OpenSolaris Service
Management Facility Guide

Liane Praza

OpenSolaris Service Management Facility Guide
by Liane Praza

Published April 2007
Copyright © 2007 Sun Microsystems, Inc.

The contents of this Documentation are subject to the Public Documentation License Version 1.01 (the "License"); you may only use this
Documentation if you comply with the terms of this License. A copy of the License is available at http://www.opensolaris.org/os'community/
documentation/license.

Table of Contents

PrE AR ..t e viii
WhO Should USe ThiS BOOKieiiiiiieiiiiiiee ettt e e et e e e e viii

How ThisS BOOK IS Organizedooiiiiiiiiiiii e viii
Related INFOIMEIIONceeie ittt e et e e et e e ee e eeees viii

O [gL oo (0 1o o R PP PPPPTI 1
WL TT QOBS ..ttt ettt ettt ettt e e e ee e e e na e enaas 1
Benefits of PartiCiPalionieieeeieieii e 1
Levels of Service INTEGrationccouuuiiiiii ettt eeaeans 1

2. SEIVICE CONCEPLS ... eettneteeti ettt ettt ettt ettt e ettt ettt e et e b e et et e e et et e et et e e e eba s 2
SENVICE MOUEL ...ttt 2
Service and SErViCe INSLANCEcieeii et 2
Property Groups and PrOPErtieSuuiiiiiiiee it 2
Property SEADITITYcooeei e 3
Service Restarter and DEl@QaliONuuiiiiiiiieiiii et 3
SEVICE MEINOUS ... e 3
SEIVICE DEPENUENCIESveu ittt ettt e et e et e e e e 3
SEIVICE REPOSITONY ..ttt ettt ettt ettt e e e et et e et e e e enb e e enaans 3
Configuration SNAPSNOLSuiiiiiie et et 4
SENVICE MANITESE ...t ettt 4

PrOTI IS . et 4
IVHTESIONES ...ttt e e e et 5
SEIVICE SEAES ... eeeeii ettt ettt ettt ettt 5
LBOBEY SEIVICES ..ottt ettt ettt et e e et e e 5

3L SEIVICE LITECYCIE .ottt 7
Determine Service SUITAINITYcouuuiiiiiiii e 7
Wt SEIVICE MELNOUS .. .ceveieieii et eeeas 7
W SEIVICE MBNITESE ... e 7
IMPOIt MANITESE ..ot et e e 7
BI=< 7 TSP UPPUTTT 7
Package manifest and MELhOASooiiiiiiiii e 7
INSEBI SEIVICE ...ttt et ettt ettt 7
SENVICE SEArTUD/TUNTIMIE . oeue ettt ettt et e e e e e e e enan s 7
Configure/MOUifY SEIVICE ...coeuiieieie e 7
Upgrade service with no 10Ss Of CONfiguIrationcc.uiiiiiiiiiiiiiiie e 7
REIMOVE SEIVICE ... ittt ettt ettt e ettt e e et et e e e et e e e enbaeeees 7

4. SMF(S)COMIMAINGS ... ettt et e et e et e et et e e e e et e e e e ebe e e eeennaeaees 8
COMMENT OVEIVIEW ...ttt ettt ettt ettt e et et e et et e et et e e e et e eeenans 8
SEIVICE TISHINGS ..t eett ettt ettt 8

5. Contracts and SErViCe RESIAMuu it 10
Hardware error handling before Smf(5)oooveviiiiii e 10
Hardware error handling within a service with sSmf(5) ..., 10

Fault propagation between services With SM(5)oooviviiiiiiiiiii e 11
Fault handling for 160aCY SEIVICEScouuiiiiii e 12
Handling faults Within ZONEScooiiiiiii e 12
[QNOFING EITOIS IN YOUP SEIVICE ...cieiii i eeeett ettt ettt ettt et e e e e e e enenns 12
6.svc.startd(1M Service DeVEOPMENTc..uuiiiiiii e 14
MENITESE CrEALIONveeeiii ettt e et e e et e e e e et e e e enaa e eees 14
NBIMIE YOUP SEIVICE ..eevtiieieiii ettt ettt e e et e et e e et e e e e 14

| dentify whether your service may have multiple concurrent instances 15

[dentify your Service MOE]coouiiiiiiii e 15

Identify how your service is started/Stopped.oovevviiiiiiiiieee e 16

OpenSolaris Service
Management Facility Guide

Determine faults to be ignoredcoouiiiiiiii i 18

Identify dePENOENCIEScovviiiii e e e e e e 19

Identify dePENOENESvuiii e 20

If appropriate, insert your service int0 amileStonecccceevviiieiiieeiiiiecie e, 20

Create, if appropriate, a default INSIANCEvviiiiiii e 21

Create template information to describe your SErviCeoovvvviviiiieiiin e, 21
Write/update an administrative commandcccoceviiiiiiiiiiiiciiee e 22

Remove your script from/ et ¢/ rc?. d locationsand/etc/init.d........ccoeeeeennis 22

L= (gl Ts I @] (=~ APPSR 22
L= (gl Te B @ = 1Yo PP 22
Moving configuration t0 FEPOSITONYvuuueiiieeii e e e e e e e e e e e e e s e e e e et e e aaneeeeas 22
IMPOItiNg aNA TESHNG ... evvieii e e e e e e e e e e et eeaa e eanaas 22
Manifest tO repOSItOrY MEPPING ...u.eeen et e e e e e e e e e e e e e e et e e et e e eaneeeees 22

TGz 11101 == P 22

7. inetd(IM) Service DeVEIOPMENTuiiiii it e e e e e e e e e et e e e e eeas 29
Lo Y 1 TP 29

= (oS = Vo= PSP 29
DESCIiDING the SEIVICE .. ceve i e e e e e eas 29

TGz 11101 == P 29

8. Delegated AMINISIIAtioNiiiiieii e e e e e e e e et e e e e aana s 30
9. SEIVICE PaCKAgING ... civiiiiiii e e 31
(DAY= Y oo o) 31
Using the manifest Class-aCtion SCIPLSu.iivi i e e e e eens 31

10. Service TESHING AN XXX oiuiiiiiieiiie e e e e e e e e e e e e et e e et e e et e e et e eaneenes 32
Service debugging MOUESiiiiiiii e e e e e e e e e e e eeeen 32
Temporary diSADIE ... coou i 32
Changing the restarter Of @ SEIVICEciii i e 32

T @00 T 11 o 1 PN 33
1 PPN 33

0= (o PP 33
4" PSPPI 33

2 I (010 01> oo 1] o 34
Problem: Service NOt FUNNINGoii i e e e e e e e et e e aa e eens 34
Problem; Manifest WON't iIMPOITooviiiiiicie e e e e e e e e aes 34
Problem: Service restarting too rapidlyc.ooeiiiiiiiii i 34
Problem: Repository COrrupt OF MISSINGcvvueerieiiiieeiiee e e e e e e e e e e e e e e e e eaneeaes 34
Problem: System hangs during BOOLcoceiiiii i 34

List of Tables

4.1, SMF(5) COMIMENGS ...eevtneieeii ettt ettt ettt e et et e et e e et e r et e ebe e e e enn e eenees

Vi

List of Examples

4.1.
4.2,
4.3.
4.4,
6.1.
6.2.
6.3.
6.4.

