<|lI!

AIX 5L Version 5.3

Technical Reference: Kernel and
Subsystems, Volume 2

SC23-4918-04

<|lI!

AIX 5L Version 5.3

Technical Reference: Kernel and
Subsystems, Volume 2

SC23-4918-04

Note
FBefore using this information and the product it supports, read the information in FNotices," on page 415/

Fifth Edition (November 2007)

This edition applies to AIX 5L Version 5.3 and to all subsequent releases of this product until otherwise indicated in
new editions.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address
comments to Information Development, Department 04XA-905-6C006, 11501 Burnet Road, Austin, Texas
78758-3493. To send comments electronically, use this commercial Internet address: aix6kpub @ austin.ibm.com. Any
information that you supply may be used without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2007. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book

Highlighting .

Case-Sensitivity in AIX

ISO 9000. .
32-Bit and 64-Bit Support for the Slngle UNIX Specrﬂcahon
Related Publications . S Coe

Chapter 1. Configuration Subsystem .

attrval Device Configuration Subroutine .
busresolve Device Configuration Subroutine .
genmajor Device Configuration Subroutine.
genminor Device Configuration Subroutine.
genseq Device Configuration Subroutine

getattr Device Configuration Subroutine.
getminor Device Configuration Subroutine .
loadext Device Configuration Subroutine .

putattr Device Configuration Subroutine

reldevno Device Configuration Subroutine
relmajor Device Configuration Subroutine.

Writing Optional Start and Stop Methods .

Writing a Change Method Co

Writing a Configure Method.

Writing a Define Method .

Writing an Unconfigure Method

Writing an Undefine Method

Device Methods for Adapter Cards: Gwdelmes
Machine Device Driver .o
Loading a Device Driver .

How Device Methods Return Errors .
ODM Device Configuration Object Classes .
Configuration Rules (Config_Rules) Object Class.
Customized Attribute (CuAt) Object Class
Customized Dependency (CuDep) Object Class .
Customized Device Driver (CuDvDr) Object Class
Customized Devices (CuDv) Object Class
Customized VPD (CuVPD) Object Class .
Predefined Attribute (PdAt) Object Class .
Predefined Attribute Extended (PdAtXtd) Object Class

Adapter-Specific Considerations for the Predefined Attribute (PdAt) Object Class .

Predefined Connection (PdCn) Object Class
Predefined Devices (PdDv) Object Class .

Adapter-Specific Considerations for the Predefined Devrces (Pde) Object Class .

Chapter 2. Communications Subsystem .

ddclose Communications PDH Entry Point .

dd_fastwrt Communications PDH Entry Point . .
CIO_GET_FASTWRT ddioctl Communications PDH Operatron
CIO_GET_STAT ddioctl Communications PDH Operation.
CIO_HALT ddioctl Communications PDH Operation .
CIO_QUERY ddioctl Communications PDH Operation .
CIO_START ddioctl Communications PDH Operation

ddopen (Kernel Mode) Communications PDH Entry Point.
ddopen (User Mode) Communications PDH Entry Point

© Copyright IBM Corp. 1997, 2007

ddread Communications PDH Entry Point

ddselect Communications PDH Entry Point .

ddwrite Communications PDH Entry Point

ent_fastwrt Ethernet Device Handler Entry Point .

entclose Ethernet Device Handler Entry Point .

entconfig Ethernet Device Handler Entry Point.

entioctl Ethernet Device Handler Entry Point . . .

CCC_GET_VPD (Query Vital Product Data) entioctl Ethernet Dewce Handler Operatlon
CIO_GET_FASTWRT (Get Fast Write) entioctl Ethernet Device Handler Operation
CIO_GET_STAT (Get Status) entioctl Ethernet Device Handler Operation .

CIO_HALT (Halt Device) entioctl Ethernet Device Handler Operation

CIO_QUERY (Query Statistics) entioctl Ethernet Device Handler Operation .
CIO_START (Start Device) entioctl Ethernet Device Handler Operation.
ENT_SET_MULTI (Set Multicast Address) entioctl Ethernet Device Handler Operatlon .
IOCINFO (Describe Device) entioctl Ethernet Device Handler Operation .
entmpx Ethernet Device Handler Entry Point Ce e

entopen Ethernet Device Handler Entry Point .

entread Ethernet Device Handler Entry Point

entselect Ethernet Device Handler Entry Point .

entwrite Ethernet Device Handler Entry Point .

mpclose Multiprotocol (MPQP) Device Handler Entry P0|nt

mpconfig Multiprotocol (MPQP) Device Handler Entry Point

mpioctl Multiprotocol (MPQP) Device Handler Entry Point . .
CIO_GET_STAT (Get Status) mpioctl MPQP Device Handler Operatron .

CIO_HALT (Halt Device) mpioctl MPQP Device Handler Operation .

CIO_QUERY (Query Statistics) mpioctl MPQP Device Handler Operation

CIO_START (Start Device) mpioctl MPQP Device Handler Operation .
MP_CHG_PARMS (Change Parameters) mpioctl MPQP Device Handler Operatlon

MP_START_AR (Start Autoresponse) and MP_STOP_AR (Stop Autoresponse) mploctl MPQP Dewce

Handler Operations .
mpmpx Multiprotocol (MPQP) DeV|ce Handler Entry P0|nt .
mpopen Multiprotocol (MPQP) Device Handler Entry Point .
mpread Multiprotocol (MPQP) Device Handler Entry Point .
mpselect Multiprotocol (MPQP) Device Handler Entry Point
mpwrite Multiprotocol (MPQP) Device Handler Entry Point .
tsclose Multiprotocol (PClI MPQP) Device Handler Entry Point
tsconfig Multiprotocol (PCI MPQP) Device Handler Entry Point
tsioctl Multiprotocol (PCI MPQP) Device Handler Entry Point .
CIO_GET_STAT (Get Status) tsioctl PCI MPQP Device Handler Operatlon
CIO_HALT (Halt Device) tsioctl PClI MPQP Device Handler Operation.
CIO_QUERY (Query Statistics) tsioctl PCI MPQP Device Handler Operation .
CIO_START (Start Device) tsioctl PCI MPQP Device Handler Operation .
MP_CHG_PARMS (Change Parameters) tsioctl PCI MPQP Device Handler Operatlon
tsmpx Multiprotocol (PClI MPQP) Device Handler Entry Point . e
tsopen Multiprotocol (PClI MPQP) Device Handler Entry Point.
tsread Multiprotocol (PCI MPQP) Device Handler Entry Point .
tsselect Multiprotocol (PClI MPQP) Device Handler Entry Point
tswrite Multiprotocol (PClI MPQP) Device Handler Entry Point.
Sense Data for the Serial Optical Link Device Driver .
sol_close Serial Optical Link Device Handler Entry Point
sol_config Serial Optical Link Device Handler Entry Point .
sol_fastwrt Serial Optical Link Device Handler Entry Point .
sol_ioctl Serial Optical Link Device Handler Entry Point .

CIO_GET_FASTWRT (Get Fast Write) sol_ioctl Serial Optical L|nk DeV|ce Handler Operatlon .

CIO_GET_STAT (Get Status) sol_ioctl Serial Optical Link Device Handler Operation
CIO_HALT (Halt Device) sol_ioctl Serial Optical Link Device Handler Operation .

iV AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

.77
. 78
. 80
. 81
. 83
. 84
. 85
. 87
. 88
. 89
. 90
.9
.92
. 94
. 95
. 96
.97
. 98
.. 99
. 101
. 102
. 104
. 105
. 106
. 110
11
. 113

. 120

. 120
. 122
. 128
. 125
. 127
. 128
. 130
. 132
. 133
. 134
. 137
. 138
. 140
. 144
. 144
. 145
. 147
. 149
. 150
. 152
. 154
. 155
. 156
. 158
. 159
. 160
. 164

CIO_QUERY (Query Statistics) sol_ioctl Serial Optical Link Device Handler Operation.
CIO_START (Start Device) sol_ioctl Serial Optical Link Device Handler Operation .
IOCINFO (Describe Device) sol_ioctl Serial Optical Link Device Handler Operation .

. 165
. 166
. 167

SOL_CHECK_PRID (Check Processor ID) sol_ioctl Serial Optical Link Device Handler Operatlon

SOL_GET_PRIDS (Get Processor IDs) sol_ioctl Serial Optical Link Device Handler Operation.

sol_mpx Serial Optical Link Device Handler Entry Point .

sol_open Serial Optical Link Device Handler Entry Point.

sol_read Serial Optical Link Device Handler Entry Point .

sol_select Serial Optical Link Device Handler Entry Point

sol_write Serial Optical Link Device Handler Entry Point.

tokclose Token-Ring Device Handler Entry Point

tokconfig Token-Ring Device Handler Entry Point

tokdump Token-Ring Device Handler Entry Point

tokdumpwrt Token-Ring Device Handler Entry Point

tokfastwrt Token-Ring Device Handler Entry Point .

tokioctl Token-Ring Device Handler Entry Point . . .

CIO_GET_FASTWRT (Get Fast Write) tokioctl Token- ng Dewce Handler Operatlon
CIO_GET_STAT (Get Status) tokioctl Token-Ring Device Handler Operation
CIO_HALT (Halt Device) tokioctl Token-Ring Device Handler Operation .
CIO_QUERY (Query Statistics) tokioctl Token-Ring Device Handler Operation.
CIO_START (Start Device) tokioctl Token-Ring Device Handler Operation .

IOCINFO (Describe Device) tokioctl Token-Ring Device Handler Operation. . .
TOK_FUNC_ADDR (Set Functional Address) tokioctl Token-Ring Device Handler Operatlon
TOK_GRP_ADDR (Set Group Address) tokioctl Token-Ring Device Handler Operation
TOK_QVPD (Query Vital Product Data) tokioctl Token-Ring Device Handler Operation
TOK_RING_INFO (Query Token-Ring) tokioctl Token-Ring Device Handler Operation .
tokmpx Token-Ring Device Handler Entry Point . Ce e e e
tokopen Token-Ring Device Handler Entry Point.

tokread Token-Ring Device Handler Entry Point .

tokselect Token-Ring Device Handler Entry Point

tokwrite Token-Ring Device Handler Entry Point.

Chapter 3. LFT Subsystem .
Ift_t Structure .

Ift_dds_t Structure.

phys_displays Structure.

vtmstruct Structure

Virtual Display Driver (VDD) Interface (IftV|)

Input Device Driver ioctl Operations . .
IOCINFO (Return devinfo Structure) ioctl Input Dewce Dnver .
KSQUERYID (Query Keyboard Device Identifier)
KSQUERYSV (Query Keyboard Service Vector).
KSREGRING (Register Input Ring) .

KSRFLUSH (Flush Input Ring) . . .

KSLED (llluminate/Darken Keyboard LEDS)

KSCFGCLICK (Enable/Disable Keyboard Clicker) .
KSVOLUME (Set Alarm Volume) ioctl

KSALARM (Sound Alarm) . -

KSTRATE (Set Typematic Rate)

KSTDELAY (Set Typematic Delay). . .

KSKAP (Enable/Disable Keep Alive Poll)

KSKAPACK (Acknowledge Keep Alive Poll)

KSDIAGMODE (Enable/Disable Diagnostics Mode)
MQUERYID (Query Mouse Device Identifier) .

MREGRING (Register Input Ring) .

MRFLUSH (Flush Input Ring)

168

. 169
. 169
.17
. 172
. 174
. 175
177
. 178
. 179
. 180
. 181
. 182
. 183
. 184
. 189
. 190
. 191
. 192
. 193
. 194
. 195
. 196
. 197
. 198
. 199
. 200
. 202

. 205
. 205
. 205
. 207
. 211
. 212
. 214
. 215
. 216
. 216
. 217
. 218
. 219
. 219
. 220
. 220
. 221
. 222
. 222
. 223
. 223
. 224
. 225
. 225

Contents

\'}

MTHRESHOLD (Set Mouse Reporting Threshold) .
MRESOLUTION (Set Mouse Resolution)

MSCALE (Set Mouse Scale Factor) . . .
MSAMPLERATE (Set Mouse Sample Rate)

TABQUERYID (Query Tablet Device Identifier) ioctl Tablet DeV|ce Drlver Operatlon .

TABREGRING (Register Input Ring) .
TABRFLUSH (Flush Input Ring .
TABCONVERSION (Set Tablet Converswn Mode)
TABRESOLUTION (Set Tablet Resolution) .
TABORIGIN (Set Tablet Origin) .

TABSAMPLERATE (Set Tablet Sample Rate) |octI Tablet Dewce Dnver Operatlon .

TABDEADZONE (Set Tablet Dead Zone)
GIOQUERYID (Query Attached Devices)
DIALREGRING (Register Input Ring).
DIALRFLUSH (Flush Input Ring) .
DIALSETGRAND (Set Dial Granularity) .
LPFKREGRING (Register Input Ring)
LPFKRFLUSH (Flush Input Ring) .
LPFKLIGHT (Set/Reset Key Lights)
dd_open LFT Device Driver Interface.
dd_close LFT Device Driver Interface
dd_ioctl LFT Device Driver Interface .

Chapter 4. Printer Subsystems
Subroutines for Print Formatters
piocmdout Subroutine

pioexit Subroutine .

piogetattrs Subroutine

piogetopt Subroutine .
piogetstatus Subroutine.
piogetstr Subroutine .

piogetvals Subroutine

piomsgout Subroutine
pioputattrs Subroutine
pioputstatus Subroutine.
Subroutines for Writing a Print Formatter
passthru Subroutine .

restore Subroutine.

setup Subroutine .

Chapter 5. SCSI Subsystem

scdisk SCSI Device Driver.

scsidisk SAM Device Driver .

tape SCSI Device Driver

sctape FC Device Driver

scsesdd SCSI Device Driver .

scsisesdd SAM Device Driver

Parallel SCSI Adapter Device Driver

SCIOCMD SCSI Adapter Device Driver ioctl Operatlon .

SCIODIAG (Diagnostic) SCSI Adapter Device Driver ioctl Operat|on
SCIODNLD (Download) SCSI Adapter Device Driver ioctl Operation
SCIOEVENT (Event) SCSI Adapter Device Driver ioctl Operation .
SCIOGTHW (Gathered Write) SCSI Adapter Device Driver ioctl Operation .
SCIOHALT (Halt) SCSI Adapter Device Driver ioctl Operation. . .
SCIOINQU (Inquiry) SCSI Adapter Device Driver ioctl Operation.
SCIOREAD (Read) SCSI Adapter Device Driver ioctl Operation .

Vi AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

. 226
. 226
. 227
. 227
. 228
. 229
. 229
. 229
. 230
. 231
. 231
. 231
. 232
. 232
. 233
. 233
. 234
. 234
. 235
. 235
. 236
. 236

. 239
. 239
. 239
. 240
. 241
. 242
. 243
. 244
. 245
. 247
. 248
. 249
. 250
. 250
. 251
. 252

. 255
. 255
. 274
. 291
. 297
. 304
. 306
. 309
. 317
. 318
. 320
. 321
. 322
. 323
. 324
. 325

SCIORESET (Reset) SCSI Adapter Device Driver ioctl Operation
SCIOSTART (Start SCSI) Adapter Device Driver ioctl Operation . . .
SCIOSTARTTGT (Start Target) SCSI Adapter Device Driver ioctl Operatlon
SCIOSTOP (Stop) Device SCSI Adapter Device Driver ioctl Operation
SCIOSTOPTGT (Stop Target) SCSI Adapter Device Driver ioctl Operation .
SCIOSTUNIT (Start Unit) SCSI Adapter Device Driver ioctl Operation .
SCIOTRAM (Diagnostic) SCSI Adapter Device Driver ioctl Operation .
SCIOTUR (Test Unit Ready) SCSI Adapter Device Driver ioctl Operation
tmscsi SCSI Device Driver. .
IOCINFO (Device Information) thCSI Dewce Drlver |octI Operat|on .
TMCHGIMPARM (Change Parameters) tmscsi Device Driver ioctl Operation .
TMGETSENS (Request Sense) tmscsi Device Driver ioctl Operation .
TMIOASYNC (Async) tmscsi Device Driver ioctl Operation .

TMIOCMD (Direct) tmscsi Device Driver ioctl Operation .

TMIOEVNT (Event) tmscsi Device Driver ioctl Operation. .
TMIORESET (Reset Device) tmscsi Device Driver ioctl Operation .
TMIOSTAT (Status) tmscsi Device Driver ioctl Operation

Chapter 6. Integrated Device Electronics (IDE) .
IDE Adapter Device Driver. e

idecdrom IDE Device Driver .

idedisk IDE Device Driver . . .

IDEIOIDENT (ldentify Device) IDE Adapter DeV|ce Dnver |octl Operatlon
IDEIOINQU (Inquiry) IDE Adapter Device Driver ioctl Operation . .
IDEIOREAD (Read) IDE Adapter Device Driver ioctl Operation
IDEIOSTART (Start IDE) IDE Adapter Device Driver ioctl Operation
IDEIOSTOP (Stop) IDE Adapter Device Driver ioctl Operation.
IDEIOSTUNIT (Start Unit) IDE Adapter Device Driver ioctl Operation .
IDEIOTUR (Test Unit Ready) IDE Adapter Device Driver ioctl Operation .

Chapter 7. SSA Subsystem .

SSA Subsystem Overview .

SSA Adapter Device Driver

SSA Adapter Device Driver Direct CaII Entry Pomt . .
IOCINFO (Device Information) SSA Adapter Device Driver |octl Operatlon .
SSA_GET_ENTRY_POINT SSA Adapter Device Driver ioctl Operation
SSA_TRANSACTION SSA Adapter Device Driver ioctl Operation

ssadisk SSA Disk Device Driver.

IOCINFO (Device Information) SSA Disk Dewce Dr|ver |octI Operat|on

SSADISK_ISALMgr_CMD (ISAL Manager Command) SSA Disk Device Driver |octl Operat|on.

SSADISK_ISAL_CMD (ISAL Command) SSA Disk Device Driver ioctl Operation.
SSADISK_SCSI_CMD (SCSI Command) SSA Disk Device Driver ioctl Operation
SSADISK_LIST_PDISKS SSA Disk Device Driver ioctl Operation .
SSA Disk Concurrent Mode of Operation Interface . .o

SSA Disk Fencing .

SSA Target Mode .

SSA tmssa Device Driver .

tmssa Special File.

IOCINFO (Device Informatlon) tmssa Dewce Drlver |octI Operat|on

TMIOSTAT (Status) tmssa Device Driver ioctl Operation .

TMCHGIMPARM (Change Parameters) tmssa Device Driver |octI Operat|on

Appendix. Notices .
Trademarks .

Index

Contents

. 326
. 328
. 329
. 330
. 331
. 332
. 333
. 334
. 336
. 342
. 343
. 344
. 345
. 345
. 346
. 348
. 348

. 351
. 351
. 355
. 364
. 370
. 371
. 372
. 373
. 374
. 374
. 375

. 377
. 377
. 378
. 381
. 381
. 382
. 382
. 384
. 392
. 393
. 394
. 396
. 397
. 398
. 400
. 401
. 404
. 410
. 411
. 411
. 412

. 415
. 416

. 417

Vii

Viii AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

About This Book

This book provides system programmers with complete detailed information about the configuration
subsystem, the communications subsystem, the LFT subsystem, printer subsystems, the SCSI subsystem,
Integrated Device Electronics, the SSA subsystem, and the serial DASD subsystem for the AlX operating
system. This book is intended for system programmers wishing to extend the kernel, and to use the book
effectively, you should be familiar with operating system concepts and kernel programming. This book is
also available on the documentation CD that is shipped with the operating system.

This book is part of the six-volume technical reference set, AIX 5L Version 5.3 Technical Reference, that
provides information on system calls, kernel extension calls, and subroutines in the following volumes:

* AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions Volume 1 and AIX 5L
Version 5.3 Technical Reference: Base Operating System and Extensions Volume 2 provide information
on system calls, subroutines, functions, macros, and statements associated with base operating system
runtime services.

* AIX 5L Version 5.3 Technical Reference: Communications Volume 1 and AIX 5L Version 5.3 Technical
Reference: Communications Volume 2 provide information on entry points, functions, system calls,
subroutines, and operations related to communications services.

* AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume 1 and AIX 5L Version 5.3
Technical Reference: Kernel and Subsystems Volume 2 provide information about kernel services,
device driver operations, file system operations, subroutines, the configuration subsystem, the
communications subsystem, the low function terminal (LFT) subsystem, the logical volume subsystem,
the M-audio capture and playback adapter subsystem, the printer subsystem, the SCSI subsystem, and
the serial DASD subsystem.

Highlighting

The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files,
structures, directories, and other items whose names are

predefined by the system. Also identifies graphical objects
such as buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to
be supplied by the user.
Monospace Identifies examples of specific data values, examples of

text similar to what you might see displayed, examples of
portions of program code similar to what you might write
as a programmer, messages from the system, or
information you should actually type.

Case-Sensitivity in AIX

Everything in the AIX operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the Is command to list files. If you type LS, the
system responds that the command is "not found.” Likewise, FILEA, FiLea, and filea are three distinct file
names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,
always ensure that you use the correct case.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

© Copyright IBM Corp. 1997, 2007 ix

32-Bit and 64-Bit Support for the Single UNIX Specification

Beginning with Version 5.2, the operating system is designed to support The Open Group’s Single UNIX
Specification Version 3 (UNIX 03) for portability of UNIX-based operating systems. Many new interfaces,
and some current ones, have been added or enhanced to meet this specification, making Version 5.2 even
more open and portable for applications, while remaining compatible with previous releases of AlX.

To determine the proper way to develop a UNIX 03-portable application, you may need to refer to The
Open Group’s UNIX 03 specification, which can be accessed online or downloaded from
http://www.unix.org/ .

Related Publications

The following books contain information about or related to application programming interfaces:
« |AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programsg

* |AIX 5L Version 5.3 Communications Programming Conceptd

* |AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts

+ |Operating system and device management

« |AIX 5L Version 5.3 Files Reference]

X AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Chapter 1. Configuration Subsystem

attrval Device Configuration Subroutine

Purpose
Verifies that attribute values are within range.

Syntax

#include <cf.h>
#include <sys/cfgodm.h>
#include <sys/cfgdb.h>

int attrval (uniquetype, pattr, errattr)

char * |uniquetypel;

char *

char **

Parameters

uniquetype Identifies the predefined device object, which is a pointer to a character string of the form
class/subclass/type

pattr Points to a character string containing the attribute-value pairs to be validated, in the form
attrl=vall attr2=val2.

errattr Points a pointer to a null-terminated character string. On return from the attrval
subroutine, this string will contain the names of invalid attributes, if any are found. Each
attribute name is separated by spaces.

Description

The attrval subroutine is used to validate each of a list of input attribute values against the legal range. If
no illegal values are found, this subroutine returns a value of 0. Otherwise, it returns the number of
incorrect attributes.

If any attribute values are invalid, a pointer to a string containing a list of invalid attribute names is
returned in the errattr parameter. These attributes are separated by spaces.

Allocation of the error buffer is done in the attrval subroutine. However, a character pointer (for example,

char *errorb;) must be declared in the calling routine. Thereafter, the address of that pointer is passed to
the attrval subroutine (for example, attrval(...,&errorb);) as one of the parameters.

Return Values

0 Indicates that all values are valid.

Nonzero Indicates the number of erroneous attributes.

Files

lust/lib/libcfg.a Archive of device configuration subroutines.

Related Information
[List of Device Configuration Subroutines|

© Copyright IBM Corp. 1997, 2007 1

Predefined Attribute (PdAt) object class] [Customized Attribute (CuAt) object class) [Predefined Devices]
(PdDv) object class}

busresolve Device Configuration Subroutine

Purpose
Allocates bus resources for adapters on an 1/O bus (including PCI, ISA, and Micro Channel adapters).

Syntax

#include <cf.h>
#include <sys/cfgodm.h>
#include <sys/cfgdb.h>

int busresolve

(logname, flag, conf list,
not_res_list, busname)
char *
int
char *

conf listfs

char * ot res listf;

char * |busnamel;

Parameters

logname Specifies the device logical name.

flags Specifies either the boot phase or 0.
conf_list Points to an array of at least 512 characters.
not_res_list Points to an array of at least 512 characters.
busname Specifies the logical name of the bus.
Description

Note: Micro Channel and plug-in ISA adapters are only supported by AIX 5.1 or earlier.

The busresolve device configuration subroutine is invoked by a device’s configuration method to allocate
bus resources for all devices that have predefined bus resource attributes. It also is invoked by the bus
Configuration method to resolve attributes of all devices in the Defined state.

This subroutine first queries the Customized Attribute and Predefined Attribute object classes to retrieve a
list of current bus resource attribute settings and a list of possible settings for each attribute. To resolve
conflicts between the values assigned to an already available device and the current device, the
subroutine adjusts the values for attributes of devices in the Defined state. For example, the busresolve
subroutine makes sure that the current device is not assigned the same interrupt level as an already
available device when invoked at run time. These values are updated in the customized Attribute object
class.

The busresolve subroutine never modifies attributes of devices that are already in the Available state. It
ignores devices in the Defined state if their chgstatus field in the Customized Devices object class
indicates that they are missing.

When the logname parameter is set to the logical name of a device, the busresolve subroutine adjusts

the specified device’s bus resource attributes if necessary to resolve any conflicts with devices that are
already in the Available state. A device’s Configuration method should invoke the busresolve subroutine to

2 AIX 5L Version 5.3 Technical Reference: Kerel and Subsystems, Volume 2

ensure that its bus resources are allocated properly when configuring the device at run time. The
Configuration method does not need to do this when run as part of system boot because the bus device’s
Configuration method would have already performed it.

If the logname parameter is set to a null string, the busresolve subroutine allocates bus resources for all
devices that are not already in the Available state. The bus device’s Configuration method invokes the
busresolve subroutine in this way during system boot.

The flags parameter is set to 1 for system boot phase 1; 2 for system boot phase 2; and 0 when the
busresolve subroutine is invoked during run time. The busresolve subroutine can be invoked only to
resolve a specific device’s bus resources at run time. That is, the flags parameter must be 0 when the
logname parameter specifies a device logical name.

The E_BUSRESOURCE value indicates that the busresolve subroutine was not able to resolve all
conflicts. In this case, the conf _list parameter will contain a list of the logical names of the devices for
which it successfully resolved attributes. The not_res_list parameter will also contain a list of the logical
names of the devices for which it could not successfully resolve all attributes. Devices whose names
appear in the not_res_list parameter must not be configured into the Available state.

When writing a Configure method for a device having bus resources, make sure that it fails and returns a
value of E_BUSRESOURCE if the busresolve subroutine does not return an E_OK value.

Note: If the conf _list and not_res_list strings are not at least 512 characters, there may be insufficient
space to hold the device names.

Return Values

E_OK Indicates that all bus resources were resolved and allocated successfully.

E_ARGS Indicates that the parameters to the busresolve subroutine were not valid. For example, the
logname parameter specifies a device logical name, but the flags parameter is not set to 0 for
run time.

E_MALLOC Indicates that the malloc operation if necessary memory storage failed.

E_NOCuDv Indicates that there is no customized device data for the bus device whose logical name is
specified by the busname parameter.

E_ODMGET Indicates that an ODM error occurred while retrieving data from the Configuration data base.

E_PARENTSTATE Indicates that the bus device whose name is specified by the busname parameter is not in
the Available state.

E_BUSRESOLVE Indicates that a bus resource for a device did not resolve. The logname parameter can

identify the particular device. However, if this parameter is null, then an E_BUSRESOLVE
value indicates that the bus resource for some unspecified device in the system did not
resolve.

Files

lust/lib/libcfg.a Archive of device configuration subroutines.

[ODM Device Configuration Object Classes}

[List of Device Configuration Subroutines|

Related Information

[Understanding ODM Object Classes and Objects|in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

Chapter 1. Configuration Subsystem 3

genmajor Device Configuration Subroutine

Purpose
Generates the next available major number for a device driver instance.

Syntax

#include <cf.h>
#include <sys/cfgodm.h>
#include <sys/cfgdb.h>

Tong genmajor (|device driver instance namel)
char *device driver_instance name;

Parameters

device_driver_instance_name Points to a character string containing the device driver instance
name.

Description

The genmajor device configuration subroutine is one of the routines designated for accessing the
[Customized Device Driver (CuDvDr) object class| If a major number already exists for the given device
driver instance, it is returned. Otherwise, a new major number is generated.

The genmajor subroutine creates an entry (object) in the CuDvDr object class for the major number
information. The lowest available major number or the major number that has already been allocated is
returned. The CuDvDr object class is locked exclusively by this routine until its completion.

Return Values

If the genmajor subroutine executes successfully, a major number is returned. This major number is either
the lowest available major number or the major number that has already been allocated to the device
instance.

A value of -1 is returned if the genmajor subroutine fails.

Files

lusr/lib/libcfg.a Archive of device configuration subroutines.

Related Information
The device configuration subroutine, device configuration subroutine.

[List of ODM Commands and Subroutines|in AlX 5L Version 5.3 General Programming Concepts: Writing
and Debugging Programs.

[Customized Device Driver (CuDvDr) object class]

[List of Device Configuration Subroutines|

4 AIX 5L Version 5.3 Technical Reference: Kerel and Subsystems, Volume 2

genminor Device Configuration Subroutine

Purpose

Generates either the smallest unused minor number available for a device, a preferred minor number if it
is available, or a set of unused minor numbers for a device.

Syntax

#include <cf.h>
#include <sys/cfgodm.h>
#include <sys/cfgdb.h>

int *genminor (device instance, major_no, preferred minor,
minors _in grp, inc_within _grp, inc_btwn_grp)

char * |device instancel;

int |major nol:

int |preferred minors

int minors in grpl;

int |inc within grpl

int |inc btwn grpl;

Parameters

device_instance Points to a character string containing the device instance name.

major_no Contains the major number of the device instance.

preferred_minor Contains a single preferred minor number or a starting minor number for
generating a set of numbers. In the latter case, the genminor subroutine can be
used to get a set of minor numbers in a single call.

minors_in_grp Indicates how many minor numbers are to be allocated.

inc_within_grp Indicates the interval between minor numbers.

inc_btwn_grp Indicates the interval between groups of minor numbers.

Description

The genminor device configuration subroutine is one of the designated routines for accessing the
[Customized Device Driver (CuDv) object class| To ensure that unique numbers are generated, the object
class is locked by this routine until its completion.

If a single preferred minor number needs to be allocated, it should be given in the preferred_minor
parameter. In this case, the other parameters should contain an integer value of 1. If the desired number is
available, it is returned. Otherwise, a null pointer is returned, indicating that the requested number is in
use.

If the caller has no preference and only requires one minor number, this should be indicated by passing a
value of -1 in the preferred_minor parameter. The other parameters should all contain the integer value of
1. In this case, the genminor subroutine returns the lowest available minor number.

If a set of numbers is desired, then every number in the designated set must be available. An unavailable
number is one that has already been assigned. To get a specific set of minor numbers allocated, the
preferred_minor parameter contains the starting minor number. If this set has a minor number that is
unavailable, then the genminor subroutine returns a null pointer indicating failure.

If the set of minor numbers needs to be allocated with the first number beginning on a particular boundary
(that is, a set beginning on a multiple of 8), then a value of -1 should be passed in the preferred_minor

Chapter 1. Configuration Subsystem 5

parameter. The inc_btwn_grp parameter should be set to the multiple desired. The genminor subroutine
uses the inc_btwn_grp parameter to find the first complete set of available minor numbers.

If a list of minor numbers is to be returned, the return value points to the first in a list of preferred minor
numbers. This pointer can then be incremented to move through the list to access each minor number.
The minor numbers are returned in ascending sorted order.

Return Values

In the case of failure, a null pointer is returned. If the genminor subroutine succeeds, a pointer is returned
to the lowest available minor number or to a list of minor numbers.

Files

lusr/lib/libcfg.a Archive of device configuration subroutines.

Related Information
The [genmajor] device configuration subroutine, [getminor] device configuration subroutine, device

configuration subroutine.

[List of ODM Commands and Subroutines|in AlX 5L Version 5.3 General Programming Concepts: Writing
and Debugging Programs.

[Customized Device Driver (CuDvDr) object class]

[List of Device Configuration Subroutines|

genseq Device Configuration Subroutine

Purpose

Generates a unique sequence number for creating a device’s logical name.

Syntax

#include <cf.h>
#include <sys/cfgodm.h>
#include <sys/cfgdb.h>

int genseq (prefix)
char *prefix;

Parameters

prefix Points to the character string containing the prefix name of the device.

Description

The genseq device configuration subroutine generates a unique sequence number to be concatenated
with the device’s prefix name. The device name in the [Customized Devices (CuDv) object class|is the
concatenation of the prefix name and the sequence number. The rules for generating sequence numbers
are as follows:

* A sequence number is a nonnegative integer. The smallest sequence number is 0.

6 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

* When deriving a device instance logical name, the next available sequence number (relative to a given
prefix name) is allocated. This next available sequence number is defined to be the smallest sequence
number not yet allocated to device instances using the same prefix name.

* Whether a sequence number is allocated or not is determined by the device instances in the CuDv
object class. If an entry using the desired prefix exists in this class, then the sequence number for that
entry has already been allocated.

It is up to the application to convert this sequence number to character format so that it can be
concatenated to the prefix to form the device name.

Return Values

If the genseq subroutine succeeds, it returns the generated sequence number in integer format. If the
subroutine fails, it returns a value of -1.

Files

lust/lib/libcfg.a Archive of device configuration subroutines.

Related Information
[Customized Devices (CuDv) object class]

[List of ODM Commands and Subroutines|in AIX 5L Version 5.3 General Programming Concepts: Writing
and Debugging Programs.

getattr Device Configuration Subroutine

Purpose

Returns current values of an attribute object.
Library

Object Data Manager Library (libodm.a)

Syntax

#include <cf.h>
#include <sys/cfgodm.h>
#include <sys/cfgdb.h>

struct CuAt *getattr (devname, attrname, getall, how_many)
char * |devnamel;
attrnamel;

int

int * s

Parameters

devname Specifies the device logical name.

attrname Specifies the attribute name.

getall Specifies a Boolean flag that, when set to True, indicates that a list of attributes is to be
returned to the calling routine.

how_many Points to how many attributes the getattr subroutine has found.

Chapter 1. Configuration Subsystem 7

Description

The getattr device configuration subroutine returns the current value of an attribute object or a list of
current values of attribute objects from either the Customized Attribute (CuAt) object class or the
Predefined Attribute (PdAt) object class. The getattr device configuration subroutine queries the
for the attribute object matching the device logical name and the attribute name. It is the
application’s responsibility to [lock| the [Device Configuration object classes]

The getattr subroutine allocates memory for CuAt object class structures that are returned. This memory
is automatically freed when the application exits. However, the application must free this memory if it
invokes getattr several times and runs for a long time.

To get a single attribute, the getall parameter should be set to False. If the object exists in the CuAt object
class, a pointer to this structure is returned to the calling routine.

However, if the object is not found, the getattr subroutine assumes that the attribute takes the default
value found in the [PdAt object class] In this case, the PdAt object class is queried for the attribute
information. If this information is found, the relevant attribute values (that is, default value, flag information,
and the NLS index) are copied into a CuAt structure. This structure is then returned to the calling routine.
Otherwise, a null pointer is returned indicating an error.

To get all the customized attributes for the device name, the getall parameter should be set to True. In this
case, the attrname parameter is ignored. The PdAt and CuAt object classes are queried and a list of CuAt
structures is returned. The PdAt objects are copied to CuAt structures so that one list may be returned.

Note: The getattr device configuration subroutine will fail unless you first call the odm_initialize
subroutine.

Return Values

Upon successful completion, the getattr subroutine returns a pointer to a list of CuAt structures. If the
operation is unsuccessful, a null pointer is returned.

Files

lusr/lib/libcfg.a Archive of device configuration subroutines.

Related Information
The subroutine, the device configuration subroutine.

[Predefined Attribute (PdAt) object class) [Customized Attribute (CuAt) object class]

[Device Configuration Subsystem Programming Introduction|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

[Understanding ODM Object Classes and Objects|in AlIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

[ODM Device Configuration Object Classes|in AIX 5L Version 5.3 Kernel Extensions and Device Support
Programming Concepits.

8 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

getminor Device Configuration Subroutine

Purpose

Gets the minor numbers associated with a major number from the Customized Device Driver (CuDvDr)
object class.

Syntax

#include <cf.h>
#include <sys/cfgodm.h>
#include <sys/cfgdb.h>

int *getminor (major no, how many, device instance)
int najor noj;

int * |how manyl;

char * |device instancel;

Parameters

major_no Specifies the major number for which the corresponding minor number or numbers is
desired.

how_many Points to the number of minor numbers found corresponding to the major_no
parameter.

device_instance Specifies a device instance name to use when searching for minor numbers. This
parameter is used in conjunction with the major_no parameter.

Description

The getminor device configuration subroutine is one of the designated routines for accessing the
object class| This subroutine queries the CuDvDr object class for the minor numbers associated with the

given major number or device instance or both.

If the device_instance parameter is null, then only the major_no parameter is used to obtain the minor
numbers. Otherwise, both the major_no and device_instance parameters should be used. The number of
minor numbers found in the query is returned in the how_many parameter.

The CuDvDr object class is locked exclusively by the getminor subroutine for the duration of the routine.

The return value pointer points to a list that contains the minor numbers associated with the major number.
This pointer is then used to move through the list to access each minor number. The minor numbers are
returned in ascending sorted order.

The getminor subroutine also returns the number of minor numbers in the list to the calling routine in the
how_many parameter.

Return Values
If the getminor routine fails, a null pointer is returned.

If the getminor subroutine succeeds, one of two possible values is returned. If no minor numbers are
found, null is returned. In this case, the how_many parameter points to an integer value of 0. However, if
minor numbers are found, then a pointer to a list of minor numbers is returned. The minor numbers are
returned in ascending sorted order. In the latter case, the how_many parameter points to the number of
minor numbers found.

Chapter 1. Configuration Subsystem 9

Files

lusr/lib/libcfg.a Archive of device configuration subroutines.

Related Information
The device configuration subroutine, device configuration subroutine,

device configuration subroutine.

[Customized Device Driver (CuDvDr) object class]

List of Device Configuration Subroutines.

loadext Device Configuration Subroutine

Purpose

Loads or unloads kernel extensions, or queries for kernel extensions in the kernel.

Syntax

#include <sys/types.h>

mid_t loadext (|dd name|, [load|, |query)
char *dd name;
int load, query;

Parameters

dd_name Specifies the name of the kernel extension to be loaded, unloaded, or queried.
load Specifies whether the loadext subroutine should load the kernel extension.
query Specifies whether a query of the kernel extension should be performed.

Description

The loadext device configuration subroutine provides the capability to load or unload kernel extensions. It
can also be used to obtain the kernel module identifier (kmid) of a previously loaded object file. The kernel
extension name passed in the dd_name parameter is either the base name of the object file or contains
directory path information. If the kernel extension path name supplied in the dd_name parameter has no
leading ./ (dot, slash), ../ double-dot, slash), or / (slash) characters, then the loadext subroutine
concatenates the /usr/lib/drivers file and the base name passed in the dd_name parameter to arrive at an
absolute path name. Otherwise, the path name provided in the dd_name parameter is used unmodified.

If the load parameter has a value of True, the specified kernel extension and its kmid are loaded. If the
specified object file has already been loaded into the kernel, its load count is incremented and a new copy
is not loaded.

If the load parameter has a value of False, the action taken depends on the value of the query parameter.
If query is False, the loadext routine requests an unload of the specified kernel extension. This causes the
kernel to decrement the load count associated with the object file. If the load count and use count of the
object file become 0, the kernel unloads the object file. If the query parameter is True, then the loadext
subroutine queries the kernel for the kmid of the specified object file. This kmid is then returned to the
caller.

If both the load and query parameters have a value of True, the load function is performed.

10 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Attention: Repeated loading and unloading of kernel extensions may cause a memory leak.

Files

lusr/lib/libcfg.a Archive of device configuration subroutines.

Return Values

Upon successful completion, the loadext subroutine returns the kmid. If an error occurs or if the queried
object file is not loaded, the routine returns a null value.

Related Information
The subroutine.

[Understanding Kernel Extension Binding|in AlX 5L Version 5.3 Kernel Extensions and Device Support
Programming Concepts.

putattr Device Configuration Subroutine

Purpose

Updates, deletes, or creates an attribute object in the Customized Attribute (CuAt) object class.

Library

Object Data Manager Library (libodm.a)

Syntax

#include <cf.h>
#include <sys/cfgodm.h>
#include <sys/cfgdb.h>

int putattr (

struct CuAt *cuobj;

Parameters

cuobj Specifies the attribute object.

Description

The putattr device configuration subroutine either updates an old attribute object, creates a new object for
the attribute information, or deletes an existing object in the [CuAt object class| The putattr subroutine
queries the CuAt object class to determine whether an object already exists with the device name and
attribute name specified by the cuobj parameter.

If the attribute is found in the CuAt object class and its value (as given in the cuobj parameter) is to be
changed back to the default value for this attribute, the customized object is deleted. Otherwise, the
customized object is simply updated.

If the attribute object does not already exist and its attribute value is being changed to a non-default value,
a new object is added to the CuAt object class with the information given in the cuobj parameter.

Chapter 1. Configuration Subsystem 11

Note: The putattr device configuration subroutine will fail unless you first call the odm_initialize
subroutine.

Return Values

0 Indicates a successful operation.

-1 Indicates a failed operation.

Files

lusr/lib/libcfg.a Archive of device configuration subroutines.

Related Information
The subroutine, the device configuration subroutine.

[Customized Attribute (CuAt) object class]

[Device Configuration Subsystem Programming Introduction|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

[Object Data Manager (ODM) Overview for Programmers|in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

reldevno Device Configuration Subroutine

Purpose
Releases the minor or major number, or both, for a device instance.

Syntax

#include <cf.h>

#include <sys/cfgodm.h>

#include <sys/cfgdb.h>

int reldevno (|device_instance_name, |release)
char *device_instance_name;

int release;

Parameters

device_instance_name Points to the character string containing the device instance name.

release Specifies whether the major number should be released. A value of True
releases the major number; a value of False does not.

Description

The reldevno device configuration subroutine is one of the designated access routines to the
[Device Driver (CuDvDr) object class| This object class is locked exclusively by this routine until its
completion. All minor numbers associated with the device instance name are deleted from the CuDvDr
object class. That is, each object is deleted from the class. This releases the minor numbers for reuse.

The major number is released for reuse if the following two conditions exist:
» The object to be deleted contains the last minor number for a major number.

12 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

* The release parameter is set to True.

If you prefer to release the major number yourself, then the device configuration subroutine can
h

be called. In this case, you should also set the release parameter to False. All|special files} including
symbolically linked special files, corresponding to the deleted objects are deleted from the file system.

Return Values

0 Indicates successful completion.

-1 Indicates a failure to release the minor number or major number, or both.
Files

lusr/lib/libcfg.a Archive of device configuration subroutines.

Related Information
The device configuration subroutine, device configuration subroutine,

device configuration subroutine.

[Customized Device Driver (CuDvDr) object class]

relmajor Device Configuration Subroutine

Purpose
Releases the major number associated with the specified device driver instance name.

Syntax

#include <cf.h>

#include <sys/cfgodm.h>

#include <sys/cfgdb.h>

int relmajor (|device_driver_instance_name)
char *device_driver_instance_name;

Parameter

device_driver_instance_name Points to a character string containing the device driver instance
name.

Description

The relmajor device configuration subroutine is one of the designated access routines to the |Customized
[Device Driver (CuDvDr) object class| To ensure that unique major numbers are generated, the CuDvDr
object class is locked exclusively by this routine until the major number has been released.

The relmajor routine deletes the object containing the major number of the device driver instance name.

Return Values

0 Indicates successful completion.
-1 Indicates a failure to release the major number.

Chapter 1. Configuration Subsystem 13

Files

lusr/lib/libcfg.a Archive of device configuration subroutines.

Related Information
The device configuration subroutine, device configuration subroutine.

[Customized Device Driver (CuDvDr) object class]

Writing Optional Start and Stop Methods

This article describes how optional Start and Stop device methods work. It also suggests guidelines for
programmers writing their own optional Start and Stop device configuration methods.

Syntax

sttDevE| Name
stpDev -l Name

Description

The Start and Stop methods are optional. They allow a device to support the additional of
Stopped. The Start method takes the device from the Stopped state to the Available state. The Stop
method takes the device from the Available state to the Stopped state. Most devices do not have Start and
Stop methods.

The Stopped state keeps a configured device in the system, but renders it unusable by applications. In this
state, the device’s driver is loaded and the device is defined to the driver. This might be implemented by
having the Stop method issue a command telling the device driver not to accept any normal 1/O requests.
If an application subsequently issues a normal I/O request to the device, it will fail. The Start method can
then issue a command to the driver telling it to start accepting I/O requests once again.

If Start and Stop methods are written, the other device methods must be written to account for the
Stopped state. For example, if a method checks for a device state of Available, it might now need to check
for Available and Stopped states.

Additionally, write the [Configure method| so that it takes the device from the Defined state to the Stopped
state. Also, the Configure method may invoke the Start method, taking the device to the Available state.
The [Unconfigure method| must change the device to the Defined state from either the Available or Stopped
states.

When used, Start and Stop methods are usually device-specific.
By convention, the first three characters of the name of the Start method are stt. The first three characters
of the name of the Stop method are stp. The remainder of the names (Dev) can be any characters,

subject to operating system file-name restrictions, that identify the device or group of devices that use the
methods.

Flags

-l name Identifies the logical name of the device to be started or stopped.

14 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Related Information
[Writing an Unconfigure Method|, [Writing a Configure Method| .

Writing a Change Method

This article describes how a Change device method works. It also suggestsfor programmers
writing their own Change device configuration methods.

Syntax
cthevE| Name [Parent][@ Connection] [I E 110 Attr=Value [-a Attr=Value
e]

Description

The Change method applies configuration changes to a device. If the device is in the Defined state, the
changes are simply recorded in the Customized database. If the device is in the Available state, the
Change method must also apply the changes to the actual device by reconfiguring it.

A Change method does not need to support all the flags described for Change methods. For example, if
your device is a pseudo-device with no parent, it need not support parent and connection changes. For
[devices that have parents] it may be desirable to disallow parent and connection changes. For printers,
such changes are logical because they are easily moved from one port to another. By contrast, an adapter
card is not usually moved without first shutting off the system. It is then automatically configured at its new
location when the system is rebooted. Consequently, there may not be a need for a Change method to
support parent and connection changes.

Note: In deciding whether to support the -T and -P flags, remember that these options allow a device’s
configuration to get out of sync with the Configuration database. The -P flag is useful for devices
that are typically kept open by the system. The Change methods for most supported devices do not
support the -T flag.

In applying changes to a device in the Available state, the Change method could terminate the device from
the driver, rebuild the [device-dependent structure (DDS)| using the new information, and redefine the
device to the driver using the new DDS. The method may also need to reload adapter software or perform
other device-specific operations. An alternative is to invoke the device’s [Unconfigure method, update the
Customized database, and invoke the device’s Configure method.

By convention, the first three characters of the name of the Change method should be chg. The remainder
of the name (Dev) can be any characters, subject to operating system file-name restrictions, that identify
the device or group of devices that use the method.

Flags

-l Name Identifies the logical name of the device to be changed.

-p Parent Identifies the logical name of a new parent for the device. This flag is used to move
a device from one parent to another.

-w Connection Identifies a new connection location for the device. This flag either identifies a new

connection location on the device’s existing parent, or if the -p flag is also used, it
identifies the connection location on the new parent device.

-P Indicates that the changes are to be recorded in the Customized database without
those changes being applied to the actual device. This is a useful option for a
device which is usually kept open by the system such that it cannot be changed.
Changes made to the database with this flag are later applied to the device when it
is configured at system reboot.

Chapter 1. Configuration Subsystem 15

Indicates that the changes are to be applied only to the actual device and not
recorded in the database. This is a useful option for allowing temporary
configuration changes that will not apply once the system is rebooted.

-a Attr=Value Specifies the device attribute value pairs used for changing specific attribute

values. The Attr=Value parameter contains one or more attribute value pairs for the
-a flag. If you use a -a flag with multiple attribute value pairs, the list of pairs must
be enclosed in quotes with spaces between the pairs. For example, entering -a
Attr=Value lists one attribute value pair, while entering -a ’Attr1=Value1
Attr2=ValueZ lists more than one attribute value pair.

Guidelines for Writing a Change Method

This list of tasks is intended as a guideline for writing a Change method. When writing for a specific
device, some tasks may be omitted. For example, if a device does not support the changing of a parent or
connection, there is no need to include those tasks. A device may have special needs that are not
included in these tasks.

If the Change method is written to invoke the Unconfigure and Configure methods, it must:

1.

10.

16

Validate the input parameters. The -l flag must be supplied to identify the device that is to be
changed. If your method does not support the specified flag, exit with an error.

Initialize the Object Data Manager (ODM). Use the |odm_initia|ize| subroutine and lock the
Configuration database using the |odm_|oc|_<| subroutine. See|'Writing a Define Method”| for an
example.

Retrieve the [Customized Device (CuDv) object| for the device to be changed by getting the CuDv
object whose Device Name descriptor matches the name supplied with the -l flag. If no object is
found with the specified name, exit with an error.

Validate all attributes being changed. Make certain that the attributes apply to the specified device,
that they can be set by the user, and that they are being set to valid values. The subroutine
can be used for this purpose. If some attributes have values that are dependent on each other, write
the code to cross check them. If invalid attributes are found, the method needs to write information to
standard error describing them. See |"Handling Invalid Attributes”] .

Determine if a new parent device exists. If a new has been specified, find out whether
it exists by querying the CuDv object class for an object whose Device Name descriptor matches the
new parent name. If no match is found, the method exits with an error.

If a new connection has been specified, validate that this device can be connected there. Do this by
querying the [Predefined Connection (PdCn) object class| for an object whose Unique Type descriptor
matches the link to the Predefined Devices (PdDv) object class descriptor of the parent’s CuDv
object. The Connection Key descriptor of the CuDv object must match the subclass name of the
device being changed, and the Connection Location descriptor of the CuDv object must match the
new connection value. If no match is found, the method exits with an error.

If a match is found, the new connection is valid. If the device is in the Available state, then it should
still be available after being moved to the new connection. Since only one device can be available at
a particular connection, the Change method must check for other available devices at that
connection. If one is found, the method exits with an error.

If the device state is Available and the -P flag was not specified, invoke the device’s
using the lodm_run_method| command. This fails if the device has Available child devices,
which is why the Change method does not need to check explicitly for child devices.

If any attribute settings were changed, update the database to reflect the new settings. If a parent or
connection changed, update the Parent Device Logical Name, Location Where Connected on Parent
Device, and Location Code descriptors of the device’s

If the device state was in the Available state before being unconfigured, invoke the device’s

using the odm_run_method command. If this returns an error, leaving the device

unconfigured, the Change method should restore the Customized database to its pre-change state.

AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

11. Close all object classes and terminate the Exit with an exit code of 0 if there were no errors.

Handling Invalid Attributes

If the Change method detects attributes that are in error, it must write information to the stderr file to
identify them. This consists of writing the attribute name followed by the attribute description. Only one
attribute and its description is to be written per line. If an attribute name was mistyped so that it does not
match any of the device’s attributes, write the attribute name supplied on a line by itself.

The j[mkdev| and |chdev| configuration commands intercept the information written to the standard error file
by the Change method. These commands write out the information following an error message describing
that there were invalid attributes. Both the attribute name and attribute description are needed to identify
the attribute. By invoking the mkdev or chdev command directly, the attributes can be identified by name.
When using SMIT, these attributes can be identified by description.

The attribute description is obtained from the appropriate message catalog. A message is identified by
catalog name, set number, and message number. The catalog name and set number are obtained from
the device’s |Pde objecﬂ The message number is obtained from the NLS Index descriptor in either the
[Predefined Attribute (PdAt)| or [Customized Attribute (CuAt)| object corresponding to the attribute.

Related Information
[Writing an Unconfigure Method|, Writing a Configure Method|

The command, command, command.
The subroutine, jodm_run_method| subroutine.

Customized Devices (CuDv) object class} [Predefined Devices (PdDv) object class [Predefined Connection|
(PdCn) object class] [Predefined Attribute (PdAt) object class] |Customized Attribute (CuAt) object class]

[Device Dependent Structure (DDS) Overview] [Understanding Device Dependencies and Child Devices|in
AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

[Object Data Manager (ODM) Overview for Programmers|in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

Writing a Configure Method

This article describes how a Configure device method works. It also suggests for programmers
writing their own Configure device configuration methods.

Syntax
cfgDev] Name [[1] | [2]]

Description

The Configure method moves a device from (not available for use in the system) to Available
(available for use in the system). If the device has a driver, the Configure method [loads the device driver
into the kernel and describes the device characteristics to the driver. For an intermediate device (such as a
SCSI bus adapter), this method determines which attached child devices are to be configured and writes
their logical names to standard output.

The Configure method is invoked by either the [mkdev] configuration command or by the
Because the Configuration Manager runs a second time in phase 2 system boot and can also be

Chapter 1. Configuration Subsystem 17

invoked repeatedly at run time, a device’s Configure method can be invoked to configure an Available
device. This is not an error condition. In the case of an intermediate device, the Configure method checks
for the presence of child devices. If the device is not an intermediate device, the method simply returns.

In general, the Configure method obtains all the information it needs about the device from the
Configuration database. The options specifying the phase of system boot are used to limit certain functions
to specific phases.

If the device has a [parenf device, the parent must be configured first. The Configure method for a device
fails if the parent is not in the Available state.

By convention, the first three characters of the name of the Configure method are cfg. The remainder of
the name (Dev) can be any characters, subject to operating system file-name restrictions, that identify the
device or group of devices that use the method.

Flags

-1 Name Identifies the logical name of the device to be configured.

-1 Specifies that the device is being configured in phase 1 of the [System boot processingl This
option cannot be specified with the -2 flag. If neither the -1 nor the -2 flags are specified, the
Configure method is invoked at runtime.

-2 Specifies that the device is being configured in phase 2 of the system boot. This option cannot
be specified with the -1 flag. If neither the -1 nor the -2 flags are specified, the Configure
method is invoked at runtime.

Handling Device Vital Product Data (VPD)

Devices that provide vital product data (VPD) are identified in the |[Predefined Device (PdDv)| object class
by setting the VPD flag descriptor to TRUE in each of the device’s PdDv objects. The Configure method
must obtain the VPD from the device and store it in the [Customized VPD (CuVPD) object class} Consult
the appropriate hardware documentation to determine how to retrieve the device’s VPD. In many cases,
VPD is obtained from the device driver using the subroutine.

Once the VPD is obtained from the device, the Configure method queries the CuVPD object class to see if
the device has hardware VPD stored there. If so, the method compares the VPD obtained from the device
with that from the CuVPD object class. If the VPD is the same in both cases, no further processing is
needed. If they are different, update the VPD in the CuVPD object class for the device. If there is no VPD
in the CuVPD object class for the device, add the device’s VPD.

By first comparing the device’s VPD with that in the CuVPD object class, modifications to the CuVPD
object class are reduced. This is because the VPD from a device typically does not change. Reducing the
number of database writes increases performance and minimizes possible data loss.

Understanding Configure Method Errors

For many of the errors detected, the Configure method exits with the appropriate exit code. In other cases,
the Configure method may need to undo some of the operations it has performed. For instance, after
the device driver and defining the device to the driver, the Configure method may encounter an
error while downloading microcode. If this happens, the method will terminate the device from the driver

using the subroutine and unload the driver using the subroutine.

The Configure method does not delete the or unassign the major and minor numbers if they
were successfully allocated and the special file created before the error was encountered. This is because
the operating system’s configuration scheme allows both major and minor numbers and special files to be
maintained for a device even though the device is unconfigured.

18 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

If the device is configured again, the Configure method will recognize that the major and minor numbers
are allocated and that the special files exist.

By the time the Configure method checks for child devices, it has successfully configured the device.
Errors that occur while checking for child devices are indicated with the E_FINDCHILD exit code. The
command detects whether the Configure method completed successfully. If needed, it will display a
message indicating that an error occurred while looking for child devices.

Guidelines for Writing a Configure Method

The following tasks are guidelines for writing a Configure method. When writing for a specific device, some
tasks may be omitted. For example, if the device is not an intermediate device or does not have a driver,
the method is written accordingly. A device may also have special requirements not listed in these tasks.

The Configure method must:

1. Validate the input parameters. The -l logical name flag must be supplied to identify the device that is
to be configured. The -1 and -2 flags cannot be supplied at the same time.

2. Initialize the Object Data Manager iODMi. Use the |odm_initia|izé| subroutine and lock the

Configuration database using the [odm_lock| subroutine. See '|Writing a Define Method!" for an
example.

3. Retrieve the Customized Device (CuDv) object for the device to be configured. The object’s
Device Name descriptor must match the name supplied with the -l logical name flag. If no object is
found with the specified name, the method exits with an error.

4. Retrieve the Predefined Device (PdDv) object for the device to be configured. The object’s
Unique Type descriptor must match the link to PdDv object class descriptor of the device’s CuDv
object.

5. Obtain the LED value descriptor of the device’s PdDv object. Retrieve the LED Value descriptor of the
device’s PdDv object and display this value on the system LEDs using the setleds subroutine if either
the -1 or -2 flag is specified. This specifies when the Configure method will execute at boot time. If
the system hangs during configuration at boot time, the displayed LED value indicates which
Configure method created the problem.

If the device is already configured (that is, the Device State descriptor of the device’s CuDv object
indicates the Available state) and is an intermediate device, skip to the task of detecting child devices.
If the device is configured but is not an intermediate device, the Configure method will exit with no
error.

If the device is in the Defined state, the Configure Method must check the parent device, check for
the presence of a device, obtain the device VPD, and update the device’s CuDv object.

6. If the device has a parent, the Configure method validates the parent’s existence and verifies that the
parent is in the Available state. The method looks at the Parent Device Logical Name descriptor of
the device’s CuDv object to obtain the parent name. If the device does not have a parent, the
descriptor will be a null string.

When the device has a parent, the Configure method will obtain the parent device’s CuDv object and
check the Device State descriptor. If the object does not exist or is not in the Available state, the
method exits with an error.

Another check must be made if adevice exists. The Configure method must verify that no
other device connected to the same parent (at the same connection location) has been configured.
For example, two printers can be connected to the same port using a switch box. While each printer
has the same parent and connection, only one can be configured at a time.

The Configure method performs this check by querying the CuDv object class. It queries for objects
whose Device State descriptor is set to the Available state and whose Parent Device Logical Name
and Location Where Connected on Parent Device descriptors match those for the device being
configured. If a match is found, the method exits with an error.

Chapter 1. Configuration Subsystem 19

7. Check the presence of the device. If the device is an adapter card and the Configure method has
been invoked at run time (indicated by the absence of both the -1 and -2 flags), the Configure method
must verify the adapter card’s presence. This is accomplished by reading POS registers from the
card. (The POS registers are obtained by opening and accessing the or /dev/bus1 special
file.) This is essential, because if the card is present, the Configure method must invoke the
library routine to assign bus resources to avoid conflict with other adapter cards in the
system. If the card is not present or the busresolve routine fails to resolve bus resources, the
method exits with an error.

8. Determine if the device has a device driver. The Configure method obtains the name of the device
driver from the Device Driver Name descriptor of the device’s PdDv object. If this descriptor is a null
string, the device does not have a device driver.

If the device has a device driver, the Configure method must:

a. Load the device driver using the subroutine. See ['Loading a Device Driver”|for more
information.

Determine the device’s major number using the subroutine.

