
HP OpenView Operations

Tracing Concepts and User’s Guide

Software Version: A.08.10

HP-UX and Sun Solaris Management Servers
Manufacturing Part Number: None

September 2004

© Copyright 2004 Hewlett-Packard Development Company, L.P.

Legal Notices
Warranty.

Hewlett-Packard makes no warranty of any kind with regard to this
document, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard
product can be obtained from your local Sales and Service Office.

Restricted Rights Legend.

Use, duplication or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause in DFARS 252.227-7013.

Hewlett-Packard Company
United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as
set forth in FAR 52.227-19(c)(1,2).

Copyright Notices.

©Copyright 2004 Hewlett-Packard Development Company, L.P.

No part of this document may be copied, reproduced, or translated to
another language without the prior written consent of Hewlett-Packard
Company. The information contained in this material is subject to
change without notice.

Trademark Notices.

Adobe is a trademark of Adobe Systems Incorporated.

Microsoft is a U.S. registered trademark of Microsoft Corporation.

UNIX is a registered trademark of the Open Group.

Windows and MS Windows are U.S. registered trademarks of
2

Microsoft Corporation.

Contents

1. OpenView Tracing Fundamentals
Troubleshooting and Tracing . 6
Installation . 7

UNIX Trace Server Installation. 7
Windows Trace Server Installation. 9
Trace Information . 10
How to Trace . 11

Overview of Tracing Procedures . 11

2. Configuring OpenView Tracing
Setting Up OpenView Tracing. 14
Enabling Static Tracing . 23
Enabling Dynamic Tracing . 26
Configuration Diagrams . 29

Local Tracing Options. 29
Dynamic Tracing: Starting with the ovtrccfg Tool . 29
Static Tracing: Starting with the OVApp Process . 30
Additional Notes . 30

Local Dynamic Tracing Options. 31
AppName.tcf File Contents. 31
Establishing Local Dynamic Tracing . 32

Local Static Tracing Options . 33
AppName.tcf File Contents. 34
Establishing Local Static Tracing . 34

Trace Configuration Files . 35
Syntax Version Line Details. 35
Application Line Details. 35
Sink Line Details . 36

File Sink Type Options . 36
Socket Sink Type Options . 37

Trace Line Details. 37
Sample Trace Configuration File . 39

SINK to File. 39
3

SINK to Socket . 39
SINK to File. 39

Contents

3. Configuring Tracing For OVO
Tracing OpenView Products . 42
OVO 8.0 Trace-Enabled Applications . 44
Server and Agent Applications . 49

OVO Specific and OpenView Components . 49
OVO Specific and XPL Standard Categories. 53
NNM Pre-Configuration Requirements. 56
Tracing OVO Processes . 56
4

1 OpenView Tracing
Fundamentals
Chapter 1 5

OpenView Tracing Fundamentals
Troubleshooting and Tracing

Troubleshooting and Tracing
To help you investigate the cause of problems, OpenView provides
problem tracing. Trace log files can help you pinpoint when and where
problems occur (for example, if processes or programs abort, performance
is greatly reduced, or unexpected results appear).

You can activate tracing for specific management server or agent
processes by adding a statement to the opcsvinfo or opcinfo file. To
simplify the interpretation of the trace logfile, you can activate tracing
for specific functional areas by specifying one or more functional areas in
the trace statement.
Chapter 16

OpenView Tracing Fundamentals
Installation

Installation
The OpenView tracing tools are installed during the HP OpenView
product installation. To support dynamic trace configuration without
additional steps the trace server is configured to start when the system
starts. On Windows this is done by installing the trace server OVTrace as
a Windows service called OpenView Trace Service. On UNIX this is
done by adding ovtrcd to the startup script.

The files are placed in a location where trace-enabled applications can
find the tracing library. For native applications, OvXpl.dll should be
where the applications can find it (usually somewhere in the system
search PATH). For Java applications, xpl.jar is added to the
application's classpath.

The OpenView tracing tools are normally located under the HP
OpenView directory structure. They can be found under the /bin
directory corresponding to the HP OpenView product and platform.

UNIX Trace Server Installation

On UNIX systems, the trace server is started by adding the
S900OVTrcSrv start-up script to the following directory:

HP-UX /sbin/rc3.d

Solaris /etc/rc3.d

These files are links to the OVTrcSrv start-up script in the init.d
directory that starts the ovtrcd executable located in the /opt/OV/bin
directory.

The trace server can be started, stopped, or restarted if necessary using
the following commands from the root account:

WARNING If the trace server is stopped and restarted the tracing state for
all applications is lost and can not be reloaded without
restarting all applications to be traced.
Chapter 1 7

OpenView Tracing Fundamentals
Installation

HP-UX Start Trace Server:

/sbin/rc3.d/S900OVTrcSrv start

Stop Trace Server:

/sbin/rc3.d/S900OVTrcSrv stop

Restart Trace Server:

/sbin/rc3.d/S900OVTrcSrv restart

Solaris Start Trace Server:

/etc/rc3.d/S90OVTrcSrv start

Stop Trace Server:

/etc/rc3.d/S90OVTrcSrv stop

Restart Trace Server:

/etc/rc3.d/S90OVTrcSrv restart
Chapter 18

OpenView Tracing Fundamentals
Windows Trace Server Installation

Windows Trace Server Installation
On Windows systems, the trace server is automatically installed and
started by installing the OVTrace.exe as a Windows service called HP
OpenView Trace Service (see Figure 1 and Figure 2).

The Trace Server can be started, stopped, or configured using the options
available within the Services dialog.

Figure 1-1 HP OpenView Trace Service
Chapter 1 9

OpenView Tracing Fundamentals
Trace Information

Trace Information
The ovtrcd logs information into the following directories:

UNIX <OVDataDir>/log/trc.log

Windows <ProgramFilesDir>\HP OpenView\data\log

The OVTraceCfg.dat file is created under the /root directory by the
local ovtrcd, after the trace-enabled applications have been started.
This file contains the names of all applications and their associated
component and category names.
Chapter 110

OpenView Tracing Fundamentals
How to Trace

How to Trace
The following section outline a general methodology that can be applied
in most case where you need to enable tracing within an HP OpenView
product. You need to use these steps as a general guideline and may
need to make modifications to the procedure as necessary to fit the
actual problem. The procedure assumes that a problem has been
identified and that there is the need to capture application tracing
information.

Overview of Tracing Procedures

1. Determine the applications (process / daemon) for which you need to
capture trace information.

2. Determine if the applications identified are trace-enabled
applications.

3. Determine if the trace-enable application requires any
pre-configuration steps to enable OpenView Tracing.

4. Determine which components and categories within each application
need to be traced.

5. Determine which attribute flags associated with each
component/category combination need to be set.

6. Determine the most suitable tracing configurations for the problem
being experienced. Tracing can be static or dynamic, configured
locally or remotely, written directly to a file, or transmitted to a local
or remote trace server.

7. Create the trace configuration file to match the tracing configuration
selected.

8. Depending on the trace configuration selected, enable either static or
dynamic tracing.

9. Execute the application specific commands necessary to duplicate
the problem that initiated the requirement for tracing output. When
the desired behavior has been duplicated the tracing can be stopped
Chapter 1 11

or disabled.

