
nfs performance tuning for hp-ux 11.0 and 11i systems page 1

Notes:

Page 1July 22, 2002 Copyright 2002 Hewlett-Packard Company

nfs performance
tuning for hp-ux 11.0

and 11i systems

revision 2.0
july 22, 2002

dave olker

systems networking
solutions lab

Networked File System (NFS) has been the industry standard protocol for remote
file access on the UNIX operating system platform for many years. It has become a
critical component of every flavor of UNIX, as well as many non-UNIX based
operating systems. NFS is also a central component of HP’s NAS offerings.
However, there is very little information available describing how to properly tune
NFS clients and servers for optimal performance.

HP recently released HP-UX version 11i to support our new SuperDome hardware
platform. Many changes were made to our NFS offering in this version of HP-UX;
however, some of these differences are not currently described in any customer-
viewable documentation. Also, there are no books available that specifically
describe HP's NFS implementation.

The target audience for this presentation is systems, network, and storage
administrators who want to learn how to optimally configure their HP-UX clients and
servers for NFS performance. Some familiarity with the basic concepts of NFS and
HP-UX internals are assumed.

nfs performance tuning for hp-ux 11.0 and 11i systems page 2

Notes:

Page 2July 22, 2002 Copyright 2002 Hewlett-Packard Company

agenda
(part one)

• Environmental
Considerations

• Daemons and Kernel
Threads

• Automount & AutoFS

• CacheFS

• NFS PV2 vs. PV3

• NFS/UDP vs. NFS/TCP

An important step in tuning HP-UX systems for NFS performance is to evaluate the
entire environment in which the client and server systems reside. The underlying
network, local filesystems, and operating system patch levels can heavily influence
throughput results.

There are many client and server daemons and threads involved in implementing
the ONC+ protocol suite (including the optional AutoFS and CacheFS products).
The behavior of these daemons and threads, as well as their impact on NFS
performance, is discussed.

Many differences exist between the versions of the NFS protocol itself (HP-UX
currently supports versions 2 and 3). These protocol differences can dramatically
affect performance.

The choice of underlying network protocols, UDP/IP and TCP/IP, can also have a
significant impact on how NFS behaves and performs.

nfs performance tuning for hp-ux 11.0 and 11i systems page 3

Notes:

Page 3July 22, 2002 Copyright 2002 Hewlett-Packard Company

agenda
(part two)

• NFS Mount Options

• Buffer Cache

• Kernel Parameter Tuning

• Summarize differences
between HP-UX 11.0 &
11i NFS implementations

• Summarize
Recommendations

There are many NFS-specific mount options available. Some of these options can
have a positive impact on performance, while others can have a dramatically
negative effect. It is important to know which options to use and which to avoid.

The buffer cache memory subsystem is heavily used by NFS. Sizing this resource
properly on the client and server is critical. In addition to sizing considerations, it
is also important to understand the differences between static and dynamic buffer
cache allocation mechanisms and recognize which one to use in your environment.

Since much of NFS runs in the kernel, it should come as no surprise that there are
many kernel parameters that can influence the behavior and performance of NFS.
Tuning these parameters can be time consuming, but is well worth the effort.

Some of the NFS differences between HP-UX 11.0 and 11i are discussed during
the presentation. A complete summary of these differences, as well as a high-level
summary of all the tuning recommendations, is provided at the end.

nfs performance tuning for hp-ux 11.0 and 11i systems page 4

Notes:

Page 4July 22, 2002 Copyright 2002 Hewlett-Packard Company

environmental
considerations

• Network

• Local Filesystems

• OS Patching

• Hostname Resolution

NFS is essentially a network-based application that runs on top of an operating
system, such as HP-UX. Like most applications, NFS competes for resources (such
as disk, network, memory, and kernel tables) with the other processes on the
system. When investigating any NFS performance issue, it is important to perform
a “sanity check” of the overall environment in which the clients and servers reside.

NFS functionality is heavily dependent upon the behavior of many subsystems (i.e.
disk, network, memory) and is therefore susceptible to performance problems in
them. In other words, if the performance of the network is slow, NFS throughput
will most likely suffer. Similarly, if local filesystem read and write throughput on the
NFS server is slow, NFS read and write throughput to this server will likely be slow.

NFS continues to evolve over time. Consequently, it is a good idea to keep the
HP-UX operating system on your NFS systems up-to-date with available patches.

Most NFS components rely in some way on hostname resolution (i.e. rpc.mountd,
rpc.lockd, rpc.statd, automount, etc.). It is therefore important to verify that your
hostname resolution servers respond quickly and provide accurate information.

nfs performance tuning for hp-ux 11.0 and 11i systems page 5

Notes:

Page 5July 22, 2002 Copyright 2002 Hewlett-Packard Company

network
considerations

• Analyze Network Layout

• Measure Network
Throughput Capabilities

• Network Troubleshooting

Since NFS is an acronym for “Network File System”, it should come as no
surprise that NFS performance is heavily dependent upon the latency and
bandwidth of the underlying network. Before embarking on a detailed
investigation into a specific area of NFS, it always makes sense to first verify that
the underlying network is performing as expected.

This section will not be describing the myriad of available networking topologies
and interface cards. NFS runs on most any networking link, and it typically
performs faster on faster links. There is a wealth of information about the latest and
greatest networking technologies (such as Gigabit Ethernet, APA, etc.) available
from HP’s IT Resource Center: http://itrc.hp.com and HP’s online documentation
repository: http://docs.hp.com.

What will be described is a recommended methodology and set of tools available
for understanding the physical layout of your network, measuring its throughput,
and performing routine network troubleshooting.

nfs performance tuning for hp-ux 11.0 and 11i systems page 6

Notes:

Page 6July 22, 2002 Copyright 2002 Hewlett-Packard Company

Analyze Network Layout

• Familiarize yourself with the physical layout (i.e. how
many network hops separate the client and server?)

Ø OpenView Network Node Manager

Ø traceroute

Ø ping -o

• MTU sizes of the various network hops

Ø netstat -in

network

An important early step in troubleshooting any NFS performance issue is to learn
as much as possible about the physical layout of the underlying network topology.
How many network hops (i.e. bridges, hubs, routers, switches, etc.) exist between
the client and the server? What is the speed of each link separating these systems?
Do packets sent from the client to the server take the same route through the
network as the packets sent from the server back to the client?

While the network administrator should be the best source of knowledge about the
layout and capabilities of the underlying network, even they are not always up-to-
date on the current state of the network. In many large corporate environments, the
physical network is constantly evolving as new equipment replaces old, new
backbone technologies replace antiquated ones, new systems are added to
existing networks, new subnets are created, etc. Whenever there is any uncertainty
as to the physical layout of the network separating the NFS clients and servers, a
network layout analysis should be performed.

nfs performance tuning for hp-ux 11.0 and 11i systems page 7

Notes:

Page 7July 22, 2002 Copyright 2002 Hewlett-Packard Company

Measure Network Throughput

• Generally speaking, the higher your network throughput,
the better your NFS performance will be

• Eliminate the NFS layer from consideration (if a
throughput problem exists between an NFS client and
server, the problem should affect any IP protocol)

Ø ttcp (http://ftp.arl.mil/ftp/pub/ttcp)

Ø netperf (http://www.netperf.org)

network

Once the layout of the physical network is understood, the next step in validating
your network is to measure the throughput of the connection separating the client
and server. Generally speaking, the faster your network throughput, the better your
NFS performance will be.

When testing the performance of the network for NFS purposes, it is essential to
eliminate the NFS layer from consideration by simply testing the network transport
layer using non-NFS protocols. If a throughput problem exists between an NFS
client and server, the problem would affect any network-based application, not just
NFS. Similarly, when attempting to characterize network throughput, it is important
to eliminate any impact of the local filesystems. It is therefore necessary to select
measurement tools that are not dependent upon NFS or other filesystem resources.

Several tools exist to help system and network administrators measure the
throughput of their network connections. ttcp and netperf are two of the most
prominent tools.

nfs performance tuning for hp-ux 11.0 and 11i systems page 8

Notes:

Page 8July 22, 2002 Copyright 2002 Hewlett-Packard Company

ttcp

The above ttcp output shows this NFS server can send
80MB of TCP/IP data to the client’s discard port (9) in
1.35 seconds (approximately ~59MB/sec).

network

ttcp is a simple, lightweight program that measures the throughput of any network
connection without relying on the filesystem layer. It can generate either UDP or
TCP traffic, and it can be configured to send small or large sized packets to
simulate the behavior of different applications.

Mike Muuss (the author of the “ping” command) and Terry Slattery, of the US Army
Ballistics Research Lab (BRL), developed the ttcp (Test TCP Connection) program in
the early 1980’s. The program now resides in the public domain and is freely
available to download from http://ftp.arl.mil/ftp/pub/ttcp. Also available
from this site is a man page for the ttcp program, which documents the many
available command-line arguments.

It is important to measure the network throughput going in both directions (i.e.
client to server, server to client) to make sure that the bi-directional performance is
comparable.

The ttcp results should not be misinterpreted as potential NFS throughput values.
They merely illustrate the capabilities of the specific network link being tested.

nfs performance tuning for hp-ux 11.0 and 11i systems page 9

Notes:

Page 9July 22, 2002 Copyright 2002 Hewlett-Packard Company

netperf

The above netperf output shows this NFS server was able
to send TCP/IP data to the client at a sustained rate of
~59.5MB/sec during the 10 second test.

network

Netperf is a benchmark utility that can measure the performance of many different
types of networks. Like ttcp, netperf measures throughput without relying on any
filesystem resources. The environments currently measurable by netperf include:

• TCP and UDP via BSD Sockets

• DLPI

• UNIX Domain Sockets

Rick Jones, of HP’s Infrastructure Solutions and Partners group, developed netperf
back in 1993, and he has continued to add new features and capabilities to the
program as new networking technologies became available. The best source of
information is the official netperf website: http://www.netperf.org.

As with ttcp, any netperf results should not be interpreted as potential NFS
throughput values.

nfs performance tuning for hp-ux 11.0 and 11i systems page 10

Notes:

Page 10July 22, 2002 Copyright 2002 Hewlett-Packard Company

Network Troubleshooting Tools

• Determine if a suspected network throughput problem
affects all IP traffic or only NFS

• Eliminate the NFS layer from consideration by using tools
that report on the health of the transport and link layers

Ø netstat(1)

Ø lanadmin(1M)

network

The goal for this phase of the investigation is to determine if a network throughput
problem is affecting all IP traffic or only NFS. HP provides a number of tools to
help detect and analyze network problems. Two frequently used tools for
troubleshooting the network layer are netstat(1) and lanadmin(1M).

nfs performance tuning for hp-ux 11.0 and 11i systems page 11

Notes:

Page 11July 22, 2002 Copyright 2002 Hewlett-Packard Company

Network Troubleshooting Checklist

• Network throughput problems are usually caused by
packets being dropped somewhere on the network

Ø Defective hardware
– network interfaces, cables, switch ports, etc.

Ø Mismatching configuration settings
– make sure interface cards settings match network switch
– speed settings, duplex (i.e. half vs. full)

Ø Collisions

Ø Network switch buffer memory exhaustion

Ø Socket overflows

network

In most cases, network throughput problems are caused by packets being dropped
somewhere on the network. Some of the more common reasons why packets or
requests are dropped include:

• Defective hardware (i.e. network interfaces, cables, switch ports, etc.)

• Mismatching configuration settings between interface cards and network
switch equipment, such as the speed and duplex settings (i.e. half vs. full)

• Collisions (this is typically not a problem with switched networks)

• Switch buffer memory exhaustion

• Socket overflows

In some cases, the only tools that can detect these types of problems are external
analyzers and reporting tools specific to your network hardware.

nfs performance tuning for hp-ux 11.0 and 11i systems page 12

Notes:

Page 12July 22, 2002 Copyright 2002 Hewlett-Packard Company

local filesystem
considerations

• Analyze Filesystem Layout

• Measure Filesystem
Throughput Capabilities

• Filesystem Tuning
Recommendations

The performance of the local filesystems (both on the NFS client and server) can
have just as big an impact to overall NFS performance as the underlying network.
Again, this shouldn’t be a surprise since NFS is an acronym for “Network File
System”. Therefore, when faced with an NFS performance issue, it is a good
idea to perform some “sanity checks” on the underlying filesystems involved before
beginning a detailed investigation into a specific area of NFS.

This section will not be describing the numerous available disk and filesystem
technologies (such as disk striping, RAID, disk arrays, etc.). NFS servers are
allowed to export any local filesystems, and NFS typically performs better with a
faster underlying disk subsystem. There is a wealth of information about the latest
and greatest filesystem technologies available from HP’s IT Resource Center:
http://itrc.hp.com and HP’s documentation repository: http://docs.hp.com.

What will be described is a recommended methodology and set of tools available
for understanding the physical layout of your filesystems, measuring their
throughput, and performing routine filesystem maintenance and troubleshooting.

nfs performance tuning for hp-ux 11.0 and 11i systems page 13

Notes:

Page 13July 22, 2002 Copyright 2002 Hewlett-Packard Company

local
filesystems

Analyze Filesystem Layout

• The layout of the directory hierarchy and the directory
contents on the NFS server can affect performance

• Directory reading and traversal speeds can be influenced
by the contents of the directories being searched

Ø Number of files in the directory

Ø Number of symbolic links in the directory

Ø Symbolic links pointing to automounted directories

When retrieving the contents of an NFS mounted directory, the client will issue
either a combination of READDIR and LOOKUP calls or a series of READDIRPLUS
requests. The larger the directory, the more calls needed to retrieve the contents.
Symbolic links require still more calls because a READLINK is sent to retrieve the
contents of the link. Symbolic links that point to automount managed directories
are rarely a good idea and should be avoided.

Whenever possible, you should try to “flatten out” the directory hierarchy of your
NFS filesystems to achieve a reasonable balance between the number of
directories and the number of files in those directories. The goal is to minimize the
number of NFS calls required by the client to retrieve the contents of any given
directory, while at the same time to arrange the files in such a way as to reduce the
number of directories needing to be searched by a user for a typical operation.

Some applications have restrictions on where data files can reside. Be sure to
check with your application provider if you have any concerns about supported
directory configurations before re-distributing the files used by an application.

nfs performance tuning for hp-ux 11.0 and 11i systems page 14

Notes:

Page 14July 22, 2002 Copyright 2002 Hewlett-Packard Company

local
filesystems

Large Directory Dilemma

Customer Reported Problem

• V-Class system running HP-UX 11.0

•12GB of physical memory

• Dynamic buffer cache (min=3% / max=10%)

Ø “ls -l” in NFS-mounted directory takes 30 minutes
to complete and consumes 98% of the CPU resources

Ø The same system using an 8MB static buffer cache
takes 90 seconds to complete the same command

Question: Why would a simple “ls -l” command issued in a large NFS-mounted
directory take a long time to complete and consume huge amounts of
system resources when a large buffer cache is configured on the client?

Answer: When reading an NFS-mounted directory, an rnode structure must be
allocated for every entry in the directory, and only a fixed number of
rnodes are available on the client (sized by nrnode, which in turn is
sized by ncsize or ninode). Once all free rnodes are used, the system
must begin reusing existing rnodes. In order to reuse an rnode, the
system must first invalidate all pages associated with the rnode from the
buffer cache. This requires the client to perform a serial search of the
entire buffer cache looking for pages to invalidate. When traversing a
directory containing many thousands of entries, the system will need to
search buffer cache many times. With a large buffer cache configured,
these serial searches can consume high amounts of CPU resources.

Fortunately, the buffer cache subsystem has be redesigned in HP-UX 11i
to eliminate this problem. Refer to page 108 for more information.

nfs performance tuning for hp-ux 11.0 and 11i systems page 15

Notes:

Page 15July 22, 2002 Copyright 2002 Hewlett-Packard Company

local
filesystems

Measure Filesystem Throughput

• Generally speaking, the higher your local filesystem
throughput is, the better your NFS performance will be

• Eliminate the NFS layer from consideration (if a filesystem
throughput problem exists it should affect any I/O traffic)

• Use tests that don’t require filesystem resources to run

Ø iozone (http://www.iozone.org)

Ø dd(1)

Once the layout of the server’s filesystems has been analyzed and optimized where
possible, the next step in validating your disk subsystems is to measure the
throughput of the client’s and server’s local filesystems. Generally speaking, the
faster your underlying disk subsystems, the better your NFS performance will be.

An approach similar to the network testing described earlier should be used, where
NFS is removed from consideration. If a filesystem throughput problem exists on
the NFS client or server, the problem should affect any I/O traffic, not just NFS.

The testing utilities should allow the administrator to isolate one type of filesystem
I/O at a time (i.e. test read throughput then write throughput) before mixing I/O
types. Also, the tests themselves should not require any filesystem resources to run
as this could affect the throughput results (i.e. don’t test filesystem write
performance with a test that requires reading from a filesystem).

Two of the available tools that meet these requirements are iozone and dd(1).

nfs performance tuning for hp-ux 11.0 and 11i systems page 16

Notes:

Page 16July 22, 2002 Copyright 2002 Hewlett-Packard Company

iozone local
filesystems

64

25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

4

64

1024

16384

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

T
h

ro
u

g
h

p
u

t (
K

B
yt

es
/S

ec
o

n
d

)

File Size (KBytes)

Record Size
(KBytes)

VxFS Normal Read

400000-450000

350000-400000

300000-350000

250000-300000

200000-250000

150000-200000

100000-150000

50000-100000

One of the better filesystem performance benchmark utilities available is iozone. It
can perform a wide variety of I/O operations, including: read, re-read, write, re-
write, random read and write, etc. It also has many advanced capabilities, such
as: testing with different record lengths, locking the target file during reads and
writes, unmounting/re-mounting filesystems between tests, etc. It can even
generate test results in Microsoft Excel format to simplify graphing the throughput
numbers.

Don Capps, of the HP’s Technical Computing Division, is one of the authors of
iozone. The best source of information about iozone is the dedicated website:
http://www.iozone.org. This site holds the latest source code, which is
available at no cost, as well as program documentation and sample output graphs.
The users guide includes a detailed explanation of the available command-line
options, and instructions for generating Excel  charts using the data you collect.

It is important to measure the local filesystem capabilities of both the client and the
server since both are usually involved in NFS activities. As with the networking
tools described earlier, iozone results do not directly correlate to potential NFS
throughput numbers. They merely reflect the capabilities of the local filesystem.

nfs performance tuning for hp-ux 11.0 and 11i systems page 17

Notes:

Page 17July 22, 2002 Copyright 2002 Hewlett-Packard Company

local
filesystems

dd(1)

server(/big) -> timex dd if=/big/40gig of=/dev/zero bs=32k
1250000+0 records in
1250000+0 records out

real 5:36.58
user 4.90
sys 5:28.01

server(/big) -> timex dd if=/dev/zero of=/big/40gig bs=32k count=1250000
1250000+0 records in
1250000+0 records out

real 5:54.89
user 3.87
sys 5:50.65

Server Local File System Read
Performance = 121.7 Mb/sec

Server Local File System Write
Performance = 115.4 Mb/sec

Difference between 11.0 and 11i

“/dev/zero” is delivered with HP-UX 11i but not with HP-UX 11.0. It
can be created with the command “mknod /dev/zero c 3 4”

The dd(1) command was originally developed to facilitate the duplication of disk
drives by transferring their contents to magnetic tape. However, since it has the
ability to read from any input device and write to any output device, it is ideal for
generating disk I/O requests to specific filesystems. Also, since it allows the user to
control the record size used for the I/O transactions, dd can be used to simulate a
wide variety of applications.

When testing filesystem throughput, dd can be directed to read from or write to the
special file /dev/zero, thereby avoiding any physical disk read and write
requests. On 11.0 systems /dev/zero does not exist, but can be built via the
mknod(1M) command. Once built, reads from /dev/zero always returns a buffer
full of zeroes. The file is of infinite length, so the reading application needs to
specify the desired amount of data. Writes to /dev/zero are always successful,
but the written data is discarded.

