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Introduction:

This write-up details the architecture of Solaris I/O  implementation for NFSv3 client. The document is 
helpful in getting insight into the complete  life-cycle of NFS data transaction between  client  and 
server. The life-cycle involves various steps of NFS data processing by the kernel. These steps within 
the kernel are:
• receiving NFS read/write request from user application,
• processing data using various kernel framework, 
• issuing RPC request to the NFS server, 
• (NFS client) receiving the response from the NFS server & 
• processing the data and finally returning to the user application 

which initiated the request.
Both SYNC & ASYNC framework for NFS client data transaction is elaborated. The idea is not to 
walk through the entire code base but to get familiar with the design and implementation of NFS clients 
read/write process in the multi-threaded kernel environment. Various kernel data-structures involved in 
client's NFS read/write is covered. Various kernel framework used by NFS client like kernel VFS, 
paging, VM, NFS etc., are touched, though not in-depth. This write-up contains certain examples that 
explain NFS clients read/write behavior in different situations. Clients data and attributes caching  is 
covered explaining in brief open-to-close consistency implementation. 

This  is helpful in understanding & tackling the read/write/caching and related issues associated with 
NFS client. Not only this, the document serves as a roadmap for NFS v3 read/write process at the client 
end. Last but not the least, this write-up doesn't cover each and every details of NFS client related to 
the subject. So, there is a great scope for anybody interested to add more to this. NFS v4 read/write 
architecture is not very different from v3 except for delegation feature(serialization of  read & write) & 
compounded RPC calls but they have not changed the NFS read/write architecture and design. The 
comparative study of NFS v3/v4 can be the next step to strengthen our belief.

Since this is the first document mapping the source & the architecture, there is likely to be some errors. 
There is going to be errata for all such errors.



NFS (client) read I/O Architecture:  

1. if caching has been disabled or if using client-side direct I/O and the file is not mmap'd and 
there are no cached pages, bypass VM. Fig. 1 describes the NFS v3 read steps.

User Space

Kernel Space

Read request from User 
application for NFS file

fd, offset, len

Allocate kernel memory of  len size else
  mi->mi_stsize whichever is minimum.

Call, nfs3read() in loop to read remaining 
data in chunk of  max size (mi->mi_tsize) 
till either all the data is read or error 
is enountered.

Copy read data in the user space 
using uiomove() in each iteration.

nfs3read() makes rfscall() call 
which  will generate NFSPROC3_READ 
RPC to get  data from the server.

NFS Server

 NFSPROC3_READ, RPC
request/response

between server&client

NFS client

Fig. 1



2. Consider a case where caching is enabled or  we are using client-side direct I/O with file mmapped 
or cached pages. Here we need to go through kernel VM framework to allocate pages to contain the 
file data. Each kernel page for this vnode will contain data for the combination of [vp, file_offset]. 
The pages will be mapped to kernel virtual addresses allocated by the segment driver for each block 
of the file for the combination of [vp, block_off]. We need to cluster the pages around the requested 
page(within the NFS block boundary) in the final block I/O request. Once we identify all the pages 
to be read, we map them to the kernel virtual address and place NFS block I/O request to read the 
portion of the file from the server using RPC call. Finally, data for the requested portion of the file 
is read in the pages which are mapped to  kernel virtual address and we can read the data accessing 
the address. Fig. 2  explains the NFS v3 data read steps with caching enabled. 

NFS Client

User Space

Kernel Space

Read request from User 
application for NFS file

VFS layer calls NFS read
function to read the data.

nfs3_read().
fd, offset, len

NFS Server

Read Data in Block Size chunk:
Read data in a block chunk(MAXBSIZE) (or len length which ever
is minimum) till all data is read.

Segment driver function segmap_getmapflt() gets the required
file block mapped in the memory.

Copy file block data to user space by calling uiomove().

Continued 1



NFS Client

Load pages for specific block: 
(Paddr, len, seg)
segmap_fault(), gets all the pages  for the segment ( [paddr, paddr + len],
paddr aligned at page boundary). 

Calls, File system specific VOP_GETPAGE() gets all the pages in the specified
range with valid data. 

Finall calls hat_memload() creates hat entry for all these pages in the address
range [paddr, paddr+len]).

NFS Server

Get pages for specific block:
VOP_GETPAGE(),  which points to nfs3_getpage(), is called 
in a loop to get all the pages for the block in the range
[paddr, paddr+len] (sync/async).

nfs3_getapage() gets single page from cache/server

On return all the pages are hashed in the page hash
 [vp, file_offset] and are also linked in the vp->v_pages list. 

Read file block in Memory:
segmap_gemapflt() finds/creates segment for the block containing 
the offset  for the file.
Maps the file block (for combination of [vp, blk_offset]) at specific
kernel address (say baddr).
Gets all the pages belonging to this file block and maps them to
kernel addr in the range [baddr, baddr+MAXBSIZE]. 
Call to segmap_fault() gets all the pages mapping for the block.

Continued 1
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Fig. 2

RPC request:
Finally, nfs3_bio() places a request to get the portion of the file 
by making NFSPROC3_READ RPC call through nfs3read(). 
 
The data is read in the chunk of  mi->mi_tsize till we get entire data
or encounter an error.

