Zeus Technology

SSL: Theory and Practice

Zeus Technology
Newton House
Cambridge Business Park

Cowley Road

Cambridge

CB4 0WZ

England

Phone: +44 (0) 1223 525000
Fax: +44 (0) 1223 525100
Email: info@zeus.com

Web: http://www.zeus.com

Date: 16th June 2000
Version: 1.0

SSL: Theory and Practice

Table of Contents

O ADOUL ThiS HOCUMENT ... oottt ettt e se e s e bbbt 1
I Lk (0o U o OSSP 2
VWY SSLZ ettt ettt es s e e s R et Rt 2

1.7 EXGMPIE APPIICATIONS. . ceurceueercesseesrer et esessseess st sess s s st s e s s s 2
1.2 SSL Protocols and AppliCation SUPPOIt... . eeerrereressesssesssssessesssessesssssssssessssssssssssessesssssssssnssnssseses 3

2 AN OVEIVIEW OF SSLeinitiiete ettt sca et sttt a s e s s s e et bbbt 4
NEEWOIK LAY OE ettt s et e s s e s e s ettt et se st ee st s st eeantenante 4
APPIICATION LAY feeeteeeececesreee ettt s bR 4

S L LAY B fetereereereee ettt see et s e e £ R AR A AR bbb 4

3 S L AU ENTICATION e teer ettt ettt st es e essees et s s s s et 5
3.1 PUBIIC K@Y CryptOgraphy. e seeseesessessessesseessensseesse s sssesssesss s sssssssssseesssesss e saseens 5
3.2 CertifiCate AUTNOITEIES. e ieeeeerceeeereet et ettt sea s ea st s bt n et 6
T 4T] O OSSP 6

3.3 CNaINS OF THUST.ceurereerecueeree e e e eesse s eeese s es et e e ae bbb st 8
3.4 Other AUtNENTICAtION [SSUBS.....oveiereereeeeeer ettt et see s sttt sttt bbb 8
SUBVEITING SSL SIEES.ruueureerrerresressesressesssesessessessesssessesesessssssssssssessessssssssnsssesssssssssssassssssessesssssssssesesseses 8
SeIf-SIGNEU COITITICATES. v ieeieueeerrreeireesee ettt s 9

N I =0T 077 1T PP 10
4.7 BUIK CIPNET IMETNOMS. ... ceeseeerceceeeseeseesreeses st secss s ss s s s e 10
4.2 Message AULheNtiCation COURS.....ormrerrrererrrereasssssesssssessessssssessessssssssnssssssessessssssessesssssssssessesensnes 11

B SSL TrANSACTIONS. cee reeeeeeueenreeeeae s seess et e es s seese s sees st s e e h R bR sees s sttt 12
5.1 The SSL HANASNAKE. ... euueeereretseeeeseeseetseessess e reeses s e ses s s st 12
5.2 SESSION KBYS...oureecieteteeteeee e etseeets s e aes e s et e s b st e s s ass st b bbb s et s e st st e bes b e b b saneassanes 14

6 Export Restrictions 0N SSL TECNN0I0GY. .. rrreeereesrerrereseeseessesseseessesssessesssesssessss s ssesssssssssssssssssesasssaneens 15
BT DVEIVIBW cerreereeeeeeeneeeecueessecsseesseess s eee s secs s ess e R R ER e e R s R e et bnes e sass 15
ST C 110 o= Y YT o L3PPSO 15

7 Configuring the Zeus WebSEIVEr fOI SSLu.rrreerrereesesseeseessessessessesssssssssesessessssssesssssessssssssessessssnsans 16
7.1 SSL QUICK SEEUP.cuuerueureemseesrerseessessesseesssessssssesssessseess e ssses s s es s sseessesss s bbbt sn e 16
Obtaining a certificate from @ CAi ettt sesse e ssesse s sesssssssssnssnsssssnsans 17

2 1 (T T o oo | OO 18
GENErating @ PriVate KEY i rrereereeereeressesesnessesssssssssssessessssssssnssnssssssessessssssessssesssssssssssnsessessssnsans 18
Generating @ CertifiCate rRQUESTI .t ens s 18
Generating @ publiC COMtITiCAtE ettt s 18
Displaying the public CortIfiCate et sse s ses s 18

Verifying Key/CertifiCate PairS ... eeereessreeeessieeeessseeeesssesessssesessssesssssesessssessssssessssssssssssssssssnns 18

7.3 Tuning your Zeus SSL server for PerforManCe....... o ereeieennesrssssesresssessesssssssssessssssessssssssessssssssnes 19
7.4 Using SSL with Clustering or Load Balancing SOIUTIONS......cereeerneenserseesseesseesserseeeessesssenseees 19
7.5 Client-Side Authentication with the Zeus WeDSEIVer........c ettt esseeneeeees 20

8 USETUI SSL RESOUICES.....eiereueeuretretreeecuseeseesessesseeseessesse et sesseesse s ses et a st s bbbttt 21
BT SOTEWAIE..c.ce et et et ee e et ee s secs s a s s8R R b e et 21
Q] OO 21

Copyright © 2000 Zeus Technology Ltd Page i

SSL: Theory and Practice

10T 415 ST 21
8.2 WWED RESOUICES....ceeureeeeeressecssecsseseessessssssss s s s ssssssssssesassssses e ssasssasssssesssnessssnssssssassssesssssssanssssassessssnens 21
SSL VEISION 3eueeeeereesesresssessesessesssesessesssssssssessessnssnsssesssssnsssessessnsssessssnsssessesssssnsssessessssassssessessssssessess 21
Public Key Cryptography Standards (PKCS).......eureumreesnmeeeeseseessseeeesssessssssseesssesesssssessssessssanns 21

Copyright © 2000 Zeus Technology Ltd Page ii

SSL: Theory and Practice

0 About this document

This document introduces the theory and practice of creating an SSL secured website.

It begins with an in depth discussion of the need for security, and describes the theory
that underlies SSL authentication and encryption. It makes judgements on best
practice and the surrounding security context.

It then describes in detail how to configure a Zeus webserver for SSL transactions. This
‘configuration’ section is largely self contained and can be used as a configuration
reference without substantial reference to the previous chapters.

The document is intended for systems integrators and security architects working with
Zeus Webserver products and related technologies.

Copyright © 2000 Zeus Technology Ltd Page 1 of 28

SSL: Theory and Practice

1 Introduction

The Internet is an open system. The identity of people, companies and computers
communicating on the Internet is not easy to determine and validate. Furthermore, the
very communication path is inherently insecure - all communications are potentially
open for an eavesdropper to read and modify as they pass between the communicating
endpoints.