What services are enabled and rUNNING?iiiiiiiiiii et 8
What services are available on the SyStem? ..o 8
What services are provided 0N the SYStEM?uuiiiiiiii e 8
How do | find out more about a SPECITiC SEIVICE?uiiiiiiii i 9
Creating a simple standalone daemon Manifestiviiiiiiieiii e 23
Creating a simple configuration Service Manifestccouiviiiiiiiiieii e 26
Converting an existing iNit.d(4) SEIVICEiiiiiiiii e 28
Creating @ NeW SMT(5) SEIVICE ...ccoitiiiiiii et 28

Vii

Preface

The Service Management Facility is a mechanism to define, deliver, and manage self-healing application
services for the Solaris™ Operating System or other OpenSolaris™ works. The Service Management
Facility (more compactly known as smf(5)) significantly augments the traditiona init.d(4) and
inetd.conf(4) models for service delivery. The OpenSolaris Service Management Facility Guide
introduces important smf(5) concepts and provides details on delivering services which can be managed
by the Service Management Facility.

Who Should Use This Book

If you have ever written or modified an init.d(4) script or inetd.conf(4) line, this book is for you. All
administrators will also benefit from this book, as it expands significantly on the smf(5) administrative
concepts introduced in System Administration Guide: Basic Administration.

How This Book Is Organized

XXX: need adefinitive structure before writing this section. Remember to cross-link.

Related Information

» System Administration Guide: Basic Administration
 Application Packaging Developer's Guide

» System Administration Guide: Solaris Containers -- Resource Management and Solaris Zones

OpenSolaris Service Management Facility Community: http://opensol aris.org/os/’community/smf

Predictive Self-Healing BigAdmin site: http://www.sun.com/bigadmin/content/selfheal

viii

Chapter 1. Introduction
What it does

smf(5) promotes a service to afirst-class operating system object. It allows administrators to:
* access information about misconfigured/misbehaving services,

 enable and disable services persistently across upgrades and patches,

« directly bind services to resource management configurations,

* delegate tasks to non-root users securely, and

» more reliably access the console in repair scenarios.

smf(5) gives developers:

» automated restart of services in dependency order due to administrative errors, software bugs, or
uncorrectable hardware errors,

» asingle API for service management, configuration, and observation, and

+ simplified boot-process debugging.

Benefits of participation

Levels of Service Integration

No integration: compatibility. See the compatibility section.
Trivial integration: Create simple service manifest, convert init script to service methods, minimal testing

Full Restartability : Build on trivial conversion to split monolithic services -- each separately restartable
component becomes its own service

Chapter 2. Service Concepts

Understanding a set of basic conceptswill ease your interactionswith smf(5) whether you're developing a
complex suite of software or administering a Solaris system. These concepts apply to all services managed
by smf(5). There are some concepts which are specific to the type of service being implemented or
managed, and subsequent chapters will cover the specifics of delivering individual service classes.

Service Model

The Service Management Facility defines a programming model for providing persistently running
applications called services, and an extensiveinfrastructure for managing those services. An smf(5) service
can represent a variety of software facilities, such as a single daemon, a set of running processes, a set of
system configuration parameters, or even just a group of other services.

Adapting existing software to smf(5) brings a number of advantages. Services are automatically restarted
if they fall victim to hardware failure, unexpected service failure, or administrative error. Participation in
the service management facility also enhances observibility (with svcs(1) as well as future-planned GUI
tools) and ease of management (with svcadm(1M) and other Solaris management tools). All that'srequired
to adapt existing softwareto smf(5) isusually just the creation of ashort XML file called a service manifest
and afew simple modificationsto the servicei ni t . d(4) script.

Service and Service Instance

Services are implemented as service instances. A service is the parent of one or more instances, and
contains configuration information that is shared among all of the instances. The service should be
considered only a configuration store, where the instance is the entity that executes on the system. The
configuration of an instance is determined by composing configuration from the service and the instance.
The instance's configuration will always be used for configuration defined both on the service and the
instance.

All properties that would not be changed by a different copy of your service running (if your service
supports that) should be defined at the service level. If your service may be implemented differently by a

different instance (e.g. the snt p service may be implemented by sendmai | , postfix, qnmail,
...), properties that are specific to the current implementation should be specified at the instance, not the
service.

Each service and service instance is named by a unique FMRI (Fault Managed Resource Identifier). The
FMRI is prefixed with svc: and contains the service category, service and instance. For example, the
FMRI for the default instance of the fmd(1M) serviceissvc: / syst eni f md: def aul t.

Property Groups and Properties

Service configuration is organized into a set of properties. These properties are typed to reduce incidence
of administrative error. All properties are organized into property groups. The property group is where
composition of service instances occurs. f a property group with a given name is defined both on the
service and the instance, the instance's settings are used. As all configuration is stored as properties, a
single interface can be used to view and modify any service configuration property.

While most properties groups are persistent, meaning that their settings are saved across system reboot,
smf(5) also provides non-persistent property groups, which disappear when the system isrebooted. These
non-persistent property groups are used for run-time information about services which needs to be re-
generated when the system is rebooted.

Service Concepts

A primary piece of configuration information is whether the service is enabled. This is also stored as a
property. XXX?

Property Stability

Service Restarter and Delegation

In order to provide restart capabilities for services with different run-time characteristics, smf(5) alows
for a variety of service models. The service model is implemented by a service restarter. The restarter
sets up the environment for the service and starts, stops, restarts, and communi cates configuration change
to the service. Currently, these models are provided by the svc.startd(1M) and inetd(1M) restarters.
Additional models may be provided in the future by either these restarters or by additional restarters.
While this document describes the modelsfor svc.startd(1IM) and inetd(1M), please al so see the restarter
documentation for more detail on the application model it provides.

XXX: specifics about delegation

Service Methods

A service'sinterface with its restarter is the service method. Each restarter defines the methodsiit requires
for the servicesit manages. Most restarters minimally require a service provides a start method and a stop
method.

Service Dependencies

Dependencies define the relationships between services. Dependency effects are tracked by the master
restarter, svc.startd(1M). When a service starts, fails, etc., svc.startd(1M) communicates the change to
the service'srestarter.

XXX -- more details about dependencies: restart_on and grouping

Service Repository

A service's configuration is kept in the service repository. The repository is a transactional database that
contains the authoritative copy of service configuration. This configuration is used by the master restarter,
svc.startd(1M), the service'srestarter, the service itself, and any management applications which wish to
access information about the service. Once services have been delivered on a system, administrators or
administrative applications may customize service settings in the repository.

The service repository has a number of characteristics which are important to the system.
» Transactional.

All of the core smf(5) daemons are designed to be completely restartable if they fail due to hardware,
software, or administrative failure. This requires a transactional backing store for all of our service
information, including things like service state. If any core smf(5)daemons die halfway through an
operation, they pick up where they left off when they return. Thus, the repository must be transactional
to allow uto implement recoverability.

e Typed.

Service Concepts

A strong typing system allows smf(5) to validate that configuration information is at least of the
appropriate form. This reduces the chance of accidental misconfiguration by the administrator.

 Single point of access.

All configuration and runtime datais accessed through asingle API: libscf(3L 1 B). Thisreducesthetime
required to write amanagement application for aservice, and elimiatesthe need to write service-specific
configuration parsers.

» Access control.

A subset of configuration changes and administrative actions can be safely delegated to non-root users,
without requiring that all changes and actions be allowed by those users.

