Next Previous Contents

5. Development with GTK+: general questions

5.1 What widgets are in GTK?

The GTK+ Tutorial lists the following widgets:

  GtkObject
   +GtkData
   | +GtkAdjustment
   | `GtkTooltips
   `GtkWidget
     +GtkContainer
     | +GtkBin
     | | +GtkAlignment
     | | +GtkEventBox
     | | +GtkFrame
     | | | `GtkAspectFrame
     | | +GtkHandleBox
     | | +GtkItem
     | | | +GtkListItem
     | | | +GtkMenuItem
     | | | | `GtkCheckMenuItem
     | | | |   `GtkRadioMenuItem
     | | | `GtkTreeItem
     | | +GtkViewport
     | | `GtkWindow
     | |   +GtkColorSelectionDialog
     | |   +GtkDialog
     | |   | `GtkInputDialog
     | |   `GtkFileSelection
     | +GtkBox
     | | +GtkButtonBox
     | | | +GtkHButtonBox
     | | | `GtkVButtonBox
     | | +GtkHBox
     | | | +GtkCombo
     | | | `GtkStatusbar
     | | `GtkVBox
     | |   +GtkColorSelection
     | |   `GtkGammaCurve
     | +GtkButton
     | | +GtkOptionMenu
     | | `GtkToggleButton
     | |   `GtkCheckButton
     | |     `GtkRadioButton
     | +GtkCList
     |   `GtkCTree
     | +GtkFixed
     | +GtkList
     | +GtkMenuShell
     | | +GtkMenuBar
     | | `GtkMenu
     | +GtkNotebook
     | +GtkPaned
     | | +GtkHPaned
     | | `GtkVPaned
     | +GtkScrolledWindow
     | +GtkTable
     | +GtkToolbar
     | `GtkTree
     +GtkDrawingArea
     | `GtkCurve
     +GtkEditable
     | +GtkEntry
     | | `GtkSpinButton
     | `GtkText
     +GtkMisc
     | +GtkArrow
     | +GtkImage
     | +GtkLabel
     | | `GtkTipsQuery
     | `GtkPixmap
     +GtkPreview
     +GtkProgressBar
     +GtkRange
     | +GtkScale
     | | +GtkHScale
     | | `GtkVScale
     | `GtkScrollbar
     |   +GtkHScrollbar
     |   `GtkVScrollbar
     +GtkRuler
     | +GtkHRuler
     | `GtkVRuler
     `GtkSeparator
       +GtkHSeparator
       `GtkVSeparator

5.2 Is GTK+ thread safe? How do I write multi-threaded GTK+ applications?

The GLib library can be used in a thread-safe mode by calling g_thread_init() before making any other GLib calls. In this mode GLib automatically locks all internal data structures as needed. This does not mean that two threads can simultaneously access, for example, a single hash table, but they can access two different hash tables simultaneously. If two different threads need to access the same hash table, the application is responsible for locking itself.

When GLib is intialized to be thread-safe, GTK+ is thread aware. There is a single global lock that you must acquire with gdk_threads_enter() before making any GDK calls, and release with gdk_threads_leave() afterwards.

A minimal main program for a threaded GTK+ application looks like:

int
main (int argc, char *argv[])
{
  GtkWidget *window;

  g_thread_init(NULL);
  gtk_init(&argc, &argv);

  window = create_window();
  gtk_widget_show(window);

  gdk_threads_enter();
  gtk_main();
  gdk_threads_leave();

  return(0);
}

Callbacks require a bit of attention. Callbacks from GTK+ (signals) are made within the GTK+ lock. However callbacks from GLib (timeouts, IO callbacks, and idle functions) are made outside of the GTK+ lock. So, within a signal handler you do not need to call gdk_threads_enter(), but within the other types of callbacks, you do.

Erik Mouw contributed the following code example to illustrate how to use threads within GTK+ programs.

