
Where's My Data

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Where's My Data?

●Your data is either
● In Memory (ie in your program)
● In the page cache (ie in the kernel)
● On Disk
● Oh dear you didn't mirror it, then it's on your

backup tape

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

How did it get there?
●Your program
●The File System (UFS)
●SVM and its brothers and sisters
●The disk drivers and hardware stuff
●The disk
●What about return codes?

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Where's My Data?

User Program

Hardware

Volume Management

Kernel File System

User
Kernel

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Your Program
●In its simplest form your program will
● open() a file
● read() or write() to the file
● close() the file

●We'll concentrate on write()
● read() is just the same in reverse
● close() is trivial
● open() is a little more complicated

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Your Program
main()
{

int fd;
char[] mydata=”IMPORTANT”;
fd = open(“mydatafile”, O_CREAT);
nbytes = write(fd, mydata);
if (nbytes != sizeof(mydata)){

fprintf(stderr, “Oh dear didn't write the right number
of bytes”);

exit (1);
}
close (fd);
exit (0);

}

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Where's My Data?

User Program

Hardware

Volume Management

Kernel File System

User
Kernel

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

The Filesystem
●Why have a filesystem?
●It provides a translation between the
files and directories we like to use to
manage the layout of blocks on a disk

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

The Filesystem
●Some important concepts/structures
● The Inode
● Describes the file including how it's laid out, when it was

updated what device it was on
● Struct inode
● usr/src/uts/common/sys/fs/ufs_inode.h

● The Vnode
● In core version of the inode
● Abstracts the file (makes the information fs independent)
● Describes what operations you can perform on it
● Struct vnode
● usr/src/uts/common/sys/vnode.h

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

The Kernel
●Some more important
concepts/structures
● The buf
● The basic unit of data by which I/Os are communicated
● Device major and minor numbers
● Used to distinguish which driver and target the buf is bound

for
● offset
● iodone() function
● Struct buf
● usr/src/uts/common/sys/buf.h
● Manipulated by the b* functions (e.g. bwrite_common())
● usr/src/uts/common/os/bio.c

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

open()
●Checks the file permissions
●Allocates a file structure (falloc())
●Finds the vnode
● (eventually through lookuppnvp())
● Either by reading the dnlc or reading the directory

●Calls the specific open function
● On ufs it's a NOP

●Populates the file structure

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

write()

User
Kernel

I M P O TA

myprogram

TR N

write()

ufs_write()

segmap_release()
uiomove()

segmap_getmapflt()
page_create()

wrip()

fsflush()

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

write()

User
Kernel

I M P O TA

myprogram

TR N

pagehash ufs_write()

segmap_release()
uiomove()

segmap_getmapflt()
page_create()

wrip()

fsflush()

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

write()

User
Kernel

I M P O TA

myprogram

TR N

pagehash ufs_write()

segmap_release()
uiomove()

segmap_getmapflt()
page_create()

wrip()

fsflush()

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

write()

User
Kernel

I M P O TA

myprogram

TR N

I
M
P

O T
A

T
R N

pagehash
uiomove()

ufs_write()

segmap_release()
uiomove()

segmap_getmapflt()
page_create()

wrip()

fsflush()

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

The Filesystem
●Where's my data now?
● The uiomove() call copied the data from the

userland pages to the kernel pages set up by the
segmap_getmapflt()

● But how does it get to disk?

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

write()

User
Kernel

I M P O TA

myprogram

TR N

I
M
P

O T
A

T
R N

ufs_write()

segmap_release()
uiomove()

segmap_getmapflt()
page_create()

wrip()

bdev_strategy()

ufs_putpages()

Disk
Driver

fsflush()

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

The Filesystem
●When you do a write() what happens?
➔write()->VOP_WRITE() -> ufs_write()

➔ wrip()
➔ Calculates offsets to write to
➔ segmap_getmapflt()
➔ Creates any needed pages
➔ uiomove()
➔ segmap_release()
➔ VOP_PUTPAGE() ->ufs_putapage()

➔ bdev_strategy()
➔ biowait()

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Where's My Data?

User Program

Hardware

Volume Management

Kernel File System

User
Kernel

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Volume Management Layer

●Availability
● Provide RAID protection to our data

●Performance
● Spread data over many spindles

●Disk Management
● Split very large LUN's into smaller sizes
● Join lots of small spindles into bigger sizes

Why Have a Volume Manager ?