There are, however, no provisions for configuration data to be hidden from unprivileged users or
applications. While modification is protected, reading is not. The repository should not be used for
secret data

» Shapshots.
Allow administrators to easily revert to previous configuration versions.
» Checkable consistency.

It must be simple to confirm on startup that the format of the system's configuration data is correct.
Obvious filesystem corruption is flagged explicitly rather than parsed by higher-level applications as
lack of or incorrect configuration.

. Fast

Recovery algorithms require storing state in the repository, so updates must be fast for systems with
many Sservices.

The repository is split in implementation between the persistent properties which are not lost when the
system restarts and non-persistent properties which are reset when the system reboots. The persistent
database is critical for backup and is stored in / et ¢/ svc/ repository. db. The non-persistent
database has no value in backups as its contents are regenerated every system boot. Itislocatedin/ et ¢/
svc/vol atil e/ svc_nonpersi st . db.

Configuration Snapshots

Service Manifest

To deliver a service on a Solaris system, you create a service manifest, an XML file which describes
a service and any instances associated with that service. The service manifest is imported into the
repository either at boot time, or by using the svccfg import subcommand. The XML format of the
service manifest is specified by the Service description DTD, located at/ usr / shar e/ I 'i b/ xm / dt d/
servi ce_bundl e. dt d. 1. The comments in the DTD will answer many questions about authoring
service manifests.

Profiles

Service Concepts

Milestones

A milestone service aggregates a set of service dependencies. Usually, a milestone service does nothing
useful itself, but declares a specific state of system-readiness which other services can depend upon.
One example is the name- ser vi ces milestone service. The nane- ser vi ces milestone service is
considered online as long as any name services which are enabled are running. Thus, smf(5) milestones
are useful points for setting dependencies, as they reflect a specific state of system readiness. Milestone
services are treated as normal services by smf(5).

The standard Unix system run-level sarerepresented in smf(5) asmilestone services. Thesi ngl e- user,
mul ti-user,and nmulti-user-server milestone services correspond to run-levels S, 2, and 3,
respectively.

smf(5) also allows you to reduce or increase the number of services running on the system by specifying.
Y ou can choose which milestone represents the set of services you want running, and ask to set the system
milestone to the one you've selected. The svcadm milestoneaccepts the run-level milestone services, as
well as the special al | and none keywords. These aren't actual services, but shorthand for either no
services, or al enabled services, respectively. This set of five special milestones can either be booted
directly to (boot -m milestone=) or reached by running svcadm milestone.

A limited milestone (any special milestonebut al |) isreached by temporarily disabling all serviceswhich
aren't required by the services defined in the milestone. If a serviceisn't adependency of the milestone or
one of the milestone's dependencies, it will be temporarily disabled when in that limited milestone. The
consol e-1 ogi n service, for example, is not a dependency of any of the reduced milestones and will
always appear as disabled when in those milestones.

Reduced run-levels should still be reached by using boot -s or the init(1IM) command directly. These
commands set both the milestone and the run-level. Running svcadm milestone directly only sets the
milestone, but not the system run-level.

Note

For system maintenance procedures, use the traditional init(1M) or boot -s invocations, not
the svcadm milestone or boot -m milestone invocations. As the existing commands provide
the same functionality they have in previous releases of the Solaris system, they offer the least
incidence of surprise to the user when performing critical system maintenance.

Service States

Each serviceinstance is aways in awell-defined state. Define states X XX

Service states are stored in a non-persistent group, as the state must aways be reset when the system
reboots.

A Solaris service is only started if it is marked as enabled (by the administrator), and once al of its
dependencies are satisfied.

Legacy Services

smf(5) provides start and stop of scriptsplacedinthe/ et ¢/ rc?. d/ directories. Asthese servicesaren't
fully described to the system with a set of dependencies, they are called legacy services. Legacy services
created for releases of the Solaris system older than 10 will continue to work without modification in
almost all cases, starting when the system starts, and being shutdown during system shutdown or achange

Service Concepts

in the run-level. However, these services aren't monitored by smf(5) after they're started, and will never
be automatically restarted by the system.

Chapter 3. Service Lifecycle

The service lifecycle describes

Determine service suitability

Not all software is appropriate for execution by smf(5).

Write service methods
Write service manifest
Import manifest

Test/fix

Always look for errors or unusual messages in the service'slog file, if it exists.

Package manifest and methods
Install service

Service startup/runtime

Start when...

Lodfiles...

Configure/modify service
Upgrade service with no loss of configuration

Remove service

Chapter 4. smf(5)Commands

Thereisarich smf(5) command set available too devel opers and administrators alike. The Solaris System
Administration Guide: Basic Administration book focuses on administrators, while here we focus on
commands a service developer might find valuable. First, an overview of general smf(5) commands.

Command overview

Table4.1. smf(5) Commands

Command Purpose

sves(l) List services, service information, discover and
diagnose service problems.

svcadm(1M) Perform general service administration.

sveprop(l) Service information queries, suitable for scripting.

sveefg(1M) Repository manipulation tool.

Service listings

Example 4.1. What services are enabled and running?

sves(1) with no options answers that easily:

$ svcs

online Feb_04 svc:/network/ntp: default

online Feb_04 svc:/network/service: default

online Feb_04 svc: /application/x11/ xfs: defaul t

online Feb_04 svc:/application/font/stfsloader: default

Example 4.2. What services are available on the system?

Just ask sves(1) to list all services, including the disabled ones:

$ svcs -a

di sabl ed Feb_04 svc:/system nmetainit:default

di sabl ed Feb_04 svc:/network/rpc/nisplus:default
di sabl ed Feb_04 svc: / networ k/ ni s/ server: defaul t

Example 4.3. What services are provided on the system?
Again, just ask svcs(1). Thistime, get the service description too:

$ svcs -a -o FVRI, DESC

svc:/ m | estone/ nane-servi ces: def aul t name services nilestone
svc: /platformi86pc/ kdnconfi g: def aul t Di spl ay configuration
svc:/systeni cron: defaul t cl ock daenon (cron)

smf(5)Commands

Example 4.4. How do | find out more about a specific service?

svcs(1M) gives more detailed information about a service with both the- x and - | options combined with
the service name. The manpage referencesinsvcs - x are particularly helpful.

$ svcs -x system | og
svc:/system system | og: default (system | og)
State: online since Fri Feb 04 19:30:11 2005
See: syslogd(1M
See: /var/svc/log/system system| og: default.| og

| npact: None.

$ svcs -1 systemlog

fori svc:/system system | og: def aul t
nanme system | og

enabl ed true

state online

next_state none

state_tine Fri Feb 04 19:30:11 2005

logfile /var/svc/log/ systemsystem | og: defaul t. | og

restarter svc:/system svc/restarter: default

contract_id 51

dependency require_all/none svc:/milestone/sysconfig (online)
dependency require_all/none svc:/system fil esystem | ocal (online)
dependency optional _all/none svc:/systenifilesystenf autofs (online)
dependency require_all/none svc:/ml estone/ nane-services (online)

Thesvcs - p command allows you to determine which processes, if any, arein the service.

$ svcs -p system| og

STATE STI ME FMRI
online 21:06: 05 svc:/system system | og: def aul t
21: 06: 05 272 sysl ogd

Additionally, svcprop(1) provides a dump of al service configuration. By default, it chooses to display
the running configuration of the instance.

