AIX Version 6.1 ééé?é

Security

SC23-6603-00

AIX Version 6.1 ééé?é

Security

SC23-6603-00

Note
FBefore using this information and the product it supports, read the information in FNotices" on page 493/

First Edition (November 2007)

This edition applies to AIX Version 6.1 and to all subsequent releases of this product until otherwise indicated in new
editions.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address
comments to Information Development, Department 04XA-905-6C006, 11501 Burnet Road, Austin, Texas
78758-3493. To send comments electronically, use this commercial Internet address: aix6kpub @austin.ibm.com. Any
information that you supply may be used without incurring any obligation to you.

Copyright (c) 1993, 1994 Hewlett-Packard Company

Copyright (c) 1993, 1994 International Business Machines Corp.

Copyright (c) 1993, 1994 Sun Microsystems, Inc.

Copyright (c) 1993, 1994 Novell, Inc.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the
restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

THIS PUBLICATION IS PROVIDED "AS 1S" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN
NEW EDITIONS OF THE PUBLICATION. HEWLETT-PACKARD COMPANY, INTERNATIONAL BUSINESS
MACHINES CORP., SUN MICROSYSTEMS, INC., AND UNIX SYSTEMS LABORATORIES, INC., MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS
PUBLICATION AT ANY TIME.

© Copyright International Business Machines Corporation 2002, 2007. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book .
Highlighting . .
Case-sensitivity in AIX .
ISO 9000 . .
Related publications .

Security .

Securing the Base Operatlng System
Securing the network.

AIX Security Expert .

Security checklist .

Security resources

Summary of common AIX system services.

Summary of network service options .
Trusted AIX .

Notices
Trademarks .

Index

© Copyright IBM Corp. 2002, 2007

< < << <

. 199
. 337
. 380
. 381
. 382
. 393
. 395

. 493
. 494

. 495

iV AIX Version 6.1 Security

About this book

This topic provides system administrators with complete information on file, system, and network security.
This topic contains information about how to perform such tasks as hardening a system, changing

permissions, setting up authentication methods, and configuring the Common Criteria Security Evaluation
features. This topic is also available on the documentation CD that is shipped with the operating system.

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items
whose names are predefined by the system. Also identifies graphical objects such as buttons,
labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Monospace Identifies examples of specific data values, examples of text similar to what you might see
displayed, examples of portions of program code similar to what you might write as a
programmer, messages from the system, or information you should actually type.

Case-sensitivity in AIX

Everything in the AIX operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the Is command to list files. If you type LS, the
system responds that the command is not found. Likewise, FILEA, FiLea, and filea are three distinct file
names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,
always ensure that you use the correct case.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related publications

The following publications contain related information:

+ |Operating system and device management

« |Networks and communication management

[Installation and migration

[AIX Version 6.1 Commands Reference|

|[AIX Version 6.1 Files Reference

* |AIX Version 6.1 General Programming Concepts: Writing and Debugging Programs
[AIX Version 6.1 Network Information Services (NIS and NIS+) Guidd|

|Printers and printing

© Copyright IBM Corp. 2002, 2007 \"/

Vi AIX Version 6.1 Security

Security

AIX® allows you to perform tasks such as hardening a system, changing permissions, setting up
authentication methods, and configuring the Common Criteria Security Evaluation features. This topic is
also available on the documentation CD that is shipped with the operating system.

To view or download the PDF version of this topic, select [Security]

Securing the Base Operating System

Securing the Base Operating System provides information about how to protect the system regardless of
network connectivity.

These sections describe how to install your system with security options turned on, and how to secure AIX
against nonprivileged users gaining access to the system.

Secure system installation and configuration
Several factors are involved in the secure installation and configuration of AlX.

Trusted Computing Base

The system administrator must determine how much trust can be given to a particular program. This
determination includes considering the value of the information resources on the system in deciding how
much trust is required for a program to be installed with privilege.

The Trusted Computing Base (TCB) is the part of the system that is responsible for enforcing system-wide
information security policies. By installing and using the TCB, you can define user access to the trusted
communication path, which permits secure communication between users and the TCB. TCB features can
only be enabled when the operating system is installed. To install TCB on an already installed machine,
you will have to perform a Preservation installation. Enabling TCB permits you to access the trusted shell,
trusted processes, and the Secure Attention Key (SAK).

Installing a system with the TCB:

The TCB is the part of the system that is responsible for enforcing the information security policies of the
system. All of the computer’s hardware is included in the TCB, but a person administering the system
should be concerned primarily with the software components of the TCB.

If you install a system with the Trusted Computing Base option, you enable the trusted path, trusted shell,
and system-integrity checking command). These features can only be enabled during a base
operating system (BOS) installation. If the TCB option is not selected during the initial installation, the
tcbck command is disabled. You can use this command only by reinstalling the system with the TCB
option enabled.

To set the TCB option during a BOS installation, select More Options from the Installation and Settings
screen. In the Installation Options screen, the default for the Install Trusted Computing Base selection is
no. To enable the TCB, type 2 and press Enter.

Because every device is part of the TCB, every file in the /dev directory is monitored by the TCB. In
addition, the TCB automatically monitors over 600 additional files, storing critical information about these
files in the Vetc/security/sysck.cfgj file. If you are installing the TCB, immediately after installing, back up
this file to removable media, such as tape, CD, or disk, and store the media in a secure place.

Checking the TCB:

© Copyright IBM Corp. 2002, 2007 1

The security of the operating system is jeopardized when the Trusted Computing Base (TCB) files are not
correctly protected or when configuration files have unsafe values.

The command audits the security state of the Trusted Computing Base. The tcbck command audits
this information by reading the Vetc/security/sysck.ch file. This file includes a description of all TCB files,
configuration files, and trusted commands.

The /etc/security/sysck.cfg file is not offline and, could therefore be altered by a hacker. Make sure you
create an offline read-only copy after each TCB update. Also, copy this file from the archival media to disk
before doing any checks.

Installing the TCB and using the tcbck command do not guarantee that a system is operating in a
Controlled Access Protection Profile (CAPP) and Evaluation Assurance Level 4+ (EAL4+) compliant mode.
For information on the CAPP/EAL4+ option, see [‘Controlled Access Protection Profile and Evaluation|
Assurance Level 4+ and Labeled Security Protection Profile and Evaluation Assurance Level 4+” on page]

12]

Structure of the sysck.cfq file:

The tcbck command reads the /etc/security/sysck.cfg file to determine which files to check. Each trusted
program on the system is described by a stanza in the /etc/security/sysck.cfg file.

Each stanza has the following attributes:

acl Text string representing the access control list for the file. It must be of the same
format as the output of the aclget command. If this does not match the actual file ACL
(access control list), the sysck command applies this value using the aclput
command.

Note: The SUID, SGID, and SVTX attributes must match those specified for the mode,
if present.

class Name of a group of files. This attribute permits several files with the same class name
to be checked by specifying a single argument to the tcbck command. More than one
class can be specified, with each class being separated by a comma.

group Group ID or name of the file group. If this does not match the file group, the tcbck
command sets the group ID of the file to this value.
links Comma-separated list of path names linked to this file. If any path name in this list is

not linked to the file, the tcbck command creates the link. If used without the tree
parameter, the tcbckcommand prints a message that there are extra links but does not
determine their names. If used with the tree parameter, the tcbck command also prints
any additional path names linked to this file.

mode Comma-separated list of values. The permissible values are SUID, SGID, SVTX, and
TCB. The file permissions must be the last value and can be specified either as an
octal value or as a 9-character string. For example, either 755 or rwxr-xr-x are valid file
permissions. If this does not match the actual file mode, the tcbck command applies
the correct value.

owner User ID or name of the file owner. If this does not match the file owner, the tcbck
command sets the owner ID of the file to this value.

program Comma-separated list of values. The first value is the path name of a checking
program. Additional values are passed as arguments to the program when the program
is run.

Note: The first argument is always one of -y, -n, -p, or -t, depending on which flag the
tcbck command was used with.

source Name of a file this source file is to be copied from prior to checking. If the value is
blank, and this is either a regular file, directory, or a named pipe, a new empty version
of this file is created if it does not already exist. For device files, a new special file is
created for the same type device.

2 AIX Version 6.1 Security

symlinks Comma-separated list of path names symbolically linked to this file. If any path name in
this list is not a symbolic link to the file, the tcbck command creates the symbolic link.
If used with the free argument, the tcbck command also prints any additional path
names that are symbolic links to this file.

If a stanza in the /etc/security/sysck.cfg file does not specify an attribute, the corresponding check is not
performed.

Using the tcbck command:

The tcbck command is used to ensure the proper installation of security-relevant file; to ensure the file
system tree contains no files that clearly violate system security; and to update, add, or delete trusted files.

The tecbck command is normally used for the following tasks:

» Ensure the proper installation of security-relevant files

» Ensure that the file system tree contains no files that clearly violate system security
» Update, add, or delete trusted files

The tcbck command can be used in the following ways:
* Normal use
— Noninteractive at system initialization
— With the command
* Interactive use
— Check out individual files and classes of files
» Paranoid use
— Store thefile offline and restore it periodically to check out the machine

Although not cryptographically secure, the TCB uses the sum command for checksums. The TCB
database can be set up manually with a different checksum command, for example, the md5sum
command that is shipped in the textutils RPM Package Manager package with A/X Toolbox for Linux
Applications CD.

Checking trusted files:

Use the tebck command to check and fix all the files in the tcbck database, and fix and produce a log of
all errors.

To check all the files in the tcbck database, and fix and report all errors, type:
tchck -y ALL

This causes the tcbck command to check the installation of each file in the tcbck database described by
the /etc/security/sysck.cfg file.

To perform this automatically during system initialization, and produce a log of what was in error, add the
previous command string to the command.

Checking the file system tree:

Whenever you suspect the integrity of the system might have been compromised, run the tcbck command
to check the file system tree.

To check the file system tree, type:
tcbek -t tree

Security 3

When thecommand is used with the tree value, all files on the system are checked for correct
installation (this could take a long time). If the tcbck command discovers any files that are potential threats
to system security, you can alter the suspected file to remove the offending attributes. In addition, the
following checks are performed on all other files in the file system:

* If the file owner is root and the file has the SetUID bit set, the SetUID bit is cleared.

« If the file group is an administrative group, the file is executable, and the file has the SetGID bit set, the
SetGID bit is cleared.

« If the file has the tcb attribute set, this attribute is cleared.
 If the file is a device (character or block special file), it is removed.

« If the file is an additional link to a path name described in /etc/security/sysck.cfg file, the link is
removed.

* If the file is an additional symbolic link to a path name described in /etc/security/sysck.cfg file, the
symbolic link is removed.

Note: All device entries must have been added to the /etc/security/sysck.cfg file prior to execution
of the tcbck command or the system is rendered unusable. To add trusted devices to the
letc/security/sysck.cfg file, use the -l flag.

Attention: Do not run the tcbck -y tree command option. This option deletes and disables devices that
are not properly listed in the TCB, and might disable your system.

Adding a trusted program:

Use the tebck command to add a specific program to the /etc/security/sysck.cfg file.

To add a specific program to the Vetc/security/sysck.cfgj file, type:
tchck -a PathName [Attribute=Value]

Only attributes whose values are not deduced from the current state of the file need be specified on the
command line. All attribute names are contained in the /etc/security/sysck.cfg file.

For example, the following command registers a new SetUID root program named /usr/bin/setgroups,
which has a link named /usr/bin/getgroups:

tcbck -a /usr/bin/setgroups links=/usr/bin/getgroups

To add jfh and js1 as administrative users and to add developers as an administrative group to be
verified during a security audit of the /usr/bin/abc file, type:

tcbck -a /usr/bin/abc setuids=jfh,js1 setgids=developers

After installing a program, you might not know which new files are registered in the /etc/security/
sysck.cfg file. These files can be found and added with the following command:

tcbck -t tree

This command string displays the name of any file that is to be registered in the /etc/security/sysck.cfg
file.

Deleting a trusted program:

If you remove a file from the system that is described in the /etc/security/sysck.cfg file, you must also
remove the description of this file from the /etc/security/sysck.cfg file.

For example, if you have deleted the /etc/cvid program, the following command string produces an error
message:

tcbck -t ALL

4 AIX Version 6.1 Security

The resulting error message is as follows:
3001-020 The file /etc/cvid was not found.

The description for this program remains in the /etc/security/sysck.cfg file. To remove the description of
this program, type the following command:

tcbck -d /etc/cvid

Configuring additional trusted options:

You can configure additional options for the Trusted Computing Base (TCB).
Restricting access to a terminal:

You can configure the operating system to restrict terminal access.

The |gett¥| and |§hell| commands change the owner and mode of a terminal to prevent untrusted programs
from accessing the terminal. The operating system provides a way to configure exclusive terminal access.

Using the Secure Attention Key:

A trusted communication path is established by pressing the Secure Attention Key (SAK) reserved key
sequence (Ctrl-X, and then Ctrl-R).

Note: Use caution when using SAK because it stops all processes that attempt to access the terminal and
any links to it (for example, /dev/console can be linked to /dev/tty0).

A trusted communication path is established under the following conditions:
* When logging in to the system

After you press the SAK:

— If a new login screen displays, you have a secure path.

— If the trusted shell prompt displays, the initial login screen was an unauthorized program that might
have been trying to steal your password. Determine who is currently using this terminal by using the
who command and then log off.

* When you want the command you enter to result in a trusted program running. Some examples of this
include:
— Running as root user. Run as root user only after establishing a trusted communication path. This
ensures that no untrusted programs are run with root-user authority.

— Running the [su] [passwd] and [newgrp| commands. Run these commands only after establishing a
trusted communication path.

Configuring the Secure Attention Key:
Configure the Secure Attention Key to create a trusted communication path.
Each terminal can be independently configured so that pressing the Secure Attention Key (SAK) at that

terminal creates a trusted communication path. This is specified by the sak_enabled attribute in
Yetc/security/login.cfgfile. If the value of this attribute is True, the SAK is enabled.

If a port is to be used for communications, (for example, by the uucp command), the specific port used
has the following line in its stanza of the /etc/security/login.cfg file:

sak_enabled = false

This line (or no entry in that stanza) disables the SAK for that terminal.

Security 5

To enable the SAK on a terminal, add the following line to the stanza for that terminal:
sak_enabled = true

Trusted Execution

Trusted Execution (TE) refers to a collection of features that are used to verify the integrity of the system
and implement advance security policies, which together can be used to enhance the trust level of the
complete system.

The usual way for a malicious user to harm the system is to get access to the system and then install
Trojans, rootkits or tamper some security critical files, resulting in the system becoming vulnerable and
exploitable. The central idea behind the set of features under Trusted Execution is prevention of such
activities or in worst case be able to identify if any such incident happens to the system. Using the
functionality provided by Trusted Execution, the system administrator can decide upon the actual set of
executables that are allowed to execute or the set of kernel extensions that are allowed to be loaded. It
can also be used to audit the security state of the system and identify files that have changed, thereby
increasing the trusted level of the system and making it more difficult for the malicious user to do harm to
the system. The set of features under TE can be grouped into the following:

* Managing Trusted Signature Database

» Auditing integrity of the Trusted Signature Database
» Configuring Security Policies

» Trusted Execution Path and Trusted Library Path

Note: A TCB functionality already exists in AIX. TE is a more powerful and enhanced mechanism that
overlaps some of the TCB functionality and provides advance security policies to better control the
integrity of the system. While the Trusted Computing Base is still available, Trusted Execution
introduces a new and more advanced concept of verifying and guarding the system integrity.

Trusted Signature Database Management:

Similar to that of Trusted Computing Base (TCB) there exists a database which is used to store critical
security parameters of trusted files present on the system. This database, called Trusted Signature
Database (TSD), resides in the /etc/security/tsd/tsd.dat.

A trusted file is a file that is critical from the security perspective of the system, and if compromised, can
jeopardize the security of the entire system. Typically the files that match this description are the following:

» Kernel (operating system)

» All setuid root programs

» All setgid root programs

* Any program that is exclusively run by the root user or by a member of the system group

* Any program that must be run by the administrator while on the trusted communication path (for
example, the Is command)

» The configuration files that control system operation

» Any program that is run with the privilege or access rights to alter the kernel or the system configuration
files

Every trusted file should ideally have an associated stanza or a file definition stored in the Trusted
Signature Database (TSD). A file can be marked as trusted by adding its definition in the TSD using the
command. The trustchk command can be used to add, delete, or list entries from the TSD.

Trusted Signature Database:

The Trusted Signature Database is a database that is used to store critical security parameters of trusted
files present on the system. This database resides in the /etc/security/tsd/tsd.dat directory.

6 AIX Version 6.1 Security

Every trusted file should ideally have an associated stanza or a file definition stored in the Trusted
Signature Database (TSD). Every trusted file is associated with a unique cryptographic hash and a digital
signature. The cryptographic hash of the default set of trusted files is generated using the SHA-256
algorithm and the digital signature is generated using RSA by the AIX build environment and packaged as
part of AIX installation filesets. These hash values and the signatures are shipped as part of respective
AlX installation images and stored in the Trusted Software Database (/fetc/security/tsd/tsd.dat) on the
destination machine, in the sample stanza format that follows:

/usr/bin/ps:
owner = bin
group = system
mode = bb5
type = FILE
hardlinks = /usr/shin/ps
symlinks =
size = 1024
cert_tag = bbe21b795c550ab243
signature =

f7167eb9ba3b63478793c635fc991c7e9663365b2c238411d24c2a8a

hash_value = ¢550ab2436792256b4846a8d0dc448fc45

minslabel = SLSL

maxslabel = SLSL

intlabel = SHTL

accessauths = aix.mls.pdir, aix.mls.config

innateprivs = PV_LEF

proxyprivs = PV_DAC

authprivs =
aix.security.cmds:PV_DAC,aix.ras.audit:PV_AU_ADMIN

secflags = FSF_EPS

t_accessauths
t_innateprivs
t_proxyprivs
t_authprivs
t_secflags

owner Owner of the file. This value is computed by the trustchk command when the file is being added
to TSD.

group Group of the file. This value is computed by the trustchk command.

mode Comma separated list of values. The permissible values are SUID (SUID set bit), SGID (SGID set
bit), SVTX (SVTX set bit), and TCB (Trusted Computing Base). The file permissions must be the
last value and can be specified as an octal value. For example, for a file that is set uid and has
permission bits as rwxr-xr-x, the value for mode is SUID,755. The value is computed by the
trustchk command.

type Type of the file. This value is computed by the trustchk command. The possible values are FILE,
DIRECTORY, MPX_DEV, CHAR_DEV, BLK_DEV, and FIFO.

hardlinks
List of hardlinks to the file. This value cannot be computed by the trustchk command. It must be
supplied by the user when adding a file to the database.

symlinks
List of symbolic links to the file. This value cannot be computed by the trustchk command. It must
be supplied by the user when adding a file to the database.

size Defines size of the file. The VOLATILE value means the file gets changed frequently.

cert_tag
This field maps the digital signature of the file with the associated certificate that can be used to
verify the file’s signatures. This field stores the certificate id and is computed by the trustchk
command at the time of addition of the file to the TSD. The certificates are stored in
letc/security/certificates directory.

Security 7

signature
Digital signature of the file. The VOLATILE value means the file gets changed frequently. This field
is computed by the trustchk command.

hash_value
Cryptographic hash of the file. The VOLATILE value means the file gets changed frequently. This
field is computed by the trustchk command.

minslabel
Defines the minimum sensitivity label for the object.

maxslabel
Defines the maximum sensitivity label for the object (valid on Trusted AIX system). This attribute is
not applicable to regular files and fifo.

intlabel
Defines the integrity label for the object (valid on Trusted AIX system).

accessauths
Defines the access authorization on the object (valid on Trusted AlX system).

innateprivs
Defines the innate privileges for the file.

proxyprivs
Defines the proxy privileges for the file.

authprivs
Defines the privileges that are assigned to the user after given authorizations.

secflags
Defines the file security flags associated with the object.

t_accessauth
Defines the additional Trusted AIX with Multi-Level Security (MLS) specific access authorizations
(valid on Trusted AIX system).

t_innateprivs
Defines the additional Trusted AIX with MLS specific innate privileges for the file (valid on Trusted
AIX system).

t_proxyprivs
Defines the additional Trusted AIX with MLS specific proxy privileges for the file (valid on Trusted
AlIX system).

t_authprivs
Defines the additional Trusted AIX with MLS specific privileges that are assigned to the user after
given authorizations (valid on Trusted AIX system).

t_secflags
Defines the additional Trusted AIX with MLS specific file security flags associated with the object
(valid on Trusted AIX system).

While adding a new entry to TSD, if a trusted file has some symbolic or hard links pointing to it, then these
links can be added to the TSD by using symlinks and hardlinks attributes at the command line, along
with thecommand. If the file being added is expected to change frequently, then use VOLATILE
keyword at the command line. Then the trustchk command would not calculate the hash_value and
signature fields when it generates the file definition for addition into the TSD. During integrity verification
of this file, the hash_value and signature fields are ignored.

During addition of regular file definitions to the TSD, it is necessary to provide a private key (ASN.1/DER
format). Use the -s flag and digital certificate with the corresponding public key using the -v flag. The
private key is used to generate the signature of the file and then discarded. It is up to the user to store this

8 AIX Version 6.1 Security

key securely. The certificate is stored into a certificate store in the/etc/security/certificates file for the
signatures to be verified whenever you request integrity verification. Since signature calculation is not
possible for non-regular files like directory and device files, it is not mandatory to supply the private key
and certificate while adding such files to TSD.

You can also supply the pre-computed file definition through a file using the -f option to be added to the
TSD. In this case the trustchk does not compute any of the values and stores the definitions into TSD
without any verification. The user is responsible for sanity of the file definitions in this case.

Auditing the integrity of Trusted Signature Database:

The trustchk command can be used to audit the integrity state of the file definitions in the Trusted
Signature Database (TSD) against the actual files.

If thecommand identifies an anomaly, then it can be made to automatically correct it or prompt
the user before attempting correction. If anomalies like size, signature, cert_tag or hash_value mismatch,
the correction is not possible. In such cases, the trustchk command would make the file inaccessible,
thereby rendering it useless and containing any damage.

Following corrective actions shall be taken for different mismatching attributes:

owner Owner of the file shall be reset to the value in TSD.

group Group of the file shall be reset to the value in TSD.

mode Mode bits of the file be reset to the value in TSD.

hardlinks
If the link points to some other file, it is modified to point to this file. If the link does not exist, a
new link is created to point to this file.

symlinks
Same as hardlinks.

type File is made inaccessible.
size File is made inaccessible, except in case of VOLATILE file.

cert_tag
File is made inaccessible.

signature
File is made inaccessible, except in case of VOLATILE file.

hash_value
File is made inaccessible, except in case of VOLATILE file.

minslabel
On a Trusted AlIX system, the minimum sensitivity label is reset to the value in the TSD.

maxslabel
On a Trusted AIX system, the maximum sensitivity label is reset to the value in the TSD.

intlabel
On a Trusted AlX system, the integrity label is reset to the value in the TSD.

accessauths
The access authorizations are reset to the value in TSD. On Trusted AlX, the t_accessauths
values are considered part of the accessauths attribute.

innateprivs
The innate privileges are reset to the value in TSD. On Trusted AlX, the t_innateprivs values are
considered part of the innateprivs attribute.

Security 9

inheritprivs
The inheritable privileges are reset to the value in TSD. On Trusted AlX, the t_inheritprivs values
are considered part of the inherit attribute.

authprivs
The authorized privileges are reset to the value in TSD. On Trusted AlX, the t_authprivs values
are considered part of the authprivs attribute.

aecflags
The security flags are reset to the value in TSD. On Trusted AlX, the t_secglags values are
considered as part of the secflags attribute.

You can also validate file definitions against an alternate database using the -F option. The system
administrator should avoid storing the TSD on the same system and backup the database to some
alternate location. This file integrity can be made to match against this backed up version of TSD using the
-F option.

Security policies configuration:

The Trusted Execution (TE) feature provides you with a run-time file integrity verification mechanism.
Using this mechanism, the system can be configured to check the integrity of the trusted files before every
request to access those file, effectively allowing only the trusted files that pass the integrity check to be
accessed on the system.

When a file is marked as trusted (by adding its definition to Trusted Signature Database), the TE feature
can be made to monitor its integrity on every access. TE can continuously monitor the system and is
capable of detecting tampering of any trusted file (by a malicious user or application) present on the
system at run-time (for example, at load time). If the file is found to be tampered, TE can take corrective
actions based on pre-configured policies, such as disallow execution, access to the file, or logging error. If
a file being opened or executed, and has an entry in the Trusted Signature Database (TSD), the TE
performs as follows:

» Before loading the binary, the component responsible for loading the file (system loader) invokes the
Trusted Execution subsystem, and calculates the hash value using the SHA-256 algorithm
(configurable).

» This run-time calculated hash value is matched with the one stored in the TSD.
 If the values match, the file opening or execution is permitted.

 If the values do not match, either the binary is tampered, or somehow compromised. It is up to the user
to decide the action to be taken. The TE mechanism provides options for users to configure their own
policies for the actions to be taken if the hash values do not match.

» Based on these configured policies, a relevant action is taken.

The following policies can be configured:

CHKEXEC
Check hash value of only the trusted executables before loading them in memory for execution.

CHKSHLIBS
Check the hash value of only the trusted shared libraries before loading them in memory for
execution.

CHKSCRIPTS
Check the hash value of only the trusted shell scripts before loading them in memory.

CHKKERNEXT
Check the hash value of only the kernel extension before loading it in memory.

STOP_UNTRUSTD
Stop loading of files that are not trusted. Only files belonging to TSD are loaded. This policy only

10 AIX Version 6.1 Security

works in combination with any of the CHK* policies mentioned above. For example, if
CHKEXEC=0ON and STOP_UNTRUSTD=O0N, then any executable binary that does not belong to
TSD is blocked from execution.

STOP_ON_CHKFAIL
Stop loading of trusted files that fail hash value check. This policy also works in combination with
CHK~ policies. For example, if CHKSHLIBS=ON and STOP_ON_CHKFAIL=0N, then any shared
library not belonging to the TSD is blocked from being loaded into memory for use.

TSD_LOCK
Lock TSD so it is not available for editing.

TSD_FILES_LOCK
Lock trusted files. This does not allow opening of trusted files in write mode.

TE Enable/Disable Trusted Execution functionality. Only when this is enabled, the above mentioned
policies are in effect.

The following table gives the interaction between different CHK* policies and STOP* policies when
enabled:

Policy STOP_UNTRUSTD STOP_ON_CHKFAIL
CHKEXEC Stop loading of executables that do Stop loading of executables whose hash
not belong to TSD. values do not match the TSD values.
CHKSHLIBS Stop loading of shared libraries that | Stop loading of shared libraries whose hash
do not belong to TSD. values do not match the TSD values.
CHKSCRIPTS Stop loading of shell scripts that do Stop loading of shell scripts whose hash
not belong to TSD. values do not match the TSD values.
CHKKERNEXT Stop loading of kernel extensions that | Stop loading of kernel extensions whose hash
do not belong to TSD. values do not match the TSD values.

Note: A policy can be enabled or disabled at any time until the TE is turned on to bring the policies into
effect. Once a policy is in effect, disabling that policy becomes effective only on next boot cycle. All
the information messages are logged into syslog.

Trusted Execution Path and Trusted Library Path:

Trusted Execution Path (TEP) defines a list of directories that contain the trusted executables. Once TEP
verification is enabled, the system loader allows only binaries in the specified paths to execute. Trusted
Library Path (TLP) has the same functionality, except that it is used to define the directories that contain
trusted libraries of the system.

Once TLP is enabled, the system loader allows only the libraries from this path to be linked to the binaries.
Thecommand can be used to enable or disable the TEP or TLP, as well as set the colon
separated path list for both, using TEP and TLP command line attributes of the trustchk command.

Trusted Shell and Secure Attention Key:
Trusted Shell and Secure Attention Key (SAK) perform similarly to the Trusted Computing Base (TCB),

except that if Trusted Execution is enabled on the system instead of TCB, the Trusted Shell executes files
belonging only to the Trusted Signature Database.

For more information about TCB and SAK, see [Trusted Computing Base} [Using the Secure Attention Keyj
and [Configuring the Secure Attention Key|

Security 11

Controlled Access Protection Profile and Evaluation Assurance Level 4+ and
Labeled Security Protection Profile and Evaluation Assurance Level 4+

System administrators can install a system with the Controlled Access Protection Profile (CAPP) and
Evaluation Assurance Level 4+ (EAL4+) option or Labeled Security Protection Profile (LSPP) and
Evaluation Assurance Level 4+ (EAL4+) during a base operating system (BOS) installation. A system with
these options has restrictions on the software that is installed during BOS installation, plus network access
is restricted.

Note: Evaluations are currently ongoing for AIX Version 6.1. Please refer to the AlX Version 6.1 release
notes for the latest information.

CAPP/EAL4+ compliant system overview:

A CAPP system is a system that has been designed and configured to meet the Controlled Access
Protection Profile (CAPP) for security evaluation according to the Common Criteria. The CAPP specifies
the functional requirements for the system, similar to the earlier TCSEC C2 standard (also known as the
Orange Book).

A Common Criteria (CC) Evaluated System is a system that has been evaluated according to the Common
Criteria, an ISO standard (ISO 15408) for the assurance evaluation of IT products. The system
configuration that meets these requirements is referred to as a CAPP/EAL4+ system in this guide.

If a system is evaluated according to the CC, the CC evaluation is valid only for a specific system
configuration (hardware and software). Changing the relevant security configuration results in a
nonevaluated system. This does not necessarily mean that the security of the system will be reduced, but
only indicates that the system is no longer in a certified configuration. Neither the CAPP nor the CC cover
all possible security configuration options of AIX 6.1. Some features, such as IPsec or custom-password
checking modules, are not included, but can be used to enhance the security of the system.

The AIX 6.1 CAPP/EAL4+ system includes the base operating system on 64-bit POWER5™, POWER5™,
and POWER6™ processors with the following:

* Logical Volume Manager (LVM) and the enhanced journaled file system (JFS2)

* The X-Windows system with the CDE interface

» Basic Internet Protocol version 4 (IPv4) network functions (Telnet, FTP, rlogin, rsh/rcp)
* Network File System (NFS)

A CAPP/EAL4+ system is considered to be in a secured state if the following conditions apply:

 If auditing is configured and the system is in multi-user mode, then auditing must be operational.
* The system accepts user logins and services network requests.

» For a distributed system, the administrative databases are NFS-mounted from the master server.

The following administrative interfaces to the security functionality are provided:

 |dentification and authentication measures (configuration of users, password settings, login
configuration, and so on.)

+ Audit measures (configuring bin mode audition, selecting audited events, processing audit trails, and so
on.)

» Discretionary access control (permission bits and ACLs for file system objects, IPC mechanisms and
TCP ports)

» Setting the system time
* Running the diag diagnostic subsystem
* Running the su command to become a privileged administrator (root)

12 AIX Version 6.1 Security

This includes the configuration files and system calls that can be used to perform the appropriate
administration.

The following user interfaces to the security functionality are provided:

* The passwd command for changing a user’s password

* The su command for changing a user’s identity

» The at, batch, and crontab facilities for the scheduling of command processing

» Discretionary access control (permission bits and ACLs for file system objects and IPC mechanisms)

* Login mechanisms (for example, identification and authentication mechanisms) for the system console
and the supported network applications (such as, telnet and ftp)

This includes the system calls dealing with the settings of user identity or access control.

The AIX 6.1 CAPP/EAL4+ system runs on hardware platforms based on IBM® eServer™ pSeries®
Symmetric Multiprocessor (SMP) systems using POWER5, POWER5+", and POWER6™ processors.
Peripheral devices that are supported are terminals and printers, hard disks and CD-ROM drives as
storage devices, and streamers and diskette drives as backup devices. Supported network connector
types are Ethernet and token ring.

The CAPP/EAL4+ technology runs on POWERS5, POWER5+, and POWERG6 processor hardware platforms
that support logical partition configuration. Peripheral devices that are supported are terminals and printers,
hard disks and CD-ROM drives as storage devices, and streamers and diskette drives as backup devices.
Supported network connector types are Ethernet and token ring. Common Criteria mode only supports
SCSI optical devices.

Note: Administrators must inform all users of the system not to use the SHOME/.rhosts file for remote
login and running commands.

Installing a CAPP/EAL4+ system:
RBAC is automatically enabled when this option is selected.

To set the CAPP/EAL4+ option during a BOS installation, do the following:
1. In the Installation and Settings screen, select More Options.

2. In the More Options screen, type the number corresponding to the Yes or No choice for Enable CAPP
and EAL4+ Technology. The default is set to No.

The Enable CAPP and EAL4+ Technology option is available only under the following conditions:
* The installation method is set to new and complete overwrite installation.

* The English language is selected.

* The 64-bit kernel is enabled.

* The enhanced journaled file system (JFS2) is enabled.

When the Enable CAPP and EAL4+ Technology option is set to Yes, the Trusted Computing Base
option is also set to Yes, and the only valid Desktop choices are NONE or CDE.

If you are performing a nonprompted installation using a customized bosinst.data file, the
INSTALL_TYPE field must be set to CC_EVAL and the following fields must be set as follows:

control_flow:
CONSOLE = ?77?
PROMPT = yes
INSTALL_TYPE =
INSTALL_METHOD
TCB = yes
DESKTOP = NONE or CDE

CC_EVAL
= overwrite

Security 13

ENABLE_64BIT_KERNEL = yes
CREATE_JFS2_FS = yes
ALL_DEVICES_KERNELS = no
FIREFOX_BUNDLE = no
HTTP_SERVER_BUNDLE = no
KERBEROS_5_BUNDLE = no
SERVER_BUNDLE = no
ALT_DISK_INSTALL_BUNDLE = no

locale:
CULTURAL_CONVENTION = en_US or C
MESSAGES = en_US or C

For more information about RBAC, see |[Role Based Access Control (RBAC)|

CAPP/EAL4+ and the Network Installation Management environment:

Installation of CAPP/EAL4+ technology clients can be performed using the Network Installation
Management (NIM) environment.

The NIM master is configured to provide the resources needed to install the appropriate CAPP/EAL4+
level of AIX 6.1. NIM clients may then be installed using the resources located on the NIM master. You can
perform a nonprompted NIM installation of the client by setting the following fields in the bosinst_data
resource:

control_flow:
CONSOLE = ???
PROMPT = no
INSTALL_TYPE =
INSTALL_METHOD
TCB = yes
DESKTOP = NONE or CDE
ENABLE_64BIT_KERNEL = yes
CREATE_JFS2_FS = yes
ALL_DEVICES_KERNELS = no
FIREFOX_BUNDLE = no
HTTP_SERVER BUNDLE = no
KERBEROS_5 BUNDLE = no
SERVER_BUNDLE = no
ALT_DISK INSTALL_BUNDLE = no

CC_EVAL
= overwrite

locale:
CULTURAL_CONVENTION = en_US or C
MESSAGES = en_US or C

The NIM master cannot be configured as a CAPP/EAL4+ system and cannot be connected to the same
network with other CAPP/EAL4+ systems. When initiating the installation from the NIM master, the
Remain NIM client after install SMIT menu option must be set to No. After a NIM client is installed as a
CAPP/EAL4+ system, the NIM client must be removed from the NIM master’s network, and additional
software installations and updates cannot be performed using the NIM master.

An example situation is to have two network environments; the first network consists of the NIM master
and the non-CAPP/EAL4+ systems; the second network consists only of CAPP/EAL4+ systems. Perform
the NIM installation on the NIM client. After the installation has completed, disconnect the newly installed
CAPP/EAL4+ system from the NIM master’s network and connect the system to the evaluated network.

A second example consists of one network. The NIM master is not connected to the network when other
systems are operating in the evaluated configuration, and CAPP/EAL4+ systems are not connected to the
network during NIM installation.

CAPP/EAL4+ software bundle:

14 AIX Version 6.1 Security

When the CAPP/EAL4+ option is selected, the contents of the /usr/sys/inst.data/sys_bundles/
CC_EVAL.BOS.autoi installation bundle are installed.

You can optionally select to install the graphics software bundle and the documentation services software
bundle with the CAPP/EAL4+ option selected. If you select the Graphics Software option with the
CAPP/EALA4+ option, the contents of the /usr/sys/inst.data/sys_bundles/CC_EVAL.Graphics.bnd
software bundle are installed. If you select the Documentation Services Software option with the

CAPP/EALA4+ option, the contents of the /usr/sys/inst.data/sys_bundles/CC_EVAL.DocServices.bnd

software bundle are installed.

After the Licensed Program Products (LPPs) have been installed, the system changes the default
configuration to comply with the CAPP/EAL4+ requirements. The following changes are made to the
default configuration:

Remove /dev/echo from the /etc/pse.conf file.
Instantiate streams devices.

Allow only root to access removable media.
Remove non-CC entries from the inetd.conf file.
Change various file permissions.

Register symbolic links in the sysck.cfg file.
Register devices in the sysck.cfg file.

Set default user and port attributes.

Configure the doc_search application for browser use.

Remove httpdlite from the inittab file.
Remove writesrv from the inittab file.
Remove mkatmpvc from the inittab file.
Remove atmsvcd from the inittab file.
Disable snmpd in the /etc/rc.tcpip file.
Disable hostmibd in the /etc/rc.tcpip file.
Disable snmpmibd in the /etc/rc.tepip file.
Disable aixmibd in the /etc/rc.tepip file.
Disable muxatmd in the /etc/rc.tepip file.
NFS port (2049) is a privileged port.

Add missing events to the /etc/security/audit/events file.

Ensure that the loopback interface is running.
Create synonyms for /dev/console.
Enforce default X-server connection permissions.

Change the /var/docsearch directory so that all files are world-readable.
Add Object Data Manager (ODM) stanzas to set the console permissions.

Set permissions on BSD-style ptys to 000.
Disable .netrc files.
Add patch directory processing.

Graphical user interface:

The CAPP/EAL4+ compliant system includes the X Windows System as a graphical user interface.

Security

15

X Windows provides a mechanism for displaying graphical clients, such as clocks, calculators, and other
graphical applications, as well as multiple terminal sessions using the aixterm command. The X Windows
System is started with the xinit command from the initial command line after a user has logged in at the
host’s console.

To start an X Windows session, type:

xinit

This command starts the X Windows server with local access mechanisms enabled for the invoker only. X
Windows clients that are set-UID to root will be able to access the X Windows server via the UNIX®
domain socket using the root override on the access restrictions. X Windows clients that are set-UID to
other users or that are started by other users will not be able to access the X Windows server. This
restriction prevents other users of a host from gaining unauthorized access to the X Windows server.

Installing a LSPP/EAL4+ system:

RBAC is automatically enabled when this option is selected.

To set the LSPP/EAL4+ option during a BOS installation, do the following:

The installation options are available by typing 3 to change the Security Model and typing 4 to view the
More Options field in the Installation and Settings window. These options vary based on installation type

(overwrite, preservation, or migration) and security options. For LSPP, the installation method is new or
complete overwrite. Choose LSPP/EAL4+ configuration install.

For more information about RBAC, see |[Role Based Access Control (RBAC)|

LSPP/EAL4+ configuration installation (only available with Trusted AlX:

The LSPP/EAL4+ configuration install option installs Trusted AIX in LSPP/EAL4+ configured mode.
LSPP/EAL4+ configured mode provides for further restrictive security as compared to the Trusted AIX
installation.

If you are performing a nonprompted installation using a customized bosinst.data file, the
INSTALL_TYPE field must be blank and the TRUSTED_AIX field should be set to yes and the following
fields must be set as follows:

control_flow:

CONSOLE = ???

PROMPT = yes

INSTALL_TYPE =

TRUSTED_AIX = yes
INSTALL_METHOD = overwrite
TCB = yes

DESKTOP = NONE
ENABLE_64BIT_KERNEL = yes
CREATE_JFS2_FS = yes
ALL_DEVICES_KERNELS = no
FIREFOX_BUNDLE = no
HTTP_SERVER_BUNDLE = no
KERBEROS_5_BUNDLE = no
SERVER_BUNDLE = no
ALT_DISK_INSTALL_BUNDLE = no

locale:
CULTURAL_CONVENTION = en_US or C
MESSAGES = en_US or C

For more information about Trusted AlX, see[Trusted AlX

16 AIX Version 6.1 Security

LSPP/EAL4+ and the Network Installation Management environment:

Installation of LSPP/EAL4+ technology clients can be performed using the Network Installation
Management (NIM) environment.

The NIM master is configured to provide the resources needed to install the appropriate LSPP/EAL4+ level
of AIX 6.1. NIM clients may then be installed using the resources located on the NIM master. You can
perform a nonprompted NIM installation of the client by setting the following fields in the bosinst_data
resource:

control_flow:

CONSOLE = ??7

PROMPT = no

INSTALL_TYPE =

TRUSTED AIX = yes

INSTALL_METHOD = overwrite

TCB = yes

DESKTOP = NONE

ENABLE_64BIT_KERNEL = yes

CREATE_JFS2_FS = yes

ALL_DEVICES_KERNELS = no

FIREFOX_BUNDLE = no

HTTP_SERVER BUNDLE = no

KERBEROS 5 BUNDLE = no

SERVER _BUNDLE = no

ALT_DISK INSTALL_BUNDLE = no

locale:
CULTURAL_CONVENTION = en_US or C
MESSAGES = en_US or C

The NIM master cannot be configured as a LSPP/EAL4+ system and cannot be connected to the same
network with other LSPP/EAL4+ systems. When initiating the installation from the NIM master, the Remain
NIM client after install SMIT menu option must be set to No. After a NIM client is installed as a
LSPP/EAL4+ system, the NIM client must be removed from the NIM master’'s network, and additional
software installations and updates cannot be performed using the NIM master.

An example situation is to have two network environments; the first network consists of the NIM master
and the non-LSPP/EAL4+ systems; the second network consists only of LSPP/EAL4+ systems. Perform
the NIM installation on the NIM client. After the installation has completed, disconnect the newly installed
LSPP/EAL4+ system from the NIM master's network and connect the system to the evaluated network.

A second example consists of one network. The NIM master is not connected to the network when other
systems are operating in the evaluated configuration, and LSPP/EAL4+ systems are not connected to the
network during NIM installation.

CAPP/EAL4+ and LSPP/EAL4+ systems physical environment:

The CAPP/EAL4+ and LSPP/EAL4+ systems have specific requirements for the environment in which they
are run.

The requirements are as follows:

* Physical access to the systems must be restricted so that only authorized administrators can use the
system consoles.

* The Service Processor is not connected to a modem.
» Physical access to the terminals is restricted to authorized users.

» The physical network is secure against eavesdropping and spoofing programs (also called Trojan horse
programs). When communicating over insecure lines, additional security measures, such as encryption,
are needed.

Security 17

Communication with other systems that are not AIX 6.1 CAPP/EAL4+ or LSPP/EAL4+ systems, or are
not under the same management control, is not permitted.

Only IPv4 is to be used when communicating with other CAPP/EAL4+ and LSPP/EAL4+ systems. IPv6
is included in the evaluated configuration, but only the functional capabilities of IPv6 that are also
supported by IPv4 are included.

Users must not be allowed to change the system time.
Systems in an LPAR environment cannot share PHBs.

CAPP/EAL4+ and LSPP/EAL4+ systems organizational environment:

Certain procedural and organizational requirements must be met for a CAPP/EAL4+ and LSPP/EAL4+
systems.

The following requirements must be met:

Administrators must be trustworthy and well trained.
Only users authorized to work with the information on the systems are granted user IDs on the system.

Users must use high-quality passwords (as random as possible and not affiliated with the user or the
organization). For information about setting up password rules, see [‘Passwords” on page 58

Users must not disclose their passwords to others.
Administrators must have sufficient knowledge to manage security critical systems.
Administrators must work in accordance with the guidance provided by the system documentation.

Administrators must log in with their personal ID and use the@command to switch to superuser mode
for administration.

Passwords generated for system users by administrators must be transmitted securely to the users.

Those who are responsible for the system must establish and implement the necessary procedures for
the secure operation of the systems.

Administrators must ensure that the access to security-critical system resources is protected by
appropriate settings of permission bits and ACLs.

The physical network must be approved by the organization to carry the most sensitive data held by the
systems.

Maintenance procedures must include regular diagnostics of the systems.

Administrators must have procedures in place that ensure a secure operation and recovery after a
system failure.

The LIBPATH environment variable should not be changed, because this might result in a trusted
process loading an untrusted library.

Wiretapping and trace software (tcpdump, trace) must not be used on an operational system.
Anonymous protocols such as HTTP may only be used for public information (for example, the online
documentation).

Only TCP-based NFS can be used.

Access to removable media is not to be given to users. The device files are to be protected by
appropriate permission bits or ACLs.

Only root authority is used when administering AIX. None of the role-based and group-based
administration-delegation features, nor the privilege mechanism of AlX, are included in the CAPP/EAL4+
compliance.

Administrators must not use dynamic partitioning to allocate and deallocate resources. Partition
configuration may only be performed while no partitions at all are running.

CAPP/EAL4+ system operational environment:

Certain operational requirements and procedures must be met for a CAPP/EAL4+ system.

18 AIX Version 6.1 Security

The following requirements and procedures must be met:

 If using a Hardware Management Console (HMC), the HMC is located in a physically controlled
environment.

» Only authorized personnel can access to the operational environment and the HMC.

 If using an HMC, the HMC can only be used for the following tasks:
— Initial configuration of the partitions. A partition cannot be active during the configuration process.
— Restarting of "hanging” partitions

» The HMC must not be used throughout operation of the configured system.

* The system’s "call home” feature must be disabled.

* Remote modem access to the system must be disabled.

* If AIX runs in an LPAR-enabled environment, the administrator should check with the LPAR
documentation for requirements on the EAL4+ operation of logical partitions.

* The service authority feature must be disabled on logical partitions.
CAPP/EAL4+ system configuration:

You can configure the Controlled Access Protection Profile (CAPP) and Evaluation Assurance Level 4+
(EAL4+) system.

The system, sys, adm, uucp, mail, security, cron, printq, audit and shutdown groups are considered
administrative groups. Only trusted users should be added to this group.

Administration:

Administrators must log in with their personal user account and use the su command to become the root
user for the administration of the system.

To effectively prevent guessing the root account’s password, allow only authorized administrators to use
the su command on the root account. To ensure this, do the following:

1. Add an entry to the root stanza of the /etc/security/user file as follows:

root:
admin = true

;ugroups = SUADMIN
2. Define group in the /ete/group file containing only the user IDs of authorized administrators as follows:

system:!:0:root,paul
staff:!:1:invscout,julie
bin:!:2:root,bin

SUADMIN:!:13:paul

Administrators must also adhere to the following procedures:

« Establish and implement procedures to ensure that the hardware, software and firmware components
that comprise the distributed system are distributed, installed, and configured in a secure manner.

* Ensure that the system is configured so that only an administrator can introduce new trusted software
into the system.

* Implement procedures to ensure that users clear the screen before logging off from serial login devices
(for example, IBM 3151 terminals).

User and port configuration:

Security 19

AIX configuration options for users and ports must be set to satisfy the requirements of the evaluation. The
actual requirement is that the probability of correctly guessing a password should be at least 1 in
1,000,000, and the probability of correctly guessing a password with repeated attempts in one minute
should be at least 1 in 100,000.

The /etc/security/user file shown in the following example uses the /usr/share/dict/words dictionary list.
The /usr/share/dict/words file is contained in the bos.data fileset. You must install the bos.data fileset
prior to configuring the /etc/security/user file. The recommended values for the /etc/security/user file are
the following:

default:
admin = false
login = true
su = true
daemon = true
rlogin = true
sugroups = ALL

admgroups =
ttys = ALL
authl = SYSTEM
auth2 = NONE
tpath = nosak
umask = 077
expires = 0

SYSTEM = "compat"
logintimes =
pwdwarntime = 5
account_locked
loginretries =
histexpire = 52
histsize = 20
minage = 0
maxage = 8
maxexpired
minalpha
minother
minlen = 8

mindiff = 4

maxrepeats = 2

dictionlist = /usr/share/dict/words
pwdchecks =

dce_export = false

= false
3

NNl

root:
rlogin = false
login = false

The default settings in the /etc/security/user file should not be overwritten by specific settings for single
users.

Note: Setting Togin = false in the root stanza prevents direct root login. Only user accounts that have su
privileges for the root account will be able to log in as the root account. If a Denial of Service attack
is launched against the system that sends incorrect passwords to the user accounts, it could lock
all the user accounts. This attack might prevent any user (including administrative users) from
logging into the system. Once a user’s account is locked, the user will not be able to log in until the
system administrator resets the user’s unsuccessful_login_count attribute in the
letc/security/lastlog file to be less than the value of the Toginretries user attribute. If all the
administrative accounts become locked, you might need to reboot the system into maintenance
mode and run the chsec command. For more information about using the chsec command, see
[‘User account control” on page 50.|

The suggested values for the /etc/security/login.cfg file are the following:

20 AIX Version 6.1 Security

default:
sak_enabled = false
logintimes =
logindisable = 4
logininterval =
loginreenable =
logindelay = 5

60
30

List of setuid/setgid programs:
A list of trusted applications is created for CAPP-enabled AIX systems.

The suid/sgid bits are turned off for all non-trusted programs that are owned by root or a trusted group.
The only programs on the system after a CAPP install that are either suid and owned by root or sgid and
owned by one of these trusted groups are system, sys, adm, uucp, mail, security, cron, printq, audit,
and shutdown. Only add trusted users to these groups.

The list of trusted applications is created by considering all applications that fall into at least one of the
following categories:

» SUID root bit for the corresponding application is enabled
» SGID bit to one of the trusted groups is enabled
» Applications that access any of the trusted databases according to the administrator guidance document
» Applications that either implement or provide access to any security function, such as:
~ Just/bin/at]

— lusr/sbinfaudit]

— lusr/sbinfauditbin|
~ Just/sbinfauditcat]
— lusr/sbinfauditmerge]
— lust/sbinfauditpr]

— Jusr/sbinfauditselect
— lusr/binfbatch]

~ Jusr/binfchsh|

— lusr/sbin/chtcb)

— lust/sbinfcron|

— Just/bin/crontab]

— lusr/sbin/diag]

— lust/sbinfftpd]

~ lust/sbinfinetd|

— lusr/binflogout]

~ Just/bin[passwd]|

- /usr/sbin

— lusr/sbinfrexecd|

— lust/sbinfrlogind]

- /usr/sbin/rpc
— lust/sbinfrshd|

~ Just/bin/setgroups]
— lusr/bin/setseny]

~ lust/bin/sy]

— lust/sbinftelnetd]

Security 21

— Just/sbinftsm|
— lusr/lpp/X11/binfxlock

— lusr/lpp/diagnostics/bin/uformat

Note: The setuid bit for the ipcs command should be removed by the system administrator. The system
administrator should run the chmod u-s /usr/bin/ipcs and chmod u-s /usr/bin/ipcs64 commands.

Hard disk erasure:

AIX allows hdisks to be erased using the Format media service aid in the AIX diagnostic package. The
diagnostic package is fully documented in the Diagnostic Information for Multiple Bus Systems book, as
well as your hardware user’s guide.

To erase a hard disk, run the following command:
diag -T "format"

This command will start the Format media service aid in a menu driven interface. If prompted, select your
terminal.

You will then be presented with a resource selection list. Select the hdisk devices you want to erase from
this list and commit your changes according to the instructions on the screen.

After committing your selections, select Erase Disk from the menu. You are then asked to confirm your
selection. Choose Yes.

You are then asked if you want to Read data from drive or Write patterns to drive. Select Write
patterns to drive.

You then have the opportunity to modify the disk erasure options. After you specify the options you prefer,
select Commit Your Changes . The disk is erased.

Note: It can take a long time for this process to complete.

Resource limits:

When setting resource limits in the /etc/security/limits file, make sure that the limits correspond to the
needs of the processes on the system.

In particular, the stack and rss sizes should never be set to unlimited. An unlimited stack might overwrite
other segments of the running process, and an unlimited rss size allows a process to use all real memory,
therefore creating resource problems for other processes. The stack_hard and rss_hard sizes should also
be limited.

Audit subsystem:

There are several procedures to help protect the audit subsystem.

» Configure the audit subsystem to record all the relevant security activities of the users. To ensure that
the file space needed for auditing is available and is not impaired by other consumers of file system
space, set up a dedicated file system for audit data.

» Protect audit records (such as audit trails, bin files, and all other data stored in /audit) from non-root
users.

» For the CAPP/EAL4+ system, bin mode auditing must be set up when the audit subsystem is used. For
information about how to set up the audit subsystem, refer to [‘'Setting up auditing” on page 126

» At least 20 percent of the available disk space in a system should be dedicated to the audit trail.

22 AIX Version 6.1 Security

« |If auditing is enabled, the binmode parameter in the start stanza in the /etc/security/audit/config file
should be set to panic. The freespace parameter in the bin stanza should be configured at minimum to
a value that equals 25 percent of the disk space dedicated to the storage of the audit trails. The
bytethreshold and binsize parameters should each be set to 65 536 bytes.

» Copy audit records from the system to permanent storage for archival.

System services:

The following table is a list of standard system services on a Controlled Access Protection Profile (CAPP)
and Evaluation Assurance Level 4+ (EAL4+) system.

This table shows the standard system services running on a CAPP/EAL4+ system (if there is no graphics

card).

Table 1. Standard System Services

uiD Command Description

root /etc/init Init process

root /usr/sbin/syncd 60 File system sync daemon

root /usr/sbin/srcmstr SRC master daemon

root /ust/sbin/cron CRON facility with AT support
root /usr/ccs/bin/shlap64 Shared Library Support Daemon
root /usr/sbin/syslogd Syslog daemon

root /usr/lib/errdemon AIX error log daemon

root /usr/sbin/getty /dev/console getty / TSM

root /usr/sbin/portmap Portmapper for NFS and CDE
root /usr/sbin/biod 6 NFS Client

root /usr/sbin/rpc.lockd NFS lock daemon

daemon /usr/sbin/rpc.statd NFS stat daemon

root /usr/sbin/rpc.mountd NFS mount daemon

root /ust/sbin/nfsd NFS server daemon

root /usr/sbin/inetd Inetd master daemon

root /usr/sbin/uprintfd Kernel print daemon

root /usr/sbin/gdaemon Queuing daemon

root /usr/lpp/diagnostics/bin/diagd Diagnostics

root /usr/sbin/secldapcintd AIX LDAP authentication daemon
root /usr/sbin/gssd Services kernel requests for GSS operation
root /usr/sbin/nfsrgyd Name translation service for NFS v4 servers/clients

Running a CAPP/EAL4+ distributed system:

To run a distributed system that is CAPP/EAL4+ compliant, all users must have identical user IDs on all
systems. Although this can be achieved with NIS, the result is not secure enough for a CAPP/EAL4+

system.

This section describes a distributed setup that ensures that the user IDs are identical on all systems that
are CAPP/EAL4+ compliant.

Security 23

The master system stores the identification and authentication data (user and group configuration) for the
whole distributed system.

Authentication data can be changed by any administrator by using tools, such as SMIT, on any system.
Authentication data is physically changed on the master.

All shared identification and authentication data comes from the /etc/data.shared directory. The regular
identification and authentication files are replaced by symbolic links into the /etc/data.shared directory.