  

Block I/O:
nfs3_getapage() generates a block I/O request to get page for 
the file  in case of cache miss. 

pvn_read_kluster() tries to cluster all the missing pages around the 
requested page in the local cache within the current NFS block(32k) . 

nfs3_bio() gets file data from the server

NFSPROC3_READ RPC 
request/response

Continued 2



2.1 Mechanism of NFS read with caching enabled

Fig. 3 shows sequence of important function calls to read NFS data.

nfs3_read()

segmap_getmapflt()

uiomove()

nfs3_getapage()/pvn_getpages()

nfs3_getpage()

segmap_fault()

page_exists()

page_create_va()

pvn_read_kluster()

nfs3_bio()

nfs3read()

nfs_async_readahead()

nfs3_readahead()

rfscall(NFSPROC3_READ)

Fig. 3

ASYNC read



Page & Block I/O in NFSv3 read operation:

This  section  explains  the  steps  involved  in  processing  NFS  read  request(by  kernel)  from  user 
application when caching is enabled. The entire read process involves various kernel subsystems like 
VM, paging,  block I/O etc.,.  We see that read request is handled by different kernel sub-systems. 
Kernel needs to map the portion of the file to kernel virtual address(segment driver), allocate pages for 
this portion of the file(pagging), read file data into these pages (block I/O) and finally loads these pages 
(with valid file data) to the kernel virtual address allocated by segment driver (VM) so that data can be 
read in by accessing the addresses. In the entire explanation we consider file length (len) to be read = 
9000  bytes  from  file  offset  (f_offset)  =  17000  and  where  ever  required  the  changed  values  are 
mentioned to explain different scenarios.

Application  has  requested  to  read  'len'  length  of  data  from  offset  'f_offset'.  One  block  of  data 
(MAXBSIZE) is to be read at a time. First the file block is identified which contains the file offset 
'f_offset' and then the subsequent blocks(depending on length to be read). There is a specific kernel 
segment mapped to  each file block   [vp, b_offset]. segmap_getmapflt() is a segment driver function 
which either gets us already mapped segment for the file block or creates one. It manages kernel virtual 
addresses of length MAXBSIZE aligned at block boundary for the file blocks. All the pages for file 
block [b_offset, b_offset+MAXBSIZE] are mapped to file block segment[baddr, baddr+MAXBSIZE]. 

Lets say MAXBSIZE is 16k and PAGESIZE is 8k in size. For f_offset is 17000, the block offset for the 
block containing f_offset will be 16384.

block 1 contains pages 1 & 2 and block 2 contains pages 3 & 4. Current f_offset lies in page 3 (of block 
2) as shown in Fig. 4. segmap_getmapflt() gets the kernel virtual address for block 2 as baddr where 
this block is mapped. Now we need to get the required pages (with valid file data) for this block and 
map them to address range [baddr, baddr+ MAXBSIZE]. Number of pages to be read depends on the 
file length to be read from offset f_offset.  For len 9000 Bytes, we need to read page 3 & 4 for block 

BLOCK 1
1                  2

f_offset

BLOCK 2
3                    4

baddr baddr + MAXBSIZE

Fig. 4



segmap_fault() is called whenever page fault occurs on a specific address which gets the required pages 
for  the  address  and  maps  them  to  address(where  fault  occurred).  We  call  this  function  from 
segmap_getmapflt() to get the pages 3 & 4 for block 2 and map these pages to address range [baddr, 
baddr+ MAXBSIZE].

segmap_fault() calls macro VOP_GETPAGE(),  which points to nfs3_getpage(), to get the pages. Finally, 
when all the pages are read in, they are mapped to the address [baddr, baddr+ MAXBSIZE] (hat entry 
is created for these pages) by segmap_fault(). After segmap_fault() has returned, the pages with valid 
file data are loaded in the memory at virtual address baddr and can be accessed using this address Fig.5.

Let's look at nfs3_getpage(). This function calls nfs3_getapage(), if only single page is to be read else it 
calls pvn_getapage(). pvn_getapage(), does nothing but calls nfs3_getapage() till it  has read all the 
pages and returns all the pages in an array of page_t structure. This array is returned to segmap_fault(), 
which  maps these pages to the address range [baddr, baddr + MAXBSIZE] in our example as shown in 
Fig 5.

nfs3_getapage() gets the file offset (aligned at the page boundary) and the file length to be read. It acts 
on new block size specific to the NFS. The new block size is calculated using following macro – 

bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE). <----- maximun of the two values is selected.
boffset = f_offset(aligned at page boundary)/bsize, so new block offset is boffset.

For  NFS,   vp->v_vfsp->vfs_bsize  is  32k.  Here  onwards  the  new  block  size  is  32k  and  all  the 
calculations are based on this block size. nfs3_getapage() checks for the possibility of any read ahead 
operation (ASYNC operation, explained later) to read ahead blocks of data around the requested block 
in advance by calling nfs_async_readahead(). If the readahead is done and it is successful, it would 
have got all the required pages. It looks for the required page in the page hash page_exists(). All the 
pages (neither freed nor invalid) are hashed in the page hash table for the combination of [vp, offset] 
where offset is the file offset  aligned at page boundary and vp is the vnode for the file. If the page for 
the file offset f_offset is found in the hash table, acquire the appropriate lock (exclusive lock) by calling 
page_lookup() and return the page. In case the page is not found in the cache (hash table/free list), we 
need to get the page from the server. So, we get prepared for the block I/O to read the required pages 
within the nfs block  from the server. First we allocate a page for the current page ( containing f_offset) 
calling  page_create_va(). 