Internet communications are often likened to the use of postcards in a traditional mail
system. If an attacker is in the right place at the right time, he can:

« Read your postcards, thus snooping on your conversation.
« Modify your postcards, thus subverting your conversation.
« Send postcards to you or your correspondent, thus impersonating either party.

Although such compromises are generally rare and difficult to carry out, the great
value and sensitivity of some information transferred over the internet can make the
effort to compromise the communication worth the potential gain.

Why SSL?

SSL, the Secure Sockets Layer, aims to secure the communication between network
applications, providing privacy, authentication and reliability.

The SSL protocol can be usefully employed on almost any TCP/IP based communication,
but is most commonly used to secure HTTP - website traffic.

SSL brings three benefits to the network communication.

 Privacy: SSL based communications are private. Encryption is used to secure the
communications against eavesdroppers.

« Authentication: Each peer (communicant) can be authenticated against a shared
infrastructure of trusted authorities.

« Reliability: SSL provides additional layers of reliability on top of the underlying
TCP/IP protocol, to minimise the danger of the communication layer being
compromised.

1.1 Example Applications

SSL is very commonly used in scenarios where the communication needs to be
authenticated or secured:

- e-Commerce: public access e-Commerce sites are invariably protected by SSL. In
this case, SSL serves two purposes:

1. The e-Commerce site's 'public certificate' serves to identify the site, so the end
user can be confident that she is not accessing an impersonating site.

2. The encryption provided by SSL serves to protect sensitive information (such as
credit card details) that are transmitted in the course of the communication.
Even if an attacker could capture every packet of data exchanged in the
communication, he could not discover the full nature of the communication.

In addition, SSL's reliability features ensure that if an attacker disrupts the
communication layer, in-transit damage can be detected.

Copyright © 2000 Zeus Technology Ltd Page 2 of 28

SSL: Theory and Practice

Corporate Extranets and Intranets: a company may wish to publish information on
its Extranet or Intranet, and restrict access to certain employees or partners
(‘clients'). In this case:

1. Aclient's 'public certificate' serves to identify the client, and this can form the
basis of a corporate authorization policy.

2. The SSL encryption once again protects any sensitive information from
eavesdropping or in-transit tampering.

1.2 SSL Protocols and Application Support

SSL version 3 is the most widely deployed version of the SSL protocol. It is supported
by all major web server and web browser applications:

Web Servers:
Zeus v3
Netscape/iPlanet Enterprise Server v4
Apache v1.3 (with appropriate SSLeay patches)
Microsoft IS v5

Web Browsers:
Microsoft Internet Explorer (all recent versions)
Netscape Navigator (all recent versions)

An Internet Engineering Task Force (IETF) standard called Transport Layer Security (TLS),
based on SSL, has recently been released. This is a refinement of version 3 of the SSL
specification. |t does not bring any significant additional features or degrees of
security over and above those provided by SSL v3, and has not yet been widely adopted.

SSL largely satisfies the requirements and design brief, but has several shortcomings
that may be addressed in subsequent versions of the TLS specification.

Copyright © 2000 Zeus Technology Ltd Page 3 of 28

SSL: Theory and Practice

2 An overview of SSL

SSL is an intermediate network layer, running between the TCP/IP network layer and
the higher level application layer (HTTP, IMAP etc.).

Application layer

SSL
TCP/IP

A
v

Client Network Server

Network Layer:

TCP/IP handles delivering network packets from the source to destination. TCP/IP is
connection based: one peer (the client) connects to another peer (the server) and
establishes a network connection. This connection is used for the duration of the
conversation between the two peers. At the end of the conversation, the connection is
closed.

Application Layer:

The application layer defines a common, shared protocol that applications can use to
communicate over an established TCP/IP connection. For example, HTTP is the protocol
that web clients and web servers use to communicate.

An application layer conversation is initiated when a client establishes a TCP/IP
connection to a server. Server applications listen on well known 'ports' - for example,
HTTP typically runs on port 80 - so a client can commence an HTTP conversation with a
server by establishing a TCP/IP connection on the server's port 80.

SSL Layer:

SSL is used to authenticate endpoints and secure the contents of the application level
communication. An SSL secured connection begins by establishing the identities of the
peers and establishing an encryption method and key in a secure way. The application
level communication can then begin. All incoming traffic is decrypted by the
intermediate SSL layer and then forwarded on to the application; outgoing traffic is
encrypted by the SSL layer before transmission.

In practice, SSL secured servers are typically operated on a different well known port to
the overlying application. For example, HTTPS (SSL-secured HTTP) operates on port
443.

Copyright © 2000 Zeus Technology Ltd Page 4 of 28

SSL: Theory and Practice

3 SSL Authentication

One important goal of SSL is to provide authentication. A client connecting to a server
will usually want to be able to verify that the server is who they say they are, and not
an impostor.

Conversely, a server may wish to establish the identity of the connecting client before
allowing the connection to continue. For example, a corporate extranet or a business-
to-business application may need to authorize each client before allowing them access
to sensitive information or ordering systems.

The primary SSL authentication mechanisms depend on a branch of cryptography called
'public key cryptography'.

3.1 Public Key Cryptography

Public Key Cryptography uses an asymmetric pair of keys to encrypt and decrypt data.
Each key pair is comprised of a private key and a public key.

Any data that is encrypted with the public key can only be decrypted with the
corresponding private key. Conversely, data encrypted with the private key can be
decrypted with the public key.

The private key is kept secret, known only to the owner of the key pair. The public key
is widely distributed (often as part of a public certificate).

Hence, anyone can encrypt data that only the private key owner can decrypt. It is not
possible to decrypt public-key-encrypted data without the private key, except possibly
by extreme brute force attacks.

In addition, the owner of the private key can encrypt data that anyone can decrypt.
This is commonly used in Digital Message Signing. In this scenario, the signer creates a
message digest (for example, a hash of the message) using an agreed algorithm and
then encrypts it with his private key. The recipient can verify that the sender of the
message owns the private key by decrypting the message signature with the signer's
public key and verifying that the decrypted message digest matches the digest of the
message received.

The Public/Private key method of authentication relies on:

The security of the private key. Only the signer of the private key should have
access to it. Anyone with access to the private key can impersonate the signer.

The validity of the public key. You need to be absolutely certain that the public
key you have received is accurate. If you have the wrong public key, you will be
unable to communicate with the signer, and if an impersonator can substitute his
public key in the place of the trusted public key, he can impersonate the owner of
the private key.

