H Hardware Error class

S Software Error class

(o) Messages from the command
U Undetermined

Specifies the error identifier associated with a particular error. An error identifier can
be any numeric value that is valid as a [Predefined Attribute| (PdAt) object class
attribute value. The errpt command displays error identifiers as hexadecimal. For
example, to select an entry that the errpt command displays with IDENTIFIER:
67581038, specify en_crcid = 0x67581038.

If set, identifies whether duplicate errors as defined by the kernel should be
matched. The valid en_dup descriptor values are:

TRUE Error is a duplicate.

FALSE Error is not a duplicate.
If set, identifies whether errors from a 64-bit or 32-bit environment should be
matched. The valid en_err64 descriptors value are:

TRUE Error is from a 64-bit environment.

FALSE Error is from a 32-bit environment.

Specifies the label associated with a particular error identifier as defined in the
output of the [errpt] -t command.

Specifies a user-programmable action, such as a shell script or command string, to
be run when an error matching the selection criteria of this Error Notification object
is logged. The error notification daemon uses the@ command to execute the
notify method.

The following key words are automatically expanded by the error notification
daemon as arguments to the notify method.

$1 Sequence number from the error log entry
$2 Error ID from the error log entry

$3 Class from the error log entry

$4 Type from the error log entry

$5 Alert flags value from the error log entry
$6 Resource name from the error log entry
$7 Resource type from the error log entry

$8 Resource class from the error log entry
$9 Error label from the error log entry

Uniquely identifies the object. This unique name is used when removing the object.

106 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

en_persistenceflg

en_pid
en_rclass

en_resource
en_rtype
en_symptom

en_type

Examples

Designates whether the Error Notification object should be automatically removed
when the system is restarted. For example, to avoid erroneous signaling, Error
Notification objects containing methods that send a signal to another process
should not persist across system restarts. The receiving process and its process ID
do not persist across system restarts.

The creator of the Error Notification object is responsible for removing the Error
Notification object at the appropriate time. In the event that the process terminates
and fails to remove the Error Notification object, the en_persistenceflg descriptor
ensures that obsolete Error Notification objects are removed when the system is
restarted.

The valid en_persistenceflg descriptor values are:
0 non-persistent (removed at boot time)

1 persistent (persists through boot)

Specifies a process ID (PID) for use in identifying the Error Notification object.
Objects that have a PID specified should have the en_persistenceflg descriptor
set to 0.

Identifies the class of the failing resource. For the hardware error class, the
resource class is the device class. The resource error class is not applicable for the
software error class.

Identifies the name of the failing resource. For the hardware error class, a resource
name is the device name.

Identifies the type of the failing resource. For the hardware error class, a resource
type is the device type by which a resource is known in the devices object class.
Enables notification of an error accompanied by a symptom string when set to
TRUE.

Identifies the severity of error log entries to match. The valid en_type descriptor
values are:

INFO Informational

PEND Impending loss of availability

PERM Permanent

PERF Unacceptable performance degradation
TEMP Temporary

UNKN Unknown

1. To create a notify method that mails a formatted error entry to root each time a disk error of type
PERM is logged, create a file called /tmp/en_sample.add containing the following Error Notification

object:
errnotify:

en_name = "sample"
en_persistenceflg = 0
en_class = "H"

IIPERMII

en_type =
en_rclass
en_method

"errpt -a -1 $1 | mail -s 'Disk Error' root"

To add the object to the Error Notification object class, type:

odmadd /tmp/en_sample.add

The command adds the Error Notification object contained in tmp/en_sample.add to the

errnotify file.

Chapter 4. Error-Logging Overview 107

2. To verify that the Error Notification object was added to the object class, type:

odmget -gq"en_name='sample'" errnotify

The command locates the Error Notification object within the errnotify file that has an
en_name value of "sample” and displays the object. The following output is returned:

errnotify:
en_pid = 0
en_name = "sample"
en_persistenceflg = 0
en_label = ""
en_crcid = 0
en_class = "H"
en_type = "PERM"
en_alertflg = ""
en_resource = ""

en_rtype = ""
en_rclass = "disk"
en_method = "errpt -a -1 $1 | mail -s 'Disk Error' root"

To delete the sample Error Notification object from the Error Notification object class, type:
odmdelete -q"en_name='sample'" -0 errnotify

The jodmdelete] command locates the Error Notification object within the errnotify file that has an
en_name value of "sample” and removes it from the Error Notification object class.

To send an e-mail to root when a duplicate error occurs, create a file called /tmp/en_sample.add
containing the following error notification stanza:

errnotify:
en_name = "errdupxmp"
en_persistenceflg = 1
en_dup = "TRUE"
en_method = "/usr/1ib/dupmethod $1"

Create the /usr/lib/dupmethod script as follows:

#1/bin/sh
e-mail root when a duplicate error is logged.
We currently don't clear the duplicate from the log.

#
#
Input:

$1 contains the error log sequence number.
#

#

/

Use errpt to generate the body of this e-mail.
usr/bin/errpt -al$1 | /usr/bin/mail -s "Duplicate Error Logged" root >/dev/null

Now delete that error (currently not done)
#/usr/bin/errclear -1§1 0
exit $?

Error Logging Tasks

Error-logging tasks and information to assist you in using the error logging facility include:

[‘Reading an Error Report” on page 109|

[‘Examples of Detailed Error Reports” on page 111
[‘Example of a Summary Error Report” on page 114
[‘Generating an Error Report” on page 114

[‘Stopping an Error Log” on page 114

[‘Cleaning an Error Log” on page 115|

[‘Copying an Error Log to Diskette or Tape” on page 115
[‘Using the liberrlog Services” on page 115|

108 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Reading an Error Report
To obtain a report of all errors logged in the 24 hours prior to the failure, type:

errpt -a -s mmddhhmmyy | pg

where mmddhhmmyy represents the month, day, hour, minute, and year 24 hours prior to the failure.

An error-log report contains the following information:

Note: Not all errors generate information for each of the following categories.

LABEL

ID

Date/Time
Sequence Number
Machine ID

Node ID

Class

Type

Resource Name

Resource Class
Resource Type

Location Code

Predefined name for the event.

Numerical identifier for the event.

Date and time of the event.

Unique number for the event.

Identification number of your system processor unit.
Mnemonic name of your system.

General source of the error. The possible error classes are:

H Hardware. (When you receive a hardware error, refer to your system
operator guide for information about performing diagnostics on the
problem device or other piece of equipment. The diagnostics program
tests the device and analyzes the error log entries related to it to
determine the state of the device.)

S Software.
(0] Informational messages.
U Undetermined (for example, a network).

Severity of the error that has occurred. The following types of errors are
possible:

PEND The loss of availability of a device or component is imminent.

PERF The performance of the device or component has degraded to below
an acceptable level.

PERM Condition that could not be recovered from. Error types with this value
are usually the most severe errors and are more likely to mean that
you have a defective hardware device or software module. Error types
other than PERM usually do not indicate a defect, but they are recorded
so that they can be analyzed by the diagnostics programs.

TEMP Condition that was recovered from after a number of unsuccessful
attempts. This error type is also used to record informational entries,
such as data transfer statistics for DASD devices.

UNKN It is not possible to determine the severity of the error.

INFO The error log entry is informational and was not the result of an error.
Name of the resource that has detected the error. For software errors. this is
the name of a software component or an executable program. For hardware
errors, this is the name of a device or system component. It does not indicate
that the component is faulty or needs replacement. Instead, it is used to
determine the appropriate diagnostic modules to be used to analyze the error.
General class of the resource that detected the failure (for example, a device
class of disk).

Type of the resource that detected the failure (for example, a device type of
355mb).

Path to the device. There may be up to four fields, which refer to drawer, slot,
connector, and port, respectively.

Chapter 4. Error-Logging Overview 109

VPD

Description
Probable Cause
User Causes

Recommended Actions
Install Causes

Recommended Actions
Failure Causes

Recommended Actions

Detailed Data

Vital product data. The contents of this field, if any, vary. Error log entries for
devices typically return information concerning the device manufacturer, serial
number, Engineering Change levels, and Read Only Storage levels.

Summary of the error.

List of some of the possible sources of the error.

List of possible reasons for errors due to user mistakes. An improperly inserted
disk and external devices (such as modems and printers) that are not turned on
are examples of user-caused errors.

Description of actions for correcting a user-caused error.

List of possible reasons for errors due to incorrect installation or configuration
procedures. Examples of this type of error include hardware and software
mismatches, incorrect installation of cables or cable connections becoming
loose, and improperly configured systems.

Description of actions for correcting an installation-caused error.

List of possible defects in hardware or software.

Note: A failure causes section in a software error log usually indicates a
software defect. Logs that list user or installation causes or both, but not failure
causes, usually indicate that the problem is not a software defect.

If you suspect a software defect, or are unable to correct user or installation
causes, report the problem to your software service department.

Description of actions for correcting the failure. For hardware errors, PERFORM
PROBLEM DETERMINATION PROCEDURES is one of the recommended actions listed.
For hardware errors, this will lead to running the diagnostic programs.

Failure data that is unique for each error log entry, such as device sense data.

To display a shortened version of the detailed report produced by the -a flag, use the -A flag. The -A flag
is not valid with the -a, -g, or -t flags. The items reported when you use -A to produce the shortened

version of the report are:
e Label

* Date and time

* Type

* Resource name

» Description

* Detail data

The example output of this flag is in the following format:

LABEL: STOK_RCVRY_EXIT
Date/Time: Tue Dec 14 15:25:33
Type: TEMP Resource Name: tok0

Description PROBLEM RESOLVED

Detail Data FILE NAME line: 273 file: stok wdt.c

SENSE DATA

0000 0000 0000 0000 0000 0000 DEVICE ADDRESS 0004 AC62 25F1

Reporting can be turned off for some errors. To show which errors have reporting turned off, type:

errpt -t -F report=0 | pg

If reporting is turned off for any errors, enable reporting of all errors using the command.

Logging may also have been turned off for some errors. To show which errors have logging turned off,

type:
errpt -t -F log=0 | pg

110 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

If logging is turned off for any errors, enable logging for all errors using the command. Logging

all errors is useful if it becomes necessary to re-create a system error.

Examples of Detailed Error Reports

The following are sample error-report entries that are generated by issuing the -a command.

An error-class value of H and an error-type value of PERM indicate that the system encountered a
hardware problem (for example, with a SCSI adapter device driver) and could not recover from it.

Diagnostic information might be associated with this type of error. If so, it displays at the end of the error
listing, as illustrated in the following example of a problem encountered with a device driver:

LABEL: SCSI_ERR1

ID: 0502F666

Date/Time: Jun 19 22:29:51

Sequence Number: 95

Machine ID: 123456789012

Node ID: hostl

Class: H

Type: PERM

Resource Name: scsi0

Resource Class: adapter

Resource Type: hscsi

Location: 00-08

VPD:
Device Driver Level......... 00
Diagnostic Level............ 00
Displayable Message......... SCSI
EC Level.veeenenninennnnnn, (25928
FRU Number...........cccuen.. 30F8834
Manufacturer................ IBMI7F
Part Number................. 59F4566
Serial Number............... 00002849
ROS Level and ID............ 24

Read/Write Register Ptr..... 0120

Description
ADAPTER ERROR

Probable Causes
ADAPTER HARDWARE CABLE
CABLE TERMINATOR DEVICE

Failure Causes
ADAPTER
CABLE LOOSE OR DEFECTIVE

Recommended Actions
PERFORM PROBLEM DETERMINATION PROCEDURES
CHECK CABLE AND ITS CONNECTIONS

Detail Data
SENSE DATA
0000 0000 0000 0000 0OOO 0OOO 00O 00O OOOO 0000 0000 0000

Diagnostic Log sequence number: 153

Resource Tested: scsi0

Resource Description: SCSI I/0 Controller
Location: 00-08

SRN: 889-191

Description:
Probable FRUs:

Error log analysis indicates hardware failure.

Chapter 4. Error-Logging Overview

111

SCSI Bus FRU: n/a 00-08
Fan Assembly
SCSI2 FRU: 30F8834 00-08

SCSI I/0 Controller

An error-class value of H and an error-type value of PEND indicate that a piece of hardware (the Token
Ring) may become unavailable soon due to numerous errors detected by the system.

LABEL: TOK_ESERR

ID: AF1621E8

Date/Time: Jun 20 11:28:11
Sequence Number: 17262
Machine Id: 123456789012
Node Id: hostl

Class: H

Type: PEND
Resource Name: TokenRing
Resource Class: tokO
Resource Type: Adapter
Location: TokenRing
Description

EXCESSIVE TOKEN-RING ERRORS

Probable Causes
TOKEN-RING FAULT DOMAIN

Failure Causes
TOKEN-RING FAULT DOMAIN

Recommended Actions
REVIEW LINK CONFIGURATION DETAIL DATA
CONTACT TOKEN-RING ADMINISTRATOR RESPONSIBLE FOR THIS LAN

Detail Data

SENSE DATA

0ACA 0032 A440
0000 2080 0000
0000 0000 78CC
1000 5A4F 5685
0000 0000 0000
0000 0000 0000
0000 0000 0000

0001
0000
0000
3030
0000
0000
0000

0000
0010
0000
3030
0000
0000
0000

0000
0000
0005
0000
0000
0000
0000

0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000
C88F 0304 FAEO 0000 1000 5A4F 5685
0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000

An error-class value of S and an error-type value of PERM indicate that the system encountered a
problem with software and could not recover from it.

LABEL: DSI_PROC

ID: 20FAED7F

Date/Time: Jun 28 23:40:14
Sequence Number: 20136

Machine Id: 123456789012
Node Id: 123456789012
Class: S

Type: PERM

Resource Name: SYSVMM

Description
Data Storage Interrupt, Processor

Probable Causes
SOFTWARE PROGRAM

Failure Causes
SOFTWARE PROGRAM

112 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Recommended Actions
IF PROBLEM PERSISTS THEN DO THE FOLLOWING
CONTACT APPROPRIATE SERVICE REPRESENTATIVE

Detail Data

Data Storage Interrupt Status Register
4000 0000

Data Storage Interrupt Address Register
0000 9112

Segment Register, SEGREG

D000 1018

EXVAL

0000 0005

An error-class value of S and an error-type value of TEMP indicate that the system encountered a problem
with software. After several attempts, the system was able to recover from the problem.

LABEL: SCSI_ERR6

1D: 52DB7218
Date/Time: Jun 28 23:21:11
Sequence Number: 20114

Machine Id: 123456789012
Node Id: hostl

Class: S

Type: INFO

Resource Name: scsi0

Description
SOFTWARE PROGRAM ERROR

Probable Causes
SOFTWARE PROGRAM

Failure Causes
SOFTWARE PROGRAM

Recommended Actions
IF PROBLEM PERSISTS THEN DO THE FOLLOWING
CONTACT APPROPRIATE SERVICE REPRESENTATIVE

Detail Data

SENSE DATA

0000 0000 0OOO 00OO OOOO 0O11 OOOO 00O8 OOOE 0900 00OO 0000 FFFF
FFFE 4000 1C1F O1A9 09C4 0000 OOOF 0000 0000 0000 0000 FFFF FFFF
0325 0018 0040 1500 0000 0000 0000 00OO 0000 0000 0000 0000 0800
0000 0100 0000 0000 0000 0OOO 0OOO 0OOO 0000 0000 0000 0000 0000
0000 0000

An error class value of O indicates that an informational message has been logged.

LABEL: OPMSG

1D: AABAB241

Date/Time: Jul 16 03:02:02
Sequence Number: 26042

Machine Id: 123456789012
Node Id: hostl

Class: 0

Type: INFO

Resource Name: OPERATOR

Description
OPERATOR NOTIFICATION

User Causes

Chapter 4. Error-Logging Overview

113

errlogger COMMAND

Recommended Actions
REVIEW DETAILED DATA

Detail Data
MESSAGE FROM errlogger COMMAND
hdiskl : Error log analysis indicates a hardware failure.

Example of a Summary Error Report

The following is an example of a summary error report generated using the errpt command. One line of
information is returned for each error entry.

ERROR

IDENTIFIER TIMESTAMP T CL RESOURCE_NAME ERROR DESCRIPTION
192AC071 0101000070 I ©@ errdemon Error logging turned off
OEO17ED1 0405131090 P H mem2 Memory failure

9DBCFDEE 0101000070 I 0 errdemon Error logging turned on
038F2580 0405131090 U H scdisk0 UNDETERMINED ERROR
AA8AB241 0405130990 I O OPERATOR OPERATOR NOTIFICATION

Generating an Error Report
To create an error report of software or hardware problems do the following:

1.

Determine if error logging is on or off by determining if the error log contains entries:

errpt -a

Thecommand generates an error report from entries in the system error log.
If the error log does not contain entries, error logging has been turned off. Activate the facility by
typing:

/usr/1ib/errdemon

Note: You must have root user access to run this command.

Thedaemon starts error logging and writes error log entries in the system error log. If the
daemon is not running, errors are not logged.

Generate an error log report using the errpt command. For example, to see all the errors for the
hdiskl disk drive, type:

errpt -N hdiskl

Generate an error log report using SMIT. For example, use the smit errpt command:

smit errpt

a. Select 1 to send the error report to standard output, or select 2 to send the report to the printer.
b. Select yes to display or print error log entries as they occur. Otherwise, select no.

c. Specify the appropriate device name in the Select resource names option (such as hdiskl).

d. Select Do.

Stopping an Error Log

This procedure describes how to stop the error-logging facility.

To turn off error logging, use the command. You must have root user authority to use this
command.

Ordinarily, you would not want to turn off the error-logging facility. Instead, you should clean the error log
of old or unnecessary entries. For instructions about cleaning the error log, refer to [‘Cleaning an Error

[Log” on page 115

114 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Turn off the error-logging facility when you are installing or experimenting with new software or hardware.
This way the error logging daemon does not use CPU time to log problems you know you are causing.

Cleaning an Error Log

Error-log cleaning is normally done for you as part of the dain command. If it is not done
automatically, clean the error log yourself every couple of days after you have examined the contents to
make sure there are no significant errors.

You can also clean up specific errors. For example, if you get a new disk and you do not want the old
disk’s errors in the log, you can clean just the old disk’s errors.

Delete all entries in your error log by doing either of the following:
* Use the -d command. For example, to delete all software errors, type:

errclear -d S 0

The errclear command deletes entries from the error log that are older than a specified number of
days. The 0 in the previous example indicates that you want to delete entries for all days.

¢ Use the smit errclear command:
smit errclear

Copying an Error Log to Diskette or Tape
Copy an error log by doing one of the following:

» To copy the error log to diskette, use the[sland commands. Insert a formatted diskette into the
diskette drive and type:

1s /var/adm/ras/errlog | backup -ivp
* To copy the error log to tape, insert a tape in the drive and type:
1s /var/adm/ras/errlog | backup -ivpf/dev/rmt0

» To gather system configuration information in a tar file and copy it to diskette, use the snap command.
Insert a formatted diskette into the diskette drive and type:

snap -a -o /dev/rfdo

Note: To use thecommand, you need root user authority.

The snap command in this example uses the -a flag to gather all information about your system
configuration. The -o flag copies the compressed tar file to the device you name. The /dev/rfd0 names
your disk drive.

To gather all configuration information in a tar file and copy it to tape, type:

snap -a -0 /dev/rmt0

The /dev/rmt0 names your tape drive.

Using the liberrlog Services

The liberrlog services allow you to read entries from an error log, and provide a limited update capability.

They are especially useful from an error notification method written in the C programming language, rather
than a shell script. Accessing the error log using the liberrlog functions is much more efficient than using

the errpt command.

The services are errlog_open| [errlog_close} lerrlog_find_first, errlog_find_next,
errlog_find_sequence, |err|og_set_direction|, and errlog_writel

Chapter 4. Error-Logging Overview 115

Error Logging and Alerts
If the Alert field of an error record template is set to True, programs that process alerts use the following
fields in the error log to build an alert:
* Class

* Type

» Description

* Probable Cause

+ User Cause

* Install Cause

* Failure Cause

* Recommended Action

* Detail Data

These template fields must be set up according to the SNA Generic Alert Architecture described in SNA
Formats, order number GA27-3136. Alerts that are not set up according to the architecture cannot be
processed properly by a receiving program, such as NetView®.

Messages added to the error-logging message sets must not conflict with the SNA Generic Alert
Architecture. When the command is used to add messages, the command selects message
numbers that do not conflict with the architecture.

If the Alert field of an error record template is set to False, you can use any of the messages in the
error-logging message catalog.

Error Logging Controls

To control the error-logging facility, you can use error-logging commands, subroutines and kernel services,
as well as files.

Error-Logging Commands

Deletes entries from the error log. This command can erase the entire error log. Removes
entries with specified error ID numbers, classes, or types.

errdea Extracts errors contained in the /dev/error buffer captured in the system dump. The
system dump will contain error records if the errdemon daemon was not active prior to the
dump.

Reads error records from the /dev/error file and writes error log entries to the system error
log. The errdemon also performs error notification as specified in the error notification
objects in the Object Data Manager (ODM). This daemon is started automatically during
system initialization.

Can be used to add or replace messages in the error message catalog. Provided for use
by software installation procedures. The system creates a backup file named File.undo.
The undo file allows you to cancel the changes you made by issuing the errinstall
command.

Writes an operator message entry to the error log.

Implements error logging in in-house applications. The errmsg command lists, adds, or
deletes messages stored in the error message catalog. Using this command, text can be
added to the Error Description, Probable Cause, User Cause, Install Cause, Failure
Cause, Recommended Action, and Detailed Data message sets.

Generates an error report from entries in the system error log. The report can be formatted
as a single line of data for each entry, or the report can be a detailed listing of data
associated with each entry in the error log. Entries of varying classes and types can be
omitted from or included in the report.

 EEa

116 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Stops the errdemon daemon, which is initiated during system initialization. Running the
errstop command also disables some diagnostic and recovery functions of the system.

Adds or deletes templates in the Error Record Template Repository. Modifies the Alert, Log,
and Report attributes of an error template. Provided for use by software installation
procedures.

Error Logging Subroutines and Kernel Services

Writes an error to the error log device driver
Allows the kernel and kernel extensions to write to the error log
Opens an error log
Closes an error log
Finds the first occurrence of an error log entry
find| Finds the next occurrence of an error log entry
Finds the error log entry with the specified sequence number
Sets the direction for the error log find functions
errlog_write] Updates an error log entry

Resumes error logging after an errlast command was issued.

S

Error Logging Files

Provides standard device driver interfaces required by the error log
component

dev/errorctl Provides nonstandard device driver interfaces for controlling the error
logging system

lusr/include/sys/err_rec.h Contains structures defined as arguments to the errsave kernel service
and the errlog subroutine

lusr/include/sys/errlog.h Defines the interface to the liberrlog subroutines

Ivar/adm/ras/errlog Stores instances of errors and failures encountered by the system

Ivar/adm/ras/errtmplt Contains the Error Record Template Repository

Related Information

For further information on this topic, see the following:
« [Error Logging Special Files|in AlIX 5L Version 5.3 Files Reference.

* The kernel service in AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume
1.

Subroutine References

The subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions
Volume 1.

Commands References
The command in AIX 5L Version 5.3 Commands Reference, Volume 1.

The [errclear] command, [errdead] command, daemon, mmand,
nd, ferrstop pdate

command, lerrmsg| command, |errpt comma command, lerrupdate] command in AIX 5L Version
5.3 Commands Reference, Volume 2.

The command, [odmdelete| command, jodmget| command in AlX 5L Version 5.3 Commands
Reference, Volume 4.

Chapter 4. Error-Logging Overview 117

The command in AIX 5L Version 5.3 Commands Reference, Volume 5.

118 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Chapter 5. File Systems and Logical Volumes

A file is a one-dimensional array of bytes that can contain ASCII or binary information. AlX files can
contain data, shell scripts, and programs. File names are also used to represent abstract objects such as
sockets or device drivers.

Files are represented internally by index nodes (i-nodes). Within the journaled file system (JFS), an i-node
is a structure that contains all access, timestamp, ownership, and data location information for each file.
An i-node is 128-bytes in JFS and 512-bytes in the enhanced journaled file system (JFS2). Pointers within
the i-node structure designate the real disk address of the data blocks associated with the file. An i-node is
identified by an offset number (i-number) and has no file name information. The connection of i-numbers
and file names is called a link.

File names exist only in directories. Directories are a unique type of file that give hierarchical structure to
the file system. Directories contain directory entries. Each directory entry contains a file name and an
i-number.

JFS and JFS2 are supported by this operating system. The file system links the file and directory data to
the structure used by storage and retrieval mechanisms.

This chapter contains the following topics about file systems:
:

+ ['Working With JFS Directories” on page 121

+ ['Working with JFS2 Directories” on page 123|

[‘Working with JFS i-nodes” on page 125|

[‘Working with JFS2 i-nodes” on page 126|

[‘Allocating JFS File Space” on page 128

[‘Allocating JFS2 File Space” on page 131|

['JFS File System Layout” on page 133|

[‘JFS2 File System Layout” on page 134

[‘Writing Programs That Access Large Files” on page 135|
+ [‘Linking for Programmers” on page 142|

[‘Using File Descriptors” on page 144

[‘Creating and Removing Files” on page 147]

[‘Working with File I/O” on page 149

[‘File Status” on page 155|

[‘File Accessibility” on page 156]

[‘JFS File System Layout” on page 133|

[‘Creating New File System Types” on page 157

This chapter also contains information about programming considerations concerning Logical Volume
Manager (LVM). See [‘Logical Volume Programming” on page 160,

File Types

A file is a one-dimensional array of bytes with at least one hard link (file name). Files can contain ASCII or
binary information. Files contain data, shell scripts, or programs. File names are also used to represent
abstract objects, such as sockets, pipes, and device drivers. For a list of subroutines used to control files,
see ['Working with Files” on page 121

© Copyright IBM Corp. 1997, 2007 119

The kernel does not distinguish record boundaries in regular files, so programs can establish their own
boundary markers. For example, many programs use line-feed characters to mark the end of lines.
['Working with Files” on page 121| contains a list of the subroutines used to control files.

Files are represented in the fjournaled file system| (JFS and JFS2) by disk index nodes (i-node).
Information about the file (such as ownership, access modes, access time, data addresses, and
modification time) is stored in the i-node. For more information about the internal structure of files, see
['Working with JFS i-nodes” on page 125| or ['Working with JFS2 i-nodes” on page 126

The journaled file system supports the following file types:

File Types Supported By Journaled File System

Type of File Macro Name Used in mode.h Description

Regular S_ISREG A sequence of bytes with one or more
names. Regular files can contain
ASCII or binary data. These files can
be randomly accessed (read from or
written to) from any byte in the file.

Directory S_ISDIR Contains directory entries (file name
and i-number pairs). Directory formats
are determined by the file system.
Processes read directories as they do
ordinary files, but the kernel reserves
the right to write to a directory.
Special sets of subroutines control
directory entries.

Block Special S_ISBLK Associates a structured device driver
with a file name.

Character Special S_ISCHR Associates an unstructured device
driver with a file name.

Pipes S_ISFIFO Designates an interprocess
communication (IPC) channel. The
mkfifo subroutine creates named
pipes. The pipe subroutine creates
unnamed pipes.

Symbolic Links S_ISLNK A file that contains either an absolute
or relative path name to another file
name.

Sockets S_ISSOCK An IPC mechanism that allows

applications to exchange data. The
socket subroutine creates sockets,
and the bind subroutine allows
sockets to be named.

The maximum size of a regular file in a JFS file system enabled for large files is slightly less than 64
gigabytes (68589453312). In other file systems that are enabled for large files and in other JFS file system
types, all files not listed as regular in the previous table have a maximum file size of 2 gigabytes minus 1
(2147483647). The maximum size of a file in JFS2 is limited by the size of the file system itself.

The architectural limit on the size of a JFS2 file system is 2% bytes, or 4 petabytes. In AIX 5.2, the
maximum JFS2 file size supported by the 32-bit kernel is 2%° - 4096 bytes, or just under 1 terabyte. The
maximum file size supported by the 64-bit kernel is 2* - 4096 bytes, or just less than 16 terabytes.

The maximum length of a file name is 255 characters, and the maximum length of a path name is 1023
bytes.

120 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Working with Files

The operating system provides many subroutines that manipulate files. For brief descriptions of the most
common file-control subroutines, see the following:

* |‘Creating Files”

+ [‘Manipulating Files (Programming)’]

Creating Files
The following subroutines are used when creating files:

Creates a new, empty, regular file

Creates an additional name (directory entry) for an existing file
Creates a directory

Creates a named pipe

Creates a file that defines a device

Creates a new, empty file if the O_CREAT flag is set

Creates an IPC

Creates a socket

Manipulating Files (Programming)
The following subroutines can be used to manipulate files:

Determines the accessibility of a file.

Changes the access modes of a file.

Changes ownership of a file.

Closes open file descriptors (including sockets).

Creates space in a file.

Control open file descriptors.

Writes changes in a file to permanent storage.

Controls functions associated with open file descriptors, including special files,
sockets, and generic device support, such as the termio general terminal

interface.
lockf| or flock Control open file descriptors.
Isee or Move the 1/O pointer position in an open file.
open Returns a file descriptor used by other subroutines to refer to the opened file.

The open operation takes a regular file name and a permission mode that
indicates whether the file is to be read from, written to, or both.

Gets data from an open file if the appropriate permissions (O_RDONLY or
O_RDWR) were set by the open subroutine.

Changes the name of a file.

Removes directories from the file system.

Reports the status of a file, including the owner and access modes.
Changes the length of a file.

Puts data into an open file if the appropriate permissions (O_WRONLY or
O_RDWR) were set by the open subroutine.

For more information on types and characteristics of file systems, see in Operating system
and device management.

Working With JFS Directories

Directories provide a hierarchical structure to the file system, link files, and i-node subdirectory names.
There is no limit on the depth of nested directories. Disk space is allocated for directories in 4096-byte
blocks, but the operating system allocates directory space in 512-byte records.

Chapter 5. File Systems and Logical Volumes 121

Processes can read directories as regular files. However, the kernel can write directories. For this reason,
directories are created and maintained by a set of subroutines unique to them.

JFS Directory Structures

Directories contain a sequence of directory entries. Each directory entry contains three fixed-length fields
(the index number associated with the file’s i-node, the length of the file name, and the number of bytes
for the entry) and one variable-length field for the file name. The file name field is null-terminated and
padded to 4 bytes. File names can be up to 255 bytes long.

Directory entries are of variable length to allow file names the greatest flexibility. However, all directory
space is allocated at all times.

No directory entry can span 512-byte sections of a directory. When a directory requires more than 512
bytes, another 512-byte record is appended to the original record. If all of the 512-byte records in the
allocated data block are filled, an additional data block (4096 bytes) is allotted.

When a file is removed, the space that the file occupied in the directory structure is added to the
preceding directory entry. The information about the removed directory remains until a new entry fits into
the space vacated.

Every directory contains the entries . (dot) and .. (dot, dot). The . (dot) directory entry points to the i-node
for the directory itself. The .. (dot, dot) directory entry points to the i-node for the parent directory. The
mkfs program initializes a file system so that the . (dot) and .. (dot, dot) entries in the new root directory
point to the root i-node of the file system.

Directories have the following access modes:

read Allows a process to read directory entries

write Allows a process to create new directory entries or remove old ones by using the
and Junlink| subroutines

execute Allows a process to use the directory as a current working directory or to search below the directory in
the file tree

Working with JFS Directories (Programming)

The following is a list of subroutines available for working with directories:

closedir
Closes a directory stream and frees the structure associated with the DirectoryPointer parameter

Creates directories

Opens the directory designated by the DirectoryName parameter and associates a directory
stream with it

readdir
Returns a pointer to the next directory entry

rewinddir
Resets the position of the specified directory stream to the beginning of the directory

Removes directories

seekdir
Sets the position of the next readdir subroutine operation on the directory stream

telldir Returns the current location associated with the specified directory stream

122 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Changing the Current Directory of a Process

When the system is booted, the first process uses the root directory of the root file system as its current
directory. New processes created with the subroutine inherit the current directory used by the parent
process. The [chdir subroutine changes the current directory of a process.