Shared files in the distributed system:
The following files are shared in the distributed system. Typically, they come from the /etc/security

directory.

letc/group
The /etc/group file

/etc/hosts
The /etc/hosts file

letc/passwd
The /etc/passwd file

letc/security/.ids
The next available user and group 1D

letc/security/.profile
The default .profile file for new users

letc/security/acl
The /etc/security/acl file stores system-wide ACL definitions for protected services that will be
reactivated at the next system boot by the /etc/rc.tcpip file.

letc/security/audit/bincmds
Bin-mode auditing commands for this host

letc/security/audit/config
Local audit configuration

letc/security/audit/events
List of audit events and formats

letc/security/audit/objects
List of audited objects on this host

letc/security/audit/streamcmds
Stream-mode auditing commands for this host

letc/security/environ
Per-user environmental variables

letc/security/group
Extended group information from the /etc/security/group file

letc/security/limits
Per-user resource limits

letc/security/passwd
Per-user passwords

letc/security/priv
Ports that are to be designated as privileged when the system starts are listed in the
letc/security/priv file

24 AIX Version 6.1 Security

letc/security/services
Ports listed in the /etc/security/services file are considered exempt from ACL checks

letc/security/user
Per-user and default user attributes

Nonshared files in the distributed system:
The following files in the /etc/security directory are not to be shared in the distributed system, but are to
remain host-specific:

letc/security/failedlogin
Log file for failed logins per host

letc/security/lastlog
Per-user information about the last successful and unsuccessful logins on this host

letc/security/login.cfg
Host-specific login characteristics for trusted path, login shells, and other login-related information

letc/security/portlog
Per-port information for locked ports on this host

The automatically generated backup files of the shared files are also nonshared. Backup files have the
same name as the original file, but have a lowercase letter o prepended.

Setting up the distributed system (Master):

On the master, a new logical volume is created that holds the file system for the identification and
authentication data. The logical volume is named /dev/hd10sec and it is mounted on the master system
as /etc/data.master.

To generate the necessary changes on the master system, run the JmkCCadmin| command with the IP
address and host name of the master, as follows:

mkCCadmin -m -a ipaddress hostname
Setting up the distributed system (all systems):
You can set up the distributed system for all systems.

All data that is to be shared is moved to the /etc/data.shared directory. At startup, all systems will mount
the master’s /etc/data.master directory over the /etc/data.shared directory. The master itself uses a
loopback mount.

Client systems are set up by running the following:
mkCCadmin -a ipaddress hostname

To change the client to use a different master, use the |chCCadmin| command.
After a system has been integrated into the distributed identification and authentication system, the
following additional inittab entries are generated:

isCChost
Initializes the system to CAPP/EAL4+ mode.

rcCC Clears all DACinet ACLs and opens only the ports needed for the portmapper and NFS. It then
mounts the shared directory.

rcdacinet
Loads additional DACinet ACLs that the administrator might have defined.

Security 25

When running the distributed system, consider the following:

» Administrators must make sure that the shared data is mounted before changing shared configuration
files to ensure that the shared data is seen on all systems.

» Changing the root password is the only administrative action that is permitted while the shared directory
is not mounted.

Using the DACinet feature for user-based and port-based network access control:

The DACinet feature can be used to restrict the access of users to TCP ports.

For more information about DACinet, see [‘User based TCP port access control with discretionary access|
[control for internet ports” on page 206.| For example, when using DACinet to restrict access to port TCP/25
inbound to root only with the DACinet feature, only root users from CAPP/EAL4+ compliant hosts can
access this port. This situation limits the possibility of regular users spoofing e-mail by using telnet to
connect to port TCP/25 on the victim.

To activate the ACLs for TCP connections at boot time, the /etc/rc.dacinet script is run from /etc/inittab. It
will read the definitions in the /etc/security/acl file and load ACLs into the kernel. Ports which should not
be protected by ACLs should be listed in the /etc/security/services file, which uses the same format as
the /etc/services file.

Assuming a subnet of 10.1.1.0/24 for all the connected systems, the ACL entries to restrict access to the
root user only for X (TCP/6000) in the /etc/security/acl file would be as follows:

6000 10.1.1.0/24 u:root
Installing additional software on a CAPP/EAL4+ compliant system:

The administrator can install additional software on the CAPP/EAL4+ compliant system. If the software is
not run by the root user or with root-user privileges, this will not invalidate the CAPP/EAL4+ compliance.
Typical examples include office applications that are run only by regular users and have no SUID
components.

Additionally, installed software that runs with root-user privileges invalidates the CAPP/EAL4+ compliance.
This means, for example, drivers for the older JFS should not be installed, as they are running in kernel
mode. Additional daemons that are run as root (for example, an SNMP daemon) also invalidates the
CAPP/EAL4+ compliance. A CAPP/EAL4+ enabled system cannot be upgraded (normally).

A CAPP/EAL4+ compliant system is rarely used in the evaluated configuration, especially in a commercial
environment. Typically, additional services are needed, so that the production system is based on an
evaluated system, but does not comply with the exact specification of the evaluated system.

NSF v4 Access Control Lists and contents policy:
An NFS v4 Access Control List (ACL) contains the Type, Mask, and Flags fields.

The following is a description of these fields:
* The Type field contains one of the following values:
— ALLOW — Grants the subject, specified in the Who field, the permission(s) specified in the Mask field.
— DENY — Denies the subject, specified in the Who field, the permission(s) specified in the Mask field.
* The Mask field contains one or more of the following fine grained permission values:

— READ_DATA / LIST DIRECTORY — Read the data from a non-directory object or list the objects in a
directory.

— WRITE_DATA / ADD_FILE — Write data into a non-directory object or add a non-directory object to a
directory.

26 AIX Version 6.1 Security

APPEND DATA / ADD_SUBDIRECTORY — Append data into a non-directory object or add a subdirectory to
a directory.

READ_NAMED_ATTRS — Read the named attributes of an object.
WRITE_NAMED_ATTRS — Write the named attributes of an object.

EXECUTE — Execute a file or traverse/search a directory.

DELETE_CHILD — Delete a file or directory within a directory.
READ_ATTRIBUTES — Read the basic (non-ACL) attributes of a file.
WRITE_ATTRIBUTES — Change the times associated with a file or directory.
DELETE — Delete a file or directory.

READ_ACL — Read the ACL.

WRITE_ACL — Write the ACL.

WRITE_OWNER — Change the owner and group.

SYNCHRONIZE — Synchronize access (exists for compatibility with other NFS v4 clients, but has no
implemented function).

Flags field — This field defines the inheritance capabilities of directory ACLs and indicates whether the
Who field contains a group or not. This field contains zero or more of the following flags:

FILE_INHERIT - Specifies that, in this directory, newly created non-directory objects inherit this
entry.

DIRECTORY_INHERIT — Specifies that, in this directory, newly created subdirectories inherit this
entry.

NO_PROPAGATE_INHERIT — Specifies that, in this directory, newly created subdirectories inherit
this entry, but these subdirectories do not pass this entry to their newly created subdirectories.
INHERIT_ONLY - Specifies that this entry does not apply to this directory, only to the newly created
objects that inherit this entry.

IDENTIFIER_GROUP - Specifies that the Who field represents a group; otherwise, the Who field
represents a user or a special Who value.

Who field — This field contains one of the following values:

User — Specifies the user to whom this entry applies.

Group — Specifies the group to which this entry applies.

Special — This attribute can be one of the following values:

- OWNER@ — Specifies that this entry applies to the owner of the object.

- GROUPe@ — Specifies that this entry applies to the owning group of the object.

- EVERYONE@ — Specifies that this entry applies to all users of the system including the owner and
group.

If the ACL is empty, only a subject with an effective UID of 0 can access the object. The owner of an
object implicitly has the following mask values regardless of what the ACL might or might not contain:

READ_ACL
WRITE_ACL
READ_ATTRIBUTES
WRITE_ATTRIBUTES

The APPEND_DATA value is implemented as WRITE_DATA . Effectively, there’s no functional distinction
between the WRITE_DATA value and the APPEND_DATA value. Both values must be set or unset in unison.

Object ownership can be modified through the use of the WRITE_OWNER value. When the owner or group is
changed, the setuid bit is turned off. The inheritance flags only have meaning in a directory’s ACL and
only apply to objects that are created in the directory after the inheritance flags have been set (for
example, existing objects are not affected by inheritance changes to the parent directory’s ACL). The

Security 27

entries in an NFS v4 ACL are order dependent. To determine if the requested access is allowed, each
entry is processed in order. Only entries that have the following values are considered:

* A Who field that matches the effective UID
» A user that is specified in the entry or effective GID
» A group that is specified in the entry of the subject

Each entry is processed until all of the bits of the requester’'s access have been ALLOWED. After an
access type has been ALLOWED by an entry, it is no longer considered in the processing of later entries.
If a DENY entry is encountered where the requester’'s access for that mask value is necessary and
undetermined, the request is denied. If the evaluation reaches the end of the ACL, the request is denied.

The maximum supported ACL size is 64 KB. Each entry in an ACL is of variable length and 64 KB is the
only limit on an entry.

The WRITE OWNER value:
The NFS v4 policy provides control over who can read and write the attributes of an object.

A subject with an effective UID 0 can always override the NFS v4 policy. The object owner can allow
others to read and write the attributes of an object using the READ_ATTRIBUTES, WRITE_ATTRIBUTES ,
READ_NAMED ATTRS, and WRITE NAME ATTRS attributes of the ACL mask. The owner can control who can read
and write the ACL using the READ ACL and WRITE_ACL values of the ACL mask. The object owner always
has READ_ATTRIBUTES, WRITE_ATTRIBUTES, READ_ACL, and WRITE_ACL access. The object owner can also
allow others to change the owner and group of the object using the WRITE_OWNER attribute. An object owner
cannot change the owner or group of the object by default, but the object owner can add a WRITE_OWNER
entry to the ACL specifying themselves, or the object can inherit an ACL entry that specifies a WRITE_OWNER
entry with a Who value of OWNER@. When the owner or group is changed, the setuid bit is turned off.

The following are some exceptions to the rules:

 If the object is owned by UID 0, only UID 0 can change the owner, but the group can still be changed
by a subject with the WRITE_OWNER attribute.

» Assuming the object has the WRITE_OWNER attribute for the subject, in versions of AIX 5.3 prior to
Technology Level 5300-05, if the object has a non-UID 0 owner, the owner can only be changed to
another non-UID 0 user. In AIX with 5300-05 and later, if the object has a non-UID 0 owner, the owner
can only be changed to the EUID of the subject attempting to change the owner.

* The group can be changed to any group in the subject’s concurrent group set with the exception that it
can never be changed to GID 0 or GID 7 (system or security), even if these two groups are in the
concurrent group set of the subject.

LDAP-based and file-based administrative database supported:

The evaluation does not support NFS administrative database. Authentication methods such as DCE and
NIS are not supported.

The evaluation supports only the following:
* File-based authentication (default)
* UNIX-style LDAP-based authentication (use LDAP server ITDSv 6.0)

For more information about file-based authentication, see the [User Authentication]

LDAP authentication:
LDAP-based I&A is configured in the "UNIX-type” authentication mode. In this mode, the administrative

data (including user names, IDs, and passwords) are stored in LDAP where access to the data is limited
to the LDAP administrator.

28 AIX Version 6.1 Security

When a user logs into the system, the system binds to the LDAP server using the LDAP administrator
account over an SSL connection, retrieves the necessary data for the user (including the password) from
LDAP, and then performs authentication using the data retrieved from LDAP. The system maintains an
administrative database on an LDAP server. The remaining hosts import the administrative data from the
same LDAP server through the same mechanism previously described. The system maintains a consistent
administrative database by making all administrative changes on the designated LDAP server. A user ID
on any computer refers to the same individual on all other computers. In addition, the password
configuration, name-to-UID mappings, and other data are identical on all hosts in the distributed system.

For more information on LDAP authentication setup, see [Light Directory Access Protocol, For more
information in setting up SSL on LDAP, see [Setting up SSL on the LDAP server] and|Setting up SSL on the]

LDAP client

LDAP server:

The mksecldap -s command sets up an AIX system as an LDAP server for security authentication and
data management.

Perform the following tasks:
» Use the RFC2307AIX schema with the -S option.

» Set the server to use SSL by using the -k option. This requires installing the GSKit fileset and the
Idap.max_crypto_server fileset. Use the gsk7ikm utility to generate the key pairs for the directory
server.

The LDAP user options must be set to satisfy the requirements of the evaluation. The RFC2370AIX
schema defines the user attributes. Use the same values as described in [CAPP/EAL4+ system|

The ITDS administrators are not forced to periodically change their passwords (for example,
there’s no MaxAge value for administrative passwords). Because of this, the LDAP administrative
password must be changed as often as an AIX user (MaxAge = 8 (in weeks)).

In ITDS 5.2, the authentication failure handling does not apply to Directory Administrator or to the
members of the administrative group. Password composition rules also do not apply to administrative
accounts. These need to be enforced if ITDS 5.2 is used.

If the administrator does not use a common LDAP database backend for user management, the
administrator must somehow ensure that the database that contains users credentials (listed below) is
maintained consistently among the different TOE systems part of one network:

» /etc/group

» Jetc/passwd

» /etc/securityl/.ids
 Jetc/security/.profile
* Jetc/security/environ
» /etc/security/group
 /etc/security/limits
* letc/security/passwd
» /etc/security/user

LDAP client:

The mksecldap -c command sets up an AIX system as an LDAP client for security authentication and
data management.

Perform the following tasks:

Security 29

» Using the mksecldap -¢c command, specify unix_auth for the authType with the -A option.

+ Set the client to use SSL by using the -k option in the mksecldap -¢c command. Specifying the client
SSL key requires installing the GSKit fileset and Idap.max_crypto_client fileset. Use the gsk7ikm
utility to generate the key pairs for the directory server.

For more information about LDAP, see the following documentation:

+ Redbook: Integrating AIX into Heterogenous LDAP Environments|

+ Whitepaper: [Configuring an IBM Directory Server for User Authentication and Management in AlX|

+ Whitepaper: [Configuring an AIX Client System for User Authentication and Management Through LDAP]

NFS v4 Client/Server and Kerberos:

The NFS v4 Client/Server environment includes LDAP for maintaining authentication data and Kerberos for
establishing trusted channel between NFS v4 clients and servers. The evaluated configuration supports
NAS v1.4 for Kerberos and ITDS v6.0 (LDAP server) for the user database.

NAS v1.4 (Kerberos Version 5 Server) must be configured to use LDAP for its database. Kerberos tickets
previously granted by the Kerberos server are valid until they expire.

When you are using Kerberos authentication, the credential used in remote procedure calls initiated by a
user are associated with the current Kerberos ticket held by the user and is not influenced by the real or
effective UID of the process. When you are accessing an NFS remote file system using Kerberos
authentication while running a setuid program, the UID seen at the server is based on the Kerberos
identity, not the UID that owns the setuid program being run.

The evaluated configuration involves setting up NFS to use RPCSEC-GSS security. For more information,
see [Network File System| [Configuring an NFS server and [Configuring an NFS client When setting up the
server, choose Kerberos authentication and enable enhanced security on the server. You can enable this
through SMIT using the chnfs command. The chnfs command has the option to enable RPCSEC_GSS
security. When you are setting up the client, follow the instructions to use Kerberos in|Configuring an NFS|
[clientl See [Setting up a network for RPCSEC-GSS| for the instructions to set up the Kerberos data server
with DES3 encryption for security. The evaluated configuration supports only des3 encryption.

Password rules:

The evaluated configuration should have these values for password rules when you are using the
Kerberos server with LDAP as the database.

For more information about password rules, see "Chapter 9. Managing Network Authentication Service
passwords” in the IBM Network Authentication Service Version 1.4 for AIX, Linux and Solaris
Administrator’s and User’s Guide.

mindiff =4
maxrepeats =2
minalpha =2
minother =2
minlen =8
minage =0
histsize =10

To have the AIX NFS v4 client and AIX NFS v4 server securely communicate explicitly using only DES3
enctypes, create the "nfs/hostname” server principal with DES3 enctype (such as des3-cbc-sha1), along

30 AIX Version 6.1 Security

http://www.redbooks.ibm.com/abstracts/sg247165.html
http://www-03.ibm.com/servers/aix/whitepapers/ldap_server.html
http://www-03.ibm.com/servers/aix/whitepapers/ldap_client.html

with the corresponding entry in the keytab file (using kadmin interface) and have DES3 (such as
des3-cbc-sha1l) as the first entry in the default_tgs_enctypes section of the /etc/krb5/krb5.conf file on
the NFS v4 client machine.

For more information about securing NFS, see Securing NFS in AlX An Introduction to NFS v4 in AIX 5L
Version 5.3.

Virtual I/O Server:

The Virtual I/0O Server (VIOS) resides in a separate LPAR partition and provides basic discretionary access
control between VIOS SCSI device drivers acting on behalf of LPAR partitions and SCSI-based logical
volumes and physical volumes through mappings.

An LPAR partition (through a VIOS SCSI device driver) may be mapped to 0 or more logical and physical
volumes, but a volume can only be mapped to one LPAR partition. This mapping limits an LPAR partition
to only the volumes assigned to it. VIOS also controls the mapping of VIOS Ethernet adapter device
drivers to VIOS Ethernet device drivers acting on behalf of groups of LPAR partitions sharing a virtual
network. In the evaluated configuration, only a one-to-one mapping of an Ethernet adapter device driver to
an Ethernet device driver acting on behalf of a group of LPAR patrtitions is allowed. The one-to-one
mapping is configured by the administrator and enforced by the device drivers. Also, the Ethernet packets
must not be tagged with a VLAN tag in the evaluated configuration. This mechanism can be used to limit
which LPAR partitions see certain Ethernet packets.

The VIOS interface should be protected from access by unprivileged users. The VIOS user options must
be set to satisfy the requirements of the evaluation. The actual requirement is that the probability of
correctly guessing a password should be at least 1 in 1,000,000 and the probability of correctly guessing a
password with repeated attempts in one minute should be at least 1 in 100,000. The following parameters
should be changed for the user in the /etc/security/user directory.

maxage =8
maxexpired =1
minother =2
minlen =8
maxrepeats =2
loginretries =3
histexpire =52
histsize =20

To change the defaults, use the following commands:
type oem_setup_env

chsec -f /etc/security/user -s default -a maxage=8 -a maxexpired=1 -a minother=2
-a minlen=8 -a maxrepeats=2 -a loginretries=3 -a histexpire=52 -a histsize=20

When the prime administrator (padmin) creates a new user, the user attributes must be specified explicitly
for that user. For example, to create a user with name davis, the padmin would use the following
command:

mkuser maxage=8 maxexpired=1 minother=2 minlen=8 maxrepeats=2 Toginretries=3
histexpire=52 histsize=20 davis

The padmin should also stop the following daemons and then reboot:
» To remove writesrv and ctrmc from the /etc/inittab file:
sshd: stopsrc -s sshd

Security 31

» To prevent the daemon from starting at boot time, remove the /etc/rc.d/rc2.d/Ksshd and
letc/rc.d/rc2.d/Ssshd files. After reboot stop the RSCT daemons:

stopsrc -g rsct_rm stopsrc -g rsct
All users, regardless of their roles, are to be considered as administrative users.

The system administrator can run all of the commands except those in the following list that are limited to
prime admin (padmin):

* chdate

* chuser

» cleargcl

* de_access

* diagmenu

* invscout

* loginmsg
 |sfailedlogin
* lIsgcl

* mirrorios

* mkuser

* motd

* oem_platform_level
* oem_setup_env

* redefvg

* rmuser

* shutdown

* unmirrorios

X Server:
X Server should not be allowed to bind to port 6000.

To prevent the X Server from binding (listening) on port 6000, edit the xserverrc file in the
lusr/lpp/X11/defaults directory, and modify the EXTENSIONS variable to EXTENSIONS="$EXTENSIONS -x
abx -x dbe -x GLX -secIP".

Login control
You can change the login screen defaults for security reasons after a system installation.

Potential hackers can get valuable information from the default AIX login screen, such as the host name
and the version of the operating system. This information would allow them to determine which exploitation
methods to attempt. For security reasons, you may want to change the login screen defaults as soon as
possible after a system installation.

The KDE and GNOME desktops share some of the same security issues. For more information about KDE
and GNOME, refer to the Installation and migration.

For information about users, groups, and passwords, see [‘Users, groups, and passwords” on page 45

Setting up login controls:

You can set up login controls in the /etc/security/login.cfg file.

32 AIX Version 6.1 Security

To make it harder to attack a system with password guessing, set up login controls in the
fetc/security/login.cfgfile as follows:

Table 2. Attributes and Recommended Values for Login Control.

Attribute Applies to PtYs | Applies to TTYs | Recommended |Comments
(Network) Value
sak_enabled Y Y false The Secure Attention key is rarely needed.
See [‘Using the Secure Attention Key” on|
lpage 5
logintimes N Y Specify allowed login times here.
logindisable N Y 4 Disable login on this terminal after 4

consecutive failed attempts.

logininterval N Y 60 Terminal will be disabled when the
specified invalid attempts have been made
within 60 seconds.

loginreenable N Y 30 Re-enable the terminal after it was
automatically disabled after 30 minutes.

logindelay Y Y 5 The time in seconds between login
prompts. This will be multiplied with the
number of failed attempts; for example,
5,10,15,20 seconds when 5 is the initial
value.

These port restrictions work mostly on attached serial terminals, not on pseudo-terminals used by network
logins. You can specify explicit terminals in this file, for example:
/dev/tty0:

logintimes = 0600-2200

logindisable = 5

logininterval = 80

loginreenable = 20

Changing the welcome message on the login screen:

To prevent displaying certain information on login screens, edit the herald parameter in the
/etc/security/login.cfg file.

The default herald contains the welcome message that displays with your login prompt. To change this
parameter, you can either use the command or edit the file directly.

The following example uses the chsec command to change the default herald parameter:

chsec -f /etc/security/login.cfg -a default -herald
"Unauthorized use of this system is prohibited.\n\nlogin: "

For more information about the chsec command, see the AIX Version 6.1 Commands Reference, Volume
1.

To edit the file directly, open the /etc/security/login.cfg file and update the herald parameter as follows:

default:

herald ="Unauthorized use of this system is prohibited\n\nlogin:"
sak_enable = false

logintimes =

logindisable = 0

logininterval = 0

loginreenable = 0

logindelay = 0

Security 33

Note: To make the system more secure, set the logindisable and logindelay variables to a number greater
than 0 (# > 0).

Changing the login screen for the common desktop environment:

This security issue also affects the Common Desktop Environment (CDE) users. The CDE login screen
also displays, by default, the host name and the operating system version. To prevent this information from
being displayed, edit the /usr/dt/config/$LANG/Xresources file, where SLANG refers to the local
language installed on your machine.

In our example, assuming that $LANG is set to C, copy this file into the /etc/dt/config/C/Xresources
directory. Next, open the /usr/dt/config/C/Xresources file and edit it to remove welcome messages that
include the host name and operating system version.

For more information about CDE security issues, see [‘Managing X11 and CDE concerns” on page 38

Disabling the display of the user name and changing the password prompt:

In a secure environment, it might be necessary to hide the display of the login user name or to provide a
custom password prompt that differs from the default.

The default message behavior for the login and password prompt is shown below:

login: foo
foo's Password:

To disable the display of the user name from prompts and system error messages, edit the usernameecho
parameter in the /etc/security/login.cfg file. The default value for usernameecho is true which results in
the user name being displayed. To change this parameter, you can either use the chsec command or edit
the file directly.

The following example uses the chsec command to change the default usernameecho parameter to false:
chsec -f /etc/security/login.cfg -s default -a usernameecho=false

For more information about the chsec command, see the AIX Version 6.1 Commands Reference, Volume
1.

To edit the file directly, open the /etc/security/login.cfg file and add or modify the usernameecho
parameter as follows:

default:
usernamecho = false

Setting the usernameecho parameter to false will result in the user name not being displayed at the login
prompt. Instead, the user name is masked out with "’ characters for system prompts and error messages
as show below:

login:
**x's Password:

The password prompt may be separately modified to be a custom string by setting the pwadprompt
parameter in the /etc/security/login.cfg file. The default value is a string "user's Password: " where user
is replaced with the authenticating user name.

To change this parameter, you can either use the chsec command or edit the file directly.

The following example uses the chsec command to change the default pwdprompt parameter to
"Password: ":

chsec -f /etc/security/login.cfg -s default -a pwdprompt="Password: "

34 AIX Version 6.1 Security

To edit the file directly, open the /etc/security/login.cfg file and add or modify the pwdprompt parameter
as follows:

default:
pwdprompt = "Password:

Setting the pwdprompt parameter to "Password: " will result in the specified prompt being displayed by
login as well as by other applications that use the system password prompt. The prompt behavior for the
login when the a custom prompt has been configured is as follows:

login: foo

Password:

Setting up system default login parameters:

Edit the /etc/security/login.cfg file to set up system default login parameters.

To set up base defaults for many login parameters, such as those you might set up for a new user
(number of login retries, login re-enable, and login internal), edit the [/etc/security/login.cfg| file.

Securing unattended terminals:
Use the lock and xlock commands to secure your terminal.

All systems are vulnerable if terminals are left logged in and unattended. The most serious problem occurs
when a system manager leaves a terminal unattended that has been enabled with root authority. In
general, users should log out any time they leave their terminals. Leaving system terminals unsecure
poses a potential security hazard. To lock your terminal, use the command. If your interface is
AlXwindows, use the command.

Enforcing automatic logoff:
Enable automatic logoff to prevent an intruder from compromising the security of the system.

Another valid security concern results from users leaving their accounts unattended for a lengthy period of
time. This situation allows an intruder to take control of the user’s terminal, potentially compromising the
security of the system.

To prevent this type of potential security hazard, you can enable automatic logoff on the system. To do
this, edit the /etc/security/.profile file to include an automatic logoff value for all users, as in the following
example:

TMOUT=600 ; TIMEOUT=600 ; export readonly TMOUT TIMEOUT

The number 600, in this example, is in seconds, which is equal to 10 minutes. However, this method will
only work from the shell.

While the previous action allows you to enforce an automatic logoff policy for all users, system users can
bypass some restrictions by editing their individual .profile files. To completely implement an automatic
logoff policy, take authoritative action by providing users with appropriate .profile files, preventing
write-access rights to these files.

Stack Execution Disable protection

Keeping computer systems secure forms an important aspect of an On Demand business. In today’s world
of highly networked environments, it has become an extreme challenge to ward off attacks from a variety
of sources.

There is increasing likelihood of computer systems falling prey to sophisticated attacks, resulting in
disruption to the daily operations of businesses and government agencies. While no security measure can

Security 35

provide foolproof protection against attacks, you should deploy multiple security mechanisms to thwart
security attacks. This section covers a security mechanism that is used with AlX to thwart attacks due to
buffer overflow based execution.

Security breaches occur in many forms, but one of the most common methods is to monitor the
system-provided administrative tools, look for, and exploit buffer overflows. Buffer overflow attacks occur
when an internal program buffer is overwritten because data was not properly validated (such as
command line, environmental variable, disk or terminal I/O). Attack code is inserted into a running process
through the buffer overflow, changing the execution path of the running process. The return address is
overwritten and redirected to the inserted-code location. Common causes of breaches include improper or
nonexistent bounds checking, or incorrect assumptions about the validity of data sources. For example, a
buffer overflow can occur when a data object is large enough to hold 1 KB of data, but the program does
not check the bounds of the input and hence can be made to copy more than 1 KB into that data object.

The intruder’s goal is to attack a command and/or tool that provides root privileges to a regular user.
Control of the program is gained with all the privileges enabled, permitting overflow of the buffers. Attacks
are typically focused on a root owned UID set or programs leading to the execution of a shell, thereby
gaining root-based shell access to the system.

You can prevent these attacks by blocking execution of attack code entering through the buffer overflow.
Disable execution on the memory areas of a process where execution commonly does not take place
(stack and heap memory areas).

SED buffer overflow protection mechanism:

AIX has enabled the stack execution disable (SED) mechanism to disable the execution of code on a
stack and select data areas of a process.

By disabling the execution and then terminating, an infringing program, the attacker is prevented from
gaining root user privileges through a buffer overflow attack. While this feature does not stop buffer
overflows, it provides protection by disabling the execution of attacks on buffers that have been
overflowed.

Beginning with the POWER4 family of processors, you can use a page-level execution enable and/or
disable feature for the memory. The AIX SED mechanism uses this underlying hardware support for
implementing a no-execution feature on select memory areas. Once this feature is enabled, the operating
system checks and flags various files during the executable programs. It then alerts the operating system
memory manager and the process managers that the SED is enabled for the process being created. The
select memory areas are marked for no-execution. If any execution occurs on these marked areas, the
hardware raises an exception flag and the operating system stops the corresponding process. The
exception and application termination details are captured through the AIX error log events.

SED is implemented mainly through thecommand. The sedmgr command permits control of the
systemwide SED mode of operation as well as setting the executable file based SED flags.

SED modes and monitoring:

The stack execution disable (SED) mechanism in AlX is implemented through systemwide mode flags, as
well as individual executable file-based header flags.

While systemwide flags control the systemwide operation of the SED, file level flags indicate how files
should be treated in SED. The buffer overflow protection (BOP) mechanism provides for four systemwide
modes of operation:

off The SED mechanism is turned off and no process is marked for SED protection.

select Only a select set of files are enabled and monitored for SED protection. The select set of files are

36 AIX Version 6.1 Security

chosen by reviewing the SED related flags in the executable program binary headers. The
executable program header enables SED related flags to request to be included in the select
mode.

setidfiles
Permits you to enable SED, not only for the files requesting such a mechanism, but all the
important setuid and setgid system files. In this mode, the operating system not only provides
SED for the files with the request SED flag set, but also enables SED for the executable files with
the following characteristics (except the files marked for exempt in their file headers):

» SETUID files owned by root
« SETGID files with primary group as system or security

all All executable programs loaded on the system are SED protected except for the files requesting
an exemption from SED mode. Exemption related flags are part of the executable program
headers.

The SED feature on AIX also provides the ability to monitor instead of stopping the process when an
exception happens. This systemwide control permits a system administrator to check for breakdowns and
issues in the system environment by monitoring it before the SED is deployed in the production systems.

Thecommand provides an option that permits you to enable SED to monitor files instead of
stopping the processes when exceptions occur. The system administrator can evaluate whether an
executable program is doing any legitimate stack execution. This setting works in conjunction with the
systemwide mode set using the -c option. When the monitor mode is turned on, the system permits the
process to continue operating even if an SED-related exception occurs. Instead of stopping the process,
the operating system logs the exception in the AIX error log. If SED monitoring is off, the operating system
stops any process that violates and raises an exception per SED facility.

Any changes to the SED mode systemwide flags requires that you restart the system for the changes to
take effect. All of these types of events are audited.

SED flags for executables:
In AIX, you can use the sedmgr command to flag executables from the SE mechanism.

Linker has been enhanced to support two new SED related flags to enable select and exempt options in
the executable’s headers. The select flag permits an executable to request and be part of SED protection
during the select mode of systemwide SED operation, whereas the exempt flag permits an executable to
request for an exemption from the SED mechanism. These executables are not enabled for execution
disable on any of the process memory areas.

The exemption flag permits a system administrator to monitor the SED mechanism, and evaluate the
situation. The system administrator can enable execution on stack and data areas as necessary for the
application, with the associated risks understood.

The following table shows how the systemwide settings and file settings affect the SED mode of operation:

Table 3. Systemwide settings and file settings affecting the SED mode

Executable file SED flags
Setuid-root or setgid-system/
System SED mode request exempt system security files
off - - - -
select enabled - - -
setgidfiles enabled - - enabled
all enabled - enabled enabled

Security 37

SED issues and considerations:

By default, AIX SED is shipped in select mode. A number of setuid and setgid programs are
select-enabled for SED and operate in protected mode by default.

SED enablement might cause older binary files to break if they are not capable of handling the
no-execution feature on the stack heap areas. These applications must run on stack data areas. The
system administrator can evaluate the situation and flag the file for an exemption using the bopmgr
command. AIX Java" 1.3.1 and AIX Java 1.4.2 have Just-In-Time (JIT) compilers that dynamically
generate and run native object code while running Java applications (the Java Virtual Machine decides
which code to compile based on the execution profile of the application). This object code is stored in data
buffers allocated by the JIT. Consequently, if AIX is configured to run in the SED ALL mode, the system
administrator must set the Java binary file’s exemption flag.

When SED-related flags in an executable file are changed, they apply only to a future load and execution
of the file. This change does not apply to currently operating processes based on this file. The SED facility
controls and monitors both 32- and 64-bit executable programs for the systemwide and file-level settings.
The SED facility is available only when the AlX operating system is used with the 64-bit kernel.

Related information

command

AIX |Error-Logging Facilit¥|

Managing X11 and CDE concerns
There are potential security vulnerabilities involved with the X11 X server and the Common Desktop
Environment (CDE).

Removing the /etc/re.dt file:

Remove the /etc/rc.dt file on systems that require a high level of security.

Although running the CDE interface is convenient for users, security issues are associated with it. For this
reason, do not run CDE on servers that require a high level of security. The best solution is to avoid
installing CDE (dt) file sets. If you have installed these file sets on your system, consider uninstalling them,
especially the /etc/re.dt script, which starts CDE.

For more information about CDE, see the Operating system and device management.

Preventing unauthorized monitoring of remote X server:

An important security issue associated with the X11 server is unauthorized silent monitoring of a remote
server.

The xwd and xwud commands can be used to monitor X server activity because they have the ability to
capture keystrokes, which can expose passwords and other sensitive data. To solve this problem, remove
these executable files unless they are necessary under your configuration, or, as an alternative, change
access to these commands to be root only.

The xwd and xwud commands are located in the X11.apps.clients fileset.

38 AIX Version 6.1 Security

If you do need to retain the xwd and xwud commands, consider using OpenSSH or MIT Magic Cookies.
These third-party applications help prevent the risks that are created by running the xwd and xwud
commands.

For more information about OpenSSH and MIT Magic Cookies, refer to each application’s respective
documentation.

Enabling and disabling access control:
The X server permits remote hosts to use the xhost + command to connect to your system.

Ensure that you specify a host name with the xhost + command, because it disables access control for
the X server. This permits you to grant access to specific hosts, which eases monitoring for potential
attacks to the X server. To grant access to a specific host, run the xhost command as follows:

xhost + hostname

If you do not specify a host name, access will be granted to all hosts.

For more information about the xhost command, see the AIX Version 6.1 Commands Reference
Disabling user permissions to run the xhost command:

You can prevent the unauthorized execution of the xhost command by using the chmod command.

Another way to ensure that the xhost command is being used appropriately is to restrict execution of this
command to root-user authority only. To do this, use the chmod command to change the permissions of
lusr/bin/X11/xhost to 744, as follows:

chmod 744/usr/bin/X11/xhost

List of setuid/setgid programs
There are various setuid/setgid programs on an AlX system. You can remove these privileges on
commands that do nto need to be available to regular users.

The following programs are included in a normal AlX install. In a CC-configured AIX system, this list is
pruned and includes fewer programs.

» Jopt/IBMinvscout/bin/invscoutClient_VPD_Survey
» Jopt/IBMinvscout/bin/invscoutClient_PartitionID
 Jusr/lpp/diagnostics/bin/diagsetrto

* Jusr/lpp/diagnostics/bin/Dctrl
 Jusr/lpp/diagnostics/bin/diagTasksWebSM

» Jusr/lpp/diagnostics/bin/diagela

» Jusr/lpp/diagnostics/bin/diagela_exec

» Jusr/lpp/diagnostics/bin/diagrpt
 Jusr/lpp/diagnostics/bin/diagrto

» /usr/lpp/diagnostics/bin/diaggetrto
 Jusr/lpp/diagnostics/bin/update_manage_flash
» Jusr/lpp/diagnostics/bin/utape

» Jusr/lpp/diagnostics/bin/uspchrp

» /usr/lpp/diagnostics/bin/update_flash

* Jusr/lpp/diagnostics/bin/uesensor

+ Jusr/lpp/diagnostics/bin/usysident

» /usr/lpp/diagnostics/bin/usysfault

Security 39

* Jusr/lpp/X11/bin/xlock

* Jusr/lpp/X11/bin/aixterm
* Jusr/lpp/X11/bin/xterm

e Jusr/lpp/X11/bin/msmitpasswd
* Just/lib/boot/tftp

* Jusrl/lib/Ipd/digest

* Jusr/lib/Ipd/rembak

* Just/lib/Ipd/pio/etc/piodmgrsu
 /usr/lib/Ipd/pio/etc/piomkpq
 /usr/lib/Ipd/pio/etc/pioout
 /usr/lib/mh/slocal

* Jusr/lib/perf/libperfstat_updt_dictionary
» Jusr/lib/sa/sadc
 /usr/lib/semutil

* Jusr/lib/trcload
 Jusr/sbin/allocp

* Jusr/sbin/audit

* Jusr/sbin/auditbin

» /usr/sbin/auditcat

* /usr/sbin/auditconv
 Jusr/sbin/auditmerge

* Jusr/sbin/auditpr

* /usr/sbin/auditselect

* Jusr/sbin/auditstream

» /usr/sbin/backbyinode

* /usr/sbin/cfgmgr

* /Jusr/sbin/chcod

* /Jusr/sbin/chcons

* Jusr/sbin/chdev

» /usr/sbin/chpath

* Jusr/sbin/chtcb

* /Jusr/sbin/cron

» /usr/sbin/acct/accton

* Jusr/sbin/arp64

» /usr/sbin/arp
 /usr/sbin/devinstall

» /usr/sbin/diag_exec

* /usr/sbin/entstat

» /usr/sbin/entstat.ethchan
» /Jusr/sbin/entstat.scent

* Jusr/sbin/diskusg

* Jusr/sbin/exec_shutdown
* Jusr/sbin/fdformat
 /usr/sbin/format

* Jusr/sbin/fuser

40 AIX Version 6.1 Security

lusr/sbin/fuser64
/usr/sbin/getlvcb
lusr/sbin/getlvhame
lusr/sbin/getvgname
/usr/sbin/grpck
lusr/sbin/getty
lusr/sbin/extendvg
lusr/sbin/fastboot
lusr/sbin/frcactrl64
lusr/sbin/frcactrl
/usr/sbin/inetd
lusr/sbin/invscout
lusr/sbin/invscoutd
/usr/sbin/ipl_varyon
lusr/sbin/keyenvoy
lusr/sbin/krlogind
lusr/sbin/krshd
lusr/sbin/lchangelv
lusr/sbin/lIchangepv
lusr/sbin/lIchangevg
lusr/sbin/ichlvcopy
lusr/sbin/Icreatelv
lusr/sbin/ldeletelv
lusr/sbin/ldeletepv
/usr/sbin/lextendlv
lusr/sbin/Imigratelv
/usr/sbin/Imigratepp
lusr/sbin/lparsetres
lusr/sbin/lpd
lusr/sbin/lquerylv
lusr/sbin/lquerypv
lusr/sbin/lqueryvg
lusr/sbin/lqueryvgs
lusr/sbin/lreducelv
/usr/sbin/Iresynclp
lusr/sbin/lresynclv
lusr/sbin/lsaudit
/usr/sbin/Iscfg
lusr/sbin/lscons
lusr/sbin/lslv
/usr/sbin/lspath
lusr/sbin/lspv
lusr/sbin/lsresource
/usr/sbin/lsrset
lusr/sbin/Isslot

Security

41

» /usr/sbin/Isuser

* Jusr/sbin/lsvg

* Jusr/sbin/Ilsvgfs

* /usr/sbin/login
 Jusr/sbin/lvaryoffvg
 /usr/sbin/lvaryonvg
 /usr/sbin/lvgenmajor
* Jusr/sbin/lvgenminor
 /usr/sbin/lvrelmajor
 /Jusr/sbin/lvrelminor
* Jusr/sbin/lsmcode

* Jusr/sbin/mailq

* /usr/sbin/mkdev
 /usr/sbin/mklvcopy
* /usr/sbin/mknod

* Jusr/sbin/mkpasswd
* Jusr/sbin/mkpath

* /usr/sbin/mkvg
 Jusr/sbin/mount
 /usr/sbin/netstat64
» /usr/sbin/mtrace

* Jusr/sbin/ndp

* Jusr/sbin/newaliases
» /usr/sbin/named9

* Jusr/sbin/named8

» /usr/sbin/netstat

* /usr/sbin/nfsstat

» /usr/sbin/pdelay

* Jusr/sbin/pdisable

» /usr/sbin/penable

» Jusr/sbin/perf/diag_tool/getschedparms
 Jusr/sbin/perf/diag_tool/getvmparms
* Jusr/sbin/phold
 /usr/sbin/portmir

* /usr/sbin/pshare

* Jusr/sbin/pstart

* Jusr/sbin/putlvcb
 Jusr/sbin/putlvodm
* /usr/sbin/gdaemon
* Jusr/sbin/quota
 Jusr/sbin/reboot

* /usr/sbin/redefinevg
» /usr/sbin/repquota
» /usr/sbin/restbyinode
* Jusr/sbin/rmdev

42 AIX Version 6.1 Security

lusr/sbin/ping
/usr/sbin/rmgroup
/usr/sbin/rmpath
lusr/sbin/rmrole
/usr/sbin/rmuser

lusr/sbin/rsct/bin/ctstrtcasd

lusr/sbin/srcd
lusr/sbin/srcmstr
lusr/sbin/rmsock64

lusr/sbin/sendmail_ssl
lusr/sbin/sendmail_nonssl

lusr/sbin/rmsock
l/usr/sbin/sliplogin
lusr/sbin/sendmail
lusr/sbin/rwhod
lusr/sbin/route
lusr/sbin/snappd
lusr/sbin/swap
/usr/sbin/swapoff
lusr/sbin/swapon
lusr/sbin/swcons
/usr/sbin/switch.prt
lust/sbin/synclvodm
lusr/sbin/tsm
lusr/sbin/flumount
/usr/sbin/umountall
/usr/sbin/funmount
lusr/sbin/varyonvg
lusr/sbin/watch
lusr/sbin/talkd
lusr/sbin/timedc
lusr/sbin/uucpd
lusr/bin/bellmail
lusr/bin/at
lusr/bin/capture
lusr/bin/chcore
lusr/bin/acctras
lusr/bin/acctctl
lusr/bin/chgroup
lusr/bin/chkey
lusr/bin/chque
lusr/bin/chquedev
lusr/bin/chrole
lusr/bin/chsec
lusr/bin/chuser

Security

43

» /usr/bin/confsrc
 /Jusr/bin/crontab

+ Jusr/bin/enq
 /usr/bin/filemon
 Jusr/bin/errpt

» Jusr/bin/fileplace
» Jusr/bin/fileplacej2
» /usr/bin/fileplacej2_64
 Jusr/bin/ftp

* Jusr/bin/getconf

* /usr/bin/ipcs

* Jusr/bin/ipcs64
 Jusr/bin/iostat
 Jusr/bin/logout

* /usr/bin/lscore
 Jusr/bin/lssec

* /usr/bin/mesg

* /usr/bin/mkgroup
* /usr/bin/mkque

* /usr/bin/mkquedev
+ /usr/bin/mkrole

* Jusr/bin/mkuser

* /usr/bin/netpmon
* Jusr/bin/newgrp
 Jusr/bin/pagdel
 /usr/bin/paginit
 Jusr/bin/paglist

* /usr/bin/passwd

* Jusr/bin/pwck

* /Jusr/bin/pwdadm
 /Jusr/bin/pwdck

* /usr/bin/rm_mlcache_file
* Jusr/bin/rdist

* Jusr/bin/remsh
 Jusr/bin/rlogin

* Jusr/bin/rexec

* Jusr/bin/rcp

* Jusr/bin/rmque

* /usr/bin/rmquedev
* /usr/bin/rsh

* Jusr/bin/ruptime

* /usr/bin/rwho

» /usr/bin/script

* /usr/bin/setgroups
» /usr/bin/setsenv

44 AIX Version 6.1 Security

* /Jusr/bin/shell

* Jusr/bin/su

 /usr/bin/sysck

* /Jusr/bin/tcbck

* Jusr/bin/sysck_r

* /Jusr/bin/telnet

* Jusr/bin/tftp
 /usr/bin/traceroute

* Jusr/bin/tn

* /usr/bin/tn3270
 /usr/bin/usrck

e Jusr/bin/utftp

* /usr/bin/vmstat

* /usr/bin/vmstat64

* Jusr/bin/yppasswd

+ /sbin/helpers/jfs2/backbyinode
» /sbin/helpers/jfs2/diskusg

» /sbin/helpers/jfs2/restbyinode

Users, groups, and passwords
You can manage AlX users and groups.

Account ID
Each user account has a numeric ID which uniquely identifies the account. AIX grants authorization
according to Account ID.

It is important to understand that accounts with the same ID are virtually the same account. When creating
users and groups, the AIX|mkuse[| and |mkgroup| commands always check for the target registry to make
sure that the account to be created has no ID collision with existing accounts.

The system can also be configured to check all user (group) registries during account creation using the
dist_uniqid system attribute. The dist_uniqid attribute of the usw stanza in the /etc/security/login.cfg
file can be managed using the chsec command. To configure the system to always check for id collision
against all registries, run:

chsec -f /etc/security/login.cfg -s usw -a dist_unigid=always

There are three valid values for the dist_uniqid attribute:
never This value does not check for ID collision against the non-target registries (default).

always
This value checks for ID collision against all other registries. If collision detected between the
target registry and any other registry, the mkuser (mkgroup) command picks a unique ID which is
not used by any registry. It only fails if the ID value is specified from the command line (for
example, mkuser id=234 foo, and ID 234 is already taken by a user in any of the registries).

unigbyname
This value checks for ID collision against all other registries. Collision between registries is
permitted only if the account to be created has the same name as the existing account for a
mkuser id=123 foo type of command. If the ID is not specified from the command line, the new
account might not have the same ID value as an existing account with the same name in another
registry. For example, acct1 with ID 234 is a local account. When creating an LDAP account acct1,

Security 45

mkuser -R LDAP acctl might pick a unique ID of 235 for the LDAP account. The result is acct1
with ID 234 on local, and acct1 with 235 on LDAP.

Note: ID collision detection in the target registry is always enforced regardless of the dist_uniqid
attribute.

The unigbyname value works well against two registries. With more than two registries, and when 1D
collision already exists between two registries, the behavior of mkuser (mkgroup) is unspecified when
creating a new account in a third registry using the colliding ID values. The new account creation might
succeed or fail depending the order the registries are checked.

For example: Suppose a system is configured with three registries: local, LDAP and DCE. An acct1
account exists in LDAP and an acct2 account in DCE, both with ID 234. When the system administrator
runs the mkuser -R files id=234 acctl (mkgroup -R files id=234 acctl) command to create the local
account with the unigbyname value, the mkuser (mkgroup) command checks against the LDAP registry
first, and finds that ID 234 is taken by LDAP account acct1. Since the account to be created has the same
account name, the mkuser (mkgroup) command successfully creates the local account acct1 with ID 234.
If the DCE registry is checked first, the mkuser (mkgroup) command finds that ID 234 is taken by DCE
account acct2, and creation of local account acct1 fails. The check for ID collision enforces ID uniqueness
between the local registry and remote registries or between remote registries. There is no guarantee of ID
uniqueness between the newly created account on the remote registry and existing local users on other
systems which use the same remote registry. The mkuser (mkgroup) command bypasses the remote
registry if it is not reachable at the time the command is run.

Root account
The root account has virtually unlimited access to all programs, files, and resources on a system.

The root account is the special user in the /etc/passwd file with the user ID (UID) of 0 and is commonly
given the user name, root. It is not the user name that makes the root account so special, but the UID
value of 0. This means that any user that has a UID of 0 also has the same privileges as the root user.
Also, the root account is always authenticated by means of the local security files.

The root account should always have a password, which should never be shared. The root account should
be given a password immediately after the system is installed. Only the system administrator should know
the root password. System administrators should only operate as the root user to perform system
administration functions that require root privileges. For all other operations, they should return to their
normal user account.

Attention: Routinely operating as the root user can result in damage to the system because the root
account overrides many safeguards in the system.

Disabling direct root login:

A common attack method of potential hackers is to obtain the root password.

To avoid this type of attack, you can disable direct access to your root ID and then require your system
administrators to obtain root privileges by using the su - command. In addition to permitting you to remove
the root user as a point of attack, restricting direct root access permits you to monitor which users gained
root access, as well as the time of their action. You can do this by viewing the /var/adm/sulog file.
Another alternative is to enable system auditing, which will report this type of activity.

To disable remote login access for your root user, edit the /etc/security/user file. Specify False as the
rlogin value on the entry for root.

Before you disable the remote root login, examine and plan for situations that would prevent a system
administrator from logging in under a non-root user ID. For example, if a user's home file system is full,

46 AIX Version 6.1 Security

the user would not be able to log in. If the remote root login were disabled and the user who could use the
su - command to change to root had a full home file system, root could never take control of the system.
This issue can be bypassed by system administrators creating home file systems for themselves that are
larger than the average user’s file system.

For more information about controlling root login, see ['CAPP/EAL4+ system configuration” on page 19

User accounts
There are several security administrative tasks for user accounts.

Recommended user attributes:
User administration consists of creating users and groups and defining their attributes.

A major attribute of users is how they are authenticated. Users are the primary agents on the system.
Their attributes control their access rights, environment, how they are authenticated, as well as how, when,
and where their accounts can be accessed.

Groups are collections of users who can share the same access permissions for protected resources. A
group has an ID and is composed of members and administrators. The creator of the group is usually the
first administrator.

Many attributes can be set for each user account, including password and login attributes. For a list of
configurable attributes, refer to [‘Disk quota system overview” on page 70, The following attributes are
recommended:

» Each user should have a user ID that is not shared with any other user. All of the security safeguards
and accountability tools work only if each user has a unique ID.

» Give user names that are meaningful to the users on the system. Actual names are best, because most
electronic mail systems use the user ID to label incoming mail.

» Add, change, and delete users using the Web-based System Manager or SMIT interface. Although you
can perform all of these tasks from the command line, these interfaces help reduce small errors.

* Do not give an initial password to a user account until the user is ready to log in to the system. If the
password field is defined as an * (asterisk) in the [/etc/passwd| file, account information is kept, but no
one can log in to that account.

* Do not change the system-defined user IDs that are needed by the system to function correctly. The
system-defined user IDs are listed in the /etc/passwd file.

* In general, do not set the admin parameter to true for any user IDs. Only the root user can change
attributes for users with admin=true set in the [fetc/security/userfile.

The operating system supports the standard user attributes usually found in the /etc/passwd and
Yetc/system/group files, such as:

Authentication Information Specifies the password

Credentials Specifies the user identifier, principal group, and the
supplementary group 1D

Environment Specifies the home or shell environment.

User and group name length limit:

You can configure and retrieve the user and group name length limit.

Security 47

The user and group name length limit parameter default value is 9 characters. For AIX 5.3 and later, you
can increase the user and group name length limit from 9 characters to 256 characters. Because the user
and group name length limit parameter includes the terminating NULL character, the actual valid name
lengths are from 8 characters to 255 characters.

The user and group name length limit is specified with the v_max_logname system configuration
parameter for the sys0 device. You can change or retrieve the v_max_logname parameter value from the
kernel or ODM database. The parameter value in the kernel is the value the system uses while running.
The parameter value in the ODM database is the value the system uses after the next restart.

Note: Unexpected behavior might occur if you decrease the user and group name length limit after
increasing it. User and group names that you created with the larger limitation might still exist on
the system.

Retrieving the user and group name length limit from the ODM database:

You can use commands or subroutines to retrieve the v_max_logname parameter.

You can use the Isattr command to retrieve the v_max_logname parameter in the ODM database. The
Isattr command displays the v_max_loghame parameter as the max_1logname attribute.

For more information, see the command in AIX Version 6.1 Commands Reference, Volume 3.

The following example shows how to use the Isattr command to retrieve the max_1ogname attribute:
$ Tsattr -E1 sysO

SW_dist_intr false Enable SW distribution of interrupts True
autorestart true Automatically REBOOT system after a crash True
boottype disk N/A False
capacity_inc 1.00 Processor capacity increment False
capped true Partition is capped False
conslogin enable System Console Login False
cpuguard enable CPU Guard True
dedicated true Partition is dedicated False
ent_capacity 4.00 Entitled processor capacity False
frequency 93750000 System Bus Frequency False
fullcore false Enable full CORE dump True
fwversion IBM,SPHO1316 Firmware version and revision levels False
iostat false Continuously maintain DISK I/0 history True
keyTock normal State of system keylock at boot time False
max_capacity 4.00 Maximum potential processor capacity False
max_Tlogname 20 Maximum Togin name length at boot time True
maxbuf 20 Maximum number of pages in block I/0 BUFFER CACHE True
maxmbuf 0 Maximum Kbytes of real memory allowed for MBUFS True
maxpout 0 HIGH water mark for pending write I/0s per file True
maxuproc 128 Maximum number of PROCESSES allowed per user True
min_capacity 1.00 Minimum potential processor capacity False
minpout 0 LOW water mark for pending write I/0s per file True
modelname 1BM,7044-270 Machine name False
ncargs 6 ARG/ENV Tist size in 4K byte blocks True
pred430core false Use pre-430 style CORE dump True
pre520tune disable Pre-520 tuning compatibility mode True
realmem 3145728 Amount of usable physical memory in Kbytes False
rtasversion 1 Open Firmware RTAS version False
sec_flags 0 Security Flags True
sed_config select Stack Execution Disable (SED) Mode True
systemid 1BM,0110B5F5F Hardware system identifier False
variable_weight 0 Variable processor capacity weight False
$

Retrieving the user and group name length limit from the kernel:

48 AIX Version 6.1 Security

You can use commands and subroutines to retrieve the v_max_logname parameter from the kernel.
Using the getconf command

You can use the getconf command with the LOGIN_NAME_MAX parameter to retrieve the user and
group name length limit in the kernel. The getconf command output includes the terminating NULL
character.

The following example shows how to use getconf command to retrieve the current user and group name
limit from the kernel:

$ getconf LOGIN_NAME_MAX
20
$

Using the sysconf subroutine

You can use the sysconf subroutine with the _SC_LOGIN_NAME_MAX parameter to retrieve the user and
group name length limit in the kernel.

The following example shows how to use the sysconf subroutine to retrieve the user and group name
length limit from the kernel:

#include <unistd.h>
main()
long Ten;

Ten = sysconf(_SC_LOGIN_NAME_MAX);

printf("The name length Timit is %d\n", len);
1

Using the sys_parm subroutine

You can use the sys_parm subroutine with the SYSP_V_MAX_LOGNAME parameter to retrieve the
current user name length limit in the kernel.

The following example shows how to use the sys_parm subroutine to retrieve the user name length limit
from the kernel:

#include <sys/types.h>

#include <sys/var.h>

#include <errno.h>

main()

int rc;
struct vario myvar;

rc = sys_parm (SYSP_GET, SYSP_V_MAX_LOGNAME, &myvar);

if (lrc)
printf("Max_login_name = %d\n", myvar.v.v_max_logname.value);
else

printf("sys parm() failed rc = %d, errno = %d\n", rc, errno);

}

Changing the user group and name length limit in the ODM database:
You can configure the user and group name length limit value in the kernel only during the system boot

phase. You can change the value in the ODM database using the chdev command. The change takes
effect after the next system restart.

Security 49

The following example shows how to use the chdev command to change the v_max_logname parameter
in the ODM database:

$ chdev -1 sysO -a max_logname=30

sys0 changed

User account control:

User accounts have attributes that can be altered.

Each user account has a set of associated attributes. These attributes are created from default values
when a user is created by using thecommand. The attributes can be altered by using the
command. The following are the user attributes that control login and are not related to password quality:

account_locked
admin
admgroups

auth1

auth2

daemon
login
logintimes
registry
rlogin

su
sugroups
ttys
expires

loginretries

umask
rcmds

hostallowedlogin
hostsdeniedlogin

maxulogs

If an account must be explicitly locked, this attribute can be set to True; the default is False.
If set to True, this user can not change the password. Only the administrator can change it.
Lists groups for which this user has administrative rights. For those groups, the user can add
or delete members.