BLOCK 2
3                    4

baddr baddr + MAXBSIZE

Fig. 5



This function allocates a page for [vp, offset], gets exclusive lock & I/O lock on the page adds the page 
to the page hash table and also to vnode's page list (vnode->v_pages list linked by page->p_vpnext & 
page->p_vpprev). Find out how much data actually needs to be read. We have client's view of file size 
rnode->r_size. Refer  Fig. 6 for this explanation.

1. If the file size (rnode->r_size) lies within the current NFS block boundary ( NFS block which 
contains the file offset).

2. if f_offset is more than or equal file size (which means that tat we want to read beyond the 
EOF), we will read atleast one page. (r_len = f_offset + PAGESIZE - boffset) 

3. else if the file size is more that the offset, we will read the file length within this NFS block till 
the EOF (r_len = rnode->r_size – boffset).

4. else if the file size lies outside the current NFS block (boffset), we need to read the entire block 
if we are not reading the start of the file (r_len = bsize).

Now, it tries to cluster all the pages (which need to be read in) around the required page within the NFS 
block boundary (within the boundary [boffset, boffset+r_len])  by calling pvn_read_kluster(). 
pnv_read_kluster() checks for all the pages around the requested page (within the NFS block) if they 
are to be read and adds all those pages in the page I/O list (linked by page->p_prev, page->p_next 
pointers) . It calls page_create_va() with the flags set to PG_EXCL | PG_WAIT for all those pages. 
Which means that if the function returns NULL, the page we are looking for already exists in the cache 
else we get a newly allocated page with the exclusive lock& I/O held(by the current thread) on the 
page. Let me explain it with the help of our example. The page we require is page 3 (in block 2). Since, 
NFS block size is 32k we will scan through all the pages 1, 2 & 4 (around page 3) because they belong 
to single NFS block. If we find that the page 2 and 4 are missing in the cache, these pages will be 
allocated and linked in the page I/O list and finally the new file offset and file length are returned to the 
calling function along with the page I/O list. After return from the function offset and file length for 
read operation will be as follows -

BLOCK 2
3                    4

boffset rnode->r_size

BLOCK 1
1                    2

f_offset

r_len

boffset+ bsizeFig. 6



1. Consider a situation where rnode->r_size (file size) is is beyond 32k and file offset is 17000 
(requested page is 3). In this case, r_len will be one NFS block size (32k) which means all the 
three pages (1, 2 & 4) around page 3 will be scanned by pvn_read_kluster().

2. If  file  offset  (f_offset)  is  10000 (requested page is  2) and file size is  25000, r_len will  be 
3*PAGESIZE. Which means only pages 1 & 3 around page 2 will be scanned.

3. If f_offset is 17000 (requested page is 3) and file size is 16384, r_len will be 2*PAGESIZE. In 
this case, page 1 & 2 will be scanned around page 3.

In case we are reading beyond EOF and nfs3_getpages() is called as a result of NFS write operation, 
we zero out the current page and return else if it is read operation, return EOF.

Now, if we need to read data from the server, we need to place a block request to the NFS server to 
read the required data. In our example, page 1, 2 & 4 are scanned and page 2 & 4 are  missing in the 
cache. So we  cluster the block request for three pages 2, 3 & 4 with new file offset as 8k (starting from 
page 2) and file length as 24k(read data for pages 2, 3 & 4). Initialise buf struct for this request and 
remap these pages to a new kernel addresses (these pages are not yet mapped as they will be mapped in 
segmap_fault() on return) by calling bp_mapin(). The portion of the file (offset = 8k, len = 24k) is read 
by calling nfs3_bio(). nfs3_bio will call nfs3read() which generates NFSPROC3_READ RPC request 
to read data in the chunk of  max mi->mi_tsize size till either all the data is read or error is encountered. 
When nfs3_bio() returns, we need to unmap the mappings for the pages read in ( page 2, 3 & 4 in our 
case)  by  calling  bp_mapout()  and  return  the  required  pages  to  the  calling  function.  Finally 
segmap_fault() loads the pages(3 & 4) in the memory by mapping it at [baddr, baddr+MAXBSIZE]. 
This way we have read the required file block (block 2) data from the server which is mapped to a 
specific address baddr (Fig. 5). File data at offset f_offset can be read using baddr (block base address 
+ offset within the block) and uimoved from kernel to user space.



NFS (client) write I/O Architecture:  

1. If caching has been disabled (e.g., locking) or if using client-side direct I/O and the file is not 
mmap'd and there are no cached pages, bypass VM. In this case, block & page i/o is skipped 
and file data will be directly written to the server in maximum chunk of mi->mi_stsize chunk 
till  all  the  data  is  written  back  to  the  server.  We  write  only  if  rp->r_flags  is  not  set  to 
RDONTWRITE. This means some write error, like quota full, max file size has occurred on the 
file in the last NFS write operation because of which further write's will not be accepted by the 
server(Fig. 7).

User Space
Kernel Spacewrite request from User 

application for NFS file
fd, f_offset, len

Allocate kernel memory of len size else
  mi->mi_stsize whichever is minimum.