NOTE: Avoid using the “ibs” and “obs” options to specify input and output block
sizes. When these options are specified, dd performs internal data conversions
that can dramatically impact the throughput numbers. Use the “bs” option instead.

nfs performance tuning for hp-ux 11.0 and 11i systems page 18

Notes:

Page 18July 22, 2002 Copyright 2002 Hewlett-Packard Company

local
filesystems

Filesystem Recommendations (part 1)

• Use VxFS filesystems whenever possible

• Use block size of 8KB if possible, otherwise use 1KB

• When using VxFS 3.3, tune with vxtunefs(1M),
otherwise use VxFS 3.1

• Specify 16MB logfile size via “mkfs –o logsize”
i.e. 2048 (8KB block size) or 16348 (1KB block size)

VxFS filesystems are recommended over HFS filesystems on both NFS clients and
servers. VxFS filesystems have a huge advantage over their HFS counterparts
because of the way VxFS interacts with buffer cache. VxFS filesystems track their
buffer cache usage on a file-by-file basis, which allows the kernel to invalidate
VxFS files from the cache much faster than HFS.

An 8KB block size should be used if possible. While this might result in wasted
space if the filesystem is comprised mainly of very small files, the 8KB block size
allows VxFS to perform “block” reads when servicing NFS read requests.

If you wish to use VxFS 3.3 in your environment, you should familiarize yourself
with the vxtunefs(1M) command. In many situations, an un-tuned VxFS 3.3
filesystem will perform much worse than a similar VxFS 3.1 filesystem.

When building the VxFS filesystems on your NFS server, the maximum intent log
size (16MB) should be specified, as this allows the largest number of requests to be
pending in the logfile before any intent log maintenance is required by the kernel.

nfs performance tuning for hp-ux 11.0 and 11i systems page 19

Notes:

Page 19July 22, 2002 Copyright 2002 Hewlett-Packard Company

local
filesystems

Filesystem Recommendations (part 2)

• Mount filesystems with “–o delaylog” if possible

• Monitor fragmentation via the fsadm –D –E command

• De-fragment filesystems via the fsadm –d –e command

• Monitor filesystem utilization via the bdf(1M) command
Ø don’t let critical filesystems get below 10% free space

• Enable immediate disk reporting via scsictl(1M)

The “–o delaylog” mount option should be specified if your environment allows it.
In delaylog mode, some system calls return before the intent log is written. This
improves the performance of the system, but some changes are not guaranteed
until a short time later when the intent log is written.

VxFS filesystems can get fragmented with heavy usage over time. Performance can
be severely impacted on very fragmented volumes. It is therefore important to
monitor the fragmentation level of your critical exported filesystems and periodically
de-fragment them via the fsadm(1M) command.

It is also important to monitor the utilization of critical filesystems. Care should be
taken to ensure that these filesystem resources are not exhausted.

For those SCSI devices where immediate disk reporting is available (such as the
SC10 disks in an FC-60 array), use the scsictl(1M) command to enable this feature.

nfs performance tuning for hp-ux 11.0 and 11i systems page 20

Notes:

Page 20July 22, 2002 Copyright 2002 Hewlett-Packard Company

OS patching
considerations

• Performance Enhancing
Defect Fixes

• Performance Enhancing
Functionality Added

• Dependent Patches

• Dependent Subsystems

NFS continues to evolve over time. The ONC+ offering that shipped on HP-UX 11i
is a far superior product in terms of functionality, stability, and performance
compared to the ONC+ product that shipped with the HP-UX 11.0 release. This
does not imply that improvements in NFS are only made as new versions of the
operating system are introduced – far from it. HP’s NFS lab continually strives to
improve its products on the existing supported OS releases by distributing patches
containing defect fixes and functionality enhancements.

Since NFS has so many dependencies on other components of the system, it comes
as no surprise that the list of dependent patches is lengthy. It is very important to
keep the patch levels of all the underlying subsystems (i.e. network, buffer cache,
transport, etc.) current since a defect in those subsystems can negatively impact
NFS behavior and performance.

nfs performance tuning for hp-ux 11.0 and 11i systems page 21

Notes:

Page 21July 22, 2002 Copyright 2002 Hewlett-Packard Company

Performance Enhancing Defect Fixes

• Most NFS mega-patches contain some defect fixes that
directly impact performance, for example:

Ø JAGad14221
Client performance is degraded as shown by "nfsstat -c", it
makes unnecessary GETATTR calls for each read or write on files
opened with synchronous I/O flags set; and synchronous I/O
mode remains in effect for subsequent opens on an NFS file
opened once with synchronous I/O flags set.

Ø JAGad16541
CPU time is wasted by unnecessary calls to compare_cred
function in NFS PV3 client code

patching

The NFS lab releases mega-patches quarterly. These patches frequently include
defect fixes that impact performance as well as behavior.

nfs performance tuning for hp-ux 11.0 and 11i systems page 22

Notes:

Page 22July 22, 2002 Copyright 2002 Hewlett-Packard Company

Performance Enhancing Functionality
Added in Patches

• Many NFS components have been added to the HP-UX
11.0 release after the original release, including:

Ø AutoFS

Ø NFS over TCP/IP

Ø NFS PV3 read and write buffer sizes increased from
a maximum of 8KB to 32KB

patching

In addition to defect fixes, on occasion the NFS lab includes new functionality in
their mega-patches. Many of these enhancements directly impact the performance
of our NFS implementation.

In March 2000, the NFS lab shipped patches that allowed NFS to run over the
TCP/IP transport protocol. This allows NFS to behave more reliably and perform
better over wide area networks. At the same time, the lab increased the read and
write buffer sizes of the PV3 mount points from a maximum size of 8KB to the
industry standard 32KB. This increased buffer size helps HP’s implementation
achieve much higher read and write throughput numbers than with our previous
8KB limitation.

nfs performance tuning for hp-ux 11.0 and 11i systems page 23

Notes:

Page 23July 22, 2002 Copyright 2002 Hewlett-Packard Company

Dependent Patches for 11.0 NFS
(as of 4/12/2001)

• PHKL_18543 – Kernel Bubble

• PHKL_20016 – Hardware Fix

• PHCO_22269 – SAM

• PHNE_22397 – ARPA

• PHKL_22432 – VxFS 3.1

• PHNE_22566 – STREAMS

• PHKL_22589 – LOFS

• PHKL_22840 – syscalls

• PHCO_23770 – libc

• PHKL_23002 – pthread

• PHCO_23092 – libc header

• PHCO_23117 – bdf(1M)

• PHKL_23226 – syscalls

• PHKL_23628 – shmem

• PHCO_23651 – fsck_vxfs

• PHCO_19666 – libpthread

patching

Since NFS has so many dependencies with other components of the system, it
should comes as no surprise that the list of dependent patches is lengthy.

Patches are superceded frequently so the above list of patches may be out of date
by the time you view this presentation. It is merely provided as an example to
show how many different subsystems NFS depends upon for correct functionality
and performance.

Be sure to contact HP support to obtain a current set of NFS patches and their
dependencies for your specific operating system.

nfs performance tuning for hp-ux 11.0 and 11i systems page 24

Notes:

Page 24July 22, 2002 Copyright 2002 Hewlett-Packard Company

Dependent Subsystems

• Underlying Filesystems –
VxFS, HFS, CDFS, LOFS

• Commands – mount,
umount, bdf, df, ls, etc.

• Libraries – libc,
libpthread, etc.

• Buffer Cache

• Kernel Bubble

• LAN Common

• Network Link Specific –
Ethernet, Gigabit, Token
Ring, ATM, etc.

• Network Transport

• SAM

patching

It is very important to keep the patch levels of all the underlying subsystems (i.e.
network, buffer cache, transport, etc.) current since a defect in those subsystems
can negatively impact NFS behavior and performance.

nfs performance tuning for hp-ux 11.0 and 11i systems page 25

Notes:

Page 25July 22, 2002 Copyright 2002 Hewlett-Packard Company

hostname resolution

• What is it and why should
you care about it?

• Which hostname resolution
mechanisms are used in
your environment?

• Are the hostname
resolution servers
responding quickly to
requests?

• Do the servers return
accurate data?

At some point, nearly every component of NFS needs to resolve an IP address to a
hostname, or vice versa. It is therefore critical to familiarize yourself with the
hostname resolution mechanisms used in your NFS environment. Any servers
providing hostname resolution services should respond quickly to requests and
return accurate information.

nfs performance tuning for hp-ux 11.0 and 11i systems page 26

Notes:

Page 26July 22, 2002 Copyright 2002 Hewlett-Packard Company

hostname
resolution

What is hostname resolution and
why do I care about it?

•Hostname resolution is the mapping of a computer’s
hostname to its network address (typically an IP address)
and vice versa.

•At some point, most every component of NFS needs to
resolve a hostname or IP address
Ø NFS mount(1M) command

Ø rpc.mountd

Ø rpc.lockd & rpc.statd

Ø automount & AutoFS

Most network-based applications, particularly client/server based applications, rely
on hostname resolution services to function correctly. NFS is no exception.

Whether it be an NFS client system attempting to mount a remote filesystem
(manually or via an automounter), an NFS server system processing the mount
request and determining whether the client is allowed to access the requested
filesystem, or a client application attempting to lock an NFS-mounted file, hostname
resolution is involved.

nfs performance tuning for hp-ux 11.0 and 11i systems page 27

Notes:

Page 27July 22, 2002 Copyright 2002 Hewlett-Packard Company

hostname
resolution

What hostname resolution
mechanism(s) do you use?

• Verify which hostname resolution service(s) used in your
environment by checking the “hosts” entry in the
/etc/nsswitch.conf file on both clients and servers

Ø DNS

Ø NIS

Ø NIS+

Ø /etc/hosts

There are several hostname resolution mechanisms available on HP-UX:

• DNS

• NIS

• NIS+

• /etc/hosts

Each mechanism has its own specific configuration requirements and sizing issues.

It is important to familiarize yourself with the hostname resolution method (or
methods) used in your environment. This allows you to make an informed decision
about where to begin troubleshooting when a hostname resolution issue arises.

nfs performance tuning for hp-ux 11.0 and 11i systems page 28

Notes:

Page 28July 22, 2002 Copyright 2002 Hewlett-Packard Company

hostname
resolution

Are the hostname resolution servers
responding quickly to requests?

• Any latency involved in retrieving hostname or IP address
information can negatively impact NFS performance

• Verify that lookup requests are resolved quickly

Ø nslookup(1)
– Supports DNS, NIS, /etc/hosts
– Doesn’t support NIS+

Ø nsquery(1)
– Supports DNS, NIS, NIS+, /etc/hosts

HP-UX supports many different directory service back-ends for hostname resolution
data – DNS, NIS, NIS+, and /etc/hosts. Each of these repositories has
different amounts of overhead associated with retrieving hostname data from them.
Any latency involved in retrieving this information can negatively impact NFS
performance.

The nslookup(1) and nsquery(1) commands can be used to test the performance of
your hostname resolution servers.

nfs performance tuning for hp-ux 11.0 and 11i systems page 29

Notes:

Page 29July 22, 2002 Copyright 2002 Hewlett-Packard Company

hostname
resolution

Do the hostname resolution servers
respond with accurate information?

• Even when the repository servers are responding quickly,
if they don’t contain the requested information, then NFS
behavior and performance can be severely impacted

• Do your repository servers contain information about
every NFS client and server system in your
environment?

• Is the hostname-to-address information up-to-date?

• Verify with nslookup(1) and nsquery(1)

Even when the hostname repositories are responding very quickly to resolution
requests, if they don’t have the requested data or if they return inaccurate data, the
results can be devastating to NFS behavior and performance. Verify that your
repository servers contain up-to-date information for all the NFS client and server
systems in your environment.

The nslookup(1) and nsquery(1) commands can be used to query the hostname
resolution servers, allowing you to verify the accuracy of the information returned.

nfs performance tuning for hp-ux 11.0 and 11i systems page 30

Notes:

Page 30July 22, 2002 Copyright 2002 Hewlett-Packard Company

user-space daemons
and kernel threads

• biod

• nfsd

• rpc.mountd

• rpc.lockd & rpc.statd

NFS is a true “client-server” application, yet most of the tuning and troubleshooting
information currently available (i.e. white papers, web pages, etc.) pertains only to
NFS servers. There are many components of NFS that are specific to the client,
and some administrators tend to forget that without a well-tuned client it doesn’t
really matter how fast your server is – you’ll still end up with poor NFS
performance.

In order to obtain optimal NFS performance, both the client and the server should
be sized and tuned appropriately for an application’s needs. This involves making
sure that both biods (client) and nfsds (server) are considered. The rpc.mountd
daemon, which runs on the server only, has specific environmental considerations
that should be verified. The rpc.lockd and rpc.statd daemons run on both clients
and servers, so both systems should be configured properly to run these daemons
effectively.

nfs performance tuning for hp-ux 11.0 and 11i systems page 31

Notes:

Page 31July 22, 2002 Copyright 2002 Hewlett-Packard Company

biod daemons

• What are they?

• How do they work? in the
READ and WRITE cases?

• Why not just launch
hundreds of biods?

• Why would a client
perform better with no
biods running?

• How many biod daemons
should your client run?

• Troubleshooting

This section describes how the biod daemons work in both the read and write
scenarios. It explains why running a large number of biods does not necessarily
result in better performance. It also covers the various factors involved in selecting
the appropriate number of biod daemons to run on any given client. Finally, it
describes the tools and methods available for troubleshooting biod-related
problems.

nfs performance tuning for hp-ux 11.0 and 11i systems page 32

Notes:

Page 32July 22, 2002 Copyright 2002 Hewlett-Packard Company

What are biod daemons?

•Biod daemons are the primary NFS client-side daemon

•Their sole purpose is to try to increase the performance of
remote file access by providing read-ahead and write-
behind semantics on the NFS client

• In most cases, but not all, they can dramatically improve
NFS read and write performance

biod

Difference between 11.0 and 11i

Default number of biods on 11.0 = 4 Default on 11i = 16

Biods are the primary NFS client-side daemon. Although they are implemented as
user-space processes, they spend the majority of their time running in the kernel.
Their sole purpose is to try to increase the performance of remote file access by
providing read-ahead and write-behind semantics on the NFS client. In most cases,
but not all, they can dramatically improve NFS read and write performance.

Determining the appropriate number of biod processes to run on a specific NFS
client, like most every other performance issue, is not easily defined and usually
falls into the category of ‘It depends’. Some clients will perform best with 4 biods
while others work better with 16. Still other clients perform best when no biod
daemons are running.

The default number of biods launched at boot time has changed at 11i. 11.0
systems launch 4 biods by default, while 11i NFS clients launch 16.

nfs performance tuning for hp-ux 11.0 and 11i systems page 33

Notes:

Page 33July 22, 2002 Copyright 2002 Hewlett-Packard Company

How do they work in the READ case?

1. Process checks buffer cache. If data is present it’s read from cache.

2. If data is not in the cache the process makes the initial NFS READ
call and sleeps waiting for the data to arrive from the NFS server.

3. When the data arrives it is placed in client’s buffer cache. The
sleeping process is awoken and reads from the cache.

4. If the process continues reading sequentially and biods are running,
the biods issue NFS READ calls to retrieve sequential data and
populate the client’s buffer cache on behalf of the reading process.

biod

GOAL: Keep the client’s buffer cache populated with data and
avoid having the client block waiting for data from the server

When the client needs to read data from an NFS mounted file, the client will first
check its local buffer cache to see if the block of data is present in the cache. If it
is then the read is satisfied without generating an NFS request. If the data is not
present then an NFS READ call will be made to retrieve this data. If no biods are
running then the process requesting the data will generate the NFS read call in its
own process context.

If biod daemons are present then the client process will send the initial read request
in its own context and then block to allow future read requests to be handled by the
biods. Once the biods retrieve the data from the server, the data is staged in the
client’s buffer cache and the blocking process is notified that the data is available.
In addition, several more sequential read requests will be made on behalf of the
process by the biods in the hopes of populating the client’s buffer cache with the
data that the reading process will be wanting next. Therefore, the goal of the
biods in the read case is to keep the client’s buffer cache populated with the data
that the reading processes need and avoid having those processes block waiting
for the data to be retrieved from the NFS server.

nfs performance tuning for hp-ux 11.0 and 11i systems page 34

Notes:

Page 34July 22, 2002 Copyright 2002 Hewlett-Packard Company

How do they work in the WRITE case?

1. Process writes data to buffer cache. If biods are not running, the
writing process sends the data to the server and waits for a reply.

2. If biods are running, the writing process does not block. It continues
writing data to buffer cache while the biods work to drain the buffer
cache, sending data to the NFS server and waiting for replies.

3. While the writing process will not block during the write() system call
(assuming buffer cache space is available), it will block when it
needs to flush, sync, or close the file. In these cases the process
blocks until all data has been successfully written to the server.

biod

GOAL: Keep the client’s buffer cache drained so that when a writing
process flushes a file it only needs to block a short amount of
time while any remaining data is posted to the NFS server

When the client needs to write data to an NFS mounted file, assuming the client is
writing in asynchronous mode (which is the default behavior), the client will write
the data to its local buffer cache. Once the buffer cache data has been written, if
no biod daemons are running then the process writing the data will generate an
NFS write request in its own process context to push the data to the NFS server.

If biods are present then the writing process will post its data to the local buffer
cache and continue writing while the data is sent to the NFS server by a biod.
Several more biods continue to pull data from the client’s buffer cache and send it
to the server, allowing the writing process to continue writing data to buffer cache
as quickly as it can. While the writing process itself will not block during the actual
write() system call, it will block when it needs to flush, sync, or close the file. In
these cases the process sleeps until all data has been written to the server.
Therefore, the goal of the biods in the write case is to drain the client’s buffer cache
so that when the writing process is finished writing and needs to flush, sync, or
close the file, it only needs to block for a short amount of time while any remaining
data is sent to the server.

nfs performance tuning for hp-ux 11.0 and 11i systems page 35

Notes:

Page 35July 22, 2002 Copyright 2002 Hewlett-Packard Company

Why not just launch hundreds of
biods and be done with it?

• 11.0 client’s NFS read() and write() paths use the global filesystem
semaphore to protect key kernel data structures and I/O operations

• Acquiring the filesystem semaphore effectively locks out all other
filesystem related operations on the system – not just other NFS
requests but requests for all filesystems (VxFS, HFS, CDFS, etc.).

• The overhead involved with contending for and acquiring the
filesystem semaphore becomes detrimental to NFS and general
filesystem performance when many biods run on 11.0 clients.

biod

Difference between 11.0 and 11i

Filesystem semaphore contention drastically reduced in 11i

Based upon the earlier description of what the biods do, one might conclude that
the more biods running the better your NFS client will perform – so why not just
launch 200 biods and be done with it?

On HP-UX 11.0 NFS clients this is not a good idea because the client’s read() and
write() paths use the global filesystem semaphore to protect many kernel data
structures and NFS I/O operations. What this means is that whenever a biod
processes a read or write request it must acquire the filesystem semaphore, which
effectively locks out all other filesystem related operations on the system – not just
other NFS requests but requests for all filesystems (i.e. VxFS, HFS, NFS, CDFS,
etc.). Therefore, if an 11.0 NFS client runs a large number of biod daemons, the
overhead involved with contending for and acquiring the filesystem semaphore
becomes detrimental to NFS and general filesystem performance.

This filesystem semaphore contention issue is drastically reduced in 11i, which
means that an 11i client could potentially benefit from running more biods than an
11.0 client.

nfs performance tuning for hp-ux 11.0 and 11i systems page 36

Notes:

Page 36July 22, 2002 Copyright 2002 Hewlett-Packard Company

Why would an NFS client perform
better with NO biods running?

• If biods are running then the number of biods roughly defines the
maximum number of simultaneous outstanding requests possible.

• If NO biods are used, the number of processes simultaneously
reading from or writing to the NFS-mounted filesystems roughly
defines the maximum number of outstanding requests possible.

• Does your NFS client have more reading/writing processes than
biods? If so, you might get better NFS performance with no biods.

biod

GOAL: To achieve optimal throughput, maximize the number of
simultaneous requests “in flight” to the NFS servers

Since any process on the NFS client that tries to read from or write to an NFS
mount point will block if biod processes are running (to allow the biod processes to
perform the I/O on their behalf), it stands to reason that the maximum number of
simultaneous I/O operations an NFS client with biods running can perform is equal
to or near the number of running biods. In other words, if 4 biods are running on
the client then in most cases only 4 NFS read or write calls can occur at any one
time.

