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Where's My Data?

●Your data is either
● In Memory (ie in your program)
● In the page cache (ie in the kernel)
● On Disk
● Oh dear you didn't mirror it, then it's on your 

backup tape 
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How did it get there?
●Your program
●The File System (UFS)
●SVM and its brothers and sisters
●The disk drivers and hardware stuff
●The disk
●What about return codes?
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Your Program
●In its simplest form your program will
● open() a file
● read() or write() to the file
● close() the file

●We'll concentrate on write()
● read() is just the same in reverse
● close() is trivial
● open() is a little more complicated
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Your Program
main()
{

int fd;
char[] mydata=”IMPORTANT”;
fd = open(“mydatafile”, O_CREAT);
nbytes = write(fd, mydata);
if (nbytes != sizeof(mydata)){

fprintf(stderr, “Oh dear didn't write the right number 
of bytes”);

exit (1);
}
close (fd);
exit (0);

}
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The Filesystem
●Why have a filesystem?
●It provides a translation between the 
files and directories we like to use to 
manage the layout of blocks on a disk
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The Filesystem
●Some important concepts/structures
● The Inode
● Describes the file including how it's laid out, when it was 

updated what device it was on
● Struct inode
● usr/src/uts/common/sys/fs/ufs_inode.h

● The Vnode
● In core version of the inode
● Abstracts the file (makes the information fs independent)
● Describes what operations you can perform on it
● Struct vnode
● usr/src/uts/common/sys/vnode.h
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The Kernel
●Some more important 
concepts/structures
● The buf
● The basic unit of data by which I/Os are communicated
● Device major and minor numbers 
● Used to distinguish which driver and target the buf is bound 

for
● offset
● iodone() function
● Struct buf
● usr/src/uts/common/sys/buf.h
● Manipulated by the b* functions (e.g. bwrite_common())
● usr/src/uts/common/os/bio.c
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open()
●Checks the file permissions
●Allocates a file structure (falloc())
●Finds the vnode 
● (eventually through lookuppnvp())
● Either by reading the dnlc or reading the directory

●Calls the specific open function
● On ufs it's a NOP

●Populates the file structure
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The Filesystem
●Where's my data now?
● The uiomove() call copied the data from the 

userland pages to the kernel pages set up by the 
segmap_getmapflt()

● But how does it get to disk?
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The Filesystem
●When you do a write() what happens?
➔write()->VOP_WRITE() -> ufs_write()

➔ wrip()
➔ Calculates offsets to write to
➔ segmap_getmapflt()
➔ Creates any needed pages
➔ uiomove()
➔ segmap_release()
➔ VOP_PUTPAGE() ->ufs_putapage()

➔ bdev_strategy()
➔ biowait()
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Volume Management Layer

●Availability
● Provide RAID protection to our data

●Performance
● Spread data over many spindles

●Disk Management
● Split very large LUN's into smaller sizes
● Join lots of small spindles into bigger sizes

Why Have a Volume Manager ?
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Volume Management Layer

●Modular design
● md – core driver that directs I/O to lower layers
● Plugin driver modules for :
● Mirroring – md_mirror
● RAID 5 – md_raid
● Stripes – md_stripe
● Soft Partitions – md_sp
● Hot Spares – md_hotspares

Solaris Volume Manager Architecture
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Volume Management Layer
Solaris Volume Manager Architecture

md

md

md md md
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stripe stripe

md

Underlying Disk Devices

mirror

stripe 1 stripe 2

I/O into metadevice
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Volume Management Layer

● Strategy routine gets called 
● stripe_strategy()

●Receives buf from the mirror layer
●Looks up underlying devices
● Major / minor number from metadevice data
● Accounts for interlace factor

Example – writing to a stripe

1st

3rd

2nd

4th
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Volume Management Layer
Example – writing to a stripe (cont.)

●Copy the parent buf into new child buf's
● Single buf created for each underlying device
● done using md_bioclone()

●Call md_strategy() to progress further
● Passes buf's on to the target driver layer

buf buf
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Target Driver Layer

●Why have a target driver ?
– Translate the write into the correct protocol

● SCSI  e.g. “sd”
● FC-AL  e.g. “ssd”
● IDE / ATAPI  e.g. “dad”
● IPI  e.g. “id”
● Other ...

– Must convert the address
● From major / minor / offset
● To bus / target / LUN / block
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Some Concepts

● Sun Common SCSI Architecture -  SCSA
● Device independent interface between target driver and host 

adaptor
● SCSI Command Descriptor Block -  CDB
● Specifies command, LUN, length etc.
● 6, 10, 12 or 16 bytes in length

● SCSI Protocol
● Host Adaptor selects target device & sends CDB
● Target device performs command
● Target device tells Host Adaptor when finished
● All performed by HBA & Target firmware 
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Target Driver Preparations

●sdstrategy() called for write operation
● Basic checks performed 

● Does the device exist ?
● Does it have valid geometry?
● Is it a CDROM ?

● Builds scsi_pkt structure
● Populates CDB in scsi_pkt
● Sets up timeout 
● Provides callback routine for completion

●Data still in our kernel buffer
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Host Bus Adaptor Layer

●Target Driver passes scsi_pkt
● Passes in the prepared CDB
● Receives back acknowledgment

●Queues command to SCSI BUS
● Multiple commands in queue at once
● Per target & per LUN queues

●Handles Interrupts
●Manages Timeouts
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SCSI Transfer - Part 1
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SCSI Transfer - Part 2
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SCSI Transfer - Part 3
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The Target Disk Drive

●Manages I/O operations itself
●May queue & reorder requests
●May cache reads & writes
●Controls SCSI bus protocol
●May translate geometry
●Multiple LUNs per target
●You're talking to the controller
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Return Status

● Disk drive signals HBA Chipset
● HBA Chipset interrupts HBA Driver
● HBA Driver calls Target Driver callback routine
● Target Driver calls biodone()
● Stripe layer calls biodone() on the parent buf 
● Mirror layer calls biodone() on its parent buf
● MD calls biodone() on the buf it was passed
● So ufs_iodone() gets called 
● biowait() from ufs_putpage completes

● The write() system call returns
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Further Information
● ANSI SCSI Specifications
● Writing Device Drivers, 805-7378-10
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scsi_pkt structure
scsi_pkt

0x2a – Write(10)

LUN / Flags

Logical Block
    Address

Reserved

Data Length

Control Byte

SCSI CDB

scsi_status bitmap

ve
nd

 u
nq

ch
k 

st
at

co
nd

 m
et

de
v 

bu
sy

in
t s

ta
tu

s

ve
nd

 u
nq

ve
nd

 u
nq

re
se

rv
ed

hba private data

target private data

flags

timeout value

status block ptr

CDB pointer

bytes remaining

cmd state

statistics

completed reason