Iterate the following till either we  have
 written entire data or encountered an error.

Copy remaining data from the user space
 using uiomove() to kernel allocated memory.

Call, nfs3write() to write data to NFS server
 in chunk of  max size (mi->mi_stsize).
 

nfs3write() makes rfscall() call which  generates 
NFSPROC3_WRITE  RPC to write data to the server.

NFS ServerNFS client

User Space

Fig. 7

NFSPROC3_WRITE RPC 
request/response



2. In case caching is enabled or  we are using client-side direct I/O with file mmapped with either
cached pages, we need to go through kernel VM framework to allocate pages to contain the file 
data. Each kernel page for this vnode contains data for the combination of [vp, file_offset]. The 
pages are mapped to kernel virtual addresses allocated by the segment driver for each block of 
the file (for the combination of [vp, block_off]). Before writing the data, we have to read the 
page containing the  current file offset requested by the user application and map at kernel 
virtual address specified by segment address for the block containing this page. We now copy 
the user data to the page (containing the file offset). Finally, we need to cluster all the dirty 
pages around this page (within NFS block boundary) and place NFS block I/O request to write 
requested portion of the file data to the NFS server using RPC call (Fig. 7).

NFS Client

User Space

Kernel Space

write request from User 
application for NFS file

VFS layer calls NFS read function to read
 the data. nfs3_write(). 

fd, f_offset, len

    

Write Data in Block Size chunk:

we write data in chunk of block size (MAXBSIZE).

Find the segment address for the block containing the current file offset 
(f_offset),  call segmap_gemapflt(). Lets say it is baddr.

Copy user data at location (baddr+f_offset/MAXBSIZE), call writerp(). 

By this time we have copied data to the pages corresponding to the file(vp) 
region [f_offset, len(or MAXBSIZE which ever is less)] and these pages
are marked as dirty. These pages are linked to files vp->v_pages list
and are also hashed in the page hash table.

 Start nfs write operation  if it is sync operation OR async operation
 & complete block is copied,  call segmap_release().

NFS Server

Continued 2



NFS Client
Continued 2

NFS server
Copy user data to the file block: 
(Paddr, len, seg)
writerp():  
Repeat copying till all the data for the current block is copied (single page at 
a time).

Create a new page mapping for the block segment segmap_pagecreate()
(explained later) or let page fault get the pages mapped for the block segment.

Update rnode flag (RMODINPROGRESS)to indicate that data is being copied.

Copy at most one page of data from user space to file block.  

Clear RMODINPROGRESS flag and update file size rnode->r_size.

  
 Prepare to write NFS data (pages) to server: 
 (boffset, seg)
 
 segmap_release() is called from nfs3_write() to write all the pages belonging
 to the block containing pages corresponding to file region [boffset, 
boffset+MAXBSIZE].

 It does some checks on the segment (for the current block) and finally calls
 macro VOP_PUTPAGE() pointing to nfs3_putpage() to prepare pages for 
 I/O.

  

Identify dirty pages for the file block:
(vp, boffset, len)

nfs3_putpage(), calls nfs3_putpages() to identify all the dirty pages (for vp) 
for I/O.

If entire file needs to be flushed (len == 0), call pvn_vplist_dirty() which
picks up all the dirty pages(>boffset) for this file (vp) for I/O. Else we pick up 
all the dirty pages in the range [boffset, boffset+len] for I/O.

Single page is selected for I/O at a time. Once a page is selected for I/O, 
we already have write  & I/O lock for this page.

 

  

continued 3



Continued 3
NFS server

NFS client

Cluster dirty pages for NFS write:
(vp, boffset, len)

nfs3_putapage() tries to cluster all the dirty pages around the requested 
page within the NFS block boundary (32k) which need to be flushed,
call pvn_write_kluster().

By this time we have all the dirty pages within NFS block (containing file region
[boffset, boffset+len] linked to page the I/O list (linked by page->p_prev,
page->p_next) and we have new file region [offset, offset+nlen] which need
to be written back to the server.

If the current file region [offset, offset+nlen] is being modified, release I/O & 
page write locks on these pages and mark them as modified.

Else pages need to be written back, call nfs_async_putapage()
or nfs3_sync_putapage().

  Write the block data:
(vp, offset, nlen)

nfs3_sync_putapage() calls nfs3_rdwrlbn() to setup block I/O request for 
the file region [offset, offset+nlen].

 After block I/O is over , I/O and write lock on all the pages for the file 
region [offset, offset+nlen] is released and pages might be freed in some cases,
call pvn_write_done().

Might endup commiting the file region [offset, offset+nlen] if  required.

By this time either we have written all the data [offset, offset+nlen]  or we have 
encountered error. In both the cases we release page&I/O locks
on the pages but in case of  some errors we mark the pages as still modified.

 

  

Continued 4



RPC request:
(bp) 
Finally, nfs3_bio() places a request to write the  file block data to the 
server by making NFSPROC3_WRITE RPC(rfscall()) call through nfs3write(). 
 
The data is written in the chunk of  mi->mi_stsize till we have written entire
data or encounter an error.

  

NFS serverNFS client
Continued 4

block I/O:
(vp, offset, nlen)
rdwrlbn():
Initialise 'buf structure' for file region [offset, offset+nlen] to do block I/O.