Determine the device’s minor number using the [getminor| or [genminor] subroutine or by your own
device-dependent routine.

d. Create special files in the /dev directory if they do not already exist. Special files are created with
the subroutine.

e. Build the |[device-dependent structure (DDS)| This structure contains information describing the
characteristics of the device to the device driver. The information is usually, but not necessarily,
obtained from the device’s attributes in the Configuration database. Refer to the appropriate
device driver information to determine what the device driver expects the DDS to look like. The
['Device Dependent Structure (DDS) Overview'|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts describes the DDS structure.

f. Use the |sysconfig subroutine| to pass the DDS to the device driver.

g. If code needs to be downloaded to the device, read in the required file and pass the code to the
device through the interface provided by the device driver. The file to be downloaded might be
identified by a |[Predefined Attribute (PdAt)| or [Customized Attribute (CuAt)| object. By convention,
microcode files are in the /etc/microcode directory (which is a symbolic link to the
lusr/lib/microcode directory). Downloaded adapter software is in the /usr/lib/asw directory.

9. Obtain the device VPD. After the tasks relating to the device driver are complete, or if the device did
not have a device driver, the Configure method will determine if it needs to obtain vital product data
(VPD) from the device. The VPD Flag descriptor of the device’s PdDv object specifies whether or not
it has VPD. See ['Handling Device Vital Product Data (VPD)"| for more details.

10. Update the CuDv object. At this point, if no errors have been encountered, the device is configured.
The Configure method will update the Device Status descriptor of the device’s to indicate
that it is in the Available state. Also, set the Change Status descriptor to SAME if it is currently set to
MISSING. This can occur if the device was not detected at system boot and is being configured at
run time.

11. Define detected |chi|d devices| not currently represented in the CuDv object class. To accomplish this,
invoke the |Define method| for each new child device. For each detected child device already defined
in the CuDv object class, the Configure method looks at the child device’s CuDv Change Status Flag
descriptor to see if it needs to be updated. If the descriptor’s value is DONT_CARE, nothing needs to
be done. If it has any other value, it must be set to SAME and the child device’s CuDv object must be
updated. The Change Status Flag descriptor is used by the system to indicate configuration changes.

If the device is an intermediate device but cannot detect attached child devices, query the CuDv
object class about this information. The value of the Change Status Flag descriptor for these child
devices should be DONT_CARE because the parent device cannot detect them. Sometimes a child
device has an attribute specifying to the Configure method whether the child device is to be
configured. The autoconfig attribute of TTY devices is an example of this type of attribute.

20 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Regardless of whether the child devices are detectable, the Configure method will write the device
logical names of the child devices to be configured to standard output, separated by space
characters. If the method was invoked by the |[Configuration Manager] the Manager invokes the
Configure method for each of the child device names written to standard output.

12. Close all object classes and terminate the ODM. Close all object classes and terminate the If
there are no errors, use a 0 (zero) code to exit.

Files

/dev/bus0 Contains POS registers.

/dev/bus1 Contains POS registers.

/etc/microcode directory Contains microcode files. A symbolic link to the /usr/lib/microcode
directory.

lust/lib/asw directory Contains downloaded adapter software.

Related Information
The command.

The broutine, |§enmajoﬂ subroutine, |§enminoﬂ subroutine, |§etminoﬂ subroutine, [loadexd]

subroutine, Imknod| subroutine, [odm_initialize| subroutine, |odm_|oc|_<| subroutine, |re|devn9| subroutine,

|re|ma'|o[| subroutine, |s¥sconfig] subroutine.

[Object Data Manager (ODM) Overview for Programmers|in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

Customized Devices (CuDv)| object class, [Predefined Devices (PdDv)| object class, [Customized Attributes|
(CuAt)| object class, [Predefined Attribute (PdAt)| object class, |Customized Vital Product Data (CuVPD)|
object class.

Understanding Device States| [Understanding Device Dependencies and Child Devices| [Loading a Device]
Driver|Configuration Manager Overview| [System boot processing| [Device Dependent Structure (DDS)|
Overviev_v| in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

[Device Configuration Subsystem Programming Introduction|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

[Special Files Overview|in AlIX 5L Version 5.3 Files Reference.

[Writing a Device Method|in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming
Concepits.

[Writing an Unconfigure Method|, Writing a Define Method| .

Writing a Define Method

This article describes how a Define device method works. It also suggests for programmers
writing their own Define device configuration methods.

Syntax
defDev El ClassEl SubCIassEl Type [El Parent @ Connection][El Name]

Chapter 1. Configuration Subsystem 21

Description

The Define method is responsible for creating a customized device in the Customized database. It does
this by adding an object for the device into the Customized Devices (CuDv) object class. The Define
method is invoked either by the mkdev configuration command, by a node configuration program, or by
the [Configure method| of a device that is detecting and defining child devices.

The Define method uses information supplied as input, as well as information in the Predefined database,
for filling in the CuDv object. If the method is written to support a single device, it can ignore the class,
subclass, and type options. In contrast, if the method supports multiple devices, it may need to use these
options to obtain the [PdDv device object| for the type of device being customized.

By convention, the first three characters of the name of the Define method should be def. The remainder
of the name (Dev) can be any characters that identify the device or group of devices that use the method,
subject to operating system file-name restrictions.

Flags

-¢ Class Specifies the class of the device being defined. [Class, subclass, and type| are
required to identify the Predefined Device object in the [Predefined Device (PdDv)|
for which a customized device instance is to be created.

-s SubClass Specifies the subclass of the device being defined. Class, subclass, and type are

required to identify the Predefined Device object in the PdDv object class for
which a customized device instance is to be created.

-t Type Specifies the type of the device being defined. Class, subclass, and type are
required to identify the predefined device object in the PdDv object class for which
a customized device instance is to be created.

-p Parent Specifies the logical name of the parent device. This logical name is required for
devices that connect to a parent device. This option does not apply to devices
that do not have parents; for example, most pseudo-devices.

-w Connection Specifies where the device connects to the parent. This option applies only to
devices that connect to a parent device.
-I Name Passed by the [nkdev] command, specifies the name for the device if the user

invoking the command is defining a new device and wants to select the name for
the device. The Define method assigns this name as the logical name of the
device in the |Customized Devices (CuDv) object, if the name is not already in
use. If this option is not specified, the Define method generates a name for the
device. Not all devices support or need to support this option.

Guidelines for Writing a Define Method

This list of tasks is meant to serve as a guideline for writing a Define method. In writing a method for a
specific device, some tasks may be omitted. For instance, if a device does not have a parent, there is no
need to include all of the parent and connection validation tasks. Additionally, a device may have special
needs that are not listed in these tasks.

The Define method must:

1. Validate the input parameters. Generally, a Configure method that invokes the child-device Define
method is coded to pass the options expected by the child-device Define method. However, the
mkdev command always passes the class, subclass, and type options, while only passing the other
options based on user input to the mkdev command. Thus, the Define method may need to ensure
that all of the options it requires have been supplied. For example, if the Define method expects
parent and connection options for the device being defined, it must ensure that the options are
supplied. Also, a Define method that does not support the -l name specification option will exit with an
error if the option is supplied.

22 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

2. Initialize the |Object Data Manager (ODM)| using the subroutine and lock the
configuration database using the [odm_lock| subroutine. The following code fragment illustrates this

process:
#include <cf.h>

if (odm_initialize() < 0)
exit(E_ODMINIT); /* initialization failed =/

if (odm_Tock("/etc/objrepos/config_lock",0) == -1) {
odm_terminate();
exit(E_ODMLOCK) ; /* database lock failed =/
}

3. Retrieve the predefined PdDv object for the type of device being defined. This is done by obtaining
the object from the [PdDv object class| whose [class, subclass, and type| descriptors match the class,
subclass, and type options supplied to the Define method. If no match is found, the Define method
will exit with an error. Information will be taken from the PdDv device object in order to create the
[CuDv device object]

4. Ensure that the parent device exists. If the device being defined connects to a parent device and the
name of the parent has been supplied, the Define method must ensure that the specified device
actually exists. It does this by retrieving the CuDv object whose Device Name descriptor matches the
name of the parent device supplied using the -p flag. If no match is found, the Define method will exit
with an error.

5. If the device has a parent and that parent device exists in the CuDv object class, validate that the
device being defined can be connected to the specified parent device. To do this, retrieve the
predefined connection object from the [Predefined Connection (PdCn) object class| whose Unique
Type, Connection Key, and Connection Location descriptors match the Link to Predefined Devices
Object Class descriptor of the parent’s CuDv object obtained in the previous step and the subclass
and connection options input into the Define method, respectively. If no match is found, an invalid
connection is specified. This may occur because the specified parent is not an intermediate device,
does not accept the type of device being defined (as described by subclass), or does not have the
connection location identified by the connection option.

6. Assign a logical name to the device. Each newly assigned logical name must be unique to the
system. If a name has been supplied using the -l flag, make certain it is unique before assigning it to
the device. This is done by checking the CuDv object class for any object whose Device Name
descriptor matches the desired name. If a match is found, the name is already used and the Define
method must exit with an error.

If the Define method is to generate a name, it can do so by obtaining the prefix name from the Prefix
Name descriptor of the device’s [PdDv device object| and invoking the |genseq] subroutine to obtain a
unique sequence number for this prefix. Appending the sequence number to the prefix name results
in a unique name. The genseq routine looks in the CuDv object class to ensure that it assigns a
sequence number that has not been used with the specified prefix to form a device name.

In some cases, a Define method may need to ensure that only one device of a particular type has
been defined. For example, there can only be one pty device customized in the CuDv object class.
The pty Define method does this by querying the CuDv object class to see if a device by the name
pty0 exists. If it does, the pty device has already been defined. Otherwise, the Define method
proceeds to define the pty device using the name ptyO.

7. Determine the device’s location code. If the device being defined is a physical device, it has a
location code. ['Device location codes’|in Operating system and device management has more
information about location codes.

8. Create the new CuDv object.
Set the CuDv object descriptors as follows:

Descriptor Setting
Device name Use the name as determined in step 6.
Device status flag Set to the Defined state.

Chapter 1. Configuration Subsystem 23

Descriptor Setting

Change status flag Set to the same value as that found in the Change Status Flag descriptor in
the device’s PdDv object.

Device driver instance Set to the same value as the Device Driver Name descriptor in the device’s
PdDv object. This value may be used later by the [Configure method]

Device location code Set to a null string if the device does not have a location code. Otherwise, set
it to the value computed.

Parent device logical name Set to a null string if the device does not have a parent. Otherwise, set this
descriptor to the parent name as specified by the parent option.

Location where connected on Set to a null string if the device does not have a parent. Otherwise, set this

parent device descriptor to the value specified by the connection option.

Link to predefined devices object Set to the value obtained from the Unique Type descriptor of the device’s
class PdDv object.

9. Write the name of the device to standard output. A blank should be appended to the device name to
serve as a separator in case other methods write device names to standard output. Either the
command or the Configure method that invoked the Define method will intercept standard output to
obtain the device name assigned to the device.

10. Close all object classes and terminate the ODM. Exit with an exit code of 0 if there were no errors.

Related Information
The command.

The device configuration subroutine, subroutine, subroutine.

[Writing an Undefine Method|, [Writing a Configure Method| .

[Customized Devices (CuDv)| object class, [Predefined Devices| object class, |Predefined Connection| object
class, [Predefined Attribute (PdAt)| object class, [Customized Attribute (CuAt)| object class.

Understanding Device States| [Understanding Device Classes, Subclasses, and Types| [Understanding|
Device Dependencies and Child Devices} |Loading A Device Driver||Configuration Manager Overview]
System boot processing| [Writing a Device Method|in AIX 5L Version 5.3 Kernel Extensions and Device
Support Programming Concepits.

[Object Data Manager (ODM) Overview for Programmers|in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

[Device location codes|in Operating system and device management.

Writing an Unconfigure Method

This article describes how an Unconfigure device method works. It also suggests |guidelines]| for
programmers writing their own Unconfigure device configuration method.

Syntax
ucfgDev] Name

Description

The Unconfigure method takes an Available device (available for use in the system) to a Defined state (not
available for use in the system). All the customized information about the device is retained in the
database so that the device can be configured again exactly as it was before.

24 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

The actual operations required to make a device defined depend on how the [Configure method| made the
device available in the first place. For example, if the device has a device driver, the Configure method
must have loaded a device driver|in the kernel and described the device to the driver through a
[dependent structure (DDS)l Then, the Unconfigure method must tell the driver to delete the device
instance and request an unload of the driver.

If the device is an intermediate device, the Unconfigure method must check the of the child devices.
If any child device is in the Available state, the Unconfigure method fails and leaves the device configured.
To ensure proper system operation, all child devices must be unconfigured before the parent can be
unconfigured.

Although the Unconfigure method checks child devices, it does not check the device dependencies
recorded in the Customized Dependency (CuDep) object class. See |"Understanding Device Dependencies|
[and Child Devices'|in AlIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

The Unconfigure method also fails if the device is currently open. In this case, the device driver returns a
value for the errno global variable of EBUSY to the Unconfigure method when the method requests the
driver to delete the device. The device driver is the only component at that instant that knows the device is
open. As in the case of configured child devices, the Unconfigure method fails and leaves the device
configured.

When requesting the device driver to terminate the device, the errno global variable values other than
EBUSY can be returned. The driver should return ENODEYV if it does not know about the device. Under
the best circumstances, however, this case should not occur. If ENODEV is returned, the Unconfigure
method should unconfigure the device so that the database and device driver are in agreement. If the
device driver returns any other errno global value, it deletes any stored characteristics for the specified
device instance. The Unconfigure method indicates that the device is unconfigured by setting the state to
Defined.

The Unconfigure method does not generally release the major and minor number assignments for a
device, or delete the device’s in the /dev directory.

By convention, the first four characters of the name of the Unconfigure method should be ucfg. The
remainder of the name (Dev) can be any characters, subject to operating system file-name restrictions,
that identify the device or group of devices that use the method.

Flags

-1 Name Identifies the logical name of the device to be unconfigured.

Guidelines for Writing an Unconfigure Method

This list of tasks is intended as a guideline for writing an Unconfigure method. When you write a method
for a specific device, some tasks may be omitted. For example, if a device is not an intermediate device or
does not have a driver, the method can be written accordingly. The device may have special needs that
are not listed in these tasks.

The Unconfigure method must:

1. Validate the input parameters. The -l flag must be supplied to identify the device that is to be
unconfigured.

2. Initialize the Object Data Manager (ODM) using the |odm_initia|iz€| subroutine and lock the
Configuration database using the [odm_lock| subroutine. See ['Writing a Define Method"| for an
example.

Chapter 1. Configuration Subsystem 25

3. Retrieve the customized device (CuDv) object for the device to be unconfigured. Use the |CuDv object
whose Device Name descriptor matches the name supplied with the -l flag. If no object is found with
the specified name, the method exits with an error.

4. Check the state of the device. If the Device Status descriptor indicates that the device is in the Defined
state, then it is already unconfigured. In this case, exit.

5. Check for child devices in the available state. This can be done by querying the CuDv object class for
objects whose Parent Device Logical Name descriptor matches this device’s name and whose Device
Status descriptor is not Defined. If a match is found, this method must exit with an error.

6. Retrieve the |Predefined Device (PdDv) object for the device to be unconfigured by getting the PdDv
object whose Unique Type descriptor matches the Link to Predefined Devices Object Class descriptor
of the device’s CuDv object. This object will be used to get the device driver name.

7. Delete device instance from driver and unload driver. Determine if the device has a driver. The
Unconfigure method obtains the name of the device from the Device Driver Name descriptor of the
PdDv object. If this descriptor is a null string, the device does not have a driver. In this situation, skip
to the task of updating the device’s state.

If the device has a device driver, the Unconfigure method needs to include the following tasks:

a. Determine the device’s major and minor numbers using the |genmaio[| and |getmino[| subroutines.
These are used to compute the device’s devno, using the makedev macro defined in the
lusr/include/sysmacros.h file, in preparation for the next task.

b. Use the [sysconfig| subroutine to tell the device driver to terminate the device. If a value of EBUSY
for the errno global variable is returned, this method exits with an error.

c. Use the routine to unload the device driver from the kernel. The loadext subroutine will not

actually unload the driver if there is another device still configured for the driver. See
*

vice Driver’|for more details.

8. Set defined status. The device is now unconfigured. The Unconfigure method will update the Device
Status descriptor of the device’s object to the Defined state.

9. Close all object classes and terminate the If there are no errors, exit with an exit code of 0
(zero).

Files

lusr/include/sysmacros.h Contains macro definitions.

Related Information
The command.

subroutine, [getminon subroutine, loadexd subroutine, subroutine,

odm_lock| subroutine, [sysconfig subroutine}

[Writing a Configure Method|, |Loading A Device Driver], [Writing a Define Method| .

[Customized Devices (CuDv)| object class, |[Predefined Devices (PdDv)| object class.

[Object Data Manager (ODM) Overview for Programmers|in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

[The Device Dependent Structure (DDS) Overview|in AlX 5L Version 5.3 Kernel Extensions and Device
Support Programming Concepts.

Understanding Device States] [Understanding Device Dependencies and Child Devices|, [Loading a Device]
Drive[| in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

26 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Writing an Undefine Method

This article describes how an Undefine device method works. It also suggestsfor programmers
writing their own Undefine device configuration methods.

Syntax
undDevE| Name

Description

The Undefine method deletes a Defined device from the Customized database. Once a device is deleted,
it cannot be configured until it is once again defined by the Define method.

The Undefine method is also responsible for releasing the major and minor number assignments for the
device instance and deleting the device’s [special filesi from the /dev directory. If minor number
assignments are registered with the |genmino[| subroutine, the Undefine method can release the major and
minor number assignments and delete the special files by using the subroutine.

By convention, the first three characters of the name of the Undefine method are und. The remainder of
the name (Dev) can be any characters, subject to operating system file-name restrictions, that identify the
device or group of devices that use the method.

Flags

-l Name Identifies the logical name of the device to be undefined.

Guidelines for Writing an Undefine Method

This list of tasks is intended as a guideline for writing an Undefine method. Some devices may have
specials needs that are not addressed in these tasks.

The Undefine method must:
1. Validate the input parameters. The -l flag must be supplied to identify the device to be undefined.

2. Initialize the Object Data Manager (ODM) using the |odm_initia|iz€| subroutine and lock the
lodm_lock

configuration database using the subroutine. See |'Writing a Device Method'|in AIX 5L
Version 5.3 Kernel Extensions and Device Support Programming Concepts for an example.

3. Retrieve the |Customized Device (CuDv) object for the device to be undefined. This is done by getting
the CuDv object whose Device Name descriptor matches the name supplied with the -l flag. If no
object is found with the specified name, this method exits with an error.

4. Check the device’s current If the Device Status descriptor indicates that the device is not in the
Defined state, then it is not ready to be undefined. If this is the case, this method exits with an error.

5. Check for any This check is accomplished by querying the CuDv object class for any
objects whose Parent Device Logical Name descriptor matches this device’s name. If the device has
child devices, regardless of the states they are in, the Undefine method will fail. All child devices must
be undefined before the parent can be undefined.

6. Check to see if this device is listed as a dependency of another device. This is done by querying the
[Customized Dependency (CuDep) object class| for objects whose Dependency descriptor matches
this device’s logical name. If a match is found, the method exits with an error. A device may not be
undefined if it has been listed as a dependent of another device. ['"Understanding Devicel|
[Dependencies and Child Devices’|in AlX 5L Version 5.3 Kernel Extensions and Device Support
Programming Concepts discusses dependencies.

Chapter 1. Configuration Subsystem 27

7. Delete Special Files and major and minor numbers. If no errors have been encountered, the method
can delete customized information. First, delete the special files from the /dev directory. Next, delete
all minor number assignments. If the last minor number has been deleted for a particular major
number, release the major number as well, using the|re|majoF| subroutine. The Undefine method
should never delete objects from the [Customized Device Driver (CuDvDr) object clasg| directly, but
should always use the routines provided. If the minor number assignments are registered with the
subroutine, all of the above can be accomplished using the subroutine.

8. Delete all attributes for the device from the [Customized Attribute (CuAt) object class| Simply delete all
CuAt objects whose Device Name descriptor matches this device’s logical name. It is not an error if
the ODM routines used to delete the attributes indicate that no objects were deleted. This indicates
that the device has no attributes that have been changed from the default values.

9. Delete the Customized VPD (CuVPD) object for the device, if it has one.

10. Delete the Customized Dependency (CuDep) objects that indicate other devices that are dependents
of this device.
11. Delete the |Customized Device (CuDv) object| for the device.

12. Close all object classes and terminate the Exit with an exit code of 0 (zero) if there are no
errors.

Files

/dev directory Contains the device special files.

Related Information
subroutine, subroutine, subroutine, subroutine,
relmajor]

subroutine.

[Writing a Define Method| .

Customized Devices (CuDv)| object class, [Predefined Devices (PdDv)| object class, [Customized Attributes]
(CuAt)| object class, [Predefined Attribute (PdAt)| object class, |Customized Vital Product Data (CuVPD)|
object class.

[Understanding Device Dependencies and Child Devices|in AlX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

[Object Data Manager (ODM) Overview for Programmers|in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

[Special Files Overview|in AIX 5L Version 5.3 Files Reference.

Device Methods for Adapter Cards: Guidelines

The device methods for an adapter card are essentially the same as for any other device. They need to
perform roughly the same tasks as those described in|'"Writing a Device Method'|in AIX 5L Version 5.3
Kernel Extensions and Device Support Programming Concepts. However, there is one additional important
consideration. The Bus Configure method, or Bus Configurator, is responsible for discovering the adapter

cards present in the system and for assigning bus resources to each of the adapters. These resources

include |interrupt levels, DMA arbitration levels, bus memory, and bus 1/O space.

Adapters are typically defined and configured at boot time. However, if an adapter is not configured due to
i

unresolvable bus resource conflicts, or if an adapter is unconfigured at run time with the command,
an attempt to configure an adapter at run time may occur.

28 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

If an attempt is made, the [Configure method| for the adapter must take these steps to ensure system

integrity:

1. Ensure the card is present in the system by reading the POS(0) and POS(1) registers from the slot
that is supposed to contain the card and comparing these values with what they are supposed to be
for the card.

2. Invoke thesubroutine to ensure that the adapter’s bus resource attributes, as represented
in the database, do not conflict with any of the configured adapters.

Additional guidelines must be followed when adding support for a new adapter card. They are discussed
in:

+ |Adapter-Specific Considerations for the Predefined Attributes (PdAt) object class]
+ |Writing a Configure Method|
+ |Adapter-Specific Considerations for the Predefined Devices (PdDv) object class|

Related Information
[ODM Device Configuration Object Classes]

The command.

[Understanding Direct Memory Access (DMA)] [Understanding Interrupts|in ALX 5L Version 5.3 Kernel
Extensions and Device Support Programming Concepts.

Machine Device Driver

The machine device driver provides an interface to platform-specific hardware for the system configuration
and reliability, availability, and serviceability (RAS) subsystems. The machine device driver supports these
for accessing this hardware from user mode: /dev/nvram and /dev/bus0 ... /dev/busN where
N is the bus number. The {{dev/nvram special file| provides access to special nonvolatile random access
memory (RAM) for the purposes of storing or retrieving error information and system boot information. The
special files provide access to the I/O buses for system configuration and diagnostic purposes.
The presence and use of this device driver and its associated special files are platform-specific and should
not be used by general applications.

A program must have the appropriate privilege to open special files /dev/nvram or /dev/busN. For AIX
4.2.1 and later, it must also have the appropriate privilege to open Common Hardware Reference Platform
(CHRP) bus special files /dev/pciN, or /dev/isaN.

Driver Initialization and Termination

Special initialization and termination requirements do not exist for the machine device driver. This driver is
statically bound to the operating system kernel and is initialized during kernel initialization. This device
driver does not support termination and cannot be unloaded.

/dev/nvram Special File Support
open and close Subroutines

The machine device driver supports the /dev/nvram special file as a multiplexed character special file.
This special file and the support for NVRAM is provided exclusively on this hardware platform to support
the system configuration and RAS subsystems. These subsystems open the /dev/nvram/n special file with
a channel name, n, specifying the data area to be accessed. An exception is the /dev/nvram file with no
channel specified, which provides access to general NVRAM control functions and the LED display on the
front panel.

Chapter 1. Configuration Subsystem 29

A special channel name of base can be used to read the base customize information stored as part of the
boot record. This information was originally copied to the disk by the command and is only
copied by the driver at boot time. The base customize information can be read only once. When the
/dev/nvram/base file is closed for the first time, the buffer containing the base customize information is
freed. Subsequent opens will return an ENOENT error code.

read and write Subroutines

Thesubroutine is not supported and will return an ENODEV error code. The read subroutine is
supported after a successful open of the base channel only. The read subroutine transfers data from the
data area associated with the specified channel. The transfer starts at the offset (within the channel’s data
area) specified by the offset field associated with the file pointer used on the subroutine call.

On a read subroutine, if the end of the data area is reached before the transfer count is reached, the
number of bytes read before the end of the data area was reached is returned. If the read subroutine
starts at the end of the data area, zero bytes are read. If the read subroutine starts after the end of the
data area, an ENXIO error code is returned by the driver.

Thesubroutine can be used to change the starting data-area offset to be used on a subsequent
read call.

ioctl Operations

The following |ioct|| operations can be issued to the machine device driver after a successful open of the
Vdev/nvram/ special file}

Operation Description

IOCINFO Returns machine device driver information in the caller’s devinfo structure (pointed
to by the arg parameter). This structure is defined in the /usr/include/sys/devinfo.h
file. The device type for this device driver is DD_PSEU.

MIOGETKEY Returns the status of the keylock. The arg parameter should point to a mach_dd_io
structure. The md_data field should point to an integer; this contains the status of the
keylock on return.

Note: Not all platforms have a physical keylock that software can read. For these
platforms, status is established at boot time.

MIOGETPS Returns the power status. The arg parameter should point to a mach_dd_io
structure. The md_data field should point to an integer; this contains the power status
on return.

Note: Not all platforms provide power status.
MIOIPLCB Returns the contents of the boot control block. The arg parameter is set to point to a

mach_dd_io structure, which describes the data area where the boot control block is
to be placed. The format of this control block is specified in the /usr/include/sys/
ipleb.h file and the mach_dd_io structure is defined in the /usr/include/sys/mdio.h
file. This ioctl operation uses the following fields in the mach_dd_io structure:

md_data
Points to a buffer at least the size of the value in the md_size field.

md_size
Specifies the size (in bytes) of the buffer pointed to by the md_data field and
is the number of bytes to be returned from the boot control block.

md_addr
Specifies an offset into the boot control block where data is to be obtained.

Note: Regions within this control block are platform dependent.

30 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Operation Description

MIONVGET Reads data from an NVRAM address and returns data in the buffer provided by the
caller. This is useful for reading the ROS area of NVRAM. A structure defining this
area is in the /usr/include/sys/mdio.h file.

Use of this ioctl operation is not supported for systems that are compliant with the
PowerPC Reference Platform® or the Common Hardware Reference Platform and, in
AIX 4.2.1 and later, cause the operation to fail with an EINVAL error code.

MIONVLED Writes the value found in the arg parameter to the system front panel LED display.
On this panel, three digits are available and the arg parameter value can range from
0 to hex FFF. An explanation of the LED codes can be found in the
lusr/include/sys/mdio.h file.

Note: Not all platforms have an LED.

MIONVPUT Writes data to an NVRAM address from the buffer provided by the caller. This
operation is used only to update the ROS area of NVRAM and only by system
commands. Use of this operation in other areas of NVRAM can cause unpredictable
results to occur. If the NVRAM address provided is within the ROS area, a new cyclic
redundancy code (CRC) for the ROS area is generated.

Use of this ioctl operation is not supported on systems that are compliant with the
PowerPC Reference Platform or the Common Hardware Reference Platform and, in
AIX 4.2.1 and later, cause the operation to fail with an EINVAL error code.

ioctl Operations for POWER-based Systems

The following four ioctl operations can be used only with the POWER-based architecture. If used with
other systems, or if an illegal offset address, size, or slot number is supplied, these operations return an
EINVAL error code.

These ioctls can be called from user space or kernel space (using the fp_ioctl kernel service), but they
are available only in the process environment.

The ioctl argument must be a pointer to a mach_dd_io structure.
The lock will be obtained to serialize access to the bus slot configuration register.
MIOVPDGET: This ioctl allows read access to VPD/ROM address space.

The following structure members must be supplied:

Structure Member Description

ulong md_addr Specifies the offset into the feature/VPD address space to begin reading.
ulong md_size Specifies the number of bytes to be transferred.

char md_data Specifies a pointer to user buffer for data.

int md_sla Specifies a slot number (bus slot configuration select).

int md_incr Requires byte access (MV_BYTE).

The read begins at base address 0xFFA00000. The offset will be added to the base address to obtain the
starting address for reading.

The buc_info structure for the selected bus slot will be used to obtain the word increment value. This
value performs correct addressing while reading the data.

MIOCFGGET: This ioctl allows read access to the architected configuration registers.

Chapter 1. Configuration Subsystem 31

The following structure members must be supplied:

Structure Member Description

ulong md_addr Specifies the offset into the configuration register address space.
ulong md_size Specifies a value of 1.

char md_data Specifies a pointer to user buffer for data.

int md_sla Specifies a slot number (bus slot configuration select).

int md_incr Requires byte or word access (MV_BYTE/MV_SHORT/MV_WORD).

The base address O0xFF200000 will be added to the offset to obtain the address for the read.
MIOCFGPUT: This ioctl allows write access to the architected configuration registers.

The following structure members must be supplied:

Structure Member Description

ulong md_addr Specifies the offset into the configuration register address space.
ulong md_size Specifies a value of 1.

char md_data Specifies a pointer to user buffer of data to write.

int md_sla Specifies a slot number (bus slot configuration select).

int md_incr Requires byte or word access (MV_BYTE/MV_SHORT/MV_WORD).

The base address 0xFF200000 will be added to the offset to obtain the address for the read.
MIORESET: This ioctl allows access to the architected bus slot reset register.

The following structure members must be supplied:

Structure Member Description

ulong md_addr Specifies reset hold time (in nanoseconds).

ulong md_size Not used.

char md_data Not used.

int md_sla Specifies a slot number (bus slot configuration select).
int md_incr Not used.

The bus slot reset register bit corresponding to the specified bus slot is set to 0. After the specified delay,
the bit is set back to 1 and control returns to the calling program.

If a reset hold time of 0 is passed, the bus slot remains reset on return to the calling process.

ioctl Operations for the PowerPC Reference Platform Specification and the
Common Hardware Reference Platform

The following four ioctl operations can be used only with the PowerPC Reference Platform and, in AlIX
4.2.1 and later, the Common Hardware Reference Platform.

MIOGEARD: Scans for the variable name in the Global Environment Area, and, if found, the null
terminated string will be returned to the caller. A global variable is of the form "variablename=". The
returned string is of the form "variablename=string”. If the supplied global variable is "*=", all of the
variable strings in the Global Environment Area will be returned.

The following structure members must be supplied:

Structure Member Description
ulong md_addr Pointer to global variable string which is null terminated with an equal sign as
the last non-null character.

32 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Structure Member Description

ulong md_size Number of bytes in data buffer.

int md_incr Not used.

char md_data Pointer to the data buffer.

int md_sla Not used.

ulong md_length This is a pointer to the length of the returned global variable string(s) including

the null terminator(s) if md_length is non-zero.

MIOGEAUPD: The specified global variable will be added to the Global Environment Area if it does not
exist. If the specified variable does exist in the Global Environment Area, the new contents will replace the
old after making adjustments for any size deltas. Further, any information moved toward a lower address
will have the original area zeroed. If there is no string following the variable name and equal sign, the
specified variable will be deleted. If the variable to be deleted is not found, a successful return will occur.
The new information will be written to NVRAM. Further, the header in NVRAM will be updated to include
the update time of the Global Environment Area and the Crc1 value will be recomputed.

The following structure members must be supplied:

Structure Member Description

ulong md_addr Pointer to global variable string which is null terminated.

ulong md_size Not used.

int md_incr Not used.

char md_data Not used.

int md_sla Not used.

ulong md_length This is a pointer to the amount of space left in the Global Environment Area after

the update. This is computed as the size of the area minus the length of all
global variable strings minus the threshold value.

MIOGEAST: The specified threshold will be set so that any updates done will not exceed the Global
Environment Area size minus the threshold. In place of the the mdio structure an integer value is used to
specify the threshold. The threshold does not persist across IPLs.

MIOGEARDA: The attributes of the Global Environment Area will be returned to the data area specified
by the caller. The gea_attrib structure has been added to mdio.h. It contains the following information:

Structure Member Description

long gea_length number of bytes in the Global Environment Area of NVRAM.

long gea_used number of bytes used in the Global Environment Area.

long gea_thresh Global Environment Area threshold value.

ulong md_addr Not used.

ulong md_size Size of the data buffer. It must be greater than or equal to the size of
(gea_attrib).

int md_incr Not used.

char md_data Address of the buffer to copy the gea_attrib structure.

int md_sla Not used.

ulong md_Tength Not used.

MIONVPARTLEN: The length of the CHRP NVRAM partition will be returned to the data area specified
by the caller. The following structure members must be supplied:

Structure Member Description

ulong md_addr Specifies the partition signature.

ulong *md_Tength Specifies a pointer to the name of the partition.
int md_incr Not used.

Chapter 1. Configuration Subsystem 33

Structure Member Description

ulong md_size Specifies the data area for the returned partition length.
char *md_data Not used.
int md_sla Not used.

MIONVPARTRD: MIONVPARTRD performs read actions on CHRP NVRAM partitions. The following
structure members must be supplied:

Structure Member Description

ulong md_addr Specifies the partition signature.

ulong *md_Tlength Specifies a pointer to the name of the partition.

int md_incr Specifies the start offset into the partition.

ulong md_size Specifies the number of bytes to be read.

char *md_data Specifies a pointer to the user buffer where data will be copied.
int md_sla Not used.

MIONVPARTUPD: MIONVPARTUPD performs write actions to CHRP NVRAM partitions. The following
structure members must be supplied:

Structure Member Description

ulong md_addr Specifies the partition signature.

ulong *md_Tength Specifies a pointer to the name of the partition.

int md_incr Specifies the start offset into the partition.

ulong md_size Specifies the number of bytes to be read.

char *md_data Specifies a pointer to the user buffer for data to write.
int md_sla Not used.

Error Codes

The following error conditions may be returned when accessing the machine device driver with the
/dev/nvram/n special file:

Error Condition Description

EACCES A write was requested to a file opened for read access only.

ENOENT An open of /dev/nvram/base was attempted after the first close.

EFAULT A buffer specified by the caller was invalid on a read, write, or ioctl subroutine call.
EINVAL An invalid ioctl operation was issued.

ENXIO A read was attempted past the end of the data area specified by the channel.

ENODEV A write was attempted.

ENOMEM A request was made with a user-supplied buffer that is too small for the requested data or

not enough memory could be allocated to complete the request.

Bus Special File Support

All models have at least one bus. For non-CHRP systems, the names are of the form /dev/busN. CHRP
systems will have the form /dev/pciN and /dev/isa/N.

open and close Subroutines

The machine device driver supports the bus special files as character special files. These special files, and
support for access to the I/0O buses and controllers, are provided on this hardware platform to support the
system configuration and diagnostic subsystems, exclusively. The configuration subsystem accesses the
I/0O buses and controllers through the machine device driver to determine the I/O configuration of the
system. This driver can also be used to configure the 1/O controllers and devices as required for proper

34 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

system operation. If the system diagnostics are unable to access a device through the diagnostic functions
provided by the device’s own device driver, they may use the machine device driver to attempt further
failure isolation.

read and write Subroutines

The and subroutines are not supported by the machine device driver through the bus special
files and, if called, return an ENOENT return code in the errno global variable.

ioctl Operations

The bus ioctl operations allow transfers of data between the system I/O controller or the system 1/O bus
and a caller-supplied data area. Because these ioctl operations use the mach_dd_io structure, the arg
parameter on the ioctl subroutine must point to such a structure. The bus address, the pointer to the
caller’'s buffer, and the number and length of the transfer are all specified in the mach_dd_io structure.
The mach_dd_io structure is defined in the /usr/include/sys/mdio.h file and provides the following
information:

* The md_addr field contains an 1/O controller or I/O bus address.
* The md_data field points to a buffer at least the size of the value in the md_size field.
* The md_size field contains the number of items to be transferred.

* The md_incr field specifies the length of the transferred item. It must be set to MV_BYTE, MV_SHORT,
or MV_WORD.

The following commands can be issued to the machine device driver after a successful open of the bus
special file:

Command Description

IOCINFO Returns machine device driver information in the caller’'s devinfo structure, as
specified by the arg parameter. This structure is defined in the /usr/include/sys/
devinfo.h file. The device type for this device driver is DD_PSEU.

MIOBUSGET Reads data from the bus I/O space and returns it in a caller-provided buffer.
MIOBUSPUT Writes data supplied in the caller’s buffer to the bus I/O space.

MIOMEMGET Reads data from the bus memory space and returns it to the caller-provided buffer.
MIOMEMPUT Writes data supplied in the caller-provided buffer to the bus memory space.
MIOPCFGET Reads data from the PCI bus configuration space and returns it in a caller-provided

buffer. The mach_dd_io structure field md_sla must contain the Device Number
and Function Number for the device to be accessed.

MIOPCFPUT Writes data supplied in the caller’s buffer to the PCI bus configuration space. The
mach_dd_io structure field md_sla must contain the Device Number and Function
Number for the device to be accessed.

Error Codes

EFAULT A buffer specified by the caller was invalid on an ioctl call.
EIO An unrecoverable I/O error occurred on the requested data transfer.
ENOMEM No memory could be allocated by the machine device driver for use in the data transfer.

Files

/dev/pciN Provides access to the 1/0 bus (CHRP only, AIX 4.2.1 and later).

/dev/isaN Provides access to the I/O bus (CHRP only, AlX 4.2.1 and later).

/dev/nvram Provides access to platform-specific nonvolatile RAM.

/dev/nvram/base Allows read access to the base customize information stored as part of the boot record.

Chapter 1. Configuration Subsystem 35

Related Information
The subroutine, subroutine, subroutine, subroutine, subroutine,

subroutine.

The device configuration command.
The special file, special file.

Loading a Device Driver

The subroutine is used to load and unload device drivers. The name of the device driver is
passed as a parameter to the loadext routine. If the device driver is located in the /usr/lib/drivers
directory, just the device driver name without path information can be specified to the loadext subroutine.
If the device driver is located in another directory, the fully qualified path name of the device driver must
be specified.

The Device Driver Name descriptor of [Predefined Devices (PdDv) object class| objects is intended to
contain only the device driver name and not the fully qualified path name. For device drivers located in the
Jusr/lib/drivers directory, a|Configure method| can obtain the name of the driver from the Device Driver
Name descriptor to pass to the loadext routine. This is convenient since most drivers are located in the
lustr/lib/drivers directory.

If a device driver is located in a directory other than the /usr/lib/drivers directory, the path name must be
handled differently. The Configure method could be coded to assume a particular path name, or for more
flexibility the path name could be stored as an attribute in the [Predefined Attribute (PdAt) object class| The
Configure method is responsible for knowing how to obtain the fully qualified path name to pass to the
loadext subroutine.

Files

lusr/lib/drivers directory Contains device drivers.

Related Information
The subroutine.

[Predefined Devices (PdDv)| object class, [Predefined Attribute (PdAt)| object class.

[Writing a Configure Method) .

How Device Methods Return Errors

Device methods indicate errors to the [Configuration Manager and run-time configuration commands by
exiting with a nonzero exit code. The Configuration Manager and configuration commands can understand
only the exit codes defined in the cf.h file.

More than one error code can describe a given error. This is because many exit codes correspond to
highly specific errors, while others are more general. Whenever possible, use the most specific error code
possible.

For example, if your Configure method obtains an attribute from the [Customized Attributes (CuAt)| object
class for filling in the [device-dependent structure (DDS) but the value is invalid (possibly due to a
corrupted database), you might exit with an E_BADATTR error. Otherwise, you might choose the E_DDS
exit code, due to another error condition that occurred while building the DDS.

36 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Related Information
ODM Device Configuration Object Classes.

The |Customized Attributes (CuAt)| object class.

The |Device Dependent Structure (DDS) Overview|in AIX 5L Version 5.3 Kernel Extensions and Device
Support Programming Concepts.

ODM Device Configuration Object Classes

A list of the ODM Device Configuration Object Classes follows:

PdDv Predefined Devices|

PdCn Predefined Connection|

PdAt Predefined Attribute]
Config_Rules Configuration Rules

CuDv Customized Devices|

CuDep Customized Dependency|
CuAt Customized Attribute)

CuDvDr Customized Device Driver|
CuVPD Customized Vital Product Data|

Related Information

[Device Configuration Subsystem Programming Introduction] [Writing a Device Method|in AIX 5L Version
5.3 Kernel Extensions and Device Support Programming Concepts.

Configuration Rules (Config_Rules) Object Class

Description

The Configuration Rules (Config_Rules) object class contains the configuration rules used by the
Configuration Manager. The Configuration Manager runs in two phases during system boot. The first
phase is responsible for configuring the base devices so that the real root device can be configured and
made ready for operation. The second phase configures the rest of the devices in the system after the root
file system is up and running. The Configuration Manager can also be invoked at run time. The
Configuration Manager routine is driven by the rules in the Config_Rules object class.

The Config_Rules object class is preloaded with predefined configuration rules when the system is
delivered. There are three types of rules: phase 1, phase 2, and phase 2 service. You can use the ODM
commands to add, remove, change, and show new or existing configuration rules in this object class to
customize the behavior of the Configuration Manager. However, any changes to a phase 1 rule must be
written to the boot file system to be effective. This is done with thecommand.

All logical and physical devices in the system are organized in clusters of tree structures called nodes. For
information on nodes or tree structures, see the ['Device Configuration Manager Overview’|in AIX 5L
Version 5.3 Kernel Extensions and Device Support Programming Concepts. The rules in the Config_Rules
object class specify program names that the Configuration Manager executes. Usually, these programs are
the configuration programs for the top of the nodes. When these programs are invoked, the names of the
next lower-level devices that need to be configured are returned in standard output.

The Configuration Manager configures the next lower-level devices by invoking the [Configure method| for
those devices. In turn, those devices return a list of device names to be configured. This process is
repeated until no more device names are returned. All devices in the same node are configured in a
transverse order.

Chapter 1. Configuration Subsystem 37

The second phase of system boot requires two sets of rules: phase 2 and service. The position of the key
on the front panel determines which set of rules is used. The service rules are used when the key is in the
service position. If the key is in any other position, the phase 2 rules are used. Different types of rules are
indicated in the Configuration Manager Phase descriptor of this object class.

Each configuration rule has an associated boot mask. If this mask has a nonzero value, it represents the
type of boot to which the rule applies. For example, if the mask has a DISK_BOOT value, the rule applies
to system boots where disks are base devices. The type of boot masks are defined in the
lusr/include/sys/cfgdb.h file.

Descriptors
The Config_Rules object class contains the following descriptors:
ODM Type Descriptor Name Description Descriptor Status
ODM_SHORT phase Configuration Required

Manager Phase
ODM_SHORT seq Sequence Value Required
ODM_LONG boot_mask Type of boot Required
ODM_VCHAR rule_value[RULESIZE] Rule Value Required

These descriptors are described as follows:

Descriptor Description
Configuration Manager Phase This descriptor indicates which phase a rule should be
executed under phase 1, phase 2, or phase 2 service.

1 Indicates that the rule should be executed in phase
1.

2 Indicates that the rule should be executed in phase
2.

3 Indicates that the rule should be executed in phase 2
service mode.

Sequence Value In relation to the other rules of this phase, the seq number
indicates the order in which to execute this program. In
general, the lower the seq number, the higher the priority. For
example, a rule with a seq number of 2 is executed before a
rule with a seq number of 5. There is one exception to this: a
value of 0 indicates a DONT_CARE condition, and any rule
with a seq number of 0 is executed last.

Type of boot If the boot_mask field has a nonzero value, it represents the
type of boot to which the rule applies. If the -m flag is used
when invoking the cfgmgr command, the cfgmgr command
applies the specified mask to this field to determine whether
to execute the rule. By default, the efgmgr command always
executes a rule for which the boot_mask field has a 0 value.

38 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Descriptor Description

Rule Value This is the full path name of the program to be invoked. The
rule value descriptor may also contain any options that should
be passed to that program. However, options must follow the
program name, as the whole string will be executed as if it
has been typed in on the command line.
Note: There is one rule for each program to execute. If
multiple programs are needed, then multiple rules must be
added.

Rule Values

Phase Sequence Type of boot Rule Value

1 1 0 /usr/1ib/methods/defsys

1 10 0x0001 /usr/1ib/methods/def1vm

2 1 0 /usr/1ib/methods/defsys

2 5 0 /usr/1ib/methods/ptynode

2 10 0 /usr/1ib/methods/starthft
2 15 0 /usr/1ib/methods/starttty
2 20 0x0010 /usr/1ib/methods/rc.net

3 1 0 /usr/1ib/methods/defsys

3 5 0 /usr/1ib/methods/ptynode
3 10 0 /usr/1ib/methods/starthft
3 15 0 /usr/1ib/methods/starttty

Related Information
The command.

[Writing a Configure Method| .

[Writing a Device Method} [Device Configuration Manager Overview| in AIX 5L Version 5.3 Kernel
Extensions and Device Support Programming Concepts.

[Device Configuration Subsystem Programming Introduction|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

Object Data Management (ODM) Overview for Programmers}, [Understanding ODM Object Classes and|
Objects|in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

[System boot processing|in Operating system and device management.

Customized Attribute (CuAt) Object Class

Description
The Customized Attribute (CuAt) object class contains customized device-specific attribute information.

Device instances represented in the [Customized Devices (CuDv)| object class have attributes found in
either the [Predefined Attribute (PdAt)| object class or the CuAt object class. There is an entry in the CuAt
object class for attributes that take nondefault values. Attributes taking the default value are found in the
PdAt object class. Each entry describes the current value of the attribute.

When changing the value of an attribute, the Predefined Attribute object class must be referenced to
determine other possible attribute values.

Both attribute object classes must be queried to get a complete set of current values for a particular
device’s attributes. Use the [getattr] and [putattr] subroutines to retrieve and modify, respectively,
customized attributes.

Chapter 1. Configuration Subsystem 39

Descriptors

The Customized Attribute object class contains the following descriptors:

ODM Type Descriptor Name Description Descriptor Status
ODM_CHAR name[NAMESIZE] Device Name Required
ODM_CHAR attribute[ATTRNAMESIZE] Attribute Name Required
ODM_VCHAR value[ATTRVALSIZE] Attribute Value Required
ODM_CHAR type[FLAGSIZE] Attribute Type Required
ODM_CHAR generic[FLAGSIZE] Generic Attribute Optional
Flags
ODM_CHAR rep[FLAGSIZE] Attribute Required
Representation Flags
ODM_SHORT nls_index NLS Index Optional
These descriptors are described as follows:
Descriptor Description

Device Name

Attribute Name
Attribute Value
Attribute Type

Generic Attribute Flags

Attribute Representation Flags

NLS Index

Related Information
[ODM Device Configuration Object Classes]

Identifies the logical name of the device instance to which
this attribute is associated.

Identifies the name of a customized device attribute.
Identifies a customized value associated with the
corresponding Attribute Name. This value is a nondefault
value.

Identifies the attribute type associated with the Attribute
Name. This descriptor is copied from the|ﬂttribute Type|

in the corresponding [PdAt object| when the
CuAt object is created.

Identifies the Generic Attribute flag or flags associated
with the Attribute Name. This descriptor is copied from the
Generic Attribute Flags descriptor|in the corresponding
PdAt ob'|ect| when the CuAt object is created.

Identifies the Attribute Value’s representation. This
descriptor is copied from the [Attribute Representation flags|
descriptor in the corresponding [Predefined Attribute object]
when the Customized Attribute object is created.

Identifies the message number in the NLS message
catalog that contains a textual description of the attribute.
This descriptor is copied from the [NLS Index descriptor in
the corresponding [Predefined Attribute object when the
Customized Attribute object is created.

[Customized Devices (CuDv) object class] |[Predefined Attribute (PdAt) object class]

The device configuration subroutine, device configuration subroutine.

[List of Device Configuration Subroutines|in AIX 5L Version 5.3 Kernel Extensions and Device Support

Programming Concepts.

40 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Customized Dependency (CuDep) Object Class

Description

The Customized Dependency (CuDep) object class describes device instances that depend on other
device instances. Dependency does not imply a physical connection. This object class describes the
dependence links between logical devices and physical devices as well as dependence links between
logical devices, exclusively. Physical dependencies of one device on another device are recorded in the
[Customized Device (CuDev)| object class.

Descriptors

The Customized Dependency object class contains the following descriptors:

ODM Type Descriptor Name Description Descriptor Status
ODM_CHAR name[NAMESIZE] Device Name Required
ODM_CHAR dependency[NAMESIZE] Dependency (device | Required

logical name)

These descriptors are described as follows:

Descriptor Description
Device Name Identifies the logical name of the device having a dependency.
Dependency Identifies the logical name of the device instance on which there is a dependency. For example, a

mouse, keyboard, and display might all be dependencies of a device instance of 1ft0.

Related Information
[ODM Device Configuration Object Classes}

[Customized Device (CuDv) object class]

Customized Device Driver (CuDvDr) Object Class

Description

The Customized Device Driver (CuDvDr) object class stores information about critical resources that need
concurrence management through the use of the Device Configuration Library subroutines. You should
only access this object class through these five Device Configuration Library subroutines: the
lgenminor] [relmajor [reldevno} and [getminor| subroutines.

These subroutines exclusively lock this class so that accesses to it are serialized. The genmajor and
genminor routines return the major and minor number, respectively, to the calling method. Similarly, the
reldevno and relmajor routines release the major or minor number, respectively, from this object class.

Descriptors

The Customized Device Driver object class contains the following descriptors:

ODM Type Descriptor Name Description Descriptor Status
ODM_CHAR resource[RESOURCESIZE] Resource Name Required

Chapter 1. Configuration Subsystem 41

ODM Type Descriptor Name Description Descriptor Status
ODM_CHAR value1[VALUESIZE] Value1 Required
ODM_CHAR value2[VALUESIZE] Value2 Required
ODM_CHAR value3[VALUESIZE] Value3 Required

The Resource descriptor determines the nature of the values in the Value1, Value2, and Value3
descriptors. Possible values for the Resource Name descriptor are the strings devno and ddins.

The following table specifies the contents of the Value1, Value2, and Value3 descriptors, depending on the
contents of the Resource Name descriptor.

Resource Value1 Value2 Value3
devno Major number Minor number Device instance name
ddins Dd instance name Major number Null string

When the Resource Name descriptor contains the devno string, the Valuel field contains the device major
number, Value2 the device minor number, and Value3 the device instance name. These value descriptors
are filled in by the genminor subroutine, which takes a major number and device instance name as input
and generates the minor number and resulting devno Customized Device Driver object.

When the Resource Name descriptor contains the ddins string, the Valuel field contains the device driver
instance name. This is typically the device driver name obtained from the Device Driver Name descriptor
of the |Predefined Device| object. However, this name can be any unique string and is used by device
methods to obtain the device driver major number. The Value?2 field contains the device major number and
the Value3 field is not used. These value descriptors are set by the genmajor subroutine, which takes a
device instance name as input and generates the corresponding major number and resulting ddins
Customized Device Driver object.

Related Information
[ODM Device Configuration Object Classes}

[Predefined Devices (PdDv) object class]

The device configuration subroutine, [genminor device configuration subroutine,

device configuration subroutine, |re|devn9| device configuration subroutine, device configuration
subroutine.

[List of Device Configuration Subroutines|in AIX 5L Version 5.3 Kernel Extensions and Device Support
Programming Concepts.

Customized Devices (CuDv) Object Class

Description

The Customized Devices (CuDv) object class contains entries for all device instances defined in the
system. As the name implies, a defined device object is an object that a Define method has created in the
CuDv object class. A defined device instance may or may not have a corresponding actual device attached
to the system.

A CuDv object contains attributes and connections specific to the device instance. Each device instance,
distinguished by a unique logical name, is represented by an object in the CuDv object class. The

42 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Customized database is updated twice, during system boot and at run time, to define new devices, remove
undefined devices, or update the information for a device whose attributes have been changed.

Descriptors

The Customized Devices object class contains the following descriptors:

ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR name[NAMESIZE] Device Name Required

ODM_SHORT status Device Status Flag Required

ODM_SHORT chgstatus Change Status Flag Required

ODM_CHAR ddins[TYPESIZE] Device Driver Optional
Instance

ODM_CHAR location[LOCSIZE] Location Code Optional

ODM_CHAR parent[NAMESIZE] Parent Device Logical |Optional
Name

ODM_CHAR connwhere[LOCSIZE] Location Where Optional
Device Is Connected

ODM_LINK PdDvLn Link to Predefined Required
Devices Object Class

These descriptors are described as follows:

Descriptor Description
Device Name A Customized Device object for a device instance is assigned a unique logical
name to distinguish the instance from other device instances. The device logical

name of a device instance is derived during [Define method| processing. The rules

for deriving a device logical name are:

* The name should start with a prefix name pre-assigned to the device
instance’s associated device type. The prefix name can be retrieved from the
Prefix Name descriptor in the |Predefined Device object| associated with the
device type.

» To complete the logical device name, a sequence number is usually appended
to the prefix name. This sequence number is unique among all defined device
instances using the same prefix name. Use the following subrules when
generating sequence numbers:

— A sequence number is a non-negative integer represented in character
format. Therefore, the smallest available sequence number is 0.

— The next available sequence number relative to a given prefix name should
be allocated when deriving a device instance logical name.

— The next available sequence number relative to a given prefix name is
defined to be the smallest sequence number not yet allocated to defined
device instances using the same prefix name.

For example, if tty0, ttyl, tty3, tty5, and tty6 are currently assigned to
defined device instances, then the next available sequence number for a
device instance with the tty prefix name is 2. This results in a logical device
name of tty2.

Thesubroutine can be used by a Define method to obtain the next
available sequence number.

Chapter 1. Configuration Subsystem 43

Descriptor
Device Status Flag

Change Status Flag

Device Driver Instance

Description

Identifies the current status of the device instance. The device methods are
responsible for setting Device Status flags for device instances. When the
method defines a device instance, the device’s status is set to defined. When the
method configures a device instance, the device’s status is typically set
to available. The Configure method takes a device to the Stopped state only if
the device supports the Stopped state.

When the [Startf method starts a device instance, its device status is changed from
the Stopped state to the Available state. Applying a method on a started
device instance changes the device status from the Available state to the Stopped
state. Applying an method on a configured device instance changes
the device status from the Available state to the Defined state. If the device

supports the Stopped state, the Unconfigure method takes the device from the
Stopped state to the Defined state.

|"Understanding Device States’|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts provides more information about the
Available, Defined, and Stopped states.

The possible status values are:

DEFINED
Identifies a device instance in the Defined state.

AVAILABLE
Identifies a device instance in the Available state.

STOPPED

Identifies a device instance in the Stopped state.
This flag tells whether the device instance has been altered since the last system
boot. The diagnostics facility uses this flag to validate system configuration. The
flag can take these values:

NEW Specifies whether the device instance is new to the current system boot.

DONT_CARE
Identifies the device as one whose presence or uniqueness cannot be
determined. For these devices, the new, same, and missing states have
no meaning.

SAME Specifies whether the device instance was known to the system prior to
the current system boot.

MISSING
Specifies whether the device instance is missing. This is true if the
device is in the CuDv object class, but is not physically present.
This descriptor typically contains the same value as the Device Driver Name
descriptor in the [Predefined Devices (PdDv) object class|if the device driver
supports only one major number. For a driver that uses multiple major numbers
(for example, the [logical volume device driver), unique instance names must be
generated for each major number. Since the logical volume uses a different major
number for each volume group, the volume group logical names would serve this
purpose. This field is filled in with a null string if the device instance does not
have a corresponding device driver.

44 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Descriptor Description

Location Code Identifies the location code of the device. This field provides a means of
identifying physical devices. The location code format is defined as
AB-CD-EF-GH, where:

AB Identifies the CPU and Async drawers with a drawer ID.

CD Identifies the location of an adapter, memory card, or Serial Link Adapter
(SLA) with a slot ID.

EF Identifies the adapter connector that something is attached to with a
connector ID.

GH Identifies a port, device, or field replaceable unit (FRU), with a port or
device or FRU ID, respectively.

For more information on the location code format, see ['Device location codes”|in
Operating system and device management.

Parent Device Logical Name Identifies the logical name of the parent device instance. In the case of a real
device, this indicates the logical name of the parent device to which this device is
connected. More generally, the specified parent device is the device whose
[Configure method|is responsible for returning the logical name of this device to
the [Configuration Manager| for configuring this device. This field is filled in with a
null string for a node device.

Location Where Device Is Identifies the specific location on the parent device instance where this device is

Connected connected. The term location is used in a generic sense. For some device
instances such as the operating system bus, location indicates a slot on the bus.
For device instances such as the the term indicates a logical port

(that is, a SCSI ID and Logical Unit Number combination).

For example, for a bus device the location can refer to a specific slot on the bus,
with values 1, 2, 3 For a multiport serial adapter device, the location can refer
to a specific port on the adapter, with values O, 1,
Link to Predefined Devices Provides a link to the device instance’s predefined information through the Unique
Object Class Type descriptor in the [PdDv object class]

Related Information
[ODM Device Configuration Object Classes}

[Predefined Devices (PdDv)| object class.

The subroutine.

Writing a Define Method|, [Writing a Configure Method| , [Writing a Change Method| , [Writing an Undefine]
Method|, [Writing an Unconfigure Method|, [Writing Optional Start and Stop Methods| .

The [SCSI Adapter Device Driverin AlX 5L Version 5.3 Technical Reference: Kernel and Subsystems
Volume 1.

[Understanding Physical Volumes and the Logical Volume Device Driverin AIX 5L Version 5.3 Kernel
Extensions and Device Support Programming Concepts.

[Understanding Device States] [Device Configuration Manager Overview|in AlX 5L Version 5.3 Kernel
Extensions and Device Support Programming Concepts.

[Device location codes|in Operating system and device management.

Chapter 1. Configuration Subsystem 45

Customized VPD (CuVPD) Object Class

Description

The Customized Vital Product Data (CuVPD) object class contains the Vital Product Data (VPD) for
customized devices. VPD can be either machine-readable VPD or manually entered user VPD information.

Descriptors

The Customized VPD object class contains the following descriptors:

ODM Type Descriptor Name Description Descriptor Status
ODM_CHAR name[NAMESIZE] Device Name Required
ODM_SHORT vpd_type VPD Type Required
ODM_LONGCHAR vpd[VPDSIZE] VPD Required

These fields are described as follows:

Descriptor Description
Device Name Identifies the device logical name to which this VPD information belongs.
VPD Type Identifies the VPD as either machine-readable or manually-entered. The possible values:
HW_VPD
Identifies machine-readable VPD.
USER_VPD
Identifies manually entered VPD.
VPD Identifies the VPD for the device. For machine-readable VPD, an entry in this field might

include such information as serial numbers, engineering change levels, and part numbers.

Related Information
[ODM Device Configuration Object Class|

The Hardware Technical Reference provides more details on the VPD.

Predefined Attribute (PdAt) Object Class

Description

The Predefined Attribute (PdAt) object class contains an entry for each existing attribute for each device
represented in the [Predefined Devices (PdDv)| object class. An attribute, in this sense, is any
device-dependent information not represented in the PdDv object class. This includes information such as
interrupt levels, bus I/O address ranges, baud rates, parity settings, block sizes, and microcode file names.

Each object in this object class represents a particular attribute belonging to a particular device
class-subclass-type. Each object contains the attribute name, default value, list or range of all possible
values, width, flags, and an NLS description. The flags provide further information to describe an attribute.

Note: For a device being defined or configured, only the attributes that take a nondefault value are copied
into the [Customized Attribute (CuAt)| object class. In other words, for a device being customized, if
its attribute value is the default value in the PdDv object class, then there will not be an entry for
the attribute in the CuAt object class.

46 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Types of Attributes

There are three types of attributes. Most are regular attributes, which typically describe a specific attribute
of a device. The group attribute type provides a grouping of regular attributes. The shared attribute type
identifies devices that must all share a given attribute.

