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Module 1
Overview

“I’m a bear of very little brain, and big words bother me.”

Winnie-the-Pooh ch 4, A.A.Milne

Objectives :

O Understand the role of the kernel in the structure
of HP-UX

O Familiarity with the purpose and primary struc-
tures of major kernel subsystems.
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Slide: HP-UX Structural Overview

— HP-UX Structural Overview
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Notes:
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Slide: HP-UX Structural Overview

Every user on an HP-UX system is interacting with the kernel through commands and applications. To
complete a requested task, most commands/applications will need to request information or action from
the kemnel.

The primary purpose of the kernel is to
* provide access to system resources

* manage/control system resources (CPU scheduling, RAM, disk space, etc)

The kernel itself is made up of individual components such as
-~ He tmeros Usep vwenacky  Space .
* Kernel Processes such as swapper, vhand, init, and statdaemon, UxFS

* Threads are streams of execution within a process that share the process’ address space. While the
scheduling of threads lies mostly within the process management subsystem, it touches all areas of
the kernel. (\Qpc GAMZOULD g MR Tt CoB M Cx U7X |

- Coche e o\ere ac <

* Device Drivers that handle /O to specific types of devices

* Privileged library routines that deal with processes, memory, the file system, and the /O system.

* Timeout routines which are responsible for monitoring other parts of the kernel such as process
scheduling and free memory.

Multiple subsystems make up the kernel. For the purpose of this course we will primarily deal with the
Process Management, Memory Management, Filesystem, and I/O subsystems. There are many other areas
of interest in the kernel which will be covered but these four are primarily responsible for basic system
activity.

Mulidipsd  — ¢ 1030 (nerns gre pogpaSoirucent |

LAY LD e ‘..‘)C.\C A D ON Y Oy TALC
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Slide: Kernel Entry

Kernel Entry

T T T i - Mmmﬂ.‘,/a R R .)«-:Jt:,.

Tlibraries]

;r‘*' e
» a’*«,@iﬁ.a’ﬁmﬁ piis M

Process Management
Subsystem

IPC

File Access
Subsystem

Management
Subsystem

Hardware control

269613

Notes:
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Slide:  Kernel Entry

A process requests access into the kernel or action by the kernel through a system call interface. The
system call interface serves as the bridge between user level code and the kernel.

System calls are made like normal C function calls but get mapped to lower level routines which are
actually in the kernel. How this is done is discussed in detail in Kernel Services module.

System calls interact with a particular area of the kernel. For example there are

* calls for file access through the file system (open, read, write)
- calls for process info and control (kill, nice, getpid)
* calls to allocate/deallocate memory (mmap, mprotect, swapon).

Once inside the kernel, individual subsystems may interact with other subsystems to complete the
requested task. For example, a call to open a file will go through the file system to actually get the file but
interact with the Process and Memory Management systems to allocate pages in memory for the file and
to attach the file to the given process.

The list of system calls are found in /usr/include/sys/scall_define.h ,
(O w ‘)Q 32, rRAA O woq CUCHC AAFLU-T N @;_WS O o f‘))
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Example

The action of getting from user mode to kernel mode is fairly complex as we will later see but it can be
shown quite simply. Copying a file involves reading from the source file and writing to the target one.
Both reading and writing involve making systems calls. Using the dd command the size of the read and
write operations and therefore their number can be varied. The following quick example demonstrates the
time concerns with making system calls.

root@tigger{] dd if=/stand/vmunix of=/dev/null bs=64k # read the file into the buffer cache
235+1 records in
235+1 records out T
root@tigger(] timex dd if=/stand/vmunix of=/dev/null ts=64k /
235+1 records in
235+1 records out
e ‘o,
{ . A P J
Ilesaclr ; (())1001 PN T € Cpanraref I 22 Do
sys 0.10 o~
root@tigger[] timex dd if=/stand/vmunix of=/dev/null bs=64 *
241360+1 records in
241360+1 records out

fied
-2 YU ARG S YIVAN j‘;-a‘cyi;):;@‘p,

-~y
“
[

real 10.82 "
user - 1.57
sys 7.80

From this simple experiment we can see that on this system (a C200) that each read or write system call
takes about 20us which does not sound a lot but when large numbers of calls are being made it can soon
add up.

The time command gives three values for the time, real which is the elapsed time, user and system. Both
of these relate to the amount of CPU time used, the user time relates to the amount of time spent in user
code, and the sys values is the time spent in kernel mode, running things like system calls, although the
kernel might need to do work on our behalf at other times as well.

Page 1-6
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Slide:  Primary Subsystems

|

~ Primary Subsystems

Process Management

— Manage all running processes and threads on the system

e Memory Management

- Virtual addressing

— Each process has own virtual address space
¢ File Systems

— Manage data on different types of disks

— VNODE based system
e /O

- Define principles for device access

269614

Notes:
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Slide:  Primary Subsystems

There are four primary subsystems covered in this course which are responsible for the majority of the
kernel activity.

Process Management
This subsystem is responsible for

* managing all of the running processes and threads on the system
* maintaining information about process and thread resources
* scheduling threads on the cpu

Memory Management

Memory is managed by the kernel in a way that allows each process to have its own virtual address space.
Traditionally, this address space is private to a particular process but HP-UX has evolved to the point
where much of this address space is shared. Kernel threads alter the privacy of process data but the
traditional view is as stated. Other memory resources are global to all processes.

All of these memory structures are managed in such a way that allows the sum of process address space

to be greater than the amount of physical memory in the system. This is the theory behind the virtual
address space concept.

File Systems
The file system is responsible for managing data on various types of disks.

The file system has provisions to manage different types of file system disk layouts such as UFS, NFS,
CDEFS, VXFS. The ability to do this comes from a level of abstraction known as the vnode layer.

/O

The I/O system is primarily made up of device drivers which are specifically designed for a particular
type of device or interface. The I/O system defines general principles of how interrupt-driven devices can
talk to the system and how to determine which driver is to be called for a given task.

In the /O module we will be mostly concerned with the converged aspects of Workstation /O (WSIO)
and Server I/O (SIO).

(ﬁ,” HEWLETT Page 1-9
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Slide:  Process Management Data Structures
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Slide:  Process Management Data Structures

The Unix kernel uses many data structures to describe and manage all the things happening on the
system. Many of the these data structures are organised into tables. As data structures, tables have many
advantages for the programmer, for instance they can be treated as arrays and so any element within the
table can be very easily and efficiently accessed.

Tables do however have a major draw back as data structures, when a table is created, it is created at a
certain size, and can not normally then be resized dynamically. As a result of this most kernel tables have
a sizing parameter to govern how large to make them. These sizing parameter are then kernel parameter
which need to be set in the /stand/system file and are used to build the kernel. In the slide the process
table has a kernel parameter NPROC to specify it’s size. At HP-UX 11 where process can have a variable
number of threads then the threads are also described using a table, the kthread table and this is sized use
the NKTHREAD kemnel parameter.

Not all data structures within the kernel use tables, many data structures are dynamically allocated by the
kernel when they are required and are then organised using a variety of techniques such as the linked lists
shown with pregion structures on the slide. With a linked list one data structure in a set points to the next
element. Whilst these dynamically created linked list have the advantage of not having a fixed size, they
can be much slower to access as they need to be accessed sequentially, and their organisation makes it
difficult to optimise the data accesses in todays cache and TLB based CPUs (see the system architecture
module).

All jobs running on the system run as a process. Each process on the system has an entry in the system
Process Table. This table contains data that is shared by all of the kernel threads within a given process.
Examples of fields in the process table include the process id, user and group id, and pointers to process’
address space and open file descriptors.

Originally each process could only perform one task at a time, this is known as single threading. Many
applications, however, benefit being able to multitask. Whilst Unix always allowed mutlitasking, it was at
the process level, the kernel scheduled the various processes, but each individual process was then, at
least as far as the kernel was concerned only single tasking. IE the kernel only scheduled one part of it
and only in respect to one event.

From'HP-UX 9’ pthread library has been available for use with HP-UX, this allowed processes to
multitask internally, but this did not operate at the kernel level so if one part of the process were to go to
sleep, then the whole process would sleep. Since this implementation is not managed by the kernel itis
known ag’user)threads. (

In order for the kernel to manage and schedule multiple tasks (known as threads) within a process it’s
data structures need to be re-organised to separate out the information that is globals to all the threads
within a process from the scheduling information about the individual threads. This re-organisation starts
at HP-UX 10.10, but for both 10.10 and 10.20 the multi-threading facility is not available for use, with
these releases there will be one thread per process.

Once the kernel is re-organised into separate structures for processes and threads, and the thread
structures now contain the scheduling information, we consider that it is the threads that now run and not
the processes, processes if you like become a container for the threads.

HEWLETT Page 1-11
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Slide:  Process Management Data Structures

With HP-UX 11, however each process may have multiple threads and so true multitasking is possible
within a single process.

Each process may have one or more kernel threads. Each thread is a uniquely scheduled entity with its
own Kemel and User stacks. Thread-specific information such as scheduling and related attributes (i.e.
priority, cpu usage, and thread state) are held in the Thread Table.

The User Structure, also known as the UAREA, contains information unique to the individual thread
that is swappable. The user structure contains thread information such as the Process Control
Block(PCB), and system call information as well as the Kernel stack.

The processes and thread tables are held permanently in the RAM since the kernel might require access to
any of the information they contain at any time. Some information is only required whilst a thread is
actually running (such as information about the current system call) or when it is about to be scheduled or
de-scheduled (such as the Process Control Block, which holds the CPU register contents whilst not
actually running). Since this information is only required during, or near, running, and not at other times
it would be possible to push it out of memory if the thread was not going to be running and there was a
major shortage of memory. Hence the thread information is divided into these two separate areas, the
thread table (kthread structure) which is permanently memory resident, and the UAREA (user structure)
which can be swapped out.

Each process has a 4GB or 16TB virtual address space. Obviously not all of this is going to be in use. In
reality processes only tend to use a small amount of their virtual address space but they use a number of
discreet pieces in the overall range. The kernel needs to describe each of these individual pieces.

To describe the virtual address space (VAS) for a process, a pointer in the process table links the entry to
the VAS Structure for the process. The VAS is the head of a linked list of pregions. Together the VAS
and the pregions represent the virtual address space for the process. Each pregion will represent a
different type or piece of address space, such as stack, data, or text.

Open files for the processes are maintained in the File Descriptor Table. This table contains one entry
for each open the process performs. Since there can be a wide variation in the number of file descriptors
different process might use, a simple table structure would either be very limiting, or vepy-inefficient
(tables have a fixed size, make it small and it would limit those programs that would like a large number
of open files, make it large to accommodate them and it would be very wasteful for the majority of
process that do not need many files open). So a two stage table is used, where an initial table just holds
pointers to the second level, where entries are created as needed, each holding information about up to 32
file descriptors.

Page 1-12 [ﬁ,” HEWLETT
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Instructors Notes

The following quick walk through a few of the kernel data structures in g4 is entirely optional, It would
probably depend upon the groups of students.

The reason for putting these examples here, is that this is the one place in the course where a set of kernel
road maps appear and I wanted the instructions to live with the road maps. However only this slide has
accompanying q4 instructions in this module. The others might require a little too much theory or
examples.

For the example of reading the file descriptor information you need to be very careful between 32bit
kernels and 64bit kernels.

This example came from a C200 running a 64bit kernel.

WARNING: The version of g4 thats ships with HP-UX 11
9808, g4 1.79a, attempts to pxdb the kernel file
if it has not previously been prepared. At least
on the 64bit kernel this does not appear to work
and can leave the kernel file unusable.

Page 1-13 (7] HEweeTT
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Instructors Notes
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Example

Viewing the kernel data structures

The kernel crash dump debugger q4 can be used to view the kernel data structures.
\ CLertC Anr CRO\S(/\ U(S C;,o()o( R\S  tiAn S(o

NOTE: q4 1s primarily intended for use by Hewlett-Packard personnel and is not supported,
however it does allow us to view the various kemnel structures discussed in this class.