OpenView Tracing Fundamentals
How to Trace

10. Depending upon the trace configuration selected, disable either
static or dynamic tracing.

11. Gather the trace configuration file and the trace output files.
Evaluate the trace messages or package the files for transfer to
support for evaluation.
Chapter 112

2 Configuring OpenView Tracing
Chapter 2 13

Configuring OpenView Tracing
Setting Up OpenView Tracing

Setting Up OpenView Tracing
To set up tracing of a problem, complete the following steps:

1. Determine the applications (process/daemon) for which you need to
capture trace information. The success of this step is greatly
influenced by the experience of the investigating support engineer.

2. Determine if the applications identified as being the root of the
problems being experienced are trace-enabled applications, that is
they incorporate OpenView Tracing. This procedure can only be used
for trace-enabled applications. The non-trace-enable applications will
need to use existing tracing mechanisms to capture trace output. In
some cases a combination of both OpenView Tracing and existing
tracing mechanisms may be needed to capture all the tracing
information required for a given support problem.

UNIX Systems

On UNIX systems, look into the OVTraceCfg.dat file created under
the /var/opt/OV/datafiles/xpl/ directory by the local trace
server.

This file contains the names of all tracing-enabled applications that
have registered with the ovtrcd process. The file also includes the
components and categories defined for each trace-enabled
application. Examine the OVTraceCfg.dat file and identify the
trace-enabled applications and the components and categories
defined for each application.

The following is an extract from an OVTraceCfg.dat file:

opcmsgm Application
opc.db Component

Trace Category
opcmsgm Application

opc.lic Component
Trace Category

opcmsgm Application
Chapter 214

opc.init Component

Trace Category

Configuring OpenView Tracing
Setting Up OpenView Tracing

opcactm Application

xpl.runtime Component
Trace Category

opcactm Application
sec.core.auth Component

Proc Category
…… Continues for other Application,

Component, and Categories
defined.

……

Windows Systems

On Windows systems, you can install and use the TraceMon GUI to
connect to the system running the trace server. The connection can
be either local or remote. Once a connection has been established to
the machine where the target trace server is running, the TraceMon
GUI displays the names of the trace-enabled applications running on
the machine (see Figure 2-1).
Chapter 2 15

Configuring OpenView Tracing
Setting Up OpenView Tracing

Figure 2-1 Applications Dialog

CAUTION It is recommended that not all applications are simultaneously
selected. The volume of trace information generated can quickly
become too much to analyze efficiently.

3. Determine if the trace-enabled application requires any additional
pre-configuration steps to enable OpenView tracing. In general, this
should not be necessary, but the implementation of OpenView
tracing in some OpenView products does require additional
pre-configuration steps. For example, the NNM/ET processes require
the process lrf file be modified to output the OpenView trace
messages.

NOTE Refer to OV product-specific reference documents to determine which
Chapter 216

applications within OpenView products require pre-configuration
steps.

Configuring OpenView Tracing
Setting Up OpenView Tracing

4. Determine which components and categories within each application
need to be traced.

UNIX Systems

On UNIX systems, look into the OVTraceCfg.dat file created under
the /var/opt/OV/datafiles/xpl/ directory by the local trace
server.

Windows Systems

On Windows systems, use the TraceMon GUI to connect to the
system running the trace server. Once a connection has been
established to the machine where the target trace server is running,
the TraceMon GUI displays the names of the trace-enabled
applications and their associated components and categories (see
Figure 2-2).

Figure 2-2 Traces for OvNamespaceSec Dialog
Chapter 2 17

Configuring OpenView Tracing
Setting Up OpenView Tracing

Once you have identified the components and categories that are
available, determine which ones relate to the problem for which you
want to establish tracing. In general, the components and categories
names are self-explanatory.

The product support teams often have supplemental support
documentation that provides additional information on the
combinations of applications, components, and categories that should
be logically or functionally grouped together for a given support
problem, for example, the OVO for Windows Tracemon Usage Guide.

CAUTION It is recommended that not all applications are simultaneously
selected. The volume of trace information generated can quickly
become too much to analyze efficiently.

5. Determine which attribute flags associated with each
component/category combination need to be set. The recommended
starting points are the usual support attributes: Info, Warn, and
Error, unless directed to set the Verbose or Developer attributes
(See Table 2-1).

CAUTION It is strongly recommend to avoid setting all attributes (Max), as this
can significantly degrade system performance.

Table 2-1 Trace Attribute Flag

Attribute
Group

Attribute
Keywords Recommendations

Support Info Recommended for normal tracing
activities

The Support setting should be used for all
front line support tracing. The Verbose
attribute can be use in conjunction with
the other Support attributes.

Warn

Error

Verbose
(Optional)
Chapter 218

Configuring OpenView Tracing
Setting Up OpenView Tracing

The attribute keywords listed above are also used within a Trace
Configuration File on the TRACE line. (See Example 1).

WARNING Do not set the Location or Stack attributes or the use the Max
option provide in the TraceMon GUI, unless absolutely
necessary. These attribute setting can greatly degrade system
performance.

6. Determine which tracing configuration is most suitable for the

Developer Info Limited to a 2nd, 3rd, or CPE level
support tracing activities

The Developer attribute is targeted for
trace messages that require the source
code to be interpreted. The Developer
setting should be used when source level
detailed trace messages are requested.
The Verbose attribute can be use in
conjunction with the other Developer
attributes

Warn

Error

Developer

Verbose
(Optional)

Max Info Not recommend for normal tracing
activities

The Location and Stack attributes can
greatly degrade system performance due
to the overhead required to capture the
tracing information. The Max attribute
setting should be used with caution.

Warn

Error

Developer

Verbose

Location

Stack

Table 2-1 Trace Attribute Flag

Attribute
Group

Attribute
Keywords Recommendations
Chapter 2 19

tracing situation. Tracing can be static or dynamic, configured locally
or remotely, written directly to a file, or transmitted to a local or
remote trace server.

Configuring OpenView Tracing
Setting Up OpenView Tracing

Static Tracing

Static Tracing is enabled during application start-up and permits
application start-up traces to be captured. Once the application has
started, the tracing configuration can not be modified. Static tracing
can only be disabled by stopping the application. Unless the trace
configuration file is renamed or moved, the tracing will resume upon
the next application start-up. Static tracing can be configured in two
ways:

• Using the OVTrace.tcf standard trace configuration file name
and locating the file in the application start-up directory or in the
/var/opt/OV/datafiles/xpl/ directory.

• Defining an environment variable named TRACE_CONFIG_FILE to
specify the name and location of the trace configuration file.
When using this method, you can determined the configuration
file name and location.

Dynamic Tracing

Dynamic tracing is enabled after the application has started and is
dynamically configurable. Dynamic tracing can be configured using
either one of the configuration clients, ovtrccfg, located in
/opt/OV/support/, or TraceMon (Windows GUI) and a trace
configuration file. Using the TraceMon tool, you can also dynamically
set trace configurations through configuration dialogs.

Dynamic tracing can be configured locally or remotely. The
configuration clients, ovtrccfg and TraceMon can configure a trace
server that is running on the local machine or on a remote machine.
Using the options available within these tools, you can dynamically
configure tracing on a system. If you have direct access to the
system, the local configuration option can be used. If you do not have
direct access to the system, the remote configuration must be used.