The authentication method that is used to grant the user access. Typically, it is set to SYSTEM,
which will then use newer methods.

Note: The auth1 attribute is deprecated and should not be used.

Method that runs after the user has been authenticated by whatever was specified in auth1. It
cannot block access to the system. Typically, it is set to NONE.

Note: The auth2 attribute is deprecated and should not be used.

This boolean parameter specifies whether the user is allowed to start daemons or subsystems
with the startsrc command. It also restricts the use of the cron and at facilities.

Specifies whether this user is allowed to log in. A successful login resets the
unsuccessful_login_count attribute to a value of 0 (from the loginsuccess subroutine).
Restricts when a user can log in. For example, a user might be restricted to accessing the
system only during normal business hours.

Specifies the user registry. It can be used to tell the system about alternate registries for user
information, such as NIS, LDAP, or Kerberos.

Specifies whether this user is allowed to log in by using rlogin or telnet.

Specifies whether other users can switch to this ID with the su command.

Specifies which groups are allowed to switch to this user ID.

Limits certain accounts to physically secure areas.

Manages student or guest accounts; also can be used to turn off accounts temporarily.
Specifies the maximum number of consecutive failed login attempts before the user ID is
locked by the system. The failed attempts are recorded in the /etc/security/lastlog file.
Specifies the initial umask for the user.

Specifies whether the user account can be accessed with the rsh or exec commands. A value
of allow indicates that the account may be accessed by rsh and rexec. A value of deny
indicates no account access by rsh and rexec commands. A value of hostlogincontrol
indicates that the account access is controlled by hostallowedlogin and hostsdeniedlogin
attributes.

Specifies the hosts which permit the user to login. This attribute is intended to be used in a
networked environment where user attributes are shared by multiple hosts.

Specifies the hosts which do not permit the user to login. This attribute is intended to be used
in a networked environment where user attributes are shared by multiple hosts.

Specifies the maximum number of logins per user. If the user has reached the maximum
number of allowed logins, login will be denied.

The complete set of user attributes is defined in the /etc/security/user, /etc/security/limits,
letc/security/audit/config and /etc/security/lastlog files. The default for user creation with the mkuser
command is specified in the /usr/lib/security/mkuser.default file. Only options that override the general
defaults in the default stanzas of the /etc/security/user and /etc/security/limits files, as well as audit

50 AIX Version 6.1 Security

classes, must be specified in the mkuser.default file. Several of these attributes control how a user can
log in, and they can be configured to lock the user account (prevent further logins) automatically under
specified conditions.

After the user account has been locked by the system due to the number of unsuccessful login attempts,
the user is not able to log in until the system administrator resets the user unsuccessful_login_count
attribute in the /etc/security/lastlog file to be less than the value of login retries. This can be done using
the following chsec command, as follows:

chsec -f /etc/security/lastlog -s username -a
unsuccessful_login_count=0

The defaults can be changed by using the chsec command to edit the default stanza in the appropriate
security file, such as the /etc/security/user or /etc/security/limits files. Many of the defaults are defined
to be the standard behavior. To explicitly specify attributes that are set every time that a new user is
created, change the user entry in /usr/lib/security/mkuser.default.

For information on extended user password attributes, refer to [‘Passwords” on page 58|

Login-related commands affected by user attributes
The following table lists the attributes that control login and the affected commands.

Note: The attributes only affect the ssh and scp commands if the UseLogin attribute is set to yes in the
ssh daemon configuration file on the server.

User attribute Commands
account_locked rexec, rsh, rcp, ssh, scp, rlogin, telnet, ftp, login
login Only affects login from a console. The value of the login

attribute does not affect remote login commands, remote
shell commands, or remote copy commands rexec, rsh, rcp,
ssh, scp, rlogin, telnet, and ftp).

logintimes rexec, rsh, rcp, ssh, scp, rlogin, telnet, ftp, login

rlogin Only affects remote login commands, certain remote shell
commands, and certain remote copy commands (ssh, scp,
rlogin, and telnet).

loginretries rexec, rsh, rcp, ssh, scp, rlogin, telnet, ftp, login
letc/nologin rexec, rsh, rcp, ssh, scp, rlogin, telnet, ftp, login
rcmds=deny rexec, rsh, rcp, ssh, scp
rcmds=hostlogincontrol and rexec, rsh, rcp, ssh, scp, rlogin, telnet, ftp, login
hostsdeniedlogin=<target_hosts>

ttys = !REXEC, 'RSH rexec, rsh, rcp, ssh, scp, rlogin, telnet, ftp, login
ttys = |REXEC, !RSH, /dev/pts rexec, rsh

ttys = 'REXEC, 'RSH, ALL rexec, rsh

expires rexec, rsh, rcp, ssh, scp, rlogin, telnet, ftp, login

Note: rsh only disallows execution of remote commands. Remote logins are still permitted.
Login user IDs:

The operating system identifies users by their login user ID.

Security 51

The login user ID allows the system to trace all user actions to their source. After a user logs in to the
system but before running the initial user program, the system sets the login ID of the process to the user
ID found in the user database. All subsequent processes during the login session are tagged with this ID.
These tags provide a trail of all activities performed by the login user ID. The user can reset the effective
user ID, real user ID, effective group ID, real group ID, and supplementary group ID during the session,
but cannot change the login user ID.

Strengthening user security with Access Control Lists:

To achieve an appropriate level of security in your system, develop a consistent security policy to manage
user accounts. The most commonly used security mechanism is the access control list (ACL).

For information about ACLs and developing a security policy, see [‘Access Control Lists” on page 106 |

PATH environment variable:

The PATH environment variable is an important security control. It specifies the directories to be searched
to find a command.

The default systemwide PATH value is specified in the /etc/profile file, and each user normally has a
PATH value in the user's SHOME/.profile file. The PATH value in the .profile file either overrides the
systemwide PATH value or adds extra directories to it.

Unauthorized changes to the PATH environment variable can enable a user on the system to "spoof”
other users (including root users). Spoofing programs (also called Trojan horse programs) replace system
commands and then capture information meant for that command, such as user passwords.

For example, suppose a user changes the PATH value so that the system searches the /tmp directory first
when a command is run. Then the user places in the /tmp directory a program called su that asks for the
root password just like the@ command. Then the /tmp/su program mails the root password to the user
and calls the real su command before exiting. In this scenario, any root user who used the su command
would reveal the root password and not even be aware of it.

To prevent any problems with the PATH environment variable for system administrators and users, do the
following:

* When in doubt, specify full path names. If a full path name is specified, the PATH environment variable
is ignored.

* Never put the current directory (specified by . (period)) in the PATH value specified for the root user.
Never allow the current directory to be specified in /etc/profile.

» The root user should have its own PATH specification in his private .profile file. Typically, the
specification in /etc/profile lists the minimal standard for all users, whereas the root user might need
more or fewer directories than the default.

» Warn other users not to change their .profile files without consulting the system administrator.
Otherwise, an unsuspecting user could make changes that allow unintended access. A user .profile file
should have permissions set to 740.

» System administrators should not use the su command to gain root privilege from a user session,
because the user's PATH value specified in the .profile file is in effect. Users can set their own .profile
files. System administrators should log in to the user’s machine as root user or preferably, using their
own ID and then use the following command:

/usr/bin/su - root

This ensures that the root environment is used during the session. If a system administrator does
operate as root in another user session, the system administrator should specify full path names
throughout the session.

52 AIX Version 6.1 Security

» Protect the input field separator (IFS) environment variable from being changed in the /etc/profile file.
The IFS environment variable in the .profile file can be used to alter the PATH value.

Anonymous FTP with a secure user account setup
You can set up anonymous FTP with a secure user account.

Things to Consider

The information in this how-to scenario was tested using specific versions of AIX. The results you obtain might vary
significantly depending on your version and level of AlX.

This scenario sets up an anonymous FTP with a secure user account, using the command line interface
and a script.

Note: This scenario cannot be used on a system with the Controlled Access Protection Profile (CAPP)
with Evaluation Assurance Level 4+ (EAL4+) feature.

1. Verify that the bos.net.tcp.client fileset is installed on your system, by typing the following command:
1slpp -L | grep bos.net.tcp.client

If you receive no output, the fileset is not installed. For instructions on how to install it, see the
[Installation and migration

2. Verify that you have at least 8 MB of free space available in the system’s /home directory, by typing
the following command:

df -k /home

The script in step requires at least 8 MB free space in the /home directory to install the required
files and directories. If you need to increase the amount of available space, see the [Operating system
land device management

3. With root authority, change to the /usr/samples/tcpip directory. For example:
cd /usr/samples/tcpip

4. To set up the account, run the following script:
./anon. ftp

5. When prompted with Are you sure you want to modify /home/ftp?, type yes. Output similar to the
following displays:

Added user anonymous.

Made /home/ftp/bin directory.

Made /home/ftp/etc directory.

Made /home/ftp/pub directory.

Made /home/ftp/1ib directory.

Made /home/ftp/dev/null entry.

Made /home/ftp/usr/1pp/msg/en_US directory.

6. Change to the /home/ftp directory. For example:
cd /home/ftp
7. Create a home subdirectory, by typing:
mkdir home
8. Change the permissions of the /home/ftp/home directory to drwxr-xr-x, by typing:
chmod 755 home
9. Change to the /home/ftp/etc directory, by typing:
cd /home/ftp/etc
10. Create the objrepos subdirectory, by typing:
mkdir objrepos
11. Change the permissions of the /home/ftp/etc/objrepos directory to drwxrwxr-x, by typing:

Security 53

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

54

chmod 775 objrepos

Change the owner and group of the /home/ftp/etc/objrepos directory to the root user and the system
group, by typing:

chown root:system objrepos

Create a security subdirectory, by typing

mkdir security

Change the permissions of the /home/ftp/etc/security directory to drwxr-x---, by typing:

chmod 750 security

Change the owner and group of the /home/ftp/etc/security directory to the root user and the security
group, by typing:

chown root:security security

Change to the /home/ftp/etc/security directory, by typing:

cd security

Add a user by typing the following SMIT fast path:

smit mkuser

In this scenario, we are adding a user named test.
In the SMIT fields, enter the following values:

User NAME [test]
ADMINISTRATIVE USER? true
Primary GROUP [staff]
Group SET [staff]
Another user can SU TO USER? true

HOME directory [/home/test]

After you enter your changes, press Enter to create the user. After the SMIT process completes, exit
SMIT.

Create a password for this user with the following command:
passwd test

When prompted, enter the desired password. You must enter the new password a second time for
confirmation.

Change to the /home/ftp/etc directory, by typing

cd /home/ftp/etc

Copy the /etc/passwd file to the /Thome/ftp/etc/passwd file, using the following command:
cp /etc/passwd /home/ftp/etc/passwd

Using your favorite editor, edit the /home/ftp/etc/passwd file. For example:

vi passwd

Remove all lines from the copied content except those for the root, ftp, and test users. After your edit,
the content should look similar to the following:

root:!:0:0::/:/bin/ksh
ftp:*:226:1::/home/ftp:/usr/bin/ksh
test:!:228:1::/home/test:/usr/bin/ksh

Save your changes and exit the editor.

Change the permissions of the /home/ftp/etc/passwd file to -rw-r--r--, by typing:

chmod 644 passwd

Change the owner and group of the /home/ftp/etc/passwd file to the root user and the security
group, by typing:

chown root:security passwd

Copy the contents of the /etc/security/passwd file to the /home/ftp/etc/security/passwd file, using
the following command:

AIX Version 6.1 Security

28.

29.
30.

31.
32.

33.

34.

35.

36.
37.

38.

39.

40.

41,
42,

43.

44,

45.

46.

cp /etc/security/passwd /home/ftp/etc/security/passwd

Using your favorite editor, edit the /home/ftp/etc/security/passwd file. For example:

vi ./security/passwd

Remove all stanzas from the copied content except the stanza for the test user.

Remove the flags = ADMCHG line from the test user stanza. After your edits, the content should look
similar to the following:

test:
password = 2HaAYgpDZX3Tw
lastupdate = 990633278

Save your changes and exit the editor.

Change the permissions of the /home/ftp/etc/security/passwd file to -rw------- , by typing:
chmod 600 ./security/passwd

Change the owner and group of the /home/ftp/etc/security/passwd file to the root user and the
security group, by typing:

chown root:security ./security/passwd

Using your favorite editor, edit the /home/ftp/etc/group file. For example:

vi group

Add the following lines to the file:

system:*:0:
staff:x:1:test

Save your changes and exit the editor.

Change the permissions of the /home/ftp/etc/group file to -rw-r--r-—, by typing:

chmod 644 group

Change the owner and group of the /home/ftp/etc/group file to the root user and the security group,
by typing:

chown root:security group

Using your favorite editor, edit the /home/ftp/etc/security/group file. For example:

vi ./security/group

Add the following lines to the file:

system:
admin = true
staff

admin = false

Save your changes and exit the editor.

Change the permissions of the /home/ftp/etc/security/group file to -rw-r----- , by typing:

chmod 640 ./security/group

Change the owner and group of the /home/ftp/etc/security/group file to the root user and the security,
by typing:

chown root:security ./security/group

Use the following commands to copy the appropriate content into the /home/ftp/etc/objrepos
directory:

cp /etc/objrepos/CuAt ./objrepos

cp /etc/objrepos/CuAt.vc ./objrepos

cp /etc/objrepos/CuDep ./objrepos

cp /etc/objrepos/CuDv ./objrepos

cp /etc/objrepos/CuDvDr ./objrepos

cp /etc/objrepos/CuVPD ./objrepos

cp /etc/objrepos/Pd* ./objrepos

Change to the /home/ftp/home directory, by typing:
cd ../home
Make a new home directory for your user, by typing:

Security 55

mkdir test

This will be the home directory for the new ftp user.
47. Change the owner and group of the /home/ftp/homef/test directory to the test user and the staff
group, by typing:
chown test:staff test
48. Change the permissions of the /home/ftp/homef/test file to -rwx------ , by typing:
chmod 700 test

At this point, you have ftp sublogin set up on your machine. You can test this with the following procedure:
1. Using ftp, connect to the host on which you created the test user. For example:
ftp MyHost
2. Log in as anonymous. When prompted for a password, press Enter.
3. Switch to the newly created test user, by using the following command:

user test

When prompted for a password, use the password you created in step
4. Use the pwd command to verify the user's home directory exists. For example:

ftp> pwd
/home/test

The output shows /homef/test as an ftp subdirectory. The full path name on the host is actually
/home/ftp/home/test.

For more information:
« 'ITCP/IP Securityl' in Security

» 'lftp Command[in A/X Version 6.1 Commands Reference

System special user accounts
AIX provides a default set of system special user accounts that prevents the root and system accounts
from owning all operating system files and file systems.

Attention: Use caution when removing a system special user account. You can disable a specific
account by inserting an asterisk (*) at the beginning of its corresponding line of the /etc/security/passwd
file. However, be careful not to disable the root user account. If you remove system special user accounts
or disable the root account, the operating system will not function.

The following accounts are predefined in the operating system:

adm The adm user account owns the following basic system functions:
» Diagnostics, the tools for which are stored in the /usr/sbin/perf/diag_tool directory.
» Accounting, the tools for which are stored in the following directories:
— lusr/sbin/acct
— lusr/lib/acct
— /var/fadm
— [var/adm/acct/fiscal
— [var/adm/acct/nite
— /var/adm/acct/sum
bin The bin user account typically owns the executable files for most user commands. This account’s

primary purpose is to help distribute the ownership of important system directories and files so that
everything is not owned solely by the root and sys user accounts.

56 AIX Version 6.1 Security

daemon

The daemon user account exists only to own and run system server processes and their
associated files. This account guarantees that such processes run with the appropriate file access
permissions.

nobody

root

sys

system

The nobody user account is used by the Network File System (NFS) to enable remote printing.
This account exists so that a program can permit temporary root access to root users. For
example, before enabling Secure RPC or Secure NFS, check the /etc/public key on the master
NIS server to find a user who has not been assigned a public key and a secret key. As root user,
you can create an entry in the database for each unassigned user by entering:

newkey -U username

Or, you can create an entry in the database for the nobody user account, and then any user can
run the chkey program to create their own entries in the database without logging in as root.

The root user account, UID 0, through which you can perform system maintenance tasks and
troubleshoot system problems.

The sys user owns the default mounting point for the Distributed File Service (DFS™) cache, which
must exist before you can install or configure DFS on a client. The /usr/sys directory can also
store installation images.

System group is a system-defined group for system administrators. Users of the system group
have the privilege to perform some system maintenance tasks without requiring root authority.

Removing unnecessary default user accounts:

During installation of the operating system, a number of default user and group IDs are created.
Depending on the applications you are running on your system and where your system is located in the
network, some of these user and group IDs can become security weaknesses, vulnerable to exploitation. If
these users and group IDs are not needed, you can remove them to minimize security risks associated
with them.

The following table lists the most common default user IDs that you might be able to remove:

Table 4. Common default user IDs that you might be able to remove.

User ID Description

uucp, nuucp Owner of hidden files used by uucp protocol. The uucp user account is
used for the UNIX-to-UNIX Copy Program, which is a group of
commands, programs, and files, present on most AIX systems, that
allows the user to communicate with another AIX system over a
dedicated line or a telephone line.

Ipd Owner of files used by printing subsystem

guest Allows access to users who do not have access to accounts

The following table lists common group IDs that might not be needed:

Table 5. Common group IDs that might not be needed.

Group ID Description
uucp Group to which uucp and nuucp users belong
printq Group to which Ipd user belongs

Security 57

Analyze your system to determine which IDs are indeed not needed. There might also be additional user
and group IDs that you might not need. Before your system goes into production, perform a thorough
evaluation of available IDs.

Accounts created by security components:

When security components such as LDAP and OpenSSH are installed or configured, user and group
accounts are created.

The user and group accounts created include:

* Internet Protocol (IP) Security: IP Security adds the user ipsec and the group ipsec during its
installation. These IDs are used by the key management service. Note that the group ID in
lusr/lpp/group.id.keymgt cannot be customized before the installation.

» Kerberos and Public Key Infrastructure (PKI): These components do not create any new user or
group accounts.

» LDAP: When the LDAP client or server is installed, the /dap user account is created. The user ID of
ldap is not fixed. When the LDAP server is installed, it automatically installs DB2®. The DB2 installation
creates the group account dbsysadm. The default group ID of dbsysadm is 400. During the
configuration of the LDAP server, the mksecldap command creates the /dapdb2 user account.

* OpenSSH: During the installation of OpenSSH, the user sshd and group sshd are added to the system.
The corresponding user and group IDs must not be changed. The privilege separation feature in SSH
requires IDs.

Passwords
Guessing passwords is one of the most common attack methods that a system experiences. Therefore,
controlling and monitoring your password-restriction policy is essential.

AIX provides mechanisms to help you enforce a stronger password policy, such as establishing values for
the following:

* Minimum and maximum number of weeks that can elapse before and after a password can be changed
¢ Minimum length of a password
* Minimum number of alphabetic characters that can be used when selecting a password

Establishing good passwords:
Good passwords are effective first lines of defense against unauthorized entry into a system.

Passwords are effective if they are:
* A mixture of both uppercase and lowercase letters

* A combination of alphabetic, numeric, or punctuation characters. Also, they may have special characters
such as ~10#$% & () - =+[1{}|\;:'",.<>?/<space>

* Are not written down anywhere

* Are at least 7 to a maximum of PW_PASSLEN characters in length, if using the /etc/security/passwd
file (authentication implementations that use registries, such as LDAP, can have passwords that exceed
this maximum length)

» Are not real words that can be found in any dictionary

* Are not patterns of letters on the keyboard, like gwerty

* Are not real words or known patterns spelled backwards

* Do not contain any personal information about yourself, family, or friends

* Do not follow the same pattern as a previous password

» Can be typed relatively quickly so someone nearby cannot determine your password

58 AIX Version 6.1 Security

In addition to these mechanisms, you can further enforce stricter rules by restricting passwords so that
they cannot include standard UNIX words, which can be guessed. This feature uses the dictionlist, which
requires that you first have the bos.data and bos.txt file sets installed.

To implement the previously defined dictionlist, edit the following line in the /etc/security/users file:
dictionlist = /usr/share/dict/words

The /usr/share/dict/words file uses the dictionlist to prevent standard UNIX words from being used as
passwords.

Using the /etc/passwd file:

Traditionally, the /etc/passwd file is used to keep track of every registered user that has access to a
system.

The /etc/passwd file is a colon-separated file that contains the following information:
* User name

* Encrypted password

* User ID number (UID)

» User’s group ID number (GID)

* Full name of the user (GECOS)

» User home directory

* Login shell

The following is an example of an /etc/passwd file:
root:!:0:0::/:/usr/bin/ksh

daemon:!:1:1::/etc:

bin:1:2:2::/bin:

sys:1:3:3::/usr/sys:

adm:!:4:4::/var/adm:

uucp:!:5:5::/usr/1ib/uucp:
guest:!:100:100::/home/guest:

nobody: !:4294967294:4294967294::/:
Tpd:!1:9:4294967294::/:
Tp:*:11:11::/var/spool/1p:/bin/false
invscout:*:200:1::/var/adm/invscout:/usr/bin/ksh
nuucp:*:6:5:uucp login user:/var/spool/uucppublic:/usr/sbin/uucp/uucico
paul:!:201:1::/home/paul:/usr/bin/ksh
jdoe:*:202:1:John Doe:/home/jdoe:/usr/bin/ksh

AlX does not store encrypted passwords in the /etc/password file in the way that UNIX systems do, but in
the ' file by default, which is only readable by the root user. The password filed in /etc/passwd is used by
AlX to signify if there is a password or whether the account is blocked.

The /etc/passwd file is owned by the root user and must be readable by all the users, but only the root
user has writable permissions, which is shown as -rw-r--r--. If a user ID has a password, then the
password field will have an ! (exclamation point). If the user ID does not have a password, then the
password field will have an * (asterisk). The encrypted passwords are stored in the |/fetc/security/passwd|
file. The following example contains the last four entries in the /etc/security/passwd file based on the
entries from the /etc/passwd file shown previously.

guest:

password = *

nobody:
password

[}
*

1. /etc/security/password

Security 59

Tpd:
password = *

paul:
password = eacVScDKrids6
lastupdate = 1026394230
flags = ADMCHG

The user ID jdoe does not have an entry in the /etc/security/passwd file because it does not have a
password set in the /etc/passwd file.

The consistency of the /etc/passwd file can be checked using the [pwdck] command. The pwdck
command verifies the correctness of the password information in the user database files by checking the
definitions for all of the users or for specified users.

Using the /etc/passwd file and network environments:

In a traditional networked environment, a user must have had an account on each system to gain access
to that system.

That typically meant that the user would have an entry in each of the /etc/passwd files on each system.
However, in a distributed environment, there is no easy way to ensure that every system had the same
letc/passwd file. To solve this problem, several methods make the information in the /etc/passwd file
available over the network, including Network Information System (NIS) and NIS+.

For more information about NIS and NIS+, see [‘Network Information Services and NIS+ security” on page]

Hiding user names and passwords:

To achieve a higher level of security, ensure that user IDs and passwords are not visible within the system.

The .netrc files contain user IDs and passwords. This file is not protected by encryption or encoding, thus
its contents are clearly shown as plain text. To find these files, run the following command:

find “awk -F: '{print $6}' /etc/passwd™ -name .netrc -1s

After you locate these files, delete them. A more effective way to save passwords is by setting up
Kerberos. For more information about Kerberos, see [‘Kerberos” on page 291 |

Setting recommended password options:

Proper password management can only be accomplished through user education. To provide some
additional security, the operating system provides configurable password restrictions. These allow the
administrator to constrain the passwords chosen by users and to force passwords to be changed regularly.

Password options and extended user attributes are located in the Jetc/security/user] file, an ASCII file that
contains attribute stanzas for users. These restrictions are enforced whenever a new password is defined
for a user. All password restrictions are defined per user. By keeping restrictions in the default stanza of
the /etc/security/user file, the same restrictions are enforced on all users. To maintain password security,
all passwords must be similarly protected.

Administrators can also extend the password restrictions. Using the pwdchecks attribute of the
letc/security/user file, an administrator can add new subroutines (known as methods) to the password
restrictions code. Thus, local site policies can be added to and enforced by the operating system. For
more information, see [‘Extending password restrictions” on page 65.|

60 AIX Version 6.1 Security

Apply password restrictions sensibly. Attempts to be too restrictive, such as limiting the password space,
which makes guessing the password easier, or forcing the user to select passwords that are difficult to
remember, which might then be written down, can jeopardize password security. Ultimately, password
security rests with the user. Simple password restrictions, coupled with sensible guidelines and an

occasional audit to verify that current passwords are unique, are the best policy.

The following table lists recommended values for some security attributes related to user passwords in the
letc/security/user file.

Table 6. Recommended security attribute values for user passwords.

Attribute

Description

Recommended Value

Default Value

Maximum Value

dictionlist

Verifies passwords
do not include
standard UNIX
words.

lusr/share/dict/words

Not applicable

Not applicable

histexpire

Number of weeks
before password
can be reused.

26

260"

histsize

Number of
password iterations
allowed.

20

50

maxage

Maximum number
of weeks before
password must be
changed.

52

maxexpired

Maximum number
of weeks beyond
maxage that an
expired password
can be changed by
the user. (Root is
exempt.)

52

maxrepeats

Maximum number
of characters that

can be repeated in
passwords.

minage

Minimum number of
weeks before a
password can be
changed. This
should not be set to
a nonzero value
unless
administrators are
always easy to
reach to reset an
accidentally
compromised
password that was
recently changed.

52

minalpha

Minimum number of
alphabetic
characters required
on passwords.

PW_PASSLEN**

Security 61

Table 6. Recommended security attribute values for user passwords. (continued)

Attribute

Description

Recommended Value

Default Value

Maximum Value

mindiff

Minimum number of
unique characters
that passwords
must contain.

4

0

PW_PASSLEN**

minlen

Minimum length of
password.

6 (8 for root user)

PW_PASSLEN**

minother

Minimum number of
non-alphabetic
characters required
on passwords.

PW_PASSLEN**

pwdwarntime

Number of days
before the system
issues a warning
that a password
change is required.

Not applicable

Not applicable

pwdchecks

This entry can be
used to augment
the passwd
command with a
custom code that
checks the
password quality.

For more information.

see |“Extending

password restrictions’

|9n page 65.|

Not applicable

Not applicable

* A maximum of 50 passwords are retained.

** PW_PASSLEN is defined in userpw.h

For a Controlled Access Protection Profile and Evaluation Assurance Level 4+ (CAPP/EAL4+) system, use
the values recommended in [‘User and port configuration” on page 19,

If text processing is installed on the system, the administrator can use the /usr/share/dict/words file as a
dictionlist dictionary file. In such a case, the administrator can set the minother attribute to 0. Because
most words in the dictionary file do not contain characters that fall into the minother attribute category,
setting the minother attribute to 1 or more eliminates the need for the vast majority of words in this

dictionary file.

The minimum length of a password on the system is set by the value of the minlen attribute or the value
of the minalpha attribute plus the value of the minother attribute, whichever is greater. The maximum
length of a password is PW_PASSLEN characters. The number of characters used when generating the
stored password value is dependent on the password algorithm in use on the system. Password
algorithms are defined in the /etc/security/pwdalg.cfg file and the default password algorithm to use can be
configured through the pwd_algorithm attribute in /etc/security/login.cfg. The value of the minalpha
attribute plus the value of the minother attribute must never be greater than PW_PASSLEN. If the value
of the minalpha plus the value of the minother attribute is greater than PW_PASSLEN, the value of the
minother attribute is reduced to PW_PASSLEN minus the value of the minalpha attribute.

If the values of both the histexpire attribute and the histsize attribute are set, the system retains the
number of passwords required to satisfy both conditions, up to the system limit of 50 passwords per user.
Null passwords are not retained.

You can edit the /etc/security/user file to include any defaults you want to use to administer user
passwords. Alternatively, you can change attribute values by using the command.

62 AIX Version 6.1 Security

Other commands that can be used with this file are the [mkuser [Isuser}, and [rmuser] commands. The
mkuser command creates an entry for each new user in the /etc/security/user file and initializes its
attributes with the attributes defined in the /usr/lib/security/mkuser.default file. To display the attributes
and their values, use the Isuser command. To remove a user, use the rmuser command.

Support for passwords with more than 8 characters and Loadable Password Algorithm:

Recent advancements in computer hardware makes tradition UNIX password encryption vulnerable to
brute-force password guessing attacks. A cryptographically weak algorithm can lead to recovery of even
strong passwords. AIX 5L introduced Loadable Password Algorithm (LPA) that supports secure password
hash mechanisms. It also removes the eight-character password limitation.

Traditional password crypt function:

The standard AlX authentication mechanism uses a one-way hash function called crypt to authenticate
users. The crypt function is a modified DES algorithm. It performs a one-way encryption of a fixed data
array with the supplied password and a Salt.

The crypt function uses only the first eight characters from the password string; the user’s password is
truncated to eight characters. If the password contains less than eight characters, it is padded with zero
bits on the right. The 56-bit DES key is derived by using the 7 bits from each character.

Salt is a two-character string (the 12 bits of the Salt is used to perturb the DES algorithm) chosen from the
character set "A-2", "a-z","0-9","." (period) and "/". Salt is used to vary the hashing algorithm, so that the
same clear text password can produce 4,096 possible password encryptions. A modification to the DES
algorithm, swapping bits i and i+24 in the DES E-Box output when bit i is set in the Salt, achieves this
while also making DES encryption hardware useless for password guessing.

The 64-bit all-bits-zero block is encrypted 25 times with the DES key. The final output is the 12-bit salt
concatenated with the encrypted 64-bit value. The resulting 76-bit value is recoded into 13 printable ASCII
characters in the form of base64.

Password hashing algorithms:

Hashing algorithms such as MD5 are harder to break than the crypt function. This provides a strong
mechanism against brute-force password guessing attacks. Since the whole password is used for
generating the hash, there is no password length limitation when password hashing algorithms are used to
encrypt the password.

Loadable Password Algorithm (LPA):

AIX 5L implemented a Loadable Password Algorithm (LPA) mechanism that can easily deploy new
password encryption algorithms.

Each supported password encryption algorithm is implemented as a LPA load module that is loaded at
runtime when the algorithm is needed. The supported LPAs and their attributes are defined in the
letc/security/pwdalg.cfg system configuration file.

An administrator can set up a system-wide password encryption mechanism that uses a specific LPA to
encrypt the passwords. After the system-wide password mechanism is changed, AIX 5L still supports
passwords that are encrypted by the previous selected password encryption mechanisms, such as the
crypt function.

Support for passwords longer than eight characters:

Security 63

All of the LPAs implemented for AIX 5L support passwords longer than eight characters. The password
length limitations vary for different LPAs. The maximum password length supported by AIX 5L is 255
characters.

LPA configuration file:

The LPA configuration file is /etc/security/pwdalg.cfg. It is a stanza file that defines the attributes of the
supported LPAs.

The following LPA attributes are defined in the config file:
* The path to the LPA module
* The optional flags that is passed to the LPA module at runtime

The LPA attributes defined in the configuration file can be accessed with the getconfattr and setconfattr
interfaces.

The following example stanza in /etc/security/pwdalg.cfg defines a LPA named ssha256:

ssha256:
Tpa_module = /usr/Tib/security/ssha
Ipa_options = algorithm=sha256

System password algorithm:

A system administrator can set a system-wide password algorithm by selecting an LPA as the password
hashing algorithm. There can only be one active system password algorithm at a time. The system
password algorithm is defined by the pwd_algorithm system attribute in the usw stanza in the
letc/security/login.cfg file.

The valid values for the pwd_algorithm attribute in the /etc/security/login.cfg file are LPA stanza names
that are defined in the /etc/security/pwdalg.cfg file. Another valid value for the pwd_algorithm attribute is
crypt, which refers to traditional crypt encryption. If the pwd_algorithm attribute is omitted from the
config file, crypt is used as the default value.

The following example of the /etc/security/login.cfg file uses ssha256 LPA as the system-wide password
encryption algorithm.

shells = /bin/sh,/bin/bsh,/bin/csh,/bin/ksh,/bin/tsh,/bin/ksh93
maxlogins = 32767

logintimeout = 60

maxroles = 8

auth_type = STD_AUTH

pwd_algorithm = ssha256

The system password algorithm takes effect only for newly created passwords and changed passwords.
After the migration, all subsequent new passwords or password changes use the system password
algorithm. The passwords that existed before the system password algorithm is chosen, either generated
by the standard crypt function or by other supported LPA modules, still work on the system. Therefore,
mixed passwords that were generated by different LPAs can coexist on the system.

Setting up the system password algorithm:

A system administrator can use the chsec command to set up the system password algorithm or use an
editor such as vi to manually modify the pwd_algorithm attribute in the /etc/security/login.cfg file.

64 AIX Version 6.1 Security

It is recommended that you use the chsec command to set the system password algorithm, as the chsec
command automatically checks the definition of the specified LPA.

Using the chsec command

Run the following command to set the smd5 LPA as the system-wide password encryption module:
chsec -f /etc/security/login.cfg -s usw -a pwd_algorithm=smd5

When you use the chsec command to modify the pwd_algorithm attribute, the chsec command checks
the /etc/security/pwdalg.cfg file to verify the specified LPA. The chsec command fails if this check fails.

Using an editor

If you use an editor to manually change the pwd_algorithm attribute value in the /etc/security/login.cfg
file, ensure that the specified value is the name of a stanza that is defined in the /etc/security/pwdalg.cfg
file.

Extending password restrictions:

The rules used by the password program to accept or reject passwords (the password composition
restrictions) can be extended by system administrators to provide site-specific restrictions.

Restrictions are extended by adding methods, which are called during a password change. The
pwdchecks attribute in the /etc/security/user file specifies the methods called.

The AIX Version 6.1 Technical Reference contains a description of the [pwdrestrict_method, the
subroutine interface to which specified password restriction methods must conform. To correctly extend the
password composition restrictions, the system administrator must program this interface when writing a
password-restriction method. Use caution in extending the password-composition restrictions. These
extensions directly affect the login command, the passwd command, the su command, and other
programs. The security of the system could easily be subverted by malicious or defective code.

User authentication
Identification and authentication are used to establish a user’s identity.

Each user is required to log in to the system. The user supplies the user name of an account and a
password if the account has one (in a secure system, all accounts must either have passwords or be
invalidated). If the password is correct, the user is logged in to that account; the user acquires the access
rights and privileges of the account. The fetc/passwd| and [/etc/security/passwd| files maintain user
passwords.

By default users are defined in the Files registry. This means that user account and group information is
stored in the flat-ASCII files. With the introduction of plug-in load modules, users can be defined in other
registries too. For example, when the LDAP plug-in module is used for user administration, then the user
definitions are stored in the LDAP repository. In this case there will be no entry for users in the
letc/security/user file (there is an exception to this for the user attributes SYSTEM and registry). When a
compound load module (i.e. load modules with an authentication and database part) is used for user
administration, the database half determines how AlX user account information is administrated, and the
authentication half describes the authentication and password related administration. The authentication
half may also describe authentication-specific user account administration attributes by implementing
certain load module interfaces (newuser, getentry, putentry etc).

Alternative methods of authentication are integrated into the system by means of the SYSTEM attribute
that appears in /etc/security/user file. The SYSTEM attribute allows the system administrator to specify to
a fine granularity to which method (or methods) a user must successfully authenticate in order to gain
access to the system. For instance, the Distributed Computing Environment (DCE) requires password

Security 65

authentication but validates these passwords in a different manner than the encryption model used in the
letc/passwd command and the /etc/security/passwd command.

The value of the SYSTEM attribute is defined through a grammar. By using this grammar, the system
administrators can combine one or more methods to authenticate a particular user to the system. The well
known method tokens are compat, DCE, files and NONE.

The system default is compat. The default SYSTEM=compat tells the system to use the local database for
authentication and, if no resolution is found, the Network Information Services (NIS) database is tried. The
files token specifies that only local files are to be used during authentication, whereas SYSTEM=DCE results
in a DCE authentication flow.

The NONE token turns off method authentication. To turn off all authentication, the NONE token must appear
in the SYSTEM and authl lines of the user’s stanza.

You can specify two or more methods and combine them with the logical constructors AND and OR. For
instance SYSTEM=DCE OR compat indicates that the user is allowed to login if either DCE or local
authentication (crypt()) succeeds in this given order.

In a similar fashion a system administrator can use authentication load module names for the SYSTEM
attribute. For instance when SYSTEM attribute is set to SYSTEM=KRB5files OR compat, the AIX host will
first try a Kerberos flow for authentication and if it fails, then it will try standard AIX authentication.

SYSTEM and registry attributes are always stored on the local file system in the /etc/security/user file. If
an AIX user is defined in LDAP and the SYSTEM and registry attributes are set accordingly, then the user
will have an entry in the /etc/security/user file.

The SYSTEM and registry attributes of a user can be changed using the chuser command.
Acceptable tokens for the SYSTEM attribute can be defined in the /usr/lib/security/methods.cfg file.

Note: The root user is always authenticated by means of the local system security file. The SYSTEM
attribute entry for the root user is specifically set to SYSTEM=compat in the/etc/security/user file.

Alternative methods of authentication are integrated into the system by means of the SYSTEM attribute
that appears in /etc/security/user. For instance, the Distributed Computing Environment (DCE) requires
password authentication but validates these passwords in a manner different from the encryption model
used in etc/passwd and /etc/security/passwd. Users who authenticate by means of DCE can have their
stanza in /etc/security/user set to SYSTEM=DCE.

Other SYSTEM attribute values are compat, files, and NONE. The compat token is used when name
resolution (and subsequent authentication) follows the local database, and if no resolution is found, the
Network Information Services (NIS) database is tried. The files token specifies that only local files are to
be used during authentication. Finally, the NONE token turns off method authentication. To turn off all
authentication, the NONE token must appear in the SYSTEM and auth1 lines of the user’s stanza.

Other acceptable tokens for the SYSTEM attribute can be defined in /usr/lib/security/methods.cfg.

Note: The root user is always authenticated by means of the local system security file. The SYSTEM
attribute entry for the root user is specifically set to SYSTEM = "compat" in /etc/security/user.

See Operating system and device management for more information on protecting passwords.

66 AIX Version 6.1 Security

Login user IDs

All audit events recorded for this user are labeled with this ID and can be examined when you generate
audit records. SeeOperating system and device management for more information about login user IDs.

User and Group attributes supported by the Authentication Load Modules

A set of user-related and group-related attributes are used to achieve identification and authentication in

AlX.

The following tables list most of these user and group attributes as a list and also indicate the support
from the various load modules for these attributes. Each row of the table corresponds to an attribute and
each column represents a load module. Attributes supported by a load module are indicated with a Yes in

the load module column.

Note: PKI and Kerberos are authentication-only modules and must be combined with a database model

(such as LOCAL or LDAP). They support certain additional (extended) attributes other than those

provided by LOCAL or LDAP. Markings are shown against only these extended attributes for these
modules, even though other attributes could be functionally achieved using LOCAL or LDAP.

Table 7. User attributes and Authentication Load Module support

User attribute Local NIS/NIS+ LDAP PKI Kerberos
account_locked Yes No Yes No No
admchk No No No No Yes
admgroups Yes No Yes No No
admin Yes No Yes No No
auditclasses Yes No Yes No No
auth_cert No No No Yes No
auth_domain Yes No Yes No No
auth_name Yes No Yes No No
auth1 Yes No Yes No No
Note: The auth1 attribute is deprecated and

should not be used.

auth2 Yes No Yes No No
Note: The auth2 attribute is deprecated and

should not be used.

capabilities Yes No Yes No No
core Yes No Yes No No
core_compress Yes No No No No
core_hard Yes No Yes No No
core_naming Yes No No No No
core_path Yes No No No No
core_pathname Yes No No No No
cpu Yes No Yes No No
daemon Yes No Yes No No
data Yes No Yes No No
data_hard Yes No Yes No No
dce_export Yes No Yes No No
dictionlist Yes No Yes No No

Security

67

Table 7. User attributes and Authentication Load Module support (continued)

User attribute Local NIS/NIS+ LDAP PKI Kerberos
expires Yes No Yes No Yes
flags Yes No Yes No No
fsize Yes No Yes No No
fsize_hard Yes No Yes No No
funcmode Yes No Yes No No
gecos Yes Yes Yes No No
groups Yes Yes Yes No No
groupsids Yes Yes Yes No No
histexpire Yes No Yes No No
home Yes Yes Yes No No
host_last_login Yes No Yes No No
host_last_unsuccessful_login Yes Yes Yes No No
hostsallowedlogin Yes No Yes No No
hostsdeniedlogin Yes No Yes No No
id Yes Yes Yes No No
krb5_attributes No No No No Yes
krb5_kvno No No No No Yes
krb5_last_pwd_change No No No No Yes
krb5_max_renewable_life No No No No Yes
krb5_mknvo No No No No Yes
krb5_mod_date No No No No Yes
krb5_mod_name No No No No Yes
krb5_names No No No No Yes
krb5_principal No No No No Yes
krb5_principal_name No No No No Yes
krb5_realm No No No No Yes
lastupdate Yes Yes Yes No No
login Yes No Yes No No
loginretries Yes No Yes No No
logintimes Yes No Yes No No
maxage Yes Yes Yes No Yes
maxexpired Yes Yes Yes No No
maxrepeats Yes No Yes No No
maxulogs Yes No Yes No No
minage Yes Yes Yes No No
minalpha Yes No Yes No No
mindiff Yes No Yes No No
minlen Yes No Yes No No
minother Yes No Yes No No
nofiles Yes No Yes No No

68 AIX Version 6.1 Security

Table 7. User attributes and Authentication Load Module support (continued)

User attribute Local NIS/NIS+ LDAP PKI Kerberos
nofiles_hard Yes No Yes No No
password Yes Yes Yes No No
pgid Yes Yes No No No
pgrp Yes Yes Yes No No
projects Yes No Yes No No
pwdchecks Yes No Yes No No
pwdwarntime Yes No Yes No No
rcmds Yes No Yes No No
registry Yes No No No No
rlogin Yes No Yes No No
roles Yes No Yes No No
rss Yes No Yes No No
rss_hard Yes No Yes No No
screens Yes No Yes No No
shell Yes Yes Yes No No
spassword Yes Yes Yes No No
stack Yes No Yes No No
stack_hard Yes No Yes No No
su Yes No Yes No No
sugroups Yes No Yes No No
sysenv Yes No Yes No No
SYSTEM Yes No No No No
time_last_login Yes No Yes No No
time_last_unsuccessful_login Yes No Yes No No
tpath Yes No Yes No No
tty_last_login Yes No Yes No No
tty_last_unsuccessful_login Yes No Yes No No
ttys Yes No Yes No No
umask Yes No Yes No No
unsuccessful_login_count Yes No Yes No No
unsuccessful_login_times Yes No Yes No No
usrenv Yes No Yes No No
Table 8. Group attributes and Authentication Load Module support

User attribute Local NIS/NIS+ LDAP PKI Kerberos
admin Yes No Yes No No
adms Yes No Yes No No
dce_export Yes No Yes No No
id Yes Yes Yes No No
primary Yes No Yes No No

Security

69

Table 8. Group attributes and Authentication Load Module support (continued)

User attribute Local NIS/NIS+ LDAP PKI Kerberos
projects Yes No Yes No No
screens Yes No Yes No No
users Yes Yes Yes No No

Disk quota system overview
The disk quota system allows system administrators to control the number of files and data blocks that can
be allocated to users or groups.

Disk quota system concept:

The disk quota system, based on the Berkeley Disk Quota System, provides an effective way to control
the use of disk space. The quota system can be defined for individual users or groups, and is maintained
for each journaled file system (JFS and JFS2).

The disk quota system establishes limits based on the following parameters that can be changed with the
command for JFS file systems and the command for JFS2 file systems:

* User’s or group’s soft limits

» User’s or group’s hard limits

* Quota grace period

The soft limit defines the number of 1 KB disk blocks or files the user or group will be allowed to use
during normal operations. The hard limit defines the maximum amount of disk blocks or files the user can
accumulate under the established disk quotas. The quota grace period allows the user to exceed the soft
limit for a short period of time (the default value is one week). If the user fails to reduce usage below the
soft limit during the specified time, the system will interpret the soft limit as the maximum allocation
allowed, and no further storage is allocated to the user. The user can reset this condition by removing
enough files to reduce usage below the soft limit.

The disk quota system tracks user and group quotas in the quota.user and quota.group files that reside
in the root directories of file systems enabled with quotas. These files are created with the quotacheck
and edquota commands and are readable with the quota commands.

Recovering from over-quota conditions:
You can recover from over-quota conditions by reducing file system usage.

To reduce file system usage when you have exceeded quota limits, you can use the following methods:

« Stop the current process that caused the file system to reach its limit, remove surplus files to bring the
limit below quota, and retry the failed program.

» If you are running an editor such as vi, use the shell escape sequence to check your file space, remove
surplus files, and return without losing your edited file. Alternatively, if you are using the C or Korn
shells, you can suspend the editor with the Ctrl-Z key sequence, issue the file system commands, and
then return with the fg (foreground) command.

» Temporarily write the file to a file system where quota limits have not been exceeded, delete surplus
files, and then return the file to the correct file system.

Setting up the disk quota system:

Typically, only those file systems that contain user home directories and files require disk quotas.

70 AIX Version 6.1 Security

Consider implementing the disk quota system under the following conditions:
* Your system has limited disk space.

* You require more file-system security.

* Your disk-usage levels are large, such as at many universities.

If these conditions do not apply to your environment, you might not want to create disk-usage limits by
implementing the disk quota system.

The disk quota system can be used only with the journaled file system.

Note: Do not establish disk quotas for the /tmp file system.

To set up the disk quota system, use the following procedure:

1.
2.

3.

5.

Log in with root authority.
Determine which file systems require quotas.

Note: Because many editors and system utilities create temporary files in the /tmp file system, it
must be free of quotas.

Use the chfs command to include the userquota and groupquota quota configuration attributes in the
letc/filesystems file. The following example uses the chfs command to enable user quotas on the
/home file system:

chfs -a "quota = userquota" /home

To enable both user and group quotas on the /home file system, type:
chfs -a "quota = userquota,groupquota” /home

The corresponding entry in the /etc/filesystems file is displayed as follows:

/home:

dev = /dev/hdl

vfs = jfs

Tog = /dev/hd8

mount = true

check = true

quota = userquota,groupquota
options = rw

Optionally, specify alternate disk quota file names. The quota.user and quota.group file names are
the default names located at the root directories of the file systems enabled with quotas. You can
specify alternate names or directories for these quota files with the userquota and groupquota
attributes in the /etc/filesystems file.

The following example uses the chfs command to establish user and group quotas for the /home file
system, and names the myquota.user and myquota.group quota files:

chfs -a "userquota = /home/myquota.user" -a "groupquota = /home
/myquota.group" /home

The corresponding entry in the /etc/filesystems file is displayed as follows:

/home:

dev = /dev/hdl

vfs = jfs

Tog = /dev/hd8

mount = true

check = true

quota = userquota,groupquota
userquota = /home/myquota.user
groupquota = /home/myquota.group
options = rw

If they are not previously mounted, mount the specified file systems.

Security 71

6. Set the desired quota limits for each user or group. Use the command to create each user or
group’s soft and hard limits for allowable disk space and maximum number of files.

The following example entry shows quota limits for the davec user:

Quotas for user davec:
/home: blocks in use: 30, 1imits (soft = 100, hard = 150)
inodes in use: 73, Timits (soft = 200, hard = 250)

This user has used 30 KB of the maximum 100 KB of disk space. Of the maximum 200 files, davec
has created 73. This user has buffers of 50 KB of disk space and 50 files that can be allocated to
temporary storage.

When establishing disk quotas for multiple users, use the -p flag with the edquota command to
duplicate a user’s quotas for another user.

To duplicate the quotas established for user davec for user nanc, type:
edquota -p davec nanc

7. Enable the quota system with the command. The quotaon command enables quotas for a
specified file system, or for all file systems with quotas (as indicated in the /etc/filesystems file) when
used with the -a flag.

8. Use the command to check the consistency of the quota files against actual disk usage.

Note: Do this each time you first enable quotas on a file system and after you reboot the system. The
quotacheck command takes longer to run on a JFS filesystem than on a JFS2 filesystem of the
same size. If quotas are enabled all the time prior to reboot, it is not necessary to run the
quotacheck command on the filesystem during reboot.

To enable this check and to turn on quotas during system startup, add the following lines at the end of
the /etc/rc file:
echo " Enabling filesystem quotas "

/usr/sbin/quotacheck -a
/usr/sbin/quotaon -a

Role Based Access Control (RBAC)

System administration is an important aspect of daily operations, and security is an inherent part of most
system administration functions. Also, in addition to securing the operating environment, it is necessary to
closely monitor daily system activities.

Most environments require that different users manage different system administration duties. It is
necessary to maintain separation of these duties so that no single system management user can
accidentally or maliciously bypass system security. While traditional UNIX system administration cannot
achieve these goals, Role Based Access Control (RBAC) can.

Traditional UNIX administration limitations
RBAC resolves some traditional UNIX system administration issues. These issues include the following:

root administrative account

Traditionally, AIX and other UNIX operating systems have defined a single system administrator account
named root (normally designated with a UID of 0) that can perform all privileged system administration
tasks on the system. Reliance on a single user for all system administration tasks is a problem in regard to
the separation of duties. While a single administrative account is acceptable in certain environments, many
environments require multiple administrators, with each administrator responsible for different system
administration tasks.

In order to share the administration responsibilities with multiple users of the system, the historical practice

was to either share the password of the root user or create another user with the same UID as the root
user. This method of sharing system administration duties presents security issues, since each

72 AIX Version 6.1 Security

administrator has complete system control and there is no method to limit the operations that an
administrator can perform. Since the root user is the most privileged user, root users can perform
unauthorized operations and can also erase any audits of these activities, making it impossible to track
these administrative actions.

Privilege escalation through SUID

Access control in UNIX operating systems has historically been performed by using the UID associated
with the process to determine access. However, the root UID of 0 has traditionally been allowed to bypass
permission checks. Therefore, a process that is running as the root user can pass any access checks and
perform any operation. This is a security issue for the UNIX concept of setuid applications.

The setuid concept allows a command to run under a different identity then the user who invoked the
command. This is necessary when a normal user needs to accomplish a privileged task. An example of
this is the AIX passwd command. Since a normal user does not have access to the file that stores user
passwords, an additional privilege is needed to change the user’s password, so the passwd command is
setuid to the root user. When a normal user runs the passwd command, it appears to the operating
system that the root user is accessing the file and the access is granted.

While this concept does provide the desired functionality, it carries with it an inherent risk. Since the setuid
program is effectively running in the root context, if an attacker successfully takes over the program before
it exits, then the attacker has all of the powers of root and can then bypass all operating system access
checks and perform all operations. A better solution is to only assign a subset of the root user privileges to
the program so that the [‘Least privilege principal” on page 74| is followed and the threat is mitigated.

Elements of RBAC

RBAC allows the creation of roles for system administration and the delegation of administrative tasks
across a set of trusted system users. In AIX, RBAC provides a mechanism through which the
administrative functions typically reserved for the root user can be assigned to regular system users.

RBAC accomplishes this by defining job functions (roles) within an organization and assigning those roles
to specific users. RBAC is essentially a framework that allows for system administration through the use of
roles. Roles are typically defined with the scope of managing one or more administrative aspects of the
environment. Assigning a role to a user effectively confers a set of permissions or privileges and powers to
the user. For example, one management role might be to manage the filesystems, while another role might
be to enable the creation of user accounts.

RBAC administration has the following advantages as compared to traditional UNIX administration:
» System administration can be performed by multiple users without sharing account access.

» Security isolation through granular administration since each administrator does not need to be granted
more power than is required.

» Allows for enforcing a least-privilege security model. Users and applications are only granted necessary
privileges when required, thereby reducing the impact a system attacker can have.

» Allows for implementing and enforcing company-wide security policies consistently in regard to system
management and access control.

* A role definition can be created once and then assigned to users or removed as needed when users
change job functions.

The RBAC framework is centered on the following three core concepts:
* Authorizations

* Roles

* Privileges

Together, these concepts allow an RBAC system to enforce the least-privilege principle.

Security 73

Authorizations:

An authorization is a text string associated with security-related functions or commands. Authorizations
provide a mechanism to grant rights to users to perform privileged actions and to provide different levels of
functionality to different classes of users.

When a command governed by an authorization is run, access is granted only if the invoking user has the
required authorization. An authorization can be thought of as a key that is able to unlock access to one or
more commands. Authorizations are not directly assigned to users. Users are assigned roles, which are a
collection of authorizations.

Roles:

Roles allow a set of management functions in the system to be grouped together. Using the analogy that
an authorization is a key, a role can be thought of as a key ring that can hold multiple authorizations.
Authorizations may be directly assigned to a role or indirectly assigned through a sub-role. A sub-role is
simply another role that a given role inherits the authorizations from.

A role by itself does not grant the user any additional powers, but instead serves as a collection
mechanism for authorizations and a facility for assigning authorizations to a user. Defining a role and
assigning the role to a user determines the system administration tasks that can be performed by the user.
After a role has been defined, the role administrator can assign the role to one or more users to manage
the privileged operations that are represented by the role. Additionally, a user can be assigned multiple
roles. Once a role has been assigned to a user, the user can use the authorizations assigned to the role to
unlock access to administrative commands on the system.

Organizational policies and procedures determine how to allocate roles to users. Do not assign too many
authorizations to a role or assign a role to too many users. Most roles should only be assigned to
members of the administrative staff. Just as the powers of root have historically only been given to trusted
users, roles should only be assigned to trusted users. Grant roles only to users with legitimate needs and
only for the duration of the need. This practice reduces the chances that an unauthorized user can acquire
or abuse authorizations.

Privileges:

A privilege is a process attribute that allows the process to bypass specific system restrictions and
limitations.

The privilege mechanism provides trusted applications with capabilities that are not permitted to untrusted
applications. For example, privileges can be used to override security constraints, to permit the expanded
use of certain system resources such as memory and disk space, and to adjust the performance and
priority of a process. A privilege can be thought of as an ability that allows a process to overcome a
specific security constraint in the system.

Authorizations and roles are user-level tools that configure a user’s ability to access privileged operations.
On the other hand, privileges are the restriction mechanism used in the kernel to determine if a process is
allowed to perform a particular action.

Privileges are associated with a process and are typically acquired through the invocation of a privileged
command. Because of these associated privileges, the process is eligible to perform the related privileged
operation. For example, if a user uses a role that has an authorization to run a command, a set of
privileges is assigned to the process when the command is run.

Least privilege principal:

74 AIX Version 6.1 Security

In an operating system, some operations are privileged and permission to perform these operations is
restricted to authorized users. These privileged operations usually include tasks such as rebooting the
system, adding and modifying filesystems, adding and deleting users, and modifying the system date and
time.

In traditional UNIX systems, a process or user can be in normal mode or privileged mode (also called
superuser or root). A process running as root can execute any command and perform any system
operation, while a normal user cannot perform privileged operations. A traditional UNIX system has a very
coarse all-or-nothing concept of privilege and faces the security threat of the overprivileged administrator.

The traditional UNIX approach where a single privileged mode grants all access to the system is too
coarse to meet the requirements of highly secured systems. A system designed to be secure requires that
each process be granted the most restrictive set of privileges needed to perform a task. Privileges provide
the advantage that only processes that require certain privileges need to be granted these privileges. This
restriction of privileges is known as the principle of least privilege and is useful in limiting damage to the
system due to careless or malicious administrators and operators.

