

White Paper FireEngine—A New Networking Architecture for the Solaris™ Operating System On the Web sun.com

A Technical White Paper
Sunay Tripathi—sunay.tripathi@sun.com
November 2004

FireEngine—A New Networking
Architecture for the
Solaris™ Operating System

Please
Recycle

© 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, CA 95054 USA

All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part

of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party

software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California.

Sun, Sun Microsystems, the Sun logo, and Solaris are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other

countries.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries.

Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering

efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive

license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise

comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87),

or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a). DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS,

REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS HELD TO BE LEGALLY INVALID.

Sun Microsystems, Inc. Table of Contents

Table of Contents

Overview

 . 1
Introduction . 1
Performance Barriers . 1
Network Performance . 1
Performance Metrics . 2
10-Gbps Performance . 3
Solaris Network Cache and Accelerator . 3

FireEngine Design

. 4
FireEngine Implementation Phases . 4

FireEngine Phase 1 Architecture

. 7
IP Classifier-Based Fan Out . 7
Vertical Perimeters. 7
IP Multithreading (MT) . 9
Merged TCP/IP . 9
Connection Set Up/Tear Down. 9

Accept() . 10
Connect() . 10
Socket() . 10
Sendfilev() . 10
Close() . 10

Summary

 . 11

More Information

. 12

Sun Microsystems, Inc. Overview P1

Chapter 1

Overview

Introduction

The FireEngine networking stack for the Solaris™ Operating System (OS) is currently under development by Sun.
Enhanced network performance and a flexible architecture to meet future customer networking needs are twin
goals of FireEngine development. Addressing existing requirements, including increased performance and
scalability, Disaster Recovery (DR), Secure Internet Protocol (IPSec), and IP Multiprocessing (IPMP), as well as
future requirements—such as 10-gigabits per second (Gbps) networking, 100-Gbps networking, and TCP/IP Offload
Engine (TOE)—are given equal priority.

Implemented in three phases, FireEngine’s development stages are structured to provide increased flexibility
and a significant performance boost to overall network throughput. Phase 1 has already been completed and these
goals have been realized in services using TCP/IP. Web-based benchmarks show a 30- to 45-percent improvement on
both SPARC® and Intel x86 architectures, while bulk data transfer benchmarks show improvements in the range of
20 to 40 percent. Phases 2 and 3 should deliver similar overall performance improvements. With increased
flexibility and performance boosts of this magnitude, FireEngine is well on its way to reinforcing Sun’s Solaris OS as
the commercial standard for networking infrastructure.

Performance Barriers

The existing TCP/IP stack uses STREAMS perimeters and kernel adaptive mutexes for multithreading. As the current
STREAMS perimeter provides per module, per protocol stack layer, or horizontal perimeters. This can, and often
does, lead to a packet being processed on more than one CPU and by more than one thread, leading to excessive
context switching and poor CPU data locality.

IP’s PERMOD perimeter has long been known to cause connection and CPU scalability problems. The major
problem is that certain operations are “exclusive” (preventing any other network activity) and this exclusivity is
implemented using the non-scalable concept of PERMOD perimeter. With the PERMOD perimeter all access to any
IP instance should go through a single

syncq

 structure.

Network Performance

FireEngine introduces a new highly scalable, packet classification architecture called

Firehose

. Each incoming
packet is classified early on, then proceeds through an optimized list of functions—the

Event List

—that makes it
easy to add protocols without impacting the network stack’s complexity, performance, or scalability.

Sun Microsystems, Inc. Overview P2

FireEngine concentrates on improving the performance of key server workloads that have a significant
networking component. The impact of network performance on these workloads, as well as benchmarks that
describe overall workload performance, are described in Table 1.

Performance Metrics

Applications often use networking in two distinct ways: To perform transactions over the network, or to stream
data over the network. Transactions are short-lived connections transferring a small amount of application data,
while streaming data is a transfer of large amounts of data during long-lived connections.

In the transaction case, performance is determined by a combination of the time it takes to get the first byte
(first-byte latency), connection set up/tear down, plus network throughput (bits per second or bps). In the
streaming case, performance is dominated by overall network throughput. These parameters impact performance
in various ways, depending on the amount of data transferred. For instance, when transferring one byte of data,
only first-byte latency and connection set up/tear down count. When transferring very large amounts of data, only
network throughput is relevant.

Finally, there is the ability to sustain performance as the number of active simultaneous connections increases.
This is often a requirement for Web servers.

A networking stack must take into account the host system’s hardware characteristics. For low-end systems, it
is important to make efficient use of the available hardware resources, such as memory and CPU. For higher-end
systems, the stack must take into account the high variability in memory access times, as well as system resources
that offload some functions to specialized hardware.