A shared attribute identifies another regular attribute as one that must be shared. This attribute is always a
bus resource. Other regular attributes (for example, bus interrupt levels) can be shared by devices but are
not themselves shared attributes. Shared attributes require that relevant devices have the same values for
this attribute. The Attribute Value descriptor for the shared attribute gives the name of the regular attribute

that must be shared.

A group attribute specifies a set of other attributes whose values are chosen as the group, as well as the
group attribute number used to choose default values. Each attribute listed within a group has an
associated list of possible values it can take. These values must be represented as a list, not as a range.
For each attribute within the group, the list of possible values must also have the same number of choices.
For example, if the possible number of values is n, the group attribute number itself can range from 0 to
n-1. The particular value chosen for the group indicates the value to pick for each of the attributes in the
group. For example, if the group attribute number is 0, then the value for each of the attributes in the
group is the first value from their respective lists.

Predefined Attribute Object Class Descriptors

The Predefined Attribute object class contains the following descriptors:

ODM Type Descriptor Name Description Descriptor Status
ODM_CHAR uniquetype[UNIQUESIZE] Unique Type Required
ODM_CHAR attribute[ATTRNAMESIZE] Attribute Name Required
ODM_VCHAR deflt{ DEFAULTSIZE] Default Value Required
ODM_VCHAR values[ATTRVALSIZE] Attribute Values Required
ODM_CHAR width[WIDTHSIZE] Width Optional
ODM_CHAR type[FLAGSIZE] Attribute Type Flags Required
ODM_CHAR generic[FLAGSIZE] Generic Attribute Optional
Flags
ODM_CHAR rep[FLAGSIZE] Attribute Required
Representation Flags
ODM_SHORT nls_index NLS index Optional

These descriptors are described as follows:

Descriptor
Unique Type

Attribute Name

Description

Identifies the class-subclass-type name of the device to which this attribute is
associated. This descriptor is the same as the Unique Type descriptor in the

|PdDv object class]

Identifies the name of the device attribute. This is the name that can be passed to

the [mkdev| and [chdev| configuration commands and device methods in the

attribute-name and attribute-value pairs.

Chapter 1. Configuration Subsystem

Descriptor
Default Value

Attribute Values

Description

If there are several choices or even if there is only one choice for the attribute
value, the default is the value to which the attribute is normally set. For groups,
the default value is the group attribute number. For example, if the possible
number of choices in a group is n, the group attribute number is a number
between 0 and n-1. For shared attributes, the default value is set to a null string.

When a device is defined in the system, attributes that take nondefault values are
found in the [CuAt object class] Attributes that take the default value are found in
this object class; these attributes are not copied over to the CuAt object class.
Therefore, both attribute object classes must be queried to get a complete set of
customized attributes for a particular device.

Identifies the possible values that can be associated with the attribute name. The
format of the value is determined by the attribute representation flags. For regular
attributes, the possible values can be represented as a string, hexadecimal, octal,
or decimal. In addition, they can be represented as either a range or an
enumerated list. If there is only one possible value, then the value can be
represented either as a single value or as an enumerated list with one entry. The
latter is recommended, since the use of enumerated lists allows the
subroutine to check that a given value is in fact a possible choice.

If the value is hexadecimal, it is prefixed with the Ox notation. If the value is octal,
the value is prefixed with a leading zero. If the value is decimal, its value is
represented by its significant digits. If the value is a string, the string itself should
not have embedded commas, since commas are used to separate items in an
enumerated list.

A range is represented as a triplet of values: lowerlimit, upperlimit, and increment
value. The lowerlimit variable indicates the value of the first possible choice. The
upperlimit variable indicates the value of the last possible choice. The lowerlimit
and upperlimit values are separated by a - (hyphen). Values between the
lowerlimit and upperlimit values are obtained by adding multiples of the increment
value variable to the lowerlimit variable. The upperlimit and increment value
variables are separated by a comma.

Only numeric values are used for ranges. Also, discontinuous ranges (for
example, 1-3, 6-8) are disallowed. A combination of list and ranges is not allowed.

An enumerated list contains values that are comma-separated.

If the attribute is a group, the Possible Values descriptor contains a list of
attributes composing the group, separated by commas.

If the attribute is shared, the Possible Values descriptor contains the name of the
bus resource regular attribute that must be shared with another device.

For type T attributes, the Possible Values descriptor contains the message
numbers in a comma-separated list.

48 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Descriptor
Width

Attribute Type

Description

If the attribute is a regular attribute of type M for a bus memory address or of
type O for a bus I/O address, the Width descriptor can be used to identify the
amount in bytes of the bus memory or bus I/O space that must be allocated.
Alternatively, the Width field can be set to a null string, which indicates that the
amount of bus memory or bus 1/O space is specified by a width attribute, that is,
an attribute of type W.

If the attribute is a regular attribute of type W, the Width descriptor contains the
name of the bus memory address or bus 1/0O address attribute to which this
attribute corresponds. The use of a type W attribute allows the amount of bus
memory or bus I/O space to be configurable, whereas if the amount is specified
in the bus memory address or bus 1/O address attribute’s Width descriptor, it is
fixed at that value and cannot be customized.

For all other attributes, a null string is used to fill in this field.

Identifies the attribute type. Only one attribute type must be specified. The
characters A, B, M, I, N, O, P, and W represent bus resources that are regular
attributes.

For regular attributes that are not bus resources, the following attribute types are
defined:

L Indicates the microcode file base name and the text from the label on
the diskette containing the microcode file. Only device’s with
downloadable microcode have attributes of this type. The L attribute type
is used by the chkmcode program to determine whether a device which
is present has any version of its microcode installed. If none is installed,
the user is prompted to insert the microcode diskette with the label
identified by this attribute. The base name is stored in the Default Value
field and is the portion of the microcode file name not consisting of the
level and version numbers. The label text is stored in the Possible
Values field.

T Indicates message numbers corresponding to possible text descriptions
of the device. These message numbers are within the catalog and set
identified in the device’s PdDv object.

A single PdDv object can represent many device types. Normally, the
message number in a device’s PdDv object also identifies its text
description. However, there are cases where a single PdDv object
represents different device types. This happens when the parent device
which detects them cannot distinguish between the types. For example,
a single PdDv object is used for both the 120MB and 160MB Direct
Attached Disk drives. For these devices, unique device descriptions can
be assigned by setting the message number in the device’s PdDv object
to 0 and having a T attribute type, indicating the set of possible message
numbers. The device’s configure method determines the actual device
type and creates a corresponding CuAt object indicating the message
number of the correct text description.

R Indicates any other regular attribute that is not a bus resource.

Chapter 1. Configuration Subsystem 49

Descriptor Description

Zz If the attribute name is 1ed, than this indicates the LED number for the
device. Normally, the LED number for a device is specified in the
device’s PdDv object. However, in cases where the PdDv object may be
used to respresent multiple device types, unique LED numbers can be
assigned to each device type by having a type Z attribute with an
attribute name of Ted. In this case, the LED number in the PdDv object
is set to 0. The device’s configure method determines the actual LED
number for the device, possibly by obtaining the value from the device,
and creates a corresponding CuAt object indicating the LED number.
The default value specified in the type Z PdAt object with the attribute
name of led is the LED number to be used until the device’s configure
method has determined the LED number for the device.

The following are the bus resources types for regular attributes:

A Indicates DMA arbitration level.

B Indicates a bus memory address which is not associated with DMA
transfers.

M Indicates a bus memory address to be used for DMA transfers.

Indicates bus interrupt level that can be shared with another device.
Indicates a bus interrupt level that cannot be shared with another device.
Indicates bus 1/O address.

Indicates priority class.

s v o z

Indicates an amount in bytes of bus memory or bus I/O space.
For non-regular attributes, the following attribute types are defined:

G Indicates a group.
S Indicates a shared attribute.
Generic Attribute Flags Identifies the flags that can apply to any regular attribute. Any combination (one,

both, or none) of these flags is valid. This descriptor should be a null string for
group and shared attributes. This descriptor is always set to a null string for type
T attributes.

These are the defined generic attribute flags:

D Indicates a displayable attribute. The command displays only
attributes with this flag.

U Indicates an attribute whose value can be set by the user.

50 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Descriptor Description

Attribute Representation Flags Indicates the representation of the regular attribute values. For group and shared
attributes, which have no associated attribute representation, this descriptor is set
to a null string. Either the n or s flag, both of which indicate value representation,
must be specified.

The r, I, and m flags indicate, respectively, a range, an enumerated list, and a
multi-select value list, and are optional. If neither the r flag nor the I flag is
specified, the subroutine will not verify that the value falls within the range
or the list.

These are the defined attribute representation flags:

n Indicates that the attribute value is numeric: either decimal, hex, or octal.
s Indicates that the attribute value is a character string.
r Indicates that the attribute value is a range of the form:

lowerlimit-upperlimit,increment value.
| Indicates that the attribute value is an enumerated list of values.

m Indicates that multiple values can be assigned to this attribute. Multiple
values for an attribute are represented as a comma separated list.

b Indicates that value is a boolean type, and can only have 2 values.
Typical values are yes,no, true,false, on,off, disable,enable or 0,1.

The attribute representation flags are always set to nl (numeric list) for type T
attributes.

NLS Index Identifies the message number in the NLS message catalog of the message
containing a textual description of the attribute. Only displayable attributes, as
identified by the Generic Attribute Flags descriptor, need an NLS message. If the
attribute is not displayable, the NLS index can be set to a value of 0. The catalog
file name and the set number associated with the message number are stored in
the |PdDv object class]

Related Information
[Predefined Devices (PdDv) object class} [Customized Attribute object class]

The subroutine.
The command, command, command.

[Adapter-Specific Considerations for the Predefined Attribute (PdAt) Object Class| .

Predefined Attribute Extended (PdAtXtd) Object Class

Description

The Predefined Attribute Extended (PdAtXtd) object class is used to supplement existing device’s
attributes represented in the Predefined Attribute (PdAt) object class with information that can be used by
Device Management User Interface. The Web-based System Manager Device application is the first user
interface application to take advantage of this object class.

Types of Attributes to represent in PdAtXtd

Not all existing device’s attributes in PdAt need to be represented in the PdAtXtd object class.
Non-displayable attributes (i.e with a null string in the 'generic’ field of the PdAt object class) should not
have a corresponding PdAtXtd entry, otherwise, it will become displayable.

Chapter 1. Configuration Subsystem 51

The PdAtXtd object class can also be used to override the current value or possible values of an attribute.

Predefined Attribute Extended Object Class Descriptors

The Predefined Attribute Extended object class contains the following descriptors:

ODM Type Descriptor Name Description Required
ODM_CHAR uniquetype Unique Type Yes
ODM_CHAR attribute Attribute Name No
ODM_CHAR classification AttributeClassification No
ODM_CHAR sequence Sequence number No
ODM_VCHAR operation Operation Name No
ODM_VCHAR operation_value Operation Value No
ODM_VCHAR description Attribute Description No
ODM_VCHAR list_cmd Command to list Attribute value No
ODM_VCHAR list_values_cmd Command to list Attribute values |No
ODM_VCHAR change_cmd Command to change Attribute No
value
ODM_VCHAR help Help text NO
ODM_VCHAR nls_values Translated Attribute values No

These descriptors are described as follows:

Descriptor
Unique Type

Description

Identifies the class-subclass-type name of the device to which this attribute is
associated. This descriptor is the same as the Unique Type descriptor in the PdAt
object class.

Identifies the device attribute. This is the name that can be passed to mkdev and chdev
configuration commands and device methods in the attribute-name and attribute-value
pairs.

Identifies the device attribute’s classification. The followings characters are valid values:

Attribute Name

Classification

B Indicates a basic attribute.
A Indicates an advanced attribute.
R Indicates a required attribute.

Sequence Identifies the number used to position the attribute in relation to others on a
panel/menu. This field is identical to the ’id_seq_num’ currently in the sm_cmd_opt

(SMIT Dialog/Selector Command Option) object class.

B2 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Descriptor
Operation

Operation Value

Description

Description

Identifies the type of operation associated with the unique device type. Operation and
attribute name fields are mutually exclusive. The following operation names are used by
Web-based System Manager Device application:

assign_icon
Indicates that an icon is to be assigned to the unique device type.

add_device type
Indicates that the unique device type can be manually added to the system via
the Web-based System Manager Device Application’s 'New’ Device action.
device type is a user chosen name that will identify the type or class of device
that can be added via the Web-based System Manager Device Application.
This name will be sorted in alphabetical order, therefore, to have all similar
type or class of devices be grouped together in the Web-based System
Manager device selection panel, choose the name accordingly. Example:
add_isa_tokenring
add_isa_ethernet
add_tty

will allow the selections for adding ISA adapters (token ring and ethernet) be
together, but
add_tokenring_isa

add_ethernet_isa
add_tty

will cause the selection for adding tty to be inserted in between the two ISA
adapters selections.

move_device type
Indicates that the unique device type can be moved to another location via the
Web-based System Manager Device Application’s Move action

list_parent
Indicates that the unique device type has a special method to obtain the list of
parent devices that it can be connected to. The method must be listed in the
list_cmd field.

show_apply_option
Indicates that a selection will appear on the device properties panel, to allow
the user to apply change(s) to devices’ properties immediately, or defer the
change(s) until the next System Restart.
Identifies the value associated with the Operation field. For Web-based System
Manager Device Application, when the operation is ’assign_icon’, the value in
operation_value will be the name of the icon associated with the unique device type.
The icon name is the first extension of the icon file name under /usr/websm/codebase/
images directory.

When the operation is 'add_<device>’, the operation_value field may contain the
command used to make the device, if the 'mkdev’ command cannot be used. However,
Web-based System Manager Device Application will invoke the command stored in this
field with the same arguments normally passed to the ‘'mkdev’ command.

Identifies the attribute’s description. Web-based System Manager Device Application
expects this field to be of the following format: message file,set id,msg id,default text

Chapter 1. Configuration Subsystem 53

Descriptor
List Cmd

List Values Cmd

Change Cmd

Help

Nis Values

Description

Identifies the command to issue to override the attribute’s current value, except when
operation field is set, then it will be the command to issue to return information
associated with the operation. For example:

In the case of ’add_tty’ operation, the list_cmd field contains the following value:
1sdev -P -c tty -s rs232 -Fdescription

The string returned from executing this command will be put on the Web-based System
Manager device selection panel.

Identifies the command to issue in order to obtain the possible values of an attribute.
The values returned will override the values field in the Predefined Attribute object
class.

Commands used to change the attribute value if ‘chdev’ cannot be used.

Note: When commands (stored in <field>_cmd) are executed to obtain information for
an attribute, Web-based System Manager Device Application will always pass the
device name as an argument to the command. Therefore, it is essential that the
command stored in these <field>_cmd, handle this fact. Otherwise, a script can be
stored in these fields in the following manner:

Tist_cmd = "x()\n\

{\n\

<run some command>\n\

Hn\

X

In the case of the change_cmd field, Web-based System Manager Device Application
will also pass in the attribute=value pair after the first argument.
Help text associated with the attribute. This could be of the form:

message file,set id,msg id,default text

OR

a numeric string equal to a SMIT identifier tag.

Identifies the text associated with the attribute’s values. These values will be displayed
in place of the values stored in the Predefined Attribute object class. This field should
be of the form:

message file,set id,msg id,default text

The ordering of values should match the ordering in the Predefined Attribute values
field.

Adapter-Specific Considerations for the Predefined Attribute (PdAt)

Object Class

Description

The various bus resources required by an adapter card are represented as attributes in the |Predefined

[Attribute (PdAt) object class] If the currently assigned values differ from the default values, they are

represented with other device attributes in the [Customized Attribute (CuAt) object class| To assign bus
resources, the Bus Configurator obtains the bus resource attributes for an adapter from both the PdAt and
CuAt object classes. It also updates the CuAt object class, as necessary, to resolve any bus resource

conflicts.

The following additional guidelines apply to bus resource attributes.

54 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

The Attribute Type descriptor must indicate the type of bus resource. The values are as follows:

Value Description

Indicates a DMA arbitration level.

Indicates a bus memory address which is not associated with DMA transfers.
Indicates a bus memory address to be used for DMA transfers.

Indicates a bus interrupt level that can be shared with another device.
Indicates a bus interrupt level that cannot be shared with another device.
Indicates a bus I/O address.

Indicates an |interrupt-priority class|

Indicates an amount in bytes of bus memory or bus 1/O space.

Indicates a group.

Indicates an attribute that must be shared with another adapter.

nO=sSTOoOZ—=ZwW>

For bus memory and bus I/O addresses, the amount of address space to be assigned must also be
specified. This value can be specified by either the attribute’s Width descriptor or by a separate type W
attribute.

If the value is specified in the attribute’s Width descriptor, it is fixed at that value and cannot be
customized. If a separate type W attribute is used, the bus memory or bus I/O attribute’s Width descriptor
must be set to a null string. The type W attribute’s Width descriptor must indicate the name of the bus
memory or bus /O attribute to which it applies.

Attribute types| G and S are special-purpose types that the Bus Configurator recognizes. If an adapter has
resources whose values cannot be assigned independently of each other, a Group attribute will identify

them to the Bus Configurator. For example, an adapter card might have an interrupt level that depends on
the bus memory address assigned. Suppose that interrupt level 3 must be used with bus memory address
0x1000000, while interrupt level 4 must be used with bus memory address 0x2000000. This relationship
can be described using the Group attribute as discussed in ['Predefined Attribute (PdAt) Object Class’] .

Occasionally, all cards of a particular type or types must use the same bus resource when present in the
system. This is especially true of interrupt levels. Although most adapter’s resources can be assigned
independently of other adapters, even those of the same type, it is not uncommon to find adapters that
must share an attribute value. An adapter card having a bus resource that must be shared with another
adapter needs a type S attribute to describe the relationship.

PdAt Descriptors for Type S Attributes
The PdAt descriptors for a type S attribute should be set as follows:

PdAt Descriptor Setting Description

Unique Type Indicates the unique type of the adapter.

Attribute Name Specifies the name assigned to this attribute.

Default Value Set to a null string.

Possible Values Contains the name of the attribute that must be shared
with another adapter or adapters.

Width Set to a null string.

Attribute Type Set to S.

Generic Attribute Flags Set to a null string. This attribute must neither be
displayed nor set by the user.

Attribute Representation Flags Set to s1, indicating an enumerated list of strings, even
though the list consists of only one item.

NLS Index Set to 0 since the attribute is not displayable.

Chapter 1. Configuration Subsystem 55

The type S attribute identifies a bus resource attribute that must be shared. The other adapters are
identifiable by attributes of type S with the same attribute name. The attribute name for the type S attribute
serves as a key to identify all the adapters.

For example, suppose an adapter with unique type adapter/mca/X must share its interrupt level with an
adapter of unique type adapter/mca/Y. The following attributes describe such a relationship:

The Predefined Attribute object for X’s interrupt level:

» Attribute Name = int_level

» Default Value = 3

* Possible Values =2 - 9, 1

* Width = null string

* Unique Type = adapter/mca/X

» Attribute Type =1

» Generic Attribute Flags = D (displayable, but cannot be set by user)
» Attribute Representation Flags = nr

* NLS Index = 12 (message number for text description)

The predefined attribute object describing X’s shared interrupt level:
* Unique Type = adapter/mca/X

* Attribute Name = shared_intr

e Default Value = null string

* Possible Values = "int_level”

e Width = null string

* Attribute Type =S

» Generic Attribute Flags = null string

» Attribute Representation Flags = s1

* NLS Index =0

The Predefined Attribute object for Y’s interrupt level:

* Unique Type = adapter/mca/Y

» Attribute Name = interrupt

* Default Value = 7

* Possible Values = 2, 3, 4, 5, 7, 9

e Width = null string

* Attribute Type = I

» Generic Attribute Flags = D (displayed, but cannot be set by user)
» Attribute Representation Flags = nl

* NLS Index = 6 (message number for text description).

The Predefined Attribute object describing Y’s shared interrupt level:
* Unique Type = adapter/mca/Y

* Attribute Name = shared _intr

» Default Value = null string

* Possible Values = "interrupt”

e Width = null string

* Attribute Type =S

56 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

» Generic Attribute Flags = null string
» Attribute Representation Flags = s1
* NLS Index = 0

Note that the two adapters require different attributes to describe their interrupt levels. The attribute name
is also different. However, their attributes describing what must be shared have the same name:
shared_intr.

Adapter bus resource attributes except those of type W can be displayed but not set by the user. That is,
the Generic Attribute Flags descriptor can either be a null string or the character D, but cannot be U or DU.
The Bus Configurator has total control over the assignment of bus resources. These resources cannot be
changed to user-supplied values by the [Change method|

The Bus Configurator uses type W attributes to allocate bus memory address and bus I/O address
attributes but never changes the value of a type W attribute. Attributes of type W can be set by users by
setting the Generic Attribute flags descriptor to DU. This allows the Change method to change the type W
attribute values to a user-supplied value.

The Bus Configurator does not use or modify any other attribute the adapter may have with attribute type
R.

Related Information
[Customized Attributes (CuAt)| object class]Predefined Attribute (PdAt)| object class.

[Device Methods for Adapter Cards: Guidelines|.

[Writing a Change Method|.

[Understanding Interrupts] [Understanding Direct Memory Access (DMA)| [Writing a Device Method|in ALX 5L
Version 5.3 Kernel Extensions and Device Support Programming Concepts.

[Object Data Manager (ODM) Overview for Programmers|in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

[Device Configuration Subsystem Programming Introduction|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

Predefined Connection (PdCn) Object Class

Description

The Predefined Connection (PdCn) object class contains connection information for intermediate devices.
This object class also includes predefined dependency information. For each connection location, there are
one or more objects describing the subclasses of devices that can be connected. This information is
useful, for example, in verifying whether a device instance to be defined and configured can be connected
to a given device.

Descriptors

The Predefined Connection object class contains the following descriptors:

ODM Type Descriptor Name Description Descriptor Status
ODM_CHAR uniquetype[UNIQUESIZE] Unique Type Required
ODM_CHAR connkey[KEYSIZE] Connection Key Required

Chapter 1. Configuration Subsystem 57

ODM Type Descriptor Name Description Descriptor Status
ODM_CHAR connwhere[LOCSIZE] Connection Location | Required

These fields are described as follows:

Field Description

Unique Type Identifies the intermediate device’s class-subclass-type name. For a device with
dependency information, this descriptor identifies the unique type of the device
on which there is a dependency. This descriptor contains the same information
as the Unique Type descriptor in the |Predefined Devices (PdDv) object class|

Connection Key Identifies a subclass of devices that can connect to the intermediate device at
the specified location. For a device with dependency information, this descriptor
serves to identify the device indicated by the Unique Type field to the devices
that depend on it.

Connection Location Identifies a specific location on the intermediate device where a child device
can be connected. For a device with dependency information, this descriptor is
not always required and consequently may be filled with a null string.

The term location is used in a generic sense. For example, for a bus device the
location can refer to a specific slot on the bus, with values 1, 2, 3,.... Fora
multiport serial adapter device, the location can refer to a specific port on the
adapter with values 0, 1,....

Related Information
[Predefined Devices (PdDv) object class|

Predefined Devices (PdDv) Object Class

Description

The Predefined Devices (PdDv) object class contains entries for all device types currently on the system. It
can also contain additional device types if the user has specifically installed certain packages that contain
device support for devices that are not on the system. The term devices is used generally to mean both
intermediate devices (for example, adapters) and terminal devices (for example, disks, printers, display
terminals, and keyboards). Pseudo-devices (for example, pseudo terminals, logical volumes, and TCP/IP)
are also included there. Pseudo-devices can either be intermediate or terminal devices.

Each device type, as determined by class-subclass-type information, is represented by an object in the
PdDv object class. These objects contain basic information about the devices, such as device method
names and instructions for accessing information contained in other object classes. The PdDv object class
is referenced by the [Customized Devices (CuDv)| object class using a link that keys into the Unique Type
descriptor. This descriptor is uniquely identified by the class-subclass-type information.

Typically, the Predefined database is consulted but never modified during system boot or run time, except
when a new device is added to the Predefined database. In this case, the predefined information for the
new device must be added into the Predefined database. However, any new predefined information for a
new base device must be written to the boot file system to be effective. This is done with the
command.

You build a Predefined Device object by defining the objects in a file in stanza format and then processing
the file with the command or the jlodm_add_obj| subroutine. See the odmadd command or the
odm_add_obj subroutine for information on creating the input file and compiling the object definitions into
objects.

58 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Note: When coding an object in this object class, set unused empty strings to "” (two double-quotation
marks with no separating space) and unused integer fields to 0 (zero).

Descriptors

Each Predefined Devices object corresponds to an instance of the PdDv object class. The descriptors for

the Predefined Devices object class are as follows:

Predefined Devices

ODM Type Descriptor Name Description Descriptor Status
ODM_CHAR type[TYPESIZE] Device Type Required
ODM_CHAR class[CLASSIZE] Device Class Required
ODM_CHAR subclass[CLASSIZE] Device Subclass Required
ODM_CHAR prefix[PREFIXSIZE] Prefix Name Required
ODM_CHAR devid[DEVIDSIZE] Device ID Optional
ODM_SHORT base Base Device Flag Required
ODM_SHORT has_vpd VPD Flag Required
ODM_SHORT detectable Detectable/Non- Required
detectable Flag
ODM_SHORT chgstatus Change Status Flag Required
ODM_SHORT bus_ext Bus Extender Flag Required
ODM_SHORT inventory_only Inventory Only Flag Required
ODM_SHORT fru FRU Flag Required
ODM_SHORT led LED Value Required
ODM_SHORT setno Set Number Required
ODM_SHORT msgno Message Number Required
ODM_VCHAR catalog[CATSIZE] Catalog File Name Required
ODM_CHAR DvDr[DDNAMESIZE] Device Driver Name | Optional
ODM_METHOD Define Define Method Required
ODM_METHOD Configure Configure Method Required
ODM_METHOD Change Change Method Required
ODM_METHOD Unconfigure Unconfigure Method | Optional*
ODM_METHOD Undefine Undefine Method Optional*
ODM_METHOD Start Start Method Optional
ODM_METHOD Stop Stop Method Optional
ODM_CHAR uniquetype[UNIQUESIZE] Unique Type Required

These descriptors are described as follows:

Descriptor
Device Type

Description

Specifies the product name or model number. For example,
IBM 3812-2 Model 2 Page printer and IBM 4201 Proprinter
Il are two types of printer device types. Each device type
supported by the system should have an entry in the PdDv
object class.

Chapter 1. Configuration Subsystem 59

Descriptor
Device Class

Device Subclass

Prefix Name

Base Device Flag

VPD Flag

Detectable/Nondetectable Flag

Description

Specifies the functional class name. A functional class is a
group of device instances sharing the same high-level
function. For example, printer is a functional class name
representing all devices that generate hardcopy output.
Identifies the device subclass associated with the device
type. A device class can be partitioned into a set of device
subclasses whose members share the same interface and
typically are managed by the same device driver. For
example, parallel and serial printers form two subclasses
within the class of printer devices.

The configuration process uses the subclass to determine
valid parent-child connections. For example, an rs232 8-port
adapter has information that indicates that each of its eight
ports only supports devices whose subclass is rs232. Also,
the subclass for one device class can be a subclass for a
different device class. In other words, several device classes
can have the same device subclass.

Specifies the Assigned Prefix in the Customized database,
which is used to derive the device instance name and /dev
name. For example, tty is a Prefix Name assigned to the
tty port device type. Names of tty port instances would then
look like tty0, ttyl, or tty2. The rules for generating device
instance names are given in the [Customized Devices objec
class| under the Device Name descriptor.

A base device is any device that forms part of a minimal
base system. During the first phase of system boot, a
minimal base system is configured to permit access to the
root volume group and hence to the root file system. This
minimal base system can include, for example, the standard
1/0O diskette adapter and a SCSI hard drive.

The Base Device flag is a bit mask representing the type of
boot for which the device is considered a base device. The

command uses this flag to determine what

predefined device information to save in the boot file
system. The command uses this flag to
determine what customized device information to save in
the boot file system. Under certain conditions, the
command also uses the Base Device flag to determine
whether to configure a device.

Specifies whether device instances belonging to the device
type contain extractable vital product data (VPD). Certain
devices contain VPD that can be retrieved from the device
itself. A value of TRUE means that the device has
extractable VPD, and a value of FALSE that it does not.
These values are defined in the /usr/include/sys/cfgdb.h
file.

Specifies whether the device instance is detectable or
nondetectable. A device whose presence and type can be
electronically determined, once it is actually powered on and
attached to the system, is said to be detectable. A value of
TRUE means that the device is detectable, and a value of
FALSE that it is not. These values are defined in the
lusr/include/sys/cfgdb.h file.

60 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Descriptor
Change Status Flag

Bus Extender Flag

Inventory Only Flag

FRU Flag

LED Value

Catalog File Name

Set Number

Message Number

Description

Indicates the initial value of the Change Status flag used in
the [Customized Devices (CuDv) object class| Refer to the
corresponding descriptor in the CuDv object class for a
complete description of this flag. A value of NEW means
that the device is to be flagged as new, and a value of
DONT_CARE means "it is not important.” These values are
defined in the /usr/include/sys/cfgdb.h file.

Indicates that the device is a bus extender. The Bus
Configurator uses the Bus Extender flag descriptor to
determine whether it should directly invoke the device’s
[Configure method| A value of TRUE means that the device
is a bus extender, and a value of FALSE that it is not. These
values are defined in the /usr/include/sys/cfgdb.h file.

This flag is further described in|"Device Methods for Adapter
|Cards: Guidelines’|.

Distinguishes devices that are represented solely for their
replacement algorithm from those that actually manage the
system. There are several devices that are represented
solely for inventory or diagnostic purposes. Racks, drawers,
and planars represent such devices. A value of TRUE
means that the device is used solely for inventory or
diagnostic purposes, and a value of FALSE that it is not
used solely for diagnostic or inventory purposes. These
values are defined in the /usr/include/sys/cfgdb.h file
Identifies the type of field replaceable unit (FRU) for the
device. The three possible values for this field are:

NO_FRU
Indicates that there is no FRU (for
pseudo-devices).

SELF_FRU
Indicates that the device is its own FRU.

PARENT_FRU
Indicates that the FRU is the parent.

These values are defined in the /usr/include/sys/cfgdb.h
file.

Indicates the hexadecimal value displayed on the LEDs
when the Configure method executes.

Identifies the file name of the NLS message catalog that
contains all messages pertaining to this device. This
includes the device description and its attribute descriptions.
All NLS messages are identified by a catalog file name, set
number, and message number.

Identifies the set number that contains all the messages for
this device in the specified NLS message catalog. This
includes the device description and its attribute descriptions.
Identifies the message number in the specified set of the
NLS message catalog. The message corresponding to the
message number contains the textual description of the
device.

Chapter 1. Configuration Subsystem 61

Descriptor
Device Driver Name

Define Method
Configure Method
Change Method

Unconfigure Method

Undefine Method

Start Method

Stop Method

Unique Type

Files

lusr/lib/drivers directory

Description

Identifies the base name of the device driver associated
with all device instances belonging to the device type. For
example, a device driver name for a keyboard could be
ktsdd. For the tape device driver, the name could be
tapedd. The Device Driver Name descriptor can be passed
as a parameter to the routine to load the device
driver, if the device driver is located in the /usr/lib/drivers
directory. If the driver is located in a different directory, the
full path must be appended in front of the Device Driver
Name descriptor before passing it as a parameter to the
loadext subroutine.

Names the associated with the device type.
All Define method names start with the def prefix.

Names the [Configure method| associated with the device
type. All Configure method names start with the cfg prefix.
Names the |Change method| associated with the device type.
All Change method names start with the chg prefix.

Names the |[Unconfigure method| associated with the device
type. All Unconfigure method names start with the ucfg
prefix.

Note: The Optional* descriptor status indicates that this
field is optional for those devices (for example, the bus) that
are never unconfigured or undefined. For all other devices,
this descriptor is required.

Names the associated with the device
type. All Undefine method names start with the und prefix.
Note: The Optional* descriptor status indicates that this
field is optional for those devices (for example, the bus) that
are never unconfigured or undefined. For all other devices,
this descriptor is required.

Names the |Start method| associated with the device type. All
Start method names start with the stt prefix. The Start
method is optional and only applies to devices that support
the Stopped device state.

Names the |Stop method| associated with the device type. All
Stop method names start with the stp prefix. The Stop
method is optional and only applies to devices that support
the Stopped device state.

A key that is referenced by the PdDvLn link in
The key is a concatenation of the Device Class,
Device Subclass, and Device Type values with a / (slash)
used as a separator. For example, for a class of disk, a
subclass of scsi, and a type of 670mb, the Unique Type is
disk/scsi/670mb.

This descriptor is needed so that a device instance’s object
in the CuDv object class can have a link to its
corresponding PdDv object. Other object classes in both the
Predefined and Customized databases also use the
information contained in this descriptor.

Contains device drivers.

62 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Related Information
[Customized Devices (CuDv) object class|

The subroutine, jodm_add_obij| subroutine.
The command.

Writing a Define Method|, [Writing a Configure Method|, [Writing a Change Method| , [Writing an Undefine]
Method|, [Writing an Unconfigure Method|, [Writing Optional Start and Stop Methods| .

Adapter-Specific Considerations for the Predefined Devices (PdDv)
Object Class

Description

The information to be populated into the Predefined Devices object class is described in the [Predefined
[Devices (PdDv) Object Class| The following descriptors should be set as indicated:

Device Class Set to adapter.

Device ID Must identify the values that are obtained from the POS(0) and POS(1) registers on
the adapter card. The format is 0xAABB, where AA is the hexadecimal value obtained
from POS(0), and BB the value from POS(1). This descriptor is used by the Bus
Configurator to match up the physical device with its corresponding information in
the Configuration database.

Bus Extender Flag Usually set to FALSE, which indicates that the adapter card is not a bus extender.
This descriptor is set to TRUE for a multi-adapter card requiring different sets of
bus resources assigned to each adapter. The Standard I/O Planar is an example of
such a card.

The Bus Configurator behaves slightly differently for cards that are bus extenders. Typically, it finds an
adapter card and returns the name of the adapter to the [Configuration Manager so that it can be
configured.

However, for a bus extender, the Bus Configurator directly invokes the device’s [Configure method, The
bus extender’'s Configure method defines the various adapters on the card as separate devices (each
needing its own predefined information and device methods), and writes the names to standard output for
the Bus Configurator to intercept. The Bus Configurator adds these names to the list of device names for
which it is to assign bus resources.

An example of a type of adapter card that would be a bus extender is one which allows an expansion box
with additional card slots to be connected to the system.

Related Information
[Adapter-Specific Considerations for the PdAt Object Class].

[Writing a Configure Method) .

[Predefined Devices (PdDv) object class|

Chapter 1. Configuration Subsystem 63

64 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Chapter 2. Communications Subsystem

ddclose Communications PDH Entry Point

Purpose
Frees up system resources used by the specified communications device until they are needed.

Syntax

#include <sys/device.h>

int ddclose ([devnd dev_t devno; int chan;

Parameters

devno Major and minor device numbers.
chan Channel number assigned by the device handler's [ddmpx] entry point.

Description

The ddclose entry point frees up system resources used by the specified communications device until
they are needed again. Data retained in the receive queue, transmit queue, or status queue is purged. All
buffers associated with this channel are freed. The ddclose entry point should be called once for each
successfully issued entry point.

successful operation on this channel.

Before issuing a ddclose entry point, a [ClO_HALT| operation should be issued for each previously
CIO_STAR

Execution Environment
A ddclose entry point can be called from the [process environment only.

Return Value

In general, communication device-handlers use the common return codes defined for entry points.
However, device handlers for specific communication devices may return device-specific codes. The
common return code for the ddclose entry point is the following:

ENXIO Indicates an attempt to close an unconfigured device.

Related Information
The entry point, entry point.

The |CIO_HALT]| ddioctl Communications PDH Operation, |CIO_START| ddioctl Communications PDH

Operation.

dd_fastwrt Communications PDH Entry Point

Purpose
Allows kernel-mode users to transmit data.

© Copyright IBM Corp. 1997, 2007 65

Description

You use the dd_fastwrt entry point from a kernel-mode process to pass a write packet or string of packets
to a PDH for transmission. To get the address of this entry point, you issue the
(CIO_GET_FASTWRT) kernel service.

The syntax and rules of usage are device-dependent and therefore not listed here. See the documentation
on individual devices for more information. Some of the information that should be provided is:

* Number of packets allowed on a single fast write function call.

» Operational level from which the fast write function can be called.
» Syntax of the entry point.

» Trusted path usage. The device may not check every parameter.

When you call this entry point from a different adapter’s receive interrupt level, you must ensure that the
calling level is equal to or lower than the target adapter’s operational level. This is the case when you
forward packets from one port to another. To find out the operational level, see the documentation for the
specific device.

Related Information
The kernel service.

CIO_GET_FASTWRT ddioctl Communications PDH Operation

Purpose
Provides the parameters required to issue a kernel-mode fast-write call.

Syntax

#include <sys/device.h>
#include <sys/comio.h>

int

ddioct1 (devno, op, parmptr,
devflag, chan, ext)

dev_t [devnol;

int |opl;

struct status block * ;
ulong_|devflagl;

int |chan|, lext];

Description

The CIO_GET_FASTWRT operation returns the parameters required to issue a kernel-mode fast write for
a particular device. Only a kernel-mode process can issue this entry point and use the fast-write function.
The parameters returned are located in the cio_get_fastwrt structure in the /usr/include/sys/comio.h file.

Note: This operation should not be called by user-mode processes.

Parameters

devno Specifies major and minor device numbers.

op Indicates the entry point for the CIO_GET_FASTWRT operation.

parmptr Points to a cio_get_fastwrt structure. This structure is defined in the /usr/include/sys/comio.h file.
devflag Indicates the DKERNEL flag. This flag must be set, indicating a call by a kernel-mode process.
chan Specifies the channel number assigned by the device-handlerentry point.

66 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

ext Specifies the extended subroutine parameter. This parameter is device-dependent.

Execution Environment
A CIO_GET_FASTWRT operation can be called from the process environment only.

Return Values

In general, communication device handlers use the common codes defined for an operation. However,
device handlers for specific communication devices may return device-specific codes. The common return
codes for the CIO_GET_FASTWRT operation are:

ENXIO Indicates an attempt to use an unconfigured device.
EFAULT Indicates that the specified address is not valid.

EINVAL Indicates a parameter call that is not valid.

EPERM Indicates a call from a user-mode process is not valid.
EBUSY Indicates the maximum number of opens was exceeded.

ENODEV Indicates the device does not exist.

Related Information

The device driver entry point in AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems
Volume 1.

The entry point, entry point.
CIO_GET_STAT ddioctl Communications PDH Operation

Purpose
Returns the next status block in a status queue to user-mode process.

Syntax

#include <sys/device.h>
#include <sys/comio.h>

int ddioctl

(devno, op, parmptr,
devflag, chan, ext)
dev_t [devnoj;

int |opf;
struct status block * ;
ulong_[devflag

int |chan),

fextl;

Parameters

devno Specifies major and minor device numbers.

op Indicates the entry point for the CIO_GET_STAT operation.

parmptr Points to a status_block structure. This structure is defined in the /usr/include/sys/comio.h file.
devflag Specifies the DKERNEL] flag. This flag must be clear, indicating a call by a user-mode process.
chan Specifies the channel number assigned by the device-handler [ddmpx| entry point.

ext Indicates device-dependent.

Chapter 2. Communications Subsystem 67

Description
Note: This entry point should not be called by kernel-mode processes.

The CIO_GET_STAT operation returns the next [status block| in the status queue to a user-mode process.

Execution Environment
A CIO_GET_STAT operation can be called from the [process environment| only.

Return Values

In general, communication device handlers use the common codes defined for an operation. However,
device handlers for specific communication devices may return device-specific codes. The common return
codes for the CIO_GET_STAT operation are the following:

ENXIO Indicates an attempt to use an unconfigured device.
EFAULT Indicates the specified address is not valid.

EINVAL Indicates a parameter is not valid.

EACCES Indicates a call from a kernel process is not valid.
EBUSY Indicates the maximum number of opens was exceeded.

ENODEV Indicates the device does not exist.

Related Information

The device driver entry point, entry point in AIX 5L Version 5.3 Technical Reference:
Kernel and Subsystems Volume 1.

CIO_HALT ddioctl Communications PDH Operation

Purpose

Removes the network ID of the calling process and cancels the results of the corresponding CIO_START
operation.

Syntax

#include <sys/device.h>
#include <sys/comio.h>

int ddioctl

(devno, op, parmptr,

devflag, chan, ext)

dev_t |devnol;

int |opls

struct session blk * Earmptrk
ulong |devflagls

int |[chan|, lext};

Parameters

devno Specifies major and minor device numbers.

op Specifies the entry point for the CIO_HALT operation.

parmptr Points to a session_blk structure. This structure is defined in the /usr/include/sys/comio.h file.

devflag Specifies theflag. This flag is set by kernel-mode processes and cleared by calling
user-mode processes.

chan Specifies the channel number assigned by the device handler's ddmpx routine.

68 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

ext Indicates device-dependent.

Description

The CIO_HALT operation must be supported by each physical device handler in the communication /0
subsystem. This operation should be issued once for each successfully issued CIO_START operation. The
CIO_HALT operation removes the caller's network ID and undoes all that was affected by the

corresponding [CIO_START| operation.

The CIO_HALT operation returns immediately to the caller, before the operation completes. If the return
indicates no error, the PDH builds a[CIO_HALT _DONE]| status block upon completion. For kernel-mode
processes, the status block is passed to the associated status function (specified at open time). For
user-mode processes, the block is placed in the associated status or exception queue.

session_blk Parameter Block

For the CIO_HALT operation, the ext parameter can be a pointer to a session_blk structure. This
structure is defined in the /usr/include/sys/comio.h file and contains the following fields:

Field Description
status Indicates the status of the port. This field may contain additional information about the completion of the
CIO_HALT operation. Besides the status codes listed here, device-dependent codes can be returned:
CIO_OK
Indicates the operation was successful.
CIO_INV_CMD

Indicates an invalid command was issued.

CIO_NETID_INV
Indicates the network ID was not valid.

The status field is used for specifying immediately detectable errors. If the status is CIO_OK, the
[CI0O_HALT _DONE]| status block should be processed to determine whether the halt completed without
errors.

netid Contains the network ID to halt.

Execution Environment
A CIO_HALT operation can be called from the [process environment| only.

Return Values

In general, communication device handlers use the common return codes defined for an operation.
However, device handlers for specific communication devices may return device-specific codes. The
common return codes for the CIO_HALT operation are the following:

Return

Code Description

ENXIO Indicates an attempt to use an unconfigured device.
EFAULT Indicates an incorrect address was specified.

EINVAL Indicates an incorrect parameter was specified.

EBUSY Indicates the maximum number of opens was exceeded.

ENODEV Indicates the device does not exist.

Related Information

The device driver entry point in AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems
Volume 1.

Chapter 2. Communications Subsystem 69

The |CIO_GET_STAT| ddioctl Communications PDH Operation, [CIO_START| ddioctl Communications PDH
Operation.

CIO_QUERY ddioctl Communications PDH Operation

Purpose
Returns device statistics.

Syntax

#include <sys/device.h>
#include <sys/comio.h>

int ddioctl

(devno, op, parmptr,

devflag, chan, ext)

dev_t |devnol;

int |opls

struct query parms * Earmptrk
ulong |devflagls

int |chan|, lext};

Parameters

devno Specifies major and minor device numbers.

op Indicates the entry point of the CIO_QUERY operation.

parmptr Points to a query_parms structure. This structure is defined in the /usr/include/sys/comio.h file.

devflag Specifies the DKERNEL] flag. This flag is set by calling kernel-mode processes and cleared by calling
user-mode processes.

chan Specifies channel number assigned by the device handler's [ddmpx] entry point.

ext Indicates device-dependent.

Description

The CIO_QUERY operation returns various statistics from the device. Counters are zeroed by the physical
device handler when the device is configured. The data returned consists of two contiguous portions. The
first portion contains counters to be collected and maintained by all device handlers in the communication
I/0 subsystem. The second portion consists of device-dependent counters and parameters.

query_parms Parameter Block

For the CIO_QUERY operation, the paramptr parameter points to a query_parms structure. This structure
is located in the /usr/include/sys/comio.h file and contains the following fields:

Field Description
status Contains additional information about the completion of the status block. Besides the status codes
listed here, the following device-dependent codes can be returned:
CIO_OK
Indicates the operation was successful.
CIO_INV_CMD
Indicates a command was issued that is not valid.
bufptr Points to the buffer where the statistic counters are to be copied.
buflen Indicates the length of the buffer pointed to by the bufptr field.
clearall When set to CIO_QUERY_CLEAR, the statistics counters are set to 0 upon return.

70 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Execution Environment
A CIO_QUERY operation can be called from the [process environment| only.

Return Values

In general, communication device handlers use the common return codes defined for an entry point.
However, device handlers for specific communication devices may return device-specific codes. The
common return codes for the CIO_QUERY operation are the following:

Return

Code Description

ENXIO Indicates an attempt to use unconfigured device.

EFAULT Indicates an address was specified that is not valid.

EINVAL Indicates a parameter is not valid.

EIO Indicates an error has occurred.

ENOMEM Indicates the operation was unable to allocate the required memory.
EBUSY Indicates the maximum number of opens was exceeded.

ENODEV Indicates the device does not exist.

Related Information

The device driver entry point, entry point in AIX 5L Version 5.3 Technical Reference:
Kernel and Subsystems Volume 1.

CIO_START ddioctl Communications PDH Operation

Purpose
Opens a communication session on a channel opened by a ddopen entry point.

Syntax

#include <sys/device.h>
#include <sys/comio.h>

int ddioctl (devno, op, parmptr, devflag, chan, ext)
dev_t devnol;

int |opf;
struct session blk * ;
ulong_[devflag

int |[chan], lextl;

Parameters

devno Specifies major and minor device numbers.

op Specifies the entry point for the CIO_START operation.

parmptr Points to a session_blk structure. This structure is defined in the /usr/include/sys/comio.h file.

devflag Specifies theflag. This flag is set by calling kernel-mode processes and cleared by calling
user-mode processes.

chan Specifies the channel number assigned by the device handler's [ddmpx] entry point.

ext Indicates device-dependent.

Description

The CIO_START operation must be supported by each physical device handler (PDH) in the
communication I/O subsystem. lts use varies from adapter to adapter. This operation opens a

Chapter 2. Communications Subsystem 71

communication session on a channel opened by a entry point. Once a channel is opened,
CIO_HAL

multiple CIO_START operations can be issued. For each successful start, a corresponding
operation must be issued later.

The CIO_START operation requires only the netid input parameter. This parameter is registered for the
session. At least one network ID must be registered for this session before the PDH successfully accepts
a call to the |[ddwrite| or [ddread| entry point on this session. If this start is the first issued for this port or
adapter, the appropriate hardware initialization is performed. Time-consuming initialization activities, such
as call connection, are also performed.

This call returns immediately to the caller before the asynchronous command completes. If the return
indicates no error, the PDH builds a[CIO_START_DONE| status block upon completion. For kernel-mode
processes, the status block is passed to the associated [status function| (specified at open time). For
user-mode processes, the status block is placed in the associated status or exception queue.

The session_blk Parameter Block

For the CIO_START operation, the ext parameter may be a pointer to a session_blk structure. This
structure is defined in the /usr/include/sys/comio.h file and contains the following fields:

Field Description

status Indicates the status of the port. This field may contain additional information about the completion of the
CIO_START operation. Besides the status codes listed here, device-dependent codes can also be
returned:

CIO_OK
Indicates the operation was successful.

CIO_INV_CMD
Indicates an issued command was not valid.

CIO_NETID_INV
Indicates the network ID was not valid.

CIO_NETID_DUP
Indicates the network ID was a duplicate of an existing ID already in use on the network.

CIO_NETID_FULL
Indicates the network table is full.

netid Contains the network ID to register with the start.

Execution Environment
A CIO_START operation can be called from the [process environment| only.

Return Values

In general, communication device-handlers use the common return codes defined for an entry point.
However, device handlers for specific communication devices may return device-specific codes. The
common return codes for the CIO_START operation are the following:

Return Code Description

ENXIO Indicates an attempt to use an unconfigured device.
EFAULT Indicates a specified address is not valid.

EINVAL Indicates a parameter is not valid.

ENOSPC Indicates the network ID table is full.

EADDRINUSE Indicates a duplicate network ID.

EBUSY Indicates the maximum number of opens was exceeded.
ENODEV Indicates the device does not exist.

72 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Related Information

The device driver entry point in AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems
Volume 1.

The |CIO_GET_FASTWRT] ddioctl Communications PDH Operation, [CIO_GET_STAT| ddioctl
Communications PDH Operation, |[CIO_HALT]| ddioctl Communications PDH Operation.

The entry point, entry point.

ddopen (Kernel Mode) Communications PDH Entry Point

Purpose
Performs data structure allocation and initialization for a communications physical device handler (PDH).

Syntax

#include <sys/device.h>
#include <sys/comio.h>

int ddopen (devno, devflag, chan, extptr)
dev_t [devnol;
ulong |devflag|s

int chan|;
struct kopen_ext * |extptri;

Parameters for Kernel-Mode Processes

devno Specifies major and minor device numbers.
devflag Specifies the flag word with the following definitions:
DKERNEL
Set to call a kernel-mode process.
DNDELAY

When set, the PDH performs nonblocking writes for this channel. Otherwise, blocking writes
are performed.

chan Specifies the channel number assigned by the device handler’s entry point.
extptr Points to the kopen_ext structure.
Description

The ddopen entry point performs data structure allocation and initialization. Hardware initialization and
other time-consuming activities, such as call initialization, are not performed. This call is synchronous,
which means it does not return until the ddopen entry point is complete.

kopen_ext Parameter Block

For a kernel-mode process, the extptr parameter points to a kopen_ext structure. This structure contains
the following fields:

Chapter 2. Communications Subsystem 73

Field Description
status The status field may contain additional information about the completion of an open. Besides the status
code listed here, the following device-dependent codes can also be returned:

ClIO_OK
Indicates the operation was successful.

CIO_NOMBUF
Indicates the operation was unable to allocate mbuf structures.

CIO_BAD_RANGE
Indicates a specified address or parameter was not valid.

CIO_HARD_FAIL
Indicates a hardware failure has been detected.
rx_fn Specifies the address of a kernel procedure. The PDH calls this procedure whenever there is a receive
frame to be processed. The rx_fn procedure must have the following syntax:

#include </usr/include/sys/comio.h>
void rx_fn (open_id, rd_ext_p, mbufptr)
ulong open_id,

struct read_extension *rd_ext _p;

struct mbuf *mbufptr;

open_id
Identifies the instance of open. This parameter is passed to the PDH with the ddopen entry
point.

rd_ext_p
Points to the read extension as defined in the /usr/include/sys/comio.h file.

mbufptr Points to an mbuf structure containing received data.

The kernel procedure calling the ddopen entry point is responsible for pinning the rx_fn kernel
procedure before making the open call. It is the responsibility of code scheduled by the rx_fn
procedure to free the chain.

tx_fn Specifies the address of a kernel procedure. The PDH calls this procedure when the following
sequence of events occurs:

1. The DNDELAY flag is set (determined by its setting in the last field).
2. The most recent entry point for this channel returned anvalue.

3. Transmit queue for this channel now has room for a write.
The tx_fn procedure must have the following syntax:
#include </usr/include/sys/comio.h>

void tx_fn (open_id)

ulong open_id,

open_id
Identifies the instance of open. This parameter is passed to the PDH with the ddopen call.

The kernel procedure calling the ddopen entry point is responsible for pinning the tx_fn kernel
procedure before making the call.

74 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Field Description
stat_fn Specifies the address of a kernel procedure to be called by the PDH whenever a status block becomes
available. This procedure must have the following syntax:

#include </usr/include/usr/comio.h>
void stat_fn (open_id, sblk_ptn);
ulong open_id,

struct status_block *sblk_ptr

open_id
Identifies the instance of open. This parameter is passed to the PDH with the ddopen entry
point.

sblk_ptr
Points to a status block defined in the /usr/include/sys/comio.h file.

The kernel procedure calling the ddopen entry point is responsible for pinning the stat_fn kernel
procedure before making the open call.

The rx_fn, tx_fn, and stat_fn procedures are made synchronously from the off-level portion of the
PDH at high priority from the PDH. Therefore, the called kernel procedure must return quickly.
Parameter blocks are passed by reference and are valid only for the call’s duration. After a return from
this call, the parameter block should not be accessed.

Execution Environment
A ddopen (kernel mode) entry point can be called from the [process environment| only.

Return Values

In general, communication device handlers use the common codes defined for an entry point. However,
device handlers for specific communication devices may return device-specific codes. The common return
codes for the ddopen entry point are the following:

Return Code Description

EINVAL Indicates a parameter is not valid.

EIO Indicates an error has occurred. Thefield contains the relevant exception code.

ENODEV Indicates there is no such device.

EBUSY Indicates the maximum number of opens was exceeded, or the device was opened in
exclusive-use mode.

ENOMEM Indicates the PDH was unable to allocate the space that it needed.

ENXIO Indicates an attempt was made to open the PDH before it was configured.

ENOTREADY Indicates the PDH is in the process of shutting down the adapter.

Related Information

The [CIO_GET_FASTWRT] ddioctl Communications PDH Operation, entry point, entry
point for user-mode processes, |ddwritg| entry point.

The entry point.

[Status Blocks for Communication Device Handlers Overview|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

[Communications Physical Device Handler Model Overview|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

Chapter 2. Communications Subsystem 75

ddopen (User Mode) Communications PDH Entry Point

Purpose
Performs data structure allocation and initialization for a communications physical device handler (PDH).
Syntax

#include <sys/device.h>
#include <sys/comio.h>

int ddopen (devno, devflag, chan, ext)
dev_t [devnoj;

ulong deuflagk

int |chani;

int EZﬂg

Parameters for User-Mode Processes

devno Specifies major and minor device numbers.
devflag Specifies the flag word with the following definitions:
DKERNEL
This flag must be clear, indicating call by a user-mode process.
DNDELAY

If this flag is set, the PDH performs nonblocking reads and writes for this channel. Otherwise,
blocking reads and writes are performed for this channel.

chan Specifies the channel number assigned by the device handler’sentry point.
ext Indicates device-dependent.
Description

The ddopen entry point performs data structure allocation and initialization. Hardware initialization and
other time-consuming activities such as call initialization are not performed. This call is synchronous and
does not return until the open operation is complete.

Execution Environment
A ddopen entry point can be called from the [process environment| only.

Return Values

In general, communication device handlers use the common return codes defined for an entry point.
However, device handlers for specific communication devices can return device-specific codes. The
common return codes for the ddopen entry point are:

Return Code Description

EINVAL Indicates a parameter is not valid.

ENODEV Indicates there is no such device.

EBUSY Indicates the maximum number of opens was exceeded.

ENOMEM Indicates the PDH was unable to allocate needed space.

ENOTREADY Indicates the PDH is in the process of shutting down the adapter.

ENXIO Indicates an attempt was made to open the PDH before it was configured.

Related Information
The entry point, entry point for kernel-mode processes.

76 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

ddread Communications PDH Entry Point

Purpose
Returns a data message to a user-mode process.

Syntax

#include <sys/device.h>
#include <sys/comio.h>

int ddread (devno, uiop, chan, extptr)
dev_t ;

struct uio * ;

int ;

read_extension * ;

Parameters

devno Specifies major and minor device numbers.

uiop Points to a@structure. For a calling user-mode process, the uio structure specifies the location and
length of the caller's data area in which to transfer information.

chan Specifies the channel number assigned by the device handler’sentry point.

extptr Indicates null or points to the read_extension structure. This structure is defined in the

lusr/include/sys/comio.h file.

Description
Note: The entry point should not to be called by a kernel-mode process.

The ddread entry point returns a data message to a user-mode process. This entry point may or may not
block, depending on the setting of the [DNDELAY]|flag. If a nonblocking read is issued and no data is

available, the ddread entry point returns immediately with O (zero) bytes.

For this entry point, the exiptr parameter points to an optional user-supplied read_extension structure.
This structure contains the following fields:

Field Description

status Contains additional information about the completion of the ddread entry point. Besides the status codes
listed here, device-dependent codes can be returned:
CIO_OK

Indicates the operation was successful.

CIO_BUF_OVFLW
Indicates the frame was too large to fit in the receive buffer. The PDH truncates the frame and
places the result in the receive buffer.

netid Specifies the network ID associated with the returned frame. If a CIO_BUF_OVFLW code was received,
this field may be empty.
sessid Specifies the session ID associated with the returned frame. If a CIO_BUF_OVFLW code was received,

this field may be empty.

Execution Environment
A ddread entry point can be called from the [process environment| only.

Chapter 2. Communications Subsystem 77

Return Values

In general, communication device handlers use the common codes defined for an entry point. However,
device handlers for specific communication devices may return device-specific codes. The common return
codes for the ddread entry point are the following:

Return Code Description

ENXIO Indicates an attempt to use an unconfigured device.

EINVAL Indicates a parameter is not valid.

EIO Indicates an error has occurred.

EACCES Indicates a call from a kernel process is not valid.

EMSGSIZE Indicates the frame was too large to fit into the receive buffer and that no exiptr parameter was
supplied to provide an alternate means of reporting this error with a status of |[CIO_BUF_OVFLW|

EINTR Indicates a locking mode sleep was interrupted.

EFAULT Indicates a supplied address is not valid.

EBIDEV Indicates the specified device does not exist.

Related Information

The |CIO_GET_FASTWRT] ddioctl Communication PDH Operation, [CIO_START| ddioctl Communication
PDH Operation.

The entry point, entry point.
The structure.

ddselect Communications PDH Entry Point

Purpose
Checks to see whether a specified event or events has occurred on the device.

Syntax

#include <sys/device.h>
#include <sys/comio.h>

int ddselect (devno, events, reventp, chan)

ushort * |reventpls

int |chanf;
Parameters
devno Specifies major and minor device numbers.

78 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

events Specifies conditions to check. The conditions are denoted by the bitwise OR of one or more of the
following:

POLLIN
Check whether receive data is available.

POLLOUT
Check whether transmit available.

POLLPRI
Check whether status is available.

POLLSYNC
Check whether asynchronous notification is available.
reventp Points to the result of condition checks. A bitwise OR of the following conditions is returned:

POLLIN
Indicates receive data is available.

POLLOUT
Indicates transmit available.

POLLPRI
Indicates status is available.
chan Specifies the channel number assigned by the device handler's [ddmpx] entry point.

Description

Note: This entry point should not be called by a kernel-mode process.

The ddselect communications PDH entry point checks and returns the status of 1 or more conditions for a

user-mode process. It works the same way the common device driver entry point does.

Execution Environment
A ddselect entry point can be called from the [process environment| only.

Return Values

In general, communication device handlers use the common return codes defined for an entry point.
However, device handlers for specific communication devices may return device-specific codes. The
common return codes for the ddselect entry point are the following:

Return

Code Description

ENXIO Indicates an attempt to use an unconfigured device.
EINVAL Indicates a specified argument is not valid.

EACCES Indicates a call from a kernel process is not valid.
EBUSY Indicates the maximum number of opens was exceeded.

ENODEV Indicates the device does not exist.

Related Information
The entry point.

Chapter 2. Communications Subsystem

79

ddwrite Communications PDH Entry Point

Purpose
Queues a message for transmission or blocks until the message can be queued.

Syntax

#include <sys/device.h>
#include <sys/comio.h>

int ddwrite (devno, uiop, chan, extptr)
dev_t ;

struct uio * ;

int ;

struct write_extension * ;

Parameters

devno Specifies major and minor device numbers.

uiop Points to a@structure specifying the location and length of the caller’s data.

chan Specifies the channel number assigned by the device handler’s entry point.

extptr Points to a write_extension structure. If the extptr parameter is null, then default values are assumed.
Description

The ddwrite entry point either queues a message for transmission or blocks until the message can be
queued, depending upon the setting of the DNDELAY| flag.