The chdir subroutine parses the path name to ensure that the target file is a directory and that the
process owner has permissions to the directory. After the chdir subroutine is run, the process uses the
new current directory to search all path names that do not begin with a / (slash).

Changing the Root Directory of a Process

You can cause the directory named by a process Path parameter to become the effective root directory by
using the subroutine. Child processes of the calling process consider the directory indicated by the
chroot subroutine as the logical root directory of the file system.

Processes use the global file system root directory for all path names starting with a / (slash). All path
name searches beginning with a / (slash) begin at this new root directory.

Subroutines That Control JFS Directories

Due to the unique nature of directory files, directories are controlled by a special set of subroutines. The
following subroutines are designed to control directories:

Changes the current working directory
Changes the effective root directory
Gets path to current directory

Creates a directory

Perform various actions on directories

rename Renames a directory
rmdir Removes a directory

Working with JFS2 Directories

Directories provide a hierarchical structure to the file system, link files, and i-node subdirectory names.
There is no limit on the depth of nested directories. Disk space is allocated for directories in file system
blocks.

Processes can read directories as regular files. However, the kernel can write directories. For this reason,
directories are created and maintained by a set of subroutines unique to them.

JFS2 Directory Structures

A directory contains entries that describe the objects contained in the directory. A directory entry has a
fixed length and contains the following:

* The i-node number

* The name (up to 22 bytes long)

* A name length field

» Afield to continue the entry if the name is longer than 22 bytes

The directory entries are stored in a B+ tree sorted by name. The self (.) and parent (..) information is
contained in the i-node instead of in a directory entry. For more information about B+ trees, see

on page 132.

Chapter 5. File Systems and Logical Volumes 123

Directories have the following access modes:

read Allows a process to read directory entries

write Allows a process to create new directory entries or remove old ones, by using the
and subroutines

execute Allows a process to use the directory as a current working directory or to search below the directory in
the file tree

Working with JFS2 Directories (Programming)
The following is a list of subroutines available for working with directories:

closedir
Closes a directory stream and frees the structure associated with the DirectoryPointer parameter

Creates directories

Returns a structure pointer that is used by the readdir subroutine to obtain the next directory
entry, by rewinddir to reset the read position to the beginning, and by closedir to close the
directory.

readdir
Returns a pointer to the next directory entry

rewinddir
Resets the position of the specified directory stream to the beginning of the directory

Removes directories

seekdir
Returns to a position previously obtained with the telldir subroutine

telldir Returns the current location associated with the specified directory stream

Do not use the open, read, Iseek, and close subroutines to access directories.

Changing Current Directory of a Process

When the system is booted, the first process uses the root directory of the root file system as its current
directory. New processes created with the [fork| subroutine inherit the current directory used by the parent
process. The [chdir subroutine changes the current directory of a process.

The chdir subroutine parses the path name to ensure that the target file is a directory and that the
process owner has permissions to the directory. After the chdir subroutine is run, the process uses the
new current directory to search all path names that do not begin with a / (slash).

Changing the Root Directory of a Process

Processes can change their understanding of the root directory through the subroutine. Child
processes of the calling process consider the directory indicated by the chroot subroutine as the logical
root directory of the file system.

Processes use the global file system root directory for all path names starting with a / (slash).All path
name searches beginning with a / (slash) begin at this new root directory.

Subroutines That Control JFS2 Directories

Due to the unique nature of directory files, directories are controlled by a special set of subroutines. The
following subroutines are designed to control directories:

chdi Changes the current working directory
chroo Changes the effective root directory

124 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

readdir, telldir, seekdir, rewinddir, or closedir
Perform various actions on directories
|getwd| Gets path to current directory
Creates a directory
Renames a directory
Removes a directory

Working with JFS i-nodes

Files in the journaled file system (JFS) are represented internally as index nodes (i-nodes). JFS i-nodes
exist in a static form on disk and contain access information for the file, as well as pointers to the real disk
addresses of the file’s data blocks. The number of disk i-nodes available to a file system is dependent on
the size of the file system, the allocation group size (8 MB by default), and the number of bytes per i-node
ratio (4096 by default). These parameters are given to theﬁ/i_s] command at file system creation. When
enough files have been created to use all the available i-nodes, no more files can be created, even if the
file system has free space.

To determine the number of available i-nodes, use the@-v command. Disk i-nodes are defined in the
lusr/include/jfs/ino.h file.

Disk i-node Structure for JFS

Each disk i-node in JFS is a 128-byte structure. The offset of a particular i-node within the i-node list of the
file system produces the unique number (i-number) by which the operating system identifies the i-node. A
bit map, known as the i-node map, tracks the availability of free disk i-nodes for the file system.

Disk i-nodes include the following information:

Field Contents

i_mode Type of file and access permission mode bits
i_size Size of file in bytes

i_uid Access permissions for the user ID

i_gid Access permissions for the group 1D
i_nblocks Number of blocks allocated to the file
i_mtime Last time the file was modified

i_atime Last time the file was accessed

i_ctime Last time the i-node was modified

i_nlink Number of hard links to the file

i_rdaddr[8] Real disk addresses of the data

i_rindirect Real disk address of the indirect block, if any

You cannot change file data without changing the i-node, but it is possible to change the i-node without
changing the contents of the file. For example, when permission is changed, the information within the
i-node (i_mode) is modified, but the data in the file remains the same.

The i_rdaddr field within the disk i-node contains 8 disk addresses. These addresses point to the first 8
data blocks assigned to the file. The i_rindirect field address points to an indirect block. Indirect blocks
are either single indirect or double indirect. Thus, there are three possible geometries of block allocation
for a file: direct, indirect, or double indirect. Use of the indirect block and other file space allocation
geometries are discussed in the article [‘Allocating JFS File Space” on page 128}

Disk i-nodes do not contain file or path name information. Directory entries are used to link file names to
i-nodes. Any i-node can be linked to many file names by creating additional directory entries with the
orsubroutine. To determine the i-node number assigned to a file, use the% -i command.

Chapter 5. File Systems and Logical Volumes 125

The i-nodes that represent files that define devices contain slightly different information from i-nodes for
regular files. Files associated with devices are called special files. There are no data block addresses in
special device files, but the major and minor device numbers are included in the i_rdev field.

A disk i-node is released when the link count (i_n1link) to the i-node equals 0. Links represent the file
names associated with the i-node. When the link count to the disk i-node is 0, all the data blocks
associated with the i-node are released to the bit map of free data blocks for the file system. The i-node is
then placed on the free i-node map.

JFS In-core i-node Structure

When a file is opened, the operating system creates an in-core i-node. The in-core i-node contains a copy
of all the fields defined in the disk i-node, plus additional fields for tracking and managing access to the
in-core i-node. When a file is opened, the information in the disk i-node is copied into an in-core i-node for
easier access. In-core i-nodes are defined in the /usr/include/jfs/inode.h file. Some of the additional
information tracked by the in-core i-node is as follows:

» Status of the in-core i-node, including flags that indicate:
— An i-node lock
— A process waiting for the i-node to unlock
— Changes to the file’s i-node information
— Changes to the file’s data
» Logical device number of the file system that contains the file
* i-number used to identify the i-node
» Reference count. When the reference count field equals 0, the in-core i-node is released.

When an in-core i-node is released (for example, with the [close] subroutine), the in-core i-node reference
count is reduced by 1. If this reduction results in the reference count to the in-core i-node becoming 0, the
i-node is released from the in-core i-node table, and the contents of the in-core i-node are written to the
disk copy of the i-node (if the two versions differ).

Working with JFS2 i-nodes

Files in JFS2 are represented internally as index nodes (i-nodes). JFS2 disk i-nodes exist in a static form
on the disk and contain access information for the files, as well as pointers to the real disk addresses of
the file’s data blocks. The i-nodes are allocated dynamically by JFS2. Disk-inodes are defined in the
lusr/include/j2/j2_dinode.h file.

When a file is opened, an in-core i-node is created by the operating system. The in-core i-node contains a
copy of all the fields defined in the disk i-node, plus additional fields for tracking the in-core i-node. In-core
i-nodes are defined in the /usr/include/j2/j2_inode.h file.

Disk i-node Structure for JFS2

Each disk i-node in JFS2 is a 512-byte structure. The index of a particular i-node allocation map of the file
system produces the unique number (i-number) by which the operating system identifies the i-node. The
i-node allocation map tracks the location of the i-nodes on the disk, as well as their availability.

Disk i-nodes include the following information:

Field Contents

di_mode Type of file and access permission mode bits
di_size Size of file in bytes

di_uid Access permissions for the user ID

di_gid Access permissions for the group ID
di_nblocks Number of blocks allocated to the file

126 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Field Contents

di_mtime Last time the file was modified

di_atime Last time the file was accessed

di_ctime Last time the i-node was modified

di_nlink Number of hard links to the file

di_btroot Root of B+ tree describing the disk addresses of the data

You cannot change the file data without changing the i-node, but it is possible to change the i-node without
changing the contents of the file. For example, when permission is changed, the information within the
i-node (di_mode) is modified, but the data in the file remains the same.

The di_btroot describes the root of the B+ tree. It describes the data for the i-node. di_btroot has a field
indicating how many of its entries in the i-node are being used and another field describing whether they
are leaf nodes or internal nodes for the B+ tree. File space allocation geometries are discussed in the
article [‘Allocating JFS2 File Space” on page 131

Disk i-nodes do not contain file or path name information. Directory entries are used to link file names to
i-nodes. Any i-node can be linked to many file names by creating additional directory entries with the
orsubroutine. To determine the i-node number assigned to a file, use theEsI -i command.

The i-nodes that represent files that define devices contain slightly different information from i-nodes for
regular files. Files associated with devices are called special files. There are no data block addresses in
special device files, but the major and minor device numbers are included in the di_rdev field.

A disk i-node is released when the link count (di_nlink) to the i-node equals 0. Links represent the file
names associated with the i-node. When the link count to the disk i-node is 0, all the data blocks
associated with the i-node are released to the bit map of free data blocks for the file system. The i-node is
then placed on the free i-node map.

JFS2 In-core i-node Structure

When a file is opened, the information in the disk i-node is copied into an in-core i-node for easier access.
The in-core i-node structure contains additional fields that manage access to the disk i-node’s valuable
data. The fields of the in-core i-node are defined in the j2_inode.h file. Some of the additional information
tracked by the in-core i-node is as follows:

+ Status of the in-core i-node, including flags that indicate:

An i-node lock

A process waiting for the i-node to unlock

Changes to the file’s i-node information

Changes to the file’s data

» Logical device number of the file system that contains the file

* i-number used to identify the i-node

» Reference count. When the reference count field equals 0, the in-core i-node is released.

When an in-core i-node is released (for example, with the [close] subroutine), the in-core i-node reference
count is reduced by 1. If this reduction results in the reference count to the in-core i-node becoming 0, the
i-node is released from the in-core i-node table, and the contents of the in-core i-node are written to the
disk copy of the i-node (if the two versions differ).

Chapter 5. File Systems and Logical Volumes 127

Allocating JFS File Space

File space allocation is the method by which data is apportioned physical storage space in the operating
system. The kernel allocates disk space to a file or directory in the form of logical blocks. A logical block
for JFS refers to the division of a file or directory’s contents into 4096-byte units. Logical blocks are not
tangible entities; however, the data in a logical block consumes physical storage space on the disk. Each
file or directory consists of O or more logical blocks. Fragments, instead of logical blocks, are the basic
units for allocated disk space in JFS.

Full and Partial Logical Blocks

A file or directory may contain full or partial logical blocks. A full logical block contains 4096 bytes of data.
Partial logical blocks occur when the last logical block of a file or directory contains less than 4096 bytes
of data.

For example, a file of 8192 bytes is two logical blocks. The first 4096 bytes reside in the first logical block
and the following 4096 bytes reside in the second logical block. Likewise, a file of 4608 bytes consists of
two logical blocks. However, the last logical block is a partial logical block, containing the last 512 bytes of
the file’s data. Only the last logical block of a file can be a partial logical block.

Allocation in Fragmented File Systems

The default fragment size is 4096 bytes. You can specify smaller fragment sizes with the mkfs command
during a file system’s creation. Allowable fragment sizes are: 512, 1024, 2048, and 4096 bytes. You can
use only one fragment size in a file system. See ['JFS File System Layout” on page 133 for more
information on the file system structure.

To maintain efficiency in file system operations, the JFS allocates 4096 bytes of fragment space to files
and directories that are 32 KB or larger in size. A fragment that covers 4096 bytes of disk space is
allocated to a full logical block. When data is added to a file or directory, the kernel allocates disk
fragments to store the logical blocks. Thus, if the file system’s fragment size is 512 bytes, a full logical
block is the allocation of eight fragments.

The kernel allocates disk space so that only the last bytes of data receive a partial block allocation. As the
partial block grows beyond the limits of its current allocation, additional fragments are allocated. If the
partial block increases to 4096 bytes, the data stored in its fragments reallocated into 4096 file-system
block allocations. A partial logical block that contains less than 4096 bytes of data is allocated the number
of fragments that best matches its storage requirements.

Block reallocation also occurs if data is added to logical blocks that represent file holes. A file hole is an
empty logical block located prior to the last logical block that stores data. (File holes do not occur within
directories.) These empty logical blocks are not allocated fragments. However, as data is added to file
holes, allocation occurs. Each logical block that was not previously allocated disk space is allocated 4096
bytes of fragment space.

Additional block allocation is not required if existing data in the middle of a file or directory is overwritten.
The logical block containing the existing data has already been allocated fragments.

JFS tries to maintain contiguous allocation of a file or directory’s logical blocks on the disk. Maintaining
contiguous allocation lessens seek time because the data for a file or directory can be accessed
sequentially and found on the same area of the disk. However, disk fragments for one logical block are not
always contiguous to the disk fragments for another logical block. The disk space required for contiguous
allocation may not be available if it has already been written to by another file or directory. An allocation for
a single logical block, however, always contains contiguous fragments.

128 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

The file system uses a bitmap called the block allocation map to record the status of every block in the file
system. When the file system needs to allocate a new fragment, it refers to the fragment allocation map to
identify which fragments are available. A fragment can only be allocated to a single file or directory at a
time.

Allocation in Compressed JFS File Systems

In a file system that supports data compression, directories are allocated disk space. Data compression
also applies to regular files and symbolic links whose size is larger than that of their i-nodes.

The allocation of disk space for compressed file systems is the same as that of fragments in fragmented
file systems. A logical block is allocated 4096 bytes when it is modified. This allocation guarantees that
there will be a place to store the logical block if the data does not compress. The system requires that a
write or store operation report an out-of-disk-space condition into a memory-mapped file at a logical
block’s initial modification. After modification is complete, the logical block is compressed before it is
written to a disk. The compressed logical block is then allocated only the number of fragments required for
its storage.

In a fragmented file system, only the last logical block of a file (not larger than 32 KB) can be allocated
less than 4096 bytes. The logical block becomes a partial logical block. In a compressed file system, every
logical block can be allocated less than a full block.

A logical block is no longer considered modified after it is written to a disk. Each time a logical block is
modified, a full disk block is allocated again, according to the system requirements. Reallocation of the
initial full block occurs when the logical block of compressed data is successfully written to a disk.

Allocation in JFS File Systems Enabled for Large Files

In a file system enabled for large files, the JFS allocates two sizes of fragments for regular files. A "large”
fragment (32 X 4096) is allocated for logical blocks after the 4 MB boundary, and a 4096 bytes fragment is
allocated for logical blocks before the 4 MB boundary. All nonregular files allocate 4096 bytes fragments.
This geometry allows a maximum file size of slightly less than 64 gigabytes (68589453312).

A large fragment is made up of 32 contiguous 4096 bytes fragments. Because of this requirement, it is
recommended that file systems enabled for large files have predominantly large files in them. Storing
many small files (files less than 4 MB) can cause free-space fragmentation problems. This can cause large
allocations to fail with an ENOSPC error condition because the file system does not contain 32 contiguous
disk addresses.

Disk Address Format

JFS fragment support requires fragment-level addressability. As a result, disk addresses have a special
format for mapping where the fragments of a logical block reside on the disk. Fragmented and
compressed file systems use the same method for representing disk addresses. Disk addresses are
contained in the i_rdaddr field of the i-nodes or in the indirect blocks. All fragments referenced in a single
address must be contiguous on the disk.

The disk address format consists of the nfrags and addr fields. These fields describe the area of disk
covered by the address:

addr Indicates which fragment on the disk is the starting fragment
nfrags Indicates the total number of contiguous fragments not used by the address

For example, if the fragment size for the file system is 512 bytes and the logical block is divided into eight
fragments, the nfrags value is 3, indicating that five fragments are included in the address.

Chapter 5. File Systems and Logical Volumes 129

The following examples illustrate possible values for the addr and nfrags fields for different disk
addresses. These values assume a fragment size of 512 bytes, indicating that the logical block is divided
into eight fragments.

Address for a single fragment:
addr: 143
nfrags: 7

This address indicates that the starting location of the data is fragment 143 on the disk. The nfrags value
indicates that the total number of fragments included in the address is one. The nfrags value changes in a
file system that has a fragment size other than 512 bytes. To correctly read the nfrags value, the system,
or any user examining the address, must know the fragment size of the file system.

Address for five fragments:
addr: 1117
nfrags: 3

In this case, the address starts at fragment number 1117 on the disk and continues for five fragments
(including the starting fragment). Three fragments are remaining, as illustrated by the nfrags value.

The disk addresses are 32 bits in size. The bits are numbered from 0 to 31. The 0 bit is always reserved.
Bits 1 through 3 contain the nfrags field. Bits 4 through 31 contain the addr field.

JFS Indirect Blocks

The JFS uses the indirect blocks to address the disk space allocated to larger files. Indirect blocks allow
the greatest flexibility for file sizes and the fastest retrieval time. The indirect block is assigned using the
i_rindirect field of the disk i-node. This field allows for the following geometries or methods for addressing
the disk space:

e Direct
» Single indirect
¢ Double indirect

Each of these methods uses the same disk address format as compressed and fragmented file systems.
Because files larger than 32 KB are allocated fragments of 4096 bytes, the nfrags field for addresses
using the single indirect or double indirect method has a value of 0.

Direct Method

When the direct method of disk addressing is used, each of the eight addresses listed in the i_rdaddr field
of the disk i-node points directly to a single allocation of disk fragments. The maximum size of a file using
direct geometry is 32,768 bytes (32KB), or 8 x 4096 bytes. When the file requires more than 32 KB, an
indirect block is used to address the file’s disk space.

Single Indirect Method

The i_rindirect field contains an address that points to either a single indirect block or a double indirect
block. When the single indirect disk-addressing method is used, the i_rindirect field contains the address
of an indirect block containing 1024 addresses. These addresses point to the disk fragments for each
allocation. Using the single indirect block geometry, the file can be up to 4,194,304 bytes (4 MB), or 1024
x 4096 bytes.

Double Indirect Method

The double indirect disk-addressing method uses the i_rindirect field to point to a double indirect block.
The double indirect block contains 512 addresses that point to indirect blocks, which contain pointers to
the fragment allocations. The largest file size that can be used with the double indirect geometry in a file
system not enabled for large files is 2,147,483,648 bytes (2 GB), or 512(1024 x 4096) bytes.

130 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Note: The maximum file size that the read and write system calls would allow is 2 GB minus 1 (23'-1).
When memory map interface is used, 2 GB can be addresed. See ["Writing Programs That Access|
[Large Files” on page 135|for more information.

File systems enabled for large files allow a maximum file size of slightly less than 64 gigabytes
(68589453312). The first single indirect block contains 4096 byte fragments, and all subsequent single
indirect blocks contain (32 X 4096) byte fragments. The following produces the maximum file size for file
systems enabling large files:

(1 = (1024 = 4096)) + (511 * (1024 = 131072))

The fragment allocation assigned to a directory is divided into records of 512 bytes each and grows in
accordance with the allocation of these records.

Quotas
Disk quotas restrict the amount of file system space that any single user or group can monopolize.

The subroutine sets limits on both the number of files and the number of disk blocks allocated to
each user or group on a file system. Quotas enforce the following types of limits:
hard Maximum limit allowed. When a process hits its hard limit, requests for more space fail.

soft Practical limit. If a process hits the soft limit, a warning is printed to the user’s terminal. The
warning is often displayed at login. If the user fails to correct the problem after several login
sessions, the soft limit can become a hard limit.

System warnings are designed to encourage users to heed the soft limit. However, the quota system
allows processes access to the higher hard limit when more resources are temporarily required.

Allocating JFS2 File Space

File space allocation is the method by which data is apportioned physical storage space in the operating
system. The kernel allocates disk space to a file or directory in the form of logical blocks. A logical block
refers to the division of a file or directory contents into 512, 1024, 2048, or 4096 byte units. When a JFS2
file system is created, the logical block size is specified to be one of 512, 1024, 2048, or 4096 bytes.
Logical blocks are not tangible entities; however, the data in a logical block consumes physical storage
space on the disk. Each file or directory consists of 0 or more logical blocks.

Full and Partial Logical Blocks

A file or directory may contain full or partial logical blocks. A full logical block contains 512, 1024, 2048, or
4096 bytes of data, depending on the file system block size specified when the JFS2 file system was
created. Partial logical blocks occur when the last logical block of a file or directory contains less than a
file-system block size of data.

For example, a JFS2 file system with a logical block size of 4096 with a file of 8192 bytes is two logical
blocks. The first 4096 bytes reside in the first logical block and the following 4096 bytes reside in the
second logical block. Likewise, a file of 4608 bytes consists of two logical blocks. However, the last logical
block is a partial logical block containing the last 512 bytes of the file’s data.

JFS2 File Space Allocation

The default block size is 4096 bytes. You can specify smaller block sizes with the mkfs command during a
file system’s creation. Allowable block sizes are 512, 1024, 2048, and 4096 bytes. You can use only one
block size in a file system. See ['JFS2 File System Layout” on page 134| for more information on the file
system structure.

Chapter 5. File Systems and Logical Volumes 131

The kernel allocates disk space so only the last file system block of data receives a partial block
allocation. As the partial block grows beyond the limits of its current allocation, additional blocks are
allocated.

Block reallocation also occurs if data is added to logical blocks that represent file holes. A file hole is an
empty logical block located prior to the last logical block that stores data. (File holes do not occur within
directories.) These empty logical blocks are not allocated blocks. However, as data is added to file holes,
allocation occurs. Each logical block that was not previously allocated disk space is allocated a file system
block of space.

Additional block allocation is not required if existing data in the middle of a file or a directory is overwritten.
The logical block containing the existing data has already been allocated file system blocks.

JFS2 tries to maintain contiguous allocation of a file or directory’s logical blocks on the disk. Maintaining
contiguous allocation lessens seek time because the data for a file or directory can be accessed
sequentially and found on the same area of the disk. The disk space required for contiguous allocation
might not be available if another file or directory has already written to it.

The file system uses a bitmap called the block allocation map to record the status of every block in the file
system. When the file system needs to allocate a new block, it refers to the block allocation map to identify
which blocks are available. A block can only be allocated to a single file or directory at a time.

Extents

An extent is a contiguous variable-length sequence of file system blocks allocated to a JFS2 object as a
unit. Large extents may span multiple allocation groups.

An i-node represents every JFS2 object. I-nodes contain the expected object-specific information such as
time stamps or file type (regular or directory, and so on). They also contain a B+ tree to record the
allocation of extents.

The length and address values are necessary to define an extent. The length is measured in units of the
file system block size. A 24-bit value represents the length of an extent, so an extent can range in size
from 1 to 2%* -1 file system blocks. Therefore, the size of the maximum extent depends on the file system
block size. The address is the address of the first block of the extent. The address is also in units of file
system blocks; it is the block offset from the beginning of the file system.

An extent-based file system combined with user-specified file system block size allows JFS2 to not have
separate support for internal fragmentation. You can configure the file system with a small file system
block size, such as 512 bytes, to minimize internal fragmentation for file systems with large numbers of
small-sized files.

In general, the allocation policy for JFS2 tries to maximize contiguous allocation by allowing a minimum
number of extents, with each extent as large and contiguous as possible. This allows for larger /O
transfer, resulting in improved performance. However, in some cases, this is not always possible.

B+ Trees

The B+ tree data structure is used for file layout. The most common operations that JFS2 performs are
reading and writing extents. B+ trees are used to help with performance of these operations.

An extent allocation descriptor (xad_t structure) describes the extent and adds two more fields that are
needed for representing files: an offset field, describing the logical byte address the extent represents, and
a flags field. The xad_t structure is defined in the /usr/include/j2/j2_xtree.h file.

An xad structure describes two abstract ranges:

132 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

» The physical range of disk blocks. This starts at file system block number addressXAD(xadp) address
and extends for lengthXAD(xadp) file system blocks.

* The logical range of bytes within a file. This starts at byte number offsetXAD(xadp)*(file system block
size) and extends for lengthXAD(xadp)*(file system block size.)

The physical range and the logical range are both the same number of bytes in length. Note that offset is
stored in units of file system block size (for example, a value of 3) in offset means 3 file system blocks, not
3 bytes. Extents within a file are always aligned on file system block size boundaries.

JFS2 Limitation

JFS2 requires contiguous free space of at least a page, or 4 KB, in length when extending files. If you do
not have contiguous free space of at least 4 KB, then the file system does not allow the extension of the
file, even if there is enough available storage space in smaller blocks.

JFS File System Layout

A file system is a set of files, directories, and other structures. File systems maintain information and
identify where a file or directory’s data is located on the disk. In addition to files and directories, JFS file
systems contain a boot block, a superblock, bitmaps, and one or more allocation groups. Each file system
occupies one logical volume.

JFS Boot Block

The boot block occupies the first 4096 bytes of the file system, starting at byte offset 0 on the disk. The
boot block is available to start the operating system.

JFS Superblock

The superblock is 4096 bytes in size and starts at byte offset 4096 on the disk. The superblock maintains
information about the entire file system and includes the following fields:

» Size of the file system

* Number of data blocks in the file system

» A flag indicating the state of the file system
» Allocation group sizes

JFS Allocation Bitmaps

The file system contains the following allocation bitmaps:

» The fragment allocation map records the allocation state of each fragment.
» The disk i-node allocation map records the status of each i-node.

JFS Fragments

Many file systems have disk blocks or data blocks. These blocks divide the disk into units of equal size to
store the data in a file or directory’s logical blocks. The disk block may be further divided into fixed-size

allocation units called fragments. Some systems do not allow fragment allocations to span the boundaries
of the disk block. In other words, a logical block cannot be allocated fragments from different disk blocks.

The journaled file system (JFS), however, provides a view of the file system as a contiguous series of
fragments. JFS fragments are the basic allocation unit and the disk is addressed at the fragment level.
Thus, fragment allocations can span the boundaries of what might otherwise be a disk block. The default
JFS fragment size is 4096 bytes, although you can specify smaller sizes. In addition to containing data for
files and directories, fragments also contain disk addresses and data for indirect blocks.

[File Space” on page 128 explains how the operating system allocates fragments.

Chapter 5. File Systems and Logical Volumes 133

JFS Allocation Groups

The set of fragments making up the file system are divided into one or more fixed-sized units of
contiguous fragments. Each unit is an allocation group. The first of these groups begins the file system
and contains a reserved area occupying the first 32 x 4096 bytes of the group. The first 4096 bytes of this
area hold the boot block, and the second 4096 bytes hold the file system superblock.

Each allocation group contains a static number of contiguous disk i-nodes that occupy some of the group’s
fragments. These fragments are reserved for the i-nodes at file-system creation and extension time. For
the first allocation group, the disk i-nodes occupy the fragments immediately following the reserved block
area. For subsequent groups, the disk i-nodes are found at the start of each group. Disk i-nodes are 128
bytes in size and are identified by a unique disk i-node number or i-number. The i-number maps a disk
i-node to its location on the disk or to an i-node within its allocation group.

A file system’s fragment allocation group size and the disk i-node allocation group size are specified as the
number of fragments and disk i-nodes that exist in each allocation group. The default allocation group size
is 8 MB, but can be as large as 64 MB. These values are stored in the file system superblock, and they
are set at file system creation.

Allocation groups allow the JFS resource allocation policies to use effective methods for to achieve
optimum file system I/O performance. These allocation policies try to cluster disk blocks and disk i-nodes
for related data to achieve good locality for the disk. Files are often read and written sequentially, and files
within a directory are often accessed together. Also, these allocation policies try to distribute unrelated data
throughout the file system in an attempt to minimize free-space fragmentation.

JFS Disk i-Nodes

A logical block contains a file or directory’s data in units of 4096 bytes. Each logical block is allocated
fragments for the storage of its data. Each file and directory has an i-node that contains access
information such as file type, access permissions, owner’s ID, and number of links to that file. These
i-nodes also contain "addresses” for finding the location on the disk where the data for a logical block is
stored.

Each i-node has an array of numbered sections. Each section contains an address for one of the file or
directory’s logical blocks. These addresses indicate the starting fragment and the total number of
fragments included in a single allocation. For example, a file with a size of 4096 bytes has a single
address on the i-node’s array. Its 4096 bytes of data are contained in a single logical block. A larger file
with a size of 6144 bytes has two addresses. One address contains the first 4096 bytes and a second
address contains the remaining 2048 bytes (a partial logical block). If a file has a large number of logical
blocks, the i-node does not contain the disk addresses. Instead, the i-node points to an indirect block that
contains the additional addresses.

JFS2 File System Layout

A file system is a set of files, directories and other structures. The file systems maintain information and
identify where the data is located on the disk for a file or directory. In addition to files and directories a
JFS2 file system contains a superblock, allocation maps and one or more allocation groups. Each file
system occupies one logical volume.

JFS2 Superblock

The superblock is 4096 bytes in size and starts at byte offset 32768 on the disk. The superblock maintains
information about the entire file system and includes the following fields:

+ Size of the file system
* Number of data blocks in the file system
» Aflag indicating the state of the file system

134 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

* Allocation group sizes
* File system block size

JFS2 Allocation Maps

The file system contains the following allocation maps:
» The i-node allocation map records the location and allocation of all i-nodes in the file system.
» The block allocation map records the allocation state of each file system block.

JFS2 Disk i-Nodes

A logical block contains a file or directory’s data in units of file system blocks. Each logical block is
allocated file system blocks for the storage of its data. Each file and directory has an i-node that contains
access information such as file type, access permissions, owner’s ID, and number of links to that file.
These i-nodes also contain a B+ tree for finding the location on the disk where the data for a logical block
is stored.

JFS2 Allocation Groups

Allocation groups divide the space on a file system into chunks. Allocation groups are used only for a
problem-solving technique in which the most appropriate solution, found by attempting alternative methods,
is selected at successive stages of a program for using in the next step of the program. Allocation groups
allow JFS2 resource-allocation policies to use well-known methods for achieving optimum 1/0O
performance. First, the allocation policies try to cluster disk blocks and disk i-nodes for related data to
achieve good locality for the disk. Files are often read and written sequentially and the files within a
directory are often accessed together. Second, the allocation policies try to distribute unrelated data
throughout the file system in order to accommodate disk locality.

Allocation groups within a file system are identified by a zero-based allocation group index, the allocation
group number.

Allocation group sizes must be selected that yield allocation groups that are large enough to provide for
contiguous resource allocation over time. Allocation groups are limited to a maximum number of 128
groups. The minimum allocation group size is 8192 file-system blocks.

Partial Allocation Groups

A file system whose size is not a multiple of the allocation group size will contain a partial allocation group;
the last allocation group of the file system is not fully covered by disk blocks. This partial allocation group
will be treated as a complete allocation group, except that the nonexistent disk blocks will be marked as
allocated in the block allocation map.

Writing Programs That Access Large Files

AIX supports files that are larger than 2 gigabytes (2 GB). This section assists programmers in
understanding the implications of large files on their applications and to assist them in modifying their
applications. Application programs can be modified, through programming interfaces, to be aware of large
files. The file system programming interfaces generally are based on the off_t data type.

Implications for Existing Programs

The 32-bit application environment that all applications used prior to AIX 4.2 remains unchanged. However,
existing application programs cannot handle large files.