TIP If you have access to a Windows system with the TraceMon graphical
tool installed, it may be easier to use the GUI to remotely configure
the tracing configuration. The GUI provides additional features that
allow for the configuration of multiple applications, sort and filter
the trace output, and to save the trace configuration settings.
Chapter 220

Configuring OpenView Tracing
Setting Up OpenView Tracing

NOTE If working across a firewall, the tracing messages can only cross a
firewall if port 5051 (TCP) is open.

The tracing output from both static and dynamic tracing can be
written directly to a file or transmitted to a local or remote trace
server. If the trace output is transmitted to a trace server (either
local or remote) the monitor clients ovtrcmon, located in
/opt/OV/support/, or TraceMon (Windows GUI) tools can be use to
monitor the trace output. These monitor clients are capable of
writing the trace output to a file or directly to standard out.

7. Create the trace configuration file. if required, to match the tracing
configuration selected. See following example. Locate the trace
configuration file in a directory that can be accessed by either the
application or the configuration client. If using the static tracing
model, specify the trace configuration file name using the
TRACE_CONFIG_FILE environment variable. If using the dynamic
tracing model, the trace configuration file can be located locally or
remotely.

Example - Sample Trace Configuration File

This sample trace configuration file enables tracing on two
applications, opcmsgrb and opcmsgm. The sink is configured as a
socket with the system supnode1 as the target server. The
components selected are opc.msg, opc.act and opc.int. The
associated category selected is Trace. The tracing attributes are set
to the Support defaults of Info, Warn, and Error for all, with the
Verbose attribute set on the opc.msg components.

TCF Version 3.2
APP: "opcmsgrb"
SINK: Socket "supnode1" "node=10.1.111.20;"
TRACE: "opc.actn" "Trace" Info Warn Error
TRACE: "opc.int" "Trace" Info Warn Error
TRACE: "opc.msg" "Trace" Info Warn Error Verbose
APP: "opcmsgm"
SINK: Socket "supnode1" "node=10.1.111.20;"
TRACE: "opc.actn" "Trace" Info Warn Error
Chapter 2 21

TRACE: "opc.msg" "Trace" Info Warn Error Verbose

Configuring OpenView Tracing
Setting Up OpenView Tracing

TIP If possible use the TraceMon (Windows GUI) tool to create the trace
configuration file.

8. Depending upon the trace configuration selected, enable either static
or dynamic tracing. Refer to the appropriate following section for
specific steps to enable static and dynamic tracing.

• “Enabling Static Tracing” on page 23.

• “Enabling Dynamic Tracing” on page 26
Chapter 222

Configuring OpenView Tracing
Enabling Static Tracing

Enabling Static Tracing
To enable static tracing, complete the following steps:

1. Verify that the trace server is running.

When using static tracing and the sink configuration is defined to a
socket, the trace server must be started and running before the
application is started. If the application is started before the trace
server is started, tracing is not be possible. If the sink configuration
is defined to a file, the trace server is not required to be running.

UNIX Execute a command such as:

ps -ef | grep ovtrcd

to verify that the trace server process is running.
The information returned should be similar to the
following:

root@ supnode1: ps -ef | grep ovtrcd

root 18750 1 0 Mar 5 ? 0:00
/opt/OV/bin/ovtrcd

Windows Open the Services dialog and verify the state of
the service named HP OpenView Trace Service is
Started.

2. If using a configuration file named OVTrace.tcf, verify that the file
is located in the application start-up directory, usually the /root
directory on UNIX systems. If you are not using the OVTrace.tcf
file, verify that the TRACE_CONFIG_FILE environment variable is
used to specify the name and location of the trace configuration file.

3. Stop the target trace-enabled applications if it is running, using the
required application specific commands.

4. Start the trace monitor client for the required tracing configuration if
the application sink was set to Socket.

Use the ovtrcmon monitor client on either the local or remote
system.
Chapter 2 23

Configuring OpenView Tracing
Enabling Static Tracing

NOTE The TraceMon client will not work in this situation since a static
configuration was used.

If the Sink was set to File, a monitor client is not required.

There are a number of options available with the ovtrcmon
command. Refer to the ovtrcmon documentation for the complete
option details.

To monitor trace messages, execute one of the following commands or
a similar command using additional ovtrcmon command options:

To monitor trace messages from supnode1 and output traces to a file
in binary format:

ovtrcmon -server supnode1-tofile /tmp/traceout.trc

To monitor trace messages from supnode1, display verbose format,
output directly to standard out.

ovtrcmon -server supnode1 -verbose

To monitor trace messages from supnode1 , display short format, and
redirect standard out to a file.

ovtrcmon -server supnode1 -short > /tmp/traces.trc

5. Start the target trace-enabled applications using the required
application specific commands.

6. Execute the application specific commands necessary to duplicate
the problem that you want to trace. When the desired behavior has
been duplicated, tracing can be stopped.

7. Stop the target trace-enabled applications using the required
application specific commands.

8. Collect the trace configuration file and the trace output files.
Evaluate the trace messages or package the files for transfer to
support for evaluation. If the trace output was written directly to a
file (Sink to File), there may be multiple versions of the trace
output files. The Sink to File configuration option Maxfiles
allows for multiple trace output files. These files have an extension of
Chapter 224

.001 - .100 added to the filename.

Configuring OpenView Tracing
Enabling Static Tracing

9. Reconfigure the application to disable tracing before the application
is restarted. If using the OVTrace.tcf file, the configuration file
should be removed or renamed to prevent the application from
reading the trace configuration file the next time the application
starts. If using the TRACE_CONFIG_FILE environment variable, the
value should be disabled or the specified configuration file should be
removed or renamed.

WARNING Tracing will restart the next time the application starts
unless tracing is disabled.
Chapter 2 25

Configuring OpenView Tracing
Enabling Dynamic Tracing

Enabling Dynamic Tracing
Dynamic tracing has a variety of implementation options including, local
or remote configuration and local or remote monitoring. The procedure
outlined below covers the general sequence of steps required to enable
dynamic tracing. However, they make no attempt to cover all the possible
configuration combinations. You must know which system, either local or
remote is to be used to execute the commands.

1. Place the trace configuration file in a location to which the client
configuration tool has access. The location can be a local or network
directory.

• The trace configuration file should not be named OVTrace.tcf,
since this is a reserved filename.

• The TRACE_CONFIG_FILE environment variable must not be
defined.

2. Verify that the ovtrcd is running.

The trace server must be started and running before the application
is started. If the application is started before the trace server is
started, tracing is not be possible.

UNIX Execute a command such as:

ps -ef | grep ovtrcd

to verify that the trace server process is running.
The information returned should be similar to the
following:

root@ supnode1: ps -ef | grep ovtrcd

root 18750 1 0 Mar 5 ? 0:00
/opt/OV/bin/ovtrcd

Windows Open the Services dialog and verify the state of
the service named HP OpenView Trace Service is
Started.

3. Verify the targeted trace-enabled applications are running and that
Chapter 226

they were started after the trace server was started. If the trace
server was started after the trace-enabled applications, tracing will
not be possible.

Configuring OpenView Tracing
Enabling Dynamic Tracing

4. Make a trace configuration request using either the ovtrccfg or
TraceMon (Window GUI) configuration clients.

If using the ovtrccfg configuration client, execute command:

ovtrccfg -server <server-name> <trace-config-file-name>

Windows If using the TraceMon GUI configuration client,
start a new Trace Wizard and select the option to
load a configuration file using the following steps.

a. Start the TraceMon tool.

b. From the File menu, select the Trace Wizard
option, then select Next.

c. Select the Configure local applications
by loading a saved configuration option.

d. Locate and select the trace configuration file
from the Open dialog.

