Existential QoS for Storage

Val Henson
vhenson@eng.sun.com

Jeff Bonwick
bonwick@eng.sun.com

Matt Ahrens
ahrens@eng.sun.com

Sun Microsystems, Inc.
17 Network Circle
Menlo Park, CA 94025

ABSTRACT

In this paper we describe two quality of service (QoS) man-
agement models, grammar-based QoS and existential QoS,
in the context of storage systems. We compare the two
models in terms of generality, implementation complexity,
and, most importantly, ease of administration. We describe
one implementation of existential QoS, in the Zettabyte File
System. We conclude that the existential QoS model pro-
vides more flexibility and configurability, eliminates many
difficult design problems, and simplifies administration.

1. INTRODUCTION

Administrators want simple and automated management of
storage, such as automatic load-balancing across disks and
migration of data depending on usage patterns. One way
to provide such self-tuning of performance is system man-
agement of QoS of storage. This paper will describe two
models of managing QoS of storage and compare them in
terms of both implementability and complexity of adminis-
tration. The first QoS model, “grammar-based QoS,” lets
administrators specify their desired QoS using a grammar
that describes a set of qualities and their minimum required
levels. Despite its apparent simplicity, this model turns out
to be difficult to implement and to use. The second QoS
model, “existential QoS,” allows storage to be grouped to-
gether into a few distinct pools, distinguished by names cho-
sen by the administrator. The QoS of each pool is implicitly
defined by the qualities of the pool itself, rather than by a
grammar. We find that existential QoS is simpler to imple-
ment and use.

2. WHAT ISQOS?

Quality of service is difficult to define. This nebulousness is
part of the difficulty of coming up with a manageable QoS
framework for storage. For now, we will loosely define QoS
of storage to mean any of a number of factors that affect
availability, performance, reliability, security, and capacity
of storage. We’ll discuss QoS in terms of qualities and their

values. A quality is some attribute of storage, and a value
is the requested amount or level of a quality. A QoS setting
is a collection of qualities and their values. A QoS type is
a level of QoS actually provided by the system.

3. GRAMMAR-BASED QOS

Grammar-based QoS goes like this: Define some reasonable
set of qualities, each of which has a number of possible dis-
crete values. The result is a grammar for expressing QoS as
a combination of requirements defined by the qualities and
their values. The administrator uses this grammar to spec-
ify the desired QoS, and the QoS management system then
automatically calculates how to provide the level of QoS
requested. An example of the grammar-based QoS model,
known as attribute-managed storage, is described in [2].

This model seems simple enough on the surface but is ac-
tually rather complex. Let’s start with defining the set of
qualities in a hypothetical QoS grammar. In our experience,
many people feel that there are only a few (on the order of
10) qualities of service that are important, but in practice
they are unable to come to agreement on which 10 qualities
those are or what range of values should be allowed. Even
if we assume that we have somehow narrowed down the list
to 10 qualities each with 3 values, we now have 3'° = 59049
different QoS settings - a number which should give both
administrator and system architect pause. Given our 59049
possible QoS settings, some settings describe unsatisfiable
combinations of QoS — not every quality can be maximized
without sacrificing any other quality. In the case of an un-
satisfiable QoS request, the system has to either give up
or attempt to provide the best service possible. Automat-
ically maximizing QoS when the system can’t provide the
requested QoS is a difficult problem - efficiently finding ex-
trema of functions of many variables (also known as partial
constraint satisfaction) is notoriously difficult (specifically,
it is NP-complete)[3].

How should the QoS manager handle situations where it
can only partially satisfy the QoS requirements? Consider
an application that wants both fast disk access and tolerance
for one disk failure. The system runs out of capacity on the
fast mirrored disk, but it has room on a slow mirrored disk
and a fast unmirrored disk. Should the system write to the
fast disk, write to the slow mirror, or return an out-of-space
error? There is no correct answer for all applications.

The most intractable problem for grammar-based QoS is

how to handle shared resources for two applications with
conflicting QoS requirements. An example is two applica-
tions writing to two different files. One application wants
fast, high-bandwidth storage, the other application wants
to tolerate one disk failure. The system contains exactly
two kinds of storage: one fast new disk, and one slower
RAID box. Suppose that both files are in the same direc-
tory. Should the directory be stored on the fast disk or the
RAID disk or both? Again, there is no correct answer.

In general, the grammar-based QoS model assumes that (a)
qualities are orthogonal, (b) each quality varies along a spec-
trum with “bad” at one end and “good” at the other, (c) all
possible necessary qualities are knowable in advance, and (d)
when a requested QoS setting is out of range or two appli-
cations share metadata, the system can find a compromise
that will be reasonably optimal for all applications.

