
Eric Saxe (eric dot saxe at sun dot com)
Solaris Core Kernel Development
http://blogs.sun.com/esaxe

OpenSolaris Scheduling and
CPU Management

2

Introduction

• Processor / system architectures becoming
increasingly complex...
>Chip Multi-threaded processors (CMT): multi-

core, multi-threaded, shared caches...
>Non-Uniform Memory Access systems (NUMA)

• Soon, you won't be able to purchase a “uni-
processor” system

• How does OpenSolaris utilize these
increasingly complex processors?

• How can / should you manage them?

3

Outline

• Processes, LWPs, and Threads

• Dispatcher Overview, Scheduling Classes

• Processor Abstractions, Tools, and Interfaces

• “Under the hood” with mdb(1), dtrace(1m)

• Looking ahead

Processes, LWPs, and Threads

5

Processes, LWPs, Threads

• Process: “container” for an executable object
> Has an associated VM address space
> ...and one or more threads of execution (that

share the address space)
> proc_t defined in uts/common/sys/proc.h

Process

User

Thread

User

Thread
User

Thread

6

Processes, LWPs, Threads...
• Each thread in a process has an associated LWP

(Light Weight Process)...a kernel object that
maintains a user thread's state:
> System call / signal info, accounting, debugger state, ...

• klwp_t defined in uts/common/sys/klwp.h

Kernel

Process

LWP

User

Thread

LWP

User

Thread

LWP

User

Thread

7

Processes, LWPs, Threads...

• Linked to each LWP is a kernel thread

• The kernel thread is the fundamental unit of
scheduling and execution in the system
> kthread_t defined in uts/common/sys/thread.h

Kernel

Process

LWP

User

Thread

LWP

User

Thread

LWP

User

Thread

Kernel

Thread

Kernel

Thread
Kernel

Thread
Kernel

Thread

8

Processes, LWPs, Threads...

• Some kernel threads may not have an
associated LWP

• These are kernel service threads
> Examples: CPU Idle threads, task queue worker

threads, ...

Kernel

Process

LWP

User

Thread

LWP

User

Thread

LWP

User

Thread

Kernel

Thread

Kernel

Thread
Kernel

Thread
Kernel

Thread

9

Thread States

• At any given time, a (k)thread is either:
> Runnable: ready to run, but not running
> “On Proc”: running on a CPU
> Sleeping: blocked waiting for something

• Less frequently, a thread may also be
> Zombied: exited (dead), but not yet reaped
> Free: exited (dead) and reaped
> Stopped: Suspended (initial creation / pstop())

• States defined in uts/common/sys/thread.h

10

Some Process tools...

• prstat(1m) - “top” like tool

• /proc tools
> pstop(1) – stop a process
> prun(1) – opposite of pstop(1)
> pstack(1) – show stack traces for processes LWPs
> pcred(1) – show / set credentials
> pfiles(1) – report open files
> See proc(1) for more...

Scheduling Classes and the
Dispatcher

12

Dispatcher/Scheduler

• The dispatcher is the kernel subsystem that
decides where (on which CPUs) runnable
threads should be scheduled to run.

• Threads will be in one of several scheduling
classes who's policies dictate wh en the
thread will run (by managing the thread's
priority) with respect to other threads.

• Threads enter the dispatcher when making
transitions (or when causing other threads to
transition) between thread states.

13

Dispatcher and Thread States

• {Sleep, On Proc} => Runnable
> The dispatcher is entered where it chooses a

CPU, and then enqueues the thread on that
CPU's run queue

CPU CPU

Run QueuesSleep Queue

14

Dispatcher and Thread States

• Runnable => On Proc
>When the currently executing thread

surrenders the CPU, the dispatcher is entered
and the highest priority thread on the CPU's
queue is dequeued and (context) switched to.

CPU

prio 59
prio 30
prio 30
prio 2

prio 59

Run Queue

15

Dispatcher and Thread States

• Runnable => On Proc
> If that CPU's queue is empty, the dispatcher

switches in the CPU's “idle” thread...which
trolls around the other CPU's run queues
looking for work to steal.

CPU

prio 59
prio 30
prio 30
prio 2

idle()

Run Queue
Empty

CPU

16

Dispatcher and Thread States

• On Proc => Sleep
> The blocking thread surrenders the CPU, and

enqueues itself on the synchronization
object's sleep queue. It then pulls the highest
priority thread from the run queue, and
switches to it.

