

MirrorDisk/UX

by Galen Scalone

MirrorDisk/UX is a product developed by HP that enables us to store multiple
copies of data on separate disks so that, in the event of hardware failure, the data is
still accessible, and the system will continue to run. MirrorDisk/UX (HP part
number B2491BA) does not come with the standard HP-UX operating system.
Please note that you will need double your amount of disk space if you decide to
mirror your data. Besides being a mirroring tool, it also offers us a tool to move
data, load balance disks or SCSI channels, and do backups with little or no
downtime. This article is written for administrators who have an understanding of
Logical Volume Manager, as MirrorDisk/UX will add functionality to two LVM
commands, lvextend, and lvreduce, and add the commands lvsplit, lvmerge, lvsync,
and vgsync. We wil cover the following topics:

� how to mirror a non-root volume group and a root volume group

� how to recover a volume group from hardware failure

� using mirroring to move data within a volume group

� load balancing your disks and/or SCSI channels using mirrors

� splitting mirrors to back up your data

This will all be done from the command line.

Background

Let's recall the logical extent to physical extent relationship. When LVM is
working with physical disk drives, it divides those drives into sections called
physical extents. By default, a physical extent is 4 megabytes, but the size is
configurable at volume group creation. LVM allocates an address for each extent
starting at the beginning of the disk, excluding a reserved header area. The LVM
software builds internal tables that hold these maps of physical extents.

When we create a logical volume, LVM creates logical extents that map to
physical extents on disk. In a non-mirrored LVM environment, every logical extent
will be mapped to one physical extent. The LVM software keeps an internal table
of logical to physical extent mappings.

When we use MirrorDisk/UX, we map one logical extent to two or three physical
extents, depending on the number of mirrors we would like to have.

Mirroring a Non-Root Volume Group

In the following examples we will assume that a volume group named /dev/test
contains one disk, device file /dev/dsk/c0t0d0, with a hardware path of 8/0.0. There
is one other disk on the system, on another SCSI controller or channel, and its

1 / 8

device file is /dev/dsk/c1t0d0, hardware path 16/0.0; it is not being used. The disk
types we will be using are the 2-GB hot swappable disks.

The volume group contains five logical volumes that are each 200 MB in size
These logical volumes contain filesystems that house an Oracle database (see
Listing 1). We have decided that we want this data protected from hardware
failure, and want to use MirrorDisk/UX to accomplish this. The first task is to find
an unused disk that is at least the same size as the disk currently in the volume
group. This disk would preferably be on a different SCSI channel, as this will
provide for redundancy not only in case of disk failure, but for channel, and/or,
cable failure. We will add this disk to the /dev/test volume group, then create
mirror copies of the existing logical volumes on the new disk. Once we have
chosen a disk we do the following:

pvcreate /dev/rdsk/c1t0d0 This makes the disk an LVM disk.

vgextend /dev/test /dev/dsk/c1t0d0 This puts the new disk into the /dev/test
volume group

lvextend m 1 /dev/test/data1 /dev/dsk/c1t00 This makes one mirror copy
of /dev/test/data1 on the disk /dev/dsk/c1t0d0, and should be repeated for all
logical volumes in the volume group.

Now that the mirrors are in place, use lvdisplay v /dev/test/data1 to look at
the logical and physical extents of the logical volume /dev/test/data1 (see
Listing 2). Notice one logical extent being mapped to two physical extents, and that
all extents are current, or fully synced. At this point all logical volumes in /dev/test
are mirrored with disks on different channels and protected from disk failure, SCSI
card failure, and cable failure.

Backups Using Mirrors

MirrorDisk/UX offers system administrators the ability to split a logical volume
into two logical volumes and then mount the mirror copy elsewhere on the system
for backup. The original volume stays online, while the split volume will go
offline, its extents not being updated. Once you have split the mirror, you should
check the mirror's filesystem for errors, make a mount point for it, and mount the
filesystem to the new mount point.

We will use the /dev/test volume group from the previous section, since it is now a
fully mirrored volume group.

For example, the Oracle database needs to be backed up every night, but cannot be
down for backup for an extended period of time. So we need to shut the database
down and have it started again in the least amount of time possible. The way to
accomplish this is to shut the database down, split the mirror copies of the logical
volumes, then restart the database. Once the database is restarted, we will mount,
and back up the mirror. This requires only a few minutes of downtime.