For example, changing a password requires certain privileges in order to access files that are not typically
accessible by a normal user. If users always had these privileges, they could also perform other actions
that are undesirable from a security standpoint. Therefore, the required privileges are granted only to the
passwd command and not to all users.

In an RBAC environment, users themselves do not have any inherent privileges. Users are simply allowed
to run certain commands which are then granted privileges. If a user was instead directly granted
privileges, they could use the privileges at any time and in any manner wanted. Limiting privileges to
individual commands allows the context in which the privileges are applied to be constrained. This leads to
enhanced security because if a trusted application is exploited by an attacker, the attacker will have a
limited set of privileges instead of the whole powers of root with all privileges.

Trusted applications should be carefully inspected before they are granted privileges. In addition, privileges
should only be granted when and where necessary for the application. Trusted applications are just like
any other program, the only difference being that trusted applications are allowed to perform actions that
are denied to untrusted applications.

AIX RBAC
AIX has provided a limited RBAC implementation since AlX 4.2.1.

Beginning with AIX 6.1, a new implementation of RBAC provides for a very fine granular mechanism to
segment system administration tasks. Since these two RBAC implementations differ greatly in functionality,
the following terms are used:

Legacy RBAC Mode
The historic behavior of AlX roles that was introduced in AlX 4.2.1

Enhanced RBAC Mode
The new implementation introduced with AlX 6.1

Both modes of operation are supported. However, Enhanced RBAC Mode is the default on a newly
installed AIX 6.1 system. The following sections provide a brief discussion of the two modes and their
differences, and information on configuring the system to operate in the desired RBAC mode.

Legacy RBAC Mode:

AlIX 4.2.1 provided limited RBAC functionality that allowed non-root users to perform certain system
administration tasks.

Security 75

In this RBAC implementation, when a given administrative command is invoked by a non-root user, the
code in the command determines if the user is assigned a role with the required authorization. If a match
is found, the command execution continues. If not, the command fails with an error. It is often required that
the command being controlled by an authorization be setuid to the root user for an authorized invoker to
have the necessary privilege to accomplish the operation.

This RBAC implementation also introduced a predefined but user-expandable set of authorizations that
can be used to determine access to administrative commands. Additionally, a framework of administrative
commands and interfaces to create roles, assign authorizations to roles, and assign roles to users is also
provided.

While this implementation provides the ability to partially segment system administration responsibilities, it
functions with the following constraints:

1. The framework requires changes to commands and applications to be RBAC-enabled.
2. Predefined authorizations are not granular and the mechanisms to create authorizations are not robust.

3. Membership in a certain group is often required as well as having a role with a given authorization in
order to run a command.

4. Separation of duties is difficult to implement. If a user is assigned multiple roles, there is no way to act
under a single role. The user always has all of the authorizations for all of their roles.

5. The least privilege principle is not adopted in the operating system. Commands must typically be SUID
to the root user.

Legacy RBAC Mode is supported for compatibility, but Enhanced RBAC Mode is the default RBAC mode.
Enhanced RBAC Mode is preferred on AlX.

Enhanced RBAC Mode:

A more powerful implementation of RBAC is provided with AIX 6.1. Applications that require administrative
privileges for certain operations have new integration options with the enhanced AIX RBAC infrastructure.

These integration options center on the use of granular privileges and authorizations and the ability to
configure any command on the system as a privileged command. Features of the enhanced RBAC mode
will be installed and enabled by default on all installations of AIX beginning with AIX 6.1.

The enhanced RBAC mode provides a configurable set of authorizations, roles, privileged commands,
devices and files through the following RBAC databases listed below. With enhanced RBAC, the
databases can reside either in the local filesystem or can be managed remotely through LDAP.

» Authorization database

* Role database

* Privileged command database
» Privileged device database

* Privileged file database

Enhanced RBAC mode introduces a new naming convention for authorizations that allows a hierarchy of
authorizations to be created. AlX provides a granular set of system-defined authorizations and an
administrator is free to create additional user-defined authorizations as necessary.

The behavior of roles has been enhanced to provide separation of duty functionality. Enhanced RBAC
introduces the concept of role sessions. A role session is a process with one or more associated roles. A
user can create a role session for any roles that they have been assigned, thus activating a single role or
several selected roles at a time. By default, a new system process does not have any associated roles.
Roles have further been enhanced to support the requirement that the user must authenticate before
activating the role to protect against an attacker taking over a user session since the attacker would then
need to authenticate to activate the user’s roles.

76 AIX Version 6.1 Security

The introduction of the privileged command database implements the least privilege principle. The
granularity of system privileges has been increased, and explicit privileges can be granted to a command
and the execution of the command can be governed by an authorization. This provides the functionality to
enforce authorization checks for command execution without requiring a code change to the command
itself. Use of the privileged command database eliminates the requirement of SUID and SGID applications
since the capability of only assigning required privileges is possible.

The privileged device database allows access to devices to be governed by privileges, while the privileged
file database allows unprivileged users access to restricted files based on authorizations. These databases
increase the granularity of system administrative tasks that can be assigned to users who are otherwise
unprivileged.

The information in the RBAC databases is gathered and verified and then sent to an area of the kernel
designated as the Kernel Security Tables (KST). It is important to note that the state of the data in the KST
determines the security policy for the system. Entries that are modified in the user-level RBAC databases
are not used for security decisions until this information has been sent to the KST with the
command.

Configuring the RBAC mode:

The RBAC mode is controlled by a system-wide configuration variable in the kernel. This variable specifies
whether Enhanced RBAC Mode is enabled or disabled.

Enhanced RBAC mode is enabled by default on AIX 6.1. You can run the chdev command on the sys0
device and specify a value of false for the enhanced_RBAC attribute to disable enhanced RBAC mode
and revert to legacy RBAC mode. You must reboot the system for the change to the enhanced_RBAC
attribute to take affect. To enable the enhanced RBAC mode, the enhanced_RBAC attribute should be set
to true. Programmatically, the mode can also be set or queried through the sys_parm() system call.

Run the following command on the system to retrieve the current RBAC mode:
Isattr -E -1 sys@ -a enhanced_RBAC

You can disable the enhanced RBAC mode by running the following command and then rebooting the
system:

chdev -1 sysO -a enhanced_RBAC=false

In a WPAR environment, the RBAC mode can only be configured from the global system and will uniformly
affect the global as well as all of the WPARs on the system.

Legacy RBAC mode and enhanced RBAC mode comparison:

Existing and new interfaces have been modified to check the system configuration and run the new code
or follow the old behavior.

In legacy RBAC mode, only authorizations that are checked within the code of the command itself are
enforced. The Kernel Security Tables (KST) do not have any affect on command execution or authorization
checks. Determination of whether a user has an authorization follows the legacy RBAC mode behavior of
retrieving all the user’s authorizations and checking for a match. New features such as the swrole
command and the default_roles and auth_mode attributes are not available in legacy RBAC mode.
However, the new privileges, authorizations, and management commands for authorizations are supported
in legacy RBAC mode.

Security 77

The following table lists some of the differences between the legacy and enhanced RBAC modes.

Table 9.

Feature Legacy RBAC Enhanced RBAC

Role activation All of a user’s roles are always active |By default, roles are not active until
assumed explicitly via the swrole
command

default_roles attribute Not available Supported

swrole command Not available Supported

Role management commands Supported Supported

Authorization management Supported Supported

commands

Authorization hierarchy Each authorization is independent. No | Supports concept of authorization

hierarchy functionality. hierarchy where authorizations can be

parents of other authorizations

Authorization checks Only enforced if command itself Enforced through Privileged

checks for authorization Command Database and/or by the

command itself

Granular Privileges Supported Supported

pvi command Not available Supported

Kernel Security Tables Not available Supported

RBAC Database Location Local files Local files or LDAP

Using Enhanced RBAC
System administrators should be knowledgeable in the following areas in order to effectively use
Enhanced RBAC.

RBAC Authorizations:

Authorizations are an important part of Role Based Access Control (RBAC). The operating system uses
authorization strings to determine eligibility before performing a privileged operation. Related checks can
be performed from within the code explicitly or can be done by the loader when running protected
privileged executables.

The naming of authorization strings indicates the privileged operation that they represent and control. The
AIX naming convention for authorizations supports a hierarchical structure that is denoted by the
authorization’s textual name. AIX authorization strings use a dotted notation format to describe the
authorization hierarchy. For example, the authorization to create new file systems is aix.fs.manage.create.
If this authorization is included in a role, then a user who is assigned this role can create AIX filesystems.
If the parent authorization aix.fs.manage is included in a role, then a user who is assigned this role can
perform other file system management tasks as well as create filesystems.

AIX RBAC differentiates between system-provided authorizations (system-defined authorizations) and
authorizations that are created after installation (user-defined authorizations).

System-defined authorizations:
AlX provides a predefined and non-modifiable set of authorizations. These are known as System-Defined

Authorizations. These authorizations are associated with various privileged AIX operations; the association
is specified in the Privileged Command Database.

78 AIX Version 6.1 Security

At the top of the system-defined authorization hierarchy is the aix authorization. This authorization is the
parent of all other system-defined authorizations. Granting this authorization to a role grants every
system-defined authorization to the role. To display the complete set of AIX system-defined authorizations
and a brief description of each authorization, run the following command:

Tsauth —f —a description ALL_SYS

The output of the above command shows that the list of system-defined authorizations is a multi-level
hierarchy. For example, the aix authorization has several immediate children. Each of those children is
then a parent of another hierarchy. The aix.fs authorization includes multiple child authorizations, including
aix.fs.manage, which in turn includes multiple authorizations such as aix.fs.manage.change, and
aix.fs.manage.create.

User-defined authorizations:

In addition to system-defined authorizations, AIX RBAC allows system administrators to define their own
custom authorizations in the authorization database (/etc/security/authorizations). These are known as
user-defined authorizations.

A system administrator can add, modify, or delete user-defined authorizations. For example, a system
administrator can allow some users to run a privileged command by creating a user-defined authorization
and then associating this authorization with the command and granting the authorization to a role that is
assigned to these users.

User-defined authorizations support the same hierarchy concept as system-defined authorizations.
However, there are restrictions placed on the naming of AIX user-defined authorizations.

» User-defined authorizations must be defined beneath a new top-level parent. In other words,
user-defined authorizations cannot be children of system-defined authorizations (aix).

* An authorization name can contain a maximum of 63 printable characters.

* An authorization’s parent hierarchy can contain a maximum of eight levels.

* An authorization can have any number of immediate children, but can only have one immediate parent.
Two independent authorizations cannot have the same immediate child.

Since the hierarchy does not allow an element to have multiple direct parents, you cannot create a
user-defined authorization that is a parent of an existing system-defined authorization. Therefore, an
attempt to create an authorization named aix.custom will fail and the creation of an authorization named
custom.aix will result in a brand new authorization and does not function as the parent of the aix
system-defined authorization.

The following syntax is suggested when creating user-defined authorizations to avoid conflicts between
authorization names across multiple software components:

vendor_name.product_name.function.function1.function2...

vendor_name
Identifies the name of the vendor of the software module.

product_name
High-level product name of the product that is managed with RBAC.

function, function1, function2 ...
These strings represent the functions that are being managed with RBAC. These strings also
provide a hierarchical representation of how these functions are organized.

For example, ibm.db2.manage could potentially represent the management aspects of the IBM DB2

database suite. As mentioned previously, the vendor_name string aix is reserved for AIX use and is not
allowed for user-defined authorizations.

Security 79

There are several authorization management commands that system administrators can use to list, create,
modify, and remove user-defined authorizations. User-defined authorizations can be created with the
command, modified with the command, removed by thecommand, and displayed
with the command. To display all of the user-defined system authorizations and a brief description
of each, run the following command:

Isauth —f —a description ALL_USR

Before creating a user-defined authorization, consider the following issues:

« Would it be appropriate to use an existing system-defined authorization instead of creating a new
user-defined authorization?

* Does the new authorization belong beneath an existing user-defined authorization hierarchy or is it the
first authorization of a new hierarchy?

 |If this is a new hierarchy, what is the structure?
* What is the text description of the authorization?
» |s language translation of the authorization description required?

» Is there any reason to specify a certain authorization ID when creating the authorization? It is
recommended that the mkauth command be used to generate the authorization ID.

After considering these issues, perform the following steps to create the authorization:
1. If language translation is required, create or add the description to a message catalog.

2. Use the mkauth command to create all parent authorizations in the hierarchy if these do not already
exist.

3. Use the mkauth command to create the desired authorization. Specify the id attribute with the
command if a specific value is required.

Legacy authorization migration:

Prior toAIX Version 6.1 the operating system had a limited, predefined set of authorizations that were
recognized by the operating system. These authorizations were not defined in any file on the system, but
could be readily assigned to roles. To support these legacy authorizations within the new AlX Version 6.1
RBAC framework, these legacy authorizations are defined as user-defined authorizations and are provided
by default in the authorization database.

Since AIX is moving to a new authorization naming convention, any checks for old authorization names in
AIX have been modified to additionally check for the new corresponding authorization and allow access if
either authorization exists for the process. The following table lists the legacy predefined authorizations
and the corresponding new system-defined authorizations.

Existing AIX Authorization Corresponding New Authorization
Backup aix.fs.manage.backup

Diagnostics aix.system.config.diag
DiskQuotaAdmin aix.fs.manage.quota

GroupAdmin aix.security.group

ListAuditClasses aix.security.audit.list

PasswdAdmin

aix.security.passwd

PasswdManage aix.security.passwd.normal
UserAdmin aix.security.user

UserAudit aix.security.user.change
RoleAdmin aix.security.role

Restore aix.fs.manage.restore

80 AIX Version 6.1 Security

RBAC roles:

Roles are the mechanism used to assign authorizations to a user and to group a set of system
administration tasks together. An AIX role is primarily a container for a collection of authorizations.

AlX supports the direct assignment of authorizations to a role or the indirect assignment of authorizations
through a sub-role. A sub-role can be specified for a role in the rolelist attribute of a role. Configuring a
role to have a designated sub-role effectively assigns all of the authorizations in the sub-role to the role.

Assigning a role to a user allows the user to access the role and use the authorizations that are contained
in the role. A system administrator can assign a role to multiple users and can assign multiple roles to a
user. A user who has been assigned multiple roles can activate more than one role (up to a maximum of
eight roles) simultaneously if necessary to perform system management functions.

AIX provides a set of predefined roles for system management. However it is expected that customers will
need to create their own custom roles or modify the existing predefined roles. Several role-management
commands are available to list, create, modify, and remove AIX roles. Roles can be created with the

command, modified with the command, removed with the command, and displayed
with the command.

When creating a new AIX role, consider the following issues:
* What will be the name of the role?

* The role name is a text string, but should provide some insight into the role’s capabilities. Role names
can contain a maximum of 63 printable characters.

» What authorizations are required for the role? Consider whether authorizations should be directly
assigned to the role or indirectly assigned to the role through a sub-role.

» Should the user be required to authenticate when activating the role?
Activating a role:

By default in AIX Version 6.1 with enhanced RBAC, when a user authenticates to the system, the user’s
session does not have any associated roles or authorizations. In order to associate roles to the session,
the user must invoke a separate authentication command (the swrole command) to switch to the role or
roles.

The user can only activate roles that have previously been assigned to the user. By default, a user is
required to authenticate as themselves when entering a role session or when adding a role to their
session. Roles can optionally be designated to not require authentication with the auth_mode role
attribute.

Switching to a new role session creates a new shell (session) without inheriting roles from the prior
session. This is accomplished by creating a new process shell for the role and assigning the new role ID
(RID) to the process. Creation of the new session is similar to using the su command except in this case
only the role ID of the process is changed and not characteristics such as the UID or GID. The
command allows the user to create a role session composed of a single role or multiple roles. There is no
restriction to prevent a user from switching to a new role session from the current role session. Since the
new session is a new process, the new session will not inherit any roles from the prior session. In order to
restore the previous session, the user must exit the current role session. The roles assumed in a session
(the active role set) can be listed by running the command in the session. An administrator can
also use the rolelist command to list the active role set for a given system process.

A user can optionally be assigned a default set of roles with the new default_roles user attribute. This
attribute is intended for situations where processes that are created on behalf of a user always need to be

Security 81

associated with a given set of roles, for example, the cron command. The cron facility runs in the
background and runs commands as the defined user. It is possible that some of the commands that are
run may require authorizations. This requires the ability to designate that a set of roles always be active
for a user ID since there is no mechanism for the cron command to later acquire these roles. The
default_roles attribute can be set to include up to eight role names or the special value of ALL. Setting
default_roles=ALL assigns all of the user’s roles to the session. If the user has been assigned more then
eight roles, then only the first eight roles will be enabled for the session.

Maximum number of roles per session:

In enhanced RBAC, a system administrator can configure on a system-wide basis the maximum number of
roles that a user can activate in a given role session. By default, a user can activate up to eight roles in a
session.

Certain environments may require a greater separation of duties in which a user can only activate a single
role at a time. In these environments, the maxroles attribute of the usw stanza in the
Yetc/security/login.cfg| file can be modified to restrict the maximum allowed number of roles per session.
The maxroles attribute can be set to a value in the range of 1 to 8 to specify the maximum allowable
number of roles per session.

To display the current value of the restriction on the number of roles per session, run the following
command:

1ssec —f /etc/security/login.cfg —s usw —a maxroles

To modify the system to allow a user to only activate a single role at a time, run the following command:
chsec —f /etc/security/login.cfg —s usw —a maxroles=1

Modification of the maxroles attribute value is effective immediately for any new role sessions that are
created and does not require a system reboot. Role sessions that existed prior to the modification of the
value are not affected by the change. The enforcement of the maximum number of roles per session is
performed at session initiation.

Predefined roles:

A predefined set of roles is defined in the local role database (/etc/security/roles) on a new AIX Version
6.1 installation. This set of roles is intended to group typical administrative responsibilities.

This set of roles serves as a suggested means of dividing administrative duties. Role administrators can
modify or remove these roles or create new roles as needed for their environment. The following lists the
provided roles and a brief description of each role’s abilities.

Role name Role description

isso Information System Security Officer. An ISSO is
responsible for creating and assigning roles and is
therefore the most powerful role on the system. Some
ISSO responsibilities include:

» Establishing and maintaining security policy
» Setting passwords for users
» Network configuration

¢ Device administration

82 AIX Version 6.1 Security

Role name Role description

sa System Administrator. The SA role provides functionality
for daily administration and is responsible for:

» User administration (except password setting)
* File system administration

» Software installation update

* Network daemon management

» Device allocation

SO System Operator. The SO role provides functionality for
day to day operations and is responsible for:

» System shutdown and reboot
» File system backup, restore and quotas
» System error logging, trace and statistics

* Workload administration

Role migration:

If an AIX system prior to AIX Version 6.1 is being updated to an AIX enhanced RBAC level via a migration
install, migration of the /etc/security/roles file attempts to update the file for the new functionality while
maintaining the current role abilities.

Role definitions in the file are preserved and are simply modified to include a unique role ID to allow the
role to function properly in the new framework. Any authorizations in the [/etc/security/roles| file that are
not known predefined authorizations are considered user-defined authorizations. During migration, these
authorization names are added as entries in the local [etc/security/authorizations| authorization database.
In addition to migration of the old role definitions, the new predefined roles are appended to the file. After
migration, the system administrator must verify that the authorizations and roles are defined as needed for
the environment.

RBAC privileges:

The enhanced RBAC framework relies heavily on system privileges to allow non-privileged users to
perform privileged tasks. A privilege is a mechanism used to grant a process augmented functionality in
system calls.

The concept of privileges is primarily a kernel-level construct since the definition and most of the checking
occurs in the kernel. However, user-level interfaces are provided to handle the assignment of privileges to
commands, devices, and processes.

It is important to note the difference between privileges and authorizations. Both privileges and
authorizations are used to control certain allowable exceptions to system security policy. The defining
difference between privileges and authorizations is that privileges are associated with specific processes,
while authorizations are associated with users through roles. Authorizations reside with a role and the user
who has the role, and do not depend on the program that is being run. Privileges reside with the program
and provide the mechanism to fine tune the system security policy. Because of these associated
privileges, the process is eligible to perform the related privileged operation.

Privileges are defined in the AIX kernel as individual bits of a bit-mask which enforce access control over
privileged operations. Over 100 privileges are provided with AIX, providing for a very fine granular control
of privileged operations. When determining access in a system call, the kernel determines if the process
has the required associated privilege bit and then grants or denies the request.

Security 83

Privileges are assigned to command invocations through the privileged command database and privileges
are used to control access to devices through the privileged device database.

Privilege naming and hierarchy:
AIX privileges cannot be created, modified or deleted by a system administrator.

The list of available privileges and a brief description of the privilege can be displayed on a system by
running the following command:

Ispriv -v

The privileges provided on AIX are listed in[AIX privileges] All AIX privileges have a textual representation
of the privilege bit that begins with PV_. The naming convention used after the PV_ prefix denotes the
hierarchical relationship between privileges. For example, the auditing privilege PV_AU_ is the parent of
privileges PV_AU_ADD, PV_AU_ADMIN, PV_AU_READ, PV_AU_WRITE and PV_AU_PROC. When
checking for privilege, the system first determines if the process has the lowest privilege needed and then
proceeds up the hierarchy, checking for the presence of a more powerful privilege. The PV_ROOT
privilege is a special privilege that represents the parent of all privileges except PV_SU_. A process that is
assigned the PV_ROOT privilege behaves as if it has been assigned every privilege on the system except
PV_SU._.

Process privilege sets:

Multiple sets of privileges are defined in the kernel to provide varied controls for privileged operations.
Multiple privilege sets allow the operating system to enforce dynamic privilege controls and allow
applications to manage least-privilege principles.

Privileges are associated with a process through the following privilege sets:

Limiting Privilege Set (LPS)
Defines the hard limit on privileges for a given process. No privilege escalation in the system can
raise process privileges beyond this value. This means that a process cannot acquire any more
privileges than this value using any of the defined system interfaces. In other words, the process is
restricted to these privileges at any point in time. This also means that the rest of the privilege sets
will always be subsets of LPS. Even though LPS cannot be expanded, every process will have the
right to reduce the LPS. However, once the LPS is reduced, it cannot be expanded back to its
original value. The lowering of the LPS allows a process to restrict the boundaries in regard to
associated privileges. For example, a process might reduce the LPS just before running a custom
user-provided program. By default, all of the privileges available on the system are set in the LPS
for a process.

Maximum Privilege Set (MPS)
The full set of privileges that the process is authorized to use. The MPS can include any privilege
in the LPS, but cannot exceed the LPS. The MPS can change during the lifetime of a process for
many reasons. The following are some of the reasons:

* When the current process executes another privileged command and then gains related
additional privileges

 If the process has the right privilege, then it can expand the MPS programmatically in a
dynamic manner

Effective Privilege Set (EPS)
The list of privileges which are currently active for the process. The EPS is always a subset of the
process’ MPS and is used by the kernel to perform access checks in regard to privileged
operations. The EPS can be manipulated by the process and can equal the MPS, but cannot
exceed the MPS. Dynamic manipulation of the EPS can be performed by the process to enforce
least-privilege principles. For example, user-space code can potentially raise the audit privilege bit

84 AIX Version 6.1 Security

rbac_aix_privs.htm

in the EPS using the |priv_rais€| API before making an audit-related system call or kernel call. The
privilege can then be lowered with the|priv_|owe[| API when the audit call returns.

Inheritable Privilege Set (IPS)
Privileges which are passed from a parent process to its child processes’ MPS and EPS. The IPS
can include any privilege in the LPS, but cannot exceed the LPS. The IPS can be set in a process
in the following ways:

 If the process has the proper privilege, it can expand the IPS programmatically through the
setppriv system call

* When a privileged command is run, the privileges specified in the inheritprivs attribute that is
associated with the command are assigned into the IPS.

Used Privilege Set (UPS)
Denotes the privileges that have been used for access checks during the life of the process. The
UPS can be used to determine the privileges required by the process. When the kernel checks if a
process has a given privilege, it stores a successful check in the UPS for the privilege.

Workload Partition Privilege Set (WPS)
A system WPAR can be restricted to not allow all of the privileged operations that are allowed in a
global WPAR. The privileged operations allowed in a system WPAR can be controlled through the
WPS. The global root can assign a limited set of privileges to a WPAR using WPS. The WPS can
be specified in the /etc/wpar/secattrs configuration file or during the start of a WPAR using the
Yusr/sbin/startwpar] command. All processes running in a WPAR have their LPS equal to their
WPS.

A system administrator can use administrative commands to list and modify the various privilege sets of a
process. The [lssecatt] command can be used to list the LPS, MPS, EPS, IPS, and UPS. The
command can be used to modify the LPS, MPS, EPS, and IPS. The UPS cannot be modified with the
setsecattr command since the UPS is a read-only attribute.

Privileged command database:

Authorizations, roles, and privileges allow granular security controls to be implemented. However, the
exploitation of RBAC by various system operations allows an RBAC security policy to be enforced.

While historically some AIX commands directly checked for authorizations, it required that the executable
code itself be modified to perform these checks. The enhanced RBAC mode provides a framework to
enforce authorization checks and grant associated privileges through the privileged command database
without requiring changes to system executables.

The privileged command database grants access and powers to users for commands they would not
otherwise be able to run or for which they would not have the proper privilege to perform the task. The
database saves the authorization information for a particular command as well as the privileges that are
granted to the process if authorization checks succeed. When the database is stored locally, it exists in the
Vetc/security/privemds|file and contains stanzas of information in the form of command-versus-security
attributes. The following are a few of the key attributes in this database (for a full description of all of the
attributes, see the /etc/security/privemds file).

accessauths
List of access authorizations that protect the execution of the command. A user with any one of
the listed authorizations is allowed to run the command and perform some or all of the privileged
operations that are contained in the command.

innateprivs
Innate privileges are privileges assigned to the process if the invoker succeeds the access
authorization checks.

authprivs
Authorized privileges are additional privileges assigned to the process if the user has the

Security 85

associated authorization. This attribute allows more granular control of the command to allow a
restricted set of users to perform additional privileged operations.

inheritprivs
Inheritable privileges are privileges that the process passes on to child processes.

secflags
List of security flags. FSF_EPS is a flag which causes the maximum privilege set (MPS) to be
loaded into the effective privilege set (EPS) when the command is run.

When a user on an enhanced RBAC mode system attempts to run a command, the command is first
checked in the privileged command database. If the command exists in the database, a check is
performed against the authorizations associated with the user’s session and the value of the accessauths
attribute for the command. If the session has one of the authorizations listed, the user can run the
command regardless of whether the user passes the DAC execution checks for the command. Upon
invocation, the command process has the privileges listed in the innateprivs attribute assigned into its
maximum privilege set (MPS). Additional authorization checks are performed with the
authorization-privilege pairs listed in the authprivs attribute. If the session has one of the listed
authorizations, the associated privilege(s) are also added to the MPS of the command process. A
command entry in the privileged command database that has the FSF_EPS value set in the secflags
attribute assigns all of the privileges in the MPS to the effective privilege set (EPS) upon when the
command is invoked.

A command is known as a privileged command when it is included in the privileged command database.
While setuid programs that are not listed in the database are still technically privileged commands, they
are not referred to as privileged commands when describing RBAC behavior. If a command does not have
an entry in the privileged commands database, then it is not a privileged command and access to it is
enforced by DAC and the command itself. Additionally, if a command is listed in the privileged command
database, but the user’s session does not have an authorization that allows invocation of the command,
the system reverts to checking DAC access and allows the command to be run if these checks succeed.

Several management commands have been created to manipulate and query the privileged command

database. Entries in the privileged command database can be created or modified with the
command, displayed with the command, and removed with the command.

Determining required privileges for a command:

Many system administrative applications require privileges to run properly. While a set of predefined
commands is provided in the privileged command database, a system administrator may need to add
entries that are specific to their environment. The privileged command database allows entries to be added
to the database and privileges to be associated with the invocation of the command.

Prior to adding a command to the privileged command database, the minimum set of required privileges
must be determined to ensure that command execution is as secure as possible. Any privileges granted
beyond those necessary for proper execution violate the least-privilege principle. Therefore, an important
step in adding a privileged command to the system is determining the minimum required privileges.

The following is the basic strategy to determine the minimum required privileges for a command:
1. Assign the PV_ROOT privilege to the invoking shell

2. Run the command

3. Record the privilege set used for the process

4

Store the necessary privileges in the innateprivs attribute of the command in the privileged command
database

These steps should be performed in a controlled environment since the PV_ROOT privilege is assigned to
a shell and the PV_ROOT privilege is extremely powerful. In addition, running the command may have

86 AIX Version 6.1 Security

some system impact that can affect other users. In practice, this is likely to be a trial-and-error procedure.
In order to obtain the full set of privileges, the command will likely need to be run repeatedly with different
flags and options, and possibly for a long period of time for long-running applications. The required
privilege set of the process can be easily gathered using one of the following procedures, which can be
performed by an administrator with proper authority:

Takes an argument that is the command to execute. The tracepriv command runs the command
and records the privileges used during the lifetime of the process. When the command finishes,

the tracepriv command displays the privileges that were used on stdout.

If the command is a long-running process, the Issecattr command can be used to display the
privileges used by the process. To display the used privilege set for a process, run the command
as follows, substituting the PID of the process that is being monitored:

Issecattr —p —a uprivs PID

After the minimum required privileges have been determined, perform the steps in[‘Adding a command to|
fthe privileged command database’] to add the command to the privileged command database. The
command should then be run by an authorized user to verify that it runs properly.

Privilege escalation:

When a new process is created by the fork system call, fork grants the process the same privileges as
the parent process (the process that called the fork system call). When a process does an exec system
call on an executable file, exec recalculates the privileges for the executable file based on the privileges
that exec currently possesses and the privileges possessed by the executable file.

Escalated privileges are calculated as follows:

1. First, the union (bitwise-OR operation) of inheritable privileges possessed by the old (parent) process
and the set of innate privileges possessed by the executable file is calculated.

2. If the user is appropriately authorized, the union (bitwise-OR) of the result from the previous step and
the authorized privileges is calculated.

3. If the limiting privileges exist, then the intersection of the result from the previous step and the limiting
privileges is calculated. Limiting privileges, if any, are inherited across an exec system call.

4. The set of privileges resulting from that union become the set of maximum privileges for the new
process.

5. If the inherited privileges exist in the executable file, they are assigned to inheritable privileges set in

the new process. Otherwise, the set of inheritable privileges possessed by the old (parent) process is
carried forward in the new process’s inheritable privilege set.

If the executable file has its FSF_EPS file security flag set, the set of effective privileges for the new
process is the same as its set of maximum privileges. Otherwise, the effective privileges for the new
process are same as the inheritable privileges possessed by the old (parent) process.

Adding a command to the privileged command database:

You should consider carefully before adding a command to the privileged command database to ensure
that the proper authorizations and privileges are assigned.

See the |letc/security/privemds]file for a full description of the attributes that are valid for a command.
The following questions can be used as a guide to determine the entry required for a command:

1. Should an authorization control access to run the command?

YES If the authorization does not exist, create it with the command. Specify the
authorization in the accessauths attribute.

Security 87

NO If all users should be allowed to run the command, specify the ALLOW_ALL authorization in
the accessauths attribute.

2. Should the owner or group of the command be allowed to run the command even if they do not have
the proper authorization?
YES Addthe ALLOW_OWNER or ALLOW_GROUP authorization to the list of authorizations in the
accessauths attribute.
3. When the command is executed, does it require an explicit set of privileges?
YES Run the command with various options as the root user with the command to
determine the required privileges for the innateprivs attribute.
4. Should users with a specific authorization be granted additional privileges?

YES Specify the additional authorization-privilege pairs in the authprivs attribute.
5. Does the command need to behave like a SUID or SGID program?

YES Specify the EUID or EGID as appropriate.
6. Do privileges assigned to the command need to be passed on to child processes?

YES Specify the privileges in the inheritprivs attribute.

7. Should the effective privilege set of the command be equal to the maximum privilege set at the time
the command is invoked?

YES Specify the FSF_EPS flag for the secflags attribute.

NO Do not specify the secflags attribute. The command code is expected to raise and lower its
privileges as required when the FSF_EPS flag is not specified.

After answering these questions, run the command with the appropriate parameters to add the
command to the database. If the command is an existing command and is an SUID or SGID command,
then consideration should be given to remove the SUID and SGID bits from the file so that the
least-privilege model is enforced.

Privileged device database:

The privileged device database stores the list of privileges that are allowed to read from or write to a
device. This database provides a mechanism for an administrator to further control access to a device
than can be managed through traditional device access controls.

When this database is stored locally, it is contained in the [/etc/security/privdevs| file. The database stores
the privileges required to access a given device for read or write operations in the following attributes:

readprivs
Lists privileges which are allowed to read from the device

writeprivs
Lists privileges which are allowed to write to the device

When a privileged device is requested to be opened in read mode, the open is only allowed if one of the
privileges specified in the readprivs attribute exists in the effective privilege set (EPS) for the process.
Similarly, if the device is opened for write mode, a privilege in the writeprivs attribute must exist in the
EPS.

The process of adding a device to the privileged device database is normally not a common operation.
The [Issecattr and [setsecattr commands can be used to list and manipulate the database, but adding or
modifying entries in the database requires considerable investigation. Since the read and write permission
for a device is controlled through privileges, a thorough investigation of the commands and applications
that need to access the device must be performed to ensure that the proper privileges are specified.

88 AIX Version 6.1 Security

Privileged file database:

Many system configuration files in traditional UNIX systems are owned by the root user and are not
directly modifiable by other users. RBAC allows a user to modify these system configuration files by
activating a role and running a command to gain the privileges needed to modify the file.

There are some AIX configuration files that do not have command interfaces to allow modification of the
file. In these cases, it is necessary to have a tool that allows an administrator with the appropriate
authorization to directly edit and save a file to which they otherwise would not have access.

The privileged file database provides a method to use authorizations to determine access to system
configuration files. When the database is stored locally, it is contained in the [/etc/security/privfiles|file.
This database maps configuration files to the authorizations required to view or modify these files. Access
to a configuration file is controlled in this database with the following attributes:

readauths
List of authorizations allowed to read from the file

writeauths
List of authorizations allowed to write to the file (read authorization is implied in this case)

Entries in the privileged file database can be listed with thecommand and can be created or
modified with thecommand. Files defined in the privileged file database can be accessed by
authorized users with the /usr/bin/pvi command. The pvi command is a privileged and restricted version
of the vi editor based on the /usr/bin/tvi command. The pvi command imposes all of the same security
precautions as the tvi command (for example, no —r or -t flags, no shell escapes, no user defined macros)
and also enforces the following restrictions:

* The system must be in Enhanced RBAC Mode.

* Only files defined in the privileged file database can be opened.

* Only one file can be opened at a time.

» Writing to a different filename then the one specified on the command line is disabled.
* The /etc/security/privfiles file cannot be edited with the pvi command.

» Attempts to open links will fail. Only regular files can be edited.

The authorization checks are performed prior to opening the file. If the authorization matches, the privilege
set of the process is raised to include PV_DAC_R or PV_DAC_W (depending on whether the file is being
opened for reading or writing). If the authorization does not match, an error message is displayed and the
user is denied access to the file with the pvi command.

Kernel security tables:

The information contained in the authorization, role, privileged command, and privileged device databases
is not used for security considerations until the data has been loaded into an area of the kernel designated
as the kernel security tables (KST). In the enhanced RBAC mode, authorization and privilege checks are
performed in the kernel, so the databases must be sent to the kernel before they can be used.

The KST is composed of the following sub-tables:
» Kernel Authorization Table (KAT)

» Kernel Role Table (KRT)

* Kernel Command Table (KCT)

» Kernel Device Table (KDT)

All of the tables or select tables can be sent to the kernel from the user space with the [setksf command.
The KRT and KCT are dependent on the KAT, so if the KAT is selected to be updated, the KRT and KCT
are also updated to verify that the tables are in sync. The preferred method for adding updates to the KST

Security 89

is to create or modify all of the necessary databases at the user level (with commands such as ,
[chauth| Imkrole] and [setsecattr) and then use the [setkst| command to send the tables to the kernel.
Once the tables have been loaded in the kernel, the |lskstf command can be used to display the
information contained in each table.

A given table in the KST is always sent as a complete table. In other words, the KST does not allow for
individual entry modifications; the entire table must be replaced. Prior to sending the tables to the kernel,
the setkst command validates the tables and the relationships between them. The setkst command is
also placed in thefile to ensure that the databases are sent to the KST early in the boot process.

If for some reason the tables cannot be created or cannot be loaded into the kernel and no tables have
previously been loaded, the system operates as if there are no authorizations or roles. Commands, APIs,
and system calls for authorization and role checking return failure in this scenario since no match is found.
System operation in this state is very similar to the legacy RBAC mode, except that no user can access
sections of code in commands that enforce authorizations.

Disabling the root user:

In enhanced RBAC mode, it is possible to configure the system so that the root user has no associated
special powers and is treated by the system as a normal user.

Historically, the root user’s ID value of 0 has been treated as a privileged ID by the operating system and
is allowed to bypass enforced security checks. Disabling the root user effectively removes the checks in
the operating system which allow the user ID of 0 to bypass security checks and instead requires the
process to have privileges to pass the security checks. Disabling the root user minimizes the damage an
attacker can cause since there is no longer a single all-powerful user identity on the system. After
disabling the root user, system administration must be performed by users who have been assigned
privileged roles.

The root powers can be disabled with the ust/sbin/setsecconfi command. Run the following command
and then reboot the system to disable the powers of the root user:

setsecconf —o root=disable

After running this command the root user account cannot be accessed through remote or local login or
through the su command. However, since the root user account remains the owner of files on the file
system, if the account is acquired, the user would have access to privileged files.

On a system where root has been disabled, processes owned by root are no longer assigned any special
powers or privileges. This should be considered if the system has setuid applications owned by root that
have not been added to the privileged command database. These setuid applications will probably fail in a
root-disabled environment since the process cannot perform privileged operations. In a root-disabled
system, any command that needs to perform privileged operations should be added to the privileged
command database and assigned the appropriate privileges. Therefore, a careful analysis of the system
and the applications used on the system should be performed before disabling the powers of the root user.

Remote RBAC database support:

In an enterprise environment, it is desirable to be able to implement and enforce a common security policy
across all systems in the environment. If the databases that control the policy are stored independently on
each system, management of the security policy becomes a burden for the designated system
administrator. AIX enhanced RBAC mode allows the RBAC databases to be stored in LDAP so that the
security policy for all systems in the environment can be centrally managed.

Support has been added in AlX for all of the RBAC-relevant databases to be stored in LDAP. The following
are the relevant RBAC databases:

¢ Authorization database

90 AIX Version 6.1 Security

* Role database

* Privileged command database
» Privileged device database

* Privileged file database

Note: The authorization database stored in LDAP contains only the user-defined authorizations.
System-defined authorizations cannot be stored in LDAP and remain local to each client system.

AlX provides utilities to easily export local RBAC data to LDAP, to configure the client to use RBAC data in
LDAP, to control the lookup of RBAC data, and to manage the LDAP data from a client system. The
following sections provide more information on the LDAP features that are provided in enhanced RBAC.

Exporting RBAC data to LDAP:

Initial preparation for using LDAP as an RBAC database repository requires populating the LDAP server
with the RBAC data.

The LDAP server must have the RBAC schema for LDAP installed on it before LDAP clients can use the
server for RBAC data. The RBAC schema for LDAP is available on an AIX system in the
letc/security/ldap/sec.ldif file. The schema of the LDAP server should be updated with this file by using
the Idapmodify command.

The /usr/sbin/rbactoldif file can be used to read the data in the local RBAC databases and output them
in a format suitable for LDAP. The output generated by thecommand can be saved to a file and
then used to populate the LDAP server with the data with the Idapadd command. The following databases
on the local system are used by the rbactoldif command to generate the RBAC data for LDAP:

» /etc/security/authorizations
 /etc/security/privemds
 letc/security/privdevs

» Jetc/security/privfiles

+ /etc/security/roles

The LDAP storage location for the RBAC data should be given some consideration. It is recommended
that the RBAC data in LDAP be placed under the same parent DN as the user and group data. The ACLs
on the data should then be adjusted as needed for the chosen security policy.

LDAP client configuration for RBAC:
A system must be configured as an LDAP client to use RBAC data stored in LDAP.

You can use the AlIX /usr/sbin/mksecldap command to configure a system as an LDAP client. The
mksecldap command dynamically searches the specified LDAP server to determine the location of the
authorization, role, privileged command, device, and file data, and saves the results to the
letc/security/ldap/Idap.cfg file.

After successfully configuring the system as an LDAP client with the mksecldap command, the system
must be further configured to enable LDAP as a lookup domain for RBAC data. The /etc/nscontrol.conf
file must be modified to include LDAP in the secorder attribute for databases that are stored in LDAP.

Once the system has been configured as both an LDAP client and as a lookup domain for RBAC data, the
lusr/sbin/secldapcintd client daemon periodically retrieves the RBAC data from LDAP and sends the
data to the Kernel Security Tables (KST) with the setkst command. You can configure the time period
used by the daemon to retrieve the RBAC data from LDAP with the rbacinterval attribute in the

Security 91

letc/security/ldap/ldap.cfg file. The default value of this attribute is 3600, which specifies to retrieve the
RBAC data from LDAP and update the KST once every hour. The KST can also be manually updated
when an administrator runs the setkst command.

Name service control file:

The RBAC data can reside strictly in local files, strictly in LDAP, or can be merged in local files and LDAP
by configuring a given database in the /etc/nscontrol.conf name service control file.

The search order for the authorization, role, privileged command, device, and file databases is specified
individually in the /etc/nscontrol.conf file. The search order for a database is specified in the file with the
secorder attribute, which is a comma-separated list of domains. The following is an example of a
configuration for the authorization database:

authorizations:
secorder = LDAP,files

This example specifies that queries on authorizations should search in LDAP first and then in the local
files if the authorization is not found in LDAP. The collection of authorizations available to the system is the
merge of the authorizations provided by LDAP and those provided in the local files. The merge is not a
simple combination of the values from the two domains, but rather a union of the values. For the
configuration above, all LDAP authorizations are included and then only unique authorizations from local
files are added to the result.

Modifications and deletions are attempted on the first domain listed and are only attempted on subsequent
domains if the entity is not found in the first domain. In this case, LDAP is attempted first and local files
are only attempted if the authorization is not found in LDAP. New entries are always created in the first
domain listed in the secorder attribute. In the example above, a creation of a new authorization occurs in
the LDAP database.

If there is no entry for a database in the /etc/nscontrol.conf file or if the file does not exist, queries and
modifications on the database are only performed in the local files database. The configuration for a
database in the file can be set with the chsec command and listed through the Issec command. To
configure authorization data to be retrieved from LDAP first and then from the local files, run the following
command:

chsec —f /etc/nscontrol.conf —s authorizations —a secorder=LDAP,files

The configuration in the /etc/nscontrol.conf file controls both the library and command line interfaces.
Applications can retrieve the current value of the secorder attribute for a database with the getsecorder
interface. The value of the secorder attribute can be overridden for the process with the setsecorder
interface.

RBAC command enablement for LDAP:

All of the RBAC database management commands are enabled to use the configuration in the
letc/nscontrol.conf file and to query, modify, create, or remove the entity in the domain or domains
defined for a given database.

By default, the domains are processed as defined in the secorder attribute for a database, but this can be
overridden by using the —R option on the command line. Specifying the —R option for a command forces
the operation to occur on the specified domain and overrides the configuration in the /etc/nscontrol.conf
file. The following RBAC database management commands are enabled for remote domain support:

* mkauth, chauth, Isauth, and rmauth
* mkrole, chrole, Isrole, and rmrole
» setsecattr, Issecattr, and rmsecattr

92 AIX Version 6.1 Security

In addition, the setkst command is enabled to use the configuration contained in the /etc/nscontrol.conf
file. The setkst command retrieves a merged copy of the entries for a given database as defined in the file
and then loads the resulting data into the Kernel Security Tables.

Cross-domain assignment:

When designing an environment where RBAC data is provided by two domains such as local files and
LDAP, consideration must be given to the issue of cross-domain assignment of entities. Examples of
cross-domain assignment include assigning an LDAP-defined role to a local user or assigning a
local-defined role to an LDAP user.

The assignment of a remote entity (LDAP role) to a local entity (local user) is not much of a concern since
it has no impact on other systems in the environment. However, assigning a local entity (local role) to a
remote entity (LDAP user) should only be done with great care. Since the remote entity (LDAP user) is
visible on multiple clients, there is no guarantee that the local entity (local role) assigned to it is defined or
has the same definition on each client system. For example, a role may be defined locally on each client
but have different associated authorizations. A remote user that is assigned this local role would therefore
have different authorizations on each of these clients and this can have undesirable security
consequences.

To prevent possible security issues with assigning a local entity to LDAP entity, it is recommended that the
LDAP server implement access control to the RBAC databases to prevent each client from modifying
entries. Only clients connecting to the LDAP server through a privileged account should be allowed to
modify LDAP RBAC entities. Other clients should only have read access to the LDAP RBAC databases.
Size limits in enhanced RBAC:

The following table lists the various limits for the RBAC-related elements:

Table 10.

Description Maximum size

Role name 63 printable characters
Maximum roles per session 8

Maximum authorization name size 63 printable characters
Maximum number of levels in authorization hierarchy 9

Maximum number of access authorizations per command |8

Maximum authorized privileged sets per command 8

Administering enhanced RBAC:

This section describes common command line usage scenarios for administering RBAC. These examples
illustrate major aspects of the functionality. SMIT interfaces are also provided for RBAC administration. The
fastpath to RBAC SMIT menus is smit rbac.

Creating a user-defined authorization:

You can create user-defined authorizations that can be used to control execution of commands.

You can use the mkauth command to create user-defined authorizations. Changes to the authorization
database are effective after the changes are downloaded to the kernel with the setkst command.

* Run the following command to create a user-defined authorization:
mkauth auth_name

Security 93

Creating and modifying roles:

You can create a role with the mkrole command.

Roles are created with the mkrole command. Changes to the roles database are effective after they are
downloaded to the kernel with the setkst command. You can modify roles with the chrole command.

Run the following command to create a role:

mkrole dflt_msg="My Role”’ role_name

To create a role and inherit the authorizations from existing roles, run the following command:
mkrole rolelist=child_role1,child_role2 role_name

To modify a role definition, run the following command:

chrole rolelist=child_role3 role_name

Assigning authorizations to roles:

You can use the mkrole or chrole commands to assign authorizations to a role.

Run the mkrole command to assign the auth_name1 and auth_name2 authorizations to the
role_name role:

mkrole authorizations=auth_namel,auth_name2 role_name

Run the chrole command to assign the auth_name1 and auth_name2 authorizations to the role_name
role:

chrole authorizations=auth_namel,auth_name2 role_name

Setting the authentication mode for a role:

You can control the activation of roles with the role’s auth_mode attribute.

Valid values for the auth_mode attribute are:

NONE No authentication necessary
INVOKER

Invokers must enter their own password. This is the default.

Enter the following command to force users to authenticate as themselves when assuming a given role:

chrole auth_mod=INVOKER role_name

Assigning roles to a user:

You can use the chuser command to assign roles to users.

Run the following command to assign the role_name1 and role_name2 roles to the user user_name:

chuser roles=role_namel,role_name2 user_name

Activating roles:

By default, a user must activate the role in the session in order to execute privileged commands.

To activate the role_name1 and role_name2 roles, run the following command:
swrole role_namel,role_name2

Some of the roles that are assigned to users are classified as default roles. These roles are activated
automatically when the user logs in. These roles are active during the entire login session. To assign
role_name1 as a default role for a user, run the following command:

chuser roles=role _namel,role_name2 default_roles=role_namel user_name

94 AIX Version 6.1 Security

Listing the active role set:

You can use the rolelist command with the -e option to display information about the effective active role
set for a session.

» To display the effective active role set for a session, run the following command:
rolelist -e

Listing the roles for a user:

The rolelist command provides role and authorization information about a user’s current roles or the roles
that have been assigned to them.

By default, the rolelist command displays the list of roles that have been assigned to the user. This is
basically the same information displayed by the 1suser -a roles userl command except that it also
includes the text description of the role if one has been provided.

» To list your assigned roles and associated authorizations, run the following command:
rolelist -a

Auditing session roles:

The roles that are active in a login session are audited along with other attributes such as UID and GID.
You can list these roles with the auditpr command.

To display the roles from the audit trail, run the following command:
auditpr -h eli -i /audit/trail

Assigning privileges to a running process:

You can use the setsecattr command to modify the privileges of a running process.
» To update the effective privilege set associated with a process, run the following command:
setsecattr —p eprivs=privileges pid

» Before adding any privilege to the effective privilege set of a process, you should ensure that the
privilege already exists in the maximum privilege set. To modify maximum privilege set, run the following
command:

setsecattr —p mprivs=privileges pid
Administering WPAR privileges:

Each WPAR is associated with a set of privileges that determine its powers. This is referred to as WPAR
privilege set (WPS).

Processes running within a given WPAR can use only those privileges that are available in the WPS.
* To modify the WPS from the global WPAR, run the following command:
chwpar —S privs+=privileges wpar_name

Determining the privileges required for a command:

Some commands require special privileges to perform privileged operations. Privileges are used in the
kernel to bypass security restrictions.

You can use the tracepriv command to profile a command to determine the privileges that are required for
the command to run successfully. The tracepriv command records the privileges that are used by another

Security 95

command when the command is run. The command should be run with the PV_ROOT privilege so that
any attempts to use privileges will succeed. When the command completes, the set of privileges that have
been used are sent to stdout.

» To profile a given command, run the following command:
tracepriv —ef command_name

Using authorizations to control commands:
Authorizations can be used to control the running of commands.

You can use the setsecattr command to associate authorizations with a command. The setsecattr
command adds a stanza to the privileged commands database (/etc/security/privemds). Modifications to
this database must be downloaded to the kernel with the setkst command.

» To associate authorizations with a command, run the following command:

setsecattr —c accessauths=auth_names innateprivs=privileges proxyprivs=privileges
authprivs=auth_name=privileges command_name

Controlling access to devices:

RBAC provides a mechanism to further control access to devices. A system administrator can specify the
privileges that are required to open a device in read mode or write mode.

For example, write access to a DVD writer can be controlled with the PV_DEV_CONFIG privilege so that
only processes which have this privilege can create DVDs.

» To add a device to the device database, run the following command:
setsecattr —d readprivs=privileges writeprivs=privileges device_name

Updating RBAC Kernel Security Tables:

The setkst command reads the security databases and loads the information from the databases in the
Kernel Security Tables (KST).

By default, all of the security databases are sent to the KST. Alternatively, a specific database can be
specified with the -t option. However, specifying that only the authorization database should be sent to the
KST also updates the role and privileged command databases in the KST since the role and privileged
command database are dependent on the authorization database.

» To send all the latest RBAC databases to the kernel, run the following command:
setkst

Using the enhanced RBAC mode switch:

A system-wide configuration switch is provided to disable the enhanced RBAC capabilities and revert to
legacy RBAC behavior.

A system administrator can disable enhanced RBAC mode by running the chdev command on the sys0
device and specifying the enhanced_RBAC attribute with a value of false and then rebooting the system.
The mode can be switched back to enhanced RBAC mode by setting the enhanced_RBAC attribute to
true and then rebooting the system.

» To revert to legacy RBAC mode, run the following command:
chdev -1 sys0 -a enhanced_RBAC=false

» To list the value of the enhanced_RBAC attribute, run the following command:
1sattr -E -1 sysO -a enhanced RBAC

96 AIX Version 6.1 Security

In a WPAR environment, the RBAC mode can only be configured from the global system and affects the

global as well as all WPARs.

Note: Disabling the enhanced RBAC mode may lower the security threshold of your system, especially in

a WPAR.

RBAC-related commands

The following table lists the RBAC-related commands that are provided in AIX to manage and use the

RBAC framework.

Command Description
I|ckauth| Check the current process for an authorization

Modify user-defined authorization attributes

Display user- and system-defined authorization attributes

Create a new user-defined authorization

Remove user-defined authorizations

Modify role attributes

Display role attributes

Create a new role

Remove a role

Display role information for a user or process

Create a new role session

'|Issecatt|-'|

Display security attributes of a command, device,

process, or file

[rmsecattr| Remove the definition of security attributes for a
command, device, or file

|setsecattr| Set the security attributes of a command, device,
process, or file

I|Iskst| List the entries in the Kernel Security Tables

'|setk ﬂ Send the entries in the RBAC user-level databases to the
Kernel Security Tables

I|Isgri!| Display the privileges available on the system

'ﬁracepriﬂ Trace the privileges needed by a command to
successfully run

Privileged file editor

I|rbacto|di;‘| Output RBAC user-level databases in LDAP-compatible
format

|setseccon ||
L

Modify kernel security flags

RBAC-related files

The following table lists the RBAC-related files provided in AIX to configure and store database

information.

File

Description

Vetc/nscontrol.conf|

Name service control file for certain security databases

iI/ethsecuritylauthorizationsl

User-defined authorization database

il/etc/security/privcmdsl

Privileged command database

Security 97

File Description
IlletclsecuritylprivfiIesI Privileged file database
il/etc/security/privdevsl Privileged device database
illetclsecuritylrolesl Role database

Using enhanced RBAC in applications

Many applications do not require any modifications to run successfully in the enhanced RBAC
environment. Simply defining the application’s access authorizations and associated privileges and then
assigning the application to the privileged command database may be sufficient.

However, an application can use enhanced RBAC by calling RBAC interfaces to control the application’s
execution at a granular level and thereby result in a more secure application. Applications that might
benefit from integration with enhanced RBAC include the following:

» Applications that restrict use to either the root user or members of a specific group. These applications
typically check for effective user identity or group membership and can be modified to check for an
authorization instead.

» Applications that utilize setuid or setgid mode bits to allow unprivileged users to gain privileges during
the command invocation. These applications would usually be more secure by using privilege bracketing
so that less privilege is used to accomplish their task.

Authorization checking:

Applications that currently use the user ID or group ID of the invoking user to determine the ability to
perform privileged operations should be modified to check for an authorization instead.

For example, consider an application which performs filesystem configuration tasks and currently allows
the root user (UID = 0) to perform some privileged operations:
if (getuid() == 0) {

/* allow privileged operation to continue */

}

To enable this application to instead allow users with a specific authorization (aix.fs.config) to perform the
privileged operation, the code can be modified to use the checkauths API to perform the authorization
check:
if (checkauths("aix.fs.config", CHECK ALL)) {

/* allow privileged operation to continue */

}

The checkauths API is enabled for both the legacy and enhanced RBAC modes and will return a 0
success code if the invoking process has the specified authorization. The checkauths API also determines
if the root user powers are enabled or disabled and then allows or disallows the root user to bypass
authorization checks as appropriate. Prior to AIX Version 6.1, the MatchAllAuths, MatchAnyAuths,
MatchAllAuthsList, and MatchAnyAuthsList APIs were normally used to perform authorization checks.
Applications provided on AlX Version 6.1 and later should use the checkauths API instead due to its
support for legacy and enhanced RBAC modes and root disablement.

As in the example above, applications that call getuid, getgid, or a similar function to only allow certain
users to perform specific tasks can be modified to use the checkauths API to perform an authorization
check instead. If the user ID or group ID being checked is not that of the root user, the sys_parm system
call can be used first to query whether enhanced RBAC is enabled or not. If enhanced RBAC is not
enabled, the code can perform the checks that are already in place. Otherwise, if enhanced RBAC is
enabled, the code can check for the relevant system or user-defined authorizations.

