CXML
STPRFS (3lapack)
provide error bounds and backward error estimates for the solution
to a system of linear equations with a triangular packed coefficient matrix
SYNOPSIS
SUBROUTINE STPRFS( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX, FERR,
BERR, WORK, IWORK, INFO )
CHARACTER DIAG, TRANS, UPLO
INTEGER INFO, LDB, LDX, N, NRHS
INTEGER IWORK( * )
REAL AP( * ), B( LDB, * ), BERR( * ), FERR( * ), WORK( * ),
X( LDX, * )
PURPOSE
STPRFS provides error bounds and backward error estimates for the solution
to a system of linear equations with a triangular packed coefficient
matrix.
The solution matrix X must be computed by STPTRS or some other means before
entering this routine. STPRFS does not do iterative refinement because
doing so cannot improve the backward error.
ARGUMENTS
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
TRANS (input) CHARACTER*1
Specifies the form of the system of equations:
= 'N': A * X = B (No transpose)
= 'T': A**T * X = B (Transpose)
= 'C': A**H * X = B (Conjugate transpose = Transpose)
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns of the
matrices B and X. NRHS >= 0.
AP (input) REAL array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in a
linear array. The j-th column of A is stored in the array AP as
follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; if
UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. If DIAG
= 'U', the diagonal elements of A are not referenced and are
assumed to be 1.
B (input) REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input) REAL array, dimension (LDX,NRHS)
The solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector X(j)
(the j-th column of the solution matrix X). If XTRUE is the true
solution corresponding to X(j), FERR(j) is an estimated upper bound
for the magnitude of the largest element in (X(j) - XTRUE) divided
by the magnitude of the largest element in X(j). The estimate is
as reliable as the estimate for RCOND, and is almost always a
slight overestimate of the true error.
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution vector
X(j) (i.e., the smallest relative change in any element of A or B
that makes X(j) an exact solution).
WORK (workspace) REAL array, dimension (3*N)
IWORK (workspace) INTEGER array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
CXML Home Page Index of CXML Routines