For example, the st_size field in the stat structure, which is used to return file sizes, is a signed, 32-bit
long. Therefore, that stat structure cannot be used to return file sizes that are larger than LONG_MAX. If

Chapter 5. File Systems and Logical Volumes 135

an application attempts to use the stat subroutine with a file that is larger than LONG_MAX, the stat
subroutine will fail, and errno will be set to EOVERFLOW, indicating that the file size overflows the size
field of the structure being used by the program.

This behavior is significant because existing programs that might not appear to have any impacts as a
result of large files will experience failures in the presence of large files even though the file size is
irrelevant.

The errno EOVERFLOW can also be returned by an Iseek pointer and by the fentl subroutine if the
values that need to be returned are larger than the data type or structure that the program is using. For
Iseek, if the resulting offset is larger than LONG_MAX, Iseek will fail and errno will be set to
EOVERFLOW. For the fentl subroutine, if the caller uses F_GETLK and the blocking lock’s starting offset
or length is larger than LONG_MAX, the fentl call will fail, and errno will be set to EOVERFLOW.

Open Protection

Many existing application programs could have unexpected behavior, including data corruption, if allowed
to operate on large files. AlIX uses an open-protection scheme to protect applications from this class of
failure.

In addition to open protection, a number of other subroutines offer protection by providing an execution
environment, which is identical to the environment under which these programs were developed. If an
application uses the write family of subroutines and the write request crosses the 2 GB boundary, the
write subroutines will transfer data only up to 2 GB minus 1. If the application attempts to write at or
beyond the 2GB -1 boundary, the write subroutines will fail and set errno to EFBIG. The behavior of the
mmap, ftruncate, and fclear subroutines are similar.

The read family of subroutines also participates in the open-protection scheme. If an application attempts
to read a file across the 2 GB threshold, only the data up to 2 GB minus 1 will be read. Reads at or
beyond the 2GB -1 boundary will fail, and errno will be set to EOVERFLOW.

Open protection is implemented by a flag associated with an open file description. The current state of the
flag can be queried with the fentl subroutine using the F_GETFL command. The flag can be modified with
the fentl subroutine using the F_SETFL command.

Because open file descriptions are inherited across the exec family of subroutines, application programs
that pass file descriptors that are enabled for large-file access to other programs should consider whether
the receiving program can safely access the large file.

Porting Applications to the Large File Environment

AIX provides two methods for applications to be enabled for large-file access. Application programmers
must decide which approach best suits their needs:

» Define _LARGE_FILES, which carefully redefines all of the relevant data types, structures, and
subroutine names to their large-file enabled counterparts. Defining _LARGE_FILES has the advantage
of maximizing application portability to other platforms because the application is still written to the
normal POSIX and XPG interfaces. It has the disadvantage of creating some ambiguity in the code
because the size of the various data items cannot be determined from looking at the code.

* Recode the application to explicitly call the large-file enabled subroutines. Recoding the application has
the disadvantages of requiring more effort and reducing application portability. It can be used when the
redefinition effect of _LARGE_FILES would have a considerable negative impact on the program or
when it is desirable to convert only a very small portion of the program.

In either case, the application program must be carefully audited to ensure correct behavior in the new
environment. Some of the common programming problems are discussed in [‘Common Pitfalls in Using the|
[Large File Environment” on page 139

136 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Using _LARGE_FILES

In the default compilation environment, the off_t data type is defined as a signed, 32-bit long. If the
application defines _LARGE_FILES before the inclusion of any header files, then the large-file

programming environment is enabled and off_t is defined to be a signed, 64-bit long long. In addition, all
of the subroutines that deal with file sizes or file offsets are redefined to be their large-file enabled
counterparts. Similarly, all of the data structures with embedded file sizes or offsets are redefined.

The following table shows the

redefinitions that occur in the _LARGE_FILES environment:

Entity Redefined As Header File
off_t Object long long <sys/types.h>
fpos_t Object long long <sys/types.h>
struct stat Structure struct stat64 <sys/stat.h>
stat Subroutine stat64() <sys/stat.h>
fstat Subroutine fstat64() <sys/stat.h>
Istat Subroutine Istat64() <sys/stat.h>
mmap Subroutine mmap64() <sys/mman.h>
lockf Subroutine lockf64() <sys/lockf.h>
struct flock Structure struct flock64 <sys/flock.h>
open Subroutine open64() <fentl.h>
creat Subroutine creat64() <fentl.h>
F_GETLK Command F_GETLK64 <fentl.h>
Parameter

F_SETLK Command F_SETLK64 <fentl.h>
Parameter

F_SETLKW Command F_SETLKW64 <fentl.h>
Parameter

ftw Subroutine ftw64() <ftw.h>

nftw Subroutine nftw64() <ftw.h>
fseeko Subroutine fseeko64() <stdio.h>
ftello Subroutine ftello64() <stdio.h>
fgetpos ubroutine fgetpos64() <stdio.h>
fsetpos Subroutine fsetpos64() <stdio.h>
fopen Subroutine fopen64() <stdio.h>
freopen Subroutine freopen64() <stdio.h>
Iseek Subroutine Iseek64() <unistd.h>
ftruncate Subroutine ftruncate64() <unistd.h>
truncate Subroutine truncate64() <unistd.h>
fclear Subroutine fclear64() <unistd.h>
pwrite Subroutine pwrite64() <unistd.h>
pread Subroutine pread64() <unistd.h>
struct aiocb Structure struct aiocb64 <sys/aio.h>
aio_read Subroutine aio_read64() <sys/aio.h>
aio_write Subroutine aio_write64() <sys/aio.h>
aio_cancel Subroutine aio_cancel64() <sys/aio.h>

Chapter 5. File Systems and Logical Volumes

137

aio_suspend Subroutine aio_suspend64() <sys/aio.h>
aio_return Subroutine aio_return64() <sys/aio.h>
aio_error Subroutine aio_error64() <sys/aio.h>
liocb Structure lioch64 <sys/aio.h>
lio_listio Subroutine lio_listio64() <sys/aio.h>

Using 64-Bit File System Subroutines

Using the _LARGE_FILES environment may be impractical for some applications due to the far-reaching
implications of changing the size of off_t to 64 bits. If the number of changes is small, it may be more
practical to convert a relatively small part of the application to be large-file enabled. The 64-bit file system
data types, structures, and subroutines are listed below:

<sys/types.h>

typedef long Tong off64_t;

typedef long long fpos64 t;

<fcntl.h>
extern int open64(const char *, int, ...);
extern int creat64(const char *, mode t);

#define F_GETLK64
#define F_SETLK64
#define F_SETLKW64

<ftw.h>
extern int ftwé4(const char *, int (*)(const char *,const struct stat64 *, int), int);
extern int nftw64(const char *, int (*)(const char *, const struct stat64 =, int,struct FTW =*),int, int);

<stdio.h>

extern int fgetpos64 (FILE *, fpos64_t =*);

extern FILE xfopen64 (const char *, const char *);

extern FILE xfreopen64 (const char *, const char *, FILE *);
extern int fseekob64 (FILE *, off64 t, int);

extern int fsetpos64 (FILE *, fpos64 t =*);

extern off64_t ftello64(FILE *);

<unistd.h>

extern off64 t 1seek64(int, off64_t, int);

extern int ftruncate64(int, off64 t);

extern int truncate64(const char *, off64 t);

extern off64_t fclear64(int, off64_t);

extern ssize_t pread64(int, void *, size t, off64 _t);
extern ssize_t pwrite64(int, const void *, size_t, off64_t);
extern int fsync_range64(int, int, off64_t, off64 t);
<sys/flock.h>

struct flock64;

<sys/Tockf.h>

extern int lockf64 (int, int, off64_t);

<sys/mman.h>

extern void *mmap64 (void *, size_t, int, int, int, off64 t);

<sys/stat.h>

138 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

struct statb64;

extern int stat64(const char *, struct stat64 x);
extern int fstat64(int, struct stat64 =);
extern int 1stat64(const char *, struct stat64 =);

<sys/aio.h>

struct aioch64

int aio_read64(int, struct aioch64 =*):

int aio_write64(int, struct aioch64 *);

int aio_listiob4(int, struct aioch64 =[],
int, struct sigevent *);

int aio_cancel64(int, struct aiocb64 *);

int aio_suspend64(int, struct aioch64 *[]);

struct Tioch64
int Tio_listio64(int, struct Tiocb64 =[], int, void *);

Common Pitfalls in Using the Large File Environment

Porting of application programs to the large-file environment can expose a number of different problems in
the application. These problems are frequently the result of poor coding practices, which are harmless in a
32-bit off_t environment, but which can manifest themselves when compiled in a 64-bit off_t environment.
Some of the more common problems and solutions are discussed in this section.

Note: In the following examples, off_t is assumed to be a 64-bit file offset.

Improper Use of Data Types

A common source of problems with application programs is a failure to use the proper data types. If an
application attempts to store file sizes or file offsets in an integer variable, the resulting value will be
truncated and lose significance. To avoid this problem, use the off_t data type to store file sizes and
offsets.

Incorrect:

int file_size;
struct stat s;

file_size = s.st_size;

Better:

off_t file_size;
struct stat s;
file_size = s.st_size;

Avoiding Parameter Mismatches

When you are passing 64-bit integers to functions as arguments or when you are returning 64-bit integers
from functions, both the caller and the called function must agree on the types of the arguments and the
return value.

Passing a 32-bit integer to a function that expects a 64-bit integer causes the called function to
misinterpret the caller's arguments, leading to unexpected behavior. This type of problem is especially
severe if the program passes scalar values to a function that expects to receive a 64-bit integer.

You can avoid problems by using function prototypes carefully. In the code fragments below, fexample() is
a function that takes a 64-bit file offset as a parameter. In the first example, the compiler generates the
normal 32-bit integer function linkage, which would be incorrect because the receiving function expects
64-bit integer linkage. In the second example, the LL specifier is added, forcing the compiler to use the

Chapter 5. File Systems and Logical Volumes 139

proper linkage. In the last example, the function prototype causes the compiler to promote the scalar value
to a 64-bit integer. This is the preferred approach because the source code remains portable between
32-bit and 64-bit environments.

Incorrect:
fexample(0);

Better:
fexample(OLL);

Best:
void fexample(off_t);

fexample(0);
Arithmetic Overflows

Even when an application uses the correct data types, the application can remain vulnerable to failures
due to arithmetic overflows. This problem usually occurs when the application performs an arithmetic
operation before it is promoted to the 64-bit data type. In the following example, blkno is a 32-bit block
number. Multiplying the block number by the block size occurs before the promotion, and overflow will
occur if the block number is sufficiently large. This problem is especially destructive because the code is
using the proper data types and the code works correctly for small values, but fails for large values. To fix
this problem, type the values before the arithmetic operation.

Incorrect:
int blkno;
off_t offset;

offset = blkno * BLKSIZE;

Better:

int blkno;
off_t offset;
offset = (off_t) blkno * BLKSIZE;

This problem can also occur when passing values based on fixed constants to functions that expect 64-bit
parameters. In the following example, LONG_MAX+1 results in a negative number, which is sign-extended
when it is passed to the function.

Incorrect:

void fexample(off_t);
fexample (LONG_MAX+1);
Better:

void fexample(off_t);
fexample((off_t)LONG_MAX+1);

fseek and ftell Subroutines

The data type used byand ftell subroutines is long and cannot be redefined to the appropriate
64-bit data type in the large-files environment. Application programs that access large files and that use
fseek and ftell need to be converted. This can be done in a number of ways. The fseeko and ftello
subroutines are functionally equivalent to fseek and ftell except that the offset is given as an off_t instead
of a long. Make sure to convert all variables that can be used to store offsets to the appropriate type.

140 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Incorrect:

Tong cur_offset, new_offset;

cur_offset = ftell(fp);
fseek(fp, new offset, SEEK SET);

Better:
off_t cur_offset, new_offset;

cur_offset = ftello(fp);
fseeko(fp, new offset, SEEK SET);

Including Correct Header Files

To see the function and data type redefinitions, application programs must include the correct header files.
This has the additional benefit of exposing the function prototypes for various subroutines, which enables
stronger type-checking in the compiler.

Many application programs that call the open and creat subroutines do not include <fentl.h>, which
contains the defines for the various open modes. Because these programs typically hardcode the open
modes, run-time failures occur when the program is compiled in the large-file environment. The program
does call the correct open subroutine, and the resulting file descriptor is not enabled for large-file access.
Ensure that programs include the correct header files, especially in the large-file environment, to get
visibility to the redefinitions of the environment.

Incorrect:
fd = open("afile",2);

Better:
#include <fcntl.h>

fd = open("afile",0 RDWR);
String Conversions

Converting file sizes and offsets to and from strings can cause problems when porting applications to the
large-file environment. The printf format string for a 64-bit integer is different than for a 32—bit integer.
Ensure that programs that do these conversions use the correct format specifier. This is especially difficult
when the application needs to be portable between 32-bit and 64-bit environments because there is no
portable format specifier between the two environments. You can handle this problem by writing offset
converters that use the correct format for the size of off_t.

off_t

atooff(const char *s)

{
off_t o;

if (sizeof(off_t) == 4)
sscanf(s,"%d",%0);
else if (sizeof(off_t) == 8)
sscanf(s,"%11d",&0);
else
error();
return o;

main(int argc, char **argv)
off_t offset;

offset = atooff(argv[l]);
fexample(offset);

Chapter 5. File Systems and Logical Volumes 141

Imbedded File Offsets

Application programs that imbed file offsets or sizes in data structures may be affected by the change to
the size of the off_t in the large-file environment. This problem can be especially severe if the data
structure is shared between various applications or if the data structure is written into a file. In such cases,
the programmer must decide if the application should continue to contain a 32-bit offset or if it should be
converted to contain a 64-bit offset. If the application program needs to have a 32-bit file offset even if
off_t is 64 bits, the program may use the soff_t data type, a short off_t. This data type remains 32 bits
even in the large-file environment. If the data structure is converted to a 64-bit offset, all of the programs
that deal with that structure must be converted to understand the new data structure format.

File-Size Limits

Application programs that are converted to be aware of large files may fail in their attempts to create large
files due to the file-size resource limit. The file-size resource limit is a signed, 32-bit value that limits the
maximum file offset to which a process can write to a regular file. Programs that need to write large files
must have their file-size limit set to RLIM_INFINITY, as follows.

struct rlimit r;

r.rlim_cur = r.rlim_max = RLIM_INFINITY;
setrlimit(RLIMIT_FSIZE,&r);

To set this limit from the Korn shell, run the following command:
ulimit -f unlimited

To set this value permanently for a specific user, use the command, as shown in the following
example:

chuser fsize _hard = -1 root

The maximum size of a file is ultimately a characteristic of the file system itself, not just the file size limit or

the environment, as follows:

* For the JFS, the maximum file size is determined by the parameters used at the time the file system
was made. For JFS file systems that are enabled for large files, the maximum file size is slightly less
than 64 gigabytes (0xff8400000). For all other JFS file systems, the maximum file size is 2Gb-1
(Ox7fffffff). Attempts to write a file in excess of the maximum file size in any file system format will fail,
and errno will be set to EFBIG.

» For the JFS2, the maximum file size is limited by the size of the file system itself.

Linking for Programmers

A link is a connection between a file name and an i-node (hard link) or between file names (symbolic link).
Linking allows access to an i-node (see [‘Working with JFS i-nodes” on page 125 or [‘Working with JFS2|
[-nodes” on page 126) from multiple file names. Directory entries pair file names with i-nodes. File names
are easy for users to identify, and i-nodes contain the real disk addresses of the file’s data. A reference
count of all links into an i-node is maintained in the i_nlink field of the i-node. Subroutines that create and
destroy links use file names, not file descriptors (see [‘Using File Descriptors” on page 144). Therefore, it is
not necessary to open files when creating a link.

Processes can access and change the contents of the i-node by any of the linked file names. AIX supports
hard links and symbolic links.

Hard Links

Subroutine that creates hard links.The presence of a hard link guarantees the existence of a file
because a hard link increments the link count in the i_nlink field of the i-node.

142 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Subroutine that releases links. When all hard links to an i-node are released, the file is no longer
accessible.

Hard links must link file names and i-nodes within the same file system because the i-node number is
relative to a single file system. Hard links always refer to a specific file because the directory entry created
by the hard link pairs the new file name to an i-node. The user ID that created the original file owns the file
and retains access mode authority over the file. Otherwise, all hard links are treated equally by the
operating system.

Example: If the /u/tom/bob file is linked to the /u/jack/foo file, the link count in the i_nlink field of the foo
file is 2. Both hard links are equal. If /u/jack/foo is removed, the file continues to exist by the name
/u/tom/bob and can be accessed by users with access to the tom directory. However, the owner of the file
is jack even though /u/jack/foo was removed. The space occupied by the file is charged to jack’s quota
account. To change file ownership, use the subroutine.

Symbolic Links

Symbolic links are implemented as a file that contains a path name by using the command. When
a process encounters a symbolic link, the path contained in the symbolic link is prepended to the path that
the process was searching. If the path name in the symbolic link is an absolute path name, the process
searches from the root directory for the named file. If the path name in the symbolic link does not begin
with a / (slash), the process interprets the rest of the path relative to the position of the symbolic link. The
unlink subroutine also removes symbolic links.

Symbolic links can traverse file systems because they are treated as regular files by the operating system
rather than as part of the file system structure. The presence of a symbolic link does not guarantee the
existence of the target file because a symbolic link has no effect on the i_nlink field of the i-node.

Subroutine that reads the contents of a symbolic link. Many subroutines (including the and

subroutines) follow symbolic paths.
Subroutine created to report on the status of the file containing the symbolic link and does not follow
the link. See the symlink subroutine for a list of subroutines that traverse symbolic links.

Symbolic links are also called soft links because they link to a file by path name. If the target file is
renamed or removed, the symbolic link cannot resolve.

Example: The symbolic link to /u/joe/foo is a file that contains the literal data /u/joe/foo. When the owner
of the foo file removes this file, subroutine calls made to the symbolic link cannot succeed. If the file
owner then creates a new file named foo in the same directory, the symbolic link leads to the new file.
Therefore, the link is considered soft because it is linked to interchangeable i-nodes.

In the Is -l command listing, an 1 in the first position indicates a linked file. In the final column of that
listing, the links between files are represented as Path2 -> Pathl (or Newname -> Oldname).

Subroutine that removes a directory entry. The Path parameter in the subroutine identifies the file to be
disconnected. At the completion of the unlink call, the link count of the i-node is reduced by the value of
1.

remove Subroutine that also removes a file name by calling either the unlink or rmdir subroutine.

Directory Links

Subroutine that creates directory entries for new directories, which creates hard links to the
i-node representing the directory

Chapter 5. File Systems and Logical Volumes 143

Symbolic links are recommended for creating additional links to a directory. Symbolic links do not interfere
with the . and .. directory entries and will maintain the empty, well-formed directory status. The following
illustrates an example of the empty, well-formed directory /u/joe/foo and the i_nlink values.

/u

68 j o] e 0

/u/joe
mkdir ("foo", 0666)
68 n 0
n n
235 f o] 0
/u/joe/foo
235 n 0 0 0
68 n n 0 0

i_nlink Values

i =68

n_link 3

For i = 68, the n_link value is 3 (/u; /u/joe; /uljoe/foo).

i =235

n_link 2

For i = 235, the n_link value is 2 (/u/joe; /u/joe/foo).

Using File Descriptors

A file descriptor is an unsigned integer used by a process to identify an open file. The number of file
descriptors available to a process is limited by the JOPEN_MAX control in the sys/limits.h file. The
number of file descriptors is also controlled by the ulimit -n flag. The open, pipe, creat, and fcntl
subroutines all generate file descriptors. File descriptors are generally unique to each process, but they
can be shared by child processes created with a fork subroutine or copied by the fentl, dup, and dup2
subroutines.

File descriptors are indexes to the file descriptor table in the u_block area maintained by the kernel for
each process. The most common ways for processes to obtain file descriptors are through open or creat
operations or through inheritance from a parent process. When a fork operation occurs, the descriptor
table is copied for the child process, which allows the child process equal access to the files used by the
parent process.

144 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

File Descriptor Tables and System Open File Tables

The file descriptor and open file table structures track each process’ access to a file and ensure data
integrity.

file descriptor table Translates an index number (file descriptor) in the table to an open file. File
descriptor tables are created for each process and are located in the u_block area
set aside for that process. Each of the entries in a file descriptor table has the
following fields: the flags area and the file pointer. There are up to OPEN_MAX file
descriptors. The structure of the file descriptor table is as follows:

struct ufd
{
struct file *fp;
int flags;
b *u_ufd
system open file table Contains entries for each open file. A file table entry tracks the current offset
referenced by all read or write operations to the file and the open mode
(O_RDONLY, O_WRONLY, or O_RDWR) of the file.

The open file table structure contains the current 1/O offset for the file. The system
treats each read/write operation as an implied seek to the current offset. Thus if x
bytes are read or written, the pointer advances x bytes. The subroutine can be
used to reassign the current offset to a specified location in files that are randomly
accessible. Stream-type files (such as pipes and sockets) do not use the offset
because the data in the file is not randomly accessible.

Managing File Descriptors

Because files can be shared by many users, it is necessary to allow related processes to share a common
offset pointer and have a separate current offset pointer for independent processes that access the same
file. The open file table entry maintains a reference count to track the number of file descriptors assigned
to the file.

Multiple references to a single file can be caused by any of the following:

* A separate process opening the file

» Child processes retaining the file descriptors assigned to the parent process
» The fentl or dup subroutine creating copies of the file descriptors

Sharing Open Files
Each open operation creates a system open file table entry. Separate table entries ensure each process
has separate current I/O offsets. Independent offsets protect the integrity of the data.

When a file descriptor is duplicated, two processes then share the same offset and interleaving can occur,
in which bytes are not read or written sequentially.

Duplicating File Descriptors
File descriptors can be duplicated between processes in the following ways: the dup or dup2 subroutine,
the fork subroutine, and the fentl (file descriptor control) subroutine.

dup and dup2 Subroutines

The dup subroutine creates a copy of a file descriptor. The duplicate is created at an empty space
in the user file descriptor table that contains the original descriptor. A dup process increments the
reference count in the file table entry by 1 and returns the index number of the file-descriptor
where the copy was placed.

The dup2 subroutine scans for the requested descriptor assignment and closes the requested file
descriptor if it is open. It allows the process to designate which descriptor entry the copy will
occupy, if a specific descriptor-table entry is required.

Chapter 5. File Systems and Logical Volumes 145

fork Subroutine
The fork subroutine creates a child process that inherits the file descriptors assigned to the parent
process. The child process then execs a new process. Inherited descriptors that had the
close-on-exec flag set by the fentl subroutine close.

fentl (File Descriptor Control) Subroutine
The fentl subroutine manipulates file structure and controls open file descriptors. It can be used to
make the following changes to a descriptor:

» Duplicate a file descriptor (identical to the dup subroutine).

* Get or set the close-on-exec flag.

» Set nonblocking mode for the descriptor.

» Append future writes to the end of the file (O_APPEND).

» Enable the generation of a signal to the process when it is possible to do 1/O.
» Set or get the process ID or the group process ID for SIGIO handling.

» Close all file descriptors.

Preset File Descriptor Values

When the shell runs a program, it opens three files with file descriptors 0, 1, and 2. The default
assignments for these descriptors are as follows:

0 Represents standard input.
1 Represents standard output.
2 Represents standard error.

These default file descriptors are connected to the terminal, so that if a program reads file descriptor 0 and
writes file descriptors 1 and 2, the program collects input from the terminal and sends output to the
terminal. As the program uses other files, file descriptors are assigned in ascending order.

If 1/O is redirected using the < (less than) or > (greater than) symbols, the shell’s default file descriptor
assignments are changed. For example, the following changes the default assignments for file descriptors
0 and 1 from the terminal to the appropriate files:

prog < FileX > FileY

In this example, file descriptor 0 now refers to FileX and file descriptor 1 refers to FileY. File descriptor 2
has not been changed. The program does not need to know where its input comes from nor where it is
sent, as long as file descriptor 0 represents the input file and 1 and 2 represent output files.

The following sample program illustrates the redirection of standard output:

#include <fcntl.h>
#include <stdio.h>

void redirect_stdout(char *);

main()
{
printf("Hello world\n"); /*this printf goes to
* standard outputx/
fflush(stdout);
redirect_stdout("foo"); /*redirect standard outputx*/
printf("Hello to you too, foo\n");
/*printf goes to file foo */
fflush(stdout);

146 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

void
redirect_stdout(char *filename)
{
int fd;
if ((fd = open(filename,0 CREAT|O_WRONLY,0666)) < 0)
/*open a new file */
{

perror(filename);

exit(1);
}
close(1); /*close old */
xstandard output*/
if (dup(fd) !=1) /*dup new fd to

xstandard inputx*/

{
fprintf(stderr,"Unexpected dup failure\n");

exit(1);

close(fd); /*close original, new fd,*/
* no Tonger needed*/

}

Within the file descriptor table, file descriptor numbers are assigned the lowest descriptor number available
at the time of a request for a descriptor. However, any value can be assigned within the file descriptor
table by using the dup subroutine.

File Descriptor Resource Limit

The number of file descriptors that can be allocated to a process is governed by a resource limit. The
default value is set in the /etc/security/limits file and is typically set at 2000. The limit can be changed by
the ulimit command or the setrlimit subroutine. The maximum size is defined by the constant
OPEN_MAX.

Creating and Removing Files

This section describes the internal procedures performed by the operating system when creating, opening,
or closing files.

Creating a File

Different subroutines create specific types of files, as follows:

Subroutine Type of File Created

creat Regular

Regular (when the O_CREAT flag is set)
Regular, first-in-first-out (FIFO), or special
Named pipe (FIFO)

Unnamed pipe

Sockets

Directories

Symbolic link

Creating a Regular File (creat, open, or mknod Subroutines)

You use the subroutine to create a file according to the values set in the Pathname and Mode
parameters. If the file named in the Pathname parameter exists and the process has write permission to
the file, the creat subroutine truncates the file. Truncation releases all data blocks and sets the file size to
0. You can also create new, regular files using the open subroutine with the O_CREAT flag.

Chapter 5. File Systems and Logical Volumes 147

Files created with the creat, [mkfifo, or Imknod| subroutine take the access permissions set in the Mode
parameter. Regular files created with the open subroutine take their access modes from the O_CREAT
flag Mode parameter. Thesubroutine sets a file-mode creation mask (set of access modes) for

new files created by processes and returns the previous value of the mask.

The permission bits on a newly created file are a result of the reverse of the umask bits ANDed with the
file-creation mode bits set by the creating process. When a new file is created by a process, the operating
system performs the following actions:

» Determines the permissions of the creating process
* Retrieves the appropriate umask value
* Reverses the umask value

» Uses the AND operation to combine the permissions of the creating process with the reverse of the
umask value

Creating a Special File (mknod or mkfifo Subroutine)

You can use the mknod and mkfifo subroutines to create new special files. The mknod subroutine
handles named pipes (FIFO), ordinary, and device files. It creates an i-node for a file identical to that
created by the creat subroutine. When you use the mknod subroutine, the file-type field is set to indicate
the type of file being created. If the file is a block or character-type device file, the names of the major and
minor devices are written into the i-node.

The mkfifo subroutine is an interface for the mknod subroutine and is used to create named pipes.
Opening a File

Thesubroutine is the first step required for a process to access an existing file. The open
subroutine returns a file descriptor. Reading, writing, seeking, duplicating, setting I/O parameters,
determining file status, and closing the file all use the file descriptor returned by the open call. The open
subroutine creates entries for a file in the file descriptor table when assigning file descriptors.

The open subroutine does the following:
» Checks for appropriate permissions that allow the process access to the file.

» Assigns a entry in the file descriptor table for the open file. The open subroutine sets the initial
read/write byte offset to 0, the beginning of the file.

The or ioctlx subroutines perform control operations on opened special device files.

Closing a File

When a process no longer needs access to the open file, the subroutine removes the entry for the
file from the table. If more than one file descriptor references the file table entry for the file, the reference
count for the file is decreased by 1, and the close completes. If a file has only 1 reference to it, the file
table entry is freed. Attempts by the process to use the disconnected file descriptor result in errors until
another open subroutine reassigns a value for that file descriptor value. When a process exits, the kernel
examines its active user file descriptors and internally closes each one. This action ensures that all files
close before the process ends.

148 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Working with File 1/0

All input and output (I/0O) operations use the current file offset information stored in the system file
structure. The current I/O offset designates a byte offset that is constantly tracked for every open file. The
current 1/0O offset signals a read or write process where to begin operations in the file. The open
subroutine resets it to 0. The pointer can be set or changed using the||seeﬂ subroutine. For more
information, see [‘File Descriptor Tables and System Open File Tables” on page 145.|

Manipulating the Current Offset

Read and write operations can access a file sequentially because the current 1/O offset of the file tracks
the byte offset of each previous operation. The offset is stored in the system file table.

You can adjust the offset on files that can be randomly accessed, such as regular and special-type files,
using the Iseek subroutine.

Allows a process to position the offset at a designated byte. The Iseek subroutine positions the pointer at
the byte designated by the Offset variable. The Offset value can be calculated from the following places in
the file (designated by the value of the Whence variable):

absolute offset
Beginning byte of the file

relative offset
Position of the former pointer

end_relative offset
End of the file

The return value for the Iseek subroutine is the current value of the pointer’s position in the file. For
example:

cur_off= 1seek(fd, 0, SEEK CUR);

The Iseek subroutine is implemented in the file table. All subsequent read and write operations use the
new position of the offset as their starting location.

Note: The offset cannot be changed on pipes or socket-type files.

Subroutine that creates an empty space in a file. It sets to zero the number of bytes designated in the
NumberOfBytes variable beginning at the current offset. The fclear subroutine cannot be used if the
O_DEFER flag was set at the time the file was opened.

Reading a File

Subroutine that copies a specified number of bytes from an open file to a specified buffer. The copy
begins at the point indicated by the current offset. The number of bytes and buffer are specified by
the NBytes and Buffer parameters.

The read subroutine does the following:

1. Ensures that the FileDescriptor parameter is valid and that the process has read permissions. The
subroutine then gets the file table entry specified by the FileDescriptor parameter.

2. Sets a flag in the file to indicate a read operation is in progress. This action locks other processes out
of the file during the operation.

3. Converts the offset byte value and the value of the NBytes variables into a block address.
4. Transfers the contents of the identified block into a storage buffer.

Chapter 5. File Systems and Logical Volumes 149

5. Copies the contents of the storage buffer into the area designated by the Buffer variable.

6. Updates the current offset according to the number of bytes actually read. Resetting the offset ensures
that the data is read in sequence by the next read process.

7. Deducts the number of bytes read from the total specified in the NByte variable.
8. Loops until the number of bytes to be read is satisfied.
9. Returns the total number of bytes read.

The cycle completes when the file to be read is empty, the number of bytes requested is met, or a reading
error is encountered during the process.

To avoid an extra iteration in the read loop, start read requests at the beginning of data block boundaries
and to be multiples of the data block size. If a process reads blocks sequentially, the operating system
assumes all subsequent reads will also be sequential.

During the read operation, the i-node is locked. No other processes are allowed to modify the contents of
the file while a read is in progress. However the file is unlocked immediately on completion of the read
operation. If another process changes the file between two read operations, the resulting data is different,
but the integrity of the data structure is maintained.

The following example illustrates how to use the read subroutine to count the number of null bytes in the
foo file:

#include <fcntl.h>
#include <sys/param.h>

main()
{
int fd;
int nbytes;
int nnulls;
int i;
char buf[PAGESIZE]; /*A convenient buffer sizex/
nnulls=0;
if ((fd = open("foo",0 RDONLY)) < 0)
exit();
while ((nbytes
for (i

read(fd,buf,sizeof(buf))) > 0)
0; i < nbytes; i++)
if (buf[i] == '\0';
nnulls++;
printf("%d nulls found\n", nnulls);

}
Writing a File

Subroutine that adds the amount of data specified in the NBytes variable from the space designated by the
Buffer variable to the file described by the FileDescriptor variable. It functions similar to the read
subroutine. The byte offset for the write operation is found in the system file table’s current offset.