CPU CPU

Run QueuesSleep Queue

17

Putting it together...

• Running thread finishes it's time slice...
> clock(), while doing tick accounting for the thread,

realizes that the thread's time slice is up..
> the running thread is preempted
>cpu_runrun flag set on running thread's CPU

structure, and a cross trap is sent
> running thread traps, and sees cpu_runrun. It then

calls preempt()
> In preempt() the thread enters the dispatcher, to find

a CPU on which to schedule itself to run
> After enqueueing itself, it calls swtch()...which context

switches to the highest priority thread waiting in the
CPU's run queue

18

Putting it together...

• Running thread (A) drops a lock for which
another thread (B) is waiting
> (A) dropping the lock finds the sleep queue associated

with the lock, and finds (B) sleeping
> (A) dequeues (B) from the sleep queue, and enters the

dispatcher to schedule now runnable thread (B)
> In the dispatcher (A) enqueues (B) in an appropriate

CPU's run queue
> (A) continues running
> (B) remains runnable in the run queue, waiting to be

put “on proc”

19

Scheduling Classes

• Time Share (TS) class
> Operates over global priority range: 0-59
> Priority adjustments made based on how long threads

spend using (vs waiting for) processor resources
> CPU bound => priority drops
> Interactive => priority increases

• Interactive (IA) class
> Operates over global priority range: 0-59
> Like TS, but with an added priority “boost” mechanism
> Used to improve interactivity of “in focus/use”

processes
> Xserver, etc

20

Scheduling Classes

• Fair Share (FSS) class
> Operates over global priority range: 0-59
> Processor resources provisioned into “shares”

assigned to processes managed by the Solaris
resource management facility

> Priority adjusted according to share allocation and
relative processor utilization

• Fixed Priority (FX) class
> Operates over global priority range: 0-60
> Priorities are static. Privileges needed to enter at

priorities greater than 0

21

Scheduling Classes

• System (SYS) class
> Operates over global priority range: 60-99
> Used by kernel service threads

• Real Time (RT) class
> Operates over global priority range: 100-159
> When fastest possible dispatch latencies are

required...
> RT threads can preempt the kernel
> Use with caution

22

Using Scheduling Classes

• priocntl(1) used to change the scheduling
class and priority of new or existing threads
> Example: Move the shell (and anything it invokes) into

the RT scheduling class
> # priocntl -s -c RT -i pid $$

• dispadmin(1M) used to get (and set) scheduling class
parameters on the fly
esaxe@jet$ dispadmin -g -c TS

Time Sharing Dispatcher Configuration

RES=1000

ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait PRIORITY LEVEL

 200 0 50 0 50 # 0

 200 0 50 0 50 # 1

 200 0 50 0 50 # 2

 200 0 50 0 50 # 3

...

Processor Related Abstractions

24

The “logical” processor: cpu_t

• The CPU, a.k.a. “struct cpu” or cpu_t is the
kernel's fundamental processor abstraction,
representing a execution resource capable of
running one thread of execution at a time.
• Traditional processors present to the OS a

single logical processor, or CPU.

• Today's multi-threaded, multi-core (CMT)
processors present multiple logical
processors, as they are capable of running
multiple threads simultaneously.

25
Multi-Core Physical Processor

CMT processors & “logical” CPUs

• The multiple logical CPUs presented may
share physical processor components /
resources...

Core 0 Core 1 Core 2 Core 3

Cache

cpu_t cpu_t cpu_t cpu_t

Hardware

Kernel

Cache

26

Multi-Core Physical Processor

Processor Group Abstraction
• The kernel detects CMT sharing relationships existing

between logical CPUs which it represents though a
hierarchy of “processor groups”.

• The “processor group” (pg_t) kernel abstraction
represents a group of CPUs with some physical or
characteristics sharing relationship.

Core Core Core Core

Cache

CPU 0 CPU 1 CPU 2 CPU 3

Cache

0 1 2 3

0, 1 2, 3

0, 1, 2, 3

CPUs

Cache

Socket

Physical Sharing

27

Processor Group Abstraction

• The dispatcher consults these groupings to
implement load balancing and affinity
scheduling policy that optimize for the
nuances of the hardware.