If an NFS client has a number of processes simultaneously trying to read from
and/or write to NFS servers, and this number of processes is greater than the
number of running biods, it is possible that the client would experience better NFS
performance if no biods were running. For example, if there are 4 biods running
on the client but there are 100 processes trying to simultaneously read and write to
the NFS servers, these 100 processes will block and wait for the 4 biods to service
these requests on their behalf. If, however, there were no biod daemons running,
each of the 100 processes would send their NFS requests to the respective servers
on their own behalf, potentially resulting in higher throughput.

nfs performance tuning for hp-ux 11.0 and 11i systems page 37

Notes:

Page 37July 22, 2002 Copyright 2002 Hewlett-Packard Company

Why else would you consider
disabling biods on your NFS client?

• Avoid blocking access to all servers when one is down
Ø All biods can block on a dead server and hang access to any working servers

• Applications performing mainly non-sequential reads
Ø Read-ahead data will likely be ignored – wasted overhead

• Applications performing primarily synchronous I/O
Ø Biods are disabled for synchronous I/O requests

• Relax 25% buffer cache limitation for asynchronous I/O
Ø This buffer cache limitation is disabled when biods are not running

• Client application locks the NFS file being written to
Ø Kernel disables buffer cache for the locked file – forcing synchronous behavior

biod

Avoid blocking access to all servers when one is down
If one NFS server stops responding while biods are running, all biods can potentially hang
waiting for that server to respond, effectively stopping all NFS I/O – even to available servers.
If no biods are running then client processes would still be able to access any available servers.

Applications performing mainly non-sequential reads
If the client applications are performing primarily non-sequential reads, any data pre-fetched by
the biods will likely be unwanted by the applications, resulting in wasted overhead from
unnecessary read-aheads.

Applications performing primarily synchronous I/O
When an application opens a file with the O_SYNC, O_DSYNC, or O_RSYNC flags, the kernel
effectively disables the use of biods for any reads and writes to the file.

Relax 25% buffer cache limitation for asynchronous I/O
The NFS client is allowed to use a maximum of 25% of buffer cache memory for staging
asynchronous write data. This 25% limit is only enforced when biods are running.

Client application locks the NFS file being written to
When an application locks an NFS-mounted file, any read or write requests made to this file
will be performed synchronously. In effect, buffer cache and biods are disabled for that file
when a lock is present, so no benefit is gained by running biod daemons in this case.

nfs performance tuning for hp-ux 11.0 and 11i systems page 38

Notes:

Page 38July 22, 2002 Copyright 2002 Hewlett-Packard Company

How many biods should your NFS
client run?

• Starting too few biods can result in poor read/write performance

• Starting too many can lead to semaphore contention on 11.0 clients

• Since filesystem semaphore usage has been greatly reduced in 11i,
don’t be afraid to experiment with running more biods on 11i clients

• Don’t be afraid to experiment with running 0 biods

• Your mileage will vary so it is important to measure performance and
tune according to your application’s needs

biod

Recommended INITIAL Value: NUM_NFSIOD=16

The number of biods is configured via the NUM_NFSIOD variable in the
/etc/rc.config.d/nfsconf file.

Starting too few biods can result in poor read performance because not enough
read-ahead requests are occurring to keep the client’s buffer cache populated. It
can also result in poor write performance if too many requests are sitting in the
client’s buffer cache waiting to be sent to the server. Starting too many biods can
result in poor performance on 11.0 systems because of filesystem semaphore
contention.

The best course of action is to choose a reasonable starting point for the number of
biod daemons and then experiment with raising and lowering the number until the
optimal value is identified. Don’t be afraid to experiment with 0 biods, particularly
if your client falls into one of the categories described in the previous two slides.

For most HP-UX 11.0 clients, a good starting point for the number of biods is 16.
On 11i clients, higher throughput numbers may be achieved with more biods since
it doesn’t suffer from the filesystem semaphore contention issue.

nfs performance tuning for hp-ux 11.0 and 11i systems page 39

Notes:

Page 39July 22, 2002 Copyright 2002 Hewlett-Packard Company

Troubleshooting biods (part 1)

• NFS Client Panics
Ø Analyze the crash dump with Q4 to determine root cause

• NFS Client Application Hangs
Ø Look for biod traffic in a network trace

Ø Examine the running biod daemons on the live system with Q4

Ø Monitor “nfsstat –c” output for biod traffic

Ø When all else fails, TOC the system and analyze dump with Q4

biod

NFS Client Panics
Analyzing HP-UX system dumps is a complex and involved process, which is
typically performed only by experienced HP support personnel or lab engineers.
If your NFS client experiences a system panic, your best course of action is to
contact HP support and request that your system memory dump be analyzed.

NFS Client Application Hangs
A network trace will show if any biods are sending requests to the server.

Q4 can be used by experienced system administrators or HP support personnel
to examine the running biod daemons on the live system.

Successive nfsstat outputs can reveal whether outbound client calls are being
sent.

When all else fails, the system may need to be TOC’d, and the memory dump
analyzed by HP support personnel.

nfs performance tuning for hp-ux 11.0 and 11i systems page 40

Notes:

Page 40July 22, 2002 Copyright 2002 Hewlett-Packard Company

Troubleshooting biods (part 2)

• Poor NFS Application Performance

Ø Monitor nfsstat –c output for potential performance problems

Ø Use nfsstat –m output to monitor smooth round trip times

Ø Look for delays or retransmissions in a network trace

Ø Use tusc utility to look for delays at the system call level
ftp://ftp.cup.hp.com/dist/networking/misc/tusc.shar

Ø Use kernel profiling tools, such as kgmon, to understand where
the client’s kernel is spending the majority of its time

biod

Poor NFS Application Performance
“nfsstat –c” output can reveal if retransmissions, badxids (when a server replies
to the same request multiple times), etc. are occurring. These can indicate that
NFS requests are being dropped by the client, the server, or the network.

“nfsstat –m” output includes the smooth round trip timers maintained for the
various NFS call types (see example on page 105). Examining these values
can reveal which NFS filesystems are experiencing better performance than
others.

A network trace can help determine if application delays are caused by the
client not sending requests quickly enough or the server taking too long to reply.

The tusc utility can show which system calls are experiencing delays. This data
can help developers understand where in the application the delay is occurring.

Kernel profiling information can reveal which functions the kernel is spending
the bulk of its time running. This data can only be collected and analyzed by
qualified HP support personnel.

nfs performance tuning for hp-ux 11.0 and 11i systems page 41

Notes:

Page 41July 22, 2002 Copyright 2002 Hewlett-Packard Company

nfsd daemons and
threads

• What are they?

• How do they work in the
READ and WRITE cases?

• Why are more nfsds
launched than configured
in NUM_NFSD?

• How many threads service
TCP requests?

• How many nfsds should
you run?

• Troubleshooting

This section discusses the various daemons and threads that handle server-side NFS
requests. It describes how these daemons and threads work in both the read and
write scenarios. It explains how they work differently when servicing NFS/UDP
requests vs. NFS/TCP requests. It also covers the various factors involved in
selecting the appropriate number of nfsd daemons to run on a given server.
Finally, it describes the tools and methods available for troubleshooting nfsd and
nfsktcpd problems.

nfs performance tuning for hp-ux 11.0 and 11i systems page 42

Notes:

Page 42July 22, 2002 Copyright 2002 Hewlett-Packard Company

nfsdWhat are the various “nfsd”
daemons and kernel threads?

• nfsd Services NFS/UDP requests and manages
NFS/TCP connections

• nfsktcpd Services NFS/TCP requests

• nfskd Currently serves no useful purpose

Difference between 11.0 and 11i

Default UDP nfsds on 11.0 = 4 Default on 11i = 16

nfsd
The nfsd daemons are primarily used to service NFS/UDP requests. When
NFS/TCP is enabled, a single nfsd is also used to manage the NFS/TCP
connection establishment and teardown functions.

nfsktcpd
The nfsktcpd daemon is the process where NFS/TCP kernel threads associate
themselves. The process is dynamically created by the NFS server’s kernel the
first time it receives a request from an NFS/TCP client. Since the process is
created in the kernel, the parent pid will be “0” and it cannot be killed.

nfskd
The nfskd daemon currently serves no useful purpose on HP-UX systems. It was
originally intended to be the UDP-equivalent of nfsktcpd – i.e. the daemon
process where NFS/UDP kernel threads would associate themselves. HP has
not implemented server-side UDP kernel threads at this time so this daemon
remains idle. Like nfsktcpd, it is dynamically created and cannot be killed.

nfs performance tuning for hp-ux 11.0 and 11i systems page 43

Notes:

Page 43July 22, 2002 Copyright 2002 Hewlett-Packard Company

nfsdHow do they work in the READ case?

1. The nfsd checks the server’s buffer cache for the requested data. If
data is present it’s read from cache and returned to the client.

2. If data is not in the cache the nfsd schedules a READ call to the
underlying filesystem (VxFS, HFS, CDFS, etc.) and sleeps waiting for
the data.

3. When the data arrives it is placed in server’s buffer cache. The
sleeping nfsd process is awoken and sends the data to the client.

GOAL: Retrieve the data requested by the NFS clients from the
server’s buffer cache or physical disks as quickly as possible

When a client system needs to read data from an NFS mounted file, it will first
check its local buffer cache to see if the block of data is already present in cache.
If it is then the read is satisfied without generating an NFS request. If the data is
not present then an NFS READ call will be made to retrieve this data.

When the server receives the READ request it first checks it’s buffer cache to see if
the requested data is already present in it’s cache. If so, it sends the data back to
the client without performing a physical disk I/O.

If the requested data is not present in the server’s buffer cache, the nfsd schedules a
READ from the underlying filesystem (i.e. VxFS, HFS, CDFS, etc.) and blocks
waiting for the disk subsystem to retrieve the data. When the data is returned from
the filesystem it is placed in server’s buffer cache. The sleeping nfsd process is
notified that the data is available. The nfsd retrieves the data from cache and
sends it to the waiting NFS client.

nfs performance tuning for hp-ux 11.0 and 11i systems page 44

Notes:

Page 44July 22, 2002 Copyright 2002 Hewlett-Packard Company

nfsdHow do they work in the WRITE case?

1. Determine if the client is writing in synchronous or asynchronous
mode

2. Synchronous – schedule the WRITE to the underlying filesystem, sleep
until the call completes, then wake up and send a reply to the client

3. Asynchronous – post the data to cache and respond immediately

PV2 – Get the data posted to physical disk before the server crashes
PV3 – Get the data posted to physical disk before the client sends a

COMMIT, requiring the data to be flushed to stable storage.

GOAL: Post the data to the server’s buffer cache as quickly as
possible and allow the client to continue. Flush the data to
physical disk in the background as quickly as possible.

The nfsds (or kernel threads) behave differently depending up on whether the NFS
client is sending its write requests asking for synchronous or asynchronous
semantics.

In synchronous mode (the default behavior for NFS PV2), the nfsds take the write
data from the request and schedule a disk I/O operation to get the data posted to
stable storage as quickly as possible. The nfsd blocks waiting for the I/O to
complete before responding to the client and allowing it to continue.

In asynchronous mode (the default behavior for PV3, and can be enabled on PV2
by exporting the filesystem with the “–async” option), the nfsd takes the data from
the request, posts it to the server’s buffer cache, and sends a reply immediately
allowing the client process to continue before the data is actually posted to stable
storage. In the PV2 case, the NFS server’s goal is to get the data posted to
physical disk before the server experiences a system crash. In the PV3 case, the
NFS server tries to flush the data to stable storage before the client sends a
COMMIT request, since nfsd is not allowed to reply to a COMMIT request until all
data specified in the request is posted to physical disk.

nfs performance tuning for hp-ux 11.0 and 11i systems page 45

Notes:

Page 45July 22, 2002 Copyright 2002 Hewlett-Packard Company

nfsdWhy are more nfsds launched than
configured in NUM_NFSD?

• Number of NFS/UDP daemons must be equally divisible
by the number of CPUs due to processor affinity

• If NFS/TCP is enabled – one additional nfsd is launched

Example – 8 CPU system, NFS/TCP enabled, 100 nfsds
requested – you will actually get 105 nfsds

100 (requested nfsds) / 8 (CPUs) = 12.5
13 (rounded) * 8 = 104 + 1 (TCP) = 105

There are several factors that determine the number of nfsd processes that get
launched on any given HP-UX 11.0 or 11i NFS server:

• The number of daemons requested on the nfsd command line or specified
via the NUM_NFSD variable in the /etc/rc.config.d/nfsconf file

• The number of CPUs in the server

• Whether NFS/TCP is enabled on the server

The number of NFS/UDP daemons must be a number equally divisible by the
number of CPUs because the kernel enables processor affinity for the nfsds at
initialization time. The affinity mode is advisory, meaning that the daemons can
run on a CPU other than the one they were originally bound to. The kernel
automatically increases the number of nfsds to the next number which is evenly
divisible by the number of CPUs.

If NFS/TCP is enabled, an additional nfsd daemon is launched to manage the TCP
connection establishment and teardown functions.

nfs performance tuning for hp-ux 11.0 and 11i systems page 46

Notes:

Page 46July 22, 2002 Copyright 2002 Hewlett-Packard Company

nfsdWhat happens at nfsd start time?

1. Stream Head Buffer Size Calculated

2. Per-CPU nfsd Pools Created

3. rpcbind(1M) Bindings Established

4. Number of nfsds Increased if Needed

5. Stream Head Replicated per-CPU

6. nfsds Bind to per-CPU Pools

When the nfsds are started, several important things happen:

1. Stream Head Buffer Size Calculated
The size of the stream head buffer is calculated based on the number of nfsds launched. This
buffer size ranges between 64KB and 512KB. The size increases by 8KB for each new nfsd
launched. This means that at least 64 nfsds must be running in order for the kernel to allocate
the maximum allowable buffer space for each stream head (i.e. 64 nfsds * 8KB = 512KB).

2. Per-CPU nfsd Pools Created
A separate pool of nfsds is created for each CPU.

3. rpcbind(1M) Bindings Established
The daemons register support for NFS PV2 and PV3 for both UDP and TCP transport protocols.

4. Number of nfsds Increased if Needed
The kernel allocates an equal number of nfsds to each per-CPU pool.

5. Stream Head Replicated per-CPU
A separate stream head is allocated for each CPU, allowing each CPU to maintain a separate
queue of requests to process.

6. nfsds Bind to per-CPU Pools
The individual nfsd daemons are evenly distributed among the per-CPU pools.

nfs performance tuning for hp-ux 11.0 and 11i systems page 47

Notes:

Page 47July 22, 2002 Copyright 2002 Hewlett-Packard Company

nfsdWhat happens when an NFS request
arrives on the server?

• The kernel determines which per-CPU stream head to
queue the request on

• A single nfsd is awoken to handle the request

• CPUs can “task steal” – if an nfsd is ready to execute but
the CPU it is bound to is busy, a different CPU may
“steal” the waiting nfsd and execute it

• nfsds can “task steal” – an nfsd may steal requests from
other CPU’s queues

When an NFS request arrives on a multi-CPU server, the kernel must first determine
which CPU’s stream head to queue the request on. Remember that the server
creates separate pools of nfsds for each CPU and allocates an equal number of
daemons to each queue. Once the kernel decides where to queue the request, a
single nfsd is awoken to process the request.

If an nfsd is ready to execute but the CPU it is associated with is busy, an available
CPU may “steal” the nfsd and execute it. In addition, once an nfsd finishes
processing a request, before returning to sleep it will check the queue of the CPU it
is bound to to see if any other requests are waiting to be processed. If it finds a
request waiting it will service it. If the nfsd doesn’t find a request in the CPU’s
queue, the nfsd will then check the queues of the other CPUs to see if any requests
are waiting in their queues. If it finds a request waiting to be serviced, the nfsd
may “steal” the request from the queue of a different CPU and execute it. This is
commonly referred to as “task stealing.”

nfs performance tuning for hp-ux 11.0 and 11i systems page 48

Notes:

Page 48July 22, 2002 Copyright 2002 Hewlett-Packard Company

nfsdWhich nfsd is used by NFS/TCP?

The nfsd process used by NFS/TCP has a parent process ID of 1 (init)
and has no child processes. In this example – TID 1829 (PID 1809).

Looking at the above screen output, you see the entire list of daemons and kernel
threads used for servicing NFS/UDP and NFS/TCP requests. The nfsds responsible
for servicing UDP requests are using TID numbers 1833, 1834, 1836, and 1840.
The nfsd process used for managing NFS/TCP connections is distinguishable from
the NFS/UDP nfsds by the fact that it has a parent process ID of 1 (init) and it has
no child processes. In the above screenshot, there is only one nfsd daemon that
meets these criteria – the one using TID 1829 (process ID 1809).

There are currently four nfsktcpd kernel threads servicing NFS/TCP requests –
18306, 18340, 18523, and 18529. Finally, there is the nfskd daemon, which
currently serves no purpose on HP-UX systems.

nfs performance tuning for hp-ux 11.0 and 11i systems page 49

Notes:

Page 49July 22, 2002 Copyright 2002 Hewlett-Packard Company

nfsdHow many nfsktcpd kernel threads
service NFS/TCP requests?

• The NUM_NFSD variable has no effect on NFS/TCP

• By default, the NFS server launches a maximum of 10
kernel threads for each NFS/TCP connection it receives

• The threads launched for a specific TCP connection will
only service the requests that arrive on that
connection

• By default, HP NFS/TCP clients only open a single TCP
connection to each NFS server, regardless of the number
of filesystems mounted from the server

The total number of server-side kernel threads running at any given time to handle
inbound NFS/TCP requests is directly related to the number of established
NFS/TCP connections from all clients. By default, the server will launch a
maximum of 10 kernel threads to service requests for each TCP connection. Since
NFS/TCP clients only open a single connection to each NFS server (by default), this
limits the server to using only 10 kernel threads to service requests from any
specific NFS client, regardless of how many NFS filesystems the client mounts from
the server.

Under most conditions the single TCP connection and 10 threads per connection
limits should not be an issue. However, in the case where large, multi-processor
clients are mounting many NFS/TCP filesystems from a single server and
multiplexing large numbers of requests across that connection, these characteristics
could result in a potential bottleneck.

The threads that are launched to service requests for a given NFS/TCP connection
are dedicated to that connection and cannot be used to process inbound requests
on other NFS/TCP connections.

nfs performance tuning for hp-ux 11.0 and 11i systems page 50

Notes:

Page 50July 22, 2002 Copyright 2002 Hewlett-Packard Company

nfsdCan you change the NFS/TCP “single
connection” default behavior?

• The number of connections an NFS/TCP client establishes
to a server is defined by an undocumented kernel
parameter called “clnt_max_conns”

• The only way to change this parameter is via adb(1)

WARNING WARNING WARNING
Ø The following procedure is NOT SUPPORTED BY HP

Ø This procedure should be used with caution, as it will modify the
client’s behavior when mounting filesystems from any NFS/TCP
server, not just HP servers.

By default, HP-UX NFS/TCP clients only open a single connection to each NFS
server, regardless of how many NFS filesystems the client mounts from the server.
This behavior can be changed by modifying an undocumented kernel variable with
adb(1). This procedure is NOT SUPPORTED BY HP. Use at your own risk.

To force an HP-UX 11.0 or 11i client to open more than one NFS/TCP connection
to each server it mounts filesystems from, log into the client as a root user and type:

echo “clnt_max_conns/W 0d2” | adb -w /stand/vmunix /dev/kmem
echo “clnt_max_conns?W 0d2” | adb -w /stand/vmunix /dev/kmem

In the above example, the “0d2” parameter instructs the client to open 2
connections per server. The above commands modify both the on-disk kernel file
and kernel memory so the change takes effect immediately, and will remain in
effect even if the client system is rebooted. These commands would need to be
repeated if the kernel is rebuilt, either manually or via a kernel patch installation.

To return to the default behavior, use “0d1” in the above commands.

nfs performance tuning for hp-ux 11.0 and 11i systems page 51

Notes:

Page 51July 22, 2002 Copyright 2002 Hewlett-Packard Company

nfsdCan you change the default
maximum of 10 threads/connection?

• The maximum number of threads the server is allowed to
launch for each NFS/TCP connection is defined by an
undocumented kernel parameter called “maxthreads”

• The only way to change this parameter is via adb(1)

WARNING WARNING WARNING
Ø The following procedure is NOT SUPPORTED BY HP

Ø This procedure should be used with caution, as it will modify the
server’s behavior when servicing NFS/TCP mounts from any
NFS/TCP client, not just HP clients.