This starts new tracing windows with the
configuration setting from the selected trace
configuration file.

5. Make a trace monitor request using either the ovtrcmon or TraceMon
(Window GUI) monitor clients.

There are a number of options available with the ovtrcmon
command. Refer to the ovtrcmon documentation for the complete
option details.

To monitor trace messages, execute one of the following commands or
a similar command using additional ovtrcmon command options:

To monitor trace messages from supnode1 and output traces to a file
in binary format:

ovtrcmon -server supnode1-tofile /tmp/traceout.trc

To monitor trace messages from supnode1, display verbose format,
output directly to standard out.

ovtrcmon -server supnode1 -verbose

To monitor trace messages from supnode1 , display short format, and
Chapter 2 27

redirect standard out to a file.

ovtrcmon -server supnode1 -short > /tmp/traces.trc

Configuring OpenView Tracing
Enabling Dynamic Tracing

Windows If using the TraceMon GUI configuration client,
start a new Trace Wizard and select the option to
load a configuration file using the following steps.

a. Start the TraceMon tool.

b. From the File menu, select the Trace Wizard
option, then select Next.

c. Select the Configure local applications
by loading a saved configuration option.

d. Locate and select the trace configuration file
from the Open dialog.

This starts new tracing windows with the
configuration setting from the selected trace
configuration file. The TraceMon tool can also be
used to dynamically configure tracing using the
displayed configuration dialogs.

6. Execute the application specific commands necessary to duplicate
the problem that you want to trace. When the desired behavior has
been duplicated, tracing can be stopped.

7. Stop or disable tracing using either the ovtrccfg or TraceMon
configuration clients.

If using the ovtrccfg configuration client, execute command:

ovtrccfg -server <server-name> off

Windows If using the TraceMon GUI configuration client,
stop tracing using the following steps:

• Select the configuration window associated
with the tracing.

• From the File menu, select the Close option.

8. Collect the trace configuration file and the trace output files.
Evaluate the trace messages or package the files for transfer to
support for evaluation. If the trace output was written directly to a
file (Sink to File), there may be multiple versions of the trace
output files. The Sink to File configuration option Maxfiles
Chapter 228

allows for multiple trace output files. These files have an extension of
.001 - .100 added to the filename.

Configuring OpenView Tracing
Configuration Diagrams

Configuration Diagrams

Local Tracing Options

Figure 2-3 shows the static and dynamic tracing configurations available
when limiting tracing to one particular node (not using any of the remote
tracing capabilities).

Figure 2-3 Local Tracing Options

Dynamic Tracing: Starting with the ovtrccfg Tool

• Figure 2-3 illustrates that tracing can be configured using the
ovtrccfg tool, which reads a Trace Configuration File named
AppName.tcf.

• This trace configuration request is sent through the local trace server
Chapter 2 29

to the Trace-enabled application.

Configuring OpenView Tracing
Configuration Diagrams

• The Trace-enabled application sends the trace messages to the local
trace server (This assumes that the sink is configured as Socket to
the local system).

• The ovtrcmon tool is used to monitor the trace messages, and can be
configured to output the trace messages to standard out or to a disk
file.

Static Tracing: Starting with the OVApp Process

Figure 2-3 also illustrates two ways static tracing can be configured to
start when the OVApp starts:

• Creating a trace configuration file named OVTrace.tcf and placing
this configuration file in the /root directory.

— Creating a trace configuration file named OVApp.tcf (or an
alternative file name) and defining the TRACE_CONFIG_FILE
environment variable to reference this file.

— The configuration file is read by the OVApp process during
startup and will enable tracing within the OVApp application.

• The trace output can be output directly to a file, using the Sink to
File configuration option, or it can be output to a trace server using
the Sink to Socket configuration option.

• The ovtrcmon tool is used to monitor the trace messages directly
from the trace server if the Sink to Socket option is used, or the
ovtrcmon tool can read the binary trace output file (created by the
OVApp application). In both cases the trace output can be written to
standard out or to a disk file.

Additional Notes

• There will be multiple trace-enabled applications and there will be
other non trace-enabled applications running on the same system.

• The trace configuration file can specify more than one trace-enabled
application.

• There should only be one ovtrcd process running on the system.
Chapter 230

Configuring OpenView Tracing
Configuration Diagrams

Local Dynamic Tracing Options

The tracing configuration objectives for local dynamic tracing are:

• Enable dynamic tracing on OVAppX. Use the localhost ovtrcd process
as the Sink, use the trace configuration file named AppName.tcf.

• Tracing is monitored using the ovtrcmon tool.

• Trace messages are output in binary format to the file named
$OV_LOG/OVAppX.trc

Figure 2-4 Local Dynamic Tracing Options

AppName.tcf File Contents

TCF Version 3.2
APP: "OVAppX"
SINK: Socket "PRODNODE1" "node=10.1.143.25;"
TRACE: "Comp1-Name" "Parms" Error Info Warn
Chapter 2 31

TRACE: "Comp2-Name" "Init" Info Verbose

Configuring OpenView Tracing
Configuration Diagrams

Establishing Local Dynamic Tracing

Figure 2-4 illustrates how local dynamic tracing can be configured. The
steps you must execute are as follows:

1. Verify that the local ovtrcd process is running with the command:

ps -ef | grep ovtrcd

2. Verify that the OVAppX process is running, and that it was started
after the ovtrcd process.

3. Create the AppName.tcf trace configuration file as shown above.
Substitute the actual Application, Component, and Category
names.

4. Make a trace configuration request using the ovtrccfg tool with the
command:

ovtrccfg AppName.tcf

NOTE The local trace server is being used, therefore the -server option is
not required.

5. Make a trace monitor request using ovtrcmon tool with the
command:

ovtrcmon -tofile $OV_LOG/OVAppX.trc

6. Execute application-specific commands to duplicate the problem or
situation for which you need tracing information. When these actions
are completed tracing can be disabled.

7. Disable tracing using the ovtrccfg tool with the command:

ovtrccfg off

The application will continue to run, only the tracing will stop.

8. Stop the monitoring of trace messages. Use Ctrl-C to kill the
ovtrcmon tool.

9. Examine the trace output or send the trace output files to your
support organization.
Chapter 232

Configuring OpenView Tracing
Configuration Diagrams

Local Static Tracing Options

The tracing configuration objectives for local dynamic tracing are:

• Enable static tracing on OVAppX to capture startup trace messages,
by placing a trace configuration file named OVTrace.tcf in the
/root directory.

• Trace output is monitored using the ovtrcmon tool which reads the
binary trace output file created. The trace output is converted to text,
written to a text file and viewed on the standard out device.

• Trace messages are output in binary format to the file named
$OV_LOG/OVAppX.trc

Figure 2-5 Local Static Tracing Options
Chapter 2 33

Configuring OpenView Tracing
Configuration Diagrams

AppName.tcf File Contents

TCF Version 3.2
APP: "OVAppX"
SINK: File "/var/opt/OV/share/log/OVAppX.trc"

"force=0;maxfiles=10;maxsize=100;"
TRACE: "Comp1-Name" "Parms" Error Info Warn
TRACE: "Comp2-Name" "Init" Info Verbose

Establishing Local Static Tracing

Figure 2-5 illustrates how local static tracing can be configured. The
steps you must execute are as follows:

1. Create the OVTrace.tcf trace configuration file as shown above and
place the file in the /root directory. Substitute the actual
Application, Component, and Category names.