FireEngine focuses on these network performance metrics:
• Network throughput
• Connection set up/tear down
• First-byte latency
• Connection and CPU scalability
• Efficient resource usage

Table 2 shows the importance of each of these networking performance metrics as they relate to target
workloads.

Table 1. Workloads and Benchmarks

Workload Network Performance Impact Benchmark

Web Server Highest SPECweb99, SPECweb99_SSL

Application Server ECPerf, SPECjAppServer2001

Collaborative Computing (HPC) No networking benchmark available

Database Lowest TPC-SO

P3 Overview Sun Microsystems, Inc.

10-Gbps Performance

10-Gbps networks are currently being deployed in initial commercial deployments. Today and for the foreseeable
future, a 10-Gbps network can be saturated only when multiple CPUs are simultaneously pumping data into it. The
Solaris OS is designed so that server network throughput grows linearly with the number of CPUs and network
interface cards (NICs). This design feature enables FireEngine to take full advantage of the next generation of
multiple CPUs on a die.

Solaris Network Cache and Accelerator

The Solaris Network Cache and Accelerator (Solaris NCA) caching server software upgrades the standard Solaris
TCP/IP stack to deliver improved Web performance to the more recent versions of the Solaris OS. Solaris NCA
technology is being merged into FireEngine development, with partial integration in phase one and full integration
by phase two.

Table 2. Impact on Target Workloads of Network Performance
(the number of •’s denotes relative performance improvement)

Function Network
Throughput

Connection Set
Up/Tear Down

1st Byte Latency Connection/CPU
Scalability

Efficiency

Web Server ••• ••• •• ••• •••

Application Server • • ••• • •

Database •• • ••• • •

Collaborative or High-
Performance Computing
(HPC)

• • ••• • •

Sun Microsystems, Inc. FireEngine Design P4

Chapter 2

FireEngine Design

The Solaris FireEngine networking performance improvement project adheres to these design principals:
• Data locality: Ensures that a connection is always processed by the same CPU whenever possible
• CPU modeling: Efficient use of available CPUs and interrupt/worker thread model. Allows use of multiple CPUs

for protocol processing
• Code path locality: Improves performance and efficiency of TCP/IP interactions
• TCP/IP interaction: Switches from a message passing-based interface to a function call-based interface

FireEngine starts by improving TCP/IP interaction and IP

syncq

 issues by merging TCP/IP into a single
optimized, multithreaded module that is not dependent on STREAMS perimeter protection. This enables shorter
code paths and shallower stack depths.

The previous networking stack, as well as the merged NCA networking stack, has multiple inefficiencies in
areas such as thread management, locking, and per-connection synchronization. The FireEngine architecture uses
a per-CPU synchronization mechanism, called

vertical perimeters

, inside the TCP/IP module. Vertical perimeters are
implemented using a serialization queue abstraction,

squeue

.
As soon as an incoming packet reaches IP, connection lookup is done using the IP connection classifier. Based

on that classification, the connection structure is identified. Since the lookup happens outside the internal
perimeter, the connection is bound to an instance of the vertical perimeter (or

squeue

)

 when the connection is
initialized. Subsequent packets for that connection are always processed on the same squeue that the connection
is bound to, so that the system can achieve better cache locality and increased overall network performance.

The IP connection classifier also becomes a database for storing the sequence of protocol function calls
necessary to process all inbound and outbound packets. This sequence—the Event List—processes packets for
connections, and is the basis of a new framework that defines and processes network traffic.

By taking a database-like approach for these functions, reconfiguration of existing protocols and the
implementation of new protocols can be done with greater ease. This approach allows the Solaris networking stack
to be changed from the current STREAMS-based message passing interface to a Berkeley Software Design (BSD)-
style function call interface.

FireEngine Implementation Phases

Because of the large number and dependent nature of changes required to achieve FireEngine goals, the
development program is split into three phases:

P5 FireEngine Design Sun Microsystems, Inc.

Table 3 shows the feature set associated with each phase of FireEngine development and its corresponding
Solaris OS release.

Figure 1 shows areas of the Solaris OS that are modified by FireEngine.

Phase 1

Fundamental infrastructure implemented and a large performance boost realized. Application and
STREAMS module developers see no changes other than better performance and scalability.

Phase 2

Feature scalability, offloading, and the new Event List framework implemented.

Phase 3

Other modules—such as IPSec, SCTP, and IPfilter—will be converted to the new Event List framework,
further increasing performance and scalability.