In order to use q4 it might be necessary to prepare your kernel file /stand/vmunix. This can be performed
without the need to reboot the system. The command to prepare the kernel is /usr/contrib/bin/q4pxdb.

All the various data structures discussed will be described in later modules in the class. This example is
just to show that these structures can be viewed.

root@tigger[] q4pxdb /stand/vmunix prepare the kernel file
q4pxdb64: /stand/vmunix is already preprocessed J
PXDB aborted. O v laoe A\ g A ro&f @
root@tigger[] ied -h ~/.q4_history q4 /stand/vmunix /dev/mem WW F? 07PN C ra )vui Peae uu P
@(#) g4 SRevision: 1.79a $ $Date: 97/09/08 12:00:22 $0 \,fjjr . C‘(‘M cro &Y €S P U B
g4: (warning) no modules in the crashdump or no INDEX file AN
q4: (warning) q4 will try to read /dev/kmem for kernel access
Reading kernel symbols ... '
Reading kernel data types ...
/dev/mem: can't validate: expected size or checksum not available.

Dump data may not be correct. q4 is designed primarily to read crash dumps
Initialized PA-RISC 2.0 address translator ...
Initializing stack tracer ...
Get the latest g4 news by typing "news".
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Example

Accessing the process table

q4> load struct proc from proc max nproc load structures of type
loaded 276 struct proc's as an array (stopped by max count) struct proc from the pointer
also call proc (which points to
the process table) and nproc
entries.
q4> keep p_stat =0 The process table is always
kept 73 of 276 struct proc's, discarded 203 nproc entries in size,
regardless of how many
processes are actual running.
This just keeps the entries
in use.
q4> ) .
q4> print p_pid p_ppid p_uid p_comm | more Printout the process id,
0 0 O0"swapper’ parent process id,
1 0 0"init" user id and command name
2 0 0"vhand"
3 0 0 "statdaemon"
4 0 O "unhashdaemon"

1516 1 0"cron"
1874 1873 0 "sh"
1987 1986 0 "g4"
944 1 0 "inetd"

q4> keep p_pid == 1874 Just keep the entry for my sh
kept 1 of 73 struct proc's, discarded 72
q4>
qé>
Page 1-16
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Example

Accessing the pregion list

q4>
g4> load struct vas from p_vas éf
loaded 1 struct vas as an array (stopped by max count) B /\) e oo Y :
q4> load struct pregion from va_ll.lle_prev next p_ll.lle_prev max 1000 A e G
loaded 7 struct pregion's as a linked list (stopped by loop) Conn ("Q ’
q4> O AR
The VAS structure can be accessed via the pointer p_vas from a process table entry
NOTE: q4 can only load from a pointer in a structure when a single structure is loaded, hence the keep p_pid == ...

operaction to get down to a single process table entry.

Once the VAS structure is loaded then the pregion list can be accesses via the va_ll.lle_prev field.
Normally q4 only loads single structures, as with example of loading the vas structure above. Q4 can also
load sets of structures if a max clause is given, by default it then loads the structures as a table, but linked
lists can also be loaded by specifying which field in the new structure provides the link to the next
structure. ) )
32 o+ 32 - 6X Space + veddk

q4> print p_type p_count %5d p..space %#8x p_vaddr %#8x
p_type p_count ﬁ_‘ S(;;l:} pyvaddny

PT_UAREA 0xdc23c00 Oxfffce000

PT_STACK 6 0xafd2000 0x7f7e6000

PT_MMAP 1 0xafd2000 0x7f7e5000

PT_DATA 39 0xafd2000 0x40001000

PT_TEXT  800xbc1f800 0x1000

PT_NULLDREF 1 0xbc1f800 0

012240896  0x1 Oxbac800

q4>

Pregions, as we will see in the memory management module, come in different types, to hold different
areas of the address space such as the text area of data area. The p_count field gives the overall size of the
area of address space, and each area has an address, on HP-UX this is given in two parts the p_vaddr
field is the normal part of the address, but HP-UX has the concept of global virtual addresses and the
P_space part is location with this global virtual address space.

Q4’s print command allows the use of C style formats after a field, %#8x, tells q4 to print the value in hex
indicated with the normal Ox prefix and have at least 8 characters.

The last line is effectively garbage, the vas structure is in the linked list, but is not a pregion, g4 can’t
know this, and had attempted to load a pregion from the area of memory that is holding the vas structure.

(ON ge\mﬂ,\lvf) c. o LAA C \4&55.4 %
<
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Example

Accessing the file descriptor information

As we will see in the file system module, the file descriptor information at HP-UX 10.20 and 11 is
complicated by the way these structures are defined. It is currently only possible to dump this information
raw using q4’s examine command, it can not be loaded and printed as data structures.

By going back to the process table entry we loaded earlier the a pair of fields p_ofilep and p_highestfd
can be used to access the file descriptor information.

q4> history

HIST NAME LAYOUT COUNT TYPE COMMENTS
1 <none> array 276 struct proc stopped by max count
2 <none> mixed? 73 struct proc  subset of 1
5 <none> mixed? 1 struct proc subset of 2
8 <none> array 1 structvas stopped by max count
10 <none> list 7 struct pregion stopped by loop

q4> recall 5

copied 1 item

qé>

q4> print p_highestfd

p_highestfd

29

q4> print -x p_ofilep
p_ofilep

0x100e74220

The field p_highestfd tells us how many file descriptor has been set up by being organized into sets of 32
and starting at 0. So in this case file descriptors 0 through to 30 have been set up to fit into a single block
of 32.

The p_ofilep pointer then points to the file descriptor information.

q4> examine 0x100e742a0 using 4X

0x1 0xbfb800 0 0

q4> examine 0x100bfb800 using 120X

0 0xf1a778 0 0 0 0xf1a778 0 0 0 0xf1a77800000000000000000000
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000
000000 0 0xf1a4b8 0 0x5

q4>

This system is using a 64bit kernel so pointers need to be examined as 2 32bit values.

The area that p_ofilep points to holds pointers to the chunks of 32 file descriptors. Because we only have
one such chunk, only of the first pointer is of interest.

In these file descriptor chunks each entry contains a pointer followed by 2 other 32 bit values.

For a Posix shell file descriptor, 29 is the history file, so the address 0xf1a4b8 is used to point to the rest
of the file information as we will see shortly.
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Example

Accessing the thread structures

The linked list of threads is referenced from the process table as well.

q4> load struct kthread from p_firstthreadp next kt_link
loaded 1 struct kthread as a linked list (stopped by max count)
q4>

Threads are described by the kthread structure, and the process points to the list using the fields
p_firstthreadp and also p_lastthreadp. The threads are then linked together using the fields kt_link and
kt_rlink (for the reverse list).

q4> print kt_pri kt_wchan %#x kt_stat

kt_pri kt_wchan kt_stat )
670 0xf69c0 TSSLEEP B N A

q4>

Many of the fields that are normally viewed using ps can be seen from the process and thread structures,
such as the current priority (ps shows this value less 512), wait channel and status.
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Example

Accessing the Uarea

The uarea belongs to the thread but does not live in the kernel’s main data virtual address space.
Remember that the uarea can be swapped out, and so is described by a pregion.

g4> load struct pregion from kt_upreg

loaded 1 struct pregion as an array (stopped by max count)
g4> load struct user from tospace(p_space) | p_vaddr
loaded 1 struct user as an array (stopped by max count)
q4>

From the kthread structure the fields kt_upreg points to the pregion that describes the uarea. Where
structures need to be loaded from full global virtual addresses then the contstruct

tospace(p_space) | p_vaddr —(On Y& Q P G aaPp-

is used.

q4> print u_syscall u_arg[0] u_arg[1] %#x u_arg[2] %#x
u_syscall u_arg[0] u_arg[1] u_arg[2]

200  -10x7f7e6954  0x2
q4>

As an example of information that might be found in the uarea, let’s print out information about the
current system call.

( The field u_syscall gives the system call number that is used to identify which call is being made. The
header file /usr/include/sys/scall_define.h mentioned previously lists all of the calls and their numbers.
System call 200 is the waitpid call.

The array u_arg, holds the arguments for the system call. The manual page for the system call gives
details of these.

root@tigger([] man 2 waitpid

wait(2) wait(2)
NAME

wait, waitpid - wait for child process to stop or terminate
SYNOPSIS

#include <sys/types.h>

#include <sys/wait.h>
pid_t wait(int *stat_loc);
pid_t waitpid(pid_t pid, int *stat_loc, int options);

Since our three arguments were: -

q4> print u_syscall u_arg[0] u_arg[1] %#x u_arg[2] %#x
u_syscall u_arg[0] u_arg[1] u_arg[2]

HEWLETT Page 1-20
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200  -10x7f7e6954 0x2
qé>

The pid that the shell was waiting for was -1, which indicates any process.

The status should be saved somewhere on the stack, at address 0x7f7e6954.

The options were 2, which would require reading the <sys/waith> header file. It actual means that the shell
would like to know when its children stop or suspend as well as when they terminate.
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Slide:  Memory Management Data Structures
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Slide: Memory Management Data Structures

The memory management data structures pick up at the VAS/pregion level. This view is however
‘private’ to the process. Many areas of memory however can be shared between different process. For
instance the text area (the machine code instructions) of a process is shared with each of the other
processes running the same program. So as well as having a process private view of the memory areas,
the kernel also requires a system wide view, which is provided using the region structure.

Each pregion is linked to a region that has further information about access to a particular range of
addresses within an address space. Below the region, a Virtual Frame Discriptor (VFD) describes a
page in that address space that is currently in memory. If a page is not in memory, then a Disk Block
Descriptor (DBD) describes the location of the pages on disk. There exists a VFD/DBD pair for each
page of the region which indicates whether the page is in memory or on disk and where in memory or on
disk the page can be found.

Since the number of pages in a region can vary widely, even with 32bit applications, the number of pages
in a single region can vary from 1 to nearly 1/2 a million. A highly flexible data structure needs to be used
to manage these page level structures (the VFD and DBDs). A further complication is that the current set
of pages described by the VFDs and DBDs can be sparce; that is, it can contain holes. So the mapping of
the regions down to the VFD/DBD pairs needs to be able to cope efficiently with a large number of
different situations. The data structure that is used here as we will see in the memory management part of
the class is a BTREE.
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Slide:  File System Data Structures
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Slide:  File System Data Structures

The file system maintains a System File Table which contains an entry for every open that is performed
on the system. A system file table entry points to a vnode for the file which has data specific to the type of
file (NFS, device file, regular file). In the case of a regular file, the vnode points to an entry in the inode
cache. The inode cache contains one entry for every file that is opened on the system and contains access
and disk location information about the file. The buffer cache serves as an intermediate area between
disk and processes to provide buffering and synchronization.

Each file system type has a set of data structures specifically related to how data is represented within the
file system. To allow the kernel to access all file system types in a generic fashion, there is a Virtual File
System (VFS) structure present for each mounted file system. This VES structure will point to the private
data for the file system represented. In the case of a UFS file system, the VFS will link to a mount entry.
For VxFS it will be a VXFS structure.

The file descriptors we have seen with the process table reference entries in the ‘System File Table’. As
with any table the system file table needs a sizing parameter, which is NFILE. Every open on the system
allocates an entry from the system file table. The first job for these entries is to act as a switch between
file and network access. The Berkeley sockets API uses file descriptors in much the same way as normal
Unix file access. For files the file table entry contains information relevant to the current usage of the file
such as the offset within the file where read and write operations will be performed.

The file table also points to the next data structure used in file access the vnode. It is possible for the same
file to be open many times by different processes, and each open will result in using a slot in the file table.
With vnodes however there will only ever be a single vnode for a file in the kernel.

The vnode was introduced as a data structure into the Unix kernel by Sun Microsystems to allow the
support of multiple filesystem types, originally both UFS and NFS. The vnode layer acts as a switch
allowing any software at a higher level, particularly the user level, to not have to know what type of
filesystem they are accessing. A single read function can be used on all types of filesystem, there is no
need to have an UFS_read, an NFS_read and a VXFS_read function inside your programs. When the
access reaches the vnode the kernel is directed to correct routines, thus allowing higher level code to not
to need to worry about the issue.