If you write to a file that does not contain a block corresponding to the byte offset resulting from the write
process, the write subroutine allocates a new block. This new block is added to the i-node information that
defines the file. Adding the new block might allocate more than one block if the underlying file system
needs to add blocks for addressing the file blocks.

During the write operation, the i-node is locked. No other processes are allowed to modify the contents of
the file while a write is in progress. However, the file is unlocked immediately on completion of the write
operation. If another process changes the file between two write operations, the resulting data is different,
but the integrity of the data structure is maintained.

150 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

The write subroutine loops in a way similar to the read subroutine, logically writing one block to disk for
each iteration. At each iteration, the process either writes an entire block or only a portion of one. If only a
portion of a data block is required to accomplish an operation, the write subroutine reads the block from
disk to avoid overwriting existing information. If an entire block is required, it does not read the block
because the entire block is overwritten. The write operation proceeds block by block until the number of
bytes designated in the NBytes parameter is written.

Delayed Write

You can designate a delayed write process with the O_DEFER flag. The data is then transferred to disk as
a temporary file. The delayed write feature caches the data in case another process reads or writes the
data sooner. Delayed write saves extra disk operations. Many programs, such as mail and editors, create
temporary files in the /tmp directory and quickly remove them.

When a file is opened with the deferred update (O_DEFER) flag, the data is not written to permanent
storage until a process issues an@ subroutine call or a process issues a synchronous write to the file
(opened with O_SYNC flag). The fsync subroutine saves all changes in an open file to disk. See the
subroutine for a description of the O_DEFER and O_SYNC flags.

Truncatin% Files

The [truncate| or ftruncate subroutines change the length of regular files. The truncating process must
have write permission to the file. The Length variable value indicates the size of the file after the truncation
operation is complete. All measures are relative to the first byte of the file, not the current offset. If the new
length (designated in the Length variable) is less than the previous length, the data between the two is
removed. If the new length is greater than the existing length, zeros are added to extend the file size.
When truncation is complete, full blocks are returned to the file system, and the file size is updated.

Direct I/0 vs. Normal Cached 1/O

Normally, the JFS or JFS2 caches file pages in kernel memory. When the application does a file read
request, if the file page is not in memory, the JFS or JFS2 reads the data from the disk into the file cache,
then copies the data from the file cache to the user’s buffer. For application writes, the data is merely
copied from the user’s buffer into the cache. The actual writes to disk are done later.

This type of caching policy can be extremely effective when the cache hit rate is high. It also enables
read-ahead and write-behind policies. Lastly, it makes file writes asynchronous, allowing the application to
continue processing instead of waiting for I/O requests to complete.

Direct I/O is an alternative caching policy that causes the file data to be transferred directly between the
disk and the user’s buffer. Direct I/O for files is functionally equivalent to raw 1/O for devices. Applications
can use direct I/O on JFS or JFS2 files.

Benefits of Direct I/O

The primary benefit of direct I/O is to reduce CPU utilization for file reads and writes by eliminating the
copy from the cache to the user buffer. This can also be a benefit for file data which has a very poor
cache hit rate. If the cache hit rate is low, then most read requests have to go to the disk. Direct I/O can
also benefit applications that must use synchronous writes because these writes have to go to disk. In
both of these cases, CPU usage is reduced because the data copy is eliminated.

A second benefit of direct I/O is that it allows applications to avoid diluting the effectiveness of caching of
other files. Anytime a file is read or written, that file competes for space in the cache. This situation may
cause other file data to be pushed out of the cache. If the newly cached data has very poor reuse
characteristics, the effectiveness of the cache can be reduced. Direct I/O gives applications the ability to
identify files where the normal caching policies are ineffective, thus releasing more cache space for files
where the policies are effective.

Chapter 5. File Systems and Logical Volumes 151

Performance Costs of Direct I/O

Although direct I/0 can reduce CPU usage, using it typically results in the process taking longer to
complete, especially for relatively small requests. This penalty is caused by the fundamental differences
between normal cached 1/O and direct 1/O.

Direct I/0O Reads

Every direct I/O read causes a synchronous read from disk; unlike the normal cached I/O policy where
read may be satisfied from the cache. This can result in very poor performance if the data was likely to be
in memory under the normal caching policy.

Direct 1/0 also bypasses the normal JFS or JFS2 read-ahead algorithms. These algorithms can be
extremely effective for sequential access to files by issuing larger and larger read requests and by
overlapping reads of future blocks with application processing.

Applications can compensate for the loss of JFS or JFS2 read-ahead by issuing larger read requests. At a
minimum, direct I/O readers should issue read requests of at least 128k to match the JFS or JFS2
read-ahead characteristics.

Applications can also simulate JFS or JFS2 read-ahead by issuing asynchronous direct 1/0O read-ahead
either by use of multiple threads or by using the aio_read subroutine.

Direct I/O Writes

Every direct I/0O write causes a synchronous write to disk; unlike the normal cached I/O policy where the
data is merely copied and then written to disk later. This fundamental difference can cause a significant
performance penalty for applications that are converted to use direct I/O.

Conflicting File Access Modes

To avoid consistency issues between programs that use direct /0O and programs that use normal cached
I/0, direct 1/O is an exclusive use mode. If there are multiple opens of a file and some of them are direct
and others are not, the file will stay in its normal cached access mode. Only when the file is open
exclusively by direct 1/0 programs will the file be placed in direct /0O mode.

Similarly, if the file is mapped into virtual memory through the shmat or mmap system calls, the file will
stay in normal cached mode.

The JFS or JFS2 will attempt to move the file into direct I/O mode anytime the last conflicting or non-direct
access is eliminated (either by the close, munmap, or shmdt subroutines). Changing the file from normal
mode to direct I/O mode can be rather expensive because it requires writing all modified pages to disk and
removing all the file’s pages from memory.

Enabling Applications to use Direct 1/0

Applications enable direct I/O access to a file by passing the O_DIRECT flag to the subroutine. This
flag is defined in the [fcntl.h] file. Applications must be compiled with _ALL_SOURCE enabled to see the
definition of O_DIRECT.

Offset/Length/Address Alignment Requirements of the Target Buffer

For direct I/O to work efficiently, the request should be suitably conditioned. Applications can query the
offset, length, and address alignment requirements by using the finfo and ffinfo subroutines. When the
FI_DIOCAP command is used, the finfo and ffinfo subroutines return information in the diocapbuf
structure as described in the sys/finfo.h file. This structure contains the following fields:

dio_offset Recommended offset alignment for direct I/O writes to files in this file system
dio_max Recommended maximum write length for direct I/O writes to files in this system
dio_min Recommended minimum write length for direct 1/O writes to files in this file system
dio_align Recommended buffer alignment for direct 1/0O writes to files in this file system

152 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Failure to meet these requirements may cause file reads and writes to use the normal cached model and
may cause direct 1/0 to be disabled for the file. Different file systems may have different requirements, as
the following table illustrates.

File System Format dio_offset dio_max dio_min dio_align
JFS fixed, 4 K blk 4 K 2 MB 4 K 4 K
JFS fragmented 4 K 2 MB 4 K 4 K
JFS compressed n/a n/a n/a n/a
JFS big file 128 K 2 MB 128 K 4 K
JFS2 4 K 4 GB 4 K 4 K

Direct I/O Limitations
Direct 1/0 is not supported for files in a compressed-file file system. Attempts to open these files with
O_DIRECT will be ignored and the files will be accessed with the normal cached I/O methods.

Direct I/0O and Data I/O Integrity Completion

Although direct I/O writes are done synchronously, they do not provide synchronized I/O data integrity
completion, as defined by POSIX. Applications that need this feature should use O_DSYNC in addition to
O_DIRECT. O_DSYNC guarantees that all of the data and enough of the metadata (for example, indirect
blocks) have written to the stable store to be able to retrieve the data after a system crash. O_DIRECT
only writes the data; it does not write the metadata.

Working with Pipes

Pipes are unnamed objects created to allow two processes to communicate. One process reads and the
other process writes to the pipe file. This unique type of file is also called a first-in-first-out (FIFO) file. The
data blocks of the FIFO are manipulated in a circular queue, maintaining read and write pointers internally
to preserve the FIFO order of data. The PIPE_BUF system variable, defined in thefile, designates
the maximum number of bytes guaranteed to be atomic when written to a pipe.

The shell uses unnamed pipes to implement command pipelining. Most unnamed pipes are created by the
shell. The | (vertical) symbol represents a pipe between processes. In the following example, the output of
the |E| command is printed to the screen:

s | pr

Pipes are treated as regular files as much is possible. Normally, the current offset information is stored in
the system file table. However, because pipes are shared by processes, the read/write pointers must be
specific to the file, not to the process. File table entries are created by the open subroutine and are unique
to the open process, not to the file. Processes with access to pipes share the access through common
system file table entries.

Using Pipe Subroutines

Thesubroutine creates an interprocess channel and returns two file descriptors. File descriptor 0 is
opened for reading. File descriptor 1 is opened for writing. The read operation accesses the data on a
FIFO basis. These file descriptors are used with [read| |write} and [close| subroutines.

In the following example, a child process is created and sends its process ID back through a pipe:

#include <sys/types.h>
main()
{
int p[2];
char buf[80];
pid_t pid;

Chapter 5. File Systems and Logical Volumes 153

}

}f(MPem))

perror("pipe failed");
exit(1)"'

}
if ((pid=fork()) == 0)
{

/* in child process */
close(p[0]); /*close unused read */
xside of the pipe */
sprintf(buf,"%d",getpid());
/*construct data */
/*to send */
write(p[1],buf,strlen(buf)+1);
/*write it out, including
/*null byte =/
exit(0);

/*in parent process*/
close(p[1]); /*close unused write side of pipe */
read(p[0] ,buf,sizeof(buf)); /*read the pipe*/
printf("Child process said: %s/n", buf);
/*display the result */
exit(0);

If a process reads an empty pipe, the process waits until data arrives. If a process writes to a pipe that is
too full (PIPE_BUF), the process waits until space is available. If the write side of the pipe is closed, a
subsequent read operation to the pipe returns an end-of-file.

Other subroutines that control pipes are the [popen| and |[pclose| subroutines:

popen

pclose

Creates the pipe (using the pipe subroutine) then forks to create a copy of the caller. The child
process decides whether it is supposed to read or write, closes the other side of the pipe, then
calls the shell (using the subroutine) to run the desired process.

The parent closes the end of the pipe it did not use. These closes are necessary to make
end-of-file tests work correctly. For example, if a child process intended to read the pipe does not
close the write end of the pipe, it will never see the end of file condition on the pipe, because
there is one write process potentially active.

The conventional way to associate the pipe descriptor with the standard input of a process is:
close(p[1]);

close(0);

dup(p[0]);

close(p[0]);

The close subroutine disconnects file descriptor 0, the standard input. The subroutine returns
a duplicate of an already open file descriptor. File descriptors are assigned in ascending order and
the first available one is returned. The effect of the dup subroutine is to copy the file descriptor for
the pipe (read side) to file descriptor 0, thus standard input becomes the read side of the pipe.
Finally, the previous read side is closed. The process is similar for a child process to write from a
parent.

Closes a pipe between the calling program and a shell command to be executed. Use the pclose
subroutine to close any stream opened with the popen subroutine.

The pclose subroutine waits for the associated process to end, then closes and returns the exit
status of the command. This subroutine is preferable to the close subroutine because pclose
waits for child processes to finish before closing the pipe. Equally important, when a process

154 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

creates several children, only a bounded number of unfinished child processes can exist, even if
some of them have completed their tasks. Performing the wait allows child processes to complete
their tasks.

Synchronous 1/O

By default, writes to files in JFS or JFS2 file systems are asynchronous. However, JFS and JFS2 file
systems support the following types of synchronous I/O:

Specified by the O_DSYNC open flag. When a file is opened using the O_DSYNC open mode, the write
() system call will not return until the file data and all file system meta-data required to retrieve the file
data are both written to their permanent storage locations.

Specified by the O_SYNC open flag. In addition to items specified by O_DSYNC, O_SYNC specifies
that the write () system call will not return until all file attributes relative to the 1/0 are written to their
permanent storage locations, even if the attributes are not required to retrieve the file data.

Before the O_DSYNC open mode existed, AIX applied O_DSYNC semantics to O_SYNC. For binary
compatibility reasons, this behavior still exists. If true O_SYNC behavior is required, then both
O_DSYNC and O_SYNC open flags must be specified. Exporting the XPG_SUS_ENV=0N environment
variable also enables true O_SYNC behavior.

Specified by the O_RSYNC open flag, and it simply applies the behaviors associated with O_SYNC or
_DSYNC to reads. For files in JFS and JFS2 file systems, only the combination of O_RSYNC |
O_SYNC has meaning, indicating that the read system call will not return until the file’s access time is
written to its permanent storage location.

File Status

File status information resides in the i-node. The subroutines are used to return information on a file.
The stat subroutines report file type, file owner, access mode, file size, number of links, i-node number,
and file access times. These subroutines write information into a data structure designated by the Buffer
variable. The process must have search permission for the directories in the path to the designated file.

stat Subroutine that returns the information about files named by the Path parameter. If the size of the file
cannot be represented in the structure designated by the Buffer variable, stat will fail with the errno set to
EOVERFLOW.

Istat Subroutine that provides information about a symbolic link, and the stat subroutine returns information

about the file referenced by the link.

fstat Returns information from an open file using the file descriptor.

The fstafs, and ustat subroutines return status information about a file system.

fstatfs Returns the information about the file system that contains the file associated with the

given file descriptor. The structure of the returned information is described in the
lusr/include/sys/statfs.h file for the statfs and fstatfs subroutines and in the ustat.h
file for the ustat subroutine.

statfs Returns information about the file system that contains the file specified by the Path
parameter.
ustat Returns information about a mounted file system designated by the Device variable.

This device identifier is for any given file and can be determined by examining the
st_dev field of the stat structure defined in the /usr/include/sys/stat.h file. The ustat
subroutine is superseded by the statfs and fstatfs subroutines.

and utime Also affect file status information by changing the file access and modification time in

the i-node.

Chapter 5. File Systems and Logical Volumes 155

File Accessibility

Every file is created with an access mode. Each access mode grants read, write, or execute permission to
users, the user’s group, and all other users.

The access bits on a newly created file are a result of the reverse of the umask bits ANDed with the
file-creation mode bits set by the creating process. When a new file is created by a process, the operating
system performs the following actions:

» Determines the permissions of the creating process
* Retrieves the appropriate umask value
* Reverses the umask value

» Uses the AND operation to combine the permissions of the creating process with the reverse of the
umask value

For example, if an existing file has the 027 permissions bits set, the user is not allowed any permissions.
Write permission is granted to the group. Read, write, and execute access is set for all others. The umask
value of the 027 permissions modes would be 750 (the opposite of the original permissions). When 750 is
ANDed with 666 (the file creation mode bits set by the system call that created the file), the actual
permissions for the file are 640. Another representation of this example is:

027 = _ _ _ _W_ RWUWX Existing file access mode
750 =RWX R_X _ Reverse (umask) of original
permissions

666 = RW _ RW _ RW_ File creation access mode

ANDED TO

750 =RWX R_X _ _ _ The umask value

640 =RW_ R _ _ _ _ _ Resulting file access mode

[access| subroutine Investigates and reports on the accessibility mode of the file named in the Pathname
parameter. This subroutine uses the real user ID and the real group ID instead of the
effective user and group ID. Using the real user and group IDs allows programs with
the set-user-ID and set-group-ID access modes to limit access only to users with
proper authorization.

and fchmod Changes file access permissions.

subroutines

[chown] subroutine Resets the ownership field of the i-node for the file and clears the previous owner.
The new information is written to the i-node and the process finishes. The
subroutine works in similar fashion, but the permission mode flags are changed
instead of the file ownership.

umask Sets and gets the value of the file creation mask.

In the following example, the user does not have access to the file secrets. However, when the program
special is run and the access mode for the program is set-ulD root, the program can access the file. The
program must use the access subroutine to prevent subversion of system security.

$ 1s -1
total 0
-r-s--Xx--X 1 root system 8290 Jun 09 17:07 special
“rW--=--- 1 root system 1833 Jun 09 17:07 secrets

$ cat secrets
cat: cannot open secrets

The access subroutine must be used by any set-ulD or set-gID program to forestall this type of intrusion.

Changing file ownership and access modes are actions that affect the i-node, not the data in the file. To
make these changes, the owner of the process must have root user authority or own the file.

156 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Creating New File System Types

If it is necessary to create a new type of file system, file system helpers and mount helpers must be
created. This section provides information about the implementation specifics and execution syntax of file
system helpers and mount helpers.

File System Helpers

To enable support of multiple file system types, most file system commands do not contain the code that
communicates with individual file systems. Instead, the commands collect parameters, file system names,
and other information not specific to one file system type and then pass this information to a back-end
program. The back end understands specific information about the relevant file system type and does the
detail work of communicating with the file system. Back-end programs used by file system commands are
known as file system helpers and mount helpers.

To determine the appropriate file system helper, the front-end command looks for a helper under the
Isbin/helpers/vistypelcommand file, where vfstype matches the file system type found in the /etc/vfs file
and command matches the name of the command being executed. The flags passed to the front-end
command are passed to the file system helper.

One required file system helper that needs to be provided, called fstype, does not match a command
name. This helper is used to identify if a specified logical volume contains a file system of the vfstype of
the helper.

* The helper returns 0 if the logical volume does not contain a file system of its type. A return value of 0
indicates the logical volume does not contain a log.

* The helper returns 1 if the logical volume does contain a file system of its type and the file system does
not need a separate device for a log. A return value of 1 indicates the logical volume does contain a log.

» The helper returns 2 if the logical volume does contain a file system of its type and the file system does
need a separate device for a log. If the -l flag is specified, the fstype helper should check for a log of its
file system type on the specified logical volume.

Obsolete File System Helper Mechanism
This section describes the obsolete file system helper mechanism that was used on previous versions of
AIX. This mechanism is still available but should not be used anymore.

File System Helper Operations
The following table lists the possible operations requested of a helper in the /usr/include/fshelp.h file:

Helper Operations Value
#define FSHOP_NULL
#define FSHOP_CHECK
#define FSHOP_CHGSIZ
#define FSHOP_FINDATA
#define FSHOP_FREE
#define FSHOP_MAKE
#define FSHOP_REBUILD
#define FSHOP_STATFS
#define FSHOP_STAT
#define FSHOP_USAGE
#define FSHOP_NAMEI
#define FSHOP_DEBUG

- =4 ©O 0O NO O hA~,WN-—=O

However, the JFS file system supports only the following operations:

Chapter 5. File Systems and Logical Volumes 157

Operation Value Corresponding Command

#define FSHOP_CHECK 1
#define FSHOP_CHGSIZ 2
#define FSHOP_MAKE 5

#define FSHOP_STATFS 7

#define FSHOP_NAMEI 10

=~

fsc

H@ﬁﬁ
] B
vl W

File System Helper Execution Syntax

The execution syntax of the

file system helper is as follows:

OpName OpKey FilsysFileDescriptor PipeFileDescriptor Modeflags

DebuglLevel OpFlags

Field
OpName

OpKey

FilsysFileDescriptor
PipeFileDescriptor

Modeflags

DebugLevel

OpFlags

Mount Helpers

Definition

Specifies the arg0 parameter when the program invokes the helper. The value of the
OpName field appears in a list of processes (see the@command).

Corresponds to the available helper operations. Thus, if the OpKey value is 1, the fsck
(file system check) operation is being requested.

Indicates the file descriptor on which the file system has been opened by the program.
Indicates the file descriptor of the pipe (see the@ subroutine) that is open between
the original program and the helper program. This channel allows the helper to
communicate with the front-end program.

Example: The helper sends an indication of its success or failure through the pipe,
which can affect further front-end processing. Also, if the debug level is high enough,
the helper can have additional information to send to the original program.

Provides an indication of how the helper is being invoked and can affect the behavior
of the helper, especially in regard to error reporting. Mode flags are defined in the
lustr/include/fshelp.h file:

Flags Indicator
#define FSHMOD_INTERACT_FLAG it
#define FSHMOD_FORCE_FLAG e
#define FSHMOD_NONBLOCK_FLAG "n"
#define FSHMOD PERROR_FLAG "p"
#define FSHMOD_ERRDUMP_FLAG e
#define FSHMOD_STANDALONE_FLAG st
#define FSHMOD_IGNDEVTYPE_FLAG tn

Example: The FSHMOD_INTERACT flag indicates whether the command is being run
interactively (determined by testing the isatty subroutine on the standard input). Not
every operation uses all (or any) of these modes.

Determines the amount of debugging information required: the higher the debugging
level, the more detailed the information returned.

Includes the actual device (or devices) on which the operation is to be performed and
any other options specified by the front end.

The mount command is a front-end program that uses a helper to communicate with specific file systems.

Helper programs for the [Imount| and lumount (or unmount) commands are called mount helpers.

Like other file system-specific commands, the mount command collects the parameters and options given
at the command line and interprets that information within the context of the file system configuration

information found in the |/etc/filesystems| file. Using the information in the /etc/filesystems file, the

158 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

command invokes the appropriate mount helper for the type of file system involved. For example, if the
user types the following, the mount command checks the /etc/filesystems file for the stanza that
describes the /test file system.

mount /test

From the /etc/filesystems file, the mount command determines that the /test file system is a remote NFS
mount from the node named host1l. The mount command also notes any options associated with the
mount.

An example /etc/filesystems file stanza is as follows:

/test:
dev = /export
vfs = nfs
nodename = hostl

options = ro,fg,hard,intr

The file system type (nfs in our example) determines which mount helper to invoke. The command
compares the file system type to the first fields in the file. The field that matches will have the
mount helper as its third field.

Mount Helper Execution Syntax
The following is a sample of the execution syntax of the mount helper:

/etc/helpers/nfsmnthelp M 0 hostl /export /test ro,fg,hard,intr

Both the mount and unmount commands have six parameters. The first four parameters are the same for
both commands:

operation Indicates operation requested of the helper. Values are either M (mount operation), Q (query
operation), or U (unmount operation). The query operation is obsolete.

debuglevel Gives the numeric parameter for the -D flag. Neither the mount nor the unmount commands
support the -D flag, so the value is 0.

nodename Names the node for a remote mount or a null string for local mounts. The mount or unmount
commands do not invoke a mount helper if the nodename parameter is null.

object Names the local or remote device, directory, or file that is being mounted or unmounted. Not all

file systems support all combinations. For example, most remote file systems do not support
device mounts, while most local file systems do not support anything else.

The remaining parameters for the mount command are as follows:

mount point Names the local directory or file where the object is to be mounted.

options Lists any file system-specific options, separated by commas. Information for this parameter
comes from the options field of the relevant stanza in the /etc/filesystems file or from the -o
Options flag on the command line (mount -o Options). The mount command also recognizes
the -r (read-only) flag and converts it to the string ro in this field.

The remaining parameters for the unmount command are as follows:

visNumber Gives the unique number that identifies the mount being undone. The unique number is returned by
the vmount call and can be retrieved by calling the mntctl or stat subroutine. For the mount
helper, this parameter is used as the first parameter to thesubroutine call that actually
does the unmount.

flag Gives the value of the second parameter to the uvmount subroutine. The value is 1 if the unmount
operation is forced using the -f flag (umount -f). Otherwise, the value is 0. Not all file systems
support forced unmounts.

Chapter 5. File Systems and Logical Volumes 159

Logical Volume Programming

The Logical Volume Manager (LVM) consists of the library of LVM subroutines and the logical volume
device driver, described as follows:

» Library of LVM subroutines. These subroutines define volume groups and maintain the logical and
physical volumes of volume groups.

» Logical volume device driver. The logical volume device driver is a pseudo-device driver that processes
all logical 1/0. It exists as a layer between the file system and the disk device drivers. The logical
volume device driver converts a logical address to a physical address, handles mirroring and bad-block
relocation, and then sends the 1/O request to the specific disk device driver. Interfaces to the logical
volume device driver are provided by the |open| [close] [read| [write, and [ioctl| subroutines.

For a description of the readx and writex extension parameters and those ioctl operations specific to the
logical volume device driver, see the AIX 5L Version 5.3 Kernel Extensions and Device Support
Programming Concepits.

For more information about logical volumes, see the Operating system and device management.

Library of Logical Volume Subroutines

LVM subroutines define and maintain the logical and physical volumes of a volume group. System
management commands use these subroutines to perform system management for the logical and
physical volumes of a system. The programming interface for the library of LVM subroutines is available to
provide alternatives to or expand the function of the system management commands for logical volumes.

Note: The LVM subroutines use the sysconfig system call, which requires root user authority, to query
and update kernel data structures describing a volume group. You must have root user authority to
use the services of the LVM subroutine library.

The following services are available:

Ivm_§uerzlﬂ Queries a logical volume and returns all pertinent information.

lvm_querypvi Queries a physical volume and returns all pertinent information.

lvm_queryv Queries a volume group and returns pertinent information.

Ivm_guer§v§s| Queries the volume groups of the system and returns information for groups that are varied
online.

Related Information

For further information on this topic, see the following:

+ [Chapter 5, “File Systems and Logical Volumes,” on page 119

[Chapter 7, “Input and Output Handling,” on page 173

[Chapter 20, “System Memory Allocation Using the malloc Subsystem,” on page 411

« [File and directory links} [File systems], [Processes} [Logical volume storage} |File system management]

% in Operating system and device management

+ [Special Files Overview] [Header Files Overview|in AlX 5L Version 5.3 Files Reference

+ |Understanding Generic |-nodes (G-nodes), |Virtual File System Overview] [Programming in the Kernel

Environment] [Understanding the Logical Volume Device Driverin AIX 5L Version 5.3 Kernel Extensions

and Device Support Programming Concepts

+ |Command Support for Files Larger than 2 Gigabytes|in AIX 5L Version 5.3 Commands Reference,
Volume 6

160 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Subroutine References

The jaccess, accessx, or faccessx subroutine, ubroutine, or fchmod subroutine,

subroutine, |chroot| subroutine, |c|osE| subroutine, |exec} execl, execv, execle, execve, execlp, execvp or

exect subroutine, [fclear] subroutine, [fentll dup, or dup2 subroutine, |fsynE| subroutine, |ioct|| or ioctlx

subroutine, |Iin|§| subroutine, |Isee|§| subroutine, |mknod| or mkfifo subroutine, lopen, openx, open64, creat,

subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions

Volume 1.

The [read] readx, readv, or readvx subroutine, [readlink] subroutine, [remove] subroutine, [rmdid subroutine,

[statx, stat, Istat, fstatx, fstat, fullstat, ffullstat, stat64, Istat64, or fstat64] subroutine, [symlink]

subroutine,
Operating System and Extensions Volume 2.

subroutine, [truncate| or ftruncate subroutines, jumask| subroutine, [unlink subroutine, [utimes| or utime
write, w

JFS File System Subroutines

The most commonly used JFS subroutines are as follows:

fscntl Controls file system control operations
etfsent] getfsspec, getfsfile, getfstype, setfsent, or Obtains information about a file system

endfsent

Moves the read-write pointer

Returns mount status information

statfs| fstsfs, or ustat Reports file system statistics
Updates file systems to disk

vmount| or mount Makes a file system ready for use

Other subroutines are designed for use on virtual file systems (VFS):

getvfsbytype, getvfsbyname, getvfsbyflag, sevfsent, or endvfsent
Retrieve a VFS entry

or uvmount Remove VFS from the file tree

JFS2 File System Subroutines

The most commonly used JFS2 subroutines are as follows:

fscntl Controls file system control operations
etfsent] getfsspec, getfsfile, getfstype, setfsent, or Obtains information about a file system

endfsent

Moves the read-write pointer

Returns mount status information

statfs| fstsfs, or ustat Reports file system statistics
Updates file systems to disk

vmount| or mount Makes a file system ready for use

Other subroutines are designed for use on virtual file systems (VFS):

getvfsbytype, getvfsbyname, getvfsbyflag, Retrieves a VFS entry
sevfsent, or endvfsent

or uvmount Removes VFS from the file tree

Chapter 5. File Systems and Logical Volumes

ritex, writev, or writevx subroutine in AIX 5L Version 5.3 Technical Reference: Base

161

Commands References
The |E| command, @ command in AIX 5L Version 5.3 Commands Reference, Volume 3.

The @ command in AIX 5L Version 5.3 Commands Reference, Volume 4.

Files References
The [fullstat.h| file, [stat.h| file, [statfs.h file.

162 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Chapter 6. Floating-Point Exceptions

This chapter provides information about floating-point exceptions and how your programs can detect and
handle them.

The Institute of Electrical and Electronics Engineers (IEEE) defines a standard for floating-point exceptions
called the IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754). This standard defines five types
of floating-point exception that must be signaled when detected:

* Invalid operation
» Division by zero
* Overflow

* Underflow

* Inexact calculation

When one of these exceptions occurs in a user process, it is signaled either by setting a flag or taking a
trap. By default, the system sets a status flag in the Floating-Point Status and Control registers (FPSCR),
indicating the exception has occurred. Once the status flags are set by an exception, they are cleared only
when the process clears them explicitly or when the process ends. The operating system provides
subroutines to query, set, or clear these flags.

The system can also cause the floating-point exception signal (SIGFPE) to be raised if a floating-point
exception occurs. Because this is not the default behavior, the operating system provides subroutines to
change the state of the process so the signal is enabled. When a floating-point exception raises the
SIGFPE signal, the process terminates and produces a core file if no signal-handler subroutine is present
in the process. Otherwise, the process calls the signal-handler subroutine.

Floating-Point Exception Subroutines

Floating-point exception subroutines can be used to:
* Change the execution state of the process

* Enable the signaling of exceptions

» Disable exceptions or clear flags

» Determine which exceptions caused the signal

» Test the exception sticky flags

The following subroutines are provided to accomplish these tasks:

fp_any_xc orﬁe_divazerg Test the exception sticky flags
fp_enable|or [fp_enable_all Enable the signaling of exceptions
fp_inexact, [fp_invalid_op| [fp_iop_convert] Test the exception sticky flags

fp_iop_infdinf] [fp_iop_infmzd [fp_iop_infsinf]
fp_iop_invempl [fp_iop_snan| [fp_iop_sqrt|
fp_iop_vxsoft [fp_iop_zrdzr or [fp_overflow|

Determines which exceptions caused the signal
Disables exceptions or clear flags

Changes the execution state of the process
Tests the exception sticky flags

Installs signal handler

© Copyright IBM Corp. 1997, 2007 163

Floating-Point Trap Handler Operation

To generate a trap, a program must change the execution state of the process using the fp_trap
subroutine and enable the exception to be trapped using the fp_enable or fp_enable_all subroutine.

Changing the execution state of the program may slow performance because floating-point trapping
causes the process to execute in serial mode.

When a floating-point trap occurs, the SIGFPE signal is raised. By default, the SIGFPE signal causes the
process to terminate and produce a core file. To change this behavior, the program must establish a signal
handler for this signal. See the [sigaction| [sigvec| or|signal| subroutines for more information on signal
handlers.

Exceptions: Disabled and Enabled Comparison

Refer to the following lists for an illustration of the differences between the disabled and enabled
processing states and the subroutines that are used.

Exceptions-Disabled Model
The following subroutines test exception flags in the disabled processing state:

» fp_any_xcp

« fp_clr_flag

» fp_divbyzero
- fp_inexact

* fp_invalid_op
» fp_iop_convert
» fp_iop_infdinf
» fp_iop_infmzr
» fp_iop_infsi

» fp_iop_invemp
» fp_iop_snan

» fp_iop_sqrt

» fp_iop_vxsoft
* fp_iop_zrdzr
» fp_overflow

* fp_underflow

Exceptions-Enabled Model
The following subroutines function in the enabled processing state:

fp_enable or fp_enable_all Enable the signaling of exceptions

fp_sh_info Determines which exceptions caused the signal
fp_sh_set_stat Disables exceptions or clear flags

fp_trap Changes the execution state of the process
sigaction Installs signal handler

Imprecise Trapping Modes

Some systems have imprecise trapping modes. This means the hardware can detect a floating-point
exception and deliver an interrupt, but processing may continue while the signal is delivered. As a result,
the instruction address register (IAR) is at a different instruction when the interrupt is delivered.