The security of the public/private encryption algorithm. The most commonly
deployed public/private key algorithm is RSA's algorithm. Determining the private
key given the public key involves complicated mathematics (factoring very large
integers), and the strength of a key is related to its size in bits (binary digits).

RSA regularly run cryptographic challenges, and an RSA key of 512 bits was cracked
in August 1999'. Computations took 5.2 months using 292 computers and 8,000
MIPS-years of CPU effort. Current wisdom is that, while 512 bit keys are still secure
against all but the most extreme cracking attempts, 1024 bit keys are more suitable
for securing websites. RSA estimate that 1024 bit keys will remain immune from

Copyright © 2000 Zeus Technology Ltd Page 5 of 28

SSL: Theory and Practice

3.2

realistic brute-force cracking for a further 20 years". Many major Certificate
Authorities use 2048 bit keys for their external PKI systems.

Note: The cryptographic strength of Public/Private key pairs is related to their size in
bits. 512 bit keys are commonplace, but 1024 bit keys are now being widely deployed.
Many web browsers cannot cope with website keys greater than 1024 bits.

Certificate Authorities

One significant problem with the public/private key system outlined above remains.
How can one endpoint of the communication trust that the public key he has been
supplied with truly belongs to entity he believes he is communicating with?

The role of a Certificate Authority is significant in establishing this trust. It is an
integral part of a Public Key Infrastructure (PKI).

A Certificate Authority (CA) is an intermediate organisation that both parties involved
in an SSL communication trust prior to the communication taking place. The role of a
certificate authority is verify the identity of an entity who requests a public certificate.
This is typically done in an off-line manner, and may be very involved (possibly
checking financial and trading records), depending on the policy of the CA.

If the CA can satisfactorily verifies the identity of the requesting entity, it will then
issue a digitally signed electronic certificate to the entity. The certificate is signed with
the CA's own private key. It is referred to as a public certificate.

The entity can then distribute their own public certificate in any means it feels fit. A
peer can trust the public key and other details in the certificate if it already trusts the
Certificate Authority.

Commonly used public Certificate Authorities include Verisign™, Thawte" (now owned
by Verisign) and Entrust’. Many SSL clients (eg. Web browsers) are preconfigured to
trust a number of well regarded CAs such as these.

Many large organisations also operate their own internal Certificate Authority to
authenticate employees, networked hardware and other entities. The certificates can
be used to authenticate, sign and encrypt not just SSL traffic but email, documents,
database accesses and many other digital objects or sessions.

Example

This example uses the cert program distributed with Zeus to create and disassemble
the PEM-encoded ascii certificate and key files. Other applications can also perform
this function - one freely available open source application is openss1".

Alice creates a private key and a Certificate Signing Request (CSR). For the purposes of
this exercise, the keys are 512 bits long, and the public certificate is to be used to
authenticate a machine called www.alice.zeus.com

Alice first generates a private key. Alice keeps this file secret, and does not divulge the
contents to anyone.

$ cert -new -type private -keysize 512 -out private.key
Generating keys, this may take a few seconds

Alice then generates a certificate signing request (CSR). This is a standard format text
file which contains the information Alice would like contained in her public certificate.
The CSR also contains the public portion of her private key (the public key), and is
signed with her private key so the Certificate Authority processing the CSR can verify
that the public key portion is valid.

Copyright © 2000 Zeus Technology Ltd Page 6 of 28

SSL: Theory and Practice

S cert -new -type request -key private.key -out public.csr

The following information is required to make up the certificate.
Optional fields can be left blank by entering a '.'

Country: GB
State/Province (optional outside US) :

Locality (town/city): Cambridge

Organisation: Zeus Technology

Organisational Unit (optional): Alice's machine

Common Name (full DNS name of the machine): www.alice.zeus.com

Alice then submits her CSR file to a CA for signing. In this example, we use Thawte's
free Test Server Certificate system"".

After a short delay, Thawte sends Alice a public certificate generated from the CSR she
supplied. In this case, the public certificate is signed by Thawte's test CA root. This
test root certificate is not automatically trusted by any client or server software.

In a more realistic scenario, Alice would submit the CSR to her CA along with some
accompanying documentation establishing her identity. After further checks, and
payment processing for services rendered, the CA would provide Alice with a public
certificate signed by a public root certificate that was widely trusted.

We can use the cert tool to disassemble Alice's public certificate file, which she has
saved in a file named public.cert:

$ cert -in public.cert -text
X509 Certificate:
Certificate Info:
Version: 02

Serial Number: 12:cd:e0
Signature Algorithm: md5withRSAEncryption
Issuer:

C=ZA, ST=FOR TESTING PURPOSES ONLY, O=Thawte Certification
OU=TEST TEST TEST, CN=Thawte Test CA Root
Validity:
Not Before: Sat, 01 Jan 2000 05:00:00 GMT
Not After: Tue, 01 Feb 2000 05:00:00 GMT
Subject:
C=GB, L=Cambridge, O=Zeus Technology, OU=Alice's machine
CN=www.alice.zeus.com
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
Public Key:

Modulus:
bb:c0:28:d0:86:73:02:¢c3:£6:04:72:23:b8:4a:£f0:0e:35:
a8:5f:d8:74:41:3c:9c:6a:6€:93:57:94:6e:bd:ca:55:ca:
4f:81:cb:a7:39:bd:£0:47:02:ee:33:1f:ba:64:40:dd:30:
92:4c:02:8d:d3:95:34:d7:fb:d0:¢c1:37:09

Exponent:

01:00:01

Signature Algorithm:
md5withRSAEncryption

Signature:
9c:30:8f:d6:6e:fe:7b:8f:d0:1d:3c:£2:¢c9:d5:be:3e:73:04:87:41:39:
el:df:f£fd:05:ad:f6:bb:d1:0f:ca:04:e5:65:4d:94:eb:16:27:a4:b4:73:
15:25:c6:a0:a3:51:2c:9d:ed:fc:7b:£d:79:¢c8:36:97:ed:3b:d5:5d:a7:
ee:d0:b7:2b:cf:48:2:9:07:£1:45:£5:£7:10:25:98:97:95:c0:b8:8d:
d8:06:6a:3c:96:50:80:a5:99:9c:2e:84:df:6b:3f:da:43:88:ff:3a:95:
6d:17:5d:¢3:66:9f:24:23:00:¢8:04:29:37:2e:d8:52:0c:6b:6c:4f:ac:
d7:£3

The certificate contains 4 components:

« Issuer: This identifies the Certificate Authority who issues and signed this
certificate. A client application (e.g. a web browser) will check its internal list of
trusted Certificate Authorities. If it trusts this CA, it will extract the CA's public key

Copyright © 2000 Zeus Technology Ltd Page 7 of 28

SSL: Theory and Practice

from ithe CA's certificate (also stored internally) and use this to verify the digital
signature on this certificate. In this case, the issuer the the Thawte Test CA Root.