2. Stop the OVAppX process if it is running, using the appropriate
application commands.

3. Restart the OVAppX process using the appropriate application
commands.

4. Execute application-specific commands to duplicate the problem or
situation for which you need tracing information. When these actions
are completed tracing can be disabled.

5. Stop the OVAppX process using the appropriate application
commands.

6. Make a trace monitor request using ovtrcmon tool to read from the
trace output file, convert the trace messages to text, and redirect the
output to a text file or directly to standard out. Use the command:

To redirect to a text file, use the command:

ovtrcmon -fromfile $OV_LOG/OVAppX.trc > /tmp/trace.txt

To redirect to standard out, use the command:

ovtrcmon -fromfile $OV_LOG/OVAppX.trc

7. Examine the trace output or send the trace output files to your
support organization.
Chapter 234

Configuring OpenView Tracing
Trace Configuration Files

Trace Configuration Files
Trace configuration files are ASCII text files that can be viewed or
modified using a standard text editor. The tracemon GUI can also be
used to save a trace configuration file.

Trace configuration file syntax takes the following form. Details are
explained in the following sections.

Line Type Keyword Format & Parameters

Syntax Version TCF Version 3.2

Application APP: "Application-name"

Sink SINK: File "Output-name" "force=[1/0];
maxfiles=[1..100];maxsize=[0..1000];"

SINK: Socket "node" "node=<node name>;"

Trace TRACE: "Component-name" "Category-name"
<keyword list>

Syntax Version Line Details

The first line specifies that this is a trace configuration file and also
specifies the syntax version of the file. It is case sensitive and must be
specified exactly as shown below:

Format TCF Version 3.2

Application Line Details

The application line defines the name of the application to be traced. It
must start with APP followed by a colon (:) and a space (). The
application name should be in double quotes (“...”). The APP line should
be immediately followed by a SINK line and then zero or more TRACE
lines. Repeat this pattern for each application that you want to trace.

Format APP: "Application-name"

Example APP: "dbmanager"
Chapter 2 35

Configuring OpenView Tracing
Trace Configuration Files

Sink Line Details

The sink line specific the target to which the tracing information is
directed. It must begin with SINK followed by a colon (:) and a space ().
The arguments on the line should be separated by spaces. The SINK line
has three arguments.

The first argument is the type of sink and must be one of the two
keywords File or Socket and they should not be in quotes.

The second argument is the sink name and must be in double quotes
(“...”). If the sink type is File, then this argument is the name of the
file. If the sink type is Socket, then this argument is the name of the
system running the trace server to which you want the application to
send the trace messages.

The third argument is the sink options which must also be in double
quotes (“...”), and each option must be followed by a semi-colon (;).

Format SINK: File "Output-name" "force=[1/0];
maxfiles=[1..100];maxsize=[0..1000];"

or

SINK: Socket "node" "node=<node name>;"

Examples SINK: File "C:\\TEMP\\Output.trc"
"force=0;maxfiles=10;maxsize=100;"

SINK: Socket "bigfoot" "node=10.1.115.98;"

File Sink Type Options

For the sink type File, the options are:

• force=n

• maxfiles=n

• maxsize=n

force The force option is followed by an integer value n that is either
zero or non-zero. If the value is zero, trace output is buffered until the
buffer is full before flushing the output to disk. This can speed up
performance, but it also means if the application crashes, then the last
Chapter 236

traces may not get written to disk. If the value is non-zero, then the
tracing subsystem forces the trace output physically to the disk after
each trace event is written. The default is force=0.

Configuring OpenView Tracing
Trace Configuration Files

maxfiles The maxfiles option is followed by an integer value between
1 and 100, and allows you to specify the number of historic trace log files
to be retained. Each time an application starts to trace to the file, a
backup is made of the previous file (if any) by adding ".001" to the name
and renaming the file. If there was a ".001" file already, then it is
renamed to ".002" and so on. the same backup scheme is in effect if the
current log file reaches the maximum size.

maxsize The maxsize option is followed by an integer value (from 0 to
1000) which specifies the maximum amount of disk space in megabytes
to be used for each trace output file. If the last block of data written to
the trace output file causes the file to be larger than the specified
maximum, then the next output will cause the current output file to be
closed and backed up and a new output file to be created. A value of 0 is a
special case that lets the file grow until you run out of disk space.

Socket Sink Type Options

For the sink type Socket, one option is supported: node=node-name.

The value of node-name is the communication path to the the system
where the trace server is running and to where the trace output must be
sent. It can be a DNS name, or IP address. If you want to create a
configuration file that sends the output to the local Trace Server,
regardless of what machine you copy the configuration file to, you must
set the sink name to localhost and remove any node= option from the
options string.

Trace Line Details

The trace line must begin with TRACE followed by a colon (:) and a space
(). The arguments on the line must be separated by spaces.

The first argument is the trace component name and it must be in double
quotes (“...”).

The second argument is the trace category name and it should also be in
in double quotes (“...”). If you are using one of the standard categories
in the code, it is mapped to the string value which you specify here). For
the exact mapping of standard category constants to string values, see
the language-appropriate documentation (C++, Java).
Chapter 2 37

Format TRACE: "Component-name" "Category-name"
<keyword list>

Configuring OpenView Tracing
Trace Configuration Files

Example TRACE: "database" "Parms" Error Info Warn
Developer

You can use "*" as the component name, category name, or both. This is
useful when using applications in the mode where they read their
configuration information directly from a file.

NOTE Configuration files that use this feature cannot be loaded into tracemon,
or ovtrccfg.

How this works requires a little explanation. When an application tries
to determine the settings for component A and category B, it first looks
to see if the configuration contains an explicit trace definition for this
pair. If the trace definition is there, it uses these settings. If it is not, then
it looks to see if there is a configuration for component A and category *.
If there is, it uses these settings. If there is not, then if looks to see if
there is a configuration for component * and category *. If there is, it
uses those settings. If not, then the trace is not activated.

The remaining parameters are a variable list of keyword options. At
least one of the keywords: Error, Info, or Warn must be in the list. The
supported keywords are:

Keyword Attribute Description

Error Enable traces marked as errors.

Warn Enable traces marked as warnings.

Info Enable traces marked as information.

Developer Enable traces aimed at developers. In general,
developer trace messages are not targeted at the front
line support engineers, since the trace messages often
require access to the source code before they can be
effectively interpreted.

Verbose Enable traces that produce very detailed output.
Verbose trace messages can be both support and
developer focused.
Chapter 238

Configuring OpenView Tracing
Trace Configuration Files

Location Include source and line number information in the
trace output if possible. The location trace message are
not targeted at the front line support engineers, since
the trace messages require access to the source code to
be interpreted.

Stack Include call stack information in the trace output if
possible. The stack trace message are not targeted at
the front line support engineers, since the trace
messages require access to the source code to be
interpreted.