After the database is down, and there is no activity on the disks in the volume
group, we do the following:

2 / 8

lvsplit /dev/test/data1 This command splits the /dev/test/data1 logical
volume, and creates a logical volume called /dev/test/data1b using the extents from
the mirror copy of the volume (see Listing 3).We will run this command for all
logical volumes in the volume group. After all volumes are split, we restart the
Oracle database.

fsck F vxfs /dev/test/rdata1b This command checks the filesystem on the
split volume for errors, and will also be run for all newly created logical volumes.

mkdir -p /oracle.backup/data1 This creates a directory where we will mount
the mirror volumes. We will make a directory for each logical volume in the
volume group.

mount /dev/test/data1b /oracle.backup/data1 This mounts the newly
created /dev/test/data1b filesystem to a mount point called /oracle.backup/data1.
We will mount all mirror volumes to their respective mount points (see Listing 4).
Then we start a backup.

When the backup is complete, we unmount and merge the volumes:

umount /oracle.backup/data1 This unmounts the split volume.

lvmerge /dev/test/data1b /dev/test/data1 This command will merge the
mirror copy of the logical volume with the original, removing the separate mirror
volume and doubling the number of extents in the original volume.

Mirroring the Root Volume Group

When mirroring the root logical volumes, what you are trying to achieve is a type
of high availability. You want the system to continue to run in the event that a root
disk, SCSI controller, or SCSI cable fails. In order to accomplish this, the system
will need two copies of the logical volumes in /dev/vg00, on two separate disks.
These disks will be on separate SCSI channels. So we'll add a bootable disk to the
volume group, put the boot utilities on that disk, then mirror the logical volumes to
that disk:

pvcreate B /dev/rdsk/c1t0d0 Make the disk a bootable, LVM disk.

vgextend /dev/vg00 /dev/dsk/c1t0d0 Add the disk to the volume group.

mkboot /dev/rdsk/c1t0d0 Place LIF area on the disk.

mkboot a "hpux (16/0.0;0)/stand/vmunix" /dev/rdsk/c1t0d0 Place Auto
file in LIF.

lvextend m 1 /dev/vg00/lvol1 /dev/dsk/c1t0d0 Create a mirror copy
of /dev/vg00/lvol1, and put it on disk /dev/dsk/c1t0d0. You will need to repeat this
command for each logical volume in vg00.

The following is a loop to mirror all of the logical volumes in vg00 consecutively,
with minimal keystrokes:

3 / 8

for a in 1 2 3 4 5 6 7 8

do

lvextend m 1 /dev/vg00/lvol${a} /dev/dsk/c1t0d0

done

At this point, all of the logical volumes in vg00 are mirrored to separate disks. This
means that each logical extent maps to two physical extents, one set of extents on
one disk, and the other set of extents on the other disk. LVM will write to both sets
of extents at the same time (default). Should you lose one disk, the system still has
a full copy of the logical volumes on the other disk to read from, and to write to;
therefore the machine continues to run. The system is now protected against a disk
failure, a SCSI card failure, or SCSI cable failure.

Recovery of a Failed Disk in vg00

As system admins, we should expect disks to fail every now and then. The idea
behind using MirrorDisk/UX is that if you do have a disk failure or SCSI card
failure, the system still has one copy of data that it needs to operate and will
continue to run. It still has one set of extents it can read from and write to, and it
does not matter which set it has--the original or the mirror copy.

There are a few ways to find out whether a disk has failed, although vgdisplay v

is probably the quickest. When vgdisplay v /dev/vg00 is run, it will show the
logical volumes in the vg00 volume group and the disks in the vg00 volume group.
When one of the disks in the volume group has failed, vgdisplay will show the disk
as unavailable, and will also show some or all of the logical volumes as being in a
stale state (see Listing 5).

Once you determine which disk has failed, you will need to replace it. Since these
examples are using hot swappable HP disks, replacement should be pretty simple--
just remove the bad disk and insert a new disk. We will use the same disks as the
previous example, c0t0d0 and c1t0d0, but we'll have them in the /dev/vg00 volume
group, and say that c0t0d0 has failed. Remove the disk from the cabinet, and
replace with the same size disk. Next is the software portion. Once the new disk is
in place:

vgcfgrestore n /dev/vg00 /dev/rdsk/c0t0d0 This command restores LVM
configuration to the reserved header area on the new disk from the
file /etc/lvmconf/vg00.conf, the volume group configuration backup file.

vgchange a y /dev/vg00 This command tries to activate any physical volumes
in the volume group that had previously been unavailable, or missing.

vgsync /dev/vg00 This command will re-sync the physical extents of all logical
volumes in the volume group.

Alternatively:

lvsync /dev/vg00/lvol1 This command will re-sync one logical volume at a
time; repeat for all volumes.

4 / 8

At this point your mirror copies are valid again. Notice that in the previous
example, the original disk is the disk that failed, not the mirror. If for some reason
you cannot immediately replace the disk, you will need to make sure the machine,
at boot time, knows which disk to boot from, in this case the mirror. We would
setboot p 16/0.0 to set the primary boot path to point to the mirror disk.

