
The (Re)Architecture of the X Window System
Keith Packard and Jim Gettys

keithp@hp.com, jim.gettys@hp.com
Cambridge Research Laboratory, HP Labs

Abstract
The X Window System, Version 11, is the standard window sys-
tem on Linux and UNIX systems. X11, designed in 1987, was
“state of the art” at that time. From its inception, X has been a
network transparent window system in which X client applica-
tions can run on any machine in a network using an X server run-
ning on any display. While there have been some significant ex-
tensions to X over its history (e.g. OpenGL support), X's design
lay fallow over much of the 1990's. With the increasing interest
in open source systems, it was no longer sufficient for modern
applications and a significant overhaul is now well underway.
This paper describes revisions to the architecture of the window
system used in a growing fraction of desktops and embedded sys-
tems.

While part of this work is “good citizenship” required by open
source, some of the architectural problems solved ease the ability
of open source applications to print their results, and some of the
techniques developed are believed to be in advance of the com-
mercial computer industry.

The challenges being faced include:

• X's fundamentally flawed font architecture made it difficult
to implement good WYSIWYG systems

• Inadequate 2D graphics, which had always been intended
to be augmented and/or replaced

• Developers are loathe to adopt any new technology that
limits the distribution of their applications

• Legal requirements for accessibility for screen magnifiers
are difficult to implement

• Modern user interface eye candy, which sport translucent
graphics, windows, drop shadows, etc.

• Full integration of applications into 3 D environments

• Collaborative shared use of X (e.g. multiple simultaneous
use of projector walls or other shared applications)

While some of this work has been published elsewhere, there has
never been any overview paper describing this work as an inte-
grated whole, and the compositing manager work described be-
low is novel as of fall 2003. This work represents a long term ef-
fort that started in 1999, and will continue for several years more.

Text and Graphics
X's obsolete 2D bit-blit based text and graphics system problems
were most urgent. The development of the Gnome and KDE GUI
environments in the period 1997-2000 had shown X11's funda-
mental soundness, but confirmed the authors' belief that the ren-
dering system in X was woefully inadequate. One of us partici-
pated in the original X11 design meetings where the intent was to
augment the rendering design at a later date; but the “GUI Wars”
of the late 1980's doomed effort in this area. Good printing sup-
port has been particularly difficult to implement in X applica-
tions.

Most applications now composite images in sophisticated ways,
whether it be in Flash media players, or subtly as part of anti-
aliased characters. Bit-Blit is not sufficient for these applications,
and these modern applications were (if only by their use of mod-
ern toolkits) all resorting to pixel based image manipulation. The
screen pixels are retrieved from the window system, composited
in clients, and then restored to the screen, rather than directly
composited in hardware, resulting in poor performance. Inspired
by the Plan 9 window system implemented, a graphics model
based on Porter/Duff image compositing was chosen. This work
resulted in the X Render extension and is described in detail at
http://keithp.com/~keithp/talks/usenix2001.

X11's core graphics exposed fonts as a server side abstraction.
This font model was, at best, marginally adequate by 1987 stan-
dards. Even WYSIWYG systems of that era found them insuffi-
cient. Much additional information embedded in fonts (e.g. kern-
ing tables) were not available from X whatsoever. Current com-
petitive systems implement anti-aliased outline fonts. Discover-
ing the Unicode coverage of a font, required by current toolkits
for internationalization, was causing major performance prob-
lems. Deploying new server side font technology is slow, as X is
a distributed system, and many X servers are seldom (or never)
updated.

Therefore, a more fundamental change in X's architecture was
undertaken: to no longer use server side fonts at all, but to allow
applications direct access to font files and have the window sys-
tem cache and composite glyphs onto the screen.

The first implementation of the new font system (described at
http://keithp.com/~keithp/talks/xtc2001) taught a vital lesson.
Xft1 provided anti-aliased text and proper font naming/substitu-
tion support, but reverted to the core X11 bitmap fonts if the
Render extension was not present. Xft1 included the first imple-
mentation what is called “subpixel decimation,” which provides

January 13, 2004 The (Re)Architecture of the X Window System 1

higher quality subpixel based rendering than Microsoft's
ClearType technology in a completely general algorithm.

Despite these advances, Xft1 received at best a lukewarm recep-
tion. If an application developer wanted anti-aliased text univer-
sally, Xft1 did not help them, since it relied on the Render exten-
sion which had not yet been widely deployed; instead, the devel-
oper would be faced with two implementations, and higher main-
tenance costs. This (in retrospect obvious) rational behavior of
application developers shows the high importance of backwards
compatibility; X extensions intended for application developers'
use must be designed in a downward compatible form whenever
possible, and should enable a complete conversion to a new facil-
ity, so that multiple code paths in applications do not need testing
and maintenance. These principles have guided later develop-
ment.

