CXML
ZPPRFS (3lapack)
improve the computed solution to a system of linear equations when
the coefficient matrix is Hermitian positive definite and packed, and
provides error bounds and backward error estimates for the solution
SYNOPSIS
SUBROUTINE ZPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR, BERR,
WORK, RWORK, INFO )
CHARACTER UPLO
INTEGER INFO, LDB, LDX, N, NRHS
DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * )
COMPLEX*16 AFP( * ), AP( * ), B( LDB, * ), WORK( * ), X( LDX, * )
PURPOSE
ZPPRFS improves the computed solution to a system of linear equations when
the coefficient matrix is Hermitian positive definite and packed, and
provides error bounds and backward error estimates for the solution.
ARGUMENTS
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns of the
matrices B and X. NRHS >= 0.
AP (input) COMPLEX*16 array, dimension (N*(N+1)/2)
The upper or lower triangle of the Hermitian matrix A, packed
columnwise in a linear array. The j-th column of A is stored in
the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j)
for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for
j<=i<=n.
AFP (input) COMPLEX*16 array, dimension (N*(N+1)/2)
The triangular factor U or L from the Cholesky factorization A =
U**H*U or A = L*L**H, as computed by DPPTRF/ZPPTRF, packed
columnwise in a linear array in the same format as A (see AP).
B (input) COMPLEX*16 array, dimension (LDB,NRHS)
The right hand side matrix B.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
X (input/output) COMPLEX*16 array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by ZPPTRS. On exit,
the improved solution matrix X.
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
FERR (output) DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector X(j)
(the j-th column of the solution matrix X). If XTRUE is the true
solution corresponding to X(j), FERR(j) is an estimated upper bound
for the magnitude of the largest element in (X(j) - XTRUE) divided
by the magnitude of the largest element in X(j). The estimate is
as reliable as the estimate for RCOND, and is almost always a
slight overestimate of the true error.
BERR (output) DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution vector
X(j) (i.e., the smallest relative change in any element of A or B
that makes X(j) an exact solution).
WORK (workspace) COMPLEX*16 array, dimension (2*N)
RWORK (workspace) DOUBLE PRECISION array, dimension (N)
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
PARAMETERS
ITMAX is the maximum number of steps of iterative refinement.
CXML Home Page Index of CXML Routines