Validity: CA's typically issue certificates with a limited term of validity (1 to 3 years
is common). This test certificate has a validity of 1 month.

Subject: This is the owner of the certificate. The certificate identifies the subject's
country (C), locality (L), organisation (0), organisational unit (OU) and common
name (CN). In the case of website certificates, the common name is used to record
the DNS name of the subject. For this certificate, the subject's primary identity is
its common name 'www.alice.zeus.com'.

Subject Public Key Info: This contains the public key of the subject.

The certificate is signed with the private key of the issuing authority (the CA). In this
case, the signature is calculated from an MD5 hash of the document (the 'message
digest'). This message digest is then encrypted with the signer's private key.

A client can verify the signature by decrypting the signature with the signer's public
key, and comparing the result with its own calculation of the message digest. If the
two match, the client can be confident that the document was signed by the signer.

Clients who possess and trust the public certificate of the signing CA can hence
establish trust of the certificate.

3.3 Chains of Trust

Web browsers and other client applications are distributed with a preconfigured list of
trusted CAs and their public certificates. These CAs are often referred to as 'root CAs'.

Other CAs can obtain signing certificates signed by one of these trusted root CAs. They
can use these certificates to sign public website certificates. In this case, a chain of
trust begins to grow and certificate signing can be delegated to reliable subordinate
CAs.

For example, trusted root CA 'C' decides that organisation 'B' can operate as a
legitimate certificate agency and signs their a public certificate. 'B' can then operate
and sign certificate requests.

Suppose 'B' signs Alice's certificate 'A". A client cannot authenticate Alice's certificate
'A', because the client does not have a prior trust of the signing certificate 'B'.

However, if Alice presents both her own certificate 'A’ and her issuer's certificate 'B’,
the client can authenticate her through the chain of trust that was established from 'A’
to 'B' to 'C' (the trusted root CA). The concatenation of 'A" and 'B' is referred to as a
certificate chain.

In a chained certificate scenario, the root CA who issued the subordinate CA's
certificate takes on a degree of liability for the subordinate's actions and security, and
in many cases (e.g. public website authentication) is legally liable. For example, Entrust
operate as a subordinate CA to Thawte.

The root CA will impose strict requirements on the operating procedures of its
subordinate CAs and will require regular independent security audits. It may also
require extensive liability insurance from the subordinate CA.

Certificate chaining is commonly used in large corporate intranets where it can be
leveraged in a secure manner to delegate signing authority to subordinate entities. It is
also sometimes used in internal CA systems where the liability issues are easily

Copyright © 2000 Zeus Technology Ltd Page 8 of 28

SSL: Theory and Practice

satisfied. For example, Verisign's public Global Server ID programme uses a subordinate
certificate descended from one of Verisign's public root certificates.

3.4 Other Authentication Issues

Subverting SSL sites

A correctly operating SSL secure site depends on a number of correctly configured and
trusted services. The PKI discussed above is only one significant part of this.

Clients must ensure that their CA database is not corrupt and has not been subverted.
It is possible to add or remove root certificates from a web browser CA database, and
an attacker could subvert the security offered by loading his own CA root certificate
into a user's browser database. If an attacker can achieve this, he is in a position
where he can distribute his own certificates. These certificates will be automatically
trusted by the subverted clients.

The design of SSL and the PKI places the onus on the end user to verify the correctness
of his or her set of trusted certificates, and assumes that the client's local environment
is secure.

A conceptually simple way to compromise an SSL site is for an attacker to subvert the
DNS records for the real site so that they point to his own impersonating site. DNS
records are reqularly exchanged, updated and cached between co-operating DNS
servers, and a number of exploits based on this technique have been reported. The
attacker needs to obtain a valid public certificate for his fake site using the same
common name (DNS) value as the site he is impersonating, but the certificate does not
need to have been obtained from the same certificate authority.

Self-signed Certificates

Public Certificates can be signed by any entity. Obviously, only certificates that have
been signed by recognised Certificate Authorities will be automatically accepted.

However, many client applications (including all web browsers) provide the ability to
manually accept certificates on a session by session and site by site basis. Although
not suitable for a public access web service, this technique is often used in an internal
or development environment where authentication can either be established by other
means, or simply is not significant for the website in question.

Security Alert [x|

rir‘"l Infarmation pou exchange with this site cannot be viewed or
?. changed by others. Howewer, there iz a problem with the site's
; zecurty certificate,

& The secuity certificate waz izzued by a company pou have
nat chosen bo trust, Yiew the certificate ta determine whether
pou want bo brust the certifing authority,

a The zecurity certificate date iz valid.

a The zecurty certificate matches the name of the page you
are trying ko wigw,

Do pou want bo proceed?

Copyright © 2000 Zeus Technology Ltd Page 9 of 28

SSL: Theory and Practice

Dialog displayed by Internet Explorer when encountering an
SSL site that is not certified by a recognised authority

It is common to 'self-sign’ certificates. In this case, the issuer (signer) of the certificate
is the same as the subject - in effect, the subject alone is vouching that they are who

they say they are! This is the easiest way to create a public certificate in a stand-alone
system, and many SSL-based products (such as the Zeus webserver) provide this facility.

All root CA certificates are self signed. This is required as they lie at the root of the
certification and trust hierarchy and have no higher trusted entity to vouch for their
identity. It illustrates of the degree of trust that must be placed in a root CA.

Copyright © 2000 Zeus Technology Ltd Page 10 of 28

SSL: Theory and Practice

4

4.1

SSL Encryption

When a client (web browser) connects to an SSL-enabled server (web server), a
'handshake' procedure is undertaken to establish trust and encryption parameters.

During the handshake, the web server sends its public certificate to the client. The
client can optionally decide to abort the connection as a result of authentication
decisions make on the basis of the certificate, as described above.

If the client wishes to continue the connection, the next stage in the SSL handshake is
to establish an encryption key. This key is used to encrypt the data sent over the SSL
encryption layer.

Bulk Cipher Methods

We have already established that the public/private key might be suitable for safely
encrypting data from the client to the server. However, public/private key methods are
in general not suitable for a general purpose encryption methods.