$ svcprop systeml og

gener al / package astring SUNWsr

gener al / enabl ed bool ean true

general / si ngl e_i nstance bool ean true

general /action_authorization string solaris.snf.mnage. system| og

Chapter 5. Contracts and Service
Restart

The Service Management Facility cooperates with the Solaris Fault Manager through service contracts
to isolate and recover from hardware and software faults on the system. The Fault Manager essentially
detects and predicts hardware faults, retiring bad hardware when it is appropriate and possible.

Hardware error handling before smf(5)

Earlier versions of the Solaris Operating System could often detect hardware faults, but couldn't usually
recover from them without rebooting the system. For example, physical memory on the system can
go bad. Depending on the type of memory and the type of error encountered, it can generate either a
correctable error, or an uncorrectable one. The Solaris Operating System has always recovered gracefully
from correctable errors. They're handled by the kernel and never seen by a user process.

But, uncorrectable ones mean that the system is unable find a good copy of the data. The error can occur
either in the kernel's address space or in a user process's address space. An error in kernel address space
means that the kernel is paniced immediately, restarting the system. An error in user space can be dealt
with more gracefully. As we know which process the error affected, the kernel can kill it before it causes
any more damage.

Prior to SMF, the relationships between user processes were unknown. As the system didn't know if the
corrupted/absent memory in one process would cause corruption in another process which was cooperating
very closely with the one that received the error, the entire system had to be gracefully shut down.

Hardware error handling within a service with
smf(5)

Now fmd(1M) can take hardware that's about to have a failure offline in advance of that failure, or after
that failure occurs. But, when afailure does slip through it issmf(5)'sjob to know the rel ationshi ps between
processes/services on the system. There are two main types of relationships:

* processes part of the same service or fault boundary, and
* services which depend upon each other.

To track processes as part of the same service, the smf(5) restarters use the new kernel mechanism,
process(4) contracts to group and monitor related processes. Certain types of events can be classified as
important:

e enpty - thelast member of aprocesswaskilled
« fork - anew process was added to the contract
+ exit - amember of the contract exited

e cor e - aprocess dumped core

» si gnhal -aprocessreceived afatal signal

* hwerr - aprocesswas killed due to an uncorrectable hardware error

10

Contracts and Service Restart

Each of these events is detected by the kernel, and passed to the contract owner. In the specific case of
hwer r , if an uncorrectable hardware error does occur in a user process the kernel detects it and kills the
process where the error occurs, just as in previous versions of the Solaris Operating System. With the
introduction of SMF, we no longer need to restart the system - with snf (5) and process(4) contracts,
we can just restart the "associated processes”.

Contracts are written with three types of event sets. i nfornmative, critical, and fatal.
Informative and critical only differ really in the guarantees about event delivery. f at al means all
processes in the contract are killed if a fatal event is received. smf(5) puts the hwer r event into the
critical eventset. A few commands allow you to explore contract settings on the system. First, you
can find out about contract and process relationships using:

$ ptree -c “pgrep sendnmail
[process contract 1]

1 /sbin/init
[process contract 4]
7 /1ibl/svc/bin/svc.startd

[process contract 513]
18676 /usr/lib/sendnmail -Ac -ql5m
18678 /usr/lib/sendnmail -bd -ql5m

You can see that sendmail is in contract 513. Using that information, you can look at the terms of the
contract:

ctstat -vi 513
CTID ZONEI D TYPE STATE HOLDER EVENTS QTl ME NTI ME

513 0 process owned 7 0 - -

cooki e: 0x20

i nformative event set: none

critical event set: hwerr enpty

fatal event set: none

par aneter set: i nherit regent

menber processes: 18676 18678

i nherited contracts: none

That output confirmswhat was described above: hwer r isinthecri ti cal eventset. If there'sahwerr

in either of the sendmail processes, the contract owner (7, svc.startd(1M) as you see above) will get a
critical error. svc.startd(1M) then responds to the error by stopping the service, and restarting it if
possible. Thus, when an uncorrectable memory error occurs in a process managed as an smf(5) service,
smf(5) is able to detect an uncorrectable memory error in aprocess, and repair it by restarting the service.

Fault propagation between services with
smf(5)

The previous section handles fault propagation within the first relationship type described above -
processes related as part of the same service or fault boundary. Fault propagation between services are
handled differently.

Servicerelationships are expressed by smf(5) dependencies. Most dependencies are used to specify startup
order, by using gr oupi ng=requi re_al | andr estart_on=none. However, you can also specify
that aserviceisrestarted if its dependency experiences any type of error (hardware error, core dump, etc.).
Youdothisby usingrest art _on=err or asopposed to none. Then when the dependency is stopped
due to that error, your dependent service will be too.

11

Contracts and Service Restart

Fault handling for legacy services

Uncorrectable errors are handled differently for processesthat aren't explicitly part of ansnf (5) service.
How does SMF know what to do if you didn't write a service manifest to describe how faults should be
handled? Since init(1M) isin a process(4) contract, al processes are part of a process(4) contract. If no
software creates a new contract, the process is in the same contract as its parent. The default terms for a
contract are not the same as what svc.startd(1M) uses. Instead, the default process(4) contract iswritten
such that hardware errors are fatal. Remember, that means all processes in the contract are killed if any
process sees an uncorrectable memory error. sve.startd(1M) also helpfully puts each legacy-run service
in its own contract. Thus, if any processes launched out of alegacy-run service (e.g. vold or dtlogin) fall
victim to an uncorrectable memory error, al processes in the contract will be killed.

$ ptree -c “pgrep vold
[process contract 81]
481 [usr/sbin/vold
$ ctstat -vi 81
CTID ZONEI D TYPE STATE HOLDER EVENTS QTIME NTIME

81 0 process orphan - 0 - -
cooki e: 0
i nformative event set: core signa
critical event set: hwerr enpty
fatal event set: hwer r
par amet er set: none
menber processes: 481
i nherited contracts: none

Note that for vold's process, hwer r isin the fatal event set. But, since there's no service manifest to tell
SMF how to deal with the legacy-run service, the system can't restart it. This is a primary reason why
adapting your service to smf(5) is valuable, even though compatibility is provided for legacy services.

Handling faults within Zones

As a zone doesn't have a kernel of its own, an uncorrectable memory error in the kernel still means that
the entire system goes down. However, each zone has its own copy of smf(5) inside which is completely
separate from the other zones on the system. As smf(5) runs inside the zone as well, faults are handled
inside the local zone the same was as they are in the global zone. There's no need to isolate the fault
to the zone because we isolate the fault to a finer granularity -- the service. smf(5)and zones are highly
complementary technologies.

lgnoring errors in your service

If you've specified the following with your service manifest, you've told smf(5) that you don't care about
what happens to the processes that your start method starts up.

<property group name='startd' type=' framework' >
<propval name='duration' type=astring' value=transient' />
</ property_group>

We provided this functionality for configuration services which need to tell smf(5) that they don't have
processesthat need to berestarted if they fail. Basically, no processesin the contract isn't an error. But, this
has also (understandably) been abused to shoehorn legacy services which may or may not have processes
running when their start method exits into smf(5). Some of these examples of incomplete conversions

12

Contracts and Service Restart

even exist within SMF. svc: / net wor k/ i ni ti al may start up anumber of daemons on your system,
but you don't see them under svcs - p. That's because the duration property issettot r ansi ent . You
can see this with:

$ svcprop -p startd/duration network/initial transient

svc.startd(1M) believesthere are no important processesto worry about restarting, so it doesn't track them
under svcs - p, and won't restart the service if one of the processes is killed due to an uncorrectable
memory error. These services will be converted more thoroughly in a future release of SMF. But, if
you want the processes in your service to be restarted on failure, never set start d/ durati on to
transient.

