CXML
DLANV2 (3lapack)
compute the Schur factorization of a real 2-by-2 nonsymmetric
matrix in standard form
SYNOPSIS
SUBROUTINE DLANV2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN )
DOUBLE PRECISION A, B, C, CS, D, RT1I, RT1R, RT2I, RT2R, SN
PURPOSE
DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric
matrix in standard form:
[ A B ] = [ CS -SN ] [ AA BB ] [ CS SN ]
[ C D ] [ SN CS ] [ CC DD ] [-SN CS ]
where either
1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or 2) AA =
DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex conjugate
eigenvalues.
ARGUMENTS
A (input/output) DOUBLE PRECISION
B (input/output) DOUBLE PRECISION C (input/output)
DOUBLE PRECISION D (input/output) DOUBLE PRECISION On entry,
the elements of the input matrix. On exit, they are overwritten by
the elements of the standardised Schur form.
RT1R (output) DOUBLE PRECISION
RT1I (output) DOUBLE PRECISION RT2R (output) DOUBLE PRECISION
RT2I (output) DOUBLE PRECISION The real and imaginary parts of
the eigenvalues. If the eigenvalues are both real, abs(RT1R) >=
abs(RT2R); if the eigenvalues are a complex conjugate pair, RT1I >
0.
CS (output) DOUBLE PRECISION
SN (output) DOUBLE PRECISION Parameters of the rotation
matrix.
CXML Home Page Index of CXML Routines