The vnodes major job then is to act as the switch between different filesystem types. It is also used to hold
any information about the file that is not reliant on its type, such as pointers to any entries in the buffer
cache associated with the file.

The vnode then points to filesystem specific data structures:

* For UFS the vnode references an inode structure within the incore inode table (also know as the
inode cache). Since this is a table the NINODE kernel parameter is needed to control its size. It is
worth stressing that this table is used only for UFS filesystem and not for NFS or VxXFS.

* For NFS the vnode references an rnode structure.

* For VXFS the vnode references a vx_inode structure. Vx_inodes are not held within a table and are
dynamically allocated.
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Slide: File System Data Structures

As well as the need to manage access for individual files the kernel also needs to manage the mounted file
systems. Again, here there is the issue of having several varieties of file system to chose from so the
kernel makes use of a data structure called a vfs, or virtual file system, to act as the switch between the
different types.

The vfs structures are held on a linked list pointed to by rootvfs. The vfs structures then reference
filesystem specific structures: -

¢ UFS, uses mount structures,
¢ NFS, uses mntinfo structures,
o VxFS, uses vx_vfs structures.

These structure will then need to reference further file system specific structures for the individual file
system types. For the local file system these will include copies of the file system superblocks. For VXFS
there will be a list of fileset structures.
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Slide:  The Big Picture
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Slide:  The Big Picture

This slide shows the “Big Picture” of some of the primary kernel data structures. Previous slides have
already shown how the process management and memory structures are linked together through the VAS
and pregion. Here we also see how the process management structures are linked to the file system
structures through the File Descriptor Table. Each entry in this table is mapped to an entry in the System
File Table. Once in the System File Table we can complete the picture of the process through the file
system tables.

Each of these structures will be discussed in greater detail in the individual modules of this course.
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Slide: New Features of HP-UX 11.0
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Slide: New Features of HP-UX 11.0

Among some of the new features of HP-UX 11.0 discussed in this class are:

PA-RISC 2.0 Architecture

HP-UX 11.0 allows support of existing systems using PA-RISC 1.1 architecture (the 32-bit PA-7X00
family of processor), and PA-RISC 2.0 architecture (the 64-bit PA-8X00 family of processors). PA-
RISC 2.0 is capable of running in both narrow (32-bit) and wide (64-bit) mode.

Kernel Threads

HP-UX 11.0 supports multiple kernel threads per process. Each thread is a unique execution of the
program and its own scheduling entity.

Dynamically Loadable Kernel Modules (DLKM) — ® ety Anaes 2 s
QOS2 Ceacge My

Allows for addition and removal of kernel modules, kernel module administration, and inactive kernel
modules.

Memory Windowing

Allow more overall shared memory space by allowing various applications their own shared
memory “window” of 1GB.

Variable-sized Pages

PA-RISC 2.0 supports variable-sized pages versus the static 4K physical page size used by PA-RISC
1.1.
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System Architecture

“At the source of every error which is blamed on the computer
you will find at least two human errors, including the error

of blaming it on the computer.”

-- Unknown

Objectives :

' Understand PA-RISC 1.1 and 2.0 concepts of
virtual addressing

Q  Understand the role of the TLB and Cache in
accessing memory pages

4 Understand levels of interruptions and how they
are handled by PA-RISC hardware

L (D vt



Module 2 — System Architecture

Slide: PA-RISC Architecture Overview
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Slide: PA-RISC Architecture Overview

When we talk about Computer Architecture, we are discussing the ideas and models for a computer
system. We are not concerned with specific hardware differences among various PA-RISC 1.1 or 2.0
systems or processors, but rather the functional concepts that make them alike. For reference, there are
tables at the end of this module that list some of the hardware differences.

PA-RISC is distinguished from other computer architectures by two important features:

* Reduced Instruction Set Architecture - PA-RISC systems are composed of simple, frequently used
instructions each of which are designed to complete in one machine cycle. This allows for higher
performance and simplified hardware design.

* Architectural Extensions - This includes features such as virtual memory, memory mapped I/O,
support for multiprocessors and coprocessors, and instruction pipelining.

There are three primary subsystems in the PA-RISC desi gn:

¢ Processor
* Memory
¢ Input/Output(l/O)

The slide shows a generic design for a PA-RISC system with several modules. Modules are hardware
components of the PA-RISC system with a specialized function. Each of these modules are connected
via different types and levels of buses.

A bus that follows the specifications of the PA-RISC I/O architecture is known as a native bus. Non-
native buses require specialized hardware to convert them to the PA-RISC specifications.

The information in this module is based on both PA-RISC 1.1 and PA-RISC 2.0, which supports both 64-
bit (Wide Mode) and 32-bit addressing (Narrow Mode). When necessary these architectures are
presented on sequential slides. Examples are based on the PCX-U processor.
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Slide: Processor Architecture

In this module, we are primarily concerned with the architecture of the processor and its interaction with
main memory. The slide shows a common processor and its major components.

Central Processing Unit

The key component in any processor is the Central Processing Unit (CPU). The CPU is the component
which is given the primary task of reading program and data from memory, and executing the program
instructions. Within the CPU there is:

* Control Hardware which coordinates the activity of the CPU by carrying out the fetch and decode
of instructions to generate control signals for appropriate CPU hardware.

* Execution Hardware to perform the actual arithmeric, logic, and shift operations. Execution
Hardware can take on many specialized tasks but most common are the Arithmetic and Logic
Unit(ALU) and the Shift Merge Unit(SMU).

* Registers which are held in very fast memory within the processor. This memory is much faster
than conventional main memory but it is also much more expensive. For that reason this small
amount of memory is partitioned off for specific purposes. The PA-RISC register context will be
discussed in detail shortly.

Instruction and Data Cache

The cache is also a portion of high speed memory intended to reduce the amount of time needed for the
CPU to access data and instructions. This is accomplished by keeping the most recently accessed data in
the cache. All data going to the CPU from main memory passes through the cache first.

When the CPU requires data from main memory, it first ck.ecks the cache for the requested data. If the
data is present in the cache, a cache hit occurs and the data is sent to the CPU. If the data does not exist
in cache, then a cache miss occurs and the CPU must wait while the data is brought into the cache from
main memory.

For some PA-RISC systems, the CPU may have separate cache for data and instructions. By doing this
we are able to obtain better locality of data and instructions within the cache, thus increasing performance
as a result of higher hit rates.

To process a piece of data it needs to be held within a CPU resister, if it is not, it needs to be loaded from
outside, when the data can come from cache, main memory or the disk.
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Slide: Processor Architecture*

100MHz K-Series 440Mhz CPU V-class
location cycles time cycles time
register | 0 0 0 0
cache 1 10ns - 1 2/2711\5
e ¢ memory | 25 f250ns ) | 220 500ns
disk 1,000,000 | 10ms 4,400,000 | 10ms

From this quick comparison we can see that as CPUs get faster (and memory does not, correspondingly)
the role of the cache in supplying data becomes more important.

Translation Lookaside Buffer (TLB)

The CPU is performing all data access through virtual addresses. The Translation Lookaside
Buffer(TLB) serves two purposes for the CPU:

1. Translate the virtual address to physical address.

2. Check access rights to grant access to instructions, data, or /O only if the requesting process has
proper authorization.

The concepts of virtual address, virtual address translation, and access rights will all be discussed in this
module. They are mentioned here to give an overview of the primary tasks for each CPU component.

Assist Processors and Bus Circuitry

Completing the CPU are components which will not be dealt with in detail in this course. The remaining
components are the Assist Processors or Coprocessors which exist to carry out specialized tasks for the
CPU. A common example present in most PA-RISC systems is a Floating Point Coprocessor.

Also a part of the CPU is the System Interface Unit(SIU) which is the bus circuitry that allows the CPU
to communicate on the Central/Native bus.

- ~ |
CaChe Coherence R B Olﬁ@\m " l:’;c*\\ {) it € YRS ) o pa R (Wi ‘) ) A T .,) !

y RN

Because we may have multiple processors, each with their own cache, there needs to be a way to handle
cache coherence.! There is special hardware in the cache controller that exists to control the cache
consistency.

In a uniprocessor system, every load or store will cause the CPU to ask the cache controller whether a
cache line is in the cache and what its state is. Depending on whether it is in the cache (and whether it is

1. Issues related to cache coherence will be discussed in Module 6 - Multi Processing
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Slide: Processor Architecture

dirty or clean), the cache controller will go out on the bus and issue a transaction or just manipulate the
cache directly (read the value out of the cache or store a new value in the cache).

In a multi-processor system, in addition to loads and stores from within the processor, the cache
controller must watch transactions on the bus to see if those transactions are attempting access to lines
which are in this processor’s cache. Again, the subsequent behavior will depend on the whether the line
is present and whether it is clean or dirty.
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Slide:

PA-RISC Processor Versions

From its inception in the early 1980s there have been many versions of PA-RISC processors from the
earliest used on the 840, which was built from discreet TTL chips through to the latest PA8500 used in
the V2500 and C360 systems, which contains over 140,000,000 transistors.

The initial versions PA1.0 used on the

840
825

890

,835,845
850,855,860,865,870/X00
815,
822,832,842,852

808

Systems was obsoleted from HP-UX support from 10.20 and HP-UX 11 is compiled such that it will not

boot on these systems.

With the advent of the firstly the 700 series and then the Nova 800 series the first major revision of PA
was released, PA1.1

There have been a number of versions of PA1.1 processors

Version internal external Clock Speed
name name MHz

PAl.1a PCX-S PA7000 33,50,66 720,730,750,710,705
807-877(FGHI 10-40)

PA1.1b PCX-T PA7100 33,50,75,90,99 | 715,725,735,755
887,897(GHIS50-70),
T500

PA7150 120,125 735,755

T520

PAl.lc PCX-L PA7100LC | 48,60,80,100 712,715,725
Es,D

PAl.1d PCX-T’ PA7200 100,120 J,C
Kx[012]0,.D

PAl.le PCX-L2 PA7300LC | 133,180 B
AD
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Module 2 — System Architecture

Slide: PA-RISC Processor Versions

All of the PA1.X processors are basically 32-bit designs, in that their general registers are all 32 bits wide,
but they are, as we shall see, capable of using larger virtual addresses. In the case of PA1.1 they also have
64-bit floating point units, with full 64-bit data paths to main memory.

PA2.0 then moves to the new 64-bit architecture. These processors are supported firstly under HP-UX
10.20, but since this is 32-bit operating system many of the new processors capabilities are not yet usable.

PA-RISC 2.0

PA-RISC 2.0 represents the first time that user-visible changes have been made to the core integer
architecture. The following areas have been added or enhanced for PA-RISC 2.0.

. . ) . N
64-Bit Extensions Aoel Lo e SSoeme Fa Lol (g patTh

PA-RISC 1.x supported a style of 64-bit addressing known as “segmented” addressing. In this style, many
of the benefits of 64-bit addressing were obtained without requiring the integer database to be larger than
32 bits. However, this did not easily provide the simplest programming model for single data objects
(mapped files or arrays) larger than 4 GB.

Support for such objects calls for larger than 32-bit “flat” addressing, that is, pointers longer than 32 bits
which can be the subject of larger than 32-bit indexing operations. PA-RISC 2.0 provides full 64-bit
support with 64-bit registers and data paths. Most operations use 64-bit data operands and the architecture
provides a flat 64-bit virtual address space.

6\(\,\9% 0 @o/‘< P (’( OwQQO\L\aAux
Cache Prefetching vz 66 & S0 Ax | eefgene |
VO eI A Eooe ~x.v'v \ \) VY g pes s T ETRET

Because processor clock rates are increasing faster than'main memory speeds modern pipelined
processors become more and more dependent upon caches to reduce the average latency of memory
accesses. However, caches are only effective to the extent that they are able to anticipate the data and
consequent processor stall while waiting for the required data or instruction to be obtained from the much
slower main memory.