13

Chapter 6. svc.startd(1M Service
Development

XXX: first confirm the service's model (start, stop, etc.) is compatible with svc.startd's.

Manifest Creation

Name your service

Services have names, which may have dlashes included in the name. Unlike in the filesystem, the / is
not special in the service name. This allows categories to be included in the service name, which allows
administratorsto easily group service types and refer to them more easily. These categories aren't used by
the system, but help the administrator in identifying the general use of the service. These categories are
shownin/ var/ svc/ mani f est, and include:

appl i cation higherlevel applications, such asapache

nm | est one collections of other services, such asname- ser vi ces

pl atform platform-specific services, such as Dynamic Reconfiguration daemons
system OpenSolaris system services, such ascor eadm

devi ce device-specific services

net wor k network/internet services, such as protocol implementations

site site specific descriptions

Categories may also have subcategoriesto further classify similar services. For example, net wor k/ r pc
is used for RPC services. Additional subcategories may be added if a Java™ - style reversed domain
prefix or your companies stock symbol are used in the category nameto avoid conflicts with other add-on
products.

The service name should describe what is being provided, and includes both any category and subcategory
identifier and the actual service name, separated by '/'. Service names should usefully identify to the
administrator the service being provided.

The instance name describes any specific features about the instance. Most services deliver a 'default’
instance. Some (e.g. ORACLE™ software or other serviceswith complex configuration) may want to only
create instances based on administrative configuration choices.

Servicesthat are shipped as part of a product or generally extend beyond a site-specific definition should
include either the stock symbol or Java™-style reversed domain prefix followed by a comma as part of
the category or service name for uniqueness. As an example of the naming conventions above, thecr on
service specifies asits prelude:

<service

14

svc.startd(1M
Service Development

nane=' systen cron’
type='service'
version="1">

ldentify whether your service may have multiple
concurrent instances

If multiple binaries of your service running simultaneously on the system would cause an error, you must
defineitasasi ngl e_i nst ance service. Thistagtellstherestarter to not start multiple serviceinstances
simultaneously, regardless of administrative configuration.

Most configuration and system servicesrequire si ngl e_i nst ance tags. Services such as web servers
or databases which could run multiple configurations simultaneously (such as use a different database
source or run on adifferent port) should not be specified assi ngl e_i nst ance.

Specify after the service block:

<singl e_instance />

ldentify your service model

svc.startd(1M) is a process-based restarter. It provides three distinct models for service processes:

contract

transient

Most services are contract services. That is, they are implemented by long-running
processes. Standard system daemons are almost always contract services. They require
processes which run forever once started to provide service. Death of al processesin a
contract service is considered a service error, which will cause svc.startd(1M) to restart
the service. Thedefault service model iscontract. No additionsto the manifest arerequired
to use this service model.

A transient service is expected not to start along-running process. Transient services are
often configuration services, which require no long-running processes to provide service.
Common transient services perform boot-time cleanup or load configuration properties
into the kernel.

svc.startd(1M) does not monitor the child processes of a transient service beyond the
execution of the method - processes started by a transient service aren't considered part
of the service once the method exits. Failures in the child processes are not detected
as an error. Transient services are therefore sometimes used to overcome difficulties
in conforming to the method requirements for contract or wait services. This is not
recommended and should be considered a stopgap measure.

svc.startd(1M) treats aservice astransient if itsst ar t d/ dur at i on property is set to

t ransi ent . If your service should be defined astransient, insert the following into your
service manifest:

<property_group

15

svc.startd(1M
Service Development

wait

nane='startd" type='framewrk' >
<pr opval
name=' dur ati on'
type="astring'
val ue="transient' />
</ property_group>

Wait services are implemented by a single child process, and are restarted when that
process exits. Wait services are very rare; consider use of a different service model first.

svc.startd(1M) treats aservice astransient if itsst ar t d/ dur at i on property is set to
chi | d. If your service should be defined as wait, insert the following into your service

manifest:

<property_group
nane='startd" type='franmewrk' >
<pr opval
name=' dur ati on'
type="astring'
val ue='child />
</ property_group>

ldentify how your service is started/stopped.

smf(5) manipulates a service with methods. Methods are procedures specified by a services properties.
svc.startd(1M) requires services to provide stop and start methods. sve.startd(1M) methods can name a
program, such as a shell script or abinary, or an action to be taken by svc.startd(1M)The refresh method
is optional for svc.startd(1M) managed services. Different restarters may require different methods.

Existing i ni t. d scripts can usually serve as the basis for service methods. The following rules and
guidance are appropriate for the methods supported by svc.startd(1M):

all methods

e Shell scripts should include /1i b/ svc/ share/ snf _i ncl ude. sh to

gain access to convenience functions and return value definitions.

Failures must cause explicit error returns. All non-0 values are considered
errors. Additional information (for example, to avoid restart due to
configuration errors) may be provided to the restarter withthe SM-_EXI T_*
shell variable definitions. See the individual method descriptions for further
details on exit code behavior.

Method should print messages to st dout or st derr on error or failure.
They'll be redirected by svc.startd(1M) to the service log file, which the
administrator will be directed toin case of error so they can determine potential
courses for repair.

The keywords : ki | | and : true are available for all method definitions.
:true instructs svc.startd(1M) to do nothing. : ki I | kills al processes
started by your start method. The list of all processes is determined by the
service's contract.

16

svc.startd(1M
Service Development

st art methods

st op methods

r ef r esh methods

ckil'l is primarily effective for contract services. svc.startd(1M) doesn't
track processesfor transient and wait servicesin the service's primary contract.
Therefore, : ki || will not effectively kill all processes in transient and wait
services.

A st art method isrequired for all svc.startd(1M)-managed services.

st art methods are only run when the service is enabled and dependencies
are already met.

st art methods should exit with $SM-_EXI T_ERR_CONFI Gif the service
cannot come online due to any configuration error. XXX - other exit codes and
their meanings

For contract services, the st ar t method must leave your daemon running if
returning success, as exit of all processes will cause the serviceto be restarted.
That is, the start method should only return with exit code 0 once the processes
have started and will likely stay running until an explicit error occurs.

Contract and transient service start methods should not return success until
the service is completely ready to talk to its clients. Note that this is true
for daemons as well; daemons shouldn't f or k then exi t from their initia
process, they should wait to return until startup errors have been accumulated
and can be reported. Many i ni t . d scripts traditionally execute a daemon
and return immediately without waiting for the service to start, counting on
the fact that the serial boot took ‘awhil€e' to start dependent services. Now that
dependent services are started precisely (often immediately) after your service
returns successfully from its start method, precise semantics are required.

If code changes to the daemon/service can't be made, the method should wait
for service to be provided before returning success. If no other options are
available, insert an appropriately long s| eep before successful return.

A st op method is required for all svc.startd(1M)-managed services.

St op methods are run in a number of different scenarios, including when a
dependency (with r est art _on set to something more than none) has gone
offline or failed, when the service fails, and when an administrator requests
disable or restart.