Load Balancing

In some cases you may not want, or need, your data mirrored. If you ever have a
disk or I/O bottleneck, you can use MirrorDisk to move data from one disk to
another. There is no need for downtime, since you will create a mirror copy of a
logical volume, then remove the original copy. For instance, we had an Oracle
database that was in a volume group that contained disks on a disk array. We had
only two SCSI channels from the HP to the array. With archive logging turned on,
Oracle was writing its archive logs to a filesystem on the array. When the database
started to get busy, we were getting I/O bottlenecks on the disk that had the archive
log filesystem on it, which in turn slowed the whole channel down. We also had a
Jamaica cabinet on the system that was on a separate SCSI channel and contained
four 4-GB drives. We added one of these disks to the volume group, made a mirror
copy of the archive log logical volume on the new disk, then removed the original
copy from the array disks, actually moving the filesystem from the array to the disk
in the Jamaica cabinet. Now when the system gets busy writing archive logs, it is
writing to a separate disk, on a separate channel, not the array--therefore no more
I/O bottleneck.

Moving Data from Disk to Disk Within a Volume Group

At one site, we had an HP K-Class server with a disk array attached. We had two
SCSI channels from the HP to the disk array, one of those channels being alternate
links (see note 1). We had one Oracle instance on the disk array. We needed to
move the data from the one disk array to another newer updated array that the
company had just purchased. The new array was to be configured the same way as
the old array, two SCSI channels, one being an alternate. The following is probably
not supported by HP, and if you decide to try this, be sure to have a backup done
before starting.

What we did was vgreduce the alternate links from the volume group, leaving only
one path to the disks in the array. After making sure that all disks on the one
channel were not being used, we disconnected that SCSI cable from the HP. The
system was up and running when we did this. After disconnecting the cable, we ran

rmsf H <hardware path to disk> (see note 2) to remove all of the device files
that existed on that channel. We connected one of the cables from the new array to
the card we just disconnected from, then ran insf e (see note 3) to install the new
device files for the new disks. With the new device files installed, we pvcreated the
new disks, and extended the volume group to contain all of the new disks.

The next step was to mirror every logical volume in the volume group to the new
set of disks, and then remove the original copy from the disks on the old array.
Again this can be done with the system running. After making sure again that none
of the disks on the old array were being used, we vgreduced the old disks out of the
volume group, and disconnected the cables for those disks from the HP. The next
step was to use rmsf again to remove the old device files, and then connect the

5 / 8

alternate link cables from the new array to the HP.

Again run insf e, and pvcreate the disks. Then vgextend the volume group to
contain the new alternate link disks.

When you add alternate links to a volume group, the order in which you add them
is the way they will be used. Example: You have a disk, c0t0d0, and its alternate
link is c2t0d0. When you add c0t0d0 to a volume group, then add c2t0d0 to the
volume group, c0t0d0 will be the primary path. If you have 10 disks, and 10
alternate links, you want to alternate primary paths to use both SCSI controllers.
This will also help with I/O bottlenecks, as you are using both channels to move
data, instead of only one.

vgreduce /dev/test /dev/dsk/c1t0d0 /dev/dsk/c1t1d0 /dev/dsk/c1t2d0 /dev

This command reduces all of the paths to the disks on one channel, c1, from the
test volume group, regardless of whether it is a primary or alternate path, leaving
one path down one channel to each disk.

vgdisplay v |grep /dev/dsk/c1 Shows only disks that are on the c1 channel
in any volume group. After ensuring that there are indeed no disks from this
channel configured into any volume group, we disconnect the c1 cable from the
HP.

rmsf H 16.0 -H 16.1 -H 16.2 -H 16.3 -H 16.4 This command removes all
special files for the disks located at the hardware paths specified, or all disks on the
c1 channel (see ioscan).

At this point, we connect the cable from the new array to the SCSI card we
disconnected the old cable from, on the HP.

insf ev This command installs special files for new or existing devices.

pvcreate /dev/rdsk/c1t0d0 /dev/dsk/c1t1d0... This command makes all
of the new disks on the new array LVM disks.

vgextend /dev/test /dev/dsk/c1t0d0 /dev/dsk/c1t1d0... This command
takes all of the new disks and adds them to the /dev/test volume group.

lvextend m 1 /dev/test/data1 /dev/dsk/c1t0d0 This command creates a
mirror copy of the /dev/test/data1 on the newly added disk, /dev/dsk/c1t0d0 (on the
new array). This is repeated for all logical volumes in the volume group, and new
disks in the volume group.

Now we have a copy of the data on both disk arrays.

lvreduce m 0 /dev/test/data1 /dev/dsk/c5t0d0 This command will
remove the data from the old array, leaving only one copy on the new array. Again
repeat for all logical volumes, and all disks on c5.