164 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Imprecise trapping modes cause less performance degradation than precise trapping mode. However,
some recovery operations are not possible, because the operation that caused the exception cannot be
determined or because subsequent instruction may have modified the argument that caused the exception.

To use imprecise exceptions, a signal handler must be able to determine if a trap was precise or
imprecise.

Precise Traps

In a precise trap, the instruction address register (IAR) points to the instruction that caused the trap. A
program can modify the arguments to the instruction and restart it, or fix the result of the operation and
continue with the next instruction. To continue, the IAR must be incremented to point to the next
instruction.

Imprecise Traps

In an imprecise trap, the IAR points to an instruction beyond the one that caused the exception. The
instruction to which the IAR points has not been started. To continue execution, the signal handler does
not increment the 1AR.

To eliminate ambiguity, the trap_mode field is provided in the structure. This field specifies the
trapping mode in effect in the user process when the signal handler was entered. This information can
also be determined by examining the Machine Status register (MSR) in the mstsave structure.

Thesubroutine allows a floating-point signal handler to determine if the floating-point exception
was precise or imprecise.

Note: Even when precise trapping mode is enabled some floating-point exceptions may be imprecise
(such as operations implemented in software). Similarly, in imprecise trapping mode some exceptions
may be precise.

When using imprecise exceptions, some parts of your code may require that all floating-point exceptions
are reported before proceeding. The [fp_flush_imprecise| subroutine is provided to accomplish this. It is
also recommended that the |atexit| subroutine be used to register the fp_flush_imprecise subroutine to
run at program exit. Running at exit ensures that the program does not exit with unreported imprecise
exceptions.

Hardware-Specific Subroutines

Some systems have hardware instructions to compute the square root of a floating-point number and to
convert a floating-point number to an integer. Models not having these hardware instructions use software
subroutines to do this. Either method can cause a trap if the invalid operation exception is enabled. The
software subroutines report, through the fp_sh_info subroutine, that an imprecise exception occurred,
because the IAR does not point to a single instruction that can be restarted to retry the operation.

Example of a Floating-Point Trap Handler
/*

* This code demonstates a working floating-point exception
* trap handler. The handler simply identifies which

* floating-point exceptions caused the trap and return.
* The handler will return the default signal return

* mechanism longjmp().

*/

#include <signal.h>

#include <setjmp.h>

#include <fpxcp.h>

#include <fptrap.h>

#include <stdlib.h>

#include <stdio.h>

Chapter 6. Floating-Point Exceptions 165

#define EXIT BAD -1

#define EXIT_GOOD 0

/*

* Handshaking variable with the signal handler. If zero,
* then the signal hander returns via the default signal
* return mechanism; if non-zero, then the signal handler
* returns via Tongjmp.

*/

static int fpsigexit;

#define SIGRETURN_EXIT 0

#define LONGJUMP_EXIT 1

static jmp_buf jump_buffer; /* jump buffer =/
#define JMP_DEFINED 0 /* setjmp rc on initial call */
#define JMP_FPE 2 /* setjmp rc on return from */

/* signal handler =/
/*
* The fp_list structure allows text descriptions
* of each possible trap type to be tied to the mask
* that identifies it.

*/
typedef struct
{
fpflag_t mask;
char *text;
} fp_list_t;
/* 1EEE required trap types */
fp_list_t
trap_list[] =
{
{ FP_INVALID, "FP_INVALID"},
{ FP_OVERFLOW, "FP_OVERFLOW"},
{ FP_UNDERFLOW, "FP_UNDERFLOW"},
{ FP_DIV_BY ZERO, "FP_DIV BY ZER0"},
{ FP_INEXACT, "FP_INEXACT"}

bs
/* INEXACT detail list -- this is an system extension */

fp_list_t
detail_list[] =
{

FP_INV_SNAN, "FP_INV_SNAN" } ,
FP_INV_ISI, "FP_INV_ISI" } ,
FP_INV_IDI, "FP_INV_IDI" } ,
FP_INV_zDz, "FP_INV_ZDZ" } ,
FP_INV_IMZ, "FP_INV_IMZ" } ,
FP_INV_CMP, "FP_INV_CMP" } ,
FP_INV_SQRT, "FP_INV_SQRT" } ,
FP_INV CVI, "FP_INV CVI" } ,
FP_INV_VXSOFT, "FP_INV_VXSOFT" }

B e e e e e R

bs
/*
* the TEST_IT macro is used in main() to raise
* an exception.
*/
#define TEST_IT(WHAT, RAISE_ARG)
{
puts(strcat("testing: ", WHAT));
fp_clr_flag(FP_ALL_XCP);
fp_raise_xcp(RAISE_ARG);

—

166 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

* NAME: my_div

* FUNCTION: Perform floating-point division.

*/
doubTe

my_div(double x, double y)
{

return x / y;

}

~
*

NAME: sigfpe_handler

FUNCTION: A trap handler that is entered when
a floating-point exception occurs. The
function determines what exceptions caused
the trap, prints this to stdout, and returns
to the process which caused the trap.

NOTES: This trap handler can return either via the

default return mechanism or via longjmp().

The global variable fpsigexit determines which.

When entered, all floating-point traps are
disabled.

This sample uses printf(). This should be used
with caution since printf() of a floating-
point number can cause a trap, and then
another printf() of a floating-point number
in the signal handler will corrupt the static
buffer used for the conversion.
OUTPUTS: The type of exception that caused
the trap.

L I R R R N R

*
S~

static void
sigfpe_handler(int sig,
int code,
struct sigcontext *SCP)
{
struct mstsave * state = &SCP->sc_jmpbuf.jmp_context;
fp_sh_info_t f1t_context; /* structure for fp_sh_info()
[* call =/
int i; /* loop counter */
extern int fpsigexit; /* global handshaking variable */
extern jmp_buf jump_buffer /* */

/*

Determine which floating-point exceptions caused

the trap. fp_sh_info() is used to build the floating signal
handler info structure, then the member

f1t_context.trap can be examined. First the trap type is
compared for the IEEE required traps, and if the trap type
is an invalid operation, the detail bits are examined.

* Ok X X X %

*/

fp_sh_info(SCP, &f1t_context, FP_SH INFO SIZE);

static void
sigfpe_handler(int sig,
int code,
struct sigcontext *SCP)
{
struct mstsave * state = &SCP->sc_jmpbuf.jmp_context;
fp_sh_info_t f1t_context; /* structure for fp_sh_info()

Chapter 6. Floating-Point Exceptions

167

[* call */
int i; /* loop counter =*/
extern int fpsigexit; /* global handshaking variable */
extern jmp_buf jump buffer; /x x/

/*

Determine which floating-point exceptions caused

the trap. fp_sh_info() is used to build the floating signal
handler info structure, then the member

f1t_context.trap can be examined. First the trap type is
compared for the IEEE required traps, and if the trap type
is an invalid operation, the detail bits are examined.

* Ok kX X X

*/

fp_sh_info(SCP, &f1t_context, FP_SH_INFO_SIZE);
for (i = 0; i < (sizeof(trap_list) / sizeof(fp_list t)); i++)

if (f1t_context.trap & trap_list[i].mask)
(void) printf("Trap caused by %s error\n", trap list[i].text);
}
if (f1t_context.trap & FP_INVALID)

{
for (i = 0; 1 < (sizeof(detail_Tlist) / sizeof(fp_list_t)); i++)

{
if (f1t_context.trap & detail _Tist[i].mask)

(void) printf("Type of invalid op is %s\n", detail_Tist[i].text);
1

}
/* report which trap mode was in effect */

switch (f1t_context.trap_mode)
{
case FP_TRAP_OFF:
puts("Trapping Mode is OFF");
break;

case FP_TRAP_SYNC:
puts("Trapping Mode is SYNC");
break;

case FP_TRAP_IMP:
puts("Trapping Mode is IMP");
break;

case FP_TRAP_IMP_REC:
puts("Trapping Mode is IMP_REC");
break;

default:

puts("ERROR: Invalid trap mode");

}
if (fpsigexit == LONGJUMP_EXIT)

{

/*
Return via longjmp. In this instance there is no need to
clear any exceptions or disable traps to prevent
recurrence of the exception, because on return the
process will have the signal handler's floating-point
state.

* %k ok X X

*/
Tongjmp (jump_buffer, JMP_FPE);
}

else

{
/*

* Return via default signal handler return mechanism.

168 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

In this case you must take some action to prevent
recurrence of the trap, either by clearing the
exception bit in the fpscr or by disabling the trap.
In this case, clear the exception bit.

The fp_sh_set_stat routine is used to clear

the exception bit.

* % % ok k%

*

/

fp_sh_set_stat(SCP, (flt_context.fpscr & ((fpstat_t) ~fl1t_context.trap)));
/*

Increment the iar of the process that caused the trap,
to prevent re-execution of the instruction.

The FP_IAR_STAT bit in flt_context.flags indicates if
state->iar points to an instruction that has Togically
started. If this bit is true, state->iar points to

an operation that has started and will cause another
exception if it runs again. In this case you want to
continue execution and ignore the results of that
operation, so the iar is advanced to point to the

next instruction. If the bit is false, the iar already
points to the next instruction that must run.

* % %k ok %k X X % ok *

*
~

if (f1t_context.flags & FP_IAR STAT)
{
puts("Increment IAR");
state->jar += 4;
1
}

return;

}
/*

*

NAME: main

FUNCTION: Demonstrate the sigfpe_handler trap handler.

* o

*/

int

main(void)
{
struct sigaction response;
struct sigaction old_response;
extern int fpsigexit;
extern jmp_buf jump_buffer;
int jump_rc;
int trap_mode;
double argl, arg2, r;

/*

* Set up for floating-point trapping. Do the following:

* 1. Clear any existing floating-point exception flags.
* 2. Set up a SIGFPE signal handler.

* 3. Place the process in synchronous execution mode.

* 4, Enable all floating-point traps.

fp_clr_flag(FP_ALL_XCP);

(void) sigaction(SIGFPE, NULL, &old_response);

(void) sigemptyset(&response.sa_mask);

response.sa_flags = FALSE;

response.sa_handler = (void (*)(int)) sigfpe_handler;

(void) sigaction(SIGFPE, &response, NULL);

fp_enable_all();

/*

* Demonstate trap handler return via default signal handler
* return. The TEST_IT macro will raise the floating-point

Chapter 6. Floating-Point Exceptions 169

* exception type given in its second argument. Testing
* is done in this case with precise trapping, because
* it is supported on all platforms to date.

*/
trap_mode = fp_trap(FP_TRAP_SYNC);
if ((trap_mode == FP_TRAP_ERROR) ||

(trap_mode

FP_TRAP_UNIMPL))

{
printf("ERROR: rc from fp_trap is %d\n",

trap_mode);
exit(-1);
}

(void) printf("Default signal handler return: \n");

fpsigexit = SIGRETURN_EXIT;

TEST_IT("div by zero", FP_DIV_BY_ZERO);

TEST_IT("overflow",
TEST _IT("underflow",
TEST_IT("inexact",

TEST_IT("signaling nan",
TEST_IT("INF - INF",
TEST_IT("INF / INF",
TEST_IT("ZERO / ZERO",

TEST _IT("INF = ZERO",
TEST_IT("invalid compare",
TEST IT("invalid sqrt",
TEST_IT("invalid coversion",
TEST_IT("software request",

FP_OVERFLOW) ;
FP_UNDERFLOW) 3
FP_INEXACT)

FP_INV_SNAN);
FP_INV_ISI);
FP_INV_IDI);
FP_INV_ZDZ);
FP_INV_IMZ);
FP_INV_CMP);
FP_INV_SQRT);
FP_INV_CVI);
FP_INV_VXSOFT);

/*

* Next, use fp_trap() to determine what the
the fastest trapmode available is on

this platform.

* %

*/
trap_mode = fp_trap(FP_TRAP_FASTMODE);
switch (trap_mode)

case FP_TRAP_SYNC:
puts("Fast mode for this platform is PRECISE");
break;

case FP_TRAP_OFF:
puts("This platform dosn't support trapping");
break;
case FP_TRAP_IMP:
puts("Fast mode for this platform is IMPRECISE");
break;
case FP_TRAP_IMP_REC:
puts("Fast mode for this platform is IMPRECISE RECOVERABLE");
break;
default:
printf("Unexpected return code from fp_trap(FP_TRAP_FASTMODE): %d\n",
trap_mode) ;
exit(-2);
}
/*
* if this platform supports imprecise trapping, demonstate this.

*/

trap_mode = fp_trap(FP_TRAP_IMP);
if (trap_mode != FP_TRAP_UNIMPL)

puts("Demonsrate imprecise FP execeptions");
argl = 1.2;

170 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

arg2 = 0.0;
r = my _div(argl, arg2);
fp_flush_imprecise();

/* demonstate trap handler return via longjmp().
*/

(void) printf("Tongjmp return: \n");
fpsigexit = LONGJUMP_EXIT;
jump_rc = setjmp(jump_buffer);

switch (jump_rc)
{
case JMP_DEFINED:
(void) printf("setjmp has been set up; testing ...\n");
TEST IT("div by zero", FP_DIV_BY ZER0);
break;

case JMP_FPE:

(void) printf("back from signal handler\n");

/*
Note that at this point the process has the floating-
point status inherited from the trap handler. If the
trap hander did not enable trapping (as the example
did not) then this process at this point has no traps
enabled. We create a floating-point exception to
demonstrate that a trap does not occur, then re-enable
traps.

L T

*

/

(void) printf("Creating overflow; should not trap\n");
TEST_IT("Overf1ow”, FP_OVERFLOW);

fp_enable_all();

break;

default:
(void) printf("unexpected rc from setjmp: %d\n", jump_rc);
exit(EXIT_BAD);
}
exit(EXIT_GOOD);
}

Related Information

For further information on this topic, see the following:
+ [Chapter 1, “Tools and Utilities,” on page 1|
+ [Chapter 6, “Floating-Point Exceptions,” on page 163|

Subroutine References
fp_set_flag, fp_read_flag, or fp_swap_flag subroutine, subroutine,
p_sh_trap_info|or fp_sh_set_stat subroutine, subroutine in AIX 5L Version 5.3 Technical

Reference: Base Operating System and Extensions Volume 1.

The [sigaction] sigvec or signal subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating
System and Extensions Volume 2.

Chapter 6. Floating-Point Exceptions 171

172 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Chapter 7. Input and Output Handling

This chapter provides an introduction to programming considerations for input and output handling and the
input and output (I/O) handling subroutines.

The /O library subroutines can send data to or from either devices or files. The system treats devices as if
they were I/O files. For example, you must also open and close a device just as you do a file.

Some of the subroutines use standard input and standard output as their I/O channels. For most of the
subroutines, however, you can specify a different file for the source or destination of the data transfer. For
some subroutines, you can use a file pointer to a structure that contains the name of the file; for others,
you can use a file descriptor (that is, the positive integer assigned to the file when it is opened).

The 1/0O subroutines stored in the C Library (libc.a) provide stream 1/0. To access these stream I/O
subroutines, you must include the stdio.h file by using the following statement:

#include <stdio.h>

Some of the I/O library subroutines are macros defined in a header file and some are object modules of
functions. In many cases, the library contains a macro and a function that do the same type of operation.
Consider the following when deciding whether to use the macro or the function:

* You cannot set a breakpoint for a macro using the dbx program.

» Macros are usually faster than their equivalent functions because the preprocessor replaces the macros
with actual lines of code in the program.

» Macros result in larger object code after being compiled.
* Functions can have side effects to avoid.

The files, commands, and subroutines used in I/O handling provide the following interfaces:

Low-level The low-level interface provides basic open and close functions for files and devices.
For more information, see [‘Low-Level I/O Interfaces.’|

Stream The stream interface provides read and write I/O for pipes and FIFOs. For more
information, see [‘Stream 1/O Interfaces” on page 174

Terminal The terminal interface provides formatted output and buffering. For more information,
see[‘Terminal /O Interfaces” on page 175.|

Asynchronous The asynchronous interface provides concurrent I/O and processing. For more
information, see [‘Asynchronous I/O Interfaces” on page 176,

Input Language The input language interface uses the lex and yacc commands to generate a lexical

analyzer and a parser program for interpreting 1/0. For more information, see
[‘Generating a Lexical Analyzer with the lex Command” on page 287

Low-Level I/0 Interfaces

Low-level I/O interfaces are direct entry points into a kernel, providing functions such as opening files,
reading to and writing from files, and closing files.

The command provides the interface that allows one line from standard input to be read, and the
following subroutines provide other low-level I/O functions:

openx, or creat Prepare a file, or other path object, for reading and writing by means of an assigned file
descriptor

readx, readv, or Read from an open file descriptor
readvx

© Copyright IBM Corp. 1997, 2007 173

writex, writev, or Write to an open file descriptor
writevx

Relinquish a file descriptor

The open and creat subroutines set up entries in three system tables. A file descriptor indexes the first
table, which functions as a per process data area that can be accessed by read and write subroutines.
Each entry in this table has a pointer to a corresponding entry in the second table.

The second table is a per-system database, or file table, that allows an open file to be shared among
several processes. The entries in this table indicate if the file was open for reading, writing, or as a pipe,
and when the file was closed. There is also an offset to indicate where the next read or write will take
place and a final pointer to indicates entry to the third table, which contains a copy of the file’s i-node.

The file table contains entries for every instance of an open or create subroutine on the file, but the i-node
table contains only one entry for each file.

Note: While processing an open or creat subroutine for a special file, the system always calls the
device’s open subroutine to allow any special processing (such as rewinding a tape or turning on a
data-terminal-ready modem lead). However, the system uses the close subroutine only when the
last process closes the file (that is, when the i-node table entry is deallocated). This means that a
device cannot maintain or depend on a count of its users unless an exclusive-use device (that
prevents a device from being reopened before its closed) is implemented.

When a read or write operation occurs, the user’'s arguments and the file table entry are used to set up the
following variables:

» User address of the I/O target area
« Byte count for the transfer
* Current location in the file

If the file referred to is a character-type special file, the appropriate read or write subroutine is called to
transfer data, as well as update the count and current location. Otherwise, the current location is used to
calculate a logical block number in the file.

If the file is an ordinary file, the logical block number must be mapped to a physical block number. A
block-type special file need not be mapped. The resulting physical block number is used to read or write
the appropriate device.

Block device drivers can provide the ability to transfer information directly between the user’s core image
and the device in block sizes as large as the caller requests without using buffers. The method involves
setting up a character-type special file corresponding to the raw device and providing read and write
subroutines to create a private, non-shared buffer header with the appropriate information. Separate open
and close subroutines can be provided, and a special-function subroutine can be called for magnetic tape.

Stream 1/O Interfaces

Stream 1/O interfaces provide data as a stream of bytes that is not interpreted by the system, which offers
more efficient implementation for networking protocols than character I/O processing. No record
boundaries exist when reading and writing using stream I/O. For example, a process reading 100 bytes
from a pipe cannot determine if the process that wrote the data into the pipe did a single write of 100
bytes, or two writes of 50 bytes, or even if the 100 bytes came from two different processes.

Stream 1/Os can be pipes or FIFOs (first-in, first-out files). FIFOs are similar to pipes because they allow

the data to flow only one way (left to right). However, a FIFO can be given a name and can be accessed
by unrelated processes, unlike a pipe. FIFOs are sometimes referred to as named pipes. Because it has a

174 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

name, a FIFO can be opened using the standard 1/0 fopen subroutine. To open a pipe, you must call the
pipe subroutine, which returns a file descriptor, and the standard I/O fdopen subroutine to associate an
open file descriptor with a standard 1/0O stream.

Stream 1/O interfaces are accessed through the following subroutines and macros:

fclose Closes a stream

feof] ferror, clearerr, or fileno Check the status of a stream

fflush Write all currently buffered characters from a stream
fopen| freopen, or fdopen Open a stream

fread| or fwrite Perform binary input
| rewind, ftell, fgetpos, or fsetpos Reposition the file pointer of a stream

getc| fgetc, getchar, or getw Get a character or word from an input stream
gets| or fgets Get a string from a stream

getwc] fgetwe, or getwchar Get a wide character from an input stream
getws| or fgetws Get a string from a stream

printf], fprintf, sprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf

Print formatted output
utcl putchar, fputc, or putw Write a character or a word to a stream
uts| or fputs Write a string to a stream

putwc| putwchar, or fputwc Write a character or a word to a stream
putws or fputws| Write a wide character string to a stream
scanf, fscanf, sscanf, or wsscanf| Convert formatted input

|setbuf, setvbuf, setbuffer, or setlinebuf| Assign buffering to a stream

[ungetc or ungetwc| Push a character back into the input stream

Terminal I/O Interfaces

Terminal 1/O interfaces operate between a process and the kernel, providing functions such as buffering
and formatted output. Every terminal and pseudo-terminal has a tty structure that contains the current
process group ID. This field identifies the process group to receive the signals associated with the
terminal. Terminal 1/O interfaces can be accessed through the command, which monitors I/O system
device loading, and the daemon, which allows kernel messages to be written to the system
console.

Terminal characteristics can be enabled or disabled through the following subroutines:

cfgetospeed| cfsetospeed, cfgetispeed, or cfsetispeed

Get and set input and output baud rates
Performs control functions associated with the terminal

Queries terminal characteristics

Waits for output to complete
Performs flow control functions

Discards data from the specified queue

cgetpgrp

Gets foreground process group 1D

csendbreak

Sends a break on an asynchronous serial data line

Chapter 7. Input and Output Handling 175

Sets terminal state

fttylock, ttywait, ttyunlock, or ttylocked|
Control tty locking functions

fttyname or isatty|
Get the name of a terminal

Finds the slot in the utmp file for the current user

Asynchronous I/O Interfaces

Asynchronous I/O subroutines allow a process to start an 1/O operation and have the subroutine return
immediately after the operation is started or queued. Another subroutine is required to wait for the
operation to complete (or return immediately if the operation is already finished). This means that a
process can overlap its execution with its 1/0 or overlap 1/0O between different devices. Although
asynchronous I/O does not significantly improve performance for a process that is reading from a disk file
and writing to another disk file, asynchronous I/O can provide significant performance improvements for
other types of 1/0O driven programs, such as programs that dump a disk to a magnetic tape or display an
image on an image display.

Although not required, a process that is performing asynchronous I/O can tell the kernel to notify it when a
specified descriptor is ready for 1/0O (also called signal-driven I/0). When using LEGACY AIQ, the kernel
notifies the user process with the SIGIO signal. When using POSIX AlO, the sigevent structure is used by
the programmer to determine which signal for the kernel to use to notify the user process. Signals include
SIGIO, SIGUSR1, and SIGUSR2.

To use asynchronous /O, a process must perform the following steps:

1. Establish a handler for the SIGIO signal. This step is necessary only if notification by the signal is
requested.

2. Set the process ID or the process group ID to receive the SIGIO signals. This step is necessary only if
notification by the signal is requested.

3. Enable asynchronous I/O. The system administrator usually determines whether asynchronous 1/O is
loaded (enabled). Enabling occurs at system startup.

The following asynchronous 1/O subroutines are provided:

aio_cancel

|

Cancels one or more outstanding asynchronous 1/O requests
Retrieves the error status of an asynchronous 1/O request
Synchronizes asynchronous files.

Suspends the calling process until a certain number of asynchronous
I/0 requests are completed.

Reads asynchronously from a file descriptor

Retrieves the return status of an asynchronous 1/0 request
Suspends the calling process until one or more asynchronous I/O
requests is completed

Writes asynchronously to a file descriptor

Initiates a list of asynchronous 1/O requests with a single call
Check 1/0 status of multiple file descriptors and message queues

For use with the poll subroutine, the following header files are supplied:

Defines the structures and flags used by the poll subroutine
aio.h Defines the structure and flags used by the aio_read, aio_write, and
aio_suspend subroutines

176 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Chapter 8. Storage Protect Keys

Storage protect keys provide a mechanism for you to improve the reliability of your programs. Protect keys
apply to memory pages and work at the page level of granularity, similar to the mprotect subroutine,
which can be used to read- or write-protect one or more pages. However, with storage keys you can mark
sections of your data for specific levels of read and write access protection. Protection by storage keys is
a function not only of the data page, but also of the thread attempting access. You can enable certain
well-defined code paths to access data that is unavailable to your larger program, thereby encapsulating
critical program data and protecting it against accidental damage.

Because access to key-protected pages is an attribute of the running thread, this mechanism extends
naturally to multithreaded applications, but with the restriction that these use only 1:1 (or system scope)
pthreads. The mprotect subroutine approach does not work reliably in a multithreaded environment,
because you have to remove protection for all threads when you want to grant access to any thread. You
can use both mechanisms simultaneously, and both are fully enforced; therefore, your program cannot
write to a write-protected page even if a protect key would otherwise allow this.

Protect keys sample uses include:
* Encapsulate your program’s private data completely, limiting access to just selected code paths.

» Protect your program’s private data from accidental damage by always running with read access
granted, but granting write access only when you intend to modify the data. This can be especially
useful when code in a core engine allows calls out to untrusted code.

* When multiple private keys are available, additional granularity of data protection is possible.

You can simplify debugging by designing your application with key protection in mind. Setting a page’s
protect key and setting your active user keyset are both system calls, and therefore relatively expensive
operations. You should design your program so that the frequency of these operations is not excessive.

User protect keys

The two main elements of key protection are:
» Each virtual memory page has a single integer-valued protect key assigned to it.
» Each thread runs with access to the pages protected by these keys as granted by its active user keyset.

A user keyset is an opaque data type, ukeyset_t, which is defined in sys/ukeys.h. The active user keyset
is part of every key-aware thread’s running context, and encodes the thread’s level of access to each and
every protect key simultaneously.

There is always one user public key, and up to an architectural maximum of 31 possible user private keys.
The number of user private keys is limited, depending on the physical capabilities of the underlying
hardware and the administrative allocation of hardware keys for use by user applications.

» User protect keys are numbered consecutively from 0 (the user public key) upwards for a maximum of
31 user private keys.

— If there are n user keys available, they will always appear to be numbered 0 through n-1.
— There are #defines for UKEY_PUBLIC, UKEY_PRIVATEH1, ... UKEY_PRIVATE31.
— Each memory page can be assigned to one of these protect keys, if that key is available.
» User key 0 is the user public key. Read/write access is always granted to pages whose protect key is 0.

» User key 1, user key 2, ..., user key 31 are the possible user private keys. There can be from 0 to 31
private keys available.

* All available keys are usable by all processes.

© Copyright IBM Corp. 1997, 2007 177

— Because private process memory is not shared, there is no problem with independent processes
using the same protect keys. For example, access to user key 1 in your process does not enable
access to private key 1 data in another process, because you cannot address that data (unless it is
in shared memory).

— This numbering of virtual storage keys is consistent across the operating system. In particular, one
thread can protect shared memory with an agreed upon key that any other thread sharing that
memory must use.

— Only programs with write authority to a shared memory object can change its protect key or keys.

Typically, only one private key is available. You can design your application to use additional private keys if
any more are available, but your application must be aware of the actual number of private keys, and be
prepared to multiplex its protection domains when there are fewer keys available than protection domains
defined.

A thread’s active user keyset grants access to pages for each of the corresponding private user protect
keys individually. Access can be:

* None

* Read Only
* Write Only
* Read/Write

Note: If you want to use the disclaim service, which logically zeroes pages, your program must have
write access to the page.

Using protect keys

The following guidelines and considerations apply when using protect keys:

» Pages that are exported read-only from the kernel will continue to be visible to your program. These
pages have a protect key of UKEY_SYSTEM. This protect key is not a protect key that is under your
program’s control, but is always accessible by your program.

« All of your program’s memory pages initially have the user public key assigned to them. As noted
above, access to key 0 storage is always granted, making this the user public key.

* You can set protect keys only for your normal and shared data. You cannot, for example, protect library
data, low memory shared with the kernel, or program text.

» Depending on the underlying hardware and administrative choice, only a limited number of user private
keys (typically just one) are available. When your program assigns a private key to one or more of its
pages, the data in those pages is no longer available by default. You must explicitly grant read or write
access to this data by surrounding code paths that require access with calls to a new service to
manage your active user keyset.

» The physical hardware likely supports additional protect keys that are not available for use as user
protect keys.

* No special privilege is needed to assign protect keys to a page. The only requirement is current write
access to the page.

» There is no control of execute authority with protect keys.

If your program accesses key protected data in violation of the access rights expressed in its active user
keyset, it receives a SIGSEGV signal, as is already the case for violating read- or write-protected pages. If
you choose to handle this signal, be aware that signal handlers are invoked without access to private
keys. Signal handling code must add any needed access rights to the active user keyset before
referencing key-protected data.

178 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Child processes, created by the fork system call, logically inherit their parent's memory and running state.
This includes the protect key associated with each page, as well as the parent thread’s active user keyset
at the time of fork.

Regions protected by user keys

User protect keys can protect pages in the following regions:
» Data region
» Default stack region
. d regions
» Shared memory attached with the subroutine, except as below
* These categories of pages cannot use protect keys:
— shmated files and pinned shared memory
— Large (nonpageable) pages
— Program text
— Low memory shared read-only with the kernel

System prerequisites for key protection

Storage key protection is a hardware-specific privileged page protection mechanism that is made available
by the AIX kernel for use in application programs. To use this feature, your system must:

» Be running on physical hardware that provides storage key protection

* Be running the 64-bit kernel

* Enable the use of user protect keys

Program prerequisites for key protection

To use user keys, your program must:
» Declare itself user-key aware and determine how many user protect keys are available, if any, with the

ukey_enable| subroutine.

» Organize its protected data on page boundaries.

+ Assign a private key to each page you want to protect with the subroutine.
* Prepare one or more keysets with the subroutine.

» Possibly add desired keys to your keyset with the ukeyset_add_key subroutine, to enable future read
or write accesses as desired.

+ Make a keyset active with the lukeyset_activate| subroutine to grant the access rights defined in a
keyset.

Your program must not:
* Include any M:N (process scope) pthreads
» Be able to have a checkpoint performed on it (for example have CHECKPOINT=yes in the environment)

Note: When a program is user-key aware, it has additional context associated with it to represent its
active user keyset. This can be seen in:

« Signal handlers receiving a ucontext_t structure. The previously active user keyset is in
ucontext_t. extctx._ ukeys, an array of two ints containing a 64-bit user keyset value

» User context structures compiled with __EXTABI__ defined (used by setcontext, getcontext,
makecontext, swapcontext)

Chapter 8. Storage Protect Keys 179

Subroutines

The following new AIX kernel subroutines are provided for using protect keys:

Table 1.

Use with _SC_AIX_UKEYS to determine the number of user keys supported
(can be called on older versions of AlX)

ukey_enable

Enable the user-key aware programming environment for your process, and
report how many user keys are available

Initialize a user keyset, which will represent a set of access rights to your
private key or keys

lukeyset_add_key|

Add read or write access, or both for a specified key to a keyset

lukeyset_remove_key|

Remove or write access, or both for a specified key from a keyset

lukeyset_add_set|

Add all the access rights in one keyset to another

iIu keyset_remove_set|

Remove all the access rights in one keyset from another

iIu keyset_activate|

Apply the access rights in a keyset to the running thread

iIukeyset_ismemberi

Test if a given access right is contained in a keyset

Extended form of setjmp that preserves the active keyset (uses a
ukey_jmp_buf structure)

[pthread_attr_getukeyset_np|

Get the keyset attribute of a pthread

i[pthread_attr_setukeyset_npl

Set the keyset attribute for a pthread

Set a user protect key for a page-aligned range of user memory

ey gotiey

Retrieve the user protect key for a specified address

Debugging

The |[dbx| command adds limited support for protect keys:
* When debugging a running program:
— The ukeyset subcommand displays the active keyset.
— The ukeyvalue subcommand displays the protect key associated with a given memory location.