By default, HP-UX NFS/TCP servers launch a maximum of 10 kernel threads to
service requests for each NFS/TCP connection, regardless of how many NFS
filesystems the client accesses on the server. This behavior can be changed by
modifying an undocumented kernel variable with adb(1). This procedure is NOT
SUPPORTED BY HP. Use at your own risk.

To allow an HP-UX 11.0 or 11i server to launch more than 10 NFS/TCP threads
per connection, log into the server as a root user and type:

echo “maxthreads/W 0d20” | adb -w /stand/vmunix /dev/kmem
echo “maxthreads?W 0d20” | adb -w /stand/vmunix /dev/kmem

In the above example, the “0d20” parameter instructs the server to launch a
maximum of 20 threads per connection. These commands modify both the on-disk
kernel file and kernel memory so the change takes effect immediately, and remain
in effect even if the server system is rebooted. The adb commands must repeated if
the kernel is rebuilt, either manually or via a kernel patch installation. To return to
the default behavior, use “0d10” in the above commands.

nfs performance tuning for hp-ux 11.0 and 11i systems page 52

Notes:

Page 52July 22, 2002 Copyright 2002 Hewlett-Packard Company

nfsdHow many UDP nfsds should your
NFS server run?

• NUM_NFSD only affects the number of NFS/UDP daemons, so tuning
NUM_NFSD depends on how much NFS traffic arrives via UDP

• Starting too few nfsds can result in poor read/write performance, and in
rare cases nfsd deadlock situations (with loopback NFS mounts)

• Starting too many can result in directory metadata contention

• Better to start too many than too few

• Your mileage may vary so it is important to measure performance and tune
according to your environment’s needs

Recommended INITIAL Value: NUM_NFSD=64

The number of nfsds used to service NFS/UDP requests is configured via the
NUM_NFSD variable in the /etc/rc.config.d/nfsconf file. This variable
has no impact on the number of NFS/TCP kernel threads launched by the server.

Starting too few nfsds can result in poor NFS/UDP performance because not
enough daemons are available to service the requests from all NFS clients.
Starting too many can (in some cases) result in poor performance when many of
the nfsd daemons are all trying to update the metadata contents of a shared
directory – particularly directories containing thousands of files.

The best course of action is to choose a reasonable starting point for the number of
nfsds and then experiment with raising and lowering the number until the optimal
value is identified. There is typically very little overhead involved in launching too
many nfsd daemons, so don’t be afraid to experiment with larger numbers.

For most HP-UX servers a good starting point for the number of nfsds is 64, as this
will allow the server to allocate the maximum amount of stream head buffer
memory for receiving inbound requests (refer to page 46 for more details).

nfs performance tuning for hp-ux 11.0 and 11i systems page 53

Notes:

Page 53July 22, 2002 Copyright 2002 Hewlett-Packard Company

nfsdTroubleshooting nfsds (part 1)

• NFS Server Panics
Ø Analyze the crash dump with Q4 to determine root cause

• NFS Application Hangs
Ø Use rpcinfo(1M) command to “ping” nfsd daemons/threads

Ø Look for nfsd/nfsktcpd traffic in a network trace

Ø Examine the nfsd daemons/threads on the live system with Q4

Ø Monitor “nfsstat –s” output for nfsd/nfsktcpd traffic

Ø When all else fails, TOC the system and analyze dump with Q4

NFS Server Panics
Analyzing HP-UX system dumps is a complex and involved process, which is
typically performed by experienced HP support personnel or lab engineers.

NFS Application Hangs
The rpcinfo(1M) command can be used to “ping” the UDP/TCP daemons and
threads on the NFS server via the “-u” (UDP) and “-t” (TCP) options.

A network trace will show if any nfsds are responding to requests.

Q4 can be used by experienced system administrators or HP support personnel
to examine the running nfsd daemons/threads on the live system.

Successive nfsstat outputs can show whether outbound NFS replies are being
sent by the server.

When all else fails, the system might need to be TOC’d and the memory dump
analyzed by HP support personnel.

nfs performance tuning for hp-ux 11.0 and 11i systems page 54

Notes:

Page 54July 22, 2002 Copyright 2002 Hewlett-Packard Company

nfsdTroubleshooting nfsds (part 2)

• Poor NFS Application Performance

Ø Monitor nfsstat -s output for potential performance problems

Ø Look for delays or retransmissions in a network trace

Ø Use netstat –p udp utility to look for UDP socket overflows
potentially occurring on port 2049 – a network trace would also
need to be consulted to verify whether “ICMP source quench”
packets are being sent from the server for port 2049

Ø Use kernel profiling tools, such as kgmon, to understand where
the server’s kernel is spending the majority of its time

Poor NFS Application Performance
“nfsstat –s” output can reveal if badcalls, dupreqs, etc. are occurring. These
can indicate that NFS requests are potentially being dropped by the client, the
server, or the network resulting in poor performance.

A network trace can help determine if application delays are caused by the
client not sending requests quickly enough or the server taking too long to reply.

The “netstat –p udp” command can be used to determine if UDP socket
overflows are occurring on the NFS server. If the UDP socket used for NFS (port
2049) is overflowing, this could indicate that more nfsd daemons need to be
launched to handle the inbound request rate. A network trace should be
consulted to verify that “ICMP source quench” packets are being sent by the
server for port 2049.

Kernel profiling information can reveal which functions the kernel is spending
the bulk of its time running. This data can only be collected and analyzed by
qualified HP support personnel.

nfs performance tuning for hp-ux 11.0 and 11i systems page 55

Notes:

Page 55July 22, 2002 Copyright 2002 Hewlett-Packard Company

rpc.mountd

• What is it?

• What factors influence
rpc.mountd performance?

• Troubleshooting

This section describes the rpc.mountd daemon (commonly referred to as simply
“mountd”), which is used to mount NFS filesystems. Included is a discussion of the
ways you can tune your environment for optimal rpc.mountd performance, as well
as some recommendations for troubleshooting NFS filesystem mounting problems.

nfs performance tuning for hp-ux 11.0 and 11i systems page 56

Notes:

Page 56July 22, 2002 Copyright 2002 Hewlett-Packard Company

What is rpc.mountd?

• Implements the MOUNT protocol on HP-UX systems

•Required to run on NFS servers

• User-space, single-threaded daemon

• Provides the initial filehandle for the root of the
exported filesystem to the clients who are granted
access

rpc.mountd

Before an NFS client can begin reading from or writing to files residing on an NFS
server, it first needs to contact the server and request permission to access the
exported filesystem. Once the server determines that the client is allowed to access
the mountpoint in question, it returns the filehandle for the root of the exported
filesystem.

These access requests are not handled by the NFS protocol directly (although this
functionality will become part of the NFS protocol in NFS PV4). Instead, a
separate MOUNT protocol was designed to run on the NFS server and process
these inquiries. On HP-UX systems, the MOUNT protocol is implemented via the
rpc.mountd daemon.

rpc.mountd is a single-threaded process that runs in user-space, as opposed to
being implemented in the kernel. That being the case, there is very little that can
be done to influence the performance of this daemon directly. However,
rpc.mountd performance can be affected by external factors such as hostname
resolution speed.

nfs performance tuning for hp-ux 11.0 and 11i systems page 57

Notes:

Page 57July 22, 2002 Copyright 2002 Hewlett-Packard Company

What factors influence rpc.mountd
performance?

• The choice of repository used to provide hostname
resolution data (i.e. /etc/hosts, DNS, NIS, NIS+)
Ø How much overhead is involved in getting hostname data

Ø How fast are the directory servers

Ø How accurate is the information in the directory

• The usage and nesting of netgroups for access lists

• The size of the /etc/rmtab file

rpc.mountd

Choice of directory service used for hostname resolution data
HP-UX supports many different hostname resolution repositories – DNS, NIS,
NIS+, and /etc/hosts. Since rpc.mountd depends heavily on hostname
resolution, the speed and accuracy of this data is critical to performance.

The usage and nesting of netgroups for access lists
Netgroups can take a relatively long time to traverse, especially if they are
managed by a directory service such as NIS. Searching netgroups during
every MOUNT request can be burdensome, particularly if the netgroups are
heavily nested. If netgroups are required in your environment, flatten them if
possible.

The size of the /etc/rmtab file
The /etc/rmtab file is used by rpc.mountd to keep track of the filesystems
mounted by each NFS client. mountd reads this file at startup. A large rmtab
file can take several minutes to load, during which time no mount requests can
be processed. This file should periodically be removed during scheduled
maintenance windows.

nfs performance tuning for hp-ux 11.0 and 11i systems page 58

Notes:

Page 58July 22, 2002 Copyright 2002 Hewlett-Packard Company

Troubleshooting rpc.mountd

• Use rpcinfo(1M) command to “ping” rpc.mountd

• Collect a debug-level rpc.mountd logfile via the
SIGUSR2 toggle mechanism

• Verify that hostname resolution servers (i.e. DNS,
NIS, etc.) are responding and return accurate data

• Collect a network trace of the problem

• Determine if the undocumented rpc.mountd “–X0” option
can safely be used in your environment

rpc.mountd

The rpcinfo(1M) command can “ping” rpc.mountd to quickly determine if the
daemon is at least responding to requests.

One of the best sources of information for troubleshooting rpc.mountd problems is
a debug mountd logfile collected while reproducing the failure. This debug
logging can be toggled on and off by sending the SIGUSR2 signal to the running
mountd process (i.e. kill –17 <mountd pid>). By default, the debug information is
appended to the /var/adm/mountd.log file. In some cases, a network trace is
also needed to fully understand the root cause of rpc.mountd’s non-responsiveness.

A large majority of rpc.mountd issues are caused by hostname resolution problems
(i.e. down DNS/NIS servers). Be sure to verify that hostname resolution is
working.

An rpc.mountd/automount deadlock situation was discovered involving a MOUNT
request of a symbolic link that referenced a loopback NFS mount point managed
by automounter. The fix for this extreme corner-case issue involved adding many
new conditional checks to mountd’s MOUNT function. Launching rpc.mountd with
the undocumented “-X0” option disables these checks.

nfs performance tuning for hp-ux 11.0 and 11i systems page 59

Notes:

Page 59July 22, 2002 Copyright 2002 Hewlett-Packard Company

rpc.lockd
&

rpc.statd

• What are they?

• How are lock requests
handled?

• How are locks recovered
after a system reboot?

• Avoiding NFS lock hangs

• Ensuring optimal lock
performance

• Troubleshooting

This section describes how the rpc.lockd and rpc.statd daemons make up the
Network Lock Manager (NLM) protocol. It discusses how lock requests are
processed, and how locks are recovered after server failures. It also explains why
many NFS file lock hangs occur and how to avoid them. This is followed by a
discussion on the factors in your environment that can adversely affect the
performance of rpc.lockd and rpc.statd. Finally, a troubleshooting section
describes the recommended tools and procedures to use when investigating NFS
file locking issues.

nfs performance tuning for hp-ux 11.0 and 11i systems page 60

Notes:

Page 60July 22, 2002 Copyright 2002 Hewlett-Packard Company

rpc.lockd
&

rpc.statd

What are rpc.lockd and rpc.statd?

• Implement the Network Lock Manager (NLM)
Protocol, providing NFS file locking semantics

• rpc.lockd handles lock requests

• rpc.statd monitors the systems involved in NFS file
locking and is an integral component in recovering
locks after system failures

• NLM is required to maintain some “state” information as
opposed to NFS which is a “stateless” protocol

The NFS protocol is commonly described as being “stateless” because the NFS
server maintains no state information about the clients. Every NFS request is
treated individually by the server and no assumptions are made based on previous
requests. This design works fine, except when it comes to NFS file locking.

In the file locking case, both the client and the server need to maintain a list of
which files are locked, by which processes, and on which NFS clients. Some of
this information must be stored on local disk in order for it to survive a client or
server reboot (since anything in memory is lost during a reboot). In order for NFS
to maintain this “state” information on top of a “stateless” protocol, a new
mechanism was created to manage NFS file locks – the Network Lock Manager
(NLM) protocol.

On HP-UX systems, the rpc.lockd and rpc.statd daemons (commonly referred to as
simply “lockd” and “statd”) implement the Network Lock Manager protocol.

nfs performance tuning for hp-ux 11.0 and 11i systems page 61

Notes:

Page 61July 22, 2002 Copyright 2002 Hewlett-Packard Company

rpc.lockd
&

rpc.statd

How are NFS file lock requests
handled by lockd and statd?

text text

CLIENT

2

3 4

15

1 16

SERVER

11

8 9

10

14 7

6

512

13

rpc.statd

rpc.lockd

kernel

application

rpcbind

rpc.statd

rpc.lockd

kernel

application

rpcbind

1. Application on the client requests to lock a file – the request goes to the kernel
2. Kernel resolves pathname to NFS rnode – forwards request to local rpc.lockd
3. Clients lockd contacts the local rpc.statd asking statd to monitor this system
4. Client’s statd replies to the local lockd that it is monitoring the client system
5. Client’s lockd contacts the server’s rpcbind to get port number of server’s lockd
6. Server’s rpcbind replies with the port number of the server’s lockd
7. Client’s lockd sends the lock request to the server’s lockd
8. Server’s lockd contacts its local statd asking statd to monitor the client system
9. Server’s statd replies to the local lockd that it now monitoring the client system
10. Server’s lockd forwards the lock request to the server’s kernel
11. Server’s kernel performs the lock and replies to the server’s lockd with status
12. Server’s lockd contacts the client’s rpcbind to get port number of client’s lockd
13. Client’s rpcbind replies with the port number of the client’s lockd
14. Server’s lockd sends the lock results back to the client’s lockd
15. Client’s lockd forwards these results back to the local kernel
16. Client’s kernel forwards the results back to the requesting application

nfs performance tuning for hp-ux 11.0 and 11i systems page 62

Notes:

Page 62July 22, 2002 Copyright 2002 Hewlett-Packard Company

rpc.lockd
&

rpc.statd

How are NFS file locks recovered
after a client or server reboot?

text text

CLIENT

17

2

3 4

15

1 16

SERVER

11

8 9

10

14 7

6

512

13

rpc.statd

rpc.lockd

kernel

application

rpcbind

rpc.statd

rpc.lockd

kernel

application

rpcbind

17. Notification process takes place between client’s and server’s rpc.statd
daemons during a “change in state”

A state change refers to any time where lockd and statd are stopped and restarted,
either due to the client or server rebooting, or when the daemons are killed and
restarted manually. In this situation, the statd daemon is instrumental in notifying
the remote system, either client or server, of the change in state on the local system.

If the NFS client is the system experiencing the state change then its statd notifies
the statd process on every NFS servers that the client was performing file locking
with, letting those systems know they should discard any locks they are currently
holding for the client.

If the server experiences the change in state, any locks it was holding prior to the
state change are gone. The server’s statd therefore needs to contact the statd
process on all NFS clients who have issued file lock requests with the server,
informing them that any locks they were holding with the server are gone and must
be reclaimed within 50 seconds or the server could give the locks to another client.

nfs performance tuning for hp-ux 11.0 and 11i systems page 63

Notes:

Page 63July 22, 2002 Copyright 2002 Hewlett-Packard Company

rpc.lockd
&

rpc.statd

Avoiding NFS File Lock Hangs

• Make sure hostname resolution data is accurate (i.e.
make NFS server can correctly resolve IP address of the
client – even if client is in a remote DNS domain)

• Remove corrupted files from /var/statmon/sm.bak

• Never remove files from the /var/statmon/sm
directory on only a client or server system

• Use the rpc.lockd “–C” command-line option in
heterogeneous environments

It is critical that hostname/IP address data be accurate. In the DNS case, the
potential exists for lock requests to fail when the NFS client and server reside in
different DNS domains – even if the DNS tables are accurate. This is because the
NFS client only sends it’s hostname in lock requests. Either configure search paths
for DNS or set the client’s hostname equal to the fully-qualified DNS domain name.

The files in /var/statmon/sm.bak refer to systems that rpc.statd could not
contact after a state change. If these files get corrupted (i.e. the contents of the files
don’t match the name of the file) then they should be removed during the next
maintenance window. The files in /var/stamon/sm refer to systems that
rpc.lockd has performed file locking with since the last state change. These files
should never be removed on only a client or a server. If they must be removed,
they should be removed from both systems simultaneously.

A defect in HP’s NLM implementation causes locks to hang (in a specific case)
when working with non-HP servers. The rpc.lockd “–C” option corrects this, but this
option must be enabled on all HP systems in the environment simultaneously or the
HP systems could potentially stop working correctly with each other.

nfs performance tuning for hp-ux 11.0 and 11i systems page 64

Notes:

Page 64July 22, 2002 Copyright 2002 Hewlett-Packard Company

rpc.lockd
&

rpc.statd

Ensuring Optimal NFS File Locking
Performance

• Verify that hostname resolution servers (i.e. DNS,
NIS, etc.) are responding and return accurate data

• Remove obsolete files from /var/statmon/sm.bak
to avoid forcing rpc.statd to continuously try contacting
systems which no longer exist in the environment

Even when NFS file locking is functionally working, hostname resolution still plays a
key role in rpc.lockd and rpc.statd performance. There are several places in the
lockd and statd source code where the gethostbyname() routine is called to retrieve
the IP address of the remote system. Therefore, if hostname resolution performance
is poor then NFS file locking performance will suffer as a result. Again, this could
involve DNS, NIS, NIS+, or the /etc/hosts file – depending upon how
hostname resolution is configured in the /etc/nsswitch.conf file.

During NFS lock recovery, if statd is unable to notify a system associated with a
/var/statmon/sm.bak file then this file remains in the “sm.bak” directory.
Statd will continuously attempt to notify this remote host every 15 seconds. If statd
is busy trying to contact these non-existent or dead clients it will either be unable to
handle new monitor requests for legitimate NFS clients, or it will take a long time to
process these requests. In either case, file lock performance can suffer. It is
therefore important to periodically monitor the contents of the “sm.bak” directory.
If files associated with obsolete clients are found then they should be removed
during the next scheduled maintenance window.

nfs performance tuning for hp-ux 11.0 and 11i systems page 65

Notes:

Page 65July 22, 2002 Copyright 2002 Hewlett-Packard Company

rpc.lockd
&

rpc.statd

Troubleshooting rpc.lockd & rpc.statd

• Use rpcinfo(1M) command to “ping” lockd & statd

• Collect debug-level rpc.lockd and rpc.statd
logfiles via the SIGUSR2 toggle mechanism

• Collect a set of network traces on both the NFS
client and server while the file locking problem is
reproduced

One of the quickest and most non-intrusive methods of determining whether the
lockd and statd processes are responding is to use the rpcinfo(1M) command to
“ping” the running daemons. Since both client’s and server’s lockd and statd
daemons are used during NFS file locking, the recommendation is to test the
server’s lockd and statd from the client system and vice versa.

Among the best sources of information for troubleshooting NFS file locking
problems are debug lockd and statd logfiles collected while reproducing the
failure. Debug logging can be toggled on and off by sending the SIGUSR2 signal
to the running lockd or statd process (i.e. kill –17 <pid>). By default, the debug
information is logged to the /var/adm/rpc.lockd.log and
/var/adm/rpc.statd.log files respectively.

In some cases, a network trace is also needed to fully understand the root cause of
an NFS file locking problem. Since the problem could be that the server is not
sending replies at all or is sending the replies to the wrong system/port number, it
is important to collect network traces on both the client and server to determine
whether the lock requests and replies are traversing the network successfully.

nfs performance tuning for hp-ux 11.0 and 11i systems page 66

Notes:

Page 66July 22, 2002 Copyright 2002 Hewlett-Packard Company

automount
&

autofs

• What are they?

• How are they different from
each other?

• Performance
Considerations

• Should you use Automount
or AutoFS in your
environment?

• Troubleshooting

Automount and AutoFS are generally not considered daemons used for
performance reasons. In fact, in performance sensitive environments, the use of
any automounter should be carefully scrutinized as it will typically add some
amount of overhead to the NFS client. The decision whether or not to use these
products is typically made by system administrators who are familiar with the client
environment. For those administrators who do choose to use one of these products,
there are several performance and behavioral issues to consider.