Table 3. FireEngine Release Phases

Phase 1 Phase 2 Phase 3 (Firehose)

Release Solaris 10 Solaris 10 Updates /
Solaris Express

Solaris 11

Feature

IP MT Full NCA merge
UDP Performance TLI/TPI

IP Fan-out Classifier Event List Full Classifier

Vertical Perimeters Packet Event Framework Other Offload

Merged TCP/IP Classifier Offload

Syscall Changes
-

Accept

-

Connect

-

Socket

-

Sendfilev

-

Close

TOE/RDMA Support
Observability

Sun Microsystems, Inc. FireEngine Design P6

Figure 1. Network Stack Evolution

Table 4 shows expected improvement areas for all phases of FireEngine development.

Tools and utilities are available for developers and administrators to monitor, measure, and tune FireEngine
facilities.

Table 4. Improvement Areas for FireEngine Phases (the number of •’s measures the relative performance
improvement)

Improvement Area Phase 1 Phase 2 Phase 3

Performance Scalability •••

Interrupt Model Improvement ••• ••• •

IP Fully Multithreaded •••

Call Stack Depth Reduction •• ••

Connection Set Up/Tear Down Improvement ••• •

Better TCP/IP Interaction •••

Better UDP/IP Interaction •••

Feature Scalability •••

Stack Observability Improved •••

Hardware Offload Support •••

Feature Classifier •••

NCA Stack Merge •••

NFS/RPC/TLI Performance •• ••

Sun Microsystems, Inc. FireEngine Phase 1 Architecture P7

Chapter 3

FireEngine Phase 1 Architecture

IP Classifier-Based Fan Out

When the Solaris IP receives a packet from a NIC, it classifies the packet and determines the connection structure
and vertical perimeter instance that will process that packet

1

. New incoming connections are assigned to the
vertical perimeter instance attached to the interrupted CPU. Or, to avoid saturating an individual CPU, a fan-out
across all CPUs is performed. A NIC always sends a packet to IP in interrupt context, so IP can optimize between
interrupt and noninterrupt processing, avoiding CPU saturation by a fast NIC.

There are multiple advantages with this approach:
• The NIC does minimal work, and complexity is hidden from independent NIC manufacturers.
• IP can decide whether the packet needs to be processed on the interrupted CPU or via a fan out across all CPUs.

Processing a packet on the interrupted CPU in interrupt context saves the context switch, compared to queuing
the packet and letting a worker thread process it.

• IP can also control the amount of work done by the interrupt without incurring extra cost. On low loads,
processing is done in interrupt context. With higher loads, IP dynamically changes between interrupt and
polling while employing interrupt and worker threads for the most efficient processing. In the case of a single
high bandwidth NIC (such as 10Gbps), IP also fans out the connection to multiple CPUs.

• If multiple CPUs are applied, the connection is bound to one of the available CPUs

2

 servicing the NIC. Worker
threads, their management, and special fan-out schemes can be coupled to the vertical perimeter with little
code complexity. Since these functions reside in IP, this architecture benefits all NICs.

• The DR issues arising from binding a worker thread to a CPU can be effectively handled in IP.

Vertical Perimeters

The Solaris 10 FireEngine project introduces the abstraction of a vertical perimeter, which is composed of a new
kernel data structure, the

squeue_t

 (serialization queue type), and a worker thread owned by the

squeue_t

, which
is bound to a CPU.

Vertical perimeters or

squeues

 by themselves provide packet serialization and mutual exclusion for the data
structures. FireEngine uses a per-CPU perimeter, which is a single instance per connection. For each CPU instance
the packet is queued for processing, and a pointer to the connection structure is stored inside the packet.

1.A connection is tied to a vertical perimeter instance, and all packets for that connection are processed on that vertical perimeter.

2.Based on round robin at present. More enhanced schemes are envisioned for the future.

Sun Microsystems, Inc. FireEngine Phase 1 Architecture P8

The thread entering

squeue

 may either process the packet immediately, or queue it for later processing. The
choice depends on the

squeue

’s entry point and its state. Immediate processing is possible only when no other
thread has entered the same

squeue

.
A connection instance is assigned to a single

squeue_t

 so it is processed only within the vertical perimeter. As
a

squeue_t

 is processed by a single thread at a time, all data structures used to process a given connection from
within the perimeter can be accessed without additional locking. This improves both CPU and thread context data
locality of access for the connection metadata, packet metadata, and packet payload data, improving overall
network performance.

P9 FireEngine Phase 1 Architecture Sun Microsystems, Inc.

This approach also allows:
• The removal of per-device driver worker thread schemes, which are often problematic in solving system-wide

resource issues.
• Additional strategic algorithms to be implemented to best handle a given network interface, based on network

interface throughput and system throughput (such as fanning out per-connection packet processing to a group
of CPUs).