0 1 2 3

0, 1 2, 3

0, 1, 2, 3

CPUs

Cache

Socket

Physical Sharing Dispatcher Policy

Load Balance

Load Balance +
Affinity

28

lgroups

• On systems having Non-Uniform Memory
Access (NUMA) architectures, some physical
memory is close, while other memory is
“farther away” (from a given CPU's
perspective)...

CPU 0 CPU 1

CPU 3CPU 2

29

lgroups

• A “locality group” (lgroup) abstraction
represents a group of CPU and memory
resources that are within some latency of
each other.

CPU 0 CPU 1

CPU 3CPU 2

30

lgroups

• This topology has 3 levels of locality...
• The kernel arranges the lgroups it creates into

a hierarchy to make it easy to find the closest,
the next closest, ... resources.

CPU 0 CPU 1

CPU 3CPU 2 0 1 2 3

0 1 2

0 1 2 3

0 1 3 0 2 3 1 2 3

Topology lgroup hierarchy

0 hops

1 hop

2 hops

31

lgroups

• Each thread in the system is assigned a
“home” lgroup.
> The dispatcher tries to run the thread in (or

as near as possible to it's home)
> Likewise, the VM subsystem tries to allocate

memory close to the thread's home.

• Result:
> threads tend to run near the memory

they've allocated.
> Average incurred memory latency is

minimized, and performance improves.

32

Processor Sets

• Not to be confused with Processor Groups...

• A processor set is a user created set of CPUs
> Threads must be “bound” to the pset, to run on

any of the CPUs in that set.
> Once bound, threads cannot run on CPUs outside

the set.

• This is useful for provisioning CPU resources for
various workloads on the system, as well as “fencing
off” workloads from one another.

• psets are administered via the psrset(1M) command

33

CPU and Processor Set Tools

• mpstat(1M) – report per CPU statistics

• pbind(1M) – bind thread(s) to the specified CPU

• psradm(1M) – change the state of the specified CPU
> online, offline, no_intr, ...

• psrinfo(1M) – displays CPU information
> psrinfo -vp option added to provide limited

physical view

• psrset(1M) – administer processor sets

34

Processor Related Interfaces

• CPU:
> p_online(2) – Change CPU states
> processor_bind(2) – Bind LWPs to a processor
> processor_info(2) – Query type / status of a processor

• Processor Sets:
> pset_create(2), pset_destroy(2), pset_assign(2)
>create, destroy, and assign CPUs to processor sets

> pset_bind(2) – bind LWPs to a processor set
• In development:
> Multi-CPU binding – Bind to a set of CPUs
>Like processor sets, but non-exclusive

35

Tools and Interfaces: NUMA

• Tools:
> plgrp(1) – Set / get a thread's home lgroup
> lgrpinfo(1) – Display information about system's

locality groups, and the lgroup hierarchy
> pmadvise(1) – Provide “advice” about usage for a

given range of virtual memory.
>On NUMA systems, the kernel will migrate pages to

improve locality
> pmap(1) – Using “-L” option, show where (in which

lgroups) a process's physical memory resides

• Interfaces:
> liblgrp(3LIB)

Under the hood with mdb(1) and
dtrace(1M)

37

mdb(1) debugger commands

• ::cpuinfo -v shows what's running on the system's
CPUs, and who's runnable...

> ::cpuinfo -v

 ID ADDR FLG NRUN BSPL PRI RNRN KRNRN SWITCH THREAD PROC

 0 fffffffffbc26f30 1b 0 0 20 no no t-0 fffffffec8a58f20 bash

 |

 RUNNING <--+

 READY

 EXISTS

 ENABLE

 ID ADDR FLG NRUN BSPL PRI RNRN KRNRN SWITCH THREAD PROC

 1 fffffffec15e2800 1b 2 0 59 no no t-0 fffffffec967e020 mdb

 | |

 RUNNING <--+ +--> PRI THREAD PROC

 READY 59 fffffffec1ca67e0 gnome-terminal

 EXISTS 59 fffffffec1c9eb60 Xorg

 ENABLE

38

mdb(1) debugger commands

• Use ::findstack to look at the stack for a given
thread.
> Note, this is the stack for the kernel thread, not

the stack for the user application
>get that via pstack(1)