The key to reducing such effects is to allow optimizing compilers to communicate what they know (or
suspect) about a program’s future behavior far enough in advance to eliminate or reduce the “surprise”
penalties. PA-RISC 2.0 integrates a mechanism that supports encoding of cache prefetching opportunities
in the instruction stream to permit significant reduction of these penalties.

%\/(- GO WA 5 GO AL L R

We. @ yogols o /7 0OV
A “surprise” also occurs when a conditional branch is mispredicted. In this case, even if the branch target
is already in the cache, the falsely predicted instructions already in the pipeline must be discarded. In a
typical high-speed superscalar processor, this might result in a lost opportunity to execute more than a
dozen instructions.

Branch Prediction

PA-RISC 2.0 contains several features that help compilers signal future data and likely instruction needs
to the hardware. An implementation may use this information to anticipate data needs or to predict
branches more successfully, thus avoiding the performance penalties.
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Slide: PA-RISC Processor Versions
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When cache misses cannot be avoided, it is important to reduce the resultant latencies. The PA-RISC 1.x
architecture specified that all loads and stores be performed “in order.” a characteristic known as “strong
ordering.”

Future processors are expected to support multiple outstanding cache misses while simultaneously
performing loads and stores to lines already in the cache. In most cases this effective reordering of loads
and stores causes no inconsistency, and permits faster execution. The later model is known as “weak
ordering,” and is intended to become the default model in future machines.

Of course, strongly ordered variants of loads and stores must be defined to handle contexts in which
ordering must be preserved. This need for strong ordering is mainly related to synchronization among
processors or with I/O activities.

Coherent I/0

As the popularity and pervasiveness of multiprocessor systems increase, the traditional PA-RISC model
of I/O transfers to and from memory without cache coherence checks has become less advantageous.
Multiprocessor systems require that processors support cache coherence protocols. By adding similar
support to the I/O subsystem, the need to flush caches before and/or after each I/O transfer can be
eliminated. As disk and network bandwidths increase, there is increasing motivation to move to such a
cache coherent /O model. The incremental impact on the processor is small and is supported in PA-RISC
2.0.

Multimedia Extensions — <\ D

PA-RISC_2.0 contains a number of features which extend the arithmetic and logical capabilities of PA-
RISC to support parallel operations on multiple 16-bit subunits of a 64-bit word. These operations are
especially useful for manipulating video data, color pixels, and audio samples, particularly for data
compression and decompression.

. - ey .
< e S ‘2 Z :iﬁ\ }\()
o> ko) Y C el Cordn L S { - (- (=
Dy
~ “\
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) '[\"\'* ) [ BRI ) r s T (.f DD g e |
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Slide:  HP-UX 11.0 Architectural Support

—  HP-UX 11.0 Architectural Support

HP-UX 11.0

Supports

PA-RISC 1.1 PA-RISC 2.0

Supports

"\

Narrow Mode Wide Mode
(32-bit) (64-bit)

269623
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Slide:  HP-UX 11.0 Architectural Support

HP-UX 11.0 Supports PA-RISC 1.1 and PA-RISC 2.0

HP-UX 11.0 runs on PA-RISC 1.1 and PA-RISC 2.0 systems. Because PA-RISC 2.0 supports two
modes, 64-bit mode (called Wide Mode) and 32-bit mode (Narrow Mode), this module covers all three
possibilities: PA-RISC 1.1, PA-RISC 2.0 Narrow Mode and PA-RISC 2.0 Wide Mode.

When appropriate the PA-RISC 1.1, 2.0 Narrow Mode, and 2.0 Wide Mode implementations are
discussed on sequential slides. Often, because PA-RISC 1.1 and PA-RISC 2.0 Narrow Mode are
sometimes very similar, one slide will discuss both.

Note: Two documents, PA-RISC 1.1 Architecture and Instruction Set Reference Manual and PA-RISC 2.0
Architecture contain details about their respective versions of PA-RISC architecture. These books are

- referenced several times throughout this module. When there are differences between 1.1 and 2.0,
both books will be cited. When the functionality being discussed has not changed from 1.1 to 2.0, only
the PA-RISC 2.0 Architecture text will be cited.
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Slide:  HP-UX 11.0 Architectural Support
PA-RISC 2.0 Requirements

PA-RISC 2.0 was designed to meet the following requirements:

Support for Large High-End Applications

One key feature of PA-RISC 2.0 is the extension the PA-RISC architecture to a word size of 64-bits, for
integers, physical addresses, and flat virtual addresses. This feature is necessary because 32-bit general
registers and addresses with a maximum of 232 byte objects become limiters as physical memories larger
than 4 GB become practical. Some high-end applications already exceed the 4 GB working set size.

The table below summarizes some of the PA-RISC 2.0 features that provide 64-bit support.

New PA-RISC 2.0 Feature Reason for Feature
Processor Status Word W-bit Provides 32-bit versus 64-bit pointers
Variable sized pages More flexible intra-space management and
fewer TLB entries
50w ::Qj Larger protection identifiers More flexible protection regions
WO K ST
More protection identifier registers More efficient management of protection
identifiers
load/store double (64-bits) 64-Bit memory access

Binary Compatibility

Another PA-RISC 2.0 requirement is to maintain complete binary compatibility with PA-RISC 1.1. That
is, the binary representation of existing PA-RISC 1.1 software programs must run correctly on PA-RISC
2.0 processors. The transition to 64-bit architectures is unlike the previous 32-bit microprocessor
transition which was driven by an application pull. By the time that technology enabled cost-effective
32-bit processors, many applications had already outgrown 16-bit size constraints, and were “coping”
with the 16-bit environment by awkward and inefficient means.

With the 64-bit transition, fewer applications need the extra capabilities and many applications will
choose to forgo the transition. In many cases, due to cache memory effects, if an application does not
need the extra capacities of a 64-bit architecture, it can achieve greater performance by remaining a 32-bit
application. Yet 64-bit architectures are a necessity since some crucial applications, databases and large-
scale engineering programs, and the operating system itself need this extra capacity.

Therefore, 32-bit applications are very important and must not be penalized when running on the 64-bit
architecture. 32-bit applications will remain a significant portion of the execution profile and should also
benefit from the increased capabilities of the 64-bit architecture without being ported to a new
environment. Of course, it is also a requirement to provide full performance for 64-bit applications and
the extended capabilities that are enabled by a wider machine.
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Slide: HP-UX 11.0 Architectural Support

Mixed-Mode Execution

Another binary compatibility requirement in PA-RISC 2.0 is mixed-mode execution. This refers to the
mixing of 32-bit and 64-bit applications or to the mixing of 32-bit and 64-bit data computations in a
single application. In the transition from 32-bits to 64-bits, this ability is a key compatibility requirement,
and is fully supported by the new architecture. The W bit in the Processor Status Word is changed from
0 (Narrow Mode) to 1 (Wide Mode) to enable the transition from 32-bit pointers to 64-bit pointers.

Performance Enhancements

Providing significant performance enhancements is another requirement. This is especially true for new
computing environments that will become common during the lifetime of PA-RISC 2.0. For example, the
shift in the workloads of both technical and business computations to include an increasing amount of
multimedia processing led to the Multimedia Acceleration eXtensions (MAX) which are part of the PA-
RISC 2.0 architecture. (Previously, a subset of these multimedia instructions were included in an
implementation of PA-RISC 1.1 architecture as implementation-specific features.)

The table below summarizes some of the PA-RISC 2.0 performance features.

New PA-RISC 2.0 Feature Reason for Feature
Weakly ordered memory accesses Enables higher performance memory
systems
Cache hint: Spacial locality Prevent cache pollution when data has no
reuse
Cache line prefetch Reduce cache miss penalty, and prefetch
penalty by disallowing TLB miss

Integrity of Basic Architecture

A final requirement was to add the 64-bit extensions to PA-RISC without disrupting the user
community’s understanding of the basic architecture. It was very important to build on how mechanisms
work in PA-RISC 1.1 and naturally extend that definition.
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Slide:  Register Context

~ Register Context

32 General Registers

8 Space Registers

32 Control Registers

64 Floating Point Registers — i@ mere oa A AL I
7 Shadow Registers

2 Instruction Address Queues

1 Processor Status Word

260624

Notes:
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Slide:  Register Context

One of the components of the CPU that we mentioned previously is the register set. Registers are high
speed memory that is defined for specific uses. A PA-RISC system has the following types of registers

* General Registers

* Space Registers

* Control Registers

* Floating Point Registers

* Shadow Registers

* Instruction Address Queues
* Processor Status Word

PA-RISC architecture takes advantage of the speed of these registers by making its operations register
~ intensive. All computations are performed between registers or between a register and a constant. This
minimizes the need to access main memory or code.

The Floating Point Registers and Shadow Registers are discussed below. The remaining registers are
discussed in the next several slides. You may find it beneficial to reference the register set diagram on
page 2-73.

Floating Point Registers

The Floating Pointer Registers are not actually part of the CPU but are part of the Floating Point
Coprocessor. Since this coprocessor is present on most systems, these registers make up a common part
of the register context.

There are a total of 32 64-bit floating point registers. They can be treated as such or as 64 32-bit registers
depending on what types of instructions they are accessed with (double or single-word load/stores). For
the PA2.0 processors they can also be treated as 16 128-bit registers.

Most of the floating point registers are simply data registers used to hold computations. Registers FP-OL
through FP-3L are partitioned into 8 32-bit registers. The left word of FP-OL is the status register, and
next seven 32-bit registers are execption registers. The status register controls arithmetic rounding
modes, enables traps, indicates exceptions that have occurred, indicates the results of comparison, and
identifies the coprocessor implementation. The seven 32-bit exception registers contain information on
floating point operations that have completed execution and have caused a delayed trap.

For details of the floating point registers refer to PA-RISC 2.0 Architecture.

"\

Shadow Registers — COUPO i p gl P Ry AP T D

PA-RISC processors also have seven shadow registers, numbered SHR 0 through SHR 6. The shadow
registers are used to store the contents of general registers 1, 8,9, 16, 17, 24, and 25 on interrupt. The
same general registers are restored from these shadow registers on return from interrupt.
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Slide: General Registers

~ General Registers

GRO
GR1
GR2

GR3-18
GR19-26 B
GR19-22 [N
GR2326 B
GR27 :
GR28
GR29
GR30
GR31

PAL1.1 provides 32-bit registers
PA2.0 provides 64-bit registers

Notes:
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Slide:  General Registers

General Registers

There are a total of 32 general registers, each 32-bits in size for PA-RISC 1.1 and 64-bits in size for PA-
RISC 2.0. Only 4 of the registers have a special function defined by the PA-RISC architecture. These

registers are GRO, GR1, GR2 and GR31. GRO will always be zero, but GR1, GR2, and GR31 may also
be used as general registers. The remaining registers are defined as general registers by the architecture,
however HP-UX defines a special purpose for these registers.

These registers are used as working areas to hold immediate results or data that is accessed frequently.
All data loaded from memory or stored to memory by the processor is done using a General Register. A
common use of general registers is the passing of parameters. HP-UX expects that once parameters are
loaded for a procedure call, they will be accessed rather quickly by the called procedure. So it makes
sense to put the parameters in registers for fast access rather than storing them solely in the user stack.

Below is a summary of the General Register usage as defined by PA-RISC and HP-UX. Many of the

registers have a special meaning ONLY in the context of a procedure call. Procedure Calling

Conventions are discussed further in Module 3. Shaded rows indicate changes for PA-RISC 2.0.

GRO

Permanent Zero

GR1

ADDIL Target Address
An ADDIL instruction will always deposit its result here.
This register is also available for general use.

GR2

Target for long displacement of B,L / Return Pointer
When a branch is taken, this register contains the instruction
offset of the instruction to return to (the instruction following
the branch)

GR3-GR18

Callee Save Registers / General Usage

Callee Save Registers are saved by a Called Procedure upon
entry to the procedure and restored prior to returning to the
Calling procedure. These registers are available for general
use when not in the context of a proceedure call.