Thus, st op methods should return success if the serviceis no longer running
after execution is complete, even if the service wasn't running when the
execution started. This is because st op methods may be called in error
scenarios.

Ref r esh methods are optional for all svc.startd(1M)-managed services.

Any defined refresh method must have very precise semantics; it must
reload appropriate configuration parameters from the repository or other
configuration source without interrupting service. It must not cause exit of the
existing processes for contract or wait services.

Timeouts must be specified for all methods. svec.startd(1M) will consider the method to have failed if the
timeout expires during the method's execution. The timeout should be defined to be the maximal amount
of time in seconds that your method might take to run on a slow system or under heavy load. A method

17

svc.startd(1M
Service Development

which exceeds its timeout will be killed. If the method could potentially take an unbounded amount of
time, such as alarge filesystem fsck, an infinite timeout may be specified as'0'.

We strongly discourage expecting user interaction (i.e. via console input) as part of the service methods.
Scriptswhich do so will not work without modification, asthest di n/ st dout / st der r arenot/ dev/
consol e for service methods. XXX - example needed

We provide a set of method tokens available for use in method specification for commonly used property
values. A comprehensive list isavailable in smf_method(5). XXX - example needed

The default method environment is inherited from init(1M), with the PATH set to / usr/ sbi n:/
usr/ bi n. Variables beginning with SM-_ are reserved for framework use. The SM-_ variables
defined in smf_method(5) are provided to all methods; these include SM=_FMRI , SMF_METHOD, and
SMF_RESTARTER

Finally, each method may specify a met hod_cont ext , to define system, resource management, and
security attributes used during method execution. We recommend long-running services are started with
reduced privileges and safe uids and gids, when possible. XXX - examples

An example of a start method specification is below.

<exec_nmet hod
t ype=' net hod'
name='start'
exec="'/1ib/svc/ nmet hod/ svc-cron'
ti meout _seconds=' 60’
<net hod_cont ext >

<net hod_credenti al
user ='root'
group='root' />

</ met hod_cont ext >

</ exec_net hod>

Determine faults to be ignored

If either your service is poorly behaved itself, or it might spawn poorly behaved subprocesses, you will
want to inform the restarter that certain errors are expected and don't constitute service faults.

You may specify that coredumps from service subprocesses or fatal signals from processes outside the
service aren't fatal to the service. An example of specifying that neither are errorsis below.

<property_group
name='startd'
type='framework' >
<pr opval
nane='ignore_error'
type="astring'
val ue='core,signal’ />
</ property_group>

18

svc.startd(1M
Service Development

XXX - separate examples?

ldentify dependencies

Thisisthe most difficult part of service conversion, as most dependencies are not explicitly stated. There
are two different types of dependencies; fi |l e and servi ce dependencies. XXX - warn about file:
dependencies

First, identify what other services are required for yours to be started. For example, does your service
require the network to be plumbed, local devices to be configured, name services to be available? Are
there services that yours would be useless without?

Once you've decided what your service is dependent on, you'll need to determine and specify the fault
propagation model. For each dependency, decide whether your service should restart if:

none service can withstand faults and restarts in the dependency
faul t restart if the dependency has afault (core dump, system fault, etc.)
restart if thedependency isrestarted for any reason, including fault, your service should be

refresh if the dependency is refreshed (its configuration is changed), restarted, or has a fault, your
service should be restarted

These values correspond to the ability to handle restart of the specified dependency, viather est art _on
property.

Dependencies may be grouped. The potential groupings are:

require_all al in the group must be running (online or degraded) before the dependency can be
started

requi re_any anyoneof theservicesinthegroup must be online or degraded before the dependency
can be started

optional _all al servicesmust berunning (online or degraded), disabled, in the maintenance state,
or not present before the dependency can be started. In other words, if the dependency
will get to online or degraded, wait for it, including if it gets stuck in offline due to
unsatisfied dependencies.

excl ude_al | if the dependency is enabled and online or degraded, the service should not be started

Dependencies may specify service FMRIs or instance FMRIs. A dependency on the instance is
evaluated precisely. Dependencies specified on a service rather than a specific instance are evaluated as
requi r e_any for al configured instances. If your service does not require a specific instance, always
use the service as the dependency for maximum flexibility.

If your service is dependent on alegacy script having run, we strongly recommend you either convert or
encourage your vendor to convert the legacy script to an smf(5) service. Barring that, you can specify
a dependency on the milestone that script is part of. Since svc.startd(1M) doesn't track legacy services,
thiswill never propagate errors from the legacy service, so only makes senseasar est art _on=none
dependency.

Finally, sinceyou did the hard work to determine why a certain dependency was required, write acomment
to help future maintainers!

19

svc.startd(1M
Service Development

<l-- Must be able to resolve hostnanes. -->
<dependency
name=' nameservi ce
type='service'
groupi ng='require_all’
restart_on='none' >
<service_fnr
val ue=' svc:/ m | est one/ name- servi ces' />
</ dependency>

ldentify dependents

If you wish to deliver a service on which another service should depend, you can specify this in your
manifest without modifying the manifest you don't own. That is, dependent specifications are an easy way
to have your service run before a service delivered by Sun.

If not all of your dependent services have been converted, you'll either need to convert those too, or specify
the milestone the legacy service runsin as a dependent. See the next section for instructions.

To avoid conflicts, we require prefacing your dependent name with the name of your service.

For example, if you're delivering aservice (nmysvc in the example below) that must start beforesysl og,
use the following:

<dependent
nanme=' mysvc_sysl og
groupi ng="optional _all
restart_on='none' >
<service_fnr
val ue='svc:/system system|og' />
</ dependent >

If appropriate, insert your service into a milestone

If your service was previously delivered into an r c?. d directory, you should make the milestone
corresponding to your previousdelivery location adependent. A milestone should almost never berestarted
due to failure of your service. Therefore, r est art _on should be specified asnone.

For example, if your service was previously started at runlevel 2, this clause will make sure that runlevel
2 isnot considered complete until your service has started.

<dependent

nane=' mysvc_mnul ti - user’

groupi ng="require_all’

restart_on='none' >

<service_fmi value= svc:/mlestone/multi-user' />
</ dependent >

20

svc.startd(1M
Service Development

Note that the dependent name is created by connecting your service name and the dependent's name by
an underscore ().

Create, if appropriate, a default instance

If your service does not require extensive configuration before it can be started the first time, you should
configure a default instance for your service.

If the instance has no configuration differences from the service, this can easily be done with:

<create_defaul t _i nstance enabl ed='fal se' />

Alternatively, you can explicitly define the instance.

<i nstance name='default' enabl ed='fal se' >
<l-- instance-specific properties, nmethods, etc. go here. -->
</instance>

We recommend that all instances are delivered as disabled unless if they are critical to system boot.
Customization can then be done by either the administrator or a profile (described elsewhere).

Create template information to describe your service

Document at least acommon name in the C locale and a manpage reference. The common name should
* be short (40 characters or less),

» avoid capital letters aside from trademarks like Solaris or OpenSolaris,

 avoid punctuation, and

« avoid the word service (but do distinguish between client and server).

Thisinformation is presented by various forms of svcs(1) to provide the administrator with concise detail
about your service and where to get more technical information. Common names may be localized.