Remap all the pages involved in I/O to kernel virtual address, call 
bp_mapin().

Call, nfs3_bio() to write file data [offset, offset+nlen] to nfs server.

Unmap remapped pages, call bp_mapout().
  

NFSPROC3_WRITE RPC 
request/response

Fig. 8



Mechanism of NFS read with caching enabled

Fig. 9 mentions sequence of important function calls to write NFS data:

nfs3_write()

segmap_getmapflt()

writerp()

nfs3_putpages()

nfs3_nfs3putpage()

segmap_release()

nfs3_putapage()/pvn_vplist_dirty()

pvn_write_cluster()

nfs_async_putapage()/nfs3_sync_putapage()

nfs3_bio()

nfs3write()

rfscall(NFSPROC3_WRITE)

segmap_pagecreate()

uiomove()

page_lookup()/page_lookup_nowait()

nfs3_rdwrlbn()

Fig. 9



Page & Block I/O in NFSv3 write operation:

We  discuss here how NFS write request is processed by the kernel. User application requests kernel to 
write data to some portion of NFS file. Kernel copies this data to pages belonging to requested region 
of the file. The pages are marked as dirty. Single page is selected for I/O at a time. NFS data is written 
back to the server in block size of 32k. So, all the dirty pages around the  page (selected for I/O) and 
within the current NFS block are then clustered together and then block I/O is done. All the data within 
the NFS block is written back to the server in small chunks by generating NFSPROC3_WRITE RPC 
call.    Lets look at  various steps involved in brief.  The entire explanation we assume that we are 
processing  ASYNC write  request  to  write  1  block  bytes(len=2*PAGESIZE)  data  from file  offset 
17000(f_offset) otherwise we mention the len and f_offset to explain certain situations.

User application generates write request for file(vp), to write 'len' bytes of data from offset 'f_offset'. 
We need to copy data from user space to kernel space. The data is copied in maximum chunk of block 
(MAXBSIZE).  Let  block  offset  for  the  block(MAXBSIZE)  containing  f_offset  be  'boffset'. 
segmap_fault() gets kernel virtual address for the file block  mapped to the segment [vp, boffset].  

PAGESIZE=8k
MAXBSIZE=2*PAGESIZE

File-block  segment  [vp,  boffset]  is  mapped  to  the  kernel  virtual  address  range  [baddr, 
baddr+MAXBSIZE]. From fig. 10 we can see that two pages(3 & 4) need to be mapped to segment
[vp, boffset]. Each file(vp) page corresponds to 'PAGESIZE' size of file data at offset 'p_offset',

BLOCK 1
1                  2

f_offset

BLOCK 2
3                    4

baddr (boffset) baddr + MAXBSIZE

Fig. 10

rnode->r_size

BLOCK 3
5                    6



[vp,  p_offset].  We  need  to  get  pages  3  &  4  and   map  them  to  the  address  range  [baddr, 
baddr+MAXBSIZE]. writerp() copies  one page of data at a time to the pages mapped for block [vp, 
boffset]. Before copying the data to the page, we need to make decision whether we need to get page 
data from the NFS server or not. We don't get page data from the server in the following conditions - 

1. f_offset is at PAGESIZE boundary.
2. and PAGESIZE data needs to be copied or f_offset is beyond current EOF.

From Fig. 10 we can say that page needs to be created for the following combination-

1. f_offset=16384 and  len= PAGESIZE or
2. f_offset=16384 and rp->r_size(clients view of page size) < 16384.

page 3 for block 2 is picked from the cache or created and mapped to baddr segment address in this 
case. This is done by calling segmap_pagecreate(). So, here we avoid reading in data for page 3  from 
NFS server. We will either get this page from the local cache or if there is a cache miss, we create one 
and write data to it.

In all other cases, page with valid data is either read in from the local cache or from the NFS server (in 
case of cache miss) and mapped to the segment address. For e.g., f_offset=17000 & rp->r_size=17500, 
we get page 3 with valid data either from cache or from NFS sever which is finally mapped to segment 
address baddr(because 616 bytes of data from offset 16384 is still unmodified and original data needs 
to be kept intact). This happens as a result of page fault (when baddr is accessed to copy data as the 
page is not yet mapped) where segmap_fault() is called. This calls nfs3_getpage() to get page 3 with 
valid data and will finally map the page to the segment address baddr. 

By this time we have the page mapped at address baddr, the page is locked (shared) without I/O lock 
held on the page. The pages is linked in the page hash list and also in the vnodes  vp->v_pages list.

We need to copy data from user application to the page. Before copying data, we mark the rnode flags 
to indicate that the file is being modified (rp->r_flags should be set to RMODINPROGRESS). At the 
same time we also store information about the file block which is being modified. We copy data to the 
page [vp, boffset] call uiomove(). Now we modify the file size (rp->r_size) to reflect the new file 
size(if  written  beyond  the  EOF)  and  RMODINPROGRESS  flag  is  cleared  from  rnode's  flag. 
RMODINPROGRESS flag is required to avoid any loss of data just written. There is a small window 
between the uiomove() & rp->r_size modification. In this window, any async thread (doing putapage 
operation) may interfere and find that the page [vp, boffset] is dirty. It picks this page for I/O and put it 
on the dirty list (dirty bit for the page is cleared when page is on the dirty list) but the file size is not yet 
modified. So, while doing final I/O, this page might be skipped as the I/O is done only for rp->r_size 
bytes of data. Finally after the I/O, the page is removed from the dirty list (even though the data from 
this page is not written back to the server) with dirty bit not set. So, this page is not be considered for 
I/O from segmap_release() and the data for the portion of the file corresponding to this page is lost.