/*-------------------------------------------------------------------------
 * Filename:      gtk-thread.c
 * Version:       0.99.1
 * Copyright:     Copyright (C) 1999, Erik Mouw
 * Author:        Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
 * Description:   GTK threads example. 
 * Created at:    Sun Oct 17 21:27:09 1999
 * Modified by:   Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
 * Modified at:   Sun Oct 24 17:21:41 1999
 *-----------------------------------------------------------------------*/
/*
 * Compile with:
 *
 * cc -o gtk-thread gtk-thread.c `gtk-config --cflags --libs gthread`
 *
 * Thanks to Sebastian Wilhelmi and Owen Taylor for pointing out some
 * bugs.
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>
#include <gtk/gtk.h>
#include <glib.h>
#include <pthread.h>

#define YES_IT_IS    (1)
#define NO_IT_IS_NOT (0)

typedef struct 
{
  GtkWidget *label;
  int what;
} yes_or_no_args;

G_LOCK_DEFINE_STATIC (yes_or_no);
static volatile int yes_or_no = YES_IT_IS;

void destroy(GtkWidget *widget, gpointer data)
{
  gtk_main_quit();
}

void *argument_thread(void *args)
{
  yes_or_no_args *data = (yes_or_no_args *)args;
  gboolean say_something;

  for(;;)
    {
      /* sleep a while */
      sleep(rand() / (RAND_MAX / 3) + 1);

      /* lock the yes_or_no_variable */
      G_LOCK(yes_or_no);

      /* do we have to say something? */
      say_something = (yes_or_no != data->what);

      if(say_something)
        {
          /* set the variable */
          yes_or_no = data->what;
        }

      /* Unlock the yes_or_no variable */
      G_UNLOCK(yes_or_no);

      if(say_something)
        {
          /* get GTK thread lock */
          gdk_threads_enter();

          /* set label text */
          if(data->what == YES_IT_IS)
            gtk_label_set_text(GTK_LABEL(data->label), "O yes, it is!");
          else
            gtk_label_set_text(GTK_LABEL(data->label), "O no, it isn't!");

          /* release GTK thread lock */
          gdk_threads_leave();
        }
    }

  return(NULL);
}

int main(int argc, char *argv[])
{
  GtkWidget *window;
  GtkWidget *label;
  yes_or_no_args yes_args, no_args;
  pthread_t no_tid, yes_tid;

  /* init threads */
  g_thread_init(NULL);

  /* init gtk */
  gtk_init(&argc, &argv);

  /* init random number generator */
  srand((unsigned int)time(NULL));

  /* create a window */
  window = gtk_window_new(GTK_WINDOW_TOPLEVEL);

  gtk_signal_connect(GTK_OBJECT (window), "destroy",
                     GTK_SIGNAL_FUNC(destroy), NULL);

  gtk_container_set_border_width(GTK_CONTAINER (window), 10);

  /* create a label */
  label = gtk_label_new("And now for something completely different ...");
  gtk_container_add(GTK_CONTAINER(window), label);
  
  /* show everything */
  gtk_widget_show(label);
  gtk_widget_show (window);

  /* create the threads */
  yes_args.label = label;
  yes_args.what = YES_IT_IS;
  pthread_create(&yes_tid, NULL, argument_thread, &yes_args);

  no_args.label = label;
  no_args.what = NO_IT_IS_NOT;
  pthread_create(&no_tid, NULL, argument_thread, &no_args);

  /* enter the GTK main loop */
  gdk_threads_enter();
  gtk_main();
  gdk_threads_leave();

  return(0);
}

5.3 Why does this strange 'x io error' occur when I fork() in my GTK+ app?

This is not really a GTK+ problem, and the problem is not related to fork() either. If the 'x io error' occurs then you probably use the exit() function in order to exit from the child process.

When GDK opens an X display, it creates a socket file descriptor. When you use the exit() function, you implicitly close all the open file descriptors, and the underlying X library really doesn't like this.

The right function to use here is _exit().

Erik Mouw contributed the following code example to illustrate handling fork() and exit().