* When debugging a core file, the ukeyexcept subcommand reports the active keyset, effective address
of the key exception, and the storage key involved.

Hardware details

The active user keyset in the running context of a key-aware thread parallels the actual hardware authority

mask register (AMR) in format, represented by the ukeyset_t abstract data type. This information is
provided for debugging purposes only. Use only the defined programming services to set up your active

user keyset.

* The AMR is a 64-bit register comprising 32-bit pairs, one pair per key, for a maximum of 32 keys

numbered O through 31.

— The first bit of each pair represents write access to the corresponding numbered key.
— Similarly, the second bit of each pair represents read access to the corresponding numbered key.
* A bit value of 0 grants the corresponding access, and a bit value of 1 denies it.

* The bit pair granting access to key 0 is not controlled by your program. User key 0 is the user public
key, and all threads always have full access to data in this key, without regard to your settings in the

active user keyset.

180 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

/../../../com.ibm.aix.basetechref/doc/basetrf2/ukey_getkey.htm

» All the other bit pairs represent user private keys, which, subject to availability, you can use to protect

your data as you see fit.

Sample program

The following is a sample user-key aware program:

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <sys/ukeys.h>
#include <sys/syspest.h>
#include <sys/signal.h>
#include <sys/vminfo.h>

#define ROUND_UP(size,psize) ((size)+(psize)-1 & ~((psize)-1))

/*

This is an example skeleton for a user key aware program.

which the main program can access freely, while the "untrusted"
subroutine will only have read access.
*/
struct private_data_1 {
int some_data;
}s

*
*
* The private_data_l structure will map a malloc'd key protected area
*
*

struct private_data_1 #pl; /* pointer to structure for protected data */
ukeyset_t keysetlRW; /* keyset to give signal handler access */
/*

The untrusted function here should successfully read protected data.

*

*

* When the count is 0, it will just return so the caller can write
* the incremented value back to the protected field.
*
*
*

When the count is 1, it will try to update the protected field itself.
This should result in a SIGSEGV.

*
/
int untrusted(struct private_data_1 *pl) {
int count = pl->some_data; /* We can read protected data */
if (count == 1)
pl->some_data = count; /* But should not be able to write it */
return count + 1;
}
/*

* Signal handler to catch the deliberate protection violation in the

* untrusted function above when count ==

* Note that the handler is entered with NO access to our private data.

*

/

void handler(int signo, siginfo_t *sip, void *ucp) {
printf("siginfo: signo %d code %d\n", sip->si_signo, sip->si_code);
(void)ukeyset activate(keysetlRW, UKA REPLACE_KEYS);

exit(1);
}
main() {
int nkeys;
int pagesize = 4096; /* hardware data page size */
int padded protsize 1; /* page padded size of protected data */

struct vm_page_info page_info;
ukey t keyl = UKEY_PRIVATEL;
ukeyset_t keysetlW, oldset;
int rc;

Chapter 8. Storage Protect Keys

181

int count = 0;
struct sigaction sa;

/*
* Attempt to become user key aware.
*/
nkeys = ukey enable();
if (nkeys == -1) {
perror("ukey enable");
exit(1l);

assert(nkeys >= 2);

/*
* Determine the data region page size.
*/
page_info.addr = (long)&pl; /* address in data region */
rc = vmgetinfo(&page_info, VM_PAGE_INFO, sizeof(struct vm_page info));
if (rc)

perror("vmgetinfo");
else

pagesize = page_info.pagesize; /* pick up actual page size */
/*

* We need to allocate page aligned, page padded storage

= for any area that is going to be key protected.

*/

padded_protsize_1 = ROUND_UP(sizeof(struct private data_1), pagesize);
rc = posix_memalign((void **)&pl, pagesize, padded protsize 1);

if (rc) {
perror("posix_memalign");
exit(1l);
}
/*
* Initialize the private data.
* We can do this before protecting it if we want.
*
* Note that the pointer to the private data is in public storage.
* We only protect the data itself.

*/

pl->some_data = count;

/*
* Construct keysets to use to access the protected structure.
* Note that these keysets will be in public storage.

*
/
rc = ukeyset_init(&keysetlW, 0);
if (rc) {
perror("ukeyset_init");
exit(1);
1
rc = ukeyset_add_key(&keysetlW, keyl, UK WRITE); /* WRITE =/
if (rc) {
perror("ukeyset_add_key 1W");
exit(1l);
1
keyset1RW = keysetlW;
rc = ukeyset_add_key(&keyset1RW, keyl, UK _READ); /* R/W */
if (rc) {
perror("ukeyset_add_key 1R");
exit(1l);
1

182 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

/*
* Restrict access to the private data by applying a private key
* to the page(s) containing it.

*/
rc = ukey_protect(pl, padded protsize 1, keyl);
if (rc) {
perror("ukey protect");
exit(1);
}
/*
* AlTow our general code to reference the private data R/W.
*/

oldset = ukeyset activate(keysetlRW, UKA_ADD KEYS);
if (oldset == UKSET_INVALID) {
printf("ukeyset activate failed\n");
exit(1);
}

/*
* Set up a signal handler for SIGSEGV, to catch the deliberate
* key violation in the untrusted code.
*
/
sa.sa_sigaction = handler;
SIGINITSET(sa.sa_mask);
sa.sa_flags = SA_SIGINFO;
rc = sigaction(SIGSEGV, &sa, 0);
if (rc) {
perror("sigaction");
exit(1l);
}

/*
* Program's main processing loop.
*/
while (count < 2) {
/*
* When we need to run "untrusted" code, change access
* to the private data to R/0 by removing write access.
*/
(void)ukeyset_activate(keysetlW, UKA_REMOVE_KEYS);

/*

* Call untrusted subroutine here. It can only read
* the protected data passed to it.

*/

count = untrusted(pl);

/*

* Restore our full access to private data.

*/

(void)ukeyset_activate(keysetlW, UKA_ADD_KEYS);

pl->some_data = count;

}

free(pl);
exit(0);

Chapter 8. Storage Protect Keys

183

184 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Chapter 9. Large Program Support

This chapter provides information about using the large and very large address-space models to
accommodate programs requiring data areas that are larger than those provided by the default
address-space model. The large address-space model is available on AIX 4.3 and later. The very large
address-space model is available on AlIX 5.1 and later.

Note: The discussion in this chapter applies only to 32-bit processes. For information about the default
32-bit address space model and the 64-bit address space model, see [‘Program Address Space]
Overview” on page 395|and [Chapter 20, “System Memory Allocation Using the malloc Subsystem,’]

on page 411 |

The virtual address space of a 32-bit process is divided into 16 256-megabyte areas (or segments), each
addressed by a separate hardware register. The operating system refers to segment 2 (virtual addresses
0x20000000-0x2FFFFFFF) as the process-private segment. By default, this segment contains the user stack
and data, including the heap. The process-private segment also contains the u-block of the process, which
is used by the operating system and is not readable by an application.

Because a single segment is used for both user data and stack, their maximum aggregate size is slightly
less than 256 MB. Certain programs, however, require large data areas (initialized or uninitialized), or they
need to allocate large amounts of memory with the or subroutine. Programs can be built to
use the large or very large address-space model, allowing them to use up to 2 GB of data.

It is possible to use either the large or very large address-space model with an existing program, by
providing a non-zero maxdata value. The maxdata value is obtained either from the LDR_CNTRL
environment variable or from a field in the executable file. Some programs have dependencies on the
default address-space model, and they will break if they are run using the large address-space model.

Understanding the Large Address-Space Model

The large address-space model allows specified programs to use more than 256 MB of data. Other
programs continue to use the default address-space model. To allow a program to use the large
address-space model, specify a non-zero maxdata value. You can specify a non-zero maxdata value
either by using the command when you’re building the program, or by exporting the LDR_CNTRL
environment variable before executing the program.

When a program using the large address-space model is executed, the operating system reserves as
many 256 MB segments as needed to hold the amount of data specified by the maxdata value. Then,
beginning with segment 3, the program’s initialized data is read from the executable file into memory. The
data read begins in segment 3, even if the maxdata value is smaller than 256 MB. With the large
address-space model, a program can have a maximum of 8 segments or 2 GB or 3.25 GB of data
respectively.

In the default address-space model, 12 segments are available for use by the [shmat] or [nmap|
subroutines. When the large address-space model is used, the number of segments reserved for data
reduces the number of segments available for the shmat and mmap subroutines. Because the maximum
size of data is 2 GB, at least two segments are always available for the shmat and mmap subroutines.

The user stack remains in segment 2 when the large address-space model is used. As a result, the size of
the stack is limited to slightly less than 256 MB. However, an application can relocate its user stack into a
shared memory segment or into allocated memory.

While the size of initialized data in a program can be large, there is still a restriction on the size of text. In
the executable file for a program, the size of the text section plus the size of the loader section must be

© Copyright IBM Corp. 1997, 2007 185

less than 256 MB. This is required so that these sections will fit into a single, read-only segment (segment
1, the TEXT segment). You can use the command to examine section sizes.

Understanding the Very Large Address-Space Model

The very large address-space model enables large data programs in much the same way as the large
address-space model, although there are several differences between them. To allow a program to use the
very large address-space model, you must specify a maxdata value and the dynamic segment allocation
(dsa) property. Use either thecommand or the LDR_CNTRL environment variable to specify a maxdata
value and the DSA option.

If a maxdata value is specified, the very large address-space model follows the large-address space
model in that a program’s data is read into memory starting with segment 3, and occupies as many
segments as needed. The remaining data segments, however, are not reserved for the data area at
execution time, but are obtained dynamically. Until a segment is needed for a program’s data area, it can
be used by the |shmat| or [mmap]| subroutines. With the very large address-space model, a program can a
maximum of 13 segments or 3.25 GB of data. Of these 13 segments, 12 segments or 3 GB, are available
for shmat and mmap subroutine purposes.

When a process tries to expand its data area into a new segment, the operation succeeds as long as the
segment is not being used by the shmat or mmap subroutines. A program can call the [shmdf or
subroutine to stop using a segment so that the segment can be used for the data area. After a
segment has been used for the data area, however, it can no longer be used for any other purpose, even
if the size of the data area is reduced.

If a maxdata value is not specified (maxdata = 0) with the dsa property, a slight variation from the above
behaviour is achieved. The process will have its data and stack in segment 2, similiar to a regular process.
The process will not have access to the global shared libraries, so all shared libraries used by the process
will be loaded privately. The advantage to running this way is that a process will have all 13 segments
(3.25 GB) available for use by the shmat and mmap subroutines.

To reduce the chances that the shmat or mmap subroutines will use a segment that could be used for the
data area, the operating system uses a different rule for choosing an address to be returned (if a specific
address is not requested). Normally, the shmat or mmap subroutines return an address in the lowest
available segment. When the very large address-space model is used, these subroutines will return an
address in the highest available segment. A request for a specific address will succeed, as long as the
address is not in a segment that has already been used for the data area. This behaviour is followed for
all process that specify the dsa property.

With the very large address-space model, a maxdata value of zero or a value of up to 0xD000000O can be
specified. If a maxdata value larger than OxAFFFFFFF is specified, a program will not use globally loaded
shared libraries. Instead, all shared libraries will be loaded privately. This can affect program performance.

Enabling the Large and Very Large Address-Space Models

The large address space model is used if any non-zero value is specified for the maxdata value, and the
dynamic segment allocation (dsa) property is not specified. The very large address-space model is used if
any maxdata value is given and the dsa property is specified. Use the [ldl command with the -bmaxdata
flag to specify a maxdata value and to set the dsa property.

Use the following command to link a program that will have the maximum 8 segments reserved for its
data:

cc -bmaxdata:0x80000000 sample.o

To link a program with the very large-address space model enabled on the POWER-based platform, use
the following command:

186 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

cc -bmaxdata:0xD000000O/dsa sample.o

To link a program with the very large-address space model enabled, use the following command:
cc -bmaxdata:0xD000000O/dsa sample.o

You can cause existing programs to use the large or very large address-space models by specifying the
maxdata value with the LDR_CNTRL environment variable. For example, use the following command to
run the a.out program with 8 segments reserved for the data area:

LDR_CNTRL=MAXDATA=0x80000000 a.out

The following command runs the a.out program using the very large address-space model, allowing the
program’s data size to use up to 8 segments for data:

LDR_CNTRL=MAXDATA=0x80000000@DSA a.out

You can also modify an existing program so that it will use the large or very large address-space model.
To set the maxdata value in an existing 32-bit XCOFF program, a.out, to 0x80000000, use the following
command:

/usr/ccs/bin/1dedit -bmaxdata:0x80000000 a.out

If an existing 32-bit XCOFF program, a.out, with a maxdata value of 0x80000000 does not already have
the DSA property, you can add the property with the following command:

/usr/ccs/bin/1dedit -bmaxdata:0x80000000/dsa a.out

You can use the [dump| command to examine the maxdata value, or to determine whether a program has
the dsa property.

Some programs have dependencies on the default address-space model. These programs terminate if a
non-zero maxdata value has been specified, either by modifying the executable file of the program or by
setting the LDR_CNTRL environment variable.

Executing Programs with Large Data Areas

When you execute a program that uses the large address-space model, the operating system attempts to
modify the soft limit on data size to match the maxdata value. If the maxdata value is larger than the
current hard limit on data size, either the program will not execute if the environment variable
XPG_SUS_ENV has the value set to ON, or the soft limit will be set to the current hard limit.

If the maxdata value is smaller than the size of the program’s static data, the program will not execute.

After placing the program’s initialized and uninitialized data in segments 3 and beyond, the break value is
computed. The break value defines the end of the process’s static data and the beginning of its
dynamically allocatable data. Using the |malloc} [brk or sbrk| subroutine, a process can move the break
value to increase the size of the data area.

For example, if the maxdata value specified by a program is 0x68000000, then the maximum break value
is in the middle of segment 9 (0x98000000). The brk subroutine extends the break value across segment
boundaries, but the size of the data area cannot exceed the current soft data limit.

The subroutine allows a process to set its soft data limit to any value that does not exceed the
hard data limit. The maximum size of the data area, however, is limited to the original maxdata value,
rounded up to a multiple of 256 MB.

The majority of subroutines are unaffected by large data programs. The [shmat| and [mmap]| subroutines are
the most affected, because they have fewer segments available for use. If a large data-address model
program forks, the child process inherits the current data resource limits.

Chapter 9. Large Program Support 187

Special Considerations

Programs with large data spaces require a large amount of paging space. For example, if a program with
a 2-GB address space tries to access every page in its address space, the system must have 2 GB of
paging space. The operating system terminates processes when paging space runs low. Programs with
large data spaces are terminated first because they typically consume a large amount of paging space.

Debugging programs using the large data model is no different than debugging other programs. The
command can debug these large programs actively or from a core dump. A full core dump from a
large-data program can be quite large. To avoid truncated core files, be sure the coredump resource limit
is large enough, and make sure that there is enough free space in the file system where your program is
running.

Some application programs might be written in such a way that they rely on characteristics of the default
address space model. These programs might not work if they execute using the large or very large
address-space model. Do not set the LDR_CNTRL environment variable when you run these programs.

Processes using the very large address-space model must make code changes to their programs in order
to move the break value of the address-space in chunks larger than 2 GB. This is a limitation of the sbrk

system call which takes a signed value as the parameter. As a workaround, a program can call sbrk more
than one time to move the break value to the desired position.

Related Information

For further information on this topic, see the following:
+ [‘Program Address Space Overview” on page 395|
+ [Bourne shell commands|in Operating system and device management

Subroutine References
« The subroutine, subroutine, subroutine, subroutine in AIX 5L Version 5.3

Technical Reference: Base Operating System and Extensions Volume 1

¢ The subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and
Extensions Volume 2

Commands References
« Theldd|command in AIX 5L Version 5.3 Commands Reference, Volume 2
* The|ldlcommand in AIX 5L Version 5.3 Commands Reference, Volume 3

Files References
The [XCOFF Object (a.out) File Format|in AIX 5L Version 5.3 Files Reference

188 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Chapter 10. Programming on Multiprocessor Systems

On a uniprocessor system, threads execute one after another in a time-sliced manner. This contrasts with
a multiprocessor system, where several threads execute at the same time, one on each available
processor. Overall performance can be improved by running different process threads on different
processors. However, an individual program cannot take advantage of multiprocessing, unless it has
multiple threads.

Multiprocessing is not apparent to most users because it is handled completely by the operating system
and the programs it runs. Users can bind their processes (force them to run on a certain processor);
however, this is not required, nor recommended for ordinary use. Even for most programmers, taking
advantage of multiprocessing simply amounts to using multiple threads. On the other hand, kernel
programmers have to deal with several issues when porting or creating code for multiprocessor systems.

Identifying Processors

Symmetric multiprocessor (SMP) machines have one or more CPU boards, each of which can
accommodate two processors. For example, a four-processor machine has two CPU boards, each having
two processors. Commands, subroutines, or messages that refer to processors must use an identification
scheme. Processors are identified by physical and logical numbers, and by Object Data Manager (ODM)
processor names and location codes.

ODM Processor Names

ODM is a system used to identify various parts throughout a machine, including bus adapters, peripheral
devices such as printers or terminals, disks, memory boards, and processor boards. For more information
about ODM, see [Chapter 15, “Object Data Manager (ODM),” on page 345

ODM assigns numbers to processor boards and processors in order, starting from 0 (zero), and creates
names based on these numbers by adding a prefix cpucard or proc. Thus, the first processor board is
called cpucard0, and the second processor on it is called procl.

ODM location codes for processors consist of four 2-digit fields, in the form AA-BB-CC-DD, as follows:

AA Always 00. It indicates the main unit.

BB Indicates the processor board number. It can be 0P, 0Q, OR, or 0S, indicating respectively the first, second, third
or fourth processor card.

CC Always 00.

DD Indicates the processor position on the processor board. It can be 00 or 01.

Logical Processor Numbers

Processors can also be identified using logical numbers, which start with 0 (zero). Only enabled
processors have a logical number.

The logical processor number 0 (zero) identifies the first physical processor in the enabled state; the
logical processor number 1 (one) identifies the second enabled physical processor, and so on. Generally,
all operating system commands and library subroutines use logical numbers to identify processors.

ODM Processor States

If a processor functions correctly, it can be enabled or disabled using a software command. A processor is
marked faulty if it has a detected hardware problem. ODM classifies processors using the following states:

© Copyright IBM Corp. 1997, 2007 189

State Description

enabled Processor works and can be used by AlX.
disabled Processor works, but cannot be used by AlX.
faulty Processor does not work (a hardware fault was detected).

Controlling Processor Use

On a multiprocessor system, the use of processors can be controlled in the following way:
* A user can force a process or kernel threads to run on a specific processor.

Binding Processes and Kernel Threads

Users may force their processes to run on a given processor; this action is called binding. A system
administrator may bind any process. From the command line, binding is controlled with the
command.

The process itself is not bound, but rather its kernel threads are bound. After kernel threads are bound,
they are always scheduled to run on the chosen processor, unless they are later unbound. When a new
kernel thread is created, it has the same bind properties as its creator.

This situation applies to the initial thread in the new process created by the subroutine; the new
thread inherits the bind properties of the thread that called the fork subroutine. When the subroutine
is called, bind properties are left unchanged. After a process is bound to a processor, if no other binding or
unbinding action is performed, all child processes will be bound to the same processor.

It is only possible to bind processes to enabled processors using logical processor numbers. To list
available logical processor numbers, use the bindprocessor -q command. For a system with four enabled
processors, this command produces output similar to the following:

The available processors are: 0 1 2 3

Binding may also be controlled within a program using the subroutine, which allows the
programmer to bind a single kernel thread or all kernel threads in a process. The programmer can also
unbind either a single kernel thread or all kernel threads in a process.

Using Dynamic Processor Deallocation

Starting with machine type 7044 model 270, the hardware of all systems with more than two processors
can detect correctable errors, which are gathered by the firmware. These errors are not fatal and, as long
as they remain rare occurrences, can be safely ignored. However, when a pattern of failures seems to be
developing on a specific processor, this pattern may indicate that this component is likely to exhibit an
unrecoverable failure in the near future. This prediction is made by the firmware based-on-failure rates and
threshold analysis.

AIX implements continuous hardware surveillance and regularly polls the firmware for hardware errors.
When the number of processor errors hits a threshold and the firmware recognizes the distinct probability
that this system component will fail, the firmware returns an error report to AlX and logs the error in the
system error log. In addition, on multiprocessor systems, depending on the type of failure, AIX attempts to
stop using the untrustworthy processor and deallocate it. This feature is called dynamic processor
deallocation.

At this point, the firmware flags the processor for persistent deallocation for subsequent reboots, until
service personnel replace the processor.

190 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Potential Impact to Applications

Processor deallocation is not apparent for the vast majority of applications, including drivers and kernel
extensions. However, you can use AIX published interfaces to determine whether an application or kernel
extension is running on a multiprocessor machine, find out how many processors there are, and bind
threads to specific processors.

The bindprocessor interface for binding processes or threads to processors uses bind CPU numbers. The
bind CPU numbers are in the range [0..N-1] where N is the total number of CPUs. To avoid breaking
applications or kernel extensions that assume no "holes” in the CPU numbering, AIX always makes it
appear for applications as if the CPU is the "last” (highest numbered) bind CPU to be deallocated. For
instance, on an 8-way SMP, the bind CPU numbers are [0..7]. If one processor is deallocated, the total
number of available CPUs becomes 7, and they are numbered [0..6]. Externally, CPU 7 seems to have
disappeared, regardless of which physical processor failed.

Note: In the rest of this description, the term CPU is used for the logical entity and the term processor for
the physical entity.

Applications or kernel extensions using processes/threads binding could potentially be broken if AIX
silently terminated their bound threads or forcibly moved them to another CPU when one of the processors
needs to be deallocated. Dynamic processor deallocation provides programming interfaces so that those
applications and kernel extensions can be notified that a processor deallocation is about to happen. When
these applications and kernel extensions get this notification, they are responsible for moving their bound
threads and associated resources (such as timer request blocks) away form the last bind CPU ID and
adapt themselves to the new CPU configuration.

If, after notification of applications and kernel extensions, some of the threads are still bound to the last
bind CPU ID, the deallocation is aborted. In this case, AlX logs the fact that the deallocation has been
aborted in the error log and continues using the ailing processor. When the processor ultimately fails, it
creates a total system failure. Thus, it is important for applications or kernel extensions that are binding
threads to CPUs to get the notification of an impending processor deallocation, and to act on this notice.

Even in the rare cases where the deallocation cannot go through, dynamic processor deallocation still
gives advanced warning to system administrators. By recording the error in the error log, it gives them a
chance to schedule a maintenance operation on the system to replace the ailing component before a
global system failure occurs.

Flow of Events for Processor Deallocation
The typical flow of events for processor deallocation is as follows:
1. The firmware detects that a recoverable error threshold has been reached by one of the processors.

2. AIX logs the firmware error report in the system error log, and, when executing on a machine
supporting processor deallocation, starts the deallocation process.

3. AIX notifies non-kernel processes and threads bound to the last bind CPU.

4. AIX waits for all the bound threads to move away from the last bind CPU. If threads remain bound, AIX
eventually times out (after ten minutes) and aborts the deallocation. Otherwise, AlX invokes the
previously registered High Availability Event Handlers (HAEHS). An HAEH may return an error that will
abort the deallocation. Otherwise, AIX continues with the deallocation process and ultimately stops the
failing processor.

In case of failure at any point of the deallocation, AIX logs the failure, indicating the reason why the
deallocation was aborted. The system administrator can look at the error log, take corrective action (when
possible) and restart the deallocation. For instance, if the deallocation was aborted because at least one
application did not unbind its bound threads, the system administrator could stop the application(s), restart
the deallocation (which should continue this time) and restart the application.

Chapter 10. Programming on Multiprocessor Systems 191

Programming Interfaces Dealing with Individual Processors
The following sections describe available programming interfaces:

+ ['Interfaces to Determine the Number of CPUs on a System’|

+ [Interfaces to Bind Threads to a Specific Processor]

Interfaces to Determine the Number of CPUs on a System

sysconf Subroutine
The sysconf subroutine returns a number of processors using the following parameters:

* _SC_NPROCESSORS_CONF: Number of processors configured
* _SC_NPROCESSORS_ONLN: Number of processors online

For more information, see sysconf Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating
System and Extensions Volume 2.

The value returned by the sysconf subroutine for _SC_NPROCESSORS_CONF will remain constant between
reboots. Uniprocessor (UP) machines are identified by a 1. Values greater than 1 indicate multiprocessor
(MP) machines. The value returned for the _SC_NPROCESSORS_ONLN parameter will be the count of
active CPUs and will be decremented every time a processor is deallocated.

The _system_configuration.ncpus field identifies the number of CPUs active on a machine. This field is
analogous to the _SC_NPROCESSOR_ONLN parameter. For more information, see |systemcfg.h Filg]in
AIX 5L Version 5.3 Files Reference.

For code that must recognize how many processors were originally available at boot time, the ncpus_cfg
field is added to the _system_configuration table, which remains constant between reboots.

The CPUs are identified by bind CPU IDs in the range [0..(ncpus-1)]. The processors also have a physical
CPU number that depends on which CPU board they are on, in which order, and so on. The commands
and subroutines dealing with CPU numbers always use bind CPU numbers. To ease the transition to
varying numbers of CPUs, the bind CPU numbers are contiguous numbers in the range [0..(ncpus-1). The
effect of this is that from a user point of view, when a processor deallocation takes place, it always looks
like the highest-numbered ("last”) bind CPU is disappearing, regardless of which physical processor failed.

Note: To avoid problems, use the ncpus_cfg variable to determine what the highest possible bind CPU
number is for a particular system.

Interfaces to Bind Threads to a Specific Processor

The bindprocessorcommand and the bindprocessor programming interface allow you to bind a thread or
a process to a specific CPU, designated by its bind CPU number. Both interfaces will allow you to bind
threads or processes only to active CPUs. Those programs that directly use the bindprocessor
programming interface or are bound externally by a bindprocessor command must be able to handle the
processor deallocation.

The primary problem seen by programs that bind to a processor when a CPU has been deallocated is that
requests to bind to a deallocated processor will fail. Code that issues bindprocessor requests should
always check the return value from those requests.

For more information on these interfaces, see [bindprocessor Command|in A/X 5L Version 5.3
Commands Reference, Volume 1 or bindprocessor Subroutine|in AIX 5L Version 5.3 Technical
Reference: Base Operating System and Extensions Volume 1.

192 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Interfaces for Processor Deallocation Notification

The notification mechanism is different for user-mode applications having threads bound to the last bind
CPU than it is for kernel extensions.

Notification in User Mode

Each thread of a user mode application that is bound to the last bind CPU is sent the SIGCPUFAIL and
SIGRECONFIG signals. These applications need to be modified to catch these signals and dispose of the
threads bound to the last bind CPU (either by unbinding them or by binding them to a different CPU). For
more information on the SIGRECONFIG signal, see [Chapter 17, “Dynamic logical partitioning,” on pagel
365

Notification in Kernel Mode

The drivers and kernel extensions that must be notified of an impending processor deallocation must
register a High-Availability Event Handler (HAEH) routine with the kernel. This routine will be called when
a processor deallocation is imminent. An interface is also provided to unregister the HAEH before the
kernel extension is unconfigured or unloaded.

Registering a High-Availability Event Handler: The kernel exports a new function to allow notification
of the kernel extensions in case of events that affect the availability of the system.

The system call is:
int register_HA_handler(ha_handler_ext_t *)

For more information on this system call, see [register_HA_handlerin A/X 5L Version 5.3 Technical
Reference: Kernel and Subsystems Volume 1.

The return value is equal to 0 in case of success. A non-zero value indicates a failure.

The system call argument is a pointer to a structure describing the kernel extension’s HAEH. This
structure is defined in a header file, named sys/high_avail.h, as follows:

typedef struct _ha_handler_ext {

int (*_fun)(); /* Function to be invoked */
Tong Tong _data; /* Private data for (*_fun)() */
char _name[sizeof(Tong Tong) + 1];

} ha_handler_ext_t;

The private _data field is provided for the use of the kernel extension if it is needed. Whatever value given
in this field at the time of registration will be passed as a parameter to the registered function when the
field is called due to a CPU predictive failure event.

The _name field is a null-terminated string with a maximum length of 8 characters (not including the null
character terminator) which is used to uniquely identify the kernel extension with the kernel. This name
must be unique among all the registered kernel extensions. This name is listed in the detailed data area of
the CPU_DEALLOC_ABORTED error log entry if the kernel extension returns an error when the HAEH routine is
called by the kernel.

Kernel extensions should register their HAEH only once.

Invocation of the High-Availability Event Handler: The following parameters call the HAEH routine:
* The value of the _data field of the ha_handler_ext_t structure passed to register_HA_handler.
* A pointer to a ha_event_t structure defined in the sys/high_avail.h file as:

typedef struct { /* High-availability related event =/
uint _magic; /* Identifies the kind of the event */
#define HA_CPU_FAIL 0x40505546 /* "CPUF" =/
union {
struct { /* Predictive processor failure */

Chapter 10. Programming on Multiprocessor Systems 193

cpu_t dealloc_cpu; /* CPU bind ID of failing processor */

ushort domain; /* future extension */
ushort nodeid; /* future extension */
ushort reserved3; /* future extension =/
uint reserved[4]; /* future extension =/
! _cpu;
/% .0 %/ /* Additional kind of events -- =/

/* future extension */
bo_us
} haeh_event_t;

The function returns one of the following codes, also defined in the sys/high_avail.h file:

#define HA_ACCEPTED 0 /* Positive acknowledgement =*/
#define HA_REFUSED -1 /* Negative acknowledgement =/

If any of the registered extensions does not return HA_ACCEPTED, the deallocation is aborted. The
HAEH routines are called in the process environment and do not need to be pinned.

If a kernel extension depends on the CPU configuration, its HAEH routine must react to the upcoming
CPU deallocation. This reaction is highly application-dependent. To allow AIX to proceed with the
deconfiguration, they must move the threads that are bound to the last bind CPU, if any. Also, if they have
been using timers started from bound threads, those timers will be moved to another CPU as part of the
CPU deallocation. If they have any dependency on these timers being delivered to a specific CPU, they
must take action (such as stopping them) and restart their timer requests when the threads are bound to a
new CPU, for instance.

Canceling the Registration of a High-Availability Event Handler: To keep the system coherent and
prevent system crashes, the kernel extensions that register an HAEH must cancel the registration when
they are unconfigured and are going to be unloaded. The interface is as follows:

int unregister HA handler(ha_handler _ext t *)

This interface returns 0 in case of success. Any non-zero return value indicates an error.

For more information on the system call, see |unregister_HA_handIe|1 in AIX 5L Version 5.3 Technical
Reference: Kernel and Subsystems Volume 1.

Deallocating a Processor in the Test Environment

To test any of the modifications made in applications or kernel extensions to support this processor
deallocation, use the following command to trigger the deallocation of a CPU designated by its logical CPU
number. The syntax is:

cpu_deallocate cpunum
where:
cpunum is a valid logical CPU number.

You must reboot the system to get the target processor back online. Hence, this command is provided for
test purposes only and is not intended as a system administration tool.

Dynamic Memory Guarding

AIX systems are designed to be resilient in regards to memory errors. Memory error resilience is the result
of both hardware and operating system-level recoveries. There are multiple ways to categorize memory
errors, but for the purposes of this discussion, memory errors are classified as recoverable and
non-recoverable errors.

194 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Recoverable errors result in data located in specific locations being retrievable, and unrecoverable errors
result in a loss of data from the specific location in question. Unrecoverable errors are typically resolved by
using hardware redundancy in the memory subsystem, or by masking the area in question from use during
boot time of the operating system.

AlX supports resilience as a means of preventing recoverable memory errors from becoming
unrecoverable errors through a technique known as Dynamic Memory Guarding. Dynamic Memory
Guarding is based on support provided by the hardware. Hardware provides mechanisms for the detection
of and recovery from errors (such as memory scrubbing and error correcting circuits (ECC)). Hardware can
provide mechanisms for avoiding future unrecoverable errors as well, including redundant bit steering.