Sample Trace Configuration File

SINK to File

TCF Version 3.2

APP: "dbmanager"
SINK: File "C:\\TEMP\\Output.trc" "force=0;maxfiles=10;maxsize=100;"
TRACE: "DbManager" "Parms" Error Info Warn Developer
TRACE: "DbManager" "Init" Info Verbose

TRACE: "DbManager" "Proc" Errore

SINK to Socket

TCF Version 3.2

APP: "nodedisc"
SINK: Socket "mgtstation" "node=10.1.112.99;"
TRACE: "Discovery" "Event" Error Info Warn Developer
TRACE: "Discovery" "Operation" Error Info Warn Developer

TRACE: "Discovery" "Trace" Error Info Warn Developer

SINK to File

TCF Version 3.2
APP: "ovet_disco"
SINK: Socket "bigfoot" "node=10.1.118.88;"
TRACE: "OvXplLog" "Trace" Info Warn Error Developer Verbose Location Stack
TRACE: "OvXplThread" "Trace" Info Warn Error Developer Verbose Location
Stack
TRACE: "OvXplIo" "Trace" Info Warn Error Developer Verbose Location Stack
TRACE: "OvDbil" "Event" Info Warn Error Developer Verbose Location Stack
TRACE: "OvDbil" "Proc" Info Warn Error Developer Verbose Location Stack
Chapter 2 39

TRACE: "OvDbil" "Parms" Info Warn Error Developer Verbose Location Stack

TRACE: "OvDbil" "ResMgmt" Info Warn Error Developer Verbose Location Stack

Configuring OpenView Tracing
Trace Configuration Files
Chapter 240

3 Configuring Tracing For OVO
Chapter 3 41

Configuring Tracing For OVO
Tracing OpenView Products

Tracing OpenView Products
OpenView tracing is the mechanism for tracing the latest OpenView
products and will be incorporated into all future OpenView products.

In earlier version of OVO, tracing is enabled and disabled by setting
parameter values within the opcsvinfo and opcinfo configuration files
(See Example 3-1). In addition to controlled enabling of tracing, it also
specifies which trace areas are enabled, and which on which processes
tracing was enabled. The opcsvinfo file is read by the server processes
and the opcinfo file was read by the agent processes.

Example 3-1 opcsvinfo Configuration File

Enable tracing for the message/action flow and
initialization and debug.
Generate trace output only for opcmsga and opcacta.
Enable debug output only for opcmsga.

OPC_TRACE TRUE
OPC_TRACE_AREA MSG,ACTN,INIT,DEBUG
OPC_TRC_PROCS opcmsga,opcacta
OPC_DBG_PROCS opcmsga

OpenView Tracing implements a hierarchy of elements starting with
Applications, Components, Categories and Attributes. In OpenView
Tracing terminology, the processes defined by OPC_TRC_PROCS and
OPC_DBG_PROCS are referred to as Applications. The TRACE AREAS
defined by the OPC_TRACE_AREA parameter are referred to as
subcomponents. Component and Attribute elements were not part of
the tracing configuration for OVO versions before OVO 8.0.

Component = <component name>

Trace area =<sub-component>

Category = Trace

To configure the same type of trace configuration using OpenView
Tracing, you create a Trace Configuration File (See Example 2), enable
Chapter 342

tracing using the ovtrccfg tool, and monitor the trace messages using
the trcmon tool.

Configuring Tracing For OVO
Tracing OpenView Products

Example 3-2 OpenView Trace Configuration File

TCF Version 3.2
APP: "opcmsga"
SINK: Socket "prodnode" "node=10.1.221.22;"
TRACE: "eaagt.actn" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.debug" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.init" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.msg" "Trace" Info Warn Error Developer Verbose
APP: "opcacta"
SINK: Socket "prodnode" "node=10.1.221.22;"
TRACE: "eaagt.actn" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.init" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.msg" "Trace" Info Warn Error Developer Verbose
Chapter 3 43

Configuring Tracing For OVO
OVO 8.0 Trace-Enabled Applications

OVO 8.0 Trace-Enabled Applications
All OVO 8.0 processes use OpenView Tracing (See Table 1). The OVO 8.0
Trace Enabled processes can be divided into three groups: 1) The Server
processes; 2) The Agent processes; 3) The processes that link with a
lower level component which implemented XPL Tracing. There are no
pre-configuration steps required to enable tracing within OVO 8.0.

This was accomplished by either adding XPL Tracing into the OVO code
base or by incorporating core functionality from a foundation component
and linking with the corresponding library. In the case where XPL
Tracing was added to the OVO code base, the existing tracing was
converted to XPL Tracing. In cases where functionality from a
foundation component was added, the XPL Tracing incorporated into
these foundation components is pulled into OVO.
Chapter 344

Configuring Tracing For OVO
OVO 8.0 Trace-Enabled Applications

Table 3-1 OVO 8.0 Trace-enabled Applications on Management Server and
Managed Nodes

Platform Application Name

UNIX coda

codautil

ctrlconfupd

logdump

opc_getmsg

opc_ip_addr

opccrpt

opcnls

ovas

ovbbccb

ovc

ovcd

ovcert

ovcm

ovconfchg

ovconfd

ovconfget

ovcoreid

ovcreg

ovcs

ovdeploy
Chapter 3 45

ovpolicy

Configuring Tracing For OVO
OVO 8.0 Trace-Enabled Applications

Table 3-2 OVO 8.0 Trace-enabled Applications on Management Server

Platform Application Name

UNIX opc

opc_dbinit

opc_dflt_lang

opc_rexec

opcactm

opcagtdbcfg

opcagtutil

opcauddwn

opcbbcdist

opccfgupld

opccsacm

opccsad

opcctlm

opcdbck

opcdbinst

opcdbmsgmv

opcdbpwd

opcdispm

opcdistm

opcforwm

opchbp
Chapter 346

opchistdwn

opcmsgm

Configuring Tracing For OVO
OVO 8.0 Trace-Enabled Applications

UNIX opcmsgrb

opcmsgrd

opcnode

opcragt

opcservice

opcsvcm

opcsvreg

opcsw

opcttnsm

opcuiadm

opcuiopadm

opcuiwww

ovoareqhdlr

ovoareqsdr

Table 3-2 OVO 8.0 Trace-enabled Applications on Management Server

Platform Application Name
Chapter 3 47

Configuring Tracing For OVO
OVO 8.0 Trace-Enabled Applications

Table 3-3 OVO 8.0 Trace-enabled Applications on Managed Nodes

Platform Application Name

UNIX opcacta

opceca

opcecaas

opcle

opcmon

opcmona

opcmsg

opcmsga

opcmsgi

opctrapi
Chapter 348

Configuring Tracing For OVO
Server and Agent Applications

Server and Agent Applications

OVO Specific and OpenView Components

There are many components and sub-components defined for each
application. The most important are eaagt and opc. Table 3-4 lists the
OpenView Tracing Components which are defined for the Server and
Agent processes.

Table 3-5 lists the components defined for the shared components which
have been incorporated into the product.