We continue to copy data to the subsequent pages till  either one complete block or  requested len 
(whichever is minimum) of data is copied. For e.g., if the user has requested to write 16k bytes(len) of 
data from offset 17000 (f_offset), we finally have data in pages 3 & 4 which are mapped to address 
range  [baddr,  baddr+MAXBSIZE]  (block  2  [vp,  boffset])  when  we  return  from  writerp()  which 
processes 1 block of data at a time(block 2). Since this is ASYNC request and one block of data is 
copied, we write out file block 2 (page 3 & 4). After processing page 3 & 4, block 3 data will be 
processed(for block 3, we need to write 616 bytes of data since 15768 bytes of data is required to fill 
block 2).

We check if the copied data needs to be written back to the server. If it is sync write operation, we need 
to write the copied data immediately, else we wait till we have at least written one block of data. To 
write data to NFS server we call segmap_release().

We  repeat  the  entire  cycle  explained  above  till  we  have  written  all  the  data  in  a  chunk  of 
block(MAXBSIZE) size. For e.g., if the  MAXBSIZE len of data is to be written from offset 17000, we 
need to get mapping for block 3, get pages 5 & 6 mapped for segment corresponding to block 3, copy 
user data to page 5 & 6 and finally write back data in these pages to the NFS server. 

segmap_release() checks if the segment needs to be unmapped (not f relevance to the topic). It calls 
macro VOP_PUTPAGE() to write file data in the range [boffset, boffset+MAXBSIZE]. This macro 
points  to  nfs3_putpage().  nfs3_putpage()  increments  rnode's  reference  count  rp->r_count  and  calls 
nfs_putpages() to further process the write request.

nfs3_putpages() selects the dirty pages for the vp in the range [boffset, boffset+MAXBSIZE] or entire 
vp pages(>boddset in the list (vp->v-pages). In case we are searching the entire vp->v_pages list for 
dirty  pages(>=boffset),  we  call  pvn_vplist_dirty()  else  we  call  nfs3_putapage().  Finally 
pvn_vplist_dirty() also calls  nfs3_putapage().

pvn_vplist_dirty() checks for dirty page(>boffset) in vp->v_pages list, if found it picks it for the I/O, 
get's I/O lock on the page and calls nfs3_putapage() to further process the write request for this page. 
We arrange the pages in the vp->v_pages list depending on the vnode type.  VMODSORT type vnode 
will have sorted list of pages arranged in vp->v_pages else pages are arranged in any order and a new 
page is always added to the head of the list. This means all the modified pages are added to the tail of 
the list in case of VMODSORT type vnode. 

vp->v_pages is a doubly linked circular link list, we need to keep track of already visited pages in the 
list since pages can be added at the head/tail of the list is being processed. We insert two markers at the 
end of the list to keep track of the visited pages.



E is the end marker.
M is the last one but marker.

As shown in Fig. 11 we have two marker pages at the end of the list E (end) and M (mark). List is 
traversed from tail i.e., page 6 in Fig. 11. If page 6 is the page to be processed (>=boffset & dirty), M 
and 6 pages swap their position in the list and page 6 will be processed.  So, final positions will be as 
shown in Fig. 12.

This way we visit all the pages in the list and M moves one link ahead towards the head in each 
iteration. This loop breaks in following cases -

1. if  it is VMODSORT type vnode and we find first unmodified page.
2. It is an ASYNC operation and M has reached head of the list (vp->v_pages == M) Fig. 13(a)
3. it is SYNC operation and M has reached end marker (M->p_vpprev==E) Fig. 13(b).
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For ASYNC(a):

For SYNC(b):

We have selected the page for I/O [vp, boffset] and we have acquired SHARED & I/O lock on the 
page. We call nfs3_putapage() to further process the page for I/O. 

nfs3_putapage() operates on NFS block size (32k). It finds the NFS block which contains file offset 
boffset. If f_offset is 17000 then we have 1st NFS block (with offset ==0) for current f_offset. So, it 
tries to cluster all the pages around page 3 (containing f_offset) tries to cluster all  the dirty pages 
around page 3 [vp, boffset] (scan page 1, 2 & 4) within the NFS block boundary [0, 32k] (please refer 
Fig. 10). we call pvn_write_cluster() to do the clustering. pvn_write_cluster(), returns with the list of 
dirty pages (with page & I/o locks acquired) linked in the I/O list (page->p_prev & page->p_next) and 
a new io_offset and io_len for the file on which I/O needs to be done. Lets say we have page 3 & 4 
clustered in our example so, the new file offset  as 16384 and file length as 16384 on which I/O needs 
to be done.