This section describes how the classic automounter differs from the newer AutoFS
product in terms of functionality and performance. Also described are the many
configuration-related factors that can influence automounter performance. A
discussion on whether the classic automounter or newer AutoFS is a better choice
for your environment is included. Finally, a troubleshooting section describes the
methodology used to investigate most automount and AutoFS related problems.

nfs performance tuning for hp-ux 11.0 and 11i systems page 67

Notes:

Page 67July 22, 2002 Copyright 2002 Hewlett-Packard Company

What are Automount and AutoFS?

• Automatically mount filesystems when the directory path is
referenced

• Automatically unmount filesystems that are not in use

• Maps can be distributed via a directory server (i.e. NIS, NIS+) to
standardize the configuration of NFS client’s filesystem hierarchy

automount
&

autofs

Difference between 11.0 and 11i

AutoFS did not ship with HP-UX 11.0 – it required Extension
Pack 9808 (August 1998). AutoFS does ship with 11i.

An automounter is used to automatically mount and unmount filesystems on an NFS
client. The filesystems are mounted when the configured directory path is
referenced, and they are unmounted after a configurable idle period.

The maps used by automount and AutoFS can be maintained and distributed via
directory services such as NIS or NIS+. This helps ease the administrative burden
associated with standardizing the configuration of the filesystem layout on large
numbers of NFS client systems.

HP-UX has supported automatic mounting of filesystems for years using the original
automount daemon. AutoFS was introduced on HP-UX 10.20 in April 1997 as
part of the ACE 2.0 networking bundle. It was subsequently introduced to the 11.0
release on Extension Pack 9808, which shipped in August 1998.

AutoFS ships with HP-UX 11i.

nfs performance tuning for hp-ux 11.0 and 11i systems page 68

Notes:

Page 68July 22, 2002 Copyright 2002 Hewlett-Packard Company

How are Automount and AutoFS
different from each other? (part 1)

automount
&

autofs

multi-threaded (in certain places)single threaded

mounts NFS filesystems in-place
uses symbolic links to redirect
pathname lookup requests to
real NFS mountpoints

supports NFS PV3, TCP, CDFS,
CacheFSsupports NFS PV2/UDP only

legitimate filesystempseudo NFS server

Automount AutoFS

The original automounter is only capable of managing NFS protocol version 2
mounts using the UDP transport. AutoFS can manage NFS PV2 or PV3 filesystems
running on top of either UDP/IP or TCP/IP. Additionally, AutoFS can be
configured to manage CacheFS filesystems.

Automount is a single-threaded process that performs its functions of mounting and
unmounting filesystems by emulating an NFS server running on the client system.
This explains why when automount hangs or is slow to respond the client will print
a message similar to one where a remote NFS server stops responding:

NFS server (pid570@/net) not responding still trying

Automount uses symbolic links to redirect pathname requests to the real NFS
mountpoints which it mounts under a holding directory (/tmp_mnt by default).

AutoFS is a multi-threaded daemon which implements a legitimate file system, just
like HFS, VxFS, CDFS, etc. It mounts the filesystems it manages directly to the
requested pathname, avoiding the need for symbolic links.

nfs performance tuning for hp-ux 11.0 and 11i systems page 69

Notes:

Page 69July 22, 2002 Copyright 2002 Hewlett-Packard Company

How are Automount and AutoFS
different from each other? (part 2)

automount
&

autofs

kill –9 is safe if necessarykill –9 will hang filesystems

keeps reference timer (for direct
maps only) – avoids attempting
to unmount busy filesystems

doesn’t keep track of which
filesystems are in use – issues
unnecessary unmount requests

maps changes take effect
immediately whenever the
/usr/sbin/automount
command is issued

adding mount points to master
or direct maps requires
automount be killed and
restarted to take effect

Automount AutoFS

Any changes made to the master or direct maps requires automount to be stopped
and restarted for the changes to take effect. AutoFS re-processes its maps
whenever /usr/sbin/automount is issued. Changes take effect immediately.

Automount attempts to unmount filesystems at the specified interval regardless of
whether they are in use or not. AutoFS has the ability to track when filesystems
were last referenced and only attempts to unmount those filesystems that have been
idle for the specified interval. Unfortunately, HP’s current implementation of AutoFS
only supports this feature for filesystems configured in direct maps. Indirect and
hierarchical map entries behave like the old automounter.

Since automount is a user-space daemon that puts placeholders in the VFS layer, if
you kill the automount process with a –9 (SIGKILL) it will forcibly exit without first
removing the VFS placeholders. Now any access to an automount-managed
directory will hang, as the kernel views these entries as belonging to a dead NFS
server. The portions of AutoFS that manage the VFS layer entries are in the kernel,
which makes it “safe” (although not recommended) to stop the user-space
automountd daemon with a SIGKILL if necessary.

nfs performance tuning for hp-ux 11.0 and 11i systems page 70

Notes:

Page 70July 22, 2002 Copyright 2002 Hewlett-Packard Company

How are Automount and AutoFS
different from each other? (part 3)

• ServiceGuard Issue
Ø NFS server is part of an HA/NFS (i.e. ServiceGuard) cluster
Ø Automount maps contain filesystems exported from the cluster

and reference the NFS server via the relocatable IP address
Ø Automount will use a loopback NFS mount, AutoFS uses LOFS

automount
&

autofs

Recommendation
Ø Use the legacy Automount on the HA/NFS servers

Ø If AutoFS is required, make sure it is running on the NFS server
before the relocatable IP addresses are added by ServiceGuard
(i.e. don’t issue the /sbin/init.d/nfs.client stop/start
commands on the server while an HA/NFS package is running)

In the above scenario, which is a common configuration for HA/NFS servers, the
legacy automounter has no way of detecting that the relocatable IP address is
actually a local interface and so it creates a loopback NFS mount.

When AutoFS is started it builds a list of all configured interfaces, including virtual
addresses. IP addresses added to the system after AutoFS starts are not added to
the list. When processing any mount request, AutoFS compares the IP address of
the server with the local list to determine if the server in the map entry is really itself.
If the IP address of the server in the map entry matches one of the local interfaces
AutoFS will create the mountpoint using an LOFS mount, avoiding NFS entirely.

What happens if an LOFS mount is created and then the NFS package needs to
switch to an adoptive node? With the current HA/NFS design, the LOFS filesystem
is not unmounted and the NFS package could fail to migrate successfully.

Until this issue is resolved, the recommendation is to use the legacy automounter.
In environments where AutoFS is required (i.e. for NFS PV3 support) make sure
AutoFS is running on the server when the relocatable IP addresses are added.

nfs performance tuning for hp-ux 11.0 and 11i systems page 71

Notes:

Page 71July 22, 2002 Copyright 2002 Hewlett-Packard Company

Automounter Performance
Considerations (part 1)

• Default unmount timer and its effect on client caching

Ø Any buffer cache or page cache memory pages associated with
the filesystem are invalidated during an unmount attempt – even
if the unmount fails because the filesystem is busy (i.e. in use)

Ø Executable binaries, libraries, and any application data loaded
across an NFS mount will be discarded during a failed unmount

automount
&

autofs

Recommendation
Ø Use “-tl” (automount) or “-t“ (AutoFS) to increase unmount timers

Ø Use AutoFS direct maps – uses reference timers to avoid unmounts

A very important reason to consider using a longer automount unmount timeout
value is to avoid a nasty side-effect that occurs when unmounting an NFS filesystem
on HP-UX systems – all buffer cache and page cache memory pages associated
with the filesystem being unmounted are invalidated. This occurs whether the
filesystem is in use or not, regardless of whether the unmount attempt is successful
or not. This means that both executable binaries and libraries that have been
loaded across an NFS mount (page cache), as well as any application data (buffer
cache) for an NFS mount will be discarded during an unmount attempt – even if the
unmount fails. The NFS client is then required to re-read these pages from the
server.

The command-line options used to set the unmount timer value differs between
automount and AutoFS – automount uses “-tl” and AutoFS uses the “-t” option. Both
options specify the number of seconds between unmount attempts. The appropriate
number for this timeout value is largely dependent upon the client’s usage patterns
for the filesystems it mounts. In some environments a reasonable starting value
would be 8 hours, while in other situations 10 minutes would make more sense.

nfs performance tuning for hp-ux 11.0 and 11i systems page 72

Notes:

Page 72July 22, 2002 Copyright 2002 Hewlett-Packard Company

Automounter Performance
Considerations (part 2)

• NFS mount options used in master or subordinate maps

Ø Mount options specified in a master map affects all entries of a
subordinate map unless specifically overridden by the map entry

Ø Options such as “noac” or “timeo” can have a dramatic
impact on application performance

automount
&

autofs

Recommendation
Ø Search all automount maps (local, NIS, NIS+) looking for NFS

mount options and verify the application’s need for using them

Ø Avoid the use of “noac” and “timeo” options whenever possible

Both automount and AutoFS allow NFS mount options to be specified in the map
entries. If these options are included in a filesystem-specific entry within an indirect
or direct map then these options affect only that specific mount point. If the mount
options are specified in a master map entry then these options affect every mount
point within the subordinate direct or indirect map. While modifying the master
map in this manner provides a convenient method of forcing all entries within a
direct/indirect map to use the same mount options, some care should be taken to
ensure that the options specified in the master map are really appropriate for every
underlying NFS mount it affects.

For example, the “–noac” mount option is used to disable client-side attribute
caching for an NFS mount. While this option might be necessary to use on a
specific mount point, it is generally not a good idea to disable attribute caching for
all NFS mounts on a client. In this case, the specific entry within a direct/indirect
map for the mount point that requires the “–noac” option should be modified.

Similarly, the “-timeo” option should be avoided whenever possible. This mount
option, and the reasons to avoid using it, are described in detail on page 98.

nfs performance tuning for hp-ux 11.0 and 11i systems page 73

Notes:

Page 73July 22, 2002 Copyright 2002 Hewlett-Packard Company

Automounter Performance
Considerations (part 3)

• Replicated NFS Servers in Maps
Ø Ensure the specified servers exist, respond quickly to mount

requests, and contain the filesystem referenced in the map

• Environment Variables in Maps (“-D” option)
Ø Ensure the pathnames resolved by variables exist on the server

• Hierarchical Maps
Ø Entire hierarchy must be mounted/unmounted together

Ø Adds overhead both to client’s automounter and server’s
rpc.mountd when only a portion of the hierarchy is used

automount
&

autofs

Both automount and AutoFS allow the administrator to configure multiple replicated
NFS servers for a given mount point. If you plan to use this feature be certain to
only list NFS servers that truly exist, are responding to mount requests quickly, and
contain the filesystem referenced in the map. Otherwise the automounter will waste
cycles looking for servers that don’t exist, are down, or don’t contain the data they
need to satisfy the mount request.

Both automounters provide the ability to specify environment variables via the “–D”
option and then reference those variables in the maps. This feature also requires a
good deal of planning and coordination to ensure that the pathnames resolved via
these environment variables actually exist on the target NFS servers.

Automount and AutoFS will attempt to unmount filesystems that are not in use every
5 minutes (default). While this value can add some overhead to the client system
by having automounter attempt to unmount filesystems frequently, it can also add a
substantial amount of load to the NFS server’s rpc.mountd daemon – particularly
when hierarchical maps are used, since automount attempts to unmount the entire
hierarchy and must re-mount it if any part of the hierarchy is busy.

nfs performance tuning for hp-ux 11.0 and 11i systems page 74

Notes:

Page 74July 22, 2002 Copyright 2002 Hewlett-Packard Company

Which Automounter makes sense for
your environment?

automount
&

autofs

UDP or TCP transportsUDP transport only

Can manage CacheFS mountsCannot manage CacheFS

Can be used with HA/NFS,
but precautions should be
taken to ensure correct behavior

Safe for use with HA/NFS
(i.e. ServiceGuard)

NFS PV2 or PV3NFS PV2 only

Automount AutoFS

Environments where Automount is Recommended
Given the earlier list of differences between automount and AutoFS, there is
really only one environment where automount holds an advantage over AutoFS
– on NFS servers running Highly Available NFS (i.e. ServiceGuard). Of course,
if your environment only requires the use of NFS PV2, the UDP transport, 8KB
read/write sizes, and does not need to manage CacheFS mounts, the legacy
automounter will work fine.

Environments where AutoFS is Recommended
Since AutoFS includes all of the features provided by the legacy automounter
and adds several new features, most NFS environments will benefit from using
AutoFS in place of automounter. Any customers needing to integrate support
for NFS PV3, NFS/TCP, or CacheFS into their automount environment will need
to use AutoFS.

nfs performance tuning for hp-ux 11.0 and 11i systems page 75

Notes:

Page 75July 22, 2002 Copyright 2002 Hewlett-Packard Company

Troubleshooting Automount & AutoFS

• Collect a debug Automount or AutoFS logfile

• Verify that hostname resolution servers (i.e. DNS,
NIS, etc.) are responding and return accurate data

• Collect a network trace to verify that mount requests
are traversing the network

•TOC the client and analyze the dump with Q4

automount
&

autofs

Among the best sources of information for troubleshooting automount and AutoFS
problems is a debug logfiles collected while reproducing the problem. Debug
logging can be toggled on and off by sending the SIGUSR2 signal to the running
“automount” (legacy automounter) or “automountd” (AutoFS) process (i.e. kill –17
<pid>). By default, the debug information is logged to the
/var/adm/automount.log file.

In some cases, a network trace is also needed to fully understand the root cause of
an automount problem. The trace can be used to determine whether the mount
requests and replies are traversing the network successfully.

Since AutoFS is a multi-threaded process and spends much of its time in the kernel,
in some cases a TOC dump must be collected and analyzed with Q4 in order to
determine why AutoFS is misbehaving.

nfs performance tuning for hp-ux 11.0 and 11i systems page 76

Notes:

Page 76July 22, 2002 Copyright 2002 Hewlett-Packard Company

cachefs

• What is it?

• How does it work?

• What are its limitations?

• Caching Application
Binaries

• CacheFS Performance
Considerations

• Should you use CacheFS?

• Measuring Effectiveness

This section begins by describing how CacheFS works and the potential benefits it
can provide. This is followed by a list of the many limitations of CacheFS, and why
it may not provide the promised benefits in every environment.

Next is a discussion of the unique considerations to understand when using
CacheFS to cache application binaries, and how to best configure CacheFS when
used to front NFS-based applications. This section describes an HP-specific
CacheFS enhancement called the rpages mount option, and how this mount option
influences CacheFS behavior and performance.

Following this is a discussion of the many ways you can configure your CacheFS
clients to achieve optimal caching performance. This is followed by a discussion of
whether CacheFS should be considered for your environment or not. Finally, for
those customers who choose to implement CacheFS, are some guidelines for
determining conclusively whether CacheFS is actually providing a benefit in your
environment.

nfs performance tuning for hp-ux 11.0 and 11i systems page 77

Notes:

Page 77July 22, 2002 Copyright 2002 Hewlett-Packard Company

cachefsWhat is CacheFS? (part 1)

• An NFS filesystem caching mechanism

• Stores data retrieved from NFS servers to a local
filesystem on the NFS client

• Intended to eliminate the need for retrieving data across
the network that has already been read, thereby
reducing network overhead and increasing the
client-to-server ratio

Difference between 11.0 and 11i

CacheFS is not available on 11.0 – it is available on 11i

Since NFS is a file access protocol, one of the primary goals of NFS performance
tuning is to reduce the amount of network traffic required to satisfy read requests.
One method of reducing read traffic is to use client-side buffer cache and page
cache to store the most recently accessed data. However, since physical memory
is limited in size, the caching mechanisms often have to flush pages and retrieve
them again from the server. Also, as more NFS clients are added to a given
server, the file access times for each client increases, perpetuating the server
performance load and impacting the overall network performance.

CacheFS (Cache File System) attempts to address these needs by keeping copies of
data read from NFS servers on the client in the hopes of avoiding the need for
future NFS read calls for the same data. CacheFS is a file system caching
mechanism that stores data retrieved from NFS servers to a local filesystem on the
client. NFS read requests for data residing in the cache directory can be retrieved
locally, thereby eliminating the need for a network request and reducing overall
server and network load. CacheFS is intended to increase the client-to-server ratio,
and improve NFS read performance for clients using slow network links.

nfs performance tuning for hp-ux 11.0 and 11i systems page 78

Notes:

Page 78July 22, 2002 Copyright 2002 Hewlett-Packard Company

cachefsWhat is CacheFS? (part 2)

•Designed to be used for stable, read-only data

•Since the cache resides in a local filesystem, the
data can survive an unmount or a reboot

•A single cache directory can be used to
cache data from multiple NFS mount points

•An LRU (least recently used) algorithm is used to
remove data from the cache when the configured
disk space or inode thresholds are reached

CacheFS can supply a performance boost to those systems that spend a great deal
of time accessing stable, read-only data over NFS mounts. Since the cache is
maintained on a local client filesystem and not in memory, in most cases the cache
contents remain even if the CacheFS filesystem is unmounted. In fact, the cache
contents remain in the local filesystem even after a client reboot.

A single cache directory can be used to cache data from multiple NFS mounts.
Once the configured thresholds of the cache have been reached, CacheFS
implements a LRU (least recently used) algorithm for invalidating files from the
cache.

Upon mounting a CacheFS filesystem, the kernel launches a number of “cachefsd”
kernel threads to manage the cache contents. These threads are associated with a
single “cachefsd” process.

nfs performance tuning for hp-ux 11.0 and 11i systems page 79

Notes:

Page 79July 22, 2002 Copyright 2002 Hewlett-Packard Company

cachefsHow does CacheFS work?

• The cfsadmin(1M) command creates a cache on the
client in a local filesystem (referred to as the front
filesystem)

• An NFS filesystem (referred to as the back filesystem) is
mounted referencing the cache directory

• During an NFS read the “front” filesystem is checked. If
the data is resident the request is resolved locally. If not,
it’s retrieved from “back” filesystem and added to cache

• Pools of cachefsd kernel threads are dynamically
launched to manage the cache contents

The cfsadmin(1M) command is used to create the local cache directory and define
the parameters of the cache. By default, the cache is allowed to consume up to
90% of the available disk space of the filesystem in which it resides.

The CacheFS file system caches data read from the NFS filesystem (known as the
"back" filesystem) onto another, local filesystem (known as the "front" filesystem).

A separate pool of cachefsd threads is created to service each cache and each
pool can have a maximum of 5 cachefsd threads associated with it at any time.
The kernel launches new threads as requests for cached data increase.

nfs performance tuning for hp-ux 11.0 and 11i systems page 80

Notes:

Page 80July 22, 2002 Copyright 2002 Hewlett-Packard Company

cachefsCacheFS Limitations (part 1)

• Only READ data is cached
Ø Writing to a cached file invalidates the cached copy

• Only NFS filesystems may be cached
Ø Cannot cache other filesystem types such as CDFS

• “Loose” synchronization with the “back” filesystem
Ø Changes made to the NFS server take time to propagate

• Dependent upon local filesystem performance
Ø If NFS client disks are slow then performance will suffer

CacheFS does not cache writes. Any writes performed to a file currently residing in
the local cache will result in that file being invalidated from the cache. These
added steps of invalidating the cache and redirecting the write() call to the back
filesystem can add some overhead to the writing operation.

HP’s current implementation of CacheFS only supports NFS as the back filesystem.
Other vendors allow CDFS filesystems to be cached as well.

CacheFS does not maintain tight synchronization with the remote NFS server.
Attribute or data changes done on the server by one client may take some time to
propagate to the caches on other clients. For this reason, it is recommended that
CacheFS not be used on mounts where data files are frequently updated.

CacheFS performance is affected by many factors, including client local filesystem
performance. On an NFS client with a fast network interface, mounting a
filesystem from a very fast NFS server, but using a slow, heavily loaded local
filesystem for the cache directory, CacheFS access may actually be slower than
accessing the data directly from the NFS server.

nfs performance tuning for hp-ux 11.0 and 11i systems page 81

Notes:

Page 81July 22, 2002 Copyright 2002 Hewlett-Packard Company

cachefsCacheFS Limitations (part 2)

• Only certain files survive a CacheFS unmount or reboot

• Any file marked “un-cacheable” will be removed

Ø Writing to a cached file marks the file “un-cacheable”

Ø When a cache reaches its configured disk space or inode usage
thresholds, the LRU algorithm will select files to remove.