<t enpl at e>
<conmon_nane>
<l octext xm :lang="C >
fault nmanager
</l oct ext >
</ comon_nane>
<docunent ati on>
<manpage
title="fmd
section="1M
manpat h="/usr/share/ man' />
</ docment ati on>

21

svc.startd(1M
Service Development

</tenpl at e>

Write/update an administrative command

If your service already has an administrative command which stops, starts, or restarts your service, update
it to use svcadm(1M), or libscf(3L1B) calls. If an administrative command explicitly starts a daemon
outside of smf(5), the system won't know there are other daemons running. Conflicts between daemons,
incorrect contracts, and lack of visibility using svcs(1) are among the problems that will occur.

Remove your script from /et c/ rc?. d locations and /
etc/init.d

If you don't remove your i ni t script, it will still be run in legacy mode. If your / et ¢/ i ni t. d script
is well-documented, you may wish to ease the transition for administrators by providing a compatibility
script. XXX - example.

Method Context

XXX: how to set, etc.

Method Creation

L ogging recommendations - no need to stop using syslog, all exitsfrom methods with non-zero exit values
should have an accompanying helpful log message to stderr to guide the administrator to resolution.

svcprop example

Moving configuration to repository

XXX: which properties to move, new propertiesto create

Importing and Testing

XXX: use of mark/clear

Manifest to repository mapping

Examples

Sun delivers many manifestsin/ var / svc/ mani f est . These may be used as templates and exampl es.
A few to start with on your Solaris system:

» /var/svc/ manoi f est/ syst eni ut np. xm isasimple standalone daemon, and
* /var/svc/ mani f est/syst em coreadm xm isasimpletransient service

In addition, we'll cover some examples from start to finish here.

22

svc.startd(1M
Service Development

Example 6.1. Creating a ssmple standalone daemon manifest

WEe'l begin with a small toy daemon in this example. The / opt / SUNW oyd/ sbi n/t oyd command
returns success only after the daemon is up and providing service. It returns failure if it cannot start
successfully. There is always a process associated with this service if it is running correctly. The service
manifest for t oyd specified below would be delivered into/ var / svc/ nani f est / appl i cati on/
SUNW t oyd. xm .

The manifest is created by answering the questions in the section above.

» Our toy daemon is an application service, not critical to system operation. Thus, we name it
application/toy.

* Multiple copies of the toy daemon running simultaneously would cause problems, as the daemon isn't
written to handle that. It should be specified assi ngl e_i nst ance

» Asthisisastandard system daemon which aways has at least one process associated with it while it
isrunning, we useacont r act service model.

» Our daemon doesn't require any specific setup, so we can just execute the daemon directly. There's no
requirement for an additional method script for start and stop. The start method is therefore specified
as/ opt / SUNW oyd/ sbi n/ t oyd. The toy daemon is quick to start up - we know alonger than 60
second startup time probably means there's something wrong. To stop the service, it just needs to be
killed, soweusethe: ki | | keyword for the stop method. Thisisalso quick, so we also use adefault 60
second timeout. Our daemon doesn't support reloading its configuration without a restart, so we don't
specify arefresh method.

» There are no faults that need to be ignored by the toy daemon service; core dumps and external fatal
signalsare errorsthat should causethe serviceto berestarted, so we add no ignored faultsto the manifest.

e Our toy daemon doesn't do much, but it does require that / opt is mounted so that it has access to
its binaries. We specify adependency onsvc: / systeni fil esystent | ocal toreflect that, and
also consider the case where / opt is an NFS automount by specifying an optional dependency on
svc:/systeni fil esyst em aut of s. Our daemon a so uses syslog(3C) to log problems, but can
still run evenif syslogd(1M) isn't running. An optional dependency onsvc: / syst enf syst em | og
isin order. None of these services restarting should cause our daemon to restart, so all dependencies
haver est art _on set tonone.

» Therearenoindividual serviceswhich depend on the toy daemon.

* But, we do want thetoy daemon to always start aspart of nul t i - user - ser ver , ther ¢3 milestone.
Thus, we create a dependent for that milestone.

» The toy daemon does have a default instance, and should be, like all delivered services, disabled by
default.

» The toy daemon has a descriptive common name which fits the naming rules specified above: smf(5)
Guide example daemon. Its manpage livesin/ opt / SUNW oyd/ man/ manlni t oyd. 1m

<?xm version="1.0"7?>
<! DOCTYPE servi ce_bundl e SYSTEM "/ usr/share/lib/xm /dtd/service_bundle.dtd. 1">

<servi ce_bundl e type='"mani fest' name=" SUNW oyd: t oyd' >

<service
nane=' application/toy’

23

svc.startd(1M
Service Development

type='service'
version="1">

<create_default _instance enabl ed='fal se' />
<si ngl e_i nst ance/ >

<l-- This daenmon requires files |located on /opt.
<dependency

nane='fil esyst en

groupi ng='require_all’

restart_on=' none'

type='service' >

<service_fnr

val ue='svc:/system fil esystem |l ocal' />

</ dependency>

<l-- /opt may be automounted -->
<dependency

name=" aut of s’

groupi ng="optional _all

restart_on=' none'

type='service' >

<service_fnr

val ue="'svc:/system fil esystem autofs' />

</ dependency>

<I-- W use syslog(3C) to | og nessages. -->
<dependency

nane=' system | og

groupi ng="opti onal _all

restart_on=' none'

type='service' >

<service_fnr

val ue='svc:/system system|og" />

</ dependency>

<dependent
nane='toyd_mul ti-user-server'
groupi ng="opti onal _all
restart_on='none' >
<service_fnr
val ue="svc:/mlestone/multi-user-server' />
</ dependent >

<exec_net hod

t ype=' net hod’

name='start'
exec='/opt/ SUNW oyd/ shi n/ t oyd
ti meout _seconds='60" />

<exec_net hod
t ype=' net hod’
name=' st op’

24

svc.startd(1M
Service Development

exec=":kill"’
ti meout _seconds='60" />

<t enpl at e>
<conmon_nane>
<l octext xm :lang="C >
snf (5) Guide exanpl e daenon
</l oct ext >
</ comon_nane>
<docunent ati on>
<manpage title="toyd section=" 1M
manpat h="/ opt / SUNW oyd/ man' />
</ docunent ati on>
</tenpl at e>
</ service>
</ servi ce_bundl e>

25

svc.startd(1M
Service Development

Example 6.2. Creating a ssmple configuration service manifest

This example uses as its basis a simple configuration command which uploads configuration to afictional
kernel component. The / opt / SUNWkconfi g/ bi n/ kconfig -u command returns success after
successfully performing astructured set of i oct | (2) callswith argumentsdetermined by aconfiguration
file. It returnsfailureif the configuration fileisinvalid or thei oct | (2) fails. After the service completes
its startup, no processes are | eft associated with the service. The service manifest for kconf i g specified
below would be delivered into / var / svc/ mani f est / appl i cati on/ SUNW kconfi g. xm .

This example is appropriate if your software has an existing configuration file. Software which lacks an
existing configuration file with awell-known format, or a configuration file that must be portable amongst
multiple operating systems should use smf(5) properties for configuration. Using those properties will be
handled in another example.

The manifest is created by answering the questionsin the section above.

» We name our configuration service appl i cati on/ kconfi g, as for this example the kernel
component is assumed to be application-specific. We'd use asyst emcategory if it was a core system
component instead.