As a complement to these hardware mechanisms, the hardware can inform the operating system about
errors best handled through Dynamic Memory Guarding. This is done by identifying areas of memory to be
deallocated. The AlIX operating system uses this information to mask off the memory area in question and
to stop using it. The operating system will move any data currently contained in the memory area in error
to another memory area, and then stop using the memory page that contains the memory location in error.
This memory guarding is done by the operating system without any user intervention and is transparent to
end users and applications.

Creating Locking Services

Some programmers may want to implement their own high-level locking services instead of using the
standard locking services (mutexes) provided in the threads library. For example, a database product may
already use a set of internally defined services; it can be easier to adapt these locking services to a new
system than to adapt all the internal modules that use these services.

For this reason, AIX provides atomic locking service primitives that can be used to build higher-level
locking services. To create services that are multiprocessor-safe (like the standard mutex services),
programmers must use the atomic locking services described in this section and not atomic operations
services, such as the [compare_and_swap| subroutine.

Multiprocessor-Safe Locking Services

Locking services are used to serialize access to resources that may be used concurrently. For example,
locking services can be used for insertions in a linked list, which require several pointer updates. If the
update sequence by one process is interrupted by a second process that tries to access the same list, an
error can occur. A sequence of operations that should not be interrupted is called a critical section.

Locking services use a lock word to indicate the lock status: 0 (zero) can be used for free, and 1 (one) for
busy. Therefore, a service to acquire a lock would do the following:

test the lock word

if the lock is free

set the lock word to busy
return SUCCESS

Because this sequence of operations (read, test, set) is itself a critical section, special handling is required.
On a uniprocessor system, disabling interrupts during the critical section prevents interruption by a context
switch. But on a multiprocessor system, the hardware must provide a test-and-set primitive, usually with a
special machine instruction. In addition, special processor-dependent synchronization instructions called
import and export fences are used to temporarily block other reads or writes. They protect against
concurrent access by several processors and against the read and write reordering performed by modern
processors and are defined as follows:

Chapter 10. Programming on Multiprocessor Systems 195

Import Fences
The import fence is a special machine instruction that delays until all previously issued instructions
are complete. When used in conjunction with a lock, this prevents speculative execution of
instructions until the lock is obtained.

Export Fences
The export fence guarantees that the data being protected is visible to all other processors prior to
the lock being released.

To mask this complexity and provide independence from these machine-dependent instructions, the
following subroutines are defined:

Conditionally updates a single word variable atomically, issuing an import fence for
multiprocessor systems. The compare_and_swap subroutine is similar, but it does not issue

an import fence and, therefore, is not usable to implement a lock.
Atomically writes a single word variable, issuing an export fence for multiprocessor systems.

Kernel Programming

For complete details about kernel programming, see AIX 5L Version 5.3 Kernel Extensions and Device
Support Programming Concepts. This section highlights the major differences required for multiprocessor
systems.

Serialization is often required when accessing certain critical resources. Locking services can be used to
serialize thread access in the process environment, but they will not protect against an access occurring in
the interrupt environment. New or ported code should use the |[disable_lock| and lunlock_enable] kernel
services, which use simple locks in addition to interrupt control, instead of the i_disable kernel service.
These kernel services can also be used for uniprocessor systems, on which they simply use interrupt
services without locking. For detailed information, see [Locking Kernel Services|in AIX 5L Version 5.3
Kernel Extensions and Device Support Programming Concepts.

Device drivers by default run in a logical uniprocessor environment, in what is called funneled mode. Most
well-written drivers for uniprocessor systems will work without modification in this mode, but must be
carefully examined and modified to benefit from multiprocessing. Finally, kernel services for timers now
have return values because they will not always succeed in a multiprocessor environment. Therefore, new

or ported code must check these return values. For detailed information, see|Using Multiprocessor-Safe]
in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepits.
Example of Locking Services

The multiprocessor-safe locking subroutines can be used to create custom high-level routines independent
of the threads library. The example that follows shows partial implementations of subroutines similar to the
[pthread_mutex_lock| and |pthread_mutex_unlock| subroutines in the threads library:

#include <sys/atomic_op.h> /* for locking primitives */
#define SUCCESS 0
#define FAILURE -1
#define LOCK_FREE 0
#define LOCK_TAKEN 1
typdef struct {
atomic_p Tock; /* lock word */
tid_t owner; /* identifies the lock owner =/

/* implementation dependent fields */
} my_mutex_t;

int my_mutex_lock(my _mutex_t *mutex)

{

tid_t self; /x caller's identifier %/

196 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

/*
Perform various checks:
is mutex a valid pointer?
has the mutex been initialized?

*/

/* test that the caller does not have the mutex */
self = thread self();
if (mutex->owner == self)

return FAILURE;

/*

Perform a test-and-set primitive in a loop.

In this implementation, yield the processor if failure.
Other solutions include: spin (continuously check);

or yield after a fixed number of checks.

*

/
while (_check_Tock(mutex->Tock, LOCK_FREE, LOCK_TAKEN))

yield();

mutex->owner = self;
return SUCCESS;
} /* end of my _mutex_Tock */

int my_mutex_unlock(my mutex_t *mutex)
{
/*
Perform various checks:
is mutex a valid pointer?
has the mutex been initialized?
*/

/* test that the caller owns the mutex =*/
if (mutex->owner != thread_self())
return FAILURE;

_clear_lock(mutex->Tock, LOCK FREE);
return SUCCESS;
} /* end of my _mutex_unlock */

Related Information

[Locking Kernel Servicesht is in | in ALX 5L Version 5.3 Kernel Extensions and Device Support
Programming Concepts

[Using Multiprocessor-Safe Timer Services|in AIX 5L Version 5.3 Kernel Extensions and Device Support
Programming Concepts

Subroutine References

The [bindprocessor, [compare_and_swapl [fork, [pthread_mutex_lock} [pthread_mutex_unlock|
subroutines.

Kernel Services
The [disable_lockl fi_disable] and junlock_enable| kernel services.

Commands References
The command.

Chapter 10. Programming on Multiprocessor Systems 197

198 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Chapter 11. Multi-Threaded Programming

This chapter provides guidelines for writing multi-threaded programs using the threads library
(libpthreads.a). The AIX threads library is based on the X/Open Portability Guide Issue 5 standard. For
this reason, the following information presents the threads library as the AIX implementation of the XPG5
standard.

Parallel programming uses the benefits of multiprocessor systems, while maintaining a full binary
compatibility with existing uniprocessor systems. The parallel programming facilities are based on the
concept of threads.

The advantages of using parallel programming instead of serial programming techniques are as follows:
» Parallel programming can improve the performance of a program.

* Some common software models are well-suited to parallel-programming techniques. For more
information, see [‘Software Models” on page 200

Traditionally, multiple single-threaded processes have been used to achieve parallelism, but some
programs can benefit from a finer level of parallelism. Multi-threaded processes offer parallelism within a
process and share many of the concepts involved in programming multiple single-threaded processes.

The following information introduces threads and the associated programming facilities. It also discusses
general topics concerning parallel programming:

Note: In this book, the word thread used alone refers to user threads. This also applies to user-mode
environment programming references, but not to articles related to kernel programming.

To learn how to write programs using multiple threads, read the topics in sequential order. If you are
looking for specific information, see one of the following topics:

+ [‘Thread-Safe and Threaded Libraries in AIX” on page 204
« [‘Synchronization Overview” on page 214
+ [‘Threads Library Options” on page 256

Understanding Threads and Processes

A thread is an independent flow of control that operates within the same address space as other
independent flows of controls within a process. Traditionally, thread and process characteristics are
grouped into a single entity called a process. In other operating systems, threads are sometimes called
lightweight processes, or the meaning of the word thread is sometimes slightly different.

The following sections discuss the differences between a thread and a process.

In traditional single-threaded process systems, a process has a set of properties. In multi-threaded
systems, these properties are divided between processes and threads.

Threads have some limitations and cannot be used for some special purposes that require multi-processed
programs. For more information, see [‘Limitations” on page 283

Process Properties

A process in a multi-threaded system is the changeable entity. It must be considered as an execution
frame. It has traditional process attributes, such as:

* Process ID, process group ID, user ID, and group ID
* Environment

© Copyright IBM Corp. 1997, 2007 199

* Working directory

A process also provides a common address space and common system resources, as follows:

» File descriptors

+ Signal actions

» Shared libraries

* Inter-process communication tools (such as message queues, pipes, semaphores, or shared memory)

Thread Properties

A thread is the schedulable entity. It has only those properties that are required to ensure its independent
control of flow. These include the following properties:

» Stack

» Scheduling properties (such as policy or priority)
» Set of pending and blocked signals

» Some thread-specific data

An example of thread-specific data is the errno error indicator. In multi-threaded systems, errno is no
longer a global variable, but usually a subroutine returning a thread-specific errno value. Some other
systems may provide other implementations of errno.

Threads within a process must not be considered as a group of processes. All threads share the same
address space. This means that two pointers having the same value in two threads refer to the same data.
Also, if any thread changes one of the shared system resources, all threads within the process are
affected. For example, if a thread closes a file, the file is closed for all threads.

Initial Thread

When a process is created, one thread is automatically created. This thread is called the initial thread. It
ensures the compatibility between the old processes with a unique implicit thread and the new
multi-threaded processes. The initial thread has some special properties, not visible to the programmer,
that ensure binary compatibility between the old single-threaded programs and the multi-threaded
operating system. It is also the initial thread that executes the main routine in multi-threaded programs.

Modularity

Programs are often modeled as a number of distinct parts interacting with each other to produce a desired
result or service. A program can be implemented as a single, complex entity that performs multiple
functions among the different parts of the program. A more simple solution consists of implementing
several entities, each entity performing a part of the program and sharing resources with other entities.

By using multiple entities, a program can be separated according to its distinct activities, each having an
associated entity. These entities do not have to know anything about the other parts of the program except
when they exchange information. In these cases, they must synchronize with each other to ensure data
integrity.

Threads are well-suited entities for modular programming. Threads provide simple data sharing (all threads
within a process share the same address space) and powerful synchronization facilities, such as mutexes
(mutual exclusion locks) and condition variables.

Software Models

The following common software models can easily be implemented with threads:
+ [Master/Slave Model|

+ [Divide-and-Conquer Models|

200 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

+ [Producer/Consumer Models|

All these models lead to modular programs. Models may also be combined to efficiently solve complex
tasks.

These models can apply to either traditional multi-process solutions, or to single process multi-thread
solutions, on multi-threaded systems. In the following descriptions, the word entity refers to either a
single-threaded process or to a single thread in a multi-threaded process.

Master/Slave Model

In the master/slave (sometimes called boss/worker) model, a master entity receives one or more requests,
then creates slave entities to execute them. Typically, the master controls the number of slaves and what
each slave does. A slave runs independently of other slaves.

An example of this model is a print job spooler controlling a set of printers. The spooler’s role is to ensure
that the print requests received are handled in a timely fashion. When the spooler receives a request, the
master entity chooses a printer and causes a slave to print the job on the printer. Each slave prints one
job at a time on a printer, while it also handles flow control and other printing details. The spooler may
support job cancelation or other features that require the master to cancel slave entities or reassign jobs.

Divide-and-Conquer Models

In the divide-and-conquer (sometimes called simultaneous computation or work crew) model, one or more
entities perform the same tasks in parallel. There is no master entity; all entities run in parallel
independently.

An example of a divide-and-conquer model is a parallelized grep command implementation, which could
be done as follows. The grep command first establishes a pool of files to be scanned. It then creates a
number of entities. Each entity takes a different file from the pool and searches for the pattern, sending the
results to a common output device. When an entity completes its file search, it obtains another file from
the pool or stops if the pool is empty.

Producer/Consumer Models

The producer/consumer (sometimes called pipelining) model is typified by a production line. An item
proceeds from raw components to a final item in a series of stages. Usually a single worker at each stage
modifies the item and passes it on to the next stage. In software terms, an AIX command pipe, such as
the cpio command, is an example of this model.

For example, a reader entity reads raw data from standard input and passes it to the processor entity,
which processes the data and passes it to the writer entity, which writes it to standard output. Parallel
programming allows the activities to be performed concurrently: the writer entity may output some
processed data while the reader entity gets more raw data.

Kernel Threads and User Threads

A kernel thread is the schedulable entity, which means that the system scheduler handles kernel threads.
These threads, known by the system scheduler, are strongly implementation-dependent. To facilitate the
writing of portable programs, libraries provide user threads.

A kernel thread is a kernel entity, like processes and interrupt handlers; it is the entity handled by the
system scheduler. A kernel thread runs within a process, but can be referenced by any other thread in the
system. The programmer has no direct control over these threads, unless you are writing kernel
extensions or device drivers. For more information about kernel programming, see AIX 5L Version 5.3
Kernel Extensions and Device Support Programming Concepts.

A user thread is an entity used by programmers to handle multiple flows of controls within a program. The
API for handling user threads is provided by the threads library. A user thread only exists within a process;
a user thread in process A cannot reference a user thread in process B. The library uses a proprietary

Chapter 11. Multi-Threaded Programming 201

interface to handle kernel threads for executing user threads. The user threads API, unlike the kernel
threads interface, is part of a POSIX-standards compliant portable-programming model. Thus, a
multi-threaded program developed on an AlX system can easily be ported to other systems.

On other systems, user threads are simply called threads, and lightweight process refers to kernel threads.

Thread Models and Virtual Processors

User threads are mapped to kernel threads by the threads library. The way this mapping is done is called
the thread model. There are three possible thread models, corresponding to three different ways to map
user threads to kernel threads.

* M:1 model
¢ 1:1 model
* M:N model

The mapping of user threads to kernel threads is done using virtual processors. A virtual processor (VP) is
a library entity that is usually implicit. For a user thread, the VP behaves like a CPU. In the library, the VP
is a kernel thread or a structure bound to a kernel thread.

In the M:1 model, all user threads are mapped to one kernel thread; all user threads run on one VP. The
mapping is handled by a library scheduler. All user-threads programming facilities are completely handled
by the library. This model can be used on any system, especially on traditional single-threaded systems.

In the 1:1 model, each user thread is mapped to one kernel thread; each user thread runs on one VP.
Most of the user threads programming facilities are directly handled by the kernel threads. This model can
be set by setting the AIXTHREAD_SCOPE environment variable to S.

In the M:N model, all user threads are mapped to a pool of kernel threads; all user threads run on a pool
of virtual processors. A user thread may be bound to a specific VP, as in the 1:1 model. All unbound user
threads share the remaining VPs. This is the most efficient and most complex thread model; the user
threads programming facilities are shared between the threads library and the kernel threads. This is the
default model.

Threads Library API

This section provides general information about the threads library API. Although the following information
is not required for writing multi-threaded programs, it can help the programmer understand the threads
library API.

Object-Oriented Interface

The threads library API provides an object-oriented interface. The programmer manipulates opaque objects
using pointers or other universal identifiers. This ensures the portability of multi-threaded programs
between systems that implement the threads library and also allows implementation changes between two
releases of AlX, necessitating only that programs be recompiled. Although some definitions of data types
may be found in the threads library header file (pthread.h), programs should not rely on these
implementation-dependent definitions to directly handle the contents of structures. The regular threads
library subroutines must always be used to manipulate the objects.

The threads library essentially uses the following kinds of objects (opaque data types): threads, mutexes,
rwlocks, and condition variables. These objects have attributes that specify the object properties. When
creating an object, the attributes must be specified. In the threads library, these creation attributes are
themselves objects, called threads attributes objects.

The following pairs of objects are manipulated by the threads library:
* Threads and thread-attributes objects
* Mutexes and mutex-attributes objects

202 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

» Condition variables and condition-attributes objects
* Read-write locks

An attributes object is created with attributes having default values. Attributes can then be individually
modified by using subroutines. This ensures that a multi-threaded program will not be affected by the
introduction of new attributes or by changes in the implementation of an attribute. An attributes object can
thus be used to create one or several objects, and then destroyed without affecting objects created with
the attributes object.

Using an attributes object also allows the use of object classes. One attributes object may be defined for
each object class. Creating an instance of an object class is done by creating the object using the class
attributes object.

Naming Convention for the Threads Library

The identifiers used by the threads library follow a strict naming convention. All identifiers of the threads
library begin with pthread_. User programs should not use this prefix for private identifiers. This prefix is
followed by a component name. The following components are defined in the threads library:

pthread_ Threads themselves and miscellaneous subroutines
pthread_attr Thread attributes objects

pthread_cond Condition variables

pthread_condattr Condition attributes objects

pthread_key Thread-specific data keys

pthread_mutex Mutexes

pthread_mutexattr Mutex attributes objects

Data type identifiers end with _t. Subroutine and macro names end with an _ (underscore), followed by a
name identifying the action performed by the subroutine or the macro. For example, pthread_attr _init is a
threads library identifier (pthread_) that concerns thread attributes objects (attr) and is an initialization
subroutine (_init).

Explicit macro identifiers are in uppercase letters. Some subroutines may, however, be implemented as
macros, although their names are in lowercase letters.

pthread Implementation Files
The following AIX files provide the implementation of pthreads:

lusr/include/pthread.h
lusr/include/sched.h
lusr/include/unistd.h
lusr/include/sys/limits.h
lusr/include/sys/pthdebug.h
lusr/include/sys/sched.h
lusr/include/sys/signal.h

lusr/include/sys/types.h
lusr/lib/libpthreads.a

lusrl/lib/libpthreads_compat.a
lusr/lib/profiled/libpthreads.a

lust/lib/profiled/libpthreads_compat.a

C/C++ header with most pthread definitions.
C/C++ header with some scheduling definitions.
C/C++ header with pthread_atfork() definition.
C/C++ header with some pthread definitions.
C/C++ header with most pthread debug definitions.
C/C++ header with some scheduling definitions.
C/C++ header with pthread_kill() and
pthread_sigmask() definitions.

C/C++ header with some pthread definitions.
32-bit/64-bit library providing UNIX98 and POSIX
10083.1c pthreads.

32-bit only library providing POSIX 1003.1c Draft 7
pthreads.

Profiled 32-bit/64-bit library providing UNIX98 and
POSIX 1003.1c pthreads.

Profiled 32-bit only library providing POSIX 1003.1c
Draft 7 pthreads.

Chapter 11. Multi-Threaded Programming 203

Thread-Safe and Threaded Libraries in AlX

By default, all applications are now considered "threaded,” even though most are of the case "single
threaded.” These thread-safe libraries are as follows:

libbsd.a libc.a libm.a
libsvid.a libtli.a libxti.a
libnetsvc.a

POSIX Threads Libraries

The following POSIX threads libraries are available:

libpthreads.a POSIX Threads Library
The libpthreads.a library is based on the POSIX 1003.1c industry standard for a portable user
threads API. Any program written for use with a POSIX thread library can be ported for use with
another POSIX threads library; only the performance and very few subroutines of the threads
library are implementation-dependent. To enhance the portability of the threads library, the POSIX
standard made the implementation of several programming facilities optional. For more information
about checking the POSIX options, see [‘Threads Library Options” on page 256 |

libpthreads_compat.a POSIX Draft 7 Threads Library
AlX provides binary compatibility for existing multi-threads applications that were coded to Draft 7
of the POSIX thread standard. These applications will run without relinking. The
libpthreads_compat.a library is only provided for backward compatibility with applications written
using the Draft 7 of the POSIX Thread Standard. All new applications should use the
libpthreads.a library, which supports both 32-bit and 64-bit applications. The
libpthreads_compat.a library only supports 32-bit applications. Beginning with AIX 5.1, the
libpthreads.a library provides support for the Single UNIX Specification, Version 2 which includes
the final POSIX 1003.1c Pthread Standard. For more information, see [‘Developing Multi-Threaded|
[Programs” on page 270.|

Creating Threads

Thread creation differs from process creation in that no parent-child relation exists between threads. All
threads, except the initial thread automatically created when a process is created, are on the same
hierarchical level. A thread does not maintain a list of created threads, nor does it know the thread that
created it.

When creating a thread, an entry-point routine and an argument must be specified. Every thread has an
entry-point routine with one argument. The same entry-point routine may be used by several threads.

A thread has attributes, which specify the characteristics of the thread. To control thread attributes, a
thread attributes object must be defined before creating the thread.

Thread Attributes Object

The thread attributes are stored in an opaque object, the thread attributes object, used when creating the
thread. It contains several attributes, depending on the implementation of POSIX options. The object is
accessed through a variable of type pthread_attr_t. In AlX, the pthread_attr_t data type is a pointer to a
structure; on other systems, it may be a structure or another data type.

Creating and Destroying the Thread Attributes Object

The thread attributes object is initialized to default values by the [pthread_attr_init subroutine. The
attributes are handled by subroutines. The thread attributes object is destroyed by the
[pthread_attr_destroy| subroutine. This subroutine can release storage dynamically allocated by the
pthread_attr_init subroutine, depending on the implementation of the threads library.

204 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

In the following example, a thread attributes object is created and initialized with default values, then used
and finally destroyed:
pthread attr t attributes;

/* the attributes object is created */

if (!pthread_attr_init(&attributes)) {
/* the attributes object is initialized =/

/* using the attributes object x/
pthread_attr_destroy(&attributes);

/* the attributes object is destroyed =*/
1

The same attributes object can be used to create several threads. It can also be modified between two
thread creations. When the threads are created, the attributes object can be destroyed without affecting
the threads created with it.

Detachstate Attribute
The following attribute is always defined:

Detachstate Specifies the detached state of a thread.

The value of the attribute is returned by the |pthread_attr_getdetachstate| subroutine; it can be set by the
[pthread_attr_setdetachstate| subroutine. Possible values for this attributes are the following symbolic
constants:

PTHREAD_CREATE_DETACHED Specifies that the thread will be created in the detached state
PTHREAD_CREATE_JOINABLE Specifies that the thread will be created in the joinable state

The default value is PTHREAD_CREATE_JOINABLE.

If you create a thread in the joinable state, you must call the pthread_join subroutine with the thread.
Otherwise, you may run out of storage space when creating new threads, because each thread takes up a
signficant amount of memory. For more information on the pthread_join subroutine, see
[pthread_join Subroutine” on page 233

Other Threads Attributes

AIX also defines the following attributes, which are intended for advanced programs and may require
special execution privilege to take effect. Most programs operate correctly with the default settings. The
use of the following attributes is explained in [‘Using the inheritsched Attribute” on page 236

Contention Scope Specifies the contention scope of a thread

Inheritsched Specifies the inheritance of scheduling properties of a thread
Schedparam Specifies the scheduling parameters of a thread
Schedpolicy Specifies the scheduling policy of a thread

The use of the following stack attributes is explained in [‘Stack Attributes” on page 256 |

Stacksize Specifies the size of the thread’s stack
Stackaddr Specifies the address of the thread’s stack
Guardsize Specifies the size of the guard area of the thread’s stack

Chapter 11. Multi-Threaded Programming 205

Creating a Thread using the pthread_create Subroutine

A thread is created by calling the [pthread_create| subroutine. This subroutine creates a new thread and
makes it runnable.

Using the Thread Attributes Object
When calling the pthread_create subroutine, you may specify a thread attributes object. If you specify a
NULL pointer, the created thread will have the default attributes. Thus, the following code fragment:

pthread_t thread;
pthread_attr_t attr;

pthread_attr_init(&attr);
pthread _create(&thread, &attr, init_routine, NULL);
pthread_attr_destroy(&attr);

is equivalent to the following:
pthread_t thread;

pthread create(&thread, NULL, init_routine, NULL);

Entry Point Routine

When calling the pthread_create subroutine, you must specify an entry-point routine. This routine,
provided by your program, is similar to the main routine for the process. It is the first user routine
executed by the new thread. When the thread returns from this routine, the thread is automatically
terminated.

The entry-point routine has one parameter, a void pointer, specified when calling the pthread_create
subroutine. You may specify a pointer to some data, such as a string or a structure. The creating thread
(the one calling the pthread_create subroutine) and the created thread must agree upon the actual type
of this pointer.

The entry-point routine returns a void pointer. After the thread termination, this pointer is stored by the
threads library unless the thread is detached. For more information about using this pointer, see

[Information from a Thread” on page 234

Returned Information
The pthread_create subroutine returns the thread ID of the new thread. The caller can use this thread ID
to perform various operations on the thread.

Depending on the scheduling parameters of both threads, the new thread may start running before the call
to the pthread_create subroutine returns. It may even happen that, when the pthread_create subroutine
returns, the new thread has already terminated. The thread ID returned by the pthread_create subroutine
through the thread parameter is then already invalid. It is, therefore, important to check for the ESRCH
error code returned by threads library subroutines using a thread ID as a parameter.

If the pthread_create subroutine is unsuccessful, no new thread is created, the thread ID in the thread
parameter is invalid, and the appropriate error code is returned. For more information, see
[Multi-Threaded Program” on page 272

Handling Thread IDs

The thread ID of a newly created thread is returned to the creating thread through the thread parameter.

The current thread ID is returned by the |pthread_self| subroutine.

A thread ID is an opaque object; its type is pthread_t. In AlX, the pthread_t data type is an integer. On
other systems, it may be a structure, a pointer, or any other data type.

206 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

To enhance the portability of programs using the threads library, the thread ID should always be handled
as an opaque object. For this reason, thread IDs should be compared using the
subroutine. Never use the C equality operator (==), because the pthread_t data type may be neither an
arithmetic type nor a pointer.

Terminating Threads

A thread automatically terminates when it returns from its entry-point routine. A thread can also explicitly
terminate itself or terminate any other thread in the process, using a mechanism called cancelation.
Because all threads share the same data space, a thread must perform cleanup operations at termination
time; the threads library provides cleanup handlers for this purpose.

Exiting a Thread
A process can exit at any time when a thread calls the subroutine. Similarly, a thread can exit at any

time by calling the |pthread_exit| subroutine.

Calling the exit subroutine terminates the entire process, including all its threads. In a multi-threaded
program, the exit subroutine should only be used when the entire process needs to be terminated; for
example, in the case of an unrecoverable error. The pthread_exit subroutine should be preferred, even for
exiting the initial thread.

Calling the pthread_exit subroutine terminates the calling thread. The status parameter is saved by the
library and can be further used when joining the terminated thread. Calling the pthread_exit subroutine is
similar, but not identical, to returning from the thread’s initial routine. The result of returning from the
thread’s initial routine depends on the thread:

* Returning from the initial thread implicitly calls the exit subroutine, thus terminating all the threads in the
process.

* Returning from another thread implicitly calls the pthread_exit subroutine. The return value has the
same role as the status parameter of the pthread_exit subroutine.

To avoid implicitly calling the exit subroutine, to use the pthread_exit subroutine to exit a thread.

Exiting the initial thread (for example, by calling the pthread_exit subroutine from the main routine) does
not terminate the process. It terminates only the initial thread. If the initial thread is terminated, the process
will be terminated when the last thread in it terminates. In this case, the process return code is 0.

The following program displays exactly 10 messages in each language. This is accomplished by calling
the pthread_exit subroutine in the main routine after creating the two threads, and creating a loop in the
Thread routine.

#include <pthread.h> /* include file for pthreads - the 1st */
#include <stdio.h> /* include file for printf() */

void *Thread(void *string)
{
int i;

for (i=0; i<10; i++)
printf("%s\n", (char *)string);
pthread_exit(NULL);
1

int main()
{

char xe_str = "Hello!";
char *=f_str = "Bonjour !";

pthread_t e_th;

Chapter 11. Multi-Threaded Programming 207

pthread_t f_th;
int rc;

rc = pthread_create(&e_th, NULL, Thread, (void *)e_str);
if (rc)
exit(-1);
rc = pthread create(&f_th, NULL, Thread, (void *)f_str);
if (rc)
exit(-1);
pthread_exit(NULL);
}

The pthread_exit subroutine releases any thread-specific data, including the thread’s stack. Any data
allocated on the stack becomes invalid, because the stack is freed and the corresponding memory may be
reused by another thread. Therefore, thread synchronization objects (mutexes and condition variables)
allocated on a thread’s stack must be destroyed before the thread calls the pthread_exit subroutine.

Unlike the exit subroutine, the pthread_exit subroutine does not clean up system resources shared
among threads. For example, files are not closed by the pthread_exit subroutine, because they may be
used by other threads.

Canceling a Thread

The thread cancelation mechanism allows a thread to terminate the execution of any other thread in the
process in a controlled manner. The target thread (that is, the one that is being canceled) can hold
cancelation requests pending in a number of ways and perform application-specific cleanup processing
when the notice of cancelation is acted upon. When canceled, the thread implicitly calls the
pthread_exit((void *)-1) subroutine.

The cancelation of a thread is requested by calling the [pthread_cancel| subroutine. When the call returns,
the request has been registered, but the thread may still be running. The call to the pthread_cancel
subroutine is unsuccessful only when the specified thread ID is not valid.

Cancelability State and Type
The cancelability state and type of a thread determines the action taken upon receipt of a cancelation

request. Each thread controls its own cancelability state and type with the [pthread_setcancelstate| and
[pthread_setcanceltypel| subroutines.

The following possible cancelability states and cancelability types lead to three possible cases, as shown
in the following table.

Cancelability State Cancelability Type Resulting Case

Disabled Any (the type is ignored) Disabled cancelability
Enabled Deferred Deferred cancelability
Enabled Asynchronous Asynchronous cancelability

The possible cases are described as follows:

» Disabled cancelability. Any cancelation request is set pending, until the cancelability state is changed or
the thread is terminated in another way.

A thread should disable cancelability only when performing operations that cannot be interrupted. For
example, if a thread is performing some complex file-save operations (such as an indexed database)
and is canceled during the operation, the files may be left in an inconsistent state. To avoid this, the
thread should disable cancelability during the file save operations.

» Deferred cancelability. Any cancelation request is set pending, until the thread reaches the next
cancelation point. It is the default cancelability state.

208 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

This cancelability state ensures that a thread can be cancelled, but limits the cancelation to specific
moments in the thread’s execution, called cancelation points. A thread canceled on a cancelation point
leaves the system in a safe state; however, user data may be inconsistent or locks may be held by the
canceled thread. To avoid these situations, use cleanup handlers or disable cancelability within critical
regions. For more information, see [‘Using Cleanup Handlers” on page 212|

» Asynchronous cancelability. Any cancelation request is acted upon immediately.

A thread that is asynchronously canceled while holding resources may leave the process, or even the
system, in a state from which it is difficult or impossible to recover. For more information about
async-cancel safety, see [‘Async-Cancel Safety.’]

Async-Cancel Safety

A function is said to be async-cancel safe if it is written so that calling the function with asynchronous
cancelability enabled does not cause any resource to be corrupted, even if a cancelation request is
delivered at any arbitrary instruction.

Any function that gets a resource as a side effect cannot be made async-cancel safe. For example, if the
subroutine is called with asynchronous cancelability enabled, it might acquire the resource
successfully, but as it was returning to the caller, it could act on a cancelation request. In such a case, the
program would have no way of knowing whether the resource was acquired or not.

For this reason, most library routines cannot be considered async-cancel safe. It is recommended that you
use asynchronous cancelability only if you are sure only to perform operations that do not hold resources
and only to call library routines that are async-cancel safe.

The following subroutines are async-cancel safe; they ensure that cancelation will be handled correctly,
even if asynchronous cancelability is enabled:

* pthread_cancel
» pthread_setcancelstate
* pthread_setcanceltype

An alternative to asynchronous cancelability is to use deferred cancelability and to add explicit cancelation
points by calling the pthread_testcancel subroutine.

Cancelation Points

Cancelation points are points inside of certain subroutines where a thread must act on any pending
cancelation request if deferred cancelability is enabled. All of these subroutines may block the calling
thread or compute indefinitely.

An explicit cancelation point can also be created by calling the [pthread_testcancel| subroutine. This
subroutine simply creates a cancelation point. If deferred cancelability is enabled, and if a cancelation
request is pending, the request is acted upon and the thread is terminated. Otherwise, the subroutine
simply returns.