GR19-GR26

Caller Save Registers

Procedure Arguments

Caller Save Registers are saved by a Calling Procedure before
branching to the Called Procedure and restored after returning
from the Called Procedure. These registers are also used for
passing procedure arguments to the Called Procedure. These
registers are available for general use when not in the context
of a proceedure call.
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Slide:  General Registers
GR23 rgument 3
GR24 Argument 2
GR25 Argument 1
GR26 Argument 0
GR27 Global Data Pointer (gp/dp)
For HP-UX the kernel’s dp value (also know as gp) is stored in
a kernel variable named $global$.
GR28 Return Value
GR30 Stack Pointer (sp)
This register is the address of the current “top” of stack.
GR31 Link Register for BLE or General Use
Instruction address offset link register for the base relative
interspace procedure call instruction.
Page 2-20
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Slide:  Space Registers

X

Space Registers

32-bit 64-bit

SRO e rode aph

SR1 General Use

SR2 General Use

SR3 General Use

SR4

SR5

SR6

SR7 , ¢ v

PAL.1 defines 32-bit registers, but only provides 16 bits \

PA2.0 defines 64-bit registers, but only provides 32 bits .
'\) a C LA/\AQ LA }\,/Q RN ¢
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Slide:  Space Registers

Space Registers

The space registers are used to hold the Space Identifiers. Space IDs are used in conjection with an offset
in a gerneral register to form a Virtual Address. Virtual addresses are discussed further beginning on
page 2-39.

PA-RISC 1.1 defines 32-bit space registers. Combined with a 32-bit offset stored in a General Register,
this forms a 64-bit virtual address. However, the actual implementation uses only 16 bits for the Space
ID. Thus for PA-RISC 1.1 systems, a virtual address is actually 48 bits.

PA-RISC 2.0 defines 64-bit space registers. With PA2.0 the space registers and general registers are
overlapped by 32 bits when combining to form global virtual addresses. Thus combined with a 64-bjt
offset stored in a General Register, this forms a 96-bit virtual address. However, the actual implemention
uses only 32 bits for the Space ID. Thus for PA-RISC 2.0 systems, a virtual address is actually 64 bits.

It is very confusing to discuss what is architectured by PA-RISC and what is actually implemented. We
will commonly refer to Space Registers being 32 bits on PA-RISC 1.1 and 64 bits on PA-RISC 2.0.
However, remember that our implementation only uses half of these bits.

There are a total of eight space registers named SRO through SR7. SRO is the instruction address space
link register used for BRANCH AND LINK EXTERNAL instructions. Because processes commonly
access certain data frequently (such as process code or text, process stack, global data, shared objects),
the Space IDs for these areas are kept in SR4 through SR7. By using a concept of short pointer
addressing or implicit pointers, a process can access a 64-bit virtual address (on PA Risc 1.1) using a
32-bit offset. The Space ID is located in SR4-SR7 depending on 2 Space Register Selection bits found in
the offset. SR1-SR3 are used to construct Long (explicit) pointers. Short (implicit) and Long (explicit)
pointers are discussed further beginning on page 2-53.

[’i” HEWLETT Page 2-23

PACKARD



Module 2 — System Architecture

Slide:  Control Registers

—

Control Registers

CRO Recovery Counter

CR1-7 Reserved
CR8,9,12,13 Protection IDs

CR10 Coprocessor Configuration Register
CR11 Shift amount register
CR14 _ Interrupt vector address
CR15 oxt 1%
CR16

CR17,18

CR19

CR20,21 ' S

CR22 — G U0 PTOCESSOE SIS
CR23 External Interrupt Request-Regi
CR24-32 Temporary registers

PALl.1 uses mostly 32-bit registers
PAZ2.0 uses mostly 64-bit registers

ab9627
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Slide:  Control Registers

Control Registers

The CPU also defines 32 Control Registers. PA-RISC 1.1 has 32-bit registers; PA-RISC 2.0 has 64-bit
registers. Control Registers are used to reflect different states of the system. Most of the registers have
very specific purposes related primarily to interrupt handling.

CRO Recovery Counter

This is a 32-bit register (even on PA-RISC 2.0). This register is
decremented during the execution of each non-nullified instruction for
which the PSW R-bit is 1. When the left-most bit of the Recovery Counter
is 1, a recovery count trap occurs.

CR1-CR7 Reserved

CRS [PA 1.1] Protection ID 1

[PA 2.0] Protection ID 1 and 2

When translation is enabled, the protection identifiers are compared with a
page access identifier in the TLB entry to validate access.

CR9 [PA 1.1] Protection ID 2
[PA 2.0] Protection ID 3 and 4

CR10 Coprocessor Configuration (CCR) and SFU Configuration Register.
Right-most 8 bits (CCR) indicate precence and usability of coprocessors.
The preceeding 8 bits (SCR) indicates which Special Function Units
(SFUs) are enabled.

CR11 Shift Amount Register (SAR)
6-bit register used by variable shift, extrace, deposit and branch on bit
instructions. It specifies the number of bits a quantity is to be shifted.

CR12 [PA 1.1] Protection ID 3
[PA 2.0] Protection ID 5 and 6

CR13 [PA 1.1] Protection ID 4
[PA 2.0] Protection ID 7 and 8

CR14 Interruption Vector Address
Contains the absolute address of the base of an array of interrupt service
procedures.

CR15 External Interrupt Enable Mask (EIEM)
One bit per each type of external interrupt. An external interrupt whose
corresponding bit is set to 0 in the EIEM will be held off.
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CR16

Interval Timer

Actually consists of 2 internal registers. One continually counts up by 1.
The other register is set by writing to the register. When the low-order 32-
bits are the same, an External Interrupt is generated.

CR17

Interrupt Instruction Address Space Queue
Stores the contents of the Instruction Address Space Queue at the time of
an interruption

CR18

Interrupt Instruction Address Offset Queue
Stores the contents of the Instruction Address Offset Queue at the time of
an interruption

Interruption Space Register
Used with CR21 to pass a virtual address to an interruption handler.

Interruption Offset Register
Used with CR20 to pass a virtual address to an interruption handler.

CR22

Interruption Processor Status Word
Holds the value of the Processor Status Word when an interruption occurs.

CR23

External Interrupt Request Register (EIRR)

Contains a bit for each type of external interrupt. When 1, a bit designates
that an interruption is pending for the corresponding external interrupt.
Both the PSW I-bit and the corresponding bit in the EIEM must be 1 for an
interruption to occur.

CR24-CR31

Temporary Registers

These registers provide space to save contents of general registers for
interrupt handlers.

CR24 is also known as the Per-Processor Data Pointer (PPDP),, which is
a pointer to the processor’s mpinfo structure (discussed further in Module
6)
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Instruction Address Queues

Instruction Address Offset Queue (IAOQ)

-0\
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IAOQ_front 00
TIAOQ_back 00
2-bit Privilege Level _1
Instruction Address Space Queue (1IASQ) \ goy Level )
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Slide: Instruction Address Queues

The Instruction Address Queues (IAQ) hold the instruction address for the currently executing
instruction. There are two instruction address queues:

. Instructioﬁ Address Space Queue (IASQ)
* Instruction Address Offset Queue (IAOQ)

Each of these queues are actually composed of a pair of registers (two 32-bit registers in PA-RISC 1.1;
two 64-bit registers in PA-RISC 2.0) creating what we call a front and a back element. Using the front
values from each queue we construct the virtual address for the currently executing instruction. Using the
back values we get the following or next instruction.

From this,:the virtual address for the current instruction is:
TASQ_front.IAOQ_front

and the virtual address for the next instruction is:
TASQ_back.JAOQ_back

Maintaining a front and back queue aids in the pipelining of instructions.

The instruction offset address is a word offset extracted from all but the lower 2 bits of the IAOQ. Thus,
for PA-RISC 1.1 this word offset is 30 bits; for PA-RISC 2.0 it is 62 bits. Since all instructions are
aligned on a 4-byte (word) boundary, the last 2 bits will always be zero. To avoid wasting bits, the low
order 2 bits specify the privilege level of the instruction. Thus, the byte offset is formed by masking off
the 2 privilege level bits. There are four possible privilege levels (0 - 3) but HP-UX recognizes only O for
kernel and 3 for user.
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= PA-RISC 2.0 Processor Status Word
(PSW)

3839404 42 43 44 45 46 4

56 57 58 59 60 61 62 63

2

32
I
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Reserved Bits

Carry/Borrow Bits

Wide 64-bit address formation enable
Little Endian Memory Access Enable
Secure Interval Timer

Taken Branch Trap Enable
Higher-Privilege Transfer Trap Enable
Lower-Priviledge Transfer Trap Enable
Nullify Instruction

Data Memory Break Disable

Taken Branch

— Ioab Lo \D\'% QV\(‘)\\O.J\‘

e A ‘bl 0 LA (’\ ‘\ § {}
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Code Address Translation

Divide Step Correction

High Priority Machine Check Mask
Ordered References

Performance Monitor Interrupt Mask
Recovery Counter Enable
Interruption State Collection Mask
Protection ID Validation Enable
Data Address Translation Enable
External Interrupt, Power Failure
Interrupt and LPMC Unmask
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Slide: PA-RISC 2.0 Processor Status Word (PSW)

The CPU has a register called the Processor Status Word (PSW) that contains the current processor
state. This register is 32 bits in PA-RISC 1.1 and 64 bits in PA-RISC 2.0. The slide shows the 64-bit
PSW. Whenever an interrupt occurs, the current PSW is saved into the Interrupt Processor Status
Word (IPSW) to maintain the state and then is restored when returning from the interrupt.

The low order five bits of the PSW are known as the system mask because they mask/unmask specific
types of system conditions. Bits in the PSW are defined as mask/unmask bits or enable/disable bits.
Interrupts that are disabled by the corresponding bit in PSW are ignored by the processor. Interrupts that
are masked remain pending until unmasked.

Bits 0-23, 32-35, and 57 are reserved bits (rv) in the PSW. The remaining bits are defined in the table
below. Shaded rows indicate bit is new for PA-RISC 2.0:

When 0, all memory references are big endian. When 1, all
memory references are little endian.

S Secure Interval Timer
When 1, the Interval Timer is readable only by code at the
highest privilege level. When 0, it is readable by anyone.

T Taken Branch Trap Enable
When 1, any taken branch is terminated with a taken branch trap.

H Higher-Privilege Transfer Trap Enable
When 1, a higher privilege transfer trap occurs whenever the
instruction following is of higher privilege.

L Lower-Privilege Transfer Trap Enable
When 1, a lower privilege transfer trap occurs whenever the
instruction following is of lower privilege.

N Nullify Instruction

The current instruction is nullified (ignored) when this bit is 1.
The bit is set by an instruction that nullifies the following
instruction, such as a branch.
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X

Data Memory Break Disable

When set to 1, data memory break traps are disabled. This bit
provides a way to control trapping on individual data store
instructions.

Taken Branch
Set to 1 on any taken branch instruction and set to 0 otherwise.

Code Address Translation Enable

When set to 1, instruction addresses are translated and access
rights are checked. A value of 0 is indication that we are
operating in real addressing mode.

Divide Step Correction
Set for DIVIDE STEP instruction to specify the set of conditions
to use, thus providing an integer division primitive.

High Priority Machine Check (HPMC) Enable
When 1, HPMCs are masked. Only set to 1 after an HPMC and
set to 0 after all other interruptions.

C/B

Carry/Borrow Bits

Carry Borrow bits for arithmetic instructions. See individual
instructions for details on how bits are set. In generala l1ina
given bit indicates a carry/borrow for that particular digit.

R Recovery Counter Enable a\g\gwc.;g\ ~r o
When 1 recovery counter traps are enabled. The bit also enables
decrementing of the recovery counter.

Q Interruption State Collection Mask
When 1 IIAQ, IIR, ISR, and IOR are saved on interruption.
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P Protection ID Validation Enable

When this bit and the C bit are both 1, instructions are checked
for valid protection identifier(PID). When this bit and the D bit
are both 1, data references are checked for valid PID.

D Data Address Translation Enable
When 1, data addresses are translated and access ri ghts are
checked.

I External Interrupt, Power Failure Interrupt, and Low

Priority Machine Check (LPMC) Unmask
When set to 1, these interruptions are unmasked and can cause an
interruption.