/*-------------------------------------------------------------------------
 * Filename:      gtk-fork.c
 * Version:       0.99.1
 * Copyright:     Copyright (C) 1999, Erik Mouw
 * Author:        Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
 * Description:   GTK+ fork example
 * Created at:    Thu Sep 23 21:37:55 1999
 * Modified by:   Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
 * Modified at:   Thu Sep 23 22:39:39 1999
 *-----------------------------------------------------------------------*/
/*
 * Compile with:
 *
 * cc -o gtk-fork gtk-fork.c `gtk-config --cflags --libs`
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <gtk/gtk.h>

void sigchld_handler(int num)
{
  sigset_t set, oldset;
  pid_t pid;
  int status, exitstatus;

  /* block other incoming SIGCHLD signals */
  sigemptyset(&set);
  sigaddset(&set, SIGCHLD);
  sigprocmask(SIG_BLOCK, &set, &oldset);

  /* wait for child */
  while((pid = waitpid((pid_t)-1, &status, WNOHANG)) > 0)
    {
      if(WIFEXITED(status))
        {
          exitstatus = WEXITSTATUS(status);

          fprintf(stderr, 
                  "Parent: child exited, pid = %d, exit status = %d\n", 
                  (int)pid, exitstatus);
        }
      else if(WIFSIGNALED(status))
        {
          exitstatus = WTERMSIG(status);

          fprintf(stderr,
                  "Parent: child terminated by signal %d, pid = %d\n",
                  exitstatus, (int)pid);
        }
      else if(WIFSTOPPED(status))
        {
          exitstatus = WSTOPSIG(status);

          fprintf(stderr,
                  "Parent: child stopped by signal %d, pid = %d\n",
                  exitstatus, (int)pid);
        }
      else
        {
          fprintf(stderr,
                  "Parent: child exited magically, pid = %d\n",
                  (int)pid);
        }
    }

  /* re-install the signal handler (some systems need this) */
  signal(SIGCHLD, sigchld_handler);
  
  /* and unblock it */
  sigemptyset(&set);
  sigaddset(&set, SIGCHLD);
  sigprocmask(SIG_UNBLOCK, &set, &oldset);
}

gint delete_event(GtkWidget *widget, GdkEvent *event, gpointer data)
{
  return(FALSE);
}

void destroy(GtkWidget *widget, gpointer data)
{
  gtk_main_quit();
}

void fork_me(GtkWidget *widget, gpointer data)
{
  pid_t pid;

  pid = fork();

  if(pid == -1)
    {
      /* ouch, fork() failed */
      perror("fork");
      exit(-1);
    }
  else if(pid == 0)
    {
      /* child */
      fprintf(stderr, "Child: pid = %d\n", (int)getpid());

      execlp("ls", "ls", "-CF", "/", NULL);
      
      /* if exec() returns, there is something wrong */
      perror("execlp");

      /* exit child. note the use of _exit() instead of exit() */
      _exit(-1);
    }
  else
    {
      /* parent */
      fprintf(stderr, "Parent: forked a child with pid = %d\n", (int)pid);
    }
}

int main(int argc, char *argv[])
{
  GtkWidget *window;
  GtkWidget *button;

  gtk_init(&argc, &argv);

  /* the basic stuff: make a window and set callbacks for destroy and
   * delete events 
   */
  window = gtk_window_new(GTK_WINDOW_TOPLEVEL);

  gtk_signal_connect(GTK_OBJECT (window), "delete_event",
                     GTK_SIGNAL_FUNC(delete_event), NULL);
          
  gtk_signal_connect(GTK_OBJECT (window), "destroy",
                     GTK_SIGNAL_FUNC(destroy), NULL);

#if (GTK_MAJOR_VERSION == 1) && (GTK_MINOR_VERSION == 0)
  gtk_container_border_width(GTK_CONTAINER (window), 10);
#else  
  gtk_container_set_border_width(GTK_CONTAINER (window), 10);
#endif

  /* add a button to do something usefull */
  button = gtk_button_new_with_label("Fork me!");
          
  gtk_signal_connect(GTK_OBJECT (button), "clicked",
                     GTK_SIGNAL_FUNC(fork_me), NULL);

  gtk_container_add(GTK_CONTAINER(window), button);
          