Ø Every cached file is represented by a 32-slot allocation map
data structure, where each slot represents a non-contiguous
chunk of the file. Any file that requires more than 32 non-
contiguous chunks to be loaded is considered “un-cacheable.”

There are three main reasons CacheFS will disable caching for a file:

• When a process on the NFS client writes to the cached file

• When a cache reaches its configured disk space or inode usage thresholds, the
LRU algorithm will select files to remove from the cache

• When 33 or more non-contiguous chunks of the cached file are referenced

Once a file is flagged as “un-cacheable,” any read requests for this file must be
serviced by the back (NFS) filesystem, effectively nullifying any CacheFS benefits
for this file. All files that have been marked “un-cacheable” are removed from the
cache directory when the CacheFS filesystem is unmounted or the NFS client system
is rebooted.

nfs performance tuning for hp-ux 11.0 and 11i systems page 82

Notes:

Page 82July 22, 2002 Copyright 2002 Hewlett-Packard Company

cachefsApplication Binary Caching Dilemma

• Most CacheFS customers want to use CacheFS to
distribute NFS applications to their clients

• In order to remain cached, a cached file must be loaded
in 32 or fewer non-contiguous chunks

• The UNIX loader usually loads application binaries in
more than 32 non-contiguous chunks because of
demand paging, which means that CacheFS is usually
ineffective at fronting application binaries

Since CacheFS is designed to work best with NFS filesystems that contain read-only
data that does not change frequently, one of the most common uses for CacheFS is
to manage application binaries. The behavior expected by most customers is that
when the binary is executed the first time via a CacheFS mount it will be cached on
the client, and subsequent accesses will be satisfied from the local cached copy,
thus avoiding the need for an NFS read request. Another expectation is that these
binaries would remain cached following an unmount or a reboot. Unfortunately,
CacheFS rarely behaves this way on either HP-UX or Solaris platforms.

CacheFS uses a 32-slot allocation map to represent every file it caches. Each slot
consists of a starting offset and a length value, which means that a cached file can
only be represented in 32 non-contiguous chunks. Any attempt to access more
than 32 non-contiguous regions of the file causes CacheFS to mark this file as
invalid – effectively disabling caching for this file. The “demand paging” algorithm
used by the HP-UX (and Solaris) loader typically results in application binaries
being loaded in more than 32 non-contiguous regions, which limits CacheFS’
effectiveness when fronting NFS-based applications.

nfs performance tuning for hp-ux 11.0 and 11i systems page 83

Notes:

Page 83July 22, 2002 Copyright 2002 Hewlett-Packard Company

cachefsApplication Binary Caching Solutions
(part 1)

• cat(1) Solution

Ø cat(1) the application binary across the CacheFS filesystem and
write it to /dev/null or /dev/zero

Ø Ex: cat /opt/netscape/netscape > /dev/null
Where “/opt/netscape” is the CacheFS-mounted filesystem

Ø Forces CacheFS to read the entire binary file in a single
contiguous chunk

Ø Once the cache is populated, the binary will remain cached
following unmounts and reboots, and all requests for this file will
be satisfied from the cache

Ø Painful to implement on large numbers of clients with many
diverse applications

One way to guarantee that CacheFS stores an application binary, or any other
type of file, in a single contiguous collection of disk space is to read the entire
target file across the CacheFS mount point via the cat(1) command. For example:

cat /cfs_mount/myprog > /dev/null

Using cat in this manner forces CacheFS to read the entire “myprog” file
sequentially, consuming only one slot in the allocation map. Remember, the map
entries consist of a starting offset value and a length field. Therefore, if a 20MB file
is read sequentially across a CacheFS mount, the file can be represented in one
slot (i.e. starting offset = 0, length = 20MB). Once the cat command completes, the
client system has a complete copy of the “myprog” binary in its local filesystem.
This cached binary will survive a CacheFS filesystem unmount or a client reboot.

This is not a very practical solution in most CacheFS environments because there
are typically hundreds, or even thousands, of NFS clients to distribute applications
to, and in many cases the clients will run different sets of applications.

nfs performance tuning for hp-ux 11.0 and 11i systems page 84

Notes:

Page 84July 22, 2002 Copyright 2002 Hewlett-Packard Company

cachefsApplication Binary Caching Solutions
(part 2)

•HP-specific Solution – the rpages Mount Option

Ø Instructs the kernel loader to load entire application
binaries contiguously

Ø Automatic – no further configuration or user
intervention required

Ø Only affects binaries – normal data files are not
read in their entirety, only binaries that are executed
are fully populated

Ø Causes potentially slower initial load time, but
substantially faster subsequent load times

The rpages option instructs CacheFS to behave as follows: whenever an
application residing in a cached NFS filesystem is executed, the kernel checks the
front filesystem to see if a complete copy of the application binary is present in the
local cache; if not, the client will sequentially read the entire application binary
from the server and cache a local copy. This automatic caching of complete
binaries occurs without any user intervention. Any future requests for this file are
satisfied from the front filesystem, and this cached binary will remain intact during
a CacheFS filesystem unmount or a client reboot.

An important point to understand about the rpages functionality is that it only forces
the client to cache complete copies of application files that are executed. It does
not automatically load entire copies of files that the client merely reads.

The rpages option may cause initial binary load times to increase (I.e. the first time
the application is run on a CacheFS client with an un-populated cache) since the
entire binary will be loaded across the network. However, subsequent run times
are usually substantially faster.

nfs performance tuning for hp-ux 11.0 and 11i systems page 85

Notes:

Page 85July 22, 2002 Copyright 2002 Hewlett-Packard Company

cachefsCacheFS Performance Considerations

•Create separate caches for each NFS filesystem
Ø Pools of cachefsd threads are created on a per-cache basis

•Use dedicated front filesystems for each cache
Ø Avoids having the LRU algorithm remove cached files because of

non-CacheFS filesystem usage

•Use the rpages mount option when appropriate
Ø Dramatic performance increase for NFS-based applications

• The maxcnodes kernel parameter
Ø Determines the size of the CacheFS-specific inode table

The recommendation is to create a separate cache for each CacheFS mount point,
thus avoiding the case where data from one NFS filesystem forces CacheFS to
remove files cached by another NFS filesystem when the cache disk space or inode
resource thresholds are reached.

It is important to understand that the kernel creates cachefsd thread pools on a per-
cache basis — not a per-CacheFS mount basis. In other words, if three NFS
filesystems share a single cache, all requests for these cached resources will be
serviced by a single pool of cachefsd threads. If, however, there are three
separate caches configured, and each of the NFS filesystems are mounted using
different caches, then each cached filesystem will be serviced by its own pool of
threads. By creating separate caches for each CacheFS filesystem, the kernel
creates dedicated pools of cachefsd threads to service each CacheFS mount point.

The maxcnodes kernel parameter configures the size of the CacheFS-specific inode
table. By default, this parameter is set to the same value as ncsize, which is sized
based on ninode. Typically this parameter is tuned by tuning ncsize or ninode.

nfs performance tuning for hp-ux 11.0 and 11i systems page 86

Notes:

Page 86July 22, 2002 Copyright 2002 Hewlett-Packard Company

cachefsShould you use CacheFS?

• Is your data “stable” and read-only?

• Do you have spare local disk resources on your clients?

• If you use CacheFS to front NFS applications, do your
binaries remain in the cache following an unmount?
If not, are you willing to force them to remain cached?

WARNING – Patch CacheFS Prior to Using
Ø Just prior to 11i releasing, several critical and serious CacheFS

defects were discovered. All known CacheFS defects have since
been fixed. It is strongly recommended that patch PHNE_25627,
or a superseding patch, be installed before using CacheFS on 11i.

As with most system configuration issues, the decision to use CacheFS should be
made by an experienced system administrator who is familiar with the applications
used by the client.

nfs performance tuning for hp-ux 11.0 and 11i systems page 87

Notes:

Page 87July 22, 2002 Copyright 2002 Hewlett-Packard Company

cachefsMeasuring CacheFS Effectiveness
(part 1)

• Use cachefsstat(1M) command
Ø Monitor cache hit rate over time

• Compare wall-clock time with and without CacheFS
Ø The timex(1) command reports on wall-clock times

• Use nfsstat(1M) to monitor NFS READ calls

• Be sure to unmount the CacheFS filesystem between
application runs to nullify any effects from buffer cache
and page cache

There are several methodologies for determining whether CacheFS is having a
positive impact on your NFS environment:

1. Use the cachefsstat(1M) command to monitor the cache hit rate over a
period of time.

2. Try performing the same commands via the CacheFS mountpoint and then
via an NFS mountpoint. Use the timex(1) command to see if any noticeable
wall-clock time differences are seen with CacheFS.

3. Perform the same commands via the CacheFS mountpoint several times, but
be sure to unmount and remount the filesystem between attempts to nullify
any effect from the client’s buffer cache or page cache. As before, timex(1)
can be used to compare times between runs. Also, the nfsstat(1M)
command can be used to monitor how many NFS READ calls are made
during each run. The nfsstat(1M) output should show definitively if CacheFS
is eliminating the need for NFS read calls in subsequent runs.

nfs performance tuning for hp-ux 11.0 and 11i systems page 88

Notes:

Page 88July 22, 2002 Copyright 2002 Hewlett-Packard Company

cachefsMeasuring CacheFS Effectiveness
(part 2)

• Examine the contents of the cache via “ls -l” before
and after unmounting the CacheFS filesystem

Since the CacheFS cache resides in a local filesystem on the NFS client, the actual
contents of the cache can be viewed like any other directory – via the ls(1)
command. The names of the files in the cache do not match the names of the files
in the back filesystem, so some intuition must be used to determine which file in the
front filesystem is the cached equivalent of a specific file in the back filesystem.

In the above example, the /opt/netscape directory was mounted via CacheFS
to an 11i client without the rpages mount option. The Netscape Communicator®
application was launched on the client via the CacheFS mount point. At this point,
an “ls -l” of the cache directory shows a large file (a cached version of the
netscape binary) is resident in the cache. After unmounting the /opt/netscape
directory, a second “ls -l” shows this same file has been zeroed out – effectively
nullifying any CacheFS benefit. As explained previously, the fact that this file was
invalidated from the cache at unmount time indicates that the HP-UX loader used
more than 32 non-contiguous chunks to load the binary, exceeding the 32-slot map
limit.

The before and after “ls -l” outputs of the cache directory provide definitive proof of
whether CacheFS is really offering any benefit to your NFS applications or not.

nfs performance tuning for hp-ux 11.0 and 11i systems page 89

Notes:

Page 89July 22, 2002 Copyright 2002 Hewlett-Packard Company

nfs protocol version 2
vs.

nfs protocol version 3

• What are the differences
between NFS PV2 and
PV3?

• Will a PV3 client/server
always outperform a PV2
client/server?

• Should you use NFS PV2
or NFS PV3 in your
environment?

NFS, like most protocols, continues to evolve over time. The original version of
NFS (Protocol Version 1) existed only within Sun Microsystems and was never
released to the public. Protocol Version 2 (PV2) was implemented in 1984
(RFC1094) and it enjoyed a good deal of popularity as a file access protocol. As
time went by, some of the limitations imposed by the PV2 design necessitated the
development of its replacement – Protocol Version 3 (PV3) – which was introduced
in February1994 (RFC1813). This protocol offered many enhancements that made
it far superior to its predecessor. Most of these improvements deal specifically with
NFS performance.

This section discusses the many differences between NFS PV2 and NFS PV3 with
respect to performance. It describes several scenarios where a PV2 mountpoint
might actually outperform a PV3 mountpoint. It also explains the criteria for
deciding which NFS protocol is more appropriate to use in your environment.

nfs performance tuning for hp-ux 11.0 and 11i systems page 90

Notes:

Page 90July 22, 2002 Copyright 2002 Hewlett-Packard Company

How is NFS PV3 different from PV2? nfs pv2
vs.

nfs pv3

SafeUnsafeAsynchronous Writes

READDIRPLUSREADDIR/LOOKUPDirectory Traversal

Attributes included
in every reply

Included in LOOKUP
and GETATTR repliesFile Attribute Retrieval

32KB8KBMaximum Read/Write
Buffer Sizes

11.0 = 1TB
11i = 2TB2GBMaximum File Size

NFS PV2 NFS PV3ISSUE

Maximum File Size Supported by NFS Client
PV2 uses 32-bit signed integers for file offsets. PV3 uses 64-bit unsigned.

Asynchronous Writes
PV2 originally required all writes to be synchronous. Async writing was later
added to PV2, but in an unsafe fashion (i.e. data loss can occur). PV3 writes
data asynchronously by default and does so using a “safe” method.

Maximum Read/Write Buffer Sizes
PV2 fixed the largest NFS read or write request at 8KB. HP’s PV3 allows 32KB.

File Attribute Retrieval
File and directory attributes are only returned in select replies from a PV2
server. A PV3 server includes attribute information as part of every reply.

Directory Traversal
PV2 uses READDIR to get directory contents and then sends a LOOKUP for each
file to get its attributes. PV3’s READDIRPLUS call combines these functions.

nfs performance tuning for hp-ux 11.0 and 11i systems page 91

Notes:

Page 91July 22, 2002 Copyright 2002 Hewlett-Packard Company

How is 11i PV3 different from 11.0? nfs pv2
vs.

nfs pv3

Difference between 11.0 and 11i

Ø The largest file size supported by an 11.0 NFS PV3 client is 1TB.
11i PV3 clients can access files as large as 2TB.

Ø When HP-UX 11.0 released, the largest read and write buffer size
available for an NFS PV3 mountpoint was 8KB. Support for 32KB
read and write requests were added in March 2000. 11i
ships with support for 32KB read and write requests.

Ø Even though HP-UX 11.0 now supports 32KB read and write buffer
sizes, the default remains 8KB for PV3 mounts. The default
read and write buffer sizes on 11i is 32KB for PV3 mount points.

The differences between HP-UX 11.0 and 11i that allow an 11i client to access a
larger file are not due to variations in the NFS implementations, but rather
differences in some of the supporting protocols that NFS is dependent on.

For example, the NLM (Network Lock Manager) protocol shares key kernel variable
definitions with the underlying local VxFS filesystem. NLM is therefore subject to
the same file size limitations as VxFS. In other words, an HP-UX 11.0 NFS PV3
client may be able to WRITE a file larger than 1TB (assuming it is writing this file to
an NFS PV3 server that supports files larger than 1TB), but the client would not be
able to set a LOCK on the file at an offset greater than 1TB. Again, this is not a
limitation of NFS itself, but of NLM.

Since NFS relies on NLM for file locking semantics, this NLM limitation does
impose a limit on the maximum file sizes supported by HP-UX NFS clients.

nfs performance tuning for hp-ux 11.0 and 11i systems page 92

Notes:

Page 92July 22, 2002 Copyright 2002 Hewlett-Packard Company

Will a PV3 implementation always
outperform PV2?

• Asynchronous Write Performance
Ø PV2 is typically faster than PV3 because it doesn’t have any of

the overhead associated with the “safe” writing mechanism

• Heavily Congested Networks and Large R/W Buffers
Ø If timeouts occur on a UDP mount, the entire request must be

resent – PV3’s larger packet sizes can make matters worse

• Directory Retrieval where Attributes are NOT Needed
Ø PV3’s READDIRPLUS can add tremendous amounts of overhead

if the client application has no need for the file attribute data

nfs pv2
vs.

nfs pv3

While PV3 write performance is comparable to PV2 asynchronous write speed,
generally PV2 will be faster simply because it doesn’t have any of the overhead
associated with the “safe” PV3 write method including: keeping copies of the data
in the client’s buffer cache, processing write verifiers, etc. However, PV3 write
performance is still usually faster than PV2 when larger write buffer sizes are used.

While 32KB read and write buffer sizes generally result in higher NFS
performance, there are cases where a smaller buffer size can be beneficial,
including: heavily congested networks, wide area networks, and overloaded NFS
servers. All three of these cases have the potential for lost packets due to network
congestion, network latency, or socket overflows on the NFS server. In UDP
environments, larger requests can lead to increased numbers of retransmissions.

READDIRPLUS was added to PV3 to eliminate the need of sending LOOKUP
requests for every file in a directory to retrieve its attributes. In large directories this
can save hundreds or even thousands of LOOKUP calls. However, if the
application doesn’t need these attributes, READDIRPLUS adds a tremendous amount
of overhead and can cause PV3 clients to perform much worse than PV2 clients.

nfs performance tuning for hp-ux 11.0 and 11i systems page 93

Notes:

Page 93July 22, 2002 Copyright 2002 Hewlett-Packard Company

Can you disable READDIRPLUS on an
HP-UX 11.0 or 11i NFS Server?

• The NFS server-side READDIRPLUS procedure can be
disabled by modifying an undocumented kernel
parameter called “do_readdirplus”

• The only way to change this parameter is via adb(1)

nfs pv2
vs.

nfs pv3

WARNING WARNING WARNING
Ø The following procedure is NOT SUPPORTED BY HP

Ø This procedure should be used with caution, as it will disable the
READDIRPLUS operation on the server globally, thus impacting any
PV3 client – not just HP clients.

It is important to understand that after using the procedure described below, the
11.0/11i server will respond to any inbound READDIRPLUS request with an error –
NFS3ERR_NOTSUPP (operation is not supported). This causes PV3 clients to fall
back to the old PV2 method of READDIR/LOOKUP for obtaining directory contents.
This procedure is NOT SUPPORTED BY HP. Use at your own risk.

To disable READDIRPLUS on an HP-UX 11.0 or 11i server, log into the server as a
root user and type:

echo “do_readdirplus/W 0d0” | adb -w /stand/vmunix /dev/kmem
echo “do_readdirplus?W 0d0” | adb -w /stand/vmunix /dev/kmem

The above commands modify both the on-disk kernel file and kernel memory so the
change takes effect immediately, and will remain in effect even if the server system
is rebooted. These commands would need to be repeated if the kernel is rebuilt,
either manually or via a kernel patch installation. To re-enable READDIRPLUS
support on the NFS server, substitute “0d1” in place of “0d0” in the above
commands.

nfs performance tuning for hp-ux 11.0 and 11i systems page 94

Notes:

Page 94July 22, 2002 Copyright 2002 Hewlett-Packard Company

Which protocol should you use?

• In most environments, PV3 provides superior
performance

• PV2’s edge in asynchronous write performance is usually
offset by the larger packet sizes afforded by PV3

• If the network is dropping large PV3 requests, the request
size can be reduced via the rsize and wsize mount
options. Alternately, NFS/TCP can be used to reduce
the amount of data sent during a retransmission.

• Directory retrieval issues caused by READDIRPLUS can
be avoided by disabling this feature on the server

nfs pv2
vs.

nfs pv3

NFS PV3 is a superior protocol to PV2. In nearly every situation a PV3
client/server will outperform a similarly configured PV2 client/server. In those rare
occasions where PV2 might have a slight advantage over PV3 (such as
asynchronous writing or directory traversal where file attributes are not needed) the
PV3 implementation on HP-UX systems can be modified to work around the issue.

nfs performance tuning for hp-ux 11.0 and 11i systems page 95

Notes:

Page 95July 22, 2002 Copyright 2002 Hewlett-Packard Company

nfs/udp
vs.

nfs/tcp

• Protocol-Induced Overhead

• Retransmissions and
Timeouts

• Network Switch Buffering
Considerations

• Should you use NFS/UDP
or NFS/TCP in your
environment?

One of the design goals of the original version of NFS, and every version since,
has been to minimize the amount of network latency involved in accessing remote
files. For this reason NFS was originally designed to run exclusively over the UDP
network transport, as this transport provided a lightweight delivery mechanism.

Over time, as clients and servers became geographically dispersed across wide
area networks, it became necessary to provide guaranteed data delivery and
improved handling of network timeouts and retransmissions – even if the added
overhead meant slower performance in local area networks. The TCP/IP protocol
provided these benefits and was already widely in use by other networking
applications. The developers of NFS therefore decided to modify the NFS protocol
to allow it to run over either TCP or UDP and allow the system administrators to
decide which transport mechanism better met their needs on a per-mount basis.

Now that both UDP and TCP are supported protocols, the question is ‘Which one
should I use?’ To answer this question, a system administrator needs to understand
the differences between the two transport mechanisms and how these differences
can benefit or hinder NFS performance in their environment.

nfs performance tuning for hp-ux 11.0 and 11i systems page 96

Notes:

Page 96July 22, 2002 Copyright 2002 Hewlett-Packard Company

nfs/udp
vs.

nfs/tcp

How is 11.0 NFS/TCP support
different from 11.i?