With the discussion of the PSW, we now have discussed the entire register context of the PA-RISC 2.0

processor. The entire register set together for use as a reference can be found on page 2-73 through page
2-75.

Some of the conventions listed on these pages are software conventions rather than architecture but the
two are listed together to make a complete reference.

Byte Ordering

The optional E-bit in the PSW controls whether the ordering of bytes on loads and stores are big endian
or little endian. When the E-bit is 0, all ordering is big endian, meaning that lower addressed bytes in
memory correspond to high order bytes in the register. When the E-bit is 1, ordering is little endian in
which the lower addressed bytes in memory correspond to lower order bytes in the register.

The diagram below shows the difference between the two types of byte ordering where MSB = Most
Significant Byte; LSB = Least Significant Byte. HP-UX does all of its byte ordering as big endian,
however it is possible to have non-HP I/O cards (such as on the workstation EISA interface) that use little
endian ordering. In this case the driver for the card would need to handle the byte translation for HP-UX .

Register Contents
MSB LSB

Memory Contents
MSB LSB

albjlc|d

BigEndian| a|b|c |d

Little Endian | d| ¢ [b |a
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Ordered References

This PA-RISC 2.0 option allows implementation of strongly or weakly ordered memory references. PA-
RISC 1.1 specified that all loads and stores be performed “in order.” This is known as “strong ordering.”

PA-RISC 2.0 supports “weak ordering.” This is because modern processors can reduce latencies from
cache misses by simultaneously performing loads and stores to lines already in the cache. This effective
reordering of loads and stores causes no inconsistency in most cases and permits faster execution. Of
course, strongly ordered loads and stores must be allowed to handle contexts in which ordering must be
preserved. This need for strong ordering is mainly related to synchronization among processors or with
/O activity. For more information about the memory ordering model, see Appendix G in PA-RISC 2.0
Architecture.

For Your Reference

The upcoming lab exercise has complete summaries of PA-RISC 1.1 and 2.0 Register Contexts and
Processor Status Word contents.
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Slide: PA-RISC 2.0 Processor Status Word (PSW)
PA-RISC 1.1 Processor Status Word (PSW)
0 1 56 7 8 9 1011 1213 14 1516 23 24252627 28 29 30 31
Y|Z| v EIS|IT [HIL|IN|X|B|C|VIM C/B vIG| FIR|Q| P|D]|1I
rv Reserved Bits C Code Address Translation Enable
Y Data Debug Trap Disable \') Divide Step Correction
Z Instruction Debug Trap Disable M High Priority Machine Check Mask
E - Little Endian Memory Access Enable C/B  Carry/Borrow Bits
S Secure Interval Timer G Debug Trap Enable
T Taken Branch Trap Enabie F Performance Monitor Interrupt Mask
H Higher-Priviledge Transfer Trap R Recovery Counter Enable
Enable Q Interruption State Collection Mask
L Lower-Priviledge Transfer Trap P Protection ID Validation Enable
Enable D Data Address Translation Enable
N Nullify Instruction | External Interrupt, Power Failure
X Data Memory Break Disable interrupt,
B Taken Branch and LPMC Unmask
PA-RISC 2.0 Processor Status Word (PSW)
0 23
rv
32 36 37 38 39 40 41 42 43 44 45 46 47
WESTHLNXBCVM C/B
rv Reserved Bits C Code Address Translation Enable
CB Carry/Borrow Bits \" Divide Step Correction
w Wide 64-bit address formation enable M High Priority Machine Check Mask
E Little Endian Memory Access Enable o Ordered References
S Secure Interval Timer F Performance Monitor Interrupt Mask
T Taken Branch Trap Enable R Recovery Counter Enable
H Higher-Privilege Transfer Trap Q Interruption State Collection Mask
Enable P Protection ID Validation Enable
L Lower-Priviledge Transfer Trap Enable D Data Address Translation Enable
N Nullify Instruction 1 External Interrupt, Power Failure
X Data Memory Break Disable Interrupt and LPMC Unmask
B Taken Branch BN
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Callee Save Registers

Caller Save Registers

PA-RISC 2.0 Processor Status Word (PSW)

PA-RISC 1.1 Register Context

32 General Registers

(32-bit Registers)
2 Instruction Queues

32 Control Registers

GR-0 Permanent Zero

IASQ_Front Current Instr Space

CR-0 Recovery Counter

GR-1 ADDIL Targe Address

IASQ_Back Next Instr Space

GR-2 Return Pointer (rp)

GR-3

IAOQ_Front Current Instr Offset*

GR-4 General Usage
GR-5

GR-6

GR-7

GR-8

GR-9 ..

GR-10 ...

GR-11 ..

GR-12 ...

GR-13 ..

GR-14 ..

GR-15 ...

GR-16 ...

GR-17 ...

GR-18 General Usage

IAOQ_Back Next Instr Offset*

* Last two bits of IAOQ are
Privilege Level (0,1,2, or 3)

8 Space Registers

CR-1 Reserved
CR-2 ..
CR-3 ..
CR-4 ..
CR5 ..
CR-6 ..
CR-7 Reserved

SR-0 Space Link Register for BLE

CR-8 Protection ID 1

SR-1

CR-9 Protection ID 2

SR-2

CR-10 Coprocessor Configuration

SR-3

CR-11 Shift Amount Register

SR-4 User Text/Kernel Text & Data

CR-12 Protection ID 3

SR-5 User Data and Stack

CR-13 Protection ID 4

SR-6 Shared Text/ Data

CR-14 Interrupt Vector Address

SR-7 Shared Text/Data

CR-15 EIEM

GR-19 General Usage
GR-20 ..
GR-21 ..

GR-22 General Usage

32 Floating Point Regs
(64-bits each)

CR-16 Interval Timer

CR-17 PC Space Queue

CR-18 PC Offset Queue

FP-0 Status Register/Exptn Reg 1

CR-19 Interrupt Instruction Register

FP-1 Exception Register 2/3

CR-20 Interrupt Space Register

FP-2 Exception Register 4/5

CR-21 Interrupt Offset Register

FP-3 Exception Register 6/7

CR-22 Interrupt PSW

GR-23 Argument 3 (arg3)

GR-24 Argument 2 (arg2)

GR-25 Argument 1 (arg1)

GR-26 Argument 0 (arg0)

GR-27 Data Pointer (dp)

GR-28 Return Value / Frame Ptr

GR-29 Return Value (double)
Static Link

GR-30 Stack Pointer (sp)

GR-31 Link for BLE or General Use

64-bit Floating Point
Data Registers

CR-23 EIRR

CR-24 Per Processor Data Ptr

PDIR Address
Temporary Register 0

CR-25 Hash Table Address
Temporary Register 1

CR-26 Temporary Register 2

CR-27 Temporary Register 3

CR-28 Temporary Register 4

CR-29 Temporary Register 5

CR-30 Temporary Register 6

CR-31 Temporary Register 7
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Callee Save Registers

Caller Save Registers

PA-RISC 2.0 Processor Status Word (PSW)

PA-RISC 2.0 Register Context

32 General Registers

GR-0 Permanent Zero

GR-1 ADDIL Targe Address

GR-2 Return Pointer (rp)

GR-3

GR-4 General Usage
GR-5
GR-6
GR-7
GR-8
GR-9 ..
GR-10 ...
GR-11 ..
GR-12 ...
GR-13 ..
GR-14 ...
GR-15 ...
GR-16 ...
GR-17 .

GR-18 General Usage

GR 23 Argument 3 (argB)

GR-24 Argument 2 (arg2)

GR-25 Argument 1 (arg1)

GR-26 Argument 0 (arg0)

GR-27 Data Pointer (gp/dp)

GR-28 Return Value / Frame Ptr

GR 30 Stack Pornter (sp)

GR-31 Link for BLE or General Use

(64-bit Registers)

2 Instruction Queues

32 Control Registers

IASQ_Front Current Instr Space

CR-0 Recovery Counter

IASQ_Back Next Instr Space

IAOQ_Front Current instr Offset*

IAOQ_Back Next Instr Offset*

* Last two bits of IAOQ are
Privilege Level (0,1,2, or 3)

8 Space Registers

CR-1 Reserved
CR-2 ..
CR-3 ..
CR4 ..
CR-5 ..
CR-6 .

SR-O Kemel Text and Data

32 Floating Point Regs
(64-bits each)

CR-7 Reserved

CR- 10 Coprocessor Conflguratron

CR 11 Shlﬂ Amount Regrster

CR- 14 Interrupt Vector Address

CR-15 EIEM

CR-16 Interval Timer

CR-17 PC Space Queue

CR-18 PC Offset Queue

FP-0 Status Register/Exptn Reg 1

CR-19 Interrupt Instruction Register

FP-1 Exception Register 2/3

CR-20 Interrupt Space Register

FP-2 Exception Register 4/5

CR-21 Interrupt Offset Register

FP-3 Exception Register 6/7

CR-22 Interrupt PSW

64-bit Floating Point
Data Registers

CR-23 EIRR

CR-24 Per Processor Data Ptr

PDIR Address
Temporary Register 0

CR-25 Hash Table Address
Temporary Register 1

CR-26 Temporary Reglster 2

HOH2 M ’hru_fs_‘\g’:lr: L o e
CR-28 Temporary Reglster 4

CR-29 Temporary Register 5

CR-30 Temporary Register 6

CR-31 Temporary Register 7
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—

— Virtual Memory Concepts

Physical Addresses

Virtual Addresses

Addresses

ab9630

Notes:
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Slide:  Virtual Memory Concepts

Virtual Memory

In virtual memory, pages are mapped from one set of addresses, virtual addresses, to another set,
physical addresses. The processor generates virtual addresses while the memory is accessed using
physical addresses.

Both the virtual memory and the physical memory are broken into pages, so that a virtual page is really
mapped to a physical page. Of course, it is also possible for a virtual page to be absent from physical
memory and not be mapped to a physical address, residing instead on disk. Program addresses are virtual
and are divided by the hardware into a virtual page number and an offset into the page.

Physical pages can be shared by having two virtual addresses point to the same physical address. This
capability is used to allow two different programs to share data or code.
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~ Virtual Memory Layout: PA-RISC 1.1 and

2.0 Narrow Mode S
Space D AR IS
0 1L 2 3 4, & & & &,
(€4 [€4
1
i H |
I - .
3 - ‘ V,_O){l AR
3 '
! | ) ol |
148 1€y
Process VA Space
Text 0x34d.XXXXXXXX
Data 0x34fXXXXXXXX 4 Gbyte
Total
Shared 2 0x34c.XXXXXXXX
Shared 1 ” 0X000. xxxXXX%K
i\ § ¥
ﬁ_::v:‘;(;rt\.g e O 260631

Notes:
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Slide:  Virtual Memory Layout: PA-RISC 1.1 and 2.0 Narrow Mode

This slide discusses the PA-RISC 1.1 and the 2.0 Narrow Mode virtual memory layout (the W bit is 0).

Process Address Space

In general, the address space of a process comprises all virtual memory locations that the program may
reference. At any instant, the address space, along with the process’s register context, reflects the current
state of the program.

On a PA-RISC system, every page of physical memory has a physical address which is a physical page
number. All access to these pages is done through virtual addresses. These virtual addresses represent
an address into a large collection of imaginary memory regions. These virtual addresses are mapped to
physical addresses that represent physical pages in memory.

For the purpose of addressing, virtual memory is partitioned into quadrants and spaces. A virtual
memory address is comprised of a Space ID and offset within the space. In PA-RISC 1.1 and 2.0 Narrow
Mode, each space represents a 4 Gbyte unit (2°"32) of virtual memory. The offset portion of a virtual
address is the offset into this space.

The format of an HP-UX PA-RISC 1.1 or 2.0 Narrow Mode virtual address is:

Space ID Offset
(32 bits) (32 bits)

Current PA-Risc 1.1 implementations only use 16 bits for the space IDs. In PA-Risc 2.0 Narrow Mode,
the space ID can be 32 bits. We will see later, however, that only the high-order 22-bits are actually used
for the Space ID. The low-order 10-bits will always be zero.