  /* show everything */
  gtk_widget_show (button);
  gtk_widget_show (window);


  /* install a signal handler for SIGCHLD signals */
  signal(SIGCHLD, sigchld_handler);

  
  /* main loop */
  gtk_main ();

  exit(0);         
}

5.4 Why don't the contents of a button move when the button is pressed? Here's a patch to make it work that way...

From: Peter Mattis

The reason buttons don't move their child down and to the right when they are depressed is because I don't think that's what is happening visually. My view of buttons is that you are looking at them straight on. That is, the user interface lies in a plane and you're above it looking straight at it. When a button gets pressed it moves directly away from you. To be absolutely correct I guess the child should actually shrink a tiny amount. But I don't see why the child should shift down and to the left. Remember, the child is supposed to be attached to the buttons surface. Its not good for it to appear like the child is slipping on the surface of the button.

On a more practical note, I did implement this at one point and determined it didn't look good and removed it.

5.5 How to I identifiy a widgets top level window or other ancestor?

There are a couple of ways to find the top level parent of a widget. The easier way is to call the gtk_widget_top_level() function that returns a pointer to a GtkWidget that is the top level window.

A more complicated way to do this (but less limited, as it allows the user to get the closest ancestor of a known type) is to use gtk_widget_get_ancestor() as in:

      GtkWidget       *widget;
      
      widget = gtk_widget_get_ancestor(w, GTK_TYPE_WINDOW);

Since virtually all the GTK_TYPEs can be used as the second parameter of this function, you can get any parent widget of a particular widget. Suppose you have an hbox which contains a vbox, which in turn contains some other atomic widget (entry, label, etc. To find the master hbox using the entry widget simply use:

      GtkWidget       *hbox;
      hbox = gtk_widget_get_ancestor(w, GTK_TYPE_HBOX);

5.6 How do I get the Window ID of a GtkWindow?

The actual Gdk/X window will be created when the widget gets realized. You can get the Window ID with:

#include <gdk/gdkx.h>

Window xwin = GDK_WINDOW_XWINDOW (GTK_WIDGET (my_window)->window);

5.7 How do I catch a double click event (in a list widget, for example)?

Tim Janik wrote to gtk-list (slightly modified):

Define a signal handler:

gint
signal_handler_event(GtkWiget *widget, GdkEvenButton *event, gpointer func_data)
{
  if (GTK_IS_LIST_ITEM(widget) &&
       (event->type==GDK_2BUTTON_PRESS ||
        event->type==GDK_3BUTTON_PRESS) ) {
    printf("I feel %s clicked on button %d\",
           event->type==GDK_2BUTTON_PRESS ? "double" : "triple",
           event->button);
  }

  return FALSE;
}

And connect the handler to your object:

{
  /* list, list item init stuff */     

  gtk_signal_connect(GTK_OBJECT(list_item),
                     "button_press_event",
                     GTK_SIGNAL_FUNC(signal_handler_event),
                     NULL);

  /* and/or */

  gtk_signal_connect(GTK_OBJECT(list_item),
                     "button_release_event",
                     GTK_SIGNAL_FUNC(signal_handler_event),
                     NULL);

  /* something else */
}

and, Owen Taylor wrote:

Note that a single button press will be received beforehand, and if you are doing this for a button, you will therefore also get a "clicked" signal for the button. (This is going to be true for any toolkit, since computers aren't good at reading one's mind.)

5.8 By the way, what are the differences between signals and events?

First of all, Havoc Pennington gives a rather complete description of the differences between events and signals in his free book (two chapters can be found at http://www106.pair.com/rhp/sample_chapters.html).

Moreover, Havoc posted this to the gtk-list

Events are a stream of messages received from the X server. They drive the Gtk main loop; which more or less amounts to "wait for events, process them" (not exactly, it is really more general than that and can wait on many different input streams at once). Events are a Gdk/Xlib concept.