Difference between 11.0 and 11i

Ø When HP-UX 11.0 released, the only network transport available to
NFS was UDP. NFS/TCP support was added in March 2000.

Ø Even when the March 2000 patches are installed on HP-UX 11.0
systems, UDP remains the default protocol used by NFS.
NFS/TCP support must be manually enabled via the new
setoncenv(1M) command. Once NFS/TCP support has been
enabled, TCP becomes the default protocol used for NFS.

Ø On 11i, TCP is the default protocol for NFS.

When HP-UX 11.0 shipped it only supported NFS running over UDP. HP added
support for NFS/TCP via the kernel and user-space NFS patches released in March
2000. Any HP-UX 11.0 NFS patches released after March 2000 also contains this
functionality. Since new NFS patches are released periodically, be sure to consult
HP Support or the IT Resource Center web site – http://itrc.hp.com – to obtain
information about currently available NFS patches.

After installing these patches on both the client and server (assuming both systems
run HP-UX 11.0), the system administrator must enable NFS/TCP functionality
manually via a new command called setoncenv(1M). Again, this must be done on
both the NFS client and the server. Once enabled, TCP becomes the default
network transport for new NFS mounts.

On HP-UX 11i, TCP is the default transport used for NFS mounts.

nfs performance tuning for hp-ux 11.0 and 11i systems page 97

Notes:

Page 97July 22, 2002 Copyright 2002 Hewlett-Packard Company

nfs/udp
vs.

nfs/tcp

Protocol-Induced Overhead

•UDP
Ø Lightweight, Connectionless, Unreliable

•TCP
Ø Connection Oriented, Reliable Delivery of Data

Ø Connection Management (establishment & teardown)

Ø Sequence and Acknowledgement Generation

Ø Congestion Control, Window Scaling

Ø Timeout and Retransmission Management

UDP is commonly described as a connectionless or unreliable transport protocol. It
is a very lightweight protocol, which is designed to quickly and efficiently deliver IP
datagrams between systems. By contrast, TCP is a connection-oriented transport,
which maintains established connections between systems and guarantees reliable
delivery of data.

The reliability provided by TCP does not come without some overhead. There is
connection management overhead (i.e. connection establishment and teardown),
tracking of sequence and acknowledgement information, congestion control, error
recovery, etc. In LAN environments, where latency is low and retransmissions are
few, the overhead imposed by TCP can hurt overall NFS performance.

How much does the overhead of TCP affect NFS performance? As with most
performance related questions the answer is ‘It depends’. Many factors can
influence the behavior and performance of UDP and TCP in a given network. It is
therefore difficult to predict how much impact converting from UDP to TCP will have
in an existing NFS installation. Thorough testing with both protocols is highly
recommended.

nfs performance tuning for hp-ux 11.0 and 11i systems page 98

Notes:

Page 98July 22, 2002 Copyright 2002 Hewlett-Packard Company

nfs/udp
vs.

nfs/tcp

Retransmissions and Timeouts

Overrides Van
Jacobsen Algorithm
(avoid if possible)

Effectively Ignored
(HP behaves the
same as SUN)

“timeo” Mount Option

Min = calculated
Max = 60 seconds

Min = calculated
Max = 20 secondsDefault Timeouts

MTU Size
(typically 1500 Bytes)

RSIZE/WSIZE
(as much as 32KB)

How much DATA is
sent in retransmission

Transport manages 1st

NFS manages 2ndNFS managesManaging Timeouts
and Retransmissions

UDP TCPISSUE

Managing Timeouts and Retransmissions
Since the UDP transport is unreliable, it is up to the application (NFS) to manage retransmitting
packets that are not replied to. TCP/IP has built in mechanisms for managing the delivery of
data. Only in extreme situations does NFS get involved in retransmitting data on a TCP mount.

How much DATA is sent in retransmission
When a retransmission occurs on a UDP mount NFS must resend the entire request, which could
be as much as 32KB of data – even if only a single MTU of data was lost. TCP keeps track of
how much data has been sent by the clients and received by the servers. Therefore, if a single
MTU-sized packet of data is lost on the network, only that portion must be retransmitted.

Default Timeouts
Both UDP and TCP use the Van Jacobsen algorithm to calculate timeout values based on the
smooth round trip timers (the current srtt values can be displayed on a per-mount basis by
issuing the “nfsstat –m” command). UDP has a maximum timeout value of 20 seconds, while
NFS allows TCP to retry for 60 seconds before it forces a retransmission of the entire request.

“timeo” Mount Option
The “timeo” mount option is effectively ignored on UDP mounts. The use of this option on TCP -
based filesystems is highly discouraged as it overrides the Van Jacobsen algorithm, potentially
resulting in very poor performance, and causing “NFS server not responding” errors.

nfs performance tuning for hp-ux 11.0 and 11i systems page 99

Notes:

Page 99July 22, 2002 Copyright 2002 Hewlett-Packard Company

nfs/udp
vs.

nfs/tcp

Why would an NFS client need to
retransmit a request?

• The client is unable to send the request (i.e. resource exhausted)

• The request is dropped on the network before arriving on the server

• The server is down or a network partition has occurred

• The request arrives on the server but the server’s socket is full

• The server receives the request but cannot process it in time

• The server is unable to reply to the client (i.e. resource exhausted)

• The reply is dropped on the network before it arrives on the client

• The client is unable to receive the reply (i.e. resource exhausted)

Because NFS was originally designed to only use UDP as a network transport, and
because of the semantics of UDP (i.e. unreliable, connectionless), NFS was
designed with its own built-in mechanisms to guarantee data integrity. The client
keeps track of the requests it sends and waits for a response from the server before
generating new requests. If the client does not receive a response from the server
within a given time period, it considers the original request lost and reissues the
request. The number of times the client will retry the request depends upon whether
the NFS mount uses hard-mount or soft-mount semantics, where hard mounts will
continually retry the request until a response is received, and soft mounts will
eventually time out the request and return control (and any error) to the application.

There are many reasons an NFS client would be forced to resend data. The most
common scenarios are listed above. The point of this list is to illustrate the number
of places in a typical NFS client/server relationship where a request or reply can
be lost, necessitating a retransmission.

nfs performance tuning for hp-ux 11.0 and 11i systems page 100

Notes:

Page 100July 22, 2002 Copyright 2002 Hewlett-Packard Company

nfs/udp
vs.

nfs/tcp

Network Switch Buffering Issues

Customer Reported Problem

• High numbers of NFS/UDP retransmissions and timeouts

• UDP packets were being dropped by the network switch

• The same switch was NOT discarding TCP packets

Results of Investigation

The network hardware vendor confirmed that they dedicate
75% of the buffer memory in their switch for TCP/IP traffic
and only 25% for UDP traffic. This gives NFS/TCP an
advantage, albeit hardware-induced.

In some of HP’s largest NFS customer installations, we’ve seen cases where high
numbers of NFS/UDP retransmissions and timeouts were occurring, resulting in
relatively poor read and write performance.

After much investigation, it was determined that UDP packets were being discarded
by the network switch used by the customer. When the switch vendor investigated
the log files on the switch they discovered that the UDP buffers in the switch were
overflowing which led to the dropped packets. When asked why the switch was
not also dropping TCP packets the vendor explained that they design their switches
with 75% of the buffer memory dedicated for TCP/IP traffic and only 25% for UDP.
The switch therefore had sufficient memory to keep up with the TCP traffic but not
enough to handle the UDP load.

It is likely that many network hardware vendors configure their switch buffer
memory in this manner, so this problem is not confined to large-scale
implementations using a specific vendor’s switch. In these environments NFS/TCP
has an advantage over UDP, albeit hardware-induced.

nfs performance tuning for hp-ux 11.0 and 11i systems page 101

Notes:

Page 101July 22, 2002 Copyright 2002 Hewlett-Packard Company

nfs/udp
vs.

nfs/tcp

Which protocol should you use?

TCPLocal Area Network with a HIGH Number of
Retransmissions and Timeouts

TCPLocal Area Network with Network Switch UDP
Buffers Overflowing

TCPHigh Latency Links or Wide Area Networks

UDPLocal Area Network with a SMALL Number of
Retransmissions and Timeouts

Traditionally the decision to use UDP or TCP was based solely on geography (i.e.
LAN=UDP, WAN=TCP). However, there are situations where even a LAN
environment could benefit from TCP.

As with most every performance-related recommendation, your mileage may vary.
Even in the scenarios listed above, where one protocol would seem to have a clear
advantage over the other, there is no guarantee that the recommendation will hold
true in every environment. If possible, both protocols should be tested and
evaluated before making a final decision.

nfs performance tuning for hp-ux 11.0 and 11i systems page 102

Notes:

Page 102July 22, 2002 Copyright 2002 Hewlett-Packard Company

nfs mount options

• Which NFS mount options
directly affect
performance?

• Which options have
different default values on
HP-UX 11.0 and 11i?

• How can you verify which
mount options are in effect
on a per-mountpoint basis?

There are many NFS-specific mount options available. Some of these options can
have a positive impact on performance, while others can have a dramatically
negative effect. It is important to know which options to use and which to avoid.

nfs performance tuning for hp-ux 11.0 and 11i systems page 103

Notes:

Page 103July 22, 2002 Copyright 2002 Hewlett-Packard Company

Which NFS mount options directly
affect performance?

nfs mount
options

Disable client-side caching of file
and directory attributes

Duration of time to wait for an NFS
request to complete before
retransmitting

Network transport protocol to use

Size of the WRITE requests

Size of the READ requests

Version of the NFS protocol to use

Use only when required by
an applicationnoac

DO NOT USE

(Refer to page 98 for more
information)

timeo=

UDP | TCP
Refer to table on page 101proto=

32768wsize=

32768rsize=

3vers=

DescriptionOption Recommendation

While the above table is by no means an exhaustive list of the available options to
the NFS mount command, these are the most commonly used options that can have
a significant impact on performance. For more information about the available
NFS mount options refer to the mount_nfs(1M) man page.

nfs performance tuning for hp-ux 11.0 and 11i systems page 104

Notes:

Page 104July 22, 2002 Copyright 2002 Hewlett-Packard Company

Which NFS mount options have
different default values at 11i?

nfs mount
options

11.0 DefaultOption 11i Default

TCPUDPproto

327688192wsize

327688192rsize

The default values of many NFS mount options have changed in 11i. It is therefore
important to understand which options have changed to know how a default NFS
mount (i.e. a mount where no options are specified) will behave on both 11.0 and
11i clients. Some of the defaults were changed for performance reasons, and
others to make HP’s NFS implementation more compatible with Sun Microsystems’
NFS implementation.

nfs performance tuning for hp-ux 11.0 and 11i systems page 105

Notes:

Page 105July 22, 2002 Copyright 2002 Hewlett-Packard Company

How can you verify which NFS
mount options are being used?

nfs mount
options

The easiest and most accurate way to determine which NFS mount options are in
effect on a per-mountpoint basis is to use the “nfsstat -m” command.

Looking at the above screenshot, we can determine several things about the way
this client has mounted its filesystems. For example, three of the four filesystems are
mounted using NFS PV3 – only /nfs_mount4 is using PV2. Also, all filesystems
but /nfs_mount4 are mounted from NFS server “emonster”. We can see that
/nfs_mount3 is mounted with the “noac” option and is using read and write
buffer sizes of 32KB. We see that /nfs_mount2 is using a read size of 1KB and
a write size of 4KB. Also, notice that 3 of the 4 filesystems use UDP as their
underlying transport, only /nfs_mount4 uses TCP. Finally, we see that
/nfs_mount1 and /nfs_mount3 reference the same remote filesystem from the
same NFS server, but they are mounted on the client with different options.

Notice that the “nfsstat –m” output also includes the smooth round trip timers
maintained for the various NFS call types (Lookups, Reads, Writes) on NFS/UDP
mounts. This information can be very useful, especially when trying to determine
why one NFS mounted filesystem is performing better or worse than another.

nfs performance tuning for hp-ux 11.0 and 11i systems page 106

Notes:

Page 106July 22, 2002 Copyright 2002 Hewlett-Packard Company

buffer cache
considerations

• What is buffer cache and
why do you want to use it?

• Why not just use lots of
memory for buffer cache?

• Static Allocation vs.
Dynamic Allocation

• Server’s interaction with the
syncer(1M) daemon

• How much memory should
you use for buffer cache?

• Measuring Utilization

Sizing buffer cache correctly on NFS clients and servers can be a time consuming
endeavor, but one that can dramatically affect both NFS and overall system
performance. To understand the intricacies and factors involved in correctly sizing
buffer cache, some understanding of what buffer cache memory is, how it is
managed, and how it is searched is needed.

This section describes what buffer cache memory is and why it is so important to
NFS performance. The differences between static and dynamic buffer cache
allocation methods are explained, along with the reasons for selecting one method
over the other. The NFS server’s interaction with the syncer(1M) daemon is
explained, followed by recommendations for determining the appropriate amount
of buffer cache memory to use on a given NFS client or server. Finally, this section
describes the tools available for measuring buffer cache utilization.

nfs performance tuning for hp-ux 11.0 and 11i systems page 107

Notes:

Page 107July 22, 2002 Copyright 2002 Hewlett-Packard Company

buffer
cache

What is buffer cache memory?

• Portion of physical memory dedicated to storing file data

• NFS read performance is increased when requested data
is present in the cache, avoiding physical disk read

• NFS write performance is increased by allowing writing
process to post data to cache instead of to server’s disk

• HP-UX uses a split memory cache system, employing both
a buffer cache (used for storing data) and a page cache
(used for storing executables, libraries, mmap files)

Buffer cache is a portion of physical memory that is allocated for storing blocks of
file data. HP-UX uses this memory to speed up file operations such as read() and
write(). Since memory access times are so much faster than disk access times,
generally the more file system requests that can be satisfied by buffer cache the
better overall I/O performance will be. NFS read operations can be satisfied
without waiting for a physical disk I/O if the requested data is already residing in
the cache. NFS write performance can be dramatically increased by allowing a
writing process to post the data to local buffer cache and continue, letting the
system migrate the pages to the server’s physical disk in the background.

Unlike most vendor’s UNIX implementations, HP-UX currently uses a split memory
cache system where some memory pages are cached in the buffer cache and
others in the page cache. While the buffer cache is used to store data pages, the
page cache is used when pages are brought into or pushed out from memory using
the paging interface, either explicitly by mapping a file into memory through a call
to mmap(2), or implicitly for objects such as executable programs or shared
libraries which are mapped into memory on behalf of a running program.

nfs performance tuning for hp-ux 11.0 and 11i systems page 108

Notes:

Page 108July 22, 2002 Copyright 2002 Hewlett-Packard Company

buffer
cache

Why not just configure lots of
memory for buffer cache?

• A large cache does not guarantee a high cache hit-rate

• Memory wasted that could be better used by the system

• 11.0 client performance suffers using a large cache

Difference between 11.0 and 11i

The buffer cache management routines have been enhanced in 11i to
track the buffer cache pages on a per-file basis. When a file needs to
be invalidated on an 11i NFS client, the kernel simply invalidates the
buffers in the clean and dirty lists associated with the file rather than
walking the entire cache looking for pages associated with the file.

A large cache does not guarantee a high cache hit rate
The buffer cache can only satisfy an NFS read request if the data is present in
the cache, which would imply that it had been retrieved from the server prior to
the client process requesting it. Since biods pre-fetch sequential data, if the
client is reading non-sequentially there is a strong probability that the data will
not be resident in the cache, regardless of how big the buffer cache is.

Memory wasted that could be better used by the system
By reserving physical memory for buffer cache (particularly in the static
configuration, where the memory is reserved at boot time), you are effectively
removing this memory from the pool available for user-space processes.

11.0 client performance suffers using a large buffer cache
The most compelling reason to not use a large buffer cache on an 11.0 NFS
client is that doing so will actually result in much worse performance than using
a smaller cache. This is because buffer cache pages are not tracked on a file-
by-file basis in 11.0, forcing the kernel to perform a linear search of the entire
cache when it needs to invalidate a file. An example is provided on page 14.

nfs performance tuning for hp-ux 11.0 and 11i systems page 109

Notes:

Page 109July 22, 2002 Copyright 2002 Hewlett-Packard Company

buffer
cache

Static vs. Dynamic Allocation

• Static Allocation of Buffer Cache Memory
Ø Configured via nbuf and/or bufpages parameters

Ø Fixed number of pages allocated, regardless of system memory

Ø 100% allocated at boot time from contiguous memory

Ø Pages are “off limits” to vhand in memory pressure situations

• Dynamic Allocation of Buffer Cache Memory
Ø Configured via dbc_min_pct and dbc_max_pct parameters

Ø Based on % of physical memory

Ø Only dbc_min_pct of memory allocated at boot time

Ø Pages can be stolen by vhand (down to dbc_min_pct)

Two methods of configuring buffer cache are supported: static and dynamic. The
static method allocates a fixed number of 4KB buffers (configured via the bufpages
kernel variable) and buffer header structures (configured via the nbuf kernel
variable) at system boot time. The dynamic buffer cache method allocates buffer
space and supporting data structures as they are needed, using defined minimum
(dbc_min_pct kernel variable) and maximum (dbc_max_pct kernel variable) values
to establish overall buffer cache size limits.

When a system experiences memory pressure, the system process vhand is invoked
to try to reclaim memory pages from areas where it is not immediately needed so
that processes which are memory starved can use it. One of the first places vhand
looks for memory resources is dynamic buffer cache. Under severe memory
pressure conditions, vhand will steal pages from dynamic buffer cache 3 times
more often than anywhere else on the system (i.e. ordinary processes, shared
memory, shared libraries, or memory-mapped regions). If no buffer cache pages
are available (i.e. dbc_min_pct is reached or static buffer cache is configured) then
vhand may need to deactivate processes to reclaim their memory pages.

nfs performance tuning for hp-ux 11.0 and 11i systems page 110

Notes:

Page 110July 22, 2002 Copyright 2002 Hewlett-Packard Company

buffer
cache

Should you use static or dynamic
allocation in your environment?

DynamicMemory pressure or small memory system

DynamicNone of the above

StaticYou have determined the optimal cache size
and have sufficient memory

StaticYou use variable memory page sizes and
experience memory fragmentation

StaticYou plan on adding more memory to the
system and don’t want buffer cache affected

Under most circumstances, the dynamic allocation method is the recommended
method of allocating system memory to buffer cache. However, there are some
environments where the static allocation method might offer some benefits.

If you have experimented with different amounts of buffer cache on a given client
and have determined the optimal size of the cache (i.e. provides the best
performance for your applications) then the easiest solution is to fix buffer cache at
that size. Also, once you’ve determined the optimal size of the cache the last thing
you want is for this size to inadvertently change without your consent. In the case
where you need to add more physical memory to the system, perhaps due to
growing application requirements, this will affect your total buffer cache size if you
use dynamic allocation since it calculates the cache size as a percentage of
memory.

In rare cases, customers using variable memory page sizes and dynamic buffer
cache have reported problems of memory fragmentation and resulting poor
performance. Static buffer cache avoids this issue by allocating all of its memory
resources at system boot time in contiguous space.

nfs performance tuning for hp-ux 11.0 and 11i systems page 111

Notes:

Page 111July 22, 2002 Copyright 2002 Hewlett-Packard Company

buffer
cache

Server’s interaction with syncer(1M)

• syncer(1M) is responsible for keeping the on-disk file system
information synchronized with the contents of the buffer cache

• It divides buffer cache into 5 “regions” and awakens every 6
seconds (by default) to scan one of the memory regions (i.e. 20% of
the cache) looking for “dirty” blocks that need to be written to disk

• The syncer interval defines the amount of time required to search all
of buffer cache, which defaults to 30 seconds (5 regions * 6 secs.)

Recommendation
Ø This value should only be modified on busy NFS servers with

large buffer caches servicing write-intensive workloads

Ø Reduce the syncer interval to 20 seconds on these systems

The syncer(1M) daemon is responsible for keeping the on-disk file system
information synchronized with the contents of the buffer cache. Syncer divides
buffer cache into 5 “regions” each containing 20% of the total cache. Each region
is processed once per interval. The default interval is 30 seconds, which tells the
syncer to awaken every 6 seconds and process 20% of the cache.