The font installation, naming, substitution, and internationaliza-
tion problems were separated from Xft into a library named Font-
config, (described in http://keithp.com/~keithp/talks/guadec2002)
since some printer only applications need this functionality inde-
pendent of the window system. Fontconfig provides internation-
alization features in advance of those in commercial systems such
as Windows or OS X, and enables trivial font installation with
good performance even when using thousands of fonts. Xft2 was
also modified to operate against legacy X servers lacking the
Render extension.

Xft2 and Fontconfig's solving of several major problems and lack
of deployment barriers enabled rapid acceptance and deployment
in the open source community, seeing almost universal use and
uptake in less than one calendar year. They have been widely de-
ployed on Linux systems since the end of 2002. They also “future
proof” open source systems against coming improvements in font
systems (e.g. OpenType), as the window system is no longer a
gating item for font technology.

Sun Microsystems implemented a server side font extension for
X in the last several years; for the reasons outlined in this section,
it was not adopted by open source developers.

While Xft2 and Fontconfig finally freed application developers
from the tyranny of X11's core font system, improved perfor-
mance (see http://keithp.com/~keithp/talks/usenix2003/), and at a
stroke simplified their printing problems, it has still left a sub-
stantial burden on applications. The X11 core graphics, even
augmented by the Render extension, lack convenient facilities for
many applications for even simple primitives like splines, tasteful
wide lines, stroking paths, etc, much less provide simple ways for
applications to print the results on paper.

Cairo
The Cairo library (www.cairographics.org), primarily implement-
ed by Carl Worth of ISI, is designed to solve this problem. Cairo
provides a stateful user-level API with support for the PDF 1.4
imaging model. Cairo provides operations including stroking and
filling Bézier cubic splines, transforming and compositing

translucent images, and anti-aliased text rendering. The
PostScript drawing model has been adapted for use within appli-
cations. Extensions needed to support much of the PDF 1.4 imag-
ing operations have been included. This integration of the famil-
iar PostScript operational model within the native application
language environments provides a simple and powerful new tool
for graphics application development.

Cairo's rendering algorithms use work done in the 1980's by
Guibas, Ramshaw, and Stolfi, which has never been exploited in
Postscript or in Windows. The implementation is fast, precise,
and numerically stable, supports hardware acceleration, and is in
advance of commercial systems.

Cairo is in the late stages of development and is being widely
adopted in the open source community. It includes the ability to
render to Postscript, which should greatly improve applications'
printing support. Work to incorporate Cairo in the Gnome and
KDE desktop environments is well underway, as are ports to
Windows and Macintosh. As with Xft2, Cairo works with all X
servers, even those without the Render extension.

Accessibility and Eye-Candy
Several years ago, one of us implemented a prototype X system
that used image compositing as the fundamental primitive for
constructing the screen representation of the window hierarchy
contents. Child window contents were composited to their parent
windows which were incrementally composed to their parents un-
til the final screen image was formed, enabling translucent win-
dows. The problem with this simplistic model was twofold --
first, a naïve implementation consumed enormous resources as
each window required two complete off screen buffers (one for
the window contents themselves, and one for the window con-
tents composited with the children) and took huge amounts of
time to build the final screen image as it recursively composited
windows together. Secondly, the policy governing the composit-
ing was hardwired into the X server. An architecture for exposing
the same semantics with less overhead seemed almost possible,
and pieces of it were implemented (miext/layer). However, no
complete system was fielded, and every copy of the code tracked
down and destroyed to prevent its escape into the wild.

Both Mac OS X and DirectFB perform window-level composit-
ing by creating off-screen buffers for each top-level window (in
OS X, the window system is not nested, so there are only top-lev-
el windows). The screen image is then formed by taking the re-
sulting images and blending them together on the screen. Without
handling the nested window case, both of these systems provide
the desired functionality with a simple implementation. This sim-
ple approach is inadequate for X as some desktop environments
nest the whole system inside a single top-level window to allow
panning, and X's long history has shown the value of separating
mechanism from policy (Gnome and KDE were developed over
10 years after X11's design). The fix is pretty easy—allow appli-
cations to select which pieces of the window hierarchy are to be

January 13, 2004 The (Re)Architecture of the X Window System 2

stored off-screen and which are to be drawn to their parent stor-
age.

With window hierarchy contents stored in off-screen buffers, an
external application can now control how the screen contents are
constructed from the constituent sub-windows and whatever other
graphical elements are desired.

This eliminated the complexities surrounding precisely what se-
mantics would be offered in window-level compositing within the
X server and the design of the underlying X extensions. They
were replaced by some concerns over the performance implica-
tions of using an external agent (the “Compositing Manager”) to
execute the requests needed to present the screen image. Note
that every visible pixel is under the control of the compositing
manager, so screen updates are limited to how fast that applica-
tion can get the bits painted to the screen.