For example, the RSA public/private key method can only encrypt blocks of data which
are 11 bytes less than the key size. Each decryption operation involves complex
mathematics - a typical high performance single processor server machine might be
able to perform several tens or hundreds such decryptions per second with 1024 bit
keys. Such a machine could only maintain an encryption rate of perhaps 10 KB/second.
This throughput is extremely poor.

For this reason, SSL uses a different encryption method for encrypting the traffic across
the SSL connection. A bulk cipher (encryption method) is used. Bulk ciphers are
typically symmetric - both ends of the channel use the same keys to encrypt and
decrypt the data - and very fast, so they are suitable for encrypting large quantities of
data.

The following bulk ciphers algorithms are commonly used by SSL:

Cipher Type Exportable Key Source Cipher Key
ldentifier ? Size* Size*
NULL Stream Yes 0 0
IDEA CBC Block No 128 128
RC2 CBC 40 Block | Yes 40 128
RC4 40 Stream Yes 40 128
RC4 56 Stream Yes 56 128
RC4 Stream | No 128 128
DES40 CBC Block | Yes 40 56
DES CBC Block ' No 56 56
3DES_EDE CBC Block No 168 168

*Sizes measured in bits.

Of these ciphers, RC4 is by far the most widely deployed, and is seen in 40 and 56 bit
more for export strength ciphers, and 128 bit more for full strength (US domestic)
ciphers.

Copyright © 2000 Zeus Technology Ltd Page 11 of 28

SSL: Theory and Practice

4.2

The two endpoints in the SSL conversation must agree on a pair of encryption keys for
use with the bulk encryption algorithm. These keys must be established in a secure
manner, so that an eavesdropper cannot determine its value. The client used the first
key of the pair to encrypt the data it writes; the server uses the second key to encrypt
the data it writes. The receiving endpoint uses the matching key to decrypt the data ir
receives.

The keys are constructed using a complex combination of hashing algorithms that is
difficult to reverse engineer. This key construction process takes three sources of data:

Client.random: 32 bytes of random data generated by the client and exchanged in
the clear

Server.random: 32 bytes of random data generated by the server and exchanges in
the clear

PreMasterSecret: 48 bytes of random data generated by the client and public-key-
encrypted before being sent to the server

The server and the client generate a 'MasterSecret' from this data using the complex
hashing procedure described above. The client and the server both derive the same
MasterSecret, but an eavesdropper who is snooping on the SSL conversation so far
cannot derive the secret because he could not decrypt the public-key-encrypted
PreMasterSecret chosen by the client.

Finally, the client and the server extract the correct number of bits from the generated
MasterSecret to generate their bulk encryption keys. This number of bits used is listed
in the table above (Key Source Size).

If the Key Source Size is less than the size of the key that the cipher algorithm requires
(the Cipher Key Size), both endpoints will perform a final hash operation to expand the
key to the correct size. In this case, the effective key size is less than the actual key
size, making a brute-force attack on de-cyphering the data more feasible. This was a
legal requirement of US export laws (such ciphers are branded 'export-strength
ciphers'), and although these export restrictions have now been relaxed or repealed,
there are still a large number of export-only browsers in common use today.

It is important to distinguish between the different keys used in an SSL transaction:
Public/Private Key Pair:

An RSA Public/Private key pair is most commonly used to exchange the data
required to generate the bulk encryption key. The size (strength) of RSA keys is
measured in bits - typically either 512 or 1024 bits in size.

Bulk Encryption Key:

The bulk encryption key is used to encrypt the application layer data in the SSL
protected channel. In the case of the RC4 bulk encryption algorithm, this key is 128
bits in size. However, its effective size may be lower (40 or 56 bits if of export
strength).

When the strength of an SSL connection is specified, it is usually specified in terms of
the effective size of the bulk encryption key.

Message Authentication Codes

Every encrypted message exchanged between the client and the server is protected
from tampering with a MAC (Message Authentication Code). The MAC is calculated by

Copyright © 2000 Zeus Technology Ltd Page 12 of 28

SSL: Theory and Practice

hashing the body of the message (before encryption) along with some additional
deterministic data (sequence number, length, padding) and a MACWriteSecret.

The MACWriteSecret is derived from the shared MasterSecret and is unknown by an
eavesdropper. Consequently, it is not possible (without extensive brute force
investigation) for an attacker to generate a valid MAC for given data, and as a result, it
is not practically possible for an attacker with access to the communication channel to
modify the data in transit without detection.

The MAC provides the reliability of the message channel against tampering that many
secure applications require.

The hash function used to calculate the MAC is either MD5 or SHA1.

Copyright © 2000 Zeus Technology Ltd Page 13 of 28

SSL: Theory and Practice

5 SSL Transactions

This chapter will tie together the information presented in previous chapters about the
SSL authentication measures and the encryption and MAC layers.

5.1 The SSL Handshake

A SSL transaction begins with a handshake operation. In this handshake, the client and
server agree on an encryption and MAC method, the server presents its public
certificate and a common shared secret (the MasterSecret) is determined in a secure

manner.

The client and the server then proceed with the SSL-protected application layer
conversation.

Client Server
ClientHello
>
ServerHello
Certificate
CertificateRequest
ServerKeyExchange
4
Certificate
ClientKeyExchange
CertificateVerify
changecipherspec
Finished
>
changecipherspec
Finished
Application Data <4———p | Application Data

SSL Handshake protocol

Optional or content-dependent Handshake Messages are shown in jtalic type.

Copyright © 2000 Zeus Technology Ltd

Page 14 of 28

SSL: Theory and Practice

The following messages are exchanged in the SSL handshake:

+ ClientHello:
This message initiates the SSL handshake. In this message, the client:
+ informs the server the highest version of SSL it can communicate with;
- provides 32 bytes of random data (Client.random) for later use;
+ optionally suggests a session ID if it wishes to re-use a previous SSL session;

« lists the cipher suites (key exchange, bulk cipher, MAC algorithm tuples) it
supports, in order of preference.

« ServerHello:
The server replies with a ServerHello message. In this message, the server:
« nominates the version of SSL that will be used in this session;
- provides 32 bytes of random data (Server.random) for later use;
 provides an opaque session id so that this session can be re-used;

« chooses the cipher suite to be used in the session.

« Certificate:

If the server possesses a public certificate of the type chosen in the cipher suite, it
passes this to the client.