NFS PV3 write data is placed in the server’s buffer cache and marked for delayed
writes semantics. Since syncer needs 30 seconds to process all of buffer cache
(i.e. 6 seconds * 5 regions), this gives a busy NFS server a relatively long period
of time to queue up write requests that need to be flushed. When the syncer flushes
these buffers to disk, they transition to the disk’s queue where they have the
potential of getting in the way of synchronous transfers such as read() requests.
Consequently there have been cases reported where read() calls take many
seconds to complete because they are blocked behind all of the delayed writes
being flushed from the server’s buffer cache. This can make the NFS clients appear
to “hang” for short periods of time.

The syncer interval should be changed in the /sbin/init.d/syncer script itself.

nfs performance tuning for hp-ux 11.0 and 11i systems page 112

Notes:

Page 112July 22, 2002 Copyright 2002 Hewlett-Packard Company

buffer
cache

How much memory should you
configure for buffer cache?

• Sizing too small on clients and servers can result in sub-
optimal performance

• Sizing too large on 11.0 clients can lead to horrendous
NFS performance

• Your mileage will vary, so test with different amounts

Recommended Initial Buffer Cache Sizes
Ø NFS Clients – 400MB or 25% of memory (whichever is LESS)

Ø NFS Servers – 1GB or 50% of memory (whichever is LESS)

Once you’ve decided whether to use static or dynamic buffer cache (based on the
requirements of your applications and environment), the question becomes how
much memory to assign to buffer cache.

As stated earlier, configuring a large buffer cache on 11.0 clients can result in very
poor NFS performance. Although the changes made to the buffer cache code in
11i should allow you to use a larger buffer cache without paying the performance
penalties seen on 11.0, the question is ‘Should you?’ This question can only be
accurately answered through sufficient testing in your own environment, using your
own applications.

There is no one right answer for every NFS client, however a good starting point
for most clients is 400MB or 25% of physical memory – whichever is LESS.

Similarly, there is no one right answer for every NFS server, but a good starting
point for most servers is 1GB or 50% of physical memory – whichever is LESS.

nfs performance tuning for hp-ux 11.0 and 11i systems page 113

Notes:

Page 113July 22, 2002 Copyright 2002 Hewlett-Packard Company

buffer
cache

Measuring Buffer Cache Utilization

After configuring your system with reasonable sized buffer cache, the next step is to
run your applications and evaluate the performance with these buffer cache
settings.

You can either time the performance of your application using the time(1) or
timex(1) commands, or simply use a stopwatch. You can also monitor the buffer
cache read and write hit rates using a performance measurement tool such as
Glance Plus (shown above), or via the sar(1M) command using the “–b” option.

nfs performance tuning for hp-ux 11.0 and 11i systems page 114

Notes:

Page 114July 22, 2002 Copyright 2002 Hewlett-Packard Company

kernel parameter
tuning

• Which kernel parameters
directly affect NFS
performance?

• Inspecting kernel
parameters

• Monitoring kernel
parameter usage

Since NFS spends the majority of its time running in the kernel, it should come as
no surprise that there are many kernel parameters that can positively or negatively
impact NFS performance. Like most other facets of system performance, there is
not one universal setting for kernel variables that will work for every client or server
in every environment. The values described in this section are merely
recommendations for starting values. You should perform extensive testing with
your applications in your environment to determine the optimal settings for these
variables on your systems.

In addition to describing the parameters, this section describes several tools
available for inspecting the current values of these parameters. Also described are
the tools that allow you to monitor the utilization rate of some of the key
parameters.

nfs performance tuning for hp-ux 11.0 and 11i systems page 115

Notes:

Page 115July 22, 2002 Copyright 2002 Hewlett-Packard Company

Kernel parameters that directly
affect NFS performance

• bufcache_hash_locks

• bufpages

• create_fastlinks

• dbc_min_pct

• dbc_max_pct

• default_disk_ir

• dnlc_hash_locks

• fs_async

• ftable_hash_locks

• nflocks

• ninode

• nkthread

• nproc

• scsi_max_qdepth

• vnode_hash_locks

• vnode_cd_hash_locks

• vx_fancyra_enable

• vx_ninode

kernel
parameter

tuning

• max_fcp_reqs

• max_thread_proc

• maxfiles

• maxfiles_lim

• maxswapchunks

• nbuf

• ncallout

• ncsize

• nfile

The parameters shown here in no way constitute a complete list of the kernel
parameters needed for every client or server system. The ones described in this
section can directly impact NFS performance on HP-UX 11.0 and 11i systems.

Many applications require other kernel parameter settings for things like maximum
process storage, text and data segment sizes, semaphores, shared memory, etc.
Be sure to check with your software supplier to ensure that you configure the kernel
variables appropriately for your application software.

nfs performance tuning for hp-ux 11.0 and 11i systems page 116

Notes:

Page 116July 22, 2002 Copyright 2002 Hewlett-Packard Company

Kernel Parameter Recommendations
(part 1)

kernel
parameter

tuning

Variable Description Def Recommend

4096128
The size of the pool of locks
used to control access to
buffer cache data structures

bufcache_hash_locks

1 (enable)0Enable/disable immediate
disk reportingdefault_disk_ir

25 (client)
50 (server)50Max. % of memory used for

dynamic buffer cachedbc_max_pct

55Min. % of memory used for
dynamic buffer cachedbc_min_pct

1 (enable)0
Enable/disable storing link
text for symlinks in disk
inode – HFS only

create_fastlinks

0 (dynamic)0Number of 4K memory
pages in static buffer cachebufpages

bufcache_hash_locks
Sizes the pool of locks used to control access to buffer cache data structures.

bufpages
The bufpages variable specifies how many 4096-byte memory pages are allocated for the static
sized buffer cache. Both bufpages and nbuf must be set to 0 to enable dynamic buffer cache.

create_fastlinks
When create_fastlinks is enabled, it causes the system to create HFS symbolic links in a manner
that reduces the number of disk accesses by one for each symbolic link in a pathname lookup.

dbc_min_pct
The value of dbc_min_pct specifies the minimum percentage of physical memory that is reserved
for use by the dynamic buffer cache.

dbc_max_pct
The value of dbc_max_pct specifies the maximum percentage of physical memory that is
reserved for use by the dynamic buffer cache.

default_disk_ir
When enabled, disk drives that have data caches return from a write() system call when the
data is cached, rather than returning after the data is written on the media. Data loss can occur
if the disk’s power fails, however this is usually negated via RAID strategies or arrays with UPS.

nfs performance tuning for hp-ux 11.0 and 11i systems page 117

Notes:

Page 117July 22, 2002 Copyright 2002 Hewlett-Packard Company

Kernel Parameter Recommendations
(part 2)

kernel
parameter

tuning

Variable Description Def Recommend

409664
Specifies the size of the pool of
locks used to control access to
file table data structures

ftable_hash_locks

1024512
The maximum concurrent Fiber-
Channel requests allowed on
any FCP adapter

max_fcp_reqs

1 (enable)0Enable/disable async writing of
filesystem metadata – HFS onlyfs_async

51264 (11.0)
512 (11i)

Size of the pool of locks used to
control access to DNLC
structures, and the number of
hash chains the DNLC entries
are divided into

dnlc_hash_locks

dnlc_hash_locks
Specifies the size of the pool of locks used to control access to the DNLC (Directory Name
Lookup Cache) data structures. This value also specifies the number of times the DNLC will be
divided into hash chains for searching purposes.

The dnlc_hash_locks kernel variable did not exist when HP-UX 11.0 was released. It was
introduced in patch PHKL_12965, which has since been replaced by patch PHKL_18543.
dnlc_hash_locks has a default value of 64 on HP-UX 11.0. The default value was increased to
512 in HP-UX 11i.

fs_async
Specifies whether or not asynchronous writing of HFS filesystem metadata is allowed.

ftable_hash_locks
Specifies the size of the pool of locks used to control access to the file table data structures.

max_fcp_reqs
This variable specifies the maximum number of Fiber-Channel requests that may be queued on
any FCP adapter in the system at any time.

nfs performance tuning for hp-ux 11.0 and 11i systems page 118

Notes:

Page 118July 22, 2002 Copyright 2002 Hewlett-Packard Company

Kernel Parameter Recommendations
(part 3)

kernel
parameter

tuning

Variable Description Def Recommend

25664Max. number of kernel threads that
can be associated with a processmax_thread_proc

20481024
Specifies the “hard” limit for the
number of files that a given process
can have open at any time

maxfiles_lim

102460
Specifies the “soft” limit for the
number of files that a given process
can have open at any time

maxfiles

WARNING WARNING WARNING

Ø HP-UX 11.0 and 11i NFS servers stop responding to NFS/TCP requests if the
nfsktcpd process reaches the max_thread_proc limit. This defect is fixed in
the current 11.0 NFS patch and will be fixed in the 11i Summer 2001 patch.

max_thread_proc
Limits the number of threads a single process is allowed to create. This protects the system from
excessive use of system resources if a run-away process creates more threads than it should.

A defect exists in the HP-UX 11.0 and 11i NFS/TCP server code which causes the server to stop
responding to inbound requests once the nfsktcpd process reaches the maximum number of
kernel threads defined by max_thread_proc, effectively causing all NFS/TCP access to this
server to hang. This defect is fixed in the current 11.0 NFS patch. The same fix will be made
available for 11i in the Summer 2001 NFS patch.

Since TCP is the default network protocol used for NFS filesystems in 11i, it is important to make
sure that 11i servers configure max_thread_proc large enough to avoid this hang. Once the
Summer 11i NFS patch becomes available, max_thread_proc may be reduced to a lower
value.

maxfiles
Specifies the “soft” limit for the number of files a process may open at any one time without
having to call setrlimit(2) to increase the soft limit.

maxfiles_lim
Specifies the “hard” limit for the number of files a process may open at any one time.

nfs performance tuning for hp-ux 11.0 and 11i systems page 119

Notes:

Page 119July 22, 2002 Copyright 2002 Hewlett-Packard Company

Kernel Parameter Recommendations
(part 4)

kernel
parameter

tuning

Variable Description Def Recommend

8192256Maximum amount of swap space
that can be configuredmaxswapchunks

0 (dynamic)0
Defines the number of buffer
headers to be allocated for the
static-sized buffer cache

nbuf

2048200Maximum number of file locks
allowed on the system at any timenflocks

8192928Maximum number of open files
allowed on the system at any timenfile

8192476Directly sizes the DNLC and the
NFS client’s rnode cachencsize

2064292Maximum number of timeouts that
can be scheduled by the kernelncallout

maxswapchunks
Used to compute the maximum amount of configurable swap space on the system.

nbuf
Specifies the number of buffer headers to be allocated for the static file system buffer cache.
Each buffer is allocated 4096 bytes of memory unless overridden by a conflicting value for
bufpages. Both nbuf and bufpages need to be set to 0 to enable dynamic buffer cache.

ncallout
Specifies the maximum number of timeouts that can be scheduled by the kernel at any given
time. Timeouts are used by: alarm(), setitimer(), select(), drivers, uucp, and process scheduling.

ncsize
Directly sizes the DNLC, used to store directory pathname information related to recently
accessed directories and files in the file system. Also sizes the NFS client’s rnode table.

nfile
Defines the maximum number files that can be open at any one time, system-wide.

nflocks
Specifies the maximum number of file/record locks that are available system-wide.

nfs performance tuning for hp-ux 11.0 and 11i systems page 120

Notes:

Page 120July 22, 2002 Copyright 2002 Hewlett-Packard Company

Kernel Parameter Recommendations
(part 5)

kernel
parameter

tuning

Variable Description Def Recommend

8192476

Directly sizes the HFS inode
cache, indirectly sizes CacheFS
maxcnodes, can indirectly size
the DNLC, NFS rnode cache,
and can size VxFS inode cache

ninode

2048499
Maximum number of kernel
threads that can be running on
the system at any time

nkthread

1024276
Maximum number of processes
that can be running on the
system at any time

nproc

908
The maximum number of I/O
requests that can be queued to
a SCSI device at any time

scsi_max_qdepth

ninode
Directly sizes the HFS inode table, indirectly sizes the DNLC, indirectly sizes the NFS client’s
rnode table, is used by CacheFS (HP-UX 11i systems only) to size the maxcnodes kernel
variable, and can be used to indirectly size the VxFS-specific inode table – only if the ninode
value is larger than the VxFS inode table size calculated by the kernel based on the amount of
physical memory in the system. Since the kernel typically builds very large VxFS inode caches,
the chances of ninode directly sizing the VxFS inode cache are extremely remote.

nkthread
Limits the total number of threads that can be running on the system at any given time from all
processes.

nproc
Directly specifies the maximum total number of processes that can exist simultaneously in the
system at any given time.

scsi_max_qdepth
The maximum number of I/O requests that may be queued to a SCSI device at any time.

nfs performance tuning for hp-ux 11.0 and 11i systems page 121

Notes:

Page 121July 22, 2002 Copyright 2002 Hewlett-Packard Company

Kernel Parameter Recommendations
(part 6)

kernel
parameter

tuning

Variable Description Def Recommend

4096128
Sizes the pool of locks used
to control access to vnode
data structures

vnode_hash_locks

81920Specifies the size of the
VxFS-specific inode cache.vx_ninode

1 (enable)0
Enable or disable intelligent
read-ahead algorithm.

VxFS 3.3 filesystems only.
vx_fancyra_enable

4096128

Sizes the pool of locks used
to control access to the
clean and dirty buffer
chains associated with the
vnode structures

vnode_cd_hash_locks

vnode_hash_locks
Specifies the size of the pool of locks used to control access to the vnode data structures.

vnode_cd_hash_locks
Specifies the size of the pool of locks used to control access to the clean and dirty buffer chains
associated with the vnode structures.

vx_fancyra_enable
Enables or disables a new intelligent read-ahead algorithm. This algorithm allows read-aheads
to occur in cases such as “backward read,” “stride read,” files read by multiple processes
simultaneously, and “collective reads.” These types of reads are typically performed by EDA
applications. The vx_fancyra_enable kernel parameter did not exist when HP-UX 11.0 was
released. It was introduced in patch PHKL_22414. This parameter was included in HP-UX 11i.

vx_ninode
Specifies the size of the VxFS-specific inode cache. This can be used to override the size of the
VxFS cache calculated by the kernel at boot time based on physical memory. Can be very
important on large memory systems. For example, on a system with 128GB of memory, the
kernel will create a VxFS inode table containing 1,024,000 entries. vx_ninode did not exist
when HP-UX 11.0 and 11i released. It was introduced in patch PHKL_18543 (11.0) and
PHKL_24783 (11i).

nfs performance tuning for hp-ux 11.0 and 11i systems page 122

Notes:

Page 122July 22, 2002 Copyright 2002 Hewlett-Packard Company

Inspecting Kernel Parameters

• sam(1M) – Kernel Configuration Screen

• kmtune(1M)

• sysdef(1M)

•/stand/system

• adb(1)

kernel
parameter

tuning

There are several tools available for determining the current size of the various
kernel parameters on the system. Some of these tools can also describe how the
sizes of these parameters are calculated in the kernel. Additionally, sam(1M),
kmtune(1M), and adb(1) can be used to change the values of the kernel
parameters.

The /stand/system file is the configuration file used to build the kernel. Among
other things, it contains a list of the modified kernel parameters used on the system.
Since it is an ASCII text file, it can be viewed with any text editor. Changes made
to this file only take effect when a new kernel is built referencing the changed file
via the mk_kernel(1M) command.

nfs performance tuning for hp-ux 11.0 and 11i systems page 123

Notes:

Page 123July 22, 2002 Copyright 2002 Hewlett-Packard Company

Measuring Kernel Parameter Usage kernel
parameter

tuning

The GlancePlus “System Tables Report” screen displays several critical kernel
parameters, along with their current utilization rate. In the above screenshot we
can see the number of proc table entries in use, the amount of the file table
consumed, the current rate of buffer cache usage, etc. Unfortunately we see
nothing in this screen about things like kernel thread consumption or callout table
usage.

nfs performance tuning for hp-ux 11.0 and 11i systems page 124

Notes:

Page 124July 22, 2002 Copyright 2002 Hewlett-Packard Company

• Default “proto” NFS mount option
(11.0 = UDP 11i = TCP)

• Default “rsize” NFS mount option
(11.0 = 8192 11i = 32768)

• Default “wsize” NFS mount option
(11.0 = 8192 11i = 32768)

• /dev/zero file
(11.0 = mknod 11i = included)

• Filesystem Semaphore Contention
drastically reduced in 11i

• Support for large NFS files
(11.0 – 1TB 11i – 2TB)

• NFS Buffer Cache Management
Redesigned in 11i

• CacheFS – only available in 11i

• Kernel Parameter Differences

• Default number of biod daemons
(11.0 = 4 11i = 16)

• Default number of nfsd daemons
(11.0 = 4 11i = 16)

• Support for AutoFS
(11.0 – patch 11i – included)

• Support for NFS/TCP
(11.0 – patch 11i – included)

summary of nfs
differences between
hp-ux 11.0 and 11i

The default behavior of NFS in HP-UX 11i has changed significantly, providing a
much better “out of the box” experience than HP-UX 11.0.

While 11.0 NFS clients and servers can be configured to mimic some of the
behavioral improvements made in 11i (such as rsize, wsize, and TCP support), HP
has no plans to back-port many of the significant 11i performance improvements
(including reduced filesystem semaphore contention, redesigned buffer cache
management routines, and CacheFS) to HP-UX 11.0.

nfs performance tuning for hp-ux 11.0 and 11i systems page 125

Notes:

Page 125July 22, 2002 Copyright 2002 Hewlett-Packard Company

• Number of daemons and threads

• Automounter command-line options

• Will CacheFS benefit you?

• When to use PV2 vs. PV3

• When to use UDP vs. TCP

• Which NFS Mount Options to Use
and which to Avoid if possible

• Buffer Cache Sizing

• syncer(1M) Tuning on NFS Servers

• Kernel Tunable Parameters

Sanity Check your NFS Environment

• Verify Network Performance

• Verify Local Filesystems Performance

• Keep Current on Patches

• Verify Hostname Resolution Speed
and Accuracy of Data

summary of
recommendations

Remember that any suggestions made in this presentation are merely those –
suggestions to begin testing with. There is not one “golden” set of tuning
parameters and configuration settings that will work optimally in every customer’s
NFS environment. Only through testing and experimentation can you identify the
settings that provide the best NFS performance for your specific mix of
applications.

nfs performance tuning for hp-ux 11.0 and 11i systems page 126

Notes:

Page 126July 22, 2002 Copyright 2002 Hewlett-Packard Company

For More Information

• Published by Prentice Hall
PTR (Professional Technical
Reference) Series

• ISBN 0130428167

• Available In Bookstores
September 2002

The Optimizing NFS Performance book contains everything in this presentation and
a whole lot more.

nfs performance tuning for hp-ux 11.0 and 11i systems page 127

Notes:

Page 127July 22, 2002 Copyright 2002 Hewlett-Packard Company

•Internal HP – SNSL Lab DMS
Ø http://snslweb.cup.hp.com/getfile.php?id=205

•External – hp technical documentation
Ø http://docs.hp.com/hpux/onlinedocs/netcom/NFS_perf_tuning_hpux110_11i.pdf

•External – developer & solutions partner portal
Ø http://hp.com/dspp

technologies -> networking -> presentations
technologies -> optimization & performance tuning -> presentations

Electronic Versions of this Presentation are
Available at the following Locations

Electronic copies of this presentation are available in PDF format from both internal-
HP and external web sites. HP employees can download copies from the SNSL
(Systems Networking Solutions Lab) Documentation Management System:

http://snslweb.cup.hp.com/getfile.php?id=205

HP customers can download the latest version of this presentation from HP’s
Developer & Solutions Partner Portal:

http://hp.com/dspp

Once on the dspp site, click on “technologies,” then either “networking” or
“optimization & performance tuning,” and then “presentations” to find a copy of
this presentation.

Alternately, the presentation may be downloaded from HP’s Technical
Documentation Repository:

http://docs.hp.com/hpux/onlinedocs/netcom/NFS_perf_tuning_hpux110_11i.pdf

nfs performance tuning for hp-ux 11.0 and 11i systems page 128

Notes:

Page 128July 22, 2002 Copyright 2002 Hewlett-Packard Company