The ddwrite communications PDH entry point determines whether the data is in user or system space by
looking at the uiop->uio_segflg|field. If the data is in system space, then the [uiop->uio iov->iov base|
field contains an mbuf pointer. The mbuf chain contains the data for transmission. The Juiop->uio resid|
field has a value of 4. If the data is in user space, the data is located in the same manner as for the

device driver entry point.
write_extension Parameter Block

For this entry point, the exiptr parameter can point to a write_extension structure. This structure is
defined in the /usr/include/sys/comio.h file and contains the following fields:

Field Description
status Indicates the status of the port. This field may contain additional information about the completion of the
ddwrite entry point. Besides the status codes listed here, device-dependent codes can be returned:
CIO_OK
Indicates that the operation was successful.
CIO_NOMBUF

Indicates that the operation was unable to allocate mbuf structures.

80 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Field
flag

writid

Description
Contains a bitwise OR of one or more of the following:

CIO_NOFREE_MBUF
Requests that the physical device handler (PDH) not free thestructure after transmission
is complete. The default is bit clear (free the buffer). For a user-mode process, the PDH always
frees the mbuf structure.

CIO_ACK_TX_DONE
Requests that, when done with this operation, the PDH acknowledge completion by building a
status block. In addition, requests that the PDH either call the kernel status
function or (for a user-mode process) place the status block in the status or exception queue.
The default is bit clear (do not acknowledge transmit completion).

Contains the write ID to be returned in the CIO_TX_DONE status block. This field is ignored if the user
did not request transmit acknowledgment by setting CIO_ACK_TX_DONE status block in the f1ag field.

netid Contains the network ID.

Execution Environment
A ddwrite entry point can be called from the [process environment only.

Return Values

In general, communication device handlers use the common return codes defined for an entry point.
However, device handlers for specific communication devices can return device-specific codes. The
common return codes for the ddwrite entry point are the following:

Return Code Description

ENXIO Indicates an attempt to use an unconfigured device.

EINVAL Indicates a parameter that is not valid.

EAGAIN Indicates the transmit queue is full and the DNDELAY flag is set. The command was not
accepted.

EFAULT Indicates a specified address is not valid.

EINTR Indicates a blocking mode sleep was interrupted.

ENOMEM Indicates the operation was unable to allocate the needed mbuf space.

ENOCONNECT Indicates a connection was not established.

EBUSY Indicates the maximum number of opens was exceeded.

ENODEV Indicates the device does not exist.

Related Information

The [CIO_GET_FASTWRT] ddioctl Communications PDH Operation, [CIO_GET_STAT] ddioctl
Communications PDH Operation, |CIO_START| ddioctl Communications PDH Operation.

The entry point.
The structure.

ent_fastwrt Ethernet Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Provides a faster means for a kernel user to transmit data from the Ethernet device.

Chapter 2. Communications Subsystem

81

Syntax

#include <sys/device.h>
#include <sys/comio.h>
#include <sys/entuser.h>
#include <sys/mbuf.h>

int ent fastwrt(devno, m)

int |devnol;

struct mbuf * ﬂ;

Description

By using the ent_fastwrt entry point, a kernel-mode user can transmit data more quickly than through the
normal write system call. The address of the ent_fastwrt entry point, along with the devno parameter, is
given to a kernel-mode caller by way of the CIO_GET_FASTWRT entioctl operation.

The ent_fastwrt entry point works with an Ethernet High-Performance LAN adapter that has been
correctly configured for use on a qualified network. Consult the adapter specifications for more information
on configuring the network adapter and network qualifications.

Parameters
devno Specifies major and minor device numbers.
m Points to an structure containing the caller’s data.

Execution Environment

The ent_fastwrt entry point can be called from the kernel process environment or the interrupt
environment. If the ent_fastwrt function is called from the interrupt environment it is the responsibility of
the caller to ensure that the interrupt level is ENT_OFF_LEVEL, as defined in the /usr/include/sys/
entuser.h file, or a less-favored priority.

The ent_fastwrt entry point does not support a multiple-packet write. The m_nextpkt field in the mbuf
structure is ignored by the device driver.

The ent_fastwrt entry point does not support a write extension. The mbufs are freed when the transmit is
complete, and no transmit acknowledgement is sent to the caller. If these defaults are not appropriate, use
the normal entwrite entry point.

The entwrite entry point assumes a trusted caller. The parameter checking done in the normal entwrite

entry point is not done in the ent_fastwrt entry point. The caller should ensure such things as a valid
devno parameter and a valid mbuf length.

Return Values

ENODEV Indicates that a minor number is not valid.
EAGAIN Indicates that the transmit queue is full.

Related Information
The entry point.

The |CIO_GET_FASTWRT] entioctl Ethernet Device Handler Operation.

82 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

entclose Ethernet Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Resets the Ethernet device to a known state and returns system resources to the system.

Syntax
#include <sys/device.h>

int entclose (devno, chan, ext)
dev_t [devnoj;

int [chan|, |extl;

Parameters

devno Identifies major and minor device numbers.
chan Specifies the channel number assigned by the@ entry point.
ext Ignored by the Ethernet device handler.

Description

The entclose entry point closes the device. It is called when a user-mode caller issues aclose|
subroutine. Before issuing the entclose entry point, the caller should have issued a|CIO_HALT]| operation
for each successfully issued |CIO_START| operation during the particular instance of the open.

The entclose entry point functions with an Ethernet High-Performance LAN adapter that has been
correctly configured for use on a qualified network. Consult the adapter specifications for more information
on configuring the network adapter and network qualifications.

Note: For each entry point issued, there must be a corresponding entclose entry point.

If the caller has specified a multicast address, the caller first needs to issue the appropriate entioctl
operation to remove all multicast addresses before issuing the entclose entry point.

Execution Environment
An entclose entry point can be called from the [process environment| only.

Return Values

In general, communication device handlers use the common return codes defined for an entry point.
However, device handlers for specific communication devices may return device-specific codes. The
common return codes for the entclose entry point are the following:

Return

Code Description

ENXIO Indicates that the device is not configured.

EBUSY Indicates that the maximum number of opens was exceeded.

ENODEV Indicates that the specified device does not exist.

Chapter 2. Communications Subsystem 83

Related Information
The |CIO_START| entioctl Communications PDH Operation.

The subroutine.
The entry point, entry point.

entconfig Ethernet Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Initializes, terminates, and queries the vital product data (VPD) of the Ethernet device handler.

Syntax

#include <sys/device.h>
#include <sys/uio.h>

int entconfig (devno, cmd, uiop)

dev t |devnol

int |comd;
struct uio * ;
Parameters
devno Specifies major and minor device numbers.
cmd Specifies which of the following functions this routine should perform:
CFG_INI
Initializes device handler and internal data areas.
CFG_TERM
Terminates the device handler.
CFG_QVPD
Queries VPD.
uiop Points to a[uid] structure. The uio structure is defined in the /usr/include/sys/uio.h file.
Description

The entconfig entry point initializes, terminates, and queries the VPD of the Ethernet device handler.
The following are three possible entconfig operations:

The entconfig entry point functions with an Ethernet High-Performance LAN adapter that has been
correctly configured for use on a qualified network. Consult the adapter specifications for more information
on configuring the network adapter and network qualifications.

Operation Description

CFG_INIT Registers entry point of the Ethernet device handler by placing them into the device switch table for
the major device number specified by the devno parameter. The uio structure contains the jov_base
pointer, which points to the Ethernet [device-dependent structure] (DDS). The caller provides the uio
structure. The structure is copied into an internal save area by the init function.

84 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Operation Description
CFG_TERM If there are no outstanding opens, the following occurs:

* The Ethernet device handler marks itself terminated and prevents subsequent opens.
« All dynamically allocated areas are freed.

« All Ethernet device handler entry points are removed from the device switch table.
CFG_QVPD Returns the Ethernet VPD to the caller. The VPD is placed in the area specified by the caller in the
uio structure.

Execution Environment
An entconfig entry point can be called from the [process environment] only.

Return Values

In general, communication device handlers use the common return codes defined for an entry point.
However, device handlers for specific communication devices may return device-specific codes. The
common return codes for the entconfig entry point are the following:

Return Code Description

EINVAL Indicates an address range or op code (common to all entconfig cmd operations) is not valid.

EBUSY Indicates the device was already open in Diagnostic Mode and the open request was denied (issued
for CFG_TERM and CFG_INIT operations).

EEXIST Indicates the DDS structure already exists (CFG_TERM operation).

ENODEV Indicates no such device exists (issued for all three operations).

EUNATCH Indicates the protocol driver was not attached (issued for the CFG_TERM operation).

EFAULT Indicates a specified address (common to the CFG_QVPD and CFG_INIT operations) is not valid.

EINVAL Indicates a range or op code (common to all three operations) is not valid.

EACCES Indicates permission was denied because the device was already open, or because there were
outstanding opens that were unable to terminate (common to the CFG_TERM and CFG_QVPD
operations).

ENOENT Indicates no DDS to delete (common to the CFG_TERM and CFG_QVPD operations).

ENXIO Indicates no such device exists or the maximum number of adapters was exceeded (common to all
three operations).

EEXIST Indicates the DDS structure already exists (common to CFG_TERM and CFG_INIT operations).

EFAULT Indicates a specified address (issued for CFG_TERM and CFG_INIT operations) is not valid.

ENOMEM Indicates insufficient memory (issued for the CFG_INIT operation).

Related Information

[Device-Dependent Structure (DDS) Overview|in AlX 5L Version 5.3 Kernel Extensions and Device Support
Programming Concepits.

The structure.

entioctl Ethernet Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Provides various functions for controlling the Ethernet device.

Chapter 2. Communications Subsystem 85

Syntax

#include <sys/device.h>
#include <sys/devinfo.h>
#include <sys/ioctl.h>
#include <sys/comio.h>
#include <sys/entuser.h>

int entioctl (devno, cmd, arg, devflag, chan, ext)

dev_t_|devnol;

int [omd), argls

ulong |devflagls

int chan|, |ex t|;

Parameters

devno Specifies major and minor device numbers.

cmd Specifies which operation to perform. The possible entioctl operation codes can be found in the
lusr/include/sys/ioctl.h and /usr/include/sys/comio.h files.

arg Specifies the address of the entioctl parameter block.

devflag Specifies a parameter ignored by the Ethernet device handler.

chan Specifies the channel number assigned by the@ routine.

ext Specifies a parameter not used by the Ethernet device handler.

Description

The entioctl Ethernet device-handler entry point provides various functions for controlling the Ethernet
device. Common entioctl operations are supplemented by entioctl operations available for diagnostic
purposes.

The entioctl entry point functions with an Ethernet High-Performance LAN adapter that has been correctly
configured for use on a qualified network. Consult the adapter specifications for more information on
configuring the network adapter and network qualifications.

These are the common valid entioctl operations:

Operation Description

CCC_GET_VP Returns vital product data (VPD) about the adapter.
CIO_GET_FASTWR Provides the parameters required to issue a fast write.

Returns the current adapter and device handler status.

Halts a session and removes the registered network ID.

Returns the current random access storage (RAS) counter values.
Starts a session and registers a network ID.

Sets or resets a multicast address.

Returns 1/O character information.

The following entioctl operations are for diagnostic purposes:

Operation Description

CCC_TRCTBL Returns the address of the internal device driver trace table.
CIO_MEM_ACC Reads or writes data from or to selected adapter RAM addresses.
CIO_POS_ACC Reads or writes a byte from or to a selected adapter POS register
CIO_REG_ACC Reads or writes a byte from or to a selected adapter I/O register.

86 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

The following are DMA facilities operations:

Operation Description
ENT_LOCK_DMA Sets up (locks) a user buffer to DMA from or to the adapter.
ENT_UNLOCK_DMA Clears (unlocks) a user buffer from DMA control.

Execution Environment
An entioctl entry point can be called from the [process environment| only.

Related Information
The entry point.

CCC_GET_VPD (Query Vital Product Data) entioctl Ethernet Device
Handler Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Returns vital product data (VPD) about the Ethernet adapter.

Description

The CCC_GET_VPD operation returns VPD about the Ethernet adapter. For this operation, the arg
parameter points to the vital_product_data structure. This structure is defined in the
lusr/include/sys/ciouser.h file and has the following fields:

Field Description

status Indicates the status of the VPD characters returned in the array of characters. Valid values for this status

word are found in the /usr/include/sys/ciouser.h file:

VPD_NOT_READ
VPD data has not been obtained from the adapter.

VPD_NOT_AVAIL
VPD data is not available for this adapter.

VPD_INVALID
VPD data that was obtained is not valid.

VPD_VALID
VPD data was obtained and is valid.

Tength Specifies the number of bytes that are valid in the VPD character array. This value can be 0, depending

on the status returned.

vpd[n] An array of characters that contain the adapter's VPD. The number of valid characters is determined by

the length value.

The CCC_GET_VPD operation functions with an Ethernet High-Performance LAN adapter that has been
correctly configured for use on a qualified network. Consult the adapter specifications for more information

on configuring the network adapter and network qualifications.

Execution Environment
A CCC_GET_VPD operation can be called from the [process environment only.

Chapter 2. Communications Subsystem

Return Values
The return codes for the CCC_GET_VPD operation are:

Return

Code Description

EFAULT Indicates a specified address is not valid.
ENXIO Indicates no such device exists.

Related Information
The entry point.

[The Vital Product Data Structure (VPD) for the Ethernet Device Handlerin AIX 5L Version 5.3 Kernel
Extensions and Device Support Programming Concepts.

CIO_GET_FASTWRT (Get Fast Write) entioctl Ethernet Device Handler
Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Returns the parameters required to issue an caII.

Description

The CIO_GET_FASTWRT operation returns the parameters required to issue the kernel-mode fast write
for the Ethernet adapter. The parameters are returned in the cio_get_fastwrt structure, which is defined in
the /usr/include/sys/comio.h file. The arg pointer points to the cio_get_fastwrt structure, which contains
the following fields:

Field Description

status Indicates the status condition that occurred; either CIO_OK or CIO_INV_CMD.
fastwrt_fn Indicates the address of the fast write function.

devno Specifies major and minor numbers of the device.

The CIO_GET_FASTWRT operation works with an Ethernet High-Performance LAN adapter that has been
correctly configured for use on a qualified network. Consult adapter specifications for more information on
configuring the network adapter and network qualifications.

Execution Environment
The CIO_GET_FASTWRT operation can be called from a kernel-mode process only.

Return Values

EINVAL Indicates that a parameter is not valid.

ENODEV Indicates that a minor number is not valid.

ENXIO Indicates an attempt to use an unconfigured device.
EPERM Indicates the calling process is a user-mode process.
EBUSY Indicates the maximum number of opens was exceeded.

Related Information
The entry point, entry point.

88 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

CIO_GET_STAT (Get Status) entioctl Ethernet Device Handler
Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Returns the current Ethernet adapter and device handler status.
Description

Note: Only user-mode callers can use the CIO_GET_STAT operation.

The CIO_GET_STAT operation returns the current Ethernet adapter and device handler status. The device
handler fills in the parameter block with the appropriate information upon return. For this operation, the arg
parameter points to a status block structure. This structure is defined in the /usr/include/sys/comio.h file.

The CIO_GET_STAT operation functions with an Ethernet High-Performance LAN adapter that has been
correctly configured for use on a qualified network. Consult the adapter specifications for more information
on configuring the network adapter and network qualifications.

Status Blocks for the Ethernet Device Handler

Status blocks are used to communicate status and exception information to user-mode processes.

User-mode processes receive a status block whenever they request a CIO_GET_STAT operation. A

user-mode process can wait for the next available status block by issuing a entry point with the
_

specified |POLLPRI| event.

Status blocks contain a code field and possible options. The code field indicates the type of status block
code (for example, CIO_START_DONE).

Ethernet-specific status blocks are:
+ CIO_START_DONE
* CIO_HALT_DONE

The Ethernet device handler also returns the following general communications status blocks:
+ |ICIO_ASYNC_STATUS|

+ [CIO_LOST_STATUS|

+ [CIO_NULL_BLK]

+ [CIO_TX_DONE]

CIO_START_DONE

On successful completion of the |CIO_START] entioctl operation, a status block having the following fields
is provided:

Field Status

option[0] CIO_OK.

option[1] The two high-order bytes contain the two high-order bytes of the network address. The two
low-order bytes contain the middle two bytes of the network address.

option[2] The two low-order bytes contain the two low-order bytes of the network address.

Chapter 2. Communications Subsystem 89

CIO_HALT_DONE

On successful completion of the [CIO_HALT| entioctl operation, a status block having the following fields is
provided:

Field Status

option[0] CIO_OK
option[1] Not used
option[2] Not used

Execution Environment
A CIO_GET_STAT operation can be called from the [process environment] only.

Return Values
The return codes for the CIO_GET_STAT operation are:

Return

Code Description

EACCES Indicates that permission was denied.

EBUSY Indicates that the open request was denied because the device was already open in Diagnostic mode or

because the adapter was busy.
ENODEV Indicates that no such device exists.
ENXIO Indicates that an attempt was made to use an unconfigured device.

Related Information
The entry point.

CIO_HALT (Halt Device) entioctl Ethernet Device Handler Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Ends a session with the Ethernet device handler.

Description

The CIO_HALT operation ends a session with the Ethernet device handler. The caller indicates the
network ID to halt. This CIO_HALT operation corresponds with the |CIO_START]| operation successfully
issued with the specified network ID.

The CIO_HALT operation functions with an Ethernet High-Performance LAN adapter that has been
correctly configured for use on a qualified network. Consult the network adapter specifications for more
information on configuring the network adapter and network qualifications.

Data for the specified network ID is no longer received. Data already received for the specified network ID,
before the CIO_HALT operation, is still passed up to a user-mode caller by the [entselect| and |entread|
entry points. The routine specified at open time passes data to a kernel-mode caller.

When a CIO_HALT operation has ended the last open session on a channel, the caller should then issue

the operation.

Note: If the caller has specified a multicast address, the caller first needs to issue the appropriate
entry point to remove all the multicast addresses before issuing a CIO_HALT operation.

90 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

For a CIO_HALT operation, the arg parameter points to a session_blk structure. This structure is defined
in the /usr/include/sys/comio.h file and contains the following fields:

Field Description

status There are two possible returned status values:
.
* |CIO_NETID_IN

netid Specifies the network ID. When IEEE 802.3 Ethernet is being used, the network ID is placed in the least
significant byte of the netid field.

Execution Environment
A CIO_HALT operation can be called from the [process environment| only.

Return Values
The return codes for the CIO_HALT operation are:

Return

Code Description

EINVAL Indicates the specified network ID is not in the table.

EBUSY Indicates the open request was denied because the device was already open in Diagnostic mode or

because the adapter was busy.
ENODEV Indicates no such device exists.
ENXIO Indicates an attempt to use an unconfigured device.

Related Information
The |CIO_START]| entioctl Ethernet Device Handler Operation.

The entry point, entry point, entry point.

[Common Communications Status and Exception Codes|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

CIO_QUERY (Query Statistics) entioctl Ethernet Device Handler
Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Reads the counter values accumulated by the Ethernet device handler.

Description
The CIO_QUERY operation reads the counter values accumulated by the device handler. The counters

are initialized to 0 (zero) by each |CIO_START] operation issued.

For the CIO_QUERY operation, the arg parameter points to a query_parms structure. This structure is
defined in the /usr/include/sys/comio.h file and contains the following fields:

Field Description
status Specifies the current status condition. This field accepts two possible status values:
* [ClIO_O

+ |COP_BUF_OVFLW|

Chapter 2. Communications Subsystem 91

Field Description

buffptr Specifies the address of a buffer where the returned statistics are to be placed.
bufflen Specifies the length of the buffer.
clearall When set to a value of CIO_QUERY_CLEAR, the counters are cleared upon completion of the call.

This value is defined in the /usr/include/sys/comio.h file.

The CIO_QUERY operation specifies the device-specific information placed in the supplied buffer. The
counter placed in the supplied buffer by this operation is the ent_query_stats_t structure, which is defined
in the /usr/include/sys/entuser.h file.

The CIO_QUERY operation functions with an Ethernet High-Performance LAN adapter that has been
correctly configured for use on a qualified network. Consult the network adapter specifications for more
information on configuring the network adapter and network qualifications.

Execution Environment
A CIO_QUERY operation can be called from the [process environment] only.

Return Values
The return codes for the CIO_QUERY operation are:

Return

Codes Description

ENOMEM Indicates insufficient memory.

EIO Indicates the caller’s buffer is too small.

EBUSY Indicates the open request was denied because the device was already open in Diagnostic mode or

because the adapter was busy.
ENODEV Indicates no such device exists.
ENXIO Indicates an attempt to use an unconfigured device.

Related Information
The entry point, entry point.

The |CIO_START]| entioctl Ethernet Device Handler Operation.

CIO_START (Start Device) entioctl Ethernet Device Handler Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Establishes a session with the Ethernet device handler.

Description

The CIO_START operation establishes a session with the Ethernet device handler. The caller notifies the
device handler of the network ID that it will use. The caller can issue multiple CIO_START operations. For
each successful start issued, there should be a corresponding |CIO_HALT| operation issued.

The CIO_START operation functions with an Ethernet High-Performance LAN adapter that has been

correctly configured for use on a qualified network. Consult the adapter specifications for more information
on configuring the network adapter and network qualifications.

92 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

If the CIO_START operation is the first issued, the device handler initializes and opens the Ethernet
adapter. When the first CIO_START operation successfully completes, the adapter is ready to transmit and
receive data. The Ethernet adapter can receive the following packet types:

» Packets matching the Ethernet adapter’s burned-in address (or the address specified in the
[device-dependent structure| (DDS))

» Broadcast packets
* Multicast packets
» Packets matching the network ID specified in the netid field

The Ethernet device handler allows a maximum of 32 network IDs. The network ID must correspond to the
type field in a standard Ethernet packet or the destination service access point (DSAP) address in an IEEE
802.3 packet.

For the CIO_START operation, the arg parameter points to a session_blk structure. This structure is
defined in the /usr/include/sys/comio.h file and contains the following fields:

Field Description
status There are four possible returned status values:
+ [CIO_O

+ |ICIO_NETID_FULL]
+ [CIO_NETID_DUP|
+ [CIO_HARD_FAIL]
netid Specifies the network ID the caller uses on the network. When IEEE 802.3 Ethernet is being used, the
network ID is placed in the least significant byte of the netid field.
Note: The Ethernet device handler does not allow the caller to specify itself as the wildcard network ID.
Tength This field is used to specify the number of valid bytes in the netid field for mixed Ethernet. Valid values
are 1 or 2.

After the CIO_START operation has successfully completed, the caller is free to issue any valid Ethernet
command.

Note: The Ethernet device handler does not support indiscriminate addressing.

Execution Environment
A CIO_START operation can be called from the [process environment| only.

Return Values
The return codes for the CIO_START operation are the following:

Return Codes Description

ENETUNREACH Indicates the operation was unable to reach the network.

EBUSY Indicates the open request was denied because the device was already open in Diagnostic
mode or because the adapter was busy.

ENODEV Indicates no such device exists.

ENXIO Indicates an attempt to use an unconfigured device.

ENOSPC Indicates the netid table is full.

EADDRINUSE Indicates a duplicate network ID.

Related Information
The |CIO_HALT]| entioctl Ethernet Device Handler Operation.

The entry point.

Chapter 2. Communications Subsystem 93

[Common Communications Status and Exception Codes|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

ENT_SET_MULTI (Set Multicast Address) entioctl Ethernet Device
Handler Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Sets the multicast address for the Ethernet device.

Description

The ENT_SET_MULTI operation sets the multicast address for the Ethernet device. For this operation, the
arg parameter points to the ent_set_multi_t structure. This structure is defined in the
lusr/include/sys/entuser.h file and contains the following fields:

Field Description

opcode Specifies whether to add or delete a multicast address. When this field is ENT_ADD, the
multicast address is added to the multicast entry table. When this field is ENT_DEL, the
multicast address is removed from the multicast entry table. Valid Ethernet types are
defined in the /usr/include/sys/entuser.h file.

multi_addr(6) Identifies the multicast address array where the multi_addr(0) field specifies the most
significant byte and the multi_addr(5) field specifies the least significant byte.

The ENT_SET_MULTI operation functions with an Ethernet High-Performance LAN adapter that has been
correctly configured for use on a qualified network. Consult the adapter specifications for more information
on configuring the network adapter and network qualifications.

Note: The Ethernet device handler allows a maximum of 10 multicast addresses.

Execution Environment
An ENT_SET_MULTI operation can be called from the [process environment] only.

Return Values
The return codes for the ENT_SET_MULTI operation are:

Return Code Description

EFAULT Indicates the specified address is not valid.

EINVAL Indicates the operation code is not valid.

ENOSPC Indicates no space was left on the device. The multicast table is full.

ENOTREADY Indicates the device was not ready. (The firstoperation was not issued and not
completed.)

EACCES Indicates permission was denied. (The device was open in Diagnostic mode.)

EAFNOSUPPORT Indicates the address family was not supported by protocol. (The multicast bit in the address
was not set.)

ENXIO Indicates no such device exists.

Related Information
The entioctl Ethernet Device Handler Operation.

94 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

IOCINFO (Describe Device) entioctl Ethernet Device Handler Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Returns a structure that describes the Ethernet device.

Description

The IOCINFO operation returns a structure that describes the Ethernet device. For this operation, the arg
parameter points to the ethernet substructure, which is defined as part of the devinfo structure. This
devinfo structure is located in the /usr/include/sys/devinfo.h file and contains the following fields:

Field Description

devtype Identifies the device type. The Ethernet type is DD_NET_DH. This label is defined in the
lusrlinclude/sys/devinfo.h file.

devsubtype Identifies the device subtype. The Ethernet subtype is DD_EN. This label can be found in the
lusr/include/sys/devinfo.h file.

broad_wrap Indicates the adapter’s ability to receive its own packets. A value of 1 indicates that the adapter

can receive its own packets. A value of 0 indicates that the adapter cannot receive its own
packets. For this adapter, a value of 0 is returned.

rdto Specifies the receive data transfer offset. This value indicates an offset (in bytes) into the data
area of the receive page-sized mbuf structure. The device handler places received data in this
buffer.

haddr Identifies the 6-byte unique Ethernet adapter address. This address is the burned-in address that

is readable from the adapter’s vital product data (VPD). The most significant byte of the address
is placed in the haddr(0) field. The least significant byte is placed in the address specified by the
haddr(5) field.

net_addr Identifies the 6-byte unique Ethernet adapter address currently being used by the Ethernet
adapter card. This address is either the burned-in address (readable from the VPD) or the
alternate address that can be used to configure the adapter. The most significant byte of the
address is placed in the address specified by the net_addr(0) field. The least significant byte is
placed in the address specified by net_addr(5) field.

The IOCINFO operation functions with an Ethernet High-Performance LAN adapter that has been correctly
configured for use on a qualified network. Consult the adapter specifications for more information on
configuring the network adapter and network qualifications.

The parameter block is filled in with the appropriate values upon return.

Execution Environment
An IOCINFO operation can be called from the [process environment| only.

Return Values
The return codes for the IOCINFO operation are:

Return

Code Description

EFAULT Indicates a specified address is not valid.
EINVAL Indicates an operation code is not valid.
ENXIO Indicates no such device exists.

Related Information
The entry point.

Chapter 2. Communications Subsystem 95

entmpx Ethernet Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Allocates and deallocates a channel for an Ethernet device handler.

Syntax

#include <sys/device.h>

int entmpx (devno, chanp, channame)
dev_t
int *
char *

channamel;

Parameters

devno Specifies the major and minor device numbers.

chanp Contains the channel ID passed as a reference parameter. If the channame parameter is null, this
parameter is the channel ID to be deallocated. Otherwise, the chanp parameter is set to the ID of the
allocated channel.

channame Points to the remaining path name describing the channel to allocate. The channame parameter
accepts the following values:

null Deallocates the channel.

Pointer to a null string
Allows a normal open sequence of the Ethernet device on the channel ID generated by the
entmpx entry point.

Pointer to a "D”
Allows the Ethernet device to be opened in Diagnostic mode on the channel ID generated
by the entmpx entry point.

Description

The entmpx entry point allocates and deallocates a channel for an Ethernet device handler. This entry
point is not called directly by a user. The kernel calls the entmpx entry point in response to an open or
close request.

The entmpx entry point functions with an Ethernet High-Performance LAN adapter that has been correctly
configured for use on a qualified network. Consult the adapter specifications for more information on
configuring the adapter and network qualifications.

Note: If the Ethernet device has been successfully opened, any subsequent Diagnostic mode open
requests is unsuccessful. If the device has been successfully opened in Diagnostic mode, all
subsequent open requests is unsuccessful.

Execution Environment
An entmpx entry point can be called from the [process environment only.

Return Values

In general, communication device handlers use the common return codes defined for an entry point.
However, device handlers for specific communication devices may return device-specific codes. The
common return codes for the entmpx entry point are the following:

96 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Return

Code Description

EBUSY Indicates the maximum number of opens was exceeded.
ENOMSG No message of desired type.

ENODEV Indicates the specified device does not exist.

ENXIO Indicates the device is not configured.

Related Information
The entry point.

entopen Ethernet Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Initializes the Ethernet device handler and allocates the required system resources.

Syntax

#include <sys/device.h>
#include <sys/comio.h>
#include <sys/entuser.h>

int entopen (devno, devflag, chan, ext)
dev_t [devnoj;
ulong [devfiagly

int [chan|, |ext];

Parameters

devno Specifies major and minor device numbers for both kernel- and user-mode entry pointers.

devflag Specifies the DKERNEL flag, which must be set for a kernel-mode entry pointer. This flag cannot be
set for user-mode entry pointers.

chan Specifies the channel number assigned by the routine for both kernel- and user-mode entry
pointers.

ext Points to a kopen_ext structure. This structure is defined in the /usr/include/sys/comio.h file. This

parameter is valid only for kernel-mode users; it is null for user-mode users.

Description

The entopen entry point prepares the Ethernet device for transmitting and receiving data. It is called when
a user-mode entry pointer issues an lopen, openx| or|[creat| subroutine. After the entopen entry point has
successfully completed, the entry pointer must issue a|CIO_STAR !| operation before using the Ethernet
device handler. The device handler is then opened for reading and writing data.

The entopen entry point functions with an Ethernet High-Performance LAN adapter that has been
correctly configured for use on a qualified network. Consult the adapter specifications for more information
on configuring the network adapter and network qualifications.

Execution Environment
An entopen entry point can be called from the [process environment| only.

Chapter 2. Communications Subsystem 97

Return Values

In general, communication device handlers use the common return codes defined for an entry point.
However, device handlers for specific communication devices may return device-specific codes. The
common return codes for the entopen entry point are the following:

Return Code Description
EINVAL Indicates a range or op code that is not valid, or that the device is not in diagnostic mode.
ENOMEM Indicates insufficient memory.

ENOTREADY Indicates that the device was not ready. The first CIO_START operation was not issued and hence
not completed.
ENXIO Indicates that no such device exists. (The maximum number of adapters was exceeded.)

Related Information
The entry point, entry point.

The [open, openx, or create| subroutine.

The |CIO_START| entioctl Ethernet Device Handler Operation.

entread Ethernet Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Provides the means of receiving data from the Ethernet device handler.

Syntax

#include <sys/device.h>
#include <sys/uio.h>

int entread (devno, uiop, chan, ext)

dev_t ;

struct uio * luiop|;

int [chanl, [exth

Parameters

devno Specifies major and minor device numbers.

uiop Points to a uio structure. This structure is defined in the /usr/include/sys/uio.h file.

chan Specifies the channel number assigned by the routine.

ext Can specify the address of the entread parameter block. If the ext parameter is null, then no parameter

block is specified.

Description
Note: The entread entry point should only be called by user-mode callers.
The entread entry point provides the means of receiving data from the Ethernet device handler. When a

user-mode caller issues a|read, readx, readv, or readvx| subroutine, the kernel calls the entread entry
point.

98 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

When the entread entry point is called, the file system fills in the uio structure fields with the appropriate
values. In addition, the device handler copies the data into the buffer specified by the caller.

For the entread entry point, the ext parameter may point to the read_extension structure. This structure
is defined in the /usr/include/sys/comio.h file and contains the following field:

Field Description
status Contains one of the following status codes:
« |IClO_O

- [CIO_BUF_OVRFLW|
- [CIO_NOT_STARTED|

The entread entry point functions with an Ethernet High-Performance LAN adapter that has been correctly
configured for use on a qualified network. Consult the adapter specifications for more information on
configuring the network adapter and network qualifications.

Execution Environment
An entread entry point can be called from the [process environment| only.

Return Values

In general, communication device handlers use the common return codes defined for an entry point.
However, device handlers for specific communication devices may return device-specific codes. The
common return codes for the entread entry point are the following:

Return Code Description

EACCES Indicates permission was denied because the device was already open. Diagnostic mode open
request denied.

EFAULT Indicates a specified address is not valid.

EINTR Indicates an interrupted system call.

EIO Indicates an I/O error.

EMSGSIZE Indicates the data returned was too large for the buffer.

EBUSY Indicates the maximum number of opens was exceeded.

ENODEV Indicates the specified device does not exist.

ENOCONNECT Indicates no connection was established.

ENXIO Indicates an attempt to use an unconfigured device.

Related Information
The entry point.

[Common Communications Status and Exception Codes|in AlX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

entselect Ethernet Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Determines whether a specified event has occurred on the Ethernet device.

Chapter 2. Communications Subsystem 99

Syntax

#include <sys/device.h>
#include <sys/comio.h>

int entselect (devno, events, reventp, chan)

ushort =* |reventpl;
int |chan.;

Parameters

devno Specifies major and minor device numbers.

events Identifies the events to check.

reventp Returned events pointer passed by reference. This pointer is used by the entselect entry point to
indicate which of the selected events are true when the call occurs.

chan Specifies the channel number assigned by the [entmpx] entry point.

Description

Note: Only user-mode callers should use the entselect entry point.

The entselect entry point determines if a specified event has occurred on the Ethernet device. This entry
point must be called with theor|po||l subroutine.

When the Ethernet device handler is in a state in which the specified event cannot be satisfied (for
example, an adapter failure), then the entselect entry point sets the returned event flags to 1. This
prevents the select or poll subroutine from waiting indefinitely.

The entselect entry point functions with an Ethernet High-Performance LAN adapter that has been
correctly configured for use on a qualified network. Consult the adapter specifications for more information
on configuring the adapter and network qualifications.

Execution Environment
An entselect entry point can be called from the [process environment| only.

Return Values

In general, communication device handlers use the common return codes defined for an entry point.
However, device handlers for specific communication devices may return device-specific codes. The
common return codes for the entselect entry point are the following:

Return

Code Description

EACCES Indicates permission was denied because the device had not been initialized. Indicates that the
Diagnostic mode open request was denied. Indicates permission was denied because the call is from a
kernel-mode process.

ENXIO Indicates there was no such device. (Maximum number of adapters was exceeded.)

EBUSY Indicates the open request was denied because the device was already open in Diagnostic mode or
because the adapter was busy.

ENODEV Indicates no such device exists.

100 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Related Information
The [CIO_GET_FASTWRT] ddioctl Communications PDH Operation, the entry point.

The subroutine, subroutine.

entwrite Ethernet Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Provides the means for transmitting data from the Ethernet device.

Syntax

#include <sys/device.h>
#include <sys/uio.h>
#include <sys/comio.h>
#include <sys/entuser.h>

int entwrite (devno, uiop, chan, ext)

dev_t [devndl:

struct uio * [uiopf;

int [charl, [ext]

Parameters
devno Specifies major and minor device numbers.
uiop Points to a@ structure that provides variables to control the data transfer operation. This uio structure is

defined in the /usr/include/sys/uio.h file.
chan Specifies the channel number assigned by the@ entry point.

ext Specifies the address of the entwrite parameter block. If the ext parameter is null, then no parameter block
is specified.
Description

The entwrite entry point provides the means for transmitting data for the Ethernet device. The kernel calls
it when a user-mode caller issues a writex, writev, or writevx subroutine.

For a user-mode caller, the file system fills in the uio structure variables with the appropriate values. A
kernel-mode caller must fill in the uio structure in the same manner as the general entry point.

For the entwrite entry point, the ext parameter is a pointer to a write_extension structure. This structure
is defined in the /usr/include/sys/comio.h file and contains the following fields:

Field Description
status Identifies the status of the write operation. This field is in the write_extension structure and accepts
the following values:

+ [CIO_OK

:

write_id For a user-mode caller, the write_id field is returned to the caller by the operation if
the ACK_TX_DONE option is selected. For a kernel-mode caller, the write_id field is returned to the
caller by the function that was provided at open time.

Chapter 2. Communications Subsystem 101

The entwrite entry point functions with an Ethernet High-Performance LAN adapter that has been correctly
configured for use on a qualified network. Consult the adapter specifications for more information on
configuring the network adapter and network qualifications.

Execution Environment
An entwrite entry point can be called from the [process environment| only.

Return Values

In general, communication device handlers use the common return codes defined for an entry point.
However, device handlers for specific communication devices may return device-specific codes. The
common return codes for the entwrite entry point are the following:

Return Code Description

EAGAIN Indicates the transmit queue is full.

EFAULT Indicates a specified address is not valid.

EINTR Indicates an interrupted system call.

EINVAL Indicates an address range or op code is not valid.
ENOCONNECT Indicates no connection was established.

ENOMEM Indicates insufficient memory.

EBUSY Indicates the maximum number of opens was exceeded.
ENODEV Indicates the specified device does not exist.

ENXIO Indicates an attempt to use an unconfigured device.

Related Information
The entry point, entry point, entry point.

The [CIO_GET_FASTWRT] ddioctl Communications PDH Operation.

The writex, writev, or writevx subroutine.

The structure.

mpclose Multiprotocol (MPQP) Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Resets the Multiprotocol Quad Port (MPQP) adapter to a known state and returns system resources back
to the system on the last close for that adapter.

Syntax

int mpclose (devno, chan, ext)
dev_t devno;
int chan, ext;

Parameters

devno Specifies major and minor device numbers.

chan Specifies the channel number assigned by the [npmpx| entry point.
ext Ignored by the MPQP device handler.

102 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Description

The mpclose entry point routine resets the MPQP adapter to a known state and returns system resources
to the system on the last close for that adapter. The port no longer accepts mpread, mpwrite, or mpioctl
operation requests. The mpclose entry point is called in user mode by issuing a system call. The
mpclose entry point is invoked in response to an kernel service.

On an mpclose entry point, the MPQP device handler does the following:

* Frees all internal data areas for the corresponding entry point.
» Purges receive data queued for this mpopen entry point.

On the last mpclose entry point for a particular adapter, the MPQP device handler also does the following:
* Frees its interrupt level to the system.

* Frees the DMA channel.

» Disables adapter interrupts.

» Sets all internal data elements to their default settings.

The mpclose entry point closes the device. For each mpopen entry point issued, there must be a
corresponding mpclose entry point.

Before issuing the mpclose entry point, the caller should issue a operation for each
operation issued during that particular instance of open. If a close request is received without
a preceding CIO_HALT operation, the functions of the halt are performed. A close request without a
preceding CIO_HALT operation occurs only during abnormal termination of the port.

The mpclose entry point functions with a 4-port Multiprotocol Interface adapter that has been correctly
configured for use on a qualified network. Consult the adapter specifications for more information on
configuring the adapter and network qualifications.

Execution Environment
The mpclose entry point can be called from the [process environment| only.

Return Values
The common return codes for the mpclose entry point are:

Return

Code Description

ECHRNG Indicates the channel number is too large.

ENXIO Indicates the port initialization was unsuccessful. This code could also indicate that the registration of the

interrupt was unsuccessful.
ECHRNG Indicates the channel number is out of range (too high).

Related Information

The ntry point, [mpioct]] entry point, [npmpx| entry point, entry point, entry
mpselect t, Impwrite

point, entry poin entry point.

The |[CIO_HALT]| mpioctl MPQP Device Handler Operation, |CIO_START| mpioctl MPQP Device Handler

Operation.

The system call.
The kernel service.

Chapter 2. Communications Subsystem 103

mpconfig Multiprotocol (MPQP) Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Provides functions for initializing and terminating the Multiprotocol Quad Port (MPQP) device handler and
adapter.

Syntax
#include <sys/uio.h>

int mpconfig (devno, cmd, uiop)
dev_t devno;

int cmd;

struct uio *uiop;

Parameters
devno Specifies major and minor device numbers.
cmd Specifies the function to be performed by this routine. There are two possible functions:
CFG_INIT
Initializes device handler and internal data areas.
CFG_TERM
Terminates the device handler.
uiop Points to a[ui] structure. The uio structure is defined in the /usr/include/sys/uio.h file.
Description

The mpconfig entry point provides functions for initializing and terminating the MPQP device handler and
adapter. It is invoked through the /usr/include/sys/config device driver at device configuration time. This
entry point supports the following operations:

* |CFG_INI
* |[CFG_TERM

The mpconfig entry point functions with a 4-Port Multiprotocol Interface adapter that has been correctly
configured for use on a qualified network. Consult the adapter specifications for more information on
configuring the adapter and network qualifications.

Execution Environment
The mpconfig entry point can be called from the [process environment| only.

Related Information

The ntry point, mpioctl) entry point, entry point, entry point, entry
mpselect

point, entry point, mpwrite| entry point.

The routine.

[MPQP Device Handler Interface Overview}

[Communications 1/0 Subsystem: Programming Introduction|

104 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

mpioctl Multiprotocol (MPQP) Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Provides various functions for controlling the Multiprotocol Quad Port (MPQP) adapter.

Syntax

#include <sys/devinfo.h>
#include <sys/ioctl.h>
#include <sys/comio.h>
#include <sys/mpgp.h>

int mpioctl

(devno, cmd, extptr, devflag, chan, ext)
dev_t devno;

int cmd, extptr;

ulong devflag;

int chan, ext;

Parameters

devno Specifies major and minor device numbers.

cmd Identifies the operation to be performed.

extptr Specifies an address of the parameter block.

devflag Allows mpioctl calls to inherit properties that were specified at open time. The MPQP device handler

inspects the DNDELAY] flag for ioctl calls. Kernel-mode data link control (DLC) sets the DKERNAL] flag

that must be set for an mpopen call.

chan Specifies the channel number assigned by the [mpmpx] entry point.
ext Not used by MPQP device handler.
Description

The mpioctl entry point provides various functions for controlling the MPQP adapter. There are 16 valid
mpioctl operations, including:

Operation Description

CIO_GET_STATUS Gets the status of the current MPQP adapter and device handler.

Ends a session with the MPQP device handler.

Initiates a session with the MPQP device handler.

Reads the counter values accumulated by the MPQP device handler.

Permits the DLC to change certain profile parameters after the MPQP device has been

started.
MP_START_AR Puts the MPQP port into Autoresponse mode.
MP_STOP_AR Permits the MPQP port to exit Autoresponse mode.

The mpioctl entry point functions with a 4-Port Multiprotocol Interface adapter that has been correctly
configured for use on a qualified network. Consult the adapter specifications for more information on
configuring the adapter and network qualifications.

The possible mpioctl operation codes can be found in the /usr/include/sys/ioctl.h, /usr/include/sys/
comio.h, and /usr/include/sys/mpqp.h files.

Execution Environment
The mpioctl entry point can be called from the [process environment| only.

Chapter 2. Communications Subsystem 105

Return Values
The common return codes for the mpioctl entry point are:

Return

Code Description

ENOMEM Indicates the no memory buffers (mbufs) or mbuf clusters are available.
ENXIO Indicates the adapter number is out of range.

Related Information

The ntry point, [Impconfig| entry point, entry point,, entry point, entry
mpselect

point, entry point, Impwrite| entry point.

The |CIO_GET_STAT| mpioctl MPQP Device Handler Operation, [CIO_HALT| mpioctl MPQP Device Handler

Operation, [CIO_QUERY| mpioctl MPQP Device Handler Operation, |CIO_START]| mpioctl MPQP Device
Handler Operation, [MP_CHG_PARMS| mpioctl MPQP Device Handler Operation, [MP_START_AR and|
|MP_STOP_AR| mpioctl MPQP Device Handler Operations.

CIO_GET_STAT (Get Status) mpioctl MPQP Device Handler Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Gets the status of the current Multiprotocol Quad Port (MPQP) adapter and device handler.
Description

Note: Only user-mode processes can use the CIO_GET_STAT operation.

The CIO_GET_STAT operation gets the status of the current MPQP adapter and device handler. For the
MPQP device handler, both solicited and unsolicited status can be returned.

Solicited status is status information that is returned as a completion status to a particular operation. The
[C10_START] |[CIO_HALT| and [mpwrite| operations all have solicited status returned. However, for many
asynchronous events common to wide-area networks, these are considered unsolicited status. The
asynchronous events are divided into three classes:

* Hard failures
» Soft failures
* Informational (or status-related) messages

The CIO_GET_STAT operation functions with a 4-Port Multiprotocol Interface adapter that has been
correctly configured for use on a qualified network. Consult the adapter specifications for more information
on configuring the adapter and network qualifications.

Status Blocks for the Multiprotocol Device Handler

For the CIO_GET_STAT operation, the extptr parameter points to a status_block structure. When
returned, the device handler fills this structure with the appropriate information. The status_block structure
is defined in the /usr/include/sys/comio.h file and returns one of seven possible status conditions:

Status blocks are used to communicate status and exception information to user-mode processes.

106 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

User-mode processes receive a status block whenever they request a CIO_GET_STAT operation. A

user-mode process can wait for the next available status block by issuing a entry point with the
_

specified [POLLPRI| event.

Status blocks contain a code field and possible options. The code field indicates the type of status block
code (for example, CIO_START_DONE). Seven possible MPQP status blocks exist:

+ [CIO_ASYNC_STATUS|
[CIO_HALT_DONE]
(CIO_START_DONE|
[CIO_TX_DONE|
(MP_END_OF AUTO_RESP|
(MP_RDY_FOR_MAN_DIAL]
[MP_THRESH_EXC]|

CIO_ASYNC_STATUS Status Block
Asynchronous status notifies the data link control of asynchronous events such as network and adapter
failures.

Code CIO_ASYNC_STATUS
option[0] Can be one of the following:

MP_DSR_DROPPED, MP_RCV_TIMEOUT, MP_RELOAD_CMPL, MP_RESET_CMPL,
MP_X21_CLEAR

option[1] Not used

option[2] Not used

option[3] Not used

Note: The MP_RELOAD_C and MPLMP_RESET_CMPL values are for diagnostic use only.

CIO_HALT_DONE Status Block
The |CIO_HALT]| operation ends a session with the MPQP device handler. On a successfully completed
Halt Device operation, the following status block is provided:

Code CIO_HALT_DONE

option[0] CIO_OK

option[1] MP_FORCED_HALT or MP_NORMAL_HALT
option[2] MP_NETWORK_FAILURE or MP_HW_FAILURE

A forced halt is a halt completed successfully in terms of the data link control is concerned, but terminates
forcefully because of either an adapter error or a network error. This is significant for X.21 or other
switched networks where customers can be charged if the call does not disconnect properly.

Note: When using the X.21 physical interface, X.21 centralized multiport (multidrop) operation on a
leased-circuit public data network is not supported.

CIO_START_DONE Status Block
On a successfully completed [CIO_START] operation, the following status block is provided:

Code CIO_START_DONE
option[0] CIO_OK
option[1] Network ID

Chapter 2. Communications Subsystem 107

Code CIO_START_DONE

option[2] Not used

option[3] Not used

On an unsuccessful Start Device CIO_START mpioctl operation, the following status block is provided:

Code CIO_START_DONE

option[0] Can be one of the following:

MP_ADAP_NOT_FUNC
Adapter not functional

MP_TX_FAILSAFE_TIMEOUT
Transmit command did not complete.

MP_DSR_ON_TIMEOUT
DSR failed to come on.

MP_DSR_ALRDY_ON
DSR already on for a switched line.

MP_X21_RETRIES_EXC
X.21 retries exceeded. Call not completed.

MP_X21_TIMEOUT
X.21 timer expired.

MP_X21_CLEAR
Unexpected clear received from the DCE.

option[1] If the option[0] field is set to MP_X21_TIMEOUT, the option[1] field
contains the specific X.21 timer that expired.

option[2] Not used.

option[3] Not used.

CIO_TX_DONE Status Block
On completion of a multiprotocol transmit, the following status block is provided:

Code CIO_TX_DONE
option[0] Can be one of the following:
CIO_OK

MP_TX_UNDERRUN
MP_X21_CLEAR

MP_TX_FAILSAFE_TIMEOUT
The transmit command did not complete.

MP_TX_ABORT
Transmit aborted due to CIO_HALT operation.

option[1] Identifies the write_id field supplied by the caller in the write command if
TX_ACK was selected.

option[2] Points to the buffer with transmit data.

option[3] Not used.

108 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

MP_END_OF_AUTO_RESP Status Block
The MP_STOP_AR mpioctl operation has completed. The adapter is in Normal Receive mode. All receive
data is routed to the data link control.

Code MP_END_OF_AUTO_RESP
option[0] CIO_OK
option[1] Not used
option[2] Not used
option[3] Not used

MP_RDY_FOR_MAN_DIAL Status Block
The manual dial switched line is ready for dialing. The start operation is pending the call completion.

Code MP_RDY_FOR_MAN_DIAL
option[0] CIO_OK
option[1] Not used
option[2] Not used
option[3] Not used

MP_THRESH_EXC Status Block
A threshold for one of the counters defined in the start profile has reached its threshold.

Code MP_THRESH_EXC

option[0] Indicates the expired threshold.

The following values are returned to indicate the
threshold that was exceeded: MP_TOTAL_TX_ERR,
MP_TOTAL_RX_ERR, MP_TX_PERCENT,
MP_RX_PERCENT

option[1] Not used.
option[2] Not used.
option[3] Not used.

Execution Environment
The CIO_GET_STAT operation can be called from the [process environment only.

Return Values
The return codes for the CIO_GET_STAT operation are:

Return

Code Description

ENOMEM Indicates no mbufs or mbuf clusters are available.
ENXIO Indicates the adapter number is out of range.

Related Information

The |CIO_HALi| mpioctl MPQP Device Handler Operation, |CIO_QUER7| mpioctl MPQP Device Handler
Operation, [CIO_START| mpioctl MPQP Device Handler Operation, [MP_CHG_PARMS| mpioctl MPQP
Device Handler Operation, [MP_START_AR and MP_STOP_AR)| mpioctl MPQP Device Handler
Operations.

Chapter 2. Communications Subsystem 109

The entry point, entry point.
CIO_HALT (Halt Device) mpioctl MPQP Device Handler Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Ends a session with the Multiprotocol Quad Port (MPQP) device handler and terminates the connection to
the MPQP link.

Description

The CIO_HALT operation terminates a session with the MPQP device handler. The caller specifies which
network ID to halt. The CIO_HALT operation removes the network ID from the network ID table and
disconnects the physical link. A CIO_HALT operation must be issued for each operation that
completed successfully.

Data received for the specified network ID before the CIO_HALT operation is called can be retrieved by
the caller using the [mpselect| and Impread| entry points.

If the CIO_HALT operation terminates abnormally, the status is returned either asynchronously or as part
of the [CIO_HALT DONE| Whatever the case, the [CIO_GET_STAT] operation is used to get information
about the error. When a halt is terminated abnormally (for example, due to network failure), the following
occurs:

* The link is terminated.
» The drivers and receivers are disabled for the indicated port.
* The port can no longer transmit or receive data.

No recovery procedure is required by the caller; however, logging the error is required.

Errors are reported on halt operations because the user could continue to be charged for connect time if
the network does not recognize the halt. This error status permits a network application to be notified
about an abnormal link disconnection and then take corrective action, if necessary.

The CIO_HALT operation functions with a 4-Port Multiprotocol Interface adapter that has been correctly
configured for use on a qualified network. Consult the adapter specifications for more information on
configuring the adapter and network qualifications.

Parameter Block
For the MPQP CIO_HALT operation, the extptr parameter points to a session_blk structure. This structure
is defined in the /usr/include/sys/comio.h file and contains the following fields:

Field Description

status Specifies the status of the port. This field is set for immediately detectable errors. Possible values for the
status filed are:
« CIO_OK

» CIO_NETID_INV

If the calling process does not wish to sleep while the halt is in progress, the DNDELAY option can be
used. In either case, the status of the halt is retrieved using the CIO_GET_STATUS operation and a
CIO_HALT_DONE status block is returned. The CIO_HALT_DONE status block should be used as an
indication of completion.

netid Contains the network ID the caller wishes to halt. The network ID is placed in the least significant byte of
the netid field.

110 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Execution Environment
The CIO_HALT operation can be called from the [process environment only.

Return Values

The CIO_HALT operation returns common communications return values. In addition, the following MPQP
specific errors may be returned:

Error Description

EBUSY Indicates the device is not started or is not in a data transfer state.

ENOMEM Indicates there are no mbufs or mbuf clusters available.

ENXIO Indicates the adapter number is out of range.

Files

lusr/include/sys/comio.h Contains the session_blk structure definition.

Related Information
The entry point, entry point.

The [C10_GET_STAT] mpioctl MPQP Device Handler Operation, [CIO_QUERY] mpioctl MPQP Device
Handler Operation, [CIO_START| mpioctl MPQP Device Handler Operation, [MP_CHG_PARMS| mpioctl
MPQP Device Handler Operation, [MP_START_AR and MP_STOP_AR)| mpioctl MPQP Device Handler
Operations.

[Status Blocks for the Multiprotocol Device Handler]

CIO_QUERY (Query Statistics) mpioctl MPQP Device Handler
Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Provides the means to read counter values accumulated by the Multiprotocol Quad Port (MPQP) device
handler.

Description

The CIO_QUERY operation reads the counter values accumulated by the MPQP device handler. The
counters are initialized to 0 (zero) by the first entry point operation.

The CIO_QUERY operation returns the Reliability/Availability/Serviceability field of the define device
structure (DDS).

The CIO_QUERY operation functions with a 4-Port Multiprotocol Interface adapter that has been correctly
configured for use on a qualified network. Consult the adapter specifications for more information on
configuring the adapter and network qualifications.

The t_query_parms Parameter Block
For this operation, the extptr parameter points to an t_query_parms structure. This structure is defined in
the /usr/include/sys/mpqp.h file and has the following fields:

Chapter 2. Communications Subsystem 111

Field Description

status Contains additional information about the completion of the status block. Device-dependent codes may
also be returned.

CIO0_OK Indicates that the operation was successful.

bufptr Specifies the address of a buffer where the returned statistics are to be placed.

buflen Specifies the length of the buffer; it should be at least 45 words long (unsigned long).

reserve Reserved for use in future releases.

Statistics Logged for MPQP Ports
The following statistics are logged for each MPQP port.

* Bytes transmitted

» Bytes received

* Frames transmitted

* Frames received

* Receive errors

* Transmission errors

» DMA buffer not large enough or not allocated
» Autoresponse transmission fail-safe time out
» Autoresponse received time out

* CTS time out

» CTS dropped during transmit

* DSR time out

* DSR dropped

* DSR on before DTR on a switched line

» X.21 call-progress signal (CPS)

» X.21 unrecognized CPS

* X.21 invalid CPS

» DCE clear during call establishment

* DCE clear during data phase

* X.21 T1-T5 time outs

» X.21 invalid DCE-provided information (DPI)

Note: When using the X.21 physical interface, X.21 centralized multiport (multidrop) operation on a
leased-circuit public data network is not supported.

Execution Environment
The CIO_QUERY operation can be called from the [process environment only.

Return Values

EFAULT Indicates a specified address is not valid.

EINVAL Indicates a parameter is not valid.

EIO Indicates an error has occurred.

ENOMEM Indicates the operation was unable to allocate the required memory.
ENXIO Indicates an attempt to use unconfigured device.

Related Information
The entry point, entry point.

112 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

The |CIO_GET_STAT| mpioctl MPQP Device Handler Operation, |CIO_HALi| mpioctl MPQP Device Handler
Operation, [CIO_START| mpioctl MPQP Device Handler Operation, [MP_CHG_PARMS| mpioctl MPQP
Device Handler Operation, [MP_START_AR and MP_STOP_AR)| mpioctl MPQP Device Handler
Operations.

CIO_START (Start Device) mpioctl MPQP Device Handler Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Starts a session with the Multiprotocol Quad Port (MPQP) device handler.

Description

The CIO_START operation registers a network ID in the network ID table and establishes the physical
connection with the MPQP device. Once this start operation completes successfully, the port is ready to
transmit and receive data.

Note: The CIO_START operation defines the protocol- and configuration-specific attributes of the selected
port. All bits that are not defined must be set to 0 (zero).

For the MPQP CIO_START operation, the exiptr parameter points to a t_start_dev structure. This
structure contains pointers to the session_blk structure.

The session_blk structure contains the netid and status fields. The t_start_dev device-dependent
information for an MPQP device follows the session block. All of these structures can be found in the
lusr/include/sys/mpqp.h file.

The CIO_START operation functions with a 4-Port Multiprotocol Interface adapter that has been correctly

configured for use on a qualified network. Consult adapter specifications for more information on
configuring the adapter and network qualifications.

Chapter 2. Communications Subsystem 113

t _start _dev Fields

The t_start_dev structure contains the following fields:

Field Description
phys_Tlink Indicates the physical link protocol. Only one type of physical link is valid at a time.
The six supported values are:

Physical Link
Type

PL_232D
EIA-232D

PL_422A
EIA-422A

PL_V35
V.35

PL_X21
X.21

PL_SMART_MODEM
Hayes EIA232-D autodial protocol

PL_V25
V.25bis EIA-422A autodial protocol

Note: When using the X.21 physical interface, X.21 centralized multiport (multidrop)
operation on a leased-circuit public data network is not supported.

If the phys_1ink field is PL_SMART_MODEM or PL_V25, the dial_proto and
dial_flags fields are applicable. Otherwise, these fields are ignored. If no dial
protocol or flags are supplied when the PL_SMART_MODEM or PL_V25 link is
selected, defaults are used. The defaults for the dial phase for a
PL_SMART_MODEM link is an asynchronous protocol at 2400 baud with even parity,
7 bits per character, and 1 stop bit. A PL_V25 link has the same defaults.
dial_proto Identifies the autodial protocol, which communicates with the modem to send
information such as dial sequence or register settings. Most modems use an
asynchronous protocol during the connect phase of call establishment. If no value is
set, the default mode is asynchronous.
Note: The dial_proto field is ignored if the physical link is not an autodial protocol.
data_proto Identifies the possible data protocol selections during the data transfer phase. The
data_flags field has different meanings depending on what protocol is selected. The
data_proto field accepts the following values:

DATA_PRO_BSC
Indicates a bisync protocol.

DATA_PRO_SDLC_FDX
Indicates receivers enabled during transmit.

DATA_PRO_SDLC_HDX
Indicates receivers disabled during transmit.

114 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Field Description
modem_flags Establishes modem characteristics. This field accepts the following values:

MF_AUTO
Indicates that the call is to be answered or dialed automatically.

MF_CALL
Indicates an outgoing call (switched only).

MF_CDSTL_OFF
Indicates that the data terminal ready (DTR) should be enabled without
waiting for ring indicate (RI) to connect data set to line.

MF_CDSTL_ON
Enables DTR after Rl occurs. If the data set ready (DSR) goes active prior
to RI, DTR is enabled and Rl is ignored.

MF_DRS_ON

Enables date rate selected (DRS).
MF_DRS_OFF

Disables DRS (full speed). This is the default.
MF_LEASED

Indicates a leased telephone circuit.
MF_LISTEN

Indicates an incoming call (switched only).
MF_MANUAL

Indicates that the operator answers or dials the call manually.
MF_SWITCHED

Indicates a switched telephone circuit.

Note: The MF_DRS_ON and MF_DRS_OFF modem characteristics are not currently
supported. The default is full speed.

poll_addr Identifies the address-compare value for a Binary Synchronous Communication (BSC)
polling frame or an Synchronous Data Link Control (SDLC) frame. If using BSC, a
value for the selection address must also be provided or the address-compare is not
enabled. If a frame is received that does not match the poll address (or select
address for BSC), the frame is not passed to the system.

select_addr Specifies a valid select address for BSC only.

modem_int_mask Reserved. This value must be 0.