The client may also use this message type to send its own certificate to the server if
requested. If this happens, the client also sends a CertificateVerify message where
it encrypts some shared data with its private key; the server can use this message
to verify that the client posses the corresponding private key.

 ServerKeyExchange:

If the server's certificate cannot be used for encrypting data (it is not present, or
export restrictions forbid the use of public keys greater than 512 bits for encryption
purposes), the server generates a temporary public/private key pair and uses this
message to pass the public portion of the key pair to the client.

+ CertificateRequest:

The server can optionally send a message requesting the client to send its own
identifying public certificate (if it possesses one). The server may be configured to
reject connections from clients that do not present suitably authorised certificate
identification.

« ClientKeyExchange:

This message is sent by the client. It contains the encrypted PreMasterSecret which
is ultimately used to generate the encryption and MAC parameters.

Copyright © 2000 Zeus Technology Ltd Page 15 of 28

SSL: Theory and Practice

changecipherspec:

This is a special out-of-band message. Either party sends a changecipherspec
message before it activates the pending encryption method and MAC algorithm (the
cipher suite).

Finished:

The Finished message completes the SSL handshake operation. Once sent, the
sender can then begin transmitting application level data, encrypted and MACed
with the current in-force cipher suite.

The Finished message includes a hash of all previous handshake messages. The
receiver can compare this hash with its own knowledge and hence detect errors or
inconsistencies in the handshake procedure.

At any point, either party in the handshake is free to abort the connection if it receives
an unexpected message, or one it cannot handle.

5.2 Session Keys

The SSL handshake is an expensive operation. In particular, the decryption of the
ClientKeyExchange performed by the server side requires an Private Key decrypt
operation which is computationally expensive. In addition, the network latency
overhead of exchanging the handshake messages impacts on the perceived SSL
performance.

For this reason, when an SSL handshake is performed, the SSL server assigns an opaque
session key. The server records the session parameters (cipher suite, client certificates,
MasterSecret) in its session cache.

A client can reconnect to the server and supply a previously used session key. In this
case, the client and server can reuse the session parameters and therefore do not need
to complete a full SSL handshake operation.

Copyright © 2000 Zeus Technology Ltd Page 16 of 28

SSL: Theory and Practice

6.2

Export Restrictions on SSL Technology

Overview

US export restrictions used to prohibit the export of high-strength encryption software
to the rest of the world, on the grounds that they placed a threat to US national
security. 128-bit encryption technologies were classified as munitions.

For this reason, weaker 40-bit ciphers were developed and software licensed for export
from the US had to use ciphers that were no stronger than these. Consequently, many
web browsers were distributed in two forms: export strength (40 bit) and domestic
strength (128 bit). Domestic strength browsers could not legally be used outside the
United States.

In January 2000, the export restrictions were relaxed and 56 bit ciphers were licensed
for 'foreign’ use.

As a result of heavy industry pressure and increased computing power making the
breaking of the weak export-strength ciphers more feasible, in April 2000, these export
restrictions were further relaxed and web browser manufacturers were licensed to
export full 128-bit strength web clients to all but specific US-embargoed destinations.

Web server software has typically been free from these export restrictions, to allow US
nationals to access foreign-located websites at full domestic strength.

The Zeus Webserver supports all commonly used ciphers, both domestic and export
strength, and has always been free from US export restrictions.

There are still a large number of export browsers in circulation, but it is expected that
this number will decrease with time.

Global Server Ids

Many international internet users expressed concern about the security of 40 bit SSL
transactions The US responded by allowing two certificate agencies to issue special
'step-up' certificates to recognised financial institutions and some e-Commerce sites.

Verisign branded the certificates 'Global Server IDs'; Thawte branded them as
‘SuperCerts'.

When an export strength web client connects to an SSL-enabled website, it initally
nominates a set of export strength ciphers for the server to select from for the SSL
session. If, during the handshake, the client receives a trusted 'step-up' type
certificate, it has the option of reconnecting to the site, nominating full-strength
ciphers for the transaction. As a result, the technology lets certain websites with the
step-up enabled certificates allow clients to connect at full 128 bit strength, regardless
of whether they are export or domestic strength.

The export restrictions on step-up certificates have now been lifted, and although the
technology is no longer necessary, many sites are now applying for these certificates in
order to ensure that users of older export-only web clients can connect at full
encryption strength.

Copyright © 2000 Zeus Technology Ltd Page 17 of 28

SSL: Theory and Practice

7 Configuring the Zeus Webserver for SSL
7.1 SSL Quick Setup

Zeus Server allows each of your virtual servers to have their own SSL certificates. This
allows multiple secure sites to run on the same Zeus server. Each virtual server
requires its own public and private certificates for secure communication.

Secure certificates are added to a virtual server by clicking on the SSL Configuration
link from the Edit Server page:

(] Netscape: secure - Edit Server ERS { o] Netscape: secure - Secure Server Configuration ES

File Edit View Go Communicator Hg\p‘ File Edt View Go Communicator He\p‘

Edit Server Edit Server

Edit Server (secure) Secure Server Configuration (secure)

Private Key File
This is the name of the file that contains the RSA Private Key.

Q00 |

Client Certificate Support
Client-side certificates can be requested if available from clients and used for
‘people. Certti ‘wihen avalable is provided

| - S Secwrity Enabled nsA
Do youwant to enable Secure Socket Layer encryption? This
0 will provide both security and cryptographic authentication of
all requests, If enabled, all browsers must use htpsiff)
[| instead of “httpi//” AT T
I Genersl S5L Module Delete —_—
Confignetion Configuation Configwation server secure SSL Quick Setup
SSL: < On Off
Module Configurables
“ n “ Keys may be created using the command line cert tilty or using the SSL Quick Setup
page
: : Public Certificate File
‘This i the name of the file that contains the X509 Certificate which contains your
public key.
U o II

in the standard environment.

Do not request client certficates
Update

= |5 &3 eP @ 2 o | [EX-NCN-RT)

Zeus Admin Server: Edit Server Zeus Admin Server: SSL Configuration

The easiest way to configure SSL on your virtual server is to use the 'SSL Quick Setup'
wizard. Click the 'SSL Quick Setup' button and fill in the form:

|4 etscape: secure - Secure Server Quick Setup =

File Edit Wiew Go Communicator Hel)

Edit Server

Secure Server Quick Setup (secure)

A)

Controller U

Step 1. Generate your Private Key

Private Key File
Enter the full location of the file you want to store your private key in. f this fle
does not exist, anew key will be created:

Private Key Size

Chose the ke size (modulus) for your private key. Select "1024° for
ez security: sz =

Your private ke fle must be kept secure.