Each 4Gbyte space is divided equally into four 1 Gbyte units called quadrants. The offset portion of the
virtual address determines what quadrant of the given space we are in.

Virtual Address Range
Quadrant 1 0x00000000 to Ox3FFFFFFF
Quadrant 2 0x40000000 to Ox7FFFFFFF
Quadrant 3 0x80000000 to OxBFFFFFFF
Quadrant 4 0xC0000000 to OxFFFFFFFF

Each process running on a PA-RISC processor has its own unique virtual address range. When created
the process has allotted to it a 4 Gbytes virtual address range. This is not memory that is physically
allocated but rather just address ranges that are available. Each quadrant will likely belong to a different
space.

In the example shown in the slide, a particular process has been assigned Space ID 0x34d for its text,
0x34f for its data, 0x34c and 0x34e for shared text and data. So, to access the base of the process’s user
stack in quadrant two, a virtual address of 0x34f.0x7b03a000 would be used (offset 0x7b03a000 is a
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Slide:  Virtual Memory Layout: PA-RISC 1.1 and 2.0 Narrow Mode

typically start of a process’s user stack). These numbers are used only for the purposes of showing an
example. Normally, you would not expect a process to be assigned sequential space ids such as this.
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{5

~ Virtual Memory Layout: PA-RISC 2.0
Wide Mode

S & &
G

Space B
0123,@'“’@}&*,,
4 44
1
2
£2
<
23
=4
4
L :
Process VA Space
Shared Objects 0xd41d000.0XXXXXXX XXXXXXXX
Text 0xd41d400.4XXXXXXX XXXXXXXX 16 TB
Data 0xd41d800.8XXXXXXX XXXXXXXX ol
. Shared Objects 0xd41dc00.cXXXXXXX XXXXXXXX

ab9632
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In Wide Mode concepts of physical pages and virtual addresses are the same as for Narrow Mode.
Differences exist in the formation and format of the virtual address and in the size range and layout of the
address space.

The format of a PA-RISC 2.0 Wide Mode virtual Address is:

Space ID Offset
(64 bits) (64 bits)

Current PA-Risc 2.0 implementations only use 32 bits for the space IDs. We will see later, however, that
only the high-order 22-bits are actually used for the Space ID. The low-order 10-bits will always be zero.
Also, the 64-bit offset is comprised of 2 Space register selection bits, followed by 20-bits set to zero, and
a 42-bit offset within the space.

In Wide Mode each space is divided as follows into four 4 TB quadrants. In the Virtual Address Ranges
below, note the high order 2 bits are the Space Register Selection bits and the next 20 bits are set to zero.

Virtual Address Range

Quadrant 1 0x00000000 00000000 to 0x000003FF FFFFFFFF
Quadrant 2 0x40000000 00000000 to 0x400003FF FFFFFFFF
Quadrant 3 0x80000000 00000000 to 0x800003FF FFFFFFFF
Quadrant 4 0xC0000000 00000000 to 0xCO0003FF FFFFFFFF

In Wide Mode, when created the process has allotted to it a 16 TB virtual address range. This is not
memory that is physically allocated but rather just address ranges that are available. The 16 TB of virtual
address space will not be all within one space.

In the example shown in the slide, a particular process has been assigned SID 0x41d400 for its text,
0x41d800 for its data, and 0x41d000 and 0x41dc00 for shared objects. Note the low-order 10 bits in the
space IDs are set to zero. These numbers are used only for the purposes of showing an example.
Normally you would not expect a process to be assigned sequential space ids such as this.

Note that the process virtual address space layout in Wide Mode is different than in Narrow Mode. More
details about these differences are covered in the next two slides.
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—

~ 32-Bit Address Space Layout

]
32-bit Kernel Mode 32-bit User Mode
0x0000 kernel and
kernel-allocatable 32-bit text
i B8 8 2 ddperived memory
. ‘_“:X ~. -t quadl: sré = 0 quadl: srd = unique 1GB
S SRS Ox:
PRy S -'0\ Fo -t uarea
- FREE A (at end of 32-bit data
quadrant)
quad2: sr5 = unique quad2: sr5 = unique 2GB
bmh e shared objects
quads: er6 = bufcache_spaceld Qquad3: er6 = sharedl 3 GB
0xC
shared objects
000 32-bi o
OxFFFFFFFF| 32-bit user /O -bit user 4GB
quad4:sr7 =0 quad4: sr7 = sharedl
UDCre (O wRacpom. s
o whe ool €
C M Y2 <“’\'C\ w m-\a(\’ a
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When operating in Narrow Mode or PA-RISC 1.1, processes are limited to a 32-bit address space. The
address space layout for a Narrow Mode process is shown on the slide. The layout is the same as it is on
HP-UX 10.x. '

Note that the 32-bit Kernel Address Space Layout is only for PA-RISC 1.1.
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64-Bit Address Space Layout

KERNEL MODE

kernel 1Gb

ke roel
allocatable
memory
(low addrs)

00000400 06080000

40000000 00000000
40000400 00000000

30060000 00000000
30000400 00000000

C0000000 00000000
C0000400 00000000

FFFFFFFO 00000000
FFFFFFFF FEFFFEFF

keroel
sliocatable
me mory

(bigh addrs) 4T>

—

quadl:srd =0

quad2:srS = unique

dynamk bufcache
4Tv

quad3: sré =bufcache_spaced

4Tb

64-bit ke roel 10

quad4:sr? =0

~ . 64-Bit Address Space Layout

64-bit USER MODE

|

tshared o

/63 bitsbarcd objs
(includes gate way
page)

32bituser IO

64 -bituser 10

64-bit shared objects

quadl:sré =sharedl

quad2: srS = vnique

quad3: sré = unique

quad4:sr? =shared2

4Tv
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é4-bitsbared obp
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This slide illustrates the address space layout for a 64-bit kernel and for 64-bit users.

Note that one of the requirements for the 64-bit address space layout is to allow 32-bit and 64-bit
applications to access the same shared object. This type of sharing is referred to as mixed-mode access.

For a 32-bit process, shared objects reside in Quadrant 3 and Quadrant 4. For a 64-bit process, mixed
mode shared objects (i.e. those objects which can be accessed by 64-bit and 32-bit applications
concurrently) reside in the third and fourth Gigabyte of Quadrant 1.

All other 64-bit shared objects reside in the remaining address space of Quadrants 1 and 4.

(ﬁ/, HEWLETT Page 2-49

PACKARD



Module 2 — System Architecture

Slide:  32- vs 64-Bit HP-UX Address Layouts

P e

= 392-vs 64-Bit HP-UX Address Layouts

Narrow Address Space Layouts

32-bit narrow applications (or PA-RISC 1.x)

32-bit kernel
- Might be installed on “64-bit capable” system
because 64-bit features are not needed

Wide Address Space Layouts
64-bit wide applications
- Only when running 64-bit kernel

64-bit kernel
- Only on supported (PA8x00) systems with 64-bit
kernel (11.0+) installed

abp635
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Narrow Mode (32-bit) applications will run on any PA-RISC architecture version with either a 32-bitora
64-bit HP-UX kernel.

Wide Mode (64-bit) applications require a 64-bif HP-UX kemel, which is only supported on certain
PA-8x00-based PA-RISC 2.0 systems. The table at the end of this module contains information about
which systems provide this capability.
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{150

— Long and Short Pointers: PA-RISC 1.1

Virtual Address Pointers: Narrow Mode

Long Pointer Space ID Offset
(Explicit) 2 Bis 32 Bits
Short Pointer /-,
(Implicit) /¥ Offset
S 30 Bits
&
00

01 Space Register Selection Bits
«l 0 and 1 Determine the Space
Register and Quadrant To Use

ab9636

and 2.0 Narrow Mode in “32bit” node S

Notes:
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Slide:  Long and Short Pointers: PA-RISC 1.1 and 2.0 Narrow Mode

PA-RISC 1.1 or Narrow Mode 2.0 systems form virtual addresses using either long (explicit) pointers or
short (implicit) pointers. For long pointers we have a 32-bit space id (again, only 16-bits are used in
current PA 1.1 implementations) and a 32-bit offset. '

Short pointers are 32-bits long and use the high order two bits to determine the space identifier. Short
pointers are only used in the context of a process and access space identifiers stored in space registers 4

through 7.

The space identifier for a short pointer is determined by taking the high order 2-bit value and adding 4 to
it to determine the space register to use. The SID in that space register is combined with the offset to
form the full 64-bit virtual address.

The advantage of using short pointers is by keeping the space ID of commonly accessed data in
designated space registers, we can perform loads and stores to memory by simply accessing the 32-bit
offset without constantly loading the space ID into a space register. A long pointer reference would first
have to load the proper space ID in a space register, then load the offset in to a general register, then
access the memory through the virtual address.

This table shows the relationships between Space Register Selection bits, space registers, and quadrants.

Bits 0-1 Space Register Quadrant
00 SR4 Quad 1
01 SR5 Quad 2
10 SR6 Quad 3
11 SR7 Quad 4

As an example, the diagram below shows the breakdown of a short pointer with the value of

0x400003D8.

Note:

01/000000000000000000001111011000

‘ L . |

0 1 = Quadrant 2 I o
SR5 contains pointer Offset from beginning
to virtual address space of quadrant

In Narrow mode, when dealing with the context of the current process, short pointers
are useful. Since we know that the space registers SR4-SR7 contain the context of that
process, short pointers will pull the appropriate SID from these registers. When the
processor does not hold the context of the process we are interested in, long pointers
must be constructed.
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Wide Mode

Virtual Address Pointers: Wide Mode

Explicit Pointer
Space ID Offset
64 Bits 64 Bits
Implicit Pointer
9; <zero'd out> Offset
i~ 20 Bits 42 Bits
&
00 . -
01 Space Register Selection Bits 0
«. and 1 Determine the Space Register
10 and Quadrant To Use
11

X5

— Explicit and Implicit Pointers: PA-RIC 2.0

ab9637
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In Wide Mode, explicit (long) and implicit (short) pointers also exist. PA-RISC 2.0 defines a 64-bit space ID
and a 64-bit offset, essentially defining a 128-bit virtual address. Currently implementations, however, only
use 32-bits for the space ID. And even then, only the high-order 22-bits are actually used, as the low-order
10-bits will always be zero. We will examine this more on page 2-59.

However, in Wide Mode explicit pointers are allowed but rarely if ever used. In Wide Mode the compiler only
generates implicit pointers.

Implicit pointers are 64 bits. Their high order top two bits contain the space register selection bits with the
next 20 bits zeroed out. The remaining low order 42 bits are the offset into the quandrant. This is why each
quadrant is limited to 4TB.

The space identifier for an implicit pointer is determined by taking the high order 2-bit value and adding 4 to
it to determine the space register to use. The SID in that space register is combined with the offset to form the
full virtual address.

Bits 0-1 Space Register Quadrant
00 SR4 Quad 1
01 SR5 Quad 2
10 SR6 Quad 3
11 SR7 Quad 4
6\) I 22 bits -
10 00000000000000000000; 00000000000000000000000000000001011000100
20 bits always zero I 42 bits offset from beginning I

of quadrant
10 = Quadrant 3
SR6 contains pointer
to virtual address space
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E— . . (\Q w fpoA Al /S 2
Address Swizzling Lo QU et

/ SR Selection bits
3

. : Swizzling

32-bit R BRI

pointer

64-bit

L. pointer |
Unswizzling
zero'd out
260638

Notes:
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Slide:  Address Swizzling

Address “swizzling” refers to the conversion of a 32-bit address by copying the top two bits of a 32-bit
address to the top two bits of a 64-bit address and the offset to the bottom 30 bits with zero-filled bits in
between. The reverse process is referred to as “unswizzling.”