Chapter 2. Communications Subsystem 115

Field Description
baud_rate Specifies the baud rate for transmit and receive clock. This field is used for date
terminal equipment (DTE) clocking only (that is, when the modem does not supply the
clock). Acceptable baud rates range from 150 baud to a maximum speed of 38400
baud. If this field contains a value that does not match one of the following choices,
the next lowest baud rate is used:
* 38400
* 19200
* 9600
* 4800
e 2400
« 2000
* 1200
* 1050
* 600
* 300

A value of 0 indicates the port is to be externally clocked (that is, use modem
clocking). The on-board baud rate generator is limited to a speed of 38400. All higher
baud rates up to the maximum of 64000 bits must be accomplished with modem
clocking. For RS232, the adapter drives a clock signal on the DTE clock. Most
modems provide their own clocking.

If the physical link is set to the PL_SMART_MODEM or PL_V25 link, the baud rate is
the speed of the dial sequence and modem clocking is used for data transfer.

rcv_timeout Indicates the period of time, expressed in 100-msec units (0.10 sec), used for setting
the receive timer. The MPQP device driver starts the receive timer whenever the
CIO_START operation completes and a final transmit occurs.

If a receive occurs that is not a receive final frame, the timer is restarted. The timer is
stopped when the receive final occurs. If the timer expires before a receive occurs, an
error is reported to the logical link control (LLC) protocol. After the CIO_START
operation completes, the receive time out value can be changed by the
[MP_CHANGE_PARAMS| operation. A value of zero indicates that a receive timer
should not be activated.

Final frames in SDLC are all frames with the poll or final bit set. In BSC, all frames
are final frames except intermediate text block (ITB) frames.

rcv_data_offset Reserved
dial_data_length Specifies the length of the dial data. Dial data for Hayes-style dial data can be up to
256 bytes.

Flag Fields for Autodial Protocols

Flag fields in the t_start_dev structure take different values depending on the type of autodial protocol
selected.

Data Flags for the BSC Autodial Protocol

If BSC is selected in the data_proto field, either ASCIl or EBCDIC character sets can be used. Control
characters are stripped automatically on reception. Data link escape (DLE) characters are automaticall

inserted and deleted in transparent mode. If BSC Address Check mode is selected, values for both
addresses must be supplied. Odd parity is used if ASCII is selected.

The following are the default values:
« EBCDIC.

116 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

* Do not restart the receive timer.
* Do not check addresses.
¢ RTS controlled.

The data flags for the BSC autodial protocol are:

Data Flag Description

DATA_FLG_RST_TMR Reset receive timer.

DATA_FLG_ADDR_CHK Address-compare select. This causes frames to be filtered by the hardware
based on address. Only frames with matching addresses are sent to the
system.

DATA_FLG_BSC_ASC ASCII BSC select.

DATA_FLG_C_CARR_ON Continuous carrier (RTS always on).

DATA_FLG_C_CARR_OFF RTS-disabled between transmits (default).

Dial Flags for ASC Protocols

If ASC and the parity enable bit is set, the value for parity select is honored. A value of 0 equals even
parity. A value of 1 equals odd parity. If parity enable is set to 0, no parity type is enforced. The following
are acceptable ASC dial flags:

ASC Dial Flag Description

DIAL_FLG_PAR_EN Enable parity.

DIAL_FLG_PAR_ODD Odd parity.

DIAL_FLG_STOP_0 0 stop bits.

DIAL_FLG_STOP_1 1 stop bit.

DIAL_FLG_STOP_15 1.5 stop bits.

DIAL_FLG_STOP_2 2 stop bits.

DIAL_FLG_CHAR_5 5 bits per character.

DIAL_FLG_CHAR_6 6 bits per character.

DIAL_FLG_CHAR_7 7 bits per character.

DIAL_FLG_CHAR_8 8 bits per character.
DIAL_FLG_C_CARR_ON Continuous carrier (RTS always on).
DIAL_FLG_C_CARR_OFF RTS disabled between transmits (default).
DIAL_FLG_TX_NO_CTS Transmit without waiting for clear to send (CTS).
DIAL_FLG_TX_CTS Wait for CTS to transmit (default).

Data Flags for the SDLC Protocol

For the Synchronous Data Link Control (SDLC) protocol, the flag for NRZ or NRZI must match the
data-encoding method that is used by the remote DTE. If SDLC Address Check mode is selected, the poll
address byte must also be specified. The receive timer (RT) is started whenever a final block is
transmitted. If RT is set to 1, the receive timer is restarted after expiration. If RT is set to 0, the receive
timer is not restarted after expiration. The receive timer value is specified by the 16-bit rcv_time out field.
The following are the acceptable SDLC data flags:

SLDC Data Flag Description

DATA_FLG_NRzZI NRZI select (default is NRZ).
DATA_FLG_ADDR_CHK Address-compare select.
DATA_FLG_RST_TMR Restart receive timer.
DIAL_FLG_C_CARR_ON Continuous carrier (RTS always on).
DIAL_FLG_C_CARR_OFF RTS disabled between transmits (default).

Chapter 2. Communications Subsystem 117

t_auto_data Fields

The t_auto_data structure contains the following fields that specify aspects of the X.21 call progress
signal retry and logging data format:

Field Description

len Length of autodial to be sent to the modem.

sig[] Signals to be sent to the modem data in the form of an array of characters.

connect_timer Time-out value. This value is specified in 0.1 seconds. The adapter should wait for call to
complete before reporting a connection failure to the DLC. The default is 30 seconds if no
value is set.

v25b_tx_timer Time-out value. This value is specified in 0.1 seconds of delay after driving DTR and before

sending dial data in V.25bis modem protocol. If no value is set, a default value of 0.1
seconds is used.

t x21_data Fields

The t_x21_data structure contains the following fields that specify aspects of the X.21 call progress signal
retry and logging data format:

Field Description

selection signal Tength Contains the length of the data held in the selection-signals portion of
the buffer in bytes. Values from 0 to 256 are valid.

selection signals The selection signals are allocated 256 bytes each. ltems are stored in
the International Alphabet 5 (IA5) format.

retry cnt Indicates how many attempts at outgoing call establishment must fail

before the adapter software returns an error to the driver for the
CIO_START operation. Values between 0 and 255 are allowed. This is

a 1-byte field.

retry delay Contains the number of 100-msec (0.1 sec) intervals to wait between
successive call retries. This is a 2-byte field.

cps_group There are nine characters-per-second (cps) groups. Each cps group

can generate a driver interrupt after a configurable number of errors are
detected. Optionally, this interrupt can cause an X.21 network
transaction to notify network error-logging monitors of excessive error
rates. The netlog bit definitions determine which signals in each group
are considered countable.

Retry and Netlog Groups
Specify the retry and netlog fields for a cps-particular group. The bits definitions are as follows:

* In the retry field, a 1-bit (On) indicates that retries are enabled for this signal.

* In logging fields, a set bit indicates that errors of this type should be counted in the cumulative group
error statistics. Eventually, these statistics can generate interrupts to the driver.

Call progress signals are divided into groups of 10; for example, cps 43 is group 4, signal 3. To indicate
retries for cps 43, the value for signal 3 should be ORed into the retry unsigned short for group 4. Possible
values for retry groups are the following:

« CG_SIG_0
* CG_SIG_1
*+ CG_SIG_2
* CG_SIG_3
* CG_SIG_4
e CG_SIG_5

118 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

* CG_SIG_6
*+ CG_SIG_7
+ CG_SIG_8
+ CG_SIG_9

t_err_threshold Fields

The t_err_threshold structure describes the format for defining thresholds for transmit and receive errors.
Counters track the total number of transmit and receive errors. Individual counters track certain types of
errors. Thresholds can be set for individual errors, total errors, or a percentage of transmit and receive
errors from all frames received.

When a counter reaches its threshold value, a|status blockis returned by the driver. The status block
indicates the type of error counter that reached its threshold. If multiple thresholds are reached at the

same time, the first expired threshold in the list is reported as having expired and its counter is reset to 0.
The user can issue a |ClO_QUERY| operation call to retrieve the values of all counters.

If no thresholding is desired, the threshold should be set to 0. A value of 0 indicates that LLC should not
be notified of an error at any time. To indicate that the LLC should be notified of every occurrence of an

error, the threshold should be set to 1.

The t_err_threshold structure contains the following fields:

Field Description

tx_err_thresh Specifies the threshold for all transmit errors. Transmit errors include transmit underrun,
CTS dropped, CTS time out, and transmit failsafe time out.

rx_err_thresh Specifies the threshold for all Receive errors include overrun errors,

break/abort errors, framing/cyclic redundancy check (CRC)/frame check sequence (FCS)
errors, parity errors, bad frame synchronization, and receive-DMA-buffer-not-allocated
errors.

tx_err_percent Specifies the percentage of transmit errors that must occur before a status block is sent
to the LLC.

rx_err_percent Specifies the percentage of that must occur before a status block is sent to
the LLC.

Execution Environment
The CIO_START operation can be called from the [process environment only.

Return Values

EBUSY Indicates the port state is not opened for a CIO_START operation.
EFAULT Indicates the cross-memory copy service was unsuccessful.

EINVAL Indicates the physical link parameter is not valid for the port.

EIO Indicates the device handler could not queue command to the adapter.
ENOMEM Indicates no mbuf clusters are available.

ENXIO Indicates the adapter number is out of range.

Related Information
The ddioctl [CIO_GET_FASTWRT] entry point, entry point.

Chapter 2. Communications Subsystem 119

The |CIO_GET_STAT| mpioctl MPQP Device Handler Operation, |CIO_HALi| mpioctl MPQP Device Handler
Operation, [CIO_QUERY| mpioctl MPQP Device Handler Operation, [MP_CHG_PARMS| mpioctl MPQP
Device Handler Operation, [MP_START_AR and MP_STOP_AR)| mpioctl MPQP Device Handler
Operations.

MP_CHG_PARMS (Change Parameters) mpioctl MPQP Device Handler
Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Permits the data link control (DLC) to change certain profile parameters after the Multiprotocol Quad Port
(MPQP) device has been started.

Description

The MP_CHG_PARMS operation permits the DLC to change certain profile parameters after the MPQP
device has been started. The cmd parameter in the entry point is set to the MP_CHG_PARMS
operation. This operation can interfere with communications that are in progress. Data transmission should
not be active when this operation is issued.

For this operation, the exiptr parameter points to a chng_params structure. This structure has the
following changeable fields:

Field Description
chg_mask Specifies the mask that indicates which fields are to be changed. The possible choices are:

« CP_POLL_ADDR
* CP_RCV_TMR
* CP_SEL_ADDR

More than one field can be changed with one MP_CHG_PARAMS operation.

rcv_timer Identifies the timeout value used after transmission of final frames when waiting for receive data in
0.1 second units.

poll_addr Specifies theaddress. Possible values are Synchronous Data Link Control (SDLC) or Binary
Synchronous Communications (BSC) poll addresses.

sel_addr Specifies theaddress. BSC is the only possible protocol that supports select addresses.

Related Information
The entry point.

The |CIO_GET_STAT| mpioctl MPQP Device Handler Operation, [CIO_HALT| mpioctl MPQP Device Handler
CIO_QUERY|

Operation, [CIO_START| mpioctl MPQP Device Handler Operation, [CIO_QUERY| mpioctl MPQP Device
Handler Operation, [MP_START_AR and MP_STOP_AR| mpioctl MPQP Device Handler Operations.

MP_START_AR (Start Autoresponse) and MP_STOP_AR (Stop
Autoresponse) mpioctl MPQP Device Handler Operations

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Permits the Multiprotocol Quad Port (MPQP) to exit or enter Autoresponse mode.

120 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Description

The MP_START_AR and MP_STOP_AR operations permit the MPQP to enter and exit Autoresponse
mode. When the cmd parameter is set to the MP_STOP_AR operation, the device exits from
Autoresponse mode. All received data is sent up to the host. The data link control (DLC) receives an
end-of-autoresponse status in the status_block structure of the [CIO_GET_STAT] operation.

When the cmd parameter is set to the MP_START_AR operation, the port is put into Autoresponse mode.
The DLC supplies the address and control bytes for receive compare and transmit in the t_auto_resp
structure pointed to by the extptr parameter. This structure contains the following fields:

Field Description

rcv_timer Identifies the time in 100-msec units that the adapter waits after a frame has been transmitted
before reporting an error.

tx_rx_addr Contains the 1-byte address used for compare on the receive frames and as the address byte on
transmitted frames.

tx_cntl Specifies the control byte used for transmitted frames.

rx_cnt]l Identifies the value of control byte on receive frames used for receive compare.

Autoresponse mode is applicable for Synchronous Data Link Control SDLC protocol only. Autoresponse
reduces the amount of system overhead during nonproductive link communications. While Data
Termination Endpoints (DTEs) are exchange-control information to maintain the link, the adapter can
respond tofrom the host without generating any system interrupts.

When in Autoresponse mode, the MPQP adapter compares the receive address and control bytes with the
values supplied by the DLC. If a match is found, it generates a response frame with the address and
control bytes given in the MP_START_AR operation. When a response frame is transmitted, a timer is
started with the value given in the rcv_timer field. If the adapter does not receive a frame before the timer
expires, it detects an error and exits Autoresponse mode.

The following five conditions cause the MPQP adapter to exit Autoresponse mode:
* A receive time out occurs.
e A transmit time out occurs.

» A poll/final frame is received that does not compare with the control data given in the autoresponse
operation.

» A fatal link error occurs. Fatal errors include data rate select (DSR) dropped and X.21 cleared received.
* A stop autoresponse command is received from the DLC.

If one of these errors occurs, the adapter exits Autoresponse mode and stays in receive mode. Polls
received after these errors occur are passed to the DLC.

The autoresponse operations function with a 4-Port Multiprotocol Interface adapter been correctly
configured for use on a qualified network. Consult the adapter specifications for more information on
configuring the adapter and network qualifications.

Execution Environment
The autoresponse operations can be called from the [process environment only.

Return Values

ENOMEM Indicates no mbufs or mbuf clusters are available.
ENXIO Indicates the adapter number is out of range.

Chapter 2. Communications Subsystem 121

Related Information
The |CIO_GET_FASTWRT]ioctl Communications PDH Operation.

The |CIO_GET_STAT| mpioctl MPQP Device Handler Operation, [CIO_HALT| mpioctl MPQP Device Handler
CIO_START

Operation, [CIO_QUERY| mpioctl MPQP Device Handler Operation, |CIO_START]| mpioctl MPQP Device
Handler Operation, [MP_CHG_PARMS| mpioctl MPQP Device Handler Operation.

mpmpx Multiprotocol (MPQP) Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Allocates and deallocates a channel for the Multiprotocol Quad Port (MPQP) device handler.

Syntax

int mpmpx (devno, chanp, channame)
dev_t devno;

int *chanp;

char *channame;

int openflag;

Parameters
devno Specifies the major and minor device numbers.
chanp Identifies the channel ID passed as a reference parameter. Unless specified as null, the channame

parameter is set to the allocated channel ID. If this parameter is null it is set as the ID of the channel
to be deallocated.

channame Points to the remaining path name describing the channel to be allocated. There are four possible
values:

Equal to NULL
Deallocates the channel.

A pointer to a NULL string
Allows a normal open sequence of the device on the channel ID generated by the mpmpx
entry point.

D Allows the device to be opened in Diagnostic mode on the channel ID generated by the
mpmpx entry point.

Pointer to a "W”
Allows the MPQP device to be opened in Diagnostic mode with the adapter in Wrap mode.
The device is opened on the channel ID generated by the mpmpx entry point.

Description

The mpmpx entry point allocates and deallocates a channel. The mpmpx entry point is supported similar
to the common entry point.

Return Values
The common return codes for the mpmpx entry point are the following:

Return

Code Description

EINVAL Indicates an invalid parameter.

ENXIO Indicates the device was open and the Diagnostic mode open request was denied.
EBUSY Indicates the device was open in Diagnostic mode and the open request was denied.

122 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Related Information
The [ddmpx] entry point, Impclose| entry point, [mpconfig| entry point, entry point, entry
mpselec

point, entry point, entry point, [mpwrite| entry point.

[MPQP Device Handler Interface Overview|in AIX 5L Version 5.3 Kernel Extensions and Device Support
Programming Concepits.

[Communications 1/0 Subsystem: Programming Introduction|in ALX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

[Communications Physical Device Handler Model Overview|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

mpopen Multiprotocol (MPQP) Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Prepares the Multiprotocol Quad Port (MPQP) device for transmitting and receiving data.

Syntax

#include <sys/comio.h>

#include <sys/mpgqp.h> int mpopen (devno, devflag, chan, ext)
dev_t devno;

ulong devflag;

int chan;

STRUCT kopen_ext *ext;

Parameters
devno Specifies the major and minor device numbers.
devflag Specifies the flag word. For kernel-mode processes, the devflag parameter must be set to the

DKERNEL flag, which specifies that a kernel routine is making the mpopen call. In addition, the
following flags can be set:

DWRITE
Specifies to open for reading and writing.

DREAD
Specifies to open for a trace.

DNDELAY
Specifies to open without waiting for the operation to complete. If this flag is set, write
requests return immediately and read requests return with 0 length data if no read data is
available. The calling process does not sleep. The default is DELAY or blocking mode.

DELAY Specifies to wait for the operation to complete before opening. This is the default.
Note: For user-mode processes, the DKERNEL flag must be clear.
chan Specifies the channel number assigned by the [mpmpx] entry point.

ext Points to the [kopen_ext] parameter block for kerel-mode processes. Specifies the address to the
mpopen parameter block for user-mode processes.

Chapter 2. Communications Subsystem 123

Description

The mpopen entry point prepares the MPQP device for transmitting and receiving data. This entry point is
invoked in response to a[fp_open| kernel service call. The file system in user mode also calls the mpopen
entry point when an |open| subroutine is issued. The device should be opened for reading and writing data.

Each port on the MPQP adapter must be opened by its own mpopen call. Only one open call is allowed
for each port. If more than one open call is issued, an error is returned on subsequent mpopen calls.

The MPQP device handler only supports one kernel-mode process to open each port on the MPQP
adapter. It supports the multiplex (mpx) routines and structures compatible with the communications I/O
subsystem, but it is not a true multiplexed device.

The kernel process must provide a parameter block. This parameter block is found in
lusr/include/sys/comio.h file.

For a user-mode process, the ext parameter points to the mpopen structure. This is defined in the
lusr/include/sys/comio.h file. For calls that do not specify a parameter block, the default values are used.

If adapter features such as the read extended status field for [binary synchronous communication| (BSC)
message types as well as other types of information about read data are desired, the ext parameter must
be supplied. This also requires the subroutine. If a system call is used, user data is
returned, although status information is not returned. For this reason, it is recommended that readx
subroutines be used.

The mpopen entry point functions with a 4-Port Multiprotocol Interface Adapter that has been correctly
configured for use on a qualified network. Consult the adapter specifications for more information on
configuring the adapter and network qualifications.

Note: A|CIO_START|operation must be issued before the adapter is ready to transmit and receive data.
Write commands are not accepted if a CIO_START operation has not been completed successfully.

Execution Environment
The mpopen entry point can be called from the [process environment] only.

Return Values
The common return codes for the mpopen entry point are the following:

Return
Code Description
ENXIO Indicates that the port initialization was unsuccessful. This code could also indicate that the registration of

the interrupt was unsuccessful.

ECHRNG Indicates that the channel number is out of range (too high).

ENOMEM Indicates that there were no mbuf clusters available.

EBUSY Indicates that the port is in the incorrect state to receive an open call. The port may be already opened
or not yet configured.

Related Information

The ntry point, Impconfig| entry point, entry point, entry point, entry
mpselect

point, entry point, Impwrite| entry point.

The or readx subroutine.
The kernel service.

124 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

The |CIO_START| mpioctl MPQP Device Handler Operation.

mpread Multiprotocol (MPQP) Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Provides the means for receiving data from the Multiprotocol Quad Port (MPQP) device.

Syntax
#include <sys/uio.h>

int mpread (devno, uiop, chan, ext)
dev_t devno;

struct uio *uiop;

int chan, ext;

Parameters

devno Specifies the major and minor device numbers.

uiop Pointer to an structure that provides variables to control the data transfer operation. The uio structure
is defined in the /usr/include/sys/uio.h file.

chan Specifies the channel number assigned by the|mpmpx| routine.

ext Specifies the address of the|read_extension| structure. If the ext parameter is null, then no parameter

block is specified.

Description

Note: Only user-mode processes should use the mpread entry point.

The mpread entry point provides the means for receiving data from the MPQP device. When a user-mode
process user issues a subroutine, the kernel calls the mpread entry point.

The IDNDELAY]flag, set either at open time or later by an operation, controls whether mpread

calls put the caller to sleep pending completion of the call. If a program issues an mpread entry point with
the DNDELAY flag clear (the default), program execution is suspended until the call completes. If the
DNDELAY flag is set, the call always returns immediately. The user must then issue a poll and a
[CIO_GET_STAT]| operation to be notified when read data is available.

When user application programs invoke the mpread operation through the read or readx subroutine, the
returned length value specifies the number of bytes read. The status field in the read_extension
parameter block should be checked to determine if any errors occurred on the read. One frame is read
into each buffer. Therefore, the number of bytes read depends on the size of the frame received.

For a nonkernel process, the device handler copies the data into the buffer specified by the caller. The
size of the buffer is limited by the size of the internal buffers on the adapter. If the size of the use buffer
exceeds the size of the adapter buffer, the maximum number of bytes on a mpread entry point is the size
of the internal buffer. For the MPQP adapter, the maximum frame size is defined in the
lusr/include/sys/mpqp.h file.

Data is not always returned on a read operation when an error occurs. In most cases, the error causes an

error log to occur. If no data is returned, the buffer pointer is null. On errors such as buffer overflow, a
kernel-mode process receives the error status and the data.

Chapter 2. Communications Subsystem 125

There are also some cases where network data is returned (usually during a|ClO_START| operation).
Network data is distinguished from normal receive data by the status field in the read_extension
structure. A nonzero status in this field indicates an error or information about the data.

The MPQP device handler uses a fixed length buffer for transmitting and receiving data. The maximum
supported buffer size is 4096 bytes.

The mpread entry point functions with a 4-Port Multiprotocol Interface adapter that has been correctly
configured for use on a qualified network. Consult adapter specifications for more information on
configuring the adapter and network qualifications.

Note: The MPQP device handler uses fixed length buffers for transmitting and receiving data. The
RX_BUF_LEN field in the /usr/include/sys/mpgqp.h file defines the maximum buffer size.

read_extension Parameter Block

For the mpread entry points, the ext parameter may point to a read_extension structure. This structure is
found in the /usr/include/sys/comio.h file and contains this field:

Field Description

status Specifies the status of the port. There are six possible values for the returned status parameter. The
following status values accompany a data buffer:
CIO_OK

Indicates that the operation was successful.

MP_BUF_OVERFLOW
Indicates receive buffer overflow. For the MP_BUF_OVERFLOW value, the data that was
received before the buffer overflowed is returned with the overflow status.

MP_X21_CPS
Holds an X.21 call progress signal.

MP_X21_DPI
Holds information provided by X.21 Data Communications Equipment (DCE) (network data).

MP_MODEM_DATA
Contains modem data (for example, an autodial sent by the modem).

MP_AR_DATA_RCVD
Contains data received while in mode.

Note: When using the X.21 physical interface, X.21 centralized multiport (multidrop) operation on a
leased-circuit public data network is not supported.

Execution Environment
The mpread entry point can be called from the [process environment only.

Return Values

The mpread entry point returns the number of bytes read. In addition, this entry point may return one of
the following:

Return

Code Description

ECHRNG Indicates the channel number was out of range.
ENXIO Indicates the port is not in the proper state for a read.
EINTR Indicates the sleep was interrupted by a signal.
EINVAL Indicates the read was called by a kernel process.

126 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Related Information

The ntry point, Impconfig| entry point, entry point, entry point, entry
mpselect

point, entry point, mpwrite] entry point.

The subroutine.
The [CIO_START| mpioctl operation, [MP_START_AR| mpioctl operation.
The structure.

[Communications Physical Device Handler Model Overview|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

[MPQP Device Handler Interface Overview|in AIX 5L Version 5.3 Kernel Extensions and Device Support
Programming Concepts.

[Communications 1/0 Subsystem: Programming Introduction|in ALX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

mpselect Multiprotocol (MPQP) Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Provides the means for determining whether specified events have occurred on the Multiprotocol Quad
Port (MPQP) device.

Syntax

#include <sys/devices.h>
#include <sys/comio.h>

int mpselect (devno, events, reventp, chan)
dev_t devno;

ushort events;

ushort *reventp;

int chan;

Parameters

devno Specifies major and minor device numbers.

events Identifies the

reventp Returns events pointer. This parameter is passed by reference and is used by the mpselect entry point
to indicate which of theare true at the time of the call.

chan Specifies the channel number assigned by the@entry point.

Description

Note: Only user-mode processes can use the mpselect entry point.

The mpselect entry point provides the means for determining if specified events have occurred on the
MPQP device. This entry point is supported similar to the communications entry point.

Chapter 2. Communications Subsystem 127

The mpselect entry point functions with a 4-Port Multiprotocol Interface adapter that has been correctly
configured for use on a qualified network. Consult adapter specifications for more information on
configuring the adapter and network qualifications.

Execution Environment
The mpselect entry point can be called from the [process environment| only.

Return Values
The common return codes for the mpselect entry point are the following:

Return

Code Description

ENXIO Indicates an attempt to use an unconfigured device.

EINVAL Indicates the select operation was called from a kernel process.
ECHNG Indicates the channel number is too large.

Related Information
The entry point, entry point, entry point, entry point, entry
point, [mpread , [mpwrite

entry point entry point.

The communications PDH entry point.

The subroutine, subroutine.

[MPQP Device Handler Interface Overview|in AIX 5L Version 5.3 Kernel Extensions and Device Support
Programming Concepits.

[Communications 1/0 Subsystem: Programming Introduction|in ALX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

[Communications Physical Device Handler Model Overview|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

mpwrite Multiprotocol (MPQP) Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Provides the means for transmitting data to the Multiprotocol Quad Port (MPQP) device.

Syntax

#include <sys/uio.h>
#include <sys/comio.h>
#include <sys/mpqp.h>

int mpwrite (devno, uiop, chan, ext)
dev_t devno;

struct uio *uiop;

int chan, ext;

Parameters

devno Specifies major and minor device numbers.

128 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

uiop Points to a@ structure that provides variables to control the data transfer operation. The uio structure is
defined in the /usr/include/sys/uio.h file.

chan Specifies the channel number assigned by the@ entry point.

ext Specifies the address of the mp_write_extension parameter block. If the ext parameter is null, no
parameter block is specified.

Description

The mpwrite entry point provides the means for transmitting data to the MPQP device. The kernel calls it
when a user-mode process issues a|write or write)_<| subroutine. The mpwrite entry point can also be
called in response to an EEwritgl kernel service.

The MPQP device handler uses a fixed length buffer for transmitting and receiving data. The maximum
supported buffer size is 4096 bytes.

The mpwrite entry point functions with a 4-Port Multiprotocol Interface adapter that has been correctly
configured for use on a qualified network. Consult adapter specifications for more information on
configuring the adapter and network qualifications.

mpwrite Parameter Block

For the mpwrite operation, the ext parameter points to the mp_write_extension structure. This structure
is defined in the /usr/include/sys/comio.h file. The mp_write_extension structure contains the following
fields:

Field Description
status Identifies the status of the port. The possible values for the returned status field are:
CIO_OK
Indicates the operation was successful.
CIO_TX_FULL

Indicates unable to queue any more transmit requests.

CIO_HARD_FAIL
Indicates hardware failure.

CIO_INV_BFER
Indicates invalid buffer (length equals 0, invalid address).

CIO_NOT_STARTED
Indicates device not yet started.
write_id Contains a user-supplied correlator. The write id field is returned to the caller by the

CIO_GET_STAT] operation if the |[CIO_ACK_TX_DONE| flag is selected in the asynchronous status
block.

For a kernel user, this field is returned to the caller with the stat_fn function which was provided at
open time.

In addition to the common parameters, the mp_write_extension structure contains a field for selecting
Transparent mode for |binary synchronous communication| (BSC). Any nonzero value for this field causes
Transparent mode to be selected. Selecting Transparent mode causes the adapter to insert data link
escape (DLE) characters before all appropriate control characters. Text sent in Transparent mode is
unaltered. Transparent mode is normally used for sending binary files.

Note: If an mp_write_extension structure is not supplied, Transparent mode can be implemented by the
kernel-mode process by imbedding the appropriate DLE sequences in the data buffer.

Chapter 2. Communications Subsystem 129

Execution Environment
The mpwrite entry point can be called from the [process environment| only.

Return Values
The common return codes for the mpwrite entry point are the following:

Return
Code Description
EAGAIN Indicates that the number of direct memory accesses (DMAs) has reached the maximum allowed or that

the device handler cannot get memory for internal control structures.
Note: The MPQP device handler does not currently support thefunction. If a value of EAGAIN is
returned by an mpwrite entry point, the application is responsible for retrying the write.

ECHRNG Indicates that the channel number is too high.

EINVAL Indicates one of the following:

* The port is not set up properly.
» The MPQP device handler could not set up structures for the write.

» The port is not valid.
ENOMEM Indicates that no mbuf structure or clusters are available or the total data length is more than a page.
ENXIO Indicates one of the following:

» The port has not been successfully started.
» An invalid adapter number was passed.
» The specified channel number is illegal.

Related Information
The |Impclose] entry point, Impconfig| entry point, entry point, [mpmpx] entry point, entry
,[mpselect

point, entry point entry point.

The [CIO_GET_STAT] (Get Status) mpioctl MPQP Device Handler Operation.

The subroutine.
The structure.

[Communications Physical Device Handler Model Overview|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

[MPQP Device Handler Interface Overview|in AIX 5L Version 5.3 Kernel Extensions and Device Support
Programming Concepits.

[Communications 1/0 Subsystem: Programming Introduction|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

[Binary Synchronous Communication (BSC) with the MPQP Adapter|in AIX 5L Version 5.3 Kernel
Extensions and Device Support Programming Concepts.

tsclose Multiprotocol (PClI MPQP) Device Handler Entry Point

Purpose

Resets the IBM ARTIC960Hx adapter (PCl MPQP) and device handler to a known state and returns
system resources back to the system on the last close for that adapter.

130 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Syntax

int tsclose (devno, chan, ext)
dev_t devno;
int chan, ext;

Description

The tsclose entry point routine resets the PCI MPQP adapter to a known state and returns system
resources to the system on the last close for that adapter. The port no longer accepts tsread, tswrite, or
tsioctl operation requests. The tsclose entry point is called in user mode by issuing a system call.
The tsclose entry point is invoked in response to an kernel service.

On an tsclose entry point, the PCI MPQP device handler does the following:
* Frees all internal data areas for the corresponding entry point.
* Purges receive data queued for this tsopen entry point.

On the last tsclose entry point for a particular adapter, the PClI MPQP device handler also does the
following:

* Frees its interrupt level to the system.

* Frees the DMA channel.

» Disables adapter interrupts.

» Sets all internal data elements to their default settings.

The tsclose entry point closes the device. For each tsopen entry point issued, there must be a
corresponding tsclose entry point.

Before issuing the tsclose entry point, the caller should issue a operation for each
operation issued during that particular instance of open. If a close request is received without
a preceding CIO_HALT operation, the functions of the halt are performed. A close request without a
preceding CIO_HALT operation occurs only during abnormal termination of the port.

The tsclose entry point functions with a 4-port Multiprotocol Interface adapter that has been correctly
configured for use on a qualified network. Consult the adapter specifications for more information on
configuring the adapter and network qualifications.

Parameters

devno Specifies major and minor device numbers.

chan Specifies the channel number assigned by the@entry point.
ext Ignored by the PCI MPQP device handler.

Execution Environment
The tsclose entry point can be called from the [process environment only.

Return Values
The common return codes for the tsclose entry point are:

ECHRNG Indicates the channel number is too large.

ENXIO Indicates the port initialization was unsuccessful. This code could also indicate that the registration of
the interrupt was unsuccessful.

ECHRNG Indicates the channel number is out of range (too high).

Chapter 2. Communications Subsystem 131

Related Information

entry point, ftsioctl| entry point, entry point, entry point, entry point,
tsselect e tswrite] e

ntry point, ntry point.

The |CIO_HALT|tsioctl PCI MPQP Device Handler Operation, [CIO_START]| tsioctl PCI MPQP Device

Handler Operation.

The system call.
The kernel service.

tsconfig Multiprotocol (PClI MPQP) Device Handler Entry Point

Purpose

Provides functions for initializing and terminating the IBM ARTIC960Hx PCI adapter (PClI MPQP) and
device handler.

Syntax
#include <sys/uio.h>

int tsconfig (devno, cmd, uiop)
dev_t devno;

int cmd;

struct uio *uiop;

Description

The tsconfig entry point provides functions for initializing and terminating the PCI MPQP device handler
and adapter. It is invoked through the /usr/include/sys/config device driver at device configuration time.
This entry point supports the following operations:

* |ICFG_INI
* |CFG_TERM

The tsconfig entry point functions with a 4-Port Multiprotocol Interface adapter that has been correctly
configured for use on a qualified network. Consult the adapter specifications for more information on
configuring the adapter and network qualifications.

Parameters
devno Specifies major and minor device numbers.
cmd Specifies the function to be performed by this routine. There are two possible functions:
CFG_INIT
Initializes device handler and internal data areas.
CFG_TERM
Terminates the device handler.
uiop Points to a [uid] structure. The uio structure is defined in the /usr/include/sys/uio.h file.

Execution Environment
The tsconfig entry point can be called from the [process environment] only.

Related Information

entry point, [tsioctl| entry point, entry point, entry point, entry point,
tsselect| e tswritef e

ntry point, ntry point.

132 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

The routine.

[PCI MPQP Device Handler Interface Overview}

[Communications I/0 Subsystem: Programming Introduction]

tsioctl Multiprotocol (PCI MPQP) Device Handler Entry Point

Purpose

Provides various functions for controlling the IBM ARTIC960Hx PCI adapter (PClI MPQP) and device
handler.

Syntax

#include <sys/devinfo.h>

#include <sys/ioctl.h>

#include <sys/comio.h>

#include <sys/mpgp.h>

int tsioctl

(devno, cmd, extptr, devflag, chan, ext)
dev_t devno;

int cmd, extptr;

ulong devflag;

int chan, ext;

Description

The tsioctl entry point provides various functions for controlling the PClI MPQP adapter. There are 16 valid
tsioctl operations, including:

Gets the status of the current PClI MPQP adapter and device handler.

Ends a session with the PClI MPQP device handler.

Initiates a session with the PCI MPQP device handler.

Reads the counter values accumulated by the PClI MPQP device handler.

Permits the DLC to change certain profile parameters after the PCI MPQP device has
been started.

The tsioctl entry point functions with a 4-Port Multiprotocol Interface adapter that has been correctly
configured for use on a qualified network. Consult the adapter specifications for more information on
configuring the adapter and network qualifications.

The possible tsioctl operation codes can be found in the /usr/include/sys/ioctl.h, /usr/include/sys/
comio.h, and /usr/include/sys/mpgqp.h files.

Parameters

devno Specifies major and minor device numbers.

cmd Identifies the operation to be performed.

extptr Specifies an address of the parameter block.

devflag Allows tsioctl calls to inherit properties that were specified at open time. The PCI MPQP device
handler inspects theflag for ioctl calls. Kernel-mode data link control (DLC) sets the
[DKERNEL] flag that must be set for a tsopen call.

chan Specifies the channel number assigned by the @ entry point.

ext Not used by PCI MPQP device handler.

Chapter 2. Communications Subsystem 133

Execution Environment
The tsioctl entry point can be called from the [process environment| only.

Return Values
The common return codes for the tsioctl entry point are:

ENOMEM Indicates the no memory buffers (mbufs) or mbuf clusters are available.
ENXIO Indicates the adapter number is out of range.

Related Information

entry point, ftsconfig| entry point, entry point,, entry point, entry point,
tsselect| e tswritef e

ntry point, ntry point.

The [CIO_GET_STAT] tsioctl PCI MPQP Device Handler Operation, |CIO_HALi|tsioctI PCI MPQP Device
Handler Operation, [CIO_QUERY]| tsioctl PCI MPQP Device Handler Operation, [CIO_START|tsioctl PCI
MPQP Device Handler Operation, [MP_CHG_PARMS|tsioctl PClI MPQP Device Handler Operation.

CIO_GET_STAT (Get Status) tsioctl PCI MPQP Device Handler
Operation

Purpose
Gets the status of the current IBM ARTIC960Hx PCI adapter (PCI MPQP) and device handler.

Description
Note: Only user-mode processes can use the CIO_GET_STAT operation.

The CIO_GET_STAT operation gets the status of the current PCI MPQP adapter and device handler. For
the PCI MPQP device handler, both solicited and unsolicited status can be returned.

Solicited status is status information that is returned as a completion status to a particular operation. The
[CI0_START] [CIO_HALT] and [tswrite] operations all have solicited status returned. However, for many
asynchronous events common to wide-area networks, these are considered unsolicited status. The
asynchronous events are divided into three classes:

» Hard failures
» Soft failures
* Informational (or status-related) messages

The CIO_GET_STAT operation functions with a 4-Port Multiprotocol Interface adapter that has been
correctly configured for use on a qualified network. Consult the adapter specifications for more information
on configuring the adapter and network qualifications.

Status Blocks for the Multiprotocol Device Handler

For the CIO_GET_STAT operation, the extptr parameter points to a status_block structure. When
returned, the device handler fills this structure with the appropriate information. The status_block structure
is defined in the /usr/include/sys/comio.h file and returns one of the possible status conditions:

Status blocks are used to communicate status and exception information to user-mode processes.

134 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

User-mode processes receive a status block whenever they request a CIO_GET_STAT operation. A

user-mode process can wait for the next available status block by issuing a entry point with the
specified [POLLPRI| event.

Status blocks contain a code field and possible options. The code field indicates the type of status block
code (for example, CIO_START_DONE). The following possible PCI MPQP status blocks exist:

+ [CIO_ASYNC_STATUS|
[CIO_HALT_DONE]
(CIO_START_DONE|
[CIO_TX_DONE|
(MP_THRESH_EXC|

CIO_ASYNC_STATUS Status Block

Asynchronous status notifies the data link control of asynchronous events such as network and adapter
failures.

Code CIO_ASYNC_STATUS
option[0] Can be one of the following:

MP_DSR_DROPPED, MP_RCV_TIMEOUT, MP_RELOAD_CMPL, MP_RESET_CMPL,
MP_X21_CLEAR

option[1] Not used

option[2] Not used
option[3] Not used

Note: The MP_RELOAD_C and MPLMP_RESET_CMPL values are for diagnostic use only.

CIO_HALT_DONE Status Block
The |[CIO_HALT]| operation ends a session with the PCI MPQP device handler. On a successfully
completed Halt Device operation, the following status block is provided:

Code CIO_HALT_DONE

option[0] CIO_OK

option[1] MP_FORCED_HALT or MP_NORMAL_HALT
option[2] MP_NETWORK_FAILURE or MP_HW_FAILURE

A forced halt is a halt completed successfully in terms of the data link control is concerned, but terminates
forcefully because of either an adapter error or a network error. This is significant for X.21 or other
switched networks where customers can be charged if the call does not disconnect properly.

Note: When using the X.21 physical interface, X.21 centralized multiport (multidrop) operation on a
leased-circuit public data network is not supported.

CIO_START_DONE Status Block
On a successfully completed [CIO_START] operation, the following status block is provided:

Code CIO_START_DONE
option[0] CIO_OK

option[1] Network ID
option[2] Not used

option[3] Not used

Chapter 2. Communications Subsystem 135

On an unsuccessful Start Device CIO_START tsioctl operation, the following status block is provided:

Code CIO_START_DONE

option[0] Can be one of the following:

MP_ADAP_NOT_FUNC
Adapter not functional

MP_TX_FAILSAFE_TIMEOUT
Transmit command did not complete.

MP_DSR_ON_TIMEOUT
DSR failed to come on.

MP_DSR_ALRDY_ON
DSR already on for a switched line.

MP_X21_CLEAR
Unexpected clear received from the DCE.

option[1] If the option[0] field is set to MP_X21_TIMEOUT, the option[1] field
contains the specific X.21 timer that expired.

option[2] Not used.

option[3] Not used.

CIO_TX_DONE Status Block
On completion of a multiprotocol transmit, the following status block is provided:

Code CIO_TX_DONE
option[0] Can be one of the following:
CIO_OK

MP_TX_UNDERRUN
MP_X21_CLEAR

MP_TX_FAILSAFE_TIMEOUT
The transmit command did not complete.

MP_TX_ABORT
Transmit aborted due to CIO_HALT operation.
option[1] Identifies the write_id field supplied by the caller in the write command if
TX_ACK was selected.
option[2] Points to the buffer with transmit data.
option[3] Not used.

MP_THRESH_EXC Status Block
A threshold for one of the counters defined in the start profile has reached its threshold.

Code MP_THRESH_EXC

option[0] Indicates the expired threshold.

The following values are returned to indicate the
threshold that was exceeded: MP_TOTAL_TX_ERR,
MP_TOTAL_RX_ERR, MP_TX_PERCENT,
MP_RX_PERCENT

option[1] Not used.

136 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Code MP_THRESH_EXC
option[2] Not used.

option[3] Not used.

Execution Environment
The CIO_GET_STAT operation can be called from the [process environment| only.

Return Values
The return codes for the CIO_GET_STAT operation are:

ENOMEM Indicates no mbufs or mbuf clusters are available.
ENXIO Indicates the adapter number is out of range.

Related Information

The|CIO_HAL1_'| tsioctl PClI MPQP Device Handler Operation, |CIO_QUER7| tsioctl PClI MPQP Device
Handler Operation, [CIO_START| tsioctl PCI MPQP Device Handler Operation, [MP_CHG_PARMS| tsioct|
PCI MPQP Device Handler Operation.

The entry point, entry point.
CIO_HALT (Halt Device) tsioctl PClI MPQP Device Handler Operation

Purpose

Ends a session with the IBM ARTIC960Hx PCI adapter (PCI MPQP) and device handler and terminates
the connection to the PCI MPQP link.

Description

The CIO_HALT operation terminates a session with the PCI MPQP device handler. The caller specifies
which network ID to halt. The CIO_HALT operation removes the network ID from the network ID table and

disconnects the physical link. A CIO_HALT operation must be issued for each |CIO_START]| operation that
completed successfully.

Data received for the specified network ID before the CIO_HALT operation is called can be retrieved by
the caller using the [tsselect| and [tsread)| entry points.

If the CIO_HALT operation terminates abnormally, the status is returned either asynchronously or as part
of the [CIO_HALT _DONE| Whatever the case, the [CIO_GET_STAT] operation is used to get information
about the error. When a halt is terminated abnormally (for example, due to network failure), the following
occurs:

* The link is terminated.
» The drivers and receivers are disabled for the indicated port.
* The port can no longer transmit or receive data.

No recovery procedure is required by the caller; however, logging the error is required.
Errors are reported on halt operations because the user could continue to be charged for connect time if

the network does not recognize the halt. This error status permits a network application to be notified
about an abnormal link disconnection and then take corrective action, if necessary.

Chapter 2. Communications Subsystem 137

The CIO_HALT operation functions with a 4-Port Multiprotocol Interface adapter that has been correctly
configured for use on a qualified network. Consult the adapter specifications for more information on
configuring the adapter and network qualifications.

Parameter Block
For the PCI MPQP CIO_HALT operation, the exiptr parameter points to a session_blk structure. This
structure is defined in the /usr/include/sys/comio.h file and contains the following fields:

status Specifies the status of the port. This field is set for immediately detectable errors. Possible values for the
status filed are:

+ CIO_OK
» CIO_NETID_INV

If the calling process does not wish to sleep while the halt is in progress, the DNDELAY option can be
used. In either case, the status of the halt is retrieved using the CIO_GET_STAT operation and a
CIO_HALT_DONE status block is returned. The CIO_HALT_DONE status block should be used as an
indication of completion.

netid Contains the network ID the caller wishes to halt. The network ID is placed in the least significant byte of
the netid field.

Execution Environment
The CIO_HALT operation can be called from the [process environment only.

Return Values

The CIO_HALT operation returns common communications return values. In addition, the following PCI
MPQP specific errors may be returned:

EBUSY Indicates the device is not started or is not in a data transfer state.

ENOMEM Indicates there are no mbufs or mbuf clusters available.

ENXIO Indicates the adapter number is out of range.

Files

lusr/include/sys/comio.h Contains the session_blk structure definition.

Related Information
The entry point, entry point.
The [CIO_GET_STAT] tsioctl PCI MPQP Device Handler Operation, |CIO_QUER7| tsioctl PCI MPQP Device

Handler Operation, [CIO_STAR !|tsioct| PCI MPQP Device Handler Operation, [MP_CHG_PARMS] tsioctl
PCI MPQP Device Handler Operation.

[Status Blocks for the Multiprotocol Device Handler

CIO_QUERY (Query Statistics) tsioctl PCI MPQP Device Handler
Operation

Purpose

Provides the means to read counter values accumulated by the IBM ARTIC960Hx PCI adapter (PCI
MPQP) and device handler.

138 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Description

The CIO_QUERY operation reads the counter values accumulated by the PCI MPQP device handler. The
counters are initialized to 0 by the first entry point operation.

The CIO_QUERY operation returns the Reliability/Availability/Serviceability field of the define device
structure (DDS).

The CIO_QUERY operation functions with a 4-Port Multiprotocol Interface adapter that has been correctly
configured for use on a qualified network. Consult the adapter specifications for more information on
configuring the adapter and network qualifications.

The t_query_parms Parameter Block
For this operation, the exiptr parameter points to an t_query_parms structure. This structure is defined in
the /usr/include/sys/mpqp.h file and has the following fields:

status Contains additional information about the completion of the status block. Device-dependent codes may
also be returned.

CI0_OK Indicates that the operation was successful.

bufptr Specifies the address of a buffer where the returned statistics are to be placed.

buflen Specifies the length of the buffer; it should be at least 45 words long (unsigned long).

reserve Reserved for use in future releases.

Statistics Logged for PCI MPQP Ports
The following statistics are logged for each PClI MPQP port.

» Bytes transmitted

» Bytes received

* Frames transmitted

* Frames received

* Receive errors

* Transmission errors

» DMA buffer not large enough or not allocated
» CTS time out

» CTS dropped during transmit

* DSR time out

* DSR dropped

» DSR on before DTR on a switched line

* DCE clear during call establishment

* DCE clear during data phase

* X.21 T1-T5 time outs

» X.21 invalid DCE-provided information (DPI)

Note: When using the X.21 physical interface, X.21 centralized multiport (multidrop) operation on a
leased-circuit public data network is not supported.

Execution Environment
The CIO_QUERY operation can be called from the [process environment only.

Return Values

EFAULT Indicates a specified address is not valid.

Chapter 2. Communications Subsystem 139

EINVAL Indicates a parameter is not valid.

EIO Indicates an error has occurred.
ENOMEM Indicates the operation was unable to allocate the required memory.
ENXIO Indicates an attempt to use unconfigured device.

Related Information
The entry point, entry point.

The [CIO_GET_STAT] tsioctl PCI MPQP Device Handler Operation, |CIO_HALi|tsioctI PCI MPQP Device
Handler Operation, |CIO_STAR!|tsioctI PCI MPQP Device Handler Operation, [MP_CHG_PARMS] tsioctl
PCI MPQP Device Handler Operation.

CIO_START (Start Device) tsioctl PCI MPQP Device Handler Operation

Purpose
Starts a session with the IBM ARTIC960Hx PCI (PCI MPQP) device handler.

Description

The CIO_START operation registers a network ID in the network ID table and establishes the physical
connection with the PCI MPQP device. Once this start operation completes successfully, the port is ready
to transmit and receive data.

Note: The CIO_START operation defines the protocol- and configuration-specific attributes of the selected
port. All bits that are not defined must be set to 0 (zero).

For the PClI MPQP CIO_START operation, the exiptr parameter points to a t_start_dev structure. This
structure contains pointers to the session_blk structure.

The session_blk structure contains the netid and status fields. The t_start_dev device-dependent
information for an PClI MPQP device follows the session block. All of these structures can be found in the
lusr/include/sys/mpgqp.h file.

The CIO_START operation functions with a 4-Port Multiprotocol Interface adapter that has been correctly

configured for use on a qualified network. Consult adapter specifications for more information on
configuring the adapter and network qualifications.

140 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

t _start _dev Fields

The t_start_dev structure contains the following fields:

phys_Tlink Indicates the physical link protocol. Only one type of physical link is valid at a time.
The supported values are:

Physical Link
Type

PL_232D
EIA-232D

PL_V35
V.35

PL_X21
X.21

Note: When using the X.21 physical interface, X.21 centralized multiport (multidrop)
operation on a leased-circuit public data network is not supported.

dial_proto The dial_proto field is ignored.

data_proto Identifies the possible data protocol selections during the data transfer phase. The
data_flags field has different meanings depending on what protocol is selected. The
data_proto field accepts the following values:

DATA_PRO_BSC
Indicates a bisync protocol.

DATA_PRO_SDLC_FDX
Indicates receivers enabled during transmit.

DATA_PRO_SDLC_HDX
Indicates receivers disabled during transmit.

modem_flags Establishes modem characteristics. This field accepts the following values:

MF_AUTO

Indicates that the call is to be answered or dialed automatically.
MF_CALL

Indicates an outgoing call.
MF_LEASED

Indicates a leased telephone circuit.
MF_LISTEN

Indicates an incoming call (switched only).
MF_MANUAL

Indicates that the operator answers or dials the call manually.
MF_SWITCHED

Indicates a switched telephone circuit.

Note: Since each of these modem chracteristics are handled by the modem, the
driver actually determines connection status in the same way, no matter what value is
set in the modem_flags field. When the CIO_START ioctl is executed, the DTR signal
is asserted and an active connection is reported when an active DSR signal is
detected.

poll_addr Identifies the address-compare value for a Binary Synchronous Communication (BSC)
polling frame or an Synchronous Data Link Control (SDLC) frame. If using BSC, a
value for the selection address must also be provided or the address-compare is not
enabled. If a frame is received that does not match the poll address (or select
address for BSC), the frame is not passed to the system.

select_addr Specifies a valid select address for BSC only.

Chapter 2. Communications Subsystem 141

modem_int_mask Reserved. This value must be 0.

baud_rate This value should be set to 0 to indicate the port is to be externally clocked (that is,
use modem clocking).
rcv_timeout Indicates the period of time, expressed in 100-msec units (0.10 sec), used for setting

the receive timer. The PCI MPQP device driver starts the receive timer whenever the
CIO_START operation completes and a final transmit occurs.

If a receive occurs that is not a receive final frame, the timer is restarted. The timer is
stopped when the receive final occurs. If the timer expires before a receive occurs, an
error is reported to the logical link control (LLC) protocol. After the CIO_START
operation completes, the receive time out value can be changed by the
[MP_CHG_PARMS] operation. A value of zero indicates that a receive timer should not
be activated.

Final frames in SDLC are all frames with the poll or final bit set. In BSC, all frames
are final frames except intermediate text block (ITB) frames.

rcv_data_offset Reserved

dial_data_length Not used.

Flag Fields for Protocols

Flag fields in the t_start_dev structure take different values depending on the type of protocol selected.

Data Flags for the BSC Protocol

If BSC is selected in the data_proto field, either ASCIl or EBCDIC character sets can be used. Control
characters are stripped automatically on reception. Data link escape (DLE) characters are automaticall

inserted and deleted in transparent mode. If BSC Address Check mode is selected, values for both
addresses must be supplied. Odd parity is used if ASCII is selected.

The following are the default values:
- EBCDIC.

* Do not restart the receive timer.

* Do not check addresses.

* RTS controlled.

The data flags for the BSC protocol are:

DATA_FLG_ADDR_CHK Address-compare select. This causes frames to be filtered by the hardware
based on address. Only frames with matching addresses are sent to the
system.

DATA_FLG_BSC_ASC ASCII BSC select.

DATA_FLG_C_CARR_ON Continuous carrier (RTS always on).

DATA_FLG_C_CARR_OFF RTS-disabled between transmits (default).

Data Flags for the SDLC Protocol

For the Synchronous Data Link Control (SDLC) protocol, the flag for NRZ or NRZI must match the
data-encoding method that is used by the remote DTE. If SDLC Address Check mode is selected, the poll
address byte must also be specified. The receive timer (RT) is started whenever a final block is
transmitted. If RT is set to 1, the receive timer is restarted after expiration. If RT is set to 0, the receive
timer is not restarted after expiration. The receive timer value is specified by the 16-bit rcv_timeout field.
The following are the acceptable SDLC data flags:

DATA_FLG_NRzZI NRZI select (default is NRZ).
DATA_FLG_ADDR_CHK Address-compare select.
DATA_FLG_RST_TMR Restart receive timer.

142 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

DATA_FLG_C_CARR_ON Continuous carrier (RTS always on).
DATA_FLG_C_CARR_OFF RTS disabled between transmits (default).

t_err_threshold Fields

The t_err_threshold structure describes the format for defining thresholds for transmit and receive errors.
Counters track the total number of transmit and receive errors. Individual counters track certain types of
errors. Thresholds can be set for individual errors, total errors, or a percentage of transmit and receive
errors from all frames received.

When a counter reaches its threshold value, a|status block]is returned by the driver. The status block
indicates the type of error counter that reached its threshold. If multiple thresholds are reached at the

same time, the first expired threshold in the list is reported as having expired and its counter is reset to 0.
The user can issue a |[ClO_QUERY]| operation call to retrieve the values of all counters.

If no thresholding is desired, the threshold should be set to 0. A value of 0 indicates that LLC should not
be notified of an error at any time. To indicate that the LLC should be notified of every occurrence of an

error, the threshold should be set to 1.

The t_err_threshold structure contains the following fields:

tx_err_thresh Specifies the threshold for all transmit errors. Transmit errors include transmit underrun,
CTS dropped, CTS time out, and transmit failsafe time out.
rx_err_thresh Specifies the threshold for all Receive errors include overrun errors,

break/abort errors, framing/cyclic redundancy check (CRC)/frame check sequence (FCS)
errors, parity errors, bad frame synchronization, and receive-DMA-buffer-not-allocated
errors.

tx_err_percent Specifies the percentage of transmit errors that must occur before a status block is sent
to the LLC.

rx_err_percent Specifies the percentage of that must occur before a status block is sent to
the LLC.

Execution Environment
The CIO_START operation can be called from the [process environment only.

Return Values

CIO_OK Indicates successful CIO_START operation.

EBUSY Indicates the port state is not opened for a CIO_START operation.
EFAULT Indicates the cross-memory copy service was unsuccessful.

EINVAL Indicates the physical link parameter is not valid for the port.

EIO Indicates the device handler could not queue command to the adapter.
ENOMEM Indicates no mbuf clusters are available.

ENXIO Indicates the adapter number is out of range.

Related Information
The entry point.

The [CIO_GET_STAT] tsioctl PCI MPQP Device Handler Operation, |CIO_HALi|tsioctI PCl MPQP Device

Handler Operation, [CIO_QUERY] tsioctl PCI MPQP Device Handler Operation, [MP_CHG_PARMS| tsioctl
PCI MPQP Device Handler Operation.

Chapter 2. Communications Subsystem 143

MP_CHG_PARMS (Change Parameters) tsioctl PClI MPQP Device
Handler Operation

Purpose

Permits the data link control (DLC) to change certain profile parameters after the IBM ARTIC960Hx PCI
(PCI MPQP) device has been started.

Description

The MP_CHG_PARMS operation permits the DLC to change certain profile parameters after the PCI
MPQP device has been started. The cmd parameter in the entry point is set to the
MP_CHG_PARMS operation. This operation can interfere with communications that are in progress. Data
transmission should not be active when this operation is issued.

For this operation, the extptr parameter points to a t_chg_parms structure. This structure has the
following changeable fields:

chg_mask Specifies the mask that indicates which fields are to be changed. The possible choices are:
e CP_POLL_ADDR
e CP_RCV_TMR
« CP_SEL_ADDR

More than one field can be changed with one MP_CHG_PARMS operation.

rcv_timer Identifies the timeout value used after transmission of final frames when waiting for receive data in
0.1 second units.

poll_addr Specifies theaddress. Possible values are Synchronous Data Link Control (SDLC) or Binary
Synchronous Communications (BSC) poll addresses.

select_addr Specifies the address. BSC is the only possible protocol that supports select addresses.

Related Information
The entry point.

The [CI0O_GET_STAT] tsioctl PCI MPQP Device Handler Operation, [C10_HALT] tsioctl PCI MPQP Device

Handler Operation, |[CIO_START]|tsioctl PCI MPQP Device Handler Operation, [CIO_QUERY| tsioctl PCI
MPQP Device Handler Operation.

tsmpx Multiprotocol (PCI MPQP) Device Handler Entry Point

Purpose
Allocates and deallocates a channel for the IBM ARTIC960Hx PCI (PClI MPQP) device handler.

Syntax

int tsmpx (devno, chanp, channame)
dev_t devno;

int *chanp;

char *channame;

int openflag;

Description

The tsmpx entry point allocates and deallocates a channel. The tsmpx entry point is supported similar to
the common entry point.

144 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Parameters

devno Specifies the major and minor device numbers.

chanp Identifies the channel ID passed as a reference parameter. Unless specified as null, the channame
parameter is set to the allocated channel ID. If this parameter is null it is set as the ID of the channel
to be deallocated.

channame Points to the remaining path name describing the channel to be allocated. There are four possible
values:

Equal to NULL
Deallocates the channel.

A pointer to a NULL string
Allows a normal open sequence of the device on the channel ID generated by the tsmpx
entry point.

Return Values
The common return codes for the tsmpx entry point are the following:

EINVAL Indicates an invalid parameter.
ENXIO Indicates the device was open and the Diagnostic mode open request was denied.
EBUSY Indicates the device was open in Diagnostic mode and the open request was denied.

Related Information

The [ddmpx] entry point, ftsclose] entry point, ftsconfig| entry point, entry point, entry point,
hsread| entry point, |§sselecﬂ entry point, |tswritg| entry point.

[PCI MPQP Device Handler Interface Overview|in AIX 5L Version 5.3 Kernel Extensions and Device
Support Programming Concepts.

[Communications I/0 Subsystem: Programming Introduction|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

[Communications Physical Device Handler Model Overview|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

tsopen Multiprotocol (PClI MPQP) Device Handler Entry Point

Purpose
Prepares the IBM ARTIC960Hx PCI (PCI MPQP) device for transmitting and receiving data.

Syntax

#include <sys/comio.h>
#include <sys/mpqp.h>

int tsopen (devno, devflag, chan, ext)
dev_t devno;

ulong devflag;

int chan;

STRUCT kopen_ext *ext;

Chapter 2. Communications Subsystem 145

Description

The tsopen entry point prepares the PCI MPQP device for transmitting and receiving data. This entry
point is invoked in response to a [fp_open| kernel service call. The file system in user mode also calls the
tsopen entry point when an |open| subroutine is issued. The device should be opened for reading and
writing data.

Each port on the PCI MPQP adapter must be opened by its own tsopen call. Only one open call is
allowed for each port. If more than one open call is issued, an error is returned on subsequent tsopen
calls.

The PCI MPQP device handler only supports one kernel-mode process to open each port on the PCI
MPQP adapter. It supports the multiplex (mpx) routines and structures compatible with the
communications 1/O subsystem, but it is not a true multiplexed device.

The kernel process must provide a parameter block. This parameter block is found in
lusr/include/sys/comio.h file.

For a user-mode process, the ext parameter points to the tsopen structure. This is defined in the
lusr/include/sys/comio.h file. For calls that do not specify a parameter block, the default values are used.