Signals are a feature of GtkObject and its subclasses. They have nothing to do with any input stream; really a signal is just a way to keep a list of callbacks around and invoke them ("emit" the signal). There are lots of details and extra features of course. Signals are emitted by object instances, and are entirely unrelated to the Gtk main loop. Conventionally, signals are emitted "when something changes" about the object emitting the signal.

Signals and events only come together because GtkWidget happens to emit signals when it gets events. This is purely a convenience, so you can connect callbacks to be invoked when a particular widget receives a particular event. There is nothing about this that makes signals and events inherently related concepts, any more than emitting a signal when you click a button makes button clicking and signals related concepts.

5.9 Data I pass to the delete_event (or other event) handler gets corrupted.

All event handlers take an additional argument which contains information about the event that triggered the handler. So, a delete_event handler must be declared as:

gint delete_event_handler (GtkWidget   *widget,
                           GdkEventAny *event,
                           gpointer     data);

5.10 I have my signal connected to the the (whatever) event, but it seems I don't catch it. What's wrong?

There is some special initialisation to do in order to catch some particular events. In fact, you must set the correct event mask bit of your widget before getting some particular events.

For example,

  gtk_widget_add_events(window, GDK_KEY_RELEASE_MASK);

lets you catch the key release events. If you want to catch every events, simply us the GDK_ALL_EVENTS_MASK event mask.

All the event masks are defined in the gdktypes.h file.

5.11 I need to add a new signal to a GTK+ widget. Any idea?

If the signal you want to add may be beneficial for other GTK+ users, you may want to submit a patch that presents your changes. Check the tutorial for more information about adding signals to a widget class.

If you don't think it is the case or if your patch is not applied you'll have to use the gtk_object_class_user_signal_new function. gtk_object_class_user_signal_new allows you to add a new signal to a predefined GTK+ widget without any modification of the GTK+ source code. The new signal can be emited with gtk_signal_emit and can be handled in the same way as other signals.

Tim Janik posted this code snippet:

static guint signal_user_action = 0;

signal_user_action =
  gtk_object_class_user_signal_new (gtk_type_class (GTK_TYPE_WIDGET),
                    "user_action",
                    GTK_RUN_LAST | GTK_RUN_ACTION,
                    gtk_marshal_NONE__POINTER,
                    GTK_TYPE_NONE, 1,
                    GTK_TYPE_POINTER);

void
gtk_widget_user_action (GtkWidget *widget,
                        gpointer   act_data)
{
  g_return_if_fail (GTK_IS_WIDGET (widget));

  gtk_signal_emit (GTK_OBJECT (widget), signal_user_action, act_data);
}

If you want your new signal to have more than the classical gpointer parameter, you'll have to play with GTK+ marshallers.

5.12 Is it possible to get some text displayed which is truncated to fit inside its allocation?

GTK's behavior (no clipping) is a consequence of its attempts to conserve X resources. Label widgets (among others) don't get their own X window - they just draw their contents on their parent's window. While it might be possible to have clipping occur by setting the clip mask before drawing the text, this would probably cause a substantial performance penalty.

Its possible that, in the long term, the best solution to such problems might be just to change gtk to give labels X windows. A short term workaround is to put the label widget inside another widget that does get its own window - one possible candidate would be the viewport widget.

viewport = gtk_viewport (NULL, NULL);
gtk_widget_set_usize (viewport, 50, 25);
gtk_viewport_set_shadow_type (GTK_VIEWPORT(viewport), GTK_SHADOW_NONE);
gtk_widget_show(viewport);

label = gtk_label ("a really long label that won't fit");
gtk_container_add (GTK_CONTAINER(viewport), label);
gtk_widget_show (label);

If you were doing this for a bunch of widgets, you might want to copy gtkviewport.c and strip out the adjustment and shadow functionality (perhaps you could call it GtkClipper).

5.13 How do I make my window modal? / How do I make a single window active?

After you create your window, do gtk_grab_add(my_window). And after closing the window do gtk_grab_remove(my_window).