> fffffffec1c9eb60::findstack

stack pointer for thread fffffffec1c9eb60: ffffff00042f6c40

[ffffff00042f6c40 _resume_from_idle+0xf8()]

 ffffff00042f6c80 swtch+0x17f()

 ffffff00042f6d10 cv_timedwait_sig+0x194()

 ffffff00042f6da0 cv_waituntil_sig+0xbb()

 ffffff00042f6e80 poll_common+0x3dd()

 ffffff00042f6f00 pollsys+0xec()

 ffffff00042f6f10 sys_syscall+0x17b()

39

mdb(1) debugger commands

• ::ps gives the kernel's view of processes

• Using the address of the proc_t structure, it's easy
to “walk” the process's kthread_t structures...

> ::ps

S PID PPID PGID SID UID FLAGS ADDR NAME

R 0 0 0 0 0 0x00000001 fffffffffbc24eb0 sched

R 3 0 0 0 0 0x00020001 fffffffec1b5ca18 fsflush

R 2 0 0 0 0 0x00020001 fffffffec1b5d670 pageout

R 1 0 0 0 0 0x4a004000 fffffffec1b5e2c8 init

R 1094 1062 885 885 90119 0x4a004000 fffffffec4361030 soffice.bin

...

> fffffffec4361030::walk thread

fffffffec880bf00

fffffffec8a595e0

fffffffec1dfae20

fffffffec1d0f920

fffffffec1d07ca0

fffffffec880c260

40

mdb(1) debugger commands

• “pipe” the walk output to other interesting
debugger commands, like ::print...

> fffffffec4361030::walk thread |::print kthread_t t_start

t_start = 2007 Jul 26 11:03:04

t_start = 2007 Jul 26 11:03:04

t_start = 2007 Jul 26 11:03:07

t_start = 2007 Jul 26 11:03:07

t_start = 2007 Jul 26 11:03:07

t_start = 2007 Jul 26 11:03:11

41

The DTrace sched provider

• The sched provider exports a number of
interesting scheduling related DTrace
probes...
> enqueue, dequeue
> Fires when a thread is added / removed from a run

queue
> on-cpu, off-cpu
> Fire when a thread gets on, or leaves the CPU

> sleep, wakeup
> preempt
> tick

• See the DTrace answerbook for complete list

42

DTrace sched provider example

• When firefox gets the CPU, how long does it
run?

#!/usr/sbin/dtrace -s

sched:::on-cpu
/execname == "firefox-bin"/
{
 self->ts = timestamp;
}

sched:::off-cpu
/self->ts/
{
 @["firefox run times"] = quantize(timestamp - self->ts);
 self->ts = 0;
}

43

DTrace sched provider example
./ff_howlong.d

dtrace: script './ff_howlong.d' matched 6 probes

^C

 firefox run times

 value ------------- Distribution ------------- count

 1024 | 0

 2048 |@ 42

 4096 |@@@@@ 165

 8192 |@@@@@@@@@@@@ 365

 16384 |@@ 55

 32768 |@@@@@ 150

 65536 |@@@ 104

 131072 |@@@ 90

 262144 |@@ 48

 524288 |@@ 52

 1048576 |@@@@ 132

 2097152 | 13

 4194304 | 0

Looking ahead...

45

In Development work...

• Tesla Project: OpenSolaris Enhanced Power
Management
> http://www.opensolaris.org/os/project/tesla

• Short term objectives:
> Power aware dispatcher
>Make the dispatcher aware of CPU power states
> Better integrate the dispatcher with CPU PM subsystem

> Event based clock implementation
> Currently, clock() interrupt fires 100 times per second,

even on completely idle system.
– Bad from a power efficiency perspective

> clock shouldn't fire unless there's something to do

http://www.opensolaris.org/os/project/tesla

46

Future work...

• OpenSolaris CPU Observability Project
> Exporting CMT sharing relationships that exist

between logical CPUs

> Project recently proposed

• Workload characterization, self tuning, and
adaptive policies

• CPU related observability / control tools
rework...
> mpstat(1m)... so much output, so little xterm.

Eric Saxe <eric dot saxe at sun dot com>
http://blogs.sun.com/esaxe