At this point all of the data is on the new array only.

vgreduce /dev/test /dev/dsk/c5t0d0 /dev/dsk/c5t1d0... This removes

6 / 8

the disks on the c5 channel from the test volume group. When this is complete, we
disconnect the cable for the c5 channel from the HP.

rmsf H 8.0 -H 8.1 -H 8.2 -H 8.3 -H 8.4 This command removes all special
files for the disks located at the hardware paths specified, or all disks on the c5
channel. At this point we connect the other cable from the new array to the SCSI
card we disconnected the c5 channel from.

insf ev This again is used to create the new device files for the newly added
disks.

vgextend /dev/test /dev/dsk/c5t0d0 /dev/dsk/c5t1d0... this will add the
alternate paths to all of the disks in the new array to the /dev/test volume group.

At this point we have successfully moved the test volume group from one disk
array to another disk array, using mirrors.

We then use pvchange -s /dev/dsk/c5t1d0 /dev/dsk/c5t3d0 to alternate the
primary and alternate links for these disks to load balance the SCSI channels.

You will want to run sar reports for disk I/O, and make any primary or alternate
link changes, depending on the results of the disk reports.

Moving a Logical Volume from One Volume Group to Another

In some instances we may need to move a logical volume from one volume group
to another volume group. This is a little tricky, because you create a mirror copy of
a logical volume on a clean disk, remove the mirror--which in fact only removes
the headers on the disk and leaves the data intact--then move the disk to another
volume group. For example we had a system that had an Informix raw volume in
the /dev/vg00 volume group, and needed to move the volume to the Informix
volume group. We added a new disk to the /dev/vg00 volume group, created one
mirror copy of the logical volume that was 200 MB, on the new disk, which started
from the first physical extent on the disk, and immediately removed the mirror
from the new disk. The removal of the mirror copy only removes the headers on
the disk, and not the data contained on the disk. We then removed the disk from
the volume group, and added it to the other volume group. We then created the
logical volume, exactly the way the mirror was created, first on the disk, and the
data was still accessible--after changes to the Informix config. to use the new
logical volume, in the new volume group. It looked like this:

pvcreate /dev/rdsk/c3t0d0 Makes the disk an LVM disk.

vgextend /dev/vg00 /dev/dsk/c3t0d0 Adds the disk to the volume group.

lvextend m 1 /dev/vg00/rawvol /dev/dsk/c3t0d0 Makes one mirror copy
of /dev/vg00/rawvol on /dev/dsk/c3t0d0 from the first physical extent, and adds
data consecutively to the next physical extent.

lvreduce m 0 /dev/vg00/rawvol /dev/dsk/c3t0d0 Removes the headers, as
in all cases, from the disk, leaving the data intact.

7 / 8

vgextend /dev/informix /dev/dsk/c3t0d0 Adds the disk to the /dev/informix
volume group.

lvcreate n rawvol /dev/informix Creates an empty volume called rawvol in
the /dev/informix volume group.

lvextend L 200 /dev/informix/rawvol /dev/dsk/c3t0d0 Extends the
volume to the /dev/dsk/c3t0d0 disk. The data is already in the volume--simply
point the Informix link to the new volume, in the new volume group.

In Closing

MirrorDisk/UX is a powerful tool that is used to protect our systems from disk
failure, channel failure, and cable failure. With redundant hardware, and
MirrorDisk/UX, we can make our systems highly available, we can make our
systems use multiple channels for better I/O performance, and we can back up our
systems and applications with minimal downtime. Some of the more uncommon
ways of using mirrors, such as moving volumes around the system to the same or
even different volume groups, can easily be accomplished, once you have the
knowledge and the experience in MirrorDisk/UX use.

Note 1: Alternate links, or pvlinks, are multiple paths to the same physical disk.
Used for redundancy, in case of channel failure, alternate links will automatically
change paths to a disk in the event of a card failure, increasing availability.

Note 2: rmsf is the command to remove the special files or device files of a given
device. In this case, we need to remove the device files because the new disk array
attached to that same SCSI card will have the same device file names, although the
disks are on a different array and may be of a different size.

Note 3: insf e rebuilds all of the device files for the new disks on the system. This
needs to be done if you have used rmsf to remove device files, or if you are adding
a set of disks to a system while the system is online. A form of this command is
run every time the system is restarted, in order for the system to see any newly
added devices.

Galen Scalone works for Lucent in St. Petersburg, Florida as a Senior System
Administrator. Prior to that he was with Symbol Technologies for about four years.
He has been working with UNIX since 1993. He can be reached at
scalone@lucent.com or galen@bbnow.net.

8 / 8