Table 3-4 OVO 8.0 Server and Agent Components

OVO Component Name Component Description

eaagt Event Action Agent

opc Management Server Control

Table 3-5 OV Shared Components

Application Name Component and Subcomponent
Names

Embedded Performance
Agent

coda

coda.dataaccess

coda.kmdatamatrix

coda.localmesa

coda.logger

coda.mesa

coda.mesainstances

coda_mesametricrdr
Chapter 3 49

coda.mesarea

coda.prospector

Configuring Tracing For OVO
Server and Agent Applications

Deployment Component depl

Certificate Server Adapter CSA-CertRequestImpl

CSA-CertReqContainer

CSA-Database

Csa-Log

Csa-Main

csa.ovcmwrap

Csa-RpcServer

CSA-UpdateHandler

Control Component ctrl.action

ctrl.autoshutdown

ctrl.component

ctrl.controller

ctrl.main

ctrl.monitor

ctrl.monitorproxy

ctrl.ovc

ctrl.process

ctrl.rpcclient

ctrl.rpcserver

ctrl.soap

Table 3-5 OV Shared Components

Application Name Component and Subcomponent
Names
Chapter 350

ctrl.xml

Configuring Tracing For OVO
Server and Agent Applications

Black Box Communication bbc.cb

bbc.fx

bbc.fx.client

bbc.fx.server

bbc.http

bbc.http.client

bbc.http.dispatcher

bbc.http.output

bbc.http.server

bbc.messenger

bbc.rpc

bbc.rpc.server

bbc.soap

Configuration Management
Component

conf.cluster

conf.cluster.clioutputs

conf.config

conf.message

conf.ovconfd

conf.ovpolicy

conf.policy

Table 3-5 OV Shared Components

Application Name Component and Subcomponent
Names
Chapter 3 51

Configuring Tracing For OVO
Server and Agent Applications

Security Core Component sec.cm.client

sec.cm.server

sec.core.auth

sec.core.base

sec.core.ssl

Cross Platform Library xpl.cfgfile

xpl.config

xpl.io

xpl.log

xpl.msg

xpl.net

xpl.runtime

xpl.thread

xpl.thread.mutex

Table 3-5 OV Shared Components

Application Name Component and Subcomponent
Names
Chapter 352

Configuring Tracing For OVO
Server and Agent Applications

OVO Specific and XPL Standard Categories

OVO trace areas are designated by OpenView categories. In addition, a
number of the OpenView standard categories are used by both OVO
processes and the lower level OpenView components used by OVO.

Table 3-6 lists the OpenView tracing categories which are defined for the
eaagt and opc components.

NOTE These categories are referred to as areas in version of OVO before OVO
8.0.

Table 3-6 OVO 8.0 opc and eaagt Sub-components

Sub-Component Name Sub-Component Description

OVO Specific Tracing Categories

actn Actions

agtid IP independence using AgentID

alive Agent alive checking

api Configuration API

apm Cluster APM

audit Auditing

db Database (dblib)

debug Debug

dist Distribution

fct Function (control flow)

gui Motif Userinterface

init Initialization (e.g. err init, conf init)
Chapter 3 53

inst Installation

Configuring Tracing For OVO
Server and Agent Applications

int Internal

lic Licensing

memerr Problems with Memory allocation

memory Rest of memory allocation

misc Miscellaneous

mon Monitor

msg Message flow

name Name resolution

nls National Language Support (character
set conversion,...)

ntprf NT Performance trace

ocomm Openagent communication

pdh Performance data helper

perf Performance

pstate Policy and Source state changes

sec Security

srvc Service

wmi Conversion of LE-Templates to
WMI-Templates

Table 3-6 OVO 8.0 opc and eaagt Sub-components

Sub-Component Name Sub-Component Description
Chapter 354

Configuring Tracing For OVO
Server and Agent Applications

Generic XPL Tracing Categories

Trace Generic traces

Proc Procedure traces

Operation Operational traces

Init Initialization

Cleanup Cleanup operation

Event Event

Parms Parameters

ResMgmt Resource Management

Table 3-6 OVO 8.0 opc and eaagt Sub-components

Sub-Component Name Sub-Component Description
Chapter 3 55

Configuring Tracing For OVO
Server and Agent Applications

NNM Pre-Configuration Requirements

There are no pre-configuration steps required to enable OpenView
Tracing in OVO 8.0.

If NNM/ET is installed, some of the NNM processes require a
pre-configuration step. The required steps are summarized below:

• The NNM/ET applications, these have names starting with: ovet_,
require their associated lrf file be modified to include the hidden
-debug 4 option to enable tracing.

• The ECS Correlation Composer applications require the ECS and
PMD tracing be configured to enable OpenView tracing.

Tracing OVO Processes

The following sample procedure provides an example of how to setup
OpenView tracing on OVO processes. The example makes the following
configuration assumptions:

• The opcmsga and opcmsgm processes running on a UNIX system
must be traced.

• The ovtrccfg trace configuration client will be used to make
configuration changes.

• The trace configuration file must be named:
$OV_CONF/OVOTrace.tcf

• The trcmon trace monitor client will be used to monitor the traces.

• The trace output must be written to a file named:
$OV_LOG/OVOTrace.trc

To setup OpenView tracing on OVO processes:

1. Identify the OVO processes that you want to trace. (The following
example uses the opcmsga and opcmsgm processes).

2. Create a trace configuration file named OvoTrace.tcf. Locate the
file in the $OV_CONF directory.

This sample trace configuration file (See Example 3-3) enables
tracing on the two OVO applications, opcmsga and opcmsgm. The
Chapter 356

Sink is configured as a socket with the machine supnode1 as the
target server. The components selected are the opc and eaagt. All
the associated sub-components are selected except for the DEBUG

Configuring Tracing For OVO
Server and Agent Applications

sub-components. This would correspond to selecting All Areas
except DEBUG. The tracing attributes are set to the Support defaults
of Info, Warn, and Error for all, with the Verbose attribute added to
each component/sub-component combination entry.

Example 3-3 Trace Configuration File $OV_CONF/OVOTrace.tcf

TCF Version 3.2
APP: "opcmsgm"
SINK: Socket "supnode1" "node=10.111.1.21;"
TRACE: "opc.actn" "Trace" Info Warn Error Developer Verbose
TRACE: "opc.agtid" "Trace" Info Warn Error Developer Verbose
TRACE: "opc.alive" "Trace" Info Warn Error Developer Verbose
TRACE: "opc.api" "Trace" Info Warn Error Developer Verbose
TRACE: "opc.audit" "Trace" Info Warn Error Developer Verbose
TRACE: "opc.db" "Trace" Info Warn Error Developer Verbose
TRACE: "opc.dist" "Trace" Info Warn Error Developer Verbose
TRACE: "opc.fct" "Trace" Info Warn Error Developer Verbose
TRACE: "opc.gui" "Trace" Info Warn Error Developer Verbose
TRACE: "opc.init" "Trace" Info Warn Error Developer Verbose
TRACE: "opc.inst" "Trace" Info Warn Error Developer Verbose
TRACE: "opc.int" "Trace" Info Warn Error Developer Verbose
TRACE: "opc.lic" "Trace" Info Warn Error Developer Verbose
TRACE: "opc.mem" "Trace" Info Warn Error Developer Verbose
TRACE: "opc.memerr" "Trace" Info Warn Error Developer Verbose
TRACE: "opc.misc" "Trace" Info Warn Error Developer Verbose
TRACE: "opc.mon" "Trace" Info Warn Error Developer Verbose
TRACE: "opc.msg" "Trace" Info Warn Error Developer Verbose
TRACE: "opc.name" "Trace" Info Warn Error Developer Verbose
TRACE: "opc.nls" "Trace" Info Warn Error Developer Verbose
TRACE: "opc.ntprf" "Trace" Info Warn Error Developer Verbose
TRACE: "opc.ocomm" "Trace" Info Warn Error Developer Verbose
TRACE: "opc.pdh" "Trace" Info Warn Error Developer Verbose
TRACE: "opc.perf" "Trace" Info Warn Error Developer Verbose
TRACE: "opc.pstate" "Trace" Info Warn Error Developer Verbose
TRACE: "opc.sec" "Trace" Info Warn Error Developer Verbose
TRACE: "opc.srvc" "Trace" Info Warn Error Developer Verbose
TRACE: "opc.wmi" "Trace" Info Warn Error Developer Verbose
APP: "opcmsga"
SINK: Socket "supnode1" "node=10.111.1.21;"
TRACE: "eaagt.actn" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.agtid" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.alive" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.api" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.audit" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.db" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.dist" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.fct" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.gui" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.init" "Trace" Info Warn Error Developer Verbose
Chapter 3 57