If adapter features such as the read extended status field for [binary synchronous communication| (BSC)
message types as well as other types of information about read data are desired, the ext parameter must
be supplied. This also requires theor subroutine. If a system call is used, user data is
returned, although status information is not returned. For this reason, it is recommended that readx
subroutines be used.

The tsopen entry point functions with a 4-Port Multiprotocol Interface Adapter that has been correctly
configured for use on a qualified network. Consult the adapter specifications for more information on
configuring the adapter and network qualifications.

Note: A|CIO_START]|operation must be issued before the adapter is ready to transmit and receive data.
Write commands are not accepted if a CIO_START operation has not been completed successfully.

Parameters
devno Specifies the major and minor device numbers.
devflag Specifies the flag word. For kernel-mode processes, the devflag parameter must be set to the

DKERNEL flag, which specifies that a kernel routine is making the tsopen call. In addition, the
following flags can be set:

DWRITE
Specifies to open for reading and writing.

DREAD
Specifies to open for a trace.

DNDELAY
Specifies to open without waiting for the operation to complete. If this flag is set, write
requests return immediately and read requests return with O length data if no read data is
available. The calling process does not sleep. The default is DELAY or blocking mode.

DELAY Specifies to wait for the operation to complete before opening. This is the default.

Note: For user-mode processes, the DKERNEL flag must be clear.

chan Specifies the channel number assigned by the @ entry point.
ext Points to the parameter block for kernel-mode processes. Specifies the address to the

tsopen parameter block for user-mode processes.

146 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Execution Environment
The tsopen entry point can be called from the [process environment only.

Return Values
The common return codes for the tsopen entry point are the following:

ENXIO Indicates that the port initialization was unsuccessful. This code could also indicate that the registration of
the interrupt was unsuccessful.

ECHRNG Indicates that the channel number is out of range (too high).

ENOMEM Indicates that there were no mbuf clusters available.

EBUSY Indicates that the port is in the incorrect state to receive an open call. The port may be already opened
or not yet configured.

Related Information

entry point, [tsconfig| entry point, entry point, entry point, entry point,
tsselect e tswrite

ntry point, entry point.
The or readx subroutine.
The kernel service.
The [CIO_START] tsioctl PCI MPQP Device Handler Operation.

tsread Multiprotocol (PCI MPQP) Device Handler Entry Point

Purpose
Provides the means for receiving data from the IBM ARTIC960Hx PCI (PClI MPQP) device.

Syntax

#include <sys/uio.h>

int tsread (devno, uiop, chan, ext)
dev_t devno;

struct uio *uiop;

int chan, ext;

Description
Note: Only user-mode processes should use the tsread entry point.

The tsread entry point provides the means for receiving data from the PClI MPQP device. When a
user-mode process user issues asubroutine, the kernel calls the tsread entry point.

The DNDELAY]flag, set either at open time or later by an operation, controls whether tsread calls

put the caller to sleep pending completion of the call. If a program issues an tsread entry point with the
DNDELAY flag clear (the default), program execution is suspended until the call completes. If the
DNDELAY flag is set, the call always returns immediately. The user must then issue a poll and a
[CIO_GET_STAT]| operation to be notified when read data is available.

When user application programs invoke the tsread operation through the read or readx subroutine, the
returned length value specifies the number of bytes read. The status field in the read_extension
parameter block should be checked to determine if any errors occurred on the read. One frame is read
into each buffer. Therefore, the number of bytes read depends on the size of the frame received.

Chapter 2. Communications Subsystem 147

For a nonkernel process, the device handler copies the data into the buffer specified by the caller. The
size of the buffer is limited by the size of the internal buffers on the adapter. If the size of the use buffer
exceeds the size of the adapter buffer, the maximum number of bytes on a tsread entry point is the size
of the internal buffer. For the PCI MPQP adapter, the maximum frame size is defined in the
lusr/include/sys/mpgp.h file.

Data is not always returned on a read operation when an error occurs. In most cases, the error causes an
error log to occur. If no data is returned, the buffer pointer is null. On errors such as buffer overflow, a
kernel-mode process receives the error status and the data.

There are also some cases where network data is returned (usually during a|ClO_START| operation).
Network data is distinguished from normal receive data by the status field in the read_extension
structure. A nonzero status in this field indicates an error or information about the data.

The PCI MPQP device handler uses a fixed length buffer for transmitting and receiving data. The
maximum supported buffer size is 4096 bytes.

The tsread entry point functions with a 4-Port Multiprotocol Interface adapter that has been correctly
configured for use on a qualified network. Consult adapter specifications for more information on
configuring the adapter and network qualifications.

Note: The PCI MPQP device handler uses fixed length buffers for transmitting and receiving data. The
RX_BUF_LEN field in the /usr/include/sys/mpgqp.h file defines the maximum buffer size.

read_extension Parameter Block
For the tsread entry points, the ext parameter may point to a read_extension structure. This structure is
found in the /usr/include/sys/comio.h file and contains this field:

status Specifies the status of the port. There are six possible values for the returned status parameter. The
following status values accompany a data buffer:

ClIO_OK
Indicates that the operation was successful.

MP_BUF_OVERFLOW
Indicates receive buffer overflow. For the MP_BUF_OVERFLOW value, the data that was
received before the buffer overflowed is returned with the overflow status.

Note: When using the X.21 physical interface, X.21 centralized multiport (multidrop) operation on a
leased-circuit public data network is not supported.

Parameters

devno Specifies the major and minor device numbers.

uiop Pointer to an structure that provides variables to control the data transfer operation. The uio structure
is defined in the /usr/include/sys/uio.h file.

chan Specifies the channel number assigned by the ftsmpx routine.

ext Specifies the address of the|read_extension| structure. If the ext parameter is null, then no parameter

block is specified.

Execution Environment
The tsread entry point can be called from the [process environment| only.

148 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Return Values

The tsread entry point returns the number of bytes read. In addition, this entry point may return one of the
following:

ECHRNG Indicates the channel number was out of range.

ENXIO Indicates the port is not in the proper state for a read.
EINTR Indicates the sleep was interrupted by a signal.
EINVAL Indicates the read was called by a kernel process.

Related Information

entry point, ftsconfig| entry point, entry point, entry point, entry point,
tsselect|e tswrite| e

ntry point, ntry point.
The subroutine.

The |CIO_START]|tsioctl operation.
The structure.

[Communications Physical Device Handler Model Overview|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

[PCI MPQP Device Handler Interface Overview|in AIX 5L Version 5.3 Kernel Extensions and Device
Support Programming Concepts.

[Communications I/0 Subsystem: Programming Introduction|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

tsselect Multiprotocol (PClI MPQP) Device Handler Entry Point

Purpose

Provides the means for determining whether specified events have occurred on the IBM ARTIC960Hx PCI
(PCI MPQP) device.

Syntax

#include <sys/devices.h>
#include <sys/comio.h>

int tsselect (devno, events, reventp, chan)
dev_t devno;

ushort events;

ushort *reventp;

int chan;

Description
Note: Only user-mode processes can use the tsselect entry point.

The tsselect entry point provides the means for determining if specified events have occurred on the PCI
MPQP device. This entry point is supported similar to the communications entry point.

The tsselect entry point functions with a 4-Port Multiprotocol Interface adapter that has been correctly
configured for use on a qualified network. Consult adapter specifications for more information on
configuring the adapter and network qualifications.

Chapter 2. Communications Subsystem 149

Parameters

devno Specifies major and minor device numbers.

events Identifies the

reventp Returns events pointer. This parameter is passed by reference and is used by the tsselect entry point
to indicate which of theare true at the time of the call.

chan Specifies the channel number assigned by the entry point.

Execution Environment
The tsselect entry point can be called from the [process environment only.

Return Values
The common return codes for the tsselect entry point are the following:

ENXIO Indicates an attempt to use an unconfigured device.
EINVAL Indicates the select operation was called from a kernel process.
ECHNG Indicates the channel number is too large.

Related Information

entry point, [tsconfig| entry point, entry point, fismpx entry point, entry point,
tsread|e tswrite

ntry point, entry point.

The communications PDH entry point.
The subroutine, subroutine.

[PCI MPQP Device Handler Interface Overview|in AIX 5L Version 5.3 Kernel Extensions and Device
Support Programming Concepts.

[Communications 1/0 Subsystem: Programming Introduction|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

[Communications Physical Device Handler Model Overview|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

tswrite Multiprotocol (PCI MPQP) Device Handler Entry Point

Purpose
Provides the means for transmitting data to the IBM ARTIC960Hx PCI (PClI MPQP) device.

Syntax

#include <sys/uio.h>
#include <sys/comio.h>
#include <sys/mpgp.h>

int tswrite (devno, uiop, chan, ext)
dev_t devno;

struct uio *uiop;

int chan, ext;

150 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Description

The tswrite entry point provides the means for transmitting data to the PCI MPQP device. The kernel calls
it when a user-mode process issues a subroutine. The tswrite entry point can also be
called in response to an kernel service.

The PCI MPQP device handler uses a fixed length buffer for transmitting and receiving data. The
maximum supported buffer size is 4096 bytes.

The tswrite entry point functions with a 4-Port Multiprotocol Interface adapter that has been correctly
configured for use on a qualified network. Consult adapter specifications for more information on
configuring the adapter and network qualifications.

tswrite Parameter Block

For the tswrite operation, the ext parameter points to the mp_write_extension structure. This structure is
defined in the /usr/include/sys/comio.h file. The mp_write_extension structure contains the following
fields:

status Identifies the status of the port. The possible values for the returned status field are:

ClO_OK
Indicates the operation was successful.

CIO_TX_FULL
Indicates unable to queue any more transmit requests.

CIO_HARD_FAIL
Indicates hardware failure.

CIO_INV_BFER
Indicates invalid buffer (length equals 0, invalid address).

CIO_NOT_STARTED
Indicates device not yet started.
write_id Contains a user-supplied correlator. The write id field is returned to the caller by the

CIO_GET_STAT] operation if the |[CIO_ACK_TX_DONE| flag is selected in the asynchronous status
block.

For a kernel user, this field is returned to the caller with the stat_fn function which was provided at
open time.

In addition to the common parameters, the mp_write_extension structure contains a field for selecting
Transparent mode for |binary synchronous communication| (BSC). Any nonzero value for this field causes
Transparent mode to be selected. Selecting Transparent mode causes the adapter to insert data link
escape (DLE) characters before all appropriate control characters. Text sent in Transparent mode is
unaltered. Transparent mode is normally used for sending binary files.

Note: If an mp_write_extension structure is not supplied, Transparent mode can be implemented by the
kernel-mode process by imbedding the appropriate DLE sequences in the data buffer.

Parameters

devno Specifies major and minor device numbers.

uiop Points to a@ structure that provides variables to control the data transfer operation. The uio structure is
defined in the /usr/include/sys/uio.h file.

chan Specifies the channel number assigned by the@ entry point.

ext Specifies the address of the mp_write_extension parameter block. If the ext parameter is null, no

parameter block is specified.

Chapter 2. Communications Subsystem 151

Execution Environment
The tswrite entry point can be called from the [process environment] only.

Return Values
The common return codes for the tswrite entry point are the following:

EAGAIN Indicates that the number of direct memory accesses (DMAs) has reached the maximum allowed or that
the device handler cannot get memory for internal control structures.
Note: The PCI MPQP device handler does not currently support the [tx_fn| function. If a value of
EAGAIN is returned by an tswrite entry point, the application is responsible for retrying the write.

ECHRNG Indicates that the channel number is too high.

EINVAL Indicates one of the following:

* The port is not set up properly.
» The PCI MPQP device handler could not set up structures for the write.

* The port is not valid.
ENOMEM Indicates that no mbuf structure or clusters are available or the total data length is more than a page.
ENXIO Indicates one of the following:

* The port has not been successfully started.
* An invalid adapter number was passed.
» The specified channel number is illegal.

Related Information

entry point, ftsconfig| entry point, entry point, entry point, entry point,
tsread|e tsselect

ntry point, entry point.

The [CIO_GET_STAT] (Get Status) tsioctl PCI MPQP Device Handler Operation.

The subroutine.
The structure.

[Communications Physical Device Handler Model Overview|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

[PCI MPQP Device Handler Interface Overview|in AIX 5L Version 5.3 Kernel Extensions and Device
Support Programming Concepts.

[Communications 1/0 Subsystem: Programming Introduction|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

[Binary Synchronous Communication (BSC) with the MPQP Adapter|in AIX 5L Version 5.3 Kernel
Extensions and Device Support Programming Concepts.

Sense Data for the Serial Optical Link Device Driver

Note: This information is supported in AIX 5.1 and earlier only.

Sense Data consists of failure data analyzed by the diagnostic programs. The following sense data applies
to all the error log entries related to the Serial Optical Link device driver.

152 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Status 1 Register

0x80000000
0x40000000
0x20000000
0x10000000
0x08000000
0x04000000
0x02000000
0x01000000
0x00800000
0x00400000
0x00200000
0x00100000
0x00080000
0x00040000
0x00020000
0x00010000
0x00008000
0x00004000
0x00002000
0x00001000
0x00000800
0x00000400
0x00000200
0x00000100
0x00000080
0x00000040
0x00000020
0x00000018

0x00000004
0x00000003

Program check

Link check

Internal check

Unexpected frame
Reserved bit 4

Connection recovery complete
Connection recovery in progress
Command reject
Secondary command reject
Response time out
Reserved bit 10

Abort sent

Reserved bit 12

Reserved bit 13

Reserved bit 14

Frame discarded

Busy discarded

Reject discarded

Reserved bit 18

Reserved bit 19

Operation complete
Reserved bit 21

Command pending
Primary frame received
Reserved bit 24

Reserved bit 25

Reserved bit 26

One of following:

0 PU not operational
1 PU stopped

2 PU working 1

3 PU working 2

Reserved bit 28
One of following:

0 LI connect wait
1 LI connect try
2 LI Listen

3 LI running

Status 2 Register

0x80000000
0x40000000
0x20000000
0x10000000
0x08000000
0x04000000
0x02000000
0x01000000

Receive buffer check
Transmit buffer check
Command check
Synch cmd reject
Reserved bit 4

Tag parity check
Buffer parity check
Storage access check

Chapter 2. Communications Subsystem

153

0x00800000

0x00400000 Send count error
0x00200000 Address mismatch
0x00100000 Reserved bit 11
0x00080000 Signal failure
0x00040000 Transmit driver fault
0x00020000 Reserved bit 14
0x00010000 Reserved bit 15
0x00008000 Reserved bit 16
0x00004000 Reserved bit 17
0x00002000 Reserved bit 18
0x00001000 Reserved bit 19
0x00000800 Reserved bit 20
0x00000400 Reserved bit 21
0x00000200 Reserved bit 22
0x00000100 Reserved bit 23
0x00000080 Reserved bit 24
0x00000040 OLS received
0x00000020 NOS received
0x00000010 UD received
0x00000008 UDR received
0x00000004 Reserved bit 29
0x00000002 Signal error
0x00000001 No optics card

Reset received

Related Information
[Status Blocks for the Serial Optical Link Device Driver]

sol_close Serial Optical Link Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Resets the Serial Optical Link (SOL) device handler to a known state and frees system resources.

Syntax

#include <sys/device.h>
#include <sys/comio.h>
#include <sys/soluser.h>

int sol_close (,

dev_t devno;
int chan;

Parameters

devno Specifies major and minor device numbers.
chan Specifies the channel number assigned by the entry point.

Description

The sol_close entry point is called when a user-mode caller issues a subroutine. The sol_close
entry point can also be invoked in response to an kernel service.

154 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

The sol_close entry point functions with a Serial Link Adapter and Serial Optical Channel Converter, that
have been correctly configured for use on a qualified network. Consult the hardware specifications for
more information on configuring hardware and network qualifications.

Execution Environment
The sol_close entry point can be called from the [process environment] only.

Return Values

ENODEV Indicates that the specified minor number is not valid.

Related Information
The subroutine.

The kernel service.
The entry point.

sol_config Serial Optical Link Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Provides functions to initialize and terminate the device handler and to query the [Software Vital Product|
Data (SWVPD)

Syntax

#include <sys/device.h>
#include <sys/uio.h>

#include <sys/comio.h>
#include <sys/soluser.h>

int sol_config (|devnd, [cmd, [uiop)
dev_t devno;

int cmd;

struct uio *uiop;

Parameters

devno Specifies major and minor device numbers.
cmd Identifies the function to be performed by the sol_config routine.
uiop Points to a@ structure that describes the relevant data area for reading or writing.

Description
The sol_config entry point is invoked at device configuration time and provides the following operations:

Operation Description

CFG_INIT Initializes the Serial Optical Link (SOL) device handler. The device handler registers entry points in
the device switch table. The uio structure describes the SOL |device-dependent structure| (DDS)
address and length. The device handler copies the DDS into an internal save area.

Chapter 2. Communications Subsystem 155

Operation Description

CFG_TERM Terminates the SOL device handler. If there are no outstanding opens, the device handler marks itself
terminated and prevents subsequent opens. All dynamically allocated areas are freed. All SOL device
handler entry points are removed from the device switch table.

CFG_QVPD Returns the SOL VPD to the caller. The VPD is placed in the area specified by the caller in the uio
structure.

The sol_config entry point functions with a Serial Link Adapter and Serial Optical Channel Converter that
have been correctly configured for use on a qualified network. Consult hardware specifications for more
information on configuring hardware and network qualifications.

Execution Environment
The sol_config entry point can be called from the [process environmentf only.

Return Values for the CFG_INIT Operation

ENOMEM Indicates the routine was not able to allocate the internal space needed.
EBUSY Indicates the device was already initialized.
EFAULT Indicates the specified address is not valid.

Return Values for the CFG_TERM Operation

EBUSY Indicates there are outstanding opens; not able to terminate.
ENODEV Indicates there was no device to terminate.

Return Values for the CFG_QVPD Operation

ENODEV Indicates that there was no device to query the VPD.
EFAULT Indicates that the specified address is not valid.

Related Information
The structure in AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume 1.

sol_fastwrt Serial Optical Link Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Provides the means for kernel-mode users to transmit data to the Serial Optical Link (SOL) device driver.

Syntax

#include <sys/device.h>
#include <sys/comio.h>
#include <sys/soluser.h>
#include <sys/mbuf.h>
int sol_fastwrt (EJ,
struct mbuf *m;

int chan;

156 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Parameters

m Points to an mbuf structure containing caller data.
chan Specifies the channel number assigned by the [sol_mpx] entry point.

Description

A kernel user can transmit data more quickly using the sol_fastwrt entry point than through a normal
write system call. The address of the sol_fastwrt entry point, along with the chan parameter, is given to a
kernel-mode caller by way of the |CIO_GET_FASTWRT] sol_ioctl call.

If there is more than one path to the destination, the device handler uses any link that is available. If the S
(serialized) option was specified on the open, and the connection is point to point, the data is guaranteed
to have been received in the order in which it was sent. See the entry point for a description of
the S option.

Note: When communicating through the Network Systems Corp. DX Router, in-order, guaranteed delivery
to the destination is not possible. A successful transmission indicates only that the data was
successfully received at the DX Router, not necessarily at the final destination. It is the application’s
responsibility to ensure that the data arrives at the destination.

The data packet must start with a 4-byte field for the destination processor ID (the ID goes in the low-order
byte), followed by a 1-byte field for the destination network ID. When the data is received at the
destination, the 1-byte processor ID is stripped off, so that the first byte is the 1-byte network ID.

The maximum packet size allowed is SOL_MAX_XMIT, as defined in the /usr/include/sys/soluser.h file.

The sol_fastwrt entry point functions with a Serial Link Adapter and Serial Optical Channel Converter that
have been correctly configured for use on a qualified network. Consult hardware specifications for more
detailed information on configuring hardware and network qualifications.

Execution Environment

The sol_fastwrt entry point can be called from the kernel process environment or the interrupt
environment. If the sol_fastwrt function is called from the interrupt environment, it is the responsibility of
the caller to ensure that the interrupt level is SOL_OFF_LEVEL, as defined in the /usr/include/sys/
soluser.h file, or a less-favored priority.

The sol_fastwrt entry point does not support a multiple-packet write. The m_nextpkt field in the mbuf
structure is ignored by the device driver.

The sol_fastwrt entry point does not support a write extension. The mbufs are freed when the transmit is
complete, and there will be no transmit acknowledgement sent to the caller. If these defaults are not

appropriate, use the normal entry point.
The sol_fastwrt entry point assumes a trusted caller. The parameter checking done in the normal

sol_write entry point is not done in sol_fastwrt. The caller should ensure such things as a valid channel,
page-aligned and page-length mbuf clusters, and a valid packet length.

Return Values

ENODEV Indicates a minor number was specified that was not valid.

ENETDOWN Indicates the network is down. The device is not able to process the write.
ENOCONNECT Indicates the device has not been started.

EAGAIN Indicates the transmit queue is full.

EINVAL Indicates a parameter was specified that was not valid.

Chapter 2. Communications Subsystem 157

ENOMEM Indicates the device driver was not able to allocate the required memory.
EFAULT Indicates an invalid address was supplied.
EIO Indicates an error occurred.

Related Information

The |so|_c|ose| entry point, |so|_confi§| entry point, |so|_ioct|| entry point, entry point,
entry point, |so|_read| entry point, |so|_se|ec!| entry point, |so|_writg entry point.

The [CIO_GET_FASTWRT] sol_ioctl Serial Optical Link Device Handler Operation.

sol_ioctl Serial Optical Link Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Provides various functions for controlling the Serial Optical Link (SOL) device handler.

Syntax

#include <sys/device.h>
#include <sys/devinfo.h>
#include <sys/ioctl.h>
#include <sys/comio.h>
#include <sys/soluser.h>

int sol_ioctl ([devnd|, [cmd, [argl, [devflagl, [chan], [ext]
dev_t devno;

int cmd, arg;

ulong devflag;

int chan, ext;

Parameters

devno Specifies major and minor device numbers.

cmd Specifies the operation to be performed. The possible sol_ioctl operation codes are in the
lusr/include/sys/ioctl.h, /usr/include/sys/comio.h, and /usr/include/sys/soluser.h files.

arg Specifies the address of the sol_ioctl parameter block.

devflag Indicates the conditions under which the device was opened.

chan Specifies the channel number assigned by the entry point.

ext This parameter is not used by the SOL device handler.

Description

The sol_ioctl entry point provides various functions for controlling the SOL device handler. The possible
sol_ioctl operations are:

Operation Description

CIO_GET_FASTWR Provides the attributes of the sol_fastwrt entry point.
Gets device status.

Halts the device.

Queries device statistics.

Starts the device.

Returns 1/O character information.

158 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Operation Description

SOL_CHECK_PRID Checks whether a processor ID is connected.
SOL_GET_PRIDS| Gets connected processor IDs.

The sol_ioctl entry point functions with a Serial Link Adapter and Serial Optical Channel Converter that
have been correctly configured for use on a qualified network. Consult hardware specifications for more

information on configuring hardware and network qualifications.

Execution Environment
The sol_ioctl entry point can be called from the [process environment| only.

Related Information
The entry point.

The |CIO_GET_FASTWRT] sol_ioctl Serial Optical Link Device Handler Operation, [CIO_GET_STAT|
sol_ioctl Serial Optical Link Device Handler Operation, sol_ioctl Serial Optical Link Device
Handler Operation, [C10_QUERY] sol_ioctl Serial Optical Link Device Handler Operation,
sol_ioctl Serial Optical Link Device Handler Operation, sol_ioctl Serial Optical Link Device
Handler Operation, [SOL_CHECK_PRID| sol_ioctl Serial Optical Link Device Handler Operation,
[SOL_GET_PRIDS|sol_ioctl Serial Optical Link Device Handler Operation.

CIO_GET_FASTWRT (Get Fast Write) sol_ioctl Serial Optical Link
Device Handler Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Provides the attributes of the entry point.

Description

The CIO_GET_FASTWRT operation provides the attributes of the Serial Optical Link (SOL) device driver's

sol_fastwrt entry point.

For the CIO_GET_FASTWRT operation, the arg parameter points to the cio_get_fastwrt structure. This

structure is defined in the /usr/include/sys/comio.h file and contains the following fields:

Field Description
status Returns one of the following possible status values:
+ CIO_OK
* CIO_INV_CMD
fastwrt_fn Specifies the function address that can be called to issue a fast path write.
chan Specifies the channel number assigned by the device driver's mpx routine.
devno Specifies major and minor device numbers for the device driver, also known as the dev_t.

The CIO_GET_FASTWRT operation works with a Serial Link Adapter and Serial Optical Channel
Converter that have been correctly configured for use on a qualified network. Consult hardware
specifications for more information on configuring hardware and network qualifications.

Chapter 2. Communications Subsystem

159

Return Values

EACCES lllegal call from kernel user.
EFAULT Indicates that an address was not valid.
EINVAL Indicates that a parameter was not valid.

ENODEV Indicates that a minor number was not valid.

Related Information
The entry point, entry point, entry point.

The |CIO_START] sol_ioctl Serial Optical Link Device Handler Operation.

CIO_GET_STAT (Get Status) sol_ioctl Serial Optical Link Device
Handler Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Gets the current status of the Serial Optical Link (SOL) device and device handler.

Description
Note: Only user-mode callers can use the CIO_GET_STAT operation.

The CIO_GET_STAT operation returns the current status of the SOL device and device handler. For this
operation, the arg parameter points to a status_block structure.

The CIO_GET_STAT operation functions with a Serial Link Adapter and Serial Optical Channel Converter
that have been correctly configured for use on a qualified network. Consult hardware specifications for
more information on configuring hardware and network qualifications.

Status Blocks for the Serial Optical Link Device Driver

Status blocks contain a code field and possible options. The code field indicates the type of status block
(for example, CIO_START_DONE). The following are possible status blocks returned by the SOL device
driver:

[CI0O_ASYNC_STATUS|
(CIO_HALT_DONE]
[CIO_START_DONE]
[C10_TX_DONE|

The status block structure is defined in the /usr/include/sys/comio.h file and includes the following status
codes:

160 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Status Code Description
code Indicates one of the following status conditions:

* CIO_ASYNC_STATUS
» CIO_HALT_DONE

e CIO_NULL_BLK

» CIO_START_DONE

* CIO_TX_DONE
option[4] Contains up to four words of additional information, depending on which of the codes listed above
is returned.

Status blocks provide status and exception information to users of the SOL device driver.

User-mode processes receive a status block when they request a CIO_GET_STAT operation. A user-mode
process can wait for the next available status block by issuing a select system call with the specified
POLLPRI event.

Kernel-mode processes receive a status block by way of the entry point that is specified at open
time.

CIO_ASYNC_STATUS Status Block

The SOL device driver can return the following types of asynchronous status:
+ [Hard failure status|

+ |Lost data status|

+ [Network Recovery Mode status|

» [Processor ID status|

Hard Failure Status Block Values: When a CIO_HARD_FAIL status block is returned, the SOL device
is no longer functional. The user should begin shutting down the SOL device driver.

e Unrecoverable Hardware Failure
When an unrecoverable hardware failure has occurred, the following status block is returned:

Code CIO_ASYNC_STATUS
option[0] CIO_HARD_FAIL
option[1] SOL_FATAL_ERROR
option[2] Not used

option[3] Not used

* Exceeded Network Recovery Entry Threshold

When the SOL device driver has exceeded the entry threshold of the Network Recovery mode, the
following status block is returned:

Code CIO_ASYNC_STATUS
option[0] CIO_HARD_FAIL
option[1] SOL_RCVRY_THRESH
option[2] Not used

option[3] Not used

Lost Data Status Block Value: For a user-mode process, when the receive queue overflows, the data is
lost, and the following status block is returned:

Chapter 2. Communications Subsystem 161

Code CIO_ASYNC_STATUS

option[0] CIO_LOST_DATA
option[1] Not used
option[2] Not used
option[3] Not used

Network Recovery Mode Status Block Values:
* Entered Network Recovery Mode

When the SOL device driver has entered Network Recovery mode, the following status block is
returned:

Code CIO_ASYNC_STATUS
option[0] CIO_NET_RCVRY_ENTER
option[1] Not used

option[2] Not used

option[3] Not used

» Exited Network Recovery Mode
When the SOL device driver has exited Network Recovery mode, the following status block is returned:

Code CIO_ASYNC_STATUS
option[0] CIO_NET_RCVRY_EXIT
option[1] Not used

option[2] Not used

option[3] Not used

Processor ID Status Block Values:
* New Processor ID

When the SOL device driver detects a new processor ID that is now reachable, the following status
block is returned:

Code CIO_ASYNC_STATUS

option[0] SOL_NEW_PRID

option[1] Indicates the low-order byte contains the new processor ID.
option[2] Not used.

option[3] Not used.

e Processor ID Conflict

When the SOL device driver detects a processor ID conflict, the following status block is returned. The
network administrator should ensure that each machine connected to the optical network has a unique
processor ID.

Code CIO_ASYNC_STATUS

option[0] SOL_PRID_CONFLICT

option[1] Indicates the low-order byte contains the processor ID that is in conflict.
option[2] Indicates the low-order byte contains the local processor ID.

option[3] Not used.

162 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

CIO_HALT_DONE Status Block

On a successfully completed [CIO_HALT]| operation, the status block is filled as follows:

Code
option[0]
option[1]

option[2]
option[3]

CIO_HALT_DONE

CIO_OK

Indicates the low-order bytes are filled in with the netid field passed with the CIO_START
operation.

Not used.

Not used.

CIO_START_DONE Status Block

On a successfully completed [CIO_START| operation, the status block is filled as follows:

Code
option[0]
option[1]

option[2]
option[3]

CIO_START_DONE

CIO_OK

Indicates the low-order bytes are filled in with the netid field passed with the CIO_START
operation.

Not used.

Not used.

If the CIO_START operation is unsuccessful, the status block is filled as follows:

Code
option[0]

option[1]

option[2]
option[3]

CIO_START_DONE
Specifies one of the following:

* CIO_TIMEOUT

« CIO_HARD_FAIL

Indicates the low-order bytes are filled in with the netid field passed with the CIO_START
operation.

Not used.

Not used.

CIO_TX_DONE Status Block

When a write request completes for which transmit acknowledgment has been requested, the following
status block is built and returned to the caller:

Code CIO_TX_DONE
option[0] Specifies one of the following:
+ CIO_HARD_FAIL
+ CIO_OK
+ CIO_TIMEOUT
option[1] Contains the write_id field specified in the write_extension structure in the write
operation.
option[2] For a kernel-mode process, contains the mbuf pointer that was passed in the write
operation.
option[3] Specifies one of the following:
SOL_ACK Indicates the data was received by the destination processor.
SOL_DOWN_CONN Indicates the link to the destination has failed.
SOL_NACK_NB Indicates the destination processor ID cannot allocate enough buffers to receive the data.
SOL_NACK_NR Indicates the destination processor ID is currently not receiving.
SOL_NACK_NS Indicates the destination processor ID cannot allocate enough buffers to receive the data.

SOL_NEVER_CONN

Indicates a connection has never been established with the destination processor ID.

Chapter 2. Communications Subsystem 163

Code CIO_TX_DONE
SOL_NO_CONN Indicates the destination processor ID is currently not responding.

When the option[0] field indicates CIO_OK, the data is guaranteed to have been received into memory at
the destination. If the [S (serialized) option| was specified on the open, and the connection is point-to-point,
the data is guaranteed to have been received in the order in which it was sent.

Note: When communicating through the Network Systems Corp. DX Router, in-order guaranteed delivery
to the destination is not possible. A successful transmission indicates only that the data was
successfully received at the DX Router, not necessarily at the final destination. It is the application’s
responsibility to ensure the data arrives at the destination.

Execution Environment
The CIO_GET_STAT operation can be called from the [process environment| only.

Return Values

EACCES lllegal call from kernel user.
EFAULT Indicates the specified address is not valid.
EINVAL Indicates the parameter is not valid.

Related Information
The entry point, entry point, entry point.

The kernel procedure.
The |CIO_START] sol_ioctl Serial Optical Link Device Handler Operation, |CIO_HALT] sol_ioctl Serial Optical

Link Device Handler Operation.

CIO_HALT (Halt Device) sol_ioctl Serial Optical Link Device Handler
Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Ends a session with the Serial Optical Link (SOL) device handler.

Description

The CIO_HALT operation ends a session with the SOL device handler. The caller indicates the network ID
to halt. This CIO_HALT operation corresponds to the operation successfully issued with the
specified network ID. A CIO_HALT operation should be issued for each CIO_START operation
successfully issued.

Data for the specified network ID is no longer received. Data received for the specified network ID before
the halt is passed to a user-mode caller by the [sol_select{ and [sol_read| entry points. Data is passed back
to a kernel-mode caller by the routine specified at open time.

For the CIO_HALT operation, the arg parameter points to the session_blk structure. This structure is
defined in the /usr/include/sys/comio.h file and contains the following fields:

164 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Field Description

status Returns one of the following status values:
+ CIO_OK
* CIO_NETID_INV
netid Specifies the network ID. The network ID is placed in the least significant byte of the netid field.

The CIO_HALT operation functions with a Serial Link Adapter and Serial Optical Channel Converter that
have been correctly configured for use on a qualified network. Consult hardware specifications for more
information on configuring hardware and network qualifications.

Execution Environment
The CIO_HALT operation can be called from the [process environmentf only.

Return Values

EFAULT Indicates the specified address is not valid.

EINVAL Indicates the parameter is not valid.

EIO Indicates a general error. If an extension was provided in the call, additional data identifying the cause of
the error can be found in the status field.

ENODEV Indicates the specified minor number is not valid.

Related Information
[Serial Optical Link Device Handler Entry Points|

The entry point, entry point, entry point.

CIO_QUERY (Query Statistics) sol_ioctl Serial Optical Link Device
Handler Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Enables the caller to read the counter values accumulated by the Serial Optical Link (SOL) device handler.

Description

The CIO_QUERY operation reads the counter values accumulated by the SOL device handler. The first
call to the entry point initializes the counters to 0.

For the CIO_QUERY operation, the arg parameter points to the query_parms structure. This structure is
defined in the /usr/include/sys/comio.h file and contains the following fields:

Field Description

status Indicates the status of the command. This field may have a value of CIO_OK or CIO_INV_CMD.
bufptr Specifies the address of a buffer where the returned statistics are to be placed.

buflen Specifies the length of the buffer.

clearall When the value of this field is CIO_QUERY_CLEAR, the counters are cleared upon completion of

the call. The CIO_QUERY_CLEAR label can be found in the /ust/include/sys/comio.h file.

The counters placed in the supplied buffer by the CIO_QUERY operation are the counters declared in the
sol_query_stats_t structure defined in the /usr/include/sys/soluser.h file.

Chapter 2. Communications Subsystem 165

The CIO_QUERY operation functions with a Serial Link Adapter and Serial Optical Channel Converter that
have been correctly configured for use on a qualified network. Consult the hardware specifications for
more information on configuring hardware and network qualifications.

Execution Environment
The CIO_QUERY operation can be called from the [process environment only.

Return Values

EFAULT Indicates the specified address is not valid.

EINVAL Indicates the parameter is not valid.

EIO Indicates a general error. If an extension was provided in the call, additional data identifying the cause of
the error can be found in the status field.

ENODEV Indicates the specified minor number is not valid.

Related Information
The entry point, entry point.

CIO_START (Start Device) sol_ioctl Serial Optical Link Device Handler
Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Initiates a session with the Serial Optical Link (SOL) device handler.

Description

The CIO_START operation initiates a session with the SOL device handler. If the start is the first on the
device, the device handler initializes and opens the SOL. For each successful CIO_START call issued,
there should be a corresponding [CIO_HALT| operation issued.

After the CIO_START operation has successfully completed, the device is ready to transmit and receive
data. The caller is free to issue any valid SOL operation. Once started, the adapter receives packets from
any of the available optical ports.

The caller notifies the device handler of the network ID to use. The network ID corresponds to the
destination service access point (DSAP) in the packet. The caller can issue multiple CIO_START
operations. The SOL device handler can handle from 0 to the number of network IDs specified by the
SOL_MAX_NETIDS label. This label is defined in the /usr/include/sys/soluser.h file.

For the CIO_START operation, the arg parameter points to the session_blk structure. This structure is
defined in the /usr/include/sys/comio.h file and contains the following fields:

Field Description
status Indicates the status of the CIO_START. Possible returned status values are:
 CIO_OK

» CIO_NETID_FULL
+ CIO_NETID_DUP
* CIO_NETID_INV

166 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Field Description

netid Specifies the network ID the caller uses on the network. The Network ID is placed in the least significant
byte of the netid field.
Note: Only even number IDs are valid. Odd number IDs are reserved for group IDs not supported for
this device and return a status value of CIO_NETID_INV

The CIO_START operation functions with a Serial Link Adapter and Serial Optical Channel Converter that
have been correctly configured for use on a qualified network. Consult hardware specifications for more
information on configuring hardware and network qualifications.

Execution Environment
The CIO_START operation can be called from the [process environment| only.

Return Values

EADDRINUSE Indicates the network ID is in use.

EFAULT Indicates the supplied address is not valid.

EINVAL Indicates the parameter is not valid.

EIO Indicates a general error. If an extension was provided in the call, additional data identifying the
cause of the error can be found in the status field.

ENETDOWN Indicates a hardware error for which there is no recovery.

ENODEV Indicates the specified minor number is not valid.

ENOSPC Indicates the network ID table is full.

Related Information
The entry point.

The |CIO_HALT]| sol_ioctl Serial Optical Link Device Handler Operation.

IOCINFO (Describe Device) sol_ioctl Serial Optical Link Device Handler
Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Returns a structure that describes the Serial Optical Link (SOL) device.

Description

The IOCINFO operation returns a structure that describes the SOL device. For this operation, the arg
parameter points to the devinfo structure. This structure is defined in the /usr/include/sys/devinfo.h file
and contains the following fields:

Field Description

devtype Identifies the device type. The SOL device type is DD_NET_DH. This value is defined in the
lusr/include/sys/devinfo.h file.

devsubtype Identifies the device subtype. The SOL device subtype is DD_SOL. This value is defined in
the /usr/include/sys/devinfo.h file.

broad_wrap Specifies whether the wrapping of broadcast packets is supported by the device.

rdto Specifies the configured receive data transfer offset (RDTO) value.

processor_id Identifies the processor ID used by other systems to address this system. This is a

customized attribute in the configuration database.

Chapter 2. Communications Subsystem 167

The parameter block is filled in with the appropriate values upon return.

The IOCINFO operation functions with a Serial Link Adapter and Serial Optical Channel Converter that
have been correctly configured for use on a qualified network. Consult hardware specifications for more
information on configuring hardware and network qualifications.

Execution Environment
The IOCINFO operation can be called from the [process environment only.

Return Values

EFAULT Indicates the specified address is not valid.
EINVAL Indicates the parameter is not valid.
ENODEV Indicates the specified minor number is not valid.

Related Information
The entry point.

SOL_CHECK_PRID (Check Processor ID) sol_ioctl Serial Optical Link
Device Handler Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Checks whether a processor ID is connected to the Serial Optical Link (SOL) subsystem.

Description

The SOL_CHECK_PRID operation returns a 0 if the specified processor ID is connected to the SOL
subsystem. For this operation, the arg parameter is the processor ID to check.

The SOL_CHECK_PRID operation functions with a Serial Link Adapter and Serial Optical Channel

Converter that have been correctly configured for use on a qualified network. Consult hardware
specifications for more information on configuring hardware and network qualifications.

Execution Environment
The SOL_CHECK_PRID operation can be called from the process environment only.

Return Values

EINVAL Indicates a parameter is not valid.
ENOCONNECT Indicates the processor ID is not connected to the SOL subsystem.
ENODEV Indicates a minor number was specified that is not valid.

Related Information
The entry point.

168 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

SOL_GET_PRIDS (Get Processor IDs) sol_ioctl Serial Optical Link
Device Handler Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Returns all processor IDs connected to the Serial Optical Link (SOL) subsystem.

Description

The SOL_GET_PRIDS operation returns all processor IDs connected to the SOL subsystem. For this
operation, the arg parameter points to the sol_get_prids structure. This structure is defined in the
lusr/include/sys/soluser.h file and includes the following fields:

Field Description

bufptr A pointer to the caller buffer where the list of processor IDs are written. Each processor ID is one byte.
buflen The length of the caller’s buffer, in bytes. This is the number of processor IDs the buffer can hold.
num_ids The number of IDs detected. This value is filled in by the SOL device handler. A value greater than the

buflen value indicates an overflow condition in which there are more processors connected than can
be reported in the supplied buffer. If this value is 0, and an error is not returned, no other processor IDs
were detected.

The SOL_GET_PRIDS operation functions with a Serial Link Adapter and Serial Optical Channel
Converter that have been correctly configured for use on a qualified network. Consult hardware
specifications for more information on configuring hardware and network qualifications.

Execution Environment
The SOL_GET_PRIDS operation can be called from the [process environment| only.

Return Values

EFAULT Indicates that the specified address is not valid.

EINVAL Indicates that the parameter is not valid.

EIO Indicates a general error. If an extension was provided in the call, the status field will contain additional
data identifying the cause of the error.

ENODEV Indicates that the minor number specified is not valid.

ENOMEM Indicates an attempt to get memory failed.

Related Information
The entry point.

sol_mpx Serial Optical Link Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Allocates and deallocates a channel for the Serial Optical Link (SOL) device handler.

Chapter 2. Communications Subsystem 169

Syntax

#include <sys/device.h>
#include <sys/comio.h>
#include <sys/soluser.h>

int sol_mpx (|devnol, [chanpl, |channamel)
dev_t devno;

int *chanp;

char *channame ;

Parameters
devno Specifies major and minor device numbers.
chanp Specifies the channel ID passed as a reference parameter. If the channame parameter is null, the

chanp parameter specifies the ID of the channel to deallocate. Otherwise, this parameter is set to the
ID of the allocated channel.

channame Points to the remaining path name describing the channel to allocate. The channame parameter
accepts the following values:

null Deallocates the channel.

Pointer to a null string
Allows a normal open sequence of the SOL device on the channel ID generated by the
sol_mpx entry point.

Pointer to a "D”
Allows the SOL device to be opened in Diagnostic mode on the channel ID generated by the
sol_mpx entry point. Diagnostic mode is only valid when opening a /dev/opn special file.

Pointer to an "F”
Allows a forced open of any of the /dev/opn special files even after the /dev/opsO0 file has
been opened.

Pointer to an "S”
Indicates that data serialization is required when the /dev/opsO0 file is being opened. When
the Network Systems Corp. DX Router is used for communication, in-order reception cannot
be guaranteed.

Description

The sol_mpx entry point is not called directly by a user of the SOL device handler. The kernel calls the
sol_mpx entry point in response to an open or close request.

If the /dev/ops0 special file is open, the /dev/opn special files cannot be opened unless a forced open is
requested. If one or more of the /dev/opn special files are open, opening the /dev/ops0 special file will
succeed, but the ports already opened will not be used. Only one open is allowed for each /dev/opn
special file.

The sol_mpx entry point functions with a Serial Link Adapter and Serial Optical Channel Converter that
have been correctly configured for use on a qualified network. Consult hardware specifications for more
information on configuring hardware and network qualifications.

Note: When the Network Systems Corp. DX Router is used for communication, in-order reception cannot
be guaranteed.

Execution Environment
The sol_mpx entry point can be called from the [process environment only.

170 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Return Values

EPERM Indicates the device is open in a mode that does not allow the Diagnostic-mode open request.
EACCES Indicates a nonprivileged user tried to open the device in Diagnostic mode.

EINVAL Indicates an invalid argument was detected.

EIO Indicates an error occurred.

ENOMEM Indicates memory requests for the open failed.
ENODEV Indicates an invalid minor number was specified.
EBUSY Indicates the maximum number of opens has been exceeded.

Related Information
The entry point.

sol_open Serial Optical Link Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Initializes the Serial Optical Link (SOL) device handler and allocates the required system resources.

Kernel-Mode Syntax

#include <sys/device.h>
#include <sys/comio.h>
#include <sys/soluser.h>

int sol_open (|devnol, |devflagl, [chanl|,
dev_t devno;

ulong devflag;

int chan;

struct kopen_ext *arg;

User-Mode Syntax

#include <sys/device.h>
#include <sys/comio.h>
#include <sys/soluser.h>

int sol_open (|devnol, |devflagl, [chanl|,
dev_t devno;
ulong devflag;

int chan;
int arg;
Parameters
devno Specifies the major and minor device numbers.
devflag Specifies the flag word with the following definitions:
DKERNEL
Indicates a kernel-mode process. For user-mode processes, this flag must be clear.
DNDELAY
Performs nonblocking reads and writes for this channel. Otherwise, the device handler
performs blocking reads and writes for this channel.
chan Specifies the channel number assigned by the entry point.

Chapter 2. Communications Subsystem

171

arg Points to a kopen_ext structure for kernel-mode processes. The /usr/include/sys/comio.h file
contains a description of this structure. For user-mode processes, this field is not used.

Description

The sol_open entry point is called when a user-mode caller issues an |open, openx| or [creat| subroutine.
The sol_open routine can also be invoked in response to an |jp_opende3| kernel service. This routine
opens a device to read and write data.

The sol_open entry point functions with a Serial Link Adapter and Serial Optical Channel Converter that
have been correctly configured for use on a qualified network. Consult hardware specifications for more
information on configuring hardware and network qualifications.

Note: After the sol_open operation has successfully completed, the caller must issue a|[CIO_STAR
operation before the SOL device handler can transmit or receive any data.

Execution Environment
The sol_open entry point can be called from the [process environment| only.

Return Values

ENODEV Indicates the specified minor number is not valid.

EINVAL Indicates the specified parameter is not valid.
ENOMEM Indicates the device handler was not able to allocate the required memory.
EBUSY Indicates the device is already open in Diagnostic mode.

Related Information
The entry point.

The openx, or creat subroutine.
The kernel service.
The |CIO_START]| sol_operation.

sol_read Serial Optical Link Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Provides the means for receiving data from the Serial Optical Link (SOL) device handler.

Syntax

#include <sys/device.h>
#include <sys/comio.h>
#include <sys/soluser.h>

int sol_read (|devnol, luiopl, |[chan|, |arg)
dev_t devno;

struct uio *uiop;

int chan;

struct read_extension *arg;

172 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Parameters

devno Specifies the major and minor device numbers.

uiop Points to a@structure. For a calling user-mode process, the uio structure specifies the location and
length of the caller's data area in which to transfer information. The kernel fills in the uio structure for the
user.

chan Specifies the channel number assigned by theentry point.

arg Has a value of null or else points to a read_extension structure. This structure is defined in the

lusr/include/sys/comio.h file.

Description
Note: Only user-mode callers should use the sol_read entry point.
The sol_read entry point provides the means for receiving data from the SOL device handler. When a

user-mode caller issues a|read, readx, readv, or readvx| subroutine, the kernel calls the sol_read entry
point. Any data available for the specified channel is returned.

For this operation, the arg parameter may point to the read_extension structure. This structure is defined
in the /usr/include/sys/comio.h file and contains the following fields:

Field Description

status Contains additional information about the completion of the sol_read entry point. Possible values for this
field are:
CIO_OK

Indicates the operation was successful.

CIO_BUF_OVRFLW
Indicates the user buffer was too small, and the data was truncated.
netid Not used
sessid Not use.

The data received does contain the 4-byte field for the processor ID. Therefore, the first byte of data will
be the netid field.

The sol_read entry point functions with a Serial Link Adapter and Serial Optical Channel Converter that
have been correctly configured for use on a qualified network. Consult hardware specifications for more
information on configuring hardware and network qualifications.

Execution Environment
The sol_read entry point can be called from the [process environment| only.

Return Values

EACCES Indicates an illegal call from a kernel-mode user.

ENODEV Indicates an invalid minor number was specified.

EINTR Indicates a system call was interrupted.

EMSGSIZE Indicates the data was too large to fit into the receive buffer and that no arg parameter was

supplied to provide an alternate means of reporting this error with a status of
CIO_BUF_OVFLW.

EFAULT Indicates an invalid address was supplied.

ENOCONNECT Indicates the device has not been started.

Chapter 2. Communications Subsystem 173

Related Information

[Serial Optical Link Device Handler Entry Points}

The structure in AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume 1.

The entry point.

The [read, readx, readv, or readvx| subroutine.

sol_select Serial Optical Link Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Determines whether a specified event has occurred on the Serial Optical Link (SOL) device.

Syntax

#include <sys/device.h>
#include <sys/comio.h>
#include <sys/soluser.h>

int sol_select (|devno|, levents|, |reventpl, |chan)

dev_t devno;

ushort events;
ushort *reventp;

int chan;

Parameters

devno
events

reventp

chan

Specifies major and minor device numbers.
Specifies conditions to check, which are denoted by the bitwise OR of one or more of the following:

POLLIN
Check whether receive data is available.

POLLOUT
Check whether transmit available.

POLLPRI
Check whether status is available.

POLLSYNC
Specifies synchronous notification only. The request is not registered for notification on
occurrence.

Points to the result of condition checks. A bitwise OR of one of the following conditions is returned:

POLLIN
Receive data is available.

POLLOUT
Transmit available.

POLLPRI
Status is available.

Specifies the channel number assigned by the entry point.

174 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Description
Note: Only user-mode callers should call this entry point.

The sol_select entry point is called when the or subroutine is used to determine if a specified
event has occurred on the SOL device. When the SOL device handler is in a state in which the event can
never be satisfied (such as a hardware failure), the sol_select entry point sets the returned events flags to
1 (one) for the event that cannot be satisfied. This prevents the select or poll subroutines from waiting
indefinitely.

The sol_select entry point functions with a Serial Link Adapter and Serial Optical Channel Converter that
have been correctly configured for use on a qualified network. Consult hardware specifications for more
information on configuring hardware and network qualifications.

Execution Environment
The sol_select entry point can be called from the [process environment| only.

Return Values

ENODEV Indicates the specified minor number is not valid.
EACCES Indicates the call from a kernel process is not valid.

Related Information
Serial Optical Link Device Handler Entry Points.

The entry point.
The subroutine, subroutine.

sol_write Serial Optical Link Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Provides the means for transmitting data to the Serial Optical Link (SOL) device handler.

Syntax

#include <sys/device.h>
#include <sys/comio.h>
#include <sys/soluser.h>

int sol_write (devno, uiop, chan, arg)
dev_t devno;

struct uio *uiop;

int chan;

struct write_extension *arg;

Parameters

devno Specifies major and minor device numbers.

uiop Points to a@ structure specifying the location and length of the caller’s data.

chan Specifies the channel number assigned by the entry point.

arg Points to a write_extension structure. If the arg parameter is null, default values are assumed.

Chapter 2. Communications Subsystem 175

Description

The sol_write entry point provides the means for transmitting data to the SOL device handler. The kernel
calls this entry point when a user-mode caller issues a |write, writex, writev, or writevx| subroutine.

For a user-mode process, the kernel fills in the uio structure with the appropriate values. A kernel-mode
process must fill in the uio structure as described by the communications entry point.

For the sol_write entry point, the arg parameter may point to a write_extension structure. This structure
is defined in the /usr/include/sys/comio.h file and contains the following fields:

Field Description
status Indicates the status condition that occurred. Possible values for the returned status field are:
+ CIO_OK

+ CIO_TX_FULL
* CIO_NOT_STARTED
+ CIO_BAD_RANGE

+ CIO_NOMBUF
flag Consists of a possible bitwise OR of the following:

CIO_NOFREE_MBUF
Requests that the physical device handler (PDH) not free the mbuf structure after
transmission is complete. The default is bit clear (free the buffer). For a user-mode process,
the PDH always frees the mbuf structure.

CIO_ACK_TX_DONE
Requests that when done with this operation, the PDH acknowledges completion by building
a CIO_TX_DONE status block. In addition, requests the PDH either call the kernel status
function or (for a user-mode process) place the status block in the status/exception queue.
The default is bit clear (do not acknowledge transmit completion).

write_id For a user-mode caller, the write_id field is returned to the caller by the [CIO_GET_STAT| operation
(if the CIO_ACK_TX_DONE option is selected). For a kernel-mode caller, the write_id field is
returned to the caller by the routine that was provided at open time.

The data packet must start with a 4-byte field for the destination processor ID (the ID goes in the low-order
byte), followed by a 1-byte field for the destination netid. When the data is received at the destination, the
4-byte processor ID will be stripped off, so that the first byte is the 1-byte netid.

The maximum packet size allowed is SOL_MAX_XMIT, as defined in the /usr/include/sys/soluser.h file.

In case of a link failure, the device handler uses any link that is available. In-order reception of data
frames is not guaranteed unless the S (serialized) option is specified on the open of the device. See the
entry point for a description of this option.

The sol_write entry point functions with a Serial Link Adapter and Serial Optical Channel Converter that
have been correctly configured for use on a qualified network. Consult hardware specifications for more
information on configuring hardware and network qualifications.

Note: When the Network Systems Corp. DX Router is used for communication, in-order reception cannot
be guaranteed even when using a serialized open.

Execution Environment
The sol_write entry point can be called from the [process environment only.

176 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Return Values

ENODEV Indicates the specified minor number is not valid.

ENETDOWN Indicates the network is down. The device is not able to process the write.
ENOCONNECT Indicates the device has not been started.

EAGAIN Indicates the transmit queue is full.

EINVAL Indicates the specified parameter is not valid.

ENOMEM Indicates the device handler was not able to allocate the required memory.
EINTR Indicates a system call was interrupted.

EFAULT Indicates the address supplied is not valid.

Related Information
The structure in AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume 1.

The |write, writex, writev, or writevx| subroutine.

The entry point.
The routine.

tokclose Token-Ring Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Resets the token-ring device handler to a known state and frees system resources.

Syntax

#include <sys/device.h>
#include <sys/comio.h>
#include <sys/tokuser.h>

int tokclose (devno, chan)
dev_t devno;
int chan;

Parameters

devno Specifies major and minor device numbers.
chan Identifies the channel number assigned by the entry point.

Description

The tokclose entry point is called when a user-mode caller issues a subroutine. The tokclose entry
point can also be invoked in response to a kernel service.

The tokclose entry point functions with a Token-Ring High Performance Network Adapter that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on
configuring the adapter and network qualifications.

Execution Environment
The tokclose entry point can be called from the environment only.

Chapter 2. Communications Subsystem 177

Return Values

ENXIO Indicates the specified minor number is not valid.

Related Information
The entry point, entry point.

The Communications PDH entry point.
The subroutine.
The kernel service.

tokconfig Token-Ring Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Provides functions for initializing, terminating, and querying the vital product data (VPD) of the token-ring
device handler.

Syntax

#include <sys/device.h>
#include <sys/uio.h>
#include <sys/comio.h>
#include <sys/tokuser.h>

int tokconfig
(devno, cmd, uiop)
dev_t devno;

int cmd;

struct uio *uiop;

Parameters

devno Specifies major and minor device numbers.
cmd Identifies the function to be performed by the tokconfig routine.
uiop Points to a structure, that describes the relevant data area for reading or writing.

Description

The tokconfig entry point provides functions for initializing, terminating, and querying the VPD of the
token-ring device handler. The tokconfig routine is invoked at device configuration time. The tokconfig
entry point provides the following three operations:

Operation Description
CFG_INIT Initializes the token-ring device handler. The token-ring device handler registers the entry points in
the device switch table.

The token-ring |define device structure| (DDS) address and length is described in the uio structure.
The DDS is copied into an internal save area by the device handler.

CFG_TERM Terminates the token-ring device handler. If there are no outstanding opens, the token-ring device
handler marks itself terminated and prevents subsequent opens. All dynamically allocated areas are
freed. All token-ring device handler entry points are removed from the device switch table.

178 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Operation Description

CFG_QVPD Returns the token-ring VPD to the caller. The VPD is placed in the area specified by the caller in the

uio structure.

The tokconfig entry point functions with a Token-Ring High Performance Network adapter that has been
correctly configured for use on a qualified network. Consult adapter specifications for more information on

configuring the adapter and network qualifications.

Execution Environment
The tokconfig entry point can be called from the [process environment only.

Return Values
Depending on the operation selected, the tokconfig entry point returns values.

Return Values for the CFG_INIT Operation

ENOMEM Indicates the routine was unable to allocate space for the DDS.

EEXIST Indicates the device was already initialized.
EINVAL Indicates the DDS provided is not valid.
ENXIO Indicates the initialization of the token-ring device was unsuccessful.

EFAULT Indicates that the specified address is not valid.

Return Values for the CFG_TERM Operation

EBUSY Indicates there are outstanding opens unable to terminate.
ENOENT Indicates there was no device to terminate.

EACCES Indicates the device was not configured.

EEXIST Unable to remove the device from the device switch table.

Return Values for the CFG_QVPD Operation

ENOENT Indicates there was no device to query the VPD.
EFAULT Indicates that the specified address is not valid.
EACCES Indicates the token-ring device handler is not initialized.

Related Information
The structure in AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume 1.

tokdump Token-Ring Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Provides the means for performing a network dump.

Syntax
Refer to the entry point for the complete syntax of the dump entry point.

Chapter 2. Communications Subsystem

179

Description

The tokdump entry point provides support for six of the seven dump commands. The DUMPWRITE
command is not supported for network dump. The entry point supports this write function.

The supported commands are:

DUMPINIT Initializes the token-ring device handler as a dump device.
DUMPQUERY Gets the information required for performing a network dump. The information is returned in the
dmp_query structure in /usr/include/sys/dump.h file. It contains the following information:

* tokdumpwrt operation address
¢ Minimum data transfer size

¢ Maximum data transfer size
DUMPSTART Starts the network dump processing.

DUMPREAD Initiates a dump read request to the token-ring device handler.
DUMPEND Terminates the network dump processing.
DUMPTERM Terminates the token-ring device hander as a dump device.

The tokdump entry point functions with a Token-Ring High-Performance Network Adapter that has been
correctly configured for use on a qualified network. Consult adapter specifications for more information on
configuring the adapter and network qualifications.

Execution Environment

The DUMPINIT command can be called from the [process] environment only. DUMPQUERY, DUMPSTART,
DUMPREAD, DUMPEND, and DUMPTERM commands can be called in both the process environment
and the interrupt environment.

Related Information
The entry point, entry point.

tokdumpwrt Token-Ring Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Provides the means for a network dump program to transmit data to the token-ring device handler.

Syntax

#include <sys/device.h>
#include <sys/comio.h>
#include <sys/tokuser.h>
#include <sys/mbuf.h>

int tokdumpwrt
(devno, m)
dev_t devno;
struct mbuf *m;

Parameters

devno Specifies major and minor device numbers.
m Pointer to an structure containing the data to be transmitted.

180 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Description

The tokdumpwrt entry point can be called by a kernel-mode process to pass a write packet to the
token-ring device handler for subsequent transmission. The address of this operation is provided to the
kernel user by the dump user, who obtains it with the DUMPQUERY command.

The tokdumpwrt entry point provides for only one data packet to be transmitted for a single tokdumpwrt
call. The tokdumpwrt entry point also assumes that the calling user is a valid kernel user and that the
mbuf structure contains a valid data packet. It does not free the mbuf structure.

The tokdumpwrt entry point functions with a Token-Ring High Performance Network Adapter that has
been correctly configured for use on a qualified network. Consult the adapter specifications for more
information on configuring the adapter and network qualifications.

Execution Environment
The tokdumpwrt entry point can be called from the [process| or |interrupt environment.

Return Values

ENODEV Indicates the specified minor number is not valid.
EAGAIN Indicates the transmit queue is full.

Related Information
The entry point, entry point, entry point.

The [Memory Buffer (mbuf) Kernel Services|in AIX 5L Version 5.3 Kernel Extensions and Device Support
Programming Concepts.

tokfastwrt Token-Ring Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Provides the means for kernel users to perform direct-access write operations.

Syntax

#include <sys/device.h>
#include <sys/comio.h>
#include <sys/tokuser.h>
#include <sys/mbuf.h>

int tokfastwrt (devno, m)
dev_t devno;
struct mbuf *m;

Parameters
devno Specifies major and minor device numbers.
m Pointer to an structure containing the data to transmit.