The architecture is split across three new extensions:

• Composite, which controls which sub-hierarchies within
the window tree are rendered to separate buffers.

• Damage, which tracks modified areas with windows, in-
forming the Composting Manager which areas of the off-
screen hierarchy components have changed.

• Xfixes, which includes new Region objects permitting all
of the above computation to be performed indirectly within
the X server, avoiding round trips.

Multiple applications can take advantage of the off screen win-
dow contents, allowing thumbnail or screen magnifier applica-
tions to be included in the desktop environment.

To allow applications other than the compositing manager to
present alpha-blended content to the screen, a new X Visual was
added to the server. At 32 bits deep, it provides 8 bits of red,
green and blue along with 8 bits of alpha value. Applications can
create windows using this visual and the compositing manager
can composite them onto the screen.

Nothing in this fundamental design indicates that it is used for
constructing translucent windows; redirection of window con-
tents and notification of window content change seems pretty far
removed from one of the final goals. But note the compositing
manger can use whatever X requests it likes to paint the com-
bined image, including requests from the Render extension,
which does know how to blend translucent images together. The
final image is constructed programmatically so the possible pre-
sentation on the screen is limited only by the fertile imagination
of the numerous eye-candy developers, and not restricted to any
policy imposed by the base window system. And vital to rapid
deployment, most applications can be completely oblivious to
this background legerdemain.

In this design, such sophisticated effects need only be applied at
frame update rates on only modified sections of the screen rather
than at the rate applications perform graphics; this constant be-
havior is highly desirable in systems.

The results can be seen at http://freedesktop.org/~keithp/screen-
shots/. These also demonstrate the abilities of Cairo, Xft2 and the
sophisticated font rendering already deployed on open source
systems.

At this time, a full prototype X server implementation is working
of the new compositing facilities described in this section that
provides hardware accelerated Render support on a single hard-
ware platform and limited video mode selection, and is available
on the www.freedesktop.org.

Next Steps
We believe we are slightly more than half way through the pro-
cess of rearchitecting and reimplementing the X Window System.
The existing prototype needs to become a production system re-
quiring significant infrastructure work as described in this sec-
tion.

OpenGL based X

Current X-based systems which support OpenGL do so by encap-
sulating the OpenGL environment within X windows. As such, an
OpenGL application cannot manipulate X objects with OpenGL
drawing commands.

Using OpenGL as the basis for the X server itself will place X
objects such as pixmaps and off-screen window contents inside
OpenGL objects allowing applications to use the full OpenGL
command set to manipulate them.

In concert with the new compositing extensions, conventional X
applications can then be integrated into 3D immersive environ-
ments such as Croquet (www.opencroquet.org), or Sun's Looking
Glass. X application contents can be used as textures and mapped
onto any surface desired in those environments.

This work is underway, but not demonstrable at this date.

Mobility, Collaboration, and Other Topics

X's original intended environment included highly mobile stu-
dents, and a hope, never generally realized for X, was the migra-
tion of applications between X servers.

The user should be able to travel between systems running X and
retrieve your running applications (with suitable authentication
and authorization). The user should be able to log out and “park”
applications somewhere for later retrieval, either on the same dis-
play, or elsewhere. Users should be able to replicate an applica-
tion's display on a wall projector for presentation. Applications
should be able to easily survive the loss of the X server (most
commonly caused by the loss of the underlying TCP connection,
when running remotely).

Toolkit implementers typically did not understand and share this
poorly enunciated vision and were primarily driven by pressing
immediate needs, and X's design and implementation made mi-
gration or replication difficult to implement as an afterthought.

January 13, 2004 The (Re)Architecture of the X Window System 3

As a result, migration (and replication) was seldom implemented,
and early toolkits such as Xt made it even more difficult. Emacs
is the only widespread application capable of both migration and
replication, and it avoided using any toolkit.

Recent work in some of the modern toolkits (e.g. GTK+) and
evolution of X itself make much of this vision demonstrable in
current applications. Some work in the X infrastructure is under-
way to enable the prototype in GTK+ to be finished.

Similarly, input devices need to become full-fledged network
data sources, to enable much looser coupling of keyboards, mice,

game consoles and projectors and displays; the challenge here
will be the authentication, authorization and security issues this
will raise.

The more than 10 year old color management facilities in X have
never seen widespread use. This area is ripe for revisiting.

We are more than happy to hear from anyone interested in help-
ing in this effort.

Copyright © 2004, Hewlett Packard. All Rights Reserved.

January 13, 2004 The (Re)Architecture of the X Window System 4