» There's no reason to allow multiple instances, so this serviceis specified assi ngl e_i nst ance

» The run-once nature of this configuration service along with its lack of long-term processes clearly
requireat r ansi ent service model.

e kconfi g isasimple command, so we can execute it directly as the start method. The start method is
therefore specified as/ opt / SUNW oyd/ bi n/ kconfi g. Thisserviceisquick to start up - we know
alonger than 60 second startup time probably means there's something wrong. No action is necessary
to stop the service, so we use the: t r ue keyword for the stop method. Thisis also quick, so we also
use a default 60 second timeout.

» As there are no long-running processes for this service, there are no faults that need to be explicitly
ignored.

» The configuration service does require that / opt is mounted so that it has access to its binaries. We
specify adependency onsvc: / system fil esystem | ocal toreflect that, and also consider the
case where / opt is an NFS automount by specifying an optional dependency on svc: / syst en
fil esystent aut of s. None of these servicesrestarting should cause our daemon to restart, so both
dependencies haver est art _on setto none.

» Thereare no individual services which depend on our configuration service.

» But, we do want the service to aways start as part of nul ti - user, ther c2 milestone. Thus, we
create a dependent for that milestone.

* Thekconfi g service does have a default instance, and should be, like all delivered services, disabled
by default.

e kconfi g has a descriptive common name which fits the naming rules specified above: smf(5)
Guide example configuration service. Its manpage lives in / opt / SUN\Vkconf i g/ man/ mnanlm
kconfig.1lm

<?xm version="1.0"?>
<! DOCTYPE servi ce_bundl e

26

svc.startd(1M
Service Development

SYSTEM "/ usr/share/lib/xm /dtd/service_bundle.dtd. 1">
<servi ce_bundl e type='"mani fest' name=" SUN\VWkconfi g: kconfig' >

<service

nanme=' application/ kconfi g’
type='service'
version="1">

<create_default _instance enabl ed='fal se' />
<si ngl e_i nst ance/ >

<l- This service requires files located on /opt. ->
<dependency

nane='fil esyst en

groupi ng='require_all’

restart_on=' none'

type='service' >

<service_fnri value= svc:/systenfilesystem |local' />
</ dependency>

<l- /opt may be autonounted ->
<dependency

name=" aut of s’

groupi ng="opti onal _all

restart_on=' none'

type='service' >

<service_fnri value= svc:/systenifilesysten autofs' />
</ dependency>

<dependent

nane=' kconfig_mnulti-user’

groupi ng="opti onal _all

restart_on='none' >

<service_fmi value= svc:/mlestone/multi-user' />
</ dependent >

<exec_net hod

t ype=' net hod’

name='start'

exec='/opt/ SUNVkconfi g/ bi n/ kconfig'
ti meout _seconds='60" />

<exec_net hod

t ype=' net hod’
name=' st op’

exec=':true'

ti meout _seconds='60" />

<property_group name='startd' type=' framework' >
<propval nanme='duration' type= astring

val ue='transient' />
</ property_group>

27

svc.startd(1M
Service Development

<t enpl at e>
<conmon_nane>
<l octext xm :lang="C >
snf (5) Cuide exanple configuration service
</l oct ext >
</ comon_nane>
<docunent ati on>
<manpage title=" kconfig" section="1M
manpat h="/ opt / SUN\Vkconfi g/ man' />
</ docunent ati on>
</tenpl at e>
</ service>
</ servi ce_bundl e>

Example 6.3. Converting an existing init.d(4) service

Example 6.4. Creating a new smf(5) service

28

Chapter 7. inetd(1M) Service
Development

Inetconv(1M)

Start with inetconv(1M), and include other modifications such as adding templates and refining the name.
More to come on thisand: * packaging * removing pre-converted inetd.conf services.

1. Create an inetd.conf(4)-style file which contains only your service's entries

2. Runinetconv -i "your inetd.conf file".

letc/services
Describing the service

Examples

Sun delivers many manifests in /var/svc/ mani fest. /var/svc/ mani f est/ networ k/
tel net.xm isaninetd(1M)-based daemon.

29

Chapter 8. Delegated Administration

RBAC integration, how to specify, how to manage, etc.

30

Chapter 9. Service Packaging

Delivery Locations

methods are delivered with your service. If your serviceisdeliveredin /opt/SUNWfoo, your method should
be delivered as /opt/SUNWfool/lib/svc/sve-foo. If your method would otherwise share a name with your
service's executable, prefixing the method with svc- helpsto easily differentiate the two.

Using the manifest class-action scripts

31

Chapter 10. Service Testing and XXX

Service debugging modes

XXX: pre and post temporary methods

Temporary disable

Changing the restarter of a service

XXX whereto put this?

32

Chapter 11. Compatibility
Init
smf(5) maintains compatibility for most applications started by init(1M) by placement in the / et ¢/

rc?. d directories, and for applications delivered into i net d. conf .

Someinit services, however, must be converted to smf to preservetheir boot-time ordering. Aninit service
needs to convert if it affects other infrastructure services, like the early setup of devices, filesystems, or
network configuration. A service also needsto convert if it requiresinput from the consol e during the boot
process. (Such services are strongly discouraged.)

Servicesthat are started from the rc directories are referred to as legacy services.

Inetd

XXX -- autoconvert on upgrade, running inetconv with no manifest modification, when we print warnings,
see inetd devel opment chapter

Inittab

33

Chapter 12. Troubleshooting

A number of standard procedures and tricks can ease troubleshooting during service development. This
chapter covers some of those techniques.

XXX -- likely different organization.

Problem: Service not running

(include uninitialized explanation)

Problem: Manifest won't import
Problem: Service restarting too rapidly
Problem: Repository corrupt or missing

Problem: System hangs during boot

If the system hangs during boot (e.g. you never receive aconsolelogin prompt or agraphical login screen),
you can use smf(5) to essentially watch boot happen. svc.startd(1M) makes a concerted effort to bring up
aconsole login prompt early in boot, and to bring up an sulogin(1M) prompt if something goes wrong,
but there are some cases where the system appears hung and there's no login prompt to be seen. They're
rare, but not completely impossible.

At the boot prompt (ok on sparc, Sel ect (b)oot or (i)nterpreter: onx86),typeb -m
m | est one=none. That'll get you to here:

Select (b)oot or (i)nterpreter: b -mmilestone=none

SunCS Rel ease 5.10 Version gate: 2005-01-10 32-bit

Copyri ght 1983-2005 Sun M crosystens, Inc. Al rights reserved.
Use is subject to license terns.

Booting to nilestone "none".

Requesti ng System Mai nt enance Mode

(See /1ib/svc/share/ READVE for nore information.)

Consol e | ogin service(s) cannot run

Root password for system mai ntenance (control-d to bypass):

Log in. If you run svcs now, you'll note that all services are di sabl ed oruniniti alized. The
disabled services are temporarily disabled by svc.startd(1M) because that's how a limited milestone
is implemented: we temporarily disable all services that aren't part of that milestone's subgraph. The
uninitialized services are managed by a different restarter than svc.startd. Their restarters haven't shown
up yet to manage their state, so they remain uninitialized. Now, to start up the rest of the system. Run
svcadm mi | estone al |, thenusesvcs to watch your system start up. If you're looking to debug
a specific problem, wait until the svcs(1M) output stabilizes, then run svcs - x to see what services

34

Troubleshooting

are causing trouble. Look at the services' logfiles for more details on what's going wrong. Finally, when
you're done poking around, just exit the login shell to resume normal console login.

35