Privilege bracketing:

98 AIX Version 6.1 Security

Once applications have been modified to check for authorizations, they can be further modified to utilize
fine-grained privilege bracketing during operation.

Applications can use the priv_raise API to raise the privileges required to perform an operation and lower
the privilege with the priv_lower API. Raising privileges immediately before a privileged operation is
attempted and lowering privileges after the operation has completed is known as privileged bracketing and
is the preferred method for applications to use privileges. To raise a privilege, the privilege needs to be
available in the maximum privilege set of the application in the privileged commands database. Raising a
privilege causes the privilege to be placed in the effective privilege set (EPS) of the process. Lowering a
privilege removes the privilege from the EPS. The following code sample shows privilege bracketing
around the auditproc API.

priv_raise(PV_AU_ADMIN, -1); /* raise privilege when needed */

auditproc(); /* call auditing system call =/

priv_Tower(PV_AU_ADMIN, -1); /* lower privilege */

RBAC-aware applications:

Traditionally, in AIX and on root-enabled enhanced RBAC systems, a root or root-owned setuid program
(with UID=0) that does not appear in the privileged command database is always granted all privileges in
the kernel. Privilege checks in the kernel will therefore always return success even when a requested
privilege is not present in the process effective privilege set (EPS).

This behavior is still needed to support existing setuid applications, but this can be a security risk because
a setuid program will have all of the powers of root.

To allow proper privilege bracketing in a process on a root-enabled enhanced RBAC system, a new bit in
the process structure has been introduced. If this bit is set, then the process becomes an RBAC-aware
process and an effective UID of 0 does not provide any extra privileges. This bit can be set in a program
with the proc_rbac_op system call. Any setuid programs which are not listed in the privileged command
database can use this functionality to reduce security vulnerability by lowering the available privileges.
Note that programs that are defined in the privileged command database are automatically marked as
RBAC-aware processes and are only assigned the privileges listed in the database.

The following code demonstrates how an application can mark itself as RBAC-aware and then perform
proper privilege bracketing:

#include <userpriv.h
#include <sys/priv.h>

privg_t effpriv;
int rbac_flags = SEC_RBACAWARE;

/* Mark the process as RBAC-aware. */
proc_rbac_op(-1, PROC_RBAC_SET, &rbac_flags);

/* Set the effective privilege set as empty. */
priv_clrall(effpriv);

setppriv(-1, &effpriv, NULL, NULL, NULL);

/* Raise privilege when required. */
priv_raise(PV_AU_ADMIN, -1);

auditproc();

/* Lower privilege when no longer needed. */
priv_Tower(PV_AU_ADMIN, -1);

RBAC APIs:

Security 99

The RBAC-related APIs available on the system are listed in the following table. Please see the specific

APIs for more information.

API Description

checkauths Compares the passed in list of authorizations to the
authorizations associated with the current process.

GetUserAuth Retrieves the set of authorizations assigned to the current
process.

[MatchAllAuths, MatchAllAuthsList, MatchAnyAuths |

(MatchAnyAuthsList|

Compares authorizations. The checkauths API is
preferred to these APIs.

I|getauthatt|1 [putauthattr

Queries or modifies authorizations defined in the

authorization database.

getauthattrs Retrieves multiple authorization attributes from the
authorization database.

putauthattrs Updates multiple authorization attributes in the
authorization database.

[getcmdattr] [putcmdattr] Queries or modifies the command security information in
the privileged command database.

getcmdattrs| Retrieves multiple command attributes from the privileged
command database.

putcmdattrs Updates multiple command attributes in the privileged
command database.

[getdevattr jputdevattr] Queries or modifies the device security information in the
privileged device database.

getdevattr Retrieves multiple device attributes from the privileged
device database.

putdevattr: Updates multiple device attributes in the privileged device
database.

[getpfileattr] [putpfileattr] Queries or modifies the file security information in the
privileged file database

getpfileattrs Retrieves multiple file attributes from the privileged file
database.

putpfileattrs Updates multiple file attributes in the privileged file
database.

|_getro|eattr, putroleattr Queries or modifies roles defined in the role database.

getroleattrs Retrieves multiple role attributes from the role database.

putroleattrs Updates multiple role attributes in the role database.

' Retrieves the ordering of domains for certain security
databases.

| Sets the ordering of domains for certain security

databases.

PV_AU_PROC, PV_AU_READ, and PV_AU_WRITE privileges, and a process with the PV_ROOT
privilege automatically has all of the privileges listed below except for the PV_SU_ privileges.

privileges (PV_DAC_*) combined

Privilege Description System call reference
PV_ROOT Grants a process the equivalent of all
privileges listed below except
PV_SU_ (and the privileges it
dominates)
PV_AU_ADD Allows a process to record/add an auditlog
audit record
PV_AU_ADMIN Allows a process to configure and audit, auditbin, auditevents, auditobj
query the audit system
PV_AU_PROC Allows a process to get or set an auditproc
audit state of a process
PV_AU_READ Allows a process to read a file
marked as an audit file in Trusted AIX
PV_AU_WRITE Allows a process to write or delete a
file marked as an audit file, or to mark
a file as an audit file in Trusted AIX
PV_AU_ Equivalent to all above auditing
privileges (PV_AU_*) combined
PV_AZ_ADMIN Allows a process to modify the kernel |sec_setkst
security tables
PV_AZ_READ Allows a process to retrieve the sec_getkat, sec_getkpct, sec_getkpdt,
kernel security tables sec_getkrt, etc.
PV_AZ_ROOT Causes a process to pass
authorization checks during exec()
(used for inheritance purposes)
PV_AZ_CHECK Causes a process to pass all sec_checkauth
authorization checks
PV_DAC_R Allows a process to override DAC access, creat, accessx, open, read,
read restrictions faccessx, mkdir, getea, rename, statx,
_sched_getparam,
_sched_getscheduler, statea, listea
PV_DAC_W Allows a process to override DAC Many of the above and setea, write,
write restrictions symlink, _setpri, _sched_setparam,
_sched_setscheduler, fsetea, rmdir,
removeea
PV_DAC_X Allows a process to override DAC Many of the above and execve,
execute restrictions symlink, rmdir, chdir, fchdir, ra_execve
PV_DAC_O Allows a process to override DAC chmod, utimes, setacl, revoke,
ownership restrictions mprotect
PV_DAC_UID Allows a process to change its user setuid, seteuid, setuidx, setreuid,
ID ptrace64
PV_DAC_GID Allows a process to set a new or setgid, setgidx, setgroups, ptrace64
change its group 1D
PV_DAC_RID Allows a process to set a new or setroles, getroles
change its role ID
PV_DAC_ Equivalent to all above DAC

Security 101

Privilege

Description

System call reference

PV_FS_MOUNT Allows a process to mount and vmount, umount
unmount a filesystem
PV_FS_MKNOD Allows a process to create a file of mknod
any type or to perform the mknod
system call
PV_FS_CHOWN Allows a process to change the chown, chownx, fchownx, Ichown
ownership of a file
PV_FS_QUOTA Allows a process to manage disk quotactl

quotas related operations

PV_FS_LINKDIR

Allows a process to make a hard link
to a directory

link, unlink, remove

PV_FS_CNTL

Allows a process to perform various
control operations except extend and
shrink on a filesystem

fscntl

PV_FS_RESIZE

Allows a process to perform extend
and shrink type of operations on a
filesystem

fscntl

PV_FS_CHROOT

Allows a process to change its root
directory

chroot

PV_FS_PDMODE

Allows a process to make or set
partitioned type directory

pdmkdir

PV_FS_

Equivalent to all above filesystem
privileges (PV_FS_*) combined

PV_PROC_PRIV

Allows a process to modify or view
privilege sets associated with a
process

setppriv, getppriv

PV_PROC_PRIO

Allows a process/thread to change
priority, policy and other scheduling
parameters

_prio_requeue, _setpri, _setpriority,
_getpri, _sched_setparam,
_sched_setscheduler,
_thread_setsched,
thread_boostceiling,
thread_setmystate, thread_setstate

PV_PROC_CORE

Allows a process to dump core

gencore

PV_PROC_RAC

Allows a process create more
processes than the per-user limit

appsetrlimit, setrlimit64, mlock,
mlockall, munlock, munlockall, plock,
upfget, upfput, restart, brk, sbrk

PV_PROC_RSET

Allow to attach resource set (rset) to
a process or thread

bindprocessor, ra_attachrset,
ra_detachrset, rs_registername,
rs_setnameattr, rs_discardname,
rs_setpartition, rs_getassociativity,
kra_mmapv

PV_PROC_ENV

Allows a process to set user
information in the user structure

ue_proc_register, ue_proc_unregister,
usrinfo

PV_PROC_CKPT

Allows a process to checkpoint or
restart another process

setcrid, restart

PV_PROC_CRED

Allows a process to set credential
attributes

__pag_setvalue, _ pag_setvalue64,
__pag_genpagvalue

PV_PROC_SIG

Allows a process to send signal to an
unrelated process

_sigqueue, Kill, signohup, gencore,
thread_post, thread_post_many

102 AIX Version 6.1 Security

Privilege

Description

System call reference

PV_PROC_TIMER

Allows a process to submit and use
fine-granularity timers

appresabs, appresinc, absinterval,
incinterval, _poll, _select
_timer_settime

PV_PROC_RTCLK

Allows a process to access the
CPU-time clock

_clock_getres, _clock_gettime,
_clock_settime, _clock_getcpuclockid

PV_PROC_VARS Allows a process to retrieve and smttune
update process tunable parameters
PV_PROC_PDMODE Allows a process to change REAL setppdmode

mode of partitioned directory

PV_PROC_ Equivalent to all above process
privileges (PV_PROC_*) combined

PV_TCB Allows a process to modify the kernel | chpriv, fchpriv
trusted library path

PV_TP Indicates a process is a trusted path

process and allows actions limited to
trusted path processes. (note: same
as old AIX BYPASS_TPATH privilege)

PV_WPAR_CKPT

Allows a process to perform
checkpoint/restart operation in WPAR

smcr_proc_info, smcr_exec_info,
smcr_mapinfo, smcr_net_oper,
smcr_procattr, aio_suspend_io,
aio_resume_io

PV_KER_ACCT Allows a process to perform restricted | acct, _acctctl, projctl
operations pertaining to the
accounting subsystem
PV_KER_DR Allows a process to invoke dynamic _dr_regqister, _dr_notify,
reconfiguration operations _dr_unregister, dr_reconfig
PV_KER_TIME Allows a process to modify the adjtime, appsettimer, _clock_settime
system clock and system time
PV_KER_RAC Allows a process to use large shmctl, vmgetinfo
(non-pageable) pages for the shared
memory segments
PV_KER_WLM Allows a process to initialize and _wlm_set, _wim_tune, _wlm_assign
modify WLM configuration
PV_KER_EWLM Allows a process to initialize or query
the eWLM environment
PV_KER_VARS Allows a process to examine or set sys_parm, getkerninfo,

kernel runtime tunable parameters

__pag_setname, sysconfig,
kunload64

PV_KER_REBOOT

Allows a process to shut down the
system

reboot

PV_KER_RAS Allows a process to configure or write | mtrace_set, mtrace_ctl
RAS records, error logging, tracing,
dumps functions
PV_KER_LVM Allows a process to configure the
LVM subsystem
PV_KER_NFS Allows a process to configure the
NFS subsystem
PV_KER_VMM Allows a process to modify swap swapoff, _swapon_ext, vmgetinfo

parameters and other VMM tunable
parameters in the kernel

Security 103

Privilege Description System call reference
PV_KER_WPAR Allows a process to configure a brand, corral_config, corral_delete,
workload partition corral_modify, wpar_mkdevexport,
wpar_rmdevexport, wpar_lsdevexport
PV_KER_CONF Allows a process to perform various | sethostname, sethostid, unameu,

system-configuration operations

setdomainname

PV_KER_EXTCONF

Allows a process to perform various
configuration tasks in kernel
extensions (for kernel extension
services)

PV_KER_IPC Allows a process to raise the value of | msgctl, shm_open, shmget,
IPC message queue buffer and allow |ra_shmget, ra_shmgetv, shmctl
shmget with ranges to attach

PV_KER_IPC_R Allows a process to read a IPC msgctl, __msgrcv, _mq_open, semctl,

message queue, semaphore set, or
shared memory segment

shmat, shm_open, __semop, shmctl,
__semtimedop, sem_post,
_sem_wait, __msgrcv, __msgxrcv

PV_KER_IPC_W

Allows a process to write a IPC
message queue, semaphore set, or
shared memory segment

_mq_open, shmat, _sem_open,
semctl, shm_open, shmctl, mg_unlink,
sem_unlink, shm_unlink, msgctl,
__msgsnd

PV_KER_IPC_O

Allows a process to override DAC
ownership on all IPC objects

msgctl, semctl, shmctl, fchmod,
fchown

PV_KER_SECCONFIG

Allows a process to set kernel
security flags

sec_setsecconf, sec_setrunmode,
sec_setsyslab, sec_getsyslab

PV_KER_PATCH

Allows a process to patch kernel
extensions

PV_KER_

Equivalent to all above kernel
privileges (PV_KER_*) combined

PV_DEV_CONFIG

Allows a process to configure kernel
extensions and devices in the system

sysconfig

PV_DEV_LOAD

Allows a process to load and unload
kernel extensions and devices in the
system

sysconfig

PV_DEV_QUERY

Allows a process to query kernel
modules

sysconfig

PV_SU_ROOT

Grants the process all privileges
associated with the standard AIX
superuser

PV_SU_EMUL

Grants the process all privileges
associated with the standard AIX
super user if the UID is 0

PV_SU_UID

Causes the getuid system call to
return O

getuidx

PV_SU_

Equivalent to all of the above
superuser privileges (PV_SU_%)
combined

PV_NET_CNTL

Allows a process to modify network
tables

socket, bind, listen, _naccept,
econnect, ioctl, rmsock, setsockopt

PV_NET_PORT

Allows a process to bind to privileged
ports

bind

104 AIX Version 6.1 Security

Privilege

Description

System call reference

PV_NET_RAWSOCK

Allows a process to have direct
access to the network layer

socket, _send, _sendto, sendmsg,
_nsendmsg

PV_NET_CONFIG

Allows a process to configure
networking parameters

PV_NET_

Equivalent to all above networking
privileges (PV_NET_*) combined

The privileges listed in the following table are specific to Trusted AlX:

Trusted AIX privilege

Description

System call reference

PV_LAB_CL

Allows a process to modify subject
SCLs, subject to the process’s
clearance

PV_LAB_CLTL

Allows a process to modify subject
TCLs, subject to the process’s
clearance

PV_LAB_LEF

Allows a process to read the label
encoding file

PV_LAB_SLDG

Allows a process to downgrade SLs,
subject to the process’s clearance

PV_LAB_SLDG_STR

Allows a process to downgrade the
SL of a packet, subject to the
process’s clearance

PV_LAB_SL_FILE

Allows a process to change object
SLs, subject to the process’s
clearance

PV_LAB_SL_PROC

Allows a process to change subject
SL, subject to the process’s clearance

PV_LAB_SL_SELF

Allows a process to change its own
SL, subject to the process’s clearance

PV_LAB_SLUG

Allows a process to upgrade SLs,
subject to the process’s clearance

PV_LAB_SLUG_STR

Allows a process to upgrade the SL
of a packet, subject to the process’s
clearance

PV_LAB_TL Allows a process to modify subject
and object TLs

PV_LAB Equivalent to all above label
privileges (PV_LAB_*) combined

PV_MAC_CL Allows a process to bypass sensitivity

clearance restrictions

PV_MAC_R_PROC

Allows a process to bypass MAC
read restrictions when getting
information about a process, provided
that the target process’s label is
within the acting process’s clearance

Security

105

Trusted AIX privilege Description System call reference

PV_MAC_W_PROC Allows a process to bypass MAC
write restrictions when sending a
signal to a process, provided that the
target process’s label is within the
acting process’s clearance

PV_MAC_R Allows a process to bypass MAC
read restrictions
PV_MAC_R_CL Allows a process to bypass MAC

read restrictions when the object’s
label is within the process’s clearance

PV_MAC_R_STR Allows a process to bypass MAC
read restrictions when reading a
message from a STREAM, provided
that the message’s label is within the
process’s clearance

PV_MAC_W Allows a process to bypass MAC
write restrictions
PV_MAC_W_CL Allows a process to bypass MAC

write restrictions when the object’s
label is within the process’s clearance

PV_MAC_W_DN Allows a process to bypass MAC
write restrictions when the process
label dominates the object’s label and
the object’s label is within the
process’s clearance

PV_MAC_W_UP Allows a process to bypass MAC
write restrictions when the process
label is dominated by the object’s
label and the object’s label is within
the process’s clearance

PV_MAC_OVRRD Bypasses MAC restrictions for files
flagged as being exempt from MAC

PV_MAC_ Equivalent to all above MAC
privileges (PV_MAC_*) combined

PV_MIC Allows a process to bypass integrity
restrictions

PV_MIC_CL Allows a process to bypass integrity

clearance restrictions

Access Control Lists

Typically an ACL consists of series of entries called an Access Control Entry (ACE). Each ACE defines the
access rights for a user in relationship to the object.

When an access is attempted, the operating system will use the ACL associated with the object to see
whether the user has the rights to do so. These ACLs and the related access checks form the core of the
Discretionary Access Control (DAC) mechanism supported by AlX.

The operating system supports several types of system objects that allow user processes to store or
communicate information. The most important types of access controlled objects are as follows:

¢ Files and directories
* Named pipes

106 AIX Version 6.1 Security

» |PC objects such as message queues, shared memory segments, and semaphores

All access permission checks for these objects are made at the system call level when the object is first
accessed. Because System V Interprocess Communication (SVIPC) objects are accessed statelessly,
checks are made for every access. For objects with file system names, it is necessary to be able to
resolve the name of the actual object. Names are resolved either relatively (to the process’ working
directory) or absolutely (to the process’ root directory). All name resolution begins by searching one of
these directories.

The discretionary access control mechanism allows for effective access control of information resources
and provides for separate protection of the confidentiality and integrity of the information. Owner-controlled
access control mechanisms are only as effective as users make them. All users must understand how
access permissions are granted and denied, and how these are set.

For example, an ACL associated with a file system object (file or directory) could enforce the access rights
for various users in regards to access of the object. It is possible that such an ACL could enforce different
levels of access rights, such as read or write, for different users.

Typically, each object will have a defined owner and, in some cases, be associated to a primary group .
The owner of a specific object controls its discretionary access attributes. The owner’s attributes are set to
the creating process’s effective user ID.

The following table lists direct access control attributes for the different types of objects:

Owner
For System V Interprocess Communication (SVIPC) objects, the creator or owner can change the
object’s ownership. SVIPC objects have an associated creator that has all the rights of the owner
(including access authorization). The creator cannot be changed, even with root authority.

SVIPC objects are initialized to the effective group ID of the creating process. For file system
objects, the direct access control attributes are initialized to either the effective group ID of the
creating process or the group ID of the parent directory (this is determined by the group
inheritance flag of the parent directory).

Group The owner of an object can change the group. The new group must be either, the effective group
ID of the creating process, or the group ID of the parent directory. (As above, SVIPC objects have
an associated creating group that cannot be changed, and share the access authorization of the
object group.)

Mode The chmod command (in numeric mode with octal notations) can set base permissions and
attributes. The chmod subroutine that is called by the command, disables extended permissions.
The extended permissions are disabled if you use the numeric mode of the chmod command on a
file that has an ACL. The symbolic mode of the chmod command disables extended ACLs for
NSF4 ACL type but does not disable extended permissions for AIXC type ACLs. For information
about numeric and symbolic mode, see chmod.

Many objects in the operating system, such as sockets and file system objects, have ACLs associated for
different subjects. Details of ACLs for these object types could vary from one to another.

Traditionally, AIX has supported mode bits for controlling access to the file system objects. It has also
supported a unique form of ACL around mode bits. This ACL consisted of base mode bits and also
allowed for the definition of multiple ACE entries; each ACE entry defining access rights for a user or
group around the mode bits. This classic type of ACL behavior existed prior to AIX 5.3 and will continue to
be supported. This ACL type has been named as AIXC ACL type.

Note that support of an ACL on file system objects depends on the underlying physical file system (PFS).
The PFS must understand the ACL data and be able to store, retrieve, and enforce the accesses for
various users. It is possible that some of the physical file systems do not support any ACLs at all (may just

Security 107

support the base mode bits) as compared to a physical file system that supported multiple types of ACLs.
Beginning with AIX 5.3, few of the file systems under AlIX have been enhanced to support multiple ACL
types. JFS2 and GPFS™ will have the capability to support NFS version 4 protocol based ACL type too.
This ACL has been named NFS4 ACL type on AIX. This ACL type adheres to most of the ACL definition in
the NFS version 4 protocol specifications. It also supports more granular access controls as compared to
the AIXC ACL type and provides for capabilities such as inheritance.

Multiple Access Control List type framework support
Beginning with version 5.3.0, AIX supports an infrastructure for different Access Control List (ACL) types to
exist for different file system objects within the operating system.

This infrastructure allows for uniform methods to manage ACLs irrespective of the ACL type associated
with the object. The framework includes the following components:

ACL administration commands
These are commands, such as aclget, aclput, acledit, aclconvert, aclgetttypes. These
commands call library interfaces that invoke ACL-type-specific modules.

ACL library interfaces
ACL Library interfaces act as front-ends to the applications that need to access ACLs.

ACL-type-specific dynamically loadable ACL modules
AIX provides a set of ACL-type-specific modules for AIX Classic ACLs (AIXC) and NFS4 ACLs
(nfs4).

Binary compatibility:

There are no compatibility issues for applications that run on the existing JFS2 file systems, with or without
the existing AIX ACLs.

However, note that applications might find that access to files might fail if they encounter file system
objects with much stricter ACLs (such as NFS4) associated. Simple checks to see whether the file exists
will require level of read permission in NFS4 ACL.

Access Control List types supported on AIX
AIX currently supports AIXC and NFS4 ACL types.

As mentioned, it also supports an infrastructure for the addition of any other ACL type supported by the
underlying physical file system. Note that the JFS2 PFS supports NFS4 ACL natively if the file system
instance is created with Extended Attributes Version 2 capability.

AIXC Access Control List:

The AIXC Access Control List type represents the behavior of the ACL type supported on AIX releases
prior to 5.3.0. AIXC ACLs include base permissions and extended permissions.

The AIXC Access Control List (ACL) type represents the behavior of the ACL type supported on AIX
releases prior to 5.3.0. AIXC ACLs include base permissions and extended permissions. The JFS2 file
system allows a maximum size of 4 KB for AIXC ACLs.

Setting base permissions for AIXC ACL

Base permissions are the traditional file-access modes assigned to the file owner, file group, and other
users. The access modes are: read (r), write (w), and execute/search (x).

In an ACL, base permissions are in the following format, with the Mode parameter expressed as rwx (with
a hyphen (-) replacing each unspecified permission):

108 AIX Version 6.1 Security

base permissions:
owner(name) : Mode
group(group): Mode
others: Mode

Setting attributes for AIXC ACL

The following attributes can be added to an AIXC ACL:

setuid (SUID)
Set-user-ID mode bit. This attribute sets the effective and saved user IDs of the process to the
owner ID of the file at run time.

setgid (SGID)
Set-group-ID mode bit. This attribute sets the effective and saved group IDs of the process to the
group ID of the file at run time.

savetext (SVTX)
For directories, indicates that only file owners can link or unlink files in the specified directory.

These attributes are added in the following format:
attributes: SUID, SGID, SVTX

Setting extended permissions for AIXC Access ACL

Extended permissions allow the owner of a file to more precisely define access to that file. Extended
permissions modify the base file permissions (owner, group, others) by permitting, denying, or specifying
access modes for specific individuals, groups, or user and group combinations. Permissions are modified
through the use of keywords.

The permit, deny, and specify keywords are defined as follows:

permit Grants the user or group the specified access to the file
deny Restricts the user or group from using the specified access to the file
specify Precisely defines the file access for the user or group

If a user is denied a particular access by either a deny or a specify keyword, no other entry can override
that access denial.

The enabled keyword must be specified in the ACL for the extended permissions to take effect. The
default value is the disabled keyword.

In an ACL, extended permissions are in the following format:

extended permissions:

enabled | disabled
permit Mode UserInfo...
deny Mode UserInfo...
specify Mode UserInfo...

Use a separate line for each permit, deny, or specify entry. The Mode parameter is expressed as rwx
(with a hyphen (-) replacing each unspecified permission). The UserInfo parameter is expressed as
u:UserName, or g:GroupName, or a comma-separated combination of u:UserName and g:GroupName.

Note: Because a process has only one user ID, if more than one user name is specified in an entry, that
entry cannot be used in an access control decision.

Security 109

Textual representation of AIXC ACL

The following stanza shows the textual representation of an AIXC ACL:

Attributes: { SUID | SGID | SVTX }
Base Permissions:

owner(name) : Mode
group(group): Mode
others: Mode

Extended Permissions:

enabled | disabled
permit Mode UserInfo...
deny Mode UserlInfo...
specify Mode UserInfo...

Binary format of AIXC ACL

The AIXC ACL binary format is defined in /usr/include/sys/acl.h and is implemented in the current AIX
release.

AIXC ACL example

The following is an example of an AIXC ACL:

attributes: SUID
base permissions:

owner(frank): rw-
group(system): r-x
others: ---

extended permissions:

enabled
permit rw- u:dhs
deny r-- u:chas, g:system
specify r-- u:john, g:gateway, g:mail
permit rw- g:account, g:finance

The ACL entries are described as follows:

The first line indicates that the setuid bit is turned on.
The next line, which introduces the base permissions, is optional.

The next three lines specify the base permissions. The owner and group names in parentheses are for
information only. Changing these names does not alter the file owner or file group. Only the chown
command and the chgrp command can change these file attributes.

The next line, which introduces the extended permissions, is optional.

The next line indicates that the extended permissions that follow are enabled.

The last four lines are the extended entries. The first extended entry grants user dhs read (r) and write
(w) permission on the file.

The second extended entry denies read (r) access to user chas only when he is a member of the
system group.

The third extended entry specifies that as long as user john is a member of both the gateway group and
the mail group, he has read (r) access. If user john is not a member of both groups, this extended
permission does not apply.

The last extended entry grants any user in both the account group and the finance group read (r) and
write (w) permission.

Note: More than one extended entry can apply to a process that is requesting access to a
controlled object, with restrictive entries taking precedence over permissive modes.

For the complete syntax, see the command in the AIX Version 6.1 Commands Reference.

110 AIX Version 6.1 Security

NFS4 Access Control List:
AIX also supports the NFS4 Access Control List (ACL) type.

The NFS4 ACL type implements access control as specified in the Network File System (NFS) version 4
Protocol RFC 3530. The JFS2 file system allows a maximum size of 64KB for NFS4 ACLs.

Textual representation of NFS4 ACL

A textual NFS V4 ACL is a list of ACEs (Access Control Entries) each ACE per line. An ACE has four
elements in the following format.

IDENTITY ACE_TYPE ACE_MASK ACE_FLAGS

where:
IDENTITY => Has format of 'IDENTITY_type:(IDENTITY_name or IDENTITY_ID or IDENTITY_who):'
where:
IDENTITY type => One of the following Identity type:
u : user
g : group
s : special who string (IDENTITY who must be a special who)
IDENTITY name => user/group name
IDENTITY_ID => user/group ID
IDENTITY who => special who string (e.g. OWNER@, GROUP@, EVERYONE®)
ACE_TYPE => One of the following ACE Type:

a : allow
d : deny

1 : alarm
u : audit

ACE MASK => One or more of the following Mask value Key without separator:
r : READ_DATA or LIST_DIRECTORY
: WRITE_DATA or ADD_FILE
: APPEND_DATA or ADD_SUBDIRECTORY
: READ_NAMED_ATTRS
: WRITE_NAMED_ATTRS
: EXECUTE or SEARCH_DIRECTORY
: DELETE_CHILD
: READ_ATTRIBUTES
: WRITE_ATTRIBUTES
: DELETE
: READ_ACL
: WRITE_ACL
: WRITE_OWNER
s : SYNCHRONIZE
ACE_FLAGS (0pt1ona1) => One or more of the following Attribute Key without separater:
fi FILE_INHERIT
di : DIRECTORY INHERIT
oi : INHERIT_ONLY
ni : NO_PROPAGATE_INHERIT
sf : SUCCESSFUL_ACCESS_ACE_FLAG
ff : FAILED_ACCESS_ACE_FLAG

OO0 Qo T UOX =0T =

Note: Concerning the SYNCHRONIZE Ace_Mask value key, s, AIX does not take any action concerning
this value key. AlX stores and preserves the s value key but this value key does not have any
meaning to AlX.

When the WRITE_OWNER Ace_Mask is set to Ace_Type allow, users can change ownership of
the file to themselves only.

Deleting a file depends on two ACEs, the DELETE entry of the object to be deleted and the
DELETE_CHILD entry of its parent directory. AIX provides the user with two modes of behavior. In
the secure mode, DELETE behaves similar to AIXC ACLs. In the compatibility mode, DELETE
behaves like other major implementations of NFS4 ACLs. To turn on the compatibility mode, use
the chdev command as follows:

chdev -1 sys0 -a nfs4_acl_compat="true'

Security 111

You must reboot the system after running the chdev command before the configuration change will
take place.

If you switch your system back and forth between the two modes, you need to be aware that NFS4
ACLs generated by AIX in secure mode might not be accepted by other platforms even if the
system was changed back to compatibility mode.

Example:
u:userl(aa@ibm.com): a rwp fidi
*s: (OWNER@) : d X dini * This line is a comment
g:staff(jjejj.com): a rx
s: (GROUP@) : a rwpx fioi
u:2: d r di % This line shows user bin (uid=2)
g:7: a ac fi * This line shows group security (gid=7)
s: (EVERYONE®) : a rca ni

Binary format for NFS4 ACL

The NFS4 ACL binary format is defined in /usr/include/sys/acl.h and is implemented in the current AIX
release.

NFS4 ACL example

The following example shows an NFS4 ACL applied on a directory (such as, j2eav2/d0):

Qccuua cCc uvuunnnunuon

: (OWNER®) : a rwpRWxDdo difi * 1st ACE
: (OWNERe) : d D difi * 2nd ACE
: (GROUPG) : d X ni * 3rd ACE
: (GROUP@) : a rx difi * 4th ACE
: (EVERYONE®) : a c difi * 5th ACE
: (EVERYONE®) : d C difi * 6th ACE
:userl: a wp oi * 7th ACE
:grpl: d wp * 8th ACE
:101: a C * 9th ACE
:100: d c * 10th ACE

The ACL entries are described as follows:

The first ACE indicates that the owner has the following privileges on /j2eav2/d0 and all its offspring
created after this ACL is applied:

— READ_DATA (= LIST _DIRECTORY)

— WRITE_DATA (=ADD_FILE)

— APPEND_DATA (= ADD_SUBDIRECTORY)
— READ_NAMED_ATTR

— WRITE_NAMED_ATTR

— EXECUTE (=SEARCH_DIRECTORY)

— DELETE_CHILD

— DELETE

— WRITE_OWNER

The second ACE indicates the owner is denied the privilege for DELETE_CHILD (deleting the files or
subdirectories created under /j2eav2), but owner can still delete them because of the first ACE, which
allows owner the privilege for DELETE_CHILD.

The third ACE indicates all members of the group for the object (/j2eav2/d0) are denied the privilege for
EXECUTE (=SEARCH_DIRECTORY), but the owner is still allowed that privilege by the first ACE. This ACE
can not be propagated to all of its offsprings because the NO_PROPAGATE_INHERIT flag is specified. This
ACE is applied only to the directory /j2eav2/d0 and its immediate child files and subdirectories.

The fourth ACE indicates that every member of the group of the object (/j2eav2/d0) is allowed the
privilege for READ DATA (= LIST _DIRECTORY) and EXECUTE (=SEARCH_DIRECTORY) on /j2eav2/d0 and all its

112 AIX Version 6.1 Security

offsprings. However, because of third ACE group members (except the owner) are not allowed the
privilege for EXECUTE (=SEARCH_DIRECTORY) on the /j2eav2/d0 directory and its immediate child files and
subdirectories.

» The fifth ACE indicates that everyone is allowed the privilege for READ_ACL on the /j2eav2/d0 directory
and any offspring that are created after this ACL is applied.

* The sixth ACE indicates that everyone is denied the privilege for WRITE_ACL on the /j2eav2/d0 directory
and any offspring. The owner always has the privilege for WRITE_ACL on files and directories with NFS4
ACLs.

* The seventh ACE indicates that user1 has the privilege for WRITE_DATA (=ADD_FILE) and APPEND_DATA
(= ADD_SUBDIRECTORY) on all the offspring of the /j2eav2/d0 directory but not on the /j2eav2/d0 directory
itself.

» The eighth ACE indicates that all the members of grp1 are denied the privilege for WRITE_DATA
(=ADD_FILE) and APPEND_DATA (= ADD_SUBDIRECTORY). This ACE does not apply to the owner even it
belongs to grp1 because of the first ACE.

* The ninth ACE indicates that the user with UID 101 has the privilege for WRITE_ACL, but no one, except
the owner has the privilege for WRITE_ACL because of the sixth ACE.

» The tenth ACE indicates that all the members of the group with GID 100 are denied for READ_ACL, but
they will have this privilege because of the fifth ACE.

Access Control List Management
There are several methods of managing ACLs. AIX users can use the Web-based System Manager to
view and set ACLs, or they can use the commands.

Applications programmers and other subsystem developers can use the ACL library interfaces and ACL
conversion routines described in this section.

ACL administration commands

You can use the following commands to work with ACLs for a file system object:

Writes to standard output the ACL of the file object named FileObject, presented in readable
format or writes the same to the output file named outAciFile.

Sets the ACL of FileObject on the file system using the input specified through standard input or
inAclFile.

Opens an editor for editing the ACL of the specified FileObject.

Converts an ACL from one type to another type. This command fails if the conversion is not
supported.

aclgettypes|

Gets ACL types supported by a file system path.
ACL library interfaces

ACL Library interfaces act as front-ends to the applications that need to access ACLs. The applications
(including the generic ACL administration commands given above) do not directly invoke the
undocumented ACL syscalls; instead, they access the generic syscalls and the type-specific loadable
modules via the library interfaces. This will shield the customer application programmers from the
complexity of using loadable modules, and reduces the backward binary compatibility issues for future AIX
releases.

The following library interfaces call syscalls.

Security 113

aclx_fget and aclx_get
The aclx_get and aclx_fget functions retrieve the access control information for a file system
object, and put it into the memory region specified by acl. The size and type information for the
acl are stored in *acl_sz and *acl_type.

aclx_fput and aclx_put
The aclx_put and aclx_fput functions store the access control information specified in acl for the
input file object. These functions do not do ACL type conversions; for doing ACL type conversion,
the caller has to explicitly call the aclx_convert function.

aclx_gettypes
The aclx_gettypes function gets the list of ACL types supported on the particular file system. A file
system type can support more than one ACL type simultaneously. Each file system object is
associated with an unique ACL type belonging to the list of ACL types supported by the file
system.

aclx_gettypeinfo
The aclx_gettypeinfo function gets the characteristics and capabilities of an ACL type on the file
system specified by path. Note that the ACL characteristics will normally be of a data structure
type, which is specific for each particular ACL type. The data structures used for AIXC and NFS4
ACLs will be described in a separate document.

aclx_print and aclx_printStr
These two functions convert the ACL given in binary format into textual representation. These
functions are called by the aclget and acledit commands.

aclx_scan and aclx_scanStr
These two functions convert the given textual representation of the ACL into binary format.

aclx_convert
Converts an ACL from one type to another. This function is used for implicit conversion by
commands, such as cp, mv, or tar.

ACL conversion

ACL conversion allows you to convert one ACL type to another. Support of multiple ACL types is
dependent upon what ACL types are support on a specific physical file system. All file systems do not
support all ACL types. For example, file system one might support only AIXC ACL types, and file system
two might support AIXC and NFS4 ACL types. You can copy AIXC ACLs between the two file systems, but
you must use ACL conversion to copy the NFS ACLs from file system two to file system one. ACL
conversion preserves the access control information as much as possible.

Note: The conversion process is approximate and could result in loss of access control information. You
should consider this when planning your ACL conversions.

ACL conversion in AlX is supported with the following infrastructure:

Library routines
These routines and user level ACL framework enable ACL conversion from one ACL type to
another.

aclconvert command
This command converts ACLs.

aclput and acledit commands
These commands are used to modify ACL types.

cp and mv commands
These commands have been enabled to handle multiple ACL types and perform any internal ACL
conversion, as necessary.

114 AIX Version 6.1 Security

backup command
This command converts the ACL information to a known type and form (AIXC ACL type), if
requested to backup in the legacy format. To retrieve the ACL in its native format, specifiy the -U
option. See |backu§ for more information.

Each ACL type is unique, and refinement of access control masks varies widely from one ACL type to
another. The conversion algorithms are approximate and are not equivalent to manually converting an
ACL. In some cases, the conversion will not be exact. For example, NFS4 ACLs cannot truly be converted
to AIXC ACLs because NFS4 ACLs provides up to 16 access masks and has inheritance features that are
not supported in the AIXC ACL type). You should not use the ACL conversion facilities and interfaces if you
are concerned about the loss of access control information.

Note: The ACL conversion algorithms are proprietary in nature and are subject to change.

S bits and Access Control Lists
You can use setuid and setgid programs and applying S bits to ACLs.

Using setuid and setgid programs

The permission bits mechanism allows effective access control for resources in most situations. But for
more precise access control, the operating system provides the setuid and setgid programs.

AlX defines identity only in terms of uids and gids. ACL types that do not define identity with uids and gids
are mapped to the AIX identity model. For example, the NFS4 ACL type defines user identity as strings of
the form user@domain, and this string is mapped to numeric UIDs and GIDs.

Most programs run with the user and group access rights of the user who invoked them. Program owners
can associate the access rights of the user who invoked them by making the program a setuid or setgid
program; that is, a program with the setuid or setgid bit set in its permissions field. When that program is
run by a process, the process acquires the access rights of the owner of the program. A setuid program
runs with the access rights of its owner, while a setgid program has the access rights of its group, and
both bits can be set according to the permission mechanism.

Although the process is assigned the additional access rights, these rights are controlled by the program
bearing the rights. Thus, the setuid and setgid programs allow for user-programmed access controls in

which access rights are granted indirectly. The program acts as a trusted subsystem, guarding the user’s
access rights.

Although these programs can be used with great effectiveness, there is a security risk if they are not
designed carefully. In particular, the program must never return control to the user while it still has the
access rights of its owner, because this would allow a user to make unrestricted use of the owner’s rights.

Note: For security reasons, the operating system does not support setuid or setgid program calls within
a shell script.

Applying S bits to ACLs

ACLs such as NFS4 do not directly deal with the S bits. NFS4 ACL does not specify how these bits could
be accommodated as part of the ACL. AIX has approached the problem such that S bits will be used while
performing access checks and will compliment any NFS4 ACL related access checks. AlX’s chmod
command can be used set or reset S bits on file system objects with ACLs such as NFS4.

Administrative access rights
The operating system provides privileged access rights for system administration.

Security 115

System privilege is based on user and group IDs. Users with effective user or group IDs of 0 are
recognized as privileged.

Processes with effective user IDs of 0 are known as root-user processes and can:

* Read or write any object

* Call any system function

» Perform certain subsystem control operations by executing setuid-root programs.

You can manage the system using two types of privilege: the su command privilege and setuid-root
program privilege. The su command allows all programs you invoke to function as root-user processes.
The su command is a flexible way to manage the system, but it is not very secure.

Making a program into a setuid-root program means the program is a root-user-owned program with the
setuid bit set. A setuid-root program provides administrative functions that ordinary users can perform
without compromising security; the privilege is encapsulated in the program rather than granted directly to
the user. It can be difficult to encapsulate all necessary administrative functions in setuid-root programs,
but it provides more security to system managers.

Access authorization

When a user logs in to an account (using the login or su commands), the user IDs and group IDs
assigned to that account are associated with the user’s processes. These IDs determine the access rights
of the process.

A process with a user ID of 0 is known as a root user process. These processes are generally allowed all
access permissions. But if a root user process requests execute permission for a program, access is
granted only if execute permission is granted to at least one user.

Access Authorization for AIXC ACLs

The owner of the information resource is responsible for managing access rights. Resources are protected
by permission bits, which are included in the mode of the object. The permission bits define the access
permissions granted to the owner of the object, the group of the object, and for the others default class.
The operating system supports three different modes of access (read, write, and execute) that can be
granted separately.

For files, directories, named pipes, and devices (special files), access is authorized as follows:

» For each access control entry (ACE) in the ACL, the identifier list is compared to the identifiers of the
process. If there is a match, the process receives the permissions and restrictions defined for that entry.
The logical unions for both permissions and restrictions are computed for each matching entry in the
ACL. If the requesting process does not match any of the entries in the ACL, it receives the permissions
and restrictions of the default entry.

» If the requested access mode is permitted (included in the union of the permissions) and is not
restricted (included in the union of the restrictions), access is granted. Otherwise, access is denied.

The identifier list of an ACL matches a process if all identifiers in the list match the corresponding type of
effective identifier for the requesting process. A USER-type identifier matches if it is equal to the effective
user ID of the process, and a GROUP-type identifier matches if it is equal to the effective group ID of the
process or to one of the supplementary group IDs. For instance, an ACE with an identifier list such as the
following:

USER:fred, GROUP:philosophers, GROUP:software_programmer

would match a process with an effective user ID of fred and a group set of:
philosophers, philanthropists, software_programmer, doc_design

116 AIX Version 6.1 Security

but would not match for a process with an effective user ID of fred and a group set of:
philosophers, iconoclasts, hardware_developer, graphic_design

Note that an ACE with an identifier list of the following would match for both processes:
USER:fred, GROUP:philosophers

In other words, the identifier list in the ACE functions is a set of conditions that must hold for the specified
access to be granted.

All access permission checks for these objects are made at the system call level when the object is first
accessed. Because System V Interprocess Communication (SVIPC) objects are accessed statelessly,
checks are made for every access. For objects with file system names, it is necessary to be able to
resolve the name of the actual object. Names are resolved either relatively (to the process’ working
directory) or absolutely (to the process’ root directory). All name resolution begins by searching one of
these directories.

The discretionary access control mechanism allows for effective access control of information resources
and provides for separate protection of the confidentiality and integrity of the information. Owner-controlled
access control mechanisms are only as effective as users make them. All users must understand how
access permissions are granted and denied, and how these are set.

Access Authorization for NFS4 ACLs

Any user who has the privilege for WRITE_ACL can control the access rights. The owner of the information
resource is always has the privilege for WRITE_ACL. For files and directories with NFS4 ACLs, access is
authorized as follows:

* The list of ACEs is processed in order and only those ACEs which have a "who” (i.e. Identity) that
matches the requester are considered for processing. The credentials of the requester is not checked
while processing the ACE with special who EVERYONE @.

« Each ACE is processed until all of the bits of requester’'s access have been allowed. Once a bit is has
been allowed, it is no longer considered in the processing of later ACEs.

 If any bit corresponding to the requester’s access is denied, access is denied and the remaining ACEs
are not processed.

« If all of the bits of requester’s access have not been allowed, and there is no ACE left for processing,
access is denied.

If the access requested is denied by the ACEs and the requesting user is superuser or root, access is
generally allowed. Note that the object owner is always permitted for READ_ACL, WRITE_ACL,

READ ATTRIBUTES, and WRITE ATTRIBUTES. For more information on the algorithm for access authorization,
see ['NFS4 Access Control List” on page 111

Access Control List Troubleshooting
The following information can be used for troubleshooting the Access Control List (ACL).

NFS4 Access Control List on an object failed application

You can use the return code or the trace facility to troubleshoot problems with setting an NFS4 ACL on an
object, such as a file or directory. Both methods use command the aclput command and the acledit
command to find the cause of the problem.

Using the Return Code for troubleshooting

To display the return code, use the echo $? command after you run the aclput command. The following
lists shows the return codes and their explanations:

Security 117

22 (EINVAL, defined in /usr/include/sys/errno.h)
The following are possible causes for this code:

* Invalid textual format in any field of the 4 fields.
* The size of the input NFS4 ACL is more than 64 KB.

» The ACL is applied on a file that already has at least one ACE with ACE mask set to w
(WRITE_DATA) but not p (APPEND_DATA) or p (APPEND_DATA) but not w (WRITE_DATA).

* The ACL is applied on a directory that already has at least one ACE with ACE mask set to w
(WRITE_DATA) but not p (APPEND_DATA) or p (APPEND_DATA) but not w (WRITE_DATA), and the ACE
flag fi (FILE_INHERIT).

* There is at least one ACE with OWNER@ set as a special who (Identity) and one or more of
the ACE masks c (READ_ACL), C (WRITE_ACL), a (READ_ATTRIBUTE) and A (WRITE_ATTRIBUTE) are
being denied by ACE type d.

124 (ENOTSUP, defined in /usr/include/sys/errno.h)
The following are possible causes for this code:

» The special who might not be any one of the three values (OWNER@, GROUP@, or EVERYONE®) in one
of the ACEs.

* There is at least one ACE with ACE type u (AUDIT) or 1 (ALARM).
13 (EACCES, defined in /usr/include/sys/errno.h)

The following are possible causes for this code:

* You are not allowed to read the input file containing NFS4 ACEs.

* You are not allowed to search the parent directory of the target object because you do not have
x (EXECUTE) permission on the parent directory of the target object.

* You might not be allowed to write or change the ACL. If the object is already associated with an
NFS4 ACL ensure that you are have the privilege for the ACE mask C (WRITE_ACL).

Using the Trace facility for troubleshooting

You can also generate a trace report to find the cause of the problem. The following scenario shows how
to use trace to find the cause of the problem applying an NFS4 ACL. If you have a file, /j2v2/file1 with the
following NFS4 ACL:

s: (EVERYONE@): a acC

And, the following ACL is contained in the input_acl_file input file:
s: (EVERYONE@): a rwxacC

Complete the following steps to troubleshoot with the trace facility:
1. Run the trace, aclput and trcrpt using the following commands:

§ trace -j 478 -0 trc.raw
$->laclput -1 input_acl _file -t NFS4 /j2v2/filel
$ ->quit
$ trcrpt trc.raw > trc.rpt
2. Analyze the trace report. When the ACL is applied on a file or directory, it checks for the access to
write or change the ACL, and then applies the ACL. The file contains lines similar to the following:

478 xxx xxx ACL ENGINE: chk_access entry: type=NFS4 obj_mode=33587200 size=68 ops=16384 uid=100

478 xxx xxx ACL ENGINE: chk_access exit: type=NFS4 rc=0 ops=16384 priv=0 against=0
478 xxx xxx ACL ENGINE: set_acl entry: type=NFS4 ctl_flg=2 obj_mode=33587200 mode=0 size=48

478 xxx xxx ACL ENGINE: validate_acl: type=NFS4 rc=22 ace_cnt=1 acl_len=48 size=12
478 xxx xxx ACL ENGINE: set_acl exit: type=NFS4 rc=22 obj_mode=33587200 size=68 cmd=536878912

The second line containing, chk_access exit, indicates access is allowed (rc = 0) to write the ACL.
The fourth line, containing validate_acl, and the fifth line, containing set_acl exit, indicate that the

118 AIX Version 6.1 Security

ACL is not applied successfully (rc=22 indicates EINVAL). The fourth line, containing validate_acl,
indicates there is problem in the first line of the ACE (ace_cnt=1). If you refer to the first ACE,

s: (EVERYONE@) : a rwxacC), there is no p as the access mask. The p is needed in addition to the w
when applying the ACL.

Troubleshooting access denies

A filesystem operation (for example, read or write) might fail on an object associated with an NFS4 ACL.
Usually, an error message is displayed, but that message might not contain enough information to
determine the access problem. You can use the trace facility to find the access problem. For example, if
you have a file, /j2v2/file2 with the following NFS4 ACL:

s:(EVERYONE@): a rwpx

The following command reports a "Permission denied” error:
1s -1 /j2v2/file2

Complete the following steps to troubleshoot this problem:
1. Run the trace, Is -l /j2v2/file2 and trcrpt using the following commands:

$ trace -j 478 -0 trc.raw
$->11s -1 /j2v2/file2
$ ->quit
$ trcrpt trc.raw > trc.rpt
2. Analyze the trace report. The file contains lines similar to the following:

478 xxx xxx ACL ENGINE: chk_access entry: type=NFS4 obj_mode=33587711 size=68 ops=1024 uid=100
478 xxx xxx ACL ENGINE: nfs4_chk_access_self: type=NFS4 aceN=1 aceCnt=1 req=128 deny=0

478 xxx xxx ACL ENGINE: nfs4 mask_privcheck: type=NFS4 deny=128 priv=128

478 xxx xxx ACL ENGINE: chk_access exit: type=NFS4 rc=13 ops=1024 priv=0 against=0

The third line indicates the access is denied for access mask = 128 (0x80) which is only
READ_ATTRIBUTES (see the /usrf/include/sys/acl.h file).

Auditing overview

The auditing subsystem enables the system administrator to record security-relevant information, which
can be analyzed to detect potential and actual violations of the system security policy.

Auditing subsystem
The auditing subsystem has detection, collection, and processing functions.

+ [‘Auditing event detection’]
« [‘Event information collection” on page 120|
+ [‘Audit trail information processing” on page 120

The system administrator can configure each of these functions.
Auditing event detection

Event detection is distributed throughout the Trusted Computing Base (TCB), both in the kernel (supervisor
state code) and the trusted programs (user state code). An auditable event is any security-relevant
occurrence in the system. A security-relevant occurrence is any change to the security state of the system,
any attempted or actual violation of the system access control or accountability security policies, or both.
The programs and kernel modules that detect auditable events are responsible for reporting these events
to the system audit logger, that runs as part of the kernel and can be accessed either with a subroutine
(for trusted program auditing) or within a kernel procedure call (for supervisor state auditing). The
information reported includes the name of the auditable event, the success or failure of the event, and any
additional event-specific information that is relevant to security auditing.

Security 119

Event detection configuration consists of turning event detection on or off, and specifiying which events are
to be audited for which users. To activate event detection use the audit command to enable or disable the
audit subsystem. The /etc/security/audit/config file contains the events and users that are processed by
the audit subsystem.

Event information collection

Information collection encompasses logging the selected auditable events. This function is performed by
the kernel audit logger, which provides both a system call and an intra-kernel procedure call interface that
records auditable events.

The audit logger is responsible for constructing the complete audit record, consisting of the audit header,
that contains information common to all events (such as the name of the event, the user responsible, the
time and return status of the event), and the audit trail, which contains event-specific information. The
audit logger appends each successive record to the kernel audit trail, which can be written in either (or
both) of two modes:

BIN mode
The trail is written into alternating files, providing for safety and long-term storage.

STREAM mode
The trail is written to a circular buffer that is read synchronously through an audit pseudo-device.
STREAM mode offers immediate response.

Information collection can be configured at both the front end (event recording) and at the back end (trail
processing). Event recording is selectable on a per-user basis. Each user has a defined set of audit events
that are logged in the audit trail when they occur. At the back end, the modes are individually configurable,
so that the administrator can employ the back-end processing best suited for a particular environment. In
addition, BIN mode auditing can be configured to generate an alert in case the file system space available
for the trail is getting too low.

Audit trail information processing

The operating system provides several options for processing the kernel audit trail. The BIN mode trail can
be compressed, filtered, or formatted for output, or any reasonable combination of these before archival
storage of the audit trail, if any. Compression is done through Huffman encoding. Filtering is done with
standard query language (SQL)-like audit record selection (using the command), which
provides for both selective viewing and selective retention of the audit trail. Formatting of audit trail records
can be used to examine the audit trail, to generate periodic security reports, and to print a paper audit trail.

The STREAM mode audit trail can be monitored in real time, to provide immediate threat-monitoring
capability. Configuration of these options is handled by separate programs that can be invoked as daemon
processes to filter either BIN or STREAM mode trails, although some of the filter programs are more
naturally suited to one mode or the other.

Auditing subsystem configuration

The auditing subsystem has a global state variable that indicates whether the auditing subsystem is on. In
addition, each process has a local state variable that indicates whether the auditing subsystem should
record information about this process.

Both of these variables determine whether events are detected by the Trusted Computing Base (TCB)
modules and programs. Turning TCB auditing off for a specific process allows that process to do its own
auditing and not to bypass the system accountability policy. Permitting a trusted program to audit itself
allows for more efficient and effective collection of information.

120 AIX Version 6.1 Security

Auditing subsystem information collection

Information collection addresses event selection and kernel audit trail modes. It is done by a kernel routine
that provides interfaces to log information, used by the TCB components that detect auditable events, and
configuration interfaces, used by the auditing subsystem to control the audit logging routine.

Audit logging

Auditable events are logged by the following interfaces: the user state and supervisor state. The user state
portion of the TCB uses the auditlog or auditwrite subroutine, while the supervisor state portion of the
TCB uses a set of kernel procedure calls.

For each record, the audit event logger prefixes an audit header to the event-specific information. This
header identifies the user and process for which this event is being audited, as well as the time of the
event. The code that detects the event supplies the event type and return code or status and optionally,
additional event-specific information (the event tail). Event-specific information consists of object names
(for example, files that are refused access or tty used in failed login attempts), subroutine parameters, and
other modified information.

Events are defined symbolically, rather than numerically. This lessens the chances of name collisions,
without using an event registration scheme. Because subroutines are auditable and the extendable kernel
definition has no fixed switched virtual circuit (SVC) numbers, it is difficult to record events by number. The
number mapping would have to be revised and logged every time that the kernel interface was extended
or redefined.

Audit record format

The audit records consist of a common header, followed by audit trails specific to the audit event of the
record. The structures for the headers are defined in the /ust/include/sys/audit.h file. The format of the
information in the audit trails is specific to each base event and is shown in the /etc/security/audit/events
file.

The information in the audit header is generally collected by the logging routine to ensure its accuracy,
while the information in the audit trails is supplied by the code that detects the event. The audit logger has
no knowledge of the structure or semantics of the audit trails. For example, when the login command
detects a failed login, it records the specific event with the terminal on which it occurred and writes the
record into the audit trail using the auditlog subroutine. The audit logger kernel component records the
subject-specific information (user IDs, process IDs, time) in a header and appends this to the other
information. The caller supplies only the event name and result fields in the header.

Audit logger configuration
The audit logger is responsible for constructing the complete audit record. You must select the audit
events that you want to be logged.

Audit events selection

Audit event selection has the following types:

Per-Process Auditing
To select process events efficiently, the system administrator can define audit classes. An audit
class is a subset of the base auditing events in the system. Auditing classes provide for
convenient logical groupings of the base auditing events.

For each user on the system, the system administrator defines a set of audit classes that
determine the base events that could be recorded for that user. Each process run by the user is
tagged with its audit classes.

Security 121

Per-Object Auditing
The operating system provides for the auditing of object accesses by name; that is, the auditing of
specific objects (normally files). By-name object auditing prevents having to cover all object
accesses to audit the few pertinent objects. In addition, the auditing mode can be specified, so
that only accesses of the specified mode (read/write/execute) are recorded.

Kernel audit trail modes

Kernel logging can be set to BIN or STREAM modes to define where the kernel audit trail is to be written.
If the BIN mode is used, the kernel audit logger must be given (before audit startup) at least one file
descriptor to which records are to be appended.