Step 2. Create a Certificate Request

‘ouneed a ‘public certificate to operate your secure website. This certificate mustbe
digitally "signed’ by a trusted third party who will vouch for your identity (a "Certiicate [
Agency (CAY"). To obtain a public certificate, youneed to generate a 'certificate request’,

and send itto an appropriate Certiicate Authoriy.

©
<
©

You can create and sign a certificate yourself (step 3'), This is useful for testing purposes,
but you should replace this certficate with a properly signed one when your website is
made public.

Certificate Request File
nter the full location of the file you want to store your certificate request:

ill contain information i ifi ur
Full DNS name of website: |‘atlas
Nimmami ankinm: i |
[[B UL GP ED N2 }

Copyright © 2000 Zeus Technology Ltd Page 18 of 28

SSL: Theory and Practice

Zeus Admin Server: SSL Quick Setup

private key: file name and key size (recommend 1024 bit key size)
certificate request parameters: file name and identification details
public certificate: file name

Click on 'Setup Server'. This will generate a private key, certificate request and self-
signed public certificate. It will store the certificate request in the named file, and also
display it on the screen so you can copy and paste it into your CA's online application
form.

If your website is running on the default non-secure port (80), you will need to change
it to use port 443, which is the default port for SSL:

1. Click on 'General Configuration'.

2. In the 'Server Address' form, change the port number from '80" to '443'.
3. Click 'Update".

Stop and start your website (using the 'traffic lights').

You website will now be operating in SSL mode. It will use an interim self-signed
certificate, and your website users will be prompted to accept this certificate each time
they access your site.

Obtaining a certificate from a CA:

You can now apply for a properly signed certificate from a Certificate Authority such as
Verisign. You will need to provide the Certificate Request details (the CSR) during the
application process.

The Certificate Authority will supply your signed certificate by email or by delivery over
the web.

In many cases, you can just replace the contents of the public certificate file (the self
signed cert) with the new one. Alternatively, you can use the 'SSL Configuration' form
to change the filename that webserver uses for the public certificate.

However, your CA may require that you create a certificate chain to use their
certificate. In this case, you will receive two certificates from the CA in response to
your signing request. One of these will be your public certificate, and the other an
intermediate certificate. Append the intermediate certificate onto your public
certificate to create your certificate chain:

$ cat public.cert intermediate.cert > chained.cert
Replace your self-signed public certificate file with your new certificate chain file.
Restart your website for the changes to take effect.
You can also use the Secure Server Configuration page to configure your SSL settings:

1. Use the enabled checkbox to turn on SSL. This provides an easy means of turning
SSL on and off for the server.

2. The Public Certificate File should be a signed X509 certificate from your Certificate
Authority. Enter the full pathname of the file from the server's root directory..

3. The Private Certificate File should be your private key from which you generated the
certificate request. Enter the full pathname of the file from the servers root

Copyright © 2000 Zeus Technology Ltd Page 19 of 28

SSL: Theory and Practice

7.2

Copyright © 2000 Zeus Technology Ltd

directory. Under no circumstances should the private key be stored in the document

root of the virtual server.

4. Click on the Update button to commit the configuration changes and return to the
Edit Server page. You will need to restart the virtual server from the Controller to
allow the changed to take effect.

The cert Tool

You can also configure your SSL server manually. You can use the cert tool
($ZEUSHOME/admin/bin/cert) or an equivalent tool like openss1” to
generate the keys and certificates.

Generating a private key:

$ $ZEUSHOME/admin/bin/cert -new -type private -keysize 1024 -out private.key
Generating keys, this may take a few seconds
Your new private key has been written to 'private.key!'

Generating a certificate request:

$ $ZEUSHOME/admin/bin/cert -new -type request -key private.key -out cert.csr

The following information is required to make up the certificate.
Optional fields can be left blank by entering a '.'

Country: GB

State/Province (optional outside US) :

Locality (town/city): Cambridge

Organisation: Zzeus

Organisational Unit (optional) :

Common Name (full DNS name of the machine): www.zeus.com

Your certificate request has been written to the file 'cert.csr'.

Generating a public certificate:

$ $ZEUSHOME/admin/bin/cert -new -type public -key private.key -out public.cert

The following information is required to make up the certificate.
Optional fields can be left blank by entering a '.'

Country: GB

State/Province (optional outside US) :

Locality (town/city): Cambridge

Organisation: Zzeus

Organisational Unit (optional) :

Common Name (full DNS name of the machine): www.zeus.com

Your new public certificate has been written to the file 'public.cert'.

Displaying the public certificate:
$ $ZEUSHOME/admin/bin/cert -in public.cert -text
X509 Certificate:

Certificate Info:
Version: 00

Serial Number: 00
Signature Algorithm: md5withRSAEncryption
Issuer:

C=UK, L=Cambridge, O=Zeus, CN=atlas
Validity:

Not Before: Mon, 15 May 2000 17:40:11 GMT

Not After: Tue, 15 May 2001 17:40:11 GMT
Subject:

C=GB, L=Cambridge, O=Zeus, CN=www.zeus.com
Subject Public Key Info:

Public Key Algorithm: rsaEncryption

Page 20 of 28

SSL: Theory and Practice

7.3

Public Key:
Modulus:
c4:84:c7:63:36:€0:d4:52:fb:41:44:31:38:9b:91:5e:62:

Exponent:
01:00:01

Signature Algorithm:
md5withRSAEncryption

Signature:
29:eb:c2:62:73:b8:b7:82:94:33:1f:da:9b:83:39:8b:75:1c:47:£5:41:

Verifying Key/Certificate pairs:
$ $ZEUSHOME/admin/bin/cert -check -key private.key -in public.cert

private and public key are a valid pair

Tuning your Zeus SSL server for performance

The bottleneck for SSL-encrypted transactions is the initial key exchange (the 'SSL
accept'). This key exchange involves an RSA decrypt, and it establishes a key for the
bulk cipher used to encrypt the rest of the session. It also establishes a unique session
id which the client and server use to cache the established session parameters.

All the HTTP requests/responses are encrypted by a bulk cipher, which is very fast. You'll
typically see about 80-90% performance (throughput) compared to un-encrypted
sessions.

The key (if you'll excuse the pun) to fast SSL performance is managing your session ids.
If your webserver has cached the session id, it won't need to force another expensive
SSL accept.

Zeus uses a two-level caching system for the session ids. Most recently used session
ids are cached in memory. All session ids (including the in-memory cached values) are
cached to a second level disk cache which can be shared between multiple instances of
the webserver.