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Volume Management Layer

●Modular design
● md – core driver that directs I/O to lower layers
● Plugin driver modules for :
● Mirroring – md_mirror
● RAID 5 – md_raid
● Stripes – md_stripe
● Soft Partitions – md_sp
● Hot Spares – md_hotspares

Solaris Volume Manager Architecture

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Volume Management Layer
Solaris Volume Manager Architecture

md

md

md md md

mirror

stripe stripe

md

Underlying Disk Devices

mirror

stripe 1 stripe 2

I/O into metadevice

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Volume Management Layer

● Strategy routine gets called
● stripe_strategy()

●Receives buf from the mirror layer
●Looks up underlying devices
● Major / minor number from metadevice data
● Accounts for interlace factor

Example – writing to a stripe

1st

3rd

2nd

4th

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Volume Management Layer
Example – writing to a stripe (cont.)

●Copy the parent buf into new child buf's
● Single buf created for each underlying device
● done using md_bioclone()

●Call md_strategy() to progress further
● Passes buf's on to the target driver layer

buf buf

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Where's My Data?

User Program

Hardware

Volume Management

Kernel File System

User
Kernel

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Target Driver Layer

●Why have a target driver ?
– Translate the write into the correct protocol

● SCSI e.g. “sd”
● FC-AL e.g. “ssd”
● IDE / ATAPI e.g. “dad”
● IPI e.g. “id”
● Other ...

– Must convert the address
● From major / minor / offset
● To bus / target / LUN / block

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Some Concepts

● Sun Common SCSI Architecture - SCSA
● Device independent interface between target driver and host

adaptor
● SCSI Command Descriptor Block - CDB
● Specifies command, LUN, length etc.
● 6, 10, 12 or 16 bytes in length

● SCSI Protocol
● Host Adaptor selects target device & sends CDB
● Target device performs command
● Target device tells Host Adaptor when finished
● All performed by HBA & Target firmware

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Target Driver Preparations

●sdstrategy() called for write operation
● Basic checks performed

● Does the device exist ?
● Does it have valid geometry?
● Is it a CDROM ?

● Builds scsi_pkt structure
● Populates CDB in scsi_pkt
● Sets up timeout
● Provides callback routine for completion

●Data still in our kernel buffer

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Host Bus Adaptor Layer

●Target Driver passes scsi_pkt
● Passes in the prepared CDB
● Receives back acknowledgment

●Queues command to SCSI BUS
● Multiple commands in queue at once
● Per target & per LUN queues

●Handles Interrupts
●Manages Timeouts

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

SCSI Transfer - Part 1

HBA

Target

LUN

CDB Data

SCSI bus

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

SCSI Transfer - Part 2

HBA

Target

LUN

CDB

Data

SCSI bus

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

SCSI Transfer - Part 3

HBA

Target

LUN Data

Status

SCSI bus

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

The Target Disk Drive

●Manages I/O operations itself
●May queue & reorder requests
●May cache reads & writes
●Controls SCSI bus protocol
●May translate geometry
●Multiple LUNs per target
●You're talking to the controller

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Return Status

● Disk drive signals HBA Chipset
● HBA Chipset interrupts HBA Driver
● HBA Driver calls Target Driver callback routine
● Target Driver calls biodone()
● Stripe layer calls biodone() on the parent buf
● Mirror layer calls biodone() on its parent buf
● MD calls biodone() on the buf it was passed
● So ufs_iodone() gets called
● biowait() from ufs_putpage completes

● The write() system call returns

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

Further Information
● ANSI SCSI Specifications
● Writing Device Drivers, 805-7378-10

Copyright 2006 Sun Microsystems, Inc. All rights reserved.

scsi_pkt structure
scsi_pkt

0x2a – Write(10)

LUN / Flags

Logical Block
 Address

Reserved

Data Length

Control Byte

SCSI CDB

scsi_status bitmap

ve
nd

 u
nq

ch
k

st
at

co
nd

 m
et

de
v

bu
sy

in
t s

ta
tu

s

ve
nd

 u
nq

ve
nd

 u
nq

re
se

rv
ed

hba private data

target private data

flags

timeout value

status block ptr

CDB pointer

bytes remaining

cmd state

statistics

completed reason