IP Multithreading (MT)

To avoid the inefficiencies in the Solaris OS’s previous IP operations during plumbing

3

, most

xxx_set ioctl()

calls, some multicast operations, and some operations that require holding a global IP

syncq

 lock, FireEngine
makes the Solaris IP fully multithreaded, removing the requirement of thread exclusivity and switching from
PERMOD to D_MP STREAM perimeter. FireEngine no longer uses STREAMS-provided PERMOD protection.

Merged TCP/IP

The TCP and IP stacks in version previous to Solaris 10 were separate STREAMS modules. They communicated with
each other using STREAMS message-passing mechanisms. This presented several problems:
• Extra overhead from the

putnext()

 call
• Potentially long call stacks
• Loss of context between modules
• Information gathered from incoming

mblocks

 in one module had to be gathered again
• Poor code or data locality

Since the TCP and IP stacks embed a great deal of knowledge about each other, they become more efficient and
less complex by making each of them call the other directly. This eliminates STREAMS-related processing overhead
and saves significant CPU cycles.

Connection Set Up/Tear Down

Most socket-related system calls show performance improvements when using merged TCP/IP modules. The gains
come from reducing the cost of plumbing the STREAM and introducing direct calls between TCP and IP.

The few system calls specifically targeted for improvement are mentioned below. The terms

context

 and

perimeter

 are used interchangeably to specify the vertical perimeter or squeue to which the connection is bound.

3.Opening IP and autopushing TCP on top.

Sun Microsystems, Inc. FireEngine Phase 1 Architecture P10

Accept()

The FireEngine architecture establishes a connection in its own perimeter as soon as a SYN packet arrives, ensuring
that packets always land on the correct connections.

The connection indication is still sent to the listener on the listener’s STREAM, but the accept happens on the
newly created acceptor STREAM

4

, and the acknowledgment can be sent on the acceptor STREAM. This ensures that
the listener doesn't become the bottleneck when a large number of new connection requests arrive
simultaneously.

Connect()

Connect performance will improve significantly in FireEngine phase 2, when

sockfs

 is integrated more tightly with
TCP. However,

connect()

 still benefits from phase 1 improvements because setup is more efficient and the overall
FireEngine architecture improves efficiency.

In addition to the general improvements already mentioned, FireEngine improves IP bind logic by doing a bind
with the classifier as a direct function call, eliminating the need to wait for an acknowledgment by the caller.

Socket()

With a merged TCP/IP module, FireEngine achieves almost a 25-percent improvement over the prior stack. The
improvement in opening the acceptor STREAM—the big cost of setting an incoming connection—is approximately
80 percent.

Sendfilev()

Apart from the connection set up and tear down, both

sendfile()

 and

sendfilev()

 performance was increased
with FireEngine. TCP flow control information was made available to

sockfs

, so in case the connection is flow
controlled,

sendfilev()

 can package the data to be better suited for larger reads and TCP consumption. A
nonflow-controlled STREAM means that the data should be sent out immediately, avoiding queuing if possible.
This change was important because the data should always be available when an acknowledgment (ACK) arrives
and a send window opens up.

Close()

By taking the merged TCP/IP stack and a reference count-based architecture approach, the Solaris TCP’s
dependence on the queue is removed and a close can proceed immediately, while threads are still processing the
TCP data structure. Table 5 shows a summary of how FireEngine improves

Libmicro

 performance.

4.There is no need to allocate data structures for this STREAM.

Table 5. Libmicro Results (Millions Per Second Per Call: msec/call)

Connection Type Solaris 10
(Build 24)

FireEngine Improvement

Connect()/Accept() 203 msec/call 146 msec/call 28%

Socket() 33 msec/call 25 msec/call 24%

Close() 88 msec/call 47 msec/call 47%

Sun Microsystems, Inc. Summary P11

Chapter 4

Summary

The Solaris FireEngine architecture is designed to make Solaris 10 OS-based networking significantly faster and
more flexible. Phase 1 has been completed and integrated into Solaris 10. Significant flexibility and performance
improvements have been realized in workloads that use TCP/IP. Web-based benchmarks on both SPARC and i386
architectures have been improved significantly, and bulk data transfer benchmarks have also improved. Test TCP
(TTCP) and Netperf measurements show that FireEngine is more efficient than the previous Solaris networking
infrastructure, and more efficient than Linux in CPU utilization (see benchmark web sites listed in Chapter 5)

5

.
Similar improvements are expected for phases 2 and 3.