Address swizzling is used by the HP-UX 64-bit operating system when going between kernel and user
modes for a Narrow Mode process.
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Slide:  PA-RISC 2.0 Global Virtual Addresses (GVA)

—  PA-RISC 2.0 Global Virtual Addresses

R

Global Virtual Addresses

ab0630

Notes:
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Slide:  PA-RISC 2.0 Global Virtual Addresses (GVA)

The HP-UX 11.0 Global Virtual Address

The term Global Virtual Address (or GVA) is new to PA Risc 2.0. It combines the space ID and offset
into a single component to describe the complete virtual address. Note that a 128-bit or even a 96-bit
virtual address can not be easily managed on a system with 64-bit registers. We also need a unique
method of describing a virtual address regardless of whether we are operating in wide or narrow mode.

For Narrow Mode processes, the 2.0 GVA is the same as the virtual address. The 32-bit space ID is
concatenated with the 32-bit offset to form a 64-bit GVA. For Wide Mode processes however, the GVA is
not the same as the virtual address. The Wide Mode virtual address is conceptually 128 bits, a 64-bit
Space ID and a 64-bit offset. The PA-RISC 2.0 Architecture book documents a 96-bit GVA and
implements a 64-bit space ID. However, HP-UX only implements a 32-bit space ID, thus allowing the
GVA to fitin 64-bits. Selective bits from the space ID and offset are extracted and ORed together to form
a unique 64-bit GVA.

The fact that HP-UX 11.0 uses only a 64-bit GVA offers a distinct advantage: the kernel can greatly
simplify its management of the GVA pool by keeping all this data in an easily-managed 64-bit object.

To accomplish this Wide Mode 64-bit GVA, the application’s address space is divided into quadrants as
in earlier HP-UX releases (quadrants are discussed in detail later in this module) but only the lower 42-
bits of each quadrant are allocated as usable addresses. For Wide Mode, this gives each of the four
quadrants a 4TB pool for an overall process address space of 16TB. While not the broadest possible use
of all the bits available, each of the four quadrants is 1000 times larger than was possible in the entire 32-
bit virtual address model.

By restricting the virtual memory offsets to 4TB per quadrant, HP-UX allows itself the highest 22 bits of
a 32-bit word in which to allocate a space ID (Currently implementation of PA-RISC 1.1 only used 16-
bits for a Space ID).

The GVA is then formed by logically ORing the space ID with the offset. The next two slides contain
details of the formation of both Narrow and Wide Mode PA-RISC 2.0 GVAs.

As we will see later, the GVA is used to determine the Virtual Page Number used to access the TLB and
various internal memory structures such as the Page Directory (PDIR) Table.
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Slide: PA-RISC 2.0 GVA Formation: Narrow Mode

PA-RISC 2.0 GVA Formation: Narrow

Mode
, B2 zers'd bits SR Selcction bits
offset C
(A not implemented
in PCX-U)
32 zero’d bits
[ 31
1 » :
space A .;.'__ ~{ o B 2 ,j'::'_ i
. l SR Selection bits
> A - - - ' 3 gA/ §
i sk gl L
GVA ! K R e |
L - e - > (- — - Wl . B i3 LS AR L
P RN 32-bit space 32-bit offset
-~
260640

Notes:
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Slide: PA-RISC 2.0 GVA Formation: Narrow Mode

For PA-RISC 2.0 Narrow Mode the space identifier is combined with the offset to form a complete global
virtual address. In general for both Wide and Narrow Mode, the offset and space portions are aligned as
shown, and the low 32 bits of the space identifier are ORed together with the top 32 bits of the offset to
form the GVA.

In Narrow Mode, bits 32 and 33 of the offset (“d” in the example) are space register selection bits for use
in short pointer addressing. (Short pointers are discussed in more detail later in this module.)

When operating in Narrow Mode (the PSW W bit is 0), bits 0 to 31 of the offset are zeroed out. Then the
GVA is formed by ORing the top 32-bits offset with the lower 32-bits of the space. Since the offset
contains zeros, this is equivalent to concatenating the lower 32 bits of the space with the lower 32 bits of
the offset.

Note that the first 32 bits of the space (bits 0 - 31; “A” in the slide) are not implemented by current PA-
RISC 2.0 systems and are not used by HP-UX.

For example, below is a virtual address in the typical space.offset notation:

0x0e352c00.0x£££c8200

First we align the space and offset as follows and OR them together:

offset 0x00000000’7££e6000
space 0x0e352c00

I
GvVA 0x0e352c00’7££e6000

Note the is no noticeable difference in the GVA and the “virtual address”.
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Slide: PA-RISC 2.0 GVA Formation: Wide Mode

~ PA-RISC 2.0 GVA Formation: Wide Mode

20 zero'd bits

42 bits
SR Selection Bits [
extracted then cleared o o
offset ™|c C
gA not implemented
InPCX-U) 45 serora vits ?g&f ;Igl:'j 10 zero'd bits
T 1 g1
0 § I A 8
space A i.;22bits - B
. _-
I S - ? ~ 8
[ 22 bits « 10 bits
L__‘z:a}.\_\____ C|B'
Pl S |
2
GVA ——» | 22-bit space |i

ab0641
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Slide: PA-RISC 2.0 GVA Formation: Wide Mode

In general, the Wide Mode the GVA is created in the same way as in Narrow Mode. However, there are
some differences.

First, the offset and space are aligned as shown. In Wide Mode bits 0 and 1 of the offset are space register
selection bits. These bits are first extracted and then cleared from the offset. These bits are not needed in
the GVA since they are only used to determine the appropriate space register for the Space ID. The top
32 bits of the modified offset (C) are then OR’d with the low 32-bit space register (B) in the same manner
as for narrow mode, producing a 64-bit GVA.

As in Narrow Mode, the first 32 bits of the space (bits 0 - 31; “A” in the slide) are not implemented by all
PA-RISC2.0 systems and are not used by HP-UX.

Because the top 32-bits of the remaining 64-bit GVA are created in wide mode by ORing the space with
the top 32-bits of the offset, it is the software’s responsibility to partition the space ID and offset. (If this
soft partition was not implemented, reconstruction of the initial space and offset from the GVA would be
significantly more complex.)

Note that before ORing the offset and space, bits 2 to 21 (20 bits) of the offset and bits 54 to 63 (10 bits)
of the space are zeroed out. This means that ORing the space and offset effectively concatenates bits 32
to 53 (22-bits) of the space with bits 22 to 63 (42-bits) of the offset.

HP-UX thus neatly partitions the top 22 bits of the 64-bit GVA for the space and the remaining 42 bits for
the offsets. This results in 42 bits (4 Terabytes) of room in each quadrant. Since each process has access
to 4 space registers, the total address space per process is 16 TB.

For example, below is a virtual address in the typical space.offset notation:

0x0624b400.0%x400003£f£/£££c8200

First we clear the space register selection bits since we know what the space ID is already, then we align
the space and offset as follows and OR them together:

offset 0x000003ff’££f£c8200
space 0x0624b400

I
GvVA 0x0624b7ff’'££f£fc8200

Note that once the space ID and offset are ali gned, its easy to OR the 2 values. Each byte is essentially
brought down except the byte represented by bits 20-23 in the GVA as outlined above. Now we have a
global virtual address (GVA) that can be held in a single 64-bit register.
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Slide:  Virtual to Physical Address Translation

~ Virtual to Physical Address Translation

Space ID Virtual Offset | Page Offset

I
Virtual Page Number

Translation

!

Physical Page Number
1

| Page Offset

ab0642
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Slide:  Virtual to Physical Address Translation

We have already discussed that a virtual address for PA-RISC consists of a space ID and an offset. These
virtual addresses need to be mapped to a physical address.

A physical address points to a page in memory. The physical address also contains an offset into this
page. So the complete physical address is composed of a physical page number(PPN) and page offset.

PA-RISC 1.1

PA-RISC 1.1 supports a 20-bit physical page number and a 12-bit page offset. The following is an
example of a PA-RISC 1.1 physical page number:

Page Number Page Offset
00000000000000000100| 100001110011
0 19 20 32

To handle the translation of the virtual address to a physical address the virtual address also needs to be
looked at as a virtual page number(VPN) and page offset. In PA-RISC 1.1, since the page size is
always 4096 bytes, the low-order 12 bits of the offset are assumed to be the offset into the page. The 16-
bit space ID and the high order 20 bits of the offset make up the 36-bit VPN.

In PA-RISC 1.1, for any given address you can determine the page number by discarding the least
significant 12 bits. What remains is the virtual page number for a virtual address or the physical page
number for the physical address.

For example, suppose we have a virtual address of 0x0.4873. The VPN and page offset are broken out as
follows:

16-bit Space ID 32-bit Offset
0000000000000000 | 00000000000000000100{ 100001110011
l l | I |
(example based =~ VPN =0x4 Page Offset
on PA 1.1 level 1) 0x873

The VPN will go through address translation to obtain the associated PPN.
PA-RISC 2.0

PA-RISC 2.0 supports a 38 to 52-bit physical page number and a 12 to 26-bit page offset (providing
support for variable page sizes), to form a 64-bit physical address.
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Slide:  Virtual to Physical Address Translation

The following is an example of a PA-RISC 2.0 physical page number:

Physical Page Number Page Offset
000000000000000000000000000000000000000000000000100 | 000010100000
0 51 52 63

To handle the translation of the GVA to a physical address the virtual address also needs to be looked at as
a virtual page number(VPN) and page offset. In PA-Risc 2.0, since the page size is variable, the low-
order 12 to 26 bits of the offset are assumed to be the offset into the page. The 22-bit space ID and the
high order 38 to 52 bits of the offset are the VPN.

In Wide Mode for any given address you can determine the page number by discarding the least
significant 12 to 26 bits. What remains is the virtual page number for a virtual address or the physical
page number for the physical address.

For example, suppose we have a GVA of 0x37737fffffcf0a0. The VPN and page offset (assuming a page
size of 4096 bytes) are broken out as follows:

22-bit Space ID 42-bit Offset
0000001101110111001101 | 1111111111111111111111110011110000 | 000010100000
| Il J

| [
VPN = 0x37737ffftfct Page Offset
0xa0

The VPN will go through address translation to obtain the associated PPN.

Page 2-66 () P

PACKARD



Module 2 — System Architecture

Left blank intentionally

[,5/, HEWLETT Page 2-67

PACKARD




Module 2 — System Architecture

LAB: Virtual Addresses: PA-RISC 1.1

Estimated Time: 20 minutes, do either the PA1.1 example or the PA2.0 example

The register context for a process is shown below followed by a list of virtual addresses and a quadrant/
space map. For each of the virtual address given, determine which space register will be used to evaluate
the address and mark where the address will lie in the quadrant/space map.

sp =0x7£ffe6b78 rp_£flag =0x00000001 gro0 =0x00000000
grl =0x00000001 rp =0x00227b68 gr3 =0x00001770
gr4d =0x00000000 grs =0x00511c38 gré =0x02894ab8
gr’7 =0x0265b860 grs8 =0x028b23b8 gr9 =0x012abcc0
grlo =0x00000001 grll =0x000000£2 grl2 =0x00000000
grl3 =0x00000044 grld =0x000000£4 grls =0x£0100000
grlé =0x£f0000£fe0 grl7’ =0x£0000074 grls =0x£000006c
grlo =0x00511d4f8 gr20 =0x00000000 gr2l =0x£f£££££00
gr22 =0x00444b20 arg3 =0x0000000£ arg2 =0x00000000
argl =0x7ffe6afs arg0 =0x0002e264 dp =0x00489a48
ret0 =Oxff£££££0 retl =0x00000000 sp =0x7£ffe6b78
gr3l =0x00511a48 cr0 =0x00000000 crl =0x00000000
cr2 =0x00000000 cr3 =0x00000000 crd =0x00000000
cr5 =0x00000000 cré6 =0x00000000 cx’7 =0x00000000
cr8 =0x00000000 cr9 =0x0000d4610 crlo =0x000000c0O
crll =0x00000000 crl2 =0x00000000 crl3 =0x00000000
crld =0x00017800 crls =OxfffE££££f0 crlé =0x19347dad
pcsqgh =0x00000000 pcogh =0x00000000 crld =0x00000000
cr20 =0x00000000 cr2l =0x00000000 cr22 =0x00000000
cr23 =0x00000000 cr24 =0x00444b20 cr25 =0x0<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>