CXML
SLAGTM (3lapack)
perform a matrix-vector product of the form B := alpha * A * X +
beta * B where A is a tridiagonal matrix of order N, B and X are N by NRHS
matrices, and alpha and beta are real scalars, each of which may be 0., 1.,
or (3lapack)
SYNOPSIS
SUBROUTINE SLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA, B, LDB )
CHARACTER TRANS
INTEGER LDB, LDX, N, NRHS
REAL ALPHA, BETA
REAL B( LDB, * ), D( * ), DL( * ), DU( * ), X( LDX, * )
PURPOSE
SLAGTM performs a matrix-vector product of the form
ARGUMENTS
TRANS (input) CHARACTER
Specifies the operation applied to A. = 'N': No transpose, B :=
alpha * A * X + beta * B
= 'T': Transpose, B := alpha * A'* X + beta * B
= 'C': Conjugate transpose = Transpose
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns of the
matrices X and B.
ALPHA (input) REAL
The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise, it is
assumed to be 0.
DL (input) REAL array, dimension (N-1)
The (n-1) sub-diagonal elements of T.
D (input) REAL array, dimension (N)
The diagonal elements of T.
DU (input) REAL array, dimension (N-1)
The (n-1) super-diagonal elements of T.
X (input) REAL array, dimension (LDX,NRHS)
The N by NRHS matrix X. LDX (input) INTEGER The leading
dimension of the array X. LDX >= max(N,1).
BETA (input) REAL
The scalar beta. BETA must be 0., 1., or -1.; otherwise, it is
assumed to be 1.
B (input/output) REAL array, dimension (LDB,NRHS)
On entry, the N by NRHS matrix B. On exit, B is overwritten by the
matrix expression B := alpha * A * X + beta * B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(N,1).
CXML Home Page Index of CXML Routines