We check if we have modified the file in the range range [io_offset, io_offset+io_len]. rp->r_modaddr
keeps the file block offset for the block which is being modified in writerp(). If rnode flag (rp->r_flags) 
is  set  to  RMODINPROGRESS,  and  rp->r_modaddr  is  within  the  file  range  [io_offset, 
io_offset+io_len], we will unlock all the pages in the I/O list, mark them as modified, mark file rnode 
as dirty and return. Else we call nfs_async_putapage() for ASYNC & nfs3_sync_putapage() for SYNC 
I/O for file  [io_offset, io_offset+io_len] portion of the file (16384 bytes from offset 16384 in our 
example).
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We  discuss  only  sync  operation  as  async  I/O  artchitecture  is  already  explained  in  async  NFS 
architecture topic. nfs3_sync_putapage() calls nfs3_rdwrlbn() to initialise block I/O request structure 
and place block request for [io_offset, io_offset+io_len] portion of the file. If nfs3_rdwrlbn() returns 
error(ENOSPC , EDQUOT, EFBIG, EACCES), and it is synchronous operation, we invalidate all the 
pages  for  file  region  [io_offset,  io_offset+io_len]  (page  3  & 4  in  our  case).  Else  we  just  release 
locks(I/O & write) on the pages and if required, generate the commit request to commit file data just 
written.

nfs3_rdwrlbn() initialises “buf” structure for block I/O in the range [io_offset, io_offset+io_len] and 
remaps this region of the file to specified kernel virtual address. It places block I/O request for  writing 
data to the NFS server. nfs3_bio() is called to execute block I/O request. It calls nfs3write() to generate 
NFSPROG3_WRITE RPC (by calling rfscall()) to write data to the server in chunk of 
mi->mi_stsiz.  On return from nfs3_bio(),  we unmap the remapped portion of the file in the range 
[io_offset,  io_offset+io_len].  This  way  we  have  written  NFS data  to  the  server  in  the  file  range 
[io_offset, io_offset+io_len] corresponding to page 3 & 4. 



Cache Management:

This section explains the data & attribute NFSv3 client's cache management. Clients maintains it's own 
copy of the data and attribute caches for the file at the server. Client gets file attributes in two ways-

1. client requests the server for file attributes whenever it finds that the file attributes in its cache 
have expired.

2. Client gets pre & post modification file attributes in response to  read/write/commit request 
from the server.

Client  needs  the  file  attributes  in  various  places  before  read/write/open/close/create  etc.,  calls 
nfs3getattr(). It first looks into the cache for attributes, calls nfs_getattr_cache(). If the cache attributes 
have expired, it calls nfs3_getattr_otw() to get file attributes from the server.

How does a client decide that he cache attributes have expired??
rnode->r_attrtime is the filed that keeps the time when the attribute for this is suppose to be expired. 
Whenever cleint gets file attributes from the server,it stores the attribute in the cache and then modifies 
the  attribute expiration time in rnode->r_attrtime. This value is current time + delta. 'delta' depends on 
how frequently the attribute are gotten from the server.
If the client finds that the attributes are still valid, it returns the attributes from the cache. Attribute 
cache is maintained in rnode->r_attr ( of type struct vattr). If the cached attributes have expired, fresh 
attributes are gotten from the server and then they are cached in.

Whenever client gets fresh attributes from the server, it compares the fresh attributes with the cached 
attributes. If they are found changed (which means he file is being modified at the server), the cached 
data for the file is invalidated so that fresh data can be gotten back from the server on next read/write.
nfs_cache_check(), does all the validation on the cached attributes. If RWRITEATTR is set for this 
files rnode, we ignore the attributes from the server(because the changes in attributes are because of our 
own write operation). Else it calls macro CACHE_VALID(), which compares  modification time and 
file size of the file from the server and the cached in attributes. If they are found different then it checks 
whether  this  change  in  attributes  is  because  of  it's  own  modifications  (write/truncate  operations 
originated from client). If the rnode->r_flags is set to RMODINPROGRESS, it means that uiomove() is 
in progress so client's rnode->r_size is not consistent. So, client marks an indication so that next time 
when attributes are asked by the client, it gets the fresh attributes from the server, rnode->r_flags is set 
to RPURGECACHE. If the attribute changes are not because of our modifications to the file, client 
invalidates the data cache by calling nfs_purge_caches() ( this invalidates all the pages in vp->v_pages 
for this rnode).

The fresh attributes are now cached in by calling nfs_attrcache_va(). This stores fresh attributes in the 
cache (rnode->r_attr) and also modifies the next expiration time for the cached attributes. It also, mark 
an indication that now we can trust the attributes from the server (reset RWRITEATTR in 
ronde->r_flags if it is set). RWRITEATTR flag indicates that we should not trust the server's attributes 



because we have got the modified file attributes from the server as a result of our own modifications. if 
we don't have this flag, we would end up invalidating the caches after each write/truncate because of 
which would impact performance drastically.

Open-to-close consistency:

Client requests file attributes from the sever at file open/close time. It does because the file might be 
changed at the server between close and open. This is required because, if client has performed write 
operation just before close, the RWRITEATTR gets  set (rnode->r_flags)  and fresh attributes from the 
server's write response is stored in the cache(done by nfs3_checkwcc_data()). When client receives 
first response for getattr request in close, it ignores the attributes and resets  RWRITEATTR. Next time 
when attributes are requested from the server (at the time of file open), we cache in the attributes gotten 
from the server and these attributes may have changed because somebody else has modified the file at 
the serve between open and close. If we don't request for attributes in close, we would still have old 
attributes and   RWRITEATTR flag set for this rnode, and finally we would have ignored the file 
attributes from the server even if the file was modified at the server and file attributes have changed. In 
this case, client will never know that the file has modified at the server and it continue to use the old 
attributes for further operations causing inconsistency and file corruption.