The following summary outlines the high-level issues driving overall FireEngine development.
• Move to a reference-based scheme for network processing
• Merge TCP/IP into a single module and create a function call-based interface
• Use a serialization mechanism (

squeue

) to protect the TCP data structure
• Make IP fully multithreaded, removing current STREAMS protection dependencies
• Use a connection classifier early in IP processing
• Bind each connection to a particular

squeue

– Packets for a particular connection are always processed on the same

squeue

• Process the squeue only one thread at a time
– Provides mutual exclusion for TCP data structures (vertical perimeters)

• Create a per-CPU squeue
• Bind each inbound connection to the squeue that is attached to the interrupted CPU executing the incoming

connection
• Bind each outbound connection to the squeue that is attached to the CPU executing the application

With flexibility and network throughput a key component of the server value proposition, the Solaris
FireEngine technology is well on its way toward re-establishing Sun as the commercial standard to which all other
competitive network architectures are compared.

5.Solaris performance evaluation using Sun™ Enterprise 220R server with 2x450-MHz CPUs, Quad Fast Ethernet (QFE), and hme

Sun Microsystems, Inc. More Information P12

Chapter 5

More Information

For more information, please visit these sites.

Solaris OS sun.com/solaris

Solaris NCA sun.com/software/whitepapers/solaris9/networkcache.pdf

Solaris
Documentation

docs.sun.com

SPECweb99 specbench.org/osg/web99/

SPECweb99_SSL specbench.org/osg/web99ssl/

ECPerf java.sun.com/j2ee/ecperf/index.jsp

SPECjAppServer2001 specbench.org/osg/jAppServer2001/

TPC-SO tpc.org

Netperf netperf.org/netperf/NetperfPage.html

TTCP pcausa.com/Utilities/pcattcp.htm

White Paper FireEngine—A New Networking Architecture for the Solaris™ Operating System On the Web sun.com

Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 USA Phone 1-650-960-1300 or 1-800-555-9SUN Web sun.com

Sun Worldwide Sales Offices: Argentina +5411-4317-5600, Australia +61-2-9844-5000, Austria +43-1-60563-0, Belgium +32-2-704-8000, Brazil +55-11-5187-2100, Canada +905-477-6745, Chile +56-2-3724500, Colombia +571-629-2323
Commonwealth of Independent States +7-502-935-8411, Czech Republic +420-2-3300-9311, Denmark +45 4556 5000, Egypt +202-570-9442, Estonia +372-6-308-900, Finland +358-9-525-561, France +33-134-03-00-00, Germany +49-89-46008-0
Greece +30-1-618-8111, Hungary +36-1-489-8900, Iceland +354-563-3010, India–Bangalore +91-80-2298989/2295454; New Delhi +91-11-6106000; Mumbai +91-22-697-8111, Ireland +353-1-8055-666, Israel +972-9-9710500
Italy +39-02-641511, Japan +81-3-5717-5000, Kazakhstan +7-3272-466774, Korea +822-2193-5114, Latvia +371-750-3700, Lithuania +370-729-8468, Luxembourg +352-49 11 33 1, Malaysia +603-21161888, Mexico +52-5-258-6100
The Netherlands +00-31-33-45-15-000, New Zealand–Auckland +64-9-976-6800; Wellington +64-4-462-0780, Norway +47 23 36 96 00, People’s Republic of China–Beijing +86-10-6803-5588; Chengdu +86-28-619-9333
Guangzhou +86-20-8755-5900; Shanghai +86-21-6466-1228; Hong Kong +852-2202-6688, Poland +48-22-8747800, Portugal +351-21-4134000, Russia +7-502-935-8411, Saudi Arabia +9661 273 4567, Singapore +65-6438-1888
Slovak Republic +421-2-4342-94-85, South Africa +27 11 256-6300, Spain +34-91-596-9900, Sweden +46-8-631-10-00, Switzerland–German 41-1-908-90-00; French 41-22-999-0444, Taiwan +886-2-8732-9933, Thailand +662-344-6888
Turkey +90-212-335-22-00, United Arab Emirates +9714-3366333, United Kingdom +44-1-276-20444, United States +1-800-555-9SUN or +1-650-960-1300, Venezuela +58-2-905-3800, or online at sun.com/store

THE NETWORK IS THE COMPUTER © 2004 Sun Microsystems, Inc. All rights reserved. Sun, Sun Microsystems, the Sun logo, Solaris, Java and The Network Is The Computer are trademarks or registered trade-
marks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and

other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered trademark in the United States and other countries, exclusively licensed through
X/Open Company, Ltd. Other brand and product names are trademarks of their respective companies. Information subject to change without notice. Printed in USA 06/04 XX0000-0/#K

SUN™