BIN mode consists of writing the audit records into alternating files. At auditing startup, the kernel is
passed two file descriptors and an advisory maximum bin size. It suspends the calling process and starts
writing audit records into the first file descriptor. When the size of the first bin reaches the maximum bin
size, and if the second file descriptor is valid, it switches to the second bin and reactivates the calling
process. The kernel continues writing into the second bin until it is called again with another valid file
descriptor. If at that point the second bin is full, it switches back to the first bin, and the calling process
returns immediately. Otherwise, the calling process is suspended, and the kernel continues writing records
into the second bin until it is full. Processing continues this way until auditing is turned off. See the
following figure for an illustration of audit BIN mode:

122 AIX Version 6.1 Security

Application : Kernel I Application
| /audit/bin1
Trusted | Kerngl auditcat
Application Audit Utility
Subsystem
/audit/bin2
]
Application- Binary . .
generated Audit Data Append to gg‘tzry Audit
Audit Data (alternate use) | audit/trail

auditselect
Utility

Binary Audit
Data Storage

auditpr
Utility

Text Audit Data
Storage

Figure 1. Process of the audit BIN mode.. This illustration shows the process of the audit BIN mode.

The alternating bin mechanism is used to ensure that the audit susbsystem always has something to write
to while the audit records are processed. When the audit subsystem switches to the other bin, it empties
the first bin content to the trace file. When time comes to switch the bin again, the first bin is available. It
decouples the storage and analysis of the data from the data generation. Typically, the auditcat program
is used to read the data from the bin that the kernel is not writing to at the moment. To make sure that the
system never runs out of space for the audit trail (the output of the auditcat program), the freespace
parameter can be specified in the /etc/security/audit/config file. If the system has less than the amount
of 512-byte blocks specified here, it generates a syslog message.

If auditing is enabled, the binmode parameter in the start stanza in /etc/security/audit/config should be
set to panic. The freespace parameter in the bin stanza should be configured at minimum to a value that
equals 25 percent of the disk space dedicated to the storage of the audit trails. The bytethreshold and
binsize parameters should each be set to 65536 bytes.

In the STREAM mode, the kernel writes records into a circular buffer. When the kernel reaches the end of
the buffer, it simply wraps to the beginning. Processes read the information through a pseudo-device
called /dev/audit. When a process opens this device, a channel is created for that process. Optionally,
the events to be read on the channel can be specified as a list of audit classes. See the following figure
for an illustration of audit STREAM mode:

Security 123

Application Kernel I Application

Kernel
Audit
Subsystem

Trusted
Application

auditstream
Utility

/dev/audit

Application- . : . .
generated Binary Temporary file Binary Audit
Audit Data Audit Data = or pipe Data

auditselect
Utility

Binary Audit
Data Storage

auditpr
Utility

Text Audit Data
Storage or
Real-Time
Processing

Figure 2. Process of the audit STREAM mode. This illustration shows the process of the audit STREAM mode.

The main purpose of the STREAM mode is to allow for timely reading of the audit trail, which is desirable
for real-time threat monitoring. Another use is to create a trail that is written immediately, preventing any
possible tampering with the audit trail, as is possible if the trail is stored on some writable media.

Yet another method to use the STREAM mode is to write the audit stream into a program that stores the
audit information on a remote system, which allows central near-time processing, while at the same time
protecting the audit information from tampering at the originating host.

Audit records processing

The auditselect, auditpr, and auditmerge commands are available to process BIN or STREAM mode
audit records. Both utilities operate as filters so that they can be easily used on pipes, which is especially
handy for STREAM mode auditing.

auditselect
Can be used to select only specific audit records with SQL-like statements. For example, to select
only exec() events that were generated by user afx, type the following:

auditselect -e "Togin==afx && event==PROC_Execute"

124 AIX Version 6.1 Security

auditpr
Used to convert the binary audit records into a human-readable form. The amount of information
displayed depends on the flags specified on the command line. To get all the available information,
run the auditpr command as follows:

auditpr -v -hhelrtRpPTc

When the -v flag is specified, the audit tail which is an event specific string (see the
letc/security/audit/events file) is displayed in addition to the standard audit information that the
kernel delivers for every event.

auditmerge
Used to merge binary audit trails. This is especially useful if there are audit trails from several
systems that need to be combined. The auditmerge command takes the names of the trails on
the command line and sends the merged binary trail to standard output, so you still need to use
the auditpr command to make it readable. For example, the auditmerge and auditptr commands
could be run as follows:

auditmerge trail.systeml trail.system? | auditpr -v -hhelrRtpc
Using the audit subsystem for a quick security check:

To monitor a single suspicious program without setting up the audit subsystem, the watch command can
be used. It will record either the requested or all events that are generated by the specified program.

For example, to see all FILE_Open events when running vi /etc/hosts, type the following:
watch -eFILE Open -o /tmp/vi.watch vi /etc/hosts

The /tmp/vi.watch file displays all FILE_Open events for the editor session.

Event selection
Event selection must maintain a balance between insufficient to too much detail.

The set of auditable events on the system defines which occurrences can actually be audited and the
granularity of the auditing provided. The auditable events must cover the security-relevant events on the
system, as defined previously. The level of detail you use for auditable event definition must maintain a
balance between insufficient detail, which makes it difficult for the administrator to understand the selected
information, and too much detail, which leads to excessive information collection. The definition of events
takes advantage of similarities in detected events. For the purpose of this discussion, a detected event is
any single instance of an auditable event; for instance, a given event might be detected in various places.
The underlying principle is that detected events with similar security properties are selected as the same
auditable event. The following list shows a classification of security policy events:

* Subject Events
Process creation
Process deletion
Setting subject security attributes: user IDs, group IDs
Process group, control terminal
* Object Events
— Object creation
— Object deletion
— Object open (including processes as objects)
— Object close (including processes as objects)
— Setting object security attributes: owner, group, ACL
» Import/Export Events
— Importing or exporting an object

Security 125

Accountability Events

— Adding a user, changing user attributes in the password database
— Adding a group, changing group attributes in the group database
— User login

— User logoff

— Changing user authentication information

— Trusted path terminal configuration

— Authentication configuration

— Auditing administration: selecting events and audit trails, switching on or off, defining user auditing
classes

General System Administration Events

— Use of privilege

— File system configuration

— Device definition and configuration

— System configuration parameter definition
— Normal system IPL and shutdown

— RAS configuration

— Other system configuration

— Starting the audit subsystem

— Stopping the audit subsystem

— Querying the audit subsystem

— Resetting the audit subsystem

Security Violations (potential)

Access permission refusals

Privilege failures

Diagnostically detected faults and system errors
Attempted alteration of the TCB

Setting up auditing
This procedure shows you how to set up an auditing subsystem. For more specific information, refer to the
configuration files noted in these steps.

1.

Select system activities (events) to audit from the list in the /etc/security/audit/events file. If you have
added new audit events to applications or kernel extensions, you must edit the file to add the new
events.

* You add an event to this file if you have included code to log that event in an application program
(using the Jauditwrite] or fauditlog| subroutine) or in a kernel extension (using the [audit_svcstart,
laudit_svcbcopy| and [audit_svcfinis| kernel services).

* Ensure that formatting instructions for any new audit events are included in the
letc/security/audit/events file. These specifications enable the command to write an audit
trail when it formats audit records.

Group your selected audit events into sets of similar items called audit classes. Define these audit

classes in the classes stanza of the /etc/security/audit/config file.

Assign the audit classes to the individual users and assign audit events to the files (objects) that you

want to audit, as follows:

» To assign audit classes to an individual user, add a line to the users stanza of the
letc/security/audit/config file. To assign audit classes to a user, you can use the chuser command.

* To assign audit events to an object (data or executable file), add a stanza for that file to the
letc/security/audit/objects file.

126 AIX Version 6.1 Security

* You can also specify default audit classes for new users by editing the /usr/lib/security/
mkuser.default file. This file holds user attributes that will be used when generating new user IDs.
For example, use the general audit class for all new user IDs, as follows:
user:

auditclasses = general

pgrp = staff

groups = staff

shell = /usr/bin/ksh

home = /home/$USER
To get all audit events, specify the ALL class. When doing so on even a moderately busy system, a
huge amount of data will be generated. It is typically more practical to limit the number of events
that are recorded.

4. In the /etc/security/audit/config file, configure the type of data collection that you want using BIN
collection, STREAM collection, or both methods. Make sure that audit data does not compete with
other data about file space by using a separate file system for audit data. This ensures that there is
enough space for the audit data. Configure the type of data collection as follows:

» To configure BIN collection:
a. Enable the BIN mode collection by setting binmode = on in the start stanza.

b. Edit the binmode stanza to configure the bins and trail, and specify the path of the file containing
the BIN mode back-end processing commands. The default file for back-end commands is the
letc/security/audit/bincmds file.

c. Make sure that the audit bins are large enough for your needs and set the freespace parameter
accordingly to get an alert if the file system is filling up.

d. Include the shell commands that process the audit bins in an audit pipe in the
letc/security/audit/bincmds file.

» To configure STREAM collection:
a. Enable the STREAM mode collection by setting streammode = on in the start stanza.

b. Edit the streammode stanza to specify the path to the file containing the streammode processing
commands. The default file containing this information is the /etc/security/audit/streamcmds
file.

c. Include the shell commands that process the stream records in an audit pipe in the
letc/security/audit/streamcmds file.

5. When you have finished making any necessary changes to the configuration files, you are ready to use
the audit start command to enable the audit subsystem. This will generate the AUD_It event with a
value of 1.

6. Use the audit query command to see which events and objects are audited. This will generate the
AUD_It event with a value of 2.

7. Use the audit shutdown command to deactivate the audit subsystem again. This will generate the
AUD_lIt event with a value of 0.

Generating a generic audit log:

The following are examples of generating a generic audit log.

In this example, assume that a system administrator wants to use the audit subsystem to monitor a large
multi-user server system. No direct integration into an IDS is performed, all audit records will be inspected
manually for irregularities. Only a few essential audit events are recorded, to keep the amount of

generated data to a manageable size.

The audit events that are considered for event detection are the following:

FILE_Write We want to know about file writes to configuration files, so this event will be
used with all files in the /etc tree.

Security 127

PROC_SetUserIDs All changes of user IDs

AUD_Bin_Def Audit bin configuration

USER_SU The su command

PASSWORD_Change passwd command

AUD_Lost_Rec Notification in case there where lost records
CRON_JobAdd new cron jobs

AT_JobAdd new at jobs

USER_Login All logins

PORT_Locked All locks on terminals because of too many invalid attempts

The following is an example of how to generate a generic audit log:

1. Set up a list of critical files to be monitored for changes, such as, all files in /etc and configure them for
FILE_Write events in the objects file as follows:

find /etc -type f | awk '{printf("%s:\n\tw = FILE Write\n\n",$1)}' >> /etc/security/audit/objects

2. Use the auditcat command to set up BIN mode auditing. The /etc/security/audit/bincmds file is
similar to the following:

/usr/shin/auditcat -p -o $trail $bin

3. Edit the /etc/security/audit/config file and add a class for the events we have interest. List all existing
users and specify the custom class for them.
start:

binmode = on
streammode = off

bin:
cmds = /etc/security/audit/bincmds
trail = /audit/trail
binl = /audit/binl
bin2 = /audit/bin2
binsize = 100000
freespace = 100000

classes:
custom = FILE Write,PROC_SetUser,AUD Bin_Def,AUD_Lost Rec,USER SU, \
PASSWORD_Change, CRON_JobAdd,AT_JobAdd,USER_Login,PORT_Locked

users:
root = custom
afx = custom

4. Add the custom audit class to the /usr/lib/security/mkuser.default file, so that new IDs will
automatically have the correct audit call associated:
user:
auditclasses = custom
pgrp = staff
groups = staff
shell = /usr/bin/ksh
home = /home/$USER
5. Create a new file system named /audit by using SMIT or the crfs command. The file system should
be large enough to hold the two bins and a large audit trail.

6. Run the audit start command option and examine the /audit file. You should see the two bin files and
an empty trail file initially. After you have used the system for a while, you should have audit records in
the trail file that can be read with:

auditpr -hhelpPRtTc -v | more

This example uses only a few events. To see all events, you could specify the classname ALL for all users.
This action will generate large amounts of data. You might want to add all events related to user changes
and privilege changes to your custom class.

128 AIX Version 6.1 Security

Monitoring file access to critical files in real time:
These steps can be used to monitor file access to critical files in real time.

Perform these steps:

1. Set up a list of critical files to be monitored for changes, for example all files in /etc and configure them
for FILE_Write events in the objects file:

find /etc -type f | awk '{printf("%s:\n\tw = FILE Write\n\n",$1)}' >> /etc/security/audit/objects

2. Set up stream auditing to list all file writes. (This example lists all file writes to the console, but in a
production environment you might want to have a backend that sends the events into an Intrusion
Detection System.) The /etc/security/audit/streamecmds file is similar to the following:

/usr/sbin/auditstream | /usr/sbin/auditselect -e "event == FILE Write" |
auditpr -hhelpPRtTc -v > /dev/console &

3. Set up STREAM mode auditing in /etc/security/audit/config, add a class for the file write events and
configure all users that should be audited with that class:

start:
binmode = off
streammode = on

stream:
cmds = /etc/security/audit/streamcmds

classes:
filemon = FILE write

users:
root = filemon
afx = filemon

4. Now run audit start. All FILE_Write events are displayed on the console.

Audit events selection:
The purpose of an audit is to detect activities that might compromise the security of your system.

When performed by an unauthorized user, the following activities violate system security and are
candidates for an audit:

* Engaging in activities in the Trusted Computing Base
* Authenticating users

* Accessing the system

» Changing the configuration of the system

» Circumventing the auditing system

* Initializing the system

* Installing programs

* Modifying accounts

» Transferring information into or out of the system

The audit system does not have a default set of events to be audited. You must select events or event
classes according to your needs.

To audit an activity, you must identify the command or process that initiates the audit event and ensure

that the event is listed in the /etc/security/audit/events file for your system. Then you must add the event
either to an appropriate class in the /etc/security/audit/config file, or to an object stanza in the

Security 129

letc/security/audit/objects file. See the /etc/security/audit/events file on your system for the list of audit
events and trail formatting instructions. For a description of how audit event formats are written and used,
see the auditpr command.

After you have selected the events to audit, you must combine similar events into audit classes. Audit
classes are then assigned to users.

Audit classes selection

You can facilitate the assignment of audit events to users by combining similar events into audit classes.
These audit classes are defined in the classes stanza of the /etc/security/audit/config file.

Some typical audit classes might be as follows:

general Events that alter the state of the system and change user authentication. Audit attempts to circumvent
system access controls.

objects Write access to security configuration files.

kernel Events in the kernel class are generated by the process management functions of the kernel.

An example of a stanza in the /etc/security/audit/config file is as follows:

classes:
general = USER_SU,PASSWORD_Change,FILE_Unlink,FILE_Link,FILE_Rename
system = USER_Change,GROUP_Change,USER_Create,GROUP_Create
init = USER_Login,USER_Logout

Audit data-collection method selection

Your selection of a data-collection method depends on how you intend to use the audit data. If you need
long-term storage of a large amount of data, select BIN collection. If you want to process the data as it is
collected, select STREAM collection. If you need both long-term storage and immediate processing, select
both methods.

Bin collection Allows storage of a large audit trail for a long time. Audit records are written to a file
that serves as a temporary bin. After the file is filled, the data is processed by the
auditbin daemon while the audit subsystem writes to the other bin file, and records
are written to an audit trail file for storage.

Stream collection Allows processing of audit data as it is collected. Audit records are written into a
circular buffer within the kernel, and are retrieved by reading /dev/audit. The audit
records can be displayed, printed to provide a paper audit trail, or converted into
bin records by thecommand.

Light Directory Access Protocol

The Light Directory Access Protocol (LDAP) defines a standard method for accessing and updating
information in a directory (a database) either locally or remotely in a client-server model.

The protocol is optimized for reading, browsing, and searching directories, and was originally developed as
a lightweight front-end to the X.500 Directory Access Protocol. The LDAP method is used by a cluster of
hosts to allow centralized security authentication as well as access to user and group information. This
functionality is intended to be used in a clustering environment to keep authentication, user, and group
information common across the cluster.

Objects in LDAP are stored in a hierarchical structure known as a Directory Information Tree (DIT). A good

directory starts with the structural design of the DIT. The DIT should be designed carefully before
implementing LDAP as a means of authentication.

130 AIX Version 6.1 Security

LDAP authentication load module

The LDAP exploitation of the security subsystem is implemented as the LDAP authentication load module.
It is conceptually similar to the other load modules such as NIS, DCE, and KRB5. Load modules are
defined in the /usr/lib/security/methods.cfg file.

The LDAP loadmodule provides user authentication and centralized user and group management
functionality through the LDAP protocol. A user defined on a LDAP server can be configured to log in to an
LDAP client even if that user is not defined locally.

The AIX LDAP load module is fully integrated within the AIX operating system. After the LDAP
authentication load module is enabled to serve user and group information, high-level APls, commands,
and system-management tools work in their usual manner. An -R flag is introduced for most high-level
commands to work through different load modules. For example, to create an LDAP user named joe from
a client machine, use the following command:

mkuser -R LDAP joe

Note: Even though the LDAP infrastructure can support an unlimited number of users in a group, up to 25
000 users have been created in a single group and various operations tested against that group.
Some of the historical POSIX interfaces might not return the complete information for the group.
Refer to the individual API's documentation for such limitations.

LDAP based authentication:
There are limits on the various entities as part of LDAP based authentication on AlX.

Note that LDAP infrastructure itself does not specify any limits on the database contents. However, this
section documents the results based on test configurations as to limits. The following limits have been
tested with respect to the LDAP based authentication on AlX:

Total number of users: Up to 500 000 users have been created on a single system and simultaneous
authentication has been tested for hundreds of users.

Total number of groups: Up to 500 groups have been created on a single system and tested.

Maximum number of users per group: Up to 25 000 users have been created in a single group and
various operations tested against that group.

Some of the historical POSIX interfaces might not return the complete information for the group. Refer to
the individual API's documentation for such limitations. Also, the above values are based on the testing
done. They do not preclude the possibility that one can configure systems with much larger users and
groups provided necessary resources exist.

Setting up an ITDS security information server:

To set up a system as an LDAP security information server that serves authentication, user, and group
information through LDAP, the LDAP server and client packages must be installed.

If the Secure Socket Layer (SSL) is required, the GSKit package must be installed. The system
administrator must create a key using the ikeyman command. For more information about configuring the
server to use SSL, see Secure Communication with SSL.

To simplify server configuration, AIX created the mksecldap command. The command can be
used to set up an LDAP security information server. It sets up a database named /dapdb2, populates the

database with the user and group information from the local host, and sets the LDAP server administrator
DN (distinguished name) and password. Optionally, it can set up SSL for client/server communication. The
mksecldap command adds an entry into the /etc/inittab file to start the LDAP server at every reboot. The

Security 131

entire LDAP server setup is done through the mksecldap command, which updates the ibmslapd.conf
file (IBM Tivoli® Directory Server Version 5.1 and later) or slapd.conf file (SecureWay® Directory Version
3.2 and 4.1) or slapd32.conf file (SecureWay Directory Version 3.2).

Unless the -u NONE command option for mksecldap is used, all users and groups from the local system
are exported to the LDAP server during setup. Select one of the following LDAP schemas for this step:

AIX schema
Includes aixAccount and aixAccessGroup object class. This schema offers a full set of attributes
for AIX users and groups.

RFC 2307 schema
Includes posixAccount, shadowAccount, and posixGroup object class and is used by several

vendors’ directory products. The RFC 2307 schema defines only a small subset of attributes that
AlIX uses.

RFC2307AIX schema
Includes posixAccount, shadowAccount, and posixGroup object classes plus the aixAuxAccount and
aixAuxGroup object classes. The aixAuxAccount and aixAuxGroup object classes provide the
attributes which are used by AIX but not defined by the RFC 2307 schema.

Using the RFC2307AIX schema type for users and groups is highly recommended. The RFC2037AIX
schema type is fully compliant to RFC 2307 with extra attributes to support additional AIX user
management functionality. An ITDS server with RFC2307AIX schema configuration not only supports AlX
LDAP clients, but also other RFC 2307 compliant UNIX and Linux® LDAP clients.

AIX 5.1 and earlier requires AlIX schema type. Use of AIX schema type is not encouraged unless such a
server is required to support systems with AIX 5.1 and earlier. Non-AlX systems might not work with ITDS
with AIX schema for user and group management.

All the user and group information is stored under a common AIX tree (suffix). The default suffix is
"cn=aixdata”. The mksecldap command accepts a user-supplied suffix through the -d flag. The name for
the subtrees to be created for the user, group, ID, and so on is controlled by the sectoldif.cfg
configuration file. Refer to the sectoldif.cfg file for more information.

The created AlX tree is ACL (Access Control List) protected. The default ACL grants administrative
privilege only to the entity specified as the administrator with the -a command option. Additional privilege
can be granted to a proxy identity if the -x and -X command options are used. Use of these options
creates the proxy identity and configure access privilege as defined in the /etc/security/Idap/
proxy.ldif.template file. Creation of a proxy identity allows LDAP clients to bind to the server without the
use of the administrator identity, thereby restricting client administrator privileges on the LDAP server.

The mksecldap command works even if an LDAP server has been set up for other purposes; for
example, for user ID lookup information. In this case, mksecldap adds the AIX tree and populates it with
the AIX security information to the existing database. This tree is ACL-protected independently from other
trees. In this case, the LDAP server works as usual, in addition to serving as an AIX LDAP Security
Server.

Note: Back up the existing database before running the mksecldap command to set up the security
server to share the same database is recommended.

After the LDAP security information server is successfully set up, the same host can also be set up as a
client so that LDAP user and group management can be completed and LDAP users can log in to this
server.

If the LDAP security information server setup is not successful, you can undo the setup by running the
mksecldap command with the -U flag. This restores the ibmslapd.conf (or slapd.conf or slapd32.conf)

132 AIX Version 6.1 Security

file to its pre-setup state. Run the mksecldap command with the -U flag after any unsuccessful setup
attempt before trying to run the mksecldap command again. Otherwise, residual setup information might
remain in the configuration file and cause a subsequent setup to fail. As a safety precaution, the undo
option does not do anything to the database or to its data, because the database could have existed
before the mksecldap command was run. Remove any database manually if it was created by the
mksecldap command. If the mksecldap command has added data to a pre-existing database, decide
what steps to take to recover from a failed setup attempt.

For more information on setting up an LDAP security information server, see thecommand.
Setting up an LDAP client:

To set up a client to use LDAP for authentication and user/group information, make sure that each client
has the LDAP client package installed. If the SSL is required, the GSKit must be installed, a key must be
created, and the LDAP server SSL key certificate must be added to this key.

Similar to LDAP server setup, client setup can be done using thecommand. To have this
client contact the LDAP security information server, the server name must be supplied during setup. The
server’s bind DN and password are also needed for client access to the AlX tree on the server. The
mksecldap command saves the server bind DN, password, server name, AlX tree DN on the server, the
SSL key path and password, and other configuration attributes to the /etc/security/Idap/ldap.cfg file.

The mksecldap command saves the bind password and SSL key password (if configuring SSL) to the
letc/security/Idap/ldap.cfg file in encrypted format. The encrypted passwords are system specific, and
can only be used by the daemon on the system where they are generated. The
secldapcintd daemon can make use of clear text or encrypted password from the /etc/security/ldap/
Idap.cfg file.

Multiple servers can be supplied to the mksecldap command during client setup. In this case, the client
contacts the servers in the supplied order and establishes connection to the first server that the client can
successfully bind to. If a connection error occurs between the client and the server, a reconnection request
is tried using the same logic. The Security LDAP exploitation model does not support referral. It is
important that the replicate servers are kept synchronized.

The client communicates to the LDAP security information server through a client side daemon
(secldapcintd). If the LDAP load module is enabled on the client, high-level commands are routed to the
daemon through the library APIs for users defined in LDAP. The daemon maintains a cache of requested
LDAP entries. If a request is not satisfied from the cache, the daemon queries the server, updates the
cache, and returns the information back to the caller.

Other fine-tuning options can be supplied to the mksecldap command during client setup, such as
settings for the number of threads used by the daemon, the cache entry size, and the cache expiration
timeout. These options are for experienced users only. For most environments, the default values are
sufficient.

In the final steps of the client setup, the mksecldap command starts the client-side daemon and adds an
entry in the /etc/inittab file so the daemon starts at every reboot. You can check whether the setup is
successful by checking the secldapcintd daemon process through the Is-secldapcintd command.
Provided that the LDAP security information server is setup and running, this daemon will be running if the
setup was successful.

The server must be set up before the client. Client setup depends on the migrated data being on the
server. Follow these steps to set up the client:

1. Install Idap.client fileset on the AIX 5.3 system.
2. To configure the LDAP client, run the following command:

Security 133

mksecldap -c -h serverl.ibm.com -a cn=admindn -p adminpwd -d cn=basedn
Replace the values above as appropriate for your environment.

See the [mksecldap| command description in [A/X Version 6.1 Commands Reference for more details.

Client enablement for LDAP netgroups:

You can use netgroups as part of NIS-LDAP (the name-resolution method).

Perform the following steps for client enablement for LDAP netgroups:

1.

Install and set up LDAP based user group management as detailed in|../../../com.ibm.aix.security/doc/
[security/ldap_client_setup.htm|

If the netgroup setup is not completed, any LDAP-defined user will be listed by the system. For
example, if nguser is a netgroup user belonging to netgroup mygroup already defined in the LDAP
server, Tsuser -R LDAP nguser will list the user.

To enable the netgroup function, the module definition for LDAP in the /ust/lib/security/methods.cfg
file needs to include an options attribute with a netgroup value. Edit the /usr/lib/security/methods.cfg
file and add the line options = netgroup to the LDAP stanza. This marks the LDAP load module as a
netgroup-capable load module. For example:

LDAP:

program = /usr/1ib/security/LDAP
program_64 =/usr/1ib/security/LDAP64
options = netgroup

Now the commands Tsuser -R LDAP nguser, or Tsuser nguser or Tsuser -R LDAP -a ALL do not list

any users. LDAP is now considered a netgroup-only database from this client and no netgroups have
been enabled for access to this client yet.

Edit the /etc/passwd file, and append a line for the netgroup that should have access to the system.
For example if mygroup is a netgroup on the LDAP server that contains the desired user, append the
following:

+@mygroup

Edit the /etc/group file and append a +: line to enable NIS lookups for groups:

+:

Running the command 1suser nguser now returns the user because nguser is in the netgroup
mygroup.

The 1suser -R LDAP nguser command does not find the user, but the command 1suser -R compat
nguser does because the user is considered a compat user now.

In order for netgroup users to authenticate to the system, the AlX authentication mechanism must
know the method to use. If the default stanza in the /etc/security/user file includes SYSTEM = compat,
then all netgroup users in the netgroup added to the /etc/passwd file can authenticate. Another option
would be to individually configure users by manually adding stanzas to the /etc/security/user file for
the desired users. An example stanza for nguser is:
nguser:

SYSTEM = compat

registry = compat

Netgroup users in the allowed netgroups can now authenticate to the system.
Enabling the netgroup feature also activates the following conditions:

« Users defined in the /etc/security/user file as members of the LDAP registry (having registry=LDAP
and SYSTEM="LDAP") cannot authenticate as LDAP users. These users are now nis_Ildap users and
require native NIS netgroup membership.

134 AIX Version 6.1 Security

* The meaning of registry compat is expanded to include modules that use netgroup. For example, if
LDAP module is netgroup enabled, compat includes the files, NIS, and LDAP registries. Users
retrieved from those modules have a registry value of compat.

Related information

+ The [exports File for NFS|document

+ The[rhosts File Format for TCP/IP|document

+ The |hosts.equiv File Format for TCP/IP|document

Supported LDAP servers:

AIX LDAP-based user and group management supports IBM Tivoli Directory Servers, non IBM servers
with RFC 2307 compliant schema, and Microsoft® active directory servers.

IBM Tivoli Directory Server
It is highly recommended that AIX user/group management be configured using IBM Tivoli Directory

Servers (ITDS) servers. For more information about setting up an ITDS server for user and group
management, see [Setting up an ITDS security information server

Non IBM Directory Servers

AIX supports a variety of directory servers whose users and groups are defined using the RFC 2307
schema. When configured as an LDAP client to such servers, AIX uses the severs the same way as an
ITDS server with RFC 2037 schema. These servers must support LDAP Version 3 protocol.

Because the RFC 2307 schema only defines a subset of user and group attributes that AIX can use, some
AIX user and group management functionality could not be done if AIX is configured to use such an LDAP
server (for example, user password reset enforcement, password history, per user resource limit, login
control to certain systems through the AlX hostsallowedlogin and hostsdeniedlogin attributes, capability,
and so on).

AIX does not support non-RFC 2307 compliant directory servers. However, AIX may be made to work with
such servers that are not RFC 2307 compliant, but whose users and groups are defined with all the
required UNIX attributes. The minimal set of user and group attributes required by AIX is the set defined in
RFC 2307. Support for such directory servers requires manual configuration. AIX provides a schema
mapping mechanism for this purpose. For more information on schema file format and schema file usage,
see [LDAP Attribute Mapping File Format]

Microsoft Active Directory

AIX supports Microsoft Active Directory (AD) as an LDAP server for user and group management. The AD
server must have the UNIX supporting schema installed. The UNIX support schema of AD comes from the
Microsoft Service For UNIX (SFU) package. Each SFU version has slightly different user and group
schema definitions from its predecessors. AIX supports AD running on Windows® 2000 and 2003 with SFU
schema Version 3.0 and 3.5, and AD running on Windows 2003 R2 with its built in UNIX schema.

Due to the difference in user and group management between UNIX systems and Windows systems, not
all AIX commands may work on LDAP users if the server is AD. Commands that do not work include
mkuser and mkgroup. Most user and group management commands do work, depending on the access
rights given to the identity with which AIX binds to AD. These commands include Isuser, chuser, rmuser,
Isgroup, chgroup, rmgroup, id, groups, passwd, and chpasswd.

AIX supports two user authentication mechanisms against Windows servers: LDAP authentication and
Kerberos authentication. With either mechanism, AlX supports user identification through LDAP protocol

Security 135

against AD, with no requirement for a corresponding user account on AlX.
Configuring AlIX to work with Active Directory through LDAP:

AlX supports Microsoft Active Directory (AD) as an LDAP server for user and group management. It is
required that the AD server has the UNIX supporting schema installed.

An administrator can use the [mksecldap| command to configure AIX on the AD server in the same manner
as an ITDS server. The mksecldap command hides all the details of configuration to simplify the process.
Before running the mksecldap command to configure AIX on the AD server:

1. The AD server must have the UNIX support schema installed.
2. The AD server must contain users which are UNIX enabled.

For more information about installing UNIX schema to AD and enabling AD users with UNIX support, see
the related Microsoft documentation.

The AD schema often has multiple attribute definitions for the same UNIX attribute (for example, there are
multiple user password and group member definitions). Although AIX supports most of them, consideration
and planning should be done carefully when selecting the definitions to use. It is recommended that AlX
systems and other non-AlX systems sharing the same AD use the same definition to avoid conflicts.

Active Directory password attribute selection:
AIX supports two authentication mechanisms, unix_auth and Idap_auth.

With unix_auth, the password in Microsoft Active Directory (AD) is required to be in encrypted format.
During authentication, the encrypted password is retrieved from AD and compared to the encrypted format
of the user-entered password. Authentication is successful if they match. In Idap_auth mode, AIX
authenticates a user by an LDAP bind operation to the server with the user’s identity and the supplied
password. The user is authenticated if the bind operation is successful. AD supports multiple user
password attributes. A different AIX authentication mode requires a different AD user password attribute.

unix_auth mode

The following AD password attributes can be used for unix_auth mode:
* userPassword

* unixUserPassword

* msSFU30Password

Password management on AlX can be difficult due to AD’s multiple password attributes. Knowing which
password management attributes should be used by the UNIX clients can be confusing. AIX LDAP
attribute mapping capability enables you to customize the password management according to your needs.

By default, AIX uses the msSFU30Password attribute for AD running on Windows 2000 and 2003, and
the userPassword attribute on Windows 2003 R2. If a different password is used, you need to modify the
letc/security/Idap/sfu30user.map file (or the /etc/security/ldap/sfur2user.map file if AD is running on
Windows 2003 R2). Find the line that starts with the word spassword and change the third field of the line
to the desired AD password attribute name. For more information, see [LDAP Attribute Mapping File]

Run the command to configure the AIX LDAP client after the change. If the AIX LDAP
client is already configured, run the [restart-secldapcintd] command to restart the daemon to
absorb the change.

In unix_auth mode, the password might be out of sync between Windows and UNIX, resulting in a
different password for each system. This occurs when you change a password from AIX to Windows,
because Windows uses the uncodepwd password attribute. The AIX command can reset the

136 AIX Version 6.1 Security

UNIX password to be the same as a Windows password, but AIX does not support automatically changing
the Window’s password when you change your UNIX password from AlX.

Idap_auth mode

Active Directory also has the unicodepwd password attribute. This password attribute is used by Windows
systems to authenticate Windows users. In a bind operation to AD, the unicodePwd password must be
used. None of the passwords mentioned under unix_auth mode works for a bind operation. If the
Idap_auth option is specified from the command line, the mksecldap command maps the password
attribute to AD’s unicodePwd attribute at client configuration with no manual step required.

By mapping AlX passwords with the unicodePwd attribute, users defined in AD can login to Windows and
AlIX systems using the same password. A password reset from either a AIX or Windows system is in effect
for both AIX and Windows systems.

Active Directory group member attribute selection:

Microsoft’'s Service for UNIX defines the memberUid, msSFU30MemberUid, and
msSFU30PosixMember group member attributes.

The memberUid and msSFU30MemeberUid attributes accept user account names, while the
msSFU30PosixMember accepts only full DN. For example, for a user account foo (with last name bar)
defined in AD:

* memberUid: foo
* msSFU30MemberUid: foo
* msSFU30PosixMember: CN=foo bar,CN=Users,DC=austin,DC=ibm,DC=com

AIX supports all of these attributes. Consult with your AD administrator to determine which attribute to use.
By default, the command configures AlX to use the msSFU30PosixMember attribute against
AD running on Windows 2000 and 2003, and the uidMember attribute against AD running on Windows
2003 R2. Such selection is due to the AD behavior as AD selects that attribute when adding a user to a
group from Windows. Your business strategy might require the use of a non-default group member
attribute for supporting multiple platforms.

If a different group member attribute is needed, you can change the mapping by editing the group

mapping file. The group mapping file for AD is /etc/security/ldap/sfu30group.map running on Windows
2000 and 2003, and /etc/security/ldap/sfur2group.map for Windows 2003 R2. Find the line that starts
with the word users, and replace the third field with the desired attribute name for group members. For
more information, see [LDAP Attribute Mapping File Formatl Run the mksecldap command to configure

AIX LDAP client after the change, or if the AlX is already configured, run the [restart-secldapcintd|
command to restart the [secldapcintd| daemon to absorb the change.

Multiple organizational units:

Your AD server might have multiple organizational units defined, with each containing a set of users.

Most Windows AD users are defined in the ch=users,... subtree, but some may be defined elsewhere.
The AIX multiple base DN feature can be used for such an AD server. For more information, see [Multiple
[pase DN support

Kerberos authentication for Windows servers:

In addition to the LDAP authentication mechanisms, AIX also supports user authentication through the
Kerberos protocol for Windows servers.

Security 137

multiple_base_dn_support.htm
multiple_base_dn_support.htm

AIX supports Kerberos authentication for Windows KDC and LDAP identification for Windows Active
Directory by creating a KRB5ALDAP compound loadmodule. Because user identification information is
pulled from Microsoft Active Directory, you do not need to create the corresponding user accounts on AlX.

LDAP user management:

You can manage users and groups on an LDAP security information server from any LDAP client by using
high-level commands.

An -R flag added to most of the high-level commands can manage users and groups using LDAP as well
as other authentication load modules such as DCE, NIS, and KRB5. For more information concerning the
use of the -R flag, refer to each of the user or group management commands.

To enable a user to authenticate through LDAP, run the chuser command to change the user's SYSTEM
attribute value to LDAP. By setting the SYSTEM attribute value according to the defined syntax, a user can
be authenticated through more than one load module (for example, compat and LDAP). For more
information on setting users’ authentication methods, see [‘User authentication” on page 65/ and the
SYSTEM attribute syntax defined in the /etc/security/user file.

A user can become an LDAP user at client setup time by running the mksecldap command with the -u
flag in either of the following forms:

1. Run the command:
mksecldap -c -u userl,user2,...

where useri,user2,... is a list of users. The users in this list can be either locally defined or remote
LDAP-defined users. The SYSTEM attribute is set to LDAP in each of the above users’ stanzas in the
letc/security/user file. Such users are only authenticated through LDAP. The users in this list must
exist on the LDAP security information server; otherwise, they can not log in from this host. Run the
chuser command to modify the SYSTEM attribute and allow authentication through multiple methods
(for example, both local and LDAP).

2. Run
mksecldap -c -u ALL

This command sets the SYSTEM attribute to LDAP in each user’s stanza in the /etc/security/user file
for all locally defined users. All such users only authenticate through LDAP. The locally defined users
must exist on the LDAP security information server; otherwise they can not log in from this host. A user
that is defined on the LDAP server but not defined locally cannot log in from this host. To allow a
remote LDAP-defined user to log in from this host, run the chuser command to set the SYSTEM
attribute to LDAP for that user.

Alternatively, you can enable all LDAP users, whether they are defined locally or not, to authenticate
through LDAP on a local host by modifying the "default” stanza of the /etc/security/user file to use
"LDAP" as its value. All users that do not have a value defined for their SYSTEM attribute must follow
what is defined in the default stanza. For example, if the default stanza has "SYSTEM = "compat"" ,
changing it to "SYSTEM = "compat OR LDAP"" allows authentication of these users either through AIX or
LDAP. Changing the default stanza to "SYSTEM = "LDAP"" enables these users to authenticate exclusively
through LDAP. Those users who have a SYSTEM attribute value defined are not affected by the default
stanza.

Multiple base DN support:
Previous to AIX 5L Version 5.3 with the 5300-05 Technology Level, AIX supports only one base DN for an

LDAP entity. For example, you can only specify a single user base DN in the /etc/security/ldap/ldap.cfg
file.

138 AIX Version 6.1 Security

In case of multiple subtrees, the userbasedn attribute must point to a common parent of the subtrees for
all of the users to be visible to AlX. This requires that all subtrees are under the same suffix, since there is
no common parent between suffixes.

AIX 5L Version 5.3 with the 5300-05 Technology Level and later supports multiple base DNs. Up to 10
base DNs for each entity can be specified in the /etc/security/ldap/Ildap.cfg file. The base DNs are
prioritized in the order they appear in the /etc/security/Idap/ldap.cfg file. An operation by AIX commands
in case of multiple base DNs is done according to the base DN priority with the following behavior:

* A query operation (for example, by the Isuser command), is done to the base DNs according to their
priority until a matching account is found, or failure is returned if all of the base DNs are searched
without finding a match. Querying for ALL results in all of the accounts from every base DN being
returned.

* A modification operation (for example, by the chuser command), is done to the first matching account.
» A delete operation (for example, by the rmuser command), is done to the first matching account.

» A creation operation (for example, the mkuser command), is done only to the first base DN. AIX does
not support creating accounts to other base DNs.

It is the directory server administrator’s responsibility to maintain a collision-free account database. If there
are multiple definitions of the same account, each under a different subtree, only the first account is visible
to AIX. An search operation returns only the first matching account. Similarly, a modification or a delete
operation is done only to the first matching account.

Thecommand, when used to configure a LDAP client, will find the base DN for each entity
and save it to the /etc/security/ldap/ildap.cfg file. When multiple base DNs are available on the LDAP
server for a entity, the mksecldap command randomly uses any one of them. To have AIX work with
multiple base DNs, you need to edit the /etc/security/Idap/ldap.cfg file after the mksecldap command
has completed successfully. Find the appropriate base DN definition and add additional base DNs needed.
AIX supports up to 10 base DNs for each entity, any additional base DNs are ignored.

AlX also supports user defined filter and search scope for each base DN. A base DN can have its own
filter and scope that might be different from its peer base DNs. Filters can be used to define the set of
accounts that are visible to AIX.

Only those accounts that satisfy the filter are visible to AIX.

Setting up SSL on the LDAP server:

In order to set up SSL on the LDAP server, install the Idap.max_crypto_server and GSKit file sets to
enable server encryption support. These file sets can be found on the AlX expansion pack.

Follow these steps to enable SSL support for IBM Directory server authentication.
1. Install the IBM Directory GSKit package if it is not installed.

2. Generate the IBM Directory server private key and server certificate using the gsk7ikm utility (installed
with GSKit). The server’s certificate might be signed by a commercial Certification Authority (CA), such
as VeriSign, or it might be self-signed with the gsk7ikm tool. The CA’s public certificate (or the
self-signed certificate) must also be distributed to the client application’s key database file.

3. Store the server’s key database file and associated password stash file on the server. The default path
for the key database, /usr/ldap/etc directory, is a typical location.

4. For initial server setup, run the following command:
mksecldap -s -a cn=admin -p pwd -S rfc2307aix -k /usr/ldap/etc/mykey.kdb -w keypwd

Where mykey.kdb is the key database, and keypwd is the password to the key database. To set up a
server that has already been configured and is running:

mksecldap -s -a cn=admin -p pwd -S rfc2307aix -u NONE -k /usr/ldap/etc/mykey.kdb -w keypwd

Security 139

Setting up SSL on the LDAP client:

To use SSL on an LDAP client, install the ldap.max_crypto_client and GSKit filesets off of the AIX
expansion pack.

Follow these steps to enable SSL support for LDAP after the server has been enabled for SSL.

1. Run gsk7ikm to generate the key database on each client.

2. Copy the server certificate to each of the clients. If the server SSL uses a self-signed certificate, the
certificate must be exported first.

3. On each client system, run gsk71ikm to import the server certificate to the key database.

4. Enable SSL for each client:
mksecldap -c -h servername -a adminDN -p pwd -k /usr/ldap/etc/mykey.kdb -p keypwd

Where /usr/ldap/etc/mykey.kdb is the full path to the key database and keypwd is the password to
the key. If the key password is not entered from the command line, a stashed password file from the
same directory is used. The stashed file needs to have the same name as the key database with an
extension of .sth (for example, mykey.sth).

LDAP host access control:

AIX provides user-level host access (login) control for a system. Administrators can configure LDAP users
to log in to an AIX system by setting their SYSTEM attribute to LDAP.

The SYSTEM attribute is in the /etc/security/user file. The chuser command can be used to set its value,
similar to the following:

chuser -R LDAP SYSTEM=LDAP registry=LDAP foo

Note: With this type of control, do not set the default SYSTEM attribute to LDAP, which allows all LDAP
users to login to the system.

This sets the LDAP attribute to allow user foo to log in to this system. It also sets the registry to LDAP,
which allows the login process to log foo’s login attempts to LDAP, and also allows any user management
tasks done on LDAP.

The administrator needs to run such setup on each of the client systems to enable login by certain users.

Starting with AIX 5.2, AIX has implemented a feature to limit a LDAP user only to log in to certain LDAP
client systems. This feature allows centralized host access control management. Administrators can
specify two host access control lists for a user account: an allow list and a deny list. These two user
attributes are stored in the LDAP server with the user account. A user is allowed access to systems or
networks that are specified in the allow list, while he is denied access to systems or networks in the deny
list. If a system is specified in both the allow list and the deny list, the user is denied access to the system.
There are two ways to specify the access lists for a user: with the mkuser command when the user is
created or with the chuser command for a existing user. For backward compatibility, if both the allow list
and deny list do not exist for a user, the user is allowed to login to any LDAP client systems by default.
Beginning in AIX 5.2, this host access control feature is available.

Examples of setting allow and deny permission lists for users are the following:
mkuser -R LDAP hostsallowedlogin=hostl,host2 foo

This creates a user foo, and user foo is only allowed to log in to hostl and host2.
mkuser -R LDAP hostsdeniedlogin=host2 foo

This create user foo, and user foo can log in to any LDAP client systems except host2.

140 AIX Version 6.1 Security

chuser -R LDAP hostsallowedlogin=192.9.200.1 foo

This sets user foo with permission to log in to the client system at address 192.9.200. 1.
chuser -R LDAP hostsallowedlogin=192.9.200/24 hostsdeniedlogin=192.9.200.1 foo

This sets user foo with permission to log in to any client system within the 192.9.200/24 subnet , except
the client system at address 192.9.200.1.

For more information, see the command.

Secure communication with SSL:

Depending on the authentication type being used between the LDAP client and server, passwords are sent
in either crypted format (unix_auth) or in clear text (Idap_auth). Use Secure Socket Layer (SSL) to protect
against security exposure when you send even encrypted passwords over the network, or, in some cases,
the Internet. AIX provides packages for SSL that can provide secure communication between directory
servers and clients.

For more information, see:
» [‘Setting up SSL on the LDAP server” on page 139
+ [‘Setting up SSL on the LDAP client” on page 140|

Kerberos bind:

In addition to a simple bind using a bind DN and a bind password, the secldapcintd daemon also
supports a bind using Kerberos V credentials.

The keys of the bind principal are stored in a keytab file and need to be made available to the
secldapcintd| daemon in order to use Kerberos bind. With Kerberos bind enabled, the secldapcintd
daemon does Kerberos authentication to the LDAP server using the principal name and keytab specified in

the /etc/security/ldap/ldap.cfg client configuration file. Using Kerberos bind makes the secldapcintd
daemon ignore the bind DN and the bind password specified in /etc/security/Idap/ldap.cfg file.

When Kerberos authentication is successful, the secldapcintd daemon saves the bind credentials to the
letc/security/ldap/krb5cc_secldapcintd directory. The saved credentials are used for a later rebind. If
credentials are more than one hour old at the time that the secldapcintd daemon tries to rebind to a
LDAP server, the secldapclintd daemon will reinitialize to renew credentials.

To configure the LDAP client system to use Kerberos bind, you must configure the client using the
command using a bind DN and a bind password. If the configuration is successful, edit the
letc/security/ldap/ldap.cfg file with the correct values for Kerberos related attributes. The secldapcintd
daemon uses the Kerberos bind at restart. After successful configuration, the bind DN and the bind
password are not used any more. They can be safely removed or commented out of the
letc/security/ldap/Idap.cfg file.

Creating a Kerberos principal:

You need to create at least two principals on the Key Distribution Center (KDC) for use by the IDS server
and client in order to support Kerberos bind. The first principal is the LDAP server principal and the
second one is the principal used by client systems to bind to the server.

Each of the principal keys need to be placed in a keytab file so that they can be used to start the server
process or the client daemon process.

The following example is based on the IBM Network Authentication Service. If you install Kerberos
software from other sources, the actual commands may be different than what is shown here.

Security 141

e Start the kadmin tool on the KDC server as the root user.

#/usr/krb5/sbin/kadmin.local
kadmin.local:

» Create the Idap/serverhostname principal for the LDAP server. The serverhostname is the fully qualified
DNS host that will run the LDAP server.

kadmin.local: addprinc T1dap/plankton.austin.ibm.com

WARNING: no policy specified for "ldap/plankton.austin.ibm.com@ud3a.austin.ibm.com":
Re-enter password for principal "ldap/plankton.austin.ibm.com@ud3a.austin.ibm.com":
Principal "ldap/plankton.austin.ibm.com@ud3a.austin.ibm.com" created.

kadmin.local:

» Create a keytab for the created server principal. This key will be used by the LDAP server during server
startup. To create a keytab called slapd_krb5.keytab:

kadmin.local: ktadd -k /etc/security/slapd_krb5.keytab 1dap/plankton.austin.ibm.com

Entry for principal ldap/plankton.austin.ibm.com with kvno 2,

encryption type Triple DES cbc mode with HMAC/shal added to keytab
WRFILE:/etc/security/slapd_krb5.keytab.

Entry for principal ldap/plankton.austin.ibm.com with kvno 2,

encryption type ArcFour with HMAC/md5 added to keytab WRFILE:/etc/security/slapd_krb5.keytab.
Entry for principal ldap/plankton.austin.ibm.com with kvno 2,

encryption type AES-256 CTS mode with 96-bit SHA-1 HMAC added to keytab
WRFILE:/etc/security/sTapd_krb5.keytab.

Entry for principal ldap/plankton.austin.ibm.com with kvno 2,

encryption type DES chc mode with RSA-MD5 added to keytab WRFILE:/etc/security/slapd_krb5.keytab.
kadmin.local:

» Create a principal named Idapadmin for the IDS administrator.

kadmin.local: addprinc Tdapadmin

WARNING: no policy specified for ldapadmin@ud3a.austin.ibm.com; defaulting to no policy.
Note that policy may be overridden by ACL restrictions.

Enter password for principal "ldapadmin@ud3a.austin.ibm.com":

Re-enter password for principal "ldapadmin@ud3a.austin.ibm.com":

Principal "ldapadmin@ud3a.austin.ibm.com" created.

kadmin.local:

» Create a keytab for the bind principal kdapadmin.keytab. This key can be used by the secldapcintd
client daemon.

kadmin.local: ktadd -k /etc/security/ldapadmin.keytab ldapadmin

Entry for principal Tdapadmin with kvno 2, encryption type

Triple DES cbc mode with HMCA/shal added to keytab WRFILE:/etc/security/Tdapadmin.keytab.
Entry for principal Tdapadmin with kvno 2, encryption type

ArcFour with HMAC/md5 added to keytab WRFILE:/etc/security/ldapadmin.keytab.

Entry for principal Tdapadmin with kvno 2, encryption type

AES-256 CTS mode with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/security/ldapadmin.keytab.
Entry for principal ldapadmin with kvno 2, encryption type

DES cbc mode with RSA-MD5 added to keytab WRFILE:/etc/security/ldapadmin.keytab.

kadmin.local

» Create a principal named Idapproxy for clients to bind to the LDAP server.

kadmin.local: addprinc ldapproxy

WARNING: no policy specified for ldapproxy @ud3a.austin.ibm.com; defaulting to no policy.
Note that policy may be overridden by ACL restriction

Enter password for principal "ldapproxy@ud3a.austin.ibm.com":

Re-enter password for principal "ldapproxy@ud3a.austin.ibm.com":

Principal "ldapproxy@ud3a.austin.ibm.com" created.

kadmin.local:

» Create a keytab called Idapproxy.keytab for the bind principal Idapproxy. This key can be used by the
secldapcintd client daemon.
kadmin.local: ktadd -k /etc/security/ldapproxy.keytab Tdapproxy
Entry for principal Tdapproxy with kvno 2, encryption type
Triple DES cbc mode with HMAC/shl added to keytab WRFILE:/etc/security/ldapproxy.keytab.
Entry for principal Tdapproxy with kvno 2, encryption type
ArcFour with HMAC/md5 added to keytab WRFILE:/etc/security/ldapproxy.keytab
Entry for principal Tdapproxy with kvno 2, encryption type

142 AIX Version 6.1 Security

AES-256 CTS mode with 96-bit SHA-1 HMAC added to keytab WRFILE:/etc/security/ldapproxy.keytab

Entry for principal ldapproxy with kvno 2,

encryption type DES chc mode with RSA-MD5 added to keytab WRFILE:/etc/security/ldapproxy.keytab.

kadmin.local:

Enabling the IDS server Kerberos bind:

The following procedure enables the IDS server for Kerberos bind.

The following example shows how to configure an IDS server for Kerberos bind.

This example was tested using IDS v5.1:
1. Install the krb5.client fileset.

2. Make sure the /etc/krb5/krb5.conf file exists and is configured properly. If you need to configure it,
you can run the /usr/sbin/config.krb5 command.

config.krb5 -r ud3a.austin.ibm.com -d austin.ibm.com -c KDC -s alyssa.austin.ibm.com

Initializing configuration...
Creating /etc/krb5/krb5 cfg type...
Creating /etc/krb5/krb5.conf...
The command completed successfully.
cat /etc/krb5/krb5.conf
[Tibdefaults]
default_realm = ud3a.austin.ibm.com

default_keytab name = FILE:/etc/krb5/krb5.keytab
default_tkt_enctypes = des3-cbc-shal arcfour-hmac aes256-cts des-cbc-md5 des-cbc-crc
defaut_tgs_enctypes = des3-cbc-shall arcfour-hmac aes256-cts des-chc-md5 des-cbc-crc

[realms]
ud3a.austin.ibm.com = {
kdc = alyssa.austin.ibm.com:88
admin_server = alyssa.austin.ibm.com:749
default_domain = austin.ibm.com

}

[domain_realm]
.austin.ibm.com = ud3a.austin.ibm.com

alyssa.austin.ibm.com = ud3a.austin.ibm.com

[Togging]
kdc = FILE:/var/krb5/10g/krb5

admin_server = FILE:/var/krb5/Tog/kadmin.Tog

default = FILE:/var/krb5/10og/krb51ib.1og

3. Get the keytab file of the Idap:/serverhostname principal, and place it in the /usr/Idap/etc directory. For

example: /usr/ldap/etc/slapd_krb5.keytab.

4. Set the permission to allow the server process to access the file.
chown 1dap:1dap/usr/1dap/etc/slapd_krb5.keytab
#

5. To enable the IDS server for Kerberos bind, edit the /etc/ibmslapd.conf file and append the following

entry:

dn: cn=Kerberos, cn-Configuration
cn: Kerberos

ibm-sTapdKrbAdminDN: 1dapadmin
ibm-sTapdKrbEnable: true
ibm-sTlapdKrbIdentityMap: true

ibm-slapdKrbKeyTab: /usr/ldap/etc/slapd_krb5.keytab

ibm-sTapdKrbRealm: ud3a.austin.ibm.com
objectclass: ibm-slapdKerberos
objectclass: ibm-slapdconfigEntry
objectclass: top

6. Map the Idapproxy principal to a bind DN named cn-proxyuser,cn=aixdata.

Security

143

7.

a. If the bind DN entry exists in the IDS server, create a file named Idapproxy.ldif with the following
content:

dn: cn=proxyuser,cn=aixdata

changetype: modify

add: objectclass

objectclass: ibm-securityidentities
add:altsecurityidentities

alsecurityidentities: Kerberos:1dapproxy@ud3a.austin.ibm.com

OR

b. If the bind DN entry is not yet added to the server, create a file named proxyuser.ldif with the
following content:

Note: You will need to replace proxyuserpwd with your password.

dn: cn=proxyuser,cn=mytest

cn: proxyuser

sn: proxyuser

userpassword: proxyuserpwd

objectclass: person

objectclass: top

objectclass: ibm-securityidentities

altsecurityidentities: Kerberos:ldapproxy@ud3a.austin.ibm.com

Add the bind DN entry that is created to the IDS server using the Idapmodify command.

1dapmodify -D cn-admin -w adminPwd -f /tmp/proxyuser.ldif modifying entry cn=proxyuser,cn=mytest
#

Restart the IDS server.

Enabling the AIX LDAP client Kerberos bind:

You can configure an AIX LDAP client system to use Kerberos in its initial bind to an LDAP server.

The IDS server must be configured in this manner for the server host to be a client to itself.

This example was tested using IDS v 5.1:

1.
2.

Install the krb5.client fileset.

Make sure the /etc/krb.conf file exists and is configured properly. If it is not properly configured, you
can run the /usr/sbin/config.krb5 command to configure it.

Get the keytab file of the bind principal, and place it in the /etc/security/Idap directory.
Set the permission to 600.

Configure the client using the mksecldap command using the bind DN and the bind password. Make
sure that AIX commands work on LDAP users.

Edit the /etc/security/Idap/ldap.cfg file to set the Kerberos related attributes. In the following example,
the bind principal is Idapproxy and the keytab file is Idapproxy.keytab. If you want IDS server
administrator privileges, replace the Idapproxy with Idapadmin and replace the Idapproxy.keytab with
Idapadmin.keytab.

usekRB5:yes

krbprincipal:ldapproxy

krbkeypath:/etc/security/1dap/1dapproxy.keytab
krbcmddir:/usr/krb5/bin/

Now the bind DN and bind password can be removed or commented out of the Idap.cfg file because
the secldapcintd daemon now uses Kerberos bind.