Asynchronous I/O architecture:

Asynchronous NFS will allow many parallel read/write operations for different regions of the same 
file. This will enable clustering of write request from the queue before processing any of the other 
async I/O types. This will improve the performance and throughput of the overall write operation.

There are asynchronous NFS request queues for each NFS I/O types per mounted file system which are 
responsible for asynchronous I/O. nfs_async_start() is a function run as NFS async thread which will 
look for any async request queued for a specific mounted file system. This thread serves the queued 
request for each I/O type in a round-robin fashion. mntinfo_t structure consists of members to which 
will manage the async activities. 

async request queue organisation:

Some of the members of this structures are:

struct nfs_async_reqs *mi_async_reqs[NFS_ASYNC_TYPES]: 

array of async request queues for each I/O type. Where I/O types are -
NFS I/O types are:
        NFS_READ_AHEAD,
        NFS_PUTAPAGE,
        NFS_PAGEIO,
        NFS_READDIR,
        NFS_COMMIT

 struct nfs_async_reqs *mi_async_tail[NFS_ASYNC_TYPES]:
this is an array of pointers which points to the tail of the request queue for each I/O type.

 struct nfs_async_reqs **mi_async_curr:
this points to the current async request queue which is being processed.

 kcondvar_t      mi_async_reqs_cv;

 ushort_t        mi_threads:
number of active async threads.

 ushort_t        mi_max_threads:
max number of async threads.

kmutex_t        mi_async_lock:
lock to protect async list 



(Note:  Not  shown  pointers  for  all  the  mi_async_tail  elements  as  the  diagram will  become  more 
complicated. It is understood that W, P I/O & CO will be pointing to NULL because there are currently 
no requests queued for these I/O type in the request queue.).
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R = NFS_READ_AHEAD,
W = NFS_PUTAPAGE,
P I/O = NFS_PAGEIO,
RDIR = NFS_READDIR,
COM = NFS_COMMIT

Processing of requests form the queue:

While processing the queue,  mi->mi_async_curr is first accessed and checked if it is NULL. If not 
NULL and enough requests are not yet served from this queue, then the request is taken off the queue 
and processed and * mi->mi_async_curr  will now have address of  next node in the current list 
args->a_next. Else if it  NULL, we move to the next queue in the request array with the following 
pointer increment:
++ mi->mi_async_curr;

By doing so, we are pointing to the next NFS async request Queue. We  repeat the same till we have 
exhausted all the requests in the queue (Fig. 14). The queue list is synchronised with 
mi-> mi_async_lock lock. 
Whenever  a  new  async  thread  is  created,  we  need  to  check  if  the  mi->  mi_threads  with  mi-
>mi_max_threads.  If  former is  lesser than the latter,  we can create a thread else we cant because 
already  maximum  number  of  async  threads  are  active.  Else  we  create  a  new  async  thread 
nfs_async_start() and increment the mi-> mi_threads by 1. Each async NFS read & write
request for the same file will correspond to different regions of the file which will never overlap. For 
e.g., file offset and file length for two different async write/read request will never overlap a file region.
Whenever a new async request is generated for file read/write, rnode's members r_count & r_awcount 
are incremented by 1 to keep track of async activity on the file.

Data structures used for async operations:

nfs_async_reqs is a request structure used for each NFS async I/O. The main members of the structure 
are:

struct nfs_async_reqs *a_next:
pointer to next arg struct (NFS async request) in the request queue.

struct vnode *a_vp:
vnode pointer of the NFS file for which requuest is generated.

enum iotype a_io:
I/O type, listed above.



union {
                struct nfs_async_read_req a_read_args;
                struct nfs_pageio_req a_pageio_args;
                struct nfs_readdir_req a_readdir_args;
                struct nfs_commit_req a_commit_args;
} a_args;

These  are  argument  structure  for  each  I/O  type.  Async  write  operation  are  taken  care  of  by 
nfs_pageio_req structure. Some important macros used for async NFS read/write operations (read/write 
args)-

For Readahead operation:

#define a_nfs_readahead a_args.a_read_args.readahead:
this gets the callcack function used to read block of NFS file from the server (nfs3_readahead() in our 
case).

#define a_nfs_blkoff a_args.a_read_args.blkoff:
this gets the block offset of the block to be read.

#define a_nfs_seg a_args.a_read_args.seg
This the segment to which this I/O belongs.

#define a_nfs_addr a_args.a_read_args.addr
This is the mapped kernel virtual address for the block where this block data should go.

For async write operation:

#define a_nfs_putapage a_args.a_pageio_args.pageio:
this contains the address of the callback function which will actually write data to the NFS server 
(nfs3_sync_putapage()).

#define a_nfs_pp a_args.a_pageio_args.pp:
this points to the list of pages involved in I/O.

#define a_nfs_off a_args.a_pageio_args.io_off:
This gets the file offset, which is the starting point for current write operation.

#define a_nfs_len a_args.a_pageio_args.io_len:
this gets the file length (starting at offset a_nfs_off ) which needs to be written back to the server.

#define a_nfs_flags a_args.a_pageio_args.flags:
gets the flags for write operation (sync/async).
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