5.14 Why doesn't my widget (e.g. progressbar) update?

You are probably doing all the changes within a function without returning control to gtk_main(). This may be the case if you do some lengthy calculation in your code. Most drawing updates are only placed on a queue, which is processed within gtk_main(). You can force the drawing queue to be processed using something like:

while (gtk_main_iteration(FALSE));

inside you're function that changes the widget.

What the above snippet does is run all pending events and high priority idle functions, then return immediately (the drawing is done in a high priority idle function).

5.15 How do I attach data to some GTK+ object/widget?

First of all, the attached data is stored in the object_data field of a GtkObject. The type of this field is GData, which is defined in glib.h. So you should read the gdataset.c file in your glib source directory very carefully.

There are two (easy) ways to attach some data to a gtk object. Using gtk_object_set_data() and gtk_object_get_data() seems to be the most common way to do this, as it provides a powerful interface to connect objects and data.

void gtk_object_set_data(GtkObject *object, const gchar *key, gpointer data);

gpointer gtk_object_get_data(GtkObject *object, const gchar *key);

Since a short example is better than any lengthy speech:

struct my_struct        p1,p2,*result;
GtkWidget               *w;

gtk_object_set_data(GTK_OBJECT(w),"p1 data",(gpointer)&p1);
gtk_object_set_data(GTK_OBJECT(w),"p2 data",(gpointer)&p2);

result = gtk_object_get_data(GTK_OBJECT(w),"p1 data");

The gtk_object_set_user_data() and gtk_object_get_user_data() functions does exactly the same thing as the functions above, but does not let you specify the "key" parameter. Instead, it uses a standard "user_data" key. Note that the use of these functions is deprecated in 1.2. They only provide a compatibility mode with some old gtk packages.

5.16 How do I remove the data I have attached to an object?

When attaching the data to the object, you can use the gtk_object_set_data_full() function. The three first arguments of the function are the same as in gtk_object_set_data(). The fourth one is a pointer to a callback function which is called when the data is destroyed. The data is destroyed when you:

5.17 How do I reparent a widget?

The normal way to reparent (ie change the owner) of a widget should be to use the function:

void gtk_widget_reparent (GtkWidget *widget, 
                          GtkWidget *new_parent)

But this is only a "should be" since this function does not correctly do its job on some specific widgets. The main goal of gtk_widget_reparent() is to avoid unrealizing widget if both widget and new_parent are realized (in this case, widget->window is successfully reparented). The problem here is that some widgets in the GTK+ hierarchy have multiple attached X subwindows and this is notably the case for the GtkSpinButton widget. For those, gtk_widget_reparent() will fail by leaving an unrealized child window where it should not.

To avoid this problem, simply use the following code snippet:

     gtk_widget_ref(widget);
     gtk_container_remove(GTK_CONTAINER(old_parent), widget);
     gtk_container_add(GTK_CONTAINER(new_parent), widget);
     gtk_widget_unref(widget);

5.18 How could I get any widgets position?

As Tim Janik pointed out, there are different cases, and each case requires a different solution.

Your choice of Window Manager will have an effect of the results of the above functions. You should keep this in mind when writing your application. This is dependant upon how the Window Managers manage the decorations that they add around windows.

5.19 How do I set the size of a widget/window? How do I prevent the user resizing my window?

The gtk_widget_set_uposition() function is used to set the position of any widget.

The gtk_widget_set_usize() function is used to set the size of a widget. In order to use all the features that are provided by this function when it acts on a window, you may want to use the gtk_window_set_policy function. The definition of these functions are:

void gtk_widget_set_usize (GtkWidget *widget,
                           gint width,
                           gint height);

void gtk_window_set_policy (GtkWindow *window,
                            gint allow_shrink,
                            gint allow_grow,
                            gint auto_shrink);