4. EXISTENTIAL QOS

Before describing existential QoS, it will be helpful to briefly
outline the terminology and concepts of the Zettabyte File
System (ZFS), which is the context for our design and im-
plementation of existential QoS. ZFS is a general purpose
POSIX-compliant file system in development at Sun Mi-
crosystems with the goals of immense capacity, strong data
integrity, and simplified administration. For this discussion,
the most relevant feature of ZF'S is its pooled storage model.
Storage devices are grouped into pools, and file systems dy-
namically share the space within the pool. By default, each
file system within the pool is allowed the full use of all of
the resources of the storage devices in the pool: capacity,
bandwidth, I/O operations per second, etc. Devices can be
added and removed from pools dynamically, and file systems
can be migrated between pools.

In the existential QoS model, the QoS of each storage pool
is self-describing: the QoS of the storage pool is whatever
the pool intrinsically provides as consequence of the physical
devices in it To create a pool with a desired QoS, the ad-
ministrator decides what qualities of service are important,
buys the storage devices that will provide those qualities,
and creates a storage pool out of the devices. Each stor-
age pool is given a useful, intuitive name such as “archival.”
We believe that most systems will only require a few differ-
ent types of QoS, each corresponding to a particular storage
pool. In most cases, a user won’t be able to distinguish
between more than few different types of QoS, and most
systems have only a few different kinds of storage attached
anway. Jack Gelb makes the same observation in a 1989
paper describing system managed storage[1], which uses the
existential QoS model:

[...] The number of storage classes defined in
an installation is expected to be small. This is
primarily due to the reasonably few distinct lev-
els of service that can be effectively materialized.
For example, given eight distinct levels of per-
formance and two distinct levels of availability, a
maximum of sixteen (8 x 2) unique storage classes
may be defined. Not all sixteen storage classes
may be interesting to a given installation.

Existential QoS allows the administrator to make their own
definitions of qualities of service, using their knowledge of
what distinctions in QoS are important for the users of a
particular system. In the grammar-based QoS model, users
would be limited to distinguishing between the pools based
on the qualities defined by the QoS manager, and would
have to invest significant effort into creating the description
of each kind of QoS in the system-mandated QoS grammar.
Users may end up painfully reverse-engineering the descrip-
tion of the disks they want to use in order to convince the
system to put the correct data on them.

Our QoS granularity (per-file-system rather than per-file)
may seem too coarse to be useful. This would be true in a file
system where storage can’t be shared between file systems.
However, in ZFS, file systems are about as cheap and easy
to create as directories, since they use only as much storage
space as is necessary to store the data they contain.

Existential QoS combined with storage pools addresses the
problems we described with grammar-based QoS. The ad-
ministrator defines what qualities are important, not the
system. The system does not need to optimize requested
QoS since the administrator chooses which of the few, intu-
itively named QoS types is most appropriate. Storage pools
don’t share any resources, so we don’t have to solve the prob-
lem of shared metadata between objects with different QoS.
Existential QoS provides a powerful, general, and above all,
simple model for providing QoS to storage system clients.

5. CONCLUSIONS

Grammar-based QoS models introduce an unnecessary, lim-
iting, and cumbersome layer of description between the ad-
ministrator and the QoS attributes that are actually impor-
tant for a given system. A small number of qualities and
their possible values results in a combinatorial explosion of
possible QoS settings, too many for administrators or appli-
cations to reasonably choose from. Existential QoS for stor-
age eliminates the difficulty of describing QoS by declaring
the QoS of storage to be exactly that QoS which is provided
by the underlying hardware. In existential QoS, storage is
grouped into a small number of storage pools with intu-
itive names, such as “financial” or “archival.” Each storage
pool represents a QoS type. When a file system is created,
the administrator selects which storage pool it should draw
its storage from. When the QoS needs of that file system
change, the file system can be migrated to another storage
pool with a more appropriate level of QoS. Shared storage
reduces overprovisioning, the QoS types representable are
completely unconstrained, and users only have to select from
a few different types of QoS.

6. REFERENCES
[1] Jack P. Gelb. System-managed storage. IBM Systems
Journal, 28(1):77-103, 1989.

[2] Richard Golding, Elizabeth Shriver, Tim Sullivan, and
John Wilkes. Attribute-managed storage. In Workshop
on Modeling and Specification of 1/0, 1995.

[3] Zséfia Ruttkay. Constraint satisfaction — a survey.
CWI Quarterly, 11(2-3):163-214, 1998.