Other cancelation points occur when calling the following subroutines:
* pthread_cond_wait

* pthread_cond_timedwait

* pthread_join

The pthread_mutex_lock and pthread_mutex_trylock subroutines do not provide a cancelation point. If

they did, all functions calling these subroutines (and many functions do) would provide a cancelation point.
Having too many cancelation points makes programming very difficult, requiring either lots of disabling and
restoring of cancelability or extra effort in trying to arrange for reliable cleanup at every possible place. For
more information about these subroutines, see [‘Using Mutexes” on page 214

Chapter 11. Multi-Threaded Programming 209

Cancelation points occur when a thread is executing the following functions:

aio_suspend
creat

fsync
getpmsg
mgq_receive
msgrcv
msync

open

poll
pthread_cond_timedwait
pthread_join
putpmsg
read

select
sigpause
sigtimedwait
sigwaitinfo
system
usleep

wait3
waitpid
writev

close

fentl
getmsg
lockf
mq_send
msgsnd
nanosleep
pause
pread
pthread_cond_wait
pthread_testcancel
pwrite
readv
sem_wait
sigsuspend
sigwait
sleep
tcdrain

wait

waitid

write

A cancelation point can also occur when a thread is executing the following functions:

catclose
closedir
dbm_close
dbm_nextkey
diclose
endpwent
fwscanf
getchar
getdate
getgrgid_r
getlogin
printf
putchar
pututxline
putwchar
remove
endutxent
fflush
fgets
fopen
fputs
getpwnam_r
gets
getutxline
getwchar
scanf
setgrent
strerror

catgets
closelog
dbm_delete
dbm_open
dlopen
fwprintf
getc
getchar_unlocked
getgrent
getgrnam
getlogin_r
putc
putchar_unlocked
putw
readdir
rename
fclose

fgetc
fgetwc
fprintf
getpwent
getpwuid
getutxent
getw

getwd
seekdir
setpwent
syslog

catopen
ctermid
dbm_fetch
dbm_store
endgrent
fwrite

getc_unlocked

getcwd
getgrgid
getgrnam_r
popen

putc_unlocked

puts
putwc
readdir_r
rewind
fentl
fgetpos
fgetws
fputc
getpwnam
getpwuid_r
getutxid
getwc
rewinddir
semop
setutxent
tmpfile

210 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

tmpnam ttyname ttyname_r

fputwe fputws fread
freopen fscanf fseek
fseeko fsetpos ftell
ftello ftw glob
iconv_close iconv_open ioctl
Iseek mkstemp nftw
opendir openlog pclose
perror ungetc ungetwc
unlink viprintf viwprintf
vprintf vwprintf wprintf
wscanf

The side effects of acting upon a cancelation request while suspended during a call of a function is the
same as the side effects that may be seen in a single-threaded program when a call to a function is
interrupted by a signal and the given function returns [EINTR]. Any such side effects occur before any
cancelation cleanup handlers are called.

Whenever a thread has cancelability enabled and a cancelation request has been made with that thread
as the target and the thread calls the pthread_testcancel subroutine, the cancelation request is acted
upon before the pthread_testcancel subroutine returns. If a thread has cancelability enabled and the
thread has an asynchronous cancelation request pending and the thread is suspended at a cancelation
point waiting for an event to occur, the cancelation request will be acted upon. However, if the thread is
suspended at a cancelation point and the event that it is waiting for occurs before the cancelation request
is acted upon, the sequence of events determines whether the cancelation request is acted upon or
whether the request remains pending and the thread resumes normal execution.

Cancelation Example

In the following example, both "writer” threads are canceled after 10 seconds, and after they have written
their message at least five times.

#include <pthread.h> /* include file for pthreads - the 1st */
#include <stdio.h> /* include file for printf() */
#include <unistd.h> /* include file for sleep() */

void *Thread(void *string)
{

int i;

int o_state;

/* disables cancelability */
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &o_state);

/* writes five messages =*/
for (i=0; i<5; i++)
printf("%s\n", (char *)string);

/* restores cancelability */
pthread_setcancelstate(o_state, &o_state);

/* writes further =/
while (1)
printf("%s\n", (char *)string);
pthread_exit(NULL);
}

int main()
char *e_str = "Hello!";
char *f_str = "Bonjour !";

pthread_t e_th;

Chapter 11. Multi-Threaded Programming 211

pthread_t f_th;
int rc;

/* creates both threads =/
rc = pthread_create(&e_th, NULL, Thread, (void *)e_str);
if (rc)
return -1;
rc = pthread_create(&f_th, NULL, Thread, (void *)f_str);
if (rc)
return -1;
/* sleeps a while */
sleep(10);

/* requests cancelation x/
pthread cancel(e_th);
pthread_cancel (f_th);

/* sleeps a bit more */
sleep(10);
pthread_exit(NULL);

1

Timer and Sleep Subroutines

Timer routines execute in the context of the calling thread. Thus, if a timer expires, the watchdog timer
function is called in the thread’s context. When a process or thread goes to sleep, it relinquishes the
processor. In a multi-threaded process, only the calling thread is put to sleep.

Using Cleanup Handlers

Cleanup handlers provide a portable mechanism for releasing resources and restoring invariants when a
thread terminates.

Calling Cleanup Handlers
Cleanup handlers are specific to each thread. A thread can have several cleanup handlers; they are stored
in a thread-specific LIFO (last-in, first-out) stack. Cleanup handlers are all called in the following cases:

* The thread returns from its entry-point routine.

« The thread calls the subroutine.

» The thread acts on a cancelation request.

A cleanup handler is pushed onto the cleanup stack by the [pthread_cleanup_push| subroutine. The
[pthread_cleanup_pop| subroutine pops the topmost cleanup handler from the stack and optionally
executes it. Use this subroutine when the cleanup handler is no longer needed.

The cleanup handler is a user-defined routine. It has one parameter, a void pointer, specified when calling
the pthread_cleanup_push subroutine. You can specify a pointer to some data that the cleanup handler
needs to perform its operation.

In the following example, a buffer is allocated for performing some operation. With deferred cancelability
enabled, the operation can be stopped at any cancelation point. In that case, a cleanup handler is
established to release the buffer.

/* the cleanup handler x/
cleaner(void *buffer)

{

}

free(buffer);

/* fragment of another routine */

212 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

n'n./éuf = malloc(1000);
if (myBuf != NULL) {

pthread_cleanup_push(cleaner, myBuf);

/*

* perform any operation using the buffer,
* including calls to other functions

* and cancelation points

*/

/* pops the handler and frees the buffer in one call */
pthread_cleanup_pop(1);
}

Using deferred cancelability ensures that the thread will not act on any cancelation request between the
buffer allocation and the registration of the cleanup handler, because neither the malloc subroutine nor the
pthread_cleanup_push subroutine provides any cancelation point. When popping the cleanup handler,
the handler is executed, releasing the buffer. More complex programs may not execute the handler when
popping it, because the cleanup handler should be thought of as an "emergency exit” for the protected
portion of code.

Balancing the Push and Pop Operations

The pthread_cleanup_push and pthread_cleanup_pop subroutines should always appear in pairs within
the same lexical scope; that is, within the same function and the same statement block. They can be
thought of as left and right parentheses enclosing a protected portion of code.

The reason for this rule is that on some systems these subroutines are implemented as macros. The
pthread_cleanup_push subroutine is implemented as a left brace, followed by other statements:

#define pthread_cleanup_push(rtm,arg) { \
/* other statements =*/

The pthread_cleanup_pop subroutine is implemented as a right brace, following other statements:

#define pthread_cleanup_pop(ex) \
/* other statements */ \
1

Adhere to the balancing rule for the pthread_cleanup_push and pthread_cleanup_pop subroutines to
avoid compiler errors or unexpected behavior of your programs when porting to other systems.

In AlX, the pthread_cleanup_push and pthread_cleanup_pop subroutines are library routines, and can

be unbalanced within the same statement block. However, they must be balanced in the program, because
the cleanup handlers are stacked.

List of Threads Basic Operation Subroutines

pthread_attr_destroy| Deletes a thread attributes object.

pthread_attr_getdetachstate] Returns the value of the detachstate attribute of a thread
attributes object.

[pthread_attr_init] Creates a thread attributes object and initializes it with default
values.

pthread_cancel Requests the cancelation of a thread.

pthread_cleanup_pop| Removes, and optionally executes, the routine at the top of the
calling thread’s cleanup stack.

pthread_cleanup_push| Pushes a routine onto the calling thread’s cleanup stack.

Ethread_creatgl Creates a new thread, initializes its attributes, and makes it
runnable.

Compares two thread IDs.

Chapter 11. Multi-Threaded Programming 213

pthread_exit Terminates the calling thread.

Ethread_self Returns the calling thread’s ID.
thread_setcancelstate Sets the calling thread’s cancelability state.

Sets the calling thread’s cancelability type.
Creates a cancelation point in the calling thread.

pthread_testcancel

Synchronization Overview

One main benefit of using threads is the ease of using synchronization facilities. To effectively interact,
threads must synchronize their activities. This includes:

* Implicit communication through the modification of shared data

» Explicit communication by informing each other of events that have occurred

More complex synchronization objects can be built using the primitive objects. For more information, see
[‘Creating Complex Synchronization Objects” on page 247

The threads library provides the following synchronization mechanisms:
+ Mutexes (See [‘Using Mutexes.”)

+ Condition variables (Seg‘Using Condition Variables” on page 220.|)
+ Read-write locks (See [‘Using Read-Write Locks” on page 225.)

+ Joins (See [‘Joining Threads” on page 233))

Although primitive, these powerful mechanisms can be used to build more complex mechanisms.

Using Mutexes

A mutex is a mutual exclusion lock. Only one thread can hold the lock. Mutexes are used to protect data
or other resources from concurrent access. A mutex has attributes, which specify the characteristics of the
mutex.

Mutex Attributes Object

Like threads, mutexes are created with the help of an attributes object. The mutex attributes object is an
abstract object, containing several attributes, depending on the implementation of POSIX options. It is
accessed through a variable of type pthread_mutexattr_t. In AlX, the pthread_mutexattr_t data type is a
pointer; on other systems, it may be a structure or another data type.

Creating and Destroying the Mutex Attributes Object

The mutex attributes object is initialized to default values by the [pthread_mutexattr_init{ subroutine. The
attributes are handled by subroutines. The thread attributes object is destroyed by the
[pthread_mutexattr_destroy| subroutine. This subroutine may release storage dynamically allocated by the
pthread_mutexattr_init subroutine, depending on the implementation of the threads library.

In the following example, a mutex attributes object is created and initialized with default values, then used
and finally destroyed:

pthread_mutexattr_t attributes;
/* the attributes object is created */

if (!pthread mutexattr init(&attributes)) {
/* the attributes object is initialized */

/* using the attributes object */
pthread mutexattr destroy(&attributes);

/* the attributes object is destroyed */
1

214 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

The same attributes object can be used to create several mutexes. It can also be modified between mutex
creations. When the mutexes are created, the attributes object can be destroyed without affecting the
mutexes created with it.

Mutex Attributes
The following mutex attributes are defined:

Protocol Specifies the protocol used to prevent priority inversions for a mutex. This attribute
depends on either the priority inheritance or the priority protection POSIX option.

Process-shared Specifies the process sharing of a mutex. This attribute depends on the process sharing
POSIX option.

For more information on these attributes, see [Threads Library Options” on page 256/ and [‘Synchronization|
[Scheduling” on page 240

Creating and Destroying Mutexes

A mutex is created by calling the [pthread_mutex_init| subroutine. You may specify a mutex attributes
object. If you specify a NULL pointer, the mutex will have the default attributes. Thus, the following code
fragment:

pthread_mutex_t mutex;
pthread_mutex_attr_t attr;

pthread_mutexattr_init(Rattr);
pthread mutex_init(&mutex, &attr);
pthread mutexattr_destroy(&attr);

is equivalent to the following:
pthread_mutex_t mutex;

pthread mutex_init(&mutex, NULL);

The ID of the created mutex is returned to the calling thread through the mutex parameter. The mutex ID
is an opaque object; its type is pthread_mutex_t. In AlX, the pthread_mutex_t data type is a structure;
on other systems, it might be a pointer or another data type.

A mutex must be created once. However, avoid calling the pthread_mutex_init subroutine more than

once with the same mutex parameter (for example, in two threads concurrently executing the same code).

Ensuring the uniqueness of a mutex creation can be done in the following ways:

» Calling the pthread_mutex_init subroutine prior to the creation of other threads that will use this mutex;
for example, in the initial thread.

» Calling the pthread_mutex_init subroutine within a one time initialization routine. For more information,
see [‘One-Time Initializations” on page 242 .|

+ Using a static mutex initialized by the PTHREAD_MUTEX_INITIALIZER| static initialization macro; the
mutex will have default attributes.

After the mutex is no longer needed, destroy it by calling the |pthread_mutex_destroy| subroutine. This
subroutine may reclaim any storage allocated by the pthread_mutex_init subroutine. After having
destroyed a mutex, the same pthread_mutex_t variable can be reused to create another mutex. For
example, the following code fragment is valid, although not very practical:

pthread_mutex_t mutex;

for (i =0; 1 <10; i++) {

/* creates a mutex */
pthread_mutex_init(&mutex, NULL);

Chapter 11. Multi-Threaded Programming 215

/* uses the mutex x/

/* destroys the mutex */
pthread_mutex_destroy(&mutex);

}

Like any system resource that can be shared among threads, a mutex allocated on a thread’s stack must
be destroyed before the thread is terminated. The threads library maintains a linked list of mutexes. Thus,
if the stack where a mutex is allocated is freed, the list will be corrupted.

Types of Mutexes

The type of mutex determines how the mutex behaves when it is operated on. The following types of
mutexes exist:

PTHREAD_MUTEX_DEFAULT or PTHREAD_MUTEX_NORMAL
Results in a deadlock if the same pthread tries to lock it a second time using the
pthread_mutex_lock subroutine without first unlocking it. This is the default type.

PTHREAD_MUTEX_ERRORCHECK
Avoids deadlocks by returning a non-zero value if the same thread attempts to lock the same
mutex more than once without first unlocking the mutex.

PTHREAD_MUTEX_RECURSIVE
Allows the same pthread to recursively lock the mutex using the pthread_mutex_lock subroutine
without resulting in a deadlock or getting a non-zero return value from pthread_mutex_lock. The
same pthread has to call the pthread_mutex_unlock subroutine the same number of times as it
called pthread_mutex_lock subroutine in order to unlock the mutex for other pthreads to use.

When a mutex attribute is first created, it has a default type of PTHREAD_MUTEX_NORMAL. After
creating the mutex, the type can be changed using the pthread_mutexattr_settype API library call.

The following is an example of creating and using a recursive mutex type:
pthread_mutex_attr_t attr;
pthread mutex_t mutex;

pthread mutexattr_settype(&attr, PTHREAD MUTEX_RECURSIVE);
pthread mutex_init(&mutex, &attr);

struct {
int a;
int b;
int c;
1A

pthread_mutex_lock(&mutex) ;
A.at++;

9();

A.c = 0;

pthread mutex_unlock(&mutex);

pthread_mutex_lock(&mutex) ;
A.b += A.a;
pthread mutex_unlock(&mutex);

216 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

Locking and Unlocking Mutexes

A mutex is a simple lock, having two states: locked and unlocked. When it is created, a mutex is unlocked.
The [pthread_mutex_lock| subroutine locks the specified mutex under the following conditions:

* |If the mutex is unlocked, the subroutine locks it.

» If the mutex is already locked by another thread, the subroutine blocks the calling thread until the mutex
is unlocked.

» If the mutex is already locked by the calling thread, the subroutine might block forever or return an error
depending on the type of mutex.

The [pthread_mutex_trylock| subroutine acts like the pthread_mutex_lock subroutine without blocking
the calling thread under the following conditions:

* |f the mutex is unlocked, the subroutine locks it.
» If the mutex is already locked by any thread, the subroutine returns an error.

The thread that locked a mutex is often called the owner of the mutex.

The |pthread_mutex_unlock| subroutine resets the specified mutex to the unlocked state if it is owned by
the calling mutex under the following conditions:

» If the mutex was already unlocked, the subroutine returns an error.
 If the mutex was owned by the calling thread, the subroutine unlocks the mutex.

 |If the mutex was owned by another thread, the subroutine might return an error or unlock the mutex
depending on the type of mutex. Unlocking the mutex is not recommended because mutexes are
usually locked and unlocked by the same pthread.

Because locking does not provide a cancelation point, a thread blocked while waiting for a mutex cannot
be canceled. Therefore, it is recommended that you use mutexes only for short periods of time, as in
instances where you are protecting data from concurrent access. For more information, see
[Points” on page 209|and [‘Canceling a Thread” on page 208

Protecting Data with Mutexes

Mutexes are intended to serve either as a low-level primitive from which other thread synchronization
functions can be built or as a data protection lock. For more information about implementing long locks
and writer-priority readers/writers locks with mutexes, see [‘Creating Complex Synchronization Objects” on|

Mutex Usage Example

Mutexes can be used to protect data from concurrent access. For example, a database application may
create several threads to handle several requests concurrently. The database itself is protected by a mutex
called db_mutex. For example:

/* the initial thread */
pthread mutex_t mutex;

int 1;

pthread_mutex_init(&mutex, NULL); /* creates the mutex */

for (i = 0; i < num_req; i++) /* loop to create threads =*/
pthread create(th + i, NULL, rtn, &mutex);

... /* waits end of session */

pthread_mutex_destroy(&mutex); /* destroys the mutex */

/* the request handling thread x/
/* waits for a request =/
pthread mutex_lock(&db mutex); /* locks the database =/

Chapter 11. Multi-Threaded Programming 217

el /* handles the request =/
pthread_mutex_unlock(&db_mutex) ; /* unlocks the database x/

The initial thread creates the mutex and all the request-handling threads. The mutex is passed to the
thread using the parameter of the thread’s entry point routine. In a real program, the address of the mutex
may be a field of a more complex data structure passed to the created thread.

Avoiding Deadlocks

There are a number of ways that a multi-threaded application can deadlock. Following are some

examples:

* A mutex created with the default type, PTHREAD_MUTEX_NORMAL, cannot be relocked by the same
pthread without resulting in a deadlock.

» An application can deadlock when locking mutexes in reverse order. For example, the following code
fragment can produce a deadlock between threads A and B.

/* Thread A =/
pthread_mutex_Tock(&mutex1);
pthread_mutex_Tock(&mutex2);

/* Thread B */
pthread mutex_lock(&mutex2);
pthread_mutex_Tlock(&mutexl);

* An application can deadlock in what is called resource deadlock. For example:

struct {
pthread_mutex_t mutex;

char xbuf;
1 A;
struct {
pthread_mutex_t mutex;
char xbuf;
! B;
struct {
pthread_mutex_t mutex;
char xbuf;
1 G

use_all_buffers()

{
pthread mutex_lock(&A.mutex);
/* use buffer A */

pthread_mutex_Tlock(&B.mutex);
/* use buffers B */

pthread_mutex_lock(&C.mutex);
/* use buffer C x/

/* A11 done =/

pthread_mutex_unlock(&C.mutex);
pthread_mutex_unlock(&B.mutex);
pthread mutex_unlock(&A.mutex);

}

use_buffer_a()

{
pthread_mutex_Tlock(&A.mutex);

/* use buffer A */
pthread mutex_unlock(&A.mutex);

218 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

functionB()

{
pthread mutex_lock(&B.mutex);
/* use buffer B */
if (..some condition)

use_buffer_a();

}

pthread_mutex_unlock(&B.mutex) ;

}

/* Thread A */
use_all_buffers();

/* Thread B */
functionB();

This application has two threads, thread A and thread B. Thread B starts to run first, then thread A
starts shortly thereafter. If thread A executes use_all_buffers() and successfully locks A.mutex, it will
then block when it tries to lock B.mutex, because thread B has already locked it. While thread B
executes functionB and some_condition occurs while thread A is blocked, thread B will now also block
trying to acquire A.mutex, which is already locked by thread A. This results in a deadlock.

The solution to this deadlock is for each thread to acquire all the resource locks that it needs before
using the resources. If it cannot acquire the locks, it must release them and start again.

Mutexes and Race Conditions

Mutual exclusion locks (mutexes) can prevent data inconsistencies due to race conditions. A race condition
often occurs when two or more threads must perform operations on the same memory area, but the
results of computations depends on the order in which these operations are performed.

Consider, for example, a single counter, X, that is incremented by two threads, A and B. If X is originally 1,
then by the time threads A and B increment the counter, X should be 3. Both threads are independent
entities and have no synchronization between them. Although the C statement X++ looks simple enough to
be atomic, the generated assembly code may not be, as shown in the following pseudo-assembler code:
move X, REG

inc REG
move REG, X

If both threads in the previous example are executed concurrently on two CPUs, or if the scheduling
makes the threads alternatively execute on each instruction, the following steps may occur:

1. Thread A executes the first instruction and puts X, which is 1, into the thread A register. Then thread B
executes and puts X, which is 1, into the thread B register. The following example illustrates the
resulting registers and the contents of memory X.

Thread A Register =1

Thread B Register = 1
Memory X 1

2. Thread A executes the second instruction and increments the content of its register to 2. Then thread
B increments its register to 2. Nothing is moved to memory X, so memory X stays the same. The
following example illustrates the resulting registers and the contents of memory X.

2

Thread A Register
Thread B Register = 2
Memory X 1

3. Thread A moves the content of its register, which is now 2, into memory X. Then thread B moves the
content of its register, which is also 2, into memory X, overwriting thread A’s value. The following
example illustrates the resulting registers and the contents of memory X.

Thread A Register = 2
Thread B Register = 2
Memory X =2

Chapter 11. Multi-Threaded Programming 219

In most cases, thread A and thread B execute the three instructions one after the other, and the result
would be 3, as expected. Race conditions are usually difficult to discover, because they occur
intermittently.

To avoid this race condition, each thread should lock the data before accessing the counter and updating
memory X. For example, if thread A takes a lock and updates the counter, it leaves memory X with a value
of 2. After thread A releases the lock, thread B takes the lock and updates the counter, taking 2 as its
initial value for X and incrementing it to 3, the expected result.

Using Condition Variables

Condition variables allow threads to wait until some event or condition has occurred. A condition variable
has attributes that specify the characteristics of the condition. Typically, a program uses the following
objects:

* A boolean variable, indicating whether the condition is met
* A mutex to serialize the access to the boolean variable
* A condition variable to wait for the condition

Using a condition variable requires some effort from the programmer. However, condition variables allow
the implementation of powerful and efficient synchronization mechanisms. For more information about
implementing long locks and semaphores with condition variables, see [‘Creating Complex Synchronization|
[Objects” on page 247

When a thread is terminated, its storage may not be reclaimed, depending on an attribute of the thread.
Such threads can be joined by other threads and return information to them. A thread that wants to join
another thread is blocked until the target thread terminates. This joint mechanism is a specific case of
condition-variable usage, the condition is the thread termination. For more information about joins, see
[‘Joining Threads” on page 233 |

Condition Attributes Object

Like threads and mutexes, condition variables are created with the help of an attributes object. The
condition attributes object is an abstract object, containing at most one attribute, depending on the
implementation of POSIX options. It is accessed through a variable of type pthread_condattr_t. In AlX,
the pthread_condattr_t data type is a pointer; on other systems, it may be a structure or another data

type.

Creating and Destroying the Condition Attributes Object

The condition attributes object is initialized to default values by the |[pthread_condattr_init subroutine. The
attribute is handled by subroutines. The thread attributes object is destroyed by the
[pthread_condattr_destroy| subroutine. This subroutine can release storage dynamically allocated by the
pthread_condattr_init subroutine, depending on the implementation of the threads library.

In the following example, a condition attributes object is created and initialized with default values, then
used and finally destroyed:

pthread_condattr_t attributes;
/* the attributes object is created =/

if (!pthread_condattr_init(&attributes)) {
/* the attributes object is initialized =/

/* using the attributes object */

pthread_condattr_destroy(&attributes);
/* the attributes object is destroyed =*/

220 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

The same attributes object can be used to create several condition variables. It can also be modified
between two condition variable creations. When the condition variables are created, the attributes object
can be destroyed without affecting the condition variables created with it.

Condition Attribute
The following condition attribute is supported:

Process-shared Specifies the process sharing of a condition variable. This attribute depends on the
process sharing |POSIX option

Creating and Destroying Condition Variables

A condition variable is created by calling the [pthread_cond_init| subroutine. You may specify a condition
attributes object. If you specify a NULL pointer, the condition variable will have the default attributes. Thus,
the following code fragment:

pthread_cond_t cond;
pthread condattr_t attr;

pthread _condattr_init(&attr);
pthread _cond_init(&cond, &attr);
pthread_condattr_destroy(&attr);

is equivalent to the following:
pthread_cond_t cond;

pthread_cond_init(&cond, NULL);

The ID of the created condition variable is returned to the calling thread through the condition parameter.
The condition ID is an opaque object; its type is pthread_cond_t. In AlX, the pthread_cond_t data type is
a structure; on other systems, it may be a pointer or another data type.

A condition variable must be created once. Avoid calling the pthread_cond_init subroutine more than
once with the same condition parameter (for example, in two threads concurrently executing the same
code). Ensuring the uniqueness of a newly created condition variable can be done in the following ways:

» Calling the pthread_cond_init subroutine prior to the creation of other threads that will use this
variable; for example, in the initial thread.

» Calling the pthread_cond_init subroutine within a one-time initialization routine. For more information,
see [‘One-Time Initializations” on page 242

+ Using a static condition variable initialized by the PTHREAD_COND_INITIALIZER| static initialization
macro; the condition variable will have default attributes.

After the condition variable is no longer needed, destroy it by calling the [pthread_cond_destroy|
subroutine. This subroutine may reclaim any storage allocated by the pthread_cond_init subroutine. After
having destroyed a condition variable, the same pthread_cond_t variable can be reused to create another
condition. For example, the following code fragment is valid, although not very practical:

pthread cond_t cond;

for (i = 0; i < 10; i++) {

/* creates a condition variable x/
pthread_cond_init(&cond, NULL);

/* uses the condition variable */

/* destroys the condition */
pthread_cond_destroy(&cond);

Chapter 11. Multi-Threaded Programming 221

Like any system resource that can be shared among threads, a condition variable allocated on a thread’s
stack must be destroyed before the thread is terminated. The threads library maintains a linked list of
condition variables; thus, if the stack where a mutex is allocated is freed, the list will be corrupted.

Using Condition Variables

A condition variable must always be used together with a mutex. A given condition variable can have only
one mutex associated with it, but a mutex can be used for more than one condition variable. It is possible
to bundle into a structure the condition, the mutex, and the condition variable, as shown in the following
code fragment:
struct condition_bundle_t {

int condition_predicate;

pthread_mutex_t condition_lock;

pthread _cond t condition_variable;

}s

For more information about using the condition predicate, see [‘Synchronizing Threads with Condition|
[Variables” on page 224

Waiting for a Condition

The mutex protecting the condition must be locked before waiting for the condition. A thread can wait for a
condition to be signaled by calling the [pthread_cond_wait or [pthread_cond_timedwait| subroutine. The
subroutine atomically unlocks the mutex and blocks the calling thread until the condition is signaled. When
the call returns, the mutex is locked again.

The pthread_cond_wait subroutine blocks the thread indefinitely. If the condition is never signaled, the
thread never wakes up. Because the pthread_cond_wait subroutine provides a cancelation point, the only
way to exit this deadlock is to cancel the blocked thread, if cancelability is enabled. For more information,
see [‘Canceling a Thread” on page 208 |

The pthread_cond_timedwait subroutine blocks the thread only for a given period of time. This
subroutine has an extra parameter, timeout, specifying an absolute date where the sleep must end. The
timeout parameter is a pointer to a timespec structure. This data type is also called timestruc_t. It
contains the following fields:

tv_sec A long unsigned integer, specifying seconds
tv_nsec A long integer, specifying nanoseconds

Typically, the pthread_cond_timedwait subroutine is used in the following manner:

struct timespec timeout;

time(&timeout.tv_sec);
timeout.tv_sec += MAXIMUM_SLEEP_DURATION;
pthread _cond_timedwait(&cond, &mutex, &timeout);

The timeout parameter specifies an absolute date. The previous code fragment shows how to specify a
duration rather than an absolute date.

To use the pthread_cond_timedwait subroutine with an absolute date, you can use the
subroutine to calculate the value of the tv_sec field of the timespec structure. In the following example,
the thread waits for the condition until 08:00 January 1, 2001, local time:

struct tm date;

time_t seconds;
struct timespec timeout;

date.tm_sec
date.tm_min

0;
0

222 AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

date.tm_hour
date.tm_mday
date.tm mon = 0
date.tm_year
date.tm_wday

non
—_
.

inn
— e
D .
—_
e

/* the range is 0-11 */
/* 0 is 1900 =/
1; /* this field can be omitted -
but it will really be a Monday! =/
/* first day of the year */

date.tm_yday = 0;
date.tm_isdst = daylight;
/* daylight is an external variable - we are assuming
that daylight savings time will still be used... */

seconds = mktime(&date);

timeout.tv_sec = (unsigned Tong)seconds;
timeout.tv_nsec = OL;

pthread cond timedwait(&cond, &mutex, &timeout);

The pthread_cond_timedwait subroutine also provides a cancelation point, although the sleep is not
indefinite. Thus, a sleeping thread can be canceled, whether or not the sleep has a timeout.

Signaling a Condition
A condition can be signaled by calling either the |pthread_cond_signal| or the [pthread_cond_broadcast]
subroutine.

The pthread_cond_signal subroutine wakes up at least one thread that is currently blocked on the
specified condition. The awoken thread is chosen according to the scheduling policy; it is the thread with
the most-favored scheduling priority (see [‘Scheduling Policy and Priority” on page 237) . It may happen on
multiprocessor systems, or some non-AlX systems, that more than one thread is awakened. Do not
assume that this subroutine wakes up exactly one thread.

The pthread_cond_broadcast subroutine wakes up every thread that is currently blocked on the specified
condition. However, a thread can start waiting on the same condition just after the call to the subroutine
returns.

A call to these routines always succeeds, unless an invalid cond parameter is specified. This does not
mean that a thread has been awakened. Furthermore, signaling a condition is not remembered by the
library. For example, consider a condition C. No thread is waiting on this condition. At time t, thread 1
signals the condition C. The call is successful although no thread is awakened. At time t+1, thread 2 calls
the pthread_cond_wait subroutine with C as cond parameter. Thread 2 is blocked. If no other thread
signals C, thread 2 may wait until the process terminates.

You can avoid this kind of deadlock by checking the EBUSY error code returned by the
pthread_cond_destroy subroutine when destroying the condition variable, as in the following code
fragment:
while (pthread_cond_destroy(&cond) == EBUSY) {

pthread_cond_broadcast (&cond) ;

pthread_yield();
}

The |pthread_yield| subroutine gives the opportunity to another thread to be scheduled; for example, one
“Scheduling

of the awoken threads. For more information about the pthread_yield subroutine, see
[Threads” on page 236

The pthread_cond_wait and the pthread_cond_broadcast subroutines must not be used within a signal
handler. To provide a convenient way for a thread to await a signal, the threads library provides the
sigwait| subroutine. For more information about the sigwait subroutine, see [‘Signal Management” on page)

Chapter 11. Multi-Threaded Programming 223

Synchronizing Threads with Condition Variables

Condition variables are used to wait until a particular condition predicate becomes true. This condition
predicate is set by another thread, usually the one that signals the condition.

Condition Wait Semantics

A condition predicate must be protected by a mutex. When waiting for a condition, the wait subroutine
(either the pthread_cond_wait or pthread_cond_timedwait subroutine) atomically unlocks the mutex and
blocks the thread. When the condition is signaled, the mutex is relocked and the wait subroutine returns. It
is important to note that when the subroutine returns without error, the predicate may still be false.

The reason is that more than one thread may be awoken: either a thread called the
pthread_cond_broadcast subroutine, or an unavoidable race between two processors simultaneously
woke two threads. The first thread locking the mutex will block all other awoken threads in the wait
subroutine until the mutex is unlocked by the program. Thus, the predicate may have changed when the
second thread gets the mutex and returns from the wait subroutine.

In general, whenever a condition wait returns, the thread should reevaluate the predicate to dete