Chapter 2. Communications Subsystem 181

Description

The tokfastwrt entry point is called from a kernel-mode process to pass a write packet to the token-ring
device handler for subsequent transmission. The address of this entry point is provided to the kernel user
by the |CIO_GET_FASTWRT]ioctl entry point.

The tokfastwrt entry point provides for only one data packet to be transmitted for a single tokfastwrt call.
The tokfastwrt entry point assumes that the calling user is a valid kernel user and that the mbuf structure
contains a valid data packet. The device handler frees the mbuf and does not acknowledge transmit
completion.

The tokfastwrt entry point functions with a Token-Ring High-Performance Network Adapter that has been
correctly configured for use on a qualified network. Consult adapter specifications for more information on
configuring the adapter and network qualifications.

Execution Environment

The tokfastwrt entry point can be called from a kernel or interrupt level. The operation level of

the token-ring device handler is TOK_OPLEVEL. This label is defined in the /usr/include/sys/tokuser.h
file. The tokfastwrt entry point treats this path as a trusted path and the device handler does not check
the parameters.

Return Values

ENODEV Indicates the specified minor number is not valid.
EAGAIN Indicates the transmit queue is full.

Related Information
The entry point, entry point.

The |CIO_GET_FASTWRT] tokioctl Token-Ring Device Handler Operation, [CIO_START]| tokioctl Token-Ring
Device Handler Operation.

The [Memory Buffer (mbuf) Kernel Services|in AIX 5L Version 5.3 Kernel Extensions and Device Support
Programming Concepits.

tokioctl Token-Ring Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Provides various functions for controlling the token-ring device handler.

Syntax

#include <sys/device.h>
#include <sys/devinfo.h>
#include <sys/ioctl.h>
#include <sys/comio.h>
#include <sys/tokuser.h>

int tokioctl

(devno, cmd, arg, devflag, chan, ext)
dev_t devno;

int cmd, arg;

ulong devflag;

int chan, ext;

182 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Parameters

devno Specifies major and minor device numbers.

cmd Specifies the operation to be performed. The possible tokioctl operation codes can be found in the
lusr/include/sys/ioctl.h, /usr/include/sys/comio.h, and /usr/include/sys/tokuser.h files.

arg Specifies the address of the tokioctl parameter block.

devflag Indicates the conditions under which the device was opened.

chan Specifies the channel number assigned by theentry point.

ext This parameter is not used by the token-ring device handler.

Description

The tokioctl entry point provides various functions for controlling the token-ring device handler. The
possible tokioctl operations are:

Operation Description
CIO_GET_FASTWR Gets function address for the tokfastwrt operation.
Gets device status.

Halts the device.

Queries device statistics.

Starts the device.

I/O character information.

Sets functional addresses.

Sets the group address.

_ Queries vital product data (VPD).
TOK_RING_INFO Queries token-ring information.

The tokioctl entry point functions with a Token-Ring High-Performance Network Adapter that has been
correctly configured for use on a qualified network. Consult adapter specifications for more information on
configuring the adapter and network qualifications.

Execution Environment
The tokioctl entry point can be called from the environment only.

Related Information
The entry point.

CIO_GET_FASTWRT (Get Fast Write) tokioctl Token-Ring Device
Handler Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Provides the attributes of the tokfastwrt entry point.

Description

The CIO_GET_FASTWRT tokioctl operation is used to get the parameters required to issue the
entry point, which is the kernel-mode fast write command for the token-ring device handler. For the
CIO_GET_FASTWRT operation, the arg parameter points to the cio_get_fastwrt structure. This structure
is defined in the /usr/include/sys/comio.h file and contains the following fields:

Chapter 2. Communications Subsystem 183

Field Description

status Returns one of the following status values:
* CIO_INV_CMD
« CIO_OK
fastwrt_fn Specifies the address of the tokfastwrt entry point.
chan Specifies the channel ID.
devno Specifies the major and minor device numbers.

The CIO_GET_FASTWRT tokioctl operation functions with a Token-Ring High Performance Network
Adapter that has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Execution Environment

The CIO_GET_FASTWRT tokioctl operation can be called from the kernel-mode [process| environment
only.

Return Values

EFAULT Indicates that the specified address is not valid, or the calling process is a user-mode process.
EINVAL Indicates that the specified parameter is not valid.

EIO Indicates that an error occurred. See the status field for more information.

ENODEV Indicates that the specified minor number is not valid.

ENXIO Indicates that an attempt was made to use an unconfigured device.

Related Information
The entry point, entry point, entry point.

CIO_GET_STAT (Get Status) tokioctl Token-Ring Device Handler
Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Gets the current status of the token-ring adapter and device handler.

Description

The CIO_GET_STAT tokioctl operation returns the current status of the token-ring adapter and device
handler. For this operation, the arg parameter points to the status_block structure. This structure is
defined in the /usr/include/sys/comio.h file and takes the following status codes:

+ |ICIO_ASYNC_STATUS|
[C10_HALT DONE]|
[CIO_LOST _STATUS|
(CIO_NULL_BLK]
[CIO_START _DONE]
[C10_TX_DONE]

Status Blocks for the Token-Ring Device Handler

Status blocks are used to communicate status and exception information to user-mode processes.

184 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

User-mode processes receive a status block whenever they request a[CIO_GET_STAT] operation. A

user-mode process can wait for the next available status block by issuing a [tokselect| entry point with the
specified [POLLPRI| event.

Status blocks contain a code field and possible options. The code field indicates the type of status block
code (for example, CIO_START_DONE).

There are six possible token-ring status blocks:
+ |ICIO_ASYNC_STATUS|

(CIO_HALT_DONE]

[CIO_LOST_STATUS|

(CIO_NULL_BLK]

[CIO_START_DONE]

[CI0O_TX_DONE|

CIO_ASYNC_STATUS Status Block

The token-ring device handler can return the following types of asynchronous status:
+ [CIO_HARD_FAIL]|
— TOK_ADAP_CHECK
— TOK_PIO_FAIL
— TOK_RCVRY_THRESH
+ |ICIO_NET_RCVRY_ENTER]
+ |ICIO_NET_RCVRY_EXIT]|
— TOK_RING_STATUS
+ [CIO_LOST DATA|

When a CIO_HARD_FAIL status block is returned, the token-ring adapter is no longer functional. The user
should shut down the token-ring device handler.

Hard Failure Status Block Values: The following items describe the hard failure status block values for
several types of errors.

* Unrecoverable adapter check
When an unrecoverable adapter check has occurred, this status block is returned:

Code CIO_ASYNC_STATUS

option[0] |ClIO_HARD_FAIL|

option[1] TOK_ADAP_CHECK

option[2] The adapter return code is in the two high-order bytes. The adapter returns three parameters when
an adapter check occurs. Parameter 0 is returned in the two low-order bytes.

option[3] The two high-order bytes contain parameter 1. The two low-order bytes contain parameter 2.

* Unrecoverable PIO error
When an unrecoverable PIO error has occurred, this status block is returned:

Code CIO_ASYNC_STATUS
option[0] |CIO_HARD_FAIL|
option[1] TOK_PIO_FAIL
option[2] Not used

option[3] Not used

» Exceeded network recovery entry threshold

Chapter 2. Communications Subsystem 185

When the token-ring device handler has exceeded the network Recovery mode entry threshold, this
status block is returned:

Code CIO_ASYNC_STATUS
option[0] [CIO_HARD_FAIL]
option[1] TOK_RCVRY_THRESH
option[2] Not used

option[3] Not used

Entered Network Recovery Mode Status Block:

When the token-ring device handler has entered network Recovery mode, this status block is returned:

Code CIO_ASYNC_STATUS
option[0] [CIO_NET_RCVRY_ENTER|
option[1] Specifies the reason for entering network Recovery mode. Can be one of these seven options:

* TOK_ADAP_CHECK

* TOK_AUTO_REMOVE

* TOK_CMD_FAIL

« TOK_LOBE_WIRE_FAULT
* TOK_MC_ERROR

« TOK_REMOVE_RECEIVED

* TOK_RING_STATUS

option[2] Specifies the adapter return code. For an adapter check, the adapter return code is in the two
high-order bytes. The adapter returns three parameters when an adapter check occurs. The
adapter check parameter O is returned in the two low-order bytes.

option[3] For an adapter check, the two high-order bytes contain parameter 1. The two low-order bytes
contain parameter 2.

Exited Network Recovery Mode Status Block:

When the token-ring device handler has exited network Recovery mode, the status block contains the
following:

Code CIO_ASYNC_STATUS
option[0] |CIO_NET_RCVRY_EXIT|
option[1] Not used

option[2] Not used

option[3] Not used

Ring Beaconing Status Block Values:

When the token-ring adapter detects a beaconing condition on the ring, it notifies the device handler. The
device handler returns the following status block:

Code CIO_ASYNC_STATUS

option[0] TOK_RING_STATUS

option[1] TOK_RING_BEACONING

option[2] Specifies the adapter return code. The two low-order bytes contain the ring status.
option[3] Not used.

Ring Recovered Status Block Values:

186 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

When the token-ring detects that the beaconing condition has ceased, it notifies the device handler. The
device handler returns the following status block:

Code CIO_ASYNC_STATUS
option[0] TOK_RING_STATUS
option[1] TOK_RING_RECOVERED
option[2] Not used

option[3] Not used

Lost Data Status Block: The token-ring device handler has detected lost data due to the receive queue
overflowing. The device handler returns the following status block:

Code CIO_ASYNC_STATUS
option[0] |CIO_LOST_DATA|
option[2] Not used

option[3] Not used

CIO_HALT _DONE Status Block

On a successfully completed [CIO_HALT] operation, the status block is filled in as follows:

Code CIO_HALT_DONE

option[0]

option[1] The two low-order bytes contain the netid field passed with the CIO_HALT operation. If a medium
access control (MAC) frame session was requested, this field is set to TOK_MAC_FRAME_NETID.

option[2] Not used

option[3] Not used

CIO_LOST_STATUS Status Block

This status block is returned when it is not available due to a status queue overflow:

Code CIO_LOST_STATUS
option[0] Not used
option[1] Not used
option[2] Not used
option[3] Not used

CIO_NULL_BLK Status Block
This is returned when the status block is not available.

Code CIO_NULL_BLK
option[0] Not used
option[1] Not used
option[2] Not used
option[3] Not used

CIO_START_DONE Status Block

On a successfully completed CIO_START operation, the following status block is provided:

Code CIO_START_DONE
option[0] CIO_O
option[1] The two low-order bytes contain the netid field passed with the CIO_START operation. If a MAC

frame session was requested, this field is set to TOK_MAC_FRAME_NETID.

Chapter 2. Communications Subsystem 187

Code
option[2]

option[3]

CIO_START_DONE

The two high-order bytes contain the two high-order bytes of the network address. The two
low-order bytes are filled in with the 2 middle bytes of the network address.

The two high-order bytes contain the two low-order bytes of the network address.

If the CIO_START operation is unsuccessful, the status block contains the following:

Code
option[0]

option[1]

option[2]

option[3]

CIO_START_DONE
Can be one of the following options:

.

« TOK_ADAP_CONFIG

* TOK_ADAP_INIT_FAIL

* TOK_ADAP_INIT_PARMS_FAIL
* TOK_ADAP_INIT_TIMEOUT

« TOK_ADDR_VERIFY_FAIL

» TOK_LOBE_MEDIA_TST_FAIL
* TOK_PHYS_INSERT

+ TOK_REQ_PARMS

* TOK_RING_POLL

The two low-order bytes contain the netid field passed with the CIO_START operation. If a MAC
frame session was requested, this field is set to TOK_MAC_FRAME_NETID.

This is the adapter return code. For each of the device-specific codes returned in option[0], an
adapter return code is placed in the two low-order bytes of this field. Possible values for the
option[2] field are the adapter reset, initialization, and open completion codes.

Not used

CIO_TX DONE Status Block

When a entry point completes for which transmit acknowledgment has been requested, the
following status block is built and returned to the caller.

Code
option[0]
option[1]

option[2]
option[3]

CIO_TX_DONE

or TOK_TX_ERROR

Contains the write_id field specified in the write_extension structure passed to the tokwrite
operation.

For a kernel-mode process, contains the mbuf pointer passed in the tokwrite operation.

The two high-order bytes contain the adapter’s transmit command complete code that the adapter
returns. The two low-order bytes contain the adapter’s transmit CSTAT completion code that is
returned when a packet is transmitted by the adapter.

Return Values

EACCES
EFAULT
EINVAL

Indicates an illegal call from a kernel-mode user.
Specifies an address is not valid.
Indicates a parameter is not valid.

Execution Environment

Related Information
The entry point, entry point, entry point.

188 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

The |CIO_HALT|tokioctl Token-Ring Device Handler Operation, |CIO_START] tokioctl Token-Ring Device

Handler Operation.

CIO_HALT (Halt Device) tokioctl Token-Ring Device Handler Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Ends a session with the token-ring device handler.

Description

The CIO_HALT tokioctl operation ends a session with the token-ring device handler. The caller indicates
the network ID to halt. This CIO_HALT operation corresponds to the [CIO_START| operation successfully
issued with the specified network ID. A CIO_HALT operation should be issued for each CIO_START
operation.

Data for the specified network ID is no longer received. Data received for the specified network ID, before
the halt, is still passed up to a user-mode caller by tokselect] and [tokread| entry points. Data is passed
back to a kernel-mode caller by the routine specified at open time.

For the CIO_HALT operation, the arg parameter points to the session_blk structure. This structure is
defined in the /usr/include/sys/comio.h file and contains the following fields:

Field Description
status Returns one of the following status values:

* [CIO_NETID_IN
+ [CIO_O

netid Specifies the network ID. The network ID is placed in the least significant byte of the netid field. When
terminating the medium-access control (MAC) frame session, the netid field should be set to
TOK_MAC_FRAME_NETID.

The CIO_HALT operation functions with a Token-Ring High Performance Network Adapter that has been
correctly configured for use on a qualified network. Consult adapter specifications for more information on
configuring the adapter and network qualifications.

Execution Environment
The CIO_HALT operation can be called from the environment only.

Return Values

EFAULT Indicates the specified address is not valid.
EINVAL Indicates a parameter is not valid.
ENOMSG Indicates an error occurred.

Related Information
The ddioctl (CIO_HALT) operation.

The |CIO_GET_STAT|tokioctl Token-Ring Device Handler Operation, [CIO_START] tokioctl Token-Ring
Device Handler Operation.

The entry point, entry point, entry point.

Chapter 2. Communications Subsystem 189

[Common Communications Status and Exception Codes|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

CIO_QUERY (Query Statistics) tokioctl Token-Ring Device Handler
Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Allows the caller to read the counter values accumulated by a token-ring device handler.

Description

The CIO_QUERY tokioctl operation is used by the caller to read the counter values accumulated by a
token-ring device handler. The first call to the ‘ entry point initializes the counters to 0.

For the CIO_QUERY operation, the arg parameter points to the query_parms structure. This structure is
defined in the /usr/include/sys/comio.h file and contains the following fields:

Field Description
status Indicates the status of the port. Returns one of the following status values:
+ CIO_OK
+ CIO_INV_CMD
buffptr Specifies the address of a buffer where the returned statistics are to be placed.
bufflen Specifies the length of the buffer.
clearall When this value equals CIO_QUERY_CLEAR, the counters are cleared upon completion of call. The

CIO_QUERY_CLEAR label can be found in the /usr/include/sys/comio.h file.

The counters placed in the supplied buffer by the CIO_QUERY operation are the counters declared in the
tok_query_stats_t structure defined in the /usr/include/sys/tokuser.h file.

The CIO_QUERY operation functions with a Token-Ring High Performance Network Adapter that has been
correctly configured for use on a qualified network. Consult adapter specifications for more information on
configuring the adapter and network qualifications.

Execution Environment
The CIO_QUERY operation can be called from the [process environment only.

Return Values

EFAULT Indicates that the specified address is not valid.
EINVAL Indicates that a parameter is not valid.

Related Information
The ddioctl (CIO_QUERY) entry point.

The entry point, entry point.

[Common Communications Status and Exception Codes|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

190 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

CIO_START (Start Device) tokioctl Token-Ring Device Handler
Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Initiates a session with the token-ring device.

Description

The CIO_START tokioctl operation initiates a session with the token-ring device handler. If the start is the
first on the port, the device handler initializes and opens the token-ring adapter. For each successful
CIO_START call issued, there should be a corresponding |CIO_HALT| operation issued.

After the CIO_START operation has successfully completed, the adapter is ready to transmit and receive
data. The caller can issue any valid token-ring operation. Once started, the adapter receives packets that
match the token-ring adapter’s (hardware) address or the address specified in the device-dependent
structure (DDS) and broadcast packets. No group or functional address is specified when the adapter is
started.

The caller notifies the device handler which network ID to use. The network ID corresponds to the
destination service access point (DSAP) in the token-ring packet. The caller can issue multiple
CIO_START operations. For each adapter the token-ring device handler can handle from 0 to the number
of network IDs specified by the TOK_MAX_NETIDS label. This label is defined in the
lusr/include/sys/tokuser.h file.

The CIO_START operation functions with a Token-Ring High Performance Network Adapter that has been
correctly configured for use on a qualified network. Consult adapter specifications for more information on
configuring the adapter and network qualifications.

session_blk Parameter Block
For the CIO_START operation, the arg parameter points to the session_blk structure. This structure is
defined in the /usr/include/sys/comio.h file and contains the following fields:

Field Description
status Indicates the status of the CIO_START operation. Possible returned status values are:
CIO_NETID_DUP|
+ |ICIO_NETID_FULL]
.
netid Specifies the network ID the caller will use on the network. The network ID is placed in the least
significant byte of the netid field. To request a medium-access control (MAC) frame session, the netid

field should be set to the TOK_MAC_FRAME_NETID label. This value has a unique identifier in the most
significant byte of the netid field. There can be only one MAC frame session per adapter.

Note: The token-ring device handler does not allow the caller to specify itself as the wild card network ID.

Execution Environment
The CIO_START tokioctl operation can be called from the [process| environment only.

Return Values

EADDRINUSE Indicates the network ID is in use.
EINVAL Indicates a parameter is not valid.

Chapter 2. Communications Subsystem 191

ENETDOWN Indicates an unrecoverable hardware error.
ENOMSG Indicates an error.
ENOSPC Indicates the network ID table is full.

Related Information
The ddioctl (CIO_START) operation.

The [CIO_GET_STAT] tokioctl Token-Ring Device Handler Operation, [CIO_HALT] tokioctl Token-Ring Device
Handler Operation.

The entry point.

[Common Communications Status and Exception Codes|in AlX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

IOCINFO (Describe Device) tokioctl Token-Ring Device Handler
Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Returns a structure that describes the token-ring device.

Description

The IOCINFO tokioctl operation returns a structure that describes the token-ring device. For this operation,
the arg parameter points to the devinfo structure. This structure is defined in the /usr/include/sys/
devinfo.h file and contains the following fields:

Field Description

devtype Identifies the device type. The token-ring device type is DD_NET_DH. This value is defined in the
lusr/include/sys/devinfo.h file.

devsubtype Identifies the device subtype. The token-ring device subtype is DD_TR. This value is defined in
the /usr/include/sys/devinfo.h file.

speed Specifies the capabilities of the token-ring device. This is equal to TOK_4M when the token-ring

device is configured with a data rate of 4 Mbps. The capabilities are TOK_16M when the
token-ring device is configured with a data rate of 16 Mbps. The TOK_4M and TOK_16M labels
are defined in the /usr/include/sys/tokuser.h file.

broad_wrap Specifies whether the wrapping of broadcast packets is supported by the device.
rdto Specifies the configured receive data transfer offset (RDTO) value.

haddr Specifies the 6-byte hardware address of the token-ring adapter card.

net_addr Specifies the 6-byte network address currently used by the token-ring device handler.

The IOCINFO operation functions with a Token-Ring High-Performance Network Adapter that has been
correctly configured for use on a qualified network. Consult adapter specifications for more information on
configuring the adapter and network qualifications.

The parameter block is filled in with the appropriate values upon return.

Execution Environment
The IOCINFO tokioctl operation can be called from the [process environment| only.

192 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Return Values

EFAULT Indicates the specified address is not valid.
EINVAL Indicates a parameter is not valid.
ENXIO Indicates the specified minor number is not valid.

Related Information
The entry point.

TOK_FUNC_ADDR (Set Functional Address) tokioctl Token-Ring
Device Handler Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Specifies a functional address to be used on a token-ring device.

Description

The TOK_FUNC_ADDR tokioctl operation allows the caller to specify a functional address on a token-ring
network. A successful CIO_START operation must be issued before a TOK_FUNC_ADDR operation can
be issued. The parameter block for the functional address is the tok_func_addr_t structure defined in the
lusr/include/sys/tokuser.h file.

The tok_func_addr_t structure has four fields:

Field Description

status Returns one of the following status values:
* |CIO_INV_CMD

CIO_NETID_INV

CIO_NOT_STARTED|
* |ICIO_O
* |CIO_TIMEOU

netid Specifies the network ID associated with this functional address. The network ID must have been
successfully started by the |CIO_START| operation. There can only be one functional address
specified per network ID.

opcode When set to TOK_ADD, the functional address is added to the list of possible functional addresses
for which the token-ring adapter accepts packets. When set to TOK_DEL, the current functional
address is removed from the list of possible functional addresses for which the token-ring adapter
accepts packets. The TOK_ADD and TOK_DEL values are defined in the /usr/include/sys/
tokuser.h file.

func_addr Specifies the 4 least significant bytes of the 6-byte network function address. The 2 most significant
bytes are automatically set to 0xC000 by the token-ring adapter. The most significant bit and the 2
least significant bits within these 4 bytes cannot be set. They are ignored by the token-ring adapter.

I

II

The TOK_FUNC_ADDR operation functions with a Token-Ring High Performance Network Adapter that
has been correctly configured for use on a qualified network. Consult adapter specifications for more
information on configuring the adapter and network qualifications.

Execution Environment
The TOK_FUNC_ADDR tokioctl operation can be called from the environment only.

Chapter 2. Communications Subsystem 193

Return Values

EFAULT Indicates the specified address is not valid.
EINVAL Indicates a parameter is not valid.
ENETDOWN Indicates an unrecoverable hardware error.
ENOCONNECT Indicates the device has not been started.
ENOMSG Indicates an error occurred.

Related Information

The [CIO_GET_STAT] tokioctl Token-Ring Device Handler Operation for more information about Token-Ring
status blocks.

The |CIO_START] tokioctl Token-Ring Device Handler Operation.
The entry point.

[Common Communications Status and Exception Codes|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

TOK_GRP_ADDR (Set Group Address) tokioctl Token-Ring Device
Handler Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Sets the active group address for a token-ring adapter.

Description

The TOK_GRP_ADDR tokioctl operation sets the active group address for a token-ring adapter. Only one
group address can be specified at a time for a token-ring adapter. For this operation, the arg parameter
points to the tok_group_addr_t structure. This structure is defined in the /usr/include/sys/tokuser.h file
and contains the following fields:

Field Description
status Returns one of the following possible status values:

* |ICIO_INV_CMD
+ |CIO_NOT_STARTED|
« |ICIO_O
* |ICIO_TIMEOU
+ TOK_NO_GROUP

opcode When set to TOK_ADD, the group address specified is added to the possible address for which
the token-ring device accepts packets. When set to TOK_DEL, the group address is removed
from the possible receive packet addresses. The TOK_ADD and TOK_DEL values are defined in
the /usr/include/sys/tokuser.h file.

group_addr Specifies the 4 least significant bytes of the 6-byte network group address. The 2 most significant
bytes are automatically set to 0xC000 by the token-ring adapter. The most significant bit within
these 4 bytes cannot be set. They are ignored by the token-ring adapter.

The TOK_GRP_ADDR operation functions with a Token-Ring High Performance Network Adapter that has
been correctly configured for use on a qualified network. Consult adapter specifications for more
information on configuring the adapter and network qualifications.

194 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Execution Environment
The TOK_GRP_ADDR tokioctl operation can be called from the environment only.

Return Values

EFAULT Indicates the specified address is not valid.
EINVAL Indicates a parameter is not valid.
ENETDOWN Indicates an unrecoverable hardware error.
ENOCONNECT Indicates the device has not been started.
ENOMSG Indicates an error occurred.

Related Information

Token-Ring Operation Results in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming
Concepts.

The |CIO_GET_STAT]|tokioctl Token-Ring Device Handler Operation for more information about Token-Ring
status blocks.

The entry point.

[Common Communications Status and Exception Codes|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

TOK_QVPD (Query Vital Product Data) tokioctl Token-Ring Device
Handler Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Returns the vital product data (VPD) for the token-ring adapter.

Description

The TOK_QVPD tokioctl operation returns VPD about the token-ring device. For this operation, the arg
parameter points to the tok_vpd_t block to query the VPD. This structure is defined in the
lusr/include/sys/tokuser.h file and contains the following fields:

Field Description
status Returns one of the following status values:

¢ TOK_VPD_INVALID
+ TOK_VPD_NOT_READ

+ TOK_VPD_VALID
1_vpd Specifies the length of the vpd parameter.
vpd[TOK_VPD_LENGTH] Contains the VPD upon return.

The TOK_QVPD operation functions with a Token-Ring High Performance Network Adapter that has been
correctly configured for use on a qualified network. Consult adapter specifications for more information on
configuring the adapter and network qualifications.

Execution Environment
The TOK_QVPD tokioctl operation can be called from the [process environment only.

Chapter 2. Communications Subsystem 195

Return Values

EFAULT Indicates the specified address is not valid.
EINVAL Indicates a parameter is not valid.
ENXIO Indicates the specified minor number is not valid.

Related Information
The entry point.

[Common Communications Status and Exception Codes|in AlX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

TOK_RING_INFO (Query Token-Ring) tokioctl Token-Ring Device
Handler Operation

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Reads information about a token-ring device.

Description

The TOK_RING_INFO tokioctl operation reads information about the token-ring device. For this operation,
the arg parameter points to the tok_q_ring_info_t structure. This structure is defined in the
lusr/include/sys/tokuser.h file and contains the following fields:

status Indicates the status condition that occurred. Possible values are:
e TOK_NO_RING_INFO
+ [CIO_NOT_STARTED|

:

p_info Points to the buffer where the tok_ring_info_t structure is to be copied. The tok_ring_info_t structure is
defined in the /usr/include/sys/tokuser.h file.

1_buf Specifies the length of the buffer for the returned ring information structure.

The TOK_RING_INFO operation functions with a Token-Ring High Performance Network Adapter that has
been correctly configured for use on a qualified network. Consult adapter specifications for more
information on configuring the adapter and network qualifications.

Execution Environment
The TOK_RING_INFO operation can be called from the environment only.

Return Values

EFAULT Indicates a specified address is not valid.
EINVAL Indicates a parameter is not valid.
ENOCONNECT Indicates the device has not been started.
ENOMSG Indicates an error occurred.

Related Information

Token-Ring Operation Results in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming
Concepits.

196 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

[Common Communications Status and Exception Codes|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

The [CIO_GET_STAT] tokioctl Token-Ring Device Handler Operation for more information about Token-Ring
status blocks.

The entry point.

tokmpx Token-Ring Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Allocates and deallocates a channel for the token-ring device handler.

Syntax

#include <sys/device.h>
#include <sys/comio.h>
#include <sys/tokuser.h>

int tokmpx (devno, chanp, channame)
dev_t devno;

int *chanp;

char *channame;

Parameters

devno Specifies major and minor device numbers.

chanp Specifies the channel ID passed as a reference parameter. If the channame parameter is null, this is
the ID of the channel to be deallocated. Otherwise, this parameter is set to the ID of the allocated
channel.

channame Points to the remaining path name describing the channel to allocate. The channame parameter

accepts the following values:
null Deallocates the channel.

Pointer to a null string
Allows a normal open sequence of the token-ring device on the channel ID generated by the
tokmpx entry point.

Pointer to a "D"
Allows the token-ring device to be opened in Diagnostic mode on the channel ID generated
by the tokmpx entry point.

Pointer to a "W"
Allows the token-ring device to be opened in Diagnostic mode with the adapter in Wrap
mode on the channel ID generated by the tokmpx entry point.

Description

The tokmpx entry point is not called directly by a user of the token-ring device handler. The kernel calls
the tokmpx entry point in response to an open or close request.

If the token-ring device has been successfully opened, any Diagnostic-mode open request is unsuccessful.
The tokmpx entry point functions with a Token-Ring High Performance Network Adapter that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on
configuring the adapter and network qualifications.

Chapter 2. Communications Subsystem 197

Execution Environment
The tokmpx entry point can be called from the [process environment| only.

Return Values

EBUSY
ENOMSG
ENXIO
ENOSPC

Indicates the device was already open in Diagnostic mode and the open request was denied.
Indicates an error occurred.

Indicates the specified minor number is not valid.

Indicates the maximum number of opens has been exceeded.

Related Information
The entry point, entry point, entry point.

The Communications PDH entry point, Communications PDH entry point.

tokopen Token-Ring Device Handler Entry Point

Purpose

Note: This function is supported in AIX 5.1 and earlier only.

Initializes a token-ring device handler and allocates the required system resources.

Syntax

#include <sys/device.h>
#include <sys/comio.h>
#include <sys/tokuser.h>

chary

struct kopen_ext *

Parameters

devno

Specifies major and minor device numbers.

devflag Specifies the flag word with the following definitions:
DKERNEL
Indicates kernel-mode processes. For user-mode processes, this flag must be clear.
DNDELAY
Specifies that the device handler performs nonblocking reads and writes for this channel.
Otherwise, blocking reads and writes are performed for this channel.
chan Specifies the channel number assigned by theentry point.
arg Points to astructure for kernel-mode processes. For user-mode processes, this field is not
used.
Description

The tokopen entry point is called when a user-mode caller issues an [open, openx| or[creat] subroutine.
The tokopen routine can also be invoked in response to an |fp_opende!| kernel service. The device is
opened to read and write data.

198 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

The tokopen entry point functions with a Token-Ring High Performance Network Adapter that has been
correctly configured for use on a qualified network. Consult adapter specifications for more information on
configuring the adapter and network qualifications.

Note: After the tokopen operation has successfully completed, the caller must then issue a|CIO_STAR
operation before any data can be transmitted or received from a token-ring device handler.

Execution Environment
The tokopen entry point can be called from the [process environment] only.

Return Values

ENXIO Indicates the specified minor number is not valid.
EINVAL Indicates a specified parameter is not valid.
ENOMEM Indicates the device handler was unable to allocate the required memory.

Related Information
The |CIO_START]| tokioctl Token-Ring Device Handler Operation.

The [open, openx or creat| subroutine.

The Communications PDH entry point.

The kernel service.

tokread Token-Ring Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Provides the means for receiving data from the token-ring device handler.

Syntax

#include <sys/device.h>

#include <sys/uio.h>

#include <sys/comio.h>

#include <sys/tokuser.h>

int tokread (devno, uiop, chan, arg)
dev_t devno;

struct uio *uiop;

int chan;

read_extension *arg;

Parameters

devno Specifies major and minor device numbers.

uiop Points to a@structure. For a calling user-mode process, the uio structure specifies the location and
length of the caller's data area in which to transfer information. The kernel fills in the uio structure for the
user.

chan Specifies the channel number assigned by the entry point.

arg Can be null or points to the read_extension structure. This structure is defined in the /usr/include/sys/
comio.h file.

Chapter 2. Communications Subsystem 199

Description
Note: Only user-mode callers should use the tokread entry point.
The tokread entry point provides the means for receiving data from the token-ring device handler. When a

user-mode caller issues a|read| [readx] [readv} or readvx|subroutine, the kernel calls the tokread entry
point.

For this operation, the arg parameter may point to the read_extension structure. This structure is defined
in the /usr/include/sys/comio.h file and contains the following fields:

Field Description

status Contains additional information about the completion of the tokread entry point. Possible values for this
field are:
:
+ |CIO_BUF_OVFLW|

netid Not used

sessid Not used

The tokread entry point functions with a Token-Ring High Performance Network Adapter that has been
correctly configured for use on a qualified network. Consult adapter specifications for more information on
configuring the adapter and network qualifications.

Execution Environment
The tokread entry point can be called from the environment only.

Return Values

EACCES Indicates an illegal call from a kernel-mode user.

ENXIO Indicates the specified minor number is not valid.

EINTR Indicates a system call was interrupted.

EMSGSIZE Indicates the data was too large to fit into the receive buffer and that no arg parameter was
supplied to provide an alternate means of reporting this error with a status of [CIO_BUF_OVFLWL

EFAULT Indicates that the supplied address is not valid.

ENOCONNECT Indicates the device has not been started.

Related Information
The [read, readx, readv, or readvx| subroutine.

The entry point, entry point.

[Common Communications Status and Exception Codes|in AlX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts.

tokselect Token-Ring Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Determines whether a specified event has occurred on the token-ring device.

200 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Syntax

#include <sys/device.h>
#include <sys/comio.h>
#include <sys/tokuser.h>

int tokselect (|devno|, levents|, [reventpl, |chanl)
dev_t devno;

ushort events;

ushort *reventp;

int chan;
Parameters
devno Specifies major and minor device numbers.
events Specifies the conditions to check, denoted by the bitwise OR of one or more of the following:
POLLIN
Check whether receive data is available.
POLLOUT
Check whether transmit available.
POLLPRI
Check whether status is available.
POLLSYNC
Check whether asynchronous notification is available.
reventp Points to the result of condition checks. A bitwise OR one of the following conditions is returned:
POLLIN
Indicates available receive data.
POLLOUT
Indicates available transmit.
POLLPRI
Indicates available status.
chan Specifies the channel number assigned by theentry point.
Description

Note: Only user-mode callers should call this entry point.

The tokselect entry point is called when the or subroutine is used to determine if a specified
event has occurred on the token-ring device.

When the token-ring device handler is in a state in which the event can never be satisfied (for example, an
adapter failure), then the tokselect entry point sets the returned events flags to 1 for the event that cannot
be satisfied. This prevents the select or poll subroutines from waiting indefinitely.

The tokselect entry point functions with a Token-Ring High Performance Network Adapter that has been

correctly configured for use on a qualified network. Consult adapter specifications for more information on
configuring the adapter and network qualifications.

Execution Environment
The tokselect entry point can only be called from the environment.

Chapter 2. Communications Subsystem 201

Return Values

ENXIO Indicates the specified minor number is not valid.
EACCES Indicates a call from a kernel process is not valid.

Related Information
The subroutine, subroutine.

[Select/Poll Logic for ddwrite and ddread Routines|

tokwrite Token-Ring Device Handler Entry Point

Purpose
Note: This function is supported in AIX 5.1 and earlier only.

Provides a means of transmitting data to the token-ring device handler.

Syntax

#include <sys/device.h>

#include <sys/uio.h>

#include <sys/comio.h>

#include <sys/tokuser.h>

int tokwrite (devno, uiop, chan, arg)
dev_t[devnd

struct uio * |uiop;

int

struct write_extension *

Parameters
devno Specifies major and minor device numbers.
uiop Points to a structure specifying the location and length of the caller’s data.

chan Specifies the channel number assigned by the entry point.
arg Points to a structure. If the arg parameter is null, then default values are assumed.

Description

The tokwrite entry point provides the means for transmitting data to the token-ring device handler. The
kernel calls it when a user-mode caller issues a |write} [writex} [writev} or a [writevx| subroutine.

For a user-mode process, the kernel fills in the uio structure with the appropriate values. A kernel-mode
process must fill in the uio structure as described by the communications entry point.

For the tokwrite entry point, the arg parameter may point to a write_extension structure. This structure is
defined in the /usr/include/sys/comio.h file and contains the following fields:

Field Description
status Indicates the status condition that occurred. Possible values for the returned status field are:
* ICIO_O

« [CI0_TX_FULL
+ [CIO_NOT_STARTED|
+ [CIO_NET_RCVRY_MODE]

202 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Field Description
flag Consists of a possible bitwise OR one of the following:

CIO_NOFREE_MBUF
Requests that the token-ring device handler not free the mbuf structure after transmission is
complete. The default is bit clear (free the buffer). For a user-mode process, the token-ring
device handler always frees the mbuf structure.

CIO_ACK_TX_DONE
Requests that, when done with this operation, the token-ring device handler acknowledges
completion by building a status block. In addition, requests the token-ring
device handler either call the kernel status function or (for a user-mode process) place the

status block in the status/exception queue. The default is bit clear (do not acknowledge
transmit completion).

write_id For a user-mode caller, the write_id field is returned to the caller by the [CIO_GET_STAT| operation
(if the CIO_ACK_TX_DONE option is selected). For a kernel-mode caller, the write_id field is
returned to the caller by thefunction that was provided at open time.

The tokwrite entry point functions with a Token-Ring High Performance Network Adapter that has been
correctly configured for use on a qualified network. Consult adapter specifications for more information on
configuring the adapter and network qualifications.

Execution Environment
The tokwrite entry point can be called from the environment only.

Return Values

EAGAIN Indicates the transmit queue is full.

EFAULT Indicates an invalid address was supplied.

EINTR Indicates a system call was interrupted.

EINVAL Indicates the specified parameter is not valid.

ENETDOWN Indicates the network is down. The device is unable to process the write.
ENETUNREACH Indicates the device is in network Recovery mode and unable to process the entry point.
ENOCONNECT Indicates the device has not been started.

ENOMEM Indicates the device handler was unable to allocate the required memory.

ENXIO Indicates the specified minor number is not valid.

Related Information
The |CIO_GET_FASTWRT] tokioctl entry point

The entry point, entry point, entry point, entry point.

The |write, writex, writev, or writevx|subroutine.

The |CIO_START] tokioctl operation.

The structure in AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume 1.

See the [Use of mbuf Structures in the Communications PDH|in AIX 5L Version 5.3 Kernel Extensions and
Device Support Programming Concepts for more information about mbuf structures.

Chapter 2. Communications Subsystem 203

204 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Chapter 3. LFT Subsystem

Ift_t Structure

The Ift_t structure is defined in the Ift.h file. The Ift_t structure is defined as Ift_t with the typedef storage
class specifier. The global variable of type Ift_t is declared within the Low Function Terminal (LFT)
subsystem. A pointer to the Ift_t structure is stored in the devsw structure in the LFT device-switch table
entry. The Ift_t structure is defined as follows:

typedef struct 1ft {

1ft_dds_t *dds_ptr;

uint initialized;
uint open_count;
unit default_cursor;
struct font_data *fonts;
1ft_swkbd_t *swkbd;
1ft_fkp_t 1ft_fkp;
strift_ptr_t strift;

}1ft_t, *1ft_ptr_t;

The Ift_t structure members are defined as follows:

Structure Member Description

dds_ptr Specifies a pointer to the device-dependent structure (DDS). This pointer is initialized by
the Ift_init routine after the DDS has been allocated.

initialized Specifies a Boolean flag indicating whether LFT is fully initialized.

open_count Specifies a count of the current number of opens to LFT. When the open_count member
is decremented to 0, LFT is unconfigured.

default_cursor Serves as a place holder for a default cursor pointer.

fonts Specifies a pointer to all of the font information.

swkbd Specifies a pointer to the software keyboard information.

Ift_fkp Contains font kernel process (fkproc attribute) information.

strift Specifies streams-specific information.

Related Information
Structure.

phys_displays| Structure.

Ift_dds_t Structure

The Ift_dds_t structure is defined in the Ift_dds.h file and is defined as Ift_dds_t by the typedef storage
class specifier. The Ift_dds_t structure is a common structure that is shared by the Low Function Terminal
(LFT) Configure method and the LFT subsystem.

Most of the Ift_dds_t structure is initialized by the configure method’s build_dds routine. This routine
queries the Object Data Manager (ODM) for all LFT-relevant data. After the build_dds routine has
completed its initialization of the Ift_dds_t structure, the configure method calls the Ift_init routine and
passes it the pointer to the Ift_dds_t structure. The Ift_init routine then copies the Ift_dds_t structure
from user space into LFT’s own local device-dependent structure (DDS) in kernel space. A pointer to this
local Ift_dds_t structure is then stored in the anchored LFT DDS.

The Ift_dds_t structure contains values initialized by LFT, as well as values from the ODM. The values

initialized by LFT are the keyboard file pointer (kbd.fp), the display file pointers (displays[i].fp), and the
vtmstruct structure pointers (displays[i].vtm_ptr).

© Copyright IBM Corp. 1997, 2007 205

The Ift_dds_t structure is defined as follows:

typedef struct
1ft_dev_t
1ft_kbd_t
int
int
char
char
int
uint
1ft_disp_t
} 1ft_dds_t;

1ft;

kbd;
number_of_displays;
default_disp_index;
*swkbd_file;
*font_file_names;
number_of_fonts;
start_fkproc;
displays[1];

The Ift_dds_t structure members are defined as follows:

Structure Member
Ift

kbd

number_of_displays

default_disp_index

*swkbd_file

*font_file_names

number_of_fonts

start_fkproc

Description
Specifies a structure that contains the device number and logical name of LFT.
The Ift structure is initialized by the LFT Configure method. The Ift structure is
defined as follows:
typedef struct {

dev_t devno;

char devname [NAMESIZE] ;
} 1ft_dev_t;
Specifies a structure that contains keyboard-specific information. The kbd
structure is defined as follows:

typedef struct {

dev_t devno;

char devname [NAMESIZE] ;
struct file *fp;

struct diacritic *diac;

uint kbd_type;

Specifies the total number of displays found to be available by LFT’s configure
method. This reflects the number of entries in the Ift_disp_info array.

Specifies an index into the displays array and specifies the display currently in
use by LFT. The default_disp_index member is initialized by the LFT Configure
method. The value of the default_disp_index member is set to -1 if the
default_disp attribute is not found in the ODM. LFT provides an ioctl call that
allows the value of the default_disp_index member to be changed after LFT has
been initialized.

Specifies a pointer to the software-keyboard file name. The LFT Configure
method allocates space for the software-keyboard file name. LFT copies the
software-keyboard file name into kernel space, opens the file, and reads the
software-keyboard information into kernel space.

Specifies a pointer to the names of the font files. The LFT Configure method
allocates space for the font file names. LFT copies the font file names into kernel
space, opens each of the font files, and reads the font information into kernel
space. The space allocated in the kernel for holding the font file names is then
released.

Specifies the number of fonts. The number_of_fonts member is initialized by the
LFT Configure method.

Specifies a Boolean flag. This flag is set to True if the LFT Configure method
finds an fkproc attribute in the ODM for any of the displays associated with LFT.
LFT then calls the font server if the flag was set to True.

206 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Structure Member Description

displays[1] Specifies an array, the size of which is determined by the number of available
displays found during the configuration process. The displays[1] structure is
defined as follows:

typedef struct {

dev_t devno;

char devname [NAMESIZE] ;
int font_index;

struct file *fp;

ushort fp_valid:

ushort flags;

struct vtmstruct *vtm_ptr;

} 1ft_disp_t;

This is an array of Ift_disp_t structures, one for each available display. Each
structure is tied to a display that has been attached to LFT by the LFT Configure
method. The LFT Configure method initializes the device number, device name,
and default font index members for each structure associated with an available
display. LFT then initializes each vtmstruct structure and *vtm_ptr file pointer
associated with a display. The number_of_displays member of the Ift_dds_t
structure defines how many of the Ift_disp_t structures are valid. The Ift_disp_t
structure members are defined as follows:

devno Specifies the device number of the display adapter. The LFT Configure
method initializes this member.

devname{NAMESIZE]
Specifies the logical name of the adapter. The LFT Configure method
initializes this member.

font_index
Specifies an integer which contains the index of the default font to be
used by the associated adapter. The LFT Configure method initializes
this member.

*fp Specifies a pointer to an integer which specifies the file pointer of the
opened display adapter. The *fp pointer is used when the display needs
to be closed. LFT initializes this member.

fp_valid
Specifies a boolean flag that is set to True if LFT can write to this
display. LFT initializes this member.

flags Specifies state flags. Only the APP_IS_DIAG flag is currently used.

*vim_ptr
Specifies a pointer to a structure of type vtmstruct. The *vtm_ptr
structure pointer is used in all virtual device driver (VDD) calls to the
display device driver. LFT allocates and initializes the vimstruct
structure.

phys_displays Structure

Each display driver allocates and initializes a phys_displays structure during configuration. The
phys_displays structure is defined in the /usr/include/sys/display.h file. The display driver stores a
pointer to the phys_displays structure in the display driver's devsw structure, which is then added to the
device switch table. A pointer to the display driver's vimstruct structure is initialized in the phys_displays
structure when the display driver's vttact routine is called. The phys_displays structure is defined as
follows:

Note: Micro Channel machines only run AIX 5.1 or earlier.

Chapter 3. LFT Subsystem 207

struct phys displays { R R T Ty

struct { /* data to set up interrupt call =/
struct intr intr; /* at init time (i_init) */
Tong intr_args[4]; [x */

} 'interrupt_data; R e T I T e Y

struct phys_displays *same_level; /* other interrupts on same level */
struct phys_displays *next; /* ptr to next minor number data */

struct _gscDev *pGSC; /* device struct used by rcm */
dev_t devno; /* Device number of this adapter */
struct 1ft *]ftanchor;/* 1ft subsystem */

int dds_length; /* length in bytes */

char *odmdds; /* ptr to define device structure */
struct display_info display_info; /* display information x/

uchar disp_devid[4]; /* device information */

/* [1] = 04=display device */
/* [2] = 21=reserved 22=reserved =*/

/* 25=reserved 27=reserved */
/* 29=reserved */
/* [3] = 00=functional */

/* [4] = 01-04=adapter instance x/

uchar usage; /* number of VT's using real screen =/
/* used to prevent deletion of =*/
/* real screen from configuration */
/* if any VT is using it. */

uchar open_cnt; /* Open flag for display */

uchar display_mode; /* Actual state of the display, */
/* not the virtual terminal: =*/
/* KSR_MODE or MOM_MODE (see vt.h) =/

uchar dma_characteristics; /* Attributes related to DMA ops */

define DMA_SLAVE_DEV 1 /* Device is bus slave, ow. master */

struct font data *default font; /* Pointer to the default font for */
/* this display */

struct vtmstruc *visible_vt; /* Pointer to current vt active or */
/* pseudo-active on THIS display */

/***********************************/

/* DMA Data Areas =/

[Kk ko k ok ok ok kh *kkxrhhhhhk kxR * kA /
int dma_chan_id; /* channel id returned from d_init */
struct dma_bufs /* DMA buffer structure */

d_dma_area[MAXDMABUFS]; /* */

/***********************************/

/* Rendering Context Manager Areas */
/***********************************/

rcmProcPtr cur_rcm; /* Pointer to current rcm on this */
/* display */
int num_domains; /* number of domains =*/
int dwa_device; /* supports direct window access */
struct _bmr /* bus memory ranges */
busmemr[MAX_DOMAINS]; /* */
uint io_range; /* Used for MCA adapter only! */

/* low limit in high short =/
/* high 1imit in Tow short =*/
/* to match IOCC register */
uint *free_area; /* area free for usage in a device x/
/* dependent manner by the VDD =/
/* for this real screen. */
#ifndef _ 64BIT _KERNEL

#define RCM_ACC_METHOD_1 (6L) /* MCA and SGA bus adapters =/
#endif
#define RCM_ACC_METHOD_2 (1L) /= 60X and PCI bus adapters =/
uint access_method; /* Access method flags */
#ifndef _ 64BIT_KERNEL
#define RCM_RUBY_NO_MAP (1L) /* Tells RCM to not map the space */
#endif
uint access_flags; /* Misc flags (used for Ruby now) */
uint reserved13[13];
int current_dpm_phase; /* current phase of DPM this display is in */

208 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

#define
#define
#define
#define

#ifdef

#else

#endif

#ifdef

#else

/*

full-on=1, standby=2, suspend=3, off=4 %/

DPMS_ON ox1
DPMS_STANDBY 0x2
DPMS_SUSPEND 0x3
DPMS_OFF 0x4
int NumAddrRanges;
rcmAddrRange *AddrRange;
int reserved4;
int (*reserved7)(); R R R A i 2 = Y
/* VDD Function Pointers */
/***********************************/
int (xvttpwrphase)(); /* power management phase change %/
/* function. It's device dependent x/
int (*vttact)(); /* Activate the display */
int (*vttcfl)(); /* Move lines around */
int (xvttcir)(); /* Clear a box on screen */
int (xvttcpl)(); /* Copy a part of the Tine */
int (*vttdact)(); /* Mark the terminal as being */
/* deactivated */
int (*vttddf)(); /* Device dependent functions =/
/* i.e. Pacing, context support =/
int (*vttdefc)(); /* Change the cursor shape */
int (*vttdma)(); /* Issue dma operation x/
int (*vttdma_setup)(); /* Setup dma */
int (*vttterm)(); /* Free any resources used x/
/% by this VT */
int (*vttinit)(); /* setup new Togical terminal =/
int (*vttmovc)(); /* Move the cursor to the =/
/* position indicated */
int (*vttrds)(); /* Read a line segment */
int (*vtttext)(); /* Write a string of chars x/
int (*vttscr)(); /* Scroll text on the VT =*/
int (*vttsetm)(); /* Set mode to KSR or MOM */
int (*vttstct)(); /* Change color mappings */
int (*reserved5)(); /* Despite its name, this field is */
/* used for kdb debug */
int (*bind_draw_read_windows) ()
/***********************************/
/* RCM Function Pointers =/
/***********************************/
int (*make_gp) () /* Make a graphics process */
int (*unmake_gp)(); /* Unmake a graphics process =/
int (*state_change)(); /* State change handler invoked */
int (*update_read_win_geom)();
int (xcreate_rcx)(); /* Create a hardware context */
int (*delete_rcx)(); /* Delete a hardware context */
_ 64BIT_KERNEL
int (*reserved21)();
int (*reserved22)();
int (*reserved23)();
int (*reserved24)();
int (*create_rcxp)(); /* Create a context part */
int (xdelete_rcxp)(); /* Delete a context part =*/
int (*associate_rcxp)(); /* Link a part to a context */
int (xdisassociate_rcxp)(); /* Unlink a part from a context */
int (*create_win_geom)(); /* Create a window on the screen */
int (xdelete_win_geom)(); /* Delete a window on the screen */
int (*update_win_geom)(); /* Update a window on the screen */
_ 64BIT_KERNEL
int (*reserved25)();
int (*reserved26)();
int (*reserved27)();
int (xcreate_win_attr)(); /* Create a window on the screen */
int (*delete_win_attr)(); /* Delete a window on the screen */

Chapter 3. LFT Subsystem

209

int (*update_win_attr)();
#endif

int (*bind_window) ()

int (*start_switch)();

int (xend_switch)();

#ifdef _ 64BIT_KERNEL
int (*reserved28)();
int (*reserved29)();
int (*reserved30)();
int (*reserved3l)();

#else
int (*check _dev)();
int (*async_mask)();
int (*sync_mask)();
int (xenable_event)();
#endif

int (*create_thread)();
int (*delete_thread)();

/* Update a window on the screen =*/

/* Update a window bound to rcx */
/* Start a context switch */

/* Note: This routine runs on */
/* the interrupt level =/

/* Finish the context switch */

/* started by start switch() =/

/* Check if this address beints =/
/* to this device. */

/* Note: this is run on interrupt */
/* Tlevel. */

/* Set async events reporting */

/* Set sync events reporting */

/* Turns adapter function on */

/* without reports to application */

/* Make a graphics thread */
/* Delete a graphics thread */

void (xgive_up_time_slice)(); /* Relinquish remaining time */

#ifdef _ 64BIT_KERNEL

int (*reserved32)();
#else

int (*diag_svc)();
#endif

int (*dev_init)();
#ifdef _ 64BIT_KERNEL

int (*reserved33)();
#else

int (*dev_term)();
#endif

#ifdef _ 64BIT_KERNEL
int (xreserved34)();
#else
int (*pinned_font_ready)
#endif
int (*vttddf_fast)();
ushort bus_type;
#ifndef 64BIT_KERNEL

define DISP_BUS_MCA
define DISP_BUS_SGA
define DISP_BUS_PPC
define DISP_PLANAR
#endif

define DISP_BUS_PCI

ushort flags;

/* Diagnostics Services (DMA) */

/* Device dep. initialization %/

/* Device dep. cleanup */
/***********************************/

/* Font Support Function Pointers x/
/***********************************/

0

/* fast ddf functions =/
/* indicates what type of bus */

0x8000/* Microchannel */
0x4000/* currently not used =/
0x2000/* processor bus */
0x0800/* planar registers */

0x1000/* PCI bus =/

/* physical display flags */

define GS_DD_DOES_AS ATT(1L << 0)/* no as_att() by RCM =/

/* not currently used */

define GS_BUS_AUTH_CONTROL(1L << 1)/* Request bus access ctrl =/
define GS_HAS_INTERRUPT_HANDLER (1L << 2)/+ 1 after i_init() */
/= 0 after i_clear() »/
/* not currently used */
define GS_DD_SUPPORTS MP (1L << 3)

210 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

uint reservedl1[5]; /* not used =/

int ear;

/* image for EAR reg (xferdata) if !0 */

uint spares[18]; /* not used - for future development */

}s

Related Information

[if] Structure.

Structure.
Structure.

vimstruct Structure

The vtmstruct structure is defined in the vt.h file. The Low Function Terminal (LFT) subsystem does not
support virtual terminals. However, for backward compatibility with current display drivers, the name of this
structure remains the same as in previous releases. The vitmstruct structure contains all of the
device-dependent data needed by LFT for a given display adapter. LFT allocates and initializes each
vtmstruct structure. The number of vtmstruct structures is determined by the number_of_displays
variable stored in the Ift_dds structure. The vtmstruct structure is defined as follows:

struct vtmstruct {

struct phys_displays *display;

struct vtt_cp_parms mparms;

char *vttld;

off_t vtid;

uchar vtm_mode;

int font_index;

int number_of_fonts;
struct font_data *fonts;

int (+fsp_ena) ()

}s

The vtmstruct structure members are defined as follows:

Structure Member
display

mparms

vitid
vtid

vtm_mode

Description

Specifies a pointer to the physical display structure with the display. The *display
pointer is acquired by LFT by passing the display’s device number to the devswqry
command. The display device drivers initialize the phys_displays structures.

Specifies a structure that contains a code-point mask for implementing 7- or 8-bit ASCII,
the code base that is added to the code point if the code base is greater than or equal
to 0, the attribute bits, and the cursor position. The x and y cursor coordinates are
initialized to 0. The vtt_cp_parms structure is defined as follows:

struct vtt_cp_parms

{

ulong cp_mask;
Tong cp_base;
ushort attributes;
struct vtt_cursor cursor;

IH

Specifies a pointer to the local data area of the display adapter. The display driver
initializes the *vttld pointer.

Specifies the virtual terminal ID. This ID is no longer used, but is retained for backward
compatibility. LFT initializes the vtid member to 0.

Specifies a flag which indicates the state of the display. LFT initializes the vim_mode
member to ksr mode, and the vim_mode member remains unchanged, since using a
hot-key to switch between Keyboard Send-Receive (KSR) and Monitor Mode (MOM) is
no longer allowed. The vim_mode member is retained only for backward compatibility.

Chapter 3. LFT Subsystem 211

Structure Member Description

font_index Specifies an index into the font structures for a specific font chosen via a chfont
command. LFT copies this member from the font_index member of the Ift_disp_t
structure.

number_of_fonts Specifies the number of fonts. The number_of_fonts member is copied from the
Ift_dds structure during the initialization of the vtmstruct structure.

fonts Specifies a pointer to the array of font tables initialized by LFT. The display driver uses

this pointer to acquire its font information.

LFT initializes an array of structures of type font_data from data read in from the font
files specified in the Object Data Manager (ODM). A pointer to this array is then stored
in the vtmstruct structure for each display. The display drivers use this pointer to load
the appropriate font information. The members of the font_data structure are defined
as follows:

struct font data {
ulong font_id;

char font_name[20] ;
char font_weight[8];
char font_slant[8];

char font_page[8];

ulong font_style;

Tong font_width;

long font_height;

Tong fxfont_ptr;

ulong font_size;
bs

(*fsq_enq()) Specifies a pointer to the LFT function that queues messages to the font server. LFT

initializes this pointer. If a display driver requires the services of the font server, it can
queue a message to the font server using the function pointed to by the (*fsq_enq())
pointer.

Virtual Display Driver (VDD) Interface (Iftvi)

Purpose
Provides a communication path from the LFT driver to the lower-level display adapter drivers.

Syntax

static int (VP, Down)
struct vtmstruc *VP;

struct down_stream *Down;

Description

The Iftvi interface provides a communication path from the LFT driver to the lower-level display adapter
drivers. an array of vtmstruc structures with one entry for each configured display adapter is maintained
by the Iftvi interface.

LFT cannot use the normal driver entry points, since the display drivers cannot sleep except in their own
open routines. Therefore, all virtual display driver (VDD) functions are called via function pointers in the
phys_display structure.

The Iftvi interface includes a collection of functions called by the vimupd and vtmupd3 subroutines.

These functions update information such as cursor position and the tab stop map by calling the
appropriate display driver function.

212 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Parameters

Function

Specifies one of the functions provided by the Iftvi interface. The following functions are provided:

cursor_up
Moves the cursor up the number of rows specified in the escape sequence.

cursor_down
Moves the cursor down the number of rows specified in the escape sequence.

cursor_left
Moves the cursor left the number of columns specified in the escape sequence.

cursor_right
Moves the cursor right the number of columns specified in the escape sequence.

cursor_absolute
Moves the cursor to the row and column coordinates specified in the escape sequence.

delete_char
Deletes data from the cursor X position. The number of characters to be deleted is specified
in the escape sequence.

delete_line
Deletes the number of lines specified in the escape sequence from the cursor line. Any data
following the deleted lines is scrolled up.

erase_|
Erases a line. The escape sequence specifies whether to delete to the end of the line, from
the start of the line, or all of the line. This routine calls the clear_rectangle function to
perform the erasure.

erase_display
Clears all or part of the screen as specified in the escape sequence.

screen_updat
Processes a graphics string. Chops the output string into lines if necessary and calls the vitt*
routines in the display driver.

copy_part
Calls the VDD that services the terminal to copy part of a line to the presentation space.

clear_rect
Calls the VDD that services the terminal to clear a rectangle.

sound_beep
Calls the sound driver to emit a beep.

set_attributes
Sets the graphics rendition.

update_ds_modes
Sets or resets the data-stream modes.

set_clear_tab
Sets or clears the tabs as specified in the escape sequence. This function operates on
either a line or screen model.

update_ht_stop
Sets or clears horizontal tabs. This function can set or clear the horizontal tabs for one line
or the whole screen.

clear_all_ht
Clears all horizontal tabs on a line.

cursor_back_tab
Moves the cursor to the previous tab stop.

Chapter 3. LFT Subsystem 213

cursor_ht
Places the cursor at the next horizontal tab.

find_prior_tab
Finds the previous tab by examining the terminal’s tab array and setting the cursor's X and
Y coordinates to that point. This function takes wrap and autonewline into consideration.

find_next_tab
Finds the next tab by examining the terminal’s tab array and setting the cursor's X and Y
coordinates to that point. This function takes wrap and autonewline into consideration.

scroll_down
Moves the entire presentation space down the number of lines specified in the escape

sequence.
scroll_up
Moves the entire presentation space up the number of lines specified in the escape
sequence.
erase_char

Erases the number of characters specified in the escape sequence from the line. If an erase
occurs at the end of a line, the line length is altered.

insert_line
Scrolls the cursored line and all lines following it down the number of lines specified in the
escape sequence.

insert_char
Inserts the number of empty spaces specified in the escape sequence before the character
indicated by the cursor. Characters beginning at the cursor are shifted right. Characters
shifted past the right margin are lost.

upd_cursor
Calls the vttmove function to update the cursor position.

ascii_index
Moves the cursor down one line. If the cursor was already on the last line, all lines are
scrolled up one line.

vttscr Specifies the scroll entry point.

vtttext Specifies the display graphics characters entry point.
vttclr Specifies the clear rectangle entry point.

vttepl Specifies the copy line entry point.

vttmove
Specifies the move cursor entry point.

vttcfl Specifies the copy full line entry point.