TRACE: "eaagt.inst" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.int" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.lic" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.mem" "Trace" Info Warn Error Developer Verbose

Configuring Tracing For OVO
Server and Agent Applications

TRACE: "eaagt.memerr" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.misc" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.mon" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.msg" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.name" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.nls" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.ntprf" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.ocomm" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.pdh" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.perf" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.pstate" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.sec" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.srvc" "Trace" Info Warn Error Developer Verbose
TRACE: "eaagt.wmi" "Trace" Info Warn Error Developer Verbose

If you have access to a Windows system with the TraceMon tool
installed, it can be used to connect to the remote trace server to
identify the application, component, and category names and to view
the attributes. Refer to Example 3-1 and Example 3-2 for screen
shots of associated dialogs from TraceMon GUI. Using the features
provided within the TraceMon GUI tool, the required configuration
setting can be selected and the configuration file saved.
Chapter 358

Configuring Tracing For OVO
Server and Agent Applications

Figure 3-1 TraceMon Applications Dialog for OVO Applications

Partial list of
the OVO Trace
Enabled
Applications.
Chapter 3 59

Configuring Tracing For OVO
Server and Agent Applications

Figure 3-2 TraceMon Trace Dialog for OVO Applications

3. Verify the that the trace server is running on the system by
executing the command:

ps -ef | grep ovtrcd

If the process is running, the information returned should be of the
following form:

root@ supnode1: ps -ef | grep ovtrcd

root 18750 1 0 Mar 5 ?0:00 /opt/OV/bin/ovtrcd

4. Verify that the applications being traced, opcmsga and opcmsgm, are
running on the system.
Chapter 360

To verify a process is running, execute commands of the following
form:

ovstatus -c opcmsga opcmsgm

Configuring Tracing For OVO
Server and Agent Applications

The information returned should be of the following form:

root@ supnode1: ovstatus -c opcmsga opcmsgm

Name PID State Last Message(s)

opcmsga 15422 RUNNING Initialization complete.

opcmsgm 26605 RUNNING OVO Server Initialization
Complete.

5. Use the ovtrccfg configuration client to set the tracing
configuration, using the command:

$OV_BIN/ovtrccfg -server supnode1 $OV_CONF/OvoTrace.tcf

6. Use the trcmon monitor client to monitor the trace messages
generated from the opcmsga and opcmsgm applications. To monitor
the trace server running on the supnode1 system and output the
trace messages in binary format to the $OV_LOG/OvoTrace.trc
file, enter the command:

$OV_BIN/trcmon -server supnode1 -tofile $OV_LOG/OvoTrace.trc

7. Provided that the the processes to be traced are running (opcmsga
and opcmsgm in our example), they should now be generating trace
messages. Once enough trace information has been captured, stop
the tracing. To Stop tracing, enter the command:

$OV_BIN/ovtrccfg off

8. View the trace output using the trcmon monitor client. The trace
output can be read from the binary trace file created using the
trcmon -fromfile option. This option reads in a binary trace file
and converts it to text. The converted trace messages can be sent
directly to standard out or can be redirected to trace text file.

To convert the binary trace file to text and send the output to
standard out, enter the following command:

$OV_BIN/trcmon -fromfile $OV_LOG/OvoTrace.trc

To redirect the converted trace messages to a text file, enter the
following command:

$OV_BIN/trcmon -fromfile $OV_LOG/OvoTrace.trc \
> /tmp/trc.text
Chapter 3 61

The binary $OV_LOG/OvoTrace.trc can be viewed from within the
TraceMon Windows tool, where additional filtering can be done.

Configuring Tracing For OVO
Server and Agent Applications

9. If analysis of the trace output is inconclusive, additional tracing can
be done to capture more trace information. If needed, the trace
configuration file can be modified to include or remove applications,
components, categories or attributes.
Chapter 362

Index
A
applications, 35

agent, 49
OpenView, 49
OVO, 49, 53
server, 49
trace-enabled, 44
XPL standard categories, 53

C
configuration diagrams, 29

local dynamic tracing options,
31

local static tracing options, 33
local tracing options, 29

configuration files, 35
application, 35
sink, 36
syntax version, 35
trace, 37

configuring tracing, 14

D
dynamic tracing, 20

enabling, 26
establishing local, 32
local options, 31

I
installation, 7

Trace Server on UNIX, 7
Trace Server on Windows, 9

L
local tracing options, 29

dynamic, 31
static, 33

logfile
tracing, 10
N
NNM preconfiguration, 56

O
OpenView

applications, 49
tracing products, 42

OVO
applications, 49
tracing processes, 56

S
setting up tracing, 14
sink, 36
static tracing, 20

enabling, 23
establishing local, 34
local options, 33

syntax version, 35

T
trace configuration, 37
Trace Server

installation on UNIX, 7
installation on Windows, 9

tracing
configuration files, 35

application, 35
sink, 36
syntax version, 35
trace, 37

dynamic, 20
enabling, 26
establishing local, 32
local options, 31

how to, 11
logfile, 10
NNM preconfiguration, 56

OpenView products, 42
OVO processes, 56
setting up, 14
static, 20
enabling, 23
establishing local, 34
local options, 33

trace-enabled applications, 44
tracing tool

installation, 7
installation on UNIX, 7
installation on Windows, 9
63

	1 OpenView Tracing Fundamentals
	Troubleshooting and Tracing
	Installation
	UNIX Trace Server Installation

	Windows Trace Server Installation
	Trace Information
	How to Trace
	Overview of Tracing Procedures

	2 Configuring OpenView Tracing
	Setting Up OpenView Tracing
	Enabling Static Tracing
	Enabling Dynamic Tracing
	Configuration Diagrams
	Local Tracing Options
	Dynamic Tracing: Starting with the
	Static Tracing: Starting with the OVApp Process
	Additional Notes

	Local Dynamic Tracing Options
	AppName.tcf File Contents
	Establishing Local Dynamic Tracing

	Local Static Tracing Options
	AppName.tcf File Contents
	Establishing Local Static Tracing

	Trace Configuration Files
	Syntax Version Line Details
	Application Line Details
	Sink Line Details
	File Sink Type Options
	force
	maxfiles
	maxsize

	Socket Sink Type Options

	Trace Line Details
	Sample Trace Configuration File
	SINK to File
	SINK to Socket
	SINK to File

	3 Configuring Tracing For OVO
	Tracing OpenView Products
	OVO 8.0 Trace-Enabled Applications
	Server and Agent Applications
	OVO Specific and OpenView Components
	OVO Specific and XPL Standard Categories
	NNM Pre-Configuration Requirements
	Tracing OVO Processes