Restart the secldapcintd daemon.
The /etc/security/ldap/ldap.cfg file can now be propagated to other client systems.

144 AIX Version 6.1 Security

LDAP security information server auditing:

SecureWay Directory version 3.2 (and later) provides a default server audit logging function. Once
enabled, this default audit plugin logs LDAP server activities to a log file. See the LDAP documentation in
Packaging Guide for LPP Installation for more information on this default audit plugin.

An LDAP security information server auditing function has been implemented in AIX 5.1 and later, called
the LDAP security audit plugin. 1t is independent of the SecureWay Directory default auditing service, so
that either one or both of these auditing subsystems can be enabled. The AlX audit plugin records only
those events that update or query the AIX security information on an LDAP server. It works within the
framework of AIX system auditing.

To accommodate LDAP, the following audit events are contained in the /etc/security/audit/event file:
+ LDAP_Bind

* LDAP_Unbind

+ LDAP_Add

* LDAP Delete

* LDAP_Modify

* LDAP_Modifydn

e LDAP_Search

An Tdapserver audit class definition is also created in the /etc/security/audit/config file that contains all of
the above events.

To audit the LDAP security information server, add the following line to each user’s stanza in the
letc/security/audit/config file:

ldap = ldapserver

Because the LDAP security information server audit plug-in is implemented within the frame of the AIX
system auditing, it is part of the AIX system auditing subsystem. Enable or disable the LDAP security
information server audit using system audit commands, such as audit start or audit shutdown. All audit
records are added to the system audit trails, which can be reviewed with the auditpr command. For more
information, see [‘Auditing overview” on page 119

LDAP commands:

There are several LDAP commands.

Isldap command

Thecommand can be used to display naming service entities from the configured LDAP server.
These entities are aliases, automount, bootparams, ethers, groups, hosts, netgroups, networks, passwd,
protocols, rpc and services.

mksecldap command

Thecommand can be used to set up IBM SecureWay Directory servers and clients for
security authentication and data management. This command must be run on the server and all clients.

secldapcintd daemon

The |secldapcintd| daemon accepts requests from the LDAP load module, forwards the request to the
LDAP Security Information Server, and passes the result from the server back to the LDAP load module.

Security 145

For more information on the LDAP attribute mapping file format, see LDAP attribute mapping file format]
in the AIX Version 6.1 Files Reference.

Related information

The [mksecldap) [start-secldapcintd| |stop-secldapcintd] [restart-secldapcintd [ls-secldapcintd]
[sectoldif, and [flush-secldapcintd| commands.

The [secldapcintd| daemon.
The Jetc/security/ldap/ldap.cfg|file.

The |LDAP attribute mapping file format,

Migration to LDAP from NIS, including the netgroup setting can be found in the [Network Information|
Services (NIS and NIS+) Guide: Appendix B. Migrating from NIS and NIS+ to RFC 2307-compliant LDAP)|

servicesi

LDAP management commands:

Several commands are used for LDAP management.

start-secldapcintd command

The [start-secldapcintd| command starts the secldapcintd daemon if it is not running.

stop-secldapcintd command

The [stop-secldapclntd| command terminates the running secldapcintd daemon process.

restart-secldapcintd command

The [restart-secldapcintd| script stops the secldapcintd daemon if it is running, and then restarts it. If the
secldapcintd daemon is not running, it simply starts it.

Is-secldapcintd command

The [Is-secldapcintd| command lists the secldapcintd daemon status.

flush-secldapcintd command

The [flush-secldapcintd| command clears the cache for the secldapcintd daemon process.

sectoldif command

The [sectoldifl command reads users and groups defined locally, and prints the result to standard output in
Idif format.

Idap.cfg file format:

The /etc/security/ldap/ldap.cfg file contains information for the secldapcintd daemon to start and
function properly as well as information for fine tuning the daemon’s performance.

Before AIX 5L Version 5.3 with the 5300-05 Technology Level, AIX supports only one base DN for each
entity. For example, only one userbasedn can be specified for the user entity. For AIX 5L Version 5.3 with

146 AIX Version 6.1 Security

the 5300-05 Technology Level and later, the |[secldapclintd| daemon supports multiple base DNs (up to 10
base DNs can be specified for each entity). The following example shows two base DNs for the user
entity:

userbasedn: ou=people, ou=deptl, cn=aixdata
userbasedn: ou=people, out=dept2, cn=aixdata

With multiple base DNs, search operations are done in the order of the base DNs specified until a
matching account is found. The search fails only if no match is found from all of the base DNs. A search of
ALL accounts (for example, Isuser -R LDAP ALL), results in all base DN being searched and all user
accounts returned. Modification operations and delete operations are done to the first matching account
found from the base DNs. An account creation operation by AIX commands is only be created to the first
base DN.

AIX 5L Version 5.3 with the 5300-05 Technology Level and later also supports extended base DN format
for associating a customized filter and scope with each base DN. The following base DN formats are
supported:

1. userbasedn: ou=people, ch=aixdata

2. userbasedn: ou=people, ch=aixdata?scope

3. userbasedn: ou=people, cn=aixdata??filter

4. userbasedn: ou=people, ch=aixdata?scope?filter

The first format represents the default format used by the secldapcintd daemon. The second and third
formats allow limiting of a search by using a scope attribute or a filter attribute respectively. The fourth
format allows both a scope and a filter.

The scope attribute accepts the following values:
* sub

* one

* base

If the scope field is not specified, it defaults to sub.

The filter attribute allows further limiting the entries defined in the LDAP server. You can use this filter to
make only users with certain properties visible to the system. The following shows a few valid filter
formats, where attribute is the name of a LDAP attribute, and value specifies the search criteria. The value
can be a wild card "*".

* (attribute=value)
» (&(attribute=value)(attribute=value))
* (I(attribute=value)(attribute=value))

The /etc/security/ldap/ldap.cfg file is updated by the Imksecldap| command at client setup.

For more information on the /etc/security/Idap/Idap.cfg file, see [letc/security/Idap/ldap.cfg|in the A/X
Version 6.1 Files Reference.

Mapping file format for LDAP attributes:

These map files are used by the /usr/lib/security/LDAP module and the secldapcintd daemon for
translation between AlX attribute names to LDAP attribute names.

Each entry in a mapping file represents a translation for an attribute. An entry has four space-separated
fields:

AIX_Attribute_Name AIX Attribute_Type LDAP_Attribute Name LDAP_Value_Type

Security 147

AIX_Attribute_Name Specifies the AIX attribute name.

AIX_Attribute_Type Specifies the AIX attribute type. Values are SEC_CHAR, SEC_INT, SEC_LIST, and
SEC_BOOL.

LDAP_Attribute_Name Specifies the LDAP attribute name.

LDAP_Value_Type Specifies the LDAP value type. Values are s for single value and m for multi-value.

EFS Encrypted File System

The Encrypted Files System enables individual users on the system to encrypt their data on J2 file system
through their individual key stores.

A key is associated to each user. These keys are stored in cryptographically protected key store and upon
successful login, the user’s keys are loaded into the kernel and associated with the processes credentials.
Later on, when the process needs to open an EFS-protected file, these credentials are tested and if a key
matching the file protection is found, the process is able to decrypt the file key and therefore the file
content. Group based key management are supported too.

Note: EFS is part of an overall security strategy. It is designed to work in conjunction with sound
computer security practices and controls.

Encrypted File System usability
Encrypted File System (EFS) key management, file encryption, and file decryption are transparent to users
in normal operations.

EFS is part of base AIX OS. To enable EFS, root (or any user with the RBAC aix.security.efs
authorization, see [EFS actors] for more information) must use the efsenable command to activate EFS
and create the EFS environment. This is a one time system enablement. After EFS is enabled, when the
user logs in, its key and keystore are silently created and protected or encrypted with the user login
password. The users keys are then used sliently by the J2 file system when encrypting or decrypting EFS
files. Every EFS file is protected with its own unique file key, and this file key is in turn protected or
encrypted with the file owner or group key depending on the file permissions.

By default, a J2 File System is not EFS-enabled. When it is EFS-enabled, the J2 File System transparently
manages encryption and decryption in the kernel for read and write requests. Users and groups
administration commands (such as mkgroup, chuser, and chgroup) transparently manage the users’ and
groups’ keystores.

The following EFS commands are provided to allow users to manage their keys and file encryption:

efskeymgr
Manages and administers the keys

efsmgr
Manages the encryption of files/directories/file system

Encrypted File System actors
There are three types of users who can manage and use EFS keys:

Full or restricted access as root:

The root access to the keys can be unlimited or limited. In either mode, it is not possible for root to simply
su to a user and gain access to the user’s encrypted file or keystore.

In one mode, root can reset the user’s keystore password, and might gain access to the user’s keys within
this keystore. This mode provides greater system administration flexibility.

148 AIX Version 6.1 Security

efs_actors.htm

In the other mode, root can reset the user’s logon password, cannot reset the user’s keystore password. It
is not possible for root to substitute user (with the su command) and inherit an open keystore. While root
can create and delete users and groups. along with their associated keystores, cannot gain access to the
keys within these keystores. This mode provides a greater degree of protection against an attack from
malicious root.

There are two modes for managing and using keystores, Root Admin and Root Guard. An EFS
administration key is also provided.

The EFS administration key enables access to rest the password to all keystores in Root Admin mode.
This key is located in the efs_admin special keystore. Access to the efs_admin special keystore is
granted only to authorized users (root user and security group at installation, or the RBAC aix.security.efs
authorization).

When a keystore is in Root Guard mode, the keys contained in this keystore cannot be retrieved without
the correct keystore password. This provides strong security against a malicious root, but can also cause
problems if a user forgets their password, as there is no way to regenerate the password without loosing
the keys in the keystore, and the user can no longer access their data as a result. In this keystore mode,
some operations cannot be treated immediately and are scheduled as pending operations. These pending
operations are generated in cases such adding or suppressing a group access key in a user keystore or
regenerating a private key. These are managed by the keystore owner.

efs_admin administration key:

The efs_admin keystore contains a special key which can open any user or group keystore in root admin
mode (the default mode).

The password to open this special keystore is stored in root user and security group keystores when EFS
is activated. This password can be given to other groups and users or removed with the efskeymgr
command. This key, in conjunction with the RBAC aix.security.efsauthorization, allows an user to
administrate EFS (that is,, access keystores in root admin mode).

efs_admin RBAC considerations

On systems with Role Based Access Control enabled, the efs_admin command is protected with the
aix.security.efs authorization.

User keystore:

The user keystore is managed automatically for most common operations. The efskeymgr command is
used for maintenance tasks and advanced EFS use. Users can create encrypted files and directories with
the efsmgr command. Key store management is integrated into most user admin commands. If a user is
added to a group, then the user will automatically have access to the group keystore.

A file owner with EFS access to the file use the efsmgr command to grant EFS access to other users and
groups (similar to the control that file owners have with ACLs in UNIX). Users can change their passwords
without effecting separate processes running under the same UID with an open keystore.

Encrypted File System keystore

Keystores are protected with a password. Users can choose an alternate keystore password other than
their login password. In this case, the keystore is not opened and available during the user’s standard
login. Instead, the user must manually load the keystore by using the efskey command to provide the
keystore password.

The keystore format is PKCS # 12. The keystores are stored in the following files:

Security 149

user keystore
/var/efs/users//keystore

group keystore
/var/efs/groups//keystore

efsadmin keystore
/var/efs/efs_admin/keystore

If a user sets their logon password and their keystore password to the same password, their keystore is
opened and enabled when they log in.

A user can use the EFS efskeymgr command to select the type of encryption algorithm and the key
length.

Access to the keystore is inherited by any child process.

Group- based key management is also supported. Only group members can add or remove group keys to
member’s keystores if the group keystore is in guard mode. A user keystore contains the user’s private
key and also the password to open the user’s groups keystores, which contain the group’s private keys.

Note: The EFS keystore is opened automatically as part of the standard AIX login only when the user’s
keystore password matches their login password. This is set up by default during the initial creation
of the user’s keystore. Login methods other than the standard AIX login, such as loadable
authentication modules and pluggable authentication modules may not automatically open the
keystore.

Encryption and inheritance
EFS is a feature of J2. The filesystem’s efs option must be set to yes (see the mkfs and chfs
commands).

J2 EFS automatically encrypts and decrypts user data. However, if a user has read access to an
EFS-activated file but does not have the right key, then the user cannot read the file in the normal manner;
if the user does not have a valid key, it is impossible to decrypt the data.

All cryptographic functions come from the CLIiC kernel services and CLiC user libraries.

By default, a J2 File System is not EFS-enabled. A J2 File System must be EFS-enabled before File
System EFS inheritance can be activated or any EFS encryption of user data can take place. A file is
created as an encrypted file either explicitly with the efsmgr command or implicitly via EFS inheritance.
EFS inheritance can be activated either at the File System level, at a Directory level, or both.

The Is command lists entries of an encrypted file with a preceeding e.

The cp and mv commands can handle metadata and encrypted data seamlessly across EFS-to-EFS and
EFS-to-non-EFS scenarios.

The backup, restore, and tar commands and related commands can back up and restore encrypted data,
including EFS meta-data used for encryption and decryption.

Backup and restore

It is important to properly manage the archiving or backup of the keystores associated with the archived
EFS files. You must also manage and maintain the keystore passwords associated with the archived or
backup keystores. Failure to do either of these tasks may result in data loss.

When backing up EFS encrypted files, it is possible to use the —Z option with the backup command to
back up the encrypted form of the file, along with the file’s cryptographic meta-data. Both the file data and

150 AIX Version 6.1 Security

meta-data are protected with strong encryption. This has the security advantage of protecting the
backed-up file through strong encryption. It is necessary to back up the keystore of the file owner and
group associated with the file that is being backed up. These key stores are located in the following files:

users keystores
Ivar/efs/users/user_login/*

group keystore
/var/efs/groups//keystore

efsadmin keystore
Ivar/efs/efs_admin/keystore

To restore an EFS backup (made with the backup —2Z), the restore command’s —Z option must be used to
restore the data. The restore command’s —Z option ensures that the file’s necessary crypto-meta data is
also restored. During the restore process, it is not necessary to restore the backed-up keystores if the user
has not changed the keys in their individual keystore. When a user changes their password to open their
keystore, it does not change their keystore’s internal key. The keystore’s internal keys are changed with
the efskeymgr command.

If the user’s internal, keystore key remains the same, the user an immediately open and decrypt the
restored file using their current keystore. However, if the key internal to the user’s keystore has changed,
the user must open the keystore that was backed up in association with the backed-up file. This keystore
can be opened with the efskeymgr —o command. The efskeymgr command prompts the user for a
password to open the keystore. This password is the one used in association with the keystore at time of
the backup.

For example, assume that the user Bob’s keystore was protected with the password foo (the password
‘foo’ is not a secure password and only used in this example for simplicities sake) and a backup of Bob’s
encrypted files was performed in January along with Bob’s keystore. In this example, Bob also uses foo
for his AlX login password. In February, Bob changed his password to bar, which also had the effect of
changing his keystore access password to bar. If, in March, Bob’s EFS files were restored, then Bob
would be able to open and view these files with his current key store and password, because he did not
change the keystore’s internal key.

If however, it was necessary to change Bob’s keystore’s internal key (with the efskeymgr command), then
by default the old keystore internal key is deprecated and left in Bob’s keystore. When the user accesses
the file, EFS will automatically recognize that the restored file used the old internal key, and EFS will then
use the deprecated key to decrypt it. During this same access instance, EFS will convert the file over to
using the new internal key. There is not a significant performance impact in the process, because it is all
handled via the key store and file’s crypto meta-data, and does not require that the file data is
re-encrypted.

If the deprecated internal key is removed through efskeymgr, then the old keystore containing the old
internal key must be restored and used in conjunction with the files encrypted with this internal key.

This raises the question of how to securely maintain and archive old passwords. There are methods and
tools to archive passwords. Generally, these methods involve having a file which contains a list of all old
passwords, and then encrypting this file and protecting it with the current keystore, which in turn is
protected by the current passwords. However, IT environments and security policies vary from organization
to organization, and consideration and thought should be given to the specific security needs of your
organization to develop security policy and practices that are best suited to your environment.

J2 EFS internal mechanism

Each J2 EFS-activated file is associated with a special extended attribute which contains EFS meta-data
used to validate crypto authority and information used to encrypt and decrypt files (keys, crypto algorithm,
etc).

Security 151

The EA content is opaque for J2. Both user credentials and EFS meta-data are required to determine a
crypto authority (access control) for any given EFS-activated file.

Note: Special attention should be given to situations where a file or data may be lost (for example,
removal of the file’s EA).

EFS Protection Inheritance
After a directory is EFS-activated, any newly created immediate children are automatically EFS-activated if
not manually overridden.

The scope of a directory’s inheritance is exactly one level. Any newly created child also inherits its parent’s
EFS attributes if its parent’s directory is EFS-activated. Existing children maintain their current encrypted or
non-encrypted state. The logical inheritance chain is broken if the parent changes its EFS attributes.
These changes do not propagate down to the directory’s existing children. Enabling encryption for a
directory is a non-recursive operation (that is, it does not effect it's grandchildren). The parent directory’s
EFS attributes takes precedence over the filesystem’s EFS attributes.

Workload Partition considerations

Before enabling or using Encrypted File System within a Workload Partition, EFS must first be enabled on
the global system with the efsenable command. This enablement only needs to be performed once.
Additionally, all filesystems, including EFS-enabled filesystems, must be created from the global system.

Setting up the Encrypted File System
You need to do this first.

The stage needs to be set just so.

1. Install the clic.rte fileset. This fileset contains the cryptographic libraries and kernel extension required
by EFS. The clic.rte fileset can be found on the AIX Expansion Pack.

2. Enable EFS on the system with the efsenable command (for example >efsenable —a). When prompted
for a password, it is reasonable to use the root password. Users keystores are created automatically,
then the user logs in, or re-logs in, after the efsenable command has been run. Once efsenable —a
has been run on a system, then the system is EFS-enabled and the efsenable command does not
need to be run again.

3. Create an EFS-enabled filesystem with the —a efs=yes option. For example, crfs -v jfs2 -m /foo -A
yes -a efs=yes -g rootvg -a size=20000

4. After mounting the filesystem, turn on the cryptographic inheritance on the EFS-enabled filesystem.
This can be done with the efsmgr command. To continue the previous example where the filesystem
ffoo was created, run the following command: efsmgr —s —E /foo. This allows every file created and
used in this filesystem to be an encrypted file.

From this point forward, when a user or process with an open keystore creates a file on this filesystem,
the file will be encrypted. When the user or file reads the file, the file is automatically decrypted for users
who are authorized to access the file.

See the following for more information:

» chfs, chgroup, chuser, cp, efsenable, efskeymgr, efsmgr, Isuser, Is, mkgroup, mkuser, and mv
commands

» /etc/security/group and /etc/security/user files
Public Key Cryptography Standards #11

The Public Key Cryptography Standards #11 (PKCS #11) subsystem provides applications with a method
for accessing hardware devices (tokens) regardless of the type of device.

152 AIX Version 6.1 Security

The content in this section conforms to Version 2.01 of the PKCS #11 standard.

The PKCS #11 subsystem has been implemented using the following components:

* A slot manager daemon (pkesslotd), which provides the subsystem with information regarding the state
of available hardware devices. This daemon is started automatically during installation and when the
system is rebooted.

* An API shared object (/usr/lib/pkcs11/pkes11_APl.so) is provided as a generic interface to the
adapters for which PKCS #11 support has been implemented.

» An adapter-specific library, which provides the PKCS #11 support for the adapter. This tiered design
allows the user to use new PKCS #11 devices when they come available without recompiling existing
applications.

IBM 4758 Model 2 Cryptographic Coprocessor
The IBM 4758 Model 2 Cryptographic Coprocessor provides a secure computing environment.

Before attempting to configure the PKCS #11 subsystem, verify that the adapter has been properly
configured with a supported microcode.

IBM 4960 Cryptographic Accelerator

The IBM 4960 Cryptographic Accelerator provides a means of offloading cryptographic transactions.
Before attempting to configure the PKCS #11 subsystem, verify that the adapter has been properly
configured.

Verifying the IBM 4758 Model 2 Cryptographic Coprocessor for use with the Public Key
Cryptography Standards #11 subsystem:

The PKCS #11 subsystem is designed to automatically detect adapters capable of supporting PKCS #11
calls during installation and at reboot. For this reason, any IBM 4758 Model 2 Cryptographic Coprocessor
that is not properly configured will not be accessible from the PKCS #11 interface and calls sent to the
adapter will fail.

To verify that your adapter is set up correctly, complete the following:
1. Ensure that the software for the adapter is properly installed by typing the following command:
Tsdev -Cc adapter | grep crypt

If the IBM 4758 Model 2 Cryptographic Coprocessor is not included in the resulting list, check that the
card is seated properly and that the supporting software is correctly installed.

2. Determine that the proper firmware has been loaded onto the card by typing the following:
csufclu /tmp/1 ST device_number_minor

Verify that the Segment 3 Image has the PKCS #11 application loaded. If it is not loaded refer to the
adapter specific documentation to obtain the latest microcode and installation instructions.

Note: If this utility is not available, then the supporting software has not been installed.

Verifying the IBM 4960 Model 2 Cryptographic Accelerator for use with the Public Key
Cryptography Standards #11 subsystem:

The PKCS #11 subsystem is designed to automatically detect adapters capable of supporting PKCS #11
calls during installation and at reboot. For this reason, any IBM 4960 Cryptographic Accelerator that is not
properly configured will not be accessible from the PKCS #11 interface and calls sent to the adapter will
fail.

To ensure that the software for the adapter is properly installed, type the following command:

Security 153

Tsdev -Cc adapter | grep ica

If the IBM 4960 Cryptographic Accelerator is not included in the resulting list, check that the card is seated
properly and that the supporting device driver is correctly installed.

Public Key Cryptography Standards #11 subsystem configuration
The PKCS #11 subsystem automatically detects devices supporting PKCS #11. However, in order for
some applications to use these devices, some initial set up is necessary.

These tasks can be performed through the API (by writing a PKCS #11 application) or by using the SMIT
interface. The PKCS #11 SMIT options are accessed either through Manage the PKCS11 subsystem
from the main SMIT menu, or by using the smit pkcs11 fast path.

Initializing the token:
Each adapter or PKCS #11 token must be initialized before it can be used successfully.

This initialization procedure involves setting a unique label to the token. This label allows applications to
uniquely identify the token. Therefore, the labels should not be repeated. However; the API does not verify
that labels are not re-used. This initialization can be done through a PKCS #11 application or by the
system administrator using SMIT. If your token has a Security Officer PIN, the default value is set to
87654321. To ensure the security of the PKCS #11 subsystem, this value should be changed after
initialization.

To initialize the token:

1. Enter the token management screen by typing smit pkcsll.

2. Select Initialize a Token.

3. Select a PKCS #11 adapter from the list of supported adapters.

4. Confirm your selection by pressing Enter.

Note: This will erase all information on the token.
5. Enter the Security Officer PIN (SO PIN) and a unique token label.

If the correct PIN is entered, the adapter will be initialized or reinitialized after the command has finished
running.

Setting the security officer PIN:
Follow these steps to change an SO PIN from its default value.

To change the PIN from its default value:
1. Type smit pkcsll.

2. Select Set the Security Officer PIN.

3. Select the initialized adapter for which you want to set the PIN.
4. Enter the current PIN and a new PIN.

5. Verify the new PIN.

Initializing the user PIN:

After the token has been initialized, it might be necessary to set the user PIN to allow applications to
access token objects.

Refer to your device specific documentation to determine if the device requires a user to log in before
accessing objects.

154 AIX Version 6.1 Security

To initialize the user PIN:

Enter the token management screen typing smit pkcsll.
Select Initialize the User PIN.

Select a PKCS #11 adapter from the list of supported adapters.
Enter the SO PIN and the User PIN.

Verify the User PIN.

Upon verification, the User PIN must be changed.

o o~ N~

Resetting the user PIN:

To reset the user PIN, you can either reinitialize the PIN using the SO PIN or set the user PIN by using
the existing user PIN.

To reset the PIN:

Enter the token management screen by typing smit pkcsll.

Select Set the User PIN.

Select the initialized adapter for which you want to set the user PIN.
Enter the current user PIN and a new PIN.

5. Verify the new user PIN.

Ao~

Public Key Cryptography Standards #11 usage
For an application to use the PKCS #11 subsystem, the subsystem’s slot manager daemon must be
running and the application must load in the API's shared object.

The slot manager is normally started at boot time by inittab calling the /etc/rc.pkes11 script. This script
verifies the adapters in the system before starting the slot manager daemon. As a result, the slot manager
daemon is not available before the user logs on to the system. After the daemon starts, the subsystem
incorporates any changes to the number and types of supported adapters without intervention from the
systems administrator.

The API can be loaded either by linking in the object at runtime or by using deferred symbol resolution.
For example, an application can get the PKCS #11 function list in the following manner:

d CK_RV (xpf_init)();

void *d;

CK_FUNCTION_LIST functs;

d = dlopen(e, RTLD NOW);

if (d==NULL) {
return FALSE;

1

pfoo = (CK RV (*)())dIsym(d, "C_GetFunctionList");
if (pfoo == NULL) {

return FALSE;
1

rc = pf_init(&functs);

X.509 Certificate Authentication Service and Public Key Infrastructure

Certificate Authentication Service provides the AIX operating system with the ability to authenticate users
using X.509 Public Key Infrastructure (PKI) certificates and to associate certificates with processes as
proof of a user’s identity. It provides this capability through the Loadable Authentication Module Framework
(LAMF), the same extensible AIX mechanism used to provide DCE, Kerberos, and other authentication
mechanisms.

Security 155

Overview of Certificate Authentication Service
Every user account participating in PKI authentication has a unique PKI certificate. The certificate in
conjunction with a password is used to authenticate the user during login.

PKI certificates are based on public key/private key technology. This technology uses two asymmetric keys
to encrypt and decrypt data. Data encrypted using one key can only be decrypted using the other key. A
user keeps one key private, called the private key, storing it in a private keystore while publishing the other
key, called the public key, in the form of a certificate. Certificates are commonly maintained on a
Lightweight Directory Access Protocol (LDAP) server, either within an organization for intra-company usage
or on the Internet for world-wide usage.

For a user named John to send a user named Kathy data that only she can decrypt, John would obtain
the public key from Kathy’s published certificate, encrypt the data using Kathy’s public key, and send the
data to her. Kathy would decrypt the data from John using her private key located in her private keystore.

This technology is also used for digital signatures. If Kathy wants to send data to John that is digitally
signed by her, Kathy would use her private key to digitally sign the data and send the data and digital
signature to John. John would obtain the public key from Kathy’s published certificate and use the public
key to verify the digital signature before using the data.

In both cases, Kathy’s private key is maintained in a private keystore. The many types of private keystores
include smart cards and files, but all keystore types protect private keys through the use of passwords or
Personal Identification Numbers (PINs). They typically provide storage for multiple private keys along with
certificates and other PKI objects. Users typically have their own keystores.

Certificate authentication service uses digital-signature technology to authenticate a user during login.
Certificate authentication service locates the user’s certificate and keystore based off the user’'s account
name, obtains the certificate’s matching private key from the user’s keystore using the user’s password,
signs a data item with the user’s private key, and checks the signature using the user’s public key from the
certificate. After the user authenticates, the system stores the user’s certificate in protected memory,
associating the certificate with every process created by the user. This in-memory association enables
quick access to the user’s certificate for any process owned by the user, as well as by the operating
system’s kernel.

Certificates:

Understanding certificate authentication service requires a basic understanding of certificates, certificate
formats, and certificate lifecycle management.

Certificates are standardized objects that follow the X.509 standard, of which version 3 (X.509v3) is the
latest version. Certificates are created, signed, and issued by a Certificate Authority (CA) which is most
commonly a software application that accepts and processes certificate requests. Certificates are
comprised of several certificate attributes. Some of the attributes are required, but many are optional.
Certificate attributes commonly used and discussed in this document are:

» Certificate Version - The X.509 version number (that is, 1, 2, or 3).

» Serial Number - A certificate serial number that uniquely distinguishes the certificate from all other
certificates issued by the same CA.

» Issuer Name - A name specifying the certificate’s issuing CA.

» Validity Period - The activation and expiration date of the certificate.

* Public Key - The public key.

* Subject Distinguished Name - A name specifying the certificate’s owner.
* Subject Alternate Name Email - The owner’s email address.

* Subject Alternate Name URI - The owner’'s Web site URI/URL.

156 AIX Version 6.1 Security

Each certificate has a unique version number that indicates with which version of the X.509 standard it
conforms. Each certificate has a serial number which uniquely distinguishes it from all other certificates
issued by the same CA. The serial number is unique only to the issuing CA. The certificate’s issuer name
identifies the issuing CA.

Certificates are valid only between two specified dates: the "Not Before” date and the "Not After” date.
Therefore, certificates may be created prior to their validity date and expire at some date in the future. It is
common for certificates to have a life span of 3 months to 5 years.

The subject distinguished name specifies the certificate owner by using a specialized naming format
known as a Distinguished Name (DN). A DN allows for the specification of the country, organization, city,
state, owner name, and other attributes associated with the requesting entity (usually a person, but not
limited to a person). The subject alternate name email allows for the specification of the owner’s email
address and the subject alternate name URI allows for the specification of the owner’'s Web site URI/URL.

Certificate authorities and certificates

Certificate Authorities (CA) issue, store, and typically publish certificates. A common place to publish
certificates is on an LDAP server, because LDAP allows for easy access to community oriented data.
Certificate Authorities also handle the revocation of certificates and the management of certificate
revocation lists (CRLs). Revoking a certificate is the act of publishing the fact that a specific certificate is
no longer valid due to reasons other than the expiration of the certificate’s validity period. Because copies
of certificates can be maintained and used outside the control of the issuing CA, CAs publish a list of
revoked certificates in a CRL so that outside entities may query the list. This places the responsibility on
entities using a copied certificate to compare the copied certificate against the issuing CA’s CRL. A CA
may only revoke certificates that it creates or issues. It cannot revoke certificates issued by other CAs.

Administrative reasons for revoking a certificate include:
« Compromise of the certificate’s private key.

» Certificate owner left the company.

» Compromise of the CA.

CAs also have their own identifying certificate. This allows CAs to identify each other in peer-to-peer
communications among other uses (for example, chains of trust).

Many CAs support the Certificate Management Protocol (CMP) for requesting and revoking certificates.
The protocol supports multiple methods to establish a secure connection between a client (also known as
an End Entity) and the CA, though not all clients and CAs support all methods. One common method
requires each certificate creation and revocation request to use a reference number and password
recognized by the CA. Other data such as a special certificate recognized by the CA may also be required.
Revocation requests may require the matching private key of the certificate being revoked.

Although CMP provides for certificate creation and revocation requests, it does not support CRL query
requests. In fact, CRLs are often accessed through out-of-band methods. Since CRLs are often published
on LDAP servers, software applications can obtain the CRL from an LDAP server and manually scan the
CRL. Another emerging method is the Online Certification Status Protocol (OCSP), but not all CAs support
OCSP.

CAs are typically owned and operated by government organizations or trusted private organizations that
attempt to provide assurance that certificates issued by them correspond to the person who requested the
issuance of the certificate. The phrase issuing a certificate means to create a certificate and is not the
same as requesting a copy of a published certificate.

Security 157

Certificate storage format

The most common format for storing individual certificates is in Abstract Syntax Notation version 1 (ASN.1)
format using the Distinguished Encoding Rules (DER). This format is referred to as DER format.

Keystores:

A keystore (sometimes called a keyset) contains a user’s private keys matching the public keys of their
certificates.

A unique key label is assigned to every private key, usually by the user, for easy identification. Keystores
are password-protected requiring a user to enter a password prior to accessing the keys or adding new
keys. And typically, users have their own keystores. Keystores come in many different forms, for example:
smart cards, LDAP-based, file-based, and so on. Not only do the forms vary, but so do the methods used
to access them and the formats used to store the private key data. Certificate authentication service only
supports file-based keystores.

Certificate Authentication Service implementation

The server side of certificate authentication service publishes certificates and certificate revocation lists
(CRLs) that it creates to an LDAP server. The client side of certificate authentication service implements
the user authentication, user administration, and user certificate management functions of certificate
authentication service.

Certificate authentication service functions as a client/server model. The server side contains a Certificate
Authority (CA) for creating and maintaining X.509 version 3 certificates and CRLs. (Typically, an
organization uses one CA for the entire organization.) The client side contains the software (commands,
libraries, load modules, and configuration files) required by every system participating in PKI
authentication. The installation package for the server is cas.server and the installation package for the
client is cas.client.

Creating PKI user accounts:
To create a PKI user account, use the AIX mkuser command.

After it is created, each account has a certificate and a private keystore. (Existing accounts can be
converted to PKI accounts too, but other steps are required.) The administrator supplies the keystore
passwords to the new users, and new users can then log in to the system and change their keystore
password.

User authentication data flow:

Users can have multiple certificates associated with their accounts. Each certificate has a unique, user
defined tag value associated with it for easy identification, but only one certificate can be specified as the
authentication certificate. Certificate authentication service uses a per-user attribute named auth_cert to
specify which of the user’s certificates is the user’s authentication certificate. The value of the auth_cert
attribute is the certificate’s tag value.

The certificates, tags, matching keystore locations, matching key labels, and other related data are
maintained under LDAP on a per-user basis. The combination of the user name and tag allows certificate
authentication service to locate the certificate under the LDAP server. For more information on the PKI
LDAP layer, see [‘PKI LDAP Layer (certificate storage)” on page 161 |

At login, users supply a user name and password. Using the user name, the system retrieves the user’s
authentication certificate tag from the user’s auth_cert attribute. Combining the user name and tag, the
system retrieves the user’s certificate, keystore location, and matching key label from LDAP. It checks the
validity period values found in the certificate to determine if the certificate has expired or has not reached

158 AIX Version 6.1 Security

its activation date. The system then retrieves the user’s private key by using the keystore location, key
label, and supplied password. After the private key is retrieved, the system verifies that the private key and
certificate match using an internal signing process. If the two match, the user passes the PKI
authentication step of the login procedure. (This does not imply that the user is logged in. Several other
account checks are performed by the AIX system on a user account before allowing the user access to the
system.)

For a certificate to be used as an authentication certificate, the certificate must be signed using a trusted
signing key. The signature is stored under LDAP with the certificate for later reference. The implementation
requires that a certificate have a signature before the tag can be assigned to auth_cert.

The authentication process does not compare a certificate against a CRL. This is due to performance
reasons (CRLs take time to acquire and scan and may be temporarily unavailable), but also due to
publishing delays of CRLs (CAs may delay an hour or more before publishing a revoked certificate through
a CRL, making certificate revocation a poor substitute for disabling a user’s account).

It is also worth noting that authentication does not require a CA. The majority of the work is performed
locally by certificate authentication service, with the exception of retrieving data stored under LDAP.

Server implementation:

The server side of certificate authentication service implements a CA written in Java and contains a
Registration Authority (RA) along with self-auditing features. It publishes certificates and CRLs that it
creates to an LDAP server.

The CA is configurable through a set of configuration files (Java property files). It contains an
administrative application called runpki that provides sub-commands to start and stop the server among
other functions and supports CMP for creating and revoking certificates. The CA requires Java 1.3.1, the
IBM DB2 7.1 database, and the IBM Directory 4.1. Due to DB2 requirements, the CA must run under a
user account other than the root user.

The server contains the following commands to help install and manage the cas.server component:

mksecpki
This command is used during installation to configure the AIX PKI server components. As part of
its tasks, the command creates a certificate authority user account for the certificate authority.

runpki
This command allows the system administrator to start the server. If the JavaPKI daemons are
running, they must first be stopped. The runpki command starts the daemon in the background by
using the /b flags combination. If the daemons need to be started in interactive mode, the
administrator can edit the runpki command and use the / flag instead of the /b flags.

The runpki command must be run after performing an su - operation to the user account under
which the certificate authority is running. The command is located in the javapki directory under
the certificate authority user account’s home directory. (The mksecpki command creates the
certificate authority user account.)

For example, if the certificate authority user account is pkiinst, then with root authority, type the
following:

1. su - pkiinst

2. cd javapki

3. runpki

Client implementation:

Security 159

The client side of certificate authentication service implements the user authentication, user administration,
and user certificate management functions of certificate authentication service.

After it is installed and configured on a system, certificate authentication service integrates into the existing
user authentication and administration functions (such as the mkuser, chuser, passwd, and login
commands) through the use of the AIX Loadable Authentication Module Framework (LAMF). It also adds
several commands, libraries, and configuration files to help manage user certificates and keystores.

Certificate authentication service can be used in conjunction with either the AIX LDAP database
mechanism or the file-based database mechanism for storing standard AlX attributes. Certificate
authentication service always uses LDAP to maintain user certificates, even when the file-based database
mechanism is used. For limitations when using the file-based database, see [‘Certificate Authentication|
[Service planning” on page 168/

The client side of certificate authentication service contains the most user oriented software of the two
parts. For this reason, the following sections describe how certificate authentication service maintains and
uses the data required for PKI authentication.

General client features:

The certificate authentication service provides several features and commands for managing and using
certificates.

Some of the general features of certificate authentication service include the following:
* Provides user authentication via PKI certificates

* Provides commands to manage user certificates and keystores

» Supports multiple certificates per user

» Supports multiple CA’s simultaneously

* Integrates into existing AIX administration commands and authentication (for example, login, passwd,
mkuser)

» Generate certificates at user creation time or add certificates after user creation

» Works with either an LDAP user database or the standard AlX file-based user database
» Configurable key sizes and algorithms

» Associates certificates with Process Authentication Groups (PAGs).

General client architecture:

The client architecture of the Certificate Authentication Service takes a layered approach.

Java daemon:

At the foundation of the client side is a Java-based daemon using the JCE security package.

The Java daemon manages user keystores, creates key pairs, performs CMP communications, and
provides all hashing and encryption functions. Because APIs of PKI service provider packages are not
standardized for C applications, a wrapper layer API called the Service Management Layer (SML) provides
a normalized API to application programs and daemons.

Service Management Layer:

Service Management Layer creates certificates and keystores, and manages keystores, but it doesn’t
manage certificate storage.

160 AIX Version 6.1 Security

The SML service for the Java daemon is named /ust/lib/security/pki/JSML.sml. Certificate storage is
managed by the PKI LDAP Layer.

Private Key Storage Through SML

The Java daemon uses PKCS#12 formatted keystore files for storing user keys. The keystores are
protected by a single password used to encrypt all the keys in the keystore. The location of a keystore is
specified as a URI. By default, certificate authentication service maintains keystore files in the
Ivar/pki/security/keys directory.

Keystores are typically limited in size, including file keystores. The SML Layer provides the API for
managing keystores.

Certificate authentication service supports only file keystores. It does not support smart card or LDAP
keystores. You can support roaming users by placing the file keystores on a shared file system under the
same mount point on all systems.

PKI LDAP Layer (certificate storage):

Certificate authentication service stores certificates and other certificate related information on a per-user
basis in LDAP through the PKI LDAP Layer.

A user account can have multiple certificates associated with it. Each association has a unique,
user-specified tag for easy identification and lookup. Certificate authentication service uses the
combination of the user's name and the tag to locate a user’s certificate association in LDAP.

For performance versus disk space trade-offs, certificate authentication service can save either the entire
certificate under LDAP or just a URI reference to the certificate. If a URI reference is used instead of a
certificate, certificate authentication service queries the reference to obtain the actual certificate.
References are most commonly used in conjunction with a CA which publishes its certificates on an LDAP
sever. The types of URI references currently supported by certificate authentication service are LDAP
references. Certificate authentication service stores certificates in DER format and expects URI references
to refer to DER formatted certificates.

Certificate authentication service also stores the type and location of each certificate’s matching keystore
and key label in the same record as the certificate association on the LDAP server. This allows users to
have more than one keystore and allows certificate authentication service to quickly find a certificate’s
matching private key. To support roaming users, a user’s keystore must reside in the same location on all
systems.

Certificate authentication service maintains the auth_cert attribute in LDAP on a per-user basis. This
attribute specifies the tag of the certificate used for authentication.

All LDAP information is readable by ordinary users, except for the auth_cert attribute which is restricted to
the LDAP Idappkiadmin account. Since the root user has access to the LDAP Idappkiadmin password
through the acct.cfg file, applications running with the effective UID of root can access the auth_cert
attribute. (This applies to the accessibility of the URI reference value, not to the data referenced by the
URI reference value. Typically, the data referenced by the URI reference value is public.) The API for
managing the certificate storage is contained in the libpki.a library.

libpki.a library:

In addition to serving as the home of the SML APIs and the PKI LDAP Layer APIs, the libpki.a library
houses several subroutines.

The library includes APIs that do the following:

Security 161

Manage the new configuration files

» Access certificate specific attributes

» Combine multiple lower layer functions into higher level functions
» Are expected to be common among SML services

Note: The APIs are not published.
Loadable Authentication Module Framework Layer:

On top of the SML API and PKI LDAP API resides the Loadable Authentication Module Framework (LAMF)
layer. LAMF supplies AIX authentication and user administration applications with common authentication
and user administration APIs regardless of the underlying mechanism (for example, Kerberos, LDAP, DCE,
files).

LAMF uses the SML API and the PKI LDAP API as building blocks in implementing PKI authentication. It
does this through the use of load modules that map LAMF’s API to different authentication/database
technologies. Commands like login, telnet, passwd, mkuser, and others use the LAMF API to implement
their functions; hence, these commands automatically support new authentication and database
technologies when new load modules for these technologies are added to the system.

Certificate authentication service adds a new LAMF load module to the system named
lustr/lib/security/PKI. The module must be added by the system administrator to the /usr/lib/security/
methods.cfg file before using PKI for authentication. The module must also be paired with a database
type (for example, LDAP) in the methods.cfg file before it can be used for authentication. An example of
the methods.cfg file containing the LAMF module and database definition can be found in

ffile” on page 181.

Once the definitions are added to methods.cfg, the administrator can set the registry and SYSTEM user
attributes (defined in the /etc/security/user file) to the new stanza value or values for PKI authentication.

Client commands:
Above all the API layers (LAMF, PKI LDAP, and SML) reside the commands.

Besides the standard AIX authentication and user administration commands supporting certificate
authentication service (through LAMF), several certificate authentication service specific commands exist.
These commands help the user manage certificates and keystores. Below is a list of the commands along
with a brief description.

certadd
Adds a certificate to the user’s account in LDAP and checks if the certificate is revoked.

certcreate
Creates a certificate.

certdelete
Deletes a certificate from the user’s account (i.e., from LDAP).

certget
Retrieves a certificate from the user’s account (i.e., from LDAP).

certlink
Adds a link to a certificate that exists in a remote repository to the user’s account in LDAP and
checks if the certificate is revoked.

certlist
Lists the certificates associated with the user’s account contained in LDAP.

162 AIX Version 6.1 Security

certrevoke
Revokes a certificate.

certverify
Verifies the private key matches the certificate and performs trusted signing.

keyadd
Adds a keystore object to a keystore.

keydelete
Deletes a keystore object from a keystore.

keylist
Lists the objects in a keystore.

keypasswd
Changes the password on a keystore.
For more information about these commands. see the AIX Version 6.1 Commands Reference.

Process Authentication Group commands:

The Process Authentication Group (PAG) commands are new to AlIX. PAGs are data items that associate
user-authentication data with processes.

For certificate authentication service, if the PAG mechanism is enabled, the user’s authentication certificate
is associated with the user’s login shell. As the shell creates child processes, the PAG propagates to each
child.

The PAG mechanism requires the /usr/sbin/certdaemon daemon to be enabled in order to provide this
functionality. By default, the mechanism is not enabled. Certificate authentication service does not require
the PAG mechanism to be enabled, but works with the mechanism if it is enabled.

To enable the certdaemon daemon, add the following line to the /etc/inittab file:
certdaemon:2:wait:/usr/sbin/certdaemon
A list of PAG commands along with brief descriptions follows:

paginit
Authenticates a user and creates a PAG association.

pagdel
Lists authentication information associated with the current process.

paglist
Removes existing PAG associations within the current process’ credentials.

For more information about these commands, see the AIX Version 6.1 Commands Reference.

User administration commands:

Similar to user-authentication, certificate authentication service integrates with the AIX user-administration
functions through the AIX LAMF. Commands like chuser, Isuser, mkuser, and passwd use the LAMF API
to implement their functions. Therefore, these commands automatically support new authentication and

database technologies when new load modules for these technologies are added to the system.

The subsections below provide a more in-depth look at how PKI authentication affects the user
administration commands.

The following commands are affected by the PKI authentication process:

Security 163

chuser

Isuser

mkuser

This command allows the administrator to modify the auth_cert user attribute. This attribute
specifies the tag value of the certificate used for authentication. The certificate must be signed by
the trusted signing key in order to be used as the authentication certificate. (Certificate attributes,
certificate storage attributes, and keystore attributes are not available through this command.)

This command lists the value of the user’s auth_cert attribute, as well as, the certificate attributes
listed below. The auth_cert attribute specifies the tag value of the certificate used for
authentication. (Other certificate attributes, certificate storage attributes, and keystore attributes are
not available through this command.)

The certificate attributes listed by the Isuser command are as follows:

subject-DN
The user’s subject distinguished name.

subject-alt-name
The user’s subject alternate name email.

valid-after
The date the user’s certificate becomes valid.

valid-until
The date the user’s certificate becomes invalid.

issuer The distinguished name of the issuer.

This command provides an administrator the option of generating a certificate at user creation
time. An administrator can use the mkuser command to generate a certificate during user creation
for users who don’t already have an authentication certificate. Optionally, if a user already has an
authentication certificate, but no user account, the administrator can create the account without
generating a certificate and add the certificate (and keystore) later. The default value for this option
is specified in the /usr/lib/security/pki/policy.cfg file in the newuser stanza by the cert attribute.

Many default values are required when automatically generating an authentication certificate for a
user using the mkuser command. Many of these values are specified in the newuser stanza of
the /usr/lib/security/pki/policy.cfg file. The newuser stanza provides administrative control over
these default values. Some of the default values are as follows:

« CA

» Value for the auth_cert attribute

* Location for the keystore

» Password for the keystore

* Private key label

» Domain name for the subject alternate name e-mail field

A behavioral difference between creating a PKI user account and a non-PKI user account is that
creating a PKI user account requires a password to encrypt the private key if the mkuser
command generates an authentication certificate for the account. Since the mkuser command is a
non-interactive command, the command obtains the password from the policy.cfg file and sets the
keystore password (the private key password) to this value; therefore, the account is immediately

accessible after creation. When creating a non-PKI user account, the mkuser command sets the
password to an invalid value, preventing accessibility.

passwd

This command modifies the user’s keystore password when used on a PKI user account. It
enforces the password restriction rules found in the /etc/security/user file, it enforces the flags
attribute found in the /etc/security/passwd file, and it enforces any rules required by the PKI
service provider.

164 AIX Version 6.1 Security

Because file-based keystores encrypt their private keys using the user’s password, the root user
cannot reset a file-based keystore password without knowing the keystore’s current password. If a
user forgets their keystore password, the root user will not be able to reset the password unless
root knows the keystore’s password. If the password is unknown, a new keystore and new
certificates may have to be issued to the user.

Configuration files:

Certificate authentication service uses configuration files for configuring the client-side: acct.cfg, ca.cfg,
and policy.cfg.

The SMIT interface provides support for these configuration files. The following sections provide
information about the configuration files.

acct.cfg file

The acct.cfg file consists of CA stanzas and LDAP stanzas. The CA stanzas contain private CA
information not suitable for the publicly readable ca.cfg file, such as CMP reference numbers and
passwords. The LDAP stanzas contain private LDAP information not suitable for public access, such as
PKI LDAP administrative names and passwords.

For every CA stanza in the ca.cfg file, the acct.cfg file should contain an equivalently named CA stanza,
and all CA stanzas must be uniquely named. The LDAP stanzas are all named 1dap, and for this reason, a
CA stanza cannot be named 1dap. Also, no stanza can be named default. An LDAP stanza must exist,
and at least one CA stanza, named local, must also exist.

CA stanzas contain the following attributes:

capasswd
Specifies the CA’s CMP password. The length of the password is specified by the CA.
carefnum
Specifies the CA’s CMP reference number.
keylabel
Specifies the label of the private key in the trusted keystore used to sign certificate requests.
keypasswd
Specifies the password for the trusted keystore.
rvpasswd
Specifies the revocation password used for CMP. The length of the password is specified by the
CA.
rvrefnum

Specifies the revocation reference number used for CMP.

The LDAP stanza contains the following attributes:

Idappkiadmin
Specifies the account name of the LDAP server listed in Idapservers.

Idappkiadmpwd
Specifies the password for the LDAP server’s account.

Idapservers
Specifies the LDAP server name.

Idapsuffix
Specifies the DN attributes added to a user’s certificate DN by the mkuser command.

Security 165

The following is an example acct.cfg file:

local:

carefnum = 12345678
capasswd = passwordl234
rvrefnum = 9478371
rvpasswd = password4321
keylabel = "Trusted Key"

keypasswd = joshua

ldap:

ldappkiadmin = "cn=admin"

1dappkiadmpwd = secret

ldapservers = "LDAP server.austin.ibm.com"
ldapsuffix = "ou=aix,cn=us"

For more information, see the AIX Version 6.1 Files Reference.
ca.cfg file

The ca.cfg file consists of CA stanzas. The CA stanzas contain public CA information used by certificate
authentication service for generating certificate requests and certificate revocation requests.

For every CA stanza in the ca.cfg file, the acct.cfg file should contain an equivalently named CA stanza.
Each CA stanza name in the ca.cfg file must be unique. At least one stanza named Tocal must exist. No
stanzas should be named Tdap or default.
CA stanzas contain the following attributes:

algorithm
Specifies the public key algorithm (for example, RSA).

crl Specifies the CA’s CRL URI.
dn Specifies the base DN used when creating certificates.

keysize
Specifies the minimum key size in bits.

program
Specifies the PKI service module file name.

retries
Specifies the number of retry attempts when contacting the CA.

server Specifies the CA’s URI.

signinghash
Specifies the hash algorithm used to sign certificates (for example, MD5).

trustedkey
Specifies the trusted keystore containing the trusted signing key used for signing authentication
certificates.

url Specifies the default value for the subject alternate name URI.

The default CA stanza is named local. The following is an example ca.cfg file:

local:

program = /usr/1ib/security/pki/JSML.sml

trustedkey = file:/usr/lib/security/pki/trusted.pl5
server = "cmp://9.53.230.186:1077"

crl = "ldap://dracula.austin.ibm.com/o=aix,c=us"

dn = "o=aix,c=us"

url = "http://www.ibm.com/"

166 AIX Version 6.1 Security

algorithm = RSA
keysize = 512
retries = 5
signinghash = MD5

For more information, see the AIX Version 6.1 Files Reference.
policy.cfg file

The policy.cfg file consists of four stanzas: newuser, storage, crl, and comm. These stanzas modify the
behavior of some system administration commands.

The mkuser command uses the newuser stanza. The certlink command uses the storage stanza. The
certadd and certlink commands use the comm and crl stanzas.

The newuser stanza contains the following attributes:
ca Specifies the CA used by the mkuser command when generating a certificate.

cert Specifies whether the mkuser command generates a certificate (new) or not (get) by default.

domain
Specifies the domain part of the certificate’s subject alternate name e-mail value used by the
mkuser command when generating a certificate.

keysize
Specifies the minimum encryption key size in bits used by the mkuser command when generating
a certificate.

keystore
Specifies the keystore URI used by the mkuser command when generating a certificate.

keyusage
Specifies the certificate’s key usage value used by the mkuser command when generating a
certificate.

label Specifies the private key label used by the mkuser command when generating a certificate.

passwd
Specifies the keystore’s password used by the mkuser command when generating a certificate.

subalturi
Specifies the certificate’s subject alternate name URI value used by the mkuser command when
generating a certificate.

tag Specifies the auth_cert tag value used by the mkuser command when creating a user when cert =
new.

validity
Specifies the certificate’s validity period value used by the mkuser command when generating a
certificate.

version
Specifies the version number of the certificate to be created. The value 3 is the only supported
value.

The storage stanza contains the following attributes:

replicate
Specifies whether the certlink command saves a copy of the certificate (yes) or just the link (no).

The crl stanza contains the check attribute, which specifies whether the certadd and certlink commands
should check the CRL (yes) or not (no).

Security 167

The comm stanza contains the timeout attribute which specifies the timeout period in seconds used by
certadd and certlink when requesting certificate information using HTTP (for example, retrieving CRLS).

The following is an example of the policy.cfg file:

newuser:

cert = new

ca = local
passwd = pki
version = "3"
keysize = 512
keystore = "file:/var/pki/security/keys"
validity = 86400

storage:
replicate = no

crl:
check = yes

comm:
timeout = 10

For more information, see the AIX Version 6.1 Files Reference.
Audit-log events:

The Certificate Authentication Service (CAS) client generates several audit-log events.
* CERT_Create
+ CERT_Add

* CERT_Link

* CERT_Delete
+ CERT_Get

+ CERT_List

* CERT_Revoke
» CERT_Verify
» KEY_Password
+ KEY_List

+ KEY_Add

* KEY_Delete

Trace events:
The Certificate Authentication Service (CAS) client generates trace events.

The CAS client generates several new trace events in the 3B7 and 3B8 range.

Certificate Authentication Service planning

Certificate Authentication Service (CAS) is available beginning with AIX 5.2. The minimum software
requirements for CAS are a DB2 server, an IBM Directory server, and a certificate authentication service
server. All can be installed on one system or on a combination of systems. Each enterprise must
determine the best choice for their environment.

This section provides information on planning for certificate authentication service, as follows:

Certificate considerations:

168 AIX Version 6.1 Security

Certificate authentication service supports X.509 version 3 certificates. It also supports several version 3
certificate attributes, but not all certificate attributes.

For a list of supported certificate attributes, see the certcreate command and the ca.cfg file. Certificate
authentication service contains limited support of the Teletex character set. Specifically, only 7-bit (ASCII
subset of) Teletex is supported by certificate authentication service.

Keystore considerations:

Certificate authentication service supports keystore files. Smart cards, LDAP keystores, and other types of
keystores are not supported.

By default, user keystores are kept in the local file system under the /var/pki/security/keys directory.
Because the keystores are local to the system, they cannot be accessed by other systems; thus, user
authentication will be restricted to the system containing the user’s keystore. To allow for roaming users,
either copy the user’s keystore to the identical location with the same keystore name on other systems or
place the keystores on a distributed file system.

Note: Care must be taken to ensure that access permission to the user’s keystore remains unchanged.
(In AIX, every certificate in LDAP contains the path name to the private keystore containing the
certificate’s private key. The keystore must exist at the path name specified in LDAP in order to be
used for authentication.)

User registry considerations:

Certificate authentication service supports an LDAP user-registry. LDAP is also the recommended user
registry type to use with certificate authentication service.

Certificate authentication service also supports a file-based user registry. Certain restrictions must be
enforced by the administrator for file-based PKI to work correctly. Specifically, identically named user
accounts on different systems participating in PKI authentication must refer to the same account.

For example, user Bob on system A and user Bob on system B must refer to the same user Bob. This is
because certificate authentication service uses LDAP to store certificate information on a per user basis.
The user name is used as the indexing key to access this information. Because file-based registries are
local to each system and LDAP is global to all systems, the user names on all systems participating in PKI
authentication must map to unique user names in the LDAP namespace. If user Bob on system A is
different from user Bob on system B, either only one of the Bob’s can participate in PKI authentication or
each Bob account must use a different LDAP namespace/server.