+ Level 1 (memory): tuneables in $ZEUSHOME /web/global.cfg:

+ tuning!ssl sessioncache_ size - max no. of entries in your L1 cache.
Defaults to 199. You can try a large (prime) number, but watch your memory
usage. Consider the second level cache as an alternative.

« Level 2 (disk): tuneables in $ZEUSHOME /web/global.cfg:

+ tuning!ssl diskcache - defaults to 'no’ for one zeus.web child, 'yes' if
you're running multiple zeus.web children (eg on a multiprocessor system). The
cache is created in SZEUSHOME /web/ssl cache.

- tuning!ssl sessioncache expiry - defaults to 24*60*60 (24 hours).

The SSL keepalive feature allows a client to hold an SSL / TCP/IP connection open for
future use. This reduces the number of expensive TCP/IP and SSL connects in an SSL
session. By default, the tuning!ssl keepalive tunable is set to no', but
setting it to 'yes' provides a significant performance boost. However, some older

Copyright © 2000 Zeus Technology Ltd Page 21 of 28

SSL: Theory and Practice

Microsoft clients (early versions of IE 4) don't implement SSL keepalive correctly, so you
may wish to keep this feature disabled.

Using SSL with Clustering or Load Balancing solutions

The real killer comes when you need to scale your webserver installation to more than
one machine. If you use round robin DNS or a non-SSL-aware load balancer, you'll find
your clients getting session id cache misses and having to re-establish their SSL
sessions on most of their connects. In this case, horizontally scaling your installation

Zeus clustering solves this problem. You can enable the second level SSL disk cache and

If you have a mixed environment of webservers, or you need a high performance, fault
tolerant load balancing solution, you'll need Zeus's load balancer product. This load
balancer (typically a pair of machines) sits in front of a webserver farm and distributes
requests to the back end webservers. It is SSL aware, caches SSL session ids, and will
whenever possible route an SSL connection to the backend webserver that established

7.4
will severely decrease your performance!
NFS share it across your clustered machines.
the connection.

7.5

Client-Side Authentication with the Zeus Webserver

The SSL specification provides a means for the connecting clients to be sure of the
identity of the website they are connecting to. Client-side certificates enable the
webserver to similarly authenticate the connecting clients.

Many web clients can be configured with client-side certificates. These certificates can
be used to identify the client. You can configure your Zeus server to request or require
that connecting clients supply their certificates:

1. Configure Zeus to request or require client certificates using the SSL Configuration

page.

2. Place the root certificates you are prepared to accept in a directory named
$ZEUSHOME /etc/CAs in each installation of your webserver.

If you require a client-side certificate and the client does not supply one, the SSL
connection is rejected (terminated).

If you request or require a client-side certificate and the client does supply one, then
the certificate is checked against the root certificates in the SZEUSHOME /etc/CAs
directory. If it has not been issued by one of these CAs or if the certificate has expired,

the connection is rejected.

If the connection is accepted, and the client has supplied a certificate, the certificate
data is supplied via the supported dynamic content interfaces. For example, you could
construct a FastCGl authorizer to perform further checks on the certificate (against a
Certificate Revocation List, for example). The variables passed to a CGl-like process are

as follows:

* SSL _CLIENT CN Client
* SSL _CLIENT EMAIL Client
* SSL _CLIENT OU Client
* SSL_CLIENT O Client
* SSL CLIENT L Client
* SSL _CLIENT SP Client
* SSL _CLIENT C Client
* SSL_CLIENT ICN Issuer
®* SSL CLIENT IEMAIL Issuer
* SSL_CLIENT IOU Issuer

Copyright © 2000 Zeus Technology Ltd

Common Name

email (optional)
Organisational Unit
Organisation
Locality (e.g., Town)
US State (optional)
Country

Common Name

email (optional)
Organisational Unit

(optional)

(optional)

Page 22 of 28

SSL: Theory and Practice

SSL_CLIENT IO Issuer Organisation

SSL_CLIENT IL Issuer Locality (e.g., Town)
SSL_CLIENT ISP Issuer US State (optional)

SSL CLIENT IC Issuer Country

CLIENT CERT PEM encoded Client Certificate

SSL_CLIENT SERIAL Certificate Serial Number

The following values (edited for reasons of privacy) were supplied by a client certificate
from a popular certificate authority:

CLIENT CERT=MIIOBAQQFADCB1DELMAKGA1UEBhMCWKE

SSL_CLIENT_ SERIAL=237533
SSL_CLIENT C=

SSL_CLIENT_ CN=Joe User
SSL_CLIENT EMAIL=joe@user.com
SSL_CLIENT L=

SSL_CLIENT O=

SSL_CLIENT OU=

SSL_CLIENT SP=
SSL_CLIENT_IC=US

SSL_CLIENT ICN=MyCA (personal public certification)

SSL_CLIENT_ IEMAIL=

SSL_CLIENT IL=Memphis

SSL_CLIENT_ IO=MyCA

SSL_CLIENT IOU=Certificate Services
SSL_CLIENT_ ISP=Tennesse

Copyright © 2000 Zeus Technology Ltd

Page 23 of 28

SSL: Theory and Practice

8.2

Useful SSL Resources

Software

cert

cert (documented above) is a key and certificate generation tool distributed with Zeus.

OpenSSL

OpenSSL (see www.openssl.org) is a powerful open source implementation of various
SSL technologies. It includes tools for generating and managing keys, querying SSL
servers and encrypting and decrypting data. It is an extremely useful tool for
debugging SSL-related problems.

Web Resources

SSL version 3

Netscape hold the specification for SSL version 3 at home.netscape.com/eng/ss|3/.

Public Key Cryptography Standards (PKCS)

RSA labs hold the PKCS specifications in their PKCS standards center at
www.rsasecurity.com/rsalabs/pkes/. PKCS specifies many of the underlying
technologies of SSL, including the encryption and certificate formats.

Copyright © 2000 Zeus Technology Ltd Page 24 of 28

i RSA Crypto Challenge Sets New Security Benchmark (http://www.rsasecurity.com/news/pr/990826-2.html)
i RSA Laboratories' Bulletin #13 (http://www.rsasecurity.com/rsalabs/bulletins)

i Verisign (http://www.verisign.com)

iv Thawte (http://www.thawte.com)

v Entrust (http://www.entrust.com)

vi OpenSSL (http://www.openssl.org)
vii Thawte Test Server Certificates (https://[www.thawte.com/cgi/server/test.exe)