Input Device Driver ioctl Operations

The keyboard special file supports the ioctl operations listed below. Because configuration information is
shared between channels, certain ioctl operations such as the KSTRATE (set typematic rate) ioctl
operation affect both channels regardless of which channel the request is received from.

Operation Description

Returns devinfo structure.
Queries keyboard device identifier.
Queries keyboard service vector.
Registers input ring.

214 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Operation
KSRFLUSH
KSLED
KSCFGCLIC
KSVOLUME]
KSALARM
KSTRATE
KSTDELA
KSKAP|
KSKAPAC
KSDIAGMODE
MQUERYID

MRFLUSH
MTHRESHOLD
MRESOLUTION

MSCALE
MSAMPLERATE

TABQUERYID|
TABREGRING
TABRFLUSH
TABCONVERSION
TABRESOLUTION
TABORIGIN
TABSAMPLERATE
TABDEADZONE
GIOQUERYID|
DIALREGRING|
DIALRFLUSH
DIALSETGRAND
LPFKREGRING
LPFKRFLUSH
LPFKLIGH

@

The following ioctl operations are ignored (return immediately with a good return code) when sent to a
channel which is not active, and return an EBUSY error code if the keyboard is in diagnostics mode:

KSLED
KSCFGCLICK
KSVOLUME
KSALARM
KSTRATE
KSTDELAY

Description

Flushes input ring.

llluminates and darkens LEDs on the keyboard.
Configures the keyboard clicker.
Sets alarm volume.

Sounds alarm.

Sets typematic rate.

Sets typematic delay.
Enables/disables keep alive poll.
Acknowledges keep alive poll.
Enables/disables diagnostics mode.
Queries mouse device identifier.
Registers input ring.

Flushes input ring.

Sets mouse reporting threshold.
Sets mouse resolution.

Sets mouse scale factor.

Sets mouse sample rate.
Queries tablet device identifier.
Registers input ring.

Flushes input ring.

Sets tablet conversion mode.
Sets tablet resolution.

Sets tablet origin.

Sets tablet sample rate.

Sets tablet dead zone.

Queries attached devices.
Registers input ring.

Flushes input ring.

Sets dial granularity.

Registers input ring.

Flushes input ring.

Sets/resets key lights.

IOCINFO (Return devinfo Structure) ioctl Input Device Driver

Purpose

Returns devinfo structure.

Syntax

#include <sys/devinfo.h>

Chapter 3. LFT Subsystem

int ioctl (FileDescriptor, IOCINFO, Arg)
int FileDescriptors;
struct devinfo *Arg;

Description

The IOCINFO ioctl operation returns a devinfo structure, defined in the /usr/include/sys/devinfo.h file,
that describes the device. Only the first two fields are valid for this device. The values are as follows:

char devtype; /* device type TBD */

char flags; /% open flags (see sys/device.h) */
Parameters

FileDescriptor Specifies the open file descriptor for the device.
Arg Specifies the address of the devinfo structure.

KSQUERYID (Query Keyboard Device Identifier)

Purpose
Queries keyboard device identifier.

Syntax
#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSQUERYID, Arg)
int FileDescriptors;
uint *Arg;

Description
The KSQUERYID ioctl subroutine call returns the keyboard device identifier in the location pointed to by
the calling argument. Valid keyboard identifiers are:

#define KS101 /0x01 /* 101 keyboard */
#define KS102 /0x02 /* 102 keyboard =

#define KS106 /0x03 /* 106 keyboard =/

#define KS101 0x01 /* */

#define KS102 Ox02 /* *

#define KS103 0x03 /% */

Parameters

FileDescriptor Specifies the open file descriptor for the keyboard.

Arg Specifies the address of the location to return the keyboard identifier.

KSQUERYSV (Query Keyboard Service Vector)

Purpose
Queries keyboard service vector.

Syntax
#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSQUERYSV, Arg)
int FileDescriptor;
caddr_t *Arg;

216 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Description

The KSQUERYSV ioctl subroutine call returns the address of the keyboard service vector via the calling
argument. The keyboard service vector is provided so that certain services may be invoked by kernel
extensions without the occurrence of sleeps or page faults. The services provided by the vector must not
be invoked by a user process.

The following offsets into the vector are defined:

#define KSVALARM 0 /* sound alarm */
#define KSVSAK 1 /+ disable/enable secure attention key =/
#define KSVRFLUSH 2 /* flush input ring */
#define KSVALARM 0 /*...... */
#define KSVSAK 1 [*enn. x/
#define KSVRFLUSH 2 /*...... */

Service vector routines are invoked using an indirect call as follows:
(*service_vector[service number]) (dev_t devno, caddr_t arg)

where:

* The service vector is a pointer to the service vector obtained by the KSQVERYSU fp_ioctl subroutine
call.

* The service_number parameter is offset into the service vector.
* The devno parameter is the device number for the keyboard.

* The arg parameter points to a ksalarm structure for alarm requests and an unsigned integer (uint) for
secure attention key (SAK) enable/disable requests. The arg parameter is NULL for flush queue
requests.

A value of zero is returned if the service vector function is successful. Otherwise, an error number defined
in the errno.h file is returned. Alarm requests are ignored if the kernel extension’s channel is not active;
enable/disable SAK and queue flush requests are always processed.

The KSQUERYSV ioctl subroutine call returns a value of -1 and sets the errno global variable to a value
of EINVAL when called by a user process.

Parameters
FileDescriptor Specifies the open file descriptor for the keyboard.
Arg Specifies the address of the location to return the service vector address.

KSREGRING (Register Input Ring)

Purpose
Registers input ring.

Syntax
#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSREGRING, Arg)

int |FileDescriptory;

caddr_t * Jirgl;

Chapter 3. LFT Subsystem 217

Description

If the keyboard special file was opened by a process in user mode, the Arg parameter should point to a
uregring structure containing:

* A pointer to an input ring in user memory.
* The value to be used as the source identifier when enqueuing reports on the ring.
» The size of the input ring in bytes.

If the keyboard special file was opened by a process in kernel mode, the Arg parameter should point to a

kregring structure containing:

» A pointer to an input ring in pinned kernel memory.

* The value to be used as the source identifier when enqueuing reports on the ring.

» A pointer to the notification callback routine. The callback is invoked following the occurrence of an
event as specified via the ir_notify field in the input ring structure.

* A pointer to the secure attention key (SAK) callback routine. The callback is invoked following the
occurrence of a SAK (Ctrl x-r) when SAK detection is enabled.

All callbacks execute within the interrupt environment. All fields within the input ring header as defined by
the input ring structure must be properly initialized before the invocation of the ioctl. A subsequent
KSREGRING ioctl subroutine call replaces the input ring supplied earlier. Specify a null input ring pointer
to disable keyboard input.

The input ring acts as a buffer for operator input. Key press and release events are placed on the ring as
they occur, without processing or filtering.

Parameters
FileDescriptor Specifies the open file descriptor for the keyboard.
Arg Specifies the address of the uregring or kregring structure.

KSRFLUSH (Flush Input Ring)

Purpose
Flushes input ring.

Syntax

#include <sys/inputdd.h>

int ioctl (|FileDescriptor], KSRFLUSH, NULL)
int FileDescriptor;

Description

The KSRFLUSH ioctl subroutine call flushes the input ring. The KSRFLUSH ioctl subroutine call loads the
starting address of the reporting area into the input ring head and tail pointers, then clears the overflow
flag.

Parameter

FileDescriptor Specifies the open file descriptor for the keyboard.

218 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

KSLED (llluminate/Darken Keyboard LEDs)

Purpose
llluminates and darkens LEDs on the keyboard.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSLED, Arg)

int |FileDescriptor], *;

Description

The KSLED ioctl subroutine call illuminates and darkens the LEDs on the natively attached keyboard. The
Arg parameter points to a bit mask (one bit per LED) that specifies the state of each keyboard LED.

The current state of the keyboard LEDs is returned in the input ring event report for the keyboard.

When keyboard diagnostics are enabled, the KSLED ioctl operation fails and sets the errno global
variable to a value of EBUSY.

Parameters
Arg Specifies the address of the LED bit mask. The bit mask can be any combination of the
following values ORed together:
#define KSCROLLLOCK 0x01 /*ITTuminates ScrolllLock LED.x/
#define KSNUMLOCK 0x02 /*I1luminates NumLock LED.=*/
#define KSCAPLOCK 0x04 /*I1luminates CapsLock LED.*/
FileDescriptor Specifies the open file descriptor for the keyboard.

KSCFGCLICK (Enable/Disable Keyboard Clicker)

Purpose
Configures the keyboard clicker.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSCFGCLICK, Arg)

int |FileDescriptoryj
uint * [Argls

Description

The KSCFGCLICK ioctl subroutine call enables and disables the keyboard clicker and sets the clicker’s
volume. When the keyboard clicker is enabled, the native keyboard speaker generates a sound when a
key is pressed.

The KSCFGCLICK ioctl subroutine call is supported even when the workstation does not provide a
keyboard clicker.

When keyboard diagnostics are enabled, the KSCFGCLICK ioctl subroutine call fails and set the errno
global variable to a value of EBUSY.

Chapter 3. LFT Subsystem 219

Parameters

FileDescriptor Specifies the open file descriptor for the keyboard.
Arg Specifies an address of an integer that contains one of the following values:

#define KSCLICKOFF 0 /*Turns off clicker.*/

#define KSCLICKLOW 1 /*Sets clicker to Tow volume.x/
#define KSCLICKMED 2 /*Sets clicker to medium volume.x/
#define KSCLICKHI 3 /+Sets clicker to high volume.*/

KSVOLUME (Set Alarm Volume) ioctl

Purpose
Sets alarm volume.

Syntax
#include <sys/inputdd.h>int ioctl (FileDescriptor, KSVOLUME, Arg)

int |FileDescriptory
uint * [Argl;

Description
The KSVOLUME ioctl subroutine call sets the alarm volume.

When keyboard diagnostics are enabled, the KSVOLUME ioctl subroutine call fails and sets the errno
global variable to a value of EBUSY.

Parameters
FileDescriptor Specifies the open file descriptor for the keyboard.
Arg Specifies an integer that contains one of the following values:

#define KSAVOLOFF 0 /*Turns off alarm.*/

#define KSAVOLLOW 1 /*Sets alarm to Tow volume.x/
#define KSAVOLMED 2 /*Sets alarm to medium volumex/
#define KSAVOLHI 3 /xSets alarm to high volume.x/

KSALARM (Sound Alarm)

Purpose
Sounds alarm.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSALARM, Arg)
int |FileDescriptor|;
struct ksalarm * [Argj;

220 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Description

The KSALARM ioctl subroutine call causes the native keyboard speaker to produce a sound using the
specified frequency and duration. A valid frequency is 32Hz-12KHz inclusive. A valid duration is a number
between 0 and 32767. Duration is specified in units of 1/128 of a second, with a maximum of 4.3 minutes.

If the alarm is already on, the request is queued and processed after the previous alarm request has
completed. If the queue is full, an EBUSY error code is returned. The KSALARM function returns
immediately if the alarm volume is off (KSAVOLOFF) or a duration of 0 is specified.

When keyboard diagnostics are enabled, the KSALARM ioctl subroutine call fails and sets the errno
global variable to a value of EBUSY.

Parameters
FileDescriptor Specifies the open file descriptor for the keyboard.
Arg Specifies the address of the KSALARM structure.

Related Information
The ioctl subroutine call.

The command.

KSTRATE (Set Typematic Rate)

Purpose
Sets typematic rate.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSTRATE, Arg)
int |FileDescriptoryj;
uint * [Argls

Description

The KSTRATE ioctl subroutine call changes the rate at which a pressed key repeats itself, specified in
number of repeats per second. The minimum rate is 2 repeats per second, and the maximum rate is 30
repeats per second.

When keyboard diagnostics are enabled, the KSTRATE ioctl subroutine call fails and sets the errno global
variable to a value of EBUSY.

Parameters
FileDescriptor Specifies the open file descriptor for the keyboard.
Arg Specifies the address of an integer that contains the desired typematic rate.

Related Information
The command.

Chapter 3. LFT Subsystem 221

KSTDELAY (Set Typematic Delay)

Purpose
Sets typematic delay.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSTDELAY, Arg)

int |FileDescriptor];
uint * [Argl;

Description

The KSTDELAY ioctl subroutine call sets the time, specified in milliseconds, that a key must be held down
before it repeats.

When keyboard diagnostics are enabled, the KSTDELAY ioctl subroutine call fails and sets the errno
global variable to a value of EBUSY.

Parameters
FileDescriptor Specifies the open file descriptor for the keyboard.
Arg Specifies the address of a value representing the typematic delay. The Arg parameter can

be one of the following delay values:

#define KSTDLY250 1 250ms.
#define KSTDLY500 2 500ms.
#define KSTDLY750 3 750ms.
#define KSTDLY1000 4 1000ms.

Note: For the 106-keyboard, the delays are 300, 400%, 500, and 600 milliseconds. All
delays are +/- 20%.

Related Information
The command.

KSKAP (Enable/Disable Keep Alive Poll)

Purpose
Enables/disables keep alive poll.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSKAP, Arg)

int |FileDescriptory;

uchar * [irgl;

Description

The KSKAP ioctl subroutine call enables and disables the keep alive poll. The KSKAP ioctl subroutine call
defines the key sequence that the operator can use to kill the process that owns the keyboard. The Arg
parameter must point to an array of characters or be equal to NULL. When the Arg parameter points to an

222 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

array of characters, the first character specifies the number of keys in the sequence. The remainder of the
characters in the array define the sequence. Each key of the sequence consists of a position code
followed by a modifier flag. The modifier flags can be any combination ok KBDUXSHIFT, KBUXCTRL, and
KBDUXALT. If the Arg parameter is equal to NULL, the keep alive poll is disabled. A sequence key count
of 0 is invalid.

When the keep alive poll is enabled, a SIGKAP signal is sent to the user process thatregistered the input
ring associated with the active channel when the operator presses and holds down the keys in the order
specified by the KSKAP ioctl subroutine call. The process must respond with a ioctl
subroutine call within 30 seconds or the keyboard driver issues a SIGKILL signal to terminate the process.

The keep alive poll is controlled on a per-channel basis and defaults to disabled. The KSKAP ioctl
subroutine call is not available when the channel is owned by a kernel extension.

Parameters
FileDescriptor Specifies the open file descriptor for the keyboard.
Arg Specifies the address of an array of characters or is equal to NULL.

Related Information
The subroutine call.

KSKAPACK (Acknowledge Keep Alive Poll)

Purpose
Acknowledges SIGKAP signals.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSKAPACK, NULL)

int |FileDescriptoryj;

Description
The KSKAPACK ioctl subroutine call acknowledges a SIGKAP (keep alive poll) signal.

Parameters

FileDescriptor Specifies the open file descriptor for the keyboard.

Related Information
The subroutine call.

KSDIAGMODE (Enable/Disable Diagnostics Mode)

Purpose
Enables/disables diagnostics mode.

Chapter 3. LFT Subsystem 223

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, KSDIAGMODE, Arg)

uint * ;

Description

The KSDIAGMODE ioctl subroutine call enables and disables keyboard diagnostics mode. When
diagnostics mode is enabled, the keyboard driver undefines the keyboard driver interrupt handler and
stops processing keyboard events. When diagnostics mode is disabled, the keyboard driver redefines its
interrupt handler, then resets and reconfigures the keyboard.

When keyboard diagnostics mode is enabled, the following keyboard ioctl subroutine calls fail and set the
errno global variable to a value of EBUSY:

* KSLED

* KSCFGCLICK
+ KSVOLUME

* KSALARM

+ KSTRATE

* KSTDELAY

Parameters

FileDescriptor Specifies the open file descriptor for the keyboard.
Arg Specifies the address of an integer that is equal to one of the following values:

#define KSDDISABLE 0 /*Disables diagnostics mode.*/
#define KSDENABLE 1 /*Enables diagnostics mode.x/

Return Values

The KSDIAGMODE ioctl subroutine call returns a value of -1 and sets the errno global variable to a value
of EINVAL when called by a kernel extension. The KSDIAGMODE ioctl subroutine call sets the errno
global variable to a value of EBUSY on the RS1/RS2 platform when the tablet special file is open.

MQUERYID (Query Mouse Device Identifier)

Purpose
Queries mouse device identifier.

Syntax
#include <sys/inputdd.h>
int ioctl (FileDescriptor, MQUERYID, Arg)

int FileDescriptor;
unit *Arg;

Description
The MQUERYID ioctl subroutine call returns the identifier of the natively connected mouse.

224 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Parameters

FileDescriptor Specifies the open file descriptor for the mouse.

Arg Specifies the address of the location to return the mouse identifier. The mouse identifier
returned in the Arg parameter is:
#define MOUSE3B 0x01 [eeiiiiin. */

#define MOUSE2B 0x02 /%2 Button Mousex*/

MREGRING (Register Input Ring)

Purpose
Registers input ring.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, MREGRING, Arg)
int FileDescriptor,

struct uregring *Arg;

Description

The MREGRING ioctl subroutine call specifies the address of the input ring and the value to be used as
the source identifier when enqueuing reports on the ring. A subsequent MREGRING ioctl subroutine call
replaces the input ring supplied earlier. Specify a null input ring pointer to disable mouse input.

Parameters
FileDescriptor Specifies the open file descriptor for the mouse.
Arg Specifies the address of an URERING structure.

MRFLUSH (Flush Input Ring)

Purpose
Flushes input ring.

Syntax

#include <sys/inputdd.h>
int ioctl (FileDescriptor, MRFLUSH, NULL)
int FileDescriptor;

Description

The MRFLUSH ioctl subroutine call flushes the input ring. It loads the input ring head and tail pointers with
the starting address of the reporting area. The overflow flag is then cleared.

Parameters

FileDescriptor Specifies the open file descriptor for the mouse.

Chapter 3. LFT Subsystem 225

MTHRESHOLD (Set Mouse Reporting Threshold)

Purpose
Sets mouse reporting threshold.

Syntax

#include <sys/inputdd.h>

int ioctl FileDescriptor, MTHRESHOLD, Arg)
int FileDescriptor,

ulong *Arg;

Description

The MTHRESHOLD ioctl subroutine call sets the minimum horizontal or vertical distance (in counts) that
the mouse must be moved before the driver reports an event. The high-order two bytes of the Arg
parameter specify the horizontal threshold and the low-order two bytes specify the vertical threshold. The
minimum threshold is 0, while the maximum threshold is 32767. The default horizontal and vertical mouse
reporting threshold is 22.

Parameters
FileDescriptor Specifies the open file descriptor for the mouse.
Arg Specifies the address of the desired threshold.

MRESOLUTION (Set Mouse Resolution)

Purpose
Sets mouse resolution.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, MRESOLUTION, Arg)
int FileDescriptors;

uint *Arg;
Description
The MRESOLUTION ioctl subroutine call sets the value reported when the mouse is moved one millimeter
Parameters
FileDescriptor Specifies the open file descriptor for the mouse.
Arg Specifies the address of an integer where value is one of the following values:
#define MRES1 1 /* minimum */
#define MRES2 2 /* */
#define MRES3 3 /* */
#define MRES4 4 /* maximum */

226 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

MSCALE (Set Mouse Scale Factor)

Purpose
Sets mouse scale factor.

Syntax
#include <sys/inputdd.h>

int ioctl

(FileDescriptor, MSCALE, Arg)
int |FileDescriptor];
wint * [Argl;

Description

The MSCALE ioctl subroutine call provides a course/fine tracking response. The reported horizontal and
vertical movement is converted as follows:

Reported Value

Real Value 1:1 Scale 2:1 Scale
0 0 0
1 1
2 2 1
3 3 3
4 4 6
5 5 9
N N Nx2

where N >= 6

The default scale factor is 1:1.

Parameters

FileDescriptor Specifies the open file descriptor for the mouse.

Arg Specifies the address of an integer where value is one of the following values:

#define MSCALE11 1 /x 1:1 scalex/
#define MSCALE21 2 /% 2:1 scale*/

MSAMPLERATE (Set Mouse Sample Rate)

Purpose
Sets mouse sample rate.

Syntax

#include <sys/inputdd.h> int ioctl (FileDescriptor, MSAMPLERATE, Arg)
int FileDescriptor,
uint *Arg;

Chapter 3. LFT Subsystem 227

Description

The MSAMPLERATE ioctl subroutine call specifies the maximum number of mouse events that are
reported per second.

The default sample rate is 100 samples per second.

Parameters
FileDescriptor Specifies the open file descriptor for the mouse.
Arg Specifies the address of an integer where value is one of the following values:
#define MSR10 1 /* 10 samples per second */
#define MSR20 2 /* 20 samples per second */
#define MSR40 3 /* 40 samples per second x/
#define MSR60 4 /* 60 samples per second x/
#define MSR80 5 /* 80 samples per second x/
#define MSR100 6 /* 100 samples per second */
#define MSR200 7 /* 200 samples per second */

TABQUERYID (Query Tablet Device ldentifier) ioctl Tablet Device Driver
Operation

Purpose
Queries tablet device identifier.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, TABQUERYID, Arg)
int FileDescriptor;

struct tabqueryid *Arg;

Description

The TABQUERYID ioctl subroutine call returns the identifier of the natively connected tablet and its input
device. The first field in the returned structure specifies the model number and may be:
#define TAB6093M11 0x01 /* 6093 model 11

or equivalent */
#define TAB6093M12 0x02 /* 6093 model 12 or equivalent =/

The second field in the structure indicates what type of input device is connected to the tablet and may be
one of the following:

#define TABUNKNOWN 0x00 /* unknown input
device */

#define TABSTYLUS 0x01 /% stylus */

#define TABPUCK 0x02 /* puck */
Parameters

FileDescriptor Specifies the open file descriptor for the tablet.

Arg Specifies the address of a TABQUERYID structure.

228 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

TABREGRING (Register Input Ring)

Purpose
Registers input ring.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, TABREGRING, Arg)
int FileDescriptor,

struct uregring *Arg;

Description

The TABREGRING ioctl subroutine call specifies the address of the input ring and the value to be used as
the source identifier when enqueuing reports on the ring. A subsequent TABREGRING ioctl subroutine call
replaces the input ring supplied earlier. Specify a null input ring pointer to disable tablet input.

Parameters
FileDescriptor Specifies the open file descriptor for the tablet.
Arg Specifies the address of a uregring structure.

TABRFLUSH (Flush Input Ring

Purpose
Flushes input ring.

Syntax

#include <sys/inputdd.h>
int ioctl (FileDescriptor, TABRFLUSH, NULL)
int FileDescriptor,

Description

The TABRFLUSH ioctl subroutine call flushes the input ring. It loads the input ring head and tail pointers
with the starting address of the reporting area. The overflow flag is then cleared.

Parameters

FileDescriptor Specifies the open file descriptor for the tablet.

TABCONVERSION (Set Tablet Conversion Mode)

Purpose
Sets tablet conversion mode.

Chapter 3. LFT Subsystem 229

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, TABCONVERSION, Arg)
int FileDescriptor,

uint *Arg;

Description

The TABCONVERSION ioctl subroutine call specifies whether the value specified by the
TABRESOLUTION ioctl subroutine call are in English units (inches) or metric units (centimeters).

Parameters
FileDescriptor Specifies the open file descriptor for the tablet.
Arg Specifies the address of an integer where value is one of the following values:

#define TABINCH 0
/* report coordinates in inches
*/
#define TABCM 1
/* report coordinates in centimeters */

Related Information
The [TABRESOLUTION]|ioctl subroutine call.

TABRESOLUTION (Set Tablet Resolution)

Purpose
Sets tablet resolution.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, TABRESOLUTION, Arg)
int FileDescriptor;

uint *Arg;

Description

The TABRESOLUTION ioctl subroutine call specifies the resolution of the tablet in lines per inch. Specify
the resolution in lines per inch unless changed by the TABCONVERSION ioctl subroutine call. The
minimum resolution is 0 and the maximum resolution is 1279 lines per inch or 580 lines per centimeter.
The default resolution is 500 lines per inch.

Parameters
FileDescriptor Specifies the open file descriptor for the tablet.
Arg Specifies the address of an integer that contains the desired resoultion.

Related Information
The [TABCONVERSION] ioctl subroutine call.

230 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

TABORIGIN (Set Tablet Origin)

Purpose
Sets tablet origin.

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, TABORIGIN,Arg)
int FileDescriptor,

uint *Arg;

Description

The TABORIGIN ioctl subroutine call sets the origin of the tablet to either the lower left-hand corner or the
center of the tablet. The default origin is the lower left-hand corner.

Parameters

FileDescriptor Specifies the open file descriptor for the tablet.

Arg Specifies the address of an integer whose value is one of the following values:
#define TABORGLL 0 /* origin is lower left corner */
#define TABORGC 1 /* origin is center */

TABSAMPLERATE (Set Tablet Sample Rate) ioctl Tablet Device Driver
Operation

Purpose
Sets tablet sample rate.

Syntax
#include <sys/inputdd.h>

int ioctl (FileDescriptor, TABSAMPLERATE, Arg)
int FileDescriptors;
uint *Arg;

Description

The TABSAMPLERATE ioctl subroutine call specifies the number of times per second that the puck
location and button status are sampled. The minimum rate is 0 and the maximum rate is 100. The default
rate is one sample per second.

Parameters
FileDescriptor Specifies the open file descriptor for the tablet.
Arg Specifies the address of an integer that contains the desired sample rate.

TABDEADZONE (Set Tablet Dead Zone)

Purpose
Sets tablet dead zone.

Chapter 3. LFT Subsystem 231

Syntax

#include <sys/inputdd.h>

int ioctl (FileDescriptor, TABDEADZONE, Arg)
int FileDescriptor,

ulong *Arg;

Description

The TABDEADZONE ioctl subroutine call specifies the edges of a zone on the tablet. When the puck is
outside of this zone, motion events are not reported (button events are still reported). The high-order two
bytes of the Arg parameter specify the horizontal edge and the low-order two bytes of the Arg parameter
specify the vertical edge of the zone. If the tablet is configured with a center origin, the negative of the
horizontal value becomes the bottom edge of the zone and the horizontal value becomes the top edge of
the zone square. The left and right edges of the zone are generated from the vertical specification in a
similar fashion. The minimum horizontal or vertical specification is 0 and the maximum horizontal or
vertical specification is 32767.

Parameters
FileDescriptor Specifies the open file descriptor for the tablet.
Arg Specifies the address of the dead zone specification.

GIOQUERYID (Query Attached Devices)

Purpose
Queries attached devices.

Syntax
#include <sys/inputdd.h>

int ioct1(FileDescriptor, GIOQUERYID, Arg)
int FileDescriptors;
struct gioqueryid *Arg;

Description

The GIOQUERYID ioctl subroutine call returns the identifier of devices connected to the GIO adapter. The
ID of the device connected to port O is returned in the first field of the structure, and the device connected
to port 1 is returned in the second field of the structure. Valid device IDs are as follows:

#define giolpfkid 0x01 /* LPFK device ID */
#define giodialsid 0x02 /* dials device ID */

Parameters
FileDescriptor Specifies the open file descriptor for the gio adapter.
Arg Specifies the address of a gioqueryid structure.

DIALREGRING (Register Input Ring)

Purpose
Registers input ring.

232 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Syntax
#include <sys/inputdd.h>

int ioctl (FileDescriptor, DIALREGRING, Arg)
int FileDescriptors;
struct uregring *Arg;

Description

The DIALREGRING ioctl subroutine call specifies the address of the input ring and the value to be used
as the source identifier when enqueuing reports on the ring. A subsequent DIALREGRING ioctl subroutine
call replaces the input ring supplied earlier. Specify a null input ring pointer to disable dial input.

Parameters
FileDescriptor Specifies the open file descriptor for the dials.
Arg Specifies the address of the uregring structure.

DIALRFLUSH (Flush Input Ring)

Purpose
Flushes input ring.

Syntax
#include <sys/inputdd.h>

int ioctl (FileDescriptor, DIALRFLUSH, Arg)
int FileDescriptor;

Description

The DIALRFLUSH ioctl subroutine call flushes the input ring. It loads the input ring head and tail pointers
with the starting address of the reporting area. The overflow flag is then cleared.

Parameters

FileDescriptor Specifies the open file descriptor for the dials.

DIALSETGRAND (Set Dial Granularity)

Purpose
Sets dial granularity.

Syntax
#include <sys/inputdd.h>

int ioctl (FileDescriptor, DIALSETGRAND, Arg)
int FileDescriptors;
struct dialsetgrand *Arg;

Description

The DIALSETGRAND ioctl subroutine call sets the number of events reported per 360 degree revolution,
specified as a power of two on a per-dial basis. The dialsetgrand structure contains a bit mask that

Chapter 3. LFT Subsystem 233

indicates which dial or dials should be modified. Valid granularity is any number between 2 and 8,
inclusive. The default granularity is 7 (128 reports per rotation).

Parameters
FileDescriptor Specifies the open file descriptor for the dials.
Arg Specifies the address of the dialsetgrand structure.

LPFKREGRING (Register Input Ring)

Purpose
Registers input ring.

Syntax
#include <sys/inputdd.h>

int ioctl (FileDescriptor, LPFKREGRING, Arg)
int FileDescriptors;
struct uregring *Arg;

Description

The LPFKREGRING ioctl subroutine call specifies the address of the input ring and the value to be used
as the source identifier when enqueuing reports on the ring. A subsequent LPFKREGRING ioctl subroutine
call replaces the input ring supplied earlier. Specify a null input ring pointer to disable LPFK input.

Parameters
FileDescriptor Specifies the open file descriptor.
Arg Specifies the address of the uregring structure.

LPFKRFLUSH (Flush Input Ring)

Purpose
Flushes input ring.

Syntax
#include <sys/inputdd.h>

int ioctl (FileDescriptor, LPFKRFLUSH, NULL)
int FileDescriptors;

Description

The LPFKRFLUSH ioctl subroutine call flushes the input ring. It loads the input ring head and tail pointers
with the starting address of the reporting area. The overflow flag is then cleared.

Parameters

FileDescriptor Specifies the open file descriptor.

234 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

LPFKLIGHT (Set/Reset Key Lights)

Purpose
Sets/resets key lights.

Syntax
#include <sys/inputdd.h>

int ioctl (FileDescriptor, LPFKLIGHT, Arg)
int FileDescriptors;
ulong *Arg;

Description

The LPFKLIGHT ioctl subroutine call illuminates and darkens lights associated with keys in the LPFK
array. The Arg parameter points to a bit mask (one bit per key) that indicates the state (1 = on, 0 = off)
of the key’s light.

Parameters
FileDescriptor Specifies the open file descriptor.
Arg Specifies the address of a bit mask (one bit per key) that indicates the state of the key

lights (0 = off, 1 = on).

dd_open LFT Device Driver Interface

Purpose
Allocates device driver resources and ensures exclusive access to a device.

Syntax
int dd_open (DevNo, Flag, Chan, Ext)

dev_t [DevNol;
long [Flag, [chan, [Exth

Description

The dd_open low function terminal (LFT) device driver interface allocates resources needed by a device
driver and can be used to ensure exclusive access to a device if necessary.

Parameters

DevNo Specifies the major and minor device numbers.

Flag Specifies the open file control flags.

Chan Specifies the channel number (multiplexed devices only).

Ext Specifies the extension parameter for device-dependent functions.

Return Values

If successful, the dd_open device driver interface returns a value of 0. Otherwise, a value of 1 is returned
and the errno global variable is set to indicate the error.

Chapter 3. LFT Subsystem 235

dd _close LFT Device Driver Interface

Purpose

Deallocates device driver resources and can be used with the dd_open low function terminal (LFT) device
driver interface to ensure exclusive access to a device.

Syntax
int dd_close (DevNo, Chan, Exi)

dev_t[DevNg;
long [Chan, [Ext

Description

The dd_close LFT device driver interface deallocates resources used by a device driver and can be used
in conjunction with the dd_open LFT device driver to ensure exclusive access to a device.

Parameters

DevNo Specifies the major and minor device numbers.

Chan Specifies the channel number (multiplexed devices only).

Ext Specifies the extension parameter for device-dependent functions.

Return Values

If successful, the dd_close device driver interface returns a value of 0. Otherwise, a value of 1 is returned
and the errno global variable is set to indicate the error.

dd_ioctl LFT Device Driver Interface

Purpose
Performs device-dependent processing.

Syntax

int dd _ioctl (DevNo, Cmd, Arg, DevFlag, Chan, Ext)
dev_t [DevNols

Tong [Cmd], E, bevFiag, [char], [Ext];

Description

The dd_ioctl low function terminal (LFT) device driver interface performs device-dependent processing not
related to reading from and writing to the device.

Parameters

DevNo Specifies the major and minor device numbers.

Cmd Specifies the device-dependent command.

Arg Specifies the command-dependent parameter block address.
DevFlag Specifies the flag indicating the type of operation.

Chan Specifies the channel number (multiplexed devices only).

Ext Specifies the extension parameter for device-dependent functions.

236 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Return Values

If successful, the dd_ioctl device driver interface returns a value of 0. Otherwise, a value of 1 is returned
and the errno global variable is set to indicate the error.

Chapter 3. LFT Subsystem 237

238 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Chapter 4. Printer Subsystems

Subroutines for Print Formatters

The pioformat formatter driver provides the following subroutines for the print formatters that it loads,
links, and drives:

Subroutine Description

Outputs an attribute string for a printer formatter.

Exits from a printer formatter.

Retrieves an attribute string for a printer formatter.

Used by printer formatters to overlay default flag values from the database with override values
from the command line.

iogetvals Initializes a copy of the database variables for a printer formatter.
iomsgou Sends a message from a printer formatter.

piocmdout Subroutine

Purpose
Outputs an attribute string for a printer formatter.

Library

None (linked with the pioformat formatter driver)

Syntax

#include <piostruct.h>

piocmdout (attrname, fileptr, passthru, NULL)
attrnamel;

Description

The piocmdout subroutine retrieves the specified attribute string from the Printer Attribute database and
outputs the string to standard output. In the course of retrieval, this subroutine also resolves any logic and
any lembedded references|to other attribute strings or integers.

The fileptr and passthru parameters are used to pass data that the formatter does not need to scan (for
example, graphics data) from the input data stream to standard output.

Parameters

attrname Points to a two-character attribute name for a string. The attribute name must be defined in the
database and can optionally have been defined to the subroutine as a variable string.
The attribute should not be one that has been defined to the piogetvals subroutine as an integer.

fileptr Specifies a file pointer for the input data stream. If the piocmdout routine is called from the [lineout]

formatter routine, the fileptr value should be the fileptr passed to the lineout routine as a parameter.
Otherwise, the fileptr value should be stdin. If the passthru parameter is 0, the fileptr parameter is
ignored.

© Copyright IBM Corp. 1997, 2007 239

passthru Specifies the number of bytes to be passed to standard output unmodified from the input data stream
specified by the fileptr parameter. This occurs when the %x escape sequence is found in the attribute
string or in a string included by the attribute string. If no %Xx escape sequence is found, the specified
number of bytes is read from the input data stream and discarded. If no bytes are to be passed
through, the passthru parameter should be 0.

Note: The fourth parameter is reserved for future use. This parameter should be a NULL pointer.

Return Values
Upon successful completion, the piocmdout subroutine returns the length of the constructed string.

If the piocmdout subroutine detects an error, it issues an error message and terminates the print job.

Related Information
The subroutine, subroutine.

[Understanding Embedded References in Printer Attribute Strings|in AIX 5L Version 5.3 Kernel Extensions
and Device Support Programming Concepts

[Adding a New Printer Type to Your System|in AIX 5L Version 5.3 Kernel Extensions and Device Support
Programming Concepits.

[Print formatter example|in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pioexit Subroutine

Purpose
Exits from a printer formatter.

Library

None (linked with the pioformat formatter driver)

Syntax

#include <piostruct.h>

void pioexit ([exitcode)

int exitcode;

Description

The pioexit subroutine should be used by printer formatters to exit either when formatting is complete or
an error has been detected. This subroutine is supplied by the formatter driver.

The pioexit subroutine has no return values.

Parameters

exitcode Specifies whether the formatting operation completed successfully. A value of PIOEXITGOOD
indicates that the formatting completed normally. A value of PIOEXITBAD indicates that an error was
detected.

240 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Related Information

[Understanding Embedded References in Printer Attribute Strings|in AlIX 5L Version 5.3 Kernel Extensions
and Device Support Programming Concepts.

[Adding a New Printer Type to Your System|in AIX 5L Version 5.3 Kernel Extensions and Device Support
Programming Concepts.

[Print formatter examplelin AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

piogetatirs Subroutine

Purpose
Retrieves printer attribute values, descriptions, and limits from a printer attribute database.

Library
libgb.a

Syntax

#include <piostruct.h>
int piogetattrs(QueueName, QueueDeviceName, NumAttrElems, AttrElemTable)
const char *|QueueName, *|QueueDeviceName;

unsigned short |NumAtirElems;
struct pioattr * |AtirElemTable;
Description

The piogetattrs subroutine retrieves printer attribute values and their associated descriptions and limits
from a printer attribute database. Any logic (using the % escape sequence character) within the attribute
description will be returned as a text string obtained from a message catalog, and will be in the language
determined by the NLSPATH and LANG environment variables.

Information can be retrieved for any number of attributes defined in the printer attribute database, and for
any combination of attribute value, attribute description, and attribute limit for each of the attributes with
one piogetattrs subroutine call.

The combination of the QueueName and QueueDeviceName parameters identify a specific printer attribute
database. Therefore, the QueueName and QueueDeviceName parameters must be unique for a particular
host.

Parameters

QueueName Specifies the print queue name. The print queue does not have to exist.

QueueDeviceName Specifies the queue device name for the print queue name specified by the
QueueName parameter. The queue device does not have to exist.

NumAttrElems Specifies the number of attribute elements in the table specified by the AttrElemTable
parameter.

AttrElemTable Points to a table of attribute element structures. Each structure element in the table

specifies an attribute name, the type of value to be returned for the attribute, fields
where the location and length of the returned value are to be stored, and a field for the
return code of the retrieval operation. Memory is allocated for each resolved value that
is returned, and the memory location and length are returned in the structure element.
The format of each structure element is defined by the pioattr structure definition in the
lusr/include/piostruct.h file.

Chapter 4. Printer Subsystems 241

Return Values

NumAttrElems Specifies the number of attribute elements for which the piogetattrs subroutine has
successfully retrieved the requested information.

-1 Indicates that an error occurred.

Examples

/* Array of elements to be passed to
piogetattrs() =/
#define ATTR_ARRAY_NO (sizeof(attr_table)/sizeof(attr_table[0]))

struct pioattr attr_table[] = {
{" b", PA_AVALT, NULL, 0, 0}, /* attribute record */
/* for _b (bottom margin)=*/
{"_i", PA_AVALT, NULL, 0, 0}, /* attribute record for =/
/* _i (left indentation) */
{" _t", PA_AVALT, NULL, 0, 0}, /* attribute record for =/

/* _t (top margin) */
}
const char *gnm = "ps";
const char *qdnm = "1p0";
int retno;
register const pioattr_t *pap;
if((retno = piogetattrs(qnm,qdnm,ATTR_ARRAY NO,attr_table)) ==-1) {(void)

fprintf(stderr,"Fatal error in piogetattrs()\n");

1

else if (retno != ATTR_ARRAY_NO) _{
(void) printf("Warning! Infor was not retrieved for all \
the attributes.\n");

1

for(pap = attr_table; pap<attr_table+ATTR_ARRAY_NO;pap++)
if(pap->pa_retcode) /* If info was successfully */

/* retrieved for this attr =x/

piogetopt Subroutine

Purpose

Overlays default flag values from the database colon file with override values from the command line.

Library

None (linked with the pioformat formatter driver)

Syntax

#include <piostruct.h>

int piogetopt ([orgd, [orgv, NULL, NULL)
int argc;
char *argv [1;

242 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Description

The piogetopt subroutine should be used by a printer formatter’s routine to perform these three
tasks:

* Parse the command line flags.

» Convert the flag arguments, as needed, to the data types specified in the array of attrparms structures
previously passed to the subroutine.

» Overlay the default flag arguments with values from the database.
The piogetopt subroutine is supplied by the formatter driver.

The database attribute names for flags with integer arguments must have previously been defined to the
formatter driver with the piogetvals subroutine. Based on the information that was provided to the
piogetvals subroutine, the piogetopt subroutine takes these three actions:

* Recognizes each flag argument that needs to be converted to an integer value.

» Converts the argument string to an integer value using the conversion method specified to the
piogetvals subroutine.

* Regardless of the data type (integer variable, string variable, or string constant), overlays the default
value from the database.

Parameters

argc Same as the argc parameter received by the formatter's setup routine when it was called by the formatter
driver.

argv Same as the argv parameter received by the formatter's setup routine when it was called by the formatter
driver.

Note: The third parameter, NULL, is a place holder. The fourth parameter, NULL, is reserved for future
use. The fourth parameter should be a NULL pointer.

Return Values

A return value of 0 indicates successful completion. If the piogetopt subroutine detects an error, it issues
an error message and terminates the print job.

Related Information
The subroutine, subroutine.

[Understanding Embedded References in Printer Attribute Strings|in ALX 5L Version 5.3 Kernel Extensions
and Device Support Programming Concepts.

[Adding a New Printer Type to Your System|in AIX 5L Version 5.3 Kernel Extensions and Device Support
Programming Concepts.

[Print formatter example|in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

piogetstatus Subroutine

Purpose
Retrieves print job status information from a status file.

Chapter 4. Printer Subsystems 243

Library
libgb.a

Syntax

#include <IN/stfile.h>

int piogetstatus(StatusFileDescriptor,
VersionMagicNumber, StatusInformation)

int StatusFileDescriptor, VersionMagicNumbers;
void *StatusInformation;

Description

The information returned by the piogetstatus subroutine includes the queue name, queue device name,
job number, job status, percent done, and number of pages printed. The piogetstatus subroutine reads
the specified status file and places the information in the structure specified by the Statusinformation
parameter. The format of the status structure is determined by the version magic number specified by the
VersionMagicNumber parameter. Each time there is a change in the status file structure for a new release,
a unique number is assigned to the release’s version magic number. This supports structure formats of
previous releases.

Parameters

StatusFileDescriptor Specifies the file descriptor of the status file. The StatusFileDescriptor
parameter must specify a value of 3, because the print spooler always opens
a status file with a file descriptor value of 3.

VersionMagicNumber Specifies the version magic number that identifies the format of the status
structure in which information is specified.

StatusInformation Specifies a generic pointer to a status structure that contains print job status

information that is to be stored in the status file.

Return Values

1 Indicates that the pioputstatus subroutine was successful.
-1 Indicates that an error occurred.

piogetstr Subroutine

Purpose
Retrieves an attribute string for a printer formatter.

Library

None (linked with the pioformat formatter driver)

Syntax

#include <piostruct.h>

piogetstr (attrname, bufrptr, bufsiz, NULL)
char * [attrname,* |bufptr;

int |bufsi.

244 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Description

The piogetstr subroutine retrieves the specified attribute string from the Printer Attribute database and
returns the string to the caller. In the course of retrieval, this subroutine also resolves any logic and any
[embedded references|to other attribute strings or integers.

Parameters

attrname Points to a two-character attribute name for a string. The attribute name must be defined in the
database. It may optionally have been defined to the subroutine as a variable string. The
attribute should not be one that has been defined to the piogetvals subroutine as an integer.

bufptr Points to where the constructed attribute string is to be stored.

bufsiz Specifies the amount of memory that is available for storage of the string.

Note: The fourth parameter is reserved for future use. This parameter should be a NULL pointer.

Return Values

Upon successful completion, the piogetstr subroutine returns the length of the constructed string. The null
character placed at the end of a constructed string by the piogetstr subroutine is not included in the
length.

If the piogetstr subroutine detects an error, it issues an error message and terminates the print job.

Related Information
The subroutine.

[Understanding Embedded References in Printer Attribute Strings|in AIX 5L Version 5.3 Kernel Extensions
and Device Support Programming Concepts.

[Adding a New Printer Type to Your System|in AIX 5L Version 5.3 Kernel Extensions and Device Support
Programming Concepits.

[Print formatter example|in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

piogetvals Subroutine

Purpose
Initializes a copy of Printer Attribute database variables for a printer formatter.

Library

None (linked with the pioformat formatter driver)

Syntax

#include <piostruct.h>

int piogetvals (|gttrtablel, NULL)

struct attrparms attrtable [];

Chapter 4. Printer Subsystems 245

Description

The piogetvals subroutine provides a way for a printer formatter’s routine to define a list of printer
attribute variables (and their characteristics) to the formatter driver. This routine, which is supplied by the
formatter driver, allocates storage for the requested variables and uses the Printer Attribute database colon
file to arrive at initial values.

The variables defined by the piogetvals subroutine are copies of variables in the database; they are used
to hold current values of the variables. After the piogetvals subroutine returns pointers to each of the
variables, the characteristics and memory location of each variable is known to both the formatter and the
formatter driver. Subsequent changes to printer attribute values (made by the formatter while formatting an
input data stream) are made to the newly defined variables, not to the database values. As a result of this
scheme, the formatter driver always has access to the current value of each variable, but does not itself
ever modify them.

The caller requests variables by filling in entries (an attribute name, its data type, and other characteristics)
in the table pointed to by the atfrtable parameter. For each entry, the piogetvals subroutine retrieves the
requested attribute string in the Printer Attribute database and converts it, if necessary, into an actual
value. The piogetvals subroutine then allocates memory for each of the variables, places the initial values
there, and stores information about the variable (its name, data type, and memory location) in storage
accessible to the piogetopt, piocmdout, and piogetstr subroutines.

Printer Attribute Variables

A Printer Attribute database is a colon file containing printer attribute values, which can be overridden at
the time a print job is requested. These attributes can be constants or may be expressions with unresolved
references to other attributes in them. These references are resolved before a database attribute is used
to fill in the value of a requested variable.

Database attribute values, which are stored in the database as ASCII strings, have possible data types of
string constant (the default), integer variable, or string variable. The requested variables should be either
integers or strings. String variables are used primarily for strings that the formatter may need to modify
during its processing. NULL characters have no special significance and are permissible within variable
strings.

Data types for the requested variables are specified in the array of the attrparms structures pointed to by
the attrtable parameter and are not specified at all in the Printer Attribute database. This means that for
database values used exclusively by the formatter, only the formatter knows the actual data type of each
value. The formatter uses the piogetvals routine in part to inform the formatter driver of the actual data
type for database values that are not the default data type.

Converting a Database Attribute String to an Actual Value

Converting a database attribute string to an actual value involves two aspects. First, the piogetvals
routine resolves any logic and any lembedded references|to other attribute strings, which yields a resolved
string variable. Secondly, the data type of the requested variable must be checked. If this data type
specifies a character string, then the resolved string is the final value, and it is stored in the memory
allocated for it.

However, if the specified data type is integer variable, then the resolved string is converted to an integer.
In this case, the attrtable entry for the attribute string is checked to determine how this conversion is to be
performed. Either use the atoi subroutine for this purpose, or provide a pointer to a lookup table. After
being converted to an integer, the value is stored in the memory allocated for it.

Using the piogetvals subroutine to convert database strings to integers as specified by the attrtable
entries provides a table-driven procedure for the conversions. It also informs the formatter driver which
values are integers and how strings that represent the integers can be converted into integer values. The

246 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

piogetopt, piocmdout, and piogetstr subroutines assume that the formatter has used the piogetvals
subroutine to provide this information about the variables to the formatter driver.

When a formatter subsequently calls either the subroutine or the subroutine to

access a string from the database, a global list of variables defined by the piogetvals subroutine is
checked by the subroutine to see if the desired string has been defined. If so, then the value of the
variable is taken from the memory location specified in the global list. If not, then the Printer Attribute
database is consulted for the correct attribute string. Either the piocmdout or piogetstr subroutine scans
the string to resolve any logic and any references to other strings or integers. The characteristics and
memory locations of the variables, as remembered by the piogetvals subroutine, are used to obtain the
current values of the variables.

Parameters

attrtable Points to a table of variables and their characteristics. The table is an array of attrparms
structures, as defined in the piostruct.h file.

Note: The second parameter is reserved for future use. This parameter should be a NULL pointer.

Return Values

A return value of 0 indicates a successful operation. If the piogetvals subroutine detects an error, it issues
an error message and terminates the print job.

Related Information
The subroutine, subroutine, subroutine, subroutine, the

subroutine.

[Understanding Embedded References in Printer Attribute Strings|in AIX 5L Version 5.3 Kernel Extensions
and Device Support Programming Concepts.

[Adding a New Printer Type to Your System|in AIX 5L Version 5.3 Kernel Extensions and Device Support
Programming Concepits.

[Print formatter example|in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

piomsgout Subroutine

Purpose
Sends a message from a printer formatter.

Library

None (linked with the pioformat formatter driver)

Syntax
void piomsgout (

char *msgstr;

Description

The piomsgout subroutine should be used by printer formatters to send a message to the print job
submitter, usually when an error is detected. This subroutine is supplied by the formatter driver.

Chapter 4. Printer Subsystems 247

If the formatter is running under the spooler, the message is displayed on the submitter’s terminal if the
submitter is logged on. Otherwise, the message is mailed to the submitter. If the formatter is not running
under the spooler, the message is sent as standard error output.

The piomsgout subroutine has no return values.

Parameters

msgstr Points to the string of message text to be sent.

Related Information

[Understanding Embedded References in Printer Attribute Strings|in AIX 5L Version 5.3 Kernel Extensions
and Device Support Programming Concepts.

[Adding a New Printer Type to Your System|in AIX 5L Version 5.3 Kernel Extensions and Device Support
Programming Concepits.

[Print formatter example|in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

pioputattrs Subroutine

Purpose
Updates printer attribute values in a printer attribute database.

Library
libgb.a

Syntax

#include <piostruct.h>
int pioputattrs (QueueName, QueueDeviceName, NumAttrElems, AttrElemTable)
const char *|QueueName, * (QueueDeviceName;

unsigned short |NumAttrElems;
struct pioattr * |AtirElemTable;
Description

The pioputattrs subroutine can update with one call any number of attributes defined in a printer attribute
database.

The combination of the QueueName and QueueDeviceName parameters identify a specific printer attribute
database. The QueueName and QueueDeviceName parameters must be unique for a particular host.

Parameters

QueueName Specifies the print-queue name. The print queue does not have to exist.

QueueDeviceName Specifies the queue device name for the print queue name specified by the
QueueName parameter. The queue device does not have to exist.

NumAttrElems Specifies the number of attribute elements in the table specified by the AttrElemTable
parameter.

248 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

AttrElemTable

Return Values

Points to a table of attribute element structures. Each structure element in the table
specifies an attribute name, the type of value to be updated for the attribute, the value
and length of the value, and a field for the return code of the update operation. The
type of the value to be updated should be PA_AVALT. If a specified attribute is not
valid, the specified value is put in the database. The format of each structure element is
defined by the pioattr structure definition in the /usr/include/piostruct.h file.

NumAttrElems Specifies the number of attribute elements for which the pioputattrs subroutine has
successfully updated the specified values in the database.

-1 Indicates that an error occurred.

Examples

/* Array of elements to be passed to

pioputattrs() =/

#define ATTR_ARRAY_NO (sizeof(attr_table)/sizeof(attr_table[0]))

struct pioattr attr_table[] = {

{" b", PA_AVALT,

{"_i", PA_AVALT,

{" t", PA_AVALT,

{"sA", PA_AVALT,

const char

const char

int

register const pioattr_t

"2", 1, 0}, /* attribute record for =/

/* b (bottom margin) */

"0", 1, 0}, /* attribute record for =/

/= _i (1eft indentation) =*/

"3", 1, 0}, /* attribute record for =/

/* _t (top margin) */

"CP851", 5, 0} /* attribute record */

/*for eS (country code)x/

*qnm = “pS";
*qdnm = "1p0";
retno;

*pap;

if((retno = pioputattrs(gnm,qdnm,ATTR_ARRAY _NO,attr_table)) ==-1)
{(void) fprintf(stderr,"Fatal error in pioputattrs()\n");

pioputstatus Subroutine

Purpose

Puts job-status information for the specified print job into the specified status file.

Library
libgb.a

Syntax

#include <IN/stfile.h>

int pioputstatus(StatusFileDescriptor], [VersionMagicNumber], |StatusInformation)

int StatusFileDescriptor,

VersionMagicNumber;

const void * StatusInformation;

Chapter 4. Printer Subsystems 249

Description
The pioputstatus subroutine stores status information for a current print job.

The pioputstatus subroutine accepts a status structure containing print job information. This information
includes queue name, queue device nhame, job number, and job status. The pioputstatus subroutine then
stores the specified information in the specified status file.

The format of the status structure is determined by the version magic number specified by the
VersionMagicNumber parameter. Each time there is a change in the status file structure for a new release,
a unique number is assigned to the release’s version magic number. This supports structure formats of
previous releases.

Parameters

StatusFileDescriptor Specifies the file descriptor of the status file. The StatusFileDescriptor
parameter must specify a value of 3, because the print spooler always opens
a status file with a file descriptor value of 3.

VersionMagicNumber Specifies the version magic number that identifies the format of the status
structure in which information is specified.

Statusinformation Specifies a generic pointer to a status structure that contains print job status

information that is to be stored in the status file.

Return Values

1 Indicates that the pioputstatus subroutine was successful.
-1 Indicates that an error occurred.

Subroutines for Writing a Print Formatter

The pioformat formatter driver requires a print formatter to contain the following function routines:

Performs printer initialization.

Formats a print line.

Passes through the input data stream without modification or formats the input data stream
without assistance from the formatter driver.

restore Restores the printer to its default state.

setup) Performs setup processing for the print formatter.

passthru Subroutine

Purpose

Passes through the input data stream without modification or formats the input data stream without
assistance from the formatter driver.

Library

None (provided by the formatter).
Syntax

#include <piostruct.h>
int passthru ()

250 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Description

The passthru subroutine is invoked by the formatter driver only if the setup subroutine returned a null
pointer. If this is the case, the passthru subroutine is invoked (instead of the lineout subroutine) for one
of the following reasons:

* The input data stream is to be passed through without modification.
* Formatting is done without the help of the formatter driver to handle vertical spacing.

Even if the data is being passed through from input to output without modification, a formatter program is
used to initialize the printer before printing the file and to restore it to a known state afterward. However,
gathering accounting information for an unknown data stream being passed through is difficult, if not
impossible.

The passthru subroutine can also be used to format the input data stream if no help from the formatter
driver for vertical spacing is needed. For example, if the only formatting to be done is to add a
carrier-return control character to each linefeed control character, the passthru subroutine provides this
simple task. The passthru subroutine can also count line feeds and form feeds to keep track of the page
count. These counts can then be reported to the log_pages status subroutine, which is provided by the
spooler.

Return Values

A return value of 0 indicates a successful operation. If the passthru subroutine detects an error, it uses
the piomsgout subroutine to issue an error message. It then invokes the pioexit subroutine with a value
of PIOEXITBAD. Note that if the passthru subroutine calls the piocmdout subroutine or the piogetstr
subroutine and either of these detects an error, then the subroutine that detects the error automatically
issues its own error message and terminates the print job.

Related Information
The [lineout] subroutine, [piocmdout] subroutine, subroutine, subroutine,

subroutine, |setuE| subroutine.

[Adding a New Printer Type to Your System|in AIX 5L Version 5.3 Kernel Extensions and Device Support
Programming Concepts.

[Example of Print Formatterlin AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

restore Subroutine

Purpose
Restores the printer to its default state.

Library
None (provided by the formatter)

Syntax

#include <piostruct.h>
int restore ()

Description

The restore subroutine is invoked by the formatter driver after either the lineout subroutine or the
passthru subroutine has reported that printing has completed.

Chapter 4. Printer Subsystems 251

If the -J flag passed from the command line has a nonzero value (True), the initialize subroutine should
use the piocmdout subroutine to send a command string to the printer to restore the printer to its default
state. This default state is defined by the attribute values in the database. Any variables referenced by the
command string should be values from the database that have not been overridden by values from the
command line. This can be accomplished by placing a %0 escape sequence at the beginning of the
command string.

Return Values

A return value of 0 indicates a successful operation. If the restore subroutine detects an error, it uses the
piomsgout subroutine to issue an error message. The restore subroutine then invokes the pioexit
subroutine with a value of PIOEXITBAD. If either the piocmdout or piogetstr subroutines detect an error,
then the subroutine that detects the error issues an error message and terminates the print job.

Related Information
The [initialize] subroutine, lineout] subroutine, subroutine, subroutine,

subroutine, |piogetst[| subroutine.

[Understanding Embedded References in Printer Attribute Strings|in AIX 5L Version 5.3 Kernel Extensions
and Device Support Programming Concepts.

[Adding a New Printer Type to Your System|in AIX 5L Version 5.3 Kernel Extensions and Device Support
Programming Concepits.

[Print formatter example|in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

setup Subroutine

Purpose

Performs setup processing for the print formatter.
Library

None (provided by the formatter).

Syntax

#include <piostruct.h>

struct shar_vars *setup (argc, argv, passthru)
unsigned [arg

char *|arg/ [];

int |passthrug

Description

The setup subroutine performs the following tasks:

* Invokes the piogetvals subroutine to initialize the database variables that the formatter uses.
* Processes the command line flags using the piogetopt subroutine.

» Validates the input parameters from the database and the command line.

The setup subroutine should not send commands or data to the printer since the formatter driver performs
additional error checking when the setup subroutine returns.

252 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Parameters

argc Specifies the number of formatting arguments from the command line (including the command
name).

argv Points to a list of pointers to the formatting arguments.

passthru Indicates whether the input data stream should be formatted (the passthru value is 0) or passed

through without modification (the passthru value is1). The value for this parameter is the argument
value for the -# flag specified to the pioformat formatter driver. If the -# flag is not specified, the
passthru value is 0.

Return Values
Upon successful completion, the setup subroutine returns one of the following pointers:

* A pointer to a shar_vars structure that contains pointers to initialized vertical spacing variables. These
variables are shared with the formatter driver, which provides vertical page movement.

* A null pointer, which indicates that the formatter handles its own vertical page movement or that the
input data stream is to be passed through without modification. Vertical page movement includes top
and bottom margins, new pages, initial pages to be skipped, and progress reports to the qdaemon
daemon.

Returning a pointer to a shar_vars structure causes the formatter driver to invoke the formatter’s lineout
function for each line to be printed. Returning a null pointer causes the formatter driver to invoke the
formatter's passthru function once instead.

If the setup subroutine detects an error, it uses the piomsgout subroutine to issue an error message. The
setup subroutine then invokes the pioexit subroutine with a value of PIOEXITBAD. Note that if the
piogetvals, piogetopt, piocmdout, or piogetstr subroutine detects an error, it automatically issues its
own error message and terminates the print job.

Related Information

The |piocmdout| subroutine, |pioexiﬂ subroutine, subroutine, subroutine,
subroutine, |giomsgout| subroutine.

The daemon.

[Understanding Embedded References in Printer Attribute Strings|in ALX 5L Version 5.3 Kernel Extensions
and Device Support Programming Concepts.

[Adding a New Printer Type to Your System|in AlIX 5L Version 5.3 Kernel Extensions and Device Support
Programming Concepts.

[Print formatter example|in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

Chapter 4. Printer Subsystems 253

254 AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems, Volume 2

Chapter 5. SCSI Subsystem

scdisk SCSI Device Driver

Purpose

Supports the small computer system interface (SCSI) fixed disk, CD-ROM (compact disk read only
memory), and read/write optical (optical memory) devices.

Syntax

#include <sys/devinfo.h>
#include <sys/scsi.h>
#include <sys/scdisk.h>
#include <sys/pcm.h>
#include <sys/mpio.h>

Device-Dependent Subroutines

Typical fixed disk, CD-ROM, and read/write optical drive operations are implemented using the open,
close, read, write, and ioctl subroutines. The scdisk device driver has additional support added for MPIO
capable devices.

open and close Subroutines

The open subroutine applies a reservation policy based on the ODM reserve_policy attribute. In the past,
the open subroutine always applied a SCSI2 reserve. The ope