Configuration considerations:

For configuration simplicity, consider maintaining the three configuration files (acct.cfg, ca.cfg, and
policy.cfg) on a distributed file system using symbolic links to avoid having to modify configuration files
on every system.

Maintain proper access-control settings on these files. This situation may increase your security
vulnerability because the information in these files will be transferred across your network.

Security considerations:

The acct.cfg and ca.cfg files contain sensitive reference numbers, passwords, and certificate information.

Security 169

acct.cfqg file

The acct.cfg file contains sensitive CA reference numbers and passwords (see the carefnum, capasswd,
rvrefnum, and rvpasswd attribute descriptions for acct.cfg). These values are used solely for CMP
communications with the CA when creating a certificate and revoking a certificate, respectively. If
compromised, the compromiser may be able to create certificates at will, and revoke anyone’s certificate at
will.

To limit the exposure, consider restricting certificate creation or revocation to a small number of systems.
The carefnum and capasswd attribute values are required only on systems where certificates are created
(either through the certcreate or mkuser commands). This may imply limiting user account creation to the
same set of systems.

Note: The mkuser command can be configured to automatically create a certificate during user creation
or it can create an account without a certificate, whereby the administrator must create and add the
certificate at a later time.

Similarly, the rvrefnum and rvpasswd attribute values are required only on systems where certificates are

to be revoked (through the certrevoke command).

The acct.cfg file also contains sensitive trusted signing key information (see the keylabel and keypasswd
attribute descriptions for the acct.cfg file). These values are used solely for special certificate verification
operations. If compromised, the compromiser may be able to forge verified certificates.

To limit the exposure, consider restricting certificate verification to a small number of systems. The
keylabel and keypasswd attribute values of the acct.cfg file and the trustedkey attribute value of the
ca.cfg file are required only on systems where certificate verification is required. Specifically, on systems
where the mkuser (with automatic certificate creation enabled) and certverify commands are required.

Active new accounts

When creating a PKI user account, if the cert attribute of the newuser stanza in the policy.cfg file is set to
new, the mkuser command creates an active PKI account complete with a working certificate and
password. The password on the account is specified by the passwd attribute in the newuser stanza.
Because keystores require a password in order to store private keys. This differs from other types of user
account creations where the administrator must first create the account, then set the password before the
account is activated.

The root user and keystore passwords

Unlike other account types where the root user can change an account’s password without knowing the
account’s password, PKI accounts do not allow this. This is because account passwords are used to
encrypt keystores and keystores cannot be decrypted without knowing the password. When users forget
their passwords, new certificates must be issued and new keystores created.

Other Certificate Authentication Service considerations:

There are several factors to consider when planning for the Certificate Authentication Service (CAS).

» Certificate authentication service contains its own certificate authority (CA). Other CA implementations
are not supported by certificate authentication service.

* The larger the key size, the more time required to generate key pairs and to encrypt data. Hardware
based encryption is not supported.

+ Certificate authentication service uses the IBM Directory for LDAP. Other LDAP implementations are not
supported by certificate authentication service.

» Certificate authentication service uses DB2 for database support. Other database implementations are
not supported by certificate authentication service.

170 AIX Version 6.1 Security

» Certificate authentication service requires all commands, libraries, and daemons run in a Unicode
environment.

Packaging of Certificate Authentication Service
This table shows the package components of the Certificate Authentication Service (CAS).

Table 11. Packaging of Certificate Authentication Service

Package Name | Fileset Contents Dependencies Installation
cas.server cas.server.rte Certificate Authority (CA) . AIX5.2 Manual
» Javai131 (ships with AIX
base media)

» Java131 Security
Extensions (ships with
Expansion Pack)

» IBM Directory Server

(LDAP)
- DB27.1
cas.client cas.client.rte » Cert commands e AIX5.2 Manual
» PKI Auth Load Module « Java131 (ships with AIX
* libpki.a base media)
« SML Module » Java131 Security

Extensions (ships with
Expansion Pack)

* IBM Directory Client (LDAP)
* PAG (assumed)

» Config Files
» Java Daemon

cas.msg cas.msg.[lang].client | Message catalogs cas.client Manual
bos bos.security.rte PAG commands and daemon | not applicable Installed
with kernel

The cas.server package contains the CA and installs in the /usr/cas/server and /usr/cas/client
directories. An organization typically uses only one CA, and therefore, this package is installed manually.
This package prerequisites the IBM Directory server side, db2_07_01.client, Javai31.rte, and
Javai31.ext.security. The Java131.rte package is installed by default when the AIX 5.2 operating system
is installed, but the other packages are manually installed.

In order for the db2_07_01.client package to work, the db2_07_01.server package must be installed on a
system that is on the network.

The cas.client package contains the files required for every client system supporting certificate
authentication service. Without this package, a system cannot participate in AIX PKI authentication.

Certificate Authentication Service installation and configuration
The following procedures are used to install and configure the Certificate Authentication Services (CAS).

LDAP server for PKI installation and configuration:

The following are some possible scenarios when installing and configuring LDAP for PKI user certificate
data.

Installing the LDAP server:

Security 171

Detailed instructions for installing the IBM Directory Server software can be found in the product
documentation contained in the Idap.html.en_US.config fileset. After installing the
Idap.html.en_US.config fileset, the documentation can be viewed using a Web browser at the following
URL: file:/usr/ldap/web/C/getting_started.htm.

Perform the following steps to install the LDAP server:

1.

ok wn

N o

Login as the root user.

Place volume 1 of the AIX Base Operating System CDs in the CD-ROM drive.
Type smitty install_Tlatest at the command line and press Enter.

Select Install Software.

Select the input device or software directory containing the IBM Directory Server software and press
Enter.

Use the F4 key to list the install packages in the Software to Install field.
Select the LDAP server package and press Enter.

Verify that the AUTOMATICALLY install requisite software option is set to YES, and press Enter.
This will install the LDAP server and client filesets and the DB2 backend database filesets.

The filesets installed include the following:

« LDAP client .adt (Directory Client SDK)

* LDAP client .dmt (Directory Client DMT)

« LDAP client .java (Directory Client Java)

* LDAP client .rte (Directory Client Run-time Environment)

* LDAP server .rte (Directory Server Run-time Environment)

* LDAP server .admin (Directory Server)

* LDAP server .cfg (Directory Server Config)

* LDAP server .com (Directory Server Framework)

« db2_07_01.* (DB2 Run-time Environment and associated filesets)

Install the DB2 package, db2_07_01.jdbc. The DB2 package, db2_07_01.jdbc, is located on the
Expansion Pack CD. Use the installation procedure listed above to install the db2_07_01.jdbc
package.

Configuring the LDAP server:

After the LDAP and DB2 filesets have been installed, the LDAP server must be configured.

Even though the configuration can be done through the command line and file editing, for ease of
administration and configuration, the LDAP web administrator is used. This tool requires a web server.

The Apache web server application is located on the AlX Toolbox for LINUX Applications CD. Use either
the SMIT interface or the geninstall command to install the Apache web server. Other web servers can
also be used, see the LDAP documentation for details.

You can find detailed instructions for configuring LDAP in the product HTML documentation. To configure
the LDAP, perform the following steps:

1.

Use ldapcfg to set the admin DN and password for the LDAP database. The administrator is the root
user of the LDAP database. To configure an administrator DN of cn=admin with a password of secret,
type the following:

ldapcfg -u cn=admin -p secret

The DN and password will be required later when configuring each client. Specifically, the DN and
password will be used as the Idappkiadmin and Idappkiadmpwd attributes of an Idap stanza in the
acct.cfqg file.

172 AIX Version 6.1 Security

Configure the web administrator tool using the location of the web server configuration file, as follows:
l1dapcfg -s apache -f /etc/apache/httpd.conf

Restart the web server. For the Apache server, use the command:

/usr/local/bin/apachect] restart

Access the web administrator using the URL http:// hosthame/ldap. Then login using the LDAP
administrator DN and password configured in step 2.

Using the web administrator tool, follow the directions to configure the DB2 database backend and
restart the LDAP server.

Configuring the LDAP Server for PKI:

Certificate authentication service requires two separate LDAP directory information trees. One tree is used
by the CA for publishing certificates and CRLs. The other tree is used by each client for storing and
retrieving per-user PKI data.

The following steps configure the LDAP directory information tree used for storing and retrieving per-user
PKI data.

1.

Add the LDAP Configuration Suffix Entry. The default suffix for the PKI data is cn=aixdata. This
places the PKI certificate data below the default suffix for all AIX data. The default data root for the PKI
data is ou=pkidata,cn=aixdata. All PKI data is placed under this location.

PKI Data Suffix
cnh=aixdata

Common suffix for all AIX data. May already exist if LDAP server is being used for other AlX
data.

The suffix configuration entry can be added through the web administrator tool, or by directly editing
the LDAP server configuration file.

To add the suffix configuration entry using the Web administrator, do the following:
a. Select Settings from the left side menu.
b. Select Suffixes.
c. Enter the necessary suffix for the PKI data, and then click the Update button.
d. Restart the LDAP server, after the suffix is successfully added.
To add the suffix configuration entry by editing the LDAP server configuration file, do the following:
a. In the /usr/ldap/etc/slapd32.conf file, locate the line containing
ibm-sTapdSuffix: cn=Tocalhost

This is the default system suffix.

b. Add the necessary ibm-slapdSuffix entry for the PKI data. For example, you can add a suffix
entry similar to the following:

ibm-sTlapdSuffix: cn=aixdata
c. Save the configuration file changes.
d. Restart the LDAP server.

Add the PKI Data Suffix, Root, and ACL Database Entries. The Data Root is the point in the LDAP
directory structure under which all the PKI data resides. The ACL is the Access Control List for the
Data Root that sets the access rules for all the PKI data. The pkiconfig.ldif file is supplied to add the
suffix, root, and ACL entries to the database.

a. First, add the suffix and root database entries and the PKI data administrator password. The first
part of the file adds the default suffix entries to the database and sets the password as follows:

Security 173

b.

dn: cn=aixdata
objectclass: top
objectclass: container
cn: aixdata

dn: ou=pkidata,cn=aixdata
objectclass: organizationalUnit
ou: cert

userPassword: <<password>>

Edit the pkiconfig.ldif file and replace the <<password>> character string after the
userPassword attribute with your password for the PKI data administrator.

The DN and userPassword values will be required later when configuring each client. Specifically,
the DN (ou=pkidata,cn=aixdata) and value for password will be used as the Idappkiadmin and
Idappkiadmpwd attributes of an Idap stanza in the acct.cfg file.

The second part of the file changes the ownership and adds the ACL for the PKI data as follows:

~
dn: ou=pkidata,cn=aixdata

changetype: modify

add: entryOwner

entryOwner: access-id:ou=pkidata,cn=aixdata

ownerPropagate: true

dn: ou=pkidata,cn=aixdata

changetype: modify

add: aclEntry

aclEntry: group:cn=anybody:normal:grant:rsc:normal:deny:w

aclEntry: group:cn=anybody:sensitive:grant:rsc:sensitive:deny:w

aclEntry: group:cn=anybody:critical:grant:rsc:critical:deny:w
\ﬁc]Entry: group:cn=anybody:object:deny:ad aclPropagate: true

v

Note: To avoid jeopardizing the integrity of your PKI implementation, do not make any changes to
the ACL settings.

The pkiconfig.ldif file can be edited to use a suffix other than the default, however this is

recommended only for experienced LDAP administrators. The Idif file can then be applied to the

database using the Idapadd command below.

Replace the values for the -D and -w options with your local LDAP administrator DN and password,
as follows:

ldapadd -c -D cn=admin -w secret -f pkiconfig.1dif

3. Restart the LDAP Server. Restart the LDAP server using the web administrator tool, or by stopping
and restarting the slapd process.

Installing and configuring the Certificate Authentication Service:

The following steps are used to install and configure the certificate authentication service.

To install and configure the certificate authentication service, do the following:

Install the Java security filesets (Java131.ext.security.*) from the Expansion Pack CD. The required
packages are as follows:

« Javail31.ext.security.cmp-us (Java Certificate Management)
« Javail31.ext.security.jce-us (Java Cryptography Extension)

» Javail31.ext.security.jsse-us (Java Secure Socket Extension)
« Javail31.ext.security.pkcs-us (Java Public Key Cryptography)

Move the ibmjcaprovider.jar file from /usr/java131/jre/lib/ext to another directory. This file conflicts
with the Java security filesets and must be moved for correct functioning of the certificate
authentication service.

Install the certificate authentication service server fileset (cas.server.rte) from the Expansion Pack CD.

1.

3.

174 AIX Version 6.1 Security

Configuring the Certificate Authentication Service server to work with LDAP:

If the Certificate Authentication Service (CAS) is to be used with LDAP, CAS must be configured to work
with LDAP.

To configure the CAS server to work with LDAP, perform the following steps:

1.

If not already installed, then install the IBM Directory client package on the system supporting the

cas.server package.
If not already configured, then configure the IBM Directory client, as follows:

ldapcfg -1 /home/1dapdb2 -u "cn=admin" -p secret -s apache \
-f /usr/local/apache/conf/httpd.conf

It is assumed that the Web Server is the Apache Web Server in the above configuration command.

Add the following suffix to the slapd.conf file, as follows:
ibm-slapdSuffix: o=aix,c=us

You can specify a different distinguished name instead of o=aix,c=us.
Run the slapd command, as follows:

/usr/bin/slapd -f /etc/slapd32.conf

Add the object classes, as follows:

1dapmodify -D cn=admin -w secret -f setup.ldif

where setup.ldif contains the following:

dn: cn=schema

changetype: modify

add: objectClasses

objectClasses: (2.5.6.21 NAME 'pkiuser' DESC 'auxiliary class for non-CA certificate owners'
SUP top AUXILIARY MAY userCertificate)

dn: cn=schema

changetype: modify

add: objectClasses

objectClasses: (2.5.6.22 NAME 'pkiCA' DESC 'class for Cartification Authorities' SUP top
AUXILIARY MAY (authorityRevocationList § caCertificate $ certificateRevocationList §
crossCertificatePair))

dn:cn=schema

changetype: modify

replace: attributetypes

attributetypes: (2.5.4.39 NAME ('certificateRevocationList'
'certificateRevocationList;binary') DESC ' ' SYNTAX 1.3.6.1.4.1.1466.115.121.1.5
SINGLE-VALUE)

replace:ibmattributetypes
ibmattributetypes:(2.5.4.39 DBNAME ('certRevocationLst' 'certRevocationLst')
ACCESS-CLASS NORMAL)

Add the entries:
ldapadd -D cn=admin -w secret -f addentries.ldif

where addentries.ldif contains the following:

dn: o=aix,c=us
changetype: add
objectclass: organization
objectclass: top
objectclass: pkiCA

0: aix

Note: Sample addentries.ldif and setup.ldif files are provided in the cas.server package.
Stop and start the slapd daemon.

Security

175

Creating the Certificate Authority:

The following steps are used to create the certificate authority.

1. Create a reference file. The reference file contains one or more certificate creation reference number
and password pairs. A pair represents the authentication information accepted by the certificate
authentication service server when a certificate authentication service client attempts to authenticate to
the server during the creation of a certificate (typically using the CMP protocol). The format of the file
is a reference number followed by a password, both on separate lines. For example:

12345678

passwordl1234

87654321

password4321

where 12345678 and 87654321 are reference numbers, and password1234 and password4321 are their
respective passwords. Blank lines are not allowed. Space characters should not precede or follow
reference numbers or passwords. At least one reference number and password must exist in the file.
An example file can be found in /usr/cas/server/iafile. You will need to reference these values each
time you set up a client.

2. Configure the CA using the mksecpki command as follows:

mksecpki -u pkiuser -f /usr/cas/server/iafile -p 1077 -H ldap.cert.mydomain.com \
-D cn=admin -w secret -i o=aix,c=us

Information on the mksecpki flags follows:

-u Specifies a user account name where the certificate authentication service server will be
installed.

-f Specifies the reference file created in the previous step.

-p Specifies a port number for the LDAP server.

-H Specifies the LDAP server host name or IP address.

-D Specifies the LDAP administrator's common name.

-w Specifies the LDAP administration password.

-i Specifies the LDAP branch where the user certificate data will reside.

The mksecpki command automatically generates the trusted signing key with a key label of
TrustedKey, the password of the CA user account, and places it in the /usr/lib/security/pki/
trusted.pkcs12 keystore file. It's not necessary to perform the steps in [‘Creating the trusted signing|
unless you need to generate multiple keys or want a trusted signing key with a different key label
and/or password.

Creating the trusted signing key:

The mksecpki command automatically generates a trusted signing key with a key label of TrustedKey, the
password of the CA user account, and places it in the /usr/lib/security/pki/trusted.pkcs12 keystore file. If
you need to generate a new trusted signing key or multiple trusted signing keys, then this section provides
the steps needed to generate a trusted signing key.

All certificate authentication service clients where certificate creation and revocation are allowed require a
trusted signing key for signing the user’s authentication certificate. The key is saved in a separate keystore
and is made available to all systems where certificates can be created. A single key can be used by all
systems or, for a more secure approach, multiple keys can be created and distributed.

To create a trusted key, use the /usr/javal31/bin/keytool command. Use a file name of a non-existing file.
The keytool command prompts for a keystore password and key password. Both the keystore password
and key password must be identical for certificate authentication service to access the key in the keystore.
Run the keytool command as follows:

176 AIX Version 6.1 Security

keytool -genkey -dname ~“cn=trusted key' -alias “TrustedKey' -keyalg RSA \
-keystore filename.pkcsl2 -storetype pkcsl2ks

In this example, the trusted key label is TrustedKey and the trusted keystore password is user-supplied.
Remember these values, because you will need them when configuring the certificate authentication
service clients. When configuring a certificate authentication service client, the keylabel and keypasswd
attributes in the acct.cfg file will need to be set to the trusted key label and trusted keystore password,
respectively.

For security reasons, make sure the keystore file (filename.pkcs12) is read and write protected. Only the
root user should have access to this file. The trusted key should be the only object in the keystore.

Configuring the Certificate Authentication Service client:

There are many configuration options on the client side of Certificate Authentication Service. The following
sections provide the configuration procedure required for each system patrticipating in PKI authentication.

Trusted Signing Key installation

For information on creating the trusted signing key, see [‘Creating the trusted signing key” on page 176
The default location for the trusted keystore is in the /ust/lib/security/pki directory.

For security reasons, make sure the keystore file is read and write protected. Only the root user should
have access to this file.

Editing the acct.cfg file

Remove any Idap stanzas that may exist in the /ust/lib/security/pki/acct.cfg file using a text-based editor
like the vi command.

Certificate Authority account configuration:

Minimally, the local CA account must be configured. By default, the local CA account exists, but must be
modified to match your environment.

Certificate authentication service supports the use of multiple CA’s by a single system through
stanza-based configuration files. The default CA stanza name of Tocal is used when a CA is not specified
by a user or by the software. All systems must have a valid local stanza definition in the appropriate
certificate authentication service configuration files. Only one CA may have a stanza name of Tocal. All
other CA’s must have a unique stanza name. CA stanza names cannot be 1dap or default.

The following sections guide you through the SMIT configuration screens for configuring the local CA.
Change/Show a Certificate Authority:
You can change or show a Certificate Authority (CA).

Perform the following steps are used to change/show a CA:
1. Run PKI SMIT, as follows:
smitty pki
2. Select Change / Show a Certificate Authority.
3. Type local for the Certificate Authority Name field and press Enter.

4. Set the Service Module Name field to /usr/1ib/security/pki/JSML.sml. This is the default SML
load module. This field maps to the program attribute in the /usr/lib/security/pki/ca.cfg file.

Security 177

10.

11.

12.

13.

14.

15.

16.

Ignore the Pathname of CA’s Certificate field. This field maps to the certfile attribute in the
lusr/lib/security/pki/ca.cfg file.

Set the Pathname of CA’s Trusted Key field to a URI that is the location of the trusted keystore on
the local system. Only file-based keystores are supported. The typical location for the trusted keystore
is in the /ust/lib/security/pki directory. (See [‘Configuring the Certificate Authentication Service client’|
This field maps to the trustedkey attribute in the /usr/lib/security/pki/ca.cfg file.

Set the URI of the Certificate Authority Server field to a URI that is the location of the CA

(cmp://myserver:1077). This field maps to the server attribute in the /usr/lib/security/pki/ca.cfg file.
Ignore the Certificate Distribution Point field. This field maps to the cdp attribute in the

lusr/lib/security/pki/ca.cfg file.

Set the Certificate Revocation List (CRL) URI field. This field specifies the URI that should be set to

the location of the certificate revocation list for this CA. This is typically an LDAP URI, for example:
1dap://crlserver/o=XYZ,c=us

This field maps to the crl attribute in the /usr/lib/security/pki/ca.cfg file.

The Default Certificate Distinguished Name field specifies the baseline DN used when creating
certificates (for example, 0=XYZ,c=us). This field is not required. This field maps to the dn attribute in
the /ust/lib/security/pki/ca.cfg file.

The Default Certificate Subject Alternate Name URI field specifies the default subject alternate
name URI used when creating certificates if a subject alternate name URI is not provided at creation
time. This field is not required. This field maps to the url attribute in the /usr/lib/security/pki/ca.cfg
file.

The Public Key Algorithm field specifies the public key algorithm used when creating a certificate.
The choices are RSA and DSA. If neither are specified, the system defaults to RSA. This field maps to
the algorithm attribute in the /usr/lib/security/pki/ca.cfg file.

The Public Key Size (in bits) field specifies the bit size of the public key algorithm. This field is in
bits, not bytes, and this value may be rounded up by the underlying public key mechanism to support
the next feasible byte size. (Typically, rounding occurs when the number of bits is not a even multiple
of 8). Example values are 512, 1024, and 2048. If this field is not specified, the system defaults to 1024
bits. This field maps to the keysize attribute in the /ust/lib/security/pki/ca.cfg file.

The MAX. Communications Retries field specifies the number of times the system attempts to
contact the CA (when creating or revoking a certificate) before giving up. The system defaults to 5
attempts. This field maps to the retries attribute in the /usr/lib/security/pki/ca.cfg file.

The Signing Hash Algorithm field specifies the hash algorithm used when signing an authentication
certificate. The choices are MD2, MD5, and SHA1. The system defaults to MD5. This field maps to the
signinghash attribute in the /usr/lib/security/pki/ca.cfg file.

Press Enter to commit the changes.

Change/Show Certificate Authority accounts:

Perform the following steps to change/show the Certificate Authority (CA) accounts.

1.

Run PKI SMIT, as follows:

smitty pki

Select Change/Show CA Accounts.

Type local for the Certificate Authority Name field and press Enter.

The Certificate Creation Reference Number field specifies the CA’s reference number used in
creating a certificate. The creation reference number must be composed of all digits and be at least 7
digits in length. The reference number is defined by the CA. (See [‘Creating the Certificate Authority’|
This field maps to the carefnum attribute in the /usr/lib/security/pki/acct.cfg file.

The Certificate Creation Password field specifies the CA’s reference password used when creating
a certificate. The creation password must be composed of 7-bit ASCII alpha-numerics and be at least
12 characters in length. The creation password is defined at the CA and must be the matching

178 AIX Version 6.1 Security

10.

password to the creation reference number above. (See [‘Creating the Certificate Authority” on pagel
176.) This field maps to the capasswd attribute in the /ust/lib/security/pki/acct.cfg file.

The Certificate Revocation Reference Number field specifies the reference number used when
revoking a certificate. The revocation reference number must be composed of all digits and be at
least 7 digits in length. The revocation reference number is sent to the CA during each certificate
creation and is associated with the certificate by the CA. To revoke a certificate, the same revocation
reference number (and revocation password) must be sent during revocation as was sent when
creating the certificate. This field maps to the rvrefnum attribute in the /usr/lib/security/pki/acct.cfg
file.

The Certificate Revocation Password field specifies the reference password used when revoking a
certificate. The revocation password must be composed of 7-bit ASCII alpha-numerics and be at least
12 characters in length. The revocation password is sent to the CA during each certificate creation
and is associated with the certificate by the CA. To revoke a certificate, the same revocation
password (and revocation reference number) must be sent during revocation as was sent when
creating the certificate. This field maps to the rvpasswd attribute in the /usr/lib/security/pki/acct.cfg
file.

The Trusted Key Label field specifies the label (sometimes called alias) of the trusted signing key
located in the trusted keystore. The trusted key label value is the value from [‘Creating the trusted|
[signing key” on page 176, This field maps to the keylabel attribute in the /usr/lib/security/pki/
acct.cfqg file.

The Trusted Key Password field specifies the password of the trusted signing key located in the
trusted keystore. The trusted key password value is the value from [‘Creating the trusted signing key’]
This field maps to the keypasswd attribute in the /usr/lib/security/pki/acct.cfg file.

Press Enter to commit the changes.

Adding a Certificate Authority LDAP Account:

The following steps are used to add a Certificate Authority (CA) LDAP account.

1.

Run PKI SMIT, as follows
smitty pki
Select Add an LDAP Account.

The Administrative User Name field specifies the LDAP administrative account DN. The
administrative user name for the CA LDAP account is the same name used in both [‘Configuring the]
LDAP server’ on page 172|and [‘Configuring the Certificate Authentication Service server to work with|
LDAP” on page 175, The value should be cn=admin. It is used by the client side to communicate with
the LDAP server when accessing CA LDAP data. This field maps to the Idappkiadmin attribute in the
lusr/lib/security/pki/acct.cfg file. For example:

1dappkiadmin = "cn=admin"

The Administrative Password field specifies the LDAP administrative account password. The
administrative password is the same password used in both [‘Configuring the LDAP server” on page]
[172] and [‘Configuring the Certificate Authentication Service server to work with LDAP” on page 175.
This field maps to the Idappkiadmpwd attribute in the /usr/lib/security/pki/acct.cfg file. For example:
ldappkiadmpwd = secret

The Server Name field specifies the name of the LDAP server and must be defined in every LDAP
stanza. The value is a single LDAP server name. This field maps to the Idapservers attribute in the
/usr/lib/security/pki/acct.cfg file. For example:

ldapservers = Tdapserver.mydomain.com

The Suffix field specifies the DN suffix for the directory information tree where the data resides. The
suffix is the value of the ibm-slapdSuffix attribute used in [‘Configuring the Certificate Authentication|
[Service server to work with LDAP” on page 175.| This attribute must be defined in every LDAP stanza.
This field maps to the Idapsuffix attribute in the /usr/lib/security/pki/acct.cfg file. For example:

ldapsuffix = "ou=aix,cn=us"

Security 179

7. Press Enter to commit the changes.
Add a PKI Per-User LDAP account:

Use this procedure to add a PKI Per-User LDAP account.

Perform the same steps as in [‘Adding a Certificate Authority LDAP Account” on page 179 except use the
values used in the Adding the PKI Suffix and ACL Database Entries step in[‘Configuring the LDAP|
[Server for PKI” on page 173 Use the following values:

* Administrative User Name (ou=pkidata,cn=aixdata),
* Administrative Password (password),

» Server Name (site specific),

» Suffix (ou=pkidata,cn=aixdata).

Press Enter to commit the changes.
Change/Show the Policy:

The following steps are used to change/show the policy.
1. Run PKI SMIT, as follows:

smitty pki
2. Select Change / Show the Policy.

* The Create Certificates for New Users field specifies whether the mkuser command generates a
certificate and keystore for the new user (new), or if the administrator provides a certificate and keystore
after the user is created (get). This field maps to the cert attribute of the newuser stanza in the
lusr/lib/security/pki/policy.cfg file.

* The Certificate Authority Name field specifies the CA used by the mkuser command when generating
a certificate. The field value must be a stanza name found in the ca.cfg file; for example, local. This
field maps to the ca attribute of the newuser stanza in the /usr/lib/security/pki/policy.cfg file.

* The Initial User Password field specifies the password used by the mkuser command when creating a
user’s keystore. This field maps to the passwd attribute of the newuser stanza in the
lusr/lib/security/pki/policy.cfg file.

* The Certificate Version field specifies the certificate version used by the mkuser command when
generating a certificate. Currently, the only supported value is 3, which represents X.509v3. This field
maps to the version attribute of the newuser stanza in the /usr/lib/security/pki/policy.cfg file.

* The Public Key Size field specifies the size (in bits) of the public key used by the mkuser command
when generating a certificate. This field maps to the keysize attribute of the newuser stanza in the
lusr/lib/security/pki/policy.cfg file.

* The Keystore Location field specifies the keystore directory in URI format used by the mkuser
command when creating a keystore. This field maps to the keystore attribute of the newuser stanza in
the /ust/lib/security/pki/policy.cfg file.

» The Validity Period field specifies the certificate’s requested validity period used by the mkuser
command when generating a certificate. The requested validity period may or may not be honored by
the CA when creating the certificate. The period can be specified in seconds, days, or years. If just a
number is provided, it is assumed to be in seconds. If the letter d immediately follows the number, it is
interpreted as days. If the letter y immediate follows the number, it is interpreted as years. Example
values are:

— 1y (for 1 year)
— 30d (for 30 days)
— 2592000 (for 30 days represented in seconds)

This field maps to the validity attribute of the newuser stanza in the /ust/lib/security/pki/policy.cfg file.

180 AIX Version 6.1 Security

» The Replicate Non-Local Certificates field specifies whether the certlink command saves a copy of a
certificate (Yes) or just the link to the certificate (No). This field maps to the replicate attribute of the
storage stanza in the /usr/lib/security/pki/policy.cfg file.

* The Check Certificate Revocation Lists field specifies whether the certadd and certlink commands
check the CRL before performing their tasks (Yes) or not (No). This field maps to the check attribute of
the crl stanza in the /ustr/lib/security/pki/policy.cfg file.

* The Default Communications Timeout field specifies the timeout period in seconds used by the
certadd and certlink commands when requesting certificate information using HTTP (for example,
retrieving CRLs). This field maps to the timeout attribute of the comm stanza in the
lusr/lib/security/pki/policy.cfg file.

methods.cfq file:

The methods.cfg file specifies the definitions of the authentication grammar used by the registry and
SYSTEM attributes. Specifically, this is where the authentication grammar for PKILDAP (for PKI using
LDAP) and FPKI (files PKI) must be defined and added by the system administrator.

Below is a typical methods.cfg definition. The stanza names PKI, LDAP, and PKILDAP are arbitrary
names and can be changed by the administrator. This section uses these stanza names throughout for
consistency.

PKI:
program = /usr/1ib/security/PKI
options = authonly
LDAP:
program = /usr/1ib/security/LDAP
PKILDAP:

options = auth=PKI,db=LDAP

To support roaming users, use the same methods.cfg file stanza names and attribute values across all
systems that support roaming users.

Administration configuration examples:
The following examples show typical administration configuration tasks.
Creating a new PKI user account

To create a new PKI user account, use the mkuser command and the appropriate /ustr/lib/security/
methods.cfg stanza name (PKILDAP). Depending on the attribute settings in the /usr/lib/security/pki/
policy.cfg file, the mkuser command can automatically create a certificate for the user. Below is a
mkuser command example that creates the user account bob:

mkuser -R PKILDAP SYSTEM="PKILDAP" registry=PKILDAP bob
Converting a non-PKI user account to a PKI user account

There are two different approaches for converting a non-PKI user account into a PKI user account. The
first approach allows the system administrator access to the user’s private keystore initially, which might be
acceptable in a given environment, but is the quickest way to convert a user. The second way requires
interaction between the user and system administrator, which might take more time to setup.

Both examples use the following assumptions:
» cas.server and cas.client are already installed, configured, and working.
+ PKILDAP is defined in methods.cfg as shown in [‘methods.cfg file.’]

Security 181

Example 1:

With root authority, the system administrator can perform the following commands for user account bob:

certcreate -f certl.der -1 auth_1b11 cn=bob bob # Create & save cert in certl.der.
certadd -f certl.der -1 auth_1b11 auth_tagl bob # Add cert to LDAP as auth_tagl.

certverify auth_tagl bob # Verify & sign the cert in LDAP.
chuser SYSTEM="PKILDAP" registry=PKILDAP bob # Change account type to PKILDAP.
chuser -R PKILDAP auth_cert=auth_tagl bob # Set the user's auth certificate.

Then, have user bob change his password on the keystore using the keypasswd command.
Example 2:

Have user bob run the first 3 commands of example 1 above (certcreate, certadd, certverify), creating
his own certificate and keystore. Then have the system administrator perform the last two chuser
commands of example 1 above.

Creating and adding an authentication certificate

If a PKI user requires a new authentication certificate, the user can create a new certificate and have the
system administrator make it the user’s authentication certificate. Below is an example of user bob creating
a certificate and the system administrator making the certificate the authentication certificate.

Logged in as user account bob:

certcreate -f certl.der -1 auth_1b11 cn=bob # Create & save cert in certl.der.

certadd -f certl.der -1 auth_Tb11 auth_tagl # Add cert to LDAP as auth tagl.

certverify auth_tagl # Verify & sign the cert in LDAP.

As the system adminstrator:
chuser -R PKILDAP auth_cert=auth_tagl bob # Set the user's auth certificate.

Changing the default new-keystore password

Edit the passwd attribute value of the newuser stanza in the /usr/lib/security/pki/policy.cfg file to modify
the password used to create the keystores of new PKI users.

Handling a compromised trusted signing key

The file that contains the trusted signing key needs to be replaced and the user authentication certificates
need to be re-signed.

Handling a compromised user private key

If a user’s private key is compromised, the user or the administrator should revoke the certificate using the
appropriate reason code, other users that use the public key should be notified of the compromise and,
depending on the purpose of the private/public key, a new certificate should be issued. If the certificate
was used as the user’s authentication certificate, then another certificate (either the new certificate or an
existing non-promised certificate owned by the user) should be added as the new authentication certificate.
Handling a compromised keystore or keystore password

Change the password on the keystore. Revoke all the user’s certificates. Create new certificates for the
user including a new authentication certificate. The compromised private keys may still be useful to the
user for accessing previously encrypted data.

Moving a user’s keystore or changing the name of a user’s keystore

Every user certificate maintained in LDAP contains the keystore location of its matching private key. To
move a user’s keystore from one directory to another or to change the name of the keystore, requires

182 AIX Version 6.1 Security

changing the LDAP keystore location and name associated with the user’s certificates. If the user uses
multiple keystores, then extra care must be taken to change only the LDAP information of the certificates
affected by the keystore change.

To move a keystore from /var/pki/security/keys/user1.p12 to /var/pki/security1/keys/useri.p12:
As root...

cp /var/pki/security/keys/userl.pl2 /var/pki/securityl/keys/userl.pl2

Retrieve a list of all the certificates associated with the user.
certlist ALL userl

For each certificate associated with the keystore, do the following:

A) Retrieve the certificate's private key label and its "verified" status.
B) Retrieve the certificate from LDAP.

C) Replace the certificate in LDAP using the same private key label,

but the new keystore path name.

D) If the certificate was previously verified, it must verified again.
(Step D requires the password to the keystore.)

S S F I I H

Example modifying one certificate.
Assume:

FH=

username: userl
cert tag: tagl
key Tlabel: Tabell

Retrieve the certificate's private key label.
certlist -a label tagl userl

Retrieve the certificate from LDAP and place it in file cert.der.
certget -f cert.der tagl userl

Replace the certificate in LDAP.
certadd -r -f cert.der -p /var/pki/securityl/keys/userl.pl2 -1 labell tagl userl

Re-verify the certificate if it was previously verified.
(Need to know the keystore password.)
certverify tagl userl

Adding a certificate issued by a non-AlX Certificate Authority:

You must have possession of the certificate and private key before adding this certificate into AIX for login
purposes. Certificate Authentication Services filesets must be installed and configured.

The certificate must be a DER-encoded x509 v3 certificate and the keystore must be a pkcs12 type
keystore. In the following example, the name of the certificate file is aixtest.cer, the name of the private
key file is aixtest.p12, and the name of the AIX user is aixuser. The user aixuser must already exist on
the system. The key label is aixtest and keystore password is secret.

The size of the key in the keystore might not be supported by the underlying crypto provider. In that case
you might need to get the proper Java security policy files to remove the restrictions.

Perform these steps to use a certificate issued by another Certificate Authority (CA) for login:
1. Verify that the keystore is compatible by listing the keystore using the /usr/bin/keylist command.

keylist -v -p aixtest.pl2
Enter password for the keystore :
Private Key : aixtest
Certificate : aixtest

#

Security 183

The keytool command also displays the contents of the keystore. An error from the keytool command
might be an indication of lack of key size support by the underlying crypto provider.

keytool -list -keystore aixtest.pl2 -storepass secret -storetype pkcsl2

Keystore type: pkcsl?2
Keystore provider: IBMJCE

Your keystore contains 1 entry

2. Add the private key into the AIX keystore by using the keyadd command. The keys are stored in the
user’s default keystore. If the keystore does not exist, a new one is created. Remember the password
of the keystore as you will need it during login.

keyadd -1 aixtest -s aixtest.pl? aixuser
Enter password for the source keystore :
Enter password for the destination keystore :

Re-enter password for the destination keystore :
#

Verify that the key is added by specifying the AIX user name:

keylist -v aixuser

Enter password for the keystore :
Private Key : aixtest
Certificate : aixtest

#

3. Add the certificate to AIX LDAP certificate repository:
certadd -c -f aixtest.cer -1 aixtest logincert aixuser
Verify that the certificate is added to the repository:

certlist -f logincert aixuser

aixuser:
auth_cert=
distinguished_name=c=US,0=IBM,ou=Sec Team,cn=AIX test
alternate_name=
validafter=0412230006
validuntil=1231215916
issuer=c=US,0=1BM,ou=Sec Team,cn=AIX test
tag=logincert
verified=false

4. Verify that the user’s private key matches the certificate:

certverify logincert puserl
Enter password for the keystore :

Check that verification is successful:

certlist -f -a verified logincert aixuser
aixuser:
verified=true

5. Set the user’s authentication certificate:
chuser -R PKIfiles auth_cert=Togincert aixuser
Verify that the auth_cert attribute is set correctly:
Tsuser -R PKIfiles -a auth_cert aixuser

aixuser auth_cert=logincert

6. Setthe SYSTEM and registry attributes:
chuser -R PKIfiles SYSTEM=PKIfiles registry=PKIfiles aixuser
Verify that the attributes are set:

Tsuser -f -R PKIfiles -a SYSTEM registry auth_cert aixuser
aixuser:

SYSTEM=PKIfiles

registry=PKIfiles

auth_cert=logincert

184 AIX Version 6.1 Security

7. Add an entry into the ca.cfg file corresponding to the non-AIX CA. Specify the certificate issuer’s
distinguished name in the dn field and the program name in the program field. Use the certlist
command to get the distinguished name of the CA that issued the certificate.

certlist -f -a issuer logincert aixuser
aixuser:
issuer=c=US,0=1BM,ou=Sec Team,cn=AIX test
#
Specify the program name as /ustr/lib/security/pki/JSML.sml.
Edit the /usr/lib/security/pki/ca.cfg file to add the above information:

remoteCA:
program
dn

/usr/1ib/security/pki/JSML.sml
"c=US,0=IBM,ou=Sec Team,cn=AIX test"

telnet testsystem.ibm.com

AIX Version 5

(C) Copyrights by IBM and by others 1982, 2006.
login: aixuser

aixuser's Password:

8. Verify that aixuser can login to the system using this certificate:

telnet testsystem.ibm.com

AIX Version 5

(C) Copyrights by IBM and by others 1982, 2006.
login: aixuser

aixuser's Password:

Last login: Fri Apr 14 10:46:29 CDT 2006 on /dev/pts/3 from localhost

$ echo $AUTHSTATE
PKIfiles
$

Pluggable Authentication Modules

The pluggable authentication module (PAM) framework provides system administrators with the ability to
incorporate multiple authentication mechanisms into an existing system through the use of pluggable
modules.

Applications enabled to make use of PAM can be plugged-in to new technologies without modifying the
existing applications. This flexibility allows administrators to do the following:

» Select any authentication service on the system for an application

» Use multiple authentication mechanisms for a given service

» Add new authentication service modules without modifying existing applications
» Use a previously entered password for authentication with multiple modules

The PAM framework consists of a library, pluggable modules, and a configuration file. The PAM library
implements the PAM application programming interface (API) and serves to manage PAM transactions and
invoke the PAM service programming interface (SPI) defined in the pluggable modules. Pluggable modules
are dynamically loaded by the library based on the invoking service and its entry in the configuration file.
Success is determined not only by the pluggable module but also by the behavior defined for the service.
Through the concept of stacking, a service can be configured to authenticate through multiple
authentication methods. If supported, modules can also be configured to use a previously submitted
password rather than prompting for additional input.

The system administrator can configure an AIX system to use PAM through modification of the auth_type
attribute in the usw stanza of the/etc/security/login.cfg file. Setting auth_type = PAM_AUTH configures

Security 185

PAM-enabled commands to invoke the PAM API directly for authentication rather than use the historic AIX
authentication routines. This configuration is a run-time decision and does not require a reboot of the
system to take affect. For further information about the auth_type attribute, see the /etc/security/
login.cfg file reference. The following native AIX commands and applications have been modified to
recognize the auth_type attribute and enabled for PAM authentication:

* login

* passwd

* su

- ftp

* telnet

* rlogin

* rexec

* rsh

* shappd

* imapd

» dtaction

« dtlogin

» dtsession

The following illustration shows the interaction between PAM-enabled applications, PAM library,
configuration file, and PAM modules on a system that has been configured to use PAM. PAM enabled
applications invoke the PAM API in the PAM library. The library determines the appropriate module to load
based on the application entry in the configuration file and calls the PAM SPI in the module.
Communication occurs between the PAM module and the application through the use of a conversation
function implemented in the application. Success or failure from the module and the behavior defined in

the configuration file then determine if another module needs to be loaded. If so, the process continues;
otherwise, the result is passed back to the application.

login su passwd

i A }
Y

[etc/pam.conf ———— libpam.a

l
' ' '

pam module pam module pam module

Figure 3. PAM Framework and Entities. This illustration shows how PAM enabled commands use the PAM library to
access the appropriate PAM module.

PAM library
The PAM library,/usr/lib/libpam.a, contains the PAM API that serves as a common interface to all PAM
applications and also controls module loading.

Modules are loaded by the PAM library based on the stacking behavior defined in the /etc/pam.conf file.

186 AIX Version 6.1 Security

The following PAM API functions invoke the corresponding PAM SPI provided by a PAM module. For
example, the pam_authenticate API invokes the pam_sm_authenticate SPI in a PAM module.

* |pam authenticate]

.

* |pam acct mgmt

* |pam open session|

+ |pam close session|

pam chauthtok

The PAM library also includes several framework APls that enable an application to invoke PAM modules
and pass information to PAM modules. The following table shows the PAM framework APIs that are
implemented in AIX and their functions:

am_star Establish a PAM session

am_end Terminate a PAM session

am_get_data Retrieve module-specific data

am_set_dat Set module-specific data

am_geten Retrieve the value of a defined PAM environment variable

am_getenvlis Retrieve a list of all of the defined PAM environment
variables and their values

am_putenVI Set a PAM environment variable

am_get_item Retrieve common PAM information

am_set_item Set common PAM information

am_get_use Retrieve user name

am_strerro Get PAM standard error message

PAM modules

PAM modules allow multiple authentication mechanisms to be used collectively or independently on a
system.

A given PAM module must implement at least one of four module types. The module types are described
as follows, along with the corresponding PAM SPIs that are required to conform to the module type.

Authentication Modules
Authenticate users and set, refresh, or destroy credentials. These modules identify user based on
their authentication and credentials.
Authentication module functions:
* [pam_sm_authenticate]
* lpam_sm_setcred|

Account Management Modules
Determine validity of the user account and subsequent access after identification from
authentication module. Checks performed by these modules typically include account expiration
and password restrictions.

Account management module function:
* lpam_sm_acct_mgmt]

Session Management Modules
Initiate and terminate user sessions. Additionally, support for session auditing may be provided.
Session management module functions:
* [pam_sm_open_session|
* lpam_sm_close_session|

Security 187

Password Management Modules
Perform password modification and related attribute management.

Password management module functions:

* lpam_sm_chauthtok|

PAM configuration file

The /etc/pam.conf configuration file consists of service entries for each PAM module type and serves to
route services through a defined module path.

Entries in the file are composed of the following whitespace-delimited fields:
service_name module_type control_flag module_path module_options

Where:

service_name

module_type

control_flag

module_path

module_options

Specifies the name of the service. The keyword OTHER is used to define the
default module to use for applications not specified in an entry.

Specifies the module type for the service. Valid module types are auth, account,
session, or password. A given module will provide support for one or more
module types.

Specifies the stacking behavior for the module. Supported control flags are
required, requisite, sufficient, or optional.

Specifies the module to load for the service. Valid values for module_path may be
specified as either the full path to the module or just the module name. If the full
path to the module is not specified, then the PAM library will prepend to the module
name either /usr/1ib/security for 32-bit services or /usr/1ib/security/64 for
64-bit services.

Specifies a space-delimited list of options that can be passed to the service
modules. Values for this field are dependent on the options supported by the
module defined in the module_path field. This field is optional.

Malformed entries or entries with incorrect values for the module_type or control_flag fields are ignored
by the PAM library. Entries beginning with a number sign (#) character at the beginning of the line are also
ignored because this denotes a comment.

PAM supports a concept typically referred to as "stacking”, allowing multiple mechanisms to be used for
each service. Stacking is implemented in the configuration file by creating multiple entries for a service
with the same module_type field. The modules are invoked in the order in which they are listed in the file
for a given service, with the final result determined by the control_flag field specified for each entry. Valid
values for the control_flag field and the corresponding behavior in the stack are as follows:

required

requisite

sufficient

optional

All required modules in a stack must pass for a successful result. If one or more of
the required modules fail, all of the required modules in the stack will be
attempted, but the error from the first failed required module is returned.

Similar to required except that if a requisite module fails, no further modules in the
stack are processed and it immediately returns the first failure code from a
required or requisite module.

If a module flagged as sufficient succeeds and no previous required or sufficient
modules have failed, all remaining modules in the stack are ignored and success
is returned.

If none of the modules in the stack are required and no sufficient modules have
succeeded, then at least one optional module for the service must succeed. If
another module in the stack is successful, a failure in an optional module is
ignored.

The following /etc/pam.conf subset is an example of stacking in the auth module type for the login

service.

188 AIX Version 6.1 Security

#
PAM configuration file /etc/pam.conf

#

Authentication Management

lTogin auth required /usr/1ib/security/pam_ckfile file=/etc/nologin
Togin auth required /usr/1ib/security/pam_aix

Togin auth optional /usr/1ib/security/pam_test use_first_pass
OTHER auth required /usr/1ib/security/pam_prohibit

The example of configuration file contains three entries for the login service. Having specified both
pam_ckfile and pam_aix as required, both modules will be run and both must be successful for the
overall result to be successful. The third entry for the fictitious pam_test module is optional and its
success or failure will not affect whether the user is able to login. The option use_first_pass to the
pam_test module requires that a previously entered password be used instead of prompting for a new
one.

Use of the OTHER keyword as a service name enables a default to be set for any other services that are
not explicitly declared in the configuration file. Setting up a default ensures that all cases for a given
module type will be covered by at least one module. In the case of this example, all services other than
login will always fail since the pam_prohibit module returns a PAM failure for all invocations.

pam_aix module
The pam_aix module is a PAM module that provides PAM-enabled applications access to AlX security
services by providing interfaces that call the equivalent AIX services where they exist.

These services are in turn performed by a loadable authentication module or the AIX built-in function

based on the user’s definition and the corresponding setup in the methods.cfg file. Any error codes
generated during execution of an AlX service are mapped to the corresponding PAM error code.

pam Application

pam.conf ——m»| libpam.a

pam_aix

methods.cfg——— gﬁ(bgggtuerri%y
l A 1 ’
compat DCE LDAP KRB5

Figure 4. PAM Application to AIX Security Subsystem Path

This illustration shows the path that a PAM application API call will follow if the /etc/pam.conf file is
configured to make use of the pam_aix module. As shown in the diagram, the integration allows users to
be authenticated by any of the loadable authentication modules (DCE, LDAP, or KRB5) or in AIX files
(compat).

Security 189

The pam_aix module is installed in the /usr/lib/security directory. Integration of the pam_aix module
requires that the /etc/pam.conf file be configured to make use of the module. Stacking is still available but
is not shown in the following example of the /etc/pam.conf file:

#

Authentication management

#

OTHER auth required /usr/1ib/security/pam_aix
#

Account management

#

OTHER account required /usr/1ib/security/pam aix
#

Session management

#

OTHER session required /usr/1ib/security/pam_aix
#

Password management

#

OTHER password required /usr/1ib/security/pam_aix

The pam_aix module has implementations for the pam_sm_authenticate, pam_sm_chauthok and
pam_sm_acct_mgmt SPI functions. The pam_sm_setcred, pam_sm_open_session, and
pam_sm_close_session SPI are also implemented in the pam_aix module, but these SPI functions return
PAM_SUCCESS invocations.

The following is an approximate mapping of PAM SPI calls to the AIX security subsystem:

PAM SPI AIX
pam_sm_authenticate --> authenticate
pam_sm_chauthtok --> passwdexpired, chpass

Note: passwdexpired is only checked if the
PAM_CHANGE_EXPIRED_AUTHTOK flag is passed in.

pam_sm_acct_mgmt --> Toginrestrictions, passwdexpired
pam_sm_setcred --> No comparable mapping exists, PAM_SUCCESS returned
pam_sm_open_session --> No comparable mapping exists, PAM_SUCCESS returned

pam_sm_close_session --> No comparable mapping exists, PAM_SUCCESS returned

Data intended to be passed to the AIX security subsystem can be set using either the pam_set_item
function prior to module use, or the pam_aix module for data if it does not already exist.

PAM loadable authentication module
AIX security services can be configured to call PAM modules through the use of the existing AIX loadable
authentication module framework.

Note: Prior to AIX 5.3 a loadable authentication module PAM was used to provide PAM authentication to
native AIX applications. Due to differences in behavior between this solution and a true PAM
solution, the PAM loadable authentication module is no longer the recommended means to provide
PAM authentication to native AIX applications. Instead, the auth_type attribute in the usw stanza of
letc/security/login.cfg should be set to PAM_AUTH to enable PAM authentication in AIX. For more
information on the auth_type attribute, see /etc/security/login.cfg. Use of the PAM loadable
authentication module is still supported, but it is deprecated. You should use the auth_type attribute
to enable PAM authentication.

When the /ustr/lib/security/methods.cfg file is set up correctly, the PAM load module routes AIX security

services (passwd, login, and so on) to the PAM library. The PAM library checks the /etc/pam.conf file to
determine which PAM module to use and then makes the corresponding PAM SPI call. Return values from

190 AIX Version 6.1 Security

PAM are mapped to AlIX error codes and returned to the calling program.
This illustration shows the path that an AIX security service call takes when PAM is configured correcily.

passwd login su

|

methods.cfg———»{ AIX Security

Subsystem
l | 4 L4 L 4
compat PAM LDAP KRB5
5
pam.conf —— libpam.a
| I /
pam_krb pam_lIdap pam_dce

Figure 5. AlX Security Service to PAM Module Path

The PAM modules shown (pam_krb, pam_Ildap, and pam_dce) are listed as examples of third-party
solutions.

The PAM load module is installed in the /usr/lib/security directory and is an authentication-only module.
The PAM module must be combined with a database to form a compound load module. The following
example shows the stanzas that could be added to the methods.cfg file to form a compound PAM module
with a database called files. The BUILTIN keyword for the db attribute designates the database as UNIX
files.

PAM:
program = /usr/1ib/security/PAM

PAMfiTes:
options

auth=PAM,db=BUILTIN

Creating and modifying users is then performed by using the -R option with the administration commands
and by setting the SYSTEM attribute when a user is created. For example:

mkuser -R PAMfiles SYSTEM=PAMfiles registry=PAMfiles pamuser

This action informs further calls to AlX security services (login, passwd, and so on) to use the PAM load
module for authentication. While the files database was used for the compound module in this example,
other databases, such as LDAP, can also be used if they are installed. Creating users as previously
described will result in the following mapping of AIX security to PAM API calls:

AIX PAM API
authenticate --> pam_authenticate
chpass --> pam_chauthtok
passwdexpired --> pam_acct_mgmt

passwdrestrictions --> No comparable mapping exists, success returned

Customizing the /etc/pam.conf file allows the PAM API calls to be directed to the desired PAM module for
authentication. To further refine the authentication mechanism, stacking can be implemented.

Security 191

Data prompted for by an AIX security service is passed to PAM through the pam_set_item function
because it is not possible to accommodate user dialog from PAM. PAM modules written for integration with
the PAM module should retrieve all data with pam_get_item calls and should not attempt to prompt the
user to input data because this is handled by the security service.

Loop detection is provided to catch possible configuration errors in which an AIX security service is routed
to PAM and then a PAM module in turn attempts to call the AIX security service to perform the operation.
Detection of this loop event will result in an immediate failure of the intended operation.

Note: The /etc/pam.conf file should not be written to make use of the pam_aix module when using PAM
integration from an AlX security service to a PAM module because this will result in a loop
condition.

Adding a PAM module
You can add a PAM module to enable multiple authentication mechanisms.

1. Place the 32-bit version of the module in the /usr/lib/security directory and the 64-bit version of the
module in /ust/lib/security/64 directory.

2. Set file ownership to root and permissions to 555. The PAM library does not load any module not
owned by the root user.

3. Update the /etc/pam.conf configuration file to include the module in entries for the desired service
names.

4. Test the affected services to ensure their functionality. Do not log off the system until a login test has
been performed.

Changing the /etc/pam.conf file
There are a few thing you should consider before changing the /etc/pam.conf file.

When changing the /etc/pam.conf configuration file, consider the following requirements:

» The file should always be owned by the root user and group security. Permission on the file needs to be
644 to allow everyone read access but only allow root to modify.

» For greater security, consider explicitly configuring each PAM-enabled service and then using the
pam_prohibit module for the OTHER service keyword.

* Read any documentation supplied for a chosen module, and determine which control flags and options
are supported and what their impact will be.

» Select the ordering of modules and control flags carefully, keeping in mind the behavior of required,
requisite, sufficient, and optional control flags in stacked modules.

Note: Incorrect configuration of the PAM configuration file can result in a system that cannot be logged in
to since the configuration applies to all users including root. After making changes to the file, always
test the affected applications before logging out of the system. A system that cannot be logged in to
can be recovered by booting the system in maintenance mode and correcting the /etc/pam.conf
configuration file.

Enabling PAM debug

The PAM library can provide debug information during execution. After enabling the system to collect
debug output, the information gathered can be used to track PAM-API invocations and determine failure
points in the current PAM setup.

To enable PAM debug output, perform these steps:

1. Create an empty file at /etc/pam_debug. The PAM library checks for existence of the
letc/pam_debug file and if found, enables syslog output.

2. Edit the /etc/syslog.conf file to contain the appropriate entries for the desired levels of messages.
3. Restart the syslogd daemon so that configuration changes are recognized.

192 AIX Version 6.1 Security

4. When the PAM application is restarted, debug messages will be collected in the output file defined in
the /etc/syslog.conf configuration file.

OpenSSH software tools

OpenSSH software tools support the SSH1 and SSH2 protocols. The tools provide shell functions where
network traffic is encrypted and authenticated.

OpenSSH is based on client and server architecture. OpenSSH runs the sshd daemon process on the AlX
host and waits for the connection from clients. It supports public-key and private-key pair