Auto_shrink will automatically shrink the window when the requested size of the child widgets goes below the current size of the window. Allow_shrink will give the user the authorisation to make the window smaller that it should normally be. Allow_grow will give the user will have the ability to make the window bigger. The default values for these parameters are:

allow_shrink = FALSE
allow_grow   = TRUE
auto_shrink  = FALSE

The gtk_widget_set_usize() functions is not the easiest way to set a window size since you cannot decrease this window size with another call to this function unless you call it twice, as in:

     gtk_widget_set_usize(your_widget, -1, -1);
     gtk_widget_set_usize(your_widget, new_x_size, new_y_size);

Another way to set the size of and/or move a window is to use the gdk_window_move_resize() function which uses to work fine both to grow or to shrink the window:

     gdk_window_move_resize(window->window, 
                            x_pos, y_pos, 
                            x_size, y_size);

5.20 How do I add a popup menu to my GTK+ application?

The menu example in the examples/menu directory of the GTK+ distribution implements a popup menu with this technique :

static gint button_press (GtkWidget *widget, GdkEvent *event)
{

    if (event->type == GDK_BUTTON_PRESS) {
        GdkEventButton *bevent = (GdkEventButton *) event; 
        gtk_menu_popup (GTK_MENU(widget), NULL, NULL, NULL, NULL,
                        bevent->button, bevent->time);
        /* Tell calling code that we have handled this event; the buck
         * stops here. */
        return TRUE;
    }

    /* Tell calling code that we have not handled this event; pass it on. */
    return FALSE;
}

5.21 How do I disable or enable a widget, such as a button?

To disable (or to enable) a widget, use the gtk_widget_set_sensitive() function. The first parameter is you widget pointer. The second parameter is a boolean value: when this value is TRUE, the widget is enabled.

5.22 Shouldn't the text argument in the gtk_clist_* functions be declared const?

For example:

gint gtk_clist_prepend (GtkCList *clist,
                        gchar    *text[]);

Answer: No, while a type "gchar*" (pointer to char) can automatically be cast into "const gchar*" (pointer to const char), this does not apply for "gchar *[]" (array of an unspecified number of pointers to char) into "const gchar *[]" (array of an unspecified number of pointers to const char).

The type qualifier "const" may be subject to automatic casting, but in the array case, it is not the array itself that needs the (const) qualified cast, but its members, thus changing the whole type.

5.23 How do I render pixels (image data) to the screen?

There are several ways to approach this. The simplest way is to use GdkRGB, see gdk/gdkrgb.h. You create an RGB buffer, render to your RGB buffer, then use GdkRGB routines to copy your RGB buffer to a drawing area or custom widget. The book "GTK+/Gnome Application Development" gives some details; GdkRGB is also documented in the GTK+ reference documentation.

If you're writing a game or other graphics-intensive application, you might consider a more elaborate solution. OpenGL is the graphics standard that will let you access hardware accelaration in future versions of XFree86; so for maximum speed, you probably want to use OpenGL. A GtkGLArea widget is available for using OpenGL with GTK+ (but GtkGLArea does not come with GTK+ itself). There are also several open source game libraries, such as ClanLib and Loki's Simple DirectMedia Layer library (SDL).

You do NOT want to use gdk_draw_point(), that will be extremely slow.

5.24 How do I create a pixmap without having my window realized/shown?

Functions such as gdk_pixmap_create_from_xpm() require a valid window as a parameter. During the initialisation phase of an application, a valid window may not be available without showing a window, which may be inappropriate. In order to avoid this, a function such as gdk_pixmap_colormap_create_from_xpm can be used, as in:

  char *pixfile = "foo.xpm";
  GtkWidget *top, *box, *pixw;
  GdkPixmap *pixmap, *pixmap_mask;

  top = gtk_window_new (GKT_WINDOW_TOPLEVEL);
  box = gtk_hbox_new (FALSE, 4);
  gtk_conainer_add (GTK_CONTAINER(top), box);
 
  pixmap = gdk_pixmap_colormap_create_from_xpm (
               NULL, gtk_widget_get_colormap(top),
               &pixmap_mask, NULL, pixfile);
  pixw = gtk_pixmap_new (pixmap, pixmap_mask);
  gdk_pixmap_unref (pixmap);
  gdk_pixmap_unref (pixmap_mask);


Next Previous Contents